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CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number 
253665) is part of a set that describes the architecture and programming environment of Intel® 64 and IA-32 
architecture processors. Other volumes in this set are:
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D: Instruction Set 

Reference (order numbers 253666, 253667, 326018, and 334569).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D: System 

Programming Guide (order numbers 253668, 253669, 326019, and 332831).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers (order 

number 335592).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture 
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C, & 3D, describe 
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B, addresses the programming environment for classes of software that host operating systems. The 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, describes the model-specific registers 
of Intel 64 and IA-32 processors.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which 
include: 
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™ 2 Duo processor
• Intel® Core™ 2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™ 2 Extreme processor X7000 and X6800 series
• Intel® Core™ 2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
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• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™ 2 Extreme processor QX9000 and X9000 series
• Intel® Core™ 2 Quad processor Q9000 series
• Intel® Core™ 2 Duo processor E8000, T9000 series
• Intel Atom® processor family
• Intel Atom® processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000, 

C1000 series are built from 45 nm and 32 nm processes
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families 
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family 
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families
• 5th generation Intel® Core™ processors
• Intel® Xeon® processor D-1500 product family
• Intel® Xeon® processor E5 v4 family
• Intel Atom® processor X7-Z8000 and X5-Z8000 series
• Intel Atom® processor Z3400 series
• Intel Atom® processor Z3500 series
• 6th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1500m v5 product family
• 7th generation Intel® Core™ processors
• Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series 
• Intel® Xeon® Scalable Processor Family 
• 8th generation Intel® Core™ processors
• Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series
• Intel® Xeon® E processors
• 9th generation Intel® Core™ processors
• 2nd generation Intel® Xeon® Scalable Processor Family 
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• 10th generation Intel® Core™ processors
• 11th generation Intel® Core™ processors
• 3rd generation Intel® Xeon® Scalable Processor Family
• 12th generation Intel® Core™ processors
• 13th generation Intel® Core™ processors
• 4th generation Intel® Xeon® Scalable Processor Family
• 5th generation Intel® Xeon® Scalable Processor Family
• Intel® Core™ Ultra 7 processors
• Intel® Xeon® 6 E-Core processors
• Intel® Xeon® 6 P-Core processors
• Intel® Series 2 Core™ Ultra processors

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium® 
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® microar-
chitecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon 
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved 
Pentium® M processor microarchitecture. 

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel® 
Core™ 2 Duo, Intel® Core™ 2 Quad, and Intel® Core™ 2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™ 2 Quad processor Q9000 series, and Intel® 
Core™ 2 Extreme processors QX9000, X9000 series, Intel® Core™ 2 processor E8000 series are based on 
Enhanced Intel® Core™ microarchitecture.

The Intel Atom® processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000, 
C1000 series are based on the Intel Atom® microarchitecture and supports Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV, 
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® AtomTM 
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® 
Core™ 2 Duo, Intel® Core™ 2 Extreme, Intel® Core™ 2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Nehalem 
microarchitecture. Westmere microarchitecture is a 32 nm version of the Nehalem microarchitecture. Intel® 
Xeon® processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3 processors are based on the 
Westmere microarchitecture. These processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, 
Intel® CoreTM i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Sandy Bridge microarchitecture and 
support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product 
family and 3rd generation Intel® Core™ processors are based on the Ivy Bridge microarchitecture and support 
Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2 
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Ivy Bridge-E microarchitec-
ture and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based on 
the Haswell microarchitecture and support Intel 64 architecture.
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The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme 
Edition are based on the Haswell-E microarchitecture and support Intel 64 architecture.

The Intel Atom® processor Z8000 series is based on the Airmont microarchitecture.

The Intel Atom® processor Z3400 series and the Intel Atom® processor Z3500 series are based on the Silvermont 
microarchitecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor D-1500 
product family and the Intel® Xeon® processor E5 v4 family are based on the Broadwell microarchitecture and 
support Intel 64 architecture. 

The Intel® Xeon® Scalable Processor Family, Intel® Xeon® processor E3-1500m v5 product family and 6th gener-
ation Intel® Core™ processors are based on the Skylake microarchitecture and support Intel 64 architecture.

The 7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and support Intel 64 
architecture.

The Intel Atom® processor C series, the Intel Atom® processor X series, the Intel® Pentium® processor J series, 
the Intel® Celeron® processor J series, and the Intel® Celeron® processor N series are based on the Goldmont 
microarchitecture.

The Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series is based on the Knights Landing microarchitecture and 
supports Intel 64 architecture.

The Intel® Pentium® Silver processor series, the Intel® Celeron® processor J series, and the Intel® Celeron® 
processor N series are based on the Goldmont Plus microarchitecture.

The 8th generation Intel® Core™ processors, 9th generation Intel® Core™ processors, and Intel® Xeon® E proces-
sors are based on the Coffee Lake microarchitecture and support Intel 64 architecture.

The Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series is based on the Knights Mill microarchitecture and 
supports Intel 64 architecture.

The 2nd generation Intel® Xeon® Scalable Processor Family is based on the Cascade Lake product and supports 
Intel 64 architecture.

Some 10th generation Intel® Core™ processors are based on the Ice Lake microarchitecture, and some are based 
on the Comet Lake microarchitecture; both support Intel 64 architecture.

Some 11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture, and some are 
based on the Rocket Lake microarchitecture; both support Intel 64 architecture.

Some 3rd generation Intel® Xeon® Scalable Processor Family processors are based on the Cooper Lake product, 
and some are based on the Ice Lake microarchitecture; both support Intel 64 architecture.

The 12th generation Intel® Core™ processors are based on the Alder Lake performance hybrid architecture and 
support Intel 64 architecture.

The 13th generation Intel® Core™ processors are based on the Raptor Lake performance hybrid architecture and 
support Intel 64 architecture.

The 4th generation Intel® Xeon® Scalable Processor Family is based on Sapphire Rapids microarchitecture and 
supports Intel 64 architecture.

The 5th generation Intel® Xeon® Scalable Processor Family is based on Emerald Rapids microarchitecture and 
supports Intel 64 architecture.

The Intel® Core™ Ultra 7 processor is based on Meteor Lake performance hybrid architecture and supports Intel 64 
architecture.

The Intel® Xeon® 6 E-core processor is based on Sierra Forest microarchitecture and supports Intel 64 architec-
ture.

The Intel® Xeon® 6 P-core processor is based on Granite Rapids microarchitecture and supports Intel 64 architec-
ture.

The Intel® Series 2 Core™ Ultra processor is based on Lunar Lake performance hybrid architecture and supports 
Intel 64 architecture.
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IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset 
of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 1: BASIC ARCHITECTURE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all volumes of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual. It also describes the notational conventions in these manuals and lists related Intel 
manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — Intel® 64 and IA-32 Architectures. Introduces the Intel 64 and IA-32 architectures along with 
the families of Intel processors that are based on these architectures. It also gives an overview of the common 
features found in these processors and brief history of the Intel 64 and IA-32 architectures.

Chapter 3 — Basic Execution Environment. Introduces the models of memory organization and describes the 
register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recognized by the processor; provides 
an overview of real numbers and floating-point formats and of floating-point exceptions.

Chapter 5 — Instruction Set Summary. Lists all Intel 64 and IA-32 instructions, divided into technology groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the procedure stack and mechanisms 
provided for making procedure calls and for servicing interrupts and exceptions.

Chapter 7 — Programming with General-Purpose Instructions. Describes basic load and store, program 
control, arithmetic, and string instructions that operate on basic data types, general-purpose and segment regis-
ters; also describes system instructions that are executed in protected mode.

Chapter 8 — Programming with the x87 FPU. Describes the x87 floating-point unit (FPU), including floating-
point registers and data types; gives an overview of the floating-point instruction set and describes the processor's 
floating-point exception conditions.

Chapter 9 — Programming with Intel® MMX™ Technology. Describes Intel MMX technology, including MMX 
registers and data types; also provides an overview of the MMX instruction set. 

Chapter 10 — Programming with Intel® Streaming SIMD Extensions (Intel® SSE). Describes SSE exten-
sions, including XMM registers, the MXCSR register, and packed single precision floating-point data types; provides 
an overview of the SSE instruction set and gives guidelines for writing code that accesses the SSE extensions. 

Chapter 11 — Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2). Describes SSE2 
extensions, including XMM registers and packed double precision floating-point data types; provides an overview 
of the SSE2 instruction set and gives guidelines for writing code that accesses SSE2 extensions. This chapter also 
describes SIMD floating-point exceptions that can be generated with SSE and SSE2 instructions. It also provides 
general guidelines for incorporating support for SSE and SSE2 extensions into operating system and applications 
code.

Chapter 12 — Programming with Intel® Streaming SIMD Extensions 3 (Intel® SSE3), Supplemental 
Streaming SIMD Extensions 3 (SSSE3), Intel® Streaming SIMD Extensions 4 (Intel® SSE4) and Intel® 
AES New Instructions (Intel® AES-NI). Provides an overview of the SSE3 instruction set, Supplemental SSE3, 
SSE4, AESNI instructions, and guidelines for writing code that access these extensions.

Chapter 13 — Managing State Using the XSAVE Feature Set. Describes the XSAVE feature set instructions 
and explains how software can enable the XSAVE feature set and XSAVE-enabled features.

Chapter 14 — Programming with Intel® AVX, FMA, and Intel® AVX2. Provides an overview of the Intel® AVX 
instruction set, FMA, and Intel® AVX2 extensions and gives guidelines for writing code that access these exten-
sions.

Chapter 15 — Programming with Intel® AVX-512. Provides an overview of the Intel® AVX-512 instruction set 
extensions and gives guidelines for writing code that access these extensions.

Chapter 16 — Programming with Intel® AVX10. Provides an overview of the Intel® AVX10 instruction set 
extensions and gives guidelines for writing code that access these extensions.
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Chapter 17 — Programming with Intel® Transactional Synchronization Extensions. Describes the instruc-
tion extensions that support lock elision techniques to improve the performance of multi-threaded software with 
contended locks.

Chapter 18 — Control-flow Enforcement Technology. Provides an overview of the Control-flow Enforcement 
Technology (CET) and gives guidelines for writing code that access these extensions.

Chapter 19 — Programming with Intel® Advanced Matrix Extensions. Provides an overview of the Intel® 
Advanced Matrix Extensions and gives guidelines for writing code that access these extensions.

Chapter 20 — Input/Output. Describes the processor’s I/O mechanism, including I/O port addressing, I/O 
instructions, and I/O protection mechanisms.

Chapter 21 — Processor Identification and Feature Determination. Describes how to determine the CPU 
type and features available in the processor.

Appendix A — EFLAGS Cross-Reference. Summarizes how the IA-32 instructions affect the flags in the EFLAGS 
register.

Appendix B — EFLAGS Condition Codes. Summarizes how conditional jump, move, and ‘byte set on condition 
code’ instructions use condition code flags (OF, CF, ZF, SF, and PF) in the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes exceptions raised by the x87 FPU floating-
point and SSE/SSE2/SSE3 floating-point instructions.

Appendix D — Guidelines for Writing SIMD Floating-Point Exception Handlers. Gives guidelines for writing 
exception handlers for exceptions generated by SSE/SSE2/SSE3 floating-point instructions.

Appendix E — Intel® Memory Protection Extensions. Provides an overview of the Intel® Memory Protection 
Extensions, a feature that has been deprecated and will not be available on future processors.

1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for 
hexadecimal and binary numbers. This notation is described below.

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses 
increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to 
two raised to the power of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this means 
the bytes of a word are numbered starting from the least significant byte. See Figure 1-1.

Figure 1-1.  Bit and Byte Order

Byte 3

Data Structure 

Byte 1Byte 2 Byte 0

31 24 23 16 15 8 7 0

Lowest

Bit offset
28
24
20
16
12
8
4
0 Address

Byte Offset

Highest
Address
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1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as 
reserved, it is essential for compatibility with future processors that software treat these bits as having a future, 
though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able. 

Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of registers that contain such bits. 

Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated in the documentation, if any, 

or reload them with values previously read from the same register.

NOTE
Avoid any software dependence upon the state of reserved bits in Intel 64 and IA-32 registers. 
Depending upon the values of reserved register bits will make software dependent upon the 
unspecified manner in which the processor handles these bits. Programs that depend upon 
reserved values risk incompatibility with future processors.

1.3.2.1  Instruction Operands
When instructions are represented symbolically, a subset of the IA-32 assembly language is used. In this subset, 
an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have the same function.
• The operands argument1, argument2, and argument3 are optional. There may be from zero to three 

operands, depending on the opcode. When present, they take the form of either literals or identifiers for data 
items. Operand identifiers are either reserved names of registers or are assumed to be assigned to data items 
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left 
operand is the destination. 

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand, 
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

1.3.3 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for 
example, 0F82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, 
E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the character B (for 
example, 1010B). The “B” designation is only used in situations where confusion as to the type of number might 
arise.
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1.3.4 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes. 
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes memory. The 
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many 
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack 
in separate segments. Code addresses would always refer to the code space, and stack addresses would always 
refer to the stack space. The following notation is used to specify a byte address within a segment: 

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS 
register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS register points to the 
code segment and the EIP register contains the address of the instruction.

CS:EIP

1.3.5 A Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register 
bits, and by reading model-specific registers. See Figure 1-2 for details on the syntax that represents this informa-
tion.
1-8 Vol. 1



ABOUT THIS MANUAL
1.3.6 Exceptions
An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to 
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the 
error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is 
reported. Under some conditions, exceptions that produce error codes may not be able to report an accurate code. 
In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)

Figure 1-2.  Syntax for CPUID, CR, and MSR Data Presentation

Input value for EAX register

Output register and feature flag or field 
name with bit position(s)

Value (or range) of output

CPUID.01H:EDX.SSE[bit 25] = 1

CR4.OSFXSR[bit 9] = 1

IA32_MISC_ENABLE.ENABLEFOPCODE[bit 2] = 1

CPUID Input and Output

Control Register Values

Model-Specific Register Values

Example CR name

Feature flag or field name 
with bit position(s)

Value (or range) of output

Example MSR name

Feature flag or field name with bit position(s)

Value (or range) of output

SDM29002
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1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at: 
https://software.intel.com/en-us/articles/intel-sdm

See also: 
• The latest security information on Intel® products:

https://www.intel.com/content/www/us/en/security-center/default.html
• Software developer resources, guidance, and insights for security advisories:

https://software.intel.com/security-software-guidance/
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Fortran Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Software Development Tools:

https://software.intel.com/en-us/intel-sdp-home
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in one, four or ten volumes):

https://software.intel.com/en-us/articles/intel-sdm
• Intel® 64 and IA-32 Architectures Optimization Reference Manual: 

https://software.intel.com/en-us/articles/intel-sdm#optimization
• Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
• Intel® Software Guard Extensions (Intel® SGX) Information:

https://software.intel.com/en-us/isa-extensions/intel-sgx
• Developing Multi-threaded Applications: A Platform Consistent Approach:

https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
https://software.intel.com/sites/default/files/22/30/25602

• Performance Monitoring Unit Sharing Guide:
http://software.intel.com/file/30388

Literature related to select features in future Intel processors are available at:
• Intel® Architecture Instruction Set Extensions Programming Reference:

https://software.intel.com/en-us/isa-extensions

More relevant links are:
• Intel® Developer Zone:

https://software.intel.com/en-us
• Developer centers:

http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
• Processor support general link:

http://www.intel.com/support/processors/
• Intel® Hyper-Threading Technology (Intel® HT Technology):

http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
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CHAPTER 2
INTEL® 64 AND IA-32 ARCHITECTURES

2.1 BRIEF HISTORY OF INTEL® 64 AND IA-32 ARCHITECTURES
The following sections provide a summary of the major technical evolutions from IA-32 to Intel 64 architecture: 
starting from the Intel 8086 processor to the latest Intel® Core® 2 Duo, Core 2 Quad and Intel Xeon processor 
5300 and 7300 series. Object code created for processors released as early as 1978 still executes on the latest 
processors in the Intel 64 and IA-32 architecture families.

2.1.1 16-Bit Processors and Segmentation (1978)
The IA-32 architecture family was preceded by 16-bit processors, the 8086 and 8088. The 8086 has 16-bit regis-
ters and a 16-bit external data bus, with 20-bit addressing giving a 1-MByte address space. The 8088 is similar to 
the 8086 except it has an 8-bit external data bus. 

The 8086/8088 introduced segmentation to the IA-32 architecture. With segmentation, a 16-bit segment register 
contains a pointer to a memory segment of up to 64 KBytes. Using four segment registers at a time, 8086/8088 
processors are able to address up to 256 KBytes without switching between segments. The 20-bit addresses that 
can be formed using a segment register and an additional 16-bit pointer provide a total address range of 1 MByte.

2.1.2 The Intel® 286 Processor (1982)
The Intel 286 processor introduced protected mode operation into the IA-32 architecture. Protected mode uses the 
segment register content as selectors or pointers into descriptor tables. Descriptors provide 24-bit base addresses 
with a physical memory size of up to 16 MBytes, support for virtual memory management on a segment swapping 
basis, and a number of protection mechanisms. These mechanisms include: 
• Segment limit checking.
• Read-only and execute-only segment options.
• Four privilege levels.

2.1.3 The Intel386™ Processor (1985)
The Intel386 processor was the first 32-bit processor in the IA-32 architecture family. It introduced 32-bit registers 
for use both to hold operands and for addressing. The lower half of each 32-bit Intel386 register retains the prop-
erties of the 16-bit registers of earlier generations, permitting backward compatibility. The processor also provides 
a virtual-8086 mode that allows for even greater efficiency when executing programs created for 8086/8088 
processors. 

In addition, the Intel386 processor has support for:
• A 32-bit address bus that supports up to 4-GBytes of physical memory.
• A segmented-memory model and a flat memory model.
• Paging, with a fixed 4-KByte page size providing a method for virtual memory management.
• Support for parallel stages.

2.1.4 The Intel486™ Processor (1989)
The Intel486™ processor added more parallel execution capability by expanding the Intel386 processor’s instruc-
tion decode and execution units into five pipelined stages. Each stage operates in parallel with the others on up to 
five instructions in different stages of execution. 
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In addition, the processor added:
• An 8-KByte on-chip first-level cache that increased the percent of instructions that could execute at the scalar 

rate of one per clock.
• An integrated x87 FPU.
• Power saving and system management capabilities.

2.1.5 The Intel® Pentium® Processor (1993)
The introduction of the Intel Pentium processor added a second execution pipeline to achieve superscalar perfor-
mance (two pipelines, known as u and v, together can execute two instructions per clock). The on-chip first-level 
cache doubled, with 8 KBytes devoted to code and another 8 KBytes devoted to data. The data cache uses the MESI 
protocol to support more efficient write-back cache in addition to the write-through cache previously used by the 
Intel486 processor. Branch prediction with an on-chip branch table was added to increase performance in looping 
constructs. 

In addition, the processor added:
• Extensions to make the virtual-8086 mode more efficient and allow for 4-MByte as well as 4-KByte pages.
• Internal data paths of 128 and 256 bits add speed to internal data transfers.
• Burstable external data bus was increased to 64 bits.
• An APIC to support systems with multiple processors.
• A dual processor mode to support glueless two processor systems.

A subsequent stepping of the Pentium family introduced Intel MMX technology (the Pentium Processor with MMX 
technology). Intel MMX technology uses the single-instruction, multiple-data (SIMD) execution model to perform 
parallel computations on packed integer data contained in 64-bit registers. 

See Section 2.2.7, “SIMD Instructions.”

2.1.6 The P6 Family of Processors (1995—1999)
The P6 family of processors was based on a superscalar microarchitecture that set new performance standards; see 
also Section 2.2.1, “P6 Family Microarchitecture.” One of the goals in the design of the P6 family microarchitecture 
was to exceed the performance of the Pentium processor significantly while using the same 0.6-micrometer, four-
layer, metal BICMOS manufacturing process. Members of this family include the following: 
• The Intel Pentium Pro processor is three-way superscalar. Using parallel processing techniques, the 

processor is able on average to decode, dispatch, and complete execution of (retire) three instructions per 
clock cycle. The Pentium Pro introduced the dynamic execution (micro-data flow analysis, out-of-order 
execution, superior branch prediction, and speculative execution) in a superscalar implementation. The 
processor was further enhanced by its caches. It has the same two on-chip 8-KByte 1st-Level caches as the 
Pentium processor and an additional 256-KByte Level 2 cache in the same package as the processor.

• The Intel Pentium II processor added Intel MMX technology to the P6 family processors along with new 
packaging and several hardware enhancements. The processor core is packaged in the single edge contact 
cartridge (SECC). The Level l data and instruction caches were enlarged to 16 KBytes each, and Level 2 cache 
sizes of 256 KBytes, 512 KBytes, and 1 MBytes are supported. A half-frequency backside bus connects the 
Level 2 cache to the processor. Multiple low-power states such as AutoHALT, Stop-Grant, Sleep, and Deep Sleep 
are supported to conserve power when idling.

• The Pentium II Xeon processor combined the premium characteristics of previous generations of Intel 
processors. This includes: 4-way, 8-way (and up) scalability and a 2 MBytes 2nd-Level cache running on a full-
frequency backside bus.

• The Intel Celeron processor family focused on the value PC market segment. Its introduction offers an 
integrated 128 KBytes of Level 2 cache and a plastic pin grid array (P.P.G.A.) form factor to lower system design 
cost.

• The Intel Pentium III processor introduced the Streaming SIMD Extensions (SSE) to the IA-32 architecture. 
SSE extensions expand the SIMD execution model introduced with the Intel MMX technology by providing a 
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new set of 128-bit registers and the ability to perform SIMD operations on packed single precision floating-
point values. See Section 2.2.7, “SIMD Instructions.”

• The Pentium III Xeon processor extended the performance levels of the IA-32 processors with the 
enhancement of a full-speed, on-die, and Advanced Transfer Cache.

2.1.7 The Intel® Pentium® 4 Processor Family (2000—2006) 
The Intel Pentium 4 processor family is based on Intel NetBurst microarchitecture; see Section 2.2.2, “Intel 
NetBurst® Microarchitecture.”

The Intel Pentium 4 processor introduced Streaming SIMD Extensions 2 (SSE2); see Section 2.2.7, “SIMD Instruc-
tions.” The Intel Pentium 4 processor 3.40 GHz, supporting Hyper-Threading Technology introduced Streaming 
SIMD Extensions 3 (SSE3); see Section 2.2.7, “SIMD Instructions.”

Intel 64 architecture was introduced in the Intel Pentium 4 Processor Extreme Edition supporting Hyper-Threading 
Technology and in the Intel Pentium 4 Processor 6xx and 5xx sequences.

Intel® Virtualization Technology (Intel® VT) was introduced in the Intel Pentium 4 processor 672 and 662.

2.1.8 The Intel® Xeon® Processor (2001—2007)
Intel Xeon processors (with exception for dual-core Intel Xeon processor LV, Intel Xeon processor 5100 series) are 
based on the Intel NetBurst microarchitecture; see Section 2.2.2, “Intel NetBurst® Microarchitecture.” As a family, 
this group of IA-32 processors (more recently Intel 64 processors) is designed for use in multi-processor server 
systems and high-performance workstations. 

The Intel Xeon processor MP introduced support for Intel® Hyper-Threading Technology; see Section 2.2.8, “Intel® 
Hyper-Threading Technology.”

The 64-bit Intel Xeon processor 3.60 GHz (with an 800 MHz System Bus) was used to introduce Intel 64 architec-
ture. The Dual-Core Intel Xeon processor includes dual core technology. The Intel Xeon processor 70xx series 
includes Intel Virtualization Technology.

The Intel Xeon processor 5100 series introduces power-efficient, high performance Intel Core microarchitecture. 
This processor is based on Intel 64 architecture; it includes Intel Virtualization Technology and dual-core tech-
nology. The Intel Xeon processor 3000 series are also based on Intel Core microarchitecture. The Intel Xeon 
processor 5300 series introduces four processor cores in a physical package, they are also based on Intel Core 
microarchitecture. 

2.1.9 The Intel® Pentium® M Processor (2003—2006)
The Intel Pentium M processor family is a high performance, low power mobile processor family with microarchitec-
tural enhancements over previous generations of IA-32 Intel mobile processors. This family is designed for 
extending battery life and seamless integration with platform innovations that enable new usage models (such as 
extended mobility, ultra thin form-factors, and integrated wireless networking).

Its enhanced microarchitecture includes:
• Support for Intel Architecture with Dynamic Execution.
• A high performance, low-power core manufactured using Intel’s advanced process technology with copper 

interconnect.
• On-die, primary 32-KByte instruction cache and 32-KByte write-back data cache.
• On-die, second-level cache (up to 2 MByte) with Advanced Transfer Cache Architecture.
• Advanced Branch Prediction and Data Prefetch Logic.
• Support for MMX technology, Streaming SIMD instructions, and the SSE2 instruction set.
• A 400 or 533 MHz, Source-Synchronous Processor System Bus.
• Advanced power management using Enhanced Intel SpeedStep® technology.
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2.1.10 The Intel® Pentium® Processor Extreme Edition (2005) 
The Intel Pentium processor Extreme Edition introduced dual-core technology. This technology provides advanced 
hardware multi-threading support. The processor is based on Intel NetBurst microarchitecture and supports Intel 
SSE, SSE2, SSE3, Intel Hyper-Threading Technology, and Intel 64 architecture.

See also:
• Section 2.2.2, “Intel NetBurst® Microarchitecture.”
• Section 2.2.3, “Intel® Core™ Microarchitecture.”
• Section 2.2.7, “SIMD Instructions.”
• Section 2.2.8, “Intel® Hyper-Threading Technology.”
• Section 2.2.9, “Multi-Core Technology.”
• Section 2.2.10, “Intel® 64 Architecture.”

2.1.11 The Intel® Core™ Duo and Intel® Core™ Solo Processors (2006—2007)
The Intel Core Duo processor offers power-efficient, dual-core performance with a low-power design that extends 
battery life. This family and the single-core Intel Core Solo processor offer microarchitectural enhancements over 
Pentium M processor family.

Its enhanced microarchitecture includes:
• Intel® Smart Cache which allows for efficient data sharing between two processor cores.
• Improved decoding and SIMD execution.
• Intel® Dynamic Power Coordination and Enhanced Intel® Deeper Sleep to reduce power consumption.
• Intel® Advanced Thermal Manager which features digital thermal sensor interfaces.
• Support for power-optimized 667 MHz bus.

The dual-core Intel Xeon processor LV is based on the same microarchitecture as Intel Core Duo processor, and 
supports IA-32 architecture.

2.1.12 The Intel® Xeon® Processor 5100, 5300 Series, and Intel® Core™ 2 Processor Family 
(2006)

The Intel Xeon processor 3000, 3200, 5100, 5300, and 7300 series, Intel Pentium Dual-Core, Intel Core 2 Extreme, 
Intel Core 2 Quad processors, and Intel Core 2 Duo processor family support Intel 64 architecture; they are based 
on the high-performance, power-efficient Intel® Core microarchitecture built on 65 nm process technology. The 
Intel Core microarchitecture includes the following innovative features:
• Intel® Wide Dynamic Execution to increase performance and execution throughput.
• Intel® Intelligent Power Capability to reduce power consumption.
• Intel® Advanced Smart Cache which allows for efficient data sharing between two processor cores.
• Intel® Smart Memory Access to increase data bandwidth and hide latency of memory accesses.
• Intel® Advanced Digital Media Boost which improves application performance using multiple generations of 

Streaming SIMD extensions.

The Intel Xeon processor 5300 series, Intel Core 2 Extreme processor QX6800 series, and Intel Core 2 Quad 
processors support Intel quad-core technology.

2.1.13 The Intel® Xeon® Processor 5200, 5400, 7400 Series, and Intel® Core™ 2 Processor 
Family (2007)

The Intel Xeon processor 5200, 5400, and 7400 series, Intel Core 2 Quad processor Q9000 Series, Intel Core 2 Duo 
processor E8000 series support Intel 64 architecture; they are based on the Enhanced Intel® Core microarchitec-
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ture using 45 nm process technology. The Enhanced Intel Core microarchitecture provides the following improved 
features:
• A radix-16 divider, faster OS primitives further increases the performance of Intel® Wide Dynamic Execution. 
• Improves Intel® Advanced Smart Cache with Up to 50% larger level-two cache and up to 50% increase in way-

set associativity. 
• A 128-bit shuffler engine significantly improves the performance of Intel® Advanced Digital Media Boost and 

SSE4.

The Intel Xeon processor 5400 series and the Intel Core 2 Quad processor Q9000 Series support Intel quad-core 
technology. The Intel Xeon processor 7400 series offers up to six processor cores and an L3 cache up to 16 MBytes.

2.1.14 The Intel Atom® Processor Family (2008)
The first generation of Intel Atom® processors are built on 45 nm process technology. They are based on a new 
microarchitecture, Intel Atom® microarchitecture, which is optimized for ultra low power devices. The Intel Atom® 
microarchitecture features two in-order execution pipelines that minimize power consumption, increase battery 
life, and enable ultra-small form factors. The initial Intel Atom Processor family and subsequent generations 
including Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series provide the following features:
• Enhanced Intel® SpeedStep® Technology.
• Intel® Hyper-Threading Technology.
• Deep Power Down Technology with Dynamic Cache Sizing.
• Support for instruction set extensions up to and including Supplemental Streaming SIMD Extensions 3 

(SSSE3).
• Support for Intel® Virtualization Technology.
• Support for Intel® 64 Architecture (excluding Intel Atom processor Z5xx Series).

2.1.15 The Intel Atom® Processor Family Based on Silvermont Microarchitecture (2013)
Intel Atom Processor C2xxx, E3xxx, S1xxx series are based on the Silvermont microarchitecture. Processors based 
on the Silvermont microarchitecture support instruction set extensions up to and including SSE4.2, AESNI, and 
PCLMULQDQ.

2.1.16 The Intel® Core™ i7 Processor Family (2008)
The Intel Core i7 processor 900 series supports Intel 64 architecture, and is based on Nehalem microarchitecture 
using 45 nm process technology. The Intel Core i7 processor and Intel Xeon processor 5500 series include the 
following features:
• Intel® Turbo Boost Technology converts thermal headroom into higher performance. 
• Intel® HyperThreading Technology in conjunction with Quadcore to provide four cores and eight threads. 
• Dedicated power control unit to reduce active and idle power consumption.
• Integrated memory controller on the processor supporting three channels of DDR3 memory.
• 8 MB inclusive Intel® Smart Cache.
• Intel® QuickPath interconnect (QPI) providing point-to-point link to chipset.
• Support for SSE4.2 and SSE4.1 instruction sets.
• Second generation Intel Virtualization Technology.

2.1.17 The Intel® Xeon® Processor 7500 Series (2010)
The Intel Xeon processor 7500 and 6500 series are based on Nehalem microarchitecture using 45 nm process tech-
nology. These processors support the same features described in Section 2.1.16, plus the following features:
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• Up to eight cores per physical processor package.
• Up to 24 MB inclusive Intel® Smart Cache.
• Provides Intel® Scalable Memory Interconnect (Intel® SMI) channels with Intel® 7500 Scalable Memory Buffer 

to connect to system memory. 
• Advanced RAS supporting software recoverable machine check architecture.

2.1.18 2010 Intel® Core™ Processor Family (2010)
The 2010 Intel Core processor family spans Intel Core i7, i5, and i3 processors. These processors are based on 
Westmere microarchitecture using 32 nm process technology. The features can include:
• Deliver smart performance using Intel Hyper-Threading Technology plus Intel Turbo Boost Technology. 
• Enhanced Intel Smart Cache and integrated memory controller.
• Intelligent power gating.
• Repartitioned platform with on-die integration of 45 nm integrated graphics.
• Range of instruction set support up to AESNI, PCLMULQDQ, SSE4.2 and SSE4.1.

2.1.19 The Intel® Xeon® Processor 5600 Series (2010)
The Intel Xeon processor 5600 series are based on Westmere microarchitecture using 32 nm process technology. 
They support the same features described in Section 2.1.16, plus the following features:
• Up to six cores per physical processor package.
• Up to 12 MB enhanced Intel® Smart Cache.
• Support for AESNI, PCLMULQDQ, SSE4.2 and SSE4.1 instruction sets.
• Flexible Intel Virtualization Technologies across processor and I/O.

2.1.20 The Second Generation Intel® Core™ Processor Family (2011)
The Second Generation Intel Core processor family spans Intel Core i7, i5, and i3 processors based on the Sandy 
Bridge microarchitecture. These processors are built from 32 nm process technology and have features including:
• Intel Turbo Boost Technology for Intel Core i5 and i7 processors.
• Intel Hyper-Threading Technology. 
• Enhanced Intel Smart Cache and integrated memory controller.
• Processor graphics and built-in visual features like Intel® Quick Sync Video, Intel® InsiderTM, etc.
• Range of instruction set support up to AVX, AESNI, PCLMULQDQ, SSE4.2 and SSE4.1.

The Intel Xeon processor E3-1200 product family is also based on the Sandy Bridge microarchitecture.

The Intel Xeon processor E5-2400/1400 product families are based on the Sandy Bridge-EP microarchitecture.

The Intel Xeon processor E5-4600/2600/1600 product families are based on the Sandy Bridge-EP microarchitec-
ture and provide support for multiple sockets.

2.1.21 The Third Generation Intel® Core™ Processor Family (2012)
The Third Generation Intel Core processor family spans Intel Core i7, i5, and i3 processors based on the Ivy Bridge 
microarchitecture. The Intel Xeon processor E7-8800/4800/2800 v2 product families and Intel Xeon processor E3-
1200 v2 product family are also based on the Ivy Bridge microarchitecture.

The Intel Xeon processor E5-2400/1400 v2 product families are based on the Ivy Bridge-EP microarchitecture.

The Intel Xeon processor E5-4600/2600/1600 v2 product families are based on the Ivy Bridge-EP microarchitec-
ture and provide support for multiple sockets.
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2.1.22 The Fourth Generation Intel® Core™ Processor Family (2013)
The Fourth Generation Intel Core processor family spans Intel Core i7, i5, and i3 processors based on the Haswell 
microarchitecture. Intel Xeon processor E3-1200 v3 product family is also based on the Haswell microarchitecture.

2.2 MORE ON SPECIFIC ADVANCES
The following sections provide more information on major innovations.

2.2.1 P6 Family Microarchitecture
The Pentium Pro processor introduced a new microarchitecture commonly referred to as P6 processor microarchi-
tecture. The P6 processor microarchitecture was later enhanced with an on-die, Level 2 cache, called Advanced 
Transfer Cache.

The microarchitecture is a three-way superscalar, pipelined architecture. Three-way superscalar means that by 
using parallel processing techniques, the processor is able on average to decode, dispatch, and complete execution 
of (retire) three instructions per clock cycle. To handle this level of instruction throughput, the P6 processor family 
uses a decoupled, 12-stage superpipeline that supports out-of-order instruction execution. 

Figure 2-1 shows a conceptual view of the P6 processor microarchitecture pipeline with the Advanced Transfer 
Cache enhancement. 

To ensure a steady supply of instructions and data for the instruction execution pipeline, the P6 processor microar-
chitecture incorporates two cache levels. The Level 1 cache provides an 8-KByte instruction cache and an 8-KByte 
data cache, both closely coupled to the pipeline. The Level 2 cache provides 256-KByte, 512-KByte, or 1-MByte 
static RAM that is coupled to the core processor through a full clock-speed 64-bit cache bus.

The centerpiece of the P6 processor microarchitecture is an out-of-order execution mechanism called dynamic 
execution. Dynamic execution incorporates three data-processing concepts:

Figure 2-1.  The P6 Processor Microarchitecture with Advanced Transfer Cache Enhancement
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• Deep branch prediction allows the processor to decode instructions beyond branches to keep the instruction 
pipeline full. The P6 processor family implements highly optimized branch prediction algorithms to predict the 
direction of the instruction.

• Dynamic data flow analysis requires real-time analysis of the flow of data through the processor to 
determine dependencies and to detect opportunities for out-of-order instruction execution. The out-of-order 
execution core can monitor many instructions and execute these instructions in the order that best optimizes 
the use of the processor’s multiple execution units, while maintaining the data integrity.

• Speculative execution refers to the processor’s ability to execute instructions that lie beyond a conditional 
branch that has not yet been resolved, and ultimately to commit the results in the order of the original 
instruction stream. To make speculative execution possible, the P6 processor microarchitecture decouples the 
dispatch and execution of instructions from the commitment of results. The processor’s out-of-order execution 
core uses data-flow analysis to execute all available instructions in the instruction pool and store the results in 
temporary registers. The retirement unit then linearly searches the instruction pool for completed instructions 
that no longer have data dependencies with other instructions or unresolved branch predictions. When 
completed instructions are found, the retirement unit commits the results of these instructions to memory 
and/or the IA-32 registers (the processor’s eight general-purpose registers and eight x87 FPU data registers) 
in the order they were originally issued and retires the instructions from the instruction pool.

2.2.2 Intel NetBurst® Microarchitecture
The Intel NetBurst microarchitecture provides:
• The Rapid Execution Engine.

— Arithmetic Logic Units (ALUs) run at twice the processor frequency.

— Basic integer operations can dispatch in 1/2 processor clock tick.
• Hyper-Pipelined Technology.

— Deep pipeline to enable industry-leading clock rates for desktop PCs and servers.

— Frequency headroom and scalability to continue leadership into the future.
• Advanced Dynamic Execution.

— Deep, out-of-order, speculative execution engine.

• Up to 126 instructions in flight.

• Up to 48 loads and 24 stores in pipeline1.

— Enhanced branch prediction capability.

• Reduces the misprediction penalty associated with deeper pipelines.

• Advanced branch prediction algorithm.

• 4K-entry branch target array.
• New cache subsystem.

— First level caches.

• Advanced Execution Trace Cache stores decoded instructions.

• Execution Trace Cache removes decoder latency from main execution loops.

• Execution Trace Cache integrates path of program execution flow into a single line.

• Low latency data cache.

— Second level cache.

• Full-speed, unified 8-way Level 2 on-die Advance Transfer Cache.

• Bandwidth and performance increases with processor frequency.

1. Intel 64 and IA-32 processors based on the Intel NetBurst microarchitecture at 90 nm process can handle more than 24 stores in 
flight.
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• High-performance, quad-pumped bus interface to the Intel NetBurst microarchitecture system bus.

— Supports quad-pumped, scalable bus clock to achieve up to 4X effective speed.

— Capable of delivering up to 8.5 GBytes of bandwidth per second.
• Superscalar issue to enable parallelism.
• Expanded hardware registers with renaming to avoid register name space limitations.
• 64-byte cache line size (transfers data up to two lines per sector).

Figure 2-2 is an overview of the Intel NetBurst microarchitecture. This microarchitecture pipeline is made up of 
three sections: (1) the front end pipeline, (2) the out-of-order execution core, and (3) the retirement unit. 

2.2.2.1  The Front End Pipeline
The front end supplies instructions in program order to the out-of-order execution core. It performs a number of 
functions:
• Prefetches instructions that are likely to be executed.
• Fetches instructions that have not already been prefetched.
• Decodes instructions into micro-operations.
• Generates microcode for complex instructions and special-purpose code.
• Delivers decoded instructions from the execution trace cache.
• Predicts branches using highly advanced algorithm.

The pipeline is designed to address common problems in high-speed, pipelined microprocessors. Two of these 
problems contribute to major sources of delays:
• Time to decode instructions fetched from the target.

Figure 2-2.  The Intel NetBurst® Microarchitecture
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• Wasted decode bandwidth due to branches or branch target in the middle of cache lines.

The operation of the pipeline’s trace cache addresses these issues. Instructions are constantly being fetched and 
decoded by the translation engine (part of the fetch/decode logic) and built into sequences of micro-ops called 
traces. At any time, multiple traces (representing prefetched branches) are being stored in the trace cache. The 
trace cache is searched for the instruction that follows the active branch. If the instruction also appears as the first 
instruction in a pre-fetched branch, the fetch and decode of instructions from the memory hierarchy ceases and the 
pre-fetched branch becomes the new source of instructions (see Figure 2-2).

The trace cache and the translation engine have cooperating branch prediction hardware. Branch targets are 
predicted based on their linear addresses using branch target buffers (BTBs) and fetched as soon as possible.

2.2.2.2  Out-Of-Order Execution Core
The out-of-order execution core’s ability to execute instructions out of order is a key factor in enabling parallelism. 
This feature enables the processor to reorder instructions so that if one micro-op is delayed, other micro-ops may 
proceed around it. The processor employs several buffers to smooth the flow of micro-ops.

The core is designed to facilitate parallel execution. It can dispatch up to six micro-ops per cycle (this exceeds trace 
cache and retirement micro-op bandwidth). Most pipelines can start executing a new micro-op every cycle, so 
several instructions can be in flight at a time for each pipeline. A number of arithmetic logical unit (ALU) instruc-
tions can start at two per cycle; many floating-point instructions can start once every two cycles. 

2.2.2.3  Retirement Unit
The retirement unit receives the results of the executed micro-ops from the out-of-order execution core and 
processes the results so that the architectural state updates according to the original program order. 

When a micro-op completes and writes its result, it is retired. Up to three micro-ops may be retired per cycle. The 
Reorder Buffer (ROB) is the unit in the processor which buffers completed micro-ops, updates the architectural 
state in order, and manages the ordering of exceptions. The retirement section also keeps track of branches and 
sends updated branch target information to the BTB. The BTB then purges pre-fetched traces that are no longer 
needed.

2.2.3 Intel® Core™ Microarchitecture
Intel Core microarchitecture introduces the following features that enable high performance and power-efficient 
performance for single-threaded as well as multi-threaded workloads:
• Intel® Wide Dynamic Execution enable each processor core to fetch, dispatch, execute in high bandwidths 

to support retirement of up to four instructions per cycle.

— Fourteen-stage efficient pipeline.

— Three arithmetic logical units.

— Four decoders to decode up to five instruction per cycle.

— Macro-fusion and micro-fusion to improve front-end throughput.

— Peak issue rate of dispatching up to six micro-ops per cycle.

— Peak retirement bandwidth of up to 4 micro-ops per cycle.

— Advanced branch prediction.

— Stack pointer tracker to improve efficiency of executing function/procedure entries and exits.
• Intel® Advanced Smart Cache delivers higher bandwidth from the second level cache to the core, and 

optimal performance and flexibility for single-threaded and multi-threaded applications.

— Large second level cache up to 4 MB and 16-way associativity.

— Optimized for multicore and single-threaded execution environments.

— 256-bit internal data path to improve bandwidth from L2 to first-level data cache.
2-10 Vol. 1



INTEL® 64 AND IA-32 ARCHITECTURES
• Intel® Smart Memory Access prefetches data from memory in response to data access patterns and reduces 
cache-miss exposure of out-of-order execution.

— Hardware prefetchers to reduce effective latency of second-level cache misses.

— Hardware prefetchers to reduce effective latency of first-level data cache misses.

— Memory disambiguation to improve efficiency of speculative execution engine.
• Intel® Advanced Digital Media Boost improves most 128-bit SIMD instructions with single-cycle 

throughput and floating-point operations.

— Single-cycle throughput of most 128-bit SIMD instructions.

— Up to eight floating-point operations per cycle.

— Three issue ports available to dispatching SIMD instructions for execution.

Intel Core 2 Extreme, Intel Core 2 Duo processors and Intel Xeon processor 5100 series implement two processor 
cores based on the Intel Core microarchitecture, the functionality of the subsystems in each core are depicted in 
Figure 2-3. 

2.2.3.1  The Front End
The front end of Intel Core microarchitecture provides several enhancements to feed the Intel Wide Dynamic 
Execution engine:
• Instruction fetch unit prefetches instructions into an instruction queue to maintain steady supply of instruction 

to the decode units.
• Four-wide decode unit can decode 4 instructions per cycle or 5 instructions per cycle with Macrofusion.
• Macrofusion fuses common sequence of two instructions as one decoded instruction (micro-ops) to increase 

decoding throughput.
• Microfusion fuses common sequence of two micro-ops as one micro-ops to improve retirement throughput.

Figure 2-3.  The Intel® Core™ Microarchitecture Pipeline Functionality
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• Instruction queue provides caching of short loops to improve efficiency.
• Stack pointer tracker improves efficiency of executing procedure/function entries and exits.
• Branch prediction unit employs dedicated hardware to handle different types of branches for improved branch 

prediction.
• Advanced branch prediction algorithm directs instruction fetch unit to fetch instructions likely in the architec-

tural code path for decoding.

2.2.3.2  Execution Core 
The execution core of the Intel Core microarchitecture is superscalar and can process instructions out of order to 
increase the overall rate of instructions executed per cycle (IPC). The execution core employs the following feature 
to improve execution throughput and efficiency:
• Up to six micro-ops can be dispatched to execute per cycle.
• Up to four instructions can be retired per cycle.
• Three full arithmetic logical units.
• SIMD instructions can be dispatched through three issue ports.
• Most SIMD instructions have 1-cycle throughput (including 128-bit SIMD instructions).
• Up to eight floating-point operation per cycle.
• Many long-latency computation operation are pipelined in hardware to increase overall throughput.
• Reduced exposure to data access delays using Intel Smart Memory Access.

2.2.4 Intel Atom® Microarchitecture
Intel Atom microarchitecture maximizes power-efficient performance for single-threaded and multi-threaded 
workloads by providing:
• Advanced Micro-Ops Execution 

— Single-micro-op instruction execution from decode to retirement, including instructions with register-only, 
load, and store semantics.

— Sixteen-stage, in-order pipeline optimized for throughput and reduced power consumption.

— Dual pipelines to enable decode, issue, execution, and retirement of two instructions per cycle.

— Advanced stack pointer to improve efficiency of executing function entry/returns.
• Intel® Smart Cache

— Second level cache is 512 KB and 8-way associativity.

— Optimized for multi-threaded and single-threaded execution environments

— 256-bit internal data path between L2 and L1 data caches improves high bandwidth.
• Efficient Memory Access

— Efficient hardware prefetchers to L1 and L2, speculatively loading data likely to be requested by processor 
to reduce cache miss impact.

• Intel® Digital Media Boost

— Two issue ports for dispatching SIMD instructions to execution units.

— Single-cycle throughput for most 128-bit integer SIMD instructions.

— Up to six floating-point operations per cycle.

— Up to two 128-bit SIMD integer operations per cycle.

— Safe Instruction Recognition (SIR) to allow long-latency floating-point operations to retire out of order with 
respect to integer instructions.
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2.2.5 Nehalem Microarchitecture
Nehalem microarchitecture provides the foundation for many features of Intel Core i7 processors. It builds on the 
success of 45 nm Intel Core microarchitecture and provides the following feature enhancements:
• Enhanced processor core

— Improved branch prediction and recovery from misprediction.

— Enhanced loop streaming to improve front end performance and reduce power consumption.

— Deeper buffering in out-of-order engine to extract parallelism.

— Enhanced execution units to provide acceleration in CRC, string/text processing and data shuffling.
• Smart Memory Access

— Integrated memory controller provides low-latency access to system memory and scalable memory 
bandwidth.

— New cache hierarchy organization with shared, inclusive L3 to reduce snoop traffic.

— Two level TLBs and increased TLB size.

— Fast unaligned memory access.
• HyperThreading Technology

— Provides two hardware threads (logical processors) per core.

— Takes advantage of 4-wide execution engine, large L3, and massive memory bandwidth.
• Dedicated Power management Innovations

— Integrated microcontroller with optimized embedded firmware to manage power consumption.

— Embedded real-time sensors for temperature, current, and power.

— Integrated power gate to turn off/on per-core power consumption

— Versatility to reduce power consumption of memory, link subsystems.

2.2.6 Sandy Bridge Microarchitecture
Sandy Bridge microarchitecture builds on the successes of Intel® Core™ microarchitecture and Nehalem microar-
chitecture. It offers the following features:
• Intel Advanced Vector Extensions (Intel AVX).

— 256-bit floating-point instruction set extensions to the 128-bit Intel Streaming SIMD Extensions, providing 
up to 2X performance benefits relative to 128-bit code.

— Non-destructive destination encoding offers more flexible coding techniques.

— Supports flexible migration and co-existence between 256-bit AVX code, 128-bit AVX code and legacy 128-
bit SSE code.

• Enhanced front-end and execution engine.

— New decoded Icache component that improves front-end bandwidth and reduces branch misprediction 
penalty.

— Advanced branch prediction.

— Additional macro-fusion support.

— Larger dynamic execution window.

— Multi-precision integer arithmetic enhancements (ADC/SBB, MUL/IMUL).

— LEA bandwidth improvement.

— Reduction of general execution stalls (read ports, writeback conflicts, bypass latency, partial stalls).

— Fast floating-point exception handling.
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— XSAVE/XRSTORE performance improvements and XSAVEOPT new instruction.
• Cache hierarchy improvements for wider data path.

— Doubling of bandwidth enabled by two symmetric ports for memory operation.

— Simultaneous handling of more in-flight loads and stores enabled by increased buffers.

— Internal bandwidth of two loads and one store each cycle.

— Improved prefetching.

— High bandwidth low latency LLC architecture.

— High bandwidth ring architecture of on-die interconnect.

For additional information on Intel® Advanced Vector Extensions (AVX), see Section 5.13, “Intel® Advanced Vector 
Extensions (Intel® AVX)” and Chapter 14, “Programming with Intel® AVX, FMA, and Intel® AVX2” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1.

2.2.7 SIMD Instructions
Beginning with the Pentium II and Pentium with Intel MMX technology processor families, six extensions have been 
introduced into the Intel 64 and IA-32 architectures to perform single-instruction multiple-data (SIMD) operations. 
These extensions include the MMX technology, SSE extensions, SSE2 extensions, SSE3 extensions, Supplemental 
Streaming SIMD Extensions 3, and SSE4. Each of these extensions provides a group of instructions that perform 
SIMD operations on packed integer and/or packed floating-point data elements. 

SIMD integer operations can use the 64-bit MMX or the 128-bit XMM registers. SIMD floating-point operations use 
128-bit XMM registers. Figure 2-4 shows a summary of the various SIMD extensions (MMX technology, Intel SSE, 
Intel SSE2, Intel SSE3, SSSE3, and Intel SSE4), the data types they operate on, and how the data types are packed 
into MMX and XMM registers.

The Intel MMX technology was introduced in the Pentium II and Pentium with MMX technology processor families. 
MMX instructions perform SIMD operations on packed byte, word, or doubleword integers located in MMX registers. 
These instructions are useful in applications that operate on integer arrays and streams of integer data that lend 
themselves to SIMD processing.

Intel SSE was introduced in the Pentium III processor family. Intel SSE instructions operate on packed single preci-
sion floating-point values contained in XMM registers and on packed integers contained in MMX registers. Several 
Intel SSE instructions provide state management, cache control, and memory ordering operations. Other Intel SSE 
instructions are targeted at applications that operate on arrays of single precision floating-point data elements (3-
D geometry, 3-D rendering, and video encoding and decoding applications).

Intel SSE2 was introduced in the Pentium 4 and Intel Xeon processors. Intel SSE2 instructions operate on packed 
double precision floating-point values contained in XMM registers and on packed integers contained in MMX and 
XMM registers. Intel SSE2 integer instructions extend IA-32 SIMD operations by adding new 128-bit SIMD integer 
operations and by expanding existing 64-bit SIMD integer operations to 128-bit XMM capability. Intel SSE2 instruc-
tions also provide new cache control and memory ordering operations.

Intel SSE3 was introduced with the Pentium 4 processor supporting Hyper-Threading Technology (built on 90 nm 
process technology). Intel SSE3 offers 13 instructions that accelerate performance of Streaming SIMD Extensions 
technology, Streaming SIMD Extensions 2 technology, and x87-FP math capabilities.

SSSE3 was introduced with the Intel Xeon processor 5100 series and Intel Core 2 processor family. SSSE3 offer 32 
instructions to accelerate processing of SIMD integer data.

Intel SSE4 offers 54 instructions. 47 of them are referred to as Intel SSE4.1 instructions. Intel SSE4.1 was intro-
duced with the Intel Xeon processor 5400 series and Intel Core 2 Extreme processor QX9650. The other seven Intel 
SSE4 instructions are referred to as Intel SSE4.2 instructions.

Intel AES-NI and PCLMULQDQ introduced seven new instructions. Six of them are primitives for accelerating algo-
rithms based on AES encryption/decryption standard, and are referred to as Intel AES-NI.

The PCLMULQDQ instruction accelerates general-purpose block encryption, which can perform carry-less multipli-
cation for two binary numbers up to 64-bit wide.
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Intel 64 architecture allows four generations of 128-bit SIMD extensions to access up to 16 XMM registers. IA-32 
architecture provides eight XMM registers.

Intel® Advanced Vector Extensions offers comprehensive architectural enhancements over previous generations of 
Streaming SIMD Extensions. Intel AVX introduces the following architectural enhancements:
• Support for 256-bit wide vectors and SIMD register set.
• 256-bit floating-point instruction set enhancement with up to 2X performance gain relative to 128-bit 

Streaming SIMD extensions.
• Instruction syntax support for generalized three-operand syntax to improve instruction programming flexibility 

and efficient encoding of new instruction extensions.
• Enhancement of legacy 128-bit SIMD instruction extensions to support three operand syntax and to simplify 

compiler vectorization of high-level language expressions.
• Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy 128-bit code and scalar code.
In addition to performance considerations, programmers should also be cognizant of the implications of VEX-
encoded AVX instructions with the expectations of system software components that manage the processor state 
components enabled by XCR0. For additional information see Section 2.3.10.1, “Vector Length Transition and 
Programming Considerations” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

See also: 
• Section 5.4, “MMX Instructions,” and Chapter 9, “Programming with Intel® MMX™ Technology.”
• Section 5.5, “Intel® SSE Instructions,” and Chapter 10, “Programming with Intel® Streaming SIMD Extensions 

(Intel® SSE).”
• Section 5.6, “Intel® SSE2 Instructions,” and Chapter 11, “Programming with Intel® Streaming SIMD 

Extensions 2 (Intel® SSE2).”
• Section 5.7, “Intel® SSE3 Instructions,” Section 5.8, “Supplemental Streaming SIMD Extensions 3 (SSSE3) 

Instructions,” Section 5.9, “Intel® SSE4 Instructions,” and Chapter 12, “Programming with Intel® SSE3, 
SSSE3, Intel® SSE4, and Intel® AES-NI.”
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2.2.8 Intel® Hyper-Threading Technology
Intel Hyper-Threading Technology (Intel HT Technology) was developed to improve the performance of IA-32 
processors when executing multi-threaded operating system and application code or single-threaded applications 
under multi-tasking environments. The technology enables a single physical processor to execute two or more 
separate code streams (threads) concurrently using shared execution resources. 

Intel HT Technology is one form of hardware multi-threading capability in IA-32 processor families. It differs from 
multi-processor capability using separate physically distinct packages with each physical processor package mated 
with a physical socket. Intel HT Technology provides hardware multi-threading capability with a single physical 
package by using shared execution resources in a processor core.

Architecturally, an IA-32 processor that supports Intel HT Technology consists of two or more logical processors, 
each of which has its own IA-32 architectural state. Each logical processor consists of a full set of IA-32 data regis-
ters, segment registers, control registers, debug registers, and most of the MSRs. Each also has its own advanced 
programmable interrupt controller (APIC). 

Figure 2-5 shows a comparison of a processor that supports Intel HT Technology (implemented with two logical 
processors) and a traditional dual processor system. 

Figure 2-4.  SIMD Extensions, Register Layouts, and Data Types
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Unlike a traditional MP system configuration that uses two or more separate physical IA-32 processors, the logical 
processors in an IA-32 processor supporting Intel HT Technology share the core resources of the physical 
processor. This includes the execution engine and the system bus interface. After power up and initialization, each 
logical processor can be independently directed to execute a specified thread, interrupted, or halted.

Intel HT Technology leverages the process and thread-level parallelism found in contemporary operating systems 
and high-performance applications by providing two or more logical processors on a single chip. This configuration 
allows two or more threads1 to be executed simultaneously on each a physical processor. Each logical processor 
executes instructions from an application thread using the resources in the processor core. The core executes 
these threads concurrently, using out-of-order instruction scheduling to maximize the use of execution units during 
each clock cycle.

2.2.8.1  Some Implementation Notes
All Intel HT Technology configurations require:
• A processor that supports Intel HT Technology.
• A chipset and BIOS that utilize the technology.
• Operating system optimizations.

See http://www.intel.com/products/ht/hyperthreading_more.htm for information.

At the firmware (BIOS) level, the basic procedures to initialize the logical processors in a processor supporting Intel 
HT Technology are the same as those for a traditional DP or MP platform. The mechanisms that are described in the 
Multiprocessor Specification, Version 1.4, to power-up and initialize physical processors in an MP system also apply 
to logical processors in a processor that supports Intel HT Technology. 

An operating system designed to run on a traditional DP or MP platform may use CPUID to determine the presence 
of hardware multi-threading support feature and the number of logical processors they provide.

Although existing operating system and application code should run correctly on a processor that supports Intel HT 
Technology, some code modifications are recommended to get the optimum benefit. These modifications are 
discussed in Chapter 7, “Multiple-Processor Management,” Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

Figure 2-5.  Comparison of an IA-32 Processor Supporting Intel® Hyper-Threading Technology
and a Traditional Dual Processor System

1. In the remainder of this document, the term “thread” will be used as a general term for the terms “process” and “thread.”
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2.2.9 Multi-Core Technology
Multi-core technology is another form of hardware multi-threading capability in IA-32 processor families. Multi-core 
technology enhances hardware multi-threading capability by providing two or more execution cores in a physical 
package.

The Intel Pentium processor Extreme Edition is the first member in the IA-32 processor family to introduce multi-
core technology. The processor provides hardware multi-threading support with both two processor cores and Intel 
Hyper-Threading Technology. This means that the Intel Pentium processor Extreme Edition provides four logical 
processors in a physical package (two logical processors for each processor core). The Dual-Core Intel Xeon 
processor features multi-core, Intel Hyper-Threading Technology and supports multi-processor platforms. 

The Intel Pentium D processor also features multi-core technology. This processor provides hardware multi-
threading support with two processor cores but does not offer Intel Hyper-Threading Technology. This means that 
the Intel Pentium D processor provides two logical processors in a physical package, with each logical processor 
owning the complete execution resources of a processor core.

The Intel Core 2 processor family, Intel Xeon processor 3000 series, Intel Xeon processor 5100 series, and Intel 
Core Duo processor offer power-efficient multi-core technology. The processor contains two cores that share a 
smart second level cache. The Level 2 cache enables efficient data sharing between two cores to reduce memory 
traffic to the system bus.

The Pentium® dual-core processor is based on the same technology as the Intel Core 2 Duo processor family.

The Intel Xeon processor 7300, 5300, and 3200 series, Intel Core 2 Extreme Quad-Core processor, and Intel Core 
2 Quad processors support Intel quad-core technology. The Quad-core Intel Xeon processors and the Quad-Core 
Intel Core 2 processor family are also in Figure 2-7. 

Figure 2-6.  Intel 64 and IA-32 Processors that Support Dual-Core 
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Intel Core i7 processors support Intel quad-core technology, Intel HyperThreading Technology, provides Intel 
QuickPath interconnect link to the chipset and have integrated memory controller supporting three channels to 
DDR3 memory.

Figure 2-7.  Intel® 64 Processors that Support Quad-Core 

Figure 2-8.  Intel® Core™ i7 Processor 
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2.2.10 Intel® 64 Architecture
Intel 64 architecture increases the linear address space for software to 64 bits and supports physical address space 
up to 52 bits. The technology also introduces a new operating mode referred to as IA-32e mode.

IA-32e mode operates in one of two sub-modes: (1) compatibility mode enables a 64-bit operating system to run 
most legacy 32-bit software unmodified, (2) 64-bit mode enables a 64-bit operating system to run applications 
written to access 64-bit address space. 

In the 64-bit mode, applications may access:
• 64-bit flat linear addressing.
• 8 additional general-purpose registers (GPRs).
• 8 additional registers for streaming SIMD extensions (Intel SSE, SSE2, and SSE3, and SSSE3).
• 64-bit-wide GPRs and instruction pointers.
• Uniform byte-register addressing.
• Fast interrupt-prioritization mechanism.
• A new instruction-pointer relative-addressing mode.

An Intel 64 architecture processor supports existing IA-32 software because it is able to run all non-64-bit legacy 
modes supported by IA-32 architecture. Most existing IA-32 applications also run in compatibility mode.

2.2.11 Intel® Virtualization Technology (Intel® VT)
Intel® Virtualization Technology for Intel 64 and IA-32 architectures provide extensions that support virtualization. 
The extensions are referred to as Virtual Machine Extensions (VMX). An Intel 64 or IA-32 platform with VMX can 
function as multiple virtual systems (or virtual machines). Each virtual machine can run operating systems and 
applications in separate partitions. 

VMX also provides programming interface for a new layer of system software (called the Virtual Machine Monitor 
(VMM)) used to manage the operation of virtual machines. Information on VMX and on the programming of VMMs 
is in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

Intel Core i7 processor provides the following enhancements to Intel Virtualization Technology:
• Virtual processor ID (VPID) to reduce the cost of VMM managing transitions.
• Extended page table (EPT) to reduce the number of transitions for VMM to manage memory virtualization.
• Reduced latency of VM transitions.

2.3 INTEL® 64 AND IA-32 PROCESSOR GENERATIONS
In the mid-1960s, Intel co-founder and Chairman Emeritus Gordon Moore had this observation: “... the number of 
transistors that would be incorporated on a silicon die would double every 18 months for the next several years.” 
Over the past three and half decades, this prediction known as “Moore's Law” has continued to hold true.

The computing power and the complexity (or roughly, the number of transistors per processor) of Intel architecture 
processors has grown in close relation to Moore's law. By taking advantage of new process technology and new 
microarchitecture designs, each new generation of IA-32 processors has demonstrated frequency-scaling head-
room and new performance levels over the previous generation processors.
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The key features of the Intel Pentium 4 processor, Intel Xeon processor, Intel Xeon processor MP, Pentium III 
processor, and Pentium III Xeon processor with advanced transfer cache are shown in Table 2-1. Older generation 
IA-32 processors, which do not employ on-die Level 2 cache, are shown in Table 2-2. 

Table 2-1.  Key Features of Most Recent IA-32 Processors 

Intel 
Processor

Date 
Intro-
duced

Microarchitecture Top-Bin Clock 
Frequency at 
Introduction

Tran-
sistors

Register 
Sizes1

NOTES:
1. The register size and external data bus size are given in bits.

System 
Bus Band-
width

Max. 
Extern. 
Addr. 
Space

On-Die 
Caches2

2. First level cache is denoted using the abbreviation L1, 2nd level cache is denoted as L2. The size of L1 includes the first-level data
cache and the instruction cache where applicable, but does not include the trace cache.

Intel Pentium 
M
Processor 
7553

3. Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family,
not across different processor families. See http://www.intel.com/products/processor_number for details.

2004 Intel Pentium M 
Processor

2.00 GHz 140 M GP: 32 
FPU: 80 
MMX: 64
XMM: 128

3.2 GB/s 4 GB L1: 64 KB
L2: 2 MB

Intel Core Duo
Processor 
T2600 3

2006 Improved Intel 
Pentium M 
Processor 
Microarchitecture; 
Dual Core;

Intel Smart Cache, 
Advanced Thermal 
Manager

2.16 GHz  152 M GP: 32 
FPU: 80 
MMX: 64
XMM: 128

5.3 GB/s 4 GB L1: 64 KB
L2: 2 MB (2 
MB Total)

Intel Atom
Processor 
Z5xx series

2008 Intel Atom 
Microarchitecture; 

Intel Virtualization 
Technology.

1.86 GHz - 
800 MHz

 47 M GP: 32 
FPU: 80 
MMX: 64
XMM: 128

Up to 4.2 
GB/s

4 GB L1: 56 KB4

L2: 512 KB 

4. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.

Table 2-2.  Key Features of Most Recent Intel® 64 Processors

Intel 
Processor

Date 
Intro-
duced

Micro-architec-
ture

Highest 
Processor 
Base Fre-
quency at 
Intro-
duction

Tran-
sistors

Register 
Sizes

System 
Bus/QPI 
Link 
Speed

Max. 
Extern. 
Addr. 
Space

On-Die 
Caches

64-bit Intel 
Xeon
Processor 
with 800 MHz 
System Bus

2004 Intel NetBurst 
Microarchitecture; 
Intel Hyper-
Threading 
Technology; Intel 
64 Architecture

3.60 GHz 125 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
1 MB L2

64-bit Intel 
Xeon
Processor MP 
with 8MB L3

2005 Intel NetBurst 
Microarchitecture; 
Intel Hyper-
Threading 
Technology; Intel 
64 Architecture 

3.33 GHz 675 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

5.3 GB/s 1 1024 GB 
(1 TB)

12K µop 
Execution 
Trace Cache;
16 KB L1;
1 MB L2,
8 MB L3
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Intel Pentium 
4
Processor 
Extreme 
Edition 
Supporting 
Hyper-
Threading 
Technology

2005 Intel NetBurst 
Microarchitecture; 
Intel Hyper-
Threading 
Technology; Intel 
64 Architecture 

3.73 GHz 164 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
2 MB L2

Intel Pentium 
Processor 
Extreme 
Edition 840

2005 Intel NetBurst 
Microarchitecture; 
Intel Hyper-
Threading 
Technology; Intel 
64 Architecture;

Dual-core 2

3.20 GHz 230 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
1 MB L2 (2 
MB Total)

Dual-Core Intel 
Xeon 
Processor 
7041

2005 Intel NetBurst 
Microarchitecture; 
Intel Hyper-
Threading 
Technology; Intel 
64 Architecture;

Dual-core 3

3.00 GHz  321 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
2 MB L2 (4 
MB Total)

Intel Pentium 
4
Processor 672

2005 Intel NetBurst 
Microarchitecture; 
Intel Hyper-
Threading 
Technology; Intel 
64 Architecture;

Intel Virtualization 
Technology.

3.80 GHz 164 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
2 MB L2 

Intel Pentium 
Processor 
Extreme 
Edition 955

2006 Intel NetBurst 
Microarchitecture; 
Intel 64 
Architecture; Dual 
Core;

Intel Virtualization 
Technology.

3.46 GHz  376 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
2 MB L2 

(4 MB Total)

Intel Core 2 
Extreme 
Processor 
X6800

2006 Intel Core 
Microarchitecture; 
Dual Core; 

Intel 64 
Architecture;

Intel Virtualization 
Technology.

2.93 GHz  291 M GP: 32, 64 
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 64 GB L1: 64 KB
L2: 4 MB (4 
MB Total)

Table 2-2.  Key Features of Most Recent Intel® 64 Processors (Contd.)

Intel 
Processor

Date 
Intro-
duced

Micro-architec-
ture

Highest 
Processor 
Base Fre-
quency at 
Intro-
duction

Tran-
sistors

Register 
Sizes

System 
Bus/QPI 
Link 
Speed

Max. 
Extern. 
Addr. 
Space

On-Die 
Caches
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Intel Xeon
Processor 
5160

2006 Intel Core 
Microarchitecture; 
Dual Core; 

Intel 64 
Architecture;

Intel Virtualization 
Technology.

3.00 GHz  291 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

10.6 GB/s 64 GB L1: 64 KB
L2: 4 MB (4 
MB Total)

Intel Xeon
Processor 
7140

2006 Intel NetBurst 
Microarchitecture; 
Dual Core; 

Intel 64 
Architecture;

Intel Virtualization 
Technology.

3.40 GHz  1.3 B GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

12.8 GB/s 64 GB L1: 64 KB
L2: 1 MB (2 
MB Total)

L3: 16 MB 
(16 MB 
Total)

Intel Core 2 
Extreme 
Processor 
QX6700

2006 Intel Core 
Microarchitecture; 
Quad Core; 

Intel 64 
Architecture;

Intel Virtualization 
Technology.

2.66 GHz 582 M GP: 32, 64 
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 64 GB L1: 64 KB
L2: 4 MB (4 
MB Total)

Quad-core 
Intel Xeon
Processor 
5355

2006 Intel Core 
Microarchitecture; 
Quad Core; 

Intel 64 
Architecture;

Intel Virtualization 
Technology.

2.66 GHz 582 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

10.6 GB/s 256 GB L1: 64 KB
L2: 4 MB (8 
MB Total)

Intel Core 2 
Duo Processor 
E6850

2007 Intel Core 
Microarchitecture; 
Dual Core; 

Intel 64 
Architecture;

Intel Virtualization 
Technology;

Intel Trusted 
Execution 
Technology

3.00 GHz 291 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

10.6 GB/s 64 GB L1: 64 KB
L2: 4 MB (4 
MB Total)

Intel Xeon
Processor 
7350

2007 Intel Core 
Microarchitecture; 
Quad Core; 

Intel 64 
Architecture;

Intel Virtualization 
Technology.

2.93 GHz  582 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 1024 GB L1: 64 KB
L2: 4 MB (8 
MB Total)

Table 2-2.  Key Features of Most Recent Intel® 64 Processors (Contd.)

Intel 
Processor

Date 
Intro-
duced

Micro-architec-
ture

Highest 
Processor 
Base Fre-
quency at 
Intro-
duction

Tran-
sistors

Register 
Sizes

System 
Bus/QPI 
Link 
Speed

Max. 
Extern. 
Addr. 
Space

On-Die 
Caches
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Intel Xeon
Processor 
5472

2007 Enhanced Intel 
Core 
Microarchitecture; 
Quad Core; 

Intel 64 
Architecture;

Intel Virtualization 
Technology.

3.00 GHz  820 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

12.8 GB/s 256 GB L1: 64 KB
L2: 6 MB (12 
MB Total)

Intel Atom
Processor

2008 Intel Atom 
Microarchitecture; 
Intel 64 
Architecture;

Intel Virtualization 
Technology.

2.0 - 1.60 
GHz

47 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

Up to 4.2 
GB/s

Up to 
64GB

L1: 56 KB4

L2: 512 KB 

Intel Xeon
Processor 
7460

2008 Enhanced Intel 
Core 
Microarchitecture; 
Six Cores; 

Intel 64 
Architecture;

Intel Virtualization 
Technology.

2.67 GHz  1.9 B GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 1024 GB L1: 64 KB
L2: 3 MB (9 
MB Total)

L3: 16 MB

Intel Atom
Processor 330

2008 Intel Atom 
Microarchitecture; 
Intel 64 
Architecture;

Dual core;

Intel Virtualization 
Technology.

1.60 GHz 94 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

Up to 4.2 
GB/s

Up to 
64GB

L1: 56 KB5

L2: 512 KB 
(1 MB Total)

Intel Core i7-
965
Processor 
Extreme 
Edition

2008 Nehalem 
microarchitecture; 
Quadcore; 
HyperThreading 
Technology; Intel 
QPI; Intel 64 
Architecture;

Intel Virtualization 
Technology.

3.20 GHz  731 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

QPI: 6.4 
GT/s; 
Memory: 
25 GB/s 

64 GB L1: 64 KB
L2: 256 KB 

L3: 8 MB

Table 2-2.  Key Features of Most Recent Intel® 64 Processors (Contd.)

Intel 
Processor

Date 
Intro-
duced

Micro-architec-
ture

Highest 
Processor 
Base Fre-
quency at 
Intro-
duction

Tran-
sistors

Register 
Sizes

System 
Bus/QPI 
Link 
Speed

Max. 
Extern. 
Addr. 
Space

On-Die 
Caches
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Intel Core i7-
620M
Processor 

2010 Intel Turbo Boost 
Technology, 
Westmere 
microarchitecture; 
Dual-core; 
HyperThreading 
Technology; Intel 
64 Architecture;

Intel Virtualization 
Technology., 
Integrated graphics

2.66 GHz  383 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

64 GB L1: 64 KB
L2: 256 KB 

L3: 4 MB

Intel Xeon-
Processor 
5680

2010 Intel Turbo Boost 
Technology, 
Westmere 
microarchitecture; 
Six core; 
HyperThreading 
Technology; Intel 
64 Architecture;

Intel Virtualization 
Technology.

3.33 GHz 1.1 B GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

QPI: 6.4 
GT/s; 32 
GB/s

1 TB L1: 64 KB
L2: 256 KB 

L3: 12 MB

Intel Xeon-
Processor 
7560

2010 Intel Turbo Boost 
Technology, 
Nehalem 
microarchitecture; 
Eight core; 
HyperThreading 
Technology; Intel 
64 Architecture;

Intel Virtualization 
Technology.

2.26 GHz 2.3 B GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

QPI: 6.4 
GT/s; 
Memory: 
76 GB/s 

16 TB L1: 64 KB
L2: 256 KB 

L3: 24 MB

Intel Core i7-
2600K
Processor 

2011 Intel Turbo Boost 
Technology, Sandy 
Bridge 
microarchitecture; 
Four core; 
HyperThreading 
Technology; Intel 
64 Architecture;

Intel Virtualization 
Technology., 
Processor graphics, 
Quicksync Video

3.40 GHz  995 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

YMM: 256

DMI: 5 
GT/s; 
Memory: 
21 GB/s

64 GB L1: 64 KB
L2: 256 KB 

L3: 8 MB

Table 2-2.  Key Features of Most Recent Intel® 64 Processors (Contd.)

Intel 
Processor

Date 
Intro-
duced

Micro-architec-
ture

Highest 
Processor 
Base Fre-
quency at 
Intro-
duction

Tran-
sistors

Register 
Sizes

System 
Bus/QPI 
Link 
Speed

Max. 
Extern. 
Addr. 
Space

On-Die 
Caches
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Intel Xeon-
Processor E3-
1280

2011 Intel Turbo Boost 
Technology, Sandy 
Bridge 
microarchitecture; 
Four core; 
HyperThreading 
Technology; Intel 
64 Architecture;

Intel Virtualization 
Technology.

3.50 GHz GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

YMM: 256

DMI: 5 
GT/s; 
Memory: 
21 GB/s

1 TB L1: 64 KB
L2: 256 KB 

L3: 8 MB

Intel Xeon-
Processor E7-
8870

2011 Intel Turbo Boost 
Technology, 
Westmere 
microarchitecture; 
Ten core; 
HyperThreading 
Technology; Intel 
64 Architecture;

Intel Virtualization 
Technology.

2.40 GHz 2.2 B GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

QPI: 6.4 
GT/s; 
Memory: 
102 GB/s 

16 TB L1: 64 KB
L2: 256 KB 

L3: 30 MB

NOTES:
1. The 64-bit Intel Xeon Processor MP with an 8-MByte L3 supports a multi-processor platform with a dual system bus; this creates a 

platform bandwidth with 10.6 GBytes.
2. In Intel Pentium Processor Extreme Edition 840, the size of on-die cache is listed for each core. The total size of L2 in the physical

package in 2 MBytes.
3. In Dual-Core Intel Xeon Processor 7041, the size of on-die cache is listed for each core. The total size of L2 in the physical package in

4 MBytes.
4. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.
5. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.

Table 2-2.  Key Features of Most Recent Intel® 64 Processors (Contd.)

Intel 
Processor

Date 
Intro-
duced

Micro-architec-
ture

Highest 
Processor 
Base Fre-
quency at 
Intro-
duction

Tran-
sistors

Register 
Sizes

System 
Bus/QPI 
Link 
Speed

Max. 
Extern. 
Addr. 
Space

On-Die 
Caches
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Table 2-3.  Key Features of Previous Generations of IA-32 Processors

Intel 
Processor

Date 
Intro-
duced

Max. Clock 
Frequency/
Technology at 
Introduction

Tran-
sistors

Register 
Sizes1

Ext. Data 
Bus Size2

Max. 
Extern. 
Addr. 
Space

Caches 

8086 1978 8 MHz 29 K 16 GP 16 1 MB None

Intel 286 1982 12.5 MHz 134 K 16 GP 16 16 MB Note 3

Intel386 DX 
Processor

1985 20 MHz 275 K 32 GP 32 4 GB Note 3

Intel486 DX 
Processor

1989 25 MHz 1.2 M 32 GP
80 FPU

32 4 GB L1: 8 KB

Pentium Processor 1993 60 MHz 3.1 M 32 GP
80 FPU

64 4 GB L1: 16 KB

Pentium Pro 
Processor

1995 200 MHz 5.5 M 32 GP
80 FPU

64 64 GB L1: 16 KB
L2: 256 KB or 
512 KB 

Pentium II Processor 1997 266 MHz 7 M 32 GP
80 FPU
64 MMX

64 64 GB L1: 32 KB
L2: 256 KB or 
512 KB

Pentium III Processor 1999 500 MHz 8.2 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB L1: 32 KB
L2: 512 KB

Pentium III and 
Pentium III Xeon 
Processors

1999 700 MHz 28 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB L1: 32 KB
L2: 256 KB

Pentium 4 Processor 2000 1.50 GHz, Intel 
NetBurst 
Microarchitecture

42 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop 
Execution 
Trace Cache; 
L1: 8 KB
L2: 256 KB

Intel Xeon Processor 2001 1.70 GHz, Intel 
NetBurst 
Microarchitecture

42 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop 
Execution 
Trace Cache; 
L1: 8 KB
L2: 512 KB

Intel Xeon Processor 2002 2.20 GHz, Intel 
NetBurst 
Microarchitecture, 
HyperThreading 
Technology

55 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop 
Execution 
Trace Cache; 
L1: 8 KB
L2: 512 KB

Pentium M Processor 2003 1.60 GHz, Intel 
NetBurst 
Microarchitecture

77 M 32 GP
80 FPU
64 MMX
128 XMM

64 4 GB L1: 64 KB
L2: 1 MB
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2.4 PLANNED REMOVAL OF INTEL® INSTRUCTION SET ARCHITECTURE AND 
FEATURES FROM UPCOMING PRODUCTS

This section lists Intel Instruction Set Architecture (ISA) and features that Intel plans to remove from select prod-
ucts starting from a specific year.

2.5 INTEL® INSTRUCTION SET ARCHITECTURE AND FEATURES REMOVED
This section lists Intel ISA and features that Intel has already removed for select upcoming products. All sections 
relevant to the removed features will be identified as such and may be moved to an archived section in future 
Intel® 64 and IA-32 Architectures Software Developer's Manual releases.

Intel Pentium 4
Processor 
Supporting Hyper-
Threading 
Technology at 90 nm 
process

2004 3.40 GHz, Intel 
NetBurst 
Microarchitecture, 
HyperThreading 
Technology

125 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop 
Execution 
Trace Cache; 
L1: 16 KB
L2: 1 MB

NOTES:
1. The register size and external data bus size are given in bits. Note also that each 32-bit general-purpose (GP) registers can be 

addressed as an 8- or a 16-bit data registers in all of the processors.
2. Internal data paths are 2 to 4 times wider than the external data bus for each processor.

Table 2-4.  Planned Intel® ISA and Features Removal List 

Intel ISA/Feature Year of Removal

Sub-page write permissions for EPT 2024 onwards

xAPIC mode 2025 onwards

Uncore PMI. IA32_DEBUGCTL MSR, bit 13 (MSR address 1D9H) 2026 onwards

Table 2-5.  Intel® ISA and Features Removal List 

Intel ISA/Feature Year of Removal

Intel® Memory Protection Extensions (Intel® MPX) 2019 onwards

MSR_TEST_CTRL, bit 31 (MSR address 33H) 2019 onwards

Hardware Lock Elision (HLE) 2019 onwards

VP2INTERSECT 2023 onwards

Table 2-3.  Key Features of Previous Generations of IA-32 Processors (Contd.)
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CHAPTER 3
BASIC EXECUTION ENVIRONMENT

This chapter describes the basic execution environment of an Intel 64 or IA-32 processor as seen by assembly-
language programmers. It describes how the processor executes instructions and how it stores and manipulates 
data. The execution environment described here includes memory (the address space), general-purpose data 
registers, segment registers, the flag register, and the instruction pointer register.

3.1 MODES OF OPERATION
The IA-32 architecture supports three basic operating modes: protected mode, real-address mode, and system 
management mode. The operating mode determines which instructions and architectural features are accessible:
• Protected mode — This mode is the native state of the processor. Among the capabilities of protected mode 

is the ability to directly execute “real-address mode” 8086 software in a protected, multi-tasking environment. 
This feature is called virtual-8086 mode, although it is not actually a processor mode. Virtual-8086 mode is 
actually a protected mode attribute that can be enabled for any task. 

• Real-address mode — This mode implements the programming environment of the Intel 8086 processor with 
extensions (such as the ability to switch to protected or system management mode). The processor is placed in 
real-address mode following power-up or a reset.

• System management mode (SMM) — This mode provides an operating system or executive with a 
transparent mechanism for implementing platform-specific functions such as power management and system 
security. The processor enters SMM when the external SMM interrupt pin (SMI#) is activated or an SMI is 
received from the advanced programmable interrupt controller (APIC). 
In SMM, the processor switches to a separate address space while saving the basic context of the currently 
running program or task. SMM-specific code may then be executed transparently. Upon returning from SMM, 
the processor is placed back into its state prior to the system management interrupt. SMM was introduced with 
the Intel386™ SL and Intel486™ SL processors and became a standard IA-32 feature with the Pentium 
processor family. 

3.1.1 Intel® 64 Architecture
Intel 64 architecture adds IA-32e mode. IA-32e mode has two sub-modes.
These are:
• Compatibility mode (sub-mode of IA-32e mode) — Compatibility mode permits most legacy 16-bit and 

32-bit applications to run without re-compilation under a 64-bit operating system. For brevity, the compatibility 
sub-mode is referred to as compatibility mode in IA-32 architecture. The execution environment of compati-
bility mode is the same as described in Section 3.2. Compatibility mode also supports all of the privilege levels 
that are supported in 64-bit and protected modes. Legacy applications that run in Virtual 8086 mode or use 
hardware task management will not work in this mode. 
Compatibility mode is enabled by the operating system (OS) on a code segment basis. This means that a single 
64-bit OS can support 64-bit applications running in 64-bit mode and support legacy 32-bit applications (not 
recompiled for 64-bits) running in compatibility mode.
Compatibility mode is similar to 32-bit protected mode. Applications access only the first 4 GByte of linear-
address space. Compatibility mode uses 16-bit and 32-bit address and operand sizes. Like protected mode, this 
mode allows applications to access physical memory greater than 4 GByte using PAE (Physical Address Exten-
sions). 

• 64-bit mode (sub-mode of IA-32e mode) — This mode enables a 64-bit operating system to run applica-
tions written to access 64-bit linear address space. For brevity, the 64-bit sub-mode is referred to as 64-bit 
mode in IA-32 architecture.
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64-bit mode extends the number of general purpose registers and SIMD extension registers from 8 to 16. 
General purpose registers are widened to 64 bits. The mode also introduces a new opcode prefix (REX) to 
access the register extensions. See Section 3.2.1 for a detailed description.
64-bit mode is enabled by the operating system on a code-segment basis. Its default address size is 64 bits and 
its default operand size is 32 bits. The default operand size can be overridden on an instruction-by-instruction 
basis using a REX opcode prefix in conjunction with an operand size override prefix. 
REX prefixes allow a 64-bit operand to be specified when operating in 64-bit mode. By using this mechanism, 
many existing instructions have been promoted to allow the use of 64-bit registers and 64-bit addresses.

3.2 OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT
Any program or task running on an IA-32 processor is given a set of resources for executing instructions and for 
storing code, data, and state information. These resources (described briefly in the following paragraphs and 
shown in Figure 3-1) make up the basic execution environment for an IA-32 processor. 

An Intel 64 processor supports the basic execution environment of an IA-32 processor, and a similar environment 
under IA-32e mode that can execute 64-bit programs (64-bit sub-mode) and 32-bit programs (compatibility sub-
mode). 

The basic execution environment is used jointly by the application programs and the operating system or executive 
running on the processor.
• Address space — Any task or program running on an IA-32 processor can address a linear address space of 

up to 4 GBytes (232 bytes) and a physical address space of up to 64 GBytes (236 bytes). See Section 3.3.6, 
“Extended Physical Addressing in Protected Mode,” for more information about addressing an address space 
greater than 4 GBytes.

• Basic program execution registers — The eight general-purpose registers, the six segment registers, the 
EFLAGS register, and the EIP (instruction pointer) register comprise a basic execution environment in which to 
execute a set of general-purpose instructions. These instructions perform basic integer arithmetic on byte, 
word, and doubleword integers, handle program flow control, operate on bit and byte strings, and address 
memory. See Section 3.4, “Basic Program Execution Registers,” for more information about these registers.

• x87 FPU registers — The eight x87 FPU data registers, the x87 FPU control register, the status register, the 
x87 FPU instruction pointer register, the x87 FPU operand (data) pointer register, the x87 FPU tag register, and 
the x87 FPU opcode register provide an execution environment for operating on single precision, double 
precision, and double extended precision floating-point values, word integers, doubleword integers, quadword 
integers, and binary coded decimal (BCD) values. See Section 8.1, “x87 FPU Execution Environment,” for more 
information about these registers.

• MMX registers — The eight MMX registers support execution of single-instruction, multiple-data (SIMD) 
operations on 64-bit packed byte, word, and doubleword integers. See Section 9.2, “The MMX Technology 
Programming Environment,” for more information about these registers.

• XMM registers — The eight XMM data registers and the MXCSR register support execution of SIMD operations 
on 128-bit packed single precision and double precision floating-point values and on 128-bit packed byte, word, 
doubleword, and quadword integers. See Section 10.2, “Intel® SSE Programming Environment,” for more 
information about these registers.

• YMM registers — The YMM data registers support execution of 256-bit SIMD operations on 256-bit packed 
single precision and double precision floating-point values and on 256-bit packed byte, word, doubleword, and 
quadword integers. 

• Bounds registers — Each of the BND0-BND3 register stores the lower and upper bounds (64 bits each) 
associated with the pointer to a memory buffer. They support execution of the Intel MPX instructions. 

• BNDCFGU and BNDSTATUS— BNDCFGU configures user mode MPX operations on bounds checking. 
BNDSTATUS provides additional information on the #BR caused by an MPX operation.
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Figure 3-1.  IA-32 Basic Execution Environment for Non-64-Bit Modes
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• Stack — To support procedure or subroutine calls and the passing of parameters between procedures or 
subroutines, a stack and stack management resources are included in the execution environment. The stack 
(not shown in Figure 3-1) is located in memory. See Section 6.2, “Stacks,” for more information about stack 
structure.

In addition to the resources provided in the basic execution environment, the IA-32 architecture provides the 
following resources as part of its system-level architecture. They provide extensive support for operating-system 
and system-development software. Except for the I/O ports, the system resources are described in detail in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D.
• I/O ports — The IA-32 architecture supports a transfers of data to and from input/output (I/O) ports. See 

Chapter 20, “Input/Output,” in this volume.
• Control registers — The five control registers (CR0 through CR4) determine the operating mode of the 

processor and the characteristics of the currently executing task. See Chapter 2, “System Architecture 
Overview,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Memory management registers — The GDTR, IDTR, task register, and LDTR specify the locations of data 
structures used in protected mode memory management. See Chapter 2, “System Architecture Overview,” in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Debug registers — The debug registers (DR0 through DR7) control and allow monitoring of the processor’s 
debugging operations. See in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

• Memory type range registers (MTRRs) — The MTRRs are used to assign memory types to regions of 
memory. See the sections on MTRRs in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volumes 3A, 3B, 3C & 3D.

• Model-specific registers (MSRs) — The processor provides a variety of model-specific registers that are 
used to control and report on processor performance. Virtually all MSRs handle system related functions and 
are not accessible to an application program. One exception to this rule is the time-stamp counter. The MSRs 
are described in Chapter 2, “Model-Specific Registers (MSRs),” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 4.

• Machine check registers — The machine check registers consist of a set of control, status, and error-
reporting MSRs that are used to detect and report on hardware (machine) errors. See Chapter 17, “Machine-
Check Architecture,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Performance monitoring counters — The performance monitoring counters allow processor performance 
events to be monitored. See Chapter 20, “Last Branch Records,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3B.

The remainder of this chapter describes the organization of memory and the address space, the basic program 
execution registers, and addressing modes. Refer to the following chapters in this volume for descriptions of the 
other program execution resources shown in Figure 3-1:
• X87 FPU registers — See Chapter 8, “Programming with the x87 FPU.”
• MMX Registers — See Chapter 9, “Programming with Intel® MMX™ Technology.”
• XMM registers — See Chapter 10, “Programming with Intel® Streaming SIMD Extensions (Intel® SSE),” 

Chapter 11, “Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2),” and Chapter 12, 
“Programming with Intel® SSE3, SSSE3, Intel® SSE4, and Intel® AES-NI.”

• YMM registers — See Chapter 14, “Programming with Intel® AVX, FMA, and Intel® AVX2.”
• BND registers, BNDCFGU, BNDSTATUS — See Chapter 13, “Managing State Using the XSAVE Feature Set,” 

and Appendix E, “Intel® Memory Protection Extensions.”
• Stack implementation and procedure calls — See Chapter 6, “Procedure Calls, Interrupts, and Exceptions.”
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3.2.1 64-Bit Mode Execution Environment
The execution environment for 64-bit mode is similar to that described in Section 3.2. The following paragraphs 
describe the differences that apply. 
• Address space — A task or program running in 64-bit mode on an IA-32 processor can address linear address 

space of up to 264 bytes (subject to the canonical addressing requirement described in Section 3.3.7.1) and 
physical address space of up to 252 bytes. Software can query CPUID for the physical address size supported 
by a processor.

• Basic program execution registers — The number of general-purpose registers (GPRs) available is 16. 
GPRs are 64-bits wide and they support operations on byte, word, doubleword, and quadword integers. 
Accessing byte registers is done uniformly to the lowest 8 bits. The instruction pointer register becomes 64 bits. 
The EFLAGS register is extended to 64 bits wide, and is referred to as the RFLAGS register. The upper 32 bits 
of RFLAGS is reserved. The lower 32 bits of RFLAGS is the same as EFLAGS. See Figure 3-2.

• XMM registers — There are 16 XMM data registers for SIMD operations. See Section 10.2, “Intel® SSE 
Programming Environment,” for more information about these registers.

• YMM registers — There are 16 YMM data registers for SIMD operations. See Chapter 14, “Programming with 
Intel® AVX, FMA, and Intel® AVX2,” for more information about these registers.

• BND registers, BNDCFGU, BNDSTATUS — See Chapter 13, “Managing State Using the XSAVE Feature Set,” 
and Appendix E, “Intel® Memory Protection Extensions.”

• Stack — The stack pointer size is 64 bits. Stack size is not controlled by a bit in the SS descriptor (as it is in 
non-64-bit modes) nor can the pointer size be overridden by an instruction prefix.

• Control registers — Control registers expand to 64 bits. A new control register (the task priority register: CR8 
or TPR) has been added. See Chapter 2, “Intel® 64 and IA-32 Architectures‚” in this volume.

• Debug registers — Debug registers expand to 64 bits. See Chapter 19, “Debug, Branch Profile, TSC, and 
Intel® Resource Director Technology (Intel® RDT) Features,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3B.
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• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table 
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table 
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as 
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical 
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel 
64 architecture. Intel 64 architecture introduces a set of changes in physical and linear address space; these 
are described in Section 3.3.3, Section 3.3.4, and Section 3.3.7.

Figure 3-2.  64-Bit Mode Execution Environment
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Virtually any operating system or executive designed to work with an IA-32 or Intel 64 processor will use the 
processor’s memory management facilities to access memory. These facilities provide features such as segmenta-
tion and paging, which allow memory to be managed efficiently and reliably. Memory management is described in 
detail in Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A. The following paragraphs describe the basic methods of addressing memory when 
memory management is used.

3.3.1 IA-32 Memory Models
When employing the processor’s memory management facilities, programs do not directly address physical 
memory. Instead, they access memory using one of three memory models: flat, segmented, or real address mode:
• Flat memory model — Memory appears to a program as a single, continuous address space (Figure 3-3). This 

space is called a linear address space. Code, data, and stacks are all contained in this address space. Linear 
address space is byte addressable, with addresses running contiguously from 0 to 232 - 1 (if not in 64-bit 
mode). An address for any byte in linear address space is called a linear address.

• Segmented memory model — Memory appears to a program as a group of independent address spaces 
called segments. Code, data, and stacks are typically contained in separate segments. To address a byte in a 
segment, a program issues a logical address. This consists of a segment selector and an offset (logical 
addresses are often referred to as far pointers). The segment selector identifies the segment to be accessed 
and the offset identifies a byte in the address space of the segment. Programs running on an IA-32 processor 
can address up to 16,383 segments of different sizes and types, and each segment can be as large as 232 
bytes.
Internally, all the segments that are defined for a system are mapped into the processor’s linear address space. 
To access a memory location, the processor thus translates each logical address into a linear address. This 
translation is transparent to the application program.
The primary reason for using segmented memory is to increase the reliability of programs and systems. For 
example, placing a program’s stack in a separate segment prevents the stack from growing into the code or 
data space and overwriting instructions or data, respectively.

• Real-address mode memory model — This is the memory model for the Intel 8086 processor. It is 
supported to provide compatibility with existing programs written to run on the Intel 8086 processor. The real-
address mode uses a specific implementation of segmented memory in which the linear address space for the 
program and the operating system/executive consists of an array of segments of up to 64 KBytes in size each. 
The maximum size of the linear address space in real-address mode is 220 bytes. 
See also: Chapter 22, “8086 Emulation,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3B.
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3.3.2 Paging and Virtual Memory
With the flat or the segmented memory model, linear address space is mapped into the processor’s physical 
address space either directly or through paging. When using direct mapping (paging disabled), each linear address 
has a one-to-one correspondence with a physical address. Linear addresses are sent out on the processor’s address 
lines without translation. 

When using the IA-32 architecture’s paging mechanism (paging enabled), linear address space is divided into 
pages which are mapped to virtual memory. The pages of virtual memory are then mapped as needed into physical 
memory. When an operating system or executive uses paging, the paging mechanism is transparent to an applica-
tion program. All that the application sees is linear address space.

In addition, IA-32 architecture’s paging mechanism includes extensions that support:
• Physical Address Extensions (PAE) to address physical address space greater than 4 GBytes.
• Page Size Extensions (PSE) to map linear address to physical address in 4-MBytes pages.

See also: Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.

3.3.3 Memory Organization in 64-Bit Mode
Intel 64 architecture supports physical address space greater than 64 GBytes; the actual physical address size of 
IA-32 processors is implementation specific. In 64-bit mode, there is architectural support for 64-bit linear address 
space. However, processors supporting Intel 64 architecture may implement less than 64-bits (see Section 
3.3.7.1). The linear address space is mapped into the processor physical address space through the PAE paging 
mechanism.

Figure 3-3.  Three Memory Management Models
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3.3.4 Modes of Operation vs. Memory Model
When writing code for an IA-32 or Intel 64 processor, a programmer needs to know the operating mode the 
processor is going to be in when executing the code and the memory model being used. The relationship between 
operating modes and memory models is as follows:
• Protected mode — When in protected mode, the processor can use any of the memory models described in 

this section. (The real-addressing mode memory model is ordinarily used only when the processor is in the 
virtual-8086 mode.) The memory model used depends on the design of the operating system or executive. 
When multitasking is implemented, individual tasks can use different memory models.

• Real-address mode — When in real-address mode, the processor only supports the real-address mode 
memory model.

• System management mode — When in SMM, the processor switches to a separate address space, called the 
system management RAM (SMRAM). The memory model used to address bytes in this address space is similar 
to the real-address mode model. See Chapter 33, “System Management Mode,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3C, for more information on the memory model used in 
SMM.

• Compatibility mode — Software that needs to run in compatibility mode should observe the same memory 
model as those targeted to run in 32-bit protected mode. The effect of segmentation is the same as it is in 32-
bit protected mode semantics.

• 64-bit mode — Segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address 
space. Specifically, the processor treats the segment base of CS, DS, ES, and SS as zero in 64-bit mode (this 
makes a linear address equal an effective address). Segmented and real address modes are not available in 64-
bit mode.

3.3.5 32-Bit and 16-Bit Address and Operand Sizes
IA-32 processors in protected mode can be configured for 32-bit or 16-bit address and operand sizes. With 32-bit 
address and operand sizes, the maximum linear address or segment offset is FFFFFFFFH (232-1); operand sizes are 
typically 8 bits or 32 bits. With 16-bit address and operand sizes, the maximum linear address or segment offset is 
FFFFH (216-1); operand sizes are typically 8 bits or 16 bits. 

When using 32-bit addressing, a logical address (or far pointer) consists of a 16-bit segment selector and a 32-bit 
offset; when using 16-bit addressing, an address consists of a 16-bit segment selector and a 16-bit offset. 

Instruction prefixes allow temporary overrides of the default address and/or operand sizes from within a program.

When operating in protected mode, the segment descriptor for the currently executing code segment defines the 
default address and operand size. A segment descriptor is a system data structure not normally visible to applica-
tion code. Assembler directives allow the default addressing and operand size to be chosen for a program. The 
assembler and other tools then set up the segment descriptor for the code segment appropriately.

When operating in real-address mode, the default addressing and operand size is 16 bits. An address-size override 
can be used in real-address mode to enable 32-bit addressing. However, the maximum allowable 32-bit linear 
address is still 000FFFFFH (220-1).

3.3.6 Extended Physical Addressing in Protected Mode
Beginning with P6 family processors, the IA-32 architecture supports addressing of up to 64 GBytes (236 bytes) of 
physical memory. A program or task could not address locations in this address space directly. Instead, it 
addresses individual linear address spaces of up to 4 GBytes that mapped to 64-GByte physical address space 
through a virtual memory management mechanism. Using this mechanism, an operating system can enable a 
program to switch 4-GByte linear address spaces within 64-GByte physical address space.

The use of extended physical addressing requires the processor to operate in protected mode and the operating 
system to provide a virtual memory management system. See “36-Bit Physical Addressing Using the PAE Paging 
Mechanism” in Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A.
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3.3.7 Address Calculations in 64-Bit Mode
In most cases, 64-bit mode uses flat address space for code, data, and stacks. In 64-bit mode (if there is no 
address-size override), the size of effective address calculations is 64 bits. An effective-address calculation uses a 
64-bit base and index registers and sign-extend displacements to 64 bits.

In the flat address space of 64-bit mode, linear addresses are equal to effective addresses because the base 
address is zero. In the event that FS or GS segments are used with a non-zero base, this rule does not hold. In 64-
bit mode, the effective address components are added and the effective address is truncated (See for example the 
instruction LEA) before adding the full 64-bit segment base. The base is never truncated, regardless of addressing 
mode in 64-bit mode.

The instruction pointer is extended to 64 bits to support 64-bit code offsets. The 64-bit instruction pointer is called 
the RIP. Table 3-1 shows the relationship between RIP, EIP, and IP.

Table 3-1.  Instruction Pointer Sizes

Generally, displacements and immediates in 64-bit mode are not extended to 64 bits. They are still limited to 32 
bits and sign-extended during effective-address calculations. In 64-bit mode, however, support is provided for 64-
bit displacement and immediate forms of the MOV instruction. 

All 16-bit and 32-bit address calculations are zero-extended in IA-32e mode to form 64-bit addresses. Address 
calculations are first truncated to the effective address size of the current mode (64-bit mode or compatibility 
mode), as overridden by any address-size prefix. The result is then zero-extended to the full 64-bit address width. 
Because of this, 16-bit and 32-bit applications running in compatibility mode can access only the low 4 GBytes of 
the 64-bit mode effective addresses. Likewise, a 32-bit address generated in 64-bit mode can access only the low 
4 GBytes of the 64-bit mode effective addresses.

3.3.7.1  Canonical Addressing
In 64-bit mode, an address is considered to be in canonical form if address bits 63 through to the most-significant 
implemented bit by the microarchitecture are set to either all ones or all zeros.

Intel 64 architecture defines a 64-bit linear address. Implementations can support less. The first implementation of 
IA-32 processors with Intel 64 architecture supports a 48-bit linear address. This means a canonical address must 
have bits 63 through 48 set to zeros or ones (depending on whether bit 47 is a zero or one).

Although implementations may not use all 64 bits of the linear address, they should check bits 63 through the 
most-significant implemented bit to see if the address is in canonical form. If a linear-memory reference is not in 
canonical form, the implementation should generate an exception. In most cases, a general-protection exception 
(#GP) is generated. However, in the case of explicit or implied stack references, a stack fault (#SS) is generated. 

Instructions that have implied stack references, by default, use the SS segment register. These include PUSH/POP-
related instructions and instructions using RSP/RBP as base registers. In these cases, the canonical fault is #SS. 

If an instruction uses base registers RSP/RBP and uses a segment override prefix to specify a non-SS segment, a 
canonical fault generates a #GP (instead of an #SS). In 64-bit mode, only FS and GS segment-overrides are appli-
cable in this situation. Other segment override prefixes (CS, DS, ES, and SS) are ignored. Note that this also means 
that an SS segment-override applied to a “non-stack” register reference is ignored. Such a sequence still produces 
a #GP for a canonical fault (and not an #SS).

3.4 BASIC PROGRAM EXECUTION REGISTERS
IA-32 architecture provides 16 basic program execution registers for use in general system and application 
programing (see Figure 3-4). These registers can be grouped as follows:

Bits 63:32 Bits 31:16 Bits 15:0

16-bit instruction pointer Not Modified IP

32-bit instruction pointer Zero Extension EIP

64-bit instruction pointer RIP
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• General-purpose registers. These eight registers are available for storing operands and pointers.
• Segment registers. These registers hold up to six segment selectors.
• EFLAGS (program status and control) register. The EFLAGS register report on the status of the program 

being executed and allows limited (application-program level) control of the processor. 
• EIP (instruction pointer) register. The EIP register contains a 32-bit pointer to the next instruction to be 

executed. 

3.4.1 General-Purpose Registers
The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are provided for holding the 
following items:
• Operands for logical and arithmetic operations.
• Operands for address calculations.
• Memory pointers.

Although all of these registers are available for general storage of operands, results, and pointers, caution should 
be used when referencing the ESP register. The ESP register holds the stack pointer and as a general rule should 
not be used for another purpose. 

Many instructions assign specific registers to hold operands. For example, string instructions use the contents of 
the ECX, ESI, and EDI registers as operands. When using a segmented memory model, some instructions assume 
that pointers in certain registers are relative to specific segments. For instance, some instructions assume that a 
pointer in the EBX register points to a memory location in the DS segment. 

Figure 3-4.  General System and Application Programming Registers
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The special uses of general-purpose registers by instructions are described in Chapter 5, “Instruction Set 
Summary,” in this volume. See also: Chapter 3, Chapter 4, Chapter 5, and Chapter 6 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D. The following is a summary of special uses:
• EAX — Accumulator for operands and results data.
• EBX — Pointer to data in the DS segment.
• ECX — Counter for string and loop operations.
• EDX — I/O pointer.
• ESI — Pointer to data in the segment pointed to by the DS register; source pointer for string operations.
• EDI — Pointer to data (or destination) in the segment pointed to by the ES register; destination pointer for 

string operations.
• ESP — Stack pointer (in the SS segment).
• EBP — Pointer to data on the stack (in the SS segment).

As shown in Figure 3-5, the lower 16 bits of the general-purpose registers map directly to the register set found in 
the 8086 and Intel 286 processors and can be referenced with the names AX, BX, CX, DX, BP, SI, DI, and SP. Each 
of the lower two bytes of the EAX, EBX, ECX, and EDX registers can be referenced by the names AH, BH, CH, and 
DH (high bytes) and AL, BL, CL, and DL (low bytes).

3.4.1.1  General-Purpose Registers in 64-Bit Mode
In 64-bit mode, there are 16 general purpose registers and the default operand size is 32 bits. However, general-
purpose registers are able to work with either 32-bit or 64-bit operands. If a 32-bit operand size is specified: EAX, 
EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D - R15D are available. If a 64-bit operand size is specified: RAX, RBX, RCX, 
RDX, RDI, RSI, RBP, RSP, R8-R15 are available. R8D-R15D/R8-R15 represent eight new general-purpose registers. 
All of these registers can be accessed at the byte, word, dword, and qword level. REX prefixes are used to generate 
64-bit operand sizes or to reference registers R8-R15.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved across transitions from 64-bit 
mode into compatibility mode then back into 64-bit mode. However, values of R8-R15 and XMM8-XMM15 are unde-
fined after transitions from 64-bit mode through compatibility mode to legacy or real mode and then back through 
compatibility mode to 64-bit mode.

Figure 3-5.  Alternate General-Purpose Register Names
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In 64-bit mode, there are limitations on accessing byte registers. An instruction cannot reference legacy high-
bytes (for example: AH, BH, CH, DH) and one of the new byte registers at the same time (for example: the low 
byte of the RAX register). However, instructions may reference legacy low-bytes (for example: AL, BL, CL, or DL) 
and new byte registers at the same time (for example: the low byte of the R8 register, or RBP). The architecture 
enforces this limitation by changing high-byte references (AH, BH, CH, DH) to low byte references (BPL, SPL, DIL, 
SIL: the low 8 bits for RBP, RSP, RDI, and RSI) for instructions using a REX prefix.

When in 64-bit mode, operand size determines the number of valid bits in the destination general-purpose 
register: 
• 64-bit operands generate a 64-bit result in the destination general-purpose register.
• 32-bit operands generate a 32-bit result, zero-extended to a 64-bit result in the destination general-purpose 

register.
• 8-bit and 16-bit operands generate an 8-bit or 16-bit result. The upper 56 bits or 48 bits (respectively) of the 

destination general-purpose register are not modified by the operation. If the result of an 8-bit or 16-bit 
operation is intended for 64-bit address calculation, explicitly sign-extend the register to the full 64-bits. 

Because the upper 32 bits of 64-bit general-purpose registers are undefined in 32-bit modes, the upper 32 bits of 
any general-purpose register are not preserved when switching from 64-bit mode to a 32-bit mode (to protected 
mode or compatibility mode). Software must not depend on these bits to maintain a value after a 64-bit to 32-bit 
mode switch.

3.4.2 Segment Registers
The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. A segment selector is a special 
pointer that identifies a segment in memory. To access a particular segment in memory, the segment selector for 
that segment must be present in the appropriate segment register.

When writing application code, programmers generally create segment selectors with assembler directives and 
symbols. The assembler and other tools then create the actual segment selector values associated with these 
directives and symbols. If writing system code, programmers may need to create segment selectors directly. See 
Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

How segment registers are used depends on the type of memory management model that the operating system or 
executive is using. When using the flat (unsegmented) memory model, segment registers are loaded with segment 
selectors that point to overlapping segments, each of which begins at address 0 of the linear address space (see 
Figure 3-6). These overlapping segments then comprise the linear address space for the program. Typically, two 
overlapping segments are defined: one for code and another for data and stacks. The CS segment register points 
to the code segment and all the other segment registers point to the data and stack segment.

When using the segmented memory model, each segment register is ordinarily loaded with a different segment 
selector so that each segment register points to a different segment within the linear address space (see 
Figure 3-7). At any time, a program can thus access up to six segments in the linear address space. To access a 
segment not pointed to by one of the segment registers, a program must first load the segment selector for the 
segment to be accessed into a segment register.

Table 3-2.  Addressable General Purpose Registers
Register Type Without REX With REX

Byte Registers AL, BL, CL, DL, AH, BH, CH, DH AL, BL, CL, DL, DIL, SIL, BPL, SPL, R8B - R15B

Word Registers AX, BX, CX, DX, DI, SI, BP, SP AX, BX, CX, DX, DI, SI, BP, SP, R8W - R15W

Doubleword Registers EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D - R15D

Quadword Registers N.A. RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8 - R15
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Each of the segment registers is associated with one of three types of storage: code, data, or stack. For example, 
the CS register contains the segment selector for the code segment, where the instructions being executed are 
stored. The processor fetches instructions from the code segment, using a logical address that consists of the 
segment selector in the CS register and the contents of the EIP register. The EIP register contains the offset within 
the code segment of the next instruction to be executed. The CS register cannot be loaded explicitly by an applica-
tion program. Instead, it is loaded implicitly by instructions or internal processor operations that change program 
control (such as procedure calls, interrupt handling, or task switching).

The DS, ES, FS, and GS registers point to four data segments. The availability of four data segments permits effi-
cient and secure access to different types of data structures. For example, four separate data segments might be 
created: one for the data structures of the current module, another for the data exported from a higher-level 
module, a third for a dynamically created data structure, and a fourth for data shared with another program. To 
access additional data segments, the application program must load segment selectors for these segments into the 
DS, ES, FS, and GS registers, as needed.

The SS register contains the segment selector for the stack segment, where the procedure stack is stored for the 
program, task, or handler currently being executed. All stack operations use the SS register to find the stack 

Figure 3-6.  Use of Segment Registers for Flat Memory Model

Figure 3-7.  Use of Segment Registers in Segmented Memory Model
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segment. Unlike the CS register, the SS register can be loaded explicitly, which permits application programs to set 
up multiple stacks and switch among them.

See Section 3.3, “Memory Organization,” for an overview of how the segment registers are used in real-address 
mode.

The four segment registers CS, DS, SS, and ES are the same as the segment registers found in the Intel 8086 and 
Intel 286 processors and the FS and GS registers were introduced into the IA-32 Architecture with the Intel386™ 
family of processors.

3.4.2.1  Segment Registers in 64-Bit Mode
In 64-bit mode: CS, DS, ES, SS are treated as if each segment base is 0, regardless of the value of the associated 
segment descriptor base. This creates a flat address space for code, data, and stack. FS and GS are exceptions. 
Both segment registers may be used as additional base registers in linear address calculations (in the addressing 
of local data and certain operating system data structures). 

Even though segmentation is generally disabled, segment register loads may cause the processor to perform 
segment access assists. During these activities, enabled processors will still perform most of the legacy checks on 
loaded values (even if the checks are not applicable in 64-bit mode). Such checks are needed because a segment 
register loaded in 64-bit mode may be used by an application running in compatibility mode. 

Limit checks for CS, DS, ES, SS, FS, and GS are disabled in 64-bit mode.

3.4.3 EFLAGS Register
The 32-bit EFLAGS register contains a group of status flags, a control flag, and a group of system flags. Figure 3-8 
defines the flags within this register. Following initialization of the processor (either by asserting the RESET pin or 
the INIT pin), the state of the EFLAGS register is 00000002H. Bits 1, 3, 5, 15, and 22 through 31 of this register 
are reserved. Software should not use or depend on the states of any of these bits.

Some of the flags in the EFLAGS register can be modified directly, using special-purpose instructions (described in 
the following sections). There are no instructions that allow the whole register to be examined or modified directly. 

The following instructions can be used to move groups of flags to and from the procedure stack or the EAX register: 
LAHF, SAHF, PUSHF, PUSHFD, POPF, and POPFD. After the contents of the EFLAGS register have been transferred to 
the procedure stack or EAX register, the flags can be examined and modified using the processor’s bit manipulation 
instructions (BT, BTS, BTR, and BTC).

When suspending a task (using the processor’s multitasking facilities), the processor automatically saves the state 
of the EFLAGS register in the task state segment (TSS) for the task being suspended. When binding itself to a new 
task, the processor loads the EFLAGS register with data from the new task’s TSS.

When a call is made to an interrupt or exception handler procedure, the processor automatically saves the state of 
the EFLAGS registers on the procedure stack. When an interrupt or exception is handled with a task switch, the 
state of the EFLAGS register is saved in the TSS for the task being suspended.
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As the IA-32 Architecture has evolved, flags have been added to the EFLAGS register, but the function and place-
ment of existing flags have remained the same from one family of the IA-32 processors to the next. As a result, 
code that accesses or modifies these flags for one family of IA-32 processors works as expected when run on later 
families of processors.

3.4.3.1  Status Flags
The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results of arithmetic instructions, 
such as the ADD, SUB, MUL, and DIV instructions. The status flag functions are:
CF (bit 0) Carry flag — Set if an arithmetic operation generates a carry or a borrow out of the most-

significant bit of the result; cleared otherwise. This flag indicates an overflow condition for 
unsigned-integer arithmetic. It is also used in multiple-precision arithmetic.

PF (bit 2) Parity flag — Set if the least-significant byte of the result contains an even number of 1 bits; 
cleared otherwise.

AF (bit 4) Auxiliary Carry flag — Set if an arithmetic operation generates a carry or a borrow out of bit 
3 of the result; cleared otherwise. This flag is used in binary-coded decimal (BCD) arithmetic.

ZF (bit 6) Zero flag — Set if the result is zero; cleared otherwise.
SF (bit 7) Sign flag — Set equal to the most-significant bit of the result, which is the sign bit of a signed 

integer. (0 indicates a positive value and 1 indicates a negative value.)
OF (bit 11) Overflow flag — Set if the integer result is too large a positive number or too small a negative 

number (excluding the sign-bit) to fit in the destination operand; cleared otherwise. This flag 
indicates an overflow condition for signed-integer (two’s complement) arithmetic.

Of these status flags, only the CF flag can be modified directly, using the STC, CLC, and CMC instructions. Also the 
bit instructions (BT, BTS, BTR, and BTC) copy a specified bit into the CF flag.

Figure 3-8.  EFLAGS Register
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The status flags allow a single arithmetic operation to produce results for three different data types: unsigned inte-
gers, signed integers, and BCD integers. If the result of an arithmetic operation is treated as an unsigned integer, 
the CF flag indicates an out-of-range condition (carry or a borrow); if treated as a signed integer (two’s comple-
ment number), the OF flag indicates a carry or borrow; and if treated as a BCD digit, the AF flag indicates a carry 
or borrow. The SF flag indicates the sign of a signed integer. The ZF flag indicates either a signed- or an unsigned-
integer zero.

When performing multiple-precision arithmetic on integers, the CF flag is used in conjunction with the add with 
carry (ADC) and subtract with borrow (SBB) instructions to propagate a carry or borrow from one computation to 
the next. 

The condition instructions Jcc (jump on condition code cc), SETcc (byte set on condition code cc), LOOPcc, and 
CMOVcc (conditional move) use one or more of the status flags as condition codes and test them for branch, set-
byte, or end-loop conditions.

3.4.3.2  DF Flag
The direction flag (DF, located in bit 10 of the EFLAGS register) controls string instructions (MOVS, CMPS, SCAS, 
LODS, and STOS). Setting the DF flag causes the string instructions to auto-decrement (to process strings from 
high addresses to low addresses). Clearing the DF flag causes the string instructions to auto-increment 
(process strings from low addresses to high addresses).

The STD and CLD instructions set and clear the DF flag, respectively.

3.4.3.3  System Flags and IOPL Field
The system flags and IOPL field in the EFLAGS register control operating-system or executive operations. They 
should not be modified by application programs. The functions of the system flags are as follows:
TF (bit 8) Trap flag — Set to enable single-step mode for debugging; clear to disable single-step mode.
IF (bit 9) Interrupt enable flag — Controls the response of the processor to maskable interrupt 

requests. Set to respond to maskable interrupts; cleared to inhibit maskable interrupts.
IOPL (bits 12 and 13)

I/O privilege level field — Indicates the I/O privilege level of the currently running program 
or task. The current privilege level (CPL) of the currently running program or task must be less 
than or equal to the I/O privilege level to access the I/O address space. The POPF and IRET 
instructions can modify this field only when operating at a CPL of 0.

NT (bit 14) Nested task flag — Controls the chaining of interrupted and called tasks. Set when the 
current task is linked to the previously executed task; cleared when the current task is not 
linked to another task.

RF (bit 16) Resume flag — Controls the processor’s response to debug exceptions.
VM (bit 17) Virtual-8086 mode flag — Set to enable virtual-8086 mode; clear to return to protected 

mode without virtual-8086 mode semantics.
AC (bit 18) Alignment check (or access control) flag — If the AM bit is set in the CR0 register, align-

ment checking of user-mode data accesses is enabled if and only if this flag is 1.
If the SMAP bit is set in the CR4 register, explicit supervisor-mode data accesses to user-mode 
pages are allowed if and only if this bit is 1. See Section 5.6, “Access Rights,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

VIF (bit 19) Virtual interrupt flag — Virtual image of the IF flag. Used in conjunction with the VIP flag. 
(To use this flag and the VIP flag the virtual mode extensions are enabled by setting the VME 
flag in control register CR4.)

VIP (bit 20) Virtual interrupt pending flag — Set to indicate that an interrupt is pending; clear when no 
interrupt is pending. (Software sets and clears this flag; the processor only reads it.) Used in 
conjunction with the VIF flag.

ID (bit 21) Identification flag — The ability of a program to set or clear this flag indicates support for 
the CPUID instruction.
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For a detailed description of these flags: see Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3A. 

3.4.3.4  RFLAGS Register in 64-Bit Mode
In 64-bit mode, EFLAGS is extended to 64 bits and called RFLAGS. The upper 32 bits of RFLAGS register is 
reserved. The lower 32 bits of RFLAGS is the same as EFLAGS.

3.5 INSTRUCTION POINTER
The instruction pointer (EIP) register contains the offset in the current code segment for the next instruction to be 
executed. It is advanced from one instruction boundary to the next in straight-line code or it is moved ahead or 
backwards by a number of instructions when executing JMP, Jcc, CALL, RET, and IRET instructions. 

The EIP register cannot be accessed directly by software; it is controlled implicitly by control-transfer instructions 
(such as JMP, Jcc, CALL, and RET), interrupts, and exceptions. The only way to read the EIP register is to execute a 
CALL instruction and then read the value of the return instruction pointer from the procedure stack. The EIP 
register can be loaded indirectly by modifying the value of a return instruction pointer on the procedure stack and 
executing a return instruction (RET or IRET). See Section 6.2.4.2, “Return Instruction Pointer.”

All IA-32 processors prefetch instructions. Because of instruction prefetching, an instruction address read from the 
bus during an instruction load does not match the value in the EIP register. Even though different processor gener-
ations use different prefetching mechanisms, the function of the EIP register to direct program flow remains fully 
compatible with all software written to run on IA-32 processors.

3.5.1 Instruction Pointer in 64-Bit Mode
In 64-bit mode, the RIP register becomes the instruction pointer. This register holds the 64-bit offset of the next 
instruction to be executed. 64-bit mode also supports a technique called RIP-relative addressing. Using this tech-
nique, the effective address is determined by adding a displacement to the RIP of the next instruction.

3.6 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES
When the processor is executing in protected mode, every code segment has a default operand-size attribute and 
address-size attribute. These attributes are selected with the D (default size) flag in the segment descriptor for the 
code segment (see Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A). When the D flag is set, the 32-bit operand-size and address-size attri-
butes are selected; when the flag is clear, the 16-bit size attributes are selected. When the processor is executing 
in real-address mode, virtual-8086 mode, or SMM, the default operand-size and address-size attributes are always 
16 bits.

The operand-size attribute selects the size of operands. When the 16-bit operand-size attribute is in force, oper-
ands can generally be either 8 bits or 16 bits, and when the 32-bit operand-size attribute is in force, operands can 
generally be 8 bits or 32 bits.

The address-size attribute selects the sizes of addresses used to address memory: 16 bits or 32 bits. When the 16-
bit address-size attribute is in force, segment offsets and displacements are 16 bits. This restriction limits the size 
of a segment to 64 KBytes. When the 32-bit address-size attribute is in force, segment offsets and displacements 
are 32 bits, allowing up to 4 GBytes to be addressed.

The default operand-size attribute and/or address-size attribute can be overridden for a particular instruction by 
adding an operand-size and/or address-size prefix to an instruction. See Chapter 2, “Instruction Format,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A. The effect of this prefix applies only to 
the targeted instruction.

Table 3-4 shows effective operand size and address size (when executing in protected mode or compatibility mode) 
depending on the settings of the D flag and the operand-size and address-size prefixes.
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3.6.1 Operand Size and Address Size in 64-Bit Mode
In 64-bit mode, the default address size is 64 bits and the default operand size is 32 bits. Defaults can be over-
ridden using prefixes. Address-size and operand-size prefixes allow mixing of 32/64-bit data and 32/64-bit 
addresses on an instruction-by-instruction basis. Table 3-4 shows valid combinations of the 66H instruction prefix 
and the REX.W prefix that may be used to specify operand-size overrides in 64-bit mode. Note that 16-bit 
addresses are not supported in 64-bit mode.

REX prefixes consist of 4-bit fields that form 16 different values. The W-bit field in the REX prefixes is referred to as 
REX.W. If the REX.W field is properly set, the prefix specifies an operand size override to 64 bits. Note that software 
can still use the operand-size 66H prefix to toggle to a 16-bit operand size. However, setting REX.W takes prece-
dence over the operand-size prefix (66H) when both are used.

In the case of SSE/SSE2/SSE3/SSSE3 SIMD instructions: the 66H, F2H, and F3H prefixes are mandatory for 
opcode extensions. In such a case, there is no interaction between a valid REX.W prefix and a 66H opcode exten-
sion prefix.

See Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A.

3.7 OPERAND ADDRESSING
IA-32 machine-instructions act on zero or more operands. Some operands are specified explicitly and others are 
implicit. The data for a source operand can be located in:
• The instruction itself (an immediate operand).
• A register.
• A memory location.
• An I/O port.

Table 3-3.  Effective Operand- and Address-Size Attributes
D Flag in Code Segment Descriptor 0 0 0 0 1 1 1 1 

Operand-Size Prefix 66H N N Y Y N N Y Y 

Address-Size Prefix 67H N Y N Y N Y N Y 

Effective Operand Size 16 16 32 32 32 32 16 16 

Effective Address Size 16 32 16 32 32 16 32 16

NOTES:
Y: Yes - this instruction prefix is present.
N: No - this instruction prefix is not present.

Table 3-4.  Effective Operand- and Address-Size Attributes in 64-Bit Mode

L Flag in Code Segment Descriptor
1 1 1 1 1 1 1 1 

REX.W Prefix 0 0 0 0 1 1 1 1 

Operand-Size Prefix 66H N N Y Y N N Y Y 

Address-Size Prefix 67H N Y N Y N Y N Y 

Effective Operand Size 32 32 16 16 64 64 64 64

Effective Address Size 64 32 64 32 64 32 64 32

NOTES:
Y: Yes - this instruction prefix is present.
N: No - this instruction prefix is not present.
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When an instruction returns data to a destination operand, it can be returned to:
• A register.
• A memory location.
• An I/O port.

3.7.1 Immediate Operands
Some instructions use data encoded in the instruction itself as a source operand. These operands are called imme-
diate operands (or simply immediates). For example, the following ADD instruction adds an immediate value of 14 
to the contents of the EAX register:

ADD EAX, 14

All arithmetic instructions (except the DIV and IDIV instructions) allow the source operand to be an immediate 
value. The maximum value allowed for an immediate operand varies among instructions, but can never be greater 
than the maximum value of an unsigned doubleword integer (232).

3.7.2 Register Operands
Source and destination operands can be any of the following registers, depending on the instruction being 
executed:
• 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP).
• 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, or BP).
• 8-bit general-purpose registers (AH, BH, CH, DH, AL, BL, CL, or DL).
• Segment registers (CS, DS, SS, ES, FS, and GS).
• EFLAGS register.
• X87 FPU registers (ST0 through ST7, status word, control word, tag word, data operand pointer, and instruction 

pointer).
• MMX registers (MM0 through MM7).
• XMM registers (XMM0 through XMM7) and the MXCSR register.
• Control registers (CR0, CR2, CR3, and CR4) and system table pointer registers (GDTR, LDTR, IDTR, and task 

register).
• Debug registers (DR0, DR1, DR2, DR3, DR6, and DR7).
• MSR registers.

Some instructions (such as the DIV and MUL instructions) use quadword operands contained in a pair of 32-bit 
registers. Register pairs are represented with a colon separating them. For example, in the register pair EDX:EAX, 
EDX contains the high order bits and EAX contains the low order bits of a quadword operand. 

Several instructions (such as the PUSHFD and POPFD instructions) are provided to load and store the contents of 
the EFLAGS register or to set or clear individual flags in this register. Other instructions (such as the Jcc instruc-
tions) use the state of the status flags in the EFLAGS register as condition codes for branching or other decision 
making operations.

The processor contains a selection of system registers that are used to control memory management, interrupt and 
exception handling, task management, processor management, and debugging activities. Some of these system 
registers are accessible by an application program, the operating system, or the executive through a set of system 
instructions. When accessing a system register with a system instruction, the register is generally an implied 
operand of the instruction.
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3.7.2.1  Register Operands in 64-Bit Mode
Register operands in 64-bit mode can be any of the following:
• 64-bit general-purpose registers (RAX, RBX, RCX, RDX, RSI, RDI, RSP, RBP, or R8-R15).
• 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, or R8D-R15D).
• 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, BP, or R8W-R15W).
• 8-bit general-purpose registers: AL, BL, CL, DL, SIL, DIL, SPL, BPL, and R8B-R15B are available using REX 

prefixes; AL, BL, CL, DL, AH, BH, CH, DH are available without using REX prefixes.
• Segment registers (CS, DS, SS, ES, FS, and GS).
• RFLAGS register.
• X87 FPU registers (ST0 through ST7, status word, control word, tag word, data operand pointer, and instruction 

pointer).
• MMX registers (MM0 through MM7).
• XMM registers (XMM0 through XMM15) and the MXCSR register.
• Control registers (CR0, CR2, CR3, CR4, and CR8) and system table pointer registers (GDTR, LDTR, IDTR, and 

task register).
• Debug registers (DR0, DR1, DR2, DR3, DR6, and DR7).
• MSR registers.
• RDX:RAX register pair representing a 128-bit operand.

3.7.3 Memory Operands
Source and destination operands in memory are referenced by means of a segment selector and an offset (see 
Figure 3-9). Segment selectors specify the segment containing the operand. Offsets specify the linear or effective 
address of the operand. Offsets can be 32 bits (represented by the notation m16:32) or 16 bits (represented by the 
notation m16:16).

3.7.3.1  Memory Operands in 64-Bit Mode
In 64-bit mode, a memory operand can be referenced by a segment selector and an offset. The offset can be 16 
bits, 32 bits or 64 bits (see Figure 3-10).

3.7.4 Specifying a Segment Selector
The segment selector can be specified either implicitly or explicitly. The most common method of specifying a 
segment selector is to load it in a segment register and then allow the processor to select the register implicitly, 
depending on the type of operation being performed. The processor automatically chooses a segment according to 
the rules given in Table 3-5. 

Figure 3-9.  Memory Operand Address

Figure 3-10.  Memory Operand Address in 64-Bit Mode
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When storing data in memory or loading data from memory, the DS segment default can be overridden to allow 
other segments to be accessed. Within an assembler, the segment override is generally handled with a colon “:” 
operator. For example, the following MOV instruction moves a value from register EAX into the segment pointed to 
by the ES register. The offset into the segment is contained in the EBX register:

MOV ES:[EBX], EAX

At the machine level, a segment override is specified with a segment-override prefix, which is a byte placed at the 
beginning of an instruction. The following default segment selections cannot be overridden:
• Instruction fetches must be made from the code segment.
• Destination strings in string instructions must be stored in the data segment pointed to by the ES register.
• Push and pop operations must always reference the SS segment.

Some instructions require a segment selector to be specified explicitly. In these cases, the 16-bit segment selector 
can be located in a memory location or in a 16-bit register. For example, the following MOV instruction moves a 
segment selector located in register BX into segment register DS:

MOV DS, BX

Segment selectors can also be specified explicitly as part of a 48-bit far pointer in memory. Here, the first double-
word in memory contains the offset and the next word contains the segment selector.

3.7.4.1  Segmentation in 64-Bit Mode
In IA-32e mode, the effects of segmentation depend on whether the processor is running in compatibility mode or 
64-bit mode. In compatibility mode, segmentation functions just as it does in legacy IA-32 mode, using the 16-bit 
or 32-bit protected mode semantics described above.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address 
space. The processor treats the segment base of CS, DS, ES, SS as zero, creating a linear address that is equal to 
the effective address. The exceptions are the FS and GS segments, whose segment registers (which hold the 
segment base) can be used as additional base registers in some linear address calculations.

3.7.5 Specifying an Offset
The offset part of a memory address can be specified directly as a static value (called a displacement) or through 
an address computation made up of one or more of the following components:
• Displacement — An 8-, 16-, or 32-bit value.
• Base — The value in a general-purpose register.
• Index — The value in a general-purpose register.
• Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

Table 3-5.  Default Segment Selection Rules

Reference Type Register Used Segment Used Default Selection Rule

Instructions CS Code Segment All instruction fetches.

Stack SS Stack Segment All stack pushes and pops.
Any memory reference which uses the ESP or EBP register as a base 
register.

Local Data DS Data Segment All data references, except when relative to stack or string destination.

Destination Strings ES Data Segment 
pointed to with the 
ES register

Destination of string instructions.
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The offset which results from adding these components is called an effective address. Each of these components 
can have either a positive or negative (2s complement) value, with the exception of the scaling factor. Figure 3-11 
shows all the possible ways that these components can be combined to create an effective address in the selected 
segment.

The uses of general-purpose registers as base or index components are restricted in the following manner:
• The ESP register cannot be used as an index register.
• When the ESP or EBP register is used as the base, the SS segment is the default segment. In all other cases, 

the DS segment is the default segment.

The base, index, and displacement components can be used in any combination, and any of these components can 
be NULL. A scale factor may be used only when an index also is used. Each possible combination is useful for data 
structures commonly used by programmers in high-level languages and assembly language. 

The following addressing modes suggest uses for common combinations of address components.
• Displacement ⎯ A displacement alone represents a direct (uncomputed) offset to the operand. Because the 

displacement is encoded in the instruction, this form of an address is sometimes called an absolute or static 
address. It is commonly used to access a statically allocated scalar operand.

• Base ⎯ A base alone represents an indirect offset to the operand. Since the value in the base register can 
change, it can be used for dynamic storage of variables and data structures.

• Base + Displacement ⎯ A base register and a displacement can be used together for two distinct purposes:

— As an index into an array when the element size is not 2, 4, or 8 bytes—The displacement component 
encodes the static offset to the beginning of the array. The base register holds the results of a calculation 
to determine the offset to a specific element within the array.

— To access a field of a record: the base register holds the address of the beginning of the record, while the 
displacement is a static offset to the field.

An important special case of this combination is access to parameters in a procedure activation record. A 
procedure activation record is the stack frame created when a procedure is entered. Here, the EBP register is 
the best choice for the base register, because it automatically selects the stack segment. This is a compact 
encoding for this common function.

• (Index ∗ Scale) + Displacement ⎯ This address mode offers an efficient way to index into a static array 
when the element size is 2, 4, or 8 bytes. The displacement locates the beginning of the array, the index 
register holds the subscript of the desired array element, and the processor automatically converts the 
subscript into an index by applying the scaling factor.

• Base + Index + Displacement ⎯ Using two registers together supports either a two-dimensional array (the 
displacement holds the address of the beginning of the array) or one of several instances of an array of records 
(the displacement is an offset to a field within the record).

• Base + (Index ∗ Scale) + Displacement ⎯ Using all the addressing components together allows efficient 
indexing of a two-dimensional array when the elements of the array are 2, 4, or 8 bytes in size.

Figure 3-11.  Offset (or Effective Address) Computation
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3.7.5.1  Specifying an Offset in 64-Bit Mode
The offset part of a memory address in 64-bit mode can be specified directly as a static value or through an address 
computation made up of one or more of the following components:
• Displacement — An 8-bit, 16-bit, or 32-bit value.
• Base — The value in a 64-bit general-purpose register.
• Index — The value in a 64-bit general-purpose register.
• Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

The base and index value can be specified in one of sixteen available general-purpose registers in most cases. See 
Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

The following unique combination of address components is also available.
• RIP + Displacement ⎯ In 64-bit mode, RIP-relative addressing uses a signed 32-bit displacement to 

calculate the effective address of the next instruction by sign-extend the 32-bit value and add to the 64-bit 
value in RIP.

3.7.6 Assembler and Compiler Addressing Modes
At the machine-code level, the selected combination of displacement, base register, index register, and scale factor 
is encoded in an instruction. All assemblers permit a programmer to use any of the allowable combinations of these 
addressing components to address operands. High-level language compilers will select an appropriate combination 
of these components based on the language construct a programmer defines.

3.7.7 I/O Port Addressing
The processor supports an I/O address space that contains up to 65,536 8-bit I/O ports. Ports that are 16-bit and 
32-bit may also be defined in the I/O address space. An I/O port can be addressed with either an immediate 
operand or a value in the DX register. See Chapter 20, “Input/Output,” for more information about I/O port 
addressing.
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CHAPTER 4
DATA TYPES

This chapter introduces data types defined for the Intel 64 and IA-32 architectures. A section at the end of this 
chapter describes the real-number and floating-point concepts used in x87 FPU and Intel SSE, SSE2, SSE3, SSSE3, 
SSE4, and AVX extensions.

4.1 FUNDAMENTAL DATA TYPES
The fundamental data types are bytes, words, doublewords, quadwords, and double quadwords (see Figure 4-1). 
A byte is eight bits, a word is 2 bytes (16 bits), a doubleword is 4 bytes (32 bits), a quadword is 8 bytes (64 bits), 
and a double quadword is 16 bytes (128 bits). A subset of the IA-32 architecture instructions operates on these 
fundamental data types without any additional operand typing.

The quadword data type was introduced into the IA-32 architecture in the Intel486 processor; the double quadword 
data type was introduced in the Pentium III processor with the Intel SSE extensions.

Figure 4-2 shows the byte order of each of the fundamental data types when referenced as operands in memory. 
The low byte (bits 0 through 7) of each data type occupies the lowest address in memory and that address is also 
the address of the operand.

Figure 4-1.  Fundamental Data Types

0

63

Double 

0

Word

31

0

Doubleword

15

0

Byte

7

78

Low WordHigh Word

Low DoublewordHigh Doubleword

1516

3132

N+1

N+2

N+4

Low
Byte

High
Byte

N

Low QuadwordHigh Quadword
Quadword

N

N

N

N

N+8

0

Quadword

127 6364
Vol. 1 4-1



DATA TYPES
4.1.1 Alignment of Words, Doublewords, Quadwords, and Double Quadwords
Words, doublewords, and quadwords do not need to be aligned in memory on natural boundaries. The natural 
boundaries for words, doublewords, and quadwords are even-numbered addresses, addresses evenly divisible by 
four, and addresses evenly divisible by eight, respectively. However, to improve the performance of programs, data 
structures (especially stacks) should be aligned on natural boundaries whenever possible. The reason for this is 
that the processor requires two memory accesses to make an unaligned memory access; aligned accesses require 
only one memory access. A word or doubleword operand that crosses a 4-byte boundary or a quadword operand 
that crosses an 8-byte boundary is considered unaligned and requires two separate memory bus cycles for access.

Some instructions that operate on double quadwords require memory operands to be aligned on a natural 
boundary. These instructions generate a general-protection exception (#GP) if an unaligned operand is specified. A 
natural boundary for a double quadword is any address evenly divisible by 16. Other instructions that operate on 
double quadwords permit unaligned access (without generating a general-protection exception). However, addi-
tional memory bus cycles are required to access unaligned data from memory.

4.2 NUMERIC DATA TYPES
Although bytes, words, and doublewords are fundamental data types, some instructions support additional inter-
pretations of these data types to allow operations to be performed on numeric data types (signed and unsigned 
integers, and floating-point numbers). Single precision (32-bit) floating-point and double precision (64-bit) 
floating-point data types are supported across all generations of Intel SSE extensions and Intel AVX extensions. 
The half precision (16-bit) floating-point data type was supported only with F16C extensions (VCVTPH2PS and 
VCVTPS2PH) beginning with the third generation of Intel® Core™ processors based on Ivy Bridge microarchitec-
ture. Starting with the 4th generation Intel® Xeon® Scalable Processor Family, an Intel® AVX-512 instruction set 
architecture (ISA) for FP16 was added, supporting a wide range of general-purpose numeric operations for 16-bit 
half precision floating-point values (binary16 in IEEE Standard 754-2019 for Floating-Point Arithmetic, aka half 
precision or FP16), which complements the existing 32-bit and 64-bit floating-point instructions already available 
in the Intel Xeon processor-based products. This ISA also provides complex-valued native hardware support for 
half precision floating-point. See Figure 4-3. 

Figure 4-2.  Bytes, Words, Doublewords, Quadwords, and Double Quadwords in Memory
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4.2.1 Integers
The Intel 64 and IA-32 architectures define two types of integers: unsigned and signed. Unsigned integers are ordi-
nary binary values ranging from 0 to the maximum positive number that can be encoded in the selected operand 
size. Signed integers are two’s complement binary values that can be used to represent both positive and negative 
integer values.

Some integer instructions (such as the ADD, SUB, PADDB, and PSUBB instructions) operate on either unsigned or 
signed integer operands. Other integer instructions (such as IMUL, MUL, IDIV, DIV, FIADD, and FISUB) operate on 
only one integer type.

The following sections describe the encodings and ranges of the two types of integers.

4.2.1.1  Unsigned Integers
Unsigned integers are unsigned binary numbers contained in a byte, word, doubleword, and quadword. Their 
values range from 0 to 255 for an unsigned byte integer, from 0 to 65,535 for an unsigned word integer, from 0 

Figure 4-3.  Numeric Data Types
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DATA TYPES
to 232 – 1 for an unsigned doubleword integer, and from 0 to 264 – 1 for an unsigned quadword integer. Unsigned 
integers are sometimes referred to as ordinals.

4.2.1.2  Signed Integers
Signed integers are signed binary numbers held in a byte, word, doubleword, or quadword. All operations on signed 
integers assume a two's complement representation. The sign bit is located in bit 7 in a byte integer, bit 15 in a 
word integer, bit 31 in a doubleword integer, and bit 63 in a quadword integer (see the signed integer encodings in 
Table 4-1).

The sign bit is set for negative integers and cleared for positive integers and zero. Integer values range from –128 
to +127 for a byte integer, from –32,768 to +32,767 for a word integer, from –231 to +231 – 1 for a doubleword 
integer, and from –263 to +263 – 1 for a quadword integer.

When storing integer values in memory, word integers are stored in 2 consecutive bytes; doubleword integers are 
stored in 4 consecutive bytes; and quadword integers are stored in 8 consecutive bytes.

The integer indefinite is a special value that is sometimes returned by the x87 FPU when operating on integer 
values. For more information, see Section 8.2.1, “Indefinites.”

4.2.2 Floating-Point Data Types
The IA-32 architecture defines and operates on four floating-point data types: half precision floating-point, single 
precision floating-point, double precision floating-point, and double-extended precision floating-point (see 
Figure 4-3). The data formats for these data types correspond directly to formats specified in the IEEE Standard 
754 for Floating-Point Arithmetic. 

The half precision (16-bit) floating-point data type was supported only with F16C extensions (VCVTPH2PS and 
VCVTPS2PH) beginning with the third generation of Intel Core processors based on Ivy Bridge microarchitecture. 
Starting with the 4th generation Intel Xeon Scalable Processor Family, an Intel AVX-512 instruction set architecture 
(ISA) for FP16 was added, supporting a wide range of general-purpose numeric operations for 16-bit half precision 
floating-point values (binary16 in the IEEE Standard 754-2019 for Floating-Point Arithmetic, aka half precision or 
FP16), which complements the existing 32-bit and 64-bit floating-point instructions already available in the Intel 
Xeon processor-based products.

Table 4-1.  Signed Integer Encodings
Class Two’s Complement Encoding

Sign

Positive Largest 0 11..11

. .

. .

Smallest 0 00..01

Zero 0 00..00

Negative Smallest 1 11..11

. .

. .

Largest 1 00..00

Integer indefinite 1 00..00

Signed Byte Integer:
Signed Word Integer:
Signed Doubleword Integer:
Signed Quadword Integer:

← 7 bits →
← 15 bits →
← 31 bits →
← 63 bits →
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Table 4-2 gives the length, precision, and approximate normalized range that can be represented by each of these 
data types. Denormal values are also supported in each of these types.

NOTE
Section 4.8, “Real Numbers and Floating-Point Formats,” gives an overview of the IEEE Standard 
754 floating-point formats and defines the terms integer bit, QNaN, SNaN, and denormal value.

Table 4-3 shows the floating-point encodings for zeros, denormalized finite numbers, normalized finite numbers, 
infinites, and NaNs for each of the three floating-point data types. It also gives the format for the QNaN floating-
point indefinite value. (See Section 4.8.3.7, “QNaN Floating-Point Indefinite,” for a discussion of the use of the 
QNaN floating-point indefinite value.)

For the half precision, single precision, and double precision formats, only the fraction part of the significand is 
encoded. The integer is assumed to be 1 for all numbers except 0 and denormalized finite numbers. For the double 
extended precision format, the integer is contained in bit 63, and the most-significant fraction bit is bit 62. Here, 
the integer is explicitly set to 1 for normalized numbers, infinities, and NaNs, and to 0 for zero and denormalized 
numbers.

Table 4-2.  Length, Precision, and Range of Floating-Point Data Types
Data Type Length 

(Bits)
Precision

(Bits)
Approximate Normalized Range

Binary Decimal

Half Precision 16 11 2–14 to 216 6.10 × 10–5 to 6.55 × 104

Single Precision 32 24 2–126 to 2128 1.18 × 10–38 to 3.40 × 1038

Double Precision 64 53 2–1022 to 21024 2.23 × 10–308 to 1.80 × 10308

Double-Extended 
Precision

80 64 2–16382 to 216384 3.36 × 10–4932 to 1.19 × 104932

Table 4-3.  Floating-Point Number and NaN Encodings

Class Sign Biased Exponent
Significand

Integer1 Fraction

Positive +∞ 0 11..11 1 00..00

+Normals 0
.
.
0

11..10
    .
    .

00..01

1
.
.
1

11..11
    .
    .

00..00

+Denormals 0
.
.
0

00..00
    .
    .

00..00

0
.
.
0

11.11
    .
    .
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+Zero 0 00..00 0 00..00

Negative −Zero 1 00..00 0 00..00

−Denormals 1
.
.
1

00..00
    .
    .

00..00

0
.
.
0

00..01
    .
    .

11..11

−Normals 1
.
.
1

00..01
    .
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11..10

1
.
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1
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    .
    .

11..11

-∞ 1 11..11 1 00..00
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The exponent of each floating-point data type is encoded in biased format; see Section 4.8.2.2, “Biased Exponent.” 
The biasing constant is 15 for the half precision format, 127 for the single precision format, 1023 for the double 
precision format, and 16,383 for the double extended precision format.

When storing floating-point values in memory, half precision values are stored in 2 consecutive bytes in memory; 
single precision values are stored in 4 consecutive bytes in memory; double precision values are stored in 8 consec-
utive bytes; and double extended precision values are stored in 10 consecutive bytes.

The single precision and double precision floating-point data types are operated on by x87 FPU, and Intel 
SSE/SSE2/SSE3/SSE4.1/AVX instructions. The double extended precision floating-point format is only operated on 
by the x87 FPU. See Section 11.6.8, “Compatibility of SIMD and x87 FPU Floating-Point Data Types,” for a discus-
sion of the compatibility of single precision and double precision floating-point data types between the x87 FPU and 
Intel SSE/SSE2/SSE3 extensions.

4.3 POINTER DATA TYPES
Pointers are addresses of locations in memory. 

In non-64-bit modes, the architecture defines two types of pointers: a near pointer and a far pointer. A near 
pointer is a 32-bit (or 16-bit) offset (also called an effective address) within a segment. Near pointers are used 
for all memory references in a flat memory model or for references in a segmented model where the identity of the 
segment being accessed is implied. 

A far pointer is a logical address, consisting of a 16-bit segment selector and a 32-bit (or 16-bit) offset. Far pointers 
are used for memory references in a segmented memory model where the identity of a segment being accessed 
must be specified explicitly. Near and far pointers with 32-bit offsets are shown in Figure 4-4.

NaNs SNaN X 11..11 1 0X..XX2

QNaN X 11..11 1 1X..XX

QNaN Floating-
Point Indefinite

1 11..11 1 10..00

Half Precision

Single Precision:
Double Precision:
Double Extended Precision:

← 5 Bits →
← 8 Bits →
← 11 Bits →
← 15 Bits →

← 10 Bits →
← 23 Bits →
← 52 Bits →
← 63 Bits →

NOTES:
1. Integer bit is implied and not stored for half precision, single precision, and double precision formats.
2. The fraction for SNaN encodings must be non-zero with the most-significant bit 0.

Figure 4-4.  Pointer Data Types

Table 4-3.  Floating-Point Number and NaN Encodings (Contd.)

Class Sign Biased Exponent
Significand

Integer1 Fraction

047

Far Pointer or Logical Address
Segment Selector

32 31
Offset

Near Pointer

031
Offset
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4.3.1 Pointer Data Types in 64-Bit Mode
In 64-bit mode (a sub-mode of IA-32e mode), a near pointer is 64 bits. This equates to an effective address. Far 
pointers in 64-bit mode can be one of three forms: 
• 16-bit segment selector, 16-bit offset if the operand size is 32 bits.
• 16-bit segment selector, 32-bit offset if the operand size is 32 bits.
• 16-bit segment selector, 64-bit offset if the operand size is 64 bits.

See Figure 4-5.

4.4 BIT FIELD DATA TYPE
A bit field (see Figure 4-6) is a contiguous sequence of bits. It can begin at any bit position of any byte in memory 
and can contain up to 32 bits.

Figure 4-5.  Pointers in 64-Bit Mode

Figure 4-6.  Bit Field Data Type
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4.5 STRING DATA TYPES
Strings are continuous sequences of bits, bytes, words, or doublewords. A bit string can begin at any bit position 
of any byte and can contain up to 232 – 1 bits. A byte string can contain bytes, words, or doublewords and can 
range from zero to 232 – 1 bytes (4 GBytes).

4.6 PACKED SIMD DATA TYPES
Intel 64 and IA-32 architectures define and operate on a set of 64-bit and 128-bit packed data type for use in SIMD 
operations. These data types consist of fundamental data types (packed bytes, words, doublewords, and quad-
words) and numeric interpretations of fundamental types for use in packed integer and packed floating-point oper-
ations.

4.6.1 64-Bit SIMD Packed Data Types
The 64-bit packed SIMD data types were introduced into the IA-32 architecture in the Intel MMX technology. They 
are operated on in MMX registers. The fundamental 64-bit packed data types are packed bytes, packed words, and 
packed doublewords (see Figure 4-7). When performing numeric SIMD operations on these data types, these data 
types are interpreted as containing byte, word, or doubleword integer values.

4.6.2 128-Bit Packed SIMD Data Types
The 128-bit packed SIMD data types were introduced into the IA-32 architecture in the Intel SSE extensions and 
used with Intel SSE2, SSE3, SSSE3, SSE4.1, and AVX extensions. They are operated on primarily in the 128-bit 
XMM registers and memory. The fundamental 128-bit packed data types are packed bytes, packed words, packed 
doublewords, and packed quadwords (see Figure 4-8). When performing SIMD operations on these fundamental 
data types in XMM registers, these data types are interpreted as containing packed or scalar half precision floating-
point, single precision floating-point or double precision floating-point values, or as containing packed byte, word, 
doubleword, or quadword integer values.

Figure 4-7.  64-Bit Packed SIMD Data Types
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4.7 BCD AND PACKED BCD INTEGERS
Binary-coded decimal integers (BCD integers) are unsigned 4-bit integers with valid values ranging from 0 to 9. IA-
32 architecture defines operations on BCD integers located in one or more general-purpose registers or in one or 
more x87 FPU registers (see Figure 4-9).

Figure 4-8.  128-Bit Packed SIMD Data Types
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When operating on BCD integers in general-purpose registers, the BCD values can be unpacked (one BCD digit per 
byte) or packed (two BCD digits per byte). The value of an unpacked BCD integer is the binary value of the low half-
byte (bits 0 through 3). The high half-byte (bits 4 through 7) can be any value during addition and subtraction, but 
must be zero during multiplication and division. Packed BCD integers allow two BCD digits to be contained in one 
byte. Here, the digit in the high half-byte is more significant than the digit in the low half-byte.

When operating on BCD integers in x87 FPU data registers, BCD values are packed in an 80-bit format and referred 
to as decimal integers. In this format, the first 9 bytes hold 18 BCD digits, 2 digits per byte. The least-significant 
digit is contained in the lower half-byte of byte 0 and the most-significant digit is contained in the upper half-byte 
of byte 9. The most significant bit of byte 10 contains the sign bit (0 = positive and 1 = negative; bits 0 through 6 
of byte 10 are don’t care bits). Negative decimal integers are not stored in two's complement form; they are distin-
guished from positive decimal integers only by the sign bit. The range of decimal integers that can be encoded in 
this format is –1018 + 1 to 1018 – 1. 
The decimal integer format exists in memory only. When a decimal integer is loaded in an x87 FPU data register, it 
is automatically converted to the double extended precision floating-point format. All decimal integers are exactly 
representable in double extended precision format.

Table 4-4 gives the possible encodings of value in the decimal integer data type.

Figure 4-9.  BCD Data Types

Table 4-4.  Packed Decimal Integer Encodings

Class Sign
Magnitude

digit digit digit digit ... digit

Positive

 Largest 0 0000000 1001 1001 1001 1001 ... 1001

. . .

. . .

 Smallest 0 0000000 0000 0000 0000 0000 ... 0001

 Zero 0 0000000 0000 0000 0000 0000 ... 0000

Negative

 Zero 1 0000000 0000 0000 0000 0000 ... 0000

 Smallest 1 0000000 0000 0000 0000 0000 ... 0001

. . .

. . .

 Largest 1 0000000 1001 1001 1001 1001 ... 1001

Packed BCD Integers
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The packed BCD integer indefinite encoding (FFFFC000000000000000H) is stored by the FBSTP instruction in 
response to a masked floating-point invalid-operation exception. Attempting to load this value with the FBLD 
instruction produces an undefined result.

4.8 REAL NUMBERS AND FLOATING-POINT FORMATS
This section describes how real numbers are represented in floating-point format in x87 FPU and 
SSE/SSE2/SSE3/SSE4.1 and Intel AVX floating-point instructions. It also introduces terms such as normalized 
numbers, denormalized numbers, biased exponents, signed zeros, and NaNs. Readers who are already familiar 
with floating-point processing techniques and the IEEE Standard 754 for Floating-Point Arithmetic may wish to skip 
this section.

4.8.1 Real Number System
As shown in Figure 4-10, the real-number system comprises the continuum of real numbers from minus infinity (−
∞) to plus infinity (+ ∞).

Because the size and number of registers that any computer can have is limited, only a subset of the real-number 
continuum can be used in real-number (floating-point) calculations. As shown at the bottom of Figure 4-10, the 
subset of real numbers that the IA-32 architecture supports represents an approximation of the real number 
system. The range and precision of this real-number subset is determined by the IEEE Standard 754 floating-point 
formats. 

4.8.2 Floating-Point Format
To increase the speed and efficiency of real-number computations, computers and microprocessors typically repre-
sent real numbers in a binary floating-point format. In this format, a real number has three parts: a sign, a signif-
icand, and an exponent (see Figure 4-11).

The sign is a binary value that indicates whether the number is positive (0) or negative (1). The significand has 
two parts: a 1-bit binary integer (also referred to as the J-bit) and a binary fraction. The integer-bit is often not 
represented, but instead is an implied value. The exponent is a binary integer that represents the base-2 power by 
which the significand is multiplied.

Table 4-5 shows how the real number 178.125 (in ordinary decimal format) is stored in IEEE Standard 754 floating-
point format. The table lists a progression of real number notations that leads to the single precision, 32-bit 
floating-point format. In this format, the significand is normalized (see Section 4.8.2.1, “Normalized Numbers”) 
and the exponent is biased (see Section 4.8.2.2, “Biased Exponent”). For the single precision floating-point format, 
the biasing constant is +127.

Packed BCD 
Integer 
Indefinite

1 1111111 1111 1111 1100 0000 ... 0000

← 1 byte → ← 9 bytes →

Table 4-4.  Packed Decimal Integer Encodings (Contd.)

Class Sign
Magnitude

digit digit digit digit ... digit
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Figure 4-10.  Binary Real Number System

Figure 4-11.  Binary Floating-Point Format

Table 4-5.  Real and Floating-Point Number Notation

Notation Value

Ordinary Decimal 178.125

Scientific Decimal 1.78125E10 2

Scientific Binary 1.0110010001E2111

Scientific Binary
(Biased Exponent)

 1.0110010001E210000110

IEEE Single Precision Format Sign Biased Exponent Normalized Significand

0 10000110 01100100010000000000000

          1. (Implied)

Binary Real Number System

Subset of binary real numbers that can be represented with
IEEE single precision (32-bit) floating-point format

+10

10.0000000000000000000000

1.11111111111111111111111
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ςς ςς
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4.8.2.1  Normalized Numbers
In most cases, floating-point numbers are encoded in normalized form. This means that except for zero, the signif-
icand is always made up of an integer of 1 and the following fraction:

1.fff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the exponent is decre-
mented by one.)

Representing numbers in normalized form maximizes the number of significant digits that can be accommodated 
in a significand of a given width. To summarize, a normalized real number consists of a normalized significand that 
represents a real number between 1 and 2 and an exponent that specifies the number’s binary point.

4.8.2.2  Biased Exponent
In the IA-32 architecture, the exponents of floating-point numbers are encoded in a biased form. This means that 
a constant is added to the actual exponent so that the biased exponent is always a positive number. The value of 
the biasing constant depends on the number of bits available for representing exponents in the floating-point 
format being used. The biasing constant is chosen so that the smallest normalized number can be reciprocated 
without overflow.

See Section 4.2.2, “Floating-Point Data Types,” for a list of the biasing constants that the IA-32 architecture uses 
for the various sizes of floating-point data-types.

4.8.3 Real Number and Non-number Encodings
A variety of real numbers and special values can be encoded in the IEEE Standard 754 floating-point format. These 
numbers and values are generally divided into the following classes:
• Signed zeros
• Denormalized finite numbers
• Normalized finite numbers
• Signed infinities
• NaNs
• Indefinite numbers

(The term NaN stands for “Not a Number.”)

Figure 4-12 shows how the encodings for these numbers and non-numbers fit into the real number continuum. The 
encodings shown here are for the IEEE single precision floating-point format. The term “S” indicates the sign bit, 
“E” the biased exponent, and “Sig” the significand. The exponent values are given in decimal. The integer bit is 
shown for the significands, even though the integer bit is implied in single precision floating-point format.
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An IA-32 processor can operate on and/or return any of these values, depending on the type of computation being 
performed. The following sections describe these number and non-number classes.

4.8.3.1  Signed Zeros
Zero can be represented as a +0 or a −0 depending on the sign bit. Both encodings are equal in value. The sign of 
a zero result depends on the operation being performed and the rounding mode being used. Signed zeros have 
been provided to aid in implementing interval arithmetic. The sign of a zero may indicate the direction from which 
underflow occurred, or it may indicate the sign of an ∞ that has been reciprocated.

4.8.3.2  Normalized and Denormalized Finite Numbers
Non-zero, finite numbers are divided into two classes: normalized and denormalized. The normalized finite 
numbers comprise all the non-zero finite values that can be encoded in a normalized real number format between 
zero and ∞. In the single precision floating-point format shown in Figure 4-12, this group of numbers includes all 
the numbers with biased exponents ranging from 1 to 25410 (unbiased, the exponent range is from −12610 to 
+12710).

When floating-point numbers become very close to zero, the normalized-number format can no longer be used to 
represent the numbers. This is because the range of the exponent is not large enough to compensate for shifting 
the binary point to the right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by making the integer bit (and 
perhaps other leading bits) of the significand zero. The numbers in this range are called denormalized numbers. 
The use of leading zeros with denormalized numbers allows smaller numbers to be represented. However, this 
denormalization may cause a loss of precision (the number of significant bits is reduced by the leading zeros).

When performing normalized floating-point computations, an IA-32 processor normally operates on normalized 
numbers and produces normalized numbers as results. Denormalized numbers represent an underflow condition. 
The exact conditions are specified in Section 4.9.1.5, “Numeric Underflow Exception (#U).”

A denormalized number is computed through a technique called gradual underflow. Table 4-6 gives an example of 
gradual underflow in the denormalization process. Here the single precision format is being used, so the minimum 
exponent (unbiased) is −12610. The true result in this example requires an exponent of −12910 in order to have a 

Figure 4-12.  Real Numbers and NaNs
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single precision floating-point format.
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normalized number.   Since  −12910 is beyond the allowable exponent range, the result is denormalized by inserting 
leading zeros until the minimum exponent of −12610 is reached.

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating a zero result. 

The Intel 64 and IA-32 architectures deal with denormal values in the following ways:
• It avoids creating denormals by normalizing numbers whenever possible.
• It provides the floating-point underflow exception to permit programmers to detect cases when denormals are 

created.
• It provides the floating-point denormal-operand exception to permit procedures or programs to detect when 

denormals are being used as source operands for computations.

4.8.3.3  Signed Infinities
The two infinities, + ∞ and − ∞, represent the maximum positive and negative real numbers, respectively, that can 
be represented in the floating-point format. Infinity is always represented by a significand of 1.00...00 (the integer 
bit may be implied) and the maximum biased exponent allowed in the specified format (for example, 25510 for the 
single precision format).

The signs of infinities are observed, and comparisons are possible. Infinities are always interpreted in the affine 
sense; that is, –∞ is less than any finite number and +∞ is greater than any finite number. Arithmetic on infinities 
is always exact. Exceptions are generated only when the use of an infinity as a source operand constitutes an 
invalid operation.

Whereas denormalized numbers may represent an underflow condition, the two ∞ numbers may represent the 
result of an overflow condition. Here, the normalized result of a computation has a biased exponent greater than 
the largest allowable exponent for the selected result format.

4.8.3.4  NaNs
Since NaNs are non-numbers, they are not part of the real number line. In Figure 4-12, the encoding space for 
NaNs in the floating-point formats is shown above the ends of the real number line. This space includes any value 
with the maximum allowable biased exponent and a non-zero fraction (the sign bit is ignored for NaNs).

The IA-32 architecture defines two classes of NaNs: quiet NaNs (QNaNs) and signaling NaNs (SNaNs). A QNaN is a 
NaN with the most significant fraction bit set; an SNaN is a NaN with the most significant fraction bit clear. QNaNs 
are allowed to propagate through most arithmetic operations without signaling an exception. SNaNs generally 
signal a floating-point invalid-operation exception whenever they appear as operands in arithmetic operations.

SNaNs are typically used to trap or invoke an exception handler. They must be inserted by software; that is, the 
processor never generates an SNaN as a result of a floating-point operation.

Table 4-6.  Denormalization Process

Operation Sign Exponent* Significand

True Result 0 −129 1.01011100000...00

Denormalize 0 −128 0.10101110000...00

Denormalize 0 −127 0.01010111000...00

Denormalize 0 −126 0.00101011100...00

Denormal Result 0 −126 0.00101011100...00

* Expressed as an unbiased, decimal number.
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4.8.3.5  Operating on SNaNs and QNaNs
When a floating-point operation is performed on an SNaN and/or a QNaN, the result of the operation is either a 
QNaN delivered to the destination operand or the generation of a floating-point invalid operation exception, 
depending on the following rules:
• If one of the source operands is an SNaN and the floating-point invalid-operation exception is not masked (see 

Section 4.9.1.1, “Invalid Operation Exception (#I)”), then a floating-point invalid-operation exception is 
signaled and no result is stored in the destination operand. If one of the source operands is a QNaN and the 
floating-point invalid-operation exception is not masked and the operation is one that generates an invalid-
operation exception for QNaN operands as described in Section 8.5.1.2, “Invalid Arithmetic Operand Exception 
(#IA),” or Section 11.5.2.1, “Invalid Operation Exception (#I),” then a floating-point invalid-operation 
exception is signaled and no result is stored in the destination operand.

• If either or both of the source operands are NaNs and floating-point invalid-operation exception is masked, the 
result is as shown in Table 4-7. When an SNaN is converted to a QNaN, the conversion is handled by setting the 
most-significant fraction bit of the SNaN to 1. Also, when one of the source operands is an SNaN, or when it is 
a QNaN and the operation is one that generates an invalid-operation exception for QNaN operands as described 
in Section 8.5.1.2, “Invalid Arithmetic Operand Exception (#IA),” or Section 11.5.2.1, “Invalid Operation 
Exception (#I),” then the floating-point invalid-operation exception flag is set. Note that for some combinations 
of source operands, the result is different for x87 FPU operations and for Intel SSE/SSE2/SSE3/SSE4.1 
operations. Intel AVX follows the same behavior as Intel SSE/SSE2/SSE3/SSE4.1 in this respect.

• When neither of the source operands is a NaN, but the operation generates a floating-point invalid-operation 
exception (see Tables 8-10 and 11-1), the result is commonly a QNaN FP Indefinite (Section 4.8.3.7).

Any exceptions to the behavior described in Table 4-7 are described in Section 8.5.1.2, “Invalid Arithmetic Operand 
Exception (#IA),” and Section 11.5.2.1, “Invalid Operation Exception (#I).”

4.8.3.6  Using SNaNs and QNaNs in Applications
Except for the rules given at the beginning of Section 4.8.3.4, “NaNs,” for encoding SNaNs and QNaNs, software is 
free to use the bits in the significand of a NaN for any purpose. Both SNaNs and QNaNs can be encoded to carry and 
store data, such as diagnostic information.

Table 4-7.  Rules for Handling NaNs 

Source Operands Result1

SNaN and QNaN X87 FPU — QNaN source operand.

SSE/SSE2/SSE3/SSE4.1/AVX — First source operand (if this operand is an 
SNaN, it is converted to a QNaN).

Two SNaNs X87 FPU — SNaN source operand with the larger significand, converted into a 
QNaN.

SSE/SSE2/SSE3/SSE4.1/AVX — First source operand converted to a QNaN.

Two QNaNs X87 FPU — QNaN source operand with the larger significand.

SSE/SSE2/SSE3/SSE4.1/AVX — First source operand.

SNaN and a floating-point value SNaN source operand, converted into a QNaN.

QNaN and a floating-point value QNaN source operand.

SNaN (for instructions that take only one operand) SNaN source operand, converted into a QNaN.

QNaN (for instructions that take only one operand) QNaN source operand.

NOTE:
1. For SSE/SSE2/SSE3/SSE4.1 instructions, the first operand is generally a source operand that becomes the destination operand. For 

AVX instructions, the first source operand is usually the 2nd operand in a non-destructive source syntax. Within the Result column, 
the x87 FPU notation also applies to the FISTTP instruction in SSE3; the SSE3 notation applies to the SIMD floating-point instruc-
tions.
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By unmasking the invalid operation exception, the programmer can use signaling NaNs to trap to the exception 
handler. The generality of this approach and the large number of NaN values that are available provide the sophis-
ticated programmer with a tool that can be applied to a variety of special situations.

For example, a compiler can use signaling NaNs as references to uninitialized (real) array elements. The compiler 
can preinitialize each array element with a signaling NaN whose significand contains the index (relative position) of 
the element. Then, if an application program attempts to access an element that it has not initialized, it can use the 
NaN placed there by the compiler. If the invalid operation exception is unmasked, an interrupt will occur, and the 
exception handler will be invoked. The exception handler can determine which element has been accessed, since 
the operand address field of the exception pointer will point to the NaN, and the NaN will contain the index number 
of the array element.

Quiet NaNs are often used to speed up debugging. In its early testing phase, a program often contains multiple 
errors. An exception handler can be written to save diagnostic information in memory whenever it is invoked. After 
storing the diagnostic data, it can supply a quiet NaN as the result of the erroneous instruction, and that NaN can 
point to its associated diagnostic area in memory. The program will then continue, creating a different NaN for each 
error. When the program ends, the NaN results can be used to access the diagnostic data saved at the time the 
errors occurred. Many errors can thus be diagnosed and corrected in one test run.

In embedded applications that use computed results in further computations, an undetected QNaN can invalidate 
all subsequent results. Such applications should therefore periodically check for QNaNs and provide a recovery 
mechanism to be used if a QNaN result is detected. 

4.8.3.7  QNaN Floating-Point Indefinite
For the floating-point data type encodings (single precision, double precision, and double extended precision), one 
unique encoding (a QNaN) is reserved for representing the special value QNaN floating-point indefinite. The x87 
FPU and the Intel SSE/SSE2/SSE3/SSE4.1/AVX extensions return these indefinite values as responses to some 
masked floating-point exceptions. Table 4-3 shows the encoding used for the QNaN floating-point indefinite.

4.8.3.8  Half Precision Floating-Point Operation
Two instructions, VCVTPH2PS and VCVTPS2PH, which provide conversion only between half precision and single 
precision floating-point values, were introduced with the F16C extensions beginning with the third generation of 
Intel Core processors based on Ivy Bridge microarchitecture. Starting with the 4th generation Intel Xeon Scalable 
Processor Family, an Intel AVX-512 instruction set architecture (ISA) for FP16 was added, supporting a wide range 
of general-purpose numeric operations for 16-bit half precision floating-point values (binary16 in the IEEE Stan-
dard 754-2019 for Floating-Point Arithmetic, aka half precision or FP16). These additions complement the existing 
32-bit and 64-bit floating-point instructions already available in the Intel Xeon processor-based products.

The SIMD floating-point exception behavior of the VCVTPH2PS and VCVTPS2PH instructions, as well as of the other 
half precision instructions, are described in Section 14.4.1.

4.8.4 Rounding
When performing floating-point operations, the processor produces an infinitely precise floating-point result in the 
destination format (half precision, single precision, double precision, or double extended precision floating-point) 
whenever possible. However, because only a subset of the numbers in the real number continuum can be repre-
sented in IEEE Standard 754 floating-point formats, it is often the case that an infinitely precise result cannot be 
encoded exactly in the format of the destination operand.

For example, the following value (a) has a 24-bit fraction. The least-significant bit of this fraction (the underlined 
bit) cannot be encoded exactly in the single precision format (which has only a 23-bit fraction):

(a) 1.0001 0000 1000 0011 1001 0111E2 101

To round this result (a), the processor first selects two representable fractions b and c that most closely bracket a 
in value (b < a < c).

(b) 1.0001 0000 1000 0011 1001 011E2 101

(c) 1.0001 0000 1000 0011 1001 100E2 101
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The processor then sets the result to b or to c according to the selected rounding mode. Rounding introduces an 
error in a result that is less than one unit in the last place (the least significant bit position of the floating-point 
value) to which the result is rounded.

The IEEE Standard 754 defines four rounding modes (see Table 4-8): round to nearest, round up, round down, and 
round toward zero. The default rounding mode (for the Intel 64 and IA-32 architectures) is round to nearest. This 
mode provides the most accurate and statistically unbiased estimate of the true result and is suitable for most 
applications. 

The round up and round down modes are termed directed rounding and can be used to implement interval arith-
metic. Interval arithmetic is used to determine upper and lower bounds for the true result of a multistep computa-
tion, when the intermediate results of the computation are subject to rounding. 

The round toward zero mode (sometimes called the “chop” mode) is commonly used when performing integer 
arithmetic with the x87 FPU.

The rounded result is called the inexact result. When the processor produces an inexact result, the floating-point 
precision (inexact) flag (PE) is set (see Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P)”).

The rounding modes have no effect on comparison operations, operations that produce exact results, or operations 
that produce NaN results.

4.8.4.1  Rounding Control (RC) Fields
In the Intel 64 and IA-32 architectures, the rounding mode is controlled by a 2-bit rounding-control (RC) field 
(Table 4-8 shows the encoding of this field). The RC field is implemented in two different locations: 
• X87 FPU control register (bits 10 and 11).
• The MXCSR register (bits 13 and 14).

Although these two RC fields perform the same function, they control rounding for different execution environ-
ments within the processor. The RC field in the x87 FPU control register controls rounding for computations 
performed with the x87 FPU instructions; the RC field in the MXCSR register controls rounding for SIMD floating-
point computations performed with the Intel SSE/SSE2/SSE3/SSE4.1/AVX instructions.

4.8.4.2  Truncation with Intel® SSE, SSE2, and AVX Conversion Instructions
The following Intel SSE/SSE2 instructions automatically truncate the results of conversions from floating-point 
values to integers when the result it inexact: CVTTPD2DQ, CVTTPS2DQ, CVTTPD2PI, CVTTPS2PI, CVTTSD2SI, and 
CVTTSS2SI. Here, truncation means the round toward zero mode described in Table 4-8. There are also several 
Intel AVX2 and AVX-512 instructions which use truncation (VCVTT*).

Table 4-8.  Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding Mode RC Field 
Setting

Description

Round to 
nearest (even)

00B Rounded result is the closest to the infinitely precise result. If two values are equally close, the 
result is the even value (that is, the one with the least-significant bit of zero). Default

Round down 
(toward −∞)

01B Rounded result is closest to but no greater than the infinitely precise result.

Round up 
(toward +∞)

10B Rounded result is closest to but no less than the infinitely precise result.

Round toward 
zero (Truncate)

11B Rounded result is closest to but no greater in absolute value than the infinitely precise result.
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4.9 OVERVIEW OF FLOATING-POINT EXCEPTIONS
The following section provides an overview of floating-point exceptions and their handling in the IA-32 architec-
ture. For information specific to the x87 FPU and to the Intel SSE/SSE2/SSE3/SSE4.1/AVX extensions, refer to the 
following sections:
• Section 4.9, “Overview of Floating-Point Exceptions.”
• Section 11.5, “Intel® SSE, SSE2, and SSE3 Exceptions.” 
• Section 12.8.4, “IEEE 754 Compliance of Intel® SSE4.1 Floating-Point Instructions.”
• Section 14.10, “SIMD Floating-Point Exceptions.”

When operating on floating-point operands, the IA-32 architecture recognizes and detects six classes of exception 
conditions:
• Invalid operation (#I).
• Divide-by-zero (#Z).
• Denormalized operand (#D).
• Numeric overflow (#O).
• Numeric underflow (#U).
• Inexact result (precision) (#P).

The nomenclature of “#” symbol followed by one or two letters (for example, #P) is used in this manual to indicate 
exception conditions. It is merely a short-hand form and is not related to assembler mnemonics.

NOTE
All of the exceptions listed above except the denormal-operand exception (#D) are defined in IEEE 
Standard 754.

The invalid-operation, divide-by-zero and denormal-operand exceptions are pre-computation exceptions (that is, 
they are detected before any arithmetic operation occurs). The numeric-underflow, numeric-overflow and precision 
exceptions are post-computation exceptions.

Each of the six exception classes has a corresponding flag bit (IE, ZE, OE, UE, DE, or PE) and mask bit (IM, ZM, OM, 
UM, DM, or PM). When one or more floating-point exception conditions are detected, the processor sets the appro-
priate flag bits, then takes one of two possible courses of action, depending on the settings of the corresponding 
mask bits:
• Mask bit set. Handles the exception automatically, producing a predefined (and often times usable) result, 

while allowing program execution to continue undisturbed.
• Mask bit clear. Invokes a software exception handler to handle the exception.

The masked (default) responses to exceptions have been chosen to deliver a reasonable result for each exception 
condition and are generally satisfactory for most floating-point applications. By masking or unmasking specific 
floating-point exceptions, programmers can delegate responsibility for most exceptions to the processor and 
reserve the most severe exception conditions for software exception handlers. 

Because the exception flags are “sticky,” they provide a cumulative record of the exceptions that have occurred 
since they were last cleared. A programmer can thus mask all exceptions, run a calculation, and then inspect the 
exception flags to see if any exceptions were detected during the calculation.

In the IA-32 architecture, floating-point exception flag and mask bits are implemented in two different locations: 
• X87 FPU status word and control word. The flag bits are located at bits 0 through 5 of the x87 FPU status word 

and the mask bits are located at bits 0 through 5 of the x87 FPU control word (see Figures 8-4 and 8-6).
• MXCSR register. The flag bits are located at bits 0 through 5 of the MXCSR register and the mask bits are 

located at bits 7 through 12 of the register (see Figure 10-3).

Although these two sets of flag and mask bits perform the same function, they report on and control exceptions for 
different execution environments within the processor. The flag and mask bits in the x87 FPU status and control 
words control exception reporting and masking for computations performed with the x87 FPU instructions; the 
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companion bits in the MXCSR register control exception reporting and masking for SIMD floating-point computa-
tions performed with the Intel SSE/SSE2/SSE3/SSE4.1/AVX instructions.

Note that when exceptions are masked, the processor may detect multiple exceptions in a single instruction, 
because it continues executing the instruction after performing its masked response. For example, the processor 
can detect a denormalized operand, perform its masked response to this exception, and then detect numeric 
underflow.

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for exception precedence when 
more than one floating-point exception condition is detected for an instruction.

4.9.1 Floating-Point Exception Conditions
The following sections describe the various conditions that cause a floating-point exception to be generated and the 
masked response of the processor when these conditions are detected. The Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volumes 3A, 3B, 3C, & 3D, lists the floating-point exceptions that can be signaled for 
each floating-point instruction.

4.9.1.1  Invalid Operation Exception (#I)
The processor reports an invalid operation exception in response to one or more invalid arithmetic operands. If the 
invalid operation exception is masked, the processor sets the IE flag and returns an indefinite value or a QNaN. This 
value overwrites the destination register specified by the instruction. If the invalid operation exception is not 
masked, the IE flag is set, a software exception handler is invoked, and the operands remain unaltered.

See Section 4.8.3.6, “Using SNaNs and QNaNs in Applications,” for information about the result returned when an 
exception is caused by an SNaN.

The processor can detect a variety of invalid arithmetic operations that can be coded in a program. These opera-
tions generally indicate a programming error, such as dividing ∞ by ∞ . See the following sections for information 
regarding the invalid-operation exception when detected while executing x87 FPU or Intel 
SSE/SSE2/SSE3/SSE4.1/AVX instructions:
• X87 FPU; Section 8.5.1, “Invalid Operation Exception.”
• SIMD floating-point exceptions; Section 11.5.2.1, “Invalid Operation Exception (#I).”
• Section 12.8.4, “IEEE 754 Compliance of Intel® SSE4.1 Floating-Point Instructions.”
• Section 14.10, “SIMD Floating-Point Exceptions.”

4.9.1.2  Denormal Operand Exception (#D)
The processor reports the denormal-operand exception if an arithmetic instruction attempts to operate on a 
denormal operand (see Section 4.8.3.2, “Normalized and Denormalized Finite Numbers”). When the exception is 
masked, the processor sets the DE flag and proceeds with the instruction. Operating on denormal numbers will 
produce results at least as good as, and often better than, what can be obtained when denormal numbers are 
flushed to zero. Programmers can mask this exception so that a computation may proceed, then analyze any loss 
of accuracy when the final result is delivered.

When a denormal-operand exception is not masked, the DE flag is set, a software exception handler is invoked, and 
the operands remain unaltered. When denormal operands have reduced significance due to loss of low-order bits, 
it may be advisable to not operate on them. Precluding denormal operands from computations can be accom-
plished by an exception handler that responds to unmasked denormal-operand exceptions.

See the following sections for information regarding the denormal-operand exception when detected while 
executing x87 FPU or Intel SSE/SSE2/SSE3/SSE4.1/AVX instructions:
• X87 FPU; Section 8.5.2, “Denormal Operand Exception (#D).”
• SIMD floating-point exceptions; Section 11.5.2.2, “Denormal-Operand Exception (#D).”
• Section 12.8.4, “IEEE 754 Compliance of Intel® SSE4.1 Floating-Point Instructions.”
• Section 14.10, “SIMD Floating-Point Exceptions.”
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4.9.1.3  Divide-By-Zero Exception (#Z)
The processor reports the floating-point divide-by-zero exception whenever an instruction attempts to divide a 
finite non-zero operand by 0. The masked response for the divide-by-zero exception is to set the ZE flag and return 
an infinity signed with the exclusive OR of the sign of the operands. If the divide-by-zero exception is not masked, 
the ZE flag is set, a software exception handler is invoked, and the operands remain unaltered.

See the following sections for information regarding the divide-by-zero exception when detected while executing 
x87 FPU or Intel SSE/SSE2/AVX instructions:
• X87 FPU; Section 8.5.3, “Divide-By-Zero Exception (#Z).”
• SIMD floating-point exceptions; Section 11.5.2.3, “Divide-By-Zero Exception (#Z).”
• Section 12.8.4, “IEEE 754 Compliance of Intel® SSE4.1 Floating-Point Instructions.”
• Section 14.10, “SIMD Floating-Point Exceptions.”

4.9.1.4  Numeric Overflow Exception (#O)
The processor reports a floating-point numeric overflow exception whenever the rounded result of an instruction 
exceeds the largest allowable finite value that will fit into the destination operand. Table 4-9 shows the threshold 
range for numeric overflow for each of the floating-point formats; overflow occurs when a rounded result falls at or 
outside this threshold range.

When a numeric-overflow exception occurs and the exception is masked, the processor sets the OE flag and 
returns one of the values shown in Table 4-10, according to the current rounding mode. See Section 4.8.4, 
“Rounding.”

When numeric overflow occurs and the numeric-overflow exception is not masked, the OE flag is set, a software 
exception handler is invoked, and the source and destination operands either remain unchanged or a biased result 
is stored in the destination operand (depending whether the overflow exception was generated during an Intel 
SSE/SSE2/SSE3/SSE4.1/AVX floating-point operation or an x87 FPU operation).

See the following sections for information regarding the numeric overflow exception when detected while executing 
x87 FPU instructions or while executing Intel SSE/SSE2/SSE3/SSE4.1/AVX instructions:
• X87 FPU; Section 8.5.4, “Numeric Overflow Exception (#O).”

Table 4-9.  Numeric Overflow Thresholds

Floating-Point Format Overflow Thresholds

Half Precision | x | ≥ 1.0 ∗ 216

Single Precision | x | ≥ 1.0 ∗ 2128

Double Precision | x | ≥ 1.0 ∗ 21024

Double Extended Precision | x | ≥ 1.0 ∗ 216384

Table 4-10.  Masked Responses to Numeric Overflow

Rounding Mode Sign of True Result Result

To nearest + +∞

– –∞

Toward –∞ + Largest finite positive number

– –∞

Toward +∞ + +∞

– Largest finite negative number

Toward zero + Largest finite positive number

– Largest finite negative number
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• SIMD floating-point exceptions; Section 11.5.2.4, “Numeric Overflow Exception (#O).”
• Section 12.8.4, “IEEE 754 Compliance of Intel® SSE4.1 Floating-Point Instructions.”
• Section 14.10, “SIMD Floating-Point Exceptions.”

4.9.1.5  Numeric Underflow Exception (#U)
The processor detects a potential floating-point numeric underflow condition whenever the result of rounding with 
unbounded exponent (taking into account precision control for x87) is non-zero and tiny; that is, non-zero and less 
than the smallest possible normalized, finite value that will fit into the destination operand. Table 4-11 shows the 
threshold range for numeric underflow for each of the floating-point formats (assuming normalized results); under-
flow occurs when a rounded result falls strictly within the threshold range. The ability to detect and handle under-
flow is provided to prevent a very small result from propagating through a computation and causing another 
exception (such as overflow during division) to be generated at a later time. Results which trigger underflow are 
also potentially less accurate.

How the processor handles an underflow condition, depends on two related conditions:
• Creation of a tiny, non-zero result.
• Creation of an inexact result; that is, a result that cannot be represented exactly in the destination format.

Which of these events causes an underflow exception to be reported and how the processor responds to the excep-
tion condition depends on whether the underflow exception is masked:
• Underflow exception masked — The underflow exception is reported (the UE flag is set) only when the result 

is both tiny and inexact. The processor returns a correctly signed result whose magnitude is less than or equal 
to the smallest positive normal floating-point number to the destination operand, regardless of inexactness.

• Underflow exception not masked — The underflow exception is reported when the result is non-zero tiny, 
regardless of inexactness. The processor leaves the source and destination operands unaltered or stores a 
biased result in the destination operand (depending whether the underflow exception was generated during an 
Intel SSE/SSE2/SSE3/AVX floating-point operation or an x87 FPU operation) and invokes a software exception 
handler.

See the following sections for information regarding the numeric underflow exception when detected while 
executing x87 FPU instructions or while executing Intel SSE/SSE2/SSE3/SSE4.1/AVX instructions:
• X87 FPU; Section 8.5.5, “Numeric Underflow Exception (#U).”
• SIMD floating-point exceptions; Section 11.5.2.5, “Numeric Underflow Exception (#U).”
• Section 12.8.4, “IEEE 754 Compliance of Intel® SSE4.1 Floating-Point Instructions.”
• Section 14.10, “SIMD Floating-Point Exceptions.”

4.9.1.6  Inexact-Result (Precision) Exception (#P)
The inexact-result exception (also called the precision exception) occurs if the result of an operation is not exactly 
representable in the destination format. For example, the fraction 1/3 cannot be precisely represented in binary 
floating-point form. This exception occurs frequently and indicates that some (normally acceptable) accuracy will 
be lost due to rounding. The exception is supported for applications that need to perform exact arithmetic only. 
Because the rounded result is generally satisfactory for most applications, this exception is commonly masked.

Table 4-11.  Numeric Underflow (Normalized) Thresholds

Floating-Point Format Underflow Thresholds1

NOTES:
1. Where ‘x’ is the result rounded to destination precision with an unbounded exponent range.

Half Precision | x | < 1.0 ∗ 2−14

Single Precision | x | < 1.0 ∗ 2−126

Double Precision | x | < 1.0 ∗ 2−1022

Double Extended Precision | x | < 1.0 ∗ 2−16382
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If the inexact-result exception is masked when an inexact-result condition occurs and a numeric overflow or under-
flow condition has not occurred, the processor sets the PE flag and stores the rounded result in the destination 
operand. The current rounding mode determines the method used to round the result. See Section 4.8.4, 
“Rounding.”

If the inexact-result exception is not masked when an inexact result occurs and numeric overflow or underflow has 
not occurred, the PE flag is set, the rounded result is stored in the destination operand, and a software exception 
handler is invoked.

If an inexact result occurs in conjunction with numeric overflow or underflow, one of the following operations is 
carried out:
• If an inexact result occurs along with masked overflow or underflow, the OE flag or UE flag and the PE flag are 

set and the result is stored as described for the overflow or underflow exceptions; see Section 4.9.1.4, 
“Numeric Overflow Exception (#O),” or Section 4.9.1.5, “Numeric Underflow Exception (#U).” If the inexact 
result exception is unmasked, the processor also invokes a software exception handler.

• If an inexact result occurs along with unmasked overflow or underflow and the destination operand is a register, 
the OE or UE flag and the PE flag are set, the result is stored as described for the overflow or underflow 
exceptions, and a software exception handler is invoked.

If an unmasked numeric overflow or underflow exception occurs and the destination operand is a memory location 
(which can happen only for a floating-point store), the inexact-result condition is not reported and the C1 flag is 
cleared.

See the following sections for information regarding the inexact-result exception when detected while executing 
x87 FPU or Intel SSE/SSE2/SSE3/SSE4.1/AVX instructions:
• X87 FPU; Section 8.5.6, “Inexact-Result (Precision) Exception (#P).”
• SIMD floating-point exceptions; Section 11.5.2.3, “Divide-By-Zero Exception (#Z).”
• Section 12.8.4, “IEEE 754 Compliance of Intel® SSE4.1 Floating-Point Instructions.”
• Section 14.10, “SIMD Floating-Point Exceptions.”

4.9.2 Floating-Point Exception Priority
The processor handles exceptions according to a predetermined precedence. When an instruction generates two or 
more exception conditions, the exception precedence sometimes results in the higher-priority exception being 
handled and the lower-priority exceptions being ignored. For example, dividing an SNaN by zero can potentially 
signal an invalid-operation exception (due to the SNaN operand) and a divide-by-zero exception. Here, if both 
exceptions are masked, the processor handles the higher-priority exception only (the invalid-operation exception), 
returning a QNaN to the destination. Alternately, a denormal-operand or inexact-result exception can accompany 
a numeric underflow or overflow exception with both exceptions being handled.

The precedence for floating-point exceptions is as follows:

1. Invalid-operation exception, subdivided as follows:

a. Stack underflow (occurs with x87 FPU only).

b. Stack overflow (occurs with x87 FPU only).

c. Operand of unsupported format (occurs with x87 FPU only when using the double extended precision 
floating-point format).

d. SNaN operand.

2. QNaN operand. Though this is not an exception, the handling of a QNaN operand has precedence over lower-
priority exceptions. For example, a QNaN divided by zero results in a QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or a divide-by-zero exception.

4. Denormal-operand exception. If masked, then instruction execution continues, and a lower-priority exception 
can occur as well.

5. Numeric overflow and underflow exceptions; possibly in conjunction with the inexact-result exception.

6. Inexact-result exception.
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Invalid operation, zero divide, and denormal operand exceptions are detected before a floating-point operation 
begins. Overflow, underflow, and precision exceptions are not detected until a true result has been computed. 
When an unmasked pre-operation exception is detected, the destination operand has not yet been updated, and 
appears as if the offending instruction has not been executed. When an unmasked post-operation exception is 
detected, the destination operand may be updated with a result, depending on the nature of the exception (except 
for Intel SSE/SSE2/SSE3/AVX instructions, which do not update their destination operands in such cases).

4.9.3 Typical Actions of a Floating-Point Exception Handler
After the floating-point exception handler is invoked, the processor handles the exception in the same manner that 
it handles non-floating-point exceptions. The floating-point exception handler is normally part of the operating 
system or executive software, and it usually invokes a user-registered floating-point exception handle. 

A typical action of the exception handler is to store state information in memory. Other typical exception handler 
actions include:
• Examining the stored state information to determine the nature of the error.
• Taking actions to correct the condition that caused the error.
• Clearing the exception flags.
• Returning to the interrupted program and resuming normal execution.

In lieu of writing recovery procedures, the exception handler can do the following:
• Increment in software an exception counter for later display or printing.
• Print or display diagnostic information (such as the state information).
• Halt further program execution.
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CHAPTER 5
INSTRUCTION SET SUMMARY

This chapter provides an abridged overview of Intel 64 and IA-32 instructions. Instructions are divided into the 
following groups:
• Section 5.1, “General-Purpose Instructions.”
• Section 5.2, “x87 FPU Instructions.”
• Section 5.3, “x87 FPU AND SIMD State Management Instructions.”
• Section 5.4, “MMX Instructions.”
• Section 5.5, “Intel® SSE Instructions.”
• Section 5.6, “Intel® SSE2 Instructions.”
• Section 5.7, “Intel® SSE3 Instructions.”
• Section 5.8, “Supplemental Streaming SIMD Extensions 3 (SSSE3) Instructions.”
• Section 5.9, “Intel® SSE4 Instructions.”
• Section 5.10, “Intel® SSE4.1 Instructions.”
• Section 5.11, “Intel® SSE4.2 Instruction Set.”
• Section 5.12, “Intel® AES-NI and PCLMULQDQ.”
• Section 5.13, “Intel® Advanced Vector Extensions (Intel® AVX).”
• Section 5.14, “16-bit Floating-Point Conversion.”
• Section 5.15, “Fused-Multiply-ADD (FMA).”
• Section 5.16, “Intel® Advanced Vector Extensions 2 (Intel® AVX2).”
• Section 5.17, “Intel® Transactional Synchronization Extensions (Intel® TSX).”
• Section 5.18, “Intel® SHA Extensions.”
• Section 5.19, “Intel® Advanced Vector Extensions 512 (Intel® AVX-512).”
• Section 5.20, “System Instructions.”
• Section 5.21, “64-Bit Mode Instructions.”
• Section 5.22, “Virtual-Machine Extensions.”
• Section 5.23, “Safer Mode Extensions.”
• Section 5.24, “Intel® Memory Protection Extensions.”
• Section 5.25, “Intel® Software Guard Extensions.”
• Section 5.26, “Shadow Stack Management Instructions.”
• Section 5.27, “Control Transfer Terminating Instructions.”
• Section 5.28, “Intel® AMX Instructions.”
• Section 5.29, “User Interrupt Instructions.”
• Section 5.30, “Enqueue Store Instructions.”
• Section 5.31, “Intel® Advanced Vector Extensions 10 Version 1 Instructions.”

Table 5-1 lists the groups and IA-32 processors that support each group. More recent instruction set extensions are 
listed in Table 5-2. Within these groups, most instructions are collected into functional subgroups.
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Table 5-1.  Instruction Groups in Intel® 64 and IA-32 Processors 

Instruction Set 
Architecture Intel 64 and IA-32 Processor Support

General Purpose All Intel 64 and IA-32 processors.

 X87 FPU Intel486, Pentium, Pentium with MMX Technology, Celeron, Pentium Pro, Pentium II, Pentium II Xeon, 
Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, 
Intel Core 2 Duo processors, Intel Atom processors.

X87 FPU and SIMD State 
Management

Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, 
Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom processors.

MMX Technology Pentium with MMX Technology, Celeron, Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium 
4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom 
processors.

SSE Extensions Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, 
Intel Core 2 Duo processors, Intel Atom processors.

SSE2 Extensions Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, 
Intel Atom processors.

SSE3 Extensions Pentium 4 supporting HT Technology (built on 90 nm process technology), Intel Core Solo, Intel Core Duo, 
Intel Core 2 Duo processors, Intel Xeon processor 3xxxx, 5xxx, 7xxx Series, Intel Atom processors.

SSSE3 Extensions Intel Xeon processor 3xxx, 5100, 5200, 5300, 5400, 5500, 5600, 7300, 7400, 7500 series, Intel Core 2 
Extreme processors QX6000 series, Intel Core 2 Duo, Intel Core 2 Quad processors, Intel Pentium Dual-Core 
processors, Intel Atom processors.

IA-32e mode: 64-bit 
mode instructions

Intel 64 processors.

System Instructions Intel 64 and IA-32 processors.

VMX Instructions Intel 64 and IA-32 processors supporting Intel Virtualization Technology.

SMX Instructions Intel Core 2 Duo processor E6x50, E8xxx; Intel Core 2 Quad processor Q9xxx.

Table 5-2.  Instruction Set Extensions Introduction in Intel® 64 and IA-32 Processors

Instruction Set Architecture Processor Generation Introduction

SSE4.1 Extensions Intel® Xeon® processor 3100, 3300, 5200, 5400, 7400, 7500 series, Intel® Core™ 2 Extreme 
processors QX9000 series, Intel® Core™ 2 Quad processor Q9000 series, Intel® Core™ 2 Duo processors 
8000 series and T9000 series, Intel Atom® processor based on Silvermont microarchitecture.

SSE4.2 Extensions, CRC32, 
POPCNT

Intel® Core™ i7 965 processor, Intel® Xeon® processors X3400, X3500, X5500, X6500, X7500 series, 
Intel Atom processor based on Silvermont microarchitecture.

Intel® AES-NI, PCLMULQDQ Intel® Xeon® processor E7 series, Intel® Xeon® processors X3600 and X5600, Intel® Core™ i7 980X 
processor, Intel Atom processor based on Silvermont microarchitecture. Use CPUID to verify presence 
of Intel AES-NI and PCLMULQDQ across Intel® Core™ processor families.

Intel® AVX Intel® Xeon® processor E3 and E5 families, 2nd Generation Intel® Core™ i7, i5, i3 processor 2xxx 
families.

F16C 3rd Generation Intel® Core™ processors, Intel® Xeon® processor E3-1200 v2 product family, Intel® 
Xeon® processor E5 v2 and E7 v2 families.

RDRAND 3rd Generation Intel Core processors, Intel Xeon processor E3-1200 v2 product family, Intel Xeon 
processor E5 v2 and E7 v2 families, Intel Atom processor based on Silvermont microarchitecture.

FS/GS base access 3rd Generation Intel Core processors, Intel Xeon processor E3-1200 v2 product family, Intel Xeon 
processor E5 v2 and E7 v2 families, Intel Atom® processor based on Goldmont microarchitecture.
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FMA, AVX2, BMI1, BMI2, 
INVPCID, LZCNT, Intel® TSX

Intel® Xeon® processor E3/E5/E7 v3 product families, 4th Generation Intel® Core™ processor family.

MOVBE Intel Xeon processor E3/E5/E7 v3 product families, 4th Generation Intel Core processor family, Intel 
Atom processors.

PREFETCHW Intel® Core™ M processor family; 5th Generation Intel® Core™ processor family, Intel Atom processor 
based on Silvermont microarchitecture.

ADX Intel Core M processor family, 5th Generation Intel Core processor family.

RDSEED, CLAC, STAC Intel Core M processor family, 5th Generation Intel Core processor family, Intel Atom processor based 
on Goldmont microarchitecture.

AVX512ER, AVX512PF, 
PREFETCHWT1

Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series.

AVX512F, AVX512CD Intel Xeon Phi Processor 3200, 5200, 7200 Series, Intel® Xeon® Scalable Processor Family, Intel® Core™ 
i3-8121U processor.

CLFLUSHOPT, XSAVEC, 
XSAVES, Intel® MPX

Intel Xeon Scalable Processor Family, 6th Generation Intel® Core™ processor family, Intel Atom 
processor based on Goldmont microarchitecture.

SGX1 6th Generation Intel Core processor family, Intel Atom® processor based on Goldmont Plus 
microarchitecture.

AVX512DQ, AVX512BW, 
AVX512VL

Intel Xeon Scalable Processor Family, Intel Core i3-8121U processor based on Cannon Lake 
microarchitecture.

CLWB Intel Xeon Scalable Processor Family, Intel Atom® processor based on Tremont microarchitecture, 11th 
Generation Intel Core processor family based on Tiger Lake microarchitecture.

PKU Intel Xeon Scalable Processor Family, 10th generation Intel® Core™ processors based on Comet Lake 
microarchitecture.

AVX512_IFMA, 
AVX512_VBMI

Intel Core i3-8121U processor based on Cannon Lake microarchitecture.

Intel® SHA Extensions Intel Core i3-8121U processor based on Cannon Lake microarchitecture, Intel Atom processor based 
on Goldmont microarchitecture, 3rd Generation Intel® Xeon® Scalable Processor Family based on Ice 
Lake microarchitecture.

UMIP Intel Core i3-8121U processor based on Cannon Lake microarchitecture, Intel Atom processor based 
on Goldmont Plus microarchitecture.

PTWRITE Intel Atom processor based on Goldmont Plus microarchitecture, 12th generation Intel® Core™ 
processor supporting Alder Lake performance hybrid architecture, 4th generation Intel® Xeon® 
Scalable Processor Family based on Sapphire Rapids microarchitecture.

RDPID 10th Generation Intel® Core™ processor family based on Ice Lake microarchitecture, Intel Atom 
processor based on Goldmont Plus microarchitecture.

AVX512_4FMAPS, 
AVX512_4VNNIW

Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series.

AVX512_VNNI 2nd Generation Intel® Xeon® Scalable Processor Family, 10th Generation Intel Core processor family 
based on Ice Lake microarchitecture.

AVX512_VPOPCNTDQ Intel Xeon Phi Processor 7215, 7285, 7295 Series, 10th Generation Intel Core processor family based 
on Ice Lake microarchitecture.

Fast Short REP MOV 10th Generation Intel Core processor family based on Ice Lake microarchitecture.

GFNI (SSE) 10th Generation Intel Core processor family based on Ice Lake microarchitecture, Intel Atom processor 
based on Tremont microarchitecture.

Table 5-2.  Instruction Set Extensions Introduction in Intel® 64 and IA-32 Processors (Contd.)

Instruction Set Architecture Processor Generation Introduction
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VAES, GFNI (AVX/AVX512), 
AVX512_VBMI2, 
VPCLMULQDQ, 
AVX512_BITALG

10th Generation Intel Core processor family based on Ice Lake microarchitecture.

ENCLV Future processors.

Split Lock Detection 10th Generation Intel Core processor family based on Ice Lake microarchitecture, Intel Atom processor 
based on Tremont microarchitecture.

CLDEMOTE Intel Atom processor based on Tremont microarchitecture, 4th generation Intel® Xeon® Scalable 
Processor Family based on Sapphire Rapids microarchitecture.

Direct stores: MOVDIRI, 
MOVDIR64B 

Intel Atom processor based on Tremont microarchitecture, 11th Generation Intel Core processor 
family based on Tiger Lake microarchitecture, 4th generation Intel® Xeon® Scalable Processor Family 
based on Sapphire Rapids microarchitecture.

User wait: TPAUSE, 
UMONITOR, UMWAIT

Intel Atom processor based on Tremont microarchitecture, 12th generation Intel Core processor based 
on Alder Lake performance hybrid architecture, 4th generation Intel® Xeon® Scalable Processor Family 
based on Sapphire Rapids microarchitecture.

AVX512_BF16 3rd Generation Intel® Xeon® Scalable Processor Family based on Cooper Lake product, 4th generation 
Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.

AVX512_VP2INTERSECT 11th Generation Intel Core processor family based on Tiger Lake microarchitecture. (Not currently 
supported in any other processors).

Key Locker1 11th Generation Intel Core processor family based on Tiger Lake microarchitecture, 12th generation 
Intel Core processor supporting Alder Lake performance hybrid architecture.

Control-flow Enforcement 
Technology (CET)

11th Generation Intel Core processor family based on Tiger Lake microarchitecture, 4th generation 
Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture, Intel® Xeon® 6 E-
core processors based on Sierra Forest microarchitecture.

TME-MK2, PCONFIG 3rd Generation Intel® Xeon® Scalable Processor Family based on Ice Lake microarchitecture.

WBNOINVD 3rd Generation Intel® Xeon® Scalable Processor Family based on Ice Lake microarchitecture.

LBRs (architectural) 12th generation Intel Core processor supporting Alder Lake performance hybrid architecture, 4th 
generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture, Intel® 
Xeon® 6 E-core processors based on Sierra Forest microarchitecture.

Intel® Virtualization 
Technology - Redirect 
Protection (Intel® VT-rp) and 
HLAT

12th generation Intel Core processor supporting Alder Lake performance hybrid architecture, 4th 
generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture, Intel® 
Xeon® 6 E-core processors based on Sierra Forest microarchitecture.

AVX-VNNI 12th generation Intel Core processor supporting Alder Lake performance hybrid architecture3, 4th 
generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture, Intel® 
Xeon® 6 E-core processors based on Sierra Forest microarchitecture.

SERIALIZE 12th generation Intel Core processor supporting Alder Lake performance hybrid architecture, 4th 
generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture, Intel® 
Xeon® 6 E-core processors based on Sierra Forest microarchitecture.

Intel® Thread Director and 
HRESET

12th generation Intel Core processor supporting Alder Lake performance hybrid architecture.

Fast zero-length REP MOVSB, 
fast short REP STOSB

12th generation Intel Core processor supporting Alder Lake performance hybrid architecture, 4th 
generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.

Fast Short REP CMPSB, fast 
short REP SCASB

4th generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.

Table 5-2.  Instruction Set Extensions Introduction in Intel® 64 and IA-32 Processors (Contd.)
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Supervisor Memory 
Protection Keys (PKS)

12th generation Intel Core processor supporting Alder Lake performance hybrid architecture, 4th 
generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture, Intel® 
Xeon® 6 E-core processors based on Sierra Forest microarchitecture.

Attestation Services for 
Intel® SGX

3rd Generation Intel® Xeon® Scalable Processor Family based on Ice Lake microarchitecture.

Enqueue Stores: ENQCMD 
and ENQCMDS

4th generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture, 
Intel® Xeon® 6 E-core processors based on Sierra Forest microarchitecture.

Intel® TSX Suspend Load 
Address Tracking 
(TSXLDTRK)

4th generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.

Intel® Advanced Matrix 
Extensions (Intel® AMX)

Includes CPUID Leaf 1EH, 
“TMUL Information Main 
Leaf”, and CPUID bits AMX-
BF16, AMX-TILE, and AMX-
INT8.

4th generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.

User Interrupts (UINTR) 4th generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture, 
Intel® Xeon® 6 E-core processors based on Sierra Forest microarchitecture, Intel® Core™ Ultra processor 
supporting Lunar Lake performance hybrid architecture.

IPI Virtualization 4th generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture, 
Intel® Xeon® 6 E-core processors based on Sierra Forest microarchitecture, Intel® Core™ Ultra processor 
supporting Lunar Lake performance hybrid architecture.

AVX512-FP16, for the FP16 
Data Type

4th generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.

Virtualization of guest 
accesses to 
IA32_SPEC_CTRL

4th generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture, 
Intel® Xeon® 6 E-core processors based on Sierra Forest microarchitecture.

Linear Address Masking 
(LAM)

Intel® Xeon® 6 E-core processors based on Sierra Forest microarchitecture, Intel® Core™ Ultra processor 
supporting Lunar Lake performance hybrid architecture.

Linear Address Space 
Separation (LASS)

Intel® Xeon® 6 E-core processors based on Sierra Forest microarchitecture, Intel® Core™ Ultra processor 
supporting Lunar Lake performance hybrid architecture.

PREFETCHIT0/1 Intel® Xeon® 6 P-core processors based on Granite Rapids microarchitecture.

AMX-FP16 Intel® Xeon® 6 P-core processors based on Granite Rapids microarchitecture.

CMPCCXADD Intel® Xeon® 6 E-core processors based on Sierra Forest microarchitecture, Intel® Core™ Ultra processor 
supporting Lunar Lake performance hybrid architecture.

AVX-IFMA Intel® Xeon® 6 E-core processors based on Sierra Forest microarchitecture, Intel® Core™ Ultra processor 
supporting Lunar Lake performance hybrid architecture.

AVX-NE-CONVERT Intel® Xeon® 6 E-core processors based on Sierra Forest microarchitecture, Intel® Core™ Ultra processor 
supporting Lunar Lake performance hybrid architecture.

AVX-VNNI-INT8 Intel® Xeon® 6 E-core processors based on Sierra Forest microarchitecture, Intel® Core™ Ultra processor 
supporting Lunar Lake performance hybrid architecture.

AVX-VNNI-INT16 Intel® Core™ Ultra processor supporting Lunar Lake performance hybrid architecture.

SHA512 Intel® Core™ Ultra processor supporting Lunar Lake performance hybrid architecture.

SM3 Intel® Core™ Ultra processor supporting Lunar Lake performance hybrid architecture.

SM4 Intel® Core™ Ultra processor supporting Lunar Lake performance hybrid architecture.

Table 5-2.  Instruction Set Extensions Introduction in Intel® 64 and IA-32 Processors (Contd.)
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The following sections list instructions in each major group and subgroup. Given for each instruction is its 
mnemonic and descriptive names. When two or more mnemonics are given (for example, CMOVA/CMOVNBE), they 
represent different mnemonics for the same instruction opcode. Assemblers support redundant mnemonics for 
some instructions to make it easier to read code listings. For instance, CMOVA (Conditional move if above) and 
CMOVNBE (Conditional move if not below or equal) represent the same condition. For detailed information about 
specific instructions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, 
& 2D.

5.1 GENERAL-PURPOSE INSTRUCTIONS
The general-purpose instructions perform basic data movement, arithmetic, logic, program flow, and string opera-
tions that programmers commonly use to write application and system software to run on Intel 64 and IA-32 
processors. They operate on data contained in memory, in the general-purpose registers (EAX, EBX, ECX, EDX, 
EDI, ESI, EBP, and ESP) and in the EFLAGS register. They also operate on address information contained in 
memory, the general-purpose registers, and the segment registers (CS, DS, SS, ES, FS, and GS). 

This group of instructions includes the data transfer, binary integer arithmetic, decimal arithmetic, logic operations, 
shift and rotate, bit and byte operations, program control, string, flag control, segment register operations, and 
miscellaneous subgroups. The sections that follow introduce each subgroup. 

For more detailed information on general purpose-instructions, see Chapter 7, “Programming With General-
Purpose Instructions.”

5.1.1 Data Transfer Instructions
The data transfer instructions move data between memory and the general-purpose and segment registers. They 
also perform specific operations such as conditional moves, stack access, and data conversion.
MOV Move data between general-purpose registers; move data between memory and general-

purpose or segment registers; move immediates to general-purpose registers.
CMOVE/CMOVZ Conditional move if equal/Conditional move if zero.
CMOVNE/CMOVNZ Conditional move if not equal/Conditional move if not zero.

RDMSRLIST, WRMSRLIST, 
and WRMSRNS

Intel® Xeon® 6 E-core processors based on Sierra Forest microarchitecture.

UC Lock Disable Causes #AC Intel® Xeon® 6 E-core processors based on Sierra Forest microarchitecture.

LBR Event Logging Intel® Xeon® 6 E-core processors based on Sierra Forest microarchitecture, Intel® Core™ Ultra processor 
supporting Lunar Lake performance hybrid architecture.

UIRET flexibly updates UIF Intel® Xeon® 6 E-core processors based on Sierra Forest microarchitecture, Intel® Core™ Ultra processor 
supporting Lunar Lake performance hybrid architecture.

Intel® Advanced Vector 
Extensions 10 Version 1 
(Intel® AVX10.1)

Intel® Xeon® 6 P-core processors based on Granite Rapids microarchitecture.

NOTES:
1. Details on Key Locker can be found in the Intel Key Locker Specification here:

 https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html. 
2. Further details on TME-MK usage can be found here: 

https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf.
3. Alder Lake performance hybrid architecture does not support Intel® AVX-512. ISA features such as Intel® AVX, AVX-VNNI, Intel® AVX2, 

and UMONITOR/UMWAIT/TPAUSE are supported.

Table 5-2.  Instruction Set Extensions Introduction in Intel® 64 and IA-32 Processors (Contd.)
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CMOVA/CMOVNBE Conditional move if above/Conditional move if not below or equal.
CMOVAE/CMOVNB Conditional move if above or equal/Conditional move if not below.
CMOVB/CMOVNAE Conditional move if below/Conditional move if not above or equal.
CMOVBE/CMOVNA Conditional move if below or equal/Conditional move if not above.
CMOVG/CMOVNLE Conditional move if greater/Conditional move if not less or equal.
CMOVGE/CMOVNL Conditional move if greater or equal/Conditional move if not less.
CMOVL/CMOVNGE Conditional move if less/Conditional move if not greater or equal.
CMOVLE/CMOVNG Conditional move if less or equal/Conditional move if not greater.
CMOVC Conditional move if carry.
CMOVNC Conditional move if not carry.
CMOVO Conditional move if overflow.
CMOVNO Conditional move if not overflow.
CMOVS Conditional move if sign (negative).
CMOVNS Conditional move if not sign (non-negative).
CMOVP/CMOVPE Conditional move if parity/Conditional move if parity even.
CMOVNP/CMOVPO Conditional move if not parity/Conditional move if parity odd.
XCHG Exchange.
BSWAP Byte swap.
XADD Exchange and add.
CMPXCHG Compare and exchange.
CMPXCHG8B Compare and exchange 8 bytes.
PUSH Push onto stack.
POP Pop off of stack.
PUSHA/PUSHAD Push general-purpose registers onto stack.
POPA/POPAD Pop general-purpose registers from stack.
CWD/CDQ Convert word to doubleword/Convert doubleword to quadword.
CBW/CWDE Convert byte to word/Convert word to doubleword in EAX register.
MOVSX Move and sign extend.
MOVZX Move and zero extend.

5.1.2 Binary Arithmetic Instructions
The binary arithmetic instructions perform basic binary integer computations on byte, word, and doubleword inte-
gers located in memory and/or the general purpose registers.
ADCX Unsigned integer add with carry.
ADOX Unsigned integer add with overflow.
ADD Integer add.
ADC Add with carry.
SUB Subtract.
SBB Subtract with borrow.
IMUL Signed multiply.
MUL Unsigned multiply.
IDIV Signed divide.
DIV Unsigned divide.
INC Increment.
DEC Decrement.
NEG Negate.
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CMP Compare.

5.1.3 Decimal Arithmetic Instructions
The decimal arithmetic instructions perform decimal arithmetic on binary coded decimal (BCD) data.
DAA Decimal adjust after addition.
DAS Decimal adjust after subtraction.
AAA ASCII adjust after addition.
AAS ASCII adjust after subtraction.
AAM ASCII adjust after multiplication.
AAD ASCII adjust before division.

5.1.4 Logical Instructions
The logical instructions perform basic AND, OR, XOR, and NOT logical operations on byte, word, and doubleword 
values.
AND Perform bitwise logical AND.
OR Perform bitwise logical OR.
XOR Perform bitwise logical exclusive OR.
NOT Perform bitwise logical NOT.

5.1.5 Shift and Rotate Instructions
The shift and rotate instructions shift and rotate the bits in word and doubleword operands.
SAR Shift arithmetic right.
SHR Shift logical right.
SAL/SHL Shift arithmetic left/Shift logical left.
SHRD Shift right double.
SHLD Shift left double.
ROR Rotate right.
ROL Rotate left.
RCR Rotate through carry right.
RCL Rotate through carry left.

5.1.6 Bit and Byte Instructions
Bit instructions test and modify individual bits in word and doubleword operands. Byte instructions set the value of 
a byte operand to indicate the status of flags in the EFLAGS register.
BT Bit test.
BTS Bit test and set.
BTR Bit test and reset.
BTC Bit test and complement.
BSF Bit scan forward.
BSR Bit scan reverse.
SETE/SETZ Set byte if equal/Set byte if zero.
SETNE/SETNZ Set byte if not equal/Set byte if not zero.
SETA/SETNBE Set byte if above/Set byte if not below or equal.
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SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set byte if not carry.
SETB/SETNAE/SETC Set byte if below/Set byte if not above or equal/Set byte if carry.
SETBE/SETNA Set byte if below or equal/Set byte if not above.
SETG/SETNLE Set byte if greater/Set byte if not less or equal.
SETGE/SETNL Set byte if greater or equal/Set byte if not less.
SETL/SETNGE Set byte if less/Set byte if not greater or equal.
SETLE/SETNG Set byte if less or equal/Set byte if not greater.
SETS Set byte if sign (negative).
SETNS Set byte if not sign (non-negative).
SETO Set byte if overflow.
SETNO Set byte if not overflow.
SETPE/SETP Set byte if parity even/Set byte if parity.
SETPO/SETNP Set byte if parity odd/Set byte if not parity.
TEST Logical compare.
CRC321 Provides hardware acceleration to calculate cyclic redundancy checks for fast and efficient 

implementation of data integrity protocols.
POPCNT2 Calculates of number of bits set to 1 in the second operand (source) and returns the count 

in the first operand (a destination register).

5.1.7 Control Transfer Instructions
The control transfer instructions provide jump, conditional jump, loop, and call and return operations to control 
program flow.
JMP Jump.
JE/JZ Jump if equal/Jump if zero.
JNE/JNZ Jump if not equal/Jump if not zero.
JA/JNBE Jump if above/Jump if not below or equal.
JAE/JNB Jump if above or equal/Jump if not below.
JB/JNAE Jump if below/Jump if not above or equal.
JBE/JNA Jump if below or equal/Jump if not above.
JG/JNLE Jump if greater/Jump if not less or equal.
JGE/JNL Jump if greater or equal/Jump if not less.
JL/JNGE Jump if less/Jump if not greater or equal.
JLE/JNG Jump if less or equal/Jump if not greater.
JC Jump if carry.
JNC Jump if not carry.
JO Jump if overflow.
JNO Jump if not overflow.
JS Jump if sign (negative).
JNS Jump if not sign (non-negative).
JPO/JNP Jump if parity odd/Jump if not parity.
JPE/JP Jump if parity even/Jump if parity.
JCXZ/JECXZ Jump register CX zero/Jump register ECX zero.
LOOP Loop with ECX counter.

1. Processor support of CRC32 is enumerated by CPUID.01:ECX[SSE4.2] = 1

2. Processor support of POPCNT is enumerated by CPUID.01:ECX[POPCNT] = 1
Vol. 1 5-9



INSTRUCTION SET SUMMARY
LOOPZ/LOOPE Loop with ECX and zero/Loop with ECX and equal.
LOOPNZ/LOOPNE Loop with ECX and not zero/Loop with ECX and not equal.
CALL Call procedure.
RET Return.
IRET Return from interrupt.
INT Software interrupt.
INTO Interrupt on overflow.
BOUND Detect value out of range.
ENTER High-level procedure entry.
LEAVE High-level procedure exit.

5.1.8 String Instructions
The string instructions operate on strings of bytes, allowing them to be moved to and from memory.
MOVS/MOVSB Move string/Move byte string.
MOVS/MOVSW Move string/Move word string.
MOVS/MOVSD Move string/Move doubleword string.
CMPS/CMPSB Compare string/Compare byte string.
CMPS/CMPSW Compare string/Compare word string.
CMPS/CMPSD Compare string/Compare doubleword string.
SCAS/SCASB Scan string/Scan byte string.
SCAS/SCASW Scan string/Scan word string.
SCAS/SCASD Scan string/Scan doubleword string.
LODS/LODSB Load string/Load byte string.
LODS/LODSW Load string/Load word string.
LODS/LODSD Load string/Load doubleword string.
STOS/STOSB Store string/Store byte string.
STOS/STOSW Store string/Store word string.
STOS/STOSD Store string/Store doubleword string.
REP Repeat while ECX not zero.
REPE/REPZ Repeat while equal/Repeat while zero.
REPNE/REPNZ Repeat while not equal/Repeat while not zero.

5.1.9 I/O Instructions
These instructions move data between the processor’s I/O ports and a register or memory.
IN Read from a port.
OUT Write to a port.
INS/INSB Input string from port/Input byte string from port.
INS/INSW Input string from port/Input word string from port.
INS/INSD Input string from port/Input doubleword string from port.
OUTS/OUTSB Output string to port/Output byte string to port.
OUTS/OUTSW Output string to port/Output word string to port.
OUTS/OUTSD Output string to port/Output doubleword string to port.
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5.1.10 Enter and Leave Instructions
These instructions provide machine-language support for procedure calls in block-structured languages.
ENTER High-level procedure entry.
LEAVE High-level procedure exit.

5.1.11 Flag Control (EFLAG) Instructions
The flag control instructions operate on the flags in the EFLAGS register.
STC Set carry flag.
CLC Clear the carry flag.
CMC Complement the carry flag.
CLD Clear the direction flag.
STD Set direction flag.
LAHF Load flags into AH register.
SAHF Store AH register into flags.
PUSHF/PUSHFD Push EFLAGS onto stack.
POPF/POPFD Pop EFLAGS from stack.
STI Set interrupt flag.
CLI Clear the interrupt flag.

5.1.12 Segment Register Instructions
The segment register instructions allow far pointers (segment addresses) to be loaded into the segment registers.
LDS Load far pointer using DS.
LES Load far pointer using ES.
LFS Load far pointer using FS.
LGS Load far pointer using GS.
LSS Load far pointer using SS.

5.1.13 Miscellaneous Instructions
The miscellaneous instructions provide such functions as loading an effective address, executing a “no-operation,” 
and retrieving processor identification information.
LEA Load effective address.
NOP No operation.
UD Undefined instruction.
XLAT/XLATB Table lookup translation.
CPUID Processor identification.
MOVBE1 Move data after swapping data bytes.
PREFETCHW Prefetch data into cache in anticipation of write.
PREFETCHWT1 Prefetch hint T1 with intent to write.
CLFLUSH Flushes and invalidates a memory operand and its associated cache line from all levels of 

the processor’s cache hierarchy.
CLFLUSHOPT Flushes and invalidates a memory operand and its associated cache line from all levels of 

the processor’s cache hierarchy with optimized memory system throughput.

1. Processor support of MOVBE is enumerated by CPUID.01:ECX.MOVBE[bit 22] = 1.
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5.1.14 User Mode Extended State Save/Restore Instructions
XSAVE Save processor extended states to memory.
XSAVEC Save processor extended states with compaction to memory.
XSAVEOPT Save processor extended states to memory, optimized.
XRSTOR Restore processor extended states from memory.
XGETBV Reads the state of an extended control register.

5.1.15 Random Number Generator Instructions
RDRAND Retrieves a random number generated from hardware.
RDSEED Retrieves a random number generated from hardware.

5.1.16 BMI1 and BMI2 Instructions
ANDN Bitwise AND of first source with inverted second source operands.
BEXTR Contiguous bitwise extract.
BLSI Extract lowest set bit.
BLSMSK Set all lower bits below first set bit to 1.
BLSR Reset lowest set bit.
BZHI Zero high bits starting from specified bit position.
LZCNT Count the number of leading zero bits.
MULX Unsigned multiply without affecting arithmetic flags.
PDEP Parallel deposit of bits using a mask.
PEXT Parallel extraction of bits using a mask.
RORX Rotate right without affecting arithmetic flags.
SARX Shift arithmetic right.
SHLX Shift logic left.
SHRX Shift logic right.
TZCNT Count the number of trailing zero bits.

5.1.16.1  Detection of VEX-Encoded GPR Instructions, LZCNT, TZCNT, and PREFETCHW
VEX-encoded general-purpose instructions do not operate on any vector registers. 
There are separate feature flags for the following subsets of instructions that operate on general purpose registers, 
and the detection requirements for hardware support are:
CPUID.(EAX=07H, ECX=0H):EBX.BMI1[bit 3]: if 1 indicates the processor supports the first group of advanced bit 
manipulation extensions (ANDN, BEXTR, BLSI, BLSMSK, BLSR, TZCNT);
CPUID.(EAX=07H, ECX=0H):EBX.BMI2[bit 8]: if 1 indicates the processor supports the second group of advanced 
bit manipulation extensions (BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX);
CPUID.EAX=80000001H:ECX.LZCNT[bit 5]: if 1 indicates the processor supports the LZCNT instruction.
CPUID.EAX=80000001H:ECX.PREFTEHCHW[bit 8]: if 1 indicates the processor supports the PREFTEHCHW instruc-
tion. CPUID.(EAX=07H, ECX=0H):ECX.PREFTEHCHWT1[bit 0]: if 1 indicates the processor supports the PREFT-
EHCHWT1 instruction.
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5.2 X87 FPU INSTRUCTIONS
The x87 FPU instructions are executed by the processor’s x87 FPU. These instructions operate on floating-point, 
integer, and binary-coded decimal (BCD) operands. For more detail on x87 FPU instructions, see Chapter 8, 
“Programming with the x87 FPU.”

These instructions are divided into the following subgroups: data transfer, load constants, and FPU control instruc-
tions. The sections that follow introduce each subgroup.

5.2.1 X87 FPU Data Transfer Instructions
The data transfer instructions move floating-point, integer, and BCD values between memory and the x87 FPU 
registers. They also perform conditional move operations on floating-point operands.
FLD Load floating-point value.
FST Store floating-point value.
FSTP Store floating-point value and pop.
FILD Load integer.
FIST Store integer.
FISTP1 Store integer and pop.
FBLD Load BCD.
FBSTP Store BCD and pop.
FXCH Exchange registers.
FCMOVE Floating-point conditional move if equal.
FCMOVNE Floating-point conditional move if not equal.
FCMOVB Floating-point conditional move if below.
FCMOVBE Floating-point conditional move if below or equal.
FCMOVNB Floating-point conditional move if not below.
FCMOVNBE Floating-point conditional move if not below or equal.
FCMOVU Floating-point conditional move if unordered.
FCMOVNU Floating-point conditional move if not unordered.

5.2.2 X87 FPU Basic Arithmetic Instructions
The basic arithmetic instructions perform basic arithmetic operations on floating-point and integer operands.
FADD Add floating-point.
FADDP Add floating-point and pop.
FIADD Add integer.
FSUB Subtract floating-point.
FSUBP Subtract floating-point and pop.
FISUB Subtract integer.
FSUBR Subtract floating-point reverse.
FSUBRP Subtract floating-point reverse and pop.
FISUBR Subtract integer reverse.
FMUL Multiply floating-point.
FMULP Multiply floating-point and pop.
FIMUL Multiply integer.
FDIV Divide floating-point.

1. SSE3 provides an instruction FISTTP for integer conversion.
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FDIVP Divide floating-point and pop.
FIDIV Divide integer.
FDIVR Divide floating-point reverse.
FDIVRP Divide floating-point reverse and pop.
FIDIVR Divide integer reverse.
FPREM Partial remainder.
FPREM1 IEEE partial remainder.
FABS Absolute value.
FCHS Change sign.
FRNDINT Round to integer.
FSCALE Scale by power of two.
FSQRT Square root.
FXTRACT Extract exponent and significand.

5.2.3 X87 FPU Comparison Instructions
The compare instructions examine or compare floating-point or integer operands.
FCOM Compare floating-point.
FCOMP Compare floating-point and pop.
FCOMPP Compare floating-point and pop twice.
FUCOM Unordered compare floating-point.
FUCOMP Unordered compare floating-point and pop.
FUCOMPP Unordered compare floating-point and pop twice.
FICOM Compare integer.
FICOMP Compare integer and pop.
FCOMI Compare floating-point and set EFLAGS.
FUCOMI Unordered compare floating-point and set EFLAGS.
FCOMIP Compare floating-point, set EFLAGS, and pop.
FUCOMIP Unordered compare floating-point, set EFLAGS, and pop.
FTST Test floating-point (compare with 0.0).
FXAM Examine floating-point.

5.2.4 X87 FPU Transcendental Instructions
The transcendental instructions perform basic trigonometric and logarithmic operations on floating-point operands.
FSIN Sine.
FCOS Cosine.
FSINCOS Sine and cosine.
FPTAN Partial tangent.
FPATAN Partial arctangent.
F2XM1 2x − 1.
FYL2X y∗log2x.
FYL2XP1 y∗log2(x+1).

5.2.5 X87 FPU Load Constants Instructions
The load constants instructions load common constants, such as π, into the x87 floating-point registers.
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FLD1 Load +1.0.
FLDZ Load +0.0.
FLDPI Load π.
FLDL2E Load log2e.
FLDLN2 Load loge2.
FLDL2T Load log210.
FLDLG2 Load log102.

5.2.6 X87 FPU Control Instructions
The x87 FPU control instructions operate on the x87 FPU register stack and save and restore the x87 FPU state.
FINCSTP Increment FPU register stack pointer.
FDECSTP Decrement FPU register stack pointer.
FFREE Free floating-point register.
FINIT Initialize FPU after checking error conditions.
FNINIT Initialize FPU without checking error conditions.
FCLEX Clear floating-point exception flags after checking for error conditions.
FNCLEX Clear floating-point exception flags without checking for error conditions.
FSTCW Store FPU control word after checking error conditions.
FNSTCW Store FPU control word without checking error conditions.
FLDCW Load FPU control word.
FSTENV Store FPU environment after checking error conditions.
FNSTENV Store FPU environment without checking error conditions.
FLDENV Load FPU environment.
FSAVE Save FPU state after checking error conditions.
FNSAVE Save FPU state without checking error conditions.
FRSTOR Restore FPU state.
FSTSW Store FPU status word after checking error conditions.
FNSTSW Store FPU status word without checking error conditions.
WAIT/FWAIT Wait for FPU.
FNOP FPU no operation.

5.3 X87 FPU AND SIMD STATE MANAGEMENT INSTRUCTIONS
Two state management instructions were introduced into the IA-32 architecture with the Pentium II processor 
family:
FXSAVE Save x87 FPU and SIMD state.
FXRSTOR Restore x87 FPU and SIMD state.

Initially, these instructions operated only on the x87 FPU (and MMX) registers to perform a fast save and restore, 
respectively, of the x87 FPU and MMX state. With the introduction of SSE extensions in the Pentium III processor 
family, these instructions were expanded to also save and restore the state of the XMM and MXCSR registers. Intel 
64 architecture also supports these instructions.

See Section 10.5, “FXSAVE and FXRSTOR Instructions,” for more detail.

5.4 MMX INSTRUCTIONS
Four extensions have been introduced into the IA-32 architecture to permit IA-32 processors to perform single-
instruction multiple-data (SIMD) operations. These extensions include the MMX technology, SSE extensions, SSE2 
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extensions, and SSE3 extensions. For a discussion that puts SIMD instructions in their historical context, see 
Section 2.2.7, “SIMD Instructions.”

MMX instructions operate on packed byte, word, doubleword, or quadword integer operands contained in memory, 
in MMX registers, and/or in general-purpose registers. For more detail on these instructions, see Chapter 9, 
“Programming with Intel® MMX™ Technology.” 

MMX instructions can only be executed on Intel 64 and IA-32 processors that support the MMX technology. Support 
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in 
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A.

MMX instructions are divided into the following subgroups: data transfer, conversion, packed arithmetic, compar-
ison, logical, shift and rotate, and state management instructions. The sections that follow introduce each 
subgroup.

5.4.1 MMX Data Transfer Instructions
The data transfer instructions move doubleword and quadword operands between MMX registers and between MMX 
registers and memory.
MOVD Move doubleword.
MOVQ Move quadword.

5.4.2 MMX Conversion Instructions
The conversion instructions pack and unpack bytes, words, and doublewords
PACKSSWB Pack words into bytes with signed saturation.
PACKSSDW Pack doublewords into words with signed saturation.
PACKUSWB Pack words into bytes with unsigned saturation.
PUNPCKHBW Unpack high-order bytes.
PUNPCKHWD Unpack high-order words.
PUNPCKHDQ Unpack high-order doublewords.
PUNPCKLBW Unpack low-order bytes.
PUNPCKLWD Unpack low-order words.
PUNPCKLDQ Unpack low-order doublewords.

5.4.3 MMX Packed Arithmetic Instructions
The packed arithmetic instructions perform packed integer arithmetic on packed byte, word, and doubleword inte-
gers.
PADDB Add packed byte integers.
PADDW Add packed word integers.
PADDD Add packed doubleword integers.
PADDSB Add packed signed byte integers with signed saturation.
PADDSW Add packed signed word integers with signed saturation.
PADDUSB Add packed unsigned byte integers with unsigned saturation.
PADDUSW Add packed unsigned word integers with unsigned saturation.
PSUBB Subtract packed byte integers.
PSUBW Subtract packed word integers.
PSUBD Subtract packed doubleword integers.
PSUBSB Subtract packed signed byte integers with signed saturation.
PSUBSW Subtract packed signed word integers with signed saturation.
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PSUBUSB Subtract packed unsigned byte integers with unsigned saturation.
PSUBUSW Subtract packed unsigned word integers with unsigned saturation.
PMULHW Multiply packed signed word integers and store high result.
PMULLW Multiply packed signed word integers and store low result.
PMADDWD Multiply and add packed word integers.

5.4.4 MMX Comparison Instructions
The compare instructions compare packed bytes, words, or doublewords.
PCMPEQB Compare packed bytes for equal.
PCMPEQW Compare packed words for equal.
PCMPEQD Compare packed doublewords for equal.
PCMPGTB Compare packed signed byte integers for greater than.
PCMPGTW Compare packed signed word integers for greater than.
PCMPGTD Compare packed signed doubleword integers for greater than.

5.4.5 MMX Logical Instructions
The logical instructions perform AND, AND NOT, OR, and XOR operations on quadword operands.
PAND Bitwise logical AND.
PANDN Bitwise logical AND NOT.
POR Bitwise logical OR.
PXOR Bitwise logical exclusive OR.

5.4.6 MMX Shift and Rotate Instructions
The shift and rotate instructions shift and rotate packed bytes, words, or doublewords, or quadwords in 64-bit 
operands.
PSLLW Shift packed words left logical.
PSLLD Shift packed doublewords left logical.
PSLLQ Shift packed quadword left logical.
PSRLW Shift packed words right logical.
PSRLD Shift packed doublewords right logical.
PSRLQ Shift packed quadword right logical.
PSRAW Shift packed words right arithmetic.
PSRAD Shift packed doublewords right arithmetic.

5.4.7 MMX State Management Instructions
The EMMS instruction clears the MMX state from the MMX registers.
EMMS Empty MMX state.

5.5 INTEL® SSE INSTRUCTIONS
Intel SSE instructions represent an extension of the SIMD execution model introduced with the MMX technology. 
For more detail on these instructions, see Chapter 10, “Programming with Intel® Streaming SIMD Extensions 
(Intel® SSE).”
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Intel SSE instructions can only be executed on Intel 64 and IA-32 processors that support Intel SSE extensions. 
Support for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruc-
tion in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.

Intel SSE instructions are divided into four subgroups (note that the first subgroup has subordinate subgroups of 
its own):
• SIMD single precision floating-point instructions that operate on the XMM registers.
• MXCSR state management instructions.
• 64-bit SIMD integer instructions that operate on the MMX registers.
• Cacheability control, prefetch, and instruction ordering instructions.

The following sections provide an overview of these groups.

5.5.1 Intel® SSE SIMD Single Precision Floating-Point Instructions
These instructions operate on packed and scalar single precision floating-point values located in XMM registers 
and/or memory. This subgroup is further divided into the following subordinate subgroups: data transfer, packed 
arithmetic, comparison, logical, shuffle and unpack, and conversion instructions.

5.5.1.1  Intel® SSE Data Transfer Instructions
Intel SSE data transfer instructions move packed and scalar single precision floating-point operands between XMM 
registers and between XMM registers and memory.
MOVAPS Move four aligned packed single precision floating-point values between XMM registers or 

between an XMM register and memory.
MOVUPS Move four unaligned packed single precision floating-point values between XMM registers 

or between an XMM register and memory.
MOVHPS Move two packed single precision floating-point values to and from the high quadword of 

an XMM register and memory.
MOVHLPS Move two packed single precision floating-point values from the high quadword of an XMM 

register to the low quadword of another XMM register.
MOVLPS Move two packed single precision floating-point values to and from the low quadword of an 

XMM register and memory.
MOVLHPS Move two packed single precision floating-point values from the low quadword of an XMM 

register to the high quadword of another XMM register.
MOVMSKPS Extract sign mask from four packed single precision floating-point values.
MOVSS Move scalar single precision floating-point value between XMM registers or between an 

XMM register and memory.

5.5.1.2  Intel® SSE Packed Arithmetic Instructions
Intel SSE packed arithmetic instructions perform packed and scalar arithmetic operations on packed and scalar 
single precision floating-point operands.
ADDPS Add packed single precision floating-point values.
ADDSS Add scalar single precision floating-point values.
SUBPS Subtract packed single precision floating-point values.
SUBSS Subtract scalar single precision floating-point values.
MULPS Multiply packed single precision floating-point values.
MULSS Multiply scalar single precision floating-point values.
DIVPS Divide packed single precision floating-point values.
DIVSS Divide scalar single precision floating-point values.
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RCPPS Compute reciprocals of packed single precision floating-point values.
RCPSS Compute reciprocal of scalar single precision floating-point values.
SQRTPS Compute square roots of packed single precision floating-point values.
SQRTSS Compute square root of scalar single precision floating-point values.
RSQRTPS Compute reciprocals of square roots of packed single precision floating-point values.
RSQRTSS Compute reciprocal of square root of scalar single precision floating-point values.
MAXPS Return maximum packed single precision floating-point values.
MAXSS Return maximum scalar single precision floating-point values.
MINPS Return minimum packed single precision floating-point values.
MINSS Return minimum scalar single precision floating-point values.

5.5.1.3  Intel® SSE Comparison Instructions
Intel SSE compare instructions compare packed and scalar single precision floating-point operands.
CMPPS Compare packed single precision floating-point values.
CMPSS Compare scalar single precision floating-point values.
COMISS Perform ordered comparison of scalar single precision floating-point values and set flags in 

EFLAGS register.
UCOMISS Perform unordered comparison of scalar single precision floating-point values and set flags 

in EFLAGS register.

5.5.1.4  Intel® SSE Logical Instructions
Intel SSE logical instructions perform bitwise AND, AND NOT, OR, and XOR operations on packed single precision 
floating-point operands.
ANDPS Perform bitwise logical AND of packed single precision floating-point values.
ANDNPS Perform bitwise logical AND NOT of packed single precision floating-point values.
ORPS Perform bitwise logical OR of packed single precision floating-point values.
XORPS Perform bitwise logical XOR of packed single precision floating-point values.

5.5.1.5  Intel® SSE Shuffle and Unpack Instructions
Intel SSE shuffle and unpack instructions shuffle or interleave single precision floating-point values in packed single 
precision floating-point operands.
SHUFPS Shuffles values in packed single precision floating-point operands.
UNPCKHPS Unpacks and interleaves the two high-order values from two single precision floating-point 

operands.
UNPCKLPS Unpacks and interleaves the two low-order values from two single precision floating-point 

operands.

5.5.1.6  Intel® SSE Conversion Instructions
Intel SSE conversion instructions convert packed and individual doubleword integers into packed and scalar single 
precision floating-point values and vice versa.
CVTPI2PS Convert packed doubleword integers to packed single precision floating-point values.
CVTSI2SS Convert doubleword integer to scalar single precision floating-point value.
CVTPS2PI Convert packed single precision floating-point values to packed doubleword integers.
CVTTPS2PI Convert with truncation packed single precision floating-point values to packed double-

word integers.
CVTSS2SI Convert a scalar single precision floating-point value to a doubleword integer.
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CVTTSS2SI Convert with truncation a scalar single precision floating-point value to a scalar double-
word integer.

5.5.2 Intel® SSE MXCSR State Management Instructions
MXCSR state management instructions allow saving and restoring the state of the MXCSR control and status 
register.
LDMXCSR Load MXCSR register.
STMXCSR Save MXCSR register state.

5.5.3 Intel® SSE 64-Bit SIMD Integer Instructions
These Intel SSE 64-bit SIMD integer instructions perform additional operations on packed bytes, words, or double-
words contained in MMX registers. They represent enhancements to the MMX instruction set described in Section 
5.4, “MMX Instructions.”
PAVGB Compute average of packed unsigned byte integers.
PAVGW Compute average of packed unsigned word integers.
PEXTRW Extract word.
PINSRW Insert word.
PMAXUB Maximum of packed unsigned byte integers.
PMAXSW Maximum of packed signed word integers.
PMINUB Minimum of packed unsigned byte integers.
PMINSW Minimum of packed signed word integers.
PMOVMSKB Move byte mask.
PMULHUW Multiply packed unsigned integers and store high result.
PSADBW Compute sum of absolute differences.
PSHUFW Shuffle packed integer word in MMX register.

5.5.4 Intel® SSE Cacheability Control, Prefetch, and Instruction Ordering Instructions
The cacheability control instructions provide control over the caching of non-temporal data when storing data from 
the MMX and XMM registers to memory. The PREFETCHh allows data to be prefetched to a selected cache level. The 
SFENCE instruction controls instruction ordering on store operations.
MASKMOVQ Non-temporal store of selected bytes from an MMX register into memory.
MOVNTQ Non-temporal store of quadword from an MMX register into memory.
MOVNTPS Non-temporal store of four packed single precision floating-point values from an XMM 

register into memory.
PREFETCHh Load 32 or more of bytes from memory to a selected level of the processor’s cache hier-

archy.
SFENCE Serializes store operations.

5.6 INTEL® SSE2 INSTRUCTIONS
Intel SSE2 extensions represent an extension of the SIMD execution model introduced with MMX technology and 
the Intel SSE extensions. Intel SSE2 instructions operate on packed double precision floating-point operands and 
on packed byte, word, doubleword, and quadword operands located in the XMM registers. For more detail on these 
instructions, see Chapter 11, “Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2).”

Intel SSE2 instructions can only be executed on Intel 64 and IA-32 processors that support the Intel SSE2 exten-
sions. Support for these instructions can be detected with the CPUID instruction. See the description of the CPUID 
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instruction in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A.

These instructions are divided into four subgroups (note that the first subgroup is further divided into subordinate 
subgroups):
• Packed and scalar double precision floating-point instructions.
• Packed single precision floating-point conversion instructions.
• 128-bit SIMD integer instructions.
• Cacheability-control and instruction ordering instructions.

The following sections give an overview of each subgroup.

5.6.1 Intel® SSE2 Packed and Scalar Double Precision Floating-Point Instructions
Intel SSE2 packed and scalar double precision floating-point instructions are divided into the following subordinate 
subgroups: data movement, arithmetic, comparison, conversion, logical, and shuffle operations on double preci-
sion floating-point operands. These are introduced in the sections that follow.

5.6.1.1  Intel® SSE2 Data Movement Instructions
Intel SSE2 data movement instructions move double precision floating-point data between XMM registers and 
between XMM registers and memory.
MOVAPD Move two aligned packed double precision floating-point values between XMM registers or 

between an XMM register and memory.
MOVUPD Move two unaligned packed double precision floating-point values between XMM registers 

or between an XMM register and memory.
MOVHPD Move high packed double precision floating-point value to and from the high quadword of 

an XMM register and memory.
MOVLPD Move low packed single precision floating-point value to and from the low quadword of an 

XMM register and memory.
MOVMSKPD Extract sign mask from two packed double precision floating-point values.
MOVSD Move scalar double precision floating-point value between XMM registers or between an 

XMM register and memory.

5.6.1.2  Intel® SSE2 Packed Arithmetic Instructions
The arithmetic instructions perform addition, subtraction, multiply, divide, square root, and maximum/minimum 
operations on packed and scalar double precision floating-point operands.
ADDPD Add packed double precision floating-point values.
ADDSD Add scalar double precision floating-point values.
SUBPD Subtract packed double precision floating-point values.
SUBSD Subtract scalar double precision floating-point values.
MULPD Multiply packed double precision floating-point values.
MULSD Multiply scalar double precision floating-point values.
DIVPD Divide packed double precision floating-point values.
DIVSD Divide scalar double precision floating-point values.
SQRTPD Compute packed square roots of packed double precision floating-point values.
SQRTSD Compute scalar square root of scalar double precision floating-point values.
MAXPD Return maximum packed double precision floating-point values.
MAXSD Return maximum scalar double precision floating-point values.
MINPD Return minimum packed double precision floating-point values.
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MINSD Return minimum scalar double precision floating-point values.

5.6.1.3  Intel® SSE2 Logical Instructions
Intel SSE2 logical instructions perform AND, AND NOT, OR, and XOR operations on packed double precision 
floating-point values.
ANDPD Perform bitwise logical AND of packed double precision floating-point values.
ANDNPD Perform bitwise logical AND NOT of packed double precision floating-point values.
ORPD Perform bitwise logical OR of packed double precision floating-point values.
XORPD Perform bitwise logical XOR of packed double precision floating-point values.

5.6.1.4  Intel® SSE2 Compare Instructions
Intel SSE2 compare instructions compare packed and scalar double precision floating-point values and return the 
results of the comparison either to the destination operand or to the EFLAGS register.
CMPPD Compare packed double precision floating-point values.
CMPSD Compare scalar double precision floating-point values.
COMISD Perform ordered comparison of scalar double precision floating-point values and set flags 

in EFLAGS register.
UCOMISD Perform unordered comparison of scalar double precision floating-point values and set 

flags in EFLAGS register.

5.6.1.5  Intel® SSE2 Shuffle and Unpack Instructions
Intel SSE2 shuffle and unpack instructions shuffle or interleave double precision floating-point values in packed 
double precision floating-point operands.
SHUFPD Shuffles values in packed double precision floating-point operands.
UNPCKHPD Unpacks and interleaves the high values from two packed double precision floating-point 

operands.
UNPCKLPD Unpacks and interleaves the low values from two packed double precision floating-point 

operands.

5.6.1.6  Intel® SSE2 Conversion Instructions
Intel SSE2 conversion instructions convert packed and individual doubleword integers into packed and scalar 
double precision floating-point values and vice versa. They also convert between packed and scalar single precision 
and double precision floating-point values.
CVTPD2PI Convert packed double precision floating-point values to packed doubleword integers.
CVTTPD2PI Convert with truncation packed double precision floating-point values to packed double-

word integers.
CVTPI2PD Convert packed doubleword integers to packed double precision floating-point values.
CVTPD2DQ Convert packed double precision floating-point values to packed doubleword integers.
CVTTPD2DQ Convert with truncation packed double precision floating-point values to packed double-

word integers.
CVTDQ2PD Convert packed doubleword integers to packed double precision floating-point values.
CVTPS2PD Convert packed single precision floating-point values to packed double precision floating-

point values.
CVTPD2PS Convert packed double precision floating-point values to packed single precision floating-

point values.
CVTSS2SD Convert scalar single precision floating-point values to scalar double precision floating-

point values.
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CVTSD2SS Convert scalar double precision floating-point values to scalar single precision floating-
point values.

CVTSD2SI Convert scalar double precision floating-point values to a doubleword integer.
CVTTSD2SI Convert with truncation scalar double precision floating-point values to scalar doubleword 

integers.
CVTSI2SD Convert doubleword integer to scalar double precision floating-point value.

5.6.2 Intel® SSE2 Packed Single Precision Floating-Point Instructions
Intel SSE2 packed single precision floating-point instructions perform conversion operations on single precision 
floating-point and integer operands. These instructions represent enhancements to the Intel SSE single precision 
floating-point instructions.
CVTDQ2PS Convert packed doubleword integers to packed single precision floating-point values.
CVTPS2DQ Convert packed single precision floating-point values to packed doubleword integers.
CVTTPS2DQ Convert with truncation packed single precision floating-point values to packed double-

word integers.

5.6.3 Intel® SSE2 128-Bit SIMD Integer Instructions
Intel SSE2 SIMD integer instructions perform additional operations on packed words, doublewords, and quadwords 
contained in XMM and MMX registers.
MOVDQA Move aligned double quadword.
MOVDQU Move unaligned double quadword.
MOVQ2DQ Move quadword integer from MMX to XMM registers.
MOVDQ2Q Move quadword integer from XMM to MMX registers.
PMULUDQ Multiply packed unsigned doubleword integers.
PADDQ Add packed quadword integers.
PSUBQ Subtract packed quadword integers.
PSHUFLW Shuffle packed low words.
PSHUFHW Shuffle packed high words.
PSHUFD Shuffle packed doublewords.
PSLLDQ Shift double quadword left logical.
PSRLDQ Shift double quadword right logical.
PUNPCKHQDQ Unpack high quadwords.
PUNPCKLQDQ Unpack low quadwords.

5.6.4 Intel® SSE2 Cacheability Control and Ordering Instructions
Intel SSE2 cacheability control instructions provide additional operations for caching of non-temporal data when 
storing data from XMM registers to memory. LFENCE and MFENCE provide additional control of instruction ordering 
on store operations.
CLFLUSH See Section 5.1.13.
LFENCE Serializes load operations.
MFENCE Serializes load and store operations.
PAUSE Improves the performance of “spin-wait loops”.
MASKMOVDQU Non-temporal store of selected bytes from an XMM register into memory.
MOVNTPD Non-temporal store of two packed double precision floating-point values from an XMM 

register into memory.
MOVNTDQ Non-temporal store of double quadword from an XMM register into memory.
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MOVNTI Non-temporal store of a doubleword from a general-purpose register into memory.

5.7 INTEL® SSE3 INSTRUCTIONS
The Intel SSE3 extensions offers 13 instructions that accelerate performance of Streaming SIMD Extensions tech-
nology, Streaming SIMD Extensions 2 technology, and x87-FP math capabilities. These instructions can be grouped 
into the following categories:
• One x87 FPU instruction used in integer conversion.
• One SIMD integer instruction that addresses unaligned data loads.
• Two SIMD floating-point packed ADD/SUB instructions.
• Four SIMD floating-point horizontal ADD/SUB instructions.
• Three SIMD floating-point LOAD/MOVE/DUPLICATE instructions.
• Two thread synchronization instructions.

Intel SSE3 instructions can only be executed on Intel 64 and IA-32 processors that support Intel SSE3 extensions. 
Support for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruc-
tion in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.

The sections that follow describe each subgroup.

5.7.1 Intel® SSE3 x87-FP Integer Conversion Instruction
FISTTP Behaves like the FISTP instruction but uses truncation, irrespective of the rounding mode 

specified in the floating-point control word (FCW).

5.7.2 Intel® SSE3 Specialized 128-Bit Unaligned Data Load Instruction
LDDQU Special 128-bit unaligned load designed to avoid cache line splits.

5.7.3 Intel® SSE3 SIMD Floating-Point Packed ADD/SUB Instructions
ADDSUBPS Performs single precision addition on the second and fourth pairs of 32-bit data elements 

within the operands; single precision subtraction on the first and third pairs.
ADDSUBPD Performs double precision addition on the second pair of quadwords, and double precision 

subtraction on the first pair.

5.7.4 Intel® SSE3 SIMD Floating-Point Horizontal ADD/SUB Instructions
HADDPS Performs a single precision addition on contiguous data elements. The first data element of 

the result is obtained by adding the first and second elements of the first operand; the 
second element by adding the third and fourth elements of the first operand; the third by 
adding the first and second elements of the second operand; and the fourth by adding the 
third and fourth elements of the second operand.

HSUBPS Performs a single precision subtraction on contiguous data elements. The first data 
element of the result is obtained by subtracting the second element of the first operand 
from the first element of the first operand; the second element by subtracting the fourth 
element of the first operand from the third element of the first operand; the third by 
subtracting the second element of the second operand from the first element of the second 
operand; and the fourth by subtracting the fourth element of the second operand from the 
third element of the second operand.
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HADDPD Performs a double precision addition on contiguous data elements. The first data element 
of the result is obtained by adding the first and second elements of the first operand; the 
second element by adding the first and second elements of the second operand.

HSUBPD Performs a double precision subtraction on contiguous data elements. The first data 
element of the result is obtained by subtracting the second element of the first operand 
from the first element of the first operand; the second element by subtracting the second 
element of the second operand from the first element of the second operand.

5.7.5 Intel® SSE3 SIMD Floating-Point LOAD/MOVE/DUPLICATE Instructions
MOVSHDUP Loads/moves 128 bits; duplicating the second and fourth 32-bit data elements.
MOVSLDUP Loads/moves 128 bits; duplicating the first and third 32-bit data elements.
MOVDDUP Loads/moves 64 bits (bits[63:0] if the source is a register) and returns the same 64 bits in 

both the lower and upper halves of the 128-bit result register; duplicates the 64 bits from 
the source.

5.7.6 Intel® SSE3 Agent Synchronization Instructions
MONITOR Sets up an address range used to monitor write-back stores.
MWAIT Enables a logical processor to enter into an optimized state while waiting for a write-back 

store to the address range set up by the MONITOR instruction.

5.8 SUPPLEMENTAL STREAMING SIMD EXTENSIONS 3 (SSSE3) INSTRUCTIONS
SSSE3 provide 32 instructions (represented by 14 mnemonics) to accelerate computations on packed integers. 
These include:
• Twelve instructions that perform horizontal addition or subtraction operations.
• Six instructions that evaluate absolute values.
• Two instructions that perform multiply and add operations and speed up the evaluation of dot products.
• Two instructions that accelerate packed-integer multiply operations and produce integer values with scaling.
• Two instructions that perform a byte-wise, in-place shuffle according to the second shuffle control operand.
• Six instructions that negate packed integers in the destination operand if the signs of the corresponding 

element in the source operand is less than zero.
• Two instructions that align data from the composite of two operands.

SSSE3 instructions can only be executed on Intel 64 and IA-32 processors that support SSSE3 extensions. Support 
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in 
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A.

The sections that follow describe each subgroup.

5.8.1 Horizontal Addition/Subtraction
PHADDW Adds two adjacent, signed 16-bit integers horizontally from the source and destination 

operands and packs the signed 16-bit results to the destination operand.
PHADDSW Adds two adjacent, signed 16-bit integers horizontally from the source and destination 

operands and packs the signed, saturated 16-bit results to the destination operand.
PHADDD Adds two adjacent, signed 32-bit integers horizontally from the source and destination 

operands and packs the signed 32-bit results to the destination operand.
PHSUBW Performs horizontal subtraction on each adjacent pair of 16-bit signed integers by 

subtracting the most significant word from the least significant word of each pair in the 
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source and destination operands. The signed 16-bit results are packed and written to the 
destination operand.

PHSUBSW Performs horizontal subtraction on each adjacent pair of 16-bit signed integers by 
subtracting the most significant word from the least significant word of each pair in the 
source and destination operands. The signed, saturated 16-bit results are packed and 
written to the destination operand.

PHSUBD Performs horizontal subtraction on each adjacent pair of 32-bit signed integers by 
subtracting the most significant doubleword from the least significant double word of each 
pair in the source and destination operands. The signed 32-bit results are packed and 
written to the destination operand.

5.8.2 Packed Absolute Values
PABSB Computes the absolute value of each signed byte data element.
PABSW Computes the absolute value of each signed 16-bit data element.
PABSD Computes the absolute value of each signed 32-bit data element. 

5.8.3 Multiply and Add Packed Signed and Unsigned Bytes
PMADDUBSW Multiplies each unsigned byte value with the corresponding signed byte value to produce 

an intermediate, 16-bit signed integer. Each adjacent pair of 16-bit signed values are 
added horizontally. The signed, saturated 16-bit results are packed to the destination 
operand.

5.8.4 Packed Multiply High with Round and Scale
PMULHRSW Multiplies vertically each signed 16-bit integer from the destination operand with the corre-

sponding signed 16-bit integer of the source operand, producing intermediate, signed 32-
bit integers. Each intermediate 32-bit integer is truncated to the 18 most significant bits. 
Rounding is always performed by adding 1 to the least significant bit of the 18-bit interme-
diate result. The final result is obtained by selecting the 16 bits immediately to the right of 
the most significant bit of each 18-bit intermediate result and packed to the destination 
operand.

5.8.5 Packed Shuffle Bytes
PSHUFB Permutes each byte in place, according to a shuffle control mask. The least significant 

three or four bits of each shuffle control byte of the control mask form the shuffle index. 
The shuffle mask is unaffected. If the most significant bit (bit 7) of a shuffle control byte is 
set, the constant zero is written in the result byte.

5.8.6 Packed Sign
PSIGNB/W/D Negates each signed integer element of the destination operand if the sign of the corre-

sponding data element in the source operand is less than zero.

5.8.7 Packed Align Right
PALIGNR Source operand is appended after the destination operand forming an intermediate value 

of twice the width of an operand. The result is extracted from the intermediate value into 
the destination operand by selecting the 128-bit or 64-bit value that are right-aligned to 
the byte offset specified by the immediate value.
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5.9 INTEL® SSE4 INSTRUCTIONS
Intel Streaming SIMD Extensions 4 (Intel SSE4) introduces 54 new instructions. 47 of the Intel SSE4 instructions 
are referred to as Intel SSE4.1 in this document, and 7 new Intel SSE4 instructions are referred to as Intel SSE4.2. 

Intel SSE4.1 is targeted to improve the performance of media, imaging, and 3D workloads. Intel SSE4.1 adds 
instructions that improve compiler vectorization and significantly increase support for packed dword computation. 
The technology also provides a hint that can improve memory throughput when reading from uncacheable WC 
memory type.

The 47 Intel SSE4.1 instructions include:
• Two instructions perform packed dword multiplies.
• Two instructions perform floating-point dot products with input/output selects.
• One instruction performs a load with a streaming hint.
• Six instructions simplify packed blending.
• Eight instructions expand support for packed integer MIN/MAX.
• Four instructions support floating-point round with selectable rounding mode and precision exception override.
• Seven instructions improve data insertion and extractions from XMM registers
• Twelve instructions improve packed integer format conversions (sign and zero extensions).
• One instruction improves SAD (sum absolute difference) generation for small block sizes.
• One instruction aids horizontal searching operations.
• One instruction improves masked comparisons.
• One instruction adds qword packed equality comparisons.
• One instruction adds dword packing with unsigned saturation.

The Intel SSE4.2 instructions operating on XMM registers include:
• String and text processing that can take advantage of single-instruction multiple-data programming 

techniques.
• A SIMD integer instruction that enhances the capability of the 128-bit integer SIMD capability in SSE4.1.

5.10 INTEL® SSE4.1 INSTRUCTIONS
Intel SSE4.1 instructions can use an XMM register as a source or destination. Programming Intel SSE4.1 is similar 
to programming 128-bit Integer SIMD and floating-point SIMD instructions in Intel SSE/SSE2/SSE3/SSSE3. Intel 
SSE4.1 does not provide any 64-bit integer SIMD instructions operating on MMX registers. The sections that follow 
describe each subgroup.

5.10.1 Dword Multiply Instructions 
PMULLD Returns four lower 32-bits of the 64-bit results of signed 32-bit integer multiplies.
PMULDQ Returns two 64-bit signed result of signed 32-bit integer multiplies.

5.10.2 Floating-Point Dot Product Instructions
DPPD Perform double precision dot product for up to 2 elements and broadcast.
DPPS Perform single precision dot products for up to 4 elements and broadcast.

5.10.3 Streaming Load Hint Instruction
MOVNTDQA Provides a non-temporal hint that can cause adjacent 16-byte items within an aligned 64-

byte region (a streaming line) to be fetched and held in a small set of temporary buffers 
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(“streaming load buffers”). Subsequent streaming loads to other aligned 16-byte items in 
the same streaming line may be supplied from the streaming load buffer and can improve 
throughput.

5.10.4 Packed Blending Instructions
BLENDPD Conditionally copies specified double precision floating-point data elements in the source 

operand to the corresponding data elements in the destination, using an immediate byte 
control. 

BLENDPS Conditionally copies specified single precision floating-point data elements in the source 
operand to the corresponding data elements in the destination, using an immediate byte 
control.

BLENDVPD Conditionally copies specified double precision floating-point data elements in the source 
operand to the corresponding data elements in the destination, using an implied mask. 

BLENDVPS Conditionally copies specified single precision floating-point data elements in the source 
operand to the corresponding data elements in the destination, using an implied mask. 

PBLENDVB Conditionally copies specified byte elements in the source operand to the corresponding 
elements in the destination, using an implied mask.

PBLENDW Conditionally copies specified word elements in the source operand to the corresponding 
elements in the destination, using an immediate byte control.

5.10.5 Packed Integer MIN/MAX Instructions 
PMINUW Compare packed unsigned word integers.
PMINUD Compare packed unsigned dword integers.
PMINSB Compare packed signed byte integers.
PMINSD Compare packed signed dword integers.
PMAXUW Compare packed unsigned word integers.
PMAXUD Compare packed unsigned dword integers.
PMAXSB Compare packed signed byte integers.
PMAXSD Compare packed signed dword integers.

5.10.6 Floating-Point Round Instructions with Selectable Rounding Mode
ROUNDPS Round packed single precision floating-point values into integer values and return rounded 

floating-point values.
ROUNDPD Round packed double precision floating-point values into integer values and return 

rounded floating-point values. 
ROUNDSS Round the low packed single precision floating-point value into an integer value and return 

a rounded floating-point value.
ROUNDSD Round the low packed double precision floating-point value into an integer value and return 

a rounded floating-point value.

5.10.7 Insertion and Extractions from XMM Registers
EXTRACTPS Extracts a single precision floating-point value from a specified offset in an XMM register 

and stores the result to memory or a general-purpose register.
INSERTPS Inserts a single precision floating-point value from either a 32-bit memory location or 

selected from a specified offset in an XMM register to a specified offset in the destination 
XMM register. In addition, INSERTPS allows zeroing out selected data elements in the desti-
nation, using a mask.
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PINSRB Insert a byte value from a register or memory into an XMM register.
PINSRD Insert a dword value from 32-bit register or memory into an XMM register.
PINSRQ Insert a qword value from 64-bit register or memory into an XMM register.
PEXTRB Extract a byte from an XMM register and insert the value into a general-purpose register or 

memory.
PEXTRW Extract a word from an XMM register and insert the value into a general-purpose register 

or memory.
PEXTRD Extract a dword from an XMM register and insert the value into a general-purpose register 

or memory.
PEXTRQ Extract a qword from an XMM register and insert the value into a general-purpose register 

or memory.

5.10.8 Packed Integer Format Conversions
PMOVSXBW Sign extend the lower 8-bit integer of each packed word element into packed signed word 

integers. 
PMOVZXBW Zero extend the lower 8-bit integer of each packed word element into packed signed word 

integers.
PMOVSXBD Sign extend the lower 8-bit integer of each packed dword element into packed signed 

dword integers.
PMOVZXBD Zero extend the lower 8-bit integer of each packed dword element into packed signed 

dword integers.
PMOVSXWD Sign extend the lower 16-bit integer of each packed dword element into packed signed 

dword integers.
PMOVZXWD Zero extend the lower 16-bit integer of each packed dword element into packed signed 

dword integers.
PMOVSXBQ Sign extend the lower 8-bit integer of each packed qword element into packed signed 

qword integers.
PMOVZXBQ Zero extend the lower 8-bit integer of each packed qword element into packed signed 

qword integers.
PMOVSXWQ Sign extend the lower 16-bit integer of each packed qword element into packed signed 

qword integers.
PMOVZXWQ Zero extend the lower 16-bit integer of each packed qword element into packed signed 

qword integers.
PMOVSXDQ Sign extend the lower 32-bit integer of each packed qword element into packed signed 

qword integers.
PMOVZXDQ Zero extend the lower 32-bit integer of each packed qword element into packed signed 

qword integers.

5.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks
MPSADBW Performs eight 4-byte wide Sum of Absolute Differences operations to produce eight word 

integers. 

5.10.10 Horizontal Search
PHMINPOSUW Finds the value and location of the minimum unsigned word from one of 8 horizontally 

packed unsigned words. The resulting value and location (offset within the source) are 
packed into the low dword of the destination XMM register.
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5.10.11 Packed Test
PTEST Performs a logical AND between the destination with this mask and sets the ZF flag if the 

result is zero. The CF flag (zero for TEST) is set if the inverted mask AND’d with the desti-
nation is all zeroes.

5.10.12 Packed Qword Equality Comparisons
PCMPEQQ 128-bit packed qword equality test.

5.10.13 Dword Packing With Unsigned Saturation
PACKUSDW Packs dword to word with unsigned saturation.

5.11 INTEL® SSE4.2 INSTRUCTION SET
Five of the Intel SSE4.2 instructions operate on XMM register as a source or destination. These include four 
text/string processing instructions and one packed quadword compare SIMD instruction. Programming these five 
Intel SSE4.2 instructions is similar to programming 128-bit Integer SIMD in Intel SSE2/SSSE3. Intel SSE4.2 does 
not provide any 64-bit integer SIMD instructions. 
CRC32 operates on general-purpose registers and is summarized in Section 5.1.6. The sections that follow summa-
rize each subgroup.

5.11.1 String and Text Processing Instructions
PCMPESTRI Packed compare explicit-length strings, return index in ECX/RCX.
PCMPESTRM Packed compare explicit-length strings, return mask in XMM0.
PCMPISTRI Packed compare implicit-length strings, return index in ECX/RCX.
PCMPISTRM Packed compare implicit-length strings, return mask in XMM0.

5.11.2 Packed Comparison SIMD Integer Instruction
PCMPGTQ Performs logical compare of greater-than on packed integer quadwords.

5.12 INTEL® AES-NI AND PCLMULQDQ
Six Intel® AES-NI instructions operate on XMM registers to provide accelerated primitives for block encryp-
tion/decryption using Advanced Encryption Standard (FIPS-197). The PCLMULQDQ instruction performs carry-less 
multiplication for two binary numbers up to 64-bit wide. 
AESDEC Perform an AES decryption round using an 128-bit state and a round key.
AESDECLAST Perform the last AES decryption round using an 128-bit state and a round key.
AESENC Perform an AES encryption round using an 128-bit state and a round key.
AESENCLAST Perform the last AES encryption round using an 128-bit state and a round key.
AESIMC Perform an inverse mix column transformation primitive.
AESKEYGENASSIST Assist the creation of round keys with a key expansion schedule.
PCLMULQDQ Perform carryless multiplication of two 64-bit numbers.
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5.13 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX)
Intel® Advanced Vector Extensions (AVX) promote legacy 128-bit SIMD instruction sets that operate on the XMM 
register set to use a “vector extension” (VEX) prefix and operates on 256-bit vector registers (YMM). Almost all 
prior generations of 128-bit SIMD instructions that operate on XMM (but not on MMX registers) are promoted to 
support three-operand syntax with VEX-128 encoding.

VEX-prefix encoded Intel AVX instructions support 256-bit and 128-bit floating-point operations by extending the 
legacy 128-bit SIMD floating-point instructions to support three-operand syntax. 

Additional functional enhancements are also provided with VEX-encoded Intel AVX instructions.
The list of Intel AVX instructions is included in the following tables:
• Table 14-2 lists 256-bit and 128-bit floating-point arithmetic instructions promoted from legacy 128-bit SIMD 

instruction sets.
• Table 14-3 lists 256-bit and 128-bit data movement and processing instructions promoted from legacy 128-bit 

SIMD instruction sets.
• Table 14-4 lists functional enhancements of 256-bit Intel AVX instructions not available from legacy 128-bit 

SIMD instruction sets.
• Table 14-5 lists 128-bit integer and floating-point instructions promoted from legacy 128-bit SIMD instruction 

sets.
• Table 14-6 lists functional enhancements of 128-bit Intel AVX instructions not available from legacy 128-bit 

SIMD instruction sets.
• Table 14-7 lists 128-bit data movement and processing instructions promoted from legacy instruction sets.

5.14 16-BIT FLOATING-POINT CONVERSION
Conversions between single precision floating-point (32-bit) and half precision floating-point (16-bit) data are 
provided by the VCVTPS2PH and VCVTPH2PS instructions, introduced beginning with the third generation of Intel 
Core processors based on Ivy Bridge microarchitecture: 
VCVTPH2PS Convert eight/four data elements containing 16-bit floating-point data into eight/four 

single precision floating-point data.
VCVTPS2PH Convert eight/four data elements containing single precision floating-point data into 

eight/four 16-bit floating-point data.

Starting with the 4th generation Intel Xeon Scalable Processor Family based on Sapphire Rapids microarchitecture, 
Intel® AVX-512 instruction set architecture for FP16 was added, supporting a wide range of general-purpose 
numeric operations for 16-bit half precision floating-point values (binary16 in IEEE Standard 754-2019 for 
Floating-Point Arithmetic, aka half precision or FP16). Section 5.19 includes a list of these instructions.

5.15 FUSED-MULTIPLY-ADD (FMA)
FMA extensions enhances Intel AVX with high-throughput, arithmetic capabilities covering fused multiply-add, 
fused multiply-subtract, fused multiply add/subtract interleave, signed-reversed multiply on fused multiply-add 
and multiply-subtract. FMA extensions provide 36 256-bit floating-point instructions to perform computation on 
256-bit vectors and additional 128-bit and scalar FMA instructions.
• Table 14-15 lists FMA instruction sets.

5.16 INTEL® ADVANCED VECTOR EXTENSIONS 2 (INTEL® AVX2)
Intel® AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instructions with 256-bit numeric 
processing capabilities. Intel AVX2 instructions follow the same programming model as AVX instructions. 
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In addition, AVX2 provide enhanced functionalities for broadcast/permute operations on data elements, vector 
shift instructions with variable-shift count per data element, and instructions to fetch non-contiguous data 
elements from memory.
• Table 14-18 lists promoted vector integer instructions in AVX2.
• Table 14-19 lists new instructions in AVX2 that complements AVX.

5.17 INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX)
XABORT Abort an RTM transaction execution.
XACQUIRE Prefix hint to the beginning of an HLE transaction region.
XRELEASE Prefix hint to the end of an HLE transaction region.
XBEGIN Transaction begin of an RTM transaction region.
XEND Transaction end of an RTM transaction region.
XTEST Test if executing in a transactional region.
XRESLDTRK Resume tracking load addresses.
XSUSLDTRK Suspend tracking load addresses.

5.18 INTEL® SHA EXTENSIONS 
Intel® SHA extensions provide a set of instructions that target the acceleration of the Secure Hash Algorithm 
(SHA), specifically the SHA-1 and SHA-256 variants. 
SHA1MSG1 Perform an intermediate calculation for the next four SHA1 message dwords from the 

previous message dwords.
SHA1MSG2 Perform the final calculation for the next four SHA1 message dwords from the intermediate 

message dwords.
SHA1NEXTE Calculate SHA1 state E after four rounds.
SHA1RNDS4 Perform four rounds of SHA1 operations.
SHA256MSG1 Perform an intermediate calculation for the next four SHA256 message dwords.
SHA256MSG2 Perform the final calculation for the next four SHA256 message dwords.
SHA256RNDS2 Perform two rounds of SHA256 operations.

5.19 INTEL® ADVANCED VECTOR EXTENSIONS 512 (INTEL® AVX-512)
The Intel® AVX-512 family comprises a collection of 512-bit SIMD instruction sets to accelerate a diverse range of 
applications. Intel AVX-512 instructions provide a wide range of functionality that support programming in 512-bit, 
256 and 128-bit vector register, plus support for opmask registers and instructions operating on opmask registers. 

The collection of 512-bit SIMD instruction sets in Intel AVX-512 include new functionality not available in Intel AVX 
and Intel AVX2, and promoted instructions similar to equivalent ones in Intel AVX/Intel AVX2 but with enhance-
ment provided by opmask registers not available to VEX-encoded Intel AVX/Intel AVX2. Some instruction 
mnemonics in Intel AVX/Intel AVX2 that are promoted into Intel AVX-512 can be replaced by new instruction 
mnemonics that are available only with EVEX encoding, e.g., VBROADCASTF128 into VBROADCASTF32X4. Details 
of EVEX instruction encoding are discussed in Section 2.7, “Intel® AVX-512 Encoding,” of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A. Starting with the 4th generation Intel Xeon Scalable 
Processor Family, an Intel AVX-512 instruction set architecture for FP16 was added, supporting a wide range of 
general-purpose numeric operations for 16-bit half precision floating-point values, which complements the existing 
32-bit and 64-bit floating-point instructions already available in the Intel Xeon processor-based products.

512-bit instruction mnemonics in AVX-512F instructions that are not Intel AVX or AVX2 promotions include:
VALIGND/Q Perform dword/qword alignment of two concatenated source vectors.
VBLENDMPD/PS Replace the VBLENDVPD/PS instructions (using opmask as select control).
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VCOMPRESSPD/PS Compress packed DP or SP elements of a vector.
VCVT(T)PD2UDQ Convert packed DP FP elements of a vector to packed unsigned 32-bit integers.
VCVT(T)PS2UDQ Convert packed SP FP elements of a vector to packed unsigned 32-bit integers.
VCVTQQ2PD/PS Convert packed signed 64-bit integers to packed DP/SP FP elements.
VCVT(T)SD2USI Convert the low DP FP element of a vector to an unsigned integer.
VCVT(T)SS2USI Convert the low SP FP element of a vector to an unsigned integer.
VCVTUDQ2PD/PS Convert packed unsigned 32-bit integers to packed DP/SP FP elements.
VCVTUSI2USD/S Convert an unsigned integer to the low DP/SP FP element and merge to a vector.
VEXPANDPD/PS Expand packed DP or SP elements of a vector.
VEXTRACTF32X4/64X4 Extract a vector from a full-length vector with 32/64-bit granular update.
VEXTRACTI32X4/64X4 Extract a vector from a full-length vector with 32/64-bit granular update.
VFIXUPIMMPD/PS Perform fix-up to special values in DP/SP FP vectors.
VFIXUPIMMSD/SS Perform fix-up to special values of the low DP/SP FP element.
VGETEXPPD/PS Convert the exponent of DP/SP FP elements of a vector into FP values.
VGETEXPSD/SS Convert the exponent of the low DP/SP FP element in a vector into FP value.
VGETMANTPD/PS Convert the mantissa of DP/SP FP elements of a vector into FP values.
VGETMANTSD/SS Convert the mantissa of the low DP/SP FP element of a vector into FP value.
VINSERTF32X4/64X4 Insert a 128/256-bit vector into a full-length vector with 32/64-bit granular update.
VMOVDQA32/64 VMOVDQA with 32/64-bit granular conditional update.
VMOVDQU32/64 VMOVDQU with 32/64-bit granular conditional update.
VPBLENDMD/Q Blend dword/qword elements using opmask as select control.
VPBROADCASTD/Q Broadcast from general-purpose register to vector register.
VPCMPD/UD Compare packed signed/unsigned dwords using specified primitive.
VPCMPQ/UQ Compare packed signed/unsigned quadwords using specified primitive.
VPCOMPRESSQ/D Compress packed 64/32-bit elements of a vector.
VPERMI2D/Q Full permute of two tables of dword/qword elements overwriting the index vector.
VPERMI2PD/PS Full permute of two tables of DP/SP elements overwriting the index vector.
VPERMT2D/Q Full permute of two tables of dword/qword elements overwriting one source table.
VPERMT2PD/PS Full permute of two tables of DP/SP elements overwriting one source table.
VPEXPANDD/Q Expand packed dword/qword elements of a vector.
VPMAXSQ Compute maximum of packed signed 64-bit integer elements.
VPMAXUD/UQ Compute maximum of packed unsigned 32/64-bit integer elements.
VPMINSQ Compute minimum of packed signed 64-bit integer elements.
VPMINUD/UQ Compute minimum of packed unsigned 32/64-bit integer elements.
VPMOV(S|US)QB Down convert qword elements in a vector to byte elements using truncation (saturation | 

unsigned saturation).
VPMOV(S|US)QW Down convert qword elements in a vector to word elements using truncation (saturation | 

unsigned saturation).
VPMOV(S|US)QD Down convert qword elements in a vector to dword elements using truncation (saturation 

| unsigned saturation).
VPMOV(S|US)DB Down convert dword elements in a vector to byte elements using truncation (saturation | 

unsigned saturation).
VPMOV(S|US)DW Down convert dword elements in a vector to word elements using truncation (saturation | 

unsigned saturation).
VPROLD/Q Rotate dword/qword element left by a constant shift count with conditional update.
VPROLVD/Q Rotate dword/qword element left by shift counts specified in a vector with conditional 

update.
VPRORD/Q Rotate dword/qword element right by a constant shift count with conditional update.
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VPRORRD/Q Rotate dword/qword element right by shift counts specified in a vector with conditional 
update.

VPSCATTERDD/DQ Scatter dword/qword elements in a vector to memory using dword indices.
VPSCATTERQD/QQ Scatter dword/qword elements in a vector to memory using qword indices.
VPSRAQ Shift qwords right by a constant shift count and shifting in sign bits.
VPSRAVQ Shift qwords right by shift counts in a vector and shifting in sign bits.
VPTESTNMD/Q Perform bitwise NAND of dword/qword elements of two vectors and write results to 

opmask.
VPTERLOGD/Q Perform bitwise ternary logic operation of three vectors with 32/64 bit granular conditional 

update.
VPTESTMD/Q Perform bitwise AND of dword/qword elements of two vectors and write results to opmask.
VRCP14PD/PS Compute approximate reciprocals of packed DP/SP FP elements of a vector.
VRCP14SD/SS Compute the approximate reciprocal of the low DP/SP FP element of a vector.
VRNDSCALEPD/PS Round packed DP/SP FP elements of a vector to specified number of fraction bits.
VRNDSCALESD/SS Round the low DP/SP FP element of a vector to specified number of fraction bits.
VRSQRT14PD/PS Compute approximate reciprocals of square roots of packed DP/SP FP elements of a vector.
VRSQRT14SD/SS Compute the approximate reciprocal of square root of the low DP/SP FP element of a 

vector.
VSCALEPD/PS Multiply packed DP/SP FP elements of a vector by powers of two with exponents specified 

in a second vector.
VSCALESD/SS Multiply the low DP/SP FP element of a vector by powers of two with exponent specified in 

the corresponding element of a second vector.
VSCATTERDD/DQ Scatter SP/DP FP elements in a vector to memory using dword indices.
VSCATTERQD/QQ Scatter SP/DP FP elements in a vector to memory using qword indices.
VSHUFF32X4/64X2 Shuffle 128-bit lanes of a vector with 32/64 bit granular conditional update.
VSHUFI32X4/64X2 Shuffle 128-bit lanes of a vector with 32/64 bit granular conditional update.

512-bit instruction mnemonics in AVX-512DQ that are not Intel AVX or AVX2 promotions include:
VCVT(T)PD2QQ Convert packed DP FP elements of a vector to packed signed 64-bit integers.
VCVT(T)PD2UQQ Convert packed DP FP elements of a vector to packed unsigned 64-bit integers.
VCVT(T)PS2QQ Convert packed SP FP elements of a vector to packed signed 64-bit integers.
VCVT(T)PS2UQQ Convert packed SP FP elements of a vector to packed unsigned 64-bit integers.
VCVTUQQ2PD/PS Convert packed unsigned 64-bit integers to packed DP/SP FP elements.
VEXTRACTF64X2 Extract a vector from a full-length vector with 64-bit granular update.
VEXTRACTI64X2 Extract a vector from a full-length vector with 64-bit granular update.
VFPCLASSPD/PS Test packed DP/SP FP elements in a vector by numeric/special-value category.
VFPCLASSSD/SS Test the low DP/SP FP element by numeric/special-value category.
VINSERTF64X2 Insert a 128-bit vector into a full-length vector with 64-bit granular update.
VINSERTI64X2 Insert a 128-bit vector into a full-length vector with 64-bit granular update.
VPMOVM2D/Q Convert opmask register to vector register in 32/64-bit granularity.
VPMOVB2D/Q2M Convert a vector register in 32/64-bit granularity to an opmask register.
VPMULLQ Multiply packed signed 64-bit integer elements of two vectors and store low 64-bit signed 

result.
VRANGEPD/PS Perform RANGE operation on each pair of DP/SP FP elements of two vectors using specified 

range primitive in imm8.
VRANGESD/SS Perform RANGE operation on the pair of low DP/SP FP element of two vectors using speci-

fied range primitive in imm8.
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VREDUCEPD/PS Perform Reduction operation on packed DP/SP FP elements of a vector using specified 
reduction primitive in imm8.

VREDUCESD/SS Perform Reduction operation on the low DP/SP FP element of a vector using specified 
reduction primitive in imm8.

512-bit instruction mnemonics in AVX-512BW that are not Intel AVX or AVX2 promotions include:
VDBPSADBW Double block packed Sum-Absolute-Differences on unsigned bytes.
VMOVDQU8/16 VMOVDQU with 8/16-bit granular conditional update.
VPBLENDMB Replaces the VPBLENDVB instruction (using opmask as select control).
VPBLENDMW Blend word elements using opmask as select control.
VPBROADCASTB/W Broadcast from general-purpose register to vector register.
VPCMPB/UB Compare packed signed/unsigned bytes using specified primitive.
VPCMPW/UW Compare packed signed/unsigned words using specified primitive.
VPERMW Permute packed word elements.
VPERMI2B/W Full permute from two tables of byte/word elements overwriting the index vector.
VPMOVM2B/W Convert opmask register to vector register in 8/16-bit granularity.
VPMOVB2M/W2M Convert a vector register in 8/16-bit granularity to an opmask register.
VPMOV(S|US)WB Down convert word elements in a vector to byte elements using truncation (saturation | 

unsigned saturation).
VPSLLVW Shift word elements in a vector left by shift counts in a vector.
VPSRAVW Shift words right by shift counts in a vector and shifting in sign bits.
VPSRLVW Shift word elements in a vector right by shift counts in a vector.
VPTESTNMB/W Perform bitwise NAND of byte/word elements of two vectors and write results to opmask.
VPTESTMB/W Perform bitwise AND of byte/word elements of two vectors and write results to opmask.

512-bit instruction mnemonics in AVX-512CD that are not Intel AVX or AVX2 promotions include:
VPBROADCASTM Broadcast from opmask register to vector register.
VPCONFLICTD/Q Detect conflicts within a vector of packed 32/64-bit integers.
VPLZCNTD/Q Count the number of leading zero bits of packed dword/qword elements.

Opmask instructions include:
KADDB/W/D/Q Add two 8/16/32/64-bit opmasks.
KANDB/W/D/Q Logical AND two 8/16/32/64-bit opmasks.
KANDNB/W/D/Q Logical AND NOT two 8/16/32/64-bit opmasks.
KMOVB/W/D/Q Move from or move to opmask register of 8/16/32/64-bit data.
KNOTB/W/D/Q Bitwise NOT of two 8/16/32/64-bit opmasks.
KORB/W/D/Q Logical OR two 8/16/32/64-bit opmasks.
KORTESTB/W/D/Q Update EFLAGS according to the result of bitwise OR of two 8/16/32/64-bit opmasks.
KSHIFTLB/W/D/Q Shift left 8/16/32/64-bit opmask by specified count.
KSHIFTRB/W/D/Q Shift right 8/16/32/64-bit opmask by specified count.
KTESTB/W/D/Q Update EFLAGS according to the result of bitwise TEST of two 8/16/32/64-bit opmasks.
KUNPCKBW/WD/DQ Unpack and interleave two 8/16/32-bit opmasks into 16/32/64-bit mask.
KXNORB/W/D/Q Bitwise logical XNOR of two 8/16/32/64-bit opmasks.
KXORB/W/D/Q Logical XOR of two 8/16/32/64-bit opmasks.

512-bit instruction mnemonics in AVX-512ER include:
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VEXP2PD/PS Compute approximate base-2 exponential of packed DP/SP FP elements of a vector.
VEXP2SD/SS Compute approximate base-2 exponential of the low DP/SP FP element of a vector.
VRCP28PD/PS Compute approximate reciprocals to 28 bits of packed DP/SP FP elements of a vector. 
VRCP28SD/SS Compute the approximate reciprocal to 28 bits of the low DP/SP FP element of a vector. 
VRSQRT28PD/PS Compute approximate reciprocals of square roots to 28 bits of packed DP/SP FP elements 

of a vector.
VRSQRT28SD/SS Compute the approximate reciprocal of square root to 28 bits of the low DP/SP FP element 

of a vector.

512-bit instruction mnemonics in AVX-512PF include:
VGATHERPF0DPD/PS Sparse prefetch of packed DP/SP FP vector with T0 hint using dword indices.
VGATHERPF0QPD/PS Sparse prefetch of packed DP/SP FP vector with T0 hint using qword indices.
VGATHERPF1DPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint using dword indices.
VGATHERPF1QPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint using qword indices.
VSCATTERPF0DPD/PS Sparse prefetch of packed DP/SP FP vector with T0 hint to write using dword indices.
VSCATTERPF0QPD/PS Sparse prefetch of packed DP/SP FP vector with T0 hint to write using qword indices.
VSCATTERPF1DPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint to write using dword indices.
VSCATTERPF1QPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint to write using qword indices.

512-bit instruction mnemonics in AVX512-FP16 include:
VADDPH/SH Add packed/scalar FP16 values.
VCMPPH/SH Compare packed/scalar FP16 values.
VCOMISH Compare scalar ordered FP16 values and set EFLAGS.
VCVTDQ2PH Convert packed signed doubleword integers to packed FP16 values.
VCVTPD2PH Convert packed double precision FP values to packed FP16 values.
VCVTPH2DQ/QQ Convert packed FP16 values to signed doubleword/quadword integers.
VCVTPH2PD Convert packed FP16 values to FP64 values.
VCVTPH2PS[X] Convert packed FP16 values to single precision floating-point values.
VCVTPH2QQ Convert packed FP16 values to signed quadword integer values.
VCVTPH2UDQ/QQ Convert packed FP16 values to unsigned doubleword/quadword integers.
VCVTPH2UW/W Convert packed FP16 values to unsigned/signed word integers.
VCVTPS2PH[X] Convert packed single precision floating-point values to packed FP16 values.
VCVTQQ2PH Convert packed signed quadword integers to packed FP16 values.
VCVTSD2SH Convert low FP64 value to an FP16 value.
VCVTSH2SD/SS Convert low FP16 value to an FP64/FP32 value.
VCVTSH2SI/USI Convert low FP16 value to signed/unsigned integer.
VCVTSI2SH Convert a signed doubleword/quadword integer to an FP16 value.
VCVTSS2SH Convert low FP32 value to an FP16 value.
VCVTTPH2DQ/QQ Convert with truncation packed FP16 values to signed doubleword/quadword integers.
VCVTTPH2UDQ/QQ Convert with truncation packed FP16 values to unsigned doubleword/quadword integers.
VCVTTPH2UW/W Convert packed FP16 values to unsigned/signed word integers.
VCVTTSH2SI/USI Convert with truncation low FP16 value to a signed/unsigned integer.
VCVTUDQ2PH Convert packed unsigned doubleword integers to packed FP16 values.
VCVTUQQ2PH Convert packed unsigned quadword integers to packed FP16 values.
VCVTUSI2SH Convert unsigned doubleword integer to an FP16 value.
VCVTUW2PH Convert packed unsigned word integers to FP16 values.
VCVTW2PH Convert packed signed word integers to FP16 values.
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VDIVPH/SH Divide packed/scalar FP16 values.
VF[C]MADDCPH Complex multiply and accumulate FP16 values.
VF[C]MADDCSH Complex multiply and accumulate scalar FP16 values.
VF[C]MULCPH Complex multiply FP16 values.
VF[C]MULCSH Complex multiply scalar FP16 values.
VF[,N]MADD[132,213,231]PH Fused multiply-add of packed FP16 values.
VF[,N]MADD[132,213,231]SH Fused multiply-add of scalar FP16 values.
VFMADDSUB[132,213,231]PH Fused multiply-alternating add/subtract of packed FP16 values.
VFMSUBADD[132,213,231]PH Fused multiply-alternating subtract/add of packed FP16 values.
VF[,N]MSUB[132,213,231]PH Fused multiply-subtract of packed FP16 values.
VF[,N]MSUB[132,213,231]SH Fused multiply-subtract of scalar FP16 values.
VFPCLASSPH/SH Test types of packed/scalar FP16 values.
VGETEXPPH/SH Convert exponents of packed/scalar FP16 values to FP16 values.
VGETMANTPH/SH Extract FP16 vector of normalized mantissas from FP16 vector/scalar.
VMAXPH/PS Return maximum of packed/scalar FP16 values.
VMINPH/PS Return minimum of packed/scalar FP16 values.
VMOVSH Move scalar FP16 value.
VMOVW Move word.
VMULPH/SH Multiply packed/scalar FP16 values.
VRCPPH/SH Compute reciprocals of packed/scalar FP16 values.
VREDUCEPH/SH Perform reduction transformation on packed/scalar FP16 values.
VRNDSCALEPH/SH Round packed/scalar FP16 values to include a given number of fraction bits.
VRSQRTPH/SH Compute reciprocals of square roots of packed/scalar FP16 values.
VSCALEPH/SH Scale packed/scalar FP16 values with FP16 values.
VSQRTPH/SH Compute square root of packed/scalar FP16 values.
VSUBPH/SH Subtract packed/scalar FP16 values.
VUCOMISH Unordered compare scalar FP16 values and set EFLAGS.

5.20 SYSTEM INSTRUCTIONS
The following system instructions are used to control those functions of the processor that are provided to support 
for operating systems and executives.
CLAC Clear AC Flag in EFLAGS register.
STAC Set AC Flag in EFLAGS register.
LGDT Load global descriptor table (GDT) register.
SGDT Store global descriptor table (GDT) register.
LLDT Load local descriptor table (LDT) register.
SLDT Store local descriptor table (LDT) register.
LTR Load task register.
STR Store task register.
LIDT Load interrupt descriptor table (IDT) register.
SIDT Store interrupt descriptor table (IDT) register.
MOV Load and store control registers.
LMSW Load machine status word.
SMSW Store machine status word.
CLTS Clear the task-switched flag.
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ARPL Adjust requested privilege level.
LAR Load access rights.
LSL Load segment limit.
VERR Verify segment for reading
VERW Verify segment for writing.
MOV Load and store debug registers.
INVD Invalidate cache, no writeback.
WBINVD Invalidate cache, with writeback.
INVLPG Invalidate TLB Entry.
INVPCID Invalidate Process-Context Identifier.
LOCK (prefix) Perform atomic access to memory (can be applied to a number of general purpose instruc-

tions that provide memory source/destination access).
HLT Halt processor.
RSM Return from system management mode (SMM).
RDMSR Read model-specific register.
WRMSR Write model-specific register.
RDPMC Read performance monitoring counters.
RDTSC Read time stamp counter.
RDTSCP Read time stamp counter and processor ID.
SYSENTER Fast System Call, transfers to a flat protected mode kernel at CPL = 0.
SYSEXIT Fast System Call, transfers to a flat protected mode kernel at CPL = 3.
XSAVE Save processor extended states to memory.
XSAVEC Save processor extended states with compaction to memory.
XSAVEOPT Save processor extended states to memory, optimized.
XSAVES Save processor supervisor-mode extended states to memory.
XRSTOR Restore processor extended states from memory.
XRSTORS Restore processor supervisor-mode extended states from memory.
XGETBV Reads the state of an extended control register.
XSETBV Writes the state of an extended control register.
RDFSBASE Reads from FS base address at any privilege level.
RDGSBASE Reads from GS base address at any privilege level.
WRFSBASE Writes to FS base address at any privilege level.
WRGSBASE Writes to GS base address at any privilege level.

5.21 64-BIT MODE INSTRUCTIONS
The following instructions are introduced in 64-bit mode. This mode is a sub-mode of IA-32e mode.
CDQE Convert doubleword to quadword.
CMPSQ Compare string operands.
CMPXCHG16B Compare RDX:RAX with m128.
LODSQ Load qword at address (R)SI into RAX.
MOVSQ Move qword from address (R)SI to (R)DI.
MOVZX (64-bits) Move bytes/words to doublewords/quadwords, zero-extension.
STOSQ Store RAX at address RDI.
SWAPGS Exchanges current GS base register value with value in MSR address C0000102H.
SYSCALL Fast call to privilege level 0 system procedures.
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SYSRET Return from fast system call.

5.22 VIRTUAL-MACHINE EXTENSIONS
The behavior of the VMCS-maintenance instructions is summarized below:
VMPTRLD Takes a single 64-bit source operand in memory. It makes the referenced VMCS active and 

current.
VMPTRST Takes a single 64-bit destination operand that is in memory. Current-VMCS pointer is 

stored into the destination operand.
VMCLEAR Takes a single 64-bit operand in memory. The instruction sets the launch state of the VMCS 

referenced by the operand to “clear”, renders that VMCS inactive, and ensures that data 
for the VMCS have been written to the VMCS-data area in the referenced VMCS region.

VMREAD Reads a component from the VMCS (the encoding of that field is given in a register 
operand) and stores it into a destination operand.

VMWRITE Writes a component to the VMCS (the encoding of that field is given in a register operand) 
from a source operand.

The behavior of the VMX management instructions is summarized below:
VMLAUNCH Launches a virtual machine managed by the VMCS. A VM entry occurs, transferring control 

to the VM.
VMRESUME Resumes a virtual machine managed by the VMCS. A VM entry occurs, transferring control 

to the VM.
VMXOFF Causes the processor to leave VMX operation.
VMXON Takes a single 64-bit source operand in memory. It causes a logical processor to enter VMX 

root operation and to use the memory referenced by the operand to support VMX opera-
tion.

The behavior of the VMX-specific TLB-management instructions is summarized below:
INVEPT Invalidate cached Extended Page Table (EPT) mappings in the processor to synchronize 

address translation in virtual machines with memory-resident EPT pages.
INVVPID Invalidate cached mappings of address translation based on the Virtual Processor ID 

(VPID).

None of the instructions above can be executed in compatibility mode; they generate invalid-opcode exceptions if 
executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:
VMCALL Allows a guest in VMX non-root operation to call the VMM for service. A VM exit occurs, 

transferring control to the VMM.
VMFUNC Allows software in VMX non-root operation to invoke a VM function, which is processor 

functionality enabled and configured by software in VMX root operation. No VM exit occurs.

5.23 SAFER MODE EXTENSIONS
The behavior of the GETSEC instruction leaves of the Safer Mode Extensions (SMX) are summarized below:
GETSEC[CAPABILITIES]Returns the available leaf functions of the GETSEC instruction.
GETSEC[ENTERACCS] Loads an authenticated code chipset module and enters authenticated code execution 

mode.
GETSEC[EXITAC] Exits authenticated code execution mode.
GETSEC[SENTER] Establishes a Measured Launched Environment (MLE) which has its dynamic root of trust 

anchored to a chipset supporting Intel Trusted Execution Technology.
GETSEC[SEXIT] Exits the MLE.
GETSEC[PARAMETERS] Returns SMX related parameter information.
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GETSEC[SMCRTL] SMX mode control.
GETSEC[WAKEUP] Wakes up sleeping logical processors inside an MLE.

5.24 INTEL® MEMORY PROTECTION EXTENSIONS
Intel Memory Protection Extensions (Intel MPX) provides a set of instructions to enable software to add robust 
bounds checking capability to memory references. Details of Intel MPX are described in Appendix E, “Intel® 
Memory Protection Extensions.”
BNDMK Create a LowerBound and an UpperBound in a register.
BNDCL Check the address of a memory reference against a LowerBound.
BNDCU Check the address of a memory reference against an UpperBound in 1’s complement form.
BNDCN Check the address of a memory reference against an UpperBound not in 1’s complement 

form.
BNDMOV Copy or load from memory of the LowerBound and UpperBound to a register.
BNDMOV Store to memory of the LowerBound and UpperBound from a register.
BNDLDX Load bounds using address translation.
BNDSTX Store bounds using address translation.

5.25 INTEL® SOFTWARE GUARD EXTENSIONS
Intel Software Guard Extensions (Intel SGX) provide two sets of instruction leaf functions to enable application 
software to instantiate a protected container, referred to as an enclave. The enclave instructions are organized as 
leaf functions under two instruction mnemonics: ENCLS (ring 0) and ENCLU (ring 3). Details of Intel SGX are 
described in Chapter 35 through Chapter 40 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3D.
The first implementation of Intel SGX is also referred to as SGX1, it is introduced with the 6th Generation Intel 
Core Processors. The leaf functions supported in SGX1 are shown in Table 5-3.

Table 5-3.  Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1
Supervisor Instruction Description User Instruction Description

ENCLS[EADD] Add a page ENCLU[EENTER] Enter an Enclave 

ENCLS[EBLOCK] Block an EPC page ENCLU[EEXIT] Exit an Enclave

ENCLS[ECREATE] Create an enclave ENCLU[EGETKEY] Create a cryptographic key

ENCLS[EDBGRD] Read data by debugger ENCLU[EREPORT] Create a cryptographic report

ENCLS[EDBGWR] Write data by debugger ENCLU[ERESUME] Re-enter an Enclave

ENCLS[EEXTEND] Extend EPC page measurement

ENCLS[EINIT] Initialize an enclave

ENCLS[ELDB] Load an EPC page as blocked

ENCLS[ELDU] Load an EPC page as unblocked

ENCLS[EPA] Add version array

ENCLS[EREMOVE] Remove a page from EPC

ENCLS[ETRACK] Activate EBLOCK checks

ENCLS[EWB] Write back/invalidate an EPC page
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5.26 SHADOW STACK MANAGEMENT INSTRUCTIONS
Shadow stack management instructions allow the program and run-time to perform operations like recovering 
from control protection faults, shadow stack switching, etc. The following instructions are provided.
CLRSSBSY Clear busy bit in a supervisor shadow stack token.
INCSSP Increment the shadow stack pointer (SSP).
RDSSP Read shadow stack point (SSP).
RSTORSSP Restore a shadow stack pointer (SSP).
SAVEPREVSSP Save previous shadow stack pointer (SSP).
SETSSBSY Set busy bit in a supervisor shadow stack token.
WRSS Write to a shadow stack.
WRUSS Write to a user mode shadow stack.

5.27 CONTROL TRANSFER TERMINATING INSTRUCTIONS
ENDBR32 Terminate an Indirect Branch in 32-bit and Compatibility Mode.
ENDBR64 Terminate an Indirect Branch in 64-bit Mode.

5.28 INTEL® AMX INSTRUCTIONS
LDTILECFG Load tile configuration.
STTILECFG Store tile configuration.
TDPBF16PS Dot product of BF16 tiles accumulated into packed single precision tile.
TDPBSSD Dot product of signed bytes with dword accumulation.
TDPBSUD Dot product of signed/unsigned bytes with dword accumulation.
TDPBUSD Dot product of unsigned/signed bytes with dword accumulation.
TDPBUUD Dot product of unsigned bytes with dword accumulation.
TILELOADD Load data into tile.
TILELOADDT1 Load data into tile with hint to optimize data caching.
TILERELEASE Release tile.
TILESTORED Store tile.
TILEZERO Zero tile.

5.29 USER INTERRUPT INSTRUCTIONS
CLUI Clear user interrupt flag.
SENDUIPI Send user interprocessor interrupt.
STUI Set user interrupt flag.
TESTUI Determine user interrupt flag.
UIRET User-interrupt return.

5.30 ENQUEUE STORE INSTRUCTIONS
ENQCMD Enqueue command.
ENQCMDS Enqueue command supervisor.
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5.31 INTEL® ADVANCED VECTOR EXTENSIONS 10 VERSION 1 INSTRUCTIONS
Intel® Advanced Vector Extensions 10 Version 1 (Intel® AVX10.1) is based on the Intel AVX-512 ISA feature set 
and includes all Intel AVX-512 instructions introduced with the Intel® Xeon® 6 P-core processor based on Granite 
Rapids microarchitecture. Intel AVX10.1 supports all instruction vector lengths (128, 256, and 512), as well as 
scalar and opmask instructions. 

For a list of Intel AVX-512 instructions, see Section 5.19, “Intel® Advanced Vector Extensions 512 (Intel® AVX-
512).” Additionally, note that some Intel AVX and Intel AVX2 instructions were promoted to Intel AVX512 and are 
also supported. See Section 5.13, “Intel® Advanced Vector Extensions (Intel® AVX),” Section 5.16, “Intel® 
Advanced Vector Extensions 2 (Intel® AVX2),” and Chapter 16, “Programming with Intel® AVX10‚” for further 
details.

NOTE
For instructions with a CPUID feature flag specifying AVX10, the programmer must check the 
available vector options on the processor at run-time via CPUID Leaf 24H, the Intel AVX10 
Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector width and as such 
will determine the set of instructions available to the programmer listed in each instruction’s opcode 
table.
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CHAPTER 6
PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

This chapter describes the facilities in the Intel 64 and IA-32 architectures for executing calls to procedures or 
subroutines. It also describes how interrupts and exceptions are handled from the perspective of an application 
programmer.

6.1 PROCEDURE CALL TYPES
The processor supports procedure calls in the following two different ways:
• CALL and RET instructions.
• ENTER and LEAVE instructions, in conjunction with the CALL and RET instructions.

Both of these procedure call mechanisms use the procedure stack, commonly referred to simply as “the stack,” to 
save the state of the calling procedure, pass parameters to the called procedure, and store local variables for the 
currently executing procedure.

The processor’s facilities for handling interrupts and exceptions are similar to those used by the CALL and RET 
instructions.

Processors that support Control-Flow Enforcement Technology (CET) support an additional stack referred to as “the 
shadow stack”. The CALL instruction, when shadow stacks are enabled, additionally saves the state of the calling 
procedure on the shadow stack; and the RET instruction restores the state of the calling procedure if the state on 
the stack and the shadow stack match.

6.2 STACKS
The stack (see Figure 6-1) is a contiguous array of memory locations. It is contained in a segment and identified by 
the segment selector in the SS register. When using the flat memory model, the stack can be located anywhere in 
the linear address space for the program. A stack can be up to 4 GBytes long, the maximum size of a segment.

Items are placed on the stack using the PUSH instruction and removed from the stack using the POP instruction. 
When an item is pushed onto the stack, the processor decrements the ESP register, then writes the item at the new 
top of stack. When an item is popped off the stack, the processor reads the item from the top of stack, then incre-
ments the ESP register. In this manner, the stack grows down in memory (towards lesser addresses) when items 
are pushed on the stack and shrinks up (towards greater addresses) when the items are popped from the stack.

A program or operating system/executive can set up many stacks. For example, in multitasking systems, each task 
can be given its own stack. The number of stacks in a system is limited by the maximum number of segments and 
the available physical memory. 

When a system sets up many stacks, only one stack—the current stack—is available at a time. The current stack 
is the one contained in the segment referenced by the SS register.
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The processor references the SS register automatically for all stack operations. For example, when the ESP register 
is used as a memory address, it automatically points to an address in the current stack. Also, the CALL, RET, PUSH, 
POP, ENTER, and LEAVE instructions all perform operations on the current stack.

6.2.1 Setting Up a Stack
To set a stack and establish it as the current stack, the program or operating system/executive must do the 
following:

1. Establish a stack segment.

2. Load the segment selector for the stack segment into the SS register using a MOV, POP, or LSS instruction.

3. Load the stack pointer for the stack into the ESP register using a MOV, POP, or LSS instruction. The LSS 
instruction can be used to load the SS and ESP registers in one operation.

See “Segment Descriptors” in Chapter 3, “Protected-Mode Memory Management,” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A, for information on how to set up a segment descriptor and 
segment limits for a stack segment.

6.2.2 Stack Alignment
The stack pointer for a stack segment should be aligned on 16-bit (word) or 32-bit (double-word) boundaries, 
depending on the width of the stack segment. The D flag in the segment descriptor for the current code segment 
sets the stack-segment width (see “Segment Descriptors” in Chapter 3, “Protected-Mode Memory Management,” of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). The PUSH and POP instructions 
use the D flag to determine how much to decrement or increment the stack pointer on a push or pop operation, 
respectively. When the stack width is 16 bits, the stack pointer is incremented or decremented in 16-bit increments; 
when the width is 32 bits, the stack pointer is incremented or decremented in 32-bit increments. Pushing a 16-bit 
value onto a 32-bit wide stack can result in stack misaligned (that is, the stack pointer is not aligned on a double-

Figure 6-1.  Stack Structure
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word boundary). One exception to this rule is when the contents of a segment register (a 16-bit segment selector) 
are pushed onto a 32-bit wide stack. Here, the processor automatically aligns the stack pointer to the next 32-bit 
boundary.

The processor does not check stack pointer alignment. It is the responsibility of the programs, tasks, and system 
procedures running on the processor to maintain proper alignment of stack pointers. Misaligning a stack pointer 
can cause serious performance degradation and in some instances program failures.

6.2.3 Address-Size Attributes for Stack Accesses
Instructions that use the stack implicitly (such as the PUSH and POP instructions) have two address-size attributes 
each of either 16 or 32 bits. This is because they always have the implicit address of the top of the stack, and they 
may also have an explicit memory address (for example, PUSH Array1[EBX]). The attribute of the explicit address 
is determined by the D flag of the current code segment and the presence or absence of the 67H address-size 
prefix.

The address-size attribute of the top of the stack determines whether SP or ESP is used for the stack access. Stack 
operations with an address-size attribute of 16 use the 16-bit SP stack pointer register and can use a maximum 
stack address of FFFFH; stack operations with an address-size attribute of 32 bits use the 32-bit ESP register and 
can use a maximum address of FFFFFFFFH. The default address-size attribute for data segments used as stacks is 
controlled by the B flag of the segment’s descriptor. When this flag is clear, the default address-size attribute is 16; 
when the flag is set, the address-size attribute is 32.

6.2.4 Procedure Linking Information
The processor provides two pointers for linking of procedures: the stack-frame base pointer and the return instruc-
tion pointer. When used in conjunction with a standard software procedure-call technique, these pointers permit 
reliable and coherent linking of procedures.

6.2.4.1  Stack-Frame Base Pointer
The stack is typically divided into frames. Each stack frame can then contain local variables, parameters to be 
passed to another procedure, and procedure linking information. The stack-frame base pointer (contained in the 
EBP register) identifies a fixed reference point within the stack frame for the called procedure. To use the stack-
frame base pointer, the called procedure typically copies the contents of the ESP register into the EBP register prior 
to pushing any local variables on the stack. The stack-frame base pointer then permits easy access to data struc-
tures passed on the stack, to the return instruction pointer, and to local variables added to the stack by the called 
procedure.

Like the ESP register, the EBP register automatically points to an address in the current stack segment (that is, the 
segment specified by the current contents of the SS register). 

6.2.4.2  Return Instruction Pointer
Prior to branching to the first instruction of the called procedure, the CALL instruction pushes the address in the EIP 
register onto the current stack. This address is then called the return-instruction pointer and it points to the 
instruction where execution of the calling procedure should resume following a return from the called procedure. 
Upon returning from a called procedure, the RET instruction pops the return-instruction pointer from the stack back 
into the EIP register. Execution of the calling procedure then resumes.

The processor does not keep track of the location of the return-instruction pointer. It is thus up to the programmer 
to ensure that stack pointer is pointing to the return-instruction pointer on the stack, prior to issuing a RET instruc-
tion. A common way to reset the stack pointer to the point to the return-instruction pointer is to move the contents 
of the EBP register into the ESP register. If the EBP register is loaded with the stack pointer immediately following 
a procedure call, it should point to the return instruction pointer on the stack.

The processor does not require that the return instruction pointer point back to the calling procedure. Prior to 
executing the RET instruction, the return instruction pointer can be manipulated in software to point to any address 
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in the current code segment (near return) or another code segment (far return). Performing such an operation, 
however, should be undertaken very cautiously, using only well defined code entry points.

6.2.5 Stack Behavior in 64-Bit Mode
In 64-bit mode, address calculations that reference SS segments are treated as if the segment base is zero. Fields 
(base, limit, and attribute) in segment descriptor registers are ignored. SS DPL is modified such that it is always 
equal to CPL. This will be true even if it is the only field in the SS descriptor that is modified. 

Registers E(SP), E(IP) and E(BP) are promoted to 64-bits and are re-named RSP, RIP, and RBP respectively. Some 
forms of segment load instructions are invalid (for example, LDS, POP ES).

PUSH/POP instructions increment/decrement the stack using a 64-bit width. When the contents of a segment 
register is pushed onto 64-bit stack, the pointer is automatically aligned to 64 bits (as with a stack that has a 32-
bit width).

6.3 SHADOW STACKS
A shadow stack is a second stack used exclusively for control transfer operations. This stack is separate from the 
procedure stack. The shadow stack is not used to store data, hence is not explicitly writeable by software. Writes 
to the shadow stack are restricted to control transfer instructions and shadow stack management instructions. 
Shadow stacks can be enabled separately for privilege level 3 (user mode) or privilege levels less than 3 (super-
visor mode).

Shadow stacks are active only in protected mode with paging enabled. Shadow stacks cannot be enabled for a 
program executing in virtual 8086 mode.

Processors that support shadow stacks have an architectural register called the shadow stack pointer (SSP) that 
points to the current top of the shadow stack. The SSP cannot be directly encoded as a source, destination, or 
memory operand in instructions. The width of the shadow stack is 32-bit in 32-bit/compatibility mode, and is 64-
bit in 64-bit mode. The address-size attribute of the shadow stack is likewise 32-bit in 32-bit/compatibility mode, 
and 64-bit in 64-bit mode.

The size of the shadow stack pushes and pops for far CALL and call to interrupt/exception handlers is fixed at 64 
bits, and the processor uses 8-byte, zero padded stores for these pushes in 32-bit/compatibility modes.

6.4 CALLING PROCEDURES USING CALL AND RET
The CALL instruction allows control transfers to procedures within the current code segment (near call) and in a 
different code segment (far call). Near calls usually provide access to local procedures within the currently running 
program or task. Far calls are usually used to access operating system procedures or procedures in a different task. 
See “CALL—Call Procedure” in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2A, for a detailed description of the CALL instruction.

The RET instruction also allows near and far returns to match the near and far versions of the CALL instruction. In 
addition, the RET instruction allows a program to increment the stack pointer on a return to release parameters 
from the stack. The number of bytes released from the stack is determined by an optional argument (n) to the RET 
instruction. See “RET—Return from Procedure” in Chapter 4, “Instruction Set Reference, M-U,” of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2B, for a detailed description of the RET instruction.

6.4.1 Near CALL and RET Operation
When executing a near call, the processor does the following (see Figure 6-2):
1. Pushes the current value of the EIP register on the stack.

If shadow stack is enabled and the displacement value is not 0, pushes the current value of the EIP register on 
the shadow stack.
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2. Loads the offset of the called procedure in the EIP register.
3. Begins execution of the called procedure.

When executing a near return, the processor performs these actions:
1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

If shadow stack is enabled, pops the top-of-stack (the return instruction pointer) value from the shadow stack 
and if it’s not the same as the return instruction pointer popped from the stack, then the processor causes a 
control protection exception with error code NEAR-RET (#CP(NEAR-RET)).

2. If the RET instruction has an optional n argument, increments the stack pointer by the number of bytes 
specified with the n operand to release parameters from the stack.

3. Resumes execution of the calling procedure.

6.4.2 Far CALL and RET Operation
When executing a far call, the processor performs these actions (see Figure 6-2):

1. Pushes the current value of the CS register on the stack.
If shadow stack is enabled:

a. Temporarily saves the current value of the SSP register internally and aligns the SSP to the next 8 byte 
boundary.

b. Pushes the current value of the CS register on the shadow stack.

c. Pushes the current value of LIP (CS.base + EIP) on the shadow stack.

d. Pushes the internally saved value of the SSP register on the shadow stack.

2. Pushes the current value of the EIP register on the stack.

3. Loads the segment selector of the segment that contains the called procedure in the CS register.

4. Loads the offset of the called procedure in the EIP register.

5. Begins execution of the called procedure.

When executing a far return, the processor does the following:

1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. Pops the top-of-stack value (the segment selector for the code segment being returned to) into the CS register.
If shadow stack is enabled:

a. Causes a control protection exception (#CP(FAR-RET/IRET)) if the SSP is not aligned to 8 bytes. 

b. Compares the values on the shadow stack at address SSP+8 (the LIP) and SSP+16 (the CS) to the CS and 
(CS.base + EIP) popped from the stack, and causes a control protection exception (#CP(FAR-RET/IRET)) if 
they do not match. 

c. Pops the top-of-stack value (the SSP of the procedure being returned to) from shadow stack into the SSP 
register.

3. If the RET instruction has an optional n argument, increments the stack pointer by the number of bytes 
specified with the n operand to release parameters from the stack.

4. Resumes execution of the calling procedure.
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Figure 6-2.  Stack on Near and Far Calls

Figure 6-3.  Shadow Stack on Near and Far Calls
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6.4.3 Parameter Passing
Parameters can be passed between procedures in any of three ways: through general-purpose registers, in an 
argument list, or on the stack.

6.4.3.1  Passing Parameters Through the General-Purpose Registers
The processor does not save the state of the general-purpose registers on procedure calls. A calling procedure can 
thus pass up to six parameters to the called procedure by copying the parameters into any of these registers 
(except the ESP and EBP registers) prior to executing the CALL instruction. The called procedure can likewise pass 
parameters back to the calling procedure through general-purpose registers.

6.4.3.2  Passing Parameters on the Stack
To pass a large number of parameters to the called procedure, the parameters can be placed on the stack, in the 
stack frame for the calling procedure. Here, it is useful to use the stack-frame base pointer (in the EBP register) to 
make a frame boundary for easy access to the parameters.

The stack can also be used to pass parameters back from the called procedure to the calling procedure.

6.4.3.3  Passing Parameters in an Argument List
An alternate method of passing a larger number of parameters (or a data structure) to the called procedure is to 
place the parameters in an argument list in one of the data segments in memory. A pointer to the argument list can 
then be passed to the called procedure through a general-purpose register or the stack. Parameters can also be 
passed back to the calling procedure in this same manner.

6.4.4 Saving Procedure State Information
The processor does not save the contents of the general-purpose registers, segment registers, or the EFLAGS 
register on a procedure call. A calling procedure should explicitly save the values in any of the general-purpose 
registers that it will need when it resumes execution after a return. These values can be saved on the stack or in 
memory in one of the data segments.

The PUSHA and POPA instructions facilitate saving and restoring the contents of the general-purpose registers. 
PUSHA pushes the values in all the general-purpose registers on the stack in the following order: EAX, ECX, EDX, 
EBX, ESP (the value prior to executing the PUSHA instruction), EBP, ESI, and EDI. The POPA instruction pops all the 
register values saved with a PUSHA instruction (except the ESP value) from the stack to their respective registers.

If a called procedure changes the state of any of the segment registers explicitly, it should restore them to their 
former values before executing a return to the calling procedure.

If a calling procedure needs to maintain the state of the EFLAGS register, it can save and restore all or part of the 
register using the PUSHF/PUSHFD and POPF/POPFD instructions. The PUSHF instruction pushes the lower word of 
the EFLAGS register on the stack, while the PUSHFD instruction pushes the entire register. The POPF instruction 
pops a word from the stack into the lower word of the EFLAGS register, while the POPFD instruction pops a double 
word from the stack into the register.

6.4.5 Calls to Other Privilege Levels
The IA-32 architecture’s protection mechanism recognizes four privilege levels, numbered from 0 to 3, where a 
greater number mean less privilege. The reason to use privilege levels is to improve the reliability of operating 
systems. For example, Figure 6-4 shows how privilege levels can be interpreted as rings of protection. 
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In this example, the highest privilege level 0 (at the center of the diagram) is used for segments that contain the 
most critical code modules in the system, usually the kernel of an operating system. The outer rings (with progres-
sively lower privileges) are used for segments that contain code modules for less critical software. 

Code modules in lower privilege segments can only access modules operating at higher privilege segments by 
means of a tightly controlled and protected interface called a gate. Attempts to access higher privilege segments 
without going through a protection gate and without having sufficient access rights causes a general-protection 
exception (#GP) to be generated.

If an operating system or executive uses this multilevel protection mechanism, a call to a procedure that is in a 
more privileged protection level than the calling procedure is handled in a similar manner as a far call (see Section 
6.4.2, “Far CALL and RET Operation”). The differences are as follows:
• The segment selector provided in the CALL instruction references a special data structure called a call gate 

descriptor. Among other things, the call gate descriptor provides the following:

— Access rights information.

— The segment selector for the code segment of the called procedure.

— An offset into the code segment (that is, the instruction pointer for the called procedure).
• The processor switches to a new stack to execute the called procedure. Each privilege level has its own stack. 

The segment selector and stack pointer for the privilege level 3 stack are stored in the SS and ESP registers, 
respectively, and are automatically saved when a call to a more privileged level occurs. The segment selectors 
and stack pointers for the privilege level 2, 1, and 0 stacks are stored in a system segment called the task state 
segment (TSS). 

The use of a call gate and the TSS during a stack switch are transparent to the calling procedure, except when a 
general-protection exception is raised.

6.4.6 CALL and RET Operation Between Privilege Levels
When making a call to a more privileged protection level, the processor does the following (see Figure 6-5):

1. Performs an access rights check (privilege check).

2. Temporarily saves (internally) the current contents of the SS, ESP, CS, and EIP registers.
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Figure 6-5.  Stack Switch on a Call to a Different Privilege Level
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3. Loads the segment selector and stack pointer for the new stack (that is, the stack for the privilege level being 
called) from the TSS into the SS and ESP registers and switches to the new stack.

4. Pushes the temporarily saved SS and ESP values for the calling procedure’s stack onto the new stack.

5. Copies the parameters from the calling procedure’s stack to the new stack. A value in the call gate descriptor 
determines how many parameters to copy to the new stack.

6. Pushes the temporarily saved CS and EIP values for the calling procedure to the new stack.
If shadow stack is enabled at the privilege level of the calling procedure, then the processor temporarily saves 
the SSP of the calling procedure internally. If the calling procedure is at privilege level 3, the SSP of the calling 
procedure is also saved into the IA32_PL3_SSP MSR.

Figure 6-6.  Shadow Stack Switch on a Call to a Different Privilege Level

Calling to Procedure at Higher Privilege Level from Privilege Level 3

Shadow Stack for 
Calling Procedure

Handler’s Shadow 
Stack

SSP Before Call 
and After Return

Supervisor 
Shadow Stack 

TokenSSP After Call and 
Before Return

Note: There are no parameters on the shadow stack. RET and RET n operate 
identically on the shadow stack.

SSP Before Call 
and After Return

LIP

CS

SSPSSP After Call and 
Before Return

Calling to Procedure at Higher Privilege Level from Privilege Level 2 or 1

Interrupted Procedure’s 
Shadow Stack

Handler’s Shadow 
Stack

Supervisor 
Shadow Stack 

Token
6-10 Vol. 1



PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
If shadow stack is enabled at the privilege level of the called procedure, then the SSP for the called procedure 
is obtained from one of the MSRs listed below, depending on the target privilege level. The SSP obtained is then 
verified to ensure it points to a valid supervisor shadow stack that is not currently active by verifying a 
supervisor shadow stack token at the address pointed to by the SSP. The operations performed to verify and 
acquire the supervisor shadow stack token by making it busy are as described in Section 18.2.3 of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

— IA32_PL2_SSP if transitioning to ring 2.

— IA32_PL1_SSP if transitioning to ring 1.

— IA32_PL0_SSP if transitioning to ring 0.
If shadow stack is enabled at the privilege level of the called procedure and the calling procedure was not at 
privilege level 3, then the processor pushes the temporarily saved CS, LIP (CS.base + EIP), and SSP of the 
calling procedure to the new shadow stack.1

7. Loads the segment selector for the new code segment and the new instruction pointer from the call gate into 
the CS and EIP registers, respectively.

8. Begins execution of the called procedure at the new privilege level.

When executing a return from the privileged procedure, the processor performs these actions:

1. Performs a privilege check.

2. Restores the CS and EIP registers to their values prior to the call.
If shadow stack is enabled at the current privilege level:

— Causes a control protection exception (#CP(FAR-RET/IRET)) if SSP is not aligned to 8 bytes.

— If the privilege level of the procedure being returned to is less than 3 (returning to supervisor mode):

• Compares the values on shadow stack at address SSP+8 (the LIP) and SSP+16 (the CS) to the CS and 
(CS.base + EIP) popped from the stack and causes a control protection exception (#CP(FAR-
RET/IRET)) if they do not match. 

• Temporarily saves the top-of-stack value (the SSP of the procedure being returned to) internally.

— If a busy supervisor shadow stack token is present at address SSP+24, then marks the token free using 
operations described in Section 18.2.3 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1.

— If the privilege level of the procedure being returned to is less than 3 (returning to supervisor mode), re-
stores the SSP register from the internally saved value.

— If the privilege level of the procedure being returned to is 3 (returning to user mode) and shadow stack is 
enabled at privilege level 3, then restores the SSP register with value of IA32_PL3_SSP MSR.

3. If the RET instruction has an optional n argument, increments the stack pointer by the number of bytes 
specified with the n operand to release parameters from the stack. If the call gate descriptor specifies that one 
or more parameters be copied from one stack to the other, a RET n instruction must be used to release the 
parameters from both stacks. Here, the n operand specifies the number of bytes occupied on each stack by the 
parameters. On a return, the processor increments ESP by n for each stack to step over (effectively remove) 
these parameters from the stacks.

4. Restores the SS and ESP registers to their values prior to the call, which causes a switch back to the stack of 
the calling procedure.

5. If the RET instruction has an optional n argument, increments the stack pointer by the number of bytes 
specified with the n operand to release parameters from the stack (see explanation in step 3).

6. Resumes execution of the calling procedure.

See Chapter 6, “Protection,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for 
detailed information on calls to privileged levels and the call gate descriptor.

1. If any of these pushes leads to an exception or a VM exit, the supervisor shadow-stack token remains busy.
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6.4.7 Branch Functions in 64-Bit Mode
The 64-bit extensions expand branching mechanisms to accommodate branches in 64-bit linear-address space. 
These are:
• Near-branch semantics are redefined in 64-bit mode.
• In 64-bit mode and compatibility mode, 64-bit call-gate descriptors for far calls are available.

In 64-bit mode, the operand size for all near branches (CALL, RET, JCC, JCXZ, JMP, and LOOP) is forced to 64 bits. 
These instructions update the 64-bit RIP without the need for a REX operand-size prefix. 

The following aspects of near branches are controlled by the effective operand size:
• Truncation of the size of the instruction pointer.
• Size of a stack pop or push, due to a CALL or RET.
• Size of a stack-pointer increment or decrement, due to a CALL or RET.
• Indirect-branch operand size.

In 64-bit mode, all of the above actions are forced to 64 bits regardless of operand size prefixes (operand size 
prefixes are silently ignored). However, the displacement field for relative branches is still limited to 32 bits and the 
address size for near branches is not forced in 64-bit mode. 

Address sizes affect the size of RCX used for JCXZ and LOOP; they also impact the address calculation for memory 
indirect branches. Such addresses are 64 bits by default; but they can be overridden to 32 bits by an address size 
prefix.

Software typically uses far branches to change privilege levels. The legacy IA-32 architecture provides the call-gate 
mechanism to allow software to branch from one privilege level to another, although call gates can also be used for 
branches that do not change privilege levels. When call gates are used, the selector portion of the direct or indirect 
pointer references a gate descriptor (the offset in the instruction is ignored). The offset to the destination’s code 
segment is taken from the call-gate descriptor. 

64-bit mode redefines the type value of a 32-bit call-gate descriptor type to a 64-bit call gate descriptor and 
expands the size of the 64-bit descriptor to hold a 64-bit offset. The 64-bit mode call-gate descriptor allows far 
branches that reference any location in the supported linear-address space. These call gates also hold the target 
code selector (CS), allowing changes to privilege level and default size as a result of the gate transition.

Because immediates are generally specified up to 32 bits, the only way to specify a full 64-bit absolute RIP in 64-
bit mode is with an indirect branch. For this reason, direct far branches are eliminated from the instruction set in 
64-bit mode.

64-bit mode also expands the semantics of the SYSENTER and SYSEXIT instructions so that the instructions 
operate within a 64-bit memory space. The mode also introduces two new instructions: SYSCALL and SYSRET 
(which are valid only in 64-bit mode). For details, see “SYSENTER—Fast System Call,” “SYSEXIT—Fast Return from 
Fast System Call,” “SYSCALL—Fast System Call,” and “SYSRET—Return From Fast System Call” in Chapter 4, 
“Instruction Set Reference, M-U,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2B.

6.5 INTERRUPTS AND EXCEPTIONS
The processor provides two mechanisms for interrupting program execution, interrupts, and exceptions:
• An interrupt is an asynchronous event that is typically triggered by an I/O device.
• An exception is a synchronous event that is generated when the processor detects one or more predefined 

conditions while executing an instruction. The IA-32 architecture specifies three classes of exceptions: faults, 
traps, and aborts. 

The processor responds to interrupts and exceptions in essentially the same way. When an interrupt or exception 
is signaled, the processor halts execution of the current program or task and switches to a handler procedure that 
has been written specifically to handle the interrupt or exception condition. The processor accesses the handler 
procedure through an entry in the interrupt descriptor table (IDT). When the handler has completed handling the 
interrupt or exception, program control is returned to the interrupted program or task.
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The operating system, executive, and/or device drivers normally handle interrupts and exceptions independently 
from application programs or tasks. Application programs can, however, access the interrupt and exception 
handlers incorporated in an operating system or executive through assembly-language calls. The remainder of this 
section gives a brief overview of the processor’s interrupt and exception handling mechanism. See Chapter 7, 
“Interrupt and Exception Handling,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3A, for a description of this mechanism.

The IA-32 Architecture defines 18 predefined interrupts and exceptions and 224 user defined interrupts, which are 
associated with entries in the IDT. Each interrupt and exception in the IDT is identified with a number, called a 
vector. Table 6-1 lists the interrupts and exceptions with entries in the IDT and their respective vectors. Vectors 0 
through 8, 10 through 14, and 16 through 19 are the predefined interrupts and exceptions; vectors 32 through 255 
are for software-defined interrupts, which are for either software interrupts or maskable hardware inter-
rupts.

Note that the processor defines several additional interrupts that do not point to entries in the IDT; the most 
notable of these interrupts is the SMI interrupt. See Chapter 7, “Interrupt and Exception Handling,” in the Intel® 

64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information about the interrupts 
and exceptions.

When the processor detects an interrupt or exception, it does one of the following things:
• Executes an implicit call to a handler procedure.
• Executes an implicit call to a handler task.

6.5.1 Call and Return Operation for Interrupt or Exception Handling Procedures
A call to an interrupt or exception handler procedure is similar to a procedure call to another protection level (see 
Section 6.4.6, “CALL and RET Operation Between Privilege Levels”). Here, the vector references one of two kinds 
of gates in the IDT: an interrupt gate or a trap gate. Interrupt and trap gates are similar to call gates in that they 
provide the following information:
• Access rights information
• The segment selector for the code segment that contains the handler procedure
• An offset into the code segment to the first instruction of the handler procedure

The difference between an interrupt gate and a trap gate is as follows. If an interrupt or exception handler is called 
through an interrupt gate, the processor clears the interrupt enable (IF) flag in the EFLAGS register to prevent 
subsequent interrupts from interfering with the execution of the handler. When a handler is called through a trap 
gate, the state of the IF flag is not changed.

Table 6-1.  Exceptions and Interrupts
Vector Mnemonic Description Source

 0 #DE Divide Error DIV and IDIV instructions.

 1 #DB Debug Any code or data reference.

 2 NMI Interrupt Non-maskable external interrupt.

 3 #BP Breakpoint INT3 instruction.

 4 #OF Overflow INTO instruction.

 5 #BR BOUND Range Exceeded BOUND instruction.

 6 #UD Invalid Opcode (Undefined Opcode) UD instruction or reserved opcode.

 7 #NM Device Not Available (No Math Coprocessor) Floating-point or WAIT/FWAIT instruction.

 8 #DF Double Fault Any instruction that can generate an exception, an NMI, or 
an INTR.

 9 #MF CoProcessor Segment Overrun (reserved) Floating-point instruction.1

10 #TS Invalid TSS Task switch or TSS access.

11 #NP Segment Not Present Loading segment registers or accessing system segments.
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If the code segment for the handler procedure has the same privilege level as the currently executing program or 
task, the handler procedure uses the current stack; if the handler executes at a more privileged level, the processor 
switches to the stack for the handler’s privilege level. 

If no stack switch occurs, the processor does the following when calling an interrupt or exception handler (see 
Figure 6-7):

1. Pushes the current contents of the EFLAGS, CS, and EIP registers (in that order) on the stack.
If shadow stack is enabled:

a. Temporarily saves the current value of the SSP register internally.

b. Pushes the current value of the CS register on the shadow stack.

c. Pushes the current value of LIP (CS.base + EIP) on the shadow stack.

d. Pushes the temporarily saved SSP value on the shadow stack.

2. Pushes an error code (if appropriate) on the stack.

3. Loads the segment selector for the new code segment and the new instruction pointer (from the interrupt gate 
or trap gate) into the CS and EIP registers, respectively.

4. If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

5. Begins execution of the handler procedure.

12 #SS Stack Segment Fault Stack operations and SS register loads.

13 #GP General Protection Any memory reference and other protection checks.

14 #PF Page Fault Any memory reference.

15 Reserved

16 #MF Floating-Point Error (Math Fault) Floating-point or WAIT/FWAIT instruction.

17 #AC Alignment Check Any data reference in memory.2

18 #MC Machine Check Error codes (if any) and source are model dependent.3

19 #XM SIMD Floating-Point Exception SIMD Floating-Point Instruction4

20 #VE Virtualization Exception EPT violations5

21 #CP Control Protection Exception The RET, IRET, RSTORSSP, and SETSSBSY instructions can 
generate this exception. When CET indirect branch tracking 
is enabled, this exception can be generated due to a 
missing ENDBRANCH instruction at the target of an indirect 
call or jump.

22-31 Reserved

32-255 Maskable Interrupts External interrupt from INTR pin or INT n instruction.

NOTES:
1. IA-32 processors after the Intel386 processor do not generate this exception.
2. This exception was introduced in the Intel486 processor.
3. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
4. This exception was introduced in the Pentium III processor.
5. This exception can occur only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.

Table 6-1.  Exceptions and Interrupts (Contd.)
Vector Mnemonic Description Source
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Figure 6-7.  Stack Usage on Transfers to Interrupt and Exception Handling Routines
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Figure 6-8.  Shadow Stack Usage on Transfers to Interrupt and Exception Handling Routines
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If a stack switch does occur, the processor does the following:

1. Temporarily saves (internally) the current contents of the SS, ESP, EFLAGS, CS, and EIP registers.

2. Loads the segment selector and stack pointer for the new stack (that is, the stack for the privilege level being 
called) from the TSS into the SS and ESP registers and switches to the new stack.

3. Pushes the temporarily saved SS, ESP, EFLAGS, CS, and EIP values for the interrupted procedure’s stack onto 
the new stack.
If shadow stack is enabled at the privilege level of the interrupted procedure, then the processor temporarily 
saves the SSP of the interrupted procedure internally. If the interrupted procedure is at privilege level 3, the 
SSP of the interrupted procedure is also saved into the IA32_PL3_SSP MSR.
If shadow stack is enabled at the privilege level being called, then the SSP for the called privilege level is 
obtained from one of the MSRs listed below, depending on the target privilege level. The SSP obtained is then 
verified to ensure it points to a valid supervisor shadow stack that is not currently active by verifying a 
supervisor shadow stack token at the address pointed to by the SSP. The operations performed to verify and 
acquire the supervisor shadow stack token by making it busy are as described in Section 18.2.3 of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

— IA32_PL2_SSP if transitioning to ring 2.

— IA32_PL1_SSP if transitioning to ring 1.

— IA32_PL0_SSP if transitioning to ring 0.
If shadow stack is enabled at the privilege level being called and the interrupted procedure was not at privilege 
level 3, then the processor pushes the temporarily saved CS, LIP (CS.base + EIP), and SSP of the interrupted 
procedure to the new shadow stack.1

4. Pushes an error code on the new stack (if appropriate).

5. Loads the segment selector for the new code segment and the new instruction pointer (from the interrupt gate 
or trap gate) into the CS and EIP registers, respectively.

6. If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

7. Begins execution of the handler procedure at the new privilege level.

A return from an interrupt or exception handler is initiated with the IRET instruction. The IRET instruction is similar 
to the far RET instruction, except that it also restores the contents of the EFLAGS register for the interrupted proce-
dure. When executing a return from an interrupt or exception handler from the same privilege level as the inter-
rupted procedure, the processor performs these actions:

1. Restores the CS and EIP registers to their values prior to the interrupt or exception.
If shadow stack is enabled:

a. Compares the values on the shadow stack at address SSP+8 (the LIP) and SSP+16 (the CS) to the CS and 
(CS.base + EIP) popped from the stack, and causes a control protection exception (#CP(FAR-RET/IRET)) if 
they do not match. 

b. Pops the top-of-stack value (the SSP prior to the interrupt or exception) from the shadow stack into the SSP 
register.

2. Restores the EFLAGS register.

3. Increments the stack pointer appropriately.

4. Resumes execution of the interrupted procedure.

When executing a return from an interrupt or exception handler from a different privilege level than the interrupted 
procedure, the processor performs these actions:

1. Performs a privilege check.

2. Restores the CS and EIP registers to their values prior to the interrupt or exception.

3. Restores the EFLAGS register.

1. If any of these pushes leads to an exception or a VM exit, the supervisor shadow-stack token remains busy.
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If shadow stack is enabled at the current privilege level:

— If SSP is not aligned to 8 bytes, then causes a control protection exception (#CP(FAR-RET/IRET)).

— If the privilege level of the procedure being returned to is less than 3 (returning to supervisor mode):

• Compares the values on the shadow stack at address SSP+8 (the LIP) and SSP+16 (the CS) to the CS 
and (CS.base + EIP) popped from the stack, and causes a control protection exception (#CP(FAR-
RET/IRET)) if they do not match. 

• Temporarily saves the top-of-stack value (the SSP of the procedure being returned to) internally.

— If a busy supervisor shadow stack token is present at address SSP+24, then marks the token free using 
operations described in Section 18.2.3 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1.

— If the privilege level of the procedure being returned to is less than 3 (returning to supervisor mode), 
restores the SSP register from the internally saved value.

— If the privilege level of the procedure being returned to is 3 (returning to user mode) and shadow stack is 
enabled at privilege level 3, then restores the SSP register with the value of the IA32_PL3_SSP MSR.

4. Restores the SS and ESP registers to their values prior to the interrupt or exception, resulting in a stack switch 
back to the stack of the interrupted procedure.

5. Resumes execution of the interrupted procedure.

6.5.2 Calls to Interrupt or Exception Handler Tasks
Interrupt and exception handler routines can also be executed in a separate task. Here, an interrupt or exception 
causes a task switch to a handler task. The handler task is given its own address space and (optionally) can execute 
at a higher protection level than application programs or tasks. 

The switch to the handler task is accomplished with an implicit task call that references a task gate descriptor. 
The task gate provides access to the address space for the handler task. As part of the task switch, the processor 
saves complete state information for the interrupted program or task. Upon returning from the handler task, the 
state of the interrupted program or task is restored and execution continues. See Chapter 7, “Interrupt and Excep-
tion Handling,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more infor-
mation on handling interrupts and exceptions through handler tasks.

6.5.3 Interrupt and Exception Handling in Real-Address Mode
When operating in real-address mode, the processor responds to an interrupt or exception with an implicit far call 
to an interrupt or exception handler. The processor uses the interrupt or exception vector as an index into an inter-
rupt table. The interrupt table contains instruction pointers to the interrupt and exception handler procedures.

The processor saves the state of the EFLAGS register, the EIP register, the CS register, and an optional error code 
on the stack before switching to the handler procedure.

A return from the interrupt or exception handler is carried out with the IRET instruction. 

See Chapter 22, “8086 Emulation,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3B, for more information on handling interrupts and exceptions in real-address mode.

6.5.4 INT n, INTO, INT3, INT1, and BOUND Instructions
The INT n, INTO, INT3, and BOUND instructions allow a program or task to explicitly call an interrupt or exception 
handler. The INT n instruction (opcode CD) uses a vector as an argument, which allows a program to call any inter-
rupt handler.

The INTO instruction (opcode CE) explicitly calls the overflow exception (#OF) handler if the overflow flag (OF) in 
the EFLAGS register is set. The OF flag indicates overflow on arithmetic instructions, but it does not automatically 
raise an overflow exception. An overflow exception can only be raised explicitly in either of the following ways:
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• Execute the INTO instruction.
• Test the OF flag and execute the INT n instruction with an argument of 4 (the vector of the overflow exception) 

if the flag is set.

Both the methods of dealing with overflow conditions allow a program to test for overflow at specific places in the 
instruction stream.

The INT3 instruction (opcode CC) explicitly calls the breakpoint exception (#BP) handler. Similarly, the INT1 
instruction (opcode F1) explicitly calls the debug exception (#DB) handler.1

The BOUND instruction explicitly calls the BOUND-range exceeded exception (#BR) handler if an operand is found 
to be not within predefined boundaries in memory. This instruction is provided for checking references to arrays 
and other data structures. Like the overflow exception, the BOUND-range exceeded exception can only be raised 
explicitly with the BOUND instruction or the INT n instruction with an argument of 5 (the vector of the bounds-
check exception). The processor does not implicitly perform bounds checks and raise the BOUND-range exceeded 
exception.

6.5.5 Handling Floating-Point Exceptions
When operating on individual or packed floating-point values, the IA-32 architecture supports a set of six floating-
point exceptions. These exceptions can be generated during operations performed by the x87 FPU instructions or 
by SSE/SSE2/SSE3 instructions. When an x87 FPU instruction (including the FISTTP instruction in SSE3) generates 
one or more of these exceptions, it in turn generates floating-point error exception (#MF); when an 
SSE/SSE2/SSE3 instruction generates a floating-point exception, it in turn generates SIMD floating-point excep-
tion (#XM). 

See the following sections for further descriptions of the floating-point exceptions, how they are generated, and 
how they are handled:
• Section 4.9.1, “Floating-Point Exception Conditions,” and Section 4.9.3, “Typical Actions of a Floating-Point 

Exception Handler.”
• Section 8.4, “x87 FPU Floating-Point Exception Handling,” and Section 8.5, “x87 FPU Floating-Point Exception 

Conditions.”
• Section 11.5.1, “SIMD Floating-Point Exceptions.”
• Interrupt Behavior.

6.5.6 Interrupt and Exception Behavior in 64-Bit Mode
64-bit extensions expand the legacy IA-32 interrupt-processing and exception-processing mechanism to allow 
support for 64-bit operating systems and applications. Changes include:
• All interrupt handlers pointed to by the IDT are 64-bit code (does not apply to the SMI handler).
• The size of interrupt-stack pushes is fixed at 64 bits. The processor uses 8-byte, zero extended stores.
• The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy environments, this push is 

conditional and based on a change in current privilege level (CPL).
• The new SS is set to NULL if there is a change in CPL.
• IRET behavior changes.
• There is a new interrupt stack-switch mechanism and a new interrupt shadow stack-switch mechanism.
• The alignment of interrupt stack frame is different.

1. Hardware vendors may use the INT1 instruction for hardware debug. For that reason, Intel recommends software vendors instead 
use the INT3 instruction for software breakpoints.
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6.6 PROCEDURE CALLS FOR BLOCK-STRUCTURED LANGUAGES
The IA-32 architecture supports an alternate method of performing procedure calls with the ENTER (enter proce-
dure) and LEAVE (leave procedure) instructions. These instructions automatically create and release, respectively, 
stack frames for called procedures. The stack frames have predefined spaces for local variables and the necessary 
pointers to allow coherent returns from called procedures. They also allow scope rules to be implemented so that 
procedures can access their own local variables and some number of other variables located in other stack frames.

ENTER and LEAVE offer two benefits:
• They provide machine-language support for implementing block-structured languages, such as C and Pascal. 
• They simplify procedure entry and exit in compiler-generated code.

6.6.1 ENTER Instruction
The ENTER instruction creates a stack frame compatible with the scope rules typically used in block-structured 
languages. In block-structured languages, the scope of a procedure is the set of variables to which it has access. 
The rules for scope vary among languages. They may be based on the nesting of procedures, the division of the 
program into separately compiled files, or some other modularization scheme.

ENTER has two operands. The first specifies the number of bytes to be reserved on the stack for dynamic storage 
for the procedure being called. Dynamic storage is the memory allocated for variables created when the procedure 
is called, also known as automatic variables. The second parameter is the lexical nesting level (from 0 to 31) of the 
procedure. The nesting level is the depth of a procedure in a hierarchy of procedure calls. The lexical level is unre-
lated to either the protection privilege level or to the I/O privilege level of the currently running program or task.

ENTER, in the following example, allocates 2 Kbytes of dynamic storage on the stack and sets up pointers to two 
previous stack frames in the stack frame for this procedure:

ENTER 2048,3

The lexical nesting level determines the number of stack frame pointers to copy into the new stack frame from the 
preceding frame. A stack frame pointer is a doubleword used to access the variables of a procedure. The set of 
stack frame pointers used by a procedure to access the variables of other procedures is called the display. The first 
doubleword in the display is a pointer to the previous stack frame. This pointer is used by a LEAVE instruction to 
undo the effect of an ENTER instruction by discarding the current stack frame.

After the ENTER instruction creates the display for a procedure, it allocates the dynamic local variables for the 
procedure by decrementing the contents of the ESP register by the number of bytes specified in the first parameter. 
This new value in the ESP register serves as the initial top-of-stack for all PUSH and POP operations within the 
procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP register pointing to the first 
doubleword in the display. Because stacks grow down, this is actually the doubleword with the highest address in 
the display. Data manipulation instructions that specify the EBP register as a base register automatically address 
locations within the stack segment instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical level is 0, the non-nested 
form is used. The non-nested form pushes the contents of the EBP register on the stack, copies the contents of the 
ESP register into the EBP register, and subtracts the first operand from the contents of the ESP register to allocate 
dynamic storage. The non-nested form differs from the nested form in that no stack frame pointers are copied. The 
nested form of the ENTER instruction occurs when the second parameter (lexical level) is not zero.

The following pseudo code shows the formal definition of the ENTER instruction. STORAGE is the number of bytes 
of dynamic storage to allocate for local variables, and LEVEL is the lexical nesting level.
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PUSH EBP;
FRAME_PTR := ESP;
IF LEVEL > 0 

THEN
DO (LEVEL − 1) times

EBP := EBP − 4;
PUSH Pointer(EBP); (* doubleword pointed to by EBP *)

OD;
PUSH FRAME_PTR;

FI;
EBP := FRAME_PTR;
ESP := ESP − STORAGE;

The main procedure (in which all other procedures are nested) operates at the highest lexical level, level 1. The 
first procedure it calls operates at the next deeper lexical level, level 2. A level 2 procedure can access the variables 
of the main program, which are at fixed locations specified by the compiler. In the case of level 1, the ENTER 
instruction allocates only the requested dynamic storage on the stack because there is no previous display to copy.

A procedure that calls another procedure at a lower lexical level gives the called procedure access to the variables 
of the caller. The ENTER instruction provides this access by placing a pointer to the calling procedure's stack frame 
in the display.

A procedure that calls another procedure at the same lexical level should not give access to its variables. In this 
case, the ENTER instruction copies only that part of the display from the calling procedure which refers to previ-
ously nested procedures operating at higher lexical levels. The new stack frame does not include the pointer for 
addressing the calling procedure’s stack frame.

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the same lexical level. In this case, 
each succeeding iteration of the re-entrant procedure can address only its own variables and the variables of the 
procedures within which it is nested. A re-entrant procedure always can address its own variables; it does not 
require pointers to the stack frames of previous iterations.

By copying only the stack frame pointers of procedures at higher lexical levels, the ENTER instruction makes 
certain that procedures access only those variables of higher lexical levels, not those at parallel lexical levels (see 
Figure 6-9).

Block-structured languages can use the lexical levels defined by ENTER to control access to the variables of nested 
procedures. In Figure 6-9, for example, if procedure A calls procedure B which, in turn, calls procedure C, then 
procedure C will have access to the variables of the MAIN procedure and procedure A, but not those of procedure 
B because they are at the same lexical level. The following definition describes the access to variables for the 
nested procedures in Figure 6-9.

1. MAIN has variables at fixed locations.

2. Procedure A can access only the variables of MAIN.

Figure 6-9.  Nested Procedures

Main (Lexical Level 1) 
Procedure A (Lexical Level 2) 
Procedure B (Lexical Level 3) 

Procedure C (Lexical Level 3)
Procedure D (Lexical Level 4) 
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3. Procedure B can access only the variables of procedure A and MAIN. Procedure B cannot access the variables of 
procedure C or procedure D.

4. Procedure C can access only the variables of procedure A and MAIN. Procedure C cannot access the variables of 
procedure B or procedure D.

5. Procedure D can access the variables of procedure C, procedure A, and MAIN. Procedure D cannot access the 
variables of procedure B.

In Figure 6-10, an ENTER instruction at the beginning of the MAIN procedure creates three doublewords of dynamic 
storage for MAIN, but copies no pointers from other stack frames. The first doubleword in the display holds a copy 
of the last value in the EBP register before the ENTER instruction was executed. The second doubleword holds a 
copy of the contents of the EBP register following the ENTER instruction. After the instruction is executed, the EBP 
register points to the first doubleword pushed on the stack, and the ESP register points to the last doubleword in 
the stack frame.

When MAIN calls procedure A, the ENTER instruction creates a new display (see Figure 6-11). The first doubleword 
is the last value held in MAIN's EBP register. The second doubleword is a pointer to MAIN's stack frame which is 
copied from the second doubleword in MAIN's display. This happens to be another copy of the last value held in 
MAIN’s EBP register. Procedure A can access variables in MAIN because MAIN is at level 1. 

Therefore the base address for the dynamic storage used in MAIN is the current address in the EBP register, plus 
four bytes to account for the saved contents of MAIN’s EBP register. All dynamic variables for MAIN are at fixed, 
positive offsets from this value. 

Figure 6-10.  Stack Frame After Entering the MAIN Procedure

Figure 6-11.  Stack Frame After Entering Procedure A
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When procedure A calls procedure B, the ENTER instruction creates a new display (see Figure 6-12). The first 
doubleword holds a copy of the last value in procedure A’s EBP register. The second and third doublewords are 
copies of the two stack frame pointers in procedure A’s display. Procedure B can access variables in procedure A 
and MAIN by using the stack frame pointers in its display.

When procedure B calls procedure C, the ENTER instruction creates a new display for procedure C (see 
Figure 6-13). The first doubleword holds a copy of the last value in procedure B’s EBP register. This is used by the 
LEAVE instruction to restore procedure B’s stack frame. The second and third doublewords are copies of the two 
stack frame pointers in procedure A’s display. If procedure C were at the next deeper lexical level from procedure 
B, a fourth doubleword would be copied, which would be the stack frame pointer to procedure B’s local variables. 

Note that procedure B and procedure C are at the same level, so procedure C is not intended to access procedure 
B’s variables. This does not mean that procedure C is completely isolated from procedure B; procedure C is called 
by procedure B, so the pointer to the returning stack frame is a pointer to procedure B’s stack frame. In addition, 
procedure B can pass parameters to procedure C either on the stack or through variables global to both procedures 
(that is, variables in the scope of both procedures).

Figure 6-12.  Stack Frame After Entering Procedure B
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6.6.2 LEAVE Instruction
The LEAVE instruction, which does not have any operands, reverses the action of the previous ENTER instruction. 
The LEAVE instruction copies the contents of the EBP register into the ESP register to release all stack space allo-
cated to the procedure. Then it restores the old value of the EBP register from the stack. This simultaneously 
restores the ESP register to its original value. A subsequent RET instruction then can remove any arguments and 
the return address pushed on the stack by the calling program for use by the procedure.

Figure 6-13.  Stack Frame After Entering Procedure C
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CHAPTER 7
PROGRAMMING WITH

GENERAL-PURPOSE INSTRUCTIONS

General-purpose (GP) instructions are a subset of the IA-32 instructions that represent the fundamental instruction 
set for the Intel IA-32 processors. These instructions were introduced into the IA-32 architecture with the first IA-
32 processors (the Intel 8086 and 8088). Additional instructions were added to the general-purpose instruction set 
in subsequent families of IA-32 processors (the Intel 286, Intel386, Intel486, Pentium, Pentium Pro, and Pentium 
II processors). 

Intel 64 architecture further extends the capability of most general-purpose instructions so that they are able to 
handle 64-bit data in 64-bit mode. A small number of general-purpose instructions (still supported in non-64-bit 
modes) are not supported in 64-bit mode.

General-purpose instructions perform basic data movement, memory addressing, arithmetic and logical, program 
flow control, input/output, and string operations on a set of integer, pointer, and BCD data types. This chapter 
provides an overview of the general-purpose instructions. See the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, for detailed descriptions of individual instructions.

7.1 PROGRAMMING ENVIRONMENT FOR GP INSTRUCTIONS
The programming environment for the general-purpose instructions consists of the set of registers and address 
space. The environment includes the following items:
• General-purpose registers — Eight 32-bit general-purpose registers (see Section 3.4.1, “General-Purpose 

Registers”) are used in non-64-bit modes to address operands in memory. These registers are referenced by 
the names EAX, EBX, ECX, EDX, EBP, ESI EDI, and ESP. 

• Segment registers — The six 16-bit segment registers contain segment pointers for use in accessing memory 
(see Section 3.4.2, “Segment Registers”). These registers are referenced by the names CS, DS, SS, ES, FS, and 
GS.

• EFLAGS register — This 32-bit register (see Section 3.4.3, “EFLAGS Register”) is used to provide status and 
control for basic arithmetic, compare, and system operations. 

• EIP register — This 32-bit register contains the current instruction pointer (see Section 3.5, “Instruction 
Pointer”). 

General-purpose instructions operate on the following data types. The width of valid data types is dependent on 
processor mode (see Chapter 4):
• Bytes, words, doublewords.
• Signed and unsigned byte, word, doubleword integers.
• Near and far pointers.
• Bit fields.
• BCD integers.

7.2 PROGRAMMING ENVIRONMENT FOR GP INSTRUCTIONS IN 64-BIT MODE
The programming environment for the general-purpose instructions in 64-bit mode is similar to that described in 
Section 7.1.
• General-purpose registers — In 64-bit mode, sixteen general-purpose registers available. These include the 

eight GPRs described in Section 7.1 and eight new GPRs (R8D-R15D). R8D-R15D are available by using a REX 
prefix. All sixteen GPRs can be promoted to 64 bits. The 64-bit registers are referenced as RAX, RBX, RCX, RDX, 
RBP, RSI, RDI, RSP, and R8-R15 (see Section 3.4.1.1, “General-Purpose Registers in 64-Bit Mode”). Promotion 
to 64-bit operand requires REX prefix encodings.
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• Segment registers — In 64-bit mode, segmentation is available but it is set up uniquely (see Section 3.4.2.1, 
“Segment Registers in 64-Bit Mode”).

• Flags and Status register — When the processor is running in 64-bit mode, EFLAGS becomes the 64-bit 
RFLAGS register (see Section 3.4.3, “EFLAGS Register”).

• Instruction Pointer register — In 64-bit mode, the EIP register becomes the 64-bit RIP register (see Section 
3.5.1, “Instruction Pointer in 64-Bit Mode”).

General-purpose instructions operate on the following data types in 64-bit mode. The width of valid data types is 
dependent on default operand size, address size, or a prefix that overrides the default size:
• Bytes, words, doublewords, quadwords.
• Signed and unsigned byte, word, doubleword, quadword integers.
• Near and far pointers.
• Bit fields.

See also: 
• Chapter 3, “Basic Execution Environment,” for more information about IA-32e modes.
• Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 

2A, for more detailed information about REX prefixes.
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, for a complete 

listing of all instructions. This information documents the behavior of individual instructions in the 64-bit mode 
context.

7.3 SUMMARY OF GP INSTRUCTIONS
General purpose instructions are divided into the following subgroups: 
• Data transfer.
• Binary arithmetic.
• Decimal arithmetic.
• Logical.
• Shift and rotate.
• Bit and byte.
• Control transfer.
• String.
• I/O.
• Enter and Leave.
• Flag control.
• Segment register.
• Miscellaneous.

Each sub-group of general-purpose instructions is discussed in the context of non-64-bit mode operation first. 
Changes in 64-bit mode beyond those affected by the use of the REX prefixes are discussed in separate sub-
sections within each subgroup. For a simple list of general-purpose instructions by subgroup, see Chapter 5.

7.3.1 Data Transfer Instructions
The data transfer instructions move bytes, words, doublewords, or quadwords both between memory and the 
processor’s registers and between registers. For the purpose of this discussion, these instructions are divided into 
subordinate subgroups that provide for:
• General data movement.
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• Exchange.
• Stack manipulation.
• Type conversion.

7.3.1.1  General Data Movement Instructions
Move instructions — The MOV (move) and CMOVcc (conditional move) instructions transfer data between 
memory and registers or between registers.

The MOV instruction performs basic load data and store data operations between memory and the processor’s 
registers and data movement operations between registers. It handles data transfers along the paths listed in Table 
7-1. (See “MOV—Move to/from Control Registers” and “MOV—Move to/from Debug Registers” in Chapter 4, 
“Instruction Set Reference, M-U,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A, for information on moving data to and from the control and debug registers.) 

The MOV instruction cannot move data from one memory location to another or from one segment register to 
another segment register. Memory-to-memory moves are performed with the MOVS (string move) instruction (see 
Section 7.3.9, “String Operations”). 

Conditional move instructions — The CMOVcc instructions are a group of instructions that check the state of the 
status flags in the EFLAGS register and perform a move operation if the flags are in a specified state. These instruc-
tions can be used to move a 16-bit or 32-bit value from memory to a general-purpose register or from one general-
purpose register to another. The flag state being tested is specified with a condition code (cc) associated with the 
instruction. If the condition is not satisfied, a move is not performed and execution continues with the instruction 
following the CMOVcc instruction.

Table 7-2 shows mnemonics for CMOVcc instructions and the conditions being tested for each instruction. The 
condition code mnemonics are appended to the letters “CMOV” to form the mnemonics for CMOVcc instructions. 
The instructions listed in Table 7-2 as pairs (for example, CMOVA/CMOVNBE) are alternate names for the same 
instruction. The assembler provides these alternate names to make it easier to read program listings.

CMOVcc instructions are useful for optimizing small IF constructions. They also help eliminate branching overhead 
for IF statements and the possibility of branch mispredictions by the processor. 

These conditional move instructions are supported in the P6 family, Pentium 4, and Intel Xeon processors. Software 
can check if CMOVcc instructions are supported by checking the processor’s feature information with the CPUID 
instruction.

Table 7-1.  Move Instruction Operations

Type of Data Movement Source → Destination

From memory to a register Memory location → General-purpose register

Memory location → Segment register

From a register to memory General-purpose register → Memory location

Segment register → Memory location

Between registers General-purpose register → General-purpose register

General-purpose register → Segment register

Segment register → General-purpose register

General-purpose register → Control register

Control register → General-purpose register

General-purpose register → Debug register

Debug register → General-purpose register

Immediate data to a register Immediate → General-purpose register

Immediate data to memory Immediate → Memory location
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7.3.1.2  Exchange Instructions 
The exchange instructions swap the contents of one or more operands and, in some cases, perform additional oper-
ations such as asserting the LOCK signal or modifying flags in the EFLAGS register.

The XCHG (exchange) instruction swaps the contents of two operands. This instruction takes the place of three 
MOV instructions and does not require a temporary location to save the contents of one operand location while the 
other is being loaded. When a memory operand is used with the XCHG instruction, the processor’s LOCK signal is 
automatically asserted. This instruction is thus useful for implementing semaphores or similar data structures for 
process synchronization. See “Bus Locking” in Chapter 10, “Multiple-Processor Management,”of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information on bus locking.

The BSWAP (byte swap) instruction reverses the byte order in a 32-bit register operand. Bit positions 0 through 7 
are exchanged with 24 through 31, and bit positions 8 through 15 are exchanged with 16 through 23. Executing 
this instruction twice in a row leaves the register with the same value as before. The BSWAP instruction is useful for 
converting between “big-endian” and “little-endian” data formats. This instruction also speeds execution of decimal 
arithmetic. (The XCHG instruction can be used to swap the bytes in a word.)

The XADD (exchange and add) instruction swaps two operands and then stores the sum of the two operands in the 
destination operand. The status flags in the EFLAGS register indicate the result of the addition. This instruction can 
be combined with the LOCK prefix (see “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set Refer-
ence, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A) in a multiprocessing 
system to allow multiple processors to execute one DO loop.

The CMPXCHG (compare and exchange) and CMPXCHG8B (compare and exchange 8 bytes) instructions are used 
to synchronize operations in systems that use multiple processors. The CMPXCHG instruction requires three oper-
ands: a source operand in a register, another source operand in the EAX register, and a destination operand. If 
the values contained in the destination operand and the EAX register are equal, the destination operand is 
replaced with the value of the other source operand (the value not in the EAX register). Otherwise, the original 

Table 7-2.  Conditional Move Instructions

Instruction Mnemonic Status Flag States Condition Description

Unsigned Conditional Moves

  CMOVA/CMOVNBE (CF or ZF) = 0 Above/not below or equal

  CMOVAE/CMOVNB CF = 0 Above or equal/not below

  CMOVNC CF = 0 Not carry

  CMOVB/CMOVNAE CF = 1 Below/not above or equal

  CMOVC CF = 1 Carry

  CMOVBE/CMOVNA (CF or ZF) = 1 Below or equal/not above

  CMOVE/CMOVZ ZF = 1 Equal/zero

  CMOVNE/CMOVNZ ZF = 0 Not equal/not zero

  CMOVP/CMOVPE PF = 1 Parity/parity even

  CMOVNP/CMOVPO PF = 0 Not parity/parity odd

Signed Conditional Moves

  CMOVGE/CMOVNL (SF xor OF) = 0 Greater or equal/not less

  CMOVL/CMOVNGE (SF xor OF) = 1 Less/not greater or equal

  CMOVLE/CMOVNG ((SF xor OF) or ZF) = 1 Less or equal/not greater

  CMOVO OF = 1 Overflow

  CMOVNO OF = 0 Not overflow

  CMOVS SF = 1 Sign (negative)

  CMOVNS SF = 0 Not sign (non-negative)
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value of the destination operand is loaded in the EAX register. The status flags in the EFLAGS register reflect the 
result that would have been obtained by subtracting the destination operand from the value in the EAX register.

The CMPXCHG instruction is commonly used for testing and modifying semaphores. It checks to see if a semaphore 
is free. If the semaphore is free, it is marked allocated; otherwise it gets the ID of the current owner. This is all done 
in one uninterruptible operation. In a single-processor system, the CMPXCHG instruction eliminates the need to 
switch to protection level 0 (to disable interrupts) before executing multiple instructions to test and modify a sema-
phore. 

For multiple processor systems, CMPXCHG can be combined with the LOCK prefix to perform the compare and 
exchange operation atomically. (See “Locked Atomic Operations” in Chapter 10, “Multiple-Processor Management,” 
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information on atomic 
operations.)

The CMPXCHG8B instruction also requires three operands: a 64-bit value in EDX:EAX, a 64-bit value in ECX:EBX, 
and a destination operand in memory. The instruction compares the 64-bit value in the EDX:EAX registers with the 
destination operand. If they are equal, the 64-bit value in the ECX:EBX registers is stored in the destination 
operand. If the EDX:EAX registers and the destination are not equal, the destination is loaded in the EDX:EAX 
registers. The CMPXCHG8B instruction can be combined with the LOCK prefix to perform the operation atomically.

7.3.1.3  Exchange Instructions in 64-Bit Mode 
The CMPXCHG16B instruction is available in 64-bit mode only. It is an extension of the functionality provided by 
CMPXCHG8B that operates on 128-bits of data.

7.3.1.4  Stack Manipulation Instructions
The PUSH, POP, PUSHA (push all registers), and POPA (pop all registers) instructions move data to and from the 
stack. The PUSH instruction decrements the stack pointer (contained in the ESP register), then copies the source 
operand to the top of stack (see Figure 7-1). It operates on memory operands, immediate operands, and register 
operands (including segment registers). The PUSH instruction is commonly used to place parameters on the stack 
before calling a procedure. It can also be used to reserve space on the stack for temporary variables.

The PUSHA instruction saves the contents of the eight general-purpose registers on the stack (see Figure 7-2). 
This instruction simplifies procedure calls by reducing the number of instructions required to save the contents of 
the general-purpose registers. The registers are pushed on the stack in the following order: EAX, ECX, EDX, EBX, 
the initial value of ESP before EAX was pushed, EBP, ESI, and EDI. 

Figure 7-1.  Operation of the PUSH Instruction
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The POP instruction copies the word or doubleword at the current top of stack (indicated by the ESP register) to the 
location specified with the destination operand. It then increments the ESP register to point to the new top of stack 
(see Figure 7-3). The destination operand may specify a general-purpose register, a segment register, or a memory 
location. 

The POPA instruction reverses the effect of the PUSHA instruction. It pops the top eight words or doublewords from 
the top of the stack into the general-purpose registers, except for the ESP register (see Figure 7-4). If the operand-
size attribute is 32, the doublewords on the stack are transferred to the registers in the following order: EDI, ESI, 
EBP, ignore doubleword, EBX, EDX, ECX, and EAX. The ESP register is restored by the action of popping the stack. 
If the operand-size attribute is 16, the words on the stack are transferred to the registers in the following order: DI, 
SI, BP, ignore word, BX, DX, CX, and AX.

Figure 7-2.  Operation of the PUSHA Instruction

Figure 7-3.  Operation of the POP Instruction

0Stack 31
Before Pushing Registers

Growth

ESPn - 4
n - 8

n

Stack

031
After Pushing Registers

ESP

EAX

EDI

EBX

EBP

ECX
EDX

Old ESP

ESI
n - 36

n - 20

n - 28

n - 12
n - 16

n - 24

n - 32

031Stack
After Popping Doubleword

Growth

ESPn - 4
n - 8

n

Stack
Before Popping Doubleword

ESPDoubleword Value

031
7-6 Vol. 1



PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
7.3.1.5  Stack Manipulation Instructions in 64-Bit Mode
In 64-bit mode, the stack pointer size is 64 bits and cannot be overridden by an instruction prefix. In implicit stack 
references, address-size overrides are ignored. Pushes and pops of 32-bit values on the stack are not possible in 
64-bit mode. 16-bit pushes and pops are supported by using the 66H operand-size prefix. PUSHA, PUSHAD, POPA, 
and POPAD are not supported.

7.3.1.6  Type Conversion Instructions
The type conversion instructions convert bytes into words, words into doublewords, and doublewords into quad-
words. These instructions are especially useful for converting integers to larger integer formats, because they 
perform sign extension (see Figure 7-5).

Two kinds of type conversion instructions are provided: simple conversion and move and convert.

Simple conversion — The CBW (convert byte to word), CWDE (convert word to doubleword extended), CWD 
(convert word to doubleword), and CDQ (convert doubleword to quadword) instructions perform sign extension to 
double the size of the source operand.

The CBW instruction copies the sign (bit 7) of the byte in the AL register into every bit position of the upper byte of 
the AX register. The CWDE instruction copies the sign (bit 15) of the word in the AX register into every bit position 
of the high word of the EAX register.

The CWD instruction copies the sign (bit 15) of the word in the AX register into every bit position in the DX register. 
The CDQ instruction copies the sign (bit 31) of the doubleword in the EAX register into every bit position in the EDX 
register. The CWD instruction can be used to produce a doubleword dividend from a word before a word division, 
and the CDQ instruction can be used to produce a quadword dividend from a doubleword before doubleword divi-
sion.

Figure 7-4.  Operation of the POPA Instruction

Figure 7-5.  Sign Extension
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Move with sign or zero extension — The MOVSX (move with sign extension) and MOVZX (move with zero 
extension) instructions move the source operand into a register then perform the sign extension.

The MOVSX instruction extends an 8-bit value to a 16-bit value or an 8-bit or 16-bit value to a 32-bit value by sign 
extending the source operand, as shown in Figure 7-5. The MOVZX instruction extends an 8-bit value to a 16-bit 
value or an 8-bit or 16-bit value to a 32-bit value by zero extending the source operand.

7.3.1.7  Type Conversion Instructions in 64-Bit Mode
The MOVSXD instruction operates on 64-bit data. It sign-extends a 32-bit value to 64 bits. This instruction is not 
encodable in non-64-bit modes.

7.3.2 Binary Arithmetic Instructions
Binary arithmetic instructions operate on 8-, 16-, and 32-bit numeric data encoded as signed or unsigned binary 
integers. The binary arithmetic instructions may also be used in algorithms that operate on decimal (BCD) values.

For the purpose of this discussion, these instructions are divided into subordinate subgroups of instructions that:
• Add and subtract.
• Increment and decrement.
• Compare and change signs.
• Multiply and divide.

7.3.2.1  Addition and Subtraction Instructions
The ADD (add integers), ADC (add integers with carry), SUB (subtract integers), and SBB (subtract integers with 
borrow) instructions perform addition and subtraction operations on signed or unsigned integer operands.

The ADD instruction computes the sum of two integer operands. 

The ADC instruction computes the sum of two integer operands, plus 1 if the CF flag is set. This instruction is used 
to propagate a carry when adding numbers in stages. 

The SUB instruction computes the difference of two integer operands. 

The SBB instruction computes the difference of two integer operands, minus 1 if the CF flag is set. This instruction 
is used to propagate a borrow when subtracting numbers in stages.

7.3.2.2  Increment and Decrement Instructions
The INC (increment) and DEC (decrement) instructions add 1 to or subtract 1 from an unsigned integer operand, 
respectively. A primary use of these instructions is for implementing counters.

7.3.2.3  Increment and Decrement Instructions in 64-Bit Mode
The INC and DEC instructions are supported in 64-bit mode. However, some forms of INC and DEC (the register 
operand being encoded using register extension field in the MOD R/M byte) are not encodable in 64-bit mode 
because the opcodes are treated as REX prefixes.

7.3.2.4  Comparison and Sign Change Instructions
The CMP (compare) instruction computes the difference between two integer operands and updates the OF, SF, ZF, 
AF, PF, and CF flags according to the result. The source operands are not modified, nor is the result saved. The CMP 
instruction is commonly used in conjunction with a Jcc (jump) or SETcc (byte set on condition) instruction, with the 
latter instructions performing an action based on the result of a CMP instruction.

The NEG (negate) instruction subtracts a signed integer operand from zero. The effect of the NEG instruction is to 
change the sign of a two's complement operand while keeping its magnitude.
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7.3.2.5  Multiplication and Division Instructions
The processor provides two multiply instructions, MUL (unsigned multiply) and IMUL (signed multiply), and two 
divide instructions, DIV (unsigned divide) and IDIV (signed divide).

The MUL instruction multiplies two unsigned integer operands. The result is computed to twice the size of the 
source operands (for example, if word operands are being multiplied, the result is a doubleword).

The IMUL instruction multiplies two signed integer operands. The result is computed to twice the size of the source 
operands; however, in some cases the result is truncated to the size of the source operands (see “IMUL—Signed 
Multiply” in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A).

The DIV instruction divides one unsigned operand by another unsigned operand and returns a quotient and a 
remainder.

The IDIV instruction is identical to the DIV instruction, except that IDIV performs a signed division.

7.3.3 Decimal Arithmetic Instructions
Decimal arithmetic can be performed by combining the binary arithmetic instructions ADD, SUB, MUL, and DIV 
(discussed in Section 7.3.2, “Binary Arithmetic Instructions”) with the decimal arithmetic instructions. The decimal 
arithmetic instructions are provided to carry out the following operations:
• To adjust the results of a previous binary arithmetic operation to produce a valid BCD result.
• To adjust the operands of a subsequent binary arithmetic operation so that the operation will produce a valid 

BCD result. 

These instructions operate on both packed and unpacked BCD values. For the purpose of this discussion, the 
decimal arithmetic instructions are divided into subordinate subgroups of instructions that provide:
• Packed BCD adjustments.
• Unpacked BCD adjustments.

7.3.3.1  Packed BCD Adjustment Instructions
The DAA (decimal adjust after addition) and DAS (decimal adjust after subtraction) instructions adjust the results 
of operations performed on packed BCD integers (see Section 4.7, “BCD and Packed BCD Integers”). Adding two 
packed BCD values requires two instructions: an ADD instruction followed by a DAA instruction. The ADD instruc-
tion adds (binary addition) the two values and stores the result in the AL register. The DAA instruction then adjusts 
the value in the AL register to obtain a valid, 2-digit, packed BCD value and sets the CF flag if a decimal carry 
occurred as the result of the addition.

Likewise, subtracting one packed BCD value from another requires a SUB instruction followed by a DAS instruction. 
The SUB instruction subtracts (binary subtraction) one BCD value from another and stores the result in the AL 
register. The DAS instruction then adjusts the value in the AL register to obtain a valid, 2-digit, packed BCD value 
and sets the CF flag if a decimal borrow occurred as the result of the subtraction. 

7.3.3.2  Unpacked BCD Adjustment Instructions
The AAA (ASCII adjust after addition), AAS (ASCII adjust after subtraction), AAM (ASCII adjust after multiplica-
tion), and AAD (ASCII adjust before division) instructions adjust the results of arithmetic operations performed 
on unpacked BCD values (see Section 4.7, “BCD and Packed BCD Integers”). All these instructions assume that 
the value to be adjusted is stored in the AL register or, in one instance, the AL and AH registers. 

The AAA instruction adjusts the contents of the AL register following the addition of two unpacked BCD values. It 
converts the binary value in the AL register into a decimal value and stores the result in the AL register in unpacked 
BCD format (the decimal number is stored in the lower 4 bits of the register and the upper 4 bits are cleared). If a 
decimal carry occurred as a result of the addition, the CF flag is set and the contents of the AH register are incre-
mented by 1.
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The AAS instruction adjusts the contents of the AL register following the subtraction of two unpacked BCD values. 
Here again, a binary value is converted into an unpacked BCD value. If a borrow was required to complete the 
decimal subtract, the CF flag is set and the contents of the AH register are decremented by 1.

The AAM instruction adjusts the contents of the AL register following a multiplication of two unpacked BCD values. 
It converts the binary value in the AL register into a decimal value and stores the least significant digit of the result 
in the AL register (in unpacked BCD format) and the most significant digit, if there is one, in the AH register (also 
in unpacked BCD format).

The AAD instruction adjusts a two-digit BCD value so that when the value is divided with the DIV instruction, a valid 
unpacked BCD result is obtained. The instruction converts the BCD value in registers AH (most significant digit) and 
AL (least significant digit) into a binary value and stores the result in register AL. When the value in AL is divided by 
an unpacked BCD value, the quotient and remainder will be automatically encoded in unpacked BCD format.

7.3.4 Decimal Arithmetic Instructions in 64-Bit Mode
Decimal arithmetic instructions are not supported in 64-bit mode, they are either invalid or not encodable.

7.3.5 Logical Instructions
The logical instructions AND, OR, XOR (exclusive or), and NOT perform the standard Boolean operations for which 
they are named. The AND, OR, and XOR instructions require two operands; the NOT instruction operates on a 
single operand.

7.3.6 Shift and Rotate Instructions
The shift and rotate instructions rearrange the bits within an operand. For the purpose of this discussion, these 
instructions are further divided into subordinate subgroups of instructions that:
• Shift bits
• Double-shift bits (move them between operands)
• Rotate bits

7.3.6.1  Shift Instructions
The SAL (shift arithmetic left), SHL (shift logical left), SAR (shift arithmetic right), SHR (shift logical right) instruc-
tions perform an arithmetic or logical shift of the bits in a byte, word, or doubleword. 

The SAL and SHL instructions perform the same operation (see Figure 7-6). They shift the source operand left by 
from 1 to 31 bit positions. Empty bit positions are cleared. The CF flag is loaded with the last bit shifted out of the 
operand.
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The SHR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure 7-7). As with the 
SHL/SAL instruction, the empty bit positions are cleared and the CF flag is loaded with the last bit shifted out of the 
operand.

The SAR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure 7-8). This instruction 
differs from the SHR instruction in that it preserves the sign of the source operand by clearing empty bit positions 
if the operand is positive or setting the empty bits if the operand is negative. Again, the CF flag is loaded with the 
last bit shifted out of the operand.

The SAR and SHR instructions can also be used to perform division by powers of 2 (see “SAL/SAR/SHL/SHR—Shift 
Instructions” in Chapter 4, “Instruction Set Reference, M-U,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B).

Figure 7-6.  SHL/SAL Instruction Operation

Figure 7-7.  SHR Instruction Operation
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0
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After 10-bit SHR Instruction
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7.3.6.2  Double-Shift Instructions
The SHLD (shift left double) and SHRD (shift right double) instructions shift a specified number of bits from one 
operand to another (see Figure 7-9). They are provided to facilitate operations on unaligned bit strings. They can 
also be used to implement a variety of bit string move operations. 

The SHLD instruction shifts the bits in the destination operand to the left and fills the empty bit positions (in the 
destination operand) with bits shifted out of the source operand. The destination and source operands must be the 
same length (either words or doublewords). The shift count can range from 0 to 31 bits. The result of this shift 
operation is stored in the destination operand, and the source operand is not modified. The CF flag is loaded with 
the last bit shifted out of the destination operand.

The SHRD instruction operates the same as the SHLD instruction except bits are shifted to the right in the destina-
tion operand, with the empty bit positions filled with bits shifted out of the source operand.

Figure 7-8.  SAR Instruction Operation

Figure 7-9.  SHLD and SHRD Instruction Operations

0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  1  1 X

Initial State (Positive Operand) CF

0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  1 1

After 1-bit SAR Instruction

1  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  1  1 X
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Operand

1  1  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  1 1

After 1-bit SAR Instruction
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31 0

Source (Register)

31 0
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31 0

Source (Register)

31 0

SHRD Instruction

SHLD Instruction
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7.3.6.3  Rotate Instructions
The ROL (rotate left), ROR (rotate right), RCL (rotate through carry left) and RCR (rotate through carry right) 
instructions rotate the bits in the destination operand out of one end and back through the other end (see 
Figure 7-10). Unlike a shift, no bits are lost during a rotation. The rotate count can range from 0 to 31.

The ROL instruction rotates the bits in the operand to the left (toward more significant bit locations). The ROR 
instruction rotates the operand right (toward less significant bit locations).

The RCL instruction rotates the bits in the operand to the left, through the CF flag. This instruction treats the CF flag 
as a one-bit extension on the upper end of the operand. Each bit that exits from the most significant bit location of 
the operand moves into the CF flag. At the same time, the bit in the CF flag enters the least significant bit location 
of the operand.

The RCR instruction rotates the bits in the operand to the right through the CF flag. 

For all the rotate instructions, the CF flag always contains the value of the last bit rotated out of the operand, even 
if the instruction does not use the CF flag as an extension of the operand. The value of this flag can then be tested 
by a conditional jump instruction (JC or JNC).

7.3.7 Bit and Byte Instructions
These instructions operate on bit or byte strings. For the purpose of this discussion, they are further divided into 
subordinate subgroups that:
• Test and modify a single bit.
• Scan a bit string.
• Set a byte given conditions.
• Test operands and report results.

Figure 7-10.  ROL, ROR, RCL, and RCR Instruction Operations

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

031

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

31 0

ROL Instruction

RCL Instruction

RCR Instruction

ROR Instruction
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7.3.7.1  Bit Test and Modify Instructions
The bit test and modify instructions (see Table 7-3) operate on a single bit, which can be in an operand. The loca-
tion of the bit is specified as an offset from the least significant bit of the operand. When the processor identifies 
the bit to be tested and modified, it first loads the CF flag with the current value of the bit. Then it assigns a new 
value to the selected bit, as determined by the modify operation for the instruction. 

7.3.7.2  Bit Scan Instructions
The BSF (bit scan forward) and BSR (bit scan reverse) instructions scan a bit string in a source operand for a set bit 
and store the bit index of the first set bit found in a destination register. The bit index is the offset from the least 
significant bit (bit 0) in the bit string to the first set bit. The BSF instruction scans the source operand low-to-high 
(from bit 0 of the source operand toward the most significant bit); the BSR instruction scans high-to-low (from the 
most significant bit toward the least significant bit).

7.3.7.3  Byte Set on Condition Instructions
The SETcc (set byte on condition) instructions set a destination-operand byte to 0 or 1, depending on the state of 
selected status flags (CF, OF, SF, ZF, and PF) in the EFLAGS register. The suffix (cc) added to the SET mnemonic 
determines the condition being tested for. 

For example, the SETO instruction tests for overflow. If the OF flag is set, the destination byte is set to 1; if OF is 
clear, the destination byte is cleared to 0. Appendix B, “EFLAGS Condition Codes,” lists the conditions it is possible 
to test for with this instruction.

7.3.7.4  Test Instruction
The TEST instruction performs a logical AND of two operands and sets the SF, ZF, and PF flags according to the 
results. The flags can then be tested by the conditional jump or loop instructions or the SETcc instructions. The 
TEST instruction differs from the AND instruction in that it does not alter either of the operands.

7.3.8 Control Transfer Instructions
The processor provides both conditional and unconditional control transfer instructions to direct the flow of 
program execution. Conditional transfers are taken only for specified states of the status flags in the EFLAGS 
register. Unconditional control transfers are always executed.

For the purpose of this discussion, these instructions are further divided into subordinate subgroups that process:
• Unconditional transfers.
• Conditional transfers.
• Software interrupts.

7.3.8.1  Unconditional Transfer Instructions
The JMP, CALL, RET, INT, and IRET instructions transfer program control to another location (destination address) 
in the instruction stream. The destination can be within the same code segment (near transfer) or in a different 
code segment (far transfer).

Table 7-3.  Bit Test and Modify Instructions

Instruction Effect on CF Flag Effect on Selected Bit

BT (Bit Test) CF flag ← Selected Bit No effect

BTS (Bit Test and Set) CF flag ← Selected Bit Selected Bit ← 1

BTR (Bit Test and Reset) CF flag ← Selected Bit Selected Bit ← 0

BTC (Bit Test and Complement) CF flag ← Selected Bit Selected Bit ← NOT (Selected Bit)
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Jump instruction — The JMP (jump) instruction unconditionally transfers program control to a destination 
instruction. The transfer is one-way; that is, a return address is not saved. A destination operand specifies the 
address (the instruction pointer) of the destination instruction. The address can be a relative address or an 
absolute address.

A relative address is a displacement (offset) with respect to the address in the EIP register. The destination 
address (a near pointer) is formed by adding the displacement to the address in the EIP register. The displacement 
is specified with a signed integer, allowing jumps either forward or backward in the instruction stream.

An absolute address is a offset from address 0 of a segment. It can be specified in either of the following ways:
• An address in a general-purpose register — This address is treated as a near pointer, which is copied into 

the EIP register. Program execution then continues at the new address within the current code segment.
• An address specified using the standard addressing modes of the processor — Here, the address can 

be a near pointer or a far pointer. If the address is for a near pointer, the address is translated into an offset and 
copied into the EIP register. If the address is for a far pointer, the address is translated into a segment selector 
(which is copied into the CS register) and an offset (which is copied into the EIP register).

In protected mode, the JMP instruction also allows jumps to a call gate, a task gate, and a task-state segment.

Call and return instructions — The CALL (call procedure) and RET (return from procedure) instructions allow a 
jump from one procedure (or subroutine) to another and a subsequent jump back (return) to the calling procedure.

The CALL instruction transfers program control from the current (or calling) procedure to another procedure (the 
called procedure). To allow a subsequent return to the calling procedure, the CALL instruction saves the current 
contents of the EIP register on the stack before jumping to the called procedure. The EIP register (prior to trans-
ferring program control) contains the address of the instruction following the CALL instruction. When this address 
is pushed on the stack, it is referred to as the return instruction pointer or return address.

The address of the called procedure (the address of the first instruction in the procedure being jumped to) is spec-
ified in a CALL instruction the same way as it is in a JMP instruction (see “Jump instruction” on page 7-15). The 
address can be specified as a relative address or an absolute address. If an absolute address is specified, it can be 
either a near or a far pointer.

The RET instruction transfers program control from the procedure currently being executed (the called procedure) 
back to the procedure that called it (the calling procedure). Transfer of control is accomplished by copying the 
return instruction pointer from the stack into the EIP register. Program execution then continues with the instruc-
tion pointed to by the EIP register.

The RET instruction has an optional operand, the value of which is added to the contents of the ESP register as part 
of the return operation. This operand allows the stack pointer to be incremented to remove parameters from the 
stack that were pushed on the stack by the calling procedure.

See Section 6.4, “Calling Procedures Using CALL and RET,” for more information on the mechanics of making proce-
dure calls with the CALL and RET instructions.

Return from interrupt instruction — When the processor services an interrupt, it performs an implicit call to an 
interrupt-handling procedure. The IRET (return from interrupt) instruction returns program control from an inter-
rupt handler to the interrupted procedure (that is, the procedure that was executing when the interrupt occurred). 
The IRET instruction performs a similar operation to the RET instruction (see “Call and return instructions” on page 
7-15) except that it also restores the EFLAGS register from the stack. The contents of the EFLAGS register are 
automatically stored on the stack along with the return instruction pointer when the processor services an inter-
rupt.

7.3.8.2  Conditional Transfer Instructions
The conditional transfer instructions execute jumps or loops that transfer program control to another instruction in 
the instruction stream if specified conditions are met. The conditions for control transfer are specified with a set of 
condition codes that define various states of the status flags (CF, ZF, OF, PF, and SF) in the EFLAGS register.

Conditional jump instructions — The Jcc (conditional) jump instructions transfer program control to a destina-
tion instruction if the conditions specified with the condition code (cc) associated with the instruction are satisfied 
(see Table 7-4). If the condition is not satisfied, execution continues with the instruction following the Jcc instruc-
tion. As with the JMP instruction, the transfer is one-way; that is, a return address is not saved.
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The destination operand specifies a relative address (a signed offset with respect to the address in the EIP register) 
that points to an instruction in the current code segment. The Jcc instructions do not support far transfers; 
however, far transfers can be accomplished with a combination of a Jcc and a JMP instruction (see “Jcc—Jump if 
Condition Is Met” in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A).

Table 7-4 shows the mnemonics for the Jcc instructions and the conditions being tested for each instruction. The 
condition code mnemonics are appended to the letter “J” to form the mnemonic for a Jcc instruction. The instruc-
tions are divided into two groups: unsigned and signed conditional jumps. These groups correspond to the results 
of operations performed on unsigned and signed integers respectively. Those instructions listed as pairs (for 
example, JA/JNBE) are alternate names for the same instruction. Assemblers provide alternate names to make it 
easier to read program listings.

The JCXZ and JECXZ instructions test the CX and ECX registers, respectively, instead of one or more status flags. 
See “Jump if zero instructions” on page 7-17 for more information about these instructions.

Loop instructions — The LOOP, LOOPE (loop while equal), LOOPZ (loop while zero), LOOPNE (loop while not 
equal), and LOOPNZ (loop while not zero) instructions are conditional jump instructions that use the value of the 
ECX register as a count for the number of times to execute a loop. All the loop instructions decrement the count in 
the ECX register each time they are executed and terminate a loop when zero is reached. The LOOPE, LOOPZ, 
LOOPNE, and LOOPNZ instructions also accept the ZF flag as a condition for terminating the loop before the count 
reaches zero.

The LOOP instruction decrements the contents of the ECX register (or the CX register, if the address-size attribute 
is 16), then tests the register for the loop-termination condition. If the count in the ECX register is non-zero, 
program control is transferred to the instruction address specified by the destination operand. The destination 

Table 7-4.  Conditional Jump Instructions 
Instruction Mnemonic Condition (Flag States) Description

Unsigned Conditional Jumps

  JA/JNBE (CF or ZF) = 0 Above/not below or equal

  JAE/JNB CF = 0 Above or equal/not below

  JB/JNAE CF = 1 Below/not above or equal

  JBE/JNA (CF or ZF) = 1 Below or equal/not above

  JC CF = 1 Carry

  JE/JZ ZF = 1 Equal/zero

  JNC CF = 0 Not carry

  JNE/JNZ ZF = 0 Not equal/not zero

  JNP/JPO PF = 0 Not parity/parity odd

  JP/JPE PF = 1 Parity/parity even

  JCXZ CX = 0 Register CX is zero

  JECXZ ECX = 0 Register ECX is zero

Signed Conditional Jumps

  JG/JNLE ((SF xor OF) or ZF) = 0 Greater/not less or equal

  JGE/JNL (SF xor OF) = 0 Greater or equal/not less

  JL/JNGE (SF xor OF) = 1 Less/not greater or equal

  JLE/JNG ((SF xor OF) or ZF) = 1 Less or equal/not greater

  JNO OF = 0 Not overflow

  JNS SF = 0 Not sign (non-negative)

  JO OF = 1 Overflow

  JS SF = 1 Sign (negative)
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operand is a relative address (that is, an offset relative to the contents of the EIP register), and it generally points 
to the first instruction in the block of code that is to be executed in the loop. When the count in the ECX register 
reaches zero, program control is transferred to the instruction immediately following the LOOP instruction, 
which terminates the loop. If the count in the ECX register is zero when the LOOP instruction is first executed, the 
register is pre-decremented to FFFFFFFFH, causing the loop to be executed 232 times.

The LOOPE and LOOPZ instructions perform the same operation (they are mnemonics for the same instruction). 
These instructions operate the same as the LOOP instruction, except that they also test the ZF flag. 

If the count in the ECX register is not zero and the ZF flag is set, program control is transferred to the destination 
operand. When the count reaches zero or the ZF flag is clear, the loop is terminated by transferring program control 
to the instruction immediately following the LOOPE/LOOPZ instruction.

The LOOPNE and LOOPNZ instructions (mnemonics for the same instruction) operate the same as the 
LOOPE/LOOPZ instructions, except that they terminate the loop if the ZF flag is set. 

Jump if zero instructions — The JECXZ (jump if ECX zero) instruction jumps to the location specified in the desti-
nation operand if the ECX register contains the value zero. This instruction can be used in combination with a loop 
instruction (LOOP, LOOPE, LOOPZ, LOOPNE, or LOOPNZ) to test the ECX register prior to beginning a loop. As 
described in “Loop instructions” on page 7-16, the loop instructions decrement the contents of the ECX register 
before testing for zero. If the value in the ECX register is zero initially, it will be decremented to FFFFFFFFH on the 
first loop instruction, causing the loop to be executed 232 times. To prevent this problem, a JECXZ instruction can 
be inserted at the beginning of the code block for the loop, causing a jump out of the loop if the ECX register count 
is initially zero. When used with repeated string scan and compare instructions, the JECXZ instruction can deter-
mine whether the loop terminated because the count reached zero or because the scan or compare conditions were 
satisfied.

The JCXZ (jump if CX is zero) instruction operates the same as the JECXZ instruction when the 16-bit address-size 
attribute is used. Here, the CX register is tested for zero.

7.3.8.3  Control Transfer Instructions in 64-Bit Mode
In 64-bit mode, the operand size for all near branches (CALL, RET, JCC, JCXZ, JMP, and LOOP) is forced to 64 bits. 
The listed instructions update the 64-bit RIP without need for a REX operand-size prefix. 

Near branches in the following operations are forced to 64-bits (regardless of operand size prefixes):
• Truncation of the size of the instruction pointer.
• Size of a stack pop or push, due to CALL or RET.
• Size of a stack-pointer increment or decrement, due to CALL or RET.
• Indirect-branch operand size.

Note that the displacement field for relative branches is still limited to 32 bits and the address size for near 
branches is not forced.

Address size determines the register size (CX/ECX/RCX) used for JCXZ and LOOP. It also impacts the address 
calculation for memory indirect branches. Addresses size is 64 bits by default, although it can be over-ridden to 32 
bits (using a prefix).

7.3.8.4  Software Interrupt Instructions
The INT n (software interrupt), INTO (interrupt on overflow), and BOUND (detect value out of range) instructions 
allow a program to explicitly raise a specified interrupt or exception, which in turn causes the handler routine for 
the interrupt or exception to be called.

The INT n instruction can raise any of the processor’s interrupts or exceptions by encoding the vector of the inter-
rupt or exception in the instruction. This instruction can be used to support software generated interrupts or to test 
the operation of interrupt and exception handlers.

The IRET (return from interrupt) instruction returns program control from an interrupt handler to the interrupted 
procedure. The IRET instruction performs a similar operation to the RET instruction. 
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The CALL (call procedure) and RET (return from procedure) instructions allow a jump from one procedure to 
another and a subsequent return to the calling procedure. EFLAGS register contents are automatically stored on 
the stack along with the return instruction pointer when the processor services an interrupt.

The INTO instruction raises the overflow exception if the OF flag is set. If the flag is clear, execution continues 
without raising the exception. This instruction allows software to access the overflow exception handler explicitly to 
check for overflow conditions.

The BOUND instruction compares a signed value against upper and lower bounds, and raises the “BOUND range 
exceeded” exception if the value is less than the lower bound or greater than the upper bound. This instruction is 
useful for operations such as checking an array index to make sure it falls within the range defined for the array.

7.3.8.5  Software Interrupt Instructions in 64-Bit Mode and Compatibility Mode
In 64-bit mode, the stack size is 8 bytes wide. IRET must pop 8-byte items off the stack. SS:RSP pops uncondition-
ally. BOUND is not supported.

In compatibility mode, SS:RSP is popped only if the CPL changes.

7.3.9 String Operations
The GP instructions includes a set of string instructions that are designed to access large data structures; these 
are introduced in Section 7.3.9.1. Section 7.3.9.2 describes how REP prefixes can be used with these instructions 
to perform more complex repeated string operations. Certain processors optimize repeated string operations 
with fast-string operation, as described in Section 7.3.9.3. Section 7.3.9.4 explains how string operations can be 
used in 64-bit mode.

7.3.9.1  String Instructions
The MOVS (Move String), CMPS (Compare string), SCAS (Scan string), LODS (Load string), and STOS (Store 
string) instructions permit large data structures, such as alphanumeric character strings, to be moved and exam-
ined in memory. These instructions operate on individual elements in a string, which can be a byte, word, or 
doubleword. The string elements to be operated on are identified with the ESI (source string element) and EDI 
(destination string element) registers. Both of these registers contain absolute addresses (offsets into a segment) 
that point to a string element. 

By default, the ESI register addresses the segment identified with the DS segment register. A segment-override 
prefix allows the ESI register to be associated with the CS, SS, ES, FS, or GS segment register. The EDI register 
addresses the segment identified with the ES segment register; no segment override is allowed for the EDI register. 
The use of two different segment registers in the string instructions permits operations to be performed on strings 
located in different segments. Or by associating the ESI register with the ES segment register, both the source and 
destination strings can be located in the same segment. (This latter condition can also be achieved by loading the 
DS and ES segment registers with the same segment selector and allowing the ESI register to default to the DS 
register.)

The MOVS instruction moves the string element addressed by the ESI register to the location addressed by the EDI 
register. The assembler recognizes three “short forms” of this instruction, which specify the size of the string to be 
moved: MOVSB (move byte string), MOVSW (move word string), and MOVSD (move doubleword string).

The CMPS instruction subtracts the destination string element from the source string element and updates the 
status flags (CF, ZF, OF, SF, PF, and AF) in the EFLAGS register according to the results. Neither string element is 
written back to memory. The assembler recognizes three “short forms” of the CMPS instruction: CMPSB (compare 
byte strings), CMPSW (compare word strings), and CMPSD (compare doubleword strings).

The SCAS instruction subtracts the destination string element from the contents of the EAX, AX, or AL register 
(depending on operand length) and updates the status flags according to the results. The string element and 
register contents are not modified. The following “short forms” of the SCAS instruction specify the operand length: 
SCASB (scan byte string), SCASW (scan word string), and SCASD (scan doubleword string).

The LODS instruction loads the source string element identified by the ESI register into the EAX register (for a 
doubleword string), the AX register (for a word string), or the AL register (for a byte string). The “short forms” for 
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this instruction are LODSB (load byte string), LODSW (load word string), and LODSD (load doubleword string). This 
instruction is usually used in a loop, where other instructions process each element of the string after they are 
loaded into the target register.

The STOS instruction stores the source string element from the EAX (doubleword string), AX (word string), or AL 
(byte string) register into the memory location identified with the EDI register. The “short forms” for this instruction 
are STOSB (store byte string), STOSW (store word string), and STOSD (store doubleword string). This instruction 
is also normally used in a loop. Here a string is commonly loaded into the register with a LODS instruction, oper-
ated on by other instructions, and then stored again in memory with a STOS instruction.

The I/O instructions (see Section 7.3.10, “I/O Instructions”) also perform operations on strings in memory.

7.3.9.2  Repeated String Operations
Each of the string instructions described in Section 7.3.9.1 perform one iteration of a string operation. To operate 
on strings longer than a doubleword, the string instructions can be combined with a repeat prefix (REP) to create a 
repeating instruction or be placed in a loop.

When used in string instructions, the ESI and EDI registers are automatically incremented or decremented after 
each iteration of an instruction to point to the next element (byte, word, or doubleword) in the string. String oper-
ations can thus begin at higher addresses and work toward lower ones, or they can begin at lower addresses and 
work toward higher ones. The DF flag in the EFLAGS register controls whether the registers are incremented (DF = 
0) or decremented (DF = 1). The STD and CLD instructions set and clear this flag, respectively.

The following repeat prefixes can be used in conjunction with a count in the ECX register to cause a string instruc-
tion to repeat:
• REP — Repeat while the ECX register not zero.
• REPE/REPZ — Repeat while the ECX register not zero and the ZF flag is set.
• REPNE/REPNZ — Repeat while the ECX register not zero and the ZF flag is clear.

When a string instruction has a repeat prefix, the operation executes until one of the termination conditions spec-
ified by the prefix is satisfied. The REPE/REPZ and REPNE/REPNZ prefixes are used only with the CMPS and SCAS 
instructions. Also, note that a REP STOS instruction is the fastest way to initialize a large block of memory.

7.3.9.3  Fast-String Operation
To improve performance, more recent processors support modifications to the processor’s operation during the 
string store operations initiated with the MOVS, MOVSB, STOS, and STOSB instructions. This optimized operation, 
called fast-string operation, is used when the execution of one of those instructions meets certain initial condi-
tions (see below). Instructions using fast-string operation effectively operate on the string in groups that may 
include multiple elements of the native data size (byte, word, doubleword, or quadword). With fast-string opera-
tion, the processor recognizes interrupts and data breakpoints only on boundaries between these groups. Fast-
string operation is used only if the source and destination addresses both use either the WB or WC memory types.

The initial conditions for fast-string operation are implementation-specific and may vary with the native string size. 
Examples of parameters that may impact the use of fast-string operation include the following:
• The alignment indicated in the EDI and ESI alignment registers.
• The address order of the string operation.
• The value of the initial operation counter (ECX).
• The difference between the source and destination addresses.

NOTE
Initial conditions for fast-string operation in future Intel 64 or IA-32 processor families may differ 
from above. The Intel® 64 and IA-32 Architectures Optimization Reference Manual may contain 
model-specific information.
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Software can disable fast-string operation by clearing the fast-string-enable bit (bit 0) of IA32_MISC_ENABLE MSR. 
However, Intel recommends that system software always enable fast-string operation. 

When fast-string operation is enabled (because IA32_MISC_ENABLE[0] = 1), some processors may further 
enhance the operation of the REP MOVSB and REP STOSB instructions. A processor supports these enhancements 
if CPUID.(EAX=07H, ECX=0H):EBX[bit 9] is 1. The Intel® 64 and IA-32 Architectures Optimization Reference 
Manual may include model-specific recommendations for use of these enhancements.

The stores produced by fast-string operation may appear to execute out of order. Software dependent upon 
sequential store ordering should not use string operations for the entire data structure to be stored. Data and 
semaphores should be separated. Order-dependent code should write to a discrete semaphore variable after any 
string operations to allow correctly ordered data to be seen by all processors. Atomicity of load and store operations 
is guaranteed only for native data elements of the string with native data size, and only if they are included in a 
single cache line. See Section 10.2.4, “Fast-String Operation and Out-of-Order Stores,” of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

7.3.9.4  String Operations in 64-Bit Mode
The behavior of MOVS (Move String), CMPS (Compare string), SCAS (Scan string), LODS (Load string), and STOS 
(Store string) instructions in 64-bit mode is similar to their behavior in non-64-bit modes, with the following differ-
ences:
• The source operand is specified by RSI or DS:ESI, depending on the address size attribute of the operation. 
• The destination operand is specified by RDI or DS:EDI, depending on the address size attribute of the 

operation. 
• Operation on 64-bit data is supported by using the REX.W prefix.

When using REP prefixes for string operations in 64-bit mode, the repeat count is specified by RCX or ECX 
(depending on the address size attribute of the operation). The default address size is 64 bits.

7.3.10 I/O Instructions
The IN (input from port to register), INS (input from port to string), OUT (output from register to port), and OUTS 
(output string to port) instructions move data between the processor’s I/O ports and either a register or memory.

The register I/O instructions (IN and OUT) move data between an I/O port and the EAX register (32-bit I/O), the 
AX register (16-bit I/O), or the AL (8-bit I/O) register. The I/O port being read or written to is specified with an 
immediate operand or an address in the DX register. 

The block I/O instructions (INS and OUTS) instructions move blocks of data (strings) between an I/O port and 
memory. These instructions operate similar to the string instructions (see Section 7.3.9, “String Operations”). The 
ESI and EDI registers are used to specify string elements in memory and the repeat prefix (REP) is used to repeat 
the instructions to implement block moves. The assembler recognizes the following alternate mnemonics for these 
instructions: INSB (input byte), INSW (input word), and INSD (input doubleword), and OUTSB (output byte), 
OUTSW (output word), and OUTSD (output doubleword).

The INS and OUTS instructions use an address in the DX register to specify the I/O port to be read or written to.

7.3.11 I/O Instructions in 64-Bit Mode
For I/O instructions to and from memory, the differences in 64-bit mode are:
• The source operand is specified by RSI or DS:ESI, depending on the address size attribute of the operation. 
• The destination operand is specified by RDI or DS:EDI, depending on the address size attribute of the 

operation. 
• Operation on 64-bit data is not encodable and REX prefixes are silently ignored.
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7.3.12 Enter and Leave Instructions
The ENTER and LEAVE instructions provide machine-language support for procedure calls in block-structured 
languages, such as C and Pascal. These instructions and the call and return mechanism that they support are 
described in detail in Section 6.6, “Procedure Calls for Block-Structured Languages.”

7.3.13 Flag Control (EFLAG) Instructions
The Flag Control (EFLAG) instructions allow the state of selected flags in the EFLAGS register to be read or modi-
fied. For the purpose of this discussion, these instructions are further divided into subordinate subgroups of 
instructions that manipulate:
• Carry and direction flags.
• The EFLAGS register.
• Interrupt flags.

7.3.13.1  Carry and Direction Flag Instructions
The STC (set carry flag), CLC (clear carry flag), and CMC (complement carry flag) instructions allow the CF flag in 
the EFLAGS register to be modified directly. They are typically used to initialize the CF flag to a known state before 
an instruction that uses the flag in an operation is executed. They are also used in conjunction with the rotate-with-
carry instructions (RCL and RCR).

The STD (set direction flag) and CLD (clear direction flag) instructions allow the DF flag in the EFLAGS register to 
be modified directly. The DF flag determines the direction in which index registers ESI and EDI are stepped when 
executing string processing instructions. If the DF flag is clear, the index registers are incremented after each iter-
ation of a string instruction; if the DF flag is set, the registers are decremented.

7.3.13.2  EFLAGS Transfer Instructions
The EFLAGS transfer instructions allow groups of flags in the EFLAGS register to be copied to a register or memory 
or be loaded from a register or memory. 

The LAHF (load AH from flags) and SAHF (store AH into flags) instructions operate on five of the EFLAGS status 
flags (SF, ZF, AF, PF, and CF). The LAHF instruction copies the status flags to bits 7, 6, 4, 2, and 0 of the AH register, 
respectively. The contents of the remaining bits in the register (bits 5, 3, and 1) are unaffected, and the contents 
of the EFLAGS register remain unchanged. The SAHF instruction copies bits 7, 6, 4, 2, and 0 from the AH register 
into the SF, ZF, AF, PF, and CF flags, respectively in the EFLAGS register.

The PUSHF (push flags), PUSHFD (push flags double), POPF (pop flags), and POPFD (pop flags double) instructions 
copy the flags in the EFLAGS register to and from the stack. The PUSHF instruction pushes the lower word of the 
EFLAGS register onto the stack (see Figure 7-11). The PUSHFD instruction pushes the entire EFLAGS register onto 
the stack (with the RF and VM flags read as clear).

The POPF instruction pops a word from the stack into the EFLAGS register. Only bits 11, 10, 8, 7, 6, 4, 2, and 0 of 
the EFLAGS register are affected with all uses of this instruction. If the current privilege level (CPL) of the current 

Figure 7-11.  Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD Instructions
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code segment is 0 (most privileged), the IOPL bits (bits 13 and 12) also are affected. If the I/O privilege level 
(IOPL) is greater than or equal to the CPL, numerically, the IF flag (bit 9) also is affected. 

The POPFD instruction pops a doubleword into the EFLAGS register. This instruction can change the state of the AC 
bit (bit 18) and the ID bit (bit 21), as well as the bits affected by a POPF instruction. The restrictions for changing 
the IOPL bits and the IF flag that were given for the POPF instruction also apply to the POPFD instruction.

7.3.13.3  Interrupt Flag Instructions
The STI (set interrupt flag) and CLI (clear interrupt flag) instructions allow the interrupt IF flag in the EFLAGS 
register to be modified directly. The IF flag controls the servicing of hardware-generated interrupts (those received 
at the processor’s INTR pin). If the IF flag is set, the processor services hardware interrupts; if the IF flag is clear, 
hardware interrupts are masked.

The ability to execute these instructions depends on the operating mode of the processor and the current privilege 
level (CPL) of the program or task attempting to execute these instructions.

7.3.14 Flag Control (RFLAG) Instructions in 64-Bit Mode
In 64-bit mode, the LAHF and SAHF instructions are supported if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

PUSHF and POPF behave the same in 64-bit mode as in non-64-bit mode. PUSHFD always pushes 64-bit RFLAGS 
onto the stack (with the RF and VM flags read as clear). POPFD always pops a 64-bit value from the top of the stack 
and loads the lower 32 bits into RFLAGS. It then zero extends the upper bits of RFLAGS.

7.3.15 Segment Register Instructions
The processor provides a variety of instructions that address the segment registers of the processor directly. These 
instructions are only used when an operating system or executive is using the segmented or the real-address mode 
memory model. 

For the purpose of this discussion, these instructions are divided into subordinate subgroups of instructions that 
allow:
• Segment-register load and store.
• Far control transfers.
• Software interrupt calls.
• Handling of far pointers.

7.3.15.1  Segment-Register Load and Store Instructions
The MOV instruction (introduced in Section 7.3.1.1, “General Data Movement Instructions”) and the PUSH and POP 
instructions (introduced in Section 7.3.1.4, “Stack Manipulation Instructions”) can transfer 16-bit segment selec-
tors to and from segment registers (DS, ES, FS, GS, and SS). The transfers are always made to or from a segment 
register and a general-purpose register or memory. Transfers between segment registers are not supported.

The POP and MOV instructions cannot place a value in the CS register. Only the far control-transfer versions of the 
JMP, CALL, and RET instructions (see Section 7.3.15.2, “Far Control Transfer Instructions”) affect the CS register 
directly. 

7.3.15.2  Far Control Transfer Instructions
The JMP and CALL instructions (see Section 7.3.8, “Control Transfer Instructions”) both accept a far pointer as a 
destination to transfer program control to a segment other than the segment currently being pointed to by the CS 
register. When a far call is made with the CALL instruction, the current values of the EIP and CS registers are both 
pushed on the stack.

The RET instruction (see “Call and return instructions” on page 7-15) can be used to execute a far return. Here, 
program control is transferred from a code segment that contains a called procedure back to the code segment that 
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contained the calling procedure. The RET instruction restores the values of the CS and EIP registers for the calling 
procedure from the stack.

7.3.15.3  Software Interrupt Instructions
The software interrupt instructions INT, INTO, and IRET (see Section 7.3.8.4, “Software Interrupt Instructions”) 
can also call and return from interrupt and exception handler procedures that are located in a code segment other 
than the current code segment. With these instructions, however, the switching of code segments is handled trans-
parently from the application program.

7.3.15.4  Load Far Pointer Instructions
The load far pointer instructions LDS (load far pointer using DS), LES (load far pointer using ES), LFS (load far 
pointer using FS), LGS (load far pointer using GS), and LSS (load far pointer using SS) load a far pointer from 
memory into a segment register and a general-purpose general register. The segment selector part of the far 
pointer is loaded into the selected segment register and the offset is loaded into the selected general-purpose 
register.

7.3.16 Miscellaneous Instructions
The following instructions perform operations that are of interest to applications programmers. For the purpose of 
this discussion, these instructions are further divided into subordinate subgroups of instructions that provide for:
• Address computations.
• Table lookup.
• Processor identification.
• NOP and undefined instruction entry.

7.3.16.1  Address Computation Instruction
The LEA (load effective address) instruction computes the effective address in memory (offset within a segment) 
of a source operand and places it in a general-purpose register. This instruction can interpret any of the processor’s 
addressing modes and can perform any indexing or scaling that may be needed. It is especially useful for initial-
izing the ESI or EDI registers before the execution of string instructions or for initializing the EBX register before an 
XLAT instruction. 

7.3.16.2  Table Lookup Instructions
The XLAT and XLATB (table lookup) instructions replace the contents of the AL register with a byte read from a 
translation table in memory. The initial value in the AL register is interpreted as an unsigned index into the trans-
lation table. This index is added to the contents of the EBX register (which contains the base address of the table) 
to calculate the address of the table entry. These instructions are used for applications such as converting character 
codes from one alphabet into another (for example, an ASCII code could be used to look up its EBCDIC equivalent 
in a table).

7.3.16.3  Processor Identification Instruction
The CPUID (processor identification) instruction returns information about the processor on which the instruction 
is executed. 

7.3.16.4  No-Operation and Undefined Instructions
The NOP (no operation) instruction increments the EIP register to point at the next instruction, but affects nothing 
else.
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The UD (undefined) instruction generates an invalid opcode exception. Intel reserves the opcode for this instruction 
for this function. The instruction is provided to allow software to test an invalid opcode exception handler.

7.3.17 Random Number Generator Instructions
The instructions for generating random numbers to comply with NIST SP800-90A, SP800-90B, and SP800-90C 
standards are described in this section.

7.3.17.1  RDRAND
The RDRAND instruction returns a random number. All Intel processors that support the RDRAND instruction indi-
cate the availability of the RDRAND instruction via reporting CPUID.01H:ECX.RDRAND[bit 30] = 1.
RDRAND returns random numbers that are supplied by a cryptographically secure, deterministic random bit gener-
ator DRBG. The DRBG is designed to meet the NIST SP 800-90A standard. The DRBG is re-seeded frequently from 
an on-chip non-deterministic entropy source to guarantee data returned by RDRAND is statistically uniform, non-
periodic and non-deterministic.
In order for the hardware design to meet its security goals, the random number generator continuously tests itself 
and the random data it is generating. Runtime failures in the random number generator circuitry or statistically 
anomalous data occurring by chance will be detected by the self test hardware and flag the resulting data as being 
bad. In such extremely rare cases, the RDRAND instruction will return no data instead of bad data.
Under heavy load, with multiple cores executing RDRAND in parallel, it is possible, though unlikely, for the demand 
of random numbers by software processes/threads to exceed the rate at which the random number generator 
hardware can supply them. This will lead to the RDRAND instruction returning no data transitorily. The RDRAND 
instruction indicates the occurrence of this rare situation by clearing the CF flag.
The RDRAND instruction returns with the carry flag set (CF = 1) to indicate valid data is returned. It is recom-
mended that software using the RDRAND instruction to get random numbers retry for a limited number of itera-
tions while RDRAND returns CF=0 and complete when valid data is returned, indicated with CF=1. This will deal 
with transitory underflows. A retry limit should be employed to prevent a hard failure in the RNG (expected to be 
extremely rare) leading to a busy loop in software.
The intrinsic primitive for RDRAND is defined to address software’s need for the common cases (CF = 1) and the 
rare situations (CF = 0). The intrinsic primitive returns a value that reflects the value of the carry flag returned by 
the underlying RDRAND instruction. The example below illustrates the recommended usage of an RDRAND intrinsic 
in a utility function, a loop to fetch a 64 bit random value with a retry count limit of 10. A C implementation might 
be written as follows:

----------------------------------------------------------------------------------------
#define SUCCESS 1
#define RETRY_LIMIT_EXCEEDED 0
#define RETRY_LIMIT 10

int get_random_64( unsigned __int 64 * arand)
{int i ; 

for ( i = 0; i < RETRY_LIMIT; i ++) {
if(_rdrand64_step(arand) ) return SUCCESS;

}
return RETRY_LIMIT_EXCEEDED;

}
-------------------------------------------------------------------------------

7.3.17.2  RDSEED
The RDSEED instruction returns a random number. All Intel processors that support the RDSEED instruction indi-
cate the availability of the RDSEED instruction via reporting CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 1.
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RDSEED returns random numbers that are supplied by a cryptographically secure, enhanced non-deterministic 
random bit generator (Enhanced NRBG). The NRBG is designed to meet the NIST SP 800-90B and NIST SP800-90C 
standards. 
In order for the hardware design to meet its security goals, the random number generator continuously tests itself 
and the random data it is generating. Runtime failures in the random number generator circuitry or statistically 
anomalous data occurring by chance will be detected by the self test hardware and flag the resulting data as being 
bad. In such extremely rare cases, the RDSEED instruction will return no data instead of bad data.
Under heavy load, with multiple cores executing RDSEED in parallel, it is possible for the demand of random 
numbers by software processes/threads to exceed the rate at which the random number generator hardware can 
supply them. This will lead to the RDSEED instruction returning no data transitorily. The RDSEED instruction indi-
cates the occurrence of this situation by clearing the CF flag.
The RDSEED instruction returns with the carry flag set (CF = 1) to indicate valid data is returned. It is recom-
mended that software using the RDSEED instruction to get random numbers retry for a limited number of iterations 
while RDSEED returns CF=0 and complete when valid data is returned, indicated with CF=1. This will deal with 
transitory underflows. A retry limit should be employed to prevent a hard failure in the NRBG (expected to be 
extremely rare) leading to a busy loop in software.

The intrinsic primitive for RDSEED is defined to address software’s need for the common cases (CF = 1) and the 
rare situations (CF = 0). The intrinsic primitive returns a value that reflects the value of the carry flag returned by 
the underlying RDSEED instruction.
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CHAPTER 8
PROGRAMMING WITH THE X87 FPU

The x87 Floating-Point Unit (FPU) provides high-performance floating-point processing capabilities for use in 
graphics processing, scientific, engineering, and business applications. It supports the floating-point, integer, and 
packed BCD integer data types and the floating-point processing algorithms and exception handling architecture 
defined in the IEEE Standard 754 for Floating-Point Arithmetic.

This chapter describes the x87 FPU execution environment and instruction set. It also provides exception handling 
information that is specific to the x87 FPU. Refer to the following chapters or sections of chapters for additional 
information about x87 FPU instructions and floating-point operations:
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, provides 

detailed descriptions of x87 FPU instructions.
• Section 4.2.2, “Floating-Point Data Types,” Section 4.2.1.2, “Signed Integers,” and Section 4.7, “BCD and 

Packed BCD Integers,” describe the floating-point, integer, and BCD data types.
• Section 4.9, “Overview of Floating-Point Exceptions,” Section 4.9.1, “Floating-Point Exception Conditions,” and 

Section 4.9.2, “Floating-Point Exception Priority,” give an overview of the floating-point exceptions that the x87 
FPU can detect and report.

8.1 X87 FPU EXECUTION ENVIRONMENT
The x87 FPU represents a separate execution environment within the IA-32 architecture (see Figure 8-1). This 
execution environment consists of eight data registers (called the x87 FPU data registers) and the following 
special-purpose registers: 
• Status register.
• Control register.
• Tag word register.
• Last instruction pointer register.
• Last data (operand) pointer register.
• Opcode register.

These registers are described in the following sections.

The x87 FPU executes instructions from the processor’s normal instruction stream. The state of the x87 FPU is inde-
pendent from the state of the basic execution environment and from the state of SSE/SSE2/SSE3 extensions. 

However, the x87 FPU and Intel MMX technology share state because the MMX registers are aliased to the x87 FPU 
data registers. Therefore, when writing code that uses x87 FPU and MMX instructions, the programmer must 
explicitly manage the x87 FPU and MMX state (see Section 9.5, “Compatibility with x87 FPU Architecture”).

8.1.1 x87 FPU in 64-Bit Mode and Compatibility Mode
In compatibility mode and 64-bit mode, x87 FPU instructions function like they do in protected mode. Memory 
operands are specified using the ModR/M, SIB encoding that is described in Section 3.7.5, “Specifying an Offset.”

8.1.2 x87 FPU Data Registers
The x87 FPU data registers (shown in Figure 8-1) consist of eight 80-bit registers. Values are stored in these regis-
ters in the double extended precision floating-point format shown in Figure 4-3. When floating-point, integer, or 
packed BCD integer values are loaded from memory into any of the x87 FPU data registers, the values are auto-
matically converted into double extended precision floating-point format (if they are not already in that format). 
When computation results are subsequently transferred back into memory from any of the x87 FPU registers, the 
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results can be left in the double extended precision floating-point format or converted back into a shorter floating-
point format, an integer format, or the packed BCD integer format. (See Section 8.2, “x87 FPU Data Types,” for a 
description of the data types operated on by the x87 FPU.)

The x87 FPU instructions treat the eight x87 FPU data registers as a register stack (see Figure 8-2). All addressing of 
the data registers is relative to the register on the top of the stack. The register number of the current top-of-stack 
register is stored in the TOP (stack TOP) field in the x87 FPU status word. Load operations decrement TOP by one 
and load a value into the new top-of-stack register, and store operations store the value from the current TOP 
register in memory and then increment TOP by one. (For the x87 FPU, a load operation is equivalent to a push and 
a store operation is equivalent to a pop.) Note that load and store operations are also available that do not push and 
pop the stack.

If a load operation is performed when TOP is at 0, register wraparound occurs and the new value of TOP is set to 7. 
The floating-point stack-overflow exception indicates when wraparound might cause an unsaved value to be over-
written (see Section 8.5.1.1, “Stack Overflow or Underflow Exception (#IS)”).

Many floating-point instructions have several addressing modes that permit the programmer to implicitly operate 
on the top of the stack, or to explicitly operate on specific registers relative to the TOP. Assemblers support these 

Figure 8-1.  x87 FPU Execution Environment

Figure 8-2.  x87 FPU Data Register Stack
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register addressing modes, using the expression ST(0), or simply ST, to represent the current stack top and ST(i) 
to specify the ith register from TOP in the stack (0 ≤ i ≤ 7). For example, if TOP contains 011B (register 3 is the top 
of the stack), the following instruction would add the contents of two registers in the stack (registers 3 and 5):

FADD ST, ST(2);

Figure 8-3 shows an example of how the stack structure of the x87 FPU registers and instructions are typically used 
to perform a series of computations. Here, a two-dimensional dot product is computed, as follows:

1. The first instruction (FLD value1) decrements the stack register pointer (TOP) and loads the value 5.6 from 
memory into ST(0). The result of this operation is shown in snap-shot (a). 

2. The second instruction multiplies the value in ST(0) by the value 2.4 from memory and stores the result in 
ST(0), shown in snap-shot (b).

3. The third instruction decrements TOP and loads the value 3.8 in ST(0).

4. The fourth instruction multiplies the value in ST(0) by the value 10.3 from memory and stores the result in 
ST(0), shown in snap-shot (c).

5. The fifth instruction adds the value and the value in ST(1) and stores the result in ST(0), shown in snap-shot 
(d).

The style of programming demonstrated in this example is supported by the floating-point instruction set. In cases 
where the stack structure causes computation bottlenecks, the FXCH (exchange x87 FPU register contents) 
instruction can be used to streamline a computation.

8.1.2.1  Parameter Passing With the x87 FPU Register Stack
Like the general-purpose registers, the contents of the x87 FPU data registers are unaffected by procedure calls, or 
in other words, the values are maintained across procedure boundaries. A calling procedure can thus use the x87 
FPU data registers (as well as the procedure stack) for passing parameter between procedures. The called proce-
dure can reference parameters passed through the register stack using the current stack register pointer (TOP) 
and the ST(0) and ST(i) nomenclature. It is also common practice for a called procedure to leave a return value or 
result in register ST(0) when returning execution to the calling procedure or program.

Figure 8-3.  Example x87 FPU Dot Product Computation
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Dot Product = (5.6 x 2.4) + (3.8 x 10.3)

Code:
FLD  value1 ;(a) value1 = 5.6
FMUL value2 ;(b) value2 = 2.4
FLD  value3 ; value3 = 3.8
FMUL value4 ;(c)value4 = 10.3
FADD ST(1)  ;(d)
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When mixing MMX and x87 FPU instructions in the procedures or code sequences, the programmer is responsible 
for maintaining the integrity of parameters being passed in the x87 FPU data registers. If an MMX instruction is 
executed before the parameters in the x87 FPU data registers have been passed to another procedure, the param-
eters may be lost (see Section 9.5, “Compatibility with x87 FPU Architecture”).

8.1.3 x87 FPU Status Register
The 16-bit x87 FPU status register (see Figure 8-4) indicates the current state of the x87 FPU. The flags in the x87 
FPU status register include the FPU busy flag, top-of-stack (TOP) pointer, condition code flags, exception summary 
status flag, stack fault flag, and exception flags. The x87 FPU sets the flags in this register to show the results of 
operations. 
 

The contents of the x87 FPU status register (referred to as the x87 FPU status word) can be stored in memory using 
the FSTSW/FNSTSW, FSTENV/FNSTENV, FSAVE/FNSAVE, and FXSAVE instructions. It can also be stored in the AX 
register of the integer unit, using the FSTSW/FNSTSW instructions.

8.1.3.1  Top of Stack (TOP) Pointer
A pointer to the x87 FPU data register that is currently at the top of the x87 FPU register stack is contained in bits 
11 through 13 of the x87 FPU status word. This pointer, which is commonly referred to as TOP (for top-of-stack), 
is a binary value from 0 to 7. See Section 8.1.2, “x87 FPU Data Registers,” for more information about the TOP 
pointer.

8.1.3.2  Condition Code Flags
The four condition code flags (C0 through C3) indicate the results of floating-point comparison and arithmetic oper-
ations. Table 8-1 summarizes the manner in which the floating-point instructions set the condition code flags. 
These condition code bits are used principally for conditional branching and for storage of information used in 
exception handling (see Section 8.1.4, “Branching and Conditional Moves on Condition Codes”).

As shown in Table 8-1, the C1 condition code flag is used for a variety of functions. When both the IE and SF flags 
in the x87 FPU status word are set, indicating a stack overflow or underflow exception (#IS), the C1 flag distin-
guishes between overflow (C1 = 1) and underflow (C1 = 0). When the PE flag in the status word is set, indicating 
an inexact (rounded) result, the C1 flag is set to 1 if the last rounding by the instruction was upward. The FXAM 
instruction sets C1 to the sign of the value being examined.

Figure 8-4.  x87 FPU Status Word
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The C2 condition code flag is used by the FPREM and FPREM1 instructions to indicate an incomplete reduction (or 
partial remainder). When a successful reduction has been completed, the C0, C3, and C1 condition code flags are 
set to the three least-significant bits of the quotient (Q2, Q1, and Q0, respectively). See “FPREM1—Partial 
Remainder” in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A, for more information on how these instructions use the condition code flags.

The FPTAN, FSIN, FCOS, and FSINCOS instructions set the C2 flag to 1 to indicate that the source operand is 
beyond the allowable range of ±263 and clear the C2 flag if the source operand is within the allowable range.

Where the state of the condition code flags are listed as undefined in Table 8-1, do not rely on any specific value in 
these flags.

8.1.3.3  x87 FPU Floating-Point Exception Flags
The six x87 FPU floating-point exception flags (bits 0 through 5) of the x87 FPU status word indicate that one or 
more floating-point exceptions have been detected since the bits were last cleared. The individual exception flags 
(IE, DE, ZE, OE, UE, and PE) are described in detail in Section 8.4, “x87 FPU Floating-Point Exception Handling.” 
Each of the exception flags can be masked by an exception mask bit in the x87 FPU control word (see Section 8.1.5, 
“x87 FPU Control Word”). The exception summary status flag (ES, bit 7) is set when any of the unmasked exception 
flags are set. When the ES flag is set, the x87 FPU exception handler is invoked, using one of the techniques 
described in Section 8.7, “Handling x87 FPU Exceptions in Software.” (Note that if an exception flag is masked, the 
x87 FPU will still set the appropriate flag if the associated exception occurs, but it will not set the ES flag.) 

The exception flags are “sticky” bits (once set, they remain set until explicitly cleared). They can be cleared by 
executing the FCLEX/FNCLEX (clear exceptions) instructions, by reinitializing the x87 FPU with the FINIT/FNINIT or 
FSAVE/FNSAVE instructions, or by overwriting the flags with an FRSTOR or FLDENV instruction.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the ES flag.

Table 8-1.  Condition Code Interpretation

Instruction C0 C3 C2 C1

FCOM, FCOMP, FCOMPP, FICOM, FICOMP, FTST, 
FUCOM, FUCOMP, FUCOMPP 

Result of Comparison Operands 
are not 
Comparable

0 or #IS

FCOMI, FCOMIP, FUCOMI, FUCOMIP Undefined. (These instructions set the 
status flags in the EFLAGS register.)

#IS

FXAM  Operand class Sign

FPREM, FPREM1 Q2 Q1 0 = reduction 
complete

1 = reduction 
incomplete

Q0 or #IS

F2XM1, FADD, FADDP, FBSTP, FCMOVcc, 
FIADD, FDIV, FDIVP, FDIVR, FDIVRP, FIDIV, 
FIDIVR, FIMUL, FIST, FISTP, FISUB, FISUBR, 
FMUL, FMULP, FPATAN, FRNDINT, FSCALE, FST, 
FSTP, FSUB, FSUBP, FSUBR, FSUBRP, FSQRT, 
FYL2X, FYL2XP1

Undefined Roundup or #IS

FCOS, FSIN, FSINCOS, FPTAN Undefined 0 = source 
operand within 
range
1 = source 
operand out of 
range

Roundup or #IS 
(Undefined if C2 = 
1)

FABS, FBLD, FCHS, FDECSTP, FILD, FINCSTP, 
FLD, Load Constants, FSTP (ext. prec.), FXCH, 
FXTRACT 

Undefined 0 or #IS
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8.1.3.4  Stack Fault Flag
The stack fault flag (bit 6 of the x87 FPU status word) indicates that stack overflow or stack underflow has occurred 
with data in the x87 FPU data register stack. The x87 FPU explicitly sets the SF flag when it detects a stack overflow 
or underflow condition, but it does not explicitly clear the flag when it detects an invalid-arithmetic-operand condi-
tion. 

When this flag is set, the condition code flag C1 indicates the nature of the fault: overflow (C1 = 1) and under-
flow (C1 = 0). The SF flag is a “sticky” flag, meaning that after it is set, the processor does not clear it until it is 
explicitly instructed to do so (for example, by an FINIT/FNINIT, FCLEX/FNCLEX, or FSAVE/FNSAVE instruction). 

See Section 8.1.7, “x87 FPU Tag Word,” for more information on x87 FPU stack faults.

8.1.4 Branching and Conditional Moves on Condition Codes
The x87 FPU (beginning with the P6 family processors) supports two mechanisms for branching and performing 
conditional moves according to comparisons of two floating-point values. These mechanism are referred to here as 
the “old mechanism” and the “new mechanism.” 

The old mechanism is available in the x87 FPU prior to the P6 family processors and in P6 family processors. This 
mechanism uses the floating-point compare instructions (FCOM, FCOMP, FCOMPP, FTST, FUCOMPP, FICOM, and 
FICOMP) to compare two floating-point values and set the condition code flags (C0 through C3) according to the 
results. The contents of the condition code flags are then copied into the status flags of the EFLAGS register using 
a two step process (see Figure 8-5):

1. The FSTSW AX instruction moves the x87 FPU status word into the AX register.

2. The SAHF instruction copies the upper 8 bits of the AX register, which includes the condition code flags, into the 
lower 8 bits of the EFLAGS register.

When the condition code flags have been loaded into the EFLAGS register, conditional jumps or conditional moves 
can be performed based on the new settings of the status flags in the EFLAGS register.

FLDENV, FRSTOR Each bit loaded from memory

FFREE, FLDCW, FCLEX/FNCLEX, FNOP, 
FSTCW/FNSTCW, FSTENV/FNSTENV, 
FSTSW/FNSTSW, 

Undefined

FINIT/FNINIT, FSAVE/FNSAVE 0 0 0 0

Figure 8-5.  Moving the Condition Codes to the EFLAGS Register

Table 8-1.  Condition Code Interpretation (Contd.)

0

Condition
Code

Status
Flag

C0
C1
C2
C3

CF
(none)
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C
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F
Z
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1
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0
C

15

0
C
2

C
1

C
3

x87 FPU Status Word

0
C

15

FSTSW AX Instruction

SAHF Instruction
8-6 Vol. 1



PROGRAMMING WITH THE X87 FPU
The new mechanism is available beginning with the P6 family processors. Using this mechanism, the new floating-
point compare and set EFLAGS instructions (FCOMI, FCOMIP, FUCOMI, and FUCOMIP) compare two floating-point 
values and set the ZF, PF, and CF flags in the EFLAGS register directly. A single instruction thus replaces the three 
instructions required by the old mechanism.

Note also that the FCMOVcc instructions (also new in the P6 family processors) allow conditional moves of floating-
point values (values in the x87 FPU data registers) based on the setting of the status flags (ZF, PF, and CF) in the 
EFLAGS register. These instructions eliminate the need for an IF statement to perform conditional moves of 
floating-point values.

8.1.5 x87 FPU Control Word
The 16-bit x87 FPU control word (see Figure 8-6) controls the precision of the x87 FPU and rounding method used. 
It also contains the x87 FPU floating-point exception mask bits. The control word is cached in the x87 FPU control 
register. The contents of this register can be loaded with the FLDCW instruction and stored in memory with the 
FSTCW/FNSTCW instructions.

When the x87 FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE instruction, the x87 FPU control 
word is set to 037FH, which masks all floating-point exceptions, sets rounding to nearest, and sets the x87 FPU 
precision to 64 bits.

8.1.5.1  x87 FPU Floating-Point Exception Mask Bits
The exception-flag mask bits (bits 0 through 5 of the x87 FPU control word) mask the 6 floating-point exception 
flags in the x87 FPU status word. When one of these mask bits is set, its corresponding x87 FPU floating-point 
exception is blocked from being generated.

8.1.5.2  Precision Control Field
The precision-control (PC) field (bits 8 and 9 of the x87 FPU control word) determines the precision (64, 53, or 24 
bits) of floating-point calculations made by the x87 FPU (see Table 8-2). The default precision is double extended 
precision, which uses the full 64-bit significand available with the double extended precision floating-point format 
of the x87 FPU data registers. This setting is best suited for most applications, because it allows applications to take 
full advantage of the maximum precision available with the x87 FPU data registers.

Figure 8-6.  x87 FPU Control Word

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0
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Infinity Control
Rounding Control
Precision Control

Exception Masks
   Precision
   Underflow
   Overflow
   Zero Divide
   Denormal Operand
   Invalid Operation

Reserved
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The double precision and single precision settings reduce the size of the significand to 53 bits and 24 bits, respec-
tively. These settings are provided to support IEEE Standard 754 and to provide compatibility with the specifica-
tions of certain existing programming languages. Using these settings nullifies the advantages of the double 
extended precision floating-point format's 64-bit significand length. When reduced precision is specified, the 
rounding of the significand value clears the unused bits on the right to zeros. 

The precision-control bits only affect the results of the following floating-point instructions: FADD, FADDP, FIADD, 
FSUB, FSUBP, FISUB, FSUBR, FSUBRP, FISUBR, FMUL, FMULP, FIMUL, FDIV, FDIVP, FIDIV, FDIVR, FDIVRP, FIDIVR, 
and FSQRT.

8.1.5.3  Rounding Control Field
The rounding-control (RC) field of the x87 FPU control register (bits 10 and 11) controls how the results of x87 FPU 
floating-point instructions are rounded. See Section 4.8.4, “Rounding,” for a discussion of rounding of floating-
point values; See Section 4.8.4.1, “Rounding Control (RC) Fields,” for the encodings of the RC field.

8.1.6 Infinity Control Flag
The infinity control flag (bit 12 of the x87 FPU control word) is provided for compatibility with the Intel 287 Math 
Coprocessor; it is not meaningful for later version x87 FPU coprocessors or IA-32 processors. See Section 4.8.3.3, 
“Signed Infinities,” for information on how the x87 FPUs handle infinity values.

8.1.7 x87 FPU Tag Word
The 16-bit tag word (see Figure 8-7) indicates the contents of each the 8 registers in the x87 FPU data-register 
stack (one 2-bit tag per register). The tag codes indicate whether a register contains a valid number, zero, or a 
special floating-point number (NaN, infinity, denormal, or unsupported format), or whether it is empty. The x87 
FPU tag word is cached in the x87 FPU in the x87 FPU tag word register. When the x87 FPU is initialized with either 
an FINIT/FNINIT or FSAVE/FNSAVE instruction, the x87 FPU tag word is set to FFFFH, which marks all the x87 FPU 
data registers as empty.
.

Each tag in the x87 FPU tag word corresponds to a physical register (numbers 0 through 7). The current top-of-
stack (TOP) pointer stored in the x87 FPU status word can be used to associate tags with registers relative to ST(0).

Table 8-2.  Precision Control Field (PC)
Precision PC Field

Single Precision (24 bits) 00B

Reserved 01B

Double Precision (53 bits) 10B

Double Extended Precision (64 bits) 11B

Figure 8-7.  x87 FPU Tag Word

015

TAG Values

TAG(7) TAG(5)TAG(6) TAG(4) TAG(3) TAG(2) TAG(1) TAG(0)

00 — Valid
01 — Zero
10 — Special: invalid (NaN, unsupported), infinity, or denormal
11 — Empty
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The x87 FPU uses the tag values to detect stack overflow and underflow conditions (see Section 8.5.1.1, “Stack 
Overflow or Underflow Exception (#IS)”).

Application programs and exception handlers can use this tag information to check the contents of an x87 FPU data 
register without performing complex decoding of the actual data in the register. To read the tag register, it must be 
stored in memory using either the FSTENV/FNSTENV or FSAVE/FNSAVE instructions. The location of the tag word 
in memory after being saved with one of these instructions is shown in Figures 8-9 through 8-12.

Software cannot directly load or modify the tags in the tag register. The FLDENV and FRSTOR instructions load an 
image of the tag register into the x87 FPU; however, the x87 FPU uses those tag values only to determine if the 
data registers are empty (11B) or non-empty (00B, 01B, or 10B). 

If the tag register image indicates that a data register is empty, the tag in the tag register for that data register is 
marked empty (11B); if the tag register image indicates that the data register is non-empty, the x87 FPU reads the 
actual value in the data register and sets the tag for the register accordingly. This action prevents a program from 
setting the values in the tag register to incorrectly represent the actual contents of non-empty data registers.

8.1.8 x87 FPU Instruction and Data (Operand) Pointers
The x87 FPU stores pointers to the instruction and data (operand) for the last non-control instruction executed. 
These are the x87 FPU instruction pointer and x87 FPU data (operand) pointers; software can save these pointers 
to provide state information for exception handlers. The pointers are illustrated in Figure 8-1 (the figure illustrates 
the pointers as used outside 64-bit mode; see below).

Note that the value in the x87 FPU data pointer is always a pointer to a memory operand. If the last non-control 
instruction that was executed did not have a memory operand, the value in the data pointer is undefined 
(reserved). If CPUID.(EAX=07H, ECX=0H):EBX[bit 6] = 1, the data pointer is updated only for x87 non-control 
instructions that incur unmasked x87 exceptions.

The contents of the x87 FPU instruction and data pointers remain unchanged when any of the following instructions 
are executed: FCLEX/FNCLEX, FLDCW, FSTCW/FNSTCW, FSTSW/FNSTSW, FSTENV/FNSTENV, FLDENV, and 
WAIT/FWAIT.

For all the x87 FPUs and Numeric Processor Extensions (NPXs) except the 8087, the x87 FPU instruction pointer 
points to any prefixes that preceded the instruction. For the 8087, the x87 FPU instruction pointer points only to 
the actual opcode.

The x87 FPU instruction and data pointers each consists of an offset and a segment selector:
• The x87 FPU Instruction Pointer Offset (FIP) comprises 64 bits on processors that support IA-32e mode; on 

other processors, it offset comprises 32 bits.
• The x87 FPU Instruction Pointer Selector (FCS) comprises 16 bits.
• The x87 FPU Data Pointer Offset (FDP) comprises 64 bits on processors that support IA-32e mode; on other 

processors, it offset comprises 32 bits.
• The x87 FPU Data Pointer Selector (FDS) comprises 16 bits.

The pointers are accessed by the FINIT/FNINIT, FLDENV, FRSTOR, FSAVE/FNSAVE, FSTENV/FNSTENV, FXRSTOR, 
FXSAVE, XRSTOR, XSAVE, and XSAVEOPT instructions as follows:
• FINIT/FNINIT. Each instruction clears FIP, FCS, FDP, and FDS.
• FLDENV, FRSTOR. These instructions use the memory formats given in Figures 8-9 through 8-12:

— For each of FIP and FDP, each instruction loads the lower 32 bits from memory and clears the upper 32 bits.

— If CR0.PE = 1, each instruction loads FCS and FDS from memory; otherwise, it clears them.
• FSAVE/FNSAVE, FSTENV/FNSTENV. These instructions use the memory formats given in Figures 8-9 through 

8-12.

— Each instruction saves the lower 32 bits of each FIP and FDP into memory. the upper 32 bits are not saved.

— If CR0.PE = 1, each instruction saves FCS and FDS into memory. If 
CPUID.(EAX=07H, ECX=0H):EBX[bit 13] = 1, the processor deprecates FCS and FDS; it saves each as 
0000H.
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— After saving these data into memory, FSAVE/FNSAVE clears FIP, FCS, FDP, and FDS.
• FXRSTOR, XRSTOR. These instructions load data from a memory image whose format depend on operating 

mode and the REX prefix. The memory formats are given in Tables 3-52, 3-55, and 3-56 in Chapter 3, 
“Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

• For each of FIP and FDP, each instruction loads the lower 32 bits from memory and clears the upper 32 
bits.

• Each instruction loads FCS and FDS from memory.

— In 64-bit mode with REX.W = 1, the instructions operate as follows:

• Each instruction loads FIP and FDP from memory.

• Each instruction clears FCS and FDS.
• FXSAVE, XSAVE, and XSAVEOPT. These instructions store data into a memory image whose format depend on 

operating mode and the REX prefix. The memory formats are given in Tables 3-52, 3-55, and 3-56 in Chapter 
3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

• Each instruction saves the lower 32 bits of each of FIP and FDP into memory. The upper 32 bits are not 
saved.

• Each instruction saves FCS and FDS into memory. If CPUID.(EAX=07H, ECX=0H):EBX[bit 13] = 1, the 
processor deprecates FCS and FDS; it saves each as 0000H.

— In 64-bit mode with REX.W = 1, each instruction saves FIP and FDP into memory. FCS and FDS are not 
saved.

8.1.9 Last Instruction Opcode
The x87 FPU stores in the 11-bit x87 FPU opcode register (FOP) the opcode of the last x87 non-control instruction 
executed that incurred an unmasked x87 exception. (This information provides state information for exception 
handlers.) Only the first and second opcode bytes (after all prefixes) are stored in the x87 FPU opcode register. 
Figure 8-8 shows the encoding of these two bytes. Since the upper 5 bits of the first opcode byte are the same for 
all floating-point opcodes (11011B), only the lower 3 bits of this byte are stored in the opcode register.

8.1.9.1  Fopcode Compatibility Sub-mode
Some Pentium 4 and Intel Xeon processors provide program control over the value stored into FOP. Here, bit 2 of 
the IA32_MISC_ENABLE MSR enables (set) or disables (clear) the fopcode compatibility mode. 

If fopcode compatibility mode is enabled, FOP is defined as it had been in previous IA-32 implementations, as the 
opcode of the last x87 non-control instruction executed (even if that instruction did not incur an unmasked x87 
exception).
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The fopcode compatibility mode should be enabled only when x87 FPU floating-point exception handlers are 
designed to use the fopcode to analyze program performance or restart a program after an exception has been 
handled.

More recent Intel 64 processors do not support fopcode compatibility mode and do not allow software to set bit 2 
of the IA32_MISC_ENABLE MSR.

8.1.10 Saving the x87 FPU State with FSTENV/FNSTENV and FSAVE/FNSAVE
The FSTENV/FNSTENV and FSAVE/FNSAVE instructions store x87 FPU state information in memory for use by 
exception handlers and other system and application software. The FSTENV/FNSTENV instruction saves the 
contents of the status, control, tag, x87 FPU instruction pointer, x87 FPU data pointer, and opcode registers. The 
FSAVE/FNSAVE instruction stores that information plus the contents of the x87 FPU data registers. Note that the 
FSAVE/FNSAVE instruction also initializes the x87 FPU to default values (just as the FINIT/FNINIT instruction does) 
after it has saved the original state of the x87 FPU.

The manner in which this information is stored in memory depends on the operating mode of the processor 
(protected mode or real-address mode) and on the operand-size attribute in effect (32-bit or 16-bit). See Figures 
8-9 through 8-12. In virtual-8086 mode or SMM, the real-address mode formats shown in Figure 8-12 is used. See 
Chapter 33, “System Management Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C, for information on using the x87 FPU while in SMM.

The FLDENV and FRSTOR instructions allow x87 FPU state information to be loaded from memory into the x87 FPU. 
Here, the FLDENV instruction loads only the status, control, tag, x87 FPU instruction pointer, x87 FPU data pointer, 
and opcode registers, and the FRSTOR instruction loads all the x87 FPU registers, including the x87 FPU stack 
registers. 

Figure 8-8.  Contents of x87 FPU Opcode Registers

Figure 8-9.  Protected Mode x87 FPU State Image in Memory, 32-Bit Format
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For instructions that also store x87 FPU data registers, the eight 
80-bit registers (R0-R7) follow the above structure in sequence.
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8.1.11 Saving the x87 FPU State with FXSAVE
The FXSAVE and FXRSTOR instructions save and restore, respectively, the x87 FPU state along with the state of the 
XMM registers and the MXCSR register. Using the FXSAVE instruction to save the x87 FPU state has two benefits: 
(1) FXSAVE executes faster than FSAVE, and (2) FXSAVE saves the entire x87 FPU, MMX, and XMM state in one 
operation. See Section 10.5, “FXSAVE and FXRSTOR Instructions,” for additional information about these instruc-
tions.

Figure 8-10.  Real Mode x87 FPU State Image in Memory, 32-Bit Format

Figure 8-11.  Protected Mode x87 FPU State Image in Memory, 16-Bit Format

Figure 8-12.  Real Mode x87 FPU State Image in Memory, 16-Bit Format
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8.2 X87 FPU DATA TYPES
The x87 FPU recognizes and operates on the following seven data types (see Figures 8-13): single precision 
floating-point, double precision floating-point, double extended precision floating-point, signed word integer, 
signed doubleword integer, signed quadword integer, and packed BCD decimal integers. 

For detailed information about these data types, see Section 4.2.2, “Floating-Point Data Types,” Section 4.2.1.2, 
“Signed Integers,” and Section 4.7, “BCD and Packed BCD Integers.”

With the exception of the 80-bit double extended precision floating-point format, all of these data types exist in 
memory only. When they are loaded into x87 FPU data registers, they are converted into double extended precision 
floating-point format and operated on in that format.

Denormal values are also supported in each of the floating-point types, as required by IEEE Standard 754. When a 
denormal number in single precision or double precision floating-point format is used as a source operand and the 
denormal exception is masked, the x87 FPU automatically normalizes the number when it is converted to double 
extended precision format.

When stored in memory, the least significant byte of an x87 FPU data-type value is stored at the initial address 
specified for the value. Successive bytes from the value are then stored in successively higher addresses in 
memory. The floating-point instructions load and store memory operands using only the initial address of the 
operand. 

As a general rule, values should be stored in memory in double precision format. This format provides sufficient 
range and precision to return correct results with a minimum of programmer attention. The single precision format 
is useful for debugging algorithms, because rounding problems will manifest themselves more quickly in this 
format. The double extended precision format is normally reserved for holding intermediate results in the x87 FPU 
registers and constants. Its extra length is designed to shield final results from the effects of rounding and over-
flow/underflow in intermediate calculations. However, when an application requires the maximum range and preci-
sion of the x87 FPU (for data storage, computations, and results), values can be stored in memory in double 
extended precision format.

Figure 8-13.  x87 FPU Data Type Formats
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8.2.1 Indefinites
For each x87 FPU data type, one unique encoding is reserved for representing the special value indefinite. The x87 
FPU produces indefinite values as responses to some masked floating-point invalid-operation exceptions. See 
Tables 4-1, 4-3, and 4-4 for the encoding of the integer indefinite, QNaN floating-point indefinite, and packed BCD 
integer indefinite, respectively. 

The binary integer encoding 100..00B represents either of two things, depending on the circumstances of its use:
• The largest negative number supported by the format (–215, –231, or –263).
• The integer indefinite value.

If this encoding is used as a source operand (as in an integer load or integer arithmetic instruction), the x87 FPU 
interprets it as the largest negative number representable in the format being used. If the x87 FPU detects an 
invalid operation when storing an integer value in memory with an FIST/FISTP instruction and the invalid-operation 
exception is masked, the x87 FPU stores the integer indefinite encoding in the destination operand as a masked 
response to the exception. In situations where the origin of a value with this encoding may be ambiguous, the 
invalid-operation exception flag can be examined to see if the value was produced as a response to an exception.

8.2.2 Unsupported Double Extended Precision Floating-Point Encodings and Pseudo-
Denormals

The double extended precision floating-point format permits many encodings that do not fall into any of the cate-
gories shown in Table 4-3. Table 8-3 shows these unsupported encodings. Some of these encodings were supported 
by the Intel 287 math coprocessor; however, most of them are not supported by the Intel 387 math coprocessor 
and later IA-32 processors. These encodings are no longer supported due to changes made in the final version of 
IEEE Standard 754 that eliminated these encodings.

Specifically, the categories of encodings formerly known as pseudo-NaNs, pseudo-infinities, and un-normal 
numbers are not supported and should not be used as operand values. The Intel 387 math coprocessor and later 
IA-32 processors generate an invalid-operation exception when these encodings are encountered as operands.

Beginning with the Intel 387 math coprocessor, the encodings formerly known as pseudo-denormal numbers are 
not generated by IA-32 processors. When encountered as operands, however, they are handled correctly, consid-
ering the biased exponent as 1 (and the unbiased exponent as -16382); that is, they are treated as denormals and 
a denormal exception is generated. Pseudo-denormal numbers should not be used as operand values. They are 
supported by current IA-32 processors (as described here) to support legacy code.

Table 8-3.  Unsupported Double Extended Precision Floating-Point Encodings and Pseudo-Denormals

Class Sign Biased Exponent
Significand

Integer Fraction

Positive 
Pseudo-NaNs Quiet

0
.
0

11..11
.

11..11

0 11..11
.

10..00

Signaling

0
.
0

11..11
.

11..11

0  01..11
.

00..01

Positive Floating-Point Pseudo-infinity 0 11..11 0 00..00

Unnormals

0
.
0

11..10
.

00..01

0 11..11
.

00..00

Pseudo-denormals 0
.
0

00..00
.

00..00

1 11..11
.

00..00
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8.3 X87 FPU INSTRUCTION SET
The floating-point instructions that the x87 FPU supports can be grouped into six functional categories:
• Data transfer instructions.
• Basic arithmetic instructions.
• Comparison instructions.
• Transcendental instructions.
• Load constant instructions.
• x87 FPU control instructions.

See Section 5.2, “x87 FPU Instructions,” for a list of the floating-point instructions by category.

The following section briefly describes the instructions in each category. Detailed descriptions of the floating-point 
instructions are given in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, 
& 2D. 

8.3.1 Escape (ESC) Instructions
All of the instructions in the x87 FPU instruction set fall into a class of instructions known as escape (ESC) instruc-
tions. All of these instructions have a common opcode format, where the first byte of the opcode is one of the 
numbers from D8H through DFH.

8.3.2 x87 FPU Instruction Operands
Most floating-point instructions require one or two operands, located on the x87 FPU data-register stack or in 
memory. (None of the floating-point instructions accept immediate operands.) 

When an operand is located in a data register, it is referenced relative to the ST(0) register (the register at the top 
of the register stack), rather than by a physical register number. Often the ST(0) register is an implied operand.

Operands in memory can be referenced using the same operand addressing methods described in Section 3.7, 
“Operand Addressing.”

8.3.3 Data Transfer Instructions
The data transfer instructions (see Table 8-4) perform the following operations:

Negative Floating-Point Pseudo-denormals 1
.
1

00..00
.

00..00

1 11..11
.

00..00

Unnormals

1
.
1

11..10
.

00..01

0 11..01
.

00..00

Pseudo-infinity 1 11..11 0 00..00

Negative Pseudo-NaNs

Signaling

1
.
1

11..11
.

11..11

0 01..11
.

00..01

Quiet

1
.
1

11..11
.

11..11

0 11..11
.

10..00

← 15 bits → ← 63 bits →

Table 8-3.  Unsupported Double Extended Precision Floating-Point Encodings and Pseudo-Denormals (Contd.)
Vol. 1 8-15



PROGRAMMING WITH THE X87 FPU
• Load a floating-point, integer, or packed BCD operand from memory into the ST(0) register.
• Store the value in an ST(0) register to memory in floating-point, integer, or packed BCD format.
• Move values between registers in the x87 FPU register stack.

The FLD (load floating-point) instruction pushes a floating-point operand from memory onto the top of the x87 FPU 
data-register stack. If the operand is in single precision or double precision floating-point format, it is automatically 
converted to double extended precision floating-point format. This instruction can also be used to push the value in 
a selected x87 FPU data register onto the top of the register stack.

The FILD (load integer) instruction converts an integer operand in memory into double extended precision floating-
point format and pushes the value onto the top of the register stack. The FBLD (load packed decimal) instruction 
performs the same load operation for a packed BCD operand in memory.

The FST (store floating-point) and FIST (store integer) instructions store the value in register ST(0) in memory in 
the destination format (floating-point or integer, respectively). Again, the format conversion is carried out auto-
matically.

The FSTP (store floating-point and pop), FISTP (store integer and pop), and FBSTP (store packed decimal and pop) 
instructions store the value in the ST(0) registers into memory in the destination format (floating-point, integer, or 
packed BCD), then performs a pop operation on the register stack. A pop operation causes the ST(0) register to be 
marked empty and the stack pointer (TOP) in the x87 FPU control work to be incremented by 1. The FSTP instruc-
tion can also be used to copy the value in the ST(0) register to another x87 FPU register [ST(i)].

The FXCH (exchange register contents) instruction exchanges the value in a selected register in the stack [ST(i)] 
with the value in ST(0).

The FCMOVcc (conditional move) instructions move the value in a selected register in the stack [ST(i)] to register 
ST(0) if a condition specified with a condition code (cc) is satisfied (see Table 8-5). The condition being tested for 
is represented by the status flags in the EFLAGS register. The condition code mnemonics are appended to the 
letters “FCMOV” to form the mnemonic for a FCMOVcc instruction.

Table 8-4.  Data Transfer Instructions

Floating-Point Integer Packed Decimal

FLD Load Floating-Point FILD Load Integer FBLD Load Packed
Decimal

FST Store Floating-Point FIST Store Integer

FSTP Store Floating-Point and 
Pop

FISTP Store Integer
and Pop

FBSTP Store Packed
Decimal and Pop

FXCH Exchange Register 
Contents

FCMOVcc Conditional Move

Table 8-5.  Floating-Point Conditional Move Instructions
Instruction Mnemonic Status Flag States Condition Description

FCMOVB CF=1 Below

FCMOVNB CF=0 Not below

FCMOVE ZF=1 Equal

FCMOVNE ZF=0 Not equal
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Like the CMOVcc instructions, the FCMOVcc instructions are useful for optimizing small IF constructions. They also 
help eliminate branching overhead for IF operations and the possibility of branch mispredictions by the processor. 

Software can check if the FCMOVcc instructions are supported by checking the processor’s feature information with 
the CPUID instruction.

8.3.4 Load Constant Instructions
The following instructions push commonly used constants onto the top [ST(0)] of the x87 FPU register stack:

FLDZ Load +0.0.
FLD1 Load +1.0.
FLDPI Load π.
FLDL2T Load log2 10.
FLDL2E Load log2e.
FLDLG2 Load log102.
FLDLN2 Load loge2.

The constant values have full double extended precision floating-point precision (64 bits) and are accurate to 
approximately 19 decimal digits. They are stored internally in a format more precise than double extended preci-
sion floating-point. When loading the constant, the x87 FPU rounds the more precise internal constant according 
to the RC (rounding control) field of the x87 FPU control word. The inexact-result exception (#P) is not generated 
as a result of this rounding, nor is the C1 flag set in the x87 FPU status word if the value is rounded up. See 
Section 8.3.8, “Approximation of Pi,” for information on the π constant.

8.3.5 Basic Arithmetic Instructions
The following floating-point instructions perform basic arithmetic operations on floating-point numbers. Where 
applicable, these instructions match IEEE Standard 754:
FADD/FADDP Add floating-point.
FIADD Add integer to floating-point.
FSUB/FSUBP Subtract floating-point.
FISUB Subtract integer from floating-point.
FSUBR/FSUBRP Reverse subtract floating-point.
FISUBR Reverse subtract floating-point from integer.
FMUL/FMULP Multiply floating-point.
FIMUL Multiply integer by floating-point.
FDIV/FDIVP Divide floating-point.
FIDIV Divide floating-point by integer.
FDIVR/FDIVRP Reverse divide.
FIDIVR Reverse divide integer by floating-point.
FABS Absolute value.
FCHS Change sign.

Instruction Mnemonic Status Flag States Condition Description

FCMOVBE CF=1 or ZF=1 Below or equal

FCMOVNBE CF=0 or ZF=0 Not below nor equal

FCMOVU PF=1 Unordered

FCMOVNU PF=0 Not unordered

Table 8-5.  Floating-Point Conditional Move Instructions (Contd.)
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FSQRT Square root.
FPREM Partial remainder.
FPREM1 IEEE partial remainder.
FRNDINT Round to integral value.
FXTRACT Extract exponent and significand.

The add, subtract, multiply, and divide instructions operate on the following types of operands:
• Two x87 FPU data registers.
• An x87 FPU data register and a floating-point or integer value in memory.

See Section 8.1.2, “x87 FPU Data Registers,” for a description of how operands are referenced on the data register 
stack.

Operands in memory can be in single precision floating-point, double precision floating-point, word-integer, or 
doubleword-integer format. They are converted to double extended precision floating-point format automatically.

Reverse versions of the subtract (FSUBR) and divide (FDIVR) instructions enable efficient coding. For example, the 
following options are available with the FSUB and FSUBR instructions for operating on values in a specified x87 FPU 
data register ST(i) and the ST(0) register:

FSUB:
ST(0) := ST(0) − ST(i)
ST(i) := ST(i) − ST(0)

FSUBR:
ST(0) := ST(i) − ST(0)
ST(i) := ST(0) − ST(i)

These instructions eliminate the need to exchange values between the ST(0) register and another x87 FPU register 
to perform a subtraction or division.

The pop versions of the add, subtract, multiply, and divide instructions offer the option of popping the x87 FPU 
register stack following the arithmetic operation. These instructions operate on values in the ST(i) and ST(0) regis-
ters, store the result in the ST(i) register, and pop the ST(0) register.

The FPREM instruction computes the remainder from the division of two operands in the manner used by the Intel 
8087 and Intel 287 math coprocessors; the FPREM1 instruction computes the remainder in the manner specified in 
IEEE Standard 754.

The FSQRT instruction computes the square root of the source operand.

The FRNDINT instruction returns a floating-point value that is the integral value closest to the source value in the 
direction of the rounding mode specified in the RC field of the x87 FPU control word.

The FABS, FCHS, and FXTRACT instructions perform convenient arithmetic operations. The FABS instruction 
produces the absolute value of the source operand. The FCHS instruction changes the sign of the source operand. 
The FXTRACT instruction separates the source operand into its exponent and fraction and stores each value in a 
register in floating-point format.

8.3.6 Comparison and Classification Instructions
The following instructions compare or classify floating-point values:

FCOM/FCOMP/FCOMPP Compare floating-point and set x87 FPU condition code flags.

FUCOM/FUCOMP/FUCOMPP Unordered compare floating-point and set x87 FPU condition code flags.

FICOM/FICOMP Compare integer and set x87 FPU condition code flags.

FCOMI/FCOMIP Compare floating-point and set EFLAGS status flags.

FUCOMI/FUCOMIP Unordered compare floating-point and set EFLAGS status flags.

FTST Test (compare floating-point with 0.0).
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FXAM Examine.

Comparison of floating-point values differ from comparison of integers because floating-point values have four 
(rather than three) mutually exclusive relationships: less than, equal, greater than, and unordered.

The unordered relationship is true when at least one of the two values being compared is a NaN or in an unsup-
ported format. This additional relationship is required because, by definition, NaNs are not numbers, so they 
cannot have less than, equal, or greater than relationships with other floating-point values.

The FCOM, FCOMP, and FCOMPP instructions compare the value in register ST(0) with a floating-point source 
operand and set the condition code flags (C0, C2, and C3) in the x87 FPU status word according to the results (see 
Table 8-6). 

If an unordered condition is detected (one or both of the values are NaNs or in an undefined format), a floating-
point invalid-operation exception is generated.

The pop versions of the instruction pop the x87 FPU register stack once or twice after the comparison operation is 
complete.

The FUCOM, FUCOMP, and FUCOMPP instructions operate the same as the FCOM, FCOMP, and FCOMPP instructions. 
The only difference is that with the FUCOM, FUCOMP, and FUCOMPP instructions, if an unordered condition is 
detected because one or both of the operands are QNaNs, the floating-point invalid-operation exception is not 
generated.

The FICOM and FICOMP instructions also operate the same as the FCOM and FCOMP instructions, except that the 
source operand is an integer value in memory. The integer value is automatically converted into an double 
extended precision floating-point value prior to making the comparison. The FICOMP instruction pops the x87 FPU 
register stack following the comparison operation.

The FTST instruction performs the same operation as the FCOM instruction, except that the value in register ST(0) 
is always compared with the value 0.0.

The FCOMI and FCOMIP instructions were introduced into the IA-32 architecture in the P6 family processors. They 
perform the same comparison as the FCOM and FCOMP instructions, except that they set the status flags (ZF, PF, 
and CF) in the EFLAGS register to indicate the results of the comparison (see Table 8-7) instead of the x87 FPU 
condition code flags. The FCOMI and FCOMIP instructions allow condition branch instructions (Jcc) to be executed 
directly from the results of their comparison.

Software can check if the FCOMI and FCOMIP instructions are supported by checking the processor’s feature infor-
mation with the CPUID instruction.

The FUCOMI and FUCOMIP instructions operate the same as the FCOMI and FCOMIP instructions, except that they 
do not generate a floating-point invalid-operation exception if the unordered condition is the result of one or both 
of the operands being a QNaN. The FCOMIP and FUCOMIP instructions pop the x87 FPU register stack following the 
comparison operation.

Table 8-6.  Setting of x87 FPU Condition Code Flags for Floating-Point Number Comparisons
Condition C3 C2 C0

ST(0) > Source Operand 0 0 0

ST(0) < Source Operand 0 0 1

ST(0) = Source Operand 1 0 0

Unordered 1 1 1

Table 8-7.  Setting of EFLAGS Status Flags for Floating-Point Number Comparisons
Comparison Results ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered 1 1 1
Vol. 1 8-19



PROGRAMMING WITH THE X87 FPU
The FXAM instruction determines the classification of the floating-point value in the ST(0) register (that is, whether 
the value is zero, a denormal number, a normal finite number, ∞, a NaN, or an unsupported format) or that the 
register is empty. It sets the x87 FPU condition code flags to indicate the classification (see “FXAM—Examine” in 
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A). It also sets the C1 flag to indicate the sign of the value.

8.3.6.1  Branching on the x87 FPU Condition Codes
The processor does not offer any control-flow instructions that branch on the setting of the condition code flags 
(C0, C2, and C3) in the x87 FPU status word. To branch on the state of these flags, the x87 FPU status word must 
first be moved to the AX register in the integer unit. The FSTSW AX (store status word) instruction can be used for 
this purpose. When these flags are in the AX register, the TEST instruction can be used to control conditional 
branching as follows:

1. Check for an unordered result. Use the TEST instruction to compare the contents of the AX register with the 
constant 0400H (see Table 8-8). This operation will clear the ZF flag in the EFLAGS register if the condition code 
flags indicate an unordered result; otherwise, the ZF flag will be set. The JNZ instruction can then be used to 
transfer control (if necessary) to a procedure for handling unordered operands.

2. Check ordered comparison result. Use the constants given in Table 8-8 in the TEST instruction to test for a less 
than, equal to, or greater than result, then use the corresponding conditional branch instruction to transfer 
program control to the appropriate procedure or section of code.

If a program or procedure has been thoroughly tested and it incorporates periodic checks for QNaN results, then it 
is not necessary to check for the unordered result every time a comparison is made.

See Section 8.1.4, “Branching and Conditional Moves on Condition Codes,” for another technique for branching on 
x87 FPU condition codes.

Some non-comparison x87 FPU instructions update the condition code flags in the x87 FPU status word. To ensure 
that the status word is not altered inadvertently, store it immediately following a comparison operation.

8.3.7 Trigonometric Instructions
The following instructions perform four common trigonometric functions:

FSIN Sine.
FCOS Cosine.
FSINCOS Sine and cosine.
FPTAN Tangent.
FPATAN Arctangent.

These instructions operate on the top one or two registers of the x87 FPU register stack and they return their 
results to the stack. The source operands for the FSIN, FCOS, FSINCOS, and FPTAN instructions must be given in 
radians; the source operand for the FPATAN instruction is given in rectangular coordinate units.

The FSINCOS instruction returns both the sine and the cosine of a source operand value. It operates faster than 
executing the FSIN and FCOS instructions in succession.

Table 8-8.  TEST Instruction Constants for Conditional Branching
Order Constant Branch

ST(0) > Source Operand 4500H JZ

ST(0) < Source Operand 0100H JNZ

ST(0) = Source Operand 4000H JNZ

Unordered 0400H JNZ
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The FPATAN instruction computes the arctangent of ST(1) divided by ST(0), returning a result in radians. It is 
useful for converting rectangular coordinates to polar coordinates.

See Section 8.3.8, “Approximation of Pi,” and Section 8.3.10, “Transcendental Instruction Accuracy,” for informa-
tion regarding the accuracy of these instructions. 

8.3.8 Approximation of Pi
When the argument (source operand) of a trigonometric function is within the domain of the function, the argu-
ment is automatically reduced by the appropriate multiple of 2π through the same reduction mechanism used by 
the FPREM and FPREM1 instructions. The internal value of π (3.1415926…) that the x87 FPU uses for argument 
reduction and other computations, denoted as Pi in the expression below. The numerical value of Pi can be written 
as:

Pi = 0.f ∗ 22

where the fraction f is expressed in binary form as:
f = C90FDAA2  2168C234  C

(The spaces in the fraction above indicate 32-bit boundaries.)

The internal approximation Pi of the value π has a 66 significant bits. Since the exact value of π represented in 
binary has the next 3 bits equal to 0, it means that Pi is the value of π rounded to nearest-even to 68 bits, and also 
the value of π rounded toward zero (truncated) to 69 bits.

However, accuracy problems may arise because this relatively short finite approximation Pi of the number π is used 
for calculating the reduced argument of the trigonometric function approximations in the implementations of FSIN, 
FCOS, FSINCOS, and FPTAN. Alternately, this means that FSIN (x), FCOS (x), and FPTAN (x) are really approxi-
mating the mathematical functions sin (x * π /Pi), cos (x * π / Pi), and tan (x * π / Pi), and not exactly sin (x), cos 
(x), and tan (x). (Note that FSINCOS is the equivalent of FSIN and FCOS combined together). The period of sin (x 
* π /Pi) for example is 2* Pi, and not 2π. 

See also Section 8.3.10, “Transcendental Instruction Accuracy,” for more information on the accuracy of these 
functions.

8.3.9 Logarithmic, Exponential, and Scale
The following instructions provide two different logarithmic functions, an exponential function and a scale function:

FYL2X Logarithm.
FYL2XP1 Logarithm epsilon.
F2XM1 Exponential.
FSCALE Scale.

The FYL2X and FYL2XP1 instructions perform two different base 2 logarithmic operations. The FYL2X instruction 
computes (y ∗ log2x). This operation permits the calculation of the log of any base using the following equation:

logb x = (1/log2 b) ∗ log2 x

The FYL2XP1 instruction computes (y ∗ log2(x + 1)). This operation provides optimum accuracy for values of x that 
are close to 0.

The F2XM1 instruction computes (2x − 1). This instruction only operates on source values in the range −1.0 to +1.0.

The FSCALE instruction multiplies the source operand by a power of 2.

8.3.10 Transcendental Instruction Accuracy
New transcendental instruction algorithms were incorporated into the IA-32 architecture beginning with the 
Pentium processors. These new algorithms (used in transcendental instructions FSIN, FCOS, FSINCOS, FPTAN, 
FPATAN, F2XM1, FYL2X, and FYL2XP1) allow a higher level of accuracy than was possible in earlier IA-32 processors 
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and x87 math coprocessors. The accuracy of these instructions is measured in terms of units in the last place 
(ulp). For a given argument x, let f(x) and F(x) be the correct and computed (approximate) function values, 
respectively. The error in ulps is defined to be:

where k is an integer such that:

With the Pentium processor and later IA-32 processors, the worst case error on transcendental functions is less 
than 1 ulp when rounding to the nearest (even) and less than 1.5 ulps when rounding in other modes. The func-
tions are guaranteed to be monotonic, with respect to the input operands, throughout the domain supported by the 
instruction.

However, for FSIN, FCOS, FSINCOS, and FPTAN which approximate periodic trigonometric functions, the previous 
statement about maximum ulp errors is true only when these instructions are applied to reduced argument (see 
Section 8.3.8, “Approximation of Pi”). This is due to the fact that only 66 significant bits are retained in the finite 
approximation Pi of the number π (3.1415926…), used internally for calculating the reduced argument in FSIN, 
FCOS, FSINCOS, and FPTAN. This approximation of π is not always sufficiently accurate for good argument reduc-
tion. 

For single precision, the argument of FSIN, FCOS, FSINCOS, and FPTAN must exceed 200,000 radians in order for 
the error of the result to exceed 1 ulp when rounding to the nearest (even), or 1.5 ulps when rounding in other 
(directed) rounding modes.

For double and double-extended precision, the ulp errors will grow above these thresholds for arguments much 
smaller in magnitude. The ulp errors increase significantly when the argument approaches the value of π (or Pi) for 
FSIN, and when it approaches π/2(or Pi/2) for FCOS, FSINCOS, and FPTAN.

For all three IEEE precisions supported (32-bit single precision, 64-bit double precision, and 80-bit double-
extended precision), applying FSIN, FCOS, FSINCOS, or FPTAN to arguments larger than a certain value can lead 
to reduced arguments (calculated internally) that are inaccurate or even very inaccurate in some cases. This leads 
to equally inaccurate approximations of the corresponding mathematical functions. In particular, arguments that 
are close to certain values will lose significance when reduced, leading to increased relative (and ulp) errors in the 
results of FSIN, FCOS, FSINCOS, and FPTAN. These values are: 
• Any non-zero multiple of π for FSIN.
• Any multiple of π, plus π/2 for FCOS.
• Any non-zero multiple of π/2 for FSINCOS and FPTAN. 

If the arguments passed to FSIN, FCOS, FSINCOS, and FPTAN are not close to these values then even the finite 
approximation Pi of π used internally for argument reduction will allow for results that have good accuracy.

Therefore, in order to avoid such errors it is recommended to perform accurate argument reduction in software, 
and to apply FSIN, FCOS, FSINCOS, and FPTAN to reduced arguments only. Regardless of the target precision 
(single, double, or double-extended), it is safe to reduce the argument to a value smaller in absolute value than 
about 3π/4 for FSIN, and smaller than about 3π/8 for FCOS, FSINCOS, and FPTAN. 

The thresholds shown above are not exact. For example, accuracy measurements show that the double-extended 
precision result of FSIN will not have errors larger than 0.72 ulp for |x| < 2.82 (so |x| < 3π/4 will ensure good accu-
racy, as 3π/4 < 2.82). On the same interval, double precision results from FSIN will have errors at most slightly 
larger than 0.5 ulp, and single precision results will be correctly rounded in the vast majority of cases.

Likewise, the double-extended precision result of FCOS will not have errors larger than 0.82 ulp for |x| < 1.31 (so 
|x| < 3π/8 will ensure good accuracy, as 3π/8 < 1.31). On the same interval, double precision results from FCOS 
will have errors at most slightly larger than 0.5 ulp, and single precision results will be correctly rounded in the vast 
majority of cases.

FSINCOS behaves similarly to FSIN and FCOS, combined as a pair.

error f x( ) F x( )–
2k 63–

---------------------------=

1 2 k– f x( ) 2.<≤
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Finally, the double-extended precision result of FPTAN will not have errors larger than 0.78 ulp for |x| < 1.25 (so 
|x| < 3π/8 will ensure good accuracy, as 3π/8 < 1.25). On the same interval, double precision results from FPTAN 
will have errors at most slightly larger than 0.5 ulp, and single precision results will be correctly rounded in the vast 
majority of cases.

A recommended alternative in order to avoid the accuracy issues that might be caused by FSIN, FCOS, FSINCOS, 
and FPTAN, is to use good quality mathematical library implementations of the sin, cos, sincos, and tan functions, 
for example those from the Intel® Math Library available in the Intel® Compiler.

The instructions FYL2X and FYL2XP1 are two operand instructions and are guaranteed to be within 1 ulp only when 
y equals 1. When y is not equal to 1, the maximum ulp error is always within 1.35 ulps in round to nearest mode. 
(For the two operand functions, monotonicity was proved by holding one of the operands constant.)

8.3.11 x87 FPU Control Instructions
The following instructions control the state and modes of operation of the x87 FPU. They also allow the status of the 
x87 FPU to be examined:

FINIT/FNINIT Initialize x87 FPU.

FLDCW Load x87 FPU control word.

FSTCW/FNSTCW Store x87 FPU control word.

FSTSW/FNSTSW Store x87 FPU status word.

FCLEX/FNCLEX Clear x87 FPU exception flags.

FLDENV Load x87 FPU environment.

FSTENV/FNSTENV Store x87 FPU environment.

FRSTOR Restore x87 FPU state.

FSAVE/FNSAVE Save x87 FPU state.

FINCSTP Increment x87 FPU register stack pointer.

FDECSTP Decrement x87 FPU register stack pointer.

FFREE Free x87 FPU register.

FNOP No operation.

WAIT/FWAIT Check for and handle pending unmasked x87 FPU exceptions.

The FINIT/FNINIT instructions initialize the x87 FPU and its internal registers to default values.

The FLDCW instructions loads the x87 FPU control word register with a value from memory. The FSTCW/FNSTCW 
and FSTSW/FNSTSW instructions store the x87 FPU control and status words, respectively, in memory (or for an 
FSTSW/FNSTSW instruction in a general-purpose register).

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions save the x87 FPU environment and state, respectively, in 
memory. The x87 FPU environment includes all the x87 FPU’s control and status registers; the x87 FPU state 
includes the x87 FPU environment and the data registers in the x87 FPU register stack. (The FSAVE/FNSAVE 
instruction also initializes the x87 FPU to default values, like the FINIT/FNINIT instruction, after it saves the original 
state of the x87 FPU.) 

The FLDENV and FRSTOR instructions load the x87 FPU environment and state, respectively, from memory into the 
x87 FPU. These instructions are commonly used when switching tasks or contexts.

The WAIT/FWAIT instructions are synchronization instructions. (They are actually mnemonics for the same 
opcode.) These instructions check the x87 FPU status word for pending unmasked x87 FPU exceptions. If any 
pending unmasked x87 FPU exceptions are found, they are handled before the processor resumes execution of the 
instructions (integer, floating-point, or system instruction) in the instruction stream. The WAIT/FWAIT instructions 
are provided to allow synchronization of instruction execution between the x87 FPU and the processor’s integer 
unit. See Section 8.6, “x87 FPU Exception Synchronization,” for more information on the use of the WAIT/FWAIT 
instructions.
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8.3.12 Waiting vs. Non-waiting Instructions
All of the x87 FPU instructions except a few special control instructions perform a wait operation (similar to the 
WAIT/FWAIT instructions), to check for and handle pending unmasked x87 FPU floating-point exceptions, before 
they perform their primary operation (such as adding two floating-point numbers). These instructions are called 
waiting instructions. Some of the x87 FPU control instructions, such as FSTSW/FNSTSW, have both a waiting and 
a non-waiting version. The waiting version (with the “F” prefix) executes a wait operation before it performs its 
primary operation; whereas, the non-waiting version (with the “FN” prefix) ignores pending unmasked exceptions. 

Non-waiting instructions allow software to save the current x87 FPU state without first handling pending exceptions 
or to reset or reinitialize the x87 FPU without regard for pending exceptions.

NOTES
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible 
(under unusual circumstances) for a non-waiting instruction to be interrupted prior to being 
executed to handle a pending x87 FPU exception. 
When operating a P6 family, Pentium 4, or Intel Xeon processor in MS-DOS compatibility mode, 
non-waiting instructions cannot be interrupted in this way.

8.3.13 Unsupported x87 FPU Instructions
The Intel 8087 instructions FENI and FDISI and the Intel 287 math coprocessor instruction FSETPM perform no 
function in the Intel 387 math coprocessor and later IA-32 processors. If these opcodes are detected in the instruc-
tion stream, the x87 FPU performs no specific operation and no internal x87 FPU states are affected.

8.4 X87 FPU FLOATING-POINT EXCEPTION HANDLING
The x87 FPU detects the six classes of exception conditions described in Section 4.9, “Overview of Floating-Point 
Exceptions”:
• Invalid operation (#I), with two subclasses:

— Stack overflow or underflow (#IS).

— Invalid arithmetic operation (#IA).
• Denormalized operand (#D).
• Divide-by-zero (#Z).
• Numeric overflow (#O).
• Numeric underflow (#U).
• Inexact result (precision) (#P).

Each of the six exception classes has a corresponding flag bit in the x87 FPU status word and a mask bit in the x87 
FPU control word (see Section 8.1.3, “x87 FPU Status Register,” and Section 8.1.5, “x87 FPU Control Word,” respec-
tively). In addition, the exception summary (ES) flag in the status word indicates when one or more unmasked 
exceptions has been detected. The stack fault (SF) flag (also in the status word) distinguishes between the two 
types of invalid-operation exceptions.

The mask bits can be set with FLDCW, FRSTOR, or FXRSTOR; they can be read with either FSTCW/FNSTCW, 
FSAVE/FNSAVE, or FXSAVE. The flag bits can be read with the FSTSW/FNSTSW, FSAVE/FNSAVE, or FXSAVE instruc-
tion.

NOTE
Section 4.9.1, “Floating-Point Exception Conditions,” provides a general overview of how the IA-32 
processor detects and handles the various classes of floating-point exceptions. This information 
pertains to the x87 FPU as well as the Intel SSE, SSE2, and SSE3 instructions. 
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The following sections give specific information about how the x87 FPU handles floating-point exceptions that are 
unique to the x87 FPU.

8.4.1 Arithmetic vs. Non-arithmetic Instructions
When dealing with floating-point exceptions, it is useful to distinguish between arithmetic instructions and non-
arithmetic instructions. Non-arithmetic instructions have no operands or do not make substantial changes to 
their operands. Arithmetic instructions do make significant changes to their operands; in particular, they make 
changes that could result in floating-point exceptions being signaled. Table 8-9 lists the non-arithmetic and arith-
metic instructions. It should be noted that some non-arithmetic instructions can signal a floating-point stack (fault) 
exception, but this exception is not the result of an operation on an operand.

Table 8-9.  Arithmetic and Non-arithmetic Instructions

Non-arithmetic Instructions Arithmetic Instructions

FABS F2XM1

FCHS FADD/FADDP

FCLEX FBLD

FDECSTP FBSTP

FFREE FCOM/FCOMP/FCOMPP

FINCSTP FCOS

FINIT/FNINIT FDIV/FDIVP/FDIVR/FDIVRP

FLD (register-to-register) FIADD

FLD (extended format from memory) FICOM/FICOMP

FLD constant FIDIV/FIDIVR

FLDCW FILD

FLDENV FIMUL

FNOP FIST/FISTP1

FRSTOR FISUB/FISUBR

FSAVE/FNSAVE FLD (single and double)

FST/FSTP (register-to-register) FMUL/FMULP

FSTP (extended format to memory) FPATAN

FSTCW/FNSTCW FPREM/FPREM1

FSTENV/FNSTENV FPTAN

FSTSW/FNSTSW FRNDINT

WAIT/FWAIT FSCALE

FXAM FSIN

FXCH FSINCOS

FSQRT

FST/FSTP (single and double)

FSUB/FSUBP/FSUBR/FSUBRP

FTST

FUCOM/FUCOMP/FUCOMPP

FXTRACT

FYL2X/FYL2XP1
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8.5 X87 FPU FLOATING-POINT EXCEPTION CONDITIONS
The following sections describe the various conditions that cause a floating-point exception to be generated by the 
x87 FPU and the masked response of the x87 FPU when these conditions are detected. The Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, lists the floating-point exceptions that can 
be signaled for each floating-point instruction.

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for exception precedence when 
more than one floating-point exception condition is detected for an instruction.

8.5.1 Invalid Operation Exception
The floating-point invalid-operation exception occurs in response to two sub-classes of operations:
• Stack overflow or underflow (#IS).
• Invalid arithmetic operand (#IA).

The flag for this exception (IE) is bit 0 of the x87 FPU status word, and the mask bit (IM) is bit 0 of the x87 FPU 
control word. The stack fault flag (SF) of the x87 FPU status word indicates the type of operation that caused the 
exception. When the SF flag is set to 1, a stack operation has resulted in stack overflow or underflow; when the flag 
is cleared to 0, an arithmetic instruction has encountered an invalid operand. Note that the x87 FPU explicitly sets 
the SF flag when it detects a stack overflow or underflow condition, but it does not explicitly clear the flag when it 
detects an invalid-arithmetic-operand condition. As a result, the state of the SF flag can be 1 following an invalid-
arithmetic-operation exception, if it was not cleared from the last time a stack overflow or underflow condition 
occurred. See Section 8.1.3.4, “Stack Fault Flag,” for more information about the SF flag.

8.5.1.1  Stack Overflow or Underflow Exception (#IS)
The x87 FPU tag word keeps track of the contents of the registers in the x87 FPU register stack (see Section 8.1.7, 
“x87 FPU Tag Word”). It then uses this information to detect two different types of stack faults:
• Stack overflow — An instruction attempts to load a non-empty x87 FPU register from memory. A non-empty 

register is defined as a register containing a zero (tag value of 01), a valid value (tag value of 00), or a special 
value (tag value of 10).

• Stack underflow — An instruction references an empty x87 FPU register as a source operand, including 
attempting to write the contents of an empty register to memory. An empty register has a tag value of 11.

NOTES
The term stack overflow originates from the situation where the program has loaded (pushed) eight 
values from memory onto the x87 FPU register stack and the next value pushed on the stack causes 
a stack wraparound to a register that already contains a value.
The term stack underflow originates from the opposite situation. Here, a program has stored 
(popped) eight values from the x87 FPU register stack to memory and the next value popped from 
the stack causes stack wraparound to an empty register.

When the x87 FPU detects stack overflow or underflow, it sets the IE flag (bit 0) and the SF flag (bit 6) in the x87 
FPU status word to 1. It then sets condition-code flag C1 (bit 9) in the x87 FPU status word to 1 if stack overflow 
occurred or to 0 if stack underflow occurred. 

NOTE:
1. The FISTTP instruction in SSE3 is an arithmetic x87 FPU instruction.

Table 8-9.  Arithmetic and Non-arithmetic Instructions (Contd.)

Non-arithmetic Instructions Arithmetic Instructions
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If the invalid-operation exception is masked, the x87 FPU returns the floating-point, integer, or packed decimal 
integer indefinite value to the destination operand, depending on the instruction being executed. This value over-
writes the destination register or memory location specified by the instruction.

If the invalid-operation exception is not masked, a software exception handler is invoked (see Section 8.7, 
“Handling x87 FPU Exceptions in Software”) and the top-of-stack pointer (TOP) and source operands remain 
unchanged.

8.5.1.2  Invalid Arithmetic Operand Exception (#IA)
The x87 FPU is able to detect a variety of invalid arithmetic operations that can be coded in a program. These oper-
ations are listed in Table 8-10. (This list includes the invalid operations defined in IEEE Standard 754.)

When the x87 FPU detects an invalid arithmetic operand, it sets the IE flag (bit 0) in the x87 FPU status word to 1. 
If the invalid-operation exception is masked, the x87 FPU then returns an indefinite value or QNaN to the destina-
tion operand and/or sets the floating-point condition codes as shown in Table 8-10. If the invalid-operation excep-
tion is not masked, a software exception handler is invoked (see Section 8.7, “Handling x87 FPU Exceptions in 
Software”) and the top-of-stack pointer (TOP) and source operands remain unchanged.

Normally, when one or both of the source operands is a QNaN (and neither is an SNaN or in an unsupported 
format), an invalid-operand exception is not generated. An exception to this rule is most of the compare instruc-
tions (such as the FCOM and FCOMI instructions) and the floating-point to integer conversion instructions 

Table 8-10.  Invalid Arithmetic Operations and the Masked Responses to Them

Condition Masked Response

Any arithmetic operation on an operand that is in an unsupported 
format.

Return the QNaN floating-point indefinite value to the 
destination operand.

Any arithmetic operation on a SNaN. Return a QNaN to the destination operand (see Table 4-7).

Ordered compare and test operations: one or both operands are 
NaNs.

Set the condition code flags (C0, C2, and C3) in the x87 FPU 
status word or the CF, PF, and ZF flags in the EFLAGS register to 
111B (not comparable).

Addition: operands are opposite-signed infinities.
Subtraction: operands are like-signed infinities.

Return the QNaN floating-point indefinite value to the 
destination operand.

Multiplication: ∞  by 0; 0 by ∞ . Return the QNaN floating-point indefinite value to the 
destination operand.

Division: ∞  by  ∞ ; 0 by 0. Return the QNaN floating-point indefinite value to the 
destination operand.

Remainder instructions FPREM, FPREM1: modulus (divisor) is 0 or 
dividend is ∞ .

Return the QNaN floating-point indefinite; clear condition code 
flag C2 to 0.

Trigonometric instructions FCOS, FPTAN, FSIN, FSINCOS: source 
operand is ∞ .

Return the QNaN floating-point indefinite; clear condition code 
flag C2 to 0.

FSQRT: negative operand (except FSQRT (–0) = –0); FYL2X: negative 
operand (except FYL2X (–0) = –∞); FYL2XP1: operand more 
negative than –1.

Return the QNaN floating-point indefinite value to the 
destination operand.

FBSTP: Converted value cannot be represented in 18 decimal digits, 
or source value is an SNaN, QNaN, ± ∞ , or in an unsupported 
format.

Store packed BCD integer indefinite value in the destination 
operand.

FIST/FISTP: Converted value exceeds representable integer range 
of the destination operand, or source value is an SNaN, QNaN, ±∞, 
or in an unsupported format.

Store integer indefinite value in the destination operand.

FXCH: one or both registers are tagged empty. Load empty registers with the QNaN floating-point indefinite 
value, then perform the exchange.
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(FIST/FISTP and FBSTP). With these instructions, a QNaN source operand will generate an invalid-operand excep-
tion.

8.5.2 Denormal Operand Exception (#D)
The x87 FPU signals the denormal-operand exception under the following conditions:
• If an arithmetic instruction attempts to operate on a denormal operand (see Section 4.8.3.2, “Normalized and 

Denormalized Finite Numbers”).
• If an attempt is made to load a denormal single precision or double precision floating-point value into an x87 

FPU register. (If the denormal value being loaded is a double extended precision floating-point value, the 
denormal-operand exception is not reported.)

The flag (DE) for this exception is bit 1 of the x87 FPU status word, and the mask bit (DM) is bit 1 of the x87 FPU 
control word.

When a denormal-operand exception occurs and the exception is masked, the x87 FPU sets the DE flag, then 
proceeds with the instruction. The denormal operand in single- or double precision floating-point format is auto-
matically normalized when converted to the double extended precision floating-point format. Subsequent opera-
tions will benefit from the additional precision of the internal double extended precision floating-point format.

When a denormal-operand exception occurs and the exception is not masked, the DE flag is set and a software 
exception handler is invoked (see Section 8.7, “Handling x87 FPU Exceptions in Software”). The top-of-stack 
pointer (TOP) and source operands remain unchanged.

For additional information about the denormal-operation exception, see Section 4.9.1.2, “Denormal Operand 
Exception (#D).”

8.5.3 Divide-By-Zero Exception (#Z)
The x87 FPU reports a floating-point divide-by-zero exception whenever an instruction attempts to divide a finite 
non-zero operand by 0. The flag (ZE) for this exception is bit 2 of the x87 FPU status word, and the mask bit (ZM) 
is bit 2 of the x87 FPU control word. The FDIV, FDIVP, FDIVR, FDIVRP, FIDIV, and FIDIVR instructions and the other 
instructions that perform division internally (FYL2X and FXTRACT) can report the divide-by-zero exception. 

When a divide-by-zero exception occurs and the exception is masked, the x87 FPU sets the ZE flag and returns the 
values shown in Table 8-10. If the divide-by-zero exception is not masked, the ZE flag is set, a software exception 
handler is invoked (see Section 8.7, “Handling x87 FPU Exceptions in Software”), and the top-of-stack pointer 
(TOP) and source operands remain unchanged.

8.5.4 Numeric Overflow Exception (#O)
The x87 FPU reports a floating-point numeric overflow exception (#O) whenever the rounded result of an arith-
metic instruction exceeds the largest allowable finite value that will fit into the floating-point format of the destina-
tion operand. (See Section 4.9.1.4, “Numeric Overflow Exception (#O),” for additional information about the 
numeric overflow exception.)

When using the x87 FPU, numeric overflow can occur on arithmetic operations where the result is stored in an x87 
FPU data register. It can also occur on store floating-point operations (using the FST and FSTP instructions), where 
a within-range value in a data register is stored in memory in a single precision or double precision floating-point 

Table 8-11.  Divide-By-Zero Conditions and the Masked Responses to Them

Condition Masked Response

Divide or reverse divide operation with a 
0 divisor.

Returns an ∞ signed with the exclusive OR of the sign of the two operands to the 
destination operand.

FYL2X instruction. Returns an ∞ signed with the opposite sign of the non-zero operand to the destination 
operand.

FXTRACT instruction. ST(1) is set to –∞; ST(0) is set to 0 with the same sign as the source operand.
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format. The numeric overflow exception cannot occur when storing values in an integer or BCD integer format. 
Instead, the invalid-arithmetic-operand exception is signaled.

The flag (OE) for the numeric-overflow exception is bit 3 of the x87 FPU status word, and the mask bit (OM) is bit 
3 of the x87 FPU control word. 

When a numeric-overflow exception occurs and the exception is masked, the x87 FPU sets the OE flag and returns 
one of the values shown in Table 4-10. The value returned depends on the current rounding mode of the x87 FPU 
(see Section 8.1.5.3, “Rounding Control Field”).

The action that the x87 FPU takes when numeric overflow occurs and the numeric-overflow exception is not 
masked, depends on whether the instruction is supposed to store the result in memory or on the register stack.
• Destination is a memory location — The OE flag is set and a software exception handler is invoked (see 

Section 8.7, “Handling x87 FPU Exceptions in Software”). The top-of-stack pointer (TOP) and source and 
destination operands remain unchanged. Because the data in the stack is in double extended precision format, 
the exception handler has the option either of re-executing the store instruction after proper adjustment of the 
operand or of rounding the significand on the stack to the destination's precision as the standard requires. The 
exception handler should ultimately store a value into the destination location in memory if the program is to 
continue.

• Destination is the register stack — The significand of the result is rounded according to current settings of 
the precision and rounding control bits in the x87 FPU control word and the exponent of the result is adjusted 
by dividing it by 224576. (For instructions not affected by the precision field, the significand is rounded to 
double-extended precision.) The resulting value is stored in the destination operand. Condition code bit C1 in 
the x87 FPU status word (called in this situation the “round-up bit”) is set if the significand was rounded upward 
and cleared if the result was rounded toward 0. After the result is stored, the OE flag is set and a software 
exception handler is invoked. The scaling bias value 24,576 is equal to 3 ∗ 213. Biasing the exponent by 24,576 
normally translates the number as nearly as possible to the middle of the double extended precision floating-
point exponent range so that, if desired, it can be used in subsequent scaled operations with less risk of causing 
further exceptions.
When using the FSCALE instruction, massive overflow can occur, where the result is too large to be repre-
sented, even with a bias-adjusted exponent. Here, if overflow occurs again, after the result has been biased, a 
properly signed ∞ is stored in the destination operand.

8.5.5 Numeric Underflow Exception (#U)
The x87 FPU detects a potential floating-point numeric underflow condition whenever the result of an arithmetic 
instruction is non-zero and tiny; that is, the magnitude of the rounded result with unbounded exponent is non-zero 
and less than the smallest possible normalized, finite value that will fit into the floating-point format of the desti-
nation operand. See Section 4.9.1.5, “Numeric Underflow Exception (#U),” for additional information about the 
numeric underflow exception.

Like numeric overflow, numeric underflow can occur on arithmetic operations where the result is stored in an x87 
FPU data register. It can also occur on store floating-point operations (with the FST and FSTP instructions), where 
a within-range value in a data register is stored in memory in the smaller single precision or double precision 
floating-point formats. A numeric underflow exception cannot occur when storing values in an integer or BCD 
integer format, because a value with magnitude less than 1 is always rounded to an integral value of 0 or 1, 
depending on the rounding mode in effect.

The flag (UE) for the numeric-underflow exception is bit 4 of the x87 FPU status word, and the mask bit (UM) is bit 
4 of the x87 FPU control word.

When a numeric-underflow condition occurs and the exception is masked, the x87 FPU performs the operation 
described in Section 4.9.1.5, “Numeric Underflow Exception (#U).”

When the exception is not masked, the action of the x87 FPU depends on whether the instruction is supposed to 
store the result in a memory location or on the x87 FPU resister stack.
• Destination is a memory location — (Can occur only with a store instruction.) The UE flag is set and a 

software exception handler is invoked; see Section 8.2, “x87 FPU Data Types.” The top-of-stack pointer (TOP) 
and source and destination operands remain unchanged, and no result is stored in memory. 
Because the data in the stack is in double extended precision format, the exception handler has the option 
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either of re-exchanges the store instruction after proper adjustment of the operand or of rounding the 
significand on the stack to the destination's precision as the standard requires. The exception handler should 
ultimately store a value into the destination location in memory if the program is to continue.

• Destination is the register stack — The significand of the result is rounded according to current settings of 
the precision and rounding control bits in the x87 FPU control word and the exponent of the result is adjusted 
by multiplying it by 224576. (For instructions not affected by the precision field, the significand is rounded to 
double extended precision.) The resulting value is stored in the destination operand. Condition code bit C1 in 
the x87 FPU status register (acting here as a “round-up bit”) is set if the significand was rounded upward and 
cleared if the result was rounded toward 0. After the result is stored, the UE flag is set and a software exception 
handler is invoked. The scaling bias value 24,576 is the same as is used for the overflow exception and has the 
same effect, which is to translate the result as nearly as possible to the middle of the double extended precision 
floating-point exponent range.
When using the FSCALE instruction, massive underflow can occur, where the magnitude of the result is too 
small to be represented, even with a bias-adjusted exponent. Here, if underflow occurs again after the result 
has been biased, a properly signed 0 is stored in the destination operand.

8.5.6 Inexact-Result (Precision) Exception (#P)
The inexact-result exception (also called the precision exception) occurs if the result of an operation is not exactly 
representable in the destination format. (See Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P),” for 
additional information about the numeric overflow exception.) Note that the transcendental instructions (FSIN, 
FCOS, FSINCOS, FPTAN, FPATAN, F2XM1, FYL2X, and FYL2XP1) by nature produce inexact results.

The inexact-result exception flag (PE) is bit 5 of the x87 FPU status word, and the mask bit (PM) is bit 5 of the x87 
FPU control word. 

If the inexact-result exception is masked when an inexact-result condition occurs and a numeric overflow or under-
flow condition has not occurred, the x87 FPU handles the exception as describe in Section 4.9.1.6, “Inexact-Result 
(Precision) Exception (#P),” with one additional action. The C1 (round-up) bit in the x87 FPU status word is set to 
indicate whether the inexact result was rounded up (C1 is set) or “not rounded up” (C1 is cleared). In the “not 
rounded up” case, the least-significant bits of the inexact result are truncated so that the result fits in the destina-
tion format.

If the inexact-result exception is not masked when an inexact result occurs and numeric overflow or underflow has 
not occurred, the x87 FPU handles the exception as described in the previous paragraph and, in addition, invokes 
a software exception handler.

If an inexact result occurs in conjunction with numeric overflow or underflow, the x87 FPU carries out one of the 
following operations:
• If an inexact result occurs in conjunction with masked overflow or underflow, the OE or UE flag and the PE flag 

are set and the result is stored as described for the overflow or underflow exceptions (see Section 8.5.4, 
“Numeric Overflow Exception (#O),” or Section 8.5.5, “Numeric Underflow Exception (#U)”). If the inexact 
result exception is unmasked, the x87 FPU also invokes a software exception handler.

• If an inexact result occurs in conjunction with unmasked overflow or underflow and the destination operand is 
a register, the OE or UE flag and the PE flag are set, the result is stored as described for the overflow or 
underflow exceptions (see Section 8.5.4, “Numeric Overflow Exception (#O),” or Section 8.5.5, “Numeric 
Underflow Exception (#U)”) and a software exception handler is invoked.

If an unmasked numeric overflow or underflow exception occurs and the destination operand is a memory location 
(which can happen only for a floating-point store), the inexact-result condition is not reported and the C1 flag is 
cleared.

8.6 X87 FPU EXCEPTION SYNCHRONIZATION
Because the integer unit and x87 FPU are separate execution units, it is possible for the processor to execute 
floating-point, integer, and system instructions concurrently. No special programming techniques are required to 
gain the advantages of concurrent execution. (Floating-point instructions are placed in the instruction stream along 
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with the integer and system instructions.) However, concurrent execution can cause problems for floating-point 
exception handlers. 

This problem is related to the way the x87 FPU signals the existence of unmasked floating-point exceptions. 
(Special exception synchronization is not required for masked floating-point exceptions, because the x87 FPU 
always returns a masked result to the destination operand.) 

When a floating-point exception is unmasked and the exception condition occurs, the x87 FPU stops further execu-
tion of the floating-point instruction and signals the exception event. On the next occurrence of a floating-point 
instruction or a WAIT/FWAIT instruction in the instruction stream, the processor checks the ES flag in the x87 FPU 
status word for pending floating-point exceptions. If floating-point exceptions are pending, the x87 FPU makes an 
implicit call (traps) to the floating-point software exception handler. The exception handler can then execute 
recovery procedures for selected or all floating-point exceptions.

Synchronization problems occur in the time between the moment when the exception is signaled and when it is 
actually handled. Because of concurrent execution, integer or system instructions can be executed during this 
time. It is thus possible for the source or destination operands for a floating-point instruction that faulted to be 
overwritten in memory, making it impossible for the exception handler to analyze or recover from the exception.

To solve this problem, an exception synchronizing instruction (either a floating-point instruction or a WAIT/FWAIT 
instruction) can be placed immediately after any floating-point instruction that might present a situation where 
state information pertaining to a floating-point exception might be lost or corrupted. Floating-point instructions 
that store data in memory are prime candidates for synchronization. For example, the following three lines of code 
have the potential for exception synchronization problems:

FILD COUNT ;Floating-point instruction
INC COUNT ;Integer instruction
FSQRT ;Subsequent floating-point instruction

In this example, the INC instruction modifies the source operand of the floating-point instruction, FILD. If an 
exception is signaled during the execution of the FILD instruction, the INC instruction would be allowed to over-
write the value stored in the COUNT memory location before the floating-point exception handler is called. With the 
COUNT variable modified, the floating-point exception handler would not be able to recover from the error.

Rearranging the instructions, as follows, so that the FSQRT instruction follows the FILD instruction, synchronizes 
floating-point exception handling and eliminates the possibility of the COUNT variable being overwritten before the 
floating-point exception handler is invoked.

FILD COUNT ;Floating-point instruction
FSQRT      ;Subsequent floating-point instruction synchronizes

           ;any exceptions generated by the FILD instruction.
INC COUNT  ;Integer instruction

The FSQRT instruction does not require any synchronization, because the results of this instruction are stored in 
the x87 FPU data registers and will remain there, undisturbed, until the next floating-point or WAIT/FWAIT instruc-
tion is executed. To absolutely ensure that any exceptions emanating from the FSQRT instruction are handled (for 
example, prior to a procedure call), a WAIT instruction can be placed directly after the FSQRT instruction.

Note that some floating-point instructions (non-waiting instructions) do not check for pending unmasked excep-
tions (see Section 8.3.11, “x87 FPU Control Instructions”). They include the FNINIT, FNSTENV, FNSAVE, FNSTSW, 
FNSTCW, and FNCLEX instructions. When an FNINIT, FNSTENV, FNSAVE, or FNCLEX instruction is executed, all 
pending exceptions are essentially lost (either the x87 FPU status register is cleared or all exceptions are masked). 
The FNSTSW and FNSTCW instructions do not check for pending interrupts, but they do not modify the x87 FPU 
status and control registers. A subsequent “waiting” floating-point instruction can then handle any pending excep-
tions.

8.7 HANDLING X87 FPU EXCEPTIONS IN SOFTWARE
The x87 FPU in Pentium and later IA-32 processors provides two different modes of operation for invoking a soft-
ware exception handler for floating-point exceptions: native mode and MS-DOS compatibility mode. The mode of 
operation is selected by CR0.NE[bit 5]. See Chapter 2, “System Architecture Overview,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A, for more information about the NE flag.
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8.7.1 Native Mode
The native mode for handling floating-point exceptions is selected by setting CR0.NE[bit 5] to 1. In this mode, if the 
x87 FPU detects an exception condition while executing a floating-point instruction and the exception is unmasked 
(the mask bit for the exception is cleared), the x87 FPU sets the flag for the exception and the ES flag in the x87 
FPU status word. It then invokes the software exception handler through the floating-point-error exception (#MF, 
exception vector 16), immediately before execution of any of the following instructions in the processor’s instruc-
tion stream:
• The next floating-point instruction, unless it is one of the non-waiting instructions (FNINIT, FNCLEX, FNSTSW, 

FNSTCW, FNSTENV, and FNSAVE). 
• The next WAIT/FWAIT instruction.
• The next MMX instruction.

If the next floating-point instruction in the instruction stream is a non-waiting instruction, the x87 FPU executes the 
instruction without invoking the software exception handler.

8.7.2 MS-DOS* Compatibility Sub-mode
If CR0.NE[bit 5] is 0, the MS-DOS compatibility mode for handling floating-point exceptions is selected. In this 
mode, the software exception handler for floating-point exceptions is invoked externally using the processor’s 
FERR#, INTR, and IGNNE# pins. This method of reporting floating-point errors and invoking an exception handler 
is provided to support the floating-point exception handling mechanism used in PC systems that are running the 
MS-DOS or Windows* 95 operating system.

Using FERR# and IGNNE# to handle floating-point exception is deprecated by modern operating systems, this 
approach also limits newer processors to operate with one logical processor active.

The MS-DOS compatibility mode is typically used as follows to invoke the floating-point exception handler:

1. If the x87 FPU detects an unmasked floating-point exception, it sets the flag for the exception and the ES flag 
in the x87 FPU status word.

2. If the IGNNE# pin is deasserted, the x87 FPU then asserts the FERR# pin either immediately, or else delayed 
(deferred) until just before the execution of the next waiting floating-point instruction or MMX instruction. 
Whether the FERR# pin is asserted immediately or delayed depends on the type of processor, the instruction, 
and the type of exception.

3. If a preceding floating-point instruction has set the exception flag for an unmasked x87 FPU exception, the 
processor freezes just before executing the next WAIT instruction, waiting floating-point instruction, or MMX 
instruction. Whether the FERR# pin was asserted at the preceding floating-point instruction or is just now being 
asserted, the freezing of the processor assures that the x87 FPU exception handler will be invoked before the 
new floating-point (or MMX) instruction gets executed.

4. The FERR# pin is connected through external hardware to IRQ13 of a cascaded, programmable interrupt 
controller (PIC). When the FERR# pin is asserted, the PIC is programmed to generate an interrupt 75H.

5. The PIC asserts the INTR pin on the processor to signal the interrupt 75H.

6. The BIOS for the PC system handles the interrupt 75H by branching to the interrupt 02H (NMI) interrupt 
handler.

7. The interrupt 02H handler determines if the interrupt is the result of an NMI interrupt or a floating-point 
exception.

8. If a floating-point exception is detected, the interrupt 02H handler branches to the floating-point exception 
handler.

If the IGNNE# pin is asserted, the processor ignores floating-point error conditions. This pin is provided to inhibit 
floating-point exceptions from being generated while the floating-point exception handler is servicing a previously 
signaled floating-point exception.

Appendix D, “Guidelines for Writing SIMD Floating-Point Exception Handlers,” describes the MS-DOS compatibility 
mode in much greater detail. This mode is somewhat more complicated in the Intel486 and Pentium processor 
implementations, as described in Appendix D.
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8.7.3 Handling x87 FPU Exceptions in Software
Section 4.9.3, “Typical Actions of a Floating-Point Exception Handler,” shows actions that may be carried out by a 
floating-point exception handler. The state of the x87 FPU can be saved with the FSTENV/FNSTENV or 
FSAVE/FNSAVE instructions; see Section 8.1.10, “Saving the x87 FPU State with FSTENV/FNSTENV and 
FSAVE/FNSAVE.” 

If the faulting floating-point instruction is followed by one or more non-floating-point instructions, it may not be 
useful to re-execute the faulting instruction. See Section 8.6, “x87 FPU Exception Synchronization,” for more infor-
mation on synchronizing floating-point exceptions.

In cases where the handler needs to restart program execution with the faulting instruction, the IRET instruction 
cannot be used directly. The reason for this is that because the exception is not generated until the next floating-
point or WAIT/FWAIT instruction following the faulting floating-point instruction, the return instruction pointer on 
the stack may not point to the faulting instruction. To restart program execution at the faulting instruction, the 
exception handler must obtain a pointer to the instruction from the saved x87 FPU state information, load it into 
the return instruction pointer location on the stack, and then execute the IRET instruction.
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CHAPTER 9
PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY

The Intel MMX technology was introduced into the IA-32 architecture in the Pentium II processor family and 
Pentium processor with MMX technology. The extensions introduced in MMX technology support a single-instruc-
tion, multiple-data (SIMD) execution model that is designed to accelerate the performance of advanced media and 
communications applications.

This chapter describes MMX technology.

9.1 OVERVIEW OF MMX TECHNOLOGY
MMX technology defines a simple and flexible SIMD execution model to handle 64-bit packed integer data. This 
model adds the following features to the IA-32 architecture, while maintaining backwards compatibility with all IA-
32 applications and operating-system code:
• Eight new 64-bit data registers, called MMX registers.
• Three new packed data types:

— 64-bit packed byte integers (signed and unsigned).

— 64-bit packed word integers (signed and unsigned).

— 64-bit packed doubleword integers (signed and unsigned).
• Instructions that support the new data types and to handle MMX state management.
• Extensions to the CPUID instruction.

MMX technology is accessible from all the IA32-architecture execution modes (protected mode, real address mode, 
and virtual 8086 mode). It does not add any new modes to the architecture.

The following sections of this chapter describe MMX technology’s programming environment, including MMX 
register set, data types, and instruction set. Additional instructions that operate on MMX registers have been added 
to the IA-32 architecture by the SSE/SSE2 extensions.

For more information, see:
• Section 10.4.4, “Intel® SSE 64-Bit SIMD Integer Instructions,” describes MMX instructions added to the IA-32 

architecture with the SSE extensions.
• Section 11.4.2, “Intel® SSE2 64-Bit and 128-Bit SIMD Integer Instructions,” describes MMX instructions added 

to the IA-32 architecture with SSE2 extensions.
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, gives detailed 

descriptions of MMX instructions.
• Chapter 14, “Intel® MMX™ Technology System Programming,” in the Intel® 64 and IA-32 Architectures 

Software Developer’s Manual, Volume 3B, describes the manner in which MMX technology is integrated into the 
IA-32 system programming model.

9.2 THE MMX TECHNOLOGY PROGRAMMING ENVIRONMENT 
Figure 9-1 shows the execution environment for MMX technology. All MMX instructions operate on MMX registers, 
the general-purpose registers, and/or memory as follows: 
• MMX registers — These eight registers (see Figure 9-1) are used to perform operations on 64-bit packed 

integer data. They are named MM0 through MM7.
Vol. 1 9-1



PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
• General-purpose registers — The eight general-purpose registers (see Figure 3-5) are used with existing IA-
32 addressing modes to address operands in memory. (MMX registers cannot be used to address memory). 
General-purpose registers are also used to hold operands for some MMX technology operations. They are EAX, 
EBX, ECX, EDX, EBP, ESI, EDI, and ESP.

9.2.1 MMX Technology in 64-Bit Mode and Compatibility Mode
In compatibility mode and 64-bit mode, MMX instructions function like they do in protected mode. Memory oper-
ands are specified using the ModR/M, SIB encoding described in Section 3.7.5.

9.2.2 MMX Registers
The MMX register set consists of eight 64-bit registers (see Figure 9-2), that are used to perform calculations on 
the MMX packed integer data types. Values in MMX registers have the same format as a 64-bit quantity in memory. 

The MMX registers have two data access modes: 64-bit access mode and 32-bit access mode. The 64-bit access 
mode is used for:
• 64-bit memory accesses.
• 64-bit transfers between MMX registers.
• All pack, logical, and arithmetic instructions.
• Some unpack instructions.

The 32-bit access mode is used for:
• 32-bit memory accesses.
• 32-bit transfer between general-purpose registers and MMX registers.
• Some unpack instructions.

Figure 9-1.  MMX Technology Execution Environment

0

232 -1

Eight 32-Bit

Address Space

General-Purpose

Eight 64-Bit
MMX Registers

Registers
9-2 Vol. 1



PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
Although MMX registers are defined in the IA-32 architecture as separate registers, they are aliased to the registers 
in the FPU data register stack (R0 through R7). 

See also Section 9.5, “Compatibility with x87 FPU Architecture.”

9.2.3 MMX Data Types
MMX technology introduced the following 64-bit data types to the IA-32 architecture (see Figure 9-3):
• 64-bit packed byte integers — eight packed bytes.
• 64-bit packed word integers — four packed words.
• 64-bit packed doubleword integers — two packed doublewords.

MMX instructions move 64-bit packed data types (packed bytes, packed words, or packed doublewords) and the 
quadword data type between MMX registers and memory or between MMX registers in 64-bit blocks. However, 
when performing arithmetic or logical operations on the packed data types, MMX instructions operate in parallel on 
the individual bytes, words, or doublewords contained in MMX registers; see Section 9.2.5, “Single Instruction, 
Multiple Data (SIMD) Execution Model.”

9.2.4 Memory Data Formats
When stored in memory: bytes, words, and doublewords in the packed data types are stored in consecutive 
addresses. The least significant byte, word, or doubleword is stored at the lowest address and the most significant 
byte, word, or doubleword is stored at the high address. The ordering of bytes, words, or doublewords in memory 
is always little endian. That is, the bytes with the low addresses are less significant than the bytes with high 
addresses.

Figure 9-2.  MMX Register Set

Figure 9-3.  Data Types Introduced with the MMX Technology
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9.2.5 Single Instruction, Multiple Data (SIMD) Execution Model
MMX technology uses the single instruction, multiple data (SIMD) technique for performing arithmetic and logical 
operations on bytes, words, or doublewords packed into MMX registers (see Figure 9-4). For example, the PADDSW 
instruction adds 4 signed word integers from one source operand to 4 signed word integers in a second source 
operand and stores 4 word integer results in a destination operand. This SIMD technique speeds up software 
performance by allowing the same operation to be carried out on multiple data elements in parallel. MMX tech-
nology supports parallel operations on byte, word, and doubleword data elements when contained in MMX regis-
ters.

The SIMD execution model supported in the MMX technology directly addresses the needs of modern media, 
communications, and graphics applications, which often use sophisticated algorithms that perform the same oper-
ations on a large number of small data types (bytes, words, and doublewords). For example, most audio data is 
represented in 16-bit (word) quantities. The MMX instructions can operate on 4 words simultaneously with one 
instruction. Video and graphics information is commonly represented as palletized 8-bit (byte) quantities. In 
Figure 9-4, one MMX instruction operates on 8 bytes simultaneously.

9.3 SATURATION AND WRAPAROUND MODES
When performing integer arithmetic, an operation may result in an out-of-range condition, where the true result 
cannot be represented in the destination format. For example, when performing arithmetic on signed word inte-
gers, positive overflow can occur when the true signed result is larger than 16 bits.

The MMX technology provides three ways of handling out-of-range conditions:
• Wraparound arithmetic — With wraparound arithmetic, a true out-of-range result is truncated (that is, the 

carry or overflow bit is ignored and only the least significant bits of the result are returned to the destination). 
Wraparound arithmetic is suitable for applications that control the range of operands to prevent out-of-range 
results. If the range of operands is not controlled, however, wraparound arithmetic can lead to large errors. For 
example, adding two large signed numbers can cause positive overflow and produce a negative result.

• Signed saturation arithmetic — With signed saturation arithmetic, out-of-range results are limited to the 
representable range of signed integers for the integer size being operated on (see Table 9-1). For example, if 
positive overflow occurs when operating on signed word integers, the result is “saturated” to 7FFFH, which is 
the largest positive integer that can be represented in 16 bits; if negative overflow occurs, the result is 
saturated to 8000H.

• Unsigned saturation arithmetic — With unsigned saturation arithmetic, out-of-range results are limited to 
the representable range of unsigned integers for the integer size. So, positive overflow when operating on 
unsigned byte integers results in FFH being returned and negative overflow results in 00H being returned.

.

Figure 9-4.  SIMD Execution Model
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Saturation arithmetic provides an answer for many overflow situations. For example, in color calculations, satura-
tion causes a color to remain pure black or pure white without allowing inversion. It also prevents wraparound arti-
facts from entering into computations when range checking of source operands it not used.

MMX instructions do not indicate overflow or underflow occurrence by generating exceptions or setting flags in the 
EFLAGS register.

9.4 MMX INSTRUCTIONS
The MMX instruction set consists of 47 instructions, grouped into the following categories:
• Data transfer
• Arithmetic
• Comparison
• Conversion
• Unpacking
• Logical
• Shift
• Empty MMX state instruction (EMMS)

Table 9-2 gives a summary of the instructions in the MMX instruction set. The following sections give a brief over-
view of the instructions within each group.

NOTES
The MMX instructions described in this chapter are those instructions that are available in an IA-32 
processor when CPUID.01H:EDX.MMX[bit 23] = 1. 
Section 10.4.4, “Intel® SSE 64-Bit SIMD Integer Instructions,” and Section 11.4.2, “Intel® SSE2 
64-Bit and 128-Bit SIMD Integer Instructions,” list additional instructions included with the Intel 
SSE/SSE2 extensions that operate on MMX registers but are not considered part of the MMX 
instruction set.

Table 9-1.  Data Range Limits for Saturation

Data Type Lower Limit Upper Limit

Hexadecimal Decimal Hexadecimal Decimal

Signed Byte     80H     -128     7FH      127

Signed Word 8000H -32,768 7FFFH 32,767

Unsigned Byte     00H           0     FFH      255

Unsigned Word 0000H           0 FFFFH 65,535
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9.4.1 Data Transfer Instructions
The MOVD (Move 32 Bits) instruction transfers 32 bits of packed data from memory to an MMX register and vice 
versa; or from a general-purpose register to an MMX register and vice versa.

The MOVQ (Move 64 Bits) instruction transfers 64 bits of packed data from memory to an MMX register and vice 
versa; or transfers data between MMX registers.

9.4.2 Arithmetic Instructions
The arithmetic instructions perform addition, subtraction, multiplication, and multiply/add operations on packed 
data types.

The PADDB/PADDW/PADDD (add packed integers) instructions and the PSUBB/PSUBW/ PSUBD (subtract packed 
integers) instructions add or subtract the corresponding signed or unsigned data elements of the source and desti-

Table 9-2.  MMX Instruction Set Summary

Category Wraparound Signed Saturation Unsigned Saturation

Arithmetic Addition

Subtraction

Multiplication

Multiply and Add

PADDB, PADDW, PADDD

PSUBB, PSUBW, PSUBD

PMULL, PMULH

PMADD

PADDSB, PADDSW

PSUBSB, PSUBSW

PADDUSB, PADDUSW

PSUBUSB, PSUBUSW

Comparison Compare for Equal

Compare for Greater 
Than

PCMPEQB, PCMPEQW, 
PCMPEQD

PCMPGTPB, PCMPGTPW, 
PCMPGTPD

Conversion Pack PACKSSWB,
PACKSSDW

PACKUSWB

Unpack Unpack High

Unpack Low

PUNPCKHBW, 
PUNPCKHWD, 
PUNPCKHDQ

PUNPCKLBW, 
PUNPCKLWD, 
PUNPCKLDQ

Packed Full Quadword

Logical And

And Not

Or

Exclusive OR

PAND

PANDN

POR

PXOR

Shift Shift Left Logical

Shift Right Logical

Shift Right Arithmetic

PSLLW, PSLLD

PSRLW, PSRLD

PSRAW, PSRAD

PSLLQ

PSRLQ

Doubleword Transfers Quadword Transfers

Data Transfer Register to Register

Load from Memory

Store to Memory

MOVD

MOVD

MOVD

MOVQ

MOVQ

MOVQ

Empty MMX State EMMS
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nation operands in wraparound mode. These instructions operate on packed byte, word, and doubleword data 
types.

The PADDSB/PADDSW (add packed signed integers with signed saturation) instructions and the PSUBSB/PSUBSW 
(subtract packed signed integers with signed saturation) instructions add or subtract the corresponding signed 
data elements of the source and destination operands and saturate the result to the limits of the signed data-type 
range. These instructions operate on packed byte and word data types.

The PADDUSB/PADDUSW (add packed unsigned integers with unsigned saturation) instructions and the 
PSUBUSB/PSUBUSW (subtract packed unsigned integers with unsigned saturation) instructions add or subtract the 
corresponding unsigned data elements of the source and destination operands and saturate the result to the limits 
of the unsigned data-type range. These instructions operate on packed byte and word data types.

The PMULHW (multiply packed signed integers and store high result) and PMULLW (multiply packed signed integers 
and store low result) instructions perform a signed multiply of the corresponding words of the source and destina-
tion operands and write the high-order or low-order 16 bits of each of the results, respectively, to the destination 
operand.

The PMADDWD (multiply and add packed integers) instruction computes the products of the corresponding signed 
words of the source and destination operands. The four intermediate 32-bit doubleword products are summed in 
pairs (high-order pair and low-order pair) to produce two 32-bit doubleword results. 

9.4.3 Comparison Instructions
The PCMPEQB/PCMPEQW/PCMPEQD (compare packed data for equal) instructions and the 
PCMPGTB/PCMPGTW/PCMPGTD (compare packed signed integers for greater than) instructions compare the corre-
sponding signed data elements (bytes, words, or doublewords) in the source and destination operands for equal to 
or greater than, respectively. 

These instructions generate a mask of ones or zeros which are written to the destination operand. Logical opera-
tions can use the mask to select packed elements. This can be used to implement a packed conditional move oper-
ation without a branch or a set of branch instructions. No flags in the EFLAGS register are affected. 

9.4.4 Conversion Instructions
The PACKSSWB (pack words into bytes with signed saturation) and PACKSSDW (pack doublewords into words with 
signed saturation) instructions convert signed words into signed bytes and signed doublewords into signed words, 
respectively, using signed saturation.

PACKUSWB (pack words into bytes with unsigned saturation) converts signed words into unsigned bytes, using 
unsigned saturation.

9.4.5 Unpack Instructions
The PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ (unpack high-order data elements) instructions and the 
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ (unpack low-order data elements) instructions unpack bytes, words, or 
doublewords from the high- or low-order data elements of the source and destination operands and interleave 
them in the destination operand. By placing all 0s in the source operand, these instructions can be used to convert 
byte integers to word integers, word integers to doubleword integers, or doubleword integers to quadword inte-
gers. 

9.4.6 Logical Instructions
PAND (bitwise logical AND), PANDN (bitwise logical AND NOT), POR (bitwise logical OR), and PXOR (bitwise logical 
exclusive OR) perform bitwise logical operations on the quadword source and destination operands.
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9.4.7 Shift Instructions
The logical shift left, logical shift right and arithmetic shift right instructions shift each element by a specified 
number of bit positions.

The PSLLW/PSLLD/PSLLQ (shift packed data left logical) instructions and the PSRLW/PSRLD/PSRLQ (shift packed 
data right logical) instructions perform a logical left or right shift of the data elements and fill the empty high or low 
order bit positions with zeros. These instructions operate on packed words, doublewords, and quadwords.

The PSRAW/PSRAD (shift packed data right arithmetic) instructions perform an arithmetic right shift, copying the 
sign bit for each data element into empty bit positions on the upper end of each data element. This instruction 
operates on packed words and doublewords. 

9.4.8 EMMS Instruction
The EMMS instruction empties the MMX state by setting the tags in x87 FPU tag word to 11B, indicating empty 
registers. This instruction must be executed at the end of an MMX routine before calling other routines that can 
execute floating-point instructions. See Section 9.6.3, “Using the EMMS Instruction,” for more information on the 
use of this instruction.

9.5 COMPATIBILITY WITH X87 FPU ARCHITECTURE
The MMX state is aliased to the x87 FPU state. No new states or modes have been added to IA-32 architecture to 
support the MMX technology. The same floating-point instructions that save and restore the x87 FPU state also 
handle the MMX state (for example, during context switching).

MMX technology uses the same interface techniques between the x87 FPU and the operating system (primarily for 
task switching purposes). For more details, see Chapter 14, “Intel® MMX™ Technology System Programming,” in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

9.5.1 MMX Instructions and the x87 FPU Tag Word
After each MMX instruction, the entire x87 FPU tag word is set to valid (00B). The EMMS instruction (empty MMX 
state) sets the entire x87 FPU tag word to empty (11B). 

Chapter 14, “Intel® MMX™ Technology System Programming,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A, provides additional information about the effects of x87 FPU and MMX instructions 
on the x87 FPU tag word. For a description of the tag word, see Section 8.1.7, “x87 FPU Tag Word.”

9.6 WRITING APPLICATIONS WITH MMX CODE
The following sections give guidelines for writing application code that uses MMX technology.

9.6.1 Checking for MMX Technology Support
Before an application attempts to use the MMX technology, it should check that it is present on the processor. Check 
by following these steps:

1. Check that the processor supports the CPUID instruction by attempting to execute the CPUID instruction. If the 
processor does not support the CPUID instruction, this will generate an invalid-opcode exception (#UD).

2. Check that the processor supports the MMX technology 
(if CPUID.01H:EDX.MMX[bit 23] = 1).

3. Check that emulation of the x87 FPU is disabled (if CR0.EM[bit 2] = 0).

If the processor attempts to execute an unsupported MMX instruction or attempts to execute an MMX instruction 
with CR0.EM[bit 2] set, this generates an invalid-opcode exception (#UD).
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Example 9-1 illustrates how to use the CPUID instruction to detect the MMX technology. This example does not 
represent the entire CPUID sequence, but shows the portion used for detection of MMX technology.

Example 9-1.  Partial Routine for Detecting MMX Technology with the CPUID Instruction

... ; identify existence of CPUID instruction

... ; identify Intel processor
mov EAX, 1 ; request for feature flags
CPUID ; 0FH, 0A2H CPUID instruction
test EDX, 00800000H ; Is IA MMX technology bit (Bit 23 of EDX) set?
jnz ; MMX_Technology_Found

9.6.2 Transitions Between x87 FPU and MMX Code
Applications can contain both x87 FPU floating-point and MMX instructions. However, because the MMX registers 
are aliased to the x87 FPU register stack, care must be taken when making transitions between x87 FPU instruc-
tions and MMX instructions to prevent incoherent or unexpected results.

When an MMX instruction (other than the EMMS instruction) is executed, the processor changes the x87 FPU state 
as follows:
• The TOS (top of stack) value of the x87 FPU status word is set to 0.
• The entire x87 FPU tag word is set to the valid state (00B in all tag fields). 
• When an MMX instruction writes to an MMX register, it writes ones (11B) to the exponent part of the corre-

sponding floating-point register (bits 64 through 79).

The net result of these actions is that any x87 FPU state prior to the execution of the MMX instruction is essentially 
lost.

When an x87 FPU instruction is executed, the processor assumes that the current state of the x87 FPU register 
stack and control registers is valid and executes the instruction without any preparatory modifications to the x87 
FPU state.

If the application contains both x87 FPU floating-point and MMX instructions, the following guidelines are recom-
mended:
• When transitioning between x87 FPU and MMX code, save the state of any x87 FPU data or control registers 

that need to be preserved for future use. The FSAVE and FXSAVE instructions save the entire x87 FPU state.
• When transitioning between MMX and x87 FPU code, do the following:

— Save any data in the MMX registers that needs to be preserved for future use. FSAVE and FXSAVE also save 
the state of MMX registers.

— Execute the EMMS instruction to clear the MMX state from the x87 data and control registers.

The following sections describe the use of the EMMS instruction and give additional guidelines for mixing x87 FPU 
and MMX code.

9.6.3 Using the EMMS Instruction
As described in Section 9.6.2, “Transitions Between x87 FPU and MMX Code,” when an MMX instruction executes, 
the x87 FPU tag word is marked valid (00B). In this state, the execution of subsequent x87 FPU instructions may 
produce unexpected x87 FPU floating-point exceptions and/or incorrect results because the x87 FPU register stack 
appears to contain valid data. The EMMS instruction is provided to prevent this problem by marking the x87 FPU 
tag word as empty.

The EMMS instruction should be used in each of the following cases: 
• When an application using the x87 FPU instructions calls an MMX technology library/DLL (use the EMMS 

instruction at the end of the MMX code).
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• When an application using MMX instructions calls a x87 FPU floating-point library/DLL (use the EMMS 
instruction before calling the x87 FPU code).

• When a switch is made between MMX code in a task or thread and other tasks or threads in cooperative 
operating systems, unless it is certain that more MMX instructions will be executed before any x87 FPU code.

EMMS is not required when mixing MMX technology instructions with Intel SSE/SSE2/SSE3 instructions; see 
Section 11.6.7, “Interaction of Intel® SSE and SSE2 Instructions with x87 FPU and MMX Instructions.”

9.6.4 Mixing MMX and x87 FPU Instructions
An application can contain both x87 FPU floating-point and MMX instructions. However, frequent transitions 
between MMX and x87 FPU instructions are not recommended, because they can degrade performance in some 
processor implementations. When mixing MMX code with x87 FPU code, follow these guidelines:
• Keep the code in separate modules, procedures, or routines.
• Do not rely on register contents across transitions between x87 FPU and MMX code modules.
• When transitioning between MMX code and x87 FPU code, save the MMX register state (if it will be needed in 

the future) and execute an EMMS instruction to empty the MMX state.
• When transitioning between x87 FPU code and MMX code, save the x87 FPU state if it will be needed in the 

future.

9.6.5 Interfacing with MMX Code
MMX technology enables direct access to all the MMX registers. This means that all existing interface conventions 
that apply to the use of the processor’s general-purpose registers (EAX, EBX, etc.) also apply to the use of MMX 
registers.

An efficient interface to MMX routines might pass parameters and return values through the MMX registers or 
through a combination of memory locations (via the stack) and MMX registers. Do not use the EMMS instruction or 
mix MMX and x87 FPU code when using to the MMX registers to pass parameters.

If a high-level language that does not support the MMX data types directly is used, the MMX data types can be 
defined as a 64-bit structure containing packed data types.

When implementing MMX instructions in high-level languages, other approaches can be taken, such as: 
• Passing parameters to an MMX routine by passing a pointer to a structure via the stack.
• Returning a value from a function by returning a pointer to a structure.

9.6.6 Using MMX Code in a Multitasking Operating System Environment
An application needs to identify the nature of the multitasking operating system on which it runs. Each task retains 
its own state which must be saved when a task switch occurs. The processor state (context) consists of the 
general-purpose registers and the floating-point and MMX registers.

Operating systems can be classified into two types:
• Cooperative multitasking operating system.
• Preemptive multitasking operating system.

Cooperative multitasking operating systems do not save the FPU or MMX state when performing a context switch. 
Therefore, the application needs to save the relevant state before relinquishing direct or indirect control to the 
operating system.

Preemptive multitasking operating systems are responsible for saving and restoring the FPU and MMX state when 
performing a context switch. Therefore, the application does not have to save or restore the FPU and MMX state.
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9.6.7 Exception Handling in MMX Code
MMX instructions generate the same type of memory-access exceptions as other IA-32 instructions (page fault, 
segment not present, and limit violations). Existing exception handlers do not have to be modified to handle these 
types of exceptions for MMX code.

Unless there is a pending floating-point exception, MMX instructions do not generate numeric exceptions. There-
fore, there is no need to modify existing exception handlers or add new ones to handle numeric exceptions. 

If a floating-point exception is pending, the subsequent MMX instruction generates a numeric error exception 
(interrupt 16 and/or assertion of the FERR# pin). The MMX instruction resumes execution upon return from the 
exception handler.

9.6.8 Register Mapping
MMX registers and their tags are mapped to physical locations of the floating-point registers and their tags. 
Register aliasing and mapping is described in more detail in Chapter 14, “Intel® MMX™ Technology System 
Programming,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

9.6.9 Effect of Instruction Prefixes on MMX Instructions
Table 9-3 describes the effect of instruction prefixes on MMX instructions. Unpredictable behavior can range from 
being treated as a reserved operation on one generation of IA-32 processors to generating an invalid opcode 
exception on another generation of processors.

See “Instruction Prefixes” in Chapter 2, “Instruction Format,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A, for a description of the instruction prefixes.

Table 9-3.  Effect of Prefixes on MMX Instructions 

Prefix Type Effect on MMX Instructions 

Address Size Prefix (67H) Affects instructions with a memory operand.

Reserved for instructions without a memory operand and may result in 
unpredictable behavior.

Operand Size (66H) Reserved and may result in unpredictable behavior.

Segment Override (2EH, 36H, 3EH, 26H, 64H, 
65H)

Affects instructions with a memory operand.

Reserved for instructions without a memory operand and may result in 
unpredictable behavior.

Repeat Prefix (F3H) Reserved and may result in unpredictable behavior.

Repeat NE Prefix(F2H) Reserved and may result in unpredictable behavior.

Lock Prefix (F0H) Reserved; generates invalid opcode exception (#UD).
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CHAPTER 10
PROGRAMMING WITH INTEL®

STREAMING SIMD EXTENSIONS (INTEL® SSE)

The Intel® Streaming SIMD Extensions (Intel® SSE) were introduced into the IA-32 architecture in the Pentium III 
processor family. These extensions enhance the performance of IA-32 processors for advanced 2-D and 3-D 
graphics, motion video, image processing, speech recognition, audio synthesis, telephony, and video conferencing. 

This chapter describes SSE. Chapter 11, “Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2),” 
provides information to assist in writing application programs that use Intel SSE2. Chapter 12, “Programming with 
Intel® SSE3, SSSE3, Intel® SSE4, and Intel® AES-NI,” provides this information for Intel SSE3.

10.1 OVERVIEW OF INTEL® SSE
Intel MMX technology introduced single-instruction multiple-data (SIMD) capability into the IA-32 architecture, 
with the 64-bit MMX registers, 64-bit packed integer data types, and instructions that allowed SIMD operations to 
be performed on packed integers. Intel SSE expanded the SIMD execution model by adding facilities for handling 
packed and scalar single precision floating-point values contained in 128-bit registers.

If CPUID.01H:EDX.SSE[bit 25] = 1, Intel SSE is available.

Intel SSE adds the following features to the IA-32 architecture, while maintaining backward compatibility with all 
existing IA-32 processors, applications, and operating systems:
• Eight 128-bit data registers (called XMM registers) in non-64-bit modes; 16 XMM registers are available in 64-

bit mode.
• The 32-bit MXCSR register, which provides control and status bits for operations performed on XMM registers.
• The 128-bit packed single precision floating-point data type (four IEEE single precision floating-point values 

packed into a double quadword).
• Instructions that perform SIMD operations on single precision floating-point values and that extend SIMD 

operations that can be performed on integers:

— 128-bit Packed and scalar single precision floating-point instructions that operate on data located in MMX 
registers.

— 64-bit SIMD integer instructions that support additional operations on packed integer operands located in 
MMX registers.

• Instructions that save and restore the state of the MXCSR register.
• Instructions that support explicit prefetching of data, control of the cacheability of data, and control the 

ordering of store operations.
• Extensions to the CPUID instruction. 

These features extend the IA-32 architecture’s SIMD programming model in four important ways: 
• The ability to perform SIMD operations on four packed single precision floating-point values enhances the 

performance of IA-32 processors for advanced media and communications applications that use computation-
intensive algorithms to perform repetitive operations on large arrays of simple, native data elements. 

• The ability to perform SIMD single precision floating-point operations in XMM registers and SIMD integer 
operations in MMX registers provides greater flexibility and throughput for executing applications that operate 
on large arrays of floating-point and integer data.

• Cache control instructions provide the ability to stream data in and out of XMM registers without polluting the 
caches and the ability to prefetch data to selected cache levels before it is actually used. Applications that 
require regular access to large amounts of data benefit from these prefetching and streaming store capabilities. 

• The SFENCE (store fence) instruction provides greater control over the ordering of store operations when using 
weakly-ordered memory types.
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Intel SSE is fully compatible with all software written for IA-32 processors. All existing software continues to run 
correctly, without modification, on processors that incorporate Intel SSE. Enhancements to CPUID permit detection 
of Intel SSE. Intel SSE is accessible from all IA-32 execution modes: protected mode, real address mode, and 
virtual-8086 mode.

The following sections of this chapter describe the programming environment for Intel SSE, including: XMM regis-
ters, the packed single precision floating-point data type, and Intel SSE instructions. For additional information, 
see:
• Section 11.6, “Writing Applications with Intel® SSE and SSE2.”
• Section 11.5, “Intel® SSE, SSE2, and SSE3 Exceptions,” describes the exceptions that can be generated with 

Intel SSE/SSE2/SSE3 instructions.
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, provides a 

detailed description of these instructions.
• Chapter 15, “System Programming for Instruction Set Extensions and Processor Extended States,” in the Intel® 

64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, gives guidelines for integrating these 
extensions into an operating-system environment.

10.2 INTEL® SSE PROGRAMMING ENVIRONMENT
Figure 10-1 shows the execution environment for Intel SSE. All Intel SSE instructions operate on the XMM regis-
ters, MMX registers, and/or memory as follows: 
• XMM registers — These eight registers (see Figure 10-2 and Section 10.2.2, “XMM Registers”) are used to 

operate on packed or scalar single precision floating-point data. Scalar operations are operations performed on 
individual (unpacked) single precision floating-point values stored in the low doubleword of an XMM register. 
XMM registers are referenced by the names XMM0 through XMM7.

• MXCSR register — This 32-bit register (see Figure 10-3 and Section 10.2.3, “MXCSR Control and Status 
Register”) provides status and control bits used in SIMD floating-point operations.

• MMX registers — These eight registers (see Figure 9-2) are used to perform operations on 64-bit packed 
integer data. They are also used to hold operands for some operations performed between the MMX and XMM 
registers. MMX registers are referenced by the names MM0 through MM7.

• General-purpose registers — The eight general-purpose registers (see Figure 3-5) are used along with the 
existing IA-32 addressing modes to address operands in memory. (MMX and XMM registers cannot be used to 

Figure 10-1.  Intel® SSE Execution Environment
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address memory). The general-purpose registers are also used to hold operands for some SSE instructions and 
are referenced as EAX, EBX, ECX, EDX, EBP, ESI, EDI, and ESP.

• EFLAGS register — This 32-bit register (see Figure 3-8) is used to record result of some compare operations.

10.2.1 Intel® SSE in 64-Bit Mode and Compatibility Mode
In compatibility mode, Intel SSE functions like it does in protected mode. In 64-bit mode, eight additional XMM 
registers are accessible. Registers XMM8-XMM15 are accessed by using REX prefixes. Memory operands are spec-
ified using the ModR/M, SIB encoding described in Section 3.7.5.

Some Intel SSE instructions may be used to operate on general-purpose registers. Use the REX.W prefix to access 
64-bit general-purpose registers. Note that if a REX prefix is used when it has no meaning, the prefix is ignored.

10.2.2 XMM Registers
Eight 128-bit XMM data registers were introduced into the IA-32 architecture with Intel SSE (see Figure 10-2). 
These registers can be accessed directly using the names XMM0 to XMM7; and they can be accessed independently 
from the x87 FPU and MMX registers and the general-purpose registers (that is, they are not aliased to any other 
of the processor’s registers). 

Intel SSE instructions use the XMM registers only to operate on packed single precision floating-point operands. 
SSE2 extensions expand the functions of the XMM registers to operand on packed or scalar double precision 
floating-point operands and packed integer operands; see Section 11.2, “Intel® SSE2 Programming Environment,” 
and Section 12.1, “Programming Environment and Data types.”

XMM registers can only be used to perform calculations on data; they cannot be used to address memory. 
Addressing memory is accomplished by using the general-purpose registers.

Data can be loaded into XMM registers or written from the registers to memory in 32-bit, 64-bit, and 128-bit incre-
ments. When storing the entire contents of an XMM register in memory (128-bit store), the data is stored in 16 
consecutive bytes, with the low-order byte of the register being stored in the first byte in memory.

10.2.3 MXCSR Control and Status Register
The 32-bit MXCSR register (see Figure 10-3) contains control and status information for Intel SSE, SSE2, and SSE3 
SIMD floating-point operations. This register contains: 
• Flag and mask bits for SIMD floating-point exceptions.
• Rounding control field for SIMD floating-point operations.

Figure 10-2.  XMM Registers
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• Flush-to-zero flag that provides a means of controlling underflow conditions on SIMD floating-point operations.
• Denormals-are-zeros flag that controls how SIMD floating-point instructions handle denormal source operands.

The contents of this register can be loaded from memory with the LDMXCSR and FXRSTOR instructions and stored 
in memory with STMXCSR and FXSAVE.

Bits 16 through 31 of the MXCSR register are reserved and are cleared on a power-up or reset of the processor; 
attempting to write a non-zero value to these bits, using either the FXRSTOR or LDMXCSR instructions, will result 
in a general-protection exception (#GP) being generated.

10.2.3.1  SIMD Floating-Point Mask and Flag Bits
Bits 0 through 5 of the MXCSR register indicate whether a SIMD floating-point exception has been detected. They 
are “sticky” flags. That is, after a flag is set, it remains set until explicitly cleared. To clear these flags, use the 
LDMXCSR or the FXRSTOR instruction to write zeroes to them.

Bits 7 through 12 provide individual mask bits for the SIMD floating-point exceptions. An exception type is masked 
if the corresponding mask bit is set, and it is unmasked if the bit is clear. These mask bits are set upon a power-up 
or reset. This causes all SIMD floating-point exceptions to be initially masked.

If LDMXCSR or FXRSTOR clears a mask bit and sets the corresponding exception flag bit, a SIMD floating-point 
exception will not be generated as a result of this change. The unmasked exception will be generated only upon the 
execution of the next SSE/SSE2/SSE3 instruction that detects the unmasked exception condition. 

For more information about the use of the SIMD floating-point exception mask and flag bits, see Section 11.5, 
“Intel® SSE, SSE2, and SSE3 Exceptions,” and Section 12.8, “Intel® SSE3, SSSE3, And Intel® SSE4 Exceptions.”

10.2.3.2  SIMD Floating-Point Rounding Control Field
Bits 13 and 14 of the MXCSR register (the rounding control [RC] field) control how the results of SIMD floating-point 
instructions are rounded. See Section 4.8.4, “Rounding,” for a description of the function and encoding of the 
rounding control bits.

10.2.3.3  Flush-To-Zero
Bit 15 (FTZ) of the MXCSR register enables the flush-to-zero mode, which controls the masked response to a SIMD 
floating-point underflow condition. When the underflow exception is masked and the flush-to-zero mode is 
enabled, the processor performs the following operations when it detects a floating-point underflow condition.

Figure 10-3.  MXCSR Control/Status Register 
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• Returns a zero result with the sign of the true result.
• Sets the precision and underflow exception flags.

If the underflow exception is not masked, the flush-to-zero bit is ignored.

The flush-to-zero mode is not compatible with IEEE Standard 754. The IEEE-mandated masked response to under-
flow is to deliver the denormalized result (see Section 4.8.3.2, “Normalized and Denormalized Finite Numbers”). 
The flush-to-zero mode is provided primarily for performance reasons. At the cost of a slight precision loss, faster 
execution can be achieved for applications where underflows are common and rounding the underflow result to 
zero can be tolerated.

The flush-to-zero bit is cleared upon a power-up or reset of the processor, disabling the flush-to-zero mode.

10.2.3.4  Denormals-Are-Zeros
Bit 6 (DAZ) of the MXCSR register enables the denormals-are-zeros mode, which controls the processor’s response 
to a SIMD floating-point denormal operand condition. When the denormals-are-zeros flag is set, the processor 
converts all denormal source operands to a zero with the sign of the original operand before performing any 
computations on them. The processor does not set the denormal-operand exception flag (DE), regardless of the 
setting of the denormal-operand exception mask bit (DM); and it does not generate a denormal-operand exception 
if the exception is unmasked.

The denormals-are-zeros mode is not compatible with IEEE Standard 754 (see Section 4.8.3.2, “Normalized and 
Denormalized Finite Numbers”). The denormals-are-zeros mode is provided to improve processor performance for 
applications such as streaming media processing, where rounding a denormal operand to zero does not appre-
ciably affect the quality of the processed data.

The denormals-are-zeros flag is cleared upon a power-up or reset of the processor, disabling the denormals-are-
zeros mode.

The denormals-are-zeros mode was introduced in the Pentium 4 and Intel Xeon processor with the SSE2 exten-
sions; however, it is fully compatible with the SSE SIMD floating-point instructions (that is, the denormals-are-
zeros flag affects the operation of the SSE SIMD floating-point instructions). In earlier IA-32 processors and in 
some models of the Pentium 4 processor, this flag (bit 6) is reserved. See Section 11.6.3, “Checking for the DAZ 
Flag in the MXCSR Register,” for instructions for detecting the availability of this feature.

Attempting to set bit 6 of the MXCSR register on processors that do not support the DAZ flag will cause a general-
protection exception (#GP). See Section 11.6.6, “Guidelines for Writing to the MXCSR Register,” for instructions for 
preventing such general-protection exceptions by using the MXCSR_MASK value returned by the FXSAVE instruc-
tion.

10.2.4 Compatibility of Intel® SSE with Intel® SSE2 and SSE3, MMX, and the x87 FPU
The state (XMM registers and MXCSR register) introduced into the IA-32 execution environment with Intel SSE is 
shared with Intel SSE2 and SSE3. Intel SSE, SSE2, and SSE3 instructions are fully compatible; they can be 
executed together in the same instruction stream with no need to save state when switching between instruction 
sets.

XMM registers are independent of the x87 FPU and MMX registers, so Intel SSE, SSE2, and SSE3 operations 
performed on the XMM registers can be performed in parallel with operations on the x87 FPU and MMX registers; 
see Section 11.6.7, “Interaction of Intel® SSE and SSE2 Instructions with x87 FPU and MMX Instructions.”

The FXSAVE and FXRSTOR instructions save and restore the SSE/SSE2/SSE3 states along with the x87 FPU and 
MMX state.

10.3 INTEL® SSE DATA TYPES
Intel SSE introduced one data type, the 128-bit packed single precision floating-point data type, to the IA-32 archi-
tecture (see Figure 10-4). This data type consists of four IEEE 32-bit single precision floating-point values packed 
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into a double quadword. See Figure 4-3 for the layout of a single precision floating-point value; refer to Section 
4.2.2, “Floating-Point Data Types,” for a detailed description of the single precision floating-point format.

This 128-bit packed single precision floating-point data type is operated on in the XMM registers or in memory. 
Conversion instructions are provided to convert two packed single precision floating-point values into two packed 
doubleword integers or a scalar single precision floating-point value into a doubleword integer (see Figure 11-8).

Intel SSE provides conversion instructions between XMM registers and MMX registers, and between XMM registers 
and general-purpose bit registers. See Figure 11-8.

The address of a 128-bit packed memory operand must be aligned on a 16-byte boundary, except in the following 
cases: 
• The MOVUPS instruction supports unaligned accesses.
• Scalar instructions that use a 4-byte memory operand that is not subject to alignment requirements.

Figure 4-2 shows the byte order of 128-bit (double quadword) data types in memory.

10.4 INTEL® SSE INSTRUCTION SET
Intel SSE instructions are divided into four functional groups:
• Packed and scalar single precision floating-point instructions.
• 64-bit SIMD integer instructions.
• State management instructions.
• Cacheability control, prefetch, and memory ordering instructions.

The following sections give an overview of each of the instructions in these groups.

10.4.1 Intel® SSE Packed and Scalar Floating-Point Instructions
The packed and scalar single precision floating-point instructions are divided into the following subgroups:
• Data movement instructions.
• Arithmetic instructions.
• Logical instructions.
• Comparison instructions.
• Shuffle instructions.
• Conversion instructions.

The packed single precision floating-point instructions perform SIMD operations on packed single precision 
floating-point operands (see Figure 10-5). Each source operand contains four single precision floating-point values, 
and the destination operand contains the results of the operation (OP) performed in parallel on the corresponding 
values (X0 and Y0, X1 and Y1, X2 and Y2, and X3 and Y3) in each operand.

Figure 10-4.  128-Bit Packed Single Precision Floating-Point Data Type
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The scalar single precision floating-point instructions operate on the low (least significant) doublewords of the two 
source operands (X0 and Y0); see Figure 10-6. The three most significant doublewords (X1, X2, and X3) of the first 
source operand are passed through to the destination. The scalar operations are similar to the floating-point oper-
ations performed in the x87 FPU data registers with the precision control field in the x87 FPU control word set for 
single precision (24-bit significand), except that x87 stack operations use a 15-bit exponent range for the result, 
while SSE operations use an 8-bit exponent range.

10.4.1.1  Intel® SSE Data Movement Instructions
Intel SSE data movement instructions move single precision floating-point data between XMM registers and 
between an XMM register and memory.

The MOVAPS (move aligned packed single precision floating-point values) instruction transfers a double quadword 
operand containing four packed single precision floating-point values from memory to an XMM register and vice 
versa, or between XMM registers. The memory address must be aligned to a 16-byte boundary; otherwise, a 
general-protection exception (#GP) is generated.

The MOVUPS (move unaligned packed single precision, floating-point) instruction performs the same operations as 
the MOVAPS instruction, except that 16-byte alignment of a memory address is not required.

The MOVSS (move scalar single precision floating-point) instruction transfers a 32-bit single precision floating-
point operand from memory to the low doubleword of an XMM register and vice versa, or between XMM registers.

The MOVLPS (move low packed single precision floating-point) instruction moves two packed single precision 
floating-point values from memory to the low quadword of an XMM register and vice versa. The high quadword of 
the register is left unchanged.

Figure 10-5.  Packed Single Precision Floating-Point Operation
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The MOVHPS (move high packed single precision floating-point) instruction moves two packed single precision 
floating-point values from memory to the high quadword of an XMM register and vice versa. The low quadword of 
the register is left unchanged.

The MOVLHPS (move packed single precision floating-point low to high) instruction moves two packed single preci-
sion floating-point values from the low quadword of the source XMM register into the high quadword of the desti-
nation XMM register. The low quadword of the destination register is left unchanged.

The MOVHLPS (move packed single precision floating-point high to low) instruction moves two packed single preci-
sion floating-point values from the high quadword of the source XMM register into the low quadword of the desti-
nation XMM register. The high quadword of the destination register is left unchanged.

The MOVMSKPS (move packed single precision floating-point mask) instruction transfers the most significant bit of 
each of the four packed single precision floating-point numbers in an XMM register to a general-purpose register. 
This 4-bit value can then be used as a condition to perform branching.

10.4.1.2  Intel® SSE Arithmetic Instructions
Intel SSE arithmetic instructions perform addition, subtraction, multiply, divide, reciprocal, square root, reciprocal 
of square root, and maximum/minimum operations on packed and scalar single precision floating-point values.

The ADDPS (add packed single precision floating-point values) and SUBPS (subtract packed single precision 
floating-point values) instructions add and subtract, respectively, two packed single precision floating-point oper-
ands.

The ADDSS (add scalar single precision floating-point values) and SUBSS (subtract scalar single precision floating-
point values) instructions add and subtract, respectively, the low single precision floating-point values of two oper-
ands and store the result in the low doubleword of the destination operand.

The MULPS (multiply packed single precision floating-point values) instruction multiplies two packed single preci-
sion floating-point operands.

The MULSS (multiply scalar single precision floating-point values) instruction multiplies the low single precision 
floating-point values of two operands and stores the result in the low doubleword of the destination operand.

The DIVPS (divide packed, single precision floating-point values) instruction divides two packed single precision 
floating-point operands.

The DIVSS (divide scalar single precision floating-point values) instruction divides the low single precision floating-
point values of two operands and stores the result in the low doubleword of the destination operand.

The RCPPS (compute reciprocals of packed single precision floating-point values) instruction computes the approx-
imate reciprocals of values in a packed single precision floating-point operand.

The RCPSS (compute reciprocal of scalar single precision floating-point values) instruction computes the approxi-
mate reciprocal of the low single precision floating-point value in the source operand and stores the result in the 
low doubleword of the destination operand.

The SQRTPS (compute square roots of packed single precision floating-point values) instruction computes the 
square roots of the values in a packed single precision floating-point operand.

The SQRTSS (compute square root of scalar single precision floating-point values) instruction computes the square 
root of the low single precision floating-point value in the source operand and stores the result in the low double-
word of the destination operand.

The RSQRTPS (compute reciprocals of square roots of packed single precision floating-point values) instruction 
computes the approximate reciprocals of the square roots of the values in a packed single precision floating-point 
operand.

The RSQRTSS (reciprocal of square root of scalar single precision floating-point value) instruction computes the 
approximate reciprocal of the square root of the low single precision floating-point value in the source operand and 
stores the result in the low doubleword of the destination operand.

The MAXPS (return maximum of packed single precision floating-point values) instruction compares the corre-
sponding values from two packed single precision floating-point operands and returns the numerically greater 
value from each comparison to the destination operand.
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The MAXSS (return maximum of scalar single precision floating-point values) instruction compares the low values 
from two packed single precision floating-point operands and returns the numerically greater value from the 
comparison to the low doubleword of the destination operand.

The MINPS (return minimum of packed single precision floating-point values) instruction compares the corre-
sponding values from two packed single precision floating-point operands and returns the numerically lesser value 
from each comparison to the destination operand.

The MINSS (return minimum of scalar single precision floating-point values) instruction compares the low values 
from two packed single precision floating-point operands and returns the numerically lesser value from the 
comparison to the low doubleword of the destination operand.

10.4.2 Intel® SSE Logical Instructions
Intel SSE logical instructions perform AND, AND NOT, OR, and XOR operations on packed single precision floating-
point values. 

The ANDPS (bitwise logical AND of packed single precision floating-point values) instruction returns the logical AND 
of two packed single precision floating-point operands.

The ANDNPS (bitwise logical AND NOT of packed single precision, floating-point values) instruction returns the 
logical AND NOT of two packed single precision floating-point operands.

The ORPS (bitwise logical OR of packed single precision, floating-point values) instruction returns the logical OR of 
two packed single precision floating-point operands.

The XORPS (bitwise logical XOR of packed single precision, floating-point values) instruction returns the logical 
XOR of two packed single precision floating-point operands.

10.4.2.1  Intel® SSE Comparison Instructions
The compare instructions compare packed and scalar single precision floating-point values and return the results 
of the comparison either to the destination operand or to the EFLAGS register.

The CMPPS (compare packed single precision floating-point values) instruction compares the corresponding values 
from two packed single precision floating-point operands, using an immediate operand as a predicate, and returns 
a 32-bit mask result of all 1s or all 0s for each comparison to the destination operand. The value of the immediate 
operand allows the selection of any of 8 compare conditions: equal, less than, less than equal, unordered, not 
equal, not less than, not less than or equal, or ordered.

The CMPSS (compare scalar single precision, floating-point values) instruction compares the low values from two 
packed single precision floating-point operands, using an immediate operand as a predicate, and returns a 32-bit 
mask result of all 1s or all 0s for the comparison to the low doubleword of the destination operand. The immediate 
operand selects the compare conditions as with the CMPPS instruction.

The COMISS (compare scalar single precision floating-point values and set EFLAGS) and UCOMISS (unordered 
compare scalar single precision floating-point values and set EFLAGS) instructions compare the low values of two 
packed single precision floating-point operands and set the ZF, PF, and CF flags in the EFLAGS register to show the 
result (greater than, less than, equal, or unordered). These two instructions differ as follows: the COMISS instruc-
tion signals a floating-point invalid-operation (#I) exception when a source operand is either a QNaN or an SNaN; 
the UCOMISS instruction only signals an invalid-operation exception when a source operand is an SNaN.

10.4.2.2  Intel® SSE Shuffle and Unpack Instructions
Intel SSE shuffle and unpack instructions shuffle or interleave the contents of two packed single precision floating-
point values and store the results in the destination operand.

The SHUFPS (shuffle packed single precision floating-point values) instruction places any two of the four packed 
single precision floating-point values from the destination operand into the two low-order doublewords of the desti-
nation operand, and places any two of the four packed single precision floating-point values from the source 
operand in the two high-order doublewords of the destination operand (see Figure 10-7). By using the same 
register for the source and destination operands, the SHUFPS instruction can shuffle four single precision floating-
point values into any order. 
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The UNPCKHPS (unpack and interleave high packed single precision floating-point values) instruction performs an 
interleaved unpack of the high-order single precision floating-point values from the source and destination oper-
ands and stores the result in the destination operand (see Figure 10-8).

The UNPCKLPS (unpack and interleave low packed single precision floating-point values) instruction performs an 
interleaved unpack of the low-order single precision floating-point values from the source and destination operands 
and stores the result in the destination operand (see Figure 10-9).

Figure 10-7.  SHUFPS Instruction, Packed Shuffle Operation

Figure 10-8.  UNPCKHPS Instruction, High Unpack and Interleave Operation

Figure 10-9.  UNPCKLPS Instruction, Low Unpack and Interleave Operation
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10.4.3 Intel® SSE Conversion Instructions
Intel SSE conversion instructions (see Figure 11-8) support packed and scalar conversions between single preci-
sion floating-point and doubleword integer formats.

The CVTPI2PS (convert packed doubleword integers to packed single precision floating-point values) instruction 
converts two packed signed doubleword integers into two packed single precision floating-point values. When the 
conversion is inexact, the result is rounded according to the rounding mode selected in the MXCSR register. 

The CVTSI2SS (convert doubleword integer to scalar single precision floating-point value) instruction converts a 
signed doubleword integer into a single precision floating-point value. When the conversion is inexact, the result is 
rounded according to the rounding mode selected in the MXCSR register. 

The CVTPS2PI (convert packed single precision floating-point values to packed doubleword integers) instruction 
converts two packed single precision floating-point values into two packed signed doubleword integers. When the 
conversion is inexact, the result is rounded according to the rounding mode selected in the MXCSR register. The 
CVTTPS2PI (convert with truncation packed single precision floating-point values to packed doubleword integers) 
instruction is similar to the CVTPS2PI instruction, except that truncation is used to round a source value to an 
integer value; see Section 4.8.4.2, “Truncation with Intel® SSE, SSE2, and AVX Conversion Instructions.”

The CVTSS2SI (convert scalar single precision floating-point value to doubleword integer) instruction converts a 
single precision floating-point value into a signed doubleword integer. When the conversion is inexact, the result is 
rounded according to the rounding mode selected in the MXCSR register. The CVTTSS2SI (convert with truncation 
scalar single precision floating-point value to doubleword integer) instruction is similar to the CVTSS2SI instruc-
tion, except that truncation is used to round the source value to an integer value; see Section 4.8.4.2, “Truncation 
with Intel® SSE, SSE2, and AVX Conversion Instructions.”

10.4.4 Intel® SSE 64-Bit SIMD Integer Instructions
Intel SSE adds the following 64-bit packed integer instructions to the IA-32 architecture. These instructions 
operate on data in MMX registers and 64-bit memory locations. 

NOTE
When Intel SSE2 is present in an IA-32 processor, these instructions are extended to operate on 
128-bit operands in XMM registers and 128-bit memory locations.

The PAVGB (compute average of packed unsigned byte integers) and PAVGW (compute average of packed 
unsigned word integers) instructions compute a SIMD average of two packed unsigned byte or word integer oper-
ands, respectively. For each corresponding pair of data elements in the packed source operands, the elements are 
added together, a 1 is added to the temporary sum, and that result is shifted right one bit position.

The PEXTRW (extract word) instruction copies a selected word from an MMX register into a general-purpose 
register.

The PINSRW (insert word) instruction copies a word from a general-purpose register or from memory into a 
selected word location in an MMX register.

The PMAXUB (maximum of packed unsigned byte integers) instruction compares the corresponding unsigned byte 
integers in two packed operands and returns the greater of each comparison to the destination operand.

The PMINUB (minimum of packed unsigned byte integers) instruction compares the corresponding unsigned byte 
integers in two packed operands and returns the lesser of each comparison to the destination operand.

The PMAXSW (maximum of packed signed word integers) instruction compares the corresponding signed word 
integers in two packed operands and returns the greater of each comparison to the destination operand.

The PMINSW (minimum of packed signed word integers) instruction compares the corresponding signed word inte-
gers in two packed operands and returns the lesser of each comparison to the destination operand.

The PMOVMSKB (move byte mask) instruction creates an 8-bit mask from the packed byte integers in an MMX 
register and stores the result in the low byte of a general-purpose register. The mask contains the most significant 
bit of each byte in the MMX register. (When operating on 128-bit operands, a 16-bit mask is created.)
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The PMULHUW (multiply packed unsigned word integers and store high result) instruction performs a SIMD 
unsigned multiply of the words in the two source operands and returns the high word of each result to an MMX 
register.

The PSADBW (compute sum of absolute differences) instruction computes the SIMD absolute differences of the 
corresponding unsigned byte integers in two source operands, sums the differences, and stores the sum in the low 
word of the destination operand.

The PSHUFW (shuffle packed word integers) instruction shuffles the words in the source operand according to the 
order specified by an 8-bit immediate operand and returns the result to the destination operand.

10.4.5 MXCSR State Management Instructions
The MXCSR state management instructions (LDMXCSR and STMXCSR) load and save the state of the MXCSR 
register, respectively. The LDMXCSR instruction loads the MXCSR register from memory, while the STMXCSR 
instruction stores the contents of the register to memory.

10.4.6 Cacheability Control, Prefetch, and Memory Ordering Instructions
Intel SSE introduced several new instructions to give programs more control over the caching of data. They also 
introduces the PREFETCHh instructions, which provide the ability to prefetch data to a specified cache level, and the 
SFENCE instruction, which enforces program ordering on stores. These instructions are described in the following 
sections.

10.4.6.1  Cacheability Control Instructions
The following three instructions enable data from the MMX and XMM registers to be stored to memory using a non-
temporal hint. The non-temporal hint directs the processor to store the data to memory without writing the data 
into the cache hierarchy. See Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data,” for information 
about non-temporal stores and hints.

The MOVNTQ (store quadword using non-temporal hint) instruction stores packed integer data from an MMX 
register to memory, using a non-temporal hint.

The MOVNTPS (store packed single precision floating-point values using non-temporal hint) instruction stores 
packed floating-point data from an XMM register to memory, using a non-temporal hint.

The MASKMOVQ (store selected bytes of quadword) instruction stores selected byte integers from an MMX register 
to memory, using a byte mask to selectively write the individual bytes. This instruction also uses a non-temporal 
hint.

10.4.6.2  Caching of Temporal vs. Non-Temporal Data
Data referenced by a program can be temporal (data will be used again) or non-temporal (data will be referenced 
once and not reused in the immediate future). For example, program code is generally temporal, whereas, multi-
media data, such as the display list in a 3-D graphics application, is often non-temporal. To make efficient use of 
the processor’s caches, it is generally desirable to cache temporal data and not cache non-temporal data. Over-
loading the processor’s caches with non-temporal data is sometimes referred to as “polluting the caches.” The Intel 
SSE and SSE2 cacheability control instructions enable a program to write non-temporal data to memory in a 
manner that minimizes pollution of caches. 

These Intel SSE and SSE2 non-temporal store instructions minimize cache pollutions by treating the memory being 
accessed as the write combining (WC) type. If a program specifies a non-temporal store with one of these instruc-
tions and the memory type of the destination region is write back (WB), write through (WT), or write combining 
(WC), the processor will do the following:
• If the memory location being written to is present in the cache hierarchy, the data in the caches is evicted.1

1. Some older CPU implementations (e.g., Pentium M) allowed addresses being written with a non-temporal store instruction to be 
updated in-place if the memory type was not WC and line was already in the cache.
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• The non-temporal data is written to memory with WC semantics.

See also: Chapter 13, “Memory Cache Control,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

Using the WC semantics, the store transaction will be weakly ordered, meaning that the data may not be written to 
memory in program order, and the store will not write allocate (that is, the processor will not fetch the corre-
sponding cache line into the cache hierarchy, prior to performing the store). Also, different processor implementa-
tions may choose to collapse and combine these stores.

The memory type of the region being written to can override the non-temporal hint, if the memory address speci-
fied for the non-temporal store is in uncacheable memory. Uncacheable as referred to here means that the region 
being written to has been mapped with either an uncacheable (UC) or write protected (WP) memory type.

In general, WC semantics require software to ensure coherence, with respect to other processors and other system 
agents (such as graphics cards). Appropriate use of synchronization and fencing must be performed for producer-
consumer usage models. Fencing ensures that all system agents have global visibility of the stored data; for 
instance, failure to fence may result in a written cache line staying within a processor and not being visible to other 
agents. 

The memory type visible on the bus in the presence of memory type aliasing is implementation specific. As one 
possible example, the memory type written to the bus may reflect the memory type for the first store to this line, 
as seen in program order; other alternatives are possible. This behavior should be considered reserved, and 
dependence on the behavior of any particular implementation risks future incompatibility.

NOTE
Some older CPU implementations (e.g., Pentium M) may implement non-temporal stores by 
updating in place data that already reside in the cache hierarchy. For such processors, the 
destination region should also be mapped as WC. If mapped as WB or WT, there is the potential for 
speculative processor reads to bring the data into the caches; in this case, non-temporal stores 
would then update in place, and data would not be flushed from the processor by a subsequent 
fencing operation.

10.4.6.3  PREFETCHh Instructions
The PREFETCHh instructions permit programs to load data into the processor at a suggested cache level, so that 
the data is closer to the processor’s load and store unit when it is needed. These instructions fetch 32 aligned bytes 
(or more, depending on the implementation) containing the addressed byte to a location in the cache hierarchy 
specified by the temporal locality hint (see Table 10-1). In this table, the first-level cache is closest to the processor 
and second-level cache is farther away from the processor than the first-level cache. The hints specify a prefetch 
of either temporal or non-temporal data (see Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data”). 
Subsequent accesses to temporal data are treated like normal accesses, while those to non-temporal data will 
continue to minimize cache pollution. If the data is already present at a level of the cache hierarchy that is closer 
to the processor, the PREFETCHh instruction will not result in any data movement. The PREFETCHh instructions do 
not affect functional behavior of the program.

See Section 11.6.13, “Cacheability Hint Instructions,” for additional information about the PREFETCHh instructions.

Table 10-1.  PREFETCHh Instructions Caching Hints

PREFETCHh Instruction 
Mnemonic Actions

PREFETCHT0 Temporal data—fetch data into all levels of cache hierarchy:

• Pentium III processor—1st-level cache or 2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHT1 Temporal data—fetch data into level 2 cache and higher

• Pentium III processor—2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache
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10.4.6.4  SFENCE Instruction
The SFENCE (Store Fence) instruction controls write ordering by creating a fence for memory store operations. This 
instruction guarantees that the result of every store instruction that precedes the store fence in program order is 
globally visible before any store instruction that follows the fence. The SFENCE instruction provides an efficient way 
of ensuring ordering between procedures that produce weakly-ordered data and procedures that consume that 
data.

10.5 FXSAVE AND FXRSTOR INSTRUCTIONS
The FXSAVE and FXRSTOR instructions were introduced into the IA-32 architecture in the Pentium II processor 
family (prior to the introduction of the SSE extensions). The original versions of these instructions performed a fast 
save and restore, respectively, of the x87 execution environment (x87 state). (By saving the state of the x87 FPU 
data registers, the FXSAVE and FXRSTOR instructions implicitly save and restore the state of the MMX registers.) 

The SSE extensions expanded the scope of these instructions to save and restore the states of the XMM registers 
and the MXCSR register (SSE state), along with x87 state. 

The FXSAVE and FXRSTOR instructions can be used in place of the FSAVE/FNSAVE and FRSTOR instructions; 
however, the operation of the FXSAVE and FXRSTOR instructions are not identical to the operation of 
FSAVE/FNSAVE and FRSTOR.

NOTE
The FXSAVE and FXRSTOR instructions are not considered part of the SSE instruction group. They 
have a separate CPUID feature bit to indicate whether they are present (if 
CPUID.01H:EDX.FXSR[bit 24] = 1). 

The CPUID feature bit for SSE extensions does not indicate the presence of FXSAVE and FXRSTOR.

The FXSAVE and FXRSTOR instructions organize x87 state and SSE state in a region of memory called the FXSAVE 
area. Section 10.5.1 provides details of the FXSAVE area and its format. Section 10.5.2 describes operation of 
FXSAVE, and Section 10.5.3 describes the operation of FXRSTOR.

10.5.1 FXSAVE Area
The FXSAVE and FXRSTOR instructions organize x87 state and SSE state in a region of memory called the FXSAVE 
area. Each of the instructions takes a memory operand that specifies the 16-byte aligned base address of the 
FXSAVE area on which it operates.

PREFETCHT2 Temporal data—fetch data into level 2 cache and higher

• Pentium III processor—2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHNTA Non-temporal data—fetch data into location close to the processor, minimizing cache pollution 

• Pentium III processor—1st-level cache 

• Pentium 4 and Intel Xeon processor—2nd-level cache

Table 10-1.  PREFETCHh Instructions Caching Hints (Contd.)

PREFETCHh Instruction 
Mnemonic Actions
10-14 Vol. 1



PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)
Every FXSAVE area comprises the 512 bytes starting at the area’s base address. Table 10-2 illustrates the format 
of the first 416 bytes of the legacy region of an FXSAVE area.

The x87 state component comprises bytes 23:0 and bytes 159:32. The SSE state component comprises 
bytes 31:24 and bytes 415:160. FXSAVE and FXRSTOR do not use bytes 511:416; bytes 463:416 are reserved.

Section 10.5.2 and Section 10.5.3 provide details of how FXSAVE and FXRSTOR use an FXSAVE area.

10.5.1.1  x87 State
Table 10-2 illustrates how FXSAVE and FXRSTOR organize x87 state and SSE state; the x87 state is listed below, 
along with details of its interactions with FXSAVE and FXRSTOR:
• Bytes 1:0, 3:2, and 7:6 are used for x87 FPU Control Word (FCW), x87 FPU Status Word (FSW), and x87 FPU 

Opcode (FOP), respectively.

Table 10-2.  Format of an FXSAVE Area
15 14 13  12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
 CS or FPU 
IP bits 63:32 FPU IP bits 31:0 FOP Rsvd. FTW FSW FCW 0

MXCSR_MASK MXCSR Reserved
 DS or

FPU DP 
bits 63:32

 FPU DP bits 31:0 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400
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• Byte 4 is used for an abridged version of the x87 FPU Tag Word (FTW). The following items describe its usage:

— For each j, 0 ≤ j ≤ 7, FXSAVE saves a 0 into bit j of byte 4 if x87 FPU data register STj has a empty tag; 
otherwise, FXSAVE saves a 1 into bit j of byte 4.

— For each j, 0 ≤ j ≤ 7, FXRSTOR establishes the tag value for x87 FPU data register STj as follows. If bit j of 
byte 4 is 0, the tag for STj in the tag register for that data register is marked empty (11B); otherwise, the 
x87 FPU sets the tag for STj based on the value being loaded into that register (see below).

• Bytes 15:8 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 11:8 are used for bits 31:0 of the x87 FPU Instruction Pointer Offset (FIP).

• If CPUID.(EAX=07H, ECX=0H):EBX[bit 13] = 0, bytes 13:12 are used for x87 FPU Instruction Pointer 
Selector (FPU CS). Otherwise, the processor deprecates the FPU CS value: FXSAVE saves it as 0000H.

• Bytes 15:14 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 15:8 are used for the full 64 bits of FIP.
• Bytes 23:16 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 19:16 are used for bits 31:0 of the x87 FPU Data Pointer Offset (FDP).

• If CPUID.(EAX=07H, ECX=0H):EBX[bit 13] = 0, bytes 21:20 are used for x87 FPU Data Pointer Selector 
(FPU DS). Otherwise, the processor deprecates the FPU DS value: FXSAVE saves it as 0000H.

• Bytes 23:22 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 23:16 are used for the full 64 bits of FDP.
• Bytes 31:24 are used for SSE state (see Section 10.5.1.2).
• Bytes 159:32 are used for the registers ST0–ST7 (MM0–MM7). Each of the 8 registers is allocated a 128-bit 

region, with the low 80 bits used for the register and the upper 48 bits unused.

10.5.1.2  SSE State
Table 10-2 illustrates how FXSAVE and FXRSTOR organize x87 state and SSE state; the SSE state is listed below, 
along with details of its interactions with FXSAVE and FXRSTOR:
• Bytes 23:0 are used for x87 state (see Section 10.5.1.1).
• Bytes 27:24 are used for the MXCSR register. FXRSTOR generates a general-protection fault (#GP) in response 

to an attempt to set any of the reserved bits in the MXCSR register.
• Bytes 31:28 are used for the MXCSR_MASK value. FXRSTOR ignores this field.
• Bytes 159:32 are used for x87 state.
• Bytes 287:160 are used for the registers XMM0–XMM7. 
• Bytes 415:288 are used for the registers XMM8–XMM15. These fields are used only in 64-bit mode. Executions 

of FXSAVE outside 64-bit mode do not write to these bytes; executions of FXRSTOR outside 64-bit mode do not 
read these bytes and do not update XMM8–XMM15.

If CR4.OSFXSR = 0, FXSAVE and FXRSTOR may or may not operate on SSE state; this behavior is implementation 
dependent. Moreover, SSE instructions cannot be used unless CR4.OSFXSR = 1.

10.5.2 Operation of FXSAVE
The FXSAVE instruction takes a single memory operand, which is an FXSAVE area. The instruction stores x87 state 
and SSE state to the FXSAVE area. See Section 10.5.1.1 and Section 10.5.1.2 for details regarding mode-specific 
operation and operation determined by instruction prefixes.
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10.5.3 Operation of FXRSTOR
The FXRSTOR instruction takes a single memory operand, which is an FXSAVE area. If the value at bytes 27:24 of 
the FXSAVE area is not a legal value for the MXCSR register (e.g., the value sets reserved bits), execution of 
FXRSTOR results in a general-protection fault (#GP). Otherwise, the instruction loads x87 state and SSE state from 
the FXSAVE area. See Section 10.5.1.1 and Section 10.5.1.2 for details regarding mode-specific operation and 
operation determined by instruction prefixes.

10.6 HANDLING INTEL® SSE INSTRUCTION EXCEPTIONS
See Section 11.5, “Intel® SSE, SSE2, and SSE3 Exceptions,” for a detailed discussion of the general and SIMD 
floating-point exceptions that can be generated with the Intel SSE instructions and for guidelines for handling these 
exceptions when they occur.

10.7 WRITING APPLICATIONS WITH INTEL® SSE
See Section 11.6, “Writing Applications with Intel® SSE and SSE2,” for additional information about writing appli-
cations and operating-system code using Intel SSE.
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CHAPTER 11
PROGRAMMING WITH INTEL®

STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

The streaming SIMD extensions 2 (SSE2) were introduced into the IA-32 architecture in the Pentium 4 and Intel 
Xeon processors. These extensions enhance the performance of IA-32 processors for advanced 3-D graphics, video 
decoding/encoding, speech recognition, E-commerce, Internet, scientific, and engineering applications. 

This chapter describes the SSE2 extensions and provides information to assist in writing application programs that 
use these and the SSE extensions. 

11.1 OVERVIEW OF INTEL® SSE2
Intel SSE2 uses the single instruction multiple data (SIMD) execution model that is used with MMX technology and 
Intel SSE. They extend this model with support for packed double precision floating-point values and for 128-bit 
packed integers.

If CPUID.01H:EDX.SSE2[bit 26] = 1, Intel SSE2 is present.

Intel SSE2 adds the following features to the IA-32 architecture, while maintaining backward compatibility with all 
existing IA-32 processors, applications, and operating systems.
• Six data types: 

— 128-bit packed double precision floating-point (two IEEE Standard 754 double precision floating-point 
values packed into a double quadword).

— 128-bit packed byte integers.
— 128-bit packed word integers.
— 128-bit packed doubleword integers.
— 128-bit packed quadword integers.

• Instructions to support the additional data types and extend existing SIMD integer operations:
— Packed and scalar double precision floating-point instructions.
— Additional 64-bit and 128-bit SIMD integer instructions.
— 128-bit versions of SIMD integer instructions introduced with the MMX technology and Intel SSE.
— Additional cacheability-control and instruction-ordering instructions.

• Modifications to existing IA-32 instructions to support Intel SSE2 features:
— Extensions and modifications to the CPUID instruction.
— Modifications to the RDPMC instruction.

These new features extend the IA-32 architecture’s SIMD programming model in three important ways:
• They provide the ability to perform SIMD operations on pairs of packed double precision floating-point values. 

This permits higher precision computations to be carried out in XMM registers, which enhances processor 
performance in scientific and engineering applications and in applications that use advanced 3-D geometry 
techniques (such as ray tracing). Additional flexibility is provided with instructions that operate on single 
(scalar) double precision floating-point values located in the low quadword of an XMM register. 

• They provide the ability to operate on 128-bit packed integers (bytes, words, doublewords, and quadwords) in 
XMM registers. This provides greater flexibility and greater throughput when performing SIMD operations on 
packed integers. The capability is particularly useful for applications such as RSA authentication and RC5 
encryption. Using the full set of SIMD registers, data types, and instructions provided with the MMX technology 
and Intel SSE/SSE2, programmers can develop algorithms that finely mix packed single- and double precision 
floating-point data and 64- and 128-bit packed integer data. 

• Intel SSE2 enhances the support introduced with Intel SSE for controlling the cacheability of SIMD data. Intel 
SSE2 cache control instructions provide the ability to stream data in and out of the XMM registers without 
polluting the caches and the ability to prefetch data before it is actually used.
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Intel SSE2 is fully compatible with all software written for IA-32 processors. All existing software continues to run 
correctly, without modification, on processors that incorporate Intel SSE2, as well as in the presence of applications 
that incorporate these extensions. Enhancements to the CPUID instruction permit detection of Intel SSE2. Also, 
because Intel SSE2 uses the same registers as Intel SSE, no new operating-system support is required for saving 
and restoring program state during a context switch beyond that provided for Intel SSE.

Intel SSE2 is accessible from all IA-32 execution modes: protected mode, real address mode, and virtual 8086 
mode.

The following sections in this chapter describe the programming environment for Intel SSE2, including: the 128-bit 
XMM floating-point register set, data types, and Intel SSE2 instructions. The chapter also describes exceptions that 
can be generated with the Intel SSE and SSE2 instructions and gives guidelines for writing applications with Intel 
SSE and SSE2.

For additional information about Intel SSE2, see:
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, provides a 

detailed description of individual Intel SSE2 instructions.
• Chapter 15, “System Programming for Instruction Set Extensions and Processor Extended States,” in the Intel® 

64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, gives guidelines for integrating Intel SSE 
and SSE2 into an operating-system environment.

11.2 INTEL® SSE2 PROGRAMMING ENVIRONMENT
Figure 11-1 shows the programming environment for Intel SSE2. No new registers or other instruction execution 
state are defined with Intel SSE2. Intel SSE2 instructions use XMM registers, MMX registers, and/or IA-32 general-
purpose registers, as follows: 
• XMM registers — These eight registers (see Figure 10-2) are used to operate on packed or scalar double 

precision floating-point data. Scalar operations are operations performed on individual (unpacked) double 
precision floating-point values stored in the low quadword of an XMM register. XMM registers are also used to 
perform operations on 128-bit packed integer data. They are referenced by the names XMM0 through XMM7.

• MXCSR register — This 32-bit register (see Figure 10-3) provides status and control bits used in floating-point 
operations. The denormals-are-zeros and flush-to-zero flags in this register provide a higher performance 
alternative for the handling of denormal source operands and denormal (underflow) results. For more 

Figure 11-1.  Intel® Steaming SIMD Extensions 2 Execution Environment
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information on the functions of these flags see Section 10.2.3.4, “Denormals-Are-Zeros,” and Section 10.2.3.3, 
“Flush-To-Zero.”

• MMX registers — These eight registers (see Figure 9-2) are used to perform operations on 64-bit packed 
integer data. They are also used to hold operands for some operations performed between MMX and XMM 
registers. MMX registers are referenced by the names MM0 through MM7.

• General-purpose registers — The eight general-purpose registers (see Figure 3-5) are used along with the 
existing IA-32 addressing modes to address operands in memory. MMX and XMM registers cannot be used to 
address memory. The general-purpose registers are also used to hold operands for some SSE2 instructions. 
These registers are referenced by the names EAX, EBX, ECX, EDX, EBP, ESI, EDI, and ESP.

• EFLAGS register — This 32-bit register (see Figure 3-8) is used to record the results of some compare 
operations.

11.2.1 Intel® SSE2 in 64-Bit Mode and Compatibility Mode
In compatibility mode, Intel SSE2 functions like it does in protected mode. In 64-bit mode, eight additional XMM 
registers are accessible. Registers XMM8-XMM15 are accessed by using REX prefixes. 

Memory operands are specified using the ModR/M, SIB encoding described in Section 3.7.5.

Some Intel SSE2 instructions may be used to operate on general-purpose registers. Use the REX.W prefix to access 
64-bit general-purpose registers. Note that if a REX prefix is used when it has no meaning, the prefix is ignored.

11.2.2 Compatibility of Intel® SSE2 with Intel® SSE, MMX Technology, and x87 FPU 
Programming Environment

Intel SSE2 does not introduce any new state to the IA-32 execution environment beyond that of Intel SSE. Intel 
SSE2 represents an enhancement of Intel SSE; they are fully compatible and share the same state information. 
Intel SSE and SSE2 instructions can be executed together in the same instruction stream without the need to save 
state when switching between instruction sets.

XMM registers are independent of the x87 FPU and MMX registers; so Intel SSE and SSE2 operations performed on 
XMM registers can be performed in parallel with x87 FPU or MMX technology operations; see Section 11.6.7, “Inter-
action of Intel® SSE and SSE2 Instructions with x87 FPU and MMX Instructions.”

The FXSAVE and FXRSTOR instructions save and restore the SSE and SSE2 states along with the x87 FPU and MMX 
states.

11.2.3 Denormals-Are-Zeros Flag
The denormals-are-zeros flag (bit 6 in the MXCSR register) was introduced into the IA-32 architecture with Intel 
SSE2. See Section 10.2.3.4, “Denormals-Are-Zeros,” for a description of this flag.

11.3 INTEL® SSE2 DATA TYPES
Intel SSE2 introduced one 128-bit packed floating-point data type and four 128-bit SIMD integer data types to the 
IA-32 architecture (see Figure 11-2). 
• Packed double precision floating-point — This 128-bit data type consists of two IEEE 64-bit double 

precision floating-point values packed into a double quadword. See Figure 4-3 for the layout of a 64-bit double 
precision floating-point value; refer to Section 4.2.2, “Floating-Point Data Types,” for a detailed description of 
double precision floating-point values.

• 128-bit packed integers — The four 128-bit packed integer data types can contain 16 byte integers, 8 word 
integers, 4 doubleword integers, or 2 quadword integers. Refer to Section 4.6.2, “128-Bit Packed SIMD Data 
Types,” for a detailed description of the 128-bit packed integers.
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All of these data types are operated on in XMM registers or memory. Instructions are provided to convert between 
these 128-bit data types and the 64-bit and 32-bit data types.

The address of a 128-bit packed memory operand must be aligned on a 16-byte boundary, except in the following 
cases: 
• A MOVUPD instruction that supports unaligned accesses.
• Scalar instructions that use an 8-byte memory operand that is not subject to alignment requirements.

Figure 4-2 shows the byte order of 128-bit (double quadword) and 64-bit (quadword) data types in memory.

11.4 INTEL® SSE2 INSTRUCTIONS
The Intel SSE2 instructions are divided into four functional groups:
• Packed and scalar double precision floating-point instructions.
• 64-bit and 128-bit SIMD integer instructions.
• 128-bit extensions of SIMD integer instructions introduced with the MMX technology and Intel SSE.
• Cacheability-control and instruction-ordering instructions.

The following sections provide more information about each group.

11.4.1 Packed and Scalar Double Precision Floating-Point Instructions
The packed and scalar double precision floating-point instructions are divided into the following sub-groups:
• Data movement instructions.
• Arithmetic instructions.
• Comparison instructions.
• Conversion instructions.
• Logical instructions.
• Shuffle instructions.

The packed double precision floating-point instructions perform SIMD operations similarly to the packed single 
precision floating-point instructions (see Figure 11-3). Each source operand contains two double precision floating-

Figure 11-2.  Data Types Introduced with Intel® SSE2
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point values, and the destination operand contains the results of the operation (OP) performed in parallel on the 
corresponding values (X0 and Y0, and X1 and Y1) in each operand.

The scalar double precision floating-point instructions operate on the low (least significant) quadwords of two 
source operands (X0 and Y0), as shown in Figure 11-4. The high quadword (X1) of the first source operand is 
passed through to the destination. The scalar operations are similar to the floating-point operations performed in 
x87 FPU data registers with the precision control field in the x87 FPU control word set for double precision (53-bit 
significand), except that x87 stack operations use a 15-bit exponent range for the result while Intel SSE2 opera-
tions use an 11-bit exponent range. 

See Section 11.6.8, “Compatibility of SIMD and x87 FPU Floating-Point Data Types,” for more information about 
obtaining compatible results when performing both scalar double precision floating-point operations in XMM regis-
ters and in x87 FPU data registers.

11.4.1.1  Data Movement Instructions
Data movement instructions move double precision floating-point data between XMM registers and between XMM 
registers and memory.

The MOVAPD (move aligned packed double precision floating-point) instruction transfers a 128-bit packed double 
precision floating-point operand from memory to an XMM register or vice versa, or between XMM registers. The 
memory address must be aligned to a 16-byte boundary; if not, a general-protection exception (GP#) is gener-
ated.

Figure 11-3.  Packed Double Precision Floating-Point Operations

Figure 11-4.  Scalar Double Precision Floating-Point Operations
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The MOVUPD (move unaligned packed double precision floating-point) instruction transfers a 128-bit packed 
double precision floating-point operand from memory to an XMM register or vice versa, or between XMM registers. 
Alignment of the memory address is not required.

The MOVSD (move scalar double precision floating-point) instruction transfers a 64-bit double precision floating-
point operand from memory to the low quadword of an XMM register or vice versa, or between XMM registers. 
Alignment of the memory address is not required, unless alignment checking is enabled.

The MOVHPD (move high packed double precision floating-point) instruction transfers a 64-bit double precision 
floating-point operand from memory to the high quadword of an XMM register or vice versa. The low quadword of 
the register is left unchanged. Alignment of the memory address is not required, unless alignment checking is 
enabled.

The MOVLPD (move low packed double precision floating-point) instruction transfers a 64-bit double precision 
floating-point operand from memory to the low quadword of an XMM register or vice versa. The high quadword of 
the register is left unchanged. Alignment of the memory address is not required, unless alignment checking is 
enabled.

The MOVMSKPD (move packed double precision floating-point mask) instruction extracts the sign bit of each of the 
two packed double precision floating-point numbers in an XMM register and saves them in a general-purpose 
register. This 2-bit value can then be used as a condition to perform branching.

11.4.1.2  Intel® SSE2 Arithmetic Instructions
Intel SSE2 arithmetic instructions perform addition, subtraction, multiply, divide, square root, and 
maximum/minimum operations on packed and scalar double precision floating-point values.

The ADDPD (add packed double precision floating-point values) and SUBPD (subtract packed double precision 
floating-point values) instructions add and subtract, respectively, two packed double precision floating-point oper-
ands.

The ADDSD (add scalar double precision floating-point values) and SUBSD (subtract scalar double precision 
floating-point values) instructions add and subtract, respectively, the low double precision floating-point values of 
two operands and stores the result in the low quadword of the destination operand.

The MULPD (multiply packed double precision floating-point values) instruction multiplies two packed double preci-
sion floating-point operands.

The MULSD (multiply scalar double precision floating-point values) instruction multiplies the low double precision 
floating-point values of two operands and stores the result in the low quadword of the destination operand.

The DIVPD (divide packed double precision floating-point values) instruction divides two packed double precision 
floating-point operands.

The DIVSD (divide scalar double precision floating-point values) instruction divides the low double precision 
floating-point values of two operands and stores the result in the low quadword of the destination operand.

The SQRTPD (compute square roots of packed double precision floating-point values) instruction computes the 
square roots of the values in a packed double precision floating-point operand.

The SQRTSD (compute square root of scalar double precision floating-point values) instruction computes the 
square root of the low double precision floating-point value in the source operand and stores the result in the low 
quadword of the destination operand.

The MAXPD (return maximum of packed double precision floating-point values) instruction compares the corre-
sponding values in two packed double precision floating-point operands and returns the numerically greater value 
from each comparison to the destination operand.

The MAXSD (return maximum of scalar double precision floating-point values) instruction compares the low double 
precision floating-point values from two packed double precision floating-point operands and returns the numeri-
cally higher value from the comparison to the low quadword of the destination operand.

The MINPD (return minimum of packed double precision floating-point values) instruction compares the corre-
sponding values from two packed double precision floating-point operands and returns the numerically lesser value 
from each comparison to the destination operand.
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The MINSD (return minimum of scalar double precision floating-point values) instruction compares the low values 
from two packed double precision floating-point operands and returns the numerically lesser value from the 
comparison to the low quadword of the destination operand.

11.4.1.3  Intel® SSE2 Logical Instructions
intel SSE2 logical instructions perform AND, AND NOT, OR, and XOR operations on packed double precision 
floating-point values. 

The ANDPD (bitwise logical AND of packed double precision floating-point values) instruction returns the logical 
AND of two packed double precision floating-point operands.

The ANDNPD (bitwise logical AND NOT of packed double precision floating-point values) instruction returns the 
logical AND NOT of two packed double precision floating-point operands.

The ORPD (bitwise logical OR of packed double precision floating-point values) instruction returns the logical OR of 
two packed double precision floating-point operands.

The XORPD (bitwise logical XOR of packed double precision floating-point values) instruction returns the logical 
XOR of two packed double precision floating-point operands.

11.4.1.4  Intel® SSE2 Comparison Instructions
Intel SSE2 compare instructions compare packed and scalar double precision floating-point values and return the 
results of the comparison either to the destination operand or to the EFLAGS register.

The CMPPD (compare packed double precision floating-point values) instruction compares the corresponding 
values from two packed double precision floating-point operands, using an immediate operand as a predicate, and 
returns a 64-bit mask result of all 1s or all 0s for each comparison to the destination operand. The value of the 
immediate operand allows the selection of any of eight compare conditions: equal, less than, less than equal, unor-
dered, not equal, not less than, not less than or equal, or ordered.

The CMPSD (compare scalar double precision floating-point values) instruction compares the low values from two 
packed double precision floating-point operands, using an immediate operand as a predicate, and returns a 64-bit 
mask result of all 1s or all 0s for the comparison to the low quadword of the destination operand. The immediate 
operand selects the compare condition as with the CMPPD instruction.

The COMISD (compare scalar double precision floating-point values and set EFLAGS) and UCOMISD (unordered 
compare scalar double precision floating-point values and set EFLAGS) instructions compare the low values of two 
packed double precision floating-point operands and set the ZF, PF, and CF flags in the EFLAGS register to show the 
result (greater than, less than, equal, or unordered). These two instructions differ as follows: the COMISD instruc-
tion signals a floating-point invalid-operation (#I) exception when a source operand is either a QNaN or an SNaN; 
the UCOMISD instruction only signals an invalid-operation exception when a source operand is an SNaN.

11.4.1.5  Intel® SSE2 Shuffle and Unpack Instructions
Intel SSE2 shuffle instructions shuffle the contents of two packed double precision floating-point values and store 
the results in the destination operand.

The SHUFPD (shuffle packed double precision floating-point values) instruction places either of the two packed 
double precision floating-point values from the destination operand in the low quadword of the destination 
operand, and places either of the two packed double precision floating-point values from source operand in the 
high quadword of the destination operand (see Figure 11-5). By using the same register for the source and desti-
nation operands, the SHUFPD instruction can swap two packed double precision floating-point values. 
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The UNPCKHPD (unpack and interleave high packed double precision floating-point values) instruction performs an 
interleaved unpack of the high values from the source and destination operands and stores the result in the desti-
nation operand (see Figure 11-6).

The UNPCKLPD (unpack and interleave low packed double precision floating-point values) instruction performs an 
interleaved unpack of the low values from the source and destination operands and stores the result in the desti-
nation operand (see Figure 11-7).

Figure 11-5.  SHUFPD Instruction, Packed Shuffle Operation

Figure 11-6.  UNPCKHPD Instruction, High Unpack, and Interleave Operation

Figure 11-7.  UNPCKLPD Instruction, Low Unpack, and Interleave Operation
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11.4.1.6  Intel® SSE2 Conversion Instructions
Intel SSE2 conversion instructions (see Figure 11-8) support packed and scalar conversions between:
• Double precision and single precision floating-point formats.
• Double precision floating-point and doubleword integer formats.
• Single precision floating-point and doubleword integer formats.

Conversion between double precision and single precision floating-points values — The following instruc-
tions convert operands between double precision and single precision floating-point formats. The operands being 
operated on are contained in XMM registers or memory (at most, one operand can reside in memory; the destina-
tion is always an MMX register).

The CVTPS2PD (convert packed single precision floating-point values to packed double precision floating-point 
values) instruction converts two packed single precision floating-point values to two double precision floating-point 
values.

The CVTPD2PS (convert packed double precision floating-point values to packed single precision floating-point 
values) instruction converts two packed double precision floating-point values to two single precision floating-point 
values. When a conversion is inexact, the result is rounded according to the rounding mode selected in the MXCSR 
register.

The CVTSS2SD (convert scalar single precision floating-point value to scalar double precision floating-point value) 
instruction converts a single precision floating-point value to a double precision floating-point value.

The CVTSD2SS (convert scalar double precision floating-point value to scalar single precision floating-point value) 
instruction converts a double precision floating-point value to a single precision floating-point value. When the 
conversion is inexact, the result is rounded according to the rounding mode selected in the MXCSR register.

Conversion between double precision floating-point values and doubleword integers — The following 
instructions convert operands between double precision floating-point and doubleword integer formats. Operands 

Figure 11-8.  Intel® SSE and SSE2 Conversion Instructions
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are housed in XMM registers, MMX registers, general registers or memory (at most one operand can reside in 
memory; the destination is always an XMM, MMX, or general register).

The CVTPD2PI (convert packed double precision floating-point values to packed doubleword integers) instruction 
converts two packed double precision floating-point numbers to two packed signed doubleword integers, with the 
result stored in an MMX register. When rounding to an integer value, the source value is rounded according to the 
rounding mode in the MXCSR register. The CVTTPD2PI (convert with truncation packed double precision floating-
point values to packed doubleword integers) instruction is similar to the CVTPD2PI instruction except that trunca-
tion is used to round a source value to an integer value; see Section 4.8.4.2, “Truncation with Intel® SSE, SSE2, 
and AVX Conversion Instructions.”

The CVTPI2PD (convert packed doubleword integers to packed double precision floating-point values) instruction 
converts two packed signed doubleword integers to two double precision floating-point values. 

The CVTPD2DQ (convert packed double precision floating-point values to packed doubleword integers) instruction 
converts two packed double precision floating-point numbers to two packed signed doubleword integers, with the 
result stored in the low quadword of an XMM register. When rounding an integer value, the source value is rounded 
according to the rounding mode selected in the MXCSR register. The CVTTPD2DQ (convert with truncation packed 
double precision floating-point values to packed doubleword integers) instruction is similar to the CVTPD2DQ 
instruction except that truncation is used to round a source value to an integer value; see Section 4.8.4.2, “Trun-
cation with Intel® SSE, SSE2, and AVX Conversion Instructions.”

The CVTDQ2PD (convert packed doubleword integers to packed double precision floating-point values) instruction 
converts two packed signed doubleword integers located in the low-order doublewords of an XMM register to two 
double precision floating-point values. 

The CVTSD2SI (convert scalar double precision floating-point value to doubleword integer) instruction converts a 
double precision floating-point value to a doubleword integer, and stores the result in a general-purpose register. 
When rounding an integer value, the source value is rounded according to the rounding mode selected in the 
MXCSR register. The CVTTSD2SI (convert with truncation scalar double precision floating-point value to double-
word integer) instruction is similar to the CVTSD2SI instruction except that truncation is used to round the source 
value to an integer value; see Section 4.8.4.2, “Truncation with Intel® SSE, SSE2, and AVX Conversion Instruc-
tions.”

The CVTSI2SD (convert doubleword integer to scalar double precision floating-point value) instruction converts a 
signed doubleword integer in a general-purpose register to a double precision floating-point number, and stores the 
result in an XMM register. 

Conversion between single precision floating-point and doubleword integer formats — These instruc-
tions convert between packed single precision floating-point and packed doubleword integer formats. Operands are 
housed in XMM registers, MMX registers, general registers, or memory (the latter for at most one source operand). 
The destination is always an XMM, MMX, or general register. These SSE2 instructions supplement conversion 
instructions (CVTPI2PS, CVTPS2PI, CVTTPS2PI, CVTSI2SS, CVTSS2SI, and CVTTSS2SI) introduced with Intel SSE 
extensions.

The CVTPS2DQ (convert packed single precision floating-point values to packed doubleword integers) instruction 
converts four packed single precision floating-point values to four packed signed doubleword integers, with the 
source and destination operands in XMM registers or memory (the latter for at most one source operand). When 
the conversion is inexact, the rounded value according to the rounding mode selected in the MXCSR register is 
returned. The CVTTPS2DQ (convert with truncation packed single precision floating-point values to packed double-
word integers) instruction is similar to the CVTPS2DQ instruction except that truncation is used to round a source 
value to an integer value; see Section 4.8.4.2, “Truncation with Intel® SSE, SSE2, and AVX Conversion Instruc-
tions.”

The CVTDQ2PS (convert packed doubleword integers to packed single precision floating-point values) instruction 
converts four packed signed doubleword integers to four packed single precision floating-point numbers, with the 
source and destination operands in XMM registers or memory (the latter for at most one source operand). When 
the conversion is inexact, the rounded value according to the rounding mode selected in the MXCSR register is 
returned. 
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11.4.2 Intel® SSE2 64-Bit and 128-Bit SIMD Integer Instructions
Intel SSE2 adds several 128-bit packed integer instructions to the IA-32 architecture. Where appropriate, a 64-bit 
version of each of these instructions is also provided. The 128-bit versions of instructions operate on data in XMM 
registers; 64-bit versions operate on data in MMX registers. The instructions follow.

The MOVDQA (move aligned double quadword) instruction transfers a double quadword operand from memory to 
an XMM register or vice versa; or between XMM registers. The memory address must be aligned to a 16-byte 
boundary; otherwise, a general-protection exception (#GP) is generated.

The MOVDQU (move unaligned double quadword) instruction performs the same operations as the MOVDQA 
instruction, except that 16-byte alignment of a memory address is not required.

The PADDQ (packed quadword add) instruction adds two packed quadword integer operands or two single quad-
word integer operands, and stores the results in an XMM or MMX register, respectively. This instruction can operate 
on either unsigned or signed (two’s complement notation) integer operands.

The PSUBQ (packed quadword subtract) instruction subtracts two packed quadword integer operands or two single 
quadword integer operands, and stores the results in an XMM or MMX register, respectively. Like the PADDQ 
instruction, PSUBQ can operate on either unsigned or signed (two’s complement notation) integer operands.

The PMULUDQ (multiply packed unsigned doubleword integers) instruction performs an unsigned multiply of 
unsigned doubleword integers and returns a quadword result. Both 64-bit and 128-bit versions of this instruction 
are available. The 64-bit version operates on two doubleword integers stored in the low doubleword of each source 
operand, and the quadword result is returned to an MMX register. The 128-bit version performs a packed multiply 
of two pairs of doubleword integers. Here, the doublewords are packed in the first and third doublewords of the 
source operands, and the quadword results are stored in the low and high quadwords of an XMM register.

The PSHUFLW (shuffle packed low words) instruction shuffles the word integers packed into the low quadword of 
the source operand and stores the shuffled result in the low quadword of the destination operand. An 8-bit imme-
diate operand specifies the shuffle order.

The PSHUFHW (shuffle packed high words) instruction shuffles the word integers packed into the high quadword of 
the source operand and stores the shuffled result in the high quadword of the destination operand. An 8-bit imme-
diate operand specifies the shuffle order.

The PSHUFD (shuffle packed doubleword integers) instruction shuffles the doubleword integers packed into the 
source operand and stores the shuffled result in the destination operand. An 8-bit immediate operand specifies the 
shuffle order.

The PSLLDQ (shift double quadword left logical) instruction shifts the contents of the source operand to the left by 
the amount of bytes specified by an immediate operand. The empty low-order bytes are cleared (set to 0).

The PSRLDQ (shift double quadword right logical) instruction shifts the contents of the source operand to the right 
by the amount of bytes specified by an immediate operand. The empty high-order bytes are cleared (set to 0).

The PUNPCKHQDQ (Unpack high quadwords) instruction interleaves the high quadword of the source operand and 
the high quadword of the destination operand and writes them to the destination register.

The PUNPCKLQDQ (Unpack low quadwords) instruction interleaves the low quadwords of the source operand and 
the low quadwords of the destination operand and writes them to the destination register.

Two additional SSE instructions enable data movement from the MMX registers to the XMM registers. 

The MOVQ2DQ (move quadword integer from MMX to XMM registers) instruction moves the quadword integer from 
an MMX source register to an XMM destination register.

The MOVDQ2Q (move quadword integer from XMM to MMX registers) instruction moves the low quadword integer 
from an XMM source register to an MMX destination register. 

11.4.3 128-Bit SIMD Integer Instruction Extensions
All of 64-bit SIMD integer instructions introduced with MMX technology and Intel SSE (with the exception of the 
PSHUFW instruction) have been extended by Intel SSE2 to operate on 128-bit packed integer operands located in 
XMM registers. The 128-bit versions of these instructions follow the same SIMD conventions regarding packed 
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operands as the 64-bit versions. For example, where the 64-bit version of the PADDB instruction operates on 8 
packed bytes, the 128-bit version operates on 16 packed bytes. 

11.4.4 Cacheability Control and Memory Ordering Instructions
Intel SSE2 instructions that give programs more control over the caching, loading, and storing of data. are 
described below.

11.4.4.1  FLUSH Cache Line
The CLFLUSH (flush cache line) instruction writes and invalidates the cache line associated with a specified linear 
address. The invalidation is for all levels of the processor’s cache hierarchy, and it is broadcast throughout the 
cache coherency domain.

NOTE
CLFLUSH was introduced with Intel SSE2. However, the instruction can be implemented in IA-32 
processors that do not implement Intel SSE2. Detect CLFLUSH using the feature bit (if 
CPUID.01H:EDX.CLFSH[bit 19] = 1).

11.4.4.2  Cacheability Control Instructions
The following four instructions enable data from XMM and general-purpose registers to be stored to memory using 
a non-temporal hint. The non-temporal hint directs the processor to store data to memory without writing the data 
into the cache hierarchy. See Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data,” for more information 
about non-temporal stores and hints.

The MOVNTDQ (store double quadword using non-temporal hint) instruction stores packed integer data from an 
XMM register to memory, using a non-temporal hint.

The MOVNTPD (store packed double precision floating-point values using non-temporal hint) instruction stores 
packed double precision floating-point data from an XMM register to memory, using a non-temporal hint.

The MOVNTI (store doubleword using non-temporal hint) instruction stores integer data from a general-purpose 
register to memory, using a non-temporal hint.

The MASKMOVDQU (store selected bytes of double quadword) instruction stores selected byte integers from an 
XMM register to memory, using a byte mask to selectively write the individual bytes. The memory location does not 
need to be aligned on a natural boundary. This instruction also uses a non-temporal hint. 

11.4.4.3  Memory Ordering Instructions
Intel SSE2 introduced two fence instructions (LFENCE and MFENCE) as companions to the SFENCE instruction 
introduced with Intel SSE. 

The LFENCE instruction establishes a memory fence for loads. It guarantees ordering between two loads and 
prevents speculative loads from passing the load fence (that is, no speculative loads are allowed until all loads 
specified before the load fence have been carried out).

The MFENCE instruction establishes a memory fence for both loads and stores. The processor ensures that no load 
or store after MFENCE will become globally visible until all loads and stores before MFENCE are globally visible.1 
Note that the sequences LFENCE;SFENCE and SFENCE;LFENCE are not equivalent to MFENCE because neither 
ensures that older stores are globally observed prior to younger loads.

11.4.4.4  Pause
The PAUSE instruction is provided to improve the performance of “spin-wait loops” executed on a Pentium 4 or Intel 
Xeon processor. On a Pentium 4 processor, it also provides the added benefit of reducing processor power 

1. A load is considered to become globally visible when the value to be loaded is determined.
11-12 Vol. 1



PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)
consumption while executing a spin-wait loop. It is recommended that a PAUSE instruction always be included in 
the code sequence for a spin-wait loop.

11.4.5 Branch Hints
Intel SSE2 designates two instruction prefixes (2EH and 3EH) to provide branch hints to the processor (see 
“Instruction Prefixes” in Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A). These prefixes can only be used with the Jcc instruction and only at the machine code level (that is, there are 
no mnemonics for the branch hints).

11.5 INTEL® SSE, SSE2, AND SSE3 EXCEPTIONS
Intel SSE, SSE2, and SSE3 instructions generate two general types of exceptions:
• Non-numeric exceptions.
• SIMD floating-point exceptions.1

Intel SSE, SSE2, and SSE3 instructions can generate the same type of memory-access and non-numeric excep-
tions as other IA-32 architecture instructions. Existing exception handlers can generally handle these exceptions 
without any code modification. See “Providing Non-Numeric Exception Handlers for Exceptions Generated by the 
SSE, SSE2, and SSE3 Instructions” in Chapter 15 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A, for a list of the non-numeric exceptions that can be generated by the Intel SSE, SSE2, SSE3 
instructions and for guidelines for handling these exceptions.

Intel SSE, SSE2, and SSE3 instructions do not generate numeric exceptions on packed integer operations; 
however, they can generate numeric (SIMD floating-point) exceptions on packed single precision and double preci-
sion floating-point operations. These SIMD floating-point exceptions are defined in the IEEE Standard 754 for 
Floating-Point Arithmetic and are the same exceptions that are generated for x87 FPU instructions. See Section 
11.5.1, “SIMD Floating-Point Exceptions,” for a description of these exceptions.

11.5.1 SIMD Floating-Point Exceptions
SIMD floating-point exceptions are those exceptions that can be generated by Intel SSE, SSE2, and SSE3 instruc-
tions that operate on packed or scalar floating-point operands.

Six classes of SIMD floating-point exceptions can be generated:
• Invalid operation (#I).
• Divide-by-zero (#Z).
• Denormal operand (#D).
• Numeric overflow (#O).
• Numeric underflow (#U).
• Inexact result (Precision) (#P).

All of these exceptions (except the denormal operand exception) are defined in IEEE Standard 754, and they are 
the same exceptions that are generated with the x87 floating-point instructions. Section 4.9, “Overview of 
Floating-Point Exceptions,” gives a detailed description of these exceptions and of how and when they are gener-
ated. The following sections discuss the implementation of these exceptions in the Intel SSE/SSE2/SSE3 exten-
sions.

All SIMD floating-point exceptions are precise and occur as soon as the instruction completes execution.

1. The FISTTP instruction in Intel SSE3 does not generate SIMD floating-point exceptions, but it can generate x87 FPU floating-point 
exceptions.
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Each of the six exception conditions has a corresponding flag (IE, DE, ZE, OE, UE, and PE) and mask bit (IM, DM, 
ZM, OM, UM, and PM) in the MXCSR register (see Figure 10-3). The mask bits can be set with the LDMXCSR or 
FXRSTOR instruction; the mask and flag bits can be read with the STMXCSR or FXSAVE instruction.

The OSXMMEXCEPT flag (bit 10) of control register CR4 provides additional control over generation of SIMD 
floating-point exceptions by allowing the operating system to indicate whether or not it supports software excep-
tion handlers for SIMD floating-point exceptions. If an unmasked SIMD floating-point exception is generated and 
the OSXMMEXCEPT flag is set, the processor invokes a software exception handler by generating a SIMD floating-
point exception (#XM). If the OSXMMEXCEPT bit is clear, the processor generates an invalid-opcode exception 
(#UD) on the first Intel SSE or SSE2 instruction that detects a SIMD floating-point exception condition. See Section 
11.6.2, “Checking for Intel® SSE and SSE2 Support.”

11.5.2 SIMD Floating-Point Exception Conditions
The following sections describe the conditions that cause a SIMD floating-point exception to be generated and the 
masked response of the processor when these conditions are detected. 

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for exception precedence when 
more than one floating-point exception condition is detected for an instruction.

11.5.2.1  Invalid Operation Exception (#I)
The floating-point invalid-operation exception (#I) occurs in response to an invalid arithmetic operand. The flag 
(IE) and mask (IM) bits for the invalid operation exception are bits 0 and 7, respectively, in the MXCSR register.

If the invalid-operation exception is masked, the processor returns a QNaN, QNaN floating-point indefinite, integer 
indefinite, one of the source operands to the destination operand, or it sets the EFLAGS, depending on the operation 
being performed. When a value is returned to the destination operand, it overwrites the destination register specified 
by the instruction. Table 11-1 lists the invalid-arithmetic operations that the processor detects for instructions and 
the masked responses to these operations.

Table 11-1.  Masked Responses of Intel® SSE, SSE2, and SSE3 Instructions to Invalid Arithmetic Operations

Condition Masked Response

ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, SUBSS, SUBPD, SUBSD, 
MULPS, MULSS, MULPD, MULSD, DIVPS, DIVSS, DIVPD, DIVSD, 
ADDSUBPD, ADDSUBPD, HADDPD, HADDPS, HSUBPD or HSUBPS 
instruction with an SNaN operand

Return the SNaN converted to a QNaN; Refer to Table 4-7 for 
more details.

SQRTPS, SQRTSS, SQRTPD, or SQRTSD with SNaN operands Return the SNaN converted to a QNaN.

SQRTPS, SQRTSS, SQRTPD, or SQRTSD with negative operands 
(except zero)

Return the QNaN floating-point Indefinite.

MAXPS, MAXSS, MAXPD, MAXSD, MINPS, MINSS, MINPD, or 
MINSD instruction with QNaN or SNaN operands

Return the source 2 operand value.

CMPPS, CMPSS, CMPPD or CMPSD instruction with QNaN or SNaN 
operands

Return a mask of all 0s (except for the predicates “not-equal,” 
“unordered,” “not-less-than,” or “not-less-than-or-equal,” which 
returns a mask of all 1s).

CVTPD2PS, CVTSD2SS, CVTPS2PD, CVTSS2SD with SNaN 
operands

Return the SNaN converted to a QNaN.

COMISS or COMISD with QNaN or SNaN operand(s) Set EFLAGS values to “not comparable.”

Addition of opposite signed infinities or subtraction of like-signed 
infinities

Return the QNaN floating-point Indefinite.

Multiplication of infinity by zero Return the QNaN floating-point Indefinite.

Divide of (0/0) or ( ∞ / ∞ ) Return the QNaN floating-point Indefinite.
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If the invalid operation exception is not masked, a software exception handler is invoked and the operands remain 
unchanged. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software.”

Normally, when one or more of the source operands are QNaNs (and neither is an SNaN or in an unsupported 
format), an invalid-operation exception is not generated. The following instructions are exceptions to this rule: the 
COMISS and COMISD instructions; and the CMPPS, CMPSS, CMPPD, and CMPSD instructions (when the predicate 
is less than, less-than or equal, not less-than, or not less-than or equal). With these instructions, a QNaN source 
operand will generate an invalid-operation exception.

The invalid-operation exception is not affected by the flush-to-zero mode or by the denormals-are-zeros mode.

11.5.2.2  Denormal-Operand Exception (#D)
The processor signals the denormal-operand exception if an arithmetic instruction attempts to operate on a 
denormal operand. The flag (DE) and mask (DM) bits for the denormal-operand exception are bits 1 and 8, respec-
tively, in the MXCSR register.

The CVTPI2PD, CVTPD2PI, CVTTPD2PI, CVTDQ2PD, CVTPD2DQ, CVTTPD2DQ, CVTSI2SD, CVTSD2SI, CVTTSD2SI, 
CVTPI2PS, CVTPS2PI, CVTTPS2PI, CVTSS2SI, CVTTSS2SI, CVTSI2SS, CVTDQ2PS, CVTPS2DQ, and CVTTPS2DQ 
conversion instructions do not signal denormal exceptions. The RCPSS, RCPPS, RSQRTSS, and RSQRTPS instruc-
tions do not signal any kind of floating-point exception.

The denormals-are-zero flag (bit 6) of the MXCSR register provides an additional option for handling denormal-
operand exceptions. When this flag is set, denormal source operands are automatically converted to zeros with the 
sign of the source operand (see Section 10.2.3.4, “Denormals-Are-Zeros”). The denormal operand exception is not 
affected by the flush-to-zero mode.

See Section 4.9.1.2, “Denormal Operand Exception (#D),” for more information about the denormal exception. 
See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling unmasked 
exceptions.

11.5.2.3  Divide-By-Zero Exception (#Z)
The processor reports a divide-by-zero exception when a DIVPS, DIVSS, DIVPD or DIVSD instruction attempts to 
divide a finite non-zero operand by 0. The flag (ZE) and mask (ZM) bits for the divide-by-zero exception are bits 2 
and 9, respectively, in the MXCSR register.

See Section 4.9.1.3, “Divide-By-Zero Exception (#Z),” for more information about the divide-by-zero exception. 
See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling unmasked 
exceptions.

The divide-by-zero exception is not affected by the flush-to-zero mode at a single-instruction boundary.

While DAZ does not affect the rules for signaling IEEE exceptions, operations on denormal inputs might have 
different results when DAZ=1. As a consequence, DAZ can have an effect on the floating-point exceptions - 
including the divide-by-zero exception - when observed for a given operation involving denormal inputs.

11.5.2.4  Numeric Overflow Exception (#O)
The processor reports a numeric overflow exception whenever the rounded result of an arithmetic instruction 
exceeds the largest allowable finite value that fits in the destination operand. This exception can be generated with 
the ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, SUBSS, SUBPD, SUBSD, MULPS, MULSS, MULPD, MULSD, DIVPS, 
DIVSS, DIVPD, DIVSD, CVTPD2PS, CVTSD2SS, ADDSUBPD, ADDSUBPS, HADDPD, HADDPS, HSUBPD, and 

Conversion to integer when the value in the source register is a 
NaN, ∞, or exceeds the representable range for CVTPS2PI, 
CVTTPS2PI, CVTSS2SI, CVTTSS2SI, CVTPD2PI, CVTSD2SI, 
CVTPD2DQ, CVTTPD2PI, CVTTSD2SI, CVTTPD2DQ, CVTPS2DQ, 
or CVTTPS2DQ

Return the integer Indefinite.

Table 11-1.  Masked Responses of Intel® SSE, SSE2, and SSE3 Instructions to Invalid Arithmetic Operations (Contd.)

Condition Masked Response
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HSUBPS instructions. The flag (OE) and mask (OM) bits for the numeric overflow exception are bits 3 and 10, 
respectively, in the MXCSR register.

See Section 4.9.1.4, “Numeric Overflow Exception (#O),” for more information about the numeric-overflow excep-
tion. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling 
unmasked exceptions.

The numeric overflow exception is not affected by the flush-to-zero mode or by the denormals-are-zeros mode.

11.5.2.5  Numeric Underflow Exception (#U)
The processor reports a numeric underflow exception whenever the magnitude of the rounded result of an arith-
metic instruction, with unbounded exponent, is less than the smallest possible normalized, finite value that will fit 
in the destination operand and the numeric-underflow exception is not masked. If the numeric underflow exception 
is masked, both underflow and the inexact-result condition must be detected before numeric underflow is reported. 
This exception can be generated with the ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, SUBSS, SUBPD, SUBSD, 
MULPS, MULSS, MULPD, MULSD, DIVPS, DIVSS, DIVPD, DIVSD, CVTPD2PS, CVTSD2SS, ADDSUBPD, ADDSUBPS, 
HADDPD, HADDPS, HSUBPD, and HSUBPS instructions. The flag (UE) and mask (UM) bits for the numeric under-
flow exception are bits 4 and 11, respectively, in the MXCSR register.

The flush-to-zero flag (bit 15) of the MXCSR register provides an additional option for handling numeric underflow 
exceptions. When this flag is set and the numeric underflow exception is masked, tiny results are returned as a zero 
with the sign of the true result; see Section 10.2.3.3, “Flush-To-Zero.”

Underflow will occur when a tiny non-zero result is detected (the result has to be also inexact if underflow excep-
tions are masked), as described in the IEEE Standard 754-2008. While DAZ does not affect the rules for signaling 
IEEE exceptions, operations on denormal inputs might have different results when DAZ=1. As a consequence, DAZ 
can have an effect on the floating-point exceptions - including the underflow exception - when observed for a given 
operation involving denormal inputs.

See Section 4.9.1.5, “Numeric Underflow Exception (#U),” for more information about the numeric underflow 
exception. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling 
unmasked exceptions.

11.5.2.6  Inexact-Result (Precision) Exception (#P)
The inexact-result exception (also called the precision exception) occurs if the result of an operation is not exactly 
representable in the destination format. For example, the fraction 1/3 cannot be precisely represented in binary 
form. This exception occurs frequently and indicates that some (normally acceptable) accuracy has been lost. The 
exception is supported for applications that need to perform exact arithmetic only. Because the rounded result is 
generally satisfactory for most applications, this exception is commonly masked.

The flag (PE) and mask (PM) bits for the inexact-result exception are bits 5 and 12, respectively, in the MXCSR 
register.

See Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P),” for more information about the inexact-result 
exception. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling 
unmasked exceptions.

In flush-to-zero mode, the inexact result exception is reported. 

11.5.3 Generating SIMD Floating-Point Exceptions
When the processor executes a packed or scalar floating-point instruction, it looks for and reports on SIMD 
floating-point exception conditions using two sequential steps:

1. Looks for, reports on, and handles pre-computation exception conditions (invalid-operand, divide-by-zero, and 
denormal operand)

2. Looks for, reports on, and handles post-computation exception conditions (numeric overflow, numeric 
underflow, and inexact result)
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If both pre- and post-computational exceptions are unmasked, it is possible for the processor to generate a SIMD 
floating-point exception (#XM) twice during the execution of an SSE, SSE2 or SSE3 instruction: once when it 
detects and handles a pre-computational exception and when it detects a post-computational exception.

11.5.3.1  Handling Masked Exceptions
If all exceptions are masked, the processor handles the exceptions it detects by placing the masked result (or 
results for packed operands) in a destination operand and continuing program execution. The masked result may 
be a rounded normalized value, signed infinity, a denormal finite number, zero, a QNaN floating-point indefinite, or 
a QNaN depending on the exception condition detected. In most cases, the corresponding exception flag bit in 
MXCSR is also set. The one situation where an exception flag is not set is when an underflow condition is detected 
and it is not accompanied by an inexact result.

When operating on packed floating-point operands, the processor returns a masked result for each of the sub-
operand computations and sets a separate set of internal exception flags for each computation. It then performs a 
logical-OR on the internal exception flag settings and sets the exception flags in the MXCSR register according to 
the results of OR operations.

For example, Figure 11-9 shows the results of an MULPS instruction. In the example, all SIMD floating-point excep-
tions are masked. Assume that a denormal exception condition is detected prior to the multiplication of sub-oper-
ands X0 and Y0, no exception condition is detected for the multiplication of X1 and Y1, a numeric overflow 
exception condition is detected for the multiplication of X2 and Y2, and another denormal exception is detected 
prior to the multiplication of sub-operands X3 and Y3. Because denormal exceptions are masked, the processor 
uses the denormal source values in the multiplications of (X0 and Y0) and of (X3 and Y3) passing the results of the 
multiplications through to the destination operand. With the denormal operand, the result of the X0 and Y0 compu-
tation is a normalized finite value, with no exceptions detected. However, the X3 and Y3 computation produces a 
tiny and inexact result. This causes the corresponding internal numeric underflow and inexact-result exception 
flags to be set.

For the multiplication of X2 and Y2, the processor stores the floating-point ∞ in the destination operand, and sets 
the corresponding internal sub-operand numeric overflow flag. The result of the X1 and Y1 multiplication is passed 
through to the destination operand, with no internal sub-operand exception flags being set. Following the compu-
tations, the individual sub-operand exceptions flags for denormal operand, numeric underflow, inexact result, and 
numeric overflow are OR’d and the corresponding flags are set in the MXCSR register.

The net result of this computation is that:
• Multiplication of X0 and Y0 produces a normalized finite result
• Multiplication of X1 and Y1 produces a normalized finite result
• Multiplication of X2 and Y2 produces a floating-point ∞ result
• Multiplication of X3 and Y3 produces a tiny, inexact, finite result

Figure 11-9.  Example Masked Response for Packed Operations

X3 X2 X1 X0 (Denormal)

Y3 (Denormal) Y2 Y1 Y0 

Tiny, Inexact, Finite Normalized Finite

MULPS MULPS MULPS MULPS

∞ Normalized Finite
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• Denormal operand, numeric underflow, numeric underflow, and inexact result flags are set in the MXCSR 
register

11.5.3.2  Handling Unmasked Exceptions
If all exceptions are unmasked, the processor:

1. First detects any pre-computation exceptions: it ORs those exceptions, sets the appropriate exception flags, 
leaves the source and destination operands unaltered, and goes to step 2. If it does not detect any pre-
computation exceptions, it goes to step 5.

2. Checks CR4.OSXMMEXCPT[bit 10]. If this flag is set, the processor goes to step 3; if the flag is clear, it 
generates an invalid-opcode exception (#UD) and makes an implicit call to the invalid-opcode exception 
handler.

3. Generates a SIMD floating-point exception (#XM) and makes an implicit call to the SIMD floating-point 
exception handler.

4. If the exception handler is able to fix the source operands that generated the pre-computation exceptions or 
mask the condition in such a way as to allow the processor to continue executing the instruction, the processor 
resumes instruction execution as described in step 5.

5. Upon returning from the exception handler (or if no pre-computation exceptions were detected), the processor 
checks for post-computation exceptions. If the processor detects any post-computation exceptions: it ORs 
those exceptions, sets the appropriate exception flags, leaves the source and destination operands unaltered, 
and repeats steps 2, 3, and 4.

6. Upon returning from the exceptions handler in step 4 (or if no post-computation exceptions were detected), the 
processor completes the execution of the instruction.

The implication of this procedure is that for unmasked exceptions, the processor can generate a SIMD floating-
point exception (#XM) twice: once if it detects pre-computation exception conditions and a second time if it detects 
post-computation exception conditions. For example, if SIMD floating-point exceptions are unmasked for the 
computation shown in Figure 11-9, the processor would generate one SIMD floating-point exception for denormal 
operand conditions and a second SIMD floating-point exception for overflow and underflow (no inexact result 
exception would be generated because the multiplications of X0 and Y0 and of X1 and Y1 are exact).

11.5.3.3  Handling Combinations of Masked and Unmasked Exceptions
In situations where both masked and unmasked exceptions are detected, the processor will set exception flags for 
the masked and the unmasked exceptions. However, it will not return masked results until after the processor has 
detected and handled unmasked post-computation exceptions and returned from the exception handler (as in step 
6 above) to finish executing the instruction.

11.5.4 Handling SIMD Floating-Point Exceptions in Software
Section 4.9.3, “Typical Actions of a Floating-Point Exception Handler,” shows actions that may be carried out by a 
SIMD floating-point exception handler. The SSE/SSE2/SSE3 state is saved with the FXSAVE instruction; see Section 
11.6.5, “Saving and Restoring the SSE/SSE2 State.”

11.5.5 Interaction of SIMD and x87 FPU Floating-Point Exceptions
SIMD floating-point exceptions are generated independently from x87 FPU floating-point exceptions. SIMD 
floating-point exceptions do not cause assertion of the FERR# pin (independent of the value of CR0.NE[bit 5]). 
They ignore the assertion and deassertion of the IGNNE# pin.

If applications use Intel SSE/SSE2/SSE3 instructions along with x87 FPU instructions (in the same task or 
program), consider the following:
• SIMD floating-point exceptions are reported independently from the x87 FPU floating-point exceptions. SIMD 

and x87 FPU floating-point exceptions can be unmasked independently. Separate x87 FPU and SIMD floating-
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point exception handlers must be provided if the same exception is unmasked for x87 FPU and for Intel 
SSE/SSE2/SSE3 operations.

• The rounding mode specified in the MXCSR register does not affect x87 FPU instructions. Likewise, the 
rounding mode specified in the x87 FPU control word does not affect the Intel SSE/SSE2/SSE3 instructions. To 
use the same rounding mode, the rounding control bits in the MXCSR register and in the x87 FPU control word 
must be set explicitly to the same value.

• The flush-to-zero mode set in the MXCSR register for Intel SSE/SSE2/SSE3 instructions has no counterpart in 
the x87 FPU. For compatibility with the x87 FPU, set the flush-to-zero bit to 0.

• The denormals-are-zeros mode set in the MXCSR register for Intel SSE/SSE2/SSE3 instructions has no 
counterpart in the x87 FPU. For compatibility with the x87 FPU, set the denormals-are-zeros bit to 0.

• An application that expects to detect x87 FPU exceptions that occur during the execution of x87 FPU instruc-
tions will not be notified if exceptions occurs during the execution of corresponding Intel SSE/SSE2/SSE31 
instructions, unless the exception masks that are enabled in the x87 FPU control word have also been enabled 
in the MXCSR register and the application is capable of handling SIMD floating-point exceptions (#XM).

— Masked exceptions that occur during an SSE/SSE2/SSE3 library call cannot be detected by unmasking the 
exceptions after the call (in an attempt to generate the fault based on the fact that an exception flag is set). 
A SIMD floating-point exception flag that is set when the corresponding exception is unmasked will not 
generate a fault; only the next occurrence of that unmasked exception will generate a fault.

— An application which checks the x87 FPU status word to determine if any masked exception flags were set 
during an x87 FPU library call will also need to check the MXCSR register to detect a similar occurrence of a 
masked exception flag being set during an SSE/SSE2/SSE3 library call.

11.6 WRITING APPLICATIONS WITH INTEL® SSE AND SSE2 
The following sections give some guidelines for writing application programs and operating-system code that uses 
Intel SSE and SSE2. Because Intel SSE and SSE2 share the same state and perform companion operations, these 
guidelines apply to both sets of extensions.

Chapter 15 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, discusses the inter-
face to the processor for context switching as well as other operating system considerations when writing code that 
uses Intel SSE, SSE2, and SSE3.

11.6.1 General Guidelines for Using Intel® SSE and SSE2
The following guidelines describe how to take full advantage of the performance gains available with Intel SSE and 
SSE2:
• Ensure that the processor supports Intel SSE and SSE2.
• Ensure that your operating system supports Intel SSE and SSE2. (Operating system support for Intel SSE 

implies support for Intel SSE2, and vice versa.)
• Use stack and data alignment techniques to keep data properly aligned for efficient memory use.
• Use the non-temporal store instructions offered with Intel SSE and SSE2.
• Employ the optimization and scheduling techniques described in the Intel® 64 and IA-32 Architectures Optimi-

zation Reference Manual; see Section 1.4, “Related Literature,” for the order number for this manual.

11.6.2 Checking for Intel® SSE and SSE2 Support
Before an application attempts to use Intel SSE and/or Intel SSE2, it should check that they are present on the 
processor:

1. Intel SSE3 refers to ADDSUBPD, ADDSUBPS, HADDPD, HADDPS, HSUBPD, and HSUBPS. The only other Intel SSE3 instruction that 
can raise floating-point exceptions is FISTTP; it can generate x87 FPU invalid operation and inexact result exceptions.
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1. Check that the processor supports the CPUID instruction. Bit 21 of the EFLAGS register can be used to check 
processor’s support the CPUID instruction. 

2. Check that the processor supports Intel SSE and/or SSE2 (true if CPUID.01H:EDX.SSE[bit 25] = 1 and/or 
CPUID.01H:EDX.SSE2[bit 26] = 1).

The operating system must provide system level support for handling SSE state, exceptions before an application 
can use Intel SSE and/or Intel SSE2; see Chapter 15 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

If the processor attempts to execute an unsupported Intel SSE or SSE2 instruction, the processor will generate an 
invalid-opcode exception (#UD). If an operating system did not provide adequate system level support for Intel 
SSE, executing an Intel SSE or SSE2 instructions can also generate #UD.

11.6.3 Checking for the DAZ Flag in the MXCSR Register
The denormals-are-zero flag in the MXCSR register is available in most of the Pentium 4 processors and in the Intel 
Xeon processor, with the exception of some early steppings. To check for the presence of the DAZ flag in the MXCSR 
register, do the following:

1. Establish a 512-byte FXSAVE area in memory.

2. Clear the FXSAVE area to all 0s.

3. Execute the FXSAVE instruction, using the address of the first byte of the cleared FXSAVE area as a source 
operand. See “FXSAVE—Save x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A, for a description of the FXSAVE instruction and the 
layout of the FXSAVE image.

4. Check the value in the MXCSR_MASK field in the FXSAVE image (bytes 28 through 31).

— If the value of the MXCSR_MASK field is 00000000H, the DAZ flag and denormals-are-zero mode are not 
supported.

— If the value of the MXCSR_MASK field is non-zero and bit 6 is set, the DAZ flag and denormals-are-zero 
mode are supported.

If the DAZ flag is not supported, then it is a reserved bit and attempting to write a 1 to it will cause a general-
protection exception (#GP). See Section 11.6.6, “Guidelines for Writing to the MXCSR Register,” for general guide-
lines for preventing general-protection exceptions when writing to the MXCSR register.

11.6.4 Initialization of Intel® SSE and SSE2
The SSE and SSE2 state is contained in the XMM and MXCSR registers. Upon a hardware reset of the processor, this 
state is initialized as follows (see Table 11-2):
• All SIMD floating-point exceptions are masked (bits 7 through 12 of the MXCSR register is set to 1).
• All SIMD floating-point exception flags are cleared (bits 0 through 5 of the MXCSR register is set to 0).
• The rounding control is set to round-nearest (bits 13 and 14 of the MXCSR register are set to 00B).
• The flush-to-zero mode is disabled (bit 15 of the MXCSR register is set to 0).
• The denormals-are-zeros mode is disabled (bit 6 of the MXCSR register is set to 0). If the denormals-are-zeros 

mode is not supported, this bit is reserved and will be set to 0 on initialization.
• Each of the XMM registers is cleared (set to all zeros).

If the processor is reset by asserting the INIT# pin, the SSE and SSE2 state is not changed.

Table 11-2.  SSE and SSE2 State Following a Power-up/Reset or INIT

Registers Power-Up or Reset INIT

XMM0 through XMM7 +0.0 Unchanged

MXCSR 1F80H Unchanged
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11.6.5 Saving and Restoring the SSE/SSE2 State
The FXSAVE instruction saves the x87 FPU, MMX, SSE, and SSE2 states (which includes the contents of eight XMM 
registers and the MXCSR registers) in a 512-byte block of memory. The FXRSTOR instruction restores the saved 
SSE and SSE2 state from memory. See the FXSAVE instruction in Chapter 3 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A, for the layout of the 512-byte state block.

In addition to saving and restoring the SSE and SSE2 state, FXSAVE and FXRSTOR also save and restore the x87 
FPU state (because MMX registers are aliased to the x87 FPU data registers this includes saving and restoring the 
MMX state). For greater code efficiency, it is suggested that FXSAVE and FXRSTOR be substituted for the FSAVE, 
FNSAVE, and FRSTOR instructions in the following situations:
• When a context switch is being made in a multitasking environment
• During calls and returns from interrupt and exception handlers

In situations where the code is switching between x87 FPU and MMX technology computations (without a context 
switch or a call to an interrupt or exception), the FSAVE/FNSAVE and FRSTOR instructions are more efficient than 
the FXSAVE and FXRSTOR instructions.

11.6.6 Guidelines for Writing to the MXCSR Register
The MXCSR has several reserved bits, and attempting to write a 1 to any of these bits will cause a general-protec-
tion exception (#GP) to be generated. To allow software to identify these reserved bits, the MXCSR_MASK value is 
provided. Software can determine this mask value as follows:

1. Establish a 512-byte FXSAVE area in memory.

2. Clear the FXSAVE area to all 0s.

3. Execute the FXSAVE instruction, using the address of the first byte of the cleared FXSAVE area as a source 
operand. See “FXSAVE—Save x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A, for a description of FXSAVE and the layout of the 
FXSAVE image.

4. Check the value in the MXCSR_MASK field in the FXSAVE image (bytes 28 through 31).

— If the value of the MXCSR_MASK field is 00000000H, then the MXCSR_MASK value is the default value of 
0000FFBFH. Note that this value indicates that bit 6 of the MXCSR register is reserved; this setting indicates 
that the denormals-are-zero mode is not supported on the processor.

— If the value of the MXCSR_MASK field is non-zero, the MXCSR_MASK value should be used as the 
MXCSR_MASK.

All bits set to 0 in the MXCSR_MASK value indicate reserved bits in the MXCSR register. Thus, if the MXCSR_MASK 
value is AND’d with a value to be written into the MXCSR register, the resulting value will be assured of having all 
its reserved bits set to 0, preventing the possibility of a general-protection exception being generated when the 
value is written to the MXCSR register. 

For example, the default MXCSR_MASK value when 00000000H is returned in the FXSAVE image is 0000FFBFH. If 
software AND’s a value to be written to MXCSR register with 0000FFBFH, bit 6 of the result (the DAZ flag) will be 
ensured of being set to 0, which is the required setting to prevent general-protection exceptions on processors that 
do not support the denormals-are-zero mode.

To prevent general-protection exceptions, the MXCSR_MASK value should be AND’d with the value to be written 
into the MXCSR register in the following situations:
• Operating system routines that receive a parameter from an application program and then write that value to 

the MXCSR register (either with an FXRSTOR or LDMXCSR instruction)
• Any application program that writes to the MXCSR register and that needs to run robustly on several different 

IA-32 processors

Note that all bits in the MXCSR_MASK value that are set to 1 indicate features that are supported by the MXCSR 
register; they can be treated as feature flags for identifying processor capabilities.
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11.6.7 Interaction of Intel® SSE and SSE2 Instructions with x87 FPU and MMX Instructions
The XMM registers and the x87 FPU and MMX registers represent separate execution environments, which has 
certain ramifications when executing Intel SSE, SSE2, MMX, and x87 FPU instructions in the same code module or 
when mixing code modules that contain these instructions:
• Those Intel SSE and SSE2 instructions that operate only on XMM registers (such as the packed and scalar 

floating-point instructions and the 128-bit SIMD integer instructions) in the same instruction stream with 64-
bit SIMD integer or x87 FPU instructions without any restrictions. For example, an application can perform the 
majority of its floating-point computations in the XMM registers, using the packed and scalar floating-point 
instructions, and at the same time use the x87 FPU to perform trigonometric and other transcendental compu-
tations. Likewise, an application can perform packed 64-bit and 128-bit SIMD integer operations together 
without restrictions.

• Those Intel SSE and SSE2 instructions that operate on MMX registers (such as the CVTPS2PI, CVTTPS2PI, 
CVTPI2PS, CVTPD2PI, CVTTPD2PI, CVTPI2PD, MOVDQ2Q, MOVQ2DQ, PADDQ, and PSUBQ instructions) can 
also be executed in the same instruction stream as 64-bit SIMD integer or x87 FPU instructions, however, here 
they are subject to the restrictions on the simultaneous use of MMX technology and x87 FPU instructions, which 
include:

— Transition from x87 FPU to MMX technology instructions or to Intel SSE or SSE2 instructions that operate on 
MMX registers should be preceded by saving the state of the x87 FPU.

— Transition from MMX technology instructions or from Intel SSE or SSE2 instructions that operate on MMX 
registers to x87 FPU instructions should be preceded by execution of the EMMS instruction.

11.6.8 Compatibility of SIMD and x87 FPU Floating-Point Data Types
Intel SSE and SSE2 instructions operate on the same single precision and double precision floating-point data types 
that the x87 FPU operates on. However, when operating on these data types, Intel SSE and SSE2 operate on them 
in their native format (single precision or double precision), in contrast to the x87 FPU which extends them to 
double extended precision floating-point format to perform computations and then rounds the result back to a 
single precision or double precision format before writing results to memory. Because the x87 FPU operates on a 
higher precision format and then rounds the result to a lower precision format, it may return a slightly different 
result when performing the same operation on the same single precision or double precision floating-point values 
than is returned by Intel SSE and SSE2. The difference occurs only in the least-significant bits of the significand.

11.6.9 Mixing Packed and Scalar Floating-Point and 128-Bit SIMD Integer Instructions and 
Data

Intel SSE and SSE2 define typed operations on packed and scalar floating-point data types and on 128-bit SIMD 
integer data types, but IA-32 processors do not enforce this typing at the architectural level. They only enforce it 
at the microarchitectural level. Therefore, when a Pentium 4 or Intel Xeon processor loads a packed or scalar 
floating-point operand or a 128-bit packed integer operand from memory into an XMM register, it does not check 
that the actual data being loaded matches the data type specified in the instruction. Likewise, when the processor 
performs an arithmetic operation on the data in an XMM register, it does not check that the data being operated on 
matches the data type specified in the instruction.

As a general rule, because data typing of SIMD floating-point and integer data types is not enforced at the archi-
tectural level, it is the responsibility of the programmer, assembler, or compiler to ensure that code enforces data 
typing. Failure to enforce correct data typing can lead to computations that return unexpected results.

For example, in the following code sample, two packed single precision floating-point operands are moved from 
memory into XMM registers (using MOVAPS instructions); then a double precision packed add operation (using the 
ADDPD instruction) is performed on the operands:

movaps xmm0, [eax] ; EAX register contains pointer to packed 

; single precision floating-point operand

movaps xmm1, [ebx]

addpd xmm0, xmm1
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Pentium 4 and Intel Xeon processors execute these instructions without generating an invalid-operand exception 
(#UD) and will produce the expected results in register XMM0 (that is, the high and low 64-bits of each register will 
be treated as a double precision floating-point value and the processor will operate on them accordingly). Because 
the data types operated on and the data type expected by the ADDPD instruction were inconsistent, the instruction 
may result in a SIMD floating-point exception (such as numeric overflow [#O] or invalid operation [#I]) being 
generated, but the actual source of the problem (inconsistent data types) is not detected.

The ability to operate on an operand that contains a data type that is inconsistent with the typing of the instruction 
being executed, permits some valid operations to be performed. For example, the following instructions load a 
packed double precision floating-point operand from memory to register XMM0, and a mask to register XMM1; then 
they use XORPD to toggle the sign bits of the two packed values in register XMM0.

movapd xmm0, [eax] ; EAX register contains pointer to packed 

; double precision floating-point operand

movaps xmm1, [ebx] ; EBX register contains pointer to packed

; double precision floating-point mask

xorpd xmm0, xmm1 ; XOR operation toggles sign bits using 

; the mask in xmm1

In this example: XORPS or PXOR can be used in place of XORPD and yield the same correct result. However, 
because of the type mismatch between the operand data type and the instruction data type, a latency penalty will 
be incurred due to implementations of the instructions at the microarchitecture level. 

Latency penalties can also be incurred by using move instructions of the wrong type. For example, MOVAPS and 
MOVAPD can both be used to move a packed single precision operand from memory to an XMM register. However, 
if MOVAPD is used, a latency penalty will be incurred when a correctly typed instruction attempts to use the data in 
the register.

Note that these latency penalties are not incurred when moving data from XMM registers to memory.

11.6.10 Interfacing with Intel® SSE and SSE2 Procedures and Functions
Intel SSE and SSE2 allow direct access to XMM registers. This means that all existing interface conventions 
between procedures and functions that apply to the use of the general-purpose registers (EAX, EBX, etc.) also 
apply to XMM register usage.

11.6.10.1  Passing Parameters in XMM Registers
The state of XMM registers is preserved across procedure (or function) boundaries. Parameters can be passed from 
one procedure to another using XMM registers.

11.6.10.2  Saving XMM Register State on a Procedure or Function Call
The state of XMM registers can be saved in two ways: using an FXSAVE instruction or a move instruction. FXSAVE 
saves the state of all XMM registers (along with the state of MXCSR and the x87 FPU registers). This instruction is 
typically used for major changes in the context of the execution environment, such as a task switch. FXRSTOR 
restores the XMM, MXCSR, and x87 FPU registers stored with FXSAVE.

In cases where only XMM registers must be saved, or where selected XMM registers need to be saved, move 
instructions (MOVAPS, MOVUPS, MOVSS, MOVAPD, MOVUPD, MOVSD, MOVDQA, and MOVDQU) can be used. 
These instructions can also be used to restore the contents of XMM registers. To avoid performance degradation 
when saving XMM registers to memory or when loading XMM registers from memory, be sure to use the appropri-
ately typed move instructions.

The move instructions can also be used to save the contents of XMM registers on the stack. Here, the stack pointer 
(in the ESP register) can be used as the memory address to the next available byte in the stack. Note that the stack 
pointer is not automatically incremented when using a move instruction (as it is with PUSH). 
Vol. 1 11-23



PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)
A move-instruction procedure that saves the contents of an XMM register to the stack is responsible for decre-
menting the value in the ESP register by 16. Likewise, a move-instruction procedure that loads an XMM register 
from the stack needs also to increment the ESP register by 16. To avoid performance degradation when moving the 
contents of XMM registers, use the appropriately typed move instructions.

Use the LDMXCSR and STMXCSR instructions to save and restore, respectively, the contents of the MXCSR register 
on a procedure call and return.

11.6.10.3  Caller-Save Recommendation for Procedure and Function Calls
When making procedure (or function) calls from SSE or SSE2 code, a caller-save convention is recommended for 
saving the state of the calling procedure. Using this convention, any register whose content must survive intact 
across a procedure call must be stored in memory by the calling procedure prior to executing the call. 

The primary reason for using the caller-save convention is to prevent performance degradation. XMM registers can 
contain packed or scalar double precision floating-point, packed single precision floating-point, and 128-bit packed 
integer data types. The called procedure has no way of knowing the data types in XMM registers following a call; so 
it is unlikely to use the correctly typed move instruction to store the contents of XMM registers in memory or to 
restore the contents of XMM registers from memory. 

As described in Section 11.6.9, “Mixing Packed and Scalar Floating-Point and 128-Bit SIMD Integer Instructions 
and Data,” executing a move instruction that does not match the type for the data being moved to/from XMM regis-
ters will be carried out correctly, but can lead to a greater instruction latency.

11.6.11 Updating Existing MMX Technology Routines Using 128-Bit SIMD Integer Instructions
Intel SSE2 extends all 64-bit MMX SIMD integer instructions to operate on 128-bit SIMD integers using XMM regis-
ters. The extended 128-bit SIMD integer instructions operate like the 64-bit SIMD integer instructions; this simpli-
fies the porting of MMX technology applications. However, there are considerations:
• To take advantage of wider 128-bit SIMD integer instructions, MMX technology code must be recompiled to 

reference the XMM registers instead of MMX registers.
• Computation instructions that reference memory operands that are not aligned on 16-byte boundaries should 

be replaced with an unaligned 128-bit load (MOVUDQ instruction) followed by a version of the same 
computation operation that uses register instead of memory operands. Use of 128-bit packed integer 
computation instructions with memory operands that are not 16-byte aligned results in a general protection 
exception (#GP).

• Extension of the PSHUFW instruction (shuffle word across 64-bit integer operand) across a full 128-bit operand 
is emulated by a combination of the following instructions: PSHUFHW, PSHUFLW, and PSHUFD.

• Use of the 64-bit shift by bit instructions (PSRLQ, PSLLQ) can be extended to 128 bits in either of two ways:

— Use of PSRLQ and PSLLQ, along with masking logic operations. 

— Rewriting the code sequence to use PSRLDQ and PSLLDQ (shift double quadword operand by bytes)
• Loop counters need to be updated, since each 128-bit SIMD integer instruction operates on twice the amount 

of data as its 64-bit SIMD integer counterpart.

11.6.12 Branching on Arithmetic Operations
There are no condition codes in SSE or SSE2 states. A packed-data comparison instruction generates a mask which 
can then be transferred to an integer register. The following code sequence provides an example of how to perform 
a conditional branch, based on the result of an Intel SSE2 arithmetic operation. 

cmppd XMM0, XMM1 ; generates a mask in XMM0
movmskpd EAX, XMM0 ; moves a 2 bit mask to eax
test EAX, 0 ; compare with desired result
jne BRANCH TARGET
11-24 Vol. 1



PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)
The COMISD and UCOMISD instructions update the EFLAGS as the result of a scalar comparison. A conditional 
branch can then be scheduled immediately following COMISD/UCOMISD.

11.6.13 Cacheability Hint Instructions
Intel SSE and SSE2 cacheability control instructions enable the programmer to control prefetching, caching, 
loading, and storing of data. When correctly used, these instructions improve application performance. 

To make efficient use of the processor’s super-scalar microarchitecture, a program needs to provide a steady 
stream of data to the executing program to avoid stalling the processor. PREFETCHh instructions minimize the 
latency of data accesses in performance-critical sections of application code by allowing data to be fetched into the 
processor cache hierarchy in advance of actual usage. 

PREFETCHh instructions do not change the user-visible semantics of a program, although they may affect perfor-
mance. The operation of these instructions is implementation-dependent. Programmers may need to tune code for 
each IA-32 processor implementation. Excessive usage of PREFETCHh instructions may waste memory bandwidth 
and reduce performance. For more detailed information on the use of prefetch hints, refer to Chapter 7, “Opti-
mizing Cache Usage,” in the Intel® 64 and IA-32 Architectures Optimization Reference Manual.

The non-temporal store instructions (MOVNTI, MOVNTPD, MOVNTPS, MOVNTDQ, MOVNTQ, MASKMOVQ, and 
MASKMOVDQU) minimize cache pollution when writing non-temporal data to memory (see Section 10.4.6.1, 
“Cacheability Control Instructions,” and Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data”). They 
prevent non-temporal data from being written into processor caches on a store operation.

Besides reducing cache pollution, the use of weakly-ordered memory types can be important under certain data 
sharing relationships, such as a producer-consumer relationship. The use of weakly ordered memory can make the 
assembling of data more efficient; but care must be taken to ensure that the consumer obtains the data that the 
producer intended. Some common usage models that may be affected in this way by weakly-ordered stores are: 
• Library functions that use weakly ordered memory to write results.
• Compiler-generated code that writes weakly-ordered results.
• Hand-crafted code.

The degree to which a consumer of data knows that the data is weakly ordered can vary for these cases. As a 
result, the SFENCE or MFENCE instruction should be used to ensure ordering between routines that produce 
weakly-ordered data and routines that consume the data. SFENCE and MFENCE provide a performance-efficient 
way to ensure ordering by guaranteeing that every store instruction that precedes SFENCE/MFENCE in program 
order is globally visible before a store instruction that follows the fence. 

11.6.14 Effect of Instruction Prefixes on Intel® SSE and SSE2 Instructions
Table 11-3 describes the effects of instruction prefixes on Intel SSE and SSE2 instructions. (Table 11-3 also applies 
to SIMD integer and SIMD floating-point instructions in Intel SSE3.) Unpredictable behavior can range from 
prefixes being treated as a reserved operation on one generation of IA-32 processors to generating an invalid 
opcode exception on another generation of processors.

See also “Instruction Prefixes” in Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A, for complete description of instruction prefixes.

NOTE
Some Intel SSE, SSE2, and SSE3 instructions have two-byte opcodes that are either 2 bytes or 3 
bytes in length. Two-byte opcodes that are 3 bytes in length consist of: a mandatory prefix (F2H, 
F3H, or 66H), 0FH, and an opcode byte. See Table 11-3.
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Table 11-3.  Effect of Prefixes on the Intel® SSE, SSE2, and SSE3 Instructions

Prefix Type Effect on the Intel® SSE, SSE2, and SSE3 Instructions 

Address Size Prefix (67H) Affects instructions with a memory operand.

Reserved for instructions without a memory operand and may result in unpredictable 
behavior.

Operand Size (66H) Reserved and may result in unpredictable behavior.

Segment Override (2EH, 36H, 3EH, 
26H, 64H, 65H)

Affects instructions with a memory operand.

Reserved for instructions without a memory operand and may result in unpredictable 
behavior.

Repeat Prefixes (F2H and F3H) Reserved and may result in unpredictable behavior.

Lock Prefix (F0H) Reserved; generates invalid opcode exception (#UD).
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CHAPTER 12
PROGRAMMING WITH INTEL® SSE3, SSSE3,

INTEL® SSE4, AND INTEL® AES-NI

This chapter describes the Intel SSE3, SSSE3, and Intel SSE4 instructions, and provides information to assist in 
writing application programs that use these extensions. 

Intel AES-NI and PCLMLQDQ are instruction extensions targeted to accelerate high-speed block encryption and 
cryptographic processing. Section 12.13 covers these instructions and their relationship to the Advanced Encryp-
tion Standard (AES).

12.1 PROGRAMMING ENVIRONMENT AND DATA TYPES
The programming environment for using Intel SSE3, SSSE3, and Intel SSE4 is unchanged from those shown in 
Figure 3-1 and Figure 3-2. These extensions do not introduce new data types. XMM registers are used to operate 
on packed integer data, single precision floating-point data, or double precision floating-point data. 

One Intel SSE3 instruction uses the x87 FPU for x87-style programming. There are two Intel SSE3 instructions that 
use the general registers for thread synchronization. The MXCSR register governs SIMD floating-point operations. 
Note, however, that the x87 FPU control word does not affect the Intel SSE3 instruction that is executed by the x87 
FPU (FISTTP), other than by unmasking an invalid operand or inexact result exception.

Intel SSE4 instructions do not use MMX registers. The majority of Intel SSE4.21 and SSE4.1 instructions operate on 
XMM registers.

12.1.1 Intel® SSE3, SSSE3, and Intel® SSE4 in 64-Bit Mode and Compatibility Mode
In compatibility mode, Intel SSE3, SSSE3, and Intel SSE4 function like they do in protected mode. In 64-bit mode, 
eight additional XMM registers are accessible. Registers XMM8-XMM15 are accessed by using REX prefixes. 

Memory operands are specified using the ModR/M, SIB encoding described in Section 3.7.5.

Some Intel SSE3, SSSE3, and Intel SSE4 instructions may be used to operate on general-purpose registers. Use 
the REX.W prefix to access 64-bit general-purpose registers. Note that if a REX prefix is used when it has no 
meaning, the prefix is ignored.

12.1.2 Compatibility of Intel® SSE3 and SSSE3 with MMX Technology, the x87 FPU 
Environment, and Intel® SSE and SSE2 

Intel SSE3, SSSE3, and Intel SSE4 do not introduce any new state to the Intel 64 and IA-32 execution environ-
ments. 

For SIMD and x87 programming, the FXSAVE and FXRSTOR instructions save and restore the architectural states 
of XMM, MXCSR, x87 FPU, and MMX registers. The MONITOR and MWAIT instructions use general purpose registers 
on input, they do not modify the content of those registers.

12.1.3 Horizontal and Asymmetric Processing
Many of the Intel SSE/SSE2/SSE3 and SSSE3 instructions accelerate SIMD data processing using a model referred 
to as vertical computation. Using this model, data flow is vertical between the data elements of the inputs and the 
output. 

1. Although the presence of CRC32 support is enumerated by CPUID.01:ECX[SSE4.2] = 1, CRC32 operates on general purpose regis-
ters.
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Figure 12-1 illustrates the asymmetric processing of the Intel SSE3 instruction ADDSUBPD. Figure 12-2 illustrates 
the horizontal data movement of the Intel SSE3 instruction HADDPD. 

12.2 OVERVIEW OF INTEL® SSE3 INSTRUCTIONS
Intel SSE3 extensions include 13 instructions. See:
• Section 12.3, “Intel® SSE3 Instructions,” provides an introduction to individual Intel SSE3 instructions. 
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, provides 

detailed information on individual instructions.
• Chapter 15, “System Programming for Instruction Set Extensions and Processor Extended States,” in the Intel® 

64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, gives guidelines for integrating Intel 
SSE/SSE2/SSE3 extensions into an operating-system environment.

12.3 INTEL® SSE3 INSTRUCTIONS
Intel SSE3 instructions are grouped as follows:
• x87 FPU instruction:

— One instruction that improves x87 FPU floating-point to integer conversion.

Figure 12-1.  Asymmetric Processing in ADDSUBPD 

Figure 12-2.  Horizontal Data Movement in HADDPD
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• SIMD integer instruction:

— One instruction that provides a specialized 128-bit unaligned data load.
• SIMD floating-point instructions:

— Three instructions that enhance LOAD/MOVE/DUPLICATE performance.

— Two instructions that provide packed addition/subtraction.

— Four instructions that provide horizontal addition/subtraction.
• Thread synchronization instructions:

— Two instructions that improve synchronization between multi-threaded agents.

The instructions are discussed in more detail in the following paragraphs.

12.3.1 x87 FPU Instruction for Integer Conversion
The FISTTP instruction (x87 FPU Store Integer and Pop with Truncation) behaves like FISTP, but uses truncation 
regardless of what rounding mode is specified in the x87 FPU control word. The instruction converts the top of stack 
(ST0) to integer with rounding to and pops the stack. 

The FISTTP instruction is available in three precisions: short integer (word or 16-bit), integer (double word or 32-
bit), and long integer (64-bit). With FISTTP, applications no longer need to change the FCW when truncation is 
required.

12.3.2 SIMD Integer Instruction for Specialized 128-Bit Unaligned Data Load
The LDDQU instruction is a special 128-bit unaligned load designed to avoid cache line splits. If the address of a 16-
byte load is on a 16-byte boundary, LDQQU loads the bytes requested. If the address of the load is not aligned on 
a 16-byte boundary, LDDQU loads a 32-byte block starting at the 16-byte aligned address immediately below the 
load request. It then extracts the requested 16 bytes.

The instruction provides significant performance improvement on 128-bit unaligned memory accesses at the cost 
of some usage model restrictions.

12.3.3 SIMD Floating-Point Instructions That Enhance LOAD/MOVE/DUPLICATE Performance
The MOVSHDUP instruction loads/moves 128-bits, duplicating the second and fourth 32-bit data elements.
• MOVSHDUP OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (stored in OperandA): 3b, 3b, 1b, 1b

The MOVSLDUP instruction loads/moves 128-bits, duplicating the first and third 32-bit data elements.
• MOVSLDUP OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (stored in OperandA): 2b, 2b, 0b, 0b

The MOVDDUP instruction loads/moves 64-bits; duplicating the 64 bits from the source.
• MOVDDUP OperandA, OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (64 bits, one data element): 0b

— Result (stored in OperandA): 0b, 0b
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12.3.4 SIMD Floating-Point Instructions Provide Packed Addition/Subtraction
The ADDSUBPS instruction has two 128-bit operands. The instruction performs single precision addition on the 
second and fourth pairs of 32-bit data elements within the operands; and single precision subtraction on the first 
and third pairs.
• ADDSUBPS OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (stored in OperandA): 3a+3b, 2a-2b, 1a+1b, 0a-0b

The ADDSUBPD instruction has two 128-bit operands. The instruction performs double precision addition on the 
second pair of quadwords, and double precision subtraction on the first pair.
• ADDSUBPD OperandA, OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (128 bits, two data elements): 1b, 0b

— Result (stored in OperandA): 1a+1b, 0a-0b

12.3.5 SIMD Floating-Point Instructions Provide Horizontal Addition/Subtraction
Most SIMD instructions operate vertically. This means that the result in position i is a function of the elements in 
position i of both operands. Horizontal addition/subtraction operates horizontally. This means that contiguous data 
elements in the same source operand are used to produce a result.

The HADDPS instruction performs a single precision addition on contiguous data elements. The first data element 
of the result is obtained by adding the first and second elements of the first operand; the second element by adding 
the third and fourth elements of the first operand; the third by adding the first and second elements of the second 
operand; and the fourth by adding the third and fourth elements of the second operand.
• HADDPS OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (Stored in OperandA): 3b+2b, 1b+0b, 3a+2a, 1a+0a

The HSUBPS instruction performs a single precision subtraction on contiguous data elements. The first data 
element of the result is obtained by subtracting the second element of the first operand from the first element of 
the first operand; the second element by subtracting the fourth element of the first operand from the third element 
of the first operand; the third by subtracting the second element of the second operand from the first element of 
the second operand; and the fourth by subtracting the fourth element of the second operand from the third 
element of the second operand.
• HSUBPS OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (Stored in OperandA): 2b-3b, 0b-1b, 2a-3a, 0a-1a

The HADDPD instruction performs a double precision addition on contiguous data elements. The first data element 
of the result is obtained by adding the first and second elements of the first operand; the second element by adding 
the first and second elements of the second operand.
• HADDPD OperandA, OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (128 bits, two data elements): 1b, 0b

— Result (Stored in OperandA): 1b+0b, 1a+0a
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The HSUBPD instruction performs a double precision subtraction on contiguous data elements. The first data 
element of the result is obtained by subtracting the second element of the first operand from the first element of 
the first operand; the second element by subtracting the second element of the second operand from the first 
element of the second operand.
• HSUBPD OperandA OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (128 bits, two data elements): 1b, 0b

— Result (Stored in OperandA): 0b-1b, 0a-1a

12.3.6 Two Thread Synchronization Instructions
The MONITOR instruction sets up an address range that is used to monitor write-back-stores. 

MWAIT enables a logical processor to enter into an optimized state while waiting for a write-back-store to the 
address range set up by MONITOR. MONITOR and MWAIT require the use of general purpose registers for its input. 
The registers used by MONITOR and MWAIT must be initialized properly; register content is not modified by these 
instructions.

12.4 WRITING APPLICATIONS WITH INTEL® SSE3
The following sections give guidelines for writing application programs and operating-system code that use Intel 
SSE3 instructions. 

12.4.1 Guidelines for Using Intel® SSE3
The following guidelines describe how to maximize the benefits of using Intel SSE3:
• Check that the processor supports Intel SSE3.

— Applications may need to ensure that the target operating system supports Intel SSE3. (Operating system 
support for the Intel SSE implies sufficient support for Intel SSE2 and SSE3.) 

• Ensure your operating system supports MONITOR and MWAIT.
• Employ the optimization and scheduling techniques described in the Intel® 64 and IA-32 Architectures Optimi-

zation Reference Manual (see Section 1.4, “Related Literature”).

12.4.2 Checking for Intel® SSE3 Support
Before an application attempts to use the SIMD subset of Intel SSE3 instructions, the application should follow the 
steps illustrated in Section 11.6.2, “Checking for Intel® SSE and SSE2 Support.” Next, use the additional step 
provided below:
• Check that the processor supports the SIMD and x87 Intel SSE3 extensions (if CPUID.01H:ECX.SSE3[bit 0] = 

1). 

An operating system that provides application support for Intel SSE and SSE2 also provides sufficient application 
support for Intel SSE3. To use FISTTP, software only needs to check support for Intel SSE3.

In the initial implementation of MONITOR and MWAIT, these two instructions are available to ring 0 and condition-
ally available at ring level greater than 0. Before an application attempts to use the MONITOR and MWAIT instruc-
tions, the application should use the following steps:

1. Check that the processor supports MONITOR and MWAIT. If CPUID.01H:ECX.MONITOR[bit 3] = 1, MONITOR 
and MWAIT are available at ring 0. 

2. Query the smallest and largest line size that MONITOR uses. Use CPUID.05H:EAX.smallest[bits 
15:0];EBX.largest[bits15:0]. Values are returned in bytes in EAX and EBX.
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3. Ensure the memory address range(s) that will be supplied to MONITOR meets memory type requirements.

MONITOR and MWAIT are targeted for system software that supports efficient thread synchronization, see Chapter 
15 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A for details.

12.4.3 Enable FTZ and DAZ for SIMD Floating-Point Computation
Enabling the FTZ and DAZ flags in the MXCSR register is likely to accelerate SIMD floating-point computation where 
strict compliance to the IEEE standard 754-1985 is not required. The FTZ flag is available to Intel 64 and IA-32 
processors that support Intel SSE; DAZ is available to Intel 64 processors and to most IA-32 processors that 
support Intel SSE, SSE2, and SSE3. 

Software can detect the presence of DAZ, modify the MXCSR register, and save and restore state information by 
following the techniques discussed in Section 11.6.3 through Section 11.6.6.

12.4.4 Programming Intel® SSE3 with Intel® SSE and SSE2
SIMD instructions in Intel SSE3 are intended to complement the use of Intel SSE and SSE2 in programming SIMD 
applications. Application software that intends to use Intel SSE3 instructions should also check for the availability 
of Intel SSE and SSE2 instructions.

The FISTTP instruction in Intel SSE3 is intended to accelerate x87 style programming where performance is limited 
by frequent floating-point conversion to integers; this happens when the x87 FPU control word is modified 
frequently. Use of the FISTTP instruction can eliminate the need to access the x87 FPU control word.

12.5 OVERVIEW OF SSSE3 INSTRUCTIONS
SSSE3 provides 32 instructions to accelerate a variety of multimedia and signal processing applications employing 
SIMD integer data. See:
• Section 12.6, “SSSE3 Instructions,” provides an introduction to individual SSSE3 instructions. 
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, provides 

detailed information on individual instructions.
• Chapter 15, “System Programming for Instruction Set Extensions and Processor Extended States,” in the Intel® 

64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, gives guidelines for integrating SSSE3 
and Intel SSE, SSE2, and SSE3 into an operating-system environment.

12.6 SSSE3 INSTRUCTIONS
SSSE3 instructions include:
• Twelve instructions that perform horizontal addition or subtraction operations.
• Six instructions that evaluate the absolute values.
• Two instructions that perform multiply and add operations and speed up the evaluation of dot products.
• Two instructions that accelerate packed-integer multiply operations and produce integer values with scaling.
• Two instructions that perform a byte-wise, in-place shuffle according to the second shuffle control operand.
• Six instructions that negate packed integers in the destination operand if the signs of the corresponding 

element in the source operand is less than zero.
• Two instructions that align data from the composite of two operands.

The operands of these instructions are packed integers of byte, word, or double word sizes. The operands are 
stored as 64 or 128 bit data in MMX registers, XMM registers, or memory.

The instructions are discussed in more detail in the following paragraphs.
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12.6.1 Horizontal Addition/Subtraction
In analogy to the packed, floating-point horizontal add and subtract instructions in Intel SSE3, SSSE3 offers similar 
capabilities on packed integer data. Data elements of signed words, doublewords are supported. Saturated version 
for horizontal add and subtract on signed words are also supported. The horizontal data movement of PHADD is 
shown in Figure 12-3. 

There are six horizontal add instructions (represented by three mnemonics); three operate on 128-bit operands 
and three operate on 64-bit operands. The width of each data element is either 16 bits or 32 bits. The mnemonics 
are listed below.
• PHADDW adds two adjacent, signed 16-bit integers horizontally from the source and destination operands and 

packs the signed 16-bit results to the destination operand.
• PHADDSW adds two adjacent, signed 16-bit integers horizontally from the source and destination operands 

and packs the signed, saturated 16-bit results to the destination operand.
• PHADDD adds two adjacent, signed 32-bit integers horizontally from the source and destination operands and 

packs the signed 32-bit results to the destination operand.

There are six horizontal subtract instructions (represented by three mnemonics); three operate on 128-bit oper-
ands and three operate on 64-bit operands. The width of each data element is either 16 bits or 32 bits. These are 
listed below.
• PHSUBW performs horizontal subtraction on each adjacent pair of 16-bit signed integers by subtracting the 

most significant word from the least significant word of each pair in the source and destination operands. The 
signed 16-bit results are packed and written to the destination operand.

• PHSUBSW performs horizontal subtraction on each adjacent pair of 16-bit signed integers by subtracting the 
most significant word from the least significant word of each pair in the source and destination operands. The 
signed, saturated 16-bit results are packed and written to the destination operand.

• PHSUBD performs horizontal subtraction on each adjacent pair of 32-bit signed integers by subtracting the 
most significant doubleword from the least significant double word of each pair in the source and destination 
operands. The signed 32-bit results are packed and written to the destination operand.

12.6.2 Packed Absolute Values
There are six packed-absolute-value instructions (represented by three mnemonics). Three operate on 128-bit 
operands and three operate on 64-bit operands. The widths of data elements are 8 bits, 16 bits or 32 bits. The 
absolute value of each data element of the source operand is stored as an UNSIGNED result in the destination 
operand.
• PABSB computes the absolute value of each signed byte data element.

Figure 12-3.  Horizontal Data Movement in PHADDD
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• PABSW computes the absolute value of each signed 16-bit data element.
• PABSD computes the absolute value of each signed 32-bit data element. 

12.6.3 Multiply and Add Packed Signed and Unsigned Bytes
There are two multiply-and-add-packed-signed-unsigned-byte instructions (represented by one mnemonic). One 
operates on 128-bit operands and the other operates on 64-bit operands. Multiplications are performed on each 
vertical pair of data elements. The data elements in the source operand are signed byte values, the input data 
elements of the destination operand are unsigned byte values.
• PMADDUBSW multiplies each unsigned byte value with the corresponding signed byte value to produce an 

intermediate, 16-bit signed integer. Each adjacent pair of 16-bit signed values are added horizontally. The 
signed, saturated 16-bit results are packed to the destination operand.

12.6.4 Packed Multiply High with Round and Scale
There are two packed-multiply-high-with-round-and-scale instructions (represented by one mnemonic). One oper-
ates on 128-bit operands and the other operates on 64-bit operands.
• PMULHRSW multiplies vertically each signed 16-bit integer from the destination operand with the corre-

sponding signed 16-bit integer of the source operand, producing intermediate, signed 32-bit integers. Each 
intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is always performed by adding 
1 to the least significant bit of the 18-bit intermediate result. The final result is obtained by selecting the 16 bits 
immediately to the right of the most significant bit of each 18-bit intermediate result and packed to the 
destination operand.

12.6.5 Packed Shuffle Bytes
There are two packed-shuffle-bytes instructions (represented by one mnemonic). One operates on 128-bit oper-
ands and the other operates on 64-bit operands. The shuffle operations are performed bytewise on the destination 
operand using the source operand as a control mask.
• PSHUFB permutes each byte in place, according to a shuffle control mask. The least significant three or four bits 

of each shuffle control byte of the control mask form the shuffle index. The shuffle mask is unaffected. If the 
most significant bit (bit 7) of a shuffle control byte is set, the constant zero is written in the result byte.

12.6.6 Packed Sign
There are six packed-sign instructions (represented by three mnemonics). Three operate on 128-bit operands and 
three operate on 64-bit operands. The widths of each data element for these instructions are 8 bit, 16 bit or 32 bit 
signed integers.
• PSIGNB/W/D negates each signed integer element of the destination operand if the sign of the corresponding 

data element in the source operand is less than zero.

12.6.7 Packed Align Right
There are two packed-align-right instructions (represented by one mnemonic). One operates on 128-bit operands 
and the other operates on 64-bit operands. These instructions concatenate the destination and source operand into 
a composite, and extract the result from the composite according to an immediate constant.
• PALIGNR’s source operand is appended after the destination operand forming an intermediate value of twice 

the width of an operand. The result is extracted from the intermediate value into the destination operand by 
selecting the 128-bit or 64-bit value that are right-aligned to the byte offset specified by the immediate value. 
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12.7 WRITING APPLICATIONS WITH SSSE3 EXTENSIONS
The following sections give guidelines for writing application programs and operating-system code that use SSSE3 
instructions. 

12.7.1 Guidelines for Using SSSE3 
The following guidelines describe how to maximize the benefits of using SSSE3:
• Check that the processor supports SSSE3.
• Ensure that your operating system supports SSSE3 and Intel SSE, SSE2, and SSE3. (Operating system support 

for Intel SSE implies sufficient support for SSSE3 and Intel SSE2 and SSE3.) 
• Employ the optimization and scheduling techniques described in the Intel® 64 and IA-32 Architectures Optimi-

zation Reference Manual (see Section 1.4, “Related Literature”).

12.7.2 Checking for SSSE3 Support
Before an application attempts to use SSSE3, the application should follow the steps illustrated in Section 11.6.2, 
“Checking for Intel® SSE and SSE2 Support.” Next, use the additional step provided below:
• Check that the processor supports SSSE3 (if CPUID.01H:ECX.SSSE3[bit 9] = 1). 

12.8 INTEL® SSE3, SSSE3, AND INTEL® SSE4 EXCEPTIONS
Intel SSE3, SSSE3, and Intel SSE4 instructions can generate the same type of memory-access and non-numeric 
exceptions as other Intel 64 or IA-32 instructions. Existing exception handlers generally handle these exceptions 
without code modification. 

FISTTP can generate floating-point exceptions. Some Intel SSE3 instructions can also generate SIMD floating-point 
exceptions. 

Intel SSE3 additions and changes are noted in the following sections. See also: Section 11.5, “Intel® SSE, SSE2, 
and SSE3 Exceptions”.

12.8.1 Device Not Available (DNA) Exceptions
Intel SSE3, SSSE3, and Intel SSE4 will cause a DNA Exception (#NM) if the processor attempts to execute an Intel 
SSE3 instruction while CR0.TS[bit 3] = 1. If CPUID.01H:ECX.SSE3[bit 0] = 0, execution of an Intel SSE3 instruc-
tion will cause an invalid opcode fault regardless of the state of CR0.TS[bit 3].

Similarly, an attempt to execute an SSSE3 instruction on a processor that reports CPUID.01H:ECX.SSSE3[bit 9] = 
0 will cause an invalid opcode fault regardless of the state of CR0.TS[bit 3]. An attempt to execute an Intel SSE4.1 
instruction on a processor that reports CPUID.01H:ECX.SSE4_1[bit 19] = 0 will cause an invalid opcode fault 
regardless of the state of CR0.TS[bit 3].

An attempt to execute PCMPGTQ or any one of the four string processing instructions in Intel SSE4.2 on a 
processor that reports CPUID.01H:ECX.SSE4_2[bit 20] = 0 will cause an invalid opcode fault regardless of the 
state of CR0.TS[bit 3]. CRC32 and POPCNT do not cause #NM.

12.8.2 Numeric Error Flag and IGNNE#
Most Intel SSE3 instructions ignore CR0.NE[bit 5] (treats it as if it were always set) and the IGNNE# pin. With one 
exception, all use the exception 19 (#XM) software exception for error reporting. The exception is FISTTP; it 
behaves like other x87-FP instructions.

SSSE3 instructions ignore CR0.NE[bit 5] (treats it as if it were always set) and the IGNNE# pin. 
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SSSE3 instructions do not cause floating-point errors. Floating-point numeric errors for Intel SSE4.1 are described 
in Section 12.8.4. Intel SSE4.2 instructions do not cause floating-point errors.

12.8.3 Emulation
CR0.EM is used by some software to emulate x87 floating-point instructions. CR0.EM[bit 2] cannot be used for 
emulation of SSSE3 and Intel SSE, SSE2, SSE3, and SSE4. If an Intel SSE3, SSSE3, or Intel SSE4 instruction 
execute with CR0.EM[bit 2] set, an invalid opcode exception (INT 6) is generated instead of a device not available 
exception (INT 7).

12.8.4 IEEE 754 Compliance of Intel® SSE4.1 Floating-Point Instructions
The six Intel SSE4.1 instructions that perform floating-point arithmetic are:
• DPPS
• DPPD
• ROUNDPS
• ROUNDPD
• ROUNDSS
• ROUNDSD

Dot Product operations are not specified in IEEE-754. When neither FTZ nor DAZ are enabled, the dot product 
instructions resemble sequences of IEEE-754 multiplies and adds (with rounding at each stage), except that the 
treatment of input NaN’s is implementation specific (there will be at least one NaN in the output). The input select 
fields (bits imm8[4:7]) force input elements to +0.0f prior to the first multiply and will suppress input exceptions 
that would otherwise have been be generated.

As a convenience to the exception handler, any exceptions signaled from DPPS or DPPD leave the destination 
unmodified. 

Round operations signal invalid and precision only.

The other Intel SSE4.1 instructions with floating-point arguments (BLENDPS, BLENDPD, BLENDVPS, BLENDVPD, 
INSERTPS, EXTRACTPS) do not signal any SIMD numeric exceptions.

12.9 INTEL® SSE4 OVERVIEW
Intel SSE4 comprises two sets of extensions: Intel SSE4.1 and SSE4.2. Intel SSE4.1 is targeted to improve the 
performance of media, imaging, and 3D workloads. Intel SSE4.1 adds instructions that improve compiler vectoriza-

Table 12-1.  SIMD Numeric Exceptions Signaled by SSE4.1

DPPS DPPD ROUNDPS
ROUNDSS

ROUNDPD
ROUNDSD

Overflow X X

Underflow X X

Invalid X X X (1) X (1)

Inexact Precision X X X (2) X (2)

Denormal X X

NOTE:
1. Invalid is signaled only if Src = SNaN.
2. Precision is ignored (regardless of the MXCSR precision mask) if if imm8[3] = ‘1’.
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tion and significantly increase support for packed dword computation. The technology also provides a hint that can 
improve memory throughput when reading from uncacheable WC memory type.

The 47 Intel SSE4.1 instructions include:
• Two instructions perform packed dword multiplies.
• Two instructions perform floating-point dot products with input/output selects.
• One instruction performs a load with a streaming hint.
• Six instructions simplify packed blending.
• Eight instructions expand support for packed integer MIN/MAX.
• Four instructions support floating-point round with selectable rounding mode and precision exception override.
• Seven instructions improve data insertion and extractions from XMM registers
• Twelve instructions improve packed integer format conversions (sign and zero extensions).
• One instruction improves SAD (sum absolute difference) generation for small block sizes.
• One instruction aids horizontal searching operations.
• One instruction improves masked comparisons.
• One instruction adds qword packed equality comparisons.
• One instruction adds dword packing with unsigned saturation.

The Intel SSE4.2 instructions operating on XMM registers improve performance in the following areas:
• String and text processing that can take advantage of single-instruction multiple-data programming 

techniques.
• A SIMD integer instruction that enhances the capability of the 128-bit integer SIMD capability in Intel SSE4.1.

12.10 INTEL® SSE4.1 INSTRUCTION SET

12.10.1 Dword Multiply Instructions 
Intel SSE4.1 adds two dword multiply instructions that aid vectorization. They allow four simultaneous 32 bit by 32 
bit multiplies. PMULLD returns a low 32-bits of the result and PMULDQ returns a 64-bit signed result. These repre-
sent the most common integer multiply operation. See Table 12-2.

12.10.2 Floating-Point Dot Product Instructions
Intel SSE4.1 adds two instructions for double precision (for up to 2 elements; DPPD) and single precision dot prod-
ucts (for up to 4 elements; DPPS).

These dot-product instructions include source select and destination broadcast which generally improves the flex-
ibility. For example, a single DPPS instruction can be used for a 2, 3, or 4 element dot product.

Table 12-2.  Enhanced 32-Bit SIMD Multiply Supported by Intel® SSE4.1

32-Bit Integer Operation

Unsigned x Unsigned Signed x Signed

R
es

ul
t Low 32-bit (not available) PMULLD

High 32-bit (not available) (not available)

64-bit PMULUDQ* PMULDQ

NOTE:
* Available prior to Intel SSE4.1.
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12.10.3 Streaming Load Hint Instruction
Historically, CPU read accesses of WC memory type regions have significantly lower throughput than accesses to 
cacheable memory. 

The streaming load instruction in SSE4.1, MOVNTDQA, provides a non-temporal hint that can cause adjacent 16-
byte items within an aligned 64-byte region of WC memory type (a streaming line) to be fetched and held in a small 
set of temporary buffers (“streaming load buffers”). Subsequent streaming loads to other aligned 16-byte items in 
the same streaming line may be satisfied from the streaming load buffer and can improve throughput.

Programmers are advised to use the following practices to improve the efficiency of MOVNTDQA streaming loads 
from WC memory:
• Streaming loads must be 16-byte aligned.
• Temporally group streaming loads of the same streaming cache line for effective use of the small number of 

streaming load buffers. If loads to the same streaming line are excessively spaced apart, it may cause the 
streaming line to be re-fetched from memory.

• Temporally group streaming loads from at most a few streaming lines together. The number of streaming load 
buffers is small; grouping a modest number of streams will avoid running out of streaming load buffers and the 
resultant re-fetching of streaming lines from memory.

• Avoid writing to a streaming line until all 16-byte-aligned reads from the streaming line have occurred. Reading 
a 16-byte item from a streaming line that has been written, may cause the streaming line to be re-fetched.

• Avoid reading a given 16-byte item within a streaming line more than once; repeated loads of a particular 16-
byte item are likely to cause the streaming line to be re-fetched.

• The streaming load buffers, reflecting the WC memory type characteristics, are not required to be snooped by 
operations from other agents. Software should not rely upon such coherency actions to provide any data 
coherency with respect to other logical processors or bus agents. Rather, software must ensure the consistency 
of WC memory accesses between producers and consumers.

• Streaming loads may be weakly ordered and may appear to software to execute out of order with respect to 
other memory operations. Software must explicitly use MFENCE if it needs to preserve order among streaming 
loads or between streaming loads and other memory operations.

• Streaming loads must not be used to reference memory addresses that are mapped to I/O devices having side 
effects or when reads to these devices are destructive. This is because MOVNTDQA is speculative in nature.

Example 12-1 provides a sketch of the basic assembly sequences that illustrate the principles of using MOVNTDQA 
in a situation with a producer-consumer accessing a WC memory region.
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Example 12-1.  Sketch of MOVNTDQA Usage of a Consumer and a PCI Producer 
// P0: producer is a PCI device writing into the WC space
# the PCI device updates status through a UC flag, "u_dev_status" . 
# the protocol for "u_dev_status" : 0: produce; 1: consume; 2: all done

mov eax, $0
mov [u_dev_status], eax

producerStart:
mov eax, [u_dev_status]     # poll status flag to see if consumer is requestion data
cmp eax, $0                           # 
jne done                                # I no longer need to produce                       
commence PCI writes to WC region..

mov eax, $1  # producer ready to notify the consumer via status flag
mov  [u_dev_status], eax     

# now wait for consumer to signal its status
spinloop:

cmp [u_dev_status], $1      # did I get a signal from the consumer ?
jne producerStart                  # yes I did 
jmp spinloop                         # check again

done:
// producer is finished at this point 

// P1: consumer check PCI status flag to consume WC data
mov eax, $0  # request to the producer 
mov [u_dev_status], eax

consumerStart:
mov; eax, [u_dev_status]  # reads the value of the PCI status 
cmp eax, $1                                 # has producer written
jne consumerStart                       # tight loop; make it more efficient with pause, etc. 
mfence # producer finished device writes to WC, ensure WC region is coherent

ntread:
movntdqa xmm0, [addr]
movntdqa xmm1, [addr + 16]
movntdqa xmm2, [addr + 32]
movntdqa xmm3, [addr + 48]
…  # do any more NT reads as needed
mfence  # ensure PCI device reads the correct value of [u_dev_status]  

# now decide whether we are done or we need the producer to produce more data
# if we are done write a 2 into the variable, otherwise write a 0 into the variable

mov eax, $0/$2            # end or continue producing
mov [u_dev_status], eax

# if I want to consume again I will jump back to consumerStart after storing a 0 into eax
# otherwise I am done
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12.10.4 Packed Blending Instructions
Intel SSE4.1 adds 6 instructions used for blending (BLENDPS, BLENDPD, BLENDVPS, BLENDVPD, PBLENDVB, 
PBLENDW).

Blending conditionally copies a data element in a source operand to the same element in the destination. Intel 
SSE4.1 instructions improve blending operations for most field sizes. A single new Intel SSE4.1 instruction can 
generally replace a sequence of 2 to 4 operations using previous architectures.

The variable blend instructions (BLENDVPS, BLENDVPD, PBLENDW) introduce the use of control bits stored in an 
implicit XMM register (XMM0). The most significant bit in each field (the sign bit, for 2’s complement integer or 
floating-point) is used as a selector. See Table 12-3.

12.10.5 Packed Integer MIN/MAX Instructions 
Intel SSE4.1 adds 8 packed integer MIN and MAX instructions: PMINUW, PMINUD, PMINSB, PMINSD; PMAXUW, 
PMAXUD, PMAXSB, and PMAXSD. 

Four 32-bit integer packed MIN and MAX instructions operate on unsigned and signed dwords. Two instructions 
operate on signed bytes. Two instructions operate on unsigned words. See Table 12-4.

12.10.6 Floating-Point Round Instructions with Selectable Rounding Mode
High level languages and libraries often expose rounding operations having a variety of numeric rounding and 
exception behaviors. Using Intel SSE, SSE2, and SSE3 instructions to mitigate the rounding-mode-related problem 
is sometimes not straight forward.

Intel SSE4.1 introduces four rounding instructions (ROUNDPS, ROUNDPD, ROUNDSS, and ROUNDSD) that cover 
scalar and packed single- and double precision floating-point operands. The rounding mode can be selected using 
an immediate from one of the IEEE-754 modes (Nearest, -Inf, +Inf, and Truncate) without changing the current 

Table 12-3.  Blend Field Size and Control Modes Supported by Intel® SSE4.1 

Instructions
Packed 
Double FP

Packed 
Single FP

Packed 
QWord

Packed 
DWord

Packed 
Word Packed Byte Blend Control

BLENDPS X Imm8

BLENDPD X Imm8

BLENDVPS X X(1) XMM0

BLENDVPD X X(1) XMM0

PBLENDVB (2) (2) (2) X XMM0

PBLENDW X X X Imm8

NOTE:
1. Use of floating-point SIMD instructions on integer data types may incur performance penalties. 
2. Byte variable blend can be used for larger sized fields by reformatting (or shuffling) the blend control.

Table 12-4.  Enhanced SIMD Integer MIN/MAX Instructions Supported by Intel® SSE4.1

Integer Width

Byte Word DWord

Integer 
Format Unsigned

PMINUB*
PMAXUB*

PMINUW
PMAXUW

PMINUD
PMAXUD

Signed
PMINSB
PMAXSB

PMINSW*
PMAXSW*

PMINSD
PMAXSD

NOTE:
* Available prior to Intel SSE4.1.
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rounding mode; or the instruction can be forced to use the current rounding mode. Another bit in the immediate is 
used to suppress inexact precision exceptions.

Rounding instructions in Intel SSE4.1 generally permit single-instruction solutions to C99 functions ceil(), floor(), 
trunc(), rint(), nearbyint(). These instructions simplify the implementations of half-way-away-from-zero rounding 
modes as used by C99 round() and F90’s nint().

12.10.7 Insertion and Extractions from XMM Registers
Intel SSE4.1 adds 7 instructions (corresponding to 9 assembly instruction mnemonics) that simplify data insertion 
and extraction between general-purpose register (GPR) and XMM registers: EXTRACTPS, INSERTPS, PINSRB, 
PINSRD, PINSRQ, PEXTRB, PEXTRW, PEXTRD, and PEXTRQ. When accessing memory, no alignment is required for 
any of these instructions (unless alignment checking is enabled).

EXTRACTPS extracts a single precision floating-point value from any dword offset in an XMM register and stores the 
result to memory or a general-purpose register. INSERTPS inserts a single floating-point value from either a 32-bit 
memory location or from specified element in an XMM register to a selected element in the destination XMM 
register. In addition, INSERTPS allows the insertion of +0.0f into any destination elements using a mask.

PINSRB, PINSRD, and PINSRQ insert byte, dword, or qword integer values from a register or memory into an XMM 
register. Insertion of integer word values were already supported by Intel SSE2 (PINSRW). 

PEXTRB, PEXTRW, PEXTRD, and PEXTRQ extract byte, word, dword, and qword from an XMM register and insert the 
values into a general-purpose register or memory.

12.10.8 Packed Integer Format Conversions
A common type of operation on packed integers is the conversion by zero- or sign-extension of packed integers 
into wider data types. Intel SSE4.1 adds 12 instructions that convert from a smaller packed integer type to a larger 
integer type: PMOVSXBW, PMOVZXBW, PMOVSXBD, PMOVZXBD, PMOVSXWD, PMOVZXWD, PMOVSXBQ, 
PMOVZXBQ, PMOVSXWQ, PMOVZXWQ, PMOVSXDQ, and PMOVZXDQ.

The source operand is from either an XMM register or memory; the destination is an XMM register. See Table 12-5.

When accessing memory, no alignment is required for any of the instructions unless alignment checking is enabled. 
In which case, all conversions must be aligned to the width of the memory reference. The number of elements 
converted (and width of memory reference) is illustrated in Table 12-6. The alignment requirement is shown in 
parenthesis.

Table 12-5.  New SIMD Integer Conversions Supported by Intel® SSE4.1 

Source Type

Byte Word Dword

D
es

ti
na

ti
on

Ty
pe

Signed Word
Unsigned Word

PMOVSXBW
PMOVZXBW

Signed Dword
Unsigned Dword

PMOVSXBD
PMOVZXBD

PMOVSXWD
PMOVZXWD

Signed Qword
Unsigned Qword

PMOVSXBQ
PMOVZXBQ

PMOVSXWQ
PMOVZXWQ

PMOVSXDQ
PMOVZXDQ
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12.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks
Intel SSE4.1 adds an instruction (MPSADBW) that performs eight 4-byte wide SAD operations per instruction to 
produce eight results. Compared to PSADBW, MPSADBW operates on smaller chunks (4-byte instead of 8-byte 
chunks); this makes the instruction better suited to video coding standards such as VC.1 and H.264. MPSADBW 
performs four times the number of absolute difference operations than that of PSADBW (per instruction). This can 
improve performance for dense motion searches.

MPSADBW uses a 4-byte wide field from a source operand; the offset of the 4-byte field within the 128-bit source 
operand is specified by two immediate control bits. MPSADBW produces eight 16-bit SAD results. Each 16-bit SAD 
result is formed from overlapping pairs of 4 bytes in the destination with the 4-byte field from the source operand. 
MPSADBW uses eleven consecutive bytes in the destination operand, its offset is specified by a control bit in the 
immediate byte (i.e., the offset can be from byte 0 or from byte 4). Figure 12-4 illustrates the operation of 
MPSADBW. MPSADBW can simplify coding of dense motion estimation by providing source and destination offset 
control, higher throughput of SAD operations, and the smaller chunk size.

12.10.10 Horizontal Search
Intel SSE4.1 adds a search instruction (PHMINPOSUW) that finds the value and location of the minimum unsigned 
word from one of 8 horizontally packed unsigned words. The resulting value and location (offset within the source) 
are packed into the low dword of the destination XMM register.

Rapid search is often a significant component of motion estimation. MPSADBW and PHMINPOSUW can be used 
together to improve video encode.

Table 12-6.  New SIMD Integer Conversions Supported by Intel® SSE4.1 

Source Type

Byte Word Dword

D
es

ti
na

ti
on

Ty
pe

Word 8 (64 bits)

Dword 4 (32 bits) 4 (64 bits)

Qword 2 (16 bits) 2 (32 bits) 2 (64 bits)

Figure 12-4.  MPSADBW Operation

Abs. Diff.

Sum

Imm[1:0]*32

Imm[2]*32
Source

Destination

0127 16

0127 96 64
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12.10.11 Packed Test
The packed test instruction PTEST is similar to a 128-bit equivalent to the legacy instruction TEST. With PTEST, the 
source argument is typically used like a bit mask. 

PTEST performs a logical AND between the destination with this mask and sets the ZF flag if the result is zero. The 
CF flag (zero for TEST) is set if the inverted mask AND’d with the destination is all zero. Because the destination is 
not modified, PTEST simplifies branching operations (such as branching on signs of packed floating-point numbers, 
or branching on zero fields).

12.10.12 Packed Qword Equality Comparisons
Intel SSE4.1 adds a 128-bit packed qword equality test. The new instruction (PCMPEQQ) is identical to PCMPEQD, 
but has qword granularity.

12.10.13 Dword Packing With Unsigned Saturation
Intel SSE4.1 adds a new instruction PACKUSDW to complete the set of small integer pack instructions in the family 
of SIMD instruction extensions. PACKUSDW packs dword to word with unsigned saturation. See Table 12-7 for the 
complete set of packing instructions for small integers.

12.11 INTEL® SSE4.2 INSTRUCTION SET
Five of the seven Intel SSE4.2 instructions can use an XMM register as a source or destination. These include four 
text/string processing instructions and one packed quadword compare SIMD instruction. Programming these five 
Intel SSE4.2 instructions is similar to programming 128-bit Integer SIMD in Intel SSE2 or SSSE3. Intel SSE4.2 
does not provide any 64-bit integer SIMD instructions. 

12.11.1 String and Text Processing Instructions
String and text processing instructions in Intel SSE4.2 allocates four opcodes to provide a rich set of string and text 
processing capabilities that traditionally required many more opcodes. These four instructions use XMM registers 
to process string or text elements of up to 128-bits (16 bytes or 8 words). Each instruction uses an immediate byte 
to support a rich set of programmable controls. A string-processing Intel SSE4.2 instruction returns the result of 
processing each pair of string elements using either an index or a mask. 

The capabilities of the string/text processing instructions include:
• Handling string/text fragments consisting of bytes or words, either signed or unsigned.
• Support for partial string or fragments less than 16 bytes in length, using either explicit length or implicit null-

termination.
• Four types of string compare operations on word/byte elements.
• Up to 256 compare operations performed in a single instruction on all string/text element pairs.
• Built-in aggregation of intermediate results from comparisons.

Table 12-7.  Enhanced SIMD Pack Support by Intel® SSE4.1

Pack Type

DWord -> Word Word -> Byte

Sa
tu

ra
ti

on
 

Ty
pe

Unsigned PACKUSDW (new!) PACKUSWB

Signed PACKSSDW PACKSSWB
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• Programmable control of processing on intermediate results.
• Programmable control of output formats in terms of an index or mask.
• Bi-directional support for the index format.
• Support for two mask formats: bit or natural element width.
• Not requiring 16-byte alignment for memory operand.

The four Intel SSE4.2 instructions that process text/string fragments are:
• PCMPESTRI — Packed compare explicit-length strings, return index in ECX/RCX.
• PCMPESTRM — Packed compare explicit-length strings, return mask in XMM0.
• PCMPISTRI — Packed compare implicit-length strings, return index in ECX/RCX.
• PCMPISTRM — Packed compare implicit-length strings, return mask in XMM0.

All four of these instructions require the use of an immediate byte to control operation. The two source operands 
can be XMM registers or a combination of XMM register and memory address. The immediate byte provides 
programmable control with the following attributes:
• Input data format.
• Compare operation mode.
• Intermediate result processing.
• Output selection.

Depending on the output format associated with the instruction, the text/string processing instructions implicitly 
uses either a general-purpose register (ECX/RCX) or an XMM register (XMM0) to return the final result.

Two of the four text-string processing instructions specify string length explicitly. They use two general-purpose 
registers (EDX, EAX) to specify the number of valid data elements (either word or byte) in the source operands. The 
other two instructions specify valid string elements using null termination. A data element is considered valid only 
if it has a lower index than the least significant null data element.

12.11.1.1  Memory Operand Alignment
The text and string processing instructions in Intel SSE4.2 do not perform alignment checking on memory oper-
ands. This is different from most other 128-bit SIMD instructions accessing the XMM registers. The absence of an 
alignment check for these four instructions does not imply any modification to the existing definitions of other 
instructions.

12.11.2 Packed Comparison SIMD Integer Instruction
Intel SSE4.2 also provides a 128-bit integer SIMD instruction PCMPGTQ that performs logical compare of greater-
than on packed integer quadwords.

12.12 WRITING APPLICATIONS WITH INTEL® SSE4 EXTENSIONS

12.12.1 Guidelines for Using Intel® SSE4 Extensions
The following guidelines describe how to maximize the benefits of using Intel SSE4 extensions:
• Check that the processor supports Intel SSE4 extensions.
• Ensure that the operating system supports SSSE3 and Intel SSE, SSE2, and SSE3. (Operating system support 

for Intel SSE implies sufficient support for SSSE3 and Intel SSE2, SSE3, and SSE4.) 
• Employ the optimization and scheduling techniques described in the Intel® 64 and IA-32 Architectures Optimi-

zation Reference Manual (see Section 1.4, “Related Literature”).
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12.12.2 Checking for Intel® SSE4.1 Support
Before an application attempts to use Intel SSE4.1 instructions, the application should follow the steps illustrated 
in Section 11.6.2, “Checking for Intel® SSE and SSE2 Support.” Next, use the additional step provided below:

Check that the processor supports Intel SSE4.1 (if CPUID.01H:ECX.SSE4_1[bit 19] = 1), Intel SSE3 (if 
CPUID.01H:ECX.SSE3[bit 0] = 1), and SSSE3 (if CPUID.01H:ECX.SSSE3[bit 9] = 1). 

12.12.3 Checking for Intel® SSE4.2 Support
Before an application attempts to use the following Intel SSE4.2 instructions: PCMPESTRI/PCMPESTRM/PCMP-
ISTRI/PCMPISTRM, PCMPGTQ; the application should follow the steps illustrated in Section 11.6.2, “Checking for 
Intel® SSE and SSE2 Support.” Next, use the additional steps provided below:
• Check that the processor supports Intel SSE4.2 (if CPUID.01H:ECX.SSE4_2[bit 20] = 1), Intel SSE4.1 (if 

CPUID.01H:ECX.SSE4_1[bit 19] = 1), and SSSE3 (if CPUID.01H:ECX.SSSE3[bit 9] = 1). 
• Before an application attempts to use the CRC32 instruction, it must check that the processor supports Intel 

SSE4.2 (if CPUID.01H:ECX.SSE4_2[bit 20] = 1).
• Before an application attempts to use the POPCNT instruction, it must check that the processor supports Intel 

SSE4.2 (if CPUID.01H:ECX.SSE4_2[bit 20] = 1) and POPCNT (if CPUID.01H:ECX.POPCNT[bit 23] = 1).

12.13 INTEL® AES-NI OVERVIEW
Intel AES-NI provides six instructions to accelerate symmetric block encryption/decryption of 128-bit data blocks 
using the Advanced Encryption Standard (AES) specified by the NIST publication FIPS 197. Specifically, two 
instructions (AESENC and AESENCLAST) target the AES encryption rounds; and two instructions (AESDEC and 
AESDECLAST) target AES decryption rounds using the Equivalent Inverse Cipher. One instruction (AESIMC) targets 
the Inverse MixColumn transformation primitive, and one instruction (AESKEYGEN) targets generation of round 
keys from the cipher key for the AES encryption/decryption rounds.

AES supports encryption/decryption using cipher key lengths of 128, 192, and 256 bits by processing the data 
block in 10, 12, and 14 rounds of predefined transformations. Figure 12-5 depicts the cryptographic processing of 
a block of 128-bit plain text into cipher text. 

The predefined AES transformation primitives are described in the next few sections, they are also referenced in 
the operation flow of instruction reference page of these instructions.

12.13.1 Little-Endian Architecture and Big-Endian Specification (FIPS 197)
FIPS 197 document defines the Advanced Encryption Standard (AES) and includes a set of test vectors for testing 
all of the steps in the algorithm, and can be used for testing and debugging. 

Figure 12-5.  AES State Flow

Plain text AES State

RK(0)

XOR Rounds 2.. n-2

Round 1 Last 

RK(1) RK(n-1)

AES State AES State Cipher text

AES-128: n = 10
AES-192: n = 12
AES-256: n = 14

Round 
n-1
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The following observation is important for using the AES instructions offered in Intel 64 Architecture: FIPS 197 text 
convention is to write hex strings with the low-memory byte on the left and the high-memory byte on the right. 
Intel’s convention is the reverse. It is similar to the difference between Big Endian and Little Endian notations. 
In other words, a 128 bits vector in the FIPS document, when read from left to right, is encoded as [7:0, 15:8, 
23:16, 31:24, …127:120]. Note that inside the byte, the encoding is [7:0], so the first bit from the left is the most 
significant bit. In practice, the test vectors are written in hexadecimal notation, where pairs of hexadecimal digits 
define the different bytes. To translate the FIPS 197 notation to an Intel 64 architecture compatible (“Little Endian”) 
format, each test vector needs to be byte-reflected to [127:120,… 31:24, 23:16, 15:8, 7:0]. 
Example A: 
FIPS Test vector: 000102030405060708090a0b0c0d0e0fH
Intel AES Hardware: 0f0e0d0c0b0a09080706050403020100H

It should be pointed out that the only thing at issue is a textual convention, and programmers do not need to 
perform byte-reversal in their code, when using the AES instructions.

12.13.1.1  AES Data Structure in Intel® 64 Architecture
The AES instructions that are defined in this document operate on one or on two 128 bits source operands: State 
and Round Key. From the architectural point of view, the state is input in an xmm register and the Round key is 
input either in an xmm register or a 128-bit memory location. 
In AES algorithm, the state (128 bits) can be viewed as four 32-bit doublewords (“Words” in AES terminology): X3, 
X2, X1, and X0. 
The state may also be viewed as a set of 16 bytes. The 16 bytes can also be viewed as a 4x4 matrix of bytes where 
S(i, j) with i, j = 0, 1, 2, 3 compose the 32-bit “words” as follows:
X0 = S (3, 0) S (2, 0) S (1, 0) S (0, 0)
X1 = S (3, 1) S (2, 1) S (1, 1) S (0, 1)
X2 = S (3, 2) S (2, 2) S (1, 2) S (0, 2)
X3 = S (3, 3) S (2, 3) S (1, 3) S (0, 3)
The following tables, Table 12-8 through Table 12-11, illustrate various representations of a 128-bit state.

Example: 
FIPS vector: d4 bf 5d 30 e0 b4 52 ae b8 41 11 f1 1e 27 98 e5

Table 12-8.  Byte and 32-Bit Word Representation of a 128-Bit State

Byte # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit Position 127-
120

119-
112

111-
103

103-
96

95-
88

87-
80

79-
72

71-
64

63-
56

55-
48

47-
40

39-
32

31-
24

23-
16

15-
8

7- 
0

127 - 96 95 - 64 64 - 32 31 - 0

State Word X3 X2 X1 X0

State Byte P O N M L K J I H G F E D C B A

Table 12-9.  Matrix Representation of a 128-Bit State

A E I M S(0, 0) S(0, 1) S(0, 2) S(0, 3)

B F J N S(1, 0) S(1, 1) S(1, 2) S(1, 3)

C G K O S(2, 0) S(2, 1) S(2, 2) S(2, 3)

D H L P S(3, 0) S(3, 1) S(3, 2) S(3, 3)
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This vector has the “least significant” byte d4 and the significant byte e5 (written in Big Endian format in the FIPS 
document). When it is translated to IA notations, the encoding is:

12.13.2 AES Transformations and Functions
The following functions and transformations are used in the algorithmic descriptions of AES instruction extensions 
AESDEC, AESDECLAST, AESENC, AESENCLAST, AESIMC, and AESKEYGENASSIST.
Note that these transformations are expressed here in a Little Endian format (and not as in the FIPS 197 docu-
ment).
• MixColumns(): A byte-oriented 4x4 matrix transformation on the matrix representation of a 128-bit AES state. 

A FIPS-197 defined 4x4 matrix is multiplied to each 4x1 column vector of the AES state. The columns are 
considered polynomials with coefficients in the Finite Field that is used in the definition of FIPS 197, the 
operations (“multiplication” and “addition”) are in that Finite Field, and the polynomials are reduced modulo 
x4+1. 
The MixColumns() transformation defines the relationship between each byte of the result state, represented
as S’(i, j) of a 4x4 matrix (see Section 12.13.1), as a function of input state bytes, S(i, j), as follows
S’(0, j) := FF_MUL( 02H, S(0, j) ) XOR FF_MUL(03H, S(1, j) ) XOR S(2, j) XOR S(3, j)
S’(1, j) := S(0, j) XOR FF_MUL( 02H, S(1, j) ) XOR FF_MUL(03H, S(2, j) ) XOR S(3, j) 
S’(2, j) := S(0, j) XOR S(1, j) XOR FF_MUL( 02H, S(2, j) ) XOR FF_MUL(03H, S(3, j) ) 
S’(3, j) := FF_MUL(03H, S(0, j) ) XOR S(1, j) XOR S(2, j) XOR FF_MUL( 02H, S(3, j) ) 
where j = 0, 1, 2, 3. FF_MUL(Byte1, Byte2) denotes the result of multiplying two elements (represented by
Byte1 and byte2) in the Finite Field representation that defines AES. The result of produced bye
FF_MUL(Byte1, Byte2) is an element in the Finite Field (represented as a byte). A Finite Field is a field with a
finite number of elements, and when this number can be represented as a power of 2 (2n), its elements can
be represented as the set of 2n binary strings of length n. AES uses a finite field with n=8 (having 256
elements). With this representation, “addition” of two elements in that field is a bit-wise XOR of their binary-
string representation, producing another element in the field. Multiplication of two elements in that field is
defined using an irreducible polynomial (for AES, this polynomial is m(x) = x8 + x4 + x3 + x + 1). In this
Finite Field representation, the bit value of bit position k of a byte represents the coefficient of a polynomial of
order k, e.g., 1010_1101B (ADH) is represented by the polynomial (x7 + x5 + x3 + x2 + 1). The byte value
result of multiplication of two elements is obtained by a carry-less multiplication of the two corresponding
polynomials, followed by reduction modulo the polynomial, where the remainder is calculated using
operations defined in the field. For example, FF_MUL(57H, 83H) = C1H, because the carry-less polynomial
multiplication of the polynomials represented by 57H and 83H produces (x13 + x11 + x9 + x8 + x6 + x5 + x4

+ x3 + 1), and the remainder modulo m(x) is (x7 + x6 + 1).
• RotWord(): performs a byte-wise cyclic permutation (rotate right in little-endian byte order) on a 32-bit AES 

word.

Table 12-10.  Little Endian Representation of a 128-Bit State

Byte # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

State Byte P O N M L K J I H G F E D C B A

State Value e5 98 27 1e f1 11 41 b8 ae 52 b4 e0 30 5d bf d4

Table 12-11.  Little Endian Representation of a 4x4 Byte Matrix

A E I M d4 e0 b8 1e

B F J N bf b4 41 27

C G K O 5d 52 11 98

D H L P 30 ae f1 e5
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The output word X’[j] of RotWord(X[j]) where X[j] represent the four bytes of column j, S(i, j), in descending
order X[j] = ( S(3, j), S(2, j), S(1, j), S(0, j) ); X’[j] = ( S’(3, j), S’(2, j), S’(1, j), S’(0, j) ) := ( S(0, j), S(3,
j), S(2, j), S(1, j) )

• ShiftRows(): A byte-oriented matrix transformation that processes the matrix representation of a 16-byte AES 
state by cyclically shifting the last three rows of the state by different offset to the left, see Table 12-12.

• SubBytes(): A byte-oriented transformation that processes the 128-bit AES state by applying a non-linear 
substitution table (S-BOX) on each byte of the state.
The SubBytes() function defines the relationship between each byte of the result state S’(i, j) as a function of
input state byte S(i, j), by 

S’(i, j) := S-Box (S(i, j)[7:4], S(i, j)[3:0])

where S-BOX (S[7:4], S[3:0]) represents a look-up operation on a 16x16 table to return a byte value, see 
Table 12-13. 

• SubWord(): produces an output AES word (four bytes) from the four bytes of an input word using a non-linear 
substitution table (S-BOX).

Table 12-12.  The ShiftRows Transformation

Matrix Representation of Input State Output of ShiftRows

A E I M A E I M

B F J N F J N B

C G K O K O C G

D H L P P D H L

Table 12-13.  Look-up Table Associated with S-Box Transformation

S[3:0]

0 1 2 3 4 5 6 7 8 9 a b c d e f

S[7:4]

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16
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X’[j] = ( S’(3, j), S’(2, j), S’(1, j), S’(0, j) ) := ( S-Box (S(3, j)), S-Box( S(2, j) ), S-Box( S(1, j) ), S-Box(
S(0, j) ))

• InvMixColumns(): The inverse transformation of MixColumns().
The InvMixColumns() transformation defines the relationship between each byte of the result state S’(i, j) as
a function of input state bytes, S(i, j), by 
S’(0, j) := FF_MUL( 0eH, S(0, j) ) XOR FF_MUL(0bH, S(1, j) ) XOR FF_MUL(0dH, S(2, j) ) XOR FF_MUL( 09H,
S(3, j) )
S’(1, j) := FF_MUL(09H, S(0, j) ) XOR FF_MUL( 0eH, S(1, j) ) XOR FF_MUL(0bH, S(2, j) ) XOR FF_MUL( 0dH,
S(3, j) )
S’(2, j) := FF_MUL(0dH, S(0, j) ) XOR FF_MUL( 09H, S(1, j) ) XOR FF_MUL( 0eH, S(2, j) ) XOR FF_MUL(0bH,
S(3, j) ) 
S’(3, j) := FF_MUL(0bH, S(0, j) ) XOR FF_MUL(0dH, S(1, j) ) XOR FF_MUL( 09H, S(2, j) ) XOR FF_MUL( 0eH,
S(3, j) ), where j = 0, 1, 2, 3.

• InvShiftRows(): The inverse transformation of InvShiftRows(). The InvShiftRows() transforms the matrix 
representation of a 16-byte AES state by cyclically shifting the last three rows of the state by different offset to 
the right, see Table 12-14.

• InvSubBytes(): The inverse transformation of SubBytes().
The InvSubBytes() transformation defines the relationship between each byte of the result state S’(i, j) as a
function of input state byte S(i, j), by 

S’(i, j) := InvS-Box (S(i, j)[7:4], S(i, j)[3:0])

where InvS-BOX (S[7:4], S[3:0]) represents a look-up operation on a 16x16 table to return a byte value, see 
Table 12-15. 

Table 12-14.  The InvShiftRows Transformation

Matrix Representation of Input State Output of ShiftRows

A E I M A E I M

B F J N N B F J

C G K O K O C G

D H L P H L P D
Vol. 1 12-23



PROGRAMMING WITH INTEL® SSE3, SSSE3, INTEL® SSE4, AND INTEL® AES-NI
12.13.3 PCLMULQDQ
The PCLMULQDQ instruction performs carry-less multiplication of two 64-bit data into a 128-bit result. Carry-less 
multiplication of two 128-bit data into a 256-bit result can use PCLMULQDQ as building blocks.

Carry-less multiplication is a component of many cryptographic systems. It is an important piece of implementing 
Galois Counter Mode (GCM) operation of block ciphers. GCM operation can be used in conjunction with AES algo-
rithms to add authentication capability. GCM usage models also include IPsec, storage standard, and security 
protocols over fiber channel. Additionally, PCLMULQDQ can be used in calculations of hash functions and CRC using 
arbitrary polynomials.

12.13.4 Checking for Intel® AES-NI Support
Before an application attempts to use AESNI instructions or PCLMULQDQ, the application should follow the steps 
illustrated in Section 11.6.2, “Checking for Intel® SSE and SSE2 Support.” Next, use the additional step provided 
below:

Check that the processor supports Intel AES-NI (if CPUID.01H:ECX.AESNI[bit 25] = 1); check that the processor 
supports PCLMULQDQ (if CPUID.01H:ECX.PCLMULQDQ[bit 1] = 1).

Table 12-15.  Look-up Table Associated with InvS-Box Transformation

S[3:0]

0 1 2 3 4 5 6 7 8 9 a b c d e f

S[7:4]

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef

e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d
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CHAPTER 13
MANAGING STATE USING THE XSAVE FEATURE SET

The XSAVE feature set extends the functionality of the FXSAVE and FXRSTOR instructions (see Section 10.5, 
“FXSAVE and FXRSTOR Instructions”) by supporting the saving and restoring of processor state in addition to the 
x87 execution environment (x87 state) and the registers used by the streaming SIMD extensions (SSE state). 

The XSAVE feature set comprises eight instructions. XGETBV and XSETBV allow software to read and write the 
extended control register XCR0, which controls the operation of the XSAVE feature set. XSAVE, XSAVEOPT, 
XSAVEC, and XSAVES are four instructions that save processor state to memory; XRSTOR and XRSTORS are corre-
sponding instructions that load processor state from memory. XGETBV, XSAVE, XSAVEOPT, XSAVEC, and XRSTOR 
can be executed at any privilege level; XSETBV, XSAVES, and XRSTORS can be executed only if CPL = 0. In addition 
to XCR0, the XSAVES and XRSTORS instructions are controlled also by the IA32_XSS MSR (index DA0H).

The XSAVE feature set organizes the state that manages into state components. Operation of the instructions is 
based on state-component bitmaps that have the same format as XCR0 and as the IA32_XSS MSR: each bit 
corresponds to a state component. Section 13.1 discusses these state components and bitmaps in more detail.

Section 13.2 describes how the processor enumerates support for the XSAVE feature set and for XSAVE-enabled 
features (those features that require the use of the XSAVE feature set for their enabling). Section 13.3 explains 
how software can enable the XSAVE feature set and XSAVE-enabled features.

The XSAVE feature set allows saving and loading processor state from a region of memory called an XSAVE area. 
Section 13.4 presents details of the XSAVE area and its organization. Each XSAVE-managed state component is 
associated with a section of the XSAVE area. Section 13.5 describes in detail each of the XSAVE-managed state 
components.

Section 13.7 through Section 13.12 describe the operation of XSAVE, XRSTOR, XSAVEOPT, XSAVEC, XSAVES, and 
XRSTORS, respectively.

Section 13.13 provides some details about memory accesses performed by instructions in the XSAVE feature set, 
and Section 13.14 describes a facility called extended feature disable (XFD). 

13.1 XSAVE-SUPPORTED FEATURES AND STATE-COMPONENT BITMAPS
The XSAVE feature set supports the saving and restoring of state components, each of which is a discrete set of 
processor registers (or parts of registers). In general, each such state component corresponds to a particular CPU 
feature. Such a feature is XSAVE-supported. Some XSAVE-supported features use registers in multiple XSAVE-
managed state components.

The XSAVE feature set organizes the state components of the XSAVE-supported features using state-component 
bitmaps. A state-component bitmap comprises 64 bits; each bit in such a bitmap corresponds to a single state 
component. The following bits are defined in state-component bitmaps (details on individual state components are 
provided in subsections of Section 13.5):
• Bit 0 corresponds to the state component used for the x87 FPU execution environment (x87 state).
• Bit 1 corresponds to the state component used for registers used by the streaming SIMD extensions (SSE 

state).
• Bit 2 corresponds to the state component used for the additional register state used by the Intel® Advanced 

Vector Extensions (AVX state).
• Bits 4:3 correspond to the two state components used for the additional register state used by Intel® Memory 

Protection Extensions (MPX state):

— State component 3 is used for the 4 128-bit bounds registers BND0–BND3 (BNDREGS state).

— State component 4 is used for the 64-bit user-mode MPX configuration register BNDCFGU and the 64-bit 
MPX status register BNDSTATUS (BNDCSR state).

• Bits 7:5 correspond to the three state components used for the additional register state used by Intel® 
Advanced Vector Extensions 512 (AVX-512 state):
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— State component 5 is used for the 8 64-bit opmask registers k0–k7 (opmask state).

— State component 6 is used for the upper 256 bits of the registers ZMM0–ZMM15. These 16 256-bit values 
are denoted ZMM0_H–ZMM15_H (ZMM_Hi256 state).

— State component 7 is used for the 16 512-bit registers ZMM16–ZMM31 (Hi16_ZMM state).
• Bit 8 corresponds to the state component used for the Intel Processor Trace MSRs (PT state).
• Bit 9 corresponds to the state component used for the protection-key feature’s register PKRU (PKRU state).
• Bit 10 corresponds to the state component used for the IA32_PASID MSR used by the ENQCMD instruction for 

a process address space identifiers (PASID state).
• Bits 12:11 correspond to the two state components used for the additional register state used by Control-Flow 

Enforcement Technology (CET state):

— State component 11 is used for the 2 MSRs controlling user-mode functionality for CET (CET_U state).

— State component 12 is used for the 3 MSRs containing shadow-stack pointers for privilege levels 0–2 
(CET_S state).

• Bit 13 corresponds to the state component used for an MSR used to control hardware duty cycling (HDC 
state).

• Bit 14 corresponds to the state component used for user interrupts (UINTR state).
• Bit 15 corresponds to the state component used for last-branch record configuration (LBR state).
• Bit 16 corresponds to the state component used for an MSR used to control hardware P-states (HWP state).
• Bits 18:17 correspond to the two state components used for the additional register state used by Intel® 

Advanced Matrix Extensions (AMX state):

— State component 17 is used for the 64-byte TILECFG register (TILECFG state).

— State component 18 is used for the 8192 bytes of tile data (TILEDATA state).

Bits in the range 62:19 are not currently defined in state-component bitmaps and are reserved for future expan-
sion. As individual state components are defined using those bits, additional sub-sections will be updated within 
Section 13.5 over time. Bit 63 is used for special functionality in some bitmaps and does not correspond to any 
state component.

The state component corresponding to bit i of state-component bitmaps is called state component i. Thus, x87 
state is state component 0; SSE state is state component 1; AVX state is state component 2; MPX state comprises 
state components 3–4; AVX-512 state comprises state components 5–7; PT state is state component 8; PKRU state 
is state component 9; PASID state is state component 10; CET state comprises state components 11–12; HDC 
state is state component 13; UINTR state is state component 14; LBR state is state component 15; HWP state is 
state component 16; AMX state comprises state components 17–18.

The XSAVE feature set uses state-component bitmaps in multiple ways. Most of the instructions use an implicit 
operand (in EDX:EAX), called the instruction mask, which is the state-component bitmap that specifies the state 
components on which the instruction operates.

Some state components are user state components, and they can be managed by the entire XSAVE feature set. 
Other state components are supervisor state components, and they can be managed only by XSAVES and 
XRSTORS. The state components corresponding to bit 9, to bits 18:17, and to bits in the range 7:0 are user state 
components; those corresponding to bit 8, to bits in the range 13:10, and to bits 16:14 are supervisor state 
components.

Extended control register XCR0 contains a state-component bitmap that specifies the user state components that 
software has enabled the XSAVE feature set to manage. If the bit corresponding to a state component is clear in 
XCR0, instructions in the XSAVE feature set will not operate on that state component, regardless of the value of the 
instruction mask.

The IA32_XSS MSR (index DA0H) contains a state-component bitmap that specifies the supervisor state compo-
nents that software has enabled XSAVES and XRSTORS to manage (XSAVE, XSAVEC, XSAVEOPT, and XRSTOR 
cannot manage supervisor state components). If the bit corresponding to a state component is clear in the 
IA32_XSS MSR, XSAVES and XRSTORS will not operate on that state component, regardless of the value of the 
instruction mask.
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Some XSAVE-supported features can be used only if XCR0 has been configured so that the features’ state compo-
nents can be managed by the XSAVE feature set. (This applies only to features with user state components.) Such 
state components and features are XSAVE-enabled. In general, the processor will not modify (or allow modifica-
tion of) the registers of a state component of an XSAVE-enabled feature if the bit corresponding to that state 
component is clear in XCR0. (If software clears such a bit in XCR0, the processor preserves the corresponding state 
component.) If an XSAVE-enabled feature has not been fully enabled in XCR0, execution of any instruction defined 
for that feature causes an invalid-opcode exception (#UD).

As will be explained in Section 13.3, the XSAVE feature set is enabled only if CR4.OSXSAVE[bit 18] = 1. If 
CR4.OSXSAVE = 0, the processor treats XSAVE-enabled state features and their state components as if all bits in 
XCR0 were clear; the state components cannot be modified and the features’ instructions cannot be executed.

The state components for x87 state, for SSE state, for PT state, for PKRU state, for PASID state, for CET state, for 
HDC state, for UINTR state, for LBR state, and for HWP state are XSAVE-managed but the corresponding features 
are not XSAVE-enabled. Processors allow modification of this state, as well as execution of x87 FPU instructions 
and SSE instructions and use of Intel Processor Trace, protection keys, the ENQCMD instruction and the 
IA32_PASID MSR, CET, hardware duty cycling, user interrupts, LBRs, and hardware P-states, regardless of the 
value of CR4.OSXSAVE and XCR0.

13.2 ENUMERATION OF CPU SUPPORT FOR XSAVE INSTRUCTIONS AND XSAVE-
SUPPORTED FEATURES

A processor enumerates support for the XSAVE feature set and for features supported by that feature set using the 
CPUID instruction. The following items provide specific details:
• CPUID.1:ECX.XSAVE[bit 26] enumerates general support for the XSAVE feature set:

— If this bit is 0, the processor does not support any of the following instructions: XGETBV, XRSTOR, 
XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and XSETBV; the processor provides no further 
enumeration through CPUID function 0DH (see below).

— If this bit is 1, the processor supports the following instructions: XGETBV, XRSTOR, XSAVE, and XSETBV.1 
Further enumeration is provided through CPUID function 0DH.

CR4.OSXSAVE can be set to 1 if and only if CPUID.1:ECX.XSAVE[bit 26] is enumerated as 1.
• CPUID function 0DH enumerates details of CPU support through a set of sub-functions. Software selects a 

specific sub-function by the value placed in the ECX register. The following items provide specific details:

— CPUID function 0DH, sub-function 0.

• EDX:EAX is a bitmap of all the user state components that can be managed using the XSAVE feature 
set. A bit can be set in XCR0 if and only if the corresponding bit is set in this bitmap. Every processor 
that supports the XSAVE feature set will set EAX[0] (x87 state) and EAX[1] (SSE state).

If EAX[i] = 1 (for 1 < i < 32) or EDX[i–32] = 1 (for 32 ≤ i < 63), sub-function i enumerates details for 
state component i (see below).

• ECX enumerates the size (in bytes) required by the XSAVE instruction for an XSAVE area containing all 
the user state components supported by this processor.

• EBX enumerates the size (in bytes) required by the XSAVE instruction for an XSAVE area containing all 
the user state components corresponding to bits currently set in XCR0.

— CPUID function 0DH, sub-function 1.

• EAX[0] enumerates support for the XSAVEOPT instruction. The instruction is supported if and only if 
this bit is 1. If EAX[0] = 0, execution of XSAVEOPT causes an invalid-opcode exception (#UD).

• EAX[1] enumerates support for compaction extensions to the XSAVE feature set. The following are 
supported if this bit is 1:

1. If CPUID.1:ECX.XSAVE[bit 26] = 1, XGETBV and XSETBV may be executed with ECX = 0 (to read and write XCR0). Any support for 
execution of these instructions with other values of ECX is enumerated separately.
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— The compacted format of the extended region of XSAVE areas (see Section 13.4.3). 

— The XSAVEC instruction. If EAX[1] = 0, execution of XSAVEC causes a #UD.

— Execution of the compacted form of XRSTOR (see Section 13.8).

• EAX[2] enumerates support for execution of XGETBV with ECX = 1. This allows software to determine 
the state of the init optimization. See Section 13.6.

• EAX[3] enumerates support for XSAVES, XRSTORS, and the IA32_XSS MSR. If EAX[3] = 0, execution 
of XSAVES or XRSTORS causes a #UD; an attempt to access the IA32_XSS MSR using RDMSR or 
WRMSR causes a general-protection exception (#GP). Every processor that supports a supervisor state 
component sets EAX[3]. Every processor that sets EAX[3] (XSAVES, XRSTORS, IA32_XSS) will also set 
EAX[1] (the compaction extensions).

• EAX[4] enumerates general support for extended feature disable (XFD). See Section 13.14 for details.

• EAX[31:5] are reserved.

• EBX enumerates the size (in bytes) defined as follows:

— If EAX[3] is enumerated as 1, EBX enumerates the size required by the XSAVES instruction for an 
XSAVE area containing all the state components corresponding to bits currently set in XCR0 | 
IA32_XSS.

— If EAX[3] is enumerated as 0 and EAX[1] is enumerated as 1, EBX enumerates the size required by 
the XSAVEC instruction for an XSAVE area containing all the state components corresponding to bits 
currently set in XCR0.

— If EAX[1] and EAX[3] are both enumerated as 0, EBX enumerates zero.

• EDX:ECX is a bitmap of all the supervisor state components that can be managed by XSAVES and 
XRSTORS. A bit can be set in the IA32_XSS MSR if and only if the corresponding bit is set in this bitmap.

NOTE
In summary, the XSAVE feature set supports state component i (0 ≤ i < 63) if one of the following 
is true: (1) i < 32 and CPUID.(EAX=0DH,ECX=0):EAX[i] = 1; (2) i ≥ 32 and 
CPUID.(EAX=0DH,ECX=0):EAX[i–32] = 1; (3) i < 32 and CPUID.(EAX=0DH,ECX=1):ECX[i] = 1; 
or (4) i ≥ 32 and CPUID.(EAX=0DH,ECX=1):EDX[i–32] = 1. The XSAVE feature set supports user 
state component i if (1) or (2) holds; if (3) or (4) holds, state component i is a supervisor state 
component and support is limited to XSAVES and XRSTORS.

— CPUID function 0DH, sub-function i (i > 1). This sub-function enumerates details for state component i. If 
the XSAVE feature set supports state component i (see note above), the following items provide specific 
details:

• EAX enumerates the size (in bytes) required for state component i.

• If state component i is a user state component, EBX enumerates the offset (in bytes, from the base of 
the XSAVE area) of the section used for state component i. (This offset applies only when the standard 
format for the extended region of the XSAVE area is being used; see Section 13.4.3.)

• If state component i is a supervisor state component, EBX returns 0.

• If state component i is a user state component, ECX[0] return 0; if state component i is a supervisor 
state component, ECX[0] returns 1.

• The value returned by ECX[1] indicates the alignment of state component i when the compacted format 
of the extended region of an XSAVE area is used (see Section 13.4.3). If ECX[1] returns 0, state 
component i is located immediately following the preceding state component; if ECX[1] returns 1, state 
component i is located on the next 64-byte boundary following the preceding state component.

• If the processor supports XFD for state component i, ECX[2] returns 1; otherwise, ECX[2] returns 0.

• ECX[31:3] and EDX return 0.

If the XSAVE feature set does not support state component i, sub-function i returns 0 in EAX, EBX, ECX, and 
EDX.
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13.3 ENABLING THE XSAVE FEATURE SET AND XSAVE-ENABLED FEATURES
Software enables the XSAVE feature set by setting CR4.OSXSAVE[bit 18] to 1 (e.g., with the MOV to CR4 instruc-
tion). If this bit is 0, execution of any of XGETBV, XRSTOR, XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and 
XSETBV causes an invalid-opcode exception (#UD).

When CR4.OSXSAVE = 1 and CPL = 0, executing the XSETBV instruction with ECX = 0 writes the 64-bit value in 
EDX:EAX to XCR0 (EAX is written to XCR0[31:0] and EDX to XCR0[63:32]). (Execution of the XSETBV instruction 
causes a general-protection fault — #GP — if CPL > 0.) The following items provide details regarding individual bits 
in XCR0:
• XCR0[0] is associated with x87 state (see Section 13.5.1). XCR0[0] is always 1. It has that value coming out of 

RESET. Executing the XSETBV instruction causes a general-protection fault (#GP) if ECX = 0 and EAX[0] is 0.
• XCR0[1] is associated with SSE state (see Section 13.5.2). Software can use the XSAVE feature set to manage 

SSE state only if XCR0[1] = 1. The value of XCR0[1] in no way determines whether software can execute SSE 
instructions (these instructions can be executed even if XCR0[1] = 0).
XCR0[1] is 0 coming out of RESET. As noted in Section 13.2, every processor that supports the XSAVE feature 
set allows software to set XCR0[1].

• XCR0[2] is associated with AVX state (see Section 13.5.3). Software can use the XSAVE feature set to manage 
AVX state only if XCR0[2] = 1. In addition, software can execute Intel AVX instructions only if CR4.OSXSAVE = 
XCR0[2] = 1. Otherwise, any execution of an Intel AVX instruction causes an invalid-opcode exception (#UD).
XCR0[2] is 0 coming out of RESET. As noted in Section 13.2, a processor allows software to set XCR0[2] if and 
only if CPUID.(EAX=0DH,ECX=0):EAX[2] = 1. In addition, executing the XSETBV instruction causes a general-
protection fault (#GP) if ECX = 0 and EAX[2:1] has the value 10b; that is, software cannot enable the XSAVE 
feature set for AVX state but not for SSE state.
As noted in Section 13.1, the processor will preserve AVX state unmodified if software clears XCR0[2]. 
However, clearing XCR0[2] while AVX state is not in its initial configuration may cause SSE instructions to incur 
a power and performance penalty. See Section 15.5.3, “Enable the Use Of XSAVE Feature Set And XSAVE State 
Components,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for how 
system software can avoid this penalty.

• XCR0[4:3] are associated with MPX state (see Section 13.5.4). Software can use the XSAVE feature set to 
manage MPX state only if XCR0[4:3] = 11b. In addition, MPX instructions operate as defined only if 
CR4.OSXSAVE = 1 and XCR0[4:3] = 11b. Otherwise, execution of an MPX instruction causes no operation (as 
a NOP instruction); in addition, executions of CALL, RET, JMP, and Jcc do not initialize the bounds registers, and 
they ignore any F2H (BND) prefix.1

XCR0[4:3] have value 00b coming out of RESET. As noted in Section 13.2, a processor allows software to set 
XCR0[4:3] to 11b if and only if CPUID.(EAX=0DH,ECX=0):EAX[4:3] = 11b. In addition, executing the XSETBV 
instruction causes a general-protection fault (#GP) if ECX = 0, EAX[4:3] is neither 00b nor 11b; that is, 
software can enable the XSAVE feature set for MPX state only if it does so for both state components.
As noted in Section 13.1, the processor will preserve MPX state unmodified if software clears XCR0[4:3].

• XCR0[7:5] are associated with AVX-512 state (see Section 13.5.5). Software can use the XSAVE feature set to 
manage AVX-512 state only if XCR0[7:5] = 111b. In addition, software can execute Intel AVX-512 instructions 
only if CR4.OSXSAVE = 1 and XCR0[7:5] = 111b. Otherwise, any execution of an Intel AVX-512 instruction 
causes an invalid-opcode exception (#UD).
XCR0[7:5] have value 000b coming out of RESET. As noted in Section 13.2, a processor allows software to set 
XCR0[7:5] to 111b if and only if CPUID.(EAX=0DH,ECX=0):EAX[7:5] = 111b. In addition, executing the 
XSETBV instruction causes a general-protection fault (#GP) if ECX = 0, EAX[7:5] is not 000b, and any bit is 
clear in EAX[2:1] or EAX[7:5]; that is, software can enable the XSAVE feature set for AVX-512 state only if it 
does so for all three state components, and only if it also does so for AVX state and SSE state. This implies that 
the value of XCR0[7:5] is always either 000b or 111b.
As noted in Section 13.1, the processor will preserve AVX-512 state unmodified if software clears XCR0[7:5]. 
However, clearing XCR0[7:5] while AVX-512 state is not in its initial configuration may cause SSE and Intel AVX 
instructions to incur a power and performance penalty. See Section 15.5.3, “Enable the Use Of XSAVE Feature 

1. Prior to the introduction of MPX, the opcodes defining MPX instructions operated as NOP, and the CALL, RET, JMP, and Jcc instruc-
tions ignored any F2H prefix.
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Set And XSAVE State Components,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A, for how system software can avoid this penalty.

• XCR0[9] is associated with PKRU state (see Section 13.5.7). Software can use the XSAVE feature set to 
manage PKRU state only if XCR0[9] = 1. The value of XCR0[9] in no way determines whether software can use 
protection keys or execute other instructions that access PKRU state (these instructions can be executed even 
if XCR0[9] = 0).
XCR0[9] is 0 coming out of RESET. As noted in Section 13.2, a processor allows software to set XCR0[9] if and 
only if CPUID.(EAX=0DH,ECX=0):EAX[9] = 1.

• XCR0[18:17] are associated with AMX state (see Section 13.5.14). Software can use the XSAVE feature set to 
manage AMX state only if XCR0[18:17] = 11b. In addition, software can execute Intel AMX instructions only if 
CR4.OSXSAVE = 1 and XCR0[18:17] = 11b. Otherwise, any execution of an Intel AMX instruction causes an 
invalid-opcode exception (#UD).
XCR0[18:17] have value 00b coming out of RESET. As noted in Section 13.2, a processor allows software to set 
XCR0[18:17] to 11b if and only if CPUID.(EAX=0DH,ECX=0):EAX[18:17] = 11b. In addition, executing the 
XSETBV instruction causes a general-protection fault (#GP) if ECX = 0 and EAX[17] ≠ EAX[18] (TILECFG and 
TILEDATA must be enabled together). This implies that the value of XCR0[18:17] is always either 00b or 11b.
While Intel AMX instructions can be executed only in 64-bit mode, instructions of the XSAVE feature set can 
operate on TILECFG and TILEDATA in any mode. It is recommended that only 64-bit operating systems enable 
Intel AMX by setting XCR0[18:17].

• XCR0[63:19], XCR0[16:10], and XCR0[8] are reserved.1 Executing the XSETBV instruction causes a general-
protection fault (#GP) if ECX = 0 and any corresponding bit in EDX:EAX is not 0. These bits in XCR0 are all 0 
coming out of RESET.

Software operating with CPL > 0 may need to determine whether the XSAVE feature set and certain XSAVE-
enabled features have been enabled. If CPL > 0, execution of the MOV from CR4 instruction causes a general-
protection fault (#GP). The following alternative mechanisms allow software to discover the enabling of the XSAVE 
feature set regardless of CPL:
• The value of CR4.OSXSAVE is returned in CPUID.1:ECX.OSXSAVE[bit 27]. If software determines that 

CPUID.1:ECX.OSXSAVE = 1, the processor supports the XSAVE feature set and the feature set has been 
enabled in CR4.

• Executing the XGETBV instruction with ECX = 0 returns the value of XCR0 in EDX:EAX. XGETBV can be 
executed if CR4.OSXSAVE = 1 (if CPUID.1:ECX.OSXSAVE = 1), regardless of CPL.

Thus, software can use the following algorithm to determine the support and enabling for the XSAVE feature set:

1. Use CPUID to discover the value of CPUID.1:ECX.OSXSAVE.

— If the bit is 0, either the XSAVE feature set is not supported by the processor or has not been enabled by 
software. Either way, the XSAVE feature set is not available, nor are XSAVE-enabled features such as AVX.

— If the bit is 1, the processor supports the XSAVE feature set — including the XGETBV instruction — and it 
has been enabled by software. The XSAVE feature set can be used to manage x87 state (because XCR0[0] 
is always 1). Software requiring more detailed information can go on to the next step.

2. Execute XGETBV with ECX = 0 to discover the value of XCR0. If XCR0[1] = 1, the XSAVE feature set can be 
used to manage SSE state. If XCR0[2] = 1, the XSAVE feature set can be used to manage AVX state and 
software can execute Intel AVX instructions. If XCR0[4:3] is 11b, the XSAVE feature set can be used to manage 
MPX state and software can execute Intel MPX instructions. If XCR0[7:5] is 111b, the XSAVE feature set can be 
used to manage AVX-512 state and software can execute Intel AVX-512 instructions. If XCR0[9] = 1, the 
XSAVE feature set can be used to manage PKRU state.

The IA32_XSS MSR (with MSR index DA0H) is zero coming out of RESET. If CR4.OSXSAVE = 1, 
CPUID.(EAX=0DH,ECX=1):EAX[3] = 1, and CPL = 0, executing the WRMSR instruction with ECX = DA0H writes 
the 64-bit value in EDX:EAX to the IA32_XSS MSR (EAX is written to IA32_XSS[31:0] and EDX to 
IA32_XSS[63:32]). The following items provide details regarding individual bits in the IA32_XSS MSR:

1. Bit 8 and bits 16:10 correspond to supervisor state components. Since bits can be set in XCR0 only for user state components, those 
bits of XCR0 must be 0.
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• IA32_XSS[8] is associated with PT state (see Section 13.5.6). Software can use XSAVES and XRSTORS to 
manage PT state only if IA32_XSS[8] = 1. The value of IA32_XSS[8] does not determine whether software can 
use Intel Processor Trace (the feature can be used even if IA32_XSS[8] = 0).

• IA32_XSS[10] is associated with PASID state (see Section 13.5.8). Software can use the XSAVES and 
XRSTORS to manage PASID state only if IA32_XSS[10] = 1. The value of IA32_XSS[10] does not determine 
whether software can use the ENQCMD instruction, which uses the IA32_PASID MSR. (ENQCMD can be used 
even if IA32_XSS[10] is 0.)

• IA32_XSS[12:11] are associated with CET state (see Section 13.5.9), IA32_XSS[11] with CET_U state and 
IA32_XSS[12] with CET_S state. Software can use the XSAVES and XRSTORS to manage CET_U state (respec-
tively, CET_S state) only if IA32_XSS[11] = 1 (respectively, IA32_XSS[12] = 1). The value of 
IA32_XSS[12:11] does not determine whether software can use CET (the feature can be used even if either of 
IA32_XSS[12:11] is 0).

• IA32_XSS[13] is associated with HDC state (see Section 13.5.10). Software can use XSAVES and XRSTORS to 
manage HDC state only if IA32_XSS[13] = 1. The value of IA32_XSS[13] does not determine whether software 
can use hardware duty cycling (the feature can be used even if IA32_XSS[13] = 0).

• IA32_XSS[14] is associated with UINTR state (see Section 13.5.11). Software can use XSAVES and XRSTORS 
to manage UINTR state only if IA32_XSS[14] = 1. The value of IA32_XSS[14] does not determine whether 
software can use user interrupts (the feature can be used even if IA32_XSS[14] = 0).

• IA32_XSS[15] is associated with LBR state (see Section 13.5.12). Software can use XSAVES and XRSTORS to 
manage LBR state only if IA32_XSS[15] = 1. The value of IA32_XSS[15] does not determine whether software 
can use LBRs (the feature can be used even if IA32_XSS[15] = 0).

• IA32_XSS[16] is associated with HWP state (see Section 13.5.13). Software can use XSAVES and XRSTORS to 
manage HWP state only if IA32_XSS[16] = 1. The value of IA32_XSS[16] does not determine whether 
software can use hardware P-states (the feature can be used even if IA32_XSS[16] = 0).

• IA32_XSS[63:17], IA32_XSS[9] and IA32_XSS[7:0] are reserved.1 Executing the WRMSR instruction causes 
a general-protection fault (#GP) if ECX = DA0H and any corresponding bit in EDX:EAX is not 0. These bits in 
XCR0 are all 0 coming out of RESET.

The IA32_XSS MSR is 0 coming out of RESET.

There is no mechanism by which software operating with CPL > 0 can discover the value of the IA32_XSS MSR.

13.4 XSAVE AREA
The XSAVE feature set includes instructions that save and restore the XSAVE-managed state components to and 
from memory: XSAVE, XSAVEOPT, XSAVEC, and XSAVES (for saving); and XRSTOR and XRSTORS (for restoring). 
The processor organizes the state components in a region of memory called an XSAVE area. Each of the save and 
restore instructions takes a memory operand that specifies the 64-byte aligned base address of the XSAVE area on 
which it operates.

Every XSAVE area has the following format:
• The legacy region. The legacy region of an XSAVE area comprises the 512 bytes starting at the area’s base 

address. It is used to manage the state components for x87 state and SSE state. The legacy region is described 
in more detail in Section 13.4.1.

• The XSAVE header. The XSAVE header of an XSAVE area comprises the 64 bytes starting at an offset of 512 
bytes from the area’s base address. The XSAVE header is described in more detail in Section 13.4.2.

• The extended region. The extended region of an XSAVE area starts at an offset of 576 bytes from the area’s 
base address. It is used to manage the state components other than those for x87 state and SSE state. The 
extended region is described in more detail in Section 13.4.3. The size of the extended region is determined by 
which state components the processor supports and which bits have been set in XCR0 and IA32_XSS (see 
Section 13.3).

1. Bit 9 and bits 7:0 correspond to user state components. Since bits can be set in the IA32_XSS MSR only for supervisor state compo-
nents, those bits of the MSR must be 0.
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13.4.1 Legacy Region of an XSAVE Area
The legacy region of an XSAVE area comprises the 512 bytes starting at the area’s base address. It has the same 
format as the FXSAVE area (see Section 10.5.1). The XSAVE feature set uses the legacy area for x87 state (state 
component 0) and SSE state (state component 1). Table 13-1 illustrates the format of the first 416 bytes of the 
legacy region of an XSAVE area.

The x87 state component comprises bytes 23:0 and bytes 159:32. The SSE state component comprises 
bytes 31:24 and bytes 415:160. The XSAVE feature set does not use bytes 511:416; bytes 463:416 are reserved.

Section 13.7 through Section 13.9 provide details of how instructions in the XSAVE feature set use the legacy 
region of an XSAVE area.

Table 13-1.  Format of the Legacy Region of an XSAVE Area
15 14 13  12 11 10 9 8 7 6 5 4 3 2 1 0

FIP[63:48] or 
reserved

 FCS or 
FIP[47:32]  FIP[31:0] FOP Rsvd. FTW FSW FCW 0

MXCSR_MASK MXCSR FDP[63:48] 
or reserved

 FDS or 
FDP[47:32]

 FDP[31:0] 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400
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13.4.2 XSAVE Header
The XSAVE header of an XSAVE area comprises the 64 bytes starting at offset 512 from the area’s base address:
• Bytes 7:0 of the XSAVE header is a state-component bitmap (see Section 13.1) called XSTATE_BV. It 

identifies the state components in the XSAVE area.
• Bytes 15:8 of the XSAVE header is a state-component bitmap called XCOMP_BV. It is used as follows:

— XCOMP_BV[63] indicates the format of the extended region of the XSAVE area (see Section 13.4.3). If it is 
clear, the standard format is used. If it is set, the compacted format is used; XCOMP_BV[62:0] provide 
format specifics as specified in Section 13.4.3.

— XCOMP_BV[63] determines which form of the XRSTOR instruction is used. If the bit is set, the compacted 
form is used; otherwise, the standard form is used. See Section 13.8.

— All bits in XCOMP_BV should be 0 if the processor does not support the compaction extensions to the XSAVE 
feature set.

• Bytes 63:16 of the XSAVE header are reserved.

Section 13.7 through Section 13.9 provide details of how instructions in the XSAVE feature set use the XSAVE 
header of an XSAVE area.

13.4.3 Extended Region of an XSAVE Area
The extended region of an XSAVE area starts at byte offset 576 from the area’s base address. The size of the 
extended region is determined by which state components the processor supports and which bits have been set in 
XCR0 | IA32_XSS (see Section 13.3). The XSAVE feature set uses the extended area for each state component i, 
where i ≥ 2.

The extended region of the an XSAVE area may have one of two formats. The standard format is supported by all 
processors that support the XSAVE feature set; the compacted format is supported by those processors that 
support the compaction extensions to the XSAVE feature set (see Section 13.2). Bit 63 of the XCOMP_BV field in 
the XSAVE header (see Section 13.4.2) indicates which format is used.

The following items describe the two possible formats of the extended region:
• Standard format. Each state component i (i ≥ 2) is located at the byte offset from the base address of the 

XSAVE area enumerated in CPUID.(EAX=0DH,ECX=i):EBX. (CPUID.(EAX=0DH,ECX=i):EAX enumerates the 
number of bytes required for state component i.

• Compacted format. Each state component i (i ≥ 2) is located at a byte offset from the base address of the 
XSAVE area based on the XCOMP_BV field in the XSAVE header:

— If XCOMP_BV[i] = 0, state component i is not in the XSAVE area.

— If XCOMP_BV[i] = 1, state component i is located at a byte offset locationI from the base address of the 
XSAVE area, where locationI is determined by the following items:

• If XCOMP_BV[j] = 0 for every j, 2 ≤ j < i, locationI is 576. (This item applies if i is the first bit set in 
bits 62:2 of the XCOMP_BV; it implies that state component i is located at the beginning of the 
extended region.) 

• Otherwise, let j, 2 ≤ j < i, be the greatest value such that XCOMP_BV[j] = 1. Then locationI is 
determined by the following values: locationJ; sizeJ, as enumerated in CPUID.(EAX=0DH,ECX=j):EAX; 
and the value of alignI, as enumerated in CPUID.(EAX=0DH,ECX=i):ECX[1]:

— If alignI = 0, locationI = locationJ + sizeJ. (This item implies that state component i is located 
immediately following the preceding state component whose bit is set in XCOMP_BV.)

— If alignI = 1, locationI = ceiling(locationJ + sizeJ, 64). (This item implies that state component i is 
located on the next 64-byte boundary following the preceding state component whose bit is set in 
XCOMP_BV.)
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13.5 XSAVE-MANAGED STATE
The section provides details regarding how the XSAVE feature set interacts with the various XSAVE-managed state 
components.

Unless otherwise state, the state pertaining to a particular state component is saved beginning at byte 0 of the 
section of the XSAVE are corresponding to that state component.

13.5.1 x87 State
Instructions in the XSAVE feature set can manage the same state of the x87 FPU execution environment (x87 
state) that can be managed using the FXSAVE and FXRSTOR instructions. They organize all x87 state as a user 
state component in the legacy region of the XSAVE area (see Section 13.4.1). This region is illustrated in 
Table 13-1; the x87 state is listed below, along with details of its interactions with the XSAVE feature set:
• Bytes 1:0, 3:2, 7:6. These are used for the x87 FPU Control Word (FCW), the x87 FPU Status Word (FSW), and 

the x87 FPU Opcode (FOP), respectively.
• Byte 4 is used for an abridged version of the x87 FPU Tag Word (FTW). The following items describe its usage:

— For each j, 0 ≤ j ≤ 7, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save a 0 into bit j of byte 4 if x87 FPU data 
register STj has a empty tag; otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save a 1 into bit j of byte 
4.

— For each j, 0 ≤ j ≤ 7, XRSTOR and XRSTORS establish the tag value for x87 FPU data register STj as follows. 
If bit j of byte 4 is 0, the tag for STj in the tag register for that data register is marked empty (11B); 
otherwise, the x87 FPU sets the tag for STj based on the value being loaded into that register (see below).

• Bytes 15:8 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 11:8 are used for bits 31:0 of the x87 FPU Instruction Pointer Offset (FIP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 13:12 are used for x87 FPU Instruction Pointer 
Selector (FCS). Otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save these bytes as 0000H, and 
XRSTOR and XRSTORS ignore them.

• Bytes 15:14 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 15:8 are used for the full 64 bits of FIP.
• Bytes 23:16 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 19:16 are used for bits 31:0 of the x87 FPU Data Pointer Offset (FDP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 21:20 are used for x87 FPU Data Pointer Selector 
(FDS). Otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save these bytes as 0000H; and XRSTOR 
and XRSTORS ignore them.

• Bytes 23:22 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 23:16 are used for the full 64 bits of FDP.
• Bytes 31:24 are used for SSE state (see Section 13.5.2).
• Bytes 159:32 are used for the registers ST0–ST7 (MM0–MM7). Each of the 8 register is allocated a 128-bit 

region, with the low 80 bits used for the register and the upper 48 bits unused.

x87 state is XSAVE-managed but the x87 FPU feature is not XSAVE-enabled. The XSAVE feature set can operate on 
x87 state only if the feature set is enabled (CR4.OSXSAVE = 1).1 Software can otherwise use x87 state even if the 
XSAVE feature set is not enabled.

1. The processor ensures that XCR0[0] is always 1.
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13.5.2 SSE State
Instructions in the XSAVE feature set can manage the registers used by the streaming SIMD extensions (SSE 
state) just as the FXSAVE and FXRSTOR instructions do. They organize all SSE state as a user state component in 
the legacy region of the XSAVE area (see Section 13.4.1). This region is illustrated in Table 13-1; the SSE state is 
listed below, along with details of its interactions with the XSAVE feature set:
• Bytes 23:0 are used for x87 state (see Section 13.5.1).
• Bytes 27:24 are used for the MXCSR register. XRSTOR and XRSTORS generate general-protection faults (#GP) 

in response to attempts to set any of the reserved bits of the MXCSR register.1

• Bytes 31:28 are used for the MXCSR_MASK value. XRSTOR and XRSTORS ignore this field.
• Bytes 159:32 are used for x87 state.
• Bytes 287:160 are used for the registers XMM0–XMM7. 
• Bytes 415:288 are used for the registers XMM8–XMM15. These fields are used only in 64-bit mode. Executions 

of XSAVE, XSAVEOPT, XSAVEC, and XSAVES outside 64-bit mode do not modify these bytes; executions of 
XRSTOR and XRSTORS outside 64-bit mode do not update XMM8–XMM15. See Section 13.13.

SSE state is XSAVE-managed but the SSE feature is not XSAVE-enabled. The XSAVE feature set can operate on SSE 
state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage SSE state 
(XCR0[1] = 1). Software can otherwise use SSE state even if the XSAVE feature set is not enabled or has not been 
configured to manage SSE state.

13.5.3 AVX State
The register state used by the Intel® Advanced Vector Extensions (Intel AVX) comprises the MXCSR register and 
16 256-bit vector registers called YMM0–YMM15. The low 128 bits of each register YMMi is identical to the SSE 
register XMMi. Thus, the new state register state added by Intel AVX comprises the upper 128 bits of the registers 
YMM0–YMM15. These 16 128-bit values are denoted YMM0_H–YMM15_H and are collectively called AVX state.

As noted in Section 13.1, the XSAVE feature set manages AVX state as user state component 2. Thus, AVX state is 
located in the extended region of the XSAVE area (see Section 13.4.3).

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=2):EBX enumerates the offset (in bytes, from the base of the 
XSAVE area) of the section of the extended region of the XSAVE area used for AVX state (when the standard format 
of the extended region is used). CPUID.(EAX=0DH,ECX=2):EAX enumerates the size (in bytes) required for AVX 
state.

The XSAVE feature set partitions YMM0_H–YMM15_H in a manner similar to that used for the XMM registers (see 
Section 13.5.2). Bytes 127:0 of the AVX-state section are used for YMM0_H–YMM7_H. Bytes 255:128 are used for 
YMM8_H–YMM15_H, but they are used only in 64-bit mode. Executions of XSAVE, XSAVEOPT, XSAVEC, and 
XSAVES outside 64-bit mode do not modify bytes 255:128; executions of XRSTOR and XRSTORS outside 64-bit 
mode do not update YMM8_H–YMM15_H. See Section 13.13. In general, bytes 16i+15:16i are used for YMMi_H 
(for 0 ≤ i ≤ 15).

AVX state is XSAVE-managed and the Intel AVX feature is XSAVE-enabled. The XSAVE feature set can operate on 
AVX state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage AVX state 
(XCR0[2] = 1). Intel AVX instructions cannot be used unless the XSAVE feature set is enabled and has been config-
ured to manage AVX state.

13.5.4 MPX State
The register state used by the Intel® Memory Protection Extensions (MPX) comprises the 4 128-bit bounds regis-
ters BND0–BND3 (BNDREGS state); and the 64-bit user-mode configuration register BNDCFGU and the 64-bit 
MPX status register BNDSTATUS (collectively, BNDCSR state). Together, these two user state components 
compose MPX state.

1. While MXCSR and MXCSR_MASK are part of SSE state, their treatment by the XSAVE feature set is not the same as that of the XMM 
registers. See Section 13.7 through Section 13.11 for details.
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As noted in Section 13.1, the XSAVE feature set manages MPX state as state components 3–4. Thus, MPX state is 
located in the extended region of the XSAVE area (see Section 13.4.3). The following items detail how these state 
components are organized in this region:
• BNDREGS state.

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=3):EBX enumerates the offset (in bytes, from the base of the 
XSAVE area) of the section of the extended region of the XSAVE area used for BNDREGS state (when the 
standard format of the extended region is used). CPUID.(EAX=0DH,ECX=3):EAX enumerates the size (in 
bytes) required for BNDREGS state. The BNDREGS section is used for the 4 128-bit bound registers BND0–
BND3, with bytes 16i+15:16i being used for BNDi.

• BNDCSR state.
As noted in Section 13.2, CPUID.(EAX=0DH,ECX=4):EBX enumerates the offset of the section of the extended 
region of the XSAVE area used for BNDCSR state (when the standard format of the extended region is used). 
CPUID.(EAX=0DH,ECX=4):EAX enumerates the size (in bytes) required for BNDCSR state. In the BNDSCR 
section, bytes 7:0 are used for BNDCFGU and bytes 15:8 are used for BNDSTATUS.

Both components of MPX state are XSAVE-managed and the Intel MPX feature is XSAVE-enabled. The XSAVE 
feature set can operate on MPX state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured 
to manage MPX state (XCR0[4:3] = 11b). Intel MPX instructions cannot be used unless the XSAVE feature set is 
enabled and has been configured to manage MPX state.

13.5.5 AVX-512 State
The register state used by the Intel® Advanced Vector Extensions 512 (Intel AVX-512) comprises the MXCSR 
register, the 8 64-bit opmask registers k0–k7, and 32 512-bit vector registers called ZMM0–ZMM31. For each i, 0 ≤ 
i ≤ 15, the low 256 bits of register ZMMi is identical to the Intel AVX register YMMi. Thus, the new state register 
state added by Intel AVX-512 comprises the following user state components:
• The opmask registers, collectively called opmask state.
• The upper 256 bits of the registers ZMM0–ZMM15. These 16 256-bit values are denoted ZMM0_H–ZMM15_H 

and are collectively called ZMM_Hi256 state.
• The 16 512-bit registers ZMM16–ZMM31, collectively called Hi16_ZMM state.

Together, these three state components compose AVX-512 state.

As noted in Section 13.1, the XSAVE feature set manages AVX-512 state as state components 5–7. Thus, AVX-512 
state is located in the extended region of the XSAVE area (see Section 13.4.3). The following items detail how these 
state components are organized in this region:
• Opmask state.

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=5):EBX enumerates the offset (in bytes, from the base of the 
XSAVE area) of the section of the extended region of the XSAVE area used for opmask state (when the standard 
format of the extended region is used). CPUID.(EAX=0DH,ECX=5):EAX enumerates the size (in bytes) required 
for opmask state. The opmask section is used for the 8 64-bit opmask registers k0–k7, with bytes 8i+7:8i 
being used for ki.

• ZMM_Hi256 state.
As noted in Section 13.2, CPUID.(EAX=0DH,ECX=6):EBX enumerates the offset of the section of the extended 
region of the XSAVE area used for ZMM_Hi256 state (when the standard format of the extended region is 
used). CPUID.(EAX=0DH,ECX=6):EAX enumerates the size (in bytes) required for ZMM_Hi256 state.
The XSAVE feature set partitions ZMM0_H–ZMM15_H in a manner similar to that used for the XMM registers 
(see Section 13.5.2). Bytes 255:0 of the ZMM_Hi256-state section are used for ZMM0_H–ZMM7_H. 
Bytes 511:256 are used for ZMM8_H–ZMM15_H, but they are used only in 64-bit mode. Executions of XSAVE, 
XSAVEOPT, XSAVEC, and XSAVES outside 64-bit mode do not modify bytes 511:256; executions of XRSTOR 
and XRSTORS outside 64-bit mode do not update ZMM8_H–ZMM15_H. See Section 13.13. In general, 
bytes 32i+31:32i are used for ZMMi_H (for 0 ≤ i ≤ 15).

• Hi16_ZMM state.
As noted in Section 13.2, CPUID.(EAX=0DH,ECX=7):EBX enumerates the offset of the section of the extended 
region of the XSAVE area used for Hi16_ZMM state (when the standard format of the extended region is used). 
CPUID.(EAX=0DH,ECX=7):EAX enumerates the size (in bytes) required for Hi16_ZMM state.
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The XSAVE feature set accesses Hi16_ZMM state only in 64-bit mode. Executions of XSAVE, XSAVEOPT, 
XSAVEC, and XSAVES outside 64-bit mode do not modify the Hi16_ZMM section; executions of XRSTOR and 
XRSTORS outside 64-bit mode do not update ZMM16–ZMM31. See Section 13.13. In general, 
bytes 64(i-16)+63:64(i-16) are used for ZMMi (for 16 ≤ i ≤ 31).

All three components of AVX-512 state are XSAVE-managed and the Intel AVX-512 feature is XSAVE-enabled. The 
XSAVE feature set can operate on AVX-512 state only if the feature set is enabled (CR4.OSXSAVE = 1) and has 
been configured to manage AVX-512 state (XCR0[7:5] = 111b). Intel AVX-512 instructions cannot be used unless 
the XSAVE feature set is enabled and has been configured to manage AVX-512 state.

13.5.6 PT State
The register state used by Intel Processor Trace (PT state) comprises the following 9 MSRs: IA32_RTIT_CTL, 
IA32_RTIT_OUTPUT_BASE, IA32_RTIT_OUTPUT_MASK_PTRS, IA32_RTIT_STATUS, IA32_RTIT_CR3_MATCH, 
IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A, and IA32_RTIT_ADDR1_B.1

As noted in Section 13.1, the XSAVE feature set manages PT state as supervisor state component 8. Thus, PT state 
is located in the extended region of the XSAVE area (see Section 13.4.3). As noted in Section 13.2, 
CPUID.(EAX=0DH,ECX=8):EAX enumerates the size (in bytes) required for PT state. The MSRs are each allocated 
8 bytes in the state component in the order given above. Thus, IA32_RTIT_CTL is at byte offset 0, 
IA32_RTIT_OUTPUT_BASE at byte offset 8, etc. Any locations in the state component at or beyond byte offset 72 
are reserved.

PT state is XSAVE-managed but Intel Processor Trace is not XSAVE-enabled. The XSAVE feature set can operate on 
PT state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage PT state 
(IA32_XSS[8] = 1). Software can otherwise use Intel Processor Trace and access its MSRs (using RDMSR and 
WRMSR) even if the XSAVE feature set is not enabled or has not been configured to manage PT state.

The following items describe special treatment of PT state by the XSAVES and XRSTORS instructions:
• If XSAVES saves PT state, the instruction clears IA32_RTIT_CTL.TraceEn (bit 0) after saving the value of the 

IA32_RTIT_CTL MSR and before saving any other PT state. If XSAVES causes a fault or a VM exit, it restores 
IA32_RTIT_CTL.TraceEn to its original value.

• If XSAVES saves PT state, the instruction saves zeroes in the reserved portions of the state component.
• If XRSTORS would restore (or initialize) PT state and IA32_RTIT_CTL.TraceEn = 1, the instruction causes a 

general-protection exception (#GP) before modifying PT state.
• If XRSTORS causes an exception or a VM exit, it does so before any modification to IA32_RTIT_CTL.TraceEn 

(even if it has loaded other PT state).

13.5.7 PKRU State
The register state used by the protection-key feature (PKRU state) is the 32-bit PKRU register. As noted in Section 
13.1, the XSAVE feature set manages PKRU state as user state component 9. Thus, PKRU state is located in the 
extended region of the XSAVE area (see Section 13.4.3).

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=9):EBX enumerates the offset (in bytes, from the base of the 
XSAVE area) of the section of the extended region of the XSAVE area used for PKRU state (when the standard 
format of the extended region is used). CPUID.(EAX=0DH,ECX=9):EAX enumerates the size (in bytes) required for 
PKRU state. The XSAVE feature set uses bytes 3:0 of the PK-state section for the PKRU register.

PKRU state is XSAVE-managed but the protection-key feature is not XSAVE-enabled. The XSAVE feature set can 
operate on PKRU state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage 
PKRU state (XCR0[9] = 1). Software can otherwise use protection keys and access PKRU state even if the XSAVE 
feature set is not enabled or has not been configured to manage PKRU state.

1. These MSRs might not be supported by every processor that supports Intel Processor Trace. Software can use the CPUID instruction 
to discover which are supported; see Section 34.3.1, “Detection of Intel Processor Trace and Capability Enumeration,” of Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3C.
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The value of the PKRU register determines the access rights for user-mode linear addresses. (See Section 5.6, 
“Access Rights,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.) The access rights 
that pertain to an execution of the XRSTOR and XRSTORS instructions are determined by the value of the register 
before the execution and not by any value that the execution might load into the PKRU register.

13.5.8 PASID State
The register state used by the ENQCMD instruction and process address space identifiers (PASID state) comprises 
the IA32_PASID MSR.

As noted in Section 13.1, the XSAVE feature set manages PASID state as supervisor state component 10. Thus, 
PASID state is located in the extended region of the XSAVE area (see Section 13.4.3). As noted in Section 13.2, 
CPUID.(EAX=0DH,ECX=10):EAX enumerates the size (in bytes) required for PASID state. The IA32_PASID MSR is 
allocated 8 bytes at byte offset 0 in the state component.

PASID state is XSAVE-managed but the ENQCMD instruction and process address space identifiers are not XSAVE-
enabled. The XSAVE feature set can operate on PASID state only if the feature set is enabled (CR4.OSXSAVE = 1) 
and has been configured to manage PASID state (IA32_XSS[10] = 1). Software can otherwise use the ENQCMD 
instruction and process address space identifiers, and access the IA32_PASID MSR (using RDMSR and WRMSR) 
even if the XSAVE feature set is not enabled or has not been configured to manage PASID state.

13.5.9 CET State
The register state used by Control-Flow Enforcement Technology (CET) comprises the two 64-bit MSRs 
(IA32_U_CET and IA32_PL3_SSP) that manage CET when CPL = 3 (CET_U state); and the three 64-bit MSRs 
(IA32_PL0_SSP–IA32_PL2_SSP) that manage CET when CPL < 3 (CET_S state). Together, these two supervisor 
state components compose CET state.1

As noted in Section 13.1, the XSAVE feature set manages CET state as supervisor state components 11–12. Thus, 
CET state is located in the extended region of the XSAVE area (see Section 13.4.3). The following items detail how 
these state components are organized in this region:
• CET_U state.

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=11):EAX enumerates the size (in bytes) required for CET_U 
state. The CET_U section is used for the 64-bit MSRs IA32_U_CET and IA32_PL3_SSP, with bytes 7:0 being 
used for IA32_U_CET and bytes 15:8 being used for IA32_PL3_SSP.

• CET_S state.
As noted in Section 13.2, CPUID.(EAX=0DH,ECX=12):EAX enumerates the size (in bytes) required for CET_S 
state. The CET_S section is used for the three 64-bit MSRs IA32_PL0_SSP–IA32_PL2_SSP, with bytes 8i+7:8i 
being used for IA32_PLi_SSP.

The two components of CET state are XSAVE-managed and CET is not XSAVE-enabled. The XSAVE feature set can 
operate on CET_U state (respectively, CET_S state) only if the feature set is enabled (CR4.OSXSAVE = 1) and has 
been configured to manage CET_U state (respectively, CET_S state) by setting IA32_XSS[11] (respectively, 
IA32_XSS[12]). Software can otherwise use CET and access the CET MSRs (using RDMSR and WRMSR) even if the 
XSAVE feature set is not enabled or has not been configured to manage CET state.

13.5.10 HDC State
The register state used by hardware duty cycling (HDC state) comprises the IA32_PM_CTL1 MSR.

As noted in Section 13.1, the XSAVE feature set manages HDC state as supervisor state component 13. Thus, HDC 
state is located in the extended region of the XSAVE area (see Section 13.4.3). As noted in Section 13.2, 
CPUID.(EAX=0DH,ECX=13):EAX enumerates the size (in bytes) required for HDC state. The IA32_PM_CTL1 MSR 
is allocated 8 bytes at byte offset 0 in the state component.

1. The IA32_S_CET and IA32_INTERRUPT_SSP_TABLE_ADDR MSRs also control CET when CPL < 3. However, they are not managed by 
the XSAVE feature set and are thus not considered in this chapter.
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HDC state is XSAVE-managed but hardware duty cycling is not XSAVE-enabled. The XSAVE feature set can operate 
on HDC state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage HDC state 
(IA32_XSS[13] = 1). Software can otherwise use hardware duty cycling and access the IA32_PM_CTL1 MSR (using 
RDMSR and WRMSR) even if the XSAVE feature set is not enabled or has not been configured to manage HDC state.

13.5.11 UINTR State
The register state used by user interrupts (UINTR state) comprises 48 bytes in memory with the following layout:
• Bytes 7:0 are for the IA32_UINTR_HANDLER MSR.
• Bytes 15:8 are for the IA32_UINTR_STACKADJUST MSR.
• Bytes 23:16 are for the IA32_UINTR_MISC MSR with exception of the last bit (bit 7 of byte 23), which is used 

for UIF. (Because UIF is not part of the IA32_UINTR_MISC MSR, software that reads a value from bytes 23:16 
should clear bit 63 of that 64-bit value before attempting to write it to the IA32_UINTR_MISC MSR.).

• Bytes 31:24 are for the IA32_UINTR_PD MSR.
• Bytes 39:32 are for the IA32_UINTR_RR MSR.
• Bytes 47:40 are for the IA32_UINTR_TT MSR.

As noted in Section 13.1, the XSAVE feature set manages UINTR state as supervisor state component 14. Thus, 
UINTR state is located in the extended region of the XSAVE area (see Section 13.4.3). As noted in Section 13.2, 
CPUID.(EAX=0DH,ECX=14):EAX enumerates the size (in bytes) required for UINTR state.

UINTR state is XSAVE-managed but user interrupts are not XSAVE-enabled. The XSAVE feature set can operate on 
UINTR state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage UINTR state 
(IA32_XSS[14] = 1). Software can otherwise use user interrupts and access the MSRs (using RDMSR and WRMSR) 
even if the XSAVE feature set is not enabled or has not been configured to manage UINTR state.
The management of the UINTR state component by XSAVES follows the architecture of the XSAVE feature set. The 
following items identify points that are specific to saving the UINTR state component:
• XSAVES writes the user-interrupt registers to the user-interrupt state component using the format specified 

above.
• XSAVES stores zeros to bits and bytes identified above as reserved.
• The values saved for the IA32_UINTR_HANDLER, IA32_UINTR_STACKADJUST, IA32_UINTR_PD, and 

IA32_UINTR_TT MSRs are always canonical relative to the maximum linear-address width enumerated by 
CPUID1.

• After saving the user-interrupt state component, XSAVES clears UINV. (UINV is IA32_UINTR_MISC[39:32]; 
XSAVES does not modify the remainder of that MSR.)

The management of the user-interrupt state component by XRSTORS follows the architecture of the XSAVE feature 
set. The following items identify points that are specific to restoring the user-interrupt state component:
• Before restoring the user-interrupt state component, XRSTORS verifies that UINV is 0. If it is not, XRSTORS 

causes a general-protection fault (#GP) before loading any part of the user-interrupt state component. (UINV 
is IA32_UINTR_MISC[39:32]; XRSTORS does not check the contents of the remainder of that MSR.)

• If the instruction mask and XSAVE area used by XRSTORS indicates that the user-interrupt state component 
should be loaded from the XSAVE area, XRSTORS reads the user-interrupt registers from the XSAVE area using 
the format identified above. The values read cause a general-protection fault (#GP) in any of the following 
cases:

— If the value to be loaded into any one of the IA32_UINTR_HANDLER, IA32_UINTR_STACKADJUST, 
IA32_UINTR_PD, or IA32_UINTR_TT MSRs is not canonical relative to the maximum linear-address width 
enumerated by CPUID.

— If the value to be loaded into the IA32_UINTR_MISC MSR sets any of bits 62:40. These bits are reserved in 
the MSR. (Bit 63 is also reserved in the MSR, but the XSAVE feature set uses bit 63 of this value for UIF.)

1. They might not be canonical relative to the current paging mode if it supports only smaller linear addresses.
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— If the value to be loaded into the IA32_UINTR_ PD MSR sets any of bits 5:0. These bits are reserved in the 
MSR.

— If the value to be loaded into the IA32_UINTR_ TT MSR sets any of bits 3:1. These bits are reserved in the 
MSR.

• If XRSTORS causes a fault or a VM exit after loading any part of the user-interrupt state component, XRSTORS 
clears UINV before delivering the fault or VM exit. (Other elements of user-interrupt state, including other parts 
of the IA32_UINTR_MISC MSR, may retain the values that were loaded by XRSTORS.)

• After an execution of XRSTORS that loads the user-interrupt state component, the logical processor recognizes 
a pending user interrupt if and only if some bit is set in the IA32_UINTR_RR MSR (see Section 8.4.1 in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

13.5.12 LBR State
The register state used by last-branch records (LBR state) comprises 101 MSRs organized as follows: 
IA32_LBR_CTL; IA32_LBR_DEPTH; IA32_LER_FROM_IP; IA32_LER_TO_IP; IA32_LER_INFO; and 32 triples of 
MSRs, IA32_LBR_i_FROM_IP, IA32_LBR_i_TO_IP, IA32_LBR_i_INFO, for each value of i, 0 ≤ i ≤ 31.

As noted in Section 13.1, the XSAVE feature set manages LBR state as supervisor state component 15. Thus, LBR 
state is located in the extended region of the XSAVE area (see Section 13.4.3). As noted in Section 13.2, 
CPUID.(EAX=0DH,ECX=15):EAX enumerates the size (in bytes) required for LBR state. The IA32_LBR_CTL MSR is 
allocated 8 bytes at byte offset 0 in the state component. The remaining MSRs are each allocated 8 bytes in the 
state component in the order given above. Thus, IA32_LBR_DEPTH is at byte offset 8, … , IA32_LBR_0_FROM_IP 
at byte offset 40, IA32_LBR_0_TO_IP at byte offset 48, IA32_LBR_0_INFO at byte offset 56, 
IA32_LBR_1_FROM_IP at byte offset 64, …, and IA32_LBR_31_INFO at byte offset 800. Any locations in the state 
component at or beyond byte offset 808 are reserved.

LBR state is XSAVE-managed but LBRs are not XSAVE-enabled. The XSAVE feature set can operate on LBR state 
only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage LBR state 
(IA32_XSS[15] = 1). Software can otherwise use LBRs and access the MSRs (using RDMSR and WRMSR) even if 
the XSAVE feature set is not enabled or has not been configured to manage LBR state.

The following items describe special treatment of LBR state by the XSAVES and XRSTORS instructions:
• If XSAVES would save LBR state and that state is not in its initial configuration (see Section 13.6), the 

instruction always saves IA32_LBR_CTL, IA32_LBR_DEPTH, IA32_LER_FROM_IP, IA32_LER_TO_IP, and 
IA32_LER_INFO. It saves the triples IA32_LBR_i_FROM_IP, IA32_LBR_i_TO_IP, IA32_LBR_i_INFO, for each 
value of i, 0 ≤ i < D, where D is the value of IA32_LBR_DEPTH. It will not save the values of the remaining 
triples, although it may access the corresponding fields in the XSAVE area.

• If XSAVES would save LBR state and that state is in its initial configuration, the instruction does not save any 
LBR state and will not access that component of the XSAVE area.

• If XRSTORS would initialize LBR state, IA32_LBR_DEPTH is not modified and zero is written to the other MSRs 
that compose LBR state.

• If XRSTORS would restore LBR state, behavior depends on the current value of IA32_LBR_DEPTH and the value 
of corresponding field in the XSAVE area:

— If the current value of IA32_LBR_DEPTH equals the value of corresponding field in the XSAVE area, the 
instruction restores IA32_LBR_CTL, IA32_LER_FROM_IP, IA32_LER_TO_IP, IA32_LER_INFO, and the 
triples IA32_LBR_i_FROM_IP, IA32_LBR_i_TO_IP, IA32_LBR_i_INFO, for each value of i, 0 ≤ i < D, where 
D is the value of IA32_LBR_DEPTH. It will not restore the values of the remaining triples, although it may 
access the corresponding fields in the XSAVE area.

— If the IA32_LBR_DEPTH field in the XSAVE area sets any reserved bits, the instruction causes a general-
protection exception (#GP).

— If neither of the previous items apply, the instruction restores IA32_LBR_CTL, IA32_LER_FROM_IP, 
IA32_LER_TO_IP, and IA32_LER_INFO, but it writes zero to the triples IA32_LBR_i_FROM_IP, 
IA32_LBR_i_TO_IP, IA32_LBR_i_INFO, for each value of i, 0 ≤ i ≤ 31. Such an execution does not modify 
XINUSE[15] (see Section 13.6 and Section 13.12).
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13.5.13 HWP State
The register state used by hardware P-states (HWP state) comprises the IA32_HWP_REQUEST MSR.

As noted in Section 13.1, the XSAVE feature set manages HWP state as supervisor state component 16. Thus, HWP 
state is located in the extended region of the XSAVE area (see Section 13.4.3). As noted in Section 13.2, 
CPUID.(EAX=0DH,ECX=16):EAX enumerates the size (in bytes) required for HWP state. The IA32_HWP_REQUEST 
MSR is allocated 8 bytes at byte offset 0 in the state component.

HWP state is XSAVE-managed but the hardware P-states feature is not XSAVE-enabled. The XSAVE feature set can 
operate on HWP state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage 
HWP state (IA32_XSS[16] = 1). Software can otherwise use hardware P-states and access the 
IA32_HWP_REQUEST MSR (using RDMSR and WRMSR) even if the XSAVE feature set is not enabled or has not 
been configured to manage HWP state.

13.5.14 AMX State
The register state used by the Intel® Advanced Matrix Extensions (Intel AMX) comprises two state components, 
TILECFG and TILEDATA. Together, these two state components compose AMX state.

As noted in Section 13.1, the XSAVE feature set manages AMX state as state components 17–18. Thus, AMX state 
is located in the extended region of the XSAVE area (see Section 13.4.3). The following items detail how these 
state components are organized in this region:
• TILECFG state.

As noted in Section 13.1, the XSAVE feature set manages TILECFG state as user state component 17. Thus, 
TILECFG state is located in the extended region of the XSAVE area (see Section 13.4.3). As noted in Section 
13.2, CPUID.(EAX=0DH,ECX=17):EAX enumerates the size (in bytes) required for TILECFG state.

• TILEDATA state.
As noted in Section 13.1, the XSAVE feature set manages TILEDATA state as user state component 18. Thus, 
TILEDATA state is located in the extended region of the XSAVE area (see Section 13.4.3). As noted in Section 
13.2, CPUID.(EAX=0DH,ECX=18):EAX enumerates the size (in bytes) required for TILEDATA state.

Both components of AMX state are XSAVE-managed, and the AMX feature is XSAVE-enabled. The XSAVE feature 
set can operate on AMX state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to 
manage AMX state (XCR0[18:17] = 11b). Intel AMX instructions cannot be used unless the XSAVE feature set is 
enabled and has been configured to manage AMX state.

The following items describe special treatment of TILECFG and TILEDATA by the XSAVE feature set:
• Loading of TILECFG and TILEDATA by XRSTOR and XRSTORS:

— While the LDTILECFG instruction generates a general-protection fault (#GP) if it would load the TILECFG 
register with an unsupported value executions of XRSTOR and XRSTORS do not do so. Instead, they 
initialize the register (resulting in TILES_CONFIGURED = 0).

While executions of LDTILECFG initialize TILEDATA, executions of XRSTOR and XRSTORS do not modify 
TILEDATA unless loading it from memory.

While the value of the TILECFG register can limit how Intel AMX instructions access TILEDATA, such 
limitations do not apply to XRSTOR and XRSTORS. An execution of either of those instructions loads all 8 
KBytes of TILEDATA regardless of the value in the TILECFG register (or the value that the instruction may 
be loading into that register).

• Saving of TILEDATA by XSAVE, XSAVEC, XSAVEOPT, and XSAVES:

— While the value of the TILECFG register can limit how Intel AMX instructions access TILEDATA, such 
limitations do not apply to XSAVE, XSAVEC, XSAVEOPT, and XSAVES. An execution of any of those instruc-
tions saves all 8 KBytes of TILEDATA regardless of the value in the TILECFG register.
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13.6 PROCESSOR TRACKING OF XSAVE-MANAGED STATE
The XSAVEOPT, XSAVEC, and XSAVES instructions use two optimizations to reduce the amount of data that they 
write to memory. They avoid writing data for any state component known to be in its initial configuration (the init 
optimization). In addition, if either XSAVEOPT or XSAVES is using the same XSAVE area as that used by the most 
recent execution of XRSTOR or XRSTORS, it may avoid writing data for any state component whose configuration 
is known not to have been modified since then (the modified optimization). (XSAVE does not use these optimi-
zations, and XSAVEC does not use the modified optimization.) The operation of XSAVEOPT, XSAVEC, and XSAVES 
are described in more detail in Section 13.9 through Section 13.11.

A processor can support the init and modified optimizations with special hardware that tracks the state components 
that might benefit from those optimizations. Other implementations might not include such hardware; such a 
processor would always consider each such state component as not in its initial configuration and as modified since 
the last execution of XRSTOR or XRSTORS.

The following notation describes the state of the init and modified optimizations:
• XINUSE denotes the state-component bitmap corresponding to the init optimization. If XINUSE[i] = 0, state 

component i is known to be in its initial configuration; otherwise XINUSE[i] = 1. It is possible for XINUSE[i] to 
be 1 even when state component i is in its initial configuration. On a processor that does not support the init 
optimization, XINUSE[i] is always 1 for every value of i.
Executing XGETBV with ECX = 1 returns in EDX:EAX the logical-AND of XCR0 and the current value of the 
XINUSE state-component bitmap. Such an execution of XGETBV always sets EAX[1] to 1 if XCR0[1] = 1 and 
MXCSR does not have its RESET value of 1F80H. Section 13.2 explains how software can determine whether a 
processor supports this use of XGETBV.

• XMODIFIED denotes the state-component bitmap corresponding to the modified optimization. If 
XMODIFIED[i] = 0, state component i is known not to have been modified since the most recent execution of 
XRSTOR or XRSTORS; otherwise XMODIFIED[i] = 1. It is possible for XMODIFIED[i] to be 1 even when state 
component i has not been modified since the most recent execution of XRSTOR or XRSTORS. On a processor 
that does not support the modified optimization, XMODIFIED[i] is always 1 for every value of i.

A processor that implements the modified optimization saves information about the most recent execution of 
XRSTOR or XRSTORS in a quantity called XRSTOR_INFO, a 4-tuple containing the following: (1) the CPL; 
(2) whether the logical processor was in VMX non-root operation; (3) the linear address of the XSAVE area; and 
(4) the XCOMP_BV field in the XSAVE area. An execution of XSAVEOPT or XSAVES uses the modified optimization 
only if that execution corresponds to XRSTOR_INFO on these four parameters.

This mechanism implies that, depending on details of the operating system, the processor might determine that an 
execution of XSAVEOPT by one user application corresponds to an earlier execution of XRSTOR by a different appli-
cation. For this reason, Intel recommends the application software not use the XSAVEOPT instruction.

The following items specify the initial configuration each state component (for the purposes of defining the XINUSE 
bitmap):
• x87 state. x87 state is in its initial configuration if the following all hold: FCW is 037FH; FSW is 0000H; FTW is 

FFFFH; FCS and FDS are each 0000H; FIP and FDP are each 00000000_00000000H; each of ST0–ST7 is 
0000_00000000_00000000H.

• SSE state. In 64-bit mode, SSE state is in its initial configuration if each of XMM0–XMM15 is 0. Outside 64-bit 
mode, SSE state is in its initial configuration if each of XMM0–XMM7 is 0. XINUSE[1] pertains only to the state 
of the XMM registers and not to MXCSR. An execution of XRSTOR or XRSTORS outside 64-bit mode does not 
update XMM8–XMM15. (See Section 13.13.)

• AVX state. In 64-bit mode, AVX state is in its initial configuration if each of YMM0_H–YMM15_H is 0. Outside 
64-bit mode, AVX state is in its initial configuration if each of YMM0_H–YMM7_H is 0. An execution of XRSTOR 
or XRSTORS outside 64-bit mode does not update YMM8_H–YMM15_H. (See Section 13.13.)

• BNDREGS state. BNDREGS state is in its initial configuration if the value of each of BND0–BND3 is 0.
• BNDCSR state. BNDCSR state is in its initial configuration if BNDCFGU and BNDCSR each has value 0.
• Opmask state. Opmask state is in its initial configuration if each of the opmask registers k0–k7 is 0.
• ZMM_Hi256 state. In 64-bit mode, ZMM_Hi256 state is in its initial configuration if each of ZMM0_H–

ZMM15_H is 0. Outside 64-bit mode, ZMM_Hi256 state is in its initial configuration if each of ZMM0_H–ZMM7_H 
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is 0. An execution of XRSTOR or XRSTORS outside 64-bit mode does not update ZMM8_H–ZMM15_H. (See 
Section 13.13.)

• Hi16_ZMM state. In 64-bit mode, Hi16_ZMM state is in its initial configuration if each of ZMM16–ZMM31 is 0. 
Outside 64-bit mode, Hi16_ZMM state is always in its initial configuration. An execution of XRSTOR or XRSTORS 
outside 64-bit mode does not update ZMM31–ZMM31. (See Section 13.13.)

• PT state. PT state is in its initial configuration if each of the 9 MSRs is 0.
• PKRU state. PKRU state is in its initial configuration if the value of the PKRU is 0.
• PASID state. PASID state is in its initial configuration if the value of the IA32_PASID MSR is 0.
• CET_U state. CET_U state is in its initial configuration if both of the MSRs are 0.
• CET_S state. CET_S state is in its initial configuration if each of the three MSRs is 0.
• HDC state. HDC state is in its initial configuration if the value of the IA32_PM_CTL1 MSR is 1.
• UINTR state. UINTR state is in its initial configuration if all user-interrupt registers (including UIF) are zero.
• LBR state. LBR state is in its initial configuration if the value of each of the MSRs is 0, with the exception of 

IA32_LBR_DEPTH. XINUSE[15] does not pertain to IA32_LBR_DEPTH.
• HWP state. HWP state is in its initial configuration if the value of the IA32_HWP_REQUEST MSR is 8000FF01H.
• AMX state. AMX state is in its initial configuration if the TILECFG register is zero and all tile data are zero.

13.7 OPERATION OF XSAVE
The XSAVE instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair 
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction 
mask. The logical-AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of the user 
state components to be saved.

The following conditions cause execution of the XSAVE instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

If none of these conditions cause a fault, execution of XSAVE reads the XSTATE_BV field of the XSAVE header (see 
Section 13.4.2) and writes it back to memory, setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:
• If RFBM[i] = 0, XSTATE_BV[i] is not changed.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i]. Section 13.6 defines XINUSE to describe the 

processor init optimization and specifies the initial configuration of each state component. The nature of that 
optimization implies the following:

— If state component i is in its initial configuration, XINUSE[i] may be either 0 or 1, and XSTATE_BV[i] may 
be written with either 0 or 1.

XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. Thus, XSTATE_BV[1] may be 
written with 0 even if MXCSR does not have its RESET value of 1F80H.

— If state component i is not in its initial configuration, XINUSE[i] = 1 and XSTATE_BV[i] is written with 1.
(As explained in Section 13.6, the initial configurations of some state components may depend on whether the 
processor is in 64-bit mode.)

The XSAVE instruction does not write any part of the XSAVE header other than the XSTATE_BV field; in particular, 
it does not write to the XCOMP_BV field.

Execution of XSAVE saves into the XSAVE area those state components corresponding to bits that are set in RFBM. 
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state 
component i, 2 ≤ i ≤ 62, is located in the extended region; the XSAVE instruction always uses the standard format 
for the extended region (see Section 13.4.3).

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.
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The MXCSR register and MXCSR_MASK are part of SSE state (see Section 13.5.2) and are thus associated with 
RFBM[1]. However, the XSAVE instruction also saves these values when RFBM[2] = 1 (even if RFBM[1] = 0).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and 
operation determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory 
accesses.

13.8 OPERATION OF XRSTOR
The XRSTOR instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair 
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction 
mask. The logical-AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of the user 
state components to be restored.

The following conditions cause execution of the XRSTOR instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

After checking for these faults, the XRSTOR instruction reads the XCOMP_BV field in the XSAVE area’s XSAVE 
header (see Section 13.4.2). If XCOMP_BV[63] = 0, the standard form of XRSTOR is executed (see Section 
13.8.1); otherwise, the compacted form of XRSTOR is executed (see Section 13.8.2).2

See Section 13.2 for details of how to determine whether the compacted form of XRSTOR is supported.

13.8.1 Standard Form of XRSTOR
The standard from of XRSTOR performs additional fault checking. Either of the following conditions causes a 
general-protection exception (#GP):
• The XSTATE_BV field of the XSAVE header sets a bit that is not set in XCR0.
• Bytes 23:8 of the XSAVE header are not all 0 (this implies that all bits in XCOMP_BV are 0).3

If none of these conditions cause a fault, the processor updates each state component i for which RFBM[i] = 1. 
XRSTOR updates state component i based on the value of bit i in the XSTATE_BV field of the XSAVE header:
• If XSTATE_BV[i] = 0, the state component is set to its initial configuration. Section 13.6 specifies the initial 

configuration of each state component.
The initial configuration of state component 1 pertains only to the XMM registers and not to MXCSR. See below 
for the treatment of MXCSR

• If XSTATE_BV[i] = 1, the state component is loaded with data from the XSAVE area. See Section 13.5 for 
specifics for each state component and for details regarding mode-specific operation and operation determined 
by instruction prefixes. See Section 13.13 for details regarding faults caused by memory accesses.
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state 
component i, 2 ≤ i ≤ 62, is located in the extended region; the standard form of XRSTOR uses the standard 
format for the extended region (see Section 13.4.3).

The MXCSR register is part of state component 1, SSE state (see Section 13.5.2). However, the standard form of 
XRSTOR loads the MXCSR register from memory whenever the RFBM[1] (SSE) or RFBM[2] (AVX) is set, regardless 

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

2. If the processor does not support the compacted form of XRSTOR, it may execute the standard form of XRSTOR without first read-
ing the XCOMP_BV field. A processor supports the compacted form of XRSTOR only if it enumerates 
CPUID.(EAX=0DH,ECX=1):EAX[1] as 1.

3. Bytes 63:24 of the XSAVE header are also reserved. Software should ensure that bytes 63:16 of the XSAVE header are all 0 in any 
XSAVE area. (Bytes 15:8 should also be 0 if the XSAVE area is to be used on a processor that does not support the compaction 
extensions to the XSAVE feature set.)
13-20 Vol. 1



MANAGING STATE USING THE XSAVE FEATURE SET
of the values of XSTATE_BV[1] and XSTATE_BV[2]. The standard form of XRSTOR causes a general-protection 
exception (#GP) if it would load MXCSR with an illegal value.

13.8.2 Compacted Form of XRSTOR
The compacted from of XRSTOR performs additional fault checking. Any of the following conditions causes a #GP:
• The XCOMP_BV field of the XSAVE header sets a bit in the range 62:0 that is not set in XCR0.
• The XSTATE_BV field of the XSAVE header sets a bit (including bit 63) that is not set in XCOMP_BV.
• Bytes 63:16 of the XSAVE header are not all 0.

If none of these conditions cause a fault, the processor updates each state component i for which RFBM[i] = 1. 
XRSTOR updates state component i based on the value of bit i in the XSTATE_BV field of the XSAVE header:
• If XSTATE_BV[i] = 0, the state component is set to its initial configuration. Section 13.6 specifies the initial 

configuration of each state component.
If XSTATE_BV[1] = 0, the compacted form XRSTOR initializes MXCSR to 1F80H. (This differs from the standard 
from of XRSTOR, which loads MXCSR from the XSAVE area whenever either RFBM[1] or RFBM[2] is set.)
State component i is set to its initial configuration as indicated above if RFBM[i] = 1 and XSTATE_BV[i] = 0 — 
even if XCOMP_BV[i] = 0. This is true for all values of i, including 0 (x87 state) and 1 (SSE state).

• If XSTATE_BV[i] = 1, the state component is loaded with data from the XSAVE area.1 See Section 13.5 for 
specifics for each state component and for details regarding mode-specific operation and operation determined 
by instruction prefixes. See Section 13.13 for details regarding faults caused by memory accesses.
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state 
component i, 2 ≤ i ≤ 62, is located in the extended region; the compacted form of the XRSTOR instruction uses 
the compacted format for the extended region (see Section 13.4.3).

The MXCSR register is part of SSE state (see Section 13.5.2) and is thus loaded from memory if RFBM[1] = 
XSTATE_BV[i] = 1. The compacted form of XRSTOR does not consider RFBM[2] (AVX) when determining whether 
to update MXCSR. (This is a difference from the standard form of XRSTOR.) The compacted form of XRSTOR causes 
a general-protection exception (#GP) if it would load MXCSR with an illegal value.

13.8.3 XRSTOR and the Init and Modified Optimizations
Execution of the XRSTOR instruction causes the processor to update its tracking for the init and modified optimiza-
tions (see Section 13.6). The following items provide details:
• The processor updates its tracking for the init optimization as follows:

— If RFBM[i] = 0, XINUSE[i] is not changed.

— If RFBM[i] = 1 and XSTATE_BV[i] = 0, state component i may be tracked as init; XINUSE[i] may be set to 
0 or 1. (As noted in Section 13.6, a processor need not implement the init optimization for state component 
i; a processor that does not do so implicitly maintains XINUSE[i] = 1 at all times.)

— If RFBM[i] = 1 and XSTATE_BV[i] = 1, state component i is tracked as not init; XINUSE[i] is set to 1.
• The processor updates its tracking for the modified optimization and records information about the XRSTOR 

execution for future interaction with the XSAVEOPT and XSAVES instructions (see Section 13.9 and Section 
13.11) as follows:

— If RFBM[i] = 0, state component i is tracked as modified; XMODIFIED[i] is set to 1.

— If RFBM[i] = 1, state component i may be tracked as unmodified; XMODIFIED[i] may be set to 0 or 1. (As 
noted in Section 13.6, a processor need not implement the modified optimization for state component i; a 
processor that does not do so implicitly maintains XMODIFIED[i] = 1 at all times.)

1. Earlier fault checking ensured that, if the instruction has reached this point in execution and XSTATE_BV[i] is 1, then XCOMP_BV[i] is 
also 1.
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— XRSTOR_INFO is set to the 4-tuple w,x,y,z, where w is the CPL (0); x is 1 if the logical processor is in VMX 
non-root operation and 0 otherwise; y is the linear address of the XSAVE area; and z is XCOMP_BV. In 
particular, the standard form of XRSTOR always sets z to all zeroes, while the compacted form of XRSTORS 
never does so (because it sets at least bit 63 to 1).

Note that, if RFBM is entirely zero (e.g., because the instruction mask in EDX:EAX is zero), no state components are 
modified, the XINUSE bitmap is not modified, and all bits are set in the XMODIFIED bitmap. Thus, if EDX:EAX was 
zero for the most recent execution of XRSTOR, an execution of XSAVEOPT or XSAVES will identify all state compo-
nents as modified and will thus not use the modified optimization.

13.9 OPERATION OF XSAVEOPT
The operation of XSAVEOPT is similar to that of XSAVE. Unlike XSAVE, XSAVEOPT uses the init optimization (by 
which it may omit saving state components that are in their initial configuration) and the modified optimization (by 
which it may omit saving state components that have not been modified since the last execution of XRSTOR); see 
Section 13.6. See Section 13.2 for details of how to determine whether XSAVEOPT is supported.

The XSAVEOPT instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair 
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction 
mask. The logical (bitwise) AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of 
the user state components to be saved.

The following conditions cause execution of the XSAVEOPT instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

If none of these conditions cause a fault, execution of XSAVEOPT reads the XSTATE_BV field of the XSAVE header 
(see Section 13.4.2) and writes it back to memory, setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:
• If RFBM[i] = 0, XSTATE_BV[i] is not changed.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i]. Section 13.6 defines XINUSE to describe the 

processor init optimization and specifies the initial configuration of each state component. The nature of that 
optimization implies the following:

— If the state component is in its initial configuration, XINUSE[i] may be either 0 or 1, and XSTATE_BV[i] may 
be written with either 0 or 1.

XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. Thus, XSTATE_BV[1] may be 
written with 0 even if MXCSR does not have its RESET value of 1F80H.

— If the state component is not in its initial configuration, XSTATE_BV[i] is written with 1.
(As explained in Section 13.6, the initial configurations of some state components may depend on whether the 
processor is in 64-bit mode.)

The XSAVEOPT instruction does not write any part of the XSAVE header other than the XSTATE_BV field; in partic-
ular, it does not write to the XCOMP_BV field.

Execution of XSAVEOPT saves into the XSAVE area those state components corresponding to bits that are set in 
RFBM (subject to the optimizations described below). State components 0 and 1 are located in the legacy region of 
the XSAVE area (see Section 13.4.1). Each state component i, 2 ≤ i ≤ 62, is located in the extended region; the 
XSAVEOPT instruction always uses the standard format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and 
operation determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory 
accesses.

Execution of XSAVEOPT performs two optimizations that reduce the amount of data written to memory:

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.
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• Init optimization.
If XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). (See below for 
exceptions made for MXCSR.)

• Modified optimization.
Each execution of XRSTOR and XRSTORS establishes XRSTOR_INFO as a 4-tuple w,x,y,z (see Section 13.8.3 
and Section 13.12). Execution of XSAVEOPT uses the modified optimization only if the following all hold for the 
current value of XRSTOR_INFO:

— w = CPL;

— x = 1 if and only if the logical processor is in VMX non-root operation;

— y is the linear address of the XSAVE area being used by XSAVEOPT; and

— z is 00000000_00000000H. (This last item implies that XSAVEOPT does not use the modified optimization 
if the last execution of XRSTOR used the compacted form, or if an execution of XRSTORS followed the last 
execution of XRSTOR.)

If XSAVEOPT uses the modified optimization and XMODIFIED[i] = 0 (see Section 13.6), state component i is 
not saved to the XSAVE area.
(In practice, the benefit of the modified optimization for state component i depends on how the processor is 
tracking state component i; see Section 13.6. Limitations on the tracking ability may result in state component 
i being saved even though is in the same configuration that was loaded by the previous execution of XRSTOR.)
Depending on details of the operating system, an execution of XSAVEOPT by a user application might use the 
modified optimization when the most recent execution of XRSTOR was by a different application. Because of 
this, Intel recommends the application software not use the XSAVEOPT instruction.

The MXCSR register and MXCSR_MASK are part of SSE state (see Section 13.5.2) and are thus associated with 
bit 1 of RFBM. However, the XSAVEOPT instruction also saves these values when RFBM[2] = 1 (even if RFBM[1] = 
0). The init and modified optimizations do not apply to the MXCSR register and MXCSR_MASK.

13.10 OPERATION OF XSAVEC
The operation of XSAVEC is similar to that of XSAVE. Two main differences are (1) XSAVEC uses the compacted 
format for the extended region of the XSAVE area; and (2) XSAVEC uses the init optimization (see Section 13.6). 
Unlike XSAVEOPT, XSAVEC does not use the modified optimization. See Section 13.2 for details of how to deter-
mine whether XSAVEC is supported.

The XSAVEC instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair 
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction 
mask. The logical (bitwise) AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of 
the user state components to be saved.

The following conditions cause execution of the XSAVEC instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

If none of these conditions cause a fault, execution of XSAVEC writes the XSTATE_BV field of the XSAVE header 
(see Section 13.4.2), setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:2

• If RFBM[i] = 0, XSTATE_BV[i] is written as 0.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i] (see below for an exception made for 

XSTATE_BV[1]). Section 13.6 defines XINUSE to describe the processor init optimization and specifies the 
initial configuration of each state component. The nature of that optimization implies the following:

— If state component i is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

2. Unlike the XSAVE and XSAVEOPT instructions, the XSAVEC instruction does not read the XSTATE_BV field of the XSAVE header.
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— If state component i is not in its initial configuration, XSTATE_BV[i] is written with 1.
XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. However, if RFBM[1] = 1 and 
MXCSR does not have the value 1F80H, XSAVEC writes XSTATE_BV[1] as 1 even if XINUSE[1] = 0.
(As explained in Section 13.6, the initial configurations of some state components may depend on whether the 
processor is in 64-bit mode.)

The XSAVEC instructions sets bit 63 of the XCOMP_BV field of the XSAVE header while writing RFBM[62:0] to 
XCOMP_BV[62:0]. The XSAVEC instruction does not write any part of the XSAVE header other than the XSTATE_BV 
and XCOMP_BV fields.

Execution of XSAVEC saves into the XSAVE area those state components corresponding to bits that are set in RFBM 
(subject to the init optimization described below). State components 0 and 1 are located in the legacy region of the 
XSAVE area (see Section 13.4.1). Each state component i, 2 ≤ i ≤ 62, is located in the extended region; the XSAVEC 
instruction always uses the compacted format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and 
operation determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory 
accesses.

Execution of XSAVEC performs the init optimization to reduce the amount of data written to memory. If 
XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). However, if RFBM[1] = 1 
and MXCSR does not have the value 1F80H, XSAVEC saves all of state component 1 (SSE — including the XMM 
registers) even if XINUSE[1] = 0. Unlike the XSAVE instruction, RFBM[2] does not determine whether XSAVEC 
saves MXCSR and MXCSR_MASK.

13.11 OPERATION OF XSAVES
The operation of XSAVES is similar to that of XSAVEC. The main differences are (1) XSAVES can be executed only 
if CPL = 0; (2) XSAVES can operate on the state components whose bits are set in XCR0 | IA32_XSS and can thus 
operate on supervisor state components; and (3) XSAVES uses the modified optimization (see Section 13.6). See 
Section 13.2 for details of how to determine whether XSAVES is supported.

The XSAVES instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair 
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction 
mask. EDX:EAX & (XCR0 | IA32_XSS) (the logical AND the instruction mask with the logical OR of XCR0 and 
IA32_XSS) is the requested-feature bitmap (RFBM) of the state components to be saved.

The following conditions cause execution of the XSAVES instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If CPL > 0 or if the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) 

occurs.

If none of these conditions cause a fault, execution of XSAVES writes the XSTATE_BV field of the XSAVE header 
(see Section 13.4.2), setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:
• If RFBM[i] = 0, XSTATE_BV[i] is written as 0.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i] (see below for an exception made for 

XSTATE_BV[1]). Section 13.6 defines XINUSE to describe the processor init optimization and specifies the 
initial configuration of each state component. The nature of that optimization implies the following:

— If state component i is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.

— If state component i is not in its initial configuration, XSTATE_BV[i] is written with 1.
XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. However, if RFBM[1] = 1 and 
MXCSR does not have the value 1F80H, XSAVES writes XSTATE_BV[1] as 1 even if XINUSE[1] = 0.
(As explained in Section 13.6, the initial configurations of some state components may depend on whether the 
processor is in 64-bit mode.)
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The XSAVES instructions sets bit 63 of the XCOMP_BV field of the XSAVE header while writing RFBM[62:0] to 
XCOMP_BV[62:0]. The XSAVES instruction does not write any part of the XSAVE header other than the XSTATE_BV 
and XCOMP_BV fields.

Execution of XSAVES saves into the XSAVE area those state components corresponding to bits that are set in RFBM 
(subject to the optimizations described below). State components 0 and 1 are located in the legacy region of the 
XSAVE area (see Section 13.4.1). Each state component i, 2 ≤ i ≤ 62, is located in the extended region; the XSAVES 
instruction always uses the compacted format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and 
operation determined by instruction prefixes; in particular, see Section 13.5.6, Section 13.5.11, Section 13.5.12, 
and Section 13.5.14 for special treatment by XSAVES of PT state, UINTR state, LBR state, and AMX state, respec-
tively. See Section 13.13 for details regarding faults caused by memory accesses.

Execution of XSAVES performs the init optimization to reduce the amount of data written to memory. If 
XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). However, if RFBM[1] = 1 
and MXCSR does not have the value 1F80H, XSAVES saves all of state component 1 (SSE — including the XMM 
registers) even if XINUSE[1] = 0.

Like XSAVEOPT, XSAVES may perform the modified optimization. Each execution of XRSTOR and XRSTORS estab-
lishes XRSTOR_INFO as a 4-tuple w,x,y,z (see Section 13.8.3 and Section 13.12). Execution of XSAVES uses the 
modified optimization only if the following all hold:
• w = CPL;
• x = 1 if and only if the logical processor is in VMX non-root operation;
• y is the linear address of the XSAVE area being used by XSAVEOPT; and
• z[63] is 1 and z[62:0] = RFBM[62:0]. (This last item implies that XSAVES does not use the modified optimi-

zation if the last execution of XRSTOR used the standard form and followed the last execution of XRSTORS.)

If XSAVES uses the modified optimization and XMODIFIED[i] = 0 (see Section 13.6), state component i is not 
saved to the XSAVE area.

13.12 OPERATION OF XRSTORS
The operation of XRSTORS is similar to that of XRSTOR. Three main differences are (1) XRSTORS can be executed 
only if CPL = 0; (2) XRSTORS can operate on the state components whose bits are set in XCR0 | IA32_XSS and can 
thus operate on supervisor state components; and (3) XRSTORS has only a compacted form (no standard form; 
see Section 13.8). See Section 13.2 for details of how to determine whether XRSTORS is supported.

The XRSTORS instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair 
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction 
mask. EDX:EAX & (XCR0 | IA32_XSS) (the logical AND the instruction mask with the logical OR of XCR0 and 
IA32_XSS) is the requested-feature bitmap (RFBM) of the state components to be restored.

The following conditions cause execution of the XRSTOR instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If CPL > 0 or if the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) 

occurs.

After checking for these faults, the XRSTORS instruction reads the first 64 bytes of the XSAVE header, including the 
XSTATE_BV and XCOMP_BV fields (see Section 13.4.2). A #GP occurs if any of the following conditions hold for the 
values read:
• XCOMP_BV[63] = 0.
• XCOMP_BV sets a bit in the range 62:0 that is not set in XCR0 | IA32_XSS.
• XSTATE_BV sets a bit (including bit 63) that is not set in XCOMP_BV.
• Bytes 63:16 of the XSAVE header are not all 0.
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If none of these conditions cause a fault, the processor updates each state component i for which RFBM[i] = 1. 
XRSTORS updates state component i based on the value of bit i in the XSTATE_BV field of the XSAVE header:
• If XSTATE_BV[i] = 0, the state component is set to its initial configuration. Section 13.6 specifies the initial 

configuration of each state component. If XSTATE_BV[1] = 0, XRSTORS initializes MXCSR to 1F80H.
State component i is set to its initial configuration as indicated above if RFBM[i] = 1 and XSTATE_BV[i] = 0 — 
even if XCOMP_BV[i] = 0. This is true for all values of i, including 0 (x87 state) and 1 (SSE state).

• If XSTATE_BV[i] = 1, the state component is loaded with data from the XSAVE area.1 See Section 13.5 for 
specifics for each state component and for details regarding mode-specific operation and operation determined 
by instruction prefixes; in particular, see Section 13.5.6 and Section 13.5.12 for special treatment by XRSTORS 
of PT state and LBR state, respectively. See Section 13.13 for details regarding faults caused by memory 
accesses.
If XRSTORS is restoring a supervisor state component, the instruction causes a general-protection exception 
(#GP) if it would load any element of that component with an unsupported value (e.g., by setting a reserved bit 
in an MSR) or if a bit is set in any reserved portion of the state component in the XSAVE area.
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state 
component i, 2 ≤ i ≤ 62, is located in the extended region; XRSTORS uses the compacted format for the 
extended region (see Section 13.4.3).
The MXCSR register is part of SSE state (see Section 13.5.2) and is thus loaded from memory if RFBM[1] = 
XSTATE_BV[i] = 1. XRSTORS causes a general-protection exception (#GP) if it would load MXCSR with an 
illegal value.

If an execution of XRSTORS causes an exception or a VM exit during or after restoring a supervisor state compo-
nent, each element of that state component may have the value it held before the XRSTORS execution, the value 
loaded from the XSAVE area, or the element’s initial value (as defined in Section 13.6). See Section 13.5.6 for some 
special treatment of PT state for the case in which XRSTORS causes an exception or a VM exit.

Like XRSTOR, execution of XRSTORS causes the processor to update is tracking for the init and modified optimiza-
tions (see Section 13.6 and Section 13.8.3). The following items provide details:
• The processor updates its tracking for the init optimization as follows:

— If RFBM[i] = 0, XINUSE[i] is not changed.

— If RFBM[i] = 1 and XSTATE_BV[i] = 0, state component i may be tracked as init; XINUSE[i] may be set to 
0 or 1.

— If RFBM[i] = 1 and XSTATE_BV[i] = 1, state component i is tracked as not init; XINUSE[i] is set to 1.2

• The processor updates its tracking for the modified optimization and records information about the XRSTORS 
execution for future interaction with the XSAVEOPT and XSAVES instructions as follows:

— If RFBM[i] = 0, state component i is tracked as modified; XMODIFIED[i] is set to 1.

— If RFBM[i] = 1, state component i may be tracked as unmodified; XMODIFIED[i] may be set to 0 or 1.

— XRSTOR_INFO is set to the 4-tuple w,x,y,z, where w is the CPL; x is 1 if the logical processor is in VMX 
non-root operation and 0 otherwise; y is the linear address of the XSAVE area; and z is XCOMP_BV (this 
implies that z[63] = 1).

Note that, if RFBM is entirely zero (e.g., because the instruction mask in EDX:EAX is zero), no state components are 
modified, the XINUSE bitmap is not modified, and all bits are set in the XMODIFIED bitmap. Thus, if EDX:EAX was 
zero for the most recent execution of XRSTORS, an execution of XSAVEOPT or XSAVES will identify all state compo-
nents as modified and will thus not use the modified optimization.

1. Earlier fault checking ensured that, if the instruction has reached this point in execution and XSTATE_BV[i] is 1, then XCOMP_BV[i] is 
also 1.

2. For LBR state (state component 15), XRSTORS may leave XINIUSE[15] unmodified in certain situations even if RFBM[15] = 1 = 
XSTATE_BV[15] = 1. See Section 13.5.12.
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13.13 MEMORY ACCESSES BY THE XSAVE FEATURE SET
Each instruction in the XSAVE feature set operates on a set of XSAVE-managed state components. The specific set 
of components on which an instruction operates is determined by the values of XCR0, the IA32_XSS MSR, 
EDX:EAX, and (for XRSTOR and XRSTORS) the XSAVE header.

Section 13.4 provides the details necessary to determine the location of each state component for any execution of 
an instruction in the XSAVE feature set. An execution of an instruction in the XSAVE feature set may access any 
byte of any state component on which that execution operates even when saving a state component is omitted 
because it is in its initial configuration; when restoring a state component to its initial configuration; or when XFD 
is enabled for the state components (see Section 13.14).

Section 13.5 provides details of the different XSAVE-managed state components. Some portions of some of these 
components are accessible only in 64-bit mode. Executions of XRSTOR and XRSTORS outside 64-bit mode will not 
update those portions; executions of XSAVE, XSAVEC, XSAVEOPT, and XSAVES will not modify the corresponding 
locations in memory.

Despite this fact, any execution of these instructions outside 64-bit mode may access any byte in any state compo-
nent on which that execution operates — even those at addresses corresponding to registers that are accessible 
only in 64-bit mode. As a result, such an execution may incur a fault due to an attempt to access such an address.

For example, an execution of XSAVE outside 64-bit mode may incur a page fault if paging does not map as 
read/write the section of the XSAVE area containing state component 7 (Hi16_ZMM state) — despite the fact that 
state component 7 can be accessed only in 64-bit mode.

13.14 EXTENDED FEATURE DISABLE (XFD)
Extended feature disable (XFD) is an extension to the XSAVE feature set that allows an operating system to 
enable a feature while preventing specific user threads from using the feature. This section describes XFD.
As noted in Section 13.2, a processor that supports XFD enumerates CPUID.(EAX=0DH,ECX=1):EAX[4] as 1. Such 
a processor supports two new MSRs: IA32_XFD (MSR address 1C4H) and IA32_XFD_ERR (MSR address 1C5H). 
Each of these MSRs contains a state-component bitmap. Bit i of either MSR can be set to 1 only if 
CPUID.(EAX=0DH,ECX=i):ECX[2] is enumerated as 1 (see Section 13.2). An execution of WRMSR that attempts to 
set an unsupported bit in either MSR causes a general-protection fault (#GP). The reset values of both of these 
MSRs are zero.
XFD is enabled for state component i if XCR0[i] = IA32_XFD[i] = 1. (IA32_XFD[i] does not affect processor oper-
ations if XCR0[i] = 0.) In compacted format, the IA32_XFD MSR does not impact the computation of XCOMP_BV by 
the XSAVEC or XSAVES instructions and thus does not impact the format of the extended region of the XSAVE area. 
When XFD is enabled for a state component, any instruction that would access that state component does not 
execute and instead generates a device-not-available exception (#NM).
Exceptions are made for certain instructions (including those that initialize the state component). The following 
items provide details:
• LDTILECFG and TILERELEASE initialize the TILEDATA state component. An execution of either of these instruc-

tions does not generate #NM when XCR0[18] = IA32_XFD[18] = 1; instead, it initializes TILEDATA normally. 
(Note that STTILECFG does not use the TILEDATA state component. Thus, an execution of this instruction does 
not generate #NM when XCR0[18] = IA32_XFD[18] = 1.)

• If XRSTOR or XRSTORS is loading state component i and bit i of the XSTATE_BV field of the XSAVE header is 0, 
the instruction does not generate #NM when XCR0[i] = IA32_XFD[i] = 1; instead, it initializes the state 
component normally. (If bit i of the XSTATE_BV field of the XSAVE header is 1, the instruction does generate 
#NM.)

• If XSAVE, XSAVEC, XSAVEOPT, or XSAVES is saving the state component i, the instruction does not generate 
#NM when XCR0[i] = IA32_XFD[i] = 1; instead, it operates as if XINUSE[i] = 0 (and the state component was 
in its initial state): it saves bit i of XSTATE_BV field of the XSAVE header as 0; in addition, XSAVE saves the 
initial configuration of the state component (the other instructions do not save state component i).

• Enclave entry instructions (ENCLU[EENTER] and ENCLU[ERESUME]) generate #NM if XCR0[i] = IA32_XFD[i] = 
1 and bit i is set in the XFRM field in the attributes of the enclave being entered.
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When XFD causes an instruction to generate #NM, the processor loads the IA32_XFD_ERR MSR to identify the 
disabled state component(s). Specifically, the MSR is loaded with the logical AND of the IA32_XFD MSR and the 
bitmap corresponding to the state component(s) required by the faulting instruction.

Device-not-available exceptions that are not due to XFD — those resulting from setting CR0.TS to 1 — do not 
modify the IA32_XFD_ERR MSR. 
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CHAPTER 14
PROGRAMMING WITH INTEL® AVX, FMA, AND INTEL® AVX2

Intel® Advanced Vector Extensions (Intel® AVX) introduces 256-bit vector processing capability. The Intel AVX 
instruction set extends 128-bit SIMD instruction sets by employing a new instruction encoding scheme via a vector 
extension prefix (VEX). Intel AVX also offers several enhanced features beyond those available in prior generations 
of 128-bit SIMD extensions. 
FMA (Fused Multiply Add) extensions enhances Intel AVX further in floating-point numeric computations. FMA 
provides high-throughput, arithmetic operations cover fused multiply-add, fused multiply-subtract, fused multiply 
add/subtract interleave, signed-reversed multiply on fused multiply-add and multiply-subtract. 

Intel® Advanced Vector Extensions 2 (Intel® AVX2) provides 256-bit integer SIMD extensions that accelerate 
computation across integer and floating-point domains using 256-bit vector registers.

This chapter summarizes the key features of Intel AVX, FMA, and Intel AVX2.

14.1 INTEL® AVX OVERVIEW
Intel AVX introduces the following architectural enhancements:
• Support for 256-bit wide vectors with the YMM vector register set. 
• 256-bit floating-point instruction set enhancement with up to 2X performance gain relative to 128-bit 

Streaming SIMD extensions.
• Enhancement of legacy 128-bit SIMD instruction extensions to support three-operand syntax and to simplify 

compiler vectorization of high-level language expressions.
• VEX prefix-encoded instruction syntax support for generalized three-operand syntax to improve instruction 

programming flexibility and efficient encoding of new instruction extensions.
• Most VEX-encoded 128-bit and 256-bit AVX instructions (with both load and computational operation 

semantics) are not restricted to 16-byte or 32-byte memory alignment. 
• Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy 128-bit code and scalar code.

With the exception of SIMD instructions operating on MMX registers, almost all legacy 128-bit SIMD instructions 
have AVX equivalents that support three operand syntax. 256-bit AVX instructions employ three-operand syntax 
and some with 4-operand syntax. 

14.1.1 256-Bit Wide SIMD Register Support
Intel AVX introduces support for 256-bit wide SIMD registers (YMM0-YMM7 in operating modes that are 32-bit or 
less, YMM0-YMM15 in 64-bit mode). The lower 128-bits of the YMM registers are aliased to the respective 128-bit 
XMM registers. 
Legacy SSE instructions (i.e., SIMD instructions operating on XMM state but not using the VEX prefix, also referred 
to non-VEX encoded SIMD instructions) will not access the upper bits beyond bit 128 of the YMM registers. AVX 
instructions with a VEX prefix and vector length of 128-bits zeroes the upper bits (above bit 128) of the YMM 
register. 
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14.1.2 Instruction Syntax Enhancements
Intel AVX employs an instruction encoding scheme using a new prefix (known as “VEX” prefix). Instruction 
encoding using the VEX prefix can directly encode a register operand within the VEX prefix. This support two new 
instruction syntax in Intel 64 architecture: 
• A non-destructive operand (in a three-operand instruction syntax): The non-destructive source reduces the 

number of registers, register-register copies and explicit load operations required in typical SSE loops, reduces 
code size, and improves micro-fusion opportunities. 

• A third source operand (in a four-operand instruction syntax) via the upper 4 bits in an 8-bit immediate field. 
Support for the third source operand is defined for selected instructions (e.g., VBLENDVPD, VBLENDVPS, 
PBLENDVB).

Two-operand instruction syntax previously expressed in legacy SSE instruction as

ADDPS xmm1, xmm2/m128

128-bit AVX equivalent can be expressed in three-operand syntax as

VADDPS xmm1, xmm2, xmm3/m128

In four-operand syntax, the extra register operand is encoded in the immediate byte.
Note SIMD instructions supporting three-operand syntax but processing only 128-bits of data are considered part 
of the 256-bit SIMD instruction set extensions of AVX, because bits 255:128 of the destination register are zeroed 
by the processor. 

14.1.3 VEX Prefix Instruction Encoding Support
Intel AVX introduces a new prefix, referred to as VEX, in the Intel 64 and IA-32 instruction encoding format. 
Instruction encoding using the VEX prefix provides the following capabilities:
• Direct encoding of a register operand within VEX. This provides instruction syntax support for non-destructive 

source operand. 
• Efficient encoding of instruction syntax operating on 128-bit and 256-bit register sets.

Figure 14-1.  256-Bit Wide SIMD Register

XMM0YMM0

XMM1YMM1

. . .
XMM15YMM15

Bit#
0127128255
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• Compaction of REX prefix functionality: The equivalent functionality of the REX prefix is encoded within VEX. 
• Compaction of SIMD prefix functionality and escape byte encoding: The functionality of SIMD prefix (66H, F2H, 

F3H) on opcode is equivalent to an opcode extension field to introduce new processing primitives. This 
functionality is replaced by a more compact representation of opcode extension within the VEX prefix. Similarly, 
the functionality of the escape opcode byte (0FH) and two-byte escape (0F38H, 0F3AH) are also compacted 
within the VEX prefix encoding. 

• Most VEX-encoded SIMD numeric and data processing instruction semantics with memory operand have 
relaxed memory alignment requirements than instructions encoded using SIMD prefixes (see Section 14.9).

VEX prefix encoding applies to SIMD instructions operating on YMM registers, XMM registers, and in some cases 
with a general-purpose register as one of the operand. VEX prefix is not supported for instructions operating on 
MMX or x87 registers. Details of VEX prefix and instruction encoding are discussed in Chapter 2, “Instruction 
Format,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

14.2 FUNCTIONAL OVERVIEW
Intel AVX provides comprehensive functional improvements over previous generations of SIMD instruction exten-
sions. The functional improvements include:
• 256-bit floating-point arithmetic primitives: Intel AVX enhances existing 128-bit floating-point arithmetic 

instructions with 256-bit capabilities for floating-point processing. Table 14-1 lists SIMD instructions promoted 
to Intel AVX.

• Enhancements for flexible SIMD data movements: Intel AVX provides a number of new data movement 
primitives to enable efficient SIMD programming in relation to loading non-unit-strided data into SIMD 
registers, intra-register SIMD data manipulation, conditional expression and branch handling, etc. Enhance-
ments for SIMD data movement primitives cover 256-bit and 128-bit vector floating-point data, and across 
128-bit integer SIMD data processing using VEX-encoded instructions.

Table 14-1.  Promoted SSSE3 and Intel® SSE, SSE2, SSE3, and SSE4 Instructions
VEX.256 
Encoding

VEX.128 
Encoding

Group Instruction If No, Reason?

yes yes YY 0F 1X MOVUPS

no yes MOVSS scalar

yes yes MOVUPD

no yes MOVSD scalar

no yes MOVLPS Note 1

no yes MOVLPD Note 1

no yes MOVLHPS Redundant with VPERMILPS

yes yes MOVDDUP

yes yes MOVSLDUP

yes yes UNPCKLPS

yes yes UNPCKLPD

yes yes UNPCKHPS

yes yes UNPCKHPD

no yes MOVHPS Note 1

no yes MOVHPD Note 1

no yes MOVHLPS Redundant with VPERMILPS

yes yes MOVAPS

yes yes MOVSHDUP

yes yes MOVAPD
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no no CVTPI2PS MMX

no yes CVTSI2SS scalar

no no CVTPI2PD MMX

no yes CVTSI2SD scalar

no yes MOVNTPS

no yes MOVNTPD

no no CVTTPS2PI MMX

no yes CVTTSS2SI scalar

no no CVTTPD2PI MMX

no yes CVTTSD2SI scalar

no no CVTPS2PI MMX

no yes CVTSS2SI scalar

no no CVTPD2PI MMX

no yes CVTSD2SI scalar

no yes UCOMISS scalar

no yes UCOMISD scalar

no yes COMISS scalar

no yes COMISD scalar

yes yes YY 0F 5X MOVMSKPS

yes yes MOVMSKPD

yes yes SQRTPS

no yes SQRTSS scalar

yes yes SQRTPD

no yes SQRTSD scalar

yes yes RSQRTPS

no yes RSQRTSS scalar

yes yes RCPPS

no yes RCPSS scalar

yes yes ANDPS

yes yes ANDPD

yes yes ANDNPS

yes yes ANDNPD

yes yes ORPS

yes yes ORPD

yes yes XORPS

yes yes XORPD

yes yes ADDPS

no yes ADDSS scalar

yes yes ADDPD

no yes ADDSD scalar

yes yes MULPS

no yes MULSS scalar

yes yes MULPD

no yes MULSD scalar

VEX.256 
Encoding

VEX.128 
Encoding Group Instruction If No, Reason?
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yes yes CVTPS2PD

no yes CVTSS2SD scalar

yes yes CVTPD2PS

no yes CVTSD2SS scalar

yes yes CVTDQ2PS

yes yes CVTPS2DQ

yes yes CVTTPS2DQ

yes yes SUBPS

no yes SUBSS scalar

yes yes SUBPD

no yes SUBSD scalar

yes yes MINPS

no yes MINSS scalar

yes yes MINPD

no yes MINSD scalar

yes yes DIVPS

no yes DIVSS scalar

yes yes DIVPD

no yes DIVSD scalar

yes yes MAXPS

no yes MAXSS scalar

yes yes MAXPD

no yes MAXSD scalar

no yes YY 0F 6X PUNPCKLBW VI

no yes PUNPCKLWD VI

no yes PUNPCKLDQ VI

no yes PACKSSWB VI

no yes PCMPGTB VI

no yes PCMPGTW VI

no yes PCMPGTD VI

no yes PACKUSWB VI

no yes PUNPCKHBW VI

no yes PUNPCKHWD VI

no yes PUNPCKHDQ VI

no yes PACKSSDW VI

no yes PUNPCKLQDQ VI

no yes PUNPCKHQDQ VI

no yes MOVD scalar

no yes MOVQ scalar

yes yes MOVDQA

yes yes MOVDQU

no yes YY 0F 7X PSHUFD VI

no yes PSHUFHW VI

no yes PSHUFLW VI

VEX.256 
Encoding

VEX.128 
Encoding Group Instruction If No, Reason?
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no yes PCMPEQB VI

no yes PCMPEQW VI

no yes PCMPEQD VI

yes yes HADDPD

yes yes HADDPS

yes yes HSUBPD

yes yes HSUBPS

no yes MOVD VI

no yes MOVQ VI

yes yes MOVDQA

yes yes MOVDQU

no yes YY 0F AX LDMXCSR

no yes STMXCSR

yes yes YY 0F CX CMPPS

no yes CMPSS scalar

yes yes CMPPD

no yes CMPSD scalar

no yes PINSRW VI

no yes PEXTRW VI

yes yes SHUFPS

yes yes SHUFPD

yes yes YY 0F DX ADDSUBPD

yes yes ADDSUBPS

no yes PSRLW VI

no yes PSRLD VI

no yes PSRLQ VI

no yes PADDQ VI

no yes PMULLW VI

no no MOVQ2DQ MMX

no no MOVDQ2Q MMX

no yes PMOVMSKB VI

no yes PSUBUSB VI

no yes PSUBUSW VI

no yes PMINUB VI

no yes PAND VI

no yes PADDUSB VI

no yes PADDUSW VI

no yes PMAXUB VI

no yes PANDN VI

no yes YY 0F EX PAVGB VI

no yes PSRAW VI

no yes PSRAD VI

no yes PAVGW VI

no yes PMULHUW VI

VEX.256 
Encoding

VEX.128 
Encoding Group Instruction If No, Reason?
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no yes PMULHW VI

yes yes CVTPD2DQ

yes yes CVTTPD2DQ

yes yes CVTDQ2PD

no yes MOVNTDQ VI

no yes PSUBSB VI

no yes PSUBSW VI

no yes PMINSW VI

no yes POR VI

no yes PADDSB VI

no yes PADDSW VI

no yes PMAXSW VI

no yes PXOR VI

yes yes YY 0F FX LDDQU VI

no yes PSLLW VI

no yes PSLLD VI

no yes PSLLQ VI

no yes PMULUDQ VI

no yes PMADDWD VI

no yes PSADBW VI

no yes MASKMOVDQU

no yes PSUBB VI

no yes PSUBW VI

no yes PSUBD VI

no yes PSUBQ VI

no yes PADDB VI

no yes PADDW VI

no yes PADDD VI

no yes SSSE3 PHADDW VI

no yes PHADDSW VI

no yes PHADDD VI

no yes PHSUBW VI

no yes PHSUBSW VI

no yes PHSUBD VI

no yes PMADDUBSW VI

no yes PALIGNR VI

no yes PSHUFB VI

no yes PMULHRSW VI

no yes PSIGNB VI

no yes PSIGNW VI

no yes PSIGND VI

no yes PABSB VI

no yes PABSW VI

no yes PABSD VI

VEX.256 
Encoding

VEX.128 
Encoding Group Instruction If No, Reason?
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yes yes SSE4.1 BLENDPS

yes yes BLENDPD

yes yes BLENDVPS Note 2

yes yes BLENDVPD Note 2

no yes DPPD

yes yes DPPS

no yes EXTRACTPS Note 3

no yes INSERTPS Note 3

no yes MOVNTDQA

no yes MPSADBW VI

no yes PACKUSDW VI

no yes PBLENDVB VI

no yes PBLENDW VI

no yes PCMPEQQ VI

no yes PEXTRD VI

no yes PEXTRQ VI

no yes PEXTRB VI

no yes PEXTRW VI

no yes PHMINPOSUW VI

no yes PINSRB VI

no yes PINSRD VI

no yes PINSRQ VI

no yes PMAXSB VI

no yes PMAXSD VI

no yes PMAXUD VI

no yes PMAXUW VI

no yes PMINSB VI

no yes PMINSD VI

no yes PMINUD VI

no yes PMINUW VI

no yes PMOVSXxx VI 

no yes PMOVZXxx VI 

no yes PMULDQ VI

no yes PMULLD VI

yes yes PTEST

yes yes ROUNDPD

yes yes ROUNDPS

no yes ROUNDSD scalar

no yes ROUNDSS scalar

no yes SSE4.2 PCMPGTQ VI

no no SSE4.2 CRC32c integer

no yes PCMPESTRI VI

no yes PCMPESTRM VI

VEX.256 
Encoding

VEX.128 
Encoding Group Instruction If No, Reason?
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14.2.1 256-Bit Floating-Point Arithmetic Processing Enhancements
Intel AVX provides 35 256-bit floating-point arithmetic instructions, see Table 14-2. The arithmetic operations 
cover add, subtract, multiply, divide, square-root, compare, max, min, round, etc., on single precision and double 
precision floating-point data. 
The enhancement in AVX on floating-point compare operation provides 32 conditional predicates to improve 
programming flexibility in evaluating conditional expressions.

14.2.2 256-Bit Non-Arithmetic Instruction Enhancements
Intel AVX provides primitives for handling data movement within 256-bit floating-point vectors and promotes many 
128-bit floating data processing instructions to handle 256-bit floating-point vectors. 
Intel AVX includes 39 256-bit data movement and processing instructions that are promoted from previous gener-
ations of SIMD instruction extensions, ranging from logical, blend, convert, test, unpacking, shuffling, load, and 
stores (see Table 14-3). 

no yes PCMPISTRI VI

no yes PCMPISTRM VI

no no SSE4.2 POPCNT integer

Table 14-2.  Promoted 256-Bit and 128-Bit Arithmetic Intel® AVX Instructions

VEX.256 Encoding VEX.128 Encoding Legacy Instruction Mnemonic

yes yes SQRTPS, SQRTPD, RSQRTPS, RCPPS

yes yes ADDPS, ADDPD, SUBPS, SUBPD

yes yes MULPS, MULPD, DIVPS, DIVPD

yes yes CVTPS2PD, CVTPD2PS

yes yes CVTDQ2PS, CVTPS2DQ

yes yes CVTTPS2DQ, CVTTPD2DQ

yes yes CVTPD2DQ, CVTDQ2PD

yes yes MINPS, MINPD, MAXPS, MAXPD

yes yes HADDPD, HADDPS, HSUBPD, HSUBPS

yes yes CMPPS, CMPPD

yes yes ADDSUBPD, ADDSUBPS, DPPS

yes yes ROUNDPD, ROUNDPS

Table 14-3.  Promoted 256-Bit and 128-Bit Data Movement Intel® AVX Instructions 

VEX.256 Encoding VEX.128 Encoding Legacy Instruction Mnemonic

yes yes MOVAPS, MOVAPD, MOVDQA

yes yes MOVUPS, MOVUPD, MOVDQU

yes yes MOVMSKPS, MOVMSKPD

yes yes LDDQU, MOVNTPS, MOVNTPD, MOVNTDQ, MOVNTDQA

yes yes MOVSHDUP, MOVSLDUP, MOVDDUP

VEX.256 
Encoding

VEX.128 
Encoding Group Instruction If No, Reason?
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Intel AVX introduces 18 data processing instructions that operate on 256-bit vectors, Table 14-4. These new prim-
itives cover the following operations:
• Non-unit-strided fetching of SIMD data. Intel AVX provides several flexible SIMD floating-point data fetching 

primitives: 

— Broadcast of single or multiple data elements into a 256-bit destination.

— Masked move primitives to load or store SIMD data elements conditionally.
• Intra-register manipulation of SIMD data elements. Intel AVX provides several flexible SIMD floating-point data 

manipulation primitives: 

— Insert/extract multiple SIMD floating-point data elements to/from 256-bit SIMD registers.

— Permute primitives to facilitate efficient manipulation of floating-point data elements in 256-bit SIMD 
registers.

• Branch handling. Intel AVX provides several primitives to enable handling of branches in SIMD programming:

— Variable blend instructions supports four-operand syntax with non-destructive source syntax. This is more 
flexible than the equivalent Intel SSE4 instruction syntax which uses the XMM0 register as the implied mask 
for blend selection. 

— Packed TEST instructions for floating-point data.

yes yes UNPCKHPD, UNPCKHPS, UNPCKLPD

yes yes BLENDPS, BLENDPD

yes yes SHUFPD, SHUFPS, UNPCKLPS

yes yes BLENDVPS, BLENDVPD

yes yes PTEST, MOVMSKPD, MOVMSKPS

yes yes XORPS, XORPD, ORPS, ORPD

yes yes ANDNPD, ANDNPS, ANDPD, ANDPS

Table 14-4.  256-Bit Intel® AVX Instruction Enhancements 

Instruction Description

VBROADCASTF128 ymm1, m128 Broadcast 128-bit floating-point values in mem to low and high 128-bits in ymm1.

VBROADCASTSD ymm1, m64 Broadcast double precision floating-point element in mem to four locations in ymm1.

VBROADCASTSS ymm1, m32 Broadcast single precision floating-point element in mem to eight locations in ymm1.

VEXTRACTF128 xmm1/m128, ymm2, 
imm8

Extracts 128-bits of packed floating-point values from ymm2 and store results in 
xmm1/mem.

VINSERTF128 ymm1, ymm2, 
xmm3/m128, imm8

Insert 128-bits of packed floating-point values from xmm3/mem and the remaining val-
ues from ymm2 into ymm1.

VMASKMOVPS ymm1, ymm2, m256 Load packed single precision values from mem using mask in ymm2 and store in ymm1.

VMASKMOVPD ymm1, ymm2, m256 Load packed double precision values from mem using mask in ymm2 and store in ymm1.

VMASKMOVPS m256, ymm1, ymm2 Store packed single precision values from ymm2 mask in ymm1.

VMASKMOVPD m256, ymm1, ymm2 Store packed double precision values from ymm2 using mask in ymm1.

VPERMILPD ymm1, ymm2, ymm3/m256 Permute double precision floating-point values in ymm2 using controls from xmm3/mem 
and store result in ymm1.

Table 14-3.  Promoted 256-Bit and 128-Bit Data Movement Intel® AVX Instructions  (Contd.)

VEX.256 Encoding VEX.128 Encoding Legacy Instruction Mnemonic
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14.2.3 Arithmetic Primitives for 128-Bit Vector and Scalar processing
Intel AVX provides a full complement of 128-bit numeric processing instructions that employ VEX-prefix encoding. 
These VEX-encoded instructions generally provide the same functionality over instructions operating on XMM 
register that are encoded using SIMD prefixes. The 128-bit numeric processing instructions in AVX cover floating-
point and integer data processing; across 128-bit vector and scalar processing. Table 14-5 lists the state of promo-
tion of legacy SIMD arithmetic ISA to VEX-128 encoding. Legacy SIMD floating-point arithmetic ISA promoted to 
VEX-256 encoding also support VEX-128 encoding (see Table 14-2).
The enhancement in Intel AVX on 128-bit floating-point compare operation provides 32 conditional predicates to 
improve programming flexibility in evaluating conditional expressions. This contrasts with floating-point SIMD 
compare instructions in Intel SSE and SSE2 supporting only eight conditional predicates. 

VPERMILPD ymm1, ymm2/m256 imm8 Permute double precision floating-point values in ymm2/mem using controls from imm8 
and store result in ymm1.

VPERMILPS ymm1, ymm2, ymm/m256 Permute single precision floating-point values in ymm2 using controls from ymm3/mem 
and store result in ymm1.

VPERMILPS ymm1, ymm2/m256, imm8 Permute single precision floating-point values in ymm2/mem using controls from imm8 
and store result in ymm1.

VPERM2F128 ymm1, ymm2, 
ymm3/m256, imm8

Permute 128-bit floating-point fields in ymm2 and ymm3/mem using controls from imm8 
and store result in ymm1.

VTESTPS ymm1, ymm2/m256 Set ZF if ymm2/mem AND ymm1 result is all 0s in packed single precision sign bits. Set CF 
if ymm2/mem AND NOT ymm1 result is all 0s in packed single precision sign bits.

VTESTPD ymm1, ymm2/m256 Set ZF if ymm2/mem AND ymm1 result is all 0s in packed double precision sign bits. Set 
CF if ymm2/mem AND NOT ymm1 result is all 0s in packed double precision sign bits.

VZEROALL Zero all YMM registers.

VZEROUPPER Zero upper 128 bits of all YMM registers.

Table 14-5.  Promotion of Legacy SIMD ISA to 128-Bit Arithmetic Intel® AVX Instructions 

VEX.256 
Encoding

VEX.128 
Encoding

Instruction Reason Not Promoted

no no CVTPI2PS, CVTPI2PD, CVTPD2PI MMX

no no CVTTPS2PI, CVTTPD2PI, CVTPS2PI MMX

no yes CVTSI2SS, CVTSI2SD, CVTSD2SI Scalar

no yes CVTTSS2SI, CVTTSD2SI, CVTSS2SI Scalar

no yes COMISD, RSQRTSS, RCPSS Scalar

no yes UCOMISS, UCOMISD, COMISS, Scalar

no yes ADDSS, ADDSD, SUBSS, SUBSD Scalar

no yes MULSS, MULSD, DIVSS, DIVSD Scalar

no yes SQRTSS, SQRTSD Scalar

no yes CVTSS2SD, CVTSD2SS Scalar

no yes MINSS, MINSD, MAXSS, MAXSD Scalar

no yes PAND, PANDN, POR, PXOR VI

no yes PCMPGTB, PCMPGTW, PCMPGTD VI

Table 14-4.  256-Bit Intel® AVX Instruction Enhancements  (Contd.)

Instruction Description
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no yes PMADDWD, PMADDUBSW VI

no yes PAVGB, PAVGW, PMULUDQ VI

no yes PCMPEQB, PCMPEQW, PCMPEQD VI

no yes PMULLW, PMULHUW, PMULHW VI

no yes PSUBSW, PADDSW, PSADBW VI

no yes PADDUSB, PADDUSW, PADDSB VI

no yes PSUBUSB, PSUBUSW, PSUBSB VI

no yes PMINUB, PMINSW VI

no yes PMAXUB, PMAXSW VI

no yes PADDB, PADDW, PADDD, PADDQ VI

no yes PSUBB, PSUBW, PSUBD, PSUBQ VI

no yes PSLLW, PSLLD, PSLLQ, PSRAW VI

no yes PSRLW, PSRLD, PSRLQ, PSRAD VI

CPUID.SSSE3

no yes PHSUBW, PHSUBD, PHSUBSW VI

no yes PHADDW, PHADDD, PHADDSW VI

no yes PMULHRSW VI

no yes PSIGNB, PSIGNW, PSIGND VI

no yes PABSB, PABSW, PABSD VI

CPUID.SSE4_1

no yes DPPD

no yes PHMINPOSUW, MPSADBW VI

no yes PMAXSB, PMAXSD, PMAXUD VI

no yes PMINSB, PMINSD, PMINUD VI

no yes PMAXUW, PMINUW VI

no yes PMOVSXxx, PMOVZXxx VI

no yes PMULDQ, PMULLD VI

no yes ROUNDSD, ROUNDSS Scalar

CPUID.POPCNT

no yes POPCNT Integer

CPUID.SSE4_2

no yes PCMPGTQ VI

no no CRC32 Integer

no yes PCMPESTRI, PCMPESTRM VI

no yes PCMPISTRI, PCMPISTRM VI

CPUID.CLMUL

no yes PCLMULQDQ VI

CPUID.AESNI

Table 14-5.  Promotion of Legacy SIMD ISA to 128-Bit Arithmetic Intel® AVX Instructions  (Contd.)

VEX.256 
Encoding

VEX.128 
Encoding

Instruction Reason Not Promoted
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Description of Column “Reason not promoted”:
• MMX: Instructions referencing MMX registers do not support VEX.
• Scalar: Scalar instructions are not promoted to 256-bit.
• Integer: Integer instructions are not promoted.
• VI: “Vector Integer” instructions are not promoted to 256-bit.

14.2.4 Non-Arithmetic Primitives for 128-Bit Vector and Scalar Processing
Intel AVX provides a full complement of data processing instructions that employ VEX-prefix encoding. These VEX-
encoded instructions generally provide the same functionality over instructions operating on XMM register that are 
encoded using SIMD prefixes. 

A subset of new functionalities listed in Table 14-4 is also extended via VEX.128 encoding. These enhancements in 
AVX on 128-bit data processing primitives include 11 new instructions (see Table 14-6) with the following capabil-
ities:
• Non-unit-strided fetching of SIMD data. AVX provides several flexible SIMD floating-point data fetching 

primitives: 

— broadcast of single data element into a 128-bit destination,

— masked move primitives to load or store SIMD data elements conditionally,
• Intra-register manipulation of SIMD data elements. AVX provides several flexible SIMD floating-point data 

manipulation primitives: 

— permute primitives to facilitate efficient manipulation of floating-point data elements in 128-bit SIMD 
registers

• Branch handling. AVX provides several primitives to enable handling of branches in SIMD programming:

— new variable blend instructions supports four-operand syntax with non-destructive source syntax. 
Branching conditions dependent on floating-point data or integer data can benefit from Intel AVX. This is 
more flexible than non-VEX encoded instruction syntax that uses the XMM0 register as implied mask for 
blend selection. While variable blend with implied XMM0 syntax is supported in SSE4 using SIMD prefix 
encoding, VEX-encoded 128-bit variable blend instructions only support the more flexible four-operand 
syntax.

— Packed TEST instructions for floating-point data.

no yes AESDEC, AESDECLAST VI

no yes AESENC, AESENCLAST VI

no yes AESIMX, AESKEYGENASSIST VI

Table 14-6.  128-Bit Intel® AVX Instruction Enhancement 

Instruction Description

VBROADCASTSS xmm1, m32 Broadcast single precision floating-point element in mem to four locations in xmm1.

VMASKMOVPS xmm1, xmm2, m128 Load packed single precision values from mem using mask in xmm2 and store in xmm1.

VMASKMOVPD xmm1, xmm2, m128 Load packed double precision values from mem using mask in xmm2 and store in xmm1.

VMASKMOVPS m128, xmm1, xmm2 Store packed single precision values from xmm2 using mask in xmm1.

VMASKMOVPD m128, xmm1, xmm2 Store packed double precision values from xmm2 using mask in xmm1.

Table 14-5.  Promotion of Legacy SIMD ISA to 128-Bit Arithmetic Intel® AVX Instructions  (Contd.)

VEX.256 
Encoding

VEX.128 
Encoding

Instruction Reason Not Promoted
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The 128-bit data processing instructions in AVX cover floating-point and integer data movement primitives. Legacy 
SIMD non-arithmetic ISA promoted to VEX-256 encoding also support VEX-128 encoding (see Table 14-3). Table 
14-7 lists the state of promotion of the remaining legacy SIMD non-arithmetic ISA to VEX-128 encoding. 

VPERMILPD xmm1, xmm2, xmm3/m128 Permute double precision floating-point values in xmm2 using controls from xmm3/mem 
and store result in xmm1.

VPERMILPD xmm1, xmm2/m128, imm8 Permute double precision floating-point values in xmm2/mem using controls from imm8 
and store result in xmm1.

VPERMILPS xmm1, xmm2, xmm3/m128 Permute single precision floating-point values in xmm2 using controls from xmm3/mem 
and store result in xmm1.

VPERMILPS xmm1, xmm2/m128, imm8 Permute single precision floating-point values in xmm2/mem using controls from imm8 
and store result in xmm1.

VTESTPS xmm1, xmm2/m128 Set ZF if xmm2/mem AND xmm1 result is all 0s in packed single precision sign bits. Set CF 
if xmm2/mem AND NOT xmm1 result is all 0s in packed single precision sign bits.

VTESTPD xmm1, xmm2/m128 Set ZF if xmm2/mem AND xmm1 result is all 0s in packed single precision sign bits. Set CF 
if xmm2/mem AND NOT xmm1 result is all 0s in packed double precision sign bits.

Table 14-7.  Promotion of Legacy SIMD ISA to 128-Bit Non-Arithmetic Intel® AVX instruction 

VEX.256 
Encoding

VEX.128 
Encoding

Instruction Reason Not Promoted

no no MOVQ2DQ, MOVDQ2Q MMX

no yes LDMXCSR, STMXCSR

no yes MOVSS, MOVSD, CMPSS, CMPSD Scalar

no yes MOVHPS, MOVHPD Note 1

no yes MOVLPS, MOVLPD Note 1

no yes MOVLHPS, MOVHLPS Redundant with VPERMILPS

no yes MOVQ, MOVD Scalar

no yes PACKUSWB, PACKSSDW, PACKSSWB VI

no yes PUNPCKHBW, PUNPCKHWD VI

no yes PUNPCKLBW, PUNPCKLWD VI

no yes PUNPCKHDQ, PUNPCKLDQ VI

no yes PUNPCKLQDQ, PUNPCKHQDQ VI

no yes PSHUFHW, PSHUFLW, PSHUFD VI

no yes PMOVMSKB, MASKMOVDQU VI

no yes PAND, PANDN, POR, PXOR VI

no yes PINSRW, PEXTRW, VI

CPUID.SSSE3

no yes PALIGNR, PSHUFB VI

CPUID.SSE4_1

no yes EXTRACTPS, INSERTPS Note 3

no yes PACKUSDW, PCMPEQQ VI

Table 14-6.  128-Bit Intel® AVX Instruction Enhancement  (Contd.)

Instruction Description
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Description of column “Reason not promoted”:
• MMX: Instructions referencing MMX registers do not support VEX.
• Scalar: Scalar instructions are not promoted to 256-bit.
• VI: “Vector Integer” instructions are not promoted to 256-bit.
• Note 1: MOVLPD/PS and MOVHPD/PS are not promoted to 256-bit. The equivalent functionality are provided 

by VINSERTF128 and VEXTRACTF128 instructions as the existing instructions have no natural 256b extension
• Note 3: It is expected that using 128-bit INSERTPS followed by a VINSERTF128 would be better than 

promoting INSERTPS to 256-bit (for example).

14.3 DETECTION OF INTEL® AVX INSTRUCTIONS
Intel AVX instructions operate on the 256-bit YMM register state. Application detection of new instruction exten-
sions operating on the YMM state follows the general procedural flow in Figure 14-2.
Prior to using Intel AVX, the application must identify that the operating system supports the XGETBV instruction, 
the YMM register state, in addition to processor’s support for YMM state management using XSAVE/XRSTOR and 
AVX instructions. The following simplified sequence accomplishes both and is strongly recommended.
1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use1).
2) Issue XGETBV and verify that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
3) detect CPUID.1:ECX.AVX[bit 28] = 1 (AVX instructions supported).
(Step 3 can be done in any order relative to 1 and 2.)

no yes PBLENDVB, PBLENDW VI

no yes PEXTRW, PEXTRB, PEXTRD, PEXTRQ VI

no yes PINSRB, PINSRD, PINSRQ VI

1. If CPUID.01H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE, XRSTOR, XGETBV, processor 
extended state bit vector XCR0. Thus an application may streamline the checking of CPUID feature flags for XSAVE and OSXSAVE. 
XSETBV is a privileged instruction.

Figure 14-2.  General Procedural Flow of Application Detection of Intel® AVX

Table 14-7.  Promotion of Legacy SIMD ISA to 128-Bit Non-Arithmetic Intel® AVX instruction  (Contd.)

VEX.256 
Encoding

VEX.128 
Encoding

Instruction Reason Not Promoted

Implied HW support for

Check enabled state in

XCR0 via XGETBV
Check feature flag 

for Instruction set

Check feature flag

CPUID.1H:ECX.OSXSAVE = 1? 

OS provides processor
extended state management

State ok to use

XSAVE, XRSTOR, XGETBV, XCR0

enabled Instructions

Yes 
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The following pseudocode illustrates this recommended application Intel AVX detection process: 

NOTE
It is unwise for an application to rely exclusively on CPUID.1:ECX.AVX[bit 28] or at all on 
CPUID.1:ECX.XSAVE[bit 26]: These indicate hardware support but not operating system support. If 
YMM state management is not enabled by an operating systems, Intel AVX instructions will #UD 
regardless of CPUID.1:ECX.AVX[bit 28]. “CPUID.1:ECX.XSAVE[bit 26] = 1” does not guarantee the 
OS actually uses the XSAVE process for state management.

These steps above also apply to enhanced 128-bit SIMD floating-pointing instructions in Intel AVX (using VEX 
prefix-encoding) that operate on the YMM states. 

Example 14-1.  Detection of Intel® AVX Instruction 

INT supports_AVX()
{ mov eax, 1

cpuid
and ecx, 018000000H
cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags
 jne not_supported
; processor supports AVX instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XCR0 register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0
done:

}
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14.3.1 Detection of VEX-Encoded AES and VPCLMULQDQ
The VAESDEC/VAESDECLAST/VAESENC/VAESENCLAST/VAESIMC/VAESKEYGENASSIST instructions operate on 
YMM states. The detection sequence must combine checking for CPUID.1:ECX.AES[bit 25] = 1 and the sequence 
for detection application support for Intel AVX. 

Similarly, the detection sequence for VPCLMULQDQ must combine checking for CPUID.1:ECX.PCLMULQDQ[bit 1] = 
1 and the sequence for detection application support for Intel AVX. 
This is shown in the pseudocode provided in Example 14-3.

Example 14-2.  Detection of VEX-Encoded Intel® AES-NI Instructions 

INT supports_VAESNI()
{ mov eax, 1

cpuid
and ecx, 01A000000H
cmp ecx, 01A000000H; check OSXSAVE AVX and AESNI feature flags
 jne not_supported
; processor supports AVX and VEX-encoded AESNI and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XCR0 register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0

done:

Example 14-3.  Detection of VEX-Encoded Intel® AES-NI Instructions 

INT supports_VPCLMULQDQ)
{ mov eax, 1

cpuid
and ecx, 018000002H
cmp ecx, 018000002H; check OSXSAVE AVX and PCLMULQDQ feature flags
 jne not_supported
; processor supports AVX and VEX-encoded PCLMULQDQ and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XCR0 register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported

mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0

done:
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14.4 HALF PRECISION FLOATING-POINT CONVERSION
VCVTPH2PS and VCVTPS2PH are two instructions supporting half precision floating-point data type conversion to 
and from single precision floating-point data types. 
Half precision floating-point values are not used by the processor directly for arithmetic operations. But the conver-
sion operation are subject to SIMD floating-point exceptions. 

Additionally, the conversion operations of VCVTPS2PH allow programmer to specify rounding control using control 
fields in an immediate byte. The effects of the immediate byte are listed in Table 14-8.
Rounding control can use Imm[2] to select an override RC field specified in Imm[1:0] or use MXCSR setting. 

Specific SIMD floating-point exceptions that can occur in conversion operations are shown in Table 14-9 and 
Table 14-10.

The VCVTPS2PH instruction can cause denormal exceptions if the value of the source operand is denormal relative
to the numerical range represented by the source format (see Table 14-11).

Table 14-8.  Immediate Byte Encoding for 16-Bit Floating-Point Conversion Instructions

Bits Field Name/value Description Comment

Imm[1:0] RC=00B Round to nearest even If Imm[2] = 0

RC=01B Round down

RC=10B Round up

RC=11B Truncate

Imm[2] MS1=0 Use imm[1:0] for rounding Ignore MXCSR.RC 

MS1=1 Use MXCSR.RC for rounding

Imm[7:3] Ignored Ignored by processor

Table 14-9.  Non-Numerical Behavior for VCVTPH2PS and VCVTPS2PH

Source Operands Masked Result Unmasked Result

QNaN QNaN11

NOTES:
1. The half precision output QNaN1 is created from the single precision input QNaN as follows: the sign bit is preserved, the 8-bit expo-

nent FFH is replaced by the 5-bit exponent 1FH, and the 24-bit significand is truncated to an 11-bit significand by removing its 14
least significant bits.

QNaN11 (not an exception)

SNaN QNaN12

2. The half precision output QNaN1 is created from the single precision input SNaN as follows: the sign bit is preserved, the 8-bit expo-
nent FFH is replaced by the 5-bit exponent 1FH, and the 24-bit significand is truncated to an 11-bit significand by removing its 14
least significant bits. The second most significant bit of the significand is changed from 0 to 1 to convert the signaling NaN into a quiet
NaN.

None

Table 14-10.  Invalid Operation for VCVTPH2PS and VCVTPS2PH 

Instruction  Condition Masked Result Unmasked Result

VCVTPH2PS SRC = NaN See Table 14-9 #I=1

VCVTPS2PH SRC = NaN See Table 14-9 #I=1
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The VCVTPS2PH instruction can cause an underflow exception if the result of the conversion is less than the un-
derflow threshold for half precision floating-point data type, i.e., | x | < 1.0 ∗ 2−14. 

The VCVTPS2PH instruction can cause an overflow exception if the result of the conversion is greater than the
maximum representable value for half precision floating-point data type, i.e., | x | ≥ 1.0 ∗ 216. 

The VCVTPS2PH instruction can cause an inexact exception if the result of the conversion is not exactly repre-
sentable in the destination format. 

Table 14-11.  Denormal Condition Summary

Instruction  Condition Masked Result Unmasked Result

VCVTPH2PS SRC is denormal relative to 
input format

res = Result rounded to the destination precision and 
using the bounded exponent, but only if no unmasked 
post-computation exception occurs.
#DE unchanged

Same as masked result. 

VCVTPS2PH SRC is denormal relative to 
input format

res = Result rounded to the destination precision and 
using the bounded exponent, but only if no unmasked 
post-computation exception occurs.
#DE=1

#DE=1

Table 14-12.  Underflow Condition for VCVTPS2PH 

Instruction  Condition Masked Result1

NOTES:
1. Masked and unmasked results are shown in Table 14-11.

Unmasked Result

VCVTPS2PH Result < smallest destination 
precision final normal value2

2.  MXCSR.FTZ is ignored, the processor behaves as if MXCSR.FTZ = 0.

Result = +0 or -0, denormal, normal.
#UE =1. 
#PE = 1 if the result is inexact.

#UE=1,
#PE = 1 if the result is 
inexact.

Table 14-13.  Overflow Condition for VCVTPS2PH 

Instruction  Condition Masked Result Unmasked Result

VCVTPS2PH Result ≥ largest destination 
precision finial normal value1

Result = +Inf or -Inf.
#OE=1.

#OE=1.

Table 14-14.  Inexact Condition for VCVTPS2PH 

Instruction  Condition Masked Result1

NOTES:
1. If a source is denormal relative to input format with DM masked and at least one of PM or UM unmasked, then an exception will be

raised with DE, UE, and PE set.

Unmasked Result

VCVTPS2PH The result is not 
representable in 
the destination 
format

res = Result rounded to the destination 
precision and using the bounded 
exponent, but only if no unmasked 
underflow or overflow conditions occur 
(this exception can occur in the presence 
of a masked underflow or overflow).
#PE=1.

Only if no underflow/overflow condition occurred, 
or if the corresponding exceptions are masked:
• Set #OE if masked overflow and set result as 

described above for masked overflow.

• Set #UE if masked underflow and set result as 
described above for masked underflow.

If neither underflow nor overflow, result equals 
the result rounded to the destination precision and 
using the bounded exponent set #PE = 1.
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14.4.1 Detection of F16C Instructions 
Applications using float 16 instruction must follow a detection sequence similar to Intel AVX to ensure:
• The OS has enabled YMM state management support.
• The processor supports Intel AVX as indicated by the CPUID feature flag, i.e., CPUID.01H:ECX.AVX[bit 28] = 1.
• The processor supports 16-bit floating-point conversion instructions via a CPUID feature flag 

(CPUID.01H:ECX.F16C[bit 29] = 1).
Application detection of Float-16 conversion instructions follow the general procedural flow in Figure 14-3.

----------------------------------------------------------------------------------------
INT supports_f16c()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 038000000H
cmp ecx, 038000000H; check OSXSAVE, AVX, F16C feature flags
 jne not_supported
; processor supports AVX,F16C instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XCR0 register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

}
-------------------------------------------------------------------------------

Figure 14-3.  General Procedural Flow of Application Detection of Float-16 

Implied HW support for

Check enabled YMM state in
XCR0 via XGETBV

Check feature flags 
for AVX and F16C

Check feature flag

CPUID.1H:ECX.OSXSAVE = 1? 

OS provides processor
extended state management

State ok to use

XSAVE, XRSTOR, XGETBV, XCR0

enabled Instructions

Yes 
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14.5 FUSED-MULTIPLY-ADD (FMA) EXTENSIONS
FMA extensions enhances Intel AVX with high-throughput, arithmetic capabilities covering fused multiply-add, 
fused multiply-subtract, fused multiply add/subtract interleave, signed-reversed multiply on fused multiply-add 
and multiply-subtract. FMA extensions provide 36 256-bit floating-point instructions to perform computation on 
256-bit vectors and additional 128-bit and scalar FMA instructions.
FMA extensions also provide 60 128-bit floating-point instructions to process 128-bit vector and scalar data. The 
arithmetic operations cover fused multiply-add, fused multiply-subtract, signed-reversed multiply on fused 
multiply-add and multiply-subtract. 

Table 14-15.  FMA Instructions 

Instruction Description

VFMADD132PD/VFMADD213PD/VFMADD231PD
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Add of Packed Double Precision Floating-Point 
Values

VFMADD132PS/VFMADD213PS/VFMADD231PS
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Add of Packed Single Precision Floating-Point 
Values

VFMADD132SD/VFMADD213SD/VFMADD231SD
xmm0, xmm1, xmm2/m64

Fused Multiply-Add of Scalar Double Precision Floating-Point 
Values

VFMADD132SS/VFMADD213SS/VFMADD231SS
xmm0, xmm1, xmm2/m32

Fused Multiply-Add of Scalar Single Precision Floating-Point 
Values

VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Alternating Add/Subtract of Packed Double Pre-
cision Floating-Point Values

VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Alternating Add/Subtract of Packed Single Pre-
cision Floating-Point Values

VFMSUBADD132PD/VFMSUBADD213PD/VFMSUBADD231PD
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Alternating Subtract/Add of Packed Double Pre-
cision Floating-Point Values

VFMSUBADD132PS/VFMSUBADD213PS/VFMSUBADD231PS
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Alternating Subtract/Add of Packed Single Pre-
cision Floating-Point Values

VFMSUB132PD/VFMSUB213PD/VFMSUB231PD
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Subtract of Packed Double Precision Floating-
Point Values

VFMSUB132PS/VFMSUB213PS/VFMSUB231PS
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Subtract of Packed Single Precision Floating-
Point Values

VFMSUB132SD/VFMSUB213SD/VFMSUB231SD
xmm0, xmm1, xmm2/m64

Fused Multiply-Subtract of Scalar Double Precision Floating-
Point Values

VFMSUB132SS/VFMSUB213SS/VFMSUB231SS
xmm0, xmm1, xmm2/m32

Fused Multiply-Subtract of Scalar Single Precision Floating-
Point Values

VFNMADD132PD/VFNMADD213PD/VFNMADD231PD
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Negative Multiply-Add of Packed Double Precision Float-
ing-Point Values

VFNMADD132PS/VFNMADD213PS/VFNMADD231PS
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Negative Multiply-Add of Packed Single Precision Float-
ing-Point Values

VFNMADD132SD/VFNMADD213SD/VFNMADD231SD
xmm0, xmm1, xmm2/m64

Fused Negative Multiply-Add of Scalar Double Precision Float-
ing-Point Values

VFNMADD132SS/VFNMADD213SS/VFNMADD231SS
xmm0, xmm1, xmm2/m32

Fused Negative Multiply-Add of Scalar Single Precision Float-
ing-Point Values

VFNMSUB132PD/VFNMSUB213PD/VFNMSUB231PD
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Negative Multiply-Subtract of Packed Double Precision 
Floating-Point Values

VFNMSUB132PS/VFNMSUB213PS/VFNMSUB231PS
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Negative Multiply-Subtract of Packed Single Precision 
Floating-Point Values
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14.5.1 FMA Instruction Operand Order and Arithmetic Behavior
FMA instruction mnemonics are defined explicitly with an ordered three digits, e.g., VFMADD132PD. The value of 
each digit refers to the ordering of the three source operand as defined by instruction encoding specification:
• ‘1’: The first source operand (also the destination operand) in the syntactical order listed in this specification.
• ‘2’: The second source operand in the syntactical order. This is a YMM/XMM register, encoded using VEX prefix.
• ‘3’: The third source operand in the syntactical order. The first and third operand are encoded following ModR/M 

encoding rules. 
The ordering of each digit within the mnemonic refers to the floating-point data listed on the right-hand side of the 
arithmetic equation of each FMA operation (see Table 14-17):
• The first position in the three digits of a FMA mnemonic refers to the operand position of the first FP data 

expressed in the arithmetic equation of FMA operation, the multiplicand.
• The second position in the three digits of a FMA mnemonic refers to the operand position of the second FP data 

expressed in the arithmetic equation of FMA operation, the multiplier.
• The third position in the three digits of a FMA mnemonic refers to the operand position of the FP data being 

added/subtracted to the multiplication result. 
Note the non-numerical result of an FMA operation does not resemble the mathematically-defined commutative 
property between the multiplicand and the multiplier values (see Table 14-17). Consequently, software tools (such 
as an assembler) may support a complementary set of FMA mnemonics for each FMA instruction for ease of 
programming to take advantage of the mathematical property of commutative multiplications. For example, an 
assembler may optionally support the complementary mnemonic “VFMADD312PD” in addition to the true 
mnemonic “VFMADD132PD“. The assembler will generate the same instruction opcode sequence corresponding to 
VFMADD132PD. The processor executes VFMADD132PD and report any NAN conditions based on the definition of 
VFMADD132PD. Similarly, if the complementary mnemonic VFMADD123PD is supported by an assembler at source 
level, it must generate the opcode sequence corresponding to VFMADD213PD; the complementary mnemonic 
VFMADD321PD must produce the opcode sequence defined by VFMADD231PD. In the absence of FMA operations 
reporting a NAN result, the numerical results of using either mnemonic with an assembler supporting both 
mnemonics will match the behavior defined in Table 14-17. Support for the complementary FMA mnemonics by 
software tools is optional. 

14.5.2 Fused-Multiply-ADD (FMA) Numeric Behavior
FMA instructions can perform fused-multiply-add operations (including fused-multiply-subtract, and other vari-
eties) on packed and scalar data elements in the instruction operands. Separate FMA instructions are provided to 
handle different types of arithmetic operations on the three source operands.
FMA instruction syntax is defined using three source operands and the first source operand is updated based on the 
result of the arithmetic operations of the data elements of 128-bit or 256-bit operands, i.e., The first source 
operand is also the destination operand.
The arithmetic FMA operation performed in an FMA instruction takes one of several forms, r=(x*y)+z, r=(x*y)-z, 
r=-(x*y)+z, or r=-(x*y)-z. Packed FMA instructions can perform eight single precision FMA operations or four 
double precision FMA operations with 256-bit vectors. 
Scalar FMA instructions only perform one arithmetic operation on the low order data element. The content of the 
rest of the data elements in the lower 128-bits of the destination operand is preserved. the upper 128bits of the 
destination operand are filled with zero. 

VFNMSUB132SD/VFNMSUB213SD/VFNMSUB231SD
xmm0, xmm1, xmm2/m64

Fused Negative Multiply-Subtract of Scalar Double Precision 
Floating-Point Values

VFNMSUB132SS/VFNMSUB213SS/VFNMSUB231SS
xmm0, xmm1, xmm2/m32

Fused Negative Multiply-Subtract of Scalar Single Precision 
Floating-Point Values

Table 14-15.  FMA Instructions  (Contd.)

Instruction Description
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An arithmetic FMA operation of the form, r=(x*y)+z, takes two IEEE-754-2008 single (double) precision values 
and multiplies them to form an infinite precision intermediate value. This intermediate value is added to a third 
single (double) precision value (also at infinite precision) and rounded to produce a single (double) precision result. 

Table 14-17 describes the numerical behavior of the FMA operation, r=(x*y)+z, r=(x*y)-z, r=-(x*y)+z, r=-(x*y)-
z for various input values. The input values can be 0, finite non-zero (F in Table 14-17), infinity of either sign (INF 
in Table 14-17), positive infinity (+INF in Table 14-17), negative infinity (-INF in Table 14-17), or NaN (including 
QNaN or SNaN). If any one of the input values is a NAN, the result of FMA operation, r, may be a quietized NAN. The 
result can be either Q(x), Q(y), or Q(z), see Table 14-17. If x is a NaN, then:

• Q(x) = x if x is QNaN, or

• Q(x) = the quietized NaN obtained from x if x is SNaN.
The notation for the output value in Table 14-17 are:
• “+INF”: positive infinity, “-INF”: negative infinity. When the result depends on a conditional expression, both 

values are listed in the result column and the condition is described in the comment column.
• QNaNIndefinite represents the QNaN which has the sign bit equal to 1, the most significand field equal to 1, and 

the remaining significand field bits equal to 0. 
• The summation or subtraction of 0s or identical values in FMA operation can lead to the following situations 

shown in Table 14-16.
• If the FMA computation represents an invalid operation (e.g., when adding two INF with opposite signs)), the 

invalid exception is signaled, and the MXCSR.IE flag is set.

Table 14-16.  Rounding Behavior of Zero Result in FMA Operation

Table 14-17.  FMA Numeric Behavior 

x*y z (x*y) + z (x*y) - z - (x*y) + z - (x*y) - z

(+0) (+0) +0 in all rounding modes - 0 when rounding down, 
and +0 otherwise

- 0 when rounding down, 
and +0 otherwise

- 0 in all rounding modes

(+0) (-0) - 0 when rounding down, 
and +0 otherwise

+0 in all rounding modes - 0 in all rounding modes - 0 when rounding down, 
and +0 otherwise

(-0) (+0) - 0 when rounding down, 
and +0 otherwise

- 0 in all rounding modes + 0 in all rounding modes - 0 when rounding down, 
and +0 otherwise

(-0) (-0) - 0 in all rounding modes - 0 when rounding down, 
and +0 otherwise

- 0 when rounding down, 
and +0 otherwise

+ 0 in all rounding modes

F -F - 0 when rounding down, 
and +0 otherwise

2*F -2*F - 0 when rounding down, 
and +0 otherwise

F F 2*F - 0 when rounding down, 
and +0 otherwise

- 0 when rounding down, 
and +0 otherwise

-2*F

x 
(multiplicand)

y 
(multiplier)

z
r=(x*y)

+z
r=(x*y) 

-z
r = 

-(x*y)+z
r=

-(x*y)-z
Comment

NaN 0, F, INF, 
NaN

0, F, 
INF, 
NaN

Q(x) Q(x) Q(x) Q(x) Signal invalid exception if x or y or z is SNaN

0, F, INF NaN 0, F, 
INF, 
NaN

Q(y) Q(y) Q(y) Q(y) Signal invalid exception if y or z is SNaN

0, F, INF 0, F, INF NaN Q(z) Q(z) Q(z) Q(z) Signal invalid exception if z is SNaN

INF F, INF +IN
F

+INF QNaNIn
definite

QNaNInd
efinite

-INF if x*y and z have the same sign

QNaNIn
definite

 -INF +INF QNaNInd
efinite

if x*y and z have opposite signs
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If unmasked floating-point exceptions are signaled (invalid operation, denormal operand, overflow, underflow, or 
inexact result) the result register is left unchanged and a floating-point exception handler is invoked.

14.5.3 Detection of FMA 
Hardware support for FMA is indicated by CPUID.1:ECX.FMA[bit 12]=1. 
Application Software must identify that hardware supports AVX, after that it must also detect support for FMA by 
CPUID.1:ECX.FMA[bit 12]. The recommended pseudocode sequence for detection of FMA is: 

INF F, INF -INF -INF QNaNIn
definite

QNaNInd
efinite

+INF if x*y and z have the same sign

QNaNIn
definite

 +INF -INF QNaNInd
efinite

if x*y and z have opposite signs

INF F, INF 0, F +INF +INF -INF -INF if x and y have the same sign

-INF -INF +INF +INF if x and y have opposite signs

INF 0 0, F, 
INF

QNaNIn
definite

QNaNIn
definite

QNaNInd
efinite

QNaNInd
efinite

Signal invalid exception

0 INF 0, F, 
INF

QNaNIn
definite

QNaNIn
definite

QNaNInd
efinite

QNaNInd
efinite

Signal invalid exception

F INF +IN
F

+INF QNaNIn
definite

QNaNInd
efinite

-INF if x*y and z have the same sign

QNaNIn
definite

-INF +INF  
QNaNInd
efinite

if x*y and z have opposite signs

F INF -INF -INF QNaNIn
definite

QNaNInd
efinite

+INF if x*y and z have the same sign

QNaNIn
definite

+INF -INF QNaNInd
efinite

if x*y and z have opposite signs

F INF 0,F  +INF +INF -INF  -INF if x * y > 0

-INF -INF +INF +INF if x * y < 0

0,F 0,F INF  +INF -INF  +INF -INF if z > 0

-INF +INF -INF +INF if z < 0

0 0 0 0 0 0 0 The sign of the result depends on the sign of 
the operands and on the rounding mode. The 
product x*y is +0 or -0, depending on the signs 
of x and y. The summation/subtraction of the 
zero representing (x*y) and the zero represent-
ing z can lead to one of the four cases shown in 
Table 14-16.

0 F 0 0 0 0 0

F 0 0 0 0 0 0

0 0 F z -z z -z

0 F F z -z z -z

F 0 F z -z z -z

F F 0 x*y x*y -x*y -x*y Rounded to the destination precision, with 
bounded exponent

F F F (x*y)+z (x*y)-z -(x*y)+z -(x*y)-z Rounded to the destination precision, with 
bounded exponent; however, if the exact values 
of x*y and z are equal in magnitude with signs 
resulting in the FMA operation producing 0, the 
rounding behavior described in Table 14-16.

x 
(multiplicand)

y 
(multiplier)

z r=(x*y)
+z

r=(x*y) 
-z

r = 
-(x*y)+z

r=
-(x*y)-z

Comment
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----------------------------------------------------------------------------------------
INT supports_fma()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 018001000H
cmp ecx, 018001000H; check OSXSAVE, AVX, FMA feature flags
 jne not_supported
; processor supports AVX,FMA instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XCR0 register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

}
-------------------------------------------------------------------------------
Note that FMA comprises 256-bit and 128-bit SIMD instructions operating on YMM states.

14.6 OVERVIEW OF INTEL® ADVANCED VECTOR EXTENSIONS 2 (INTEL® AVX2)
Intel® AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instructions with 256-bit numeric 
processing capabilities. Intel AVX2 instructions follow the same programming model as AVX instructions. 
In addition, Intel AVX2 provide enhanced functionalities for broadcast/permute operations on data elements, 
vector shift instructions with variable-shift count per data element, and instructions to fetch non-contiguous data 
elements from memory.

14.6.1 Intel® AVX2 and 256-Bit Vector Integer Processing
Intel AVX2 promotes the vast majority of 128-bit integer SIMD instruction sets to operate with 256-bit wide YMM 
registers. Intel AVX2 instructions are encoded using the VEX prefix and require the same operating system support 
as Intel AVX. Generally, most of the promoted 256-bit vector integer instructions follow the 128-bit lane operation, 
similar to the promoted 256-bit floating-point SIMD instructions in Intel AVX.
Newer functionalities in Intel AVX2 generally fall into the following categories:
• Fetching non-contiguous data elements from memory using vector-index memory addressing. These “gather” 

instructions introduce a new memory-addressing form, consisting of a base register and multiple indices 
specified by a vector register (either XMM or YMM). Data elements sizes of 32 and 64-bits are supported, and 
data types for floating-point and integer elements are also supported.

• Cross-lane functionalities are provided with several new instructions for broadcast and permute operations. 
Some of the 256-bit vector integer instructions promoted from legacy SSE instruction sets also exhibit cross-
lane behavior, e.g., VPMOVZ/VPMOVS family.

• Intel AVX2 complements the Intel AVX instructions that are typed for floating-point operation with a full 
complement of equivalent set for operating with 32/64-bit integer data elements.
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• Vector shift instructions with per-element shift count. Data elements sizes of 32 and 64 bits are supported.

14.7 PROMOTED VECTOR INTEGER INSTRUCTIONS IN INTEL® AVX2 
In Intel AVX2, most SSSE3 and Intel SSE, SSE2, SSE3, and SSE4 vector integer instructions have been promoted 
to support VEX.256 encodings. Table 14-18 summarizes the promotion status for existing instructions. The column 
“VEX.128” indicates whether the instruction using VEX.128 prefix encoding is supported. 
The column “VEX.256” indicates whether 256-bit vector form of the instruction using the VEX.256 prefix encoding 
is supported, and under which feature flag. 

Table 14-18.  Promoted Vector Integer SIMD Instructions in Intel® AVX2 

VEX.256 Encoding VEX.128 Encoding Group Instruction

AVX2 AVX YY 0F 6X PUNPCKLBW

AVX2 AVX PUNPCKLWD

AVX2 AVX PUNPCKLDQ

AVX2 AVX PACKSSWB

AVX2 AVX PCMPGTB

AVX2 AVX PCMPGTW

AVX2 AVX PCMPGTD

AVX2 AVX PACKUSWB

AVX2 AVX PUNPCKHBW

AVX2 AVX PUNPCKHWD

AVX2 AVX PUNPCKHDQ

AVX2 AVX PACKSSDW

AVX2 AVX PUNPCKLQDQ

AVX2 AVX PUNPCKHQDQ

no AVX MOVD

no AVX MOVQ

AVX AVX MOVDQA

AVX AVX MOVDQU

AVX2 AVX YY 0F 7X PSHUFD

AVX2 AVX PSHUFHW

AVX2 AVX PSHUFLW

AVX2 AVX PCMPEQB

AVX2 AVX PCMPEQW

AVX2 AVX PCMPEQD

AVX AVX MOVDQA

AVX AVX MOVDQU

no AVX PINSRW

no AVX PEXTRW

AVX2 AVX PSRLW

AVX2 AVX PSRLD
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AVX2 AVX PSRLQ

AVX2 AVX PADDQ

AVX2 AVX PMULLW

AVX2 AVX PMOVMSKB

AVX2 AVX PSUBUSB

AVX2 AVX PSUBUSW

AVX2 AVX PMINUB

AVX2 AVX PAND

AVX2 AVX PADDUSB

AVX2 AVX PADDUSW

AVX2 AVX PMAXUB

AVX2 AVX PANDN

AVX2 AVX YY 0F EX PAVGB

AVX2 AVX PSRAW

AVX2 AVX PSRAD

AVX2 AVX PAVGW

AVX2 AVX PMULHUW

AVX2 AVX PMULHW

AVX AVX MOVNTDQ

AVX2 AVX PSUBSB

AVX2 AVX PSUBSW

AVX2 AVX PMINSW

AVX2 AVX POR

AVX2 AVX PADDSB

AVX2 AVX PADDSW

AVX2 AVX PMAXSW

AVX2 AVX PXOR

AVX AVX YY 0F FX LDDQU

AVX2 AVX PSLLW

AVX2 AVX PSLLD

AVX2 AVX PSLLQ

AVX2 AVX PMULUDQ

AVX2 AVX PMADDWD

AVX2 AVX PSADBW

AVX2 AVX PSUBB

AVX2 AVX PSUBW

AVX2 AVX PSUBD

AVX2 AVX PSUBQ

Table 14-18.  Promoted Vector Integer SIMD Instructions in Intel® AVX2  (Contd.)

VEX.256 Encoding VEX.128 Encoding Group Instruction
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AVX2 AVX PADDB

AVX2 AVX PADDW

AVX2 AVX PADDD

AVX2 AVX SSSE3 PHADDW

AVX2 AVX PHADDSW

AVX2 AVX PHADDD

AVX2 AVX PHSUBW

AVX2 AVX PHSUBSW

AVX2 AVX PHSUBD

AVX2 AVX PMADDUBSW

AVX2 AVX PALIGNR

AVX2 AVX PSHUFB

AVX2 AVX PMULHRSW

AVX2 AVX PSIGNB

AVX2 AVX PSIGNW

AVX2 AVX PSIGND

AVX2 AVX PABSB

AVX2 AVX PABSW

AVX2 AVX PABSD

AVX2 AVX MOVNTDQA

AVX2 AVX MPSADBW

AVX2 AVX PACKUSDW

AVX2 AVX PBLENDVB

AVX2 AVX PBLENDW

AVX2 AVX PCMPEQQ

no AVX PEXTRD

no AVX PEXTRQ

no AVX PEXTRB

no AVX PEXTRW

no AVX PHMINPOSUW

no AVX PINSRB

no AVX PINSRD

no AVX PINSRQ

AVX2 AVX PMAXSB

AVX2 AVX PMAXSD

AVX2 AVX PMAXUD

AVX2 AVX PMAXUW

AVX2 AVX PMINSB

Table 14-18.  Promoted Vector Integer SIMD Instructions in Intel® AVX2  (Contd.)

VEX.256 Encoding VEX.128 Encoding Group Instruction
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Table 14-19 compares complementary SIMD functionalities introduced in Intel AVX and AVX2. instructions. 

AVX2 AVX PMINSD

AVX2 AVX PMINUD

AVX2 AVX PMINUW

AVX2 AVX PMOVSXxx

AVX2 AVX PMOVZXxx

AVX2 AVX PMULDQ

AVX2 AVX PMULLD

AVX AVX PTEST

AVX2 AVX SSE4.2 PCMPGTQ

no AVX PCMPESTRI

no AVX PCMPESTRM

no AVX PCMPISTRI

no AVX PCMPISTRM

no AVX AESNI AESDEC

no AVX AESDECLAST

no AVX AESENC

no AVX AESECNLAST

no AVX AESIMC

no AVX AESKEYGENASSIST

no AVX CLMUL PCLMULQDQ

Table 14-19.   VEX-Only SIMD Instructions in Intel® AVX and AVX2 

lntel® AVX2 Intel® AVX Comment

VBROADCASTI128 VBROADCASTF128 256-bit only

VBROADCASTSD ymm1, xmm VBROADCASTSD ymm1, m64 256-bit only

VBROADCASTSS (from xmm) VBROADCASTSS (from m32)

VEXTRACTI128 VEXTRACTF128 256-bit only

VINSERTI128 VINSERTF128 256-bit only

VPMASKMOVD VMASKMOVPS

VPMASKMOVQ! VMASKMOVPD

VPERMILPD in-lane

VPERMILPS in-lane

VPERM2I128 VPERM2F128 256-bit only

VPERMD cross-lane

VPERMPS cross-lane

VPERMQ cross-lane

VPERMPD cross-lane

Table 14-18.  Promoted Vector Integer SIMD Instructions in Intel® AVX2  (Contd.)

VEX.256 Encoding VEX.128 Encoding Group Instruction
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Table 14-20.  New Primitive in Intel® AVX2 Instructions  

VTESTPD

VTESTPS

VPBLENDD

VPSLLVD/Q

VPSRAVD

VPSRLVD/Q

VGATHERDPD/QPD

VGATHERDPS/QPS

VPGATHERDD/QD

VPGATHERDQ/QQ

Instruction Description

VPERMD ymm1, ymm2, ymm3/m256 Permute doublewords in ymm3/m256 using indexes in ymm2 and store the result in ymm1.

VPERMPD ymm1, ymm2/m256, imm8 Permute double precision FP elements in ymm2/m256 using indexes in imm8 and store the 
result in ymm1.

VPERMPS ymm1, ymm2, ymm3/m256 Permute single precision FP elements in ymm3/m256 using indexes in ymm2 and store the 
result in ymm1.

VPERMQ ymm1, ymm2/m256, imm8 Permute quadwords in ymm2/m256 using indexes in imm8 and store the result in ymm1.

VPSLLVD xmm1, xmm2, xmm3/m128 Shift doublewords in xmm2 left by amount specified in the corresponding element of 
xmm3/m128 while shifting in 0s.

VPSLLVQ xmm1, xmm2, xmm3/m128 Shift quadwords in xmm2 left by amount specified in the corresponding element of 
xmm3/m128 while shifting in 0s.

VPSLLVD ymm1, ymm2, ymm3/m256 Shift doublewords in ymm2 left by amount specified in the corresponding element of 
ymm3/m256 while shifting in 0s.

VPSLLVQ ymm1, ymm2, ymm3/m256 Shift quadwords in ymm2 left by amount specified in the corresponding element of 
ymm3/m256 while shifting in 0s.

VPSRAVD xmm1, xmm2, xmm3/m128 Shift doublewords in xmm2 right by amount specified in the corresponding element of 
xmm3/m128 while shifting in the sign bits.

VPSRLVD xmm1, xmm2, xmm3/m128 Shift doublewords in xmm2 right by amount specified in the corresponding element of 
xmm3/m128 while shifting in 0s.

VPSRLVQ xmm1, xmm2, xmm3/m128 Shift quadwords in xmm2 right by amount specified in the corresponding element of 
xmm3/m128 while shifting in 0s.

VPSRLVD ymm1, ymm2, ymm3/m256 Shift doublewords in ymm2 right by amount specified in the corresponding element of 
ymm3/m256 while shifting in 0s.

VPSRLVQ ymm1, ymm2, ymm3/m256 Shift quadwords in ymm2 right by amount specified in the corresponding element of 
ymm3/m256 while shifting in 0s.

VGATHERDD xmm1, vm32x, xmm2 Using dword indices specified in vm32x, gather dword values from memory conditioned on 
mask specified by xmm2. Conditionally gathered elements are merged into xmm1.

VGATHERQD xmm1, vm64x, xmm2 Using qword indices specified in vm64x, gather dword values from memory conditioned on 
mask specified by xmm2. Conditionally gathered elements are merged into xmm1.

VGATHERDD ymm1, vm32y, ymm2 Using dword indices specified in vm32y, gather dword values from memory conditioned on 
mask specified by ymm2. Conditionally gathered elements are merged into ymm1.

VGATHERQD ymm1, vm64y, ymm2 Using qword indices specified in vm64y, gather dword values from memory conditioned on 
mask specified by ymm2. Conditionally gathered elements are merged into ymm1.

Table 14-19.   VEX-Only SIMD Instructions in Intel® AVX and AVX2  (Contd.)

lntel® AVX2 Intel® AVX Comment
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14.7.1 Detection of Intel® AVX2 
Hardware support for Intel AVX2 is indicated by CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]=1. 
Application Software must identify that hardware supports Intel AVX, after that it must also detect support for Intel 
AVX2 by checking CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]. The recommended pseudocode sequence for 
detection of Intel AVX2 is: 
----------------------------------------------------------------------------------------
INT supports_avx2()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 018000000H
cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags
 jne not_supported
; processor supports AVX instructions and XGETBV is enabled by OS
mov eax, 7

VGATHERDPD xmm1, vm32x, xmm2 Using dword indices specified in vm32x, gather double precision FP values from memory 
conditioned on mask specified by xmm2. Conditionally gathered elements are merged into 
xmm1.

VGATHERQPD xmm1, vm64x, xmm2 Using qword indices specified in vm64x, gather double precision FP values from memory 
conditioned on mask specified by xmm2. Conditionally gathered elements are merged into 
xmm1.

VGATHERDPD ymm1, vm32x, ymm2 Using dword indices specified in vm32x, gather double precision FP values from memory 
conditioned on mask specified by ymm2. Conditionally gathered elements are merged into 
ymm1.

VGATHERQPD ymm1, vm64y ymm2 Using qword indices specified in vm64y, gather double precision FP values from memory 
conditioned on mask specified by ymm2. Conditionally gathered elements are merged into 
ymm1.

VGATHERDPS xmm1, vm32x, xmm2 Using dword indices specified in vm32x, gather single precision FP values from memory con-
ditioned on mask specified by xmm2. Conditionally gathered elements are merged into 
xmm1.

VGATHERQPS xmm1, vm64x, xmm2 Using qword indices specified in vm64x, gather single precision FP values from memory con-
ditioned on mask specified by xmm2. Conditionally gathered elements are merged into 
xmm1.

VGATHERDPS ymm1, vm32y, ymm2 Using dword indices specified in vm32y, gather single precision FP values from memory con-
ditioned on mask specified by ymm2. Conditionally gathered elements are merged into 
ymm1.

VGATHERQPS xmm1, vm64y, xmm2 Using qword indices specified in vm64y, gather single precision FP values from memory con-
ditioned on mask specified by xmm2. Conditionally gathered elements are merged into 
xmm1.

VGATHERDQ xmm1, vm32x, xmm2 Using dword indices specified in vm32x, gather qword values from memory conditioned on 
mask specified by xmm2. Conditionally gathered elements are merged into xmm1.

VGATHERQQ xmm1, vm64x, xmm2 Using qword indices specified in vm64x, gather qword values from memory conditioned on 
mask specified by xmm2. Conditionally gathered elements are merged into xmm1.

VGATHERDQ ymm1, vm32x, ymm2 Using dword indices specified in vm32x, gather qword values from memory conditioned on 
mask specified by ymm2. Conditionally gathered elements are merged into ymm1.

VGATHERQQ ymm1, vm64y, ymm2 Using qword indices specified in vm64y, gather qword values from memory conditioned on 
mask specified by ymm2. Conditionally gathered elements are merged into ymm1.

Instruction Description
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mov ecx, 0
cpuid
and ebx, 20H
cmp ebx, 20H; check AVX2 feature flags
 jne not_supported
mov ecx, 0; specify 0 for XCR0 register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

}
-------------------------------------------------------------------------------

14.8 ACCESSING YMM REGISTERS
The lower 128 bits of a YMM register is aliased to the corresponding XMM register. Legacy SSE instructions (i.e., 
SIMD instructions operating on XMM state but not using the VEX prefix, also referred to non-VEX encoded SIMD 
instructions) will not access the upper bits (255:128) of the YMM registers. AVX and FMA instructions with a VEX 
prefix and vector length of 128-bits zeroes the upper 128 bits of the YMM register.
Upper bits of YMM registers (255:128) can be read and written by many instructions with a VEX.256 prefix. 

XSAVE and XRSTOR may be used to save and restore the upper bits of the YMM registers.

14.9 MEMORY ALIGNMENT 
Memory alignment requirements on VEX-encoded instruction differs from non-VEX-encoded instructions. Memory 
alignment applies to non-VEX-encoded SIMD instructions in three categories:
• Explicitly-aligned SIMD load and store instructions accessing 16 bytes of memory (e.g., MOVAPD, MOVAPS, 

MOVDQA, etc.). These instructions always require memory address to be aligned on 16-byte boundary.
• Explicitly-unaligned SIMD load and store instructions accessing 16 bytes or less of data from memory (e.g., 

MOVUPD, MOVUPS, MOVDQU, MOVQ, MOVD, etc.). These instructions do not require memory address to be 
aligned on 16-byte boundary.

• The vast majority of arithmetic and data processing instructions in legacy SSE instructions (non-VEX-encoded 
SIMD instructions) support memory access semantics. When these instructions access 16 bytes of data from 
memory, the memory address must be aligned on 16-byte boundary.

Most arithmetic and data processing instructions encoded using the VEX prefix and performing memory accesses 
have more flexible memory alignment requirements than instructions that are encoded without the VEX prefix. 
Specifically, 
• With the exception of explicitly aligned 16 or 32 byte SIMD load/store instructions, most VEX-encoded, 

arithmetic and data processing instructions operate in a flexible environment regarding memory address 
alignment, i.e., VEX-encoded instruction with 32-byte or 16-byte load semantics will support unaligned load 
operation by default. Memory arguments for most instructions with VEX prefix operate normally without 
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causing #GP(0) on any byte-granularity alignment (unlike Legacy SSE instructions). The instructions that 
require explicit memory alignment requirements are listed in Table 14-22.

Software may see performance penalties when unaligned accesses cross cacheline boundaries, so reasonable 
attempts to align commonly used data sets should continue to be pursued.
Atomic memory operation in Intel 64 and IA-32 architecture is guaranteed only for a subset of memory operand 
sizes and alignment scenarios. The list of guaranteed atomic operations are described in Section 10.1.1 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. Intel AVX and FMA instructions do not 
introduce any new guaranteed atomic memory operations.
Intel AVX instructions can generate an #AC(0) fault on misaligned 4 or 8-byte memory references in Ring-3 when 
CR0.AM=1. 16 and 32-byte memory references will not generate #AC(0) fault. See Table 14-21 for details.
Certain Intel AVX instructions always require 16- or 32-byte alignment (see the complete list of such instructions 
in Table 14-22). These instructions will #GP(0) if not aligned to 16-byte boundaries (for 16-byte granularity loads 
and stores) or 32-byte boundaries (for 32-byte loads and stores).

Table 14-21.  Alignment Faulting Conditions when Memory Access is Not Aligned 
EFLAGS.AC==1 && Ring-3 && CR0.AM == 1 0 1
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,

16- or 32-byte “explicitly unaligned” loads and stores (see Table 
14-23)

no fault no fault

VEX op YMM, m256 no fault no fault

VEX op XMM, m128 no fault no fault

“explicitly aligned” loads and stores (see Table 14-22) #GP(0) #GP(0)

2, 4, or 8-byte loads and stores no fault #AC(0)

SS
E

16 byte “explicitly unaligned” loads and stores (see Table 14-23) no fault no fault

op XMM, m128 #GP(0) #GP(0)

“explicitly aligned” loads and stores (see Table 14-22) #GP(0) #GP(0)

2, 4, or 8-byte loads and stores no fault #AC(0)

Table 14-22.  Instructions Requiring Explicitly Aligned Memory

Require 16-byte alignment Require 32-byte alignment

(V)MOVDQA xmm, m128 VMOVDQA ymm, m256

(V)MOVDQA m128, xmm VMOVDQA m256, ymm

(V)MOVAPS xmm, m128 VMOVAPS ymm, m256

(V)MOVAPS m128, xmm VMOVAPS m256, ymm

(V)MOVAPD xmm, m128 VMOVAPD ymm, m256

(V)MOVAPD m128, xmm VMOVAPD m256, ymm

(V)MOVNTPS m128, xmm VMOVNTPS m256, ymm

(V)MOVNTPD m128, xmm VMOVNTPD m256, ymm

(V)MOVNTDQ m128, xmm VMOVNTDQ m256, ymm

(V)MOVNTDQA xmm, m128 VMOVNTDQA ymm, m256
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14.10 SIMD FLOATING-POINT EXCEPTIONS
Intel AVX instructions can generate SIMD floating-point exceptions (#XM) and respond to exception masks in the 
same way as Legacy SSE instructions. When CR4.OSXMMEXCPT=0 any unmasked FP exceptions generate an 
Undefined Opcode exception (#UD).
Intel AVX FP exceptions are created in a similar fashion (differing only in number of elements) to Legacy SSE and
SSE2 instructions capable of generating SIMD floating-point exceptions.
AVX introduces no new arithmetic operations (AVX floating-point are analogues of existing Legacy SSE instruc-
tions). 
F16C, FMA instructions can generate SIMD floating-point exceptions (#XM). The requirements that apply to Intel
AVX also apply to F16C and FMA.
The subset of Intel AVX2 instructions that operate on floating-point data do not generate #XM.
The detailed exception conditions for Intel AVX instructions and legacy SIMD instructions (excluding instructions 
that operates on MMX registers) are described in a number of exception class types, depending on the operand 
syntax and memory operation characteristics. The complete list of SIMD instruction exception class types are 
defined in Chapter 2, “Instruction Format,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A.

14.11 EMULATION
Setting the CR0.EMbit to 1 provides a technique to emulate Legacy SSE floating-point instruction sets in software. 
This technique is not supported with AVX instructions. 
If an operating system wishes to emulate AVX instructions, set XCR0[2:1] to zero. This will cause AVX instructions 
to #UD. Emulation of F16C, AVX2, and FMA by operating system can be done similarly as with emulating AVX 
instructions.

14.12 WRITING INTEL® AVX FLOATING-POINT EXCEPTION HANDLERS
Intel AVX and FMA floating-point exceptions are handled in an entirely analogous way to Legacy SSE floating-point 
exceptions. To handle unmasked SIMD floating-point exceptions, the operating system or executive must provide 
an exception handler. The section titled “SSE and SSE2 SIMD Floating-Point Exceptions” in Chapter 11, “Program-

Table 14-23.  Instructions Not Requiring Explicit Memory Alignment

(V)MOVDQU xmm, m128

(V)MOVDQU m128, m128

(V)MOVUPS xmm, m128

(V)MOVUPS m128, xmm

(V)MOVUPD xmm, m128

(V)MOVUPD m128, xmm

VMOVDQU ymm, m256

VMOVDQU m256, ymm

VMOVUPS ymm, m256

VMOVUPS m256, ymm

VMOVUPD ymm, m256

VMOVUPD m256, ymm
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ming with Streaming SIMD Extensions 2 (SSE2),” describes the SIMD floating-point exception classes and gives 
suggestions for writing an exception handler to handle them.
To indicate that the operating system provides a handler for SIMD floating-point exceptions (#XM), the CR4.OSXM-
MEXCPT flag (bit 10) must be set.

The guidelines for writing Intel AVX floating-point exception handlers also apply to F16C and FMA.

14.13 GENERAL PURPOSE INSTRUCTION SET ENHANCEMENTS
Enhancements in the general-purpose instruction set consist of several categories:
• A rich collection of instructions to manipulate integer data at bit-granularity. Most of the bit-manipulation 

instructions employ VEX-prefix encoding to support three-operand syntax with non-destructive source 
operands. Two of the bit-manipulating instructions (LZCNT, TZCNT) are not encoded using VEX. The VEX-
encoded bit-manipulation instructions include: ANDN, BEXTR, BLSI, BLSMSK, BLSR, BZHI, PEXT, PDEP, SARX, 
SHLX, SHRX, and RORX. 

• Enhanced integer multiply instruction (MULX) in conjunctions with some of the bit-manipulation instructions 
allow software to accelerate calculation of large integer numerics (wider than 128-bits).

• INVPCID instruction targets system software that manages processor context IDs.
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CHAPTER 15
PROGRAMMING WITH INTEL® AVX-512

15.1 OVERVIEW
The Intel AVX-512 family comprises a collection of instruction set extensions, including AVX-512 Foundation,
AVX-512 Exponential and Reciprocal instructions, AVX-512 Conflict, AVX-512 Prefetch, and additional 512-bit
SIMD instruction extensions, including AVX512-FP16. Intel AVX-512 instructions are natural extensions to Intel
AVX and Intel AVX2. Intel AVX-512 introduces the following architectural enhancements:
• Support for 512-bit wide vectors and SIMD register set. 512-bit register state is managed by the operating 

system using XSAVE/XRSTOR instructions introduced in 45 nm Intel 64 processors (see the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2B, and the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A). 

• Support for 16 new, 512-bit SIMD registers (for a total of 32 SIMD registers, ZMM0 through ZMM31) in 64-bit 
mode. The extra 16 registers state is managed by the operating system using XSAVE/XRSTOR/XSAVEOPT.

• Support for 8 new opmask registers (k0 through k7) used for conditional execution and efficient merging of 
destination operands. The opmask register state is managed by the operating system using the 
XSAVE/XRSTOR/XSAVEOPT instructions.

• A new encoding prefix (referred to as EVEX) to support additional vector length encoding up to 512 bits. The 
EVEX prefix builds upon the foundations of the VEX prefix to provide compact, efficient encoding for function-
ality available to VEX encoding plus the following enhanced vector capabilities: 

— Opmasks.

— Embedded broadcast.

— Instruction prefix-embedded rounding control.

— Compressed address displacements.

15.1.1 512-Bit Wide SIMD Register Support
Intel AVX-512 instructions support 512-bit wide SIMD registers (ZMM0-ZMM31). The lower 256-bits of the ZMM 
registers are aliased to the respective 256-bit YMM registers and the lower 128-bit are aliased to the respective 
128-bit XMM registers.

15.1.2 32 SIMD Register Support
Intel AVX-512 instructions also support 32 SIMD registers in 64-bit mode (XMM0-XMM31, YMM0-YMM31 and 
ZMM0-ZMM31). The number of available vector registers in 32-bit mode is still 8.

15.1.3 Eight Opmask Register Support
Intel AVX-512 instructions support 8 opmask registers (k0-k7). The width of each opmask register is architectur-
ally defined as size MAX_KL (64 bits). Seven of the eight opmask registers (k1-k7) can be used in conjunction with 
EVEX-encoded AVX-512 Foundation instructions to provide conditional execution and efficient merging of data 
elements in the destination operand. The encoding of opmask register k0 is typically used when all data elements 
(unconditional processing) are desired. Additionally, the opmask registers are also used as vector flags/element-
level vector sources to introduce novel SIMD functionality as seen in new instructions such as VCOMPRESSPS.
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15.1.4 Instruction Syntax Enhancement
The architecture of EVEX encoding enhances the vector instruction encoding scheme in the following way: 
• 512-bit vector-length, up to 32 ZMM registers, and enhanced vector programming environment are supported 

using the enhanced VEX (EVEX).
The EVEX prefix provides more encodable bit fields than the VEX prefix. In addition to encoding 32 ZMM registers 
in 64-bit mode, instruction encoding using the EVEX prefix can directly encode 7 (out of 8) opmask register oper-
ands to provide conditional processing in vector instruction programming. The enhanced vector programming envi-
ronment can be explicitly expressed in the instruction syntax to include the following elements: 
• An opmask operand: the opmask registers are expressed using the notation “k1” through “k7”. An EVEX-

encoded instruction supporting conditional vector operation using the opmask register k1 is expressed by 
attaching the notation {k1} next to the destination operand. The use of this feature is optional for most instruc-
tions. There are two types of masking (merging and zeroing) differentiated using the EVEX.z bit ({z} in 
instruction signature).

• Embedded broadcast may be supported for some instructions on the source operand that can be encoded as a 
memory vector. Data elements of a memory vector may be conditionally fetched or written to.

• For instruction syntax that operates only on floating-point data in SIMD registers with rounding semantics, the 
EVEX encoding can provide explicit rounding control within the EVEX bit fields at either scalar or 512-bit vector 
length. 

In AVX-512 instructions, vector addition of all elements of the source operands can be expressed in the same 
syntax as AVX instruction:

VADDPS zmm1, zmm2, zmm3

Additionally, the EVEX encoding scheme of AVX-512 Foundation can express conditional vector addition as:

VADDPS zmm1 {k1}{z}, zmm2, zmm3
where:
• Conditional processing and updates to destination are expressed with an opmask register.
• Zeroing behavior of the opmask selected destination element is expressed by the {z} modifier (with merging 

as the default if no modifier is specified).

Figure 15-1.  512-Bit Wide Vectors and SIMD Register Set
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Note that some SIMD instructions supporting three-operand syntax but processing only less than or equal to 128-
bits of data are considered part of the 512-bit SIMD instruction set extensions, because bits MAXVL-1:128 of the 
destination register are zeroed by the processor. The same rule applies to instructions operating on 256-bits of data 
where bits MAXVL-1:256 of the destination register are zeroed.

15.1.5 EVEX Instruction Encoding Support
Intel AVX-512 instructions employ a new encoding prefix, referred to as EVEX, in the Intel 64 and IA-32 instruction 
encoding format. Instruction encoding using the EVEX prefix provides the following capabilities:
• Direct encoding of a SIMD register operand within EVEX (similar to VEX). This provides instruction syntax 

support for three source operands. 
• Compaction of REX prefix functionality and extended SIMD register encoding: the equivalent REX-prefix 

compaction functionality offered by the VEX prefix is provided within EVEX. Furthermore, EVEX extends the 
operand encoding capability to allow direct addressing of up to 32 ZMM registers in 64-bit mode.

• Compaction of SIMD prefix functionality and escape byte encoding: the functionality of a SIMD prefix (66H, 
F2H, F3H) on opcode is equivalent to an opcode extension field to introduce new processing primitives. This 
functionality is provided in the VEX prefix encoding scheme and employed within the EVEX prefix. Similarly, the 
functionality of the escape opcode byte (0FH) and two-byte escape (0F38H, 0F3AH) are also compacted within 
the EVEX prefix encoding. 

• Most EVEX-encoded SIMD numeric and data processing instruction semantics with memory operands have 
more relaxed memory alignment requirements than instructions encoded using SIMD prefixes (see Section 
15.7, “Memory Alignment”).

• Direct encoding of an opmask operand within the EVEX prefix. This provides instruction syntax support for 
conditional vector-element operation and merging of destination operand using an opmask register (k1-k7).

• Direct encoding of a broadcast attribute for instructions with a memory operand source. This provides 
instruction syntax support for elements broadcasting the second operand before being used in the actual 
operation.

• Compressed memory address displacements for a more compact instruction encoding byte sequence.
EVEX encoding applies to SIMD instructions operating on XMM, YMM, and ZMM registers. EVEX is not supported for 
instructions operating on MMX or x87 registers. Details of EVEX instruction encoding are discussed in Section 2.7, 
“Intel® AVX-512 Encoding,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

15.2 DETECTION OF AVX-512 FOUNDATION INSTRUCTIONS 
The majority of AVX-512 Foundation instructions are encoded using the EVEX encoding scheme. EVEX-encoded 
instructions can operate on the 512-bit ZMM register state plus 8 opmask registers. The opmask instructions in 
AVX-512 Foundation instructions operate only on opmask registers or with a general purpose register. System 
software requirements to support the ZMM state and opmask instructions are described in Section 15.5, “Accessing 
XMM, YMM, AND ZMM Registers.”
Processor support of AVX-512 Foundation instructions is indicated by CPUID.(EAX=07H, ECX=0):EBX.AVX512F[bit 
16] = 1. Detection of AVX-512 Foundation instructions operating on ZMM states and opmask registers needs to 
follow the general procedural flow in Figure 15-2.
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Prior to using AVX-512 Foundation instructions, the application must identify that the operating system supports 
the XGETBV instruction and the ZMM register state, in addition to confirming the processor’s support for ZMM state 
management using XSAVE/XRSTOR and AVX-512 Foundation instructions. The following simplified sequence 
accomplishes both and is strongly recommended.

1. Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use1).

2. Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and 
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by 
OS).

3. Detect CPUID.0x7.0:EBX.AVX512F[bit 16] = 1.

15.2.1 Additional 512-Bit Instruction Extensions of the Intel® AVX-512 Family
Processor support of the Intel AVX-512 Exponential and Reciprocal instructions are indicated by querying the 
feature flag:
• If CPUID.(EAX=07H, ECX=0):EBX.AVX512ER[bit 27] = 1, the collection of 

VEXP2PD/VEXP2PS/VRCP28xx/VRSQRT28xx instructions are supported.
Processor support of the Intel AVX-512 Prefetch instructions are indicated by querying the feature flag:
• If CPUID.(EAX=07H, ECX=0):EBX.AVX512PF[bit 26] = 1, a collection of VGATHERPF0xxx/VGATHER-

PF1xxx/VSCATTERPF0xxx/VSCATTERPF1xxx instructions are supported. 
Detection of 512-bit instructions operating on ZMM states and opmask registers, outside of AVX-512 Foundation, 
needs to follow the general procedural flow in Figure 15-3.

Figure 15-2.  Procedural Flow for Application Detection of AVX-512 Foundation Instructions

1. If CPUID.01H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE, XRSTOR, 
XGETBV, processor extended state bit vector XCR0 register. Thus an application may streamline the checking 
of CPUID feature flags for XSAVE and OSXSAVE. XSETBV is a privileged instruction.
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PREFETCHT1W does not require OS support for XMM/YMM/ZMM/k-reg, SIMD FP exception support.
Procedural Flow of Application Detection of other 512-bit extensions:
Prior to using the Intel AVX-512 Exponential and Reciprocal instructions, the application must identify that the 
operating system supports the XGETBV instruction and the ZMM register state, in addition to confirming the 
processor’s support for ZMM state management using XSAVE/XRSTOR and AVX-512 Foundation instructions. The 
following simplified sequence accomplishes both and is strongly recommended.

1. Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use).

2. Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and 
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled 
by OS).

3. Verify both CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, and CPUID.0x7.0:EBX.AVX512ER[bit 27] = 1.
Prior to using the Intel AVX-512 Prefetch instructions, the application must identify that the operating system 
supports the XGETBV instruction and the ZMM register state, in addition to confirming the processor’s support for 
ZMM state management using XSAVE/XRSTOR and AVX-512 Foundation instructions. The following simplified 
sequence accomplishes both and is strongly recommended.

1. Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use).

2. Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and 
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled 
by OS).

3. Verify both CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, and CPUID.0x7.0:EBX.AVX512PF[bit 26] = 1.

15.2.2 Detection of AVX512-FP16 Instructions
The AVX512-FP16 ISA extensions require that the AVX512BW feature be implemented since the instructions for 
manipulating 32b masks are associated with AVX512BW.

Figure 15-3.  Procedural Flow for Application Detection of 512-Bit Instructions
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15.3 DETECTION OF 512-BIT INSTRUCTION GROUPS OF THE INTEL® AVX-512 
FAMILY

In addition to the Intel AVX-512 Foundation instructions, the Intel AVX-512 family provides several groups of 
instruction extensions that can operate in vector lengths of 512/256/128 bits. Each group is enumerated by a 
CPUID leaf 7 feature flag and can be encoded via the EVEX.L’L field to support operation at vector lengths smaller 
than 512 bits. These instruction groups are listed in Table 15-1.

Software must follow the detection procedure for the 512-bit AVX-512 Foundation instructions as described in 
Section 15.2.
Detection of other 512-bit sibling instruction groups listed in Table 15-1 (excluding AVX512F) follows the procedure 
described in Figure 15-4.

To detect 512-bit instructions enumerated by AVX512CD, the following sequence is strongly recommended.

1. Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use).

2. Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and 
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by 
OS).

3. Verify both CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, CPUID.0x7.0:EBX.AVX512CD[bit 28] = 1.
Similarly, the detection procedure for enumerating 512-bit instructions reported by AVX512DW follows the same 
flow.

Table 15-1.  512-Bit Instruction Groups in the Intel® AVX-512 Family

CPUID Leaf 07H Feature Flag Bit Feature Flag Abbreviation of 512-Bit Instruction Group SW Detection Flow

CPUID.(EAX=07H, ECX=0):EBX[bit 16] AVX512F (AVX-512 Foundation) Figure 15-2

CPUID.(EAX=07H, ECX=0):EBX[bit 28] AVX512CD Figure 15-4

CPUID.(EAX=07H, ECX=0):EBX[bit 17] AVX512DQ Figure 15-4

CPUID.(EAX=07H, ECX=0):EBX[bit 30] AVX512BW Figure 15-4

Figure 15-4.  Procedural Flow for Application Detection of 512-Bit Instruction Groups
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15.4 DETECTION OF INTEL® AVX-512 INSTRUCTION GROUPS OPERATING AT 
256 AND 128-BIT VECTOR LENGTHS

For each of the 512-bit instruction groups in the Intel AVX-512 family listed in Table 15-1, the EVEX encoding 
scheme may support a vast majority of these instructions operating at 256-bit or 128-bit (if applicable) vector 
lengths. Encoding support for vector lengths smaller than 512-bits is indicated by CPUID.(EAX=07H, 
ECX=0):EBX[bit 31], abbreviated as AVX512VL.
The AVX512VL flag alone is never sufficient to determine a given Intel AVX-512 instruction may be encoded at 
vector lengths smaller than 512 bits. Software must use the procedure described in Figure 15-5 and Table 15-2.

To illustrate the procedure described in Figure 15-5 and Table 15-2 for software to use EVEX.256 encoded VPCON-
FLICT, the following sequence is provided. It is strongly recommended this sequence is followed.
1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use).
2) Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and 
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by 
OS).
3) Verify CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, CPUID.0x7.0:EBX.AVX512CD[bit 28] = 1, and 
CPUID.0x7.0:EBX.AVX512VL[bit 31] = 1.

In some specific cases, AVX512VL may only support EVEX.256 encoding but not EVEX.128. These cases are listed 
in Table 15-3.

Figure 15-5.  Procedural Flow for Detection of Intel® AVX-512 Instructions Operating at Vector Lengths < 512

Table 15-2.  Feature Flag Collection Required of 256/128 Bit Vector Lengths for Each Instruction Group 
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15.5 ACCESSING XMM, YMM, AND ZMM REGISTERS
The lower 128 bits of a YMM register is aliased to the corresponding XMM register. Legacy SSE instructions (i.e., 
SIMD instructions operating on XMM state but not using the VEX prefix, also referred to non-VEX encoded SIMD 
instructions) will not access the upper bits (MAXVL-1:128) of the YMM registers. AVX and FMA instructions with a 
VEX prefix and vector length of 128-bits zeroes the upper 128 bits of the YMM register.
Upper bits of YMM registers (255:128) can be read and written to by many instructions with a VEX.256 prefix. 
XSAVE and XRSTOR may be used to save and restore the upper bits of the YMM registers. 
The lower 256 bits of a ZMM register are aliased to the corresponding YMM register. Legacy SSE instructions (i.e., 
SIMD instructions operating on XMM state but not using the VEX prefix, also referred to non-VEX encoded SIMD 
instructions) will not access the upper bits (MAXVL-1:128) of the ZMM registers, where MAXVL is maximum vector 
length (currently 512 bits). AVX and FMA instructions with a VEX prefix and vector length of 128-bits zero the upper 
384 bits of the ZMM register, while the VEX prefix and vector length of 256-bits zeroes the upper 256 bits of the 
ZMM register.
Upper bits of ZMM registers (511:256) can be read and written to by instructions with an EVEX.512 prefix. 

15.6 ENHANCED VECTOR PROGRAMMING ENVIRONMENT USING EVEX 
ENCODING

EVEX-encoded AVX-512 instructions support an enhanced vector programming environment. The enhanced vector 
programming environment uses the combination of EVEX bit-field encodings and a set of eight opmask registers to 
provide the following capabilities:
• Conditional vector processing of an EVEX-encoded instruction. Opmask registers k1 through k7 can be used to 

conditionally govern the per-data-element computational operation and the per-element updates to the 
destination operand of an AVX-512 Foundation instruction. Each bit of the opmask register governs one vector 
element operation (a vector element can be 8 bits, 16 bits, 32 bits or 64 bits). 

• In addition to providing predication control on vector instructions via EVEX bit-field encoding, the opmask 
registers can also be used similarly on general-purpose registers as source/destination operands using modR/M 
encoding for non-mask-related instructions. In this case, an opmask register k0 through k7 can be selected.

• In 64-bit mode, 32 vector registers can be encoded using the EVEX prefix.
• Broadcast may be supported for some instructions on the operand that can be encoded as a memory vector. 

The data elements of a memory vector may be conditionally fetched or written to, and the vector size is 
dependent on the data transformation function.

• Flexible rounding control for the register-to-register flavor of EVEX encoded 512-bit and scalar instructions. 
Four rounding modes are supported by direct encoding within the EVEX prefix, overriding MXCSR settings.

• Broadcast of one element to the rest of the destination vector register.
• Compressed 8-bit displacement encoding scheme to increase the instruction encoding density for instructions 

that normally require disp32 syntax.

Table 15-3.  Instruction Mnemonics That Do Not Support EVEX.128 Encoding 

Instruction Group Instruction Mnemonics Supporting EVEX.256 Only Using AVX512VL

AVX512F VBROADCASTSD, VBROADCASTF32X4, VEXTRACTI32X4, VINSERTF32X4, VINSERTI32X4, VPERMD, 
VPERMPD, VPERMPS, VPERMQ, VSHUFF32X4, VSHUFF64X2, VSHUFI32X4, VSHUFI64X2

AVX512CD

AVX512DQ
VBROADCASTF32X2, VBROADCASTF64X2, VBROADCASTI32X4, VBROADCASTI64X2, VEXTRACTI64X2, 

VINSERTF64X2, VINSERTI64X2, 

AVX512BW
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15.6.1 OPMASK Register to Predicate Vector Data Processing
AVX-512 instructions using EVEX encode a predicate operand to conditionally control per-element computational 
operation and updating of the result to the destination operand. The predicate operand is known as the opmask 
register. The opmask is a set of eight architectural registers of size MAX_KL (64-bit). Note that from this set of eight 
architectural registers, only k1 through k7 can be addressed as a predicate operand. k0 can be used as a regular 
source or destination but cannot be encoded as a predicate operand. Note also that a predicate operand can be 
used to enable memory fault-suppression for some instructions with a memory operand (source or destination). 
As a predicate operand, the opmask registers contain one bit to govern the operation/update to each data element 
of a vector register. In general, opmask registers can support instructions with all element sizes: byte (int8), word 
(int16), single precision floating-point (float32), integer doubleword(int32), double precision floating-point 
(float64), integer quadword (int64). Therefore, a ZMM vector register can hold 8, 16, 32, or 64 elements in prin-
ciple. The length of an opmask register, MAX_KL, is sufficient to handle up to 64 elements with one bit per element, 
i.e., 64 bits. Masking is supported in most of the AVX-512 instructions. For a given vector length, each instruction 
accesses only the number of least significant mask bits that are needed based on its data type. For example, AVX-
512 Foundation instructions operating on 64-bit data elements with a 512-bit vector length, only use the 8 least 
significant bits of the opmask register.
An opmask register affects an AVX-512 instruction at per-element granularity. Any numeric or non-numeric oper-
ation of each data element and per-element updates of intermediate results to the destination operand are predi-
cated on the corresponding bit of the opmask register. 
An opmask serving as a predicate operand in AVX-512 obeys the following properties:
• The instruction’s operation is not performed for an element if the corresponding opmask bit is not set. This 

implies that no exception or violation can be caused by an operation on a masked-off element. Consequently, 
no MXCSR exception flag is updated as a result of a masked-off operation.

• A destination element is not updated with the result of the operation if the corresponding writemask bit is not 
set. Instead, the destination element value must be preserved (merging-masking) or it must be zeroed out 
(zeroing-masking). 

• For some instructions with a memory operand, memory faults are suppressed for elements with a mask bit of 
0.

Note that this feature provides a versatile construct to implement control-flow predication as the mask in effect 
provides a merging behavior for AVX-512 vector register destinations. As an alternative the masking can be used 
for zeroing instead of merging, so that the masked out elements are updated with 0 instead of preserving the old 
value. The zeroing behavior is provided to remove the implicit dependency on the old value when it is not needed.
Most instructions with masking enabled accept both forms of masking. Instructions that must have EVEX.aaa bits 
different than 0 (gather and scatter) and instructions that write to memory only accept merging-masking. 
It’s important to note that the per-element destination update rule also applies when the destination operand is a 
memory location. Vectors are written on a per element basis, based on the opmask register used as a predicate 
operand. 
The value of an opmask register can be:
• Generated as a result of a vector instruction (e.g., CMP, FPCLASS, etc.).
• Loaded from memory.
• Loaded from a GPR register.
• Modified by mask-to-mask operations.
Opmask registers can be used for purposes outside of predication. For example, they can be used to manipulate 
sparse sets of elements from a vector, or used to set the EFLAGS based on the 0/0xFFFFFFFFFFFFFFFF/other status 
of the OR of two opmask registers.

15.6.1.1  Opmask Register K0
The only exception to the opmask rules described above is that opmask k0 cannot be used as a predicate operand. 
Opmask k0 cannot be encoded as a predicate operand for a vector operation; the encoding value that would select 
opmask k0 will instead select an implicit opmask value of 0xFFFFFFFFFFFFFFFF, thereby effectively disabling 
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masking. Opmask register k0 can still be used for any instruction that takes opmask register(s) as operand(s) 
(either source or destination).
Note that certain instructions implicitly use the opmask as an extra destination operand. In such cases, trying to 
use the “no mask” feature will translate into a #UD fault being raised.

15.6.1.2  Example of Opmask Usages
The example below illustrates the predicated vector add operation and predicated updates of added results into the 
destination operand. The initial state of vector registers zmm0, zmm1, and zmm2 and k3 are:

MSB........................................LSB
zmm0 =
[ 0x00000003 0x00000002 0x00000001 0x00000000 ] (bytes 15 through 0)
[ 0x00000007 0x00000006 0x00000005 0x00000004 ] (bytes 31 through 16)
[ 0x0000000B 0x0000000A 0x00000009 0x00000008 ] (bytes 47 through 32)
[ 0x0000000F 0x0000000E 0x0000000D 0x0000000C ] (bytes 63 through 48)

zmm1 = 
[ 0x0000000F 0x0000000F 0x0000000F 0x0000000F ] (bytes 15 through 0)
[ 0x0000000F 0x0000000F 0x0000000F 0x0000000F ] (bytes 31 through 16)
[ 0x0000000F 0x0000000F 0x0000000F 0x0000000F ] (bytes 47 through 32)
[ 0x0000000F 0x0000000F 0x0000000F 0x0000000F ] (bytes 63 through 48)

zmm2 = 
[ 0xAAAAAAAA 0xAAAAAAAA 0xAAAAAAAA 0xAAAAAAAA ] (bytes 15 through 0)
[ 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB ] (bytes 31 through 16)
[ 0xCCCCCCCC 0xCCCCCCCC 0xCCCCCCCC 0xCCCCCCCC ] (bytes 47 through 32)
[ 0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD ] (bytes 63 through 48)

k3 = 0x8F03 (1000 1111 0000 0011)

An opmask register serving as a predicate operand is expressed as a curly-braces-enclosed decorator following the 
first operand in the Intel assembly syntax. Given this state, we will execute the following instruction:

vpaddd zmm2 {k3}, zmm0, zmm1

The vpaddd instruction performs 32-bit integer additions on each data element conditionally based on the corre-
sponding bit value in the predicate operand k3. Since per-element operations are not operated if the corresponding 
bit of the predicate mask is not set, the intermediate result is:

[ ********** ********** 0x00000010 0x0000000F ] (bytes 15 through 0)
[ ********** ********** ********** ********** ] (bytes 31 through 16)
[ 0x0000001A 0x00000019 0x00000018 0x00000017 ] (bytes 47 through 32)
[ 0x0000001E ********** ********** ********** ] (bytes 63 through 48)

where ”**********” indicates that no operation is performed.
This intermediate result is then written into the destination vector register, zmm2, using the opmask register k3 as 
the writemask, producing the following final result:
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zmm2 =
[ 0xAAAAAAAA 0xAAAAAAAA 0x00000010 0x0000000F ] (bytes 15 through 0)
[ 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB ] (bytes 31 through 16)
[ 0x0000001A 0x00000019 0x00000018 0x00000017 ] (bytes 47 through 32)
[ 0x0000001E 0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD ] (bytes 63 through 48)

Note that for a 64-bit instruction (for example, vaddpd), only the 8 LSB of mask k3 (0x03) would be used to iden-
tify the predicate operation on each one of the 8 elements of the source/destination vectors.

15.6.2 OpMask Instructions 
AVX-512 Foundation instructions provide a collection of opmask instructions that allow programmers to set, copy, 
or operate on the contents of a given opmask register. There are three types of opmask instructions:
• Mask read/write instructions: These instructions move data between a general-purpose integer register or 

memory and an opmask mask register, or between two opmask registers. For example:

— kmovw k1, ebx; move lower 16 bits of ebx to k1.
• Flag instructions: This category consists of instructions that modify EFLAGS based on the content of opmask 

registers.

— kortestw k1, k2; OR registers k1 and k2 and updated EFLAGS accordingly.
• Mask logical instructions: These instructions perform standard bitwise logical operations between opmask 

registers. 

— kandw k1, k2, k3; AND lowest 16 bits of registers k2 and k3, leaving the result in k1.

15.6.3 Broadcast
EVEX encoding provides a bit-field to encode data broadcast for some load-op instructions, i.e., instructions that 
load data from memory and perform some computational or data movement operation. A source element from 
memory can be broadcasted (repeated) across all the elements of the effective source operand (up to 16 times for 
a 32-bit data element, up to 8 times for a 64-bit data element). This is useful when reusing the same scalar 
operand for all the operations in a vector instruction. Note that some processors may perform multiple loads of the 
source element and thus software should not rely on atomicity of the data being broadcast (e.g., when the source 
element is simultaneously modified by another logical processor).
Broadcast is only enabled on instructions with an element size of 32 bits or 64 bits. Byte and word instructions do 
not support embedded broadcast. 

The functionality of data broadcast is expressed as a curly-braces-enclosed decorator following the last 
register/memory operand in the Intel assembly syntax.
For instance:

vmulps zmm1, zmm2, [rax] {1to16}

The {1to16} primitive loads one float32 (single precision) element from memory, replicates it 16 times to form a 
vector of 16 32-bit floating-point elements, multiplies the 16 float32 elements with the corresponding elements in 
the first source operand vector, and puts each of the 16 results into the destination operand. 

AVX-512 instructions with store semantics and pure load instructions do not support broadcast primitives. 

vmovaps [rax] {k3}, zmm19
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In contrast, the k3 opmask register is used as the predicate operand in the above example. Only the store opera-
tion on data elements corresponding to the non-zero bits in k3 will be performed.

15.6.4 Static Rounding Mode and Suppress All Exceptions
In previous SIMD instruction extensions (up to AVX and AVX2), rounding control is generally specified in MXCSR, 
with a handful of instructions providing per-instruction rounding override via encoding fields within the imm8 
operand. AVX-512 offers a more flexible encoding attribute to override MXCSR-based rounding control for floating-
pointing instructions with rounding semantics. This rounding attribute embedded in the EVEX prefix is called Static 
(per instruction) Rounding Mode or Rounding Mode override. This attribute allows programmers to statically apply 
a specific arithmetic rounding mode irrespective of the value of RM bits in MXCSR. It is available only to register-to-
register flavors of EVEX-encoded floating-point instructions with rounding semantic. The differences between these 
three rounding control interfaces are summarized in Table 15-4. 

The static rounding-mode override in Intel AVX-512 also implies the “suppress-all-exceptions” (SAE) attribute. The 
SAE effect is as if all the MXCSR mask bits are set, and none of the MXCSR flags will be updated. Using static 
rounding-mode via EVEX without SAE is not supported.
Static Rounding Mode and SAE control can be enabled in the encoding of the instruction by setting the EVEX.b bit 
to 1 in a register-register vector instruction. In such a case, vector length is assumed to be MAXVL (512-bit in case 
of AVX-512 packed vector instructions) or 128-bit for scalar instructions. Table 15-5 summarizes the possible static 
rounding-mode assignments in AVX-512 instructions.
Note that some instructions already allow specifying the rounding mode statically via immediate bits. In such 
cases, the immediate bits take precedence over the embedded rounding mode (in the same vein that they take 
precedence over whatever MXCSR.RM says).

An example of use would be as follows:
vaddps zmm7 {k6}, zmm2, zmm4, {rd-sae}

Table 15-4.  Characteristics of Three Rounding Control Interfaces

Rounding Interface
Static Rounding 

Override
Imm8 Embedded Rounding 

Override MXCSR Rounding Control

Semantic Requirement FP rounding FP rounding FP rounding

Prefix Requirement EVEX.B = 1 NA NA

Rounding Control EVEX.L’L IMM8[1:0] or MXCSR.RC
(depending on IMM8[2])

MXCSR.RC

Suppress All Exceptions (SAE) Implied no no

SIMD FP Exception #XM All suppressed Can raise #I, #P (unless SPE is set) MXCSR masking controls

MXCSR flag update No yes (except PE if SPE is set) Yes

Precedence Above MXCSR.RC Above EVEX.L’L Default

Scope 512-bit, reg-reg, 
Scalar reg-reg

ROUNDPx, ROUNDSx, 
VCVTPS2PH, VRNDSCALExx

All SIMD operands, vector lengths

Table 15-5.  Static Rounding Mode

Function Description

{rn-sae} Round to nearest (even) + SAE

{rd-sae} Round down (toward -inf) + SAE

{ru-sae} Round up (toward +inf) + SAE

{rz-sae} Round toward zero (Truncate) + SAE
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This would perform the single precision floating-point addition of vectors zmm2 and zmm4 with round-towards-
minus-infinity, leaving the result in vector zmm7 using k6 as conditional writemask.
Note that MXCSR.RM bits are ignored and unaffected by the outcome of this instruction.

Examples of instruction instances where the static rounding-mode is not allowed are shown below:
; rounding-mode already specified in the instruction immediate
vrndscaleps zmm7 {k6}, zmm2, 0x00

; instructions with memory operands
vmulps zmm7 {k6}, zmm2,[rax], {rd-sae}

; instructions with vector length different than MAXVL (512-bit)
vaddps ymm7 {k6}, ymm2, ymm4,{rd-sae}

15.6.5 Compressed Disp8*N Encoding
EVEX encoding supports a new displacement representation that allows for a more compact encoding of memory 
addressing commonly used in unrolled code, where an 8-bit displacement can address a range exceeding the 
dynamic range of an 8-bit value. This compressed displacement encoding is referred to as disp8*N, where N is a 
constant implied by the memory operation characteristic of each instruction. 
The compressed displacement is based on the assumption that the effective displacement (of a memory operand 
occurring in a loop) is a multiple of the granularity of the memory access of each iteration. Since the base register 
in memory addressing already provides byte-granular resolution, the lower bits of the traditional disp8 operand 
become redundant, and can be implied from the memory operation characteristic. 
The memory operation characteristics depend on the following:
• The destination operand is updated as a full vector, a single element, or multi-element tuples.
• The memory source operand (or vector source operand if the destination operand is memory) is fetched (or 

treated) as a full vector, a single element, or multi-element tuples.
For example:
vaddps zmm7, zmm2, disp8[membase + index*8]
The destination zmm7 is updated as a full 512-bit vector, and 64-bytes of data are fetched from memory as a full 
vector; the next unrolled iteration may fetch from memory in 64-byte granularity per iteration. There are 6 bits of 
lowest address that can be compressed, hence N = 2^6 = 64. The contribution of “disp8” to effective address 
calculation is 64*disp8.
vbroadcastf32x4 zmm7, disp8[membase + index*8]
In VBROADCASTF32x4, memory is fetched as a 4tuple of 4 32-bit entities. Hence the common lowest address bits 
that can be compressed are 4, corresponding to the 4tuple width of 2^4 = 16 bytes (4x32 bits). Therefore, N = 
2^4.
For EVEX encoded instructions that update only one element in the destination, or the source element is fetched 
individually, the number of lowest address bits that can be compressed is generally the width in bytes of the data 
element, hence N = 2^(width).

15.7 MEMORY ALIGNMENT 
Memory alignment requirements on EVEX-encoded SIMD instructions are similar to VEX-encoded SIMD instruc-
tions. Memory alignment applies to EVEX-encoded SIMD instructions in three categories:
• Explicitly-aligned SIMD load and store instructions accessing 64 bytes of memory with EVEX prefix encoded 

vector length of 512 bits (e.g., VMOVAPD, VMOVAPS, VMOVDQA, etc.). These instructions always require the 
memory address to be aligned on a 64-byte boundary.
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• Explicitly-unaligned SIMD load and store instructions accessing 64 bytes or less of data from memory (e.g., 
VMOVUPD, VMOVUPS, VMOVDQU, VMOVQ, VMOVD, etc.). These instructions do not require the memory 
address to be aligned on a natural vector-length byte boundary.

• Most arithmetic and data processing instructions encoded using EVEX support memory access semantics. 
When these instructions access from memory, there are no alignment restrictions.

Software may see performance penalties when unaligned accesses cross cacheline boundaries or vector-length 
naturally-aligned boundaries, so reasonable attempts to align commonly used data sets should continue to be 
pursued.
Atomic memory operation in Intel 64 and IA-32 architecture is guaranteed only for a subset of memory operand 
sizes and alignment scenarios. The guaranteed atomic operations are described in Section 10.1.1, “Guaranteed 
Atomic Operations,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. Intel AVX 
and FMA instructions do not introduce any new guaranteed atomic memory operations.
Intel AVX-512 instructions may generate an #AC(0) fault on misaligned 4 or 8-byte memory references in Ring-3 
when CR0.AM=1. 16, 32, and 64-byte memory references will not generate an #AC(0) fault. See Table 15-7 for 
details.
Certain AVX-512 Foundation instructions always require 64-byte alignment (see the complete list of VEX and EVEX 
encoded instructions in Table 15-6). These instructions will #GP(0) if not aligned to 64-byte boundaries.

15.8 SIMD FLOATING-POINT EXCEPTIONS
AVX-512 instructions can generate SIMD floating-point exceptions (#XM) if embedded “suppress all exceptions” 
(SAE) in EVEX is not set. When SAE is not set, these instructions will respond to exception masks of MXCSR in the 
same way as VEX-encoded AVX instructions. When CR4.OSXMMEXCPT=0, any unmasked FP exceptions generate 
an Undefined Opcode exception (#UD).

Table 15-6.   SIMD Instructions Requiring Explicitly Aligned Memory

Require 16-byte alignment Require 32-byte alignment Require 64-byte alignment*

(V)MOVDQA xmm, m128 VMOVDQA ymm, m256 VMOVDQA zmm, m512

(V)MOVDQA m128, xmm VMOVDQA m256, ymm VMOVDQA m512, zmm

(V)MOVAPS xmm, m128 VMOVAPS ymm, m256 VMOVAPS zmm, m512

(V)MOVAPS m128, xmm VMOVAPS m256, ymm VMOVAPS m512, zmm

(V)MOVAPD xmm, m128 VMOVAPD ymm, m256 VMOVAPD zmm, m512

(V)MOVAPD m128, xmm VMOVAPD m256, ymm VMOVAPD m512, zmm

(V)MOVNTDQA xmm, m128 VMOVNTPS m256, ymm VMOVNTPS m512, zmm

(V)MOVNTPS m128, xmm VMOVNTPD m256, ymm VMOVNTPD m512, zmm

(V)MOVNTPD m128, xmm VMOVNTDQ m256, ymm VMOVNTDQ m512, zmm

(V)MOVNTDQ m128, xmm VMOVNTDQA ymm, m256 VMOVNTDQA zmm, m512

Table 15-7.  Instructions Not Requiring Explicit Memory Alignment

(V)MOVDQU xmm, m128 VMOVDQU ymm, m256 VMOVDQU zmm, m512

(V)MOVDQU m128, m128 VMOVDQU m256, ymm VMOVDQU m512, zmm

(V)MOVUPS xmm, m128 VMOVUPS ymm, m256 VMOVUPS zmm, m512

(V)MOVUPS m128, xmm VMOVUPS m256, ymm VMOVUPS m512, zmm

(V)MOVUPD xmm, m128 VMOVUPD ymm, m256 VMOVUPD zmm, m512

(V)MOVUPD m128, xmm VMOVUPD m256, ymm VMOVUPD m512, zmm
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15.9 INSTRUCTION EXCEPTION SPECIFICATION
Exception behavior of VEX-encoded Intel AVX and Intel AVX2 instructions are described in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A. Exception behavior of Intel AVX-512 Foundation instruc-
tions and additional 512-bit extensions are described in Section 2.8, “Exception Classifications of EVEX-Encoded 
instructions,” and Section 2.9, “Exception Classifications of Opmask instructions, Type K20 and Type K21.”

15.10 EMULATION
Setting the CR0.EM bit to 1 provides a technique to emulate legacy Intel SSE floating-point instruction sets in soft-
ware. This technique is not supported with Intel AVX instructions, nor FMA instructions. 
If an operating system wishes to emulate Intel AVX instructions, set XCR0[2:1] to zero. This will cause Intel AVX 
instructions to #UD. Emulation of FMA by the operating system can be done similarly as with emulating Intel AVX 
instructions. 

15.11 WRITING FLOATING-POINT EXCEPTION HANDLERS
Intel AVX-512, Intel AVX, and FMA floating-point exceptions are handled in an entirely analogous way to legacy 
SSE floating-point exceptions. To handle unmasked SIMD floating-point exceptions, the operating system or exec-
utive must provide an exception handler. Section 11.5.1, “SIMD Floating-Point Exceptions,” describes the SIMD 
floating-point exception classes and gives suggestions for writing an exception handler to handle them.
To indicate that the operating system provides a handler for SIMD floating-point exceptions (#XM), the CR4.OSXM-
MEXCPT flag (bit 10) must be set.
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CHAPTER 16
PROGRAMMING WITH INTEL® AVX10

16.1 INTRODUCTION
Intel® Advanced Vector Extensions 10 (Intel® AVX10) represents the first major new vector ISA since the introduc-
tion of Intel® Advanced Vector Extensions 512 (Intel® AVX-512) in 2013. This ISA establishes a common, 
converged vector instruction set across all Intel architectures, incorporating the modern vectorization aspects of 
Intel AVX-512. This ISA will be supported on all future processors, including Performance cores (P-cores) and Effi-
cient cores (E-cores).   
The Intel AVX10 ISA represents the latest in ISA innovations, instructions, and features moving forward. Based on 
the Intel AVX-512 ISA feature set and including all Intel AVX-512 instructions introduced with Intel® Xeon® 6 P-
core processors based on Granite Rapids microarchitecture, it supports all instruction vector lengths (128, 256, and 
512), as well as scalar and opmask instructions. Implementations of Intel AVX10 with vector lengths of at least 256 
bits will be supported across all Intel® processors.

16.2 FEATURES AND CAPABILITIES
The Intel AVX10 architecture introduces several features and capabilities beyond the Intel® AVX2 ISA:
• Version-based instruction set enumeration.
• Intel AVX10/256 − Converged implementation support on all Intel processors to include all the existing Intel 

AVX-512 capabilities such as EVEX encoding, 32 vector registers, and eight mask registers at a maximum 
vector length of 256 bits.

• Embedded rounding and Suppress All Exceptions (SAE) control for YMM (256-bit) versions of the instructions.
• VMX capability to create Intel AVX10/256 virtual machines that provide a hardware enforced Intel AVX10/256 

execution environment on an Intel AVX10/512 capable processor.

16.3 FEATURE ENUMERATION
Intel AVX10 introduces a versioned approach for enumeration that is monotonically increasing, inclusive, and 
supporting all vector lengths. This is introduced to simplify application development by ensuring that all Intel 
processors support the same features and instructions at a given Intel AVX10 version number, as well as reduce the 
number of CPUID feature flags required to be checked by an application to determine feature support. In this 
enumeration paradigm, the application developer will only need to check three fields:

1. A CPUID feature flag indicating that the Intel AVX10 ISA is supported.

2. A version number to ensure that the supported version is greater than or equal to the desired version.

3. A vector length bit indicating the maximum supported vector length.

The “AVX10 Converged Vector ISA” feature flag indicates processor support for the ISA and the presence of an 
“AVX10 Converged Vector ISA” leaf containing fields for the version number and the supported vector bit lengths. 
See Table 16-1 for details. 
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Several other important tenets regarding Intel AVX10 enumeration are as follows:
• Versions are expected to be inclusive such that version N+1 is a superset of version N. Once an instruction is 

introduced in Intel AVX10.x, it is expected to be carried forward in all subsequent Intel AVX10 versions, 
allowing a developer to check only for a version greater than or equal to the desired version.

• Any processor that enumerates support for Intel AVX10 will also enumerate support for Intel AVX and Intel 
AVX2.

• Developers can assume that the highest supported vector length for a processor implies that all lesser vector 
lengths are also supported. Scalar Intel AVX-512 instructions will be supported independent of the maximum 
vector width.

The first version of Intel AVX10 (Version 1, or Intel® AVX10.1) will support only the Intel AVX-512 instruction set 
at 128, 256, and 512 bits. Applications written to Intel AVX10.1 will run on any future Intel processor that enumer-
ates Intel AVX10.1 or higher at the matching desired vector lengths. Intel AVX-512 instruction families included in 
Intel AVX10.1 are shown in Table 16-2.

NOTE
VAES, VPCLMULQDQ, and GFNI EVEX instructions will be supported on Intel AVX10.1 machines but 
will continue to be enumerated by their existing discrete CPUID feature flags. This requires the 
developer to check for both the feature and Intel AVX10, e.g., {AVX10.1 AND VAES}.

Table 16-1.  CPUID Enumeration of Intel® AVX10 
CPUID Bit Description Type

CPUID.(EAX=07H, ECX=01H):EDX[bit 19] If 1, the Intel® AVX10 Converged Vector ISA is supported. Bit (0/1)

CPUID.(EAX=24H, ECX=00H):EAX[bits 31:0] Reports the maximum supported sub-leaf. Integer

CPUID.(EAX=24H, ECX=00H):EBX[bits 7:0] Reports the Intel AVX10 Converged Vector ISA version. Integer (≥ 1)

CPUID.(EAX=24H, ECX=00H):EBX[bits 15:8] Reserved. N/A

CPUID.(EAX=24H, ECX=00H):EBX[bit 16] Reserved. Always 1

CPUID.(EAX=24H, ECX=00H):EBX[bit 17] If 1, indicates that 256-bit vector support is present. Bit (0/1)

CPUID.(EAX=24H, ECX=00H):EBX[bit 18] If 1, indicates that 512-bit vector support is present. Bit (0/1)

CPUID.(EAX=24H, ECX=00H):EBX[bits 31:19] Reserved. N/A

CPUID.(EAX=24H, ECX=00H):ECX[bits 31:0] Reserved. N/A

CPUID.(EAX=24H, ECX=00H):EDX[bits 31:0] Reserved. N/A

CPUID.(EAX=24H, ECX=01H):EAX[bits 31:0] Reserved for discrete feature bits. N/A

CPUID.(EAX=24H, ECX=01H):EBX[bits 31:0] Reserved for discrete feature bits. N/A

CPUID.(EAX=24H, ECX=01H):ECX[bits 31:0] Reserved for discrete feature bits. N/A

CPUID.(EAX=24H, ECX=01H):EDX[bits 31:0] Reserved for discrete feature bits. N/A

Table 16-2.  Intel® AVX-512 CPUID Feature Flags Included in Intel® AVX10 
Feature Introduction Intel® AVX-512 CPUID Feature Flags Included in Intel® AVX10 

Intel® Xeon® Scalable Processor Family based on Skylake 
microarchitecture

AVX512F, AVX512CD, AVX512BW, AVX512DQ

Intel® Core™ processors based on Cannon Lake microarchitecture AVX512-VBMI, AVX512-IFMA

2nd generation Intel® Xeon® Scalable Processor Family based on 
Cascade Lake product

AVX512-VNNI

3rd generation Intel® Xeon® Scalable Processor Family based on 
Cooper Lake product

AVX512-BF16

3rd generation Intel® Xeon® Scalable Processor Family based on Ice 
Lake microarchitecture

AVX512-VPOPCNTDQ, AVX512-VBMI2, VAES, GFNI, 
VPCLMULQDQ, AVX512-BITALG

4th generation Intel® Xeon® Scalable Processor Family based on 
Sapphire Rapids microarchitecture

AVX512-FP16
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New vector ISA features will only be added to the Intel AVX10 ISA moving forward. While Intel AVX10/512 includes 
all Intel AVX-512 instructions, it is important to note that applications compiled to Intel AVX-512 with vector length 
limited to 256 bits are not guaranteed to be compatible with an Intel AVX10/256 processor.

Table 16-3.  Feature Differences Between Intel® AVX-512 and Intel® AVX10 
Feature Intel® AVX-512 Intel® AVX10.1/256 Intel® AVX10.1/512

128-bit vector (XMM) register support Yes Yes Yes

256-bit vector (YMM) register support Yes Yes Yes

512-bit vector (ZMM) register support Yes No Yes

YMM embedded rounding No No No

ZMM embedded rounding Yes No Yes
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CHAPTER 17
PROGRAMMING WITH INTEL® TRANSACTIONAL SYNCHRONIZATION

EXTENSIONS

17.1 OVERVIEW
This chapter describes the software programming interface to the Intel® Transactional Synchronization Extensions 
of the Intel 64 architecture.
Multi-threaded applications take advantage of increasing number of cores to achieve high performance. However, 
writing multi-threaded applications requires programmers to reason about data sharing among multiple threads. 
Access to shared data typically requires synchronization mechanisms. These mechanisms ensure multiple threads 
update shared data by serializing operations on the shared data, often through the use of a critical section 
protected by a lock. Since serialization limits concurrency, programmers try to limit synchronization overheads. 
They do this either through minimizing the use of synchronization or through the use of fine-grain locks; where 
multiple locks each protect different shared data. Unfortunately, this process is difficult and error prone; a missed 
or incorrect synchronization can cause an application to fail. Conservatively adding synchronization and using 
coarser granularity locks, where a few locks each protect many items of shared data, helps avoid correctness prob-
lems but limits performance due to excessive serialization. While programmers must use static information to 
determine when to serialize, the determination as to whether actually to serialize is best done dynamically. 
Intel® Transactional Synchronization Extensions aim to improve the performance of lock-protected critical sections 
while maintaining the lock-based programming model.

17.2 INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS
Intel® Transactional Synchronization Extensions (Intel® TSX) allow the processor to determine dynamically 
whether threads need to serialize through lock-protected critical sections, and to perform serialization only when 
required. This lets the hardware expose and exploit concurrency hidden in an application due to dynamically unnec-
essary synchronization through a technique known as lock elision. 
With lock elision, the hardware executes the programmer-specified critical sections (also referred to as transac-
tional regions) transactionally. In such an execution, the lock variable is only read within the transactional region; 
it is not written to (and therefore not acquired) with the expectation that the lock variable remains unchanged after 
the transactional region, thus exposing concurrency.
If the transactional execution completes successfully, then the hardware ensures that all memory operations 
performed within the transactional region will appear to have occurred instantaneously when viewed from other 
logical processors, a process referred to as an atomic commit. Any updates performed within the transactional 
region are made visible to other processors only on an atomic commit.
Since a successful transactional execution ensures an atomic commit, the processor can execute the programmer-
specified code section optimistically without synchronization. If synchronization was unnecessary for that specific 
execution, execution can commit without any cross-thread serialization. 

If the transactional execution is unsuccessful, the processor cannot commit the updates atomically. When this 
happens, the processor will roll back the execution, a process referred to as a transactional abort. On a transac-
tional abort, the processor will discard all updates performed in the region, restore architectural state to appear as 
if the optimistic execution never occurred, and resume execution non-transactionally. Depending on the policy in 
place, lock elision may be retried or the lock may be explicitly acquired to ensure forward progress.
Intel TSX provides two software interfaces for programmers.
• Hardware Lock Elision (HLE) is a legacy compatible instruction set extension comprising the XACQUIRE and 

XRELEASE prefixes.
• Restricted Transactional Memory (RTM) is an instruction set interface comprising the XBEGIN and XEND 

instructions. 
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Programmers who would like to run Intel TSX-enabled software on legacy hardware would use the HLE interface to 
implement lock elision. On the other hand, programmers who do not have legacy hardware requirements and who 
deal with more complex locking primitives would use the RTM software interface of Intel TSX to implement lock 
elision. In the latter case when using new instructions, the programmer must always provide a non-transactional 
path (which would have code to eventually acquire the lock being elided) to execute following a transactional abort 
and must not rely on the transactional execution alone.
Intel TSX provides the XTEST instruction to test whether a logical processor is executing transactionally, and the 
XABORT instruction to abort a transactional region.
A processor can perform a transactional abort for numerous reasons. A primary cause is due to conflicting accesses 
between the transactionally executing logical processor and another logical processor. Such conflicting accesses 
may prevent a successful transactional execution. Memory addresses read from within a transactional region 
constitute the read-set of the transactional region and addresses written to within the transactional region consti-
tute the write-set of the transactional region. Intel TSX maintains the read- and write-sets at the granularity of a 
cache line. 
A conflicting data access occurs if another logical processor either reads a location that is part of the transactional 
region’s write-set or writes a location that is a part of either the read- or write-set of the transactional region. We 
refer to this as a data conflict. Since Intel TSX detects data conflicts at the granularity of a cache line, unrelated 
data locations placed in the same cache line will be detected as conflicts. Transactional aborts may also occur due 
to limited transactional resources. For example, the amount of data accessed in the region may exceed an imple-
mentation-specific capacity. Additionally, some instructions and system events may cause transactional aborts. 

Additionally, Intel TSX provides the XSUSLDTRK and XRESLDTRK instructions to suspend and resume load address 
tracking.

17.2.1 HLE Software Interface
HLE provides two instruction prefix hints: XACQUIRE and XRELEASE. 
The programmer uses the XACQUIRE prefix in front of the instruction that is used to acquire the lock that is 
protecting the critical section. The processor treats the indication as a hint to elide the write associated with the 
lock acquire operation. Even though the lock acquire has an associated write operation to the lock, the processor 
does not add the address of the lock to the transactional region’s write-set nor does it issue any write requests to 
the lock. Instead, the address of the lock is added to the read-set. The logical processor enters transactional execu-
tion. If the lock was available before the XACQUIRE prefixed instruction, all other processors will continue to see it 
as available afterwards. Since the transactionally executing logical processor neither added the address of the lock 
to its write-set nor performed externally visible write operations to it, other logical processors can read the lock 
without causing a data conflict. This allows other logical processors to also enter and concurrently execute the crit-
ical section protected by the lock. The processor automatically detects any data conflicts that occur during the 
transactional execution and will perform a transactional abort if necessary.
Even though the eliding processor did not perform any external write operations to the lock, the hardware ensures 
program order of operations on the lock. If the eliding processor itself reads the value of the lock in the critical 
section, it will appear as if the processor had acquired the lock, i.e., the read will return the non-elided value. This 
behavior makes an HLE execution functionally equivalent to an execution without the HLE prefixes.
The programmer uses the XRELEASE prefix in front of the instruction that is used to release the lock protecting the 
critical section. This involves a write to the lock. If the instruction is restoring the value of the lock to the value it 
had prior to the XACQUIRE prefixed lock acquire operation on the same lock, then the processor elides the external 
write request associated with the release of the lock and does not add the address of the lock to the write-set. The 
processor then attempts to commit the transactional execution. 
With HLE, if multiple threads execute critical sections protected by the same lock but they do not perform any 
conflicting operations on each other’s data, then the threads can execute concurrently and without serialization. 
Even though the software uses lock acquisition operations on a common lock, the hardware recognizes this, elides 
the lock, and executes the critical sections on the two threads without requiring any communication through the 
lock — if such communication was dynamically unnecessary.
If the processor is unable to execute the region transactionally, it will execute the region non-transactionally and 
without elision. HLE enabled software has the same forward progress guarantees as the underlying non-HLE lock-
based execution. For successful HLE execution, the lock and the critical section code must follow certain guidelines 
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(discussed in Section 17.3.3 and Section 17.3.9). These guidelines only affect performance; not following these 
guidelines will not cause a functional failure.
Hardware without HLE support will ignore the XACQUIRE and XRELEASE prefix hints and will not perform any 
elision since these prefixes correspond to the REPNE/REPE IA-32 prefixes which are ignored on the instructions 
where XACQUIRE and XRELEASE are valid. Importantly, HLE is compatible with the existing lock-based program-
ming model. Improper use of hints will not cause functional bugs though it may expose latent bugs already in the 
code. 

17.2.2 RTM Software Interface
RTM provides three instructions: XBEGIN, XEND, and XABORT. 
Software uses the XBEGIN instruction to specify the start of the transactional region and the XEND instruction to 
specify the end of the transactional region. The XBEGIN instruction takes an operand that provides a relative offset 
to the fallback instruction address if the transactional region could not be successfully executed transactionally. 
Software using these instructions to implement lock elision must test the lock within the transactional region, and 
only if free should try to commit. Further, the software may also define a policy to retry if the lock is not free.
A processor may abort transactional execution for many reasons. The hardware automatically detects transactional 
abort conditions and restarts execution from the fallback instruction address with the architectural state corre-
sponding to that at the start of the XBEGIN instruction and the EAX register updated to describe the abort status. 
The XABORT instruction allows programmers to abort the execution of a transactional region explicitly. The 
XABORT instruction takes an 8 bit immediate argument that is loaded into the EAX register and will thus be avail-
able to software following a transactional abort.
Hardware provides no guarantees as to whether a transactional execution will ever successfully commit. Program-
mers must always provide an alternative code sequence in the fallback path to guarantee forward progress. When 
using the instructions for lock elision, this may be as simple as acquiring a lock and executing the specified code 
region non-transactionally. Further, a transactional region that always aborts on a given implementation may 
complete transactionally on a future implementation. Therefore, programmers must ensure the code paths for the 
transactional region and the alternative code sequence are functionally tested.

If the RTM software interface is used for anything other than lock elision, the programmer must similarly ensure 
that the fallback path is inter-operable with the transactionally executing path.

17.3 INTEL® TSX APPLICATION PROGRAMMING MODEL

17.3.1 Detection of Transactional Synchronization Support

17.3.1.1  Detection of HLE Support
A processor supports HLE execution if CPUID.07H.EBX.HLE [bit 4] = 1. However, an application can use the HLE 
prefixes (XACQUIRE and XRELEASE) without checking whether the processor supports HLE. Processors without 
HLE support ignore these prefixes and will execute the code without entering transactional execution.

17.3.1.2  Detection of RTM Support
A processor supports RTM execution if CPUID.07H.EBX.RTM [bit 11] = 1. An application must check if the processor 
supports RTM before it uses the RTM instructions (XBEGIN, XEND, and XABORT). These instructions will generate 
a #UD exception when used on a processor that does not support RTM.
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17.3.1.3  Detection of XTEST Instruction
A processor supports the XTEST instruction if it supports either HLE or RTM. An application must check either of 
these feature flags before using the XTEST instruction. This instruction will generate a #UD exception when used 
on a processor that does not support either HLE or RTM.

17.3.1.4  Detection of Intel® TSX Suspend Load Address Tracking
A processor supports Intel TSX suspend/resume of load address tracking if CPUID.07H.EDX.TSXLDTRK [bit 16] = 
1. An application must check if the processor supports Intel TSX suspend/resume of load address tracking before it 
uses the Intel TSX suspend/resume load address tracking instructions (XSUSLDTRK and XRESLDTRK). These 
instructions will generate a #UD exception when used on a processor that does not support Intel TSX 
suspend/resume load address tracking.

17.3.2 Querying Transactional Execution Status
The XTEST instruction can be used to determine the transactional status of a transactional region specified by HLE 
or RTM. Note, while the HLE prefixes are ignored on processors that do not support HLE, the XTEST instruction will 
generate a #UD exception when used on processors that do not support either HLE or RTM.

17.3.3 Requirements for HLE Locks
For HLE execution to successfully commit transactionally, the lock must satisfy certain properties and access to the 
lock must follow certain guidelines. 
• An XRELEASE prefixed instruction must restore the value of the elided lock to the value it had before the lock 

acquisition. This allows hardware to safely elide locks by not adding them to the write-set. The data size and 
data address of the lock release (XRELEASE prefixed) instruction must match that of the lock acquire 
(XACQUIRE prefixed) and the lock must not cross a cache line boundary.

• Software should not write to the elided lock inside a transactional HLE region with any instruction other than an 
XRELEASE prefixed instruction, otherwise it may cause a transactional abort. In addition, recursive locks 
(where a thread acquires the same lock multiple times without first releasing the lock) may also cause a trans-
actional abort. Note that software can observe the result of the elided lock acquire inside the critical section. 
Such a read operation will return the value of the write to the lock.

The processor automatically detects violations to these guidelines, and safely transitions to a non-transactional 
execution without elision. Since Intel TSX detects conflicts at the granularity of a cache line, writes to data collo-
cated on the same cache line as the elided lock may be detected as data conflicts by other logical processors eliding 
the same lock.

17.3.4 Transactional Nesting
Both HLE- and RTM-based transactional executions support nested transactional regions. However, a transactional 
abort restores state to the operation that started transactional execution: either the outermost XACQUIRE prefixed 
HLE eligible instruction or the outermost XBEGIN instruction. The processor treats all nested transactional regions 
as one monolithic transactional region.

17.3.4.1  HLE Nesting and Elision
Programmers can nest HLE regions up to an implementation specific depth of MAX_HLE_NEST_COUNT. Each logical 
processor tracks the nesting count internally but this count is not available to software. An XACQUIRE prefixed HLE-
eligible instruction increments the nesting count, and an XRELEASE prefixed HLE-eligible instruction decrements it. 
The logical processor enters transactional execution when the nesting count goes from zero to one. The logical 
processor attempts to commit only when the nesting count becomes zero. A transactional abort may occur if the 
nesting count exceeds MAX_HLE_NEST_COUNT.
In addition to supporting nested HLE regions, the processor can also elide multiple nested locks. The processor 
tracks a lock for elision beginning with the XACQUIRE prefixed HLE eligible instruction for that lock and ending with 
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the XRELEASE prefixed HLE eligible instruction for that same lock. The processor can, at any one time, track up to 
a MAX_HLE_ELIDED_LOCKS number of locks. For example, if the implementation supports a 
MAX_HLE_ELIDED_LOCKS value of two and if the programmer nests three HLE identified critical sections (by 
performing XACQUIRE prefixed HLE eligible instructions on three distinct locks without performing an intervening 
XRELEASE prefixed HLE eligible instruction on any one of the locks), then the first two locks will be elided, but the 
third won't be elided (but will be added to the transaction’s write-set). However, the execution will still continue 
transactionally. Once an XRELEASE for one of the two elided locks is encountered, a subsequent lock acquired 
through the XACQUIRE prefixed HLE eligible instruction will be elided.
The processor attempts to commit the HLE execution when all elided XACQUIRE and XRELEASE pairs have been 
matched, the nesting count goes to zero, and the locks have satisfied the requirements described earlier. If execu-
tion cannot commit atomically, then execution transitions to a non-transactional execution without elision as if the 
first instruction did not have an XACQUIRE prefix.

17.3.4.2  RTM Nesting
Programmers can nest RTM-based transactional regions up to an implementation specific 
MAX_RTM_NEST_COUNT. The logical processor tracks the nesting count internally but this count is not available to 
software. An XBEGIN instruction increments the nesting count, and an XEND instruction decrements it. The logical 
processor attempts to commit only if the nesting count becomes zero. A transactional abort occurs if the nesting 
count exceeds MAX_RTM_NEST_COUNT.

17.3.4.3  Nesting HLE and RTM
HLE and RTM provide two alternative software interfaces to a common transactional execution capability. The 
behavior when HLE and RTM are nested together—HLE inside RTM or RTM inside HLE—is implementation specific. 
However, in all cases, the implementation will maintain HLE and RTM semantics. An implementation may choose to 
ignore HLE hints when used inside RTM regions, and may cause a transactional abort when RTM instructions are 
used inside HLE regions. In the latter case, the transition from transactional to non-transactional execution occurs 
seamlessly since the processor will re-execute the HLE region without actually doing elision, and then execute the 
RTM instructions. 

17.3.5 RTM Abort Status Definition
RTM uses the EAX register to communicate abort status to software. Following an RTM abort the EAX register has 
the following definition.

The EAX abort status for RTM only provides causes for aborts. It does not by itself encode whether an abort or 
commit occurred for the RTM region. The value of EAX can be 0 following an RTM abort. For example, a CPUID 

Table 17-1.  RTM Abort Status Definition

EAX Register Bit 
Position

Meaning

0 Set if abort caused by XABORT instruction.

1 If set, the transactional execution may succeed on a retry. This bit is always clear if bit 0 is set.

2 Set if another logical processor conflicted with a memory address that was part of the transactional execution 
that aborted. 

3 Set if an internal buffer to track transactional state overflowed. 

4 Set if a debug exception (#DB) or breakpoint exception (#BP) was hit.

5 Set if an abort occurred during execution of a nested transactional execution.

23:6 Reserved.

31:24 XABORT argument (only valid if bit 0 set, otherwise reserved).
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instruction when used inside an RTM region causes a transactional abort and may not satisfy the requirements for 
setting any of the EAX bits. This may result in an EAX value of 0.

17.3.6 RTM Memory Ordering
A successful RTM commit causes all memory operations in the RTM region to appear to execute atomically. A 
successfully committed RTM region consisting of an XBEGIN followed by an XEND, even with no memory operations 
in the RTM region, has the same ordering semantics as a LOCK prefixed instruction.
The XBEGIN instruction does not have fencing semantics. However, if an RTM execution aborts, all memory updates 
from within the RTM region are discarded and never made visible to any other logical processor.

17.3.7 RTM-Enabled Debugger Support
Any debug exception (#DB) or breakpoint exception (#BP) inside an RTM region causes a transactional abort and, 
by default, redirects control flow to the fallback instruction address with architectural state recovered and bit 4 in 
EAX set. However, to allow software debuggers to intercept execution on debug or breakpoint exceptions, the RTM 
architecture provides additional capability called advanced debugging of RTM transactional regions. 
Advanced debugging of RTM transactional regions is enabled if bit 11 of DR7 and bit 15 of the IA32_DEBUGCTL MSR 
are both 1. In this case, any RTM transactional abort due to a #DB or #BP causes execution to roll back to just 
before the XBEGIN instruction (EAX is restored to the value it had before XBEGIN) and then delivers a #DB. (A #DB 
is delivered even if the transactional abort was caused by a #BP.) DR6[16] is cleared to indicate that the exception 
resulted from a debug or breakpoint exception inside an RTM region. See also Section 19.3.3, “Debug Exceptions, 
Breakpoint Exceptions, and Restricted Transactional Memory (RTM),” of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B.

17.3.8 Intel® TSX Suspend/Resume Load Address Tracking Support
Programmers can use Intel TSX suspend/resume of load address tracking to choose which memory accesses do not 
need to be tracked in the Intel TSX read set. A programmer who uses the suspend/resume load address tracking 
feature must ensure that there are no atomicity requirements related to the addresses they choose to exclude from 
the read set as hardware will not detect read-write conflicts for those addresses.
To prevent load addresses from being entered into the read set, the programmer should use the XSUSLDTRK and 
XRESLDTRK instructions. The XSUSLDTRK instruction suspends loads tracking and thus specifies the start of a 
suspend region; addresses of subsequent loads will not be added to the transaction read set. The XRESLDTRK 
instruction resumes load tracking and thus specifies the end of a suspend region; addresses of subsequent loads 
will be added to the transaction read set. 
The execution of a suspend region is similar to transaction execution with the following exceptions:
• The addresses of loads in a suspend region are not tracked for read-write conflicts if the addresses are accessed 

inside the suspend region only (they are not added to the transaction read set). The addresses are still tracked 
if they are accessed outside of the suspend region inside the transaction.

• Transaction start/end inside a suspend region is not supported; any execution of XBEGIN or XEND inside a 
suspend region will cause the transaction to abort.

• There is no support for nesting of suspend regions; execution of XSUSLDTRK in a suspend region will cause a 
transaction to abort.

17.3.9 Programming Considerations
Typical programmer-identified regions are expected to execute transactionally and to commit successfully. 
However, Intel TSX does not provide any such guarantee. A transactional execution may abort for many reasons. 
To take full advantage of the transactional capabilities, programmers should follow certain guidelines to increase 
the probability of their transactional execution committing successfully.
This section discusses various events that may cause transactional aborts. The architecture ensures that updates 
performed within a transactional region that subsequently aborts execution will never become visible. Only a 
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committed transactional execution updates architectural state. Transactional aborts never cause functional failures 
and only affect performance.

17.3.9.1  Instruction Based Considerations
Programmers can use any instruction safely inside a transactional region. Further, programmers can use the Intel 
TSX instructions and prefixes at any privilege level. However, some instructions will always abort the transactional 
execution and cause execution to seamlessly and safely transition to a non-transactional path. 
Intel TSX allows for most common instructions to be used inside transactional regions without causing aborts. The 
following operations inside a transactional region do not typically cause an abort.
• Operations on the instruction pointer register, general purpose registers (GPRs) and the status flags (CF, OF, SF, 

PF, AF, and ZF).
• Operations on XMM and YMM registers and the MXCSR register
However, programmers must be careful when intermixing SSE and AVX operations inside a transactional region. 
Intermixing SSE instructions accessing XMM registers and AVX instructions accessing YMM registers may cause 
transactional regions to abort. 
CLD and STD instructions when used inside transactional regions may cause aborts if they change the value of the 
DF flag. However, if DF is 1, the STD instruction will not cause an abort. Similarly, if DF is 0, the CLD instruction will 
not cause an abort.
Instructions not enumerated here as causing abort when used inside a transactional region will typically not cause 
the execution to abort (examples include but are not limited to MFENCE, LFENCE, SFENCE, RDTSC, RDTSCP, etc.).
The following instructions will abort transactional execution on any implementation:
• XABORT
• CPUID
• PAUSE
• ENCLS
• ENCLU
In addition, in some implementations, the following instructions may always cause transactional aborts. These 
instructions are not expected to be commonly used inside typical transactional regions. However, programmers 
must not rely on these instructions to force a transactional abort, since whether they cause transactional aborts is 
implementation dependent.
• Operations on X87 and MMX architecture state. This includes all MMX and X87 instructions, including the 

FXRSTOR and FXSAVE instructions.
• Update to non-status portion of EFLAGS or to UIF: CLI, CLUI, STI, STUI, POPFD, POPFQ, CLAC, and STAC.
• Instructions that update segment registers, debug registers and/or control registers: MOV to 

DS/ES/FS/GS/SS, POP DS/ES/FS/GS/SS, LDS, LES, LFS, LGS, LSS, SWAPGS, WRFSBASE, WRGSBASE, LGDT, 
SGDT, LIDT, SIDT, LLDT, SLDT, LTR, STR, Far CALL, Far JMP, Far RET, IRET, MOV to DRx, MOV to 
CR0/CR2/CR3/CR4/CR8, CLTS, and LMSW.

• Ring transitions: SYSENTER, SYSCALL, SYSEXIT, and SYSRET.
• TLB and Cacheability control: CLFLUSH, CLFLUSHOPT, CLWB, INVD, WBINVD, INVLPG, INVPCID, and memory 

instructions with a non-temporal hint (V/MOVNTDQA, V/MOVNTDQ, V/MOVNTI, V/MOVNTPD, V/MOVNTPS, 
V/MOVNTQ, V/MASKMOVQ, and V/MASKMOVDQU).

• Extended state management: XRSTOR, XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and XSETBV.
• Interrupts: INT n, INTO, INT3, and INT1.
• I/O: IN, INS, REP INS, OUT, OUTS, REP OUTS and their variants.
• VMX: VMPTRLD, VMPTRST, VMCLEAR, VMREAD, VMWRITE, VMCALL, VMLAUNCH, VMRESUME, VMXOFF, 

VMXON, INVEPT, INVVPID, and VMFUNC.
• SMX: GETSEC.
• UD0, UD1, UD2, RSM, RDMSR, WRMSR, WRPKRU, HLT, MONITOR, MWAIT, and VZEROUPPER.
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17.3.9.2  Runtime Considerations
In addition to the instruction-based considerations, runtime events may cause transactional execution to abort. 
These may be due to data access patterns or micro-architectural implementation causes. Keep in mind that the 
following list is not a comprehensive discussion of all abort causes. 
Any fault or trap in a transactional region that must be exposed to software will be suppressed. Transactional 
execution will abort and execution will transition to a non-transactional execution, as if the fault or trap had never 
occurred. If any exception is not masked, that will result in a transactional abort and it will be as if the exception 
had never occurred.
When executed in VMX non-root operation, certain instructions may result in a VM exit. When such instructions are 
executed inside a transactional region, then instead of causing a VM exit, they will cause a transactional abort and 
the execution will appear as if instruction that would have caused a VM exit never executed.
Synchronous exception events (#DE, #OF, #NP, #SS, #GP, #BR, #UD, #AC, #XM, #PF, #NM, #TS, #MF, #DB, 
#BP/INT3) that occur during transactional execution may cause an execution not to commit transactionally, and 
require a non-transactional execution. These events are suppressed as if they had never occurred. With HLE, since 
the non-transactional code path is identical to the transactional code path, these events will typically re-appear 
when the instruction that caused the exception is re-executed non-transactionally, causing the associated synchro-
nous events to be delivered appropriately in the non-transactional execution. The same behavior also applies to 
synchronous events (EPT violations, EPT misconfigurations, and accesses to the APIC-access page) that occur in 
VMX non-root operation.
Asynchronous events (NMI, SMI, INTR, IPI, PMI, etc.) occurring during transactional execution may cause the 
transactional execution to abort and transition to a non-transactional execution. The asynchronous events will be 
pended and handled after the transactional abort is processed. The same behavior also applies to asynchronous 
events (VMX-preemption timer expiry, virtual-interrupt delivery, and interrupt-window exiting) that occur in VMX 
non-root operation.
Transactional execution only supports write-back cacheable memory type operations. A transactional region may 
always abort if it includes operations on any other memory type. This includes instruction fetches to UC memory 
type.
Memory accesses within a transactional region may require the processor to set the Accessed and Dirty flags of the 
referenced page table entry. The behavior of how the processor handles this is implementation specific. Some 
implementations may allow the updates to these flags to become externally visible even if the transactional region 
subsequently aborts. Some Intel TSX implementations may choose to abort the transactional execution if these 
flags need to be updated. Further, a processor's page-table walk may generate accesses to its own transactionally 
written but uncommitted state. Some Intel TSX implementations may choose to abort the execution of a transac-
tional region in such situations. Regardless, the architecture ensures that, if the transactional region aborts, then 
the transactionally written state will not be made architecturally visible through the behavior of structures such as 
TLBs.
Executing self-modifying code transactionally may also cause transactional aborts. Programmers must continue to 
follow the Intel recommended guidelines for writing self-modifying and cross-modifying code even when employing 
Intel TSX.
While an Intel TSX implementation will typically provide sufficient resources for executing common transactional 
regions, implementation constraints and excessive sizes for transactional regions may cause a transactional execu-
tion to abort and transition to a non-transactional execution. The architecture provides no guarantee of the amount 
of resources available to do transactional execution and does not guarantee that a transactional execution will ever 
succeed.
Conflicting requests to a cache line accessed within a transactional region may prevent the transactional region 
from executing successfully. For example, if logical processor P0 reads line A in a transactional region and another 
logical processor P1 writes A (either inside or outside a transactional region) then logical processor P0 may abort if 
logical processor P1’s write interferes with processor P0's ability to execute transactionally. Similarly, if P0 writes 
line A in a transactional region and P1 reads or writes A (either inside or outside a transactional region), then P0 
may abort if P1's access to A interferes with P0's ability to execute transactionally. In addition, other coherence 
traffic may at times appear as conflicting requests and may cause aborts. While these false conflicts may happen, 
they are expected to be uncommon. The conflict resolution policy to determine whether P0 or P1 aborts in the 
above scenarios is implementation specific.
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CHAPTER 18
CONTROL-FLOW ENFORCEMENT TECHNOLOGY (CET)

18.1 INTRODUCTION
Return-oriented programming (ROP), and similarly CALL/JMP-oriented programming (COP/JOP), have been the 
prevalent attack methodologies for stealth exploit writers targeting vulnerabilities in programs. These attack meth-
odologies have the common elements:
• A code module with execution privilege and contain small snippets of code sequence with the characteristic: at 

least one instruction in the sequence being a control transfer instruction that depends on data either in the 
return stack or in a register for the target address.

• Diverting the control flow instruction (e.g., RET, CALL, JMP) from its original target address to a new target (via 
modification in the data stack or in the register).

Control-Flow Enforcement Technology (CET) provides the following capabilities to defend against ROP/COP/JOP 
style control-flow subversion attacks:
• Shadow stack: Return address protection to defend against ROP.
• Indirect branch tracking: Free branch protection to defend against COP/JOP.

Both capabilities introduce new instruction set extensions, and are described in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D.

Control-Flow Enforcement Technology introduces a new exception (#CP) with interrupt vector 21.

18.1.1 Shadow Stack
A shadow stack is a second stack for the program that is used exclusively for control transfer operations. This stack 
is separate from the data stack and can be enabled for operation individually in user mode or supervisor mode. 
When shadow stacks are enabled, the CALL instruction pushes the return address on both the data and shadow 
stack. The RET instruction pops the return address from both stacks and compares them. If the return addresses 
from the two stacks do not match, the processor signals a control protection exception (#CP). Note that the 
shadow stack only holds the return addresses and not parameters passed to the call instruction.
The shadow stack is protected from tamper through the page table protections such that regular store instructions 
cannot modify the contents of the shadow stack. To provide this protection the page table protections are extended 
to support an additional attribute for pages to mark them as “Shadow Stack” pages. When shadow stacks are 
enabled, control transfer instructions/flows like near call, far call, call to interrupt/exception handlers, etc. store 
return addresses to the shadow stack and the access will fault if the underlying page is not marked as a “Shadow 
Stack” page. However stores from instructions like MOV, XSAVE, etc. will not be allowed. Likewise control transfer 
instructions like near RET, far RET, IRET, etc. when they attempt to read from the shadow stack the access will fault 
if the underlying page is not marked as a “Shadow Stack” page. This paging protection detects and prevents condi-
tions that cause an overflow or underflow of the shadow stack when the shadow stack is delimited by non-shadow 
stack guard pages, or any malicious attempts to redirect the processor to consume data from addresses that are 
not shadow stack addresses.

18.1.2 Indirect Branch Tracking
The ENDBRANCH instruction is a new instruction that is used to mark valid jump target addresses of indirect calls 
and jumps in the program. This instruction opcode is selected to be one that is a NOP on legacy machines such that 
programs compiled with ENDBRANCH new instruction continue to function on old machines without the CET 
enforcement. On processors that support CET the ENDBRANCH is still a NOP and is primarily used as a marker 
instruction by the processor pipeline to detect control flow violations. The CPU implements a state machine that 
tracks indirect JMP and CALL instructions. When one of these instructions is executed, the state machine moves 
from IDLE to WAIT_FOR_ENDBRANCH state. In WAIT_FOR_ENDBRANCH state the next instruction in the program 
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stream must be an ENDBRANCH. If the next instruction is not an ENDBRANCH, the processor causes a control 
protection exception (#CP); otherwise, the state machine moves back to IDLE state.

18.1.3 Speculative Behavior when CET is Enabled
Speculative execution of near indirect JMP/CALL/RET indirect branches may be able to create an active side channel 
vulnerability that reveals the contents of data.
There are two basic methods that an attacker may be able to use to control indirect branch speculation in order to 
speculatively execute code that causes a side channel:

1. Attacker controlled prediction.

2. Attacker controlled jump redirection.
With attacker controlled prediction, the attacker trains indirect branch predictors such that the desired victim indi-
rect branch goes to the attacker desired location. Examples include Branch Target Injection (also called “Variant 2” 
and “Spectre”) and RSB wrap on underflow (also called “ret2spec”).
With attacker controlled jump redirection, the attacker controls a speculative-only value used as input to the indi-
rect branch so that the branch mispredicts to the attacker desired location. Examples of this include Bound Check 
Bypass Store (where a speculative store containing an attacker controlled value may overwrite the indirect branch 
target before the load of the target) and Speculative Store Bypass (where a load of the indirect branch target may 
bypass the most recent store of the target value and thus speculatively read an older attacker controlled value at 
the same memory location).
In addition to the existing mitigation features like IBRS, STIBP, and IBPB, processors supporting CET will have a 
variety of additional features to constrain control flow speculation in order to mitigate such attacks. For details on 
these features, see Section 18.2.6, “Constraining Execution at Targets of RET,” and Section 18.3.8, “Constraining 
Speculation after Missing ENDBRANCH.”

18.2 SHADOW STACKS
A shadow stack is a second expand down stack used exclusively for control transfer operations. This stack is sepa-
rate from the data stack. The shadow stack is not used to store data and hence is not explicitly writeable by soft-
ware. Writes to the shadow stack are restricted to control transfer instructions and shadow stack management 
instructions. The shadow stack feature can be enabled separately in user mode (CPL == 3) or supervisor mode 
(CPL < 3).

Shadow stacks operate only in protected mode. Shadow stacks cannot be enabled in virtual 8086 mode.

It is recommended to not configure the shadow stack in the linear address range 0 to 64 KB or adjacent to the 
canonical address boundary.

18.2.1 Shadow Stack Pointer and its Operand and Address Size Attributes
When CET is enabled the processor supports a new architectural register, shadow stack pointer (SSP), when the 
processor supports the shadow stack feature. The SSP cannot be directly encoded as a source, destination or 
memory operand in instructions. The SSP points to the current top of the shadow stack.

The width of the shadow stack is 32-bit in 32-bit/compatibility mode and is 64-bit in 64-bit mode. The address-size 
attribute of the shadow stack is likewise 32-bit in 32-bit/compatibility mode and 64-bit in 64-bit mode.

18.2.2 Terminology
When shadow stacks are enabled, certain control transfer instructions/flows and shadow stack management 
instructions do loads and stores from and to the shadow stack. Such loads and stores from control transfer instruc-
tions and shadow stack management instructions are termed as shadow-stack loads and shadow-stack stores 
to distinguish them from a loads and stores performed by other instructions like MOV, XSAVES, etc.
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The pseudocode for the instruction operations use the notation ShadowStackEnabled(CPL) as a test of whether 
shadow stacks are enabled at the CPL. This term returns a TRUE or FALSE indication as follows.
ShadowStackEnabled(CPL):

IF CR4.CET = 1 AND CR0.PE = 1 AND EFLAGS.VM = 0
IF CPL = 3

THEN
(* Obtain the shadow stack enable from IA32_U_CET MSR (MSR address 6A0H) used to enable
 feature for CPL = 3 *)
SHADOW_STACK_ENABLED = IA32_U_CET.SH_STK_EN;

ELSE
(* Obtain the shadow stack enable from IA32_S_CET MSR (MSR address 6A2H) used to enable
 feature for CPL < 3 *)
SHADOW_STACK_ENABLED = IA32_S_CET.SH_STK_EN;

FI;
IF SHADOW_STACK_ENABLED = 1

THEN
return TRUE;

ELSE
return FALSE;

FI;
ELSE

(* Shadow stacks not enabled in real mode and virtual-8086 mode or if the master CET feature
enable in CR4 is disabled *)

return FALSE;
ENDIF

Additionally, the following terms are used.
• ShadowStackPush4B: Decrements the shadow stack pointer (SSP) by 4 bytes and copies the 4 byte source 

operand to the top of the shadow stack.
• ShadowStackPush8B : Decrements the shadow stack pointer (SSP) by 8 bytes and copies the 8 byte source 

operand to the top of the shadow stack.
• ShadowStackPop4B: Copies 4 bytes at the current top of stack (indicated by the SSP register) to the location 

specified with the destination operand. It then increments the SSP register by 4 bytes to point to the new top 
of stack.

• ShadowStackPop8B: Copies 8 bytes at the current top of stack (indicated by the SSP register) to the location 
specified with the destination operand. It then increments the SSP register by 8 bytes to point to the new top 
of stack.

• shadow_stack_lock_cmpxchg8B(address, new_value, expected_value): this function executes atomically and 
compares the expected_value to the 8 byte read from memory specified by the address operand using a locked 
shadow-stack load. If the two values are equal, the new_value is written to the address using an unlocking 
shadow-stack store. If the two values are not equal, then the value read by the shadow-stack load is written 
back, also using an unlocking shadow-stack store. The function returns the value read from the memory 
specified by the address operand.

18.2.3 Supervisor Shadow Stack Token
On an inter-privilege far CALL or when calling an interrupt/exception handler at a higher privilege level, a stack 
switch occurs; if shadow stacks are enabled at the new privilege level, then a shadow stack switch occurs. Shadow 
stacks that can be switched to by hardware as part of a privilege change are required to have a supervisor shadow 
stack token set up by the supervisor to provide the address of the new SSP register. The supervisor shadow stack 
tokens also serve the purpose of enforcing that a shadow stack can be made active on only one logical processor 
when switched to by the processor. The supervisor shadow stack token must be set up only on shadow stacks 
intended to be used on these transfers. The address of the supervisor shadow stack token is programmed into the 
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IA32_PLx_SSP MSR (where 0 ≤ x ≤ 2). The WRMSR and XRSTORS instructions require the address specified in the 
IA32_PLx_SSP MSR (where 0 ≤ x ≤ 2) to be 4 byte aligned; otherwise, the instruction causes a general protection 
exception (#GP(0)).

The supervisor shadow stack token is a 64-bit value formulated as follows.
• Bit 63:3: Bits 63:3 of the linear address of the supervisor shadow stack token.
• Bit 2: Reserved. Must be zero.
• Bit 1: Reserved. Must be zero.
• Bit 0: Busy bit. If 0, indicates this shadow stack is not active on any logical processor. If 1, indicates this shadow 

stack is currently active on one of the logical processors.

The following figure illustrates a supervisor shadow stack with a supervisor shadow stack token located at its base.

If the far CALL or event delivery will push a 24-byte stack frame after the token is acquired, the 8-byte supervisor 
shadow stack token and the stack frame must be fully contained within a 32-byte region that is aligned to 32-bytes 
on the shadow stack. If they are not, a general-protection exception (#GP(0)) occurs.

The processor does the following checks prior to switching to a supervisor shadow stack programmed into the 
IA32_PLx_SSP MSR. These steps are performed atomically.

1. Load the supervisor shadow stack token from the address specified in the IA32_PLx_SSP MSR using a locked 
shadow-stack store.

2. Check if the busy bit in the token is 0; reserved bits must be 0.

3. Check if the address programmed in the MSR matches the address in the supervisor shadow stack token; 
reserved bits must be 0.

4. If checks 2 and 3 are successful, then set the busy bit in the token using an unlocking shadow-stack store and 
switching the SSP to the value specified in the IA32_PLx_SSP MSR.

5. If checks 2 or 3 fail, write back the value read at step 1 using an unlocking shadow-stack store (the busy bit is 
not set) and raise a #GP(0) exception.

If the far CALL or event delivery pushes a stack frame after the token is acquired and any of the pushes causes a 
fault or VM exit, the processor will revert to the old shadow stack and the busy bit in the new shadow stack's token 
remains set. The new shadow stack is said to be prematurely busy. Software should enable supervisor shadow 
stacks only if it is certain that this situation cannot occur. If CPUID.(EAX=07H,ECX=1H):EDX[bit 18] is enumerated 
as 1, it is sufficient for an operating system to ensure that none of the pushes can cause a page fault.

On a far RET to a lesser privilege level or on an IRET that switches shadow stack, the instruction clears the busy bit 
in the shadow stack token as follows. These steps are also performed atomically.

1. Load the supervisor shadow stack token from the SSP using a locked shadow-stack load.

2. Check if the busy bit in the token is 1; reserved bits must be 0.

Figure 18-1.  Supervisor Shadow Stack with a Supervisor Shadow Stack Token

0xFF8 | busy

<Next push saves here>

IA32_PLx_SSP = 0xFF8
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3. Check if the address programmed in supervisor shadow stack token matches SSP; reserved bits must be 0.

4. If checks 2 and 3 are successful, then write back the token with an unlocking shadow-stack store, clearing the 
busy bit; otherwise, write back the value read at step 1 using an unlocking shadow-stack store and continue 
without modifying the contents of the shadow stack pointed to by SSP.

18.2.4 Shadow Stack Usage on Task Switch
A task switch (see Chapter 9, “Task Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A) may be invoked by:
• JMP or CALL instruction to a TSS descriptor in the GDT.
• JMP or CALL instruction to a task-gate descriptor in the GDT or the current LDT.
• An interrupt or exception vector points to a task-gate descriptor in the IDT.

With shadow stack enabled, the new task must be associated with a 32-bit TSS and must not be in virtual-8086 
mode. The 32-bit SSP for the new task is located at offset 104 in the 32-bit TSS. Thus the TSS of the new task must 
be at least 108 bytes. This SSP is required to be 8 byte aligned, and required to point to a “supervisor shadow 
stack” token (though the task may be at CPL3).

On a task switch initiated by a CALL instruction, an interrupt, or exception, the SSP of the old task is pushed onto 
the shadow stack of the new task along with the CS and LIP of the old task. This is true even for a nested task 
switch initiated by a CALL instruction. Likewise, on a task switch initiated by IRET, the SSP of the new task is 
restored from the shadow stack of old task. The CS and LIP on the shadow stack of the old task are matched 
against the return address determined by the CS and EIP of the new task. If the match fails, a #CP(FAR-RET/IRET) 
exception is reported.

18.2.5 Switching Shadow Stacks
The architecture provides a mechanism to switch shadow stacks using a pair of instructions; RSTORSSP and SAVE-
PREVSSP. The RSTORSSP instruction verifies a shadow-stack-restore token located at the top of the new shadow 
stack and referenced by the memory operand of this instruction. After RSTORSSP determines the validity of the 
restore point on the new shadow stack, it switches the SSP to point to the token. The shadow-stack-restore token 
is a 64-bit value formatted as follows.
• Bit 63:2: Value of shadow stack pointer when this restore point was created.
• Bit 1: Reserved. Must be zero.
• Bit 0: Mode bit. If 0, the token is a compatibility/legacy mode shadow-stack-restore token. If 1, then this 

shadow stack restore token can be used with a RSTORSSP instruction in 64-bit mode.

The shadow-stack-restore token is created by the SAVEPREVSSP instruction. The operating system may also 
create a restore point on a shadow stack by creating a shadow-stack-restore token.

Once the shadow stack has been switched to a new shadow stack by the RSTORSSP instruction, software can 
create a restore point on the old shadow stack by executing the SAVEPREVSSP instruction. In order to allow the 
SAVEPREVSSP instruction to determine the address where to save the shadow-stack-restore token, the RSTORSSP 
instruction replaces the shadow-stack-restore token with a previous-ssp token that holds the value of the SSP at 
the time the RSTORSSP instruction was invoked. The previous-ssp token is formatted as follows.
• Bit 63:2: Shadow stack pointer when the RSTORSSP instruction was invoked, i.e., the SSP of the old shadow 

stack.
• Bit 1: Set to 1.
• Bit 0: Mode bit. If 0, then this previous-ssp token can be used with a SAVEPREVSSP instruction in compati-

bility/legacy mode. If 1, then this previous-ssp token can be used with a SAVEPREVSSP instruction in 64-bit 
mode.

The following figure illustrates the RSTORSSP instruction operation during a shadow stack switching sequence.
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In this example, the initial SSP is 1000H and the shadow-stack-restore token is on a new shadow stack at address 
3FF8H. The token at address 3FF8H holds the SSP when this restore point was created; in this example it is 4000H.

In order to switch to the new shadow stack, the RSTORSSP instruction is invoked with the memory operand 
pointing set to 3FF8H. When the RSTORSSP instruction completes, the SSP is set to 3FF8H and the shadow-stack-
restore token at 3FF8H is replaced by a previous-ssp token that holds the address 1000H, i.e., the old SSP.

The following figure illustrates the SAVEPREVSSP instruction operation during a shadow stack switching sequence.

To allow switching back to this old shadow stack, a SAVEPREVSSP instruction is now invoked. The SAVEPREVSSP 
instruction does not take any memory operand and expects to find a previous-ssp token at the top of the shadow 
stack, i.e., at address 3FF8H. The SAVEPREVSSP instruction then saves a shadow-stack-restore token on the old 
shadow stack at address FF8H, and the token itself holds the address 1000H which is the address recorded in the 
previous-ssp token. The SAVEPREVSSP instruction also pops the previous-ssp token off the current shadow stack 
and thus the SSP following SAVEPREVSSP is 4000H.

Subsequently to switch back to the old shadow stack, a RSTORSSP instruction may be invoked with memory 
operand set to FF8H.

If, following a switch to a new shadow stack, it is not required to create a restore point on the old shadow stack, 
then the previous-ssp token created by the RSTORSSP instruction can be popped off the shadow stack by using the 
INCSSP instruction.

See the SAVEPREVSSP and RSTORSSP instruction operations for the detailed algorithm.

Figure 18-2.  RSTORSSP to Switch to New Shadow Stack

Figure 18-3.  SAVEPREVSSP to Save a Restore Point
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18.2.6 Constraining Execution at Targets of RET
Instructions at the target of a RET instruction will not execute, even speculatively, if the RET addresses (either from 
normal stack or shadow stack) are speculative-only or do not match, unless the target of the RET is also predicted 
(e.g., by a Return Stack Buffer prediction), when CET shadow stack is enabled. A RET address would be specula-
tive-only if it was modified by an older speculative-only store, or was an older value than the most recent value 
stored to that address on the logical processor.

18.3 INDIRECT BRANCH TRACKING
When the indirect branch tracking feature is active, the indirect JMP/CALL instruction behavior changes as follows.
• JMP: If the next instruction retired after an indirect JMP is not an ENDBR32 instruction in legacy and compati-

bility mode, or ENDBR64 instruction in 64-bit mode, then a #CP fault is generated. Below JMP instructions are 
tracked to enforce an ENDBRANCH. Note that Jcc, RIP relative, and far direct JMP are not included as these 
have an offset encoded into the instruction and are not exploitable to create unintended control transfers.

— JMP r/m16, JMP r/m32, JMP r/m64

— JMP m16:16, JMP m16:32, JMP m16:64
• CALL: If the next instruction retired after an indirect CALL is not an ENDBR32 instruction in legacy and compat-

ibility mode, or ENDBR64 in 64-bit mode, then a #CP fault is generated. Below CALL instructions are tracked to 
enforce an ENDBRANCH. Note that relative and zero displacement forms of CALL instructions are not included 
as these have an offset encoded into the instruction and are not exploitable to create unintended control 
transfers.

— CALL r/m16, CALL r/m32, CALL r/m64

— CALL m16:16, CALL m16:32, CALL m16:64

The ENDBR32 and ENDBR64 instructions will have the same effect as the NOP instruction on Intel 64 processors 
that do not support CET. On processors supporting CET, these instructions do not change register or flag state. This 
allows CET instrumented programs to execute on processors that do not support CET. Even when CET is supported 
and enabled, these NOP-like instructions do not affect the execution state of the program, do not cause any addi-
tional register pressure, and are minimally intrusive from power and performance perspectives.

The processor implements two dual-state machines to track indirect CALL/JMP for terminations. One state machine 
is maintained for user mode and one for supervisor mode. At reset the user and supervisor mode state machines 
are in IDLE state.

On instructions other than indirect CALL/JMP, the state machine stays in the IDLE state.

On an indirect CALL or JMP instruction, the state machine transitions to the WAIT_FOR_ENDBRANCH state.

In the WAIT_FOR_ENDBRANCH state, the indirect branch tracking state machine verifies the next instruction is an 
ENDBR32 instruction in legacy and compatibility mode, or ENDBR64 instruction in 64-bit mode, and either:
• Causes a #CP fault, or
• Allows the next instruction if legacy compatibility configuration allows (see Section 18.3.6).

The priority of the #CP(ENDBRANCH) exception relative to other events is as follows.
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Higher priority faults/traps/events that occur at the end of an indirect CALL/JMP are delivered ahead of any 
#CP(ENDBRANCH) fault. The CET state machine at the privilege level where the higher priority fault/trap/event 
occurred retains its state when the control transfers to the fault/trap/event handler. The instruction pointer pushed 
on the stack for a #CP(ENDBRANCH) fault is the address of the instruction at the target of the indirect CALL/JMP 
that caused the fault.

18.3.1 No-track Prefix for Near Indirect CALL/JMP
CET allows software to designate certain indirect CALL and JMP instructions as “non-tracked indirect control 
transfer instructions”. Software (e.g., compiler generated code for switch statements, jump tables, etc.) should use 
the no-track prefix only if they have generated code to validate the possible targets of this CALL/JMP to be legal 
targets. Software (e.g., compilers), when using the no-track prefix with CALL/JMP where an absolute offset is spec-
ified indirectly in a memory location, should ensure that such memory locations cannot be tampered. When 
enabled by setting the NO_TRACK_EN control in the IA32_U_CET/IA32_S_CET MSR, near indirect CALL and JMP 
instructions when prefixed with 3EH do not modify the CET indirect branch tracker. Far CALL and JMP instructions 
are always tracked and ignore the 3EH prefix. When this control is 0, near indirect CALL and JMP instructions are 
always tracked irrespective of the presence of the 3EH prefix.

In 64-bit mode, the 3EH prefix on an indirect CALL or JMP is recognized as a no-track prefix if there isn’t a 64H/65H 
prefix on the instruction.

In legacy/compatibility mode, the 3EH prefix on an indirect CALL or JMP is recognized as a no-track prefix when it 
is the last group 2 prefix on the instruction.

Figure 18-4.  Priority of Control Protection Exception on Missing ENDBRANCH
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18.3.2 Terminology
The pseudocode for the instruction operations use a notation EndbranchEnabled(CPL) as a test of whether indirect 
branch tracking is enabled at the CPL. This term returns a TRUE or FALSE indication as follows.
EndbranchEnabled(CPL):

IF CR4.CET = 1 AND CR0.PE = 1 AND EFLAGS.VM = 0
IF CPL = 3

THEN
(* Obtain the ENDBRANCH enable from MSR used to enable feature for CPL = 3 *)
ENDBR_ENABLED = IA32_U_CET.ENDBR_EN;

ELSE
(* Obtain the ENDBRANCH enable from MSR used to enable feature for CPL < 3 *)
ENDBR_ENABLED = IA32_S_CET.ENDBR_EN;

FI;
IF ENDBR_ENABLED = 1

THEN
return TRUE;

ELSE
return FALSE;

FI;
ELSE

(* Indirect branch tracking is not enabled in real mode and virtual-8086 mode or if the master CET feature
 enable in CR4 is disabled *)
return FALSE;

ENDIF

Likewise the notation EndbranchEnabledAndNotSuppressed is defined as follows:
EndbranchEnabledAndNotSuppressed(CPL):

IF CR4.CET = 1 AND CR0.PE = 1 AND EFLAGS.VM = 0
IF CPL = 3

THEN
(* Obtain the ENDBRANCH enable from MSR used to enable feature for CPL = 3 *)
ENDBR_ENABLED = IA32_U_CET.ENDBR_EN;
SUPPRESSED = IA32_U_CET.SUPPRESS;

ELSE
(* Obtain the ENDBRANCH enable from MSR used to enable feature for CPL < 3 *)
ENDBR_ENABLED = IA32_S_CET.ENDBR_EN;
SUPPRESSED = IA32_S_CET.SUPPRESS;

FI;
IF ENDBR_ENABLED = 1 AND SUPPRESSED = 0

THEN
return TRUE;

ELSE
return FALSE;

FI;
ELSE

(* Indirect branch tracking is not enabled in real mode and virtual-8086 mode or if the master CET feature
 enable in CR4 is disabled *)
return FALSE;

ENDIF
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18.3.3 Indirect Branch Tracking
The hardware implements two CET indirect branch tracker state machines, one for user mode (CPL == 3) and one 
for supervisor mode (CPL < 3). At any time, which of the CET indirect branch trackers is in the active state depends 
on the CPL of the machine. When a user space program is executing, the CPL 3 CET indirect branch tracker is 
active. When supervisor mode software is executing, the CPL < 3 tracker is active. This section describes the 
various control transfer conditions and the tracker state on those transfers.

18.3.3.1  Control Transfers between CPL 3 and CPL < 3
Some events and instructions can cause control transfer to occur from CPL 3 to CPL < 3, and vice versa. As part of 
the CPL change the hardware also switches the active CET indirect branch tracker. For example, when an interrupt 
occurs during execution of a user mode (CPL == 3) program and it causes the CPL to switch to supervisor mode 
(CPL < 3) then, as part of the CPL change, the user mode CET indirect branch tracker becomes inactive and the 
supervisor mode CET indirect branch tracker becomes active. A subsequent IRET is used by the interrupt handler 
to return to the interrupted user mode program. This IRET causes the processor to switch the CPL to user mode 
(CPL ==3) and, as part of the CPL change, the supervisor mode CET indirect branch tracker becomes inactive and 
the user mode CET indirect branch tracker becomes active.

The CPL where the event or instruction that caused the control transfer occurs is termed the source CPL, and the 
CET indirect branch tracker state at that CPL is referred here as the source CET indirect branch tracker state. The 
CPL reached at the end of the control transfer is termed the destination CPL, and the CET indirect branch tracker 
state at that CPL is referred to as the destination CET indirect branch tracker state.

This section describes various cases of control transfers that occur between user mode (CPL 3) and supervisor 
mode (CPL < 3).

In all these cases the source CET indirect branch tracker state becomes not active and retains its state (IDLE, 
WAIT_FOR_ENDBRANCH), and the target CET indirect branch tracker state becomes active if there was no fault 
during the transfer.
• Case 1: Far CALL/JMP, SYSCALL/SYSENTER

— If indirect branch tracking is enabled, the target indirect branch tracker state becomes active and is unsup-
pressed and goes to WAIT_FOR_ENDBRANCH. This enforces that the subroutine invoked by a far CALL/JMP 
must begin with an ENDBRANCH.

• Case 2: Hardware interrupt/trap/exception/NMI/Software interrupt/Machine Checks

— If indirect branch tracking is enabled, the target indirect branch tracker state becomes active and is unsup-
pressed and goes to WAIT_FOR_ENDBRANCH.

• Case 3: IRET/Far RET

— If indirect branch tracking enabled, the target indirect branch tracker becomes active and keeps its state. If 
the user mode was interrupted by a higher priority event, like an interrupt at the end of the indirect 
CALL/JMP, then when an IRET or Far RET is used to return to the interrupted user mode program, the user 
mode indirect branch tracker retains its state and a #CP fault will occur if the next instruction decoded is not 
an ENDBR32/64 according to mode of machine.

18.3.3.2  Control Transfers within CPL 3 or CPL < 3
Some events and instructions can cause control transfer to occur within CPL 3 or CPL < 3. For such transfers since 
the CPL class does not change, the same indirect branch tracker is used at the beginning and end of the control 
transfer.
• Case 1: Far CALL/JMP, Near indirect CALL/JMPCALL/JMP

— Far CALL/JMP: If indirect branch tracking is enabled, active indirect branch tracker is unsuppressed and 
goes to WAIT_FOR_ENDBRANCH.

— Near indirect CALL/JMPCALL/JMP: If indirect branch tracking is enabled and not suppressed, active indirect 
branch tracker goes to WAIT_FOR_ENDBRANCH.

• Case 2: Hardware interrupt/trap/exception/NMI/Software interrupt/Machine Checks
18-10 Vol. 1



CONTROL-FLOW ENFORCEMENT TECHNOLOGY (CET)
— If indirect branch tracking is enabled, the active indirect branch tracker is unsuppressed and goes to 
WAIT_FOR_ENDBRANCH.

• Case 3: IRET

— If indirect branch tracking is enabled, the active indirect branch tracker keeps its state.

18.3.4 Indirect Branch Tracking State Machine
The state machine is described by Table 18-1.

Table 18-1.  Indirect Branch Tracking State Machine

Current State Trigger Next State

TRACKER=IDLE, SUPPRESS=0, 
ENDBR_EN=1

Instructions other than indirect CALL/JMP or 
3EH prefixed near indirect CALL/JMP and 
NO_TRACK_EN=1

TRACKER=IDLE, SUPPRESS=0, 
ENDBR_EN=1

Indirect CALL/JMP without 3EH prefix
Indirect CALL/JMP with 3EH prefix and 
NO_TRACK_EN=0
Far CALL/JMP

TRACKER=WAIT_FOR_ENDBRANCH, SUP-
PRESS=0, ENDBR_EN=1

TRACKER= WAIT_FOR_ENDBRANCH, SUP-
PRESS=0, ENDBR_EN=1

INT3/INT1
TRACKER= WAIT_FOR_ENDBRANCH, SUP-
PRESS=0, ENDBR_EN=1

ENDBRANCH instruction
TRACKER=IDLE, SUPPRESS=0, 
ENDBR_EN=1

Successful ENCLU[ERESUME]
TRACKER=IDLE, SUPPRESS=0, 
ENDBR_EN=1

Instructions other than ENDBRANCH, suc-
cessful ENCLU[ERESUME] or INT3 or INT1

If legacy compatibility treatment is not 
enabled or if not allowed by legacy code 
page bitmap:
• No state change and deliver #CP 

(ENDBRANCH)
If legacy compatibility treatment is 
enabled and transfer allowed by legacy 
code page bitmap:
• TRACKER=IDLE, 

SUPRESS=!SUPPRESS_DIS, 
ENDBR_EN=1

TRACKER=x, SUPPRESS=x, ENDBR_EN=0 All instructions TRACKER=x, SUPPRESS=x, ENDBR_EN=0

TRACKER=IDLE, SUPPRESS=1, 
ENDBR_EN=1

Far CALL/JMP, INTn/INT3/INTO
TRACKER=WAIT_FOR_ENDBRANCH, SUP-
PRESS=0, ENDBR_EN=1

ENDBRANCH instruction
Successful ENCLU[ERESUME]

TRACKER=IDLE, SUPPRESS=0, 
ENDBR_EN=1

All other instructions including indirect 
CALL/JMP

TRACKER=IDLE, SUPPRESS=1, 
ENDBR_EN=1

TRACKER=1, SUPPRESS=1, ENDBR_EN=1
(This state cannot be reached by hardware 
and is disallowed as a valid state by 
WRMSR/XRSTORS/VM entry/VM exit)

NA NA
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18.3.5 INT3 Treatment
INT3 are treated special in the WAIT_FOR_ENDBRANCH state. Occurrence of INT3 do not move the tracker to IDLE 
but instead the #BP trap from the INT3 instructions respectively is delivered as a higher priority event than the #CP 
exception due to missing ENDBRANCH.

Inside an enclave, INT3 delivers a fault-class exception and thus does not require the CPL to be less than DPL in the 
IDT gate 3. Following opt-out entry, the instruction delivers #UD. Following opt-in entry, INT3 delivers #BP. The 
special treatment of INT3 in WAIT_FOR_ENDBRANCH state does not apply in enclave mode following opt-out entry.

18.3.6 Legacy Compatibility Treatment
ENDBRANCH legacy compatibility treatment allows a CET enabled program to be used with legacy software that 
was not compiled / instrumented with ENDBRANCH. A CET enabled program enters legacy compatibility treatment 
when all of the below conditions are met.

1. Legacy compatibility configuration is enabled in this CPL class by setting the LEG_IW_EN bit in 
IA32_U_CET/IA32_S_CET.

2. Control transfer is performed using an indirect CALL/JMP without no-track prefix to an instruction other than 
ENDBRANCH.

3. The legacy code page bitmap is setup to indicate that the target of the control transfer is a legacy code page.

The legacy code page bitmap is a data structure in program memory that is used by the hardware to determine if 
the code page to which a legacy transfer is being performed is allowed. The access rights for accessing the legacy 
code page bitmap is determined by the current privilege level (CPL). The legacy code page bitmap is expected to 
be setup as a read-only data structure.

When a matching ENDBRANCH instruction is not decoded at the target of an indirect CALL/JMP when required, the 
processor performs the below actions.

CET indirect branch tracking state machine violation event handler:
If LEG_IW_EN == 1

LA = LIP;
IF ENCLAVE_MODE == 1

LA = LA – SECS.BASEADDR;
ENDIF
(* Load byte from bitmap. Address-size attribute for this load is 64 bits if IA32_EFER.LMA is 1 and is 32 bits when IA32_EFER.LMA 
is 0 *)
IF (IA32_EFER.LMA & CS.L) == 0

BITMAP_BYTE = load 1 byte from address (BITMAP_BASE + LA[31:15])
ELSE IF (CR4.LA57 == 0)

BITMAP_BYTE = load 1 byte from address (BITMAP_BASE + LA[47:15])
ELSE

BITMAP_BYTE = load 1 byte from address (BITMAP_BASE + LA[56:15])
FI;
IF BITMAP_BYTE & (1 << LA[14:12]) == 0 then Deliver #CP(ENDBRANCH) fault

IF CPL = 3
IA32_U_CET.TRACKER = IDLE
IA32_U_CET.SUPPRESS = IA32_U_CET.SUPPRESS_DIS == 0 ? 1 : 0

ELSE
IA32_S_CET.TRACKER = IDLE
IA32_S_CET.SUPPRESS = IA32_S_CET.SUPPRESS_DIS == 0 ? 1 : 0

ENDIF
Restart the instruction (handle all arch. consistency around MOV SS state machines, STI etc.) without 
opening up interrupt/trap window.

ELSE
Deliver #CP(ENDBRANCH) Fault
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ENDIF

Faults/traps in pseudocode are delivered normally (e.g., #PF, EPT violation). On a fault, the active tracker holds the 
last value (WAIT_FOR_ENDBRANCH) and the address saved on the stack is the current IP (instruction that wasn’t 
the ENDBRANCH).

The CET indirect branch tracking state machine is suppressed in legacy compatibility mode if the SUPPRESS_DIS 
control bit is 0.

Once the CET indirect branch tracking state machine has been suppressed, subsequent indirect CALL/JMP are not 
tracked for termination instruction.

Once CET indirect branch tracking has been suppressed, subsequent execution of ENDBRANCH instructions will do 
the following (see the ENDBR32 and ENDBR64 instructions in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A for details).
IF EndbranchEnabled(CPL) == 0

NOP
ELSE

SUPPRESS = 0
TRACKER = IDLE

ENDIF

18.3.6.1  Legacy Code Page Bitmap Format
The legacy code page bitmap is a flat bitmap whose linear address is pointed to by the EB_LEG_BITMAP_BASE. 
Each bit in the bitmap represents a 4K page in linear memory. If the bit is 1 it indicates that the corresponding code 
page is a legacy code page; else it is a CET-enabled code page.

The processor uses the linear address of the instruction to which legacy transfer was attempted to lookup the 
bitmap. Bits of the linear address used as index in the bitmap are as follows.
• In legacy and compatibility mode: Bits 31:12.
• In 64-bit mode (EFER.LMA=1 and CS.L=1): Bits 47:12.

18.3.7 Other Considerations

18.3.7.1  Intel® Transactional Synchronization Extensions (Intel® TSX) Interactions
The XBEGIN instruction encodes the relative offset to the abort handler and hence the fallback to the abort handler 
can be considered as a “direct” branch and the abort handler does not need to have an ENDBRANCH.

CET continues to enforce indirect CALL/JMP tracking within a transaction. Legacy compatibility treatment inside a 
transaction functions normally. If a transaction abort occurs then the processor sets the state of the indirect branch 
tracker to IDLE and not-suppressed.

18.3.7.2  #CP(ENDBRANCH) Priority w.r.t #NM and #UD
#NM, #UD and #CP(ENDBRANCH) are opcode based faults. However, #CP(ENDBRANCH) is in a higher priority 
class than #NM and #UD as CET architecturally requires an ENDBRANCH at target of indirect CALL/JMP.

18.3.7.3  #CP(ENDBRANCH) Priority w.r.t #BP and #DB
Debug Exceptions priority is as follows.
• Traps delivered before any #CP(ENDBRANCH) fault: Data breakpoint trap, IO breakpoint trap single step trap, 

task switch trap.
• Code Breakpoint fault detected before instruction decode and delivered before #CP(ENDBRANCH).
• General-detect (GD) exception condition fault: Lower priority than #CP(ENDBRANCH).
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• On IRET back from #DB/#BP, the source indirect branch tracker becomes active if enabled and not suppressed.

INT3 does not cause #CP(ENDBRANCH) to support debugger usage of replacing bytes of ENDBRANCH with INT3 to 
set breakpoints. INT3 at target of a CALL-JMP(indirect) cause #BP(INT3) instead of #CP(ENDBRANCH), 
#CP(ENDBRANCH) fault is delayed. #BP caused by INT3 treated like other events that are higher priority than CET 
fault. On IRET back from #BP the source indirect tracker becomes active if enabled and not suppressed.

18.3.8 Constraining Speculation after Missing ENDBRANCH
When the CET tracker is in the WAIT_FOR_ENDBRANCH state, instruction execution will be limited or blocked, even 
speculatively, if the next instruction is not an ENDBRANCH.

This means that when indirect branch tracking is enabled and not suppressed, the instructions at the target of a 
near indirect JMP/CALL without the no-track prefix will only speculatively execute if there is an ENDBRANCH at the 
target. This can constrain both attacker controlled prediction as well as attacker controlled jump redirection attacks 
on near indirect JMPs/CALLs by reducing the gadgets available to an attacker using these techniques. Early imple-
mentations of CET may limit the speculative execution to a small number of instructions (less than 8, with no more 
than 5 loads) past a missing ENDBRANCH, while later implementations will completely block the speculative execu-
tion of instructions after a missing ENDBRANCH.

This mechanism also limits or blocks speculation of the next sequential instructions after an indirect JMP or CALL, 
presuming the JMP/CALL puts the CET tracker into the WAIT_FOR_ENDBRANCH state and the next sequential 
instruction is not an ENDBRANCH.

18.4 INTEL® TRUSTED EXECUTION TECHNOLOGY (INTEL® TXT) INTERACTIONS
GETSEC[ENTERACCS] and GETSEC[SENTER] clear CR4.CET, and it is not restored when these instructions 
complete.

GETSEC[EXITAC] will cause #GP(0) fault if CR4.CET is set.
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CHAPTER 19
PROGRAMMING WITH INTEL® ADVANCED MATRIX EXTENSIONS

19.1 INTRODUCTION
Intel® Advanced Matrix Extensions (Intel® AMX) is a new 64-bit programming paradigm consisting of two compo-
nents: a set of 2-dimensional registers (tiles) representing sub-arrays from a larger 2-dimensional memory image, 
and an accelerator able to operate on tiles, the first implementation is called TMUL (tile matrix multiply unit).
An Intel AMX implementation enumerates to the programmer how the tiles can be programmed by providing a 
palette of options. Two palettes are supported; palette 0 represents the initialized state, and palette 1 consists of 8 
KB of storage spread across 8 tile registers named TMM0..TMM7. Each tile has a maximum size of 16 rows x 64 
bytes, (1 KB), however the programmer can configure each tile to smaller dimensions appropriate to their algo-
rithm. The tile dimensions supplied by the programmer (rows and bytes_per_row, i.e., colsb) are metadata that 
drives the execution of tile and accelerator instructions. In this way, a single instruction can launch autonomous 
multi-cycle execution in the tile and accelerator hardware. The palette value (palette_id) and metadata are held 
internally in a tile related control register (TILECFG). The TILECFG contents will be commensurate with that 
reported in the palette_table (see “CPUID—CPU Identification” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A for a description of the available parameters).
Intel AMX is an extensible architecture. New accelerators can be added, or the TMUL accelerator may be enhanced 
to provide higher performance. In these cases, the state (TILEDATA) provided by tiles may need to be made larger, 
either in one of the metadata dimensions (more rows or colsb) and/or by supporting more tile registers (names). 
The extensibility is carried out by adding new palette entries describing the additional state. Since execution is 
driven through metadata, an existing Intel AMX binary could take advantage of larger storage sizes and higher 
performance TMUL units by selecting the most powerful palette indicated by CPUID and adjusting loop and pointer 
updates accordingly.

Figure 19-1.  Intel® AMX Architecture
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Figure 19-1 shows a conceptual diagram of the Intel AMX architecture. An Intel architecture host drives the algo-
rithm, the memory blocking, loop indices and pointer arithmetic. Tile loads and stores and accelerator commands 
are sent to multi-cycle execution units. Status, if required, is reported back. Intel AMX instructions are synchronous 
in the Intel architecture instruction stream and the memory loaded and stored by the tile instructions is coherent 
with respect to the host’s memory accesses. There are no restrictions on interleaving of Intel architecture and Intel 
AMX code or restrictions on the resources the host can use in parallel with Intel AMX (e.g., Intel AVX-512). There is 
also no architectural requirement on the Intel architecture compute capability of the Intel architecture host other 
than it supports 64-bit mode.
Intel AMX instructions use new registers and inherit basic behavior from Intel architecture in the same manner that 
Intel SSE and Intel AVX did. Tile instructions include loads and stores using the traditional Intel architecture 
register set as pointers. The TMUL instruction set (defined to be CPUID bits AMX-BF16 and AMX-INT8) only 
supports reg-reg operations.
TILECFG is programmed using the LDTILECFG instruction. The selected palette defines the available storage and 
general configuration while the rest of the memory data specifies the number of rows and column bytes for each 
tile. Consistency checks are performed to ensure the TILECFG matches the restrictions of the palette. A General 
Protection fault (#GP) is reported if the LDTILECFG fails consistency checks. A successful load of 
TILECFG with a palette_id other than 0 is represented in this document with TILES_CONFIGURED = 1. When the 
TILECFG is initialized (palette_id = 0), it is represented in the document as TILES_CONFIGURED = 0. Nearly all 
Intel AMX instructions will generate a #UD exception if TILES_CONFIGURED is not equal to 1; the exceptions are 
those that do TILECFG maintenance: LDTILECFG, STTILECFG, and TILERELEASE.
If a tile is configured to contain M rows by N column bytes, LDTILECFG will ensure that the metadata values are 
appropriate to the palette (e.g., that M ≤ 16 and N ≤ 64 for palette 1). The four M and N values can all be different 
as long as they adhere to the restrictions of the palette. Further dynamic checks are done in the tile and the TMUL 
instruction set to deal with cases where a legally configured tile may be inappropriate for the instruction operation. 
Tile registers can be set to ‘invalid’ by configuring the rows and colsb to ‘0’. 
Tile loads and stores are strided accesses from the application memory to packed rows of data. Algorithms are 
expressed assuming row major data layout. Column major users should translate the terms according to their 
orientation.
TILELOAD* and TILESTORE* instructions are restartable and can handle (up to) 2*rows page faults per instruction. 
Restartability is provided by a start_row parameter in the TILECFG register.
The TMUL unit is conceptually a grid of fused multiply-add units able to read and write tiles. The dimensions of the 
TMUL unit (tmul_maxk and tmul_maxn) are enumerated similar to the maximum dimensions of the tiles (see 
“CPUID—CPU Identification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A for 
details). 
The matrix multiplications in the TMUL instruction set compute C[M][N] += A[M][K] * B[K][N]. The M, N, and K 
values will cause the TMUL instruction set to generate a #UD exception if the dimensions do not match for matrix 
multiply or do not match the palette.
In Figure 19-2, the number of rows in tile B matches the K dimension in the matrix multiplication pseudocode. K 
dimensions smaller than that enumerated in the TMUL grid are also possible and any additional computation the 
TMUL unit can support will not affect the result.
The number of elements specified by colsb of the B matrix is also less than or equal to tmul_maxn. Any remaining 
values beyond that specified by the metadata will be set to zero. 
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The XSAVE feature set supports context management of the new state defined for Intel AMX. This support is 
described in Section 19.2.

19.1.1 Tile Architecture Details
The supported parameters for the tile architecture are reported via CPUID; this includes information about how the 
number of tile registers (max_names) can be configured (the palette). Configuring the tile architecture is intended 
to be done once when entering a region of tile code using the LDTILECFG instruction specifying the selected palette 
and describing in detail the configuration for each tile. Incorrect assignments will result in a General Protection fault 
(#GP). Successful LDTILECFG initializes (zeroes) TILEDATA.
Exiting a tile region is done with the TILERELEASE instruction. It takes no parameters and invalidates all tiles (indi-
cating that the data no longer needs any saving or restoring). Essentially, it is an optimization of LDTILECFG with 
an implicit palette of 0.
For applications that execute consecutive Intel AMX regions with differing configurations, TILERELEASE is not 
required between them since the second LDTILECFG will clear all the data while loading the new configuration. 
There is no instruction set support for automatic nesting of tile regions, though with sufficient effort software can 
accomplish this by saving and restoring TILEDATA and TILECFG either through the XSAVE architecture or the Intel 
AMX instructions.
The tile architecture boots in its INIT state, with TILECFG and TILEDATA set to zero. A successfully executing 
LDTILECFG instruction to a non-zero palette sets the TILES_CONFIGURED=1, indicating the TILECFG is not in the 
INIT state. The TILERELEASE instruction sets TILES_CONFIGURED = 0 and initializes (zeroes) TILEDATA.

To facilitate handling of tile configuration data, there is a STTILECFG instruction. If the tile configuration is in the 
INIT state (TILES_CONFIGURED == 0), then STTILECFG will write 64 bytes of zeros. Otherwise STTILECFG will 
store the TILECFG to memory in the format used by LDTILECFG.

Figure 19-2.  The TMUL Unit
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A[m][0]

. . . .

. . . .

A[m-K+1][K-1]

C[m][n-1]

C[m-K+1][n-1]

C[m][1]

C[m-K+1][1]

C[m][0]

C[m-K+1][0]

B[0][:N]

B[1][:N]

B[K-1][:N]

for m < M: // time steps
    for k < K: // grid height
        for n < N: // SIMD dimension
            C[m][n] += VNNI_MUL(A[m][k], B[k][n])
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19.1.2 TMUL Architecture Details
The supported parameters for the TMUL architecture are reported via CPUID; see “CPUID—CPU Identification” in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for details. These parameters 
include a maximum height (tmul_maxk) and a maximum SIMD dimension (tmul_maxn). The metadata that 
accompanies the srcdest, src1, and src2 tiles to the TMUL unit will be dynamically checked to see that they match 
the TMUL unit support for the data type and match the requirements of a meaningful matrix multiplication.
Figure 19-3 shows an example of the inner loop of an algorithm of using the TMUL architecture to compute a matrix 
multiplication. In this example, we use two result tiles, tmm0 and tmm1, from matrix C to accumulate the interme-
diate results. One tile from the A matrix (tmm2) is re-used twice as we multiply it by two tiles from the B matrix. 
The algorithm then advances pointers to load a new A tile and two new B tiles from the directions indicated by the 
arrows. An outer loop, not shown, adjusts the pointers for the C tiles.

19.1.3 Handling of Tile Row and Column Limits
Intel AMX operations will zero any rows and any columns beyond the dimensions specified by TILECFG. Tile opera-
tions will zero the data beyond the configured number of column bytes as each row is written. For example, with 
64-byte rows and a tile configured with 10 rows and 48 columns, an operation writing dword elements would write 

Figure 19-3.  Matrix Multiply C+= A*B

   LDTILECFG [rax]
// assume some outer loops driving the cache tiling (not shown)
{
   TILELOADD tmm0, [rsi+rdi]     // srcdst, RSI points to C, RDI is strided value 
   TILELOADD tmm1, [rsi+rdi+N]   // second tile of C, unrolling in SIMD dimension N
   MOV r14, 0
LOOP:
   TILELOADD tmm2, [r8+r9]       // src2 is strided load of A, reused for 2 TMUL instr.
   TILELOADD tmm3, [r10+r11]     // src1 is strided load of B
   TDPBUSD   tmm0, tmm2, tmm3  // update left tile of C
   TILELOADD tmm3, [r10+r11+N]   // src1 loaded with B from next rightmost tile
   TDPBUSD   tmm1, tmm2, tmm3  // update right tile of C
   ADD r8, K                  // update pointers by constants known outside of loop
   ADD r10, K*r11
   ADD r14, K
   CMP r14, LIMIT
   JNE LOOP

   TILESTORED [rsi+rdi],   tmm0  // update the C matrix in memory
   TILESTORED [rsi+rdi+M], tmm1    
 } // end of outer loop

   TILERELEASE         // return tiles to INIT state

C BA
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each of the first 10 rows with 48 bytes of output/result data and zero the remaining 16 bytes in each row. Tile oper-
ations also fully zero any rows after the first 10 configured rows. When using a 1 KByte tile with 64-byte rows, 
there would be 16 rows, so in this example, the last 6 rows would also be zeroed.
Intel AMX instructions will always obey the metadata on reads and the zeroing rules on writes, and so a subsequent 
XSAVE would see zeros in the appropriate locations. Tiles that are not written by Intel AMX instructions between 
XRSTOR and XSAVE will write back with the same image they were loaded with regardless of the value of TILECFG.

19.1.4 Exceptions and Interrupts
Tile instructions are restartable so that operations that access strided memory can restart after page faults. To 
support restarting instructions after these events, the instructions store information in the TILECFG.start_row 
register. TILECFG.start_row indicates the row that should be used for restart; i.e., it indicates next row after the 
rows that have already been successfully loaded (on a TILELOAD) or written to memory (on a TILESTORE) and 
prevents repeating work that was successfully done.
The TMUL instruction set is not sensitive to the TILECFG.start_row value; this is due to there not being TMUL 
instructions with memory operands or any restartable faults.

19.2 RECOMMENDATIONS FOR SYSTEM SOFTWARE
Intel AMX is an XSAVE-enabled feature, meaning that it requires use of the XSAVE feature set for their enabling. 
Specifically, Intel AMX instructions and state are available only if system software has set CR4.OSXSAVE and also 
set XCR0[18:17] to 11B. In addition, use of Intel AMX instructions is disabled if system software has used extended 
feature disable (XFD) and set either IA32_XFD[17] or IA32_XFD[18] to 1. See Chapter 13, “Managing State Using 
the XSAVE Feature Set,” for more details.

NOTE
The first processors implementing Intel AMX will support setting IA32_XFD[18] but not 
IA32_XFD[17]. 

Once Intel AMX has been enabled, system software can disable it by clearing XCR0[18:17], by clearing 
CR4.OSXSAVE, or by setting either IA32_XFD[17] or IA32_XFD[18]. Before doing so, system software should first 
initialize AMX state (e.g., by executing TILERELEASE); maintaining AMX state in a non-initialized state may have 
negative power and performance implications and will prevent the execution of In-Field Scan tests. In addition, 
software should not rely on the state of the tile data after setting IA32_XFD[17] or IA32_XFD[18]; software should 
always reload or reinitialize the tile data after clearing IA32_XFD[17] and IA32_XFD[18].

System software should not use XFD to implement a “lazy restore” approach to management of the TILEDATA state 
component. This approach will not operate correctly for a variety of reasons. One is that the LDTILECFG and 
TILERELEASE instructions initialize TILEDATA and do not cause an #NM exception. Another is that an execution of 
XSAVE, XSAVEC, XSAVEOPT, or XSAVES by a user thread will save TILEDATA as initialized instead of the data 
expected by the user thread.

19.3 IMPLEMENTATION PARAMETERS
The parameters are reported via CPUID leaf 1DH. Index 0 reports all zeros for all fields.
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The tile parameters are set by LDTILECFG or XRSTOR* of TILECFG:

19.4 HELPER FUNCTIONS
The helper functions used in Intel AMX instructions are defined below.

define palette_table[id]: 
uint16_t total_tile_bytes 
uint16_t bytes_per_tile 
uint16_t bytes_per_row 
uint16_t max_names 
uint16_t max_rows

define tile[tid]: 
byte rows
word colsb // bytes_per_row 
bool valid

define write_row_and_zero(treg, r, data, nbytes): 
for j in 0 ... nbytes-1:

treg.row[r].byte[j] := data.byte[j]

// zero the rest of the row
for j in nbytes ... palette_table[tilecfg.palette_id].bytes_per_row-1:

treg.row[r].byte[j] := 0

define zero_upper_rows(treg, r):
for i in r ... palette_table[tilecfg.palette_id].max_rows-1:

for j in 0 ... palette_table[tilecfg.palette_id].bytes_per_row-1: 
treg.row[i].byte[j] := 0

define zero_tilecfg_start(): 
tilecfg.start_row := 0

define zero_all_tile_data(): 
if XCR0[TILEDATA]:

b := CPUID(0xD,TILEDATA).EAX // size of feature 
for j in 0 ... b:

TILEDATA.byte[j] := 0
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define xcr0_supports_palette(palette_id): 
if palette_id == 0:

return 1
elif palette_id == 1:

if XCR0[TILECFG] and XCR0[TILEDATA]:
return 1

return 0
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CHAPTER 20
INPUT/OUTPUT

In addition to transferring data to and from external memory, IA-32 processors can also transfer data to and from 
input/output ports (I/O ports). I/O ports are created in system hardware by circuity that decodes the control, data, 
and address pins on the processor. These I/O ports are then configured to communicate with peripheral devices. An 
I/O port can be an input port, an output port, or a bidirectional port. Some I/O ports are used for transmitting data, 
such as to and from the transmit and receive registers, respectively, of a serial interface device. Other I/O ports are 
used to control peripheral devices, such as the control registers of a disk controller.

This chapter describes the processor’s I/O architecture. The topics discussed include:
• I/O port addressing.
• I/O instructions.
• I/O protection mechanism.

20.1 I/O PORT ADDRESSING
The processor permits applications to access I/O ports in either of two ways:
• Through a separate I/O address space.
• Through memory-mapped I/O.

Accessing I/O ports through the I/O address space is handled through a set of I/O instructions and a special I/O 
protection mechanism. Accessing I/O ports through memory-mapped I/O is handled with the processor’s general-
purpose move and string instructions, with protection provided through segmentation or paging. I/O ports can be 
mapped so that they appear in the I/O address space or the physical-memory address space (memory mapped 
I/O) or both.

One benefit of using the I/O address space is that writes to I/O ports are guaranteed to be completed before the 
next instruction in the instruction stream is executed. Thus, I/O writes to control system hardware cause the hard-
ware to be set to its new state before any other instructions are executed. See Section 20.6, “Ordering I/O,” for 
more information on serializing of I/O operations.

20.2 I/O PORT HARDWARE
From a hardware point of view, I/O addressing is handled through the processor’s address lines. For the P6 family, 
Pentium 4, and Intel Xeon processors, the request command lines signal whether the address lines are being driven 
with a memory address or an I/O address; for Pentium processors and earlier IA-32 processors, the M/IO# pin indi-
cates a memory address (1) or an I/O address (0). When the separate I/O address space is selected, it is the 
responsibility of the hardware to decode the memory-I/O bus transaction to select I/O ports rather than memory. 
Data is transmitted between the processor and an I/O device through the data lines.

20.3 I/O ADDRESS SPACE
The processor’s I/O address space is separate and distinct from the physical-memory address space. The I/O 
address space consists of 216 (64K) individually addressable 8-bit I/O ports, numbered 0 through FFFFH. I/O port 
addresses 0F8H through 0FFH are reserved. Do not assign I/O ports to these addresses. The result of an attempt 
to address beyond the I/O address space limit of FFFFH is implementation-specific; see the Developer’s Manuals for 
specific processors for more details.

Any two consecutive 8-bit ports can be treated as a 16-bit port, and any four consecutive ports can be a 32-bit port. 
In this manner, the processor can transfer 8, 16, or 32 bits to or from a device in the I/O address space. Like words 
in memory, 16-bit ports should be aligned to even addresses (0, 2, 4, ...) so that all 16 bits can be transferred in a 
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single bus cycle. Likewise, 32-bit ports should be aligned to addresses that are multiples of four (0, 4, 8, ...). The 
processor supports data transfers to unaligned ports, but there is a performance penalty because one or more 
extra bus cycle must be used.

The exact order of bus cycles used to access unaligned ports is undefined and is not guaranteed to remain the same 
in future IA-32 processors. If hardware or software requires that I/O ports be written to in a particular order, that 
order must be specified explicitly. For example, to load a word-length I/O port at address 2H and then another word 
port at 4H, two word-length writes must be used, rather than a single doubleword write at 2H.

Note that the processor does not mask parity errors for bus cycles to the I/O address space. Accessing I/O ports 
through the I/O address space is thus a possible source of parity errors.

20.3.1 Memory-Mapped I/O
I/O devices that respond like memory components can be accessed through the processor’s physical-memory 
address space (see Figure 20-1). When using memory-mapped I/O, any of the processor’s instructions that refer-
ence memory can be used to access an I/O port located at a physical-memory address. For example, the MOV 
instruction can transfer data between any register and a memory-mapped I/O port. The AND, OR, and TEST 
instructions may be used to manipulate bits in the control and status registers of a memory-mapped peripheral 
device.

Certain instructions may take an exception or VM exit after completing a memory access (either a read or a write) 
to a memory-mapped I/O address. This exception or VM exit could be due to the instruction performing multiple 
memory accesses (e.g., MOVS, PUSH mem, POP mem, PUSHAD, etc.) or could be due to the ordering of exceptions 
or VM exits within the instruction (e.g., a DIV mem that takes a #DE or a CALL that causes a task switch VM exit). 
If software later re-executes that instruction (e.g., after an IRET or VMRESUME), the MMIO (memory-mapped I/O) 
access may occur again. If the memory-mapped I/O access has a side-effect, that side-effect may be executed 
each time the memory-mapped I/O access occurs. If that is problematic, software must ensure that exceptions or 
VM exits do not occur after accessing the MMIO.

When using memory-mapped I/O, caching of the address space mapped for I/O operations must be prevented. 
With the Pentium 4, Intel Xeon, and P6 family processors, caching of I/O accesses can be prevented by using 
memory type range registers (MTRRs) to map the address space used for the memory-mapped I/O as uncacheable 
(UC). See Chapter 13, “Memory Cache Control,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A, for a complete discussion of the MTRRs.

The Pentium and Intel486 processors do not support MTRRs. Instead, they provide the KEN# pin, which when held 
inactive (high) prevents caching of all addresses sent out on the system bus. To use this pin, external address 
decoding logic is required to block caching in specific address spaces.

Figure 20-1.  Memory-Mapped I/O
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All the IA-32 processors that have on-chip caches also provide the PCD (page-level cache disable) flag in page table 
and page directory entries. This flag allows caching to be disabled on a page-by-page basis. See “Page-Directory 
and Page-Table Entries” in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A.

20.4 I/O INSTRUCTIONS
The processor’s I/O instructions provide access to I/O ports through the I/O address space. (These instructions 
cannot be used to access memory-mapped I/O ports.) There are two groups of I/O instructions:
• Those that transfer a single item (byte, word, or doubleword) between an I/O port and a general-purpose 

register.
• Those that transfer strings of items (strings of bytes, words, or doublewords) between an I/O port and 

memory.

The register I/O instructions IN (input from I/O port) and OUT (output to I/O port) move data between I/O ports 
and the EAX register (32-bit I/O), the AX register (16-bit I/O), or the AL (8-bit I/O) register. The address of the I/O 
port can be given with an immediate value or a value in the DX register. 

The string I/O instructions INS (input string from I/O port) and OUTS (output string to I/O port) move data 
between an I/O port and a memory location. The address of the I/O port being accessed is given in the DX register; 
the source or destination memory address is given in the DS:ESI or ES:EDI register, respectively.

When used with the repeat prefix REP, the INS and OUTS instructions perform string (or block) input or output 
operations. The repeat prefix REP modifies the INS and OUTS instructions to transfer blocks of data between an I/O 
port and memory. Here, the ESI or EDI register is incremented or decremented (according to the setting of the DF 
flag in the EFLAGS register) after each byte, word, or doubleword is transferred between the selected I/O port and 
memory.

See the references for IN, INS, OUT, and OUTS in Chapter 3 and Chapter 4 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, for more information on these instructions.

20.5 PROTECTED-MODE I/O
When the processor is running in protected mode, the following protection mechanisms regulate access to I/O 
ports:
• When accessing I/O ports through the I/O address space, two protection devices control access:

— The I/O privilege level (IOPL) field in the EFLAGS register.

— The I/O permission bit map of a task state segment (TSS).
• When accessing memory-mapped I/O ports, the normal segmentation and paging protection and the MTRRs 

(in processors that support them) also affect access to I/O ports. See Chapter 6, “Protection,” and Chapter 13, 
“Memory Cache Control,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for 
a complete discussion of memory protection. 

The following sections describe the protection mechanisms available when accessing I/O ports in the I/O address 
space with the I/O instructions.

20.5.1 I/O Privilege Level
In systems where I/O protection is used, the IOPL field in the EFLAGS register controls access to the I/O address 
space by restricting use of selected instructions. This protection mechanism permits the operating system or exec-
utive to set the privilege level needed to perform I/O. In a typical protection ring model, access to the I/O address 
space is restricted to privilege levels 0 and 1. Here, the kernel and the device drivers are allowed to perform I/O, 
while less privileged device drivers and application programs are denied access to the I/O address space. Applica-
tion programs must then make calls to the operating system to perform I/O.
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The following instructions can be executed only if the current privilege level (CPL) of the program or task currently 
executing is less than or equal to the IOPL: IN, INS, OUT, OUTS, CLI (clear interrupt-enable flag), and STI (set 
interrupt-enable flag). These instructions are called I/O sensitive instructions, because they are sensitive to the 
IOPL field. Any attempt by a less privileged program or task to use an I/O sensitive instruction results in a general-
protection exception (#GP) being signaled. Because each task has its own copy of the EFLAGS register, each task 
can have a different IOPL.

The I/O permission bit map in the TSS can be used to modify the effect of the IOPL on I/O sensitive instructions, 
allowing access to some I/O ports by less privileged programs or tasks (see Section 20.5.2, “I/O Permission Bit 
Map”).

A program or task can change its IOPL only with the POPF and IRET instructions; however, such changes are privi-
leged. No procedure may change the current IOPL unless it is running at privilege level 0. An attempt by a less priv-
ileged procedure to change the IOPL does not result in an exception; the IOPL simply remains unchanged.

The POPF instruction also may be used to change the state of the IF flag (as can the CLI and STI instructions); 
however, the POPF instruction in this case is also I/O sensitive. A procedure may use the POPF instruction to change 
the setting of the IF flag only if the CPL is less than or equal to the current IOPL. An attempt by a less privileged 
procedure to change the IF flag does not result in an exception; the IF flag simply remains unchanged.

20.5.2 I/O Permission Bit Map
The I/O permission bit map is a device for permitting limited access to I/O ports by less privileged programs or 
tasks and for tasks operating in virtual-8086 mode. The I/O permission bit map is located in the TSS (see 
Figure 20-2) for the currently running task or program. The address of the first byte of the I/O permission bit map 
is given in the I/O map base address field of the TSS. The size of the I/O permission bit map and its location in the 
TSS are variable. 

Because each task has its own TSS, each task has its own I/O permission bit map. Access to individual I/O ports 
can thus be granted to individual tasks.

If in protected mode and the CPL is less than or equal to the current IOPL, the processor allows all I/O operations 
to proceed. If the CPL is greater than the IOPL or if the processor is operating in virtual-8086 mode, the processor 
checks the I/O permission bit map to determine if access to a particular I/O port is allowed. Each bit in the map 
corresponds to an I/O port byte address. For example, the control bit for I/O port address 29H in the I/O address 
space is found at bit position 1 of the sixth byte in the bit map. Before granting I/O access, the processor tests all 
the bits corresponding to the I/O port being addressed. For a doubleword access, for example, the processors tests 
the four bits corresponding to the four adjacent 8-bit port addresses. If any tested bit is set, a general-protection 
exception (#GP) is signaled. If all tested bits are clear, the I/O operation is allowed to proceed.

Figure 20-2.  I/O Permission Bit Map
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Because I/O port addresses are not necessarily aligned to word and doubleword boundaries, the processor reads 
two bytes from the I/O permission bit map for every access to an I/O port. To prevent exceptions from being gener-
ated when the ports with the highest addresses are accessed, an extra byte needs to be included in the TSS imme-
diately after the table. This byte must have all of its bits set, and it must be within the segment limit.

It is not necessary for the I/O permission bit map to represent all the I/O addresses. I/O addresses not spanned by 
the map are treated as if they had set bits in the map. For example, if the TSS segment limit is 10 bytes past the 
bit-map base address, the map has 11 bytes and the first 80 I/O ports are mapped. Higher addresses in the I/O 
address space generate exceptions.

If the I/O bit map base address is greater than or equal to the TSS segment limit, there is no I/O permission map, 
and all I/O instructions generate exceptions when the CPL is greater than the current IOPL.

20.6 ORDERING I/O
When controlling I/O devices it is often important that memory and I/O operations be carried out in precisely the 
order programmed. For example, a program may write a command to an I/O port, then read the status of the I/O 
device from another I/O port. It is important that the status returned be the status of the device after it receives 
the command, not before. 

When using memory-mapped I/O, caution should be taken to avoid situations in which the programmed order is 
not preserved by the processor. To optimize performance, the processor allows cacheable memory reads to be 
reordered ahead of buffered writes in most situations. Internally, processor reads (cache hits) can be reordered 
around buffered writes. When using memory-mapped I/O, therefore, it is possible that an I/O read might be 
performed before the memory write of a previous instruction. The recommended method of enforcing program 
ordering of memory-mapped I/O accesses with the Pentium 4, Intel Xeon, and P6 family processors is to use the 
MTRRs to make the memory mapped I/O address space uncacheable; for the Pentium and Intel486 processors, 
either the KEN# pin or the PCD flags can be used for this purpose (see Section 20.3.1, “Memory-Mapped I/O”). 

When the target of a read or write is in an uncacheable region of memory, memory reordering does not occur 
externally at the processor’s pins (that is, reads and writes appear in-order). Designating a memory mapped I/O 
region of the address space as uncacheable ensures that reads and writes of I/O devices are carried out in program 
order. See Chapter 13, “Memory Cache Control,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A, for more information on using MTRRs.

Another method of enforcing program order is to insert one of the serializing instructions, such as the CPUID 
instruction, between operations. See Chapter 10, “Multiple-Processor Management,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A, for more information on serialization of instructions.

It should be noted that the chipset being used to support the processor (bus controller, memory controller, and/or 
I/O controller) may post writes to uncacheable memory which can lead to out-of-order execution of memory 
accesses. In situations where out-of-order processing of memory accesses by the chipset can potentially cause 
faulty memory-mapped I/O processing, code must be written to force synchronization and ordering of I/O opera-
tions. Serializing instructions can often be used for this purpose.

When the I/O address space is used instead of memory-mapped I/O, the situation is different in two respects:
• The processor never buffers I/O writes. Therefore, strict ordering of I/O operations is enforced by the 

processor. (As with memory-mapped I/O, it is possible for a chipset to post writes in certain I/O ranges.)
• The processor synchronizes I/O instruction execution with external bus activity (see Table 20-1). 
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Table 20-1.  I/O Instruction Serialization

Instruction Being 
Executed

Processor Delays Execution of … Until Completion of …

Current Instruction? Next Instruction? Pending Stores? Current Store?

IN Yes Yes

INS Yes Yes

REP INS Yes Yes

OUT Yes Yes Yes

OUTS Yes Yes Yes

REP OUTS Yes Yes Yes
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CHAPTER 21
PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION

When writing software intended to run on IA-32 processors, it is necessary to identify the type of processor present 
in a system and the processor features that are available to an application.

21.1 USING THE CPUID INSTRUCTION
Use the CPUID instruction for processor identification in the Pentium M processor family, Pentium 4 processor 
family, Intel Xeon processor family, P6 family, Pentium processor, and later Intel486 processors. This instruction 
returns the family, model, and (for some processors) a brand string for the processor that executes the instruction. 
It also indicates the features that are present in the processor and gives information about the processor’s caches 
and TLB.

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can 
set and clear this flag, the processor executing the procedure supports the CPUID instruction. The CPUID instruc-
tion will cause the invalid opcode exception (#UD) if executed on a processor that does not support it.

To obtain processor identification information, a source operand value is placed in the EAX register to select the 
type of information to be returned. When the CPUID instruction is executed, selected information is returned in the 
EAX, EBX, ECX, and EDX registers. For a complete description of the CPUID instruction, tables indicating values 
returned, and example code, see CPUID—CPU Identification in Chapter 3 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2A.

21.1.1 Notes on Where to Start
The following guidelines are among the most important, and should always be followed when using the CPUID 
instruction to determine available features:
• Always begin by testing for the “GenuineIntel,” message in the EBX, EDX, and ECX registers when the CPUID 

instruction is executed with EAX equal to 0. If the processor is not genuine Intel, the feature identification flags 
may have different meanings than are described in Intel documentation.

• Test feature identification flags individually and do not make assumptions about undefined bits.

21.1.2 Identification of Earlier IA-32 Processors
The CPUID instruction is not available in earlier IA-32 processors up through the earlier Intel486 processors. For 
these processors, several other architectural features can be exploited to identify the processor.
The settings of bits 12 and 13 (IOPL), 14 (NT), and 15 (reserved) in the EFLAGS register are different for Intel’s 32-
bit processors than for the Intel 8086 and Intel 286 processors. By examining the settings of these bits (with the 
PUSHF/PUSHFD and POPF/POPFD instructions), an application program can determine whether the processor is an 
8086, Intel 286, or one of the Intel 32-bit processors:
• 8086 processor — Bits 12 through 15 of the EFLAGS register are always set.
• Intel 286 processor — Bits 12 through 15 are always clear in real-address mode.
• 32-bit processors — In real-address mode, bit 15 is always clear and bits 12 through 14 have the last value 

loaded into them. In protected mode, bit 15 is always clear, bit 14 has the last value loaded into it, and the IOPL 
bits depend on the current privilege level (CPL). The IOPL field can be changed only if the CPL is 0.

Other EFLAGS register bits that can be used to differentiate between the 32-bit processors:
• Bit 18 (AC) — Implemented only on the Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors. 

The inability to set or clear this bit distinguishes an Intel386 processor from the later IA-32 processors.
• Bit 21 (ID) — Determines if the processor is able to execute the CPUID instruction. The ability to set and clear 

this bit indicates that it is a Pentium 4, Intel Xeon, P6 family, Pentium, or later-version Intel486 processor.
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PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION
To determine whether an x87 FPU or Numeric Processor Extension (NPX) is present in a system, applications can 
write to the x87 FPU status and control registers using the FNINIT instruction and then verify that the correct 
values are read back using the FNSTENV instruction. 
After determining that an x87 FPU or NPX is present, its type can then be determined. In most cases, the processor 
type will determine the type of FPU or NPX; however, an Intel386 processor is compatible with either an Intel 287 
or Intel 387 math coprocessor. 
The method the coprocessor uses to represent ∞ (after the execution of the FINIT, FNINIT, or RESET instruction) 
indicates which coprocessor is present. The Intel 287 math coprocessor uses the same bit representation for +∞ 
and −∞; whereas, the Intel 387 math coprocessor uses different representations for +∞ and −∞.
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APPENDIX A
EFLAGS CROSS-REFERENCE

A.1 EFLAGS AND INSTRUCTIONS
Table A-2 summarizes how the instructions affect the flags in the EFLAGS register. The following codes describe 
how the flags are affected.

Table A-1.  Codes Describing Flags

T Instruction tests flag.

M Instruction modifies flag (either sets or resets depending on operands).

0 Instruction resets flag.

1 Instruction sets flag.

— Instruction's effect on flag is undefined.

R Instruction restores prior value of flag.

Blank Instruction does not affect flag.

Table A-2.  EFLAGS Cross-Reference

Instruction OF SF ZF AF PF CF TF IF DF NT RF

AAA — — — TM — M

AAD — M M — M —

AAM — M M — M —

AAS — — — TM — M

ADC M M M M M TM

ADD M M M M M M

AND 0 M M — M 0

ARPL M

BOUND

BSF/BSR — — M — — —

BSWAP

BT/BTS/BTR/BTC — — — — M

CALL

CBW

CLC 0

CLD 0

CLI 0

CLTS

CMC M

CMOVcc T T T T T

CMP M M M M M M
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EFLAGS CROSS-REFERENCE
CMPS M M M M M M T

CMPXCHG M M M M M M

CMPXCHG8B M

COMISD 0 0 M 0 M M

COMISS 0 0 M 0 M M

CPUID

CWD

DAA — M M TM M TM

DAS — M M TM M TM

DEC M M M M M

DIV — — — — — —

ENTER

ESC

FCMOVcc T T T

FCOMI, FCOMIP, FUCOMI, FUCOMIP 0 0 M 0 M M

HLT

IDIV — — — — — —

IMUL M — — — — M

IN

INC M M M M M

INS T

INT 0 0

INTO T 0 0

INVD

INVLPG

UCOMISD 0 0 M 0 M M

UCOMISS 0 0 M 0 M M

IRET R R R R R R R R R T

Jcc T T T T T

JCXZ

JMP

LAHF

LAR M

LDS/LES/LSS/LFS/LGS

LEA

LEAVE

LGDT/LIDT/LLDT/LMSW

LOCK

Table A-2.  EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF
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EFLAGS CROSS-REFERENCE
LODS T

LOOP

LOOPE/LOOPNE T

LSL M

LTR

MONITOR

MWAIT

MOV

MOV control, debug, test — — — — — —

MOVS T

MOVSX/MOVZX

MUL M — — — — M

NEG M M M M M M

NOP

NOT

OR 0 M M — M 0

OUT

OUTS T

POP/POPA

POPF R R R R R R R R R R

PUSH/PUSHA/PUSHF

RCL/RCR 1 M TM

RCL/RCR count — TM

RDMSR

RDPMC

RDTSC

REP/REPE/REPNE

RET

ROL/ROR 1 M M

ROL/ROR count — M

RSM M M M M M M M M M M M

SAHF R R R R R

SAL/SAR/SHL/SHR 1 M M M — M M

SAL/SAR/SHL/SHR count — M M — M M

SBB M M M M M TM

SCAS M M M M M M T

SETcc T T T T T

SGDT/SIDT/SLDT/SMSW

Table A-2.  EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF
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EFLAGS CROSS-REFERENCE
SHLD/SHRD — M M — M M

STC 1

STD 1

STI 1

STOS T

STR

SUB M M M M M M

TEST 0 M M — M 0

UD

VERR/VERRW M

WAIT

WBINVD

WRMSR

XADD M M M M M M

XCHG

XLAT 

XOR 0 M M — M 0

Table A-2.  EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF
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APPENDIX B
EFLAGS CONDITION CODES

B.1 CONDITION CODES
Table B-1 lists condition codes that can be queried using CMOVcc, FCMOVcc, Jcc, and SETcc. Condition codes refer 
to the setting of one or more status flags (CF, OF, SF, ZF, and PF) in the EFLAGS register. In the table below:
• The “Mnemonic” column provides the suffix (cc) added to the instruction to specify a test condition. 
• “Condition Tested For” describes the targeted condition. 
• “Instruction Subcode” provides the opcode suffix added to the main opcode to specify the test condition. 
• “Status Flags Setting” describes the flag setting. 

Table B-1.  EFLAGS Condition Codes 

Mnemonic (cc) Condition Tested For
Instruction
Subcode Status Flags Setting

O Overflow 0000 OF = 1

NO No overflow 0001 OF = 0

B
C
NAE

Below
Carry
Neither above nor equal

0010 CF = 1

NB
NC
AE

Not below
Not carry
Above or equal

0011 CF = 0

E
Z

Equal
Zero

0100 ZF = 1

NE
NZ

Not equal
Not zero

0101 ZF = 0

BE
NA

Below or equal
Not above

0110 (CF OR ZF) = 1

NBE
A

Neither below nor equal
Above

0111 (CF OR ZF) = 0

S Sign 1000 SF = 1

NS No sign 1001 SF = 0

P
PE

Parity
Parity even

1010 PF = 1

NP
PO

No parity
Parity odd

1011 PF = 0

L
NGE

Less
Neither greater nor equal

1100 (SF XOR OF) = 1

NL
GE

Not less
Greater or equal

1101 (SF XOR OF) = 0

LE
NG

Less or equal
Not greater

1110 ((SF XOR OF) OR ZF) = 1

NLE
G

Neither less nor equal
Greater

1111 ((SF XOR OF) OR ZF) = 0
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EFLAGS CONDITION CODES
Many of the test conditions are described in two different ways. For example, LE (less or equal) and NG (not 
greater) describe the same test condition. Alternate mnemonics are provided to make code more intelligible.

The terms “above” and “below” are associated with the CF flag and refer to the relation between two unsigned 
integer values. The terms “greater” and “less” are associated with the SF and OF flags and refer to the relation 
between two signed integer values.
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APPENDIX C
FLOATING-POINT EXCEPTIONS SUMMARY

C.1 OVERVIEW
This appendix shows which of the floating-point exceptions can be generated for: 
• x87 FPU instructions — see Table C-2.
• Intel SSE instructions — see Table C-3.
• Intel SSE2 instructions — see Table C-4.
• Intel SSE3 instructions — see Table C-5.
• Intel SSE4 instructions — see Table C-6.

Table C-1 lists types of floating-point exceptions that potentially can be generated by the x87 FPU and by Intel SSE, 
SSE2, and SSE3 instructions.

The floating-point exceptions shown in Table C-1 (except for #D and #IS) are defined in IEEE Standard 754-1985 
for Binary Floating-Point Arithmetic. See Section 4.9.1, “Floating-Point Exception Conditions,” for a detailed discus-
sion of floating-point exceptions.

C.2 X87 FPU INSTRUCTIONS
Table C-2 lists the x87 FPU instructions in alphabetical order. For each instruction, it summarizes the floating-point 
exceptions that the instruction can generate.

Table C-1.  x87 FPU and SIMD Floating-Point Exceptions

Floating-
point 
Exception Description

#IS Invalid-operation exception for stack underflow or stack overflow (can only be generated for x87 FPU instructions)*

#IA or #I Invalid-operation exception for invalid arithmetic operands and unsupported formats*

#D Denormal-operand exception

#Z Divide-by-zero exception

#O Numeric-overflow exception

#U Numeric-underflow exception

#P Inexact-result (precision) exception

NOTE:
* The x87 FPU instruction set generates two types of invalid-operation exceptions: #IS (stack underflow or stack overflow) and #IA

(invalid arithmetic operation due to invalid arithmetic operands or unsupported formats). Intel SSE, SSE2, and SSE3 instructions
potentially generate #I (invalid operation exceptions due to invalid arithmetic operands or unsupported formats).

Table C-2.  Exceptions Generated with x87 FPU Floating-Point Instructions

Mnemonic Instruction #IS #IA #D #Z #O #U #P

F2XM1 Exponential Y Y Y Y Y

FABS Absolute value Y

FADD(P) Add floating-point Y Y Y Y Y Y

FBLD BCD load Y
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FLOATING-POINT EXCEPTIONS SUMMARY
FBSTP BCD store and pop Y Y Y

FCHS Change sign Y

FCLEX Clear exceptions

FCMOVcc Floating-point conditional move Y

FCOM, FCOMP, FCOMPP Compare floating-point Y Y Y

FCOMI, FCOMIP, FUCOMI, 
FUCOMIP

Compare floating-point and set EFLAGS Y Y Y

FCOS Cosine Y Y Y Y

FDECSTP Decrement stack pointer

FDIV(R)(P) Divide floating-point Y Y Y Y Y Y Y

FFREE Free register

FIADD Integer add Y Y Y Y Y Y

FICOM(P) Integer compare Y Y Y

FIDIV Integer divide Y Y Y Y Y Y

FIDIVR Integer divide reversed Y Y Y Y Y Y Y

FILD Integer load Y

FIMUL Integer multiply Y Y Y Y Y Y

FINCSTP Increment stack pointer

FINIT Initialize processor

FIST(P) Integer store Y Y Y

FISTTP Truncate to integer 
(SSE3 instruction)

Y Y Y

FISUB(R) Integer subtract Y Y Y Y Y Y

FLD extended or stack Load floating-point Y

FLD single or double Load floating-point Y Y Y

FLD1 Load + 1.0 Y

FLDCW Load Control word Y Y Y Y Y Y Y

FLDENV Load environment Y Y Y Y Y Y Y

FLDL2E Load log2e Y

FLDL2T Load log210 Y

FLDLG2 Load log102 Y

FLDLN2 Load loge2 Y

FLDPI Load π Y

FLDZ Load + 0.0 Y

FMUL(P) Multiply floating-point Y Y Y Y Y Y

FNOP No operation

FPATAN Partial arctangent Y Y Y Y Y

FPREM Partial remainder Y Y Y Y

FPREM1 IEEE partial remainder Y Y Y Y

Table C-2.  Exceptions Generated with x87 FPU Floating-Point Instructions (Contd.)

Mnemonic Instruction #IS #IA #D #Z #O #U #P
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C.3 INTEL® SSE INSTRUCTIONS
Table C-3 lists the Intel SSE instructions with at least one of the following characteristics:
• Has floating-point operands.
• Generates floating-point results.
• Reads or writes floating-point status and control information.

The table also summarizes the floating-point exceptions that each instruction can generate.

FPTAN Partial tangent Y Y Y Y Y

FRNDINT Round to integer Y Y Y Y

FRSTOR Restore state Y Y Y Y Y Y Y

FSAVE Save state

FSCALE Scale Y Y Y Y Y Y

FSIN Sine Y Y Y Y Y

FSINCOS Sine and cosine Y Y Y Y Y

FSQRT Square root Y Y Y Y

FST(P) stack or extended Store floating-point Y

FST(P) single or double Store floating-point Y Y Y Y Y

FSTCW Store control word

FSTENV Store environment

FSTSW (AX) Store status word

FSUB(R)(P) Subtract floating-point Y Y Y Y Y Y

FTST Test Y Y Y

FUCOM(P)(P) Unordered compare floating-point Y Y Y

FWAIT CPU Wait

FXAM Examine

FXCH Exchange registers Y

FXTRACT Extract Y Y Y Y

FYL2X Logarithm Y Y Y Y Y Y Y

FYL2XP1 Logarithm epsilon Y Y Y Y Y Y

Table C-3.  Exceptions Generated with Intel® SSE Instructions

Mnemonic Instruction #I #D #Z #O #U #P

ADDPS Packed add. Y Y Y Y Y

ADDSS Scalar add. Y Y Y Y Y

ANDNPS Packed logical INVERT and AND.

ANDPS Packed logical AND.

CMPPS Packed compare. Y Y

CMPSS Scalar compare. Y Y

Table C-2.  Exceptions Generated with x87 FPU Floating-Point Instructions (Contd.)

Mnemonic Instruction #IS #IA #D #Z #O #U #P
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FLOATING-POINT EXCEPTIONS SUMMARY
COMISS Scalar ordered compare lower SP FP numbers and set the status 
flags.

Y Y

CVTPI2PS Convert two 32-bit signed integers from MM2/Mem to two SP FP. Y

CVTPS2PI Convert lower two SP FP from XMM/Mem to two 32-bit signed 
integers in MM using rounding specified by MXCSR.

Y Y

CVTSI2SS Convert one 32-bit signed integer from Integer Reg/Mem to one 
SP FP.

Y

CVTSS2SI Convert one SP FP from XMM/Mem to one 32-bit signed integer 
using rounding mode specified by MXCSR, and move the result to 
an integer register. 

Y Y

CVTTPS2PI Convert two SP FP from XMM2/Mem to two 32-bit signed 
integers in MM1 using truncate.

Y Y

CVTTSS2SI Convert lowest SP FP from XMM/Mem to one 32-bit signed 
integer using truncate, and move the result to an integer register. 

Y Y

DIVPS Packed divide. Y Y Y Y Y Y

DIVSS Scalar divide. Y Y Y Y Y Y

LDMXCSR Load control/status word.

MAXPS Packed maximum. Y Y

MAXSS Scalar maximum. Y Y

MINPS Packed minimum. Y Y

MINSS Scalar minimum. Y Y

MOVAPS Move four packed SP values.

MOVHLPS Move packed SP high to low.

MOVHPS Move two packed SP values between memory and the high half of 
an XMM register.

MOVLHPS Move packed SP low to high.

MOVLPS Move two packed SP values between memory and the low half of 
an XMM register.

MOVMSKPS Move sign mask to r32.

MOVSS Move scalar SP number between an XMM register and memory or 
a second XMM register.

MOVUPS Move unaligned packed data.

MULPS Packed multiply. Y Y Y Y Y

MULSS Scalar multiply. Y Y Y Y Y

ORPS Packed OR.

RCPPS Packed reciprocal.

RCPSS Scalar reciprocal.

RSQRTPS Packed reciprocal square root.

RSQRTSS Scalar reciprocal square root.

SHUFPS Shuffle.

SQRTPS Square Root of the packed SP FP numbers. Y Y Y

SQRTSS Scalar square root. Y Y Y

Table C-3.  Exceptions Generated with Intel® SSE Instructions (Contd.)

Mnemonic Instruction #I #D #Z #O #U #P
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C.4 INTEL® SSE2 INSTRUCTIONS
Table C-4 lists the Intel SSE2 instructions with at least one of the following characteristics:
• Floating-point operands.
• Floating-point results.

For each instruction, the table summarizes the floating-point exceptions that the instruction can generate.

STMXCSR Store control/status word.

SUBPS Packed subtract. Y Y Y Y Y

SUBSS Scalar subtract. Y Y Y Y Y

UCOMISS Unordered compare lower SP FP numbers and set the status flags. Y Y

UNPCKHPS Interleave SP FP numbers.

UNPCKLPS Interleave SP FP numbers.

XORPS Packed XOR.

Table C-4.  Exceptions Generated with Intel® SSE2 Instructions

Instruction Description #I #D #Z #O #U #P

ADDPD Add two packed DP FP numbers from XMM2/Mem to XMM1. Y Y Y Y Y

ADDSD Add the lower DP FP number from XMM2/Mem to XMM1. Y Y Y Y Y

ANDNPD Invert the 128 bits in XMM1 and then AND the result with 128 
bits from XMM2/Mem.

ANDPD Logical And of 128 bits from XMM2/Mem to XMM1 register.

CMPPD Compare packed DP FP numbers from XMM2/Mem to packed DP 
FP numbers in XMM1 register using imm8 as predicate.

Y Y

CMPSD Compare lowest DP FP number from XMM2/Mem to lowest DP FP 
number in XMM1 register using imm8 as predicate.

Y Y

COMISD Compare lower DP FP number in XMM1 register with lower DP FP 
number in XMM2/Mem and set the status flags accordingly

Y Y

CVTDQ2PS Convert four 32-bit signed integers from XMM/Mem to four SP FP. Y

CVTPS2DQ Convert four SP FP from XMM/Mem to four 32-bit signed integers 
in XMM using rounding specified by MXCSR.

Y Y

CVTTPS2DQ Convert four SP FP from XMM/Mem to four 32-bit signed integers 
in XMM using truncate.

Y Y

CVTDQ2PD Convert two 32-bit signed integers in XMM2/Mem to 2 DP FP in 
xmm1 using rounding specified by MXCSR.

CVTPD2DQ Convert two DP FP from XMM2/Mem to two 32-bit signed 
integers in xmm1 using rounding specified by MXCSR.

Y Y

CVTPD2PI Convert lower two DP FP from XMM/Mem to two 32-bit signed 
integers in MM using rounding specified by MXCSR.

Y Y

CVTPD2PS Convert two DP FP to two SP FP. Y Y Y Y Y

CVTPI2PD Convert two 32-bit signed integers from MM2/Mem to two DP FP.  

CVTPS2PD Convert two SP FP to two DP FP. Y Y

Table C-3.  Exceptions Generated with Intel® SSE Instructions (Contd.)

Mnemonic Instruction #I #D #Z #O #U #P
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CVTSD2SI Convert one DP FP from XMM/Mem to one 32 bit signed integer 
using rounding mode specified by MXCSR, and move the result to 
an integer register. 

Y Y

CVTSD2SS Convert scalar DP FP to scalar SP FP. Y Y Y Y Y

CVTSI2SD Convert one 32-bit signed integer from Integer Reg/Mem to one 
DP FP.

 

CVTSS2SD Convert scalar SP FP to scalar DP FP. Y Y

CVTTPD2DQ Convert two DP FP from XMM2/Mem to two 32-bit signed 
integers in XMM1 using truncate.

Y Y

CVTTPD2PI Convert two DP FP from XMM2/Mem to two 32-bit signed 
integers in MM1 using truncate.

Y Y

CVTTSD2SI Convert lowest DP FP from XMM/Mem to one 32 bit signed 
integer using truncate, and move the result to an integer register. 

Y Y

DIVPD Divide packed DP FP numbers in XMM1 by XMM2/Mem Y Y Y Y Y Y

DIVSD Divide lower DP FP numbers in XMM1 by XMM2/Mem Y Y Y Y Y Y

MAXPD Return the maximum DP FP numbers between XMM2/Mem and 
XMM1.

Y Y

MAXSD Return the maximum DP FP number between the lower DP FP 
numbers from XMM2/Mem and XMM1.

Y Y

MINPD Return the minimum DP numbers between XMM2/Mem and 
XMM1.

Y Y

MINSD Return the minimum DP FP number between the lowest DP FP 
numbers from XMM2/Mem and XMM1.

Y Y

MOVAPD Move 128 bits representing 2 packed DP data from XMM2/Mem to 
XMM1 register.

Or Move 128 bits representing 2 packed DP from XMM1 register 
to XMM2/Mem.

MOVHPD Move 64 bits representing one DP operand from Mem to upper 
field of XMM register.

Or move 64 bits representing one DP operand from upper field of 
XMM register to Mem.

MOVLPD Move 64 bits representing one DP operand from Mem to lower 
field of XMM register.

Or move 64 bits representing one DP operand from lower field of 
XMM register to Mem.

MOVMSKPD Move the sign mask to r32. 

MOVSD Move 64 bits representing one scalar DP operand from 
XMM2/Mem to XMM1 register.

Or move 64 bits representing one scalar DP operand from XMM1 
register to XMM2/Mem.

MOVUPD Move 128 bits representing 2 DP data from XMM2/Mem to XMM1 
register.

Or move 128 bits representing 2 DP data from XMM1 register to 
XMM2/Mem.

MULPD  Multiply packed DP FP numbers in XMM2/Mem to XMM1. Y Y Y Y Y

Table C-4.  Exceptions Generated with Intel® SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
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C.5 INTEL® SSE3 INSTRUCTIONS 
Table C-5 lists the Intel SSE3 instructions that have at least one of the following characteristics:
• Has floating-point operands.
• Generates floating-point results.

For each instruction, the table summarizes the floating-point exceptions that the instruction can generate.

Other Intel SSE3 instructions do not generate floating-point exceptions.

C.6 SSSE3 INSTRUCTIONS 
SSSE3 instructions operate on integer data elements. They do not generate floating-point exceptions.

C.7 INTEL® SSE4 INSTRUCTIONS 
Table C-6 lists the Intel SSE4.1 instructions that generate floating-point results.

For each instruction, the table summarizes the floating-point exceptions that the instruction can generate.

MULSD Multiply the lowest DP FP number in XMM2/Mem to XMM1. Y Y Y Y Y

ORPD OR 128 bits from XMM2/Mem to XMM1 register.

SHUFPD Shuffle Double.

SQRTPD Square Root Packed Double Precision Y Y Y

SQRTSD Square Root Scaler Double Precision Y Y Y

SUBPD Subtract Packed Double Precision. Y Y Y Y Y

SUBSD Subtract Scaler Double Precision. Y Y Y Y Y

UCOMISD Compare lower DP FP number in XMM1 register with lower DP FP 
number in XMM2/Mem and set the status flags accordingly.

Y Y

UNPCKHPD Interleaves DP FP numbers from the high halves of XMM1 and 
XMM2/Mem into XMM1 register.

UNPCKLPD Interleaves DP FP numbers from the low halves of XMM1 and 
XMM2/Mem into XMM1 register.

XORPD XOR 128 bits from XMM2/Mem to XMM1 register.

Table C-5.  Exceptions Generated with Intel® SSE3 Instructions 

Instruction Description #I #D #Z #O #U #P

ADDSUBPD Add /Sub packed DP FP numbers from XMM2/Mem to XMM1. Y Y Y Y Y

ADDSUBPS Add /Sub packed SP FP numbers from XMM2/Mem to XMM1. Y Y Y Y Y

FISTTP See Table C-2. Y Y

HADDPD Add horizontally packed DP FP numbers XMM2/Mem to XMM1. Y Y Y Y Y

HADDPS Add horizontally packed SP FP numbers XMM2/Mem to XMM1 Y Y Y Y Y

HSUBPD Sub horizontally packed DP FP numbers XMM2/Mem to XMM1 Y Y Y Y Y

HSUBPS Sub horizontally packed SP FP numbers XMM2/Mem to XMM1 Y Y Y Y Y

Table C-4.  Exceptions Generated with Intel® SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
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Other Intel SSE4.1 and SSE4.2 instructions do not generate floating-point exceptions.

Table C-6.  Exceptions Generated with Intel® SSE4 Instructions 

Instruction Description #I #D #Z #O #U #P

DPPD DP FP dot product. Y Y Y Y Y

DPPS SP FP dot product. Y Y Y Y Y

ROUNDPD Round packed DP FP values to integer FP values. Y Y1

NOTES:
1. If bit 3 of immediate operand is 0.

ROUNDPS Round packed SP FP values to integer FP values. Y Y1

ROUNDSD Round scalar DP FP value to integer FP value. Y Y1

ROUNDSS Round scalar SP FP value to integer FP value. Y Y1
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APPENDIX D
GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION

HANDLERS

See Section 11.5, “Intel® SSE, SSE2, and SSE3 Exceptions,” for a detailed discussion of SIMD floating-point excep-
tions.

This appendix considers only Intel SSE, SSE2, and SSE3 instructions that can generate numeric (SIMD floating-
point) exceptions, and gives an overview of the necessary support for handling such exceptions. This appendix 
does not address instructions that do not generate floating-point exceptions (such as RSQRTSS, RSQRTPS, RCPSS, 
or RCPPS), any x87 instructions, or any unlisted instruction. 

For detailed information on which instructions generate numeric exceptions, and a listing of those exceptions, refer 
to Appendix C, “Floating-Point Exceptions Summary.” Non-numeric exceptions are handled in a way similar to that 
for the standard IA-32 instructions.

D.1 TWO OPTIONS FOR HANDLING FLOATING-POINT EXCEPTIONS
Just as for x87 FPU floating-point exceptions, the processor takes one of two possible courses of action when an 
SSE/SSE2/SSE3 instruction raises a floating-point exception: 
• If the exception being raised is masked (by setting the corresponding mask bit in the MXCSR to 1), then a 

default result is produced which is acceptable in most situations. No external indication of the exception is 
given, but the corresponding exception flags in the MXCSR are set and may be examined later. Note though 
that for packed operations, an exception flag that is set in the MXCSR will not tell which of the sub-operands 
caused the event to occur.

• If the exception being raised is not masked (by setting the corresponding mask bit in the MXCSR to 0), a 
software exception handler previously registered by the user with operating system support will be invoked 
through the SIMD floating-point exception (#XM, exception 19). This case is discussed below in Section D.2, 
“Software Exception Handling.”

D.2 SOFTWARE EXCEPTION HANDLING
The #XM handler is usually part of the system software (the operating system kernel). Note that an interrupt 
descriptor table (IDT) entry must have been previously set up for exception 19 (refer to Chapter 7, “Interrupt and 
Exception Handling,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). Some 
compilers use specific run-time libraries to assist in floating-point exception handling. If any x87 FPU floating-point 
operations are going to be performed that might raise floating-point exceptions, then the exception handling 
routine must either disable all floating-point exceptions (for example, loading a local control word with FLDCW), or 
it must be implemented as re-entrant. If this is not the case, the routine has to clear the status flags for x87 FPU 
exceptions or to mask all x87 FPU floating-point exceptions. For SIMD floating-point exceptions though, the excep-
tion flags in MXCSR do not have to be cleared, even if they remain unmasked (but they may still be cleared). Excep-
tions are in this case precise and occur immediately, and a SIMD floating-point exception status flag that is set 
when the corresponding exception is unmasked will not generate an exception.

Typical actions performed by this low-level exception handling routine are:
• Incrementing an exception counter for later display or printing.
• Printing or displaying diagnostic information (e.g., the MXCSR and XMM registers).
• Aborting further execution, or using the exception pointers to build an instruction that will run without 

exception and executing it.
• Storing information about the exception in a data structure that will be passed to a higher level user exception 

handler.
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GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
In most cases (and this applies also to the Intel SSE, SSE2, and SSE3 instructions), there will be three main 
components of a low-level floating-point exception handler: a prologue, a body, and an epilogue.

The prologue performs functions that must be protected from possible interruption by higher-priority sources - 
typically saving registers and transferring diagnostic information from the processor to memory. When the critical 
processing has been completed, the prologue may re-enable interrupts to allow higher-priority interrupt handlers 
to preempt the exception handler (assuming that the interrupt handler was called through an interrupt gate, 
meaning that the processor cleared the interrupt enable (IF) flag in the EFLAGS register - refer to Section 6.5.1, 
“Call and Return Operation for Interrupt or Exception Handling Procedures”).

The body of the exception handler examines the diagnostic information and makes a response that is application-
dependent. It may range from halting execution, to displaying a message, to attempting to fix the problem and 
then proceeding with normal execution, to setting up a data structure, calling a higher-level user exception handler 
and continuing execution upon return from it. This latter case will be assumed in Section D.4, “SIMD Floating-Point 
Exceptions and the IEEE Standard 754,” below.

Finally, the epilogue essentially reverses the actions of the prologue, restoring the processor state so that normal 
execution can be resumed.

The following example represents a typical exception handler. To link it with Example D-2 that will follow in Section 
D.4.3, “Example SIMD Floating-Point Emulation Implementation,” assume that the body of the handler (not shown 
here in detail) passes the saved state to a routine that will examine in turn all the sub-operands of the excepting 
instruction, invoking a user floating-point exception handler if a particular set of sub-operands raises an unmasked 
(enabled) exception, or emulating the instruction otherwise.

Example D-1.  SIMD Floating-Point Exception Handler

SIMD_FP_EXC_HANDLER PROC

;PROLOGUE
;SAVE REGISTERS THAT MIGHT BE USED BY THE EXCEPTION HANDLER
    PUSH EBP ;SAVE EBP
    PUSH EAX ;SAVE EAX
    ...
    MOV EBP, ESP ;SAVE ESP in EBP
    SUB ESP, 512 ;ALLOCATE 512 BYTES
    AND ESP, 0fffffff0h ;MAKE THE ADDRESS 16-BYTE ALIGNED
    FXSAVE [ESP] ;SAVE FP, MMX, AND SIMD FP STATE
    PUSH [EBP+EFLAGS_OFFSET] ;COPY OLD EFLAGS TO STACK TOP
    POPFD ;RESTORE THE INTERRUPT ENABLE FLAG IF

;TO VALUE BEFORE SIMD FP EXCEPTION

;BODY
;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
    LDMXCSR LOCAL_MXCSR ;LOAD LOCAL MXCSR VALUE IF NEEDED
    ...
    ...
;EPILOGUE
    FXRSTOR [ESP] ;RESTORE MODIFIED STATE IMAGE
    MOV ESP, EBP ;DE-ALLOCATE STACK SPACE
    ...
    POP EAX ;RESTORE EAX
    POP EBP ;RESTORE EBP
    IRET ;RETURN TO INTERRUPTED CALCULATION
SIMD_FP_EXC_HANDLER ENDP
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D.3 EXCEPTION SYNCHRONIZATION
An SSE/SSE2/SSE3 instruction can execute in parallel with other similar instructions, with integer instructions, and 
with floating-point or MMX instructions. Unlike for x87 instructions, special precaution for exception synchroniza-
tion is not necessary in this case. This is because floating-point exceptions for SSE/SSE2/SSE3 instructions occur 
immediately and are not delayed until a subsequent floating-point instruction is executed. However, floating-
point emulation may be necessary when unmasked floating-point exceptions are generated.

D.4 SIMD FLOATING-POINT EXCEPTIONS AND THE IEEE STANDARD 754
SSE/SSE2/SSE3 extensions are 100% compatible with the IEEE Standard 754 for Floating-Point Arithmetic, satis-
fying all of its mandatory requirements (when the flush-to-zero or denormals-are-zeros modes are not enabled). 
But a programming environment that includes SSE/SSE2/SSE3 instructions will comply with both the obligatory 
and the strongly recommended requirements of the IEEE Standard 754 regarding floating-point exception 
handling, only as a combination of hardware and software (which is acceptable). The standard states that a user 
should be able to request a trap on any of the five floating-point exceptions (note that the denormal exception is 
an IA-32 addition), and it also specifies the values (operands or result) to be delivered to the exception handler. 

The main issue is that for SSE/SSE2/SSE3 instructions that raise post-computation exceptions (traps: overflow, 
underflow, or inexact), unlike for x87 FPU instructions, the processor does not provide the result recommended by 
IEEE Standard 754 to the user handler. If a user program needs the result of an instruction that generated a post-
computation exception, it is the responsibility of the software to produce this result by emulating the faulting 
SSE/SSE2/SSE3 instruction. Another issue is that the standard does not specify explicitly how to handle multiple 
floating-point exceptions that occur simultaneously. For packed operations, a logical OR of the flags that would be 
set by each sub-operation is used to set the exception flags in the MXCSR. The following subsections present one 
possible way to solve these problems.

D.4.1  Floating-Point Emulation
Every operating system must provide a kernel level floating-point exception handler (a template was presented in 
Section D.2, “Software Exception Handling,” above). In the following discussion, assume that a user mode floating-
point exception filter is supplied for SIMD floating-point exceptions (for example as part of a library of C functions), 
that a user program can invoke in order to handle unmasked exceptions. The user mode floating-point exception 
filter (not shown here) has to be able to emulate the subset of Intel SSE, SSE2, and SSE3 instructions that can 
generate numeric exceptions, and has to be able to invoke a user provided floating-point exception handler for 
floating-point exceptions. When a floating-point exception that is not masked is raised by an Intel SSE, SSE2, and 
SSE3 instruction, the low-level floating-point exception handler will be called. This low-level handler may in turn 
call the user mode floating-point exception filter. The filter function receives the original operands of the excepting 
instruction as no results are provided by the hardware, whether a pre-computation or a post-computation excep-
tion has occurred. The filter will unpack the operands into up to four sets of sub-operands, and will submit them 
one set at a time to an emulation function (See Example D-2 in Section D.4.3, “Example SIMD Floating-Point 
Emulation Implementation.”) The emulation function will examine the sub-operands, and will possibly redo the 
necessary calculation. 

Two cases are possible:
• If an unmasked (enabled) exception would occur in this process, the emulation function will return to its caller 

(the filter function) with the appropriate information. The filter will invoke a (previously registered) user 
floating-point exception handler for this set of sub-operands, and will record the result upon return from the 
user handler (provided the user handler allows continuation of the execution). 

• If no unmasked (enabled) exception would occur, the emulation function will determine and will return to its 
caller the result of the operation for the current set of sub-operands (it has to be IEEE Standard 754 
compliant). The filter function will record the result (plus any new flag settings).

The user level filter function will then call the emulation function for the next set of sub-operands (if any). When 
done with all the operand sets, the partial results will be packed (if the excepting instruction has a packed floating-
point result, which is true for most SSE/SSE2/SSE3 numeric instructions) and the filter will return to the low-level 
exception handler, which in turn will return from the interruption, allowing execution to continue. Note that the 
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instruction pointer (EIP) has to be altered to point to the instruction following the excepting instruction, in order to 
continue execution correctly.

If a user mode floating-point exception filter is not provided, then all the work for decoding the excepting instruc-
tion, reading its operands, emulating the instruction for the components of the result that do not correspond to 
unmasked floating-point exceptions, and providing the compounded result will have to be performed by the user-
provided floating-point exception handler.

Actual emulation might have to take place for one operand or pair of operands for scalar operations, and for all sub-
operands or pairs of sub-operands for packed operations. The steps to perform are the following:
• The excepting instruction has to be decoded and the operands have to be read from the saved context.
• The instruction has to be emulated for each (pair of) sub-operand(s); if no floating-point exception occurs, the 

partial result has to be saved; if a masked floating-point exception occurs, the masked result has to be 
produced through emulation and saved, and the appropriate status flags have to be set; if an unmasked 
floating-point exception occurs, the result has to be generated by the user provided floating-point exception 
handler, and the appropriate status flags have to be set.

• The partial results have to be combined and written to the context that will be restored upon application 
program resumption.

A diagram of the control flow in handling an unmasked floating-point exception is presented below.

From the user-level floating-point filter, Example D-2 in Section D.4.3, “Example SIMD Floating-Point Emulation 
Implementation,” presents only the floating-point emulation part. In order to understand the actions involved, the 
expected response to exceptions has to be known for all Intel SSE, SSE2, and SSE3 numeric instructions in two 
situations: with exceptions enabled (unmasked result), and with exceptions disabled (masked result). The latter 
can be found in Section 6.5, “Interrupts and Exceptions.” The response to NaN operands that do not raise an excep-
tion is specified in Section 4.8.3.4, “NaNs.” Operations on NaNs are explained in the same source. This response is 
also discussed in more detail in the next subsection, along with the unmasked and masked responses to floating-
point exceptions.

D.4.2  Intel® SSE, SSE2, and SSE3 Response To Floating-Point Exceptions
This subsection specifies the unmasked response expected from the Intel SSE, SSE2, and SSE3 instructions that 
raise floating-point exceptions. The masked response is given in parallel, as it is necessary in the emulation process 

Figure D-1.  Control Flow for Handling Unmasked Floating-Point Exceptions

User Application

User Level Floating-Point Exception Filter 

Low-Level Floating-Point Exception Handler

User Floating-Point Exception Handler
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of the instructions that raise unmasked floating-point exceptions. The response to NaN operands is also included in 
more detail than in Section 4.8.3.4, “NaNs.” For floating-point exception priority, refer to “Priority Among Simulta-
neous Exceptions and Interrupts” in Chapter 7, “Interrupt and Exception Handling,” of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

D.4.2.1  Numeric Exceptions
There are six classes of numeric (floating-point) exception conditions that can occur: Invalid operation (#I), 
Divide-by-Zero (#Z), Denormal Operand (#D), Numeric Overflow (#O), Numeric Underflow (#U), and Inexact 
Result (precision) (#P). #I, #Z, #D are pre-computation exceptions (floating-point faults), detected before the 
arithmetic operation. #O, #U, #P are post-computation exceptions (floating-point traps). 

Users can control how the Intel SSE, SSE2, and SSE3 floating-point exceptions are handled by setting the 
mask/unmask bits in MXCSR. Masked exceptions are handled by the processor, or by software if they are combined 
with unmasked exceptions occurring in the same instruction. Unmasked exceptions are usually handled by the low-
level exception handler, in conjunction with user-level software.

D.4.2.2  Results of Operations with NaN Operands or a NaN Result for Intel® SSE, SSE2, and SSE3 
Numeric Instructions

The tables below (E-1 through E-10) specify the response of Intel SSE, SSE2, and SSE3 instructions to NaN inputs, 
or to other inputs that lead to NaN results.

These results will be referenced by subsequent tables (e.g., E-10). Most operations do not raise an invalid excep-
tion for quiet NaN operands, but even so, they will have higher precedence over raising floating-point exceptions 
other than invalid operation. 

Note that the single precision QNaN Indefinite value is FFC00000H, the double precision QNaN Indefinite value is 
FFF8000000000000H, and the Integer Indefinite value is 80000000H (not a floating-point number, but it can be 
the result of a conversion instruction from floating-point to integer).

For an unmasked exception, no result will be provided by the hardware to the user handler. If a user registered 
floating-point exception handler is invoked, it may provide a result for the excepting instruction, that will be used 
if execution of the application code is continued after returning from the interruption.

In Tables D-1 through Table D-12, the specified operands cause an invalid exception, unless the unmasked result 
is marked with “not an exception”. In this latter case, the unmasked and masked results are the same. 

Table D-1.  ADDPS, ADDSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS, DIVSS, ADDPD, ADDSD, SUBPD, SUBSD, MULPD, 
MULSD, DIVPD, DIVSD, ADDSUBPS, ADDSUBPD, HADDPS, HADDPD, HSUBPS, and HSUBPD

Source Operands Masked Result Unmasked Result

SNaN1 op1 SNaN2 SNaN1 | 00400000H or 
SNaN1 | 0008000000000000H2

None

SNaN1 op QNaN2 SNaN1 | 00400000H or
SNaN1 | 0008000000000000H2

None

QNaN1 op SNaN2 QNaN1 None

QNaN1 op QNaN2 QNaN1 QNaN1 (not an exception)

SNaN op real value SNaN | 00400000H or
SNaN1 | 0008000000000000H2

None

Real value op SNaN SNaN | 00400000H or
SNaN1 | 0008000000000000H2

None

QNaN op real value QNaN QNaN (not an exception)

Real value op QNaN QNaN QNaN (not an exception)
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Neither source operand is SNaN,
but #I is signaled (e.g., for Inf - Inf, 
Inf ∗ 0, Inf / Inf, 0/0) 

Single precision or double precision QNaN 
Indefinite

None

NOTES:
1. For Tables E-1 to E-12: op denotes the operation to be performed.
2. SNaN | 00400000H is a quiet NaN in single precision format (if SNaN is in single precision) and SNaN | 0008000000000000H is a

quiet NaN in double precision format (if SNaN is in double precision), obtained from the signaling NaN given as input.
3. Operations involving only quiet NaNs do not raise floating-point exceptions.

Table D-2.  CMPPS.EQ, CMPSS.EQ, CMPPS.ORD, CMPSS.ORD, 
CMPPD.EQ, CMPSD.EQ, CMPPD.ORD, and CMPSD.ORD

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) 00000000H or 0000000000000000H1 00000000H or 0000000000000000H1 
(not an exception)

Opd1 op NaN (any Opd1) 00000000H or 0000000000000000H1 00000000H or 0000000000000000H1 
(not an exception)

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table D-3.  CMPPS.NEQ, CMPSS.NEQ, CMPPS.UNORD, CMPSS.UNORD, CMPPD.NEQ, CMPSD.NEQ, 
CMPPD.UNORD, and CMPSD.UNORD

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) FFFFFFFFH or FFFFFFFFFFFFFFFFH1 FFFFFFFFH or FFFFFFFFFFFFFFFFH1 (not 
an exception)

Opd1 op NaN (any Opd1) FFFFFFFFH or FFFFFFFFFFFFFFFFH1 FFFFFFFFH or FFFFFFFFFFFFFFFFH1 (not 
an exception)

NOTE: 
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table D-4.  CMPPS.LT, CMPSS.LT, CMPPS.LE, CMPSS.LE, CMPPD.LT, CMPSD.LT, CMPPD.LE, and CMPSD.LE

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) 00000000H or 0000000000000000H1 None

Opd1 op NaN (any Opd1) 00000000H or 0000000000000000H1 None

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table D-1.  ADDPS, ADDSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS, DIVSS, ADDPD, ADDSD, SUBPD, SUBSD, MULPD, 
MULSD, DIVPD, DIVSD, ADDSUBPS, ADDSUBPD, HADDPS, HADDPD, HSUBPS, and HSUBPD (Contd.)

Source Operands Masked Result Unmasked Result
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Table D-5.  CMPPS.NLT, CMPSS.NLT, CMPPS.NLE, CMPSS.NLE, CMPPD.NLT, CMPSD.NLT, CMPPD.NLE, and CMPSD.NLE

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) FFFFFFFFH or FFFFFFFFFFFFFFFFH1 None

Opd1 op NaN (any Opd1) FFFFFFFFH or FFFFFFFFFFFFFFFFH1 None

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table D-6.  COMISS and COMISD

Source Operands Masked Result Unmasked Result

SNaN op Opd2 (any Opd2) OF, SF, AF = 000  
ZF, PF, CF = 111

None

Opd1 op SNaN (any Opd1) OF, SF, AF = 000  
ZF, PF, CF = 111

None

QNaN op Opd2 (any Opd2) OF, SF, AF = 000 
ZF, PF, CF = 111

None

Opd1 op QNaN (any Opd1) OF, SF, AF = 000 
ZF, PF, CF = 111

None

Table D-7.  UCOMISS and UCOMISD

Source Operands Masked Result Unmasked Result

SNaN op Opd2 (any Opd2) OF, SF, AF = 000  
ZF, PF, CF = 111

None

Opd1 op SNaN (any Opd1) OF, SF, AF = 000  
ZF, PF, CF = 111

None

QNaN op Opd2 
(any Opd2 ≠ SNaN)

OF, SF, AF = 000  
ZF, PF, CF = 111

OF, SF, AF = 000  
ZF, PF, CF = 111 (not an exception)

Opd1 op QNaN 
(any Opd1 ≠ SNaN)

OF, SF, AF = 000  
ZF, PF, CF = 111

OF, SF, AF = 000  
ZF, PF, CF = 111 (not an exception)

Table D-8.  CVTPS2PI, CVTSS2SI, CVTTPS2PI, CVTTSS2SI, CVTPD2PI, CVTSD2SI, CVTTPD2PI, CVTTSD2SI, 
CVTPS2DQ, CVTTPS2DQ, CVTPD2DQ, and CVTTPD2DQ

Source Operand Masked Result Unmasked Result

SNaN 80000000H or 80000000000000001 
(Integer Indefinite)

None

QNaN 80000000H or 80000000000000001 
(Integer Indefinite)

None

NOTE: 
1. 32-bit results are for single, and 64-bit results for double precision operations.
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Table D-9.  MAXPS, MAXSS, MINPS, MINSS, MAXPD, MAXSD, MINPD, and MINSD

Source Operands Masked Result Unmasked Result

Opd1 op NaN2 (any Opd1) NaN2 None

NaN1 op Opd2 (any Opd2) Opd2 None

NOTE:
1. SNaN and QNaN operands raise an Invalid Operation fault.

Table D-10.  SQRTPS, SQRTSS, SQRTPD, and SQRTSD

Source Operand Masked Result Unmasked Result

QNaN QNaN QNaN (not an exception)

SNaN SNaN | 00400000H or
SNaN | 0008000000000000H1

None

Source operand is not SNaN;
but #I is signaled (e.g., for 
sqrt (-1.0))

Single precision or 
double precision QNaN Indefinite

None

NOTE:
1. SNaN | 00400000H is a quiet NaN in single precision format (if SNaN is in single precision) and SNaN | 0008000000000000H is a 

quiet NaN in double precision format (if SNaN is in double precision), obtained from the signaling NaN given as input.

Table D-11.  CVTPS2PD and CVTSS2SD

Source Operands Masked Result Unmasked Result

QNaN QNaN11 QNaN11 (not an exception)

SNaN QNaN12 None

NOTES:
1. The double precision output QNaN1 is created from the single precision input QNaN as follows: the sign bit is preserved, the 8-bit 

exponent FFH is replaced by the 11-bit exponent 7FFH, and the 24-bit significand is extended to a 53-bit significand by appending 
29 bits equal to 0.

2. The double precision output QNaN1 is created from the single precision input SNaN as follows: the sign bit is preserved, the 8-bit
exponent FFH is replaced by the 11-bit exponent 7FFH, and the 24-bit significand is extended to a 53-bit significand by pending
29 bits equal to 0. The second most significant bit of the significand is changed from 0 to 1 to convert the signaling NaN into a
quiet NaN.

Table D-12.  CVTPD2PS and CVTSD2SS

Source Operands Masked Result Unmasked Result

QNaN QNaN11 QNaN11 (not an exception)

SNaN QNaN12 None

NOTES:
1. The single precision output QNaN1 is created from the double precision input QNaN as follows: the sign bit is preserved, the 11-bit 

exponent 7FFH is replaced by the 8-bit exponent FFH, and the 53-bit significand is truncated to a 24-bit significand by removing its 
29 least significant bits.

2. The single precision output QNaN1 is created from the double precision input SNaN as follows: the sign bit is preserved, the 11-bit
exponent 7FFH is replaced by the 8-bit exponent FFH, and the 53-bit significand is truncated to a 24-bit significand by removing its
29 least significant bits. The second most significant bit of the significand is changed from 0 to 1 to convert the signaling NaN into
a quiet NaN.
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D.4.2.3  Condition Codes, Exception Flags, and Response for Masked and Unmasked Numeric 
Exceptions

In the following, the masked response is what the processor provides when a masked exception is raised by an 
Intel SSE, SSE2, or SSE3 numeric instruction. The same response is provided by the floating-point emulator for 
Intel SSE, SSE2, and SSE3 numeric instructions, when certain components of the quadruple input operands 
generate exceptions that are masked (the emulator also generates the correct answer, as specified by IEEE Stan-
dard 754 wherever applicable, in the case when no floating-point exception occurs). The unmasked response is 
what the emulator provides to the user handler for those components of the packed operands of Intel SSE, SSE2, 
and SSE3 instructions that raise unmasked exceptions. Note that for pre-computation exceptions (floating-point 
faults), no result is provided to the user handler. For post-computation exceptions (floating-point traps), a result is 
provided to the user handler, as specified below.

In the following tables, the result is denoted by 'res', with the understanding that for the actual instruction, the 
destination coincides with the first source operand (except for COMISS, UCOMISS, COMISD, and UCOMISD, whose 
destination is the EFLAGS register).

Table D-13.  #I - Invalid Operations 

Instruction Condition Masked Response
Unmasked Response 
and Exception Code

ADDPS
ADDPD
ADDSS 
ADDSD
HADDPS
HADDPD

src1 or src21 = SNaN Refer to Table D-1 for 
NaN operands, #IA = 1

src1, src2 unchanged; #IA 
= 1

ADDSUBPS (the 
addition component)
ADDSUBPD (the 
addition component)

src1 = +Inf, src2 = -Inf or
src1 = -Inf, src2 = +Inf

res1 = QNaN Indefinite,
#IA = 1

SUBPS
SUBPD
SUBSS 
SUBSD
HSUBPS
HSUBPD

src1 or src2 = SNaN Refer to Table D-1 for NaN 
operands, #IA = 1

src1, src2 unchanged; #IA 
= 1ADDSUBPS (the 

subtraction 
component)
ADDSUBPD (the 
subtraction 
component)

src1 = +Inf, src2 = +Inf or
src1 = -Inf, src2 = -Inf

res = QNaN Indefinite, 
#IA = 1

MULPS
MULPD

src1 or src2 = SNaN Refer to Table D-1 for 
NaN operands, #IA = 1 src1, src2 unchanged; 

#IA = 1MULSS 
MULSD

src1 = ±Inf, src2 = ±0 or
src1 = ±0, src2 = ±Inf

res = QNaN Indefinite,
#IA = 1

DIVPS
DIVPD

src1 or src2 = SNaN Refer to Table D-1 for 
NaN operands, #IA = 1 src1, src2 unchanged; 

#IA = 1DIVSS 
DIVSD

src1 = ±Inf, src2 = ±Inf or
src1 = ±0, src2 = ±0

res = QNaN Indefinite, 
#IA = 1

SQRTPS
SQRTPD
SQRTSS 
SQRTSD

src = SNaN Refer to Table D-10 for 
NaN operands, #IA = 1

src unchanged, 
#IA = 1

src < 0 
(note that -0 < 0 is false)

res = QNaN Indefinite, 
#IA = 1
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MAXPS
MAXSS
MAXPD
MAXSD

src1 = NaN or src2 = NaN res = src2, #IA = 1 src1, src2 unchanged; #IA 
= 1

MINPS
MINSS 
MINPD
MINSD

src1 = NaN or src2 = NaN res = src2, #IA = 1 src1, src2 unchanged; #IA 
= 1

CMPPS.LT
CMPPS.LE
CMPPS.NLT
CMPPS.NLE
CMPSS.LT
CMPSS.LE
CMPSS.NLT
CMPSS.NLE
CMPPD.LT
CMPPD.LE
CMPPD.NLT
CMPPD.NLE
CMPSD.LT
CMPSD.LE
CMPSD.NLT
CMPSD.NLE

src1 = NaN or src2 = NaN Refer to Table D-4 and Table D-5 for 
NaN operands; #IA = 1

src1, src2 unchanged; #IA 
= 1

COMISS     
COMISD

src1 = NaN or src2 = NaN Refer to Table D-6 for NaN 
operands

src1, src2, EFLAGS 
unchanged; #IA = 1

UCOMISS   
UCOMISD

src1 = SNaN or src2 = SNaN Refer to Table D-7 for NaN 
operands

src1, src2, EFLAGS 
unchanged; #IA = 1

CVTPS2PI
CVTSS2SI 
CVTPD2PI
CVTSD2SI
CVTPS2DQ
CVTPD2DQ

src = NaN, ±Inf, or
|(src)rnd | > 7FFFFFFFH and (src)rnd ≠ 
80000000H

See Note2 for information 
on rnd.

res = Integer Indefinite, 
#IA = 1

src unchanged, 
#IA = 1

CVTTPS2PI
CVTTSS2SI 
CVTTPD2PI
CVTTSD2SI
CVTTPS2DQ
CVTTPD2DQ

src = NaN, ±Inf, or
|(src)rz | > 7FFFFFFFH and (src)rz ≠ 
80000000H

See Note2 for information
on rz.

res = Integer Indefinite, 
#IA = 1

src unchanged,
#IA = 1

Table D-13.  #I - Invalid Operations  (Contd.)

Instruction Condition Masked Response
Unmasked Response 
and Exception Code
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CVTPS2PD
CVTSS2SD

src = SNAN Refer to Table D-11 for 
NaN operands

src unchanged, 
#IA = 1

CVTPD2PS
CVTSD2SS

src = SNAN Refer to Table D-12 for 
NaN operands

src unchanged, 
#IA = 1

NOTES:
1. For Tables E-13 to E-18:

- src denotes the single source operand of a unary operation.
- src1, src2 denote the first and second source operand of a binary operation.
- res denotes the numerical result of an operation.

2. rnd signifies the user rounding mode from MXCSR, and rz signifies the rounding mode toward zero. (truncate), when rounding a
floating-point value to an integer. For more information, refer to Table 4-8.

3. For NAN encodings, see Table 4-3.

Table D-14.  #Z - Divide-by-Zero

Instruction Condition Masked Response
Unmasked Response 
and Exception Code

DIVPS
DIVSS
DIVPD
DIVPS

src1 = finite non-zero (normal, or 
denormal)
src2 = ±0

res = ±Inf,
#ZE = 1

src1, src2 unchanged; 
#ZE = 1

Table D-13.  #I - Invalid Operations  (Contd.)

Instruction Condition Masked Response
Unmasked Response 
and Exception Code
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Table D-15.  #D - Denormal Operand

Instruction Condition Masked Response
Unmasked Response and 
Exception Code

ADDPS
ADDPD
ADDSUBPS
ADDSUBPD
HADDPS
HADDPD
SUBPS
SUBPD
HSUBPS
HSUBPD
MULPS
MULPD
DIVPS
DIVPD
SQRTPS
SQRTPD
MAXPS
MAXPD
MINPS
MINPD
ADDSS
ADDSD
SUBSS
SUBSD
MULSS
MULSD
DIVSS
DIVSD
SQRTSS
SQRTSD
MAXSS
MAXSD
MINSS
MINSD
CVTPS2PD
CVTSS2SD
CVTPD2PS
CVTSD2SS

src1 = denormal1 or 
src2 = denormal (and 
the DAZ bit in MXCSR 
is 0)

res = Result rounded to the 
destination precision and using the 
bounded exponent, but only if no 
unmasked post-computation 
exception occurs; 
#DE = 1.

src1, src2 unchanged; 
#DE = 1

Note that SQRT, CVTPS2PD, 
CVTSS2SD, CVTPD2PS, CVTSD2SS 
have only 1 src.

CMPPS
CMPPD
CMPSS
CMPSD

src1 = denormal1 or
src2 = denormal (and
the DAZ bit in MXCSR
is 0)

Comparison result, stored in the 
destination register;
#DE = 1

src1, src2 unchanged;
#DE = 1

COMISS
COMISD
UCOMISS
UCOMISD

src1 = denormal1 or
src2 = denormal (and
the DAZ bit in MXCSR
is 0)

Comparison result, stored in the 
EFLAGS register;
#DE = 1

src1, src2 unchanged;
#DE = 1

NOTE: 
1. For denormal encodings, see Section 4.8.3.2, “Normalized and Denormalized Finite Numbers.”
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Table D-16.  #O - Numeric Overflow

Instruction Condition Masked Response
Unmasked Response and 
Exception Code

ADDPS
ADDSUBPS
HADDPS
SUBPS
HSUBPS
MULPS
DIVPS
ADDSS
SUBSS
MULSS
DIVSS
CVTPD2PS
CVTSD2SS

Rounded result > 
largest single 
precision finite 
normal value 

Rounding Sign Result & Status Flags

res = (result calculated with 
unbounded exponent and rounded 
to the destination precision) / 2192

#OE = 1
#PE = 1 if the result is inexact

To 
nearest +

-

#OE = 1, #PE = 1
res = 
res = 

Toward 
+
-

#OE = 1, #PE = 1
res = 1.11…1 * 2127

res = 

Toward 
+
-

#OE = 1, #PE = 1
res = 
res = -1.11…1 * 2127

Toward 
0 +

-

#OE = 1, #PE = 1
res = 1.11…1 * 2127

res = -1.11…1 * 2127

ADDPD
ADDSUBPD
HADDPD
SUBPD
HSUBPD
MULPD
DIVPD
ADDSD
SUBSD
MULSD
DIVSD

Rounded result > 
largest double 
precision finite 
normal value 

Rounding Sign Result & Status Flags

res = (result calculated with 
unbounded exponent and rounded 
to the destination precision) / 21536

• #OE = 1
• #PE = 1 if the result is inexact

To 
nearest +

-

#OE = 1, #PE = 1
res = 
res = 

Toward 
+
-

#OE = 1, #PE = 1
res = 1.11…1 * 21023

res = 

Toward 
+
-

#OE = 1, #PE = 1
res = 
res = -1.11…1 * 21023

Toward 
0 +

-

#OE = 1, #PE = 1
res = 1.11…1 * 21023

res = -1.11…1 * 21023

∞+
∞–

∞–

∞–

∞+
∞+

∞+
∞–

∞–

∞–

∞+
∞+
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Table D-17.  #U - Numeric Underflow

Instruction Condition Masked Response
Unmasked Response and 
Exception Code

ADDPS
ADDSUBPS
HADDPS
SUBPS
HSUBPS
MULPS
DIVPS
ADDSS
SUBSS
MULSS
DIVSS
CVTPD2PS
CVTSD2SS

Result calculated with unbounded 
exponent and rounded to the 
destination precision < smallest 
single precision finite normal value.

res = ±0, denormal, or normal

#UE = 1 and #PE = 1,
but only if the result is
inexact

res = (result calculated with 
unbounded exponent and rounded 
to the destination precision) * 2192

• #UE = 1
• #PE = 1 if the result is inexact

ADDPD
ADDSUBPD
HADDPD
SUBPD
HSUBPD
MULPD
DIVPD
ADDSD
SUBSD
MULSD
DIVSD

Result calculated with unbounded 
exponent and rounded to the 
destination precision < smallest 
double precision finite normal value.

res = ±0, denormal or normal

#UE = 1 and #PE = 1,
but only if the result is
inexact

res = (result calculated with 
unbounded exponent and rounded 
to the destination precision) * 21536

• #UE = 1
• #PE = 1 if the result is inexact
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D.4.3  Example SIMD Floating-Point Emulation Implementation
The sample code listed below may be considered as being part of a user-level floating-point exception filter for the 
intel SSE, SSE2, and SSE3 numeric instructions. It is assumed that the filter function is invoked by a low-level 
exception handler (invoked for exception 19 when an unmasked floating-point exception occurs), and that it oper-
ates as explained in Section D.4.1, “Floating-Point Emulation.” The sample code does the emulation only for the 
SSE instructions for addition, subtraction, multiplication, and division. For this, it uses C code and x87 FPU opera-
tions. Operations corresponding to other Intel SSE, SSE2, and SSE3 numeric instructions can be emulated simi-
larly. The example assumes that the emulation function receives a pointer to a data structure specifying a number 
of input parameters: the operation that caused the exception, a set of sub-operands (unpacked, of type float), the 

Table D-18.  #P - Inexact Result (Precision)

Instruction Condition Masked Response Unmasked Response and Exception Code

ADDPS
ADDPD
ADDSUBPS
ADDSUBPD
HADDPS
HADDPD
SUBPS
SUBPD
HSUBPS
HSUBPD
MULPS
MULPD
DIVPS
DIVPD
SQRTPS
SQRTPD
CVTDQ2PS
CVTPI2PS
CVTPS2PI
CVTPS2DQ
CVTPD2PI
CVTPD2DQ
CVTPD2PS
CVTTPS2PI
CVTTPD2PI
CVTTPD2DQ
CVTTPS2DQ
ADDSS
ADDSD
SUBSS
SUBSD
MULSS
MULSD
DIVSS
DIVSD
SQRTSS
SQRTSD
CVTSI2SS
CVTSS2SI
CVTSD2SI
CVTSD2SS
CVTTSS2SI
CVTTSD2SI

The result is not exactly 
representable in the 
destination format.

res = Result rounded to the 
destination precision and 
using the bounded 
exponent, but only if no 
unmasked underflow or 
overflow conditions occur 
(this exception can occur in 
the presence of a masked 
underflow or overflow); #PE 
= 1.

Only if no underflow/overflow condition occurred, or 
if the corresponding exceptions are masked:
• Set #OE if masked overflow and set result as 

described above for masked overflow. 
• Set #UE if masked underflow and set result as 

described above for masked underflow.
If neither underflow nor overflow, res equals the 
result rounded to the destination precision and using 
the bounded exponent set #PE = 1.
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rounding mode (the precision is always single), exception masks (having the same relative bit positions as in the 
MXCSR but starting from bit 0 in an unsigned integer), and flush-to-zero and denormals-are-zeros indicators. 

The output parameters are a floating-point result (of type float), the cause of the exception (identified by constants 
not explicitly defined below), and the exception status flags. The corresponding C definition is:

typedef struct {
unsigned int operation; //SSE or SSE2 operation: ADDPS, ADDSS, ...

  unsigned int operand1_uint32; //first operand value
unsigned int operand2_uint32; //second operand value (if any)

  float result_fval; // result value (if any)
  unsigned int rounding_mode; //rounding mode
  unsigned int exc_masks; //exception masks, in the order P,U,O,Z,D,I
  unsigned int exception_cause; //exception cause
  unsigned int status_flag_inexact; //inexact status flag
  unsigned int status_flag_underflow; //underflow status flag
  unsigned int status_flag_overflow; //overflow status flag
  unsigned int status_flag_divide_by_zero; 

//divide by zero status flag
  unsigned int status_flag_denormal_operand; 

//denormal operand status flag
  unsigned int status_flag_invalid_operation; 

//invalid operation status flag
  unsigned int ftz; // flush-to-zero flag
unsigned int daz; // denormals-are-zeros flag

} EXC_ENV;

The arithmetic operations exemplified are emulated as follows:

1. If the denormals-are-zeros mode is enabled (the DAZ bit in MXCSR is set to 1), replace all the denormal inputs 
with zeroes of the same sign (the denormal flag is not affected by this change).

2. Perform the operation using x87 FPU instructions, with exceptions disabled, the original user rounding mode, 
and single precision. This reveals invalid, denormal, or divide-by-zero exceptions (if there are any) and stores 
the result in memory as a double precision value (whose exponent range is large enough to look like 
“unbounded” to the result of the single precision computation).

3. If no unmasked exceptions were detected, determine if the magnitude of the result is less than the smallest 
normal number that can be represented in single precision format, or greater than the largest normal number 
that can be represented in single precision format (huge). If an unmasked overflow or underflow occurs, 
calculate the scaled result that will be handed to the user exception handler, as specified by IEEE Standard 754.

4. If no exception was raised, calculate the result with a “bounded” exponent. If the result is tiny, it requires 
denormalization (shifting the significand right while incrementing the exponent to bring it into the admissible 
range of [-126,+127] for single precision floating-point numbers).

The result obtained in step 2 cannot be used because it might incur a double rounding error (it was rounded to 
24 bits in step 2, and might have to be rounded again in the denormalization process). To overcome this is, 
calculate the result as a double precision value, and store it to memory in single precision format. 

Rounding first to 53 bits in the significand, and then to 24 never causes a double rounding error (exact 
properties exist that state when double-rounding error occurs, but for the elementary arithmetic operations, 
the rule of thumb is that if an infinitely precise result is rounded to 2p+1 bits and then again to p bits, the result 
is the same as when rounding directly to p bits, which means that no double-rounding error occurs).

5. If the result is inexact and the inexact exceptions are unmasked, the calculated result will be delivered to the 
user floating-point exception handler.

6. The flush-to-zero case is dealt with if the result is tiny.
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7. The emulation function returns RAISE_EXCEPTION to the filter function if an exception has to be raised (the 
exception_cause field indicates the cause). Otherwise, the emulation function returns DO_NOT_ 
RAISE_EXCEPTION. In the first case, the result is provided by the user exception handler called by the filter 
function. In the second case, it is provided by the emulation function. The filter function has to collect all the 
partial results, and to assemble the scalar or packed result that is used if execution is to continue.

Example D-2.  SIMD Floating-Point Emulation

// masks for individual status word bits
#define PRECISION_MASK 20H
#define UNDERFLOW_MASK 10H
#define OVERFLOW_MASK 08H
#define ZERODIVIDE_MASK 04H
#define DENORMAL_MASK 02H
#define INVALID_MASK 01H

// 32-bit constants
static unsigned ZEROF_ARRAY[] = {00000000H};
#define  ZEROF *(float *) ZEROF_ARRAY
    // +0.0
static unsigned NZEROF_ARRAY[] = {80000000H};
#define  NZEROF *(float *) NZEROF_ARRAY
    // -0.0
static unsigned POSINFF_ARRAY[] = {7f800000H};
#define POSINFF *(float *)POSINFF_ARRAY
    // +Inf
static unsigned NEGINFF_ARRAY[] = {ff800000H};
#define NEGINFF *(float *)NEGINFF_ARRAY
    // -Inf

// 64-bit constants
static unsigned MIN_SINGLE_NORMAL_ARRAY [] = {00000000H, 38100000H}; 
#define MIN_SINGLE_NORMAL *(double *)MIN_SINGLE_NORMAL_ARRAY
    // +1.0 * 2^-126
static unsigned MAX_SINGLE_NORMAL_ARRAY [] = {70000000H, 47efffffH}; 
#define MAX_SINGLE_NORMAL *(double *)MAX_SINGLE_NORMAL_ARRAY
    // +1.1...1*2^127
static unsigned TWO_TO_192_ARRAY[] = {00000000H, 4bf00000H};
#define TWO_TO_192 *(double *)TWO_TO_192_ARRAY
    // +1.0 * 2^192
static unsigned TWO_TO_M192_ARRAY[] = {00000000H, 33f00000H};
#define TWO_TO_M192 *(double *)TWO_TO_M192_ARRAY
    // +1.0 * 2^-192

// auxiliary functions
static int isnanf (unsigned int ); // returns 1 if f is a NaN, and 0 otherwise
static float quietf (unsigned int ); // converts a signaling NaN to a quiet 

// NaN, and leaves a quiet NaN unchanged
static unsigned int check_for_daz (unsigned int ); // converts denormals 

// to zeros of the same sign; 
// does not affect any status flags

// emulation of SSE and SSE2 instructions using
// C code and x87 FPU instructions

unsigned int
simd_fp_emulate (EXC_ENV *exc_env)

{

  int uiopd1; // first operand of the add, subtract, multiply, or divide
  int uiopd2; // second operand of the add, subtract, multiply, or divide
  float res; // result of the add, subtract, multiply, or divide
  double dbl_res24; // result with 24-bit significand, but "unbounded" exponent
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      // (needed to check tininess, to provide a scaled result to
      // an underflow/overflow trap handler, and in flush-to-zero mode)
  double dbl_res;  // result in double precision format (needed to avoid a
     // double rounding error when denormalizing)
  unsigned int result_tiny;
  unsigned int result_huge;
  unsigned short int sw; // 16 bits
  unsigned short int cw; // 16 bits

  // have to check first for faults (V, D, Z), and then for traps (O, U, I)

  // initialize x87 FPU (floating-point exceptions are masked)
  _asm {
    fninit;
  }

  result_tiny = 0;
  result_huge = 0;

  switch (exc_env->operation) {

    case ADDPS:
    case ADDSS:
    case SUBPS:
    case SUBSS:
    case MULPS:
    case MULSS:
    case DIVPS:
    case DIVSS:

      uiopd1 = exc_env->operand1_uint32; // copy as unsigned int
// do not copy as float to avoid conversion 
// of SNaN to QNaN by compiled code

      uiopd2 = exc_env->operand2_uint32;
// do not copy as float to avoid conversion of SNaN 
// to QNaN by compiled code

uiopd1 = check_for_daz (uiopd1); // operand1 = +0.0 * operand1 if it is 
// denormal and DAZ=1

      uiopd2 = check_for_daz (uiopd2); // operand2 = +0.0 * operand2 if it is 
// denormal and DAZ=1

      // execute the operation and check whether the invalid, denormal, or 
      // divide by zero flags are set and the respective exceptions enabled

      // set control word with rounding mode set to exc_env->rounding_mode, 
      // single precision, and all exceptions disabled
      switch (exc_env->rounding_mode) {
        case ROUND_TO_NEAREST:
          cw = 003fH; // round to nearest, single precision, exceptions masked
          break;
        case ROUND_DOWN:
          cw = 043fH; // round down, single precision, exceptions masked
          break;
        case ROUND_UP:
          cw = 083fH; // round up, single precision, exceptions masked
          break;
        case ROUND_TO_ZERO:
          cw = 0c3fH; // round to zero, single precision, exceptions masked
          break;
        default:
          ; 
      }
      __asm {
        fldcw WORD PTR cw;
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      }

      // compute result and round to the destination precision, with
      // "unbounded" exponent (first IEEE rounding)
      switch (exc_env->operation) {

        case ADDPS:
        case ADDSS:
          // perform the addition
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR uiopd1; // may set denormal or invalid status flags
            fld DWORD PTR uiopd2; // may set denormal or invalid status flags
            faddp st(1), st(0); // may set inexact or invalid status flags
            // store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;

        case SUBPS:
        case SUBSS:
          // perform the subtraction
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR uiopd1; // may set denormal or invalid status flags
            fld DWORD PTR uiopd2; // may set denormal or invalid status flags
            fsubp st(1), st(0); // may set the inexact or invalid status flags
            

// store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;

        case MULPS:
        case MULSS:
          // perform the multiplication
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR uiopd1; // may set denormal or invalid status flags
            fld DWORD PTR uiopd2; // may set denormal or invalid status flags
            fmulp st(1), st(0); // may set inexact or invalid status flags
            

// store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;

        case DIVPS:
        case DIVSS:
          // perform the division
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR uiopd1; // may set denormal or invalid status flags
            fld DWORD PTR uiopd2; // may set denormal or invalid status flags
            fdivp st(1), st(0); // may set the inexact, divide by zero, or 
                                // invalid status flags
            // store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;
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        default:
          ; // will never occur

      }

      // read status word
      __asm {
        fstsw WORD PTR sw;
}

if (sw & ZERODIVIDE_MASK)
sw = sw & ~DENORMAL_MASK; // clear D flag for (denormal / 0)

      // if invalid flag is set, and invalid exceptions are enabled, take trap
      if (!(exc_env->exc_masks & INVALID_MASK) && (sw & INVALID_MASK)) {
        exc_env->status_flag_invalid_operation = 1;
        exc_env->exception_cause = INVALID_OPERATION;
        return (RAISE_EXCEPTION);
      }

// checking for NaN operands has priority over denormal exceptions; 
// also fix for the SSE and SSE2 
// differences in treating two NaN inputs between the
// instructions and other IA-32 instructions
if (isnanf (uiopd1) || isnanf (uiopd2)) {

        if (isnanf (uiopd1) && isnanf (uiopd2))
            exc_env->result_fval = quietf (uiopd1);
        else
            exc_env->result_fval = (float)dbl_res24; // exact
 
        if (sw & INVALID_MASK) exc_env->status_flag_invalid_operation = 1;
        return (DO_NOT_RAISE_EXCEPTION);
      }

      // if denormal flag set, and denormal exceptions are enabled, take trap
      if (!(exc_env->exc_masks & DENORMAL_MASK) && (sw & DENORMAL_MASK)) {
        exc_env->status_flag_denormal_operand = 1;
        exc_env->exception_cause = DENORMAL_OPERAND;
        return (RAISE_EXCEPTION);
      }

      // if divide by zero flag set, and divide by zero exceptions are 
      // enabled, take trap (for divide only)
      if (!(exc_env->exc_masks & ZERODIVIDE_MASK) && (sw & ZERODIVIDE_MASK)) {
        exc_env->status_flag_divide_by_zero = 1;
        exc_env->exception_cause = DIVIDE_BY_ZERO;
        return (RAISE_EXCEPTION);
      }

      // done if the result is a NaN (QNaN Indefinite)
      res = (float)dbl_res24;
      if (isnanf (*(unsigned int *)&res)) {
        exc_env->result_fval = res; // exact
        exc_env->status_flag_invalid_operation = 1;
        return (DO_NOT_RAISE_EXCEPTION);
      }

      // dbl_res24 is not a NaN at this point

      if (sw & DENORMAL_MASK) exc_env->status_flag_denormal_operand = 1;

      // Note: (dbl_res24 == 0.0 && sw & PRECISION_MASK) cannot occur
      if (-MIN_SINGLE_NORMAL < dbl_res24 && dbl_res24 < 0.0 ||
            0.0 < dbl_res24 && dbl_res24 < MIN_SINGLE_NORMAL) {
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        result_tiny = 1;
      }

      // check if the result is huge
      if (NEGINFF < dbl_res24 && dbl_res24 < -MAX_SINGLE_NORMAL || 
          MAX_SINGLE_NORMAL < dbl_res24 && dbl_res24 < POSINFF) { 
        result_huge = 1;
      }

      // at this point, there are no enabled I,D, or Z exceptions 
 // to take; the instr.

      // might lead to an enabled underflow, enabled underflow and inexact, 
      // enabled overflow, enabled overflow and inexact, enabled inexact, or
      // none of these; if there are no U or O enabled exceptions, re-execute
      // the instruction using IA-32 double precision format, and the 
      // user's rounding mode; exceptions must have 

// been disabled before calling
      // this function; an inexact exception may be reported on the 53-bit
      // fsubp, fmulp, or on both the 53-bit and 24-bit conversions, while an 
      // overflow or underflow (with traps disabled) may be reported on the 
      // conversion from dbl_res to res

// check whether there is an underflow, overflow,
 // or inexact trap to be taken

// if the underflow traps are enabled and the result is 
// tiny, take underflow trap

      if (!(exc_env->exc_masks & UNDERFLOW_MASK) && result_tiny) {
        dbl_res24 = TWO_TO_192 * dbl_res24; // exact
        exc_env->status_flag_underflow = 1;
        exc_env->exception_cause = UNDERFLOW;
        exc_env->result_fval = (float)dbl_res24; // exact
        if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;
        return (RAISE_EXCEPTION);
      } 

      // if overflow traps are enabled and the result is huge, take
      // overflow trap
      if (!(exc_env->exc_masks & OVERFLOW_MASK) &&  result_huge) {
        dbl_res24 = TWO_TO_M192 * dbl_res24; // exact
        exc_env->status_flag_overflow = 1;
        exc_env->exception_cause = OVERFLOW;
        exc_env->result_fval = (float)dbl_res24; // exact 
        if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;
        return (RAISE_EXCEPTION);
      } 

      // set control word with rounding mode set to exc_env->rounding_mode, 
      // double precision, and all exceptions disabled
      cw = cw | 0200H; // set precision to double
      __asm {
        fldcw WORD PTR cw;
      }

      switch (exc_env->operation) {

        case ADDPS:
        case ADDSS:
          // perform the addition
          __asm {
            // load input operands
            fld DWORD PTR uiopd1; // may set the denormal status flag
            fld DWORD PTR uiopd2; // may set the denormal status flag
            faddp st(1), st(0); // rounded to 53 bits, may set the inexact 
                                // status flag
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            // store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        case SUBPS:
        case SUBSS:
          // perform the subtraction
          __asm {
            // load input operands
            fld DWORD PTR uiopd1; // may set the denormal status flag
            fld DWORD PTR uiopd2; // may set the denormal status flag
            fsubp st(1), st(0); // rounded to 53 bits, may set the inexact
                                // status flag
            // store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        case MULPS:
        case MULSS:
          // perform the multiplication
          __asm {
            // load input operands
            fld DWORD PTR uiopd1; // may set the denormal status flag
            fld DWORD PTR uiopd2; // may set the denormal status flag
            fmulp st(1), st(0); // rounded to 53 bits, exact

// store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        case DIVPS:
        case DIVSS:
          // perform the division
          __asm {
            // load input operands
            fld DWORD PTR uiopd1; // may set the denormal status flag
            fld DWORD PTR uiopd2; // may set the denormal status flag
            fdivp st(1), st(0); // rounded to 53 bits, may set the inexact

// status flag
            // store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        default:
          ; // will never occur

      }

      // calculate result for the case an inexact trap has to be taken, or
      // when no trap occurs (second IEEE rounding)
      res = (float)dbl_res; 
          // may set P, U or O; may also involve denormalizing the result

      // read status word
      __asm {
        fstsw WORD PTR sw;
      }

      // if inexact traps are enabled and result is inexact, take inexact trap
      if (!(exc_env->exc_masks & PRECISION_MASK) && 
          ((sw & PRECISION_MASK) || (exc_env->ftz && result_tiny))) {
        exc_env->status_flag_inexact = 1;
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        exc_env->exception_cause = INEXACT;
        if (result_tiny) {
          exc_env->status_flag_underflow = 1;

          // if ftz = 1 and result is tiny, result = 0.0
          // (no need to check for underflow traps disabled: result tiny and
          // underflow traps enabled would have caused taking an underflow
          // trap above)
          if (exc_env->ftz) {
            if (res > 0.0)
              res = ZEROF;
            else if (res < 0.0)
              res = NZEROF;
            // else leave res unchanged
          }
        }
        if (result_huge) exc_env->status_flag_overflow = 1;
        exc_env->result_fval = res; 
        return (RAISE_EXCEPTION);
      } 

      // if it got here, then there is no trap to be taken; the following must
      // hold: ((the MXCSR U exceptions are disabled  or
      //
      // the MXCSR underflow exceptions are enabled and the underflow flag is
      // clear and (the inexact flag is set or the inexact flag is clear and
      // the 24-bit result with unbounded exponent is not tiny)))
      // and (the MXCSR overflow traps are disabled or the overflow flag is
      // clear) and (the MXCSR inexact traps are disabled or the inexact flag
      // is clear)
      //
      // in this case, the result has to be delivered (the status flags are 
      // sticky, so they are all set correctly already)

      // read status word to see if result is inexact
      __asm {
        fstsw WORD PTR sw;
      }
 
      if (sw & UNDERFLOW_MASK) exc_env->status_flag_underflow = 1;
      if (sw & OVERFLOW_MASK) exc_env->status_flag_overflow = 1;
      if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;

      // if ftz = 1, and result is tiny (underflow traps must be disabled),
      // result = 0.0
      if (exc_env->ftz && result_tiny) {
        if (res > 0.0)
          res = ZEROF;
        else if (res < 0.0)
          res = NZEROF;
        // else leave res unchanged

        exc_env->status_flag_inexact = 1;
        exc_env->status_flag_underflow = 1;
      }

      exc_env->result_fval = res; 
      if (sw & ZERODIVIDE_MASK) exc_env->status_flag_divide_by_zero = 1;
      if (sw & DENORMAL_MASK) exc_env->status_flag_denormal= 1;
      if (sw & INVALID_MASK) exc_env->status_flag_invalid_operation = 1;
      return (DO_NOT_RAISE_EXCEPTION);

      break;

    case CMPPS:
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    case CMPSS:

      ...

      break;

    case COMISS:
    case UCOMISS:

      ...

      break;

    case CVTPI2PS:
    case CVTSI2SS:

      ...

      break;

    case CVTPS2PI:
    case CVTSS2SI:
    case CVTTPS2PI:
    case CVTTSS2SI:

      ...

      break;

    case MAXPS:
    case MAXSS:
    case MINPS:
    case MINSS:

      ...

      break;

    case SQRTPS:
    case SQRTSS:

      ...

      break;

...

case UNSPEC:

      ...

      break;

    default:
      ...

  }

}
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APPENDIX E
INTEL® MEMORY PROTECTION EXTENSIONS

NOTE
Intel® MPX has been deprecated and will not be available on any future processors.

E.1 INTEL® MEMORY PROTECTION EXTENSIONS (INTEL® MPX)
Intel® Memory Protection Extensions (Intel® MPX) is a new capability introduced into Intel Architecture. Intel
MPX can increase the robustness of software when it is used in conjunction with compiler changes to check mem-
ory references, for those references whose compile-time normal intentions are usurped at runtime due to buffer
overflow or underflow. Two of the most important goals of Intel MPX are to provide this capability at low perfor-
mance overhead for newly compiled code, and to provide compatibility mechanisms with legacy software com-
ponents. A direct benefit Intel MPX provides is hardening software against malicious attacks designed to cause
or exploit buffer overruns. This chapter describes the software visible interfaces of this extension.

E.2 INTRODUCTION
Intel MPX is designed to allow a system (i.e., the logical processor(s) and the OS software) to run both Intel MPX 
enabled software and legacy software (written for processors without Intel MPX). When executing software 
containing a mixture of Intel MPX-unaware code (legacy code) and Intel MPX-enabled code, the legacy code does 
not benefit from Intel MPX, but it also does not experience any change in functionality or reduction in performance. 
The performance of Intel MPX-enabled code running on processors that do not support Intel MPX may be similar to 
the use of embedding NOPs in the instruction stream.
Intel MPX is designed such that an Intel MPX enabled application can link with, call into, or be called from legacy 
software (libraries, etc.) while maintaining existing application binary interfaces (ABIs). And in most cases, the 
benefit of Intel MPX requires minimal changes to the source code at the application programming interfaces (APIs) 
to legacy library/applications. As described later, Intel MPX associates bounds with pointers in a novel manner, 
and the Intel MPX hardware uses bounds to check that the pointer based accesses are suitably constrained. Intel 
MPX enabled software is not required to uniformly or universally utilize the new hardware capabilities over all 
memory references. Specifically, programmers can selectively use Intel MPX to protect a subset of pointers. 
The code enabled for Intel MPX benefits from memory protection against vulnerability such as buffer overrun. 
Therefore there is a heightened incentive for software vendors to adopt this technology. At the same time, the 
security benefit of Intel MPX-protection can be implemented according to the business priorities of software 
vendors. A software vendor can choose to adopt Intel MPX in some modules to realize partial benefit from Intel MPX 
quickly, and introduce Intel MPX in other modules in phases (e.g., some programmer intervention might be 
required at the interface to legacy calls). This adaptive property of Intel MPX is designed to give software vendors 
control on their schedule and modularity of adoption. It also allows a software vendor to secure defense for higher 
priority or more attack-prone software first; and allows the use of Intel MPX features in one phase of software engi-
neering (e.g., testing) and not in another (e.g., general release) as dictated by business realities.
The initial goal of Intel MPX is twofold: (1) provide means to defend a system against attacks that originate 
external to some trust perimeter where the trust perimeter subsumes the system memory and integral data repos-
itories, and (2) provide means to pinpoint accidental logic defects in pointer usage, by undergirding memory refer-
ences with hardware based pointer validation. 
As with any instruction set extensions, Intel MPX can be used by application developers beyond detecting buffer 
overflow, the processor does not limit the use of Intel MPX for buffer overflow detection.
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E.3 INTEL MPX PROGRAMMING ENVIRONMENT
Intel MPX introduces new bounds registers and new instructions that operate on bounds registers. Intel MPX 
allows an OS to support user mode software (operating at CPL=3) and supervisor mode software (CPL < 3) to add 
memory protection capability against buffer overrun. It provides controls to enable Intel MPX extensions for user 
mode and supervisor mode independently. Intel MPX extensions are designed to allow software to associate 
bounds with pointers, and allow software to check memory references against the bounds associated with the 
pointer to prevent out of bound memory access (thus preventing buffer overflow).The bounds registers hold lower 
bound and upper bound that can be checked when referencing memory. An out-of-bounds memory reference then 
causes a #BR exception. Intel MPX also introduces configuration facilities that the OS must manage to support 
enabling of user-mode (and/or supervisor-mode) software operations using bounds registers.

E.3.1 Detection and Enumeration of Intel MPX Interfaces
Detection of hardware support for processor extended state component is provided by the main CPUID leaf func-
tion 0DH with index ECX = 0. Specifically, the return value in EDX:EAX of CPUID.(EAX=0DH, ECX=0) provides a 
64-bit wide bit vector of hardware support of processor state components. 
If CPUID.(EAX=07H,ECX=0H):EBX.MPX[bit 14] = 1 (the processor supports Intel MPX), 
CPUID.(EAX=0DH,ECX=0):EAX[bits 4:3] will enumerate the XSAVE state components associated with Intel MPX. 
These two component states of Intel MPX are the following:
• BNDREGS: CPUID.(EAX=0DH,ECX=0):EAX[3] indicates XCR0.BNDREGS[bit 3] is supported. This bit indicates 

bound register component of Intel MPX state, comprised of four bounds registers, BND0-BND3 (see Appendix 
E.3.2).

• BNDCSR: CPUID.(EAX=0DH,ECX=0):EAX[4] indicates XCR0.BNDCSR[bit 4] is supported. This bit indicates 
bounds configuration and status component of Intel MPX comprised of BNDCFGU and BNDSTATUS. OS must 
enable both BNDCSR and BNDREGS bits in XCR0 to ensure full Intel MPX support to applications.

• The size of the processor state component, enabled by XCR0.BNDREGS, is enumerated by 
CPUID.(EAX=0DH,ECX=03H).EAX[31:0] and the byte offset of this component relative to the beginning of the 
XSAVE/XRSTOR area is reported by CPUID.(EAX=0DH, ECX=03H).EBX[31:0]. 

• The size of the processor state component, enabled by XCR0.BNDCSR, is enumerated by 
CPUID.(EAX=0DH,ECX=04H).EAX[31:0] and the byte offset of this component relative to the beginning of the 
XSAVE/XRSTOR area is reported by CPUID.(EAX=0DH, ECX=04H).EBX[31:0]. 

On processors that support Intel MPX, CPUID.(EAX=0DH,ECX=0):EAX[3] and CPUID.(EAX=0DH,ECX=0):EAX[4] 
will both be 1. On processors that do not support Intel MPX, CPUID.(EAX=0DH,ECX=0):EAX[3] and 
CPUID.(EAX=0DH,ECX=0):EAX[4] will both be 0. 

The layout of XCR0 for extended processor state components defined in Intel Architecture is shown in Figure 2-8 of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Enabling Intel MPX requires an OS to manage bits [4:3] of XCR0; see Section 13.5.

The BNDLDX and BNDSTX instructions (Appendix E.4.3) each take an operand whose bits are used to traverse data 
structures in memory. In 64-bit mode, these instructions operate only on the lower bits in the supplied 64-bit 
addresses. The number of bits used is 48 plus a value called the MPX address-width adjust (MAWA). The MAWA 
value depends on CPL:
• If CPL < 3, the supervisor MAWA (MAWAS) is used. This value is 0.
• If CPL = 3, the user MAWA (MAWAU) is used. The value of MAWAU is enumerated in 

CPUID.(EAX=07H,ECX=0H):ECX.MAWAU[bits 21:17].

(Outside of 64-bit mode, BNDLDX, and BNDSTX use the entire 32 bits of the supplied linear-address operands.)

E.3.2 Bounds Registers
Intel MPX Architecture defines four new registers, BND0-BND3, which Intel MPX instructions operate on. Each 
bounds register stores a pair of 64-bit values which are the lower bound (LB) and upper bound (UB) of a buffer, see 
Figure E-1.
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The bounds are unsigned effective addresses, and are inclusive. The upper bounds are architecturally represented 
in 1/’s complement form. Lower bound = 0, and upper bound = 0 (1’s complement of all 1s) will allow access to the 
entire address space. The bounds are considered as INIT when both lower and upper bounds are 0 (cover the 
entire address space). The two Intel MPX instructions which operate on the upper bound (BNDMK and BNDCU) 
account for the 1’s complement representation of the upper bounds. 
The instruction set does not impose any conventions on the use of bounds registers. Software has full flexibility 
associating pointers to bounds registers including sharing them for multiple pointers.
RESET or INIT# will initialize (write zero to) BND0–BND3.

E.3.3 Configuration and Status Registers
Intel MPX defines two configuration registers and one status register. The two configuration registers are defined 
for user mode (CPL = 3) and supervisor mode (CPL < 3). The user-mode configuration register BNDCFGU is acces-
sible only with the XSAVE feature set instructions. 

The supervisor mode configuration register is an MSR, referred to as IA32_BNDCFGS (MSR 0D90H). Because both 
configuration registers share a common layout (see Figure E-2), when describing the common behavior, these 
configuration registers are often denoted as BNDCFGx, where x can be U or S, for user and supervisor mode 
respectively.

The Enable bit in BNDCFGU enables Intel MPX in user mode (CPL = 3), and the Enable bit in BNDCFGS enables Intel 
MPX in supervisor mode (CPL < 3). The BNDPRESERVE bit controls the initialization behavior of CALL/RET/JMP/Jcc 
instructions without the BND (F2H) prefix; see Appendix E.5.3.
WRMSR to BNDCFGS will #GP if any of the reserved bits of BNDCFGS is not zero or if the base address of the bound 
directory is not canonical. XRSTOR of BNDCFGU ignores the reserved bits and does not fault if any is non-zero; 
similarly, it ignores the upper bits of the base address of the bound directory and sign-extends the highest imple-
mented bit of the linear address to guarantee the canonicality of this address.
Intel MPX also defines a status register (BNDSTATUS) primarily used to communicate status information for #BR 
exception. The layout of the status register is shown in Figure E-3. 

Figure E-1.  Layout of the Bounds Registers BND0-BND3

Figure E-2.  Common Layout of the Bound Configuration Registers BNDCFGU and BNDCFGS

64 63 0127

Upper Bound (UB) Lower Bound (LB)

12 11 063

Base of Bound Directory (Linear Address) Reserved (must be zero)

Bprv: BNDPRESERVE

En

12

En: Enable
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The BNDSTATUS register provides two fields to communicate the status of Intel MPX operations:
• EC (bits 1:0): The error code field communicates status information of a bound range exception #BR or 

operation involving bound directory. 
• ABD: (bits 63:2):The address field of a bound directory entry can provide information when operation on the 

bound directory caused a #BR.
The valid error codes are defined in Table E-1.

RESET or INIT# will set BNDCFGx and BNDSTATUS registers to zero.

E.3.4 Read and Write of IA32_BNDCFGS
The RDMSR and WRMSR instructions can be used to read and write the IA32_BNDCFGS MSR. (The XSAVE state 
does not include IA32_BNDCFGS, and instructions in the XSAVE feature set do not access that register). Attempts 
to write to IA32_BNDCFGS check for canonicality of the addresses being loaded into IA32_BNDCFGS (regardless of 
mode at the time of execution) and will #GP if the address is not canonical or if reserved bits would be set.
Software can use RDMSR and WRMSR to read and write IA32_BNDCFGS as long as the processor implements Intel 
MPX, i.e., CPUID.(EAX=07H, ECX=0H).EBX.MPX = 1. The states of CR4 and XCR0 have no impact on the ability to 
access IA32_BNDCFGS.

E.4 INTEL MPX INSTRUCTION SUMMARY
When Intel MPX is not enabled or not present, all Intel MPX instructions behave as NOP. There are eight Intel MPX 
instructions, Table E-2 provides a summary.
A C/C++ compiler can implement intrinsic support for Intel MPX instructions to facilitate pointer operation with 
capability of checking for valid bounds on pointers. Typically, Intel MPX intrinsics are implemented by compiler via 
inline code generation where bounds register allocations are handled by the compiler without requiring the 

Figure E-3.  Layout of the Bound Status Registers BNDSTATUS

Table E-1.   Error Code Definition of BNDSTATUS

EC Description Meaning

00b1

NOTES:
1. When legacy BOUND instruction cause a #BR with Intel MPX enabled (see Appendix E.5.4), EC is written with

Zero.

No Intel MPX exception No exception caused by Intel MPX operations.

01b Bounds violation
#BR caused by BNDCL, BNDCU or BNDCN instructions; 
ABD is 0.

10b Invalid BD entry
#BR caused by BNDLDX or BNDSTX instructions, ABD will be set to the linear address of the 
invalid bound-directory entry

11b Reserved Reserved

2 1 063

ABD: Address Bound Directory Entry - Linear Address

EC: Error Code
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programmer to directly manipulate any bounds registers. Therefore no new data type for a bounds register is 
needed in the syntax of Intel MPX intrinsics. 

E.4.1 Instruction Encoding
All Intel MPX instructions are NOP on processors that report CPUID.(EAX=07H, ECX=0H).EBX.MPX [bit 14] = 0, or 
if Intel MPX is not enabled by the operating system (see Section 13.5). Applications can selectively opt-in to use 
Intel MPX instructions.
All Intel MPX opcodes encoded to operate on BND0-BND3 are valid Intel MPX instructions. All Intel MPX opcodes 
encoded to operate on bound registers beyond BND3 will #UD if Intel MPX is enabled.
BNDLDX/BNDSTX opcodes require 66H as a mandatory prefix with its operand size tied to the address size attri-
bute of the supported operating modes. Attempt to override operand size attribute with 66H or with REX.W in 64-
bit mode is ignored. 

E.4.2 Usage and Examples
BNDMK is typically used after memory is allocated for a buffer, e.g., by functions such as malloc, calloc, or when 
the memory is allocated on the stack. However, many other usages are possible such as when accessing an array 
member of a structure. 

BNDMOV is typically used to copy bounds from one bound register to another when a pointer is copied from one 
general purpose register to another, or to spill/fill bounds into memory corresponding to a spill/fill of a pointer. 

Table E-2.   Intel MPX Instruction Summary

Intel MPX 
Instruction Description

BNDMK b, m Create LowerBound (LB) and UpperBound (UB) in the bounds register b

BNDCL b, r/m Checks the address of a memory reference or address in r against the lower bound 

BNDCU b, r/m Checks the address of a memory reference or address in r against the upper bound in 1's complement form

BNDCN b, r/m
Checks the address of a memory reference or address in r against the upper bound not in 1's complement 
form

BNDMOV b, b/m Copy/load LB and UB bounds from memory or a bounds register

BNDMOV b/m, b Store LB and UB bounds in a bounds register to memory or another register

BNDLDX b, mib Load bounds using address translation using an sib-addressing expression mib

BNDSTX mib, b Store bounds using address translation using an sib-addressing expression mib

Example E-1.  BNDMK Example Usage in Application and Library Code

int A[100]; //assume the array A is allocated on the stack at ‘offset’ 
from RBP. 
// the instruction to store starting address of array will be:
                LEA RAX, [RBP+offset]
// the instruction to create the bounds for array A will be:
                BNDMK BND0, [RAX+399]
// Store RAX into BND0.LB, and ~(RAX+399) into BND0.UB.

// similarly, for a library implementation of dynamic allocated 
memory
                int * k = malloc(100);
// assuming that malloc returns pointer k in RAX and holds (size 
- 1) in RCX 
// the malloc implementation will execute the following 
instruction before returning:
               BNDMK BND0, [RAX+RCX] 
// BND0.LB stores RAX, and BND0.UB stores ~(RAX+RCX)

Example E-2.  BNDMOV Example 

Spilling or caller save of bound register would use BNDMOV [RBP+ offset], BNDx. 

Assuming that the calling convention is that bound of first pointer is passed in BND0, and that bound happens to be in BND3 before 
the call, the software will add instruction BNDMOV BND0, BND3 prior to the call.
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BNDCL/BNDCU/BNDCN are typically used before writing to a buffer but can be used in other instances as well. If 
there are no bounds violations as a result of bound check instruction, the processor will proceed to execute the next 
instruction. However, if the bound check fails, it will signal #BR exception (fault).
Typically, the pointer used to write to memory will be compared against lower bound. However, for upper bound 
check, the software must add the (operand size - 1) to the pointer before upper bound checking.
For example, the software intend to write 32-bit integer in 64-bit mode into a buffer at address specified in RAX, 
and the bounds are in register BND0, the instruction sequence will be:
             BNDCL BND0, [RAX]
             BNDCU BND0, [RAX+3] ; operand size is 4
             MOV Dword ptr [RAX], RBX ; RBX has the data to be written to the buffer.
Software may move one of the two bound checks out of a loop if it can determine that memory is accessed strictly 
in ascending or descending order. For string instructions of the form REP MOVS, the software may choose to do 
check lower bound against first access and upper bound against last access to memory. However, if software wants 
to also check for wrap around conditions as part of address computation, it should check for both upper and lower 
bound for first and last instructions (total of four bound checks).
BNDSTX is used to store the bounds associated with a buffer and the “pointer value” of the pointer to that buffer 
onto a bound table entry via address translation using a two-level structure, see Appendix E.4.3.
For example, the software has a buffer with bounds stored in BND0, the pointer to the buffer is in ESI, the following 
sequence will store the “pointer value” (the buffer) and the bounds into a configured bound table entry using 
address translation from the linear address associated with the base of a SIB-addressing form consisting of a base 
register and a index register:
             MOV ECX, Dword ptr [ESI] ; store the pointer value in the index register ECX
             MOV EAX, ESI ; store the pointer in the base register EAX
             BNDSTX Dword ptr [EAX+ECX], BND0 ; perform address translation from the linear address of the base 
EAX and store bounds and pointer value ECX onto a bound table entry.
Similarly to retrieve a buffer and its associated bounds from a bound table entry:
             MOV EAX, dword ptr [EBX] ; 
             BNDLDX BND0, dword ptr [EBX+EAX]; perform address translation from the linear address of the base EBX, 
and loads bounds and pointer value from a bound table entry

E.4.3 Loading and Storing Bounds in Memory
Intel MPX defines two instructions to load and store of the linear address of a pointer to a buffer, along with the 
bounds of the buffer into a data structure of extended bounds. When storing these extended bounds, the processor 
parses the address of the pointer (where it is stored) to locate an entry in a bound table in which to store the 
extended bounds. Loading of an extended bounds performs the reverse sequence.
The memory representation of an extended bound is a 4-tuple consisting of lower bound, upper bound, pointer 
value and a reserved field (for use by future versions of Intel MPX; software must not use this field). Accesses to 
these extended bounds use 32-bit or 64-bit operands according to the current paging mode. Thus, a bound table 
entry is 4*64 bits (32 bytes) in 64-bit mode and 4*32 bits (16 bytes) outside 64-bit mode The linear address of a 
bound table is stored in a bound-directory entry (BDE). The linear address of the bound directory is derived from 
either BNDCFGU (CPL = 3) or BNDCFGS (CPL < 3).
The bound directory and bound tables are stored in application memory and are allocated by the application (in 
case of kernel use, the structures will be in kernel memory). The bound directory and each bound table are in 
contiguous linear memory.

Software should take care to allocate sufficient memory for the bound directory and the bound tables. The amount 
of memory required depends on the current operating mode and, in some cases, on CPL:
• In 64-bit mode:

— Each bound table comprises 217 32-byte entries thus, the size of a bound table in 64-bit mode is 4 MBytes.
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— The size of the bound directory depends on the value of MAWA. Specifically, the bound directory comprises 
228+MAWA 64-bit entries; thus, the size of a bound directory in 64-bit mode is 21+MAWA GBytes. The value 
of MAWA depends on CPL:

• If CPL < 3, the supervisor MAWA (MAWAS) is used. This value is 0. Thus, when CPL < 3, a bound 
directory comprises 228 64-bit entries and the size of a bound directory is 2 GBytes.

• If CPL = 3, the user MAWA (MAWAU) is used. The value of MAWAU is enumerated in 
CPUID.(EAX=07H,ECX=0H):ECX.MAWAU[bits 21:17]. When CPL = 3, a bound directory comprises 
228+MAWAU 64-bit entries and the size of a bound directory is 21+MAWAU GBytes.

NOTE
Software operating with CPL = 3 in 64-bit mode should use CPUID to determine the proper amount 
of memory to allocate for the bound directory.

• Outside 64-bit mode:

— Each bound table comprises 210 16-byte entries; thus, the size of a bound table outside 64-bit mode is 
16 KBytes.

— The bound directory comprises 220 32-bit entries; thus, the size of a bound directory outside 64-bit mode 
is 4 MBytes. This size is independent of MAWA and CPL.

Bounds in memory are associated with the memory address where the pointer is stored, i.e., Ap. A linear address 
LAp is computed by adding the appropriate segment base to Ap. (Note: for these instructions, the segment over-
ride applies only to the computation.) Appendix E.4.3.1 and Appendix E.4.3.2 describe how BNDLDX and BNDSTX 
parse LAp to locate a bound-directory entry (BDE), which contains the address of a bound table, and then a bound-
table entry (BTE), which contains the extended bounds for the pointer. 

E.4.3.1  BNDLDX and BNDSTX in 64-Bit Mode
Figure E-4 shows the two-level structures for address translation of extended bounds in 64-bit mode.

Figure E-4.  Bound Paging Structure and Address Translation in 64-Bit Mode
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As noted earlier, the linear address of the bound directory is derived from either BNDCFGU (CPL = 3) or BNDCFGS 
(CPL < 3). In 64-bit mode, each bound-directory entry (BDE) is 8 bytes. The number of entries in the bound direc-
tory is determined by the MPX address-width adjust (MAWA; see Appendix E.3.1). Specifically, the number of 
entries is 228+MAWA.
In 64-bit mode, the processor uses the two-level structures to access extended bounds as follows:
• A bound directory is located at the 4-KByte aligned linear address specified in bits 63:12 of BNDCFGx (see 

Figure E-2). A bound directory comprises 228+MAWA 64-bit entries (BDEs); thus, the size of a bound directory 
in 64-bit mode is 21+MAWA GBytes. A BDE is selected using the LAp (linear address of pointer to a buffer) to 
construct a 64-bit offset as follows:

— bits 63:31+MAWA are 0;

— bits 30+MAWA:3 are LAp[47+MAWA:20]; and

— bits 2:0 are 0.
The address of the BDE is the sum of the bound-directory base address (from BNDCFGx) plus this 64-bit offset.

• Bit 0 of a BDE is a valid bit. If this bit is 0, use of the BDE by BNDLDX or BNDSTX causes #BR, sets 
BNDSTATUS[1:0] to 10b (the error code), and loads BNDSTATUS[63:2] with bits 63:2 of the linear address of 
the BDE. Otherwise, the processor uses bits 63:3 of the BDE as the 8-byte aligned address of a bound table 
(BT); the processor ignores bits 2:1 of a BDE.
A bound table comprises 217 32-byte entries (BTEs); thus, the size of a bound table in 64-bit mode is 4 MBytes. 
A BTE is selected using the LAp (linear address of pointer to a buffer) to construct an offset as follows:

— bits 21:5 are LAp[19:3]; and

— bits 4:0 are 0.
The address of the BTE is the sum of the bound-table base address (from the BDE) plus this offset.

• Each BTE comprises the following:

— a 64-bit lower bound (LB) field;

— a 64-bit upper bound (UB) field;

— a 64-bit pointer value; and

— a 64-bit reserved field. This field is reserved for future Intel MPX; software must not use it.

E.4.3.2  BNDLDX and BNDSTX Outside 64-Bit Mode
Figure E-5 shows the two-level structures for address translation of extended bounds outside 64-bit mode.

As noted earlier, the linear address of the bound directory is derived from either BNDCFGU (CPL = 3) or BNDCFGS 
(CPL < 3). Outside 64-bit mode, each bound-directory entry (BDE) is 4 bytes. The number of entries in the bound 
directory is 220.
Outside 64-bit mode, the processor uses the two-level structures to access extended bounds as follows:
• A bound directory is located at the 4-KByte aligned linear address specified in bits 31:12 of BNDCFGx (see 

Figure E-2). A bound directory comprises 220 32-bit entries (BDEs); thus, the size of a bound directory outside 
64-bit mode is 4 MBytes. A BDE is selected using the LAp (linear address of pointer to a buffer) to construct an 
offset as follows:

— bits 21:2 are LAp[31:12]; and

— bits 1:0 are 0.
The address of the BDE is the sum of the bound-directory base address (from BNDCFGx) plus this offset.

• Bit 0 of a BDE is a valid bit. If this bit is 0, use of the BDE by BNDLDX or BNDSTX causes #BR, sets 
BNDSTATUS[1:0] to 10b (the error code), and loads BNDSTATUS[31:2] with bits 31:2 of the linear address of 
the BDE. Otherwise, the processor uses bits 31:2 of the BDE as the 4-byte aligned address of a bound table 
(BT); the processor ignores bit 1 of a BDE.
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A bound table comprises 210 16-byte entries (BTEs); thus, the size of a bound table outside 64-bit mode is 
16 KBytes. A BTE is selected using the LAp (linear address of pointer to a buffer) to construct an offset as 
follows:

— bits 13:4 are LAp[11:2]; and

— bits 3:0 are 0.
The address of the BTE is the sum of the bound-table base address (from the BDE) plus this offset. This address 
is use as an offset into the DS segment to determine the linear address of the BTE.

• Each BTE comprises the following:

— a 32-bit lower bound (LB) field;

— a 32-bit upper bound (UB) field;

— a 32-bit pointer value; and

— a 32-bit reserved field. This field is reserved for future Intel MPX; software must not use it.

E.5 INTERACTIONS WITH INTEL MPX

E.5.1 Intel MPX and Operating Modes
In 64-bit Mode, all Intel MPX instructions use 64-bit operands for bounds and 64 bit addressing, i.e., REX.W & 67H 
have no effect on data or address size. 
XSAVE, XSAVEOPT, and XRSTOR load/store 64-bit values in all modes, as these state-management instructions 
are not Intel MPX instructions.

Figure E-5.  Bound Paging Structure and Address Translation Outside 64-Bit Mode
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In compatibility and legacy modes (including 16-bit code segments, real and virtual 8086 modes) all Intel MPX 
instructions use 32-bit operands for bounds and 32 bit addressing. The upper 32-bits of destination bound register 
are cleared (consistent with behavior of integer registers)
In 32-bit and compatibility mode, the bounds are 32-bit, and are treated same as 32-bit integer registers. There-
fore, when 32-bit bound is updated in a bound register, the upper 32-bits are undefined. When switching from 64-
bit, the behavior of content of bounds register will be similar to that of general purpose registers.
Table E-3 describes the impact of 67H prefix on memory forms of Intel MPX instructions (register-only forms ignore 
67H prefix) when Intel MPX is enabled:

E.5.2 Intel® MPX Support for Pointer Operations with Branching
Intel MPX provides flexibility in supporting pointer operation across control flow changes. Intel MPX allows 
• compatibility with legacy code that may perform pointer operation across control flow changes and are unaware 

of Intel MPX, along with
• Intel MPX-aware code that adds bounds checking protection to pointer operation across control flow changes.
The interface to provide such flexibility consists of:
• Using a prefix, referred to as BND prefix, to relevant branch instructions: CALL, RET, JMP, and Jcc.
• BNDCFGU and BNDCFGS provides the bit field, BNDPRESERVE (bit 1).
The value of BNDPRESERVE in conjunction with the presence/absence the BND prefix with those branching instruc-
tion will determine whether the values in BND0-BND3 will be initialized or unchanged.

E.5.3 CALL, RET, JMP, and All Jcc
An application compiled to use Intel MPX will use the REPNE (F2H) prefix (denoted by BND) for all forms of near 
CALL, near RET, near JMP, short & near Jcc instructions (BND+CALL, BND+RET, BND+JMP, BND+Jcc). See Table E-4 
for specific opcodes. All far CALL, RET, and JMP instructions plus short JMP (JMP rel 8, opcode EB) instructions will 
never cause bound registers to be initialized.
If BNDPRESERVE bit is one, above instructions will NOT INIT the bounds registers when BND prefix is not present 
for above instructions (legacy behavior). However, If BNDPRESERVE is zero, above instructions will INIT ALL bound 
registers (BND0-BND3) when BND prefix is not present for above instructions. If BND prefix is present for above 
instructions, the BND registers will NOT INIT any bound registers (BND0-BND3).
The legacy code will continue to use non-prefixed forms of these instructions, so if BNDPRESERVE is zero, all the 
bound registers will INIT by legacy code. This allows the legacy function to execute and return to callee with all 
bound registers initialized (legacy code by definition cannot make or load bounds in bound registers because it does 
not have Intel MPX instructions). This will eliminate compatibility concerns when legacy function might have 
changed the pointer in registers but did not update the value of the bounds registers associated with these 
pointers. 
If BNDCFGx.BNDPRESERVE is clear then non-prefixed forms of these instructions will initialize all the bound regis-
ters. If this bit is set then non-prefixed and prefixed forms of these instructions will preserve the contents of bound 
registers as shown in Table E-4.

Table E-3.   Effective Address Size of Intel® MPX Instructions with 67H Prefix

Addressing Mode 67H Prefix Effective Address Size used for Intel MPX instructions when Intel MPX is enabled

64-bit Mode Y 64 bit addressing used 

64-bit Mode N 64 bit addressing used 

32-bit Mode Y #UD

32-bit Mode N 32 bit addressing used 

16-bit Mode Y 32 bit addressing used 

16-bit Mode N #UD
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E.5.4 BOUND Instruction and Intel MPX
If Intel MPX in enabled (see Section 13.5) and a #BR was caused due to a BOUND instruction, then BOUND instruc-
tion will write zero to the BNDSTATUS register. In all other situations, BOUND instruction will not modify 
BNDSTATUS. Specifically, the operation of the BOUND instruction can be described as:
IF ( ( BOUND instruction caused #BR) AND ( CR4.OXXSAVE =1 AND XCR0.BNDREGS=1 AND XCR0.BNDCSR =1) AND 

( (CPL=3 AND BNDCFGU.ENABLE = 1) OR (CPL < 3 AND BNDCFGS.ENABLE = 1) ) ) THEN
BNDSTATUS := 0; 

ELSE
BNDSTATUS is not modified;

FI;

E.5.5 Programming Considerations
Intel MPX instruction set does not dictate any calling convention, but allows the calling convention extensions to be 
interoperable with legacy code by making use of the of the bound registers and the bound tables to convey argu-
ments and return values. 

E.5.6 Intel MPX and System Management Mode
Upon delivery of an SMI to a processor supporting Intel MPX, the contents of IA32_BNDCFGS is saved to SMM state 
save map (at offset 7ED0H) and the register is then cleared when entering into SMM. RSM restores IA32_BNDCFGS 
from the SMM state save map. The instruction forces the reserved bits (11:2) to 0 and sign-extends the highest 
implemented bit of the linear address to guarantee the canonicality of this address (regardless of what is in SMM 
state save map).
The content of IA32_BNDCFGS is cleared after entering into SMM. Thus, Intel MPX is disabled inside an SMM 
handler until SMM code enables it explicitly. This will prevent initialization of the bound registers by execution of 
CALL, RET, JMP, or Jcc in SMM code.

E.5.7 Support of Intel MPX in VMCS
A new guest-state field for IA32_BNDCFGS is added to the VMCS. In addition, two new controls are added: 
• a VM-exit control called “clear BNDCFGS” 
• a VM-entry control called “load BNDCFGS.” 

Table E-4.   Bounds Register INIT Behavior Due to BND Prefix with Branch Instructions

Instruction Branch Instruction Opcodes BNDPRESERVE = 0 BNDPRESERVE = 1

CALL E8, FF/2 Init BND0-BND3 BND0-BND3 unchanged

BND + CALL F2 E8, F2 FF/2 BND0-BND3 unchanged BND0-BND3 unchanged

RET C2, C3 Init BND0-BND3 BND0-BND3 unchanged

BND + RET F2 C2, F2 C3 BND0-BND3 unchanged BND0-BND3 unchanged

JMP E9, FF/4 Init BND0-BND3 BND0-BND3 unchanged

BND + JMP F2 E9, F2 FF/4 BND0-BND3 unchanged BND0-BND3 unchanged

Jcc
70 through 7F, 

0F 80 through 0F 8F
Init BND0-BND3 BND0-BND3 unchanged

BND + Jcc
F2 70 through F2 7F, 

F2 0F 80 through F2 0F 8F
BND0-BND3 unchanged BND0-BND3 unchanged
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VM exits always save IA32_BNDCFGS into BNDCFGS field of VMCS; if “clear BNDCFGS” is 1, VM exits clear 
IA32_BNDCFGS. If “load BNDCFGS” is 1, VM entry loads IA32_BNDCFGS from VMCS. If loading IA32_BNDCFGS, 
VM entry should check the value of that register in the guest-state area of the VMCS and cause the VM entry to fail 
(late) if the value is one that would causes WRMSR to fault if executed in ring 0.

E.5.8 Support of Intel MPX in Intel TSX
For some processor implementations, the following Intel MPX instructions may always cause transactional aborts:
• An Intel TSX transaction abort will occur in case of legacy branch (that causes bounds registers INIT) when at 

least one bounds register was in a NON-INIT state.
• An Intel TSX transaction abort will occur in case of a BNDLDX & BNDSTX instruction on non-flat segment.
Intel MPX Instructions (including BND prefix + branch instructions) not enumerated above as causing transactional 
abort when used inside a transaction will typically not cause an Intel TSX transaction to abort.
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CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D: Instruction Set 
Reference (order numbers 253666, 253667, 326018, and 334569), is part of a set that describes the architecture 
and programming environment of all Intel 64 and IA-32 architecture processors. Other volumes in this set are:
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (Order 

Number 253665).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C, & 3D: System 

Programming Guide (order numbers 253668, 253669, 326019, and 332831).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers 

(order number 335592).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture 
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, describes the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C, & 3D, describes 
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B, addresses the programming environment for classes of software that host operating systems. The 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, describes the model-specific registers 
of Intel 64 and IA-32 processors.

1.1 OVERVIEW OF VOLUME 2A, 2B, 2C, AND 2D: INSTRUCTION SET 
REFERENCE

A description of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, 
content follows:

Chapter 1 — About This Manual. Gives an overview of all volumes of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, with chapter-specific details for the current volume.

Chapter 2 — Instruction Format. Describes the machine-level instruction format used for all IA-32 instructions 
and gives the allowable encodings of prefixes, the operand-identifier byte (ModR/M byte), the addressing-mode 
specifier byte (SIB byte), and the displacement and immediate bytes.

Chapter 3 — Instruction Set Reference, A-L. Describes Intel 64 and IA-32 instructions in detail, including an 
algorithmic description of operations, the effect on flags, the effect of operand- and address-size attributes, and 
the exceptions that may be generated. The instructions are arranged in alphabetical order. General-purpose, x87 
FPU, Intel MMX™ technology, SSE/SSE2/SSE3/SSSE3/SSE4 extensions, and system instructions are included.

Chapter 4 — Instruction Set Reference, M-U. Continues the description of Intel 64 and IA-32 instructions 
started in Chapter 3. It starts Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.

Chapter 5 — Instruction Set Reference, V. Continues the description of Intel 64 and IA-32 instructions started 
in chapters 3 and 4. This chapter starts Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2C.

Chapter 6 — Instruction Set Reference, W-Z. Continues the description of Intel 64 and IA-32 instructions 
started in chapters 3, 4, and 5. It provides the balance of the alphabetized list of instructions and starts Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 2D.

Chapter 7 — Safer Mode Extensions Reference. Describes the safer mode extensions (SMX). SMX is intended 
for a system executive to support launching a measured environment in a platform where the identity of the soft-
ware controlling the platform hardware can be measured for the purpose of making trust decisions.
Vol. 2A 1-1



ABOUT THIS MANUAL
Chapter 8— Instruction Set Reference Unique to Intel® Xeon Phi™ Processors. Describes the instruction 
set that is unique to Intel® Xeon Phi™ processors based on the Knights Landing and Knights Mill microarchitec-
tures. The set is not supported in any other Intel processors.

Appendix A — Opcode Map. Gives an opcode map for the IA-32 instruction set.

Appendix B — Instruction Formats and Encodings. Gives the binary encoding of each form of each IA-32 
instruction.

Appendix C — Intel® C/C++ Compiler Intrinsics and Functional Equivalents. Lists the Intel® C/C++ compiler 
intrinsics and their assembly code equivalents for each of the IA-32 MMX and SSE/SSE2/SSE3 instructions.
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CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for all Intel 64 and IA-32 processors. The instruction format for 
protected mode, real-address mode and virtual-8086 mode is described in Section 2.1. Increments provided for IA-
32e mode and its sub-modes are described in Section 2.2.

2.1 INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-ADDRESS MODE, 
AND VIRTUAL-8086 MODE

The Intel 64 and IA-32 architectures instruction encodings are subsets of the format shown in Figure 2-1. Instruc-
tions consist of optional instruction prefixes (in any order), primary opcode bytes (up to three bytes), an 
addressing-form specifier (if required) consisting of the ModR/M byte and sometimes the SIB (Scale-Index-Base) 
byte, a displacement (if required), and an immediate data field (if required).

2.1.1 Instruction Prefixes
Instruction prefixes are divided into four groups, each with a set of allowable prefix codes. For each instruction, it 
is only useful to include up to one prefix code from each of the four groups (Groups 1, 2, 3, 4). Groups 1 through 4 
may be placed in any order relative to each other.
• Group 1

— Lock and repeat prefixes:

• LOCK prefix is encoded using F0H.

• REPNE/REPNZ prefix is encoded using F2H. Repeat-Not-Zero prefix applies only to string and 
input/output instructions. (F2H is also used as a mandatory prefix for some instructions.)

• REP or REPE/REPZ is encoded using F3H. The repeat prefix applies only to string and input/output 
instructions. (F3H is also used as a mandatory prefix for some instructions.)

Figure 2-1.  Intel 64 and IA-32 Architectures Instruction Format

Instruction
Prefixes Opcode ModR/M SIB Displacement Immediate

Mod R/MReg/
Opcode

027 6 5 3

Scale Base

027 6 5 3

Index

Immediate
data of
1, 2, or 4
bytes or none3

Address
displacement
of 1, 2, or 4
bytes or none3

1 byte
(if required)

1 byte
(if required)

1-, 2-, or 3-byte
opcode

Prefixes of
1 byte each
(optional)1, 2

1. The REX prefix is optional, but if used must be immediately before the opcode; see Section 
2.2.1, “REX Prefixes” for additional information.
2. For VEX encoding information, see Section 2.3, “Intel® Advanced Vector Extensions (Intel® 
AVX)”.
3. Some rare instructions can take an 8B immediate or 8B displacement.
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— BND prefix is encoded using F2H if the following conditions are true:

• CPUID.(EAX=07H, ECX=0):EBX.MPX[bit 14] is set.

• BNDCFGU.EN and/or IA32_BNDCFGS.EN is set.

• When the F2 prefix precedes a near CALL, a near RET, a near JMP, a short Jcc, or a near Jcc instruction 
(see Appendix E, “Intel® Memory Protection Extensions,” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1).

• Group 2

— Segment override prefixes:

• 2EH—CS segment override (use with any branch instruction is reserved).

• 36H—SS segment override prefix (use with any branch instruction is reserved).

• 3EH—DS segment override prefix (use with any branch instruction is reserved).

• 26H—ES segment override prefix (use with any branch instruction is reserved).

• 64H—FS segment override prefix (use with any branch instruction is reserved).

• 65H—GS segment override prefix (use with any branch instruction is reserved).

— Branch hints1:

• 2EH—Branch not taken (used only with Jcc instructions).

• 3EH—Branch taken (used only with Jcc instructions).
• Group 3

• Operand-size override prefix is encoded using 66H (66H is also used as a mandatory prefix for some 
instructions).

• Group 4

• 67H—Address-size override prefix.
The LOCK prefix (F0H) forces an operation that ensures exclusive use of shared memory in a multiprocessor envi-
ronment. See “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set Reference, A-L,” for a description 
of this prefix. 
Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a string. Use these prefixes 
only with string and I/O instructions (MOVS, CMPS, SCAS, LODS, STOS, INS, and OUTS). Use of repeat prefixes 
and/or undefined opcodes with other Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable 
behavior.
Some instructions may use F2H or F3H as a mandatory prefix to express distinct functionality.
Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about the most likely code path for 
a branch when used on conditional branch instructions (Jcc).
The operand-size override prefix allows a program to switch between 16- and 32-bit operand sizes. Either size can 
be the default; use of the prefix selects the non-default size. 
Some SSE2/SSE3/SSSE3/SSE4 instructions and instructions using a three-byte sequence of primary opcode bytes 
may use 66H as a mandatory prefix to express distinct functionality.
Other use of the 66H prefix is reserved; such use may cause unpredictable behavior.
The address-size override prefix (67H) allows programs to switch between 16- and 32-bit addressing. Either size 
can be the default; the prefix selects the non-default size. Using this prefix and/or other undefined opcodes when 
operands for the instruction do not reside in memory is reserved; such use may cause unpredictable behavior.

1. Microarchitectural behavior varies; refer to the Intel® 64 and IA-32 Architectures Optimization Reference Manual.
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2.1.2 Opcodes
A primary opcode can be 1, 2, or 3 bytes in length. An additional 3-bit opcode field is sometimes encoded in the 
ModR/M byte. Smaller fields can be defined within the primary opcode. Such fields define the direction of opera-
tion, size of displacements, register encoding, condition codes, or sign extension. Encoding fields used by an 
opcode vary depending on the class of operation.
Two-byte opcode formats for general-purpose and SIMD instructions consist of one of the following: 
• An escape opcode byte 0FH as the primary opcode and a second opcode byte.
• A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, and a second opcode byte (same as previous 

bullet).
For example, CVTDQ2PD consists of the following sequence: F3 0F E6. The first byte is a mandatory prefix (it is not 
considered as a repeat prefix). 
Three-byte opcode formats for general-purpose and SIMD instructions consist of one of the following: 
• An escape opcode byte 0FH as the primary opcode, plus two additional opcode bytes.
• A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, plus two additional opcode bytes (same as 

previous bullet).
For example, PHADDW for XMM registers consists of the following sequence: 66 0F 38 01. The first byte is the 
mandatory prefix.
Valid opcode expressions are defined in Appendix A and Appendix B.

2.1.3 ModR/M and SIB Bytes
Many instructions that refer to an operand in memory have an addressing-form specifier byte (called the ModR/M 
byte) following the primary opcode. The ModR/M byte contains three fields of information:
• The mod field combines with the r/m field to form 32 possible values: eight registers and 24 addressing modes.
• The reg/opcode field specifies either a register number or three more bits of opcode information. The purpose 

of the reg/opcode field is specified in the primary opcode.
• The r/m field can specify a register as an operand or it can be combined with the mod field to encode an 

addressing mode. Sometimes, certain combinations of the mod field and the r/m field are used to express 
opcode information for some instructions.

Certain encodings of the ModR/M byte require a second addressing byte (the SIB byte). The base-plus-index and 
scale-plus-index forms of 32-bit addressing require the SIB byte. The SIB byte includes the following fields:
• The scale field specifies the scale factor.
• The index field specifies the register number of the index register.
• The base field specifies the register number of the base register.
See Section 2.1.5 for the encodings of the ModR/M and SIB bytes.

2.1.4 Displacement and Immediate Bytes
Some addressing forms include a displacement immediately following the ModR/M byte (or the SIB byte if one is 
present). If a displacement is required, it can be 1, 2, or 4 bytes.
If an instruction specifies an immediate operand, the operand always follows any displacement bytes. An imme-
diate operand can be 1, 2 or 4 bytes.
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2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes
The values and corresponding addressing forms of the ModR/M and SIB bytes are shown in Table 2-1 through Table 
2-3: 16-bit addressing forms specified by the ModR/M byte are in Table 2-1 and 32-bit addressing forms are in 
Table 2-2. Table 2-3 shows 32-bit addressing forms specified by the SIB byte. In cases where the reg/opcode field 
in the ModR/M byte represents an extended opcode, valid encodings are shown in Appendix B.
In Table 2-1 and Table 2-2, the Effective Address column lists 32 effective addresses that can be assigned to the 
first operand of an instruction by using the Mod and R/M fields of the ModR/M byte. The first 24 options provide 
ways of specifying a memory location; the last eight (Mod = 11B) provide ways of specifying general-purpose, MMX 
technology and XMM registers. 
The Mod and R/M columns in Table 2-1 and Table 2-2 give the binary encodings of the Mod and R/M fields required 
to obtain the effective address listed in the first column. For example: see the row indicated by Mod = 11B, R/M = 
000B. The row identifies the general-purpose registers EAX, AX or AL; MMX technology register MM0; or XMM 
register XMM0. The register used is determined by the opcode byte and the operand-size attribute.
Now look at the seventh row in either table (labeled “REG =”). This row specifies the use of the 3-bit Reg/Opcode 
field when the field is used to give the location of a second operand. The second operand must be a general-
purpose, MMX technology, or XMM register. Rows one through five list the registers that may correspond to the 
value in the table. Again, the register used is determined by the opcode byte along with the operand-size attribute. 
If the instruction does not require a second operand, then the Reg/Opcode field may be used as an opcode exten-
sion. This use is represented by the sixth row in the tables (labeled “/digit (Opcode)”). Note that values in row six 
are represented in decimal form.
The body of Table 2-1 and Table 2-2 (under the label “Value of ModR/M Byte (in Hexadecimal)”) contains a 32 by 
8 array that presents all of 256 values of the ModR/M byte (in hexadecimal). Bits 3, 4, and 5 are specified by the 
column of the table in which a byte resides. The row specifies bits 0, 1, and 2; and bits 6 and 7. The figure below 
demonstrates interpretation of one table value.

Figure 2-2.  Table Interpretation of ModR/M Byte (C8H)

Mod 11
RM 000
REG = 001
C8H 11001000

/digit (Opcode);
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NOTES:
1. The default segment register is SS for the effective addresses containing a BP index, DS for other effective addresses.
2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is added to the index. 
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is sign-extended and added to the

index. 

Table 2-1.  16-Bit Addressing Forms with the ModR/M Byte

r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP1

EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[BX+SI]
[BX+DI]
[BP+SI]
[BP+DI]
[SI]
[DI]
disp162

[BX]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[BX+SI]+disp83

[BX+DI]+disp8
[BP+SI]+disp8
[BP+DI]+disp8
[SI]+disp8
[DI]+disp8
[BP]+disp8
[BX]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[BX+SI]+disp16
[BX+DI]+disp16
[BP+SI]+disp16
[BP+DI]+disp16
[SI]+disp16
[DI]+disp16
[BP]+disp16
[BX]+disp16

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM1/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AHMM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF
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NOTES:
1. The [--][--] nomenclature means a SIB follows the ModR/M byte.
2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB byte if one is present) and that is

added to the index.
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB byte if one is present) and that is

sign-extended and added to the index.

Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal). General purpose registers used 
as a base are indicated across the top of the table, along with corresponding values for the SIB byte’s base field. 
Table rows in the body of the table indicate the register used as the index (SIB byte bits 3, 4, and 5) and the scaling 
factor (determined by SIB byte bits 6 and 7).

Table 2-2.  32-Bit Addressing Forms with the ModR/M Byte
r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP
EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
[--][--]1
disp322

[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[EAX]+disp83

[ECX]+disp8
[EDX]+disp8
[EBX]+disp8
[--][--]+disp8
[EBP]+disp8
[ESI]+disp8
[EDI]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[EAX]+disp32
[ECX]+disp32
[EDX]+disp32
[EBX]+disp32
[--][--]+disp32
[EBP]+disp32
[ESI]+disp32
[EDI]+disp32

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AH/MM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF
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NOTES:
1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8 or disp32 + [EBP]. This provides the

following address modes:
MOD bits Effective Address
00 [scaled index] + disp32 
01 [scaled index] + disp8 + [EBP]
10  [scaled index] + disp32 + [EBP]

2.2 IA-32E MODE
IA-32e mode has two sub-modes. These are: 
• Compatibility Mode. Enables a 64-bit operating system to run most legacy protected mode software 

unmodified. 
• 64-Bit Mode. Enables a 64-bit operating system to run applications written to access 64-bit address space. 

2.2.1 REX Prefixes
REX prefixes are instruction-prefix bytes used in 64-bit mode. They do the following:
• Specify GPRs and SSE registers.

Table 2-3.  32-Bit Addressing Forms with the SIB Byte
r32
(In decimal) Base =
(In binary) Base =

EAX
0
000

ECX
1
001

EDX
2
010

EBX
3
011

ESP
4
100

[*]
5
101

ESI
6
110

EDI
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
none
[EBP]
[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

[EAX*2]
[ECX*2]
[EDX*2]
[EBX*2]
none
[EBP*2]
[ESI*2]
[EDI*2]

01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

[EAX*4]
[ECX*4]
[EDX*4]
[EBX*4]
none
[EBP*4]
[ESI*4]
[EDI*4]

10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
99
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

[EAX*8]
[ECX*8]
[EDX*8]
[EBX*8]
none
[EBP*8]
[ESI*8]
[EDI*8]

11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF
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INSTRUCTION FORMAT
• Specify 64-bit operand size.
• Specify extended control registers.
Not all instructions require a REX prefix in 64-bit mode. A REX prefix is necessary only if an instruction references 
one of the extended registers or one of the byte registers SPL, BPL, SIL, DIL; or uses a 64-bit operand. A REX prefix 
is ignored, as are its individual bits, when it is not needed for an instruction or when it does not immediately 
precede the opcode byte or the escape opcode byte (0FH) of an instruction for which it is needed. This has the 
implication that only one REX prefix, properly located, can affect an instruction.
When a REX prefix is used in conjunction with an instruction containing a mandatory prefix, the mandatory prefix 
must come before the REX so the REX prefix can immediately precede the opcode or the escape byte. For example, 
CVTDQ2PD with a REX prefix should have REX placed between F3 and 0F E6. Other placements are ignored. The 
instruction-size limit of 15 bytes still applies to instructions with a REX prefix. See Figure 2-3.

2.2.1.1  Encoding
Intel 64 and IA-32 instruction formats specify up to three registers by using 3-bit fields in the encoding, depending 
on the format:
• ModR/M: the reg and r/m fields of the ModR/M byte.
• ModR/M with SIB: the reg field of the ModR/M byte, the base and index fields of the SIB (scale, index, base) 

byte.
• Instructions without ModR/M: the reg field of the opcode.
In 64-bit mode, these formats do not change. Bits needed to define fields in the 64-bit context are provided by the 
addition of REX prefixes.

2.2.1.2  More on REX Prefix Fields 
REX prefixes are a set of 16 opcodes that span one row of the opcode map and occupy entries 40H to 4FH. These 
opcodes represent valid instructions (INC or DEC) in IA-32 operating modes and in compatibility mode. In 64-bit 
mode, the same opcodes represent the instruction prefix REX and are not treated as individual instructions. 
The single-byte-opcode forms of the INC/DEC instructions are not available in 64-bit mode. INC/DEC functionality 
is still available using ModR/M forms of the same instructions (opcodes FF/0 and FF/1). 
See Table 2-4 for a summary of the REX prefix format. Figure 2-4 though Figure 2-7 show examples of REX prefix 
fields in use. Some combinations of REX prefix fields are invalid. In such cases, the prefix is ignored. Some addi-
tional information follows:
• Setting REX.W can be used to determine the operand size but does not solely determine operand width. Like 

the 66H size prefix, 64-bit operand size override has no effect on byte-specific operations. 
• For non-byte operations: if a 66H prefix is used with prefix (REX.W = 1), 66H is ignored. 
• If a 66H override is used with REX and REX.W = 0, the operand size is 16 bits.
• REX.R modifies the ModR/M reg field when that field encodes a GPR, SSE, control or debug register. REX.R is 

ignored when ModR/M specifies other registers or defines an extended opcode.
• REX.X bit modifies the SIB index field.

Figure 2-3.  Prefix Ordering in 64-bit Mode

REX

Immediate data 
of 1, 2, or 4 
bytes or none

Address 
displacement of 
1, 2, or 4 bytes 

1 byte
(if required)

1 byte
(if required)

1-, 2-, or 
3-byte 
opcode

(optional)Grp 1, Grp 
2, Grp 3, 
Grp 4
(optional)

Legacy
Prefix Opcode ModR/M SIB Displacement Immediate

Prefixes
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INSTRUCTION FORMAT
• REX.B either modifies the base in the ModR/M r/m field or SIB base field; or it modifies the opcode reg field 
used for accessing GPRs.

Table 2-4.  REX Prefix Fields [BITS: 0100WRXB]

Field Name Bit Position Definition

- 7:4 0100

W 3 0 = Operand size determined by CS.D

1 = 64 Bit Operand Size

R 2 Extension of the ModR/M reg field

X 1 Extension of the SIB index field

B 0 Extension of the ModR/M r/m field, SIB base field, or Opcode reg field

Figure 2-4.  Memory Addressing Without an SIB Byte; REX.X Not Used

Figure 2-5.  Register-Register Addressing (No Memory Operand); REX.X Not Used

REX PREFIX  

0100WR0B

Opcode mod

≠11

reg r/m

Rrrr Bbbb

ModRM Byte

rrr bbb

OM17Xfig1-3

REX PREFIX  

0100WR0B

Opcode mod

11

reg r/m

Rrrr Bbbb

ModRM Byte

rrr bbb

OM17Xfig1-4
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In the IA-32 architecture, byte registers (AH, AL, BH, BL, CH, CL, DH, and DL) are encoded in the ModR/M byte’s 
reg field, the r/m field or the opcode reg field as registers 0 through 7. REX prefixes provide an additional 
addressing capability for byte-registers that makes the least-significant byte of GPRs available for byte operations.
Certain combinations of the fields of the ModR/M byte and the SIB byte have special meaning for register encod-
ings. For some combinations, fields expanded by the REX prefix are not decoded. Table 2-5 describes how each 
case behaves.

Figure 2-6.  Memory Addressing With a SIB Byte

Figure 2-7.  Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used

Table 2-5.  Special Cases of REX Encodings 

ModR/M or 
SIB 

Sub-field
Encodings

Compatibility Mode 
Operation

Compatibility Mode 
Implications Additional Implications

ModR/M Byte mod ? 11 SIB byte present. SIB byte required for 
ESP-based 
addressing.

REX prefix adds a fourth bit (b) which is not decoded 
(don't care).

SIB byte also required for R12-based addressing.
r/m = 
b*100(ESP)

ModR/M Byte mod = 0 Base register not 
used.

EBP without a 
displacement must be 
done using 

mod = 01 with 
displacement of 0.

REX prefix adds a fourth bit (b) which is not decoded 
(don't care).

Using RBP or R13 without displacement must be 
done using mod = 01 with a displacement of 0.

r/m = 
b*101(EBP)

SIB Byte index = 
0100(ESP)

Index register not 
used.

ESP cannot be used 
as an index register.

REX prefix adds a fourth bit (b) which is decoded.

There are no additional implications. The expanded 
index field allows distinguishing RSP from R12, 
therefore R12 can be used as an index.

mod

≠ 11

ModRM Byte

r/m

100

reg

rrr

scale

ss

SIB Byte

REX PREFIX  

0100WRXB

Opcode

Rrrr

base

Bbbb

bbb

Xxxx

index

xxx

OM17Xfig1-5

REX PREFIX  

0100W00B

Opcode

Bbbb

reg

bbb

OM17Xfig1-6
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2.2.1.3  Displacement 
Addressing in 64-bit mode uses existing 32-bit ModR/M and SIB encodings. The ModR/M and SIB displacement 
sizes do not change. They remain 8 bits or 32 bits and are sign-extended to 64 bits.

2.2.1.4  Direct Memory-Offset MOVs
In 64-bit mode, direct memory-offset forms of the MOV instruction are extended to specify a 64-bit immediate 
absolute address. This address is called a moffset. No prefix is needed to specify this 64-bit memory offset. For 
these MOV instructions, the size of the memory offset follows the address-size default (64 bits in 64-bit mode). See 
Table 2-6.

2.2.1.5  Immediates 
In 64-bit mode, the typical size of immediate operands remains 32 bits. When the operand size is 64 bits, the 
processor sign-extends all immediates to 64 bits prior to their use. 
Support for 64-bit immediate operands is accomplished by expanding the semantics of the existing move (MOV 
reg, imm16/32) instructions. These instructions (opcodes B8H – BFH) move 16-bits or 32-bits of immediate data 
(depending on the effective operand size) into a GPR. When the effective operand size is 64 bits, these instructions 
can be used to load an immediate into a GPR. A REX prefix is needed to override the 32-bit default operand size to 
a 64-bit operand size. 
For example:

48 B8 8877665544332211 MOV RAX,1122334455667788H

2.2.1.6  RIP-Relative Addressing
A new addressing form, RIP-relative (relative instruction-pointer) addressing, is implemented in 64-bit mode. An 
effective address is formed by adding displacement to the 64-bit RIP of the next instruction.
In IA-32 architecture and compatibility mode, addressing relative to the instruction pointer is available only with 
control-transfer instructions. In 64-bit mode, instructions that use ModR/M addressing can use RIP-relative 
addressing. Without RIP-relative addressing, all ModR/M modes address memory relative to zero. 
RIP-relative addressing allows specific ModR/M modes to address memory relative to the 64-bit RIP using a signed 
32-bit displacement. This provides an offset range of ±2GB from the RIP. Table 2-7 shows the ModR/M and SIB 
encodings for RIP-relative addressing. Redundant forms of 32-bit displacement-addressing exist in the current 
ModR/M and SIB encodings. There is one ModR/M encoding and there are several SIB encodings. RIP-relative 
addressing is encoded using a redundant form. 

SIB Byte base = 
0101(EBP)

Base register is 
unused if mod = 0.

Base register 
depends on mod 
encoding.

REX prefix adds a fourth bit (b) which is not decoded.

This requires explicit displacement to be used with 
EBP/RBP or R13.

NOTES:
* Don’t care about value of REX.B

Table 2-6.  Direct Memory Offset Form of MOV

Opcode Instruction

A0 MOV AL, moffset

A1 MOV EAX, moffset

A2 MOV moffset, AL

A3 MOV moffset, EAX

Table 2-5.  Special Cases of REX Encodings  (Contd.)

ModR/M or 
SIB 

Sub-field
Encodings

Compatibility Mode 
Operation

Compatibility Mode 
Implications

Additional Implications
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In 64-bit mode, the ModR/M Disp32 (32-bit displacement) encoding is re-defined to be RIP+Disp32 rather than 
displacement-only. See Table 2-7.

The ModR/M encoding for RIP-relative addressing does not depend on using a prefix. Specifically, the r/m bit field 
encoding of 101B (used to select RIP-relative addressing) is not affected by the REX prefix. For example, selecting 
R13 (REX.B = 1, r/m = 101B) with mod = 00B still results in RIP-relative addressing. The 4-bit r/m field of REX.B 
combined with ModR/M is not fully decoded. In order to address R13 with no displacement, software must encode 
R13 + 0 using a 1-byte displacement of zero. 
RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. The use of the address-size prefix 
does not disable RIP-relative addressing. The effect of the address-size prefix is to truncate and zero-extend the 
computed effective address to 32 bits. 

2.2.1.7  Default 64-Bit Operand Size
In 64-bit mode, two groups of instructions have a default operand size of 64 bits (do not need a REX prefix for this 
operand size). These are:
• Near branches.
• All instructions, except far branches, that implicitly reference the RSP.

2.2.2 Additional Encodings for Control and Debug Registers
In 64-bit mode, more encodings for control and debug registers are available. The REX.R bit is used to modify the 
ModR/M reg field when that field encodes a control or debug register (see Table 2-4). These encodings enable the 
processor to address CR8-CR15 and DR8- DR15. An additional control register (CR8) is defined in 64-bit mode. CR8 
becomes the Task Priority Register (TPR). 
In the first implementation of IA-32e mode, CR9-CR15 and DR8-DR15 are not implemented. Any attempt to access 
unimplemented registers results in an invalid-opcode exception (#UD).

Table 2-7.  RIP-Relative Addressing

ModR/M and SIB Sub-field Encodings Compatibility Mode 
Operation

64-bit Mode 
Operation Additional Implications in 64-bit mode

ModR/M Byte mod = 00 Disp32 RIP + Disp32 In 64-bit mode, if one wants to use a Disp32 
without specifying a base register, one can use a 
SIB byte encoding (indicated by ModR/M.r/m=100) 
as described in the next row.

r/m = 101 (none)

SIB Byte base = 101 (none) If mod = 00, Disp32 Same as legacy None

index = 100 (none)

scale = 0, 1, 2, 4
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2.3 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX)
Intel AVX instructions are encoded using an encoding scheme that combines prefix bytes, opcode extension field, 
operand encoding fields, and vector length encoding capability into a new prefix, referred to as VEX. In the VEX 
encoding scheme, the VEX prefix may be two or three bytes long, depending on the instruction semantics. Despite 
the two-byte or three-byte length of the VEX prefix, the VEX encoding format provides a more compact represen-
tation/packing of the components of encoding an instruction in Intel 64 architecture. The VEX encoding scheme 
also allows more headroom for future growth of Intel 64 architecture.

2.3.1 Instruction Format
Instruction encoding using VEX prefix provides several advantages:
• Instruction syntax support for three operands and up-to four operands when necessary. For example, the third 

source register used by VBLENDVPD is encoded using bits 7:4 of the immediate byte.
• Encoding support for vector length of 128 bits (using XMM registers) and 256 bits (using YMM registers).
• Encoding support for instruction syntax of non-destructive source operands.
• Elimination of escape opcode byte (0FH), SIMD prefix byte (66H, F2H, F3H) via a compact bit field represen-

tation within the VEX prefix.
• Elimination of the need to use REX prefix to encode the extended half of general-purpose register sets (R8-

R15) for direct register access, memory addressing, or accessing XMM8-XMM15 (including YMM8-YMM15).
• Flexible and more compact bit fields are provided in the VEX prefix to retain the full functionality provided by 

REX prefix. REX.W, REX.X, REX.B functionalities are provided in the three-byte VEX prefix only because only a 
subset of SIMD instructions need them. 

• Extensibility for future instruction extensions without significant instruction length increase.
Figure 2-8 shows the Intel 64 instruction encoding format with VEX prefix support. Legacy instruction without a 
VEX prefix is fully supported and unchanged. The use of VEX prefix in an Intel 64 instruction is optional, but a VEX 
prefix is required for Intel 64 instructions that operate on YMM registers or support three and four operand syntax. 
VEX prefix is not a constant-valued, “single-purpose” byte like 0FH, 66H, F2H, F3H in legacy SSE instructions. VEX 
prefix provides substantially richer capability than the REX prefix. 

Figure 2-8.  Instruction Encoding Format with VEX Prefix

2.3.2 VEX and the LOCK prefix
Any VEX-encoded instruction with a LOCK prefix preceding VEX will #UD.

2.3.3 VEX and the 66H, F2H, and F3H prefixes
Any VEX-encoded instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.

2.3.4 VEX and the REX prefix
Any VEX-encoded instruction with a REX prefix proceeding VEX will #UD. 

ModR/M

1

[Prefixes] [VEX] OPCODE [SIB] [DISP] [IMM]

2,3 1 0,1 0,1,2,4 0,1# Bytes
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2.3.5 The VEX Prefix 
The VEX prefix is encoded in either the two-byte form (the first byte must be C5H) or in the three-byte form (the 
first byte must be C4H). The two-byte VEX is used mainly for 128-bit, scalar, and the most common 256-bit AVX 
instructions; while the three-byte VEX provides a compact replacement of REX and 3-byte opcode instructions 
(including AVX and FMA instructions). Beyond the first byte of the VEX prefix, it consists of a number of bit fields 
providing specific capability, they are shown in Figure 2-9. 
The bit fields of the VEX prefix can be summarized by its functional purposes:
• Non-destructive source register encoding (applicable to three and four operand syntax): This is the first source 

operand in the instruction syntax. It is represented by the notation, VEX.vvvv. This field is encoded using 1’s 
complement form (inverted form), i.e., XMM0/YMM0/R0 is encoded as 1111B, XMM15/YMM15/R15 is encoded 
as 0000B.

• Vector length encoding: This 1-bit field represented by the notation VEX.L. L= 0 means vector length is 128 bits 
wide, L=1 means 256 bit vector. The value of this field is written as VEX.128 or VEX.256 in this document to 
distinguish encoded values of other VEX bit fields. 

• REX prefix functionality: Full REX prefix functionality is provided in the three-byte form of VEX prefix. However 
the VEX bit fields providing REX functionality are encoded using 1’s complement form, i.e., XMM0/YMM0/R0 is 
encoded as 1111B, XMM15/YMM15/R15 is encoded as 0000B. 

— Two-byte form of the VEX prefix only provides the equivalent functionality of REX.R, using 1’s complement 
encoding. This is represented as VEX.R.

— Three-byte form of the VEX prefix provides REX.R, REX.X, REX.B functionality using 1’s complement 
encoding and three dedicated bit fields represented as VEX.R, VEX.X, VEX.B.

— Three-byte form of the VEX prefix provides the functionality of REX.W only to specific instructions that need 
to override default 32-bit operand size for a general purpose register to 64-bit size in 64-bit mode. For 
those applicable instructions, VEX.W field provides the same functionality as REX.W. VEX.W field can 
provide completely different functionality for other instructions.

Consequently, the use of REX prefix with VEX encoded instructions is not allowed. However, the intent of the
REX prefix for expanding register set is reserved for future instruction set extensions using VEX prefix
encoding format.

• Compaction of SIMD prefix: Legacy SSE instructions effectively use SIMD prefixes (66H, F2H, F3H) as an 
opcode extension field. VEX prefix encoding allows the functional capability of such legacy SSE instructions 
(operating on XMM registers, bits 255:128 of corresponding YMM unmodified) to be encoded using the VEX.pp 
field without the presence of any SIMD prefix. The VEX-encoded 128-bit instruction will zero-out bits 255:128 
of the destination register. VEX-encoded instruction may have 128 bit vector length or 256 bits length.

• Compaction of two-byte and three-byte opcode: More recently introduced legacy SSE instructions employ two 
and three-byte opcode. The one or two leading bytes are: 0FH, and 0FH 3AH/0FH 38H. The one-byte escape 
(0FH) and two-byte escape (0FH 3AH, 0FH 38H) can also be interpreted as an opcode extension field. The 
VEX.mmmmm field provides compaction to allow many legacy instruction to be encoded without the constant 
byte sequence, 0FH, 0FH 3AH, 0FH 38H. These VEX-encoded instruction may have 128 bit vector length or 256 
bits length.

The VEX prefix is required to be the last prefix and immediately precedes the opcode bytes. It must follow any other 
prefixes. If VEX prefix is present a REX prefix is not supported. 
The 3-byte VEX leaves room for future expansion with 3 reserved bits. REX and the 66h/F2h/F3h prefixes are 
reclaimed for future use.
VEX prefix has a two-byte form and a three byte form. If an instruction syntax can be encoded using the two-byte 
form, it can also be encoded using the three byte form of VEX. The latter increases the length of the instruction by 
one byte. This may be helpful in some situations for code alignment. 
The VEX prefix supports 256-bit versions of floating-point SSE, SSE2, SSE3, and SSE4 instructions. Note, certain 
new instruction functionality can only be encoded with the VEX prefix.
The VEX prefix will #UD on any instruction containing MMX register sources or destinations. 
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Figure 2-9.  VEX bit fields

The following subsections describe the various fields in two or three-byte VEX prefix.

2.3.5.1  VEX Byte 0, bits[7:0] 
VEX Byte 0, bits [7:0] must contain the value 11000101b (C5h) or 11000100b (C4h). The 3-byte VEX uses the C4h 
first byte, while the 2-byte VEX uses the C5h first byte.

2.3.5.2  VEX Byte 1, bit [7] - ‘R’
VEX Byte 1, bit [7] contains a bit analogous to a bit inverted REX.R. In protected and compatibility modes the bit 
must be set to ‘1’ otherwise the instruction is LES or LDS.

11000100 1

670

 

vvvv

1 03 2

L  

7

R: REX.R in 1’s complement (inverted) form

00000: Reserved for future use (will #UD)
00001: implied 0F leading opcode byte
00010: implied 0F 38 leading opcode bytes
00011: implied 0F 3A leading opcode bytes
00100-11111: Reserved for future use (will #UD)

Byte 0 Byte 2
(Bit Position)

vvvv: a register specifier (in 1’s complement form) or 1111 if unused.

67 0

R X B

Byte 1

pp: opcode extension providing equivalent functionality of a SIMD prefix

W: opcode specific (use like REX.W, or used for opcode

m-mmmm

5

m-mmmm: 

W

L: Vector Length

0: Same as REX.R=1 (64-bit mode only)
1: Same as REX.R=0 (must be 1 in 32-bit mode)

4

pp 3-byte VEX

11000101 1

670

vvvv

1 03 2

L 

7

R pp 2-byte VEX

B: REX.B in 1’s complement (inverted) form

0: Same as REX.B=1 (64-bit mode only)
1: Same as REX.B=0 (Ignored in 32-bit mode).

 extension, or ignored, depending on the opcode byte)

0: scalar or 128-bit vector
1: 256-bit vector

00: None
01: 66
10: F3
11: F2

0: Same as REX.X=1 (64-bit mode only)
1: Same as REX.X=0 (must be 1 in 32-bit mode)

X: REX.X in 1’s complement (inverted) form
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This bit is present in both 2- and 3-byte VEX prefixes.
The usage of WRXB bits for legacy instructions is explained in detail section 2.2.1.2 of Intel 64 and IA-32 Architec-
tures Software developer’s manual, Volume 2A.
This bit is stored in bit inverted format.

2.3.5.3  3-byte VEX byte 1, bit[6] - ‘X’ 
Bit[6] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.X. It is an extension of the SIB Index 
field in 64-bit modes. In 32-bit modes, this bit must be set to ‘1’ otherwise the instruction is LES or LDS.
This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2.3.5.4  3-byte VEX byte 1, bit[5] - ‘B’ 
Bit[5] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.B. In 64-bit modes, it is an extension 
of the ModR/M r/m field, or the SIB base field. In 32-bit modes, this bit is ignored.
This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2.3.5.5  3-byte VEX byte 2, bit[7] - ‘W’ 
Bit[7] of the 3-byte VEX byte 2 is represented by the notation VEX.W. It can provide following functions, depending 
on the specific opcode. 
• For AVX instructions that have equivalent legacy SSE instructions (typically these SSE instructions have a 

general-purpose register operand with its operand size attribute promotable by REX.W), if REX.W promotes 
the operand size attribute of the general-purpose register operand in legacy SSE instruction, VEX.W has same 
meaning in the corresponding AVX equivalent form. In 32-bit modes for these instructions, VEX.W is silently 
ignored.

• For AVX instructions that have equivalent legacy SSE instructions (typically these SSE instructions have oper-
ands with their operand size attribute fixed and not promotable by REX.W), if REX.W is don’t care in legacy 
SSE instruction, VEX.W is ignored in the corresponding AVX equivalent form irrespective of mode.

• For new AVX instructions where VEX.W has no defined function (typically these meant the combination of the 
opcode byte and VEX.mmmmm did not have any equivalent SSE functions), VEX.W is reserved as zero and 
setting to other than zero will cause instruction to #UD.

2.3.5.6  2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘vvvv’ the Source or Dest 
Register Specifier

In 32-bit mode the VEX first byte C4 and C5 alias onto the LES and LDS instructions. To maintain compatibility with 
existing programs the VEX 2nd byte, bits [7:6] must be 11b. To achieve this, the VEX payload bits are selected to 
place only inverted, 64-bit valid fields (extended register selectors) in these upper bits. 
The 2-byte VEX Byte 1, bits [6:3] and the 3-byte VEX, Byte 2, bits [6:3] encode a field (shorthand VEX.vvvv) that 
for instructions with 2 or more source registers and an XMM or YMM or memory destination encodes the first source 
register specifier stored in inverted (1’s complement) form. 
VEX.vvvv is not used by the instructions with one source (except certain shifts, see below) or on instructions with 
no XMM or YMM or memory destination. If an instruction does not use VEX.vvvv then it should be set to 1111b 
otherwise instruction will #UD.
In 64-bit mode all 4 bits may be used. See Table  for the encoding of the XMM or YMM registers. In 32-bit and 16-
bit modes bit 6 must be 1 (if bit 6 is not 1, the 2-byte VEX version will generate LDS instruction and the 3-byte VEX 
version will ignore this bit).
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The VEX.vvvv field is encoded in bit inverted format for accessing a register operand.

2.3.6 Instruction Operand Encoding and VEX.vvvv, ModR/M
VEX-encoded instructions support three-operand and four-operand instruction syntax. Some VEX-encoded 
instructions have syntax with less than three operands, e.g., VEX-encoded pack shift instructions support one 
source operand and one destination operand). 
The roles of VEX.vvvv, reg field of ModR/M byte (ModR/M.reg), r/m field of ModR/M byte (ModR/M.r/m) with 
respect to encoding destination and source operands vary with different type of instruction syntax.
The role of VEX.vvvv can be summarized to three situations:
• VEX.vvvv encodes the first source register operand, specified in inverted (1’s complement) form and is valid for 

instructions with 2 or more source operands. 
• VEX.vvvv encodes the destination register operand, specified in 1’s complement form for certain vector shifts. 

The instructions where VEX.vvvv is used as a destination are listed in Table 2-9. The notation in the “Opcode” 
column in Table 2-9 is described in detail in section 3.1.1.

• VEX.vvvv does not encode any operand, the field is reserved and should contain 1111b. 

Table 2-8.  VEX.vvvv to Register Name Mapping

VEX.vvvv Dest Register
General-Purpose Register (If 

Applicable)1

NOTES:
1. See Section 2.6, “VEX Encoding Support for GPR Instructions” for additional details.

Valid in Legacy/Compatibility 32-bit 
modes?2

2. Only the first eight General-Purpose Registers are accessible/encodable in 16/32b modes.

1111B XMM0/YMM0 RAX/EAX Valid

1110B XMM1/YMM1 RCX/ECX Valid

1101B XMM2/YMM2 RDX/EDX Valid

1100B XMM3/YMM3 RBX/EBX Valid

1011B XMM4/YMM4 RSP/ESP Valid

1010B XMM5/YMM5 RBP/EBP Valid

1001B XMM6/YMM6 RSI/ESI Valid

1000B XMM7/YMM7 RDI/EDI Valid

0111B XMM8/YMM8 R8/R8D Invalid

0110B XMM9/YMM9 R9/R9D Invalid

0101B XMM10/YMM10 R10/R10D Invalid

0100B XMM11/YMM11 R11/R11D Invalid

0011B XMM12/YMM12 R12/R12D Invalid

0010B XMM13/YMM13 R13/R13D Invalid

0001B XMM14/YMM14 R14/R14D Invalid

0000B XMM15/YMM15 R15/R15D Invalid

Table 2-9.  Instructions with a VEX.vvvv Destination 

Opcode Instruction mnemonic

VEX.128.66.0F 73 /7 ib VPSLLDQ xmm1, xmm2, imm8

VEX.128.66.0F 73 /3 ib VPSRLDQ xmm1, xmm2, imm8
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The role of ModR/M.r/m field can be summarized to two situations:
• ModR/M.r/m encodes the instruction operand that references a memory address.
• For some instructions that do not support memory addressing semantics, ModR/M.r/m encodes either the 

destination register operand or a source register operand.
The role of ModR/M.reg field can be summarized to two situations:
• ModR/M.reg encodes either the destination register operand or a source register operand.
• For some instructions, ModR/M.reg is treated as an opcode extension and not used to encode any instruction 

operand.
For instruction syntax that support four operands, VEX.vvvv, ModR/M.r/m, ModR/M.reg encodes three of the four 
operands. The role of bits 7:4 of the immediate byte serves the following situation:
• Imm8[7:4] encodes the third source register operand.

2.3.6.1  3-byte VEX byte 1, bits[4:0] - “m-mmmm” 
Bits[4:0] of the 3-byte VEX byte 1 encode an implied leading opcode byte (0F, 0F 38, or 0F 3A). Several bits are 
reserved for future use and will #UD unless 0. 

VEX.m-mmmm is only available on the 3-byte VEX. The 2-byte VEX implies a leading 0Fh opcode byte.

2.3.6.2  2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L”
The vector length field, VEX.L, is encoded in bit[2] of either the second byte of 2-byte VEX, or the third byte of 3-
byte VEX. If “VEX.L = 1”, it indicates 256-bit vector operation. “VEX.L = 0” indicates scalar and 128-bit vector 
operations.
The instruction VZEROUPPER is a special case that is encoded with VEX.L = 0, although its operation zero’s bits 
255:128 of all YMM registers accessible in the current operating mode. See Table 2-11.

VEX.128.66.0F 71 /2 ib VPSRLW xmm1, xmm2, imm8

VEX.128.66.0F 72 /2 ib VPSRLD xmm1, xmm2, imm8

VEX.128.66.0F 73 /2 ib VPSRLQ xmm1, xmm2, imm8

VEX.128.66.0F 71 /4 ib VPSRAW xmm1, xmm2, imm8

VEX.128.66.0F 72 /4 ib VPSRAD xmm1, xmm2, imm8

VEX.128.66.0F 71 /6 ib VPSLLW xmm1, xmm2, imm8

VEX.128.66.0F 72 /6 ib VPSLLD xmm1, xmm2, imm8

VEX.128.66.0F 73 /6 ib VPSLLQ xmm1, xmm2, imm8

Table 2-10.  VEX.m-mmmm Interpretation

VEX.m-mmmm Implied Leading Opcode Bytes

00000B Reserved

00001B 0F

00010B 0F 38

00011B 0F 3A

00100-11111B Reserved

(2-byte VEX) 0F

Table 2-9.  Instructions with a VEX.vvvv Destination  (Contd.)

Opcode Instruction mnemonic
2-18 Vol. 2A



INSTRUCTION FORMAT
2.3.6.3  2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “pp”
Up to one implied prefix is encoded by bits[1:0] of either the 2-byte VEX byte 1 or the 3-byte VEX byte 2. The prefix 
behaves as if it was encoded prior to VEX, but after all other encoded prefixes. See Table 2-12.

2.3.7 The Opcode Byte
One (and only one) opcode byte follows the 2 or 3 byte VEX. Legal opcodes are specified in Appendix B, in color. 
Any instruction that uses illegal opcode will #UD.

2.3.8 The ModR/M, SIB, and Displacement Bytes
The encodings are unchanged but the interpretation of reg_field or rm_field differs (see above).

2.3.9 The Third Source Operand (Immediate Byte)
VEX-encoded instructions can support instruction with a four operand syntax. VBLENDVPD, VBLENDVPS, and 
PBLENDVB use imm8[7:4] to encode one of the source registers. 

2.3.10 Intel® AVX Instructions and the Upper 128-bits of YMM registers
If an instruction with a destination XMM register is encoded with a VEX prefix, the processor zeroes the upper bits 
(above bit 128) of the equivalent YMM register. Legacy SSE instructions without VEX preserve the upper bits.

2.3.10.1  Vector Length Transition and Programming Considerations 
An instruction encoded with a VEX.128 prefix that loads a YMM register operand operates as follows:
• Data is loaded into bits 127:0 of the register
• Bits above bit 127 in the register are cleared.
Thus, such an instruction clears bits 255:128 of a destination YMM register on processors with a maximum vector-
register width of 256 bits. In the event that future processors extend the vector registers to greater widths, an 
instruction encoded with a VEX.128 or VEX.256 prefix will also clear any bits beyond bit 255. (This is in contrast 
with legacy SSE instructions, which have no VEX prefix; these modify only bits 127:0 of any destination register 
operand.)
Programmers should bear in mind that instructions encoded with VEX.128 and VEX.256 prefixes will clear any 
future extensions to the vector registers. A calling function that uses such extensions should save their state before 
calling legacy functions. This is not possible for involuntary calls (e.g., into an interrupt-service routine). It is 

Table 2-11.  VEX.L Interpretation

VEX.L Vector Length

0 128-bit (or 32/64-bit scalar)

1 256-bit

Table 2-12.  VEX.pp Interpretation

pp Implies this prefix after other prefixes but before VEX

00B None

01B 66

10B F3

11B F2
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recommended that software handling involuntary calls accommodate this by not executing instructions encoded 
with VEX.128 and VEX.256 prefixes. In the event that it is not possible or desirable to restrict these instructions, 
then software must take special care to avoid actions that would, on future processors, zero the upper bits of vector 
registers. 
Processors that support further vector-register extensions (defining bits beyond bit 255) will also extend the 
XSAVE and XRSTOR instructions to save and restore these extensions. To ensure forward compatibility, software 
that handles involuntary calls and that uses instructions encoded with VEX.128 and VEX.256 prefixes should first 
save and then restore the vector registers (with any extensions) using the XSAVE and XRSTOR instructions with 
save/restore masks that set bits that correspond to all vector-register extensions. Ideally, software should rely on 
a mechanism that is cognizant of which bits to set. (E.g., an OS mechanism that sets the save/restore mask bits 
for all vector-register extensions that are enabled in XCR0.) Saving and restoring state with instructions other than 
XSAVE and XRSTOR will, on future processors with wider vector registers, corrupt the extended state of the vector 
registers - even if doing so functions correctly on processors supporting 256-bit vector registers. (The same is true 
if XSAVE and XRSTOR are used with a save/restore mask that does not set bits corresponding to all supported 
extensions to the vector registers.)

2.3.11 Intel® AVX Instruction Length
The Intel AVX instructions described in this document (including VEX and ignoring other prefixes) do not exceed 11 
bytes in length, but may increase in the future. The maximum length of an Intel 64 and IA-32 instruction remains 
15 bytes.

2.3.12 Vector SIB (VSIB) Memory Addressing 
In Intel® Advanced Vector Extensions 2 (Intel® AVX2), an SIB byte that follows the ModR/M byte can support VSIB 
memory addressing to an array of linear addresses. VSIB addressing is only supported in a subset of Intel AVX2 
instructions. VSIB memory addressing requires 32-bit or 64-bit effective address. In 32-bit mode, VSIB addressing 
is not supported when address size attribute is overridden to 16 bits. In 16-bit protected mode, VSIB memory 
addressing is permitted if address size attribute is overridden to 32 bits. Additionally, VSIB memory addressing is 
supported only with VEX prefix.
In VSIB memory addressing, the SIB byte consists of:
• The scale field (bit 7:6) specifies the scale factor.
• The index field (bits 5:3) specifies the register number of the vector index register, each element in the vector 

register specifies an index.
• The base field (bits 2:0) specifies the register number of the base register.
Table 2-13 shows the 32-bit VSIB addressing form. It is organized to give 256 possible values of the SIB byte (in 
hexadecimal). General purpose registers used as a base are indicated across the top of the table, along with corre-
sponding values for the SIB byte’s base field. The register names also include R8D-R15D applicable only in 64-bit 
mode (when address size override prefix is used, but the value of VEX.B is not shown in Table 2-13). In 32-bit 
mode, R8D-R15D does not apply.
Table rows in the body of the table indicate the vector index register used as the index field and each supported 
scaling factor shown separately. Vector registers used in the index field can be XMM or YMM registers. The left-
most column includes vector registers VR8-VR15 (i.e., XMM8/YMM8-XMM15/YMM15), which are only available in 
64-bit mode and does not apply if encoding in 32-bit mode. 
2-20 Vol. 2A



INSTRUCTION FORMAT
2.3.12.1  64-bit Mode VSIB Memory Addressing 
In 64-bit mode VSIB memory addressing uses the VEX.B field and the base field of the SIB byte to encode one of 
the 16 general-purpose register as the base register. The VEX.X field and the index field of the SIB byte encode one 
of the 16 vector registers as the vector index register. 
In 64-bit mode the top row of Table 2-13 base register should be interpreted as the full 64-bit of each register. 

2.4 INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)
Intel® AMX instructions follow the general documentation convention established in previous sections. Additionally, 
Intel® Advanced Matrix Extensions use notation conventions as described below. 
In the instruction encoding boxes, sibmem is used to denote an encoding where a ModR/M byte and SIB byte are 
used to indicate a memory operation where the base and displacement are used to point to memory, and the index 

Table 2-13.  32-Bit VSIB Addressing Forms of the SIB Byte
r32

(In decimal) Base =
(In binary) Base =

EAX/
R8D
0
000

ECX/
R9D
1
001

EDX/
R10D
2
010

EBX/
R11D
3
011

ESP/
R12D
4
100

EBP/
R13D1

5
101

NOTES:
1. If ModR/M.mod = 00b, the base address is zero, then effective address is computed as [scaled vector index] + disp32. Otherwise the

base address is computed as [EBP/R13]+ disp, the displacement is either 8 bit or 32 bit depending on the value of ModR/M.mod:
MOD Effective Address
00b [Scaled Vector Register] + Disp32
01b [Scaled Vector Register] + Disp8 + [EBP/R13]
10b [Scaled Vector Register] + Disp32 + [EBP/R13]

ESI/
R14D
6
110

EDI/
R15D
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*1 00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*2 01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*4 10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
89
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*8 11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF
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register (if present) is used to denote a stride between memory rows. The index register is scaled by the sib.scale 
field as usual. The base register is added to the displacement, if present.
In the instruction encoding, the ModR/M byte is represented several ways depending on the role it plays. The 
ModR/M byte has 3 fields: 2-bit ModR/M.mod field, a 3-bit ModR/M.reg field and a 3-bit ModR/M.r/m field. When all 
bits of the ModR/M byte have fixed values for an instruction, the 2-hex nibble value of that byte is presented after 
the opcode in the encoding boxes on the instruction description pages. When only some fields of the ModR/M byte 
must contain fixed values, those values are specified as follows:
• If only the ModR/M.mod must be 0b11, and ModR/M.reg and ModR/M.r/m fields are unrestricted, this is 

denoted as 11:rrr:bbb. The rrr correspond to the 3-bits of the ModR/M.reg field and the bbb correspond to the 
3-bits of the ModR/M.r/m field.

• If the ModR/M.mod field is constrained to be a value other than 0b11, i.e., it must be one of 0b00, 0b01, or 
0b10, then the notation !(11) is used.

• If the ModR/M.reg field had a specific required value, e.g., 0b101, that would be denoted as mm:101:bbb. 

NOTE
Historically this document only specified the ModR/M.reg field restrictions with the notation /0 ... /7 
and did not specify restrictions on the ModR/M.mod and ModR/M.r/m fields in the encoding boxes.

2.5 INTEL® AVX AND INTEL® SSE INSTRUCTION EXCEPTION CLASSIFICATION
To look up the exceptions of legacy 128-bit SIMD instruction, 128-bit VEX-encoded instructions, and 256-bit VEX-
encoded instruction, Table  summarizes the exception behavior into separate classes, with detailed exception 
conditions defined in sub-sections 2.5.1 through 2.6.1. For example, ADDPS contains the entry:
“See Exceptions Type 2.”
In this entry, “Type 2” can be looked up in Table 2-19. 
The instruction’s corresponding CPUID feature flag can be identified in the fourth column of the Instruction 
summary table. 
Note: #UD on CPUID feature flags=0 is not guaranteed in a virtualized environment if the hardware supports the 
feature flag.

NOTE
Instructions that operate only with MMX, X87, or general-purpose registers are not covered by the 
exception classes defined in this section. For instructions that operate on MMX registers, see 
Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Table 2-14.  Exception Class Description 

Exception Class Instruction Set Mem Arg
Floating-Point Exceptions 

(#XM)

Type 1
AVX,

Legacy SSE
16/32 byte explicitly aligned No

Type 2
AVX,

Legacy SSE
16/32 byte not explicitly 

aligned
Yes

Type 3
AVX,

Legacy SSE
< 16 byte Yes

Type 4
AVX,

Legacy SSE
16/32 byte not explicitly 

aligned
No

Type 5
AVX, 

Legacy SSE
< 16 byte No

Type 6 AVX (no Legacy SSE) Varies (At present, none do)
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See Table 2-15 for lists of instructions in each exception class.

Type 7
AVX, 

Legacy SSE
None No

Type 8 AVX None No

Type 11
F16C 8 or 16 byte, Not explicitly 

aligned, no AC#
Yes

Type 12 AVX2 Gathers Not explicitly aligned, no AC# No

Table 2-15.  Instructions in Each Exception Class 

Exception Class Instruction

Type 1 (V)MOVAPD, (V)MOVAPS, (V)MOVDQA, (V)MOVNTDQ, (V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTPS

Type 2

(V)ADDPD, (V)ADDPS, (V)ADDSUBPD, (V)ADDSUBPS, (V)CMPPD, (V)CMPPS, (V)CVTDQ2PS, (V)CVTPD2DQ, 
(V)CVTPD2PS, (V)CVTPS2DQ, (V)CVTTPD2DQ, (V)CVTTPS2DQ, (V)DIVPD, (V)DIVPS, (V)DPPD*, (V)DPPS*, 
VFMADD132PD, VFMADD213PD, VFMADD231PD, VFMADD132PS, VFMADD213PS, VFMADD231PS, 
VFMADDSUB132PD, VFMADDSUB213PD, VFMADDSUB231PD, VFMADDSUB132PS, VFMADDSUB213PS, 
VFMADDSUB231PS, VFMSUBADD132PD, VFMSUBADD213PD, VFMSUBADD231PD, VFMSUBADD132PS, 
VFMSUBADD213PS, VFMSUBADD231PS, VFMSUB132PD, VFMSUB213PD, VFMSUB231PD, VFMSUB132PS, 
VFMSUB213PS, VFMSUB231PS, VFNMADD132PD, VFNMADD213PD, VFNMADD231PD, VFNMADD132PS, 
VFNMADD213PS, VFNMADD231PS, VFNMSUB132PD, VFNMSUB213PD, VFNMSUB231PD, VFNMSUB132PS, 
VFNMSUB213PS, VFNMSUB231PS, (V)HADDPD, (V)HADDPS, (V)HSUBPD, (V)HSUBPS, (V)MAXPD, (V)MAXPS, 
(V)MINPD, (V)MINPS, (V)MULPD, (V)MULPS, (V)ROUNDPD, (V)ROUNDPS, (V)SQRTPD, (V)SQRTPS, (V)SUBPD, 
(V)SUBPS

Type 3

(V)ADDSD, (V)ADDSS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)CVTPS2PD, (V)CVTSD2SI, (V)CVTSD2SS, 
(V)CVTSI2SD, (V)CVTSI2SS, (V)CVTSS2SD, (V)CVTSS2SI, (V)CVTTSD2SI, (V)CVTTSS2SI, (V)DIVSD, (V)DIVSS, 
VFMADD132SD, VFMADD213SD, VFMADD231SD, VFMADD132SS, VFMADD213SS, VFMADD231SS, 
VFMSUB132SD, VFMSUB213SD, VFMSUB231SD, VFMSUB132SS, VFMSUB213SS, VFMSUB231SS, 
VFNMADD132SD, VFNMADD213SD, VFNMADD231SD, VFNMADD132SS, VFNMADD213SS, VFNMADD231SS, 
VFNMSUB132SD, VFNMSUB213SD, VFNMSUB231SD, VFNMSUB132SS, VFNMSUB213SS, VFNMSUB231SS, 
(V)MAXSD, (V)MAXSS, (V)MINSD, (V)MINSS, (V)MULSD, (V)MULSS, (V)ROUNDSD, (V)ROUNDSS, (V)SQRTSD, 
(V)SQRTSS, (V)SUBSD, (V)SUBSS, (V)UCOMISD, (V)UCOMISS

Type 4

(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST, (V)ANDPD, 
(V)ANDPS, (V)ANDNPD, (V)ANDNPS, (V)BLENDPD, (V)BLENDPS, VBLENDVPD, VBLENDVPS, (V)LDDQU***, 
(V)MASKMOVDQU, (V)PTEST, VTESTPS, VTESTPD, (V)MOVDQU*, (V)MOVSHDUP, (V)MOVSLDUP, (V)MOVUPD*, 
(V)MOVUPS*, (V)MPSADBW, (V)ORPD, (V)ORPS, (V)PABSB, (V)PABSW, (V)PABSD, (V)PACKSSWB, (V)PACKSSDW, 
(V)PACKUSWB, (V)PACKUSDW, (V)PADDB, (V)PADDW, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, 
(V)PADDUSB, (V)PADDUSW, (V)PALIGNR, (V)PAND, (V)PANDN, (V)PAVGB, (V)PAVGW, (V)PBLENDVB, (V)PBLENDW, 
(V)PCMP(E/I)STRI/M***, (V)PCMPEQB, (V)PCMPEQW, (V)PCMPEQD, (V)PCMPEQQ, (V)PCMPGTB, (V)PCMPGTW, 
(V)PCMPGTD, (V)PCMPGTQ, (V)PCLMULQDQ, (V)PHADDW, (V)PHADDD, (V)PHADDSW, (V)PHMINPOSUW, 
(V)PHSUBD, (V)PHSUBW, (V)PHSUBSW, (V)PMADDWD, (V)PMADDUBSW, (V)PMAXSB, (V)PMAXSW, (V)PMAXSD, 
(V)PMAXUB, (V)PMAXUW, (V)PMAXUD, (V)PMINSB, (V)PMINSW, (V)PMINSD, (V)PMINUB, (V)PMINUW, (V)PMINUD, 
(V)PMULHUW, (V)PMULHRSW, (V)PMULHW, (V)PMULLW, (V)PMULLD, (V)PMULUDQ, (V)PMULDQ, (V)POR, 
(V)PSADBW, (V)PSHUFB, (V)PSHUFD, (V)PSHUFHW, (V)PSHUFLW, (V)PSIGNB, (V)PSIGNW, (V)PSIGND, (V)PSLLW, 
(V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ, (V)PSUBB, (V)PSUBW, (V)PSUBD, 
(V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW, (V)PUNPCKHBW, (V)PUNPCKHWD, 
(V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKLBW, (V)PUNPCKLWD, (V)PUNPCKLDQ, (V)PUNPCKLQDQ, (V)PXOR, 
(V)RCPPS, (V)RSQRTPS, (V)SHUFPD, (V)SHUFPS, (V)UNPCKHPD, (V)UNPCKHPS, (V)UNPCKLPD, (V)UNPCKLPS, 
(V)XORPD, (V)XORPS, VPBLENDD, VPERMD, VPERMPS, VPERMPD, VPERMQ, VPSLLVD, VPSLLVQ, VPSRAVD, 
VPSRLVD, VPSRLVQ, VPERMILPD, VPERMILPS, VPERM2F128

Table 2-14.  Exception Class Description  (Contd.)

Exception Class Instruction Set Mem Arg
Floating-Point Exceptions 

(#XM)
Vol. 2A 2-23



INSTRUCTION FORMAT
(*) - Additional exception restrictions are present - see the Instruction description for details
(**) - Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with mask bits of all 1s, i.e., no

alignment checks are performed.
(***) - PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM, and LDDQU instructions do not cause #GP if the memory operand is not

aligned to 16-Byte boundary.

Table 2-15 classifies exception behaviors for Intel AVX instructions. Within each class of exception conditions that 
are listed in Table 2-18 through Table 2-27, certain subsets of Intel AVX instructions may be subject to #UD excep-
tion depending on the encoded value of the VEX.L field. Table 2-16 and Table 2-17 provide supplemental informa-
tion of Intel AVX instructions that may be subject to #UD exception if encoded with incorrect values in the VEX.W 
or VEX.L field.

Type 5

(V)CVTDQ2PD, (V)EXTRACTPS, (V)INSERTPS, (V)MOVD, (V)MOVQ, (V)MOVDDUP, (V)MOVLPD, (V)MOVLPS, 
(V)MOVHPD, (V)MOVHPS, (V)MOVSD, (V)MOVSS, (V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB, 
(V)PINSRD, (V)PINSRW, (V)PINSRQ, PMOVSXBW, (V)RCPSS, (V)RSQRTSS, (V)PMOVSX/ZX, VLDMXCSR*, 
VSTMXCSR

Type 6
VEXTRACTF128/VEXTRACTFxxxx, VBROADCASTSS, VBROADCASTSD, VBROADCASTF128, VINSERTF128, 
VMASKMOVPS**, VMASKMOVPD**, VPMASKMOVD, VPMASKMOVQ, VBROADCASTI128, VPBROADCASTB, 
VPBROADCASTD, VPBROADCASTW, VPBROADCASTQ, VEXTRACTI128, VINSERTI128, VPERM2I128

Type 7
(V)MOVLHPS, (V)MOVHLPS, (V)MOVMSKPD, (V)MOVMSKPS, (V)PMOVMSKB, (V)PSLLDQ, (V)PSRLDQ, (V)PSLLW, 
(V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ

Type 8 VZEROALL, VZEROUPPER

Type 11 VCVTPH2PS, VCVTPS2PH

Type 12
VGATHERDPS, VGATHERDPD, VGATHERQPS, VGATHERQPD, VPGATHERDD, VPGATHERDQ, VPGATHERQD, 
VPGATHERQQ

Table 2-16.  #UD Exception and VEX.W=1 Encoding

Exception Class #UD If VEX.W = 1 in All Modes
#UD If VEX.W = 1 in 
Non-64-Bit Modes

Type 1

Type 2

Type 3

Type 4
VBLENDVPD, VBLENDVPS, VPBLENDVB, VTESTPD, VTESTPS, VPBLENDD, VPERMD, 
VPERMPS, VPERM2I128, VPSRAVD, VPERMILPD, VPERMILPS, VPERM2F128

Type 5

Type 6
VEXTRACTF128, VBROADCASTSS, VBROADCASTSD, VBROADCASTF128, 
VINSERTF128, VMASKMOVPS, VMASKMOVPD, VBROADCASTI128, 
VPBROADCASTB/W/D, VEXTRACTI128, VINSERTI128

Type 7

Type 8

Type 11 VCVTPH2PS, VCVTPS2PH

Type 12

Table 2-15.  Instructions in Each Exception Class  (Contd.)

Exception Class Instruction
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Table 2-17.  #UD Exception and VEX.L Field Encoding

Exception 
Class

#UD If VEX.L = 0 #UD If (VEX.L = 1 && AVX2 not present && AVX present)
#UD If (VEX.L = 1 && AVX2 

present)

Type 1 VMOVNTDQA

Type 2
VDPPD VDPPD

Type 3

Type 4

VMASKMOVDQU, VMPSADBW, VPABSB/W/D, 
VPACKSSWB/DW, VPACKUSWB/DW, VPADDB/W/D, VPADDQ, 
VPADDSB/W, VPADDUSB/W, VPALIGNR, VPAND, VPANDN, 
VPAVGB/W, VPBLENDVB, VPBLENDW, VPCMP(E/I)STRI/M, 
VPCMPEQB/W/D/Q, VPCMPGTB/W/D/Q, VPHADDW/D, 
VPHADDSW, VPHMINPOSUW, VPHSUBD/W, VPHSUBSW, 
VPMADDWD, VPMADDUBSW, VPMAXSB/W/D, 
VPMAXUB/W/D, VPMINSB/W/D, VPMINUB/W/D, VPMULHUW, 
VPMULHRSW, VPMULHW/LW, VPMULLD, VPMULUDQ, 
VPMULDQ, VPOR, VPSADBW, VPSHUFB/D, VPSHUFHW/LW, 
VPSIGNB/W/D, VPSLLW/D/Q, VPSRAW/D, VPSRLW/D/Q, 
VPSUBB/W/D/Q, VPSUBSB/W, VPUNPCKHBW/WD/DQ, 
VPUNPCKHQDQ, VPUNPCKLBW/WD/DQ, VPUNPCKLQDQ, 
VPXOR

VPCMP(E/I)STRI/M, 
PHMINPOSUW

Type 5

VEXTRACTPS, VINSERTPS, VMOVD, VMOVQ, VMOVLPD, 
VMOVLPS, VMOVHPD, VMOVHPS, VPEXTRB, VPEXTRD, 
VPEXTRW, VPEXTRQ, VPINSRB, VPINSRD, VPINSRW, 
VPINSRQ, VPMOVSX/ZX, VLDMXCSR, VSTMXCSR

Same as column 3

Type 6

VEXTRACTF128, 
VPERM2F128, 
VBROADCASTSD, 
VBROADCASTF128, 
VINSERTF128, 

Type 7
VMOVLHPS, VMOVHLPS, VPMOVMSKB, VPSLLDQ, VPSRLDQ, 
VPSLLW, VPSLLD, VPSLLQ, VPSRAW, VPSRAD, VPSRLW, 
VPSRLD, VPSRLQ

VMOVLHPS, VMOVHLPS

Type 8

Type 11

Type 12
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2.5.1 Exceptions Type 1 (Aligned Memory Reference) 

Table 2-18.  Type 1 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd
 

Co
m

pa
ti

bi
lit

y

6
4

-b
it

 

Cause of Exception

Invalid Opcode, 
#UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ? ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protec-
tion, #GP(0)

X X
VEX.256: Memory operand is not 32-byte aligned.
VEX.128: Memory operand is not 16-byte aligned.

X X X X Legacy SSE: Memory operand is not 16-byte aligned.

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.
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2.5.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned) 

Table 2-19.  Type 2 Class Exception Conditions

Exception
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Cause of Exception

Invalid Opcode, 
#UD

X X VEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. 

X X
VEX prefix:
If XCR0[2:1] ? ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protec-
tion, #GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned.

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.

SIMD Floating-
point Exception, 
#XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.
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2.5.3 Exceptions Type 3 (<16 Byte Memory Argument) 

Table 2-20.  Type 3 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. 

X X
VEX prefix:
If XCR0[2:1] ? ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.

SIMD Floating-point 
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.
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2.5.4 Exceptions Type 4 (>=16 Byte Mem Arg, No Alignment, No Floating-point Exceptions)

Table 2-21.  Type 4 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ? ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned.1

NOTES:
1. LDDQU, MOVUPD, MOVUPS, PCMPESTRI, PCMPESTRM, PCMPISTRI, and PCMPISTRM instructions do not cause #GP if the memory

operand is not aligned to 16-Byte boundary.

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.
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2.5.5 Exceptions Type 5 (<16 Byte Mem Arg and No FP Exceptions)

Table 2-22.  Type 5 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ? ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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2.5.6 Exceptions Type 6 (VEX-Encoded Instructions without Legacy SSE Analogues)
Note: At present, the AVX instructions in this category do not generate floating-point exceptions.

Table 2-23.  Type 6 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X If XCR0[2:1] ? ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

Page Fault 
#PF(fault-code)

X X For a page fault.

Alignment Check 
#AC(0)

X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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2.5.7 Exceptions Type 7 (No FP Exceptions, No Memory Arg)

Table 2-24.  Type 7 Class Exception Conditions

2.5.8 Exceptions Type 8 (AVX and No Memory Argument)

Table 2-25.  Type 8 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ? ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X If CR0.TS[bit 3]=1.

Exception
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Cause of Exception

Invalid Opcode, #UD X X Always in Real or Virtual-8086 mode.

X X If XCR0[2:1] ? ‘11b’.
If CR4.OSXSAVE[bit 18]=0.
If CPUID.01H.ECX.AVX[bit 28]=0.
If VEX.vvvv ? 1111B.

X X X X If proceeded by a LOCK prefix (F0H).

Device Not Available, 
#NM

X X If CR0.TS[bit 3]=1.
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2.5.9 Exceptions Type 11 (VEX-only, Mem Arg, No AC, Floating-point Exceptions)

Table 2-26.  Type 11 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD X X VEX prefix.

X X VEX prefix:
If XCR0[2:1] ? ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault #PF 
(fault-code)

X X X For a page fault.

SIMD Floating-Point 
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.
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2.5.10 Exceptions Type 12 (VEX-only, VSIB Mem Arg, No AC, No Floating-point Exceptions)

2.6 VEX ENCODING SUPPORT FOR GPR INSTRUCTIONS 
The VEX prefix may be used to encode instructions that operate on neither YMM nor XMM registers. VEX-encoded 
general-purpose-register instructions have the following properties:
• Instruction syntax support for three encodable operands.
• Encoding support for instruction syntax of non-destructive source operand, destination operand encoded via 

VEX.vvvv, and destructive three-operand syntax.
• Elimination of escape opcode byte (0FH), two-byte escape via a compact bit field representation within the VEX 

prefix.
• Elimination of the need to use REX prefix to encode the extended half of general-purpose register sets (R8-R15) 

for direct register access or memory addressing.
• Flexible and more compact bit fields are provided in the VEX prefix to retain the full functionality provided by 

REX prefix. REX.W, REX.X, REX.B functionalities are provided in the three-byte VEX prefix only. 
• VEX-encoded GPR instructions are encoded with VEX.L=0.

Table 2-27.  Type 12 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD X X VEX prefix.

X X VEX prefix:
If XCR0[2:1] ? ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X NA If address size attribute is 16 bit.

X X X X If ModR/M.mod = ‘11b’.

X X X X If ModR/M.rm ? ‘100b’.

X X X X If any corresponding CPUID feature flag is ‘0’.

X X X X If any vector register is used more than once between the destination register, 
mask register and the index register in VSIB addressing.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault #PF (fault-
code)

X X X For a page fault.
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Any VEX-encoded GPR instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.
Any VEX-encoded GPR instruction with a REX prefix proceeding VEX will #UD. 
VEX-encoded GPR instructions are not supported in real and virtual 8086 modes.

2.6.1 Exceptions Type 13 (VEX-Encoded GPR Instructions)
The exception conditions applicable to VEX-encoded GPR instructions differ from those of legacy GPR instructions. 
Table 2-28 lists VEX-encoded GPR instructions. The exception conditions for VEX-encoded GPR instructions are 
found in Table 2-29 for those instructions which have a default operand size of 32 bits and 16-bit operand size is 
not encodable.

(*) - Additional exception restrictions are present - see the Instruction description for details.

2.6.2 Exceptions Type 14 (CMPCCXADD)
The exception conditions applicable to the CMPCCXADD instruction differ from those of other VEX-encoded GPR 
instructions. The exception conditions for the CMPCCXADD instruction are found in Table 2-31.

Table 2-28.  VEX-Encoded GPR Instructions

Exception Class Instruction

Type 13 ANDN, BEXTR, BLSI, BLSMSK, BLSR, BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX

Table 2-29.  Type 13 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD X X X X If BMI1/BMI2 CPUID feature flag is ‘0’.

X X If a VEX prefix is present.

X X X X If VEX.L = 1.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

Stack, #SS(0) X X X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments. 
If the DS, ES, FS, or GS register is used to access memory and it contains a null 
segment selector.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check 
#AC(0)

X X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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2.7 INTEL® AVX-512 ENCODING
The majority of the Intel AVX-512 family of instructions (operating on 512/256/128-bit vector register operands) 
are encoded using a new prefix (called EVEX). Opmask instructions (operating on opmask register operands) are 
encoded using the VEX prefix. The EVEX prefix has some parts resembling the instruction encoding scheme using 
the VEX prefix, and many other capabilities not available with the VEX prefix. 
The significant feature differences between EVEX and VEX are summarized below.
• EVEX is a 4-Byte prefix (the first byte must be 62H); VEX is either a 2-Byte (C5H is the first byte) or 3-Byte 

(C4H is the first byte) prefix.
• EVEX prefix can encode 32 vector registers (XMM/YMM/ZMM) in 64-bit mode.
• EVEX prefix can encode an opmask register for conditional processing or selection control in EVEX-encoded 

vector instructions. Opmask instructions, whose source/destination operands are opmask registers and treat 
the content of an opmask register as a single value, are encoded using the VEX prefix.

• EVEX memory addressing with disp8 form uses a compressed disp8 encoding scheme to improve the encoding 
density of the instruction byte stream.

• EVEX prefix can encode functionality that are specific to instruction classes (e.g., packed instruction with 
“load+op” semantic can support embedded broadcast functionality, floating-point instruction with rounding 
semantic can support static rounding functionality, floating-point instruction with non-rounding arithmetic 
semantic can support “suppress all exceptions” functionality).

2.7.1 Instruction Format and EVEX
The placement of the EVEX prefix in an IA instruction is represented in Figure 2-10. Note that the values contained 
within brackets are optional.

Table 2-30.  Exceptions Type 14 Instructions

Exception Class Instruction

Type 14 CMPCCXADD

Table 2-31.  Type 14 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X X Only supported in 64-bit mode.

X If any LOCK, REX, F2, F3, or 66 prefixes precede a VEX prefix.

X If any corresponding CPUID feature flag is ‘0’.

Stack, #SS(0) X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X
If the memory address is in a non-canonical form.

Page Fault, #PF(fault-
code)

X
If a page fault occurs.

Alignment Check 
#AC(0)

X X X If alignment checking is enabled and an unaligned memory reference is made 
while the current privilege level is 3.
2-36 Vol. 2A



INSTRUCTION FORMAT
The EVEX prefix is a 4-byte prefix, with the first two bytes derived from unused encoding form of the 32-bit-mode-
only BOUND instruction. The layout of the EVEX prefix is shown in Figure 2-11. The first byte must be 62H, followed 
by three payload bytes, denoted as P0, P1, and P2 individually or collectively as P[23:0] (see Figure 2-11).

Figure 2-10.  Intel® AVX-512 Instruction Format and the EVEX Prefix

Figure 2-11.  Bit Field Layout of the EVEX Prefix1

NOTES:
1. See Table 2-32 for additional details on bit fields.

[Immediate][Prefixes] [Disp16,32][SIB]ModR/MOpcodeEVEX

# of bytes: 4 1 1 1 2, 4 1

[Disp8*N]

1

EVEX 62H P0 P1 P2

P0

7 6 5 4 3 2 01
R X B R’ 0 m mm

P1

7 6 5 4 3 2 01
W v v v v 1 pp

P2

7 6 5 4 3 2 01
z L’ L b V’ a aa

P[7:0]

P[15:8]

P[23:16]
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The bit fields in P[23:0] are divided into the following functional groups (Table 2-32 provides a tabular summary):
• Reserved bits: P[3] must be 0, otherwise #UD.
• Fixed-value bit: P[10] must be 1, otherwise #UD.
• Compressed legacy prefix/escape bytes: P[1:0] is identical to the lowest 2 bits of VEX.mmmmm; P[9:8] is 

identical to VEX.pp.
• EVEX.mmm: P[2:0] provides access to up to eight decoding maps. Currently, only the following decoding maps 

are supported: 1, 2, 3, 5, and 6. Map ids 1, 2, and 3 are denoted by 0F, 0F38, and 0F3A, respectively, in the 
instruction encoding descriptions.

• Operand specifier modifier bits for vector register, general purpose register, memory addressing: P[7:5] allows 
access to the next set of 8 registers beyond the low 8 registers when combined with ModR/M register specifiers. 

• Operand specifier modifier bit for vector register: P[4] (or EVEX.R’) allows access to the high 16 vector register 
set when combined with P[7] and ModR/M.reg specifier; P[6] can also provide access to a high 16 vector 
register when SIB or VSIB addressing are not needed.

• Non-destructive source /vector index operand specifier: P[19] and P[14:11] encode the second source vector 
register operand in a non-destructive source syntax, vector index register operand can access an upper 16 
vector register using P[19].

• Op-mask register specifiers: P[18:16] encodes op-mask register set k0-k7 in instructions operating on vector 
registers.

• EVEX.W: P[15] is similar to VEX.W which serves either as opcode extension bit or operand size promotion to 
64-bit in 64-bit mode.

• Vector destination merging/zeroing: P[23] encodes the destination result behavior which either zeroes the 
masked elements or leave masked element unchanged.

• Broadcast/Static-rounding/SAE context bit: P[20] encodes multiple functionality, which differs across different 
classes of instructions and can affect the meaning of the remaining field (EVEX.L’L). The functionality for the 
following instruction classes are:

Table 2-32.  EVEX Prefix Bit Field Functional Grouping

Notation Bit field Group Position Comment

EVEX.mmm Access to up to eight decoding maps P[2:0] Currently, only the following decoding maps are supported: 1, 
2, 3, 5, and 6.

-- Reserved P[3] Must be 0.

EVEX.R’ High-16 register specifier modifier P[4] Combine with EVEX.R and ModR/M.reg. This bit is stored in 
inverted format.

EVEX.RXB Next-8 register specifier modifier P[7:5] Combine with ModR/M.reg, ModR/M.rm (base, index/vidx). This 
field is encoded in bit inverted format.

EVEX.X High-16 register specifier modifier P[6] Combine with EVEX.B and ModR/M.rm, when SIB/VSIB absent.

EVEX.pp Compressed legacy prefix P[9:8] Identical to VEX.pp.

-- Fixed Value P[10] Must be 1.

EVEX.vvvv VVVV register specifier P[14:11] Same as VEX.vvvv. This field is encoded in bit inverted format.

EVEX.W Operand size promotion/Opcode 
extension

P[15]

EVEX.aaa Embedded opmask register specifier P[18:16]

EVEX.V’ High-16 VVVV/VIDX register specifier P[19] Combine with EVEX.vvvv or when VSIB present. This bit is 
stored in inverted format.

EVEX.b Broadcast/RC/SAE Context P[20]

EVEX.L’L Vector length/RC P[22:21]

EVEX.z Zeroing/Merging P[23]
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— Broadcasting a single element across the destination vector register: this applies to the instruction class 
with Load+Op semantic where one of the source operand is from memory. 

— Redirect L’L field (P[22:21]) as static rounding control for floating-point instructions with rounding 
semantic. Static rounding control overrides MXCSR.RC field and implies “Suppress all exceptions” (SAE).

— Enable SAE for floating -point instructions with arithmetic semantic that is not rounding.

— For instruction classes outside of the afore-mentioned three classes, setting EVEX.b will cause #UD.
• Vector length/rounding control specifier: P[22:21] can serve one of three options.

— Vector length information for packed vector instructions.

— Ignored for instructions operating on vector register content as a single data element.

— Rounding control for floating-point instructions that have a rounding semantic and whose source and 
destination operands are all vector registers.

2.7.2 Register Specifier Encoding and EVEX
EVEX-encoded instruction can access 8 opmask registers, 16 general-purpose registers and 32 vector registers in 
64-bit mode (8 general-purpose registers and 8 vector registers in non-64-bit modes). EVEX-encoding can support 
instruction syntax that access up to 4 instruction operands. Normal memory addressing modes and VSIB memory 
addressing are supported with EVEX prefix encoding. The mapping of register operands used by various instruction 
syntax and memory addressing in 64-bit mode are shown in Table 2-33. Opmask register encoding is described in 
Section 2.7.3.

The mapping of register operands used by various instruction syntax and memory addressing in 32-bit modes are 
shown in Table 2-34.

Table 2-33.  32-Register Support in 64-bit Mode Using EVEX with Embedded REX Bits

41

NOTES:
1. Not applicable for accessing general purpose registers.

3 [2:0] Reg. Type Common Usages 

REG EVEX.R’ REX.R modrm.reg GPR, Vector Destination or Source

VVVV EVEX.V’ EVEX.vvvv GPR, Vector 2ndSource or Destination

RM EVEX.X EVEX.B modrm.r/m GPR, Vector 1st Source or Destination

BASE 0 EVEX.B modrm.r/m GPR memory addressing

INDEX 0 EVEX.X sib.index GPR memory addressing

VIDX EVEX.V’ EVEX.X sib.index Vector VSIB memory addressing

Table 2-34.  EVEX Encoding Register Specifiers in 32-bit Mode 

[2:0] Reg. Type Common Usages 

REG modrm.reg GPR, Vector Destination or Source

VVVV EVEX.vvv GPR, Vector 2nd Source or Destination

RM modrm.r/m GPR, Vector 1st Source or Destination

BASE modrm.r/m GPR Memory Addressing

INDEX sib.index GPR Memory Addressing

VIDX sib.index Vector VSIB Memory Addressing
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2.7.3 Opmask Register Encoding
There are eight opmask registers, k0-k7. Opmask register encoding falls into two categories:
• Opmask registers that are the source or destination operands of an instruction treating the content of opmask 

register as a scalar value, are encoded using the VEX prefix scheme. It can support up to three operands using 
standard modR/M byte’s reg field and rm field and VEX.vvvv. Such a scalar opmask instruction does not support 
conditional update of the destination operand.

• An opmask register providing conditional processing and/or conditional update of the destination register of a 
vector instruction is encoded using EVEX.aaa field (see Section 2.7.4).

• An opmask register serving as the destination or source operand of a vector instruction is encoded using 
standard modR/M byte’s reg field and rm fields.

2.7.4 Masking Support in EVEX
EVEX can encode an opmask register to conditionally control per-element computational operation and updating of 
result of an instruction to the destination operand. The predicate operand is known as the opmask register. The 
EVEX.aaa field, P[18:16] of the EVEX prefix, is used to encode one out of a set of eight 64-bit architectural regis-
ters. Note that from this set of 8 architectural registers, only k1 through k7 can be addressed as predicate oper-
ands. k0 can be used as a regular source or destination but cannot be encoded as a predicate operand. 
AVX-512 instructions support two types of masking with EVEX.z bit (P[23]) controlling the type of masking: 
• Merging-masking, which is the default type of masking for EVEX-encoded vector instructions, preserves the old 

value of each element of the destination where the corresponding mask bit has a 0. It corresponds to the case 
of EVEX.z = 0.

• Zeroing-masking, is enabled by having the EVEX.z bit set to 1. In this case, an element of the destination is set 
to 0 when the corresponding mask bit has a 0 value. 

AVX-512 Foundation instructions can be divided into the following groups:
• Instructions which support “zeroing-masking”.

— Also allow merging-masking.
• Instructions which require aaa = 000.

— Do not allow any form of masking.
• Instructions which allow merging-masking but do not allow zeroing-masking.

— Require EVEX.z to be set to 0.

— This group is mostly composed of instructions that write to memory.
• Instructions which require aaa <> 000 do not allow EVEX.z to be set to 1.

— Allow merging-masking and do not allow zeroing-masking, e.g., gather instructions.

Table 2-35.  Opmask Register Specifier Encoding

[2:0] Register Access Common Usages 

REG modrm.reg k0-k7 Source

VVVV VEX.vvvv k0-k7 2nd Source 

RM modrm.r/m k0-7 1st Source 

{k1} EVEX.aaa k01-k7

NOTES:
1. Instructions that overwrite the conditional mask in opmask do not permit using k0 as the embedded mask.

Opmask
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2.7.5 Compressed Displacement (disp8*N) Support in EVEX
For memory addressing using disp8 form, EVEX-encoded instructions always use a compressed displacement 
scheme by multiplying disp8 in conjunction with a scaling factor N that is determined based on the vector length, 
the value of EVEX.b bit (embedded broadcast) and the input element size of the instruction. In general, the factor 
N corresponds to the number of bytes characterizing the internal memory operation of the input operand (e.g., 64 
when the accessing a full 512-bit memory vector). The scale factor N is listed in Table 2-36 and Table 2-37 below, 
where EVEX encoded instructions are classified using the tupletype attribute. The scale factor N of each tupletype 
is listed based on the vector length (VL) and other factors affecting it.
Table 2-36 covers EVEX-encoded instructions which has a load semantic in conjunction with additional computa-
tional or data element movement operation, operating either on the full vector or half vector (due to conversion of 
numerical precision from a wider format to narrower format). EVEX.b is supported for such instructions for data 
element sizes which are either dword or qword (see Section 2.7.11). 
EVEX-encoded instruction that are pure load/store, and “Load+op” instruction semantic that operate on data 
element size less then dword do not support broadcasting using EVEX.b. These are listed in Table 2-37. Table 2-37 
also includes many broadcast instructions which perform broadcast using a subset of data elements without using 
EVEX.b. These instructions and a few data element size conversion instruction are covered in Table 2-37. Instruc-
tion classified in Table 2-37 do not use EVEX.b and EVEX.b must be 0, otherwise #UD will occur.
The tupletype will be referenced in the instruction operand encoding table in the reference page of each instruction, 
providing the cross reference for the scaling factor N to encoding memory addressing operand. 
Note that the disp8*N rules still apply when using 16b addressing.

Table 2-36.  Compressed Displacement (DISP8*N) Affected by Embedded Broadcast

TupleType EVEX.b InputSize EVEX.W Broadcast N (VL=128) N (VL=256) N (VL= 512) Comment

Full

0 32bit 0 none 16 32 64

Load+Op (Full Vector 
Dword/Qword)

1 32bit 0 {1tox} 4 4 4

0 64bit 1 none 16 32 64

1 64bit 1 {1tox} 8 8 8

Half
0 32bit 0 none 8 16 32

Load+Op (Half Vector)
1 32bit 0 {1tox} 4 4 4

Table 2-37.  EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast

TupleType InputSize EVEX.W N (VL= 128) N (VL= 256) N (VL= 512) Comment

Full Mem N/A N/A 16 32 64 Load/store or subDword full vector

Tuple1 Scalar

8bit N/A 1 1 1

1Tuple
16bit N/A 2 2 2

32bit 0 4 4 4

64bit 1 8 8 8

Tuple1 Fixed
32bit N/A 4 4 4 1 Tuple, memsize not affected by 

EVEX.W64bit N/A 8 8 8

Tuple2
32bit 0 8 8 8

Broadcast (2 elements) 
64bit 1 NA 16 16

Tuple4
32bit 0 NA 16 16

Broadcast (4 elements) 
64bit 1 NA NA 32

Tuple8 32bit 0 NA NA 32 Broadcast (8 elements) 

Half Mem N/A N/A 8 16 32  SubQword Conversion

Quarter Mem N/A N/A 4 8 16 SubDword Conversion
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2.7.6 EVEX Encoding of Broadcast/Rounding/SAE Support
EVEX.b can provide three types of encoding context, depending on the instruction classes:
• Embedded broadcasting of one data element from a source memory operand to the destination for vector 

instructions with “load+op” semantic.
• Static rounding control overriding MXCSR.RC for floating-point instructions with rounding semantic.
• “Suppress All exceptions” (SAE) overriding MXCSR mask control for floating-point arithmetic instructions that 

do not have rounding semantic.

2.7.7 Embedded Broadcast Support in EVEX
EVEX encodes an embedded broadcast functionality that is supported on many vector instructions with 32-bit 
(double word or single precision floating-point) and 64-bit data elements, and when the source operand is from 
memory. EVEX.b (P[20]) bit is used to enable broadcast on load-op instructions. When enabled, only one element 
is loaded from memory and broadcasted to all other elements instead of loading the full memory size. 
The following instruction classes do not support embedded broadcasting:
• Instructions with only one scalar result is written to the vector destination.
• Instructions with explicit broadcast functionality provided by its opcode.
• Instruction semantic is a pure load or a pure store operation.

2.7.8 Static Rounding Support in EVEX
Static rounding control embedded in the EVEX encoding system applies only to register-to-register flavor of 
floating-point instructions with rounding semantic at two distinct vector lengths: (i) scalar, (ii) 512-bit. In both 
cases, the field EVEX.L’L expresses rounding mode control overriding MXCSR.RC if EVEX.b is set. When EVEX.b is 
set, “suppress all exceptions” is implied. The processor behaves as if all MXCSR masking controls are set.

2.7.9 SAE Support in EVEX
The EVEX encoding system allows arithmetic floating-point instructions without rounding semantic to be encoded 
with the SAE attribute. This capability applies to scalar and 512-bit vector lengths, register-to-register only, by 
setting EVEX.b. When EVEX.b is set, “suppress all exceptions” is implied. The processor behaves as if all MXCSR 
masking controls are set.

2.7.10 Vector Length Orthogonality 
The architecture of EVEX encoding scheme can support SIMD instructions operating at multiple vector lengths. 
Many AVX-512 Foundation instructions operate at 512-bit vector length. The vector length of EVEX encoded vector 
instructions are generally determined using the L’L field in EVEX prefix, except for 512-bit floating-point, reg-reg 
instructions with rounding semantic. The table below shows the vector length corresponding to various values of 
the L’L bits. When EVEX is used to encode scalar instructions, L’L is generally ignored.
When EVEX.b bit is set for a register-register instructions with floating-point rounding semantic, the same two bits 
P2[6:5] specifies rounding mode for the instruction, with implied SAE behavior. The mapping of different instruc-
tion classes relative to the embedded broadcast/rounding/SAE control and the EVEX.L’L fields are summarized in 
Table 2-38. 

Eighth Mem N/A N/A 2 4 8 SubWord Conversion

Mem128 N/A N/A 16 16 16 Shift count from memory

MOVDDUP N/A N/A 8 32 64 VMOVDDUP

Table 2-37.  EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast (Contd.)

TupleType InputSize EVEX.W N (VL= 128) N (VL= 256) N (VL= 512) Comment
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2.7.11 #UD Equations for EVEX
Instructions encoded using EVEX can face three types of UD conditions: state dependent, opcode independent and 
opcode dependent.

2.7.11.1  State Dependent #UD
In general, attempts of execute an instruction, which required OS support for incremental extended state compo-
nent, will #UD if required state components were not enabled by OS. Table 2-39 lists instruction categories with 
respect to required processor state components. Attempts to execute a given category of instructions while 
enabled states were less than the required bit vector in XCR0 shown in Table 2-39 will cause #UD.

2.7.11.2  Opcode Independent #UD
A number of bit fields in EVEX encoded instruction must obey mode-specific but opcode-independent patterns 
listed in Table 2-40.

Table 2-38.  EVEX Embedded Broadcast/Rounding/SAE and Vector Length on Vector Instructions

Position P2[4] P2[6:5] P2[6:5]

Broadcast/Rounding/SAE Context EVEX.b EVEX.L’L EVEX.RC

Reg-reg, FP Instructions w/ rounding semantic or SAE Enable static rounding 
control (SAE implied)

Vector length Implied 
(512 bit or scalar)

00b: SAE + RNE
01b: SAE + RD
10b: SAE + RU
11b: SAE + RZ

Load+op Instructions w/ memory source Broadcast Control 00b: 128-bit
01b: 256-bit
10b: 512-bit
11b: Reserved (#UD)

NA

Other Instructions (
Explicit Load/Store/Broadcast/Gather/Scatter)

Must be 0 (otherwise 
#UD)

NA

Table 2-39.  OS XSAVE Enabling Requirements of Instruction Categories

Instruction Categories Vector Register State Access Required XCR0 Bit Vector [7:0]

Legacy SIMD prefix encoded Instructions (e.g SSE) XMM xxxxxx11b

VEX-encoded instructions operating on YMM YMM xxxxx111b

EVEX-encoded 128-bit instructions ZMM 111xx111b

EVEX-encoded 256-bit instructions ZMM 111xx111b

EVEX-encoded 512-bit instructions ZMM 111xx111b

VEX-encoded instructions operating on opmask k-reg 111xxx11b

Table 2-40.  Opcode Independent, State Dependent EVEX Bit Fields

Position Notation 64-bit #UD Non-64-bit #UD

P[3] -- if > 0 if > 0

P[10] -- if 0 if 0

P[2:0] EVEX.mmm if 000b, 100b, or 111b if 000b, 100b, or 111b

P[7 : 6] EVEX.RX None (valid) None (BOUND if EVEX.RX != 11b)
Vol. 2A 2-43



INSTRUCTION FORMAT
2.7.11.3  Opcode Dependent #UD
This section describes legal values for the rest of the EVEX bit fields. Table 2-41 lists the #UD conditions of EVEX 
prefix bit fields which encodes or modifies register operands.

Table 2-42 lists the #UD conditions of instruction encoding of opmask register using EVEX.aaa and EVEX.z

Table 2-41.  #UD Conditions of Operand-Encoding EVEX Prefix Bit Fields 

Notation Position  Operand Encoding 64-bit #UD Non-64-bit #UD

EVEX.R P[7] ModRM.reg encodes k-reg If EVEX.R = 0 None (BOUND if 
EVEX.RX != 11b)ModRM.reg is opcode extension None (ignored)

ModRM.reg encodes all other registers None (valid)

EVEX.X P[6] ModRM.r/m encodes ZMM/YMM/XMM None (valid)

ModRM.r/m encodes k-reg or GPR None (ignored)

ModRM.r/m without SIB/VSIB None (ignored)

ModRM.r/m with SIB/VSIB None (valid)

EVEX.B P[5] ModRM.r/m encodes k-reg None (ignored) None (ignored)

ModRM.r/m encodes other registers None (valid)

ModRM.r/m base present None (valid)

ModRM.r/m base not present None (ignored)

EVEX.R’ P[4] ModRM.reg encodes k-reg or GPR If 0 None (ignored)

ModRM.reg is opcode extension None (ignored)

ModRM.reg encodes ZMM/YMM/XMM None (valid)

EVEX.vvvv P[14:11] vvvv encodes ZMM/YMM/XMM None (valid) None (valid)
P[14] ignored

Otherwise If != 1111b If != 1111b

EVEX.V’ P[19] Encodes ZMM/YMM/XMM None (valid) If 0

Otherwise If 0 If 0

Table 2-42.  #UD Conditions of Opmask Related Encoding Field 

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD

EVEX.aaa P[18:16] Instructions do not use opmask for conditional processing1.

NOTES:
1. E.g., VPBROADCASTMxxx, VPMOVM2x, VPMOVx2M.

If aaa != 000b If aaa != 000b

Opmask used as conditional processing mask and updated 
at completion2.

2. E.g., Gather/Scatter family.

If aaa = 000b If aaa = 000b;

Opmask used as conditional processing. None (valid3)

3. aaa can take any value. A value of 000 indicates that there is no masking on the instruction; in this case, all elements will be pro-
cessed as if there was a mask of ‘all ones’ regardless of the actual value in K0.

None (valid1)

EVEX.z P[23] Vector instruction using opmask as source or destination4.

4. E.g., VFPCLASSPD/PS, VCMPB/D/Q/W family, VPMOVM2x, VPMOVx2M.

If EVEX.z != 0 If EVEX.z != 0

Store instructions or gather/scatter instructions. If EVEX.z != 0 If EVEX.z != 0

Instructions with EVEX.aaa = 000b. If EVEX.z != 0 If EVEX.z != 0

VEX.vvvv Varies K-regs are instruction operands not mask control. If vvvv = 0xxxb None
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Table 2-43 lists the #UD conditions of EVEX bit fields that depends on the context of EVEX.b.

2.7.12 Device Not Available
EVEX-encoded instructions follow the same rules when it comes to generating #NM (Device Not Available) excep-
tion. In particular, it is generated when CR0.TS[bit 3]= 1.

2.7.13 Scalar Instructions
EVEX-encoded scalar SIMD instructions can access up to 32 registers in 64-bit mode. Scalar instructions support 
masking (using the least significant bit of the opmask register), but broadcasting is not supported. 

2.8 EXCEPTION CLASSIFICATIONS OF EVEX-ENCODED INSTRUCTIONS
The exception behavior of EVEX-encoded instructions can be classified into the classes shown in the rest of this 
section. The classification of EVEX-encoded instructions follow a similar framework as those of AVX and AVX2 
instructions using the VEX prefix. Exception types for EVEX-encoded instructions are named in the style of
“E##” or with a suffix “E##XX”. The “##” designation generally follows that of AVX/AVX2 instructions. The 
majority of EVEX encoded instruction with “Load+op” semantic supports memory fault suppression, which is repre-
sented by E##. The instructions with “Load+op” semantic but do not support fault suppression are named 
“E##NF”. A summary table of exception classes by class names are shown below.

Table 2-43.  #UD Conditions Dependent on EVEX.b Context

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD

EVEX.L’Lb P[22 : 20] Reg-reg, FP instructions with rounding semantic. None (valid1)

NOTES:
1. L’L specifies rounding control, see Table 2-38, supports {er} syntax.

None (valid1)

Other reg-reg, FP instructions that can cause #XM. None (valid2)

2. L’L is ignored.

None (valid2)

Other reg-mem instructions in Table 2-36. None (valid3)

3. L’L specifies vector length, see Table 2-38, supports embedded broadcast syntax

None (valid3)

Other instruction classes4 in Table 2-37.

4. L’L specifies either vector length or ignored.

If EVEX.b = 1 If EVEX.b = 1

Table 2-44.  EVEX-Encoded Instruction Exception Class Summary 

Exception Class Instruction set Mem arg (#XM)

Type E1 Vector Moves/Load/Stores Explicitly aligned, w/ fault suppression None

Type E1NF Vector Non-temporal Stores Explicitly aligned, no fault suppression None

Type E2 FP Vector Load+op Support fault suppression Yes

Type E2NF FP Vector Load+op No fault suppression Yes

Type E3 FP Scalar/Partial Vector, Load+Op Support fault suppression Yes

Type E3NF FP Scalar/Partial Vector, Load+Op No fault suppression Yes

Type E4 Integer Vector Load+op Support fault suppression No

Type E4NF Integer Vector Load+op No fault suppression No

Type E5 Legacy-like Promotion Varies, Support fault suppression No

Type E5NF Legacy-like Promotion Varies, No fault suppression No
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Table 2-45 lists EVEX-encoded instruction mnemonic by exception classes.

Type E6 Post AVX Promotion Varies, w/ fault suppression No

Type E6NF Post AVX Promotion Varies, no fault suppression No

Type E7NM Register-to-register op None None

Type E9NF Miscellaneous 128-bit Vector-length Specific, no fault suppression None

Type E10 Non-XF Scalar Vector Length ignored, w/ fault suppression None

Type E10NF Non-XF Scalar Vector Length ignored, no fault suppression None

Type E11 VCVTPH2PS, VCVTPS2PH Half Vector Length, w/ fault suppression Yes

Type E12 Gather and Scatter Family VSIB addressing, w/ fault suppression None

Type E12NP Gather and Scatter Prefetch Family VSIB addressing, w/o page fault None

Table 2-45.  EVEX Instructions in Each Exception Class

Exception Class Instruction

Type E1 VMOVAPD, VMOVAPS, VMOVDQA32, VMOVDQA64

Type E1NF VMOVNTDQ, VMOVNTDQA, VMOVNTPD, VMOVNTPS

Type E2

VADDPD, VADDPH, VADDPS, VCMPPD, VCMPPH, VCMPPS, VCVTDQ2PH, VCVTDQ2PS, VCVTPD2DQ, VCVTPD2PH, 
VCVTPD2PS, VCVTPD2QQ, VCVTPD2UQQ, VCVTPD2UDQ, VCVTPH2DQ, VCVTPH2PD, VCVTPH2QQ, VCVTPH2UDQ, 
VCVTPH2UQQ, VCVTPH2UW, VCVTPH2W, VCVTPS2DQ, VCVTPS2UDQS, VCVTQQ2PD, VCVTQQ2PH, VCVTQQ2PS, 
VCVTTPD2DQ, VCVTTPD2QQ, VCVTTPD2UDQ, VCVTTPD2UQQ, VCVTTPH2DQ, VCVTTPH2QQ, VCVTTPH2UDQ, 
VCVTTPH2UQQ, VCVTTPH2UW, VCVTTPH2W, VCVTTPS2DQ, VCVTTPS2UDQ, VCVTUDQ2PH, VCVTUDQ2PS, 
VCVTUQQ2PD, VCVTUQQ2PH, VCVTUQQ2PS, VCVTUW2PH, VCVTW2PH, VDIVPD, VDIVPH, VDIVPS, VEXP2PD, 
VEXP2PS, VFIXUPIMMPD, VFIXUPIMMPS, VFMADDxxxPD, VFMADDxxxPH, VFMADDxxxPS, VFMADDSUBxxxPD, 
VFMADDSUBxxxPH, VFMADDSUBxxxPS, VFMSUBADDxxxPD, VFMSUBADDxxxPH, VFMSUBADDxxxPS, 
VFMSUBxxxPD, VFMSUBxxxPH, VFMSUBxxxPS, VFNMADDxxxPD, VFNMADDxxxPH, VFNMADDxxxPS, 
VFNMSUBxxxPD, VFNMSUBxxxPH, VFNMSUBxxxPS, VGETEXPPD, VGETEXPPH, VGETEXPPS, VGETMANTPD, 
VGETMANTPH, VGETMANTPS, VGETMANTSH, VMAXPD, VMAXPH, VMAXPS, VMINPD, VMINPH, VMINPS, VMULPD, 
VMULPH, VMULPS, VRANGEPD, VRANGEPS, VREDUCEPD, VREDUCEPH, VREDUCEPS, VRNDSCALEPD, 
VRNDSCALEPH, VRNDSCALEPS, VRCP28PD, VRCP28PS, VRSQRT28PD, VRSQRT28PS, VSCALEFPD, VSCALEFPS, 
VSQRTPD, VSQRTPH, VSQRTPS, VSUBPD, VSUBPH, VSUBPS

Type E3

VADDSD, VADDSH, VADDSS, VCMPSD, VCMPSH, VCMPSS, VCVTPS2QQ, VCVTPS2UQQ, VCVTPS2PD, VCVTSD2SH, 
VCVTSD2SS, VCVTSH2SD, VCVTSH2SS, VCVTSS2SD, VCVTSS2SH, VCVTTPS2QQ, VCVTTPS2UQQ, VDIVSD, VDIVSH, 
VDIVSS, VFMADDxxxSD, VFMADDxxxSH, VFMADDxxxSS, VFMSUBxxxSD, VFMSUBxxxSH, VFMSUBxxxSS, 
VFNMADDxxxSD, VFNMADDxxxSH, VFNMADDxxxSS, VFNMSUBxxxSD, VFNMSUBxxxSH, VFNMSUBxxxSS, 
VFIXUPIMMSD, VFIXUPIMMSS, VGETEXPSD, VGETEXPSH, VGETEXPSS, VGETMANTSD, VGETMANTSH, 
VGETMANTSS, VMAXSD, VMAXSH, VMAXSS, VMINSD, VMINSH, VMINSS, VMULSD, VMULSH, VMULSS, VRANGESD, 
VRANGESS, VREDUCESD, VREDUCESH, VREDUCESS, VRNDSCALESD, VRNDSCALESH, VRNDSCALESS, VSCALEFSD, 
VSCALEFSH, VSCALEFSS, VRCP28SD, VRCP28SS, VRSQRT28SD, VRSQRT28SS, VSQRTSD, VSQRTSH, VSQRTSS, 
VSUBSD, VSUBSH, VSUBSS

Type E3NF
VCOMISD, VCOMISH, VCOMISS, VCVTSD2SI, VCVTSD2USI, VCVTSH2SI, VCVTSH2USI, VCVTSI2SD, VCVTSI2SH, 
VCVTSI2SS, VCVTSS2SI, VCVTSS2USI, VCVTTSD2SI, VCVTTSD2USI, VCVTTSH2SI, VCVTTSH2USI, VCVTTSS2SI, 
VCVTTSS2USI, VCVTUSI2SD, VCVTUSI2SH, VCVTUSI2SS, VUCOMISD, VUCOMISH, VUCOMISS

Table 2-44.  EVEX-Encoded Instruction Exception Class Summary  (Contd.)

Exception Class Instruction set Mem arg (#XM)
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INSTRUCTION FORMAT
Type E4

VANDPD, VANDPS, VANDNPD, VANDNPS, VBLENDMPD, VBLENDMPS, VFCMADDCPH, VFCMULCPH, VFMADDCPH, 
VFMULCPH, VFPCLASSPD, VFPCLASSPH, VFPCLASSPS, VORPD, VORPS, VPABSD, VPABSQ, VPADDD, VPADDQ, 
VPANDD, VPANDQ, VPANDND, VPANDNQ, VPBLENDMB, VPBLENDMD, VPBLENDMQ, VPBLENDMW, VPCMPD, 
VPCMPEQD, VPCMPEQQ, VPCMPGTD, VPCMPGTQ, VPCMPQ, VPCMPUD, VPCMPUQ, VPLZCNTD, VPLZCNTQ, 
VPMADD52LUQ, VPMADD52HUQ, VPMAXSD, VPMAXSQ, VPMAXUD, VPMAXUQ, VPMINSD, VPMINSQ, VPMINUD, 
VPMINUQ, VPMULLD, VPMULLQ, VPMULUDQ, VPMULDQ, VPORD, VPORQ, VPROLD, VPROLQ, VPROLVD, VPROLVQ, 
VPRORD, VPRORQ, VPRORVD, VPRORVQ, (VPSLLD, VPSLLQ, VPSRAD, VPSRAQ, VPSRAVW, VPSRAVD, VPSRAVW, 
VPSRAVQ, VPSRLD, VPSRLQ)1, VPSUBD, VPSUBQ, VPSUBUSB, VPSUBUSW, VPTERNLOGD, VPTERNLOGQ, 
VPTESTMD, VPTESTMQ, VPTESTNMD, VPTESTNMQ, VPXORD, VPXORQ, VPSLLVD, VPSLLVQ, VRCP14PD, 
VRCP14PS, VRCPPH, VRSQRT14PD, VRSQRT14PS, VRSQRTPH, VXORPD, VXORPS

E4.nb2

VCOMPRESSPD, VCOMPRESSPS, VEXPANDPD, VEXPANDPS, VMOVDQU8, VMOVDQU16, VMOVDQU32, 
VMOVDQU64, VMOVUPD, VMOVUPS, VPABSB, VPABSW, VPADDB, VPADDW, VPADDSB, VPADDSW, VPADDUSB, 
VPADDUSW, VPAVGB, VPAVGW, VPCMPB, VPCMPEQB, VPCMPEQW, VPCMPGTB, VPCMPGTW, VPCMPW, VPCMPUB, 
VPCMPUW, VPCOMPRESSD, VPCOMPRESSQ, VPEXPANDD, VPEXPANDQ, VPMAXSB, VPMAXSW, VPMAXUB, 
VPMAXUW, VPMINSB, VPMINSW, VPMINUB, VPMINUW, VPMULHRSW, VPMULHUW, VPMULHW, VPMULLW, 
VPSLLVW, VPSLLW, VPSRAW, VPSRLVW, VPSRLW, VPSUBB, VPSUBW, VPSUBSB, VPSUBSW, VPTESTMB, 
VPTESTMW, VPTESTNMB, VPTESTNMW

Type E4NF

VALIGND, VALIGNQ, VPACKSSDW, VPACKUSDW, VPCONFLICTD, VPCONFLICTQ, VPERMD, VPERMI2D, VPERMI2PS, 
VPERMI2PD, VPERMI2Q, VPERMPD, VPERMPS, VPERMQ, VPERMT2D, VPERMT2PS, VPERMT2Q, VPERMT2PD, 
VPERMILPD, VPERMILPS, VPMULTISHIFTQB, VPSHUFD, VPUNPCKHDQ, VPUNPCKHQDQ, VPUNPCKLDQ, 
VPUNPCKLQDQ, VSHUFF32X4, VSHUFF64X2, VSHUFI32X4, VSHUFI64X2, VSHUFPD, VSHUFPS, VUNPCKHPD, 
VUNPCKHPS, VUNPCKLPD, VUNPCKLPS

E4NF.nb2

VDBPSADBW, VPACKSSWB, VPACKUSWB, VPALIGNR, VPMADDWD, VPMADDUBSW, VMOVSHDUP, VMOVSLDUP, 
VPSADBW, VPSHUFB, VPSHUFHW, VPSHUFLW, VPSLLDQ, VPSRLDQ, VPSLLW, VPSRAW, VPSRLW, (VPSLLD, 
VPSLLQ, VPSRAD, VPSRAQ, VPSRLD, VPSRLQ)3, VPUNPCKHBW, VPUNPCKHWD, VPUNPCKLBW, VPUNPCKLWD, 
VPERMW, VPERMI2W, VPERMT2W

Type E5
PMOVSXBW, PMOVSXBW, PMOVSXBD, PMOVSXBQ, PMOVSXWD, PMOVSXWQ, PMOVSXDQ, PMOVZXBW, 
PMOVZXBD, PMOVZXBQ, PMOVZXWD, PMOVZXWQ, PMOVZXDQ, VCVTDQ2PD, VCVTUDQ2PD, VMOVSH, 
VPMOVSXxx, VPMOVZXxx, 

Type E5NF VMOVDDUP

Type E6

VBROADCASTF32X2, VBROADCASTF32X4, VBROADCASTF64X2, VBROADCASTF32X8, VBROADCASTF64X4, 
VBROADCASTI32X2, VBROADCASTI32X4, VBROADCASTI64X2, VBROADCASTI32X8, VBROADCASTI64X4, 
VBROADCASTSD, VBROADCASTSS, VFPCLASSSD, VFPCLASSSS, VPBROADCASTB, VPBROADCASTD, 
VPBROADCASTW, VPBROADCASTQ, VPMOVQB, VPMOVSQB, VPMOVUSQB, VPMOVQW, VPMOVSQW, VPMOVUSQW, 
VPMOVQD, VPMOVSQD, VPMOVUSQD, VPMOVDB, VPMOVSDB, VPMOVUSDB, VPMOVDW, VPMOVSDW, 
VPMOVUSDW, VPMOVWB, VPMOVSWB, VPMOVUSWB

Type E6NF
VEXTRACTF32X4, VEXTRACTF32X8, VEXTRACTF64X2, VEXTRACTF64X4, VEXTRACTI32X4, VEXTRACTI32X8, 
VEXTRACTI64X2, VEXTRACTI64X4, VINSERTF32X4, VINSERTF32X8, VINSERTF64X2, VINSERTF64X4, 
VINSERTI32X4, VINSERTI32X8, VINSERTI64X2, VINSERTI64X4, VPBROADCASTMB2Q, VPBROADCASTMW2D

Type 
E7NM.1284

VMOVHLPS, VMOVLHPS

Type E7NM.
(VPBROADCASTD, VPBROADCASTQ, VPBROADCASTB, VPBROADCASTW)5, VPMOVB2M, VPMOVD2M, VPMOVM2B, 
VPMOVM2D, VPMOVM2Q, VPMOVM2W, VPMOVQ2M, VPMOVW2M

Type E9NF
VEXTRACTPS, VINSERTPS, VMOVHPD, VMOVHPS, VMOVLPD, VMOVLPS, VMOVD, VMOVQ, VMOVW, VPEXTRB, 
VPEXTRD, VPEXTRW, VPEXTRQ, VPINSRB, VPINSRD, VPINSRW, VPINSRQ

Type E10
VFCMADDCSH, VFMADDCSH, VFCMULCSH, VFMULCSH, VFPCLASSSH, VMOVSD, VMOVSS, VRCP14SD, VRCP14SS, 
VRCPSH, VRSQRT14SD, VRSQRT14SS, VRSQRTSH

Type E10NF (VCVTSI2SD, VCVTUSI2SD)6

Type E11 VCVTPH2PS, VCVTPS2PH

Table 2-45.  EVEX Instructions in Each Exception Class (Contd.)

Exception Class Instruction
Vol. 2A 2-47



INSTRUCTION FORMAT
Type E12
VGATHERDPS, VGATHERDPD, VGATHERQPS, VGATHERQPD, VPGATHERDD, VPGATHERDQ, VPGATHERQD, 
VPGATHERQQ, VPSCATTERDD, VPSCATTERDQ, VPSCATTERQD, VPSCATTERQQ, VSCATTERDPD, VSCATTERDPS, 
VSCATTERQPD, VSCATTERQPS

Type E12NP
VGATHERPF0DPD, VGATHERPF0DPS, VGATHERPF0QPD, VGATHERPF0QPS, VGATHERPF1DPD, VGATHERPF1DPS, 
VGATHERPF1QPD, VGATHERPF1QPS, VSCATTERPF0DPD, VSCATTERPF0DPS, VSCATTERPF0QPD, 
VSCATTERPF0QPS, VSCATTERPF1DPD, VSCATTERPF1DPS, VSCATTERPF1QPD, VSCATTERPF1QPS

NOTES:
1. Operand encoding Full tupletype with immediate.
2. Embedded broadcast is not supported with the “.nb” suffix.
3. Operand encoding Mem128 tupletype.
4. #UD raised if EVEX.L’L !=00b (VL=128).
5. The source operand is a general purpose register.
6. W0 encoding only.

Table 2-45.  EVEX Instructions in Each Exception Class (Contd.)

Exception Class Instruction
2-48 Vol. 2A



INSTRUCTION FORMAT
2.8.1 Exceptions Type E1 and E1NF of EVEX-Encoded Instructions
EVEX-encoded instructions with memory alignment restrictions, and supporting memory fault suppression follow 
exception class E1.

Table 2-46.  Type E1 Class Exception Conditions
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Cause of Exception

Invalid Opcode, 
#UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• EVEX.b encoding #UD condition of Table 2-43.
• Instruction specific EVEX.L'L restriction not met.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is in 
a non-canonical form.

General Protection, 
#GP(0)

X X
EVEX.512: Memory operand is not 64-byte aligned.
EVEX.256: Memory operand is not 32-byte aligned.
EVEX.128: Memory operand is not 16-byte aligned.

X
If fault suppression not set, and an illegal memory operand effective address in the 
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault 
#PF(fault-code)

X X X If fault suppression not set, and a page fault.
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EVEX-encoded instructions with memory alignment restrictions, but do not support memory fault suppression 
follow exception class E1NF.

Table 2-47.  Type E1NF Class Exception Conditions
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Cause of Exception

Invalid Opcode, 
#UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• EVEX.b encoding #UD condition of Table 2-43.
• Instruction specific EVEX.L'L restriction not met.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X X
EVEX.512: Memory operand is not 64-byte aligned.
EVEX.256: Memory operand is not 32-byte aligned.
EVEX.128: Memory operand is not 16-byte aligned.

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.
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2.8.2 Exceptions Type E2 of EVEX-Encoded Instructions
EVEX-encoded vector instructions with arithmetic semantic follow exception class E2.

Table 2-48.  Type E2 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

8
6

Pr
ot

ec
te

d 
an

d 
Co

m
pa

ti
bi

lit
y

6
4

-b
it

 

Cause of Exception

Invalid Opcode, 
#UD

X X If EVEX prefix present.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. 

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• Instruction specific EVEX.L'L restriction not met.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is in a 
non-canonical form.

General Protec-
tion, #GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the CS, 
DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault 
#PF(fault-code)

X X X If fault suppression not set, and a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an unaligned 
memory access is made while the current privilege level is 3.

SIMD Floating-
point Exception, 
#XM

X X X X
If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.OSXMMEX-
CPT[bit 10] = 1.
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2.8.3 Exceptions Type E3 and E3NF of EVEX-Encoded Instructions
EVEX-encoded scalar instructions with arithmetic semantic that support memory fault suppression follow exception 
class E3.

Table 2-49.  Type E3 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. 

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• EVEX.b encoding #UD condition of Table 2-43.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is 
in a non-canonical form.

General Protection, 
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in 
the CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.

SIMD Floating-point 
Exception, #XM

X X X X
If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.OSX-
MMEXCPT[bit 10] = 1.
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EVEX-encoded scalar instructions with arithmetic semantic that do not support memory fault suppression follow 
exception class E3NF.

Table 2-50.  Type E3NF Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X EVEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. 

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• EVEX.b encoding #UD condition of Table 2-43.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.

SIMD Floating-point 
Exception, #XM

X X X X
If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.OSX-
MMEXCPT[bit 10] = 1.
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2.8.4 Exceptions Type E4 and E4NF of EVEX-Encoded Instructions
EVEX-encoded vector instructions that cause no SIMD FP exception and support memory fault suppression follow 
exception class E4.

Table 2-51.  Type E4 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• EVEX.b encoding #UD condition of Table 2-43 and in E4.nb subclass (see E4.nb 

entries in Table 2-45).
• Instruction specific EVEX.L'L restriction not met.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is 
in a non-canonical form.

General Protection, 
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in 
the CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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EVEX-encoded vector instructions that do not cause SIMD FP exception nor support memory fault suppression 
follow exception class E4NF.

Table 2-52.  Type E4NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d 
an

d 
Co

m
pa

ti
bi

lit
y

6
4

-b
it

 

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• EVEX.b encoding #UD condition of Table 2-43 and in E4NF.nb subclass (see 

E4NF.nb entries in Table 2-45).
• Instruction specific EVEX.L'L restriction not met.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.
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2.8.5 Exceptions Type E5 and E5NF
EVEX-encoded scalar/partial-vector instructions that cause no SIMD FP exception and support memory fault 
suppression follow exception class E5.

EVEX-encoded scalar/partial vector instructions that do not cause SIMD FP exception nor support memory fault 
suppression follow exception class E5NF.

Table 2-53.  Type E5 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• EVEX.b encoding #UD condition of Table 2-43.
• Instruction specific EVEX.L'L restriction not met.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is 
in a non-canonical form.

General Protection, 
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the 
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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Table 2-54.  Type E5NF Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• EVEX.b encoding #UD condition of Table 2-43.
• Instruction specific EVEX.L'L restriction not met.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X If an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X If an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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2.8.6 Exceptions Type E6 and E6NF

Table 2-55.  Type E6 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• EVEX.b encoding #UD condition of Table 2-43.
• Instruction specific EVEX.L'L restriction not met.

X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is 
in a non-canonical form.

General Protection, 
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the 
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

Page Fault #PF(fault-
code)

X X If fault suppression not set, and a page fault.

Alignment Check 
#AC(0)

X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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EVEX-encoded instructions that do not cause SIMD FP exception nor support memory fault suppression follow 
exception class E6NF.

Table 2-56.  Type E6NF Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• EVEX.b encoding #UD condition of Table 2-43.
• Instruction specific EVEX.L'L restriction not met.

X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

Page Fault #PF(fault-
code)

X X For a page fault.

Alignment Check 
#AC(0)

X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
Vol. 2A 2-59



INSTRUCTION FORMAT
2.8.7 Exceptions Type E7NM
EVEX-encoded instructions that cause no SIMD FP exception and do not reference memory follow exception class 
E7NM.

Table 2-57.  Type E7NM Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• EVEX.b encoding #UD condition of Table 2-43.
• Instruction specific EVEX.L’L restriction not met.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X If CR0.TS[bit 3]=1.
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2.8.8 Exceptions Type E9 and E9NF
EVEX-encoded vector or partial-vector instructions that do not cause no SIMD FP exception and support memory 
fault suppression follow exception class E9.

Table 2-58.  Type E9 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• EVEX.b encoding #UD condition of Table 2-43.
• Instruction specific EVEX.L'L restriction not met.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is 
in a non-canonical form.

General Protection, 
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the 
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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EVEX-encoded vector or partial-vector instructions that must be encoded with VEX.L’L = 0, do not cause SIMD FP 
exception nor support memory fault suppression follow exception class E9NF.

Table 2-59.  Type E9NF Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• EVEX.b encoding #UD condition of Table 2-43.
• Instruction specific EVEX.L'L restriction not met.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)
X If an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X If an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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2.8.9 Exceptions Type E10 and E10NF
EVEX-encoded scalar instructions that ignore EVEX.L’L vector length encoding, do not cause a SIMD FP exception, 
and support memory fault suppression follow exception class E10.

Table 2-60.  Type E10 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• EVEX.b encoding #UD condition of Table 2-43.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is 
in a non-canonical form.

General Protection, 
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the 
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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EVEX-encoded scalar instructions that ignore EVEX.L’L vector length encoding, do not cause a SIMD FP exception, 
and do not support memory fault suppression follow exception class E10NF.

Table 2-61.  Type E10NF Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• EVEX.b encoding #UD condition of Table 2-43.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is 
in a non-canonical form.

General Protection, 
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the 
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check 
#AC(0)

X X X
For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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2.8.10 Exceptions Type E11 (EVEX-only, Mem Arg, No AC, Floating-point Exceptions)
EVEX-encoded instructions that can cause SIMD FP exception, memory operand support fault suppression but do 
not cause #AC follow exception class E11.

Table 2-62.  Type E11 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• EVEX.b encoding #UD condition of Table 2-43.
• Instruction specific EVEX.L'L restriction not met.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0) X If fault suppression not set, and an illegal address in the SS segment.

X If fault suppression not set, and a memory address referencing the SS segment is 
in a non-canonical form.

General Protection, 
#GP(0)

X If fault suppression not set, and an illegal memory operand effective address in the 
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X If fault suppression not set, and any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault #PF (fault-
code)

X X X If fault suppression not set, and a page fault.

SIMD Floating-Point 
Exception, #XM

X X X X If an unmasked SIMD floating-point exception, {sae} not set, and CR4.OSXMMEX-
CPT[bit 10] = 1.
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2.8.11 Exceptions Type E12 and E12NP (VSIB Mem Arg, No AC, No Floating-point Exceptions)

Table 2-63.  Type E12 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• EVEX.b encoding #UD condition of Table 2-43.
• Instruction specific EVEX.L'L restriction not met.
• If vvvv != 1111b.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X NA If address size attribute is 16 bit.

X X X X If ModR/M.mod = ‘11b’.

X X X X If ModR/M.rm != ‘100b’.

X X X X If any corresponding CPUID feature flag is ‘0’.

X X X X If k0 is used (gather or scatter operation).

X X X X If index = destination register (gather operation).

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, #SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault #PF (fault-
code)

X X X For a page fault.
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EVEX-encoded prefetch instructions that do not cause #PF follow exception class E12NP.

Table 2-64.  Type E12NP Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.
• Opmask encoding #UD condition of Table 2-42.
• EVEX.b encoding #UD condition of Table 2-43.
• Instruction specific EVEX.L'L restriction not met.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X NA If address size attribute is 16 bit.

X X X X If ModR/M.mod = ‘11b’.

X X X X If ModR/M.rm != ‘100b’.

X X X X If any corresponding CPUID feature flag is ‘0’.

X X X X If k0 is used (gather or scatter operation).

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.
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2.9 EXCEPTION CLASSIFICATIONS OF OPMASK INSTRUCTIONS, TYPE K20 AND 
TYPE K21

The exception behavior of VEX-encoded opmask instructions are listed below.

2.9.1 Exceptions Type K20
Exception conditions of Opmask instructions that do not address memory are listed as Type K20.

Table 2-65.  TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg)
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Cause of Exception

Invalid Opcode, #UD X X X X If relevant CPUID feature flag is ‘0’.

X X If a VEX prefix is present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X If ModRM:[7:6] != 11b.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.
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2.9.2 Exceptions Type K21
Exception conditions of Opmask instructions that address memory are listed as Type K21.

Table 2-66.  TYPE K21 Exception Definition (VEX-Encoded OpMask Instructions Addressing Memory)
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Cause of Exception

Invalid Opcode, #UD X X X X If relevant CPUID feature flag is ‘0’.

X X If a VEX prefix is present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies: 
• State requirement, Table 2-39 not met.
• Opcode independent #UD condition in Table 2-40.
• Operand encoding #UD conditions in Table 2-41.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

Stack, #SS(0) X X X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments. 
If the DS, ES, FS, or GS register is used to access memory and it contains a null 
segment selector.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check 
#AC(0)

X X X For 2, 4, or 8 byte memory access if alignment checking is enabled and an 
unaligned memory access is made while the current privilege level is 3.
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2.10 INTEL® AMX INSTRUCTION EXCEPTION CLASSES
Alignment exceptions: The Intel AMX instructions that access memory will never generate #AC exceptions.

Table 2-67.  Intel® AMX Exception Classes 

Class Description

AMX-E1

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.

• #GP based on palette and configuration checks (see pseudocode).
• #GP if the memory address is in a non-canonical form.

• #SS(0) if the memory address referencing the SS segment is in a non-canonical form.

• #PF if a page fault occurs.

AMX-E2

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.

• #GP if the memory address is in a non-canonical form.

• #SS(0) if the memory address referencing the SS segment is in a non-canonical form.

• #PF if a page fault occurs.

AMX-E3

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.
• #UD if not using SIB addressing.
• #UD if TILES_CONFIGURED == 0.
• #UD if tsrc or tdest are not valid tiles.
• #UD if tsrc/tdest are ≥ palette_table[tilecfg.palette_id].max_names.
• #UD if tsrc.colbytes mod 4 ≠ 0 OR tdest.colbytes mod 4 ≠ 0.
• #UD if tilecfg.start_row ≥ tsrc.rows OR tilecfg.start_row ≥ tdest.rows.

• #GP if the memory address is in a non-canonical form.

• #SS(0) if the memory address referencing the SS segment is in a non-canonical form.

• #PF if any memory operand causes a page fault.

• #NM if XFD[18] == 1.
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AMX-E4

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if srcdest == src1 OR src1 == src2 OR srcdest == src2.
• #UD if TILES_CONFIGURED == 0.
• #UD if srcdest.colbytes mod 4 ≠ 0.
• #UD if src1.colbytes mod 4 ≠ 0.
• #UD if src2.colbytes mod 4 ≠ 0.
• #UD if srcdest/src1/src2 are not valid tiles.
• #UD if srcdest/src1/src2 are ≥ palette_table[tilecfg.palette_id].max_names.
• #UD if srcdest.colbytes ≠ src2.colbytes.
• #UD if srcdest.rows ≠ src1.rows.
• #UD if src1.colbytes / 4 ≠ src2.rows.
• #UD if srcdest.colbytes > tmul_maxn.
• #UD if src2.colbytes > tmul_maxn.
• #UD if src1.colbytes/4 > tmul_maxk.
• #UD if src2.rows > tmul_maxk.

• #NM if XFD[18] == 1.

AMX-E5

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.
• #UD if TILES_CONFIGURED == 0.
• #UD if tdest is not a valid tile.
• #UD if tdest is ≥ palette_table[tilecfg.palette_id].max_names.

• #NM if XFD[18] == 1.

AMX-E6

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.

Table 2-67.  Intel® AMX Exception Classes  (Contd.)

Class Description
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CHAPTER 3
INSTRUCTION SET REFERENCE, A-L

This chapter describes the instruction set for the Intel 64 and IA-32 architectures (A-L) in IA-32e, protected, 
virtual-8086, and real-address modes of operation. The set includes general-purpose, x87 FPU, MMX, 
SSE/SSE2/SSE3/SSSE3/SSE4, AESNI/PCLMULQDQ, AVX, and system instructions. See also Chapter 4, “Instruc-
tion Set Reference, M-U,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B; 
Chapter 5, “Instruction Set Reference, V,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2C; and Chapter 6, “Instruction Set Reference, W-Z,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2D.

For each instruction, each operand combination is described. A description of the instruction and its operand, an 
operational description, a description of the effect of the instructions on flags in the EFLAGS register, and a 
summary of exceptions that can be generated are also provided.

3.1 INTERPRETING THE INSTRUCTION REFERENCE PAGES
This section describes the format of information contained in the instruction reference pages in this chapter. It 
explains notational conventions and abbreviations used in these sections.

3.1.1 Instruction Format
The following is an example of the format used for each instruction description in this chapter. The heading below 
introduces the example. The table below provides an example summary table.

CMC—Complement Carry Flag [this is an example]

Instruction Operand Encoding

Opcode Instruction Op/En 64/32-bit 
Mode

CPUID 
Feature Flag

Description

F5 CMC ZO V/V N/A Complement carry flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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3.1.1.1  Opcode Column in the Instruction Summary Table (Instructions without VEX Prefix)
The “Opcode” column in the table above shows the object code produced for each form of the instruction. When 
possible, codes are given as hexadecimal bytes in the same order in which they appear in memory. Definitions of 
entries other than hexadecimal bytes are as follows:
• NP — Indicates the use of 66/F2/F3 prefixes (beyond those already part of the instructions opcode) are not 

allowed with the instruction. Such use will either cause an invalid-opcode exception (#UD) or result in the 
encoding for a different instruction.

• NFx — Indicates the use of F2/F3 prefixes (beyond those already part of the instructions opcode) are not 
allowed with the instruction. Such use will either cause an invalid-opcode exception (#UD) or result in the 
encoding for a different instruction.

• REX.W — Indicates the use of a REX prefix that affects operand size or instruction semantics. The ordering of 
the REX prefix and other optional/mandatory instruction prefixes are discussed Chapter 2. Note that REX 
prefixes that promote legacy instructions to 64-bit behavior are not listed explicitly in the opcode column.

• /digit — A digit between 0 and 7 indicates that the ModR/M byte of the instruction uses only the r/m (register 
or memory) operand. The reg field contains the digit that provides an extension to the instruction's opcode.

• /r — Indicates that the ModR/M byte of the instruction contains a register operand and an r/m operand.
• cb, cw, cd, cp, co, ct — A 1-byte (cb), 2-byte (cw), 4-byte (cd), 6-byte (cp), 8-byte (co) or 10-byte (ct) value 

following the opcode. This value is used to specify a code offset and possibly a new value for the code segment 
register.

• ib, iw, id, io — A 1-byte (ib), 2-byte (iw), 4-byte (id) or 8-byte (io) immediate operand to the instruction that 
follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if the operand is a signed 
value. All words, doublewords, and quadwords are given with the low-order byte first.

• +rb, +rw, +rd, +ro — Indicated the lower 3 bits of the opcode byte is used to encode the register operand 
without a modR/M byte. The instruction lists the corresponding hexadecimal value of the opcode byte with low 
3 bits as 000b. In non-64-bit mode, a register code, from 0 through 7, is added to the hexadecimal value of the 
opcode byte. In 64-bit mode, indicates the four bit field of REX.b and opcode[2:0] field encodes the register 
operand of the instruction. “+ro” is applicable only in 64-bit mode. See Table 3-1 for the codes.

• +i — A number used in floating-point instructions when one of the operands is ST(i) from the FPU register stack. 
The number i (which can range from 0 to 7) is added to the hexadecimal byte given at the left of the plus sign 
to form a single opcode byte.

Table 3-1.  Register Codes Associated With +rb, +rw, +rd, +ro

byte register word register dword register quadword register 
(64-Bit Mode only)
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AL None 0 AX None 0 EAX None 0 RAX None 0

CL None 1 CX None 1 ECX None 1 RCX None 1

DL None 2 DX None 2 EDX None 2 RDX None 2

BL None 3 BX None 3 EBX None 3 RBX None 3

AH Not 
encodab
le (N.E.)

4 SP None 4 ESP None 4 N/A N/A N/A

CH N.E. 5 BP None 5 EBP None 5 N/A N/A N/A

DH N.E. 6 SI None 6 ESI None 6 N/A N/A N/A

BH N.E. 7 DI None 7 EDI None 7 N/A N/A N/A

SPL Yes 4 SP None 4 ESP None 4 RSP None 4

BPL Yes 5 BP None 5 EBP None 5 RBP None 5
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3.1.1.2  Opcode Column in the Instruction Summary Table (Instructions with VEX prefix)
In the Instruction Summary Table, the Opcode column presents each instruction encoded using the VEX prefix in 
following form (including the modR/M byte if applicable, the immediate byte if applicable):
VEX.[128,256].[66,F2,F3].0F/0F3A/0F38.[W0,W1] opcode [/r] [/ib,/is4]
• VEX — Indicates the presence of the VEX prefix is required. The VEX prefix can be encoded using the three-

byte form (the first byte is C4H), or using the two-byte form (the first byte is C5H). The two-byte form of VEX 
only applies to those instructions that do not require the following fields to be encoded: VEX.mmmmm, VEX.W, 
VEX.X, VEX.B. Refer to Section 2.3 for more detail on the VEX prefix.
The encoding of various sub-fields of the VEX prefix is described using the following notations:

— 128,256: VEX.L field can be 0 (denoted by VEX.128, VEX.L0, or VEX.LZ) or 1 (denoted by VEX.256 or 
VEX.L1). The VEX.L field can be encoded using either the 2-byte or 3-byte form of the VEX prefix. The 
presence of the notation VEX.256 or VEX.128 in the opcode column should be interpreted as follows:

• If VEX.256 is present in the opcode column: The semantics of the instruction must be encoded with 
VEX.L = 1. An attempt to encode this instruction with VEX.L= 0 can result in one of two situations: (a) 
if VEX.128 version is defined, the processor will behave according to the defined VEX.128 behavior; (b) 
an #UD occurs if there is no VEX.128 version defined.

• If VEX.128 is present in the opcode column but there is no VEX.256 version defined for the same 
opcode byte: Two situations apply: (a) For VEX-encoded, 128-bit SIMD integer instructions, software 
must encode the instruction with VEX.L = 0. The processor will treat the opcode byte encoded with 
VEX.L= 1 by causing an #UD exception; (b) For VEX-encoded, 128-bit packed floating-point instruc-
tions, software must encode the instruction with VEX.L = 0. The processor will treat the opcode byte 
encoded with VEX.L= 1 by causing an #UD exception (e.g., VMOVLPS).

• If VEX.L0 or VEX.L1 is present in the opcode column: The specified VEX.L value is required for encoding 
this instruction but does not have the connotation of specifying vector length.

• If VEX.LIG is present in the opcode column: The VEX.L value is ignored. This generally applies to VEX-
encoded scalar SIMD floating-point instructions. Scalar SIMD floating-point instruction can be distin-
guished from the mnemonic of the instruction. Generally, the last two letters of the instruction 
mnemonic would be either “SS”, “SD”, or “SI” for SIMD floating-point conversion instructions.

• If VEX.LZ is present in the opcode column: The VEX.L must be encoded to be 0B, an #UD occurs if 
VEX.L is not zero.

SIL Yes 6 SI None 6 ESI None 6 RSI None 6

DIL Yes 7 DI None 7 EDI None 7 RDI None 7

Registers R8 - R15 (see below): Available in 64-Bit Mode Only

R8B Yes 0 R8W Yes 0 R8D Yes 0 R8 Yes 0

R9B Yes 1 R9W Yes 1 R9D Yes 1 R9 Yes 1

R10B Yes 2 R10W Yes 2 R10D Yes 2 R10 Yes 2

R11B Yes 3 R11W Yes 3 R11D Yes 3 R11 Yes 3

R12B Yes 4 R12W Yes 4 R12D Yes 4 R12 Yes 4

R13B Yes 5 R13W Yes 5 R13D Yes 5 R13 Yes 5

R14B Yes 6 R14W Yes 6 R14D Yes 6 R14 Yes 6

R15B Yes 7 R15W Yes 7 R15D Yes 7 R15 Yes 7

Table 3-1.  Register Codes Associated With +rb, +rw, +rd, +ro (Contd.)

byte register word register dword register quadword register 
(64-Bit Mode only)
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INSTRUCTION SET REFERENCE, A-L
— 66,F2,F3: The presence or absence of these values map to the VEX.pp field encodings. If absent, this 
corresponds to VEX.pp=00B. If present, the corresponding VEX.pp value affects the “opcode” byte in the 
same way as if a SIMD prefix (66H, F2H or F3H) does to the ensuing opcode byte. Thus a non-zero encoding 
of VEX.pp may be considered as an implied 66H/F2H/F3H prefix. The VEX.pp field may be encoded using 
either the 2-byte or 3-byte form of the VEX prefix.

— 0F,0F3A,0F38: The presence maps to a valid encoding of the VEX.mmmmm field. Only three encoded 
values of VEX.mmmmm are defined as valid, corresponding to the escape byte sequence of 0FH, 0F3AH, 
and 0F38H. The effect of a valid VEX.mmmmm encoding on the ensuing opcode byte is same as if the 
corresponding escape byte sequence on the ensuing opcode byte for non-VEX encoded instructions. Thus a 
valid encoding of VEX.mmmmm may be consider as an implies escape byte sequence of either 0FH, 0F3AH 
or 0F38H. The VEX.mmmmm field must be encoded using the 3-byte form of VEX prefix. 

— 0F,0F3A,0F38 and 2-byte/3-byte VEX: The presence of 0F3A and 0F38 in the opcode column implies 
that opcode can only be encoded by the three-byte form of VEX. The presence of 0F in the opcode column 
does not preclude the opcode to be encoded by the two-byte of VEX if the semantics of the opcode does not 
require any subfield of VEX not present in the two-byte form of the VEX prefix.

— W0: VEX.W=0. 

— W1: VEX.W=1.

— The presence of W0/W1 in the opcode column applies to two situations: (a) it is treated as an extended 
opcode bit, (b) the instruction semantics support an operand size promotion to 64-bit of a general-purpose 
register operand or a 32-bit memory operand. The presence of W1 in the opcode column implies the opcode 
must be encoded using the 3-byte form of the VEX prefix. The presence of W0 in the opcode column does 
not preclude the opcode to be encoded using the C5H form of the VEX prefix, if the semantics of the opcode 
does not require other VEX subfields not present in the two-byte form of the VEX prefix. Please see Section 
2.3 on the subfield definitions within VEX.

— WIG: can use C5H form (if not requiring VEX.mmmmm) or VEX.W value is ignored in the C4H form of VEX 
prefix.

— If WIG is present, the instruction may be encoded using either the two-byte form or the three-byte form of 
VEX. When encoding the instruction using the three-byte form of VEX, the value of VEX.W is ignored. 

• opcode — Instruction opcode.
• /is4 — An 8-bit immediate byte is present containing a source register specifier in either imm8[7:4] (for 64-

bit mode) or imm8[6:4] (for 32-bit mode), and instruction-specific payload in imm8[3:0].
• In general, the encoding o f VEX.R, VEX.X, VEX.B field are not shown explicitly in the opcode column. The 

encoding scheme of VEX.R, VEX.X, VEX.B fields must follow the rules defined in Section 2.3.

EVEX.[128,256,512,LLIG].[66,F2,F3].0F/0F3A/0F38.[W0,W1,WIG] opcode [/r] [/ib]
• EVEX — The EVEX prefix is encoded using the four-byte form (the first byte is 62H). Refer to Section 2.7.1 for 

more detail on the EVEX prefix.
The encoding of various sub-fields of the EVEX prefix is described using the following notations:

— 128, 256, 512, LLIG: This corresponds to the vector length; three values are allowed by EVEX: 512-bit, 
256-bit and 128-bit. Alternatively, vector length is ignored (LIG) for certain instructions; this typically 
applies to scalar instructions operating on one data element of a vector register.

— 66,F2,F3: The presence of these value maps to the EVEX.pp field encodings. The corresponding VEX.pp 
value affects the “opcode” byte in the same way as if a SIMD prefix (66H, F2H or F3H) does to the ensuing 
opcode byte. Thus a non-zero encoding of VEX.pp may be considered as an implied 66H/F2H/F3H prefix. 

— 0F,0F3A,0F38: The presence maps to a valid encoding of the EVEX.mmm field. Only three encoded values 
of EVEX.mmm are defined as valid, corresponding to the escape byte sequence of 0FH, 0F3AH, and 0F38H. 
The effect of a valid EVEX.mmm encoding on the ensuing opcode byte is the same as if the corresponding 
escape byte sequence on the ensuing opcode byte for non-EVEX encoded instructions. Thus a valid 
encoding of EVEX.mmm may be considered as an implied escape byte sequence of either 0FH, 0F3AH or 
0F38H. 

— W0: EVEX.W=0. 
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— W1: EVEX.W=1.

— WIG: EVEX.W bit ignored
• opcode — Instruction opcode.
• In general, the encoding of EVEX.R and R’, EVEX.X and X’, and EVEX.B and B’ fields are not shown explicitly in 

the opcode column. 

NOTE
Previously, the terms NDS, NDD, and DDS were used in instructions with an EVEX (or VEX) prefix. 
These terms indicated that the vvvv field was valid for encoding, and specified register usage. 
These terms are no longer necessary and are redundant with the instruction operand encoding 
tables provided with each instruction. The instruction operand encoding tables give explicit details 
on all operands, indicating where every operand is stored and if they are read or written. If vvvv is 
not listed as an operand in the instruction operand encoding table, then EVEX (or VEX) vvvv must 
be 0b1111.

3.1.1.3  Instruction Column in the Opcode Summary Table
The “Instruction” column gives the syntax of the instruction statement as it would appear in an ASM386 program. 
The following is a list of the symbols used to represent operands in the instruction statements:
• rel8 — A relative address in the range from 128 bytes before the end of the instruction to 127 bytes after the 

end of the instruction.
• rel16, rel32 — A relative address within the same code segment as the instruction assembled. The rel16 

symbol applies to instructions with an operand-size attribute of 16 bits; the rel32 symbol applies to instructions 
with an operand-size attribute of 32 bits.

• ptr16:16, ptr16:32 — A far pointer, typically to a code segment different from that of the instruction. The 
notation 16:16 indicates that the value of the pointer has two parts. The value to the left of the colon is a 16-
bit selector or value destined for the code segment register. The value to the right corresponds to the offset 
within the destination segment. The ptr16:16 symbol is used when the instruction's operand-size attribute is 
16 bits; the ptr16:32 symbol is used when the operand-size attribute is 32 bits.

• r8 — One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL, and SIL; or 
one of the byte registers (R8B - R15B) available when using REX.R and 64-bit mode. 

• r16 — One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SI, DI; or one of the word registers 
(R8-R15) available when using REX.R and 64-bit mode.

• r32 — One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI; or one of 
the doubleword registers (R8D - R15D) available when using REX.R in 64-bit mode.

• r64 — One of the quadword general-purpose registers: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8–R15. 
These are available when using REX.R and 64-bit mode.

• imm8 — An immediate byte value. The imm8 symbol can be a signed number between –128 and +127 
inclusive; an unsigned number between 0 and 255 inclusive; or a bitmap when an instruction uses its individual 
bits. For instructions in which imm8 is combined with a word or doubleword operand, the immediate value is 
sign-extended to form a word or doubleword. The upper byte of the word is filled with the topmost bit of the 
immediate value.

• imm16 — An immediate word value used for instructions whose operand-size attribute is 16 bits. This is a 
number between –32,768 and +32,767 inclusive.

• imm32 — An immediate doubleword value used for instructions whose operand-size attribute is 32 
bits. It allows the use of a number between +2,147,483,647 and –2,147,483,648 inclusive.

• imm64 — An immediate quadword value used for instructions whose operand-size attribute is 64 bits. 
The value allows the use of a number between +9,223,372,036,854,775,807 and –
9,223,372,036,854,775,808 inclusive.

• /ib — A single-byte value.
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• r/m8 — A byte operand that is either the contents of a byte general-purpose register (AL, CL, DL, BL, AH, CH, 
DH, BH, BPL, SPL, DIL, and SIL) or a byte from memory. Byte registers R8B - R15B are available using REX.R 
in 64-bit mode.

• r/m16 — A word general-purpose register or memory operand used for instructions whose operand-size 
attribute is 16 bits. The word general-purpose registers are: AX, CX, DX, BX, SP, BP, SI, DI. The contents of 
memory are found at the address provided by the effective address computation. Word registers R8W - R15W 
are available using REX.R in 64-bit mode.

• r/m32 — A doubleword general-purpose register or memory operand used for instructions whose operand-
size attribute is 32 bits. The doubleword general-purpose registers are: EAX, ECX, EDX, EBX, ESP, EBP, ESI, 
EDI. The contents of memory are found at the address provided by the effective address computation. 
Doubleword registers R8D - R15D are available when using REX.R in 64-bit mode.

• r/m64 — A quadword general-purpose register or memory operand used for instructions whose operand-size 
attribute is 64 bits when using REX.W. Quadword general-purpose registers are: RAX, RBX, RCX, RDX, RDI, 
RSI, RBP, RSP, R8–R15; these are available only in 64-bit mode. The contents of memory are found at the 
address provided by the effective address computation.

• reg — A general-purpose register used for instructions when the width of the register does not matter to the 
semantics of the operation of the instruction. The register can be r16, r32, or r64.

• m — A 16-, 32- or 64-bit operand in memory.
• m8 — A byte operand in memory, usually expressed as a variable or array name, but pointed to by the 

DS:(E)SI or ES:(E)DI registers. In 64-bit mode, it is pointed to by the RSI or RDI registers.
• m16 — A word operand in memory, usually expressed as a variable or array name, but pointed to by the 

DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions.
• m32 — A doubleword operand in memory. The contents of memory are found at the address provided by the 

effective address computation.
• m64 — A memory quadword operand in memory. 
• m128 — A memory double quadword operand in memory. 
• m16:16, m16:32 & m16:64 — A memory operand containing a far pointer composed of two numbers. The 

number to the left of the colon corresponds to the pointer's segment selector. The number to the right 
corresponds to its offset.

• m16&32, m16&16, m32&32, m16&64 — A memory operand consisting of data item pairs whose sizes are 
indicated on the left and the right side of the ampersand. All memory addressing modes are allowed. The 
m16&16 and m32&32 operands are used by the BOUND instruction to provide an operand containing an upper 
and lower bounds for array indices. The m16&32 operand is used by LIDT and LGDT to provide a word with 
which to load the limit field, and a doubleword with which to load the base field of the corresponding GDTR and 
IDTR registers. The m16&64 operand is used by LIDT and LGDT in 64-bit mode to provide a word with which to 
load the limit field, and a quadword with which to load the base field of the corresponding GDTR and IDTR 
registers.

• m80bcd— A Binary Coded Decimal (BCD) operand in memory, 80 bits.
• moffs8, moffs16, moffs32, moffs64 — A simple memory variable (memory offset) of type byte, word, or 

doubleword used by some variants of the MOV instruction. The actual address is given by a simple offset 
relative to the segment base. No ModR/M byte is used in the instruction. The number shown with moffs 
indicates its size, which is determined by the address-size attribute of the instruction. 

• Sreg — A segment register. The segment register bit assignments are ES = 0, CS = 1, SS = 2, DS = 3, FS = 
4, and GS = 5.

• m32fp, m64fp, m80fp — A single precision, double precision, and double extended-precision (respectively) 
floating-point operand in memory. These symbols designate floating-point values that are used as operands for 
x87 FPU floating-point instructions.

• m16int, m32int, m64int — A word, doubleword, and quadword integer (respectively) operand in memory. 
These symbols designate integers that are used as operands for x87 FPU integer instructions.

• ST or ST(0) — The top element of the FPU register stack.
• ST(i) — The ith element from the top of the FPU register stack (i := 0 through 7).
• mm — An MMX register. The 64-bit MMX registers are: MM0 through MM7.
Vol. 2A 3-6



INSTRUCTION SET REFERENCE, A-L
• mm/m32 — The low order 32 bits of an MMX register or a 32-bit memory operand. The 64-bit MMX registers 
are: MM0 through MM7. The contents of memory are found at the address provided by the effective address 
computation.

• mm/m64 — An MMX register or a 64-bit memory operand. The 64-bit MMX registers are: MM0 through MM7. 
The contents of memory are found at the address provided by the effective address computation.

• xmm — An XMM register. The 128-bit XMM registers are: XMM0 through XMM7; XMM8 through XMM15 are 
available using REX.R in 64-bit mode.

• xmm/m32— An XMM register or a 32-bit memory operand. The 128-bit XMM registers are XMM0 through 
XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at 
the address provided by the effective address computation.

• xmm/m64 — An XMM register or a 64-bit memory operand. The 128-bit SIMD floating-point registers are 
XMM0 through XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of 
memory are found at the address provided by the effective address computation.

• xmm/m128 — An XMM register or a 128-bit memory operand. The 128-bit XMM registers are XMM0 through 
XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at 
the address provided by the effective address computation.

• <XMM0>— Indicates implied use of the XMM0 register.
When there is ambiguity, xmm1 indicates the first source operand using an XMM register and xmm2 the second 
source operand using an XMM register. 
Some instructions use the XMM0 register as the third source operand, indicated by <XMM0>. The use of the 
third XMM register operand is implicit in the instruction encoding and does not affect the ModR/M encoding.

• ymm — A YMM register. The 256-bit YMM registers are: YMM0 through YMM7; YMM8 through YMM15 are 
available in 64-bit mode. 

• m256 — A 32-byte operand in memory. This nomenclature is used only with AVX instructions.
• ymm/m256 — A YMM register or 256-bit memory operand. 
• <YMM0>— Indicates use of the YMM0 register as an implicit argument.
• bnd — A 128-bit bounds register. BND0 through BND3.
• mib — A memory operand using SIB addressing form, where the index register is not used in address calcu-

lation, Scale is ignored. Only the base and displacement are used in effective address calculation.
• m512 — A 64-byte operand in memory. 
• zmm/m512 — A ZMM register or 512-bit memory operand. 
• {k1}{z} — A mask register used as instruction writemask. The 64-bit k registers are: k1 through k7. 

Writemask specification is available exclusively via EVEX prefix. The masking can either be done as a merging-
masking, where the old values are preserved for masked out elements or as a zeroing masking. The type of 
masking is determined by using the EVEX.z bit.

• {k1} — Without {z}: a mask register used as instruction writemask for instructions that do not allow zeroing-
masking but support merging-masking. This corresponds to instructions that require the value of the aaa field 
to be different than 0 (e.g., gather) and store-type instructions which allow only merging-masking. 

• k1 — A mask register used as a regular operand (either destination or source). The 64-bit k registers are: k0 
through k7.

• mV — A vector memory operand; the operand size is dependent on the instruction.
• vm32{x,y, z} — A vector array of memory operands specified using VSIB memory addressing. The array of 

memory addresses are specified using a common base register, a constant scale factor, and a vector index 
register with individual elements of 32-bit index value in an XMM register (vm32x), a YMM register (vm32y) or 
a ZMM register (vm32z).

• vm64{x,y, z} — A vector array of memory operands specified using VSIB memory addressing. The array of 
memory addresses are specified using a common base register, a constant scale factor, and a vector index 
register with individual elements of 64-bit index value in an XMM register (vm64x), a YMM register (vm64y) or 
a ZMM register (vm64z).
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• zmm/m512/m32bcst — An operand that can be a ZMM register, a 512-bit memory location or a 512-bit 
vector loaded from a 32-bit memory location. 

• zmm/m512/m64bcst — An operand that can be a ZMM register, a 512-bit memory location or a 512-bit 
vector loaded from a 64-bit memory location.

• <ZMM0> — Indicates use of the ZMM0 register as an implicit argument.
• {er} — Indicates support for embedded rounding control, which is only applicable to the register-register form 

of the instruction. This also implies support for SAE (Suppress All Exceptions).
• {sae} — Indicates support for SAE (Suppress All Exceptions). This is used for instructions that support SAE, 

but do not support embedded rounding control.
• SRC1 — Denotes the first source operand in the instruction syntax of an instruction encoded with the 

VEX/EVEX prefix and having two or more source operands.
• SRC2 — Denotes the second source operand in the instruction syntax of an instruction encoded with the 

VEX/EVEX prefix and having two or more source operands.
• SRC3 — Denotes the third source operand in the instruction syntax of an instruction encoded with the 

VEX/EVEX prefix and having three source operands.
• SRC — The source in a single-source instruction.
• DST — The destination in an instruction. This field is encoded by reg_field.
In the instruction encoding, the MODRM byte is represented several ways depending on the role it plays. The 
MODRM byte has 3 fields: 2-bit MODRM.MOD field, a 3-bit MODRM.REG field and a 3-bit MODRM.RM field. When all 
bits of the MODRM byte have fixed values for an instruction, the 2-hex nibble value of that byte is presented after 
the opcode in the encoding boxes on the instruction description pages. When only some fields of the MODRM byte 
must contain fixed values, those values are specified as follows:
• If only the MODRM.MOD must be 0b11, and MODRM.REG and MODRM.RM fields are unrestricted, this is 

denoted as 11:rrr:bbb. The rrr correspond to the 3-bits of the MODRM.REG field and the bbb correspond to 
the 3-bits of the MODMR.RM field.

• If the MODRM.MOD field is constrained to be a value other than 0b11, i.e., it must be one of 0b00, 0b01, or 
0b10, then we use the notation !(11).

• If the MODRM.REG field had a specific required value, e.g., 0b101, that would be denoted as mm:101:bbb. 

3.1.1.4  Operand Encoding Column in the Instruction Summary Table
The “operand encoding” column is abbreviated as Op/En in the Instruction Summary table heading. Instruction 
operand encoding information is provided for each assembly instruction syntax using a letter to cross reference to 
a row entry in the operand encoding definition table that follows the instruction summary table. The operand 
encoding table in each instruction reference page lists each instruction operand (according to each instruction 
syntax and operand ordering shown in the instruction column) relative to the ModRM byte, VEX.vvvv field or addi-
tional operand encoding placement. 
EVEX encoded instructions employ compressed disp8*N encoding of the displacement bytes, where N is defined in 
Table 2-36 and Table 2-37, according to tupletypes. The tupletype for an instruction is listed in the operand 
encoding definition table where applicable.

NOTES
• The letters in the Op/En column of an instruction apply ONLY to the encoding definition table 

immediately following the instruction summary table.
• In the encoding definition table, the letter ‘r’ within a pair of parenthesis denotes the content of 

the operand will be read by the processor. The letter ‘w’ within a pair of parenthesis denotes the 
content of the operand will be updated by the processor.

3.1.1.5  64/32-bit Mode Column in the Instruction Summary Table
The “64/32-bit Mode” column indicates whether the opcode sequence is supported in (a) 64-bit mode or (b) the 
Compatibility mode and other IA-32 modes that apply in conjunction with the CPUID feature flag associated 
specific instruction extensions. 
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The 64-bit mode support is to the left of the ‘slash’ and has the following notation:
• V — Supported.
• I — Not supported.
• N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may represent part of a sequence of 

valid instructions in other modes).
• N.P. — Indicates the REX prefix does not affect the legacy instruction in 64-bit mode.
• N.I. — Indicates the opcode is treated as a new instruction in 64-bit mode.
• N.S. — Indicates an instruction syntax that requires an address override prefix in 64-bit mode and is not 

supported. Using an address override prefix in 64-bit mode may result in model-specific execution behavior.

The Compatibility/Legacy Mode support is to the right of the ‘slash’ and has the following notation:
• V — Supported.
• I — Not supported.
• N.E. — Indicates an Intel 64 instruction mnemonics/syntax that is not encodable; the opcode sequence is not
applicable as an individual instruction in compatibility mode or IA-32 mode. The opcode may represent a valid
sequence of legacy IA-32 instructions.

3.1.1.6  CPUID Support Column in the Instruction Summary Table
The fourth column holds abbreviated CPUID feature flags (e.g., appropriate bit in CPUID.01H.ECX,
CPUID.01H.EDX for SSE/SSE2/SSE3/SSSE3/SSE4.1/SSE4.2/AESNI/PCLMULQDQ/AVX/RDRAND support) that
indicate processor support for the instruction. If the corresponding flag is ‘0’, the instruction will #UD.

3.1.1.7  Description Column in the Instruction Summary Table
The “Description” column briefly explains forms of the instruction. 

3.1.1.8  Description Section 
Each instruction is then described by number of information sections. The “Description” section describes the 
purpose of the instructions and required operands in more detail.

Summary of terms that may be used in the description section:
• Legacy SSE — Refers to SSE, SSE2, SSE3, SSSE3, SSE4, AESNI, PCLMULQDQ, and any future instruction sets 

referencing XMM registers and encoded without a VEX prefix.
• VEX.vvvv — The VEX bit field specifying a source or destination register (in 1’s complement form).
• rm_field — shorthand for the ModR/M r/m field and any REX.B.
• reg_field — shorthand for the ModR/M reg field and any REX.R.

3.1.1.9  Operation Section
The “Operation” section contains an algorithm description (frequently written in pseudo-code) for the instruction. 
Algorithms are composed of the following elements:
• Comments are enclosed within the symbol pairs “(*” and “*)”. 
• Compound statements are enclosed in keywords, such as: IF, THEN, ELSE, and FI for an if statement; DO and 

OD for a do statement; or CASE... OF for a case statement.
• A register name implies the contents of the register. A register name enclosed in brackets implies the contents 

of the location whose address is contained in that register. For example, ES:[DI] indicates the contents of the 
location whose ES segment relative address is in register DI. [SI] indicates the contents of the address 
contained in register SI relative to the SI register’s default segment (DS) or the overridden segment.

• Parentheses around the “E” in a general-purpose register name, such as (E)SI, indicates that the offset is read 
from the SI register if the address-size attribute is 16, from the ESI register if the address-size attribute is 32. 
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Parentheses around the “R” in a general-purpose register name, (R)SI, in the presence of a 64-bit register 
definition such as (R)SI, indicates that the offset is read from the 64-bit RSI register if the address-size 
attribute is 64.

• Brackets are used for memory operands where they mean that the contents of the memory location is a 
segment-relative offset. For example, [SRC] indicates that the content of the source operand is a segment-
relative offset.

• A := B indicates that the value of B is assigned to A.
• The symbols =, ≠, >, <, ≥, and ≤ are relational operators used to compare two values: meaning equal, not 

equal, greater or equal, less or equal, respectively. A relational expression such as A = B is TRUE if the value of 
A is equal to B; otherwise it is FALSE.

• The expression “« COUNT” and “» COUNT” indicates that the destination operand should be shifted left or right 
by the number of bits indicated by the count operand.

The following identifiers are used in the algorithmic descriptions:
• OperandSize and AddressSize — The OperandSize identifier represents the operand-size attribute of the 

instruction, which is 16, 32 or 64-bits. The AddressSize identifier represents the address-size attribute, which 
is 16, 32 or 64-bits. For example, the following pseudo-code indicates that the operand-size attribute depends 
on the form of the MOV instruction used.

IF Instruction = MOVW
THEN OperandSize := 16;

ELSE
IF Instruction = MOVD

THEN OperandSize := 32;
ELSE

IF Instruction = MOVQ
THEN OperandSize := 64; 

FI;
FI;

FI;

See “Operand-Size and Address-Size Attributes” in Chapter 3 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for guidelines on how these attributes are determined.

• StackAddrSize — Represents the stack address-size attribute associated with the instruction, which has a 
value of 16, 32 or 64-bits. See “Address-Size Attribute for Stack” in Chapter 6, “Procedure Calls, Interrupts, and 
Exceptions,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

• SRC — Represents the source operand.
• DEST — Represents the destination operand.
• MAXVL — The maximum vector register width pertaining to the instruction. This is not the vector-length 

encoding in the instruction's encoding but is instead determined by the current value of XCR0. For details, refer 
to the table below. Note that the value of MAXVL is the largest of the features enabled. Future processors may 
define new bits in XCR0 whose setting may imply other values for MAXVL.

MAXVL Definition

The following functions are used in the algorithmic descriptions:
• ZeroExtend(value) — Returns a value zero-extended to the operand-size attribute of the instruction. For 

example, if the operand-size attribute is 32, zero extending a byte value of –10 converts the byte from F6H to 

XCR0 Component MAXVL

XCR0.SSE 128

XCR0.AVX 256

XCR0.{ZMM_Hi256, Hi16_ZMM, OPMASK} 512
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a doubleword value of 000000F6H. If the value passed to the ZeroExtend function and the operand-size 
attribute are the same size, ZeroExtend returns the value unaltered.

• SignExtend(value) — Returns a value sign-extended to the operand-size attribute of the instruction. For 
example, if the operand-size attribute is 32, sign extending a byte containing the value –10 converts the byte 
from F6H to a doubleword value of FFFFFFF6H. If the value passed to the SignExtend function and the operand-
size attribute are the same size, SignExtend returns the value unaltered.

• SaturateSignedWordToSignedByte — Converts a signed 16-bit value to a signed 8-bit value. If the signed 
16-bit value is less than –128, it is represented by the saturated value -128 (80H); if it is greater than 127, it 
is represented by the saturated value 127 (7FH).

• SaturateSignedDwordToSignedWord — Converts a signed 32-bit value to a signed 16-bit value. If the 
signed 32-bit value is less than –32768, it is represented by the saturated value –32768 (8000H); if it is 
greater than 32767, it is represented by the saturated value 32767 (7FFFH).

• SaturateSignedWordToUnsignedByte — Converts a signed 16-bit value to an unsigned 8-bit value. If the 
signed 16-bit value is less than zero, it is represented by the saturated value zero (00H); if it is greater than 
255, it is represented by the saturated value 255 (FFH).

• SaturateToSignedByte — Represents the result of an operation as a signed 8-bit value. If the result is less 
than –128, it is represented by the saturated value –128 (80H); if it is greater than 127, it is represented by 
the saturated value 127 (7FH).

• SaturateToSignedWord — Represents the result of an operation as a signed 16-bit value. If the result is less 
than –32768, it is represented by the saturated value –32768 (8000H); if it is greater than 32767, it is 
represented by the saturated value 32767 (7FFFH).

• SaturateToUnsignedByte — Represents the result of an operation as a signed 8-bit value. If the result is less 
than zero it is represented by the saturated value zero (00H); if it is greater than 255, it is represented by the 
saturated value 255 (FFH).

• SaturateToUnsignedWord — Represents the result of an operation as a signed 16-bit value. If the result is 
less than zero it is represented by the saturated value zero (00H); if it is greater than 65535, it is represented 
by the saturated value 65535 (FFFFH).

• LowOrderWord(DEST * SRC) — Multiplies a word operand by a word operand and stores the least significant 
word of the doubleword result in the destination operand.

• HighOrderWord(DEST * SRC) — Multiplies a word operand by a word operand and stores the most 
significant word of the doubleword result in the destination operand.

• Push(value) — Pushes a value onto the stack. The number of bytes pushed is determined by the operand-size 
attribute of the instruction. See the “Operation” subsection of the “PUSH—Push Word, Doubleword, or 
Quadword Onto the Stack” section in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2B.

• Pop() — removes the value from the top of the stack and returns it. The statement EAX := Pop(); assigns to 
EAX the 32-bit value from the top of the stack. Pop will return either a word, a doubleword or a quadword 
depending on the operand-size attribute. See the “Operation” subsection in the “POP—Pop a Value From the 
Stack” section of Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.

• PopRegisterStack — Marks the FPU ST(0) register as empty and increments the FPU register stack pointer 
(TOP) by 1.

• Switch-Tasks — Performs a task switch.
• Bit(BitBase, BitOffset) — Returns the value of a bit within a bit string. The bit string is a sequence of bits in 

memory or a register. Bits are numbered from low-order to high-order within registers and within memory 
bytes. If the BitBase is a register, the BitOffset can be in the range 0 to [15, 31, 63] depending on the mode 
and register size. See Figure 3-1: the function Bit[RAX, 21] is illustrated.
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If BitBase is a memory address, the BitOffset has different ranges depending on the operand size (see Table 
3-2). 

The addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase + (BitOffset DIV 8)) where 
DIV is signed division with rounding towards negative infinity and MOD returns a positive number (see 
Figure 3-2).

3.1.1.10  Intel® C/C++ Compiler Intrinsics Equivalents Section
The Intel C/C++ compiler intrinsic functions give access to the full power of the Intel Architecture Instruction Set, 
while allowing the compiler to optimize register allocation and instruction scheduling for faster execution. Most of 
these functions are associated with a single IA instruction, although some may generate multiple instructions or 
different instructions depending upon how they are used. In particular, these functions are used to invoke instruc-
tions that perform operations on vector registers that can hold multiple data elements. These SIMD instructions 
use the following data types.
• __m128, __m256, and __m512 can represent 4, 8, or 16 packed single precision floating-point values, and are 

used with the vector registers and SSE, AVX, or AVX-512 instruction set extension families. The __m128 data 
type is also used with various single precision floating-point scalar instructions that perform calculations using 

Figure 3-1.  Bit Offset for BIT[RAX, 21]

Table 3-2.  Range of Bit Positions Specified by Bit Offset Operands

Operand Size Immediate BitOffset Register BitOffset

16 0 to 15 − 215 to 215 − 1 

32 0 to 31 − 231 to 231 − 1 

64 0 to 63 − 263 to 263 − 1 

Figure 3-2.  Memory Bit Indexing

02131

Bit Offset := 21

63

BitBase + 1 

0777 5 0 0

BitBase − 2 

0777 50 0

BitBase BitBase − 1 

BitOffset := +13

BitBase − 1 BitBase

BitOffset := −11
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only the lowest 32 bits of a vector register; the remaining bits of the result come from one of the sources or are 
set to zero depending upon the instruction.

• __m128d, __m256d, and __m512d can represent 2, 4, or 8 packed double precision floating-point values, and 
are used with the vector registers and SSE, AVX, or AVX-512 instruction set extension families. The __m128d 
data type is also used with various double precision floating-point scalar instructions that perform calculations 
using only the lowest 64 bits of a vector register; the remaining bits of the result come from one of the sources 
or are set to zero depending upon the instruction.

• __m128i, __m256i, and __m512i can represent integer data in bytes, words, doublewords, quadwords, and 
occasionally larger data types.

Each of these data types incorporates in its name the number of bits it can hold. For example, the __m128 type 
holds 128 bits, and because each single precision floating-point value is 32 bits long the __m128 type holds 
(128/32) or four values. Normally the compiler will allocate memory for these data types on an even multiple of the 
size of the type. Such aligned memory locations may be faster to read and write than locations at other addresses.

These SIMD data types are not basic Standard C data types or C++ objects, so they may be used only with the 
assignment operator, passed as function arguments, and returned from a function call. If you access the internal 
members of these types directly, or indirectly by using them in a union, there may be side effects affecting optimi-
zation, so it is recommended to use them only with the SIMD instruction intrinsic functions described in this manual 
or the Intel C/C++ compiler documentation.

Many intrinsic functions names are prefixed with an indicator of the vector length and suffixed by an indicator of 
the vector element data type, although some functions do not follow the rules below. The prefixes are:
• _mm_ indicates that the function operates on 128-bit (or sometimes 64-bit) vectors.
• _mm256_ indicates the function operates on 256-bit vectors.
• _mm512_ indicates that the function operates on 512-bit vectors.

The suffixes include:
• _ps, which indicates a function that operates on packed single precision floating-point data. Packed single 

precision floating-point data corresponds to arrays of the C/C++ type float with either 4, 8 or 16 elements. 
Values of this type can be loaded from an array using the _mm_loadu_ps, _mm256_loadu_ps, or _mm512_-
loadu_ps functions, or created from individual values using _mm_set_ps, _mm256_set_ps, or 
_mm512_set_ps functions, and they can be stored in an array using _mm_storeu_ps, _mm256_storeu_ps, or 
_mm512_storeu_ps.

• _ss, which indicates a function that operates on scalar single precision floating-point data. Single precision 
floating-point data corresponds to the C/C++ type float, and values of type float can be converted to type 
__m128 for use with these functions using the _mm_set_ss function, and converted back using the 
_mm_cvtss_f32 function. When used with functions that operate on packed single precision floating-point data 
the scalar element corresponds with the first packed value.

• _pd, which indicates a function that operates on packed double precision floating-point data. Packed double 
precision floating-point data corresponds to arrays of the C/C++ type double with either 2, 4, or 8 elements. 
Values of this type can be loaded from an array using the _mm_loadu_pd, _mm256_loadu_pd, or _mm512_-
loadu_pd functions, or created from individual values using _mm_set_pd, _mm2566_set_pd, or 
_mm512_set_pd functions, and they can be stored in an array using _mm_storeu_pd, _mm256_storeu_pd, or 
_mm512_storeu_pd.

• _sd, which indicates a function that operates on scalar double precision floating-point data. Double precision 
floating-point data corresponds to the C/C++ type double, and values of type double can be converted to type 
__m128d for use with these functions using the _mm_set_sd function, and converted back using the 
_mm_cvtsd_f64 function. When used with functions that operate on packed double precision floating-point 
data the scalar element corresponds with the first packed value.

• _epi8, which indicates a function that operates on packed 8-bit signed integer values. Packed 8-bit signed 
integers correspond to an array of signed char with 16, 32 or 64 elements. Values of this type can be created 
from individual elements using _mm_set_epi8, _mm256_set_epi8, or _mm512_set_epi8 functions.

• _epi16, which indicates a function that operates on packed 16-bit signed integer values. Packed 16-bit signed 
integers correspond to an array of short with 8, 16 or 32 elements. Values of this type can be created from 
individual elements using _mm_set_epi16, _mm256_set_epi16, or _mm512_set_epi16 functions.
Vol. 2A 3-13



INSTRUCTION SET REFERENCE, A-L
• _epi32, which indicates a function that operates on packed 32-bit signed integer values. Packed 32-bit signed 
integers correspond to an array of int with 4, 8 or 16 elements. Values of this type can be created from 
individual elements using _mm_set_epi32, _mm256_set_epi32, or _mm512_set_epi32 functions.

• _epi64, which indicates a function that operates on packed 64-bit signed integer values. Packed 64-bit signed 
integers correspond to an array of long long (or long if it is a 64-bit data type) with 2, 4 or 8 elements. Values 
of this type can be created from individual elements using _mm_set_epi32, _mm256_set_epi32, or 
_mm512_set_epi32 functions.

• _epu8, which indicates a function that operates on packed 8-bit unsigned integer values. Packed 8-bit unsigned 
integers correspond to an array of unsigned char with 16, 32 or 64 elements.

• _epu16, which indicates a function that operates on packed 16-bit unsigned integer values. Packed 16-bit 
unsigned integers correspond to an array of unsigned short with 8, 16 or 32 elements.

• _epu32, which indicates a function that operates on packed 32-bit unsigned integer values. Packed 32-bit 
unsigned integers correspond to an array of unsigned with 4, 8 or 16 elements.

• _epu64, which indicates a function that operates on packed 64-bit unsigned integer values. Packed 64-bit 
unsigned integers correspond to an array of unsigned long long (or unsigned long if it is a 64-bit data type) with 
2, 4 or 8 elements.

• _si128, which indicates a function that operates on a single 128-bit value of type __m128i.
• _si256, which indicates a function that operates on a single a 256-bit value of type __m256i.
• _si512, which indicates a function that operates on a single a 512-bit value of type __m512i.

Values of any packed integer type can be loaded from an array using the _mm_loadu_si128, _mm256_loadu_-
si256, or _mm512_loadu_si512 functions, and they can be stored in an array using _mm_storeu_si128, 
_mm256_storeu_si256, or _mm512_storeu_si512.

These functions and data types are used with the SSE, AVX, and AVX-512 instruction set extension families. In 
addition there are similar functions that correspond to MMX instructions. These are less frequently used because 
they require additional state management, and only operate on 64-bit packed integer values.

The declarations of Intel C/C++ compiler intrinsic functions may reference some non-standard data types, such as 
__int64. The C Standard header stdint.h defines similar platform-independent types, and the documentation for 
that header gives characteristics that apply to corresponding non-standard types according to the following table. 

For a more detailed description of each intrinsic function and additional information related to its usage, refer to the 
online Intel Intrinsics Guide, https://software.intel.com/sites/landingpage/IntrinsicsGuide.

3.1.1.11  Flags Affected Section 
The “Flags Affected” section lists the flags in the EFLAGS register that are affected by the instruction. When a flag 
is cleared, it is equal to 0; when it is set, it is equal to 1. The arithmetic and logical instructions usually assign 
values to the status flags in a uniform manner (see Appendix A, “EFLAGS Cross-Reference,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1). Non-conventional assignments are described in the 
“Operation” section. The values of flags listed as undefined may be changed by the instruction in an indeterminate 
manner. Flags that are not listed are unchanged by the instruction.

Table 3-3.  Standard and Non-Standard Data Types

Non-standard Type Standard Type (from stdint.h)

__int64 int64_t

unsigned __int64 uint64_t

__int32 int32_t

unsigned __int32 uint32_t

__int16 int16_t

unsigned __int16 uint16_t
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3.1.1.12  FPU Flags Affected Section 
The floating-point instructions have an “FPU Flags Affected” section that describes how each instruction can affect 
the four condition code flags of the FPU status word.

3.1.1.13  Protected Mode Exceptions Section
The “Protected Mode Exceptions” section lists the exceptions that can occur when the instruction is executed in 
protected mode and the reasons for the exceptions. Each exception is given a mnemonic that consists of a pound 
sign (#) followed by two letters and an optional error code in parentheses. For example, #GP(0) denotes a general 
protection exception with an error code of 0. Table 3-4 associates each two-letter mnemonic with the corre-
sponding exception vector and name. See Chapter 6, “Procedure Calls, Interrupts, and Exceptions,” in the Intel® 

64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for a detailed description of the exceptions. 

Application programmers should consult the documentation provided with their operating systems to determine 
the actions taken when exceptions occur.

Table 3-4.  Intel 64 and IA-32 General Exceptions 

Vector Name Source Protected 
Mode1

Real 
Address 
Mode

Virtual 
8086 
Mode

 0 #DE—Divide Error DIV and IDIV instructions. Yes Yes Yes

 1 #DB—Debug Any code or data reference. Yes Yes Yes

 3 #BP—Breakpoint INT3 instruction. Yes Yes Yes

 4 #OF—Overflow INTO instruction. Yes Yes Yes

 5 #BR—BOUND Range Exceeded BOUND instruction. Yes Yes Yes

 6 #UD—Invalid Opcode (Undefined 
Opcode)

UD instruction or reserved opcode. Yes Yes Yes

 7 #NM—Device Not Available (No 
Math Coprocessor)

Floating-point or WAIT/FWAIT instruction. Yes Yes Yes

 8 #DF—Double Fault Any instruction that can generate an 
exception, an NMI, or an INTR.

Yes Yes Yes

10 #TS—Invalid TSS Task switch or TSS access. Yes Reserved Yes

11 #NP—Segment Not Present Loading segment registers or accessing system 
segments.

Yes Reserved Yes

12 #SS—Stack Segment Fault Stack operations and SS register loads. Yes Yes Yes

13 #GP—General Protection2 Any memory reference and other protection 
checks.

Yes Yes Yes

14 #PF—Page Fault Any memory reference. Yes Reserved Yes

16 #MF—Floating-Point Error (Math 
Fault)

Floating-point or WAIT/FWAIT instruction. Yes Yes Yes

17 #AC—Alignment Check Any data reference in memory. Yes Reserved Yes

18 #MC—Machine Check Model dependent machine check errors. Yes Yes Yes

19 #XM—SIMD Floating-Point 
Numeric Error

SSE/SSE2/SSE3 floating-point instructions. Yes Yes Yes

NOTES:
1. Apply to protected mode, compatibility mode, and 64-bit mode.
2. In the real-address mode, vector 13 is the segment overrun exception.
Vol. 2A 3-15



INSTRUCTION SET REFERENCE, A-L
3.1.1.14  Real-Address Mode Exceptions Section
The “Real-Address Mode Exceptions” section lists the exceptions that can occur when the instruction is executed in 
real-address mode (see Table 3-4).

3.1.1.15  Virtual-8086 Mode Exceptions Section
The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when the instruction is executed in 
virtual-8086 mode (see Table 3-4).

3.1.1.16  Floating-Point Exceptions Section
The “Floating-Point Exceptions” section lists exceptions that can occur when an x87 FPU floating-point instruction 
is executed. All of these exception conditions result in a floating-point error exception (#MF, exception 16) being 
generated. Table 3-5 associates a one- or two-letter mnemonic with the corresponding exception name. See 
“Floating-Point Exception Conditions” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, for a detailed description of these exceptions.

3.1.1.17  SIMD Floating-Point Exceptions Section
The “SIMD Floating-Point Exceptions” section lists exceptions that can occur when an SSE/SSE2/SSE3 floating-
point instruction is executed. All of these exception conditions result in a SIMD floating-point error exception (#XM, 
exception 19) being generated. Table 3-6 associates a one-letter mnemonic with the corresponding exception 
name. For a detailed description of these exceptions, refer to ”SSE and SSE2 Exceptions”, in Chapter 11 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

3.1.1.18  Compatibility Mode Exceptions Section
This section lists exceptions that occur within compatibility mode.

Table 3-5.  x87 FPU Floating-Point Exceptions

Mnemonic Name Source

#IS
#IA

Floating-point invalid operation:

- Stack overflow or underflow

- Invalid arithmetic operation

- x87 FPU stack overflow or underflow

- Invalid FPU arithmetic operation

#Z Floating-point divide-by-zero Divide-by-zero

#D Floating-point denormal operand Source operand that is a denormal number

#O Floating-point numeric overflow Overflow in result

#U Floating-point numeric underflow Underflow in result

#P Floating-point inexact result (precision) Inexact result (precision)

Table 3-6.  SIMD Floating-Point Exceptions

Mnemonic Name Source

#I Floating-point invalid operation Invalid arithmetic operation or source operand

#Z Floating-point divide-by-zero Divide-by-zero

#D Floating-point denormal operand Source operand that is a denormal number

#O Floating-point numeric overflow Overflow in result

#U Floating-point numeric underflow Underflow in result

#P Floating-point inexact result Inexact result (precision)
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3.1.1.19  64-Bit Mode Exceptions Section
This section lists exceptions that occur within 64-bit mode.

3.2 INTEL® AMX CONSIDERATIONS
The following implementation parameters and helper functions are applicable to the Intel® AMX instructions.

3.2.1 Implementation Parameters
The parameters are reported via CPUID leaf 1DH. Index 0 reports all zeros for all fields.

The tile parameters are set by LDTILECFG or XRSTOR* of TILECFG:

3.2.2 Helper Functions
The helper functions used in Intel AMX instructions are defined below.

define palette_table[id]: 
uint16_t total_tile_bytes 
uint16_t bytes_per_tile 
uint16_t bytes_per_row 
uint16_t max_names 
uint16_t max_rows

define tile[tid]: 
byte rows
word colsb // bytes_per_row 
bool valid

define write_row_and_zero(treg, r, data, nbytes): 
for j in 0 ... nbytes-1:

treg.row[r].byte[j] := data.byte[j]

// zero the rest of the row
for j in nbytes ... palette_table[tilecfg.palette_id].bytes_per_row-1:

treg.row[r].byte[j] := 0

define zero_upper_rows(treg, r):
for i in r ... palette_table[tilecfg.palette_id].max_rows-1:

for j in 0 ... palette_table[tilecfg.palette_id].bytes_per_row-1: 
treg.row[i].byte[j] := 0
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3.3 INSTRUCTIONS (A-L)
The remainder of this chapter provides descriptions of Intel 64 and IA-32 instructions (A-L). See also: Chapter 4, 
“Instruction Set Reference, M-U,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2B; Chapter 5, “Instruction Set Reference, V,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2C; and Chapter 6, “Instruction Set Reference, W-Z,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2D.

define zero_tilecfg_start(): 
tilecfg.start_row := 0

define zero_all_tile_data(): 
if XCR0[TILEDATA]:

b := CPUID(0xD,TILEDATA).EAX // size of feature 
for j in 0 ... b:

TILEDATA.byte[j] := 0
define xcr0_supports_palette(palette_id): 
if palette_id == 0:

return 1
elif palette_id == 1:

if XCR0[TILECFG] and XCR0[TILEDATA]:
return 1

return 0
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AAA—ASCII Adjust After Addition

Instruction Operand Encoding

Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL register is the implied 
source and destination operand for this instruction. The AAA instruction is only useful when it follows an ADD 
instruction that adds (binary addition) two unpacked BCD values and stores a byte result in the AL register. The 
AAA instruction then adjusts the contents of the AL register to contain the correct 1-digit unpacked BCD result. 

If the addition produces a decimal carry, the AH register increments by 1, and the CF and AF flags are set. If there 
was no decimal carry, the CF and AF flags are cleared and the AH register is unchanged. In either case, bits 4 
through 7 of the AL register are set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

IF ((AL AND 0FH) > 9) or (AF = 1)
THEN

AX := AX + 106H;
AF := 1;
CF := 1;

ELSE
AF := 0;
CF := 0;

FI;
AL := AL AND 0FH;

FI;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise they are set to 0. The OF, 
SF, ZF, and PF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

37 AAA ZO Invalid Valid ASCII adjust AL after addition.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
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AAD—ASCII Adjust AX Before Division

Instruction Operand Encoding

Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the most-significant digit in the 
AH register) so that a division operation performed on the result will yield a correct unpacked BCD value. The AAD 
instruction is only useful when it precedes a DIV instruction that divides (binary division) the adjusted value in the 
AX register by an unpacked BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then clears the AH register to 00H. 
The value in the AX register is then equal to the binary equivalent of the original unpacked two-digit (base 10) 
number in registers AH and AL.

The generalized version of this instruction allows adjustment of two unpacked digits of any number base (see the 
“Operation” section below), by setting the imm8 byte to the selected number base (for example, 08H for octal, 0AH 
for decimal, or 0CH for base 12 numbers). The AAD mnemonic is interpreted by all assemblers to mean adjust 
ASCII (base 10) values. To adjust values in another number base, the instruction must be hand coded in machine 
code (D5 imm8).

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

tempAL := AL;
tempAH := AH;
AL := (tempAL + (tempAH ∗ imm8)) AND FFH; 
(* imm8 is set to 0AH for the AAD mnemonic.*)
AH := 0;

FI;
The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL register; the OF, AF, and CF flags 
are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

D5 0A AAD ZO Invalid Valid ASCII adjust AX before division.

D5 ib AAD imm8 ZO Invalid Valid Adjust AX before division to number base 
imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
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AAM—ASCII Adjust AX After Multiply

Instruction Operand Encoding

Description

Adjusts the result of the multiplication of two unpacked BCD values to create a pair of unpacked (base 10) BCD 
values. The AX register is the implied source and destination operand for this instruction. The AAM instruction is 
only useful when it follows an MUL instruction that multiplies (binary multiplication) two unpacked BCD values and 
stores a word result in the AX register. The AAM instruction then adjusts the contents of the AX register to contain 
the correct 2-digit unpacked (base 10) BCD result. 

The generalized version of this instruction allows adjustment of the contents of the AX to create two unpacked 
digits of any number base (see the “Operation” section below). Here, the imm8 byte is set to the selected number 
base (for example, 08H for octal, 0AH for decimal, or 0CH for base 12 numbers). The AAM mnemonic is interpreted 
by all assemblers to mean adjust to ASCII (base 10) values. To adjust to values in another number base, the 
instruction must be hand coded in machine code (D4 imm8).

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

tempAL := AL;
AH := tempAL / imm8; (* imm8 is set to 0AH for the AAM mnemonic *)
AL := tempAL MOD imm8;

FI;

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL register. The OF, AF, and CF flags 
are undefined.

Protected Mode Exceptions
#DE If an immediate value of 0 is used.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

D4 0A AAM ZO Invalid Valid ASCII adjust AX after multiply.

D4 ib AAM imm8 ZO Invalid Valid Adjust AX after multiply to number base 
imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
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AAS—ASCII Adjust AL After Subtraction

Instruction Operand Encoding

Description

Adjusts the result of the subtraction of two unpacked BCD values to create a unpacked BCD result. The AL register 
is the implied source and destination operand for this instruction. The AAS instruction is only useful when it follows 
a SUB instruction that subtracts (binary subtraction) one unpacked BCD value from another and stores a byte 
result in the AL register. The AAA instruction then adjusts the contents of the AL register to contain the correct 1-
digit unpacked BCD result. 

If the subtraction produced a decimal carry, the AH register decrements by 1, and the CF and AF flags are set. If no 
decimal carry occurred, the CF and AF flags are cleared, and the AH register is unchanged. In either case, the AL 
register is left with its top four bits set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-bit mode
THEN

#UD;
ELSE

IF ((AL AND 0FH) > 9) or (AF = 1)
THEN

AX := AX – 6;
AH := AH – 1;
AF := 1;
CF := 1;
AL := AL AND 0FH;

ELSE
CF := 0;
AF := 0;
AL := AL AND 0FH;

FI;
FI;

Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are cleared to 0. The OF, SF, ZF, and 
PF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

3F AAS ZO Invalid Valid ASCII adjust AL after subtraction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
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ADC—Add With Carry

Instruction Operand Encoding

Description

Adds the destination operand (first operand), the source operand (second operand), and the carry (CF) flag and 
stores the result in the destination operand. The destination operand can be a register or a memory location; the 
source operand can be an immediate, a register, or a memory location. (However, two memory operands cannot be 
used in one instruction.) The state of the CF flag represents a carry from a previous addition. When an immediate 
value is used as an operand, it is sign-extended to the length of the destination operand format.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

14 ib ADC AL, imm8 I Valid Valid Add with carry imm8 to AL.

15 iw ADC AX, imm16 I Valid Valid Add with carry imm16 to AX.

15 id ADC EAX, imm32 I Valid Valid Add with carry imm32 to EAX.

REX.W + 15 id ADC RAX, imm32 I Valid N.E. Add with carry imm32 sign extended to 64-
bits to RAX.

80 /2 ib ADC r/m8, imm8 MI Valid Valid Add with carry imm8 to r/m8.

REX + 80 /2 ib ADC r/m8*, imm8 MI Valid N.E. Add with carry imm8 to r/m8.

81 /2 iw ADC r/m16, imm16 MI Valid Valid Add with carry imm16 to r/m16.

81 /2 id ADC r/m32, imm32 MI Valid Valid Add with CF imm32 to r/m32.

REX.W + 81 /2 id ADC r/m64, imm32 MI Valid N.E. Add with CF imm32 sign extended to 64-bits 
to r/m64.

83 /2 ib ADC r/m16, imm8 MI Valid Valid Add with CF sign-extended imm8 to r/m16.

83 /2 ib ADC r/m32, imm8 MI Valid Valid Add with CF sign-extended imm8 into r/m32.

REX.W + 83 /2 ib ADC r/m64, imm8 MI Valid N.E. Add with CF sign-extended imm8 into r/m64.

10 /r ADC r/m8, r8 MR Valid Valid Add with carry byte register to r/m8.

REX + 10 /r ADC r/m8*, r8* MR Valid N.E. Add with carry byte register to r/m64.

11 /r ADC r/m16, r16 MR Valid Valid Add with carry r16 to r/m16.

11 /r ADC r/m32, r32 MR Valid Valid Add with CF r32 to r/m32.

REX.W + 11 /r ADC r/m64, r64 MR Valid N.E. Add with CF r64 to r/m64.

12 /r ADC r8, r/m8 RM Valid Valid Add with carry r/m8 to byte register.

REX + 12 /r ADC r8*, r/m8* RM Valid N.E. Add with carry r/m64 to byte register.

13 /r ADC r16, r/m16 RM Valid Valid Add with carry r/m16 to r16.

13 /r ADC r32, r/m32 RM Valid Valid Add with CF r/m32 to r32.

REX.W + 13 /r ADC r64, r/m64 RM Valid N.E. Add with CF r/m64 to r64.

NOTES:
*In 64-bit mode, r/m8 cannot be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A

MI ModRM:r/m (r, w) imm8/16/32 N/A N/A

I AL/AX/EAX/RAX imm8/16/32 N/A N/A
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The ADC instruction does not distinguish between signed or unsigned operands. Instead, the processor evaluates 
the result for both data types and sets the OF and CF flags to indicate a carry in the signed or unsigned result, 
respectively. The SF flag indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition in which an ADD instruction is 
followed by an ADC instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST := DEST + SRC + CF;

Intel C/C++ Compiler Intrinsic Equivalent

ADC extern unsigned char _addcarry_u8(unsigned char c_in, unsigned char src1, unsigned char src2, unsigned char *sum_out);
ADC extern unsigned char _addcarry_u16(unsigned char c_in, unsigned short src1, unsigned short src2, unsigned short *sum_out);
ADC extern unsigned char _addcarry_u32(unsigned char c_in, unsigned int src1, unsigned char int, unsigned int *sum_out);
ADC extern unsigned char _addcarry_u64(unsigned char c_in, unsigned __int64 src1, unsigned __int64 src2, unsigned __int64 
*sum_out);

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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ADCX—Unsigned Integer Addition of Two Operands With Carry Flag 

Instruction Operand Encoding

Description
Performs an unsigned addition of the destination operand (first operand), the source operand (second operand) 
and the carry-flag (CF) and stores the result in the destination operand. The destination operand is a general-
purpose register, whereas the source operand can be a general-purpose register or memory location. The state of 
CF can represent a carry from a previous addition. The instruction sets the CF flag with the carry generated by the 
unsigned addition of the operands. 
The ADCX instruction is executed in the context of multi-precision addition, where we add a series of operands with 
a carry-chain. At the beginning of a chain of additions, we need to make sure the CF is in a desired initial state. 
Often, this initial state needs to be 0, which can be achieved with an instruction to zero the CF (e.g. XOR).
This instruction is supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 64-
bit mode. 
In 64-bit mode, the default operation size is 32 bits. Using a REX Prefix in the form of REX.R permits access to addi-
tional registers (R8-15). Using REX Prefix in the form of REX.W promotes operation to 64 bits.
ADCX executes normally either inside or outside a transaction region.
Note: ADCX defines the OF flag differently than the ADD/ADC instructions as defined in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A.

Operation

IF OperandSize is 64-bit
THEN CF:DEST[63:0] := DEST[63:0] + SRC[63:0] + CF;
ELSE CF:DEST[31:0] := DEST[31:0] + SRC[31:0] + CF;

FI;

Flags Affected
CF is updated based on result. OF, SF, ZF, AF, and PF flags are unmodified.

Intel C/C++ Compiler Intrinsic Equivalent

unsigned char _addcarryx_u32 (unsigned char c_in, unsigned int src1, unsigned int src2, unsigned int *sum_out);
unsigned char _addcarryx_u64 (unsigned char c_in, unsigned __int64 src1, unsigned __int64 src2, unsigned __int64 *sum_out);

SIMD Floating-Point Exceptions
None.

Opcode/
Instruction

Op/ 
En

64/32bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 F6 /r
ADCX r32, r/m32

RM V/V ADX Unsigned addition of r32 with CF, r/m32 to r32, writes CF.

66 REX.w 0F 38 F6 /r
ADCX r64, r/m64

RM V/N.E. ADX Unsigned addition of r64 with CF, r/m64 to r64, writes CF.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
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Protected Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. 

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment 
selector.

#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.
#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.
#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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ADD—Add

Instruction Operand Encoding

Description

Adds the destination operand (first operand) and the source operand (second operand) and then stores the result 
in the destination operand. The destination operand can be a register or a memory location; the source operand 
can be an immediate, a register, or a memory location. (However, two memory operands cannot be used in one 
instruction.) When an immediate value is used as an operand, it is sign-extended to the length of the destination 
operand format.

The ADD instruction performs integer addition. It evaluates the result for both signed and unsigned integer oper-
ands and sets the OF and CF flags to indicate a carry (overflow) in the signed or unsigned result, respectively. The 
SF flag indicates the sign of the signed result.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

04 ib ADD AL, imm8 I Valid Valid Add imm8 to AL.

05 iw ADD AX, imm16 I Valid Valid Add imm16 to AX.

05 id ADD EAX, imm32 I Valid Valid Add imm32 to EAX.

REX.W + 05 id ADD RAX, imm32 I Valid N.E. Add imm32 sign-extended to 64-bits to RAX.

80 /0 ib ADD r/m8, imm8 MI Valid Valid Add imm8 to r/m8.

REX + 80 /0 ib ADD r/m8*, imm8 MI Valid N.E. Add sign-extended imm8 to r/m8.

81 /0 iw ADD r/m16, imm16 MI Valid Valid Add imm16 to r/m16.

81 /0 id ADD r/m32, imm32 MI Valid Valid Add imm32 to r/m32.

REX.W + 81 /0 id ADD r/m64, imm32 MI Valid N.E. Add imm32 sign-extended to 64-bits to 
r/m64.

83 /0 ib ADD r/m16, imm8 MI Valid Valid Add sign-extended imm8 to r/m16.

83 /0 ib ADD r/m32, imm8 MI Valid Valid Add sign-extended imm8 to r/m32.

REX.W + 83 /0 ib ADD r/m64, imm8 MI Valid N.E. Add sign-extended imm8 to r/m64.

00 /r ADD r/m8, r8 MR Valid Valid Add r8 to r/m8.

REX + 00 /r ADD r/m8*, r8* MR Valid N.E. Add r8 to r/m8.

01 /r ADD r/m16, r16 MR Valid Valid Add r16 to r/m16.

01 /r ADD r/m32, r32 MR Valid Valid Add r32 to r/m32.

REX.W + 01 /r ADD r/m64, r64 MR Valid N.E. Add r64 to r/m64.

02 /r ADD r8, r/m8 RM Valid Valid Add r/m8 to r8.

REX + 02 /r ADD r8*, r/m8* RM Valid N.E. Add r/m8 to r8.

03 /r ADD r16, r/m16 RM Valid Valid Add r/m16 to r16.

03 /r ADD r32, r/m32 RM Valid Valid Add r/m32 to r32.

REX.W + 03 /r ADD r64, r/m64 RM Valid N.E. Add r/m64 to r64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A

MI ModRM:r/m (r, w) imm8/16/32 N/A N/A

I AL/AX/EAX/RAX imm8/16/32 N/A N/A
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This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST := DEST + SRC;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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ADDPD—Add Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description
Adds two, four or eight packed double precision floating-point values from the first source operand to the second 
source operand, and stores the packed double precision floating-point result in the destination operand.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be 
a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 
64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write-
mask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of 
the corresponding ZMM register destination are zeroed.
VEX.128 encoded version: the first source operand is a XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper Bits (MAXVL-1:128) of the corresponding 
ZMM register destination are unmodified.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 58 /r
ADDPD xmm1, xmm2/m128

A V/V SSE2 Add packed double precision floating-point values from 
xmm2/mem to xmm1 and store result in xmm1.

VEX.128.66.0F.WIG 58 /r
VADDPD xmm1,xmm2, 
xmm3/m128

B V/V AVX Add packed double precision floating-point values from 
xmm3/mem to xmm2 and store result in xmm1.

VEX.256.66.0F.WIG 58 /r
VADDPD ymm1, ymm2, 
ymm3/m256

B V/V AVX Add packed double precision floating-point values from 
ymm3/mem to ymm2 and store result in ymm1.

EVEX.128.66.0F.W1 58 /r
VADDPD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst 

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Add packed double precision floating-point values from 
xmm3/m128/m64bcst to xmm2 and store result in xmm1 
with writemask k1.

EVEX.256.66.0F.W1 58 /r
VADDPD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Add packed double precision floating-point values from 
ymm3/m256/m64bcst to ymm2 and store result in ymm1 
with writemask k1.

EVEX.512.66.0F.W1 58 /r
VADDPD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst {er} 

C V/V AVX512F OR 
AVX10.11

Add packed double precision floating-point values from 
zmm3/m512/m64bcst to zmm2 and store result in zmm1 
with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VADDPD (EVEX Encoded Versions) When SRC2 Operand is a Vector Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC1[i+63:i] + SRC2[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VADDPD (EVEX Encoded Versions) When SRC2 Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := SRC1[i+63:i] + SRC2[63:0]

ELSE 
DEST[i+63:i] := SRC1[i+63:i] + SRC2[i+63:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VADDPD (VEX.256 Encoded Version)
DEST[63:0] := SRC1[63:0] + SRC2[63:0]
DEST[127:64] := SRC1[127:64] + SRC2[127:64]
DEST[191:128] := SRC1[191:128] + SRC2[191:128]
DEST[255:192] := SRC1[255:192] + SRC2[255:192]
DEST[MAXVL-1:256] := 0
.
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VADDPD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0] + SRC2[63:0]
DEST[127:64] := SRC1[127:64] + SRC2[127:64]
DEST[MAXVL-1:128] := 0

ADDPD (128-bit Legacy SSE Version)
DEST[63:0] := DEST[63:0] + SRC[63:0]
DEST[127:64] := DEST[127:64] + SRC[127:64]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VADDPD __m512d _mm512_add_pd (__m512d a, __m512d b);
VADDPD __m512d _mm512_mask_add_pd (__m512d s, __mmask8 k, __m512d a, __m512d b);
VADDPD __m512d _mm512_maskz_add_pd (__mmask8 k, __m512d a, __m512d b);
VADDPD __m256d _mm256_mask_add_pd (__m256d s, __mmask8 k, __m256d a, __m256d b);
VADDPD __m256d _mm256_maskz_add_pd (__mmask8 k, __m256d a, __m256d b);
VADDPD __m128d _mm_mask_add_pd (__m128d s, __mmask8 k, __m128d a, __m128d b);
VADDPD __m128d _mm_maskz_add_pd (__mmask8 k, __m128d a, __m128d b);
VADDPD __m512d _mm512_add_round_pd (__m512d a, __m512d b, int);
VADDPD __m512d _mm512_mask_add_round_pd (__m512d s, __mmask8 k, __m512d a, __m512d b, int);
VADDPD __m512d _mm512_maskz_add_round_pd (__mmask8 k, __m512d a, __m512d b, int);
ADDPD __m256d _mm256_add_pd (__m256d a, __m256d b);
ADDPD __m128d _mm_add_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
VEX-encoded instruction, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-48, “Type E2 Class Exception Conditions.”
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ADDPS—Add Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description
Adds four, eight or sixteen packed single precision floating-point values from the first source operand with the 
second source operand, and stores the packed single precision floating-point result in the destination operand.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be 
a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 
32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write-
mask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of 
the corresponding ZMM register destination are zeroed.
VEX.128 encoded version: the first source operand is a XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper Bits (MAXVL-1:128) of the corresponding 
ZMM register destination are unmodified.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 58 /r
ADDPS xmm1, xmm2/m128

A V/V SSE Add packed single precision floating-point values 
from xmm2/m128 to xmm1 and store result in 
xmm1.

VEX.128.0F.WIG 58 /r
VADDPS xmm1,xmm2, xmm3/m128

B V/V AVX Add packed single precision floating-point values 
from xmm3/m128 to xmm2 and store result in 
xmm1.

VEX.256.0F.WIG 58 /r
VADDPS ymm1, ymm2, ymm3/m256

B V/V AVX Add packed single precision floating-point values 
from ymm3/m256 to ymm2 and store result in 
ymm1.

EVEX.128.0F.W0 58 /r
VADDPS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Add packed single precision floating-point values 
from xmm3/m128/m32bcst to xmm2 and store 
result in xmm1 with writemask k1.

EVEX.256.0F.W0 58 /r
VADDPS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst 

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Add packed single precision floating-point values 
from ymm3/m256/m32bcst to ymm2 and store 
result in ymm1 with writemask k1.

EVEX.512.0F.W0 58 /r
VADDPS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst {er}

C V/V AVX512F OR 
AVX10.11

Add packed single precision floating-point values 
from zmm3/m512/m32bcst to zmm2 and store 
result in zmm1 with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VADDPS (EVEX Encoded Versions) When SRC2 Operand is a Register
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC1[i+31:i] + SRC2[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

VADDPS (EVEX Encoded Versions) When SRC2 Operand is a Memory Source
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := SRC1[i+31:i] + SRC2[31:0]

ELSE 
DEST[i+31:i] := SRC1[i+31:i] + SRC2[i+31:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
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VADDPS (VEX.256 Encoded Version)
DEST[31:0] := SRC1[31:0] + SRC2[31:0]
DEST[63:32] := SRC1[63:32] + SRC2[63:32]
DEST[95:64] := SRC1[95:64] + SRC2[95:64]
DEST[127:96] := SRC1[127:96] + SRC2[127:96]
DEST[159:128] := SRC1[159:128] + SRC2[159:128]
DEST[191:160]:= SRC1[191:160] + SRC2[191:160]
DEST[223:192] := SRC1[223:192] + SRC2[223:192]
DEST[255:224] := SRC1[255:224] + SRC2[255:224].
DEST[MAXVL-1:256] := 0

VADDPS (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0] + SRC2[31:0]
DEST[63:32] := SRC1[63:32] + SRC2[63:32]
DEST[95:64] := SRC1[95:64] + SRC2[95:64]
DEST[127:96] := SRC1[127:96] + SRC2[127:96]
DEST[MAXVL-1:128] := 0

ADDPS (128-bit Legacy SSE Version)
DEST[31:0] := SRC1[31:0] + SRC2[31:0]
DEST[63:32] := SRC1[63:32] + SRC2[63:32]
DEST[95:64] := SRC1[95:64] + SRC2[95:64]
DEST[127:96] := SRC1[127:96] + SRC2[127:96]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VADDPS __m512 _mm512_add_ps (__m512 a, __m512 b);
VADDPS __m512 _mm512_mask_add_ps (__m512 s, __mmask16 k, __m512 a, __m512 b);
VADDPS __m512 _mm512_maskz_add_ps (__mmask16 k, __m512 a, __m512 b);
VADDPS __m256 _mm256_mask_add_ps (__m256 s, __mmask8 k, __m256 a, __m256 b);
VADDPS __m256 _mm256_maskz_add_ps (__mmask8 k, __m256 a, __m256 b);
VADDPS __m128 _mm_mask_add_ps (__m128d s, __mmask8 k, __m128 a, __m128 b);
VADDPS __m128 _mm_maskz_add_ps (__mmask8 k, __m128 a, __m128 b);
VADDPS __m512 _mm512_add_round_ps (__m512 a, __m512 b, int);
VADDPS __m512 _mm512_mask_add_round_ps (__m512 s, __mmask16 k, __m512 a, __m512 b, int);
VADDPS __m512 _mm512_maskz_add_round_ps (__mmask16 k, __m512 a, __m512 b, int);
ADDPS __m256 _mm256_add_ps (__m256 a, __m256 b);
ADDPS __m128 _mm_add_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
VEX-encoded instruction, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-48, “Type E2 Class Exception Conditions.”
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ADDSD—Add Scalar Double Precision Floating-Point Values

Instruction Operand Encoding

Description
Adds the low double precision floating-point values from the second source operand and the first source operand 
and stores the double precision floating-point result in the destination operand.
The second source operand can be an XMM register or a 64-bit memory location. The first source and destination 
operands are XMM registers. 
128-bit Legacy SSE version: The first source and destination operands are the same. Bits (MAXVL-1:64) of the 
corresponding destination register remain unchanged.
EVEX and VEX.128 encoded version: The first source operand is encoded by EVEX.vvvv/VEX.vvvv. Bits (127:64) of 
the XMM register destination are copied from corresponding bits in the first source operand. Bits (MAXVL-1:128) of 
the destination register are zeroed. 
EVEX version: The low quadword element of the destination is updated according to the writemask.
Software should ensure VADDSD is encoded with VEX.L=0. Encoding VADDSD with VEX.L=1 may encounter 
unpredictable behavior across different processor generations.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F2 0F 58 /r
ADDSD xmm1, xmm2/m64

A V/V SSE2 Add the low double precision floating-point value from 
xmm2/mem to xmm1 and store the result in xmm1.

VEX.LIG.F2.0F.WIG 58 /r
VADDSD xmm1, xmm2, 
xmm3/m64

B V/V AVX Add the low double precision floating-point value from 
xmm3/mem to xmm2 and store the result in xmm1.

EVEX.LLIG.F2.0F.W1 58 /r
VADDSD xmm1 {k1}{z}, xmm2, 
xmm3/m64{er}

C V/V AVX512F 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Add the low double precision floating-point value from 
xmm3/m64 to xmm2 and store the result in xmm1 with 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VADDSD (EVEX Encoded Version)
IF (EVEX.b = 1) AND SRC2 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[63:0] := SRC1[63:0] + SRC2[63:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

VADDSD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0] + SRC2[63:0]
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

ADDSD (128-bit Legacy SSE Version)
DEST[63:0] := DEST[63:0] + SRC[63:0]
DEST[MAXVL-1:64] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VADDSD __m128d _mm_mask_add_sd (__m128d s, __mmask8 k, __m128d a, __m128d b);
VADDSD __m128d _mm_maskz_add_sd (__mmask8 k, __m128d a, __m128d b);
VADDSD __m128d _mm_add_round_sd (__m128d a, __m128d b, int);
VADDSD __m128d _mm_mask_add_round_sd (__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VADDSD __m128d _mm_maskz_add_round_sd (__mmask8 k, __m128d a, __m128d b, int);
ADDSD __m128d _mm_add_sd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
VEX-encoded instruction, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-49, “Type E3 Class Exception Conditions.”
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ADDSS—Add Scalar Single Precision Floating-Point Values

Instruction Operand Encoding

Description
Adds the low single precision floating-point values from the second source operand and the first source operand, 
and stores the double precision floating-point result in the destination operand.
The second source operand can be an XMM register or a 64-bit memory location. The first source and destination 
operands are XMM registers. 
128-bit Legacy SSE version: The first source and destination operands are the same. Bits (MAXVL-1:32) of the 
corresponding the destination register remain unchanged.
EVEX and VEX.128 encoded version: The first source operand is encoded by EVEX.vvvv/VEX.vvvv. Bits (127:32) of 
the XMM register destination are copied from corresponding bits in the first source operand. Bits (MAXVL-1:128) of 
the destination register are zeroed.
EVEX version: The low doubleword element of the destination is updated according to the writemask.
Software should ensure VADDSS is encoded with VEX.L=0. Encoding VADDSS with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F3 0F 58 /r
ADDSS xmm1, xmm2/m32

A V/V SSE Add the low single precision floating-point value from 
xmm2/mem to xmm1 and store the result in xmm1.

VEX.LIG.F3.0F.WIG 58 /r
VADDSS xmm1,xmm2, 
xmm3/m32

B V/V AVX Add the low single precision floating-point value from 
xmm3/mem to xmm2 and store the result in xmm1.

EVEX.LLIG.F3.0F.W0 58 /r
VADDSS xmm1{k1}{z}, xmm2, 
xmm3/m32{er}

C V/V AVX512F 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Add the low single precision floating-point value from 
xmm3/m32 to xmm2 and store the result in xmm1with 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VADDSS (EVEX Encoded Versions)
IF (EVEX.b = 1) AND SRC2 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[31:0] := SRC1[31:0] + SRC2[31:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

VADDSS DEST, SRC1, SRC2 (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0] + SRC2[31:0]
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

ADDSS DEST, SRC (128-bit Legacy SSE Version)
DEST[31:0] := DEST[31:0] + SRC[31:0]
DEST[MAXVL-1:32] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VADDSS __m128 _mm_mask_add_ss (__m128 s, __mmask8 k, __m128 a, __m128 b);
VADDSS __m128 _mm_maskz_add_ss (__mmask8 k, __m128 a, __m128 b);
VADDSS __m128 _mm_add_round_ss (__m128 a, __m128 b, int);
VADDSS __m128 _mm_mask_add_round_ss (__m128 s, __mmask8 k, __m128 a, __m128 b, int);
VADDSS __m128 _mm_maskz_add_round_ss (__mmask8 k, __m128 a, __m128 b, int);
ADDSS __m128 _mm_add_ss (__m128 a, __m128 b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
VEX-encoded instruction, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-49, “Type E3 Class Exception Conditions.”
ADDSS—Add Scalar Single Precision Floating-Point Values Vol. 2A 3-43



ADDSUBPD—Packed Double Precision Floating-Point Add/Subtract

Instruction Operand Encoding

Description
Adds odd-numbered double precision floating-point values of the first source operand (second operand) with the 
corresponding double precision floating-point values from the second source operand (third operand); stores the 
result in the odd-numbered values of the destination operand (first operand). Subtracts the even-numbered double 
precision floating-point values from the second source operand from the corresponding double precision floating 
values in the first source operand; stores the result into the even-numbered values of the destination operand. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
YMM register destination are unmodified. See Figure 1-3.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F D0 /r

ADDSUBPD xmm1, xmm2/m128

RM V/V SSE3 Add/subtract double precision floating-point 
values from xmm2/m128 to xmm1.

VEX.128.66.0F.WIG D0 /r

VADDSUBPD xmm1, xmm2, xmm3/m128

RVM V/V AVX Add/subtract packed double precision 
floating-point values from xmm3/mem to 
xmm2 and stores result in xmm1.

VEX.256.66.0F.WIG D0 /r

VADDSUBPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Add / subtract packed double precision 
floating-point values from ymm3/mem to 
ymm2 and stores result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
ADDSUBPD—Packed Double Precision Floating-Point Add/Subtract Vol. 2A 3-44



Operation

ADDSUBPD (128-bit Legacy SSE Version)
DEST[63:0] := DEST[63:0] - SRC[63:0]
DEST[127:64] := DEST[127:64] + SRC[127:64]
DEST[MAXVL-1:128] (Unmodified)

VADDSUBPD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0] - SRC2[63:0]
DEST[127:64] := SRC1[127:64] + SRC2[127:64]
DEST[MAXVL-1:128] := 0

VADDSUBPD (VEX.256 Encoded Version)
DEST[63:0] := SRC1[63:0] - SRC2[63:0]
DEST[127:64] := SRC1[127:64] + SRC2[127:64]
DEST[191:128] := SRC1[191:128] - SRC2[191:128]
DEST[255:192] := SRC1[255:192] + SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

ADDSUBPD __m128d _mm_addsub_pd(__m128d a, __m128d b)
VADDSUBPD __m256d _mm256_addsub_pd (__m256d a, __m256d b)

Exceptions

When the source operand is a memory operand, it must be aligned on a 16-byte boundary or a general-protection 
exception (#GP) will be generated.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Table 2-19, “Type 2 Class Exception Conditions.”

Figure 1-3.  ADDSUBPD—Packed Double Precision Floating-Point Add/Subtract

[127:64]

xmm1[127:64] + xmm2/m128[127:64] xmm1[63:0] - xmm2/m128[63:0]

[63:0]

[127:64] [63:0]

ADDSUBPD xmm1, xmm2/m128

RESULT:

xmm1

xmm2/m128
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ADDSUBPS—Packed Single Precision Floating-Point Add/Subtract

Instruction Operand Encoding

Description
Adds odd-numbered single precision floating-point values of the first source operand (second operand) with the 
corresponding single precision floating-point values from the second source operand (third operand); stores the 
result in the odd-numbered values of the destination operand (first operand). Subtracts the even-numbered single 
precision floating-point values from the second source operand from the corresponding single precision floating 
values in the first source operand; stores the result into the even-numbered values of the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
YMM register destination are unmodified. See Figure 1-4.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F D0 /r

ADDSUBPS xmm1, xmm2/m128

RM V/V SSE3 Add/subtract single precision floating-point 
values from xmm2/m128 to xmm1.

VEX.128.F2.0F.WIG D0 /r

VADDSUBPS xmm1, xmm2, xmm3/m128

RVM V/V AVX Add/subtract single precision floating-point 
values from xmm3/mem to xmm2 and stores 
result in xmm1.

VEX.256.F2.0F.WIG D0 /r

VADDSUBPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Add / subtract single precision floating-point 
values from ymm3/mem to ymm2 and stores 
result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

ADDSUBPS (128-bit Legacy SSE Version)
DEST[31:0] := DEST[31:0] - SRC[31:0]
DEST[63:32] := DEST[63:32] + SRC[63:32]
DEST[95:64] := DEST[95:64] - SRC[95:64]
DEST[127:96] := DEST[127:96] + SRC[127:96]
DEST[MAXVL-1:128] (Unmodified)

VADDSUBPS (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0] - SRC2[31:0]
DEST[63:32] := SRC1[63:32] + SRC2[63:32]
DEST[95:64] := SRC1[95:64] - SRC2[95:64]
DEST[127:96] := SRC1[127:96] + SRC2[127:96]
DEST[MAXVL-1:128] := 0

VADDSUBPS (VEX.256 Encoded Version)
DEST[31:0] := SRC1[31:0] - SRC2[31:0]
DEST[63:32] := SRC1[63:32] + SRC2[63:32]
DEST[95:64] := SRC1[95:64] - SRC2[95:64]
DEST[127:96] := SRC1[127:96] + SRC2[127:96]
DEST[159:128] := SRC1[159:128] - SRC2[159:128]
DEST[191:160] := SRC1[191:160] + SRC2[191:160]
DEST[223:192] := SRC1[223:192] - SRC2[223:192]
DEST[255:224] := SRC1[255:224] + SRC2[255:224]

Intel C/C++ Compiler Intrinsic Equivalent

ADDSUBPS __m128 _mm_addsub_ps(__m128 a, __m128 b)
VADDSUBPS __m256 _mm256_addsub_ps (__m256 a, __m256 b)

Exceptions

When the source operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-
protection exception (#GP) will be generated.

Figure 1-4.  ADDSUBPS—Packed Single Precision Floating-Point Add/Subtract

OM15992

ADDSUBPS xmm1, xmm2/m128

RESULT:

xmm1

xmm2/

m128

xmm1[31:0] - 

xmm2/m128[31:0]

[31:0]

xmm1[63:32] + 

xmm2/m128[63:32]

[63:32]

xmm1[95:64] - xmm2/

m128[95:64]

[95:64]

xmm1[127:96] + 

xmm2/m128[127:96]

[127:96]

[127:96] [95:64] [63:32] [31:0]
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SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Table 2-19, “Type 2 Class Exception Conditions.”
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ADOX — Unsigned Integer Addition of Two Operands With Overflow Flag

Instruction Operand Encoding

Description
Performs an unsigned addition of the destination operand (first operand), the source operand (second operand) 
and the overflow-flag (OF) and stores the result in the destination operand. The destination operand is a general-
purpose register, whereas the source operand can be a general-purpose register or memory location. The state of 
OF represents a carry from a previous addition. The instruction sets the OF flag with the carry generated by the 
unsigned addition of the operands. 
The ADOX instruction is executed in the context of multi-precision addition, where we add a series of operands with 
a carry-chain. At the beginning of a chain of additions, we execute an instruction to zero the OF (e.g. XOR).
This instruction is supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 64-
bit mode. 
In 64-bit mode, the default operation size is 32 bits. Using a REX Prefix in the form of REX.R permits access to addi-
tional registers (R8-15). Using REX Prefix in the form of REX.W promotes operation to 64-bits.
ADOX executes normally either inside or outside a transaction region.
Note: ADOX defines the CF and OF flags differently than the ADD/ADC instructions as defined in Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A.

Operation

IF OperandSize is 64-bit
THEN OF:DEST[63:0] := DEST[63:0] + SRC[63:0] + OF;
ELSE OF:DEST[31:0] := DEST[31:0] + SRC[31:0] + OF;

FI;

Flags Affected
OF is updated based on result. CF, SF, ZF, AF, and PF flags are unmodified.

Intel C/C++ Compiler Intrinsic Equivalent

unsigned char _addcarryx_u32 (unsigned char c_in, unsigned int src1, unsigned int src2, unsigned int *sum_out);
unsigned char _addcarryx_u64 (unsigned char c_in, unsigned __int64 src1, unsigned __int64 src2, unsigned __int64 *sum_out);

SIMD Floating-Point Exceptions
None.

Opcode/
Instruction

Op/ 
En

64/32bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 38 F6 /r
ADOX r32, r/m32

RM V/V ADX Unsigned addition of r32 with OF, r/m32 to r32, writes OF.

F3 REX.w 0F 38 F6 /r
ADOX r64, r/m64

RM V/N.E. ADX Unsigned addition of r64 with OF, r/m64 to r64, writes OF.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
ADOX — Unsigned Integer Addition of Two Operands With Overflow Flag Vol. 2A 3-49



Protected Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. 

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment 
selector.

#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.
#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.
#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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AESDEC—Perform One Round of an AES Decryption Flow

Instruction Operand Encoding

Description
This instruction performs a single round of the AES decryption flow using the Equivalent Inverse Cipher, using 
one/two/four (depending on vector length) 128-bit data (state) from the first source operand with one/two/four 
(depending on vector length) round key(s) from the second source operand, and stores the result in the destina-
tion operand. 
Use the AESDEC instruction for all but the last decryption round. For the last decryption round, use the AESDE-
CLAST instruction.
VEX and EVEX encoded versions of the instruction allow 3-operand (non-destructive) operation. The legacy 
encoded versions of the instruction require that the first source operand and the destination operand are the same 
and must be an XMM register.
The EVEX encoded form of this instruction does not support memory fault suppression.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature Flag

Description

66 0F 38 DE /r 
AESDEC xmm1, xmm2/m128

A V/V AES Perform one round of an AES decryption flow, using 
the Equivalent Inverse Cipher, using one 128-bit data 
(state) from xmm1 with one 128-bit round key from 
xmm2/m128.

VEX.128.66.0F38.WIG DE /r
VAESDEC xmm1, xmm2, xmm3/m128

B V/V AES 
AVX

Perform one round of an AES decryption flow, using 
the Equivalent Inverse Cipher, using one 128-bit data 
(state) from xmm2 with one 128-bit round key from 
xmm3/m128; store the result in xmm1.

VEX.256.66.0F38.WIG DE /r 
VAESDEC ymm1, ymm2, ymm3/m256

B V/V VAES Perform one round of an AES decryption flow, using 
the Equivalent Inverse Cipher, using two 128-bit data 
(state) from ymm2 with two 128-bit round keys from 
ymm3/m256; store the result in ymm1.

EVEX.128.66.0F38.WIG DE /r
VAESDEC xmm1, xmm2, xmm3/m128

C V/V VAES 
(AVX512VL 
OR AVX10.11)

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Perform one round of an AES decryption flow, using 
the Equivalent Inverse Cipher, using one 128-bit data 
(state) from xmm2 with one 128-bit round key from 
xmm3/m128; store the result in xmm1.

EVEX.256.66.0F38.WIG DE /r
VAESDEC ymm1, ymm2, ymm3/m256

C V/V VAES 
(AVX512VL 
OR AVX10.11)

Perform one round of an AES decryption flow, using 
the Equivalent Inverse Cipher, using two 128-bit data 
(state) from ymm2 with two 128-bit round keys from 
ymm3/m256; store the result in ymm1.

EVEX.512.66.0F38.WIG DE /r
VAESDEC zmm1, zmm2, zmm3/m512

C V/V VAES 
(AVX512F OR 
AVX10.11)

Perform one round of an AES decryption flow, using 
the Equivalent Inverse Cipher, using four 128-bit data 
(state) from zmm2 with four 128-bit round keys from 
zmm3/m512; store the result in zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

AESDEC 
STATE := SRC1;
RoundKey := SRC2;
STATE := InvShiftRows( STATE );
STATE := InvSubBytes( STATE );
STATE := InvMixColumns( STATE );
DEST[127:0] := STATE XOR RoundKey;
DEST[MAXVL-1:128] (Unmodified)

VAESDEC (128b and 256b VEX Encoded Versions)
(KL,VL) = (1,128), (2,256)
FOR i = 0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := InvShiftRows( STATE )
STATE := InvSubBytes( STATE )
STATE := InvMixColumns( STATE )
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

VAESDEC (EVEX Encoded Version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i = 0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := InvShiftRows( STATE )
STATE := InvSubBytes( STATE )
STATE := InvMixColumns( STATE )
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] :=0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDEC __m128i _mm_aesdec (__m128i, __m128i)
VAESDEC __m256i _mm256_aesdec_epi128(__m256i, __m256i);
VAESDEC __m512i _mm512_aesdec_epi128(__m512i, __m512i);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded: See Table 2-52, “Type E4NF Class Exception Conditions.”
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AESDEC128KL—Perform Ten Rounds of AES Decryption Flow With Key Locker Using 128-Bit 
Key

Instruction Operand Encoding

Description
The AESDEC128KL1 instruction performs 10 rounds of AES to decrypt the first operand using the 128-bit key indi-
cated by the handle from the second operand. It stores the result in the first operand if the operation succeeds 
(e.g., does not run into a handle violation failure).

Operation

AESDEC128KL 
Handle := UnalignedLoad of 384 bit (SRC); // Load is not guaranteed to be atomic.
Illegal Handle = (HandleReservedBitSet (Handle) ||

(Handle[0] AND (CPL > 0)) ||
Handle [2] ||
HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES128);

IF (Illegal Handle) {
THEN RFLAGS.ZF := 1;
ELSE 

(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey);
IF (Authentic == 0) 

THEN RFLAGS.ZF := 1;
ELSE 

DEST := AES128Decrypt (DEST, UnwrappedKey) ;
RFLAGS.ZF := 0;

FI;
FI;
RFLAGS.OF, SF, AF, PF, CF := 0;

Flags Affected
ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other 
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent

AESDEC128KL unsigned char _mm_aesdec128kl_u8(__m128i* odata, __m128i idata, const void* h);

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 38 DD !(11):rrr:bbb 
AESDEC128KL xmm, m384

A V/V AESKLE Decrypt xmm using 128-bit AES key indicated by han-
dle at m384 and store result in xmm.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

1. Further details on Key Locker and usage of this instruction can be found here:

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.
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Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE[bit 0] = 0.
If CR0.EM = 1.
If CR4.OSFXSR = 0.

#NM If CR0.TS = 1.
#PF If a page fault occurs.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If the memory address is in a non-canonical form.

#SS(0) If a memory operand effective address is outside the SS segment limit.
If a memory address referencing the SS segment is in a non-canonical form.
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AESDEC256KL—Perform 14 Rounds of AES Decryption Flow With Key Locker Using 256-Bit Key

Instruction Operand Encoding

Description
The AESDEC256KL1 instruction performs 14 rounds of AES to decrypt the first operand using the 256-bit key indi-
cated by the handle from the second operand. It stores the result in the first operand if the operation succeeds 
(e.g., does not run into a handle violation failure).

Operation

AESDEC256KL 
Handle := UnalignedLoad of 512 bit (SRC); // Load is not guaranteed to be atomic.
Illegal Handle = (HandleReservedBitSet (Handle) ||

(Handle[0] AND (CPL > 0)) ||
Handle [2] ||
HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES256);

IF (Illegal Handle) 
THEN RFLAGS.ZF := 1;
ELSE 

(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IWKey);
IF (Authentic == 0) 

THEN RFLAGS.ZF := 1;
ELSE 

DEST := AES256Decrypt (DEST, UnwrappedKey) ;
RFLAGS.ZF := 0;

FI;
FI;
RFLAGS.OF, SF, AF, PF, CF := 0;

Flags Affected
ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other 
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent

AESDEC256KL unsigned char _mm_aesdec256kl_u8(__m128i* odata, __m128i idata, const void* h);

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 38 DF !(11):rrr:bbb 
AESDEC256KL xmm, m512

A V/V AESKLE Decrypt xmm using 256-bit AES key indicated by han-
dle at m512 and store result in xmm.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

1. Further details on Key Locker and usage of this instruction can be found here:

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.
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Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE[bit 0] = 0.
If CR0.EM = 1.
If CR4.OSFXSR = 0.

#NM If CR0.TS = 1.
#PF If a page fault occurs.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If the memory address is in a non-canonical form.

#SS(0) If a memory operand effective address is outside the SS segment limit.
If a memory address referencing the SS segment is in a non-canonical form.
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AESDECLAST—Perform Last Round of an AES Decryption Flow

Instruction Operand Encoding

Description
This instruction performs the last round of the AES decryption flow using the Equivalent Inverse Cipher, using 
one/two/four (depending on vector length) 128-bit data (state) from the first source operand with one/two/four 
(depending on vector length) round key(s) from the second source operand, and stores the result in the destina-
tion operand. 
VEX and EVEX encoded versions of the instruction allow 3-operand (non-destructive) operation. The legacy 
encoded versions of the instruction require that the first source operand and the destination operand are the same 
and must be an XMM register.
The EVEX encoded form of this instruction does not support memory fault suppression.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature Flag

Description

66 0F 38 DF /r
AESDECLAST xmm1, xmm2/m128

A V/V AES Perform the last round of an AES decryption flow, 
using the Equivalent Inverse Cipher, using one 128-
bit data (state) from xmm1 with one 128-bit round 
key from xmm2/m128.

VEX.128.66.0F38.WIG DF /r
VAESDECLAST xmm1, xmm2, xmm3/m128

B V/V AES
AVX

Perform the last round of an AES decryption flow, 
using the Equivalent Inverse Cipher, using one 128-
bit data (state) from xmm2 with one 128-bit round 
key from xmm3/m128; store the result in xmm1.

VEX.256.66.0F38.WIG DF /r 
VAESDECLAST ymm1, ymm2, ymm3/m256

B V/V VAES Perform the last round of an AES decryption flow, 
using the Equivalent Inverse Cipher, using two 128-
bit data (state) from ymm2 with two 128-bit round 
keys from ymm3/m256; store the result in ymm1.

EVEX.128.66.0F38.WIG DF /r
VAESDECLAST xmm1, xmm2, xmm3/m128

C V/V VAES 
(AVX512VL 
OR AVX10.11)

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Perform the last round of an AES decryption flow, 
using the Equivalent Inverse Cipher, using one 128-
bit data (state) from xmm2 with one 128-bit round 
key from xmm3/m128; store the result in xmm1.

EVEX.256.66.0F38.WIG DF /r
VAESDECLAST ymm1, ymm2, ymm3/m256

C V/V VAES 
(AVX512VL 
OR AVX10.11)

Perform the last round of an AES decryption flow, 
using the Equivalent Inverse Cipher, using two 128-
bit data (state) from ymm2 with two 128-bit round 
keys from ymm3/m256; store the result in ymm1.

EVEX.512.66.0F38.WIG DF /r
VAESDECLAST zmm1, zmm2, zmm3/m512

C V/V VAES 
(AVX512F OR 
AVX10.11)

Perform the last round of an AES decryption flow, 
using the Equivalent Inverse Cipher, using four128-
bit data (state) from zmm2 with four 128-bit round 
keys from zmm3/m512; store the result in zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

AESDECLAST 
STATE := SRC1;
RoundKey := SRC2;
STATE := InvShiftRows( STATE );
STATE := InvSubBytes( STATE );
DEST[127:0] := STATE XOR RoundKey;
DEST[MAXVL-1:128] (Unmodified)

VAESDECLAST (128b and 256b VEX Encoded Versions)
(KL,VL) = (1,128), (2,256)
FOR i = 0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := InvShiftRows( STATE )
STATE := InvSubBytes( STATE )
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

VAESDECLAST (EVEX Encoded Version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i = 0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := InvShiftRows( STATE )
STATE := InvSubBytes( STATE )
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDECLAST __m128i _mm_aesdeclast (__m128i, __m128i)
VAESDECLAST __m256i _mm256_aesdeclast_epi128(__m256i, __m256i);
VAESDECLAST __m512i _mm512_aesdeclast_epi128(__m512i, __m512i);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded: See Table 2-52, “Type E4NF Class Exception Conditions.”
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AESDECWIDE128KL—Perform Ten Rounds of AES Decryption Flow With Key Locker on 8 Blocks 
Using 128-Bit Key

Instruction Operand Encoding

Description
The AESDECWIDE128KL1 instruction performs ten rounds of AES to decrypt each of the eight blocks in XMM0-7 
using the 128-bit key indicated by the handle from the second operand. It replaces each input block in XMM0-7 
with its corresponding decrypted block if the operation succeeds (e.g., does not run into a handle violation failure).

Operation

AESDECWIDE128KL
Handle := UnalignedLoad of 384 bit (SRC); // Load is not guaranteed to be atomic.
Illegal Handle = (HandleReservedBitSet (Handle) ||

(Handle[0] AND (CPL > 0)) ||
Handle [2] ||
HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES128);

IF (Illegal Handle) 
THEN RFLAGS.ZF := 1;
ELSE 

(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey);
IF Authentic == 0 {

THEN RFLAGS.ZF := 1;
ELSE 

XMM0 := AES128Decrypt (XMM0, UnwrappedKey) ;
XMM1 := AES128Decrypt (XMM1, UnwrappedKey) ;
XMM2 := AES128Decrypt (XMM2, UnwrappedKey) ;
XMM3 := AES128Decrypt (XMM3, UnwrappedKey) ;
XMM4 := AES128Decrypt (XMM4, UnwrappedKey) ;
XMM5 := AES128Decrypt (XMM5, UnwrappedKey) ;
XMM6 := AES128Decrypt (XMM6, UnwrappedKey) ;
XMM7 := AES128Decrypt (XMM7, UnwrappedKey) ;
RFLAGS.ZF := 0;

FI;
FI;
RFLAGS.OF, SF, AF, PF, CF := 0;

Flags Affected
ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other 
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID Feature 
Flag

Description

F3 0F 38 D8 !(11):001:bbb 
AESDECWIDE128KL m384, <XMM0-7>

A V/V AESKLEWIDE_KL Decrypt XMM0-7 using 128-bit AES key indicated 
by handle at m384 and store each resultant block 
back to its corresponding register.

Op/En Tuple Operand 1 Operands 2—9

A N/A ModRM:r/m (r) Implicit XMM0-7 (r, w)

1. Further details on Key Locker and usage of this instruction can be found here:

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.
AESDECWIDE128KL—Perform Ten Rounds of AES Decryption Flow With Key Locker on 8 Blocks Using 128-Bit Key Vol. 2A 3-59

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html


Intel C/C++ Compiler Intrinsic Equivalent

AESDECWIDE128KLunsigned char _mm_aesdecwide128kl_u8(__m128i odata[8], const __m128i idata[8], const void* h);

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE[bit 0] = 0.
If CR0.EM = 1.
If CR4.OSFXSR = 0.
If CPUID.19H:EBX.WIDE_KL[bit 2] = 0.

#NM If CR0.TS = 1.
#PF If a page fault occurs.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If the memory address is in a non-canonical form.

#SS(0) If a memory operand effective address is outside the SS segment limit.
If a memory address referencing the SS segment is in a non-canonical form.
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AESDECWIDE256KL—Perform 14 Rounds of AES Decryption Flow With Key Locker on 8 Blocks 
Using 256-Bit Key

Instruction Operand Encoding

Description
The AESDECWIDE256KL1 instruction performs 14 rounds of AES to decrypt each of the eight blocks in XMM0-7 
using the 256-bit key indicated by the handle from the second operand. It replaces each input block in XMM0-7 
with its corresponding decrypted block if the operation succeeds (e.g., does not run into a handle violation failure).

Operation

AESDECWIDE256KL
Handle := UnalignedLoad of 512 bit (SRC); // Load is not guaranteed to be atomic.
Illegal Handle = (HandleReservedBitSet (Handle) ||

(Handle[0] AND (CPL > 0)) ||
Handle [2] ||
HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES256);

IF (Illegal Handle) {
THEN RFLAGS.ZF := 1;
ELSE 

(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IWKey);
IF (Authentic == 0) 

THEN RFLAGS.ZF := 1;
ELSE 

XMM0 := AES256Decrypt (XMM0, UnwrappedKey) ;
XMM1 := AES256Decrypt (XMM1, UnwrappedKey) ;
XMM2 := AES256Decrypt (XMM2, UnwrappedKey) ;
XMM3 := AES256Decrypt (XMM3, UnwrappedKey) ;
XMM4 := AES256Decrypt (XMM4, UnwrappedKey) ;
XMM5 := AES256Decrypt (XMM5, UnwrappedKey) ;
XMM6 := AES256Decrypt (XMM6, UnwrappedKey) ;
XMM7 := AES256Decrypt (XMM7, UnwrappedKey) ;
RFLAGS.ZF := 0;

FI;
FI;
RFLAGS.OF, SF, AF, PF, CF := 0;

Flags Affected
ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other 
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID Feature 
Flag

Description

F3 0F 38 D8 !(11):011:bbb 
AESDECWIDE256KL m512, <XMM0-7>

A V/V AESKLEWIDE_KL Decrypt XMM0-7 using 256-bit AES key indicated 
by handle at m512 and store each resultant block 
back to its corresponding register.

Op/En Tuple Operand 1 Operands 2—9

A N/A ModRM:r/m (r) Implicit XMM0-7 (r, w)

1. Further details on Key Locker and usage of this instruction can be found here:

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.
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Intel C/C++ Compiler Intrinsic Equivalent

AESDECWIDE256KLunsigned char _mm_aesdecwide256kl_u8(__m128i odata[8], const __m128i idata[8], const void* h);

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE[bit 0] = 0.
If CR0.EM = 1.
If CR4.OSFXSR = 0.
If CPUID.19H:EBX.WIDE_KL[bit 2] = 0.

#NM If CR0.TS = 1.
#PF If a page fault occurs.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If the memory address is in a non-canonical form.

#SS(0) If a memory operand effective address is outside the SS segment limit.
If a memory address referencing the SS segment is in a non-canonical form.
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AESENC—Perform One Round of an AES Encryption Flow

Instruction Operand Encoding

Description
This instruction performs a single round of an AES encryption flow using one/two/four (depending on vector 
length) 128-bit data (state) from the first source operand with one/two/four (depending on vector length) round 
key(s) from the second source operand, and stores the result in the destination operand. 
Use the AESENC instruction for all but the last encryption rounds. For the last encryption round, use the AESENC-
CLAST instruction.
VEX and EVEX encoded versions of the instruction allow 3-operand (non-destructive) operation. The legacy 
encoded versions of the instruction require that the first source operand and the destination operand are the same 
and must be an XMM register.
The EVEX encoded form of this instruction does not support memory fault suppression.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID Feature 
Flag

Description

66 0F 38 DC /r 
AESENC xmm1, xmm2/m128

A V/V AES Perform one round of an AES encryption flow, using one 
128-bit data (state) from xmm1 with one 128-bit round 
key from xmm2/m128.

VEX.128.66.0F38.WIG DC /r
VAESENC xmm1, xmm2, xmm3/m128

B V/V AES
AVX

Perform one round of an AES encryption flow, using one 
128-bit data (state) from xmm2 with one 128-bit round 
key from the xmm3/m128; store the result in xmm1.

VEX.256.66.0F38.WIG DC /r 
VAESENC ymm1, ymm2, ymm3/m256

B V/V VAES Perform one round of an AES encryption flow, using two 
128-bit data (state) from ymm2 with two 128-bit round 
keys from the ymm3/m256; store the result in ymm1.

EVEX.128.66.0F38.WIG DC /r
VAESENC xmm1, xmm2, xmm3/m128

C V/V VAES 
(AVX512VL OR 
AVX10.11)

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Perform one round of an AES encryption flow, using one 
128-bit data (state) from xmm2 with one 128-bit round 
key from the xmm3/m128; store the result in xmm1.

EVEX.256.66.0F38.WIG DC /r
VAESENC ymm1, ymm2, ymm3/m256

C V/V VAES 
(AVX512VL OR 
AVX10.11)

Perform one round of an AES encryption flow, using two 
128-bit data (state) from ymm2 with two 128-bit round 
keys from the ymm3/m256; store the result in ymm1.

EVEX.512.66.0F38.WIG DC /r
VAESENC zmm1, zmm2, zmm3/m512

C V/V VAES 
(AVX512F OR 
AVX10.11)

Perform one round of an AES encryption flow, using 
four 128-bit data (state) from zmm2 with four 128-bit 
round keys from the zmm3/m512; store the result in 
zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

AESENC 
STATE := SRC1;
RoundKey := SRC2;
STATE := ShiftRows( STATE );
STATE := SubBytes( STATE );
STATE := MixColumns( STATE );
DEST[127:0] := STATE XOR RoundKey;
DEST[MAXVL-1:128] (Unmodified)

VAESENC (128b and 256b VEX Encoded Versions)
(KL,VL) = (1,128), (2,256)
FOR I := 0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := ShiftRows( STATE )
STATE := SubBytes( STATE )
STATE := MixColumns( STATE )
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

VAESENC (EVEX Encoded Version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i := 0 to KL-1:

STATE := SRC1.xmm[i] // xmm[i] is the i’th xmm word in the SIMD register
RoundKey := SRC2.xmm[i]
STATE := ShiftRows( STATE )
STATE := SubBytes( STATE )
STATE := MixColumns( STATE )
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESENC __m128i _mm_aesenc (__m128i, __m128i)
VAESENC __m256i _mm256_aesenc_epi128(__m256i, __m256i);
VAESENC __m512i _mm512_aesenc_epi128(__m512i, __m512i);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded: See Table 2-52, “Type E4NF Class Exception Conditions.”
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AESENC128KL—Perform Ten Rounds of AES Encryption Flow With Key Locker Using 128-Bit Key

Instruction Operand Encoding

Description
The AESENC128KL1 instruction performs ten rounds of AES to encrypt the first operand using the 128-bit key indi-
cated by the handle from the second operand. It stores the result in the first operand if the operation succeeds 
(e.g., does not run into a handle violation failure).

Operation

AESENC128KL 
Handle := UnalignedLoad of 384 bit (SRC); // Load is not guaranteed to be atomic.
Illegal Handle = (

HandleReservedBitSet (Handle) ||
(Handle[0] AND (CPL > 0)) ||
Handle [1] ||
HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES128
);

IF (Illegal Handle) {
THEN RFLAGS.ZF := 1;
ELSE 

(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey);
IF (Authentic == 0) 
THEN RFLAGS.ZF := 1;
ELSE 

DEST := AES128Encrypt (DEST, UnwrappedKey) ;
RFLAGS.ZF := 0;

FI;
FI;
RFLAGS.OF, SF, AF, PF, CF := 0;

Flags Affected
ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other 
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent

AESENC128KL unsigned char _mm_aesenc128kl_u8(__m128i* odata, __m128i idata, const void* h);

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 38 DC !(11):rrr:bbb 
AESENC128KL xmm, m384

A V/V AESKLE Encrypt xmm using 128-bit AES key indicated by han-
dle at m384 and store result in xmm.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

1. Further details on Key Locker and usage of this instruction can be found here:

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.
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Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE[bit 0] = 0.
If CR0.EM = 1.
If CR4.OSFXSR = 0.

#NM If CR0.TS = 1.
#PF If a page fault occurs.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If the memory address is in a non-canonical form.

#SS(0) If a memory operand effective address is outside the SS segment limit.
If a memory address referencing the SS segment is in a non-canonical form.
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AESENC256KL—Perform 14 Rounds of AES Encryption Flow With Key Locker Using 256-Bit Key

Instruction Operand Encoding

Description
The AESENC256KL1 instruction performs 14 rounds of AES to encrypt the first operand using the 256-bit key indi-
cated by the handle from the second operand. It stores the result in the first operand if the operation succeeds 
(e.g., does not run into a handle violation failure).

Operation

AESENC256KL 
Handle := UnalignedLoad of 512 bit (SRC); // Load is not guaranteed to be atomic.
Illegal Handle = (

HandleReservedBitSet (Handle) ||
(Handle[0] AND (CPL > 0)) ||
Handle [1] ||
HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES256
);

IF (Illegal Handle) 
THEN RFLAGS.ZF := 1;
ELSE 

(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IWKey);
IF (Authentic == 0) 

THEN RFLAGS.ZF := 1;
ELSE 

DEST := AES256Encrypt (DEST, UnwrappedKey) ;
RFLAGS.ZF := 0;

FI;
FI;
RFLAGS.OF, SF, AF, PF, CF := 0;

Flags Affected
ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other 
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent

AESENC256KL unsigned char _mm_aesenc256kl_u8(__m128i* odata, __m128i idata, const void* h);

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 38 DE !(11):rrr:bbb 
AESENC256KL xmm, m512

A V/V AESKLE Encrypt xmm using 256-bit AES key indicated by han-
dle at m512 and store result in xmm.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

1. Further details on Key Locker and usage of this instruction can be found here:

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.
AESENC256KL—Perform 14 Rounds of AES Encryption Flow With Key Locker Using 256-Bit Key Vol. 2A 3-67

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html


Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE[bit 0] = 0.
If CR0.EM = 1.
If CR4.OSFXSR = 0.

#NM If CR0.TS = 1.
#PF If a page fault occurs.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If the memory address is in a non-canonical form.

#SS(0) If a memory operand effective address is outside the SS segment limit.
If a memory address referencing the SS segment is in a non-canonical form.
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AESENCLAST—Perform Last Round of an AES Encryption Flow

Instruction Operand Encoding

Description
This instruction performs the last round of an AES encryption flow using one/two/four (depending on vector length) 
128-bit data (state) from the first source operand with one/two/four (depending on vector length) round key(s) 
from the second source operand, and stores the result in the destination operand. 
VEX and EVEX encoded versions of the instruction allows 3-operand (non-destructive) operation. The legacy 
encoded versions of the instruction require that the first source operand and the destination operand are the same 
and must be an XMM register.
The EVEX encoded form of this instruction does not support memory fault suppression.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature Flag

Description

66 0F 38 DD /r
AESENCLAST xmm1, xmm2/m128

A V/V AES Perform the last round of an AES encryption flow, 
using one 128-bit data (state) from xmm1 with one 
128-bit round key from xmm2/m128.

VEX.128.66.0F38.WIG DD /r
VAESENCLAST xmm1, xmm2, xmm3/m128

B V/V AES
AVX

Perform the last round of an AES encryption flow, 
using one 128-bit data (state) from xmm2 with one 
128-bit round key from xmm3/m128; store the 
result in xmm1.

VEX.256.66.0F38.WIG DD /r 
VAESENCLAST ymm1, ymm2, ymm3/m256

B V/V VAES Perform the last round of an AES encryption flow, 
using two 128-bit data (state) from ymm2 with two 
128-bit round keys from ymm3/m256; store the 
result in ymm1.

EVEX.128.66.0F38.WIG DD /r
VAESENCLAST xmm1, xmm2, xmm3/m128

C V/V VAES 
(AVX512VL 
OR AVX10.11)

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Perform the last round of an AES encryption flow, 
using one 128-bit data (state) from xmm2 with one 
128-bit round key from xmm3/m128; store the 
result in xmm1.

EVEX.256.66.0F38.WIG DD /r
VAESENCLAST ymm1, ymm2, ymm3/m256

C V/V VAES 
(AVX512VL 
OR AVX10.11)

Perform the last round of an AES encryption flow, 
using two 128-bit data (state) from ymm2 with two 
128-bit round keys from ymm3/m256; store the 
result in ymm1.

EVEX.512.66.0F38.WIG DD /r
VAESENCLAST zmm1, zmm2, zmm3/m512

C V/V VAES 
(AVX512F OR 
AVX10.11)

Perform the last round of an AES encryption flow, 
using four 128-bit data (state) from zmm2 with four 
128-bit round keys from zmm3/m512; store the 
result in zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

AESENCLAST 
STATE := SRC1;
RoundKey := SRC2;
STATE := ShiftRows( STATE );
STATE := SubBytes( STATE );
DEST[127:0] := STATE XOR RoundKey;
DEST[MAXVL-1:128] (Unmodified)

VAESENCLAST (128b and 256b VEX Encoded Versions)
(KL, VL) = (1,128), (2,256)
FOR I=0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := ShiftRows( STATE )
STATE := SubBytes( STATE )
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

VAESENCLAST (EVEX Encoded Version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i = 0 to KL-1:

STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := ShiftRows( STATE )
STATE := SubBytes( STATE )
DEST.xmm[i] := STATE XOR RoundKey

DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESENCLAST __m128i _mm_aesenclast (__m128i, __m128i)
VAESENCLAST __m256i _mm256_aesenclast_epi128(__m256i, __m256i);
VAESENCLAST __m512i _mm512_aesenclast_epi128(__m512i, __m512i);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded: See Table 2-52, “Type E4NF Class Exception Conditions.”
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AESENCWIDE128KL—Perform Ten Rounds of AES Encryption Flow With Key Locker on 8 Blocks 
Using 128-Bit Key

Instruction Operand Encoding

Description
The AESENCWIDE128KL1 instruction performs ten rounds of AES to encrypt each of the eight blocks in XMM0-7 
using the 128-bit key indicated by the handle from the second operand. It replaces each input block in XMM0-7 
with its corresponding encrypted block if the operation succeeds (e.g., does not run into a handle violation failure).

Operation

AESENCWIDE128KL 
Handle := UnalignedLoad of 384 bit (SRC); // Load is not guaranteed to be atomic.
Illegal Handle = (

HandleReservedBitSet (Handle) ||
(Handle[0] AND (CPL > 0)) ||
Handle [1] ||
HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES128
);

IF (Illegal Handle) 
THEN RFLAGS.ZF := 1;
ELSE 

(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey);
IF Authentic == 0 

THEN RFLAGS.ZF := 1;
ELSE 
XMM0 := AES128Encrypt (XMM0, UnwrappedKey) ;

XMM1 := AES128Encrypt (XMM1, UnwrappedKey) ;
XMM2 := AES128Encrypt (XMM2, UnwrappedKey) ;
XMM3 := AES128Encrypt (XMM3, UnwrappedKey) ;
XMM4 := AES128Encrypt (XMM4, UnwrappedKey) ;
XMM5 := AES128Encrypt (XMM5, UnwrappedKey) ;
XMM6 := AES128Encrypt (XMM6, UnwrappedKey) ;
XMM7 := AES128Encrypt (XMM7, UnwrappedKey) ;
RFLAGS.ZF := 0;

FI;
FI;
RFLAGS.OF, SF, AF, PF, CF := 0;

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID Feature 
Flag

Description

F3 0F 38 D8 !(11):000:bbb 
AESENCWIDE128KL m384, <XMM0-7>

A V/V AESKLE WIDE_KL Encrypt XMM0-7 using 128-bit AES key indicated 
by handle at m384 and store each resultant block 
back to its corresponding register.

Op/En Tuple Operand 1 Operands 2—9

A N/A ModRM:r/m (r) Implicit XMM0-7 (r, w)

1. Further details on Key Locker and usage of this instruction can be found here:

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.
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Flags Affected
ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other 
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent

AESENCWIDE128KLunsigned char _mm_aesencwide128kl_u8(__m128i odata[8], const __m128i idata[8], const void* h);

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CPUID.AESKLE = 0.
If CR0.EM = 1.
If CR4.OSFXSR = 0.
If CPUID.19H:EBX.WIDE_KL[bit 2] = 0.

#NM If CR0.TS = 1.
#PF If a page fault occurs.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If the memory address is in a non-canonical form.

#SS(0) If a memory operand effective address is outside the SS segment limit.
If a memory address referencing the SS segment is in a non-canonical form.
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AESENCWIDE256KL—Perform 14 Rounds of AES Encryption Flow With Key Locker on 8 Blocks 
Using 256-Bit Key

Instruction Operand Encoding

Description
The AESENCWIDE256KL1 instruction performs 14 rounds of AES to encrypt each of the eight blocks in XMM0-7 
using the 256-bit key indicated by the handle from the second operand. It replaces each input block in XMM0-7 
with its corresponding encrypted block if the operation succeeds (e.g., does not run into a handle violation failure).

Operation

AESENCWIDE256KL 
Handle := UnalignedLoad of 512 bit (SRC); // Load is not guaranteed to be atomic.
Illegal Handle = (

HandleReservedBitSet (Handle) ||
(Handle[0] AND (CPL > 0)) ||
Handle [1] ||
HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES256
);

IF (Illegal Handle) 
THEN RFLAGS.ZF := 1;
ELSE 

(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IWKey);
IF (Authentic == 0) 

THEN RFLAGS.ZF := 1;
ELSE 

XMM0 := AES256Encrypt (XMM0, UnwrappedKey) ;
XMM1 := AES256Encrypt (XMM1, UnwrappedKey) ;
XMM2 := AES256Encrypt (XMM2, UnwrappedKey) ;
XMM3 := AES256Encrypt (XMM3, UnwrappedKey) ;
XMM4 := AES256Encrypt (XMM4, UnwrappedKey) ;
XMM5 := AES256Encrypt (XMM5, UnwrappedKey) ;
XMM6 := AES256Encrypt (XMM6, UnwrappedKey) ;
XMM7 := AES256Encrypt (XMM7, UnwrappedKey) ;
RFLAGS.ZF := 0;

FI;
FI;
RFLAGS.OF, SF, AF, PF, CF := 0;

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID Feature 
Flag

Description

F3 0F 38 D8 !(11):010:bbb 
AESENCWIDE256KL m512, <XMM0-7>

A V/V AESKLE WIDE_KL Encrypt XMM0-7 using 256-bit AES key indicated 
by handle at m512 and store each resultant block 
back to its corresponding register.

Op/En Tuple Operand 1 Operands 2—9

A N/A ModRM:r/m (r) Implicit XMM0-7 (r, w)

1. Further details on Key Locker and usage of this instruction can be found here:

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.
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Flags Affected
ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other 
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent

AESENCWIDE256KLunsigned char _mm_aesencwide256kl_u8(__m128i odata[8], const __m128i idata[8], const void* h);

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE[bit 0] = 0.
If CR0.EM = 1.
If CR4.OSFXSR = 0.
If CPUID.19H:EBX.WIDE_KL[bit 2] = 0.

#NM If CR0.TS = 1.
#PF If a page fault occurs.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If the memory address is in a non-canonical form.

#SS(0) If a memory operand effective address is outside the SS segment limit.
If a memory address referencing the SS segment is in a non-canonical form.
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AESIMC—Perform the AES InvMixColumn Transformation Vol. 2A 3-75

AESIMC—Perform the AES InvMixColumn Transformation

Instruction Operand Encoding

Description
Perform the InvMixColumns transformation on the source operand and store the result in the destination operand. 
The destination operand is an XMM register. The source operand can be an XMM register or a 128-bit memory loca-
tion. 
Note: the AESIMC instruction should be applied to the expanded AES round keys (except for the first and last round 
key) in order to prepare them for decryption using the “Equivalent Inverse Cipher” (defined in FIPS 197). 

128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (MAXVL-1:128) of the destination YMM register are zeroed.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

AESIMC
DEST[127:0] := InvMixColumns( SRC );
DEST[MAXVL-1:128] (Unmodified)

VAESIMC 
DEST[127:0] := InvMixColumns( SRC );
DEST[MAXVL-1:128] := 0;

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESIMC __m128i _mm_aesimc (__m128i)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:
#UD If VEX.vvvv ≠ 1111B.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 DB /r
AESIMC xmm1, xmm2/m128

RM V/V AES Perform the InvMixColumn transformation on 
a 128-bit round key from xmm2/m128 and 
store the result in xmm1.

VEX.128.66.0F38.WIG DB /r
VAESIMC xmm1, xmm2/m128

RM V/V Both AES 
and
AVX flags

Perform the InvMixColumn transformation on 
a 128-bit round key from xmm2/m128 and 
store the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A



AESKEYGENASSIST—AES Round Key Generation Assist

Instruction Operand Encoding

Description
Assist in expanding the AES cipher key, by computing steps towards generating a round key for encryption, using 
128-bit data specified in the source operand and an 8-bit round constant specified as an immediate, store the 
result in the destination operand.
The destination operand is an XMM register. The source operand can be an XMM register or a 128-bit memory loca-
tion.

128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (MAXVL-1:128) of the destination YMM register are zeroed.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

AESKEYGENASSIST
X3[31:0] := SRC [127: 96];
X2[31:0] := SRC [95: 64];
X1[31:0] := SRC [63: 32];
X0[31:0] := SRC [31: 0];
RCON[31:0] := ZeroExtend(imm8[7:0]);
DEST[31:0] := SubWord(X1);
DEST[63:32 ] := RotWord( SubWord(X1) ) XOR RCON;
DEST[95:64] := SubWord(X3);
DEST[127:96] := RotWord( SubWord(X3) ) XOR RCON;
DEST[MAXVL-1:128] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A DF /r ib
AESKEYGENASSIST xmm1, xmm2/m128, imm8

RMI V/V AES Assist in AES round key generation using an 8 
bits Round Constant (RCON) specified in the 
immediate byte, operating on 128 bits of data 
specified in xmm2/m128 and stores the 
result in xmm1.

VEX.128.66.0F3A.WIG DF /r ib
VAESKEYGENASSIST xmm1, xmm2/m128, imm8

RMI V/V Both AES 
and
AVX flags

Assist in AES round key generation using 8 
bits Round Constant (RCON) specified in the 
immediate byte, operating on 128 bits of data 
specified in xmm2/m128 and stores the 
result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 N/A
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VAESKEYGENASSIST 
X3[31:0] := SRC [127: 96];
X2[31:0] := SRC [95: 64];
X1[31:0] := SRC [63: 32];
X0[31:0] := SRC [31: 0];
RCON[31:0] := ZeroExtend(imm8[7:0]);
DEST[31:0] := SubWord(X1);
DEST[63:32 ] := RotWord( SubWord(X1) ) XOR RCON;
DEST[95:64] := SubWord(X3);
DEST[127:96] := RotWord( SubWord(X3) ) XOR RCON;
DEST[MAXVL-1:128] := 0;

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESKEYGENASSIST __m128i _mm_aeskeygenassist (__m128i, const int)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:
#UD If VEX.vvvv ≠ 1111B.
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AND—Logical AND

Instruction Operand Encoding

Description

Performs a bitwise AND operation on the destination (first) and source (second) operands and stores the result in 
the destination operand location. The source operand can be an immediate, a register, or a memory location; the 
destination operand can be a register or a memory location. (However, two memory operands cannot be used in 
one instruction.) Each bit of the result is set to 1 if both corresponding bits of the first and second operands are 1; 
otherwise, it is set to 0.

This instruction can be used with a LOCK prefix to allow the it to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

24 ib AND AL, imm8 I Valid Valid AL AND imm8.

25 iw AND AX, imm16 I Valid Valid AX AND imm16.

25 id AND EAX, imm32 I Valid Valid EAX AND imm32.

REX.W + 25 id AND RAX, imm32 I Valid N.E. RAX AND imm32 sign-extended to 64-bits.

80 /4 ib AND r/m8, imm8 MI Valid Valid r/m8 AND imm8.

REX + 80 /4 ib AND r/m8*, imm8 MI Valid N.E. r/m8 AND imm8.

81 /4 iw AND r/m16, imm16 MI Valid Valid r/m16 AND imm16.

81 /4 id AND r/m32, imm32 MI Valid Valid r/m32 AND imm32.

REX.W + 81 /4 id AND r/m64, imm32 MI Valid N.E. r/m64 AND imm32 sign extended to 64-bits.

83 /4 ib AND r/m16, imm8 MI Valid Valid r/m16 AND imm8 (sign-extended).

83 /4 ib AND r/m32, imm8 MI Valid Valid r/m32 AND imm8 (sign-extended).

REX.W + 83 /4 ib AND r/m64, imm8 MI Valid N.E. r/m64 AND imm8 (sign-extended).

20 /r AND r/m8, r8 MR Valid Valid r/m8 AND r8.

REX + 20 /r AND r/m8*, r8* MR Valid N.E. r/m64 AND r8 (sign-extended).

21 /r AND r/m16, r16 MR Valid Valid r/m16 AND r16.

21 /r AND r/m32, r32 MR Valid Valid r/m32 AND r32.

REX.W + 21 /r AND r/m64, r64 MR Valid N.E. r/m64 AND r32.

22 /r AND r8, r/m8 RM Valid Valid r8 AND r/m8.

REX + 22 /r AND r8*, r/m8* RM Valid N.E. r/m64 AND r8 (sign-extended).

23 /r AND r16, r/m16 RM Valid Valid r16 AND r/m16.

23 /r AND r32, r/m32 RM Valid Valid r32 AND r/m32.

REX.W + 23 /r AND r64, r/m64 RM Valid N.E. r64 AND r/m64.

NOTES:

*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A

MI ModRM:r/m (r, w) imm8/16/32 N/A N/A

I AL/AX/EAX/RAX imm8/16/32 N/A N/A
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Operation

DEST := DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state of the AF flag is 
undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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ANDN—Logical AND NOT 

Instruction Operand Encoding

Description

Performs a bitwise logical AND of inverted second operand (the first source operand) with the third operand (the 
second source operand). The result is stored in the first operand (destination operand).
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

DEST := (NOT SRC1) bitwiseAND SRC2;
SF := DEST[OperandSize -1];
ZF := (DEST = 0);

Flags Affected
SF and ZF are updated based on result. OF and CF flags are cleared. AF and PF flags are undefined.

Intel C/C++ Compiler Intrinsic Equivalent

Auto-generated from high-level language.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-29, “Type 13 Class Exception Conditions.”

Opcode/Instruction Op/ 
En

64/32-
bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.LZ.0F38.W0 F2 /r
ANDN r32a, r32b, r/m32

RVM V/V BMI1 Bitwise AND of inverted r32b with r/m32, store result in r32a.

VEX.LZ. 0F38.W1 F2 /r
ANDN r64a, r64b, r/m64

RVM V/N.E. BMI1 Bitwise AND of inverted r64b with r/m64, store result in r64a.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A



ANDNPD—Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description
Performs a bitwise logical AND NOT of the two, four or eight packed double precision floating-point values from the 
first source operand and the second source operand, and stores the result in the destination operand.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be 
a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 
64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write-
mask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the 
corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
register destination are unmodified.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 55 /r
ANDNPD xmm1, xmm2/m128

A V/V SSE2 Return the bitwise logical AND NOT of packed double 
precision floating-point values in xmm1 and 
xmm2/mem. 

VEX.128.66.0F 55 /r
VANDNPD xmm1, xmm2, 
xmm3/m128

B V/V AVX Return the bitwise logical AND NOT of packed double 
precision floating-point values in xmm2 and 
xmm3/mem. 

VEX.256.66.0F 55/r
VANDNPD ymm1, ymm2, 
ymm3/m256

B V/V AVX Return the bitwise logical AND NOT of packed double 
precision floating-point values in ymm2 and 
ymm3/mem.

EVEX.128.66.0F.W1 55 /r
VANDNPD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the bitwise logical AND NOT of packed double 
precision floating-point values in xmm2 and 
xmm3/m128/m64bcst subject to writemask k1.

EVEX.256.66.0F.W1 55 /r
VANDNPD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Return the bitwise logical AND NOT of packed double 
precision floating-point values in ymm2 and 
ymm3/m256/m64bcst subject to writemask k1.

EVEX.512.66.0F.W1 55 /r
VANDNPD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512DQ 
OR AVX10.11

Return the bitwise logical AND NOT of packed double 
precision floating-point values in zmm2 and 
zmm3/m512/m64bcst subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VANDNPD (EVEX Encoded Versions) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN

DEST[i+63:i] := (NOT(SRC1[i+63:i])) BITWISE AND SRC2[63:0]
ELSE 

DEST[i+63:i] := (NOT(SRC1[i+63:i])) BITWISE AND SRC2[i+63:i]
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] = 0
FI;

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VANDNPD (VEX.256 Encoded Version)
DEST[63:0] := (NOT(SRC1[63:0])) BITWISE AND SRC2[63:0]
DEST[127:64] := (NOT(SRC1[127:64])) BITWISE AND SRC2[127:64]
DEST[191:128] := (NOT(SRC1[191:128])) BITWISE AND SRC2[191:128]
DEST[255:192] := (NOT(SRC1[255:192])) BITWISE AND SRC2[255:192]
DEST[MAXVL-1:256] := 0

VANDNPD (VEX.128 Encoded Version)
DEST[63:0] := (NOT(SRC1[63:0])) BITWISE AND SRC2[63:0]
DEST[127:64] := (NOT(SRC1[127:64])) BITWISE AND SRC2[127:64]
DEST[MAXVL-1:128] := 0

ANDNPD (128-bit Legacy SSE Version)
DEST[63:0] := (NOT(DEST[63:0])) BITWISE AND SRC[63:0]
DEST[127:64] := (NOT(DEST[127:64])) BITWISE AND SRC[127:64]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VANDNPD __m512d _mm512_andnot_pd (__m512d a, __m512d b);
VANDNPD __m512d _mm512_mask_andnot_pd (__m512d s, __mmask8 k, __m512d a, __m512d b);
VANDNPD __m512d _mm512_maskz_andnot_pd (__mmask8 k, __m512d a, __m512d b);
VANDNPD __m256d _mm256_mask_andnot_pd (__m256d s, __mmask8 k, __m256d a, __m256d b);
VANDNPD __m256d _mm256_maskz_andnot_pd (__mmask8 k, __m256d a, __m256d b);
VANDNPD __m128d _mm_mask_andnot_pd (__m128d s, __mmask8 k, __m128d a, __m128d b);
VANDNPD __m128d _mm_maskz_andnot_pd (__mmask8 k, __m128d a, __m128d b);
VANDNPD __m256d _mm256_andnot_pd (__m256d a, __m256d b);
ANDNPD __m128d _mm_andnot_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
None.
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Other Exceptions
VEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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ANDNPS—Bitwise Logical AND NOT of Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description
Performs a bitwise logical AND NOT of the four, eight or sixteen packed single precision floating-point values from 
the first source operand and the second source operand, and stores the result in the destination operand.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be 
a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 
32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write-
mask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the 
corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
ZMM register destination are unmodified.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 55 /r
ANDNPS xmm1, xmm2/m128

A V/V SSE Return the bitwise logical AND NOT of packed single 
precision floating-point values in xmm1 and xmm2/mem. 

VEX.128.0F 55 /r
VANDNPS xmm1, xmm2, 
xmm3/m128

B V/V AVX Return the bitwise logical AND NOT of packed single 
precision floating-point values in xmm2 and xmm3/mem. 

VEX.256.0F 55 /r
VANDNPS ymm1, ymm2, 
ymm3/m256

B V/V AVX Return the bitwise logical AND NOT of packed single 
precision floating-point values in ymm2 and ymm3/mem.

EVEX.128.0F.W0 55 /r
VANDNPS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the bitwise logical AND of packed single precision 
floating-point values in xmm2 and xmm3/m128/m32bcst 
subject to writemask k1.

EVEX.256.0F.W0 55 /r
VANDNPS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Return the bitwise logical AND of packed single precision 
floating-point values in ymm2 and ymm3/m256/m32bcst 
subject to writemask k1.

EVEX.512.0F.W0 55 /r
VANDNPS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

C V/V AVX512DQ 
OR AVX10.11

Return the bitwise logical AND of packed single precision 
floating-point values in zmm2 and zmm3/m512/m32bcst 
subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VANDNPS (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN

DEST[i+31:i] := (NOT(SRC1[i+31:i])) BITWISE AND SRC2[31:0]
ELSE 

DEST[i+31:i] := (NOT(SRC1[i+31:i])) BITWISE AND SRC2[i+31:i]
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] = 0
FI;

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VANDNPS (VEX.256 Encoded Version)
DEST[31:0] := (NOT(SRC1[31:0])) BITWISE AND SRC2[31:0]
DEST[63:32] := (NOT(SRC1[63:32])) BITWISE AND SRC2[63:32]
DEST[95:64] := (NOT(SRC1[95:64])) BITWISE AND SRC2[95:64]
DEST[127:96] := (NOT(SRC1[127:96])) BITWISE AND SRC2[127:96]
DEST[159:128] := (NOT(SRC1[159:128])) BITWISE AND SRC2[159:128]
DEST[191:160] := (NOT(SRC1[191:160])) BITWISE AND SRC2[191:160]
DEST[223:192] := (NOT(SRC1[223:192])) BITWISE AND SRC2[223:192]
DEST[255:224] := (NOT(SRC1[255:224])) BITWISE AND SRC2[255:224].
DEST[MAXVL-1:256] := 0

VANDNPS (VEX.128 Encoded Version)
DEST[31:0] := (NOT(SRC1[31:0])) BITWISE AND SRC2[31:0]
DEST[63:32] := (NOT(SRC1[63:32])) BITWISE AND SRC2[63:32]
DEST[95:64] := (NOT(SRC1[95:64])) BITWISE AND SRC2[95:64]
DEST[127:96] := (NOT(SRC1[127:96])) BITWISE AND SRC2[127:96]
DEST[MAXVL-1:128] := 0

ANDNPS (128-bit Legacy SSE Version)
DEST[31:0] := (NOT(DEST[31:0])) BITWISE AND SRC[31:0]
DEST[63:32] := (NOT(DEST[63:32])) BITWISE AND SRC[63:32]
DEST[95:64] := (NOT(DEST[95:64])) BITWISE AND SRC[95:64]
DEST[127:96] := (NOT(DEST[127:96])) BITWISE AND SRC[127:96]
DEST[MAXVL-1:128] (Unmodified)
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Intel C/C++ Compiler Intrinsic Equivalent

VANDNPS __m512 _mm512_andnot_ps (__m512 a, __m512 b);
VANDNPS __m512 _mm512_mask_andnot_ps (__m512 s, __mmask16 k, __m512 a, __m512 b);
VANDNPS __m512 _mm512_maskz_andnot_ps (__mmask16 k, __m512 a, __m512 b);
VANDNPS __m256 _mm256_mask_andnot_ps (__m256 s, __mmask8 k, __m256 a, __m256 b);
VANDNPS __m256 _mm256_maskz_andnot_ps (__mmask8 k, __m256 a, __m256 b);
VANDNPS __m128 _mm_mask_andnot_ps (__m128 s, __mmask8 k, __m128 a, __m128 b);
VANDNPS __m128 _mm_maskz_andnot_ps (__mmask8 k, __m128 a, __m128 b);
VANDNPS __m256 _mm256_andnot_ps (__m256 a, __m256 b);
ANDNPS __m128 _mm_andnot_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions
None.

Other Exceptions
VEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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ANDPD—Bitwise Logical AND of Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description
Performs a bitwise logical AND of the two, four or eight packed double precision floating-point values from the first 
source operand and the second source operand, and stores the result in the destination operand.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be 
a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 
64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write-
mask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the 
corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
register destination are unmodified.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 54 /r
ANDPD xmm1, xmm2/m128

A V/V SSE2 Return the bitwise logical AND of packed double 
precision floating-point values in xmm1 and 
xmm2/mem. 

VEX.128.66.0F 54 /r
VANDPD xmm1, xmm2, xmm3/m128

B V/V AVX Return the bitwise logical AND of packed double 
precision floating-point values in xmm2 and 
xmm3/mem. 

VEX.256.66.0F 54 /r
VANDPD ymm1, ymm2, ymm3/m256

B V/V AVX Return the bitwise logical AND of packed double 
precision floating-point values in ymm2 and 
ymm3/mem.

EVEX.128.66.0F.W1 54 /r
VANDPD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the bitwise logical AND of packed double 
precision floating-point values in xmm2 and 
xmm3/m128/m64bcst subject to writemask k1.

EVEX.256.66.0F.W1 54 /r
VANDPD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Return the bitwise logical AND of packed double 
precision floating-point values in ymm2 and 
ymm3/m256/m64bcst subject to writemask k1.

EVEX.512.66.0F.W1 54 /r
VANDPD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512DQ 
OR AVX10.11

Return the bitwise logical AND of packed double 
precision floating-point values in zmm2 and 
zmm3/m512/m64bcst subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VANDPD (EVEX Encoded Versions) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN
IF (EVEX.b == 1) AND (SRC2 *is memory*)

THEN
DEST[i+63:i] := SRC1[i+63:i] BITWISE AND SRC2[63:0]

ELSE 
DEST[i+63:i] := SRC1[i+63:i] BITWISE AND SRC2[i+63:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] = 0
FI;

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VANDPD (VEX.256 Encoded Version)
DEST[63:0] := SRC1[63:0] BITWISE AND SRC2[63:0]
DEST[127:64] := SRC1[127:64] BITWISE AND SRC2[127:64]
DEST[191:128] := SRC1[191:128] BITWISE AND SRC2[191:128]
DEST[255:192] := SRC1[255:192] BITWISE AND SRC2[255:192]
DEST[MAXVL-1:256] := 0

VANDPD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0] BITWISE AND SRC2[63:0]
DEST[127:64] := SRC1[127:64] BITWISE AND SRC2[127:64]
DEST[MAXVL-1:128] := 0

ANDPD (128-bit Legacy SSE Version)
DEST[63:0] := DEST[63:0] BITWISE AND SRC[63:0]
DEST[127:64] := DEST[127:64] BITWISE AND SRC[127:64]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VANDPD __m512d _mm512_and_pd (__m512d a, __m512d b);
VANDPD __m512d _mm512_mask_and_pd (__m512d s, __mmask8 k, __m512d a, __m512d b);
VANDPD __m512d _mm512_maskz_and_pd (__mmask8 k, __m512d a, __m512d b);
VANDPD __m256d _mm256_mask_and_pd (__m256d s, __mmask8 k, __m256d a, __m256d b);
VANDPD __m256d _mm256_maskz_and_pd (__mmask8 k, __m256d a, __m256d b);
VANDPD __m128d _mm_mask_and_pd (__m128d s, __mmask8 k, __m128d a, __m128d b);
VANDPD __m128d _mm_maskz_and_pd (__mmask8 k, __m128d a, __m128d b);
VANDPD __m256d _mm256_and_pd (__m256d a, __m256d b);
ANDPD __m128d _mm_and_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
None.
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Other Exceptions
VEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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ANDPS—Bitwise Logical AND of Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description
Performs a bitwise logical AND of the four, eight or sixteen packed single precision floating-point values from the 
first source operand and the second source operand, and stores the result in the destination operand.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be 
a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 
32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write-
mask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the 
corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
ZMM register destination are unmodified.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 54 /r
ANDPS xmm1, xmm2/m128

A V/V SSE Return the bitwise logical AND of packed single precision 
floating-point values in xmm1 and xmm2/mem. 

VEX.128.0F 54 /r
VANDPS xmm1,xmm2, 
xmm3/m128

B V/V AVX Return the bitwise logical AND of packed single precision 
floating-point values in xmm2 and xmm3/mem. 

VEX.256.0F 54 /r
VANDPS ymm1, ymm2, 
ymm3/m256

B V/V AVX Return the bitwise logical AND of packed single precision 
floating-point values in ymm2 and ymm3/mem.

EVEX.128.0F.W0 54 /r
VANDPS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the bitwise logical AND of packed single precision 
floating-point values in xmm2 and xmm3/m128/m32bcst 
subject to writemask k1.

EVEX.256.0F.W0 54 /r
VANDPS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Return the bitwise logical AND of packed single precision 
floating-point values in ymm2 and ymm3/m256/m32bcst 
subject to writemask k1.

EVEX.512.0F.W0 54 /r
VANDPS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

C V/V AVX512DQ 
OR AVX10.11

Return the bitwise logical AND of packed single precision 
floating-point values in zmm2 and zmm3/m512/m32bcst 
subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VANDPS (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN

DEST[i+63:i] := SRC1[i+31:i] BITWISE AND SRC2[31:0]
ELSE 

DEST[i+31:i] := SRC1[i+31:i] BITWISE AND SRC2[i+31:i]
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI;

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0;

VANDPS (VEX.256 Encoded Version)
DEST[31:0] := SRC1[31:0] BITWISE AND SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE AND SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE AND SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE AND SRC2[127:96]
DEST[159:128] := SRC1[159:128] BITWISE AND SRC2[159:128]
DEST[191:160] := SRC1[191:160] BITWISE AND SRC2[191:160]
DEST[223:192] := SRC1[223:192] BITWISE AND SRC2[223:192]
DEST[255:224] := SRC1[255:224] BITWISE AND SRC2[255:224].
DEST[MAXVL-1:256] := 0;

VANDPS (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0] BITWISE AND SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE AND SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE AND SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE AND SRC2[127:96]
DEST[MAXVL-1:128] := 0;

ANDPS (128-bit Legacy SSE Version)
DEST[31:0] := DEST[31:0] BITWISE AND SRC[31:0]
DEST[63:32] := DEST[63:32] BITWISE AND SRC[63:32]
DEST[95:64] := DEST[95:64] BITWISE AND SRC[95:64]
DEST[127:96] := DEST[127:96] BITWISE AND SRC[127:96]
DEST[MAXVL-1:128] (Unmodified)
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Intel C/C++ Compiler Intrinsic Equivalent

VANDPS __m512 _mm512_and_ps (__m512 a, __m512 b);
VANDPS __m512 _mm512_mask_and_ps (__m512 s, __mmask16 k, __m512 a, __m512 b);
VANDPS __m512 _mm512_maskz_and_ps (__mmask16 k, __m512 a, __m512 b);
VANDPS __m256 _mm256_mask_and_ps (__m256 s, __mmask8 k, __m256 a, __m256 b);
VANDPS __m256 _mm256_maskz_and_ps (__mmask8 k, __m256 a, __m256 b);
VANDPS __m128 _mm_mask_and_ps (__m128 s, __mmask8 k, __m128 a, __m128 b);
VANDPS __m128 _mm_maskz_and_ps (__mmask8 k, __m128 a, __m128 b);
VANDPS __m256 _mm256_and_ps (__m256 a, __m256 b);
ANDPS __m128 _mm_and_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions
None.

Other Exceptions
VEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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ARPL—Adjust RPL Field of Segment Selector

Instruction Operand Encoding

Description

Compares the RPL fields of two segment selectors. The first operand (the destination operand) contains one 
segment selector and the second operand (source operand) contains the other. (The RPL field is located in bits 0 
and 1 of each operand.) If the RPL field of the destination operand is less than the RPL field of the source operand, 
the ZF flag is set and the RPL field of the destination operand is increased to match that of the source operand. 
Otherwise, the ZF flag is cleared and no change is made to the destination operand. (The destination operand can 
be a word register or a memory location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it can also be used by applica-
tions). It is generally used to adjust the RPL of a segment selector that has been passed to the operating system 
by an application program to match the privilege level of the application program. Here the segment selector 
passed to the operating system is placed in the destination operand and segment selector for the application 
program’s code segment is placed in the source operand. (The RPL field in the source operand represents the priv-
ilege level of the application program.) Execution of the ARPL instruction then ensures that the RPL of the segment 
selector received by the operating system is no lower (does not have a higher privilege) than the privilege level of 
the application program (the segment selector for the application program’s code segment can be read from the 
stack following a procedure call).

This instruction executes as described in compatibility mode and legacy mode. It is not encodable in 64-bit mode. 

See “Checking Caller Access Privileges” in Chapter 3, “Protected-Mode Memory Management,” of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information about the use of this instruc-
tion.

Operation
IF 64-BIT MODE

THEN
See MOVSXD;

ELSE
IF DEST[RPL] < SRC[RPL]

THEN
ZF := 1;
DEST[RPL] := SRC[RPL];

ELSE
ZF := 0;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of the source operand; otherwise, 
it is set to 0.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

63 /r ARPL r/m16, r16 MR N. E. Valid Adjust RPL of r/m16 to not less than RPL of 
r16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The ARPL instruction is not recognized in real-address mode.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD The ARPL instruction is not recognized in virtual-8086 mode.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Not applicable.
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BEXTR—Bit Field Extract Vol. 2A 3-95

BEXTR—Bit Field Extract 

Instruction Operand Encoding

Description
Extracts contiguous bits from the first source operand (the second operand) using an index value and length value 
specified in the second source operand (the third operand). Bit 7:0 of the second source operand specifies the 
starting bit position of bit extraction. A START value exceeding the operand size will not extract any bits from the 
second source operand. Bit 15:8 of the second source operand specifies the maximum number of bits (LENGTH) 
beginning at the START position to extract. Only bit positions up to (OperandSize -1) of the first source operand are 
extracted. The extracted bits are written to the destination register, starting from the least significant bit. All higher 
order bits in the destination operand (starting at bit position LENGTH) are zeroed. The destination register is 
cleared if no bits are extracted.
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

START := SRC2[7:0];
LEN := SRC2[15:8];
TEMP := ZERO_EXTEND_TO_512 (SRC1 );
DEST := ZERO_EXTEND(TEMP[START+LEN -1: START]);
ZF := (DEST = 0);

Flags Affected
ZF is updated based on the result. AF, SF, and PF are undefined. All other flags are cleared. 

Intel C/C++ Compiler Intrinsic Equivalent

BEXTR unsigned __int32 _bextr_u32(unsigned __int32 src, unsigned __int32 start. unsigned __int32 len);
BEXTR unsigned __int64 _bextr_u64(unsigned __int64 src, unsigned __int32 start. unsigned __int32 len);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-29, “Type 13 Class Exception Conditions,” additionally:
#UD If VEX.W = 1.

Opcode/Instruction Op/ 
En

64/32-
bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.LZ.0F38.W0 F7 /r
BEXTR r32a, r/m32, r32b

RMV V/V BMI1 Contiguous bitwise extract from r/m32 using r32b as control; store 
result in r32a.

VEX.LZ.0F38.W1 F7 /r
BEXTR r64a, r/m64, r64b

RMV V/N.E. BMI1 Contiguous bitwise extract from r/m64 using r64b as control; store 
result in r64a.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMV ModRM:reg (w) ModRM:r/m (r) VEX.vvvv (r) N/A



BLENDPD—Blend Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description
Double precision floating-point values from the second source operand (third operand) are conditionally merged 
with values from the first source operand (second operand) and written to the destination operand (first operand). 
The immediate bits [3:0] determine whether the corresponding double precision floating-point value in the desti-
nation is copied from the second source or first source. If a bit in the mask, corresponding to a word, is ”1”, then 
the double precision floating-point value in the second source operand is copied, else the value in the first source 
operand is copied.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of 
the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

BLENDPD (128-bit Legacy SSE Version)
IF (IMM8[0] = 0)THEN DEST[63:0] := DEST[63:0]

ELSE DEST [63:0] := SRC[63:0] FI
IF (IMM8[1] = 0) THEN DEST[127:64] := DEST[127:64]

ELSE DEST [127:64] := SRC[127:64] FI
DEST[MAXVL-1:128] (Unmodified)

VBLENDPD (VEX.128 Encoded Version)
IF (IMM8[0] = 0)THEN DEST[63:0] := SRC1[63:0]

ELSE DEST [63:0] := SRC2[63:0] FI
IF (IMM8[1] = 0) THEN DEST[127:64] := SRC1[127:64]

ELSE DEST [127:64] := SRC2[127:64] FI
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 0D /r ib

BLENDPD xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Select packed double precision floating-point 
values from xmm1 and xmm2/m128 from 
mask specified in imm8 and store the values 
into xmm1.

VEX.128.66.0F3A.WIG 0D /r ib

VBLENDPD xmm1, xmm2, xmm3/m128, imm8

RVMI V/V AVX Select packed double precision floating-point 
Values from xmm2 and xmm3/m128 from 
mask in imm8 and store the values in xmm1.

VEX.256.66.0F3A.WIG 0D /r ib

VBLENDPD ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX Select packed double precision floating-point 
Values from ymm2 and ymm3/m256 from 
mask in imm8 and store the values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[3:0]
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VBLENDPD (VEX.256 Encoded Version)
IF (IMM8[0] = 0)THEN DEST[63:0] := SRC1[63:0]

ELSE DEST [63:0] := SRC2[63:0] FI
IF (IMM8[1] = 0) THEN DEST[127:64] := SRC1[127:64]

ELSE DEST [127:64] := SRC2[127:64] FI
IF (IMM8[2] = 0) THEN DEST[191:128] := SRC1[191:128]

ELSE DEST [191:128] := SRC2[191:128] FI
IF (IMM8[3] = 0) THEN DEST[255:192] := SRC1[255:192]

ELSE DEST [255:192] := SRC2[255:192] FI

Intel C/C++ Compiler Intrinsic Equivalent

BLENDPD __m128d _mm_blend_pd (__m128d v1, __m128d v2, const int mask);
VBLENDPD __m256d _mm256_blend_pd (__m256d a, __m256d b, const int mask);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions.”
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BLENDPS—Blend Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description
Packed single precision floating-point values from the second source operand (third operand) are conditionally 
merged with values from the first source operand (second operand) and written to the destination operand (first 
operand). The immediate bits [7:0] determine whether the corresponding single precision floating-point value in 
the destination is copied from the second source or first source. If a bit in the mask, corresponding to a word, is 
“1”, then the single precision floating-point value in the second source operand is copied, else the value in the first 
source operand is copied.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: The first source operand an XMM register. The second source operand is an XMM register 
or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the 
corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

BLENDPS (128-bit Legacy SSE Version)
IF (IMM8[0] = 0) THEN DEST[31:0] :=DEST[31:0]

ELSE DEST [31:0] := SRC[31:0] FI
IF (IMM8[1] = 0) THEN DEST[63:32] := DEST[63:32]

ELSE DEST [63:32] := SRC[63:32] FI
IF (IMM8[2] = 0) THEN DEST[95:64] := DEST[95:64]

ELSE DEST [95:64] := SRC[95:64] FI
IF (IMM8[3] = 0) THEN DEST[127:96] := DEST[127:96]

ELSE DEST [127:96] := SRC[127:96] FI
DEST[MAXVL-1:128] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 0C /r ib

BLENDPS xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Select packed single precision floating-point 
values from xmm1 and xmm2/m128 from 
mask specified in imm8 and store the values 
into xmm1.

VEX.128.66.0F3A.WIG 0C /r ib

VBLENDPS xmm1, xmm2, xmm3/m128, imm8

RVMI V/V AVX Select packed single precision floating-point 
values from xmm2 and xmm3/m128 from 
mask in imm8 and store the values in xmm1.

VEX.256.66.0F3A.WIG 0C /r ib

VBLENDPS ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX Select packed single precision floating-point 
values from ymm2 and ymm3/m256 from 
mask in imm8 and store the values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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VBLENDPS (VEX.128 Encoded Version)
IF (IMM8[0] = 0) THEN DEST[31:0] :=SRC1[31:0]

ELSE DEST [31:0] := SRC2[31:0] FI
IF (IMM8[1] = 0) THEN DEST[63:32] := SRC1[63:32]

ELSE DEST [63:32] := SRC2[63:32] FI
IF (IMM8[2] = 0) THEN DEST[95:64] := SRC1[95:64]

ELSE DEST [95:64] := SRC2[95:64] FI
IF (IMM8[3] = 0) THEN DEST[127:96] := SRC1[127:96]

ELSE DEST [127:96] := SRC2[127:96] FI
DEST[MAXVL-1:128] := 0

VBLENDPS (VEX.256 Encoded Version)
IF (IMM8[0] = 0) THEN DEST[31:0] :=SRC1[31:0]

ELSE DEST [31:0] := SRC2[31:0] FI
IF (IMM8[1] = 0) THEN DEST[63:32] := SRC1[63:32]

ELSE DEST [63:32] := SRC2[63:32] FI
IF (IMM8[2] = 0) THEN DEST[95:64] := SRC1[95:64]

ELSE DEST [95:64] := SRC2[95:64] FI
IF (IMM8[3] = 0) THEN DEST[127:96] := SRC1[127:96]

ELSE DEST [127:96] := SRC2[127:96] FI
IF (IMM8[4] = 0) THEN DEST[159:128] := SRC1[159:128]

ELSE DEST [159:128] := SRC2[159:128] FI
IF (IMM8[5] = 0) THEN DEST[191:160] := SRC1[191:160]

ELSE DEST [191:160] := SRC2[191:160] FI
IF (IMM8[6] = 0) THEN DEST[223:192] := SRC1[223:192]

ELSE DEST [223:192] := SRC2[223:192] FI
IF (IMM8[7] = 0) THEN DEST[255:224] := SRC1[255:224]

ELSE DEST [255:224] := SRC2[255:224] FI.

Intel C/C++ Compiler Intrinsic Equivalent

BLENDPS __m128 _mm_blend_ps (__m128 v1, __m128 v2, const int mask);
VBLENDPS __m256 _mm256_blend_ps (__m256 a, __m256 b, const int mask);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions.”
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BLENDVPD—Variable Blend Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description
Conditionally copy each quadword data element of double precision floating-point value from the second source 
operand and the first source operand depending on mask bits defined in the mask register operand. The mask bits 
are the most significant bit in each quadword element of the mask register.
Each quadword element of the destination operand is copied from:
• the corresponding quadword element in the second source operand, if a mask bit is “1”; or
• the corresponding quadword element in the first source operand, if a mask bit is “0”
The register assignment of the implicit mask operand for BLENDVPD is defined to be the architectural register 
XMM0.
128-bit Legacy SSE version: The first source operand and the destination operand is the same. Bits (MAXVL-1:128) 
of the corresponding YMM destination register remain unchanged. The mask register operand is implicitly defined 
to be the architectural register XMM0. An attempt to execute BLENDVPD with a VEX prefix will cause #UD.
VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second 
source operand is an XMM register or 128-bit memory location. The mask operand is the third source register, and 
encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is 
ignored. The upper bits (MAXVL-1:128) of the corresponding YMM register (destination register) are zeroed. 
VEX.W must be 0, otherwise, the instruction will #UD.
VEX.256 encoded version: The first source operand and destination operand are YMM registers. The second source 
operand can be a YMM register or a 256-bit memory location. The mask operand is the third source register, and 
encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is 
ignored. VEX.W must be 0, otherwise, the instruction will #UD.
VBLENDVPD permits the mask to be any XMM or YMM register. In contrast, BLENDVPD treats XMM0 implicitly as the 
mask and do not support non-destructive destination operation. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 15 /r

BLENDVPD xmm1, xmm2/m128 , <XMM0>

RM0 V/V SSE4_1 Select packed double precision floating-point 
values from xmm1 and xmm2 from mask specified 
in XMM0 and store the values in xmm1.

VEX.128.66.0F3A.W0 4B /r /is4

VBLENDVPD xmm1, xmm2, xmm3/m128, xmm4

RVMR V/V AVX Conditionally copy double precision floating-point 
values from xmm2 or xmm3/m128 to xmm1, based 
on mask bits in the mask operand, xmm4.

VEX.256.66.0F3A.W0 4B /r /is4

VBLENDVPD ymm1, ymm2, ymm3/m256, ymm4

RVMR V/V AVX Conditionally copy double precision floating-point 
values from ymm2 or ymm3/m256 to ymm1, based 
on mask bits in the mask operand, ymm4.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM0 ModRM:reg (r, w) ModRM:r/m (r) implicit XMM0 N/A

RVMR ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[7:4]
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Operation

BLENDVPD (128-bit Legacy SSE Version)
MASK := XMM0
IF (MASK[63] = 0) THEN DEST[63:0] := DEST[63:0]

ELSE DEST [63:0] := SRC[63:0] FI
IF (MASK[127] = 0) THEN DEST[127:64] := DEST[127:64]

ELSE DEST [127:64] := SRC[127:64] FI
DEST[MAXVL-1:128] (Unmodified)

VBLENDVPD (VEX.128 Encoded Version)
MASK := SRC3
IF (MASK[63] = 0) THEN DEST[63:0] := SRC1[63:0]

ELSE DEST [63:0] := SRC2[63:0] FI
IF (MASK[127] = 0) THEN DEST[127:64] := SRC1[127:64]

ELSE DEST [127:64] := SRC2[127:64] FI
DEST[MAXVL-1:128] := 0

VBLENDVPD (VEX.256 Encoded Version)
MASK := SRC3
IF (MASK[63] = 0) THEN DEST[63:0] := SRC1[63:0]

ELSE DEST [63:0] := SRC2[63:0] FI
IF (MASK[127] = 0) THEN DEST[127:64] := SRC1[127:64]

ELSE DEST [127:64] := SRC2[127:64] FI
IF (MASK[191] = 0) THEN DEST[191:128] := SRC1[191:128]

ELSE DEST [191:128] := SRC2[191:128] FI
IF (MASK[255] = 0) THEN DEST[255:192] := SRC1[255:192]

ELSE DEST [255:192] := SRC2[255:192] FI

Intel C/C++ Compiler Intrinsic Equivalent

BLENDVPD __m128d _mm_blendv_pd(__m128d v1, __m128d v2, __m128d v3);
VBLENDVPD __m128 _mm_blendv_pd (__m128d a, __m128d b, __m128d mask);
VBLENDVPD __m256 _mm256_blendv_pd (__m256d a, __m256d b, __m256d mask);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:
#UD If VEX.W = 1.
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BLENDVPS—Variable Blend Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description
Conditionally copy each dword data element of single precision floating-point value from the second source 
operand and the first source operand depending on mask bits defined in the mask register operand. The mask bits 
are the most significant bit in each dword element of the mask register.
Each quadword element of the destination operand is copied from:
• the corresponding dword element in the second source operand, if a mask bit is “1”; or
• the corresponding dword element in the first source operand, if a mask bit is “0”.
The register assignment of the implicit mask operand for BLENDVPS is defined to be the architectural register 
XMM0.
128-bit Legacy SSE version: The first source operand and the destination operand is the same. Bits (MAXVL-1:128) 
of the corresponding YMM destination register remain unchanged. The mask register operand is implicitly defined 
to be the architectural register XMM0. An attempt to execute BLENDVPS with a VEX prefix will cause #UD.
VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second 
source operand is an XMM register or 128-bit memory location. The mask operand is the third source register, and 
encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is 
ignored. The upper bits (MAXVL-1:128) of the corresponding YMM register (destination register) are zeroed. 
VEX.W must be 0, otherwise, the instruction will #UD.
VEX.256 encoded version: The first source operand and destination operand are YMM registers. The second source 
operand can be a YMM register or a 256-bit memory location. The mask operand is the third source register, and 
encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is 
ignored. VEX.W must be 0, otherwise, the instruction will #UD.
VBLENDVPS permits the mask to be any XMM or YMM register. In contrast, BLENDVPS treats XMM0 implicitly as the 
mask and do not support non-destructive destination operation. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 14 /r

BLENDVPS xmm1, xmm2/m128, <XMM0>

RM0 V/V SSE4_1 Select packed single precision floating-point values 
from xmm1 and xmm2/m128 from mask specified 
in XMM0 and store the values into xmm1.

VEX.128.66.0F3A.W0 4A /r /is4

VBLENDVPS xmm1, xmm2, xmm3/m128, xmm4

RVMR V/V AVX Conditionally copy single precision floating-point 
values from xmm2 or xmm3/m128 to xmm1, based 
on mask bits in the specified mask operand, xmm4.

VEX.256.66.0F3A.W0 4A /r /is4

VBLENDVPS ymm1, ymm2, ymm3/m256, ymm4

RVMR V/V AVX Conditionally copy single precision floating-point 
values from ymm2 or ymm3/m256 to ymm1, based 
on mask bits in the specified mask register, ymm4.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM0 ModRM:reg (r, w) ModRM:r/m (r) implicit XMM0 N/A

RVMR ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[7:4]
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Operation

BLENDVPS (128-bit Legacy SSE Version)
MASK := XMM0
IF (MASK[31] = 0) THEN DEST[31:0] := DEST[31:0]

ELSE DEST [31:0] := SRC[31:0] FI
IF (MASK[63] = 0) THEN DEST[63:32] := DEST[63:32]

ELSE DEST [63:32] := SRC[63:32] FI
IF (MASK[95] = 0) THEN DEST[95:64] := DEST[95:64]

ELSE DEST [95:64] := SRC[95:64] FI
IF (MASK[127] = 0) THEN DEST[127:96] := DEST[127:96]

ELSE DEST [127:96] := SRC[127:96] FI
DEST[MAXVL-1:128] (Unmodified)

VBLENDVPS (VEX.128 Encoded Version)
MASK := SRC3
IF (MASK[31] = 0) THEN DEST[31:0] := SRC1[31:0]

ELSE DEST [31:0] := SRC2[31:0] FI
IF (MASK[63] = 0) THEN DEST[63:32] := SRC1[63:32]

ELSE DEST [63:32] := SRC2[63:32] FI
IF (MASK[95] = 0) THEN DEST[95:64] := SRC1[95:64]

ELSE DEST [95:64] := SRC2[95:64] FI
IF (MASK[127] = 0) THEN DEST[127:96] := SRC1[127:96]

ELSE DEST [127:96] := SRC2[127:96] FI
DEST[MAXVL-1:128] := 0

VBLENDVPS (VEX.256 Encoded Version)
MASK := SRC3
IF (MASK[31] = 0) THEN DEST[31:0] := SRC1[31:0]

ELSE DEST [31:0] := SRC2[31:0] FI
IF (MASK[63] = 0) THEN DEST[63:32] := SRC1[63:32]

ELSE DEST [63:32] := SRC2[63:32] FI
IF (MASK[95] = 0) THEN DEST[95:64] := SRC1[95:64]

ELSE DEST [95:64] := SRC2[95:64] FI
IF (MASK[127] = 0) THEN DEST[127:96] := SRC1[127:96]

ELSE DEST [127:96] := SRC2[127:96] FI
IF (MASK[159] = 0) THEN DEST[159:128] := SRC1[159:128]

ELSE DEST [159:128] := SRC2[159:128] FI
IF (MASK[191] = 0) THEN DEST[191:160] := SRC1[191:160]

ELSE DEST [191:160] := SRC2[191:160] FI
IF (MASK[223] = 0) THEN DEST[223:192] := SRC1[223:192]

ELSE DEST [223:192] := SRC2[223:192] FI
IF (MASK[255] = 0) THEN DEST[255:224] := SRC1[255:224]

ELSE DEST [255:224] := SRC2[255:224] FI

Intel C/C++ Compiler Intrinsic Equivalent

BLENDVPS __m128 _mm_blendv_ps(__m128 v1, __m128 v2, __m128 v3);
VBLENDVPS __m128 _mm_blendv_ps (__m128 a, __m128 b, __m128 mask);
VBLENDVPS __m256 _mm256_blendv_ps (__m256 a, __m256 b, __m256 mask);

SIMD Floating-Point Exceptions
None.
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Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:
#UD If VEX.W = 1.
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BLSI—Extract Lowest Set Isolated Bit

Instruction Operand Encoding

Description
Extracts the lowest set bit from the source operand and set the corresponding bit in the destination register. All 
other bits in the destination operand are zeroed. If no bits are set in the source operand, BLSI sets all the bits in 
the destination to 0 and sets ZF and CF.
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

temp := (-SRC) bitwiseAND (SRC); 
SF := temp[OperandSize -1];
ZF := (temp = 0);
IF SRC = 0

CF := 0;
ELSE

CF := 1;
FI
DEST := temp;

Flags Affected
ZF and SF are updated based on the result. CF is set if the source is not zero. OF flags are cleared. AF and PF 
flags are undefined.

Intel C/C++ Compiler Intrinsic Equivalent

BLSI unsigned __int32 _blsi_u32(unsigned __int32 src);
BLSI unsigned __int64 _blsi_u64(unsigned __int64 src);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-29, “Type 13 Class Exception Conditions.”

Opcode/Instruction Op/ 
En

64/32-
bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.LZ.0F38.W0 F3 /3
BLSI r32, r/m32

VM V/V BMI1 Extract lowest set bit from r/m32 and set that bit in r32.

VEX.LZ.0F38.W1 F3 /3
BLSI r64, r/m64

VM V/N.E. BMI1 Extract lowest set bit from r/m64, and set that bit in r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

VM VEX.vvvv (w) ModRM:r/m (r) N/A N/A



BLSMSK—Get Mask Up to Lowest Set Bit Vol. 2A 3-106

BLSMSK—Get Mask Up to Lowest Set Bit

Instruction Operand Encoding

Description
Sets all the lower bits of the destination operand to “1” up to and including lowest set bit (=1) in the source 
operand. If source operand is zero, BLSMSK sets all bits of the destination operand to 1 and also sets CF to 1.
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

temp := (SRC-1) XOR (SRC) ;
SF := temp[OperandSize -1];
ZF := 0;
IF SRC = 0

CF := 1;
ELSE

CF := 0;
FI
DEST := temp;

Flags Affected
SF is updated based on the result. CF is set if the source if zero. ZF and OF flags are cleared. AF and PF flag are 
undefined.

Intel C/C++ Compiler Intrinsic Equivalent

BLSMSK unsigned __int32 _blsmsk_u32(unsigned __int32 src);
BLSMSK unsigned __int64 _blsmsk_u64(unsigned __int64 src);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-29, “Type 13 Class Exception Conditions.”

Opcode/Instruction Op/ 
En

64/32-
bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.LZ.0F38.W0 F3 /2
BLSMSK r32, r/m32

VM V/V BMI1 Set all lower bits in r32 to “1” starting from bit 0 to lowest set bit in 
r/m32.

VEX.LZ.0F38.W1 F3 /2
BLSMSK r64, r/m64

VM V/N.E. BMI1 Set all lower bits in r64 to “1” starting from bit 0 to lowest set bit in 
r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

VM VEX.vvvv (w) ModRM:r/m (r) N/A N/A
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BLSR—Reset Lowest Set Bit

Instruction Operand Encoding

Description
Copies all bits from the source operand to the destination operand and resets (=0) the bit position in the destina-
tion operand that corresponds to the lowest set bit of the source operand. If the source operand is zero BLSR sets 
CF.
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

temp := (SRC-1) bitwiseAND ( SRC );
SF := temp[OperandSize -1];
ZF := (temp = 0);
IF SRC = 0

CF := 1;
ELSE

CF := 0;
FI
DEST := temp;

Flags Affected
ZF and SF flags are updated based on the result. CF is set if the source is zero. OF flag is cleared. AF and PF flags 
are undefined.

Intel C/C++ Compiler Intrinsic Equivalent

BLSR unsigned __int32 _blsr_u32(unsigned __int32 src);
BLSR unsigned __int64 _blsr_u64(unsigned __int64 src);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-29, “Type 13 Class Exception Conditions.”

Opcode/Instruction Op/ 
En

64/32-
bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.LZ.0F38.W0 F3 /1
BLSR r32, r/m32

VM V/V BMI1 Reset lowest set bit of r/m32, keep all other bits of r/m32 and write 
result to r32.

VEX.LZ.0F38.W1 F3 /1
BLSR r64, r/m64

VM V/N.E. BMI1 Reset lowest set bit of r/m64, keep all other bits of r/m64 and write 
result to r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

VM VEX.vvvv (w) ModRM:r/m (r) N/A N/A



BNDCL—Check Lower Bound

Instruction Operand Encoding

Description
Compare the address in the second operand with the lower bound in bnd. The second operand can be either a 
register or memory operand. If the address is lower than the lower bound in bnd.LB, it will set BNDSTATUS to 01H 
and signal a #BR exception.
This instruction does not cause any memory access, and does not read or write any flags. 

Operation

BNDCL BND, reg
IF reg < BND.LB Then

BNDSTATUS := 01H; 
#BR; 

FI;

BNDCL BND, mem
TEMP := LEA(mem); 
IF TEMP < BND.LB Then

BNDSTATUS := 01H; 
#BR; 

FI;

Intel C/C++ Compiler Intrinsic Equivalent

BNDCL void   _bnd_chk_ptr_lbounds(const void *q)

Flags Affected
None

Protected Mode Exceptions
#BR If lower bound check fails.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 1A /r
BNDCL bnd, r/m32

RM N.E./V MPX Generate a #BR if the address in r/m32 is lower than the lower 
bound in bnd.LB.

F3 0F 1A /r
BNDCL bnd, r/m64

RM V/N.E. MPX Generate a #BR if the address in r/m64 is lower than the lower 
bound in bnd.LB.

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (w) ModRM:r/m (r) N/A
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Real-Address Mode Exceptions
#BR If lower bound check fails.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

Virtual-8086 Mode Exceptions
#BR If lower bound check fails.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.
Same exceptions as in protected mode.
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BNDCU/BNDCN—Check Upper Bound

Instruction Operand Encoding

Description
Compare the address in the second operand with the upper bound in bnd. The second operand can be either a 
register or a memory operand. If the address is higher than the upper bound in bnd.UB, it will set BNDSTATUS to 
01H and signal a #BR exception.
BNDCU perform 1’s complement operation on the upper bound of bnd first before proceeding with address compar-
ison. BNDCN perform address comparison directly using the upper bound in bnd that is already reverted out of 1’s 
complement form. 
This instruction does not cause any memory access, and does not read or write any flags. 
Effective address computation of m32/64 has identical behavior to LEA

Operation

BNDCU BND, reg
IF reg > NOT(BND.UB) Then

BNDSTATUS := 01H; 
#BR; 

FI;

BNDCU BND, mem
TEMP := LEA(mem); 
IF TEMP > NOT(BND.UB) Then

BNDSTATUS := 01H; 
#BR; 

FI;

BNDCN BND, reg
IF reg > BND.UB Then

BNDSTATUS := 01H; 
#BR; 

FI;

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F2 0F 1A /r
BNDCU bnd, r/m32

RM N.E./V MPX Generate a #BR if the address in r/m32 is higher than the upper 
bound in bnd.UB (bnb.UB in 1's complement form).

F2 0F 1A /r
BNDCU bnd, r/m64

RM V/N.E. MPX Generate a #BR if the address in r/m64 is higher than the upper 
bound in bnd.UB (bnb.UB in 1's complement form).

F2 0F 1B /r
BNDCN bnd, r/m32

RM N.E./V MPX Generate a #BR if the address in r/m32 is higher than the upper 
bound in bnd.UB (bnb.UB not in 1's complement form).

F2 0F 1B /r
BNDCN bnd, r/m64

RM V/N.E. MPX Generate a #BR if the address in r/m64 is higher than the upper 
bound in bnd.UB (bnb.UB not in 1's complement form).

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (w) ModRM:r/m (r) N/A
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BNDCN BND, mem
TEMP := LEA(mem); 
IF TEMP > BND.UB Then

BNDSTATUS := 01H; 
#BR; 

FI;

Intel C/C++ Compiler Intrinsic Equivalent

BNDCU .void   _bnd_chk_ptr_ubounds(const void *q)

Flags Affected
None

Protected Mode Exceptions
#BR If upper bound check fails.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.

Real-Address Mode Exceptions
#BR If upper bound check fails.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

Virtual-8086 Mode Exceptions
#BR If upper bound check fails.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.
Same exceptions as in protected mode.
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BNDLDX—Load Extended Bounds Using Address Translation

Instruction Operand Encoding

Description
BNDLDX uses the linear address constructed from the base register and displacement of the SIB-addressing form 
of the memory operand (mib) to perform address translation to access a bound table entry and conditionally load 
the bounds in the BTE to the destination. The destination register is updated with the bounds in the BTE, if the 
content of the index register of mib matches the pointer value stored in the BTE. 
If the pointer value comparison fails, the destination is updated with INIT bounds (lb = 0x0, ub = 0x0) (note: as 
articulated earlier, the upper bound is represented using 1's complement, therefore, the 0x0 value of upper bound 
allows for access to full memory). 
This instruction does not cause memory access to the linear address of mib nor the effective address referenced by 
the base, and does not read or write any flags. 
Segment overrides apply to the linear address computation with the base of mib, and are used during address 
translation to generate the address of the bound table entry. By default, the address of the BTE is assumed to be 
linear address. There are no segmentation checks performed on the base of mib. 
The base of mib will not be checked for canonical address violation as it does not access memory. 
Any encoding of this instruction that does not specify base or index register will treat those registers as zero 
(constant). The reg-reg form of this instruction will remain a NOP.
The scale field of the SIB byte has no effect on these instructions and is ignored.
The bound register may be partially updated on memory faults. The order in which memory operands are loaded is 
implementation specific.

Operation

base := mib.SIB.base ? mib.SIB.base + Disp: 0;
ptr_value := mib.SIB.index ? mib.SIB.index : 0;

Outside 64-bit Mode
A_BDE[31:0] := (Zero_extend32(base[31:12] « 2) + (BNDCFG[31:12] «12 );
A_BT[31:0] := LoadFrom(A_BDE );
IF A_BT[0] equal 0 Then

BNDSTATUS := A_BDE | 02H; 
#BR; 

FI;
A_BTE[31:0] := (Zero_extend32(base[11:2] « 4) + (A_BT[31:2] « 2 );
Temp_lb[31:0] := LoadFrom(A_BTE);
Temp_ub[31:0] := LoadFrom(A_BTE + 4);
Temp_ptr[31:0] := LoadFrom(A_BTE + 8);
IF Temp_ptr equal ptr_value Then

BND.LB := Temp_lb; 
BND.UB := Temp_ub; 

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 1A /r
BNDLDX bnd, mib

RM V/V MPX Load the bounds stored in a bound table entry (BTE) into bnd with 
address translation using the base of mib and conditional on the 
index of mib matching the pointer value in the BTE.

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (w)
SIB.base (r): Address of pointer

SIB.index(r)
N/A
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ELSE
BND.LB := 0;
BND.UB := 0;

FI;

In 64-bit Mode
A_BDE[63:0] := (Zero_extend64(base[47+MAWA:20] « 3) + (BNDCFG[63:12] «12 );1

A_BT[63:0] := LoadFrom(A_BDE);
IF A_BT[0] equal 0 Then

BNDSTATUS := A_BDE | 02H; 
#BR; 

FI;
A_BTE[63:0] := (Zero_extend64(base[19:3] « 5) + (A_BT[63:3] « 3 );
Temp_lb[63:0] := LoadFrom(A_BTE);
Temp_ub[63:0] := LoadFrom(A_BTE + 8);
Temp_ptr[63:0] := LoadFrom(A_BTE + 16);
IF Temp_ptr equal ptr_value Then

BND.LB := Temp_lb; 
BND.UB := Temp_ub; 

ELSE
BND.LB := 0;
BND.UB := 0;

FI;

Intel C/C++ Compiler Intrinsic Equivalent

BNDLDX: Generated by compiler as needed.

Flags Affected
None.

Protected Mode Exceptions
#BR If the bound directory entry is invalid.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.
If DS register contains a NULL segment selector.

#PF(fault code) If a page fault occurs.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.

1. If CPL < 3, the supervisor MAWA (MAWAS) is used; this value is 0. If CPL = 3, the user MAWA (MAWAU) is used; this value is enumer-
ated in CPUID.(EAX=07H,ECX=0H):ECX.MAWAU[bits 21:17]. See Appendix E.3.1 of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.
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Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.
#PF(fault code) If a page fault occurs.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#BR If the bound directory entry is invalid.
#UD If ModRM is RIP relative.

If the LOCK prefix is used.
If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.

#GP(0) If the memory address (A_BDE or A_BTE) is in a non-canonical form.
#PF(fault code) If a page fault occurs.
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BNDMK—Make Bounds

Instruction Operand Encoding

Description
Makes bounds from the second operand and stores the lower and upper bounds in the bound register bnd. The 
second operand must be a memory operand. The content of the base register from the memory operand is stored 
in the lower bound bnd.LB. The 1's complement of the effective address of m32/m64 is stored in the upper bound 
b.UB. Computation of m32/m64 has identical behavior to LEA.
This instruction does not cause any memory access, and does not read or write any flags. 
If the instruction did not specify base register, the lower bound will be zero. The reg-reg form of this instruction 
retains legacy behavior (NOP). 
The instruction causes an invalid-opcode exception (#UD) if executed in 64-bit mode with RIP-relative addressing.

Operation

BND.LB := SRCMEM.base;
IF 64-bit mode Then

BND.UB := NOT(LEA.64_bits(SRCMEM)); 
ELSE

BND.UB := Zero_Extend.64_bits(NOT(LEA.32_bits(SRCMEM)));
FI;

Intel C/C++ Compiler Intrinsic Equivalent

BNDMKvoid * _bnd_set_ptr_bounds(const void * q, size_t size); 

Flags Affected
None.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 1B /r
BNDMK bnd, m32

RM N.E./V MPX Make lower and upper bounds from m32 and store them in bnd.

F3 0F 1B /r
BNDMK bnd, m64

RM V/N.E. MPX Make lower and upper bounds from m64 and store them in bnd.

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (w) ModRM:r/m (r) N/A
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Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.
If RIP-relative addressing is used.

#SS(0) If the memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
Same exceptions as in protected mode.
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BNDMOV—Move Bounds

Instruction Operand Encoding

Description
BNDMOV moves a pair of lower and upper bound values from the source operand (the second operand) to the 
destination (the first operand). Each operation is 128-bit move. The exceptions are same as the MOV instruction. 
The memory format for loading/store bounds in 64-bit mode is shown in Figure 1-5.

This instruction does not change flags.

Operation

BNDMOV register to register
DEST.LB := SRC.LB; 
DEST.UB := SRC.UB; 

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 1A /r
BNDMOV bnd1, bnd2/m64

RM N.E./V MPX Move lower and upper bound from bnd2/m64 to bound register 
bnd1.

66 0F 1A /r
BNDMOV bnd1, bnd2/m128

RM V/N.E. MPX Move lower and upper bound from bnd2/m128 to bound register 
bnd1.

66 0F 1B /r
BNDMOV bnd1/m64, bnd2

MR N.E./V MPX Move lower and upper bound from bnd2 to bnd1/m64.

66 0F 1B /r
BNDMOV bnd1/m128, bnd2

MR V/N.E. MPX Move lower and upper bound from bnd2 to bound register 
bnd1/m128.

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (w) ModRM:r/m (r) N/A

MR ModRM:r/m (w) ModRM:reg (r) N/A

Figure 1-5.  Memory Layout of BNDMOV to/from Memory

Upper Bound (UB) Lower Bound (LB)

8 016 Byte offset

BNDMOV to memory in 64-bit mode

Upper Bound (UB) Lower Bound (LB)

8 016 Byte offset

BNDMOV to memory in 32-bit mode

4
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BNDMOV from memory
IF 64-bit mode THEN

DEST.LB := LOAD_QWORD(SRC); 
DEST.UB := LOAD_QWORD(SRC+8); 

ELSE
DEST.LB := LOAD_DWORD_ZERO_EXT(SRC); 
DEST.UB := LOAD_DWORD_ZERO_EXT(SRC+4); 

FI;

BNDMOV to memory
IF 64-bit mode THEN

DEST[63:0] := SRC.LB; 
DEST[127:64] := SRC.UB; 

ELSE
DEST[31:0] := SRC.LB; 
DEST[63:32] := SRC.UB; 

FI;

Intel C/C++ Compiler Intrinsic Equivalent

BNDMOV void * _bnd_copy_ptr_bounds(const void *q, const void *r)

Flags Affected
None.

Protected Mode Exceptions
#UD If the LOCK prefix is used but the destination is not a memory operand.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.

#SS(0) If the memory operand effective address is outside the SS segment limit.
#GP(0) If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the destination operand points to a non-writable segment
If the DS, ES, FS, or GS segment register contains a NULL segment selector.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL is 3.
#PF(fault code) If a page fault occurs.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used but the destination is not a memory operand.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

#GP(0) If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If the memory operand effective address is outside the SS segment limit.
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Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used but the destination is not a memory operand.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

#GP(0) If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If the memory operand effective address is outside the SS segment limit.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL is 3.
#PF(fault code) If a page fault occurs.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used but the destination is not a memory operand.

If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.
#SS(0) If the memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL is 3.
#PF(fault code) If a page fault occurs.
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BNDSTX—Store Extended Bounds Using Address Translation

Instruction Operand Encoding

Description
BNDSTX uses the linear address constructed from the displacement and base register of the SIB-addressing form 
of the memory operand (mib) to perform address translation to store to a bound table entry. The bounds in the 
source operand bnd are written to the lower and upper bounds in the BTE. The content of the index register of mib 
is written to the pointer value field in the BTE. 
This instruction does not cause memory access to the linear address of mib nor the effective address referenced by 
the base, and does not read or write any flags. 
Segment overrides apply to the linear address computation with the base of mib, and are used during address 
translation to generate the address of the bound table entry. By default, the address of the BTE is assumed to be 
linear address. There are no segmentation checks performed on the base of mib. 
The base of mib will not be checked for canonical address violation as it does not access memory. 
Any encoding of this instruction that does not specify base or index register will treat those registers as zero 
(constant). The reg-reg form of this instruction will remain a NOP.
The scale field of the SIB byte has no effect on these instructions and is ignored.
The bound register may be partially updated on memory faults. The order in which memory operands are loaded is 
implementation specific.

Operation

base := mib.SIB.base ? mib.SIB.base + Disp: 0;
ptr_value := mib.SIB.index ? mib.SIB.index : 0;

Outside 64-bit Mode
A_BDE[31:0] := (Zero_extend32(base[31:12] « 2) + (BNDCFG[31:12] «12 );
A_BT[31:0] := LoadFrom(A_BDE);
IF A_BT[0] equal 0 Then

BNDSTATUS := A_BDE | 02H; 
#BR; 

FI;
A_DEST[31:0] := (Zero_extend32(base[11:2] « 4) + (A_BT[31:2] « 2 ); // address of Bound table entry
A_DEST[8][31:0] := ptr_value; 
A_DEST[0][31:0] := BND.LB; 
A_DEST[4][31:0] := BND.UB; 

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 1B /r
BNDSTX mib, bnd

MR V/V MPX Store the bounds in bnd and the pointer value in the index register 
of mib to a bound table entry (BTE) with address translation using 
the base of mib.

Op/En Operand 1 Operand 2 Operand 3

MR
SIB.base (r): Address of pointer

SIB.index(r)
ModRM:reg (r) N/A
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In 64-bit Mode
A_BDE[63:0] := (Zero_extend64(base[47+MAWA:20] « 3) + (BNDCFG[63:12] «12 );1

A_BT[63:0] := LoadFrom(A_BDE);
IF A_BT[0] equal 0 Then

BNDSTATUS := A_BDE | 02H; 
#BR; 

FI;
A_DEST[63:0] := (Zero_extend64(base[19:3] « 5) + (A_BT[63:3] « 3 ); // address of Bound table entry
A_DEST[16][63:0] := ptr_value; 
A_DEST[0][63:0] := BND.LB; 
A_DEST[8][63:0] := BND.UB; 

Intel C/C++ Compiler Intrinsic Equivalent

BNDSTX: _bnd_store_ptr_bounds(const void **ptr_addr, const void *ptr_val); 

Flags Affected
None.

Protected Mode Exceptions
#BR If the bound directory entry is invalid.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.
If DS register contains a NULL segment selector.
If the destination operand points to a non-writable segment

#PF(fault code) If a page fault occurs.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.
#PF(fault code) If a page fault occurs.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

1. If CPL < 3, the supervisor MAWA (MAWAS) is used; this value is 0. If CPL = 3, the user MAWA (MAWAU) is used; this value is enumer-
ated in CPUID.(EAX=07H,ECX=0H):ECX.MAWAU[bits 21:17]. See Appendix E.3.1 of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.
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64-Bit Mode Exceptions
#BR If the bound directory entry is invalid.
#UD If ModRM is RIP relative.

If the LOCK prefix is used.
If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.

#GP(0) If the memory address (A_BDE or A_BTE) is in a non-canonical form.
If the destination operand points to a non-writable segment

#PF(fault code) If a page fault occurs.
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BOUND—Check Array Index Against Bounds

Instruction Operand Encoding

Description

BOUND determines if the first operand (array index) is within the bounds of an array specified the second operand 
(bounds operand). The array index is a signed integer located in a register. The bounds operand is a memory loca-
tion that contains a pair of signed doubleword-integers (when the operand-size attribute is 32) or a pair of signed 
word-integers (when the operand-size attribute is 16). The first doubleword (or word) is the lower bound of the 
array and the second doubleword (or word) is the upper bound of the array. The array index must be greater than 
or equal to the lower bound and less than or equal to the upper bound plus the operand size in bytes. If the index 
is not within bounds, a BOUND range exceeded exception (#BR) is signaled. When this exception is generated, the 
saved return instruction pointer points to the BOUND instruction.

The bounds limit data structure (two words or doublewords containing the lower and upper limits of the array) is 
usually placed just before the array itself, making the limits addressable via a constant offset from the beginning of 
the array. Because the address of the array already will be present in a register, this practice avoids extra bus 
cycles to obtain the effective address of the array bounds.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64bit Mode
THEN

#UD;
ELSE

IF (ArrayIndex < LowerBound OR ArrayIndex > UpperBound) THEN
(* Below lower bound or above upper bound *)

IF <equation for PL enabled> THEN BNDSTATUS := 0
#BR; 

FI;
FI;

Flags Affected

None.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

62 /r BOUND r16, m16&16 RM Invalid Valid Check if r16 (array index) is within bounds 
specified by m16&16.

62 /r BOUND r32, m32&32 RM Invalid Valid Check if r32 (array index) is within bounds 
specified by m32&32.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) N/A N/A
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Protected Mode Exceptions
#BR If the bounds test fails.
#UD If second operand is not a memory location.

If the LOCK prefix is used.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.

Real-Address Mode Exceptions
#BR If the bounds test fails.
#UD If second operand is not a memory location.

If the LOCK prefix is used.
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#BR If the bounds test fails.
#UD If second operand is not a memory location.

If the LOCK prefix is used.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
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BSF—Bit Scan Forward

Instruction Operand Encoding

Description

Searches the source operand (second operand) for the least significant set bit (1 bit). If a least significant 1 bit is 
found, its bit index is stored in the destination operand (first operand). The source operand can be a register or a 
memory location; the destination operand is a register. The bit index is an unsigned offset from bit 0 of the source 
operand. If the content of the source operand is zero, the destination operand is unmodified.1

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

IF SRC = 0
THEN

ZF := 1;
DEST is undefined;

ELSE
ZF := 0;
temp := 0;
WHILE Bit(SRC, temp) = 0
DO

temp := temp + 1;
OD;
DEST := temp;

FI;

Flags Affected

The ZF flag is set to 1 if the source operand is 0; otherwise, the ZF flag is cleared. The CF, OF, SF, AF, and PF flags 
are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F BC /r BSF r16, r/m16 RM Valid Valid Bit scan forward on r/m16.

0F BC /r BSF r32, r/m32 RM Valid Valid Bit scan forward on r/m32.

REX.W + 0F BC /r BSF r64, r/m64 RM Valid N.E. Bit scan forward on r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A

1. On some older processors, use of a 32-bit operand size may clear the upper 32 bits of a 64-bit destination while leaving the lower 
32 bits unmodified.
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Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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BSR—Bit Scan Reverse

Instruction Operand Encoding

Description

Searches the source operand (second operand) for the most significant set bit (1 bit). If a most significant 1 bit is 
found, its bit index is stored in the destination operand (first operand). The source operand can be a register or a 
memory location; the destination operand is a register. The bit index is an unsigned offset from bit 0 of the source 
operand. If the content source operand is zero, the destination operand is unmodified.1

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

IF SRC = 0
THEN

ZF := 1;
DEST is undefined;

ELSE
ZF := 0;
temp := OperandSize – 1;
WHILE Bit(SRC, temp) = 0
DO

temp := temp - 1;
OD;
DEST := temp;

FI;

Flags Affected

The ZF flag is set to 1 if the source operand is 0; otherwise, the ZF flag is cleared. The CF, OF, SF, AF, and PF flags 
are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F BD /r BSR r16, r/m16 RM Valid Valid Bit scan reverse on r/m16.

0F BD /r BSR r32, r/m32 RM Valid Valid Bit scan reverse on r/m32.

REX.W + 0F BD /r BSR r64, r/m64 RM Valid N.E. Bit scan reverse on r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A

1. On some older processors, use of a 32-bit operand size may clear the upper 32 bits of a 64-bit destination while leaving the lower 
32 bits unmodified.
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Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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BSWAP—Byte Swap Vol. 2A 3-129

BSWAP—Byte Swap

Instruction Operand Encoding

Description

Reverses the byte order of a 32-bit or 64-bit (destination) register. This instruction is provided for converting little-
endian values to big-endian format and vice versa. To swap bytes in a word value (16-bit register), use the XCHG 
instruction. When the BSWAP instruction references a 16-bit register, the result is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.B permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

IA-32 Architecture Legacy Compatibility

The BSWAP instruction is not supported on IA-32 processors earlier than the Intel486™ processor family. For 
compatibility with this instruction, software should include functionally equivalent code for execution on Intel 
processors earlier than the Intel486 processor family.

Operation

TEMP := DEST
IF 64-bit mode AND OperandSize = 64

THEN
DEST[7:0] := TEMP[63:56];
DEST[15:8] := TEMP[55:48];
DEST[23:16] := TEMP[47:40];
DEST[31:24] := TEMP[39:32];
DEST[39:32] := TEMP[31:24];
DEST[47:40] := TEMP[23:16];
DEST[55:48] := TEMP[15:8];
DEST[63:56] := TEMP[7:0];

ELSE
DEST[7:0] := TEMP[31:24];
DEST[15:8] := TEMP[23:16];
DEST[23:16] := TEMP[15:8];
DEST[31:24] := TEMP[7:0];

FI;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F C8+rd BSWAP r32 O Valid* Valid Reverses the byte order of a 32-bit register.

REX.W + 0F C8+rd BSWAP r64 O Valid N.E. Reverses the byte order of a 64-bit register.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

O opcode + rd (r, w) N/A N/A N/A



BT—Bit Test

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by 
the bit offset (specified by the second operand) and stores the value of the bit in the CF flag. The bit base operand 
can be a register or a memory location; the bit offset operand can be a register or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset 

operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit 
mode). 

• If the bit base operand specifies a memory location, the operand represents the address of the byte in memory 
that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position that can be 
referenced by the offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 1-11. 

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combina-
tion with the displacement field of the memory operand. In this case, the low-order 3 or 5 bits (3 for 16-bit oper-
ands, 5 for 32-bit operands) of the immediate bit offset are stored in the immediate bit offset field, and the high-
order bits are shifted and combined with the byte displacement in the addressing mode by the assembler. The 
processor will ignore the high order bits if they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the memory address for a 32-bit 
operand size, using by the following relationship:

Effective Address + (4 ∗ (BitOffset DIV 32))

Or, it may access 2 bytes starting from the memory address for a 16-bit operand, using this relationship:

Effective Address + (2 ∗ (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given bit. When using this bit 
addressing mechanism, software should avoid referencing areas of memory close to address space holes. In partic-
ular, it should avoid references to memory-mapped I/O registers. Instead, software should use the MOV instruc-
tions to load from or store to these addresses, and use the register form of these instructions to manipulate the 
data.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bit oper-
ands. See the summary chart at the beginning of this section for encoding data and limits.

Operation

CF := Bit(BitBase, BitOffset);

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F A3 /r BT r/m16, r16 MR Valid Valid Store selected bit in CF flag.

0F A3 /r BT r/m32, r32 MR Valid Valid Store selected bit in CF flag.

REX.W + 0F A3 /r BT r/m64, r64 MR Valid N.E. Store selected bit in CF flag.

0F BA /4 ib BT r/m16, imm8 MI Valid Valid Store selected bit in CF flag.

0F BA /4 ib BT r/m32, imm8 MI Valid Valid Store selected bit in CF flag.

REX.W + 0F BA /4 ib BT r/m64, imm8 MI Valid N.E. Store selected bit in CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r) ModRM:reg (r) N/A N/A

MI ModRM:r/m (r) imm8 N/A N/A
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Flags Affected

The CF flag contains the value of the selected bit. The ZF flag is unaffected. The OF, SF, AF, and PF flags are 
undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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BTC—Bit Test and Complement

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by 
the bit offset operand (second operand), stores the value of the bit in the CF flag, and complements the selected 
bit in the bit string. The bit base operand can be a register or a memory location; the bit offset operand can be a 
register or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset 

operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit 
mode). This allows any bit position to be selected. 

• If the bit base operand specifies a memory location, the operand represents the address of the byte in memory 
that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position that can be 
referenced by the offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 1-11. 

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combina-
tion with the displacement field of the memory operand. See “BT—Bit Test” in this chapter for more information on 
this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.B permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

CF := Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) := NOT Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The ZF flag is unaffected. The OF, SF, 
AF, and PF flags are undefined.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F BB /r BTC r/m16, r16 MR Valid Valid Store selected bit in CF flag and complement.

0F BB /r BTC r/m32, r32 MR Valid Valid Store selected bit in CF flag and complement.

REX.W + 0F BB /r BTC r/m64, r64 MR Valid N.E. Store selected bit in CF flag and complement.

0F BA /7 ib BTC r/m16, imm8 MI Valid Valid Store selected bit in CF flag and complement.

0F BA /7 ib BTC r/m32, imm8 MI Valid Valid Store selected bit in CF flag and complement.

REX.W + 0F BA /7 ib BTC r/m64, imm8 MI Valid N.E. Store selected bit in CF flag and complement.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A

MI ModRM:r/m (r, w) imm8 N/A N/A
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Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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BTR—Bit Test and Reset

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by 
the bit offset operand (second operand), stores the value of the bit in the CF flag, and clears the selected bit in the 
bit string to 0. The bit base operand can be a register or a memory location; the bit offset operand can be a register 
or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset 

operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit 
mode). This allows any bit position to be selected. 

• If the bit base operand specifies a memory location, the operand represents the address of the byte in memory 
that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position that can be 
referenced by the offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 1-11. 

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combina-
tion with the displacement field of the memory operand. See “BT—Bit Test” in this chapter for more information on 
this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

CF := Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) := 0;

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The ZF flag is unaffected. The OF, SF, AF, and 
PF flags are undefined.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F B3 /r BTR r/m16, r16 MR Valid Valid Store selected bit in CF flag and clear.

0F B3 /r BTR r/m32, r32 MR Valid Valid Store selected bit in CF flag and clear.

REX.W + 0F B3 /r BTR r/m64, r64 MR Valid N.E. Store selected bit in CF flag and clear.

0F BA /6 ib BTR r/m16, imm8 MI Valid Valid Store selected bit in CF flag and clear.

0F BA /6 ib BTR r/m32, imm8 MI Valid Valid Store selected bit in CF flag and clear.

REX.W + 0F BA /6 ib BTR r/m64, imm8 MI Valid N.E. Store selected bit in CF flag and clear.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A

MI ModRM:r/m (r, w) imm8 N/A N/A
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Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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BTS—Bit Test and Set

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by 
the bit offset operand (second operand), stores the value of the bit in the CF flag, and sets the selected bit in the 
bit string to 1. The bit base operand can be a register or a memory location; the bit offset operand can be a register 
or an immediate value: 
• If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset 

operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit 
mode). This allows any bit position to be selected.

• If the bit base operand specifies a memory location, the operand represents the address of the byte in memory 
that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position that can be 
referenced by the offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 1-11. 

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combina-
tion with the displacement field of the memory operand. See “BT—Bit Test” in this chapter for more information on 
this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

CF := Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) := 1;

Flags Affected

The CF flag contains the value of the selected bit before it is set. The ZF flag is unaffected. The OF, SF, AF, and PF 
flags are undefined.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F AB /r BTS r/m16, r16 MR Valid Valid Store selected bit in CF flag and set.

0F AB /r BTS r/m32, r32 MR Valid Valid Store selected bit in CF flag and set.

REX.W + 0F AB /r BTS r/m64, r64 MR Valid N.E. Store selected bit in CF flag and set.

0F BA /5 ib BTS r/m16, imm8 MI Valid Valid Store selected bit in CF flag and set.

0F BA /5 ib BTS r/m32, imm8 MI Valid Valid Store selected bit in CF flag and set.

REX.W + 0F BA /5 ib BTS r/m64, imm8 MI Valid N.E. Store selected bit in CF flag and set.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A

MI ModRM:r/m (r, w) imm8 N/A N/A
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Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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BZHI—Zero High Bits Starting with Specified Bit Position 

Instruction Operand Encoding

Description
BZHI copies the bits of the first source operand (the second operand) into the destination operand (the first 
operand) and clears the higher bits in the destination according to the INDEX value specified by the second source 
operand (the third operand). The INDEX is specified by bits 7:0 of the second source operand. The INDEX value is 
saturated at the value of OperandSize -1. CF is set, if the number contained in the 8 low bits of the third operand 
is greater than OperandSize -1.
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

N := SRC2[7:0]
DEST := SRC1
IF (N < OperandSize)

DEST[OperandSize-1:N] := 0
FI
IF (N > OperandSize - 1)

CF := 1
ELSE

CF := 0
FI

Flags Affected
ZF and SF flags are updated based on the result. CF flag is set as specified in the Operation section. OF flag is 
cleared. AF and PF flags are undefined.

Intel C/C++ Compiler Intrinsic Equivalent

BZHI unsigned __int32 _bzhi_u32(unsigned __int32 src, unsigned __int32 index);
BZHI unsigned __int64 _bzhi_u64(unsigned __int64 src, unsigned __int32 index);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-29, “Type 13 Class Exception Conditions.”

Opcode/Instruction Op/ 
En

64/32-
bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.LZ.0F38.W0 F5 /r
BZHI r32a, r/m32, r32b

RMV V/V BMI2 Zero bits in r/m32 starting with the position in r32b, write result to 
r32a.

VEX.LZ.0F38.W1 F5 /r
BZHI r64a, r/m64, r64b

RMV V/N.E. BMI2 Zero bits in r/m64 starting with the position in r64b, write result to 
r64a.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMV ModRM:reg (w) ModRM:r/m (r) VEX.vvvv (r) N/A



CALL—Call Procedure

Instruction Operand Encoding

Description

Saves procedure linking information on the stack and branches to the called procedure specified using the target 
operand. The target operand specifies the address of the first instruction in the called procedure. The operand can 
be an immediate value, a general-purpose register, or a memory location.

This instruction can be used to execute four types of calls:
• Near Call —  A call to a procedure in the current code segment (the segment currently pointed to by the CS 

register), sometimes referred to as an intra-segment call.
• Far Call — A call to a procedure located in a different segment than the current code segment, sometimes 

referred to as an inter-segment call.
• Inter-privilege-level far call — A far call to a procedure in a segment at a different privilege level than that 

of the currently executing program or procedure.
• Task switch — A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in protected mode. See 
“Calling Procedures Using Call and RET” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, for additional information on near, far, and inter-privilege-level calls. See Chapter 9, “Task 
Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for information 
on performing task switches with the CALL instruction.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

E8 cw CALL rel16 D N.S. Valid Call near, relative, displacement relative to next 
instruction.

E8 cd CALL rel32 D Valid Valid Call near, relative, displacement relative to next 
instruction. 32-bit displacement sign extended to 
64-bits in 64-bit mode.

FF /2 CALL r/m16 M N.E. Valid Call near, absolute indirect, address given in r/m16. 

FF /2 CALL r/m32 M N.E. Valid Call near, absolute indirect, address given in r/m32. 

FF /2 CALL r/m64 M Valid N.E. Call near, absolute indirect, address given in r/m64.

9A cd CALL ptr16:16 D Invalid Valid Call far, absolute, address given in operand.

9A cp CALL ptr16:32 D Invalid Valid Call far, absolute, address given in operand.

FF /3 CALL m16:16 M Valid Valid Call far, absolute indirect address given in m16:16.

In 32-bit mode: if selector points to a gate, then RIP 
= 32-bit zero extended displacement taken from 
gate; else RIP = zero extended 16-bit offset from 
far pointer referenced in the instruction.

FF /3 CALL m16:32 M Valid Valid In 64-bit mode: If selector points to a gate, then RIP 
= 64-bit displacement taken from gate; else RIP = 
zero extended 32-bit offset from far pointer 
referenced in the instruction. 

REX.W FF /3 CALL m16:64 M Valid N.E. In 64-bit mode: If selector points to a gate, then RIP 
= 64-bit displacement taken from gate; else RIP = 
64-bit offset from far pointer referenced in the 
instruction. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset N/A N/A N/A

M ModRM:r/m (r) N/A N/A N/A
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Near Call. When executing a near call, the processor pushes the value of the EIP register (which contains the offset 
of the instruction following the CALL instruction) on the stack (for use later as a return-instruction pointer). The 
processor then branches to the address in the current code segment specified by the target operand. The target 
operand specifies either an absolute offset in the code segment (an offset from the base of the code segment) or a 
relative offset (a signed displacement relative to the current value of the instruction pointer in the EIP register; this 
value points to the instruction following the CALL instruction). The CS register is not changed on near calls.

For a near call absolute, an absolute offset is specified indirectly in a general-purpose register or a memory location 
(r/m16, r/m32, or r/m64). The operand-size attribute determines the size of the target operand (16, 32 or 64 
bits). When in 64-bit mode, the operand size for near call (and all near branches) is forced to 64-bits. Absolute 
offsets are loaded directly into the EIP(RIP) register. If the operand size attribute is 16, the upper two bytes of the 
EIP register are cleared, resulting in a maximum instruction pointer size of 16 bits. When accessing an absolute 
offset indirectly using the stack pointer [ESP] as the base register, the base value used is the value of the ESP 
before the instruction executes.

A relative offset (rel16 or rel32) is generally specified as a label in assembly code. But at the machine code level, it 
is encoded as a signed, 16- or 32-bit immediate value. This value is added to the value in the EIP(RIP) register. In 
64-bit mode the relative offset is always a 32-bit immediate value which is sign extended to 64-bits before it is 
added to the value in the RIP register for the target calculation. As with absolute offsets, the operand-size attribute 
determines the size of the target operand (16, 32, or 64 bits). In 64-bit mode the target operand will always be 64-
bits because the operand size is forced to 64-bits for near branches.

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real- address or virtual-8086 mode, the 
processor pushes the current value of both the CS and EIP registers on the stack for use as a return-instruction 
pointer. The processor then performs a “far branch” to the code segment and offset specified with the target 
operand for the called procedure. The target operand specifies an absolute far address either directly with a pointer 
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With the pointer method, the 
segment and offset of the called procedure is encoded in the instruction using a 4-byte (16-bit operand size) or 6-
byte (32-bit operand size) far address immediate. With the indirect method, the target operand specifies a memory 
location that contains a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address. The operand-size 
attribute determines the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into 
the CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register are cleared.

Far Calls in Protected Mode. When the processor is operating in protected mode, the CALL instruction can be used to 
perform the following types of far calls:
• Far call to the same privilege level
• Far call to a different privilege level (inter-privilege level call)
• Task switch (far call to another task)

In protected mode, the processor always uses the segment selector part of the far address to access the corre-
sponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate, task gate, or TSS) and access 
rights determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is 
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming, 
a general-protection exception is generated.) A far call to the same privilege level in protected mode is very similar 
to one carried out in real-address or virtual-8086 mode. The target operand specifies an absolute far address either 
directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The 
operand- size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code segment 
selector and its descriptor are loaded into CS register; the offset from the instruction is loaded into the EIP register. 

A call gate (described in the next paragraph) can also be used to perform a far call to a code segment at the same 
privilege level. Using this mechanism provides an extra level of indirection and is the preferred method of making 
calls between 16-bit and 32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed 
through a call gate. The segment selector specified by the target operand identifies the call gate. The target 
operand can specify the call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indirectly 
with a memory location (m16:16 or m16:32). The processor obtains the segment selector for the new code 
segment and the new instruction pointer (offset) from the call gate descriptor. (The offset from the target operand 
is ignored when a call gate is used.) 
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On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The 
segment selector for the new stack segment is specified in the TSS for the currently running task. The branch to 
the new code segment occurs after the stack switch. (Note that when using a call gate to perform a far call to a 
segment at the same privilege level, no stack switch occurs.) On the new stack, the processor pushes the segment 
selector and stack pointer for the calling procedure’s stack, an optional set of parameters from the calling proce-
dures stack, and the segment selector and instruction pointer for the calling procedure’s code segment. (A value in 
the call gate descriptor determines how many parameters to copy to the new stack.) Finally, the processor 
branches to the address of the procedure being called within the new code segment.

Executing a task switch with the CALL instruction is similar to executing a call through a call gate. The target 
operand specifies the segment selector of the task gate for the new task activated by the switch (the offset in the 
target operand is ignored). The task gate in turn points to the TSS for the new task, which contains the segment 
selectors for the task’s code and stack segments. Note that the TSS also contains the EIP value for the next instruc-
tion that was to be executed before the calling task was suspended. This instruction pointer value is loaded into the 
EIP register to re-start the calling task. 

The CALL instruction can also specify the segment selector of the TSS directly, which eliminates the indirection of 
the task gate. See Chapter 9, “Task Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A, for information on the mechanics of a task switch.

When you execute at task switch with a CALL instruction, the nested task flag (NT) is set in the EFLAGS register 
and the new TSS’s previous task link field is loaded with the old task’s TSS selector. Code is expected to suspend 
this nested task by executing an IRET instruction which, because the NT flag is set, automatically uses the previous 
task link to return to the calling task. (See “Task Linking” in Chapter 9 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A, for information on nested tasks.) Switching tasks with the CALL instruc-
tion differs in this regard from JMP instruction. JMP does not set the NT flag and therefore does not expect an IRET 
instruction to suspend the task.

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code segments, use a call gate. If 
the far call is from a 32-bit code segment to a 16-bit code segment, the call should be made from the first 64 
KBytes of the 32-bit code segment. This is because the operand-size attribute of the instruction is set to 16, so only 
a 16-bit return address offset can be saved. Also, the call should be made using a 16-bit call gate so that 16-bit 
values can be pushed on the stack. See Chapter 23, “Mixing 16-Bit and 32-Bit Code,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3B, for more information.

Far Calls in Compatibility Mode. When the processor is operating in compatibility mode, the CALL instruction can be 
used to perform the following types of far calls:
• Far call to the same privilege level, remaining in compatibility mode
• Far call to the same privilege level, transitioning to 64-bit mode
• Far call to a different privilege level (inter-privilege level call), transitioning to 64-bit mode

Note that a CALL instruction can not be used to cause a task switch in compatibility mode since task switches are 
not supported in IA-32e mode.

In compatibility mode, the processor always uses the segment selector part of the far address to access the corre-
sponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate) and access rights determine 
the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is 
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming, 
a general-protection exception is generated.) A far call to the same privilege level in compatibility mode is very 
similar to one carried out in protected mode. The target operand specifies an absolute far address either directly 
with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-size 
attribute determines the size of the offset (16 or 32 bits) in the far address. The new code segment selector and its 
descriptor are loaded into CS register and the offset from the instruction is loaded into the EIP register. The differ-
ence is that 64-bit mode may be entered. This specified by the L bit in the new code segment descriptor.

Note that a 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a code 
segment at the same privilege level. However, using this mechanism requires that the target code segment 
descriptor have the L bit set, causing an entry to 64-bit mode.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed 
through a 64-bit call gate. The segment selector specified by the target operand identifies the call gate. The target 
CALL—Call Procedure Vol. 2A 3-141



operand can specify the call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indirectly 
with a memory location (m16:16 or m16:32). The processor obtains the segment selector for the new code 
segment and the new instruction pointer (offset) from the 16-byte call gate descriptor. (The offset from the target 
operand is ignored when a call gate is used.) 

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The 
segment selector for the new stack segment is set to NULL. The new stack pointer is specified in the TSS for the 
currently running task. The branch to the new code segment occurs after the stack switch. (Note that when using 
a call gate to perform a far call to a segment at the same privilege level, an implicit stack switch occurs as a result 
of entering 64-bit mode. The SS selector is unchanged, but stack segment accesses use a segment base of 0x0, 
the limit is ignored, and the default stack size is 64-bits. The full value of RSP is used for the offset, of which the 
upper 32-bits are undefined.) On the new stack, the processor pushes the segment selector and stack pointer for 
the calling procedure’s stack and the segment selector and instruction pointer for the calling procedure’s code 
segment. (Parameter copy is not supported in IA-32e mode.) Finally, the processor branches to the address of the 
procedure being called within the new code segment.

Near/(Far) Calls in 64-bit Mode. When the processor is operating in 64-bit mode, the CALL instruction can be used to 
perform the following types of far calls:
• Far call to the same privilege level, transitioning to compatibility mode
• Far call to the same privilege level, remaining in 64-bit mode
• Far call to a different privilege level (inter-privilege level call), remaining in 64-bit mode

Note that in this mode the CALL instruction can not be used to cause a task switch in 64-bit mode since task 
switches are not supported in IA-32e mode.

In 64-bit mode, the processor always uses the segment selector part of the far address to access the corresponding 
descriptor in the GDT or LDT. The descriptor type (code segment, call gate) and access rights determine the type 
of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is 
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming, 
a general-protection exception is generated.) A far call to the same privilege level in 64-bit mode is very similar to 
one carried out in compatibility mode. The target operand specifies an absolute far address indirectly with a 
memory location (m16:16, m16:32 or m16:64). The form of CALL with a direct specification of absolute far 
address is not defined in 64-bit mode. The operand-size attribute determines the size of the offset (16, 32, or 64 
bits) in the far address. The new code segment selector and its descriptor are loaded into the CS register; the offset 
from the instruction is loaded into the EIP register. The new code segment may specify entry either into compati-
bility or 64-bit mode, based on the L bit value.

A 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a code segment at the 
same privilege level. However, using this mechanism requires that the target code segment descriptor have the L 
bit set.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed 
through a 64-bit call gate. The segment selector specified by the target operand identifies the call gate. The target 
operand can only specify the call gate segment selector indirectly with a memory location (m16:16, m16:32 or 
m16:64). The processor obtains the segment selector for the new code segment and the new instruction pointer 
(offset) from the 16-byte call gate descriptor. (The offset from the target operand is ignored when a call gate is 
used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The 
segment selector for the new stack segment is set to NULL. The new stack pointer is specified in the TSS for the 
currently running task. The branch to the new code segment occurs after the stack switch. 

Note that when using a call gate to perform a far call to a segment at the same privilege level, an implicit stack 
switch occurs as a result of entering 64-bit mode. The SS selector is unchanged, but stack segment accesses use 
a segment base of 0x0, the limit is ignored, and the default stack size is 64-bits. (The full value of RSP is used for 
the offset.) On the new stack, the processor pushes the segment selector and stack pointer for the calling proce-
dure’s stack and the segment selector and instruction pointer for the calling procedure’s code segment. (Parameter 
copy is not supported in IA-32e mode.) Finally, the processor branches to the address of the procedure being called 
within the new code segment.
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Refer to Chapter 6, “Procedure Calls, Interrupts, and Exceptions‚” and Chapter 18, “Control-flow Enforcement 
Technology (CET)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for CET 
details.

Instruction ordering. Instructions following a far call may be fetched from memory before earlier instructions 
complete execution, but they will not execute (even speculatively) until all instructions prior to the far call have 
completed execution (the later instructions may execute before data stored by the earlier instructions have 
become globally visible).

Instructions sequentially following a near indirect CALL instruction (i.e., those not at the target) may be executed 
speculatively. If software needs to prevent this (e.g., in order to prevent a speculative execution side channel), 
then an LFENCE instruction opcode can be placed after the near indirect CALL in order to block speculative execu-
tion.

Operation

IF near call
THEN IF near relative call

THEN 
IF OperandSize = 64

THEN
tempDEST := SignExtend(DEST); (* DEST is rel32 *) 
tempRIP := RIP + tempDEST;
IF stack not large enough for a 8-byte return address

THEN #SS(0); FI;
Push(RIP);
IF ShadowStackEnabled(CPL) AND DEST != 0

ShadowStackPush8B(RIP);
FI;
RIP := tempRIP;

FI;
IF OperandSize = 32

THEN
tempEIP := EIP + DEST; (* DEST is rel32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(EIP);
IF ShadowStackEnabled(CPL) AND DEST != 0

ShadowStackPush4B(EIP);
FI;
EIP := tempEIP;

FI;
IF OperandSize = 16

THEN
tempEIP := (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address 

THEN #SS(0); FI;
Push(IP);
IF ShadowStackEnabled(CPL) AND DEST != 0

(* IP is zero extended and pushed as a 32 bit value on shadow stack *)
ShadowStackPush4B(IP);

FI;
EIP := tempEIP;

FI;
ELSE (* Near absolute call *)
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IF OperandSize = 64
THEN

tempRIP := DEST; (* DEST is r/m64 *)
IF stack not large enough for a 8-byte return address 

THEN #SS(0); FI;
Push(RIP); 
IF ShadowStackEnabled(CPL)

ShadowStackPush8B(RIP);
FI;
RIP := tempRIP;

FI;
IF OperandSize = 32

THEN
tempEIP := DEST; (* DEST is r/m32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address 

THEN #SS(0); FI;
Push(EIP); 
IF ShadowStackEnabled(CPL)

ShadowStackPush4B(EIP);
FI;
EIP := tempEIP;

FI;
IF OperandSize = 16

THEN
tempEIP := DEST AND 0000FFFFH; (* DEST is r/m16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address 

THEN #SS(0); FI;
Push(IP);
IF ShadowStackEnabled(CPL)

(* IP is zero extended and pushed as a 32 bit value on shadow stack *)
ShadowStackPush4B(IP);

FI;
EIP := tempEIP;

FI;
FI;rel/abs
IF (Call near indirect, absolute indirect)

IF EndbranchEnabledAndNotSuppressed(CPL)
IF CPL = 3

THEN
IF ( no 3EH prefix OR IA32_U_CET.NO_TRACK_EN == 0 )

THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH

FI;
ELSE

IF ( no 3EH prefix OR IA32_S_CET.NO_TRACK_EN == 0 )
THEN

IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
FI;

FI;
FI;

FI;
FI; near
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IF far call and (PE = 0 or (PE = 1 and VM = 1)) (* Real-address or virtual-8086 mode *)
THEN

IF OperandSize = 32
THEN

IF stack not large enough for a 6-byte return address 
THEN #SS(0); FI;

IF DEST[31:16] is not zero THEN #GP(0); FI;
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS := DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP := DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address 

THEN #SS(0); FI;
Push(CS);
Push(IP);
CS := DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP := DEST[15:0]; (* DEST is ptr16:16 or [m16:16]; clear upper 16 bits *)

FI;
FI;

IF far call and (PE = 1 and VM = 0) (* Protected mode or IA-32e Mode, not virtual-8086 mode*)
THEN

IF segment selector in target operand NULL 
THEN #GP(0); FI;

IF segment selector index not within descriptor table limits
THEN #GP(new code segment selector); FI;

Read type and access rights of selected segment descriptor;
IF IA32_EFER.LMA = 0

THEN
IF segment type is not a conforming or nonconforming code segment, call 
gate, task gate, or TSS 

THEN #GP(segment selector); FI;
ELSE 

IF segment type is not a conforming or nonconforming code segment or 
64-bit call gate, 

THEN #GP(segment selector); FI;
FI;
Depending on type and access rights:

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

FI;

CONFORMING-CODE-SEGMENT:
IF L bit = 1 and D bit = 1 and IA32_EFER.LMA = 1 

THEN GP(new code segment selector); FI;
IF DPL > CPL 

THEN #GP(new code segment selector); FI;
IF segment not present 

THEN #NP(new code segment selector); FI;
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IF stack not large enough for return address
THEN #SS(0); FI;

tempEIP := DEST(Offset);
IF target mode = Compatibility mode

    THEN tempEIP := tempEIP AND 00000000_FFFFFFFFH; FI;
IF OperandSize = 16

THEN
tempEIP := tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)

IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code segment limit) 
THEN #GP(0); FI;

IF tempEIP is non-canonical 
THEN #GP(0); FI;

IF ShadowStackEnabled(CPL)
IF OperandSize = 32

THEN
tempPushLIP = CSBASE + EIP;

ELSE
IF OperandSize = 16

THEN
tempPushLIP = CSBASE + IP;

ELSE (* OperandSize = 64 *)
tempPushLIP = RIP;

FI;
FI;
tempPushCS = CS;

FI;
IF OperandSize = 32

THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS := DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
EIP := tempEIP;

ELSE
IF OperandSize = 16

THEN
Push(CS);
Push(IP);
CS := DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
EIP := tempEIP;

ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS := DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
RIP := tempEIP;

FI;
FI;
IF ShadowStackEnabled(CPL)

IF (IA32_EFER.LMA and DEST(CodeSegmentSelector).L) = 0
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(* If target is legacy or compatibility mode then the SSP must be in low 4GB *)
IF (SSP & 0xFFFFFFFF00000000 != 0)

THEN #GP(0); FI;
FI;
(* align to 8 byte boundary if not already aligned *)
tempSSP = SSP;
Shadow_stack_store 4 bytes of 0 to (SSP – 4)
SSP = SSP & 0xFFFFFFFFFFFFFFF8H
ShadowStackPush8B(tempPushCS); (* Padded with 48 high-order bits of 0 *)
ShadowStackPush8B(tempPushLIP); (* Padded with 32 high-order bits of 0 for 32 bit LIP*)
ShadowStackPush8B(tempSSP);

FI;
IF EndbranchEnabled(CPL)

IF CPL = 3
THEN

IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_U_CET.SUPPRESS = 0

ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0

FI;
FI;

END;

NONCONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1 

THEN GP(new code segment selector); FI;
IF (RPL > CPL) or (DPL ≠ CPL) 

THEN #GP(new code segment selector); FI;
IF segment not present 

THEN #NP(new code segment selector); FI;
IF stack not large enough for return address 

THEN #SS(0); FI;
tempEIP := DEST(Offset);
IF target mode = Compatibility mode

    THEN tempEIP := tempEIP AND 00000000_FFFFFFFFH; FI;
IF OperandSize = 16

THEN tempEIP := tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)
IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code segment limit)

THEN #GP(0); FI;
IF tempEIP is non-canonical 

THEN #GP(0); FI;
IF ShadowStackEnabled(CPL)

IF IA32_EFER.LMA & CS.L
        tempPushLIP = RIP
    ELSE
        tempPushLIP = CSBASE + EIP;
    FI;

tempPushCS = CS;
FI;
IF OperandSize = 32

THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
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CS := DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
EIP := tempEIP;

ELSE
IF OperandSize = 16

THEN
Push(CS);
Push(IP);
CS := DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
EIP := tempEIP;

ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS := DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL) := CPL;
RIP := tempEIP;

FI;
FI;
IF ShadowStackEnabled(CPL)

IF (IA32_EFER.LMA and DEST(CodeSegmentSelector).L) = 0
(* If target is legacy or compatibility mode then the SSP must be in low 4GB *)
IF (SSP & 0xFFFFFFFF00000000 != 0)

THEN #GP(0); FI;
FI;

(* align to 8 byte boundary if not already aligned *)
tempSSP = SSP;
Shadow_stack_store 4 bytes of 0 to (SSP – 4)
SSP = SSP & 0xFFFFFFFFFFFFFFF8H
ShadowStackPush8B(tempPushCS); (* Padded with 48 high-order 0 bits *)
ShadowStackPush8B(tempPushLIP); (* Padded 32 high-order bits of 0 for 32 bit LIP*)
ShadowStackPush8B(tempSSP);
FI;
IF EndbranchEnabled(CPL)

IF CPL = 3
THEN

IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_U_CET.SUPPRESS = 0

ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0

FI;
FI;

END;

CALL-GATE:
IF call gate (DPL < CPL) or (RPL > DPL)

THEN #GP(call-gate selector); FI;
IF call gate not present 

THEN #NP(call-gate selector); FI;
IF call-gate code-segment selector is NULL
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THEN #GP(0); FI;
IF call-gate code-segment selector index is outside descriptor table limits

THEN #GP(call-gate code-segment selector); FI;
Read call-gate code-segment descriptor;
IF call-gate code-segment descriptor does not indicate a code segment
or call-gate code-segment descriptor DPL > CPL 

THEN #GP(call-gate code-segment selector); FI;
IF IA32_EFER.LMA = 1 AND (call-gate code-segment descriptor is 
not a 64-bit code segment or call-gate code-segment descriptor has both L-bit and D-bit set)

THEN #GP(call-gate code-segment selector); FI;
IF call-gate code segment not present 

THEN #NP(call-gate code-segment selector); FI;
IF call-gate code segment is non-conforming and DPL < CPL

THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;

FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit

THEN 
TSSstackAddress := (new code-segment DPL ∗ 8) + 4;
IF (TSSstackAddress + 5) > current TSS limit

THEN #TS(current TSS selector); FI;
NewSS := 2 bytes loaded from (TSS base + TSSstackAddress + 4);
NewESP := 4 bytes loaded from (TSS base + TSSstackAddress);

ELSE 
IF current TSS is 16-bit

THEN
TSSstackAddress := (new code-segment DPL ∗ 4) + 2
IF (TSSstackAddress + 3) > current TSS limit

THEN #TS(current TSS selector); FI;
NewSS := 2 bytes loaded from (TSS base + TSSstackAddress + 2);
NewESP := 2 bytes loaded from (TSS base + TSSstackAddress);

ELSE (* current TSS is 64-bit *)
TSSstackAddress := (new code-segment DPL ∗ 8) + 4;
IF (TSSstackAddress + 7) > current TSS limit

THEN #TS(current TSS selector); FI;
NewSS := new code-segment DPL; (* NULL selector with RPL = new CPL *)
NewRSP := 8 bytes loaded from (current TSS base + TSSstackAddress);

FI;
FI;
IF IA32_EFER.LMA = 0 and NewSS is NULL

THEN #TS(NewSS); FI;
Read new stack-segment descriptor; 
IF IA32_EFER.LMA = 0 and (NewSS RPL ≠ new code-segment DPL
or new stack-segment DPL ≠ new code-segment DPL or new stack segment is not a
writable data segment)

THEN #TS(NewSS); FI
IF IA32_EFER.LMA = 0 and new stack segment not present 

THEN #SS(NewSS); FI;
IF CallGateSize = 32

THEN
IF new stack does not have room for parameters plus 16 bytes
CALL—Call Procedure Vol. 2A 3-149



THEN #SS(NewSS); FI;
IF CallGate(InstructionPointer) not within new code-segment limit 

THEN #GP(0); FI;
SS := newSS; (* Segment descriptor information also loaded *)
ESP := newESP; 
CS:EIP := CallGate(CS:InstructionPointer); 
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp := parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE 
IF CallGateSize = 16

THEN
IF new stack does not have room for parameters plus 8 bytes

THEN #SS(NewSS); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not in new code-segment limit

THEN #GP(0); FI;
SS := newSS; (* Segment descriptor information also loaded *)
ESP := newESP; 
CS:IP := CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp := parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64 *)
IF pushing 32 bytes on the stack would use a non-canonical address

THEN #SS(NewSS); FI;
IF (CallGate(InstructionPointer) is non-canonical) 

THEN #GP(0); FI;
SS := NewSS; (* NewSS is NULL)
RSP := NewESP; 
CS:IP := CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

FI;
FI;
IF ShadowStackEnabled(CPL) AND CPL = 3

THEN
IF IA32_EFER.LMA = 0

THEN IA32_PL3_SSP := SSP;
ELSE (* adjust so bits 63:N get the value of bit N–1, where N is the CPU’s maximum linear-address width *)

IA32_PL3_SSP := LA_adjust(SSP);
FI;

FI;
CPL := CodeSegment(DPL)
CS(RPL) := CPL
IF ShadowStackEnabled(CPL)

oldSSP := SSP
SSP := IA32_PLi_SSP; (* where i is the CPL *)
IF SSP & 0x07 != 0 (* if SSP not aligned to 8 bytes then #GP *)

THEN #GP(0); FI;
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(* Token and CS:LIP:oldSSP pushed on shadow stack must be contained in a naturally aligned 32-byte region*)
IF (SSP & ~0x1F) != ((SSP – 24) & ~0x1F)

#GP(0); FI;
IF ((IA32_EFER.LMA and CS.L) = 0 AND SSP[63:32] != 0)

THEN #GP(0); FI;
expected_token_value = SSP (* busy bit - bit position 0 - must be clear *)
new_token_value = SSP | BUSY_BIT   (* Set the busy bit *)
IF shadow_stack_lock_cmpxchg8b(SSP, new_token_value, expected_token_value) != expected_token_value

THEN #GP(0); FI;
IF oldSS.DPL != 3

ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of 0 *)
ShadowStackPush8B(oldCSBASE+oldRIP); (* Padded with 32 high-order bits of 0 for 32 bit LIP*)
ShadowStackPush8B(oldSSP);

FI;
FI;
IF EndbranchEnabled (CPL)

IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0

FI;
END;

SAME-PRIVILEGE:
IF CallGateSize = 32

THEN
IF stack does not have room for 8 bytes

THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit 

THEN #GP(0); FI;
CS:EIP := CallGate(CS:EIP) (* Segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE 
If CallGateSize = 16

THEN
IF stack does not have room for 4 bytes

THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit 

THEN #GP(0); FI;
CS:IP := CallGate(CS:instruction pointer); 
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64)
IF pushing 16 bytes on the stack touches non-canonical addresses

THEN #SS(0); FI;
IF RIP non-canonical 

THEN #GP(0); FI;
CS:IP := CallGate(CS:instruction pointer); 
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)

FI;
FI;
CS(RPL) := CPL
IF ShadowStackEnabled(CPL)

(* Align to next 8 byte boundary *)
tempSSP = SSP;
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Shadow_stack_store 4 bytes of 0 to (SSP – 4)
SSP = SSP & 0xFFFFFFFFFFFFFFF8H;
(* push cs:lip:ssp on shadow stack *)
ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of 0 *)
ShadowStackPush8B(oldCSBASE + oldRIP); (* Padded with 32 high-order bits of 0 for 32 bit LIP*)
ShadowStackPush8B(tempSSP);

FI;
IF EndbranchEnabled (CPL)

IF CPL = 3
THEN

IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH;
IA32_U_CET.SUPPRESS = 0

ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH;
IA32_S_CET.SUPPRESS = 0

FI;
FI;

END;

TASK-GATE:
IF task gate DPL < CPL or RPL 

THEN #GP(task gate selector); FI;
IF task gate not present 

THEN #NP(task gate selector); FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits

THEN #GP(TSS selector); FI;
Access TSS descriptor in GDT;
IF descriptor is not a TSS segment

              THEN #GP(TSS selector); FI;
IF TSS descriptor specifies that the TSS is busy

              THEN #GP(TSS selector); FI;
IF TSS not present 

THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit 

THEN #GP(0); FI;
END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
or TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present 

THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit 

THEN #GP(0); FI;
END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.
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Protected Mode Exceptions
#GP(0) If the target offset in destination operand is beyond the new code segment limit.

If the segment selector in the destination operand is NULL.
If the code segment selector in the gate is NULL.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If target mode is compatibility mode and SSP is not in low 4GB.
If SSP in IA32_PLi_SSP (where i is the new CPL) is not 8 byte aligned.
If the token and the stack frame to be pushed on shadow stack are not contained in a naturally 
aligned 32-byte region of the shadow stack.
If “supervisor Shadow Stack” token on new shadow stack is marked busy.
If destination mode is 32-bit or compatibility mode, but SSP address in “supervisor shadow 
stack” token is beyond 4GB.
If SSP address in “supervisor shadow stack” token does not match SSP address in 
IA32_PLi_SSP (where i is the new CPL).

#GP(selector) If a code segment or gate or TSS selector index is outside descriptor table limits. 
If the segment descriptor pointed to by the segment selector in the destination operand is not 
for a conforming-code segment, nonconforming-code segment, call gate, task gate, or task 
state segment.
If the DPL for a nonconforming-code segment is not equal to the CPL or the RPL for the 
segment’s segment selector is greater than the CPL.
If the DPL for a conforming-code segment is greater than the CPL.
If the DPL from a call-gate, task-gate, or TSS segment descriptor is less than the CPL or than 
the RPL of the call-gate, task-gate, or TSS’s segment selector.
If the segment descriptor for a segment selector from a call gate does not indicate it is a code 
segment.
If the segment selector from a call gate is beyond the descriptor table limits.
If the DPL for a code-segment obtained from a call gate is greater than the CPL.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, parameters, or stack segment pointer onto the stack exceeds 
the bounds of the stack segment, when no stack switch occurs.
If a memory operand effective address is outside the SS segment limit.

#SS(selector) If pushing the return address, parameters, or stack segment pointer onto the stack exceeds 
the bounds of the stack segment, when a stack switch occurs.
If the SS register is being loaded as part of a stack switch and the segment pointed to is 
marked not present.
If stack segment does not have room for the return address, parameters, or stack segment 
pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, call gate, task gate, or TSS is not present.
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#TS(selector) If the new stack segment selector and ESP are beyond the end of the TSS.
If the new stack segment selector is NULL.
If the RPL of the new stack segment selector in the TSS is not equal to the DPL of the code 
segment being accessed.
If DPL of the stack segment descriptor for the new stack segment is not equal to the DPL of the 
code segment descriptor.
If the new stack segment is not a writable data segment.
If segment-selector index for stack segment is outside descriptor table limits. 

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the target offset is beyond the code segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the target offset is beyond the code segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
#GP(selector) If a memory address accessed by the selector is in non-canonical space.
#GP(0) If the target offset in the destination operand is non-canonical.

64-Bit Mode Exceptions
#GP(0) If a memory address is non-canonical.

If target offset in destination operand is non-canonical.
If the segment selector in the destination operand is NULL.
If the code segment selector in the 64-bit gate is NULL.
If target mode is compatibility mode and SSP is not in low 4GB.
If SSP in IA32_PLi_SSP (where i is the new CPL) is not 8 byte aligned.
If the token and the stack frame to be pushed on shadow stack are not contained in a naturally 
aligned 32-byte region of the shadow stack.
If “supervisor Shadow Stack” token on new shadow stack is marked busy.
If destination mode is 32-bit mode or compatibility mode, but SSP address in “super-visor 
shadow” stack token is beyond 4GB.
If SSP address in “supervisor shadow stack” token does not match SSP address in 
IA32_PLi_SSP (where i is the new CPL).
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#GP(selector) If code segment or 64-bit call gate is outside descriptor table limits. 
If code segment or 64-bit call gate overlaps non-canonical space. 
If the segment descriptor pointed to by the segment selector in the destination operand is not 
for a conforming-code segment, nonconforming-code segment, or 64-bit call gate.
If the segment descriptor pointed to by the segment selector in the destination operand is a 
code segment and has both the D-bit and the L- bit set.
If the DPL for a nonconforming-code segment is not equal to the CPL, or the RPL for the 
segment’s segment selector is greater than the CPL.
If the DPL for a conforming-code segment is greater than the CPL.
If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate.
If the upper type field of a 64-bit call gate is not 0x0.
If the segment selector from a 64-bit call gate is beyond the descriptor table limits.
If the DPL for a code-segment obtained from a 64-bit call gate is greater than the CPL.
If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the 
L-bit set and the D-bit clear.
If the segment descriptor for a segment selector from the 64-bit call gate does not indicate it 
is a code segment. 

#SS(0) If pushing the return offset or CS selector onto the stack exceeds the bounds of the stack 
segment when no stack switch occurs.
If a memory operand effective address is outside the SS segment limit.
If the stack address is in a non-canonical form.

#SS(selector) If pushing the old values of SS selector, stack pointer, EFLAGS, CS selector, offset, or error 
code onto the stack violates the canonical boundary when a stack switch occurs.

#NP(selector) If a code segment or 64-bit call gate is not present.
#TS(selector) If the load of the new RSP exceeds the limit of the TSS.
#UD (64-bit mode only) If a far call is direct to an absolute address in memory.

If the LOCK prefix is used.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert Doubleword to Quadword Vol. 2A 3-156

CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert Doubleword to 
Quadword

Instruction Operand Encoding

Description

Double the size of the source operand by means of sign extension. The CBW (convert byte to word) instruction 
copies the sign (bit 7) in the source operand into every bit in the AH register. The CWDE (convert word to double-
word) instruction copies the sign (bit 15) of the word in the AX register into the high 16 bits of the EAX register. 

CBW and CWDE reference the same opcode. The CBW instruction is intended for use when the operand-size attri-
bute is 16; CWDE is intended for use when the operand-size attribute is 32. Some assemblers may force the 
operand size. Others may treat these two mnemonics as synonyms (CBW/CWDE) and use the setting of the 
operand-size attribute to determine the size of values to be converted.

In 64-bit mode, the default operation size is the size of the destination register. Use of the REX.W prefix promotes 
this instruction (CDQE when promoted) to operate on 64-bit operands. In which case, CDQE copies the sign (bit 
31) of the doubleword in the EAX register into the high 32 bits of RAX.

Operation

IF OperandSize = 16 (* Instruction = CBW *)
THEN 

AX := SignExtend(AL);
ELSE IF (OperandSize = 32, Instruction = CWDE)

EAX := SignExtend(AX); FI;
ELSE (* 64-Bit Mode, OperandSize = 64, Instruction = CDQE*)

RAX := SignExtend(EAX);
FI;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

98 CBW ZO Valid Valid AX := sign-extend of AL.

98 CWDE ZO Valid Valid EAX := sign-extend of AX.

REX.W + 98 CDQE ZO Valid N.E. RAX := sign-extend of EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A



CLAC—Clear AC Flag in EFLAGS Register Vol. 2A 3-157

CLAC—Clear AC Flag in EFLAGS Register

Instruction Operand Encoding

Description
Clears the AC flag bit in EFLAGS register. This disables any alignment checking of user-mode data accesses. If the 
SMAP bit is set in the CR4 register, this disallows explicit supervisor-mode data accesses to user-mode pages.
This instruction's operation is the same in non-64-bit modes and 64-bit mode. Attempts to execute CLAC when 
CPL > 0 cause #UD.

Operation

EFLAGS.AC := 0;

Flags Affected
AC cleared. Other flags are unaffected.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

Virtual-8086 Mode Exceptions
#UD The CLAC instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 01 CA

CLAC

ZO V/V SMAP Clear the AC flag in the EFLAGS register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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CLC—Clear Carry Flag

Instruction Operand Encoding

Description

Clears the CF flag in the EFLAGS register. Operation is the same in all modes.

Operation

CF := 0;

Flags Affected

The CF flag is set to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

F8 CLC ZO Valid Valid Clear CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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CLD—Clear Direction Flag

Instruction Operand Encoding

Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations increment the index regis-
ters (ESI and/or EDI). Operation is the same in all modes.

Operation

DF := 0;

Flags Affected

The DF flag is set to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

FC CLD ZO Valid Valid Clear DF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A



CLDEMOTE—Cache Line Demote

Instruction Operand Encoding1

Description

Hints to hardware that the cache line that contains the linear address specified with the memory operand should be 
moved (“demoted”) from the cache(s) closest to the processor core to a level more distant from the processor 
core. This may accelerate subsequent accesses to the line by other cores in the same coherence domain, especially 
if the line was written by the core that demotes the line. Moving the line in such a manner is a performance optimi-
zation, i.e., it is a hint which does not modify architectural state. Hardware may choose which level in the cache 
hierarchy to retain the line (e.g., L3 in typical server designs). The source operand is a byte memory location. 
The availability of the CLDEMOTE instruction is indicated by the presence of the CPUID feature flag CLDEMOTE (bit 
25 of the ECX register in sub-leaf 07H, see “CPUID—CPU Identification”). On processors which do not support the 
CLDEMOTE instruction (including legacy hardware) the instruction will be treated as a NOP.
A CLDEMOTE instruction is ordered with respect to stores to the same cache line, but unordered with respect to 
other instructions including memory fences, CLDEMOTE, CLWB or CLFLUSHOPT instructions to a different cache 
line. Since CLDEMOTE will retire in order with respect to stores to the same cache line, software should ensure that 
after issuing CLDEMOTE the line is not accessed again immediately by the same core to avoid cache data move-
ment penalties. 
The effective memory type of the page containing the affected line determines the effect; cacheable types are 
likely to generate a data movement operation, while uncacheable types may cause the instruction to be ignored. 
Speculative fetching can occur at any time and is not tied to instruction execution. The CLDEMOTE instruction is not 
ordered with respect to PREFETCHh instructions or any of the speculative fetching mechanisms. That is, data can 
be speculatively loaded into a cache line just before, during, or after the execution of a CLDEMOTE instruction that 
references the cache line.
Unlike CLFLUSH, CLFLUSHOPT, and CLWB instructions, CLDEMOTE is not guaranteed to write back modified data to 
memory. 
The CLDEMOTE instruction may be ignored by hardware in certain cases and is not a guarantee. 
The CLDEMOTE instruction can be used at all privilege levels. In certain processor implementations the CLDEMOTE 
instruction may set the A bit but not the D bit in the page tables. 
If the line is not found in the cache, the instruction will be treated as a NOP. 
In some implementations, the CLDEMOTE instruction may always cause a transactional abort with Transactional 
Synchronization Extensions (TSX). However, programmers must not rely on CLDEMOTE instruction to force a 
transactional abort. 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 1C /0
CLDEMOTE m8

A V/V CLDEMOTE Hint to hardware to move the cache line containing m8 to a 
more distant level of the cache without writing back to mem-
ory.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:r/m (w) N/A N/A N/A

1. The Mod field of the ModR/M byte cannot have value 11B.
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Operation

Cache_Line_Demote(m8);

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

CLDEMOTE void _cldemote(const void*);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
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CLFLUSH—Flush Cache Line

Instruction Operand Encoding

Description
Invalidates from every level of the cache hierarchy in the cache coherence domain the cache line that contains the 
linear address specified with the memory operand. If that cache line contains modified data at any level of the 
cache hierarchy, that data is written back to memory. The source operand is a byte memory location.

The availability of CLFLUSH is indicated by the presence of the CPUID feature flag CLFSH 
(CPUID.01H:EDX[bit 19]). The aligned cache line size affected is also indicated with the CPUID instruction (bits 8 
through 15 of the EBX register when the initial value in the EAX register is 1).

The memory attribute of the page containing the affected line has no effect on the behavior of this instruction. It 
should be noted that processors are free to speculatively fetch and cache data from system memory regions 
assigned a memory-type allowing for speculative reads (such as, the WB, WC, and WT memory types). PREFETCHh 
instructions can be used to provide the processor with hints for this speculative behavior. Because this speculative 
fetching can occur at any time and is not tied to instruction execution, the CLFLUSH instruction is not ordered with 
respect to PREFETCHh instructions or any of the speculative fetching mechanisms (that is, data can be specula-
tively loaded into a cache line just before, during, or after the execution of a CLFLUSH instruction that references 
the cache line).

Executions of the CLFLUSH instruction are ordered with respect to each other and with respect to writes, locked 
read-modify-write instructions, and fence instructions.1 They are not ordered with respect to executions of 
CLFLUSHOPT and CLWB. Software can use the SFENCE instruction to order an execution of CLFLUSH relative to one 
of those operations.

The CLFLUSH instruction can be used at all privilege levels and is subject to all permission checking and faults asso-
ciated with a byte load (and in addition, a CLFLUSH instruction is allowed to flush a linear address in an execute-
only segment). Like a load, the CLFLUSH instruction sets the A bit but not the D bit in the page tables.
In some implementations, the CLFLUSH instruction may always cause transactional abort with Transactional 
Synchronization Extensions (TSX). The CLFLUSH instruction is not expected to be commonly used inside typical 
transactional regions. However, programmers must not rely on CLFLUSH instruction to force a transactional abort, 
since whether they cause transactional abort is implementation dependent.
The CLFLUSH instruction was introduced with the SSE2 extensions; however, because it has its own CPUID feature 
flag, it can be implemented in IA-32 processors that do not include the SSE2 extensions. Also, detecting the pres-
ence of the SSE2 extensions with the CPUID instruction does not guarantee that the CLFLUSH instruction is imple-
mented in the processor.

CLFLUSH operation is the same in non-64-bit modes and 64-bit mode.

Operation

Flush_Cache_Line(SRC);

Intel C/C++ Compiler Intrinsic Equivalents

CLFLUSH void _mm_clflush(void const *p)

Opcode /
Instruction

Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

NP 0F AE /7

CLFLUSH m8

M Valid Valid Flushes cache line containing m8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A

1. Earlier versions of this manual specified that executions of the CLFLUSH instruction were ordered only by the MFENCE instruction. 
All processors implementing the CLFLUSH instruction also order it relative to the other operations enumerated above.
CLFLUSH—Flush Cache Line Vol. 2A 3-162



Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment. 
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.
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CLFLUSHOPT—Flush Cache Line Optimized

Instruction Operand Encoding

Description
Invalidates from every level of the cache hierarchy in the cache coherence domain the cache line that contains the 
linear address specified with the memory operand. If that cache line contains modified data at any level of the 
cache hierarchy, that data is written back to memory. The source operand is a byte memory location.

The availability of CLFLUSHOPT is indicated by the presence of the CPUID feature flag CLFLUSHOPT 
(CPUID.(EAX=07H,ECX=0H):EBX[bit 23]). The aligned cache line size affected is also indicated with the CPUID 
instruction (bits 8 through 15 of the EBX register when the initial value in the EAX register is 1).

The memory attribute of the page containing the affected line has no effect on the behavior of this instruction. It 
should be noted that processors are free to speculatively fetch and cache data from system memory regions 
assigned a memory-type allowing for speculative reads (such as, the WB, WC, and WT memory types). PREFETCHh 
instructions can be used to provide the processor with hints for this speculative behavior. Because this speculative 
fetching can occur at any time and is not tied to instruction execution, the CLFLUSH instruction is not ordered with 
respect to PREFETCHh instructions or any of the speculative fetching mechanisms (that is, data can be specula-
tively loaded into a cache line just before, during, or after the execution of a CLFLUSH instruction that references 
the cache line).

Executions of the CLFLUSHOPT instruction are ordered with respect to fence instructions and to locked read-
modify-write instructions; they are also ordered with respect to older writes to the cache line being invalidated. 
They are not ordered with respect to other executions of CLFLUSHOPT, to executions of CLFLUSH and CLWB, or to 
younger writes to the cache line being invalidated. Software can use the SFENCE instruction to order an execution 
of CLFLUSHOPT relative to one of those operations.

The CLFLUSHOPT instruction can be used at all privilege levels and is subject to all permission checking and faults 
associated with a byte load (and in addition, a CLFLUSHOPT instruction is allowed to flush a linear address in an 
execute-only segment). Like a load, the CLFLUSHOPT instruction sets the A bit but not the D bit in the page tables.
In some implementations, the CLFLUSHOPT instruction may always cause transactional abort with Transactional 
Synchronization Extensions (TSX). The CLFLUSHOPT instruction is not expected to be commonly used inside 
typical transactional regions. However, programmers must not rely on CLFLUSHOPT instruction to force a transac-
tional abort, since whether they cause transactional abort is implementation dependent.

CLFLUSHOPT operation is the same in non-64-bit modes and 64-bit mode.

Operation

Flush_Cache_Line_Optimized(SRC);

Intel C/C++ Compiler Intrinsic Equivalents

CLFLUSHOPT void _mm_clflushopt(void const *p)

Opcode /
Instruction

Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

NFx 66 0F AE /7

CLFLUSHOPT m8

M Valid Valid Flushes cache line containing m8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A
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Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment. 
#PF(fault-code) For a page fault.
#UD If CPUID.(EAX=07H,ECX=0H):EBX.CLFLUSHOPT[bit 23] = 0.

If the LOCK prefix is used.
If an instruction prefix F2H or F3H is used.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.
#UD If CPUID.(EAX=07H,ECX=0H):EBX.CLFLUSHOPT[bit 23] = 0.

If the LOCK prefix is used.
If an instruction prefix F2H or F3H is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#UD If CPUID.(EAX=07H,ECX=0H):EBX.CLFLUSHOPT[bit 23] = 0.

If the LOCK prefix is used.
If an instruction prefix F2H or F3H is used.
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CLI—Clear Interrupt Flag

Instruction Operand Encoding

Description

In most cases, CLI clears the IF flag in the EFLAGS register and no other flags are affected. Clearing the IF flag 
causes the processor to ignore maskable external interrupts. The IF flag and the CLI and STI instruction have no 
effect on the generation of exceptions and NMI interrupts.

Operation is different in two modes defined as follows:
• PVI mode (protected-mode virtual interrupts): CR0.PE = 1, EFLAGS.VM = 0, CPL = 3, and CR4.PVI = 1;
• VME mode (virtual-8086 mode extensions): CR0.PE = 1, EFLAGS.VM = 1, and CR4.VME = 1.

If IOPL < 3 and either VME mode or PVI mode is active, CLI clears the VIF flag in the EFLAGS register, leaving IF 
unaffected.

Table 1-7 indicates the action of the CLI instruction depending on the processor operating mode, IOPL, and CPL. 

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

FA CLI ZO Valid Valid Clear interrupt flag; interrupts disabled when 
interrupt flag cleared.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

Table 1-7.  Decision Table for CLI Results
Mode IOPL CLI Result

Real-address X1

NOTES:
1. X = This setting has no effect on instruction operation.

IF = 0

Protected, not PVI2

2. For this table, “protected mode” applies whenever CR0.PE = 1 and EFLAGS.VM = 0; it includes compatibility mode and 64-bit mode.

≥ CPL IF = 0

< CPL #GP fault

Protected, PVI3

3. PVI mode and virtual-8086 mode each imply CPL = 3.

3 IF = 0

0–2 VIF = 0

Virtual-8086, not VME3 3 IF = 0

0–2 #GP fault

Virtual-8086, VME3 3 IF = 0

0–2 VIF = 0
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Operation

IF CR0.PE = 0
THEN IF := 0; (* Reset Interrupt Flag *)
ELSE

IF IOPL ≥ CPL (* CPL = 3 if EFLAGS.VM = 1 *)
THEN IF := 0; (* Reset Interrupt Flag *)
ELSE

IF VME mode OR PVI mode
THEN VIF := 0; (* Reset Virtual Interrupt Flag *)
ELSE #GP(0);

FI;
FI;

FI;

Flags Affected

Either the IF flag or the VIF flag is cleared to 0. Other flags are unaffected.

Protected Mode Exceptions
#GP(0) If CPL is greater than IOPL and PVI mode is not active.

If CPL is greater than IOPL and less than 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If IOPL is less than 3 and VME mode is not active.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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CLRSSBSY—Clear Busy Flag in a Supervisor Shadow Stack Token

Instruction Operand Encoding

Description
Clear busy flag in supervisor shadow stack token reference by m64. Subsequent to marking the shadow stack as 
not busy the SSP is loaded with value 0.

Operation

IF (CR4.CET = 0)
THEN #UD; FI;

IF (IA32_S_CET.SH_STK_EN = 0)
THEN #UD; FI;

IF CPL > 0
THEN GP(0); FI;

SSP_LA = Linear_Address(mem operand)
IF SSP_LA not aligned to 8 bytes

THEN #GP(0); FI;
expected_token_value = SSP_LA | BUSY_BIT (* busy bit - bit position 0 - must be set *)
new_token_value = SSP_LA (* Clear the busy bit *)
IF shadow_stack_lock_cmpxchg8b(SSP_LA, new_token_value, expected_token_value) != expected_token_value

invalid_token := 1; FI

(* Set the CF if invalid token was detected *)
RFLAGS.CF = (invalid_token == 1) ? 1 : 0;
RFLAGS.ZF,PF,AF,OF,SF := 0;
SSP := 0

Flags Affected

CF is set if an invalid token was detected, else it is cleared. ZF, PF, AF, OF, and SF are cleared.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F AE /6
CLRSSBSY m64

M V/V CET_SS Clear busy flag in supervisor shadow stack token 
reference by m64.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

M N/A ModRM:r/m (r, w) N/A N/A N/A
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Protected Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
IF IA32_S_CET.SH_STK_EN = 0.

#GP(0) If memory operand linear address not aligned to 8 bytes.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If destination is located in a non-writeable segment.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If CPL is not 0.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#UD The CLRSSBSY instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The CLRSSBSY instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD Same exceptions as in protected mode.
#GP(0) Same exceptions as in protected mode.
#PF(fault-code) If a page fault occurs.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
IF IA32_S_CET.SH_STK_EN = 0.

#GP(0) If memory operand linear address not aligned to 8 bytes.
If CPL is not 0.
If the memory address is in a non-canonical form.
If token is invalid.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
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CLTS—Clear Task-Switched Flag in CR0 Vol. 2A 3-170

CLTS—Clear Task-Switched Flag in CR0

Instruction Operand Encoding

Description

Clears the task-switched (TS) flag in the CR0 register. This instruction is intended for use in operating-system 
procedures. It is a privileged instruction that can only be executed at a CPL of 0. It is allowed to be executed in real-
address mode to allow initialization for protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to synchronize the saving of FPU 
context in multitasking applications. See the description of the TS flag in the section titled “Control Registers” in 
Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information 
about this flag. 

CLTS operation is the same in non-64-bit modes and 64-bit mode.

See Chapter 26, “Virtual Machine Control Structures,” of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3C, for more information about the behavior of this instruction in VMX non-root operation.

Operation

CR0.TS[bit 3] := 0;

Flags Affected

The TS flag in CR0 register is cleared.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) CLTS is not recognized in virtual-8086 mode.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the CPL is greater than 0.
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F 06 CLTS ZO Valid Valid Clears TS flag in CR0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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CLUI—Clear User Interrupt Flag

Instruction Operand Encoding

Description

CLUI clears the user interrupt flag (UIF). Its effect takes place immediately: a user interrupt cannot be delivered 
on the instruction boundary following CLUI.
An execution of CLUI inside a transactional region causes a transactional abort; the abort loads EAX as it would 
have had it been caused due to an execution of CLI.

Operation

UIF := 0;

Flags Affected

None.

Protected Mode Exceptions
#UD The CLUI instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The CLUI instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The CLUI instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The CLUI instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If executed inside an enclave.
If CR4.UINTR = 0.
If CPUID.07H.0H:EDX.UINTR[bit 5] = 0.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F3 0F 01 EE
CLUI

ZO V/I UINTR Clear user interrupt flag; user interrupts blocked 
when user interrupt flag cleared.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A N/A



CLWB—Cache Line Write Back

Instruction Operand Encoding1

Description

Writes back to memory the cache line (if modified) that contains the linear address specified with the memory 
operand from any level of the cache hierarchy in the cache coherence domain. The line may be retained in the 
cache hierarchy in non-modified state. Retaining the line in the cache hierarchy is a performance optimization 
(treated as a hint by hardware) to reduce the possibility of cache miss on a subsequent access. Hardware may 
choose to retain the line at any of the levels in the cache hierarchy, and in some cases, may invalidate the line from 
the cache hierarchy. The source operand is a byte memory location. 
The availability of CLWB instruction is indicated by the presence of the CPUID feature flag CLWB (bit 24 of the EBX 
register, see “CPUID — CPU Identification” in this chapter). The aligned cache line size affected is also indicated 
with the CPUID instruction (bits 8 through 15 of the EBX register when the initial value in the EAX register is 1).
The memory attribute of the page containing the affected line has no effect on the behavior of this instruction. It 
should be noted that processors are free to speculatively fetch and cache data from system memory regions that 
are assigned a memory-type allowing for speculative reads (such as, the WB, WC, and WT memory types). 
PREFETCHh instructions can be used to provide the processor with hints for this speculative behavior. Because this 
speculative fetching can occur at any time and is not tied to instruction execution, the CLWB instruction is not 
ordered with respect to PREFETCHh instructions or any of the speculative fetching mechanisms (that is, data can 
be speculatively loaded into a cache line just before, during, or after the execution of a CLWB instruction that refer-
ences the cache line). 
Executions of the CLWB instruction are ordered with respect to fence instructions and to locked read-modify-write 
instructions; they are also ordered with respect to older writes to the cache line being written back. They are not 
ordered with respect to other executions of CLWB, to executions of CLFLUSH and CLFLUSHOPT, or to younger 
writes to the cache line being written back. Software can use the SFENCE instruction to order an execution of CLWB 
relative to one of those operations.
For usages that require only writing back modified data from cache lines to memory (do not require the line to be 
invalidated), and expect to subsequently access the data, software is recommended to use CLWB (with appropriate 
fencing) instead of CLFLUSH or CLFLUSHOPT for improved performance.
The CLWB instruction can be used at all privilege levels and is subject to all permission checking and faults associ-
ated with a byte load. Like a load, the CLWB instruction sets the accessed flag but not the dirty flag in the page 
tables.
In some implementations, the CLWB instruction may always cause transactional abort with Transactional Synchro-
nization Extensions (TSX). CLWB instruction is not expected to be commonly used inside typical transactional 
regions. However, programmers must not rely on CLWB instruction to force a transactional abort, since whether 
they cause transactional abort is implementation dependent.

Operation

Cache_Line_Write_Back(m8);

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F AE /6
CLWB m8

M V/V CLWB Writes back modified cache line containing m8, and may 
retain the line in cache hierarchy in non-modified state.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A

1. The Mod field of the ModR/M byte cannot have value 11B.
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Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

CLWB void _mm_clwb(void const *p);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.CLWB[bit 24] = 0.
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment. 
#PF(fault-code) For a page fault.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.CLWB[bit 24] = 0.
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.CLWB[bit 24] = 0.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
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CMC—Complement Carry Flag Vol. 2A 3-174

CMC—Complement Carry Flag

Instruction Operand Encoding

Description

Complements the CF flag in the EFLAGS register. CMC operation is the same in non-64-bit modes and 64-bit mode.

Operation

EFLAGS.CF[bit 0] := NOT EFLAGS.CF[bit 0];

Flags Affected

The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

F5 CMC ZO Valid Valid Complement CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A



CMOVcc—Conditional Move
Opcode Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

0F 47 /r CMOVA r16, r/m16 RM Valid Valid Move if above (CF=0 and ZF=0).

0F 47 /r CMOVA r32, r/m32 RM Valid Valid Move if above (CF=0 and ZF=0).

REX.W + 0F 47 /r CMOVA r64, r/m64 RM Valid N.E. Move if above (CF=0 and ZF=0).

0F 43 /r CMOVAE r16, r/m16 RM Valid Valid Move if above or equal (CF=0).

0F 43 /r CMOVAE r32, r/m32 RM Valid Valid Move if above or equal (CF=0).

REX.W + 0F 43 /r CMOVAE r64, r/m64 RM Valid N.E. Move if above or equal (CF=0).

0F 42 /r CMOVB r16, r/m16 RM Valid Valid Move if below (CF=1).

0F 42 /r CMOVB r32, r/m32 RM Valid Valid Move if below (CF=1).

REX.W + 0F 42 /r CMOVB r64, r/m64 RM Valid N.E. Move if below (CF=1).

0F 46 /r CMOVBE r16, r/m16 RM Valid Valid Move if below or equal (CF=1 or ZF=1).

0F 46 /r CMOVBE r32, r/m32 RM Valid Valid Move if below or equal (CF=1 or ZF=1).

REX.W + 0F 46 /r CMOVBE r64, r/m64 RM Valid N.E. Move if below or equal (CF=1 or ZF=1).

0F 42 /r CMOVC r16, r/m16 RM Valid Valid Move if carry (CF=1).

0F 42 /r CMOVC r32, r/m32 RM Valid Valid Move if carry (CF=1).

REX.W + 0F 42 /r CMOVC r64, r/m64 RM Valid N.E. Move if carry (CF=1).

0F 44 /r CMOVE r16, r/m16 RM Valid Valid Move if equal (ZF=1).

0F 44 /r CMOVE r32, r/m32 RM Valid Valid Move if equal (ZF=1).

REX.W + 0F 44 /r CMOVE r64, r/m64 RM Valid N.E. Move if equal (ZF=1).

0F 4F /r CMOVG r16, r/m16 RM Valid Valid Move if greater (ZF=0 and SF=OF).

0F 4F /r CMOVG r32, r/m32 RM Valid Valid Move if greater (ZF=0 and SF=OF).

REX.W + 0F 4F /r CMOVG r64, r/m64 RM V/N.E. N/A Move if greater (ZF=0 and SF=OF).

0F 4D /r CMOVGE r16, r/m16 RM Valid Valid Move if greater or equal (SF=OF).

0F 4D /r CMOVGE r32, r/m32 RM Valid Valid Move if greater or equal (SF=OF).

REX.W + 0F 4D /r CMOVGE r64, r/m64 RM Valid N.E. Move if greater or equal (SF=OF).

0F 4C /r CMOVL r16, r/m16 RM Valid Valid Move if less (SF≠ OF).

0F 4C /r CMOVL r32, r/m32 RM Valid Valid Move if less (SF≠ OF).

REX.W + 0F 4C /r CMOVL r64, r/m64 RM Valid N.E. Move if less (SF≠ OF).

0F 4E /r CMOVLE r16, r/m16 RM Valid Valid Move if less or equal (ZF=1 or SF≠ OF).

0F 4E /r CMOVLE r32, r/m32 RM Valid Valid Move if less or equal (ZF=1 or SF≠ OF).

REX.W + 0F 4E /r CMOVLE r64, r/m64 RM Valid N.E. Move if less or equal (ZF=1 or SF≠ OF).

0F 46 /r CMOVNA r16, r/m16 RM Valid Valid Move if not above (CF=1 or ZF=1).

0F 46 /r CMOVNA r32, r/m32 RM Valid Valid Move if not above (CF=1 or ZF=1).

REX.W + 0F 46 /r CMOVNA r64, r/m64 RM Valid N.E. Move if not above (CF=1 or ZF=1).

0F 42 /r CMOVNAE r16, r/m16 RM Valid Valid Move if not above or equal (CF=1).

0F 42 /r CMOVNAE r32, r/m32 RM Valid Valid Move if not above or equal (CF=1).

REX.W + 0F 42 /r CMOVNAE r64, r/m64 RM Valid N.E. Move if not above or equal (CF=1).

0F 43 /r CMOVNB r16, r/m16 RM Valid Valid Move if not below (CF=0).

0F 43 /r CMOVNB r32, r/m32 RM Valid Valid Move if not below (CF=0).

REX.W + 0F 43 /r CMOVNB r64, r/m64 RM Valid N.E. Move if not below (CF=0).

0F 47 /r CMOVNBE r16, r/m16 RM Valid Valid Move if not below or equal (CF=0 and ZF=0).
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Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 47 /r CMOVNBE r32, r/m32 RM Valid Valid Move if not below or equal (CF=0 and ZF=0).

REX.W + 0F 47 /r CMOVNBE r64, r/m64 RM Valid N.E. Move if not below or equal (CF=0 and ZF=0).

0F 43 /r CMOVNC r16, r/m16 RM Valid Valid Move if not carry (CF=0).

0F 43 /r CMOVNC r32, r/m32 RM Valid Valid Move if not carry (CF=0).

REX.W + 0F 43 /r CMOVNC r64, r/m64 RM Valid N.E. Move if not carry (CF=0).

0F 45 /r CMOVNE r16, r/m16 RM Valid Valid Move if not equal (ZF=0).

0F 45 /r CMOVNE r32, r/m32 RM Valid Valid Move if not equal (ZF=0).

REX.W + 0F 45 /r CMOVNE r64, r/m64 RM Valid N.E. Move if not equal (ZF=0).

0F 4E /r CMOVNG r16, r/m16 RM Valid Valid Move if not greater (ZF=1 or SF≠ OF).

0F 4E /r CMOVNG r32, r/m32 RM Valid Valid Move if not greater (ZF=1 or SF≠ OF).

REX.W + 0F 4E /r CMOVNG r64, r/m64 RM Valid N.E. Move if not greater (ZF=1 or SF≠ OF).

0F 4C /r CMOVNGE r16, r/m16 RM Valid Valid Move if not greater or equal (SF≠ OF).

0F 4C /r CMOVNGE r32, r/m32 RM Valid Valid Move if not greater or equal (SF≠ OF).

REX.W + 0F 4C /r CMOVNGE r64, r/m64 RM Valid N.E. Move if not greater or equal (SF≠ OF).

0F 4D /r CMOVNL r16, r/m16 RM Valid Valid Move if not less (SF=OF).

0F 4D /r CMOVNL r32, r/m32 RM Valid Valid Move if not less (SF=OF).

REX.W + 0F 4D /r CMOVNL r64, r/m64 RM Valid N.E. Move if not less (SF=OF).

0F 4F /r CMOVNLE r16, r/m16 RM Valid Valid Move if not less or equal (ZF=0 and SF=OF).

0F 4F /r CMOVNLE r32, r/m32 RM Valid Valid Move if not less or equal (ZF=0 and SF=OF).

REX.W + 0F 4F /r CMOVNLE r64, r/m64 RM Valid N.E. Move if not less or equal (ZF=0 and SF=OF).

0F 41 /r CMOVNO r16, r/m16 RM Valid Valid Move if not overflow (OF=0).

0F 41 /r CMOVNO r32, r/m32 RM Valid Valid Move if not overflow (OF=0).

REX.W + 0F 41 /r CMOVNO r64, r/m64 RM Valid N.E. Move if not overflow (OF=0).

0F 4B /r CMOVNP r16, r/m16 RM Valid Valid Move if not parity (PF=0).

0F 4B /r CMOVNP r32, r/m32 RM Valid Valid Move if not parity (PF=0).

REX.W + 0F 4B /r CMOVNP r64, r/m64 RM Valid N.E. Move if not parity (PF=0).

0F 49 /r CMOVNS r16, r/m16 RM Valid Valid Move if not sign (SF=0).

0F 49 /r CMOVNS r32, r/m32 RM Valid Valid Move if not sign (SF=0).

REX.W + 0F 49 /r CMOVNS r64, r/m64 RM Valid N.E. Move if not sign (SF=0).

0F 45 /r CMOVNZ r16, r/m16 RM Valid Valid Move if not zero (ZF=0).

0F 45 /r CMOVNZ r32, r/m32 RM Valid Valid Move if not zero (ZF=0).

REX.W + 0F 45 /r CMOVNZ r64, r/m64 RM Valid N.E. Move if not zero (ZF=0).

0F 40 /r CMOVO r16, r/m16 RM Valid Valid Move if overflow (OF=1).

0F 40 /r CMOVO r32, r/m32 RM Valid Valid Move if overflow (OF=1).

REX.W + 0F 40 /r CMOVO r64, r/m64 RM Valid N.E. Move if overflow (OF=1).

0F 4A /r CMOVP r16, r/m16 RM Valid Valid Move if parity (PF=1).

0F 4A /r CMOVP r32, r/m32 RM Valid Valid Move if parity (PF=1).

REX.W + 0F 4A /r CMOVP r64, r/m64 RM Valid N.E. Move if parity (PF=1).

0F 4A /r CMOVPE r16, r/m16 RM Valid Valid Move if parity even (PF=1).

0F 4A /r CMOVPE r32, r/m32 RM Valid Valid Move if parity even (PF=1).

REX.W + 0F 4A /r CMOVPE r64, r/m64 RM Valid N.E. Move if parity even (PF=1).
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Instruction Operand Encoding

Description

Each of the CMOVcc instructions performs a move operation if the status flags in the EFLAGS register (CF, OF, PF, 
SF, and ZF) are in a specified state (or condition). A condition code (cc) is associated with each instruction to indi-
cate the condition being tested for. If the condition is not satisfied, a move is not performed and execution 
continues with the instruction following the CMOVcc instruction.

Specifically, CMOVcc loads data from its source operand into a temporary register unconditionally (regardless of 
the condition code and the status flags in the EFLAGS register). If the condition code associated with the instruction 
(cc) is satisfied, the data in the temporary register is then copied into the instruction's destination operand.

These instructions can move 16-bit, 32-bit or 64-bit values from memory to a general-purpose register or from one 
general-purpose register to another. Conditional moves of 8-bit register operands are not supported.

The condition for each CMOVcc mnemonic is given in the description column of the above table. The terms “less” 
and “greater” are used for comparisons of signed integers and the terms “above” and “below” are used for 
unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two mnemonics are 
defined for some opcodes. For example, the CMOVA (conditional move if above) instruction and the CMOVNBE 
(conditional move if not below or equal) instruction are alternate mnemonics for the opcode 0F 47H. 

The CMOVcc instructions were introduced in P6 family processors; however, these instructions may not be 
supported by all IA-32 processors. Software can determine if the CMOVcc instructions are supported by checking 
the processor’s feature information with the CPUID instruction (see “CPUID—CPU Identification” in this chapter).

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the 
beginning of this section for encoding data and limits.

Operation

temp := SRC

IF condition TRUE
THEN DEST := temp;

ELSE IF (OperandSize = 32 and IA-32e mode active)
THEN DEST[63:32] := 0;

FI;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 4B /r CMOVPO r16, r/m16 RM Valid Valid Move if parity odd (PF=0).

0F 4B /r CMOVPO r32, r/m32 RM Valid Valid Move if parity odd (PF=0).

REX.W + 0F 4B /r CMOVPO r64, r/m64 RM Valid N.E. Move if parity odd (PF=0).

0F 48 /r CMOVS r16, r/m16 RM Valid Valid Move if sign (SF=1).

0F 48 /r CMOVS r32, r/m32 RM Valid Valid Move if sign (SF=1).

REX.W + 0F 48 /r CMOVS r64, r/m64 RM Valid N.E. Move if sign (SF=1).

0F 44 /r CMOVZ r16, r/m16 RM Valid Valid Move if zero (ZF=1).

0F 44 /r CMOVZ r32, r/m32 RM Valid Valid Move if zero (ZF=1).

REX.W + 0F 44 /r CMOVZ r64, r/m64 RM Valid N.E. Move if zero (ZF=1).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
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Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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CMP—Compare Two Operands

Instruction Operand Encoding

Description

Compares the first source operand with the second source operand and sets the status flags in the EFLAGS register 
according to the results. The comparison is performed by subtracting the second operand from the first operand 
and then setting the status flags in the same manner as the SUB instruction. When an immediate value is used as 
an operand, it is sign-extended to the length of the first operand.

The condition codes used by the Jcc, CMOVcc, and SETcc instructions are based on the results of a CMP instruction. 
Appendix B, “EFLAGS Condition Codes,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, shows the relationship of the status flags and the condition codes.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

3C ib CMP AL, imm8 I Valid Valid Compare imm8 with AL.

3D iw CMP AX, imm16 I Valid Valid Compare imm16 with AX.

3D id CMP EAX, imm32 I Valid Valid Compare imm32 with EAX.

REX.W + 3D id CMP RAX, imm32 I Valid N.E. Compare imm32 sign-extended to 64-bits 
with RAX.

80 /7 ib CMP r/m8, imm8 MI Valid Valid Compare imm8 with r/m8.

REX + 80 /7 ib CMP r/m8*, imm8 MI Valid N.E. Compare imm8 with r/m8.

81 /7 iw CMP r/m16, imm16 MI Valid Valid Compare imm16 with r/m16.

81 /7 id CMP r/m32, imm32 MI Valid Valid Compare imm32 with r/m32.

REX.W + 81 /7 id CMP r/m64, imm32 MI Valid N.E. Compare imm32 sign-extended to 64-bits 
with r/m64.

83 /7 ib CMP r/m16, imm8 MI Valid Valid Compare imm8 with r/m16.

83 /7 ib CMP r/m32, imm8 MI Valid Valid Compare imm8 with r/m32.

REX.W + 83 /7 ib CMP r/m64, imm8 MI Valid N.E. Compare imm8 with r/m64.

38 /r CMP r/m8, r8 MR Valid Valid Compare r8 with r/m8.

REX + 38 /r CMP r/m8*, r8* MR Valid N.E. Compare r8 with r/m8.

39 /r CMP r/m16, r16 MR Valid Valid Compare r16 with r/m16.

39 /r CMP r/m32, r32 MR Valid Valid Compare r32 with r/m32.

REX.W + 39 /r CMP r/m64,r64 MR Valid N.E. Compare r64 with r/m64.

3A /r CMP r8, r/m8 RM Valid Valid Compare r/m8 with r8.

REX + 3A /r CMP r8*, r/m8* RM Valid N.E. Compare r/m8 with r8.

3B /r CMP r16, r/m16 RM Valid Valid Compare r/m16 with r16.

3B /r CMP r32, r/m32 RM Valid Valid Compare r/m32 with r32.

REX.W + 3B /r CMP r64, r/m64 RM Valid N.E. Compare r/m64 with r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) N/A N/A

MR ModRM:r/m (r) ModRM:reg (r) N/A N/A

MI ModRM:r/m (r) imm8/16/32 N/A N/A

I AL/AX/EAX/RAX (r) imm8/16/32 N/A N/A
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In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the 
beginning of this section for encoding data and limits.

Operation

temp := SRC1 − SignExtend(SRC2); 
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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CMPccXADD—Compare and Add if Condition is Met
Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 E6 !(11):rrr:bbb
CMPBEXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with 
value in m32. If below or equal (CF=1 or ZF=1), 
add value from r32 (third operand) to m32 and 
write new value in m32. The second operand is 
always updated with the original value from 
m32.

VEX.128.66.0F38.W1 E6 !(11):rrr:bbb
CMPBEXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with 
value in m64. If below or equal (CF=1 or ZF=1), 
add value from r64 (third operand) to m64 and 
write new value in m64. The second operand is 
always updated with the original value from 
m64.

VEX.128.66.0F38.W0 E2 !(11):rrr:bbb
CMPBXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with 
value in m32. If below (CF=1), add value from 
r32 (third operand) to m32 and write new value 
in m32. The second operand is always updated 
with the original value from m32.

VEX.128.66.0F38.W1 E2 !(11):rrr:bbb
CMPBXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with 
value in m64. If below (CF=1), add value from 
r64 (third operand) to m64 and write new value 
in m64. The second operand is always updated 
with the original value from m64.

VEX.128.66.0F38.W0 EE !(11):rrr:bbb
CMPLEXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with 
value in m32. If less or equal (ZF=1 or SF≠OF), 
add value from r32 (third operand) to m32 and 
write new value in m32. The second operand is 
always updated with the original value from 
m32.

VEX.128.66.0F38.W1 EE !(11):rrr:bbb
CMPLEXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with 
value in m64. If less or equal (ZF=1 or SF≠OF), 
add value from r64 (third operand) to m64 and 
write new value in m64. The second operand is 
always updated with the original value from 
m64.

VEX.128.66.0F38.W0 EC !(11):rrr:bbb
CMPLXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with 
value in m32. If less (SF≠OF), add value from r32 
(third operand) to m32 and write new value in 
m32. The second operand is always updated 
with the original value from m32.

VEX.128.66.0F38.W1 EC !(11):rrr:bbb

CMPLXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with 
value in m64. If less (SF≠OF), add value from r64 
(third operand) to m64 and write new value in 
m64. The second operand is always updated 
with the original value from m64.

VEX.128.66.0F38.W0 E7 !(11):rrr:bbb

CMPNBEXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with 
value in m32. If not below or equal (CF=0 and

ZF=0), add value from r32 (third operand) to 
m32 and write new value in m32. The second 
operand is always updated with the original 
value from m32.
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VEX.128.66.0F38.W1 E7 !(11):rrr:bbb

CMPNBEXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with 
value in m64. If not below or equal (CF=0 and

ZF=0), add value from r64 (third operand) to 
m64 and write new value in m64. The second 
operand is always updated with the original 
value from m64.

VEX.128.66.0F38.W0 E3 !(11):rrr:bbb

CMPNBXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with 
value in m32. If not below (CF=0), add value from 
r32 (third operand) to m32 and write new value 
in m32. The second operand is always updated 
with the original value from m32.

VEX.128.66.0F38.W1 E3 !(11):rrr:bbb
CMPNBXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with 
value in m64. If not below (CF=0), add value from 
r64 (third operand) to m64 and write new value 
in m64. The second operand is always updated 
with the original value from m64.

VEX.128.66.0F38.W0 EF !(11):rrr:bbb
CMPNLEXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with 
value in m32. If not less or equal (ZF=0 and

SF=OF), add value from r32 (third operand) to 
m32 and write new value in m32. The second 
operand is always updated with the original 
value from m32.

VEX.128.66.0F38.W1 EF !(11):rrr:bbb
CMPNLEXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with 
value in m64. If not less or equal (ZF=0 and

SF=OF), add value from r64 (third operand) to 
m64 and write new value in m64. The second 
operand is always updated with the original 
value from m64.

VEX.128.66.0F38.W0 ED !(11):rrr:bbb
CMPNLXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with 
value in m32. If not less (SF=OF), add value from 
r32 (third operand) to m32 and write new value 
in m32. The second operand is always updated 
with the original value from m32.

VEX.128.66.0F38.W1 ED !(11):rrr:bbb
CMPNLXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with 
value in m64. If not less (SF=OF), add value from 
r64 (third operand) to m64 and write new value 
in m64. The second operand is always updated 
with the original value from m64.

VEX.128.66.0F38.W0 E1 !(11):rrr:bbb
CMPNOXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with 
value in m32. If not overflow (OF=0), add value 
from r32 (third operand) to m32 and write new 
value in m32. The second operand is always 
updated with the original value from m32.

VEX.128.66.0F38.W1 E1 !(11):rrr:bbb
CMPNOXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with 
value in m64. If not overflow (OF=0), add value 
from r64 (third operand) to m64 and write new 
value in m64. The second operand is always 
updated with the original value from m64.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description
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VEX.128.66.0F38.W0 EB !(11):rrr:bbb
CMPNPXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with 
value in m32. If not parity (PF=0), add value from 
r32 (third operand) to m32 and write new value 
in m32. The second operand is always updated 
with the original value from m32.

VEX.128.66.0F38.W1 EB !(11):rrr:bbb
CMPNPXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with 
value in m64. If not parity (PF=0), add value from 
r64 (third operand) to m64 and write new value 
in m64. The second operand is always updated 
with the original value from m64.

VEX.128.66.0F38.W0 E9 !(11):rrr:bbb
CMPNSXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with 
value in m32. If not sign (SF=0), add value from 
r32 (third operand) to m32 and write new value 
in m32. The second operand is always updated 
with the original value from m32.

VEX.128.66.0F38.W1 E9 !(11):rrr:bbb
CMPNSXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with 
value in m64. If not sign (SF=0), add value from 
r64 (third operand) to m64 and write new value 
in m64. The second operand is always updated 
with the original value from m64.

VEX.128.66.0F38.W0 E5 !(11):rrr:bbb
CMPNZXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with 
value in m32. If not zero (ZF=0), add value from 
r32 (third operand) to m32 and write new value 
in m32. The second operand is always updated 
with the original value from m32.

VEX.128.66.0F38.W1 E5 !(11):rrr:bbb
CMPNZXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with 
value in m64. If not zero (ZF=0), add value from 
r64 (third operand) to m64 and write new value 
in m64. The second operand is always updated 
with the original value from m64.

VEX.128.66.0F38.W0 E0 !(11):rrr:bbb
CMPOXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with 
value in m32. If overflow (OF=1), add value from 
r32 (third operand) to m32 and write new value 
in m32. The second operand is always updated 
with the original value from m32.

VEX.128.66.0F38.W1 E0 !(11):rrr:bbb
CMPOXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with 
value in m64. If overflow (OF=1), add value from 
r64 (third operand) to m64 and write new value 
in m64. The second operand is always updated 
with the original value from m64.

VEX.128.66.0F38.W0 EA !(11):rrr:bbb
CMPPXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with 
value in m32. If parity (PF=1), add value from 
r32 (third operand) to m32 and write new value 
in m32. The second operand is always updated 
with the original value from m32.

VEX.128.66.0F38.W1 EA !(11):rrr:bbb
CMPPXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with 
value in m64. If parity (PF=1), add value from 
r64 (third operand) to m64 and write new value 
in m64. The second operand is always updated 
with the original value from m64.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description
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Instruction Operand Encoding1

Description
This instruction compares the value from memory with the value of the second operand. If the specified condition 
is met, then the processor will add the third operand to the memory operand and write it into memory, else the 
memory is unchanged by this instruction.
This instruction must have MODRM.MOD equal to 0, 1, or 2. The value 3 for MODRM.MOD is reserved and will cause 
an invalid opcode exception (#UD).
The second operand is always updated with the original value of the memory operand. The EFLAGS conditions are 
updated from the results of the comparison.The instruction uses an implicit lock. This instruction does not permit 
the use of an explicit lock prefix.

Operation
CMPCCXADD srcdest1, srcdest2, src3
tmp1 := load lock srcdest1
tmp2 := tmp1 + src3
EFLAGS.CS,OF,SF,ZF,AF,PF := CMP tmp1, srcdest2
IF <condition>:

srcdest1 := store unlock tmp2
ELSE

srcdest1 := store unlock tmp1
srcdest2 :=tmp1

VEX.128.66.0F38.W0 E8 !(11):rrr:bbb
CMPSXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with 
value in m32. If sign (SF=1), add value from r32 
(third operand) to m32 and write new value in 
m32. The second operand is always updated 
with the original value from m32.

VEX.128.66.0F38.W1 E8 !(11):rrr:bbb
CMPSXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with 
value in m64. If sign (SF=1), add value from r64 
(third operand) to m64 and write new value in 
m64. The second operand is always updated 
with the original value from m64.

VEX.128.66.0F38.W0 E4 !(11):rrr:bbb
CMPZXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with 
value in m32. If zero (ZF=1), add value from r32 
(third operand) to m32 and write new value in 
m32. The second operand is always updated 
with the original value from m32.

VEX.128.66.0F38.W1 E4 !(11):rrr:bbb
CMPZXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with 
value in m64. If zero (ZF=1), add value from r64 
(third operand) to m64 and write new value in 
m64. The second operand is always updated 
with the original value from m64.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (r, w) ModRM:reg (r, w) VEX.vvvv (r) N/A

1. ModRM.MOD != 011B

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description
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Flags Affected
The EFLAGS conditions are updated from the results of the comparison.

Intel C/C++ Compiler Intrinsic Equivalent
CMPCCXADD int _cmpccxadd_epi32 (void* __A, int __B, int __C, const int __D);
CMPCCXADD __int64 _cmpccxadd_epi64 (void* __A, __int64 __B, __int64 __C, const int __D);

SIMD Floating-Point Exceptions
None.

Exceptions
Exceptions Type 14; see Table 2-31.
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CMPPD—Compare Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description
Performs a SIMD compare of the packed double precision floating-point values in the second source operand and 
the first source operand and returns the result of the comparison to the destination operand. The comparison pred-
icate operand (immediate byte) specifies the type of comparison performed on each pair of packed values in the 
two source operands. 
EVEX encoded versions: The first source operand (second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcasted from a 64-bit memory location. The destination operand (first operand) is an opmask register. 
Comparison results are written to the destination operand under the writemask k2. Each comparison result is a 
single mask bit of 1 (comparison true) or 0 (comparison false).
VEX.256 encoded version: The first source operand (second operand) is a YMM register. The second source 
operand (third operand) can be a YMM register or a 256-bit memory location. The destination operand (first 

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F C2 /r ib
CMPPD xmm1, xmm2/m128, imm8

A V/V SSE2 Compare packed double precision floating-point 
values in xmm2/m128 and xmm1 using bits 2:0 of 
imm8 as a comparison predicate.

VEX.128.66.0F.WIG C2 /r ib
VCMPPD xmm1, xmm2, xmm3/m128, 
imm8

B V/V AVX Compare packed double precision floating-point 
values in xmm3/m128 and xmm2 using bits 4:0 of 
imm8 as a comparison predicate.

VEX.256.66.0F.WIG C2 /r ib
VCMPPD ymm1, ymm2, ymm3/m256, 
imm8

B V/V AVX Compare packed double precision floating-point 
values in ymm3/m256 and ymm2 using bits 4:0 of 
imm8 as a comparison predicate.

EVEX.128.66.0F.W1 C2 /r ib
VCMPPD k1 {k2}, xmm2, 
xmm3/m128/m64bcst, imm8

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare packed double precision floating-point 
values in xmm3/m128/m64bcst and xmm2 using 
bits 4:0 of imm8 as a comparison predicate with 
writemask k2 and leave the result in mask register 
k1.

EVEX.256.66.0F.W1 C2 /r ib
VCMPPD k1 {k2}, ymm2, 
ymm3/m256/m64bcst, imm8

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed double precision floating-point 
values in ymm3/m256/m64bcst and ymm2 using 
bits 4:0 of imm8 as a comparison predicate with 
writemask k2 and leave the result in mask register 
k1.

EVEX.512.66.0F.W1 C2 /r ib
VCMPPD k1 {k2}, zmm2, 
zmm3/m512/m64bcst {sae}, imm8

C V/V AVX512F 
OR AVX10.11

Compare packed double precision floating-point 
values in zmm3/m512/m64bcst and zmm2 using 
bits 4:0 of imm8 as a comparison predicate with 
writemask k2 and leave the result in mask register 
k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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operand) is a YMM register. Four comparisons are performed with results written to the destination operand. The 
result of each comparison is a quadword mask of all 1s (comparison true) or all 0s (comparison false).
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The 
second source operand (second operand) can be an XMM register or 128-bit memory location. Bits (MAXVL-1:128) 
of the corresponding ZMM destination register remain unchanged. Two comparisons are performed with results 
written to bits 127:0 of the destination operand. The result of each comparison is a quadword mask of all 1s 
(comparison true) or all 0s (comparison false).
VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source 
operand (third operand) can be an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destina-
tion ZMM register are zeroed. Two comparisons are performed with results written to bits 127:0 of the destination 
operand.
The comparison predicate operand is an 8-bit immediate:
• For instructions encoded using the VEX or EVEX prefix, bits 4:0 define the type of comparison to be performed 

(see Table 1-8). Bits 5 through 7 of the immediate are reserved. 
• For instruction encodings that do not use VEX prefix, bits 2:0 define the type of comparison to be made (see 

the first 8 rows of Table 1-8). Bits 3 through 7 of the immediate are reserved. 

Table 1-8.  Comparison Predicate for CMPPD and CMPPS Instructions 

Predicate imm8 
Value

Description Result: A Is 1st Operand, B Is 2nd Operand Signals 
#IA on 
QNANA >B A < B A = B Unordered1

EQ_OQ (EQ) 0H Equal (ordered, non-signaling) False False True False No

LT_OS (LT) 1H Less-than (ordered, signaling) False True False False Yes

LE_OS (LE) 2H Less-than-or-equal (ordered, signaling) False True True False Yes

UNORD_Q (UNORD) 3H Unordered (non-signaling) False False False True No

NEQ_UQ (NEQ) 4H Not-equal (unordered, non-signaling) True True False True No

NLT_US (NLT) 5H Not-less-than (unordered, signaling) True False True True Yes

NLE_US (NLE) 6H Not-less-than-or-equal (unordered, signaling) True False False True Yes

ORD_Q (ORD) 7H Ordered (non-signaling) True True True False No

EQ_UQ 8H Equal (unordered, non-signaling) False False True True No

NGE_US (NGE) 9H Not-greater-than-or-equal (unordered, 
signaling)

False True False True Yes

NGT_US (NGT) AH Not-greater-than (unordered, signaling) False True True True Yes

FALSE_OQ(FALSE) BH False (ordered, non-signaling) False False False False No

NEQ_OQ CH Not-equal (ordered, non-signaling) True True False False No

GE_OS (GE) DH Greater-than-or-equal (ordered, signaling) True False True False Yes

GT_OS (GT) EH Greater-than (ordered, signaling) True False False False Yes

TRUE_UQ(TRUE) FH True (unordered, non-signaling) True True True True No

EQ_OS 10H Equal (ordered, signaling) False False True False Yes

LT_OQ 11H Less-than (ordered, nonsignaling) False True False False No

LE_OQ 12H Less-than-or-equal (ordered, nonsignaling) False True True False No

UNORD_S 13H Unordered (signaling) False False False True Yes

NEQ_US 14H Not-equal (unordered, signaling) True True False True Yes

NLT_UQ 15H Not-less-than (unordered, nonsignaling) True False True True No

NLE_UQ 16H Not-less-than-or-equal (unordered, nonsig-
naling)

True False False True No
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The unordered relationship is true when at least one of the two source operands being compared is a NaN; the 
ordered relationship is true when neither source operand is a NaN. 
A subsequent computational instruction that uses the mask result in the destination operand as an input operand 
will not generate an exception, because a mask of all 0s corresponds to a floating-point value of +0.0 and a mask 
of all 1s corresponds to a QNaN. 
Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-equal”, 
“not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either 
by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison) 
or by using software emulation. When using software emulation, the program must swap the operands (copying 
registers when necessary to protect the data that will now be in the destination), and then perform the compare 
using a different predicate. The predicate to be used for these emulations is listed in the first 8 rows of Table 3-7 
(Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A) under the heading Emulation. 

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand 
CMPPD instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 1-9. The compiler should treat 
reserved imm8 values as illegal syntax.
:

The greater-than relations that the processor does not implement require more than one instruction to emulate in 
software and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the 

ORD_S 17H Ordered (signaling) True True True False Yes

EQ_US 18H Equal (unordered, signaling) False False True True Yes

NGE_UQ 19H Not-greater-than-or-equal (unordered, non-
signaling)

False True False True No

NGT_UQ 1AH Not-greater-than (unordered, nonsignaling) False True True True No

FALSE_OS 1BH False (ordered, signaling) False False False False Yes

NEQ_OS 1CH Not-equal (ordered, signaling) True True False False Yes

GE_OQ 1DH Greater-than-or-equal (ordered, nonsignal-
ing)

True False True False No

GT_OQ 1EH Greater-than (ordered, nonsignaling) True False False False No

TRUE_US 1FH True (unordered, signaling) True True True True Yes

NOTES:
1. If either operand A or B is a NAN.

Table 1-9.  Pseudo-Op and CMPPD Implementation

Pseudo-Op CMPPD Implementation

CMPEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 0

CMPLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 1

CMPLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 2

CMPUNORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 3

CMPNEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 4

CMPNLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 5

CMPNLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 6

CMPORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 7

Table 1-8.  Comparison Predicate for CMPPD and CMPPS Instructions  (Contd.)

Predicate imm8 
Value

Description Result: A Is 1st Operand, B Is 2nd Operand Signals 
#IA on 
QNANA >B A < B A = B Unordered1
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operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to 
the correct destination register and that the source operand is left intact.)
Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 predicates shown in Table 1-10, 
software emulation is no longer needed. Compilers and assemblers may implement the following three-operand 
pseudo-ops in addition to the four-operand VCMPPD instruction. See Table 1-10, where the notations of reg1 reg2, 
and reg3 represent either XMM registers or YMM registers. The compiler should treat reserved imm8 values as 
illegal syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic 
interface. Compilers and assemblers may implement three-operand pseudo-ops for EVEX encoded VCMPPD 
instructions in a similar fashion by extending the syntax listed in Table 1-10.
:

Table 1-10.  Pseudo-Op and VCMPPD Implementation

Pseudo-Op CMPPD Implementation

VCMPEQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0

VCMPLTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1

VCMPLEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 2

VCMPUNORDPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 3

VCMPNEQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 4

VCMPNLTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 5

VCMPNLEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 6

VCMPORDPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 7

VCMPEQ_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 8

VCMPNGEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 9

VCMPNGTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0AH

VCMPFALSEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0BH

VCMPNEQ_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0CH

VCMPGEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0DH

VCMPGTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0EH

VCMPTRUEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0FH

VCMPEQ_OSPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 10H

VCMPLT_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 11H

VCMPLE_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 12H

VCMPUNORD_SPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 13H

VCMPNEQ_USPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 14H

VCMPNLT_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 15H

VCMPNLE_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 16H

VCMPORD_SPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 17H

VCMPEQ_USPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 18H

VCMPNGE_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 19H

VCMPNGT_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1AH

VCMPFALSE_OSPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1BH

VCMPNEQ_OSPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1CH

VCMPGE_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1DH

VCMPGT_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1EH

VCMPTRUE_USPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1FH
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Operation

CASE (COMPARISON PREDICATE) OF
0: OP3 := EQ_OQ; OP5 := EQ_OQ;

1: OP3 := LT_OS; OP5 := LT_OS;
2: OP3 := LE_OS; OP5 := LE_OS;
3: OP3 := UNORD_Q; OP5 := UNORD_Q;
4: OP3 := NEQ_UQ; OP5 := NEQ_UQ;
5: OP3 := NLT_US; OP5 := NLT_US;
6: OP3 := NLE_US; OP5 := NLE_US;
7: OP3 := ORD_Q; OP5 := ORD_Q;
8: OP5 := EQ_UQ;
9: OP5 := NGE_US;
10: OP5 := NGT_US;
11: OP5 := FALSE_OQ;
12: OP5 := NEQ_OQ;
13: OP5 := GE_OS;
14: OP5 := GT_OS;
15: OP5 := TRUE_UQ;
16: OP5 := EQ_OS;
17: OP5 := LT_OQ;
18: OP5 := LE_OQ;
19: OP5 := UNORD_S;
20: OP5 := NEQ_US;
21: OP5 := NLT_UQ;
22: OP5 := NLE_UQ;
23: OP5 := ORD_S;
24: OP5 := EQ_US;
25: OP5 := NGE_UQ;
26: OP5 := NGT_UQ;
27: OP5 := FALSE_OS;
28: OP5 := NEQ_OS;
29: OP5 := GE_OQ;
30: OP5 := GT_OQ;
31: OP5 := TRUE_US;
DEFAULT: Reserved;

ESAC;

VCMPPD (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k2[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
CMP := SRC1[i+63:i] OP5 SRC2[63:0]

ELSE 
CMP := SRC1[i+63:i] OP5 SRC2[i+63:i]

FI;
IF CMP = TRUE

THEN DEST[j] := 1;
ELSE DEST[j] := 0; FI;

ELSE DEST[j] := 0 ; zeroing-masking only
FI;
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ENDFOR
DEST[MAX_KL-1:KL] := 0

VCMPPD (VEX.256 Encoded Version)
CMP0 := SRC1[63:0] OP5 SRC2[63:0];
CMP1 := SRC1[127:64] OP5 SRC2[127:64];
CMP2 := SRC1[191:128] OP5 SRC2[191:128];
CMP3 := SRC1[255:192] OP5 SRC2[255:192];
IF CMP0 = TRUE

THEN DEST[63:0] := FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] := 0000000000000000H; FI;

IF CMP1 = TRUE
THEN DEST[127:64] := FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] := 0000000000000000H; FI;

IF CMP2 = TRUE
THEN DEST[191:128] := FFFFFFFFFFFFFFFFH;
ELSE DEST[191:128] := 0000000000000000H; FI;

IF CMP3 = TRUE
THEN DEST[255:192] := FFFFFFFFFFFFFFFFH;
ELSE DEST[255:192] := 0000000000000000H; FI;

DEST[MAXVL-1:256] := 0

VCMPPD (VEX.128 Encoded Version)
CMP0 := SRC1[63:0] OP5 SRC2[63:0];
CMP1 := SRC1[127:64] OP5 SRC2[127:64];
IF CMP0 = TRUE

THEN DEST[63:0] := FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] := 0000000000000000H; FI;

IF CMP1 = TRUE
THEN DEST[127:64] := FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] := 0000000000000000H; FI;

DEST[MAXVL-1:128] := 0

CMPPD (128-bit Legacy SSE Version)
CMP0 := SRC1[63:0] OP3 SRC2[63:0];
CMP1 := SRC1[127:64] OP3 SRC2[127:64];
IF CMP0 = TRUE

THEN DEST[63:0] := FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] := 0000000000000000H; FI;

IF CMP1 = TRUE
THEN DEST[127:64] := FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] := 0000000000000000H; FI;

DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCMPPD __mmask8 _mm512_cmp_pd_mask( __m512d a, __m512d b, int imm);
VCMPPD __mmask8 _mm512_cmp_round_pd_mask( __m512d a, __m512d b, int imm, int sae);
VCMPPD __mmask8 _mm512_mask_cmp_pd_mask( __mmask8 k1, __m512d a, __m512d b, int imm);
VCMPPD __mmask8 _mm512_mask_cmp_round_pd_mask( __mmask8 k1, __m512d a, __m512d b, int imm, int sae);
VCMPPD __mmask8 _mm256_cmp_pd_mask( __m256d a, __m256d b, int imm);
VCMPPD __mmask8 _mm256_mask_cmp_pd_mask( __mmask8 k1, __m256d a, __m256d b, int imm);
VCMPPD __mmask8 _mm_cmp_pd_mask( __m128d a, __m128d b, int imm);
VCMPPD __mmask8 _mm_mask_cmp_pd_mask( __mmask8 k1, __m128d a, __m128d b, int imm);
VCMPPD __m256 _mm256_cmp_pd(__m256d a, __m256d b, int imm)
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(V)CMPPD __m128 _mm_cmp_pd(__m128d a, __m128d b, int imm)

SIMD Floating-Point Exceptions
Invalid if SNaN operand and invalid if QNaN and predicate as listed in Table 1-8, Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
CMPPD—Compare Packed Double Precision Floating-Point Values Vol. 2A 3-192



CMPPS—Compare Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description
Performs a SIMD compare of the packed single precision floating-point values in the second source operand and 
the first source operand and returns the result of the comparison to the destination operand. The comparison pred-
icate operand (immediate byte) specifies the type of comparison performed on each of the pairs of packed values. 
EVEX encoded versions: The first source operand (second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcasted from a 32-bit memory location. The destination operand (first operand) is an opmask register. 
Comparison results are written to the destination operand under the writemask k2. Each comparison result is a 
single mask bit of 1 (comparison true) or 0 (comparison false).
VEX.256 encoded version: The first source operand (second operand) is a YMM register. The second source 
operand (third operand) can be a YMM register or a 256-bit memory location. The destination operand (first 
operand) is a YMM register. Eight comparisons are performed with results written to the destination operand. The 
result of each comparison is a doubleword mask of all 1s (comparison true) or all 0s (comparison false).
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The 
second source operand (second operand) can be an XMM register or 128-bit memory location. Bits (MAXVL-1:128) 

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F C2 /r ib
CMPPS xmm1, xmm2/m128, imm8

A V/V SSE Compare packed single precision floating-point values in 
xmm2/m128 and xmm1 using bits 2:0 of imm8 as a 
comparison predicate.

VEX.128.0F.WIG C2 /r ib
VCMPPS xmm1, xmm2, 
xmm3/m128, imm8

B V/V AVX Compare packed single precision floating-point values in 
xmm3/m128 and xmm2 using bits 4:0 of imm8 as a 
comparison predicate.

VEX.256.0F.WIG C2 /r ib
VCMPPS ymm1, ymm2, 
ymm3/m256, imm8

B V/V AVX Compare packed single precision floating-point values in 
ymm3/m256 and ymm2 using bits 4:0 of imm8 as a 
comparison predicate.

EVEX.128.0F.W0 C2 /r ib
VCMPPS k1 {k2}, xmm2, 
xmm3/m128/m32bcst, imm8

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare packed single precision floating-point values in 
xmm3/m128/m32bcst and xmm2 using bits 4:0 of 
imm8 as a comparison predicate with writemask k2 and 
leave the result in mask register k1.

EVEX.256.0F.W0 C2 /r ib
VCMPPS k1 {k2}, ymm2, 
ymm3/m256/m32bcst, imm8

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed single precision floating-point values in 
ymm3/m256/m32bcst and ymm2 using bits 4:0 of 
imm8 as a comparison predicate with writemask k2 and 
leave the result in mask register k1.

EVEX.512.0F.W0 C2 /r ib
VCMPPS k1 {k2}, zmm2, 
zmm3/m512/m32bcst {sae}, imm8

C V/V AVX512F 
OR AVX10.11

Compare packed single precision floating-point values in 
zmm3/m512/m32bcst and zmm2 using bits 4:0 of imm8 
as a comparison predicate with writemask k2 and leave 
the result in mask register k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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of the corresponding ZMM destination register remain unchanged. Four comparisons are performed with results 
written to bits 127:0 of the destination operand. The result of each comparison is a doubleword mask of all 1s 
(comparison true) or all 0s (comparison false).
VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source 
operand (third operand) can be an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destina-
tion ZMM register are zeroed. Four comparisons are performed with results written to bits 127:0 of the destination 
operand.

The comparison predicate operand is an 8-bit immediate: 
• For instructions encoded using the VEX prefix and EVEX prefix, bits 4:0 define the type of comparison to be 

performed (see Table 1-8). Bits 5 through 7 of the immediate are reserved. 
• For instruction encodings that do not use VEX prefix, bits 2:0 define the type of comparison to be made (see 

the first 8 rows of Table 1-8). Bits 3 through 7 of the immediate are reserved. 
The unordered relationship is true when at least one of the two source operands being compared is a NaN; the 
ordered relationship is true when neither source operand is a NaN. 
A subsequent computational instruction that uses the mask result in the destination operand as an input operand 
will not generate an exception, because a mask of all 0s corresponds to a floating-point value of +0.0 and a mask 
of all 1s corresponds to a QNaN. 
Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-equal”, 
“not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either 
by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison) 
or by using software emulation. When using software emulation, the program must swap the operands (copying 
registers when necessary to protect the data that will now be in the destination), and then perform the compare 
using a different predicate. The predicate to be used for these emulations is listed in the first 8 rows of Table 3-7 
(Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A) under the heading Emulation. 

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand 
CMPPS instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 1-11. The compiler should treat 
reserved imm8 values as illegal syntax.
:

The greater-than relations that the processor does not implement require more than one instruction to emulate in 
software and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the 
operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to 
the correct destination register and that the source operand is left intact.) 

Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 predicates shown in Table 1-12, 
software emulation is no longer needed. Compilers and assemblers may implement the following three-operand 
pseudo-ops in addition to the four-operand VCMPPS instruction. See Table 1-12, where the notation of reg1 and 
reg2 represent either XMM registers or YMM registers. The compiler should treat reserved imm8 values as illegal 
syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic inter-
face. Compilers and assemblers may implement three-operand pseudo-ops for EVEX encoded VCMPPS instructions 
in a similar fashion by extending the syntax listed in Table 1-12.
:

Table 1-11.  Pseudo-Op and CMPPS Implementation

Pseudo-Op CMPPS Implementation

CMPEQPS xmm1, xmm2 CMPPS xmm1, xmm2, 0

CMPLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 1

CMPLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 2

CMPUNORDPS xmm1, xmm2 CMPPS xmm1, xmm2, 3

CMPNEQPS xmm1, xmm2 CMPPS xmm1, xmm2, 4

CMPNLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 5

CMPNLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 6

CMPORDPS xmm1, xmm2 CMPPS xmm1, xmm2, 7
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Table 1-12.  Pseudo-Op and VCMPPS Implementation

Pseudo-Op CMPPS Implementation

VCMPEQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0

VCMPLTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1

VCMPLEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 2

VCMPUNORDPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 3

VCMPNEQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 4

VCMPNLTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 5

VCMPNLEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 6

VCMPORDPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 7

VCMPEQ_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 8

VCMPNGEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 9

VCMPNGTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0AH

VCMPFALSEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0BH

VCMPNEQ_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0CH

VCMPGEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0DH

VCMPGTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0EH

VCMPTRUEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0FH

VCMPEQ_OSPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 10H

VCMPLT_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 11H

VCMPLE_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 12H

VCMPUNORD_SPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 13H

VCMPNEQ_USPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 14H

VCMPNLT_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 15H

VCMPNLE_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 16H

VCMPORD_SPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 17H

VCMPEQ_USPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 18H

VCMPNGE_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 19H

VCMPNGT_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1AH

VCMPFALSE_OSPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1BH

VCMPNEQ_OSPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1CH

VCMPGE_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1DH

VCMPGT_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1EH

VCMPTRUE_USPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1FH
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Operation

CASE (COMPARISON PREDICATE) OF
0: OP3 := EQ_OQ; OP5 := EQ_OQ;
1: OP3 := LT_OS; OP5 := LT_OS;
2: OP3 := LE_OS; OP5 := LE_OS;
3: OP3 := UNORD_Q; OP5 := UNORD_Q;
4: OP3 := NEQ_UQ; OP5 := NEQ_UQ;
5: OP3 := NLT_US; OP5 := NLT_US;
6: OP3 := NLE_US; OP5 := NLE_US;
7: OP3 := ORD_Q; OP5 := ORD_Q;
8: OP5 := EQ_UQ;
9: OP5 := NGE_US;
10: OP5 := NGT_US;
11: OP5 := FALSE_OQ;
12: OP5 := NEQ_OQ;
13: OP5 := GE_OS;
14: OP5 := GT_OS;
15: OP5 := TRUE_UQ;
16: OP5 := EQ_OS;
17: OP5 := LT_OQ;
18: OP5 := LE_OQ;
19: OP5 := UNORD_S;
20: OP5 := NEQ_US;
21: OP5 := NLT_UQ;
22: OP5 := NLE_UQ;
23: OP5 := ORD_S;
24: OP5 := EQ_US;
25: OP5 := NGE_UQ;
26: OP5 := NGT_UQ;
27: OP5 := FALSE_OS;
28: OP5 := NEQ_OS;
29: OP5 := GE_OQ;
30: OP5 := GT_OQ;
31: OP5 := TRUE_US;
DEFAULT: Reserved

ESAC;

VCMPPS (EVEX Encoded Versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k2[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
CMP := SRC1[i+31:i] OP5 SRC2[31:0]

ELSE 
CMP := SRC1[i+31:i] OP5 SRC2[i+31:i]

FI;
IF CMP = TRUE

THEN DEST[j] := 1;
ELSE DEST[j] := 0; FI;

ELSE DEST[j] := 0 ; zeroing-masking onlyFI;
FI;
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ENDFOR
DEST[MAX_KL-1:KL] := 0

VCMPPS (VEX.256 Encoded Version)
CMP0 := SRC1[31:0] OP5 SRC2[31:0];
CMP1 := SRC1[63:32] OP5 SRC2[63:32];
CMP2 := SRC1[95:64] OP5 SRC2[95:64];
CMP3 := SRC1[127:96] OP5 SRC2[127:96];
CMP4 := SRC1[159:128] OP5 SRC2[159:128];
CMP5 := SRC1[191:160] OP5 SRC2[191:160];
CMP6 := SRC1[223:192] OP5 SRC2[223:192];
CMP7 := SRC1[255:224] OP5 SRC2[255:224];
IF CMP0 = TRUE

THEN DEST[31:0] :=FFFFFFFFH;
ELSE DEST[31:0] := 000000000H; FI;

IF CMP1 = TRUE
THEN DEST[63:32] := FFFFFFFFH;
ELSE DEST[63:32] :=000000000H; FI;

IF CMP2 = TRUE
THEN DEST[95:64] := FFFFFFFFH;
ELSE DEST[95:64] := 000000000H; FI;

IF CMP3 = TRUE
THEN DEST[127:96] := FFFFFFFFH;
ELSE DEST[127:96] := 000000000H; FI;

IF CMP4 = TRUE
THEN DEST[159:128] := FFFFFFFFH;
ELSE DEST[159:128] := 000000000H; FI;

IF CMP5 = TRUE
THEN DEST[191:160] := FFFFFFFFH;
ELSE DEST[191:160] := 000000000H; FI;

IF CMP6 = TRUE
THEN DEST[223:192] := FFFFFFFFH;
ELSE DEST[223:192] :=000000000H; FI;

IF CMP7 = TRUE
THEN DEST[255:224] := FFFFFFFFH;
ELSE DEST[255:224] := 000000000H; FI;

DEST[MAXVL-1:256] := 0

VCMPPS (VEX.128 Encoded Version)
CMP0 := SRC1[31:0] OP5 SRC2[31:0];
CMP1 := SRC1[63:32] OP5 SRC2[63:32];
CMP2 := SRC1[95:64] OP5 SRC2[95:64];
CMP3 := SRC1[127:96] OP5 SRC2[127:96];
IF CMP0 = TRUE

THEN DEST[31:0] :=FFFFFFFFH;
ELSE DEST[31:0] := 000000000H; FI;

IF CMP1 = TRUE
THEN DEST[63:32] := FFFFFFFFH;
ELSE DEST[63:32] := 000000000H; FI;

IF CMP2 = TRUE
THEN DEST[95:64] := FFFFFFFFH;
ELSE DEST[95:64] := 000000000H; FI;

IF CMP3 = TRUE
THEN DEST[127:96] := FFFFFFFFH;
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ELSE DEST[127:96] :=000000000H; FI;
DEST[MAXVL-1:128] := 0

CMPPS (128-bit Legacy SSE Version)
CMP0 := SRC1[31:0] OP3 SRC2[31:0];
CMP1 := SRC1[63:32] OP3 SRC2[63:32];
CMP2 := SRC1[95:64] OP3 SRC2[95:64];
CMP3 := SRC1[127:96] OP3 SRC2[127:96];
IF CMP0 = TRUE

THEN DEST[31:0] :=FFFFFFFFH;
ELSE DEST[31:0] := 000000000H; FI;

IF CMP1 = TRUE
THEN DEST[63:32] := FFFFFFFFH;
ELSE DEST[63:32] := 000000000H; FI;

IF CMP2 = TRUE
THEN DEST[95:64] := FFFFFFFFH;
ELSE DEST[95:64] := 000000000H; FI;

IF CMP3 = TRUE
THEN DEST[127:96] := FFFFFFFFH;
ELSE DEST[127:96] :=000000000H; FI;

DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCMPPS __mmask16 _mm512_cmp_ps_mask( __m512 a, __m512 b, int imm);
VCMPPS __mmask16 _mm512_cmp_round_ps_mask( __m512 a, __m512 b, int imm, int sae);
VCMPPS __mmask16 _mm512_mask_cmp_ps_mask( __mmask16 k1, __m512 a, __m512 b, int imm);
VCMPPS __mmask16 _mm512_mask_cmp_round_ps_mask( __mmask16 k1, __m512 a, __m512 b, int imm, int sae);
VCMPPS __mmask8 _mm256_cmp_ps_mask( __m256 a, __m256 b, int imm);
VCMPPS __mmask8 _mm256_mask_cmp_ps_mask( __mmask8 k1, __m256 a, __m256 b, int imm);
VCMPPS __mmask8 _mm_cmp_ps_mask( __m128 a, __m128 b, int imm);
VCMPPS __mmask8 _mm_mask_cmp_ps_mask( __mmask8 k1, __m128 a, __m128 b, int imm);
VCMPPS __m256 _mm256_cmp_ps(__m256 a, __m256 b, int imm)
CMPPS __m128 _mm_cmp_ps(__m128 a, __m128 b, int imm)

SIMD Floating-Point Exceptions
Invalid if SNaN operand and invalid if QNaN and predicate as listed in Table 1-8, Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
CMPPS—Compare Packed Single Precision Floating-Point Values Vol. 2A 3-198



CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

Instruction Operand Encoding

Description

Compares the byte, word, doubleword, or quadword specified with the first source operand with the byte, word, 
doubleword, or quadword specified with the second source operand and sets the status flags in the EFLAGS register 
according to the results.

Both source operands are located in memory. The address of the first source operand is read from DS:SI, DS:ESI 
or RSI (depending on the address-size attribute of the instruction is 16, 32, or 64, respectively). The address of the 
second source operand is read from ES:DI, ES:EDI or RDI (again depending on the address-size attribute of the 
instruction is 16, 32, or 64). The DS segment may be overridden with a segment override prefix, but the ES 
segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands” form and the “no-
operands” form. The explicit-operands form (specified with the CMPS mnemonic) allows the two source operands 
to be specified explicitly. Here, the source operands should be symbols that indicate the size and location of the 
source values. This explicit-operand form is provided to allow documentation. However, note that the documenta-
tion provided by this form can be misleading. That is, the source operand symbols must specify the correct type 
(size) of the operands (bytes, words, or doublewords, quadwords), but they do not have to specify the correct loca-

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

A6 CMPS m8, m8 ZO Valid Valid For legacy mode, compare byte at address DS:(E)SI with 
byte at address ES:(E)DI; For 64-bit mode compare byte 
at address (R|E)SI to byte at address (R|E)DI. The status 
flags are set accordingly.

A7 CMPS m16, m16 ZO Valid Valid For legacy mode, compare word at address DS:(E)SI 
with word at address ES:(E)DI; For 64-bit mode 
compare word at address (R|E)SI with word at address 
(R|E)DI. The status flags are set accordingly.

A7 CMPS m32, m32 ZO Valid Valid For legacy mode, compare dword at address DS:(E)SI at 
dword at address ES:(E)DI; For 64-bit mode compare 
dword at address (R|E)SI at dword at address (R|E)DI. 
The status flags are set accordingly.

REX.W + A7 CMPS m64, m64 ZO Valid N.E. Compares quadword at address (R|E)SI with quadword 
at address (R|E)DI and sets the status flags accordingly.

A6 CMPSB ZO Valid Valid For legacy mode, compare byte at address DS:(E)SI with 
byte at address ES:(E)DI; For 64-bit mode compare byte 
at address (R|E)SI with byte at address (R|E)DI. The 
status flags are set accordingly.

A7 CMPSW ZO Valid Valid For legacy mode, compare word at address DS:(E)SI 
with word at address ES:(E)DI; For 64-bit mode 
compare word at address (R|E)SI with word at address 
(R|E)DI. The status flags are set accordingly.

A7 CMPSD ZO Valid Valid For legacy mode, compare dword at address DS:(E)SI 
with dword at address ES:(E)DI; For 64-bit mode 
compare dword at address (R|E)SI with dword at 
address (R|E)DI. The status flags are set accordingly.

REX.W + A7 CMPSQ ZO Valid N.E. Compares quadword at address (R|E)SI with quadword 
at address (R|E)DI and sets the status flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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tion. Locations of the source operands are always specified by the DS:(E)SI (or RSI) and ES:(E)DI (or RDI) regis-
ters, which must be loaded correctly before the compare string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the CMPS instructions. 
Here also the DS:(E)SI (or RSI) and ES:(E)DI (or RDI) registers are assumed by the processor to specify the loca-
tion of the source operands. The size of the source operands is selected with the mnemonic: CMPSB (byte compar-
ison), CMPSW (word comparison), CMPSD (doubleword comparison), or CMPSQ (quadword comparison using 
REX.W).

After the comparison, the (E/R)SI and (E/R)DI registers increment or decrement automatically according to the 
setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E/R)SI and (E/R)DI register increment; if the 
DF flag is 1, the registers decrement.) The registers increment or decrement by 1 for byte operations, by 2 for word 
operations, 4 for doubleword operations. If operand size is 64, RSI and RDI registers increment by 8 for quadword 
operations.

The CMPS, CMPSB, CMPSW, CMPSD, and CMPSQ instructions can be preceded by the REP prefix for block compar-
isons. More often, however, these instructions will be used in a LOOP construct that takes some action based on the 
setting of the status flags before the next comparison is made. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat 
String Operation Prefix” in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2B, for a description of the REP prefix.

In 64-bit mode, the instruction’s default address size is 64 bits, 32 bit address size is supported using the prefix 
67H. Use of the REX.W prefix promotes doubleword operation to 64 bits (see CMPSQ). See the summary chart at 
the beginning of this section for encoding data and limits.

Operation

temp := SRC1 - SRC2;
SetStatusFlags(temp);

IF (64-Bit Mode)
THEN

IF (Byte comparison)
THEN IF DF = 0

THEN 
(R|E)SI := (R|E)SI + 1; 
(R|E)DI := (R|E)DI + 1; 

ELSE 
(R|E)SI := (R|E)SI – 1; 
(R|E)DI := (R|E)DI – 1; 

FI;
ELSE IF (Word comparison)

THEN IF DF = 0
THEN 

(R|E)SI := (R|E)SI + 2; 
(R|E)DI := (R|E)DI + 2; 

ELSE 
(R|E)SI := (R|E)SI – 2; 
(R|E)DI := (R|E)DI – 2; 

FI;
ELSE IF (Doubleword comparison)

THEN IF DF = 0
THEN 

(R|E)SI := (R|E)SI + 4; 
(R|E)DI := (R|E)DI + 4; 

ELSE 
(R|E)SI := (R|E)SI – 4; 
(R|E)DI := (R|E)DI – 4; 

FI;
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ELSE (* Quadword comparison *)
THEN IF DF = 0

(R|E)SI := (R|E)SI + 8; 
(R|E)DI := (R|E)DI + 8; 

ELSE 
(R|E)SI := (R|E)SI – 8; 
(R|E)DI := (R|E)DI – 8; 

FI;
FI;

ELSE (* Non-64-bit Mode *)
IF (byte comparison)
THEN IF DF = 0

THEN 
(E)SI := (E)SI + 1; 
(E)DI := (E)DI + 1; 

ELSE 
(E)SI := (E)SI – 1; 
(E)DI := (E)DI – 1; 

FI;
ELSE IF (Word comparison)

THEN IF DF = 0
(E)SI := (E)SI + 2; 
(E)DI := (E)DI + 2; 

ELSE 
(E)SI := (E)SI – 2; 
(E)DI := (E)DI – 2; 

FI;
ELSE (* Doubleword comparison *)

THEN IF DF = 0
(E)SI := (E)SI + 4; 
(E)DI := (E)DI + 4; 

ELSE 
(E)SI := (E)SI – 4; 
(E)DI := (E)DI – 4; 

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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CMPSD—Compare Scalar Double Precision Floating-Point Value

Instruction Operand Encoding

Description
Compares the low double precision floating-point values in the second source operand and the first source operand 
and returns the result of the comparison to the destination operand. The comparison predicate operand (imme-
diate operand) specifies the type of comparison performed. 
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The 
second source operand (second operand) can be an XMM register or 64-bit memory location. Bits (MAXVL-1:64) of 
the corresponding YMM destination register remain unchanged. The comparison result is a quadword mask of all 1s 
(comparison true) or all 0s (comparison false). 
VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source 
operand (third operand) can be an XMM register or a 64-bit memory location. The result is stored in the low quad-
word of the destination operand; the high quadword is filled with the contents of the high quadword of the first 
source operand. Bits (MAXVL-1:128) of the destination ZMM register are zeroed. The comparison result is a quad-
word mask of all 1s (comparison true) or all 0s (comparison false). 
EVEX encoded version: The first source operand (second operand) is an XMM register. The second source operand 
can be a XMM register or a 64-bit memory location. The destination operand (first operand) is an opmask register. 
The comparison result is a single mask bit of 1 (comparison true) or 0 (comparison false), written to the destination 
starting from the LSB according to the writemask k2. Bits (MAX_KL-1:128) of the destination register are cleared.

The comparison predicate operand is an 8-bit immediate: 
• For instructions encoded using the VEX prefix, bits 4:0 define the type of comparison to be performed (see 

Table 1-8). Bits 5 through 7 of the immediate are reserved. 
• For instruction encodings that do not use VEX prefix, bits 2:0 define the type of comparison to be made (see 

the first 8 rows of Table 1-8). Bits 3 through 7 of the immediate are reserved. 
The unordered relationship is true when at least one of the two source operands being compared is a NaN; the 
ordered relationship is true when neither source operand is a NaN. 

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F2 0F C2 /r ib
CMPSD xmm1, xmm2/m64, imm8

A V/V SSE2 Compare low double precision floating-point value in 
xmm2/m64 and xmm1 using bits 2:0 of imm8 as 
comparison predicate.

VEX.LIG.F2.0F.WIG C2 /r ib
VCMPSD xmm1, xmm2, xmm3/m64, 
imm8

B V/V AVX Compare low double precision floating-point value in 
xmm3/m64 and xmm2 using bits 4:0 of imm8 as 
comparison predicate.

EVEX.LLIG.F2.0F.W1 C2 /r ib
VCMPSD k1 {k2}, xmm2, 
xmm3/m64{sae}, imm8

C V/V AVX512F 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare low double precision floating-point value in 
xmm3/m64 and xmm2 using bits 4:0 of imm8 as 
comparison predicate with writemask k2 and leave the 
result in mask register k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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A subsequent computational instruction that uses the mask result in the destination operand as an input operand 
will not generate an exception, because a mask of all 0s corresponds to a floating-point value of +0.0 and a mask 
of all 1s corresponds to a QNaN. 
Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-equal”, 
“not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either 
by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison) 
or by using software emulation. When using software emulation, the program must swap the operands (copying 
registers when necessary to protect the data that will now be in the destination), and then perform the compare 
using a different predicate. The predicate to be used for these emulations is listed in the first 8 rows of Table 3-7 
(Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A) under the heading Emulation. 

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand 
CMPSD instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 1-13. The compiler should treat 
reserved imm8 values as illegal syntax.
:

The greater-than relations that the processor does not implement require more than one instruction to emulate in 
software and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the 
operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to 
the correct destination register and that the source operand is left intact.) 

Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 predicates shown in Table 1-14, 
software emulation is no longer needed. Compilers and assemblers may implement the following three-operand 
pseudo-ops in addition to the four-operand VCMPSD instruction. See Table 1-14, where the notations of reg1 reg2, 
and reg3 represent either XMM registers or YMM registers. The compiler should treat reserved imm8 values as 
illegal syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic 
interface. Compilers and assemblers may implement three-operand pseudo-ops for EVEX encoded VCMPSD 
instructions in a similar fashion by extending the syntax listed in Table 1-14.
:

Table 1-13.  Pseudo-Op and CMPSD Implementation

Pseudo-Op CMPSD Implementation

CMPEQSD xmm1, xmm2 CMPSD xmm1, xmm2, 0

CMPLTSD xmm1, xmm2 CMPSD xmm1, xmm2, 1

CMPLESD xmm1, xmm2 CMPSD xmm1, xmm2, 2

CMPUNORDSD xmm1, xmm2 CMPSD xmm1, xmm2, 3

CMPNEQSD xmm1, xmm2 CMPSD xmm1, xmm2, 4

CMPNLTSD xmm1, xmm2 CMPSD xmm1, xmm2, 5

CMPNLESD xmm1, xmm2 CMPSD xmm1, xmm2, 6

CMPORDSD xmm1, xmm2 CMPSD xmm1, xmm2, 7

Table 1-14.  Pseudo-Op and VCMPSD Implementation 

Pseudo-Op CMPSD Implementation

VCMPEQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0

VCMPLTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1

VCMPLESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 2

VCMPUNORDSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 3

VCMPNEQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 4

VCMPNLTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 5

VCMPNLESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 6

VCMPORDSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 7

VCMPEQ_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 8

VCMPNGESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 9
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Software should ensure VCMPSD is encoded with VEX.L=0. Encoding VCMPSD with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.

Operation

CASE (COMPARISON PREDICATE) OF
0: OP3 := EQ_OQ; OP5 := EQ_OQ;
1: OP3 := LT_OS; OP5 := LT_OS;
2: OP3 := LE_OS; OP5 := LE_OS;
3: OP3 := UNORD_Q; OP5 := UNORD_Q;
4: OP3 := NEQ_UQ; OP5 := NEQ_UQ;
5: OP3 := NLT_US; OP5 := NLT_US;
6: OP3 := NLE_US; OP5 := NLE_US;
7: OP3 := ORD_Q; OP5 := ORD_Q;
8: OP5 := EQ_UQ;
9: OP5 := NGE_US;
10: OP5 := NGT_US;
11: OP5 := FALSE_OQ;
12: OP5 := NEQ_OQ;
13: OP5 := GE_OS;
14: OP5 := GT_OS;
15: OP5 := TRUE_UQ;

VCMPNGTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0AH

VCMPFALSESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0BH

VCMPNEQ_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0CH

VCMPGESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0DH

VCMPGTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0EH

VCMPTRUESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0FH

VCMPEQ_OSSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 10H

VCMPLT_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 11H

VCMPLE_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 12H

VCMPUNORD_SSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 13H

VCMPNEQ_USSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 14H

VCMPNLT_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 15H

VCMPNLE_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 16H

VCMPORD_SSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 17H

VCMPEQ_USSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 18H

VCMPNGE_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 19H

VCMPNGT_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1AH

VCMPFALSE_OSSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1BH

VCMPNEQ_OSSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1CH

VCMPGE_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1DH

VCMPGT_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1EH

VCMPTRUE_USSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1FH

Table 1-14.  Pseudo-Op and VCMPSD Implementation  (Contd.)

Pseudo-Op CMPSD Implementation
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16: OP5 := EQ_OS;
17: OP5 := LT_OQ;
18: OP5 := LE_OQ;
19: OP5 := UNORD_S;
20: OP5 := NEQ_US;
21: OP5 := NLT_UQ;
22: OP5 := NLE_UQ;
23: OP5 := ORD_S;
24: OP5 := EQ_US;
25: OP5 := NGE_UQ;
26: OP5 := NGT_UQ;
27: OP5 := FALSE_OS;
28: OP5 := NEQ_OS;
29: OP5 := GE_OQ;
30: OP5 := GT_OQ;
31: OP5 := TRUE_US;
DEFAULT: Reserved

ESAC;

VCMPSD (EVEX Encoded Version) 
CMP0 := SRC1[63:0] OP5 SRC2[63:0];

IF k2[0] or *no writemask*
THEN IF CMP0 = TRUE

THEN DEST[0] := 1;
ELSE DEST[0] := 0; FI;

ELSE DEST[0] := 0 ; zeroing-masking only
FI;
DEST[MAX_KL-1:1] := 0

CMPSD (128-bit Legacy SSE Version)
CMP0 := DEST[63:0] OP3 SRC[63:0];
IF CMP0 = TRUE
THEN DEST[63:0] := FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] := 0000000000000000H; FI;
DEST[MAXVL-1:64] (Unmodified)

VCMPSD (VEX.128 Encoded Version)
CMP0 := SRC1[63:0] OP5 SRC2[63:0];
IF CMP0 = TRUE
THEN DEST[63:0] := FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] := 0000000000000000H; FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCMPSD __mmask8 _mm_cmp_sd_mask( __m128d a, __m128d b, int imm);
VCMPSD __mmask8 _mm_cmp_round_sd_mask( __m128d a, __m128d b, int imm, int sae);
VCMPSD __mmask8 _mm_mask_cmp_sd_mask( __mmask8 k1, __m128d a, __m128d b, int imm);
VCMPSD __mmask8 _mm_mask_cmp_round_sd_mask( __mmask8 k1, __m128d a, __m128d b, int imm, int sae);
(V)CMPSD __m128d _mm_cmp_sd(__m128d a, __m128d b, const int imm)

SIMD Floating-Point Exceptions
Invalid if SNaN operand, Invalid if QNaN and predicate as listed in Table 1-8, Denormal.
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Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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CMPSS—Compare Scalar Single Precision Floating-Point Value

Instruction Operand Encoding

Description
Compares the low single precision floating-point values in the second source operand and the first source operand 
and returns the result of the comparison to the destination operand. The comparison predicate operand (imme-
diate operand) specifies the type of comparison performed. 
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The 
second source operand (second operand) can be an XMM register or 32-bit memory location. Bits (MAXVL-1:32) of 
the corresponding YMM destination register remain unchanged. The comparison result is a doubleword mask of all 
1s (comparison true) or all 0s (comparison false). 
VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source 
operand (third operand) can be an XMM register or a 32-bit memory location. The result is stored in the low 32 bits 
of the destination operand; bits 127:32 of the destination operand are copied from the first source operand. Bits 
(MAXVL-1:128) of the destination ZMM register are zeroed. The comparison result is a doubleword mask of all 1s 
(comparison true) or all 0s (comparison false). 
EVEX encoded version: The first source operand (second operand) is an XMM register. The second source operand 
can be a XMM register or a 32-bit memory location. The destination operand (first operand) is an opmask register. 
The comparison result is a single mask bit of 1 (comparison true) or 0 (comparison false), written to the destination 
starting from the LSB according to the writemask k2. Bits (MAX_KL-1:128) of the destination register are cleared. 

The comparison predicate operand is an 8-bit immediate: 
• For instructions encoded using the VEX prefix, bits 4:0 define the type of comparison to be performed (see 

Table 1-8). Bits 5 through 7 of the immediate are reserved. 
• For instruction encodings that do not use VEX prefix, bits 2:0 define the type of comparison to be made (see 

the first 8 rows of Table 1-8). Bits 3 through 7 of the immediate are reserved. 

The unordered relationship is true when at least one of the two source operands being compared is a NaN; the 
ordered relationship is true when neither source operand is a NaN. 

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F3 0F C2 /r ib
CMPSS xmm1, xmm2/m32, imm8

A V/V SSE Compare low single precision floating-point value in 
xmm2/m32 and xmm1 using bits 2:0 of imm8 as 
comparison predicate.

VEX.LIG.F3.0F.WIG C2 /r ib
VCMPSS xmm1, xmm2, xmm3/m32, 
imm8

B V/V AVX Compare low single precision floating-point value in 
xmm3/m32 and xmm2 using bits 4:0 of imm8 as 
comparison predicate.

EVEX.LLIG.F3.0F.W0 C2 /r ib
VCMPSS k1 {k2}, xmm2, 
xmm3/m32{sae}, imm8

C V/V AVX512F 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare low single precision floating-point value in 
xmm3/m32 and xmm2 using bits 4:0 of imm8 as 
comparison predicate with writemask k2 and leave 
the result in mask register k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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A subsequent computational instruction that uses the mask result in the destination operand as an input operand 
will not generate an exception, because a mask of all 0s corresponds to a floating-point value of +0.0 and a mask 
of all 1s corresponds to a QNaN. 
Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-equal”, 
“not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either 
by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison) 
or by using software emulation. When using software emulation, the program must swap the operands (copying 
registers when necessary to protect the data that will now be in the destination), and then perform the compare 
using a different predicate. The predicate to be used for these emulations is listed in the first 8 rows of Table 3-7 
(Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A) under the heading Emulation. 

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand 
CMPSS instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 1-15. The compiler should treat 
reserved imm8 values as illegal syntax.
:

The greater-than relations that the processor does not implement require more than one instruction to emulate in 
software and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the 
operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to 
the correct destination register and that the source operand is left intact.) 

Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 predicates shown in Table 1-14, 
software emulation is no longer needed. Compilers and assemblers may implement the following three-operand 
pseudo-ops in addition to the four-operand VCMPSS instruction. See Table 1-16, where the notations of reg1 reg2, 
and reg3 represent either XMM registers or YMM registers. The compiler should treat reserved imm8 values as 
illegal syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic 
interface. Compilers and assemblers may implement three-operand pseudo-ops for EVEX encoded VCMPSS 
instructions in a similar fashion by extending the syntax listed in Table 1-16.
:

Table 1-15.  Pseudo-Op and CMPSS Implementation

Pseudo-Op CMPSS Implementation

CMPEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 0

CMPLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 1

CMPLESS xmm1, xmm2 CMPSS xmm1, xmm2, 2

CMPUNORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 3

CMPNEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 4

CMPNLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 5

CMPNLESS xmm1, xmm2 CMPSS xmm1, xmm2, 6

CMPORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 7

Table 1-16.  Pseudo-Op and VCMPSS Implementation 

Pseudo-Op CMPSS Implementation

VCMPEQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0

VCMPLTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1

VCMPLESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 2

VCMPUNORDSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 3

VCMPNEQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 4

VCMPNLTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 5

VCMPNLESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 6

VCMPORDSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 7

VCMPEQ_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 8

VCMPNGESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 9
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Software should ensure VCMPSS is encoded with VEX.L=0. Encoding VCMPSS with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.

Operation

CASE (COMPARISON PREDICATE) OF
0: OP3 := EQ_OQ; OP5 := EQ_OQ;
1: OP3 := LT_OS; OP5 := LT_OS;
2: OP3 := LE_OS; OP5 := LE_OS;
3: OP3 := UNORD_Q; OP5 := UNORD_Q;
4: OP3 := NEQ_UQ; OP5 := NEQ_UQ;
5: OP3 := NLT_US; OP5 := NLT_US;
6: OP3 := NLE_US; OP5 := NLE_US;
7: OP3 := ORD_Q; OP5 := ORD_Q;
8: OP5 := EQ_UQ;
9: OP5 := NGE_US;
10: OP5 := NGT_US;
11: OP5 := FALSE_OQ;
12: OP5 := NEQ_OQ;
13: OP5 := GE_OS;
14: OP5 := GT_OS;
15: OP5 := TRUE_UQ;

VCMPNGTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0AH

VCMPFALSESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0BH

VCMPNEQ_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0CH

VCMPGESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0DH

VCMPGTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0EH

VCMPTRUESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0FH

VCMPEQ_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 10H

VCMPLT_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 11H

VCMPLE_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 12H

VCMPUNORD_SSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 13H

VCMPNEQ_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 14H

VCMPNLT_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 15H

VCMPNLE_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 16H

VCMPORD_SSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 17H

VCMPEQ_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 18H

VCMPNGE_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 19H

VCMPNGT_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1AH

VCMPFALSE_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1BH

VCMPNEQ_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1CH

VCMPGE_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1DH

VCMPGT_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1EH

VCMPTRUE_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1FH

Table 1-16.  Pseudo-Op and VCMPSS Implementation  (Contd.)

Pseudo-Op CMPSS Implementation
CMPSS—Compare Scalar Single Precision Floating-Point Value Vol. 2A 3-210



16: OP5 := EQ_OS;
17: OP5 := LT_OQ;
18: OP5 := LE_OQ;
19: OP5 := UNORD_S;
20: OP5 := NEQ_US;
21: OP5 := NLT_UQ;
22: OP5 := NLE_UQ;
23: OP5 := ORD_S;
24: OP5 := EQ_US;
25: OP5 := NGE_UQ;
26: OP5 := NGT_UQ;
27: OP5 := FALSE_OS;
28: OP5 := NEQ_OS;
29: OP5 := GE_OQ;
30: OP5 := GT_OQ;
31: OP5 := TRUE_US;
DEFAULT: Reserved

ESAC;

VCMPSS (EVEX Encoded Version) 
CMP0 := SRC1[31:0] OP5 SRC2[31:0];

IF k2[0] or *no writemask*
THEN IF CMP0 = TRUE

THEN DEST[0] := 1;
ELSE DEST[0] := 0; FI;

ELSE DEST[0] := 0 ; zeroing-masking only
FI;
DEST[MAX_KL-1:1] := 0

CMPSS (128-bit Legacy SSE Version)
CMP0 := DEST[31:0] OP3 SRC[31:0];
IF CMP0 = TRUE
THEN DEST[31:0] := FFFFFFFFH;
ELSE DEST[31:0] := 00000000H; FI;
DEST[MAXVL-1:32] (Unmodified)

VCMPSS (VEX.128 Encoded Version)
CMP0 := SRC1[31:0] OP5 SRC2[31:0];
IF CMP0 = TRUE
THEN DEST[31:0] := FFFFFFFFH;
ELSE DEST[31:0] := 00000000H; FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCMPSS __mmask8 _mm_cmp_ss_mask( __m128 a, __m128 b, int imm);
VCMPSS __mmask8 _mm_cmp_round_ss_mask( __m128 a, __m128 b, int imm, int sae);
VCMPSS __mmask8 _mm_mask_cmp_ss_mask( __mmask8 k1, __m128 a, __m128 b, int imm);
VCMPSS __mmask8 _mm_mask_cmp_round_ss_mask( __mmask8 k1, __m128 a, __m128 b, int imm, int sae);
(V)CMPSS __m128 _mm_cmp_ss(__m128 a, __m128 b, const int imm)

SIMD Floating-Point Exceptions
Invalid if SNaN operand, Invalid if QNaN and predicate as listed in Table 1-8, Denormal.
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Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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CMPXCHG—Compare and Exchange

Instruction Operand Encoding

Description

Compares the value in the AL, AX, EAX, or RAX register with the first operand (destination operand). If the two 
values are equal, the second operand (source operand) is loaded into the destination operand. Otherwise, the 
destination operand is loaded into the AL, AX, EAX or RAX register. RAX register is available only in 64-bit mode.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically. To simplify the 
interface to the processor’s bus, the destination operand receives a write cycle without regard to the result of the 
comparison. The destination operand is written back if the comparison fails; otherwise, the source operand is 
written into the destination. (The processor never produces a locked read without also producing a locked write.)

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the 
beginning of this section for encoding data and limits.

IA-32 Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Intel486 processors.

Operation

(* Accumulator = AL, AX, EAX, or RAX depending on whether a byte, word, doubleword, or quadword comparison is being performed *)
TEMP := DEST
IF accumulator = TEMP

THEN
ZF := 1;
DEST := SRC;

ELSE
ZF := 0;
accumulator := TEMP;
DEST := TEMP;

FI;

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F B0/r

CMPXCHG r/m8, r8

MR Valid Valid* Compare AL with r/m8. If equal, ZF is set and r8 is loaded into 
r/m8. Else, clear ZF and load r/m8 into AL.

REX + 0F B0/r

CMPXCHG r/m8**,r8

MR Valid N.E. Compare AL with r/m8. If equal, ZF is set and r8 is loaded into 
r/m8. Else, clear ZF and load r/m8 into AL.

0F B1/r

CMPXCHG r/m16, r16

MR Valid Valid* Compare AX with r/m16. If equal, ZF is set and r16 is loaded 
into r/m16. Else, clear ZF and load r/m16 into AX.

0F B1/r

CMPXCHG r/m32, r32

MR Valid Valid* Compare EAX with r/m32. If equal, ZF is set and r32 is loaded 
into r/m32. Else, clear ZF and load r/m32 into EAX.

REX.W + 0F B1/r

CMPXCHG r/m64, r64

MR Valid N.E. Compare RAX with r/m64. If equal, ZF is set and r64 is loaded 
into r/m64. Else, clear ZF and load r/m64 into RAX.

NOTES:
* See the IA-32 Architecture Compatibility section below. 
** In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A
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Flags Affected

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX are equal; otherwise it is 
cleared. The CF, PF, AF, SF, and OF flags are set according to the results of the comparison operation.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes

Instruction Operand Encoding

Description

Compares the 64-bit value in EDX:EAX (or 128-bit value in RDX:RAX if operand size is 128 bits) with the operand 
(destination operand). If the values are equal, the 64-bit value in ECX:EBX (or 128-bit value in RCX:RBX) is stored 
in the destination operand. Otherwise, the value in the destination operand is loaded into EDX:EAX (or RDX:RAX). 
The destination operand is an 8-byte memory location (or 16-byte memory location if operand size is 128 bits). For 
the EDX:EAX and ECX:EBX register pairs, EDX and ECX contain the high-order 32 bits and EAX and EBX contain the 
low-order 32 bits of a 64-bit value. For the RDX:RAX and RCX:RBX register pairs, RDX and RCX contain the high-
order 64 bits and RAX and RBX contain the low-order 64bits of a 128-bit value. 

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically. To simplify the 
interface to the processor’s bus, the destination operand receives a write cycle without regard to the result of the 
comparison. The destination operand is written back if the comparison fails; otherwise, the source operand is 
written into the destination. (The processor never produces a locked read without also producing a locked write.)

In 64-bit mode, default operation size is 64 bits. Use of the REX.W prefix promotes operation to 128 bits. Note that 
CMPXCHG16B requires that the destination (memory) operand be 16-byte aligned. See the summary chart at the 
beginning of this section for encoding data and limits. For information on the CPUID flag that indicates CMPX-
CHG16B, see page 1-250.

IA-32 Architecture Compatibility

This instruction encoding is not supported on Intel processors earlier than the Pentium processors.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F C7 /1 

CMPXCHG8B m64

M Valid Valid* Compare EDX:EAX with m64. If equal, set ZF and load 
ECX:EBX into m64. Else, clear ZF and load m64 into EDX:EAX.

REX.W + 0F C7 /1 

CMPXCHG16B m128

M Valid N.E. Compare RDX:RAX with m128. If equal, set ZF and load 
RCX:RBX into m128. Else, clear ZF and load m128 into 
RDX:RAX.

NOTES:
*See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) N/A N/A N/A
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Operation

IF (64-Bit Mode and OperandSize = 64)
THEN

TEMP128 := DEST
IF (RDX:RAX = TEMP128)

THEN
ZF := 1;
DEST := RCX:RBX;

ELSE
ZF := 0;
RDX:RAX := TEMP128;
DEST := TEMP128;
FI;

FI
ELSE

TEMP64 := DEST;
IF (EDX:EAX = TEMP64)

THEN
ZF := 1;
DEST := ECX:EBX;

ELSE
ZF := 0;
EDX:EAX := TEMP64;
DEST := TEMP64;
FI;

FI;
FI;

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is cleared. The CF, PF, AF, SF, and 
OF flags are unaffected.

Protected Mode Exceptions
#UD If the destination is not a memory operand.
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.

Real-Address Mode Exceptions
#UD If the destination operand is not a memory location.
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
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Virtual-8086 Mode Exceptions
#UD If the destination operand is not a memory location.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand for CMPXCHG16B is not aligned on a 16-byte boundary.
If CPUID.01H:ECX.CMPXCHG16B[bit 13] = 0.

#UD If the destination operand is not a memory location.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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COMISD—Compare Scalar Ordered Double Precision Floating-Point Values and Set EFLAGS

Instruction Operand Encoding

Description
Compares the double precision floating-point values in the low quadwords of operand 1 (first operand) and operand 
2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the result (unordered, 
greater than, less than, or equal). The OF, SF, and AF flags in the EFLAGS register are set to 0. The unordered result 
is returned if either source operand is a NaN (QNaN or SNaN).
Operand 1 is an XMM register; operand 2 can be an XMM register or a 64 bit memory location. The COMISD instruc-
tion differs from the UCOMISD instruction in that it signals a SIMD floating-point invalid operation exception (#I) 
when a source operand is either a QNaN or SNaN. The UCOMISD instruction signals an invalid operation exception 
only if a source operand is an SNaN.
The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Software should ensure VCOMISD is encoded with VEX.L=0. Encoding VCOMISD with VEX.L=1 may encounter 
unpredictable behavior across different processor generations.

Operation

COMISD (All Versions)
RESULT :=OrderedCompare(DEST[63:0] <> SRC[63:0]) {
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZF,PF,CF := 111;
GREATER_THAN: ZF,PF,CF := 000;
LESS_THAN: ZF,PF,CF := 001;
EQUAL: ZF,PF,CF := 100;

ESAC;
OF, AF, SF := 0; }

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

66 0F 2F /r
COMISD xmm1, xmm2/m64

A V/V SSE2 Compare low double precision floating-point values in 
xmm1 and xmm2/mem64 and set the EFLAGS flags 
accordingly.

VEX.LIG.66.0F.WIG 2F /r
VCOMISD xmm1, xmm2/m64

A V/V AVX Compare low double precision floating-point values in 
xmm1 and xmm2/mem64 and set the EFLAGS flags 
accordingly.

EVEX.LLIG.66.0F.W1 2F /r
VCOMISD xmm1, xmm2/m64{sae}

B V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare low double precision floating-point values in 
xmm1 and xmm2/mem64 and set the EFLAGS flags 
accordingly.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VCOMISD int _mm_comi_round_sd(__m128d a, __m128d b, int imm, int sae); 
VCOMISD int _mm_comieq_sd (__m128d a, __m128d b)
VCOMISD int _mm_comilt_sd (__m128d a, __m128d b)
VCOMISD int _mm_comile_sd (__m128d a, __m128d b)
VCOMISD int _mm_comigt_sd (__m128d a, __m128d b)
VCOMISD int _mm_comige_sd (__m128d a, __m128d b)
VCOMISD int _mm_comineq_sd (__m128d a, __m128d b)

SIMD Floating-Point Exceptions
Invalid (if SNaN or QNaN operands), Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”
Additionally:
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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COMISS—Compare Scalar Ordered Single Precision Floating-Point Values and Set EFLAGS

Instruction Operand Encoding

Description
Compares the single precision floating-point values in the low quadwords of operand 1 (first operand) and operand 
2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the result (unordered, 
greater than, less than, or equal). The OF, SF, and AF flags in the EFLAGS register are set to 0. The unordered result 
is returned if either source operand is a NaN (QNaN or SNaN).
Operand 1 is an XMM register; operand 2 can be an XMM register or a 32 bit memory location. 
The COMISS instruction differs from the UCOMISS instruction in that it signals a SIMD floating-point invalid opera-
tion exception (#I) when a source operand is either a QNaN or SNaN. The UCOMISS instruction signals an invalid 
operation exception only if a source operand is an SNaN.
The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Software should ensure VCOMISS is encoded with VEX.L=0. Encoding VCOMISS with VEX.L=1 may encounter 
unpredictable behavior across different processor generations.

Operation

COMISS (All Versions)
RESULT :=OrderedCompare(DEST[31:0] <> SRC[31:0]) {
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZF,PF,CF := 111;
GREATER_THAN: ZF,PF,CF := 000;
LESS_THAN: ZF,PF,CF := 001;
EQUAL: ZF,PF,CF := 100;

ESAC;
OF, AF, SF := 0; }

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

NP 0F 2F /r
COMISS xmm1, xmm2/m32

A V/V SSE Compare low single precision floating-point values in 
xmm1 and xmm2/mem32 and set the EFLAGS flags 
accordingly.

VEX.LIG.0F.WIG 2F /r
VCOMISS xmm1, xmm2/m32

A V/V AVX Compare low single precision floating-point values in 
xmm1 and xmm2/mem32 and set the EFLAGS flags 
accordingly.

EVEX.LLIG.0F.W0 2F /r
VCOMISS xmm1, xmm2/m32{sae}

B V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare low single precision floating-point values in 
xmm1 and xmm2/mem32 and set the EFLAGS flags 
accordingly.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VCOMISS int _mm_comi_round_ss(__m128 a, __m128 b, int imm, int sae); 
VCOMISS int _mm_comieq_ss (__m128 a, __m128 b)
VCOMISS int _mm_comilt_ss (__m128 a, __m128 b)
VCOMISS int _mm_comile_ss (__m128 a, __m128 b)
VCOMISS int _mm_comigt_ss (__m128 a, __m128 b)
VCOMISS int _mm_comige_ss (__m128 a, __m128 b)
VCOMISS int _mm_comineq_ss (__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Invalid (if SNaN or QNaN operands), Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”

Additionally:
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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CPUID—CPU Identification

Instruction Operand Encoding

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can 
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction 
operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The 
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well). 
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value 
and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 1-17 shows information returned, depending on the initial value loaded into the EAX register. 

Two types of information are returned: basic and extended function information. If a value entered for CPUID.EAX 
is higher than the maximum input value for basic or extended function for that processor then the data for the 
highest basic information leaf is returned. For example, using some Intel processors, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *) 
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *) 
CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *)2 
CPUID.EAX =1FH (* Returns V2 Extended Topology Enumeration leaf. *)2 
CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0BH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value and the leaf is not supported on 
that processor then 0 is returned in all the registers.

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence 
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution 
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before 
the next instruction is fetched and executed.

See also: 

“Serializing Instructions” in Chapter 10, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

“Caching Translation Information” in Chapter 4, “Linear-Address Pre-Processing,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F A2 CPUID ZO Valid Valid Returns processor identification and feature 
information to the EAX, EBX, ECX, and EDX 
registers, as determined by input entered in 
EAX (in some cases, ECX as well).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.

2. CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the existence of CPUID leaf 1FH before 
using leaf 0BH.
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Table 1-17.  Information Returned by CPUID Instruction

Initial EAX 
Value Information Provided about the Processor

Basic CPUID Information

0H EAX Maximum Input Value for Basic CPUID Information.

EBX “Genu”

ECX “ntel”

EDX “ineI”

01H EAX Version Information: Type, Family, Model, and Stepping ID (see Figure 1-6).

EBX Bits 07-00: Brand Index.
Bits 15-08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes; used also by CLFLUSHOPT).
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*. 
Bits 31-24: Initial APIC ID**.

ECX Feature Information (see Figure 1-7 and Table 1-19).

EDX Feature Information (see Figure 1-8 and Table 1-20).

NOTES: 
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC

IDs reserved for addressing different logical processors in a physical package. This field is only valid if
CPUID.1.EDX.HTT[bit 28]= 1.

** The 8-bit initial APIC ID in EBX[31:24] is replaced by the 32-bit x2APIC ID, available in Leaf 0BH and 
Leaf 1FH.

02H EAX Cache and TLB Information (see Table 1-21).

EBX Cache and TLB Information.

ECX Cache and TLB Information.

EDX Cache and TLB Information.

03H EAX Reserved.

EBX Reserved.

ECX Bits 00-31 of 96-bit processor serial number. (Available in Pentium III processor only; otherwise, the value 
in this register is reserved.)

EDX Bits 32-63 of 96-bit processor serial number. (Available in Pentium III processor only; otherwise, the value 
in this register is reserved.)

NOTES: 
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use
the PSN flag (returned using CPUID) to check for PSN support before accessing the feature. 

CPUID leaves above 2 and below 80000000H are visible only when IA32_MISC_ENABLE[bit 22] has its default value of 0.

Deterministic Cache Parameters Leaf (Initial EAX Value = 04H)

04H NOTES:
Leaf 04H output depends on the initial value in ECX.* 
See also: “INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level” on page 257.

EAX Bits 04-00: Cache Type Field.
0 = Null - No more caches.
1 = Data Cache. 
2 = Instruction Cache.
3 = Unified Cache.
4-31 = Reserved.
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Bits 07-05: Cache Level (starts at 1). 
Bit 08: Self Initializing cache level (does not need SW initialization).
Bit 09: Fully Associative cache.

Bits 13-10: Reserved.
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache**, ***. 
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical 
package**, ****, *****.

EBX Bits 11-00: L = System Coherency Line Size**.
Bits 21-12: P = Physical Line partitions**.
Bits 31-22: W = Ways of associativity**.

ECX Bits 31-00: S = Number of Sets**.

EDX Bit 00: Write-Back Invalidate/Invalidate.
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this 
cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing 
this cache.

Bit 01: Cache Inclusiveness.
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 02: Complex Cache Indexing.
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using all address bits.

Bits 31-03: Reserved = 0.

NOTES:
* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n+1 is invalid if sub-

leaf n returns EAX[4:0] as 0.
** Add one to the return value to get the result. 
***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique ini-

tial APIC IDs reserved for addressing different logical processors sharing this cache.
**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique 

Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of 
bits of the initial APIC ID. 

***** The returned value is constant for valid initial values in ECX. Valid ECX values start from 0. 

MONITOR/MWAIT Leaf (Initial EAX Value = 05H)

05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity). 
Bits 31-16: Reserved = 0.

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity). 
Bits 31-16: Reserved = 0.

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported.

Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled.

Bits 31-02: Reserved. 

EDX Bits 03-00: Number of C0* sub C-states supported using MWAIT.
Bits 07-04: Number of C1* sub C-states supported using MWAIT.
Bits 11-08: Number of C2* sub C-states supported using MWAIT.
Bits 15-12: Number of C3* sub C-states supported using MWAIT.
Bits 19-16: Number of C4* sub C-states supported using MWAIT.
Bits 23-20: Number of C5* sub C-states supported using MWAIT.
Bits 27-24: Number of C6* sub C-states supported using MWAIT.
Bits 31-28: Number of C7* sub C-states supported using MWAIT.

Table 1-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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NOTE:
* The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not ACPI C-

states.

Thermal and Power Management Leaf (Initial EAX Value = 06H)

06H EAX Bit 00: Digital temperature sensor is supported if set.
Bit 01: Intel Turbo Boost Technology available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved.
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bit 07: HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES, IA32_HWP_RE-
QUEST, IA32_HWP_STATUS) are supported if set.
Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.
Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.
Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.
Bit 12: Reserved.
Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs are 
supported if set.
Bit 14: Intel® Turbo Boost Max Technology 3.0 available.
Bit 15: HWP Capabilities. Highest Performance change is supported if set.
Bit 16: HWP PECI override is supported if set.
Bit 17: Flexible HWP is supported if set. 
Bit 18: Fast access mode, low latency, and posted IA32_HWP_REQUEST MSR are supported if set.
Bit 19: HW_FEEDBACK. IA32_HW_FEEDBACK_PTR MSR, IA32_HW_FEEDBACK_CONFIG MSR, 
IA32_PACKAGE_THERM_STATUS MSR bit 26, and IA32_PACKAGE_THERM_INTERRUPT MSR bit 25 are 
supported if set.
Bit 20: Ignoring Idle Logical Processor HWP request is supported if set.
Bit 21: Reserved.
Bit 22: HWP Control MSR Support. The IA32_HWP_CTL MSR is supported if set.
Bit 23: Intel® Thread Director supported if set. The IA32_HW_FEEDBACK_CHAR and 
IA32_HW_FEEDBACK_THREAD_CONFIG MSRs are supported if set.
Bit 24: IA32_THERM_INTERRUPT MSR bit 25 is supported if set.
Bits 31-25: Reserved.

EBX Bits 03-00: Number of Interrupt Thresholds in Digital Thermal Sensor.
Bits 31-04: Reserved. 

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The 
capability to provide a measure of delivered processor performance (since last reset of the counters), as a 
percentage of the expected processor performance when running at the TSC frequency.
Bits 02-01: Reserved = 0.
Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3] is set 
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).
Bits 07-04: Reserved = 0.
Bits 15-08: Number of Intel® Thread Director classes supported by the processor. Information for that 
many classes is written into the Intel Thread Director Table by the hardware.
Bits 31-16: Reserved = 0.

Table 1-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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EDX Bits 07-00: Bitmap of supported hardware feedback interface capabilities.
0 = When set to 1, indicates support for performance capability reporting.
1 = When set to 1, indicates support for energy efficiency capability reporting.
2-7 = Reserved

Bits 11-08: Enumerates the size of the hardware feedback interface structure in number of 4 KB pages; 
add one to the return value to get the result.
Bits 31-16: Index (starting at 0) of this logical processor's row in the hardware feedback interface struc-
ture. Note that on some parts the index may be same for multiple logical processors. On some parts the 
indices may not be contiguous, i.e., there may be unused rows in the hardware feedback interface struc-
ture.
NOTE:
Bits 0 and 1 will always be set together.

Structured Extended Feature Flags Enumeration Leaf (Initial EAX Value = 07H, ECX = 0)

07H EAX Bits 31-00: Reports the maximum input value for supported leaf 7 sub-leaves.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 02: SGX. Supports Intel® Software Guard Extensions (Intel® SGX Extensions) if 1.
Bit 03: BMI1.
Bit 04: HLE.
Bit 05: AVX2. Supports Intel® Advanced Vector Extensions 2 (Intel® AVX2) if 1.
Bit 06: FDP_EXCPTN_ONLY. x87 FPU Data Pointer updated only on x87 exceptions if 1.
Bit 07: SMEP. Supports Supervisor-Mode Execution Prevention if 1.
Bit 08: BMI2.
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context 
identifiers.
Bit 11: RTM.
Bit 12: RDT-M. Supports Intel® Resource Director Technology (Intel® RDT) Monitoring capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: MPX. Supports Intel® Memory Protection Extensions if 1.
Bit 15: RDT-A. Supports Intel® Resource Director Technology (Intel® RDT) Allocation capability if 1.
Bit 16: AVX512F.
Bit 17: AVX512DQ.
Bit 18: RDSEED.
Bit 19: ADX.
Bit 20: SMAP. Supports Supervisor-Mode Access Prevention (and the CLAC/STAC instructions) if 1.
Bit 21: AVX512_IFMA.
Bit 22: Reserved.
Bit 23: CLFLUSHOPT.
Bit 24: CLWB.
Bit 25: Intel Processor Trace.
Bit 26: AVX512PF. (Intel® Xeon Phi™ only.)
Bit 27: AVX512ER. (Intel® Xeon Phi™ only.)
Bit 28: AVX512CD.
Bit 29: SHA. supports Intel® Secure Hash Algorithm Extensions (Intel® SHA Extensions) if 1.
Bit 30: AVX512BW.
Bit 31: AVX512VL.

Table 1-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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ECX Bit 00: PREFETCHWT1. (Intel® Xeon Phi™ only.)
Bit 01: AVX512_VBMI.
Bit 02: UMIP. Supports user-mode instruction prevention if 1.
Bit 03: PKU. Supports protection keys for user-mode pages if 1.
Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU instruc-
tions).
Bit 05: WAITPKG.
Bit 06: AVX512_VBMI2.
Bit 07: CET_SS. Supports CET shadow stack features if 1. Processors that set this bit define bits 1:0 of the 
IA32_U_CET and IA32_S_CET MSRs. Enumerates support for the following MSRs: IA32_INTERRUPT_SP-
P_TABLE_ADDR, IA32_PL3_SSP, IA32_PL2_SSP, IA32_PL1_SSP, and IA32_PL0_SSP.
Bit 08: GFNI.
Bit 09: VAES.
Bit 10: VPCLMULQDQ.
Bit 11: AVX512_VNNI.
Bit 12: AVX512_BITALG.
Bits 13: TME_EN. If 1, the following MSRs are supported: IA32_TME_CAPABILITY, IA32_TME_ACTIVATE, 
IA32_TME_EXCLUDE_MASK, and IA32_TME_EXCLUDE_BASE.
Bit 14: AVX512_VPOPCNTDQ. 
Bit 15: Reserved.
Bit 16: LA57. Supports 57-bit linear addresses and five-level paging if 1.
Bits 21-17: The value of MAWAU used by the BNDLDX and BNDSTX instructions in 64-bit mode.
Bit 22: RDPID and IA32_TSC_AUX are available if 1.
Bit 23: KL. Supports Key Locker if 1.
Bit 24: BUS_LOCK_DETECT. If 1, indicates support for OS bus-lock detection.
Bit 25: CLDEMOTE. Supports cache line demote if 1.
Bit 26: Reserved.
Bit 27: MOVDIRI. Supports MOVDIRI if 1.
Bit 28: MOVDIR64B. Supports MOVDIR64B if 1.
Bit 29: ENQCMD. Supports Enqueue Stores if 1.
Bit 30: SGX_LC. Supports SGX Launch Configuration if 1.
Bit 31: PKS. Supports protection keys for supervisor-mode pages if 1.

EDX Bit 00: Reserved.
Bit 01: SGX-KEYS. If 1, Attestation Services for Intel® SGX is supported.
Bit 02: AVX512_4VNNIW. (Intel® Xeon Phi™ only.)
Bit 03: AVX512_4FMAPS. (Intel® Xeon Phi™ only.)
Bit 04: Fast Short REP MOV.
Bit 05: UINTR. If 1, the processor supports user interrupts.
Bits 07-06: Reserved.
Bit 08: AVX512_VP2INTERSECT.
Bit 09: SRBDS_CTRL. If 1, enumerates support for the IA32_MCU_OPT_CTRL MSR and indicates its bit 0 
(RNGDS_MITG_DIS) is also supported.
Bit 10: MD_CLEAR supported.
Bit 11: RTM_ALWAYS_ABORT. If set, any execution of XBEGIN immediately aborts and transitions to the 
specified fallback address.
Bit 12: Reserved.
Bit 13: If 1, RTM_FORCE_ABORT supported. Processors that set this bit support the IA32_TSX_-
FORCE_ABORT MSR. They allow software to set IA32_TSX_FORCE_ABORT[0] (RTM_FORCE_ABORT).
Bit 14: SERIALIZE.
Bit 15: Hybrid. If 1, the processor is identified as a hybrid part. If CPUID.0.MAXLEAF ≥ 1AH and 
CPUID.1A.EAX ≠ 0, then the Native Model ID Enumeration Leaf 1AH exists.
Bit 16: TSXLDTRK. If 1, the processor supports Intel TSX suspend/resume of load address tracking.
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Bit 17: Reserved.
Bit 18: PCONFIG. Supports PCONFIG if 1.
Bit 19: Architectural LBRs. If 1, indicates support for architectural LBRs.
Bit 20: CET_IBT. Supports CET indirect branch tracking features if 1. Processors that set this bit define bits 
5:2 and bits 63:10 of the IA32_U_CET and IA32_S_CET MSRs.
Bit 21: Reserved.
Bit 22: AMX-BF16. If 1, the processor supports tile computational operations on bfloat16 numbers.
Bit 23: AVX512_FP16.
Bit 24: AMX-TILE. If 1, the processor supports tile architecture.
Bits 25: AMX-INT8. If 1, the processor supports tile computational operations on 8-bit integers.
Bit 26: Enumerates support for indirect branch restricted speculation (IBRS) and the indirect branch pre-
dictor barrier (IBPB). Processors that set this bit support the IA32_SPEC_CTRL MSR and the 
IA32_PRED_CMD MSR. They allow software to set IA32_SPEC_CTRL[0] (IBRS) and IA32_PRED_CMD[0] 
(IBPB).
Bit 27: Enumerates support for single thread indirect branch predictors (STIBP). Processors that set this 
bit support the IA32_SPEC_CTRL MSR. They allow software to set IA32_SPEC_CTRL[1] (STIBP).
Bit 28: Enumerates support for L1D_FLUSH. Processors that set this bit support the IA32_FLUSH_CMD 
MSR. They allow software to set IA32_FLUSH_CMD[0] (L1D_FLUSH).
Bit 29: Enumerates support for the IA32_ARCH_CAPABILITIES MSR.
Bit 30: Enumerates support for the IA32_CORE_CAPABILITIES MSR. 

IA32_CORE_CAPABILITIES is an architectural MSR that enumerates model-specific features. A bit being 
set in this MSR indicates that a model specific feature is supported; software must still consult CPUID 
family/model/stepping to determine the behavior of the enumerated feature as features enumerated in 
IA32_CORE_CAPABILITIES may have different behavior on different processor models. Some of these 
features may have behavior that is consistent across processor models (and for which consultation of 
CPUID family/model/stepping is not necessary); such features are identified explicitly where they are 
documented in this manual.

Bit 31: Enumerates support for Speculative Store Bypass Disable (SSBD). Processors that set this bit sup-
port the IA32_SPEC_CTRL MSR. They allow software to set IA32_SPEC_CTRL[2] (SSBD).

NOTE:
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n 

exceeds the value that sub-leaf 0 returns in EAX.

Structured Extended Feature Enumeration Sub-leaf (Initial EAX Value = 07H, ECX = 1)

07H NOTES:
Leaf 07H output depends on the initial value in ECX. 
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.

EAX This field reports 0 if the sub-leaf index, 1, is invalid.
Bit 00: SHA512. If 1, supports the SHA512 instructions.
Bit 01: SM3. If 1, supports the SM3 instructions. 
Bit 02: SM4. If 1, supports the SM4 instructions.
Bit 03: Reserved.
Bit 04: AVX-VNNI. AVX (VEX-encoded) versions of the Vector Neural Network Instructions.
Bit 05: AVX512_BF16. Vector Neural Network Instructions supporting BFLOAT16 inputs and conversion 
instructions from IEEE single precision.
Bit 06: LASS. If 1, supports Linear Address Space Separation.
Bit 07: CMPCCXADD. If 1, supports the CMPccXADD instruction.
Bit 08: ArchPerfmonExt. If 1, supports ArchPerfmonExt. When set, indicates that the Architectural Perfor-
mance Monitoring Extended Leaf (EAX = 23H) is valid.
Bit 09: Reserved.
Bit 10: If 1, supports fast zero-length REP MOVSB.
Bit 11: If 1, supports fast short REP STOSB.
Bit 12: If 1, supports fast short REP CMPSB, REP SCASB.
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Bits 18-13: Reserved.
Bit 19: WRMSRNS. If 1, supports the WRMSRNS instruction.
Bit 20: Reserved.
Bit 21: AMX-FP16. If 1, the processor supports tile computational operations on FP16 numbers.
Bit 22: HRESET. If 1, supports history reset via the HRESET instruction and the IA32_HRESET_ENABLE 
MSR. When set, indicates that the Processor History Reset Leaf (EAX = 20H) is valid.
Bit 23: AVX-IFMA. If 1, supports the AVX-IFMA instructions.
Bits 25-24: Reserved.
Bit 26: LAM. If 1, supports Linear Address Masking.
Bit 27: MSRLIST. If 1, supports the RDMSRLIST and WRMSRLIST instructions and the IA32_BARRIER MSR.
Bits 29-28: Reserved.
Bit 30: INVD_DISABLE_POST_BIOS_DONE. If 1, supports INVD execution prevention after BIOS Done.
Bit 31: Reserved.

EBX This field reports 0 if the sub-leaf index, 1, is invalid.
Bit 00: Enumerates the presence of the IA32_PPIN and IA32_PPIN_CTL MSRs. If 1, these MSRs are sup-
ported.
Bits 02-01: Reserved.
Bit 03: CPUIDMAXVAL_LIM_RMV. If 1, IA32_MISC_ENABLE[bit 22] cannot be set to 1 to limit the value 
returned by CPUID.00H:EAX[bits 7:0].
Bits 31-04: Reserved.

ECX This field reports 0 if the sub-leaf index, 1, is invalid; otherwise it is reserved.

EDX This field reports 0 if the sub-leaf index, 1, is invalid.
Bits 03-00: Reserved.
Bit 04: AVX-VNNI-INT8. If 1, supports the AVX-VNNI-INT8 instructions.
Bit 05: AVX-NE-CONVERT. If 1, supports the AVX-NE-CONVERT instructions.
Bits 09-06: Reserved.
Bit 10: AVX-VNNI-INT16. If 1, supports the AVX-VNNI-INT16 instructions.
Bits 13-09: Reserved.
Bit 14: PREFETCHI. If 1, supports the PREFETCHIT0/1 instructions.
Bits 16-15: Reserved.
Bit 17: UIRET_UIF. If 1, UIRET sets UIF to the value of bit 1 of the RFLAGS image loaded from the stack.
Bit 18: CET_SSS. If 1, indicates that an operating system can enable supervisor shadow stacks as long as 
it ensures that a supervisor shadow stack cannot become prematurely busy due to page faults (see Sec-
tion 18.2.3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1). When 
emulating the CPUID instruction, a virtual-machine monitor (VMM) should return this bit as 1 only if it 
ensures that VM exits cannot cause a guest supervisor shadow stack to appear to be prematurely busy. 
Such a VMM could set the “prematurely busy shadow stack” VM-exit control and use the additional infor-
mation that it provides.
Bit 19: AVX10. If 1, supports the Intel® AVX10 instructions and indicates the presence of CPUID Leaf 24H, 
which enumerates version number and supported vector lengths.
Bits 31-20: Reserved.

Structured Extended Feature Enumeration Sub-leaf (Initial EAX Value = 07H, ECX = 2)

07H NOTES:
Leaf 07H output depends on the initial value in ECX. 
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.

EAX This field reports 0 if the sub-leaf index, 2, is invalid; otherwise it is reserved.

EBX This field reports 0 if the sub-leaf index, 2, is invalid; otherwise it is reserved.

ECX This field reports 0 if the sub-leaf index, 2, is invalid; otherwise it is reserved.
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EDX This field reports 0 if the sub-leaf index, 2, is invalid.
Bit 00: PSFD. If 1, indicates bit 7 of the IA32_SPEC_CTRL MSR is supported. Bit 7 of this MSR disables Fast 
Store Forwarding Predictor without disabling Speculative Store Bypass.
Bit 01: IPRED_CTRL. If 1, indicates bits 3 and 4 of the IA32_SPEC_CTRL MSR are supported. Bit 3 of this 
MSR enables IPRED_DIS control for CPL3. Bit 4 of this MSR enables IPRED_DIS control for CPL0/1/2.
Bit 02: RRSBA_CTRL. If 1, indicates bits 5 and 6 of the IA32_SPEC_CTRL MSR are supported. Bit 5 of this 
MSR disables RRSBA behavior for CPL3. Bit 6 of this MSR disables RRSBA behavior for CPL0/1/2.
Bit 03: DDPD_U. If 1, indicates bit 8 of the IA32_SPEC_CTRL MSR is supported. Bit 8 of this MSR disables 
Data Dependent Prefetcher.
Bit 04: BHI_CTRL. If 1, indicates bit 10 of the IA32_SPEC_CTRL MSR is supported. Bit 10 of this MSR 
enables BHI_DIS_S behavior.
Bit 05: MCDT_NO. Processors that enumerate this bit as 1 do not exhibit MXCSR Configuration Dependent 
Timing (MCDT) behavior and do not need to be mitigated to avoid data-dependent behavior for certain 
instructions.
Bit 06: If 1, supports the UC-lock disable feature and it causes #AC.
Bit 07: MONITOR_MITG_NO. If 1, indicates that the MONITOR/UMONITOR instructions are not affected by 
performance or power issues due to MONITOR/UMONITOR instructions exceeding the capacity of an 
internal monitor tracking table. If 0, then the product may be affected by this issue.
Bits 31-08: Reserved.

Direct Cache Access Information Leaf (Initial EAX Value = 09H)

09H EAX Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H).

EBX Reserved. 

ECX Reserved.

EDX Reserved. 

Architectural Performance Monitoring Leaf (Initial EAX Value = 0AH)

0AH EAX Bits 07-00: Version ID of architectural performance monitoring.
Bits 15-08: Number of general-purpose performance monitoring counter per logical processor.
Bits 23-16: Bit width of general-purpose, performance monitoring counter.
Bits 31-24: Length of EBX bit vector to enumerate architectural performance monitoring events. Archi-
tectural event x is supported if EBX[x]=0 && EAX[31:24]>x.

EBX Bit 00: Core cycle event not available if 1 or if EAX[31:24]<1.
Bit 01: Instruction retired event not available if 1 or if EAX[31:24]<2.
Bit 02: Reference cycles event not available if 1 or if EAX[31:24]<3.
Bit 03: Last-level cache reference event not available if 1 or if EAX[31:24]<4. 
Bit 04: Last-level cache misses event not available if 1 or if EAX[31:24]<5.
Bit 05: Branch instruction retired event not available if 1 or if EAX[31:24]<6.
Bit 06: Branch mispredict retired event not available if 1 or if EAX[31:24]<7.
Bit 07: Top-down slots event not available if 1 or if EAX[31:24]<8.
Bits 31-08: Reserved = 0.

ECX Bits 31-00: Supported fixed counters bit mask. Fixed-function performance counter 'i' is supported if bit ‘i’ 
is 1 (first counter index starts at zero). It is recommended to use the following logic to determine if a 
Fixed Counter is supported: FxCtr[i]_is_supported := ECX[i] || (EDX[4:0] > i);

EDX Bits 04-00: Number of contiguous fixed-function performance counters starting from 0 (if Version ID > 1).
Bits 12-05: Bit width of fixed-function performance counters (if Version ID > 1).
Bits 14-13: Reserved = 0.
Bit 15: AnyThread deprecation.
Bits 31-16: Reserved = 0.
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Extended Topology Enumeration Leaf (Initial EAX Value = 0BH, ECX ≥ 0)

0BH NOTES:
CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the existence 
of Leaf 1FH before using leaf 0BH.
The sub-leaves of CPUID leaf 0BH describe an ordered hierarchy of logical processors starting from the 
smallest-scoped domain of a Logical Processor (sub-leaf index 0) to the Core domain (sub-leaf index 1) 
to the largest-scoped domain (the last valid sub-leaf index) that is implicitly subordinate to the 
unenumerated highest-scoped domain of the processor package (socket).
The details of each valid domain is enumerated by a corresponding sub-leaf. Details for a domain include 
its type and how all instances of that domain determine the number of logical processors and x2 APIC 
ID partitioning at the next higher-scoped domain. The ordering of domains within the hierarchy is fixed 
architecturally as shown below. For a given processor, not all domains may be relevant or enumerated; 
however, the logical processor and core domains are always enumerated.
For two valid sub-leaves N and N+1, sub-leaf N+1 represents the next immediate higher-scoped 
domain with respect to the domain of sub-leaf N for the given processor.
If sub-leaf index “N” returns an invalid domain type in ECX[15:08] (00H), then all sub-leaves with an 
index greater than “N” shall also return an invalid domain type. A sub-leaf returning an invalid domain 
always returns 0 in EAX and EBX.

EAX Bits 04-00: The number of bits that the x2APIC ID must be shifted to the right to address instances of the 
next higher-scoped domain. When logical processor is not supported by the processor, the value of this 
field at the Logical Processor domain sub-leaf may be returned as either 0 (no allocated bits in the x2APIC 
ID) or 1 (one allocated bit in the x2APIC ID); software should plan accordingly.
Bits 31-05: Reserved.

EBX Bits 15-00: The number of logical processors across all instances of this domain within the next higher-
scoped domain. (For example, in a processor socket/package comprising “M” dies of “N” cores each, where 
each core has “L” logical processors, the “die” domain sub-leaf value of this field would be M*N*L.) This 
number reflects configuration as shipped by Intel. Note, software must not use this field to enumerate 
processor topology*.
Bits 31-16: Reserved.

ECX Bits 07-00: The input ECX sub-leaf index.
Bits 15-08: Domain Type. This field provides an identification value which indicates the domain as shown 
below. Although domains are ordered, their assigned identification values are not and software should 
not depend on it.

Hierarchy Domain Domain Type Identification Value
Lowest Logical Processor 1
Highest Core 2

(Note that enumeration values of 0 and 3-255 are reserved.)

Bits 31-16: Reserved.

EDX Bits 31-00: x2APIC ID of the current logical processor.

NOTES:
* Software must not use the value of EBX[15:0] to enumerate processor topology of the system. The 
value is only intended for display and diagnostic purposes. The actual number of logical processors avail-
able to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software and 
platform hardware configurations.

Processor Extended State Enumeration Main Leaf (Initial EAX Value = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0). 
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EAX Bits 31-00: Reports the supported bits of the lower 32 bits of XCR0. XCR0[n] can be set to 1 only if 
EAX[n] is 1.
Bit 00: x87 state. 
Bit 01: SSE state.
Bit 02: AVX state.
Bits 04-03: MPX state.
Bits 07-05: AVX-512 state.
Bit 08: Used for IA32_XSS.
Bit 09: PKRU state.
Bits 16-10: Used for IA32_XSS.
Bit 17: TILECFG state.
Bit 18: TILEDATA state.
Bits 31-19: Reserved.

EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by 
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area 
are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the 
XSAVE/XRSTOR save area required by all supported features in the processor, i.e., all the valid bit fields in 
XCR0. 

EDX Bit 31-00: Reports the supported bits of the upper 32 bits of XCR0. XCR0[n+32] can be set to 1 only if 
EDX[n] is 1.
Bits 31-00: Reserved.

Processor Extended State Enumeration Sub-leaf (Initial EAX Value = 0DH, ECX = 1)

0DH EAX Bit 00: XSAVEOPT is available.
Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set.
Bit 02: Supports XGETBV with ECX = 1 if set.
Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set.
Bit 04: Supports extended feature disable (XFD) if set.
Bits 31-05: Reserved.

EBX Bits 31-00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.

NOTES:
If EAX[3] is enumerated as 0 and EAX[1] is enumerated as 1, EBX enumerates the size of the XSAVE area 
containing all states enabled by XCRO. If EAX[1] and EAX[3] are both enumerated as 0, EBX enumerates 
zero.

ECX Bits 31-00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can be 
set to 1 only if ECX[n] is 1.
Bits 07-00: Used for XCR0.
Bit 08: PT state.
Bit 09: Used for XCR0.
Bit 10: PASID state.
Bit 11: CET user state.
Bit 12: CET supervisor state.
Bit 13: HDC state.
Bit 14: UINTR state.
Bit 15: LBR state (only for the architectural LBR feature).
Bit 16: HWP state.
Bits 18-17: Used for XCR0.
Bits 31-19: Reserved.

EDX Bits 31-00: Reports the supported bits of the upper 32 bits of the IA32_XSS MSR. IA32_XSS[n+32] can 
be set to 1 only if EDX[n] is 1.
Bits 31-00: Reserved.
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Processor Extended State Enumeration Sub-leaves (Initial EAX Value = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX. 
Each sub-leaf index (starting at position 2) is supported if it corresponds to a supported bit in either the 
XCR0 register or the IA32_XSS MSR.
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n (0 ≤ n ≤ 31) is invalid 

if sub-leaf 0 returns 0 in EAX[n] and sub-leaf 1 returns 0 in ECX[n]. Sub-leaf n (32 ≤ n ≤ 63) is invalid if 
sub-leaf 0 returns 0 in EDX[n-32] and sub-leaf 1 returns 0 in EDX[n-32].

EAX Bits 31-00: The size in bytes (from the offset specified in EBX) of the save area for an extended state 
feature associated with a valid sub-leaf index, n.

EBX Bits 31-00: The offset in bytes of this extended state component’s save area from the beginning of the 
XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, does not map to a valid bit in the XCR0 register*.

ECX Bit 00 is set if the bit n (corresponding to the sub-leaf index) is supported in the IA32_XSS MSR; it is clear 
if bit n is instead supported in XCR0.
Bit 01 is set if, when the compacted format of an XSAVE area is used, this extended state component 
located on the next 64-byte boundary following the preceding state component (otherwise, it is located 
immediately following the preceding state component).
Bits 31-02 are reserved.
This field reports 0 if the sub-leaf index, n, is invalid*.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Intel® Resource Director Technology (Intel® RDT) Monitoring Enumeration Sub-leaf (Initial EAX Value = 0FH, ECX = 0)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX. 
Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX.

EAX Reserved.

EBX Bits 31-00: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache Intel RDT Monitoring if 1.
Bits 31-02: Reserved.

L3 Cache Intel® RDT Monitoring Capability Enumeration Sub-leaf (Initial EAX Value = 0FH, ECX = 1)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX. 

EAX Bits 07-00:The counter width is encoded as an offset from 24b. A value of zero in this field indicates that 
24-bit counters are supported. A value of 8 in this field indicates that 32-bit counters are supported.
Bit 08: If 1, indicates the presence of an overflow bit in the IA32_QM_CTR MSR (bit 61).
Bit 09: If 1, indicates the presence of non-CPU agent Intel RDT CMT support.
Bit 10: If 1, indicates the presence of non-CPU agent Intel RDT MBM support.
Bits 31-11: Reserved.

EBX Bits 31-00: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes) and Mem-
ory Bandwidth Monitoring (MBM) metrics.

ECX Maximum range (zero-based) of RMID of this resource type.

Table 1-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
CPUID—CPU Identification Vol. 2A 3-233



EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bit 01: Supports L3 Total Bandwidth monitoring if 1.
Bit 02: Supports L3 Local Bandwidth monitoring if 1.
Bits 31-03: Reserved.

Intel® Resource Director Technology (Intel® RDT) Allocation Enumeration Sub-leaf (Initial EAX Value = 10H, ECX = 0)

10H NOTES:
Leaf 10H output depends on the initial value in ECX. 
Sub-leaf index 0 reports valid resource identification (ResID) starting at bit position 1 of EBX.

EAX Reserved.

EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache Allocation Technology if 1.
Bit 02: Supports L2 Cache Allocation Technology if 1.
Bit 03: Supports Memory Bandwidth Allocation if 1.
Bits 31-04: Reserved.

ECX Reserved.

EDX Reserved.

L3 Cache Allocation Technology Enumeration Sub-leaf (Initial EAX Value = 10H, ECX = ResID =1)

10H NOTES:
Leaf 10H output depends on the initial value in ECX. 

EAX Bits 04-00: Length of the capacity bit mask for the corresponding ResID. Add one to the return value to 
get the result.
Bits 31-05: Reserved.

EBX Bits 31-00: Bit-granular map of isolation/contention of allocation units.

ECX Bit 00: Reserved.
Bit 01: If 1, indicates L3 CAT for non-CPU agents is supported.
Bit 02: If 1, indicates L3 Code and Data Prioritization Technology is supported.
Bit 03: If 1, indicates non-contiguous capacity bitmask is supported. The bits that are set in the various 
IA32_L3_MASK_n registers do not have to be contiguous.
Bits 31-04: Reserved.

EDX Bits 15-00: Highest Class of Service (CLOS) number supported for this ResID.
Bits 31-16: Reserved.

L2 Cache Allocation Technology Enumeration Sub-leaf (Initial EAX Value = 10H, ECX = ResID =2)

10H NOTES:
Leaf 10H output depends on the initial value in ECX. 

EAX Bits 04-00: Length of the capacity bit mask for the corresponding ResID. Add one to the return value to 
get the result.
Bits 31-05: Reserved.

EBX Bits 31-00: Bit-granular map of isolation/contention of allocation units.

ECX Bits 01-00: Reserved.
Bit 02: CDP. If 1, indicates L2 Code and Data Prioritization Technology is supported.
Bit 03: If 1, indicates non-contiguous capacity bitmask is supported. The bits that are set in the various 
IA32_L2_MASK_n registers do not have to be contiguous.
Bits 31-04: Reserved.

EDX Bits 15-00: Highest CLOS number supported for this ResID.
Bits 31-16: Reserved.
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Memory Bandwidth Allocation Enumeration Sub-leaf (Initial EAX Value = 10H, ECX = ResID =3)

10H NOTES:
Leaf 10H output depends on the initial value in ECX. 

EAX Bits 11-00: Reports the maximum MBA throttling value supported for the corresponding ResID. Add one 
to the return value to get the result.
Bits 31-12: Reserved.

EBX Bits 31-00: Reserved.

ECX Bits 01-00: Reserved.
Bit 02: Reports whether the response of the delay values is linear. 
Bits 31-03: Reserved.

EDX Bits 15-00: Highest CLOS number supported for this ResID.
Bits 31-16: Reserved.

Intel® SGX Capability Enumeration Leaf, Sub-leaf 0 (Initial EAX Value = 12H, ECX = 0)

12H NOTES:
Leaf 12H sub-leaf 0 (ECX = 0) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1. 

EAX Bit 00: SGX1. If 1, Indicates Intel SGX supports the collection of SGX1 leaf functions.
Bit 01: SGX2. If 1, Indicates Intel SGX supports the collection of SGX2 leaf functions.
Bits 04-02: Reserved.
Bit 05: If 1, indicates Intel SGX supports ENCLV instruction leaves EINCVIRTCHILD, EDECVIRTCHILD, and 
ESETCONTEXT.
Bit 06: If 1, indicates Intel SGX supports ENCLS instruction leaves ETRACKC, ERDINFO, ELDBC, and ELDUC.
Bit 07: If 1, indicates Intel SGX supports ENCLU instruction leaf EVERIFYREPORT2.
Bits 09-08: Reserved.
Bit 10: If 1, indicates Intel SGX supports ENCLS instruction leaf EUPDATESVN.
Bit 11: If 1, indicates Intel SGX supports ENCLU instruction leaf EDECCSSA.
Bits 31-12: Reserved. 

EBX Bits 31-00: MISCSELECT. Bit vector of supported extended SGX features.

ECX Bits 31-00: Reserved.

EDX Bits 07-00: MaxEnclaveSize_Not64. The maximum supported enclave size in non-64-bit mode is 
2^(EDX[7:0]).
Bits 15-08: MaxEnclaveSize_64. The maximum supported enclave size in 64-bit mode is 2^(EDX[15:8]).
Bits 31-16: Reserved.

Intel SGX Attributes Enumeration Leaf, Sub-leaf 1 (Initial EAX Value = 12H, ECX = 1)

12H NOTES:
Leaf 12H sub-leaf 1 (ECX = 1) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1. 

EAX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[31:0] that software can set with ECREATE.

EBX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[63:32] that software can set with ECREATE.

ECX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[95:64] that software can set with ECREATE.

EDX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[127:96] that software can set with ECREATE.

Intel® SGX EPC Enumeration Leaf, Sub-leaves (Initial EAX Value = 12H, ECX = 2 or higher)

12H NOTES:
Leaf 12H sub-leaf 2 or higher (ECX >= 2) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1. 
For sub-leaves (ECX = 2 or higher), definition of EDX,ECX,EBX,EAX[31:4] depends on the sub-leaf type
listed below. 
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EAX Bit 03-00: Sub-leaf Type
0000b: Indicates this sub-leaf is invalid. 
0001b: This sub-leaf enumerates an EPC section. EBX:EAX and EDX:ECX provide information on the 
Enclave Page Cache (EPC) section.
All other type encodings are reserved.

Type 0000b. This sub-leaf is invalid. 

EDX:ECX:EBX:EAX return 0.

Type 0001b. This sub-leaf enumerates an EPC sections with EDX:ECX, EBX:EAX defined as follows. 

EAX[11:04]: Reserved (enumerate 0). 
EAX[31:12]: Bits 31:12 of the physical address of the base of the EPC section. 

EBX[19:00]: Bits 51:32 of the physical address of the base of the EPC section. 
EBX[31:20]: Reserved.

ECX[03:00]: EPC section property encoding defined as follows: 
If ECX[3:0] = 0000b, then all bits of the EDX:ECX pair are enumerated as 0.
If ECX[3:0] = 0001b, then this section has confidentiality, integrity, and replay protection.
If ECX[3:0] = 0010b, then this section has confidentiality protection only.
If ECX[3:0] = 0011b, then this section has confidentiality and integrity protection.
All other encodings are reserved.

ECX[11:04]: Reserved (enumerate 0). 
ECX[31:12]: Bits 31:12 of the size of the corresponding EPC section within the Processor Reserved 
Memory.

EDX[19:00]: Bits 51:32 of the size of the corresponding EPC section within the Processor Reserved 
Memory. 
EDX[31:20]: Reserved.

Intel® Processor Trace Enumeration Main Leaf (Initial EAX Value = 14H, ECX = 0)

14H NOTES:
Leaf 14H main leaf (ECX = 0). 

EAX Bits 31-00: Reports the maximum sub-leaf supported in leaf 14H.

EBX Bit 00: If 1, indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH MSR 
can be accessed.
Bit 01: If 1, indicates support of Configurable PSB and Cycle-Accurate Mode.
Bit 02: If 1, indicates support of IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs across 
warm reset.
Bit 03: If 1, indicates support of MTC timing packet and suppression of COFI-based packets.
Bit 04: If 1, indicates support of PTWRITE. Writes can set IA32_RTIT_CTL[12] (PTWEn) and 
IA32_RTIT_CTL[5] (FUPonPTW), and PTWRITE can generate packets.
Bit 05: If 1, indicates support of Power Event Trace. Writes can set IA32_RTIT_CTL[4] (PwrEvtEn), 
enabling Power Event Trace packet generation.
Bit 06: If 1, indicates support for PSB and PMI preservation. Writes can set IA32_RTIT_CTL[56] (InjectPsb-
PmiOnEnable), enabling the processor to set IA32_RTIT_STATUS[7] (PendTopaPMI) and/or IA32_R-
TIT_STATUS[6] (PendPSB) in order to preserve ToPA PMIs and/or PSBs otherwise lost due to Intel PT 
disable. Writes can also set PendToPAPMI and PendPSB.

Bit 07: If 1, writes can set IA32_RTIT_CTL[31] (EventEn), enabling Event Trace packet generation.
Bit 08: If 1, writes can set IA32_RTIT_CTL[55] (DisTNT), disabling TNT packet generation.
Bit 31-09: Reserved. 
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ECX Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output 
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the 
MaskOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bit 02: If 1, indicates support of Single-Range Output scheme.
Bit 03: If 1, indicates support of output to Trace Transport subsystem.
Bit 30-04: Reserved.
Bit 31: If 1, generated packets which contain IP payloads have LIP values, which include the CS base com-
ponent.

EDX Bits 31-00: Reserved.

Intel® Processor Trace Enumeration Sub-leaf (Initial EAX Value = 14H, ECX = 1)

14H EAX Bits 02-00: Number of configurable Address Ranges for filtering.
Bits 15-03: Reserved.
Bits 31-16: Bitmap of supported MTC period encodings.

EBX Bits 15-00: Bitmap of supported Cycle Threshold value encodings.
Bit 31-16: Bitmap of supported Configurable PSB frequency encodings.

ECX Bits 31-00: Reserved.

EDX Bits 31-00: Reserved.

Time Stamp Counter and Nominal Core Crystal Clock Information Leaf (Initial EAX Value = 15H)

15H NOTES:
If EBX[31:0] is 0, the TSC/”core crystal clock” ratio is not enumerated.
EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock frequency.
If ECX is 0, the nominal core crystal clock frequency is not enumerated.
“TSC frequency” = “core crystal clock frequency” * EBX/EAX.
The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies.

EAX Bits 31-00: An unsigned integer which is the denominator of the TSC/”core crystal clock” ratio.

EBX Bits 31-00: An unsigned integer which is the numerator of the TSC/”core crystal clock” ratio.

ECX Bits 31-00: An unsigned integer which is the nominal frequency of the core crystal clock in Hz.

EDX Bits 31-00: Reserved = 0.

Processor Frequency Information Leaf (Initial EAX Value = 16H)

16H EAX Bits 15-00: Processor Base Frequency (in MHz).
Bits 31-16: Reserved =0.

EBX Bits 15-00: Maximum Frequency (in MHz).
Bits 31-16: Reserved = 0.

ECX Bits 15-00: Bus (Reference) Frequency (in MHz).
Bits 31-16: Reserved = 0.

EDX Reserved.
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NOTES:
* Data is returned from this interface in accordance with the processor's specification and does not reflect 
actual values. Suitable use of this data includes the display of processor information in like manner to the 
processor brand string and for determining the appropriate range to use when displaying processor 
information e.g. frequency history graphs. The returned information should not be used for any other 
purpose as the returned information does not accurately correlate to information / counters returned by 
other processor interfaces. 

While a processor may support the Processor Frequency Information leaf, fields that return a value of zero 
are not supported.

System-On-Chip Vendor Attribute Enumeration Main Leaf (Initial EAX Value = 17H, ECX = 0)

17H NOTES:
Leaf 17H main leaf (ECX = 0).
Leaf 17H output depends on the initial value in ECX.
Leaf 17H sub-leaves 1 through 3 reports SOC Vendor Brand String.
Leaf 17H is valid if MaxSOCID_Index >= 3.
Leaf 17H sub-leaves 4 and above are reserved.

EAX Bits 31-00: MaxSOCID_Index. Reports the maximum input value of supported sub-leaf in leaf 17H.

EBX Bits 15-00: SOC Vendor ID.
Bit 16: IsVendorScheme. If 1, the SOC Vendor ID field is assigned via an industry standard enumeration
scheme. Otherwise, the SOC Vendor ID field is assigned by Intel.
Bits 31-17: Reserved = 0.

ECX Bits 31-00: Project ID. A unique number an SOC vendor assigns to its SOC projects.

EDX Bits 31-00: Stepping ID. A unique number within an SOC project that an SOC vendor assigns.

System-On-Chip Vendor Attribute Enumeration Sub-leaf (Initial EAX Value = 17H, ECX = 1..3)

17H EAX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

EBX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

ECX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

EDX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

NOTES:
Leaf 17H output depends on the initial value in ECX.
SOC Vendor Brand String is a UTF-8 encoded string padded with trailing bytes of 00H.
The complete SOC Vendor Brand String is constructed by concatenating in ascending order of
EAX:EBX:ECX:EDX and from the sub-leaf 1 fragment towards sub-leaf 3.

System-On-Chip Vendor Attribute Enumeration Sub-leaves (Initial EAX Value = 17H, ECX > MaxSOCID_Index)

17H NOTES:
Leaf 17H output depends on the initial value in ECX.

EAX Bits 31-00: Reserved = 0.

EBX Bits 31-00: Reserved = 0.

ECX Bits 31-00: Reserved = 0.

EDX Bits 31-00: Reserved = 0.
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Deterministic Address Translation Parameters Main Leaf (Initial EAX Value = 18H, ECX = 0)

18H NOTES:
Each sub-leaf enumerates a different address translation structure. 
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n 
exceeds the value that sub-leaf 0 returns in EAX. A sub-leaf index is also invalid if EDX[4:0] returns 0. 
Valid sub-leaves do not need to be contiguous or in any particular order. A valid sub-leaf may be in a 
higher input ECX value than an invalid sub-leaf or than a valid sub-leaf of a higher or lower-level struc-
ture. 
* Some unified TLBs will allow a single TLB entry to satisfy data read/write and instruction fetches. 
Others will require separate entries (e.g., one loaded on data read/write and another loaded on an 
instruction fetch). See the Intel® 64 and IA-32 Architectures Optimization Reference Manual for details 
of a particular product. 
** Add one to the return value to get the result.

EAX Bits 31-00: Reports the maximum input value of supported sub-leaf in leaf 18H.

EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07-04: Reserved.
Bits 10-08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15-11: Reserved.
Bits 31-16: W = Ways of associativity.

ECX Bits 31-00: S = Number of Sets.

EDX Bits 04-00: Translation cache type field.
00000b: Null (indicates this sub-leaf is not valid).
00001b: Data TLB.
00010b: Instruction TLB.
00011b: Unified TLB*.
00100b: Load Only TLB. Hit on loads; fills on both loads and stores.
00101b: Store Only TLB. Hit on stores; fill on stores.
All other encodings are reserved.

Bits 07-05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13-09: Reserved.
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this translation cache.**
Bits 31-26: Reserved.

Deterministic Address Translation Parameters Sub-leaf (Initial EAX Value = 18H, ECX ≥ 1)

18H NOTES:
Each sub-leaf enumerates a different address translation structure. 
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n 
exceeds the value that sub-leaf 0 returns in EAX. A sub-leaf index is also invalid if EDX[4:0] returns 0. 
Valid sub-leaves do not need to be contiguous or in any particular order. A valid sub-leaf may be in a 
higher input ECX value than an invalid sub-leaf or than a valid sub-leaf of a higher or lower-level struc-
ture. 
* Some unified TLBs will allow a single TLB entry to satisfy data read/write and instruction fetches. 
Others will require separate entries (e.g., one loaded on data read/write and another loaded on an 
instruction fetch. See the Intel® 64 and IA-32 Architectures Optimization Reference Manual for details 
of a particular product. 
** Add one to the return value to get the result.
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EAX Bits 31-00: Reserved.

EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07-04: Reserved.
Bits 10-08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15-11: Reserved.
Bits 31-16: W = Ways of associativity.

ECX Bits 31-00: S = Number of Sets.

EDX Bits 04-00: Translation cache type field.
0000b: Null (indicates this sub-leaf is not valid).
0001b: Data TLB.
0010b: Instruction TLB.
0011b: Unified TLB*.
All other encodings are reserved.

Bits 07-05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13-09: Reserved.
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this translation cache**
Bits 31-26: Reserved.

Key Locker Leaf (Initial EAX Value = 19H)

19H EAX Bit 00: Key Locker restriction of CPL0-only supported.
Bit 01: Key Locker restriction of no-encrypt supported.
Bit 02: Key Locker restriction of no-decrypt supported.
Bits 31-03: Reserved.

EBX Bit 00: AESKLE. If 1, the AES Key Locker instructions are fully enabled.
Bit 01: Reserved.
Bit 02: If 1, the AES wide Key Locker instructions are supported.
Bit 03: Reserved.
Bit 04: If 1, the platform supports the Key Locker MSRs (IA32_COPY_LOCAL_TO_PLATFORM, 
IA23_COPY_PLATFORM_TO_LOCAL, IA32_COPY_STATUS, and IA32_IWKEYBACKUP_STATUS) and backing 
up the internal wrapping key.
Bits 31-05: Reserved.

ECX Bit 00: If 1, the NoBackup parameter to LOADIWKEY is supported.
Bit 01: If 1, KeySource encoding of 1 (randomization of the internal wrapping key) is supported.
Bits 31-02: Reserved.

EDX Reserved.

Native Model ID Enumeration Leaf (Initial EAX Value = 1AH, ECX = 0)

1AH NOTES:
This leaf exists on all hybrid parts, however this leaf is not only available on hybrid parts. The following 
algorithm is used for detection of this leaf: 
If CPUID.0.MAXLEAF ≥ 1AH and CPUID.1A.EAX ≠ 0, then the leaf exists.
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EAX Enumerates the native model ID and core type.
Bits 31-24: Core type*

10H: Reserved
20H: Intel Atom®
30H: Reserved
40H: Intel® Core™

Bits 23-00: Native model ID of the core. The core-type and native model ID can be used to uniquely 
identify the microarchitecture of the core. This native model ID is not unique across core types, and not 
related to the model ID reported in CPUID leaf 01H, and does not identify the SOC.

* The core type may only be used as an identification of the microarchitecture for this logical processor 
and its numeric value has no significance, neither large nor small. This field neither implies nor expresses 
any other attribute to this logical processor and software should not assume any.

EBX Reserved.

ECX Reserved.

EDX Reserved.

PCONFIG Information Sub-leaf (Initial EAX Value = 1BH, ECX ≥ 0)

1BH For details on this sub-leaf, see “INPUT EAX = 1BH: Returns PCONFIG Information” on page 1-259.

NOTE:
Leaf 1BH is supported if CPUID.(EAX=07H, ECX=0H):EDX[18] = 1.

Last Branch Records Information Leaf (Initial EAX Value = 1CH)

1CH NOTE:
This leaf pertains to the architectural feature.

EAX Bits 07-00: Supported LBR Depth Values. For each bit n set in this field, the IA32_LBR_DEPTH.DEPTH 
value 8*(n+1) is supported.
Bits 29-08: Reserved.
Bit 30: Deep C-state Reset. If set, indicates that LBRs may be cleared on an MWAIT that requests a C-state 
numerically greater than C1.
Bit 31: IP Values Contain LIP. If set, LBR IP values contain LIP. If clear, IP values contain Effective IP.

EBX Bit 00: CPL Filtering Supported. If set, the processor supports setting IA32_LBR_CTL[2:1] to non-zero 
value.
Bit 01: Branch Filtering Supported. If set, the processor supports setting IA32_LBR_CTL[22:16] to non-
zero value.
Bit 02: Call-stack Mode Supported. If set, the processor supports setting IA32_LBR_CTL[3] to 1.
Bits 31-03: Reserved.

ECX Bit 00: Mispredict Bit Supported. IA32_LBR_x_INFO[63] holds indication of branch misprediction 
(MISPRED).
Bit 01: Timed LBRs Supported. IA32_LBR_x_INFO[15:0] holds CPU cycles since last LBR entry (CYC_CNT), 
and IA32_LBR_x_INFO[60] holds an indication of whether the value held there is valid (CYC_CNT_VALID).
Bit 02: Branch Type Field Supported. IA32_LBR_INFO_x[59:56] holds indication of the recorded 
operation's branch type (BR_TYPE).
Bits 15-03: Reserved.
Bits 19-16: Event Logging Supported bitmap.
Bits 31-20: Reserved.

EDX Bits 31-00: Reserved.

Tile Information Main Leaf (Initial EAX Value = 1DH, ECX = 0)

1DH NOTES:
For sub-leaves of 1DH, they are indexed by the palette id.
Leaf 1DH sub-leaves 2 and above are reserved.
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EAX Bits 31-00: max_palette. Highest numbered palette sub-leaf. Value = 1.

EBX Bits 31-00: Reserved = 0.

ECX Bits 31-00: Reserved = 0.

EDX Bits 31-00: Reserved = 0.

Tile Palette 1 Sub-leaf (Initial EAX Value = 1DH, ECX = 1)

1DH EAX Bits 15-00: Palette 1 total_tile_bytes. Value = 8192. 
Bits 31-16: Palette 1 bytes_per_tile. Value = 1024.

EBX Bits 15-00: Palette 1 bytes_per_row. Value = 64.
Bits 31-16: Palette 1 max_names (number of tile registers). Value = 8.

ECX Bits 15-00: Palette 1 max_rows. Value = 16.
Bits 31-16: Reserved = 0.

EDX Bits 31-00: Reserved = 0.

TMUL Information Main Leaf (Initial EAX Value = 1EH, ECX = 0)

1EH NOTE:
Leaf 1EH sub-leaves 1 and above are reserved.

EAX Bits 31-00: Reserved = 0.

EBX Bits 07-00: tmul_maxk (rows or columns). Value = 16.
Bits 23-08: tmul_maxn (column bytes). Value = 64.
Bits 31-24: Reserved = 0.

ECX Bits 31-00: Reserved = 0.

EDX Bits 31-00: Reserved = 0.

V2 Extended Topology Enumeration Leaf (Initial EAX Value = 1FH, ECX ≥ 0)

1FH NOTES:
CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends using leaf 1FH when available 
rather than leaf 0BH and ensuring that any leaf 0BH algorithms are updated to support leaf 1FH.
The sub-leaves of CPUID leaf 1FH describe an ordered hierarchy of logical processors starting from the 
smallest-scoped domain of a Logical Processor (sub-leaf index 0) to the Core domain (sub-leaf index 1) 
to the largest-scoped domain (the last valid sub-leaf index) that is implicitly subordinate to the 
unenumerated highest-scoped domain of the processor package (socket).
The details of each valid domain is enumerated by a corresponding sub-leaf. Details for a domain include 
its type and how all instances of that domain determine the number of logical processors and x2 APIC 
ID partitioning at the next higher-scoped domain. The ordering of domains within the hierarchy is fixed 
architecturally as shown below. For a given processor, not all domains may be relevant or enumerated; 
however, the logical processor and core domains are always enumerated. As an example, a processor 
may report an ordered hierarchy consisting only of “Logical Processor,” “Core,” and “Die.” 
For two valid sub-leaves N and N+1, sub-leaf N+1 represents the next immediate higher-scoped 
domain with respect to the domain of sub-leaf N for the given processor.
If sub-leaf index “N” returns an invalid domain type in ECX[15:08] (00H), then all sub-leaves with an 
index greater than “N” shall also return an invalid domain type. A sub-leaf returning an invalid domain 
always returns 0 in EAX and EBX.

EAX Bits 04-00: The number of bits that the x2APIC ID must be shifted to the right to address instances of the 
next higher-scoped domain. When logical processor is not supported by the processor, the value of this 
field at the Logical Processor domain sub-leaf may be returned as either 0 (no allocated bits in the x2APIC 
ID) or 1 (one allocated bit in the x2APIC ID); software should plan accordingly.
Bits 31-05: Reserved.
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EBX Bits 15-00: The number of logical processors across all instances of this domain within the next higher-
scoped domain relative to this current logical processor. (For example, in a processor socket/package 
comprising “M” dies of “N” cores each, where each core has “L” logical processors, the “die” domain sub-
leaf value of this field would be M*N*L. In an asymmetric topology this would be the summation of the 
value across the lower domain level instances to create each upper domain level instance.) This number 
reflects configuration as shipped by Intel. Note, software must not use this field to enumerate processor 
topology*.
Bits 31-16: Reserved.

ECX Bits 07-00: The input ECX sub-leaf index.
Bits 15-08: Domain Type. This field provides an identification value which indicates the domain as shown 
below. Although domains are ordered, as also shown below, their assigned identification values are not 
and software should not depend on it. (For example, if a new domain between core and module is speci-
fied, it will have an identification value higher than 5.)

Hierarchy Domain Domain Type Identification Value
Lowest Logical Processor 1
... Core 2
... Module 3
... Tile 4
... Die 5
... DieGrp 6
Highest Package/Socket (implied)

(Note that enumeration values of 0 and 7-255 are reserved.)

Bits 31-16: Reserved.

EDX Bits 31-00: x2APIC ID of the current logical processor. It is always valid and does not vary with the sub-
leaf index in ECX.

NOTES:
* Software must not use the value of EBX[15:0] to enumerate processor topology of the system. The 
value is only intended for display and diagnostic purposes. The actual number of logical processors avail-
able to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software and 
platform hardware configurations. 

Processor History Reset Sub-leaf (Initial EAX Value = 20H, ECX = 0)

20H EAX Reports the maximum number of sub-leaves that are supported in leaf 20H.

EBX Indicates which bits may be set in the IA32_HRESET_ENABLE MSR to enable reset of different compo-
nents of hardware-maintained history.
Bit 00: Indicates support for both HRESET’s EAX[0] parameter, and IA32_HRESET_ENABLE[0] set by the 
OS to enable reset of Intel® Thread Director history.
Bits 31-01: Reserved = 0.

ECX Reserved.

EDX Reserved.

Architectural Performance Monitoring Extended Main Leaf (Initial EAX Value = 23H, ECX = 0)

23H NOTE:
Output depends on ECX input value.

EAX Bits 31-0: If bit n is set, sub-leaf n is supported. (For unsupported sub-leaves, 0 is returned in the 
registers EAX, EBX, ECX, and EDX.)
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EBX Bit 00: UnitMask2 supported. If set, the processor supports the UnitMask2 field in the 
IA32_PERFEVTSELx MSRs.

Bit 01: EQ-bit supported. If set, the processor supports the equal flag in the IA32_PERFEVTSELx MSRs.

Bits 31-02: Reserved.

ECX Bits 07-00: Number of Top-down Microarchitecture Analysis (TMA) slots per cycle. This number can be 
multiplied by the number of cycles (from CPU_CLK_UNHALTED.THREAD / CPU_CLK_UNHALTED.CORE or 
IA32_FIXED_CTR1) to determine the total number of slots.

Bits 31-08: Reserved.

EDX Bits 31-00: Reserved.

Architectural Performance Monitoring Extended Sub-Leaf (Initial EAX Value = 23H, ECX = 1)

23H EAX Bits 31-00: General counters bitmap. For each bit n set in this field, the processor supports general-
purpose performance monitoring counter n. 

EBX Bits 31-00: Fixed counters bitmap. For each bit m set in this field, the processor supports fixed-function 
performance monitoring counter m.

ECX Bits 31-00: Reserved.

EDX Bits 31-00: Reserved.

Architectural Performance Monitoring Extended Sub-Leaf (Initial EAX Value = 23H, ECX = 2)

23H EAX Bits 31-00: Bitmap of Auto Counter Reload (ACR) general counters that can be reloaded. For each bit n 
set in this field, the processor supports ACR for general-purpose performance monitoring counter n.

EBX Bits 31-00: Bitmap of Auto Counter Reload (ACR) fixed counters that can be reloaded. For each bit m set 
in this field, the processor supports ACR for fixed-function performance monitoring counter m.

ECX Bits 31-00: Bitmap of Auto Counter Reload (ACR) general counters that can cause reloads. For each bit y 
set in this field, the processor allows general-purpose performance monitoring counter y to reload all 
existing general-purpose performance monitoring counters capable of being reloaded.

EDX Bits 31-00: Bitmap of Auto Counter Reload (ACR) fixed counters that can cause reloads. For each bit x set 
in this field, the processor allows fixed-function performance monitoring counter x to reload all existing 
fixed-function performance monitoring counters capable of being reloaded.

Architectural Performance Monitoring Extended Sub-Leaf (Initial EAX Value = 23H, ECX = 3)

23H NOTE:
Architectural Performance Monitoring Events Bitmap. For each bit n set in this field, the processor sup-
ports Architectural Performance Monitoring Event of index n. 

EAX Bit 00: Core cycles.

Bit 01: Instructions retired.

Bit 02: Reference cycles.

Bit 03: Last level cache references.

Bit 04: Last level cache misses.

Bit 05: Branch instructions retired.

Bit 06: Branch mispredicts retired.

Bit 07: Topdown slots.

Bit 08: Topdown backend bound.

Bit 09: Topdown bad speculation.
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Bit 10: Topdown frontend bound.

Bit 11: Topdown retiring.

Bit 12: LBR inserts.

Bits 31-13: Reserved.

EBX Bits 31-00: Reserved.

ECX Bits 31-00: Reserved.

EDX Bits 31-00: Reserved.

Converged Vector ISA Main Leaf (Initial EAX Value = 24H, ECX = 0)

24H NOTE:
Output depends on ECX input value.

EAX Bits 31-00: Reports the maximum number sub-leaves that are supported in leaf 24H.

EBX Bits 07-00: Reports the Intel AVX10 Converged Vector ISA version.

Bits 15-08: Reserved.

Bit 16: If 1, indicates that 128-bit vector support is present.

Bit 17: If 1, indicates that 256-bit vector support is present.

Bit 18: If 1, indicates that 512-bit vector support is present.

Bits 31-19: Reserved.

ECX Bits 31-00: Reserved.

EDX Bits 31-00: Reserved.

Unimplemented CPUID Leaf Functions

21H Invalid. No existing or future CPU will return processor identification or feature information if the initial 
EAX value is 21H. If the value returned by CPUID.0:EAX (the maximum input value for basic CPUID 
information) is at least 21H, 0 is returned in the registers EAX, EBX, ECX, and EDX. Otherwise, the data 
for the highest basic information leaf is returned.

40000000H
− 

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the initial 
EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information.

EBX Reserved.

ECX Reserved.

EDX Reserved.

80000001H EAX Extended Processor Signature and Feature Bits.

EBX Reserved.

ECX Bit 00: LAHF/SAHF available in 64-bit mode.*
Bits 04-01: Reserved.
Bit 05: LZCNT.
Bits 07-06: Reserved.
Bit 08: PREFETCHW.
Bits 31-09: Reserved.

Table 1-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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EDX Bits 10-00: Reserved.
Bit 11: SYSCALL/SYSRET.**
Bits 19-12: Reserved = 0.
Bit 20: Execute Disable Bit available.
Bits 25-21: Reserved = 0.
Bit 26: 1-GByte pages are available if 1.
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1.
Bit 28: Reserved = 0.
Bit 29: Intel® 64 Architecture available if 1.
Bits 31-30: Reserved = 0.

NOTES:
* LAHF and SAHF are always available in other modes, regardless of the enumeration of this feature flag.
** Intel processors support SYSCALL and SYSRET only in 64-bit mode. This feature flag is always enumer-

ated as 0 outside 64-bit mode.

80000002H EAX
EBX
ECX
EDX

Processor Brand String.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000005H EAX
EBX
ECX
EDX

Reserved = 0.
Reserved = 0.
Reserved = 0.
Reserved = 0.

80000006H EAX
EBX

Reserved = 0.
Reserved = 0.

ECX

EDX

Bits 07-00: Cache Line size in bytes.
Bits 11-08: Reserved.
Bits 15-12: L2 Associativity field *.
Bits 31-16: Cache size in 1K units.
Reserved = 0.

NOTES:
* L2 associativity field encodings:
00H - Disabled 08H - 16 ways
01H - 1 way (direct mapped)  09H - Reserved
02H - 2 ways  0AH - 32 ways
03H - Reserved 0BH - 48 ways
04H - 4 ways 0CH - 64 ways
05H - Reserved 0DH - 96 ways
06H - 8 ways 0EH - 128 ways
07H - See CPUID leaf 04H, sub-leaf 2** 0FH - Fully associative

** CPUID leaf 04H provides details of deterministic cache parameters, including the L2 cache in sub-leaf 2

Table 1-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification String

When CPUID executes with EAX set to 0, the processor returns the highest value the CPUID recognizes for 
returning basic processor information. The value is returned in the EAX register and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genu-
ineIntel” and is expressed:

EBX := 756e6547h (* “Genu”, with G in the low eight bits of BL *)
EDX := 49656e69h (* “ineI”, with i in the low eight bits of DL *)
ECX := 6c65746eh (* “ntel”, with n in the low eight bits of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information

When CPUID executes with EAX set to 80000000H, the processor returns the highest value the processor recog-
nizes for returning extended processor information. The value is returned in the EAX register and is processor 
specific.

IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the update 
signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see Chapter 11 in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. 

INPUT EAX = 01H: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 01H, version information is returned in EAX (see Figure 1-6). For example: 
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:
• Model — 1111B
• Family — 0101B
• Processor Type — 00B

See Table 1-18 for available processor type values. Stepping IDs are provided as needed.

80000007H EAX
EBX
ECX
EDX

Reserved = 0.
Reserved = 0.
Reserved = 0.
Bits 07-00: Reserved = 0.
Bit 08: Invariant TSC available if 1.
Bits 31-09: Reserved = 0.

80000008H EAX Linear/Physical Address size.
Bits 07-00: #Physical Address Bits*.
Bits 15-08: #Linear Address Bits.
Bits 31-16: Reserved = 0.

EBX

ECX
EDX

Bits 08-00: Reserved = 0.
Bit 09: WBNOINVD is available if 1.
Bits 31-10: Reserved = 0.
Reserved = 0.
Reserved = 0.
NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported should 

come from this field. If TME-MK is enabled, the number of bits that can be used to address physical 
memory is CPUID.80000008H:EAX[7:0] - IA32_TME_ACTIVATE[35:32].

Table 1-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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NOTE
See Chapter 21 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
for information on identifying earlier IA-32 processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate the fields into a display 
using the following rule:

IF Family_ID ≠ 0FH
THEN DisplayFamily = Family_ID;
ELSE DisplayFamily = Extended_Family_ID + Family_ID;

FI;
(* Show DisplayFamily as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. Integrate the field into a 
display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN DisplayModel = (Extended_Model_ID « 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE DisplayModel = Model_ID;

FI;
(* Show DisplayModel as HEX field. *)

Figure 1-6.  Version Information Returned by CPUID in EAX

Table 1-18.  Processor Type Field 
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486 processors) 10B

Intel reserved 11B

OM16525

Processor Type 

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family)
Model 

Extended
Family ID

Extended
Model ID

Family
ID Model Stepping

ID

Extended Family ID (0)
Extended Model ID (0)

Reserved
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INPUT EAX = 01H: Returns Additional Information in EBX

When CPUID executes with EAX set to 01H, additional information is returned to the EBX register: 
• Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand 

strings for IA-32 processors. More information about this field is provided later in this section. 
• CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line 

flushed by the CLFLUSH and CLFLUSHOPT instructions in 8-byte increments. This field was introduced in the 
Pentium 4 processor.

• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the 
processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 01H: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 01H, feature information is returned in ECX and EDX.
• Figure 1-7 and Table 1-19 show encodings for ECX.
• Figure 1-8 and Table 1-20 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE
Software must confirm that a processor feature is present using feature flags returned by CPUID 
prior to using the feature. Software should not depend on future offerings retaining all features.

Figure 1-7.  Feature Information Returned in the ECX Register

OM16524b

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EIST —  Enhanced  Intel  SpeedStep®  Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT

PCLMULQDQ  —  Carryless Multiplication

Reserved

CMPXCHG16B

SMX — Safer Mode Extensions

xTPR Update Control

SSSE3 —  SSSE3 Extensions

PDCM —  Perf/Debug Capability MSR

VMX — Virtual Machine Extensions 

SSE4_1 —  SSE4.1

OSXSAVE

SSE4_2 —  SSE4.2

DCA —  Direct Cache Access

x2APIC

POPCNT

XSAVE

AVX

AES

FMA —  Fused Multiply Add

SSE3  —  SSE3 Extensions

PCID —  Process-context Identifiers

0

DTES64  —  64-bit DS Area

MOVBE

TSC-Deadline

F16C
RDRAND

SDBG
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Table 1-19.  Feature Information Returned in the ECX Register 

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this 
technology.

1 PCLMULQDQ PCLMULQDQ. A value of 1 indicates the processor supports the PCLMULQDQ instruction.

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature. 

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the 
Debug Store feature to allow for branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See 
Chapter 7, “Safer Mode Extensions Reference.”

7 EIST Enhanced Intel SpeedStep® technology. A value of 1 indicates that the processor supports this 
technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology. 

9 SSSE3 A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A 
value of 0 indicates the instruction extensions are not present in the processor.

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode 
or shared mode. A value of 0 indicates this feature is not supported. See definition of the 
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 SDBG A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available. See the 
“CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes” section in this chapter for a 
description.

14 xTPR Update 
Control

xTPR Update Control. A value of 1 indicates that the processor supports changing 
IA32_MISC_ENABLE[bit 23]. 

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the processor supports the performance 
and debug feature indication MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that 
software may set CR4.PCIDE to 1.

18 DCA  A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped 
device.

19 SSE4_1 A value of 1 indicates that the processor supports SSE4.1. 

20 SSE4_2 A value of 1 indicates that the processor supports SSE4.2. 

21 x2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer supports one-shot operation using a 
TSC deadline value.

25 AESNI A value of 1 indicates that the processor supports the AESNI instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states 
feature, the XSETBV/XGETBV instructions, and XCR0.

27 OSXSAVE A value of 1 indicates that the OS has set CR4.OSXSAVE[bit 18] to enable XSETBV/XGETBV 
instructions to access XCR0 and to support processor extended state management using 
XSAVE/XRSTOR.

28 AVX A value of 1 indicates the processor supports the AVX instruction extensions.
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29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.

30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always returns 0.

Figure 1-8.  Feature Information Returned in the EDX Register

Table 1-19.  Feature Information Returned in the ECX Register  (Contd.)

Bit # Mnemonic Description

OM16523

PBE–Pend. Brk. EN.

012345678910111213141516171819202122232425262728293031

EDX

TM–Therm. Monitor
HTT–Multi-threading
SS–Self Snoop
SSE2–SSE2 Extensions
SSE–SSE Extensions
FXSR–FXSAVE/FXRSTOR
MMX–MMX Technology
ACPI–Thermal Monitor and Clock Ctrl
DS–Debug Store
CLFSH–CLFLUSH instruction
PSN–Processor Serial Number
PSE-36 – Page Size Extension
PAT–Page Attribute Table
CMOV–Conditional Move/Compare Instruction
MCA–Machine Check Architecture
PGE–PTE Global Bit
MTRR–Memory Type Range Registers
SEP–SYSENTER and SYSEXIT
APIC–APIC on Chip
CX8–CMPXCHG8B Inst.
MCE–Machine Check Exception
PAE–Physical Address Extensions
MSR–RDMSR and WRMSR Support
TSC–Time Stamp Counter
PSE–Page Size Extensions
DE–Debugging Extensions
VME–Virtual-8086 Mode Enhancement
FPU–x87 FPU on Chip

Reserved
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Table 1-20.  More on Feature Information Returned in the EDX Register

Bit # Mnemonic Description

0 FPU Floating-Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the 
feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS 
with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags. 

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for controlling the feature, and optional 
trapping of accesses to DR4 and DR5. 

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the 
feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and 
PTEs. 

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are 
supported. Some of the MSRs are implementation dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table 
entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of 
4 Mbyte pages if PAE bit is 1. 

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the 
feature. This feature does not define the model-specific implementations of machine-check error logging, 
reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor 
version to do model specific processing of the exception, or test for the presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly 
locked and atomic). 

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to 
memory mapped commands in the physical address range FFFE0000H to FFFE0FFFH (by default - some 
processors permit the APIC to be relocated). 

10 Reserved Reserved 

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported. 

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe 
what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are 
supported. 

13 PGE Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries 
that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature. 

14 MCA Machine Check Architecture. A value of 1 indicates the Machine Check Architecture of reporting machine 
errors is supported. The MCG_CAP MSR contains feature bits describing how many banks of error reporting 
MSRs are supported. 

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is 
present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported 

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range 
Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear 
address on a 4KB granularity.

17 PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported with 
32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are encoded in 
bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and may be up to 
40 bits in size.

18 PSN Processor Serial Number. The processor supports the 96-bit processor identification number feature and the 
feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved
CPUID—CPU Identification Vol. 2A 3-252



INPUT EAX = 02H: TLB/Cache/Prefetch Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 02H, the processor returns information about the processor’s internal TLBs, 
cache, and prefetch hardware in the EAX, EBX, ECX, and EDX registers. The information is reported in encoded 
form and fall into the following categories:
• The least-significant byte in register EAX (register AL) will always return 01H. Software should ignore this value 

and not interpret it as an informational descriptor.
• The most significant bit (bit 31) of each register indicates whether the register contains valid information (set 

to 0) or is reserved (set to 1).
• If a register contains valid information, the information is contained in 1 byte descriptors. There are four types 

of encoding values for the byte descriptor, the encoding type is noted in the second column of Table 1-21. Table 
1-21 lists the encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and EDX 
registers is not defined; that is, specific bytes are not designated to contain descriptors for specific cache, 
prefetch, or TLB types. The descriptors may appear in any order. Note also a processor may report a general 
descriptor type (FFH) and not report any byte descriptor of “cache type” via CPUID leaf 2.

21 DS Debug Store. The processor supports the ability to write debug information into a memory resident buffer. 
This feature is used by the branch trace store (BTS) and processor event-based sampling (PEBS) facilities (see 
Chapter 25, “Introduction to Virtual Machine Extensions,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3C).

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that 
allow processor temperature to be monitored and processor performance to be modulated in predefined duty 
cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and 
restore of the floating-point context. Presence of this bit also indicates that CR4.OSFXSR is available for an 
operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of its 
own cache structure for transactions issued to the bus.

28 HTT Max APIC IDs reserved field is Valid. A value of 0 for HTT indicates there is only a single logical processor in 
the package and software should assume only a single APIC ID is reserved. A value of 1 for HTT indicates the 
value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this package) is 
valid for the package.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the 
stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the 
processor should return to normal operation to handle the interrupt.

Table 1-20.  More on Feature Information Returned in the EDX Register (Contd.)

Bit # Mnemonic Description
CPUID—CPU Identification Vol. 2A 3-253



Table 1-21.  Encoding of CPUID Leaf 2 Descriptors 
 Descriptor

Value Type Cache or TLB Description

00H General Null descriptor, this byte contains no information.

01H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries.

02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries.

03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries.

04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries.

05H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries.

06H Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size.

08H Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size.

09H Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size.

0AH Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size.

0BH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries.

0CH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size.

0DH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size.

0EH Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size.

1DH Cache 2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size.

21H Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size.

22H Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector.

23H Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector.

24H Cache 2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size.

25H Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector.

29H Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector.

2CH Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size.

30H Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size.

40H Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache.

41H Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size.

42H Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size.

43H Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size.

44H Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size.

45H Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size.

46H Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size.

47H Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size.

48H Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size.

49H Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, 
Model 06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size.

4AH Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size.

4BH Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size.

4CH Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size.

4DH Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size.

4EH Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size.

4FH TLB Instruction TLB: 4 KByte pages, 32 entries.
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50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries.

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries.

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries.

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries.

56H TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries.

57H TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries.

59H TLB Data TLB0: 4 KByte pages, fully associative, 16 entries.

5AH TLB Data TLB0: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries.

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries.

5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries.

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries.

60H Cache 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size.

61H TLB Instruction TLB: 4 KByte pages, fully associative, 48 entries.

63H TLB Data TLB: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries and a separate array with 1 GByte 
pages, 4-way set associative, 4 entries.

64H TLB Data TLB: 4 KByte pages, 4-way set associative, 512 entries.

66H Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size.

67H Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size.

68H Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size.

6AH Cache uTLB: 4 KByte pages, 8-way set associative, 64 entries.

6BH Cache DTLB: 4 KByte pages, 8-way set associative, 256 entries.

6CH Cache DTLB: 2M/4M pages, 8-way set associative, 128 entries.

6DH Cache DTLB: 1 GByte pages, fully associative, 16 entries.

70H Cache Trace cache: 12 K-μop, 8-way set associative.

71H Cache Trace cache: 16 K-μop, 8-way set associative.

72H Cache Trace cache: 32 K-μop, 8-way set associative.

76H TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries.

78H Cache 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size.

79H Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector.

7AH Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector.

7BH Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector.

7CH Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector.

7DH Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size.

7FH Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size.

80H Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size.

82H Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size.

83H Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size.

84H Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size.

85H Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size.

86H Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size.

87H Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size.

Table 1-21.  Encoding of CPUID Leaf 2 Descriptors  (Contd.)
 Descriptor

Value Type Cache or TLB Description
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A0H DTLB DTLB: 4k pages, fully associative, 32 entries.

B0H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries.

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries.

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries.

B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries.

B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries.

B5H TLB Instruction TLB: 4KByte pages, 8-way set associative, 64 entries.

B6H TLB Instruction TLB: 4KByte pages, 8-way set associative, 128 entries.

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries.

C0H TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries.

C1H STLB Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries.

C2H DTLB DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries.

C3H STLB Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-
way, 16 entries.

C4H DTLB DTLB: 2M/4M Byte pages, 4-way associative, 32 entries.

CAH STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries.

D0H Cache 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size.

D1H Cache 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size.

D2H Cache 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size.

D6H Cache 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size.

D7H Cache 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size.

D8H Cache 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size.

DCH Cache 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size.

DDH Cache 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size.

DEH Cache 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size.

E2H Cache 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size.

E3H Cache 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size.

E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size.

EAH Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size.

EBH Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size.

ECH Cache 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size.

F0H Prefetch 64-Byte prefetching.

F1H Prefetch 128-Byte prefetching.

FEH General CPUID leaf 2 does not report TLB descriptor information; use CPUID leaf 18H to query TLB and other 
address translation parameters.

FFH General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters.

Table 1-21.  Encoding of CPUID Leaf 2 Descriptors  (Contd.)
 Descriptor

Value Type Cache or TLB Description
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Example 1-1.  Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about caches and TLBs 
when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:
• The least-significant byte (byte 0) of register EAX is set to 01H. This value should be ignored.
• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register 

contains valid 1-byte descriptors.
• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.
• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-μop, 8-way set associative.

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.

— 00H - NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data 
that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid 
index values start from 0.

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an 
index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally 
defined fields reported by deterministic cache parameters are documented in Table 1-17.

This Cache Size in Bytes

= (Ways + 1) * (Partitions + 1) * (Line_Size + 1) * (Sets + 1)

= (EBX[31:22] + 1) * (EBX[21:12] + 1) * (EBX[11:0] + 1) * (ECX + 1)

The CPUID leaf 04H also reports data that can be used to derive the topology of processor cores in a physical 
package. This information is constant for all valid index values. Software can query the raw data reported by 
executing CPUID with EAX=04H and ECX=0 and use it as part of the topology enumeration algorithm described in 
Chapter 10, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

INPUT EAX = 05H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about features available to 
MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with 
MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power manage-
ment. See Table 1-17. 

INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about thermal and power manage-
ment features. See Table 1-17. 
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INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 07H and ECX = 0, the processor returns information about the maximum 
input value for sub-leaves that contain extended feature flags. See Table 1-17. 

When CPUID executes with EAX set to 07H and the input value of ECX is invalid (see leaf 07H entry in Table 1-17), 
the processor returns 0 in EAX/EBX/ECX/EDX. In subleaf 0, EAX returns the maximum input value of the highest 
leaf 7 sub-leaf, and EBX, ECX & EDX contain information of extended feature flags.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabili-
ties. See Table 1-17. 

INPUT EAX = 0AH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about support for architectural 
performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see 
Table 1-17) is greater than Pn 0. See Table 1-17.

For each version of architectural performance monitoring capability, software must enumerate this leaf to discover 
the programming facilities and the architectural performance events available in the processor. The details are 
described in Chapter 25, “Introduction to Virtual Machine Extensions,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3C.

INPUT EAX = 0BH: Returns Extended Topology Information

CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the existence of Leaf 1FH 
before using leaf 0BH.

When CPUID executes with EAX set to 0BH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf 0BH by verifying (a) the highest leaf index supported 
by CPUID is >= 0BH, and (b) CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 1-17.

INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0, the processor returns information about the bit-vector 
representation of all processor state extensions that are supported in the processor and storage size requirements 
of the XSAVE/XRSTOR area. See Table 1-17. 

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-leaf index), the processor returns 
information about the size and offset of each processor extended state save area within the XSAVE/XRSTOR area. 
See Table 1-17. Software can use the forward-extendable technique depicted below to query the valid sub-leaves 
and obtain size and offset information for each processor extended state save area:

For i = 2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0H):VECTOR[i] = 1 ) // VECTOR is the 64-bit value of EDX:EAX

Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i; 
FI;

INPUT EAX = 0FH: Returns Intel Resource Director Technology (Intel RDT) Monitoring Enumeration Information

When CPUID executes with EAX set to 0FH and ECX = 0, the processor returns information about the bit-vector 
representation of QoS monitoring resource types that are supported in the processor and maximum range of RMID 
values the processor can use to monitor of any supported resource types. Each bit, starting from bit 1, corresponds 
to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or ResID) that soft-
ware must use to query QoS monitoring capability available for that type. See Table 1-17.

When CPUID executes with EAX set to 0FH and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation software can use to program IA32_PQR_ASSOC, IA32_QM_EVTSEL MSRs before reading QoS data from the 
IA32_QM_CTR MSR.
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INPUT EAX = 10H: Returns Intel Resource Director Technology (Intel RDT) Allocation Enumeration Information

When CPUID executes with EAX set to 10H and ECX = 0, the processor returns information about the bit-vector 
representation of QoS Enforcement resource types that are supported in the processor. Each bit, starting from bit 
1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or 
ResID) that software must use to query QoS enforcement capability available for that type. See Table 1-17.

When CPUID executes with EAX set to 10H and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation about available classes of service and range of QoS mask MSRs that software can use to configure each 
class of services using capability bit masks in the QoS Mask registers, IA32_resourceType_Mask_n.

INPUT EAX = 12H: Returns Intel SGX Enumeration Information

When CPUID executes with EAX set to 12H and ECX = 0H, the processor returns information about Intel SGX capa-
bilities. See Table 1-17. 

When CPUID executes with EAX set to 12H and ECX = 1H, the processor returns information about Intel SGX attri-
butes. See Table 1-17. 

When CPUID executes with EAX set to 12H and ECX = n (n > 1), the processor returns information about Intel SGX 
Enclave Page Cache. See Table 1-17.

INPUT EAX = 14H: Returns Intel Processor Trace Enumeration Information

When CPUID executes with EAX set to 14H and ECX = 0H, the processor returns information about Intel Processor 
Trace extensions. See Table 1-17. 

When CPUID executes with EAX set to 14H and ECX = n (n > 0 and less than the number of non-zero bits in 
CPUID.(EAX=14H, ECX= 0H).EAX), the processor returns information about packet generation in Intel Processor 
Trace. See Table 1-17. 

INPUT EAX = 15H: Returns Time Stamp Counter and Nominal Core Crystal Clock Information

When CPUID executes with EAX set to 15H and ECX = 0H, the processor returns information about Time Stamp 
Counter and Core Crystal Clock. See Table 1-17.

INPUT EAX = 16H: Returns Processor Frequency Information

When CPUID executes with EAX set to 16H, the processor returns information about Processor Frequency Informa-
tion. See Table 1-17. 

INPUT EAX = 17H: Returns System-On-Chip Information

When CPUID executes with EAX set to 17H, the processor returns information about the System-On-Chip Vendor 
Attribute Enumeration. See Table 1-17. 

INPUT EAX = 18H: Returns Deterministic Address Translation Parameters Information

When CPUID executes with EAX set to 18H, the processor returns information about the Deterministic Address 
Translation Parameters. See Table 1-17. 

INPUT EAX = 19H: Returns Key Locker Information

When CPUID executes with EAX set to 19H, the processor returns information about Key Locker. See Table 1-17. 

INPUT EAX = 1AH: Returns Native Model ID Information

When CPUID executes with EAX set to 1AH, the processor returns information about Native Model Identification. 
See Table 1-17.

INPUT EAX = 1BH: Returns PCONFIG Information

When CPUID executes with EAX set to 1BH, the processor returns information about PCONFIG capabilities. This 
information is enumerated in sub-leaves selected by the value of ECX (starting with 0).
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Each sub-leaf of CPUID function 1BH enumerates its sub-leaf type in EAX. If a sub-leaf type is 0, the sub-leaf is 
invalid and zero is returned in EBX, ECX, and EDX. In this case, all subsequent sub-leaves (selected by larger input 
values of ECX) are also invalid.

The only valid sub-leaf type currently defined is 1, indicating that the sub-leaf enumerates target identifiers for the 
PCONFIG instruction. Any non-zero value returned in EBX, ECX, or EDX indicates a valid target identifier of the 
PCONFIG instruction (any value of zero should be ignored). The only target identifier currently defined is 1, indi-
cating TME-MK. See the “PCONFIG—Platform Configuration” instruction in Chapter 4 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2B, for more information.

INPUT EAX = 1CH: Returns Last Branch Record Information

When CPUID executes with EAX set to 1CH, the processor returns information about LBRs (the architectural 
feature). See Table 1-17.

INPUT EAX = 1DH: Returns Tile Information

When CPUID executes with EAX set to 1DH and ECX = 0H, the processor returns information about tile 
architecture. See Table 1-17.

When CPUID executes with EAX set to 1DH and ECX = 1H, the processor returns information about tile palette 1. 
See Table 1-17.

INPUT EAX = 1EH: Returns TMUL Information

When CPUID executes with EAX set to 1EH and ECX = 0H, the processor returns information about TMUL 
capabilities. See Table 1-17.

INPUT EAX = 1FH: Returns V2 Extended Topology Information

When CPUID executes with EAX set to 1FH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf 1FH by verifying (a) the highest leaf index supported 
by CPUID is >= 1FH, and (b) CPUID.1FH:EBX[15:0] reports a non-zero value. See Table 1-17. 

INPUT EAX = 20H: Returns History Reset Information

When CPUID executes with EAX set to 20H, the processor returns information about History Reset. See Table 1-17.

INPUT EAX = 23H: Returns Architectural Performance Monitoring Extended Information

When CPUID executes with EAX set to 23H, the processor returns architectural performance monitoring extended 
information. See Table 1-17.

INPUT EAX = 24H: Returns Intel AVX10 Converged Vector ISA Information

When CPUID executes with EAX set to 24H, the processor returns Intel AVX10 converged vector ISA information. 
See Table 1-17. 

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method.

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in early processors, see 
Section: “Identification of Earlier IA-32 Processors” in Chapter 21 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

The Processor Brand String Method

Figure 1-9 describes the algorithm used for detection of the brand string. Processor brand identification software 
should execute this algorithm on all Intel 64 and IA-32 processors. 
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This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the Processor 
Base frequency of the processor to the EAX, EBX, ECX, and EDX registers.

How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input 
value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-termi-
nated.

Table 1-22 shows the brand string that is returned by the first processor in the Pentium 4 processor family.

Figure 1-9.  Determination of Support for the Processor Brand String

Table 1-22.  Processor Brand String Returned with Pentium 4 Processor 

EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H

EBX = 20202020H

ECX = 20202020H

EDX = 6E492020H

“  ” 

“ ”

“ ”

“nI  ”

80000003H EAX = 286C6574H

EBX = 50202952H

ECX = 69746E65H

EDX = 52286D75H

“(let”

“P )R”

“itne”

“R(mu”

OM15194

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value 
≥ 0x80000004)

CPUID 
Function

Supported

True ≥
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX= 
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True
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Extracting the Processor Frequency from Brand Strings

Figure 1-10 provides an algorithm which software can use to extract the Processor Base frequency from the 
processor brand string.

The Processor Brand Index Method

The brand index method (introduced with Pentium® III Xeon® processors) provides an entry point into a brand 
identification table that is maintained in memory by system software and is accessible from system- and user-level 
code. In this table, each brand index is associate with an ASCII brand identification string that identifies the official 
Intel family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the low byte in EBX. Software can 
then use this index to locate the brand identification string for the processor in the brand identification table. The 
first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do not 
support the brand identification feature. Starting with processor signature family ID = 0FH, model = 03H, brand 
index method is no longer supported. Use brand string method instead.

Table 1-23 shows brand indices that have identification strings associated with them.

80000004H EAX = 20342029H

EBX = 20555043H

ECX = 30303531H

EDX = 007A484DH

“ 4 )”

“ UPC”

“0051”

“\0zHM”

Figure 1-10.  Algorithm for Extracting Processor Frequency

Table 1-22.  Processor Brand String Returned with Pentium 4 Processor  (Contd.)

EAX Input Value Return Values ASCII Equivalent

IF Substring Matched

"zHM", or 
"zHG", or 

"zHT"

Determine "Freq"
and "Multiplier"

True

Determine "Multiplier"

Scan "Brand String" in
Reverse Byte Order

Report Error
False

Scan Digits 
Until Blank

Match
Substring

Determine "Freq" Reverse Digits
To Decimal Value

Processor Base
Frequency =

"Freq" x "Multiplier" "Freq" = X.YZ if
Digits = "ZY.X"

In Reverse Order

If "zHM"

If "zHG"

If "zHT"
Multiplier = 1 x 1012

Multiplier = 1 x 109

Multiplier = 1 x 106
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IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the 
Intel486 processor.

Operation

IA32_BIOS_SIGN_ID MSR := Update with installed microcode revision number;

CASE (EAX) OF
EAX = 0:

EAX := Highest basic function input value understood by CPUID;
EBX := Vendor identification string;
EDX := Vendor identification string;
ECX := Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] := Stepping ID; 
EAX[7:4] := Model; 
EAX[11:8] := Family; 

Table 1-23.  Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R) 
processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:
1. Indicates versions of these processors that were introduced after the Pentium III 
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EAX[13:12] := Processor type; 
EAX[15:14] := Reserved;
EAX[19:16] := Extended Model;
EAX[27:20] := Extended Family;
EAX[31:28] := Reserved;
EBX[7:0] := Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] := CLFLUSH Line Size;
EBX[16:23] := Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] := Initial APIC ID;
ECX := Feature flags; (* See Figure 1-7. *)
EDX := Feature flags; (* See Figure 1-8. *)

BREAK;
EAX = 2H:

EAX := Cache and TLB information; 
 EBX := Cache and TLB information; 
 ECX := Cache and TLB information; 

EDX := Cache and TLB information; 
BREAK;
EAX = 3H:

EAX := Reserved; 
 EBX := Reserved; 
 ECX := ProcessorSerialNumber[31:0]; 

(* Pentium III processors only, otherwise reserved. *)
EDX := ProcessorSerialNumber[63:32]; 
(* Pentium III processors only, otherwise reserved. *

BREAK
EAX = 4H:

EAX := Deterministic Cache Parameters Leaf; (* See Table 1-17. *)
EBX := Deterministic Cache Parameters Leaf; 

 ECX := Deterministic Cache Parameters Leaf; 
EDX := Deterministic Cache Parameters Leaf; 

BREAK;
EAX = 5H:

EAX := MONITOR/MWAIT Leaf; (* See Table 1-17. *)
 EBX := MONITOR/MWAIT Leaf; 
 ECX := MONITOR/MWAIT Leaf; 

EDX := MONITOR/MWAIT Leaf; 
BREAK;
EAX = 6H:

EAX := Thermal and Power Management Leaf; (* See Table 1-17. *)
 EBX := Thermal and Power Management Leaf; 
 ECX := Thermal and Power Management Leaf; 

EDX := Thermal and Power Management Leaf; 
BREAK;
EAX = 7H:

EAX := Structured Extended Feature Flags Enumeration Leaf; (* See Table 1-17. *)
EBX := Structured Extended Feature Flags Enumeration Leaf; 

 ECX := Structured Extended Feature Flags Enumeration Leaf; 
EDX := Structured Extended Feature Flags Enumeration Leaf; 

BREAK;
EAX = 8H:

EAX := Reserved = 0;
 EBX := Reserved = 0; 
 ECX := Reserved = 0; 
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EDX := Reserved = 0; 
BREAK;
EAX = 9H:

EAX := Direct Cache Access Information Leaf; (* See Table 1-17. *)
 EBX := Direct Cache Access Information Leaf; 
 ECX := Direct Cache Access Information Leaf; 

EDX := Direct Cache Access Information Leaf; 
BREAK;
EAX = AH:

EAX := Architectural Performance Monitoring Leaf; (* See Table 1-17. *)
 EBX := Architectural Performance Monitoring Leaf; 
 ECX := Architectural Performance Monitoring Leaf; 

EDX := Architectural Performance Monitoring Leaf; 
BREAK

EAX = BH:
EAX := Extended Topology Enumeration Leaf; (* See Table 1-17. *)
EBX := Extended Topology Enumeration Leaf; 

 ECX := Extended Topology Enumeration Leaf; 
EDX := Extended Topology Enumeration Leaf; 

BREAK;
EAX = CH:

EAX := Reserved = 0;
 EBX := Reserved = 0; 
 ECX := Reserved = 0; 

EDX := Reserved = 0; 
BREAK;
EAX = DH:

EAX := Processor Extended State Enumeration Leaf; (* See Table 1-17. *)
 EBX := Processor Extended State Enumeration Leaf; 
 ECX := Processor Extended State Enumeration Leaf; 

EDX := Processor Extended State Enumeration Leaf; 
BREAK;
EAX = EH:

EAX := Reserved = 0;
 EBX := Reserved = 0; 
 ECX := Reserved = 0; 

EDX := Reserved = 0; 
BREAK;
EAX = FH:

EAX := Intel Resource Director Technology Monitoring Enumeration Leaf; (* See Table 1-17. *)
 EBX := Intel Resource Director Technology Monitoring Enumeration Leaf; 
 ECX := Intel Resource Director Technology Monitoring Enumeration Leaf; 

EDX := Intel Resource Director Technology Monitoring Enumeration Leaf; 
BREAK;
EAX = 10H:

EAX := Intel Resource Director Technology Allocation Enumeration Leaf; (* See Table 1-17. *)
 EBX := Intel Resource Director Technology Allocation Enumeration Leaf; 
 ECX := Intel Resource Director Technology Allocation Enumeration Leaf; 

EDX := Intel Resource Director Technology Allocation Enumeration Leaf; 
BREAK;
EAX = 12H:

EAX := Intel SGX Enumeration Leaf; (* See Table 1-17. *)
 EBX := Intel SGX Enumeration Leaf; 
 ECX := Intel SGX Enumeration Leaf; 
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EDX := Intel SGX Enumeration Leaf; 
BREAK;
EAX = 14H:

EAX := Intel Processor Trace Enumeration Leaf; (* See Table 1-17. *)
 EBX := Intel Processor Trace Enumeration Leaf; 
 ECX := Intel Processor Trace Enumeration Leaf; 

EDX := Intel Processor Trace Enumeration Leaf; 
BREAK;
EAX = 15H:

EAX := Time Stamp Counter and Nominal Core Crystal Clock Information Leaf; (* See Table 1-17. *)
 EBX := Time Stamp Counter and Nominal Core Crystal Clock Information Leaf; 
 ECX := Time Stamp Counter and Nominal Core Crystal Clock Information Leaf; 

EDX := Time Stamp Counter and Nominal Core Crystal Clock Information Leaf; 
BREAK;
EAX = 16H:

EAX := Processor Frequency Information Enumeration Leaf; (* See Table 1-17. *)
 EBX := Processor Frequency Information Enumeration Leaf; 
 ECX := Processor Frequency Information Enumeration Leaf; 

EDX := Processor Frequency Information Enumeration Leaf; 
BREAK;
EAX = 17H:

EAX := System-On-Chip Vendor Attribute Enumeration Leaf; (* See Table 1-17. *)
 EBX := System-On-Chip Vendor Attribute Enumeration Leaf; 
 ECX := System-On-Chip Vendor Attribute Enumeration Leaf; 

EDX := System-On-Chip Vendor Attribute Enumeration Leaf; 
BREAK;
EAX = 18H:

EAX := Deterministic Address Translation Parameters Enumeration Leaf; (* See Table 1-17. *)
 EBX := Deterministic Address Translation Parameters Enumeration Leaf; 
 ECX := Deterministic Address Translation Parameters Enumeration Leaf; 

EDX := Deterministic Address Translation Parameters Enumeration Leaf; 
BREAK;
EAX = 19H:

EAX := Key Locker Enumeration Leaf; (* See Table 1-17. *)
 EBX := Key Locker Enumeration Leaf; 
 ECX := Key Locker Enumeration Leaf; 

EDX := Key Locker Enumeration Leaf; 
BREAK;
EAX = 1AH:

EAX := Native Model ID Enumeration Leaf; (* See Table 1-17. *)
EBX := Native Model ID Enumeration Leaf; 

 ECX := Native Model ID Enumeration Leaf; 
EDX := Native Model ID Enumeration Leaf; 

BREAK;
EAX = 1BH:

EAX := PCONFIG Information Enumeration Leaf; (* See “INPUT EAX = 1BH: Returns PCONFIG Information” on page 1-259. *)
EBX := PCONFIG Information Enumeration Leaf; 

 ECX := PCONFIG Information Enumeration Leaf; 
EDX := PCONFIG Information Enumeration Leaf; 

BREAK;
EAX = 1CH:

EAX := Last Branch Record Information Enumeration Leaf; (* See Table 1-17. *)
EBX := Last Branch Record Information Enumeration Leaf; 

 ECX := Last Branch Record Information Enumeration Leaf; 
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EDX := Last Branch Record Information Enumeration Leaf; 
BREAK;
EAX = 1DH:

EAX := Tile Information Enumeration Leaf; (* See Table 1-17. *)
EBX := Tile Information Enumeration Leaf; 

 ECX := Tile Information Enumeration Leaf; 
EDX := Tile Information Enumeration Leaf; 

BREAK;
EAX = 1EH:

EAX := TMUL Information Enumeration Leaf; (* See Table 1-17. *)
EBX := TMUL Information Enumeration Leaf; 

 ECX := TMUL Information Enumeration Leaf; 
EDX := TMUL Information Enumeration Leaf; 

BREAK;
EAX = 1FH:

EAX := V2 Extended Topology Enumeration Leaf; (* See Table 1-17. *)
EBX := V2 Extended Topology Enumeration Leaf; 

 ECX := V2 Extended Topology Enumeration Leaf; 
EDX := V2 Extended Topology Enumeration Leaf; 

BREAK;
EAX = 20H:

EAX := Processor History Reset Sub-leaf; (* See Table 1-17. *)
EBX := Processor History Reset Sub-leaf; 

 ECX := Processor History Reset Sub-leaf; 
EDX := Processor History Reset Sub-leaf; 

BREAK;
EAX = 23H:

EAX := Architectural Performance Monitoring Extended Leaf; (* See Table 1-17. *)
 EBX := Architectural Performance Monitoring Extended Leaf; 
 ECX := Architectural Performance Monitoring Extended Leaf; 

EDX := Architectural Performance Monitoring Extended Leaf; 
BREAK;
EAX = 24H:

EAX := Intel AVX10 Converged Vector ISA Leaf; (* See Table 1-17. *)
 EBX := Intel AVX10 Converged Vector ISA Leaf; 
 ECX := Intel AVX10 Converged Vector ISA Leaf; 

EDX := Intel AVX10 Converged Vector ISA Leaf; 
BREAK;
EAX = 80000000H:

EAX := Highest extended function input value understood by CPUID;
EBX := Reserved; 
ECX := Reserved; 
EDX := Reserved; 

BREAK;
EAX = 80000001H:

EAX := Reserved; 
EBX := Reserved; 
ECX := Extended Feature Bits (* See Table 1-17.*); 
EDX := Extended Feature Bits (* See Table 1-17. *); 

BREAK;
EAX = 80000002H:

EAX := Processor Brand String; 
EBX := Processor Brand String, continued;
ECX := Processor Brand String, continued; 
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EDX := Processor Brand String, continued; 
BREAK;
EAX = 80000003H:

EAX := Processor Brand String, continued; 
EBX := Processor Brand String, continued; 
ECX := Processor Brand String, continued; 
EDX := Processor Brand String, continued; 

BREAK;
EAX = 80000004H:

EAX := Processor Brand String, continued; 
EBX := Processor Brand String, continued; 
ECX := Processor Brand String, continued; 
EDX := Processor Brand String, continued;

BREAK;
EAX = 80000005H:

EAX := Reserved = 0; 
EBX := Reserved = 0; 
ECX := Reserved = 0; 
EDX := Reserved = 0; 

BREAK;
EAX = 80000006H:

EAX := Reserved = 0; 
EBX := Reserved = 0; 
ECX := Cache information; 
EDX := Reserved = 0; 

BREAK;
EAX = 80000007H:

EAX := Reserved = 0; 
EBX := Reserved = 0; 
ECX := Reserved = 0; 
EDX := Reserved = Misc Feature Flags; 

BREAK;
EAX = 80000008H:

EAX := Address Size Information; 
EBX := Misc Feature Flags; 
ECX := Reserved = 0; 
EDX := Reserved = 0; 

BREAK;
EAX >= 40000000H and EAX <= 4FFFFFFFH:
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX := Reserved; (* Information returned for highest basic information leaf. *)
EBX := Reserved; (* Information returned for highest basic information leaf. *)
ECX := Reserved; (* Information returned for highest basic information leaf. *)
EDX := Reserved; (* Information returned for highest basic information leaf. *)

BREAK;
ESAC;

Flags Affected

None.
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Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

In earlier IA-32 processors that do not support the CPUID instruction, execution of the instruc-
tion results in an invalid opcode (#UD) exception being generated.
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CRC32—Accumulate CRC32 Value

Instruction Operand Encoding

Description

Starting with an initial value in the first operand (destination operand), accumulates a CRC32 (polynomial 
11EDC6F41H) value for the second operand (source operand) and stores the result in the destination operand. The 
source operand can be a register or a memory location. The destination operand must be an r32 or r64 register. If 
the destination is an r64 register, then the 32-bit result is stored in the least significant double word and 
00000000H is stored in the most significant double word of the r64 register.

The initial value supplied in the destination operand is a double word integer stored in the r32 register or the least 
significant double word of the r64 register. To incrementally accumulate a CRC32 value, software retains the result 
of the previous CRC32 operation in the destination operand, then executes the CRC32 instruction again with new 
input data in the source operand. Data contained in the source operand is processed in reflected bit order. This 
means that the most significant bit of the source operand is treated as the least significant bit of the quotient, and 
so on, for all the bits of the source operand. Likewise, the result of the CRC operation is stored in the destination 
operand in reflected bit order. This means that the most significant bit of the resulting CRC (bit 31) is stored in the 
least significant bit of the destination operand (bit 0), and so on, for all the bits of the CRC.

Operation

Notes:

BIT_REFLECT64: DST[63-0] = SRC[0-63]
BIT_REFLECT32: DST[31-0] = SRC[0-31]
BIT_REFLECT16: DST[15-0] = SRC[0-15]
BIT_REFLECT8: DST[7-0] = SRC[0-7]
MOD2: Remainder from Polynomial division modulus 2

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F2 0F 38 F0 /r

CRC32 r32, r/m8

RM Valid Valid Accumulate CRC32 on r/m8.

F2 REX 0F 38 F0 /r

CRC32 r32, r/m81

NOTES:
1. In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

RM Valid N.E. Accumulate CRC32 on r/m8.

F2 0F 38 F1 /r

CRC32 r32, r/m16

RM Valid Valid Accumulate CRC32 on r/m16.

F2 0F 38 F1 /r

CRC32 r32, r/m32

RM Valid Valid Accumulate CRC32 on r/m32.

F2 REX.W 0F 38 F0 /r

CRC32 r64, r/m8

RM Valid N.E. Accumulate CRC32 on r/m8.

F2 REX.W 0F 38 F1 /r

CRC32 r64, r/m64

RM Valid N.E. Accumulate CRC32 on r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
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CRC32 instruction for 64-bit source operand and 64-bit destination operand:

TEMP1[63-0] := BIT_REFLECT64 (SRC[63-0])
TEMP2[31-0] := BIT_REFLECT32 (DEST[31-0])
TEMP3[95-0] := TEMP1[63-0] « 32
TEMP4[95-0] := TEMP2[31-0] « 64
TEMP5[95-0] := TEMP3[95-0] XOR TEMP4[95-0]
TEMP6[31-0] := TEMP5[95-0] MOD2 11EDC6F41H
DEST[31-0] := BIT_REFLECT (TEMP6[31-0])
DEST[63-32] := 00000000H

CRC32 instruction for 32-bit source operand and 32-bit destination operand:

TEMP1[31-0] := BIT_REFLECT32 (SRC[31-0])
TEMP2[31-0] := BIT_REFLECT32 (DEST[31-0])
TEMP3[63-0] := TEMP1[31-0] « 32
TEMP4[63-0] := TEMP2[31-0] « 32
TEMP5[63-0] := TEMP3[63-0] XOR TEMP4[63-0]
TEMP6[31-0] := TEMP5[63-0] MOD2 11EDC6F41H
DEST[31-0] := BIT_REFLECT (TEMP6[31-0])

CRC32 instruction for 16-bit source operand and 32-bit destination operand:

TEMP1[15-0] := BIT_REFLECT16 (SRC[15-0])
TEMP2[31-0] := BIT_REFLECT32 (DEST[31-0])
TEMP3[47-0] := TEMP1[15-0] « 32
TEMP4[47-0] := TEMP2[31-0] « 16
TEMP5[47-0] := TEMP3[47-0] XOR TEMP4[47-0]
TEMP6[31-0] := TEMP5[47-0] MOD2 11EDC6F41H
DEST[31-0] := BIT_REFLECT (TEMP6[31-0])

CRC32 instruction for 8-bit source operand and 64-bit destination operand:

TEMP1[7-0] := BIT_REFLECT8(SRC[7-0])
TEMP2[31-0] := BIT_REFLECT32 (DEST[31-0])
TEMP3[39-0] := TEMP1[7-0] « 32
TEMP4[39-0] := TEMP2[31-0] « 8
TEMP5[39-0] := TEMP3[39-0] XOR TEMP4[39-0]
TEMP6[31-0] := TEMP5[39-0] MOD2 11EDC6F41H
DEST[31-0] := BIT_REFLECT (TEMP6[31-0])
DEST[63-32] := 00000000H

CRC32 instruction for 8-bit source operand and 32-bit destination operand:

TEMP1[7-0] := BIT_REFLECT8(SRC[7-0])
TEMP2[31-0] := BIT_REFLECT32 (DEST[31-0])
TEMP3[39-0] := TEMP1[7-0] « 32
TEMP4[39-0] := TEMP2[31-0] « 8
TEMP5[39-0] := TEMP3[39-0] XOR TEMP4[39-0]
TEMP6[31-0] := TEMP5[39-0] MOD2 11EDC6F41H
DEST[31-0] := BIT_REFLECT (TEMP6[31-0])

Flags Affected

None.
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Intel C/C++ Compiler Intrinsic Equivalent

unsigned int _mm_crc32_u8( unsigned int crc, unsigned char data )
unsigned int _mm_crc32_u16( unsigned int crc, unsigned short data )
unsigned int _mm_crc32_u32( unsigned int crc, unsigned int data )
unsigned __int64 _mm_crc32_u64( unsigned __int64 crc, unsigned __int64 data )

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS segments.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If CPUID.01H:ECX.SSE4_2[Bit 20] = 0.

If LOCK prefix is used.

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CPUID.01H:ECX.SSE4_2[Bit 20] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If CPUID.01H:ECX.SSE4_2[Bit 20] = 0.

If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If CPUID.01H:ECX.SSE4_2[Bit 20] = 0.

If LOCK prefix is used.
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CVTDQ2PD—Convert Packed Doubleword Integers to Packed Double Precision Floating-Point 
Values

Instruction Operand Encoding

Description
Converts two, four or eight packed signed doubleword integers in the source operand (the second operand) to two, 
four or eight packed double precision floating-point values in the destination operand (the first operand). 
EVEX encoded versions: The source operand can be a YMM/XMM/XMM (low 64 bits) register, a 256/128/64-bit 
memory location or a 256/128/64-bit vector broadcasted from a 32-bit memory location. The destination operand 
is a ZMM/YMM/XMM register conditionally updated with writemask k1. Attempt to encode this instruction with EVEX 
embedded rounding is ignored.
VEX.256 encoded version: The source operand is an XMM register or 128- bit memory location. The destination 
operand is a YMM register. 
VEX.128 encoded version: The source operand is an XMM register or 64- bit memory location. The destination 
operand is a XMM register. The upper Bits (MAXVL-1:128) of the corresponding ZMM register destination are 
zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 64- bit memory location. The destination 
operand is an XMM register. The upper Bits (MAXVL-1:128) of the corresponding ZMM register destination are 
unmodified.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F3 0F E6 /r
CVTDQ2PD xmm1, xmm2/m64

A V/V SSE2 Convert two packed signed doubleword integers 
from xmm2/mem to two packed double precision 
floating-point values in xmm1.

VEX.128.F3.0F.WIG E6 /r
VCVTDQ2PD xmm1, xmm2/m64

A V/V AVX Convert two packed signed doubleword integers 
from xmm2/mem to two packed double precision 
floating-point values in xmm1.

VEX.256.F3.0F.WIG E6 /r
VCVTDQ2PD ymm1, xmm2/m128

A V/V AVX Convert four packed signed doubleword integers 
from xmm2/mem to four packed double precision 
floating-point values in ymm1.

EVEX.128.F3.0F.W0 E6 /r
VCVTDQ2PD xmm1 {k1}{z}, 
xmm2/m64/m32bcst 

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert 2 packed signed doubleword integers from 
xmm2/m64/m32bcst to eight packed double 
precision floating-point values in xmm1 with 
writemask k1.

EVEX.256.F3.0F.W0 E6 /r
VCVTDQ2PD ymm1 {k1}{z}, 
xmm2/m128/m32bcst 

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Convert 4 packed signed doubleword integers from 
xmm2/m128/m32bcst to 4 packed double precision 
floating-point values in ymm1 with writemask k1.

EVEX.512.F3.0F.W0 E6 /r
VCVTDQ2PD zmm1 {k1}{z}, 
ymm2/m256/m32bcst 

B V/V AVX512F 
OR AVX10.11

Convert eight packed signed doubleword integers 
from ymm2/m256/m32bcst to eight packed double 
precision floating-point values in zmm1 with 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Half ModRM:reg (w) ModRM:r/m (r) N/A N/A
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VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.

Operation
VCVTDQ2PD (EVEX Encoded Versions) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] :=
Convert_Integer_To_Double_Precision_Floating_Point(SRC[k+31:k])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTDQ2PD (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
k := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] :=

Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
ELSE 

DEST[i+63:i] :=
Convert_Integer_To_Double_Precision_Floating_Point(SRC[k+31:k])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*

Figure 1-11.  CVTDQ2PD (VEX.256 encoded version)

DEST

SRC X0X1X2X3

X3 X2 X1 X0
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ELSE ; zeroing-masking
DEST[i+63:i] := 0

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTDQ2PD (VEX.256 Encoded Version)
DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[191:128] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[95:64])
DEST[255:192] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[127:96)
DEST[MAXVL-1:256] := 0

VCVTDQ2PD (VEX.128 Encoded Version)
DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[MAXVL-1:128] := 0

CVTDQ2PD (128-bit Legacy SSE Version)
DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[MAXVL-1:128] (unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTDQ2PD __m512d _mm512_cvtepi32_pd( __m256i a);
VCVTDQ2PD __m512d _mm512_mask_cvtepi32_pd( __m512d s, __mmask8 k, __m256i a);
VCVTDQ2PD __m512d _mm512_maskz_cvtepi32_pd( __mmask8 k, __m256i a);
VCVTDQ2PD __m256d _mm256_cvtepi32_pd (__m128i src);
VCVTDQ2PD __m256d _mm256_mask_cvtepi32_pd( __m256d s, __mmask8 k, __m256i a);
VCVTDQ2PD __m256d _mm256_maskz_cvtepi32_pd( __mmask8 k, __m256i a);
VCVTDQ2PD __m128d _mm_mask_cvtepi32_pd( __m128d s, __mmask8 k, __m128i a);
VCVTDQ2PD __m128d _mm_maskz_cvtepi32_pd( __mmask8 k, __m128i a);
CVTDQ2PD __m128d _mm_cvtepi32_pd (__m128i src)

Other Exceptions
VEX-encoded instructions, see Table 2-22, “Type 5 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-53, “Type E5 Class Exception Conditions.”

Additionally:
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single Precision Floating-Point 
Values

Instruction Operand Encoding

Description
Converts four, eight or sixteen packed signed doubleword integers in the source operand to four, eight or sixteen 
packed single precision floating-point values in the destination operand.
EVEX encoded versions: The source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a 
ZMM/YMM/XMM register conditionally updated with writemask k1.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination 
operand is a YMM register. Bits (MAXVL-1:256) of the corresponding register destination are zeroed.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination 
operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding register destination are zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination 
operand is an XMM register. The upper Bits (MAXVL-1:128) of the corresponding register destination are unmodi-
fied.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.

Opcode
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 5B /r
CVTDQ2PS xmm1, xmm2/m128

A V/V SSE2 Convert four packed signed doubleword integers 
from xmm2/mem to four packed single precision 
floating-point values in xmm1.

VEX.128.0F.WIG 5B /r
VCVTDQ2PS xmm1, xmm2/m128

A V/V AVX Convert four packed signed doubleword integers 
from xmm2/mem to four packed single precision 
floating-point values in xmm1.

VEX.256.0F.WIG 5B /r
VCVTDQ2PS ymm1, ymm2/m256

A V/V AVX Convert eight packed signed doubleword integers 
from ymm2/mem to eight packed single precision 
floating-point values in ymm1.

EVEX.128.0F.W0 5B /r
VCVTDQ2PS xmm1 {k1}{z}, 
xmm2/m128/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert four packed signed doubleword integers 
from xmm2/m128/m32bcst to four packed single 
precision floating-point values in xmm1with 
writemask k1.

EVEX.256.0F.W0 5B /r
VCVTDQ2PS ymm1 {k1}{z}, 
ymm2/m256/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Convert eight packed signed doubleword integers 
from ymm2/m256/m32bcst to eight packed single 
precision floating-point values in ymm1with 
writemask k1.

EVEX.512.0F.W0 5B /r
VCVTDQ2PS zmm1 {k1}{z}, 
zmm2/m512/m32bcst {er}

B V/V AVX512F 
OR AVX10.11

Convert sixteen packed signed doubleword integers 
from zmm2/m512/m32bcst to sixteen packed single 
precision floating-point values in zmm1with 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation
VCVTDQ2PS (EVEX Encoded Versions) When SRC Operand is a Register
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);  ; refer to Table 15-4 in the Intel® 64 and IA-32 Architectures 

Software Developer’s Manual, Volume 1
ELSE 

SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);  ; refer to Table 15-4 in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1
FI;

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] :=
Convert_Integer_To_Single_Precision_Floating_Point(SRC[i+31:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTDQ2PS (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] :=

Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
ELSE 

DEST[i+31:i] :=
Convert_Integer_To_Single_Precision_Floating_Point(SRC[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VCVTDQ2PS (VEX.256 Encoded Version)
DEST[31:0] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
DEST[63:32] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])
DEST[95:64] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])
DEST[127:96] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[127:96)
DEST[159:128] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[159:128])
DEST[191:160] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[191:160])
DEST[223:192] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[223:192])
DEST[255:224] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[255:224)
DEST[MAXVL-1:256] := 0

VCVTDQ2PS (VEX.128 Encoded Version)
DEST[31:0] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
DEST[63:32] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])
DEST[95:64] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])
DEST[127:96] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96)
DEST[MAXVL-1:128] := 0

CVTDQ2PS (128-bit Legacy SSE Version)
DEST[31:0] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
DEST[63:32] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])
DEST[95:64] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])
DEST[127:96] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96)
DEST[MAXVL-1:128] (unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTDQ2PS __m512 _mm512_cvtepi32_ps( __m512i a);
VCVTDQ2PS __m512 _mm512_mask_cvtepi32_ps( __m512 s, __mmask16 k, __m512i a);
VCVTDQ2PS __m512 _mm512_maskz_cvtepi32_ps( __mmask16 k, __m512i a);
VCVTDQ2PS __m512 _mm512_cvt_roundepi32_ps( __m512i a, int r);
VCVTDQ2PS __m512 _mm512_mask_cvt_roundepi_ps( __m512 s, __mmask16 k, __m512i a, int r);
VCVTDQ2PS __m512 _mm512_maskz_cvt_roundepi32_ps( __mmask16 k, __m512i a, int r);
VCVTDQ2PS __m256 _mm256_mask_cvtepi32_ps( __m256 s, __mmask8 k, __m256i a);
VCVTDQ2PS __m256 _mm256_maskz_cvtepi32_ps( __mmask8 k, __m256i a);
VCVTDQ2PS __m128 _mm_mask_cvtepi32_ps( __m128 s, __mmask8 k, __m128i a);
VCVTDQ2PS __m128 _mm_maskz_cvtepi32_ps( __mmask8 k, __m128i a);
CVTDQ2PS __m256 _mm256_cvtepi32_ps (__m256i src)
CVTDQ2PS __m128 _mm_cvtepi32_ps (__m128i src)

SIMD Floating-Point Exceptions
Precision.

Other Exceptions
VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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CVTPD2DQ—Convert Packed Double Precision Floating-Point Values to Packed Doubleword 
Integers

Instruction Operand Encoding

Description
Converts packed double precision floating-point values in the source operand (second operand) to packed signed 
doubleword integers in the destination operand (first operand). 
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value 
(2w-1, where w represents the number of bits in the destination format) is returned.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512-bit memory location, or a 512-bit 
vector broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register condi-
tionally updated with writemask k1. The upper bits (MAXVL-1:256/128/64) of the corresponding destination are 
zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination 
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are 
zeroed.

Opcode
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F2 0F E6 /r
CVTPD2DQ xmm1, xmm2/m128

A V/V SSE2 Convert two packed double precision floating-point 
values in xmm2/mem to two signed doubleword 
integers in xmm1.

VEX.128.F2.0F.WIG E6 /r
VCVTPD2DQ xmm1, xmm2/m128

A V/V AVX Convert two packed double precision floating-point 
values in xmm2/mem to two signed doubleword 
integers in xmm1.

VEX.256.F2.0F.WIG E6 /r
VCVTPD2DQ xmm1, ymm2/m256

A V/V AVX Convert four packed double precision floating-point 
values in ymm2/mem to four signed doubleword 
integers in xmm1.

EVEX.128.F2.0F.W1 E6 /r
VCVTPD2DQ xmm1 {k1}{z}, 
xmm2/m128/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed double precision floating-point 
values in xmm2/m128/m64bcst to two signed 
doubleword integers in xmm1 subject to writemask 
k1.

EVEX.256.F2.0F.W1 E6 /r
VCVTPD2DQ xmm1 {k1}{z}, 
ymm2/m256/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Convert four packed double precision floating-point 
values in ymm2/m256/m64bcst to four signed 
doubleword integers in xmm1 subject to writemask 
k1.

EVEX.512.F2.0F.W1 E6 /r
VCVTPD2DQ ymm1 {k1}{z}, 
zmm2/m512/m64bcst {er}

B V/V AVX512F 
OR AVX10.11

Convert eight packed double precision floating-
point values in zmm2/m512/m64bcst to eight 
signed doubleword integers in ymm1 subject to 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination 
operand is a XMM register. The upper bits (MAXVL-1:64) of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination 
operand is an XMM register. Bits[127:64] of the destination XMM register are zeroed. However, the upper bits 
(MAXVL-1:128) of the corresponding ZMM register destination are unmodified. 
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.

Operation
VCVTPD2DQ (EVEX Encoded Versions) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;

FOR j := 0 TO KL-1
i := j * 32
k := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] :=
Convert_Double_Precision_Floating_Point_To_Integer(SRC[k+63:k])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0

Figure 1-12.  VCVTPD2DQ (VEX.256 encoded version)
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VCVTPD2DQ (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 32
k := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] :=

Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
ELSE 

DEST[i+31:i] :=
Convert_Double_Precision_Floating_Point_To_Integer(SRC[k+63:k])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0

VCVTPD2DQ (VEX.256 Encoded Version)
DEST[31:0] := Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
DEST[63:32] := Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])
DEST[95:64] := Convert_Double_Precision_Floating_Point_To_Integer(SRC[191:128])
DEST[127:96] := Convert_Double_Precision_Floating_Point_To_Integer(SRC[255:192)
DEST[MAXVL-1:128] := 0

VCVTPD2DQ (VEX.128 Encoded Version)
DEST[31:0] := Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
DEST[63:32] := Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])
DEST[MAXVL-1:64] := 0

CVTPD2DQ (128-bit Legacy SSE Version)
DEST[31:0] := Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
DEST[63:32] := Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])
DEST[127:64] := 0
DEST[MAXVL-1:128] (unmodified)
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTPD2DQ __m256i _mm512_cvtpd_epi32( __m512d a);
VCVTPD2DQ __m256i _mm512_mask_cvtpd_epi32( __m256i s, __mmask8 k, __m512d a);
VCVTPD2DQ __m256i _mm512_maskz_cvtpd_epi32( __mmask8 k, __m512d a);
VCVTPD2DQ __m256i _mm512_cvt_roundpd_epi32( __m512d a, int r);
VCVTPD2DQ __m256i _mm512_mask_cvt_roundpd_epi32( __m256i s, __mmask8 k, __m512d a, int r);
VCVTPD2DQ __m256i _mm512_maskz_cvt_roundpd_epi32( __mmask8 k, __m512d a, int r);
VCVTPD2DQ __m128i _mm256_mask_cvtpd_epi32( __m128i s, __mmask8 k, __m256d a);
VCVTPD2DQ __m128i _mm256_maskz_cvtpd_epi32( __mmask8 k, __m256d a);
VCVTPD2DQ __m128i _mm_mask_cvtpd_epi32( __m128i s, __mmask8 k, __m128d a);
VCVTPD2DQ __m128i _mm_maskz_cvtpd_epi32( __mmask8 k, __m128d a);
VCVTPD2DQ __m128i _mm256_cvtpd_epi32 (__m256d src)
CVTPD2DQ __m128i _mm_cvtpd_epi32 (__m128d src)

SIMD Floating-Point Exceptions
Invalid, Precision.

Other Exceptions
See Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”

Additionally:
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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CVTPD2PI—Convert Packed Double Precision Floating-Point Values to Packed Dword Integers

Instruction Operand Encoding

Description

Converts two packed double precision floating-point values in the source operand (second operand) to two packed 
signed doubleword integers in the destination operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The destination operand is an MMX tech-
nology register. 

When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register. If a converted result is larger than the maximum signed doubleword integer, the floating-point invalid 
exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack 
pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU 
floating-point exception is pending, the exception is handled before the CVTPD2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST[31:0] := Convert_Double_Precision_Floating_Point_To_Integer32(SRC[63:0]);
DEST[63:32] := Convert_Double_Precision_Floating_Point_To_Integer32(SRC[127:64]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTPD1PI __m64 _mm_cvtpd_pi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Table 24-4, “Exception Conditions for Legacy SIMD/MMX Instructions with FP Exception and 16-Byte Align-
ment” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 2D /r

CVTPD2PI mm, xmm/m128

RM V/V SSE2 Convert two packed double precision floating-
point values from xmm/m128 to two packed 
signed doubleword integers in mm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A



CVTPD2PS—Convert Packed Double Precision Floating-Point Values to Packed Single Precision 
Floating-Point Values

Instruction Operand Encoding

Description
Converts two, four or eight packed double precision floating-point values in the source operand (second operand) 
to two, four or eight packed single precision floating-point values in the destination operand (first operand). 
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. 
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or 
a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is a 
YMM/XMM/XMM (low 64-bits) register conditionally updated with writemask k1. The upper bits (MAXVL-
1:256/128/64) of the corresponding destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination 
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are 
zeroed.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination 
operand is a XMM register. The upper bits (MAXVL-1:64) of the corresponding ZMM register destination are zeroed.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 5A /r
CVTPD2PS xmm1, xmm2/m128

A V/V SSE2 Convert two packed double precision floating-point 
values in xmm2/mem to two single precision 
floating-point values in xmm1.

VEX.128.66.0F.WIG 5A /r
VCVTPD2PS xmm1, xmm2/m128

A V/V AVX Convert two packed double precision floating-point 
values in xmm2/mem to two single precision 
floating-point values in xmm1.

 VEX.256.66.0F.WIG 5A /r
VCVTPD2PS xmm1, ymm2/m256

A V/V AVX Convert four packed double precision floating-
point values in ymm2/mem to four single precision 
floating-point values in xmm1.

EVEX.128.66.0F.W1 5A /r
VCVTPD2PS xmm1 {k1}{z}, 
xmm2/m128/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed double precision floating-point 
values in xmm2/m128/m64bcst to two single 
precision floating-point values in xmm1with 
writemask k1.

EVEX.256.66.0F.W1 5A /r
VCVTPD2PS xmm1 {k1}{z}, 
ymm2/m256/m64bcst 

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Convert four packed double precision floating-
point values in ymm2/m256/m64bcst to four 
single precision floating-point values in xmm1with 
writemask k1.

EVEX.512.66.0F.W1 5A /r
VCVTPD2PS ymm1 {k1}{z}, 
zmm2/m512/m64bcst {er}

B V/V AVX512F 
OR AVX10.11

Convert eight packed double precision floating-
point values in zmm2/m512/m64bcst to eight 
single precision floating-point values in ymm1with 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination 
operand is an XMM register. Bits[127:64] of the destination XMM register are zeroed. However, the upper Bits 
(MAXVL-1:128) of the corresponding ZMM register destination are unmodified.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

Operation

VCVTPD2PS (EVEX Encoded Version) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;

FOR j := 0 TO KL-1
i := j * 32
k := j * 64
IF k1[j] OR *no writemask*

THEN 
DEST[i+31:i] := Convert_Double_Precision_Floating_Point_To_Single_Precision_Floating_Point(SRC[k+63:k])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0

Figure 1-13.  VCVTPD2PS (VEX.256 encoded version)
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VCVTPD2PS (EVEX Encoded Version) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 32
k := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] :=Convert_Double_Precision_Floating_Point_To_Single_Precision_Floating_Point(SRC[63:0])

ELSE 
DEST[i+31:i] := Convert_Double_Precision_Floating_Point_To_Single_Precision_Floating_Point(SRC[k+63:k])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0

VCVTPD2PS (VEX.256 Encoded Version)
DEST[31:0] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0])
DEST[63:32] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64])
DEST[95:64] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[191:128])
DEST[127:96] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[255:192)
DEST[MAXVL-1:128] := 0

VCVTPD2PS (VEX.128 Encoded Version)
DEST[31:0] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0])
DEST[63:32] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64])
DEST[MAXVL-1:64] := 0

CVTPD2PS (128-bit Legacy SSE Version)
DEST[31:0] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0])
DEST[63:32] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64])
DEST[127:64] := 0
DEST[MAXVL-1:128] (unmodified)
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTPD2PS __m256 _mm512_cvtpd_ps( __m512d a);
VCVTPD2PS __m256 _mm512_mask_cvtpd_ps( __m256 s, __mmask8 k, __m512d a);
VCVTPD2PS __m256 _mm512_maskz_cvtpd_ps( __mmask8 k, __m512d a);
VCVTPD2PS __m256 _mm512_cvt_roundpd_ps( __m512d a, int r);
VCVTPD2PS __m256 _mm512_mask_cvt_roundpd_ps( __m256 s, __mmask8 k, __m512d a, int r);
VCVTPD2PS __m256 _mm512_maskz_cvt_roundpd_ps( __mmask8 k, __m512d a, int r);
VCVTPD2PS __m128 _mm256_mask_cvtpd_ps( __m128 s, __mmask8 k, __m256d a);
VCVTPD2PS __m128 _mm256_maskz_cvtpd_ps( __mmask8 k, __m256d a);
VCVTPD2PS __m128 _mm_mask_cvtpd_ps( __m128 s, __mmask8 k, __m128d a);
VCVTPD2PS __m128 _mm_maskz_cvtpd_ps( __mmask8 k, __m128d a);
VCVTPD2PS __m128 _mm256_cvtpd_ps (__m256d a)
CVTPD2PS __m128 _mm_cvtpd_ps (__m128d a)

SIMD Floating-Point Exceptions
Invalid, Precision, Underflow, Overflow, Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”

Additionally:
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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CVTPI2PD—Convert Packed Dword Integers to Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Converts two packed signed doubleword integers in the source operand (second operand) to two packed double 
precision floating-point values in the destination operand (first operand). 

The source operand can be an MMX technology register or a 64-bit memory location. The destination operand is an 
XMM register. In addition, depending on the operand configuration:
• For operands xmm, mm: the instruction causes a transition from x87 FPU to MMX technology operation (that 

is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this 
instruction is executed while an x87 FPU floating-point exception is pending, the exception is handled before 
the CVTPI2PD instruction is executed.

• For operands xmm, m64: the instruction does not cause a transition to MMX technology and does not take 
x87 FPU exceptions.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);
DEST[127:64] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTPI2PD __m128d _mm_cvtpi32_pd(__m64 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 24-6, “Exception Conditions for Legacy SIMD/MMX Instructions with XMM and without FP Exception” in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

66 0F 2A /r

CVTPI2PD xmm, mm/m641

NOTES:
1. Operation is different for different operand sets; see the Description section.

RM Valid Valid Convert two packed signed doubleword 
integers from mm/mem64 to two packed 
double precision floating-point values in xmm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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CVTPI2PS—Convert Packed Dword Integers to Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Converts two packed signed doubleword integers in the source operand (second operand) to two packed single 
precision floating-point values in the destination operand (first operand). 

The source operand can be an MMX technology register or a 64-bit memory location. The destination operand is an 
XMM register. The results are stored in the low quadword of the destination operand, and the high quadword 
remains unchanged. When a conversion is inexact, the value returned is rounded according to the rounding control 
bits in the MXCSR register. 

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack 
pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU 
floating-point exception is pending, the exception is handled before the CVTPI2PS instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST[31:0] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
DEST[63:32] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]);
(* High quadword of destination unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent

CVTPI2PS __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)

SIMD Floating-Point Exceptions

Precision.

Other Exceptions
See Table 24-5, “Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP Exception” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

NP 0F 2A /r

CVTPI2PS xmm, mm/m64

RM Valid Valid Convert two signed doubleword integers 
from mm/m64 to two single precision 
floating-point values in xmm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A



CVTPS2DQ—Convert Packed Single Precision Floating-Point Values to Packed Signed 
Doubleword Integer Values

Instruction Operand Encoding

Description
Converts four, eight or sixteen packed single precision floating-point values in the source operand to four, eight or 
sixteen signed doubleword integers in the destination operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value 
(2w-1, where w represents the number of bits in the destination format) is returned.
EVEX encoded versions: The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector 
broadcasted from a 32-bit memory location. The destination operand is a ZMM register conditionally updated with 
writemask k1. 
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination 
operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are 
zeroed.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 5B /r
CVTPS2DQ xmm1, xmm2/m128

A V/V SSE2 Convert four packed single precision floating-point 
values from xmm2/mem to four packed signed 
doubleword values in xmm1.

VEX.128.66.0F.WIG 5B /r
VCVTPS2DQ xmm1, xmm2/m128

A V/V AVX Convert four packed single precision floating-point 
values from xmm2/mem to four packed signed 
doubleword values in xmm1.

VEX.256.66.0F.WIG 5B /r
VCVTPS2DQ ymm1, ymm2/m256

A V/V AVX Convert eight packed single precision floating-point 
values from ymm2/mem to eight packed signed 
doubleword values in ymm1.

EVEX.128.66.0F.W0 5B /r
VCVTPS2DQ xmm1 {k1}{z}, 
xmm2/m128/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert four packed single precision floating-point 
values from xmm2/m128/m32bcst to four packed 
signed doubleword values in xmm1 subject to 
writemask k1.

EVEX.256.66.0F.W0 5B /r
VCVTPS2DQ ymm1 {k1}{z}, 
ymm2/m256/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Convert eight packed single precision floating-point 
values from ymm2/m256/m32bcst to eight packed 
signed doubleword values in ymm1 subject to 
writemask k1.

EVEX.512.66.0F.W0 5B /r
VCVTPS2DQ zmm1 {k1}{z}, 
zmm2/m512/m32bcst {er}

B V/V AVX512F 
OR AVX10.11

Convert sixteen packed single precision floating-point 
values from zmm2/m512/m32bcst to sixteen packed 
signed doubleword values in zmm1 subject to 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination 
operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are 
zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination 
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are 
unmodified.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

Operation
VCVTPS2DQ (Encoded Versions) When SRC Operand is a Register
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] :=
Convert_Single_Precision_Floating_Point_To_Integer(SRC[i+31:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTPS2DQ (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO 15
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] :=

Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
ELSE 

DEST[i+31:i] :=
Convert_Single_Precision_Floating_Point_To_Integer(SRC[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
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FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTPS2DQ (VEX.256 Encoded Version)
DEST[31:0] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
DEST[63:32] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])
DEST[95:64] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])
DEST[127:96] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96)
DEST[159:128] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[159:128])
DEST[191:160] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[191:160])
DEST[223:192] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[223:192])
DEST[255:224] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[255:224])

VCVTPS2DQ (VEX.128 Encoded Version)
DEST[31:0] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
DEST[63:32] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])
DEST[95:64] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])
DEST[127:96] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96])
DEST[MAXVL-1:128] := 0

CVTPS2DQ (128-bit Legacy SSE Version)
DEST[31:0] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
DEST[63:32] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])
DEST[95:64] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])
DEST[127:96] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96])
DEST[MAXVL-1:128] (unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPS2DQ __m512i _mm512_cvtps_epi32( __m512 a);
VCVTPS2DQ __m512i _mm512_mask_cvtps_epi32( __m512i s, __mmask16 k, __m512 a);
VCVTPS2DQ __m512i _mm512_maskz_cvtps_epi32( __mmask16 k, __m512 a);
VCVTPS2DQ __m512i _mm512_cvt_roundps_epi32( __m512 a, int r);
VCVTPS2DQ __m512i _mm512_mask_cvt_roundps_epi32( __m512i s, __mmask16 k, __m512 a, int r);
VCVTPS2DQ __m512i _mm512_maskz_cvt_roundps_epi32( __mmask16 k, __m512 a, int r);
VCVTPS2DQ __m256i _mm256_mask_cvtps_epi32( __m256i s, __mmask8 k, __m256 a);
VCVTPS2DQ __m256i _mm256_maskz_cvtps_epi32( __mmask8 k, __m256 a);
VCVTPS2DQ __m128i _mm_mask_cvtps_epi32( __m128i s, __mmask8 k, __m128 a);
VCVTPS2DQ __m128i _mm_maskz_cvtps_epi32( __mmask8 k, __m128 a);
VCVTPS2DQ __ m256i _mm256_cvtps_epi32 (__m256 a)
CVTPS2DQ __m128i _mm_cvtps_epi32 (__m128 a)

SIMD Floating-Point Exceptions
Invalid, Precision.

Other Exceptions
VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”

Additionally:
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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CVTPS2PD—Convert Packed Single Precision Floating-Point Values to Packed Double Precision 
Floating-Point Values

Instruction Operand Encoding

Description
Converts two, four or eight packed single precision floating-point values in the source operand (second operand) to 
two, four or eight packed double precision floating-point values in the destination operand (first operand). 
EVEX encoded versions: The source operand is a YMM/XMM/XMM (low 64-bits) register, a 256/128/64-bit memory 
location or a 256/128/64-bit vector broadcasted from a 32-bit memory location. The destination operand is a 
ZMM/YMM/XMM register conditionally updated with writemask k1. 
VEX.256 encoded version: The source operand is an XMM register or 128- bit memory location. The destination 
operand is a YMM register. Bits (MAXVL-1:256) of the corresponding destination ZMM register are zeroed.
VEX.128 encoded version: The source operand is an XMM register or 64- bit memory location. The destination 
operand is a XMM register. The upper Bits (MAXVL-1:128) of the corresponding ZMM register destination are 
zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 64- bit memory location. The destination 
operand is an XMM register. The upper Bits (MAXVL-1:128) of the corresponding ZMM register destination are 
unmodified.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 5A /r
CVTPS2PD xmm1, xmm2/m64

A V/V SSE2 Convert two packed single precision floating-point 
values in xmm2/m64 to two packed double precision 
floating-point values in xmm1.

VEX.128.0F.WIG 5A /r
VCVTPS2PD xmm1, xmm2/m64

A V/V AVX Convert two packed single precision floating-point 
values in xmm2/m64 to two packed double precision 
floating-point values in xmm1.

VEX.256.0F.WIG 5A /r
VCVTPS2PD ymm1, xmm2/m128

A V/V AVX Convert four packed single precision floating-point 
values in xmm2/m128 to four packed double precision 
floating-point values in ymm1.

EVEX.128.0F.W0 5A /r
VCVTPS2PD xmm1 {k1}{z}, 
xmm2/m64/m32bcst 

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed single precision floating-point 
values in xmm2/m64/m32bcst to packed double 
precision floating-point values in xmm1 with writemask 
k1.

EVEX.256.0F.W0 5A /r
VCVTPS2PD ymm1 {k1}{z}, 
xmm2/m128/m32bcst 

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Convert four packed single precision floating-point 
values in xmm2/m128/m32bcst to packed double 
precision floating-point values in ymm1 with writemask 
k1.

EVEX.512.0F.W0 5A /r
VCVTPS2PD zmm1 {k1}{z}, 
ymm2/m256/m32bcst {sae} 

B V/V AVX512F 
OR AVX10.11

Convert eight packed single precision floating-point 
values in ymm2/m256/b32bcst to eight packed double 
precision floating-point values in zmm1 with writemask 
k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Half ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

Operation
VCVTPS2PD (EVEX Encoded Versions) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] :=
Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[k+31:k])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTPS2PD (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
k := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] :=

Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
ELSE 

DEST[i+63:i] :=
Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[k+31:k])
FI;

Figure 1-14.  CVTPS2PD (VEX.256 encoded version)

DEST

SRC X0X1X2X3

X3 X2 X1 X0
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ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTPS2PD (VEX.256 Encoded Version)
DEST[63:0] := Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] := Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[191:128] := Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[95:64])
DEST[255:192] := Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[127:96)
DEST[MAXVL-1:256] := 0

VCVTPS2PD (VEX.128 Encoded Version)
DEST[63:0] := Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] := Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[MAXVL-1:128] := 0

CVTPS2PD (128-bit Legacy SSE Version)
DEST[63:0] := Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] := Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[MAXVL-1:128] (unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPS2PD __m512d _mm512_cvtps_pd( __m256 a);
VCVTPS2PD __m512d _mm512_mask_cvtps_pd( __m512d s, __mmask8 k, __m256 a);
VCVTPS2PD __m512d _mm512_maskz_cvtps_pd( __mmask8 k, __m256 a);
VCVTPS2PD __m512d _mm512_cvt_roundps_pd( __m256 a, int sae);
VCVTPS2PD __m512d _mm512_mask_cvt_roundps_pd( __m512d s, __mmask8 k, __m256 a, int sae);
VCVTPS2PD __m512d _mm512_maskz_cvt_roundps_pd( __mmask8 k, __m256 a, int sae);
VCVTPS2PD __m256d _mm256_mask_cvtps_pd( __m256d s, __mmask8 k, __m128 a);
VCVTPS2PD __m256d _mm256_maskz_cvtps_pd( __mmask8 k, __m128a);
VCVTPS2PD __m128d _mm_mask_cvtps_pd( __m128d s, __mmask8 k, __m128 a);
VCVTPS2PD __m128d _mm_maskz_cvtps_pd( __mmask8 k, __m128 a);
VCVTPS2PD __m256d _mm256_cvtps_pd (__m128 a)
CVTPS2PD __m128d _mm_cvtps_pd (__m128 a)

SIMD Floating-Point Exceptions
Invalid, Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”

Additionally:
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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CVTPS2PI—Convert Packed Single Precision Floating-Point Values to Packed Dword Integers

Instruction Operand Encoding

Description

Converts two packed single precision floating-point values in the source operand (second operand) to two packed 
signed doubleword integers in the destination operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The destination operand is an MMX tech-
nology register. When the source operand is an XMM register, the two single precision floating-point values are 
contained in the low quadword of the register. When a conversion is inexact, the value returned is rounded 
according to the rounding control bits in the MXCSR register. If a converted result is larger than the maximum 
signed doubleword integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

CVTPS2PI causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack pointer 
is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU floating-
point exception is pending, the exception is handled before the CVTPS2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST[31:0] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
DEST[63:32] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTPS2PI __m64 _mm_cvtps_pi32(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Table 24-5, “Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP Exception,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

NP 0F 2D /r

CVTPS2PI mm, xmm/m64

RM Valid Valid Convert two packed single precision floating-
point values from xmm/m64 to two packed 
signed doubleword integers in mm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A



CVTSD2SI—Convert Scalar Double Precision Floating-Point Value to Doubleword Integer

Instruction Operand Encoding

Description
Converts a double precision floating-point value in the source operand (the second operand) to a signed double-
word integer in the destination operand (first operand). The source operand can be an XMM register or a 64-bit 
memory location. The destination operand is a general-purpose register. When the source operand is an XMM 
register, the double precision floating-point value is contained in the low quadword of the register.

When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register. 

If a converted result exceeds the range limits of signed doubleword integer (in non-64-bit modes or 64-bit mode 
with REX.W/VEX.W/EVEX.W=0), the floating-point invalid exception is raised, and if this exception is masked, the 
indefinite integer value (80000000H) is returned.

If a converted result exceeds the range limits of signed quadword integer (in 64-bit mode and 
REX.W/VEX.W/EVEX.W = 1), the floating-point invalid exception is raised, and if this exception is masked, the 
indefinite integer value (80000000_00000000H) is returned.
Legacy SSE instruction: Use of the REX.W prefix promotes the instruction to produce 64-bit data in 64-bit mode. 
See the summary chart at the beginning of this section for encoding data and limits.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F2 0F 2D /r
CVTSD2SI r32, xmm1/m64

A V/V SSE2 Convert one double precision floating-point value from 
xmm1/m64 to one signed doubleword integer r32.

F2 REX.W 0F 2D /r
CVTSD2SI r64, xmm1/m64

A V/N.E. SSE2 Convert one double precision floating-point value from 
xmm1/m64 to one signed quadword integer sign-
extended into r64.

VEX.LIG.F2.0F.W0 2D /r 1

VCVTSD2SI r32, xmm1/m64

NOTES:
1. Software should ensure VCVTSD2SI is encoded with VEX.L=0. Encoding VCVTSD2SI with VEX.L=1 may encounter unpredictable 

behavior across different processor generations.

A V/V AVX Convert one double precision floating-point value from 
xmm1/m64 to one signed doubleword integer r32.

VEX.LIG.F2.0F.W1 2D /r 1

VCVTSD2SI r64, xmm1/m64
A V/N.E.2

2. VEX.W1/EVEX.W1 in non-64 bit is ignored; the instructions behaves as if the W0 version is used.

AVX Convert one double precision floating-point value from 
xmm1/m64 to one signed quadword integer sign-
extended into r64.

EVEX.LLIG.F2.0F.W0 2D /r
VCVTSD2SI r32, xmm1/m64{er}

B V/V AVX512F 
OR AVX10.13

3. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert one double precision floating-point value from 
xmm1/m64 to one signed doubleword integer r32.

EVEX.LLIG.F2.0F.W1 2D /r
VCVTSD2SI r64, xmm1/m64{er}

B V/N.E.2 AVX512F
OR AVX10.13

Convert one double precision floating-point value from 
xmm1/m64 to one signed quadword integer sign-
extended into r64.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Tuple1 Fixed ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Software should ensure VCVTSD2SI is encoded with VEX.L=0. Encoding VCVTSD2SI with VEX.L=1 may encounter 
unpredictable behavior across different processor generations.

Operation

VCVTSD2SI (EVEX Encoded Version)
IF SRC *is register* AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF 64-Bit Mode and OperandSize = 64

THEN DEST[63:0] := Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
ELSE DEST[31:0] := Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);

FI

(V)CVTSD2SI 
IF 64-Bit Mode and OperandSize = 64
THEN

DEST[63:0] := Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
ELSE

DEST[31:0] := Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent
VCVTSD2SI int _mm_cvtsd_i32(__m128d);
VCVTSD2SI int _mm_cvt_roundsd_i32(__m128d, int r);
VCVTSD2SI __int64 _mm_cvtsd_i64(__m128d);
VCVTSD2SI __int64 _mm_cvt_roundsd_i64(__m128d, int r);
CVTSD2SI __int64 _mm_cvtsd_si64(__m128d);
CVTSD2SI int _mm_cvtsd_si32(__m128d a)

SIMD Floating-Point Exceptions
Invalid, Precision.

Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”

Additionally:
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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CVTSD2SS—Convert Scalar Double Precision Floating-Point Value to Scalar Single Precision 
Floating-Point Value

Instruction Operand Encoding

Description
Converts a double precision floating-point value in the “convert-from” source operand (the second operand in SSE2 
version, otherwise the third operand) to a single precision floating-point value in the destination operand.
When the “convert-from” operand is an XMM register, the double precision floating-point value is contained in the 
low quadword of the register. The result is stored in the low doubleword of the destination operand. When the 
conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register.
128-bit Legacy SSE version: The “convert-from” source operand (the second operand) is an XMM register or 
memory location. Bits (MAXVL-1:32) of the corresponding destination register remain unchanged. The destination 
operand is an XMM register. 
VEX.128 and EVEX encoded versions: The “convert-from” source operand (the third operand) can be an XMM 
register or a 64-bit memory location. The first source and destination operands are XMM registers. Bits (127:32) of 
the XMM register destination are copied from the corresponding bits in the first source operand. Bits (MAXVL-
1:128) of the destination register are zeroed.
EVEX encoded version: the converted result in written to the low doubleword element of the destination under the 
writemask.
Software should ensure VCVTSD2SS is encoded with VEX.L=0. Encoding VCVTSD2SS with VEX.L=1 may encounter 
unpredictable behavior across different processor generations.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F2 0F 5A /r
CVTSD2SS xmm1, xmm2/m64

A V/V SSE2 Convert one double precision floating-point value in 
xmm2/m64 to one single precision floating-point value 
in xmm1.

VEX.LIG.F2.0F.WIG 5A /r
VCVTSD2SS xmm1,xmm2, xmm3/m64

B V/V AVX Convert one double precision floating-point value in 
xmm3/m64 to one single precision floating-point value 
and merge with high bits in xmm2.

EVEX.LLIG.F2.0F.W1 5A /r
VCVTSD2SS xmm1 {k1}{z}, xmm2, 
xmm3/m64{er}

C V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert one double precision floating-point value in 
xmm3/m64 to one single precision floating-point value 
and merge with high bits in xmm2 under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation
VCVTSD2SS (EVEX Encoded Version)
IF (SRC2 *is register*) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[31:0] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC2[63:0]);
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

VCVTSD2SS (VEX.128 Encoded Version)
DEST[31:0] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC2[63:0]);
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

CVTSD2SS (128-bit Legacy SSE Version)
DEST[31:0] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]);
(* DEST[MAXVL-1:32] Unmodified *)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTSD2SS __m128 _mm_mask_cvtsd_ss(__m128 s, __mmask8 k, __m128 a, __m128d b);
VCVTSD2SS __m128 _mm_maskz_cvtsd_ss( __mmask8 k, __m128 a,__m128d b);
VCVTSD2SS __m128 _mm_cvt_roundsd_ss(__m128 a, __m128d b, int r);
VCVTSD2SS __m128 _mm_mask_cvt_roundsd_ss(__m128 s, __mmask8 k, __m128 a, __m128d b, int r);
VCVTSD2SS __m128 _mm_maskz_cvt_roundsd_ss( __mmask8 k, __m128 a,__m128d b, int r);
CVTSD2SS __m128_mm_cvtsd_ss(__m128 a, __m128d b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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CVTSI2SD—Convert Doubleword Integer to Scalar Double Precision Floating-Point Value

Instruction Operand Encoding

Description
Converts a signed doubleword integer (or signed quadword integer if operand size is 64 bits) in the “convert-from” 
source operand to a double precision floating-point value in the destination operand. The result is stored in the low 
quadword of the destination operand, and the high quadword left unchanged. When conversion is inexact, the 
value returned is rounded according to the rounding control bits in the MXCSR register.
The second source operand can be a general-purpose register or a 32/64-bit memory location. The first source and 
destination operands are XMM registers. 
128-bit Legacy SSE version: Use of the REX.W prefix promotes the instruction to 64-bit operands. The “convert-
from” source operand (the second operand) is a general-purpose register or memory location. The destination is 
an XMM register Bits (MAXVL-1:64) of the corresponding destination register remain unchanged.
VEX.128 and EVEX encoded versions: The “convert-from” source operand (the third operand) can be a general-
purpose register or a memory location. The first source and destination operands are XMM registers. Bits (127:64) 
of the XMM register destination are copied from the corresponding bits in the first source operand. Bits (MAXVL-
1:128) of the destination register are zeroed.
EVEX.W0 version: attempt to encode this instruction with EVEX embedded rounding is ignored.
VEX.W1 and EVEX.W1 versions: promotes the instruction to use 64-bit input value in 64-bit mode.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F2 0F 2A /r
CVTSI2SD xmm1, r32/m32

A V/V SSE2 Convert one signed doubleword integer from 
r32/m32 to one double precision floating-point 
value in xmm1.

F2 REX.W 0F 2A /r
CVTSI2SD xmm1, r/m64

A V/N.E. SSE2 Convert one signed quadword integer from r/m64 
to one double precision floating-point value in 
xmm1.

VEX.LIG.F2.0F.W0 2A /r
VCVTSI2SD xmm1, xmm2, r/m32

B V/V AVX Convert one signed doubleword integer from 
r/m32 to one double precision floating-point value 
in xmm1.

VEX.LIG.F2.0F.W1 2A /r
VCVTSI2SD xmm1, xmm2, r/m64

B V/N.E.1

NOTES:
1. VEX.W1/EVEX.W1 in non-64 bit is ignored; the instructions behaves as if the W0 version is used.

AVX Convert one signed quadword integer from r/m64 
to one double precision floating-point value in 
xmm1.

EVEX.LLIG.F2.0F.W0 2A /r
VCVTSI2SD xmm1, xmm2, r/m32

C V/V AVX512F
OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert one signed doubleword integer from 
r/m32 to one double precision floating-point value 
in xmm1.

EVEX.LLIG.F2.0F.W1 2A /r
VCVTSI2SD xmm1, xmm2, r/m64{er}

C V/N.E.1 AVX512F
OR 
AVX10.12

Convert one signed quadword integer from r/m64 
to one double precision floating-point value in 
xmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Software should ensure VCVTSI2SD is encoded with VEX.L=0. Encoding VCVTSI2SD with VEX.L=1 may encounter 
unpredictable behavior across different processor generations.

Operation

VCVTSI2SD (EVEX Encoded Version)
IF (SRC2 *is register*) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC2[63:0]);
ELSE

DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC2[31:0]);
FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

VCVTSI2SD (VEX.128 Encoded Version)
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC2[63:0]);
ELSE

DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC2[31:0]);
FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

CVTSI2SD 
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:0]);
ELSE

DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);
FI;
DEST[MAXVL-1:64] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTSI2SD __m128d _mm_cvti32_sd(__m128d s, int a);
VCVTSI2SD __m128d _mm_cvti64_sd(__m128d s, __int64 a);
VCVTSI2SD __m128d _mm_cvt_roundi64_sd(__m128d s, __int64 a, int r);
CVTSI2SD __m128d _mm_cvtsi64_sd(__m128d s, __int64 a);
CVTSI2SD __m128d_mm_cvtsi32_sd(__m128d a, int b)

SIMD Floating-Point Exceptions
Precision.

Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions,” if W1; else see Table 2-22, “Type 
5 Class Exception Conditions.”
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EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions,” if W1; else see Table 2-61, 
“Type E10NF Class Exception Conditions.”
CVTSI2SD—Convert Doubleword Integer to Scalar Double Precision Floating-Point Value Vol. 2A 3-303



CVTSI2SS—Convert Doubleword Integer to Scalar Single Precision Floating-Point Value

Instruction Operand Encoding

Description
Converts a signed doubleword integer (or signed quadword integer if operand size is 64 bits) in the “convert-from” 
source operand to a single precision floating-point value in the destination operand (first operand). The “convert-
from” source operand can be a general-purpose register or a memory location. The destination operand is an XMM 
register. The result is stored in the low doubleword of the destination operand, and the upper three doublewords 
are left unchanged. When a conversion is inexact, the value returned is rounded according to the rounding control 
bits in the MXCSR register or the embedded rounding control bits.
128-bit Legacy SSE version: In 64-bit mode, Use of the REX.W prefix promotes the instruction to use 64-bit input 
value. The “convert-from” source operand (the second operand) is a general-purpose register or memory location. 
Bits (MAXVL-1:32) of the corresponding destination register remain unchanged.
VEX.128 and EVEX encoded versions: The “convert-from” source operand (the third operand) can be a general-
purpose register or a memory location. The first source and destination operands are XMM registers. Bits (127:32) 
of the XMM register destination are copied from corresponding bits in the first source operand. Bits (MAXVL-1:128) 
of the destination register are zeroed.
EVEX encoded version: the converted result in written to the low doubleword element of the destination under the 
writemask.
Software should ensure VCVTSI2SS is encoded with VEX.L=0. Encoding VCVTSI2SS with VEX.L=1 may encounter 
unpredictable behavior across different processor generations.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 2A /r
CVTSI2SS xmm1, r/m32

A V/V SSE Convert one signed doubleword integer from r/m32 
to one single precision floating-point value in xmm1.

F3 REX.W 0F 2A /r
CVTSI2SS xmm1, r/m64

A V/N.E. SSE Convert one signed quadword integer from r/m64 to 
one single precision floating-point value in xmm1.

VEX.LIG.F3.0F.W0 2A /r
VCVTSI2SS xmm1, xmm2, r/m32

B V/V AVX Convert one signed doubleword integer from r/m32 
to one single precision floating-point value in xmm1.

VEX.LIG.F3.0F.W1 2A /r
VCVTSI2SS xmm1, xmm2, r/m64

B V/N.E.1

NOTES:
1. VEX.W1/EVEX.W1 in non-64 bit is ignored; the instructions behaves as if the W0 version is used.

AVX Convert one signed quadword integer from r/m64 to 
one single precision floating-point value in xmm1.

EVEX.LLIG.F3.0F.W0 2A /r
VCVTSI2SS xmm1, xmm2, r/m32{er}

C V/V AVX512F
OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert one signed doubleword integer from r/m32 
to one single precision floating-point value in xmm1.

EVEX.LLIG.F3.0F.W1 2A /r
VCVTSI2SS xmm1, xmm2, r/m64{er}

C V/N.E.1 AVX512F
OR 
AVX10.12

Convert one signed quadword integer from r/m64 to 
one single precision floating-point value in xmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation
VCVTSI2SS (EVEX Encoded Version)
IF (SRC2 *is register*) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[31:0] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]);
ELSE

DEST[31:0] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

VCVTSI2SS (VEX.128 Encoded Version)
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[31:0] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]);
ELSE

DEST[31:0] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

CVTSI2SS (128-bit Legacy SSE Version)
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[31:0] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]);
ELSE

DEST[31:0] :=Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
FI;
DEST[MAXVL-1:32] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTSI2SS __m128 _mm_cvti32_ss(__m128 s, int a);
VCVTSI2SS __m128 _mm_cvt_roundi32_ss(__m128 s, int a, int r);
VCVTSI2SS __m128 _mm_cvti64_ss(__m128 s, __int64 a);
VCVTSI2SS __m128 _mm_cvt_roundi64_ss(__m128 s, __int64 a, int r);
CVTSI2SS __m128 _mm_cvtsi64_ss(__m128 s, __int64 a);
CVTSI2SS __m128 _mm_cvtsi32_ss(__m128 a, int b);

SIMD Floating-Point Exceptions
Precision.

Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”
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CVTSS2SD—Convert Scalar Single Precision Floating-Point Value to Scalar Double Precision 
Floating-Point Value

Instruction Operand Encoding

Description
Converts a single precision floating-point value in the “convert-from” source operand to a double precision floating-
point value in the destination operand. When the “convert-from” source operand is an XMM register, the single 
precision floating-point value is contained in the low doubleword of the register. The result is stored in the low 
quadword of the destination operand.
128-bit Legacy SSE version: The “convert-from” source operand (the second operand) is an XMM register or 
memory location. Bits (MAXVL-1:64) of the corresponding destination register remain unchanged. The destination 
operand is an XMM register. 
VEX.128 and EVEX encoded versions: The “convert-from” source operand (the third operand) can be an XMM 
register or a 32-bit memory location. The first source and destination operands are XMM registers. Bits (127:64) of 
the XMM register destination are copied from the corresponding bits in the first source operand. Bits (MAXVL-
1:128) of the destination register are zeroed.
Software should ensure VCVTSS2SD is encoded with VEX.L=0. Encoding VCVTSS2SD with VEX.L=1 may encounter 
unpredictable behavior across different processor generations.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F3 0F 5A /r
CVTSS2SD xmm1, xmm2/m32

A V/V SSE2 Convert one single precision floating-point value in 
xmm2/m32 to one double precision floating-point value 
in xmm1.

VEX.LIG.F3.0F.WIG 5A /r
VCVTSS2SD xmm1, xmm2, 
xmm3/m32

B V/V AVX Convert one single precision floating-point value in 
xmm3/m32 to one double precision floating-point value 
and merge with high bits of xmm2.

EVEX.LLIG.F3.0F.W0 5A /r
VCVTSS2SD xmm1 {k1}{z}, xmm2, 
xmm3/m32{sae}

C V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert one single precision floating-point value in 
xmm3/m32 to one double precision floating-point value 
and merge with high bits of xmm2 under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VCVTSS2SD (EVEX Encoded Version)
IF k1[0] or *no writemask*

THEN DEST[63:0] := Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC2[31:0]);
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] = 0
FI;

FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

VCVTSS2SD (VEX.128 Encoded Version)
DEST[63:0] := Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC2[31:0])
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

CVTSS2SD (128-bit Legacy SSE Version)
DEST[63:0] := Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0]);
DEST[MAXVL-1:64] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTSS2SD __m128d _mm_cvt_roundss_sd(__m128d a, __m128 b, int r);
VCVTSS2SD __m128d _mm_mask_cvt_roundss_sd(__m128d s, __mmask8 m, __m128d a,__m128 b, int r);
VCVTSS2SD __m128d _mm_maskz_cvt_roundss_sd(__mmask8 k, __m128d a, __m128 a, int r);
VCVTSS2SD __m128d _mm_mask_cvtss_sd(__m128d s, __mmask8 m, __m128d a,__m128 b);
VCVTSS2SD __m128d _mm_maskz_cvtss_sd(__mmask8 m, __m128d a,__m128 b);
CVTSS2SD __m128d_mm_cvtss_sd(__m128d a, __m128 a);

SIMD Floating-Point Exceptions
Invalid, Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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CVTSS2SI—Convert Scalar Single Precision Floating-Point Value to Doubleword Integer

Instruction Operand Encoding

Description
Converts a single precision floating-point value in the source operand (the second operand) to a signed doubleword 
integer (or signed quadword integer if operand size is 64 bits) in the destination operand (the first operand). The 
source operand can be an XMM register or a memory location. The destination operand is a general-purpose 
register. When the source operand is an XMM register, the single precision floating-point value is contained in the 
low doubleword of the register.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value 
(2w-1, where w represents the number of bits in the destination format) is returned.
Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the instruction to produce 64-bit data. 
See the summary chart at the beginning of this section for encoding data and limits.
VEX.W1 and EVEX.W1 versions: promotes the instruction to produce 64-bit data in 64-bit mode.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Software should ensure VCVTSS2SI is encoded with VEX.L=0. Encoding VCVTSS2SI with VEX.L=1 may encounter 
unpredictable behavior across different processor generations.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F3 0F 2D /r
CVTSS2SI r32, xmm1/m32

A V/V SSE Convert one single precision floating-point value from 
xmm1/m32 to one signed doubleword integer in r32.

F3 REX.W 0F 2D /r
CVTSS2SI r64, xmm1/m32

A V/N.E. SSE Convert one single precision floating-point value from 
xmm1/m32 to one signed quadword integer in r64.

VEX.LIG.F3.0F.W0 2D /r 1

VCVTSS2SI r32, xmm1/m32

NOTES:
1. Software should ensure VCVTSS2SI is encoded with VEX.L=0. Encoding VCVTSS2SI with VEX.L=1 may 

encounter unpredictable behavior across different processor generations.

A V/V AVX Convert one single precision floating-point value from 
xmm1/m32 to one signed doubleword integer in r32.

VEX.LIG.F3.0F.W1 2D /r 1

VCVTSS2SI r64, xmm1/m32
A V/N.E.2

2. VEX.W1/EVEX.W1 in non-64 bit is ignored; the instructions behaves as if the W0 version is used.

AVX Convert one single precision floating-point value from 
xmm1/m32 to one signed quadword integer in r64.

EVEX.LLIG.F3.0F.W0 2D /r
VCVTSS2SI r32, xmm1/m32{er}

B V/V AVX512F
OR AVX10.13

3. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert one single precision floating-point value from 
xmm1/m32 to one signed doubleword integer in r32.

EVEX.LLIG.F3.0F.W1 2D /r
VCVTSS2SI r64, xmm1/m32{er}

B V/N.E.2 AVX512F
OR AVX10.13

Convert one single precision floating-point value from 
xmm1/m32 to one signed quadword integer in r64.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Tuple1 Fixed ModRM:reg (w) ModRM:r/m (r) N/A N/A
CVTSS2SI—Convert Scalar Single Precision Floating-Point Value to Doubleword Integer Vol. 2A 3-308



Operation

VCVTSS2SI (EVEX Encoded Version)
IF (SRC *is register*) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF 64-bit Mode and OperandSize = 64
THEN

DEST[63:0] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
ELSE

DEST[31:0] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
FI;

(V)CVTSS2SI (Legacy and VEX.128 Encoded Version) 
IF 64-bit Mode and OperandSize = 64
THEN

DEST[63:0] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
ELSE

DEST[31:0] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent

VCVTSS2SI int _mm_cvtss_i32( __m128 a);
VCVTSS2SI int _mm_cvt_roundss_i32( __m128 a, int r);
VCVTSS2SI __int64 _mm_cvtss_i64( __m128 a);
VCVTSS2SI __int64 _mm_cvt_roundss_i64( __m128 a, int r);

SIMD Floating-Point Exceptions
Invalid, Precision.

Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions,” additionally:
#UD If VEX.vvvv != 1111B.
EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”
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CVTTPD2DQ—Convert with Truncation Packed Double Precision Floating-Point Values to 
Packed Doubleword Integers

Instruction Operand Encoding

Description
Converts two, four or eight packed double precision floating-point values in the source operand (second operand) 
to two, four or eight packed signed doubleword integers in the destination operand (first operand). 
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result is larger than 
the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is 
masked, the indefinite integer value (80000000H) is returned.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or 
a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is a 
YMM/XMM/XMM (low 64 bits) register conditionally updated with writemask k1. The upper bits (MAXVL-1:256) of 
the corresponding destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination 
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are 
zeroed.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F E6 /r
CVTTPD2DQ xmm1, xmm2/m128

A V/V SSE2 Convert two packed double precision floating-point 
values in xmm2/mem to two signed doubleword 
integers in xmm1 using truncation.

VEX.128.66.0F.WIG E6 /r
VCVTTPD2DQ xmm1, xmm2/m128

A V/V AVX Convert two packed double precision floating-point 
values in xmm2/mem to two signed doubleword 
integers in xmm1 using truncation.

VEX.256.66.0F.WIG E6 /r
VCVTTPD2DQ xmm1, ymm2/m256

A V/V AVX Convert four packed double precision floating-point 
values in ymm2/mem to four signed doubleword 
integers in xmm1 using truncation.

EVEX.128.66.0F.W1 E6 /r
VCVTTPD2DQ xmm1 {k1}{z}, 
xmm2/m128/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed double precision floating-point 
values in xmm2/m128/m64bcst to two signed 
doubleword integers in xmm1 using truncation 
subject to writemask k1.

EVEX.256.66.0F.W1 E6 /r
VCVTTPD2DQ xmm1 {k1}{z}, 
ymm2/m256/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Convert four packed double precision floating-point 
values in ymm2/m256/m64bcst to four signed 
doubleword integers in xmm1 using truncation 
subject to writemask k1.

EVEX.512.66.0F.W1 E6 /r
VCVTTPD2DQ ymm1 {k1}{z}, 
zmm2/m512/m64bcst {sae}

B V/V AVX512F 
OR AVX10.11

Convert eight packed double precision floating-point 
values in zmm2/m512/m64bcst to eight signed 
doubleword integers in ymm1 using truncation 
subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination 
operand is a XMM register. The upper bits (MAXVL-1:64) of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination 
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are 
unmodified.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.

Operation

VCVTTPD2DQ (EVEX Encoded Versions) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 32
k := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] :=
Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[k+63:k])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0

Figure 1-15.  VCVTTPD2DQ (VEX.256 encoded version)

DEST

SRC
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VCVTTPD2DQ (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 32
k := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] :=

Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
ELSE 

DEST[i+31:i] :=
Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[k+63:k])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0

VCVTTPD2DQ (VEX.256 Encoded Version)
DEST[31:0] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
DEST[63:32] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])
DEST[95:64] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[191:128])
DEST[127:96] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[255:192)
DEST[MAXVL-1:128] := 0

VCVTTPD2DQ (VEX.128 Encoded Version)
DEST[31:0] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
DEST[63:32] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])
DEST[MAXVL-1:64] := 0

CVTTPD2DQ (128-bit Legacy SSE Version)
DEST[31:0] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
DEST[63:32] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])
DEST[127:64] := 0
DEST[MAXVL-1:128] (unmodified)
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPD2DQ __m256i _mm512_cvttpd_epi32( __m512d a);
VCVTTPD2DQ __m256i _mm512_mask_cvttpd_epi32( __m256i s, __mmask8 k, __m512d a);
VCVTTPD2DQ __m256i _mm512_maskz_cvttpd_epi32( __mmask8 k, __m512d a);
VCVTTPD2DQ __m256i _mm512_cvtt_roundpd_epi32( __m512d a, int sae);
VCVTTPD2DQ __m256i _mm512_mask_cvtt_roundpd_epi32( __m256i s, __mmask8 k, __m512d a, int sae);
VCVTTPD2DQ __m256i _mm512_maskz_cvtt_roundpd_epi32( __mmask8 k, __m512d a, int sae);
VCVTTPD2DQ __m128i _mm256_mask_cvttpd_epi32( __m128i s, __mmask8 k, __m256d a);
VCVTTPD2DQ __m128i _mm256_maskz_cvttpd_epi32( __mmask8 k, __m256d a);
VCVTTPD2DQ __m128i _mm_mask_cvttpd_epi32( __m128i s, __mmask8 k, __m128d a);
VCVTTPD2DQ __m128i _mm_maskz_cvttpd_epi32( __mmask8 k, __m128d a);
VCVTTPD2DQ __m128i _mm256_cvttpd_epi32 (__m256d src);
CVTTPD2DQ __m128i _mm_cvttpd_epi32 (__m128d src);

SIMD Floating-Point Exceptions
Invalid, Precision.

Other Exceptions
VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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CVTTPD2PI—Convert With Truncation Packed Double Precision Floating-Point Values to Packed 
Dword Integers

Instruction Operand Encoding

Description

Converts two packed double precision floating-point values in the source operand (second operand) to two packed 
signed doubleword integers in the destination operand (first operand). The source operand can be an XMM register 
or a 128-bit memory location. The destination operand is an MMX technology register. 

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted result is larger 
than the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is 
masked, the indefinite integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack 
pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU 
floating-point exception is pending, the exception is handled before the CVTTPD2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST[31:0] := Convert_Double_Precision_Floating_Point_To_Integer32_Truncate(SRC[63:0]);
DEST[63:32] := Convert_Double_Precision_Floating_Point_To_Integer32_Truncate(SRC[127:64]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTTPD1PI __m64 _mm_cvttpd_pi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Mode Exceptions
See Table 24-4, “Exception Conditions for Legacy SIMD/MMX Instructions with FP Exception and 16-Byte Align-
ment,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

66 0F 2C /r

CVTTPD2PI mm, xmm/m128

RM Valid Valid Convert two packer double precision floating-
point values from xmm/m128 to two packed 
signed doubleword integers in mm using 
truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A



CVTTPS2DQ—Convert With Truncation Packed Single Precision Floating-Point Values to Packed 
Signed Doubleword Integer Values

Instruction Operand Encoding

Description
Converts four, eight or sixteen packed single precision floating-point values in the source operand to four, eight or 
sixteen signed doubleword integers in the destination operand.
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result is larger than 
the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is 
masked, the indefinite integer value (80000000H) is returned.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location or 
a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a 
ZMM/YMM/XMM register conditionally updated with writemask k1. 
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination 
operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are 
zeroed.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination 
operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are 
zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination 
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are 
unmodified.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F3 0F 5B /r
CVTTPS2DQ xmm1, xmm2/m128

A V/V SSE2 Convert four packed single precision floating-point 
values from xmm2/mem to four packed signed 
doubleword values in xmm1 using truncation.

VEX.128.F3.0F.WIG 5B /r
VCVTTPS2DQ xmm1, xmm2/m128

A V/V AVX Convert four packed single precision floating-point 
values from xmm2/mem to four packed signed 
doubleword values in xmm1 using truncation.

VEX.256.F3.0F.WIG 5B /r
VCVTTPS2DQ ymm1, ymm2/m256

A V/V AVX Convert eight packed single precision floating-point 
values from ymm2/mem to eight packed signed 
doubleword values in ymm1 using truncation.

EVEX.128.F3.0F.W0 5B /r
VCVTTPS2DQ xmm1 {k1}{z}, 
xmm2/m128/m32bcst

B V/V AVX512VL
AVX512F

Convert four packed single precision floating-point 
values from xmm2/m128/m32bcst to four packed 
signed doubleword values in xmm1 using truncation 
subject to writemask k1.

EVEX.256.F3.0F.W0 5B /r
VCVTTPS2DQ ymm1 {k1}{z}, 
ymm2/m256/m32bcst

B V/V AVX512VL
AVX512F

Convert eight packed single precision floating-point 
values from ymm2/m256/m32bcst to eight packed 
signed doubleword values in ymm1 using truncation 
subject to writemask k1.

EVEX.512.F3.0F.W0 5B /r
VCVTTPS2DQ zmm1 {k1}{z}, 
zmm2/m512/m32bcst {sae}

B V/V AVX512F Convert sixteen packed single precision floating-point 
values from zmm2/m512/m32bcst to sixteen packed 
signed doubleword values in zmm1 using truncation 
subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation
VCVTTPS2DQ (EVEX Encoded Versions) When SRC Operand is a Register
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] :=
Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[i+31:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTTPS2DQ (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO 15
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] :=

Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
ELSE 

DEST[i+31:i] :=
Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTTPS2DQ (VEX.256 Encoded Version)
DEST[31:0] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
DEST[63:32] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])
DEST[95:64] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])
DEST[127:96] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96)
DEST[159:128] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[159:128])
DEST[191:160] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[191:160])
DEST[223:192] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[223:192])
DEST[255:224] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[255:224])
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VCVTTPS2DQ (VEX.128 Encoded Version)
DEST[31:0] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
DEST[63:32] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])
DEST[95:64] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])
DEST[127:96] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96])
DEST[MAXVL-1:128] := 0

CVTTPS2DQ (128-bit Legacy SSE Version)
DEST[31:0] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
DEST[63:32] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])
DEST[95:64] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])
DEST[127:96] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96])
DEST[MAXVL-1:128] (unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPS2DQ __m512i _mm512_cvttps_epi32( __m512 a);
VCVTTPS2DQ __m512i _mm512_mask_cvttps_epi32( __m512i s, __mmask16 k, __m512 a);
VCVTTPS2DQ __m512i _mm512_maskz_cvttps_epi32( __mmask16 k, __m512 a);
VCVTTPS2DQ __m512i _mm512_cvtt_roundps_epi32( __m512 a, int sae);
VCVTTPS2DQ __m512i _mm512_mask_cvtt_roundps_epi32( __m512i s, __mmask16 k, __m512 a, int sae);
VCVTTPS2DQ __m512i _mm512_maskz_cvtt_roundps_epi32( __mmask16 k, __m512 a, int sae);
VCVTTPS2DQ __m256i _mm256_mask_cvttps_epi32( __m256i s, __mmask8 k, __m256 a);
VCVTTPS2DQ __m256i _mm256_maskz_cvttps_epi32( __mmask8 k, __m256 a);
VCVTTPS2DQ __m128i _mm_mask_cvttps_epi32( __m128i s, __mmask8 k, __m128 a);
VCVTTPS2DQ __m128i _mm_maskz_cvttps_epi32( __mmask8 k, __m128 a);
VCVTTPS2DQ __m256i _mm256_cvttps_epi32 (__m256 a)
CVTTPS2DQ __m128i _mm_cvttps_epi32 (__m128 a)

SIMD Floating-Point Exceptions
Invalid, Precision.

Other Exceptions
VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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CVTTPS2PI—Convert With Truncation Packed Single Precision Floating-Point Values to Packed 
Dword Integers

Instruction Operand Encoding

Description

Converts two packed single precision floating-point values in the source operand (second operand) to two packed 
signed doubleword integers in the destination operand (first operand). The source operand can be an XMM register 
or a 64-bit memory location. The destination operand is an MMX technology register. When the source operand is 
an XMM register, the two single precision floating-point values are contained in the low quadword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted result is larger 
than the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is 
masked, the indefinite integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack 
pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU 
floating-point exception is pending, the exception is handled before the CVTTPS2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST[31:0] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]);
DEST[63:32] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTTPS2PI __m64 _mm_cvttps_pi32(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Table 24-5, “Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP Exception,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

NP 0F 2C /r

CVTTPS2PI mm, xmm/m64

RM Valid Valid Convert two single precision floating-point 
values from xmm/m64 to two signed 
doubleword signed integers in mm using 
truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A



CVTTSD2SI—Convert With Truncation Scalar Double Precision Floating-Point Value to Signed 
Integer

Instruction Operand Encoding

Description
Converts a double precision floating-point value in the source operand (the second operand) to a signed double-
word integer (or signed quadword integer if operand size is 64 bits) in the destination operand (the first operand). 
The source operand can be an XMM register or a 64-bit memory location. The destination operand is a general 
purpose register. When the source operand is an XMM register, the double precision floating-point value is 
contained in the low quadword of the register. 

When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register. 

If a converted result exceeds the range limits of signed doubleword integer (in non-64-bit modes or 64-bit mode 
with REX.W/VEX.W/EVEX.W=0), the floating-point invalid exception is raised, and if this exception is masked, the 
indefinite integer value (80000000H) is returned.

If a converted result exceeds the range limits of signed quadword integer (in 64-bit mode and 
REX.W/VEX.W/EVEX.W = 1), the floating-point invalid exception is raised, and if this exception is masked, the 
indefinite integer value (80000000_00000000H) is returned.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F2 0F 2C /r
CVTTSD2SI r32, xmm1/m64

A V/V SSE2 Convert one double precision floating-point value 
from xmm1/m64 to one signed doubleword integer in 
r32 using truncation.

F2 REX.W 0F 2C /r
CVTTSD2SI r64, xmm1/m64

A V/N.E. SSE2 Convert one double precision floating-point value 
from xmm1/m64 to one signed quadword integer in 
r64 using truncation.

VEX.LIG.F2.0F.W0 2C /r 1

VCVTTSD2SI r32, xmm1/m64

NOTES:
1. Software should ensure VCVTTSD2SI is encoded with VEX.L=0. Encoding VCVTTSD2SI with VEX.L=1 may encounter unpredictable 

behavior across different processor generations.

A V/V AVX Convert one double precision floating-point value 
from xmm1/m64 to one signed doubleword integer in 
r32 using truncation.

VEX.LIG.F2.0F.W1 2C /r 1

VCVTTSD2SI r64, xmm1/m64
B V/N.E.2

2. For this specific instruction, VEX.W/EVEX.W in non-64 bit is ignored; the instructions behaves as if the W0 version is used.

AVX Convert one double precision floating-point value 
from xmm1/m64 to one signed quadword integer in 
r64 using truncation.

EVEX.LLIG.F2.0F.W0 2C /r
VCVTTSD2SI r32, xmm1/m64{sae}

B V/V AVX512F
OR AVX10.13

3. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert one double precision floating-point value 
from xmm1/m64 to one signed doubleword integer in 
r32 using truncation.

EVEX.LLIG.F2.0F.W1 2C /r
VCVTTSD2SI r64, xmm1/m64{sae}

B V/N.E.2 AVX512F
OR AVX10.13

Convert one double precision floating-point value 
from xmm1/m64 to one signed quadword integer in 
r64 using truncation.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Tuple1 Fixed ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the instruction to 64-bit operation. See 
the summary chart at the beginning of this section for encoding data and limits.
VEX.W1 and EVEX.W1 versions: promotes the instruction to produce 64-bit data in 64-bit mode.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Software should ensure VCVTTSD2SI is encoded with VEX.L=0. Encoding VCVTTSD2SI with VEX.L=1 may 
encounter unpredictable behavior across different processor generations.

Operation

(V)CVTTSD2SI (All Versions)
IF 64-Bit Mode and OperandSize = 64
THEN

DEST[63:0] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]);
ELSE

DEST[31:0] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTSD2SI int _mm_cvttsd_i32( __m128d a);
VCVTTSD2SI int _mm_cvtt_roundsd_i32( __m128d a, int sae);
VCVTTSD2SI __int64 _mm_cvttsd_i64( __m128d a);
VCVTTSD2SI __int64 _mm_cvtt_roundsd_i64( __m128d a, int sae);
CVTTSD2SI int _mm_cvttsd_si32( __m128d a);
CVTTSD2SI __int64 _mm_cvttsd_si64( __m128d a);

SIMD Floating-Point Exceptions
Invalid, Precision.

Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions,” additionally:
#UD If VEX.vvvv != 1111B.
EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”
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CVTTSS2SI—Convert With Truncation Scalar Single Precision Floating-Point Value to Signed 
Integer

Instruction Operand Encoding

Description
Converts a single precision floating-point value in the source operand (the second operand) to a signed doubleword 
integer (or signed quadword integer if operand size is 64 bits) in the destination operand (the first operand). The 
source operand can be an XMM register or a 32-bit memory location. The destination operand is a general purpose 
register. When the source operand is an XMM register, the single precision floating-point value is contained in the 
low doubleword of the register. 
When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted result is larger 
than the maximum signed doubleword integer, the floating-point invalid exception is raised. If this exception is 
masked, the indefinite integer value (80000000H or 80000000_00000000H if operand size is 64 bits) is returned.
Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the instruction to 64-bit operation. See 
the summary chart at the beginning of this section for encoding data and limits.
VEX.W1 and EVEX.W1 versions: promotes the instruction to produce 64-bit data in 64-bit mode.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F3 0F 2C /r
CVTTSS2SI r32, xmm1/m32

A V/V SSE Convert one single precision floating-point value from 
xmm1/m32 to one signed doubleword integer in r32 
using truncation.

F3 REX.W 0F 2C /r
CVTTSS2SI r64, xmm1/m32

A V/N.E. SSE Convert one single precision floating-point value from 
xmm1/m32 to one signed quadword integer in r64 
using truncation.

VEX.LIG.F3.0F.W0 2C /r 1

VCVTTSS2SI r32, xmm1/m32

NOTES:
1. Software should ensure VCVTTSS2SI is encoded with VEX.L=0. Encoding VCVTTSS2SI with VEX.L=1 may encounter unpredictable 

behavior across different processor generations.

A V/V AVX Convert one single precision floating-point value from 
xmm1/m32 to one signed doubleword integer in r32 
using truncation.

VEX.LIG.F3.0F.W1 2C /r 1

VCVTTSS2SI r64, xmm1/m32
A V/N.E.2

2. For this specific instruction, VEX.W/EVEX.W in non-64 bit is ignored; the instructions behaves as if the W0 version is used.

AVX Convert one single precision floating-point value from 
xmm1/m32 to one signed quadword integer in r64 
using truncation.

EVEX.LLIG.F3.0F.W0 2C /r
VCVTTSS2SI r32, xmm1/m32{sae}

B V/V AVX512F
OR AVX10.13

3. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert one single precision floating-point value from 
xmm1/m32 to one signed doubleword integer in r32 
using truncation.

EVEX.LLIG.F3.0F.W1 2C /r
VCVTTSS2SI r64, xmm1/m32{sae}

B V/N.E.2 AVX512F
OR AVX10.13

Convert one single precision floating-point value from 
xmm1/m32 to one signed quadword integer in r64 
using truncation.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Tuple1 Fixed ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Software should ensure VCVTTSS2SI is encoded with VEX.L=0. Encoding VCVTTSS2SI with VEX.L=1 may 
encounter unpredictable behavior across different processor generations.

Operation

(V)CVTTSS2SI (All Versions)
IF 64-Bit Mode and OperandSize = 64
THEN

DEST[63:0] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]);
ELSE

DEST[31:0] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTSS2SI int _mm_cvttss_i32( __m128 a);
VCVTTSS2SI int _mm_cvtt_roundss_i32( __m128 a, int sae);
VCVTTSS2SI __int64 _mm_cvttss_i64( __m128 a);
VCVTTSS2SI __int64 _mm_cvtt_roundss_i64( __m128 a, int sae);
CVTTSS2SI int _mm_cvttss_si32( __m128 a);
CVTTSS2SI __int64 _mm_cvttss_si64( __m128 a);

SIMD Floating-Point Exceptions
Invalid, Precision.

Other Exceptions
See Table 2-20, “Type 3 Class Exception Conditions,” additionally:
#UD If VEX.vvvv != 1111B.
EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”
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CWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword to Quadword

Instruction Operand Encoding

Description

Doubles the size of the operand in register AX, EAX, or RAX (depending on the operand size) by means of sign 
extension and stores the result in registers DX:AX, EDX:EAX, or RDX:RAX, respectively. The CWD instruction 
copies the sign (bit 15) of the value in the AX register into every bit position in the DX register. The CDQ instruction 
copies the sign (bit 31) of the value in the EAX register into every bit position in the EDX register. The CQO instruc-
tion (available in 64-bit mode only) copies the sign (bit 63) of the value in the RAX register into every bit position 
in the RDX register.

The CWD instruction can be used to produce a doubleword dividend from a word before word division. The CDQ 
instruction can be used to produce a quadword dividend from a doubleword before doubleword division. The CQO 
instruction can be used to produce a double quadword dividend from a quadword before a quadword division.

The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is intended for use when the 
operand-size attribute is 16 and the CDQ instruction for when the operand-size attribute is 32. Some assemblers 
may force the operand size to 16 when CWD is used and to 32 when CDQ is used. Others may treat these 
mnemonics as synonyms (CWD/CDQ) and use the current setting of the operand-size attribute to determine the 
size of values to be converted, regardless of the mnemonic used.

In 64-bit mode, use of the REX.W prefix promotes operation to 64 bits. The CQO mnemonics reference the same 
opcode as CWD/CDQ. See the summary chart at the beginning of this section for encoding data and limits.

Operation

IF OperandSize = 16 (* CWD instruction *)
THEN 

DX := SignExtend(AX);
ELSE IF OperandSize = 32 (* CDQ instruction *)

EDX := SignExtend(EAX); FI;
ELSE IF 64-Bit Mode and OperandSize = 64 (* CQO instruction*)

RDX := SignExtend(RAX); FI;
FI;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

99 CWD ZO Valid Valid DX:AX := sign-extend of AX.

99 CDQ ZO Valid Valid EDX:EAX := sign-extend of EAX.

REX.W + 99 CQO ZO Valid N.E. RDX:RAX:= sign-extend of RAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A



DAA—Decimal Adjust AL After Addition

Instruction Operand Encoding

Description

Adjusts the sum of two packed BCD values to create a packed BCD result. The AL register is the implied source and 
destination operand. The DAA instruction is only useful when it follows an ADD instruction that adds (binary addi-
tion) two 2-digit, packed BCD values and stores a byte result in the AL register. The DAA instruction then adjusts 
the contents of the AL register to contain the correct 2-digit, packed BCD result. If a decimal carry is detected, the 
CF and AF flags are set accordingly.

This instruction executes as described above in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

old_AL := AL;
old_CF := CF;
CF := 0;
IF (((AL AND 0FH) > 9) or AF = 1)

 THEN
 AL := AL + 6;
 CF := old_CF or (Carry from AL := AL + 6);
 AF := 1;

  ELSE
  AF := 0;

FI;
IF ((old_AL > 99H) or (old_CF = 1))

 THEN
 AL := AL + 60H;

  CF := 1;
ELSE

 CF := 0;
FI;

FI;

Example

ADD AL, BL Before: AL=79H BL=35H EFLAGS(OSZAPC)=XXXXXX
After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000

DAA Before: AL=AEH BL=35H EFLAGS(OSZAPC)=110000
After: AL=14H BL=35H EFLAGS(0SZAPC)=X00111

DAA Before: AL=2EH BL=35H EFLAGS(OSZAPC)=110000
After: AL=34H BL=35H EFLAGS(0SZAPC)=X00101

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

27 DAA ZO Invalid Valid Decimal adjust AL after addition.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal carry in either digit of the result (see 
the “Operation” section above). The SF, ZF, and PF flags are set according to the result. The OF flag is undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
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DAS—Decimal Adjust AL After Subtraction

Instruction Operand Encoding

Description

Adjusts the result of the subtraction of two packed BCD values to create a packed BCD result. The AL register is the 
implied source and destination operand. The DAS instruction is only useful when it follows a SUB instruction that 
subtracts (binary subtraction) one 2-digit, packed BCD value from another and stores a byte result in the AL 
register. The DAS instruction then adjusts the contents of the AL register to contain the correct 2-digit, packed BCD 
result. If a decimal borrow is detected, the CF and AF flags are set accordingly.

This instruction executes as described above in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

old_AL := AL;
old_CF := CF;
CF := 0;
IF (((AL AND 0FH) > 9) or AF = 1)
 THEN
 AL := AL - 6;

CF := old_CF or (Borrow from AL := AL − 6);
AF := 1;

ELSE
AF := 0;

FI;
IF ((old_AL > 99H) or (old_CF = 1))

 THEN
AL := AL − 60H;
CF := 1;

FI;
FI;

Example

SUB AL, BL Before: AL = 35H, BL = 47H, EFLAGS(OSZAPC) = XXXXXX
After: AL = EEH, BL = 47H, EFLAGS(0SZAPC) = 010111

DAA Before: AL = EEH, BL = 47H, EFLAGS(OSZAPC) = 010111
After: AL = 88H, BL = 47H, EFLAGS(0SZAPC) = X10111

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal borrow in either digit of the result 
(see the “Operation” section above). The SF, ZF, and PF flags are set according to the result. The OF flag is unde-
fined.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

2F DAS ZO Invalid Valid Decimal adjust AL after subtraction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
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DEC—Decrement by 1

Instruction Operand Encoding

Description

Subtracts 1 from the destination operand, while preserving the state of the CF flag. The destination operand can be 
a register or a memory location. This instruction allows a loop counter to be updated without disturbing the CF flag. 
(To perform a decrement operation that updates the CF flag, use a SUB instruction with an immediate operand of 
1.)

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, DEC r16 and DEC r32 are not encodable (because opcodes 48H through 4FH are REX prefixes). 
Otherwise, the instruction’s 64-bit mode default operation size is 32 bits. Use of the REX.R prefix permits access to 
additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. 

See the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST := DEST – 1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

FE /1 DEC r/m8 M Valid Valid Decrement r/m8 by 1.

REX + FE /1 DEC r/m8* M Valid N.E. Decrement r/m8 by 1.

FF /1 DEC r/m16 M Valid Valid Decrement r/m16 by 1.

FF /1 DEC r/m32 M Valid Valid Decrement r/m32 by 1.

REX.W + FF /1 DEC r/m64 M Valid N.E. Decrement r/m64 by 1.

48+rw DEC r16 O N.E. Valid Decrement r16 by 1.

48+rd DEC r32 O N.E. Valid Decrement r32 by 1.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) N/A N/A N/A

O opcode + rd (r, w) N/A N/A N/A
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#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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DIV—Unsigned Divide

Instruction Operand Encoding

Description

Divides unsigned the value in the AX, DX:AX, EDX:EAX, or RDX:RAX registers (dividend) by the source operand 
(divisor) and stores the result in the AX (AH:AL), DX:AX, EDX:EAX, or RDX:RAX registers. The source operand can 
be a general-purpose register or a memory location. The action of this instruction depends on the operand size 
(dividend/divisor). Division using 64-bit operand is available only in 64-bit mode.

Non-integral results are truncated (chopped) towards 0. The remainder is always less than the divisor in magni-
tude. Overflow is indicated with the #DE (divide error) exception rather than with the CF flag.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. In 64-bit mode when REX.W is 
applied, the instruction divides the unsigned value in RDX:RAX by the source operand and stores the quotient in 
RAX, the remainder in RDX. 

See the summary chart at the beginning of this section for encoding data and limits. See Table 1-24.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /6 DIV r/m8 M Valid Valid Unsigned divide AX by r/m8, with result 
stored in AL := Quotient, AH := Remainder.

REX + F6 /6 DIV r/m81

NOTES:
1. In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

M Valid N.E. Unsigned divide AX by r/m8, with result 
stored in AL := Quotient, AH := Remainder.

F7 /6 DIV r/m16 M Valid Valid Unsigned divide DX:AX by r/m16, with result 
stored in AX := Quotient, DX := Remainder.

F7 /6 DIV r/m32 M Valid Valid Unsigned divide EDX:EAX by r/m32, with 
result stored in EAX := Quotient, EDX := 
Remainder.

REX.W + F7 /6 DIV r/m64 M Valid N.E. Unsigned divide RDX:RAX by r/m64, with 
result stored in RAX := Quotient, RDX := 
Remainder.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A

Table 1-24.  DIV Action 

Operand Size Dividend Divisor Quotient Remainder
Maximum 
Quotient

Word/byte AX r/m8 AL AH 255

Doubleword/word DX:AX r/m16 AX DX 65,535

Quadword/doubleword EDX:EAX r/m32 EAX EDX 232 − 1

Doublequadword/

quadword

RDX:RAX r/m64 RAX RDX 264 − 1
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Operation

IF SRC = 0
THEN #DE; FI; (* Divide Error *) 

IF OperandSize = 8 (* Word/Byte Operation *)
THEN

temp := AX / SRC;
IF temp > FFH

THEN #DE; (* Divide error *) 
ELSE

AL := temp;
AH := AX MOD SRC;

FI;
ELSE IF OperandSize = 16 (* Doubleword/word operation *)

THEN
temp := DX:AX / SRC;
IF temp > FFFFH

THEN #DE; (* Divide error *) 
ELSE

AX := temp;
DX := DX:AX MOD SRC;

FI;
FI;

ELSE IF Operandsize = 32 (* Quadword/doubleword operation *)
THEN

temp := EDX:EAX / SRC;
IF temp > FFFFFFFFH

THEN #DE; (* Divide error *) 
ELSE

EAX := temp;
EDX := EDX:EAX MOD SRC;

FI;
FI;

ELSE IF 64-Bit Mode and Operandsize = 64 (* Doublequadword/quadword operation *)
THEN

temp := RDX:RAX / SRC;
IF temp > FFFFFFFFFFFFFFFFH

THEN #DE; (* Divide error *) 
ELSE

RAX := temp;
RDX := RDX:RAX MOD SRC;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.
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Protected Mode Exceptions
#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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DIVPD—Divide Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description
Performs a SIMD divide of the double precision floating-point values in the first source operand by the floating-
point values in the second source operand (the third operand). Results are written to the destination operand (the 
first operand).
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally 
updated with writemask k1.
VEX.256 encoded version: The first source operand (the second operand) is a YMM register. The second source 
operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. The upper 
bits (MAXVL-1:256) of the corresponding destination are zeroed.
VEX.128 encoded version: The first source operand (the second operand) is a XMM register. The second source 
operand can be a XMM register or a 128-bit memory location. The destination operand is a XMM register. The upper 
bits (MAXVL-1:128) of the corresponding destination are zeroed.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 5E /r
DIVPD xmm1, xmm2/m128

A V/V SSE2 Divide packed double precision floating-point 
values in xmm1 by packed double precision 
floating-point values in xmm2/mem.

VEX.128.66.0F.WIG 5E /r
VDIVPD xmm1, xmm2, xmm3/m128

B V/V AVX Divide packed double precision floating-point 
values in xmm2 by packed double precision 
floating-point values in xmm3/mem.

VEX.256.66.0F.WIG 5E /r
VDIVPD ymm1, ymm2, ymm3/m256

B V/V AVX Divide packed double precision floating-point 
values in ymm2 by packed double precision 
floating-point values in ymm3/mem.

EVEX.128.66.0F.W1 5E /r
VDIVPD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Divide packed double precision floating-point 
values in xmm2 by packed double precision 
floating-point values in xmm3/m128/m64bcst and 
write results to xmm1 subject to writemask k1.

EVEX.256.66.0F.W1 5E /r
VDIVPD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Divide packed double precision floating-point 
values in ymm2 by packed double precision 
floating-point values in ymm3/m256/m64bcst and 
write results to ymm1 subject to writemask k1.

EVEX.512.66.0F.W1 5E /r
VDIVPD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst{er}

C V/V AVX512F 
OR AVX10.11

Divide packed double precision floating-point 
values in zmm2 by packed double precision 
floating-point values in zmm3/m512/m64bcst and 
write results to zmm1 subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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128-bit Legacy SSE version: The second source operand (the second operand) can be an XMM register or an 128-
bit memory location. The destination is the same as the first source operand. The upper bits (MAXVL-1:128) of the 
corresponding destination are unmodified.

Operation

VDIVPD (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1) AND SRC2 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);  ; refer to Table 15-4 in the Intel® 64 and IA-32 Architectures 

Software Developer’s Manual, Volume 1
ELSE 

SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);
FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
DEST[i+63:i] := SRC1[i+63:i] / SRC2[63:0]

ELSE 
DEST[i+63:i] := SRC1[i+63:i] / SRC2[i+63:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VDIVPD (VEX.256 Encoded Version)
DEST[63:0] := SRC1[63:0] / SRC2[63:0]
DEST[127:64] := SRC1[127:64] / SRC2[127:64]
DEST[191:128] := SRC1[191:128] / SRC2[191:128]
DEST[255:192] := SRC1[255:192] / SRC2[255:192]
DEST[MAXVL-1:256] := 0;

VDIVPD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0] / SRC2[63:0]
DEST[127:64] := SRC1[127:64] / SRC2[127:64]
DEST[MAXVL-1:128] := 0;

DIVPD (128-bit Legacy SSE Version)
DEST[63:0] := SRC1[63:0] / SRC2[63:0]
DEST[127:64] := SRC1[127:64] / SRC2[127:64]
DEST[MAXVL-1:128] (Unmodified)
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Intel C/C++ Compiler Intrinsic Equivalent

VDIVPD __m512d _mm512_div_pd( __m512d a, __m512d b);
VDIVPD __m512d _mm512_mask_div_pd(__m512d s, __mmask8 k, __m512d a, __m512d b);
VDIVPD __m512d _mm512_maskz_div_pd( __mmask8 k, __m512d a, __m512d b);
VDIVPD __m256d _mm256_mask_div_pd(__m256d s, __mmask8 k, __m256d a, __m256d b);
VDIVPD __m256d _mm256_maskz_div_pd( __mmask8 k, __m256d a, __m256d b);
VDIVPD __m128d _mm_mask_div_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VDIVPD __m128d _mm_maskz_div_pd( __mmask8 k, __m128d a, __m128d b);
VDIVPD __m512d _mm512_div_round_pd( __m512d a, __m512d b, int);
VDIVPD __m512d _mm512_mask_div_round_pd(__m512d s, __mmask8 k, __m512d a, __m512d b, int);
VDIVPD __m512d _mm512_maskz_div_round_pd( __mmask8 k, __m512d a, __m512d b, int);
VDIVPD __m256d _mm256_div_pd (__m256d a, __m256d b);
DIVPD __m128d _mm_div_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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DIVPS—Divide Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description
Performs a SIMD divide of the four, eight or sixteen packed single precision floating-point values in the first source 
operand (the second operand) by the four, eight or sixteen packed single precision floating-point values in the 
second source operand (the third operand). Results are written to the destination operand (the first operand).
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally 
updated with writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM 
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 5E /r
DIVPS xmm1, xmm2/m128

A V/V SSE Divide packed single precision floating-point values 
in xmm1 by packed single precision floating-point 
values in xmm2/mem.

VEX.128.0F.WIG 5E /r
VDIVPS xmm1, xmm2, xmm3/m128

B V/V AVX Divide packed single precision floating-point values 
in xmm2 by packed single precision floating-point 
values in xmm3/mem.

VEX.256.0F.WIG 5E /r
VDIVPS ymm1, ymm2, ymm3/m256

B V/V AVX Divide packed single precision floating-point values 
in ymm2 by packed single precision floating-point 
values in ymm3/mem.

EVEX.128.0F.W0 5E /r
VDIVPS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Divide packed single precision floating-point values 
in xmm2 by packed single precision floating-point 
values in xmm3/m128/m32bcst and write results 
to xmm1 subject to writemask k1.

EVEX.256.0F.W0 5E /r
VDIVPS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Divide packed single precision floating-point values 
in ymm2 by packed single precision floating-point 
values in ymm3/m256/m32bcst and write results to 
ymm1 subject to writemask k1.

EVEX.512.0F.W0 5E /r
VDIVPS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst{er}

C V/V AVX512F 
OR AVX10.11

Divide packed single precision floating-point values 
in zmm2 by packed single precision floating-point 
values in zmm3/m512/m32bcst and write results to 
zmm1 subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
ZMM register destination are unmodified.

Operation

VDIVPS (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1) AND SRC2 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
DEST[i+31:i] := SRC1[i+31:i] / SRC2[31:0]

ELSE 
DEST[i+31:i] := SRC1[i+31:i] / SRC2[i+31:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VDIVPS (VEX.256 Encoded Version)
DEST[31:0] := SRC1[31:0] / SRC2[31:0]
DEST[63:32] := SRC1[63:32] / SRC2[63:32]
DEST[95:64] := SRC1[95:64] / SRC2[95:64]
DEST[127:96] := SRC1[127:96] / SRC2[127:96]
DEST[159:128] := SRC1[159:128] / SRC2[159:128]
DEST[191:160] := SRC1[191:160] / SRC2[191:160]
DEST[223:192] := SRC1[223:192] / SRC2[223:192]
DEST[255:224] := SRC1[255:224] / SRC2[255:224].
DEST[MAXVL-1:256] := 0;

VDIVPS (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0] / SRC2[31:0]
DEST[63:32] := SRC1[63:32] / SRC2[63:32]
DEST[95:64] := SRC1[95:64] / SRC2[95:64]
DEST[127:96] := SRC1[127:96] / SRC2[127:96]
DEST[MAXVL-1:128] := 0
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DIVPS (128-bit Legacy SSE Version)
DEST[31:0] := SRC1[31:0] / SRC2[31:0]
DEST[63:32] := SRC1[63:32] / SRC2[63:32]
DEST[95:64] := SRC1[95:64] / SRC2[95:64]
DEST[127:96] := SRC1[127:96] / SRC2[127:96]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VDIVPS __m512 _mm512_div_ps( __m512 a, __m512 b);
VDIVPS __m512 _mm512_mask_div_ps(__m512 s, __mmask16 k, __m512 a, __m512 b);
VDIVPS __m512 _mm512_maskz_div_ps(__mmask16 k, __m512 a, __m512 b);
VDIVPD __m256d _mm256_mask_div_pd(__m256d s, __mmask8 k, __m256d a, __m256d b);
VDIVPD __m256d _mm256_maskz_div_pd( __mmask8 k, __m256d a, __m256d b);
VDIVPD __m128d _mm_mask_div_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VDIVPD __m128d _mm_maskz_div_pd( __mmask8 k, __m128d a, __m128d b);
VDIVPS __m512 _mm512_div_round_ps( __m512 a, __m512 b, int);
VDIVPS __m512 _mm512_mask_div_round_ps(__m512 s, __mmask16 k, __m512 a, __m512 b, int);
VDIVPS __m512 _mm512_maskz_div_round_ps(__mmask16 k, __m512 a, __m512 b, int);
VDIVPS __m256 _mm256_div_ps (__m256 a, __m256 b);
DIVPS __m128 _mm_div_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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DIVSD—Divide Scalar Double Precision Floating-Point Value

Instruction Operand Encoding

Description
Divides the low double precision floating-point value in the first source operand by the low double precision 
floating-point value in the second source operand, and stores the double precision floating-point result in the desti-
nation operand. The second source operand can be an XMM register or a 64-bit memory location. The first source 
and destination are XMM registers. 
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAXVL-
1:64) of the corresponding ZMM destination register remain unchanged.
VEX.128 encoded version: The first source operand is an xmm register encoded by VEX.vvvv. The quadword at bits 
127:64 of the destination operand is copied from the corresponding quadword of the first source operand. Bits 
(MAXVL-1:128) of the destination register are zeroed.
EVEX.128 encoded version: The first source operand is an xmm register encoded by EVEX.vvvv. The quadword 
element of the destination operand at bits 127:64 are copied from the first source operand. Bits (MAXVL-1:128) of 
the destination register are zeroed.
EVEX version: The low quadword element of the destination is updated according to the writemask.
Software should ensure VDIVSD is encoded with VEX.L=0. Encoding VDIVSD with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F2 0F 5E /r
DIVSD xmm1, xmm2/m64

A V/V SSE2 Divide low double precision floating-point value in 
xmm1 by low double precision floating-point value 
in xmm2/m64.

VEX.LIG.F2.0F.WIG 5E /r
VDIVSD xmm1, xmm2, xmm3/m64

B V/V AVX Divide low double precision floating-point value in 
xmm2 by low double precision floating-point value 
in xmm3/m64.

EVEX.LLIG.F2.0F.W1 5E /r
VDIVSD xmm1 {k1}{z}, xmm2, 
xmm3/m64{er}

C V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Divide low double precision floating-point value in 
xmm2 by low double precision floating-point value 
in xmm3/m64.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VDIVSD (EVEX Encoded Version)
IF (EVEX.b = 1) AND SRC2 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[63:0] := SRC1[63:0] / SRC2[63:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

VDIVSD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0] / SRC2[63:0]
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

DIVSD (128-bit Legacy SSE Version)
DEST[63:0] := DEST[63:0] / SRC[63:0]
DEST[MAXVL-1:64] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VDIVSD __m128d _mm_mask_div_sd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VDIVSD __m128d _mm_maskz_div_sd( __mmask8 k, __m128d a, __m128d b);
VDIVSD __m128d _mm_div_round_sd( __m128d a, __m128d b, int);
VDIVSD __m128d _mm_mask_div_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VDIVSD __m128d _mm_maskz_div_round_sd( __mmask8 k, __m128d a, __m128d b, int);
DIVSD __m128d _mm_div_sd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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DIVSS—Divide Scalar Single Precision Floating-Point Values

Instruction Operand Encoding

Description
Divides the low single precision floating-point value in the first source operand by the low single precision floating-
point value in the second source operand, and stores the single precision floating-point result in the destination 
operand. The second source operand can be an XMM register or a 32-bit memory location.
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAXVL-
1:32) of the corresponding YMM destination register remain unchanged. 
VEX.128 encoded version: The first source operand is an xmm register encoded by VEX.vvvv. The three high-order 
doublewords of the destination operand are copied from the first source operand. Bits (MAXVL-1:128) of the desti-
nation register are zeroed.
EVEX.128 encoded version: The first source operand is an xmm register encoded by EVEX.vvvv. The doubleword 
elements of the destination operand at bits 127:32 are copied from the first source operand. Bits (MAXVL-1:128) 
of the destination register are zeroed.
EVEX version: The low doubleword element of the destination is updated according to the writemask.
Software should ensure VDIVSS is encoded with VEX.L=0. Encoding VDIVSS with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F3 0F 5E /r
DIVSS xmm1, xmm2/m32

A V/V SSE Divide low single precision floating-point value in 
xmm1 by low single precision floating-point value in 
xmm2/m32.

VEX.LIG.F3.0F.WIG 5E /r
VDIVSS xmm1, xmm2, xmm3/m32

B V/V AVX Divide low single precision floating-point value in 
xmm2 by low single precision floating-point value in 
xmm3/m32.

EVEX.LLIG.F3.0F.W0 5E /r
VDIVSS xmm1 {k1}{z}, xmm2, 
xmm3/m32{er}

C V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Divide low single precision floating-point value in 
xmm2 by low single precision floating-point value in 
xmm3/m32.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VDIVSS (EVEX Encoded Version)
IF (EVEX.b = 1) AND SRC2 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[31:0] := SRC1[31:0] / SRC2[31:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

VDIVSS (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0] / SRC2[31:0]
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

DIVSS (128-bit Legacy SSE Version)
DEST[31:0] := DEST[31:0] / SRC[31:0]
DEST[MAXVL-1:32] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VDIVSS __m128 _mm_mask_div_ss(__m128 s, __mmask8 k, __m128 a, __m128 b);
VDIVSS __m128 _mm_maskz_div_ss( __mmask8 k, __m128 a, __m128 b);
VDIVSS __m128 _mm_div_round_ss( __m128 a, __m128 b, int);
VDIVSS __m128 _mm_mask_div_round_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, int);
VDIVSS __m128 _mm_maskz_div_round_ss( __mmask8 k, __m128 a, __m128 b, int);
DIVSS __m128 _mm_div_ss(__m128 a, __m128 b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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DPPD—Dot Product of Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description
Conditionally multiplies the packed double precision floating-point values in the destination operand (first operand) 
with the packed double precision floating-point values in the source (second operand) depending on a mask 
extracted from bits [5:4] of the immediate operand (third operand). If a condition mask bit is zero, the corre-
sponding multiplication is replaced by a value of 0.0 in the manner described by Section 12.8.4 of Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

The two resulting double precision values are summed into an intermediate result. The intermediate result is condi-
tionally broadcasted to the destination using a broadcast mask specified by bits [1:0] of the immediate byte. 

If a broadcast mask bit is “1”, the intermediate result is copied to the corresponding qword element in the destina-
tion operand. If a broadcast mask bit is zero, the corresponding element in the destination is set to zero.
DPPD follows the NaN forwarding rules stated in the Software Developer’s Manual, vol. 1, table 4.7. These rules do 
not cover horizontal prioritization of NaNs. Horizontal propagation of NaNs to the destination and the positioning of 
those NaNs in the destination is implementation dependent. NaNs on the input sources or computationally gener-
ated NaNs will have at least one NaN propagated to the destination.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding YMM register destination are 
zeroed.
If VDPPD is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an 
#UD exception.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 41 /r ib

DPPD xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Selectively multiply packed double precision 
floating-point values from xmm1 with packed 
double precision floating-point values from 
xmm2, add and selectively store the packed 
double precision floating-point values to 
xmm1.

VEX.128.66.0F3A.WIG 41 /r ib

VDPPD xmm1,xmm2, xmm3/m128, imm8

RVMI V/V AVX Selectively multiply packed double precision 
floating-point values from xmm2 with packed 
double precision floating-point values from 
xmm3, add and selectively store the packed 
double precision floating-point values to 
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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Operation

DP_primitive (SRC1, SRC2)
IF (imm8[4] = 1) 

THEN Temp1[63:0] := DEST[63:0] * SRC[63:0]; // update SIMD exception flags
ELSE Temp1[63:0] := +0.0; FI;

IF (imm8[5] = 1) 
THEN Temp1[127:64] := DEST[127:64] * SRC[127:64]; // update SIMD exception flags
ELSE Temp1[127:64] := +0.0; FI;

/* if unmasked exception reported, execute exception handler*/

Temp2[63:0] := Temp1[63:0] + Temp1[127:64]; // update SIMD exception flags
/* if unmasked exception reported, execute exception handler*/

IF (imm8[0] = 1) 
THEN DEST[63:0] := Temp2[63:0];
ELSE DEST[63:0] := +0.0; FI;

IF (imm8[1] = 1) 
THEN DEST[127:64] := Temp2[63:0];
ELSE DEST[127:64] := +0.0; FI;

DPPD (128-bit Legacy SSE Version)
DEST[127:0] := DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[MAXVL-1:128] (Unmodified)

VDPPD (VEX.128 Encoded Version)
DEST[127:0] := DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[MAXVL-1:128] := 0

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent

DPPD __m128d _mm_dp_pd ( __m128d a, __m128d b, const int mask);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Exceptions are determined separately for each add and multiply operation. Unmasked exceptions will leave the 
destination untouched.

Other Exceptions
See Table 2-19, “Type 2 Class Exception Conditions,” additionally:
#UD If VEX.L= 1.
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DPPS—Dot Product of Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description
Conditionally multiplies the packed single precision floating-point values in the destination operand (first operand) 
with the packed single precision floats in the source (second operand) depending on a mask extracted from the 
high 4 bits of the immediate byte (third operand). If a condition mask bit in imm8[7:4] is zero, the corresponding 
multiplication is replaced by a value of 0.0 in the manner described by Section 12.8.4 of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1.

The four resulting single precision values are summed into an intermediate result. The intermediate result is condi-
tionally broadcasted to the destination using a broadcast mask specified by bits [3:0] of the immediate byte.

If a broadcast mask bit is “1”, the intermediate result is copied to the corresponding dword element in the destina-
tion operand. If a broadcast mask bit is zero, the corresponding element in the destination is set to zero.
DPPS follows the NaN forwarding rules stated in the Software Developer’s Manual, vol. 1, table 4.7. These rules do 
not cover horizontal prioritization of NaNs. Horizontal propagation of NaNs to the destination and the positioning of 
those NaNs in the destination is implementation dependent. NaNs on the input sources or computationally gener-
ated NaNs will have at least one NaN propagated to the destination.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding YMM register destination are 
zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 40 /r ib

DPPS xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Selectively multiply packed single precision floating-
point values from xmm1 with packed single precision 
floating-point values from xmm2, add and selectively 
store the packed single precision floating-point values 
or zero values to xmm1.

VEX.128.66.0F3A.WIG 40 /r ib

VDPPS xmm1,xmm2, xmm3/m128, imm8

RVMI V/V AVX Multiply packed single precision floating-point values 
from xmm1 with packed single precision floating-point 
values from xmm2/mem selectively add and store to 
xmm1.

VEX.256.66.0F3A.WIG 40 /r ib

VDPPS ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX Multiply packed single precision floating-point values 
from ymm2 with packed single precision floating-point 
values from ymm3/mem, selectively add pairs of 
elements and store to ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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Operation

DP_primitive (SRC1, SRC2)
IF (imm8[4] = 1) 

THEN Temp1[31:0] := DEST[31:0] * SRC[31:0]; // update SIMD exception flags
ELSE Temp1[31:0] := +0.0; FI;

IF (imm8[5] = 1) 
THEN Temp1[63:32] := DEST[63:32] * SRC[63:32]; // update SIMD exception flags
ELSE Temp1[63:32] := +0.0; FI;

IF (imm8[6] = 1) 
THEN Temp1[95:64] := DEST[95:64] * SRC[95:64]; // update SIMD exception flags
ELSE Temp1[95:64] := +0.0; FI;

IF (imm8[7] = 1) 
THEN Temp1[127:96] := DEST[127:96] * SRC[127:96]; // update SIMD exception flags
ELSE Temp1[127:96] := +0.0; FI;

Temp2[31:0] := Temp1[31:0] + Temp1[63:32]; // update SIMD exception flags
/* if unmasked exception reported, execute exception handler*/
Temp3[31:0] := Temp1[95:64] + Temp1[127:96]; // update SIMD exception flags
/* if unmasked exception reported, execute exception handler*/
Temp4[31:0] := Temp2[31:0] + Temp3[31:0]; // update SIMD exception flags
/* if unmasked exception reported, execute exception handler*/

IF (imm8[0] = 1) 
THEN DEST[31:0] := Temp4[31:0];
ELSE DEST[31:0] := +0.0; FI;

IF (imm8[1] = 1) 
THEN DEST[63:32] := Temp4[31:0];
ELSE DEST[63:32] := +0.0; FI;

IF (imm8[2] = 1) 
THEN DEST[95:64] := Temp4[31:0];
ELSE DEST[95:64] := +0.0; FI;

IF (imm8[3] = 1) 
THEN DEST[127:96] := Temp4[31:0];
ELSE DEST[127:96] := +0.0; FI;

DPPS (128-bit Legacy SSE Version)
DEST[127:0] := DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[MAXVL-1:128] (Unmodified)

VDPPS (VEX.128 Encoded Version)
DEST[127:0] := DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[MAXVL-1:128] := 0

VDPPS (VEX.256 Encoded Version)
DEST[127:0] := DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[255:128] := DP_Primitive(SRC1[255:128], SRC2[255:128]);

Flags Affected
None.
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Intel C/C++ Compiler Intrinsic Equivalent

(V)DPPS __m128 _mm_dp_ps ( __m128 a, __m128 b, const int mask);
VDPPS __m256 _mm256_dp_ps ( __m256 a, __m256 b, const int mask);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Exceptions are determined separately for each add and multiply operation, in the order of their execution. 
Unmasked exceptions will leave the destination operands unchanged.

Other Exceptions
See Table 2-19, “Type 2 Class Exception Conditions.”
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EMMS—Empty MMX Technology State Vol. 2A 3-348

EMMS—Empty MMX Technology State

Instruction Operand Encoding

Description 

Sets the values of all the tags in the x87 FPU tag word to empty (all 1s). This operation marks the x87 FPU data 
registers (which are aliased to the MMX technology registers) as available for use by x87 FPU floating-point instruc-
tions. (See Figure 8-7 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for the 
format of the x87 FPU tag word.) All other MMX instructions (other than the EMMS instruction) set all the tags in 
x87 FPU tag word to valid (all 0s).

The EMMS instruction must be used to clear the MMX technology state at the end of all MMX technology procedures 
or subroutines and before calling other procedures or subroutines that may execute x87 floating-point instructions. 
If a floating-point instruction loads one of the registers in the x87 FPU data register stack before the x87 FPU tag 
word has been reset by the EMMS instruction, an x87 floating-point register stack overflow can occur that will 
result in an x87 floating-point exception or incorrect result.

EMMS operation is the same in non-64-bit modes and 64-bit mode.

Operation

x87FPUTagWord := FFFFH;

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_empty()

Flags Affected

None

Protected Mode Exceptions
#UD If CR0.EM[bit 2] = 1.
#NM If CR0.TS[bit 3] = 1.
#MF If there is a pending FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions 

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

NP 0F 77 EMMS ZO Valid Valid Set the x87 FPU tag word to empty.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A



ENCODEKEY128—Encode 128-Bit Key With Key Locker

Instruction Operand Encoding

Description
The ENCODEKEY1281 instruction wraps a 128-bit AES key from the implicit operand XMM0 into a key handle that 
is then stored in the implicit destination operands XMM0-2.
The explicit source operand specifies handle restrictions, if any.
The explicit destination operand is populated with information on the source of the key and its attributes. XMM4 
through XMM6 are reserved for future usages and software should not rely upon them being zeroed.

Operation

ENCODEKEY128 
#GP (0) if a reserved bit2 in SRC[31:0] is set
InputKey[127:0] := XMM0;
KeyMetadata[2:0] = SRC[2:0];
KeyMetadata[23:3] = 0; // Reserved for future usage
KeyMetadata[27:24] = 0; // KeyType is AES-128 (value of 0)
KeyMetadata[127:28] = 0; // Reserved for future usage

// KeyMetadata is the AAD input and InputKey is the Plaintext input for WrapKey128
Handle[383:0] := WrapKey128(InputKey[127:0], KeyMetadata[127:0], IWKey.Integrity Key[127:0], IWKey.Encryption Key[255:0]);

DEST[0] := IWKey.NoBackup;
DEST[4:1] := IWKey.KeySource[3:0];
DEST[31:5] = 0;
XMM0 := Handle[127:0];  // AAD
XMM1 := Handle[255:128]; // Integrity Tag
XMM2 := Handle[383:256]; // CipherText
XMM4 := 0; // Reserved for future usage
XMM5 := 0; // Reserved for future usage
XMM6 := 0; // Reserved for future usage
RFLAGS.OF, SF, ZF, AF, PF, CF := 0;

Flags Affected
All arithmetic flags (OF, SF, ZF, AF, PF, CF) are cleared to 0. Although they are cleared for the currently defined oper-
ations, future extensions may report information in the flags.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 38 FA 11:rrr:bbb 
ENCODEKEY128 r32, r32, <XMM0-2>, 
<XMM4-6>

A V/V AESKLE Wrap a 128-bit AES key from XMM0 into a key handle 
and output handle in XMM0—2.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operands 4—5 Operands 6—7

A N/A ModRM:reg (w) ModRM:r/m (r) Implicit XMM0 (r, w) Implicit XMM1—2 (w) Implicit XMM4—6 (w)

1. Further details on Key Locker and usage of this instruction can be found here:

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

2. SRC[31:3] are currently reserved for future usages. SRC[2], which indicates a no-decrypt restriction, is reserved if 
CPUID.19H:EAX[2] is 0. SRC[1], which indicates a no-encrypt restriction, is reserved if CPUID.19H:EAX[1] is 0. SRC[0], which indicates 
a CPL0-only restriction, is reserved if CPUID.19H:EAX[0] is 0.
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Intel C/C++ Compiler Intrinsic Equivalent

ENCODEKEY128 unsigned int _mm_encodekey128_u32(unsigned int htype, __m128i key, void* h);

Exceptions (All Operating Modes)
#GP If reserved bit is set in source register value.
#UD If the LOCK prefix is used.

If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE[bit 0] = 0.
If CR0.EM = 1.
If CR4.OSFXSR = 0.

#NM If CR0.TS = 1.
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ENCODEKEY256—Encode 256-Bit Key With Key Locker

Instruction Operand Encoding

Description
The ENCODEKEY2561 instruction wraps a 256-bit AES key from the implicit operand XMM1:XMM0 into a key handle 
that is then stored in the implicit destination operands XMM0-3.
The explicit source operand is a general-purpose register and specifies what handle restrictions should be built into 
the handle.
The explicit destination operand is populated with information on the source of the key and its attributes. XMM4 
through XMM6 are reserved for future usages and software should not rely upon them being zeroed.

Operation

ENCODEKEY256 
#GP (0) if a reserved bit2 in SRC[31:0] is set
InputKey[255:0] := XMM1:XMM0;
KeyMetadata[2:0] = SRC[2:0];
KeyMetadata[23:3] = 0; // Reserved for future usage
KeyMetadata[27:24] = 1; // KeyType is AES-256 (value of 1)
KeyMetadata[127:28] = 0; // Reserved for future usage

// KeyMetadata is the AAD input and InputKey is the Plaintext input for WrapKey256
Handle[511:0] := WrapKey256(InputKey[255:0], KeyMetadata[127:0], IWKey.Integrity Key[127:0], IWKey.Encryption Key[255:0]);

DEST[0] := IWKey.NoBackup;
DEST[4:1] := IWKey.KeySource[3:0];
DEST[31:5] = 0;
XMM0 := Handle[127:0];  // AAD
XMM1 := Handle[255:128]; // Integrity Tag
XMM2 := Handle[383:256]; // CipherText[127:0]
XMM3 := Handle[511:384]; // CipherText[255:128]

XMM4 := 0; // Reserved for future usage
XMM5 := 0; // Reserved for future usage
XMM6 := 0; // Reserved for future usage

RFLAGS.OF, SF, ZF, AF, PF, CF := 0;

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 38 FB 11:rrr:bbb 
ENCODEKEY256 r32, r32 <XMM0-6>

A V/V AESKLE Wrap a 256-bit AES key from XMM1:XMM0 into a key 
handle and store it in XMM0—3.

Op/En Tuple Operand 1 Operand 2 Operands 3—4 Operands 5—9

A N/A ModRM:reg (w) ModRM:r/m (r) Implicit XMM0—1 (r, w) Implicit XMM2—6 (w)

1. Further details on Key Locker and usage of this instruction can be found here:

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

2. SRC[31:3] are currently reserved for future usages. SRC[2], which indicates a no-decrypt restriction, is reserved if 
CPUID.19H:EAX[2] is 0. SRC[1], which indicates a no-encrypt restriction, is reserved if CPUID.19H:EAX[1] is 0. SRC[0], which indicates 
a CPL0-only restriction, is reserved if CPUID.19H:EAX[0] is 0.
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Flags Affected
All arithmetic flags (OF, SF, ZF, AF, PF, CF) are cleared to 0. Although they are cleared for the currently defined oper-
ations, future extensions may report information in the flags.

Intel C/C++ Compiler Intrinsic Equivalent

ENCODEKEY256 unsigned int _mm_encodekey256_u32(unsigned int htype, __m128i key_lo, __m128i key_hi, void* h);

Exceptions (All Operating Modes)
#GP If reserved bit is set in source register value.
#UD If the LOCK prefix is used.

If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE[bit 0] = 0.
If CR0.EM = 1.
If CR4.OSFXSR = 0.

#NM If CR0.TS = 1.
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ENDBR32—Terminate an Indirect Branch in 32-bit and Compatibility Mode

Instruction Operand Encoding

Description
Terminate an indirect branch in 32 bit and compatibility mode. This opcode is a NOP when CET indirect branch 
tracking is not enabled and on processors that do not support CET.

Operation

IF EndbranchEnabled(CPL) & (IA32_EFER.LMA = 0 | (IA32_EFER.LMA=1 & CS.L = 0)
IF CPL = 3

THEN
IA32_U_CET.TRACKER = IDLE
IA32_U_CET.SUPPRESS = 0

ELSE
IA32_S_CET.TRACKER = IDLE
IA32_S_CET.SUPPRESS = 0

FI;
FI;

Flags Affected

None.

Exceptions 
#UD If the LOCK prefix is used.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 1E FB
ENDBR32

ZO V/V CET_IBT Terminate indirect branch in 32-bit and compatibility 
mode.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A N/A
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ENDBR64—Terminate an Indirect Branch in 64-bit Mode

Instruction Operand Encoding

Description
Terminate an indirect branch in 64 bit mode. This opcode is a NOP when CET indirect branch tracking is not enabled 
and on processors that do not support CET.

Operation

IF EndbranchEnabled(CPL) & IA32_EFER.LMA = 1 & CS.L = 1
IF CPL = 3

THEN
IA32_U_CET.TRACKER = IDLE
IA32_U_CET.SUPPRESS = 0

ELSE
IA32_S_CET.TRACKER = IDLE
IA32_S_CET.SUPPRESS = 0

FI;
FI;

Flags Affected

None.

Exceptions 
#UD If the LOCK prefix is used.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 1E FA
ENDBR64

ZO V/V CET_IBT Terminate indirect branch in 64-bit mode.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A N/A



ENQCMD—Enqueue Command

Instruction Operand Encoding

Description

The ENQCMD instruction allows software to write commands to enqueue registers, which are special device 
registers accessed using memory-mapped I/O (MMIO).
Enqueue registers expect writes to have the following format:

Bits 19:0 convey the process address space identifier (PASID), a value which system software may assign to indi-
vidual software threads. Bit 31 contains privilege identification (0 = user; 1 = supervisor). Devices implementing 
enqueue registers may use these two values along with a device-specific command in the upper 60 bytes.
The ENQCMD instruction begins by reading 64 bytes of command data from its source memory operand. This is an 
ordinary load with cacheability and memory ordering implied normally by the memory type. The source operand 
need not be aligned, and there is no guarantee that all 64 bytes are loaded atomically. Bits 31:0 of the source 
operand must be zero.
The instruction then formats those 64 bytes into command data with a format consistent with that given in 
Figure 1-16:
• Command[19:0] get IA32_PASID[19:0].1

• Command[30:20] are zero.
• Command[31] is 0 (indicating user; this value is used regardless of CPL).
• Command[511:32] get bits 511:32 of the source operand that was read from memory.
The ENQCMD instruction uses an enqueue store (defined below) to write this command data to the destination 
operand. The address of the destination operand is specified in a general-purpose register as an offset into the ES 
segment (the segment cannot be overridden).2 The destination linear address must be 64-byte aligned. The oper-
ation of an enqueue store disregards the memory type of the destination memory address.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F2 0F 38 F8 !(11):rrr:bbb
ENQCMD r32/r64, m512

A V/V ENQCMD Atomically enqueue 64-byte user command from 
source memory operand to destination offset in 
ES segment specified in register operand as 
offset in ES segment.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

Figure 1-16.  64-Byte Data Written to Enqueue Registers

1. It is expected that system software will load the IA32_PASID MSR so that bits 19:0 contain the PASID of the current soft-
ware thread. The MSR’s valid bit, IA32_PASID[31], must be 1. For additional details on the IA32_PASID MSR, see the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

2. In 64-bit mode, the width of the register operand is 64 bits (32 bits with a 67H prefix). Outside 64-bit mode when CS.D = 
1, the width is 32 bits (16 bits with a 67H prefix). Outside 64-bit mode when CS.D=0, the width is 16 bits (32 bits with a 
67H prefix).

RESERVEDPRIV

01920303132511

PASIDDEVICE SPECIFIC COMMAND
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An enqueue store is not ordered relative to older stores to WB or WC memory (including non-temporal stores) or 
to executions of the CLFLUSHOPT or CLWB (when applied to addresses other than that of the enqueue store). Soft-
ware can enforce such ordering by executing a fencing instruction such as SFENCE or MFENCE before the enqueue 
store.
An enqueue store does not write the data into the cache hierarchy, nor does it fetch any data into the cache hier-
archy. An enqueue store’s command data is never combined with that of any other store to the same address.
Unlike other stores, an enqueue store returns a status, which the ENQCMD instruction loads into the ZF flag in the 
RFLAGS register:
• ZF = 0 (success) reports that the 64-byte command data was written atomically to a device’s enqueue register 

and has been accepted by the device. (It does not guarantee that the device has acted on the command; it may 
have queued it for later execution.)

• ZF = 1 (retry) reports that the command data was not accepted. This status is returned if the destination 
address is an enqueue register but the command was not accepted due to capacity or other temporal reasons. 
This status is also returned if the destination address was not an enqueue register (including the case of a 
memory address); in these cases, the store is dropped and is written neither to MMIO nor to memory.

Availability of the ENQCMD instruction is indicated by the presence of the CPUID feature flag ENQCMD 
(CPUID.(EAX=07H, ECX=0H):ECX[bit 29]).

Operation

IF IA32_PASID[31] = 0
THEN #GP;

ELSE
COMMAND := (SRC & ~FFFFFFFFH) | (IA32_PASID & FFFFFH);
DEST := COMMAND;

FI;

Intel C/C++ Compiler Intrinsic Equivalent

ENQCMD int_enqcmd(void *dst, const void *src)

Flags Affected

The ZF flag is set if the enqueue-store completion returns the retry status; otherwise it is cleared. All other flags 
are cleared.

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
If destination linear address is not aligned to a 64-byte boundary.
If the PASID Valid field (bit 31) is 0 in IA32_PASID MSR.
If bits 31:0 of the source operand are not all zero.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#UD If CPUID.07H.0H:ECX.ENQCMD[bit 29] = 0.

If the LOCK prefix is used.
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Real-Address Mode Exceptions

#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.
If destination linear address is not aligned to a 64-byte boundary.
If the PASID Valid field (bit 31) is 0 in IA32_PASID MSR.
If bits 31:0 of the source operand are not all zero.

#UD If CPUID.07H.0H:ECX.ENQCMD[bit 29] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real-address mode. Additionally:
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in non-canonical form.
#GP(0) If the memory address is in non-canonical form.

If destination linear address is not aligned to a 64-byte boundary.
If the PASID Valid field (bit 31) is 0 in IA32_PASID MSR.
If bits 31:0 of the source operand are not all zero.

#PF(fault-code) For a page fault.
#UD If CPUID.07H.0H:ECX.ENQCMD[bit 29].

If the LOCK prefix is used.
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ENQCMDS—Enqueue Command Supervisor

Instruction Operand Encoding

Description

The ENQCMDS instruction allows system software to write commands to enqueue registers, which are special 
device registers accessed using memory-mapped I/O (MMIO).
Enqueue registers expect writes to have the format given in Figure 1-16 and explained in the section on 
“ENQCMD—Enqueue Command.”
The ENQCMDS instruction begins by reading 64 bytes of command data from its source memory operand. This is 
an ordinary load with cacheability and memory ordering implied normally by the memory type. The source operand 
need not be aligned, and there is no guarantee that all 64 bytes are loaded atomically. Bits 30:20 of the source 
operand must be zero.
ENQCMDS formats its source data differently from ENQCMD. Specifically, it formats them into command data as 
follows:
• Command[19:0] get bits 19:0 of the source operand that was read from memory. These 20 bits communicate 

a process address-space identifier (PASID). 
• Command[30:20] are zero.
• Command[511:31] get bits 511:31 of the source operand that was read from memory. Bit 31 communicates a 

privilege identification (0 = user; 1 = supervisor).
The ENQCMDS instruction then uses an enqueue store (defined below) to write this command data to the desti-
nation operand. The address of the destination operand is specified in a general-purpose register as an offset into 
the ES segment (the segment cannot be overridden).1 The destination linear address must be 64-byte aligned. The 
operation of an enqueue store disregards the memory type of the destination memory address.
An enqueue store is not ordered relative to older stores to WB or WC memory (including non-temporal stores) or 
to executions of the CLFLUSHOPT or CLWB (when applied to addresses other than that of the enqueue store). Soft-
ware can enforce such ordering by executing a fencing instruction such as SFENCE or MFENCE before the enqueue 
store.
An enqueue store does not write the data into the cache hierarchy, nor does it fetch any data into the cache hier-
archy. An enqueue store’s command data is never combined with that of any other store to the same address.
Unlike other stores, an enqueue store returns a status, which the ENQCMDS instruction loads into the ZF flag in the 
RFLAGS register:
• ZF = 0 (success) reports that the 64-byte command data was written atomically to a device’s enqueue register 

and has been accepted by the device. (It does not guarantee that the device has acted on the command; it may 
have queued it for later execution.)

• ZF = 1 (retry) reports that the command data was not accepted. This status is returned if the destination 
address is an enqueue register but the command was not accepted due to capacity or other temporal reasons. 

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F3 0F 38 F8 !(11):rrr:bbb
ENQCMDS r32/r64, m512

A V/V ENQCMD Atomically enqueue 64-byte command with 
PASID from source memory operand to 
destination offset in ES segment specified in 
register operand as offset in ES segment.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

1. In 64-bit mode, the width of the register operand is 64 bits (32 bits with a 67H prefix). Outside 64-bit mode when CS.D = 
1, the width is 32 bits (16 bits with a 67H prefix). Outside 64-bit mode when CS.D=0, the width is 16 bits (32 bits with a 
67H prefix).
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This status is also returned if the destination address was not an enqueue register (including the case of a 
memory address); in these cases, the store is dropped and is written neither to MMIO nor to memory.

The ENQCMDS instruction may be executed only if CPL = 0. Availability of the ENQCMDS instruction is indicated by 
the presence of the CPUID feature flag ENQCMD (CPUID.(EAX=07H, ECX=0H):ECX[bit 29]).

Operation

DEST := SRC;

Intel C/C++ Compiler Intrinsic Equivalent

ENQCMDS int_enqcmds(void *dst, const void *src)

Flags Affected

The ZF flag is set if the enqueue-store completion returns the retry status; otherwise it is cleared. All other flags 
are cleared.

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
If destination linear address is not aligned to a 64-byte boundary.
If the current privilege level is not 0.
If bits 30:20 of the source operand are not all zero.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#UD If CPUID.07H.0H:ECX.ENQCMD[bit 29] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.
If destination linear address is not aligned to a 64-byte boundary.
If bits 30:20 of the source operand are not all zero.

#UD If CPUID.07H.0H:ECX.ENQCMD[bit 29] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) The ENQCMDS instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in non-canonical form.
#GP(0) If the memory address is in non-canonical form.

If destination linear address is not aligned to a 64-byte boundary.
If the current privilege level is not 0.
If bits 30:20 of the source operand are not all zero.

#PF(fault-code) For a page fault.
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#UD If CPUID.07H.0H:ECX.ENQCMD[bit 29].
If the LOCK prefix is used.
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ENTER—Make Stack Frame for Procedure Parameters

Instruction Operand Encoding

Description

Creates a stack frame (comprising of space for dynamic storage and 1-32 frame pointer storage) for a procedure. 
The first operand (imm16) specifies the size of the dynamic storage in the stack frame (that is, the number of bytes 
of dynamically allocated on the stack for the procedure). The second operand (imm8) gives the lexical nesting level 
(0 to 31) of the procedure. The nesting level (imm8 mod 32) and the OperandSize attribute determine the size in 
bytes of the storage space for frame pointers.

The nesting level determines the number of frame pointers that are copied into the “display area” of the new stack 
frame from the preceding frame. The default size of the frame pointer is the StackAddrSize attribute, but can be 
overridden using the 66H prefix. Thus, the OperandSize attribute determines the size of each frame pointer that 
will be copied into the stack frame and the data being transferred from SP/ESP/RSP register into the BP/EBP/RBP 
register.

The ENTER and companion LEAVE instructions are provided to support block structured languages. The ENTER 
instruction (when used) is typically the first instruction in a procedure and is used to set up a new stack frame for 
a procedure. The LEAVE instruction is then used at the end of the procedure (just before the RET instruction) to 
release the stack frame.

If the nesting level is 0, the processor pushes the frame pointer from the BP/EBP/RBP register onto the stack, 
copies the current stack pointer from the SP/ESP/RSP register into the BP/EBP/RBP register, and loads the 
SP/ESP/RSP register with the current stack-pointer value minus the value in the size operand. For nesting levels of 
1 or greater, the processor pushes additional frame pointers on the stack before adjusting the stack pointer. These 
additional frame pointers provide the called procedure with access points to other nested frames on the stack. See 
“Procedure Calls for Block-Structured Languages” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for more information about the actions of the ENTER instruction.

The ENTER instruction causes a page fault whenever a write using the final value of the stack pointer (within the 
current stack segment) would do so.

In 64-bit mode, default operation size is 64 bits; 32-bit operation size cannot be encoded. Use of 66H prefix 
changes frame pointer operand size to 16 bits.

When the 66H prefix is used and causing the OperandSize attribute to be less than the StackAddrSize, software is 
responsible for the following:
• The companion LEAVE instruction must also use the 66H prefix,
• The value in the RBP/EBP register prior to executing “66H ENTER” must be within the same 16KByte region of 

the current stack pointer (RSP/ESP), such that the value of RBP/EBP after “66H ENTER” remains a valid address 
in the stack. This ensures “66H LEAVE” can restore 16-bits of data from the stack.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

C8 iw 00 ENTER imm16, 0 II Valid Valid Create a stack frame for a procedure.

C8 iw 01 ENTER imm16,1 II Valid Valid Create a stack frame with a nested pointer for 
a procedure.

C8 iw ib ENTER imm16, imm8 II Valid Valid Create a stack frame with nested pointers for 
a procedure.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

II iw imm8 N/A N/A
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Operation
AllocSize := imm16;
NestingLevel := imm8 MOD 32;
IF (OperandSize = 64)

THEN 
Push(RBP); (* RSP decrements by 8 *)
FrameTemp := RSP; 

ELSE IF OperandSize = 32
THEN 

Push(EBP); (* (E)SP decrements by 4 *)
FrameTemp := ESP; FI;

ELSE (* OperandSize = 16 *)
Push(BP); (* RSP or (E)SP decrements by 2 *)
FrameTemp := SP; 

FI;

IF NestingLevel = 0
THEN GOTO CONTINUE;

FI;

IF (NestingLevel > 1) 
THEN FOR i := 1 to (NestingLevel - 1)

DO 
IF (OperandSize = 64)

THEN
RBP := RBP - 8;
Push([RBP]); (* Quadword push *)

ELSE IF OperandSize = 32
THEN

IF StackSize = 32
EBP := EBP - 4;
Push([EBP]); (* Doubleword push *)

ELSE (* StackSize = 16 *)
BP := BP - 4;
Push([BP]); (* Doubleword push *)

FI;
FI;

ELSE (* OperandSize = 16 *)
IF StackSize = 64

THEN
RBP := RBP - 2;
Push([RBP]); (* Word push *)

ELSE IF StackSize = 32
THEN

EBP := EBP - 2;
Push([EBP]); (* Word push *)

ELSE (* StackSize = 16 *)
BP := BP - 2;
Push([BP]); (* Word push *)

FI;
FI;

OD;
FI;

IF (OperandSize = 64) (* nestinglevel 1 *)
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THEN
Push(FrameTemp); (* Quadword push and RSP decrements by 8 *)

ELSE IF OperandSize = 32
THEN 

Push(FrameTemp); FI; (* Doubleword push and (E)SP decrements by 4 *)
ELSE (* OperandSize = 16 *)

Push(FrameTemp); (* Word push and RSP|ESP|SP decrements by 2 *)
FI;

CONTINUE:
IF 64-Bit Mode (StackSize = 64)

THEN
RBP := FrameTemp;
RSP := RSP − AllocSize;

ELSE IF OperandSize = 32 
THEN

EBP := FrameTemp;
ESP := ESP − AllocSize; FI;

ELSE (* OperandSize = 16 *)
BP := FrameTemp[15:1]; (* Bits 16 and above of applicable RBP/EBP are unmodified *)
SP := SP − AllocSize;

FI;

END;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack segment limit.
#PF(fault-code) If a page fault occurs or if a write using the final value of the stack pointer (within the current 

stack segment) would cause a page fault.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#SS If the new value of the SP or ESP register is outside the stack segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack segment limit.
#PF(fault-code) If a page fault occurs or if a write using the final value of the stack pointer (within the current 

stack segment) would cause a page fault.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs or if a write using the final value of the stack pointer (within the current 

stack segment) would cause a page fault.
#UD If the LOCK prefix is used.
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EXTRACTPS—Extract Packed Floating-Point Values

Instruction Operand Encoding

Description
Extracts a single precision floating-point value from the source operand (second operand) at the 32-bit offset spec-
ified from imm8. Immediate bits higher than the most significant offset for the vector length are ignored.
The extracted single precision floating-point value is stored in the low 32-bits of the destination operand
In 64-bit mode, destination register operand has default operand size of 64 bits. The upper 32-bits of the register 
are filled with zero. REX.W is ignored.
VEX.128 and EVEX encoded version: When VEX.W1 or EVEX.W1 form is used in 64-bit mode with a general 
purpose register (GPR) as a destination operand, the packed single quantity is zero extended to 64 bits. 
VEX.vvvv/EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
128-bit Legacy SSE version: When a REX.W prefix is used in 64-bit mode with a general purpose register (GPR) as 
a destination operand, the packed single quantity is zero extended to 64 bits.
The source register is an XMM register. Imm8[1:0] determine the starting DWORD offset from which to extract the 
32-bit floating-point value.
If VEXTRACTPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause 
an #UD exception.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 3A 17 /r ib
EXTRACTPS reg/m32, xmm1, imm8

A VV SSE4_1 Extract one single precision floating-point value 
from xmm1 at the offset specified by imm8 and 
store the result in reg or m32. Zero extend the 
results in 64-bit register if applicable.

VEX.128.66.0F3A.WIG 17 /r ib
VEXTRACTPS reg/m32, xmm1, imm8

A V/V AVX Extract one single precision floating-point value 
from xmm1 at the offset specified by imm8 and 
store the result in reg or m32. Zero extend the 
results in 64-bit register if applicable.

EVEX.128.66.0F3A.WIG 17 /r ib
VEXTRACTPS reg/m32, xmm1, imm8

B V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Extract one single precision floating-point value 
from xmm1 at the offset specified by imm8 and 
store the result in reg or m32. Zero extend the 
results in 64-bit register if applicable.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (w) ModRM:reg (r) imm8 N/A

B Tuple1 Scalar ModRM:r/m (w) ModRM:reg (r) imm8 N/A
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Operation

VEXTRACTPS (EVEX and VEX.128 Encoded Version)
SRC_OFFSET := IMM8[1:0]
IF (64-Bit Mode and DEST is register)

DEST[31:0] := (SRC[127:0] >> (SRC_OFFSET*32)) AND 0FFFFFFFFh
DEST[63:32] := 0

ELSE
DEST[31:0] := (SRC[127:0] >> (SRC_OFFSET*32)) AND 0FFFFFFFFh

FI

EXTRACTPS (128-bit Legacy SSE Version)
SRC_OFFSET := IMM8[1:0]
IF (64-Bit Mode and DEST is register)

DEST[31:0] := (SRC[127:0] >> (SRC_OFFSET*32)) AND 0FFFFFFFFh
DEST[63:32] := 0

ELSE
DEST[31:0] := (SRC[127:0] >> (SRC_OFFSET*32)) AND 0FFFFFFFFh

FI

Intel C/C++ Compiler Intrinsic Equivalent

EXTRACTPS int _mm_extract_ps (__m128 a, const int nidx);

SIMD Floating-Point Exceptions
None.

Other Exceptions
VEX-encoded instructions, see Table 2-22, “Type 5 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-59, “Type E9NF Class Exception Conditions.”
Additionally:
#UD IF VEX.L = 0.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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F2XM1—Compute 2x–1

Description

Computes the exponential value of 2 to the power of the source operand minus 1. The source operand is located in 
register ST(0) and the result is also stored in ST(0). The value of the source operand must lie in the range –1.0 to 
+1.0. If the source value is outside this range, the result is undefined.

The following table shows the results obtained when computing the exponential value of various classes of 
numbers, assuming that neither overflow nor underflow occurs.

Values other than 2 can be exponentiated using the following formula:

xy := 2(y ∗ log
2
x)

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) := (2ST(0) − 1);

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source is a denormal value.
#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F0 F2XM1 Valid Valid Replace ST(0) with (2ST(0) – 1).

Table 1-25.  Results Obtained from F2XM1
ST(0) SRC ST(0) DEST

− 1.0 to −0 − 0.5 to − 0

− 0 − 0

+ 0 + 0

+ 0 to +1.0 + 0 to 1.0 
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FABS—Absolute Value

Description

Clears the sign bit of ST(0) to create the absolute value of the operand. The following table shows the results 
obtained when creating the absolute value of various classes of numbers.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) := |ST(0)|;

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 E1 FABS Valid Valid Replace ST with its absolute value.

Table 1-26.  Results Obtained from FABS 
ST(0) SRC ST(0) DEST

− ∞ + ∞
− F + F

− 0 + 0

+ 0 + 0

+ F + F

+ ∞ + ∞
NaN NaN 

NOTES:
F Means finite floating-point value.
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FADD/FADDP/FIADD—Add

Description

Adds the destination and source operands and stores the sum in the destination location. The destination operand 
is always an FPU register; the source operand can be a register or a memory location. Source operands in memory 
can be in single precision or double precision floating-point format or in word or doubleword integer format.

The no-operand version of the instruction adds the contents of the ST(0) register to the ST(1) register. The one-
operand version adds the contents of a memory location (either a floating-point or an integer value) to the 
contents of the ST(0) register. The two-operand version, adds the contents of the ST(0) register to the ST(i) 
register or vice versa. The value in ST(0) can be doubled by coding:

FADD ST(0), ST(0);

The FADDP instructions perform the additional operation of popping the FPU register stack after storing the result. 
To pop the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) 
by 1. (The no-operand version of the floating-point add instructions always results in the register stack being 
popped. In some assemblers, the mnemonic for this instruction is FADD rather than FADDP.)

The FIADD instructions convert an integer source operand to double extended-precision floating-point format 
before performing the addition.

The table on the following page shows the results obtained when adding various classes of numbers, assuming that 
neither overflow nor underflow occurs.

When the sum of two operands with opposite signs is 0, the result is +0, except for the round toward −∞ mode, in 
which case the result is −0. When the source operand is an integer 0, it is treated as a +0.

When both operand are infinities of the same sign, the result is ∞ of the expected sign. If both operands are infini-
ties of opposite signs, an invalid-operation exception is generated. See Table 1-27.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /0 FADD m32fp Valid Valid Add m32fp to ST(0) and store result in ST(0).

DC /0 FADD m64fp Valid Valid Add m64fp to ST(0) and store result in ST(0).

D8 C0+i FADD ST(0), ST(i) Valid Valid Add ST(0) to ST(i) and store result in ST(0).

DC C0+i FADD ST(i), ST(0) Valid Valid Add ST(i) to ST(0) and store result in ST(i).

DE C0+i FADDP ST(i), ST(0) Valid Valid Add ST(0) to ST(i), store result in ST(i), and pop the 
register stack.

DE C1 FADDP Valid Valid Add ST(0) to ST(1), store result in ST(1), and pop the 
register stack.

DA /0 FIADD m32int Valid Valid Add m32int to ST(0) and store result in ST(0).

DE /0 FIADD m16int Valid Valid Add m16int to ST(0) and store result in ST(0).
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This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF Instruction = FIADD
THEN

DEST := DEST + ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* Source operand is floating-point value *)

DEST := DEST + SRC;
FI;

IF Instruction = FADDP 
THEN 

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

Operands are infinities of unlike sign.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Table 1-27.  FADD/FADDP/FIADD Results

DEST

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ − ∞ − ∞ − ∞ − ∞ − ∞ * NaN

− F or − I − ∞ − F SRC SRC ± F or ± 0 + ∞ NaN

SRC −0 − ∞ DEST − 0 ± 0 DEST + ∞ NaN

+ 0 − ∞ DEST ± 0 + 0 DEST + ∞ NaN

+ F or + I − ∞ ± F or ± 0 SRC SRC + F + ∞ NaN

+ ∞ * + ∞ + ∞ + ∞ + ∞ + ∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FBLD—Load Binary Coded Decimal

Description

Converts the BCD source operand into double extended-precision floating-point format and pushes the value onto 
the FPU stack. The source operand is loaded without rounding errors. The sign of the source operand is preserved, 
including that of −0.

The packed BCD digits are assumed to be in the range 0 through 9; the instruction does not check for invalid digits 
(AH through FH). Attempting to load an invalid encoding produces an undefined result.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

TOP := TOP − 1;
ST(0) := ConvertToDoubleExtendedPrecisionFP(SRC); 

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DF /4 FBLD m80bcd Valid Valid Convert BCD value to floating-point and push onto the 
FPU stack.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FBSTP—Store BCD Integer and Pop

Description

Converts the value in the ST(0) register to an 18-digit packed BCD integer, stores the result in the destination 
operand, and pops the register stack. If the source value is a non-integral value, it is rounded to an integer value, 
according to rounding mode specified by the RC field of the FPU control word. To pop the register stack, the 
processor marks the ST(0) register as empty and increments the stack pointer (TOP) by 1.

The destination operand specifies the address where the first byte destination value is to be stored. The BCD value 
(including its sign bit) requires 10 bytes of space in memory. 

The following table shows the results obtained when storing various classes of numbers in packed BCD format.

If the converted value is too large for the destination format, or if the source operand is an ∞, SNaN, QNAN, or is in 
an unsupported format, an invalid-arithmetic-operand condition is signaled. If the invalid-operation exception is 
not masked, an invalid-arithmetic-operand exception (#IA) is generated and no value is stored in the destination 
operand. If the invalid-operation exception is masked, the packed BCD indefinite value is stored in memory.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST := BCD(ST(0));
PopRegisterStack;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DF /6 FBSTP m80bcd Valid Valid Store ST(0) in m80bcd and pop ST(0).

Table 1-28.  FBSTP Results
ST(0) DEST

− ∞ or Value Too Large for DEST Format *
F ≤ − 1 − D

−1 < F < -0 **
− 0 − 0

+ 0 + 0

+ 0 < F < +1 **
F ≥ +1 + D

+ ∞ or Value Too Large for DEST Format *
NaN *

NOTES:
F Means finite floating-point value.
D Means packed-BCD number.
* Indicates floating-point invalid-operation (#IA) exception.
** ±0 or ±1, depending on the rounding mode.
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Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Converted value that exceeds 18 BCD digits in length.

Source operand is an SNaN, QNaN, ±∞, or in an unsupported format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a segment register is being loaded with a segment selector that points to a non-writable 

segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FCHS—Change Sign

Description

Complements the sign bit of ST(0). This operation changes a positive value into a negative value of equal magni-
tude or vice versa. The following table shows the results obtained when changing the sign of various classes of 
numbers.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

SignBit(ST(0)) := NOT (SignBit(ST(0)));

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 E0 FCHS Valid Valid Complements sign of ST(0).

Table 1-29.  FCHS Results
ST(0) SRC ST(0) DEST

− ∞ + ∞
− F + F

− 0 + 0

+ 0 − 0

+ F − F

+ ∞ − ∞
NaN NaN 

NOTES:
* F means finite floating-point value.
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64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FCLEX/FNCLEX—Clear Exceptions

Description

Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception summary status flag (ES), the 
stack fault flag (SF), and the busy flag (B) in the FPU status word. The FCLEX instruction checks for and handles 
any pending unmasked floating-point exceptions before clearing the exception flags; the FNCLEX instruction does 
not.

The assembler issues two instructions for the FCLEX instruction (an FWAIT instruction followed by an FNCLEX 
instruction), and the processor executes each of these instructions separately. If an exception is generated for 
either of these instructions, the save EIP points to the instruction that caused the exception.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS* compatibility mode, it is possible (under unusual 
circumstances) for an FNCLEX instruction to be interrupted prior to being executed to handle a pending FPU excep-
tion. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circumstances. An 
FNCLEX instruction cannot be interrupted in this way on later Intel processors, except for the Intel QuarkTM X1000 
processor.

This instruction affects only the x87 FPU floating-point exception flags. It does not affect the SIMD floating-point 
exception flags in the MXCSR register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUStatusWord[0:7] := 0;
FPUStatusWord[15] := 0;

FPU Flags Affected

The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The C0, C1, C2, and C3 flags are 
undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Opcode1 Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B DB E2 FCLEX Valid Valid Clear floating-point exception flags after checking for 
pending unmasked floating-point exceptions.

DB E2 FNCLEX1

NOTES:
1. See IA-32 Architecture Compatibility section below.

Valid Valid Clear floating-point exception flags without checking for 
pending unmasked floating-point exceptions.
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Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FCMOVcc—Floating-Point Conditional Move

Description

Tests the status flags in the EFLAGS register and moves the source operand (second operand) to the destination 
operand (first operand) if the given test condition is true. The condition for each mnemonic os given in the Descrip-
tion column above and in Chapter 8 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
1. The source operand is always in the ST(i) register and the destination operand is always ST(0).

The FCMOVcc instructions are useful for optimizing small IF constructions. They also help eliminate branching over-
head for IF operations and the possibility of branch mispredictions by the processor. 

A processor may not support the FCMOVcc instructions. Software can check if the FCMOVcc instructions are 
supported by checking the processor’s feature information with the CPUID instruction (see “COMISS—Compare 
Scalar Ordered Single Precision Floating-Point Values and Set EFLAGS” in this chapter). If both the CMOV and FPU 
feature bits are set, the FCMOVcc instructions are supported.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The FCMOVcc instructions were introduced to the IA-32 Architecture in the P6 family processors and are not avail-
able in earlier IA-32 processors.

Operation

IF condition TRUE
THEN ST(0) := ST(i);

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Integer Flags Affected

None.

Opcode1

NOTES:
1. See IA-32 Architecture Compatibility section below.

Instruction 64-Bit 
Mode

Compat/
Leg Mode1

Description

DA C0+i FCMOVB ST(0), ST(i) Valid Valid Move if below (CF=1).

DA C8+i FCMOVE ST(0), ST(i) Valid Valid Move if equal (ZF=1).

DA D0+i FCMOVBE ST(0), ST(i) Valid Valid Move if below or equal (CF=1 or ZF=1).

DA D8+i FCMOVU ST(0), ST(i) Valid Valid Move if unordered (PF=1).

DB C0+i FCMOVNB ST(0), ST(i) Valid Valid Move if not below (CF=0).

DB C8+i FCMOVNE ST(0), ST(i) Valid Valid Move if not equal (ZF=0).

DB D0+i FCMOVNBE ST(0), ST(i) Valid Valid Move if not below or equal (CF=0 and ZF=0).

DB D8+i FCMOVNU ST(0), ST(i) Valid Valid Move if not unordered (PF=0).
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Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FCOM/FCOMP/FCOMPP—Compare Floating-Point Values

Description

Compares the contents of register ST(0) and source value and sets condition code flags C0, C2, and C3 in the FPU 
status word according to the results (see the table below). The source operand can be a data register or a memory 
location. If no source operand is given, the value in ST(0) is compared with the value in ST(1). The sign of zero is 
ignored, so that –0.0 is equal to +0.0. 

This instruction checks the class of the numbers being compared (see “FXAM—Examine Floating-Point” in this 
chapter). If either operand is a NaN or is in an unsupported format, an invalid-arithmetic-operand exception (#IA) 
is raised and, if the exception is masked, the condition flags are set to “unordered.” If the invalid-arithmetic-
operand exception is unmasked, the condition code flags are not set.

The FCOMP instruction pops the register stack following the comparison operation and the FCOMPP instruction 
pops the register stack twice following the comparison operation. To pop the register stack, the processor marks 
the ST(0) register as empty and increments the stack pointer (TOP) by 1.

The FCOM instructions perform the same operation as the FUCOM instructions. The only difference is how they 
handle QNaN operands. The FCOM instructions raise an invalid-arithmetic-operand exception (#IA) when either or 
both of the operands is a NaN value or is in an unsupported format. The FUCOM instructions perform the same 
operation as the FCOM instructions, except that they do not generate an invalid-arithmetic-operand exception for 
QNaNs.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /2 FCOM m32fp Valid Valid Compare ST(0) with m32fp.

DC /2 FCOM m64fp Valid Valid Compare ST(0) with m64fp.

D8 D0+i FCOM ST(i) Valid Valid Compare ST(0) with ST(i).

D8 D1 FCOM Valid Valid Compare ST(0) with ST(1).

D8 /3 FCOMP m32fp Valid Valid Compare ST(0) with m32fp and pop register stack.

DC /3 FCOMP m64fp Valid Valid Compare ST(0) with m64fp and pop register stack.

D8 D8+i FCOMP ST(i) Valid Valid Compare ST(0) with ST(i) and pop register stack.

D8 D9 FCOMP Valid Valid Compare ST(0) with ST(1) and pop register stack.

DE D9 FCOMPP Valid Valid Compare ST(0) with ST(1) and pop register stack 
twice.

Table 1-30.  FCOM/FCOMP/FCOMPP Results
Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered* 1 1 1

NOTES:
* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.
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Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, C0 := 000;
ST < SRC: C3, C2, C0 := 001;
ST = SRC: C3, C2, C0 := 100;

ESAC;

IF ST(0) or SRC = NaN or unsupported format
THEN 

#IA
IF FPUControlWord.IM = 1

THEN 
C3, C2, C0 := 111;

FI;
FI;

IF Instruction = FCOMP 
THEN 

PopRegisterStack;
FI;

IF Instruction = FCOMPP 
THEN 

PopRegisterStack;
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 See table on previous page.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA One or both operands are NaN values or have unsupported formats.

Register is marked empty.
#D One or both operands are denormal values.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.
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Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating-Point Values and Set EFLAGS

Description

Performs an unordered comparison of the contents of registers ST(0) and ST(i) and sets the status flags ZF, PF, and 
CF in the EFLAGS register according to the results (see the table below). The sign of zero is ignored for compari-
sons, so that –0.0 is equal to +0.0. 

An unordered comparison checks the class of the numbers being compared (see “FXAM—Examine Floating-Point” 
in this chapter). The FUCOMI/FUCOMIP instructions perform the same operations as the FCOMI/FCOMIP instruc-
tions. The only difference is that the FUCOMI/FUCOMIP instructions raise the invalid-arithmetic-operand exception 
(#IA) only when either or both operands are an SNaN or are in an unsupported format; QNaNs cause the condition 
code flags to be set to unordered, but do not cause an exception to be generated. The FCOMI/FCOMIP instructions 
raise an invalid-operation exception when either or both of the operands are a NaN value of any kind or are in an 
unsupported format.

If the operation results in an invalid-arithmetic-operand exception being raised, the status flags in the EFLAGS 
register are set only if the exception is masked. 

The FCOMI/FCOMIP and FUCOMI/FUCOMIP instructions set the OF, SF, and AF flags to zero in the EFLAGS register 
(regardless of whether an invalid-operation exception is detected).

The FCOMIP and FUCOMIP instructions also pop the register stack following the comparison operation. To pop the 
register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) by 1.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The FCOMI/FCOMIP/FUCOMI/FUCOMIP instructions were introduced to the IA-32 Architecture in the P6 family 
processors and are not available in earlier IA-32 processors. 

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DB F0+i FCOMI ST, ST(i) Valid Valid Compare ST(0) with ST(i) and set status flags accordingly.

DF F0+i FCOMIP ST, ST(i) Valid Valid Compare ST(0) with ST(i), set status flags accordingly, and 
pop register stack.

DB E8+i FUCOMI ST, ST(i) Valid Valid Compare ST(0) with ST(i), check for ordered values, and set 
status flags accordingly.

DF E8+i FUCOMIP ST, ST(i) Valid Valid Compare ST(0) with ST(i), check for ordered values, set 
status flags accordingly, and pop register stack.

Table 1-31.  FCOMI/FCOMIP/ FUCOMI/FUCOMIP Results
Comparison Results* ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered** 1 1 1

NOTES:
* See the IA-32 Architecture Compatibility section below.
** Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.
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Operation

CASE (relation of operands) OF
ST(0) > ST(i): ZF, PF, CF := 000;
ST(0) < ST(i): ZF, PF, CF := 001;
ST(0) = ST(i): ZF, PF, CF := 100;

ESAC;

IF Instruction is FCOMI or FCOMIP
THEN

IF ST(0) or ST(i) = NaN or unsupported format
THEN 

#IA
IF FPUControlWord.IM = 1

THEN 
ZF, PF, CF := 111;

FI;
FI;

FI;

IF Instruction is FUCOMI or FUCOMIP
THEN

IF ST(0) or ST(i) = QNaN, but not SNaN or unsupported format
THEN 

ZF, PF, CF := 111;
ELSE (* ST(0) or ST(i) is SNaN or unsupported format *)

 #IA;
IF FPUControlWord.IM = 1

THEN 
ZF, PF, CF := 111;

FI;
FI;

FI;

IF Instruction is FCOMIP or FUCOMIP 
THEN 

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 Not affected.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA (FCOMI or FCOMIP instruction) One or both operands are NaN values or have unsupported 

formats.
(FUCOMI or FUCOMIP instruction) One or both operands are SNaN values (but not QNaNs) or 
have undefined formats. Detection of a QNaN value does not raise an invalid-operand excep-
tion.
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Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FCOS—Cosine

Description

Computes the approximate cosine of the source operand in register ST(0) and stores the result in ST(0). The 
source operand must be given in radians and must be within the range −263 to +263. The following table shows the 
results obtained when taking the cosine of various classes of numbers.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, and the value in 
register ST(0) remains unchanged. The instruction does not raise an exception when the source operand is out of 
range. It is up to the program to check the C2 flag for out-of-range conditions. Source values outside the range −
263 to +263 can be reduced to the range of the instruction by subtracting an appropriate integer multiple of 2π. 
However, even within the range -263 to +263, inaccurate results can occur because the finite approximation of π 
used internally for argument reduction is not sufficient in all cases. Therefore, for accurate results it is safe to apply 
FCOS only to arguments reduced accurately in software, to a value smaller in absolute value than 3π/8. See the 
sections titled “Approximation of Pi” and “Transcendental Instruction Accuracy” in Chapter 8 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in 
performing such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF |ST(0)| < 263

THEN
C2 := 0;
ST(0) := FCOS(ST(0)); // approximation of cosine

ELSE (* Source operand is out-of-range *)
C2 := 1;

FI;

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 FF FCOS Valid Valid Replace ST(0) with its approximate cosine.

Table 1-32.  FCOS Results
ST(0) SRC ST(0) DEST

− ∞ *
− F −1 to +1

− 0 + 1

+ 0 + 1

+ F − 1 to + 1

+ ∞ *
NaN NaN 

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
Undefined if C2 is 1.

C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.
C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source is a denormal value.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FDECSTP—Decrement Stack-Top Pointer Vol. 2A 3-391

FDECSTP—Decrement Stack-Top Pointer

Description

Subtracts one from the TOP field of the FPU status word (decrements the top-of-stack pointer). If the TOP field 
contains a 0, it is set to 7. The effect of this instruction is to rotate the stack by one position. The contents of the 
FPU data registers and tag register are not affected. 

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF TOP = 0
THEN TOP := 7;
ELSE TOP := TOP – 1;

FI;

FPU Flags Affected

The C1 flag is set to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F6 FDECSTP Valid Valid Decrement TOP field in FPU status word.



FDIV/FDIVP/FIDIV—Divide

Description

Divides the destination operand by the source operand and stores the result in the destination location. The desti-
nation operand (dividend) is always in an FPU register; the source operand (divisor) can be a register or a memory 
location. Source operands in memory can be in single precision or double precision floating-point format, word or 
doubleword integer format.

The no-operand version of the instruction divides the contents of the ST(1) register by the contents of the ST(0) 
register. The one-operand version divides the contents of the ST(0) register by the contents of a memory location 
(either a floating-point or an integer value). The two-operand version, divides the contents of the ST(0) register by 
the contents of the ST(i) register or vice versa.

The FDIVP instructions perform the additional operation of popping the FPU register stack after storing the result. 
To pop the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) 
by 1. The no-operand version of the floating-point divide instructions always results in the register stack being 
popped. In some assemblers, the mnemonic for this instruction is FDIV rather than FDIVP.

The FIDIV instructions convert an integer source operand to double extended-precision floating-point format 
before performing the division. When the source operand is an integer 0, it is treated as a +0.

If an unmasked divide-by-zero exception (#Z) is generated, no result is stored; if the exception is masked, an ∞ of 
the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of numbers, assuming that neither 
overflow nor underflow occurs.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /6 FDIV m32fp Valid Valid Divide ST(0) by m32fp and store result in ST(0).

DC /6 FDIV m64fp Valid Valid Divide ST(0) by m64fp and store result in ST(0).

D8 F0+i FDIV ST(0), ST(i) Valid Valid Divide ST(0) by ST(i) and store result in ST(0).

DC F8+i FDIV ST(i), ST(0) Valid Valid Divide ST(i) by ST(0) and store result in ST(i).

DE F8+i FDIVP ST(i), ST(0) Valid Valid Divide ST(i) by ST(0), store result in ST(i), and pop the 
register stack.

DE F9 FDIVP Valid Valid Divide ST(1) by ST(0), store result in ST(1), and pop 
the register stack.

DA /6 FIDIV m32int Valid Valid Divide ST(0) by m32int and store result in ST(0).

DE /6 FIDIV m16int Valid Valid Divide ST(0) by m16int and store result in ST(0).
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This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF SRC = 0
THEN

#Z;
ELSE

IF Instruction is FIDIV
THEN

DEST := DEST / ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* Source operand is floating-point value *)

DEST := DEST / SRC;
FI;

FI;

IF Instruction = FDIVP 
THEN 

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Table 1-33.  FDIV/FDIVP/FIDIV Results

DEST

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ * + 0 + 0 − 0 − 0 * NaN

− F + ∞ + F + 0 − 0 − F − ∞ NaN

− I + ∞ + F + 0 − 0 − F − ∞ NaN

SRC − 0 + ∞ ** * * ** − ∞ NaN

+ 0 − ∞ ** * * ** + ∞ NaN

+ I − ∞ − F − 0 + 0 + F + ∞ NaN

+ F − ∞ − F − 0 + 0 + F + ∞ NaN

+ ∞ * − 0 − 0 + 0 + 0 * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
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Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0
#D Source is a denormal value.
#Z DEST / ±0, where DEST is not equal to ±0.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FDIVR/FDIVRP/FIDIVR—Reverse Divide

Description

Divides the source operand by the destination operand and stores the result in the destination location. The desti-
nation operand (divisor) is always in an FPU register; the source operand (dividend) can be a register or a memory 
location. Source operands in memory can be in single precision or double precision floating-point format, word or 
doubleword integer format.

These instructions perform the reverse operations of the FDIV, FDIVP, and FIDIV instructions. They are provided to 
support more efficient coding.

The no-operand version of the instruction divides the contents of the ST(0) register by the contents of the ST(1) 
register. The one-operand version divides the contents of a memory location (either a floating-point or an integer 
value) by the contents of the ST(0) register. The two-operand version, divides the contents of the ST(i) register by 
the contents of the ST(0) register or vice versa.

The FDIVRP instructions perform the additional operation of popping the FPU register stack after storing the result. 
To pop the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) 
by 1. The no-operand version of the floating-point divide instructions always results in the register stack being 
popped. In some assemblers, the mnemonic for this instruction is FDIVR rather than FDIVRP.

The FIDIVR instructions convert an integer source operand to double extended-precision floating-point format 
before performing the division.

If an unmasked divide-by-zero exception (#Z) is generated, no result is stored; if the exception is masked, an ∞ of 
the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of numbers, assuming that neither 
overflow nor underflow occurs.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /7 FDIVR m32fp Valid Valid Divide m32fp by ST(0) and store result in ST(0).

DC /7 FDIVR m64fp Valid Valid Divide m64fp by ST(0) and store result in ST(0).

D8 F8+i FDIVR ST(0), ST(i) Valid Valid Divide ST(i) by ST(0) and store result in ST(0).

DC F0+i FDIVR ST(i), ST(0) Valid Valid Divide ST(0) by ST(i) and store result in ST(i).

DE F0+i FDIVRP ST(i), ST(0) Valid Valid Divide ST(0) by ST(i), store result in ST(i), and pop the 
register stack.

DE F1 FDIVRP Valid Valid Divide ST(0) by ST(1), store result in ST(1), and pop the 
register stack.

DA /7 FIDIVR m32int Valid Valid Divide m32int by ST(0) and store result in ST(0).

DE /7 FIDIVR m16int Valid Valid Divide m16int by ST(0) and store result in ST(0).
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When the source operand is an integer 0, it is treated as a +0. This instruction’s operation is the same in non-64-
bit modes and 64-bit mode.

Operation

IF DEST = 0
THEN

#Z;
ELSE

IF Instruction = FIDIVR
THEN

DEST := ConvertToDoubleExtendedPrecisionFP(SRC) / DEST;
ELSE (* Source operand is floating-point value *)

DEST := SRC / DEST;
FI;

FI;

IF Instruction = FDIVRP 
THEN 

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Table 1-34.  FDIVR/FDIVRP/FIDIVR Results

DEST

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ * + ∞ + ∞ − ∞ − ∞ * NaN

SRC − F + 0 + F ** ** − F − 0 NaN

− I + 0 + F ** ** − F − 0 NaN

− 0 + 0 + 0 * * − 0 − 0 NaN

+ 0 − 0 − 0 * * + 0 + 0 NaN

+ I − 0 − F ** ** + F + 0 NaN

+ F − 0 − F ** ** + F + 0 NaN

+ ∞ * − ∞ − ∞ + ∞ + ∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
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Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0
#D Source is a denormal value.
#Z SRC / ±0, where SRC is not equal to ±0.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FFREE—Free Floating-Point Register Vol. 2A 3-398

FFREE—Free Floating-Point Register

Description

Sets the tag in the FPU tag register associated with register ST(i) to empty (11B). The contents of ST(i) and the 
FPU stack-top pointer (TOP) are not affected.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

TAG(i) := 11B;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DD C0+i FFREE ST(i) Valid Valid Sets tag for ST(i) to empty.



FICOM/FICOMP—Compare Integer

Description

Compares the value in ST(0) with an integer source operand and sets the condition code flags C0, C2, and C3 in 
the FPU status word according to the results (see table below). The integer value is converted to double extended-
precision floating-point format before the comparison is made.

These instructions perform an “unordered comparison.” An unordered comparison also checks the class of the 
numbers being compared (see “FXAM—Examine Floating-Point” in this chapter). If either operand is a NaN or is in 
an undefined format, the condition flags are set to “unordered.”

The sign of zero is ignored, so that –0.0 := +0.0.

The FICOMP instructions pop the register stack following the comparison. To pop the register stack, the processor 
marks the ST(0) register empty and increments the stack pointer (TOP) by 1.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CASE (relation of operands) OF
ST(0) > SRC: C3, C2, C0 := 000;
ST(0) < SRC: C3, C2, C0 := 001;
ST(0) = SRC: C3, C2, C0 := 100;
Unordered: C3, C2, C0 := 111;

ESAC;

IF Instruction = FICOMP 
THEN 

PopRegisterStack; 
FI;

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 See table on previous page.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA One or both operands are NaN values or have unsupported formats.
#D One or both operands are denormal values.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DE /2 FICOM m16int Valid Valid Compare ST(0) with m16int.

DA /2 FICOM m32int Valid Valid Compare ST(0) with m32int.

DE /3 FICOMP m16int Valid Valid Compare ST(0) with m16int and pop stack register.

DA /3 FICOMP m32int Valid Valid Compare ST(0) with m32int and pop stack register.

Table 1-35.  FICOM/FICOMP Results
Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered 1 1 1
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Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FILD—Load Integer

Description

Converts the signed-integer source operand into double extended-precision floating-point format and pushes the 
value onto the FPU register stack. The source operand can be a word, doubleword, or quadword integer. It is loaded 
without rounding errors. The sign of the source operand is preserved.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

TOP := TOP − 1;
ST(0) := ConvertToDoubleExtendedPrecisionFP(SRC);

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; set to 0 otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DF /0 FILD m16int Valid Valid Push m16int onto the FPU register stack.

DB /0 FILD m32int Valid Valid Push m32int onto the FPU register stack.

DF /5 FILD m64int Valid Valid Push m64int onto the FPU register stack.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FINCSTP—Increment Stack-Top Pointer Vol. 2A 3-403

FINCSTP—Increment Stack-Top Pointer

Description

Adds one to the TOP field of the FPU status word (increments the top-of-stack pointer). If the TOP field contains a 
7, it is set to 0. The effect of this instruction is to rotate the stack by one position. The contents of the FPU data 
registers and tag register are not affected. This operation is not equivalent to popping the stack, because the tag 
for the previous top-of-stack register is not marked empty.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF TOP = 7
THEN TOP := 0;
ELSE TOP := TOP + 1;

FI;

FPU Flags Affected

The C1 flag is set to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F7 FINCSTP Valid Valid Increment the TOP field in the FPU status register.



FINIT/FNINIT—Initialize Floating-Point Unit

Description

Sets the FPU control, status, tag, instruction pointer, and data pointer registers to their default states. The FPU 
control word is set to 037FH (round to nearest, all exceptions masked, 64-bit precision). The status word is cleared 
(no exception flags set, TOP is set to 0). The data registers in the register stack are left unchanged, but they are all 
tagged as empty (11B). Both the instruction and data pointers are cleared.

The FINIT instruction checks for and handles any pending unmasked floating-point exceptions before performing 
the initialization; the FNINIT instruction does not.

The assembler issues two instructions for the FINIT instruction (an FWAIT instruction followed by an FNINIT 
instruction), and the processor executes each of these instructions in separately. If an exception is generated for 
either of these instructions, the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible (under unusual 
circumstances) for an FNINIT instruction to be interrupted prior to being executed to handle a pending FPU excep-
tion. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circumstances. An 
FNINIT instruction cannot be interrupted in this way on later Intel processors, except for the Intel QuarkTM X1000 
processor.

In the Intel387 math coprocessor, the FINIT/FNINIT instruction does not clear the instruction and data pointers.

This instruction affects only the x87 FPU. It does not affect the XMM and MXCSR registers.

Operation

FPUControlWord := 037FH;
FPUStatusWord := 0;
FPUTagWord := FFFFH;
FPUDataPointer := 0;
FPUInstructionPointer := 0;
FPULastInstructionOpcode := 0;

FPU Flags Affected

C0, C1, C2, C3 set to 0.

Floating-Point Exceptions

None.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B DB E3 FINIT Valid Valid Initialize FPU after checking for pending unmasked 
floating-point exceptions.

DB E3 FNINIT1

NOTES:
1. See IA-32 Architecture Compatibility section below.

Valid Valid Initialize FPU without checking for pending unmasked 
floating-point exceptions.
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Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FIST/FISTP—Store Integer

Description

The FIST instruction converts the value in the ST(0) register to a signed integer and stores the result in the desti-
nation operand. Values can be stored in word or doubleword integer format. The destination operand specifies the 
address where the first byte of the destination value is to be stored.

The FISTP instruction performs the same operation as the FIST instruction and then pops the register stack. To pop 
the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) by 1. 
The FISTP instruction also stores values in quadword integer format.

The following table shows the results obtained when storing various classes of numbers in integer format.

If the source value is a non-integral value, it is rounded to an integer value, according to the rounding mode spec-
ified by the RC field of the FPU control word. 

If the converted value is too large for the destination format, or if the source operand is an ∞, SNaN, QNAN, or is in 
an unsupported format, an invalid-arithmetic-operand condition is signaled. If the invalid-operation exception is 
not masked, an invalid-arithmetic-operand exception (#IA) is generated and no value is stored in the destination 
operand. If the invalid-operation exception is masked, the integer indefinite value is stored in memory.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DF /2 FIST m16int Valid Valid Store ST(0) in m16int.

DB /2 FIST m32int Valid Valid Store ST(0) in m32int.

DF /3 FISTP m16int Valid Valid Store ST(0) in m16int and pop register stack.

DB /3 FISTP m32int Valid Valid Store ST(0) in m32int and pop register stack.

DF /7 FISTP m64int Valid Valid Store ST(0) in m64int and pop register stack.

Table 1-36.  FIST/FISTP Results 
ST(0) DEST

− ∞ or Value Too Large for DEST Format *
F ≤ −1 − I

−1 < F < −0 **
− 0 0

+ 0 0

+ 0 < F < + 1 **
F ≥ + 1 + I

+ ∞ or Value Too Large for DEST Format *
NaN *

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-operation (#IA) exception.
** 0 or ±1, depending on the rounding mode.
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Operation

DEST := Integer(ST(0));

IF Instruction = FISTP 
THEN 

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the inexact exception (#P) is generated: 0 := not roundup; 1 
:= roundup.
Set to 0 otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Converted value is too large for the destination format.

Source operand is an SNaN, QNaN, ±∞, or unsupported format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FISTTP—Store Integer With Truncation

Description

FISTTP converts the value in ST into a signed integer using truncation (chop) as rounding mode, transfers the 
result to the destination, and pop ST. FISTTP accepts word, short integer, and long integer destinations.

The following table shows the results obtained when storing various classes of numbers in integer format.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST := ST;
pop ST;

Flags Affected

C1 is cleared; C0, C2, C3 undefined.

Numeric Exceptions

Invalid, Stack Invalid (stack underflow), Precision.

Protected Mode Exceptions
#GP(0) If the destination is in a nonwritable segment.

For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#NM If CR0.EM[bit 2] = 1.

If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.SSE3[bit 0] = 0.

If the LOCK prefix is used.

Opcode Instruction 64-Bit Mode Compat/
Leg Mode

Description

DF /1 FISTTP m16int Valid Valid Store ST(0) in m16int with truncation.

DB /1 FISTTP m32int Valid Valid Store ST(0) in m32int with truncation.

DD /1 FISTTP m64int Valid Valid Store ST(0) in m64int with truncation.

Table 1-37.  FISTTP Results
ST(0) DEST

− ∞ or  Value Too Large for DEST Format *
F ≤ − 1 − I

− 1 < F < + 1 0

F Š + 1 + I

+ ∞  or Value Too Large for DEST Format *
NaN *
NOTES:
F Means finite floating-point value.
Ι Means integer.
∗ Indicates floating-point invalid-operation (#IA) exception.
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Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space from 0 to 0FFFFH.
#NM If CR0.EM[bit 2] = 1.

If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.SSE3[bit 0] = 0.

If the LOCK prefix is used.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space from 0 to 0FFFFH.
#NM If CR0.EM[bit 2] = 1.

If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.SSE3[bit 0] = 0.

If the LOCK prefix is used.
#PF(fault-code) For a page fault.
#AC(0) For unaligned memory reference if the current privilege is 3.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
If the LOCK prefix is used.
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FLD—Load Floating-Point Value

Description

Pushes the source operand onto the FPU register stack. The source operand can be in single precision, double 
precision, or double extended-precision floating-point format. If the source operand is in single precision or double 
precision floating-point format, it is automatically converted to the double extended-precision floating-point format 
before being pushed on the stack.

The FLD instruction can also push the value in a selected FPU register [ST(i)] onto the stack. Here, pushing register 
ST(0) duplicates the stack top.

NOTE
When the FLD instruction loads a denormal value and the DM bit in the CW is not masked, an 
exception is flagged but the value is still pushed onto the x87 stack.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF SRC is ST(i)
THEN

temp := ST(i);
FI;

TOP := TOP − 1;

IF SRC is memory-operand
THEN

ST(0) := ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* SRC is ST(i) *)

ST(0) := temp;
FI;

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.
#IA Source operand is an SNaN. Does not occur if the source operand is in double extended-preci-

sion floating-point format (FLD m80fp or FLD ST(i)).
#D Source operand is a denormal value. Does not occur if the source operand is in double 

extended-precision floating-point format.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 /0 FLD m32fp Valid Valid Push m32fp onto the FPU register stack.

DD /0 FLD m64fp Valid Valid Push m64fp onto the FPU register stack.

DB /5 FLD m80fp Valid Valid Push m80fp onto the FPU register stack.

D9 C0+i FLD ST(i) Valid Valid Push ST(i) onto the FPU register stack.
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Protected Mode Exceptions
#GP(0) If destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant

Description

Push one of seven commonly used constants (in double extended-precision floating-point format) onto the FPU 
register stack. The constants that can be loaded with these instructions include +1.0, +0.0, log210, log2e, π, log102, 
and loge2. For each constant, an internal 66-bit constant is rounded (as specified by the RC field in the FPU control 
word) to double extended-precision floating-point format. The inexact-result exception (#P) is not generated as a 
result of the rounding, nor is the C1 flag set in the x87 FPU status word if the value is rounded up. 

See the section titled “Approximation of Pi” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for a description of the π constant.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When the RC field is set to round-to-nearest, the FPU produces the same constants that is produced by the Intel 
8087 and Intel 287 math coprocessors.

Operation

TOP := TOP − 1;
ST(0) := CONSTANT;

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Opcode* Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 E8 FLD1 Valid Valid Push +1.0 onto the FPU register stack.

D9 E9 FLDL2T Valid Valid Push log210 onto the FPU register stack.

D9 EA FLDL2E Valid Valid Push log2e onto the FPU register stack.

D9 EB FLDPI Valid Valid Push π onto the FPU register stack.

D9 EC FLDLG2 Valid Valid Push log102 onto the FPU register stack.

D9 ED FLDLN2 Valid Valid Push loge2 onto the FPU register stack.

D9 EE FLDZ Valid Valid Push +0.0 onto the FPU register stack.

NOTES:
* See IA-32 Architecture Compatibility section below.
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Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FLDCW—Load x87 FPU Control Word

Description

Loads the 16-bit source operand into the FPU control word. The source operand is a memory location. This instruc-
tion is typically used to establish or change the FPU’s mode of operation.

If one or more exception flags are set in the FPU status word prior to loading a new FPU control word and the new 
control word unmasks one or more of those exceptions, a floating-point exception will be generated upon execution 
of the next floating-point instruction (except for the no-wait floating-point instructions, see the section titled “Soft-
ware Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1). To avoid raising exceptions when changing FPU operating modes, clear any pending exceptions (using 
the FCLEX or FNCLEX instruction) before loading the new control word.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUControlWord := SRC;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None; however, this operation might unmask a pending exception in the FPU status word. That exception is then 
generated upon execution of the next “waiting” floating-point instruction.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 /5 FLDCW m2byte Valid Valid Load FPU control word from m2byte.
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Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FLDENV—Load x87 FPU Environment

Description

Loads the complete x87 FPU operating environment from memory into the FPU registers. The source operand spec-
ifies the first byte of the operating-environment data in memory. This data is typically written to the specified 
memory location by a FSTENV or FNSTENV instruction.

The FPU operating environment consists of the FPU control word, status word, tag word, instruction pointer, data 
pointer, and last opcode. Figures 8-9 through 8-12 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, show the layout in memory of the loaded environment, depending on the operating mode of the 
processor (protected or real) and the current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the 
real mode layouts are used.

The FLDENV instruction should be executed in the same operating mode as the corresponding FSTENV/FNSTENV 
instruction.

If one or more unmasked exception flags are set in the new FPU status word, a floating-point exception will be 
generated upon execution of the next floating-point instruction (except for the no-wait floating-point instructions, 
see the section titled “Software Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1). To avoid generating exceptions when loading a new environment, clear all the 
exception flags in the FPU status word that is being loaded.

If a page or limit fault occurs during the execution of this instruction, the state of the x87 FPU registers as seen by 
the fault handler may be different than the state being loaded from memory. In such situations, the fault handler 
should ignore the status of the x87 FPU registers, handle the fault, and return. The FLDENV instruction will then 
complete the loading of the x87 FPU registers with no resulting context inconsistency.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUControlWord := SRC[FPUControlWord];
FPUStatusWord := SRC[FPUStatusWord];
FPUTagWord := SRC[FPUTagWord];
FPUDataPointer := SRC[FPUDataPointer];
FPUInstructionPointer := SRC[FPUInstructionPointer];
FPULastInstructionOpcode := SRC[FPULastInstructionOpcode];

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Floating-Point Exceptions

None; however, if an unmasked exception is loaded in the status word, it is generated upon execution of the next 
“waiting” floating-point instruction.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 /4 FLDENV m14/28byte Valid Valid Load FPU environment from m14byte or m28byte.
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Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FMUL/FMULP/FIMUL—Multiply

Description

Multiplies the destination and source operands and stores the product in the destination location. The destination 
operand is always an FPU data register; the source operand can be an FPU data register or a memory location. 
Source operands in memory can be in single precision or double precision floating-point format or in word or 
doubleword integer format.

The no-operand version of the instruction multiplies the contents of the ST(1) register by the contents of the ST(0) 
register and stores the product in the ST(1) register. The one-operand version multiplies the contents of the ST(0) 
register by the contents of a memory location (either a floating-point or an integer value) and stores the product in 
the ST(0) register. The two-operand version, multiplies the contents of the ST(0) register by the contents of the 
ST(i) register, or vice versa, with the result being stored in the register specified with the first operand (the desti-
nation operand). 

The FMULP instructions perform the additional operation of popping the FPU register stack after storing the 
product. To pop the register stack, the processor marks the ST(0) register as empty and increments the stack 
pointer (TOP) by 1. The no-operand version of the floating-point multiply instructions always results in the register 
stack being popped. In some assemblers, the mnemonic for this instruction is FMUL rather than FMULP.

The FIMUL instructions convert an integer source operand to double extended-
precision floating-point format before performing the multiplication.

The sign of the result is always the exclusive-OR of the source signs, even if one or more of the values being multi-
plied is 0 or ∞. When the source operand is an integer 0, it is treated as a +0.

The following table shows the results obtained when multiplying various classes of numbers, assuming that neither 
overflow nor underflow occurs.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /1 FMUL m32fp Valid Valid Multiply ST(0) by m32fp and store result in ST(0).

DC /1 FMUL m64fp Valid Valid Multiply ST(0) by m64fp and store result in ST(0).

D8 C8+i FMUL ST(0), ST(i) Valid Valid Multiply ST(0) by ST(i) and store result in ST(0).

DC C8+i FMUL ST(i), ST(0) Valid Valid Multiply ST(i) by ST(0) and store result in ST(i).

DE C8+i FMULP ST(i), ST(0) Valid Valid Multiply ST(i) by ST(0), store result in ST(i), and pop the 
register stack.

DE C9 FMULP Valid Valid Multiply ST(1) by ST(0), store result in ST(1), and pop 
the register stack.

DA /1 FIMUL m32int Valid Valid Multiply ST(0) by m32int and store result in ST(0).

DE /1 FIMUL m16int Valid Valid Multiply ST(0) by m16int and store result in ST(0).
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This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF Instruction = FIMUL
THEN

DEST := DEST ∗ ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* Source operand is floating-point value *)

DEST := DEST ∗ SRC;
FI;

IF Instruction = FMULP 
THEN 

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

One operand is ±0 and the other is ±∞.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Table 1-38.  FMUL/FMULP/FIMUL Results

DEST

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ + ∞ + ∞ * * − ∞ − ∞ NaN

− F + ∞ + F + 0 − 0 − F − ∞ NaN

− I + ∞ + F + 0 − 0 − F − ∞ NaN

SRC − 0 * + 0 + 0 − 0 − 0 * NaN

+ 0 * − 0 − 0 + 0 + 0 * NaN

+ I − ∞ − F − 0 + 0 + F + ∞ NaN

+ F − ∞ − F − 0 + 0 + F + ∞ NaN

+ ∞ − ∞ − ∞ * * + ∞ + ∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means Integer.
* Indicates invalid-arithmetic-operand (#IA) exception.
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Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FNOP—No Operation Vol. 2A 3-422

FNOP—No Operation

Description

Performs no FPU operation. This instruction takes up space in the instruction stream but does not affect the FPU or 
machine context, except the EIP register and the FPU Instruction Pointer.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 D0 FNOP Valid Valid No operation is performed.



FPATAN—Partial Arctangent

Description

Computes the arctangent of the source operand in register ST(1) divided by the source operand in register ST(0), 
stores the result in ST(1), and pops the FPU register stack. The result in register ST(0) has the same sign as the 
source operand ST(1) and a magnitude less than +π.

The FPATAN instruction returns the angle between the X axis and the line from the origin to the point (X,Y), where 
Y (the ordinate) is ST(1) and X (the abscissa) is ST(0). The angle depends on the sign of X and Y independently, 
not just on the sign of the ratio Y/X. This is because a point (−X,Y) is in the second quadrant, resulting in an angle 
between π/2 and π, while a point (X,−Y) is in the fourth quadrant, resulting in an angle between 0 and −π/2. A point 
(−X,−Y) is in the third quadrant, giving an angle between −π/2 and −π.

The following table shows the results obtained when computing the arctangent of various classes of numbers, 
assuming that underflow does not occur.

There is no restriction on the range of source operands that FPATAN can accept.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The source operands for this instruction are restricted for the 80287 math coprocessor to the following range:

0 ≤ |ST(1)| < |ST(0)| < +∞

Opcode1

NOTES:
1. See IA-32 Architecture Compatibility section below.

Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F3 FPATAN Valid Valid Replace ST(1) with arctan(ST(1)/ST(0)) and pop the register stack.

Table 1-39.  FPATAN Results

ST(0)

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ − 3π/4* − π/2 − π/2 − π/2 − π/2 − π/4* NaN

ST(1) − F -p −π to −π/2 −π/2 −π/2 −π/2 to −0 - 0 NaN

− 0 -p -p -p* − 0* − 0 − 0 NaN

+ 0 +p + p + π* + 0* + 0 + 0 NaN

+ F +p +π to +π/2 + π/2 +π/2 +π/2 to +0 + 0 NaN

+ ∞ +3π/4* +π/2 +π/2 +π/2 + π/2 + π/4* NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Table 8-10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, specifies that the ratios 0/0 and ∞/∞ 

generate the floating-point invalid arithmetic-operation exception and, if this exception is masked, the floating-point QNaN indefi-
nite value is returned. With the FPATAN instruction, the 0/0 or ∞/∞ value is actually not calculated using division. Instead, the arc-
tangent of the two variables is derived from a standard mathematical formulation that is generalized to allow complex numbers as 
arguments. In this complex variable formulation, arctangent(0,0) etc. has well defined values. These values are needed to develop 
a library to compute transcendental functions with complex arguments, based on the FPU functions that only allow floating-point 
values as arguments.
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Operation

ST(1) := arctan(ST(1) / ST(0));
PopRegisterStack;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FPREM—Partial Remainder

Description

Computes the remainder obtained from dividing the value in the ST(0) register (the dividend) by the value in the 
ST(1) register (the divisor or modulus), and stores the result in ST(0). The remainder represents the following 
value:

Remainder := ST(0) − (Q ∗ ST(1))

Here, Q is an integer value that is obtained by truncating the floating-point number quotient of [ST(0) / ST(1)] 
toward zero. The sign of the remainder is the same as the sign of the dividend. The magnitude of the remainder is 
less than that of the modulus, unless a partial remainder was computed (as described below).

This instruction produces an exact result; the inexact-result exception does not occur and the rounding control has 
no effect. The following table shows the results obtained when computing the remainder of various classes of 
numbers, assuming that underflow does not occur.

When the result is 0, its sign is the same as that of the dividend. When the modulus is ∞, the result is equal to the 
value in ST(0). 

The FPREM instruction does not compute the remainder specified in IEEE Std 754. The IEEE specified remainder 
can be computed with the FPREM1 instruction. The FPREM instruction is provided for compatibility with the Intel 
8087 and Intel287 math coprocessors.

The FPREM instruction gets its name “partial remainder” because of the way it computes the remainder. This 
instruction arrives at a remainder through iterative subtraction. It can, however, reduce the exponent of ST(0) by 
no more than 63 in one execution of the instruction. If the instruction succeeds in producing a remainder that is 
less than the modulus, the operation is complete and the C2 flag in the FPU status word is cleared. Otherwise, C2 
is set, and the result in ST(0) is called the partial remainder. The exponent of the partial remainder will be less 
than the exponent of the original dividend by at least 32. Software can re-execute the instruction (using the partial 
remainder in ST(0) as the dividend) until C2 is cleared. (Note that while executing such a remainder-computation 
loop, a higher-priority interrupting routine that needs the FPU can force a context switch in-between the instruc-
tions in the loop.)

An important use of the FPREM instruction is to reduce the arguments of periodic functions. When reduction is 
complete, the instruction stores the three least-significant bits of the quotient in the C3, C1, and C0 flags of the FPU 

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F8 FPREM Valid Valid Replace ST(0) with the remainder obtained from dividing 
ST(0) by ST(1).

Table 1-40.  FPREM Results

ST(1)

-∞ -F -0 +0 +F +∞ NaN

-∞ * * * * * * NaN

ST(0) -F ST(0) -F or -0 * * -F or -0 ST(0) NaN

-0 -0 -0 * * -0 -0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) +F or +0 * * +F or +0 ST(0) NaN

+∞ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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status word. This information is important in argument reduction for the tangent function (using a modulus of π/4), 
because it locates the original angle in the correct one of eight sectors of the unit circle.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

D := exponent(ST(0)) – exponent(ST(1));

IF D < 64
THEN

Q := Integer(TruncateTowardZero(ST(0) / ST(1)));
ST(0) := ST(0) – (ST(1) ∗ Q);
C2 := 0;
C0, C3, C1 := LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2 := 1;
N := An implementation-dependent number between 32 and 63;
QQ := Integer(TruncateTowardZero((ST(0)  / ST(1)) / 2(D − N)));
ST(0) := ST(0) – (ST(1) ∗ QQ ∗ 2(D − N)); 

FI;

FPU Flags Affected
C0 Set to bit 2 (Q2) of the quotient.
C1 Set to 0 if stack underflow occurred; otherwise, set to least significant bit of quotient (Q0).
C2 Set to 0 if reduction complete; set to 1 if incomplete.
C3 Set to bit 1 (Q1) of the quotient.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value, modulus is 0, dividend is ∞, or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FPREM1—Partial Remainder

Description

Computes the IEEE remainder obtained from dividing the value in the ST(0) register (the dividend) by the value in 
the ST(1) register (the divisor or modulus), and stores the result in ST(0). The remainder represents the following 
value:

Remainder := ST(0) − (Q ∗ ST(1))

Here, Q is an integer value that is obtained by rounding the floating-point number quotient of [ST(0) / ST(1)] 
toward the nearest integer value. The magnitude of the remainder is less than or equal to half the magnitude of the 
modulus, unless a partial remainder was computed (as described below).

This instruction produces an exact result; the precision (inexact) exception does not occur and the rounding control 
has no effect. The following table shows the results obtained when computing the remainder of various classes of 
numbers, assuming that underflow does not occur.

When the result is 0, its sign is the same as that of the dividend. When the modulus is ∞, the result is equal to the 
value in ST(0). 

The FPREM1 instruction computes the remainder specified in IEEE Standard 754. This instruction operates differ-
ently from the FPREM instruction in the way that it rounds the quotient of ST(0) divided by ST(1) to an integer (see 
the “Operation” section below).

Like the FPREM instruction, FPREM1 computes the remainder through iterative subtraction, but can reduce the 
exponent of ST(0) by no more than 63 in one execution of the instruction. If the instruction succeeds in producing 
a remainder that is less than one half the modulus, the operation is complete and the C2 flag in the FPU status word 
is cleared. Otherwise, C2 is set, and the result in ST(0) is called the partial remainder. The exponent of the partial 
remainder will be less than the exponent of the original dividend by at least 32. Software can re-execute the 
instruction (using the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note that while executing 
such a remainder-computation loop, a higher-priority interrupting routine that needs the FPU can force a context 
switch in-between the instructions in the loop.)

An important use of the FPREM1 instruction is to reduce the arguments of periodic functions. When reduction is 
complete, the instruction stores the three least-significant bits of the quotient in the C3, C1, and C0 flags of the FPU 
status word. This information is important in argument reduction for the tangent function (using a modulus of π/4), 
because it locates the original angle in the correct one of eight sectors of the unit circle.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F5 FPREM1 Valid Valid Replace ST(0) with the IEEE remainder obtained from dividing 
ST(0) by ST(1).

Table 1-41.  FPREM1 Results

ST(1)

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ * * * * * * NaN

ST(0) − F ST(0) ±F or −0 * * ± F or − 0 ST(0) NaN

− 0 − 0 − 0 * * − 0 -0 NaN

+ 0 + 0 + 0 * * + 0 +0 NaN

+ F ST(0) ± F or + 0 * * ± F or + 0 ST(0) NaN

+ ∞ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation 

D := exponent(ST(0)) – exponent(ST(1));

IF D < 64
THEN

Q := Integer(RoundTowardNearestInteger(ST(0) / ST(1)));
ST(0) := ST(0) – (ST(1) ∗ Q);
C2 := 0;
C0, C3, C1 := LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2 := 1;
N := An implementation-dependent number between 32 and 63;
QQ := Integer(TruncateTowardZero((ST(0)  / ST(1)) / 2(D − N)));
ST(0) := ST(0) – (ST(1) ∗ QQ ∗ 2(D − N)); 

FI;

FPU Flags Affected
C0 Set to bit 2 (Q2) of the quotient.
C1 Set to 0 if stack underflow occurred; otherwise, set to least significant bit of quotient (Q0).
C2 Set to 0 if reduction complete; set to 1 if incomplete.
C3 Set to bit 1 (Q1) of the quotient.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value, modulus (divisor) is 0, dividend is ∞, or unsupported 

format.
#D Source operand is a denormal value.
#U Result is too small for destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FPTAN—Partial Tangent

Description

Computes the approximate tangent of the source operand in register ST(0), stores the result in ST(0), and pushes 
a 1.0 onto the FPU register stack. The source operand must be given in radians and must be less than ±263. The 
following table shows the unmasked results obtained when computing the partial tangent of various classes of 
numbers, assuming that underflow does not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, and the value in 
register ST(0) remains unchanged. The instruction does not raise an exception when the source operand is out of 
range. It is up to the program to check the C2 flag for out-of-range conditions. Source values outside the range −
263 to +263 can be reduced to the range of the instruction by subtracting an appropriate integer multiple of 2π. 
However, even within the range -263 to +263, inaccurate results can occur because the finite approximation of π 
used internally for argument reduction is not sufficient in all cases. Therefore, for accurate results it is safe to apply 
FPTAN only to arguments reduced accurately in software, to a value smaller in absolute value than 3π/8. See the 
sections titled “Approximation of Pi” and “Transcendental Instruction Accuracy” in Chapter 8 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in 
performing such reductions.

The value 1.0 is pushed onto the register stack after the tangent has been computed to maintain compatibility with 
the Intel 8087 and Intel287 math coprocessors. This operation also simplifies the calculation of other trigonometric 
functions. For instance, the cotangent (which is the reciprocal of the tangent) can be computed by executing a 
FDIVR instruction after the FPTAN instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F2 FPTAN Valid Valid Replace ST(0) with its approximate tangent and push 1 
onto the FPU stack.

Table 1-42.  FPTAN Results
ST(0) SRC ST(0) DEST

− ∞ *
− F − F to + F
− 0 - 0
+ 0 + 0
+ F − F to + F
+ ∞ *
NaN NaN 

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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Operation

IF ST(0) < 263

THEN
C2 := 0;
ST(0) := fptan(ST(0)); // approximation of tan
TOP := TOP − 1;
ST(0) := 1.0;

ELSE (* Source operand is out-of-range *)
C2 := 1;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.

Set if result was rounded up; cleared otherwise.
C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.
C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
FPTAN—Partial Tangent Vol. 2A 3-430



FRNDINT—Round to Integer Vol. 2A 3-431

FRNDINT—Round to Integer

Description

Rounds the source value in the ST(0) register to the nearest integral value, depending on the current rounding 
mode (setting of the RC field of the FPU control word), and stores the result in ST(0).

If the source value is ∞, the value is not changed. If the source value is not an integral value, the floating-point 
inexact-result exception (#P) is generated.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) := RoundToIntegralValue(ST(0));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.
#P Source operand is not an integral value.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 FC FRNDINT Valid Valid Round ST(0) to an integer.



FRSTOR—Restore x87 FPU State

Description

Loads the FPU state (operating environment and register stack) from the memory area specified with the source 
operand. This state data is typically written to the specified memory location by a previous FSAVE/FNSAVE instruc-
tion.

The FPU operating environment consists of the FPU control word, status word, tag word, instruction pointer, data 
pointer, and last opcode. Figures 8-9 through 8-12 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, show the layout in memory of the stored environment, depending on the operating mode of the 
processor (protected or real) and the current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the 
real mode layouts are used. The contents of the FPU register stack are stored in the 80 bytes immediately following 
the operating environment image.

The FRSTOR instruction should be executed in the same operating mode as the corresponding FSAVE/FNSAVE 
instruction.

If one or more unmasked exception bits are set in the new FPU status word, a floating-point exception will be 
generated upon execution of the next floating-point instruction (except for the no-wait floating-point instructions, 
see the section titled “Software Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1). To avoid raising exceptions when loading a new operating environment, clear all 
the exception flags in the FPU status word that is being loaded.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUControlWord := SRC[FPUControlWord];
FPUStatusWord := SRC[FPUStatusWord];
FPUTagWord := SRC[FPUTagWord];
FPUDataPointer := SRC[FPUDataPointer];
FPUInstructionPointer := SRC[FPUInstructionPointer];
FPULastInstructionOpcode := SRC[FPULastInstructionOpcode];

ST(0) := SRC[ST(0)];
ST(1) := SRC[ST(1)];
ST(2) := SRC[ST(2)];
ST(3) := SRC[ST(3)];
ST(4) := SRC[ST(4)];
ST(5) := SRC[ST(5)];
ST(6) := SRC[ST(6)];
ST(7) := SRC[ST(7)];

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Floating-Point Exceptions

None; however, if an unmasked exception is loaded in the status word, it is generated upon execution of the next 
“waiting” floating-point instruction.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DD /4 FRSTOR m94/108byte Valid Valid Load FPU state from m94byte or m108byte.
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Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FSAVE/FNSAVE—Store x87 FPU State

Description

Stores the current FPU state (operating environment and register stack) at the specified destination in memory, 
and then re-initializes the FPU. The FSAVE instruction checks for and handles pending unmasked floating-point 
exceptions before storing the FPU state; the FNSAVE instruction does not.

The FPU operating environment consists of the FPU control word, status word, tag word, instruction pointer, data 
pointer, and last opcode. Figures 8-9 through 8-12 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, show the layout in memory of the stored environment, depending on the operating mode of the 
processor (protected or real) and the current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the 
real mode layouts are used. The contents of the FPU register stack are stored in the 80 bytes immediately follow 
the operating environment image.

The saved image reflects the state of the FPU after all floating-point instructions preceding the FSAVE/FNSAVE 
instruction in the instruction stream have been executed.

After the FPU state has been saved, the FPU is reset to the same default values it is set to with the FINIT/FNINIT 
instructions (see “FINIT/FNINIT—Initialize Floating-Point Unit” in this chapter).

The FSAVE/FNSAVE instructions are typically used when the operating system needs to perform a context switch, 
an exception handler needs to use the FPU, or an application program needs to pass a “clean” FPU to a procedure.

The assembler issues two instructions for the FSAVE instruction (an FWAIT instruction followed by an FNSAVE 
instruction), and the processor executes each of these instructions separately. If an exception is generated for 
either of these instructions, the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

For Intel math coprocessors and FPUs prior to the Intel Pentium processor, an FWAIT instruction should be 
executed before attempting to read from the memory image stored with a prior FSAVE/FNSAVE instruction. This 
FWAIT instruction helps ensure that the storage operation has been completed.

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible (under unusual 
circumstances) for an FNSAVE instruction to be interrupted prior to being executed to handle a pending FPU excep-
tion. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circumstances. An 
FNSAVE instruction cannot be interrupted in this way on later Intel processors, except for the Intel QuarkTM X1000 
processor.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B DD /6 FSAVE m94/108byte Valid Valid Store FPU state to m94byte or m108byte after 
checking for pending unmasked floating-point 
exceptions. Then re-initialize the FPU.

DD /6 FNSAVE1 m94/108byte

NOTES:
1. See IA-32 Architecture Compatibility section below.

Valid Valid Store FPU environment to m94byte or m108byte 
without checking for pending unmasked floating-
point exceptions. Then re-initialize the FPU.
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Operation

(* Save FPU State and Registers *)

DEST[FPUControlWord] := FPUControlWord;
DEST[FPUStatusWord] := FPUStatusWord;
DEST[FPUTagWord] := FPUTagWord;
DEST[FPUDataPointer] := FPUDataPointer;
DEST[FPUInstructionPointer] := FPUInstructionPointer;
DEST[FPULastInstructionOpcode] := FPULastInstructionOpcode;

DEST[ST(0)] := ST(0);
DEST[ST(1)] := ST(1);
DEST[ST(2)] := ST(2);
DEST[ST(3)] := ST(3);
DEST[ST(4)]:= ST(4);
DEST[ST(5)] := ST(5);
DEST[ST(6)] := ST(6);
DEST[ST(7)] := ST(7);

(* Initialize FPU *)

FPUControlWord := 037FH;
FPUStatusWord := 0;
FPUTagWord := FFFFH;
FPUDataPointer := 0;
FPUInstructionPointer := 0;
FPULastInstructionOpcode := 0;

FPU Flags Affected

The C0, C1, C2, and C3 flags are saved and then cleared.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.
FSAVE/FNSAVE—Store x87 FPU State Vol. 2A 3-435



Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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FSCALE—Scale

Description

Truncates the value in the source operand (toward 0) to an integral value and adds that value to the exponent of 
the destination operand. The destination and source operands are floating-point values located in registers ST(0) 
and ST(1), respectively. This instruction provides rapid multiplication or division by integral powers of 2. The 
following table shows the results obtained when scaling various classes of numbers, assuming that neither over-
flow nor underflow occurs.

In most cases, only the exponent is changed and the mantissa (significand) remains unchanged. However, when 
the value being scaled in ST(0) is a denormal value, the mantissa is also changed and the result may turn out to be 
a normalized number. Similarly, if overflow or underflow results from a scale operation, the resulting mantissa will 
differ from the source’s mantissa.

The FSCALE instruction can also be used to reverse the action of the FXTRACT instruction, as shown in the following 
example:

FXTRACT;
FSCALE;
FSTP ST(1);

In this example, the FXTRACT instruction extracts the significand and exponent from the value in ST(0) and stores 
them in ST(0) and ST(1) respectively. The FSCALE then scales the significand in ST(0) by the exponent in ST(1), 
recreating the original value before the FXTRACT operation was performed. The FSTP ST(1) instruction overwrites 
the exponent (extracted by the FXTRACT instruction) with the recreated value, which returns the stack to its orig-
inal state with only one register [ST(0)] occupied.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) := ST(0) ∗ 2RoundTowardZero(ST(1));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 FD FSCALE Valid Valid Scale ST(0) by ST(1).

Table 1-43.  FSCALE Results
ST(1)

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ NaN − ∞ − ∞ − ∞ − ∞ − ∞ NaN

ST(0) − F − 0 − F − F − F − F − ∞ NaN

− 0 − 0 − 0 − 0 − 0 − 0 NaN NaN

+ 0 + 0 + 0 + 0 + 0 + 0 NaN NaN

+ F + 0 + F + F + F + F + ∞ NaN

+ ∞ NaN + ∞ + ∞ + ∞ + ∞ + ∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
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Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FSIN—Sine

Description

Computes an approximation of the sine of the source operand in register ST(0) and stores the result in ST(0). The 
source operand must be given in radians and must be within the range −263 to +263. The following table shows the 
results obtained when taking the sine of various classes of numbers, assuming that underflow does not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, and the value in 
register ST(0) remains unchanged. The instruction does not raise an exception when the source operand is out of 
range. It is up to the program to check the C2 flag for out-of-range conditions. Source values outside the range −
263 to +263 can be reduced to the range of the instruction by subtracting an appropriate integer multiple of 2π. 
However, even within the range -263 to +263, inaccurate results can occur because the finite approximation of π 
used internally for argument reduction is not sufficient in all cases. Therefore, for accurate results it is safe to apply 
FSIN only to arguments reduced accurately in software, to a value smaller in absolute value than 3π/4. See the 
sections titled “Approximation of Pi” and “Transcendental Instruction Accuracy” in Chapter 8 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in 
performing such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF -263 < ST(0) < 263

THEN
C2 := 0;
ST(0) := fsin(ST(0)); // approximation of the mathematical sin function

ELSE (* Source operand out of range *)
C2 := 1;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.
C0, C3 Undefined.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 FE FSIN Valid Valid Replace ST(0) with the approximate of its sine.

Table 1-44.  FSIN Results
SRC (ST(0)) DEST (ST(0))

− ∞ *
− F − 1 to + 1

− 0 −0
+ 0 + 0
+ F − 1 to +1

+ ∞ *

NaN NaN 

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source operand is a denormal value.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FSINCOS—Sine and Cosine

Description

Computes both the approximate sine and the cosine of the source operand in register ST(0), stores the sine in 
ST(0), and pushes the cosine onto the top of the FPU register stack. (This instruction is faster than executing the 
FSIN and FCOS instructions in succession.)

The source operand must be given in radians and must be within the range −263 to +263. The following table shows 
the results obtained when taking the sine and cosine of various classes of numbers, assuming that underflow does 
not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, and the value in 
register ST(0) remains unchanged. The instruction does not raise an exception when the source operand is out of 
range. It is up to the program to check the C2 flag for out-of-range conditions. Source values outside the range −
263 to +263 can be reduced to the range of the instruction by subtracting an appropriate integer multiple of 2π. 
However, even within the range -263 to +263, inaccurate results can occur because the finite approximation of π 
used internally for argument reduction is not sufficient in all cases. Therefore, for accurate results it is safe to apply 
FSINCOS only to arguments reduced accurately in software, to a value smaller in absolute value than 3π/8. See the 
sections titled “Approximation of Pi” and “Transcendental Instruction Accuracy” in Chapter 8 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in 
performing such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 FB FSINCOS Valid Valid Compute the sine and cosine of ST(0); replace ST(0) with the 
approximate sine, and push the approximate cosine onto the 
register stack.

Table 1-45.  FSINCOS Results
SRC DEST

ST(0) ST(1) Cosine ST(0) Sine

− ∞ * *
− F − 1 to + 1 − 1 to + 1

− 0 + 1 − 0
+ 0 + 1 + 0
+ F − 1 to + 1 − 1 to + 1

+ ∞ * *
NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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Operation

IF ST(0) < 263

THEN
C2 := 0;
TEMP := fcos(ST(0)); // approximation of cosine
ST(0) := fsin(ST(0)); // approximation of sine
TOP := TOP − 1;
ST(0) := TEMP;

ELSE (* Source operand out of range *)
C2 := 1;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 of stack overflow occurs.

Set if result was rounded up; cleared otherwise.
C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.
C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FSQRT—Square Root

Description

Computes the square root of the source value in the ST(0) register and stores the result in ST(0).

The following table shows the results obtained when taking the square root of various classes of numbers, 
assuming that neither overflow nor underflow occurs.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) := SquareRoot(ST(0));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.

Source operand is a negative value (except for −0).
#D Source operand is a denormal value.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 FA FSQRT Valid Valid Computes square root of ST(0) and stores the result in ST(0).

Table 1-46.  FSQRT Results
SRC (ST(0)) DEST (ST(0))

− ∞ *
− F *
− 0 − 0
+ 0 + 0
+ F + F
+ ∞ + ∞
NaN NaN 

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FST/FSTP—Store Floating-Point Value

Description

The FST instruction copies the value in the ST(0) register to the destination operand, which can be a memory loca-
tion or another register in the FPU register stack. When storing the value in memory, the value is converted to 
single precision or double precision floating-point format. 

The FSTP instruction performs the same operation as the FST instruction and then pops the register stack. To pop 
the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) by 1. 
The FSTP instruction can also store values in memory in double extended-precision floating-point format.

If the destination operand is a memory location, the operand specifies the address where the first byte of the desti-
nation value is to be stored. If the destination operand is a register, the operand specifies a register in the register 
stack relative to the top of the stack.

If the destination size is single precision or double precision, the significand of the value being stored is rounded to 
the width of the destination (according to the rounding mode specified by the RC field of the FPU control word), and 
the exponent is converted to the width and bias of the destination format. If the value being stored is too large for 
the destination format, a numeric overflow exception (#O) is generated and, if the exception is unmasked, no 
value is stored in the destination operand. If the value being stored is a denormal value, the denormal exception 
(#D) is not generated. This condition is simply signaled as a numeric underflow exception (#U) condition.

If the value being stored is ±0, ±∞, or a NaN, the least-significant bits of the significand and the exponent are trun-
cated to fit the destination format. This operation preserves the value’s identity as a 0, ∞, or NaN.

If the destination operand is a non-empty register, the invalid-operation exception is not generated.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST := ST(0);

IF Instruction = FSTP 
THEN 

PopRegisterStack; 
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the floating-point inexact exception (#P) is generated: 0 := 
not roundup; 1 := roundup.

C0, C2, C3 Undefined.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 /2 FST m32fp Valid Valid Copy ST(0) to m32fp.

DD /2 FST m64fp Valid Valid Copy ST(0) to m64fp.

DD D0+i FST ST(i) Valid Valid Copy ST(0) to ST(i).

D9 /3 FSTP m32fp Valid Valid Copy ST(0) to m32fp and pop register stack.

DD /3 FSTP m64fp Valid Valid Copy ST(0) to m64fp and pop register stack.

DB /7 FSTP m80fp Valid Valid Copy ST(0) to m80fp and pop register stack.

DD D8+i FSTP ST(i) Valid Valid Copy ST(0) to ST(i) and pop register stack.
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Floating-Point Exceptions
#IS Stack underflow occurred.
#IA If destination result is an SNaN value or unsupported format, except when the destination 

format is in double extended-precision floating-point format.
#U Result is too small for the destination format.
#O Result is too large for the destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FSTCW/FNSTCW—Store x87 FPU Control Word

Description

Stores the current value of the FPU control word at the specified destination in memory. The FSTCW instruction 
checks for and handles pending unmasked floating-point exceptions before storing the control word; the FNSTCW 
instruction does not.

The assembler issues two instructions for the FSTCW instruction (an FWAIT instruction followed by an FNSTCW 
instruction), and the processor executes each of these instructions in separately. If an exception is generated for 
either of these instructions, the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible (under unusual 
circumstances) for an FNSTCW instruction to be interrupted prior to being executed to handle a pending FPU 
exception. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circum-
stances. An FNSTCW instruction cannot be interrupted in this way on later Intel processors, except for the Intel 
QuarkTM X1000 processor.

Operation

DEST := FPUControlWord;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B D9 /7 FSTCW m2byte Valid Valid Store FPU control word to m2byte after checking for 
pending unmasked floating-point exceptions.

D9 /7 FNSTCW1 m2byte

NOTES:
1. See IA-32 Architecture Compatibility section below.

Valid Valid Store FPU control word to m2byte without checking for 
pending unmasked floating-point exceptions.
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Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FSTENV/FNSTENV—Store x87 FPU Environment

Description

Saves the current FPU operating environment at the memory location specified with the destination operand, and 
then masks all floating-point exceptions. The FPU operating environment consists of the FPU control word, status 
word, tag word, instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, show the layout in memory of the stored environ-
ment, depending on the operating mode of the processor (protected or real) and the current operand-size attribute 
(16-bit or 32-bit). In virtual-8086 mode, the real mode layouts are used.

The FSTENV instruction checks for and handles any pending unmasked floating-point exceptions before storing 
the FPU environment; the FNSTENV instruction does not. The saved image reflects the state of the FPU after all 
floating-point instructions preceding the FSTENV/FNSTENV instruction in the instruction stream have been 
executed.

These instructions are often used by exception handlers because they provide access to the FPU instruction and 
data pointers. The environment is typically saved in the stack. Masking all exceptions after saving the environment 
prevents floating-point exceptions from interrupting the exception handler.

The assembler issues two instructions for the FSTENV instruction (an FWAIT instruction followed by an FNSTENV 
instruction), and the processor executes each of these instructions separately. If an exception is generated for 
either of these instructions, the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible (under unusual 
circumstances) for an FNSTENV instruction to be interrupted prior to being executed to handle a pending FPU 
exception. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circum-
stances. An FNSTENV instruction cannot be interrupted in this way on later Intel processors, except for the Intel 
QuarkTM X1000 processor.

Operation

DEST[FPUControlWord] := FPUControlWord;
DEST[FPUStatusWord] := FPUStatusWord;
DEST[FPUTagWord] := FPUTagWord;
DEST[FPUDataPointer] := FPUDataPointer;
DEST[FPUInstructionPointer] := FPUInstructionPointer;
DEST[FPULastInstructionOpcode] := FPULastInstructionOpcode;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B D9 /6 FSTENV m14/28byte Valid Valid Store FPU environment to m14byte or m28byte 
after checking for pending unmasked floating-point 
exceptions. Then mask all floating-point exceptions.

D9 /6 FNSTENV1 m14/28byte

NOTES:
1. See IA-32 Architecture Compatibility section below.

Valid Valid Store FPU environment to m14byte or m28byte 
without checking for pending unmasked floating-
point exceptions. Then mask all floating-
point exceptions.
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Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FSTSW/FNSTSW—Store x87 FPU Status Word

Description

Stores the current value of the x87 FPU status word in the destination location. The destination operand can be 
either a two-byte memory location or the AX register. The FSTSW instruction checks for and handles pending 
unmasked floating-point exceptions before storing the status word; the FNSTSW instruction does not.

The FNSTSW AX form of the instruction is used primarily in conditional branching (for instance, after an FPU 
comparison instruction or an FPREM, FPREM1, or FXAM instruction), where the direction of the branch depends on 
the state of the FPU condition code flags. (See the section titled “Branching and Conditional Moves on FPU Condi-
tion Codes” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.) This 
instruction can also be used to invoke exception handlers (by examining the exception flags) in environments that 
do not use interrupts. When the FNSTSW AX instruction is executed, the AX register is updated before the 
processor executes any further instructions. The status stored in the AX register is thus guaranteed to be from the 
completion of the prior FPU instruction. 

The assembler issues two instructions for the FSTSW instruction (an FWAIT instruction followed by an FNSTSW 
instruction), and the processor executes each of these instructions separately. If an exception is generated for 
either of these instructions, the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible (under unusual 
circumstances) for an FNSTSW instruction to be interrupted prior to being executed to handle a pending FPU 
exception. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circum-
stances. An FNSTSW instruction cannot be interrupted in this way on later Intel processors, except for the Intel 
QuarkTM X1000 processor.

Operation

DEST := FPUStatusWord;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Floating-Point Exceptions

None.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B DD /7 FSTSW m2byte Valid Valid Store FPU status word at m2byte after checking 
for pending unmasked floating-point exceptions.

9B DF E0 FSTSW AX Valid Valid Store FPU status word in AX register after 
checking for pending unmasked floating-point 
exceptions.

DD /7 FNSTSW1 m2byte

NOTES:
1. See IA-32 Architecture Compatibility section below.

Valid Valid Store FPU status word at m2byte without 
checking for pending unmasked floating-point 
exceptions.

DF E0 FNSTSW1 AX Valid Valid Store FPU status word in AX register without 
checking for pending unmasked floating-point 
exceptions.
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Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FSUB/FSUBP/FISUB—Subtract

Description

Subtracts the source operand from the destination operand and stores the difference in the destination location. 
The destination operand is always an FPU data register; the source operand can be a register or a memory location. 
Source operands in memory can be in single precision or double precision floating-point format or in word or 
doubleword integer format.

The no-operand version of the instruction subtracts the contents of the ST(0) register from the ST(1) register and 
stores the result in ST(1). The one-operand version subtracts the contents of a memory location (either a floating-
point or an integer value) from the contents of the ST(0) register and stores the result in ST(0). The two-operand 
version, subtracts the contents of the ST(0) register from the ST(i) register or vice versa.

The FSUBP instructions perform the additional operation of popping the FPU register stack following the subtrac-
tion. To pop the register stack, the processor marks the ST(0) register as empty and increments the stack pointer 
(TOP) by 1. The no-operand version of the floating-point subtract instructions always results in the register stack 
being popped. In some assemblers, the mnemonic for this instruction is FSUB rather than FSUBP.

The FISUB instructions convert an integer source operand to double extended-precision floating-point format 
before performing the subtraction.

Table 1-47 shows the results obtained when subtracting various classes of numbers from one another, assuming 
that neither overflow nor underflow occurs. Here, the SRC value is subtracted from the DEST value (DEST − SRC = 
result).

When the difference between two operands of like sign is 0, the result is +0, except for the round toward −∞ mode, 
in which case the result is −0. This instruction also guarantees that +0 − (−0) = +0, and that −0 − (+0) = −0. When the 
source operand is an integer 0, it is treated as a +0.

When one operand is ∞, the result is ∞ of the expected sign. If both operands are ∞ of the same sign, an invalid-
operation exception is generated.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /4 FSUB m32fp Valid Valid Subtract m32fp from ST(0) and store result in ST(0).

DC /4 FSUB m64fp Valid Valid Subtract m64fp from ST(0) and store result in ST(0).

D8 E0+i FSUB ST(0), ST(i) Valid Valid Subtract ST(i) from ST(0) and store result in ST(0).

DC E8+i FSUB ST(i), ST(0) Valid Valid Subtract ST(0) from ST(i) and store result in ST(i).

DE E8+i FSUBP ST(i), ST(0) Valid Valid Subtract ST(0) from ST(i), store result in ST(i), and 
pop register stack.

DE E9 FSUBP Valid Valid Subtract ST(0) from ST(1), store result in ST(1), and 
pop register stack.

DA /4 FISUB m32int Valid Valid Subtract m32int from ST(0) and store result in ST(0).

DE /4 FISUB m16int Valid Valid Subtract m16int from ST(0) and store result in ST(0).
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This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF Instruction = FISUB
THEN

DEST := DEST − ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* Source operand is floating-point value *)

DEST := DEST − SRC;
FI;

IF Instruction = FSUBP 
THEN 

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Table 1-47.  FSUB/FSUBP/FISUB Results

SRC

− ∞ − F or − I − 0 + 0 + F or + I + ∞ NaN

− ∞ * − ∞ − ∞ − ∞ − ∞ − ∞ NaN

− F + ∞ ±F or ±0 DEST DEST − F − ∞ NaN

DEST − 0 + ∞ −SRC ±0 − 0 − SRC − ∞ NaN

+ 0 + ∞ −SRC + 0 ±0 − SRC − ∞ NaN

+ F + ∞ + F DEST DEST ±F or ±0 − ∞ NaN

+ ∞ + ∞ + ∞ + ∞ + ∞ + ∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
FSUB/FSUBP/FISUB—Subtract Vol. 2A 3-454



Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FSUBR/FSUBRP/FISUBR—Reverse Subtract

Description

Subtracts the destination operand from the source operand and stores the difference in the destination location. 
The destination operand is always an FPU register; the source operand can be a register or a memory location. 
Source operands in memory can be in single precision or double precision floating-point format or in word or 
doubleword integer format.

These instructions perform the reverse operations of the FSUB, FSUBP, and FISUB instructions. They are provided 
to support more efficient coding.

The no-operand version of the instruction subtracts the contents of the ST(1) register from the ST(0) register and 
stores the result in ST(1). The one-operand version subtracts the contents of the ST(0) register from the contents 
of a memory location (either a floating-point or an integer value) and stores the result in ST(0). The two-operand 
version, subtracts the contents of the ST(i) register from the ST(0) register or vice versa.

The FSUBRP instructions perform the additional operation of popping the FPU register stack following the subtrac-
tion. To pop the register stack, the processor marks the ST(0) register as empty and increments the stack pointer 
(TOP) by 1. The no-operand version of the floating-point reverse subtract instructions always results in the register 
stack being popped. In some assemblers, the mnemonic for this instruction is FSUBR rather than FSUBRP.

The FISUBR instructions convert an integer source operand to double extended-precision floating-point format 
before performing the subtraction.

The following table shows the results obtained when subtracting various classes of numbers from one another, 
assuming that neither overflow nor underflow occurs. Here, the DEST value is subtracted from the SRC value (SRC 
− DEST = result).

When the difference between two operands of like sign is 0, the result is +0, except for the round toward −∞ mode, 
in which case the result is −0. This instruction also guarantees that +0 − (−0) = +0, and that −0 − (+0) = −0. When the 
source operand is an integer 0, it is treated as a +0.

When one operand is ∞, the result is ∞ of the expected sign. If both operands are ∞ of the same sign, an invalid-
operation exception is generated.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /5 FSUBR m32fp Valid Valid Subtract ST(0) from m32fp and store result in ST(0).

DC /5 FSUBR m64fp Valid Valid Subtract ST(0) from m64fp and store result in ST(0).

D8 E8+i FSUBR ST(0), ST(i) Valid Valid Subtract ST(0) from ST(i) and store result in ST(0).

DC E0+i FSUBR ST(i), ST(0) Valid Valid Subtract ST(i) from ST(0) and store result in ST(i).

DE E0+i FSUBRP ST(i), ST(0) Valid Valid Subtract ST(i) from ST(0), store result in ST(i), and 
pop register stack.

DE E1 FSUBRP Valid Valid Subtract ST(1) from ST(0), store result in ST(1), and 
pop register stack.

DA /5 FISUBR m32int Valid Valid Subtract ST(0) from m32int and store result in ST(0).

DE /5 FISUBR m16int Valid Valid Subtract ST(0) from m16int and store result in ST(0).
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This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF Instruction = FISUBR
THEN

DEST := ConvertToDoubleExtendedPrecisionFP(SRC) − DEST;
ELSE (* Source operand is floating-point value *)

DEST := SRC − DEST; FI;
IF Instruction = FSUBRP 

THEN 
PopRegisterStack; FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Table 1-48.  FSUBR/FSUBRP/FISUBR Results

SRC

− ∞ −F or −I −0 +0 +F or +I + ∞ NaN

− ∞ * + ∞ + ∞ + ∞ + ∞ + ∞ NaN

− F − ∞ ±F or ±0 −DEST −DEST + F + ∞ NaN

DEST − 0 − ∞ SRC ±0 + 0 SRC + ∞ NaN

+ 0 − ∞ SRC − 0 ±0 SRC + ∞ NaN

+ F − ∞ − F −DEST −DEST ±F or ±0 + ∞ NaN

+ ∞ − ∞ − ∞ − ∞ − ∞ − ∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FTST—TEST

Description

Compares the value in the ST(0) register with 0.0 and sets the condition code flags C0, C2, and C3 in the FPU 
status word according to the results (see table below).

This instruction performs an “unordered comparison.” An unordered comparison also checks the class of the 
numbers being compared (see “FXAM—Examine Floating-Point” in this chapter). If the value in register ST(0) is a 
NaN or is in an undefined format, the condition flags are set to “unordered” and the invalid operation exception is 
generated.

The sign of zero is ignored, so that (– 0.0 := +0.0).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CASE (relation of operands) OF
Not comparable: C3, C2, C0 := 111;
ST(0) > 0.0: C3, C2, C0 := 000;
ST(0) < 0.0: C3, C2, C0 := 001;
ST(0) = 0.0: C3, C2, C0 := 100;

ESAC;

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 See Table 1-49.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA The source operand is a NaN value or is in an unsupported format.
#D The source operand is a denormal value.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 E4 FTST Valid Valid Compare ST(0) with 0.0.

Table 1-49.  FTST Results
Condition C3 C2 C0

ST(0) > 0.0 0 0 0
ST(0) < 0.0 0 0 1
ST(0) = 0.0 1 0 0
Unordered 1 1 1
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Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating-Point Values

Description

Performs an unordered comparison of the contents of register ST(0) and ST(i) and sets condition code flags C0, C2, 
and C3 in the FPU status word according to the results (see the table below). If no operand is specified, the 
contents of registers ST(0) and ST(1) are compared. The sign of zero is ignored, so that –0.0 is equal to +0.0.

An unordered comparison checks the class of the numbers being compared (see “FXAM—Examine Floating-Point” 
in this chapter). The FUCOM/FUCOMP/FUCOMPP instructions perform the same operations as the 
FCOM/FCOMP/FCOMPP instructions. The only difference is that the FUCOM/FUCOMP/FUCOMPP instructions raise 
the invalid-arithmetic-operand exception (#IA) only when either or both operands are an SNaN or are in an unsup-
ported format; QNaNs cause the condition code flags to be set to unordered, but do not cause an exception to be 
generated. The FCOM/FCOMP/FCOMPP instructions raise an invalid-operation exception when either or both of the 
operands are a NaN value of any kind or are in an unsupported format.

As with the FCOM/FCOMP/FCOMPP instructions, if the operation results in an invalid-arithmetic-operand exception 
being raised, the condition code flags are set only if the exception is masked.

The FUCOMP instruction pops the register stack following the comparison operation and the FUCOMPP instruction 
pops the register stack twice following the comparison operation. To pop the register stack, the processor marks 
the ST(0) register as empty and increments the stack pointer (TOP) by 1.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DD E0+i FUCOM ST(i) Valid Valid Compare ST(0) with ST(i).

DD E1 FUCOM Valid Valid Compare ST(0) with ST(1).

DD E8+i FUCOMP ST(i) Valid Valid Compare ST(0) with ST(i) and pop register stack.

DD E9 FUCOMP Valid Valid Compare ST(0) with ST(1) and pop register stack.

DA E9 FUCOMPP Valid Valid Compare ST(0) with ST(1) and pop register stack twice.

Table 1-50.  FUCOM/FUCOMP/FUCOMPP Results
Comparison Results* C3 C2 C0

ST0 > ST(i) 0 0 0
ST0 < ST(i) 0 0 1
ST0 = ST(i) 1 0 0
Unordered 1 1 1

NOTES:
* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.
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Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, C0 := 000;
ST < SRC: C3, C2, C0 := 001;
ST = SRC: C3, C2, C0 := 100;

ESAC;

IF ST(0) or SRC = QNaN, but not SNaN or unsupported format
THEN 

C3, C2, C0 := 111;
ELSE (* ST(0) or SRC is SNaN or unsupported format *)

 #IA;
IF FPUControlWord.IM = 1

THEN 
C3, C2, C0 := 111;

FI;
FI;

IF Instruction = FUCOMP 
THEN 

PopRegisterStack;
FI;

IF Instruction = FUCOMPP 
THEN 

PopRegisterStack; 
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.
C0, C2, C3 See Table 1-50.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA One or both operands are SNaN values or have unsupported formats. Detection of a QNaN 

value in and of itself does not raise an invalid-operand exception.
#D One or both operands are denormal values.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FXAM—Examine Floating-Point

Description

Examines the contents of the ST(0) register and sets the condition code flags C0, C2, and C3 in the FPU status word 
to indicate the class of value or number in the register (see the table below).
.

The C1 flag is set to the sign of the value in ST(0), regardless of whether the register is empty or full.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

C1 := sign bit of ST; (* 0 for positive, 1 for negative *)

CASE (class of value or number in ST(0)) OF
Unsupported:C3, C2, C0 := 000;
NaN: C3, C2, C0 := 001;
Normal: C3, C2, C0 := 010;
Infinity: C3, C2, C0 := 011;
Zero: C3, C2, C0 := 100;
Empty: C3, C2, C0 := 101;
Denormal: C3, C2, C0 := 110;

ESAC;

FPU Flags Affected
C1 Sign of value in ST(0).
C0, C2, C3 See Table 1-51.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 E5 FXAM Valid Valid Classify value or number in ST(0).

Table 1-51.  FXAM Results
Class C3 C2 C0

Unsupported 0 0 0
NaN 0 0 1
Normal finite number 0 1 0
Infinity 0 1 1
Zero 1 0 0
Empty 1 0 1
Denormal number 1 1 0
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Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FXCH—Exchange Register Contents

Description

Exchanges the contents of registers ST(0) and ST(i). If no source operand is specified, the contents of ST(0) and 
ST(1) are exchanged.

This instruction provides a simple means of moving values in the FPU register stack to the top of the stack [ST(0)], 
so that they can be operated on by those floating-point instructions that can only operate on values in ST(0). For 
example, the following instruction sequence takes the square root of the third register from the top of the register 
stack:

FXCH ST(3);
FSQRT;
FXCH ST(3);

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF (Number-of-operands) is 1
THEN

temp := ST(0);
ST(0) := SRC;
SRC := temp;

ELSE
temp := ST(0);
ST(0) := ST(1);
ST(1) := temp;

FI;

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 C8+i FXCH ST(i) Valid Valid Exchange the contents of ST(0) and ST(i).

D9 C9 FXCH Valid Valid Exchange the contents of ST(0) and ST(1).
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
FXCH—Exchange Register Contents Vol. 2A 3-467



FXRSTOR—Restore x87 FPU, MMX, XMM, and MXCSR State

Instruction Operand Encoding

Description

Reloads the x87 FPU, MMX technology, XMM, and MXCSR registers from the 512-byte memory image specified in 
the source operand. This data should have been written to memory previously using the FXSAVE instruction, and 
in the same format as required by the operating modes. The first byte of the data should be located on a 16-byte 
boundary. There are three distinct layouts of the FXSAVE state map: one for legacy and compatibility mode, a 
second format for 64-bit mode FXSAVE/FXRSTOR with REX.W=0, and the third format is for 64-bit mode with 
FXSAVE64/FXRSTOR64. Table 1-52 shows the layout of the legacy/compatibility mode state information in 
memory and describes the fields in the memory image for the FXRSTOR and FXSAVE instructions. Table 1-55 
shows the layout of the 64-bit mode state information when REX.W is set (FXSAVE64/FXRSTOR64). Table 1-56 
shows the layout of the 64-bit mode state information when REX.W is clear (FXSAVE/FXRSTOR).

The state image referenced with an FXRSTOR instruction must have been saved using an FXSAVE instruction or be 
in the same format as required by Table 1-52, Table 1-55, or Table 1-56. Referencing a state image saved with an 
FSAVE, FNSAVE instruction or incompatible field layout will result in an incorrect state restoration.

The FXRSTOR instruction does not flush pending x87 FPU exceptions. To check and raise exceptions when loading 
x87 FPU state information with the FXRSTOR instruction, use an FWAIT instruction after the FXRSTOR instruction.

If the OSFXSR bit in control register CR4 is not set, the FXRSTOR instruction may not restore the states of the XMM 
and MXCSR registers. This behavior is implementation dependent.

If the MXCSR state contains an unmasked exception with a corresponding status flag also set, loading the register 
with the FXRSTOR instruction will not result in a SIMD floating-point error condition being generated. Only the next 
occurrence of this unmasked exception will result in the exception being generated.

Bits 16 through 32 of the MXCSR register are defined as reserved and should be set to 0. Attempting to write a 1 
in any of these bits from the saved state image will result in a general protection exception (#GP) being generated.

Bytes 464:511 of an FXSAVE image are available for software use. FXRSTOR ignores the content of bytes 464:511 
in an FXSAVE state image.

Operation
IF 64-Bit Mode
      THEN               
             (x87 FPU, MMX, XMM15-XMM0, MXCSR)     Load(SRC);
      ELSE

(x87 FPU, MMX, XMM7-XMM0, MXCSR) := Load(SRC);
FI;

x87 FPU and SIMD Floating-Point Exceptions

None.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

NP 0F AE /1

FXRSTOR m512byte

M Valid Valid Restore the x87 FPU, MMX, XMM, and MXCSR 
register state from m512byte.

NP REX.W + 0F AE /1

FXRSTOR64 m512byte

M Valid N.E. Restore the x87 FPU, MMX, XMM, and MXCSR 
register state from m512byte.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A
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Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of segment. (See align-
ment check exception [#AC] below.)
For an attempt to set reserved bits in MXCSR.

#SS(0) For an illegal address in the SS segment. 
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1. 

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If instruction is preceded by a LOCK prefix.
#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 

operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
For an attempt to set reserved bits in MXCSR.

#NM If CR0.TS[bit 3] = 1. 
If CR0.EM[bit 2] = 1.

#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.
#AC For unaligned memory reference.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.
For an attempt to set reserved bits in MXCSR.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1. 

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If instruction is preceded by a LOCK prefix.
#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 

operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).
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FXSAVE—Save x87 FPU, MMX Technology, and SSE State

Instruction Operand Encoding

Description

Saves the current state of the x87 FPU, MMX technology, XMM, and MXCSR registers to a 512-byte memory loca-
tion specified in the destination operand. The content layout of the 512 byte region depends on whether the 
processor is operating in non-64-bit operating modes or 64-bit sub-mode of IA-32e mode. 

Bytes 464:511 are available to software use. The processor does not write to bytes 464:511 of an FXSAVE area. 

The operation of FXSAVE in non-64-bit modes is described first.

Non-64-Bit Mode Operation

Table 1-52 shows the layout of the state information in memory when the processor is operating in legacy modes.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

NP 0F AE /0

FXSAVE m512byte

M Valid Valid Save the x87 FPU, MMX, XMM, and MXCSR 
register state to m512byte.

NP REX.W + 0F AE /0

FXSAVE64 m512byte

M Valid N.E. Save the x87 FPU, MMX, XMM, and MXCSR 
register state to m512byte.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A

Table 1-52.  Non-64-Bit-Mode Layout of FXSAVE and FXRSTOR Memory Region

15 14 13  12 11 10 9  8 7 6 5 4 3 2 1 0

Rsvd FCS FIP[31:0] FOP Rsvd FTW FSW FCW 0

MXCSR_MASK MXCSR Rsrvd FDS FDP[31:0] 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

Reserved 288
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The destination operand contains the first byte of the memory image, and it must be aligned on a 16-byte 
boundary. A misaligned destination operand will result in a general-protection (#GP) exception being generated (or 
in some cases, an alignment check exception [#AC]).

The FXSAVE instruction is used when an operating system needs to perform a context switch or when an exception 
handler needs to save and examine the current state of the x87 FPU, MMX technology, and/or XMM and MXCSR 
registers.

The fields in Table 1-52 are defined in Table 1-53.

Reserved 304

Reserved 320

Reserved 336

Reserved 352

Reserved 368

Reserved 384

Reserved 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Table 1-53.  Field Definitions 

Field Definition

FCW x87 FPU Control Word (16 bits). See Figure 8-6 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for the layout of the x87 FPU control word.

FSW x87 FPU Status Word (16 bits). See Figure 8-4 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for the layout of the x87 FPU status word.

Abridged FTW x87 FPU Tag Word (8 bits). The tag information saved here is abridged, as described in the following 
paragraphs.

FOP x87 FPU Opcode (16 bits). The lower 11 bits of this field contain the opcode, upper 5 bits are reserved. 
See Figure 8-8 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for 
the layout of the x87 FPU opcode field.

FIP x87 FPU Instruction Pointer Offset (64 bits). The contents of this field differ depending on the current 
addressing mode (32-bit, 16-bit, or 64-bit) of the processor when the FXSAVE instruction was 
executed:

32-bit mode — 32-bit IP offset.

16-bit mode — low 16 bits are IP offset; high 16 bits are reserved.

64-bit mode with REX.W — 64-bit IP offset.

64-bit mode without REX.W — 32-bit IP offset.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for a description of the x87 FPU instruction 
pointer.

FCS x87 FPU Instruction Pointer Selector (16 bits). If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the 
processor deprecates FCS and FDS, and this field is saved as 0000H.

Table 1-52.  Non-64-Bit-Mode Layout of FXSAVE and FXRSTOR Memory Region (Contd.)

15 14 13  12 11 10 9  8 7 6 5 4 3 2 1 0
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The FXSAVE instruction saves an abridged version of the x87 FPU tag word in the FTW field (unlike the FSAVE 
instruction, which saves the complete tag word). The tag information is saved in physical register order (R0 
through R7), rather than in top-of-stack (TOS) order. With the FXSAVE instruction, however, only a single bit (1 for 
valid or 0 for empty) is saved for each tag. For example, assume that the tag word is currently set as follows:

R7 R6 R5 R4 R3 R2 R1 R0
11 xx xx xx 11 11 11 11

Here, 11B indicates empty stack elements and “xx” indicates valid (00B), zero (01B), or special (10B). 

For this example, the FXSAVE instruction saves only the following 8 bits of information:

R7 R6 R5 R4 R3 R2 R1 R0
0 1 1 1 0 0 0 0

Here, a 1 is saved for any valid, zero, or special tag, and a 0 is saved for any empty tag.

The operation of the FXSAVE instruction differs from that of the FSAVE instruction, the as follows:
• FXSAVE instruction does not check for pending unmasked floating-point exceptions. (The FXSAVE operation in 

this regard is similar to the operation of the FNSAVE instruction). 
• After the FXSAVE instruction has saved the state of the x87 FPU, MMX technology, XMM, and MXCSR registers, 

the processor retains the contents of the registers. Because of this behavior, the FXSAVE instruction cannot be 
used by an application program to pass a “clean” x87 FPU state to a procedure, since it retains the current 
state. To clean the x87 FPU state, an application must explicitly execute an FINIT instruction after an FXSAVE 
instruction to reinitialize the x87 FPU state.

FDP x87 FPU Instruction Operand (Data) Pointer Offset (64 bits). The contents of this field differ 
depending on the current addressing mode (32-bit, 16-bit, or 64-bit) of the processor when the 
FXSAVE instruction was executed:

32-bit mode — 32-bit DP offset.

16-bit mode — low 16 bits are DP offset; high 16 bits are reserved.

64-bit mode with REX.W — 64-bit DP offset.

64-bit mode without REX.W — 32-bit DP offset.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for a description of the x87 FPU operand 
pointer.

FDS x87 FPU Instruction Operand (Data) Pointer Selector (16 bits). If CPUID.(EAX=07H,ECX=0H):EBX[bit 
13] = 1, the processor deprecates FCS and FDS, and this field is saved as 0000H.

MXCSR MXCSR Register State (32 bits). See Figure 10-3 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for the layout of the MXCSR register. If the OSFXSR bit in control 
register CR4 is not set, the FXSAVE instruction may not save this register. This behavior is 
implementation dependent.

MXCSR_
MASK

MXCSR_MASK (32 bits). This mask can be used to adjust values written to the MXCSR register, 
ensuring that reserved bits are set to 0. Set the mask bits and flags in MXCSR to the mode of 
operation desired for SSE and SSE2 SIMD floating-point instructions. See “Guidelines for Writing to the 
MXCSR Register” in Chapter 11 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, for instructions for how to determine and use the MXCSR_MASK value.

ST0/MM0 through 
ST7/MM7

x87 FPU or MMX technology registers. These 80-bit fields contain the x87 FPU data registers or the 
MMX technology registers, depending on the state of the processor prior to the execution of the 
FXSAVE instruction. If the processor had been executing x87 FPU instruction prior to the FXSAVE 
instruction, the x87 FPU data registers are saved; if it had been executing MMX instructions (or SSE or 
SSE2 instructions that operated on the MMX technology registers), the MMX technology registers are 
saved. When the MMX technology registers are saved, the high 16 bits of the field are reserved.

XMM0 through XMM7 XMM registers (128 bits per field). If the OSFXSR bit in control register CR4 is not set, the FXSAVE 
instruction may not save these registers. This behavior is implementation dependent.

Table 1-53.  Field Definitions  (Contd.)

Field Definition
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• The format of the memory image saved with the FXSAVE instruction is the same regardless of the current 
addressing mode (32-bit or 16-bit) and operating mode (protected, real address, or system management). 
This behavior differs from the FSAVE instructions, where the memory image format is different depending on 
the addressing mode and operating mode. Because of the different image formats, the memory image saved 
with the FXSAVE instruction cannot be restored correctly with the FRSTOR instruction, and likewise the state 
saved with the FSAVE instruction cannot be restored correctly with the FXRSTOR instruction.

The FSAVE format for FTW can be recreated from the FTW valid bits and the stored 80-bit floating-point data 
(assuming the stored data was not the contents of MMX technology registers) using Table 1-54.

The J-bit is defined to be the 1-bit binary integer to the left of the decimal place in the significand. The M-bit is 
defined to be the most significant bit of the fractional portion of the significand (i.e., the bit immediately to the right 
of the decimal place).

When the M-bit is the most significant bit of the fractional portion of the significand, it must be 0 if the fraction is 
all 0’s.

IA-32e Mode Operation

In compatibility sub-mode of IA-32e mode, legacy SSE registers, XMM0 through XMM7, are saved according to the 
legacy FXSAVE map. In 64-bit mode, all of the SSE registers, XMM0 through XMM15, are saved. Additionally, there 
are two different layouts of the FXSAVE map in 64-bit mode, corresponding to FXSAVE64 (which requires 
REX.W=1) and FXSAVE (REX.W=0). In the FXSAVE64 map (Table 1-55), the FPU IP and FPU DP pointers are 64-bit 
wide. In the FXSAVE map for 64-bit mode (Table 1-56), the FPU IP and FPU DP pointers are 32-bits.

Table 1-54.  Recreating FSAVE Format 

Exponent
all 1’s

Exponent
all 0’s

Fraction
all 0’s

J and M
bits

FTW valid bit
x87 FTW

0 0 0 0x 1 Special 10
0 0 0 1x 1 Valid 00
0 0 1 00 1 Special 10
0 0 1 10 1 Valid 00
0 1 0 0x 1 Special 10
0 1 0 1x 1 Special 10
0 1 1 00 1 Zero 01
0 1 1 10 1 Special 10
1 0 0 1x 1 Special 10
1 0 0 1x 1 Special 10
1 0 1 00 1 Special 10
1 0 1 10 1 Special 10

For all legal combinations above. 0 Empty 11
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Table 1-55.  Layout of the 64-Bit Mode FXSAVE64 Map (Requires REX.W = 1)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIP FOP Reserved FTW FSW FCW 0

MXCSR_MASK MXCSR FDP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496
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Table 1-56.  Layout of the 64-Bit Mode FXSAVE Map (REX.W = 0)
15 14 13  12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved FCS FIP[31:0] FOP Reserved FTW FSW FCW 0

MXCSR_MASK MXCSR Reserved FDS FDP[31:0] 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496
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Operation

IF 64-Bit Mode
THEN

IF REX.W = 1
THEN

DEST := Save64BitPromotedFxsave(x87 FPU, MMX, XMM15-XMM0,
MXCSR);

ELSE
DEST := Save64BitDefaultFxsave(x87 FPU, MMX, XMM15-XMM0, MXCSR);

FI;
ELSE

DEST := SaveLegacyFxsave(x87 FPU, MMX, XMM7-XMM0, MXCSR);
FI;

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of segment. (See the 
description of the alignment check exception [#AC] below.)

#SS(0) For an illegal address in the SS segment. 
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1. 

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.
#UD If the LOCK prefix is used.
#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 

operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1. 

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.
#AC For unaligned memory reference.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1. 

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If the LOCK prefix is used.
#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 

operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

Implementation Note

The order in which the processor signals general-protection (#GP) and page-fault (#PF) exceptions when they both 
occur on an instruction boundary is given in Table 5-2 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3B. This order vary for FXSAVE for different processor implementations.
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FXTRACT—Extract Exponent and Significand

Description

Separates the source value in the ST(0) register into its exponent and significand, stores the exponent in ST(0), 
and pushes the significand onto the register stack. Following this operation, the new top-of-stack register ST(0) 
contains the value of the original significand expressed as a floating-point value. The sign and significand of this 
value are the same as those found in the source operand, and the exponent is 3FFFH (biased value for a true expo-
nent of zero). The ST(1) register contains the value of the original operand’s true (unbiased) exponent expressed 
as a floating-point value. (The operation performed by this instruction is a superset of the IEEE-recommended 
logb(x) function.)

This instruction and the F2XM1 instruction are useful for performing power and range scaling operations. The 
FXTRACT instruction is also useful for converting numbers in double extended-precision floating-point format to 
decimal representations (e.g., for printing or displaying).

If the floating-point zero-divide exception (#Z) is masked and the source operand is zero, an exponent value of –
∞ is stored in register ST(1) and 0 with the sign of the source operand is stored in register ST(0).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

TEMP := Significand(ST(0));
ST(0) := Exponent(ST(0));
TOP := TOP − 1;
ST(0) := TEMP;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#Z ST(0) operand is ±0.
#D Source operand is a denormal value.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Opcode/
Instruction

64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F4

FXTRACT

Valid Valid Separate value in ST(0) into exponent and significand, store 
exponent in ST(0), and push the significand onto the register 
stack.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FYL2X—Compute y ∗ log2x

Description

Computes (ST(1) ∗ log2 (ST(0))), stores the result in register ST(1), and pops the FPU register stack. The source 
operand in ST(0) must be a non-zero positive number.

The following table shows the results obtained when taking the log of various classes of numbers, assuming that 
neither overflow nor underflow occurs.

If the divide-by-zero exception is masked and register ST(0) contains ±0, the instruction returns ∞ with a sign that 
is the opposite of the sign of the source operand in register ST(1).

The FYL2X instruction is designed with a built-in multiplication to optimize the calculation of logarithms with an 
arbitrary positive base (b):

logbx := (log2b)–1 ∗ log2x

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(1) := ST(1) ∗ log2ST(0);
PopRegisterStack;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F1 FYL2X Valid Valid Replace ST(1) with (ST(1) ∗ log2ST(0)) and pop the 
register stack.

Table 1-57.  FYL2X Results

ST(0)

− ∞ − F ±0 +0<+F<+1 + 1 + F > + 1 + ∞ NaN

− ∞ * * + ∞ + ∞ * − ∞ − ∞ NaN

ST(1) − F * * ** + F − 0 − F − ∞ NaN

− 0 * * * + 0 − 0 − 0 * NaN

+ 0 * * * − 0 + 0 + 0 * NaN

+ F * * ** − F + 0 + F + ∞ NaN

+ ∞ * * − ∞ − ∞ * + ∞ + ∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-operation (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
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Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Either operand is an SNaN or unsupported format.

Source operand in register ST(0) is a negative finite value 
(not -0).

#Z Source operand in register ST(0) is ±0.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FYL2XP1—Compute y ∗ log2(x +1)

Description

Computes (ST(1) ∗ log2(ST(0) + 1.0)), stores the result in register ST(1), and pops the FPU register stack. The 
source operand in ST(0) must be in the range:

The source operand in ST(1) can range from −∞ to +∞. If the ST(0) operand is outside of its acceptable range, the 
result is undefined and software should not rely on an exception being generated. Under some circumstances 
exceptions may be generated when ST(0) is out of range, but this behavior is implementation specific and not 
guaranteed.

The following table shows the results obtained when taking the log epsilon of various classes of numbers, assuming 
that underflow does not occur.

This instruction provides optimal accuracy for values of epsilon [the value in register ST(0)] that are close to 0. For 
small epsilon (ε) values, more significant digits can be retained by using the FYL2XP1 instruction than by using 
(ε+1) as an argument to the FYL2X instruction. The (ε+1) expression is commonly found in compound interest and 
annuity calculations. The result can be simply converted into a value in another logarithm base by including a scale 
factor in the ST(1) source operand. The following equation is used to calculate the scale factor for a particular loga-
rithm base, where n is the logarithm base desired for the result of the FYL2XP1 instruction:

scale factor := logn 2

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(1) := ST(1) ∗ log2(ST(0) + 1.0);
PopRegisterStack;

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F9 FYL2XP1 Valid Valid Replace ST(1) with ST(1) ∗ log2(ST(0) + 1.0) and pop the 
register stack.

Table 1-58.  FYL2XP1 Results

ST(0)

−(1 − ( )) to −0 -0 +0 +0 to +(1 - ( )) NaN

− ∞ +∞ * * − ∞ NaN

ST(1) − F +F +0 -0 − F NaN

− 0 +0 +0 -0 − 0 NaN

+0 − 0 − 0 +0 +0 NaN

+F − F − 0 +0 +F NaN

+∞ − ∞ * * +∞ NaN

NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-operation (#IA) exception.

1 2 2⁄–( ) )to 1 2 2⁄–( )–

2 2⁄ 2 2⁄
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FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Either operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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GF2P8AFFINEINVQB—Galois Field Affine Transformation Inverse

Instruction Operand Encoding

Description

The AFFINEINVB instruction computes an affine transformation in the Galois Field 28. For this instruction, an affine 
transformation is defined by A * inv(x) + b where “A” is an 8 by 8 bit matrix, and “x” and “b” are 8-bit vectors. The 
inverse of the bytes in x is defined with respect to the reduction polynomial x8 + x4 + x3 + x + 1.
One SIMD register (operand 1) holds “x” as either 16, 32 or 64 8-bit vectors. A second SIMD (operand 2) register 
or memory operand contains 2, 4, or 8 “A” values, which are operated upon by the correspondingly aligned 8 “x” 
values in the first register. The “b” vector is constant for all calculations and contained in the immediate byte.
The EVEX encoded form of this instruction does not support memory fault suppression. The SSE encoded forms of 
the instruction require 16B alignment on their memory operations.
The inverse of each byte is given by the following table. The upper nibble is on the vertical axis and the lower nibble 
is on the horizontal axis. For example, the inverse of 0x95 is 0x8A.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F3A CF /r /ib
GF2P8AFFINEINVQB xmm1, 
xmm2/m128, imm8

A V/V GFNI Computes inverse affine transformation in the 
finite field GF(2^8).

VEX.128.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB xmm1, xmm2, 
xmm3/m128, imm8

B V/V AVX
GFNI

Computes inverse affine transformation in the 
finite field GF(2^8).

VEX.256.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB ymm1, ymm2, 
ymm3/m256, imm8

B V/V AVX
GFNI

Computes inverse affine transformation in the 
finite field GF(2^8).

EVEX.128.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB xmm1{k1}{z}, 
xmm2, xmm3/m128/m64bcst, imm8

C V/V (AVX512VL 
OR AVX10.11)
GFNI

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Computes inverse affine transformation in the 
finite field GF(2^8).

EVEX.256.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB ymm1{k1}{z}, 
ymm2, ymm3/m256/m64bcst, imm8

C V/V (AVX512VL 
OR AVX10.11)
GFNI

Computes inverse affine transformation in the 
finite field GF(2^8).

EVEX.512.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB zmm1{k1}{z}, 
zmm2, zmm3/m512/m64bcst, imm8

C V/V (AVX512F 
OR AVX10.11)
GFNI

Computes inverse affine transformation in the 
finite field GF(2^8).

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) imm8 (r) N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8 (r)

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)
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Operation

define affine_inverse_byte(tsrc2qw, src1byte, imm):
FOR i := 0 to 7:

* parity(x) = 1 if x has an odd number of 1s in it, and 0 otherwise.*
* inverse(x) is defined in the table above *
retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND inverse(src1byte)) XOR imm8.bit[i]

return retbyte

VGF2P8AFFINEINVQB dest, src1, src2, imm8 (EVEX Encoded Version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1:

IF SRC2 is memory and EVEX.b==1:
tsrc2 := SRC2.qword[0]

ELSE:
tsrc2 := SRC2.qword[j]

FOR b := 0 to 7:
IF k1[j*8+b] OR *no writemask*:

FOR i := 0 to 7:
DEST.qword[j].byte[b] := affine_inverse_byte(tsrc2, SRC1.qword[j].byte[b], imm8)

ELSE IF *zeroing*:
DEST.qword[j].byte[b] := 0

*ELSE DEST.qword[j].byte[b] remains unchanged*
DEST[MAX_VL-1:VL] := 0

Table 1-59.  Inverse Byte Listings

- 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 8D F6 CB 52 7B D1 E8 4F 29 C0 B0 E1 E5 C7

1 74 B4 AA 4B 99 2B 60 5F 58 3F FD CC FF 40 EE B2

2 3A 6E 5A F1 55 4D A8 C9 C1 A 98 15 30 44 A2 C2

3 2C 45 92 6C F3 39 66 42 F2 35 20 6F 77 BB 59 19

4 1D FE 37 67 2D 31 F5 69 A7 64 AB 13 54 25 E9 9

5 ED 5C 5 CA 4C 24 87 BF 18 3E 22 F0 51 EC 61 17

6 16 5E AF D3 49 A6 36 43 F4 47 91 DF 33 93 21 3B

7 79 B7 97 85 10 B5 BA 3C B6 70 D0 6 A1 FA 81 82

8 83 7E 7F 80 96 73 BE 56 9B 9E 95 D9 F7 2 B9 A4

9 DE 6A 32 6D D8 8A 84 72 2A 14 9F 88 F9 DC 89 9A

A FB 7C 2E C3 8F B8 65 48 26 C8 12 4A CE E7 D2 62

B C E0 1F EF 11 75 78 71 A5 8E 76 3D BD BC 86 57

C B 28 2F A3 DA D4 E4 F A9 27 53 4 1B FC AC E6

D 7A 7 AE 63 C5 DB E2 EA 94 8B C4 D5 9D F8 90 6B

E B1 D D6 EB C6 E CF AD 8 4E D7 E3 5D 50 1E B3

F 5B 23 38 34 68 46 3 8C DD 9C 7D A0 CD 1A 41 1C
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VGF2P8AFFINEINVQB dest, src1, src2, imm8 (128b and 256b VEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256)
FOR j := 0 TO KL-1:

FOR b := 0 to 7:
DEST.qword[j].byte[b] := affine_inverse_byte(SRC2.qword[j], SRC1.qword[j].byte[b], imm8)

DEST[MAX_VL-1:VL] := 0

GF2P8AFFINEINVQB srcdest, src1, imm8 (128b SSE Encoded Version)
FOR j := 0 TO 1:

FOR b := 0 to 7:
SRCDEST.qword[j].byte[b] := affine_inverse_byte(SRC1.qword[j], SRCDEST.qword[j].byte[b], imm8)

Intel C/C++ Compiler Intrinsic Equivalent

(V)GF2P8AFFINEINVQB __m128i _mm_gf2p8affineinv_epi64_epi8(__m128i, __m128i, int);
(V)GF2P8AFFINEINVQB __m128i _mm_mask_gf2p8affineinv_epi64_epi8(__m128i, __mmask16, __m128i, __m128i, int);
(V)GF2P8AFFINEINVQB __m128i _mm_maskz_gf2p8affineinv_epi64_epi8(__mmask16, __m128i, __m128i, int);
VGF2P8AFFINEINVQB __m256i _mm256_gf2p8affineinv_epi64_epi8(__m256i, __m256i, int);
VGF2P8AFFINEINVQB __m256i _mm256_mask_gf2p8affineinv_epi64_epi8(__m256i, __mmask32, __m256i, __m256i, int);
VGF2P8AFFINEINVQB __m256i _mm256_maskz_gf2p8affineinv_epi64_epi8(__mmask32, __m256i, __m256i, int);
VGF2P8AFFINEINVQB __m512i _mm512_gf2p8affineinv_epi64_epi8(__m512i, __m512i, int);
VGF2P8AFFINEINVQB __m512i _mm512_mask_gf2p8affineinv_epi64_epi8(__m512i, __mmask64, __m512i, __m512i, int);
VGF2P8AFFINEINVQB __m512i _mm512_maskz_gf2p8affineinv_epi64_epi8(__mmask64, __m512i, __m512i, int);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Legacy-encoded and VEX-encoded: See Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded: See Table 2-52, “Type E4NF Class Exception Conditions.”
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GF2P8AFFINEQB—Galois Field Affine Transformation

Instruction Operand Encoding

Description

The AFFINEB instruction computes an affine transformation in the Galois Field 28. For this instruction, an affine 
transformation is defined by A * x + b where “A” is an 8 by 8 bit matrix, and “x” and “b” are 8-bit vectors. One SIMD 
register (operand 1) holds “x” as either 16, 32 or 64 8-bit vectors. A second SIMD (operand 2) register or memory 
operand contains 2, 4, or 8 “A” values, which are operated upon by the correspondingly aligned 8 “x” values in the 
first register. The “b” vector is constant for all calculations and contained in the immediate byte.
The EVEX encoded form of this instruction does not support memory fault suppression. The SSE encoded forms of 
the instruction require16B alignment on their memory operations.

Operation

define parity(x):
t := 0 // single bit
FOR i := 0 to 7:

t = t xor x.bit[i]
return t

define affine_byte(tsrc2qw, src1byte, imm):

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F3A CE /r /ib
GF2P8AFFINEQB xmm1, 
xmm2/m128, imm8

A V/V GFNI Computes affine transformation in the finite 
field GF(2^8).

VEX.128.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB xmm1, xmm2, 
xmm3/m128, imm8

B V/V AVX
GFNI

Computes affine transformation in the finite 
field GF(2^8).

VEX.256.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB ymm1, ymm2, 
ymm3/m256, imm8

B V/V AVX
GFNI

Computes affine transformation in the finite 
field GF(2^8).

EVEX.128.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB xmm1{k1}{z}, 
xmm2, xmm3/m128/m64bcst, imm8

C V/V (AVX512VL 
OR AVX10.11)
GFNI

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Computes affine transformation in the finite 
field GF(2^8).

EVEX.256.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB ymm1{k1}{z}, 
ymm2, ymm3/m256/m64bcst, imm8

C V/V (AVX512VL 
OR AVX10.11)
GFNI

Computes affine transformation in the finite 
field GF(2^8).

EVEX.512.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB zmm1{k1}{z}, 
zmm2, zmm3/m512/m64bcst, imm8

C V/V (AVX512F 
OR AVX10.11)
GFNI

Computes affine transformation in the finite 
field GF(2^8).

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) imm8 (r) N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8 (r)

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)
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FOR i := 0 to 7:
* parity(x) = 1 if x has an odd number of 1s in it, and 0 otherwise.*
retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND src1byte) XOR imm8.bit[i]

return retbyte

VGF2P8AFFINEQB dest, src1, src2, imm8 (EVEX Encoded Version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1:

IF SRC2 is memory and EVEX.b==1:
tsrc2 := SRC2.qword[0]

ELSE:
tsrc2 := SRC2.qword[j]

FOR b := 0 to 7:
IF k1[j*8+b] OR *no writemask*:

DEST.qword[j].byte[b] := affine_byte(tsrc2, SRC1.qword[j].byte[b], imm8)
ELSE IF *zeroing*:

DEST.qword[j].byte[b] := 0
*ELSE DEST.qword[j].byte[b] remains unchanged*

DEST[MAX_VL-1:VL] := 0

VGF2P8AFFINEQB dest, src1, src2, imm8 (128b and 256b VEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256)
FOR j := 0 TO KL-1:

FOR b := 0 to 7:
DEST.qword[j].byte[b] := affine_byte(SRC2.qword[j], SRC1.qword[j].byte[b], imm8)

DEST[MAX_VL-1:VL] := 0

GF2P8AFFINEQB srcdest, src1, imm8 (128b SSE Encoded Version)
FOR j := 0 TO 1:

FOR b := 0 to 7:
SRCDEST.qword[j].byte[b] := affine_byte(SRC1.qword[j], SRCDEST.qword[j].byte[b], imm8)

Intel C/C++ Compiler Intrinsic Equivalent

(V)GF2P8AFFINEQB __m128i _mm_gf2p8affine_epi64_epi8(__m128i, __m128i, int);
(V)GF2P8AFFINEQB __m128i _mm_mask_gf2p8affine_epi64_epi8(__m128i, __mmask16, __m128i, __m128i, int);
(V)GF2P8AFFINEQB __m128i _mm_maskz_gf2p8affine_epi64_epi8(__mmask16, __m128i, __m128i, int);
VGF2P8AFFINEQB __m256i _mm256_gf2p8affine_epi64_epi8(__m256i, __m256i, int);
VGF2P8AFFINEQB __m256i _mm256_mask_gf2p8affine_epi64_epi8(__m256i, __mmask32, __m256i, __m256i, int);
VGF2P8AFFINEQB __m256i _mm256_maskz_gf2p8affine_epi64_epi8(__mmask32, __m256i, __m256i, int);
VGF2P8AFFINEQB __m512i _mm512_gf2p8affine_epi64_epi8(__m512i, __m512i, int);
VGF2P8AFFINEQB __m512i _mm512_mask_gf2p8affine_epi64_epi8(__m512i, __mmask64, __m512i, __m512i, int);
VGF2P8AFFINEQB __m512i _mm512_maskz_gf2p8affine_epi64_epi8(__mmask64, __m512i, __m512i, int);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Legacy-encoded and VEX-encoded: See Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded: See Table 2-52, “Type E4NF Class Exception Conditions.”
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GF2P8MULB—Galois Field Multiply Bytes

Instruction Operand Encoding

Description

The instruction multiplies elements in the finite field GF(28), operating on a byte (field element) in the first source 
operand and the corresponding byte in a second source operand. The field GF(28) is represented in polynomial 
representation with the reduction polynomial x8 + x4 + x3 + x + 1.
This instruction does not support broadcasting.
The EVEX encoded form of this instruction supports memory fault suppression. The SSE encoded forms of the 
instruction require16B alignment on their memory operations.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F38 CF /r
GF2P8MULB xmm1, xmm2/m128

A V/V GFNI Multiplies elements in the finite field GF(2^8). 

VEX.128.66.0F38.W0 CF /r
VGF2P8MULB xmm1, xmm2, 
xmm3/m128

B V/V AVX
GFNI

Multiplies elements in the finite field GF(2^8). 

VEX.256.66.0F38.W0 CF /r
VGF2P8MULB ymm1, ymm2, 
ymm3/m256

B V/V AVX
GFNI

Multiplies elements in the finite field GF(2^8).

EVEX.128.66.0F38.W0 CF /r
VGF2P8MULB xmm1{k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL 
OR AVX10.11)
GFNI

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiplies elements in the finite field GF(2^8).

EVEX.256.66.0F38.W0 CF /r
VGF2P8MULB ymm1{k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL 
OR AVX10.11)
GFNI

Multiplies elements in the finite field GF(2^8).

EVEX.512.66.0F38.W0 CF /r
VGF2P8MULB zmm1{k1}{z}, zmm2, 
zmm3/m512

C V/V (AVX512F 
OR AVX10.11)
GFNI

Multiplies elements in the finite field GF(2^8).

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

define gf2p8mul_byte(src1byte, src2byte):
tword := 0
FOR i := 0 to 7:

IF src2byte.bit[i]:
tword := tword XOR (src1byte<< i)

* carry out polynomial reduction by the characteristic polynomial p*
FOR i := 14 downto 8:

p := 0x11B << (i-8) *0x11B = 0000_0001_0001_1011 in binary*
IF tword.bit[i]:

tword := tword XOR p
return tword.byte[0]

VGF2P8MULB dest, src1, src2 (EVEX Encoded Version)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1:

IF k1[j] OR *no writemask*:
DEST.byte[j] := gf2p8mul_byte(SRC1.byte[j], SRC2.byte[j])

ELSE iF *zeroing*:
DEST.byte[j] := 0

* ELSE DEST.byte[j] remains unchanged*
DEST[MAX_VL-1:VL] := 0

VGF2P8MULB dest, src1, src2 (128b and 256b VEX Encoded Versions)
(KL, VL) = (16, 128), (32, 256)
FOR j := 0 TO KL-1:

DEST.byte[j] := gf2p8mul_byte(SRC1.byte[j], SRC2.byte[j])
DEST[MAX_VL-1:VL] := 0

GF2P8MULB srcdest, src1 (128b SSE Encoded Version)
FOR j := 0 TO 15:

SRCDEST.byte[j] :=gf2p8mul_byte(SRCDEST.byte[j], SRC1.byte[j])

Intel C/C++ Compiler Intrinsic Equivalent

(V)GF2P8MULB __m128i _mm_gf2p8mul_epi8(__m128i, __m128i);
(V)GF2P8MULB __m128i _mm_mask_gf2p8mul_epi8(__m128i, __mmask16, __m128i, __m128i);
(V)GF2P8MULB __m128i _mm_maskz_gf2p8mul_epi8(__mmask16, __m128i, __m128i);
VGF2P8MULB __m256i _mm256_gf2p8mul_epi8(__m256i, __m256i);
VGF2P8MULB __m256i _mm256_mask_gf2p8mul_epi8(__m256i, __mmask32, __m256i, __m256i);
VGF2P8MULB __m256i _mm256_maskz_gf2p8mul_epi8(__mmask32, __m256i, __m256i);
VGF2P8MULB __m512i _mm512_gf2p8mul_epi8(__m512i, __m512i);
VGF2P8MULB __m512i _mm512_mask_gf2p8mul_epi8(__m512i, __mmask64, __m512i, __m512i);
VGF2P8MULB __m512i _mm512_maskz_gf2p8mul_epi8(__mmask64, __m512i, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Legacy-encoded and VEX-encoded: See Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded: See Table 2-51, “Type E4 Class Exception Conditions.”
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HADDPD—Packed Double Precision Floating-Point Horizontal Add

Instruction Operand Encoding

Description

Adds the double precision floating-point values in the high and low quadwords of the destination operand and 
stores the result in the low quadword of the destination operand. 

Adds the double precision floating-point values in the high and low quadwords of the source operand and stores the 
result in the high quadword of the destination operand. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

See Figure 1-17 for HADDPD; see Figure 1-18 for VHADDPD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 7C /r

HADDPD xmm1, xmm2/m128

RM V/V SSE3 Horizontal add packed double precision 
floating-point values from xmm2/m128 to 
xmm1.

VEX.128.66.0F.WIG 7C /r

VHADDPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Horizontal add packed double precision 
floating-point values from xmm2 and 
xmm3/mem.

VEX.256.66.0F.WIG 7C /r

VHADDPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Horizontal add packed double precision 
floating-point values from ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

Figure 1-17.  HADDPD—Packed Double Precision Floating-Point Horizontal Add

OM15993

HADDPD xmm1, xmm2/m128

xmm1

xmm2

/m128
[63:0][127:64]

[127:64] [63:0]

[63:0][127:64]

Result:

xmm1

xmm2/m128[63:0] +

xmm2/m128[127:64]
xmm1[63:0] + xmm1[127:64]
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Figure 1-18.  VHADDPD Operation

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

HADDPD (128-bit Legacy SSE Version)
DEST[63:0] := SRC1[127:64] + SRC1[63:0]
DEST[127:64] := SRC2[127:64] + SRC2[63:0]
DEST[MAXVL-1:128] (Unmodified)

VHADDPD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[127:64] + SRC1[63:0]
DEST[127:64] := SRC2[127:64] + SRC2[63:0]
DEST[MAXVL-1:128] := 0

VHADDPD (VEX.256 Encoded Version)
DEST[63:0] := SRC1[127:64] + SRC1[63:0]
DEST[127:64] := SRC2[127:64] + SRC2[63:0]
DEST[191:128] := SRC1[255:192] + SRC1[191:128]
DEST[255:192] := SRC2[255:192] + SRC2[191:128]

Intel C/C++ Compiler Intrinsic Equivalent

VHADDPD __m256d _mm256_hadd_pd (__m256d a, __m256d b);
HADDPD __m128d _mm_hadd_pd (__m128d a, __m128d b);

Exceptions

When the source operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-
protection exception (#GP) will be generated. 

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Y2 + Y3 X2 + X3 Y0 + Y1 X0 + X1DEST

X3 X2SRC1 X1 X0

Y3 Y2 Y1 Y0SRC2
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Other Exceptions
See Table 2-19, “Type 2 Class Exception Conditions.”
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HADDPS—Packed Single Precision Floating-Point Horizontal Add

Instruction Operand Encoding

Description

Adds the single precision floating-point values in the first and second dwords of the destination operand and stores 
the result in the first dword of the destination operand.

Adds single precision floating-point values in the third and fourth dword of the destination operand and stores the 
result in the second dword of the destination operand.

Adds single precision floating-point values in the first and second dword of the source operand and stores the result 
in the third dword of the destination operand.

Adds single precision floating-point values in the third and fourth dword of the source operand and stores the result 
in the fourth dword of the destination operand. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 7C /r

HADDPS xmm1, xmm2/m128

RM V/V SSE3 Horizontal add packed single precision 
floating-point values from xmm2/m128 to 
xmm1.

VEX.128.F2.0F.WIG 7C /r

VHADDPS xmm1, xmm2, xmm3/m128

RVM V/V AVX Horizontal add packed single precision floating-
point values from xmm2 and xmm3/mem.

VEX.256.F2.0F.WIG 7C /r

VHADDPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Horizontal add packed single precision floating-
point values from ymm2 and ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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See Figure 1-19 for HADDPS; see Figure 1-20 for VHADDPS.

Figure 1-20.  VHADDPS Operation

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding YMM register destination are 
zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register.

Figure 1-19.  HADDPS—Packed Single Precision Floating-Point Horizontal Add

OM15994

HADDPS xmm1, xmm2/m128

RESULT:

xmm1

xmm2/

m128

xmm1[31:0] + 

xmm1[63:32]

[31:0]

xmm1[95:64] + 

xmm1[127:96]

[63:32]

[63:32] [31:0]

xmm1[31:0][63:32]

xmm2/m128

[31:0] + xmm2/

m128[63:32]

[95:64]

xmm2/m128

[95:64] + xmm2/

m128[127:96]

[127:96]

[127:96] [95:64]

[95:64][127:96]

Y6+Y7 X6+X7 Y2+Y3 X2+X3DEST

SRC1 X0

SRC2

X1X2X3X4X5X6X7

Y0Y1Y2Y3Y4Y5Y6Y7

X0+X1Y4+Y5 X4+X5 Y0+Y1
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Operation

HADDPS (128-bit Legacy SSE Version)
DEST[31:0] := SRC1[63:32] + SRC1[31:0]
DEST[63:32] := SRC1[127:96] + SRC1[95:64]
DEST[95:64] := SRC2[63:32] + SRC2[31:0]
DEST[127:96] := SRC2[127:96] + SRC2[95:64] 
DEST[MAXVL-1:128] (Unmodified)

VHADDPS (VEX.128 Encoded Version)
DEST[31:0] := SRC1[63:32] + SRC1[31:0]
DEST[63:32] := SRC1[127:96] + SRC1[95:64]
DEST[95:64] := SRC2[63:32] + SRC2[31:0]
DEST[127:96] := SRC2[127:96] + SRC2[95:64] 
DEST[MAXVL-1:128] := 0

VHADDPS (VEX.256 Encoded Version)
DEST[31:0] := SRC1[63:32] + SRC1[31:0]
DEST[63:32] := SRC1[127:96] + SRC1[95:64]
DEST[95:64] := SRC2[63:32] + SRC2[31:0]
DEST[127:96] := SRC2[127:96] + SRC2[95:64] 
DEST[159:128] := SRC1[191:160] + SRC1[159:128]
DEST[191:160] := SRC1[255:224] + SRC1[223:192]
DEST[223:192] := SRC2[191:160] + SRC2[159:128]
DEST[255:224] := SRC2[255:224] + SRC2[223:192]

Intel C/C++ Compiler Intrinsic Equivalent

HADDPS __m128 _mm_hadd_ps (__m128 a, __m128 b);
VHADDPS __m256 _mm256_hadd_ps (__m256 a, __m256 b);

Exceptions

When the source operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-
protection exception (#GP) will be generated.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Table 2-19, “Type 2 Class Exception Conditions.”
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HLT—Halt Vol. 2A 3-498

HLT—Halt

Instruction Operand Encoding

Description

Stops instruction execution and places the processor in a HALT state. An enabled interrupt (including NMI and 
SMI), a debug exception, the BINIT# signal, the INIT# signal, or the RESET# signal will resume execution. If an 
interrupt (including NMI) is used to resume execution after a HLT instruction, the saved instruction pointer 
(CS:EIP) points to the instruction following the HLT instruction.

When a HLT instruction is executed on an Intel 64 or IA-32 processor supporting Intel Hyper-Threading Technology, 
only the logical processor that executes the instruction is halted. The other logical processors in the physical 
processor remain active, unless they are each individually halted by executing a HLT instruction.

The HLT instruction is a privileged instruction. When the processor is running in protected or virtual-8086 mode, 
the privilege level of a program or procedure must be 0 to execute the HLT instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Enter Halt state;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F4 HLT ZO Valid Valid Halt

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A



HRESET—History Reset

Instruction Operand Encoding

Description

Requests the processor to selectively reset selected components of hardware history maintained by the current 
logical processor. HRESET operation is controlled by the implicit EAX operand. The value of the explicit imm8 
operand is ignored. This instruction can only be executed at privilege level 0.
The HRESET instruction can be used to request reset of multiple components of hardware history. Prior to the 
execution of HRESET, the system software must take the following steps:

1. Enumerate the HRESET capabilities via CPUID.20H.0H:EBX, which indicates what components of hardware 
history can be reset.

2. Only the bits enumerated by CPUID.20H.0H:EBX can be set in the IA32_HRESET_ENABLE MSR. 
HRESET causes a general-protection exception (#GP) if EAX sets any bits that are not set in the IA32_HRESET_EN-
ABLE MSR. 
Any attempt to execute the HRESET instruction inside a transactional region will result in a transaction abort.

Operation

IF EAX = 0
    THEN NOP
    ELSE
         FOREACH i such that EAX[i] = 1
             Reset prediction history for feature i
FI

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If CPL > 0 or (EAX AND NOT IA32_HRESET_ENABLE) ≠0.
#UD If CPUID.07H.01H:EAX.HRESET[bit 22] = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
#GP(0) HRESET instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F3 0F 3A F0 C0 /ib 
HRESET imm8, <EAX> 

A V/V HRESET Processor history reset request. Controlled by the 
EAX implicit operand.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (r) N/A N/A N/A
HRESET—History Reset Vol. 2A 3-499



64-Bit Mode Exceptions
Same exceptions as in protected mode. 
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HSUBPD—Packed Double Precision Floating-Point Horizontal Subtract

Instruction Operand Encoding

Description

The HSUBPD instruction subtracts horizontally the packed double precision floating-point numbers of both oper-
ands. 

Subtracts the double precision floating-point value in the high quadword of the destination operand from the low 
quadword of the destination operand and stores the result in the low quadword of the destination operand. 

Subtracts the double precision floating-point value in the high quadword of the source operand from the low quad-
word of the source operand and stores the result in the high quadword of the destination operand. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

See Figure 1-21 for HSUBPD; see Figure 1-22 for VHSUBPD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 7D /r

HSUBPD xmm1, xmm2/m128

RM V/V SSE3 Horizontal subtract packed double precision 
floating-point values from xmm2/m128 to 
xmm1.

VEX.128.66.0F.WIG 7D /r
VHSUBPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Horizontal subtract packed double precision 
floating-point values from xmm2 and 
xmm3/mem.

VEX.256.66.0F.WIG 7D /r
VHSUBPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Horizontal subtract packed double precision 
floating-point values from ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

Figure 1-21.  HSUBPD—Packed Double Precision Floating-Point Horizontal Subtract

OM15995

HSUBPD xmm1, xmm2/m128

xmm1

xmm2

/m128
[63:0][127:64]

[127:64] [63:0]

[63:0][127:64]

Result:

xmm1

xmm2/m128[63:0] -

xmm2/m128[127:64]
xmm1[63:0] - xmm1[127:64]
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Figure 1-22.  VHSUBPD operation

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

HSUBPD (128-bit Legacy SSE Version)
DEST[63:0] := SRC1[63:0] - SRC1[127:64] 
DEST[127:64] := SRC2[63:0] - SRC2[127:64] 
DEST[MAXVL-1:128] (Unmodified)

VHSUBPD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0] - SRC1[127:64] 
DEST[127:64] := SRC2[63:0] - SRC2[127:64] 
DEST[MAXVL-1:128] := 0

VHSUBPD (VEX.256 Encoded Version)
DEST[63:0] := SRC1[63:0] - SRC1[127:64] 
DEST[127:64] := SRC2[63:0] - SRC2[127:64] 
DEST[191:128] := SRC1[191:128] - SRC1[255:192]
DEST[255:192] := SRC2[191:128] - SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

HSUBPD __m128d _mm_hsub_pd(__m128d a, __m128d b)
VHSUBPD __m256d _mm256_hsub_pd (__m256d a, __m256d b);

Exceptions

When the source operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-
protection exception (#GP) will be generated.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Y2 - Y3 X2 - X3 Y0 - Y1 X0 - X1DEST

X3 X2SRC1 X1 X0

Y3 Y2 Y1 Y0SRC2
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Other Exceptions
See Table 2-19, “Type 2 Class Exception Conditions.”
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HSUBPS—Packed Single Precision Floating-Point Horizontal Subtract

Instruction Operand Encoding

Description

Subtracts the single precision floating-point value in the second dword of the destination operand from the first 
dword of the destination operand and stores the result in the first dword of the destination operand. 

Subtracts the single precision floating-point value in the fourth dword of the destination operand from the third 
dword of the destination operand and stores the result in the second dword of the destination operand. 

Subtracts the single precision floating-point value in the second dword of the source operand from the first dword 
of the source operand and stores the result in the third dword of the destination operand. 

Subtracts the single precision floating-point value in the fourth dword of the source operand from the third dword 
of the source operand and stores the result in the fourth dword of the destination operand. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

See Figure 1-23 for HSUBPS; see Figure 1-24 for VHSUBPS.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 7D /r

HSUBPS xmm1, xmm2/m128

RM V/V SSE3 Horizontal subtract packed single precision 
floating-point values from xmm2/m128 to 
xmm1.

VEX.128.F2.0F.WIG 7D /r

VHSUBPS xmm1, xmm2, xmm3/m128

RVM V/V AVX Horizontal subtract packed single precision 
floating-point values from xmm2 and 
xmm3/mem.

VEX.256.F2.0F.WIG 7D /r
VHSUBPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Horizontal subtract packed single precision 
floating-point values from ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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Figure 1-24.  VHSUBPS Operation

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Figure 1-23.  HSUBPS—Packed Single Precision Floating-Point Horizontal Subtract

OM15996

HSUBPS xmm1, xmm2/m128

RESULT:

xmm1

xmm2/

m128

xmm1[31:0] - 

xmm1[63:32]

[31:0]

xmm1[95:64] - 

xmm1[127:96]

[63:32]

[63:32] [31:0]

xmm1[31:0][63:32]

xmm2/m128

[31:0] - xmm2/

m128[63:32]

[95:64]

xmm2/m128

[95:64] - xmm2/

m128[127:96]

[127:96]

[127:96] [95:64]

[95:64][127:96]

Y6-Y7 X6-X7 Y2-Y3 X2-X3DEST

SRC1 X0

SRC2

X1X2X3X4X5X6X7

Y0Y1Y2Y3Y4Y5Y6Y7

X0-X1Y4-Y5 X4-X5 Y0-Y1
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Operation

HSUBPS (128-bit Legacy SSE Version)
DEST[31:0] := SRC1[31:0] - SRC1[63:32]
DEST[63:32] := SRC1[95:64] - SRC1[127:96]
DEST[95:64] := SRC2[31:0] - SRC2[63:32]
DEST[127:96] := SRC2[95:64] - SRC2[127:96] 
DEST[MAXVL-1:128] (Unmodified)

VHSUBPS (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0] - SRC1[63:32]
DEST[63:32] := SRC1[95:64] - SRC1[127:96]
DEST[95:64] := SRC2[31:0] - SRC2[63:32]
DEST[127:96] := SRC2[95:64] - SRC2[127:96] 
DEST[MAXVL-1:128] := 0

VHSUBPS (VEX.256 Encoded Version)
DEST[31:0] := SRC1[31:0] - SRC1[63:32]
DEST[63:32] := SRC1[95:64] - SRC1[127:96]
DEST[95:64] := SRC2[31:0] - SRC2[63:32]
DEST[127:96] := SRC2[95:64] - SRC2[127:96] 
DEST[159:128] := SRC1[159:128] - SRC1[191:160]
DEST[191:160] := SRC1[223:192] - SRC1[255:224]
DEST[223:192] := SRC2[159:128] - SRC2[191:160]
DEST[255:224] := SRC2[223:192] - SRC2[255:224]

Intel C/C++ Compiler Intrinsic Equivalent

HSUBPS __m128 _mm_hsub_ps(__m128 a, __m128 b);
VHSUBPS __m256 _mm256_hsub_ps (__m256 a, __m256 b);

Exceptions

When the source operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-
protection exception (#GP) will be generated.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Table 2-19, “Type 2 Class Exception Conditions.”
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IDIV—Signed Divide

Instruction Operand Encoding

Description

Divides the (signed) value in the AX, DX:AX, or EDX:EAX (dividend) by the source operand (divisor) and stores the 
result in the AX (AH:AL), DX:AX, or EDX:EAX registers. The source operand can be a general-purpose register or a 
memory location. The action of this instruction depends on the operand size (dividend/divisor).

Non-integral results are truncated (chopped) towards 0. The remainder is always less than the divisor in magni-
tude. Overflow is indicated with the #DE (divide error) exception rather than with the CF flag.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. In 64-bit mode when REX.W is 
applied, the instruction divides the signed value in RDX:RAX by the source operand. RAX contains a 64-bit 
quotient; RDX contains a 64-bit remainder. 

See the summary chart at the beginning of this section for encoding data and limits. See Table 1-60.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /7 IDIV r/m8 M Valid Valid Signed divide AX by r/m8, with result stored in: 
AL := Quotient, AH := Remainder.

REX + F6 /7 IDIV r/m81

NOTES:
1. In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

M Valid N.E. Signed divide AX by r/m8, with result stored in 
AL := Quotient, AH := Remainder.

F7 /7 IDIV r/m16 M Valid Valid Signed divide DX:AX by r/m16, with result 
stored in AX := Quotient, DX := Remainder.

F7 /7 IDIV r/m32 M Valid Valid Signed divide EDX:EAX by r/m32, with result 
stored in EAX := Quotient, EDX := Remainder.

REX.W + F7 /7 IDIV r/m64 M Valid N.E. Signed divide RDX:RAX by r/m64, with result 
stored in RAX := Quotient, RDX := Remainder.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A

Table 1-60.  IDIV Results

Operand Size Dividend Divisor Quotient Remainder Quotient Range

Word/byte AX r/m8 AL AH −128 to +127

Doubleword/word DX:AX r/m16 AX DX −32,768 to +32,767

Quadword/doubleword EDX:EAX r/m32 EAX EDX −231 to 231 − 1

Doublequadword/ quadword RDX:RAX r/m64 RAX RDX −263 to 263 − 1
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Operation

IF SRC = 0
THEN #DE; (* Divide error *) 

FI;

IF OperandSize = 8 (* Word/byte operation *)
THEN

temp := AX / SRC; (* Signed division *)
IF (temp > 7FH) or (temp < 80H) 
(* If a positive result is greater than 7FH or a negative result is less than 80H *)

THEN #DE; (* Divide error *) 
ELSE

AL := temp;
AH := AX SignedModulus SRC;

FI;
ELSE IF OperandSize = 16 (* Doubleword/word operation *)

THEN
temp := DX:AX / SRC; (* Signed division *)
IF (temp > 7FFFH) or (temp < 8000H) 
(* If a positive result is greater than 7FFFH 
or a negative result is less than 8000H *)

THEN
#DE; (* Divide error *) 

ELSE
AX := temp;
DX := DX:AX SignedModulus SRC;

FI;
FI;

ELSE IF OperandSize = 32 (* Quadword/doubleword operation *)
temp := EDX:EAX / SRC; (* Signed division *)
IF (temp > 7FFFFFFFH) or (temp < 80000000H) 
(* If a positive result is greater than 7FFFFFFFH 
or a negative result is less than 80000000H *)

THEN 
#DE; (* Divide error *) 

ELSE
EAX := temp;
EDX := EDXE:AX SignedModulus SRC;

FI;
FI;

ELSE IF OperandSize = 64 (* Doublequadword/quadword operation *)
temp := RDX:RAX / SRC; (* Signed division *)
IF (temp > 7FFFFFFFFFFFFFFFH) or (temp < 8000000000000000H) 
(* If a positive result is greater than 7FFFFFFFFFFFFFFFH 
or a negative result is less than 8000000000000000H *)

THEN 
#DE; (* Divide error *) 

ELSE
RAX := temp;
RDX := RDE:RAX SignedModulus SRC;

FI;
FI;

FI;
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Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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IMUL—Signed Multiply

Instruction Operand Encoding

Description

Performs a signed multiplication of two operands. This instruction has three forms, depending on the number of 
operands. 
• One-operand form — This form is identical to that used by the MUL instruction. Here, the source operand (in 

a general-purpose register or memory location) is multiplied by the value in the AL, AX, EAX, or RAX register 
(depending on the operand size) and the product (twice the size of the input operand) is stored in the AX, 
DX:AX, EDX:EAX, or RDX:RAX registers, respectively.

• Two-operand form — With this form the destination operand (the first operand) is multiplied by the source 
operand (second operand). The destination operand is a general-purpose register and the source operand is an 
immediate value, a general-purpose register, or a memory location. The intermediate product (twice the size of 
the input operand) is truncated and stored in the destination operand location.

• Three-operand form — This form requires a destination operand (the first operand) and two source operands 
(the second and the third operands). Here, the first source operand (which can be a general-purpose register 
or a memory location) is multiplied by the second source operand (an immediate value). The intermediate 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /5 IMUL r/m8 M Valid Valid AX:= AL ∗ r/m byte.

REX + F6 /5 IMUL r/m81

NOTES:
1. In 64-bit mode, r/m8 cannot be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

M Valid N.E. AX:= AL ∗ r/m byte.

F7 /5 IMUL r/m16 M Valid Valid DX:AX := AX ∗ r/m word.

F7 /5 IMUL r/m32 M Valid Valid EDX:EAX := EAX ∗ r/m32.

REX.W + F7 /5 IMUL r/m64 M Valid N.E. RDX:RAX := RAX ∗ r/m64.

0F AF /r IMUL r16, r/m16 RM Valid Valid Word register := word register ∗ r/m16.

0F AF /r IMUL r32, r/m32 RM Valid Valid Doubleword register := doubleword register ∗ 
r/m32.

REX.W + 0F AF /r IMUL r64, r/m64 RM Valid N.E. Quadword register := Quadword register ∗ 
r/m64.

6B /r ib IMUL r16, r/m16, imm8 RMI Valid Valid Word register := r/m16 ∗ sign-extended 
immediate byte.

6B /r ib IMUL r32, r/m32, imm8 RMI Valid Valid Doubleword register := r/m32 ∗ sign-
extended immediate byte.

REX.W + 6B /r ib IMUL r64, r/m64, imm8 RMI Valid N.E. Quadword register := r/m64 ∗ sign-extended 
immediate byte.

69 /r iw IMUL r16, r/m16, imm16 RMI Valid Valid Word register := r/m16 ∗ immediate word.

69 /r id IMUL r32, r/m32, imm32 RMI Valid Valid Doubleword register := r/m32 ∗ immediate 
doubleword.

REX.W + 69 /r id IMUL r64, r/m64, imm32 RMI Valid N.E. Quadword register := r/m64 ∗ immediate 
doubleword.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) N/A N/A N/A

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8/16/32 N/A
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product (twice the size of the first source operand) is truncated and stored in the destination operand (a 
general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of the destination operand 
format.

The CF and OF flags are set when the signed integer value of the intermediate product differs from the sign 
extended operand-size-truncated product, otherwise the CF and OF flags are cleared.

The three forms of the IMUL instruction are similar in that the length of the product is calculated to twice the length 
of the operands. With the one-operand form, the product is stored exactly in the destination. With the two- and 
three- operand forms, however, the result is truncated to the length of the destination before it is stored in the 
destination register. Because of this truncation, the CF or OF flag should be tested to ensure that no significant bits 
are lost. 

The two- and three-operand forms may also be used with unsigned operands because the lower half of the product 
is the same regardless if the operands are signed or unsigned. The CF and OF flags, however, cannot be used to 
determine if the upper half of the result is non-zero.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. Use of REX.W modifies the three 
forms of the instruction as follows.
• One-operand form —The source operand (in a 64-bit general-purpose register or memory location) is 

multiplied by the value in the RAX register and the product is stored in the RDX:RAX registers.
• Two-operand form — The source operand is promoted to 64 bits if it is a register or a memory location. The 

destination operand is promoted to 64 bits.
• Three-operand form — The first source operand (either a register or a memory location) and destination 

operand are promoted to 64 bits. If the source operand is an immediate, it is sign extended to 64 bits. 

Operation

IF (NumberOfOperands = 1)
THEN IF (OperandSize = 8)

THEN
TMP_XP := AL ∗ SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC *); 
AX := TMP_XP[15:0];
IF SignExtend(TMP_XP[7:0]) = TMP_XP

THEN CF := 0; OF := 0;
ELSE CF := 1; OF := 1; FI;

ELSE IF OperandSize = 16
THEN 

TMP_XP := AX ∗ SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC *) 
DX:AX := TMP_XP[31:0];
IF SignExtend(TMP_XP[15:0]) = TMP_XP

THEN CF := 0; OF := 0;
ELSE CF := 1; OF := 1; FI;

ELSE IF OperandSize = 32 
THEN 

TMP_XP := EAX ∗ SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC*) 
EDX:EAX := TMP_XP[63:0];
IF SignExtend(TMP_XP[31:0]) = TMP_XP

THEN CF := 0; OF := 0;
ELSE CF := 1; OF := 1; FI;

ELSE (* OperandSize = 64 *)
TMP_XP := RAX ∗ SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC *)
EDX:EAX := TMP_XP[127:0];
IF SignExtend(TMP_XP[63:0]) = TMP_XP

THEN CF := 0; OF := 0;
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ELSE CF := 1; OF := 1; FI;
FI;

FI;
ELSE IF (NumberOfOperands = 2)

THEN 
TMP_XP := DEST ∗ SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC *)
DEST := TruncateToOperandSize(TMP_XP);
IF SignExtend(DEST) ≠ TMP_XP

THEN CF := 1; OF := 1;
ELSE CF := 0; OF := 0; FI;

ELSE (* NumberOfOperands = 3 *)
TMP_XP := SRC1 ∗ SRC2 (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC1 *)
DEST := TruncateToOperandSize(TMP_XP);
IF SignExtend(DEST) ≠ TMP_XP

THEN CF := 1; OF := 1;
ELSE CF := 0; OF := 0; FI;

FI;
FI;

Flags Affected

For the one operand form of the instruction, the CF and OF flags are set when significant bits are carried into the 
upper half of the result and cleared when the result fits exactly in the lower half of the result. For the two- and 
three-operand forms of the instruction, the CF and OF flags are set when the result must be truncated to fit in the 
destination operand size and cleared when the result fits exactly in the destination operand size. The SF, ZF, AF, and 
PF flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL NULL 
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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IN—Input From Port

Instruction Operand Encoding

Description

Copies the value from the I/O port specified with the second operand (source operand) to the destination operand 
(first operand). The source operand can be a byte-immediate or the DX register; the destination operand can be 
register AL, AX, or EAX, depending on the size of the port being accessed (8, 16, or 32 bits, respectively). Using the 
DX register as a source operand allows I/O port addresses from 0 to 65,535 to be accessed; using a byte imme-
diate allows I/O port addresses 0 to 255 to be accessed.

When accessing an 8-bit I/O port, the opcode determines the port size; when accessing a 16- and 32-bit I/O port, 
the operand-size attribute determines the port size. At the machine code level, I/O instructions are shorter when 
accessing 8-bit I/O ports. Here, the upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O address space. See Chapter 20, 
“Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more infor-
mation on accessing I/O ports in the I/O address space.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE ( * I/O operation is allowed *) 

DEST := SRC; (* Read from selected I/O port *)
FI;

ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *)
DEST := SRC; (* Read from selected I/O port *)

FI;

Flags Affected

None.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

E4 ib IN AL, imm8 I Valid Valid Input byte from imm8 I/O port address into 
AL.

E5 ib IN AX, imm8 I Valid Valid Input word from imm8 I/O port address into 
AX.

E5 ib IN EAX, imm8 I Valid Valid Input dword from imm8 I/O port address into 
EAX.

EC IN AL,DX ZO Valid Valid Input byte from I/O port in DX into AL.

ED IN AX,DX ZO Valid Valid Input word from I/O port in DX into AX.

ED IN EAX,DX ZO Valid Valid Input doubleword from I/O port in DX into 
EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I imm8 N/A N/A N/A

ZO N/A N/A N/A N/A
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Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the 

corresponding I/O permission bits in TSS for the I/O port being accessed is 1.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed is 1.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the 

corresponding I/O permission bits in TSS for the I/O port being accessed is 1.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
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INC—Increment by 1

Instruction Operand Encoding

Description

Adds 1 to the destination operand, while preserving the state of the CF flag. The destination operand can be a 
register or a memory location. This instruction allows a loop counter to be updated without disturbing the CF flag. 
(Use a ADD instruction with an immediate operand of 1 to perform an increment operation that does updates the 
CF flag.)

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, INC r16 and INC r32 are not encodable (because opcodes 40H through 47H are REX prefixes). 
Otherwise, the instruction’s 64-bit mode default operation size is 32 bits. Use of the REX.R prefix permits access to 
additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits.

Operation

DEST := DEST + 1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULLsegment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

FE /0 INC r/m8 M Valid Valid Increment r/m byte by 1.

REX + FE /0 INC r/m81

NOTES:
1. In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

M Valid N.E. Increment r/m byte by 1.

FF /0 INC r/m16 M Valid Valid Increment r/m word by 1.

FF /0 INC r/m32 M Valid Valid Increment r/m doubleword by 1.

REX.W + FF /0 INC r/m64 M Valid N.E. Increment r/m quadword by 1.

40+ rw2

2. 40H through 47H are REX prefixes in 64-bit mode.

INC r16 O N.E. Valid Increment word register by 1.

40+ rd INC r32 O N.E. Valid Increment doubleword register by 1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) N/A N/A N/A

O opcode + rd (r, w) N/A N/A N/A
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Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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INCSSPD/INCSSPQ—Increment Shadow Stack Pointer

Instruction Operand Encoding

Description
This instruction can be used to increment the current shadow stack pointer by the operand size of the instruction 
times the unsigned 8-bit value specified by bits 7:0 in the source operand. The instruction performs a pop and 
discard of the first and last element on the shadow stack in the range specified by the unsigned 8-bit value in bits 
7:0 of the source operand.

Operation

IF CPL = 3
IF (CR4.CET & IA32_U_CET.SH_STK_EN) = 0

THEN #UD; FI;
ELSE

IF (CR4.CET & IA32_S_CET.SH_STK_EN) = 0
THEN #UD; FI;

FI;

IF (operand size is 64-bit)
THEN

Range := R64[7:0];
shadow_stack_load 8 bytes from SSP;
IF Range > 0

              THEN shadow_stack_load 8 bytes from SSP + 8 * (Range - 1);
FI;
SSP := SSP + Range * 8;

ELSE
Range := R32[7:0];
shadow_stack_load 4 bytes from SSP;
IF Range > 0

              THEN shadow_stack_load 4 bytes from SSP + 4 * (Range - 1);
FI;
SSP := SSP + Range * 4;

FI;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

INCSSPD void _incsspd(int);
INCSSPQ void _incsspq(int);

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F AE /05
INCSSPD r32

R V/V CET_SS Increment SSP by 4 * r32[7:0].

F3 REX.W 0F AE /05
INCSSPQ r64

R V/N.E. CET_SS Increment SSP by 8 * r64[7:0].

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

R N/A ModRM:r/m (r) N/A N/A N/A
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Protected Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
IF CPL = 3 and IA32_U_CET.SH_STK_EN = 0.
IF CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#UD The INCSSP instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The INCSSP instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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INS/INSB/INSW/INSD—Input from Port to String

Instruction Operand Encoding

Description

Copies the data from the I/O port specified with the source operand (second operand) to the destination operand 
(first operand). The source operand is an I/O port address (from 0 to 65,535) that is read from the DX register. The 
destination operand is a memory location, the address of which is read from either the ES:DI, ES:EDI or the RDI 
registers (depending on the address-size attribute of the instruction, 16, 32 or 64, respectively). (The ES segment 
cannot be overridden with a segment override prefix.) The size of the I/O port being accessed (that is, the size of 
the source and destination operands) is determined by the opcode for an 8-bit I/O port or by the operand-size attri-
bute of the instruction for a 16- or 32-bit I/O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands” form and the “no-
operands” form. The explicit-operands form (specified with the INS mnemonic) allows the source and destination 
operands to be specified explicitly. Here, the source operand must be “DX,” and the destination operand should be 
a symbol that indicates the size of the I/O port and the destination address. This explicit-operands form is provided 
to allow documentation; however, note that the documentation provided by this form can be misleading. That is, 
the destination operand symbol must specify the correct type (size) of the operand (byte, word, or doubleword), 
but it does not have to specify the correct location. The location is always specified by the ES:(E)DI registers, 
which must be loaded correctly before the INS instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the INS instructions. 
Here also DX is assumed by the processor to be the source operand and ES:(E)DI is assumed to be the destination 
operand. The size of the I/O port is specified with the choice of mnemonic: INSB (byte), INSW (word), or INSD 
(doubleword).

After the byte, word, or doubleword is transfer from the I/O port to the memory location, the DI/EDI/RDI register 
is incremented or decremented automatically according to the setting of the DF flag in the EFLAGS register. (If the 
DF flag is 0, the (E)DI register is incremented; if the DF flag is 1, the (E)DI register is decremented.) The (E)DI 
register is incremented or decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword 
operations.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

6C INS m8, DX ZO Valid Valid Input byte from I/O port specified in DX into 
memory location specified in ES:(E)DI or RDI.1

NOTES:
1. In 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit mode, only 32-bit (EDI) and 16-bit (DI) 

address sizes are supported.

6D INS m16, DX ZO Valid Valid Input word from I/O port specified in DX into 
memory location specified in ES:(E)DI or RDI.1

6D INS m32, DX ZO Valid Valid Input doubleword from I/O port specified in DX 
into memory location specified in ES:(E)DI or 
RDI.1

6C INSB ZO Valid Valid Input byte from I/O port specified in DX into 
memory location specified with ES:(E)DI or 
RDI.1

6D INSW ZO Valid Valid Input word from I/O port specified in DX into 
memory location specified in ES:(E)DI or RDI.1

6D INSD ZO Valid Valid Input doubleword from I/O port specified in DX 
into memory location specified in ES:(E)DI or 
RDI.1

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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The INS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for block input of ECX bytes, words, 
or doublewords. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4 of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for a description of the REP prefix.

These instructions are only useful for accessing I/O ports located in the processor’s I/O address space. See Chapter 
20, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more 
information on accessing I/O ports in the I/O address space.

In 64-bit mode, default address size is 64 bits, 32 bit address size is supported using the prefix 67H. The address 
of the memory destination is specified by RDI or EDI. 16-bit address size is not supported in 64-bit mode. The 
operand size is not promoted.

These instructions may read from the I/O port without writing to the memory location if an exception or VM exit 
occurs due to the write (e.g. #PF). If this would be problematic, for example because the I/O port read has side-
effects, software should ensure the write to the memory location does not cause an exception or VM exit.

Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE (* I/O operation is allowed *) 

DEST := SRC; (* Read from I/O port *)
FI;

ELSE (Real Mode or Protected Mode with CPL IOPL *)
DEST := SRC; (* Read from I/O port *)

FI;

Non-64-bit Mode:

IF (Byte transfer)
THEN IF DF = 0

THEN (E)DI := (E)DI + 1; 
ELSE (E)DI := (E)DI – 1; FI;

ELSE IF (Word transfer)
THEN IF DF = 0

THEN (E)DI := (E)DI + 2; 
ELSE (E)DI := (E)DI – 2; FI;

ELSE (* Doubleword transfer *)
THEN IF DF = 0

THEN (E)DI := (E)DI + 4; 
ELSE (E)DI := (E)DI – 4; FI;

FI;
FI;

FI64-bit Mode:

IF (Byte transfer)
THEN IF DF = 0

THEN (E|R)DI := (E|R)DI + 1; 
ELSE (E|R)DI := (E|R)DI – 1; FI;

ELSE IF (Word transfer)
THEN IF DF = 0

THEN (E)DI := (E)DI + 2; 
ELSE (E)DI := (E)DI – 2; FI;

ELSE (* Doubleword transfer *)
THEN IF DF = 0

THEN (E|R)DI := (E|R)DI + 4; 
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ELSE (E|R)DI := (E|R)DI – 4; FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the 

corresponding I/O permission bits in TSS for the I/O port being accessed is 1.
If the destination is located in a non-writable segment.
If an illegal memory operand effective address in the ES segments is given.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed is 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the 

corresponding I/O permission bits in TSS for the I/O port being accessed is 1.
If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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INSERTPS—Insert Scalar Single Precision Floating-Point Value

Instruction Operand Encoding

Description
(register source form)
Copy a single precision scalar floating-point element into a 128-bit vector register. The immediate operand has 
three fields, where the ZMask bits specify which elements of the destination will be set to zero, the Count_D bits 
specify which element of the destination will be overwritten with the scalar value, and for vector register sources 
the Count_S bits specify which element of the source will be copied. When the scalar source is a memory operand 
the Count_S bits are ignored. 
(memory source form)
Load a floating-point element from a 32-bit memory location and destination operand it into the first source at the 
location indicated by the Count_D bits of the immediate operand. Store in the destination and zero out destination 
elements based on the ZMask bits of the immediate operand. 
128-bit Legacy SSE version: The first source register is an XMM register. The second source operand is either an 
XMM register or a 32-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (MAXVL-1:128) of the corresponding register destination are unmodified.
VEX.128 and EVEX encoded version: The destination and first source register is an XMM register. The second 
source operand is either an XMM register or a 32-bit memory location. The upper bits (MAXVL-1:128) of the corre-
sponding register destination are zeroed.
If VINSERTPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause 
an #UD exception.

Opcode/
Instruction

Op / En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

66 0F 3A 21 /r ib
INSERTPS xmm1, xmm2/m32, imm8

A V/V SSE4_1 Insert a single precision floating-point value selected 
by imm8 from xmm2/m32 into xmm1 at the specified 
destination element specified by imm8 and zero out 
destination elements in xmm1 as indicated in imm8.

VEX.128.66.0F3A.WIG 21 /r ib
VINSERTPS xmm1, xmm2, xmm3/m32, 
imm8

B V/V AVX Insert a single precision floating-point value selected 
by imm8 from xmm3/m32 and merge with values in 
xmm2 at the specified destination element specified 
by imm8 and write out the result and zero out 
destination elements in xmm1 as indicated in imm8.

EVEX.128.66.0F3A.W0 21 /r ib
VINSERTPS xmm1, xmm2, xmm3/m32, 
imm8

C V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Insert a single precision floating-point value selected 
by imm8 from xmm3/m32 and merge with values in 
xmm2 at the specified destination element specified 
by imm8 and write out the result and zero out 
destination elements in xmm1 as indicated in imm8.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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Operation

VINSERTPS (VEX.128 and EVEX Encoded Version)
IF (SRC = REG) THEN COUNT_S := imm8[7:6]

ELSE COUNT_S := 0
COUNT_D := imm8[5:4]
ZMASK := imm8[3:0]
CASE (COUNT_S) OF

0: TMP := SRC2[31:0]
1: TMP := SRC2[63:32]
2: TMP := SRC2[95:64]
3: TMP := SRC2[127:96]

ESAC;
CASE (COUNT_D) OF

0: TMP2[31:0] := TMP
TMP2[127:32] := SRC1[127:32]

1: TMP2[63:32] := TMP
TMP2[31:0] := SRC1[31:0]
TMP2[127:64] := SRC1[127:64]

2: TMP2[95:64] := TMP
TMP2[63:0] := SRC1[63:0]
TMP2[127:96] := SRC1[127:96]

3: TMP2[127:96] := TMP
TMP2[95:0] := SRC1[95:0]

ESAC;

IF (ZMASK[0] = 1) THEN DEST[31:0] := 00000000H
ELSE DEST[31:0] := TMP2[31:0]

IF (ZMASK[1] = 1) THEN DEST[63:32] := 00000000H
ELSE DEST[63:32] := TMP2[63:32]

IF (ZMASK[2] = 1) THEN DEST[95:64] := 00000000H
ELSE DEST[95:64] := TMP2[95:64]

IF (ZMASK[3] = 1) THEN DEST[127:96] := 00000000H
ELSE DEST[127:96] := TMP2[127:96]

DEST[MAXVL-1:128] := 0

INSERTPS (128-bit Legacy SSE Version)
IF (SRC = REG) THEN COUNT_S :=imm8[7:6]

ELSE COUNT_S :=0
COUNT_D := imm8[5:4]
ZMASK := imm8[3:0]
CASE (COUNT_S) OF

0: TMP := SRC[31:0]
1: TMP := SRC[63:32]
2: TMP := SRC[95:64]
3: TMP := SRC[127:96]

ESAC;

CASE (COUNT_D) OF
0: TMP2[31:0] := TMP

TMP2[127:32] := DEST[127:32]
1: TMP2[63:32] := TMP

TMP2[31:0] := DEST[31:0]
TMP2[127:64] := DEST[127:64]

2: TMP2[95:64] := TMP
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TMP2[63:0] := DEST[63:0]
TMP2[127:96] := DEST[127:96]

3: TMP2[127:96] := TMP
TMP2[95:0] := DEST[95:0]

ESAC;

IF (ZMASK[0] = 1) THEN DEST[31:0] := 00000000H
ELSE DEST[31:0] := TMP2[31:0]

IF (ZMASK[1] = 1) THEN DEST[63:32] := 00000000H
ELSE DEST[63:32] := TMP2[63:32]

IF (ZMASK[2] = 1) THEN DEST[95:64] := 00000000H
ELSE DEST[95:64] := TMP2[95:64]

IF (ZMASK[3] = 1) THEN DEST[127:96] := 00000000H
ELSE DEST[127:96] := TMP2[127:96]

DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VINSERTPS __m128 _mm_insert_ps(__m128 dst, __m128 src, const int nidx);
INSETRTPS __m128 _mm_insert_ps(__m128 dst, __m128 src, const int nidx);

SIMD Floating-Point Exceptions
None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-22, “Type 5 Class Exception Conditions,” additionally:
#UD If VEX.L = 0.
EVEX-encoded instruction, see Table 2-59, “Type E9NF Class Exception Conditions.”
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INT n/INTO/INT3/INT1—Call to Interrupt Procedure

Instruction Operand Encoding

Description

The INT n instruction generates a call to the interrupt or exception handler specified with the destination operand 
(see the section titled “Interrupts and Exceptions” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1). The destination operand specifies a vector from 0 to 255, encoded as an 8-bit 
unsigned intermediate value. Each vector provides an index to a gate descriptor in the IDT. The first 32 vectors are 
reserved by Intel for system use. Some of these vectors are used for internally generated exceptions.

The INT n instruction is the general mnemonic for executing a software-generated call to an interrupt handler. The 
INTO instruction is a special mnemonic for calling overflow exception (#OF), exception 4. The overflow interrupt 
checks the OF flag in the EFLAGS register and calls the overflow interrupt handler if the OF flag is set to 1. (The 
INTO instruction cannot be used in 64-bit mode.)

The INT3 instruction uses a one-byte opcode (CC) and is intended for calling the debug exception handler with a 
breakpoint exception (#BP). (This one-byte form is useful because it can replace the first byte of any instruction at 
which a breakpoint is desired, including other one-byte instructions, without overwriting other instructions.)

The INT1 instruction also uses a one-byte opcode (F1) and generates a debug exception (#DB) without setting any 
bits in DR6.1 Hardware vendors may use the INT1 instruction for hardware debug. For that reason, Intel recom-
mends software vendors instead use the INT3 instruction for software breakpoints.

An interrupt generated by the INTO, INT3, or INT1 instruction differs from one generated by INT n in the following 
ways: 
• The normal IOPL checks do not occur in virtual-8086 mode. The interrupt is taken (without fault) with any IOPL 

value.
• The interrupt redirection enabled by the virtual-8086 mode extensions (VME) does not occur. The interrupt is 

always handled by a protected-mode handler.

(These features do not pertain to CD03, the “normal” 2-byte opcode for INT 3. Intel and Microsoft assemblers will 
not generate the CD03 opcode from any mnemonic, but this opcode can be created by direct numeric code defini-
tion or by self-modifying code.)

The action of the INT n instruction (including the INTO, INT3, and INT1 instructions) is similar to that of a far call 
made with the CALL instruction. The primary difference is that with the INT n instruction, the EFLAGS register is 
pushed onto the stack before the return address. (The return address is a far address consisting of the current 
values of the CS and EIP registers.) Returns from interrupt procedures are handled with the IRET instruction, which 
pops the EFLAGS information and return address from the stack.

Each of the INT n, INTO, and INT3 instructions generates a general-protection exception (#GP) if the CPL is greater 
than the DPL value in the selected gate descriptor in the IDT. In contrast, the INT1 instruction can deliver a #DB 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

CC INT3 ZO Valid Valid Generate breakpoint trap.

CD ib INT imm8 I Valid Valid Generate software interrupt with vector 
specified by immediate byte.

CE INTO ZO Invalid Valid Generate overflow trap if overflow flag is 1.

F1 INT1 ZO Valid Valid Generate debug trap.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

I imm8 N/A N/A N/A

1. The mnemonic ICEBP has also been used for the instruction with opcode F1.
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even if the CPL is greater than the DPL of descriptor 1 in the IDT. (This behavior supports the use of INT1 by hard-
ware vendors performing hardware debug.)

The vector specifies an interrupt descriptor in the interrupt descriptor table (IDT); that is, it provides index into the 
IDT. The selected interrupt descriptor in turn contains a pointer to an interrupt or exception handler procedure. 
In protected mode, the IDT contains an array of 8-byte descriptors, each of which is an interrupt gate, trap gate, 
or task gate. In real-address mode, the IDT is an array of 4-byte far pointers (2-byte code segment selector and 
a 2-byte instruction pointer), each of which point directly to a procedure in the selected segment. (Note that in 
real-address mode, the IDT is called the interrupt vector table, and its pointers are called interrupt vectors.) 

The following decision table indicates which action in the lower portion of the table is taken given the conditions in 
the upper portion of the table. Each Y in the lower section of the decision table represents a procedure defined in 
the “Operation” section for this instruction (except #GP).

When the processor is executing in virtual-8086 mode, the IOPL determines the action of the INT n instruction. If 
the IOPL is less than 3, the processor generates a #GP(selector) exception; if the IOPL is 3, the processor executes 
a protected mode interrupt to privilege level 0. The interrupt gate's DPL must be set to 3 and the target CPL of the 
interrupt handler procedure must be 0 to execute the protected mode interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit of the IDT. The initial base 
address value of the IDTR after the processor is powered up or reset is 0.

Refer to Chapter 6, “Procedure Calls, Interrupts, and Exceptions” and Chapter 18, “Control-flow Enforcement Tech-
nology (CET)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for CET details.

Table 1-61.  Decision Table

PE 0 1 1 1 1 1 1 1

VM – – – – – 0 1 1

IOPL – – – – – – <3 =3

DPL/CPL 
RELATIONSHIP

– DPL<
CPL

– DPL>
CPL

DPL=
CPL or C

DPL<
CPL & NC

– –

INTERRUPT TYPE – S/W – – – – – –

GATE TYPE – – Task Trap or 
Interrupt

Trap or 
Interrupt

Trap or 
Interrupt

Trap or 
Interrupt

Trap or 
Interrupt

REAL-ADDRESS-MODE Y

PROTECTED-MODE Y Y Y Y Y Y Y

TRAP-OR-INTERRUPT-
GATE

Y Y Y Y Y

INTER-PRIVILEGE-LEVEL-
INTERRUPT

Y

INTRA-PRIVILEGE-LEVEL-
INTERRUPT

Y

INTERRUPT-FROM-
VIRTUAL-8086-MODE

Y

TASK-GATE Y

#GP Y Y Y

NOTES:
− Don't Care.
Y Yes, action taken.

Blank  Action not taken.
S/W  Applies to INT n, INT3, and INTO, but not to INT1.
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Instruction ordering. Instructions following an INT n may be fetched from memory before earlier instructions 
complete execution, but they will not execute (even speculatively) until all instructions prior to the INT n have 
completed execution (the later instructions may execute before data stored by the earlier instructions have 
become globally visible). This applies also to the INTO, INT3, and INT1 instructions, but not to executions of INTO 
when EFLAGS.OF = 0.

Operation

The following operational description applies not only to the INT n, INTO, INT3, or INT1 instructions, but also to 
external interrupts, nonmaskable interrupts (NMIs), and exceptions. Some of these events push onto the stack an 
error code.

The operational description specifies numerous checks whose failure may result in delivery of a nested exception. 
In these cases, the original event is not delivered.

The operational description specifies the error code delivered by any nested exception. In some cases, the error 
code is specified with a pseudofunction error_code(num,idt,ext), where idt and ext are bit values. The pseudofunc-
tion produces an error code as follows: (1) if idt is 0, the error code is (num & FCH) | ext; (2) if idt is 1, the error 
code is (num « 3) | 2 | ext.

In many cases, the pseudofunction error_code is invoked with a pseudovariable EXT. The value of EXT depends on 
the nature of the event whose delivery encountered a nested exception: if that event is a software interrupt (INT n, 
INT3, or INTO), EXT is 0; otherwise (including INT1), EXT is 1.

IF PE = 0
THEN 

GOTO REAL-ADDRESS-MODE;
ELSE (* PE = 1 *)

IF (EFLAGS.VM = 1 AND CR4.VME = 0 AND IOPL < 3 AND INT n) 
THEN 

 #GP(0); (* Bit 0 of error code is 0 because INT n *)
ELSE

IF (EFLAGS.VM = 1 AND CR4.VME = 1 AND INT n)
THEN

Consult bit n of the software interrupt redirection bit map in the TSS;
IF bit n is clear

THEN (* redirect interrupt to 8086 program interrupt handler *)
Push EFLAGS[15:0]; (* if IOPL < 3, save VIF in IF position and save IOPL position as 3 *)
Push CS;
Push IP;
IF IOPL = 3

THEN IF := 0; (* Clear interrupt flag *)
ELSE VIF := 0; (* Clear virtual interrupt flag *)

FI;
TF := 0; (* Clear trap flag *)
load CS and EIP (lower 16 bits only) from entry n in interrupt vector table referenced from TSS;

ELSE
IF IOPL = 3

THEN GOTO PROTECTED-MODE;
ELSE #GP(0); (* Bit 0 of error code is 0 because INT n *)

FI;
FI;

ELSE (* Protected mode, IA-32e mode, or virtual-8086 mode interrupt *)
IF (IA32_EFER.LMA = 0)

THEN (* Protected mode, or virtual-8086 mode interrupt *)
GOTO PROTECTED-MODE;

ELSE (* IA-32e mode interrupt *)
GOTO IA-32e-MODE;
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FI;
FI;

FI;
FI;
REAL-ADDRESS-MODE:

IF ((vector_number « 2) + 3) is not within IDT limit 
THEN #GP; FI;

IF stack not large enough for a 6-byte return information 
THEN #SS; FI;

Push (EFLAGS[15:0]);
IF := 0; (* Clear interrupt flag *)
TF := 0; (* Clear trap flag *)
AC := 0; (* Clear AC flag *)
Push(CS);
Push(IP);
(* No error codes are pushed in real-address mode*)
CS := IDT(Descriptor (vector_number « 2), selector));
EIP := IDT(Descriptor (vector_number « 2), offset)); (* 16 bit offset AND 0000FFFFH *)

END;
PROTECTED-MODE:

IF ((vector_number « 3) + 7) is not within IDT limits
or selected IDT descriptor is not an interrupt-, trap-, or task-gate type

THEN #GP(error_code(vector_number,1,EXT)); FI;
(* idt operand to error_code set because vector is used *)

IF software interrupt (* Generated by INT n, INT3, or INTO; does not apply to INT1 *)
THEN

IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)
THEN #GP(error_code(vector_number,1,0)); FI;
(* idt operand to error_code set because vector is used *)
(* ext operand to error_code is 0 because INT n, INT3, or INTO*)

FI;
IF gate not present 

THEN #NP(error_code(vector_number,1,EXT)); FI;
(* idt operand to error_code set because vector is used *)

IF task gate (* Specified in the selected interrupt table descriptor *)
THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE = 1, trap/interrupt gate *)

FI;
END;
IA-32e-MODE:

IF INTO and CS.L = 1 (64-bit mode)
THEN #UD;

FI;
IF ((vector_number « 4) + 15) is not in IDT limits
or selected IDT descriptor is not an interrupt-, or trap-gate type

THEN #GP(error_code(vector_number,1,EXT));
(* idt operand to error_code set because vector is used *)

FI;
IF software interrupt (* Generated by INT n, INT3, or INTO; does not apply to INT1 *)

THEN
IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)

THEN #GP(error_code(vector_number,1,0));
(* idt operand to error_code set because vector is used *)
(* ext operand to error_code is 0 because INT n, INT3, or INTO*)
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FI;
FI;
IF gate not present 

THEN #NP(error_code(vector_number,1,EXT));
(* idt operand to error_code set because vector is used *)

FI;
GOTO TRAP-OR-INTERRUPT-GATE; (* Trap/interrupt gate *)

END;
TASK-GATE: (* PE = 1, task gate *)

Read TSS selector in task gate (IDT descriptor);
IF local/global bit is set to local or index not within GDT limits

THEN #GP(error_code(TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(error_code(TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF TSS not present 
THEN #NP(error_code(TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code

THEN
IF stack limit does not allow push of error code

THEN #SS(EXT); FI;
Push(error code);

FI;
IF EIP not within code segment limit 

THEN #GP(EXT); FI;
END;
TRAP-OR-INTERRUPT-GATE:

Read new code-segment selector for trap or interrupt gate (IDT descriptor);
IF new code-segment selector is NULL

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
IF new code-segment selector is not within its descriptor table limits 

THEN #GP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Read descriptor referenced by new code-segment selector;
IF descriptor does not indicate a code segment or new code-segment DPL > CPL

THEN #GP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF new code-segment descriptor is not present, 
THEN #NP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF new code segment is non-conforming with DPL < CPL
THEN 

IF VM = 0
THEN 

GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT; 
(* PE = 1, VM = 0, interrupt or trap gate, nonconforming code segment,
DPL < CPL *)

ELSE (* VM = 1 *)
IF new code-segment DPL ≠ 0 

THEN #GP(error_code(new code-segment selector,0,EXT));
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(* idt operand to error_code is 0 because selector is used *)
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE; FI;
(* PE = 1, interrupt or trap gate, DPL < CPL, VM = 1 *)

FI;
ELSE (* PE = 1, interrupt or trap gate, DPL ≥ CPL *)

IF VM = 1 
THEN #GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is 0 because selector is used *)

IF new code segment is conforming or new code-segment DPL = CPL
THEN 

GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT; 
ELSE (* PE = 1, interrupt or trap gate, nonconforming code segment, DPL > CPL *)

#GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is 0 because selector is used *)

FI;
FI;

END;
INTER-PRIVILEGE-LEVEL-INTERRUPT:

(* PE = 1, interrupt or trap gate, non-conforming code segment, DPL < CPL *)
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
(* Identify stack-segment selector for new privilege level in current TSS *)

IF current TSS is 32-bit
THEN 

TSSstackAddress := (new code-segment DPL « 3) + 4;
IF (TSSstackAddress + 5) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS := 2 bytes loaded from (TSS base + TSSstackAddress + 4);
NewESP := 4 bytes loaded from (TSS base + TSSstackAddress);

ELSE (* current TSS is 16-bit *)
TSSstackAddress := (new code-segment DPL « 2) + 2
IF (TSSstackAddress + 3) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS := 2 bytes loaded from (TSS base + TSSstackAddress + 2);
NewESP := 2 bytes loaded from (TSS base + TSSstackAddress);

FI;
IF NewSS is NULL

THEN #TS(EXT); FI; 
IF NewSS index is not within its descriptor-table limits
or NewSS RPL ≠ new code-segment DPL 

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Read new stack-segment descriptor for NewSS in GDT or LDT;
IF new stack-segment DPL ≠ new code-segment DPL
or new stack-segment Type does not indicate writable data segment

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF NewSS is not present 
THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)
NewSSP := IA32_PLi_SSP (* where i = new code-segment DPL *)

ELSE (* IA-32e mode *)
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IF IDT-gate IST = 0
THEN TSSstackAddress := (new code-segment DPL « 3) + 4;
ELSE TSSstackAddress := (IDT gate IST « 3) + 28;

FI;
IF (TSSstackAddress + 7) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT); FI;
(* idt operand to error_code is 0 because selector is used *)

NewRSP := 8 bytes loaded from (current TSS base + TSSstackAddress);
NewSS := new code-segment DPL; (* NULL selector with RPL = new CPL *)
IF IDT-gate IST = 0

THEN
NewSSP := IA32_PLi_SSP (* where i = new code-segment DPL *)

ELSE
NewSSPAddress = IA32_INTERRUPT_SSP_TABLE_ADDR + (IDT-gate IST « 3)
(* Check if shadow stacks are enabled at CPL 0 *)
IF ShadowStackEnabled(CPL 0)

THEN NewSSP := 8 bytes loaded from NewSSPAddress; FI;
FI;

FI;
IF IDT gate is 32-bit 

THEN
IF new stack does not have room for 24 bytes (error code pushed) 
or 20 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

FI
ELSE 

IF IDT gate is 16-bit 
THEN

IF new stack does not have room for 12 bytes (error code pushed) 
or 10 bytes (no error code pushed);

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

ELSE (* 64-bit IDT gate*)
IF StackAddress is non-canonical

THEN #SS(EXT); FI; (* Error code contains NULL selector *)
FI;

FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
IF instruction pointer from IDT gate is not within new code-segment limits 

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
ESP := NewESP;
SS := NewSS; (* Segment descriptor information also loaded *)

ELSE (* IA-32e mode *)
IF instruction pointer from IDT gate contains a non-canonical address

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
RSP := NewRSP & FFFFFFFFFFFFFFF0H;
SS := NewSS;

FI;
IF IDT gate is 32-bit

THEN 
CS:EIP := Gate(CS:EIP); (* Segment descriptor information also loaded *)

ELSE 
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IF IDT gate 16-bit
THEN 

CS:IP := Gate(CS:IP); 
(* Segment descriptor information also loaded *)

ELSE (* 64-bit IDT gate *)
CS:RIP := Gate(CS:RIP); 
(* Segment descriptor information also loaded *)

FI;
FI;
IF IDT gate is 32-bit

THEN
Push(far pointer to old stack); 
(* Old SS and ESP, 3 words padded to 4 *)
Push(EFLAGS);
Push(far pointer to return instruction); 
(* Old CS and EIP, 3 words padded to 4 *)
Push(ErrorCode); (* If needed, 4 bytes *)

ELSE
IF IDT gate 16-bit

THEN
Push(far pointer to old stack); 
(* Old SS and SP, 2 words *)
Push(EFLAGS(15:0]);
Push(far pointer to return instruction); 
(* Old CS and IP, 2 words *)
Push(ErrorCode); (* If needed, 2 bytes *)

ELSE (* 64-bit IDT gate *)
Push(far pointer to old stack); 
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction); 
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8-bytes *)

FI;
FI;
IF ShadowStackEnabled(CPL) AND CPL = 3

THEN
IF IA32_EFER.LMA = 0

THEN IA32_PL3_SSP := SSP;
ELSE (* adjust so bits 63:N get the value of bit N–1, where N is the CPU’s maximum linear-address width *)

IA32_PL3_SSP := LA_adjust(SSP);
FI;

FI;
CPL := new code-segment DPL;
CS(RPL) := CPL;
IF ShadowStackEnabled(CPL)

oldSSP := SSP
SSP := NewSSP
IF SSP & 0x07 != 0

THEN #GP(0); FI;
(* Token and CS:LIP:oldSSP pushed on shadow stack must be contained in a naturally aligned 32-byte region *)
IF (SSP & ~0x1F) != ((SSP – 24) & ~0x1F)

#GP(0); FI;
IF ((IA32_EFER.LMA and CS.L) = 0 AND SSP[63:32] != 0)
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THEN #GP(0); FI;
expected_token_value = SSP (* busy bit - bit position 0 - must be clear *)
new_token_value = SSP | BUSY_BIT   (* Set the busy bit *)
IF shadow_stack_lock_cmpxchg8b(SSP, new_token_value, expected_token_value) != expected_token_value

THEN #GP(0); FI;
IF oldSS.DPL != 3

ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of 0 *)
ShadowStackPush8B(oldCSBASE + oldRIP); (* Padded with 32 high-order bits of 0 for 32 bit LIP*)
ShadowStackPush8B(oldSSP);

FI;
FI;
IF EndbranchEnabled (CPL)

IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH;
IA32_S_CET.SUPPRESS = 0

FI;
IF IDT gate is interrupt gate

THEN IF := 0 (* Interrupt flag set to 0, interrupts disabled *); FI;
TF := 0;
VM := 0;
RF := 0;
NT := 0;

END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:

(* Identify stack-segment selector for privilege level 0 in current TSS *)
IF current TSS is 32-bit

THEN 
IF TSS limit < 9

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS := 2 bytes loaded from (current TSS base + 8);
NewESP := 4 bytes loaded from (current TSS base + 4);

ELSE (* current TSS is 16-bit *)
IF TSS limit < 5

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS := 2 bytes loaded from (current TSS base + 4);
NewESP := 2 bytes loaded from (current TSS base + 2);

FI;
IF NewSS is NULL

THEN #TS(EXT); FI; (* Error code contains NULL selector *)
IF NewSS index is not within its descriptor table limits
or NewSS RPL ≠ 0

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Read new stack-segment descriptor for NewSS in GDT or LDT;
IF new stack-segment DPL ≠ 0 or stack segment does not indicate writable data segment

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF new stack segment not present 
THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSSP := IA32_PL0_SSP (* the new code-segment DPL must be 0 *)
IF IDT gate is 32-bit

THEN
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IF new stack does not have room for 40 bytes (error code pushed) 
or 36 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

ELSE (* IDT gate is 16-bit) 
IF new stack does not have room for 20 bytes (error code pushed) 
or 18 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

FI;
IF instruction pointer from IDT gate is not within new code-segment limits 

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
tempEFLAGS := EFLAGS;
VM := 0;
TF := 0;
RF := 0;
NT := 0;
IF service through interrupt gate 

THEN IF = 0; FI;
TempSS := SS;
TempESP := ESP;
SS := NewSS;
ESP := NewESP;
(* Following pushes are 16 bits for 16-bit IDT gates and 32 bits for 32-bit IDT gates; 
Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS := 0; (* Segment registers made NULL, invalid for use in protected mode *)
FS := 0;
DS := 0;
ES := 0;
CS := Gate(CS); (* Segment descriptor information also loaded *)
CS(RPL) := 0;
CPL := 0;
IF IDT gate is 32-bit

THEN
EIP := Gate(instruction pointer);

ELSE (* IDT gate is 16-bit *)
EIP := Gate(instruction pointer) AND 0000FFFFH;

FI;
IF ShadowStackEnabled(0)

oldSSP := SSP
SSP := NewSSP
IF SSP & 0x07 != 0

THEN #GP(0); FI;
(* Token and CS:LIP:oldSSP pushed on shadow stack must be contained in a naturally aligned 32-byte region *)
IF (SSP & ~0x1F) != ((SSP – 24) & ~0x1F)
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#GP(0); FI;
IF ((IA32_EFER.LMA and CS.L) = 0 AND SSP[63:32] != 0)

THEN #GP(0); FI;
expected_token_value = SSP (* busy bit - bit position 0 - must be clear *)
new_token_value = SSP | BUSY_BIT (* Set the busy bit *)
IF shadow_stack_lock_cmpxchg8b(SSP, new_token_value, expected_token_value) != expected_token_value

THEN #GP(0); FI;
FI;
IF EndbranchEnabled (CPL)

IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH;
IA32_S_CET.SUPPRESS = 0

FI;
(* Start execution of new routine in Protected Mode *)
END;

INTRA-PRIVILEGE-LEVEL-INTERRUPT:
NewSSP = SSP;
CHECK_SS_TOKEN = 0
(* PE = 1, DPL = CPL or conforming segment *)
IF IA32_EFER.LMA = 1 (* IA-32e mode *)

IF IDT-descriptor IST ≠ 0
THEN

TSSstackAddress := (IDT-descriptor IST « 3) + 28;
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewRSP := 8 bytes loaded from (current TSS base + TSSstackAddress);
ELSE NewRSP := RSP; 

FI;
IF IDT-descriptor IST ≠ 0

IF ShadowStackEnabled(CPL)
THEN

NewSSPAddress = IA32_INTERRUPT_SSP_TABLE_ADDR + (IDT gate IST « 3)
NewSSP := 8 bytes loaded from NewSSPAddress
CHECK_SS_TOKEN = 1

FI;
FI;

FI;
IF 32-bit gate (* implies IA32_EFER.LMA = 0 *)

THEN
IF current stack does not have room for 16 bytes (error code pushed) 
or 12 bytes (no error code pushed)

THEN #SS(EXT); FI; (* Error code contains NULL selector *)
ELSE IF 16-bit gate (* implies IA32_EFER.LMA = 0 *) 

IF current stack does not have room for 8 bytes (error code pushed) 
or 6 bytes (no error code pushed)

THEN #SS(EXT); FI; (* Error code contains NULL selector *)
ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)

IF NewRSP contains a non-canonical address
THEN #SS(EXT); (* Error code contains NULL selector *)

FI;
FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
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IF instruction pointer from IDT gate is not within new code-segment limit 
THEN #GP(EXT); FI; (* Error code contains NULL selector *)

ELSE
IF instruction pointer from IDT gate contains a non-canonical address

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
RSP := NewRSP & FFFFFFFFFFFFFFF0H;

FI;
IF IDT gate is 32-bit (* implies IA32_EFER.LMA = 0 *)

THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP := Gate(CS:EIP); (* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE
IF IDT gate is 16-bit (* implies IA32_EFER.LMA = 0 *) 

THEN
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP := Gate(CS:IP); 
(* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)
Push(far pointer to old stack); 
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction); 
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8 bytes *)
CS:RIP := GATE(CS:RIP); 
(* Segment descriptor information also loaded *)

FI;
FI;
CS(RPL) := CPL;
IF ShadowStackEnabled(CPL)

IF CHECK_SS_TOKEN == 1
THEN

IF NewSSP & 0x07 != 0
THEN #GP(0); FI;

(* Token and CS:LIP:oldSSP pushed on shadow stack must be contained in a naturally aligned 32-byte region *)
IF (NewSSP & ~0x1F) != ((NewSSP – 24) & ~0x1F)

#GP(0); FI;

IF ((IA32_EFER.LMA and CS.L) = 0 AND NewSSP[63:32] != 0)
    THEN #GP(0); FI;

expected_token_value = NewSSP (* busy bit - bit position 0 - must be clear *)
new_token_value = NewSSP | BUSY_BIT (* Set the busy bit *)
IF shadow_stack_lock_cmpxchg8b(NewSSP, new_token_value, expected_token_value) != expected_token_value

THEN #GP(0); FI;
FI;
(* Align to next 8 byte boundary *)
tempSSP = SSP;
Shadow_stack_store 4 bytes of 0 to (NewSSP − 4)
SSP = newSSP & 0xFFFFFFFFFFFFFFF8H;
(* push cs:lip:ssp on shadow stack *)
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ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of 0 *)
ShadowStackPush8B(oldCSBASE + oldRIP); (* Padded with 32 high-order bits of 0 for 32 bit LIP*)
ShadowStackPush8B(tempSSP);

FI;
IF EndbranchEnabled (CPL)

IF CPL = 3
THEN

IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_U_CET.SUPPRESS = 0

ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0

FI;
FI;
IF IDT gate is interrupt gate 

THEN IF := 0; FI; (* Interrupt flag set to 0; interrupts disabled *)
TF := 0;
NT := 0;
VM := 0;
RF := 0;

END;

Flags Affected

The EFLAGS register is pushed onto the stack. The IF, TF, NT, AC, RF, and VM flags may be cleared, depending on 
the mode of operation of the processor when the INT instruction is executed (see the “Operation” section). If the 
interrupt uses a task gate, any flags may be set or cleared, controlled by the EFLAGS image in the new task’s TSS.

Protected Mode Exceptions
#GP(error_code) If the instruction pointer in the IDT or in the interrupt, trap, or task gate is beyond the code 

segment limits.
If the segment selector in the interrupt, trap, or task gate is NULL.
If an interrupt, trap, or task gate, code segment, or TSS segment selector index is outside its 
descriptor table limits.
If the vector selects a descriptor outside the IDT limits.
If an IDT descriptor is not an interrupt, trap, or task gate.
If an interrupt is generated by the INT n, INT3, or INTO instruction and the DPL of an interrupt, 
trap, or task gate is less than the CPL.
If the segment selector in an interrupt or trap gate does not point to a segment descriptor for 
a code segment.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.
If SSP in IA32_PLi_SSP (where i is the new CPL) is not 8 byte aligned.
If the token and the stack frame to be pushed on shadow stack are not contained in a naturally 
aligned 32-byte region of the shadow stack.
If “supervisor Shadow Stack” token on new shadow stack is marked busy.
If destination mode is 32-bit or compatibility mode, but SSP address in “supervisor shadow 
stack” token is beyond 4GB.
If SSP address in “supervisor shadow stack” token does not match SSP address in 
IA32_PLi_SSP (where i is the new CPL).
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#SS(error_code) If pushing the return address, flags, or error code onto the stack exceeds the bounds of the 
stack segment and no stack switch occurs.
If the SS register is being loaded and the segment pointed to is marked not present.
If pushing the return address, flags, error code, or stack segment pointer exceeds the bounds 
of the new stack segment when a stack switch occurs.

#NP(error_code) If code segment, interrupt gate, trap gate, task gate, or TSS is not present.
#TS(error_code) If the RPL of the stack segment selector in the TSS is not equal to the DPL of the code segment 

being accessed by the interrupt or trap gate.
If DPL of the stack segment descriptor pointed to by the stack segment selector in the TSS is 
not equal to the DPL of the code segment descriptor for the interrupt or trap gate.
If the stack segment selector in the TSS is NULL.
If the stack segment for the TSS is not a writable data segment.
If segment-selector index for stack segment is outside descriptor table limits. 

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the interrupt vector number is outside the IDT limits.
#SS If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack exceeds the bounds of the 
stack segment.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(error_code) (For INT n, INTO, or BOUND instruction) If the IOPL is less than 3 or the DPL of the interrupt, 

trap, or task gate is not equal to 3.
If the instruction pointer in the IDT or in the interrupt, trap, or task gate is beyond the code 
segment limits.
If the segment selector in the interrupt, trap, or task gate is NULL.
If a interrupt gate, trap gate, task gate, code segment, or TSS segment selector index is 
outside its descriptor table limits.
If the vector selects a descriptor outside the IDT limits.
If an IDT descriptor is not an interrupt, trap, or task gate.
If an interrupt is generated by INT n, INT3, or INTO and the DPL of an interrupt, trap, or task 
gate is less than the CPL.
If the segment selector in an interrupt or trap gate does not point to a segment descriptor for 
a code segment.
If the segment selector for a TSS has its local/global bit set for local.

#SS(error_code) If the SS register is being loaded and the segment pointed to is marked not present.
If pushing the return address, flags, error code, stack segment pointer, or data segments 
exceeds the bounds of the stack segment.

#NP(error_code) If code segment, interrupt gate, trap gate, task gate, or TSS is not present.
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#TS(error_code) If the RPL of the stack segment selector in the TSS is not equal to the DPL of the code segment 
being accessed by the interrupt or trap gate.
If DPL of the stack segment descriptor for the TSS’s stack segment is not equal to the DPL of 
the code segment descriptor for the interrupt or trap gate.
If the stack segment selector in the TSS is NULL.
If the stack segment for the TSS is not a writable data segment.
If segment-selector index for stack segment is outside descriptor table limits. 

#PF(fault-code) If a page fault occurs.
#OF If the INTO instruction is executed and the OF flag is set.
#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(error_code) If the instruction pointer in the 64-bit interrupt gate or trap gate is non-canonical.

If the segment selector in the 64-bit interrupt or trap gate is NULL.
If the vector selects a descriptor outside the IDT limits.
If the vector points to a gate which is in non-canonical space.
If the vector points to a descriptor which is not a 64-bit interrupt gate or a 64-bit trap gate.
If the descriptor pointed to by the gate selector is outside the descriptor table limit.
If the descriptor pointed to by the gate selector is in non-canonical space.
If the descriptor pointed to by the gate selector is not a code segment.
If the descriptor pointed to by the gate selector doesn’t have the L-bit set, or has both the L-
bit and D-bit set.
If the descriptor pointed to by the gate selector has DPL > CPL.
If SSP in IA32_PLi_SSP (where i is the new CPL) is not 8 byte aligned.
If the token and the stack frame to be pushed on shadow stack are not contained in a naturally 
aligned 32-byte region of the shadow stack.
If “supervisor shadow stack” token on new shadow stack is marked busy.
If destination mode is 32-bit or compatibility mode, but SSP address in “supervisor shadow 
stack” token is beyond 4GB.
If SSP address in “supervisor shadow stack” token does not match SSP address in 
IA32_PLi_SSP (where i is the new CPL).

#SS(error_code) If a push of the old EFLAGS, CS selector, EIP, or error code is in non-canonical space with no 
stack switch.
If a push of the old SS selector, ESP, EFLAGS, CS selector, EIP, or error code is in non-canonical 
space on a stack switch (either CPL change or no-CPL with IST).

#NP(error_code) If the 64-bit interrupt-gate, 64-bit trap-gate, or code segment is not present.
#TS(error_code) If an attempt to load RSP from the TSS causes an access to non-canonical space.

If the RSP from the TSS is outside descriptor table limits. 
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.
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INVD—Invalidate Internal Caches

Instruction Operand Encoding

Description

Invalidates (flushes) the processor’s internal caches and issues a special-function bus cycle that directs external 
caches to also flush themselves. Data held in internal caches is not written back to main memory. 

After executing this instruction, the processor does not wait for the external caches to complete their flushing oper-
ation before proceeding with instruction execution. It is the responsibility of hardware to respond to the cache flush 
signal.

The INVD instruction is a privileged instruction. When the processor is running in protected mode, the CPL of a 
program or procedure must be 0 to execute this instruction.

The INVD instruction may be used when the cache is used as temporary memory and the cache contents need to 
be invalidated rather than written back to memory. When the cache is used as temporary memory, no external 
device should be actively writing data to main memory. 

Use this instruction with care. Data cached internally and not written back to main memory will be lost. Note that 
any data from an external device to main memory (for example, via a PCIWrite) can be temporarily stored in the 
caches; these data can be lost when an INVD instruction is executed. Unless there is a specific requirement or 
benefit to flushing caches without writing back modified cache lines (for example, temporary memory, testing, or 
fault recovery where cache coherency with main memory is not a concern), software should instead use the 
WBINVD instruction.

On processors that support processor reserved memory, the INVD instruction cannot be executed when processor 
reserved memory protections are activated. See Section 37.5, “EPC and Management of EPC Pages,” in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3D.

Some processors prevent execution of INVD after BIOS execution is complete. They report this by enumerating 
CPUID.(EAX=07H,ECX=1H):EAX[bit 30] as 1. On such processors, INVD cannot be executed if bit 0 of 
SR_BIOS_DONE (MSR address 151H) is 1.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The INVD instruction is implementation dependent; it may be implemented differently on different families of Intel 
64 or IA-32 processors. This instruction is not supported on IA-32 processors earlier than the Intel486 processor.

Operation

Flush(InternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution *)

Flags Affected

None.

Opcode1

NOTES:
1. See the IA-32 Architecture Compatibility section below.

Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 08 INVD ZO Valid Valid Flush internal caches; initiate flushing of 
external caches.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the processor reserved memory protections are activated.
If CPUID.(EAX=07H, ECX=1H):EAX[30] = 1 and bit 0 is set in MSR_BIOS_DONE (MSR 
address 151H).

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP(0) If CPUID.(EAX=07H, ECX=1H):EAX[30] = 1 and bit 0 is set in MSR_BIOS_DONE (MSR 

address 151H).
If the processor reserved memory protections are activated.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The INVD instruction cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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INVLPG—Invalidate TLB Entries

Instruction Operand Encoding

Description

Invalidates any translation lookaside buffer (TLB) entries specified with the source operand. The source operand is 
a memory address. The processor determines the page that contains that address and flushes all TLB entries for 
that page.1

The INVLPG instruction is a privileged instruction. When the processor is running in protected mode, the CPL must 
be 0 to execute this instruction.

The INVLPG instruction normally flushes TLB entries only for the specified page; however, in some cases, it may 
flush more entries, even the entire TLB. The instruction invalidates TLB entries associated with the current PCID 
and may or may not do so for TLB entries associated with other PCIDs. (If PCIDs are disabled — CR4.PCIDE = 0 — 
the current PCID is 000H.) The instruction also invalidates any global TLB entries for the specified page, regardless 
of PCID.

For more details on operations that flush the TLB, see “MOV—Move to/from Control Registers” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2B, and Section 5.10.4.1, “Operations that Invalidate 
TLBs and Paging-Structure Caches,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3A.

This instruction’s operation is the same in all non-64-bit modes. It also operates the same in 64-bit mode, except 
if the memory address is in non-canonical form. In this case, INVLPG is the same as a NOP.

IA-32 Architecture Compatibility

The INVLPG instruction is implementation dependent, and its function may be implemented differently on different 
families of Intel 64 or IA-32 processors. This instruction is not supported on IA-32 processors earlier than the 
Intel486 processor.

Operation

Invalidate(RelevantTLBEntries);
Continue; (* Continue execution *)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD Operand is a register.

If the LOCK prefix is used.

Opcode1

NOTES:
1. See the IA-32 Architecture Compatibility section below.

Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01/7 INVLPG m M Valid Valid Invalidate TLB entries for page containing m.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A

1. If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page 
(see Section 5.10.2.3, “Details of TLB Use,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A), the 
instruction invalidates all of them.
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Real-Address Mode Exceptions
#UD Operand is a register.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The INVLPG instruction cannot be executed at the virtual-8086 mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD Operand is a register.

If the LOCK prefix is used.
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INVPCID—Invalidate Process-Context Identifier

Instruction Operand Encoding

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-structure caches based on process-
context identifier (PCID). (See Section 5.10, “Caching Translation Information,” in the Intel 64 and IA-32 Architec-
ture Software Developer’s Manual, Volume 3A.) Invalidation is based on the INVPCID type specified in the register 
operand and the INVPCID descriptor specified in the memory operand.

Outside 64-bit mode, the register operand is always 32 bits, regardless of the value of CS.D. In 64-bit mode the 
register operand has 64 bits.

There are four INVPCID types currently defined:
• Individual-address invalidation: If the INVPCID type is 0, the logical processor invalidates mappings—except 

global translations—for the linear address and PCID specified in the INVPCID descriptor.1 In some cases, the 
instruction may invalidate global translations or mappings for other linear addresses (or other PCIDs) as well.

• Single-context invalidation: If the INVPCID type is 1, the logical processor invalidates all mappings—except 
global translations—associated with the PCID specified in the INVPCID descriptor. In some cases, the 
instruction may invalidate global translations or mappings for other PCIDs as well.

• All-context invalidation, including global translations: If the INVPCID type is 2, the logical processor invalidates 
all mappings—including global translations—associated with any PCID. 

• All-context invalidation: If the INVPCID type is 3, the logical processor invalidates all mappings—except global 
translations—associated with any PCID. In some case, the instruction may invalidate global translations as 
well. 

The INVPCID descriptor comprises 128 bits and consists of a PCID and a linear address as shown in Figure 1-25. 
For INVPCID type 0, the processor uses the full 64 bits of the linear address even outside 64-bit mode; the linear 
address is not used for other INVPCID types.

Opcode/Instruction Op/ 
En

64/32-
bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 82 /r
INVPCID r32, m128

RM N.E./V INVPCID Invalidates entries in the TLBs and paging-structure 
caches based on invalidation type in r32 and descrip-
tor in m128.

66 0F 38 82 /r
INVPCID r64, m128

RM V/N.E. INVPCID Invalidates entries in the TLBs and paging-structure 
caches based on invalidation type in r64 and descrip-
tor in m128.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) N/A N/A

1. If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page 
(see Section 5.10.2.3, “Details of TLB Use,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A), the 
instruction invalidates all of them.

Figure 1-25.  INVPCID Descriptor

127 64 63 01112
Reserved (must be zero)Linear Address PCID
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If CR4.PCIDE = 0, a logical processor does not cache information for any PCID other than 000H. In this case, 
executions with INVPCID types 0 and 1 are allowed only if the PCID specified in the INVPCID descriptor is 000H; 
executions with INVPCID types 2 and 3 invalidate mappings only for PCID 000H. Note that CR4.PCIDE must be 0 
outside IA-32e mode (see Section 5.10.1, “Process-Context Identifiers (PCIDs),” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A).

Operation

INVPCID_TYPE := value of register operand; // must be in the range of 0–3
INVPCID_DESC := value of memory operand;
CASE INVPCID_TYPE OF

0: // individual-address invalidation
PCID := INVPCID_DESC[11:0];
L_ADDR := INVPCID_DESC[127:64];
Invalidate mappings for L_ADDR associated with PCID except global translations;
BREAK;

1: // single PCID invalidation
PCID := INVPCID_DESC[11:0];
Invalidate all mappings associated with PCID except global translations;
BREAK;

2: // all PCID invalidation including global translations
Invalidate all mappings for all PCIDs, including global translations;
BREAK;

3: // all PCID invalidation retaining global translations
Invalidate all mappings for all PCIDs except global translations;
BREAK;

ESAC;

Intel C/C++ Compiler Intrinsic Equivalent

INVPCID void _invpcid(unsigned __int32 type, void * descriptor);

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.
If an invalid type is specified in the register operand, i.e., INVPCID_TYPE > 3.
If bits 63:12 of INVPCID_DESC are not all zero.
If INVPCID_TYPE is either 0 or 1 and INVPCID_DESC[11:0] is not zero.
If INVPCID_TYPE is 0 and the linear address in INVPCID_DESC[127:64] is not canonical.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If if CPUID.(EAX=07H, ECX=0H):EBX.INVPCID[bit 10] = 0.

If the LOCK prefix is used.
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Real-Address Mode Exceptions
#GP If an invalid type is specified in the register operand, i.e., INVPCID_TYPE > 3.

If bits 63:12 of INVPCID_DESC are not all zero.
If INVPCID_TYPE is either 0 or 1 and INVPCID_DESC[11:0] is not zero.
If INVPCID_TYPE is 0 and the linear address in INVPCID_DESC[127:64] is not canonical.

#UD If CPUID.(EAX=07H, ECX=0H):EBX.INVPCID[bit 10] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The INVPCID instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand is in the CS, DS, ES, FS, or GS segments and the memory address is 
in a non-canonical form.
If an invalid type is specified in the register operand, i.e., INVPCID_TYPE > 3.
If bits 63:12 of INVPCID_DESC are not all zero.
If CR4.PCIDE=0, INVPCID_TYPE is either 0 or 1, and INVPCID_DESC[11:0] is not zero.
If INVPCID_TYPE is 0 and the linear address in INVPCID_DESC[127:64] is not canonical.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory destination operand is in the SS segment and the memory address is in a non-

canonical form.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.INVPCID[bit 10] = 0.
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IRET/IRETD/IRETQ—Interrupt Return

Instruction Operand Encoding

Description

Returns program control from an exception or interrupt handler to a program or procedure that was interrupted by 
an exception, an external interrupt, or a software-generated interrupt. These instructions are also used to perform 
a return from a nested task. (A nested task is created when a CALL instruction is used to initiate a task switch or 
when an interrupt or exception causes a task switch to an interrupt or exception handler.) See the section titled 
“Task Linking” in Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return double) is intended 
for use when returning from an interrupt when using the 32-bit operand size; however, most assemblers use the 
IRET mnemonic interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction performs a far return to the interrupted program or procedure. During 
this operation, the processor pops the return instruction pointer, return code segment selector, and EFLAGS image 
from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution of the interrupted 
program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested task) and VM flags 
in the EFLAGS register and the VM flag in the EFLAGS image stored on the current stack. Depending on the setting 
of these flags, the processor performs the following types of interrupt returns:
• Return from virtual-8086 mode.
• Return to virtual-8086 mode.
• Intra-privilege level return.
• Inter-privilege level return.
• Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the interrupt procedure, 
without a task switch. The code segment being returned to must be equally or less privileged than the interrupt 
handler routine (as indicated by the RPL field of the code segment selector popped from the stack). 

As with a real-address mode interrupt return, the IRET instruction pops the return instruction pointer, return code 
segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers, respectively, and then 
resumes execution of the interrupted program or procedure. If the return is to another privilege level, the IRET 
instruction also pops the stack pointer and SS from the stack, before resuming program execution. If the return is 
to virtual-8086 mode, the processor also pops the data segment registers from the stack.

If the NT flag is set, the IRET instruction performs a task switch (return) from a nested task (a task called with a 
CALL instruction, an interrupt, or an exception) back to the calling or interrupted task. The updated state of the 
task executing the IRET instruction is saved in its TSS. If the task is re-entered later, the code that follows the IRET 
instruction is executed.

If the NT flag is set and the processor is in IA-32e mode, the IRET instruction causes a general protection excep-
tion.

If nonmaskable interrupts (NMIs) are blocked (see Section 7.7.1, “Handling Multiple NMIs” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A), execution of the IRET instruction unblocks NMIs. 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

CF IRET ZO Valid Valid Interrupt return (16-bit operand size).

CF IRETD ZO Valid Valid Interrupt return (32-bit operand size).

REX.W + CF IRETQ ZO Valid N.E. Interrupt return (64-bit operand size).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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This unblocking occurs even if the instruction causes a fault. In such a case, NMIs are unmasked before the excep-
tion handler is invoked.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W prefix promotes operation to 64 
bits (IRETQ). See the summary chart at the beginning of this section for encoding data and limits. 

Refer to Chapter 6, “Procedure Calls, Interrupts, and Exceptions” and Chapter 18, “Control-flow Enforcement Tech-
nology (CET)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for CET details.

Instruction ordering. IRET is a serializing instruction. See Section 10.3 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 26 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Operation

IF PE = 0
THEN GOTO REAL-ADDRESS-MODE;

ELSIF (IA32_EFER.LMA = 0)
THEN

IF (EFLAGS.VM = 1)
THEN GOTO RETURN-FROM-VIRTUAL-8086-MODE;
ELSE GOTO PROTECTED-MODE;

FI;
ELSE GOTO IA-32e-MODE;

FI;

REAL-ADDRESS-MODE;
IF OperandSize = 32

THEN
EIP := Pop();
CS := Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS := Pop();
EFLAGS := (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
EIP := Pop(); (* 16-bit pop; clear upper 16 bits *)
CS := Pop(); (* 16-bit pop *)
EFLAGS[15:0] := Pop();

FI;
END;

RETURN-FROM-VIRTUAL-8086-MODE: 
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF IOPL = 3 (* Virtual mode: PE = 1, VM = 1, IOPL = 3 *)
THEN IF OperandSize = 32

THEN
EIP := Pop();
CS := Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS := Pop();
(* VM, IOPL,VIP and VIF EFLAG bits not modified by pop *)
IF EIP not within CS limit

THEN #GP(0); FI;
ELSE (* OperandSize = 16 *)

EIP := Pop(); (* 16-bit pop; clear upper 16 bits *)
CS := Pop(); (* 16-bit pop *)
EFLAGS[15:0] := Pop(); (* IOPL in EFLAGS not modified by pop *)
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IF EIP not within CS limit
THEN #GP(0); FI;

FI;
ELSE 

#GP(0); (* Trap to virtual-8086 monitor: PE = 1, VM = 1, IOPL < 3 *)
FI;

END;

PROTECTED-MODE:
IF NT = 1

THEN GOTO TASK-RETURN; (* PE = 1, VM = 0, NT = 1 *)
FI;
IF OperandSize = 32

THEN
EIP := Pop();
CS := Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS := Pop();

ELSE (* OperandSize = 16 *)
EIP := Pop(); (* 16-bit pop; clear upper bits *)
CS := Pop(); (* 16-bit pop *)
tempEFLAGS := Pop(); (* 16-bit pop; clear upper bits *)

FI;
IF tempEFLAGS(VM) = 1 and CPL = 0

THEN GOTO RETURN-TO-VIRTUAL-8086-MODE; 
ELSE GOTO PROTECTED-MODE-RETURN;

FI;

TASK-RETURN: (* PE = 1, VM = 0, NT = 1 *)
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within CS limit

THEN #GP(0); FI;
END;

RETURN-TO-VIRTUAL-8086-MODE: 
(* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM = 1 in flag image *)
(* If shadow stack or indirect branch tracking at CPL3 then #GP(0) *)
IF CR4.CET AND (IA32_U_CET.ENDBR_EN OR IA32_U_CET.SHSTK_EN)

THEN #GP(0); FI;
shadowStackEnabled = ShadowStackEnabled(CPL)
IF EIP not within CS limit

THEN #GP(0); FI;
EFLAGS := tempEFLAGS;
ESP := Pop();
SS := Pop(); (* Pop 2 words; throw away high-order word *)
ES := Pop(); (* Pop 2 words; throw away high-order word *)
DS := Pop(); (* Pop 2 words; throw away high-order word *)
FS := Pop(); (* Pop 2 words; throw away high-order word *)
GS := Pop(); (* Pop 2 words; throw away high-order word *)
IF shadowStackEnabled

(* check if 8 byte aligned *)
IF SSP AND 0x7 != 0

THEN #CP(FAR-RET/IRET); FI;
FI;
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CPL := 3;
(* Resume execution in Virtual-8086 mode *)
tempOldSSP = SSP;
(* Now past all faulting points; safe to free the token. The token free is done using the old SSP
 * and using a supervisor override as old CPL was a supervisor privilege level *)
IF shadowStackEnabled

expected_token_value = tempOldSSP | BUSY_BIT  (* busy bit - bit position 0 - must be set *)
new_token_value = tempOldSSP  (* clear the busy bit *)
shadow_stack_lock_cmpxchg8b(tempOldSSP, new_token_value, expected_token_value)

FI;
END;

PROTECTED-MODE-RETURN: (* PE = 1 *)
IF CS(RPL) > CPL

THEN GOTO RETURN-TO-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF OperandSize = 32

THEN
tempESP := Pop();
tempSS := Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE IF OperandSize = 16 
THEN

tempESP := Pop(); (* 16-bit pop; clear upper bits *)
tempSS := Pop(); (* 16-bit pop *)

ELSE (* OperandSize = 64 *)
tempRSP := Pop();
tempSS := Pop(); (* 64-bit pop, high-order 48 bits discarded *)

FI;
IF new mode ≠ 64-Bit Mode

THEN
IF EIP is not within CS limit

THEN #GP(0); FI;
ELSE (* new mode = 64-bit mode *)

IF RIP is non-canonical
THEN #GP(0); FI;

FI;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) := tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(RF, AC, ID) := tempEFLAGS; FI;
IF CPL ≤ IOPL 

THEN EFLAGS(IF) := tempEFLAGS; FI;
IF CPL = 0

THEN
EFLAGS(IOPL) := tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(VIF, VIP) := tempEFLAGS; FI;
FI;
IF ShadowStackEnabled(CPL)

(* check if 8 byte aligned *)
IF SSP AND 0x7 != 0
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THEN #CP(FAR-RET/IRET); FI;
IF CS(RPL) != 3

THEN
tempSsCS = shadow_stack_load 8 bytes from SSP+16;
tempSsLIP = shadow_stack_load 8 bytes from SSP+8;
tempSSP = shadow_stack_load 8 bytes from SSP;
SSP = SSP + 24;
(* Do 64 bit compare to detect bits beyond 15 being set *)
tempCS = CS; (* zero padded to 64 bit *)
IF tempCS != tempSsCS

THEN #CP(FAR-RET/IRET); FI;
(* Do 64 bit compare; pad CSBASE+RIP with 0 for 32 bit LIP *)
IF CSBASE + RIP != tempSsEIP

THEN #CP(FAR-RET/IRET); FI;
(* check if 4 byte aligned *)
IF tempSSP AND 0x3 != 0

THEN #CP(FAR-RET/IRET); FI;
FI;

FI;
tempOldCPL = CPL;
CPL := CS(RPL);

IF OperandSize = 64
THEN

RSP := tempRSP;
SS := tempSS;

ELSE
ESP := tempESP;
SS := tempSS;

FI;
IF new mode != 64-Bit Mode

THEN
IF EIP is not within CS limit

THEN #GP(0); FI;
ELSE (* new mode = 64-bit mode *)

IF RIP is non-canonical
THEN #GP(0); FI;

FI;
tempOldSSP = SSP;
IF ShadowStackEnabled(CPL)

IF CPL = 3
THEN tempSSP := IA32_PL3_SSP; FI;

IF ((IA32_EFER.LMA AND CS.L) = 0 AND tempSSP[63:32] != 0) OR
((IA32_EFER.LMA AND CS.L) = 1 AND tempSSP is not canonical relative to the current paging mode)

THEN #GP(0); FI;
SSP := tempSSP
FI;
(* Now past all faulting points; safe to free the token. The token free is done using the old SSP
 * and using a supervisor override as old CPL was a supervisor privilege level *)
IF ShadowStackEnabled(tempOldCPL)

expected_token_value = tempOldSSP | BUSY_BIT (* busy bit - bit position 0 - must be set *)
new_token_value = tempOldSSP (* clear the busy bit *)
shadow_stack_lock_cmpxchg8b(tempOldSSP, new_token_value, expected_token_value)

FI;
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FOR each SegReg in (ES, FS, GS, and DS)
DO

tempDesc := descriptor cache for SegReg (* hidden part of segment register *)
IF (SegmentSelector == NULL) OR (tempDesc(DPL) < CPL AND tempDesc(Type) is (data or non-conforming code)))

THEN (* Segment register invalid *)
SegmentSelector := 0; (*Segment selector becomes null*)

FI;
OD;

END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, RPL = CPL *)
IF new mode ≠ 64-Bit Mode

THEN
IF EIP is not within CS limit

THEN #GP(0); FI;
ELSE (* new mode = 64-bit mode *)

IF RIP is non-canonical
THEN #GP(0); FI;

FI;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) := tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(RF, AC, ID) := tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) := tempEFLAGS; FI;
IF CPL = 0 

  THEN 
 EFLAGS(IOPL) := tempEFLAGS;
 IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(VIF, VIP) := tempEFLAGS; FI;
 FI;

IF ShadowStackEnabled(CPL)
IF SSP AND 0x7 != 0 (* check if aligned to 8 bytes *)

THEN #CP(FAR-RET/IRET); FI;
tempSsCS = shadow_stack_load 8 bytes from SSP+16;
tempSsLIP = shadow_stack_load 8 bytes from SSP+8;
tempSSP = shadow_stack_load 8 bytes from SSP;
SSP = SSP + 24;
tempCS = CS; (* zero padded to 64 bit *)
IF tempCS != tempSsCS (* 64 bit compare; CS zero padded to 64 bits *)

THEN #CP(FAR-RET/IRET); FI;
IF CSBASE + RIP != tempSsLIP (* 64 bit compare; CSBASE+RIP zero padded to 64 bit for 32 bit LIP *)

THEN #CP(FAR-RET/IRET); FI;
IF tempSSP AND 0x3 != 0 (* check if aligned to 4 bytes *)

THEN #CP(FAR-RET/IRET); FI;
IF ((IA32_EFER.LMA AND CS.L) = 0 AND tempSSP[63:32] != 0) OR

((IA32_EFER.LMA AND CS.L) = 1 AND tempSSP is not canonical relative to the current paging mode)
THEN #GP(0); FI;

FI;
IF ShadowStackEnabled(CPL)

IF IA32_EFER.LMA = 1
(* In IA-32e-mode the IRET may be switching stacks if the interrupt/exception was delivered
 through an IDT with a non-zero IST *)
(* In IA-32e mode for same CPL IRET there is always a stack switch. The below check verifies if the 
 stack switch was to self stack and if so, do not try to free the token on this shadow stack. If the 
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 tempSSP was not to same stack then there was a stack switch so do attempt to free the token *)
IF tempSSP != SSP

THEN 
expected_token_value = SSP | BUSY_BIT (* busy bit - bit position 0 - must be set *)
new_token_value = SSP (* clear the busy bit *)
shadow_stack_lock_cmpxchg8b(SSP, new_token_value, expected_token_value)

FI;
FI;
SSP := tempSSP

FI;
END;

IA-32e-MODE:
IF NT = 1

THEN #GP(0);
ELSE IF OperandSize = 32

THEN
EIP := Pop();
CS := Pop();
tempEFLAGS := Pop();

ELSE IF OperandSize = 16 
THEN

EIP := Pop(); (* 16-bit pop; clear upper bits *)
CS := Pop(); (* 16-bit pop *)
tempEFLAGS := Pop(); (* 16-bit pop; clear upper bits *)

FI;
ELSE (* OperandSize = 64 *)

THEN
RIP := Pop();
CS := Pop(); (* 64-bit pop, high-order 48 bits discarded *)
tempRFLAGS := Pop();

FI;
IF CS.RPL > CPL

THEN GOTO RETURN-TO-OUTER-PRIVILEGE-LEVEL;
ELSE

IF instruction began in 64-Bit Mode
THEN

IF OperandSize = 32
THEN

ESP := Pop();
SS := Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE IF OperandSize = 16 
THEN

ESP := Pop(); (* 16-bit pop; clear upper bits *)
SS := Pop(); (* 16-bit pop *)

ELSE (* OperandSize = 64 *)
RSP := Pop();
SS := Pop(); (* 64-bit pop, high-order 48 bits discarded *)

FI;
FI;
GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;
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Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on the mode of operation of the 
processor. If performing a return from a nested task to a previous task, the EFLAGS register will be modified 
according to the EFLAGS image stored in the previous task’s TSS.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector is NULL.

If the return instruction pointer is not within the return code segment limit.
#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is less than the CPL.
If the DPL of a conforming-code segment is greater than the return code segment selector 
RPL.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment 
selector.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment 
selector.
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is not busy.
If a TSS segment descriptor specifies that the TSS is not available.

#SS(0) If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

#NP (selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is 

enabled.
#UD If the LOCK prefix is used.
#CP (Far-RET/IRET) If the previous SSP from shadow stack (when returning to CPL <3) or from IA32_PL3_SSP 

(returning to CPL 3) is not 4 byte aligned.
If returning to 32-bit or compatibility mode and the previous SSP from shadow stack (when 
returning to CPL <3) or from IA32_PL3_SSP (returning to CPL 3) is beyond 4GB.
If return instruction pointer from stack and shadow stack do not match.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code segment limit.
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code segment limit.

IF IOPL not equal to 3.
#PF(fault-code) If a page fault occurs.
#SS(0) If the top bytes of stack are not within stack limits.
#AC(0) If an unaligned memory reference occurs and alignment checking is enabled.
#UD If the LOCK prefix is used.
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Compatibility Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.
Other exceptions same as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.

If the return code segment selector is NULL.
If the stack segment selector is NULL going back to compatibility mode.
If the stack segment selector is NULL going back to CPL3 64-bit mode.
If a NULL stack segment selector RPL is not equal to CPL going back to non-CPL3 64-bit mode.
If the return instruction pointer is not within the return code segment limit.
If the return instruction pointer is non-canonical.

#GP(Selector) If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the proposed new code segment descriptor has both the D-bit and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment 
selector.
If CPL is greater than the RPL of the code segment selector.
If the DPL of a conforming-code segment is greater than the return code segment selector 
RPL.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment 
selector.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical address to be referenced.
If the return stack segment is not present.

#NP (selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is 

enabled.
#UD If the LOCK prefix is used.
#CP (Far-RET/IRET) If the previous SSP from shadow stack (when returning to CPL <3) or from IA32_PL3_SSP 

(returning to CPL 3) is not 4 byte aligned.
If returning to 32-bit or compatibility mode and the previous SSP from shadow stack (when 
returning to CPL <3) or from IA32_PL3_SSP (returning to CPL 3) is beyond 4GB.
If return instruction pointer from stack and shadow stack do not match.
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Jcc—Jump if Condition Is Met

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

77 cb JA rel8 D Valid Valid Jump short if above (CF=0 and ZF=0).

73 cb JAE rel8 D Valid Valid Jump short if above or equal (CF=0).

72 cb JB rel8 D Valid Valid Jump short if below (CF=1).

76 cb JBE rel8 D Valid Valid Jump short if below or equal (CF=1 or ZF=1).

72 cb JC rel8 D Valid Valid Jump short if carry (CF=1).

E3 cb JCXZ rel8 D N.E. Valid Jump short if CX register is 0.

E3 cb JECXZ rel8 D Valid Valid Jump short if ECX register is 0.

E3 cb JRCXZ rel8 D Valid N.E. Jump short if RCX register is 0.

74 cb JE rel8 D Valid Valid Jump short if equal (ZF=1).

7F cb JG rel8 D Valid Valid Jump short if greater (ZF=0 and SF=OF).

7D cb JGE rel8 D Valid Valid Jump short if greater or equal (SF=OF).

7C cb JL rel8 D Valid Valid Jump short if less (SF≠ OF).

7E cb JLE rel8 D Valid Valid Jump short if less or equal (ZF=1 or SF≠ OF).

76 cb JNA rel8 D Valid Valid Jump short if not above (CF=1 or ZF=1).

72 cb JNAE rel8 D Valid Valid Jump short if not above or equal (CF=1).

73 cb JNB rel8 D Valid Valid Jump short if not below (CF=0).

77 cb JNBE rel8 D Valid Valid Jump short if not below or equal (CF=0 and 
ZF=0).

73 cb JNC rel8 D Valid Valid Jump short if not carry (CF=0).

75 cb JNE rel8 D Valid Valid Jump short if not equal (ZF=0).

7E cb JNG rel8 D Valid Valid Jump short if not greater (ZF=1 or SF≠ OF).

7C cb JNGE rel8 D Valid Valid Jump short if not greater or equal (SF≠ OF).

7D cb JNL rel8 D Valid Valid Jump short if not less (SF=OF).

7F cb JNLE rel8 D Valid Valid Jump short if not less or equal (ZF=0 and 
SF=OF).

71 cb JNO rel8 D Valid Valid Jump short if not overflow (OF=0).

7B cb JNP rel8 D Valid Valid Jump short if not parity (PF=0).

79 cb JNS rel8 D Valid Valid Jump short if not sign (SF=0).

75 cb JNZ rel8 D Valid Valid Jump short if not zero (ZF=0).

70 cb JO rel8 D Valid Valid Jump short if overflow (OF=1).

7A cb JP rel8 D Valid Valid Jump short if parity (PF=1).

7A cb JPE rel8 D Valid Valid Jump short if parity even (PF=1).

7B cb JPO rel8 D Valid Valid Jump short if parity odd (PF=0).

78 cb JS rel8 D Valid Valid Jump short if sign (SF=1).

74 cb JZ rel8 D Valid Valid Jump short if zero (ZF = 1).

0F 87 cw JA rel16 D N.S. Valid Jump near if above (CF=0 and ZF=0). Not 
supported in 64-bit mode.

0F 87 cd JA rel32 D Valid Valid Jump near if above (CF=0 and ZF=0).

0F 83 cw JAE rel16 D N.S. Valid Jump near if above or equal (CF=0). Not 
supported in 64-bit mode.

0F 83 cd JAE rel32 D Valid Valid Jump near if above or equal (CF=0).
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0F 82 cw JB rel16 D N.S. Valid Jump near if below (CF=1). Not supported in 
64-bit mode.

0F 82 cd JB rel32 D Valid Valid Jump near if below (CF=1).

0F 86 cw JBE rel16 D N.S. Valid Jump near if below or equal (CF=1 or ZF=1). 
Not supported in 64-bit mode.

0F 86 cd JBE rel32 D Valid Valid Jump near if below or equal (CF=1 or ZF=1).

0F 82 cw JC rel16 D N.S. Valid Jump near if carry (CF=1). Not supported in 
64-bit mode.

0F 82 cd JC rel32 D Valid Valid Jump near if carry (CF=1).

0F 84 cw JE rel16 D N.S. Valid Jump near if equal (ZF=1). Not supported in 
64-bit mode.

0F 84 cd JE rel32 D Valid Valid Jump near if equal (ZF=1).

0F 84 cw JZ rel16 D N.S. Valid Jump near if 0 (ZF=1). Not supported in 64-bit 
mode.

0F 84 cd JZ rel32 D Valid Valid Jump near if 0 (ZF=1).

0F 8F cw JG rel16 D N.S. Valid Jump near if greater (ZF=0 and SF=OF). Not 
supported in 64-bit mode.

0F 8F cd JG rel32 D Valid Valid Jump near if greater (ZF=0 and SF=OF).

0F 8D cw JGE rel16 D N.S. Valid Jump near if greater or equal (SF=OF). Not 
supported in 64-bit mode.

0F 8D cd JGE rel32 D Valid Valid Jump near if greater or equal (SF=OF).

0F 8C cw JL rel16 D N.S. Valid Jump near if less (SF≠ OF). Not supported in 
64-bit mode.

0F 8C cd JL rel32 D Valid Valid Jump near if less (SF≠ OF).

0F 8E cw JLE rel16 D N.S. Valid Jump near if less or equal (ZF=1 or SF≠ OF). 
Not supported in 64-bit mode.

0F 8E cd JLE rel32 D Valid Valid Jump near if less or equal (ZF=1 or SF≠ OF).

0F 86 cw JNA rel16 D N.S. Valid Jump near if not above (CF=1 or ZF=1). Not 
supported in 64-bit mode.

0F 86 cd JNA rel32 D Valid Valid Jump near if not above (CF=1 or ZF=1).

0F 82 cw JNAE rel16 D N.S. Valid Jump near if not above or equal (CF=1). Not 
supported in 64-bit mode.

0F 82 cd JNAE rel32 D Valid Valid Jump near if not above or equal (CF=1).

0F 83 cw JNB rel16 D N.S. Valid Jump near if not below (CF=0). Not supported 
in 64-bit mode.

0F 83 cd JNB rel32 D Valid Valid Jump near if not below (CF=0).

0F 87 cw JNBE rel16 D N.S. Valid Jump near if not below or equal (CF=0 and 
ZF=0). Not supported in 64-bit mode.

0F 87 cd JNBE rel32 D Valid Valid Jump near if not below or equal (CF=0 and 
ZF=0).

0F 83 cw JNC rel16 D N.S. Valid Jump near if not carry (CF=0). Not supported 
in 64-bit mode.

0F 83 cd JNC rel32 D Valid Valid Jump near if not carry (CF=0).

0F 85 cw JNE rel16 D N.S. Valid Jump near if not equal (ZF=0). Not supported 
in 64-bit mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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0F 85 cd JNE rel32 D Valid Valid Jump near if not equal (ZF=0).

0F 8E cw JNG rel16 D N.S. Valid Jump near if not greater (ZF=1 or SF≠ OF). 
Not supported in 64-bit mode.

0F 8E cd JNG rel32 D Valid Valid Jump near if not greater (ZF=1 or SF≠ OF).

0F 8C cw JNGE rel16 D N.S. Valid Jump near if not greater or equal (SF≠ OF). 
Not supported in 64-bit mode.

0F 8C cd JNGE rel32 D Valid Valid Jump near if not greater or equal (SF≠ OF).

0F 8D cw JNL rel16 D N.S. Valid Jump near if not less (SF=OF). Not supported 
in 64-bit mode.

0F 8D cd JNL rel32 D Valid Valid Jump near if not less (SF=OF).

0F 8F cw JNLE rel16 D N.S. Valid Jump near if not less or equal (ZF=0 and 
SF=OF). Not supported in 64-bit mode.

0F 8F cd JNLE rel32 D Valid Valid Jump near if not less or equal (ZF=0 and 
SF=OF).

0F 81 cw JNO rel16 D N.S. Valid Jump near if not overflow (OF=0). Not 
supported in 64-bit mode.

0F 81 cd JNO rel32 D Valid Valid Jump near if not overflow (OF=0).

0F 8B cw JNP rel16 D N.S. Valid Jump near if not parity (PF=0). Not supported 
in 64-bit mode.

0F 8B cd JNP rel32 D Valid Valid Jump near if not parity (PF=0).

0F 89 cw JNS rel16 D N.S. Valid Jump near if not sign (SF=0). Not supported in 
64-bit mode.

0F 89 cd JNS rel32 D Valid Valid Jump near if not sign (SF=0).

0F 85 cw JNZ rel16 D N.S. Valid Jump near if not zero (ZF=0). Not supported in 
64-bit mode.

0F 85 cd JNZ rel32 D Valid Valid Jump near if not zero (ZF=0).

0F 80 cw JO rel16 D N.S. Valid Jump near if overflow (OF=1). Not supported 
in 64-bit mode.

0F 80 cd JO rel32 D Valid Valid Jump near if overflow (OF=1).

0F 8A cw JP rel16 D N.S. Valid Jump near if parity (PF=1). Not supported in 
64-bit mode.

0F 8A cd JP rel32 D Valid Valid Jump near if parity (PF=1).

0F 8A cw JPE rel16 D N.S. Valid Jump near if parity even (PF=1). Not 
supported in 64-bit mode.

0F 8A cd JPE rel32 D Valid Valid Jump near if parity even (PF=1).

0F 8B cw JPO rel16 D N.S. Valid Jump near if parity odd (PF=0). Not supported 
in 64-bit mode.

0F 8B cd JPO rel32 D Valid Valid Jump near if parity odd (PF=0).

0F 88 cw JS rel16 D N.S. Valid Jump near if sign (SF=1). Not supported in 64-
bit mode.

0F 88 cd JS rel32 D Valid Valid Jump near if sign (SF=1).

0F 84 cw JZ rel16 D N.S. Valid Jump near if 0 (ZF=1). Not supported in 64-bit 
mode.

0F 84 cd JZ rel32 D Valid Valid Jump near if 0 (ZF=1).

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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Instruction Operand Encoding

Description

Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF, SF, and ZF) and, if the flags 
are in the specified state (condition), performs a jump to the target instruction specified by the destination 
operand. A condition code (cc) is associated with each instruction to indicate the condition being tested for. If the 
condition is not satisfied, the jump is not performed and execution continues with the instruction following the Jcc 
instruction. 

The target instruction is specified with a relative offset (a signed offset relative to the current value of the instruc-
tion pointer in the EIP register). A relative offset (rel8, rel16, or rel32) is generally specified as a label in assembly 
code, but at the machine code level, it is encoded as a signed, 8-bit or 32-bit immediate value, which is added to 
the instruction pointer. Instruction coding is most efficient for offsets of –128 to +127. If the operand-size attribute 
is 16, the upper two bytes of the EIP register are cleared, resulting in a maximum instruction pointer size of 16 bits. 

The conditions for each Jcc mnemonic are given in the “Description” column of the table on the preceding page. The 
terms “less” and “greater” are used for comparisons of signed integers and the terms “above” and “below” are used 
for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two mnemonics are 
defined for some opcodes. For example, the JA (jump if above) instruction and the JNBE (jump if not below or 
equal) instruction are alternate mnemonics for the opcode 77H.

The Jcc instruction does not support far jumps (jumps to other code segments). When the target for the conditional 
jump is in a different segment, use the opposite condition from the condition being tested for the Jcc instruction, 
and then access the target with an unconditional far jump (JMP instruction) to the other segment. For example, the 
following conditional far jump is illegal:

JZ FARLABEL;

To accomplish this far jump, use the following two instructions:
JNZ BEYOND;
JMP FARLABEL;
BEYOND:

The JRCXZ, JECXZ, and JCXZ instructions differ from other Jcc instructions because they do not check status flags. 
Instead, they check RCX, ECX or CX for 0. The register checked is determined by the address-size attribute. These 
instructions are useful when used at the beginning of a loop that terminates with a conditional loop instruction 
(such as LOOPNE). They can be used to prevent an instruction sequence from entering a loop when RCX, ECX or 
CX is 0. This would cause the loop to execute 264, 232 or 64K times (not zero times).

All conditional jumps are converted to code fetches of one or two cache lines, regardless of jump address or cache-
ability.

In 64-bit mode, operand size is fixed at 64 bits. JMP Short is RIP = RIP + 8-bit offset sign extended to 64 bits. JMP 
Near is RIP = RIP + 32-bit offset sign extended to 64 bits.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset N/A N/A N/A
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Operation

IF condition
THEN

 tempEIP := EIP + SignExtend(DEST);
 IF OperandSize = 16

THEN tempEIP := tempEIP AND 0000FFFFH;
 FI;

IF tempEIP is not within code segment limit
THEN #GP(0);

 ELSE EIP := tempEIP
 FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the offset being jumped to is beyond the limits of the CS segment.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the offset being jumped to is beyond the limits of the CS segment or is outside of the effec-

tive address space from 0 to FFFFH. This condition can occur if a 32-bit address size override 
prefix is used.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#UD If the LOCK prefix is used.
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JMP—Jump

Instruction Operand Encoding

Description

Transfers program control to a different point in the instruction stream without recording return information. The 
destination (target) operand specifies the address of the instruction being jumped to. This operand can be an 
immediate value, a general-purpose register, or a memory location.

This instruction can be used to execute four different types of jumps:
• Near jump—A jump to an instruction within the current code segment (the segment currently pointed to by the 

CS register), sometimes referred to as an intrasegment jump.
• Short jump—A near jump where the jump range is limited to –128 to +127 from the current EIP value.
• Far jump—A jump to an instruction located in a different segment than the current code segment but at the 

same privilege level, sometimes referred to as an intersegment jump.
• Task switch—A jump to an instruction located in a different task. 

A task switch can only be executed in protected mode (see Chapter 9, in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A, for information on performing task switches with the JMP instruction).

Near and Short Jumps. When executing a near jump, the processor jumps to the address (within the current code 
segment) that is specified with the target operand. The target operand specifies either an absolute offset (that is 
an offset from the base of the code segment) or a relative offset (a signed displacement relative to the current 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

EB cb JMP rel8 D Valid Valid Jump short, RIP = RIP + 8-bit displacement sign 
extended to 64-bits.

E9 cw JMP rel16 D N.S. Valid Jump near, relative, displacement relative to 
next instruction. Not supported in 64-bit 
mode.

E9 cd JMP rel32 D Valid Valid Jump near, relative, RIP = RIP + 32-bit 
displacement sign extended to 64-bits.

FF /4 JMP r/m16 M N.S. Valid Jump near, absolute indirect, address = zero-
extended r/m16. Not supported in 64-bit 
mode.

FF /4 JMP r/m32 M N.S. Valid Jump near, absolute indirect, address given in 
r/m32. Not supported in 64-bit mode.

FF /4 JMP r/m64 M Valid N.E. Jump near, absolute indirect, RIP = 64-Bit 
offset from register or memory.

EA cd JMP ptr16:16 S Inv. Valid Jump far, absolute, address given in operand.

EA cp JMP ptr16:32 S Inv. Valid Jump far, absolute, address given in operand.

FF /5 JMP m16:16 M Valid Valid Jump far, absolute indirect, address given in 
m16:16.

FF /5 JMP m16:32 M Valid Valid Jump far, absolute indirect, address given in 
m16:32.

REX.W FF /5 JMP m16:64 M Valid N.E. Jump far, absolute indirect, address given in 
m16:64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

S Segment + Absolute Address N/A N/A N/A

D Offset N/A N/A N/A

M ModRM:r/m (r) N/A N/A N/A
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value of the instruction pointer in the EIP register). A near jump to a relative offset of 8-bits (rel8) is referred to as 
a short jump. The CS register is not changed on near and short jumps.

An absolute offset is specified indirectly in a general-purpose register or a memory location (r/m16 or r/m32). The 
operand-size attribute determines the size of the target operand (16 or 32 bits). Absolute offsets are loaded 
directly into the EIP register. If the operand-size attribute is 16, the upper two bytes of the EIP register are cleared, 
resulting in a maximum instruction pointer size of 16 bits.

A relative offset (rel8, rel16, or rel32) is generally specified as a label in assembly code, but at the machine code 
level, it is encoded as a signed 8-, 16-, or 32-bit immediate value. This value is added to the value in the EIP 
register. (Here, the EIP register contains the address of the instruction following the JMP instruction). When using 
relative offsets, the opcode (for short vs. near jumps) and the operand-size attribute (for near relative jumps) 
determines the size of the target operand (8, 16, or 32 bits).

Far Jumps in Real-Address or Virtual-8086 Mode. When executing a far jump in real-address or virtual-8086 mode, 
the processor jumps to the code segment and offset specified with the target operand. Here the target operand 
specifies an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory 
location (m16:16 or m16:32). With the pointer method, the segment and address of the called procedure is 
encoded in the instruction, using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address imme-
diate. With the indirect method, the target operand specifies a memory location that contains a 4-byte (16-bit 
operand size) or 6-byte (32-bit operand size) far address. The far address is loaded directly into the CS and EIP 
registers. If the operand-size attribute is 16, the upper two bytes of the EIP register are cleared.

Far Jumps in Protected Mode. When the processor is operating in protected mode, the JMP instruction can be used 
to perform the following three types of far jumps:
• A far jump to a conforming or non-conforming code segment.
• A far jump through a call gate.
• A task switch.

(The JMP instruction cannot be used to perform inter-privilege-level far jumps.)

In protected mode, the processor always uses the segment selector part of the far address to access the corre-
sponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate, task gate, or TSS) and access 
rights determine the type of jump to be performed.

If the selected descriptor is for a code segment, a far jump to a code segment at the same privilege level is 
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming, 
a general-protection exception is generated.) A far jump to the same privilege level in protected mode is very 
similar to one carried out in real-address or virtual-8086 mode. The target operand specifies an absolute far 
address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or 
m16:32). The operand-size attribute determines the size of the offset (16 or 32 bits) in the far address. The new 
code segment selector and its descriptor are loaded into CS register, and the offset from the instruction is loaded 
into the EIP register. Note that a call gate (described in the next paragraph) can also be used to perform far call to 
a code segment at the same privilege level. Using this mechanism provides an extra level of indirection and is the 
preferred method of making jumps between 16-bit and 32-bit code segments.

When executing a far jump through a call gate, the segment selector specified by the target operand identifies the 
call gate. (The offset part of the target operand is ignored.) The processor then jumps to the code segment speci-
fied in the call gate descriptor and begins executing the instruction at the offset specified in the call gate. No stack 
switch occurs. Here again, the target operand can specify the far address of the call gate either directly with a 
pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32).

Executing a task switch with the JMP instruction is somewhat similar to executing a jump through a call gate. Here 
the target operand specifies the segment selector of the task gate for the task being switched to (and the offset 
part of the target operand is ignored). The task gate in turn points to the TSS for the task, which contains the 
segment selectors for the task’s code and stack segments. The TSS also contains the EIP value for the next instruc-
tion that was to be executed before the task was suspended. This instruction pointer value is loaded into the EIP 
register so that the task begins executing again at this next instruction. 

The JMP instruction can also specify the segment selector of the TSS directly, which eliminates the indirection of the 
task gate. See Chapter 9 in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for 
detailed information on the mechanics of a task switch.
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Note that when you execute at task switch with a JMP instruction, the nested task flag (NT) is not set in the EFLAGS 
register and the new TSS’s previous task link field is not loaded with the old task’s TSS selector. A return to the 
previous task can thus not be carried out by executing the IRET instruction. Switching tasks with the JMP instruc-
tion differs in this regard from the CALL instruction which does set the NT flag and save the previous task link infor-
mation, allowing a return to the calling task with an IRET instruction.

Refer to Chapter 6, “Procedure Calls, Interrupts, and Exceptions” and Chapter 18, “Control-flow Enforcement Tech-
nology (CET)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for CET details.

In 64-Bit Mode. The instruction’s operation size is fixed at 64 bits. If a selector points to a gate, then RIP equals the 
64-bit displacement taken from gate; else RIP equals the zero-extended offset from the far pointer referenced in 
the instruction. 

See the summary chart at the beginning of this section for encoding data and limits. 

Instruction ordering. Instructions following a far jump may be fetched from memory before earlier instructions 
complete execution, but they will not execute (even speculatively) until all instructions prior to the far jump have 
completed execution (the later instructions may execute before data stored by the earlier instructions have 
become globally visible).

Instructions sequentially following a near indirect JMP instruction (i.e., those not at the target) may be executed 
speculatively. If software needs to prevent this (e.g., in order to prevent a speculative execution side channel), 
then an INT3 or LFENCE instruction opcode can be placed after the near indirect JMP in order to block speculative 
execution.

Operation

IF near jump
IF 64-bit Mode
 THEN 

IF near relative jump
 THEN

tempRIP := RIP + DEST; (* RIP is instruction following JMP instruction*)
 ELSE (* Near absolute jump *)

tempRIP := DEST;
FI;

ELSE
IF near relative jump
 THEN

tempEIP := EIP + DEST; (* EIP is instruction following JMP instruction*)
 ELSE (* Near absolute jump *)

tempEIP := DEST;
FI;

FI;
IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) 
and tempEIP outside code segment limit 

THEN #GP(0); FI
IF 64-bit mode and tempRIP is not canonical

THEN #GP(0);
FI;
IF OperandSize = 32

 THEN 
EIP := tempEIP; 

 ELSE 
IF OperandSize = 16

THEN (* OperandSize = 16 *)
EIP := tempEIP AND 0000FFFFH;

 ELSE (* OperandSize = 64)
 RIP := tempRIP;
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FI;
 FI;
IF (JMP near indirect, absolute indirect)

IF EndbranchEnabledAndNotSuppressed(CPL)
IF CPL = 3

THEN
IF ( no 3EH prefix OR IA32_U_CET.NO_TRACK_EN == 0 )

THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH

FI;
ELSE

IF ( no 3EH prefix OR IA32_S_CET.NO_TRACK_EN == 0 )
THEN

IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
FI;

FI;
FI;

FI;
FI;
IF far jump and (PE = 0 or (PE = 1 AND VM = 1)) (* Real-address or virtual-8086 mode *)

 THEN
 tempEIP := DEST(Offset); (* DEST is ptr16:32 or [m16:32] *)
 IF tempEIP is beyond code segment limit 

THEN #GP(0); FI;
 CS := DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *)
 IF OperandSize = 32

 THEN
EIP := tempEIP; (* DEST is ptr16:32 or [m16:32] *)

 ELSE (* OperandSize = 16 *)
EIP := tempEIP AND 0000FFFFH; (* Clear upper 16 bits *)

 FI;
FI;
IF far jump and (PE = 1 and VM = 0) 
(* IA-32e mode or protected mode, not virtual-8086 mode *)

 THEN
 IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal
or segment selector in target operand NULL

THEN #GP(0); FI;
 IF segment selector index not within descriptor table limits

THEN #GP(new selector); FI;
Read type and access rights of segment descriptor;
IF (IA32_EFER.LMA = 0) 

THEN
IF segment type is not a conforming or nonconforming code 
segment, call gate, task gate, or TSS 

THEN #GP(segment selector); FI; 
ELSE

IF segment type is not a conforming or nonconforming code segment
call gate

THEN #GP(segment selector); FI; 
FI;
Depending on type and access rights:

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
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GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

 ELSE 
 #GP(segment selector);

FI;
CONFORMING-CODE-SEGMENT:

IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1
THEN GP(new code segment selector); FI;

 IF DPL > CPL 
THEN #GP(segment selector); FI;

 IF segment not present
THEN #NP(segment selector); FI;

tempEIP := DEST(Offset);
IF OperandSize = 16 

 THEN tempEIP := tempEIP AND 0000FFFFH; 
FI;
IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) and 
tempEIP outside code segment limit 

THEN #GP(0); FI
IF tempEIP is non-canonical

THEN #GP(0); FI;
IF ShadowStackEnabled(CPL)

IF (IA32_EFER.LMA and DEST(segment selector).L) = 0
(* If target is legacy or compatibility mode then the SSP must be in low 4GB *)
IF (SSP & 0xFFFFFFFF00000000 != 0)

THEN #GP(0); FI;
FI;

FI;
CS := DEST[segment selector]; (* Segment descriptor information also loaded *)
CS(RPL) := CPL
EIP := tempEIP;
IF EndbranchEnabled(CPL)

IF CPL = 3
THEN

IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_U_CET.SUPPRESS = 0

ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0

FI;
FI;

END;
NONCONFORMING-CODE-SEGMENT:

IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1
THEN GP(new code segment selector); FI;

IF (RPL > CPL) OR (DPL ≠ CPL)
THEN #GP(code segment selector); FI;

IF segment not present 
THEN #NP(segment selector); FI;

tempEIP := DEST(Offset);
IF OperandSize = 16 

 THEN tempEIP := tempEIP AND 0000FFFFH; FI;
IF (IA32_EFER.LMA = 0 OR target mode = Compatibility mode) 
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and tempEIP outside code segment limit 
THEN #GP(0); FI

IF tempEIP is non-canonical THEN #GP(0); FI;
IF ShadowStackEnabled(CPL)

IF (IA32_EFER.LMA and DEST(segment selector).L) = 0
(* If target is legacy or compatibility mode then the SSP must be in low 4GB *)
IF (SSP & 0xFFFFFFFF00000000 != 0)

THEN #GP(0); FI;
FI;

FI;
CS := DEST[segment selector]; (* Segment descriptor information also loaded *)
CS(RPL) := CPL;
EIP := tempEIP;
IF EndbranchEnabled(CPL)

IF CPL = 3
THEN

IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_U_CET.SUPPRESS = 0

ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0

FI;
FI;

END;

CALL-GATE:
IF call gate DPL < CPL 
or call gate DPL < call gate segment-selector RPL 

THEN #GP(call gate selector); FI;
IF call gate not present

THEN #NP(call gate selector); FI;
IF call gate code-segment selector is NULL

THEN #GP(0); FI;
IF call gate code-segment selector index outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
or code-segment segment descriptor is conforming and DPL > CPL
or code-segment segment descriptor is non-conforming and DPL ≠ CPL

THEN #GP(code segment selector); FI;
IF IA32_EFER.LMA = 1 and (code-segment descriptor is not a 64-bit code segment 
or code-segment segment descriptor has both L-Bit and D-bit set)

THEN #GP(code segment selector); FI;
IF code segment is not present

THEN #NP(code-segment selector); FI;
 tempEIP := DEST(Offset);
 IF GateSize = 16 

 THEN tempEIP := tempEIP AND 0000FFFFH; FI;
IF (IA32_EFER.LMA = 0 OR target mode = Compatibility mode) AND tempEIP 
outside code segment limit 

THEN #GP(0); FI
CS := DEST[SegmentSelector]; (* Segment descriptor information also loaded *)
CS(RPL) := CPL;
EIP := tempEIP;
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IF EndbranchEnabled(CPL)
IF CPL = 3

THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH;
IA32_U_CET.SUPPRESS = 0

ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH;
IA32_S_CET.SUPPRESS = 0

FI;
FI;

END;
TASK-GATE:

IF task gate DPL < CPL 
or task gate DPL < task gate segment-selector RPL 

THEN #GP(task gate selector); FI;
IF task gate not present 

THEN #NP(gate selector); FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits
or descriptor is not a TSS segment
or TSS descriptor specifies that the TSS is busy

THEN #GP(TSS selector); FI;
 IF TSS not present 

THEN #NP(TSS selector); FI;
 SWITCH-TASKS to TSS;
 IF EIP not within code segment limit 

THEN #GP(0); FI;
END;
TASK-STATE-SEGMENT:

IF TSS DPL < CPL
or TSS DPL < TSS segment-selector RPL
or TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS to TSS;
IF EIP not within code segment limit 

THEN #GP(0); FI;
END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

Protected Mode Exceptions
#GP(0) If offset in target operand, call gate, or TSS is beyond the code segment limits.

If the segment selector in the destination operand, call gate, task gate, or TSS is NULL.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If target mode is compatibility mode and SSP is not in low 4GB.
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#GP(selector) If the segment selector index is outside descriptor table limits. 
If the segment descriptor pointed to by the segment selector in the destination operand is not 
for a conforming-code segment, nonconforming-code segment, call gate, task gate, or task 
state segment.
If the DPL for a nonconforming-code segment is not equal to the CPL
(When not using a call gate.) If the RPL for the segment’s segment selector is greater than the 
CPL.
If the DPL for a conforming-code segment is greater than the CPL.
If the DPL from a call-gate, task-gate, or TSS segment descriptor is less than the CPL or than 
the RPL of the call-gate, task-gate, or TSS’s segment selector.
If the segment descriptor for selector in a call gate does not indicate it is a code segment.
If the segment descriptor for the segment selector in a task gate does not indicate an available 
TSS.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NP (selector) If the code segment being accessed is not present.

If call gate, task gate, or TSS not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3. (Only occurs when fetching target from memory.)
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the target operand is beyond the code segment limits.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made. (Only occurs 

when fetching target from memory.)
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as 64-bit mode exceptions.

64-Bit Mode Exceptions
#GP(0) If a memory address is non-canonical.

If target offset in destination operand is non-canonical.
If target offset in destination operand is beyond the new code segment limit.
If the segment selector in the destination operand is NULL.
If the code segment selector in the 64-bit gate is NULL.
If transitioning to compatibility mode and the SSP is beyond 4GB.
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#GP(selector) If the code segment or 64-bit call gate is outside descriptor table limits. 
If the code segment or 64-bit call gate overlaps non-canonical space. 
If the segment descriptor from a 64-bit call gate is in non-canonical space. 
If the segment descriptor pointed to by the segment selector in the destination operand is not 
for a conforming-code segment, nonconforming-code segment, 64-bit call gate.
If the segment descriptor pointed to by the segment selector in the destination operand is a 
code segment, and has both the D-bit and the L-bit set.
If the DPL for a nonconforming-code segment is not equal to the CPL, or the RPL for the 
segment’s segment selector is greater than the CPL.
If the DPL for a conforming-code segment is greater than the CPL.
If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate.
If the upper type field of a 64-bit call gate is not 0x0.
If the segment selector from a 64-bit call gate is beyond the descriptor table limits.
If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the 
L-bit set and the D-bit clear.
If the segment descriptor for a segment selector from the 64-bit call gate does not indicate it 
is a code segment. 
If the code segment is non-conforming and CPL ≠ DPL.
If the code segment is confirming and CPL < DPL.

#NP(selector) If a code segment or 64-bit call gate is not present.
#UD (64-bit mode only) If a far jump is direct to an absolute address in memory.

If the LOCK prefix is used.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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KADDW/KADDB/KADDQ/KADDD—ADD Two Masks

Instruction Operand Encoding

Description
Adds the vector mask k2 and the vector mask k3, and writes the result into vector mask k1.

Operation

KADDW
DEST[15:0] := SRC1[15:0] + SRC2[15:0]
DEST[MAX_KL-1:16] := 0

KADDB
DEST[7:0] := SRC1[7:0] + SRC2[7:0]
DEST[MAX_KL-1:8] := 0

KADDQ
DEST[63:0] := SRC1[63:0] + SRC2[63:0]
DEST[MAX_KL-1:64] := 0

KADDD
DEST[31:0] := SRC1[31:0] + SRC2[31:0]
DEST[MAX_KL-1:32] := 0

Intel C/C++ Compiler Intrinsic Equivalent

KADDW __mmask16 _kadd_mask16 (__mmask16 a, __mmask16 b);
KADDB __mmask8 _kadd_mask8 (__mmask8 a, __mmask8 b);
KADDQ __mmask64 _kadd_mask64 (__mmask64 a, __mmask64 b);
KADDD __mmask32 _kadd_mask32 (__mmask32 a, __mmask32 b);

Flags Affected
None.

SIMD Floating-Point Exceptions
None.

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

VEX.L1.0F.W0 4A /r 
KADDW k1, k2, k3

RVR V/V AVX512DQ
OR AVX10.1

Add 16 bits masks in k2 and k3 and place result in k1.

VEX.L1.66.0F.W0 4A /r 
KADDB k1, k2, k3

RVR V/V AVX512DQ
OR AVX10.1

Add 8 bits masks in k2 and k3 and place result in k1.

VEX.L1.0F.W1 4A /r 
KADDQ k1, k2, k3

RVR V/V AVX512BW
OR AVX10.1

Add 64 bits masks in k2 and k3 and place result in k1. 

VEX.L1.66.0F.W1 4A /r 
KADDD k1, k2, k3

RVR V/V AVX512BW
OR AVX10.1

Add 32 bits masks in k2 and k3 and place result in k1.

Op/En Operand 1 Operand 2 Operand 3

RVR ModRM:reg (w) VEX.1vvv (r) ModRM:r/m (r, ModRM:[7:6] must be 11b)
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Other Exceptions
See Table 2-65, “TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg).”
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KANDNW/KANDNB/KANDNQ/KANDND—Bitwise Logical AND NOT Masks

Instruction Operand Encoding

Description
Performs a bitwise AND NOT between the vector mask k2 and the vector mask k3, and writes the result into vector 
mask k1.

Operation

KANDNW
DEST[15:0] := (BITWISE NOT SRC1[15:0]) BITWISE AND SRC2[15:0]
DEST[MAX_KL-1:16] := 0

KANDNB
DEST[7:0] := (BITWISE NOT SRC1[7:0]) BITWISE AND SRC2[7:0]
DEST[MAX_KL-1:8] := 0

KANDNQ
DEST[63:0] := (BITWISE NOT SRC1[63:0]) BITWISE AND SRC2[63:0]
DEST[MAX_KL-1:64] := 0

KANDND
DEST[31:0] := (BITWISE NOT SRC1[31:0]) BITWISE AND SRC2[31:0]
DEST[MAX_KL-1:32] := 0

Intel C/C++ Compiler Intrinsic Equivalent

KANDNW __mmask16 _mm512_kandn(__mmask16 a, __mmask16 b);

Flags Affected
None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-65, “TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg).”

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

VEX.L1.0F.W0 42 /r 
KANDNW k1, k2, k3

RVR V/V AVX512F
OR AVX10.1

Bitwise AND NOT 16 bits masks k2 and k3 and place result in k1.

VEX.L1.66.0F.W0 42 /r 
KANDNB k1, k2, k3

RVR V/V AVX512DQ
OR AVX10.1

Bitwise AND NOT 8 bits masks k1 and k2 and place result in k1.

VEX.L1.0F.W1 42 /r 
KANDNQ k1, k2, k3

RVR V/V AVX512BW
OR AVX10.1

Bitwise AND NOT 64 bits masks k2 and k3 and place result in k1.

VEX.L1.66.0F.W1 42 /r 
KANDND k1, k2, k3

RVR V/V AVX512BW
OR AVX10.1

Bitwise AND NOT 32 bits masks k2 and k3 and place result in k1.

Op/En Operand 1 Operand 2 Operand 3

RVR ModRM:reg (w) VEX.1vvv (r) ModRM:r/m (r, ModRM:[7:6] must be 11b)
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KANDW/KANDB/KANDQ/KANDD—Bitwise Logical AND Masks

Instruction Operand Encoding

Description
Performs a bitwise AND between the vector mask k2 and the vector mask k3, and writes the result into vector mask 
k1.

Operation

KANDW
DEST[15:0] := SRC1[15:0] BITWISE AND SRC2[15:0]
DEST[MAX_KL-1:16] := 0

KANDB
DEST[7:0] := SRC1[7:0] BITWISE AND SRC2[7:0]
DEST[MAX_KL-1:8] := 0

KANDQ
DEST[63:0] := SRC1[63:0] BITWISE AND SRC2[63:0]
DEST[MAX_KL-1:64] := 0

KANDD
DEST[31:0] := SRC1[31:0] BITWISE AND SRC2[31:0]
DEST[MAX_KL-1:32] := 0

Intel C/C++ Compiler Intrinsic Equivalent

KANDW __mmask16 _mm512_kand(__mmask16 a, __mmask16 b);

Flags Affected
None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-65, “TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg).”

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

VEX.L1.0F.W0 41 /r 
KANDW k1, k2, k3

RVR V/V AVX512F
OR AVX10.1

Bitwise AND 16 bits masks k2 and k3 and place result in k1.

VEX.L1.66.0F.W0 41 /r 
KANDB k1, k2, k3

RVR V/V AVX512DQ
OR AVX10.1

Bitwise AND 8 bits masks k2 and k3 and place result in k1. 

VEX.L1.0F.W1 41 /r 
KANDQ k1, k2, k3

RVR V/V AVX512BW
OR AVX10.1

Bitwise AND 64 bits masks k2 and k3 and place result in k1.

VEX.L1.66.0F.W1 41 /r 
KANDD k1, k2, k3

RVR V/V AVX512BW
OR AVX10.1

Bitwise AND 32 bits masks k2 and k3 and place result in k1. 

Op/En Operand 1 Operand 2 Operand 3

RVR ModRM:reg (w) VEX.1vvv (r) ModRM:r/m (r, ModRM:[7:6] must be 11b)



KMOVW/KMOVB/KMOVQ/KMOVD—Move From and to Mask Registers 

Instruction Operand Encoding

Description
Copies values from the source operand (second operand) to the destination operand (first operand). The source 
and destination operands can be mask registers, memory location or general purpose. The instruction cannot be 
used to transfer data between general purpose registers and or memory locations.

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

VEX.L0.0F.W0 90 /r
KMOVW k1, k2/m16

RM V/V AVX512F
OR AVX10.1

Move 16 bits mask from k2/m16 and store the result in k1.

VEX.L0.66.0F.W0 90 /r 
KMOVB k1, k2/m8

RM V/V AVX512DQ
OR AVX10.1

Move 8 bits mask from k2/m8 and store the result in k1. 

VEX.L0.0F.W1 90 /r 
KMOVQ k1, k2/m64

RM V/V AVX512BW
OR AVX10.1

Move 64 bits mask from k2/m64 and store the result in k1.

VEX.L0.66.0F.W1 90 /r 
KMOVD k1, k2/m32

RM V/V AVX512BW
OR AVX10.1

Move 32 bits mask from k2/m32 and store the result in k1. 

VEX.L0.0F.W0 91 /r 
KMOVW m16, k1

MR V/V AVX512F
OR AVX10.1

Move 16 bits mask from k1 and store the result in m16.

VEX.L0.66.0F.W0 91 /r 
KMOVB m8, k1

MR V/V AVX512DQ
OR AVX10.1

Move 8 bits mask from k1 and store the result in m8. 

VEX.L0.0F.W1 91 /r 
KMOVQ m64, k1

MR V/V AVX512BW
OR AVX10.1

Move 64 bits mask from k1 and store the result in m64.

VEX.L0.66.0F.W1 91 /r 
KMOVD m32, k1

MR V/V AVX512BW
OR AVX10.1

Move 32 bits mask from k1 and store the result in m32.

VEX.L0.0F.W0 92 /r 
KMOVW k1, r32

RR V/V AVX512F
OR AVX10.1

Move 16 bits mask from r32 to k1.

VEX.L0.66.0F.W0 92 /r 
KMOVB k1, r32

RR V/V AVX512DQ
OR AVX10.1

Move 8 bits mask from r32 to k1.

VEX.L0.F2.0F.W1 92 /r 
KMOVQ k1, r64

RR V/I AVX512BW
OR AVX10.1

Move 64 bits mask from r64 to k1.

VEX.L0.F2.0F.W0 92 /r 
KMOVD k1, r32

RR V/V AVX512BW
OR AVX10.1

Move 32 bits mask from r32 to k1.

VEX.L0.0F.W0 93 /r 
KMOVW r32, k1

RR V/V AVX512F
OR AVX10.1

Move 16 bits mask from k1 to r32.

VEX.L0.66.0F.W0 93 /r 
KMOVB r32, k1

RR V/V AVX512DQ
OR AVX10.1

Move 8 bits mask from k1 to r32.

VEX.L0.F2.0F.W1 93 /r 
KMOVQ r64, k1

RR V/I AVX512BW
OR AVX10.1

Move 64 bits mask from k1 to r64.

VEX.L0.F2.0F.W0 93 /r 
KMOVD r32, k1

RR V/V AVX512BW
OR AVX10.1

Move 32 bits mask from k1 to r32.

Op/En Operand 1 Operand 2

RM ModRM:reg (w) ModRM:r/m (r)

MR ModRM:r/m (w, ModRM:[7:6] must not be 11b) ModRM:reg (r)

RR ModRM:reg (w) ModRM:r/m (r, ModRM:[7:6] must be 11b) 
KMOVW/KMOVB/KMOVQ/KMOVD—Move From and to Mask Registers Vol. 2A 3-575



When moving to a mask register, the result is zero extended to MAX_KL size (i.e., 64 bits currently). When moving 
to a general-purpose register (GPR), the result is zero-extended to the size of the destination. In 32-bit mode, the 
default GPR destination’s size is 32 bits. In 64-bit mode, the default GPR destination’s size is 64 bits. Note that 
VEX.W can only be used to modify the size of the GPR operand in 64b mode.

Operation

KMOVW
IF *destination is a memory location*

DEST[15:0] := SRC[15:0]
IF *destination is a mask register or a GPR *

DEST := ZeroExtension(SRC[15:0])

KMOVB
IF *destination is a memory location*

DEST[7:0] := SRC[7:0]
IF *destination is a mask register or a GPR *

DEST := ZeroExtension(SRC[7:0])

KMOVQ
IF *destination is a memory location or a GPR*

DEST[63:0] := SRC[63:0]
IF *destination is a mask register*

DEST := ZeroExtension(SRC[63:0])

KMOVD
IF *destination is a memory location*

DEST[31:0] := SRC[31:0]
IF *destination is a mask register or a GPR *

DEST := ZeroExtension(SRC[31:0])

Intel C/C++ Compiler Intrinsic Equivalent

KMOVW __mmask16 _mm512_kmov(__mmask16 a);

Flags Affected
None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
Instructions with RR operand encoding, see Table 2-65, “TYPE K20 Exception Definition (VEX-Encoded OpMask 
Instructions w/o Memory Arg).”
Instructions with RM or MR operand encoding, see Table 2-66, “TYPE K21 Exception Definition (VEX-Encoded 
OpMask Instructions Addressing Memory).”
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KNOTW/KNOTB/KNOTQ/KNOTD—NOT Mask Register Vol. 2A 3-577

KNOTW/KNOTB/KNOTQ/KNOTD—NOT Mask Register

Instruction Operand Encoding

Description
Performs a bitwise NOT of vector mask k2 and writes the result into vector mask k1.

Operation

KNOTW
DEST[15:0] := BITWISE NOT SRC[15:0]
DEST[MAX_KL-1:16] := 0

KNOTB
DEST[7:0] := BITWISE NOT SRC[7:0]
DEST[MAX_KL-1:8] := 0

KNOTQ
DEST[63:0] := BITWISE NOT SRC[63:0]
DEST[MAX_KL-1:64] := 0

KNOTD
DEST[31:0] := BITWISE NOT SRC[31:0]
DEST[MAX_KL-1:32] := 0

Intel C/C++ Compiler Intrinsic Equivalent

KNOTW __mmask16 _mm512_knot(__mmask16 a);

Flags Affected
None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-65, “TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg).”

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

VEX.L0.0F.W0 44 /r 
KNOTW k1, k2

RR V/V AVX512F
OR AVX10.1

Bitwise NOT of 16 bits mask k2.

VEX.L0.66.0F.W0 44 /r 
KNOTB k1, k2

RR V/V AVX512DQ
OR AVX10.1

Bitwise NOT of 8 bits mask k2.

VEX.L0.0F.W1 44 /r 
KNOTQ k1, k2

RR V/V AVX512BW
OR AVX10.1

Bitwise NOT of 64 bits mask k2.

VEX.L0.66.0F.W1 44 /r 
KNOTD k1, k2

RR V/V AVX512BW
OR AVX10.1

Bitwise NOT of 32 bits mask k2.

Op/En Operand 1 Operand 2

RR ModRM:reg (w) ModRM:r/m (r, ModRM:[7:6] must be 11b)



KORTESTW/KORTESTB/KORTESTQ/KORTESTD—OR Masks and Set Flags

Instruction Operand Encoding

Description
Performs a bitwise OR between the vector mask register k2, and the vector mask register k1, and sets CF and ZF 
based on the operation result. 
ZF flag is set if both sources are 0x0. CF is set if, after the OR operation is done, the operation result is all 1’s.

Operation

KORTESTW 
TMP[15:0] := DEST[15:0] BITWISE OR SRC[15:0]
IF(TMP[15:0]=0)

THEN ZF := 1
ELSE ZF := 0

FI;
IF(TMP[15:0]=FFFFh)

THEN CF := 1
ELSE CF := 0

FI;

KORTESTB 
TMP[7:0] := DEST[7:0] BITWISE OR SRC[7:0]
IF(TMP[7:0]=0)

THEN ZF := 1
ELSE ZF := 0

FI;
IF(TMP[7:0]==FFh)

THEN CF := 1
ELSE CF := 0

FI;

Opcode/
Instruction

Op/E
n

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

VEX.L0.0F.W0 98 /r 
KORTESTW k1, k2

RR V/V AVX512F
OR AVX10.1

Bitwise OR 16 bits masks k1 and k2 and update ZF and CF accordingly.

VEX.L0.66.0F.W0 98 /r
KORTESTB k1, k2

RR V/V AVX512DQ
OR AVX10.1

Bitwise OR 8 bits masks k1 and k2 and update ZF and CF accordingly.

VEX.L0.0F.W1 98 /r 
KORTESTQ k1, k2

RR V/V AVX512BW
OR AVX10.1

Bitwise OR 64 bits masks k1 and k2 and update ZF and CF accordingly.

VEX.L0.66.0F.W1 98 /r 
KORTESTD k1, k2

RR V/V AVX512BW
OR AVX10.1

Bitwise OR 32 bits masks k1 and k2 and update ZF and CF accordingly.

Op/En Operand 1 Operand 2

RR ModRM:reg (w) ModRM:r/m (r, ModRM:[7:6] must be 11b)
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KORTESTQ 
TMP[63:0] := DEST[63:0] BITWISE OR SRC[63:0]
IF(TMP[63:0]=0)

THEN ZF := 1
ELSE ZF := 0

FI;
IF(TMP[63:0]==FFFFFFFF_FFFFFFFFh)

THEN CF := 1
ELSE CF := 0

FI;

KORTESTD 
TMP[31:0] := DEST[31:0] BITWISE OR SRC[31:0]
IF(TMP[31:0]=0)

THEN ZF := 1
ELSE ZF := 0

FI;
IF(TMP[31:0]=FFFFFFFFh)

THEN CF := 1
ELSE CF := 0

FI;

Intel C/C++ Compiler Intrinsic Equivalent

KORTESTW __mmask16 _mm512_kortest[cz](__mmask16 a, __mmask16 b);

Flags Affected
The ZF flag is set if the result of OR-ing both sources is all 0s.
The CF flag is set if the result of OR-ing both sources is all 1s.
The OF, SF, AF, and PF flags are set to 0.

Other Exceptions
See Table 2-65, “TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg).”
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KORW/KORB/KORQ/KORD—Bitwise Logical OR Masks Vol. 2A 3-580

KORW/KORB/KORQ/KORD—Bitwise Logical OR Masks

Instruction Operand Encoding

Description
Performs a bitwise OR between the vector mask k2 and the vector mask k3, and writes the result into vector mask 
k1 (three-operand form).

Operation

KORW
DEST[15:0] := SRC1[15:0] BITWISE OR SRC2[15:0]
DEST[MAX_KL-1:16] := 0

KORB
DEST[7:0] := SRC1[7:0] BITWISE OR SRC2[7:0]
DEST[MAX_KL-1:8] := 0

KORQ
DEST[63:0] := SRC1[63:0] BITWISE OR SRC2[63:0]
DEST[MAX_KL-1:64] := 0

KORD
DEST[31:0] := SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[MAX_KL-1:32] := 0

Intel C/C++ Compiler Intrinsic Equivalent

KORW __mmask16 _mm512_kor(__mmask16 a, __mmask16 b);

Flags Affected
None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-65, “TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg).”

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

VEX.L1.0F.W0 45 /r 
KORW k1, k2, k3

RVR V/V AVX512F
OR AVX10.1

Bitwise OR 16 bits masks k2 and k3 and place result in k1.

VEX.L1.66.0F.W0 45 /r 
KORB k1, k2, k3

RVR V/V AVX512DQ
OR AVX10.1

Bitwise OR 8 bits masks k2 and k3 and place result in k1.

VEX.L1.0F.W1 45 /r 
KORQ k1, k2, k3

RVR V/V AVX512BW
OR AVX10.1

Bitwise OR 64 bits masks k2 and k3 and place result in k1.

VEX.L1.66.0F.W1 45 /r 
KORD k1, k2, k3

RVR V/V AVX512BW
OR AVX10.1

Bitwise OR 32 bits masks k2 and k3 and place result in k1.

Op/En Operand 1 Operand 2 Operand 3

RVR ModRM:reg (w) VEX.1vvv (r) ModRM:r/m (r, ModRM:[7:6] must be 11b)



KSHIFTLW/KSHIFTLB/KSHIFTLQ/KSHIFTLD—Shift Left Mask Registers 

Instruction Operand Encoding

Description
Shifts 8/16/32/64 bits in the second operand (source operand) left by the count specified in immediate byte and 
place the least significant 8/16/32/64 bits of the result in the destination operand. The higher bits of the destina-
tion are zero-extended. The destination is set to zero if the count value is greater than 7 (for byte shift), 15 (for 
word shift), 31 (for doubleword shift) or 63 (for quadword shift).

Operation

KSHIFTLW
COUNT := imm8[7:0]
DEST[MAX_KL-1:0] := 0
IF COUNT <=15

THEN DEST[15:0] := SRC1[15:0] << COUNT;
FI;

KSHIFTLB

COUNT := imm8[7:0]

DEST[MAX_KL-1:0] := 0
IF COUNT <=7

THEN DEST[7:0] := SRC1[7:0] << COUNT;
FI;

KSHIFTLQ

COUNT := imm8[7:0]

DEST[MAX_KL-1:0] := 0
IF COUNT <=63

THEN DEST[63:0] := SRC1[63:0] << COUNT;

FI;

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

VEX.L0.66.0F3A.W1 32 /r 
KSHIFTLW k1, k2, imm8

RRI V/V AVX512F
OR AVX10.1

Shift left 16 bits in k2 by immediate and write result in k1.

VEX.L0.66.0F3A.W0 32 /r 
KSHIFTLB k1, k2, imm8

RRI V/V AVX512DQ
OR AVX10.1

Shift left 8 bits in k2 by immediate and write result in k1.

VEX.L0.66.0F3A.W1 33 /r 
KSHIFTLQ k1, k2, imm8

RRI V/V AVX512BW
OR AVX10.1

Shift left 64 bits in k2 by immediate and write result in k1.

VEX.L0.66.0F3A.W0 33 /r 
KSHIFTLD k1, k2, imm8

RRI V/V AVX512BW
OR AVX10.1

Shift left 32 bits in k2 by immediate and write result in k1.

Op/En Operand 1 Operand 2 Operand 3

RRI ModRM:reg (w) ModRM:r/m (r, ModRM:[7:6] must be 11b) imm8
KSHIFTLW/KSHIFTLB/KSHIFTLQ/KSHIFTLD—Shift Left Mask Registers Vol. 2A 3-581



KSHIFTLD

COUNT := imm8[7:0]
DEST[MAX_KL-1:0] := 0
IF COUNT <=31

THEN DEST[31:0] := SRC1[31:0] << COUNT;
FI;

Intel C/C++ Compiler Intrinsic Equivalent

Compiler auto generates KSHIFTLW when needed.

Flags Affected
None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-65, “TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg).”
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KSHIFTRW/KSHIFTRB/KSHIFTRQ/KSHIFTRD—Shift Right Mask Registers 

Instruction Operand Encoding

Description
Shifts 8/16/32/64 bits in the second operand (source operand) right by the count specified in immediate and place 
the least significant 8/16/32/64 bits of the result in the destination operand. The higher bits of the destination are 
zero-extended. The destination is set to zero if the count value is greater than 7 (for byte shift), 15 (for word shift), 
31 (for doubleword shift) or 63 (for quadword shift).

Operation

KSHIFTRW
COUNT := imm8[7:0]
DEST[MAX_KL-1:0] := 0
IF COUNT <=15

THEN DEST[15:0] := SRC1[15:0] >> COUNT;
FI;

KSHIFTRB

COUNT := imm8[7:0]

DEST[MAX_KL-1:0] := 0
IF COUNT <=7

THEN DEST[7:0] := SRC1[7:0] >> COUNT;
FI;

KSHIFTRQ

COUNT := imm8[7:0]
DEST[MAX_KL-1:0] := 0
IF COUNT <=63

THEN DEST[63:0] := SRC1[63:0] >> COUNT;

FI;

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

VEX.L0.66.0F3A.W1 30 /r 
KSHIFTRW k1, k2, imm8

RRI V/V AVX512F
OR AVX10.1

Shift right 16 bits in k2 by immediate and write result in k1.

VEX.L0.66.0F3A.W0 30 /r 
KSHIFTRB k1, k2, imm8

RRI V/V AVX512DQ
OR AVX10.1

Shift right 8 bits in k2 by immediate and write result in k1.

VEX.L0.66.0F3A.W1 31 /r 
KSHIFTRQ k1, k2, imm8

RRI V/V AVX512BW
OR AVX10.1

Shift right 64 bits in k2 by immediate and write result in k1.

VEX.L0.66.0F3A.W0 31 /r 
KSHIFTRD k1, k2, imm8

RRI V/V AVX512BW
OR AVX10.1

Shift right 32 bits in k2 by immediate and write result in k1.

Op/En Operand 1 Operand 2 Operand 3

RRI ModRM:reg (w) ModRM:r/m (r, ModRM:[7:6] must be 11b) imm8
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KSHIFTRD

COUNT := imm8[7:0]

DEST[MAX_KL-1:0] := 0
IF COUNT <=31

THEN DEST[31:0] := SRC1[31:0] >> COUNT;
FI;

Intel C/C++ Compiler Intrinsic Equivalent

Compiler auto generates KSHIFTRW when needed.

Flags Affected
None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-65, “TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg).”
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KTESTW/KTESTB/KTESTQ/KTESTD—Packed Bit Test Masks and Set Flags

Instruction Operand Encoding

Description
Performs a bitwise comparison of the bits of the first source operand and corresponding bits in the second source 
operand. If the AND operation produces all zeros, the ZF is set else the ZF is clear. If the bitwise AND operation of 
the inverted first source operand with the second source operand produces all zeros the CF is set else the CF is 
clear. Only the EFLAGS register is updated.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

KTESTW 
TEMP[15:0] := SRC2[15:0] AND SRC1[15:0]
IF (TEMP[15:0] = = 0)

THEN ZF :=1;
ELSE ZF := 0;

FI;
TEMP[15:0] := SRC2[15:0] AND NOT SRC1[15:0]
IF (TEMP[15:0] = = 0)

THEN CF :=1;
ELSE CF := 0;

FI;
AF := OF := PF := SF := 0;

KTESTB 
TEMP[7:0] := SRC2[7:0] AND SRC1[7:0]
IF (TEMP[7:0] = = 0)

THEN ZF :=1;
ELSE ZF := 0;

FI;
TEMP[7:0] := SRC2[7:0] AND NOT SRC1[7:0]
IF (TEMP[7:0] = = 0)

THEN CF :=1;
ELSE CF := 0;

FI;
AF := OF := PF := SF := 0;

Opcode/
Instruction

Op 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

VEX.L0.0F.W0 99 /r
KTESTW k1, k2

RR V/V AVX512DQ
OR AVX10.1

Set ZF and CF depending on sign bit AND and ANDN of 16 bits mask 
register sources.

VEX.L0.66.0F.W0 99 /r
KTESTB k1, k2

RR V/V AVX512DQ
OR AVX10.1

Set ZF and CF depending on sign bit AND and ANDN of 8 bits mask reg-
ister sources.

VEX.L0.0F.W1 99 /r
KTESTQ k1, k2

RR V/V AVX512BW
OR AVX10.1

Set ZF and CF depending on sign bit AND and ANDN of 64 bits mask 
register sources.

VEX.L0.66.0F.W1 99 /r
KTESTD k1, k2

RR V/V AVX512BW
OR AVX10.1

Set ZF and CF depending on sign bit AND and ANDN of 32 bits mask 
register sources.

Op/En Operand 1 Operand 2

RR ModRM:reg (r) ModRM:r/m (r, ModRM:[7:6] must be 11b)
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KTESTQ 
TEMP[63:0] := SRC2[63:0] AND SRC1[63:0]
IF (TEMP[63:0] = = 0)

THEN ZF :=1;
ELSE ZF := 0;

FI;
TEMP[63:0] := SRC2[63:0] AND NOT SRC1[63:0]
IF (TEMP[63:0] = = 0)

THEN CF :=1;
ELSE CF := 0;

FI;
AF := OF := PF := SF := 0;

KTESTD 
TEMP[31:0] := SRC2[31:0] AND SRC1[31:0]
IF (TEMP[31:0] = = 0)

THEN ZF :=1;
ELSE ZF := 0;

FI;
TEMP[31:0] := SRC2[31:0] AND NOT SRC1[31:0]
IF (TEMP[31:0] = = 0)

THEN CF :=1;
ELSE CF := 0;

FI;
AF := OF := PF := SF := 0;

Intel C/C++ Compiler Intrinsic Equivalent

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-65, “TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg).”
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KUNPCKBW/KUNPCKWD/KUNPCKDQ—Unpack for Mask Registers 

Instruction Operand Encoding

Description
Unpacks the lower 8/16/32 bits of the second and third operands (source operands) into the low part of the first 
operand (destination operand), starting from the low bytes. The result is zero-extended in the destination.

Operation

KUNPCKBW
DEST[7:0] := SRC2[7:0]
DEST[15:8] := SRC1[7:0]
DEST[MAX_KL-1:16] := 0

KUNPCKWD

DEST[15:0] := SRC2[15:0]

DEST[31:16] := SRC1[15:0]
DEST[MAX_KL-1:32] := 0

KUNPCKDQ

DEST[31:0] := SRC2[31:0]

DEST[63:32] := SRC1[31:0]
DEST[MAX_KL-1:64] := 0

Intel C/C++ Compiler Intrinsic Equivalent

KUNPCKBW __mmask16 _mm512_kunpackb(__mmask16 a, __mmask16 b);
KUNPCKDQ __mmask64 _mm512_kunpackd(__mmask64 a, __mmask64 b);
KUNPCKWD __mmask32 _mm512_kunpackw(__mmask32 a, __mmask32 b);

Flags Affected
None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-65, “TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg).”

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

VEX.L1.66.0F.W0 4B /r
KUNPCKBW k1, k2, k3

RVR V/V AVX512F
OR AVX10.1

Unpack 8-bit masks in k2 and k3 and write word result in k1.

VEX.L1.0F.W0 4B /r 
KUNPCKWD k1, k2, k3

RVR V/V AVX512BW
OR AVX10.1

Unpack 16-bit masks in k2 and k3 and write doubleword result 
in k1.

VEX.L1.0F.W1 4B /r 
KUNPCKDQ k1, k2, k3

RVR V/V AVX512BW
OR AVX10.1

Unpack 32-bit masks in k2 and k3 and write quadword result in 
k1.

Op/En Operand 1 Operand 2 Operand 3

RVR ModRM:reg (w) VEX.1vvv (r) ModRM:r/m (r, ModRM:[7:6] must be 11b)



KXNORW/KXNORB/KXNORQ/KXNORD—Bitwise Logical XNOR Masks Vol. 2A 3-588

KXNORW/KXNORB/KXNORQ/KXNORD—Bitwise Logical XNOR Masks

Instruction Operand Encoding

Description
Performs a bitwise XNOR between the vector mask k2 and the vector mask k3, and writes the result into vector 
mask k1 (three-operand form).

Operation

KXNORW
DEST[15:0] := NOT (SRC1[15:0] BITWISE XOR SRC2[15:0])
DEST[MAX_KL-1:16] := 0

KXNORB
DEST[7:0] := NOT (SRC1[7:0] BITWISE XOR SRC2[7:0])
DEST[MAX_KL-1:8] := 0

KXNORQ
DEST[63:0] := NOT (SRC1[63:0] BITWISE XOR SRC2[63:0])
DEST[MAX_KL-1:64] := 0

KXNORD
DEST[31:0] := NOT (SRC1[31:0] BITWISE XOR SRC2[31:0])
DEST[MAX_KL-1:32] := 0

Intel C/C++ Compiler Intrinsic Equivalent

KXNORW __mmask16 _mm512_kxnor(__mmask16 a, __mmask16 b);

Flags Affected
None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-65, “TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg).”

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

VEX.L1.0F.W0 46 /r 
KXNORW k1, k2, k3

RVR V/V AVX512F
OR AVX10.1

Bitwise XNOR 16-bit masks k2 and k3 and place result in k1.

VEX.L1.66.0F.W0 46 /r 
KXNORB k1, k2, k3

RVR V/V AVX512DQ
OR AVX10.1

Bitwise XNOR 8-bit masks k2 and k3 and place result in k1.

VEX.L1.0F.W1 46 /r 
KXNORQ k1, k2, k3

RVR V/V AVX512BW
OR AVX10.1

Bitwise XNOR 64-bit masks k2 and k3 and place result in k1.

VEX.L1.66.0F.W1 46 /r 
KXNORD k1, k2, k3

RVR V/V AVX512BW
OR AVX10.1

Bitwise XNOR 32-bit masks k2 and k3 and place result in k1.

Op/En Operand 1 Operand 2 Operand 3

RVR ModRM:reg (w) VEX.1vvv (r) ModRM:r/m (r, ModRM:[7:6] must be 11b)
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KXORW/KXORB/KXORQ/KXORD—Bitwise Logical XOR Masks

Instruction Operand Encoding

Description
Performs a bitwise XOR between the vector mask k2 and the vector mask k3, and writes the result into vector mask 
k1 (three-operand form).

Operation

KXORW
DEST[15:0] := SRC1[15:0] BITWISE XOR SRC2[15:0]
DEST[MAX_KL-1:16] := 0

KXORB
DEST[7:0] := SRC1[7:0] BITWISE XOR SRC2[7:0]
DEST[MAX_KL-1:8] := 0

KXORQ
DEST[63:0] := SRC1[63:0] BITWISE XOR SRC2[63:0]
DEST[MAX_KL-1:64] := 0

KXORD
DEST[31:0] := SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[MAX_KL-1:32] := 0

Intel C/C++ Compiler Intrinsic Equivalent

KXORW __mmask16 _mm512_kxor(__mmask16 a, __mmask16 b);

Flags Affected
None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-65, “TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg).”

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

VEX.L1.0F.W0 47 /r 
KXORW k1, k2, k3

RVR V/V AVX512F
OR AVX10.1

Bitwise XOR 16-bit masks k2 and k3 and place result in k1.

VEX.L1.66.0F.W0 47 /r
KXORB k1, k2, k3

RVR V/V AVX512DQ
OR AVX10.1

Bitwise XOR 8-bit masks k2 and k3 and place result in k1.

VEX.L1.0F.W1 47 /r 
KXORQ k1, k2, k3

RVR V/V AVX512BW
OR AVX10.1

Bitwise XOR 64-bit masks k2 and k3 and place result in k1.

VEX.L1.66.0F.W1 47 /r 
KXORD k1, k2, k3

RVR V/V AVX512BW
OR AVX10.1

Bitwise XOR 32-bit masks k2 and k3 and place result in k1.

Op/En Operand 1 Operand 2 Operand 3

RVR ModRM:reg (w) VEX.1vvv (r) ModRM:r/m (r, ModRM:[7:6] must be 11b)
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LAHF—Load Status Flags Into AH Register

Instruction Operand Encoding

Description

This instruction executes as described above in compatibility mode and legacy mode. It is valid in 64-bit mode only 
if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1. 

Operation

IF 64-Bit Mode
THEN

IF CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1;
THEN AH := RFLAGS(SF:ZF:0:AF:0:PF:1:CF);
ELSE #UD; 

FI;
ELSE

AH := EFLAGS(SF:ZF:0:AF:0:PF:1:CF);
FI;

Flags Affected

None. The state of the flags in the EFLAGS register is not affected.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 0.

If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

9F LAHF ZO Invalid1

NOTES:
1. Valid in specific steppings; see Description section.

Valid Load: AH := EFLAGS(SF:ZF:0:AF:0:PF:1:CF).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A



LAR—Load Access Rights Byte

Instruction Operand Encoding

Description

Loads the access rights from the segment descriptor specified by the second operand (source operand) into the 
first operand (destination operand) and sets the ZF flag in the flag register. The source operand (which can be a 
register or a memory location) contains the segment selector for the segment descriptor being accessed. If the 
source operand is a memory address, only 16 bits of data are accessed. The destination operand is a general-
purpose register.

The processor performs access checks as part of the loading process. Once loaded in the destination register, soft-
ware can perform additional checks on the access rights information. 

The access rights for a segment descriptor include fields located in the second doubleword (bytes 4–7) of the 
segment descriptor. The following fields are loaded by the LAR instruction:
• Bits 7:0 are returned as 0
• Bits 11:8 return the segment type.
• Bit 12 returns the S flag.
• Bits 14:13 return the DPL.
• Bit 15 returns the P flag.
• The following fields are returned only if the operand size is greater than 16 bits:

— Bits 19:16 are undefined.

— Bit 20 returns the software-available bit in the descriptor.

— Bit 21 returns the L flag.

— Bit 22 returns the D/B flag.

— Bit 23 returns the G flag.

— Bits 31:24 are returned as 0.

This instruction performs the following checks before it loads the access rights in the destination register: 
• Checks that the segment selector is not NULL.
• Checks that the segment selector points to a descriptor that is within the limits of the GDT or LDT being 

accessed
• Checks that the descriptor type is valid for this instruction. All code and data segment descriptors are valid for 

(can be accessed with) the LAR instruction. The valid system segment and gate descriptor types are given in 
Table 1-62. 

• If the segment is not a conforming code segment, it checks that the specified segment descriptor is visible at 
the CPL (that is, if the CPL and the RPL of the segment selector are less than or equal to the DPL of the segment 
selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag is cleared and no 
access rights are loaded in the destination operand.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 02 /r LAR r16, r16/m16 RM Valid Valid r16 := access rights referenced by r16/m16

0F 02 /r LAR reg, r32/m161 RM Valid Valid reg := access rights referenced by r32/m16

NOTES:
1. For all loads (regardless of source or destination sizing) only bits 16-0 are used. Other bits are ignored.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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The LAR instruction can only be executed in protected mode and IA-32e mode.

Operation

IF Offset(SRC) > descriptor table limit
THEN 

ZF := 0; 
ELSE

SegmentDescriptor := descriptor referenced by SRC;
IF SegmentDescriptor(Type) ≠ conforming code segment
and (CPL > DPL) or (RPL > DPL)
or SegmentDescriptor(Type) is not valid for instruction

THEN
ZF := 0;

ELSE
DEST := access rights from SegmentDescriptor as given in Description section;
ZF := 1;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is cleared to 0.

Table 1-62.  Segment and Gate Types

Type Protected Mode IA-32e Mode

Name Valid Name Valid

0 Reserved No Reserved No

1 Available 16-bit TSS Yes Reserved No

2 LDT Yes LDT Yes

3 Busy 16-bit TSS Yes Reserved No

4 16-bit call gate Yes Reserved No

5 16-bit/32-bit task gate Yes Reserved No

6 16-bit interrupt gate No Reserved No

7 16-bit trap gate No Reserved No

8 Reserved No Reserved No

9 Available 32-bit TSS Yes Available 64-bit TSS Yes

A Reserved No Reserved No

B Busy 32-bit TSS Yes Busy 64-bit TSS Yes

C 32-bit call gate Yes 64-bit call gate Yes

D Reserved No Reserved No

E 32-bit interrupt gate No 64-bit interrupt gate No

F 32-bit trap gate No 64-bit trap gate No
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Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effective address is unaligned while 

the current privilege level is 3. 
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The LAR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LAR instruction cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If the memory operand effective address referencing the SS segment is in a non-canonical 

form.
#GP(0) If the memory operand effective address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effective address is unaligned while 

the current privilege level is 3.
#UD If the LOCK prefix is used.
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LDDQU—Load Unaligned Integer 128 Bits

Instruction Operand Encoding

Description

The instruction is functionally similar to (V)MOVDQU ymm/xmm, m256/m128 for loading from memory. That is: 
32/16 bytes of data starting at an address specified by the source memory operand (second operand) are fetched 
from memory and placed in a destination register (first operand). The source operand need not be aligned on a 
32/16-byte boundary. Up to 64/32 bytes may be loaded from memory; this is implementation dependent.

This instruction may improve performance relative to (V)MOVDQU if the source operand crosses a cache line 
boundary. In situations that require the data loaded by (V)LDDQU be modified and stored to the same location, use 
(V)MOVDQU or (V)MOVDQA instead of (V)LDDQU. To move a double quadword to or from memory locations that 
are known to be aligned on 16-byte boundaries, use the (V)MOVDQA instruction.

Implementation Notes
• If the source is aligned to a 32/16-byte boundary, based on the implementation, the 32/16 bytes may be 

loaded more than once. For that reason, the usage of (V)LDDQU should be avoided when using uncached or 
write-combining (WC) memory regions. For uncached or WC memory regions, keep using (V)MOVDQU.

• This instruction is a replacement for (V)MOVDQU (load) in situations where cache line splits significantly affect 
performance. It should not be used in situations where store-load forwarding is performance critical. If 
performance of store-load forwarding is critical to the application, use (V)MOVDQA store-load pairs when data 
is 256/128-bit aligned or (V)MOVDQU store-load pairs when data is 256/128-bit unaligned.

• If the memory address is not aligned on 32/16-byte boundary, some implementations may load up to 64/32 
bytes and return 32/16 bytes in the destination. Some processor implementations may issue multiple loads to 
access the appropriate 32/16 bytes. Developers of multi-threaded or multi-processor software should be aware 
that on these processors the loads will be performed in a non-atomic way.

• If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check exception 
(#AC) may or may not be generated (depending on processor implementation) when the memory address is 
not aligned on an 8-byte boundary.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

LDDQU (128-bit Legacy SSE Version)
DEST[127:0] := SRC[127:0]
DEST[MAXVL-1:128] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F F0 /r

LDDQU xmm1, mem

RM V/V SSE3 Load unaligned data from mem and return 
double quadword in xmm1.

VEX.128.F2.0F.WIG F0 /r

VLDDQU xmm1, m128

RM V/V AVX Load unaligned packed integer values from 
mem to xmm1.

VEX.256.F2.0F.WIG F0 /r

VLDDQU ymm1, m256

RM V/V AVX Load unaligned packed integer values from 
mem to ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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VLDDQU (VEX.128 Encoded Version)
DEST[127:0] := SRC[127:0]
DEST[MAXVL-1:128] := 0

VLDDQU (VEX.256 Encoded Version)
DEST[255:0] := SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

LDDQU __m128i _mm_lddqu_si128 (__m128i * p);
VLDDQU __m256i _mm256_lddqu_si256 (__m256i * p);

Numeric Exceptions

None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions.”
Note treatment of #AC varies.
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LDMXCSR—Load MXCSR Register

Instruction Operand Encoding

Description

Loads the source operand into the MXCSR control/status register. The source operand is a 32-bit memory location. 
See “MXCSR Control and Status Register” in Chapter 10, of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for a description of the MXCSR register and its contents.

The LDMXCSR instruction is typically used in conjunction with the (V)STMXCSR instruction, which stores the 
contents of the MXCSR register in memory.

The default MXCSR value at reset is 1F80H.

If a (V)LDMXCSR instruction clears a SIMD floating-point exception mask bit and sets the corresponding exception 
flag bit, a SIMD floating-point exception will not be immediately generated. The exception will be generated only 
upon the execution of the next instruction that meets both conditions below:
• the instruction must operate on an XMM or YMM register operand,
• the instruction causes that particular SIMD floating-point exception to be reported. 

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
If VLDMXCSR is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause 
an #UD exception.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

MXCSR := m32;

C/C++ Compiler Intrinsic Equivalent

_mm_setcsr(unsigned int i)

Numeric Exceptions

None.

Other Exceptions
See Table 2-22, “Type 5 Class Exception Conditions,” additionally:
#GP For an attempt to set reserved bits in MXCSR.
#UD If VEX.vvvv ≠ 1111B.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

NP 0F AE /2

LDMXCSR m32

M V/V SSE Load MXCSR register from m32.

VEX.LZ.0F.WIG AE /2

VLDMXCSR m32

M V/V AVX Load MXCSR register from m32.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A



LDS/LES/LFS/LGS/LSS—Load Far Pointer

Instruction Operand Encoding

Description

Loads a far pointer (segment selector and offset) from the second operand (source operand) into a segment 
register and the first operand (destination operand). The source operand specifies a 48-bit or a 32-bit pointer in 
memory depending on the current setting of the operand-size attribute (32 bits or 16 bits, respectively). The 
instruction opcode and the destination operand specify a segment register/general-purpose register pair. The 16-
bit segment selector from the source operand is loaded into the segment register specified with the opcode (DS, 
SS, ES, FS, or GS). The 32-bit or 16-bit offset is loaded into the register specified with the destination operand.

If one of these instructions is executed in protected mode, additional information from the segment descriptor 
pointed to by the segment selector in the source operand is loaded in the hidden part of the selected segment 
register.

Also in protected mode, a NULL selector (values 0000 through 0003) can be loaded into DS, ES, FS, or GS registers 
without causing a protection exception. (Any subsequent reference to a segment whose corresponding segment 
register is loaded with a NULL selector, causes a general-protection exception (#GP) and no memory reference to 
the segment occurs.)

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.W promotes 
operation to specify a source operand referencing an 80-bit pointer (16-bit selector, 64-bit offset) in memory. Using 
a REX prefix in the form of REX.R permits access to additional registers (R8-R15). See the summary chart at the 
beginning of this section for encoding data and limits.

Operation

64-BIT_MODE
IF SS is loaded 

THEN 
IF SegmentSelector = NULL and ( (RPL = 3) or 

(RPL ≠ 3 and RPL ≠ CPL) )
THEN #GP(0);

ELSE IF descriptor is in non-canonical space

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

C5 /r LDS r16,m16:16 RM Invalid Valid Load DS:r16 with far pointer from memory.

C5 /r LDS r32,m16:32 RM Invalid Valid Load DS:r32 with far pointer from memory.

0F B2 /r LSS r16,m16:16 RM Valid Valid Load SS:r16 with far pointer from memory.

0F B2 /r LSS r32,m16:32 RM Valid Valid Load SS:r32 with far pointer from memory.

REX + 0F B2 /r LSS r64,m16:64 RM Valid N.E. Load SS:r64 with far pointer from memory.

C4 /r LES r16,m16:16 RM Invalid Valid Load ES:r16 with far pointer from memory.

C4 /r LES r32,m16:32 RM Invalid Valid Load ES:r32 with far pointer from memory.

0F B4 /r LFS r16,m16:16 RM Valid Valid Load FS:r16 with far pointer from memory.

0F B4 /r LFS r32,m16:32 RM Valid Valid Load FS:r32 with far pointer from memory.

REX + 0F B4 /r LFS r64,m16:64 RM Valid N.E. Load FS:r64 with far pointer from memory.

0F B5 /r LGS r16,m16:16 RM Valid Valid Load GS:r16 with far pointer from memory.

0F B5 /r LGS r32,m16:32 RM Valid Valid Load GS:r32 with far pointer from memory.

REX + 0F B5 /r LGS r64,m16:64 RM Valid N.E. Load GS:r64 with far pointer from memory.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
LDS/LES/LFS/LGS/LSS—Load Far Pointer Vol. 2A 3-597



THEN #GP(selector); FI;
ELSE IF Segment selector index is not within descriptor table limits

or segment selector RPL ≠ CPL
or access rights indicate nonwritable data segment
or DPL ≠ CPL

THEN #GP(selector); FI;
ELSE IF Segment marked not present

THEN #SS(selector); FI;
FI;
SS := SegmentSelector(SRC);
SS := SegmentDescriptor([SRC]);

ELSE IF attempt to load DS, or ES 
THEN #UD;

ELSE IF FS, or GS is loaded with non-NULL segment selector
THEN IF Segment selector index is not within descriptor table limits

or access rights indicate segment neither data nor readable code segment
or segment is data or nonconforming-code segment 
and ( RPL > DPL or CPL > DPL)

THEN #GP(selector); FI;
ELSE IF Segment marked not present

THEN #NP(selector); FI;
FI;
SegmentRegister := SegmentSelector(SRC) ;
SegmentRegister := SegmentDescriptor([SRC]);

FI;
ELSE IF FS, or GS is loaded with a NULL selector:

THEN
SegmentRegister := NULLSelector;
SegmentRegister(DescriptorValidBit) := 0; FI; (* Hidden flag; 

not accessible by software *)
FI;
DEST := Offset(SRC);

PREOTECTED MODE OR COMPATIBILITY MODE;
IF SS is loaded 

THEN 
IF SegementSelector = NULL 

THEN #GP(0);
ELSE IF Segment selector index is not within descriptor table limits

or segment selector RPL ≠ CPL
or access rights indicate nonwritable data segment
or DPL ≠ CPL

THEN #GP(selector); FI;
ELSE IF Segment marked not present

THEN #SS(selector); FI;
FI;
SS := SegmentSelector(SRC);
SS := SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS, or GS is loaded with non-NULL segment selector
THEN IF Segment selector index is not within descriptor table limits

or access rights indicate segment neither data nor readable code segment
or segment is data or nonconforming-code segment 
and (RPL > DPL or CPL > DPL) 

THEN #GP(selector); FI;
ELSE IF Segment marked not present
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THEN #NP(selector); FI;
FI;
SegmentRegister := SegmentSelector(SRC) AND RPL;
SegmentRegister := SegmentDescriptor([SRC]);

FI;
ELSE IF DS, ES, FS, or GS is loaded with a NULL selector:

THEN
SegmentRegister := NULLSelector;
SegmentRegister(DescriptorValidBit) := 0; FI; (* Hidden flag; 

not accessible by software *)
FI;
DEST := Offset(SRC);

Real-Address or Virtual-8086 Mode
SegmentRegister := SegmentSelector(SRC); FI;
DEST := Offset(SRC);

Flags Affected

None.

Protected Mode Exceptions
#UD If source operand is not a memory location.

If the LOCK prefix is used.
#GP(0) If a NULL selector is loaded into the SS register.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#GP(selector) If the SS register is being loaded and any of the following is true: the segment selector index 
is not within the descriptor table limits, the segment selector RPL is not equal to CPL, the 
segment is a non-writable data segment, or DPL is not equal to CPL.
If the DS, ES, FS, or GS register is being loaded with a non-NULL segment selector and any of 
the following is true: the segment selector index is not within descriptor table limits, the 
segment is neither a data nor a readable code segment, or the segment is a data or noncon-
forming-code segment and both RPL and CPL are greater than DPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#SS(selector) If the SS register is being loaded and the segment is marked not present.
#NP(selector) If DS, ES, FS, or GS register is being loaded with a non-NULL segment selector and the 

segment is marked not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If source operand is not a memory location.

If the LOCK prefix is used.
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Virtual-8086 Mode Exceptions
#UD If source operand is not a memory location.

If the LOCK prefix is used.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a NULL selector is attempted to be loaded into the SS register in compatibility mode.
If a NULL selector is attempted to be loaded into the SS register in CPL3 and 64-bit mode.
If a NULL selector is attempted to be loaded into the SS register in non-CPL3 and 64-bit mode 
where its RPL is not equal to CPL.

#GP(Selector) If the FS, or GS register is being loaded with a non-NULL segment selector and any of the 
following is true: the segment selector index is not within descriptor table limits, the memory 
address of the descriptor is non-canonical, the segment is neither a data nor a readable code 
segment, or the segment is a data or nonconforming-code segment and both RPL and CPL are 
greater than DPL.
If the SS register is being loaded and any of the following is true: the segment selector index 
is not within the descriptor table limits, the memory address of the descriptor is non-canon-
ical, the segment selector RPL is not equal to CPL, the segment is a nonwritable data segment, 
or DPL is not equal to CPL.

#SS(0) If a memory operand effective address is non-canonical
#SS(Selector) If the SS register is being loaded and the segment is marked not present.
#NP(selector) If FS, or GS register is being loaded with a non-NULL segment selector and the segment is 

marked not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If source operand is not a memory location.

If the LOCK prefix is used.
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LDTILECFG—Load Tile Configuration

Instruction Operand Encoding

Description

The LDTILECFG instruction takes an operand containing a pointer to a 64-byte memory location containing the 
description of the tiles to be supported. In order to configure the tiles, the AMX-TILE bit in CPUID must be set and 
the operating system has to have enabled the tiles architecture.
The memory area contains the palette and describes how many tiles are being used and defines each tile in terms 
of rows and column bytes. Requests must be compatible with the restrictions provided by CPUID; see Table 1-63 
below. 

If a tile row and column pair is not used to specify tile parameters, they must have the value zero. All enabled tiles 
(based on the palette) must be configured. Specifying tile parameters for more tiles than the implementation limit 
or the palette limit results in a #GP fault. 
If the palette_id is zero, that signifies the INIT state for both TILECFG and TILEDATA. Tiles are zeroed in the INIT 
state. The only legal non-INIT value for palette_id is 1.
Any attempt to execute the LDTILECFG instruction inside an Intel TSX transaction will result in a transaction abort.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.NP.0F38.W0 49 !(11):000:bbb
LDTILECFG m512

A V/N.E. AMX-TILE Load tile configuration as specified in m512.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (r) N/A N/A N/A

Table 1-63.  Memory Area Layout

Byte(s) Field Name Description

0 palette Palette selects the supported configuration of the tiles that will be used.

1 start_row start_row is used for storing the restart values for interrupted operations.

2-15 reserved, must be zero

16-17 tile0.colsb Tile 0 bytes per row.

18-19 tile1.colsb Tile 1 bytes per row.

20-21 tile2.colsb Tile 2 bytes per row.

... (sequence continues)

30-31 tile7.colsb Tile 7 bytes per row.

32-47 reserved, must be zero

48 tile0.rows Tile 0 rows.

49 tile1.rows Tile 1 rows.

50 tile2.rows Tile 2 rows.

... (sequence continues)

55 tile7.rows Tile 7 rows.

56-63 reserved, must be zero
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Operation

LDTILECFG mem
error := False
buf := read_memory(mem, 64) 
temp_tilecfg.palette_id := buf.byte[0]
if temp_tilecfg.palette_id > max_palette: 

error := True
if not xcr0_supports_palette(temp_tilecfg.palette_id): 

error := True
if temp_tilecfg.palette_id !=0: 

temp_tilecfg.start_row := buf.byte[1] 
if buf.byte[2..15] is nonzero:

error := True
p := 16
# configure columns
for n in 0 ... palette_table[temp_tilecfg.palette_id].max_names-1:

temp_tilecfg.t[n].colsb:= buf.word[p/2]
p := p + 2
if temp_tilecfg.t[n].colsb > palette_table[temp_tilecfg.palette_id].bytes_per_row:

error := True
if nonzero(buf[p...47]):

error := True

# configure rows
p := 48
for n in 0 ... palette_table[temp_tilecfg.palette_id].max_names-1:

temp_tilecfg.t[n].rows:= buf.byte[p]
if temp_tilecfg.t[n].rows > palette_table[temp_tilecfg.palette_id].max_rows:

error := True
p := p + 1

if nonzero(buf[p...63]):
error := True

# validate each tile's row & col configs are reasonable and enable the valid tiles
for n in 0 ... palette_table[temp_tilecfg.palette_id].max_names-1:

if temp_tilecfg.t[n].rows !=0 and temp_tilecfg.t[n].colsb != 0:
temp_tilecfg.t[n].valid := 1

elif temp_tilecfg.t[n].rows == 0 and temp_tilecfg.t[n].colsb == 0:
temp_tilecfg.t[n].valid := 0

else:
error := True// one of rows or colsbwas 0 but not both.

if error:
#GP

elif temp_tilecfg.palette_id == 0:
TILES_CONFIGURED := 0// init state
tilecfg := 0// equivalent to 64B of zeros
zero_all_tile_data()

else:
tilecfg := temp_tilecfg
zero_all_tile_data()
TILES_CONFIGURED := 1
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Intel C/C++ Compiler Intrinsic Equivalent

LDTILECFG void _tile_loadconfig(const void *);

Flags Affected

None.

Exceptions

AMX-E1; see Section 2.10, “Intel® AMX Instruction Exception Classes,” for details.
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LEA—Load Effective Address

Instruction Operand Encoding

Description

Computes the effective address of the second operand (the source operand) and stores it in the first operand 
(destination operand). The source operand is a memory address (offset part) specified with one of the processors 
addressing modes; the destination operand is a general-purpose register. The address-size and operand-size attri-
butes affect the action performed by this instruction, as shown in the following table. The operand-size attribute of 
the instruction is determined by the chosen register; the address-size attribute is determined by the attribute of 
the code segment.

Different assemblers may use different algorithms based on the size attribute and symbolic reference of the source 
operand.

In 64-bit mode, the instruction’s destination operand is governed by operand size attribute, the default operand 
size is 32 bits. Address calculation is governed by address size attribute, the default address size is 64-bits. In 64-
bit mode, address size of 16 bits is not encodable. See Table 1-65.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

8D /r LEA r16,m RM Valid Valid Store effective address for m in register r16.

8D /r LEA r32,m RM Valid Valid Store effective address for m in register r32.

REX.W + 8D /r LEA r64,m RM Valid N.E. Store effective address for m in register r64. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A

Table 1-64.  Non-64-bit Mode LEA Operation with Address and Operand Size Attributes

Operand Size Address Size Action Performed

16 16 16-bit effective address is calculated and stored in requested 16-bit register destination.

16 32 32-bit effective address is calculated. The lower 16 bits of the address are stored in the 
requested 16-bit register destination.

32 16 16-bit effective address is calculated. The 16-bit address is zero-extended and stored in the 
requested 32-bit register destination.

32 32 32-bit effective address is calculated and stored in the requested 32-bit register destination.

Table 1-65.  64-bit Mode LEA Operation with Address and Operand Size Attributes

Operand Size Address Size Action Performed

16 32 32-bit effective address is calculated (using 67H prefix). The lower 16 bits of the address are 
stored in the requested 16-bit register destination (using 66H prefix).

16 64 64-bit effective address is calculated (default address size). The lower 16 bits of the address 
are stored in the requested 16-bit register destination (using 66H prefix).

32 32 32-bit effective address is calculated (using 67H prefix) and stored in the requested 32-bit 
register destination.

32 64 64-bit effective address is calculated (default address size) and the lower 32 bits of the 
address are stored in the requested 32-bit register destination.

64 32 32-bit effective address is calculated (using 67H prefix), zero-extended to 64-bits, and stored 
in the requested 64-bit register destination (using REX.W).

64 64 64-bit effective address is calculated (default address size) and all 64-bits of the address are 
stored in the requested 64-bit register destination (using REX.W).
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Operation

IF OperandSize = 16 and AddressSize = 16
THEN 

DEST := EffectiveAddress(SRC); (* 16-bit address *)
ELSE IF OperandSize = 16 and AddressSize = 32

THEN
temp := EffectiveAddress(SRC); (* 32-bit address *)
DEST := temp[0:15]; (* 16-bit address *)

FI;
ELSE IF OperandSize = 32 and AddressSize = 16

THEN
temp := EffectiveAddress(SRC); (* 16-bit address *)
DEST := ZeroExtend(temp); (* 32-bit address *)

FI;
ELSE IF OperandSize = 32 and AddressSize = 32

THEN 
DEST := EffectiveAddress(SRC); (* 32-bit address *)

FI;
ELSE IF OperandSize = 16 and AddressSize = 64

THEN 
temp := EffectiveAddress(SRC); (* 64-bit address *)
DEST := temp[0:15]; (* 16-bit address *)

FI;
ELSE IF OperandSize = 32 and AddressSize = 64

THEN 
temp := EffectiveAddress(SRC); (* 64-bit address *)
DEST := temp[0:31]; (* 16-bit address *)

FI;
ELSE IF OperandSize = 64 and AddressSize = 64

THEN 
DEST := EffectiveAddress(SRC); (* 64-bit address *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#UD If source operand is not a memory location.

If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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LEAVE—High Level Procedure Exit

Instruction Operand Encoding

Description

Releases the stack frame set up by an earlier ENTER instruction. The LEAVE instruction copies the frame pointer (in 
the EBP register) into the stack pointer register (ESP), which releases the stack space allocated to the stack frame. 
The old frame pointer (the frame pointer for the calling procedure that was saved by the ENTER instruction) is then 
popped from the stack into the EBP register, restoring the calling procedure’s stack frame. 

A RET instruction is commonly executed following a LEAVE instruction to return program control to the calling 
procedure.

See “Procedure Calls for Block-Structured Languages” in Chapter 7 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for detailed information on the use of the ENTER and LEAVE instructions.

In 64-bit mode, the instruction’s default operation size is 64 bits; 32-bit operation cannot be encoded. See the 
summary chart at the beginning of this section for encoding data and limits.

Operation

IF StackAddressSize = 32
THEN

ESP := EBP;
ELSE IF StackAddressSize = 64

THEN RSP := RBP; FI;
ELSE IF StackAddressSize = 16

THEN SP := BP; FI;
FI;

IF OperandSize = 32
THEN EBP := Pop();
ELSE IF OperandSize = 64

THEN RBP := Pop(); FI;
ELSE IF OperandSize = 16

THEN BP := Pop(); FI;
FI;

Flags Affected

None.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

C9 LEAVE ZO Valid Valid Set SP to BP, then pop BP.

C9 LEAVE ZO N.E. Valid Set ESP to EBP, then pop EBP.

C9 LEAVE ZO Valid N.E. Set RSP to RBP, then pop RBP.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Protected Mode Exceptions
#SS(0) If the EBP register points to a location that is not within the limits of the current stack 

segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the EBP register points to a location outside of the effective address space from 0 to FFFFH.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the EBP register points to a location outside of the effective address space from 0 to FFFFH.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If the stack address is in a non-canonical form.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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LFENCE—Load Fence Vol. 2A 3-609

LFENCE—Load Fence

Instruction Operand Encoding

Description

Performs a serializing operation on all load-from-memory instructions that were issued prior the LFENCE instruc-
tion. Specifically, LFENCE does not execute until all prior instructions have completed locally, and no later instruc-
tion begins execution until LFENCE completes. In particular, an instruction that loads from memory and that 
precedes an LFENCE receives data from memory prior to completion of the LFENCE. (An LFENCE that follows an 
instruction that stores to memory might complete before the data being stored have become globally visible.) 
Instructions following an LFENCE may be fetched from memory before the LFENCE, but they will not execute (even 
speculatively) until the LFENCE completes. 

Weakly ordered memory types can be used to achieve higher processor performance through such techniques as 
out-of-order issue and speculative reads. The degree to which a consumer of data recognizes or knows that the 
data is weakly ordered varies among applications and may be unknown to the producer of this data. The LFENCE 
instruction provides a performance-efficient way of ensuring load ordering between routines that produce weakly-
ordered results and routines that consume that data.

Processors are free to fetch and cache data speculatively from regions of system memory that use the WB, WC, 
and WT memory types. This speculative fetching can occur at any time and is not tied to instruction execution. 
Thus, it is not ordered with respect to executions of the LFENCE instruction; data can be brought into the caches 
speculatively just before, during, or after the execution of an LFENCE instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Specification of the instruction's opcode above indicates a ModR/M byte of E8. For this instruction, the processor 
ignores the r/m field of the ModR/M byte. Thus, LFENCE is encoded by any opcode of the form 0F AE Ex, where x is 
in the range 8-F.

Operation

Wait_On_Following_Instructions_Until(preceding_instructions_complete);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_lfence(void)

Exceptions (All Modes of Operation)
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Opcode /
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F AE E8

LFENCE

ZO V/V SSE2 Serializes load operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A



LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

Instruction Operand Encoding

Description

Loads the values in the source operand into the global descriptor table register (GDTR) or the interrupt descriptor 
table register (IDTR). The source operand specifies a 6-byte memory location that contains the base address (a 
linear address) and the limit (size of table in bytes) of the global descriptor table (GDT) or the interrupt descriptor 
table (IDT). If operand-size attribute is 32 bits, a 16-bit limit (lower 2 bytes of the 6-byte data operand) and a 32-
bit base address (upper 4 bytes of the data operand) are loaded into the register. If the operand-size attribute 
is 16 bits, a 16-bit limit (lower 2 bytes) and a 24-bit base address (third, fourth, and fifth byte) are loaded. Here, 
the high-order byte of the operand is not used and the high-order byte of the base address in the GDTR or IDTR is 
filled with zeros.

The LGDT and LIDT instructions are used only in operating-system software; they are not used in application 
programs. They are the only instructions that directly load a linear address (that is, not a segment-relative 
address) and a limit in protected mode. They are commonly executed in real-address mode to allow processor 
initialization prior to switching to protected mode.

In 64-bit mode, the instruction’s operand size is fixed at 8+2 bytes (an 8-byte base and a 2-byte limit). See the 
summary chart at the beginning of this section for encoding data and limits.

See “SGDT—Store Global Descriptor Table Register” in Chapter 4, of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B, for information on storing the contents of the GDTR and IDTR.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /2 LGDT m16&32 M N.E. Valid Load m into GDTR.

0F 01 /3 LIDT m16&32 M N.E. Valid Load m into IDTR.

0F 01 /2 LGDT m16&64 M Valid N.E. Load m into GDTR.

0F 01 /3 LIDT m16&64 M Valid N.E. Load m into IDTR.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A
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Operation

IF Instruction is LIDT
THEN

IF OperandSize = 16
THEN 

IDTR(Limit) := SRC[0:15];
IDTR(Base) := SRC[16:47] AND 00FFFFFFH; 

ELSE IF 32-bit Operand Size
THEN

IDTR(Limit) := SRC[0:15];
IDTR(Base) := SRC[16:47]; 

FI;
ELSE IF 64-bit Operand Size (* In 64-Bit Mode *)

THEN
IDTR(Limit) := SRC[0:15];
IDTR(Base) := SRC[16:79]; 

FI;
FI;

ELSE (* Instruction is LGDT *)
IF OperandSize = 16

THEN 
GDTR(Limit) := SRC[0:15];
GDTR(Base) := SRC[16:47] AND 00FFFFFFH; 

ELSE IF 32-bit Operand Size
THEN

GDTR(Limit) := SRC[0:15];
GDTR(Base) := SRC[16:47]; 

FI;
ELSE IF 64-bit Operand Size (* In 64-Bit Mode *)

THEN
GDTR(Limit) := SRC[0:15];
GDTR(Base) := SRC[16:79]; 

FI;
FI; 

FI;

Flags Affected

None.

Protected Mode Exceptions
#UD If the LOCK prefix is used.
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
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Real-Address Mode Exceptions
#UD If the LOCK prefix is used.
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.
#GP If the current privilege level is not 0.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.
#UD If the LOCK prefix is used.
#PF(fault-code) If a page fault occurs.
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LLDT—Load Local Descriptor Table Register

Instruction Operand Encoding

Description

Loads the source operand into the segment selector field of the local descriptor table register (LDTR). The source 
operand (a general-purpose register or a memory location) contains a segment selector that points to a local 
descriptor table (LDT). After the segment selector is loaded in the LDTR, the processor uses the segment selector 
to locate the segment descriptor for the LDT in the global descriptor table (GDT). It then loads the segment limit 
and base address for the LDT from the segment descriptor into the LDTR. The segment registers DS, ES, SS, FS, 
GS, and CS are not affected by this instruction, nor is the LDTR field in the task state segment (TSS) for the current 
task.

If bits 2-15 of the source operand are 0, LDTR is marked invalid and the LLDT instruction completes silently. 
However, all subsequent references to descriptors in the LDT (except by the LAR, VERR, VERW or LSL instructions) 
cause a general protection exception (#GP).

The operand-size attribute has no effect on this instruction. 

The LLDT instruction is provided for use in operating-system software; it should not be used in application 
programs. This instruction can only be executed in protected mode or 64-bit mode.

In 64-bit mode, the operand size is fixed at 16 bits.

Operation

IF SRC(Offset) > descriptor table limit 
THEN #GP(segment selector); FI;

IF segment selector is valid

Read segment descriptor;

IF SegmentDescriptor(Type) ≠ LDT 
THEN #GP(segment selector); FI;

IF segment descriptor is not present 
THEN #NP(segment selector); FI;

LDTR(SegmentSelector) := SRC;
LDTR(SegmentDescriptor) := GDTSegmentDescriptor;

ELSE LDTR := INVALID
FI;

Flags Affected

None.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 00 /2 LLDT r/m16 M Valid Valid Load segment selector r/m16 into LDTR.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A
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Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#GP(selector) If the selector operand does not point into the Global Descriptor Table or if the entry in the GDT 
is not a Local Descriptor Table.
Segment selector is beyond GDT limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NP(selector) If the LDT descriptor is not present.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The LLDT instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LLDT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.
#GP(selector) If the selector operand does not point into the Global Descriptor Table or if the entry in the GDT 

is not a Local Descriptor Table.
Segment selector is beyond GDT limit.

#NP(selector) If the LDT descriptor is not present.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
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LMSW—Load Machine Status Word

Instruction Operand Encoding

Description

Loads the source operand into the machine status word, bits 0 through 15 of register CR0. The source operand can 
be a 16-bit general-purpose register or a memory location. Only the low-order 4 bits of the source operand (which 
contains the PE, MP, EM, and TS flags) are loaded into CR0. The PG, CD, NW, AM, WP, NE, and ET flags of CR0 are 
not affected. The operand-size attribute has no effect on this instruction.

If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the processor to switch to protected 
mode. While in protected mode, the LMSW instruction cannot be used to clear the PE flag and force a switch back 
to real-address mode.

The LMSW instruction is provided for use in operating-system software; it should not be used in application 
programs. In protected or virtual-8086 mode, it can only be executed at CPL 0.

This instruction is provided for compatibility with the Intel 286 processor; programs and procedures intended to 
run on IA-32 and Intel 64 processors beginning with Intel386 processors should use the MOV (control registers) 
instruction to load the whole CR0 register. The MOV CR0 instruction can be used to set and clear the PE flag in CR0, 
allowing a procedure or program to switch between protected and real-address modes.

This instruction is a serializing instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Note that the operand size is fixed 
at 16 bits.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 26 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Operation

CR0[0:3] := SRC[0:3];

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /6 LMSW r/m16 M Valid Valid Loads r/m16 in machine status word of CR0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A
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Virtual-8086 Mode Exceptions
#GP(0) The LMSW instruction is not recognized in virtual-8086 mode.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
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LOADIWKEY—Load Internal Wrapping Key With Key Locker

Instruction Operand Encoding

Description
The LOADIWKEY1 instruction writes the Key Locker internal wrapping key, which is called IWKey. This IWKey is 
used by the ENCODEKEY* instructions to wrap keys into handles. Conversely, the AESENC/DEC*KL instructions 
use IWKey to unwrap those keys from the handles and help verify the handle integrity. For security reasons, no 
instruction is designed to allow software to directly read the IWKey value.
IWKey includes two cryptographic keys as well as metadata. The two cryptographic keys are loaded from register 
sources so that LOADIWKEY can be executed without the keys ever being in memory.
The key input operands are:
• The 256-bit encryption key is loaded from the two explicit operands.
• The 128-bit integrity key is loaded from the implicit operand XMM0.
The implicit operand EAX specifies the KeySource and whether backing up the key is permitted:
• EAX[0] – When set, the wrapping key being initialized is not permitted to be backed up to platform-scoped 

storage.
• EAX[4:1] – This specifies the KeySource, which is the type of key. Currently only two encodings are supported. 

A KeySource of 0 indicates that the key input operands described above should be directly stored as the 
internal wrapping keys. LOADIWKEY with a KeySource of 1 will have random numbers from the on-chip random 
number generator XORed with the source registers (including XMM0) so that the software that executes the 
LOADIWKEY does not know the actual IWKey encryption and integrity keys. Software can choose to put 
additional random data into the source registers so that other sources of random data are combined with the 
hardware random number generator supplied value. Software should always check ZF after executing 
LOADIWKEY with KeySource of 1 as this operation may fail due to it being unable to get sufficient full-entropy 
data from the on-chip random number generator. Both KeySource of 0 and 1 specify that IWKey be used with 
the AES-GCM-SIV algorithm. CPUID.19H.ECX[1] enumerates support for KeySource of 1. All other KeySource 
encodings are reserved.

• EAX[31:5] – Reserved.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 38 DC 11:rrr:bbb 
LOADIWKEY xmm1, xmm2, <EAX>, <XMM0>

A V/V KL Load internal wrapping key from xmm1, xmm2, and 
XMM0.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r) ModRM:r/m (r) Implicit EAX (r) Implicit XMM0 (r)

1. Further details on Key Locker and usage of this instruction can be found here:

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.
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Operation

LOADIWKEY 
IF CPL > 0 // LOADKWKEY only allowed at ring 0 (supervisor mode)

THEN #GP (0); FI;
IF EAX[4:1] > 1 // Reserved KeySource encoding used

THEN #GP (0); FI;
IF EAX[31:5] != 0 // Reserved bit in EAX is set

THEN #GP (0); FI;
IF EAX[0] AND (CPUID.19H.ECX[0] == 0) // NoBackup is not supported on this part

THEN #GP (0); FI;
IF (EAX[4:1] == 1) AND (CPUID.19H.ECX[1] == 0) // KeySource of 1 is not supported on this part

THEN #GP (0); FI;
IF (EAX[4:1] == 0) // KeySource of 0

THEN
IWKey.Encryption Key[127:0] := SRC2[127:0]:
IWKey.Encryption Key[255:128] := SRC1[127:0];
IWKey.IntegrityKey[127:0] := XMM0[127:0];
IWKey.NoBackup = EAX [0];
IWKey.KeySource = EAX [4:1];
RFLAGS.ZF := 0; 

ELSE // KeySource of 1. See RDSEED definition for details of randomness
IF HW_NRND_GEN.ready == 1 // Full-entropy random data from RDSEED hardware block was received

THEN
IWKey.Encryption Key[127:0] := SRC2[127:0] XOR HW_NRND_GEN.data[127:0];
IWKey.Encryption Key[255:128] := SRC1[127:0] XOR HW_NRND_GEN.data[255:128];
IWKey.IntegrityKey[127:0] := XMM0[127:0] XOR HW_NRND_GEN.data[383:256];
IWKey.NoBackup = EAX [0];
IWKey.KeySource = EAX [4:1];
RFLAGS.ZF := 0; 

ELSE // Random data was not returned from RDSEED hardware block. IWKey was not loaded
RFLAGS.ZF := 1; 

FI;
FI;
RFLAGS.OF, SF, AF, PF, CF := 0;

Flags Affected
ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to full-entropy random data not 
being received from RDSEED. The other arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent

LOADIWKEY void _mm_loadiwkey(unsigned int ctl, __m128i intkey, __m128i enkey_lo, __m128i enkey_hi);
LOADIWKEY—Load Internal Wrapping Key With Key Locker Vol. 2A 3-618



Exceptions (All Operating Modes)
#GP If CPL > 0. (Does not apply in real-address mode.)

If EAX[4:1] > 1.
If EAX[31:5] != 0.
If (EAX[0] == 1) AND (CPUID.19H.ECX[0] == 0).
If (EAX[4:1] == 1) AND (CPUID.19H.ECX[1] == 0).

#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL[bit 23] = 0.
If CR4.KL = 0.
If CR0.EM = 1.
If CR4.OSFXSR = 0.

#NM If CR0.TS = 1.
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LOCK—Assert LOCK# Signal Prefix

Instruction Operand Encoding

Description

Causes the processor’s LOCK# signal to be asserted during execution of the accompanying instruction (turns the 
instruction into an atomic instruction). In a multiprocessor environment, the LOCK# signal ensures that the 
processor has exclusive use of any shared memory while the signal is asserted.

In most IA-32 and all Intel 64 processors, locking may occur without the LOCK# signal being asserted. See the “IA-
32 Architecture Compatibility” section below for more details.

The LOCK prefix can be prepended only to the following instructions and only to those forms of the instructions 
where the destination operand is a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, 
CMPXCHG16B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG. If the LOCK prefix is used with one of 
these instructions and the source operand is a memory operand, an undefined opcode exception (#UD) may be 
generated. An undefined opcode exception will also be generated if the LOCK prefix is used with any instruction not 
in the above list. The XCHG instruction always asserts the LOCK# signal regardless of the presence or absence of 
the LOCK prefix.

The LOCK prefix is typically used with the BTS instruction to perform a read-modify-write operation on a memory 
location in shared memory environment.

The integrity of the LOCK prefix is not affected by the alignment of the memory field. Memory locking is observed 
for arbitrarily misaligned fields.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

Beginning with the P6 family processors, when the LOCK prefix is prefixed to an instruction and the memory area 
being accessed is cached internally in the processor, the LOCK# signal is generally not asserted. Instead, only the 
processor’s cache is locked. Here, the processor’s cache coherency mechanism ensures that the operation is 
carried out atomically with regards to memory. See “Effects of a Locked Operation on Internal Processor Caches” 
in Chapter 10 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, the for more infor-
mation on locking of caches.

Operation

AssertLOCK#(DurationOfAccompaningInstruction);

Flags Affected

None.

Protected Mode Exceptions
#UD If the LOCK prefix is used with an instruction not listed: ADD, ADC, AND, BTC, BTR, BTS, 

CMPXCHG, CMPXCH8B, CMPXCHG16B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, 
XCHG.
Other exceptions can be generated by the instruction when the LOCK prefix is applied.

Opcode1

NOTES:
1. See IA-32 Architecture Compatibility section below.

Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F0 LOCK ZO Valid Valid Asserts LOCK# signal for duration of the 
accompanying instruction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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LODS/LODSB/LODSW/LODSD/LODSQ—Load String

Instruction Operand Encoding

Description

Loads a byte, word, or doubleword from the source operand into the AL, AX, or EAX register, respectively. The 
source operand is a memory location, the address of which is read from the DS:ESI or the DS:SI registers 
(depending on the address-size attribute of the instruction, 32 or 16, respectively). The DS segment may be over-
ridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands” form and the “no-
operands” form. The explicit-operands form (specified with the LODS mnemonic) allows the source operand to be 
specified explicitly. Here, the source operand should be a symbol that indicates the size and location of the source 
value. The destination operand is then automatically selected to match the size of the source operand (the AL 
register for byte operands, AX for word operands, and EAX for doubleword operands). This explicit-operands form 
is provided to allow documentation; however, note that the documentation provided by this form can be 
misleading. That is, the source operand symbol must specify the correct type (size) of the operand (byte, word, or 
doubleword), but it does not have to specify the correct location. The location is always specified by the DS:(E)SI 
registers, which must be loaded correctly before the load string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the LODS instructions. 
Here also DS:(E)SI is assumed to be the source operand and the AL, AX, or EAX register is assumed to be the desti-
nation operand. The size of the source and destination operands is selected with the mnemonic: LODSB (byte 
loaded into register AL), LODSW (word loaded into AX), or LODSD (doubleword loaded into EAX).

After the byte, word, or doubleword is transferred from the memory location into the AL, AX, or EAX register, the 
(E)SI register is incremented or decremented automatically according to the setting of the DF flag in the EFLAGS 
register. (If the DF flag is 0, the (E)SI register is incremented; if the DF flag is 1, the ESI register is decremented.) 
The (E)SI register is incremented or decremented by 1 for byte operations, by 2 for word operations, or by 4 for 
doubleword operations.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

AC LODS m8 ZO Valid Valid For legacy mode, Load byte at address DS:(E)SI 
into AL. For 64-bit mode load byte at address 
(R)SI into AL.

AD LODS m16 ZO Valid Valid For legacy mode, Load word at address 
DS:(E)SI into AX. For 64-bit mode load word at 
address (R)SI into AX.

AD LODS m32 ZO Valid Valid For legacy mode, Load dword at address 
DS:(E)SI into EAX. For 64-bit mode load dword 
at address (R)SI into EAX.

REX.W + AD LODS m64 ZO Valid N.E. Load qword at address (R)SI into RAX.

AC LODSB ZO Valid Valid For legacy mode, Load byte at address DS:(E)SI 
into AL. For 64-bit mode load byte at address 
(R)SI into AL.

AD LODSW ZO Valid Valid For legacy mode, Load word at address 
DS:(E)SI into AX. For 64-bit mode load word at 
address (R)SI into AX.

AD LODSD ZO Valid Valid For legacy mode, Load dword at address 
DS:(E)SI into EAX. For 64-bit mode load dword 
at address (R)SI into EAX.

REX.W + AD LODSQ ZO Valid N.E. Load qword at address (R)SI into RAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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In 64-bit mode, use of the REX.W prefix promotes operation to 64 bits. LODS/LODSQ load the quadword at address 
(R)SI into RAX. The (R)SI register is then incremented or decremented automatically according to the setting of 
the DF flag in the EFLAGS register. 

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP prefix for block loads of ECX 
bytes, words, or doublewords. More often, however, these instructions are used within a LOOP construct because 
further processing of the data moved into the register is  usually necessary before the next transfer can be made. 
See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2B, for a description of the REP prefix.

Operation

IF AL := SRC; (* Byte load *)
THEN AL := SRC; (* Byte load *)

IF DF = 0
THEN (E)SI := (E)SI + 1; 
ELSE (E)SI := (E)SI – 1; 

FI;
ELSE IF AX := SRC; (* Word load *)

THEN IF DF = 0
THEN (E)SI := (E)SI + 2; 
ELSE (E)SI := (E)SI – 2; 

IF;
FI;

ELSE IF EAX := SRC; (* Doubleword load *)
THEN IF DF = 0

THEN (E)SI := (E)SI + 4; 
ELSE (E)SI := (E)SI – 4; 

FI;
FI;

ELSE IF RAX := SRC; (* Quadword load *)
THEN IF DF = 0

THEN (R)SI := (R)SI + 8; 
ELSE (R)SI := (R)SI – 8; 

FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.
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Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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LOOP/LOOPcc—Loop According to ECX Counter

Instruction Operand Encoding

Description

Performs a loop operation using the RCX, ECX or CX register as a counter (depending on whether address size is 64 
bits, 32 bits, or 16 bits). Note that the LOOP instruction ignores REX.W; but 64-bit address size can be over-ridden 
using a 67H prefix.

Each time the LOOP instruction is executed, the count register is decremented, then checked for 0. If the count is 
0, the loop is terminated and program execution continues with the instruction following the LOOP instruction. If 
the count is not zero, a near jump is performed to the destination (target) operand, which is presumably the 
instruction at the beginning of the loop.

The target instruction is specified with a relative offset (a signed offset relative to the current value of the instruc-
tion pointer in the IP/EIP/RIP register). This offset is generally specified as a label in assembly code, but at the 
machine code level, it is encoded as a signed, 8-bit immediate value, which is added to the instruction pointer. 
Offsets of –128 to +127 are allowed with this instruction.

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for terminating the loop before 
the count reaches zero. With these forms of the instruction, a condition code (cc) is associated with each instruc-
tion to indicate the condition being tested for. Here, the LOOPcc instruction itself does not affect the state of the ZF 
flag; the ZF flag is changed by other instructions in the loop.

Operation

IF (AddressSize = 32)
THEN Count is ECX;

ELSE IF (AddressSize = 64)
Count is RCX;

ELSE Count is CX; 
FI;

Count := Count – 1;

IF Instruction is not LOOP
THEN

IF (Instruction := LOOPE) or (Instruction := LOOPZ)
THEN IF (ZF = 1) and (Count ≠ 0)

THEN BranchCond := 1;
ELSE BranchCond := 0;

FI;
ELSE (Instruction = LOOPNE) or (Instruction = LOOPNZ)

IF (ZF = 0 ) and (Count ≠ 0)
THEN BranchCond := 1;
ELSE BranchCond := 0;

FI;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

E2 cb LOOP rel8 D Valid Valid Decrement count; jump short if count ≠ 0.

E1 cb LOOPE rel8 D Valid Valid Decrement count; jump short if count ≠ 0 and 
ZF = 1.

E0 cb LOOPNE rel8 D Valid Valid Decrement count; jump short if count ≠ 0 and 
ZF = 0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset N/A N/A N/A
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FI;
ELSE (* Instruction = LOOP *)

IF (Count ≠ 0)
THEN BranchCond := 1;
ELSE BranchCond := 0;

FI;
FI;

IF BranchCond = 1
THEN

IF in 64-bit mode (* OperandSize = 64 *)
THEN

tempRIP := RIP + SignExtend(DEST);
IF tempRIP is not canonical

THEN #GP(0);
ELSE RIP := tempRIP;
FI;

ELSE
tempEIP := EIP   SignExtend(DEST);
IF OperandSize   16

THEN tempEIP := tempEIP AND 0000FFFFH;
FI;
IF tempEIP is not within code segment limit

THEN #GP(0);
ELSE EIP := tempEIP;

FI;
FI;

ELSE
Terminate loop and continue program execution at (R/E)IP;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the offset being jumped to is beyond the limits of the CS segment.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the offset being jumped to is beyond the limits of the CS segment or is outside of the effec-

tive address space from 0 to FFFFH. This condition can occur if a 32-bit address size override 
prefix is used.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
#GP(0) If the offset being jumped to is in a non-canonical form.
#UD If the LOCK prefix is used.
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LSL—Load Segment Limit

Instruction Operand Encoding

Description

Loads the unscrambled segment limit from the segment descriptor specified with the second operand (source 
operand) into the first operand (destination operand) and sets the ZF flag in the EFLAGS register. The source 
operand (which can be a register or a memory location) contains the segment selector for the segment descriptor 
being accessed. The destination operand is a general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in the destination register, soft-
ware can compare the segment limit with the offset of a pointer. 

The segment limit is a 20-bit value contained in bytes 0 and 1 and in the first 4 bits of byte 6 of the segment 
descriptor. If the descriptor has a byte granular segment limit (the granularity flag is set to 0), the destination 
operand is loaded with a byte granular value (byte limit). If the descriptor has a page granular segment limit (the 
granularity flag is set to 1), the LSL instruction will translate the page granular limit (page limit) into a byte limit 
before loading it into the destination operand. The translation is performed by shifting the 20-bit “raw” limit left 12 
bits and filling the low-order 12 bits with 1s.

When the operand size is 32 bits, the 32-bit byte limit is stored in the destination operand. When the operand size 
is 16 bits, a valid 32-bit limit is computed; however, the upper 16 bits are truncated and only the low-order 16 bits 
are loaded into the destination operand.

This instruction performs the following checks before it loads the segment limit into the destination register: 
• Checks that the segment selector is not NULL.
• Checks that the segment selector points to a descriptor that is within the limits of the GDT or LDT being 

accessed
• Checks that the descriptor type is valid for this instruction. All code and data segment descriptors are valid for 

(can be accessed with) the LSL instruction. The valid special segment and gate descriptor types are given in the 
following table. 

• If the segment is not a conforming code segment, the instruction checks that the specified segment descriptor 
is visible at the CPL (that is, if the CPL and the RPL of the segment selector are less than or equal to the DPL of 
the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag is cleared and no 
value is loaded in the destination operand.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 03 /r LSL r16, r16/m16 RM Valid Valid Load: r16 := segment limit, selector r16/m16.

0F 03 /r LSL r32, r32/m161

NOTES:
1. For all loads (regardless of destination sizing), only bits 16-0 are used. Other bits are ignored.

RM Valid Valid Load: r32 := segment limit, selector r32/m16.

REX.W + 0F 03 /r LSL r64, r32/m161 RM Valid Valid Load: r64 := segment limit, selector r32/m16

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation

IF SRC(Offset) > descriptor table limit
THEN ZF := 0; FI;

Read segment descriptor;

IF SegmentDescriptor(Type) ≠ conforming code segment
and (CPL > DPL) OR (RPL > DPL)
or Segment type is not valid for instruction

THEN
ZF := 0;

ELSE
temp := SegmentLimit([SRC]);
IF (SegmentDescriptor(G) = 1)

THEN temp := (temp << 12) OR 00000FFFH;
ELSE IF OperandSize = 32 

THEN DEST := temp; FI;
ELSE IF OperandSize = 64 (* REX.W used *)

THEN DEST := temp(* Zero-extended *); FI;
ELSE (* OperandSize = 16 *)

DEST := temp AND FFFFH;
FI;

FI;

Flags Affected

The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is set to 0.

Table 1-66.  Segment and Gate Descriptor Types

Type Protected Mode IA-32e Mode

Name Valid Name Valid

0 Reserved No Reserved No

1 Available 16-bit TSS Yes Reserved No

2 LDT Yes LDT1 Yes

3 Busy 16-bit TSS Yes Reserved No

4 16-bit call gate No Reserved No

5 16-bit/32-bit task gate No Reserved No

6 16-bit interrupt gate No Reserved No

7 16-bit trap gate No Reserved No

8 Reserved No Reserved No

9 Available 32-bit TSS Yes 64-bit TSS1 Yes

A Reserved No Reserved No

B Busy 32-bit TSS Yes Busy 64-bit TSS1 Yes

C 32-bit call gate No 64-bit call gate No

D Reserved No Reserved No

E 32-bit interrupt gate No 64-bit interrupt gate No

F 32-bit trap gate No 64-bit trap gate No

NOTES:
1. In this case, the descriptor comprises 16 bytes; bits 12:8 of the upper 4 bytes must be 0.
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Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effective address is unaligned while 

the current privilege level is 3. 
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The LSL instruction cannot be executed in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LSL instruction cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If the memory operand effective address referencing the SS segment is in a non-canonical 

form.
#GP(0) If the memory operand effective address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effective address is unaligned while 

the current privilege level is 3.
#UD If the LOCK prefix is used.
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LTR—Load Task Register

Instruction Operand Encoding

Description

Loads the source operand into the segment selector field of the task register. The source operand (a general-
purpose register or a memory location) contains a segment selector that points to a task state segment (TSS). 
After the segment selector is loaded in the task register, the processor uses the segment selector to locate the 
segment descriptor for the TSS in the global descriptor table (GDT). It then loads the segment limit and base 
address for the TSS from the segment descriptor into the task register. The task pointed to by the task register is 
marked busy, but a switch to the task does not occur.

The LTR instruction is provided for use in operating-system software; it should not be used in application programs. 
It can only be executed in protected mode when the CPL is 0. It is commonly used in initialization code to establish 
the first task to be executed.

The operand-size attribute has no effect on this instruction. 

In 64-bit mode, the operand size is still fixed at 16 bits. The instruction references a 16-byte descriptor to load the 
64-bit base.

Operation

IF SRC is a NULL selector
THEN #GP(0);

IF SRC(Offset) > descriptor table limit OR IF SRC(type) ≠ global
THEN #GP(segment selector); FI;

Read segment descriptor;

IF segment descriptor is not for an available TSS 
THEN #GP(segment selector); FI;

IF segment descriptor is not present 
THEN #NP(segment selector); FI;

TSSsegmentDescriptor(busy) := 1; 
(* Locked read-modify-write operation on the entire descriptor when setting busy flag *)

TaskRegister(SegmentSelector) := SRC;
TaskRegister(SegmentDescriptor) := TSSSegmentDescriptor;

Flags Affected

None.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 00 /3 LTR r/m16 M Valid Valid Load r/m16 into task register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A
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Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the source operand contains a NULL segment selector.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#GP(selector) If the source selector points to a segment that is not a TSS or to one for a task that is already 
busy.
If the selector points to LDT or is beyond the GDT limit.

#NP(selector) If the TSS descriptor is marked not present.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The LTR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD  The LTR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode, as well as the following:
#GP(selector) If the source selector points to a 16-bit TSS.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.
If the source operand contains a NULL segment selector.

#GP(selector) If the source selector points to a segment that is not a TSS, to a 16-bit TSS, or to a TSS for a 
task that is already busy.
If the selector points to LDT or is beyond the GDT limit.
If the descriptor type of the upper 8-byte of the 16-byte descriptor is non-zero.

#NP(selector) If the TSS descriptor is marked not present.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
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LZCNT—Count the Number of Leading Zero Bits

Instruction Operand Encoding

Description 

Counts the number of leading most significant zero bits in a source operand (second operand) returning the result 
into a destination (first operand). 
LZCNT differs from BSR. For example, LZCNT will produce the operand size when the input operand is zero. It 
should be noted that on processors that do not support LZCNT, the instruction byte encoding is executed as BSR. 
In 64-bit mode 64-bit operand size requires REX.W=1. 

Operation

temp := OperandSize - 1
DEST := 0
WHILE (temp >= 0) AND (Bit(SRC, temp) = 0)
DO

temp := temp - 1
DEST := DEST+ 1

OD

IF DEST = OperandSize
CF := 1

ELSE
CF := 0

FI

IF DEST = 0
ZF := 1

ELSE
ZF := 0

FI

Flags Affected
ZF flag is set to 1 in case of zero output (most significant bit of the source is set), and to 0 otherwise, CF flag is set 
to 1 if input was zero and cleared otherwise. OF, SF, PF, and AF flags are undefined.

Intel C/C++ Compiler Intrinsic Equivalent

LZCNT unsigned __int32 _lzcnt_u32(unsigned __int32 src);
LZCNT unsigned __int64 _lzcnt_u64(unsigned __int64 src);

Opcode/Instruction Op/ 
En

64/32-
bit Mode

CPUID 
Feature 
Flag

Description

F3 0F BD /r
LZCNT r16, r/m16

RM V/V LZCNT Count the number of leading zero bits in r/m16, return result in r16.

F3 0F BD /r
LZCNT r32, r/m32

RM V/V LZCNT Count the number of leading zero bits in r/m32, return result in r32.

F3 REX.W 0F BD /r
LZCNT r64, r/m64

RM V/N.E. LZCNT Count the number of leading zero bits in r/m64, return result in r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment 
selector.

#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If LOCK prefix is used.

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) For an illegal address in the SS segment.
#UD If LOCK prefix is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If LOCK prefix is used.
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CHAPTER 4
INSTRUCTION SET REFERENCE, M-U

4.1 IMM8 CONTROL BYTE OPERATION FOR PCMPESTRI / PCMPESTRM / 
PCMPISTRI / PCMPISTRM

The notations introduced in this section are referenced in the reference pages of PCMPESTRI, PCMPESTRM, PCMP-
ISTRI, PCMPISTRM. The operation of the immediate control byte is common to these four string text processing 
instructions of SSE4.2. This section describes the common operations. 

4.1.1 General Description
The operation of PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM is defined by the combination of the respec-
tive opcode and the interpretation of an immediate control byte that is part of the instruction encoding.

The opcode controls the relationship of input bytes/words to each other (determines whether the inputs terminated 
strings or whether lengths are expressed explicitly) as well as the desired output (index or mask).

The imm8 control byte for PCMPESTRM/PCMPESTRI/PCMPISTRM/PCMPISTRI encodes a significant amount of 
programmable control over the functionality of those instructions. Some functionality is unique to each instruction 
while some is common across some or all of the four instructions. This section describes functionality which is 
common across the four instructions.

The arithmetic flags (ZF, CF, SF, OF, AF, PF) are set as a result of these instructions. However, the meanings of the 
flags have been overloaded from their typical meanings in order to provide additional information regarding the 
relationships of the two inputs.

PCMPxSTRx instructions perform arithmetic comparisons between all possible pairs of bytes or words, one from 
each packed input source operand. The boolean results of those comparisons are then aggregated in order to 
produce meaningful results. The imm8 control byte is used to affect the interpretation of individual input elements 
as well as control the arithmetic comparisons used and the specific aggregation scheme. 

Specifically, the imm8 Control Byte consists of bit fields that control the following attributes:
• Source data format — Byte/word data element granularity, signed or unsigned elements.
• Aggregation operation — Encodes the mode of per-element comparison operation and the aggregation of 

per-element comparisons into an intermediate result.
• Polarity — Specifies intermediate processing to be performed on the intermediate result.
• Output selection — Specifies final operation to produce the output (depending on index or mask) from the 

intermediate result.
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4.1.2 Source Data Format

If the imm8 control byte has bit[0] cleared, each source contains 16 packed bytes. If the bit is set each source 
contains 8 packed words. If the imm8 control byte has bit[1] cleared, each input contains unsigned data. If the bit 
is set each source contains signed data. 

4.1.3 Aggregation Operation

All 256 (64) possible comparisons are always performed. The individual Boolean results of those comparisons are 
referred by “BoolRes[Reg/Mem element index, Reg element index].” Comparisons evaluating to “True” are repre-
sented with a 1, False with a 0 (positive logic). The initial results are then aggregated into a 16-bit (8-bit) interme-
diate result (IntRes1) using one of the modes described in the table below, as determined by imm8 control byte 
bits[3:2]. 

See Section 4.1.6 for a description of the overrideIfDataInvalid() function used in Table 4-3.

Table 4-1.  Source Data Format

Imm8[1:0] Meaning Description

00b Unsigned bytes Both 128-bit sources are treated as packed, unsigned bytes.

01b Unsigned words Both 128-bit sources are treated as packed, unsigned words.

10b Signed bytes Both 128-bit sources are treated as packed, signed bytes.

11b Signed words Both 128-bit sources are treated as packed, signed words.

Table 4-2.  Aggregation Operation

Imm8[3:2] Mode Comparison

00b Equal any The arithmetic comparison is “equal.”

01b Ranges Arithmetic comparison is “greater than or equal” between even indexed bytes/words of reg and 
each byte/word of reg/mem. 

Arithmetic comparison is “less than or equal” between odd indexed bytes/words of reg and each 
byte/word of reg/mem.

(reg/mem[m] >= reg[n] for n = even, reg/mem[m] <= reg[n] for n = odd) 

10b Equal each The arithmetic comparison is “equal.”

11b Equal ordered The arithmetic comparison is “equal.”

Table 4-3.  Aggregation Operation 

Mode Pseudocode

Equal any

(find characters from a set)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i++

IntRes1[j] OR= overrideIfDataInvalid(BoolRes[j,i])

Ranges

(find characters from ranges)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i+=2

IntRes1[j] OR= (overrideIfDataInvalid(BoolRes[j,i]) AND  
overrideIfDataInvalid(BoolRes[j,i+1]))
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4.1.4 Polarity
IntRes1 may then be further modified by performing a 1’s complement, according to the value of the imm8 control 
byte bit[4]. Optionally, a mask may be used such that only those IntRes1 bits which correspond to “valid” reg/mem 
input elements are complemented (note that the definition of a valid input element is dependent on the specific 
opcode and is defined in each opcode’s description). The result of the possible negation is referred to as IntRes2.

Equal each

(string compare)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For i = 0 to UpperBound, i++

IntRes1[i] = overrideIfDataInvalid(BoolRes[i,i])

Equal ordered

(substring search)

UpperBound = imm8[0] ? 7 :15;

IntRes1 = imm8[0] ? FFH : FFFFH

For j = 0 to UpperBound, j++

For i = 0 to UpperBound-j, k=j to UpperBound, k++, i++

IntRes1[j] AND= overrideIfDataInvalid(BoolRes[k,i])

Table 4-4.  Polarity

Imm8[5:4] Operation Description

00b Positive Polarity (+) IntRes2 = IntRes1

01b Negative Polarity (-) IntRes2 = -1 XOR IntRes1

10b Masked (+) IntRes2 = IntRes1

11b Masked (-) IntRes2[i] = IntRes1[i] if reg/mem[i] invalid, else = ~IntRes1[i]

Table 4-3.  Aggregation Operation  (Contd.)
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4.1.5 Output Selection

For PCMPESTRI/PCMPISTRI, the imm8 control byte bit[6] is used to determine if the index is of the least significant 
or most significant bit of IntRes2.

Specifically for PCMPESTRM/PCMPISTRM, the imm8 control byte bit[6] is used to determine if the mask is a 16 (8) 
bit mask or a 128 bit byte/word mask.

4.1.6 Valid/Invalid Override of Comparisons
PCMPxSTRx instructions allow for the possibility that an end-of-string (EOS) situation may occur within the 128-bit 
packed data value (see the instruction descriptions below for details). Any data elements on either source that are 
determined to be past the EOS are considered to be invalid, and the treatment of invalid data within a comparison 
pair varies depending on the aggregation function being performed.

In general, the individual comparison result for each element pair BoolRes[i.j] can be forced true or false if one or 
more elements in the pair are invalid. See Table 4-7.

Table 4-5.  Output Selection

Imm8[6] Operation Description

0b Least significant index The index returned to ECX is of the least significant set bit in IntRes2.

1b Most significant index The index returned to ECX is of the most significant set bit in IntRes2.

Table 4-6.  Output Selection

Imm8[6] Operation Description

0b Bit mask IntRes2 is returned as the mask to the least significant bits of XMM0 with zero extension to 128 
bits.

1b Byte/word mask IntRes2 is expanded into a byte/word mask (based on imm8[1]) and placed in XMM0. The expansion 
is performed by replicating each bit into all of the bits of the byte/word of the same index.

Table 4-7.  Comparison Result for Each Element Pair BoolRes[i.j]

xmm1 
byte/ word

xmm2/ m128 
byte/word

Imm8[3:2] = 00b
(equal any)

Imm8[3:2] = 01b 
(ranges)

Imm8[3:2] = 10b 
(equal each)

Imm8[3:2] = 11b 
(equal ordered)

Invalid Invalid Force false Force false Force true Force true

Invalid Valid Force false Force false Force false Force true

Valid Invalid Force false Force false Force false Force false

Valid Valid Do not force Do not force Do not force Do not force
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4.1.7 Summary of Im8 Control byte

Table 4-8.  Summary of Imm8 Control Byte 

Imm8 Description

-------0b 128-bit sources treated as 16 packed bytes.

-------1b 128-bit sources treated as 8 packed words.

------0-b Packed bytes/words are unsigned.

------1-b Packed bytes/words are signed.

----00--b Mode is equal any.

----01--b Mode is ranges.

----10--b Mode is equal each.

----11--b Mode is equal ordered.

---0----b IntRes1 is unmodified.

---1----b IntRes1 is negated (1’s complement).

--0-----b Negation of IntRes1 is for all 16 (8) bits.

--1-----b Negation of IntRes1 is masked by reg/mem validity.

-0------b Index of the least significant, set, bit is used (regardless of corresponding input element validity). 

IntRes2 is returned in least significant bits of XMM0.

-1------b Index of the most significant, set, bit is used (regardless of corresponding input element validity).

Each bit of IntRes2 is expanded to byte/word.

0-------b This bit currently has no defined effect, should be 0.

1-------b This bit currently has no defined effect, should be 0.
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4.1.8 Diagram Comparison and Aggregation Process

4.2 COMMON TRANSFORMATION AND PRIMITIVE FUNCTIONS FOR SHA1XXX 
AND SHA256XXX

The following primitive functions and transformations are used in the algorithmic descriptions of SHA1 and SHA256 
instruction extensions SHA1NEXTE, SHA1RNDS4, SHA1MSG1, SHA1MSG2, SHA256RNDS4, SHA256MSG1, and 
SHA256MSG2. The operands of these primitives and transformation are generally 32-bit DWORD integers.
• f0(): A bit oriented logical operation that derives a new dword from three SHA1 state variables (dword). This 

function is used in SHA1 round 1 to 20 processing.
f0(B,C,D) := (B AND C) XOR ((NOT(B) AND D)

• f1(): A bit oriented logical operation that derives a new dword from three SHA1 state variables (dword). This 
function is used in SHA1 round 21 to 40 processing.
f1(B,C,D) := B XOR C XOR D

• f2(): A bit oriented logical operation that derives a new dword from three SHA1 state variables (dword). This 
function is used in SHA1 round 41 to 60 processing.
f2(B,C,D) := (B AND C) XOR (B AND D) XOR (C AND D)

• f3(): A bit oriented logical operation that derives a new dword from three SHA1 state variables (dword). This 
function is used in SHA1 round 61 to 80 processing. It is the same as f1().
f3(B,C,D) := B XOR C XOR D

• Ch(): A bit oriented logical operation that derives a new dword from three SHA256 state variables (dword).

Figure 4-1.  Operation of PCMPSTRx and PCMPESTRx
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Ch(E,F,G) := (E AND F) XOR ((NOT E) AND G)
• Maj(): A bit oriented logical operation that derives a new dword from three SHA256 state variables (dword).

Maj(A,B,C) := (A AND B) XOR (A AND C) XOR (B AND C)

ROR is rotate right operation
 (A ROR N) := A[N-1:0] || A[Width-1:N]

ROL is rotate left operation
 (A ROL N) := A ROR (Width-N)

SHR is the right shift operation
(A SHR N) := ZEROES[N-1:0] || A[Width-1:N]

• Σ0( ): A bit oriented logical and rotational transformation performed on a dword SHA256 state variable.
Σ0(A) := (A ROR 2) XOR (A ROR 13) XOR (A ROR 22) 

• Σ1( ): A bit oriented logical and rotational transformation performed on a dword SHA256 state variable.
Σ1(E) := (E ROR 6) XOR (E ROR 11) XOR (E ROR 25) 

• σ0( ): A bit oriented logical and rotational transformation performed on a SHA256 message dword used in the 
message scheduling.
σ0(W) := (W ROR 7) XOR (W ROR 18) XOR (W SHR 3) 

• σ1( ): A bit oriented logical and rotational transformation performed on a SHA256 message dword used in the 
message scheduling.
σ1(W) := (W ROR 17) XOR (W ROR 19) XOR (W SHR 10) 

• Ki: SHA1 Constants dependent on immediate i.
K0 = 0x5A827999
K1 = 0x6ED9EBA1
K2 = 0X8F1BBCDC
K3 = 0xCA62C1D6

4.3 INSTRUCTIONS (M-U)
Chapter 4 continues an alphabetical discussion of Intel® 64 and IA-32 instructions (M-U). See also: Chapter 3, 
“Instruction Set Reference, A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A; Chapter 4, “Instruction Set Reference, M-U‚” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2C; and Chapter 4, “Instruction Set Reference, M-U‚” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2D.
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MASKMOVDQU—Store Selected Bytes of Double Quadword

Instruction Operand Encoding1

Description

Stores selected bytes from the source operand (first operand) into an 128-bit memory location. The mask operand 
(second operand) selects which bytes from the source operand are written to memory. The source and mask oper-
ands are XMM registers. The memory location specified by the effective address in the DI/EDI/RDI register (the 
default segment register is DS, but this may be overridden with a segment-override prefix). The memory location 
does not need to be aligned on a natural boundary. (The size of the store address depends on the address-size 
attribute.)

The most significant bit in each byte of the mask operand determines whether the corresponding byte in the source 
operand is written to the corresponding byte location in memory: 0 indicates no write and 1 indicates write. 

The MASKMOVDQU instruction generates a non-temporal hint to the processor to minimize cache pollution. The 
non-temporal hint is implemented by using a write combining (WC) memory type protocol (see “Caching of 
Temporal vs. Non-Temporal Data” in Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1). Because the WC protocol uses a weakly-ordered memory consistency model, a fencing opera-
tion implemented with the SFENCE or MFENCE instruction should be used in conjunction with MASKMOVDQU 
instructions if multiple processors might use different memory types to read/write the destination memory loca-
tions.

Behavior with a mask of all 0s is as follows:
• No data will be written to memory. 
• Signaling of breakpoints (code or data) is not guaranteed; different processor implementations may signal or 

not signal these breakpoints.
• Exceptions associated with addressing memory and page faults may still be signaled (implementation 

dependent).
• If the destination memory region is mapped as UC or WP, enforcement of associated semantics for these 

memory types is not guaranteed (that is, is reserved) and is implementation-specific. 

The MASKMOVDQU instruction can be used to improve performance of algorithms that need to merge data on a 
byte-by-byte basis. MASKMOVDQU should not cause a read for ownership; doing so generates unnecessary band-
width since data is to be written directly using the byte-mask without allocating old data prior to the store. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
If VMASKMOVDQU is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will 
cause an #UD exception.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F F7 /r

MASKMOVDQU xmm1, xmm2

RM V/V SSE2 Selectively write bytes from xmm1 to memory location 
using the byte mask in xmm2. The default memory location 
is specified by DS:DI/EDI/RDI.

VEX.128.66.0F.WIG F7 /r

VMASKMOVDQU xmm1, xmm2

RM V/V AVX Selectively write bytes from xmm1 to memory location 
using the byte mask in xmm2. The default memory location 
is specified by DS:DI/EDI/RDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) N/A N/A

1.ModRM.MOD = 011B required
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Operation

IF (MASK[7] = 1)
THEN DEST[DI/EDI] := SRC[7:0] ELSE (* Memory location unchanged *); FI;

IF (MASK[15] = 1) 
THEN DEST[DI/EDI +1] := SRC[15:8] ELSE (* Memory location unchanged *); FI;
(* Repeat operation for 3rd through 14th bytes in source operand *)

IF (MASK[127] = 1) 
THEN DEST[DI/EDI +15] := SRC[127:120] ELSE (* Memory location unchanged *); FI;

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_maskmoveu_si128(__m128i d, __m128i n, char * p)

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:
#UD If VEX.L= 1

If VEX.vvvv ≠ 1111B.
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MASKMOVQ—Store Selected Bytes of Quadword

Instruction Operand Encoding

Description

Stores selected bytes from the source operand (first operand) into a 64-bit memory location. The mask operand 
(second operand) selects which bytes from the source operand are written to memory. The source and mask oper-
ands are MMX technology registers. The memory location specified by the effective address in the DI/EDI/RDI 
register (the default segment register is DS, but this may be overridden with a segment-override prefix). The 
memory location does not need to be aligned on a natural boundary. (The size of the store address depends on the 
address-size attribute.)

The most significant bit in each byte of the mask operand determines whether the corresponding byte in the source 
operand is written to the corresponding byte location in memory: 0 indicates no write and 1 indicates write. 

The MASKMOVQ instruction generates a non-temporal hint to the processor to minimize cache pollution. The non-
temporal hint is implemented by using a write combining (WC) memory type protocol (see “Caching of Temporal 
vs. Non-Temporal Data” in Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1). Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation imple-
mented with the SFENCE or MFENCE instruction should be used in conjunction with MASKMOVQ instructions if 
multiple processors might use different memory types to read/write the destination memory locations.

This instruction causes a transition from x87 FPU to MMX technology state (that is, the x87 FPU top-of-stack 
pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]).

The behavior of the MASKMOVQ instruction with a mask of all 0s is as follows:
• No data will be written to memory. 
• Transition from x87 FPU to MMX technology state will occur.
• Exceptions associated with addressing memory and page faults may still be signaled (implementation 

dependent).
• Signaling of breakpoints (code or data) is not guaranteed (implementation dependent).
• If the destination memory region is mapped as UC or WP, enforcement of associated semantics for these 

memory types is not guaranteed (that is, is reserved) and is implementation-specific. 

The MASKMOVQ instruction can be used to improve performance for algorithms that need to merge data on a byte-
by-byte basis. It should not cause a read for ownership; doing so generates unnecessary bandwidth since data is 
to be written directly using the byte-mask without allocating old data prior to the store. 
In 64-bit mode, the memory address is specified by DS:RDI.

Operation

IF (MASK[7] = 1)
THEN DEST[DI/EDI] := SRC[7:0] ELSE (* Memory location unchanged *); FI;

IF (MASK[15] = 1) 
THEN DEST[DI/EDI +1] := SRC[15:8] ELSE (* Memory location unchanged *); FI;
(* Repeat operation for 3rd through 6th bytes in source operand *)

IF (MASK[63] = 1) 
THEN DEST[DI/EDI +15] := SRC[63:56] ELSE (* Memory location unchanged *); FI;

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

NP 0F F7 /r

MASKMOVQ mm1, mm2

RM Valid Valid Selectively write bytes from mm1 to memory location using 
the byte mask in mm2. The default memory location is 
specified by DS:DI/EDI/RDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) N/A N/A
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Intel C/C++ Compiler Intrinsic Equivalent

void _mm_maskmove_si64(__m64d, __m64n, char * p)

Other Exceptions
See Table 24-8, “Exception Conditions for Legacy SIMD/MMX Instructions without FP Exception,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3B.
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MAXPD—Maximum of Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed double precision floating-point values in the first source operand and the 
second source operand and returns the maximum value for each pair of values to the destination operand. 
If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is 
returned. If a value in the second operand is an SNaN, then SNaN is forwarded unchanged to the destination (that 
is, a QNaN version of the SNaN is not returned). 
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN 
or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source 
operand (from either the first or second operand) be returned, the action of MAXPD can be emulated using a 
sequence of instructions, such as a comparison followed by AND, ANDN, and OR. 
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally 
updated with writemask k1.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 5F /r
MAXPD xmm1, xmm2/m128

A V/V SSE2 Return the maximum double precision floating-
point values between xmm1 and xmm2/m128. 

VEX.128.66.0F.WIG 5F /r
VMAXPD xmm1, xmm2, xmm3/m128

B V/V AVX Return the maximum double precision floating-
point values between xmm2 and xmm3/m128. 

VEX.256.66.0F.WIG 5F /r
VMAXPD ymm1, ymm2, ymm3/m256

B V/V AVX Return the maximum packed double precision 
floating-point values between ymm2 and 
ymm3/m256.

EVEX.128.66.0F.W1 5F /r
VMAXPD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the maximum packed double precision 
floating-point values between xmm2 and 
xmm3/m128/m64bcst and store result in xmm1 
subject to writemask k1.

EVEX.256.66.0F.W1 5F /r
VMAXPD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Return the maximum packed double precision 
floating-point values between ymm2 and 
ymm3/m256/m64bcst and store result in ymm1 
subject to writemask k1.

EVEX.512.66.0F.W1 5F /r
VMAXPD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst{sae}

C V/V AVX512F 
OR AVX10.11

Return the maximum packed double precision 
floating-point values between zmm2 and 
zmm3/m512/m64bcst and store result in zmm1 
subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of 
the corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM 
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
ZMM register destination are unmodified.

Operation

MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST := SRC2;
ELSE IF (SRC1 = NaN) THEN DEST := SRC2; FI;
ELSE IF (SRC2 = NaN) THEN DEST := SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST := SRC1;
ELSE DEST := SRC2; 

FI; 
}

VMAXPD (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
DEST[i+63:i] := MAX(SRC1[i+63:i], SRC2[63:0])

ELSE 
DEST[i+63:i] := MAX(SRC1[i+63:i], SRC2[i+63:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE  DEST[i+63:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMAXPD (VEX.256 Encoded Version)
DEST[63:0] := MAX(SRC1[63:0], SRC2[63:0])
DEST[127:64] := MAX(SRC1[127:64], SRC2[127:64])
DEST[191:128] := MAX(SRC1[191:128], SRC2[191:128])
DEST[255:192] := MAX(SRC1[255:192], SRC2[255:192])
DEST[MAXVL-1:256] := 0

VMAXPD (VEX.128 Encoded Version)
DEST[63:0] := MAX(SRC1[63:0], SRC2[63:0])
DEST[127:64] := MAX(SRC1[127:64], SRC2[127:64])
DEST[MAXVL-1:128] := 0
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MAXPD (128-bit Legacy SSE Version)
DEST[63:0] := MAX(DEST[63:0], SRC[63:0])
DEST[127:64] := MAX(DEST[127:64], SRC[127:64])
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMAXPD __m512d _mm512_max_pd( __m512d a, __m512d b);
VMAXPD __m512d _mm512_mask_max_pd(__m512d s, __mmask8 k, __m512d a, __m512d b,);
VMAXPD __m512d _mm512_maskz_max_pd( __mmask8 k, __m512d a, __m512d b);
VMAXPD __m512d _mm512_max_round_pd( __m512d a, __m512d b, int);
VMAXPD __m512d _mm512_mask_max_round_pd(__m512d s, __mmask8 k, __m512d a, __m512d b, int);
VMAXPD __m512d _mm512_maskz_max_round_pd( __mmask8 k, __m512d a, __m512d b, int);
VMAXPD __m256d _mm256_mask_max_pd(__m5256d s, __mmask8 k, __m256d a, __m256d b);
VMAXPD __m256d _mm256_maskz_max_pd( __mmask8 k, __m256d a, __m256d b);
VMAXPD __m128d _mm_mask_max_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VMAXPD __m128d _mm_maskz_max_pd( __mmask8 k, __m128d a, __m128d b);
VMAXPD __m256d _mm256_max_pd (__m256d a, __m256d b);
(V)MAXPD __m128d _mm_max_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions

Invalid (including QNaN Source Operand), Denormal.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-48, “Type E2 Class Exception Conditions.”
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MAXPS—Maximum of Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed single precision floating-point values in the first source operand and the 
second source operand and returns the maximum value for each pair of values to the destination operand. 
If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is 
returned. If a value in the second operand is an SNaN, then SNaN is forwarded unchanged to the destination (that 
is, a QNaN version of the SNaN is not returned). 
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN 
or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source 
operand (from either the first or second operand) be returned, the action of MAXPS can be emulated using a 
sequence of instructions, such as, a comparison followed by AND, ANDN, and OR. 
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally 
updated with writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of 
the corresponding ZMM register destination are zeroed.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 5F /r
MAXPS xmm1, xmm2/m128

A V/V SSE Return the maximum single precision floating-point values 
between xmm1 and xmm2/mem. 

VEX.128.0F.WIG 5F /r
VMAXPS xmm1, xmm2, 
xmm3/m128

B V/V AVX Return the maximum single precision floating-point values 
between xmm2 and xmm3/mem. 

VEX.256.0F.WIG 5F /r
VMAXPS ymm1, ymm2, 
ymm3/m256

B V/V AVX Return the maximum single precision floating-point values 
between ymm2 and ymm3/mem.

EVEX.128.0F.W0 5F /r
VMAXPS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the maximum packed single precision floating-point 
values between xmm2 and xmm3/m128/m32bcst and 
store result in xmm1 subject to writemask k1.

EVEX.256.0F.W0 5F /r
VMAXPS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Return the maximum packed single precision floating-point 
values between ymm2 and ymm3/m256/m32bcst and 
store result in ymm1 subject to writemask k1.

EVEX.512.0F.W0 5F /r
VMAXPS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst{sae}

C V/V AVX512F 
OR AVX10.11

Return the maximum packed single precision floating-point 
values between zmm2 and zmm3/m512/m32bcst and 
store result in zmm1 subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM 
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
ZMM register destination are unmodified.

Operation

MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST := SRC2;
ELSE IF (SRC1 = NaN) THEN DEST := SRC2; FI;
ELSE IF (SRC2 = NaN) THEN DEST := SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST := SRC1;
ELSE DEST := SRC2; 

FI; 
}

VMAXPS (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
DEST[i+31:i] := MAX(SRC1[i+31:i], SRC2[31:0])

ELSE 
DEST[i+31:i] := MAX(SRC1[i+31:i], SRC2[i+31:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE  DEST[i+31:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMAXPS (VEX.256 Encoded Version)
DEST[31:0] := MAX(SRC1[31:0], SRC2[31:0])
DEST[63:32] := MAX(SRC1[63:32], SRC2[63:32])
DEST[95:64] := MAX(SRC1[95:64], SRC2[95:64])
DEST[127:96] := MAX(SRC1[127:96], SRC2[127:96])
DEST[159:128] := MAX(SRC1[159:128], SRC2[159:128])
DEST[191:160] := MAX(SRC1[191:160], SRC2[191:160])
DEST[223:192] := MAX(SRC1[223:192], SRC2[223:192])
DEST[255:224] := MAX(SRC1[255:224], SRC2[255:224])
DEST[MAXVL-1:256] := 0
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VMAXPS (VEX.128 Encoded Version)
DEST[31:0] := MAX(SRC1[31:0], SRC2[31:0])
DEST[63:32] := MAX(SRC1[63:32], SRC2[63:32])
DEST[95:64] := MAX(SRC1[95:64], SRC2[95:64])
DEST[127:96] := MAX(SRC1[127:96], SRC2[127:96])
DEST[MAXVL-1:128] := 0

MAXPS (128-bit Legacy SSE Version)
DEST[31:0] := MAX(DEST[31:0], SRC[31:0])
DEST[63:32] := MAX(DEST[63:32], SRC[63:32])
DEST[95:64] := MAX(DEST[95:64], SRC[95:64])
DEST[127:96] := MAX(DEST[127:96], SRC[127:96])
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMAXPS __m512 _mm512_max_ps( __m512 a, __m512 b);
VMAXPS __m512 _mm512_mask_max_ps(__m512 s, __mmask16 k, __m512 a, __m512 b);
VMAXPS __m512 _mm512_maskz_max_ps( __mmask16 k, __m512 a, __m512 b);
VMAXPS __m512 _mm512_max_round_ps( __m512 a, __m512 b, int);
VMAXPS __m512 _mm512_mask_max_round_ps(__m512 s, __mmask16 k, __m512 a, __m512 b, int);
VMAXPS __m512 _mm512_maskz_max_round_ps( __mmask16 k, __m512 a, __m512 b, int);
VMAXPS __m256 _mm256_mask_max_ps(__m256 s, __mmask8 k, __m256 a, __m256 b);
VMAXPS __m256 _mm256_maskz_max_ps( __mmask8 k, __m256 a, __m256 b);
VMAXPS __m128 _mm_mask_max_ps(__m128 s, __mmask8 k, __m128 a, __m128 b);
VMAXPS __m128 _mm_maskz_max_ps( __mmask8 k, __m128 a, __m128 b);
VMAXPS __m256 _mm256_max_ps (__m256 a, __m256 b);
MAXPS __m128 _mm_max_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions

Invalid (including QNaN Source Operand), Denormal.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-48, “Type E2 Class Exception Conditions.”
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MAXSD—Return Maximum Scalar Double Precision Floating-Point Value

Instruction Operand Encoding

Description

Compares the low double precision floating-point values in the first source operand and the second source 
operand, and returns the maximum value to the low quadword of the destination operand. The second source 
operand can be an XMM register or a 64-bit memory location. The first source and destination operands are XMM 
registers. When the second source operand is a memory operand, only 64 bits are accessed. 
If the values being compared are both 0.0s (of either sign), the value in the second source operand is returned. If 
a value in the second source operand is an SNaN, that SNaN is returned unchanged to the destination (that is, a 
QNaN version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source operand, either a NaN or a valid 
floating-point value, is written to the result. If instead of this behavior, it is required that the NaN of either source 
operand be returned, the action of MAXSD can be emulated using a sequence of instructions, such as, a compar-
ison followed by AND, ANDN, and OR. 
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (MAXVL-1:64) of the 
corresponding destination register remain unchanged.
VEX.128 and EVEX encoded version: Bits (127:64) of the XMM register destination are copied from corresponding 
bits in the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination operand is updated according to the write-
mask.
Software should ensure VMAXSD is encoded with VEX.L=0. Encoding VMAXSD with VEX.L=1 may encounter 
unpredictable behavior across different processor generations.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F2 0F 5F /r
MAXSD xmm1, xmm2/m64

A V/V SSE2 Return the maximum scalar double precision 
floating-point value between xmm2/m64 and xmm1.

VEX.LIG.F2.0F.WIG 5F /r
VMAXSD xmm1, xmm2, xmm3/m64

B V/V AVX Return the maximum scalar double precision 
floating-point value between xmm3/m64 and xmm2.

EVEX.LLIG.F2.0F.W1 5F /r
VMAXSD xmm1 {k1}{z}, xmm2, 
xmm3/m64{sae}

C V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the maximum scalar double precision 
floating-point value between xmm3/m64 and xmm2.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST := SRC2;
ELSE IF (SRC1 = NaN) THEN DEST := SRC2; FI;
ELSE IF (SRC2 = NaN) THEN DEST := SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST := SRC1;
ELSE DEST := SRC2; 

FI; 
}

VMAXSD (EVEX Encoded Version)
IF k1[0] or *no writemask*

THEN DEST[63:0] := MAX(SRC1[63:0], SRC2[63:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

DEST[63:0] := 0
FI;

FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

VMAXSD (VEX.128 Encoded Version)
DEST[63:0] := MAX(SRC1[63:0], SRC2[63:0])
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

MAXSD (128-bit Legacy SSE Version)
DEST[63:0] := MAX(DEST[63:0], SRC[63:0])
DEST[MAXVL-1:64] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMAXSD __m128d _mm_max_round_sd( __m128d a, __m128d b, int);
VMAXSD __m128d _mm_mask_max_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VMAXSD __m128d _mm_maskz_max_round_sd( __mmask8 k, __m128d a, __m128d b, int);
MAXSD __m128d _mm_max_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (Including QNaN Source Operand), Denormal.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-49, “Type E3 Class Exception Conditions.”
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MAXSS—Return Maximum Scalar Single Precision Floating-Point Value

Instruction Operand Encoding

Description

Compares the low single precision floating-point values in the first source operand and the second source operand, 
and returns the maximum value to the low doubleword of the destination operand. 
If the values being compared are both 0.0s (of either sign), the value in the second source operand is returned. If 
a value in the second source operand is an SNaN, that SNaN is returned unchanged to the destination (that is, a 
QNaN version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source operand, either a NaN or a valid 
floating-point value, is written to the result. If instead of this behavior, it is required that the NaN from either source 
operand be returned, the action of MAXSS can be emulated using a sequence of instructions, such as, a comparison 
followed by AND, ANDN, and OR. 
The second source operand can be an XMM register or a 32-bit memory location. The first source and destination 
operands are XMM registers. 
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (MAXVL:32) of the corre-
sponding destination register remain unchanged.
VEX.128 and EVEX encoded version: The first source operand is an xmm register encoded by VEX.vvvv. Bits 
(127:32) of the XMM register destination are copied from corresponding bits in the first source operand. Bits 
(MAXVL:128) of the destination register are zeroed.
EVEX encoded version: The low doubleword element of the destination operand is updated according to the write-
mask.
Software should ensure VMAXSS is encoded with VEX.L=0. Encoding VMAXSS with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F3 0F 5F /r
MAXSS xmm1, xmm2/m32

A V/V SSE Return the maximum scalar single precision floating-point 
value between xmm2/m32 and xmm1.

VEX.LIG.F3.0F.WIG 5F /r
VMAXSS xmm1, xmm2, xmm3/m32

B V/V AVX Return the maximum scalar single precision floating-point 
value between xmm3/m32 and xmm2.

EVEX.LLIG.F3.0F.W0 5F /r
VMAXSS xmm1 {k1}{z}, xmm2, 
xmm3/m32{sae}

C V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the maximum scalar single precision floating-point 
value between xmm3/m32 and xmm2.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST := SRC2;
ELSE IF (SRC1 = NaN) THEN DEST := SRC2; FI;
ELSE IF (SRC2 = NaN) THEN DEST := SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST := SRC1;
ELSE DEST := SRC2; 

FI; 
}

VMAXSS (EVEX Encoded Version)
IF k1[0] or *no writemask*

THEN DEST[31:0] := MAX(SRC1[31:0], SRC2[31:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

VMAXSS (VEX.128 Encoded Version)
DEST[31:0] := MAX(SRC1[31:0], SRC2[31:0])
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

MAXSS (128-bit Legacy SSE Version)
DEST[31:0] := MAX(DEST[31:0], SRC[31:0])
DEST[MAXVL-1:32] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMAXSS __m128 _mm_max_round_ss( __m128 a, __m128 b, int);
VMAXSS __m128 _mm_mask_max_round_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, int);
VMAXSS __m128 _mm_maskz_max_round_ss( __mmask8 k, __m128 a, __m128 b, int);
MAXSS __m128 _mm_max_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Invalid (Including QNaN Source Operand), Denormal.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-49, “Type E3 Class Exception Conditions.”
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MFENCE—Memory Fence Vol. 2B 4-22

MFENCE—Memory Fence

Instruction Operand Encoding

Description

Performs a serializing operation on all load-from-memory and store-to-memory instructions that were issued prior 
the MFENCE instruction. This serializing operation guarantees that every load and store instruction that precedes 
the MFENCE instruction in program order becomes globally visible before any load or store instruction that follows 
the MFENCE instruction.1 The MFENCE instruction is ordered with respect to all load and store instructions, other 
MFENCE instructions, any LFENCE and SFENCE instructions, and any serializing instructions (such as the CPUID 
instruction). MFENCE does not serialize the instruction stream.

Weakly ordered memory types can be used to achieve higher processor performance through such techniques as 
out-of-order issue, speculative reads, write-combining, and write-collapsing. The degree to which a consumer of 
data recognizes or knows that the data is weakly ordered varies among applications and may be unknown to the 
producer of this data. The MFENCE instruction provides a performance-efficient way of ensuring load and store 
ordering between routines that produce weakly-ordered results and routines that consume that data.

Processors are free to fetch and cache data speculatively from regions of system memory that use the WB, WC, 
and WT memory types. This speculative fetching can occur at any time and is not tied to instruction execution. 
Thus, it is not ordered with respect to executions of the MFENCE instruction; data can be brought into the caches 
speculatively just before, during, or after the execution of an MFENCE instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Specification of the instruction's opcode above indicates a ModR/M byte of F0. For this instruction, the processor 
ignores the r/m field of the ModR/M byte. Thus, MFENCE is encoded by any opcode of the form 0F AE Fx, where x 
is in the range 0-7.

Operation

Wait_On_Following_Loads_And_Stores_Until(preceding_loads_and_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_mfence(void)

Exceptions (All Modes of Operation)
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Opcode /
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F AE F0

MFENCE

ZO V/V SSE2 Serializes load and store operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

1. A load instruction is considered to become globally visible when the value to be loaded into its destination register is determined.



MINPD—Minimum of Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed double precision floating-point values in the first source operand and the 
second source operand and returns the minimum value for each pair of values to the destination operand. 
If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is 
returned. If a value in the second operand is an SNaN, then SNaN is forwarded unchanged to the destination (that 
is, a QNaN version of the SNaN is not returned). 
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN 
or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source 
operand (from either the first or second operand) be returned, the action of MINPD can be emulated using a 
sequence of instructions, such as, a comparison followed by AND, ANDN, and OR. 
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally 
updated with writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of 
the corresponding ZMM register destination are zeroed.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 5D /r
MINPD xmm1, xmm2/m128

A V/V SSE2 Return the minimum double precision floating-point 
values between xmm1 and xmm2/mem 

VEX.128.66.0F.WIG 5D /r
VMINPD xmm1, xmm2, 
xmm3/m128

B V/V AVX Return the minimum double precision floating-point 
values between xmm2 and xmm3/mem. 

VEX.256.66.0F.WIG 5D /r
VMINPD ymm1, ymm2, 
ymm3/m256

B V/V AVX Return the minimum packed double precision floating-
point values between ymm2 and ymm3/mem.

EVEX.128.66.0F.W1 5D /r
VMINPD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the minimum packed double precision floating-
point values between xmm2 and xmm3/m128/m64bcst 
and store result in xmm1 subject to writemask k1.

EVEX.256.66.0F.W1 5D /r
VMINPD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Return the minimum packed double precision floating-
point values between ymm2 and ymm3/m256/m64bcst 
and store result in ymm1 subject to writemask k1.

EVEX.512.66.0F.W1 5D /r
VMINPD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst{sae}

C V/V AVX512F 
OR AVX10.11

Return the minimum packed double precision floating-
point values between zmm2 and zmm3/m512/m64bcst 
and store result in zmm1 subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM 
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
ZMM register destination are unmodified.

Operation

MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST := SRC2;
ELSE IF (SRC1 = NaN) THEN DEST := SRC2; FI;
ELSE IF (SRC2 = NaN) THEN DEST := SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST := SRC1;
ELSE DEST := SRC2; 

FI; 
}

VMINPD (EVEX Encoded Version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
DEST[i+63:i] := MIN(SRC1[i+63:i], SRC2[63:0])

ELSE 
DEST[i+63:i] := MIN(SRC1[i+63:i], SRC2[i+63:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE  DEST[i+63:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMINPD (VEX.256 Encoded Version)
DEST[63:0] := MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64] := MIN(SRC1[127:64], SRC2[127:64])
DEST[191:128] := MIN(SRC1[191:128], SRC2[191:128])
DEST[255:192] := MIN(SRC1[255:192], SRC2[255:192])

VMINPD (VEX.128 Encoded Version)
DEST[63:0] := MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64] := MIN(SRC1[127:64], SRC2[127:64])
DEST[MAXVL-1:128] := 0

MINPD (128-bit Legacy SSE Version)
DEST[63:0] := MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64] := MIN(SRC1[127:64], SRC2[127:64])
DEST[MAXVL-1:128] (Unmodified)
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Intel C/C++ Compiler Intrinsic Equivalent

VMINPD __m512d _mm512_min_pd( __m512d a, __m512d b);
VMINPD __m512d _mm512_mask_min_pd(__m512d s, __mmask8 k, __m512d a, __m512d b);
VMINPD __m512d _mm512_maskz_min_pd( __mmask8 k, __m512d a, __m512d b);
VMINPD __m512d _mm512_min_round_pd( __m512d a, __m512d b, int);
VMINPD __m512d _mm512_mask_min_round_pd(__m512d s, __mmask8 k, __m512d a, __m512d b, int);
VMINPD __m512d _mm512_maskz_min_round_pd( __mmask8 k, __m512d a, __m512d b, int);
VMINPD __m256d _mm256_mask_min_pd(__m256d s, __mmask8 k, __m256d a, __m256d b);
VMINPD __m256d _mm256_maskz_min_pd( __mmask8 k, __m256d a, __m256d b);
VMINPD __m128d _mm_mask_min_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VMINPD __m128d _mm_maskz_min_pd( __mmask8 k, __m128d a, __m128d b);
VMINPD __m256d _mm256_min_pd (__m256d a, __m256d b);
MINPD __m128d _mm_min_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions

Invalid (including QNaN Source Operand), Denormal.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-48, “Type E2 Class Exception Conditions.”
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MINPS—Minimum of Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed single precision floating-point values in the first source operand and the 
second source operand and returns the minimum value for each pair of values to the destination operand. 
If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is 
returned. If a value in the second operand is an SNaN, then SNaN is forwarded unchanged to the destination (that 
is, a QNaN version of the SNaN is not returned). 
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN 
or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source 
operand (from either the first or second operand) be returned, the action of MINPS can be emulated using a 
sequence of instructions, such as, a comparison followed by AND, ANDN, and OR. 
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally 
updated with writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of 
the corresponding ZMM register destination are zeroed.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 5D /r
MINPS xmm1, xmm2/m128

A V/V SSE Return the minimum single precision floating-point values 
between xmm1 and xmm2/mem. 

VEX.128.0F.WIG 5D /r
VMINPS xmm1, xmm2, 
xmm3/m128

B V/V AVX Return the minimum single precision floating-point values 
between xmm2 and xmm3/mem.

VEX.256.0F.WIG 5D /r
VMINPS ymm1, ymm2, 
ymm3/m256

B V/V AVX Return the minimum single double precision floating-point 
values between ymm2 and ymm3/mem.

EVEX.128.0F.W0 5D /r
VMINPS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the minimum packed single precision floating-point 
values between xmm2 and xmm3/m128/m32bcst and 
store result in xmm1 subject to writemask k1.

EVEX.256.0F.W0 5D /r
VMINPS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Return the minimum packed single precision floating-point 
values between ymm2 and ymm3/m256/m32bcst and 
store result in ymm1 subject to writemask k1.

EVEX.512.0F.W0 5D /r
VMINPS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst{sae}

C V/V AVX512F 
OR AVX10.11

Return the minimum packed single precision floating-point 
values between zmm2 and zmm3/m512/m32bcst and 
store result in zmm1 subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM 
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
ZMM register destination are unmodified.

Operation

MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST := SRC2;
ELSE IF (SRC1 = NaN) THEN DEST := SRC2; FI;
ELSE IF (SRC2 = NaN) THEN DEST := SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST := SRC1;
ELSE DEST := SRC2; 

FI; 
}

VMINPS (EVEX Encoded Version)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
DEST[i+31:i] := MIN(SRC1[i+31:i], SRC2[31:0])

ELSE 
DEST[i+31:i] := MIN(SRC1[i+31:i], SRC2[i+31:i])

FI;
ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE  DEST[i+31:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMINPS (VEX.256 Encoded Version)
DEST[31:0] := MIN(SRC1[31:0], SRC2[31:0])
DEST[63:32] := MIN(SRC1[63:32], SRC2[63:32])
DEST[95:64] := MIN(SRC1[95:64], SRC2[95:64])
DEST[127:96] := MIN(SRC1[127:96], SRC2[127:96])
DEST[159:128] := MIN(SRC1[159:128], SRC2[159:128])
DEST[191:160] := MIN(SRC1[191:160], SRC2[191:160])
DEST[223:192] := MIN(SRC1[223:192], SRC2[223:192])
DEST[255:224] := MIN(SRC1[255:224], SRC2[255:224])
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VMINPS (VEX.128 Encoded Version)
DEST[31:0] := MIN(SRC1[31:0], SRC2[31:0])
DEST[63:32] := MIN(SRC1[63:32], SRC2[63:32])
DEST[95:64] := MIN(SRC1[95:64], SRC2[95:64])
DEST[127:96] := MIN(SRC1[127:96], SRC2[127:96])
DEST[MAXVL-1:128] := 0

MINPS (128-bit Legacy SSE Version)
DEST[31:0] := MIN(SRC1[31:0], SRC2[31:0])
DEST[63:32] := MIN(SRC1[63:32], SRC2[63:32])
DEST[95:64] := MIN(SRC1[95:64], SRC2[95:64])
DEST[127:96] := MIN(SRC1[127:96], SRC2[127:96])
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMINPS __m512 _mm512_min_ps( __m512 a, __m512 b);
VMINPS __m512 _mm512_mask_min_ps(__m512 s, __mmask16 k, __m512 a, __m512 b);
VMINPS __m512 _mm512_maskz_min_ps( __mmask16 k, __m512 a, __m512 b);
VMINPS __m512 _mm512_min_round_ps( __m512 a, __m512 b, int);
VMINPS __m512 _mm512_mask_min_round_ps(__m512 s, __mmask16 k, __m512 a, __m512 b, int);
VMINPS __m512 _mm512_maskz_min_round_ps( __mmask16 k, __m512 a, __m512 b, int);
VMINPS __m256 _mm256_mask_min_ps(__m256 s, __mmask8 k, __m256 a, __m256 b);
VMINPS __m256 _mm256_maskz_min_ps( __mmask8 k, __m256 a, __m25 b);
VMINPS __m128 _mm_mask_min_ps(__m128 s, __mmask8 k, __m128 a, __m128 b);
VMINPS __m128 _mm_maskz_min_ps( __mmask8 k, __m128 a, __m128 b);
VMINPS __m256 _mm256_min_ps (__m256 a, __m256 b);
MINPS __m128 _mm_min_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions

Invalid (including QNaN Source Operand), Denormal.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-48, “Type E2 Class Exception Conditions.”
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MINSD—Return Minimum Scalar Double Precision Floating-Point Value

Instruction Operand Encoding

Description

Compares the low double precision floating-point values in the first source operand and the second source 
operand, and returns the minimum value to the low quadword of the destination operand. When the source 
operand is a memory operand, only the 64 bits are accessed. 
If the values being compared are both 0.0s (of either sign), the value in the second source operand is returned. If 
a value in the second source operand is an SNaN, then SNaN is returned unchanged to the destination (that is, a 
QNaN version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source operand, either a NaN or a valid 
floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source operand 
(from either the first or second source) be returned, the action of MINSD can be emulated using a sequence of 
instructions, such as, a comparison followed by AND, ANDN, and OR. 
The second source operand can be an XMM register or a 64-bit memory location. The first source and destination 
operands are XMM registers. 
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (MAXVL-1:64) of the 
corresponding destination register remain unchanged.
VEX.128 and EVEX encoded version: Bits (127:64) of the XMM register destination are copied from corresponding 
bits in the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination operand is updated according to the write-
mask.
Software should ensure VMINSD is encoded with VEX.L=0. Encoding VMINSD with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F2 0F 5D /r
MINSD xmm1, xmm2/m64

A V/V SSE2 Return the minimum scalar double precision floating-
point value between xmm2/m64 and xmm1.

VEX.LIG.F2.0F.WIG 5D /r
VMINSD xmm1, xmm2, xmm3/m64

B V/V AVX Return the minimum scalar double precision floating-
point value between xmm3/m64 and xmm2.

EVEX.LLIG.F2.0F.W1 5D /r
VMINSD xmm1 {k1}{z}, xmm2, 
xmm3/m64{sae}

C V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the minimum scalar double precision floating-
point value between xmm3/m64 and xmm2.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST := SRC2;
ELSE IF (SRC1 = NaN) THEN DEST := SRC2; FI;
ELSE IF (SRC2 = NaN) THEN DEST := SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST := SRC1;
ELSE DEST := SRC2; 

FI; 
}

MINSD (EVEX Encoded Version)
IF k1[0] or *no writemask*

THEN DEST[63:0] := MIN(SRC1[63:0], SRC2[63:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

MINSD (VEX.128 Encoded Version)
DEST[63:0] := MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

MINSD (128-bit Legacy SSE Version)
DEST[63:0] := MIN(SRC1[63:0], SRC2[63:0])
DEST[MAXVL-1:64] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMINSD __m128d _mm_min_round_sd(__m128d a, __m128d b, int);
VMINSD __m128d _mm_mask_min_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VMINSD __m128d _mm_maskz_min_round_sd( __mmask8 k, __m128d a, __m128d b, int);
MINSD __m128d _mm_min_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN Source Operand), Denormal.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-49, “Type E3 Class Exception Conditions.”
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MINSS—Return Minimum Scalar Single Precision Floating-Point Value

Instruction Operand Encoding

Description

Compares the low single precision floating-point values in the first source operand and the second source operand 
and returns the minimum value to the low doubleword of the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second source operand is returned. If 
a value in the second operand is an SNaN, that SNaN is returned unchanged to the destination (that is, a QNaN 
version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source operand, either a NaN or a valid 
floating-point value, is written to the result. If instead of this behavior, it is required that the NaN in either source 
operand be returned, the action of MINSD can be emulated using a sequence of instructions, such as, a comparison 
followed by AND, ANDN, and OR. 
The second source operand can be an XMM register or a 32-bit memory location. The first source and destination 
operands are XMM registers. 
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (MAXVL:32) of the corre-
sponding destination register remain unchanged.
VEX.128 and EVEX encoded version: The first source operand is an xmm register encoded by (E)VEX.vvvv. Bits 
(127:32) of the XMM register destination are copied from corresponding bits in the first source operand. Bits 
(MAXVL-1:128) of the destination register are zeroed.
EVEX encoded version: The low doubleword element of the destination operand is updated according to the write-
mask.
Software should ensure VMINSS is encoded with VEX.L=0. Encoding VMINSS with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F3 0F 5D /r
MINSS xmm1,xmm2/m32

A V/V SSE Return the minimum scalar single precision floating-point 
value between xmm2/m32 and xmm1.

VEX.LIG.F3.0F.WIG 5D /r
VMINSS xmm1,xmm2, xmm3/m32

B V/V AVX Return the minimum scalar single precision floating-point 
value between xmm3/m32 and xmm2.

EVEX.LLIG.F3.0F.W0 5D /r
VMINSS xmm1 {k1}{z}, xmm2, 
xmm3/m32{sae}

C V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the minimum scalar single precision floating-point 
value between xmm3/m32 and xmm2.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST := SRC2;
ELSE IF (SRC1 = NaN) THEN DEST := SRC2; FI;
ELSE IF (SRC2 = NaN) THEN DEST := SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST := SRC1;
ELSE DEST := SRC2; 

FI; 
}

MINSS (EVEX Encoded Version)
IF k1[0] or *no writemask*

THEN DEST[31:0] := MIN(SRC1[31:0], SRC2[31:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

VMINSS (VEX.128 Encoded Version)
DEST[31:0] := MIN(SRC1[31:0], SRC2[31:0])
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

MINSS (128-bit Legacy SSE Version)
DEST[31:0] := MIN(SRC1[31:0], SRC2[31:0])
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMINSS __m128 _mm_min_round_ss( __m128 a, __m128 b, int);
VMINSS __m128 _mm_mask_min_round_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, int);
VMINSS __m128 _mm_maskz_min_round_ss( __mmask8 k, __m128 a, __m128 b, int);
MINSS __m128 _mm_min_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Invalid (Including QNaN Source Operand), Denormal.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-48, “Type E2 Class Exception Conditions.”
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MONITOR—Set Up Monitor Address

Instruction Operand Encoding

Description

The MONITOR instruction arms address monitoring hardware using an address specified in EAX (the address range 
that the monitoring hardware checks for store operations can be determined by using CPUID). A store to an 
address within the specified address range triggers the monitoring hardware. The state of monitor hardware is 
used by MWAIT. 

The address is specified in RAX/EAX/AX and the size is based on the effective address size of the encoded instruc-
tion. By default, the DS segment is used to create a linear address that is monitored. Segment overrides can be 
used.

ECX and EDX are also used. They communicate other information to MONITOR. ECX specifies optional extensions. 
EDX specifies optional hints; it does not change the architectural behavior of the instruction. For the Pentium 4 
processor (family 15, model 3), no extensions or hints are defined. Undefined hints in EDX are ignored by the 
processor; undefined extensions in ECX raises a general protection fault.

The address range must use memory of the write-back type. Only write-back memory will correctly trigger the 
monitoring hardware. Additional information on determining what address range to use in order to prevent false 
wake-ups is described in Chapter 10, “Multiple-Processor Management‚” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A.

The MONITOR instruction is ordered as a load operation with respect to other memory transactions. The instruction 
is subject to the permission checking and faults associated with a byte load. Like a load, MONITOR sets the A-bit 
but not the D-bit in page tables. 

CPUID.01H:ECX.MONITOR[bit 3] indicates the availability of MONITOR and MWAIT in the processor. When set, 
MONITOR may be executed only at privilege level 0 (use at any other privilege level results in an invalid-opcode 
exception). The operating system or system BIOS may disable this instruction by using the IA32_MISC_ENABLE 
MSR; disabling MONITOR clears the CPUID feature flag and causes execution to generate an invalid-opcode excep-
tion. 

The instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

MONITOR sets up an address range for the monitor hardware using the content of EAX (RAX in 64-bit mode) as an effective address 
and puts the monitor hardware in armed state. Always use memory of the write-back caching type. A store to the specified address 
range will trigger the monitor hardware. The content of ECX and EDX are used to communicate other information to the monitor 
hardware.

Intel C/C++ Compiler Intrinsic Equivalent

MONITOR void _mm_monitor(void const *p, unsigned extensions,unsigned hints)

Numeric Exceptions

None.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 C8 MONITOR ZO Valid Valid Sets up a linear address range to be monitored by 
hardware and activates the monitor. The address range 
should be a write-back memory caching type. The 
address is DS:RAX/EAX/AX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Protected Mode Exceptions
#GP(0) If the value in EAX is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If ECX ≠ 0.

#SS(0) If the value in EAX is outside the SS segment limit.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If current privilege level is not 0.

Real Address Mode Exceptions
#GP If the CS, DS, ES, FS, or GS register is used to access memory and the value in EAX is outside 

of the effective address space from 0 to FFFFH.
If ECX ≠ 0.

#SS If the SS register is used to access memory and the value in EAX is outside of the effective 
address space from 0 to FFFFH.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

Virtual 8086 Mode Exceptions
#UD The MONITOR instruction is not recognized in virtual-8086 mode (even if 

CPUID.01H:ECX.MONITOR[bit 3] = 1).

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the linear address of the operand in the CS, DS, ES, FS, or GS segment is in a non-canonical 

form.
If RCX ≠ 0.

#SS(0) If the SS register is used to access memory and the value in EAX is in a non-canonical form.
#PF(fault-code) For a page fault.
#UD If the current privilege level is not 0.

If CPUID.01H:ECX.MONITOR[bit 3] = 0.
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MOV—Move
Opcode Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

88 /r MOV r/m8, r8 MR Valid Valid Move r8 to r/m8.

REX + 88 /r MOV r/m81, r81

NOTES:
1. In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

MR Valid N.E. Move r8 to r/m8.

89 /r MOV r/m16, r16 MR Valid Valid Move r16 to r/m16.

89 /r MOV r/m32, r32 MR Valid Valid Move r32 to r/m32.

REX.W + 89 /r MOV r/m64, r64 MR Valid N.E. Move r64 to r/m64.

8A /r MOV r8, r/m8 RM Valid Valid Move r/m8 to r8.

REX + 8A /r MOV r81, r/m81 RM Valid N.E. Move r/m8 to r8.

8B /r MOV r16, r/m16 RM Valid Valid Move r/m16 to r16.

8B /r MOV r32, r/m32 RM Valid Valid Move r/m32 to r32.

REX.W + 8B /r MOV r64, r/m64 RM Valid N.E. Move r/m64 to r64.

8C /r MOV r/m16, Sreg2 MR Valid Valid Move segment register to r/m16.

8C /r MOV r16/r32/m16, Sreg2 MR Valid Valid Move zero extended 16-bit segment register 
to r16/r32/m16.

REX.W + 8C /r MOV r64/m16, Sreg2 MR Valid Valid Move zero extended 16-bit segment register 
to r64/m16.

8E /r MOV Sreg, r/m162 RM Valid Valid Move r/m16 to segment register.

REX.W + 8E /r MOV Sreg, r/m642 RM Valid Valid Move lower 16 bits of r/m64 to segment 
register.

A0 MOV AL, moffs83 FD Valid Valid Move byte at (seg:offset) to AL.

REX.W + A0 MOV AL, moffs83 FD  Valid N.E. Move byte at (offset) to AL.

A1 MOV AX, moffs163 FD Valid Valid Move word at (seg:offset) to AX.

A1 MOV EAX, moffs323 FD Valid Valid Move doubleword at (seg:offset) to EAX.

REX.W + A1 MOV RAX, moffs643 FD Valid N.E. Move quadword at (offset) to RAX.

A2 MOV moffs8, AL TD  Valid Valid Move AL to (seg:offset).

REX.W + A2 MOV moffs81, AL TD Valid N.E. Move AL to (offset).

A3 MOV moffs163, AX TD Valid Valid Move AX to (seg:offset).

A3 MOV moffs323, EAX TD Valid Valid Move EAX to (seg:offset).

REX.W + A3 MOV moffs643, RAX TD Valid N.E. Move RAX to (offset).

B0+ rb ib MOV r8, imm8 OI Valid Valid Move imm8 to r8.

REX + B0+ rb ib MOV r81, imm8 OI Valid N.E. Move imm8 to r8.

B8+ rw iw MOV r16, imm16 OI Valid Valid Move imm16 to r16.

B8+ rd id MOV r32, imm32 OI Valid Valid Move imm32 to r32.

REX.W + B8+ rd io MOV r64, imm64 OI Valid N.E. Move imm64 to r64.

C6 /0 ib MOV r/m8, imm8 MI Valid Valid Move imm8 to r/m8.

REX + C6 /0 ib MOV r/m81, imm8 MI Valid N.E. Move imm8 to r/m8.

C7 /0 iw MOV r/m16, imm16 MI Valid Valid Move imm16 to r/m16.

C7 /0 id MOV r/m32, imm32 MI Valid Valid Move imm32 to r/m32.

REX.W + C7 /0 id MOV r/m64, imm32 MI Valid N.E. Move imm32 sign extended to 64-bits to 
r/m64.
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Instruction Operand Encoding

Description

Copies the second operand (source operand) to the first operand (destination operand). The source operand can be 
an immediate value, general-purpose register, segment register, or memory location; the destination register can 
be a general-purpose register, segment register, or memory location. Both operands must be the same size, which 
can be a byte, a word, a doubleword, or a quadword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results in an invalid opcode excep-
tion (#UD). To load the CS register, use the far JMP, CALL, or RET instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source operand must be a valid 
segment selector. In protected mode, moving a segment selector into a segment register automatically causes the 
segment descriptor information associated with that segment selector to be loaded into the hidden (shadow) part 
of the segment register. While loading this information, the segment selector and segment descriptor information 
is validated (see the “Operation” algorithm below). The segment descriptor data is obtained from the GDT or LDT 
entry for the specified segment selector. 

A NULL segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS registers without causing 
a protection exception. However, any subsequent attempt to reference a segment whose corresponding segment 
register is loaded with a NULL value causes a general protection exception (#GP) and no memory reference occurs.

Loading the SS register with a MOV instruction suppresses or inhibits some debug exceptions and inhibits inter-
rupts on the following instruction boundary. (The inhibition ends after delivery of an exception or the execution of 
the next instruction.) This behavior allows a stack pointer to be loaded into the ESP register with the next instruc-
tion (MOV ESP, stack-pointer value) before an event can be delivered. See Section 7.8.3, “Masking Exceptions 
and Interrupts When Switching Stacks,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A. Intel recommends that software use the LSS instruction to load the SS register and ESP together.

When executing MOV Reg, Sreg, the processor copies the content of Sreg to the 16 least significant bits of the 
general-purpose register. The upper bits of the destination register are zero for most IA-32 processors (Pentium 
Pro processors and later) and all Intel 64 processors, with the exception that bits 31:16 are undefined for Intel 
Quark X1000 processors, Pentium, and earlier processors.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the 
beginning of this section for encoding data and limits.

Operation

DEST := SRC;

Loading a segment register while in protected mode results in special checks and actions, as described in the following listing. These 
checks are performed on the segment selector and the segment descriptor to which it points.

IF SS is loaded

2. In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction (see the following “Description” section 
for further information).

3. The moffs8, moffs16, moffs32, and moffs64 operands specify a simple offset relative to the segment base, where 8, 16, 32, and 64 
refer to the size of the data. The address-size attribute of the instruction determines the size of the offset, either 16, 32, or 64 bits.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) N/A N/A

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A

FD AL/AX/EAX/RAX Moffs N/A N/A

TD Moffs (w) AL/AX/EAX/RAX N/A N/A

OI opcode + rd (w) imm8/16/32/64 N/A N/A

MI ModRM:r/m (w) imm8/16/32/64 N/A N/A
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THEN
IF segment selector is NULL

THEN #GP(0); FI;
IF segment selector index is outside descriptor table limits 
OR segment selector's RPL ≠ CPL
OR segment is not a writable data segment
OR DPL ≠ CPL

THEN #GP(selector); FI;
IF segment not marked present 

THEN #SS(selector); 
ELSE

SS := segment selector;
SS := segment descriptor; FI;

FI;

IF DS, ES, FS, or GS is loaded with non-NULL selector
THEN

IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment) AND ((RPL > DPL) or (CPL > DPL)))

THEN #GP(selector); FI;
IF segment not marked present

THEN #NP(selector);
ELSE

SegmentRegister := segment selector;
SegmentRegister := segment descriptor; FI;

FI;

IF DS, ES, FS, or GS is loaded with NULL selector
THEN

SegmentRegister := segment selector;
SegmentRegister := segment descriptor;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with NULL segment selector.

If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#GP(selector) If segment selector index is outside descriptor table limits. 
If the SS register is being loaded and the segment selector's RPL and the segment descriptor’s 
DPL are not equal to the CPL. 
If the SS register is being loaded and the segment pointed to is a 
non-writable data segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or 
readable code segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or 
nonconforming code segment, and either the RPL or the CPL is greater than the DPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#SS(selector) If the SS register is being loaded and the segment pointed to is marked not present.
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#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed to is marked not 
present.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If an attempt is made to load SS register with NULL segment selector when CPL = 3.
If an attempt is made to load SS register with NULL segment selector when CPL < 3 and CPL 
≠ RPL.

#GP(selector) If segment selector index is outside descriptor table limits. 
If the memory access to the descriptor table is non-canonical.
If the SS register is being loaded and the segment selector's RPL and the segment descriptor’s 
DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is a nonwritable data segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or 
readable code segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or 
nonconforming code segment, but both the RPL and the CPL are greater than the DPL.

#SS(0) If the stack address is in a non-canonical form.
#SS(selector) If the SS register is being loaded and the segment pointed to is marked not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.
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MOV—Move to/from Control Registers

Instruction Operand Encoding

Description

Moves the contents of a control register (CR0, CR2, CR3, CR4, or CR8) to a general-purpose register or the 
contents of a general-purpose register to a control register. The operand size for these instructions is always 32 bits 
in non-64-bit modes, regardless of the operand-size attribute. On a 64-bit capable processor, an execution of MOV 
to CR outside of 64-bit mode zeros the upper 32 bits of the control register. (See “Control Registers” in Chapter 2 
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for a detailed description of the 
flags and fields in the control registers.) This instruction can be executed only when the current privilege level is 0.

At the opcode level, the reg field within the ModR/M byte specifies which of the control registers is loaded or read. 
The 2 bits in the mod field are ignored. The r/m field specifies the general-purpose register loaded or read. Some 
of the bits in CR0, CR3, and CR4 are reserved and must be written with zeros. Attempting to set any reserved bits 
in CR0[31:0] is ignored. Attempting to set any reserved bits in CR0[63:32] results in a general-protection excep-
tion, #GP(0). When PCIDs are not enabled, bits 2:0 and bits 11:5 of CR3 are not used and attempts to set them 
are ignored. Attempting to set any reserved bits in CR3[63:MAXPHYADDR] results in #GP(0). Attempting to set 
any reserved bits in CR4 results in #GP(0). On Pentium 4, Intel Xeon and P6 family processors, CR0.ET remains set 
after any load of CR0; attempts to clear this bit have no impact.

In certain cases, these instructions have the side effect of invalidating entries in the TLBs and the paging-structure 
caches. See Section 5.10.4.1, “Operations that Invalidate TLBs and Paging-Structure Caches,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A, for details.

The following side effects are implementation-specific for the Pentium 4, Intel Xeon, and P6 processor family: when 
modifying PE or PG in register CR0, or PSE or PAE in register CR4, all TLB entries are flushed, including global 
entries. Software should not depend on this functionality in all Intel 64 or IA-32 processors.

In 64-bit mode, the instruction’s default operation size is 64 bits. The REX.R prefix must be used to access CR8. 
Use of REX.B permits access to additional registers (R8-R15). Use of the REX.W prefix or 66H prefix is ignored. Use 

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 20/r

MOV r32, CR0–CR7

MR N.E. Valid Move control register to r32.

0F 20/r

MOV r64, CR0–CR7

MR Valid N.E. Move extended control register to r64. 

REX.R + 0F 20 /0

MOV r64, CR8

MR Valid N.E. Move extended CR8 to r64.1

NOTES:
1. MOV CR* instructions, except for MOV CR8, are serializing instructions. MOV CR8 is not architecturally defined as a serializing instruc-

tion. For more information, see Chapter 10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

0F 22 /r

MOV CR0–CR7, r32

RM N.E. Valid Move r32 to control register.

0F 22 /r

MOV CR0–CR7, r64

RM Valid N.E. Move r64 to extended control register.

REX.R + 0F 22 /0

MOV CR8, r64

RM Valid N.E. Move r64 to extended CR8.1

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) N/A N/A

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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of the REX.R prefix to specify a register other than CR8 causes an invalid-opcode exception. See the summary 
chart at the beginning of this section for encoding data and limits.

If CR4.PCIDE = 1, bit 63 of the source operand to MOV to CR3 determines whether the instruction invalidates 
entries in the TLBs and the paging-structure caches (see Section 5.10.4.1, “Operations that Invalidate TLBs and 
Paging-Structure Caches,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). The 
instruction does not modify bit 63 of CR3, which is reserved and always 0.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 26 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Operation

DEST := SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0 (such as setting the PG flag to 1 
when the PE flag is set to 0, or setting the CD flag to 0 when the NW flag is set to 1).
If an attempt is made to write a 1 to any reserved bit in CR4.
If an attempt is made to write 1 to CR4.PCIDE.
If any of the reserved bits are set in the page-directory pointers table (PDPT) and the loading 
of a control register causes the PDPT to be loaded into the processor.
If an attempt is made to activate IA-32e mode and either the current CS has the L-bit set or 
the TR references a 16-bit TSS.

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, CR7, or CR9–CR15.

Real-Address Mode Exceptions
#GP If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write 1 to CR4.PCIDE.
If an attempt is made to write invalid bit combinations in CR0 (such as setting the PG flag to 1 
when the PE flag is set to 0).
If an attempt is made to activate IA-32e mode and either the current CS has the L-bit set or 
the TR references a 16-bit TSS.

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, CR7, or CR9–CR15.

Virtual-8086 Mode Exceptions
#GP(0) These instructions cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0 (such as setting the PG flag to 1 
when the PE flag is set to 0, or setting the CD flag to 0 when the NW flag is set to 1).
If an attempt is made to change CR4.PCIDE from 0 to 1 while CR3[11:0] ≠ 000H.
If an attempt is made to clear CR0.PG[bit 31] while CR4.PCIDE = 1.
If an attempt is made to leave IA-32e mode by clearing CR4.PAE[bit 5].
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#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, CR7, or CR9–CR15.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0 (such as setting the PG flag to 1 
when the PE flag is set to 0, or setting the CD flag to 0 when the NW flag is set to 1).
If an attempt is made to change CR4.PCIDE from 0 to 1 while CR3[11:0] ≠ 000H.
If an attempt is made to clear CR0.PG[bit 31].
If an attempt is made to write a 1 to any reserved bit in CR4.
If an attempt is made to write a 1 to any reserved bit in CR8.
If an attempt is made to write a 1 to any reserved bit in CR3[63:MAXPHYADDR].
If an attempt is made to leave IA-32e mode by clearing CR4.PAE[bit 5].

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, CR7, or CR9–CR15.
If the REX.R prefix is used to specify a register other than CR8.
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MOV—Move to/from Debug Registers

Instruction Operand Encoding

Description

Moves the contents of a debug register (DR0, DR1, DR2, DR3, DR4, DR5, DR6, or DR7) to a general-purpose 
register or vice versa. The operand size for these instructions is always 32 bits in non-64-bit modes, regardless of 
the operand-size attribute. (See Section 19.2, “Debug Registers”, of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A, for a detailed description of the flags and fields in the debug registers.)

The instructions must be executed at privilege level 0 or in real-address mode.

When the debug extension (DE) flag in register CR4 is clear, these instructions operate on debug registers in a 
manner that is compatible with Intel386 and Intel486 processors. In this mode, references to DR4 and DR5 refer 
to DR6 and DR7, respectively. When the DE flag in CR4 is set, attempts to reference DR4 and DR5 result in an 
undefined opcode (#UD) exception. (The CR4 register was added to the IA-32 Architecture beginning with the 
Pentium processor.)

At the opcode level, the reg field within the ModR/M byte specifies which of the debug registers is loaded or read. 
The two bits in the mod field are ignored. The r/m field specifies the general-purpose register loaded or read.

In 64-bit mode, the instruction’s default operation size is 64 bits. Use of the REX.B prefix permits access to addi-
tional registers (R8–R15). Use of the REX.W or 66H prefix is ignored. Use of the REX.R prefix causes an invalid-
opcode exception. See the summary chart at the beginning of this section for encoding data and limits. 

Operation

IF ((DE = 1) and (SRC or DEST = DR4 or DR5))
THEN

#UD;
ELSE 

DEST := SRC;

FI;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 21/r

MOV r32, DR0–DR7

MR N.E. Valid Move debug register to r32.

0F 21/r

MOV r64, DR0–DR7

MR Valid N.E. Move extended debug register to r64. 

0F 23 /r

MOV DR0–DR7, r32

RM N.E. Valid Move r32 to debug register.

0F 23 /r

MOV DR0–DR7, r64

RM Valid N.E. Move r64 to extended debug register. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) N/A N/A

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
MOV—Move to/from Debug Registers Vol. 2B 4-42



Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction is executed involving DR4 or 

DR5.
If the LOCK prefix is used.

#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.

Real-Address Mode Exceptions
#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction is executed involving DR4 or 

DR5. 
If the LOCK prefix is used.

#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.

Virtual-8086 Mode Exceptions
#GP(0) The debug registers cannot be loaded or read when in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write a 1 to any of bits 63:32 in DR6.
If an attempt is made to write a 1 to any of bits 63:32 in DR7.

#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction is executed involving DR4 or 
DR5.
If the LOCK prefix is used.
If the REX.R prefix is used.

#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.
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MOVAPD—Move Aligned Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Moves 2, 4 or 8 double precision floating-point values from the source operand (second operand) to the destination 
operand (first operand). This instruction can be used to load an XMM, YMM or ZMM register from an 128-bit, 256-

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 28 /r
MOVAPD xmm1, xmm2/m128

A V/V SSE2 Move aligned packed double precision floating-
point values from xmm2/mem to xmm1. 

66 0F 29 /r
MOVAPD xmm2/m128, xmm1

B V/V SSE2 Move aligned packed double precision floating-
point values from xmm1 to xmm2/mem. 

VEX.128.66.0F.WIG 28 /r
VMOVAPD xmm1, xmm2/m128

A V/V AVX Move aligned packed double precision floating-
point values from xmm2/mem to xmm1. 

VEX.128.66.0F.WIG 29 /r
VMOVAPD xmm2/m128, xmm1

B V/V AVX Move aligned packed double precision floating-
point values from xmm1 to xmm2/mem. 

VEX.256.66.0F.WIG 28 /r
VMOVAPD ymm1, ymm2/m256

A V/V AVX Move aligned packed double precision floating-
point values from ymm2/mem to ymm1. 

VEX.256.66.0F.WIG 29 /r
VMOVAPD ymm2/m256, ymm1

B V/V AVX Move aligned packed double precision floating-
point values from ymm1 to ymm2/mem. 

EVEX.128.66.0F.W1 28 /r
VMOVAPD xmm1 {k1}{z}, xmm2/m128

C V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Move aligned packed double precision floating-
point values from xmm2/m128 to xmm1 using 
writemask k1.

EVEX.256.66.0F.W1 28 /r
VMOVAPD ymm1 {k1}{z}, ymm2/m256 

C V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Move aligned packed double precision floating-
point values from ymm2/m256 to ymm1 using 
writemask k1.

EVEX.512.66.0F.W1 28 /r
VMOVAPD zmm1 {k1}{z}, zmm2/m512

C V/V AVX512F 
OR AVX10.11

Move aligned packed double precision floating-
point values from zmm2/m512 to zmm1 using 
writemask k1.

EVEX.128.66.0F.W1 29 /r
VMOVAPD xmm2/m128 {k1}{z}, xmm1

D V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Move aligned packed double precision floating-
point values from xmm1 to xmm2/m128 using 
writemask k1.

EVEX.256.66.0F.W1 29 /r
VMOVAPD ymm2/m256 {k1}{z}, ymm1

D V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Move aligned packed double precision floating-
point values from ymm1 to ymm2/m256 using 
writemask k1.

EVEX.512.66.0F.W1 29 /r
VMOVAPD zmm2/m512 {k1}{z}, zmm1

D V/V AVX512F 
OR AVX10.11

Move aligned packed double precision floating-
point values from zmm1 to zmm2/m512 using 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A

C Full Mem ModRM:reg (w) ModRM:r/m (r) N/A N/A

D Full Mem ModRM:r/m (w) ModRM:reg (r) N/A N/A
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bit or 512-bit memory location, to store the contents of an XMM, YMM or ZMM register into a 128-bit, 256-bit or 
512-bit memory location, or to move data between two XMM, two YMM or two ZMM registers. 
When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte (128-bit 
versions), 32-byte (256-bit version) or 64-byte (EVEX.512 encoded version) boundary or a general-protection 
exception (#GP) will be generated. For EVEX encoded versions, the operand must be aligned to the size of the 
memory operand. To move double precision floating-point values to and from unaligned memory locations, use the 
VMOVUPD instruction.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
EVEX.512 encoded version:
Moves 512 bits of packed double precision floating-point values from the source operand (second operand) to the 
destination operand (first operand). This instruction can be used to load a ZMM register from a 512-bit float64 
memory location, to store the contents of a ZMM register into a 512-bit float64 memory location, or to move data 
between two ZMM registers. When the source or destination operand is a memory operand, the operand must be 
aligned on a 64-byte boundary or a general-protection exception (#GP) will be generated. To move single precision 
floating-point values to and from unaligned memory locations, use the VMOVUPD instruction.
VEX.256 and EVEX.256 encoded versions:
Moves 256 bits of packed double precision floating-point values from the source operand (second operand) to the 
destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory 
location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM 
registers. When the source or destination operand is a memory operand, the operand must be aligned on a 32-byte 
boundary or a general-protection exception (#GP) will be generated. To move double precision floating-point 
values to and from unaligned memory locations, use the VMOVUPD instruction.
128-bit versions:
Moves 128 bits of packed double precision floating-point values from the source operand (second operand) to the 
destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory 
location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two 
XMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 
16-byte boundary or a general-protection exception (#GP) will be generated. To move single precision floating-
point values to and from unaligned memory locations, use the VMOVUPD instruction.
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding ZMM destination register remain 
unchanged. 
(E)VEX.128 encoded version: Bits (MAXVL-1:128) of the destination ZMM register destination are zeroed. 

Operation

VMOVAPD (EVEX Encoded Versions, Register-Copy Form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE  DEST[i+63:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0
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VMOVAPD (EVEX Encoded Versions, Store-Form) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[i+63:i]
ELSE 
ELSE *DEST[i+63:i] remains unchanged* ; merging-masking

FI;
ENDFOR;

VMOVAPD (EVEX Encoded Versions, Load-Form) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE  DEST[i+63:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMOVAPD (VEX.256 Encoded Version, Load - and Register Copy)
DEST[255:0] := SRC[255:0]
DEST[MAXVL-1:256] := 0

VMOVAPD (VEX.256 Encoded Version, Store-Form)
DEST[255:0] := SRC[255:0]

VMOVAPD (VEX.128 Encoded Version, Load - and Register Copy)
DEST[127:0] := SRC[127:0]
DEST[MAXVL-1:128] := 0

MOVAPD (128-bit Load- and Register-Copy- Form Legacy SSE Version)
DEST[127:0] := SRC[127:0]
DEST[MAXVL-1:128] (Unmodified)

(V)MOVAPD (128-bit Store-Form Version)
DEST[127:0] := SRC[127:0]
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Intel C/C++ Compiler Intrinsic Equivalent

VMOVAPD __m512d _mm512_load_pd( void * m);
VMOVAPD __m512d _mm512_mask_load_pd(__m512d s, __mmask8 k, void * m);
VMOVAPD __m512d _mm512_maskz_load_pd( __mmask8 k, void * m);
VMOVAPD void _mm512_store_pd( void * d, __m512d a);
VMOVAPD void _mm512_mask_store_pd( void * d, __mmask8 k, __m512d a);
VMOVAPD __m256d _mm256_mask_load_pd(__m256d s, __mmask8 k, void * m);
VMOVAPD __m256d _mm256_maskz_load_pd( __mmask8 k, void * m);
VMOVAPD void _mm256_mask_store_pd( void * d, __mmask8 k, __m256d a);
VMOVAPD __m128d _mm_mask_load_pd(__m128d s, __mmask8 k, void * m);
VMOVAPD __m128d _mm_maskz_load_pd( __mmask8 k, void * m);
VMOVAPD void _mm_mask_store_pd( void * d, __mmask8 k, __m128d a);
MOVAPD __m256d _mm256_load_pd (double * p);
MOVAPD void _mm256_store_pd(double * p, __m256d a);
MOVAPD __m128d _mm_load_pd (double * p);
MOVAPD void _mm_store_pd(double * p, __m128d a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type1.SSE2 in Table 2-18, “Type 1 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-46, “Type E1 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.
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MOVAPS—Move Aligned Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description 

Moves 4, 8 or 16 single precision floating-point values from the source operand (second operand) to the destination 
operand (first operand). This instruction can be used to load an XMM, YMM or ZMM register from an 128-bit, 256-

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 28 /r
MOVAPS xmm1, xmm2/m128

A V/V SSE Move aligned packed single precision floating-point 
values from xmm2/mem to xmm1. 

NP 0F 29 /r
MOVAPS xmm2/m128, xmm1

B V/V SSE Move aligned packed single precision floating-point 
values from xmm1 to xmm2/mem. 

VEX.128.0F.WIG 28 /r
VMOVAPS xmm1, xmm2/m128

A V/V AVX Move aligned packed single precision floating-point 
values from xmm2/mem to xmm1. 

VEX.128.0F.WIG 29 /r
VMOVAPS xmm2/m128, xmm1

B V/V AVX Move aligned packed single precision floating-point 
values from xmm1 to xmm2/mem. 

VEX.256.0F.WIG 28 /r
VMOVAPS ymm1, ymm2/m256

A V/V AVX Move aligned packed single precision floating-point 
values from ymm2/mem to ymm1. 

VEX.256.0F.WIG 29 /r
VMOVAPS ymm2/m256, ymm1

B V/V AVX Move aligned packed single precision floating-point 
values from ymm1 to ymm2/mem. 

EVEX.128.0F.W0 28 /r
VMOVAPS xmm1 {k1}{z}, xmm2/m128

C V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Move aligned packed single precision floating-point 
values from xmm2/m128 to xmm1 using writemask 
k1.

EVEX.256.0F.W0 28 /r
VMOVAPS ymm1 {k1}{z}, ymm2/m256

C V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Move aligned packed single precision floating-point 
values from ymm2/m256 to ymm1 using writemask 
k1.

EVEX.512.0F.W0 28 /r
VMOVAPS zmm1 {k1}{z}, zmm2/m512

C V/V AVX512F 
OR AVX10.11

Move aligned packed single precision floating-point 
values from zmm2/m512 to zmm1 using writemask 
k1.

EVEX.128.0F.W0 29 /r
VMOVAPS xmm2/m128 {k1}{z}, xmm1

D V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Move aligned packed single precision floating-point 
values from xmm1 to xmm2/m128 using writemask 
k1.

EVEX.256.0F.W0 29 /r
VMOVAPS ymm2/m256 {k1}{z}, ymm1

D V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Move aligned packed single precision floating-point 
values from ymm1 to ymm2/m256 using writemask 
k1.

EVEX.512.0F.W0 29 /r
VMOVAPS zmm2/m512 {k1}{z}, zmm1

D V/V AVX512F 
OR AVX10.11

Move aligned packed single precision floating-point 
values from zmm1 to zmm2/m512 using writemask 
k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A

C Full Mem ModRM:reg (w) ModRM:r/m (r) N/A N/A

D Full Mem ModRM:r/m (w) ModRM:reg (r) N/A N/A
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bit or 512-bit memory location, to store the contents of an XMM, YMM or ZMM register into a 128-bit, 256-bit or 
512-bit memory location, or to move data between two XMM, two YMM or two ZMM registers. 
When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte (128-bit 
version), 32-byte (VEX.256 encoded version) or 64-byte (EVEX.512 encoded version) boundary or a general-
protection exception (#GP) will be generated. For EVEX.512 encoded versions, the operand must be aligned to the 
size of the memory operand. To move single precision floating-point values to and from unaligned memory loca-
tions, use the VMOVUPS instruction.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
EVEX.512 encoded version:
Moves 512 bits of packed single precision floating-point values from the source operand (second operand) to the 
destination operand (first operand). This instruction can be used to load a ZMM register from a 512-bit float32 
memory location, to store the contents of a ZMM register into a float32 memory location, or to move data between 
two ZMM registers. When the source or destination operand is a memory operand, the operand must be aligned on 
a 64-byte boundary or a general-protection exception (#GP) will be generated. To move single precision floating-
point values to and from unaligned memory locations, use the VMOVUPS instruction.
VEX.256 and EVEX.256 encoded version:
Moves 256 bits of packed single precision floating-point values from the source operand (second operand) to the 
destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory 
location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM 
registers. When the source or destination operand is a memory operand, the operand must be aligned on a 32-byte 
boundary or a general-protection exception (#GP) will be generated.
128-bit versions:
Moves 128 bits of packed single precision floating-point values from the source operand (second operand) to the 
destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory 
location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two 
XMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 
16-byte boundary or a general-protection exception (#GP) will be generated. To move single precision floating-
point values to and from unaligned memory locations, use the VMOVUPS instruction.
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding ZMM destination register remain 
unchanged.
(E)VEX.128 encoded version: Bits (MAXVL-1:128) of the destination ZMM register are zeroed.

Operation

VMOVAPS (EVEX Encoded Versions, Register-Copy Form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE  DEST[i+31:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0
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VMOVAPS (EVEX Encoded Versions, Store Form) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := 
SRC[i+31:i]

ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
FI;

ENDFOR;

VMOVAPS (EVEX Encoded Versions, Load Form) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE  DEST[i+31:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMOVAPS (VEX.256 Encoded Version, Load - and Register Copy)
DEST[255:0] := SRC[255:0]
DEST[MAXVL-1:256] := 0

VMOVAPS (VEX.256 Encoded Version, Store-Form)
DEST[255:0] := SRC[255:0]

VMOVAPS (VEX.128 Encoded Version, Load - and Register Copy)
DEST[127:0] := SRC[127:0]
DEST[MAXVL-1:128] := 0

MOVAPS (128-bit Load- and Register-Copy- Form Legacy SSE Version)
DEST[127:0] := SRC[127:0]
DEST[MAXVL-1:128] (Unmodified)

(V)MOVAPS (128-bit Store-Form Version)
DEST[127:0] := SRC[127:0]
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Intel C/C++ Compiler Intrinsic Equivalent

VMOVAPS __m512 _mm512_load_ps( void * m);
VMOVAPS __m512 _mm512_mask_load_ps(__m512 s, __mmask16 k, void * m);
VMOVAPS __m512 _mm512_maskz_load_ps( __mmask16 k, void * m);
VMOVAPS void _mm512_store_ps( void * d, __m512 a);
VMOVAPS void _mm512_mask_store_ps( void * d, __mmask16 k, __m512 a);
VMOVAPS __m256 _mm256_mask_load_ps(__m256 a, __mmask8 k, void * s);
VMOVAPS __m256 _mm256_maskz_load_ps( __mmask8 k, void * s);
VMOVAPS void _mm256_mask_store_ps( void * d, __mmask8 k, __m256 a);
VMOVAPS __m128 _mm_mask_load_ps(__m128 a, __mmask8 k, void * s);
VMOVAPS __m128 _mm_maskz_load_ps( __mmask8 k, void * s);
VMOVAPS void _mm_mask_store_ps( void * d, __mmask8 k, __m128 a);
MOVAPS __m256 _mm256_load_ps (float * p);
MOVAPS void _mm256_store_ps(float * p, __m256 a);
MOVAPS __m128 _mm_load_ps (float * p);
MOVAPS void _mm_store_ps(float * p, __m128 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type1.SSE in Table 2-18, “Type 1 Class Exception Conditions,” 
additionally:
#UD If VEX.vvvv != 1111B.
EVEX-encoded instruction, see Table 2-46, “Type E1 Class Exception Conditions.”
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MOVBE—Move Data After Swapping Bytes

Instruction Operand Encoding

Description

Performs a byte swap operation on the data copied from the second operand (source operand) and store the result 
in the first operand (destination operand). The source operand can be a general-purpose register, or memory loca-
tion; the destination register can be a general-purpose register, or a memory location; however, both operands can 
not be registers, and only one operand can be a memory location. Both operands must be the same size, which can 
be a word, a doubleword or quadword. 

The MOVBE instruction is provided for swapping the bytes on a read from memory or on a write to memory; thus 
providing support for converting little-endian values to big-endian format and vice versa.

In 64-bit mode, the instruction's default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the 
beginning of this section for encoding data and limits.

Operation

TEMP := SRC

IF ( OperandSize = 16)
THEN

DEST[7:0] := TEMP[15:8];
DEST[15:8] := TEMP[7:0];

ELES IF ( OperandSize = 32) 
DEST[7:0] := TEMP[31:24];
DEST[15:8] := TEMP[23:16];
DEST[23:16] := TEMP[15:8];
DEST[31:23] := TEMP[7:0];

ELSE IF ( OperandSize = 64) 
DEST[7:0] := TEMP[63:56];
DEST[15:8] := TEMP[55:48];

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 F0 /r

MOVBE r16, m16

RM V/V MOVBE Reverse byte order in m16 and move to r16.

0F 38 F0 /r

MOVBE r32, m32

RM V/V MOVBE Reverse byte order in m32 and move to r32.

REX.W + 0F 38 F0 /r

MOVBE r64, m64

RM V/N.E. MOVBE Reverse byte order in m64 and move to r64. 

0F 38 F1 /r

MOVBE m16, r16

MR V/V MOVBE Reverse byte order in r16 and move to m16.

0F 38 F1 /r

MOVBE m32, r32

MR V/V MOVBE Reverse byte order in r32 and move to m32.

REX.W + 0F 38 F1 /r

MOVBE m64, r64

MR V/N.E. MOVBE Reverse byte order in r64 and move to m64. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A

MR ModRM:r/m (w) ModRM:reg (r) N/A N/A
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DEST[23:16] := TEMP[47:40];
DEST[31:24] := TEMP[39:32];
DEST[39:32] := TEMP[31:24];
DEST[47:40] := TEMP[23:16];
DEST[55:48] := TEMP[15:8];
DEST[63:56] := TEMP[7:0];

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0.

If the LOCK prefix is used.
If REP (F3H) prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0.

If the LOCK prefix is used.
If REP (F3H) prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0.

If the LOCK prefix is used.
If REP (F3H) prefix is used.
If REPNE (F2H) prefix is used and CPUID.01H:ECX.SSE4_2[bit 20] = 0.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0.

If the LOCK prefix is used.
If REP (F3H) prefix is used.
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MOVDDUP—Replicate Double Precision Floating-Point Values

Instruction Operand Encoding

Description

For 256-bit or higher versions: Duplicates even-indexed double precision floating-point values from the source 
operand (the second operand) and into adjacent pair and store to the destination operand (the first operand).
For 128-bit versions: Duplicates the low double precision floating-point value from the source operand (the second 
operand) and store to the destination operand (the first operand).
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding destination register are unchanged. The 
source operand is XMM register or a 64-bit memory location.
VEX.128 and EVEX.128 encoded version: Bits (MAXVL-1:128) of the destination register are zeroed. The source 
operand is XMM register or a 64-bit memory location. The destination is updated conditionally under the writemask 
for EVEX version.
VEX.256 and EVEX.256 encoded version: Bits (MAXVL-1:256) of the destination register are zeroed. The source 
operand is YMM register or a 256-bit memory location. The destination is updated conditionally under the write-
mask for EVEX version.
EVEX.512 encoded version: The destination is updated according to the writemask. The source operand is ZMM 
register or a 512-bit memory location.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op / En 64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F2 0F 12 /r
MOVDDUP xmm1, xmm2/m64

A V/V SSE3 Move double precision floating-point value from 
xmm2/m64 and duplicate into xmm1.

VEX.128.F2.0F.WIG 12 /r
VMOVDDUP xmm1, xmm2/m64

A V/V AVX Move double precision floating-point value from 
xmm2/m64 and duplicate into xmm1.

VEX.256.F2.0F.WIG 12 /r
VMOVDDUP ymm1, ymm2/m256

A V/V AVX Move even index double precision floating-point 
values from ymm2/mem and duplicate each element 
into ymm1.

EVEX.128.F2.0F.W1 12 /r
VMOVDDUP xmm1 {k1}{z}, 
xmm2/m64

B V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Move double precision floating-point value from 
xmm2/m64 and duplicate each element into xmm1 
subject to writemask k1.

EVEX.256.F2.0F.W1 12 /r
VMOVDDUP ymm1 {k1}{z}, 
ymm2/m256

B V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Move even index double precision floating-point 
values from ymm2/m256 and duplicate each 
element into ymm1 subject to writemask k1.

EVEX.512.F2.0F.W1 12 /r
VMOVDDUP zmm1 {k1}{z}, 
zmm2/m512

B V/V AVX512F 
OR AVX10.11

Move even index double precision floating-point 
values from zmm2/m512 and duplicate each 
element into zmm1 subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B MOVDDUP ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation

VMOVDDUP (EVEX Encoded Versions) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
TMP_SRC[63:0] := SRC[63:0] 
TMP_SRC[127:64] := SRC[63:0]
IF VL >= 256

TMP_SRC[191:128] := SRC[191:128]
TMP_SRC[255:192] := SRC[191:128]

FI;
IF VL >= 512

TMP_SRC[319:256] := SRC[319:256]
TMP_SRC[383:320] := SRC[319:256]
TMP_SRC[477:384] := SRC[477:384]
TMP_SRC[511:484] := SRC[477:384]

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_SRC[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0 ; zeroing-masking
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VMOVDDUP (VEX.256 Encoded Version)
DEST[63:0] := SRC[63:0]
DEST[127:64] := SRC[63:0]
DEST[191:128] := SRC[191:128]
DEST[255:192] := SRC[191:128]
DEST[MAXVL-1:256] := 0

VMOVDDUP (VEX.128 Encoded Version)
DEST[63:0] := SRC[63:0]
DEST[127:64] := SRC[63:0]
DEST[MAXVL-1:128] := 0

Figure 1-2.  VMOVDDUP Operation

X2 X2 X0 X0DEST

X3 X2SRC X1 X0
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MOVDDUP (128-bit Legacy SSE Version)
DEST[63:0] := SRC[63:0]
DEST[127:64] := SRC[63:0]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMOVDDUP __m512d _mm512_movedup_pd( __m512d a);
VMOVDDUP __m512d _mm512_mask_movedup_pd(__m512d s, __mmask8 k, __m512d a);
VMOVDDUP __m512d _mm512_maskz_movedup_pd( __mmask8 k, __m512d a);
VMOVDDUP __m256d _mm256_mask_movedup_pd(__m256d s, __mmask8 k, __m256d a);
VMOVDDUP __m256d _mm256_maskz_movedup_pd( __mmask8 k, __m256d a);
VMOVDDUP __m128d _mm_mask_movedup_pd(__m128d s, __mmask8 k, __m128d a);
VMOVDDUP __m128d _mm_maskz_movedup_pd( __mmask8 k, __m128d a);
MOVDDUP __m256d _mm256_movedup_pd (__m256d a);
MOVDDUP __m128d _mm_movedup_pd (__m128d a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-22, “Type 5 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-54, “Type E5NF Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.
MOVDDUP—Replicate Double Precision Floating-Point Values Vol. 2B 4-57



MOVDIR64B—Move 64 Bytes as Direct Store

Instruction Operand Encoding1

Description

Moves 64-bytes as direct-store with 64-byte write atomicity from source memory address to destination memory 
address. The source operand is a normal memory operand. The destination operand is a memory location specified 
in a general-purpose register. The register content is interpreted as an offset into ES segment without any segment 
override. In 64-bit mode, the register operand width is 64-bits (32-bits with 67H prefix). Outside of 64-bit mode, 
the register width is 32-bits when CS.D=1 (16-bits with 67H prefix), and 16-bits when CS.D=0 (32-bits with 67H 
prefix). MOVDIR64B requires the destination address to be 64-byte aligned. No alignment restriction is enforced 
for source operand.

MOVDIR64B first reads 64-bytes from the source memory address. It then performs a 64-byte direct-store opera-
tion to the destination address. The load operation follows normal read ordering based on source address memory-
type. The direct-store is implemented by using the write combining (WC) memory type protocol for writing data. 
Using this protocol, the processor does not write the data into the cache hierarchy, nor does it fetch the corre-
sponding cache line from memory into the cache hierarchy. If the destination address is cached, the line is written-
back (if modified) and invalidated from the cache, before the direct-store.

Unlike stores with non-temporal hint which allow UC/WP memory-type for destination to override the non-temporal 
hint, direct-stores always follow WC memory type protocol irrespective of destination address memory type 
(including UC/WP types). Unlike WC stores and stores with non-temporal hint, direct-stores are eligible for imme-
diate eviction from the write-combining buffer, and thus not combined with younger stores (including direct-stores) 
to the same address. Older WC and non-temporal stores held in the write-combing buffer may be combined with 
younger direct stores to the same address. Direct stores are weakly ordered relative to other stores. Software that 
desires stronger ordering should use a fencing instruction (MFENCE or SFENCE) before or after a direct store to 
enforce the ordering desired.

There is no atomicity guarantee provided for the 64-byte load operation from source address, and processor imple-
mentations may use multiple load operations to read the 64-bytes. The 64-byte direct-store issued by MOVDIR64B 
guarantees 64-byte write-completion atomicity. This means that the data arrives at the destination in a single 
undivided 64-byte write transaction. 
Availability of the MOVDIR64B instruction is indicated by the presence of the CPUID feature flag MOVDIR64B (bit 
28 of the ECX register in leaf 07H, see “CPUID—CPU Identification” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A).

Operation

DEST := SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVDIR64B void _movdir64b(void *dst, const void* src)

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 F8 /r

MOVDIR64B r16/r32/r64, m512

A V/V MOVDIR64B Move 64-bytes as direct-store with guaranteed 64-
byte write atomicity from the source memory operand 
address to destination memory address specified as 
offset to ES segment in the register operand.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

1. The Mod field of the ModR/M byte cannot have value 11B.
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Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If address in destination (register) operand is not aligned to a 64-byte boundary.
#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#UD If CPUID.07H.0H:ECX.MOVDIR64B[bit 28] = 0.

If LOCK prefix is used.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.

If address in destination (register) operand is not aligned to a 64-byte boundary.
#UD If CPUID.07H.0H:ECX.MOVDIR64B[bit 28] = 0.

If LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF (fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If memory address referencing the SS segment is in non-canonical form.
#GP(0) If the memory address is in non-canonical form.

If address in destination (register) operand is not aligned to a 64-byte boundary.
#PF (fault-code) For a page fault.
#UD If CPUID.07H.0H:ECX.MOVDIR64B[bit 28] = 0.

If LOCK prefix is used.
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MOVDIRI—Move Doubleword as Direct Store

Instruction Operand Encoding1

Description

Moves the doubleword integer in the source operand (second operand) to the destination operand (first operand) 
using a direct-store operation. The source operand is a general purpose register. The destination operand is a 32-
bit memory location. In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix 
permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See 
summary chart at the beginning of this section for encoding data and limits.

The direct-store is implemented by using write combining (WC) memory type protocol for writing data. Using this 
protocol, the processor does not write the data into the cache hierarchy, nor does it fetch the corresponding cache 
line from memory into the cache hierarchy. If the destination address is cached, the line is written-back (if modi-
fied) and invalidated from the cache, before the direct-store. Unlike stores with non-temporal hint that allow 
uncached (UC) and write-protected (WP) memory-type for the destination to override the non-temporal hint, 
direct-stores always follow WC memory type protocol irrespective of the destination address memory type 
(including UC and WP types).

Unlike WC stores and stores with non-temporal hint, direct-stores are eligible for immediate eviction from the 
write-combining buffer, and thus not combined with younger stores (including direct-stores) to the same address. 
Older WC and non-temporal stores held in the write-combing buffer may be combined with younger direct stores 
to the same address. Direct stores are weakly ordered relative to other stores. Software that desires stronger 
ordering should use a fencing instruction (MFENCE or SFENCE) before or after a direct store to enforce the ordering 
desired.

Direct-stores issued by MOVDIRI to a destination aligned to a 4-byte boundary (8-byte boundary if used with 
REX.W prefix) guarantee 4-byte (8-byte with REX.W prefix) write-completion atomicity. This means that the data 
arrives at the destination in a single undivided 4-byte (or 8-byte) write transaction. If the destination is not aligned 
for the write size, the direct-stores issued by MOVDIRI are split and arrive at the destination in two parts. Each part 
of such split direct-store will not merge with younger stores but can arrive at the destination in either order. Avail-
ability of the MOVDIRI instruction is indicated by the presence of the CPUID feature flag MOVDIRI (bit 27 of the 
ECX register in leaf 07H, see “CPUID—CPU Identification” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A).

Operation

DEST := SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVDIRI void _directstoreu_u32(void *dst, uint32_t val)
MOVDIRI void _directstoreu_u64(void *dst, uint64_t val)

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 38 F9 /r

MOVDIRI m32, r32

A V/V MOVDIRI Move doubleword from r32 to m32 using direct store.

NP REX.W + 0F 38 F9 /r

MOVDIRI m64, r64

A V/N.E. MOVDIRI Move quadword from r64 to m64 using direct store. 

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A

1. The Mod field of the ModR/M byte cannot have value 11B.
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Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#UD If CPUID.07H.0H:ECX.MOVDIRI[bit 27] = 0.

If LOCK prefix or operand-size (66H) prefix is used.
#AC If alignment checking is enabled and an unaligned memory reference made while in current 

privilege level 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.
#UD If CPUID.07H.0H:ECX.MOVDIRI[bit 27] = 0.

If LOCK prefix or operand-size (66H) prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF (fault-code) For a page fault.
#AC If alignment checking is enabled and an unaligned memory reference made while in current 

privilege level 3.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If memory address referencing the SS segment is in non-canonical form.
#GP(0) If the memory address is in non-canonical form.
#PF (fault-code) For a page fault.
#UD If CPUID.07H.0H:ECX.MOVDIRI[bit 27] = 0.

If LOCK prefix or operand-size (66H) prefix is used.
#AC If alignment checking is enabled and an unaligned memory reference made while in current 

privilege level 3.
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MOVD/MOVQ—Move Doubleword/Move Quadword
Opcode/
Instruction

Op/ En 64/32-bit 
Mode

CPUID 
Feature Flag

Description

NP 0F 6E /r

MOVD mm, r/m32

A V/V MMX Move doubleword from r/m32 to mm.

NP REX.W + 0F 6E /r

MOVQ mm, r/m64

A V/N.E. MMX Move quadword from r/m64 to mm.

NP 0F 7E /r

MOVD r/m32, mm

B V/V MMX Move doubleword from mm to r/m32.

NP REX.W + 0F 7E /r

MOVQ r/m64, mm

B V/N.E. MMX Move quadword from mm to r/m64.

66 0F 6E /r

MOVD xmm, r/m32

A V/V SSE2 Move doubleword from r/m32 to xmm.

66 REX.W 0F 6E /r

MOVQ xmm, r/m64

A V/N.E. SSE2 Move quadword from r/m64 to xmm.

66 0F 7E /r

MOVD r/m32, xmm

B V/V SSE2 Move doubleword from xmm register to r/m32.

 66 REX.W 0F 7E /r

MOVQ r/m64, xmm

B V/N.E. SSE2 Move quadword from xmm register to r/m64.

VEX.128.66.0F.W0 6E /

VMOVD xmm1, r32/m32

A V/V AVX Move doubleword from r/m32 to xmm1.

VEX.128.66.0F.W1 6E /r

VMOVQ xmm1, r64/m64

A V/N.E.1

NOTES:
1. For this specific instruction, VEX.W/EVEX.W in non-64 bit is ignored; the instruction behaves as if the W0 version is used.

AVX Move quadword from r/m64 to xmm1.

VEX.128.66.0F.W0 7E /r

VMOVD r32/m32, xmm1

B V/V AVX Move doubleword from xmm1 register to r/m32.

VEX.128.66.0F.W1 7E /r

VMOVQ r64/m64, xmm1

B V/N.E.1 AVX Move quadword from xmm1 register to r/m64.

EVEX.128.66.0F.W0 6E /r
VMOVD xmm1, r32/m32

C V/V AVX512F
OR AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Move doubleword from r/m32 to xmm1.

EVEX.128.66.0F.W1 6E /r
VMOVQ xmm1, r64/m64

C V/N.E. AVX512F
OR AVX10.12

Move quadword from r/m64 to xmm1.

EVEX.128.66.0F.W0 7E /r
VMOVD r32/m32, xmm1

D V/V AVX512F
OR AVX10.12

Move doubleword from xmm1 register to r/m32.

EVEX.128.66.0F.W1 7E /r
VMOVQ r64/m64, xmm1

D V/N.E.1 AVX512F
OR AVX10.12

Move quadword from xmm1 register to r/m64.
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Instruction Operand Encoding

Description

Copies a doubleword from the source operand (second operand) to the destination operand (first operand). The 
source and destination operands can be general-purpose registers, MMX technology registers, XMM registers, or 
32-bit memory locations. This instruction can be used to move a doubleword to and from the low doubleword of an 
MMX technology register and a general-purpose register or a 32-bit memory location, or to and from the low 
doubleword of an XMM register and a general-purpose register or a 32-bit memory location. The instruction cannot 
be used to transfer data between MMX technology registers, between XMM registers, between general-purpose 
registers, or between memory locations.

When the destination operand is an MMX technology register, the source operand is written to the low doubleword 
of the register, and the register is zero-extended to 64 bits. When the destination operand is an XMM register, the 
source operand is written to the low doubleword of the register, and the register is zero-extended to 128 bits.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.B prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the 
beginning of this section for encoding data and limits.
MOVD/Q with XMM destination:
Moves a dword/qword integer from the source operand and stores it in the low 32/64-bits of the destination XMM 
register. The upper bits of the destination are zeroed. The source operand can be a 32/64-bit register or 32/64-bit 
memory location. 
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding YMM destination register remain 
unchanged. Qword operation requires the use of REX.W=1.
VEX.128 encoded version: Bits (MAXVL-1:128) of the destination register are zeroed. Qword operation requires the 
use of VEX.W=1.
EVEX.128 encoded version: Bits (MAXVL-1:128) of the destination register are zeroed. Qword operation requires 
the use of EVEX.W=1.
MOVD/Q with 32/64 reg/mem destination:
Stores the low dword/qword of the source XMM register to 32/64-bit memory location or general-purpose register. 
Qword operation requires the use of REX.W=1, VEX.W=1, or EVEX.W=1.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
If VMOVD or VMOVQ is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will 
cause an #UD exception.

Operation

MOVD (When Destination Operand is an MMX Technology Register)
DEST[31:0] := SRC;
DEST[63:32] := 00000000H;

MOVD (When Destination Operand is an XMM Register)
DEST[31:0] := SRC;
DEST[127:32] := 000000000000000000000000H;
DEST[MAXVL-1:128] (Unmodified)

MOVD (When Source Operand is an MMX Technology or XMM Register)
DEST := SRC[31:0];

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A

C Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A

D Tuple1 Scalar ModRM:r/m (w) ModRM:reg (r) N/A N/A
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VMOVD (VEX-Encoded Version when Destination is an XMM Register)
DEST[31:0] := SRC[31:0]
DEST[MAXVL-1:32] := 0

MOVQ (When Destination Operand is an XMM Register)
DEST[63:0] := SRC[63:0];
DEST[127:64] := 0000000000000000H;
DEST[MAXVL-1:128] (Unmodified)

MOVQ (When Destination Operand is r/m64)
DEST[63:0] := SRC[63:0];

MOVQ (When Source Operand is an XMM Register or r/m64)
DEST := SRC[63:0];

VMOVQ (VEX-Encoded Version When Destination is an XMM Register)
DEST[63:0] := SRC[63:0]
DEST[MAXVL-1:64] := 0

VMOVD (EVEX-Encoded Version When Destination is an XMM Register)
DEST[31:0] := SRC[31:0]
DEST[MAXVL-1:32] := 0

VMOVQ (EVEX-Encoded Version When Destination is an XMM Register)
DEST[63:0] := SRC[63:0]
DEST[MAXVL-1:64] := 0

Intel C/C++ Compiler Intrinsic Equivalent

MOVD __m64 _mm_cvtsi32_si64 (int i )
MOVD int _mm_cvtsi64_si32 ( __m64m ) 
MOVD __m128i _mm_cvtsi32_si128 (int a) 
MOVD int _mm_cvtsi128_si32 ( __m128i a)
MOVQ __int64 _mm_cvtsi128_si64(__m128i); 
MOVQ __m128i _mm_cvtsi64_si128(__int64);
VMOVD __m128i _mm_cvtsi32_si128( int);
VMOVD int _mm_cvtsi128_si32( __m128i );
VMOVQ __m128i _mm_cvtsi64_si128 (__int64);
VMOVQ __int64 _mm_cvtsi128_si64(__m128i );
VMOVQ __m128i _mm_loadl_epi64( __m128i * s);
VMOVQ void _mm_storel_epi64( __m128i * d, __m128i s);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.
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Other Exceptions
Non-EVEX-encoded instruction, see Table 2-22, “Type 5 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-59, “Type E9NF Class Exception Conditions.”
Additionally:
#UD If VEX.L = 1.

If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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MOVDQ2Q—Move Quadword from XMM to MMX Technology Register

Instruction Operand Encoding

Description

Moves the low quadword from the source operand (second operand) to the destination operand (first operand). The 
source operand is an XMM register and the destination operand is an MMX technology register.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack 
pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU 
floating-point exception is pending, the exception is handled before the MOVDQ2Q instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST := SRC[63:0];

Intel C/C++ Compiler Intrinsic Equivalent

MOVDQ2Q __m64 _mm_movepi64_pi64 ( __m128i a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM If CR0.TS[bit 3] = 1. 
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F2 0F D6 /r MOVDQ2Q mm, xmm RM Valid Valid Move low quadword from xmm to mmx register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A



MOVDQA,VMOVDQA32/64—Move Aligned Packed Integer Values
Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 6F /r
MOVDQA xmm1, xmm2/m128

A V/V SSE2 Move aligned packed integer values from 
xmm2/mem to xmm1. 

66 0F 7F /r
MOVDQA xmm2/m128, xmm1

B V/V SSE2 Move aligned packed integer values from 
xmm1 to xmm2/mem. 

VEX.128.66.0F.WIG 6F /r
VMOVDQA xmm1, xmm2/m128

A V/V AVX Move aligned packed integer values from 
xmm2/mem to xmm1. 

VEX.128.66.0F.WIG 7F /r
VMOVDQA xmm2/m128, xmm1

B V/V AVX Move aligned packed integer values from 
xmm1 to xmm2/mem. 

VEX.256.66.0F.WIG 6F /r
VMOVDQA ymm1, ymm2/m256

A V/V AVX Move aligned packed integer values from 
ymm2/mem to ymm1. 

VEX.256.66.0F.WIG 7F /r
VMOVDQA ymm2/m256, ymm1

B V/V AVX Move aligned packed integer values from 
ymm1 to ymm2/mem.

EVEX.128.66.0F.W0 6F /r
VMOVDQA32 xmm1 {k1}{z}, 
xmm2/m128

C V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Move aligned packed doubleword integer 
values from xmm2/m128 to xmm1 using 
writemask k1.

EVEX.256.66.0F.W0 6F /r
VMOVDQA32 ymm1 {k1}{z}, 
ymm2/m256 

C V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Move aligned packed doubleword integer 
values from ymm2/m256 to ymm1 using 
writemask k1.

EVEX.512.66.0F.W0 6F /r
VMOVDQA32 zmm1 {k1}{z}, zmm2/m512

C V/V AVX512F 
OR AVX10.11

Move aligned packed doubleword integer 
values from zmm2/m512 to zmm1 using 
writemask k1.

EVEX.128.66.0F.W0 7F /r
VMOVDQA32 xmm2/m128 {k1}{z}, 
xmm1

D V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Move aligned packed doubleword integer 
values from xmm1 to xmm2/m128 using 
writemask k1.

EVEX.256.66.0F.W0 7F /r
VMOVDQA32 ymm2/m256 {k1}{z}, 
ymm1

D V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Move aligned packed doubleword integer 
values from ymm1 to ymm2/m256 using 
writemask k1.

EVEX.512.66.0F.W0 7F /r
VMOVDQA32 zmm2/m512 {k1}{z}, zmm1

D V/V AVX512F 
OR AVX10.11

Move aligned packed doubleword integer 
values from zmm1 to zmm2/m512 using 
writemask k1.

EVEX.128.66.0F.W1 6F /r
VMOVDQA64 xmm1 {k1}{z}, 
xmm2/m128 

C V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Move aligned packed quadword integer values 
from xmm2/m128 to xmm1 using writemask 
k1.

EVEX.256.66.0F.W1 6F /r
VMOVDQA64 ymm1 {k1}{z}, 
ymm2/m256 

C V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Move aligned packed quadword integer values 
from ymm2/m256 to ymm1 using writemask 
k1.

EVEX.512.66.0F.W1 6F /r
VMOVDQA64 zmm1 {k1}{z}, zmm2/m512 

C V/V AVX512F 
OR AVX10.11

Move aligned packed quadword integer values 
from zmm2/m512 to zmm1 using writemask 
k1.

EVEX.128.66.0F.W1 7F /r
VMOVDQA64 xmm2/m128 {k1}{z}, 
xmm1

D V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Move aligned packed quadword integer values 
from xmm1 to xmm2/m128 using writemask 
k1.

EVEX.256.66.0F.W1 7F /r
VMOVDQA64 ymm2/m256 {k1}{z}, 
ymm1

D V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Move aligned packed quadword integer values 
from ymm1 to ymm2/m256 using writemask 
k1.

EVEX.512.66.0F.W1 7F /r
VMOVDQA64 zmm2/m512 {k1}{z}, zmm1

D V/V AVX512F 
OR AVX10.11

Move aligned packed quadword integer values 
from zmm1 to zmm2/m512 using writemask 
k1.
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Instruction Operand Encoding

Description

Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
EVEX encoded versions:
Moves 128, 256 or 512 bits of packed doubleword/quadword integer values from the source operand (the second 
operand) to the destination operand (the first operand). This instruction can be used to load a vector register from 
an int32/int64 memory location, to store the contents of a vector register into an int32/int64 memory location, or 
to move data between two ZMM registers. When the source or destination operand is a memory operand, the 
operand must be aligned on a 16 (EVEX.128)/32(EVEX.256)/64(EVEX.512)-byte boundary or a general-protection 
exception (#GP) will be generated. To move integer data to and from unaligned memory locations, use the 
VMOVDQU instruction.
The destination operand is updated at 32-bit (VMOVDQA32) or 64-bit (VMOVDQA64) granularity according to the 
writemask.
VEX.256 encoded version:
Moves 256 bits of packed integer values from the source operand (second operand) to the destination operand 
(first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the 
contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers. 
When the source or destination operand is a memory operand, the operand must be aligned on a 32-byte boundary 
or a general-protection exception (#GP) will be generated. To move integer data to and from unaligned memory 
locations, use the VMOVDQU instruction. Bits (MAXVL-1:256) of the destination register are zeroed.
128-bit versions:
Moves 128 bits of packed integer values from the source operand (second operand) to the destination operand 
(first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the 
contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers. 
When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte boundary 
or a general-protection exception (#GP) will be generated. To move integer data to and from unaligned memory 
locations, use the VMOVDQU instruction.
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding ZMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (MAXVL-1:128) of the destination register are zeroed.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A

C Full Mem ModRM:reg (w) ModRM:r/m (r) N/A N/A

D Full Mem ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Operation

VMOVDQA32 (EVEX Encoded Versions, Register-Copy Form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE  DEST[i+31:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMOVDQA32 (EVEX Encoded Versions, Store-Form) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[i+31:i]
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking

FI;
ENDFOR;

VMOVDQA32 (EVEX Encoded Versions, Load-Form) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE  DEST[i+31:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMOVDQA64 (EVEX Encoded Versions, Register-Copy Form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE  DEST[i+63:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
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DEST[MAXVL-1:VL] := 0

VMOVDQA64 (EVEX Encoded Versions, Store-Form) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[i+63:i]
ELSE *DEST[i+63:i] remains unchanged* ; merging-masking

FI;
ENDFOR;

VMOVDQA64 (EVEX Encoded Versions, Load-Form) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE  DEST[i+63:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMOVDQA (VEX.256 Encoded Version, Load - and Register Copy)
DEST[255:0] := SRC[255:0]
DEST[MAXVL-1:256] := 0

VMOVDQA (VEX.256 Encoded Version, Store-Form)
DEST[255:0] := SRC[255:0]

VMOVDQA (VEX.128 Encoded Version)
DEST[127:0] := SRC[127:0]
DEST[MAXVL-1:128] := 0

VMOVDQA (128-bit Load- and Register-Copy- Form Legacy SSE Version)
DEST[127:0] := SRC[127:0]
DEST[MAXVL-1:128] (Unmodified)

(V)MOVDQA (128-bit Store-Form Version)
DEST[127:0] := SRC[127:0]
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Intel C/C++ Compiler Intrinsic Equivalent

VMOVDQA32 __m512i _mm512_load_epi32( void * sa); 
VMOVDQA32 __m512i _mm512_mask_load_epi32(__m512i s, __mmask16 k, void * sa); 
VMOVDQA32 __m512i _mm512_maskz_load_epi32( __mmask16 k, void * sa); 
VMOVDQA32 void _mm512_store_epi32(void * d, __m512i a); 
VMOVDQA32 void _mm512_mask_store_epi32(void * d, __mmask16 k, __m512i a); 
VMOVDQA32 __m256i _mm256_mask_load_epi32(__m256i s, __mmask8 k, void * sa); 
VMOVDQA32 __m256i _mm256_maskz_load_epi32( __mmask8 k, void * sa); 
VMOVDQA32 void _mm256_store_epi32(void * d, __m256i a); 
VMOVDQA32 void _mm256_mask_store_epi32(void * d, __mmask8 k, __m256i a); 
VMOVDQA32 __m128i _mm_mask_load_epi32(__m128i s, __mmask8 k, void * sa); 
VMOVDQA32 __m128i _mm_maskz_load_epi32( __mmask8 k, void * sa); 
VMOVDQA32 void _mm_store_epi32(void * d, __m128i a); 
VMOVDQA32 void _mm_mask_store_epi32(void * d, __mmask8 k, __m128i a); 
VMOVDQA64 __m512i _mm512_load_epi64( void * sa); 
VMOVDQA64 __m512i _mm512_mask_load_epi64(__m512i s, __mmask8 k, void * sa); 
VMOVDQA64 __m512i _mm512_maskz_load_epi64( __mmask8 k, void * sa); 
VMOVDQA64 void _mm512_store_epi64(void * d, __m512i a); 
VMOVDQA64 void _mm512_mask_store_epi64(void * d, __mmask8 k, __m512i a); 
VMOVDQA64 __m256i _mm256_mask_load_epi64(__m256i s, __mmask8 k, void * sa); 
VMOVDQA64 __m256i _mm256_maskz_load_epi64( __mmask8 k, void * sa); 
VMOVDQA64 void _mm256_store_epi64(void * d, __m256i a); 
VMOVDQA64 void _mm256_mask_store_epi64(void * d, __mmask8 k, __m256i a); 
VMOVDQA64 __m128i _mm_mask_load_epi64(__m128i s, __mmask8 k, void * sa); 
VMOVDQA64 __m128i _mm_maskz_load_epi64( __mmask8 k, void * sa); 
VMOVDQA64 void _mm_store_epi64(void * d, __m128i a); 
VMOVDQA64 void _mm_mask_store_epi64(void * d, __mmask8 k, __m128i a); 
MOVDQA void __m256i _mm256_load_si256 (__m256i * p);
MOVDQA _mm256_store_si256(_m256i *p, __m256i a);
MOVDQA __m128i _mm_load_si128 (__m128i * p);
MOVDQA void _mm_store_si128(__m128i *p, __m128i a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type1.SSE2 in Table 2-18, “Type 1 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-46, “Type E1 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.
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MOVDQU,VMOVDQU8/16/32/64—Move Unaligned Packed Integer Values
Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F3 0F 6F /r
MOVDQU xmm1, xmm2/m128

A V/V SSE2 Move unaligned packed integer values 
from xmm2/m128 to xmm1. 

F3 0F 7F /r
MOVDQU xmm2/m128, xmm1

B V/V SSE2 Move unaligned packed integer values 
from xmm1 to xmm2/m128. 

VEX.128.F3.0F.WIG 6F /r
VMOVDQU xmm1, xmm2/m128

A V/V AVX Move unaligned packed integer values 
from xmm2/m128 to xmm1. 

VEX.128.F3.0F.WIG 7F /r
VMOVDQU xmm2/m128, xmm1

B V/V AVX Move unaligned packed integer values 
from xmm1 to xmm2/m128.

VEX.256.F3.0F.WIG 6F /r
VMOVDQU ymm1, ymm2/m256

A V/V AVX Move unaligned packed integer values 
from ymm2/m256 to ymm1.

VEX.256.F3.0F.WIG 7F /r
VMOVDQU ymm2/m256, ymm1

B V/V AVX Move unaligned packed integer values 
from ymm1 to ymm2/m256.

EVEX.128.F2.0F.W0 6F /r
VMOVDQU8 xmm1 {k1}{z}, xmm2/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Move unaligned packed byte integer values 
from xmm2/m128 to xmm1 using 
writemask k1.

EVEX.256.F2.0F.W0 6F /r
VMOVDQU8 ymm1 {k1}{z}, ymm2/m256 

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Move unaligned packed byte integer values 
from ymm2/m256 to ymm1 using 
writemask k1.

EVEX.512.F2.0F.W0 6F /r
VMOVDQU8 zmm1 {k1}{z}, zmm2/m512

C V/V AVX512BW 
OR AVX10.11

Move unaligned packed byte integer values 
from zmm2/m512 to zmm1 using 
writemask k1.

EVEX.128.F2.0F.W0 7F /r
VMOVDQU8 xmm2/m128 {k1}{z}, xmm1

D V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Move unaligned packed byte integer values 
from xmm1 to xmm2/m128 using 
writemask k1.

EVEX.256.F2.0F.W0 7F /r
VMOVDQU8 ymm2/m256 {k1}{z}, ymm1

D V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Move unaligned packed byte integer values 
from ymm1 to ymm2/m256 using 
writemask k1.

EVEX.512.F2.0F.W0 7F /r
VMOVDQU8 zmm2/m512 {k1}{z}, zmm1

D V/V AVX512BW 
OR AVX10.11

Move unaligned packed byte integer values 
from zmm1 to zmm2/m512 using 
writemask k1.

EVEX.128.F2.0F.W1 6F /r
VMOVDQU16 xmm1 {k1}{z}, xmm2/m128 

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Move unaligned packed word integer 
values from xmm2/m128 to xmm1 using 
writemask k1.

EVEX.256.F2.0F.W1 6F /r
VMOVDQU16 ymm1 {k1}{z}, ymm2/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Move unaligned packed word integer 
values from ymm2/m256 to ymm1 using 
writemask k1.

EVEX.512.F2.0F.W1 6F /r
VMOVDQU16 zmm1 {k1}{z}, zmm2/m512 

C V/V AVX512BW 
OR AVX10.11

Move unaligned packed word integer 
values from zmm2/m512 to zmm1 using 
writemask k1.

EVEX.128.F2.0F.W1 7F /r
VMOVDQU16 xmm2/m128 {k1}{z}, xmm1

D V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Move unaligned packed word integer 
values from xmm1 to xmm2/m128 using 
writemask k1.

EVEX.256.F2.0F.W1 7F /r
VMOVDQU16 ymm2/m256 {k1}{z}, ymm1

D V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Move unaligned packed word integer 
values from ymm1 to ymm2/m256 using 
writemask k1.

EVEX.512.F2.0F.W1 7F /r
VMOVDQU16 zmm2/m512 {k1}{z}, zmm1

D V/V AVX512BW 
OR AVX10.11

Move unaligned packed word integer 
values from zmm1 to zmm2/m512 using 
writemask k1.
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EVEX.128.F3.0F.W0 6F /r
VMOVDQU32 xmm1 {k1}{z}, xmm2/mm128

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move unaligned packed doubleword 
integer values from xmm2/m128 to xmm1 
using writemask k1.

EVEX.256.F3.0F.W0 6F /r
VMOVDQU32 ymm1 {k1}{z}, ymm2/m256 

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move unaligned packed doubleword 
integer values from ymm2/m256 to ymm1 
using writemask k1.

EVEX.512.F3.0F.W0 6F /r
VMOVDQU32 zmm1 {k1}{z}, zmm2/m512

C V/V AVX512F 
OR AVX10.11

Move unaligned packed doubleword 
integer values from zmm2/m512 to zmm1 
using writemask k1.

EVEX.128.F3.0F.W0 7F /r
VMOVDQU32 xmm2/m128 {k1}{z}, xmm1

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move unaligned packed doubleword 
integer values from xmm1 to xmm2/m128 
using writemask k1.

EVEX.256.F3.0F.W0 7F /r
VMOVDQU32 ymm2/m256 {k1}{z}, ymm1

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move unaligned packed doubleword 
integer values from ymm1 to ymm2/m256 
using writemask k1.

EVEX.512.F3.0F.W0 7F /r
VMOVDQU32 zmm2/m512 {k1}{z}, zmm1

D V/V AVX512F 
OR AVX10.11

Move unaligned packed doubleword 
integer values from zmm1 to zmm2/m512 
using writemask k1.

EVEX.128.F3.0F.W1 6F /r
VMOVDQU64 xmm1 {k1}{z}, xmm2/m128 

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move unaligned packed quadword integer 
values from xmm2/m128 to xmm1 using 
writemask k1.

EVEX.256.F3.0F.W1 6F /r
VMOVDQU64 ymm1 {k1}{z}, ymm2/m256

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move unaligned packed quadword integer 
values from ymm2/m256 to ymm1 using 
writemask k1.

EVEX.512.F3.0F.W1 6F /r
VMOVDQU64 zmm1 {k1}{z}, zmm2/m512

C V/V AVX512F 
OR AVX10.11

Move unaligned packed quadword integer 
values from zmm2/m512 to zmm1 using 
writemask k1.

EVEX.128.F3.0F.W1 7F /r
VMOVDQU64 xmm2/m128 {k1}{z}, xmm1

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move unaligned packed quadword integer 
values from xmm1 to xmm2/m128 using 
writemask k1.

EVEX.256.F3.0F.W1 7F /r
VMOVDQU64 ymm2/m256 {k1}{z}, ymm1

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move unaligned packed quadword integer 
values from ymm1 to ymm2/m256 using 
writemask k1.

EVEX.512.F3.0F.W1 7F /r
VMOVDQU64 zmm2/m512 {k1}{z}, zmm1

D V/V AVX512F 
OR AVX10.11

Move unaligned packed quadword integer 
values from zmm1 to zmm2/m512 using 
writemask k1.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description
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Instruction Operand Encoding

Description

Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
EVEX encoded versions:
Moves 128, 256 or 512 bits of packed byte/word/doubleword/quadword integer values from the source operand 
(the second operand) to the destination operand (first operand). This instruction can be used to load a vector 
register from a memory location, to store the contents of a vector register into a memory location, or to move data 
between two vector registers. 
The destination operand is updated at 8-bit (VMOVDQU8), 16-bit (VMOVDQU16), 32-bit (VMOVDQU32), or 64-bit 
(VMOVDQU64) granularity according to the writemask.
VEX.256 encoded version:
Moves 256 bits of packed integer values from the source operand (second operand) to the destination operand 
(first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the 
contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers. 
Bits (MAXVL-1:256) of the destination register are zeroed.

128-bit versions:
Moves 128 bits of packed integer values from the source operand (second operand) to the destination operand 
(first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the 
contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers. 
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding destination register remain unchanged.
When the source or destination operand is a memory operand, the operand may be unaligned to any alignment 
without causing a general-protection exception (#GP) to be generated
VEX.128 encoded version: Bits (MAXVL-1:128) of the destination register are zeroed.

Operation

VMOVDQU8 (EVEX Encoded Versions, Register-Copy Form)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SRC[i+7:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE  DEST[i+7:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A

C Full Mem ModRM:reg (w) ModRM:r/m (r) N/A N/A

D Full Mem ModRM:r/m (w) ModRM:reg (r) N/A N/A
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VMOVDQU8 (EVEX Encoded Versions, Store-Form) 
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := 
SRC[i+7:i]

ELSE *DEST[i+7:i] remains unchanged* ; merging-masking
FI;

ENDFOR;

VMOVDQU8 (EVEX Encoded Versions, Load-Form) 
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SRC[i+7:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE  DEST[i+7:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMOVDQU16 (EVEX Encoded Versions, Register-Copy Form)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SRC[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE  DEST[i+15:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMOVDQU16 (EVEX Encoded Versions, Store-Form) 
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := 
SRC[i+15:i]

ELSE *DEST[i+15:i] remains unchanged* ; merging-masking
FI;

ENDFOR;
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VMOVDQU16 (EVEX Encoded Versions, Load-Form) 
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SRC[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE  DEST[i+15:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMOVDQU32 (EVEX Encoded Versions, Register-Copy Form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE  DEST[i+31:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMOVDQU32 (EVEX Encoded Versions, Store-Form) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := 
SRC[i+31:i]

ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
FI;

ENDFOR;

VMOVDQU32 (EVEX Encoded Versions, Load-Form) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE  DEST[i+31:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
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DEST[MAXVL-1:VL] := 0

VMOVDQU64 (EVEX Encoded Versions, Register-Copy Form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE  DEST[i+63:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMOVDQU64 (EVEX Encoded Versions, Store-Form) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[i+63:i]
ELSE *DEST[i+63:i] remains unchanged* ; merging-masking

FI;
ENDFOR;

VMOVDQU64 (EVEX Encoded Versions, Load-Form) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE  DEST[i+63:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMOVDQU (VEX.256 Encoded Version, Load - and Register Copy)
DEST[255:0] := SRC[255:0]
DEST[MAXVL-1:256] := 0

VMOVDQU (VEX.256 Encoded Version, Store-Form)
DEST[255:0] := SRC[255:0]

VMOVDQU (VEX.128 encoded version)
DEST[127:0] := SRC[127:0]
DEST[MAXVL-1:128] := 0
MOVDQU,VMOVDQU8/16/32/64—Move Unaligned Packed Integer Values Vol. 2B 4-77



VMOVDQU (128-bit Load- and Register-Copy- Form Legacy SSE Version)
DEST[127:0] := SRC[127:0]
DEST[MAXVL-1:128] (Unmodified)

(V)MOVDQU (128-bit Store-Form Version)
DEST[127:0] := SRC[127:0]

Intel C/C++ Compiler Intrinsic Equivalent

VMOVDQU16 __m512i _mm512_mask_loadu_epi16(__m512i s, __mmask32 k, void * sa); 
VMOVDQU16 __m512i _mm512_maskz_loadu_epi16( __mmask32 k, void * sa); 
VMOVDQU16 void _mm512_mask_storeu_epi16(void * d, __mmask32 k, __m512i a); 
VMOVDQU16 __m256i _mm256_mask_loadu_epi16(__m256i s, __mmask16 k, void * sa); 
VMOVDQU16 __m256i _mm256_maskz_loadu_epi16( __mmask16 k, void * sa); 
VMOVDQU16 void _mm256_mask_storeu_epi16(void * d, __mmask16 k, __m256i a); 
VMOVDQU16 __m128i _mm_mask_loadu_epi16(__m128i s, __mmask8 k, void * sa); 
VMOVDQU16 __m128i _mm_maskz_loadu_epi16( __mmask8 k, void * sa); 
VMOVDQU16 void _mm_mask_storeu_epi16(void * d, __mmask8 k, __m128i a); 
VMOVDQU32 __m512i _mm512_loadu_epi32( void * sa); 
VMOVDQU32 __m512i _mm512_mask_loadu_epi32(__m512i s, __mmask16 k, void * sa); 
VMOVDQU32 __m512i _mm512_maskz_loadu_epi32( __mmask16 k, void * sa); 
VMOVDQU32 void _mm512_storeu_epi32(void * d, __m512i a); 
VMOVDQU32 void _mm512_mask_storeu_epi32(void * d, __mmask16 k, __m512i a); 
VMOVDQU32 __m256i _mm256_mask_loadu_epi32(__m256i s, __mmask8 k, void * sa); 
VMOVDQU32 __m256i _mm256_maskz_loadu_epi32( __mmask8 k, void * sa); 
VMOVDQU32 void _mm256_storeu_epi32(void * d, __m256i a); 
VMOVDQU32 void _mm256_mask_storeu_epi32(void * d, __mmask8 k, __m256i a); 
VMOVDQU32 __m128i _mm_mask_loadu_epi32(__m128i s, __mmask8 k, void * sa); 
VMOVDQU32 __m128i _mm_maskz_loadu_epi32( __mmask8 k, void * sa); 
VMOVDQU32 void _mm_storeu_epi32(void * d, __m128i a); 
VMOVDQU32 void _mm_mask_storeu_epi32(void * d, __mmask8 k, __m128i a); 
VMOVDQU64 __m512i _mm512_loadu_epi64( void * sa); 
VMOVDQU64 __m512i _mm512_mask_loadu_epi64(__m512i s, __mmask8 k, void * sa); 
VMOVDQU64 __m512i _mm512_maskz_loadu_epi64( __mmask8 k, void * sa); 
VMOVDQU64 void _mm512_storeu_epi64(void * d, __m512i a); 
VMOVDQU64 void _mm512_mask_storeu_epi64(void * d, __mmask8 k, __m512i a); 
VMOVDQU64 __m256i _mm256_mask_loadu_epi64(__m256i s, __mmask8 k, void * sa); 
VMOVDQU64 __m256i _mm256_maskz_loadu_epi64( __mmask8 k, void * sa); 
VMOVDQU64 void _mm256_storeu_epi64(void * d, __m256i a); 
VMOVDQU64 void _mm256_mask_storeu_epi64(void * d, __mmask8 k, __m256i a); 
VMOVDQU64 __m128i _mm_mask_loadu_epi64(__m128i s, __mmask8 k, void * sa); 
VMOVDQU64 __m128i _mm_maskz_loadu_epi64( __mmask8 k, void * sa); 
VMOVDQU64 void _mm_storeu_epi64(void * d, __m128i a); 
VMOVDQU64 void _mm_mask_storeu_epi64(void * d, __mmask8 k, __m128i a); 
VMOVDQU8 __m512i _mm512_mask_loadu_epi8(__m512i s, __mmask64 k, void * sa); 
VMOVDQU8 __m512i _mm512_maskz_loadu_epi8( __mmask64 k, void * sa); 
VMOVDQU8 void _mm512_mask_storeu_epi8(void * d, __mmask64 k, __m512i a); 
VMOVDQU8 __m256i _mm256_mask_loadu_epi8(__m256i s, __mmask32 k, void * sa); 
VMOVDQU8 __m256i _mm256_maskz_loadu_epi8( __mmask32 k, void * sa); 
VMOVDQU8 void _mm256_mask_storeu_epi8(void * d, __mmask32 k, __m256i a); 
VMOVDQU8 __m128i _mm_mask_loadu_epi8(__m128i s, __mmask16 k, void * sa); 
VMOVDQU8 __m128i _mm_maskz_loadu_epi8( __mmask16 k, void * sa); 
VMOVDQU8 void _mm_mask_storeu_epi8(void * d, __mmask16 k, __m128i a); 
MOVDQU __m256i _mm256_loadu_si256 (__m256i * p);
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MOVDQU _mm256_storeu_si256(_m256i *p, __m256i a);
MOVDQU __m128i _mm_loadu_si128 (__m128i * p);
MOVDQU _mm_storeu_si128(__m128i *p, __m128i a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.
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MOVHLPS—Move Packed Single Precision Floating-Point Values High to Low

Instruction Operand Encoding1

Description

This instruction cannot be used for memory to register moves.
128-bit two-argument form:
Moves two packed single precision floating-point values from the high quadword of the second XMM argument 
(second operand) to the low quadword of the first XMM register (first argument). The quadword at bits 127:64 of 
the destination operand is left unchanged. Bits (MAXVL-1:128) of the corresponding destination register remain 
unchanged.
128-bit and EVEX three-argument form:
Moves two packed single precision floating-point values from the high quadword of the third XMM argument (third 
operand) to the low quadword of the destination (first operand). Copies the high quadword from the second XMM 
argument (second operand) to the high quadword of the destination (first operand). Bits (MAXVL-1:128) of the 
corresponding destination register are zeroed.
If VMOVHLPS is encoded with VEX.L or EVEX.L’L= 1, an attempt to execute the instruction encoded with VEX.L or 
EVEX.L’L= 1 will cause an #UD exception.

Operation

MOVHLPS (128-bit Two-Argument Form)
DEST[63:0] := SRC[127:64]
DEST[MAXVL-1:64] (Unmodified)

VMOVHLPS (128-bit Three-Argument Form - VEX & EVEX)
DEST[63:0] := SRC2[127:64]
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

NP 0F 12 /r
MOVHLPS xmm1, xmm2

RM V/V SSE Move two packed single precision floating-point values 
from high quadword of xmm2 to low quadword of xmm1.

VEX.128.0F.WIG 12 /r
VMOVHLPS xmm1, xmm2, xmm3

RVM V/V AVX Merge two packed single precision floating-point values 
from high quadword of xmm3 and low quadword of xmm2.

EVEX.128.0F.W0 12 /r
VMOVHLPS xmm1, xmm2, xmm3

RVM V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Merge two packed single precision floating-point values 
from high quadword of xmm3 and low quadword of xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A

RVM ModRM:reg (w)
VEX.vvvv (r) /
EVEX.vvvv (r)

ModRM:r/m (r) N/A

1. ModRM.MOD = 011B required.
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Intel C/C++ Compiler Intrinsic Equivalent
MOVHLPS __m128 _mm_movehl_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-24, “Type 7 Class Exception Conditions,” additionally:
#UD If VEX.L = 1.
EVEX-encoded instruction, see Exceptions Type E7NM.128 in Table 2-57, “Type E7NM Class Exception Conditions.”
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MOVHPD—Move High Packed Double Precision Floating-Point Value

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves a double precision floating-point value from the source 64-bit memory operand and stores it in the high 64-
bits of the destination XMM register. The lower 64bits of the XMM register are preserved. Bits (MAXVL-1:128) of the 
corresponding destination register are preserved.
VEX.128 & EVEX encoded load:
Loads a double precision floating-point value from the source 64-bit memory operand (the third operand) and 
stores it in the upper 64-bits of the destination XMM register (first operand). The low 64-bits from the first source 
operand (second operand) are copied to the low 64-bits of the destination. Bits (MAXVL-1:128) of the corre-
sponding destination register are zeroed.
128-bit store:
Stores a double precision floating-point value from the high 64-bits of the XMM register source (second operand) 
to the 64-bit memory location (first operand).
Note: VMOVHPD (store) (VEX.128.66.0F 17 /r) is legal and has the same behavior as the existing 66 0F 17 store. 
For VMOVHPD (store) VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instruction will #UD.
If VMOVHPD is encoded with VEX.L or EVEX.L’L= 1, an attempt to execute the instruction encoded with VEX.L or 
EVEX.L’L= 1 will cause an #UD exception.

Opcode/
Instruction

Op / En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

66 0F 16 /r
MOVHPD xmm1, m64

A V/V SSE2 Move double precision floating-point value from m64 
to high quadword of xmm1.

VEX.128.66.0F.WIG 16 /r
VMOVHPD xmm2, xmm1, m64

B V/V AVX Merge double precision floating-point value from m64 
and the low quadword of xmm1.

EVEX.128.66.0F.W1 16 /r
VMOVHPD xmm2, xmm1, m64

D V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Merge double precision floating-point value from m64 
and the low quadword of xmm1.

66 0F 17 /r
MOVHPD m64, xmm1

C V/V SSE2 Move double precision floating-point value from high 
quadword of xmm1 to m64.

VEX.128.66.0F.WIG 17 /r
VMOVHPD m64, xmm1

C V/V AVX Move double precision floating-point value from high 
quadword of xmm1 to m64.

EVEX.128.66.0F.W1 17 /r
VMOVHPD m64, xmm1

E V/V AVX512F
OR AVX10.11

Move double precision floating-point value from high 
quadword of xmm1 to m64.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A

D Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

E Tuple1 Scalar ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Operation

MOVHPD (128-bit Legacy SSE Load)
DEST[63:0] (Unmodified)
DEST[127:64] := SRC[63:0]
DEST[MAXVL-1:128] (Unmodified)

VMOVHPD (VEX.128 & EVEX Encoded Load)
DEST[63:0] := SRC1[63:0]
DEST[127:64] := SRC2[63:0]
DEST[MAXVL-1:128] := 0

VMOVHPD (Store)
DEST[63:0] := SRC[127:64]

Intel C/C++ Compiler Intrinsic Equivalent

MOVHPD __m128d _mm_loadh_pd ( __m128d a, double *p)
MOVHPD void _mm_storeh_pd (double *p, __m128d a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-22, “Type 5 Class Exception Conditions,” additionally:
#UD If VEX.L = 1.
EVEX-encoded instruction, see Table 2-59, “Type E9NF Class Exception Conditions.”
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MOVHPS—Move High Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves two packed single precision floating-point values from the source 64-bit memory operand and stores them 
in the high 64-bits of the destination XMM register. The lower 64bits of the XMM register are preserved. Bits 
(MAXVL-1:128) of the corresponding destination register are preserved.
VEX.128 & EVEX encoded load:
Loads two single precision floating-point values from the source 64-bit memory operand (the third operand) and 
stores it in the upper 64-bits of the destination XMM register (first operand). The low 64-bits from the first source 
operand (the second operand) are copied to the lower 64-bits of the destination. Bits (MAXVL-1:128) of the corre-
sponding destination register are zeroed.
128-bit store:
Stores two packed single precision floating-point values from the high 64-bits of the XMM register source (second 
operand) to the 64-bit memory location (first operand).
Note: VMOVHPS (store) (VEX.128.0F 17 /r) is legal and has the same behavior as the existing 0F 17 store. For 
VMOVHPS (store) VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instruction will #UD.
If VMOVHPS is encoded with VEX.L or EVEX.L’L= 1, an attempt to execute the instruction encoded with VEX.L or 
EVEX.L’L= 1 will cause an #UD exception.

Opcode/
Instruction

Op / En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

NP 0F 16 /r
MOVHPS xmm1, m64

A V/V SSE Move two packed single precision floating-point values 
from m64 to high quadword of xmm1.

VEX.128.0F.WIG 16 /r
VMOVHPS xmm2, xmm1, m64

B V/V AVX Merge two packed single precision floating-point values 
from m64 and the low quadword of xmm1.

EVEX.128.0F.W0 16 /r
VMOVHPS xmm2, xmm1, m64

D V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Merge two packed single precision floating-point values 
from m64 and the low quadword of xmm1.

NP 0F 17 /r
MOVHPS m64, xmm1

C V/V SSE Move two packed single precision floating-point values 
from high quadword of xmm1 to m64.

VEX.128.0F.WIG 17 /r
VMOVHPS m64, xmm1

C V/V AVX Move two packed single precision floating-point values 
from high quadword of xmm1 to m64.

EVEX.128.0F.W0 17 /r
VMOVHPS m64, xmm1

E V/V AVX512F
OR AVX10.11

Move two packed single precision floating-point values 
from high quadword of xmm1 to m64.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A

D Tuple2 ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

E Tuple2 ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Operation

MOVHPS (128-bit Legacy SSE Load)
DEST[63:0] (Unmodified)
DEST[127:64] := SRC[63:0]
DEST[MAXVL-1:128] (Unmodified)

VMOVHPS (VEX.128 and EVEX Encoded Load)
DEST[63:0] := SRC1[63:0]
DEST[127:64] := SRC2[63:0]
DEST[MAXVL-1:128] := 0

VMOVHPS (Store)
DEST[63:0] := SRC[127:64]

Intel C/C++ Compiler Intrinsic Equivalent

MOVHPS __m128 _mm_loadh_pi ( __m128 a, __m64 *p)
MOVHPS void _mm_storeh_pi (__m64 *p, __m128 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-22, “Type 5 Class Exception Conditions,” additionally:
#UD If VEX.L = 1.
EVEX-encoded instruction, see Table 2-59, “Type E9NF Class Exception Conditions.”
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MOVLHPS—Move Packed Single Precision Floating-Point Values Low to High

Instruction Operand Encoding1

Description

This instruction cannot be used for memory to register moves.
128-bit two-argument form:
Moves two packed single precision floating-point values from the low quadword of the second XMM argument 
(second operand) to the high quadword of the first XMM register (first argument). The low quadword of the desti-
nation operand is left unchanged. Bits (MAXVL-1:128) of the corresponding destination register are unmodified.
128-bit three-argument forms:
Moves two packed single precision floating-point values from the low quadword of the third XMM argument (third 
operand) to the high quadword of the destination (first operand). Copies the low quadword from the second XMM 
argument (second operand) to the low quadword of the destination (first operand). Bits (MAXVL-1:128) of the 
corresponding destination register are zeroed.
If VMOVLHPS is encoded with VEX.L or EVEX.L’L= 1, an attempt to execute the instruction encoded with VEX.L or 
EVEX.L’L= 1 will cause an #UD exception.

Operation

MOVLHPS (128-bit Two-Argument Form)
DEST[63:0] (Unmodified)
DEST[127:64] := SRC[63:0]
DEST[MAXVL-1:128] (Unmodified)

VMOVLHPS (128-bit Three-Argument Form - VEX & EVEX)
DEST[63:0] := SRC1[63:0]
DEST[127:64] := SRC2[63:0]
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

NP 0F 16 /r
MOVLHPS xmm1, xmm2

RM V/V SSE Move two packed single precision floating-point values from 
low quadword of xmm2 to high quadword of xmm1.

VEX.128.0F.WIG 16 /r
VMOVLHPS xmm1, xmm2, xmm3

RVM V/V AVX Merge two packed single precision floating-point values 
from low quadword of xmm3 and low quadword of xmm2.

EVEX.128.0F.W0 16 /r
VMOVLHPS xmm1, xmm2, xmm3

RVM V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Merge two packed single precision floating-point values 
from low quadword of xmm3 and low quadword of xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A

RVM ModRM:reg (w)
VEX.vvvv (r) /
EVEX.vvvv (r)

ModRM:r/m (r) N/A

1. ModRM.MOD = 011B required
MOVLHPS—Move Packed Single Precision Floating-Point Values Low to High Vol. 2B 4-86



Intel C/C++ Compiler Intrinsic Equivalent

MOVLHPS __m128 _mm_movelh_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-24, “Type 7 Class Exception Conditions,” additionally:
#UD If VEX.L = 1.
EVEX-encoded instruction, see Exceptions Type E7NM.128 in Table 2-57, “Type E7NM Class Exception Conditions.”
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MOVLPD—Move Low Packed Double Precision Floating-Point Value

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves a double precision floating-point value from the source 64-bit memory operand and stores it in the low 64-
bits of the destination XMM register. The upper 64bits of the XMM register are preserved. Bits (MAXVL-1:128) of the 
corresponding destination register are preserved.
VEX.128 & EVEX encoded load:
Loads a double precision floating-point value from the source 64-bit memory operand (third operand), merges it 
with the upper 64-bits of the first source XMM register (second operand), and stores it in the low 128-bits of the 
destination XMM register (first operand). Bits (MAXVL-1:128) of the corresponding destination register are zeroed.
128-bit store:
Stores a double precision floating-point value from the low 64-bits of the XMM register source (second operand) to 
the 64-bit memory location (first operand).
Note: VMOVLPD (store) (VEX.128.66.0F 13 /r) is legal and has the same behavior as the existing 66 0F 13 store. 
For VMOVLPD (store) VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instruction will #UD.
If VMOVLPD is encoded with VEX.L or EVEX.L’L= 1, an attempt to execute the instruction encoded with VEX.L or 
EVEX.L’L= 1 will cause an #UD exception.

Opcode/
Instruction

Op / En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

66 0F 12 /r
MOVLPD xmm1, m64

A V/V SSE2 Move double precision floating-point value from m64 to 
low quadword of xmm1.

VEX.128.66.0F.WIG 12 /r
VMOVLPD xmm2, xmm1, m64

B V/V AVX Merge double precision floating-point value from m64 and 
the high quadword of xmm1.

EVEX.128.66.0F.W1 12 /r
VMOVLPD xmm2, xmm1, m64

D V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Merge double precision floating-point value from m64 and 
the high quadword of xmm1.

66 0F 13/r
MOVLPD m64, xmm1

C V/V SSE2 Move double precision floating-point value from low 
quadword of xmm1 to m64.

VEX.128.66.0F.WIG 13/r
VMOVLPD m64, xmm1

C V/V AVX Move double precision floating-point value from low 
quadword of xmm1 to m64.

EVEX.128.66.0F.W1 13/r
VMOVLPD m64, xmm1

E V/V AVX512F
OR AVX10.11

Move double precision floating-point value from low 
quadword of xmm1 to m64.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:r/m (r) VEX.vvvv (r) ModRM:r/m (r) N/A

C N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A

D Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

E Tuple1 Scalar ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Operation

MOVLPD (128-bit Legacy SSE Load)
DEST[63:0] := SRC[63:0]
DEST[MAXVL-1:64] (Unmodified)

VMOVLPD (VEX.128 & EVEX Encoded Load)
DEST[63:0] := SRC2[63:0]
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

VMOVLPD (Store)
DEST[63:0] := SRC[63:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVLPD __m128d _mm_loadl_pd ( __m128d a, double *p)
MOVLPD void _mm_storel_pd (double *p, __m128d a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-22, “Type 5 Class Exception Conditions,” additionally:
#UD If VEX.L = 1.
EVEX-encoded instruction, see Table 2-59, “Type E9NF Class Exception Conditions.”
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MOVLPS—Move Low Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves two packed single precision floating-point values from the source 64-bit memory operand and stores them 
in the low 64-bits of the destination XMM register. The upper 64bits of the XMM register are preserved. Bits 
(MAXVL-1:128) of the corresponding destination register are preserved.
VEX.128 & EVEX encoded load:
Loads two packed single precision floating-point values from the source 64-bit memory operand (the third 
operand), merges them with the upper 64-bits of the first source operand (the second operand), and stores them 
in the low 128-bits of the destination register (the first operand). Bits (MAXVL-1:128) of the corresponding desti-
nation register are zeroed.
128-bit store:
Loads two packed single precision floating-point values from the low 64-bits of the XMM register source (second 
operand) to the 64-bit memory location (first operand).
Note: VMOVLPS (store) (VEX.128.0F 13 /r) is legal and has the same behavior as the existing 0F 13 store. For 
VMOVLPS (store) VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instruction will #UD.
If VMOVLPS is encoded with VEX.L or EVEX.L’L= 1, an attempt to execute the instruction encoded with VEX.L or 
EVEX.L’L= 1 will cause an #UD exception.

Opcode/
Instruction

Op / En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

NP 0F 12 /r
MOVLPS xmm1, m64

A V/V SSE Move two packed single precision floating-point values 
from m64 to low quadword of xmm1.

VEX.128.0F.WIG 12 /r
VMOVLPS xmm2, xmm1, m64

B V/V AVX Merge two packed single precision floating-point values 
from m64 and the high quadword of xmm1.

EVEX.128.0F.W0 12 /r
VMOVLPS xmm2, xmm1, m64

D V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Merge two packed single precision floating-point values 
from m64 and the high quadword of xmm1.

0F 13/r
MOVLPS m64, xmm1

C V/V SSE Move two packed single precision floating-point values 
from low quadword of xmm1 to m64.

VEX.128.0F.WIG 13/r
VMOVLPS m64, xmm1

C V/V AVX Move two packed single precision floating-point values 
from low quadword of xmm1 to m64.

EVEX.128.0F.W0 13/r
VMOVLPS m64, xmm1

E V/V AVX512F
OR AVX10.11

Move two packed single precision floating-point values 
from low quadword of xmm1 to m64.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A

D Tuple2 ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

E Tuple2 ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Operation
MOVLPS (128-bit Legacy SSE Load)
DEST[63:0] := SRC[63:0]
DEST[MAXVL-1:64] (Unmodified)

VMOVLPS (VEX.128 & EVEX Encoded Load)
DEST[63:0] := SRC2[63:0]
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

VMOVLPS (Store)
DEST[63:0] := SRC[63:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVLPS __m128 _mm_loadl_pi ( __m128 a, __m64 *p)
MOVLPS void _mm_storel_pi (__m64 *p, __m128 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-22, “Type 5 Class Exception Conditions,” additionally:
#UD If VEX.L = 1.
EVEX-encoded instruction, see Table 2-59, “Type E9NF Class Exception Conditions.”
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MOVMSKPD—Extract Packed Double Precision Floating-Point Sign Mask

Instruction Operand Encoding

Description

Extracts the sign bits from the packed double precision floating-point values in the source operand (second 
operand), formats them into a 2-bit mask, and stores the mask in the destination operand (first operand). The 
source operand is an XMM register, and the destination operand is a general-purpose register. The mask is stored 
in the 2 low-order bits of the destination operand. Zero-extend the upper bits of the destination.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when used with a REX.R 
prefix. The default operand size is 64-bit in 64-bit mode.
128-bit versions: The source operand is a YMM register. The destination operand is a general purpose register.
VEX.256 encoded version: The source operand is a YMM register. The destination operand is a general purpose 
register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

(V)MOVMSKPD (128-bit Versions)
DEST[0] := SRC[63]
DEST[1] := SRC[127]
IF DEST = r32

THEN DEST[31:2] := 0;
ELSE DEST[63:2] := 0;

FI

VMOVMSKPD (VEX.256 Encoded Version)
DEST[0] := SRC[63]
DEST[1] := SRC[127]
DEST[2] := SRC[191]
DEST[3] := SRC[255]
IF DEST = r32

THEN DEST[31:4] := 0;
ELSE DEST[63:4] := 0;

FI

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 50 /r

MOVMSKPD reg, xmm

RM V/V SSE2 Extract 2-bit sign mask from xmm and store in reg. The 
upper bits of r32 or r64 are filled with zeros.

VEX.128.66.0F.WIG 50 /r

VMOVMSKPD reg, xmm2

RM V/V AVX Extract 2-bit sign mask from xmm2 and store in reg. 
The upper bits of r32 or r64 are zeroed.

VEX.256.66.0F.WIG 50 /r

VMOVMSKPD reg, ymm2

RM V/V AVX Extract 4-bit sign mask from ymm2 and store in reg. 
The upper bits of r32 or r64 are zeroed.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Intel C/C++ Compiler Intrinsic Equivalent

MOVMSKPD int _mm_movemask_pd ( __m128d a)
VMOVMSKPD _mm256_movemask_pd(__m256d a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-24, “Type 7 Class Exception Conditions,” additionally:
#UD If VEX.vvvv ≠ 1111B.
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MOVMSKPS—Extract Packed Single Precision Floating-Point Sign Mask

Instruction Operand Encoding1

Description

Extracts the sign bits from the packed single precision floating-point values in the source operand (second 
operand), formats them into a 4- or 8-bit mask, and stores the mask in the destination operand (first operand). 
The source operand is an XMM or YMM register, and the destination operand is a general-purpose register. The 
mask is stored in the 4 or 8 low-order bits of the destination operand. The upper bits of the destination operand 
beyond the mask are filled with zeros.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when used with a REX.R 
prefix. The default operand size is 64-bit in 64-bit mode.

128-bit versions: The source operand is a YMM register. The destination operand is a general purpose register. 
VEX.256 encoded version: The source operand is a YMM register. The destination operand is a general purpose 
register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

DEST[0] := SRC[31]; 
DEST[1] := SRC[63]; 
DEST[2] := SRC[95]; 
DEST[3] := SRC[127]; 

IF DEST = r32
THEN DEST[31:4] := ZeroExtend;
ELSE DEST[63:4] := ZeroExtend;

FI;

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

NP 0F 50 /r

MOVMSKPS reg, xmm

RM V/V SSE Extract 4-bit sign mask from xmm and store in reg. 
The upper bits of r32 or r64 are filled with zeros.

VEX.128.0F.WIG 50 /r

VMOVMSKPS reg, xmm2

RM V/V AVX Extract 4-bit sign mask from xmm2 and store in reg. 
The upper bits of r32 or r64 are zeroed.

VEX.256.0F.WIG 50 /r

VMOVMSKPS reg, ymm2

RM V/V AVX Extract 8-bit sign mask from ymm2 and store in reg. 
The upper bits of r32 or r64 are zeroed.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A

1. ModRM.MOD = 011B required
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(V)MOVMSKPS (128-bit version)
DEST[0] := SRC[31]
DEST[1] := SRC[63]
DEST[2] := SRC[95]
DEST[3] := SRC[127]
IF DEST = r32

THEN DEST[31:4] := 0;
ELSE DEST[63:4] := 0;

FI

VMOVMSKPS (VEX.256 encoded version)
DEST[0] := SRC[31]
DEST[1] := SRC[63]
DEST[2] := SRC[95]
DEST[3] := SRC[127]
DEST[4] := SRC[159]
DEST[5] := SRC[191]
DEST[6] := SRC[223]
DEST[7] := SRC[255]
IF DEST = r32

THEN DEST[31:8] := 0;
ELSE DEST[63:8] := 0;

FI

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_movemask_ps(__m128 a)
int _mm256_movemask_ps(__m256 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-24, “Type 7 Class Exception Conditions,” additionally:
#UD If VEX.vvvv ≠ 1111B.
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MOVNTDQ—Store Packed Integers Using Non-Temporal Hint

Instruction Operand Encoding1

Description

Moves the packed integers in the source operand (second operand) to the destination operand (first operand) using 
a non-temporal hint to prevent caching of the data during the write to memory. The source operand is an XMM 
register, YMM register or ZMM register, which is assumed to contain integer data (packed bytes, words, double-
words, or quadwords). The destination operand is a 128-bit, 256-bit or 512-bit memory location. The memory 
operand must be aligned on a 16-byte (128-bit version), 32-byte (VEX.256 encoded version) or 64-byte (512-bit 
version) boundary otherwise a general-protection exception (#GP) will be generated. 
The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the 
data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it 
fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being 
written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an 
uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see 
“Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel Architecture Software Developer’s 
Manual, Volume 1.
Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented with 
the SFENCE or MFENCE instruction should be used in conjunction with VMOVNTDQ instructions if multiple proces-
sors might use different memory types to read/write the destination memory locations.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, VEX.L must be 0; otherwise instructions will 
#UD.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F E7 /r
MOVNTDQ m128, xmm1

A V/V SSE2 Move packed integer values in xmm1 to m128 using non-
temporal hint.

VEX.128.66.0F.WIG E7 /r
VMOVNTDQ m128, xmm1

A V/V AVX Move packed integer values in xmm1 to m128 using non-
temporal hint.

VEX.256.66.0F.WIG E7 /r
VMOVNTDQ m256, ymm1

A V/V AVX Move packed integer values in ymm1 to m256 using non-
temporal hint.

EVEX.128.66.0F.W0 E7 /r
VMOVNTDQ m128, xmm1

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Move packed integer values in xmm1 to m128 using non-
temporal hint.

EVEX.256.66.0F.W0 E7 /r
VMOVNTDQ m256, ymm1

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move packed integer values in zmm1 to m256 using non-
temporal hint.

EVEX.512.66.0F.W0 E7 /r
VMOVNTDQ m512, zmm1

B V/V AVX512F 
OR AVX10.11

Move packed integer values in zmm1 to m512 using non-
temporal hint.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A

B Full Mem ModRM:r/m (w) ModRM:reg (r) N/A N/A

1. ModRM.MOD != 011B
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Operation

VMOVNTDQ(EVEX Encoded Versions) 
VL = 128, 256, 512
DEST[VL-1:0] := SRC[VL-1:0]
DEST[MAXVL-1:VL] := 0

MOVNTDQ (Legacy and VEX Versions)
DEST := SRC

Intel C/C++ Compiler Intrinsic Equivalent

VMOVNTDQ void _mm512_stream_si512(void * p, __m512i a);
VMOVNTDQ void _mm256_stream_si256 (__m256i * p, __m256i a);
MOVNTDQ void _mm_stream_si128 (__m128i * p, __m128i a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type1.SSE2 in Table 2-18, “Type 1 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-47, “Type E1NF Class Exception Conditions.”
Additionally:
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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MOVNTDQA—Load Double Quadword Non-Temporal Aligned Hint

Instruction Operand Encoding1

Description

MOVNTDQA loads a double quadword from the source operand (second operand) to the destination operand (first 
operand) using a non-temporal hint if the memory source is WC (write combining) memory type. For WC memory 
type, the non-temporal hint may be implemented by loading a temporary internal buffer with the equivalent of an 
aligned cache line without filling this data to the cache. Any memory-type aliased lines in the cache will be snooped 
and flushed. Subsequent MOVNTDQA reads to unread portions of the WC cache line will receive data from the 
temporary internal buffer if data is available. The temporary internal buffer may be flushed by the processor at any 
time for any reason, for example:
• A load operation other than a MOVNTDQA which references memory already resident in a temporary internal 

buffer.
• A non-WC reference to memory already resident in a temporary internal buffer.
• Interleaving of reads and writes to a single temporary internal buffer.
• Repeated (V)MOVNTDQA loads of a particular 16-byte item in a streaming line.
• Certain micro-architectural conditions including resource shortages, detection of a mis-speculation condition, 

and various fault conditions.
The non-temporal hint is implemented by using a write combining (WC) memory type protocol when reading the 
data from memory. Using this protocol, the processor does not read the data into the cache hierarchy, nor does it 
fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being 
read can override the non-temporal hint, if the memory address specified for the non-temporal read is not a WC 

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 38 2A /r
MOVNTDQA xmm1, m128

A V/V SSE4_1 Move double quadword from m128 to xmm1 using non-
temporal hint if WC memory type.

VEX.128.66.0F38.WIG 2A /r
VMOVNTDQA xmm1, m128

A V/V AVX Move double quadword from m128 to xmm1 using non-
temporal hint if WC memory type.

VEX.256.66.0F38.WIG 2A /r
VMOVNTDQA ymm1, m256

A V/V AVX2 Move 256-bit data from m256 to ymm1 using non-
temporal hint if WC memory type.

EVEX.128.66.0F38.W0 2A /r
VMOVNTDQA xmm1, m128

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Move 128-bit data from m128 to xmm1 using non-
temporal hint if WC memory type.

EVEX.256.66.0F38.W0 2A /r
VMOVNTDQA ymm1, m256

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move 256-bit data from m256 to ymm1 using non-
temporal hint if WC memory type.

EVEX.512.66.0F38.W0 2A /r
VMOVNTDQA zmm1, m512

B V/V AVX512F 
OR AVX10.11

Move 512-bit data from m512 to zmm1 using non-
temporal hint if WC memory type.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Full Mem ModRM:reg (w) ModRM:r/m (r) N/A N/A

1. ModRM.MOD != 011B
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memory region. Information on non-temporal reads and writes can be found in “Caching of Temporal vs. Non-
Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architecture Software Developer’s Manual, Volume 3A.
Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented with 
a MFENCE instruction should be used in conjunction with MOVNTDQA instructions if multiple processors might use 
different memory types for the referenced memory locations or to synchronize reads of a processor with writes by 
other agents in the system. A processor’s implementation of the streaming load hint does not override the effective 
memory type, but the implementation of the hint is processor dependent. For example, a processor implementa-
tion may choose to ignore the hint and process the instruction as a normal MOVDQA for any memory type. Alter-
natively, another implementation may optimize cache reads generated by MOVNTDQA on WB memory type to 
reduce cache evictions.
The 128-bit (V)MOVNTDQA addresses must be 16-byte aligned or the instruction will cause a #GP.
The 256-bit VMOVNTDQA addresses must be 32-byte aligned or the instruction will cause a #GP.
The 512-bit VMOVNTDQA addresses must be 64-byte aligned or the instruction will cause a #GP.

Operation
MOVNTDQA (128bit- Legacy SSE Form)
DEST := SRC
DEST[MAXVL-1:128] (Unmodified)

VMOVNTDQA (VEX.128 and EVEX.128 Encoded Form)
DEST := SRC
DEST[MAXVL-1:128] := 0 

VMOVNTDQA (VEX.256 and EVEX.256 Encoded Forms)
DEST[255:0] := SRC[255:0]
DEST[MAXVL-1:256] := 0

VMOVNTDQA (EVEX.512 Encoded Form)
DEST[511:0] := SRC[511:0]
DEST[MAXVL-1:512] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VMOVNTDQA __m512i _mm512_stream_load_si512(__m512i const* p);
MOVNTDQA __m128i _mm_stream_load_si128 (const __m128i *p);
VMOVNTDQA __m256i _mm256_stream_load_si256 (__m256i const* p);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-18, “Type 1 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-47, “Type E1NF Class Exception Conditions.”
Additionally:
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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MOVNTI—Store Doubleword Using Non-Temporal Hint

Instruction Operand Encoding

Description

Moves the doubleword integer in the source operand (second operand) to the destination operand (first operand) 
using a non-temporal hint to minimize cache pollution during the write to memory. The source operand is a 
general-purpose register. The destination operand is a 32-bit memory location.

The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the 
data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it 
fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being 
written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an 
uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see 
“Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented with 
the SFENCE or MFENCE instruction should be used in conjunction with MOVNTI instructions if multiple processors 
might use different memory types to read/write the destination memory locations.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the 
beginning of this section for encoding data and limits.

Operation

DEST := SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTI void _mm_stream_si32 (int *p, int a)
MOVNTI void _mm_stream_si64(__int64 *p, __int64 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment. 
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Opcode /
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F C3 /r

MOVNTI m32, r32

MR V/V SSE2 Move doubleword from r32 to m32 using non-temporal 
hint.

NP REX.W + 0F C3 /r

MOVNTI m64, r64

MR V/N.E. SSE2 Move quadword from r64 to m64 using non-temporal 
hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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MOVNTPD—Store Packed Double Precision Floating-Point Values Using Non-Temporal Hint

Instruction Operand Encoding1

Description

Moves the packed double precision floating-point values in the source operand (second operand) to the destination 
operand (first operand) using a non-temporal hint to prevent caching of the data during the write to memory. The 
source operand is an XMM register, YMM register or ZMM register, which is assumed to contain packed double preci-
sion, floating-pointing data. The destination operand is a 128-bit, 256-bit or 512-bit memory location. The memory 
operand must be aligned on a 16-byte (128-bit version), 32-byte (VEX.256 encoded version) or 64-byte 
(EVEX.512 encoded version) boundary otherwise a general-protection exception (#GP) will be generated. 
The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the 
data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it 
fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being 
written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an 
uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see 
“Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel Architecture Software Developer’s 
Manual, Volume 1.
Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented with 
the SFENCE or MFENCE instruction should be used in conjunction with MOVNTPD instructions if multiple processors 
might use different memory types to read/write the destination memory locations.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, VEX.L must be 0; otherwise instructions will 
#UD.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 2B /r
MOVNTPD m128, xmm1

A V/V SSE2 Move packed double precision values in xmm1 to m128 
using non-temporal hint.

VEX.128.66.0F.WIG 2B /r
VMOVNTPD m128, xmm1

A V/V AVX Move packed double precision values in xmm1 to m128 
using non-temporal hint.

VEX.256.66.0F.WIG 2B /r
VMOVNTPD m256, ymm1

A V/V AVX Move packed double precision values in ymm1 to m256 
using non-temporal hint.

EVEX.128.66.0F.W1 2B /r
VMOVNTPD m128, xmm1

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Move packed double precision values in xmm1 to m128 
using non-temporal hint.

EVEX.256.66.0F.W1 2B /r
VMOVNTPD m256, ymm1

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move packed double precision values in ymm1 to m256 
using non-temporal hint.

EVEX.512.66.0F.W1 2B /r
VMOVNTPD m512, zmm1

B V/V AVX512F 
OR AVX10.11

Move packed double precision values in zmm1 to m512 
using non-temporal hint.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A

B Full Mem ModRM:r/m (w) ModRM:reg (r) N/A N/A

1. ModRM.MOD != 011B
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Operation

VMOVNTPD (EVEX Encoded Versions) 
VL = 128, 256, 512
DEST[VL-1:0] := SRC[VL-1:0]
DEST[MAXVL-1:VL] := 0

MOVNTPD (Legacy and VEX Versions)
DEST := SRC

Intel C/C++ Compiler Intrinsic Equivalent

VMOVNTPD void _mm512_stream_pd(double * p, __m512d a);
VMOVNTPD void _mm256_stream_pd (double * p, __m256d a);
MOVNTPD void _mm_stream_pd (double * p, __m128d a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type1.SSE2 in Table 2-18, “Type 1 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-47, “Type E1NF Class Exception Conditions.”
Additionally:
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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MOVNTPS—Store Packed Single Precision Floating-Point Values Using Non-Temporal Hint

Instruction Operand Encoding1

Description

Moves the packed single precision floating-point values in the source operand (second operand) to the destination 
operand (first operand) using a non-temporal hint to prevent caching of the data during the write to memory. The 
source operand is an XMM register, YMM register or ZMM register, which is assumed to contain packed single preci-
sion, floating-pointing. The destination operand is a 128-bit, 256-bit or 512-bit memory location. The memory 
operand must be aligned on a 16-byte (128-bit version), 32-byte (VEX.256 encoded version) or 64-byte 
(EVEX.512 encoded version) boundary otherwise a general-protection exception (#GP) will be generated. 
The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the 
data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it 
fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being 
written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an 
uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see 
“Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel Architecture Software Developer’s 
Manual, Volume 1.
Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented with 
the SFENCE or MFENCE instruction should be used in conjunction with MOVNTPS instructions if multiple processors 
might use different memory types to read/write the destination memory locations.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 2B /r
MOVNTPS m128, xmm1

A V/V SSE Move packed single precision values xmm1 to mem using 
non-temporal hint.

VEX.128.0F.WIG 2B /r
VMOVNTPS m128, xmm1

A V/V AVX Move packed single precision values xmm1 to mem using 
non-temporal hint.

VEX.256.0F.WIG 2B /r
VMOVNTPS m256, ymm1

A V/V AVX Move packed single precision values ymm1 to mem using 
non-temporal hint.

EVEX.128.0F.W0 2B /r
VMOVNTPS m128, xmm1

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Move packed single precision values in xmm1 to m128 
using non-temporal hint.

EVEX.256.0F.W0 2B /r
VMOVNTPS m256, ymm1

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move packed single precision values in ymm1 to m256 
using non-temporal hint.

EVEX.512.0F.W0 2B /r
VMOVNTPS m512, zmm1

B V/V AVX512F 
OR AVX10.11

Move packed single precision values in zmm1 to m512 
using non-temporal hint.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A

B Full Mem ModRM:r/m (w) ModRM:reg (r) N/A N/A

1. ModRM.MOD != 011B
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Operation

VMOVNTPS (EVEX Encoded Versions) 
VL = 128, 256, 512
DEST[VL-1:0] := SRC[VL-1:0]
DEST[MAXVL-1:VL] := 0

MOVNTPS
DEST := SRC

Intel C/C++ Compiler Intrinsic Equivalent

VMOVNTPS void _mm512_stream_ps(float * p, __m512d a);
MOVNTPS void _mm_stream_ps (float * p, __m128d a);
VMOVNTPS void _mm256_stream_ps (float * p, __m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type1.SSE in Table 2-18, “Type 1 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-47, “Type E1NF Class Exception Conditions.”
Additionally:
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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MOVNTQ—Store of Quadword Using Non-Temporal Hint

Instruction Operand Encoding

Description

Moves the quadword in the source operand (second operand) to the destination operand (first operand) using a 
non-temporal hint to minimize cache pollution during the write to memory. The source operand is an MMX tech-
nology register, which is assumed to contain packed integer data (packed bytes, words, or doublewords). The 
destination operand is a 64-bit memory location.

The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the 
data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it 
fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being 
written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an 
uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see 
“Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented with 
the SFENCE or MFENCE instruction should be used in conjunction with MOVNTQ instructions if multiple processors 
might use different memory types to read/write the destination memory locations.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST := SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTQ void _mm_stream_pi(__m64 * p, __m64 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 24-8, “Exception Conditions for Legacy SIMD/MMX Instructions without FP Exception,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

NP 0F E7 /r MOVNTQ m64, mm MR Valid Valid Move quadword from mm to m64 using non-
temporal hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) N/A N/A



MOVQ—Move Quadword

Instruction Operand Encoding

Description

Copies a quadword from the source operand (second operand) to the destination operand (first operand). The 
source and destination operands can be MMX technology registers, XMM registers, or 64-bit memory locations. 
This instruction can be used to move a quadword between two MMX technology registers or between an MMX tech-
nology register and a 64-bit memory location, or to move data between two XMM registers or between an XMM 
register and a 64-bit memory location. The instruction cannot be used to transfer data between memory locations. 

When the source operand is an XMM register, the low quadword is moved; when the destination operand is an XMM 
register, the quadword is stored to the low quadword of the register, and the high quadword is cleared to all 0s.

In 64-bit mode and if not encoded using VEX/EVEX, use of the REX prefix in the form of REX.R permits this instruc-
tion to access additional registers (XMM8-XMM15).
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
If VMOVQ is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an 
#UD exception.

Opcode/
Instruction

Op/ En 64/32-bit 
Mode

CPUID 
Feature Flag

Description

NP 0F 6F /r

MOVQ mm, mm/m64

A V/V MMX Move quadword from mm/m64 to mm.

NP 0F 7F /r

MOVQ mm/m64, mm

B V/V MMX Move quadword from mm to mm/m64.

F3 0F 7E /r

MOVQ xmm1, xmm2/m64

A V/V SSE2 Move quadword from xmm2/mem64 to xmm1.

VEX.128.F3.0F.WIG 7E /r

VMOVQ xmm1, xmm2/m64

A V/V AVX Move quadword from xmm2 to xmm1.

EVEX.128.F3.0F.W1 7E /r
VMOVQ xmm1, xmm2/m64

C V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Move quadword from xmm2/m64 to xmm1.

66 0F D6 /r

MOVQ xmm2/m64, xmm1

B V/V SSE2 Move quadword from xmm1 to xmm2/mem64.

VEX.128.66.0F.WIG D6 /r

VMOVQ xmm1/m64, xmm2

B V/V AVX Move quadword from xmm2 register to 
xmm1/m64.

EVEX.128.66.0F.W1 D6 /r
VMOVQ xmm1/m64, xmm2

D V/V AVX512F
OR AVX10.11

Move quadword from xmm2 register to 
xmm1/m64.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A

C Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A

D Tuple1 Scalar ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Operation

MOVQ Instruction When Operating on MMX Technology Registers and Memory Locations
DEST := SRC;

MOVQ Instruction When Source and Destination Operands are XMM Registers
DEST[63:0] := SRC[63:0];
DEST[127:64] := 0000000000000000H;

MOVQ Instruction When Source Operand is XMM Register and Destination
operand is memory location:

DEST := SRC[63:0];

MOVQ Instruction When Source Operand is Memory Location and Destination
operand is XMM register:

DEST[63:0] := SRC;
DEST[127:64] := 0000000000000000H;

VMOVQ (VEX.128.F3.0F 7E) With XMM Register Source and Destination
DEST[63:0] := SRC[63:0]
DEST[MAXVL-1:64] := 0

VMOVQ (VEX.128.66.0F D6) With XMM Register Source and Destination
DEST[63:0] := SRC[63:0]
DEST[MAXVL-1:64] := 0

VMOVQ (7E - EVEX Encoded Version) With XMM Register Source and Destination
DEST[63:0] := SRC[63:0]
DEST[MAXVL-1:64] := 0

VMOVQ (D6 - EVEX Encoded Version) With XMM Register Source and Destination
DEST[63:0] := SRC[63:0]
DEST[MAXVL-1:64] := 0

VMOVQ (7E) With Memory Source
DEST[63:0] := SRC[63:0]
DEST[MAXVL-1:64] := 0

VMOVQ (7E - EVEX Encoded Version) With Memory Source
DEST[63:0] := SRC[63:0]
DEST[:MAXVL-1:64] := 0

VMOVQ (D6) With Memory DEST
DEST[63:0] := SRC2[63:0]

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

VMOVQ __m128i _mm_loadu_si64( void * s);
VMOVQ void _mm_storeu_si64( void * d, __m128i s);
MOVQ m128i _mm_move_epi64(__m128i a)
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SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 24-8, “Exception Conditions for Legacy SIMD/MMX Instructions without FP Exception,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3B.
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MOVQ2DQ—Move Quadword from MMX Technology to XMM Register

Instruction Operand Encoding

Description

Moves the quadword from the source operand (second operand) to the low quadword of the destination operand 
(first operand). The source operand is an MMX technology register and the destination operand is an XMM register. 

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack 
pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU 
floating-point exception is pending, the exception is handled before the MOVQ2DQ instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST[63:0] := SRC[63:0];
DEST[127:64] := 00000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

MOVQ2DQ__128i _mm_movpi64_epi64 ( __m64 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM If CR0.TS[bit 3] = 1. 
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Opcode /
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F D6 /r

MOVQ2DQ xmm, mm

RM V/V SSE2 Move quadword from mmx to low quadword 
of xmm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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64-Bit Mode Exceptions
Same exceptions as in protected mode.
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MOVSD—Move or Merge Scalar Double Precision Floating-Point Value

Instruction Operand Encoding

Description

Moves a scalar double precision floating-point value from the source operand (second operand) to the destination 
operand (first operand). The source and destination operands can be XMM registers or 64-bit memory locations. 
This instruction can be used to move a double precision floating-point value to and from the low quadword of an 

Opcode/
Instruction

Op / En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F2 0F 10 /r
MOVSD xmm1, xmm2

A V/V SSE2 Move scalar double precision floating-point value 
from xmm2 to xmm1 register.

F2 0F 10 /r
MOVSD xmm1, m64

A V/V SSE2 Load scalar double precision floating-point value 
from m64 to xmm1 register.

F2 0F 11 /r
MOVSD xmm1/m64, xmm2

C V/V SSE2 Move scalar double precision floating-point value 
from xmm2 register to xmm1/m64.

VEX.LIG.F2.0F.WIG 10 /r
VMOVSD xmm1, xmm2, xmm3

B V/V AVX Merge scalar double precision floating-point value 
from xmm2 and xmm3 to xmm1 register.

VEX.LIG.F2.0F.WIG 10 /r
VMOVSD xmm1, m64

D V/V AVX Load scalar double precision floating-point value 
from m64 to xmm1 register.

VEX.LIG.F2.0F.WIG 11 /r
VMOVSD xmm1, xmm2, xmm3

E V/V AVX Merge scalar double precision floating-point value 
from xmm2 and xmm3 registers to xmm1.

VEX.LIG.F2.0F.WIG 11 /r
VMOVSD m64, xmm1

C V/V AVX Store scalar double precision floating-point value 
from xmm1 register to m64.

EVEX.LLIG.F2.0F.W1 10 /r
VMOVSD xmm1 {k1}{z}, xmm2, xmm3

B V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Merge scalar double precision floating-point value 
from xmm2 and xmm3 registers to xmm1 under 
writemask k1.

EVEX.LLIG.F2.0F.W1 10 /r
VMOVSD xmm1 {k1}{z}, m64

F V/V AVX512F
OR AVX10.11

Load scalar double precision floating-point value 
from m64 to xmm1 register under writemask k1.

EVEX.LLIG.F2.0F.W1 11 /r
VMOVSD xmm1 {k1}{z}, xmm2, xmm3

E V/V AVX512F
OR AVX10.11

Merge scalar double precision floating-point value 
from xmm2 and xmm3 registers to xmm1 under 
writemask k1.

EVEX.LLIG.F2.0F.W1 11 /r
VMOVSD m64 {k1}, xmm1

G V/V AVX512F
OR AVX10.11

Store scalar double precision floating-point value 
from xmm1 register to m64 under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A

D N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

E N/A ModRM:r/m (w) EVEX.vvvv (r) ModRM:reg (r) N/A

F Tuple1 Scalar ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

G Tuple1 Scalar ModRM:r/m (w) ModRM:reg (r) N/A N/A
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XMM register and a 64-bit memory location, or to move a double precision floating-point value between the low 
quadwords of two XMM registers. The instruction cannot be used to transfer data between memory locations.
Legacy version: When the source and destination operands are XMM registers, bits MAXVL:64 of the destination 
operand remains unchanged. When the source operand is a memory location and destination operand is an XMM 
registers, the quadword at bits 127:64 of the destination operand is cleared to all 0s, bits MAXVL:128 of the desti-
nation operand remains unchanged. 
VEX and EVEX encoded register-register syntax: Moves a scalar double precision floating-point value from the 
second source operand (the third operand) to the low quadword element of the destination operand (the first 
operand). Bits 127:64 of the destination operand are copied from the first source operand (the second operand). 
Bits (MAXVL-1:128) of the corresponding destination register are zeroed.
VEX and EVEX encoded memory store syntax: When the source operand is a memory location and destination 
operand is an XMM registers, bits MAXVL:64 of the destination operand is cleared to all 0s.
EVEX encoded versions: The low quadword of the destination is updated according to the writemask.
Note: For VMOVSD (memory store and load forms), VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, 
otherwise instruction will #UD.

Operation

VMOVSD (EVEX.LLIG.F2.0F 10 /r: VMOVSD xmm1, m64 With Support for 32 Registers)
IF k1[0] or *no writemask*

THEN DEST[63:0] := SRC[63:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[MAXVL-1:64] := 0

VMOVSD (EVEX.LLIG.F2.0F 11 /r: VMOVSD m64, xmm1 With Support for 32 Registers)
IF k1[0] or *no writemask*

THEN DEST[63:0] := SRC[63:0]
ELSE *DEST[63:0] remains unchanged* ; merging-masking

FI;

VMOVSD (EVEX.LLIG.F2.0F 11 /r: VMOVSD xmm1, xmm2, xmm3)
IF k1[0] or *no writemask*

THEN DEST[63:0] := SRC2[63:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

MOVSD (128-bit Legacy SSE Version: MOVSD xmm1, xmm2)
DEST[63:0] := SRC[63:0]
DEST[MAXVL-1:64] (Unmodified)
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VMOVSD (VEX.128.F2.0F 11 /r: VMOVSD xmm1, xmm2, xmm3)
DEST[63:0] := SRC2[63:0]
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

VMOVSD (VEX.128.F2.0F 10 /r: VMOVSD xmm1, xmm2, xmm3)
DEST[63:0] := SRC2[63:0]
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

VMOVSD (VEX.128.F2.0F 10 /r: VMOVSD xmm1, m64)
DEST[63:0] := SRC[63:0]
DEST[MAXVL-1:64] := 0

MOVSD/VMOVSD (128-bit Versions: MOVSD m64, xmm1 or VMOVSD m64, xmm1)
DEST[63:0] := SRC[63:0]

MOVSD (128-bit Legacy SSE Version: MOVSD xmm1, m64)
DEST[63:0] := SRC[63:0]
DEST[127:64] := 0
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMOVSD __m128d _mm_mask_load_sd(__m128d s, __mmask8 k, double * p); 
VMOVSD __m128d _mm_maskz_load_sd( __mmask8 k, double * p); 
VMOVSD __m128d _mm_mask_move_sd(__m128d sh, __mmask8 k, __m128d sl, __m128d a); 
VMOVSD __m128d _mm_maskz_move_sd( __mmask8 k, __m128d s, __m128d a); 
VMOVSD void _mm_mask_store_sd(double * p, __mmask8 k, __m128d s); 
MOVSD __m128d _mm_load_sd (double *p)
MOVSD void _mm_store_sd (double *p, __m128d a)
MOVSD __m128d _mm_move_sd ( __m128d a, __m128d b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-22, “Type 5 Class Exception Conditions,” additionally:
#UD If VEX.vvvv != 1111B.
EVEX-encoded instruction, see Table 2-60, “Type E10 Class Exception Conditions.”
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MOVSHDUP—Replicate Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Duplicates odd-indexed single precision floating-point values from the source operand (the second operand) to 
adjacent element pair in the destination operand (the first operand). See Figure 1-3. The source operand is an 
XMM, YMM or ZMM register or 128, 256 or 512-bit memory location and the destination operand is an XMM, YMM 
or ZMM register.
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding destination register remain unchanged.
VEX.128 encoded version: Bits (MAXVL-1:128) of the destination register are zeroed.
VEX.256 encoded version: Bits (MAXVL-1:256) of the destination register are zeroed.
EVEX encoded version: The destination operand is updated at 32-bit granularity according to the writemask.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F3 0F 16 /r
MOVSHDUP xmm1, xmm2/m128

A V/V SSE3 Move odd index single precision floating-point values 
from xmm2/mem and duplicate each element into xmm1.

VEX.128.F3.0F.WIG 16 /r
VMOVSHDUP xmm1, xmm2/m128

A V/V AVX Move odd index single precision floating-point values 
from xmm2/mem and duplicate each element into xmm1.

VEX.256.F3.0F.WIG 16 /r
VMOVSHDUP ymm1, ymm2/m256

A V/V AVX Move odd index single precision floating-point values 
from ymm2/mem and duplicate each element into ymm1.

EVEX.128.F3.0F.W0 16 /r
VMOVSHDUP xmm1 {k1}{z}, 
xmm2/m128

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Move odd index single precision floating-point values 
from xmm2/m128 and duplicate each element into 
xmm1 under writemask.

EVEX.256.F3.0F.W0 16 /r
VMOVSHDUP ymm1 {k1}{z}, 
ymm2/m256

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move odd index single precision floating-point values 
from ymm2/m256 and duplicate each element into 
ymm1 under writemask.

EVEX.512.F3.0F.W0 16 /r
VMOVSHDUP zmm1 {k1}{z}, 
zmm2/m512

B V/V AVX512F 
OR AVX10.11

Move odd index single precision floating-point values 
from zmm2/m512 and duplicate each element into 
zmm1 under writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Full Mem ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation

VMOVSHDUP (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
TMP_SRC[31:0] := SRC[63:32]
TMP_SRC[63:32] := SRC[63:32]
TMP_SRC[95:64] := SRC[127:96]
TMP_SRC[127:96] := SRC[127:96]
IF VL >= 256

TMP_SRC[159:128] := SRC[191:160]
TMP_SRC[191:160] := SRC[191:160]
TMP_SRC[223:192] := SRC[255:224]
TMP_SRC[255:224] := SRC[255:224]

FI;
IF VL >= 512

TMP_SRC[287:256] := SRC[319:288]
TMP_SRC[319:288] := SRC[319:288]
TMP_SRC[351:320] := SRC[383:352]
TMP_SRC[383:352] := SRC[383:352]
TMP_SRC[415:384] := SRC[447:416]
TMP_SRC[447:416] := SRC[447:416]
TMP_SRC[479:448] := SRC[511:480]
TMP_SRC[511:480] := SRC[511:480]

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_SRC[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0 
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Figure 1-3.  MOVSHDUP Operation

DEST

SRC X4X5X6X7

X1X1X3X3X5X5X7X7

X0X1X2X3
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VMOVSHDUP (VEX.256 Encoded Version)
DEST[31:0] := SRC[63:32]
DEST[63:32] := SRC[63:32]
DEST[95:64] := SRC[127:96]
DEST[127:96] := SRC[127:96]
DEST[159:128] := SRC[191:160]
DEST[191:160] := SRC[191:160]
DEST[223:192] := SRC[255:224]
DEST[255:224] := SRC[255:224]
DEST[MAXVL-1:256] := 0

VMOVSHDUP (VEX.128 Encoded Version)
DEST[31:0] := SRC[63:32]
DEST[63:32] := SRC[63:32]
DEST[95:64] := SRC[127:96]
DEST[127:96] := SRC[127:96]
DEST[MAXVL-1:128] := 0
MOVSHDUP (128-bit Legacy SSE Version)
DEST[31:0] := SRC[63:32]
DEST[63:32] := SRC[63:32]
DEST[95:64] := SRC[127:96]
DEST[127:96] := SRC[127:96]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMOVSHDUP __m512 _mm512_movehdup_ps( __m512 a);
VMOVSHDUP __m512 _mm512_mask_movehdup_ps(__m512 s, __mmask16 k, __m512 a);
VMOVSHDUP __m512 _mm512_maskz_movehdup_ps( __mmask16 k, __m512 a);
VMOVSHDUP __m256 _mm256_mask_movehdup_ps(__m256 s, __mmask8 k, __m256 a);
VMOVSHDUP __m256 _mm256_maskz_movehdup_ps( __mmask8 k, __m256 a);
VMOVSHDUP __m128 _mm_mask_movehdup_ps(__m128 s, __mmask8 k, __m128 a);
VMOVSHDUP __m128 _mm_maskz_movehdup_ps( __mmask8 k, __m128 a);
VMOVSHDUP __m256 _mm256_movehdup_ps (__m256 a);
VMOVSHDUP __m128 _mm_movehdup_ps (__m128 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.
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MOVSLDUP—Replicate Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Duplicates even-indexed single precision floating-point values from the source operand (the second operand). See 
Figure 1-4. The source operand is an XMM, YMM or ZMM register or 128, 256 or 512-bit memory location and the 
destination operand is an XMM, YMM or ZMM register.
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding destination register remain unchanged.
VEX.128 encoded version: Bits (MAXVL-1:128) of the destination register are zeroed.
VEX.256 encoded version: Bits (MAXVL-1:256) of the destination register are zeroed.
EVEX encoded version: The destination operand is updated at 32-bit granularity according to the writemask.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F3 0F 12 /r
MOVSLDUP xmm1, xmm2/m128

A V/V SSE3 Move even index single precision floating-point values 
from xmm2/mem and duplicate each element into 
xmm1.

VEX.128.F3.0F.WIG 12 /r
VMOVSLDUP xmm1, xmm2/m128

A V/V AVX Move even index single precision floating-point values 
from xmm2/mem and duplicate each element into 
xmm1.

VEX.256.F3.0F.WIG 12 /r
VMOVSLDUP ymm1, ymm2/m256

A V/V AVX Move even index single precision floating-point values 
from ymm2/mem and duplicate each element into 
ymm1.

EVEX.128.F3.0F.W0 12 /r
VMOVSLDUP xmm1 {k1}{z}, 
xmm2/m128

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Move even index single precision floating-point values 
from xmm2/m128 and duplicate each element into 
xmm1 under writemask.

EVEX.256.F3.0F.W0 12 /r
VMOVSLDUP ymm1 {k1}{z}, 
ymm2/m256

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move even index single precision floating-point values 
from ymm2/m256 and duplicate each element into 
ymm1 under writemask.

EVEX.512.F3.0F.W0 12 /r
VMOVSLDUP zmm1 {k1}{z}, 
zmm2/m512

B V/V AVX512F 
OR AVX10.11

Move even index single precision floating-point values 
from zmm2/m512 and duplicate each element into 
zmm1 under writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Full Mem ModRM:reg (w) ModRM:r/m (r) N/A N/A
MOVSLDUP—Replicate Single Precision Floating-Point Values Vol. 2B 4-118



Operation

VMOVSLDUP (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
TMP_SRC[31:0] := SRC[31:0]
TMP_SRC[63:32] := SRC[31:0]
TMP_SRC[95:64] := SRC[95:64]
TMP_SRC[127:96] := SRC[95:64]
IF VL >= 256

TMP_SRC[159:128] := SRC[159:128]
TMP_SRC[191:160] := SRC[159:128]
TMP_SRC[223:192] := SRC[223:192]
TMP_SRC[255:224] := SRC[223:192]

FI;
IF VL >= 512

TMP_SRC[287:256] := SRC[287:256]
TMP_SRC[319:288] := SRC[287:256]
TMP_SRC[351:320] := SRC[351:320]
TMP_SRC[383:352] := SRC[351:320]
TMP_SRC[415:384] := SRC[415:384]
TMP_SRC[447:416] := SRC[415:384]
TMP_SRC[479:448] := SRC[479:448]
TMP_SRC[511:480] := SRC[479:448]

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_SRC[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0 
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Figure 1-4.  MOVSLDUP Operation

DEST

SRC X4X5X6X7

X0X0X2X2X4X4X6X6

X0X1X2X3
MOVSLDUP—Replicate Single Precision Floating-Point Values Vol. 2B 4-119



VMOVSLDUP (VEX.256 Encoded Version)
DEST[31:0] := SRC[31:0]
DEST[63:32] := SRC[31:0]
DEST[95:64] := SRC[95:64]
DEST[127:96] := SRC[95:64]
DEST[159:128] := SRC[159:128]
DEST[191:160] := SRC[159:128]
DEST[223:192] := SRC[223:192]
DEST[255:224] := SRC[223:192]
DEST[MAXVL-1:256] := 0

VMOVSLDUP (VEX.128 Encoded Version)
DEST[31:0] := SRC[31:0]
DEST[63:32] := SRC[31:0]
DEST[95:64] := SRC[95:64]
DEST[127:96] := SRC[95:64]
DEST[MAXVL-1:128] := 0
MOVSLDUP (128-bit Legacy SSE Version)
DEST[31:0] := SRC[31:0]
DEST[63:32] := SRC[31:0]
DEST[95:64] := SRC[95:64]
DEST[127:96] := SRC[95:64]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMOVSLDUP __m512 _mm512_moveldup_ps( __m512 a);
VMOVSLDUP __m512 _mm512_mask_moveldup_ps(__m512 s, __mmask16 k, __m512 a);
VMOVSLDUP __m512 _mm512_maskz_moveldup_ps( __mmask16 k, __m512 a);
VMOVSLDUP __m256 _mm256_mask_moveldup_ps(__m256 s, __mmask8 k, __m256 a);
VMOVSLDUP __m256 _mm256_maskz_moveldup_ps( __mmask8 k, __m256 a);
VMOVSLDUP __m128 _mm_mask_moveldup_ps(__m128 s, __mmask8 k, __m128 a);
VMOVSLDUP __m128 _mm_maskz_moveldup_ps( __mmask8 k, __m128 a);
VMOVSLDUP __m256 _mm256_moveldup_ps (__m256 a);
VMOVSLDUP __m128 _mm_moveldup_ps (__m128 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.
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MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data From String to String
\

Instruction Operand Encoding

Description

Moves the byte, word, or doubleword specified with the second operand (source operand) to the location specified 
with the first operand (destination operand). Both the source and destination operands are located in memory. The 
address of the source operand is read from the DS:ESI or the DS:SI registers (depending on the address-size attri-
bute of the instruction, 32 or 16, respectively). The address of the destination operand is read from the ES:EDI or 
the ES:DI registers (again depending on the address-size attribute of the instruction). The DS segment may be 
overridden with a segment override prefix, but the ES segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands” form and the “no-
operands” form. The explicit-operands form (specified with the MOVS mnemonic) allows the source and destination 
operands to be specified explicitly. Here, the source and destination operands should be symbols that indicate the 
size and location of the source value and the destination, respectively. This explicit-operands form is provided to 
allow documentation; however, note that the documentation provided by this form can be misleading. That is, the 
source and destination operand symbols must specify the correct type (size) of the operands (bytes, words, or 
doublewords), but they do not have to specify the correct location. The locations of the source and destination 
operands are always specified by the DS:(E)SI and ES:(E)DI registers, which must be loaded correctly before the 
move string instruction is executed. 

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the MOVS instruc-
tions. Here also DS:(E)SI and ES:(E)DI are assumed to be the source and destination operands, respectively. The 
size of the source and destination operands is selected with the mnemonic: MOVSB (byte move), MOVSW (word 
move), or MOVSD (doubleword move).

After the move operation, the (E)SI and (E)DI registers are incremented or decremented automatically according 
to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)SI and (E)DI register are incre-

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

A4 MOVS m8, m8 ZO Valid Valid For legacy mode, Move byte from address 
DS:(E)SI to ES:(E)DI. For 64-bit mode move 
byte from address (R|E)SI to (R|E)DI.

A5 MOVS m16, m16 ZO Valid Valid For legacy mode, move word from address 
DS:(E)SI to ES:(E)DI. For 64-bit mode move 
word at address (R|E)SI to (R|E)DI.

A5 MOVS m32, m32 ZO Valid Valid For legacy mode, move dword from address 
DS:(E)SI to ES:(E)DI. For 64-bit mode move 
dword from address (R|E)SI to (R|E)DI.

REX.W + A5 MOVS m64, m64 ZO Valid N.E. Move qword from address (R|E)SI to (R|E)DI.

A4 MOVSB ZO Valid Valid For legacy mode, Move byte from address 
DS:(E)SI to ES:(E)DI. For 64-bit mode move 
byte from address (R|E)SI to (R|E)DI.

A5 MOVSW ZO Valid Valid For legacy mode, move word from address 
DS:(E)SI to ES:(E)DI. For 64-bit mode move 
word at address (R|E)SI to (R|E)DI.

A5 MOVSD ZO Valid Valid For legacy mode, move dword from address 
DS:(E)SI to ES:(E)DI. For 64-bit mode move 
dword from address (R|E)SI to (R|E)DI.

REX.W + A5 MOVSQ ZO Valid N.E. Move qword from address (R|E)SI to (R|E)DI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data From String to String Vol. 2B 4-121



mented; if the DF flag is 1, the (E)SI and (E)DI registers are decremented.) The registers are incremented or 
decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword operations.

NOTE
To improve performance, more recent processors support modifications to the processor’s 
operation during the string store operations initiated with MOVS and MOVSB. See Section 7.3.9.3 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for additional 
information on fast-string operation.

The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP prefix (see “REP/REPE/REPZ 
/REPNE/REPNZ—Repeat String Operation Prefix” for a description of the REP prefix) for block moves of ECX bytes, 
words, or doublewords.

In 64-bit mode, the instruction’s default address size is 64 bits, 32-bit address size is supported using the prefix 
67H. The 64-bit addresses are specified by RSI and RDI; 32-bit address are specified by ESI and EDI. Use of the 
REX.W prefix promotes doubleword operation to 64 bits. See the summary chart at the beginning of this section for 
encoding data and limits.

Operation

DEST := SRC;
Non-64-bit Mode:
IF (Byte move)

THEN IF DF = 0
THEN 

(E)SI := (E)SI + 1; 
(E)DI := (E)DI + 1; 

ELSE 
(E)SI := (E)SI – 1; 
(E)DI := (E)DI – 1; 

FI;
ELSE IF (Word move)

THEN IF DF = 0
(E)SI := (E)SI + 2; 
(E)DI := (E)DI + 2; 
FI;

ELSE 
(E)SI := (E)SI – 2; 
(E)DI := (E)DI – 2; 

FI;
ELSE IF (Doubleword move)

THEN IF DF = 0
(E)SI := (E)SI + 4; 
(E)DI := (E)DI + 4; 
FI;

ELSE 
(E)SI := (E)SI – 4; 
(E)DI := (E)DI – 4; 

FI;
FI;
64-bit Mode:
IF (Byte move)

THEN IF DF = 0
THEN 

(R|E)SI := (R|E)SI + 1; 
(R|E)DI := (R|E)DI + 1; 
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ELSE 
(R|E)SI := (R|E)SI – 1; 
(R|E)DI := (R|E)DI – 1; 

FI;
ELSE IF (Word move)

THEN IF DF = 0
(R|E)SI := (R|E)SI + 2; 
(R|E)DI := (R|E)DI + 2; 
FI;

ELSE 
(R|E)SI := (R|E)SI – 2; 
(R|E)DI := (R|E)DI – 2; 

FI;
ELSE IF (Doubleword move)

THEN IF DF = 0
(R|E)SI := (R|E)SI + 4; 
(R|E)DI := (R|E)DI + 4; 
FI;

ELSE 
(R|E)SI := (R|E)SI – 4; 
(R|E)DI := (R|E)DI – 4; 

FI;
ELSE IF (Quadword move)

THEN IF DF = 0
(R|E)SI := (R|E)SI + 8; 
(R|E)DI := (R|E)DI + 8;
FI;

ELSE 
(R|E)SI := (R|E)SI – 8; 
(R|E)DI := (R|E)DI – 8; 

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.
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Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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MOVSS—Move or Merge Scalar Single Precision Floating-Point Value

Instruction Operand Encoding

Description

Moves a scalar single precision floating-point value from the source operand (second operand) to the destination 
operand (first operand). The source and destination operands can be XMM registers or 32-bit memory locations. 
This instruction can be used to move a single precision floating-point value to and from the low doubleword of an 

Opcode/
Instruction

Op / En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F3 0F 10 /r
MOVSS xmm1, xmm2

A V/V SSE Merge scalar single precision floating-point value 
from xmm2 to xmm1 register.

F3 0F 10 /r
MOVSS xmm1, m32

A V/V SSE Load scalar single precision floating-point value from 
m32 to xmm1 register.

VEX.LIG.F3.0F.WIG 10 /r
VMOVSS xmm1, xmm2, xmm3

B V/V AVX Merge scalar single precision floating-point value 
from xmm2 and xmm3 to xmm1 register

VEX.LIG.F3.0F.WIG 10 /r
VMOVSS xmm1, m32

D V/V AVX Load scalar single precision floating-point value from 
m32 to xmm1 register.

F3 0F 11 /r
MOVSS xmm2/m32, xmm1

C V/V SSE Move scalar single precision floating-point value 
from xmm1 register to xmm2/m32.

VEX.LIG.F3.0F.WIG 11 /r
VMOVSS xmm1, xmm2, xmm3

E V/V AVX Move scalar single precision floating-point value 
from xmm2 and xmm3 to xmm1 register.

VEX.LIG.F3.0F.WIG 11 /r
VMOVSS m32, xmm1

C V/V AVX Move scalar single precision floating-point value 
from xmm1 register to m32.

EVEX.LLIG.F3.0F.W0 10 /r
VMOVSS xmm1 {k1}{z}, xmm2, xmm3

B V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Move scalar single precision floating-point value 
from xmm2 and xmm3 to xmm1 register under 
writemask k1.

EVEX.LLIG.F3.0F.W0 10 /r
VMOVSS xmm1 {k1}{z}, m32

F V/V AVX512F
OR AVX10.11

Move scalar single precision floating-point values 
from m32 to xmm1 under writemask k1.

EVEX.LLIG.F3.0F.W0 11 /r
VMOVSS xmm1 {k1}{z}, xmm2, xmm3

E V/V AVX512F
OR AVX10.11

Move scalar single precision floating-point value 
from xmm2 and xmm3 to xmm1 register under 
writemask k1.

EVEX.LLIG.F3.0F.W0 11 /r
VMOVSS m32 {k1}, xmm1

G V/V AVX512F
OR AVX10.11

Move scalar single precision floating-point values 
from xmm1 to m32 under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A

D N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

E N/A ModRM:r/m (w) EVEX.vvvv (r) ModRM:reg (r) N/A

F Tuple1 Scalar ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

G Tuple1 Scalar ModRM:r/m (w) ModRM:reg (r) N/A N/A
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XMM register and a 32-bit memory location, or to move a single precision floating-point value between the low 
doublewords of two XMM registers. The instruction cannot be used to transfer data between memory locations.
Legacy version: When the source and destination operands are XMM registers, bits (MAXVL-1:32) of the corre-
sponding destination register are unmodified. When the source operand is a memory location and destination 
operand is an XMM registers, Bits (127:32) of the destination operand is cleared to all 0s, bits MAXVL:128 of the 
destination operand remains unchanged. 
VEX and EVEX encoded register-register syntax: Moves a scalar single precision floating-point value from the 
second source operand (the third operand) to the low doubleword element of the destination operand (the first 
operand). Bits 127:32 of the destination operand are copied from the first source operand (the second operand). 
Bits (MAXVL-1:128) of the corresponding destination register are zeroed.
VEX and EVEX encoded memory load syntax: When the source operand is a memory location and destination 
operand is an XMM registers, bits MAXVL:32 of the destination operand is cleared to all 0s.
EVEX encoded versions: The low doubleword of the destination is updated according to the writemask.
Note: For memory store form instruction “VMOVSS m32, xmm1”, VEX.vvvv is reserved and must be 1111b other-
wise instruction will #UD. For memory store form instruction “VMOVSS mv {k1}, xmm1”, EVEX.vvvv is reserved 
and must be 1111b otherwise instruction will #UD.
Software should ensure VMOVSS is encoded with VEX.L=0. Encoding VMOVSS with VEX.L=1 may encounter 
unpredictable behavior across different processor generations.

Operation

VMOVSS (EVEX.LLIG.F3.0F.W0 11 /r When the Source Operand is Memory and the Destination is an XMM Register)
IF k1[0] or *no writemask*

THEN DEST[31:0] := SRC[31:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[MAXVL-1:32] := 0

VMOVSS (EVEX.LLIG.F3.0F.W0 10 /r When the Source Operand is an XMM Register and the Destination is Memory)
IF k1[0] or *no writemask*

THEN DEST[31:0] := SRC[31:0]
ELSE *DEST[31:0] remains unchanged* ; merging-masking

FI;

VMOVSS (EVEX.LLIG.F3.0F.W0 10/11 /r Where the Source and Destination are XMM Registers)
IF k1[0] or *no writemask*

THEN DEST[31:0] := SRC2[31:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0
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MOVSS (Legacy SSE Version When the Source and Destination Operands are Both XMM Registers)
DEST[31:0] := SRC[31:0]
DEST[MAXVL-1:32] (Unmodified)

VMOVSS (VEX.128.F3.0F 11 /r Where the Destination is an XMM Register)
DEST[31:0] := SRC2[31:0]
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

VMOVSS (VEX.128.F3.0F 10 /r Where the Source and Destination are XMM Registers)
DEST[31:0] := SRC2[31:0]
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

VMOVSS (VEX.128.F3.0F 10 /r When the Source Operand is Memory and the Destination is an XMM Register)
DEST[31:0] := SRC[31:0]
DEST[MAXVL-1:32] := 0

MOVSS/VMOVSS (When the Source Operand is an XMM Register and the Destination is Memory)
DEST[31:0] := SRC[31:0]

MOVSS (Legacy SSE Version when the Source Operand is Memory and the Destination is an XMM Register)
DEST[31:0] := SRC[31:0]
DEST[127:32] := 0
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMOVSS __m128 _mm_mask_load_ss(__m128 s, __mmask8 k, float * p); 
VMOVSS __m128 _mm_maskz_load_ss( __mmask8 k, float * p); 
VMOVSS __m128 _mm_mask_move_ss(__m128 sh, __mmask8 k, __m128 sl, __m128 a); 
VMOVSS __m128 _mm_maskz_move_ss( __mmask8 k, __m128 s, __m128 a); 
VMOVSS void _mm_mask_store_ss(float * p, __mmask8 k, __m128 a); 
MOVSS __m128 _mm_load_ss(float * p)
MOVSS void_mm_store_ss(float * p, __m128 a)
MOVSS __m128 _mm_move_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-22, “Type 5 Class Exception Conditions,” additionally:
#UD If VEX.vvvv != 1111B.
EVEX-encoded instruction, see Table 2-60, “Type E10 Class Exception Conditions.”
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MOVSX/MOVSXD—Move With Sign-Extension

Instruction Operand Encoding

Description

Copies the contents of the source operand (register or memory location) to the destination operand (register) and 
sign extends the value to 16 or 32 bits (see Figure 7-6 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1). The size of the converted value depends on the operand-size attribute.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the 
beginning of this section for encoding data and limits.

Operation

DEST := SignExtend(SRC);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F BE /r MOVSX r16, r/m8 RM Valid Valid Move byte to word with sign-extension.

0F BE /r MOVSX r32, r/m8 RM Valid Valid Move byte to doubleword with sign-
extension.

REX + 0F BE /r MOVSX r16/r32, r/m81

NOTES:
1. In 64-bit mode, r/m8 cannot be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

RM Valid N.E. Move byte to word/doubleword with sign-
extension.

REX.W + 0F BE /r MOVSX r64, r/m81 RM Valid N.E. Move byte to quadword with sign-extension.

0F BF /r MOVSX r32, r/m16 RM Valid Valid Move word to doubleword, with sign-
extension.

REX.W + 0F BF /r MOVSX r64, r/m16 RM Valid N.E. Move word to quadword with sign-extension.

63 /r2

2. The use of MOVSXD without REX.W in 64-bit mode is discouraged. Regular MOV should be used instead of using MOVSXD without 
REX.W. 

MOVSXD r16, r/m16 RM Valid N.E. Move word to word with sign-extension.

63 /r1 MOVSXD r32, r/m32 RM Valid N.E. Move doubleword to doubleword with sign-
extension.

REX.W + 63 /r MOVSXD r64, r/m32 RM Valid N.E. Move doubleword to quadword with sign-
extension.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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MOVUPD—Move Unaligned Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Opcode/
Instruction

Op / En 64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 10 /r
MOVUPD xmm1, xmm2/m128

A V/V SSE2 Move unaligned packed double precision 
floating-point from xmm2/mem to xmm1.

66 0F 11 /r
MOVUPD xmm2/m128, xmm1

B V/V SSE2 Move unaligned packed double precision 
floating-point from xmm1 to xmm2/mem.

VEX.128.66.0F.WIG 10 /r
VMOVUPD xmm1, xmm2/m128

A V/V AVX Move unaligned packed double precision 
floating-point from xmm2/mem to xmm1.

VEX.128.66.0F.WIG 11 /r
VMOVUPD xmm2/m128, xmm1

B V/V AVX Move unaligned packed double precision 
floating-point from xmm1 to xmm2/mem.

VEX.256.66.0F.WIG 10 /r
VMOVUPD ymm1, ymm2/m256

A V/V AVX Move unaligned packed double precision 
floating-point from ymm2/mem to ymm1.

VEX.256.66.0F.WIG 11 /r
VMOVUPD ymm2/m256, ymm1

B V/V AVX Move unaligned packed double precision 
floating-point from ymm1 to ymm2/mem.

EVEX.128.66.0F.W1 10 /r
VMOVUPD xmm1 {k1}{z}, xmm2/m128

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Move unaligned packed double precision 
floating-point from xmm2/m128 to xmm1 
using writemask k1.

EVEX.128.66.0F.W1 11 /r
VMOVUPD xmm2/m128 {k1}{z}, xmm1

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move unaligned packed double precision 
floating-point from xmm1 to xmm2/m128 
using writemask k1.

EVEX.256.66.0F.W1 10 /r
VMOVUPD ymm1 {k1}{z}, ymm2/m256

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move unaligned packed double precision 
floating-point from ymm2/m256 to ymm1 
using writemask k1.

EVEX.256.66.0F.W1 11 /r
VMOVUPD ymm2/m256 {k1}{z}, ymm1

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move unaligned packed double precision 
floating-point from ymm1 to ymm2/m256 
using writemask k1.

EVEX.512.66.0F.W1 10 /r
VMOVUPD zmm1 {k1}{z}, zmm2/m512

C V/V AVX512F
OR AVX10.11

Move unaligned packed double precision 
floating-point values from zmm2/m512 to 
zmm1 using writemask k1.

EVEX.512.66.0F.W1 11 /r
VMOVUPD zmm2/m512 {k1}{z}, zmm1

D V/V AVX512F
OR AVX10.11

Move unaligned packed double precision 
floating-point values from zmm1 to 
zmm2/m512 using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A

C Full Mem ModRM:reg (w) ModRM:r/m (r) N/A N/A

D Full Mem ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Description

Note: VEX.vvvv and EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
EVEX.512 encoded version:
Moves 512 bits of packed double precision floating-point values from the source operand (second operand) to the 
destination operand (first operand). This instruction can be used to load a ZMM register from a float64 memory 
location, to store the contents of a ZMM register into a memory. The destination operand is updated according to 
the writemask.
VEX.256 encoded version:
Moves 256 bits of packed double precision floating-point values from the source operand (second operand) to the 
destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory 
location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM 
registers. Bits (MAXVL-1:256) of the destination register are zeroed.

128-bit versions:
Moves 128 bits of packed double precision floating-point values from the source operand (second operand) to the 
destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory 
location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two 
XMM registers. 
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding destination register remain unchanged.
When the source or destination operand is a memory operand, the operand may be unaligned on a 16-byte 
boundary without causing a general-protection exception (#GP) to be generated
VEX.128 and EVEX.128 encoded versions: Bits (MAXVL-1:128) of the destination register are zeroed.

Operation

VMOVUPD (EVEX Encoded Versions, Register-Copy Form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE  DEST[i+63:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMOVUPD (EVEX Encoded Versions, Store-Form) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[i+63:i]
ELSE *DEST[i+63:i] remains unchanged* ; merging-masking

FI;
ENDFOR;
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VMOVUPD (EVEX Encoded Versions, Load-Form) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE  DEST[i+63:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMOVUPD (VEX.256 Encoded Version, Load - and Register Copy)
DEST[255:0] := SRC[255:0]
DEST[MAXVL-1:256] := 0

VMOVUPD (VEX.256 Encoded Version, Store-Form)
DEST[255:0] := SRC[255:0]

VMOVUPD (VEX.128 Encoded Version)
DEST[127:0] := SRC[127:0]
DEST[MAXVL-1:128] := 0

MOVUPD (128-bit Load- and Register-Copy- Form Legacy SSE Version)
DEST[127:0] := SRC[127:0]
DEST[MAXVL-1:128] (Unmodified)

(V)MOVUPD (128-bit Store-Form Version)
DEST[127:0] := SRC[127:0]

Intel C/C++ Compiler Intrinsic Equivalent

VMOVUPD __m512d _mm512_loadu_pd( void * s);
VMOVUPD __m512d _mm512_mask_loadu_pd(__m512d a, __mmask8 k, void * s);
VMOVUPD __m512d _mm512_maskz_loadu_pd( __mmask8 k, void * s);
VMOVUPD void _mm512_storeu_pd( void * d, __m512d a);
VMOVUPD void _mm512_mask_storeu_pd( void * d, __mmask8 k, __m512d a);
VMOVUPD __m256d _mm256_mask_loadu_pd(__m256d s, __mmask8 k, void * m);
VMOVUPD __m256d _mm256_maskz_loadu_pd( __mmask8 k, void * m);
VMOVUPD void _mm256_mask_storeu_pd( void * d, __mmask8 k, __m256d a);
VMOVUPD __m128d _mm_mask_loadu_pd(__m128d s, __mmask8 k, void * m);
VMOVUPD __m128d _mm_maskz_loadu_pd( __mmask8 k, void * m);
VMOVUPD void _mm_mask_storeu_pd( void * d, __mmask8 k, __m128d a);
MOVUPD __m256d _mm256_loadu_pd (double * p);
MOVUPD void _mm256_storeu_pd( double *p, __m256d a);
MOVUPD __m128d _mm_loadu_pd (double * p);
MOVUPD void _mm_storeu_pd( double *p, __m128d a);

SIMD Floating-Point Exceptions

None.
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Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
Note treatment of #AC varies; additionally:
#UD If VEX.vvvv != 1111B.
EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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MOVUPS—Move Unaligned Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Opcode/
Instruction

Op / En 64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 10 /r
MOVUPS xmm1, xmm2/m128

A V/V SSE Move unaligned packed single precision 
floating-point from xmm2/mem to xmm1.

NP 0F 11 /r
MOVUPS xmm2/m128, xmm1

B V/V SSE Move unaligned packed single precision 
floating-point from xmm1 to xmm2/mem.

VEX.128.0F.WIG 10 /r
VMOVUPS xmm1, xmm2/m128

A V/V AVX Move unaligned packed single precision 
floating-point from xmm2/mem to xmm1.

VEX.128.0F.WIG 11 /r
VMOVUPS xmm2/m128, xmm1

B V/V AVX Move unaligned packed single precision 
floating-point from xmm1 to xmm2/mem.

VEX.256.0F.WIG 10 /r
VMOVUPS ymm1, ymm2/m256

A V/V AVX Move unaligned packed single precision 
floating-point from ymm2/mem to ymm1.

VEX.256.0F.WIG 11 /r
VMOVUPS ymm2/m256, ymm1

B V/V AVX Move unaligned packed single precision 
floating-point from ymm1 to ymm2/mem.

EVEX.128.0F.W0 10 /r
VMOVUPS xmm1 {k1}{z}, xmm2/m128

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Move unaligned packed single precision 
floating-point values from xmm2/m128 to 
xmm1 using writemask k1.

EVEX.256.0F.W0 10 /r
VMOVUPS ymm1 {k1}{z}, ymm2/m256

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move unaligned packed single precision 
floating-point values from ymm2/m256 to 
ymm1 using writemask k1.

EVEX.512.0F.W0 10 /r
VMOVUPS zmm1 {k1}{z}, zmm2/m512

C V/V AVX512F 
OR AVX10.11

Move unaligned packed single precision 
floating-point values from zmm2/m512 to 
zmm1 using writemask k1.

EVEX.128.0F.W0 11 /r
VMOVUPS xmm2/m128 {k1}{z}, xmm1

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move unaligned packed single precision 
floating-point values from xmm1 to 
xmm2/m128 using writemask k1.

EVEX.256.0F.W0 11 /r
VMOVUPS ymm2/m256 {k1}{z}, ymm1

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Move unaligned packed single precision 
floating-point values from ymm1 to 
ymm2/m256 using writemask k1.

EVEX.512.0F.W0 11 /r
VMOVUPS zmm2/m512 {k1}{z}, zmm1

D V/V AVX512F 
OR AVX10.11

Move unaligned packed single precision 
floating-point values from zmm1 to 
zmm2/m512 using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A

C Full Mem ModRM:reg (w) ModRM:r/m (r) N/A N/A

D Full Mem ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Description

Note: VEX.vvvv and EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
EVEX.512 encoded version:
Moves 512 bits of packed single precision floating-point values from the source operand (second operand) to the 
destination operand (first operand). This instruction can be used to load a ZMM register from a 512-bit float32 
memory location, to store the contents of a ZMM register into memory. The destination operand is updated 
according to the writemask.
VEX.256 and EVEX.256 encoded versions:
Moves 256 bits of packed single precision floating-point values from the source operand (second operand) to the 
destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory 
location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM 
registers. Bits (MAXVL-1:256) of the destination register are zeroed.
128-bit versions:
Moves 128 bits of packed single precision floating-point values from the source operand (second operand) to the 
destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory 
location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two 
XMM registers. 
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding destination register remain unchanged.
When the source or destination operand is a memory operand, the operand may be unaligned without causing a 
general-protection exception (#GP) to be generated.
VEX.128 and EVEX.128 encoded versions: Bits (MAXVL-1:128) of the destination register are zeroed.

Operation

VMOVUPS (EVEX Encoded Versions, Register-Copy Form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE  DEST[i+31:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMOVUPS (EVEX Encoded Versions, Store-Form) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[i+31:i]
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking

FI;
ENDFOR;
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VMOVUPS (EVEX Encoded Versions, Load-Form) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE  DEST[i+31:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMOVUPS (VEX.256 Encoded Version, Load - and Register Copy)
DEST[255:0] := SRC[255:0]
DEST[MAXVL-1:256] := 0

VMOVUPS (VEX.256 Encoded Version, Store-Form)
DEST[255:0] := SRC[255:0]

VMOVUPS (VEX.128 Encoded Version)
DEST[127:0] := SRC[127:0]
DEST[MAXVL-1:128] := 0

MOVUPS (128-bit Load- and Register-Copy- Form Legacy SSE Version)
DEST[127:0] := SRC[127:0]
DEST[MAXVL-1:128] (Unmodified)

(V)MOVUPS (128-bit Store-Form Version)
DEST[127:0] := SRC[127:0]

Intel C/C++ Compiler Intrinsic Equivalent

VMOVUPS __m512 _mm512_loadu_ps( void * s);
VMOVUPS __m512 _mm512_mask_loadu_ps(__m512 a, __mmask16 k, void * s);
VMOVUPS __m512 _mm512_maskz_loadu_ps( __mmask16 k, void * s);
VMOVUPS void _mm512_storeu_ps( void * d, __m512 a);
VMOVUPS void _mm512_mask_storeu_ps( void * d, __mmask8 k, __m512 a);
VMOVUPS __m256 _mm256_mask_loadu_ps(__m256 a, __mmask8 k, void * s);
VMOVUPS __m256 _mm256_maskz_loadu_ps( __mmask8 k, void * s);
VMOVUPS void _mm256_mask_storeu_ps( void * d, __mmask8 k, __m256 a);
VMOVUPS __m128 _mm_mask_loadu_ps(__m128 a, __mmask8 k, void * s);
VMOVUPS __m128 _mm_maskz_loadu_ps( __mmask8 k, void * s);
VMOVUPS void _mm_mask_storeu_ps( void * d, __mmask8 k, __m128 a);
MOVUPS __m256 _mm256_loadu_ps ( float * p);
MOVUPS void _mm256 _storeu_ps( float *p, __m256 a);
MOVUPS __m128 _mm_loadu_ps ( float * p);
MOVUPS void _mm_storeu_ps( float *p, __m128 a);

SIMD Floating-Point Exceptions

None.
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Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
Note treatment of #AC varies. 
EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”

Additionally:
#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.
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MOVZX—Move With Zero-Extend

Instruction Operand Encoding

Description

Copies the contents of the source operand (register or memory location) to the destination operand (register) and 
zero extends the value. The size of the converted value depends on the operand-size attribute.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bit operands. See the summary chart 
at the beginning of this section for encoding data and limits.

Operation

DEST := ZeroExtend(SRC);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F B6 /r MOVZX r16, r/m8 RM Valid Valid Move byte to word with zero-extension.

0F B6 /r MOVZX r32, r/m8 RM Valid Valid Move byte to doubleword, zero-extension.

REX + 0F B6 /r MOVZX r16/r32, r/m81

NOTES:
1. In 64-bit mode, r/m8 cannot be encoded to access the following byte registers if the REX prefix is used: AH, BH, CH, DH.

RM Valid N.E. Move byte to word/doubleword, zero-
extension.

REX.W + 0F B6 /r MOVZX r64, r/m81 RM Valid N.E. Move byte to quadword, zero-extension.

0F B7 /r MOVZX r32, r/m16 RM Valid Valid Move word to doubleword, zero-extension.

REX.W + 0F B7 /r MOVZX r64, r/m16 RM Valid N.E. Move word to quadword, zero-extension.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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MPSADBW—Compute Multiple Packed Sums of Absolute Difference

Instruction Operand Encoding

Description

(V)MPSADBW calculates packed word results of sum-absolute-difference (SAD) of unsigned bytes from two blocks 
of 32-bit dword elements, using two select fields in the immediate byte to select the offsets of the two blocks within 
the first source operand and the second operand. Packed SAD word results are calculated within each 128-bit lane. 
Each SAD word result is calculated between a stationary block_2 (whose offset within the second source operand 
is selected by a two bit select control, multiplied by 32 bits) and a sliding block_1 at consecutive byte-granular 
position within the first source operand. The offset of the first 32-bit block of block_1 is selectable using a one bit 
select control, multiplied by 32 bits.
128-bit Legacy SSE version: Imm8[1:0]*32 specifies the bit offset of block_2 within the second source operand. 
Imm[2]*32 specifies the initial bit offset of the block_1 within the first source operand. The first source operand 
and destination operand are the same. The first source and destination operands are XMM registers. The second 
source operand is either an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding 
YMM destination register remain unchanged. Bits 7:3 of the immediate byte are ignored.
VEX.128 encoded version: Imm8[1:0]*32 specifies the bit offset of block_2 within the second source operand. 
Imm[2]*32 specifies the initial bit offset of the block_1 within the first source operand. The first source and desti-
nation operands are XMM registers. The second source operand is either an XMM register or a 128-bit memory 
location. Bits (127:128) of the corresponding YMM register are zeroed. Bits 7:3 of the immediate byte are ignored.
VEX.256 encoded version: The sum-absolute-difference (SAD) operation is repeated 8 times for MPSADW between 
the same block_2 (fixed offset within the second source operand) and a variable block_1 (offset is shifted by 8 bits 
for each SAD operation) in the first source operand. Each 16-bit result of eight SAD operations between block_2 
and block_1 is written to the respective word in the lower 128 bits of the destination operand. 
Additionally, VMPSADBW performs another eight SAD operations on block_4 of the second source operand and 
block_3 of the first source operand. (Imm8[4:3]*32 + 128) specifies the bit offset of block_4 within the second 
source operand. (Imm[5]*32+128) specifies the initial bit offset of the block_3 within the first source operand. 
Each 16-bit result of eight SAD operations between block_4 and block_3 is written to the respective word in the 
upper 128 bits of the destination operand. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 42 /r ib

MPSADBW xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Sums absolute 8-bit integer difference of 
adjacent groups of 4 byte integers in xmm1 
and xmm2/m128 and writes the results in 
xmm1. Starting offsets within xmm1 and 
xmm2/m128 are determined by imm8.

VEX.128.66.0F3A.WIG 42 /r ib

VMPSADBW xmm1, xmm2, xmm3/m128, imm8

RVMI V/V AVX Sums absolute 8-bit integer difference of 
adjacent groups of 4 byte integers in xmm2 
and xmm3/m128 and writes the results in 
xmm1. Starting offsets within xmm2 and 
xmm3/m128 are determined by imm8.

VEX.256.66.0F3A.WIG 42 /r ib

VMPSADBW ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX2 Sums absolute 8-bit integer difference of 
adjacent groups of 4 byte integers in xmm2 
and ymm3/m128 and writes the results in 
ymm1. Starting offsets within ymm2 and 
xmm3/m128 are determined by imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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The first source operand is a YMM register. The second source register can be a YMM register or a 256-bit memory 
location. The destination operand is a YMM register. Bits 7:6 of the immediate byte are ignored.
Note: If VMPSADBW is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will 
cause an #UD exception.

Operation

VMPSADBW (VEX.256 Encoded Version)
BLK2_OFFSET := imm8[1:0]*32
BLK1_OFFSET := imm8[2]*32
SRC1_BYTE0 := SRC1[BLK1_OFFSET+7:BLK1_OFFSET]
SRC1_BYTE1 := SRC1[BLK1_OFFSET+15:BLK1_OFFSET+8]
SRC1_BYTE2 := SRC1[BLK1_OFFSET+23:BLK1_OFFSET+16]
SRC1_BYTE3 := SRC1[BLK1_OFFSET+31:BLK1_OFFSET+24]
SRC1_BYTE4 := SRC1[BLK1_OFFSET+39:BLK1_OFFSET+32]
SRC1_BYTE5 := SRC1[BLK1_OFFSET+47:BLK1_OFFSET+40]

Figure 1-5.  256-bit VMPSADBW Operation

Abs. Diff.

Sum

Imm[4:3]*32+128

Imm[5]*32+128
Src2

Src1

128255 144

128255 224 192

Abs. Diff.

Sum

Imm[1:0]*32

Imm[2]*32
Src2

Destination

0127 16

0127 96 64

Destination

Src1
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SRC1_BYTE6 := SRC1[BLK1_OFFSET+55:BLK1_OFFSET+48]
SRC1_BYTE7 := SRC1[BLK1_OFFSET+63:BLK1_OFFSET+56]
SRC1_BYTE8 := SRC1[BLK1_OFFSET+71:BLK1_OFFSET+64]
SRC1_BYTE9 := SRC1[BLK1_OFFSET+79:BLK1_OFFSET+72]
SRC1_BYTE10 := SRC1[BLK1_OFFSET+87:BLK1_OFFSET+80]
SRC2_BYTE0 := SRC2[BLK2_OFFSET+7:BLK2_OFFSET]
SRC2_BYTE1 := SRC2[BLK2_OFFSET+15:BLK2_OFFSET+8]
SRC2_BYTE2 := SRC2[BLK2_OFFSET+23:BLK2_OFFSET+16]
SRC2_BYTE3 := SRC2[BLK2_OFFSET+31:BLK2_OFFSET+24]

TEMP0 := ABS(SRC1_BYTE0 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE1 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE2 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE3 - SRC2_BYTE3)
DEST[15:0] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE1 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE2 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE3 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE4 - SRC2_BYTE3)
DEST[31:16] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE2 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE3 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE4 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE5 - SRC2_BYTE3)
DEST[47:32] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE3 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE4 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE5 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE6 - SRC2_BYTE3)
DEST[63:48] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE4 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE5 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE6 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE7 - SRC2_BYTE3)
DEST[79:64] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE5 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE6 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE7 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE8 - SRC2_BYTE3)
DEST[95:80] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE6 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE7 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE8 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE9 - SRC2_BYTE3)
DEST[111:96] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE7 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE8 - SRC2_BYTE1)
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TEMP2 := ABS(SRC1_BYTE9 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE10 - SRC2_BYTE3)
DEST[127:112] := TEMP0 + TEMP1 + TEMP2 + TEMP3

BLK2_OFFSET := imm8[4:3]*32 + 128
BLK1_OFFSET := imm8[5]*32 + 128
SRC1_BYTE0 := SRC1[BLK1_OFFSET+7:BLK1_OFFSET]
SRC1_BYTE1 := SRC1[BLK1_OFFSET+15:BLK1_OFFSET+8]
SRC1_BYTE2 := SRC1[BLK1_OFFSET+23:BLK1_OFFSET+16]
SRC1_BYTE3 := SRC1[BLK1_OFFSET+31:BLK1_OFFSET+24]
SRC1_BYTE4 := SRC1[BLK1_OFFSET+39:BLK1_OFFSET+32]
SRC1_BYTE5 := SRC1[BLK1_OFFSET+47:BLK1_OFFSET+40]
SRC1_BYTE6 := SRC1[BLK1_OFFSET+55:BLK1_OFFSET+48]
SRC1_BYTE7 := SRC1[BLK1_OFFSET+63:BLK1_OFFSET+56]
SRC1_BYTE8 := SRC1[BLK1_OFFSET+71:BLK1_OFFSET+64]
SRC1_BYTE9 := SRC1[BLK1_OFFSET+79:BLK1_OFFSET+72]
SRC1_BYTE10 := SRC1[BLK1_OFFSET+87:BLK1_OFFSET+80]

SRC2_BYTE0 := SRC2[BLK2_OFFSET+7:BLK2_OFFSET]
SRC2_BYTE1 := SRC2[BLK2_OFFSET+15:BLK2_OFFSET+8]
SRC2_BYTE2 := SRC2[BLK2_OFFSET+23:BLK2_OFFSET+16]
SRC2_BYTE3 := SRC2[BLK2_OFFSET+31:BLK2_OFFSET+24]

TEMP0 := ABS(SRC1_BYTE0 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE1 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE2 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE3 - SRC2_BYTE3)
DEST[143:128] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE1 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE2 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE3 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE4 - SRC2_BYTE3)
DEST[159:144] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE2 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE3 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE4 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE5 - SRC2_BYTE3)
DEST[175:160] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE3 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE4 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE5 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE6 - SRC2_BYTE3)
DEST[191:176] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE4 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE5 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE6 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE7 - SRC2_BYTE3)
DEST[207:192] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE5 - SRC2_BYTE0)
MPSADBW—Compute Multiple Packed Sums of Absolute Difference Vol. 2B 4-143



TEMP1 := ABS(SRC1_BYTE6 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE7 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE8 - SRC2_BYTE3)
DEST[223:208] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE6 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE7 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE8 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE9 - SRC2_BYTE3)
DEST[239:224] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE7 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE8 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE9 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE10 - SRC2_BYTE3)
DEST[255:240] := TEMP0 + TEMP1 + TEMP2 + TEMP3

VMPSADBW (VEX.128 Encoded Version)
BLK2_OFFSET := imm8[1:0]*32
BLK1_OFFSET := imm8[2]*32
SRC1_BYTE0 := SRC1[BLK1_OFFSET+7:BLK1_OFFSET]
SRC1_BYTE1 := SRC1[BLK1_OFFSET+15:BLK1_OFFSET+8]
SRC1_BYTE2 := SRC1[BLK1_OFFSET+23:BLK1_OFFSET+16]
SRC1_BYTE3 := SRC1[BLK1_OFFSET+31:BLK1_OFFSET+24]
SRC1_BYTE4 := SRC1[BLK1_OFFSET+39:BLK1_OFFSET+32]
SRC1_BYTE5 := SRC1[BLK1_OFFSET+47:BLK1_OFFSET+40]
SRC1_BYTE6 := SRC1[BLK1_OFFSET+55:BLK1_OFFSET+48]
SRC1_BYTE7 := SRC1[BLK1_OFFSET+63:BLK1_OFFSET+56]
SRC1_BYTE8 := SRC1[BLK1_OFFSET+71:BLK1_OFFSET+64]
SRC1_BYTE9 := SRC1[BLK1_OFFSET+79:BLK1_OFFSET+72]
SRC1_BYTE10 := SRC1[BLK1_OFFSET+87:BLK1_OFFSET+80]

SRC2_BYTE0 := SRC2[BLK2_OFFSET+7:BLK2_OFFSET]
SRC2_BYTE1 := SRC2[BLK2_OFFSET+15:BLK2_OFFSET+8]
SRC2_BYTE2 := SRC2[BLK2_OFFSET+23:BLK2_OFFSET+16]
SRC2_BYTE3 := SRC2[BLK2_OFFSET+31:BLK2_OFFSET+24]

TEMP0 := ABS(SRC1_BYTE0 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE1 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE2 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE3 - SRC2_BYTE3)
DEST[15:0] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE1 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE2 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE3 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE4 - SRC2_BYTE3)
DEST[31:16] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE2 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE3 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE4 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE5 - SRC2_BYTE3)
DEST[47:32] := TEMP0 + TEMP1 + TEMP2 + TEMP3
MPSADBW—Compute Multiple Packed Sums of Absolute Difference Vol. 2B 4-144



TEMP0 := ABS(SRC1_BYTE3 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE4 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE5 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE6 - SRC2_BYTE3)
DEST[63:48] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE4 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE5 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE6 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE7 - SRC2_BYTE3)
DEST[79:64] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE5 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE6 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE7 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE8 - SRC2_BYTE3)
DEST[95:80] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE6 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE7 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE8 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE9 - SRC2_BYTE3)
DEST[111:96] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS(SRC1_BYTE7 - SRC2_BYTE0)
TEMP1 := ABS(SRC1_BYTE8 - SRC2_BYTE1)
TEMP2 := ABS(SRC1_BYTE9 - SRC2_BYTE2)
TEMP3 := ABS(SRC1_BYTE10 - SRC2_BYTE3)
DEST[127:112] := TEMP0 + TEMP1 + TEMP2 + TEMP3
DEST[MAXVL-1:128] := 0

MPSADBW (128-bit Legacy SSE Version)
SRC_OFFSET := imm8[1:0]*32
DEST_OFFSET := imm8[2]*32
DEST_BYTE0 := DEST[DEST_OFFSET+7:DEST_OFFSET]
DEST_BYTE1 := DEST[DEST_OFFSET+15:DEST_OFFSET+8]
DEST_BYTE2 := DEST[DEST_OFFSET+23:DEST_OFFSET+16]
DEST_BYTE3 := DEST[DEST_OFFSET+31:DEST_OFFSET+24]
DEST_BYTE4 := DEST[DEST_OFFSET+39:DEST_OFFSET+32]
DEST_BYTE5 := DEST[DEST_OFFSET+47:DEST_OFFSET+40]
DEST_BYTE6 := DEST[DEST_OFFSET+55:DEST_OFFSET+48]
DEST_BYTE7 := DEST[DEST_OFFSET+63:DEST_OFFSET+56]
DEST_BYTE8 := DEST[DEST_OFFSET+71:DEST_OFFSET+64]
DEST_BYTE9 := DEST[DEST_OFFSET+79:DEST_OFFSET+72]
DEST_BYTE10 := DEST[DEST_OFFSET+87:DEST_OFFSET+80]

SRC_BYTE0 := SRC[SRC_OFFSET+7:SRC_OFFSET]
SRC_BYTE1 := SRC[SRC_OFFSET+15:SRC_OFFSET+8]
SRC_BYTE2 := SRC[SRC_OFFSET+23:SRC_OFFSET+16]
SRC_BYTE3 := SRC[SRC_OFFSET+31:SRC_OFFSET+24]

TEMP0 := ABS( DEST_BYTE0 - SRC_BYTE0) 
TEMP1 := ABS( DEST_BYTE1 - SRC_BYTE1) 
TEMP2 := ABS( DEST_BYTE2 - SRC_BYTE2) 
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TEMP3 := ABS( DEST_BYTE3 - SRC_BYTE3) 
DEST[15:0] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS( DEST_BYTE1 - SRC_BYTE0) 
TEMP1 := ABS( DEST_BYTE2 - SRC_BYTE1) 
TEMP2 := ABS( DEST_BYTE3 - SRC_BYTE2) 
TEMP3 := ABS( DEST_BYTE4 - SRC_BYTE3) 
DEST[31:16] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS( DEST_BYTE2 - SRC_BYTE0) 
TEMP1 := ABS( DEST_BYTE3 - SRC_BYTE1) 
TEMP2 := ABS( DEST_BYTE4 - SRC_BYTE2) 
TEMP3 := ABS( DEST_BYTE5 - SRC_BYTE3) 
DEST[47:32] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS( DEST_BYTE3 - SRC_BYTE0) 
TEMP1 := ABS( DEST_BYTE4 - SRC_BYTE1) 
TEMP2 := ABS( DEST_BYTE5 - SRC_BYTE2) 
TEMP3 := ABS( DEST_BYTE6 - SRC_BYTE3) 
DEST[63:48] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS( DEST_BYTE4 - SRC_BYTE0) 
TEMP1 := ABS( DEST_BYTE5 - SRC_BYTE1) 
TEMP2 := ABS( DEST_BYTE6 - SRC_BYTE2) 
TEMP3 := ABS( DEST_BYTE7 - SRC_BYTE3) 
DEST[79:64] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS( DEST_BYTE5 - SRC_BYTE0) 
TEMP1 := ABS( DEST_BYTE6 - SRC_BYTE1) 
TEMP2 := ABS( DEST_BYTE7 - SRC_BYTE2) 
TEMP3 := ABS( DEST_BYTE8 - SRC_BYTE3) 
DEST[95:80] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS( DEST_BYTE6 - SRC_BYTE0) 
TEMP1 := ABS( DEST_BYTE7 - SRC_BYTE1) 
TEMP2 := ABS( DEST_BYTE8 - SRC_BYTE2) 
TEMP3 := ABS( DEST_BYTE9 - SRC_BYTE3) 
DEST[111:96] := TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 := ABS( DEST_BYTE7 - SRC_BYTE0) 
TEMP1 := ABS( DEST_BYTE8 - SRC_BYTE1) 
TEMP2 := ABS( DEST_BYTE9 - SRC_BYTE2) 
TEMP3 := ABS( DEST_BYTE10 - SRC_BYTE3) 
DEST[127:112] := TEMP0 + TEMP1 + TEMP2 + TEMP3
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V)MPSADBW __m128i _mm_mpsadbw_epu8 (__m128i s1, __m128i s2, const int mask);
VMPSADBW __m256i _mm256_mpsadbw_epu8 (__m256i s1, __m256i s2, const int mask);

Flags Affected

None.
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Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions.”
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MUL—Unsigned Multiply

Instruction Operand Encoding

Description

Performs an unsigned multiplication of the first operand (destination operand) and the second operand (source 
operand) and stores the result in the destination operand. The destination operand is an implied operand located 
in register AL, AX or EAX (depending on the size of the operand); the source operand is located in a general-
purpose register or a memory location. The action of this instruction and the location of the result depends on the 
opcode and the operand size as shown in Table 1-9.

The result is stored in register AX, register pair DX:AX, or register pair EDX:EAX (depending on the operand size), 
with the high-order bits of the product contained in register AH, DX, or EDX, respectively. If the high-order bits of 
the product are 0, the CF and OF flags are cleared; otherwise, the flags are set.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. 

See the summary chart at the beginning of this section for encoding data and limits.

Operation

IF (Byte operation)
THEN 

AX := AL ∗ SRC;
ELSE (* Word or doubleword operation *)

IF OperandSize = 16
THEN 

DX:AX := AX ∗ SRC;
ELSE IF OperandSize = 32

THEN EDX:EAX := EAX ∗ SRC; FI;
ELSE (* OperandSize = 64 *)

RDX:RAX := RAX ∗ SRC;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /4 MUL r/m8 M Valid Valid Unsigned multiply (AX := AL ∗ r/m8).

REX + F6 /4 MUL r/m81

NOTES:
1. In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

M Valid N.E. Unsigned multiply (AX := AL ∗ r/m8).

F7 /4 MUL r/m16 M Valid Valid Unsigned multiply (DX:AX := AX ∗ r/m16).

F7 /4 MUL r/m32 M Valid Valid Unsigned multiply (EDX:EAX := EAX ∗ r/m32).

REX.W + F7 /4 MUL r/m64 M Valid N.E. Unsigned multiply (RDX:RAX := RAX ∗ r/m64).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A

Table 1-9.  MUL Results
Operand Size Source 1 Source 2 Destination

Byte AL r/m8 AX

Word AX r/m16 DX:AX

Doubleword EAX r/m32 EDX:EAX

Quadword RAX r/m64 RDX:RAX
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FI;
FI;

Flags Affected

The OF and CF flags are set to 0 if the upper half of the result is 0; otherwise, they are set to 1. The SF, ZF, AF, and 
PF flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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MULPD—Multiply Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Multiply packed double precision floating-point values from the first source operand with corresponding values in 
the second source operand, and stores the packed double precision floating-point results in the destination 
operand.
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally 
updated with writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. Bits (MAXVL-1:256) of the corre-
sponding destination ZMM register are zeroed.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM 
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of 
the destination YMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
ZMM register destination are unmodified.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 59 /r
MULPD xmm1, xmm2/m128

A V/V SSE2 Multiply packed double precision floating-point 
values in xmm2/m128 with xmm1 and store result 
in xmm1.

VEX.128.66.0F.WIG 59 /r
VMULPD xmm1,xmm2, xmm3/m128

B V/V AVX Multiply packed double precision floating-point 
values in xmm3/m128 with xmm2 and store result 
in xmm1.

VEX.256.66.0F.WIG 59 /r
VMULPD ymm1, ymm2, ymm3/m256

B V/V AVX Multiply packed double precision floating-point 
values in ymm3/m256 with ymm2 and store result 
in ymm1.

EVEX.128.66.0F.W1 59 /r
VMULPD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply packed double precision floating-point 
values from xmm3/m128/m64bcst to xmm2 and 
store result in xmm1.

EVEX.256.66.0F.W1 59 /r
VMULPD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from ymm3/m256/m64bcst to ymm2 and 
store result in ymm1.

EVEX.512.66.0F.W1 59 /r
VMULPD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst{er}

C V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point 
values in zmm3/m512/m64bcst with zmm2 and 
store result in zmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VMULPD (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1) AND SRC2 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
DEST[i+63:i] := SRC1[i+63:i] * SRC2[63:0]

ELSE 
DEST[i+63:i] := SRC1[i+63:i] * SRC2[i+63:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VMULPD (VEX.256 Encoded Version)
DEST[63:0] := SRC1[63:0] * SRC2[63:0]
DEST[127:64] := SRC1[127:64] * SRC2[127:64]
DEST[191:128] := SRC1[191:128] * SRC2[191:128]
DEST[255:192] := SRC1[255:192] * SRC2[255:192]
DEST[MAXVL-1:256] := 0;
.
VMULPD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0] * SRC2[63:0]
DEST[127:64] := SRC1[127:64] * SRC2[127:64]
DEST[MAXVL-1:128] := 0

MULPD (128-bit Legacy SSE Version)
DEST[63:0] := DEST[63:0] * SRC[63:0]
DEST[127:64] := DEST[127:64] * SRC[127:64]
DEST[MAXVL-1:128] (Unmodified)
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Intel C/C++ Compiler Intrinsic Equivalent

VMULPD __m512d _mm512_mul_pd( __m512d a, __m512d b);
VMULPD __m512d _mm512_mask_mul_pd(__m512d s, __mmask8 k, __m512d a, __m512d b);
VMULPD __m512d _mm512_maskz_mul_pd( __mmask8 k, __m512d a, __m512d b);
VMULPD __m512d _mm512_mul_round_pd( __m512d a, __m512d b, int);
VMULPD __m512d _mm512_mask_mul_round_pd(__m512d s, __mmask8 k, __m512d a, __m512d b, int);
VMULPD __m512d _mm512_maskz_mul_round_pd( __mmask8 k, __m512d a, __m512d b, int);
VMULPD __m256d _mm256_mul_pd (__m256d a, __m256d b);
MULPD __m128d _mm_mul_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-48, “Type E2 Class Exception Conditions.”
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MULPS—Multiply Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Multiply the packed single precision floating-point values from the first source operand with the corresponding 
values in the second source operand, and stores the packed double precision floating-point results in the destina-
tion operand.
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally 
updated with writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. Bits (MAXVL-1:256) of the corre-
sponding destination ZMM register are zeroed.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM 
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of 
the destination YMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
ZMM register destination are unmodified.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 59 /r
MULPS xmm1, xmm2/m128

A V/V SSE Multiply packed single precision floating-point values 
in xmm2/m128 with xmm1 and store result in xmm1.

VEX.128.0F.WIG 59 /r
VMULPS xmm1,xmm2, xmm3/m128

B V/V AVX Multiply packed single precision floating-point values 
in xmm3/m128 with xmm2 and store result in xmm1.

VEX.256.0F.WIG 59 /r
VMULPS ymm1, ymm2, ymm3/m256

B V/V AVX Multiply packed single precision floating-point values 
in ymm3/m256 with ymm2 and store result in ymm1.

EVEX.128.0F.W0 59 /r
VMULPS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply packed single precision floating-point values 
from xmm3/m128/m32bcst to xmm2 and store 
result in xmm1.

EVEX.256.0F.W0 59 /r
VMULPS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point values 
from ymm3/m256/m32bcst to ymm2 and store 
result in ymm1.

EVEX.512.0F.W0 59 /r
VMULPS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst {er}

C V/V AVX512F 
OR AVX10.11

Multiply packed single precision floating-point values 
in zmm3/m512/m32bcst with zmm2 and store result 
in zmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VMULPS (EVEX Encoded Version)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1) AND SRC2 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
DEST[i+31:i] := SRC1[i+31:i] * SRC2[31:0]

ELSE 
DEST[i+31:i] := SRC1[i+31:i] * SRC2[i+31:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VMULPS (VEX.256 Encoded Version)
DEST[31:0] := SRC1[31:0] * SRC2[31:0]
DEST[63:32] := SRC1[63:32] * SRC2[63:32]
DEST[95:64] := SRC1[95:64] * SRC2[95:64]
DEST[127:96] := SRC1[127:96] * SRC2[127:96]
DEST[159:128] := SRC1[159:128] * SRC2[159:128]
DEST[191:160] := SRC1[191:160] * SRC2[191:160]
DEST[223:192] := SRC1[223:192] * SRC2[223:192]
DEST[255:224] := SRC1[255:224] * SRC2[255:224].
DEST[MAXVL-1:256] := 0;

VMULPS (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0] * SRC2[31:0]
DEST[63:32] := SRC1[63:32] * SRC2[63:32]
DEST[95:64] := SRC1[95:64] * SRC2[95:64]
DEST[127:96] := SRC1[127:96] * SRC2[127:96]
DEST[MAXVL-1:128] := 0

MULPS (128-bit Legacy SSE Version)
DEST[31:0] := SRC1[31:0] * SRC2[31:0]
DEST[63:32] := SRC1[63:32] * SRC2[63:32]
DEST[95:64] := SRC1[95:64] * SRC2[95:64]
DEST[127:96] := SRC1[127:96] * SRC2[127:96]
DEST[MAXVL-1:128] (Unmodified)
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Intel C/C++ Compiler Intrinsic Equivalent

VMULPS __m512 _mm512_mul_ps( __m512 a, __m512 b);
VMULPS __m512 _mm512_mask_mul_ps(__m512 s, __mmask16 k, __m512 a, __m512 b);
VMULPS __m512 _mm512_maskz_mul_ps(__mmask16 k, __m512 a, __m512 b);
VMULPS __m512 _mm512_mul_round_ps( __m512 a, __m512 b, int);
VMULPS __m512 _mm512_mask_mul_round_ps(__m512 s, __mmask16 k, __m512 a, __m512 b, int);
VMULPS __m512 _mm512_maskz_mul_round_ps(__mmask16 k, __m512 a, __m512 b, int);
VMULPS __m256 _mm256_mask_mul_ps(__m256 s, __mmask8 k, __m256 a, __m256 b);
VMULPS __m256 _mm256_maskz_mul_ps(__mmask8 k, __m256 a, __m256 b);
VMULPS __m128 _mm_mask_mul_ps(__m128 s, __mmask8 k, __m128 a, __m128 b);
VMULPS __m128 _mm_maskz_mul_ps(__mmask8 k, __m128 a, __m128 b);
VMULPS __m256 _mm256_mul_ps (__m256 a, __m256 b);
MULPS __m128 _mm_mul_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-48, “Type E2 Class Exception Conditions.”
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MULSD—Multiply Scalar Double Precision Floating-Point Value

Instruction Operand Encoding

Description

Multiplies the low double precision floating-point value in the second source operand by the low double precision 
floating-point value in the first source operand, and stores the double precision floating-point result in the destina-
tion operand. The second source operand can be an XMM register or a 64-bit memory location. The first source 
operand and the destination operands are XMM registers. 
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAXVL-
1:64) of the corresponding destination register remain unchanged.
VEX.128 and EVEX encoded version: The quadword at bits 127:64 of the destination operand is copied from the 
same bits of the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination operand is updated according to the write-
mask.
Software should ensure VMULSD is encoded with VEX.L=0. Encoding VMULSD with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F2 0F 59 /r
MULSD xmm1,xmm2/m64

A V/V SSE2 Multiply the low double precision floating-point value in 
xmm2/m64 by low double precision floating-point 
value in xmm1.

VEX.LIG.F2.0F.WIG 59 /r
VMULSD xmm1,xmm2, xmm3/m64

B V/V AVX Multiply the low double precision floating-point value in 
xmm3/m64 by low double precision floating-point 
value in xmm2.

EVEX.LLIG.F2.0F.W1 59 /r
VMULSD xmm1 {k1}{z}, xmm2, 
xmm3/m64 {er}

C V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply the low double precision floating-point value in 
xmm3/m64 by low double precision floating-point 
value in xmm2.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VMULSD (EVEX Encoded Version)
IF (EVEX.b = 1) AND SRC2 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[63:0] := SRC1[63:0] * SRC2[63:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI

FI;
ENDFOR
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

VMULSD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0] * SRC2[63:0]
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

MULSD (128-bit Legacy SSE Version)
DEST[63:0] := DEST[63:0] * SRC[63:0]
DEST[MAXVL-1:64] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMULSD __m128d _mm_mask_mul_sd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VMULSD __m128d _mm_maskz_mul_sd( __mmask8 k, __m128d a, __m128d b);
VMULSD __m128d _mm_mul_round_sd( __m128d a, __m128d b, int);
VMULSD __m128d _mm_mask_mul_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VMULSD __m128d _mm_maskz_mul_round_sd( __mmask8 k, __m128d a, __m128d b, int);
MULSD __m128d _mm_mul_sd (__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-49, “Type E3 Class Exception Conditions.”
MULSD—Multiply Scalar Double Precision Floating-Point Value Vol. 2B 4-157



MULSS—Multiply Scalar Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Multiplies the low single precision floating-point value from the second source operand by the low single precision 
floating-point value in the first source operand, and stores the single precision floating-point result in the destina-
tion operand. The second source operand can be an XMM register or a 32-bit memory location. The first source 
operand and the destination operands are XMM registers. 
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAXVL-
1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 and EVEX encoded version: The first source operand is an xmm register encoded by VEX.vvvv. The three 
high-order doublewords of the destination operand are copied from the first source operand. Bits (MAXVL-1:128) 
of the destination register are zeroed.
EVEX encoded version: The low doubleword element of the destination operand is updated according to the write-
mask.
Software should ensure VMULSS is encoded with VEX.L=0. Encoding VMULSS with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F3 0F 59 /r
MULSS xmm1,xmm2/m32

A V/V SSE Multiply the low single precision floating-point value in 
xmm2/m32 by the low single precision floating-point 
value in xmm1.

VEX.LIG.F3.0F.WIG 59 /r
VMULSS xmm1,xmm2, xmm3/m32

B V/V AVX Multiply the low single precision floating-point value in 
xmm3/m32 by the low single precision floating-point 
value in xmm2.

EVEX.LLIG.F3.0F.W0 59 /r
VMULSS xmm1 {k1}{z}, xmm2, 
xmm3/m32 {er}

C V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply the low single precision floating-point value in 
xmm3/m32 by the low single precision floating-point 
value in xmm2.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VMULSS (EVEX Encoded Version)
IF (EVEX.b = 1) AND SRC2 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[31:0] := SRC1[31:0] * SRC2[31:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI

FI;
ENDFOR
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

VMULSS (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0] * SRC2[31:0]
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

MULSS (128-bit Legacy SSE Version)
DEST[31:0] := DEST[31:0] * SRC[31:0]
DEST[MAXVL-1:32] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMULSS __m128 _mm_mask_mul_ss(__m128 s, __mmask8 k, __m128 a, __m128 b);
VMULSS __m128 _mm_maskz_mul_ss( __mmask8 k, __m128 a, __m128 b);
VMULSS __m128 _mm_mul_round_ss( __m128 a, __m128 b, int);
VMULSS __m128 _mm_mask_mul_round_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, int);
VMULSS __m128 _mm_maskz_mul_round_ss( __mmask8 k, __m128 a, __m128 b, int);
MULSS __m128 _mm_mul_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Underflow, Overflow, Invalid, Precision, Denormal.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-49, “Type E3 Class Exception Conditions.”
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MULX—Unsigned Multiply Without Affecting Flags

Instruction Operand Encoding

Description 

Performs an unsigned multiplication of the implicit source operand (EDX/RDX) and the specified source operand 
(the third operand) and stores the low half of the result in the second destination (second operand), the high half 
of the result in the first destination operand (first operand), without reading or writing the arithmetic flags. This 
enables efficient programming where the software can interleave add with carry operations and multiplications. 
If the first and second operand are identical, it will contain the high half of the multiplication result.
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

// DEST1: ModRM:reg
// DEST2: VEX.vvvv
IF (OperandSize = 32)

SRC1 := EDX;
DEST2 := (SRC1*SRC2)[31:0];
DEST1 := (SRC1*SRC2)[63:32];

ELSE IF (OperandSize = 64)
SRC1 := RDX;

DEST2 := (SRC1*SRC2)[63:0];
DEST1 := (SRC1*SRC2)[127:64];

FI

Intel C/C++ Compiler Intrinsic Equivalent

Auto-generated from high-level language when possible.
unsigned int mulx_u32(unsigned int a, unsigned int b, unsigned int * hi);
unsigned __int64 mulx_u64(unsigned __int64 a, unsigned __int64 b, unsigned __int64 * hi);

Flags Affected
None.

SIMD Floating-Point Exceptions

None.

Opcode/
Instruction

Op/ En 64/32-
bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.LZ.F2.0F38.W0 F6 /r
MULX r32a, r32b, r/m32

RVM V/V BMI2 Unsigned multiply of r/m32 with EDX without affecting arithmetic 
flags.

VEX.LZ.F2.0F38.W1 F6 /r
MULX r64a, r64b, r/m64

RVM V/N.E. BMI2 Unsigned multiply of r/m64 with RDX without affecting arithmetic 
flags.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (w) ModRM:r/m (r)
RDX/EDX is implied 64/32 bits 

source
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Other Exceptions
See Table 2-29, “Type 13 Class Exception Conditions.”
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MWAIT—Monitor Wait

Instruction Operand Encoding

Description

MWAIT instruction provides hints to allow the processor to enter an implementation-dependent optimized state. 
There are two principal targeted usages: address-range monitor and advanced power management. Both usages 
of MWAIT require the use of the MONITOR instruction.

CPUID.01H:ECX.MONITOR[bit 3] indicates the availability of MONITOR and MWAIT in the processor. When set, 
MWAIT may be executed only at privilege level 0 (use at any other privilege level results in an invalid-opcode 
exception). The operating system or system BIOS may disable this instruction by using the IA32_MISC_ENABLE 
MSR; disabling MWAIT clears the CPUID feature flag and causes execution to generate an invalid-opcode excep-
tion. 

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

ECX specifies optional extensions for the MWAIT instruction. EAX may contain hints such as the preferred opti-
mized state the processor should enter. The first processors to implement MWAIT supported only the zero value for 
EAX and ECX. Later processors allowed setting ECX[0] to enable masked interrupts as break events for MWAIT (see 
below). Software can use the CPUID instruction to determine the extensions and hints supported by the processor.

MWAIT for Address Range Monitoring

For address-range monitoring, the MWAIT instruction operates with the MONITOR instruction. The two instructions 
allow the definition of an address at which to wait (MONITOR) and a implementation-dependent-optimized opera-
tion to commence at the wait address (MWAIT). The execution of MWAIT is a hint to the processor that it can enter 
an implementation-dependent-optimized state while waiting for an event or a store operation to the address range 
armed by MONITOR.

The following cause the processor to exit the implementation-dependent-optimized state: a store to the address 
range armed by the MONITOR instruction, an NMI or SMI, a debug exception, a machine check exception, the 
BINIT# signal, the INIT# signal, and the RESET# signal. Other implementation-dependent events may also cause 
the processor to exit the implementation-dependent-optimized state.

In addition, an external interrupt causes the processor to exit the implementation-dependent-optimized state 
either (1) if the interrupt would be delivered to software (e.g., as it would be if HLT had been executed instead of 
MWAIT); or (2) if ECX[0] = 1. Software can execute MWAIT with ECX[0] = 1 only if CPUID.05H:ECX[bit 1] = 1. 
(Implementation-specific conditions may result in an interrupt causing the processor to exit the implementation-
dependent-optimized state even if interrupts are masked and ECX[0] = 0.)

Following exit from the implementation-dependent-optimized state, control passes to the instruction following the 
MWAIT instruction. A pending interrupt that is not masked (including an NMI or an SMI) may be delivered before 
execution of that instruction. Unlike the HLT instruction, the MWAIT instruction does not support a restart at the 
MWAIT instruction following the handling of an SMI. 

If the preceding MONITOR instruction did not successfully arm an address range or if the MONITOR instruction has 
not been executed prior to executing MWAIT, then the processor will not enter the implementation-dependent-opti-
mized state. Execution will resume at the instruction following the MWAIT.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 C9 MWAIT ZO Valid Valid A hint that allows the processor to stop instruction 
execution and enter an implementation-dependent 
optimized state until occurrence of a class of events.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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MWAIT for Power Management

MWAIT accepts a hint and optional extension to the processor that it can enter a specified target C state while 
waiting for an event or a store operation to the address range armed by MONITOR. Support for MWAIT extensions 
for power management is indicated by CPUID.05H:ECX[bit 0] reporting 1. 

EAX and ECX are used to communicate the additional information to the MWAIT instruction, such as the kind of 
optimized state the processor should enter. ECX specifies optional extensions for the MWAIT instruction. EAX may 
contain hints such as the preferred optimized state the processor should enter. Implementation-specific conditions 
may cause a processor to ignore the hint and enter a different optimized state. Future processor implementations 
may implement several optimized “waiting” states and will select among those states based on the hint argument.

Table 1-10 describes the meaning of ECX and EAX registers for MWAIT extensions.

Note that if MWAIT is used to enter any of the C-states that are numerically higher than C1, a store to the address 
range armed by the MONITOR instruction will cause the processor to exit MWAIT only if the store was originated by 
other processor agents. A store from non-processor agent might not cause the processor to exit MWAIT in such 
cases.

For additional details of MWAIT extensions, see Chapter 16, “Power and Thermal Management,” of Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Operation

(* MWAIT takes the argument in EAX as a hint extension and is architected to take the argument in ECX as an instruction extension 
MWAIT EAX, ECX *)
{
WHILE ( (“Monitor Hardware is in armed state”)) {

implementation_dependent_optimized_state(EAX, ECX); }
Set the state of Monitor Hardware as triggered;
}

Intel C/C++ Compiler Intrinsic Equivalent

MWAIT void _mm_mwait(unsigned extensions, unsigned hints)

Table 1-10.  MWAIT Extension Register (ECX)
Bits Description

0 Treat interrupts as break events even if masked (e.g., even if EFLAGS.IF=0). May be set only if 
CPUID.05H:ECX[bit 1] = 1.

31: 1 Reserved

Table 1-11.  MWAIT Hints Register (EAX)
Bits Description

3 : 0 Sub C-state within a C-state, indicated by bits [7:4]

7 : 4 Target C-state*

Value of 0 means C1; 1 means C2 and so on

Value of 01111B means C0

Note: Target C states for MWAIT extensions are processor-specific C-states, not ACPI C-states

31: 8 Reserved
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Example

MONITOR/MWAIT instruction pair must be coded in the same loop because execution of the MWAIT instruction will 
trigger the monitor hardware. It is not a proper usage to execute MONITOR once and then execute MWAIT in a 
loop. Setting up MONITOR without executing MWAIT has no adverse effects.

Typically the MONITOR/MWAIT pair is used in a sequence, such as:

EAX = Logical Address(Trigger)
ECX = 0 (*Hints *)
EDX = 0 (* Hints *)

IF ( !trigger_store_happened) {
MONITOR EAX, ECX, EDX
IF ( !trigger_store_happened ) {

MWAIT EAX, ECX
}

}

The above code sequence makes sure that a triggering store does not happen between the first check of the trigger 
and the execution of the monitor instruction. Without the second check that triggering store would go un-noticed. 
Typical usage of MONITOR and MWAIT would have the above code sequence within a loop.

Numeric Exceptions
None.

Protected Mode Exceptions
#GP(0) If ECX[31:1] ≠ 0.

If ECX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If current privilege level is not 0.

Real Address Mode Exceptions
#GP If ECX[31:1] ≠ 0.

If ECX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

Virtual 8086 Mode Exceptions
#UD The MWAIT instruction is not recognized in virtual-8086 mode (even if 

CPUID.01H:ECX.MONITOR[bit 3] = 1).

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If RCX[63:1] ≠ 0.

If RCX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.
#UD If the current privilege level is not 0.

If CPUID.01H:ECX.MONITOR[bit 3] = 0.
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NEG—Two's Complement Negation

Instruction Operand Encoding

Description

Replaces the value of operand (the destination operand) with its two's complement. (This operation is equivalent 
to subtracting the operand from 0.) The destination operand is located in a general-purpose register or a memory 
location.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

IF DEST = 0 
THEN CF := 0;
ELSE CF := 1; 

FI;
DEST := [– (DEST)]

Flags Affected

The CF flag set to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF, ZF, AF, and PF flags are set 
according to the result. 

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /3 NEG r/m8 M Valid Valid Two's complement negate r/m8.

REX + F6 /3 NEG r/m81

NOTES:
1. In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

M Valid N.E. Two's complement negate r/m8.

F7 /3 NEG r/m16 M Valid Valid Two's complement negate r/m16.

F7 /3 NEG r/m32 M Valid Valid Two's complement negate r/m32.

REX.W + F7 /3 NEG r/m64 M Valid N.E. Two's complement negate r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) N/A N/A N/A
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Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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NOP—No Operation Vol. 2B 4-167

NOP—No Operation

Instruction Operand Encoding

Description

This instruction performs no operation. It is a one-byte or multi-byte NOP that takes up space in the instruction 
stream but does not impact machine context, except for the EIP register.

The multi-byte form of NOP is available on processors with model encoding:
• CPUID.01H.EAX[Bytes 11:8] = 0110B or 1111B

The multi-byte NOP instruction does not alter the content of a register and will not issue a memory operation. The 
instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

The one-byte NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

The multi-byte NOP instruction performs no operation on supported processors and generates undefined opcode 
exception on processors that do not support the multi-byte NOP instruction.

The memory operand form of the instruction allows software to create a byte sequence of “no operation” as one 
instruction. For situations where multiple-byte NOPs are needed, the recommended operations (32-bit mode and 
64-bit mode) are: 

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

NP 90 NOP ZO Valid Valid One byte no-operation instruction.

NP 0F 1F /0 NOP r/m16 M Valid Valid Multi-byte no-operation instruction.

NP 0F 1F /0 NOP r/m32 M Valid Valid Multi-byte no-operation instruction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

M ModRM:r/m (r) N/A N/A N/A

Table 1-12.  Recommended Multi-Byte Sequence of NOP Instruction

Length Assembly Byte Sequence

2 bytes 66 NOP 66 90H

3 bytes NOP DWORD ptr [EAX] 0F 1F 00H

4 bytes NOP DWORD ptr [EAX + 00H] 0F 1F 40 00H

5 bytes NOP DWORD ptr [EAX + EAX*1 + 00H] 0F 1F 44 00 00H

6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 0F 1F 44 00 00H

7 bytes NOP DWORD ptr [EAX + 00000000H] 0F 1F 80 00 00 00 00H

8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] 0F 1F 84 00 00 00 00 00H

9 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00000000H] 66 0F 1F 84 00 00 00 00 00H



NOT—One's Complement Negation

Instruction Operand Encoding

Description

Performs a bitwise NOT operation (each 1 is set to 0, and each 0 is set to 1) on the destination operand and stores 
the result in the destination operand location. The destination operand can be a register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST := NOT DEST;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /2 NOT r/m8 M Valid Valid Reverse each bit of r/m8.

REX + F6 /2 NOT r/m81

NOTES:
1. In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

M Valid N.E. Reverse each bit of r/m8.

F7 /2 NOT r/m16 M Valid Valid Reverse each bit of r/m16.

F7 /2 NOT r/m32 M Valid Valid Reverse each bit of r/m32.

REX.W + F7 /2 NOT r/m64 M Valid N.E. Reverse each bit of r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) N/A N/A N/A
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Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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OR—Logical Inclusive OR

Instruction Operand Encoding

Description

Performs a bitwise inclusive OR operation between the destination (first) and source (second) operands and stores 
the result in the destination operand location. The source operand can be an immediate, a register, or a memory 
location; the destination operand can be a register or a memory location. (However, two memory operands cannot 
be used in one instruction.) Each bit of the result of the OR instruction is set to 0 if both corresponding bits of the 
first and second operands are 0; otherwise, each bit is set to 1.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0C ib OR AL, imm8 I Valid Valid AL OR imm8.

0D iw OR AX, imm16 I Valid Valid AX OR imm16.

0D id OR EAX, imm32 I Valid Valid EAX OR imm32.

REX.W + 0D id OR RAX, imm32 I Valid N.E. RAX OR imm32 (sign-extended).

80 /1 ib OR r/m8, imm8 MI Valid Valid r/m8 OR imm8.

REX + 80 /1 ib OR r/m81, imm8 MI Valid N.E. r/m8 OR imm8.

81 /1 iw OR r/m16, imm16 MI Valid Valid  r/m16 OR imm16.

81 /1 id OR r/m32, imm32 MI Valid Valid  r/m32 OR imm32.

REX.W + 81 /1 id OR r/m64, imm32 MI Valid N.E.  r/m64 OR imm32 (sign-extended).

83 /1 ib OR r/m16, imm8 MI Valid Valid r/m16 OR imm8 (sign-extended).

83 /1 ib OR r/m32, imm8 MI Valid Valid r/m32 OR imm8 (sign-extended).

REX.W + 83 /1 ib OR r/m64, imm8 MI Valid N.E. r/m64 OR imm8 (sign-extended).

08 /r OR r/m8, r8 MR Valid Valid r/m8 OR r8.

REX + 08 /r OR r/m81, r81

NOTES:
1. In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

MR Valid N.E. r/m8 OR r8.

09 /r OR r/m16, r16 MR Valid Valid r/m16 OR r16.

09 /r OR r/m32, r32 MR Valid Valid r/m32 OR r32.

REX.W + 09 /r OR r/m64, r64 MR Valid N.E. r/m64 OR r64.

0A /r OR r8, r/m8 RM Valid Valid r8 OR r/m8.

REX + 0A /r OR r81, r/m81 RM Valid N.E. r8 OR r/m8.

0B /r OR r16, r/m16 RM Valid Valid r16 OR r/m16.

0B /r OR r32, r/m32 RM Valid Valid r32 OR r/m32.

REX.W + 0B /r OR r64, r/m64 RM Valid N.E. r64 OR r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 N/A N/A

MI ModRM:r/m (r, w) imm8/16/32 N/A N/A

MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
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In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST := DEST OR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state of the AF flag is 
undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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ORPD—Bitwise Logical OR of Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical OR of the two, four or eight packed double precision floating-point values from the first 
source operand and the second source operand, and stores the result in the destination operand.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be 
a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 
32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write-
mask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the 
corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
register destination are unmodified.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 56/r
ORPD xmm1, xmm2/m128

A V/V SSE2 Return the bitwise logical OR of packed double 
precision floating-point values in xmm1 and 
xmm2/mem. 

VEX.128.66.0F 56 /r
VORPD xmm1,xmm2, xmm3/m128

B V/V AVX Return the bitwise logical OR of packed double 
precision floating-point values in xmm2 and 
xmm3/mem.

VEX.256.66.0F 56 /r
VORPD ymm1, ymm2, ymm3/m256

B V/V AVX Return the bitwise logical OR of packed double 
precision floating-point values in ymm2 and 
ymm3/mem.

EVEX.128.66.0F.W1 56 /r
VORPD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the bitwise logical OR of packed double 
precision floating-point values in xmm2 and 
xmm3/m128/m64bcst subject to writemask k1.

EVEX.256.66.0F.W1 56 /r
VORPD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Return the bitwise logical OR of packed double 
precision floating-point values in ymm2 and 
ymm3/m256/m64bcst subject to writemask k1.

EVEX.512.66.0F.W1 56 /r
VORPD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512DQ 
OR AVX10.11

Return the bitwise logical OR of packed double 
precision floating-point values in zmm2 and 
zmm3/m512/m64bcst subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
ORPD—Bitwise Logical OR of Packed Double Precision Floating-Point Values Vol. 2B 4-172



Operation

VORPD (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b == 1) AND (SRC2 *is memory*)

THEN
DEST[i+63:i] := SRC1[i+63:i] BITWISE OR SRC2[63:0]

ELSE 
DEST[i+63:i] := SRC1[i+63:i] BITWISE OR SRC2[i+63:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VORPD (VEX.256 Encoded Version)
DEST[63:0] := SRC1[63:0] BITWISE OR SRC2[63:0]
DEST[127:64] := SRC1[127:64] BITWISE OR SRC2[127:64]
DEST[191:128] := SRC1[191:128] BITWISE OR SRC2[191:128]
DEST[255:192] := SRC1[255:192] BITWISE OR SRC2[255:192]
DEST[MAXVL-1:256] := 0

VORPD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0] BITWISE OR SRC2[63:0]
DEST[127:64] := SRC1[127:64] BITWISE OR SRC2[127:64]
DEST[MAXVL-1:128] := 0

ORPD (128-bit Legacy SSE Version)
DEST[63:0] := DEST[63:0] BITWISE OR SRC[63:0]
DEST[127:64] := DEST[127:64] BITWISE OR SRC[127:64]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VORPD __m512d _mm512_or_pd ( __m512d a, __m512d  b);
VORPD __m512d _mm512_mask_or_pd ( __m512d s, __mmask8 k, __m512d a, __m512d b);
VORPD __m512d _mm512_maskz_or_pd (__mmask8 k, __m512d a, __m512d b);
VORPD __m256d _mm256_mask_or_pd (__m256d s, ___mmask8 k, __m256d a, __m256d b);
VORPD __m256d _mm256_maskz_or_pd (__mmask8 k, __m256d a, __m256d b);
VORPD __m128d _mm_mask_or_pd ( __m128d s, __mmask8 k, __m128d a, __m128d b);
VORPD __m128d _mm_maskz_or_pd (__mmask8 k, __m128d a, __m128d b);
VORPD __m256d _mm256_or_pd (__m256d a, __m256d b);
ORPD __m128d _mm_or_pd (__m128d a, __m128d b);
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SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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ORPS—Bitwise Logical OR of Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical OR of the four, eight or sixteen packed single precision floating-point values from the first 
source operand and the second source operand, and stores the result in the destination operand
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be 
a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 
32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write-
mask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the 
corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
register destination are unmodified.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 56 /r
ORPS xmm1, xmm2/m128

A V/V SSE Return the bitwise logical OR of packed single 
precision floating-point values in xmm1 and 
xmm2/mem. 

VEX.128.0F 56 /r
VORPS xmm1,xmm2, xmm3/m128

B V/V AVX Return the bitwise logical OR of packed single 
precision floating-point values in xmm2 and 
xmm3/mem. 

VEX.256.0F 56 /r
VORPS ymm1, ymm2, ymm3/m256

B V/V AVX Return the bitwise logical OR of packed single 
precision floating-point values in ymm2 and 
ymm3/mem.

EVEX.128.0F.W0 56 /r
VORPS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the bitwise logical OR of packed single 
precision floating-point values in xmm2 and 
xmm3/m128/m32bcst subject to writemask k1.

EVEX.256.0F.W0 56 /r
VORPS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Return the bitwise logical OR of packed single 
precision floating-point values in ymm2 and 
ymm3/m256/m32bcst subject to writemask k1.

EVEX.512.0F.W0 56 /r
VORPS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

C V/V AVX512DQ 
OR AVX10.11

Return the bitwise logical OR of packed single 
precision floating-point values in zmm2 and 
zmm3/m512/m32bcst subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VORPS (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b == 1) AND (SRC2 *is memory*)

THEN
DEST[i+31:i] := SRC1[i+31:i] BITWISE OR SRC2[31:0]

ELSE 
DEST[i+31:i] := SRC1[i+31:i] BITWISE OR SRC2[i+31:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VORPS (VEX.256 Encoded Version)
DEST[31:0] := SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE OR SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE OR SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE OR SRC2[127:96]
DEST[159:128] := SRC1[159:128] BITWISE OR SRC2[159:128]
DEST[191:160] := SRC1[191:160] BITWISE OR SRC2[191:160]
DEST[223:192] := SRC1[223:192] BITWISE OR SRC2[223:192]
DEST[255:224] := SRC1[255:224] BITWISE OR SRC2[255:224].
DEST[MAXVL-1:256] := 0

VORPS (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE OR SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE OR SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE OR SRC2[127:96]
DEST[MAXVL-1:128] := 0

ORPS (128-bit Legacy SSE Version)
DEST[31:0] := SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE OR SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE OR SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE OR SRC2[127:96]
DEST[MAXVL-1:128] (Unmodified)
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Intel C/C++ Compiler Intrinsic Equivalent

VORPS __m512 _mm512_or_ps ( __m512 a, __m512 b);
VORPS __m512 _mm512_mask_or_ps ( __m512 s, __mmask16 k, __m512 a, __m512 b);
VORPS __m512 _mm512_maskz_or_ps (__mmask16 k, __m512 a, __m512 b);
VORPS __m256 _mm256_mask_or_ps (__m256 s, ___mmask8 k, __m256 a, __m256 b);
VORPS __m256 _mm256_maskz_or_ps (__mmask8 k, __m256 a, __m256 b);
VORPS __m128 _mm_mask_or_ps ( __m128 s, __mmask8 k, __m128 a, __m128 b);
VORPS __m128 _mm_maskz_or_ps (__mmask8 k, __m128 a, __m128 b);
VORPS __m256 _mm256_or_ps (__m256 a, __m256 b);
ORPS __m128 _mm_or_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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OUT—Output to Port

Instruction Operand Encoding

Description

Copies the value from the second operand (source operand) to the I/O port specified with the destination operand 
(first operand). The source operand can be register AL, AX, or EAX, depending on the size of the port being 
accessed (8, 16, or 32 bits, respectively); the destination operand can be a byte-immediate or the DX register. 
Using a byte immediate allows I/O port addresses 0 to 255 to be accessed; using the DX register as a source 
operand allows I/O ports from 0 to 65,535 to be accessed.

The size of the I/O port being accessed is determined by the opcode for an 8-bit I/O port or by the operand-size 
attribute of the instruction for a 16- or 32-bit I/O port.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O ports. Here, the upper eight bits 
of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O address space. See Chapter 20, 
“Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more infor-
mation on accessing I/O ports in the I/O address space.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUT instruction, the Pentium® processor ensures that the EWBE# pin has been sampled active 
before it begins to execute the next instruction. (Note that the instruction can be prefetched if EWBE# is not active, 
but it will not be executed until the EWBE# pin is sampled active.) Only the Pentium processor family has the 
EWBE# pin.

Opcode1

NOTES:
1. See the IA-32 Architecture Compatibility section below.

Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

E6 ib OUT imm8, AL I Valid Valid Output byte in AL to I/O port address imm8.

E7 ib OUT imm8, AX I Valid Valid Output word in AX to I/O port address imm8. 

E7 ib OUT imm8, EAX I Valid Valid Output doubleword in EAX to I/O port address imm8.

EE OUT DX, AL ZO Valid Valid Output byte in AL to I/O port address in DX.

EF OUT DX, AX ZO Valid Valid Output word in AX to I/O port address in DX.

EF OUT DX, EAX ZO Valid Valid Output doubleword in EAX to I/O port address in DX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I imm8 N/A N/A N/A

ZO N/A N/A N/A N/A
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Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE ( * I/O operation is allowed *) 

DEST := SRC; (* Writes to selected I/O port *)
FI;

ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *)
DEST := SRC; (* Writes to selected I/O port *)

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the 

corresponding I/O permission bits in TSS for the I/O port being accessed is 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed is 1.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as protected mode exceptions.

64-Bit Mode Exceptions
Same as protected mode exceptions.
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OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

Instruction Operand Encoding

Description

Copies data from the source operand (second operand) to the I/O port specified with the destination operand (first 
operand). The source operand is a memory location, the address of which is read from either the DS:SI, DS:ESI or 
the RSI registers (depending on the address-size attribute of the instruction, 16, 32 or 64, respectively). (The DS 
segment may be overridden with a segment override prefix.) The destination operand is an I/O port address (from 
0 to 65,535) that is read from the DX register. The size of the I/O port being accessed (that is, the size of the source 
and destination operands) is determined by the opcode for an 8-bit I/O port or by the operand-size attribute of the 
instruction for a 16- or 32-bit I/O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands” form and the “no-
operands” form. The explicit-operands form (specified with the OUTS mnemonic) allows the source and destination 
operands to be specified explicitly. Here, the source operand should be a symbol that indicates the size of the I/O 
port and the source address, and the destination operand must be DX. This explicit-operands form is provided to 
allow documentation; however, note that the documentation provided by this form can be misleading. That is, the 
source operand symbol must specify the correct type (size) of the operand (byte, word, or doubleword), but it 
does not have to specify the correct location. The location is always specified by the DS:(E)SI or RSI registers, 
which must be loaded correctly before the OUTS instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the OUTS instructions. 
Here also DS:(E)SI is assumed to be the source operand and DX is assumed to be the destination operand. The size 
of the I/O port is specified with the choice of mnemonic: OUTSB (byte), OUTSW (word), or OUTSD (doubleword).

After the byte, word, or doubleword is transferred from the memory location to the I/O port, the SI/ESI/RSI 
register is incremented or decremented automatically according to the setting of the DF flag in the EFLAGS register. 
(If the DF flag is 0, the (E)SI register is incremented; if the DF flag is 1, the SI/ESI/RSI register is decremented.) 
The SI/ESI/RSI register is incremented or decremented by 1 for byte operations, by 2 for word operations, and by 
4 for doubleword operations.

The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP prefix for block input of ECX 
bytes, words, or doublewords. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in this 

Opcode1

NOTES:
1. See the IA-32 Architecture Compatibility section below.

Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

6E OUTS DX, m8 ZO Valid Valid Output byte from memory location specified in 
DS:(E)SI or RSI to I/O port specified in DX2.

2. In 64-bit mode, only 64-bit (RSI) and 32-bit (ESI) address sizes are supported. In non-64-bit mode, only 32-bit (ESI) and 16-bit (SI) 
address sizes are supported.

6F OUTS DX, m16 ZO Valid Valid Output word from memory location specified in 
DS:(E)SI or RSI to I/O port specified in DX2.

6F OUTS DX, m32 ZO Valid Valid Output doubleword from memory location specified in 
DS:(E)SI or RSI to I/O port specified in DX2.

6E OUTSB ZO Valid Valid Output byte from memory location specified in 
DS:(E)SI or RSI to I/O port specified in DX2.

6F OUTSW ZO Valid Valid Output word from memory location specified in 
DS:(E)SI or RSI to I/O port specified in DX2.

6F OUTSD ZO Valid Valid Output doubleword from memory location specified in 
DS:(E)SI or RSI to I/O port specified in DX2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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chapter for a description of the REP prefix. This instruction is only useful for accessing I/O ports located in the 
processor’s I/O address space. See Chapter 20, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for more information on accessing I/O ports in the I/O address space.

In 64-bit mode, the default operand size is 32 bits; operand size is not promoted by the use of REX.W. In 64-bit 
mode, the default address size is 64 bits, and 64-bit address is specified using RSI by default. 32-bit address using 
ESI is support using the prefix 67H, but 16-bit address is not supported in 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUTS, OUTSB, OUTSW, or OUTSD instruction, the Pentium processor ensures that the EWBE# 
pin has been sampled active before it begins to execute the next instruction. (Note that the instruction can be 
prefetched if EWBE# is not active, but it will not be executed until the EWBE# pin is sampled active.) Only the 
Pentium processor family has the EWBE# pin.

For the Pentium 4, Intel® Xeon®, and P6 processor family, upon execution of an OUTS, OUTSB, OUTSW, or OUTSD 
instruction, the processor will not execute the next instruction until the data phase of the transaction is complete.

Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE (* I/O operation is allowed *) 

DEST := SRC; (* Writes to I/O port *)
FI;

ELSE (Real Mode or Protected Mode or 64-Bit Mode with CPL ≤ IOPL *)
DEST := SRC; (* Writes to I/O port *)

FI;

Byte transfer:
IF 64-bit mode

Then
IF 64-Bit Address Size 

THEN 
IF DF = 0

THEN RSI := RSI RSI + 1; 
ELSE RSI := RSI or – 1; 

FI;
ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI := ESI + 1; 
ELSE ESI := ESI – 1; 

FI;
FI;

ELSE 
IF DF = 0

THEN (E)SI := (E)SI + 1; 
ELSE (E)SI := (E)SI – 1; 

FI;
FI;

Word transfer:
IF 64-bit mode

Then
IF 64-Bit Address Size 
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THEN 
IF DF = 0

THEN RSI := RSI RSI + 2; 
ELSE RSI := RSI or – 2; 

FI;
ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI := ESI + 2; 
ELSE ESI := ESI – 2; 

FI;
FI;

ELSE 
IF DF = 0

THEN (E)SI := (E)SI + 2; 
ELSE (E)SI := (E)SI – 2; 

FI;
FI;

Doubleword transfer:
IF 64-bit mode

Then
IF 64-Bit Address Size 

THEN 
IF DF = 0

THEN RSI := RSI RSI + 4; 
ELSE RSI := RSI or – 4; 

FI;
ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI := ESI + 4; 
ELSE ESI := ESI – 4; 

FI;
FI;

ELSE 
IF DF = 0

THEN (E)SI := (E)SI + 4; 
ELSE (E)SI := (E)SI – 4; 

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the 

corresponding I/O permission bits in TSS for the I/O port being accessed is 1.
If a memory operand effective address is outside the limit of the CS, DS, ES, FS, or GS 
segment.
If the segment register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed is 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the 

corresponding I/O permission bits in TSS for the I/O port being accessed is 1.
If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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PABSB/PABSW/PABSD/PABSQ—Packed Absolute Value 
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 38 1C /r1

PABSB mm1, mm2/m64 

A V/V SSSE3 Compute the absolute value of bytes in mm2/m64 
and store UNSIGNED result in mm1.

66 0F 38 1C /r 

PABSB xmm1, xmm2/m128 

A V/V SSSE3 Compute the absolute value of bytes in 
xmm2/m128 and store UNSIGNED result in xmm1. 

NP 0F 38 1D /r1

PABSW mm1, mm2/m64 

A V/V SSSE3 Compute the absolute value of 16-bit integers in 
mm2/m64 and store UNSIGNED result in mm1.

66 0F 38 1D /r

PABSW xmm1, xmm2/m128

A V/V SSSE3 Compute the absolute value of 16-bit integers in 
xmm2/m128 and store UNSIGNED result in xmm1.

NP 0F 38 1E /r1 

PABSD mm1, mm2/m64 

A V/V SSSE3 Compute the absolute value of 32-bit integers in 
mm2/m64 and store UNSIGNED result in mm1. 

66 0F 38 1E /r 

PABSD xmm1, xmm2/m128 

A V/V SSSE3 Compute the absolute value of 32-bit integers in 
xmm2/m128 and store UNSIGNED result in xmm1. 

VEX.128.66.0F38.WIG 1C /r

VPABSB xmm1, xmm2/m128

A V/V AVX Compute the absolute value of bytes in 
xmm2/m128 and store UNSIGNED result in xmm1.

VEX.128.66.0F38.WIG 1D /r

VPABSW xmm1, xmm2/m128

A V/V AVX Compute the absolute value of 16- bit integers in 
xmm2/m128 and store UNSIGNED result in xmm1.

VEX.128.66.0F38.WIG 1E /r

VPABSD xmm1, xmm2/m128

A V/V AVX Compute the absolute value of 32- bit integers in 
xmm2/m128 and store UNSIGNED result in xmm1.

VEX.256.66.0F38.WIG 1C /r
VPABSB ymm1, ymm2/m256

A V/V AVX2 Compute the absolute value of bytes in 
ymm2/m256 and store UNSIGNED result in ymm1.

VEX.256.66.0F38.WIG 1D /r

VPABSW ymm1, ymm2/m256

A V/V AVX2 Compute the absolute value of 16-bit integers in 
ymm2/m256 and store UNSIGNED result in ymm1.

VEX.256.66.0F38.WIG 1E /r

VPABSD ymm1, ymm2/m256

A V/V AVX2 Compute the absolute value of 32-bit integers in 
ymm2/m256 and store UNSIGNED result in ymm1.

EVEX.128.66.0F38.WIG 1C /r
VPABSB xmm1 {k1}{z}, xmm2/m128

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compute the absolute value of bytes in 
xmm2/m128 and store UNSIGNED result in xmm1 
using writemask k1.

EVEX.256.66.0F38.WIG 1C /r
VPABSB ymm1 {k1}{z}, ymm2/m256

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compute the absolute value of bytes in 
ymm2/m256 and store UNSIGNED result in ymm1 
using writemask k1.

EVEX.512.66.0F38.WIG 1C /r
VPABSB zmm1 {k1}{z}, zmm2/m512

B V/V AVX512BW OR 
AVX10.12

Compute the absolute value of bytes in 
zmm2/m512 and store UNSIGNED result in zmm1 
using writemask k1.

EVEX.128.66.0F38.WIG 1D /r 
VPABSW xmm1 {k1}{z}, xmm2/m128

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compute the absolute value of 16-bit integers in 
xmm2/m128 and store UNSIGNED result in xmm1 
using writemask k1.

EVEX.256.66.0F38.WIG 1D /r 
VPABSW ymm1 {k1}{z}, ymm2/m256 

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compute the absolute value of 16-bit integers in 
ymm2/m256 and store UNSIGNED result in ymm1 
using writemask k1.

EVEX.512.66.0F38.WIG 1D /r 
VPABSW zmm1 {k1}{z}, zmm2/m512

B V/V AVX512BW OR 
AVX10.12

Compute the absolute value of 16-bit integers in 
zmm2/m512 and store UNSIGNED result in zmm1 
using writemask k1.
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Instruction Operand Encoding

Description 

PABSB/W/D computes the absolute value of each data element of the source operand (the second operand) and 
stores the UNSIGNED results in the destination operand (the first operand). PABSB operates on signed bytes, 
PABSW operates on signed 16-bit words, and PABSD operates on signed 32-bit integers. 

EVEX encoded VPABSD/Q: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, 
or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. The destination operand is a 
ZMM/YMM/XMM register updated according to the writemask. 

EVEX encoded VPABSB/W: The source operand is a ZMM/YMM/XMM register, or a 512/256/128-bit memory loca-
tion. The destination operand is a ZMM/YMM/XMM register updated according to the writemask. 
VEX.256 encoded versions: The source operand is a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding register destination are zeroed.
VEX.128 encoded versions: The source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding register destination are zeroed.

EVEX.128.66.0F38.W0 1E /r
VPABSD xmm1 {k1}{z}, 
xmm2/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Compute the absolute value of 32-bit integers in 
xmm2/m128/m32bcst and store UNSIGNED result 
in xmm1 using writemask k1. 

EVEX.256.66.0F38.W0 1E /r
VPABSD ymm1 {k1}{z}, 
ymm2/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Compute the absolute value of 32-bit integers in 
ymm2/m256/m32bcst and store UNSIGNED result 
in ymm1 using writemask k1. 

EVEX.512.66.0F38.W0 1E /r
VPABSD zmm1 {k1}{z}, 
zmm2/m512/m32bcst 

C V/V AVX512F 
OR AVX10.12

Compute the absolute value of 32-bit integers in 
zmm2/m512/m32bcst and store UNSIGNED result 
in zmm1 using writemask k1. 

EVEX.128.66.0F38.W1 1F /r
VPABSQ xmm1 {k1}{z}, 
xmm2/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Compute the absolute value of 64-bit integers in 
xmm2/m128/m64bcst and store UNSIGNED result 
in xmm1 using writemask k1. 

EVEX.256.66.0F38.W1 1F /r
VPABSQ ymm1 {k1}{z}, 
ymm2/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Compute the absolute value of 64-bit integers in 
ymm2/m256/m64bcst and store UNSIGNED result 
in ymm1 using writemask k1. 

EVEX.512.66.0F38.W1 1F /r
VPABSQ zmm1 {k1}{z}, 
zmm2/m512/m64bcst 

C V/V AVX512F 
OR AVX10.12

Compute the absolute value of 64-bit integers in 
zmm2/m512/m64bcst and store UNSIGNED result 
in zmm1 using writemask k1. 

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Full Mem ModRM:reg (w) ModRM:r/m (r) N/A N/A

C Full ModRM:reg (w) ModRM:r/m (r) N/A N/A

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description
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128-bit Legacy SSE version: The source operand can be an XMM register or an 128-bit memory location. The desti-
nation is an XMM register. The upper bits (VL_MAX-1:128) of the corresponding register destination are unmodi-
fied.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

Operation

PABSB With 64-bit Operands:
Unsigned DEST[7:0] := ABS(SRC[7: 0]) 
Repeat operation for 2nd through 7th bytes 
Unsigned DEST[63:56] := ABS(SRC[63:56])

PABSB With 128-bit Operands:
Unsigned DEST[7:0] := ABS(SRC[7: 0]) 
Repeat operation for 2nd through 15th bytes 
Unsigned DEST[127:120] := ABS(SRC[127:120])

VPABSB With 128-bit Operands:
Unsigned DEST[7:0] := ABS(SRC[7: 0]) 
Repeat operation for 2nd through 15th bytes 
Unsigned DEST[127:120] := ABS(SRC[127:120])

VPABSB With 256-bit Operands:
Unsigned DEST[7:0] := ABS(SRC[7: 0]) 
Repeat operation for 2nd through 31st bytes 
Unsigned DEST[255:248] := ABS(SRC[255:248]) 

VPABSB (EVEX Encoded Versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)

FOR j := 0 TO KL-1
i := j * 8
IF k1[j] OR *no writemask*

THEN 
Unsigned DEST[i+7:i] := ABS(SRC[i+7:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

PABSW With 128-bit Operands:
Unsigned DEST[15:0] := ABS(SRC[15:0]) 
Repeat operation for 2nd through 7th 16-bit words 
Unsigned DEST[127:112] := ABS(SRC[127:112]) 

VPABSW With 128-bit Operands:
Unsigned DEST[15:0] := ABS(SRC[15:0]) 
Repeat operation for 2nd through 7th 16-bit words 
Unsigned DEST[127:112] := ABS(SRC[127:112]) 
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VPABSW With 256-bit Operands:
Unsigned DEST[15:0] := ABS(SRC[15:0]) 
Repeat operation for 2nd through 15th 16-bit words 
Unsigned DEST[255:240] := ABS(SRC[255:240]) 

VPABSW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN 
Unsigned DEST[i+15:i] := ABS(SRC[i+15:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

PABSD With 128-bit Operands:
Unsigned DEST[31:0] := ABS(SRC[31:0]) 
Repeat operation for 2nd through 3rd 32-bit double words 
Unsigned DEST[127:96] := ABS(SRC[127:96]) 

VPABSD With 128-bit Operands:
Unsigned DEST[31:0] := ABS(SRC[31:0]) 
Repeat operation for 2nd through 3rd 32-bit double words 
Unsigned DEST[127:96] := ABS(SRC[127:96]) 

VPABSD With 256-bit Operands:
Unsigned DEST[31:0] := ABS(SRC[31:0]) 
Repeat operation for 2nd through 7th 32-bit double words 
Unsigned DEST[255:224] := ABS(SRC[255:224]) 

VPABSD (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC *is memory*)

THEN
Unsigned DEST[i+31:i] := ABS(SRC[31:0])

ELSE 
Unsigned DEST[i+31:i] := ABS(SRC[i+31:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
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ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] := 0

FI
FI;

ENDFOR;
DEST[MAXVL-1:VL] := 0

VPABSQ (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC *is memory*)

THEN
Unsigned DEST[i+63:i] := ABS(SRC[63:0])

ELSE 
Unsigned DEST[i+63:i] := ABS(SRC[i+63:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalents

VPABSB__m512i _mm512_abs_epi8 ( __m512i a)
VPABSW__m512i _mm512_abs_epi16 ( __m512i a)
VPABSB__m512i _mm512_mask_abs_epi8 ( __m512i s, __mmask64 m, __m512i a)
VPABSW__m512i _mm512_mask_abs_epi16 ( __m512i s, __mmask32 m, __m512i a)
VPABSB__m512i _mm512_maskz_abs_epi8 (__mmask64 m, __m512i a)
VPABSW__m512i _mm512_maskz_abs_epi16 (__mmask32 m, __m512i a)
VPABSB__m256i _mm256_mask_abs_epi8 (__m256i s, __mmask32 m, __m256i a)
VPABSW__m256i _mm256_mask_abs_epi16 (__m256i s, __mmask16 m, __m256i a)
VPABSB__m256i _mm256_maskz_abs_epi8 (__mmask32 m, __m256i a)
VPABSW__m256i _mm256_maskz_abs_epi16 (__mmask16 m, __m256i a)
VPABSB__m128i _mm_mask_abs_epi8 (__m128i s, __mmask16 m, __m128i a)
VPABSW__m128i _mm_mask_abs_epi16 (__m128i s, __mmask8 m, __m128i a)
VPABSB__m128i _mm_maskz_abs_epi8 (__mmask16 m, __m128i a)
VPABSW__m128i _mm_maskz_abs_epi16 (__mmask8 m, __m128i a)
VPABSD __m256i _mm256_mask_abs_epi32(__m256i s, __mmask8 k, __m256i a);
VPABSD __m256i _mm256_maskz_abs_epi32( __mmask8 k, __m256i a);
VPABSD __m128i _mm_mask_abs_epi32(__m128i s, __mmask8 k, __m128i a);
VPABSD __m128i _mm_maskz_abs_epi32( __mmask8 k, __m128i a);
VPABSD  __m512i _mm512_abs_epi32( __m512i a);
VPABSD  __m512i _mm512_mask_abs_epi32(__m512i s, __mmask16 k, __m512i a);
VPABSD  __m512i _mm512_maskz_abs_epi32( __mmask16 k, __m512i a);
VPABSQ __m512i _mm512_abs_epi64( __m512i a);
VPABSQ __m512i _mm512_mask_abs_epi64(__m512i s, __mmask8 k, __m512i a);
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VPABSQ __m512i _mm512_maskz_abs_epi64( __mmask8 k, __m512i a);
VPABSQ __m256i _mm256_mask_abs_epi64(__m256i s, __mmask8 k, __m256i a);
VPABSQ __m256i _mm256_maskz_abs_epi64( __mmask8 k, __m256i a);
VPABSQ __m128i _mm_mask_abs_epi64(__m128i s, __mmask8 k, __m128i a);
VPABSQ __m128i _mm_maskz_abs_epi64( __mmask8 k, __m128i a);
PABSB __m128i _mm_abs_epi8 (__m128i a)
VPABSB __m128i _mm_abs_epi8 (__m128i a)
VPABSB __m256i _mm256_abs_epi8 (__m256i a)
PABSW __m128i _mm_abs_epi16 (__m128i a)
VPABSW __m128i _mm_abs_epi16 (__m128i a)
VPABSW __m256i _mm256_abs_epi16 (__m256i a)
PABSD __m128i _mm_abs_epi32 (__m128i a)
VPABSD __m128i _mm_abs_epi32 (__m128i a)
VPABSD __m256i _mm256_abs_epi32 (__m256i a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded VPABSD/Q, see Table 2-51, “Type E4 Class Exception Conditions.”
EVEX-encoded VPABSB/W, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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PACKSSWB/PACKSSDW—Pack With Signed Saturation
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 63 /r1

PACKSSWB mm1, mm2/m64

A V/V MMX Converts 4 packed signed word integers from 
mm1 and from mm2/m64 into 8 packed signed 
byte integers in mm1 using signed saturation.

66 0F 63 /r

PACKSSWB xmm1, xmm2/m128

A V/V SSE2 Converts 8 packed signed word integers from 
xmm1 and from xmm2/m128 into 16 packed 
signed byte integers in xmm1 using signed 
saturation.

NP 0F 6B /r1

PACKSSDW mm1, mm2/m64

A V/V MMX Converts 2 packed signed doubleword integers 
from mm1 and from mm2/m64 into 4 packed 
signed word integers in mm1 using signed 
saturation.

66 0F 6B /r

PACKSSDW xmm1, xmm2/m128

A V/V SSE2 Converts 4 packed signed doubleword integers 
from xmm1 and from xmm2/m128 into 8 packed 
signed word integers in xmm1 using signed 
saturation.

VEX.128.66.0F.WIG 63 /r

VPACKSSWB xmm1,xmm2, xmm3/m128

B V/V AVX Converts 8 packed signed word integers from 
xmm2 and from xmm3/m128 into 16 packed 
signed byte integers in xmm1 using signed 
saturation.

VEX.128.66.0F.WIG 6B /r

VPACKSSDW xmm1,xmm2, xmm3/m128

B V/V AVX Converts 4 packed signed doubleword integers 
from xmm2 and from xmm3/m128 into 8 packed 
signed word integers in xmm1 using signed 
saturation.

VEX.256.66.0F.WIG 63 /r

VPACKSSWB ymm1, ymm2, ymm3/m256

B V/V AVX2 Converts 16 packed signed word integers from 
ymm2 and from ymm3/m256 into 32 packed 
signed byte integers in ymm1 using signed 
saturation.

VEX.256.66.0F.WIG 6B /r

VPACKSSDW ymm1, ymm2, ymm3/m256

B V/V AVX2 Converts 8 packed signed doubleword integers 
from ymm2 and from ymm3/m256 into 16 
packed signed word integers in ymm1using 
signed saturation.

EVEX.128.66.0F.WIG 63 /r
VPACKSSWB xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Converts packed signed word integers from 
xmm2 and from xmm3/m128 into packed signed 
byte integers in xmm1 using signed saturation 
under writemask k1.

EVEX.256.66.0F.WIG 63 /r
VPACKSSWB ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Converts packed signed word integers from 
ymm2 and from ymm3/m256 into packed signed 
byte integers in ymm1 using signed saturation 
under writemask k1.

EVEX.512.66.0F.WIG 63 /r
VPACKSSWB zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Converts packed signed word integers from 
zmm2 and from zmm3/m512 into packed signed 
byte integers in zmm1 using signed saturation 
under writemask k1.

EVEX.128.66.0F.W0 6B /r
VPACKSSDW xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

D V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Converts packed signed doubleword integers 
from xmm2 and from xmm3/m128/m32bcst into 
packed signed word integers in xmm1 using 
signed saturation under writemask k1.
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Instruction Operand Encoding

Description

Converts packed signed word integers into packed signed byte integers (PACKSSWB) or converts packed signed 
doubleword integers into packed signed word integers (PACKSSDW), using saturation to handle overflow condi-
tions. See Figure 1-6 for an example of the packing operation.

PACKSSWB converts packed signed word integers in the first and second source operands into packed signed byte 
integers using signed saturation to handle overflow conditions beyond the range of signed byte integers. If the 
signed word value is beyond the range of a signed byte value (i.e., greater than 7FH or less than 80H), the satu-
rated signed byte integer value of 7FH or 80H, respectively, is stored in the destination. PACKSSDW converts 
packed signed doubleword integers in the first and second source operands into packed signed word integers using 
signed saturation to handle overflow conditions beyond 7FFFH and 8000H.

EVEX encoded PACKSSWB: The first source operand is a ZMM/YMM/XMM register. The second source operand is a 
ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operand is a ZMM/YMM/XMM 
register, updated conditional under the writemask k1.

EVEX.256.66.0F.W0 6B /r
VPACKSSDW ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

D V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Converts packed signed doubleword integers 
from ymm2 and from ymm3/m256/m32bcst into 
packed signed word integers in ymm1 using 
signed saturation under writemask k1.

EVEX.512.66.0F.W0 6B /r
VPACKSSDW zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

D V/V AVX512BW 
OR AVX10.12

Converts packed signed doubleword integers 
from zmm2 and from zmm3/m512/m32bcst into 
packed signed word integers in zmm1 using 
signed saturation under writemask k1.

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

D Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Figure 1-6.  Operation of the PACKSSDW Instruction Using 64-Bit Operands

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

D C

64-Bit SRC

64-Bit DEST

D’ C’ B’ A’

64-Bit DEST

B A
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EVEX encoded PACKSSDW: The first source operand is a ZMM/YMM/XMM register. The second source operand is a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 32-
bit memory location. The destination operand is a ZMM/YMM/XMM register, updated conditional under the write-
mask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the 
corresponding ZMM register destination are zeroed. 
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (MAXVL-1:128) of the corresponding ZMM destination register destination are unmodified.

Operation

PACKSSWB Instruction (128-bit Legacy SSE Version)
DEST[7:0] := SaturateSignedWordToSignedByte (DEST[15:0]);
DEST[15:8] := SaturateSignedWordToSignedByte (DEST[31:16]); 
DEST[23:16] := SaturateSignedWordToSignedByte (DEST[47:32]);
DEST[31:24] := SaturateSignedWordToSignedByte (DEST[63:48]);
DEST[39:32] := SaturateSignedWordToSignedByte (DEST[79:64]);
DEST[47:40] := SaturateSignedWordToSignedByte (DEST[95:80]);
DEST[55:48] := SaturateSignedWordToSignedByte (DEST[111:96]);
DEST[63:56] := SaturateSignedWordToSignedByte (DEST[127:112]);
DEST[71:64] := SaturateSignedWordToSignedByte (SRC[15:0]);
DEST[79:72] := SaturateSignedWordToSignedByte (SRC[31:16]);
DEST[87:80] := SaturateSignedWordToSignedByte (SRC[47:32]);
DEST[95:88] := SaturateSignedWordToSignedByte (SRC[63:48]);
DEST[103:96] := SaturateSignedWordToSignedByte (SRC[79:64]);
DEST[111:104] := SaturateSignedWordToSignedByte (SRC[95:80]);
DEST[119:112] := SaturateSignedWordToSignedByte (SRC[111:96]);
DEST[127:120] := SaturateSignedWordToSignedByte (SRC[127:112]);
DEST[MAXVL-1:128] (Unmodified)

PACKSSDW Instruction (128-bit Legacy SSE Version)
DEST[15:0] := SaturateSignedDwordToSignedWord (DEST[31:0]);
DEST[31:16] := SaturateSignedDwordToSignedWord (DEST[63:32]);
DEST[47:32] := SaturateSignedDwordToSignedWord (DEST[95:64]);
DEST[63:48] := SaturateSignedDwordToSignedWord (DEST[127:96]);
DEST[79:64] := SaturateSignedDwordToSignedWord (SRC[31:0]);
DEST[95:80] := SaturateSignedDwordToSignedWord (SRC[63:32]);
DEST[111:96] := SaturateSignedDwordToSignedWord (SRC[95:64]);
DEST[127:112] := SaturateSignedDwordToSignedWord (SRC[127:96]);
DEST[MAXVL-1:128] (Unmodified)
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VPACKSSWB Instruction (VEX.128 Encoded Version)
DEST[7:0] := SaturateSignedWordToSignedByte (SRC1[15:0]);
DEST[15:8] := SaturateSignedWordToSignedByte (SRC1[31:16]); 
DEST[23:16] := SaturateSignedWordToSignedByte (SRC1[47:32]);
DEST[31:24] := SaturateSignedWordToSignedByte (SRC1[63:48]);
DEST[39:32] := SaturateSignedWordToSignedByte (SRC1[79:64]);
DEST[47:40] := SaturateSignedWordToSignedByte (SRC1[95:80]);
DEST[55:48] := SaturateSignedWordToSignedByte (SRC1[111:96]);
DEST[63:56] := SaturateSignedWordToSignedByte (SRC1[127:112]);
DEST[71:64] := SaturateSignedWordToSignedByte (SRC2[15:0]);
DEST[79:72] := SaturateSignedWordToSignedByte (SRC2[31:16]);
DEST[87:80] := SaturateSignedWordToSignedByte (SRC2[47:32]);
DEST[95:88] := SaturateSignedWordToSignedByte (SRC2[63:48]);
DEST[103:96] := SaturateSignedWordToSignedByte (SRC2[79:64]);
DEST[111:104] := SaturateSignedWordToSignedByte (SRC2[95:80]);
DEST[119:112] := SaturateSignedWordToSignedByte (SRC2[111:96]);
DEST[127:120] := SaturateSignedWordToSignedByte (SRC2[127:112]);
DEST[MAXVL-1:128] := 0;

VPACKSSDW Instruction (VEX.128 Encoded Version)
DEST[15:0] := SaturateSignedDwordToSignedWord (SRC1[31:0]);
DEST[31:16] := SaturateSignedDwordToSignedWord (SRC1[63:32]);
DEST[47:32] := SaturateSignedDwordToSignedWord (SRC1[95:64]);
DEST[63:48] := SaturateSignedDwordToSignedWord (SRC1[127:96]);
DEST[79:64] := SaturateSignedDwordToSignedWord (SRC2[31:0]);
DEST[95:80] := SaturateSignedDwordToSignedWord (SRC2[63:32]);
DEST[111:96] := SaturateSignedDwordToSignedWord (SRC2[95:64]);
DEST[127:112] := SaturateSignedDwordToSignedWord (SRC2[127:96]);
DEST[MAXVL-1:128] := 0;

VPACKSSWB Instruction (VEX.256 Encoded Version)
DEST[7:0] := SaturateSignedWordToSignedByte (SRC1[15:0]);
DEST[15:8] := SaturateSignedWordToSignedByte (SRC1[31:16]); 
DEST[23:16] := SaturateSignedWordToSignedByte (SRC1[47:32]);
DEST[31:24] := SaturateSignedWordToSignedByte (SRC1[63:48]);
DEST[39:32] := SaturateSignedWordToSignedByte (SRC1[79:64]);
DEST[47:40] := SaturateSignedWordToSignedByte (SRC1[95:80]);
DEST[55:48] := SaturateSignedWordToSignedByte (SRC1[111:96]);
DEST[63:56] := SaturateSignedWordToSignedByte (SRC1[127:112]);
DEST[71:64] := SaturateSignedWordToSignedByte (SRC2[15:0]);
DEST[79:72] := SaturateSignedWordToSignedByte (SRC2[31:16]);
DEST[87:80] := SaturateSignedWordToSignedByte (SRC2[47:32]);
DEST[95:88] := SaturateSignedWordToSignedByte (SRC2[63:48]);
DEST[103:96] := SaturateSignedWordToSignedByte (SRC2[79:64]);
DEST[111:104] := SaturateSignedWordToSignedByte (SRC2[95:80]);
DEST[119:112] := SaturateSignedWordToSignedByte (SRC2[111:96]);
DEST[127:120] := SaturateSignedWordToSignedByte (SRC2[127:112]);
DEST[135:128] := SaturateSignedWordToSignedByte (SRC1[143:128]);
DEST[143:136] := SaturateSignedWordToSignedByte (SRC1[159:144]); 
DEST[151:144] := SaturateSignedWordToSignedByte (SRC1[175:160]);
DEST[159:152] := SaturateSignedWordToSignedByte (SRC1[191:176]);
DEST[167:160] := SaturateSignedWordToSignedByte (SRC1[207:192]);
DEST[175:168] := SaturateSignedWordToSignedByte (SRC1[223:208]);
DEST[183:176] := SaturateSignedWordToSignedByte (SRC1[239:224]);
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DEST[191:184] := SaturateSignedWordToSignedByte (SRC1[255:240]);
DEST[199:192] := SaturateSignedWordToSignedByte (SRC2[143:128]);
DEST[207:200] := SaturateSignedWordToSignedByte (SRC2[159:144]);
DEST[215:208] := SaturateSignedWordToSignedByte (SRC2[175:160]);
DEST[223:216] := SaturateSignedWordToSignedByte (SRC2[191:176]);
DEST[231:224] := SaturateSignedWordToSignedByte (SRC2[207:192]);
DEST[239:232] := SaturateSignedWordToSignedByte (SRC2[223:208]);
DEST[247:240] := SaturateSignedWordToSignedByte (SRC2[239:224]);
DEST[255:248] := SaturateSignedWordToSignedByte (SRC2[255:240]);
DEST[MAXVL-1:256] := 0;

VPACKSSDW Instruction (VEX.256 Encoded Version)
DEST[15:0] := SaturateSignedDwordToSignedWord (SRC1[31:0]);
DEST[31:16] := SaturateSignedDwordToSignedWord (SRC1[63:32]);
DEST[47:32] := SaturateSignedDwordToSignedWord (SRC1[95:64]);
DEST[63:48] := SaturateSignedDwordToSignedWord (SRC1[127:96]);
DEST[79:64] := SaturateSignedDwordToSignedWord (SRC2[31:0]);
DEST[95:80] := SaturateSignedDwordToSignedWord (SRC2[63:32]);
DEST[111:96] := SaturateSignedDwordToSignedWord (SRC2[95:64]);
DEST[127:112] := SaturateSignedDwordToSignedWord (SRC2[127:96]);
DEST[143:128] := SaturateSignedDwordToSignedWord (SRC1[159:128]);
DEST[159:144] := SaturateSignedDwordToSignedWord (SRC1[191:160]);
DEST[175:160] := SaturateSignedDwordToSignedWord (SRC1[223:192]);
DEST[191:176] := SaturateSignedDwordToSignedWord (SRC1[255:224]);
DEST[207:192] := SaturateSignedDwordToSignedWord (SRC2[159:128]);
DEST[223:208] := SaturateSignedDwordToSignedWord (SRC2[191:160]);
DEST[239:224] := SaturateSignedDwordToSignedWord (SRC2[223:192]);
DEST[255:240] := SaturateSignedDwordToSignedWord (SRC2[255:224]);
DEST[MAXVL-1:256] := 0;

VPACKSSWB (EVEX Encoded Versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
TMP_DEST[7:0] := SaturateSignedWordToSignedByte (SRC1[15:0]);
TMP_DEST[15:8] := SaturateSignedWordToSignedByte (SRC1[31:16]); 
TMP_DEST[23:16] := SaturateSignedWordToSignedByte (SRC1[47:32]);
TMP_DEST[31:24] := SaturateSignedWordToSignedByte (SRC1[63:48]);
TMP_DEST[39:32] := SaturateSignedWordToSignedByte (SRC1[79:64]);
TMP_DEST[47:40] := SaturateSignedWordToSignedByte (SRC1[95:80]);
TMP_DEST[55:48] := SaturateSignedWordToSignedByte (SRC1[111:96]);
TMP_DEST[63:56] := SaturateSignedWordToSignedByte (SRC1[127:112]);
TMP_DEST[71:64] := SaturateSignedWordToSignedByte (SRC2[15:0]);
TMP_DEST[79:72] := SaturateSignedWordToSignedByte (SRC2[31:16]);
TMP_DEST[87:80] := SaturateSignedWordToSignedByte (SRC2[47:32]);
TMP_DEST[95:88] := SaturateSignedWordToSignedByte (SRC2[63:48]);
TMP_DEST[103:96] := SaturateSignedWordToSignedByte (SRC2[79:64]);
TMP_DEST[111:104] := SaturateSignedWordToSignedByte (SRC2[95:80]);
TMP_DEST[119:112] := SaturateSignedWordToSignedByte (SRC2[111:96]);
TMP_DEST[127:120] := SaturateSignedWordToSignedByte (SRC2[127:112]);
IF VL >= 256

TMP_DEST[135:128] := SaturateSignedWordToSignedByte (SRC1[143:128]);
TMP_DEST[143:136] := SaturateSignedWordToSignedByte (SRC1[159:144]); 
TMP_DEST[151:144] := SaturateSignedWordToSignedByte (SRC1[175:160]);
TMP_DEST[159:152] := SaturateSignedWordToSignedByte (SRC1[191:176]);
TMP_DEST[167:160] := SaturateSignedWordToSignedByte (SRC1[207:192]);
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TMP_DEST[175:168] := SaturateSignedWordToSignedByte (SRC1[223:208]);
TMP_DEST[183:176] := SaturateSignedWordToSignedByte (SRC1[239:224]);
TMP_DEST[191:184] := SaturateSignedWordToSignedByte (SRC1[255:240]);
TMP_DEST[199:192] := SaturateSignedWordToSignedByte (SRC2[143:128]);
TMP_DEST[207:200] := SaturateSignedWordToSignedByte (SRC2[159:144]);
TMP_DEST[215:208] := SaturateSignedWordToSignedByte (SRC2[175:160]);
TMP_DEST[223:216] := SaturateSignedWordToSignedByte (SRC2[191:176]);
TMP_DEST[231:224] := SaturateSignedWordToSignedByte (SRC2[207:192]);
TMP_DEST[239:232] := SaturateSignedWordToSignedByte (SRC2[223:208]);
TMP_DEST[247:240] := SaturateSignedWordToSignedByte (SRC2[239:224]);
TMP_DEST[255:248] := SaturateSignedWordToSignedByte (SRC2[255:240]);

FI;
IF VL >= 512

TMP_DEST[263:256] := SaturateSignedWordToSignedByte (SRC1[271:256]);
TMP_DEST[271:264] := SaturateSignedWordToSignedByte (SRC1[287:272]); 
TMP_DEST[279:272] := SaturateSignedWordToSignedByte (SRC1[303:288]);
TMP_DEST[287:280] := SaturateSignedWordToSignedByte (SRC1[319:304]);
TMP_DEST[295:288] := SaturateSignedWordToSignedByte (SRC1[335:320]);
TMP_DEST[303:296] := SaturateSignedWordToSignedByte (SRC1[351:336]);
TMP_DEST[311:304] := SaturateSignedWordToSignedByte (SRC1[367:352]);
TMP_DEST[319:312] := SaturateSignedWordToSignedByte (SRC1[383:368]);

TMP_DEST[327:320] := SaturateSignedWordToSignedByte (SRC2[271:256]);
TMP_DEST[335:328] := SaturateSignedWordToSignedByte (SRC2[287:272]); 
TMP_DEST[343:336] := SaturateSignedWordToSignedByte (SRC2[303:288]);
TMP_DEST[351:344] := SaturateSignedWordToSignedByte (SRC2[319:304]);
TMP_DEST[359:352] := SaturateSignedWordToSignedByte (SRC2[335:320]);
TMP_DEST[367:360] := SaturateSignedWordToSignedByte (SRC2[351:336]);
TMP_DEST[375:368] := SaturateSignedWordToSignedByte (SRC2[367:352]);
TMP_DEST[383:376] := SaturateSignedWordToSignedByte (SRC2[383:368]);

TMP_DEST[391:384] := SaturateSignedWordToSignedByte (SRC1[399:384]);
TMP_DEST[399:392] := SaturateSignedWordToSignedByte (SRC1[415:400]);
TMP_DEST[407:400] := SaturateSignedWordToSignedByte (SRC1[431:416]);
TMP_DEST[415:408] := SaturateSignedWordToSignedByte (SRC1[447:432]);
TMP_DEST[423:416] := SaturateSignedWordToSignedByte (SRC1[463:448]);
TMP_DEST[431:424] := SaturateSignedWordToSignedByte (SRC1[479:464]);
TMP_DEST[439:432] := SaturateSignedWordToSignedByte (SRC1[495:480]);
TMP_DEST[447:440] := SaturateSignedWordToSignedByte (SRC1[511:496]);

TMP_DEST[455:448] := SaturateSignedWordToSignedByte (SRC2[399:384]);
TMP_DEST[463:456] := SaturateSignedWordToSignedByte (SRC2[415:400]);
TMP_DEST[471:464] := SaturateSignedWordToSignedByte (SRC2[431:416]);
TMP_DEST[479:472] := SaturateSignedWordToSignedByte (SRC2[447:432]);
TMP_DEST[487:480] := SaturateSignedWordToSignedByte (SRC2[463:448]);
TMP_DEST[495:488] := SaturateSignedWordToSignedByte (SRC2[479:464]);
TMP_DEST[503:496] := SaturateSignedWordToSignedByte (SRC2[495:480]);
TMP_DEST[511:504] := SaturateSignedWordToSignedByte (SRC2[511:496]);

FI;
FOR j := 0 TO KL-1

i := j * 8
IF k1[j] OR *no writemask*

THEN 
DEST[i+7:i] := TMP_DEST[i+7:i]
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ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

VPACKSSDW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO ((KL/2) - 1)

i := j * 32

IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN

TMP_SRC2[i+31:i] := SRC2[31:0]
ELSE 

TMP_SRC2[i+31:i] := SRC2[i+31:i]
FI;

ENDFOR;

TMP_DEST[15:0] := SaturateSignedDwordToSignedWord (SRC1[31:0]);
TMP_DEST[31:16] := SaturateSignedDwordToSignedWord (SRC1[63:32]);
TMP_DEST[47:32] := SaturateSignedDwordToSignedWord (SRC1[95:64]);
TMP_DEST[63:48] := SaturateSignedDwordToSignedWord (SRC1[127:96]);
TMP_DEST[79:64] := SaturateSignedDwordToSignedWord (TMP_SRC2[31:0]);
TMP_DEST[95:80] := SaturateSignedDwordToSignedWord (TMP_SRC2[63:32]);
TMP_DEST[111:96] := SaturateSignedDwordToSignedWord (TMP_SRC2[95:64]);
TMP_DEST[127:112] := SaturateSignedDwordToSignedWord (TMP_SRC2[127:96]);
IF VL >= 256

TMP_DEST[143:128] := SaturateSignedDwordToSignedWord (SRC1[159:128]);
TMP_DEST[159:144] := SaturateSignedDwordToSignedWord (SRC1[191:160]);
TMP_DEST[175:160] := SaturateSignedDwordToSignedWord (SRC1[223:192]);
TMP_DEST[191:176] := SaturateSignedDwordToSignedWord (SRC1[255:224]);
TMP_DEST[207:192] := SaturateSignedDwordToSignedWord (TMP_SRC2[159:128]);
TMP_DEST[223:208] := SaturateSignedDwordToSignedWord (TMP_SRC2[191:160]);
TMP_DEST[239:224] := SaturateSignedDwordToSignedWord (TMP_SRC2[223:192]);
TMP_DEST[255:240] := SaturateSignedDwordToSignedWord (TMP_SRC2[255:224]);

FI;
IF VL >= 512

TMP_DEST[271:256] := SaturateSignedDwordToSignedWord (SRC1[287:256]);
TMP_DEST[287:272] := SaturateSignedDwordToSignedWord (SRC1[319:288]);
TMP_DEST[303:288] := SaturateSignedDwordToSignedWord (SRC1[351:320]);
TMP_DEST[319:304] := SaturateSignedDwordToSignedWord (SRC1[383:352]);
TMP_DEST[335:320] := SaturateSignedDwordToSignedWord (TMP_SRC2[287:256]);
TMP_DEST[351:336] := SaturateSignedDwordToSignedWord (TMP_SRC2[319:288]);
TMP_DEST[367:352] := SaturateSignedDwordToSignedWord (TMP_SRC2[351:320]);
TMP_DEST[383:368] := SaturateSignedDwordToSignedWord (TMP_SRC2[383:352]);

TMP_DEST[399:384] := SaturateSignedDwordToSignedWord (SRC1[415:384]);
TMP_DEST[415:400] := SaturateSignedDwordToSignedWord (SRC1[447:416]);
TMP_DEST[431:416] := SaturateSignedDwordToSignedWord (SRC1[479:448]);
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TMP_DEST[447:432] := SaturateSignedDwordToSignedWord (SRC1[511:480]);
TMP_DEST[463:448] := SaturateSignedDwordToSignedWord (TMP_SRC2[415:384]);
TMP_DEST[479:464] := SaturateSignedDwordToSignedWord (TMP_SRC2[447:416]);
TMP_DEST[495:480] := SaturateSignedDwordToSignedWord (TMP_SRC2[479:448]);
TMP_DEST[511:496] := SaturateSignedDwordToSignedWord (TMP_SRC2[511:480]);

FI;
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TMP_DEST[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalents

VPACKSSDW__m512i _mm512_packs_epi32(__m512i m1, __m512i m2);
VPACKSSDW__m512i _mm512_mask_packs_epi32(__m512i s, __mmask32 k, __m512i m1, __m512i m2);
VPACKSSDW__m512i _mm512_maskz_packs_epi32( __mmask32 k, __m512i m1, __m512i m2);
VPACKSSDW__m256i _mm256_mask_packs_epi32( __m256i s, __mmask16 k, __m256i m1, __m256i m2);
VPACKSSDW__m256i _mm256_maskz_packs_epi32( __mmask16 k, __m256i m1, __m256i m2);
VPACKSSDW__m128i _mm_mask_packs_epi32( __m128i s, __mmask8 k, __m128i m1, __m128i m2);
VPACKSSDW__m128i _mm_maskz_packs_epi32( __mmask8 k, __m128i m1, __m128i m2);
VPACKSSWB__m512i _mm512_packs_epi16(__m512i m1, __m512i m2);
VPACKSSWB__m512i _mm512_mask_packs_epi16(__m512i s, __mmask32 k, __m512i m1, __m512i m2);
VPACKSSWB__m512i _mm512_maskz_packs_epi16( __mmask32 k, __m512i m1, __m512i m2);
VPACKSSWB__m256i _mm256_mask_packs_epi16( __m256i s, __mmask16 k, __m256i m1, __m256i m2);
VPACKSSWB__m256i _mm256_maskz_packs_epi16( __mmask16 k, __m256i m1, __m256i m2);
VPACKSSWB__m128i _mm_mask_packs_epi16( __m128i s, __mmask8 k, __m128i m1, __m128i m2);
VPACKSSWB__m128i _mm_maskz_packs_epi16( __mmask8 k, __m128i m1, __m128i m2);
PACKSSWB __m128i _mm_packs_epi16(__m128i m1, __m128i m2)
PACKSSDW __m128i _mm_packs_epi32(__m128i m1, __m128i m2)
VPACKSSWB __m256i _mm256_packs_epi16(__m256i m1, __m256i m2)
VPACKSSDW __m256i _mm256_packs_epi32(__m256i m1, __m256i m2)

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded VPACKSSDW, see Table 2-52, “Type E4NF Class Exception Conditions.”
EVEX-encoded VPACKSSWB, see Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
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PACKUSDW—Pack With Unsigned Saturation 

Instruction Operand Encoding

Description 

Converts packed signed doubleword integers in the first and second source operands into packed unsigned word 
integers using unsigned saturation to handle overflow conditions. If the signed doubleword value is beyond the 
range of an unsigned word (that is, greater than FFFFH or less than 0000H), the saturated unsigned word integer 
value of FFFFH or 0000H, respectively, is stored in the destination.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand is a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 32-
bit memory location. The destination operand is a ZMM register, updated conditionally under the writemask k1.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 38 2B /r
PACKUSDW xmm1, xmm2/m128

A V/V SSE4_1 Convert 4 packed signed doubleword integers from 
xmm1 and 4 packed signed doubleword integers from 
xmm2/m128 into 8 packed unsigned word integers in 
xmm1 using unsigned saturation.

VEX.128.66.0F38 2B /r
VPACKUSDW xmm1,xmm2, 
xmm3/m128

B V/V AVX Convert 4 packed signed doubleword integers from 
xmm2 and 4 packed signed doubleword integers from 
xmm3/m128 into 8 packed unsigned word integers in 
xmm1 using unsigned saturation.

VEX.256.66.0F38 2B /r
VPACKUSDW ymm1, ymm2, 
ymm3/m256

B V/V AVX2 Convert 8 packed signed doubleword integers from 
ymm2 and 8 packed signed doubleword integers from 
ymm3/m256 into 16 packed unsigned word integers in 
ymm1 using unsigned saturation.

EVEX.128.66.0F38.W0 2B /r
VPACKUSDW xmm1{k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert packed signed doubleword integers from xmm2 
and packed signed doubleword integers from 
xmm3/m128/m32bcst into packed unsigned word 
integers in xmm1 using unsigned saturation under 
writemask k1.

EVEX.256.66.0F38.W0 2B /r
VPACKUSDW ymm1{k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Convert packed signed doubleword integers from ymm2 
and packed signed doubleword integers from 
ymm3/m256/m32bcst into packed unsigned word 
integers in ymm1 using unsigned saturation under 
writemask k1.

EVEX.512.66.0F38.W0 2B /r
VPACKUSDW zmm1{k1}{z}, zmm2, 
zmm3/m512/m32bcst

C V/V AVX512BW 
OR AVX10.11

Convert packed signed doubleword integers from zmm2 
and packed signed doubleword integers from 
zmm3/m512/m32bcst into packed unsigned word 
integers in zmm1 using unsigned saturation under 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the 
corresponding ZMM register destination are zeroed. 
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (MAXVL-1:128) of the corresponding destination register destination are unmodified.

Operation

PACKUSDW (Legacy SSE Instruction)
TMP[15:0] := (DEST[31:0] < 0) ? 0 : DEST[15:0];
DEST[15:0] := (DEST[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] := (DEST[63:32] < 0) ? 0 : DEST[47:32];
DEST[31:16] := (DEST[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] := (DEST[95:64] < 0) ? 0 : DEST[79:64];
DEST[47:32] := (DEST[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] := (DEST[127:96] < 0) ? 0 : DEST[111:96];
DEST[63:48] := (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] := (SRC[31:0] < 0) ? 0 : SRC[15:0];
DEST[79:64] := (SRC[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] := (SRC[63:32] < 0) ? 0 : SRC[47:32];
DEST[95:80] := (SRC[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] := (SRC[95:64] < 0) ? 0 : SRC[79:64];
DEST[111:96] := (SRC[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] := (SRC[127:96] < 0) ? 0 : SRC[111:96];
DEST[127:112] := (SRC[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;
DEST[MAXVL-1:128] (Unmodified)

PACKUSDW (VEX.128 Encoded Version)
TMP[15:0] := (SRC1[31:0] < 0) ? 0 : SRC1[15:0];
DEST[15:0] := (SRC1[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] := (SRC1[63:32] < 0) ? 0 : SRC1[47:32];
DEST[31:16] := (SRC1[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] := (SRC1[95:64] < 0) ? 0 : SRC1[79:64];
DEST[47:32] := (SRC1[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] := (SRC1[127:96] < 0) ? 0 : SRC1[111:96];
DEST[63:48] := (SRC1[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] := (SRC2[31:0] < 0) ? 0 : SRC2[15:0];
DEST[79:64] := (SRC2[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] := (SRC2[63:32] < 0) ? 0 : SRC2[47:32];
DEST[95:80] := (SRC2[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] := (SRC2[95:64] < 0) ? 0 : SRC2[79:64];
DEST[111:96] := (SRC2[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] := (SRC2[127:96] < 0) ? 0 : SRC2[111:96];
DEST[127:112] := (SRC2[127:96] > FFFFH) ? FFFFH : TMP[127:112];
DEST[MAXVL-1:128] := 0;
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VPACKUSDW (VEX.256 Encoded Version)
TMP[15:0] := (SRC1[31:0] < 0) ? 0 : SRC1[15:0];
DEST[15:0] := (SRC1[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] := (SRC1[63:32] < 0) ? 0 : SRC1[47:32];
DEST[31:16] := (SRC1[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] := (SRC1[95:64] < 0) ? 0 : SRC1[79:64];
DEST[47:32] := (SRC1[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] := (SRC1[127:96] < 0) ? 0 : SRC1[111:96];
DEST[63:48] := (SRC1[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] := (SRC2[31:0] < 0) ? 0 : SRC2[15:0];
DEST[79:64] := (SRC2[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] := (SRC2[63:32] < 0) ? 0 : SRC2[47:32];
DEST[95:80] := (SRC2[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] := (SRC2[95:64] < 0) ? 0 : SRC2[79:64];
DEST[111:96] := (SRC2[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] := (SRC2[127:96] < 0) ? 0 : SRC2[111:96];
DEST[127:112] := (SRC2[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;
TMP[143:128] := (SRC1[159:128] < 0) ? 0 : SRC1[143:128];
DEST[143:128] := (SRC1[159:128] > FFFFH) ? FFFFH : TMP[143:128] ;
TMP[159:144] := (SRC1[191:160] < 0) ? 0 : SRC1[175:160];
DEST[159:144] := (SRC1[191:160] > FFFFH) ? FFFFH : TMP[159:144] ;
TMP[175:160] := (SRC1[223:192] < 0) ? 0 : SRC1[207:192];
DEST[175:160] := (SRC1[223:192] > FFFFH) ? FFFFH : TMP[175:160] ;
TMP[191:176] := (SRC1[255:224] < 0) ? 0 : SRC1[239:224];
DEST[191:176] := (SRC1[255:224] > FFFFH) ? FFFFH : TMP[191:176] ;
TMP[207:192] := (SRC2[159:128] < 0) ? 0 : SRC2[143:128];
DEST[207:192] := (SRC2[159:128] > FFFFH) ? FFFFH : TMP[207:192] ;
TMP[223:208] := (SRC2[191:160] < 0) ? 0 : SRC2[175:160];
DEST[223:208] := (SRC2[191:160] > FFFFH) ? FFFFH : TMP[223:208] ;
TMP[239:224] := (SRC2[223:192] < 0) ? 0 : SRC2[207:192];
DEST[239:224] := (SRC2[223:192] > FFFFH) ? FFFFH : TMP[239:224] ;
TMP[255:240] := (SRC2[255:224] < 0) ? 0 : SRC2[239:224];
DEST[255:240] := (SRC2[255:224] > FFFFH) ? FFFFH : TMP[255:240] ;
DEST[MAXVL-1:256] := 0;

VPACKUSDW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO ((KL/2) - 1)

i := j * 32

IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN

TMP_SRC2[i+31:i] := SRC2[31:0]
ELSE 

TMP_SRC2[i+31:i] := SRC2[i+31:i]
FI;

ENDFOR;

TMP[15:0] := (SRC1[31:0] < 0) ? 0 : SRC1[15:0];
DEST[15:0] := (SRC1[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] := (SRC1[63:32] < 0) ? 0 : SRC1[47:32];
DEST[31:16] := (SRC1[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] := (SRC1[95:64] < 0) ? 0 : SRC1[79:64];
DEST[47:32] := (SRC1[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
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TMP[63:48] := (SRC1[127:96] < 0) ? 0 : SRC1[111:96];
DEST[63:48] := (SRC1[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] := (TMP_SRC2[31:0] < 0) ? 0 : TMP_SRC2[15:0];
DEST[79:64] := (TMP_SRC2[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] := (TMP_SRC2[63:32] < 0) ? 0 : TMP_SRC2[47:32];
DEST[95:80] := (TMP_SRC2[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] := (TMP_SRC2[95:64] < 0) ? 0 : TMP_SRC2[79:64];
DEST[111:96] := (TMP_SRC2[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] := (TMP_SRC2[127:96] < 0) ? 0 : TMP_SRC2[111:96];
DEST[127:112] := (TMP_SRC2[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;
IF VL >= 256

TMP[143:128] := (SRC1[159:128] < 0) ? 0 : SRC1[143:128];
DEST[143:128] := (SRC1[159:128] > FFFFH) ? FFFFH : TMP[143:128] ;
TMP[159:144] := (SRC1[191:160] < 0) ? 0 : SRC1[175:160];
DEST[159:144] := (SRC1[191:160] > FFFFH) ? FFFFH : TMP[159:144] ;
TMP[175:160] := (SRC1[223:192] < 0) ? 0 : SRC1[207:192];
DEST[175:160] := (SRC1[223:192] > FFFFH) ? FFFFH : TMP[175:160] ;
TMP[191:176] := (SRC1[255:224] < 0) ? 0 : SRC1[239:224];
DEST[191:176] := (SRC1[255:224] > FFFFH) ? FFFFH : TMP[191:176] ;
TMP[207:192] := (TMP_SRC2[159:128] < 0) ? 0 : TMP_SRC2[143:128];
DEST[207:192] := (TMP_SRC2[159:128] > FFFFH) ? FFFFH : TMP[207:192] ;
TMP[223:208] := (TMP_SRC2[191:160] < 0) ? 0 : TMP_SRC2[175:160];
DEST[223:208] := (TMP_SRC2[191:160] > FFFFH) ? FFFFH : TMP[223:208] ;
TMP[239:224] := (TMP_SRC2[223:192] < 0) ? 0 : TMP_SRC2[207:192];
DEST[239:224] := (TMP_SRC2[223:192] > FFFFH) ? FFFFH : TMP[239:224] ;
TMP[255:240] := (TMP_SRC2[255:224] < 0) ? 0 : TMP_SRC2[239:224];
DEST[255:240] := (TMP_SRC2[255:224] > FFFFH) ? FFFFH : TMP[255:240] ;

FI;
IF VL >= 512

TMP[271:256] := (SRC1[287:256] < 0) ? 0 : SRC1[271:256];
DEST[271:256] := (SRC1[287:256] > FFFFH) ? FFFFH : TMP[271:256] ;
TMP[287:272] := (SRC1[319:288] < 0) ? 0 : SRC1[303:288];
DEST[287:272] := (SRC1[319:288] > FFFFH) ? FFFFH : TMP[287:272] ;
TMP[303:288] := (SRC1[351:320] < 0) ? 0 : SRC1[335:320];
DEST[303:288] := (SRC1[351:320] > FFFFH) ? FFFFH : TMP[303:288] ;
TMP[319:304] := (SRC1[383:352] < 0) ? 0 : SRC1[367:352];
DEST[319:304] := (SRC1[383:352] > FFFFH) ? FFFFH : TMP[319:304] ;
TMP[335:320] := (TMP_SRC2[287:256] < 0) ? 0 : TMP_SRC2[271:256];
DEST[335:304] := (TMP_SRC2[287:256] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[351:336] := (TMP_SRC2[319:288] < 0) ? 0 : TMP_SRC2[303:288];
DEST[351:336] := (TMP_SRC2[319:288] > FFFFH) ? FFFFH : TMP[351:336] ;
TMP[367:352] := (TMP_SRC2[351:320] < 0) ? 0 : TMP_SRC2[315:320];
DEST[367:352] := (TMP_SRC2[351:320] > FFFFH) ? FFFFH : TMP[367:352] ;
TMP[383:368] := (TMP_SRC2[383:352] < 0) ? 0 : TMP_SRC2[367:352];
DEST[383:368] := (TMP_SRC2[383:352] > FFFFH) ? FFFFH : TMP[383:368] ;
TMP[399:384] := (SRC1[415:384] < 0) ? 0 : SRC1[399:384];
DEST[399:384] := (SRC1[415:384] > FFFFH) ? FFFFH : TMP[399:384] ;
TMP[415:400] := (SRC1[447:416] < 0) ? 0 : SRC1[431:416];
DEST[415:400] := (SRC1[447:416] > FFFFH) ? FFFFH : TMP[415:400] ;
TMP[431:416] := (SRC1[479:448] < 0) ? 0 : SRC1[463:448];
DEST[431:416] := (SRC1[479:448] > FFFFH) ? FFFFH : TMP[431:416] ;
TMP[447:432] := (SRC1[511:480] < 0) ? 0 : SRC1[495:480];
DEST[447:432] := (SRC1[511:480] > FFFFH) ? FFFFH : TMP[447:432] ;
TMP[463:448] := (TMP_SRC2[415:384] < 0) ? 0 : TMP_SRC2[399:384];
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DEST[463:448] := (TMP_SRC2[415:384] > FFFFH) ? FFFFH : TMP[463:448] ;
TMP[475:464] := (TMP_SRC2[447:416] < 0) ? 0 : TMP_SRC2[431:416];
DEST[475:464] := (TMP_SRC2[447:416] > FFFFH) ? FFFFH : TMP[475:464] ;
TMP[491:476] := (TMP_SRC2[479:448] < 0) ? 0 : TMP_SRC2[463:448];
DEST[491:476] := (TMP_SRC2[479:448] > FFFFH) ? FFFFH : TMP[491:476] ;
TMP[511:492] := (TMP_SRC2[511:480] < 0) ? 0 : TMP_SRC2[495:480];
DEST[511:492] := (TMP_SRC2[511:480] > FFFFH) ? FFFFH : TMP[511:492] ;

FI;
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask*

THEN 
DEST[i+15:i] := TMP_DEST[i+15:i]

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalents

VPACKUSDW__m512i _mm512_packus_epi32(__m512i m1, __m512i m2);
VPACKUSDW__m512i _mm512_mask_packus_epi32(__m512i s, __mmask32 k, __m512i m1, __m512i m2);
VPACKUSDW__m512i _mm512_maskz_packus_epi32( __mmask32 k, __m512i m1, __m512i m2);
VPACKUSDW__m256i _mm256_mask_packus_epi32( __m256i s, __mmask16 k, __m256i m1, __m256i m2);
VPACKUSDW__m256i _mm256_maskz_packus_epi32( __mmask16 k, __m256i m1, __m256i m2);
VPACKUSDW__m128i _mm_mask_packus_epi32( __m128i s, __mmask8 k, __m128i m1, __m128i m2);
VPACKUSDW__m128i _mm_maskz_packus_epi32( __mmask8 k, __m128i m1, __m128i m2);
PACKUSDW__m128i _mm_packus_epi32(__m128i m1, __m128i m2);
VPACKUSDW__m256i _mm256_packus_epi32(__m256i m1, __m256i m2);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-52, “Type E4NF Class Exception Conditions.”
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PACKUSWB—Pack With Unsigned Saturation

Instruction Operand Encoding

Description

Converts 4, 8, 16, or 32 signed word integers from the destination operand (first operand) and 4, 8, 16, or 32 
signed word integers from the source operand (second operand) into 8, 16, 32 or 64 unsigned byte integers and 
stores the result in the destination operand. (See Figure 1-6 for an example of the packing operation.) If a signed 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 67 /r1

PACKUSWB mm, mm/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V MMX Converts 4 signed word integers from mm and 
4 signed word integers from mm/m64 into 8 
unsigned byte integers in mm using unsigned 
saturation.

66 0F 67 /r

PACKUSWB xmm1, xmm2/m128

A V/V SSE2 Converts 8 signed word integers from xmm1 
and 8 signed word integers from xmm2/m128 
into 16 unsigned byte integers in xmm1 using 
unsigned saturation.

VEX.128.66.0F.WIG 67 /r

VPACKUSWB xmm1, xmm2, xmm3/m128

B V/V AVX Converts 8 signed word integers from xmm2 
and 8 signed word integers from xmm3/m128 
into 16 unsigned byte integers in xmm1 using 
unsigned saturation.

VEX.256.66.0F.WIG 67 /r

VPACKUSWB ymm1, ymm2, ymm3/m256

B V/V AVX2 Converts 16 signed word integers from ymm2 
and 16signed word integers from ymm3/m256 
into 32 unsigned byte integers in ymm1 using 
unsigned saturation.

EVEX.128.66.0F.WIG 67 /r
VPACKUSWB xmm1{k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Converts signed word integers from xmm2 and 
signed word integers from xmm3/m128 into 
unsigned byte integers in xmm1 using unsigned 
saturation under writemask k1.

EVEX.256.66.0F.WIG 67 /r
VPACKUSWB ymm1{k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Converts signed word integers from ymm2 and 
signed word integers from ymm3/m256 into 
unsigned byte integers in ymm1 using unsigned 
saturation under writemask k1.

EVEX.512.66.0F.WIG 67 /r
VPACKUSWB zmm1{k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Converts signed word integers from zmm2 and 
signed word integers from zmm3/m512 into 
unsigned byte integers in zmm1 using unsigned 
saturation under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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word integer value is beyond the range of an unsigned byte integer (that is, greater than FFH or less than 00H), the 
saturated unsigned byte integer value of FFH or 00H, respectively, is stored in the destination.
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM 
register or a 512-bit memory location. The destination operand is a ZMM register.
VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register. The second source operand 
is a YMM register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-
1:256) of the corresponding ZMM register destination are zeroed. 
VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand 
is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-
1:128) of the corresponding register destination are zeroed.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (MAXVL-1:128) of the corresponding register destination are unmodified.

Operation

PACKUSWB (With 64-bit Operands)
DEST[7:0] := SaturateSignedWordToUnsignedByte DEST[15:0]; 
DEST[15:8] := SaturateSignedWordToUnsignedByte DEST[31:16];
DEST[23:16] := SaturateSignedWordToUnsignedByte DEST[47:32];
DEST[31:24] := SaturateSignedWordToUnsignedByte DEST[63:48];
DEST[39:32] := SaturateSignedWordToUnsignedByte SRC[15:0];
DEST[47:40] := SaturateSignedWordToUnsignedByte SRC[31:16];
DEST[55:48] := SaturateSignedWordToUnsignedByte SRC[47:32];
DEST[63:56] := SaturateSignedWordToUnsignedByte SRC[63:48];

PACKUSWB (Legacy SSE Instruction)
DEST[7:0] := SaturateSignedWordToUnsignedByte (DEST[15:0]);
DEST[15:8] := SaturateSignedWordToUnsignedByte (DEST[31:16]);
DEST[23:16] := SaturateSignedWordToUnsignedByte (DEST[47:32]);
DEST[31:24] := SaturateSignedWordToUnsignedByte (DEST[63:48]);
DEST[39:32] := SaturateSignedWordToUnsignedByte (DEST[79:64]);
DEST[47:40] := SaturateSignedWordToUnsignedByte (DEST[95:80]);
DEST[55:48] := SaturateSignedWordToUnsignedByte (DEST[111:96]);
DEST[63:56] := SaturateSignedWordToUnsignedByte (DEST[127:112]);
DEST[71:64] := SaturateSignedWordToUnsignedByte (SRC[15:0]);
DEST[79:72] := SaturateSignedWordToUnsignedByte (SRC[31:16]);
DEST[87:80] := SaturateSignedWordToUnsignedByte (SRC[47:32]);
DEST[95:88] := SaturateSignedWordToUnsignedByte (SRC[63:48]);
DEST[103:96] := SaturateSignedWordToUnsignedByte (SRC[79:64]);
DEST[111:104] := SaturateSignedWordToUnsignedByte (SRC[95:80]);
DEST[119:112] := SaturateSignedWordToUnsignedByte (SRC[111:96]);
DEST[127:120] := SaturateSignedWordToUnsignedByte (SRC[127:112]);

PACKUSWB (VEX.128 Encoded Version)
DEST[7:0] := SaturateSignedWordToUnsignedByte (SRC1[15:0]);
DEST[15:8] := SaturateSignedWordToUnsignedByte (SRC1[31:16]);
DEST[23:16] := SaturateSignedWordToUnsignedByte (SRC1[47:32]);
DEST[31:24] := SaturateSignedWordToUnsignedByte (SRC1[63:48]);
DEST[39:32] := SaturateSignedWordToUnsignedByte (SRC1[79:64]);
DEST[47:40] := SaturateSignedWordToUnsignedByte (SRC1[95:80]);
DEST[55:48] := SaturateSignedWordToUnsignedByte (SRC1[111:96]);
DEST[63:56] := SaturateSignedWordToUnsignedByte (SRC1[127:112]);
DEST[71:64] := SaturateSignedWordToUnsignedByte (SRC2[15:0]);
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DEST[79:72] := SaturateSignedWordToUnsignedByte (SRC2[31:16]);
DEST[87:80] := SaturateSignedWordToUnsignedByte (SRC2[47:32]);
DEST[95:88] := SaturateSignedWordToUnsignedByte (SRC2[63:48]);
DEST[103:96] := SaturateSignedWordToUnsignedByte (SRC2[79:64]);
DEST[111:104] := SaturateSignedWordToUnsignedByte (SRC2[95:80]);
DEST[119:112] := SaturateSignedWordToUnsignedByte (SRC2[111:96]);
DEST[127:120] := SaturateSignedWordToUnsignedByte (SRC2[127:112]);
DEST[MAXVL-1:128] := 0;

VPACKUSWB (VEX.256 Encoded Version)
DEST[7:0] := SaturateSignedWordToUnsignedByte (SRC1[15:0]);
DEST[15:8] := SaturateSignedWordToUnsignedByte (SRC1[31:16]);
DEST[23:16] := SaturateSignedWordToUnsignedByte (SRC1[47:32]);
DEST[31:24] := SaturateSignedWordToUnsignedByte (SRC1[63:48]);
DEST[39:32] := SaturateSignedWordToUnsignedByte (SRC1[79:64]);
DEST[47:40] := SaturateSignedWordToUnsignedByte (SRC1[95:80]);
DEST[55:48] := SaturateSignedWordToUnsignedByte (SRC1[111:96]);
DEST[63:56] := SaturateSignedWordToUnsignedByte (SRC1[127:112]);
DEST[71:64] := SaturateSignedWordToUnsignedByte (SRC2[15:0]);
DEST[79:72] := SaturateSignedWordToUnsignedByte (SRC2[31:16]);
DEST[87:80] := SaturateSignedWordToUnsignedByte (SRC2[47:32]);
DEST[95:88] := SaturateSignedWordToUnsignedByte (SRC2[63:48]);
DEST[103:96] := SaturateSignedWordToUnsignedByte (SRC2[79:64]);
DEST[111:104] := SaturateSignedWordToUnsignedByte (SRC2[95:80]);
DEST[119:112] := SaturateSignedWordToUnsignedByte (SRC2[111:96]);
DEST[127:120] := SaturateSignedWordToUnsignedByte (SRC2[127:112]);
DEST[135:128] := SaturateSignedWordToUnsignedByte (SRC1[143:128]);
DEST[143:136] := SaturateSignedWordToUnsignedByte (SRC1[159:144]);
DEST[151:144] := SaturateSignedWordToUnsignedByte (SRC1[175:160]);
DEST[159:152] := SaturateSignedWordToUnsignedByte (SRC1[191:176]);
DEST[167:160] := SaturateSignedWordToUnsignedByte (SRC1[207:192]);
DEST[175:168] := SaturateSignedWordToUnsignedByte (SRC1[223:208]);
DEST[183:176] := SaturateSignedWordToUnsignedByte (SRC1[239:224]);
DEST[191:184] := SaturateSignedWordToUnsignedByte (SRC1[255:240]);
DEST[199:192] := SaturateSignedWordToUnsignedByte (SRC2[143:128]);
DEST[207:200] := SaturateSignedWordToUnsignedByte (SRC2[159:144]);
DEST[215:208] := SaturateSignedWordToUnsignedByte (SRC2[175:160]);
DEST[223:216] := SaturateSignedWordToUnsignedByte (SRC2[191:176]);
DEST[231:224] := SaturateSignedWordToUnsignedByte (SRC2[207:192]);
DEST[239:232] := SaturateSignedWordToUnsignedByte (SRC2[223:208]);
DEST[247:240] := SaturateSignedWordToUnsignedByte (SRC2[239:224]);
DEST[255:248] := SaturateSignedWordToUnsignedByte (SRC2[255:240]);

VPACKUSWB (EVEX Encoded Versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
TMP_DEST[7:0] := SaturateSignedWordToUnsignedByte (SRC1[15:0]);
TMP_DEST[15:8] := SaturateSignedWordToUnsignedByte (SRC1[31:16]); 
TMP_DEST[23:16] := SaturateSignedWordToUnsignedByte (SRC1[47:32]);
TMP_DEST[31:24] := SaturateSignedWordToUnsignedByte (SRC1[63:48]);
TMP_DEST[39:32] := SaturateSignedWordToUnsignedByte (SRC1[79:64]);
TMP_DEST[47:40] := SaturateSignedWordToUnsignedByte (SRC1[95:80]);
TMP_DEST[55:48] := SaturateSignedWordToUnsignedByte (SRC1[111:96]);
TMP_DEST[63:56] := SaturateSignedWordToUnsignedByte (SRC1[127:112]);
TMP_DEST[71:64] := SaturateSignedWordToUnsignedByte (SRC2[15:0]);
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TMP_DEST[79:72] := SaturateSignedWordToUnsignedByte (SRC2[31:16]);
TMP_DEST[87:80] := SaturateSignedWordToUnsignedByte (SRC2[47:32]);
TMP_DEST[95:88] := SaturateSignedWordToUnsignedByte (SRC2[63:48]);
TMP_DEST[103:96] := SaturateSignedWordToUnsignedByte (SRC2[79:64]);
TMP_DEST[111:104] := SaturateSignedWordToUnsignedByte (SRC2[95:80]);
TMP_DEST[119:112] := SaturateSignedWordToUnsignedByte (SRC2[111:96]);
TMP_DEST[127:120] := SaturateSignedWordToUnsignedByte (SRC2[127:112]);
IF VL >= 256

TMP_DEST[135:128] := SaturateSignedWordToUnsignedByte (SRC1[143:128]);
TMP_DEST[143:136] := SaturateSignedWordToUnsignedByte (SRC1[159:144]); 
TMP_DEST[151:144] := SaturateSignedWordToUnsignedByte (SRC1[175:160]);
TMP_DEST[159:152] := SaturateSignedWordToUnsignedByte (SRC1[191:176]);
TMP_DEST[167:160] := SaturateSignedWordToUnsignedByte (SRC1[207:192]);
TMP_DEST[175:168] := SaturateSignedWordToUnsignedByte (SRC1[223:208]);
TMP_DEST[183:176] := SaturateSignedWordToUnsignedByte (SRC1[239:224]);
TMP_DEST[191:184] := SaturateSignedWordToUnsignedByte (SRC1[255:240]);
TMP_DEST[199:192] := SaturateSignedWordToUnsignedByte (SRC2[143:128]);
TMP_DEST[207:200] := SaturateSignedWordToUnsignedByte (SRC2[159:144]);
TMP_DEST[215:208] := SaturateSignedWordToUnsignedByte (SRC2[175:160]);
TMP_DEST[223:216] := SaturateSignedWordToUnsignedByte (SRC2[191:176]);
TMP_DEST[231:224] := SaturateSignedWordToUnsignedByte (SRC2[207:192]);
TMP_DEST[239:232] := SaturateSignedWordToUnsignedByte (SRC2[223:208]);
TMP_DEST[247:240] := SaturateSignedWordToUnsignedByte (SRC2[239:224]);
TMP_DEST[255:248] := SaturateSignedWordToUnsignedByte (SRC2[255:240]);

FI;
IF VL >= 512

TMP_DEST[263:256] := SaturateSignedWordToUnsignedByte (SRC1[271:256]);
TMP_DEST[271:264] := SaturateSignedWordToUnsignedByte (SRC1[287:272]); 
TMP_DEST[279:272] := SaturateSignedWordToUnsignedByte (SRC1[303:288]);
TMP_DEST[287:280] := SaturateSignedWordToUnsignedByte (SRC1[319:304]);
TMP_DEST[295:288] := SaturateSignedWordToUnsignedByte (SRC1[335:320]);
TMP_DEST[303:296] := SaturateSignedWordToUnsignedByte (SRC1[351:336]);
TMP_DEST[311:304] := SaturateSignedWordToUnsignedByte (SRC1[367:352]);
TMP_DEST[319:312] := SaturateSignedWordToUnsignedByte (SRC1[383:368]);

TMP_DEST[327:320] := SaturateSignedWordToUnsignedByte (SRC2[271:256]);
TMP_DEST[335:328] := SaturateSignedWordToUnsignedByte (SRC2[287:272]); 
TMP_DEST[343:336] := SaturateSignedWordToUnsignedByte (SRC2[303:288]);
TMP_DEST[351:344] := SaturateSignedWordToUnsignedByte (SRC2[319:304]);
TMP_DEST[359:352] := SaturateSignedWordToUnsignedByte (SRC2[335:320]);
TMP_DEST[367:360] := SaturateSignedWordToUnsignedByte (SRC2[351:336]);
TMP_DEST[375:368] := SaturateSignedWordToUnsignedByte (SRC2[367:352]);
TMP_DEST[383:376] := SaturateSignedWordToUnsignedByte (SRC2[383:368]);

TMP_DEST[391:384] := SaturateSignedWordToUnsignedByte (SRC1[399:384]);
TMP_DEST[399:392] := SaturateSignedWordToUnsignedByte (SRC1[415:400]);
TMP_DEST[407:400] := SaturateSignedWordToUnsignedByte (SRC1[431:416]);
TMP_DEST[415:408] := SaturateSignedWordToUnsignedByte (SRC1[447:432]);
TMP_DEST[423:416] := SaturateSignedWordToUnsignedByte (SRC1[463:448]);
TMP_DEST[431:424] := SaturateSignedWordToUnsignedByte (SRC1[479:464]);
TMP_DEST[439:432] := SaturateSignedWordToUnsignedByte (SRC1[495:480]);
TMP_DEST[447:440] := SaturateSignedWordToUnsignedByte (SRC1[511:496]);

TMP_DEST[455:448] := SaturateSignedWordToUnsignedByte (SRC2[399:384]);
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TMP_DEST[463:456] := SaturateSignedWordToUnsignedByte (SRC2[415:400]);
TMP_DEST[471:464] := SaturateSignedWordToUnsignedByte (SRC2[431:416]);
TMP_DEST[479:472] := SaturateSignedWordToUnsignedByte (SRC2[447:432]);
TMP_DEST[487:480] := SaturateSignedWordToUnsignedByte (SRC2[463:448]);
TMP_DEST[495:488] := SaturateSignedWordToUnsignedByte (SRC2[479:464]);
TMP_DEST[503:496] := SaturateSignedWordToUnsignedByte (SRC2[495:480]);
TMP_DEST[511:504] := SaturateSignedWordToUnsignedByte (SRC2[511:496]);

FI;
FOR j := 0 TO KL-1

i := j * 8
IF k1[j] OR *no writemask*

THEN 
DEST[i+7:i] := TMP_DEST[i+7:i]

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalents

VPACKUSWB __m512i _mm512_packus_epi16(__m512i m1, __m512i m2);
VPACKUSWB __m512i _mm512_mask_packus_epi16(__m512i s, __mmask64 k, __m512i m1, __m512i m2);
VPACKUSWB __m512i _mm512_maskz_packus_epi16(__mmask64 k, __m512i m1, __m512i m2);
VPACKUSWB __m256i _mm256_mask_packus_epi16(__m256i s, __mmask32 k, __m256i m1, __m256i m2);
VPACKUSWB __m256i _mm256_maskz_packus_epi16(__mmask32 k, __m256i m1, __m256i m2);
VPACKUSWB __m128i _mm_mask_packus_epi16(__m128i s, __mmask16 k, __m128i m1, __m128i m2);
VPACKUSWB __m128i _mm_maskz_packus_epi16(__mmask16 k, __m128i m1, __m128i m2);
PACKUSWB __m64 _mm_packs_pu16(__m64 m1, __m64 m2)
(V)PACKUSWB __m128i _mm_packus_epi16(__m128i m1, __m128i m2)
VPACKUSWB __m256i _mm256_packus_epi16(__m256i m1, __m256i m2);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
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PADDB/PADDW/PADDD/PADDQ—Add Packed Integers
Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F FC /r1

PADDB mm, mm/m64

A V/V MMX Add packed byte integers from mm/m64 and mm.

NP 0F FD /r1

PADDW mm, mm/m64

A V/V MMX Add packed word integers from mm/m64 and mm.

NP 0F FE /r1

PADDD mm, mm/m64
A V/V MMX Add packed doubleword integers from mm/m64 

and mm.

NP 0F D4 /r1

PADDQ mm, mm/m64
A V/V MMX Add packed quadword integers from mm/m64 and 

mm.

66 0F FC /r
PADDB xmm1, xmm2/m128

A V/V SSE2 Add packed byte integers from xmm2/m128 and 
xmm1.

66 0F FD /r
PADDW xmm1, xmm2/m128

A V/V SSE2 Add packed word integers from xmm2/m128 and 
xmm1.

66 0F FE /r
PADDD xmm1, xmm2/m128

A V/V SSE2 Add packed doubleword integers from 
xmm2/m128 and xmm1.

66 0F D4 /r
PADDQ xmm1, xmm2/m128

A V/V SSE2 Add packed quadword integers from xmm2/m128 
and xmm1.

VEX.128.66.0F.WIG FC /r
VPADDB xmm1, xmm2, xmm3/m128

B V/V AVX Add packed byte integers from xmm2, and 
xmm3/m128 and store in xmm1.

VEX.128.66.0F.WIG FD /r
VPADDW xmm1, xmm2, xmm3/m128

B V/V AVX Add packed word integers from xmm2, 
xmm3/m128 and store in xmm1.

VEX.128.66.0F.WIG FE /r
VPADDD xmm1, xmm2, xmm3/m128

B V/V AVX Add packed doubleword integers from xmm2, 
xmm3/m128 and store in xmm1.

VEX.128.66.0F.WIG D4 /r
VPADDQ xmm1, xmm2, xmm3/m128

B V/V AVX Add packed quadword integers from xmm2, 
xmm3/m128 and store in xmm1.

VEX.256.66.0F.WIG FC /r
VPADDB ymm1, ymm2, ymm3/m256

B V/V AVX2 Add packed byte integers from ymm2, and 
ymm3/m256 and store in ymm1.

VEX.256.66.0F.WIG FD /r
VPADDW ymm1, ymm2, ymm3/m256

B V/V AVX2 Add packed word integers from ymm2, 
ymm3/m256 and store in ymm1.

VEX.256.66.0F.WIG FE /r
VPADDD ymm1, ymm2, ymm3/m256

B V/V AVX2 Add packed doubleword integers from ymm2, 
ymm3/m256 and store in ymm1.

VEX.256.66.0F.WIG D4 /r
VPADDQ ymm1, ymm2, ymm3/m256

B V/V AVX2 Add packed quadword integers from ymm2, 
ymm3/m256 and store in ymm1.

EVEX.128.66.0F.WIG FC /r
VPADDB xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Add packed byte integers from xmm2, and 
xmm3/m128 and store in xmm1 using writemask 
k1.

EVEX.128.66.0F.WIG FD /r
VPADDW xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Add packed word integers from xmm2, and 
xmm3/m128 and store in xmm1 using writemask 
k1.

EVEX.128.66.0F.W0 FE /r
VPADDD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Add packed doubleword integers from xmm2, and 
xmm3/m128/m32bcst and store in xmm1 using 
writemask k1.

EVEX.128.66.0F.W1 D4 /r
VPADDQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Add packed quadword integers from xmm2, and 
xmm3/m128/m64bcst and store in xmm1 using 
writemask k1.
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Instruction Operand Encoding

Description 

Performs a SIMD add of the packed integers from the source operand (second operand) and the destination 
operand (first operand), and stores the packed integer results in the destination operand. See Figure 9-4 in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD operation. 
Overflow is handled with wraparound, as described in the following paragraphs.
The PADDB and VPADDB instructions add packed byte integers from the first source operand and second source 
operand and store the packed integer results in the destination operand. When an individual result is too large to 

EVEX.256.66.0F.WIG FC /r
VPADDB ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Add packed byte integers from ymm2, and 
ymm3/m256 and store in ymm1 using writemask 
k1.

EVEX.256.66.0F.WIG FD /r
VPADDW ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Add packed word integers from ymm2, and 
ymm3/m256 and store in ymm1 using writemask 
k1.

EVEX.256.66.0F.W0 FE /r
VPADDD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Add packed doubleword integers from ymm2, 
ymm3/m256/m32bcst and store in ymm1 using 
writemask k1.

EVEX.256.66.0F.W1 D4 /r
VPADDQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Add packed quadword integers from ymm2, 
ymm3/m256/m64bcst and store in ymm1 using 
writemask k1.

EVEX.512.66.0F.WIG FC /r
VPADDB zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Add packed byte integers from zmm2, and 
zmm3/m512 and store in zmm1 using writemask 
k1.

EVEX.512.66.0F.WIG FD /r
VPADDW zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Add packed word integers from zmm2, and 
zmm3/m512 and store in zmm1 using writemask 
k1.

EVEX.512.66.0F.W0 FE /r
VPADDD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst 

D V/V AVX512F
OR AVX10.12

Add packed doubleword integers from zmm2, 
zmm3/m512/m32bcst and store in zmm1 using 
writemask k1.

EVEX.512.66.0F.W1 D4 /r
VPADDQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

D V/V AVX512F
OR AVX10.12

Add packed quadword integers from zmm2, 
zmm3/m512/m64bcst and store in zmm1 using 
writemask k1.

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

D Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description
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be represented in 8 bits (overflow), the result is wrapped around and the low 8 bits are written to the destination 
operand (that is, the carry is ignored).
The PADDW and VPADDW instructions add packed word integers from the first source operand and second source 
operand and store the packed integer results in the destination operand. When an individual result is too large to 
be represented in 16 bits (overflow), the result is wrapped around and the low 16 bits are written to the destination 
operand (that is, the carry is ignored).
The PADDD and VPADDD instructions add packed doubleword integers from the first source operand and second 
source operand and store the packed integer results in the destination operand. When an individual result is too 
large to be represented in 32 bits (overflow), the result is wrapped around and the low 32 bits are written to the 
destination operand (that is, the carry is ignored).
The PADDQ and VPADDQ instructions add packed quadword integers from the first source operand and second 
source operand and store the packed integer results in the destination operand. When a quadword result is too 
large to be represented in 64 bits (overflow), the result is wrapped around and the low 64 bits are written to the 
destination operand (that is, the carry is ignored).
Note that the (V)PADDB, (V)PADDW, (V)PADDD and (V)PADDQ instructions can operate on either unsigned or 
signed (two's complement notation) packed integers; however, it does not set bits in the EFLAGS register to indi-
cate overflow and/or a carry. To prevent undetected overflow conditions, software must control the ranges of 
values operated on.
EVEX encoded VPADDD/Q: The first source operand is a ZMM/YMM/XMM register. The second source operand is a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 
32/64-bit memory location. The destination operand is a ZMM/YMM/XMM register updated according to the write-
mask.
EVEX encoded VPADDB/W: The first source operand is a ZMM/YMM/XMM register. The second source operand is a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand is a ZMM/YMM/XMM 
register updated according to the writemask.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. the upper bits (MAXVL-1:256) of the 
destination are cleared.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.

Operation

PADDB (With 64-bit Operands)
DEST[7:0] := DEST[7:0] + SRC[7:0]; 
(* Repeat add operation for 2nd through 7th byte *)
DEST[63:56] := DEST[63:56] + SRC[63:56];

PADDW (With 64-bit Operands)
DEST[15:0] := DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd and 3th word *)
DEST[63:48] := DEST[63:48] + SRC[63:48];

PADDD (With 64-bit Operands)
DEST[31:0] := DEST[31:0] + SRC[31:0];
DEST[63:32] := DEST[63:32] + SRC[63:32];

PADDQ (With 64-Bit Operands)
DEST[63:0] := DEST[63:0] + SRC[63:0];
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PADDB (Legacy SSE Instruction)
DEST[7:0] := DEST[7:0] + SRC[7:0]; 
(* Repeat add operation for 2nd through 15th byte *)
DEST[127:120] := DEST[127:120] + SRC[127:120];
DEST[MAXVL-1:128] (Unmodified)

PADDW (Legacy SSE Instruction)
DEST[15:0] := DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112] := DEST[127:112] + SRC[127:112];
DEST[MAXVL-1:128] (Unmodified)

PADDD (Legacy SSE Instruction)
DEST[31:0] := DEST[31:0] + SRC[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] := DEST[127:96] + SRC[127:96];
DEST[MAXVL-1:128] (Unmodified)

PADDQ (Legacy SSE Instruction)
DEST[63:0] := DEST[63:0] + SRC[63:0];
DEST[127:64] := DEST[127:64] + SRC[127:64];
DEST[MAXVL-1:128] (Unmodified)

VPADDB (VEX.128 Encoded Instruction)
DEST[7:0] := SRC1[7:0] + SRC2[7:0]; 
(* Repeat add operation for 2nd through 15th byte *)
DEST[127:120] := SRC1[127:120] + SRC2[127:120];
DEST[MAXVL-1:128] := 0;

VPADDW (VEX.128 Encoded Instruction)
DEST[15:0] := SRC1[15:0] + SRC2[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112] := SRC1[127:112] + SRC2[127:112];
DEST[MAXVL-1:128] := 0;

VPADDD (VEX.128 Encoded Instruction)
DEST[31:0] := SRC1[31:0] + SRC2[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] := SRC1[127:96] + SRC2[127:96];
DEST[MAXVL-1:128] := 0;

VPADDQ (VEX.128 Encoded Instruction)
DEST[63:0] := SRC1[63:0] + SRC2[63:0];
DEST[127:64] := SRC1[127:64] + SRC2[127:64];
DEST[MAXVL-1:128] := 0;

VPADDB (VEX.256 Encoded Instruction)
DEST[7:0] := SRC1[7:0] + SRC2[7:0]; 
(* Repeat add operation for 2nd through 31th byte *)
DEST[255:248] := SRC1[255:248] + SRC2[255:248];
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VPADDW (VEX.256 Encoded Instruction)
DEST[15:0] := SRC1[15:0] + SRC2[15:0];
(* Repeat add operation for 2nd through 15th word *)
DEST[255:240] := SRC1[255:240] + SRC2[255:240];

VPADDD (VEX.256 Encoded Instruction)
DEST[31:0] := SRC1[31:0] + SRC2[31:0];
(* Repeat add operation for 2nd and 7th doubleword *)
DEST[255:224] := SRC1[255:224] + SRC2[255:224];

VPADDQ (VEX.256 Encoded Instruction)
DEST[63:0] := SRC1[63:0] + SRC2[63:0];
DEST[127:64] := SRC1[127:64] + SRC2[127:64];
DEST[191:128] := SRC1[191:128] + SRC2[191:128];
DEST[255:192] := SRC1[255:192] + SRC2[255:192];

VPADDB (EVEX Encoded Versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)

FOR j := 0 TO KL-1
i := j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SRC1[i+7:i] + SRC2[i+7:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] = 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

VPADDW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SRC1[i+15:i] + SRC2[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] = 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
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VPADDD (EVEX Encoded Versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN DEST[i+31:i] := SRC1[i+31:i] + SRC2[31:0]
ELSE DEST[i+31:i] := SRC1[i+31:i] + SRC2[i+31:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

VPADDQ (EVEX Encoded Versions) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN DEST[i+63:i] := SRC1[i+63:i] + SRC2[63:0]
ELSE DEST[i+63:i] := SRC1[i+63:i] + SRC2[i+63:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalents

VPADDB__m512i _mm512_add_epi8 ( __m512i a, __m512i b)
VPADDW__m512i _mm512_add_epi16 ( __m512i a, __m512i b)
VPADDB__m512i _mm512_mask_add_epi8 ( __m512i s, __mmask64 m, __m512i a, __m512i b)
VPADDW__m512i _mm512_mask_add_epi16 ( __m512i s, __mmask32 m, __m512i a, __m512i b)
VPADDB__m512i _mm512_maskz_add_epi8 (__mmask64 m, __m512i a, __m512i b)
VPADDW__m512i _mm512_maskz_add_epi16 (__mmask32 m, __m512i a, __m512i b)
VPADDB__m256i _mm256_mask_add_epi8 (__m256i s, __mmask32 m, __m256i a, __m256i b)
VPADDW__m256i _mm256_mask_add_epi16 (__m256i s, __mmask16 m, __m256i a, __m256i b)
VPADDB__m256i _mm256_maskz_add_epi8 (__mmask32 m, __m256i a, __m256i b)
VPADDW__m256i _mm256_maskz_add_epi16 (__mmask16 m, __m256i a, __m256i b)
VPADDB__m128i _mm_mask_add_epi8 (__m128i s, __mmask16 m, __m128i a, __m128i b)
VPADDW__m128i _mm_mask_add_epi16 (__m128i s, __mmask8 m, __m128i a, __m128i b)
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VPADDB__m128i _mm_maskz_add_epi8 (__mmask16 m, __m128i a, __m128i b)
VPADDW__m128i _mm_maskz_add_epi16 (__mmask8 m, __m128i a, __m128i b)
VPADDD __m512i _mm512_add_epi32( __m512i a, __m512i b);
VPADDD __m512i _mm512_mask_add_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPADDD __m512i _mm512_maskz_add_epi32( __mmask16 k, __m512i a, __m512i b);
VPADDD __m256i _mm256_mask_add_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPADDD __m256i _mm256_maskz_add_epi32( __mmask8 k, __m256i a, __m256i b);
VPADDD __m128i _mm_mask_add_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPADDD __m128i _mm_maskz_add_epi32( __mmask8 k, __m128i a, __m128i b);
VPADDQ __m512i _mm512_add_epi64( __m512i a, __m512i b);
VPADDQ __m512i _mm512_mask_add_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPADDQ __m512i _mm512_maskz_add_epi64( __mmask8 k, __m512i a, __m512i b);
VPADDQ __m256i _mm256_mask_add_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPADDQ __m256i _mm256_maskz_add_epi64( __mmask8 k, __m256i a, __m256i b);
VPADDQ __m128i _mm_mask_add_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPADDQ __m128i _mm_maskz_add_epi64( __mmask8 k, __m128i a, __m128i b);
PADDB __m128i _mm_add_epi8 (__m128i a,__m128i b );
PADDW __m128i _mm_add_epi16 ( __m128i a, __m128i b);
PADDD  __m128i _mm_add_epi32 ( __m128i a, __m128i b);
PADDQ __m128i _mm_add_epi64 ( __m128i a, __m128i b);
VPADDB __m256i _mm256_add_epi8 (__m256ia,__m256i b );
VPADDW __m256i _mm256_add_epi16 ( __m256i a, __m256i b);
VPADDD __m256i _mm256_add_epi32 ( __m256i a, __m256i b);
VPADDQ __m256i _mm256_add_epi64 ( __m256i a, __m256i b);
PADDB __m64 _mm_add_pi8(__m64 m1, __m64 m2)
PADDW __m64 _mm_add_pi16(__m64 m1, __m64 m2)
PADDD __m64 _mm_add_pi32(__m64 m1, __m64 m2)
PADDQ __m64 _mm_add_si64(__m64 m1, __m64 m2)

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded VPADDD/Q, see Table 2-51, “Type E4 Class Exception Conditions.”
EVEX-encoded VPADDB/W, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F EC /r1

PADDSB mm, mm/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V MMX Add packed signed byte integers from 
mm/m64 and mm and saturate the results.

66 0F EC /r

PADDSB xmm1, xmm2/m128

A V/V SSE2 Add packed signed byte integers from 
xmm2/m128 and xmm1 saturate the results.

NP 0F ED /r1

PADDSW mm, mm/m64

A V/V MMX Add packed signed word integers from 
mm/m64 and mm and saturate the results.

66 0F ED /r

PADDSW xmm1, xmm2/m128

A V/V SSE2 Add packed signed word integers from 
xmm2/m128 and xmm1 and saturate the 
results.

VEX.128.66.0F.WIG EC /r
VPADDSB xmm1, xmm2, xmm3/m128

B V/V AVX Add packed signed byte integers from 
xmm3/m128 and xmm2 saturate the results.

VEX.128.66.0F.WIG ED /r

VPADDSW xmm1, xmm2, xmm3/m128

B V/V AVX Add packed signed word integers from 
xmm3/m128 and xmm2 and saturate the 
results.

VEX.256.66.0F.WIG EC /r

VPADDSB ymm1, ymm2, ymm3/m256

B V/V AVX2 Add packed signed byte integers from ymm2, 
and ymm3/m256 and store the saturated 
results in ymm1.

VEX.256.66.0F.WIG ED /r

VPADDSW ymm1, ymm2, ymm3/m256

B V/V AVX2 Add packed signed word integers from ymm2, 
and ymm3/m256 and store the saturated 
results in ymm1.

EVEX.128.66.0F.WIG EC /r
VPADDSB xmm1 {k1}{z}, xmm2, xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Add packed signed byte integers from xmm2, 
and xmm3/m128 and store the saturated 
results in xmm1 under writemask k1.

EVEX.256.66.0F.WIG EC /r
VPADDSB ymm1 {k1}{z}, ymm2, ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Add packed signed byte integers from ymm2, 
and ymm3/m256 and store the saturated 
results in ymm1 under writemask k1.

EVEX.512.66.0F.WIG EC /r
VPADDSB zmm1 {k1}{z}, zmm2, zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Add packed signed byte integers from zmm2, 
and zmm3/m512 and store the saturated 
results in zmm1 under writemask k1.

EVEX.128.66.0F.WIG ED /r
VPADDSW xmm1 {k1}{z}, xmm2, xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Add packed signed word integers from xmm2, 
and xmm3/m128 and store the saturated 
results in xmm1 under writemask k1.

EVEX.256.66.0F.WIG ED /r
VPADDSW ymm1 {k1}{z}, ymm2, ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Add packed signed word integers from ymm2, 
and ymm3/m256 and store the saturated 
results in ymm1 under writemask k1.

EVEX.512.66.0F.WIG ED /r
VPADDSW zmm1 {k1}{z}, zmm2, zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Add packed signed word integers from zmm2, 
and zmm3/m512 and store the saturated 
results in zmm1 under writemask k1.
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Instruction Operand Encoding

Description

Performs a SIMD add of the packed signed integers from the source operand (second operand) and the destination 
operand (first operand), and stores the packed integer results in the destination operand. See Figure 9-4 in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD operation. 
Overflow is handled with signed saturation, as described in the following paragraphs.
(V)PADDSB performs a SIMD add of the packed signed integers with saturation from the first source operand and 
second source operand and stores the packed integer results in the destination operand. When an individual byte 
result is beyond the range of a signed byte integer (that is, greater than 7FH or less than 80H), the saturated value 
of 7FH or 80H, respectively, is written to the destination operand.
(V)PADDSW performs a SIMD add of the packed signed word integers with saturation from the first source operand 
and second source operand and stores the packed integer results in the destination operand. When an individual 
word result is beyond the range of a signed word integer (that is, greater than 7FFFH or less than 8000H), the satu-
rated value of 7FFFH or 8000H, respectively, is written to the destination operand.
EVEX encoded versions: The first source operand is an ZMM/YMM/XMM register. The second source operand is an 
ZMM/YMM/XMM register or a memory location. The destination operand is an ZMM/YMM/XMM register.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. 
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of 
the corresponding register destination are zeroed.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (MAXVL-1:128) of the corresponding register destination are unmodified.

Operation

PADDSB (With 64-bit Operands)
DEST[7:0] := SaturateToSignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] := SaturateToSignedByte(DEST[63:56] + SRC[63:56] );

PADDSB (With 128-bit Operands)
DEST[7:0] := SaturateToSignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] := SaturateToSignedByte (DEST[111:120] + SRC[127:120]);

VPADDSB (VEX.128 Encoded Version)
DEST[7:0] := SaturateToSignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] := SaturateToSignedByte (SRC1[111:120] + SRC2[127:120]);
DEST[MAXVL-1:128] := 0

VPADDSB (VEX.256 Encoded Version)
DEST[7:0] := SaturateToSignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat add operation for 2nd through 31st bytes *)
DEST[255:248] := SaturateToSignedByte (SRC1[255:248] + SRC2[255:248]);

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VPADDSB (EVEX Encoded Versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)

FOR j := 0 TO KL-1
i := j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SaturateToSignedByte (SRC1[i+7:i] + SRC2[i+7:i])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] = 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

PADDSW (with 64-bit operands)
DEST[15:0] := SaturateToSignedWord(DEST[15:0] + SRC[15:0] );
(* Repeat add operation for 2nd and 7th words *)
DEST[63:48] := SaturateToSignedWord(DEST[63:48] + SRC[63:48] );

PADDSW (with 128-bit operands)
DEST[15:0] := SaturateToSignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] := SaturateToSignedWord (DEST[127:112] + SRC[127:112]);

VPADDSW (VEX.128 Encoded Version)
DEST[15:0] := SaturateToSignedWord (SRC1[15:0] + SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] := SaturateToSignedWord (SRC1[127:112] + SRC2[127:112]);
DEST[MAXVL-1:128] := 0

VPADDSW (VEX.256 Encoded Version)
DEST[15:0] := SaturateToSignedWord (SRC1[15:0] + SRC2[15:0]);
(* Repeat add operation for 2nd through 15th words *)
DEST[255:240] := SaturateToSignedWord (SRC1[255:240] + SRC2[255:240])

VPADDSW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SaturateToSignedWord (SRC1[i+15:i] + SRC2[i+15:i])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] = 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalents

PADDSB __m64 _mm_adds_pi8(__m64 m1, __m64 m2)
(V)PADDSB  __m128i _mm_adds_epi8 ( __m128i a, __m128i b)
VPADDSB __m256i _mm256_adds_epi8 ( __m256i a, __m256i b)
PADDSW __m64 _mm_adds_pi16(__m64 m1, __m64 m2)
(V)PADDSW __m128i _mm_adds_epi16 ( __m128i a, __m128i b)
VPADDSW __m256i _mm256_adds_epi16 ( __m256i a, __m256i b)
VPADDSB __m512i _mm512_adds_epi8 ( __m512i a, __m512i b)
VPADDSW __m512i _mm512_adds_epi16 ( __m512i a, __m512i b)
VPADDSB __m512i _mm512_mask_adds_epi8 ( __m512i s, __mmask64 m, __m512i a, __m512i b)
VPADDSW __m512i _mm512_mask_adds_epi16 ( __m512i s, __mmask32 m, __m512i a, __m512i b)
VPADDSB __m512i _mm512_maskz_adds_epi8 (__mmask64 m, __m512i a, __m512i b)
VPADDSW __m512i _mm512_maskz_adds_epi16 (__mmask32 m, __m512i a, __m512i b)
VPADDSB __m256i _mm256_mask_adds_epi8 (__m256i s, __mmask32 m, __m256i a, __m256i b)
VPADDSW __m256i _mm256_mask_adds_epi16 (__m256i s, __mmask16 m, __m256i a, __m256i b)
VPADDSB __m256i _mm256_maskz_adds_epi8 (__mmask32 m, __m256i a, __m256i b)
VPADDSW __m256i _mm256_maskz_adds_epi16 (__mmask16 m, __m256i a, __m256i b)
VPADDSB __m128i _mm_mask_adds_epi8 (__m128i s, __mmask16 m, __m128i a, __m128i b)
VPADDSW __m128i _mm_mask_adds_epi16 (__m128i s, __mmask8 m, __m128i a, __m128i b)
VPADDSB __m128i _mm_maskz_adds_epi8 (__mmask16 m, __m128i a, __m128i b)
VPADDSW __m128i _mm_maskz_adds_epi16 (__mmask8 m, __m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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PADDUSB/PADDUSW—Add Packed Unsigned Integers With Unsigned Saturation
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F DC /r1

PADDUSB mm, mm/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V MMX Add packed unsigned byte integers from 
mm/m64 and mm and saturate the results.

66 0F DC /r

PADDUSB xmm1, xmm2/m128

A V/V SSE2 Add packed unsigned byte integers from 
xmm2/m128 and xmm1 saturate the results.

NP 0F DD /r1

PADDUSW mm, mm/m64

A V/V MMX Add packed unsigned word integers from 
mm/m64 and mm and saturate the results.

66 0F DD /r

PADDUSW xmm1, xmm2/m128

A V/V SSE2 Add packed unsigned word integers from 
xmm2/m128 to xmm1 and saturate the results.

VEX.128.660F.WIG DC /r

VPADDUSB xmm1, xmm2, xmm3/m128

B V/V AVX Add packed unsigned byte integers from 
xmm3/m128 to xmm2 and saturate the results.

VEX.128.66.0F.WIG DD /r

VPADDUSW xmm1, xmm2, xmm3/m128

B V/V AVX Add packed unsigned word integers from 
xmm3/m128 to xmm2 and saturate the results.

VEX.256.66.0F.WIG DC /r
VPADDUSB ymm1, ymm2, ymm3/m256

B V/V AVX2 Add packed unsigned byte integers from ymm2, 
and ymm3/m256 and store the saturated 
results in ymm1.

VEX.256.66.0F.WIG DD /r
VPADDUSW ymm1, ymm2, ymm3/m256

B V/V AVX2 Add packed unsigned word integers from ymm2, 
and ymm3/m256 and store the saturated 
results in ymm1.

EVEX.128.66.0F.WIG DC /r
VPADDUSB xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Add packed unsigned byte integers from xmm2, 
and xmm3/m128 and store the saturated 
results in xmm1 under writemask k1.

EVEX.256.66.0F.WIG DC /r
VPADDUSB ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Add packed unsigned byte integers from ymm2, 
and ymm3/m256 and store the saturated 
results in ymm1 under writemask k1.

EVEX.512.66.0F.WIG DC /r
VPADDUSB zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Add packed unsigned byte integers from zmm2, 
and zmm3/m512 and store the saturated 
results in zmm1 under writemask k1.

EVEX.128.66.0F.WIG DD /r
VPADDUSW xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Add packed unsigned word integers from xmm2, 
and xmm3/m128 and store the saturated 
results in xmm1 under writemask k1.

EVEX.256.66.0F.WIG DD /r
VPADDUSW ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Add packed unsigned word integers from ymm2, 
and ymm3/m256 and store the saturated 
results in ymm1 under writemask k1.

EVEX.512.66.0F.WIG DD /r
VPADDUSW zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Add packed unsigned word integers from zmm2, 
and zmm3/m512 and store the saturated 
results in zmm1 under writemask k1.
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Instruction Operand Encoding

Description

Performs a SIMD add of the packed unsigned integers from the source operand (second operand) and the destina-
tion operand (first operand), and stores the packed integer results in the destination operand. See Figure 9-4 in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD operation. 
Overflow is handled with unsigned saturation, as described in the following paragraphs.
(V)PADDUSB performs a SIMD add of the packed unsigned integers with saturation from the first source operand 
and second source operand and stores the packed integer results in the destination operand. When an individual 
byte result is beyond the range of an unsigned byte integer (that is, greater than FFH), the saturated value of FFH 
is written to the destination operand.
(V)PADDUSW performs a SIMD add of the packed unsigned word integers with saturation from the first source 
operand and second source operand and stores the packed integer results in the destination operand. When an 
individual word result is beyond the range of an unsigned word integer (that is, greater than FFFFH), the saturated 
value of FFFFH is written to the destination operand.
EVEX encoded versions: The first source operand is an ZMM/YMM/XMM register. The second source operand is an 
ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination is an ZMM/YMM/XMM register.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. 
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of 
the corresponding destination register destination are zeroed.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (MAXVL-1:128) of the corresponding register destination are unmodified.

Operation

PADDUSB (With 64-bit Operands)
DEST[7:0] := SaturateToUnsignedByte(DEST[7:0] + SRC (7:0] );
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] := SaturateToUnsignedByte(DEST[63:56] + SRC[63:56] 

PADDUSB (With 128-bit Operands)
DEST[7:0] := SaturateToUnsignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] := SaturateToUnSignedByte (DEST[127:120] + SRC[127:120]);

VPADDUSB (VEX.128 Encoded Version)
DEST[7:0] := SaturateToUnsignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] := SaturateToUnsignedByte (SRC1[111:120] + SRC2[127:120]);
DEST[MAXVL-1:128] := 0

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VPADDUSB (VEX.256 Encoded Version)
DEST[7:0] := SaturateToUnsignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat add operation for 2nd through 31st bytes *)
DEST[255:248] := SaturateToUnsignedByte (SRC1[255:248] + SRC2[255:248]);

PADDUSW (With 64-bit Operands)
DEST[15:0] := SaturateToUnsignedWord(DEST[15:0] + SRC[15:0] );
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] := SaturateToUnsignedWord(DEST[63:48] + SRC[63:48] );

PADDUSW (With 128-bit Operands)
DEST[15:0] := SaturateToUnsignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] := SaturateToUnSignedWord (DEST[127:112] + SRC[127:112]);

VPADDUSW (VEX.128 Encoded Version)
DEST[15:0] := SaturateToUnsignedWord (SRC1[15:0] + SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] := SaturateToUnsignedWord (SRC1[127:112] + SRC2[127:112]);
DEST[MAXVL-1:128] := 0

VPADDUSW (VEX.256 Encoded Version)
DEST[15:0] := SaturateToUnsignedWord (SRC1[15:0] + SRC2[15:0]);
(* Repeat add operation for 2nd through 15th words *)
DEST[255:240] := SaturateToUnsignedWord (SRC1[255:240] + SRC2[255:240])

VPADDUSB (EVEX Encoded Versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)

FOR j := 0 TO KL-1
i := j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SaturateToUnsignedByte (SRC1[i+7:i] + SRC2[i+7:i])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] = 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
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VPADDUSW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SaturateToUnsignedWord (SRC1[i+15:i] + SRC2[i+15:i])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] = 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalents

PADDUSB __m64 _mm_adds_pu8(__m64 m1, __m64 m2)
PADDUSW __m64 _mm_adds_pu16(__m64 m1, __m64 m2)
(V)PADDUSB __m128i _mm_adds_epu8 ( __m128i a, __m128i b)
(V)PADDUSW __m128i _mm_adds_epu16 ( __m128i a, __m128i b)
VPADDUSB __m256i _mm256_adds_epu8 ( __m256i a, __m256i b)
VPADDUSW __m256i _mm256_adds_epu16 ( __m256i a, __m256i b)
VPADDUSB __m512i _mm512_adds_epu8 ( __m512i a, __m512i b)
VPADDUSW __m512i _mm512_adds_epu16 ( __m512i a, __m512i b)
VPADDUSB __m512i _mm512_mask_adds_epu8 ( __m512i s, __mmask64 m, __m512i a, __m512i b)
VPADDUSW __m512i _mm512_mask_adds_epu16 ( __m512i s, __mmask32 m, __m512i a, __m512i b)
VPADDUSB __m512i _mm512_maskz_adds_epu8 (__mmask64 m, __m512i a, __m512i b)
VPADDUSW __m512i _mm512_maskz_adds_epu16 (__mmask32 m, __m512i a, __m512i b)
VPADDUSB __m256i _mm256_mask_adds_epu8 (__m256i s, __mmask32 m, __m256i a, __m256i b)
VPADDUSW __m256i _mm256_mask_adds_epu16 (__m256i s, __mmask16 m, __m256i a, __m256i b)
VPADDUSB __m256i _mm256_maskz_adds_epu8 (__mmask32 m, __m256i a, __m256i b)
VPADDUSW __m256i _mm256_maskz_adds_epu16 (__mmask16 m, __m256i a, __m256i b)
VPADDUSB __m128i _mm_mask_adds_epu8 (__m128i s, __mmask16 m, __m128i a, __m128i b)
VPADDUSW __m128i _mm_mask_adds_epu16 (__m128i s, __mmask8 m, __m128i a, __m128i b)
VPADDUSB __m128i _mm_maskz_adds_epu8 (__mmask16 m, __m128i a, __m128i b)
VPADDUSW __m128i _mm_maskz_adds_epu16 (__mmask8 m, __m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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PALIGNR—Packed Align Right 

Instruction Operand Encoding

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 3A 0F /r ib1

PALIGNR mm1, mm2/m64, imm8

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V SSSE3 Concatenate destination and source operands, 
extract byte-aligned result shifted to the right by 
constant value in imm8 into mm1. 

66 0F 3A 0F /r ib

PALIGNR xmm1, xmm2/m128, imm8

A V/V SSSE3 Concatenate destination and source operands, 
extract byte-aligned result shifted to the right by 
constant value in imm8 into xmm1.

VEX.128.66.0F3A.WIG 0F /r ib

VPALIGNR xmm1, xmm2, xmm3/m128, 
imm8

B V/V AVX Concatenate xmm2 and xmm3/m128, extract byte 
aligned result shifted to the right by constant value in 
imm8 and result is stored in xmm1.

VEX.256.66.0F3A.WIG 0F /r ib

VPALIGNR ymm1, ymm2, ymm3/m256, 
imm8

B V/V AVX2 Concatenate pairs of 16 bytes in ymm2 and 
ymm3/m256 into 32-byte intermediate result, 
extract byte-aligned, 16-byte result shifted to the 
right by constant values in imm8 from each 
intermediate result, and two 16-byte results are 
stored in ymm1.

EVEX.128.66.0F3A.WIG 0F /r ib
VPALIGNR xmm1 {k1}{z}, xmm2, 
xmm3/m128, imm8

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Concatenate xmm2 and xmm3/m128 into a 32-byte 
intermediate result, extract byte aligned result 
shifted to the right by constant value in imm8 and 
result is stored in xmm1.

EVEX.256.66.0F3A.WIG 0F /r ib
VPALIGNR ymm1 {k1}{z}, ymm2, 
ymm3/m256, imm8

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Concatenate pairs of 16 bytes in ymm2 and 
ymm3/m256 into 32-byte intermediate result, 
extract byte-aligned, 16-byte result shifted to the 
right by constant values in imm8 from each 
intermediate result, and two 16-byte results are 
stored in ymm1.

EVEX.512.66.0F3A.WIG 0F /r ib
VPALIGNR zmm1 {k1}{z}, zmm2, 
zmm3/m512, imm8

C V/V AVX512BW 
OR AVX10.11

Concatenate pairs of 16 bytes in zmm2 and 
zmm3/m512 into 32-byte intermediate result, 
extract byte-aligned, 16-byte result shifted to the 
right by constant values in imm8 from each 
intermediate result, and four 16-byte results are 
stored in zmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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Description 

(V)PALIGNR concatenates the destination operand (the first operand) and the source operand (the second 
operand) into an intermediate composite, shifts the composite at byte granularity to the right by a constant imme-
diate, and extracts the right-aligned result into the destination. The first and the second operands can be an MMX, 
XMM or a YMM register. The immediate value is considered unsigned. Immediate shift counts larger than the 2L 
(i.e., 32 for 128-bit operands, or 16 for 64-bit operands) produce a zero result. Both operands can be MMX regis-
ters, XMM registers or YMM registers. When the source operand is a 128-bit memory operand, the operand must 
be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. 

In 64-bit mode and not encoded by VEX/EVEX prefix, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding YMM destination register remain 
unchanged.
EVEX.512 encoded version: The first source operand is a ZMM register and contains four 16-byte blocks. The 
second source operand is a ZMM register or a 512-bit memory location containing four 16-byte block. The destina-
tion operand is a ZMM register and contain four 16-byte results. The imm8[7:0] is the common shift count
used for each of the four successive 16-byte block sources. The low 16-byte block of the two source operands 
produce the low 16-byte result of the destination operand, the high 16-byte block of the two source operands 
produce the high 16-byte result of the destination operand and so on for the blocks in the middle.
VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register and contains two 16-byte 
blocks. The second source operand is a YMM register or a 256-bit memory location containing two 16-byte block. 
The destination operand is a YMM register and contain two 16-byte results. The imm8[7:0] is the common shift 
count used for the two lower 16-byte block sources and the two upper 16-byte block sources. The low 16-byte 
block of the two source operands produce the low 16-byte result of the destination operand, the high 16-byte block 
of the two source operands produce the high 16-byte result of the destination operand. The upper bits (MAXVL-
1:256) of the corresponding ZMM register destination are zeroed.
VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand 
is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-
1:128) of the corresponding ZMM register destination are zeroed.
Concatenation is done with 128-bit data in the first and second source operand for both 128-bit and 256-bit 
instructions. The high 128-bits of the intermediate composite 256-bit result came from the 128-bit data from the 
first source operand; the low 128-bits of the intermediate result came from the 128-bit data of the second source 
operand.

Figure 1-7.  256-bit VPALIGN Instruction Operation

127 0

SRC1

Imm8[7:0]*8

Imm8[7:0]*8

127 0
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255 128
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255 128
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255 128

DEST

127 0

DEST
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Operation

PALIGNR (With 64-bit Operands)

temp1[127:0] = CONCATENATE(DEST,SRC)>>(imm8*8) 
DEST[63:0] = temp1[63:0] 

PALIGNR (With 128-bit Operands)
temp1[255:0] := ((DEST[127:0] << 128) OR SRC[127:0])>>(imm8*8);
DEST[127:0] := temp1[127:0]
DEST[MAXVL-1:128] (Unmodified)

VPALIGNR (VEX.128 Encoded Version)
temp1[255:0] := ((SRC1[127:0] << 128) OR SRC2[127:0])>>(imm8*8);
DEST[127:0] := temp1[127:0]
DEST[MAXVL-1:128] := 0

VPALIGNR (VEX.256 Encoded Version)
temp1[255:0] := ((SRC1[127:0] << 128) OR SRC2[127:0])>>(imm8[7:0]*8);
DEST[127:0] := temp1[127:0]
temp1[255:0] := ((SRC1[255:128] << 128) OR SRC2[255:128])>>(imm8[7:0]*8);
DEST[MAXVL-1:128] := temp1[127:0]

VPALIGNR (EVEX Encoded Versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)

FOR l := 0 TO VL-1 with increments of 128
temp1[255:0] := ((SRC1[l+127:l] << 128) OR SRC2[l+127:l])>>(imm8[7:0]*8);
TMP_DEST[l+127:l] := temp1[127:0]

ENDFOR;

FOR j := 0 TO KL-1
i := j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := TMP_DEST[i+7:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] = 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalents

PALIGNR __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)
(V)PALIGNR __m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n)
VPALIGNR __m256i _mm256_alignr_epi8 (__m256i a, __m256i b, const int n)
VPALIGNR __m512i _mm512_alignr_epi8 (__m512i a, __m512i b, const int n)
VPALIGNR __m512i _mm512_mask_alignr_epi8 (__m512i s, __mmask64 m, __m512i a, __m512i b, const int n)
VPALIGNR __m512i _mm512_maskz_alignr_epi8 ( __mmask64 m, __m512i a, __m512i b, const int n)
VPALIGNR __m256i _mm256_mask_alignr_epi8 (__m256i s, __mmask32 m, __m256i a, __m256i b, const int n)
VPALIGNR __m256i _mm256_maskz_alignr_epi8 (__mmask32 m, __m256i a, __m256i b, const int n)
VPALIGNR __m128i _mm_mask_alignr_epi8 (__m128i s, __mmask16 m, __m128i a, __m128i b, const int n)
VPALIGNR __m128i _mm_maskz_alignr_epi8 (__mmask16 m, __m128i a, __m128i b, const int n)

SIMD Floating-Point Exceptions 
None. 

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
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PAND—Logical AND

Instruction Operand Encoding

Description

Performs a bitwise logical AND operation on the first source operand and second source operand and stores the 
result in the destination operand. Each bit of the result is set to 1 if the corresponding bits of the first and second 
operands are 1, otherwise it is set to 0.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F DB /r1

PAND mm, mm/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V MMX Bitwise AND mm/m64 and mm.

66 0F DB /r

PAND xmm1, xmm2/m128

A V/V SSE2 Bitwise AND of xmm2/m128 and xmm1.

VEX.128.66.0F.WIG DB /r

VPAND xmm1, xmm2, xmm3/m128

B V/V AVX Bitwise AND of xmm3/m128 and xmm.

VEX.256.66.0F.WIG DB /r

VPAND ymm1, ymm2, ymm3/.m256

B V/V AVX2 Bitwise AND of ymm2, and ymm3/m256 and store 
result in ymm1.

EVEX.128.66.0F.W0 DB /r
VPANDD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Bitwise AND of packed doubleword integers in 
xmm2 and xmm3/m128/m32bcst and store result 
in xmm1 using writemask k1. 

EVEX.256.66.0F.W0 DB /r
VPANDD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Bitwise AND of packed doubleword integers in 
ymm2 and ymm3/m256/m32bcst and store result 
in ymm1 using writemask k1. 

EVEX.512.66.0F.W0 DB /r
VPANDD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

C V/V AVX512F 
OR AVX10.12

Bitwise AND of packed doubleword integers in 
zmm2 and zmm3/m512/m32bcst and store result 
in zmm1 using writemask k1. 

EVEX.128.66.0F.W1 DB /r
VPANDQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Bitwise AND of packed quadword integers in xmm2 
and xmm3/m128/m64bcst and store result in 
xmm1 using writemask k1. 

EVEX.256.66.0F.W1 DB /r
VPANDQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Bitwise AND of packed quadword integers in ymm2 
and ymm3/m256/m64bcst and store result in 
ymm1 using writemask k1. 

EVEX.512.66.0F.W1 DB /r
VPANDQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512F 
OR AVX10.12

Bitwise AND of packed quadword integers in zmm2 
and zmm3/m512/m64bcst and store result in 
zmm1 using writemask k1. 

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Legacy SSE instructions: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand can be an MMX technology register.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be 
a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 
32/64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write-
mask k1 at 32/64-bit granularity.
VEX.256 encoded versions: The first source operand is a YMM register. The second source operand is a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of 
the corresponding ZMM register destination are zeroed.
VEX.128 encoded versions: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.

Operation

PAND (64-bit Operand)
DEST := DEST AND SRC

PAND (128-bit Legacy SSE Version)
DEST := DEST AND SRC
DEST[MAXVL-1:128] (Unmodified)

VPAND (VEX.128 Encoded Version)
DEST := SRC1 AND SRC2
DEST[MAXVL-1:128] := 0

VPAND (VEX.256 Encoded Instruction)
DEST[255:0] := (SRC1[255:0] AND SRC2[255:0])
DEST[MAXVL-1:256] := 0

VPANDD (EVEX Encoded Versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN DEST[i+31:i] := SRC1[i+31:i] BITWISE AND SRC2[31:0]
ELSE DEST[i+31:i] := SRC1[i+31:i] BITWISE AND SRC2[i+31:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VPANDQ (EVEX Encoded Versions) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN DEST[i+63:i] := SRC1[i+63:i] BITWISE AND SRC2[63:0]
ELSE DEST[i+63:i] := SRC1[i+63:i] BITWISE AND SRC2[i+63:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalents

VPANDD __m512i _mm512_and_epi32( __m512i a, __m512i b);
VPANDD __m512i _mm512_mask_and_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPANDD __m512i _mm512_maskz_and_epi32( __mmask16 k, __m512i a, __m512i b);
VPANDQ __m512i _mm512_and_epi64( __m512i a, __m512i b);
VPANDQ __m512i _mm512_mask_and_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPANDQ __m512i _mm512_maskz_and_epi64( __mmask8 k, __m512i a, __m512i b);
VPANDND __m256i _mm256_mask_and_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPANDND __m256i _mm256_maskz_and_epi32( __mmask8 k, __m256i a, __m256i b);
VPANDND __m128i _mm_mask_and_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPANDND __m128i _mm_maskz_and_epi32( __mmask8 k, __m128i a, __m128i b);
VPANDNQ __m256i _mm256_mask_and_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPANDNQ __m256i _mm256_maskz_and_epi64( __mmask8 k, __m256i a, __m256i b);
VPANDNQ __m128i _mm_mask_and_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPANDNQ __m128i _mm_maskz_and_epi64( __mmask8 k, __m128i a, __m128i b);
PAND __m64 _mm_and_si64 (__m64 m1, __m64 m2)
(V)PAND __m128i _mm_and_si128 ( __m128i a, __m128i b)
VPAND __m256i _mm256_and_si256 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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PANDN—Logical AND NOT

Instruction Operand Encoding

Description

Performs a bitwise logical NOT operation on the first source operand, then performs bitwise AND with second 
source operand and stores the result in the destination operand. Each bit of the result is set to 1 if the corre-
sponding bit in the first operand is 0 and the corresponding bit in the second operand is 1, otherwise it is set to 0.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F DF /r1

PANDN mm, mm/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V MMX Bitwise AND NOT of mm/m64 and mm.

66 0F DF /r

PANDN xmm1, xmm2/m128

A V/V SSE2 Bitwise AND NOT of xmm2/m128 and xmm1.

VEX.128.66.0F.WIG DF /r

VPANDN xmm1, xmm2, xmm3/m128

B V/V AVX Bitwise AND NOT of xmm3/m128 and xmm2.

VEX.256.66.0F.WIG DF /r

VPANDN ymm1, ymm2, ymm3/m256

B V/V AVX2 Bitwise AND NOT of ymm2, and ymm3/m256 
and store result in ymm1.

EVEX.128.66.0F.W0 DF /r
VPANDND xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst 

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Bitwise AND NOT of packed doubleword 
integers in xmm2 and xmm3/m128/m32bcst 
and store result in xmm1 using writemask k1. 

EVEX.256.66.0F.W0 DF /r
VPANDND ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst 

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Bitwise AND NOT of packed doubleword 
integers in ymm2 and ymm3/m256/m32bcst 
and store result in ymm1 using writemask k1. 

EVEX.512.66.0F.W0 DF /r
VPANDND zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst 

C V/V AVX512F 
OR AVX10.12

Bitwise AND NOT of packed doubleword 
integers in zmm2 and zmm3/m512/m32bcst 
and store result in zmm1 using writemask k1. 

EVEX.128.66.0F.W1 DF /r
VPANDNQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst 

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Bitwise AND NOT of packed quadword 
integers in xmm2 and xmm3/m128/m64bcst 
and store result in xmm1 using writemask k1. 

EVEX.256.66.0F.W1 DF /r
VPANDNQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst 

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Bitwise AND NOT of packed quadword 
integers in ymm2 and ymm3/m256/m64bcst 
and store result in ymm1 using writemask k1. 

EVEX.512.66.0F.W1 DF /r
VPANDNQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst 

C V/V AVX512F 
OR AVX10.12

Bitwise AND NOT of packed quadword 
integers in zmm2 and zmm3/m512/m64bcst 
and store result in zmm1 using writemask k1. 

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Legacy SSE instructions: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand can be an MMX technology register.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be 
a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 
32/64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write-
mask k1 at 32/64-bit granularity.
VEX.256 encoded versions: The first source operand is a YMM register. The second source operand is a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of 
the corresponding ZMM register destination are zeroed.
VEX.128 encoded versions: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.

Operation

PANDN (64-bit Operand)
DEST := NOT(DEST) AND SRC

PANDN (128-bit Legacy SSE Version)
DEST := NOT(DEST) AND SRC
DEST[MAXVL-1:128] (Unmodified)

VPANDN (VEX.128 Encoded Version)
DEST := NOT(SRC1) AND SRC2
DEST[MAXVL-1:128] := 0

VPANDN (VEX.256 Encoded Instruction)
DEST[255:0] := ((NOT SRC1[255:0]) AND SRC2[255:0])
DEST[MAXVL-1:256] := 0

VPANDND (EVEX Encoded Versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN DEST[i+31:i] := ((NOT SRC1[i+31:i]) AND SRC2[31:0])
ELSE DEST[i+31:i] := ((NOT SRC1[i+31:i]) AND SRC2[i+31:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VPANDNQ (EVEX Encoded Versions) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN DEST[i+63:i] := ((NOT SRC1[i+63:i]) AND SRC2[63:0])
ELSE DEST[i+63:i] := ((NOT SRC1[i+63:i]) AND SRC2[i+63:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalents

VPANDND __m512i _mm512_andnot_epi32( __m512i a, __m512i b);
VPANDND __m512i _mm512_mask_andnot_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPANDND __m512i _mm512_maskz_andnot_epi32( __mmask16 k, __m512i a, __m512i b);
VPANDND __m256i _mm256_mask_andnot_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPANDND __m256i _mm256_maskz_andnot_epi32( __mmask8 k, __m256i a, __m256i b);
VPANDND __m128i _mm_mask_andnot_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPANDND __m128i _mm_maskz_andnot_epi32( __mmask8 k, __m128i a, __m128i b);
VPANDNQ __m512i _mm512_andnot_epi64( __m512i a, __m512i b);
VPANDNQ __m512i _mm512_mask_andnot_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPANDNQ __m512i _mm512_maskz_andnot_epi64( __mmask8 k, __m512i a, __m512i b);
VPANDNQ __m256i _mm256_mask_andnot_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPANDNQ __m256i _mm256_maskz_andnot_epi64( __mmask8 k, __m256i a, __m256i b);
VPANDNQ __m128i _mm_mask_andnot_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPANDNQ __m128i _mm_maskz_andnot_epi64( __mmask8 k, __m128i a, __m128i b);
PANDN __m64 _mm_andnot_si64 (__m64 m1, __m64 m2)
(V)PANDN __m128i _mm_andnot_si128 ( __m128i a, __m128i b)
VPANDN __m256i _mm256_andnot_si256 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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PAUSE—Spin Loop Hint Vol. 2B 4-233

PAUSE—Spin Loop Hint

Instruction Operand Encoding

Description

Improves the performance of spin-wait loops. When executing a “spin-wait loop,” processors will suffer a severe 
performance penalty when exiting the loop because it detects a possible memory order violation. The PAUSE 
instruction provides a hint to the processor that the code sequence is a spin-wait loop. The processor uses this hint 
to avoid the memory order violation in most situations, which greatly improves processor performance. For this 
reason, it is recommended that a PAUSE instruction be placed in all spin-wait loops.

An additional function of the PAUSE instruction is to reduce the power consumed by a processor while executing a 
spin loop. A processor can execute a spin-wait loop extremely quickly, causing the processor to consume a lot of 
power while it waits for the resource it is spinning on to become available. Inserting a pause instruction in a spin-
wait loop greatly reduces the processor’s power consumption.

This instruction was introduced in the Pentium 4 processors, but is backward compatible with all IA-32 processors. 
In earlier IA-32 processors, the PAUSE instruction operates like a NOP instruction. The Pentium 4 and Intel Xeon 
processors implement the PAUSE instruction as a delay. The delay is finite and can be zero for some processors. 
This instruction does not change the architectural state of the processor (that is, it performs essentially a delaying 
no-op operation).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Execute_Next_Instruction(DELAY);

Numeric Exceptions

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F3 90 PAUSE ZO Valid Valid Gives hint to processor that improves 
performance of spin-wait loops.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A



PAVGB/PAVGW—Average Packed Integers
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F E0 /r1

PAVGB mm1, mm2/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2B, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V SSE Average packed unsigned byte integers from 
mm2/m64 and mm1 with rounding.

66 0F E0, /r

PAVGB xmm1, xmm2/m128

A V/V SSE2 Average packed unsigned byte integers from 
xmm2/m128 and xmm1 with rounding.

NP 0F E3 /r1

PAVGW mm1, mm2/m64

A V/V SSE Average packed unsigned word integers from 
mm2/m64 and mm1 with rounding.

66 0F E3 /r

PAVGW xmm1, xmm2/m128

A V/V SSE2 Average packed unsigned word integers from 
xmm2/m128 and xmm1 with rounding.

VEX.128.66.0F.WIG E0 /r

VPAVGB xmm1, xmm2, xmm3/m128

B V/V AVX Average packed unsigned byte integers from 
xmm3/m128 and xmm2 with rounding.

VEX.128.66.0F.WIG E3 /r

VPAVGW xmm1, xmm2, xmm3/m128

B V/V AVX Average packed unsigned word integers from 
xmm3/m128 and xmm2 with rounding.

VEX.256.66.0F.WIG E0 /r

VPAVGB ymm1, ymm2, ymm3/m256

B V/V AVX2 Average packed unsigned byte integers from 
ymm2, and ymm3/m256 with rounding and 
store to ymm1.

VEX.256.66.0F.WIG E3 /r

VPAVGW ymm1, ymm2, ymm3/m256

B V/V AVX2 Average packed unsigned word integers from 
ymm2, ymm3/m256 with rounding to ymm1.

EVEX.128.66.0F.WIG E0 /r
VPAVGB xmm1 {k1}{z}, xmm2, xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Average packed unsigned byte integers from 
xmm2, and xmm3/m128 with rounding and 
store to xmm1 under writemask k1.

EVEX.256.66.0F.WIG E0 /r
VPAVGB ymm1 {k1}{z}, ymm2, ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Average packed unsigned byte integers from 
ymm2, and ymm3/m256 with rounding and 
store to ymm1 under writemask k1.

EVEX.512.66.0F.WIG E0 /r
VPAVGB zmm1 {k1}{z}, zmm2, zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Average packed unsigned byte integers from 
zmm2, and zmm3/m512 with rounding and 
store to zmm1 under writemask k1.

EVEX.128.66.0F.WIG E3 /r
VPAVGW xmm1 {k1}{z}, xmm2, xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Average packed unsigned word integers from 
xmm2, xmm3/m128 with rounding to xmm1 
under writemask k1.

EVEX.256.66.0F.WIG E3 /r
VPAVGW ymm1 {k1}{z}, ymm2, ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Average packed unsigned word integers from 
ymm2, ymm3/m256 with rounding to ymm1 
under writemask k1.

EVEX.512.66.0F.WIG E3 /r
VPAVGW zmm1 {k1}{z}, zmm2, zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Average packed unsigned word integers from 
zmm2, zmm3/m512 with rounding to zmm1 
under writemask k1.
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Instruction Operand Encoding

Description

Performs a SIMD average of the packed unsigned integers from the source operand (second operand) and the 
destination operand (first operand), and stores the results in the destination operand. For each corresponding pair 
of data elements in the first and second operands, the elements are added together, a 1 is added to the temporary 
sum, and that result is shifted right one bit position. 

The (V)PAVGB instruction operates on packed unsigned bytes and the (V)PAVGW instruction operates on packed 
unsigned words.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Legacy SSE instructions: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand can be an MMX technology register.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (MAXVL-1:128) of the corresponding register destination are unmodified.

EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM 
register or a 512-bit memory location. The destination operand is a ZMM register.
VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register. The second source operand 
is a YMM register or a 256-bit memory location. The destination operand is a YMM register. 
VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand 
is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-
1:128) of the corresponding register destination are zeroed.

Operation

PAVGB (With 64-bit Operands)
DEST[7:0] := (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 6 *)
DEST[63:56] := (SRC[63:56] + DEST[63:56] + 1) >> 1;

PAVGW (With 64-bit Operands)
DEST[15:0] := (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 and 3 *)
DEST[63:48] := (SRC[63:48] + DEST[63:48] + 1) >> 1;

PAVGB (With 128-bit Operands)
DEST[7:0] := (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 14 *)
DEST[127:120] := (SRC[127:120] + DEST[127:120] + 1) >> 1;

PAVGW (With 128-bit Operands)
DEST[15:0] := (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 6 *)
DEST[127:112] := (SRC[127:112] + DEST[127:112] + 1) >> 1;

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VPAVGB (VEX.128 Encoded Version)
DEST[7:0] := (SRC1[7:0] + SRC2[7:0] + 1) >> 1; 
(* Repeat operation performed for bytes 2 through 15 *)
DEST[127:120] := (SRC1[127:120] + SRC2[127:120] + 1) >> 1
DEST[MAXVL-1:128] := 0

VPAVGW (VEX.128 Encoded Version)
DEST[15:0] := (SRC1[15:0] + SRC2[15:0] + 1) >> 1; 
(* Repeat operation performed for 16-bit words 2 through 7 *)
DEST[127:112] := (SRC1[127:112] + SRC2[127:112] + 1) >> 1
DEST[MAXVL-1:128] := 0

VPAVGB (VEX.256 Encoded Instruction)
DEST[7:0] := (SRC1[7:0] + SRC2[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 31)
DEST[255:248] := (SRC1[255:248] + SRC2[255:248] + 1) >> 1;

VPAVGW (VEX.256 Encoded Instruction)
DEST[15:0] := (SRC1[15:0] + SRC2[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 15)
DEST[255:14]) := (SRC1[255:240] + SRC2[255:240] + 1) >> 1;

VPAVGB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := (SRC1[i+7:i] + SRC2[i+7:i] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] = 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

VPAVGW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := (SRC1[i+15:i] + SRC2[i+15:i] + 1) >> 1
; (* Temp sum before shifting is 17 bits *)

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] = 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalents

VPAVGB __m512i _mm512_avg_epu8( __m512i a, __m512i b);
VPAVGW __m512i _mm512_avg_epu16( __m512i a, __m512i b);
VPAVGB __m512i _mm512_mask_avg_epu8(__m512i s, __mmask64 m, __m512i a, __m512i b);
VPAVGW __m512i _mm512_mask_avg_epu16(__m512i s, __mmask32 m, __m512i a, __m512i b);
VPAVGB __m512i _mm512_maskz_avg_epu8( __mmask64 m, __m512i a, __m512i b);
VPAVGW __m512i _mm512_maskz_avg_epu16( __mmask32 m, __m512i a, __m512i b);
VPAVGB __m256i _mm256_mask_avg_epu8(__m256i s, __mmask32 m, __m256i a, __m256i b);
VPAVGW __m256i _mm256_mask_avg_epu16(__m256i s, __mmask16 m, __m256i a, __m256i b);
VPAVGB __m256i _mm256_maskz_avg_epu8( __mmask32 m, __m256i a, __m256i b);
VPAVGW __m256i _mm256_maskz_avg_epu16( __mmask16 m, __m256i a, __m256i b);
VPAVGB __m128i _mm_mask_avg_epu8(__m128i s, __mmask16 m, __m128i a, __m128i b);
VPAVGW __m128i _mm_mask_avg_epu16(__m128i s, __mmask8 m, __m128i a, __m128i b);
VPAVGB __m128i _mm_maskz_avg_epu8( __mmask16 m, __m128i a, __m128i b);
VPAVGW __m128i _mm_maskz_avg_epu16( __mmask8 m, __m128i a, __m128i b);
PAVGB __m64 _mm_avg_pu8 (__m64 a, __m64 b)
PAVGW __m64 _mm_avg_pu16 (__m64 a, __m64 b)
(V)PAVGB __m128i _mm_avg_epu8 ( __m128i a, __m128i b)
(V)PAVGW __m128i _mm_avg_epu16 ( __m128i a, __m128i b)
VPAVGB __m256i _mm256_avg_epu8 ( __m256i a, __m256i b)
VPAVGW __m256i _mm256_avg_epu16 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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PBLENDVB—Variable Blend Packed Bytes

Instruction Operand Encoding

Description

Conditionally copies byte elements from the source operand (second operand) to the destination operand (first 
operand) depending on mask bits defined in the implicit third register argument, XMM0. The mask bits are the 
most significant bit in each byte element of the XMM0 register.
If a mask bit is “1", then the corresponding byte element in the source operand is copied to the destination, else 
the byte element in the destination operand is left unchanged.
The register assignment of the implicit third operand is defined to be the architectural register XMM0.
128-bit Legacy SSE version: The first source operand and the destination operand is the same. Bits (MAXVL-1:128) 
of the corresponding YMM destination register remain unchanged. The mask register operand is implicitly defined 
to be the architectural register XMM0. An attempt to execute PBLENDVB with a VEX prefix will cause #UD.
VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second 
source operand is an XMM register or 128-bit memory location. The mask operand is the third source register, and 
encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is 
ignored. The upper bits (MAXVL-1:128) of the corresponding YMM register (destination register) are zeroed. VEX.L 
must be 0, otherwise the instruction will #UD. VEX.W must be 0, otherwise, the instruction will #UD.
VEX.256 encoded version: The first source operand and the destination operand are YMM registers. The second 
source operand is an YMM register or 256-bit memory location. The third source register is an YMM register and 
encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is 
ignored. 
VPBLENDVB permits the mask to be any XMM or YMM register. In contrast, PBLENDVB treats XMM0 implicitly as the 
mask and do not support non-destructive destination operation. An attempt to execute PBLENDVB encoded with a 
VEX prefix will cause a #UD exception.

Operation

PBLENDVB (128-bit Legacy SSE Version)
MASK := XMM0
IF (MASK[7] = 1) THEN DEST[7:0] := SRC[7:0];
ELSE DEST[7:0] := DEST[7:0];
IF (MASK[15] = 1) THEN DEST[15:8] := SRC[15:8];
ELSE DEST[15:8] := DEST[15:8];
IF (MASK[23] = 1) THEN DEST[23:16] := SRC[23:16]

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 10 /r
PBLENDVB xmm1, xmm2/m128, <XMM0>

RM V/V SSE4_1 Select byte values from xmm1 and xmm2/m128 
from mask specified in the high bit of each byte 
in XMM0 and store the values into xmm1.

VEX.128.66.0F3A.W0 4C /r /is4
VPBLENDVB xmm1, xmm2, xmm3/m128, xmm4

RVMR V/V AVX Select byte values from xmm2 and xmm3/m128 
using mask bits in the specified mask register, 
xmm4, and store the values into xmm1.

VEX.256.66.0F3A.W0 4C /r /is4
VPBLENDVB ymm1, ymm2, ymm3/m256, ymm4

RVMR V/V AVX2 Select byte values from ymm2 and ymm3/m256 
from mask specified in the high bit of each byte 
in ymm4 and store the values into ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) <XMM0> N/A

RVMR ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[7:4]
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ELSE DEST[23:16] := DEST[23:16];
IF (MASK[31] = 1) THEN DEST[31:24] := SRC[31:24]
ELSE DEST[31:24] := DEST[31:24];
IF (MASK[39] = 1) THEN DEST[39:32] := SRC[39:32]
ELSE DEST[39:32] := DEST[39:32];
IF (MASK[47] = 1) THEN DEST[47:40] := SRC[47:40]
ELSE DEST[47:40] := DEST[47:40];
IF (MASK[55] = 1) THEN DEST[55:48] := SRC[55:48]
ELSE DEST[55:48] := DEST[55:48];
IF (MASK[63] = 1) THEN DEST[63:56] := SRC[63:56]
ELSE DEST[63:56] := DEST[63:56];
IF (MASK[71] = 1) THEN DEST[71:64] := SRC[71:64]
ELSE DEST[71:64] := DEST[71:64];
IF (MASK[79] = 1) THEN DEST[79:72] := SRC[79:72]
ELSE DEST[79:72] := DEST[79:72];
IF (MASK[87] = 1) THEN DEST[87:80] := SRC[87:80]
ELSE DEST[87:80] := DEST[87:80];
IF (MASK[95] = 1) THEN DEST[95:88] := SRC[95:88]
ELSE DEST[95:88] := DEST[95:88];
IF (MASK[103] = 1) THEN DEST[103:96] := SRC[103:96]
ELSE DEST[103:96] := DEST[103:96];
IF (MASK[111] = 1) THEN DEST[111:104] := SRC[111:104]
ELSE DEST[111:104] := DEST[111:104];
IF (MASK[119] = 1) THEN DEST[119:112] := SRC[119:112]
ELSE DEST[119:112] := DEST[119:112];
IF (MASK[127] = 1) THEN DEST[127:120] := SRC[127:120]
ELSE DEST[127:120] := DEST[127:120])
DEST[MAXVL-1:128] (Unmodified)

VPBLENDVB (VEX.128 Encoded Version)
MASK := SRC3
IF (MASK[7] = 1) THEN DEST[7:0] := SRC2[7:0];
ELSE DEST[7:0] := SRC1[7:0];
IF (MASK[15] = 1) THEN DEST[15:8] := SRC2[15:8];
ELSE DEST[15:8] := SRC1[15:8];
IF (MASK[23] = 1) THEN DEST[23:16] := SRC2[23:16]
ELSE DEST[23:16] := SRC1[23:16];
IF (MASK[31] = 1) THEN DEST[31:24] := SRC2[31:24]
ELSE DEST[31:24] := SRC1[31:24];
IF (MASK[39] = 1) THEN DEST[39:32] := SRC2[39:32]
ELSE DEST[39:32] := SRC1[39:32];
IF (MASK[47] = 1) THEN DEST[47:40] := SRC2[47:40]
ELSE DEST[47:40] := SRC1[47:40];
IF (MASK[55] = 1) THEN DEST[55:48] := SRC2[55:48]
ELSE DEST[55:48] := SRC1[55:48];
IF (MASK[63] = 1) THEN DEST[63:56] := SRC2[63:56]
ELSE DEST[63:56] := SRC1[63:56];
IF (MASK[71] = 1) THEN DEST[71:64] := SRC2[71:64]
ELSE DEST[71:64] := SRC1[71:64];
IF (MASK[79] = 1) THEN DEST[79:72] := SRC2[79:72]
ELSE DEST[79:72] := SRC1[79:72];
IF (MASK[87] = 1) THEN DEST[87:80] := SRC2[87:80]
ELSE DEST[87:80] := SRC1[87:80];
IF (MASK[95] = 1) THEN DEST[95:88] := SRC2[95:88]
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ELSE DEST[95:88] := SRC1[95:88];
IF (MASK[103] = 1) THEN DEST[103:96] := SRC2[103:96]
ELSE DEST[103:96] := SRC1[103:96];
IF (MASK[111] = 1) THEN DEST[111:104] := SRC2[111:104]
ELSE DEST[111:104] := SRC1[111:104];
IF (MASK[119] = 1) THEN DEST[119:112] := SRC2[119:112]
ELSE DEST[119:112] := SRC1[119:112];
IF (MASK[127] = 1) THEN DEST[127:120] := SRC2[127:120]
ELSE DEST[127:120] := SRC1[127:120])
DEST[MAXVL-1:128] := 0

VPBLENDVB (VEX.256 Encoded Version)
MASK := SRC3
IF (MASK[7] == 1) THEN DEST[7:0] := SRC2[7:0];
ELSE DEST[7:0] := SRC1[7:0];
IF (MASK[15] == 1) THEN DEST[15:8] := SRC2[15:8];
ELSE DEST[15:8] := SRC1[15:8];
IF (MASK[23] == 1) THEN DEST[23:16] := SRC2[23:16]
ELSE DEST[23:16] := SRC1[23:16];
IF (MASK[31] == 1) THEN DEST[31:24] := SRC2[31:24]
ELSE DEST[31:24] := SRC1[31:24];
IF (MASK[39] == 1) THEN DEST[39:32] := SRC2[39:32]
ELSE DEST[39:32] := SRC1[39:32];
IF (MASK[47] == 1) THEN DEST[47:40] := SRC2[47:40]
ELSE DEST[47:40] := SRC1[47:40];
IF (MASK[55] == 1) THEN DEST[55:48] := SRC2[55:48]
ELSE DEST[55:48] := SRC1[55:48];
IF (MASK[63] == 1) THEN DEST[63:56] := SRC2[63:56]
ELSE DEST[63:56] := SRC1[63:56];
IF (MASK[71] == 1) THEN DEST[71:64] := SRC2[71:64]
ELSE DEST[71:64] := SRC1[71:64];
IF (MASK[79] == 1) THEN DEST[79:72] := SRC2[79:72]
ELSE DEST[79:72] := SRC1[79:72];
IF (MASK[87] == 1) THEN DEST[87:80] := SRC2[87:80]
ELSE DEST[87:80] := SRC1[87:80];
IF (MASK[95] == 1) THEN DEST[95:88] := SRC2[95:88]
ELSE DEST[95:88] := SRC1[95:88];
IF (MASK[103] == 1) THEN DEST[103:96] := SRC2[103:96]
ELSE DEST[103:96] := SRC1[103:96];
IF (MASK[111] == 1) THEN DEST[111:104] := SRC2[111:104]
ELSE DEST[111:104] := SRC1[111:104];
IF (MASK[119] == 1) THEN DEST[119:112] := SRC2[119:112]
ELSE DEST[119:112] := SRC1[119:112];
IF (MASK[127] == 1) THEN DEST[127:120] := SRC2[127:120]
ELSE DEST[127:120] := SRC1[127:120])
IF (MASK[135] == 1) THEN DEST[135:128] := SRC2[135:128];
ELSE DEST[135:128] := SRC1[135:128];
IF (MASK[143] == 1) THEN DEST[143:136] := SRC2[143:136];
ELSE DEST[[143:136] := SRC1[143:136];
IF (MASK[151] == 1) THEN DEST[151:144] := SRC2[151:144]
ELSE DEST[151:144] := SRC1[151:144];
IF (MASK[159] == 1) THEN DEST[159:152] := SRC2[159:152]
ELSE DEST[159:152] := SRC1[159:152];
IF (MASK[167] == 1) THEN DEST[167:160] := SRC2[167:160]
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ELSE DEST[167:160] := SRC1[167:160];
IF (MASK[175] == 1) THEN DEST[175:168] := SRC2[175:168]
ELSE DEST[175:168] := SRC1[175:168];
IF (MASK[183] == 1) THEN DEST[183:176] := SRC2[183:176]
ELSE DEST[183:176] := SRC1[183:176];
IF (MASK[191] == 1) THEN DEST[191:184] := SRC2[191:184]
ELSE DEST[191:184] := SRC1[191:184];
IF (MASK[199] == 1) THEN DEST[199:192] := SRC2[199:192]
ELSE DEST[199:192] := SRC1[199:192];
IF (MASK[207] == 1) THEN DEST[207:200] := SRC2[207:200]
ELSE DEST[207:200] := SRC1[207:200]
IF (MASK[215] == 1) THEN DEST[215:208] := SRC2[215:208]
ELSE DEST[215:208] := SRC1[215:208];
IF (MASK[223] == 1) THEN DEST[223:216] := SRC2[223:216]
ELSE DEST[223:216] := SRC1[223:216];
IF (MASK[231] == 1) THEN DEST[231:224] := SRC2[231:224]
ELSE DEST[231:224] := SRC1[231:224];
IF (MASK[239] == 1) THEN DEST[239:232] := SRC2[239:232]
ELSE DEST[239:232] := SRC1[239:232];
IF (MASK[247] == 1) THEN DEST[247:240] := SRC2[247:240]
ELSE DEST[247:240] := SRC1[247:240];
IF (MASK[255] == 1) THEN DEST[255:248] := SRC2[255:248]
ELSE DEST[255:248] := SRC1[255:248]

Intel C/C++ Compiler Intrinsic Equivalent

(V)PBLENDVB __m128i _mm_blendv_epi8 (__m128i v1, __m128i v2, __m128i mask);
VPBLENDVB __m256i _mm256_blendv_epi8 (__m256i v1, __m256i v2, __m256i mask);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:
#UD If VEX.W = 1.
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PBLENDW—Blend Packed Words

Instruction Operand Encoding

Description

Words from the source operand (second operand) are conditionally written to the destination operand (first 
operand) depending on bits in the immediate operand (third operand). The immediate bits (bits 7:0) form a mask 
that determines whether the corresponding word in the destination is copied from the source. If a bit in the mask, 
corresponding to a word, is “1", then the word is copied, else the word element in the destination operand is 
unchanged.
128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source and destination operands are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM destination 
register remain unchanged.
VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source and destination operands are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM register 
are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. 

Operation

PBLENDW (128-bit Legacy SSE Version)
IF (imm8[0] = 1) THEN DEST[15:0] := SRC[15:0]
ELSE DEST[15:0] := DEST[15:0]
IF (imm8[1] = 1) THEN DEST[31:16] := SRC[31:16]
ELSE DEST[31:16] := DEST[31:16]
IF (imm8[2] = 1) THEN DEST[47:32] := SRC[47:32]
ELSE DEST[47:32] := DEST[47:32]
IF (imm8[3] = 1) THEN DEST[63:48] := SRC[63:48]
ELSE DEST[63:48] := DEST[63:48]
IF (imm8[4] = 1) THEN DEST[79:64] := SRC[79:64]
ELSE DEST[79:64] := DEST[79:64]
IF (imm8[5] = 1) THEN DEST[95:80] := SRC[95:80]
ELSE DEST[95:80] := DEST[95:80]
IF (imm8[6] = 1) THEN DEST[111:96] := SRC[111:96]
ELSE DEST[111:96] := DEST[111:96]
IF (imm8[7] = 1) THEN DEST[127:112] := SRC[127:112]

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 0E /r ib
PBLENDW xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Select words from xmm1 and xmm2/m128 from 
mask specified in imm8 and store the values into 
xmm1.

VEX.128.66.0F3A.WIG 0E /r ib
VPBLENDW xmm1, xmm2, xmm3/m128, imm8

RVMI V/V AVX Select words from xmm2 and xmm3/m128 from 
mask specified in imm8 and store the values into 
xmm1.

VEX.256.66.0F3A.WIG 0E /r ib
VPBLENDW ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX2 Select words from ymm2 and ymm3/m256 from 
mask specified in imm8 and store the values into 
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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ELSE DEST[127:112] := DEST[127:112]

VPBLENDW (VEX.128 Encoded Version)
IF (imm8[0] = 1) THEN DEST[15:0] := SRC2[15:0]
ELSE DEST[15:0] := SRC1[15:0]
IF (imm8[1] = 1) THEN DEST[31:16] := SRC2[31:16]
ELSE DEST[31:16] := SRC1[31:16]
IF (imm8[2] = 1) THEN DEST[47:32] := SRC2[47:32]
ELSE DEST[47:32] := SRC1[47:32]
IF (imm8[3] = 1) THEN DEST[63:48] := SRC2[63:48]
ELSE DEST[63:48] := SRC1[63:48]
IF (imm8[4] = 1) THEN DEST[79:64] := SRC2[79:64]
ELSE DEST[79:64] := SRC1[79:64]
IF (imm8[5] = 1) THEN DEST[95:80] := SRC2[95:80]
ELSE DEST[95:80] := SRC1[95:80]
IF (imm8[6] = 1) THEN DEST[111:96] := SRC2[111:96]
ELSE DEST[111:96] := SRC1[111:96]
IF (imm8[7] = 1) THEN DEST[127:112] := SRC2[127:112]
ELSE DEST[127:112] := SRC1[127:112]
DEST[MAXVL-1:128] := 0

VPBLENDW (VEX.256 Encoded Version)
IF (imm8[0] == 1) THEN DEST[15:0] := SRC2[15:0]
ELSE DEST[15:0] := SRC1[15:0]
IF (imm8[1] == 1) THEN DEST[31:16] := SRC2[31:16]
ELSE DEST[31:16] := SRC1[31:16]
IF (imm8[2] == 1) THEN DEST[47:32] := SRC2[47:32]
ELSE DEST[47:32] := SRC1[47:32]
IF (imm8[3] == 1) THEN DEST[63:48] := SRC2[63:48]
ELSE DEST[63:48] := SRC1[63:48]
IF (imm8[4] == 1) THEN DEST[79:64] := SRC2[79:64]
ELSE DEST[79:64] := SRC1[79:64]
IF (imm8[5] == 1) THEN DEST[95:80] := SRC2[95:80]
ELSE DEST[95:80] := SRC1[95:80]
IF (imm8[6] == 1) THEN DEST[111:96] := SRC2[111:96]
ELSE DEST[111:96] := SRC1[111:96]
IF (imm8[7] == 1) THEN DEST[127:112] := SRC2[127:112]
ELSE DEST[127:112] := SRC1[127:112]
IF (imm8[0] == 1) THEN DEST[143:128] := SRC2[143:128]
ELSE DEST[143:128] := SRC1[143:128]
IF (imm8[1] == 1) THEN DEST[159:144] := SRC2[159:144]
ELSE DEST[159:144] := SRC1[159:144]
IF (imm8[2] == 1) THEN DEST[175:160] := SRC2[175:160]
ELSE DEST[175:160] := SRC1[175:160]
IF (imm8[3] == 1) THEN DEST[191:176] := SRC2[191:176]
ELSE DEST[191:176] := SRC1[191:176]
IF (imm8[4] == 1) THEN DEST[207:192] := SRC2[207:192]
ELSE DEST[207:192] := SRC1[207:192]
IF (imm8[5] == 1) THEN DEST[223:208] := SRC2[223:208]
ELSE DEST[223:208] := SRC1[223:208]
IF (imm8[6] == 1) THEN DEST[239:224] := SRC2[239:224]
ELSE DEST[239:224] := SRC1[239:224]
IF (imm8[7] == 1) THEN DEST[255:240] := SRC2[255:240]
ELSE DEST[255:240] := SRC1[255:240]
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Intel C/C++ Compiler Intrinsic Equivalent

(V)PBLENDW __m128i _mm_blend_epi16 (__m128i v1, __m128i v2, const int mask);
VPBLENDW __m256i _mm256_blend_epi16 (__m256i v1, __m256i v2, const int mask)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:
#UD If VEX.L = 1 and AVX2 = 0.
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PCLMULQDQ—Carry-Less Multiplication Quadword

Instruction Operand Encoding

Description

Performs a carry-less multiplication of two quadwords, selected from the first source and second source operand 
according to the value of the immediate byte. Bits 4 and 0 are used to select which 64-bit half of each operand to 
use according to Table 1-13, other bits of the immediate byte are ignored. 
The EVEX encoded form of this instruction does not support memory fault suppression.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

66 0F 3A 44 /r ib
PCLMULQDQ xmm1, xmm2/m128, imm8

A V/V PCLMULQDQ Carry-less multiplication of one quadword of 
xmm1 by one quadword of xmm2/m128, 
stores the 128-bit result in xmm1. The imme-
diate is used to determine which quadwords 
of xmm1 and xmm2/m128 should be used.

VEX.128.66.0F3A.WIG 44 /r ib
VPCLMULQDQ xmm1, xmm2, xmm3/m128, imm8

B V/V PCLMULQDQ 
AVX

Carry-less multiplication of one quadword of 
xmm2 by one quadword of xmm3/m128, 
stores the 128-bit result in xmm1. The imme-
diate is used to determine which quadwords 
of xmm2 and xmm3/m128 should be used.

VEX.256.66.0F3A.WIG 44 /r /ib 
VPCLMULQDQ ymm1, ymm2, ymm3/m256, imm8

B V/V VPCLMULQDQ
AVX 

Carry-less multiplication of one quadword of 
ymm2 by one quadword of ymm3/m256, 
stores the 128-bit result in ymm1. The imme-
diate is used to determine which quadwords 
of ymm2 and ymm3/m256 should be used.

EVEX.128.66.0F3A.WIG 44 /r /ib
VPCLMULQDQ xmm1, xmm2, xmm3/m128, imm8

C V/V VPCLMULQDQ
(AVX512VL 
OR AVX10.11)

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Carry-less multiplication of one quadword of 
xmm2 by one quadword of xmm3/m128, 
stores the 128-bit result in xmm1. The imme-
diate is used to determine which quadwords 
of xmm2 and xmm3/m128 should be used.

EVEX.256.66.0F3A.WIG 44 /r /ib
VPCLMULQDQ ymm1, ymm2, ymm3/m256, imm8

C V/V VPCLMULQDQ
(AVX512VL
OR AVX10.11)

Carry-less multiplication of one quadword of 
ymm2 by one quadword of ymm3/m256, 
stores the 128-bit result in ymm1. The imme-
diate is used to determine which quadwords 
of ymm2 and ymm3/m256 should be used.

EVEX.512.66.0F3A.WIG 44 /r /ib
VPCLMULQDQ zmm1, zmm2, zmm3/m512, imm8

C V/V VPCLMULQDQ
(AVX512F
OR AVX10.11)

Carry-less multiplication of one quadword of 
zmm2 by one quadword of zmm3/m512, 
stores the 128-bit result in zmm1. The imme-
diate is used to determine which quadwords 
of zmm2 and zmm3/m512 should be used.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)
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The first source operand and the destination operand are the same and must be a ZMM/YMM/XMM register. The 
second source operand can be a ZMM/YMM/XMM register or a 512/256/128-bit memory location. Bits (VL_MAX-
1:128) of the corresponding YMM destination register remain unchanged.

Compilers and assemblers may implement the following pseudo-op syntax to simplify programming and emit the 
required encoding for imm8.

Operation

define PCLMUL128(X,Y): // helper function
FOR i := 0 to 63:

TMP [ i ] := X[ 0 ] and Y[ i ]
FOR j := 1 to i:

TMP [ i ] := TMP [ i ] xor (X[ j ] and Y[ i - j ])
DEST[ i ] := TMP[ i ]

FOR i := 64 to 126:
TMP [ i ] := 0
FOR j := i - 63 to 63:

TMP [ i ] := TMP [ i ] xor (X[ j ] and Y[ i - j ])
DEST[ i ] := TMP[ i ]

DEST[127] := 0;
RETURN DEST // 128b vector

Table 1-13.  PCLMULQDQ Quadword Selection of Immediate Byte

Imm[4] Imm[0] PCLMULQDQ Operation

0 0 CL_MUL( SRC21[63:0], SRC1[63:0] )

NOTES:
1. SRC2 denotes the second source operand, which can be a register or memory; SRC1 denotes the first source and destination oper-

and.

0 1 CL_MUL( SRC2[63:0], SRC1[127:64] )

1 0 CL_MUL( SRC2[127:64], SRC1[63:0] )

1 1 CL_MUL( SRC2[127:64], SRC1[127:64] )

Table 1-14.  Pseudo-Op and PCLMULQDQ Implementation

Pseudo-Op Imm8 Encoding

PCLMULLQLQDQ xmm1, xmm2 0000_0000B

PCLMULHQLQDQ xmm1, xmm2 0000_0001B

PCLMULLQHQDQ xmm1, xmm2 0001_0000B

PCLMULHQHQDQ xmm1, xmm2 0001_0001B
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PCLMULQDQ (SSE Version)
IF imm8[0] = 0:

TEMP1 := SRC1.qword[0]
ELSE:

TEMP1 := SRC1.qword[1]
IF imm8[4] = 0:

TEMP2 := SRC2.qword[0]
ELSE:

TEMP2 := SRC2.qword[1]
DEST[127:0] := PCLMUL128(TEMP1, TEMP2)
DEST[MAXVL-1:128] (Unmodified)

VPCLMULQDQ (128b and 256b VEX Encoded Versions)
(KL,VL) = (1,128), (2,256)
FOR i= 0 to KL-1:

IF imm8[0] = 0:
TEMP1 := SRC1.xmm[i].qword[0]

ELSE:
TEMP1 := SRC1.xmm[i].qword[1]

IF imm8[4] = 0:
TEMP2 := SRC2.xmm[i].qword[0]

ELSE:
TEMP2 := SRC2.xmm[i].qword[1]

DEST.xmm[i] := PCLMUL128(TEMP1, TEMP2)
DEST[MAXVL-1:VL] := 0

VPCLMULQDQ (EVEX Encoded Version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i = 0 to KL-1:

IF imm8[0] = 0:
TEMP1 := SRC1.xmm[i].qword[0]

ELSE:
TEMP1 := SRC1.xmm[i].qword[1]

IF imm8[4] = 0:
TEMP2 := SRC2.xmm[i].qword[0]

ELSE:
TEMP2 := SRC2.xmm[i].qword[1]

DEST.xmm[i] := PCLMUL128(TEMP1, TEMP2)
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)PCLMULQDQ __m128i  _mm_clmulepi64_si128 (__m128i, __m128i, const int)
VPCLMULQDQ __m256i _mm256_clmulepi64_epi128(__m256i, __m256i, const int);
VPCLMULQDQ __m512i _mm512_clmulepi64_epi128(__m512i, __m512i, const int);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:
#UD If VEX.L = 1.
EVEX-encoded: See Table 2-52, “Type E4NF Class Exception Conditions.”
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PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal
Opcode/
Instruction

Op/ En 64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 74 /r1

PCMPEQB mm, mm/m64

A V/V MMX Compare packed bytes in mm/m64 and mm for 
equality.

66 0F 74 /r

PCMPEQB xmm1, xmm2/m128

A V/V SSE2 Compare packed bytes in xmm2/m128 and 
xmm1 for equality.

NP 0F 75 /r1

PCMPEQW mm, mm/m64

A V/V MMX Compare packed words in mm/m64 and mm 
for equality.

66 0F 75 /r

PCMPEQW xmm1, xmm2/m128

A V/V SSE2 Compare packed words in xmm2/m128 and 
xmm1 for equality.

NP 0F 76 /r1

PCMPEQD mm, mm/m64

A V/V MMX Compare packed doublewords in mm/m64 and 
mm for equality.

66 0F 76 /r

PCMPEQD xmm1, xmm2/m128

A V/V SSE2 Compare packed doublewords in xmm2/m128 
and xmm1 for equality.

VEX.128.66.0F.WIG 74 /r

VPCMPEQB xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed bytes in xmm3/m128 and 
xmm2 for equality.

VEX.128.66.0F.WIG 75 /r

VPCMPEQW xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed words in xmm3/m128 and 
xmm2 for equality.

VEX.128.66.0F.WIG 76 /r

VPCMPEQD xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed doublewords in xmm3/m128 
and xmm2 for equality.

VEX.256.66.0F.WIG 74 /r
VPCMPEQB ymm1, ymm2, ymm3 /m256

B V/V AVX2 Compare packed bytes in ymm3/m256 and 
ymm2 for equality.

VEX.256.66.0F.WIG 75 /r

VPCMPEQW ymm1, ymm2, ymm3 /m256

B V/V AVX2 Compare packed words in ymm3/m256 and 
ymm2 for equality.

VEX.256.66.0F.WIG 76 /r

VPCMPEQD ymm1, ymm2, ymm3 /m256

B V/V AVX2 Compare packed doublewords in ymm3/m256 
and ymm2 for equality.

EVEX.128.66.0F.W0 76 /r
VPCMPEQD k1 {k2}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Compare Equal between int32 vector xmm2 
and int32 vector xmm3/m128/m32bcst, and 
set vector mask k1 to reflect the 
zero/nonzero status of each element of the 
result, under writemask.

EVEX.256.66.0F.W0 76 /r
VPCMPEQD k1 {k2}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Compare Equal between int32 vector ymm2 
and int32 vector ymm3/m256/m32bcst, and 
set vector mask k1 to reflect the 
zero/nonzero status of each element of the 
result, under writemask.

EVEX.512.66.0F.W0 76 /r
VPCMPEQD k1 {k2}, zmm2, 
zmm3/m512/m32bcst

C V/V AVX512F 
OR AVX10.12

Compare Equal between int32 vectors in 
zmm2 and zmm3/m512/m32bcst, and set 
destination k1 according to the comparison 
results under writemask k2.

EVEX.128.66.0F.WIG 74 /r
VPCMPEQB k1 {k2}, xmm2, xmm3 /m128

D V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compare packed bytes in xmm3/m128 and 
xmm2 for equality and set vector mask k1 to 
reflect the zero/nonzero status of each 
element of the result, under writemask.
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Instruction Operand Encoding

Description

Performs a SIMD compare for equality of the packed bytes, words, or doublewords in the destination operand (first 
operand) and the source operand (second operand). If a pair of data elements is equal, the corresponding data 
element in the destination operand is set to all 1s; otherwise, it is set to all 0s. 

The (V)PCMPEQB instruction compares the corresponding bytes in the destination and source operands; the 
(V)PCMPEQW instruction compares the corresponding words in the destination and source operands; and the 
(V)PCMPEQD instruction compares the corresponding doublewords in the destination and source operands.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Legacy SSE instructions: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand can be an MMX technology register.

EVEX.256.66.0F.WIG 74 /r
VPCMPEQB k1 {k2}, ymm2, ymm3 /m256

D V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compare packed bytes in ymm3/m256 and 
ymm2 for equality and set vector mask k1 to 
reflect the zero/nonzero status of each 
element of the result, under writemask.

EVEX.512.66.0F.WIG 74 /r
VPCMPEQB k1 {k2}, zmm2, zmm3 /m512

D V/V AVX512BW 
OR AVX10.12

Compare packed bytes in zmm3/m512 and 
zmm2 for equality and set vector mask k1 to 
reflect the zero/nonzero status of each 
element of the result, under writemask.

EVEX.128.66.0F.WIG 75 /r
VPCMPEQW k1 {k2}, xmm2, xmm3 /m128

D V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compare packed words in xmm3/m128 and 
xmm2 for equality and set vector mask k1 to 
reflect the zero/nonzero status of each 
element of the result, under writemask.

EVEX.256.66.0F.WIG 75 /r
VPCMPEQW k1 {k2}, ymm2, ymm3 /m256

D V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compare packed words in ymm3/m256 and 
ymm2 for equality and set vector mask k1 to 
reflect the zero/nonzero status of each 
element of the result, under writemask.

EVEX.512.66.0F.WIG 75 /r
VPCMPEQW k1 {k2}, zmm2, zmm3 /m512

D V/V AVX512BW 
OR AVX10.12

Compare packed words in zmm3/m512 and 
zmm2 for equality and set vector mask k1 to 
reflect the zero/nonzero status of each 
element of the result, under writemask.

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

D Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op/ En 64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description
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128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source and destination operands are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM destination 
register remain unchanged.
VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source and destination operands are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM register 
are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register.
EVEX encoded VPCMPEQD: The first source operand (second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcasted from a 32-bit memory location. The destination operand (first operand) is a mask register updated 
according to the writemask k2.
EVEX encoded VPCMPEQB/W: The first source operand (second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand 
(first operand) is a mask register updated according to the writemask k2.

Operation

PCMPEQB (With 64-bit Operands)
IF DEST[7:0] = SRC[7:0]

THEN DEST[7:0) := FFH; 
ELSE DEST[7:0] := 0; FI;

(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] = SRC[63:56]

THEN DEST[63:56] := FFH;
ELSE DEST[63:56] := 0; FI;

COMPARE_BYTES_EQUAL (SRC1, SRC2)
IF SRC1[7:0] = SRC2[7:0]
THEN DEST[7:0] := FFH;
ELSE DEST[7:0] := 0; FI;

(* Continue comparison of 2nd through 15th bytes in SRC1 and SRC2 *)
IF SRC1[127:120] = SRC2[127:120]
THEN DEST[127:120] := FFH;
ELSE DEST[127:120] := 0; FI;

COMPARE_WORDS_EQUAL (SRC1, SRC2)
IF SRC1[15:0] = SRC2[15:0]
THEN DEST[15:0] := FFFFH;
ELSE DEST[15:0] := 0; FI;

(* Continue comparison of 2nd through 7th 16-bit words in SRC1 and SRC2 *)
IF SRC1[127:112] = SRC2[127:112]
THEN DEST[127:112] := FFFFH;
ELSE DEST[127:112] := 0; FI;

COMPARE_DWORDS_EQUAL (SRC1, SRC2)
IF SRC1[31:0] = SRC2[31:0]
THEN DEST[31:0] := FFFFFFFFH;
ELSE DEST[31:0] := 0; FI;

(* Continue comparison of 2nd through 3rd 32-bit dwords in SRC1 and SRC2 *)
IF SRC1[127:96] = SRC2[127:96]
THEN DEST[127:96] := FFFFFFFFH;
ELSE DEST[127:96] := 0; FI;
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PCMPEQB (With 128-bit Operands)
DEST[127:0] := COMPARE_BYTES_EQUAL(DEST[127:0],SRC[127:0])
DEST[MAXVL-1:128] (Unmodified)

VPCMPEQB (VEX.128 Encoded Version)
DEST[127:0] := COMPARE_BYTES_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[MAXVL-1:128] := 0

VPCMPEQB (VEX.256 Encoded Version)
DEST[127:0] := COMPARE_BYTES_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[255:128] := COMPARE_BYTES_EQUAL(SRC1[255:128],SRC2[255:128])
DEST[MAXVL-1:256] := 0

VPCMPEQB (EVEX Encoded Versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)

FOR j := 0 TO KL-1
i := j * 8
IF k2[j] OR *no writemask*

THEN 
/* signed comparison */
CMP := SRC1[i+7:i] == SRC2[i+7:i];
IF CMP = TRUE

THEN DEST[j] := 1;
ELSE DEST[j] := 0; FI;

ELSE DEST[j] := 0 ; zeroing-masking onlyFI;
FI;

ENDFOR
DEST[MAX_KL-1:KL] := 0

PCMPEQW (With 64-bit Operands)
IF DEST[15:0] = SRC[15:0] 

THEN DEST[15:0] := FFFFH;
ELSE DEST[15:0] := 0; FI;

(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] = SRC[63:48]

THEN DEST[63:48] := FFFFH;
ELSE DEST[63:48] := 0; FI;

PCMPEQW (With 128-bit Operands)
DEST[127:0] := COMPARE_WORDS_EQUAL(DEST[127:0],SRC[127:0])
DEST[MAXVL-1:128] (Unmodified)

VPCMPEQW (VEX.128 Encoded Version)
DEST[127:0] := COMPARE_WORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[MAXVL-1:128] := 0

VPCMPEQW (VEX.256 Encoded Version)
DEST[127:0] := COMPARE_WORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[255:128] := COMPARE_WORDS_EQUAL(SRC1[255:128],SRC2[255:128])
DEST[MAXVL-1:256] := 0
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VPCMPEQW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k2[j] OR *no writemask*

THEN 
/* signed comparison */
CMP := SRC1[i+15:i] == SRC2[i+15:i];
IF CMP = TRUE

THEN DEST[j] := 1;
ELSE DEST[j] := 0; FI;

ELSE DEST[j] := 0 ; zeroing-masking onlyFI;
FI;

ENDFOR
DEST[MAX_KL-1:KL] := 0

PCMPEQD (With 64-bit Operands)
IF DEST[31:0] = SRC[31:0]

THEN DEST[31:0] := FFFFFFFFH; 
ELSE DEST[31:0] := 0; FI;

IF DEST[63:32] = SRC[63:32]
THEN DEST[63:32] := FFFFFFFFH;
ELSE DEST[63:32] := 0; FI;

PCMPEQD (With 128-bit Operands)
DEST[127:0] := COMPARE_DWORDS_EQUAL(DEST[127:0],SRC[127:0])
DEST[MAXVL-1:128] (Unmodified)

VPCMPEQD (VEX.128 Encoded Version)
DEST[127:0] := COMPARE_DWORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[MAXVL-1:128] := 0

VPCMPEQD (VEX.256 Encoded Version)
DEST[127:0] := COMPARE_DWORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[255:128] := COMPARE_DWORDS_EQUAL(SRC1[255:128],SRC2[255:128])
DEST[MAXVL-1:256] := 0

VPCMPEQD (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k2[j] OR *no writemask*

THEN 
/* signed comparison */
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN CMP := SRC1[i+31:i] = SRC2[31:0];
ELSE CMP := SRC1[i+31:i] = SRC2[i+31:i];

FI;
IF CMP = TRUE

THEN DEST[j] := 1;
ELSE DEST[j] := 0; FI;

ELSE DEST[j] := 0 ; zeroing-masking only
FI;

ENDFOR
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DEST[MAX_KL-1:KL] := 0

Intel C/C++ Compiler Intrinsic Equivalents

VPCMPEQB __mmask64 _mm512_cmpeq_epi8_mask(__m512i a, __m512i b);
VPCMPEQB __mmask64 _mm512_mask_cmpeq_epi8_mask(__mmask64 k, __m512i a, __m512i b);
VPCMPEQB __mmask32 _mm256_cmpeq_epi8_mask(__m256i a, __m256i b);
VPCMPEQB __mmask32 _mm256_mask_cmpeq_epi8_mask(__mmask32 k, __m256i a, __m256i b);
VPCMPEQB __mmask16 _mm_cmpeq_epi8_mask(__m128i a, __m128i b);
VPCMPEQB __mmask16 _mm_mask_cmpeq_epi8_mask(__mmask16 k, __m128i a, __m128i b);
VPCMPEQW __mmask32 _mm512_cmpeq_epi16_mask(__m512i a, __m512i b);
VPCMPEQW __mmask32 _mm512_mask_cmpeq_epi16_mask(__mmask32 k, __m512i a, __m512i b);
VPCMPEQW __mmask16 _mm256_cmpeq_epi16_mask(__m256i a, __m256i b);
VPCMPEQW __mmask16 _mm256_mask_cmpeq_epi16_mask(__mmask16 k, __m256i a, __m256i b);
VPCMPEQW __mmask8 _mm_cmpeq_epi16_mask(__m128i a, __m128i b);
VPCMPEQW __mmask8 _mm_mask_cmpeq_epi16_mask(__mmask8 k, __m128i a, __m128i b);
VPCMPEQD __mmask16 _mm512_cmpeq_epi32_mask( __m512i a, __m512i b);
VPCMPEQD __mmask16 _mm512_mask_cmpeq_epi32_mask(__mmask16 k, __m512i a, __m512i b);
VPCMPEQD __mmask8 _mm256_cmpeq_epi32_mask(__m256i a, __m256i b);
VPCMPEQD __mmask8 _mm256_mask_cmpeq_epi32_mask(__mmask8 k, __m256i a, __m256i b);
VPCMPEQD __mmask8 _mm_cmpeq_epi32_mask(__m128i a, __m128i b);
VPCMPEQD __mmask8 _mm_mask_cmpeq_epi32_mask(__mmask8 k, __m128i a, __m128i b);
PCMPEQB __m64 _mm_cmpeq_pi8 (__m64 m1, __m64 m2)
PCMPEQW  __m64 _mm_cmpeq_pi16 (__m64 m1, __m64 m2)
PCMPEQD __m64 _mm_cmpeq_pi32 (__m64 m1, __m64 m2)
(V)PCMPEQB __m128i _mm_cmpeq_epi8 ( __m128i a, __m128i b)
(V)PCMPEQW __m128i _mm_cmpeq_epi16 ( __m128i a, __m128i b)
(V)PCMPEQD __m128i _mm_cmpeq_epi32 ( __m128i a, __m128i b)
VPCMPEQB __m256i _mm256_cmpeq_epi8 ( __m256i a, __m256i b)
VPCMPEQW __m256i _mm256_cmpeq_epi16 ( __m256i a, __m256i b)
VPCMPEQD __m256i _mm256_cmpeq_epi32 ( __m256i a, __m256i b)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded VPCMPEQD, see Table 2-51, “Type E4 Class Exception Conditions.”
EVEX-encoded VPCMPEQB/W, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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PCMPEQQ—Compare Packed Qword Data for Equal

Instruction Operand Encoding

Description

Performs an SIMD compare for equality of the packed quadwords in the destination operand (first operand) and the 
source operand (second operand).  If a pair of data elements is equal, the corresponding data element in the desti-
nation is set to all 1s; otherwise, it is set to 0s.
128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source and destination operands are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM destination 
register remain unchanged.
VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source and destination operands are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM register 
are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register.
EVEX encoded VPCMPEQQ: The first source operand (second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcasted from a 64-bit memory location. The destination operand (first operand) is a mask register updated 
according to the writemask k2.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 38 29 /r
PCMPEQQ xmm1, xmm2/m128

A V/V SSE4_1 Compare packed qwords in xmm2/m128 and 
xmm1 for equality.

VEX.128.66.0F38.WIG 29 /r
VPCMPEQQ xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed quadwords in xmm3/m128 and 
xmm2 for equality.

VEX.256.66.0F38.WIG 29 /r
VPCMPEQQ ymm1, ymm2, ymm3 /m256

B V/V AVX2 Compare packed quadwords in ymm3/m256 and 
ymm2 for equality.

EVEX.128.66.0F38.W1 29 /r
VPCMPEQQ k1 {k2}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare Equal between int64 vector xmm2 and 
int64 vector xmm3/m128/m64bcst, and set 
vector mask k1 to reflect the zero/nonzero status 
of each element of the result, under writemask.

EVEX.256.66.0F38.W1 29 /r
VPCMPEQQ k1 {k2}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare Equal between int64 vector ymm2 and 
int64 vector ymm3/m256/m64bcst, and set 
vector mask k1 to reflect the zero/nonzero status 
of each element of the result, under writemask.

EVEX.512.66.0F38.W1 29 /r
VPCMPEQQ k1 {k2}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512F 
OR AVX10.11

Compare Equal between int64 vector zmm2 and 
int64 vector zmm3/m512/m64bcst, and set 
vector mask k1 to reflect the zero/nonzero status 
of each element of the result, under writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

PCMPEQQ (With 128-bit Operands)

IF (DEST[63:0] = SRC[63:0]) 
THEN DEST[63:0] := FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] := 0; FI;

IF (DEST[127:64] = SRC[127:64]) 
THEN DEST[127:64] := FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] := 0; FI;

DEST[MAXVL-1:128] (Unmodified)

COMPARE_QWORDS_EQUAL (SRC1, SRC2)
IF SRC1[63:0] = SRC2[63:0]
THEN DEST[63:0] := FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] := 0; FI;
IF SRC1[127:64] = SRC2[127:64]
THEN DEST[127:64] := FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] := 0; FI;

VPCMPEQQ (VEX.128 Encoded Version)
DEST[127:0] := COMPARE_QWORDS_EQUAL(SRC1,SRC2)
DEST[MAXVL-1:128] := 0

VPCMPEQQ (VEX.256 Encoded Version)
DEST[127:0] := COMPARE_QWORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[255:128] := COMPARE_QWORDS_EQUAL(SRC1[255:128],SRC2[255:128])
DEST[MAXVL-1:256] := 0

VPCMPEQQ (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k2[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN CMP := SRC1[i+63:i] = SRC2[63:0];
ELSE CMP := SRC1[i+63:i] = SRC2[i+63:i];

FI;
IF CMP = TRUE

THEN DEST[j] := 1;
ELSE DEST[j] := 0; FI;

ELSE DEST[j] := 0 ; zeroing-masking only
FI;

ENDFOR
DEST[MAX_KL-1:KL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPCMPEQQ __mmask8 _mm512_cmpeq_epi64_mask( __m512i a, __m512i b);
VPCMPEQQ __mmask8 _mm512_mask_cmpeq_epi64_mask(__mmask8 k, __m512i a, __m512i b);
VPCMPEQQ __mmask8 _mm256_cmpeq_epi64_mask( __m256i a, __m256i b);
VPCMPEQQ __mmask8 _mm256_mask_cmpeq_epi64_mask(__mmask8 k, __m256i a, __m256i b);
VPCMPEQQ __mmask8 _mm_cmpeq_epi64_mask( __m128i a, __m128i b);
VPCMPEQQ __mmask8 _mm_mask_cmpeq_epi64_mask(__mmask8 k, __m128i a, __m128i b);
(V)PCMPEQQ __m128i _mm_cmpeq_epi64(__m128i a, __m128i b);
VPCMPEQQ __m256i _mm256_cmpeq_epi64( __m256i a, __m256i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded VPCMPEQQ, see Table 2-51, “Type E4 Class Exception Conditions.”
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PCMPESTRI—Packed Compare Explicit Length Strings, Return Index

Instruction Operand Encoding

Description

The instruction compares and processes data from two string fragments based on the encoded value in the imm8 
control byte (see Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMP-
ISTRM”), and generates an index stored to the count register (ECX).

Each string fragment is represented by two values. The first value is an xmm (or possibly m128 for the second 
operand) which contains the data elements of the string (byte or word data). The second value is stored in an input 
length register. The input length register is EAX/RAX (for xmm1) or EDX/RDX (for xmm2/m128). The length 
represents the number of bytes/words which are valid for the respective xmm/m128 data. 

The length of each input is interpreted as being the absolute-value of the value in the length register. The absolute-
value computation saturates to 16 (for bytes) and 8 (for words), based on the value of imm8[bit3] when the value 
in the length register is greater than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded value of imm8 bit fields (see 
Section 4.1). The index of the first (or last, according to imm8[6]) set bit of IntRes2 (see Section 4.1.4) is returned 
in ECX. If no bits are set in IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to supply the most relevant informa-
tion:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag – IntRes2[0]
AFlag – Reset
PFlag – Reset

Effective Operand Size

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 61 /r imm8
PCMPESTRI xmm1, xmm2/m128, imm8

RMI V/V SSE4_2 Perform a packed comparison of string data with 
explicit lengths, generating an index, and storing the 
result in ECX.

VEX.128.66.0F3A 61 /r ib
VPCMPESTRI xmm1, xmm2/m128, imm8

RMI V/V AVX Perform a packed comparison of string data with 
explicit lengths, generating an index, and storing the 
result in ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r) ModRM:r/m (r) imm8 N/A

Operating mode/size Operand 1 Operand 2 Length 1 Length 2 Result

16 bit xmm xmm/m128 EAX EDX ECX

32 bit xmm xmm/m128 EAX EDX ECX

64 bit xmm xmm/m128 EAX EDX ECX

64 bit + REX.W xmm xmm/m128 RAX RDX ECX
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Intel C/C++ Compiler Intrinsic Equivalent For Returning Index 

int _mm_cmpestri (__m128i a, int la, __m128i b, int lb, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally, this instruction does not cause #GP if the 
memory operand is not aligned to 16 Byte boundary, and:
#UD If VEX.L = 1.

If VEX.vvvv ≠ 1111B.
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PCMPESTRM—Packed Compare Explicit Length Strings, Return Mask

Instruction Operand Encoding

Description

The instruction compares data from two string fragments based on the encoded value in the imm8 contol byte (see 
Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and gener-
ates a mask stored to XMM0.

Each string fragment is represented by two values. The first value is an xmm (or possibly m128 for the second 
operand) which contains the data elements of the string (byte or word data). The second value is stored in an input 
length register. The input length register is EAX/RAX (for xmm1) or EDX/RDX (for xmm2/m128). The length 
represents the number of bytes/words which are valid for the respective xmm/m128 data.  

The length of each input is interpreted as being the absolute-value of the value in the length register. The absolute-
value computation saturates to 16 (for bytes) and 8 (for words), based on the value of imm8[bit3] when the value 
in the length register is greater than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded value of imm8 bit fields (see 
Section 4.1). As defined by imm8[6], IntRes2 is then either stored to the least significant bits of XMM0 (zero 
extended to 128 bits) or expanded into a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to supply the most relevant informa-
tion:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag –IntRes2[0]
AFlag – Reset
PFlag – Reset

Note: In VEX.128 encoded versions, bits (MAXVL-1:128) of XMM0 are zeroed. VEX.vvvv is reserved and must be 
1111b, VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 60 /r imm8
PCMPESTRM xmm1, xmm2/m128, imm8

RMI V/V SSE4_2 Perform a packed comparison of string data 
with explicit lengths, generating a mask, and 
storing the result in XMM0.

VEX.128.66.0F3A 60 /r ib
VPCMPESTRM xmm1, xmm2/m128, imm8

RMI V/V AVX Perform a packed comparison of string data 
with explicit lengths, generating a mask, and 
storing the result in XMM0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r) ModRM:r/m (r) imm8 N/A
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Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally, this instruction does not cause #GP if the 
memory operand is not aligned to 16 Byte boundary, and:
#UD If VEX.L = 1.

If VEX.vvvv ≠ 1111B.

Operating mode/size Operand 1 Operand 2 Length 1 Length 2 Result

16 bit xmm xmm/m128 EAX EDX XMM0

32 bit xmm xmm/m128 EAX EDX XMM0

64 bit xmm xmm/m128 EAX EDX XMM0

64 bit + REX.W xmm xmm/m128 RAX RDX XMM0
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PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 64 /r1

PCMPGTB mm, mm/m64

A V/V MMX Compare packed signed byte integers in mm and 
mm/m64 for greater than.

66 0F 64 /r

PCMPGTB xmm1, xmm2/m128

A V/V SSE2 Compare packed signed byte integers in xmm1 
and xmm2/m128 for greater than.

NP 0F 65 /r1

PCMPGTW mm, mm/m64

A V/V MMX Compare packed signed word integers in mm and 
mm/m64 for greater than.

66 0F 65 /r

PCMPGTW xmm1, xmm2/m128

A V/V SSE2 Compare packed signed word integers in xmm1 
and xmm2/m128 for greater than.

NP 0F 66 /r1

PCMPGTD mm, mm/m64

A V/V MMX Compare packed signed doubleword integers in 
mm and mm/m64 for greater than.

66 0F 66 /r

PCMPGTD xmm1, xmm2/m128

A V/V SSE2 Compare packed signed doubleword integers in 
xmm1 and xmm2/m128 for greater than.

VEX.128.66.0F.WIG 64 /r

VPCMPGTB xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed signed byte integers in xmm2 
and xmm3/m128 for greater than.

VEX.128.66.0F.WIG 65 /r

VPCMPGTW xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed signed word integers in xmm2 
and xmm3/m128 for greater than.

VEX.128.66.0F.WIG 66 /r

VPCMPGTD xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed signed doubleword integers in 
xmm2 and xmm3/m128 for greater than.

VEX.256.66.0F.WIG 64 /r

VPCMPGTB ymm1, ymm2, ymm3/m256

B V/V AVX2 Compare packed signed byte integers in ymm2 
and ymm3/m256 for greater than.

VEX.256.66.0F.WIG 65 /r

VPCMPGTW ymm1, ymm2, ymm3/m256

B V/V AVX2 Compare packed signed word integers in ymm2 
and ymm3/m256 for greater than.

VEX.256.66.0F.WIG 66 /r

VPCMPGTD ymm1, ymm2, ymm3/m256

B V/V AVX2 Compare packed signed doubleword integers in 
ymm2 and ymm3/m256 for greater than.

EVEX.128.66.0F.W0 66 /r
VPCMPGTD k1 {k2}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Compare Greater between int32 vector xmm2 and 
int32 vector xmm3/m128/m32bcst, and set 
vector mask k1 to reflect the zero/nonzero status 
of each element of the result, under writemask.

EVEX.256.66.0F.W0 66 /r
VPCMPGTD k1 {k2}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Compare Greater between int32 vector ymm2 and 
int32 vector ymm3/m256/m32bcst, and set 
vector mask k1 to reflect the zero/nonzero status 
of each element of the result, under writemask.

EVEX.512.66.0F.W0 66 /r
VPCMPGTD k1 {k2}, zmm2, 
zmm3/m512/m32bcst

C V/V AVX512F 
OR AVX10.12

Compare Greater between int32 elements in 
zmm2 and zmm3/m512/m32bcst, and set 
destination k1 according to the comparison results 
under writemask. k2.

EVEX.128.66.0F.WIG 64 /r
VPCMPGTB k1 {k2}, xmm2, xmm3/m128

D V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compare packed signed byte integers in xmm2 
and xmm3/m128 for greater than, and set vector 
mask k1 to reflect the zero/nonzero status of each 
element of the result, under writemask.

EVEX.256.66.0F.WIG 64 /r
VPCMPGTB k1 {k2}, ymm2, ymm3/m256

D V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compare packed signed byte integers in ymm2 
and ymm3/m256 for greater than, and set vector 
mask k1 to reflect the zero/nonzero status of each 
element of the result, under writemask.
PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than Vol. 2B 4-261



Instruction Operand Encoding

Description

Performs an SIMD signed compare for the greater value of the packed byte, word, or doubleword integers in the 
destination operand (first operand) and the source operand (second operand). If a data element in the destination 
operand is greater than the corresponding date element in the source operand, the corresponding data element in 
the destination operand is set to all 1s; otherwise, it is set to all 0s.

The PCMPGTB instruction compares the corresponding signed byte integers in the destination and source oper-
ands; the PCMPGTW instruction compares the corresponding signed word integers in the destination and source 
operands; and the PCMPGTD instruction compares the corresponding signed doubleword integers in the destina-
tion and source operands.
In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Legacy SSE instructions: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand can be an MMX technology register.
128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source operand and destination operand are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM 
destination register remain unchanged. 

EVEX.512.66.0F.WIG 64 /r
VPCMPGTB k1 {k2}, zmm2, zmm3/m512

D V/V AVX512BW 
OR AVX10.11

Compare packed signed byte integers in zmm2 and 
zmm3/m512 for greater than, and set vector 
mask k1 to reflect the zero/nonzero status of each 
element of the result, under writemask.

EVEX.128.66.0F.WIG 65 /r
VPCMPGTW k1 {k2}, xmm2, xmm3/m128

D V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compare packed signed word integers in xmm2 
and xmm3/m128 for greater than, and set vector 
mask k1 to reflect the zero/nonzero status of each 
element of the result, under writemask.

EVEX.256.66.0F.WIG 65 /r
VPCMPGTW k1 {k2}, ymm2, ymm3/m256

D V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compare packed signed word integers in ymm2 
and ymm3/m256 for greater than, and set vector 
mask k1 to reflect the zero/nonzero status of each 
element of the result, under writemask.

EVEX.512.66.0F.WIG 65 /r
VPCMPGTW k1 {k2}, zmm2, zmm3/m512

D V/V AVX512BW 
OR AVX10.12

Compare packed signed word integers in zmm2 
and zmm3/m512 for greater than, and set vector 
mask k1 to reflect the zero/nonzero status of each 
element of the result, under writemask.

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

D Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description
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VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source operand and destination operand are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM 
register are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register.
EVEX encoded VPCMPGTD: The first source operand (second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcasted from a 32-bit memory location. The destination operand (first operand) is a mask register updated 
according to the writemask k2.
EVEX encoded VPCMPGTB/W: The first source operand (second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand 
(first operand) is a mask register updated according to the writemask k2.

Operation

PCMPGTB (With 64-bit Operands)
IF DEST[7:0] > SRC[7:0]

THEN DEST[7:0) := FFH; 
ELSE DEST[7:0] := 0; FI;

(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] > SRC[63:56]

THEN DEST[63:56] := FFH;
ELSE DEST[63:56] := 0; FI;

COMPARE_BYTES_GREATER (SRC1, SRC2)
IF SRC1[7:0] > SRC2[7:0]
THEN DEST[7:0] := FFH;
ELSE DEST[7:0] := 0; FI;

(* Continue comparison of 2nd through 15th bytes in SRC1 and SRC2 *)
IF SRC1[127:120] > SRC2[127:120]
THEN DEST[127:120] := FFH;
ELSE DEST[127:120] := 0; FI;

COMPARE_WORDS_GREATER (SRC1, SRC2)
IF SRC1[15:0] > SRC2[15:0]
THEN DEST[15:0] := FFFFH;
ELSE DEST[15:0] := 0; FI;

(* Continue comparison of 2nd through 7th 16-bit words in SRC1 and SRC2 *)
IF SRC1[127:112] > SRC2[127:112]
THEN DEST[127:112] := FFFFH;
ELSE DEST[127:112] := 0; FI;

COMPARE_DWORDS_GREATER (SRC1, SRC2)
IF SRC1[31:0] > SRC2[31:0]
THEN DEST[31:0] := FFFFFFFFH;
ELSE DEST[31:0] := 0; FI;

(* Continue comparison of 2nd through 3rd 32-bit dwords in SRC1 and SRC2 *)
IF SRC1[127:96] > SRC2[127:96]
THEN DEST[127:96] := FFFFFFFFH;
ELSE DEST[127:96] := 0; FI;

PCMPGTB (With 128-bit Operands)
DEST[127:0] := COMPARE_BYTES_GREATER(DEST[127:0],SRC[127:0])
DEST[MAXVL-1:128] (Unmodified)
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VPCMPGTB (VEX.128 Encoded Version)
DEST[127:0] := COMPARE_BYTES_GREATER(SRC1,SRC2)
DEST[MAXVL-1:128] := 0

VPCMPGTB (VEX.256 Encoded Version)
DEST[127:0] := COMPARE_BYTES_GREATER(SRC1[127:0],SRC2[127:0])
DEST[255:128] := COMPARE_BYTES_GREATER(SRC1[255:128],SRC2[255:128])
DEST[MAXVL-1:256] := 0

VPCMPGTB (EVEX Encoded Versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8
IF k2[j] OR *no writemask*

THEN 
/* signed comparison */
CMP := SRC1[i+7:i] > SRC2[i+7:i];
IF CMP = TRUE

THEN DEST[j] := 1;
ELSE DEST[j] := 0; FI;

ELSE DEST[j] := 0 ; zeroing-masking onlyFI;
FI;

ENDFOR
DEST[MAX_KL-1:KL] := 0

PCMPGTW (With 64-bit Operands)
IF DEST[15:0] > SRC[15:0] 

THEN DEST[15:0] := FFFFH;
ELSE DEST[15:0] := 0; FI;

(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] > SRC[63:48]

THEN DEST[63:48] := FFFFH;
ELSE DEST[63:48] := 0; FI;

PCMPGTW (With 128-bit Operands)
DEST[127:0] := COMPARE_WORDS_GREATER(DEST[127:0],SRC[127:0])
DEST[MAXVL-1:128] (Unmodified)

VPCMPGTW (VEX.128 Encoded Version)
DEST[127:0] := COMPARE_WORDS_GREATER(SRC1,SRC2)
DEST[MAXVL-1:128] := 0

VPCMPGTW (VEX.256 Encoded Version)
DEST[127:0] := COMPARE_WORDS_GREATER(SRC1[127:0],SRC2[127:0])
DEST[255:128] := COMPARE_WORDS_GREATER(SRC1[255:128],SRC2[255:128])
DEST[MAXVL-1:256] := 0
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VPCMPGTW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k2[j] OR *no writemask*

THEN 
/* signed comparison */
CMP := SRC1[i+15:i] > SRC2[i+15:i];
IF CMP = TRUE

THEN DEST[j] := 1;
ELSE DEST[j] := 0; FI;

ELSE DEST[j] := 0 ; zeroing-masking onlyFI;
FI;

ENDFOR
DEST[MAX_KL-1:KL] := 0

PCMPGTD (With 64-bit Operands)
IF DEST[31:0] > SRC[31:0]

THEN DEST[31:0] := FFFFFFFFH; 
ELSE DEST[31:0] := 0; FI;

IF DEST[63:32] > SRC[63:32]
THEN DEST[63:32] := FFFFFFFFH;
ELSE DEST[63:32] := 0; FI;

PCMPGTD (With 128-bit Operands)
DEST[127:0] := COMPARE_DWORDS_GREATER(DEST[127:0],SRC[127:0])
DEST[MAXVL-1:128] (Unmodified)

VPCMPGTD (VEX.128 Encoded Version)
DEST[127:0] := COMPARE_DWORDS_GREATER(SRC1,SRC2)
DEST[MAXVL-1:128] := 0

VPCMPGTD (VEX.256 Encoded Version)
DEST[127:0] := COMPARE_DWORDS_GREATER(SRC1[127:0],SRC2[127:0])
DEST[255:128] := COMPARE_DWORDS_GREATER(SRC1[255:128],SRC2[255:128])
DEST[MAXVL-1:256] := 0

VPCMPGTD (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k2[j] OR *no writemask*

THEN 
/* signed comparison */
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN CMP := SRC1[i+31:i] > SRC2[31:0];
ELSE CMP := SRC1[i+31:i] > SRC2[i+31:i];

FI;
IF CMP = TRUE

THEN DEST[j] := 1;
ELSE DEST[j] := 0; FI;

ELSE DEST[j] := 0 ; zeroing-masking only
FI;

ENDFOR
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DEST[MAX_KL-1:KL] := 0

Intel C/C++ Compiler Intrinsic Equivalents

VPCMPGTB __mmask64 _mm512_cmpgt_epi8_mask(__m512i a, __m512i b);
VPCMPGTB __mmask64 _mm512_mask_cmpgt_epi8_mask(__mmask64 k, __m512i a, __m512i b);
VPCMPGTB __mmask32 _mm256_cmpgt_epi8_mask(__m256i a, __m256i b);
VPCMPGTB __mmask32 _mm256_mask_cmpgt_epi8_mask(__mmask32 k, __m256i a, __m256i b);
VPCMPGTB __mmask16 _mm_cmpgt_epi8_mask(__m128i a, __m128i b);
VPCMPGTB __mmask16 _mm_mask_cmpgt_epi8_mask(__mmask16 k, __m128i a, __m128i b);
VPCMPGTD __mmask16 _mm512_cmpgt_epi32_mask(__m512i a, __m512i b);
VPCMPGTD __mmask16 _mm512_mask_cmpgt_epi32_mask(__mmask16 k, __m512i a, __m512i b);
VPCMPGTD __mmask8 _mm256_cmpgt_epi32_mask(__m256i a, __m256i b);
VPCMPGTD __mmask8 _mm256_mask_cmpgt_epi32_mask(__mmask8 k, __m256i a, __m256i b);
VPCMPGTD __mmask8 _mm_cmpgt_epi32_mask(__m128i a, __m128i b);
VPCMPGTD __mmask8 _mm_mask_cmpgt_epi32_mask(__mmask8 k, __m128i a, __m128i b);
VPCMPGTW __mmask32 _mm512_cmpgt_epi16_mask(__m512i a, __m512i b);
VPCMPGTW __mmask32 _mm512_mask_cmpgt_epi16_mask(__mmask32 k, __m512i a, __m512i b);
VPCMPGTW __mmask16 _mm256_cmpgt_epi16_mask(__m256i a, __m256i b);
VPCMPGTW __mmask16 _mm256_mask_cmpgt_epi16_mask(__mmask16 k, __m256i a, __m256i b);
VPCMPGTW __mmask8 _mm_cmpgt_epi16_mask(__m128i a, __m128i b);
VPCMPGTW __mmask8 _mm_mask_cmpgt_epi16_mask(__mmask8 k, __m128i a, __m128i b);
PCMPGTB __m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2)
PCMPGTW __m64 _mm_cmpgt_pi16 (__m64 m1, __m64 m2)
PCMPGTD __m64 _mm_cmpgt_pi32 (__m64 m1, __m64 m2)
(V)PCMPGTB __m128i _mm_cmpgt_epi8 ( __m128i a, __m128i b)
(V)PCMPGTW __m128i _mm_cmpgt_epi16 ( __m128i a, __m128i b)
(V)DCMPGTD __m128i _mm_cmpgt_epi32 ( __m128i a, __m128i b)
VPCMPGTB __m256i _mm256_cmpgt_epi8 ( __m256i a, __m256i b)
VPCMPGTW __m256i _mm256_cmpgt_epi16 ( __m256i a, __m256i b)
VPCMPGTD __m256i _mm256_cmpgt_epi32 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded VPCMPGTD, see Table 2-51, “Type E4 Class Exception Conditions.”
EVEX-encoded VPCMPGTB/W, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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PCMPGTQ—Compare Packed Data for Greater Than

Instruction Operand Encoding

Description

Performs an SIMD signed compare for the packed quadwords in the destination operand (first operand) and the 
source operand (second operand). If the data element in the first (destination) operand is greater than the 
corresponding element in the second (source) operand, the corresponding data element in the destination is set 
to all 1s; otherwise, it is set to 0s.

128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source operand and destination operand are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM 
destination register remain unchanged.
VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source operand and destination operand are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM 
register are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register.
EVEX encoded VPCMPGTD/Q: The first source operand (second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcasted from a 64-bit memory location. The destination operand (first operand) is a mask register updated 
according to the writemask k2.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 38 37 /r
PCMPGTQ xmm1,xmm2/m128

A V/V SSE4_2 Compare packed signed qwords in xmm2/m128 
and xmm1 for greater than.

VEX.128.66.0F38.WIG 37 /r
VPCMPGTQ xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed signed qwords in xmm2 and 
xmm3/m128 for greater than.

VEX.256.66.0F38.WIG 37 /r
VPCMPGTQ ymm1, ymm2, ymm3/m256

B V/V AVX2 Compare packed signed qwords in ymm2 and 
ymm3/m256 for greater than.

EVEX.128.66.0F38.W1 37 /r
VPCMPGTQ k1 {k2}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare Greater between int64 vector xmm2 and 
int64 vector xmm3/m128/m64bcst, and set 
vector mask k1 to reflect the zero/nonzero status 
of each element of the result, under writemask.

EVEX.256.66.0F38.W1 37 /r
VPCMPGTQ k1 {k2}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare Greater between int64 vector ymm2 and 
int64 vector ymm3/m256/m64bcst, and set 
vector mask k1 to reflect the zero/nonzero status 
of each element of the result, under writemask.

EVEX.512.66.0F38.W1 37 /r
VPCMPGTQ k1 {k2}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512F 
OR AVX10.11

Compare Greater between int64 vector zmm2 and 
int64 vector zmm3/m512/m64bcst, and set 
vector mask k1 to reflect the zero/nonzero status 
of each element of the result, under writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

COMPARE_QWORDS_GREATER (SRC1, SRC2)
IF SRC1[63:0] > SRC2[63:0]
THEN DEST[63:0] := FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] := 0; FI;
IF SRC1[127:64] > SRC2[127:64]
THEN DEST[127:64] := FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] := 0; FI;

VPCMPGTQ (VEX.128 Encoded Version)
DEST[127:0] := COMPARE_QWORDS_GREATER(SRC1,SRC2)
DEST[MAXVL-1:128] := 0

VPCMPGTQ (VEX.256 Encoded Version)
DEST[127:0] := COMPARE_QWORDS_GREATER(SRC1[127:0],SRC2[127:0])
DEST[255:128] := COMPARE_QWORDS_GREATER(SRC1[255:128],SRC2[255:128])
DEST[MAXVL-1:256] := 0

VPCMPGTQ (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k2[j] OR *no writemask*

THEN 
/* signed comparison */
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN CMP := SRC1[i+63:i] > SRC2[63:0];
ELSE CMP := SRC1[i+63:i] > SRC2[i+63:i];

FI;
IF CMP = TRUE

THEN DEST[j] := 1;
ELSE DEST[j] := 0; FI;

ELSE DEST[j] := 0 ; zeroing-masking only
FI;

ENDFOR
DEST[MAX_KL-1:KL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPCMPGTQ __mmask8 _mm512_cmpgt_epi64_mask( __m512i a, __m512i b);
VPCMPGTQ __mmask8 _mm512_mask_cmpgt_epi64_mask(__mmask8 k, __m512i a, __m512i b);
VPCMPGTQ __mmask8 _mm256_cmpgt_epi64_mask( __m256i a, __m256i b);
VPCMPGTQ __mmask8 _mm256_mask_cmpgt_epi64_mask(__mmask8 k, __m256i a, __m256i b);
VPCMPGTQ __mmask8 _mm_cmpgt_epi64_mask( __m128i a, __m128i b);
VPCMPGTQ __mmask8 _mm_mask_cmpgt_epi64_mask(__mmask8 k, __m128i a, __m128i b);
(V)PCMPGTQ __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)
VPCMPGTQ __m256i _mm256_cmpgt_epi64( __m256i a, __m256i b);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.
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Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded VPCMPGTQ, see Table 2-51, “Type E4 Class Exception Conditions.”
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PCMPISTRI—Packed Compare Implicit Length Strings, Return Index 

Instruction Operand Encoding

Description

The instruction compares data from two strings based on the encoded value in the imm8 control byte (see Section 
4.1, “Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates an 
index stored to ECX.

Each string is represented by a single value. The value is an xmm (or possibly m128 for the second operand) which 
contains the data elements of the string (byte or word data). Each input byte/word is augmented with a 
valid/invalid tag. A byte/word is considered valid only if it has a lower index than the least significant null 
byte/word. (The least significant null byte/word is also considered invalid.) 

The comparison and aggregation operations are performed according to the encoded value of imm8 bit fields (see 
Section 4.1). The index of the first (or last, according to imm8[6]) set bit of IntRes2 is returned in ECX. If no bits 
are set in IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to supply the most relevant informa-
tion:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag – Set if any byte/word of xmm1 is null, reset otherwise
OFlag –IntRes2[0]
AFlag – Reset
PFlag – Reset

Note: In VEX.128 encoded version, VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the 
instruction will #UD.

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpistri (__m128i a, __m128i b, const int mode);

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 63 /r imm8
PCMPISTRI xmm1, xmm2/m128, imm8

RM V/V SSE4_2 Perform a packed comparison of string data 
with implicit lengths, generating an index, and 
storing the result in ECX.

VEX.128.66.0F3A.WIG 63 /r ib
VPCMPISTRI xmm1, xmm2/m128, imm8

RM V/V AVX Perform a packed comparison of string data 
with implicit lengths, generating an index, and 
storing the result in ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) imm8 N/A

Operating mode/size Operand 1 Operand 2 Result

16 bit xmm xmm/m128 ECX

32 bit xmm xmm/m128 ECX

64 bit xmm xmm/m128 ECX
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Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128i a, __m128i b, const int mode);
int _mm_cmpistrc (__m128i a, __m128i b, const int mode);
int _mm_cmpistro (__m128i a, __m128i b, const int mode);
int _mm_cmpistrs (__m128i a, __m128i b, const int mode);
int _mm_cmpistrz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally, this instruction does not cause #GP if the 
memory operand is not aligned to 16 Byte boundary, and:
#UD If VEX.L = 1.

If VEX.vvvv ≠ 1111B.
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PCMPISTRM—Packed Compare Implicit Length Strings, Return Mask

Instruction Operand Encoding

Description

The instruction compares data from two strings based on the encoded value in the imm8 byte (see Section 4.1, 
“Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”) generating a mask 
stored to XMM0.

Each string is represented by a single value. The value is an xmm (or possibly m128 for the second operand) which 
contains the data elements of the string (byte or word data). Each input byte/word is augmented with a 
valid/invalid tag. A byte/word is considered valid only if it has a lower index than the least significant null 
byte/word. (The least significant null byte/word is also considered invalid.) 

The comparison and aggregation operation are performed according to the encoded value of imm8 bit fields (see 
Section 4.1). As defined by imm8[6], IntRes2 is then either stored to the least significant bits of XMM0 (zero 
extended to 128 bits) or expanded into a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to supply the most relevant informa-
tion:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag – Set if any byte/word of xmm1 is null, reset otherwise
OFlag – IntRes2[0]
AFlag – Reset
PFlag – Reset

Note: In VEX.128 encoded versions, bits (MAXVL-1:128) of XMM0 are zeroed. VEX.vvvv is reserved and must be 
1111b, VEX.L must be 0, otherwise the instruction will #UD.

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode);

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 62 /r imm8
PCMPISTRM xmm1, xmm2/m128, imm8

RM V/V SSE4_2 Perform a packed comparison of string data 
with implicit lengths, generating a mask, and 
storing the result in XMM0.

VEX.128.66.0F3A.WIG 62 /r ib
VPCMPISTRM xmm1, xmm2/m128, imm8

RM V/V AVX Perform a packed comparison of string data 
with implicit lengths, generating a Mask, and 
storing the result in XMM0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) imm8 N/A

Operating mode/size Operand 1 Operand 2 Result

16 bit xmm xmm/m128 XMM0

32 bit xmm xmm/m128 XMM0

64 bit xmm xmm/m128 XMM0
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Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128i a, __m128i b, const int mode);
int _mm_cmpistrc (__m128i a, __m128i b, const int mode);
int _mm_cmpistro (__m128i a, __m128i b, const int mode);
int _mm_cmpistrs (__m128i a, __m128i b, const int mode);
int _mm_cmpistrz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally, this instruction does not cause #GP if the 
memory operand is not aligned to 16 Byte boundary, and:
#UD If VEX.L = 1.

If VEX.vvvv ≠ 1111B.
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PCONFIG—Platform Configuration

Instruction Operand Encoding

Description

The PCONFIG instruction allows software to configure certain platform features. It supports these features with 
multiple leaf functions, selecting a leaf function using the value in EAX.

Depending on the leaf function, the registers RBX, RCX, and RDX may be used to provide input information or for 
the instruction to report output information. Addresses and operands are 32 bits outside 64-bit mode and are 64 
bits in 64-bit mode. The value of CS.D does not affect operand size or address size.

Executions of PCONFIG may fail for platform-specific reasons. An execution reports failure by setting the ZF flag 
and loading EAX with a non-zero failure reason; a successful execution clears ZF and EAX.

Each PCONFIG leaf function applies to a specific hardware block called a PCONFIG target. The leaf function is 
supported only if the processor supports that target. Each target is associated with a numerical target identifier, 
and CPUID leaf 1BH (PCONFIG information) enumerates the identifiers of the supported targets. An attempt to 
execute an undefined leaf function, or a leaf function that applies to an unsupported target identifier, results in a 
general-protection exception (#GP).

Leaf Function MKTME_KEY_PROGRAM

As of this writing, the only defined PCONFIG leaf function is used for key programming for total memory encryp-
tion-multi-key (TME-MK).1 This leaf function is called MKTME_KEY_PROGRAM and it pertains to the TME-MK target, 
which has target identifier 1. The leaf function is selected by loading EAX with value 0. The MKTME_KEY_PROGRAM 
leaf function uses the EBX (or RBX) register for additional input information.

Software uses the MKTME_KEY_PROGRAM leaf function to manage the encryption key associated with a particular 
key identifier (KeyID). The leaf function uses a data structure called the TME-MK key programming structure 
(MKTME_KEY_PROGRAM_STRUCT). Software provides the address of the structure (as an offset in the DS 
segment) in EBX (or RBX). The format of the structure is given in Table 1-15.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 01 C5
PCONFIG 

A V/V PCONFIG This instruction is used to execute functions for 
configuring platform features.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A N/A N/A N/A N/A

1. Further details on TME-MK can be found here:

https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf 

Table 1-15.  MKTME_KEY_PROGRAM_STRUCT Format

Field Offset (bytes) Size (bytes) Comments

KEYID 0 2 Key Identifier.

KEYID_CTRL 2 4 KeyID control:
• Bits 7:0: key-programming command (COMMAND)
• Bits 23:8: encryption algorithm (ENC_ALG)
• Bits 31:24: Reserved, must be zero (RSVD)

Ignored 6 58 Not used.

KEY_FIELD_1 64 64 Software supplied data key or entropy for data key.

KEY_FIELD_2 128 64 Software supplied tweak key or entropy for tweak key.
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A description of each of the fields in MKTME_KEY_PROGRAM_STRUCT is provided below:
• KEYID: The key identifier (KeyID) being programmed to the MKTME engine. PCONFIG causes a general-

protection exception (#GP) if the KeyID is zero. KeyID zero always uses the current behavior configured for 
TME (total memory encryption), either to encrypt with platform TME key or to bypass TME encryption. 
PCONFIG also causes a #GP if the KeyID exceeds the maximum enumerated in IA32_TME_CAPA-
BILITY.MK_TME_MAX_KEYS[bits 50:36] or configured by the setting of 
IA32_TME_ACTIVATE.MK_TME_KEYID_BITS[bits 35:32].

• KEYID_CTRL: The KEYID_CTRL field comprises two sub-fields used by software to control the encryption 
performed for the selected KeyID:

— Key-programming command (COMMAND; bits 7:0). This 8-bit field should contain one of the following 
values:

• KEYID_SET_KEY_DIRECT (value 0). With this command, software programs directly the encryption key 
to be used for the selected KeyID.

• KEYID_SET_KEY_RANDOM (value 1). With this command, software has the CPU generate and assign an 
encryption key to be used for the selected KeyID using a hardware random-number generator.

If this command is used and there is insufficient entropy for the random-number generator, PCONFIG 
will fail and report the failure by loading EAX with value 2 (ENTROPY_ERROR).

Because the keys programed by PCONFIG are discarded on reset and software cannot read the 
programmed keys, the keys programmed with this command are ephemeral.

• KEYID_CLEAR_KEY (value 2). With this command, software indicates that the selected KeyID should 
use the current behavior configured for TME (see above).

• KEYID_NO_ENCRYPT (value 3). With this command, software indicates that no encryption should be 
used for the selected KeyID.

If any other value is used, PCONFIG causes a #GP.

— Encryption algorithm (ENC_ALG, bits 23:8). Bits 63:48 of the IA32_TME_ACTIVATE MSR (MSR index 982H) 
indicate which encryption algorithms are supported by the platform. The 16-bit ENC_ALG field should 
specify one of the algorithms indicated in IA32_TME_ACTIVATE. PCONFIG causes a #GP if ENC_ALG does 
not set exactly one bit or if it sets a bit whose corresponding bit is not set in IA32_TME_ACTIVATE[63:48].

• KEY_FIELD_1: Use of this field depends upon selected key-programming command:

— If the direct key-programming command is used (KEYID_SET_KEY_DIRECT), this field carries the software 
supplied data key to be used for the KeyID.

— If the random key-programming command is used (KEYID_SET_KEY_RANDOM), this field carries the 
software supplied entropy to be mixed in the CPU generated random data key.

— This field is ignored when one of the other key-programming commands is used.
It is software’s responsibility to ensure that the key supplied for the direct key-programming option or the
entropy supplied for the random key-programming option does not result in weak keys. There are no explicit
checks in the instruction to detect or prevent weak keys.

• KEY_FIELD_2: Use of this field depends upon selected key-programming command:

— If the direct key-programming command is used (KEYID_SET_KEY_DIRECT), this field carries the software 
supplied tweak key to be used for the KeyID.

— If the random key-programming command is used (KEYID_SET_KEY_RANDOM), this field carries the 
software supplied entropy to be mixed in the CPU generated random tweak key.

— This field is ignored when one of the other key-programming commands is used.
It is software’s responsibility to ensure that the key supplied for the direct key-programming option or the
entropy supplied for the random key-programming option does not result in weak keys. There are no explicit
checks in the instruction to detect or prevent weak keys.

All KeyIDs default to TME behavior (encrypt with TME key or bypass encryption) on activation of TME-MK. Software 
can at any point decide to change the key for a KeyID using the MKTME_KEY_PROGRAM leaf function of the 
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PCONFIG instruction. Changing the key for a KeyID does not change the state of the TLB caches or memory pipe-
line. Software is responsible for taking appropriate actions to ensure correct behavior.
The key table used by TME-MK is shared by all logical processors in a platform. For this reason, execution of the 
MKTME_KEY_PROGRAM leaf function must gain exclusive access to the key table before updating it. The leaf func-
tion does this by acquiring lock (implemented in the platform) and retaining that lock until the execution 
completes. An execution of the leaf function may fail to acquire the lock if it is already in use. In this situation, the 
leaf function will load EAX with failure reason 5 (DEVICE_BUSY) indicating that software must retry. When this 
happens, the key table is not updated, and software should retry execution of PCONFIG.

NOTES
Earlier versions of this manual specified that bytes 63:6 of MKTME_KEY_PROGRAM_STRUCT were 
reserved and that PCONFIG would cause a #GP if they were not all zero. This is not the case. As 
indicated in Table 1-15, PCONFIG ignores those bytes.
They also specified that PCONFIG would cause a #GP if the upper 48 bytes of each of the 64-byte 
key fields were not all 0. This is not the case. From each of these fields, PCONFIG uses the number 
of bytes required by the selected encryption algorithm (e.g., 32 bytes for AES-XTS 256) and 
ignores the upper bytes.
They also specified that PCONFIG would complete and report a failure reason in EAX if the structure 
specified an incorrect KeyID, and unsupported key-programming command, or an incorrect 
selection of an encryption algorithm. This is not the case. As indicated above (and in the Operation 
section), those conditions cause #GP.

Operation

(* #UD if PCONFIG is not enumerated or CPL > 0 *)
IF CPUID.7.0:EDX[18] = 0 OR CPL > 0

THEN #UD; FI;

(* #GP(0) for an unsupported leaf function *)
IF EAX != 0

THEN #GP(0); FI;

CASE (EAX) (* operation based on selected leaf function *)
0 (MKTME_KEY_PROGRAM):
(* Confirm that TME-MK is properly enabled by the IA32_TME_ACTIVATE MSR *)
(* The MSR must be locked, encryption enabled, and a non-zero number of KeyID bits specified *)
IF IA32_TME_ACTIVATE[0] = 0 OR IA32_TME_ACTIVATE[1] = 0 OR IA32_TME_ACTIVATE[35:32] = 0

THEN #GP(0); FI;

IF DS:RBX is not 256-byte aligned
THEN #GP(0); FI;

Load TMP_KEY_PROGRAM_STRUCT from 192 bytes at linear address DS:RBX;

IF TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL sets any reserved bits
THEN #GP(0); FI;

(* Check for a valid command *)
IF TMP_KEY_PROGRAM_STRUCT. KEYID_CTRL.COMMAND > 3

THEN #GP(0); FI;

(* Check that the KEYID being operated upon is a valid KEYID *)
IF TMP_KEY_PROGRAM_STRUCT.KEYID = 0 OR

TMP_KEY_PROGRAM_STRUCT.KEYID > 2^IA32_TME_ACTIVATE.MK_TME_KEYID_BITS – 1 OR
TMP_KEY_PROGRAM_STRUCT.KEYID > IA32_TME_CAPABILITY.MK_TME_MAX_KEYS 
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THEN #GP(0); FI;

(* Check that only one encryption algorithm is requested for the KeyID and it is one of the activated algorithms *)
IF TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.ENC_ALG does not set exactly one bit OR

(TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.ENC_ALG & IA32_TME_ACTIVATE[63:48]) = 0
THEN #GP(0); FI:

Attempt to acquire lock to gain exclusive access to platform key table;
IF attempt is unsuccessful

THEN (* PCONFIG failure *)
RFLAGS.ZF := 1;
RAX := DEVICE_BUSY; (* failure reason 5 *)
GOTO EXIT;

FI;

CASE (TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.COMMAND) OF
0 (KEYID_SET_KEY_DIRECT):
Update TME-MK table for TMP_KEY_PROGRAM_STRUCT.KEYID as follows:

Encrypt with the selected key
Use the encryption algorithm selected by TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.ENC_ALG
(* The number of bytes used by the next two lines depends on selected encryption algorithm *)
DATA_KEY is TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_1
TWEAK_KEY is TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_2

BREAK;

1 (KEYID_SET_KEY_RANDOM):
Load TMP_RND_DATA_KEY with a random key using hardware RNG; (* key size depends on selected encryption algorithm *)
IF there was insufficient entropy

THEN (* PCONFIG failure *)
RFLAGS.ZF := 1;
RAX := ENTROPY_ERROR; (* failure reason 2 *)
Release lock on platform key table;
GOTO EXIT;

FI;
Load TMP_RND_TWEAK_KEY with a random key using hardware RNG; (* key size depends on selected encryption algorithm *)
IF there was insufficient entropy

THEN (* PCONFIG failure *)
RFLAGS.ZF := 1;
RAX := ENTROPY_ERROR; (* failure reason 2 *)
Release lock on platform key table;
GOTO EXIT;

FI;
(* Combine software-supplied entropy to the data key and tweak key *)
(* The number of bytes used by the next two lines depends on selected encryption algorithm *)
TMP_RND_DATA_KEY := TMP_RND_KEY XOR TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_1;
TMP_RND_TWEAK_KEY := TMP_RND_TWEAK_KEY XOR TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_2;

Update TME-MK table for TMP_KEY_PROGRAM_STRUCT.KEYID as follows:
Encrypt with the selected key
Use the encryption algorithm selected by TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.ENC_ALG
(* The number of bytes used by the next two lines depends on selected encryption algorithm *)
DATA_KEY is TMP_RND_DATA_KEY
TWEAK_KEY is TMP_RND_TWEAK_KEY

BREAK;
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2 (KEYID_CLEAR_KEY):
Update TME-MK table for TMP_KEY_PROGRAM_STRUCT.KEYID as follows:

Encrypt (or not) using the current configuration for TME
The specified encryption algorithm and key values are not used.

BREAK;

3 (KEYID_NO_ENCRYPT):
Update TME-MK table for TMP_KEY_PROGRAM_STRUCT.KEYID as follows:

Do not encrypt
The specified encryption algorithm and key values are not used.

BREAK;
ESAC;
Release lock on platform key table;

ESAC;

RAX := 0;
RFLAGS.ZF := 0;

EXIT:
RFLAGS.CF := 0;
RFLAGS.PF := 0;
RFLAGS.AF := 0;
RFLAGS.OF := 0;
RFLAGS.SF := 0;

Protected Mode Exceptions
#GP(0) If input value in EAX encodes an unsupported leaf function.

If a memory operand effective address is outside the relevant segment limit.
MKTME_KEY_PROGRAM leaf function:
If IA32_TME_ACTIVATE MSR is not locked.
If hardware encryption and TME-MK capability are not enabled in IA32_TME_ACTIVATE MSR.
If the memory operand is not 256B aligned.
If any of the reserved bits in the KEYID_CTRL field of the MKTME_KEY_PROGRAM_STRUCT are 
set or that field indicates an unsupported KeyID, key-programming command, or encryption 
algorithm.

#PF(fault-code) If a page fault occurs in accessing memory operands.
#UD If any of the LOCK/REP/Operand Size/VEX prefixes are used.

If current privilege level is not 0.
If CPUID.7.0:EDX[bit 18] = 0

Real-Address Mode Exceptions
#GP If input value in EAX encodes an unsupported leaf function.

MKTME_KEY_PROGRAM leaf function:
If IA32_TME_ACTIVATE MSR is not locked.
If hardware encryption and TME-MK capability are not enabled in IA32_TME_ACTIVATE MSR.
If a memory operand is not 256B aligned.
If any of the reserved bits in the KEYID_CTRL field of the MKTME_KEY_PROGRAM_STRUCT are 
set or that field indicates an unsupported KeyID, key-programming command, or encryption 
algorithm.

#UD If any of the LOCK/REP/Operand Size/VEX prefixes are used.
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If current privilege level is not 0.
If CPUID.7.0:EDX.PCONFIG[bit 18] = 0

Virtual-8086 Mode Exceptions
#UD PCONFIG instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If input value in EAX encodes an unsupported leaf function.

If a memory operand is non-canonical form.
MKTME_KEY_PROGRAM leaf function:
If IA32_TME_ACTIVATE MSR is not locked.
If hardware encryption and TME-MK capability are not enabled in IA32_TME_ACTIVATE MSR.
If a memory operand is not 256B aligned.
If any of the reserved bits in the KEYID_CTRL field of the MKTME_KEY_PROGRAM_STRUCT are 
set or that field indicates an unsupported KeyID, key-programming command, or encryption 
algorithm.

#PF(fault-code) If a page fault occurs in accessing memory operands.
#UD If any of the LOCK/REP/Operand Size/VEX prefixes are used.

If the current privilege level is not 0.
If CPUID.7.0:EDX.PCONFIG[bit 18] = 0.
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PDEP—Parallel Bits Deposit

Instruction Operand Encoding

Description 

PDEP uses a mask in the second source operand (the third operand) to transfer/scatter contiguous low order bits 
in the first source operand (the second operand) into the destination (the first operand). PDEP takes the low bits 
from the first source operand and deposit them in the destination operand at the corresponding bit locations that 
are set in the second source operand (mask). All other bits (bits not set in mask) in destination are set to zero.

Figure 1-8.  PDEP Example

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

TEMP := SRC1;
MASK := SRC2;
DEST := 0 ;
m := 0, k := 0;
DO WHILE m < OperandSize

IF MASK[ m] = 1 THEN
DEST[ m] := TEMP[ k];

    k := k+ 1;
FI
m := m+ 1;

OD

Opcode/
Instruction

Op/ 
En

64/32-
bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.LZ.F2.0F38.W0 F5 /r
PDEP r32a, r32b, r/m32

RVM V/V BMI2 Parallel deposit of bits from r32b using mask in r/m32, result is written 
to r32a.

VEX.LZ.F2.0F38.W1 F5 /r
PDEP r64a, r64b, r/m64

RVM V/N.E. BMI2 Parallel deposit of bits from r64b using mask in r/m64, result is written 
to r64a.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

0010010101000

00000000 0DEST

SRC1

SRC2
(mask)

S31 S30 S29 S28 S27 S7 S6 S5 S3S4 S2 S1 S0

S0S1S2S3

bit 0bit 31
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Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

PDEP unsigned __int32 _pdep_u32(unsigned __int32 src, unsigned __int32 mask);
PDEP unsigned __int64 _pdep_u64(unsigned __int64 src, unsigned __int32 mask);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-29, “Type 13 Class Exception Conditions.”
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PEXT—Parallel Bits Extract

Instruction Operand Encoding

Description 

PEXT uses a mask in the second source operand (the third operand) to transfer either contiguous or non-contig-
uous bits in the first source operand (the second operand) to contiguous low order bit positions in the destination 
(the first operand). For each bit set in the MASK, PEXT extracts the corresponding bits from the first source operand 
and writes them into contiguous lower bits of destination operand. The remaining upper bits of destination are 
zeroed.

Figure 1-9.  PEXT Example

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Opcode/
Instruction

Op/ 
En

64/32-
bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.LZ.F3.0F38.W0 F5 /r
PEXT r32a, r32b, r/m32

RVM V/V BMI2 Parallel extract of bits from r32b using mask in r/m32, result is written 
to r32a.

VEX.LZ.F3.0F38.W1 F5 /r
PEXT r64a, r64b, r/m64

RVM V/N.E. BMI2 Parallel extract of bits from r64b using mask in r/m64, result is written 
to r64a.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

DEST

SRC1

SRC2
(mask)

S31 S30 S29 S28 S27 S7 S6 S5 S3S4 S2 S1 S0

001010101000

S2S5S7000000000

0

S28

bit 0bit 31
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Operation

TEMP := SRC1;
MASK := SRC2;
DEST := 0 ;
m := 0, k := 0;
DO WHILE m < OperandSize

IF MASK[ m] = 1 THEN
DEST[ k] := TEMP[ m];

    k := k+ 1;
FI
m := m+ 1;

OD

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

PEXT unsigned __int32 _pext_u32(unsigned __int32 src, unsigned __int32 mask);
PEXT unsigned __int64 _pext_u64(unsigned __int64 src, unsigned __int32 mask);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-29, “Type 13 Class Exception Conditions.”
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PEXTRB/PEXTRD/PEXTRQ—Extract Byte/Dword/Qword

Instruction Operand Encoding

Description

Extract a byte/dword/qword integer value from the source XMM register at a byte/dword/qword offset determined 
from imm8[3:0]. The destination can be a register or byte/dword/qword memory location. If the destination is a 
register, the upper bits of the register are zero extended.
In legacy non-VEX encoded version and if the destination operand is a register, the default operand size in 64-bit 
mode for PEXTRB/PEXTRD is 64 bits, the bits above the least significant byte/dword data are filled with zeros. 
PEXTRQ is not encodable in non-64-bit modes and requires REX.W in 64-bit mode.
Note: In VEX.128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the 
instruction will #UD. In EVEX.128 encoded versions, EVEX.vvvv is reserved and must be 1111b, EVEX.L”L must be 

Opcode/
Instruction

Op/ En 64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

66 0F 3A 14 /r ib
PEXTRB reg/m8, xmm2, imm8

A V/V SSE4_1 Extract a byte integer value from xmm2 at the 
source byte offset specified by imm8 into reg or 
m8. The upper bits of r32 or r64 are zeroed.

66 0F 3A 16 /r ib
PEXTRD r/m32, xmm2, imm8

A V/V SSE4_1 Extract a dword integer value from xmm2 at the 
source dword offset specified by imm8 into r/m32.

66 REX.W 0F 3A 16 /r ib
PEXTRQ r/m64, xmm2, imm8

A V/N.E. SSE4_1 Extract a qword integer value from xmm2 at the 
source qword offset specified by imm8 into r/m64.

VEX.128.66.0F3A.W0 14 /r ib
VPEXTRB reg/m8, xmm2, imm8

A V1/V

NOTES:
1. In 64-bit mode, VEX.W1 is ignored for VPEXTRB (similar to legacy REX.W=1 prefix in PEXTRB).

AVX Extract a byte integer value from xmm2 at the 
source byte offset specified by imm8 into reg or 
m8. The upper bits of r64/r32 is filled with zeros.

VEX.128.66.0F3A.W0 16 /r ib
VPEXTRD r32/m32, xmm2, imm8

A V/V AVX Extract a dword integer value from xmm2 at the 
source dword offset specified by imm8 into 
r32/m32.

VEX.128.66.0F3A.W1 16 /r ib
VPEXTRQ r64/m64, xmm2, imm8

A V/I2

2. VEX.W/EVEX.W in non-64 bit is ignored; the instructions behaves as if the W0 version is used.

AVX Extract a qword integer value from xmm2 at the 
source dword offset specified by imm8 into 
r64/m64.

EVEX.128.66.0F3A.WIG 14 /r ib
VPEXTRB reg/m8, xmm2, imm8

B V/V AVX512BW 
OR AVX10.13

3. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Extract a byte integer value from xmm2 at the 
source byte offset specified by imm8 into reg or 
m8. The upper bits of r64/r32 is filled with zeros.

EVEX.128.66.0F3A.W0 16 /r ib
VPEXTRD r32/m32, xmm2, imm8

B V/V AVX512DQ
OR AVX10.13

Extract a dword integer value from xmm2 at the 
source dword offset specified by imm8 into 
r32/m32.

EVEX.128.66.0F3A.W1 16 /r ib
VPEXTRQ r64/m64, xmm2, imm8

B V/N.E.2 AVX512DQ
OR AVX10.13

Extract a qword integer value from xmm2 at the 
source dword offset specified by imm8 into 
r64/m64.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (w) ModRM:reg (r) imm8 N/A

B Tuple1 Scalar ModRM:r/m (w) ModRM:reg (r) imm8 N/A
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0, otherwise the instruction will #UD. If the destination operand is a register, the default operand size in 64-bit 
mode for VPEXTRB/VPEXTRD is 64 bits, the bits above the least significant byte/word/dword data are filled with 
zeros. 

Operation

CASE of
PEXTRB: SEL := COUNT[3:0];

TEMP := (Src >> SEL*8) AND FFH;
IF (DEST = Mem8)

THEN
Mem8 := TEMP[7:0];

ELSE IF (64-Bit Mode and 64-bit register selected)
THEN

R64[7:0] := TEMP[7:0];
r64[63:8] := ZERO_FILL; };

ELSE
R32[7:0] := TEMP[7:0];
r32[31:8] := ZERO_FILL; };

FI;
PEXTRD:SEL := COUNT[1:0];

TEMP := (Src >> SEL*32) AND FFFF_FFFFH;
DEST := TEMP;

PEXTRQ: SEL := COUNT[0];
TEMP := (Src >> SEL*64);
DEST := TEMP;

EASC:

VPEXTRTD/VPEXTRQ
IF (64-Bit Mode and 64-bit dest operand)
THEN

Src_Offset := imm8[0]
r64/m64 := (Src >> Src_Offset * 64)

ELSE
Src_Offset := imm8[1:0]
r32/m32 := ((Src >> Src_Offset *32) AND 0FFFFFFFFh);

FI

VPEXTRB ( dest=m8)
SRC_Offset := imm8[3:0]
Mem8 := (Src >> Src_Offset*8)

VPEXTRB ( dest=reg)
IF (64-Bit Mode )
THEN

SRC_Offset := imm8[3:0] 
DEST[7:0] := ((Src >> Src_Offset*8) AND 0FFh)
DEST[63:8] := ZERO_FILL;

ELSE
SRC_Offset := imm8[3:0];
DEST[7:0] := ((Src >> Src_Offset*8) AND 0FFh);
DEST[31:8] := ZERO_FILL;

FI
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Intel C/C++ Compiler Intrinsic Equivalent

PEXTRB int _mm_extract_epi8 (__m128i src, const int ndx);
PEXTRD int _mm_extract_epi32 (__m128i src, const int ndx);
PEXTRQ __int64 _mm_extract_epi64 (__m128i src, const int ndx);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-22, “Type 5 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-59, “Type E9NF Class Exception Conditions.”
Additionally:
#UD If VEX.L = 1 or EVEX.L’L > 0.

If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
PEXTRB/PEXTRD/PEXTRQ—Extract Byte/Dword/Qword Vol. 2B 4-286



PEXTRW—Extract Word

Instruction Operand Encoding

Description

Copies the word in the source operand (second operand) specified by the count operand (third operand) to the 
destination operand (first operand). The source operand can be an MMX technology register or an XMM register. 
The destination operand can be the low word of a general-purpose register or a 16-bit memory address. The count 
operand is an 8-bit immediate. When specifying a word location in an MMX technology register, the 2 least-signifi-
cant bits of the count operand specify the location; for an XMM register, the 3 least-significant bits specify the loca-
tion. The content of the destination register above bit 16 is cleared (set to all 0s).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15, R8-15). If the destination operand is a general-purpose register, the default operand size is 64-bits 
in 64-bit mode. 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F C5 /r ib1

PEXTRW reg, mm, imm8 

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V SSE Extract the word specified by imm8 from mm and 
move it to reg, bits 15-0. The upper bits of r32 or r64 
is zeroed.

66 0F C5 /r ib

PEXTRW reg, xmm, imm8 

A V/V SSE2 Extract the word specified by imm8 from xmm and 
move it to reg, bits 15-0. The upper bits of r32 or r64 
is zeroed.

66 0F 3A 15 /r ib
PEXTRW reg/m16, xmm, imm8

B V/V SSE4_1 Extract the word specified by imm8 from xmm and 
copy it to lowest 16 bits of reg or m16. Zero-extend 
the result in the destination, r32 or r64.

VEX.128.66.0F.W0 C5 /r ib
VPEXTRW reg, xmm1, imm8

A V2/V

2. In 64-bit mode, VEX.W1 is ignored for VPEXTRW (similar to legacy REX.W=1 prefix in PEXTRW).

AVX Extract the word specified by imm8 from xmm1 and 
move it to reg, bits 15:0. Zero-extend the result. The 
upper bits of r64/r32 is filled with zeros.

VEX.128.66.0F3A.W0 15 /r ib
VPEXTRW reg/m16, xmm2, imm8

B V/V AVX Extract a word integer value from xmm2 at the 
source word offset specified by imm8 into reg or 
m16. The upper bits of r64/r32 is filled with zeros.

EVEX.128.66.0F.WIG C5 /r ib
VPEXTRW reg, xmm1, imm8

A V/V AVX512BW
OR AVX10.13

3. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Extract the word specified by imm8 from xmm1 and 
move it to reg, bits 15:0. Zero-extend the result. The 
upper bits of r64/r32 is filled with zeros.

EVEX.128.66.0F3A.WIG 15 /r ib
VPEXTRW reg/m16, xmm2, imm8

C V/V AVX512BW
OR AVX10.13

Extract a word integer value from xmm2 at the 
source word offset specified by imm8 into reg or 
m16. The upper bits of r64/r32 is filled with zeros.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) imm8 N/A

B N/A ModRM:r/m (w) ModRM:reg (r) imm8 N/A

C Tuple1 Scalar ModRM:r/m (w) ModRM:reg (r) imm8 N/A
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Note: In VEX.128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the 
instruction will #UD. In EVEX.128 encoded versions, EVEX.vvvv is reserved and must be 1111b, EVEX.L must be 0, 
otherwise the instruction will #UD. If the destination operand is a register, the default operand size in 64-bit mode 
for VPEXTRW is 64 bits, the bits above the least significant byte/word/dword data are filled with zeros.

Operation

IF (DEST = Mem16)
THEN

SEL := COUNT[2:0];
TEMP := (Src >> SEL*16) AND FFFFH;
Mem16 := TEMP[15:0];

ELSE IF (64-Bit Mode and destination is a general-purpose register)
THEN

FOR (PEXTRW instruction with 64-bit source operand)
{ SEL := COUNT[1:0];

TEMP := (SRC >> (SEL ∗ 16)) AND FFFFH;
r64[15:0] := TEMP[15:0];
r64[63:16] := ZERO_FILL; };

FOR (PEXTRW instruction with 128-bit source operand)
 { SEL := COUNT[2:0];

TEMP := (SRC >> (SEL ∗ 16)) AND FFFFH;
r64[15:0] := TEMP[15:0];
r64[63:16] := ZERO_FILL; }

ELSE
FOR (PEXTRW instruction with 64-bit source operand)

{ SEL := COUNT[1:0];
TEMP := (SRC >> (SEL ∗ 16)) AND FFFFH;
r32[15:0] := TEMP[15:0];
r32[31:16] := ZERO_FILL; };

FOR (PEXTRW instruction with 128-bit source operand)
{ SEL := COUNT[2:0];

TEMP := (SRC >> (SEL ∗ 16)) AND FFFFH;
r32[15:0] := TEMP[15:0];
r32[31:16] := ZERO_FILL; };

FI;
FI;

VPEXTRW ( dest=m16)
SRC_Offset := imm8[2:0]
Mem16 := (Src >> Src_Offset*16)

VPEXTRW ( dest=reg)
IF (64-Bit Mode )
THEN

SRC_Offset := imm8[2:0]
DEST[15:0] := ((Src >> Src_Offset*16) AND 0FFFFh)
DEST[63:16] := ZERO_FILL;

ELSE
SRC_Offset := imm8[2:0]
DEST[15:0] := ((Src >> Src_Offset*16) AND 0FFFFh)
DEST[31:16] := ZERO_FILL;

FI
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Intel C/C++ Compiler Intrinsic Equivalent

PEXTRW int _mm_extract_pi16 (__m64 a, int n)
PEXTRW int _mm_extract_epi16 ( __m128i a, int imm) 

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-22, “Type 5 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-59, “Type E9NF Class Exception Conditions.”
Additionally:
#UD If VEX.L = 1 or EVEX.L’L > 0.

If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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PHADDSW—Packed Horizontal Add and Saturate

Instruction Operand Encoding

Description 

(V)PHADDSW adds two adjacent signed 16-bit integers horizontally from the source and destination operands and 
saturates the signed results; packs the signed, saturated 16-bit results to the destination operand (first operand) 
When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a 
general-protection exception (#GP) will be generated. 
Legacy SSE version: Both operands can be MMX registers. The second source operand can be an MMX register or 
a 64-bit memory location.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destina-
tion register remain unchanged. 

In 64-bit mode, use the REX prefix to access additional registers.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: The first source and destination operands are YMM registers. The second source 
operand can be an YMM register or a 256-bit memory location.

Operation 

PHADDSW (With 64-bit Operands)
mm1[15-0]  = SaturateToSignedWord((mm1[31-16] + mm1[15-0]); 
mm1[31-16] = SaturateToSignedWord(mm1[63-48] + mm1[47-32]);
mm1[47-32] = SaturateToSignedWord(mm2/m64[31-16] + mm2/m64[15-0]); 
mm1[63-48] = SaturateToSignedWord(mm2/m64[63-48] + mm2/m64[47-32]); 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 38 03 /r1 

PHADDSW mm1, mm2/m64 

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

RM V/V SSSE3 Add 16-bit signed integers horizontally, pack 
saturated integers to mm1.

66 0F 38 03 /r

PHADDSW xmm1, xmm2/m128

RM V/V SSSE3 Add 16-bit signed integers horizontally, pack 
saturated integers to xmm1.

VEX.128.66.0F38.WIG 03 /r

VPHADDSW xmm1, xmm2, xmm3/m128

RVM V/V AVX Add 16-bit signed integers horizontally, pack 
saturated integers to xmm1.

VEX.256.66.0F38.WIG 03 /r

VPHADDSW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add 16-bit signed integers horizontally, pack 
saturated integers to ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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PHADDSW (With 128-bit Operands)

xmm1[15-0]= SaturateToSignedWord(xmm1[31-16] + xmm1[15-0]);
xmm1[31-16] = SaturateToSignedWord(xmm1[63-48] + xmm1[47-32]);
xmm1[47-32] = SaturateToSignedWord(xmm1[95-80] + xmm1[79-64]);
xmm1[63-48] = SaturateToSignedWord(xmm1[127-112] + xmm1[111-96]); 
xmm1[79-64] = SaturateToSignedWord(xmm2/m128[31-16] + xmm2/m128[15-0]);
xmm1[95-80] = SaturateToSignedWord(xmm2/m128[63-48] + xmm2/m128[47-32]);
xmm1[111-96] = SaturateToSignedWord(xmm2/m128[95-80] + xmm2/m128[79-64]);
xmm1[127-112] = SaturateToSignedWord(xmm2/m128[127-112] + xmm2/m128[111-96]); 

VPHADDSW (VEX.128 Encoded Version)
DEST[15:0]= SaturateToSignedWord(SRC1[31:16] + SRC1[15:0])
DEST[31:16] = SaturateToSignedWord(SRC1[63:48] + SRC1[47:32])
DEST[47:32] = SaturateToSignedWord(SRC1[95:80] + SRC1[79:64])
DEST[63:48] = SaturateToSignedWord(SRC1[127:112] + SRC1[111:96])
DEST[79:64] = SaturateToSignedWord(SRC2[31:16] + SRC2[15:0])
DEST[95:80] = SaturateToSignedWord(SRC2[63:48] + SRC2[47:32])
DEST[111:96] = SaturateToSignedWord(SRC2[95:80] + SRC2[79:64])
DEST[127:112] = SaturateToSignedWord(SRC2[127:112] + SRC2[111:96])
DEST[MAXVL-1:128] := 0

VPHADDSW (VEX.256 Encoded Version)
DEST[15:0]= SaturateToSignedWord(SRC1[31:16] + SRC1[15:0])
DEST[31:16] = SaturateToSignedWord(SRC1[63:48] + SRC1[47:32])
DEST[47:32] = SaturateToSignedWord(SRC1[95:80] + SRC1[79:64])
DEST[63:48] = SaturateToSignedWord(SRC1[127:112] + SRC1[111:96])
DEST[79:64] = SaturateToSignedWord(SRC2[31:16] + SRC2[15:0])
DEST[95:80] = SaturateToSignedWord(SRC2[63:48] + SRC2[47:32])
DEST[111:96] = SaturateToSignedWord(SRC2[95:80] + SRC2[79:64])
DEST[127:112] = SaturateToSignedWord(SRC2[127:112] + SRC2[111:96])
DEST[143:128]= SaturateToSignedWord(SRC1[159:144] + SRC1[143:128])
DEST[159:144] = SaturateToSignedWord(SRC1[191:176] + SRC1[175:160])
DEST[175:160] = SaturateToSignedWord( SRC1[223:208] + SRC1[207:192])
DEST[191:176] = SaturateToSignedWord(SRC1[255:240] + SRC1[239:224])
DEST[207:192] = SaturateToSignedWord(SRC2[127:112] + SRC2[143:128])
DEST[223:208] = SaturateToSignedWord(SRC2[159:144] + SRC2[175:160])
DEST[239:224] = SaturateToSignedWord(SRC2[191-160] + SRC2[159-128])
DEST[255:240] = SaturateToSignedWord(SRC2[255:240] + SRC2[239:224])

Intel C/C++ Compiler Intrinsic Equivalent

PHADDSW __m64 _mm_hadds_pi16 (__m64 a, __m64 b)
(V)PHADDSW __m128i _mm_hadds_epi16 (__m128i a, __m128i b)
VPHADDSW __m256i _mm256_hadds_epi16 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions 
None. 

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:
#UD If VEX.L = 1.
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PHADDW/PHADDD—Packed Horizontal Add

Instruction Operand Encoding

Description 

(V)PHADDW adds two adjacent 16-bit signed integers horizontally from the source and destination operands and 
packs the 16-bit signed results to the destination operand (first operand). (V)PHADDD adds two adjacent 32-bit 
signed integers horizontally from the source and destination operands and packs the 32-bit signed results to the 
destination operand (first operand). When the source operand is a 128-bit memory operand, the operand must be 
aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated.

Note that these instructions can operate on either unsigned or signed (two’s complement notation) integers; 
however, it does not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent undetected over-
flow conditions, software must control the ranges of the values operated on. 

Legacy SSE instructions: Both operands can be MMX registers. The second source operand can be an MMX register 
or a 64-bit memory location.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand can be an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM 
destination register remain unchanged.

In 64-bit mode, use the REX prefix to access additional registers. 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 38 01 /r1

PHADDW mm1, mm2/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

RM V/V SSSE3 Add 16-bit integers horizontally, pack to mm1. 

66 0F 38 01 /r

PHADDW xmm1, xmm2/m128

RM V/V SSSE3 Add 16-bit integers horizontally, pack to 
xmm1.

NP 0F 38 02 /r 

PHADDD mm1, mm2/m64

RM V/V SSSE3 Add 32-bit integers horizontally, pack to mm1. 

66 0F 38 02 /r

PHADDD xmm1, xmm2/m128

RM V/V SSSE3 Add 32-bit integers horizontally, pack to 
xmm1. 

VEX.128.66.0F38.WIG 01 /r

VPHADDW xmm1, xmm2, xmm3/m128

RVM V/V AVX Add 16-bit integers horizontally, pack to 
xmm1.

VEX.128.66.0F38.WIG 02 /r

VPHADDD xmm1, xmm2, xmm3/m128

RVM V/V AVX Add 32-bit integers horizontally, pack to 
xmm1.

VEX.256.66.0F38.WIG 01 /r

VPHADDW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add 16-bit signed integers horizontally, pack 
to ymm1.

VEX.256.66.0F38.WIG 02 /r

VPHADDD ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add 32-bit signed integers horizontally, pack 
to ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand can be an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM 
register are zeroed.
VEX.256 encoded version: Horizontal addition of two adjacent data elements of the low 16-bytes of the first and 
second source operands are packed into the low 16-bytes of the destination operand. Horizontal addition of two 
adjacent data elements of the high 16-bytes of the first and second source operands are packed into the high 16-
bytes of the destination operand. The first source and destination operands are YMM registers. The second source 
operand can be an YMM register or a 256-bit memory location. 

Figure 1-10.  256-bit VPHADDD Instruction Operation

Operation 

PHADDW (With 64-bit Operands)
mm1[15-0]  = mm1[31-16] + mm1[15-0]; 
mm1[31-16] = mm1[63-48] + mm1[47-32]; 
mm1[47-32] = mm2/m64[31-16] + mm2/m64[15-0]; 
mm1[63-48] = mm2/m64[63-48] + mm2/m64[47-32]; 

PHADDW (With 128-bit Operands)
xmm1[15-0] = xmm1[31-16] + xmm1[15-0]; 
xmm1[31-16] = xmm1[63-48] + xmm1[47-32]; 
xmm1[47-32] = xmm1[95-80] + xmm1[79-64]; 
xmm1[63-48] = xmm1[127-112] + xmm1[111-96]; 
xmm1[79-64] = xmm2/m128[31-16] + xmm2/m128[15-0]; 
xmm1[95-80] = xmm2/m128[63-48] + xmm2/m128[47-32]; 
xmm1[111-96] = xmm2/m128[95-80] + xmm2/m128[79-64]; 
xmm1[127-112] = xmm2/m128[127-112] + xmm2/m128[111-96]; 

VPHADDW (VEX.128 Encoded Version)
DEST[15:0] := SRC1[31:16] + SRC1[15:0]
DEST[31:16] := SRC1[63:48] + SRC1[47:32]
DEST[47:32] := SRC1[95:80] + SRC1[79:64]
DEST[63:48] := SRC1[127:112] + SRC1[111:96]
DEST[79:64] := SRC2[31:16] + SRC2[15:0]
DEST[95:80] := SRC2[63:48] + SRC2[47:32]
DEST[111:96] := SRC2[95:80] + SRC2[79:64]
DEST[127:112] := SRC2[127:112] + SRC2[111:96]
DEST[MAXVL-1:128] := 0

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC2

S0

Dest
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0255
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S7 S2 S1S3 S3
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VPHADDW (VEX.256 Encoded Version)
DEST[15:0] := SRC1[31:16] + SRC1[15:0]
DEST[31:16] := SRC1[63:48] + SRC1[47:32]
DEST[47:32] := SRC1[95:80] + SRC1[79:64]
DEST[63:48] := SRC1[127:112] + SRC1[111:96]
DEST[79:64] := SRC2[31:16] + SRC2[15:0]
DEST[95:80] := SRC2[63:48] + SRC2[47:32]
DEST[111:96] := SRC2[95:80] + SRC2[79:64]
DEST[127:112] := SRC2[127:112] + SRC2[111:96]
DEST[143:128] := SRC1[159:144] + SRC1[143:128]
DEST[159:144] := SRC1[191:176] + SRC1[175:160]
DEST[175:160] := SRC1[223:208] + SRC1[207:192]
DEST[191:176] := SRC1[255:240] + SRC1[239:224]
DEST[207:192] := SRC2[127:112] + SRC2[143:128]
DEST[223:208] := SRC2[159:144] + SRC2[175:160]
DEST[239:224] := SRC2[191:176] + SRC2[207:192]
DEST[255:240] := SRC2[223:208] + SRC2[239:224]

PHADDD (With 64-bit Operands)
mm1[31-0]  = mm1[63-32] + mm1[31-0]; 
mm1[63-32] = mm2/m64[63-32] + mm2/m64[31-0]; 

PHADDD (With 128-bit Operands)
xmm1[31-0] = xmm1[63-32] + xmm1[31-0]; 
xmm1[63-32] = xmm1[127-96] + xmm1[95-64]; 
xmm1[95-64] = xmm2/m128[63-32] + xmm2/m128[31-0]; 
xmm1[127-96] = xmm2/m128[127-96] + xmm2/m128[95-64]; 

VPHADDD (VEX.128 Encoded Version)
DEST[31-0] := SRC1[63-32] + SRC1[31-0]
DEST[63-32] := SRC1[127-96] + SRC1[95-64]
DEST[95-64] := SRC2[63-32] + SRC2[31-0]
DEST[127-96] := SRC2[127-96] + SRC2[95-64]
DEST[MAXVL-1:128] := 0

VPHADDD (VEX.256 Encoded Version)
DEST[31-0] := SRC1[63-32] + SRC1[31-0]
DEST[63-32] := SRC1[127-96] + SRC1[95-64]
DEST[95-64] := SRC2[63-32] + SRC2[31-0]
DEST[127-96] := SRC2[127-96] + SRC2[95-64]
DEST[159-128] := SRC1[191-160] + SRC1[159-128]
DEST[191-160] := SRC1[255-224] + SRC1[223-192]
DEST[223-192] := SRC2[191-160] + SRC2[159-128]
DEST[255-224] := SRC2[255-224] + SRC2[223-192]

Intel C/C++ Compiler Intrinsic Equivalents

PHADDW __m64 _mm_hadd_pi16 (__m64 a, __m64 b)
PHADDD __m64 _mm_hadd_pi32 (__m64 a, __m64 b)
(V)PHADDW __m128i _mm_hadd_epi16 (__m128i a, __m128i b)
(V)PHADDD __m128i _mm_hadd_epi32 (__m128i a, __m128i b)
VPHADDW __m256i _mm256_hadd_epi16 (__m256i a, __m256i b)
VPHADDD __m256i _mm256_hadd_epi32 (__m256i a, __m256i b)
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SIMD Floating-Point Exceptions 
None. 

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:
#UD If VEX.L = 1.
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PHMINPOSUW—Packed Horizontal Word Minimum

Instruction Operand Encoding

Description

Determine the minimum unsigned word value in the source operand (second operand) and place the unsigned 
word in the low word (bits 0-15) of the destination operand (first operand). The word index of the minimum value 
is stored in bits 16-18 of the destination operand. The remaining upper bits of the destination are set to zero. 
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding XMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (MAXVL-1:128) of the destination XMM register are zeroed. VEX.vvvv is reserved 
and must be 1111b, VEX.L must be 0, otherwise the instruction will #UD.

Operation

PHMINPOSUW (128-bit Legacy SSE Version)
INDEX := 0;
MIN := SRC[15:0]
IF (SRC[31:16] < MIN) 

THEN INDEX := 1;  MIN := SRC[31:16]; FI;
IF (SRC[47:32] < MIN) 

THEN INDEX := 2;  MIN := SRC[47:32]; FI;
* Repeat operation for words 3 through 6
IF (SRC[127:112] < MIN) 

THEN INDEX := 7;  MIN := SRC[127:112]; FI;
DEST[15:0] := MIN;
DEST[18:16] := INDEX;
DEST[127:19] := 0000000000000000000000000000H;

VPHMINPOSUW (VEX.128 Encoded Version)
INDEX := 0
MIN := SRC[15:0]
IF (SRC[31:16] < MIN) THEN INDEX := 1; MIN := SRC[31:16]
IF (SRC[47:32] < MIN) THEN INDEX := 2; MIN := SRC[47:32]
* Repeat operation for words 3 through 6
IF (SRC[127:112] < MIN) THEN INDEX := 7; MIN := SRC[127:112]
DEST[15:0] := MIN
DEST[18:16] := INDEX
DEST[127:19] := 0000000000000000000000000000H
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 41 /r
PHMINPOSUW xmm1, xmm2/m128

RM V/V SSE4_1 Find the minimum unsigned word in xmm2/m128 and 
place its value in the low word of xmm1 and its index 
in the second-lowest word of xmm1.

VEX.128.66.0F38.WIG 41 /r
VPHMINPOSUW xmm1, xmm2/m128

RM V/V AVX Find the minimum unsigned word in xmm2/m128 and 
place its value in the low word of xmm1 and its index 
in the second-lowest word of xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Intel C/C++ Compiler Intrinsic Equivalent

PHMINPOSUW __m128i _mm_minpos_epu16( __m128i packed_words);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:
#UD If VEX.L = 1.

If VEX.vvvv ≠ 1111B.
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PHSUBSW—Packed Horizontal Subtract and Saturate

Instruction Operand Encoding

Description 

(V)PHSUBSW performs horizontal subtraction on each adjacent pair of 16-bit signed integers by subtracting the 
most significant word from the least significant word of each pair in the source and destination operands. The 
signed, saturated 16-bit results are packed to the destination operand (first operand). When the source operand is 
a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception 
(#GP) will be generated. 
Legacy SSE version: Both operands can be MMX registers. The second source operand can be an MMX register or 
a 64-bit memory location.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destina-
tion register remain unchanged. 

In 64-bit mode, use the REX prefix to access additional registers. 
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are 
zeroed.
VEX.256 encoded version: The first source and destination operands are YMM registers. The second source 
operand can be an YMM register or a 256-bit memory location.

Operation

PHSUBSW (With 64-bit Operands)
mm1[15-0] = SaturateToSignedWord(mm1[15-0] - mm1[31-16]); 
mm1[31-16] = SaturateToSignedWord(mm1[47-32] - mm1[63-48]);
mm1[47-32] = SaturateToSignedWord(mm2/m64[15-0] - mm2/m64[31-16]); 
mm1[63-48] = SaturateToSignedWord(mm2/m64[47-32] - mm2/m64[63-48]);

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 38 07 /r1 

PHSUBSW mm1, mm2/m64 

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

RM V/V SSSE3 Subtract 16-bit signed integer horizontally, 
pack saturated integers to mm1.

66 0F 38 07 /r

PHSUBSW xmm1, xmm2/m128 

RM V/V SSSE3 Subtract 16-bit signed integer horizontally, 
pack saturated integers to xmm1.

VEX.128.66.0F38.WIG 07 /r

VPHSUBSW xmm1, xmm2, xmm3/m128

RVM V/V AVX Subtract 16-bit signed integer horizontally, 
pack saturated integers to xmm1.

VEX.256.66.0F38.WIG 07 /r

VPHSUBSW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Subtract 16-bit signed integer horizontally, 
pack saturated integers to ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A
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PHSUBSW (With 128-bit Operands)
xmm1[15-0] = SaturateToSignedWord(xmm1[15-0] - xmm1[31-16]); 
xmm1[31-16] = SaturateToSignedWord(xmm1[47-32] - xmm1[63-48]);
xmm1[47-32] = SaturateToSignedWord(xmm1[79-64] - xmm1[95-80]);
xmm1[63-48] = SaturateToSignedWord(xmm1[111-96] - xmm1[127-112]);
xmm1[79-64] = SaturateToSignedWord(xmm2/m128[15-0] - xmm2/m128[31-16]); 
xmm1[95-80] =SaturateToSignedWord(xmm2/m128[47-32] - xmm2/m128[63-48]); 
xmm1[111-96] =SaturateToSignedWord(xmm2/m128[79-64] - xmm2/m128[95-80]);
xmm1[127-112]= SaturateToSignedWord(xmm2/m128[111-96] - xmm2/m128[127-112]);

VPHSUBSW (VEX.128 Encoded Version)
DEST[15:0]= SaturateToSignedWord(SRC1[15:0] - SRC1[31:16])
DEST[31:16] = SaturateToSignedWord(SRC1[47:32] - SRC1[63:48])
DEST[47:32] = SaturateToSignedWord(SRC1[79:64] - SRC1[95:80])
DEST[63:48] = SaturateToSignedWord(SRC1[111:96] - SRC1[127:112])
DEST[79:64] = SaturateToSignedWord(SRC2[15:0] - SRC2[31:16])
DEST[95:80] = SaturateToSignedWord(SRC2[47:32] - SRC2[63:48])
DEST[111:96] = SaturateToSignedWord(SRC2[79:64] - SRC2[95:80])
DEST[127:112] = SaturateToSignedWord(SRC2[111:96] - SRC2[127:112])
DEST[MAXVL-1:128] := 0

VPHSUBSW (VEX.256 Encoded Version)
DEST[15:0]= SaturateToSignedWord(SRC1[15:0] - SRC1[31:16])
DEST[31:16] = SaturateToSignedWord(SRC1[47:32] - SRC1[63:48])
DEST[47:32] = SaturateToSignedWord(SRC1[79:64] - SRC1[95:80])
DEST[63:48] = SaturateToSignedWord(SRC1[111:96] - SRC1[127:112])
DEST[79:64] = SaturateToSignedWord(SRC2[15:0] - SRC2[31:16])
DEST[95:80] = SaturateToSignedWord(SRC2[47:32] - SRC2[63:48])
DEST[111:96] = SaturateToSignedWord(SRC2[79:64] - SRC2[95:80])
DEST[127:112] = SaturateToSignedWord(SRC2[111:96] - SRC2[127:112])
DEST[143:128]= SaturateToSignedWord(SRC1[143:128] - SRC1[159:144])
DEST[159:144] = SaturateToSignedWord(SRC1[175:160] - SRC1[191:176])
DEST[175:160] = SaturateToSignedWord(SRC1[207:192] - SRC1[223:208])
DEST[191:176] = SaturateToSignedWord(SRC1[239:224] - SRC1[255:240])
DEST[207:192] = SaturateToSignedWord(SRC2[143:128] - SRC2[159:144])
DEST[223:208] = SaturateToSignedWord(SRC2[175:160] - SRC2[191:176])
DEST[239:224] = SaturateToSignedWord(SRC2[207:192] - SRC2[223:208])
DEST[255:240] = SaturateToSignedWord(SRC2[239:224] - SRC2[255:240])

Intel C/C++ Compiler Intrinsic Equivalent

PHSUBSW __m64 _mm_hsubs_pi16 (__m64 a, __m64 b)
(V)PHSUBSW __m128i _mm_hsubs_epi16 (__m128i a, __m128i b)
VPHSUBSW __m256i _mm256_hsubs_epi16 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions 
None. 

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:
#UD If VEX.L = 1.
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PHSUBW/PHSUBD—Packed Horizontal Subtract

Instruction Operand Encoding

Description 

(V)PHSUBW performs horizontal subtraction on each adjacent pair of 16-bit signed integers by subtracting the 
most significant word from the least significant word of each pair in the source and destination operands, and packs 
the signed 16-bit results to the destination operand (first operand). (V)PHSUBD performs horizontal subtraction on 
each adjacent pair of 32-bit signed integers by subtracting the most significant doubleword from the least signifi-
cant doubleword of each pair, and packs the signed 32-bit result to the destination operand. When the source 
operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a general-protection 
exception (#GP) will be generated. 

Legacy SSE version: Both operands can be MMX registers. The second source operand can be an MMX register or 
a 64-bit memory location.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destina-
tion register remain unchanged.

In 64-bit mode, use the REX prefix to access additional registers.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are 
zeroed. 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 38 05 /r1

PHSUBW mm1, mm2/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

RM V/V SSSE3 Subtract 16-bit signed integers horizontally, 
pack to mm1. 

66 0F 38 05 /r 

PHSUBW xmm1, xmm2/m128

RM V/V SSSE3 Subtract 16-bit signed integers horizontally, 
pack to xmm1. 

NP 0F 38 06 /r 

PHSUBD mm1, mm2/m64

RM V/V SSSE3 Subtract 32-bit signed integers horizontally, 
pack to mm1. 

66 0F 38 06 /r

PHSUBD xmm1, xmm2/m128 

RM V/V SSSE3 Subtract 32-bit signed integers horizontally, 
pack to xmm1. 

VEX.128.66.0F38.WIG 05 /r

VPHSUBW xmm1, xmm2, xmm3/m128

RVM V/V AVX Subtract 16-bit signed integers horizontally, 
pack to xmm1.

VEX.128.66.0F38.WIG 06 /r

VPHSUBD xmm1, xmm2, xmm3/m128

RVM V/V AVX Subtract 32-bit signed integers horizontally, 
pack to xmm1.

VEX.256.66.0F38.WIG 05 /r

VPHSUBW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Subtract 16-bit signed integers horizontally, 
pack to ymm1.

VEX.256.66.0F38.WIG 06 /r

VPHSUBD ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Subtract 32-bit signed integers horizontally, 
pack to ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A
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VEX.256 encoded version: The first source and destination operands are YMM registers. The second source 
operand can be an YMM register or a 256-bit memory location.

Operation

PHSUBW (With 64-bit Operands) 
mm1[15-0] = mm1[15-0] - mm1[31-16]; 
mm1[31-16] = mm1[47-32] - mm1[63-48]; 
mm1[47-32] = mm2/m64[15-0] - mm2/m64[31-16];
mm1[63-48] = mm2/m64[47-32] - mm2/m64[63-48]; 

PHSUBW (With 128-bit Operands)
xmm1[15-0] = xmm1[15-0] - xmm1[31-16]; 
xmm1[31-16] = xmm1[47-32] - xmm1[63-48]; 
xmm1[47-32] = xmm1[79-64] - xmm1[95-80]; 
xmm1[63-48] = xmm1[111-96] - xmm1[127-112]; 
xmm1[79-64] = xmm2/m128[15-0] - xmm2/m128[31-16]; 
xmm1[95-80] = xmm2/m128[47-32] - xmm2/m128[63-48]; 
xmm1[111-96] = xmm2/m128[79-64] - xmm2/m128[95-80]; 
xmm1[127-112] = xmm2/m128[111-96] - xmm2/m128[127-112];

VPHSUBW (VEX.128 Encoded Version)
DEST[15:0] := SRC1[15:0] - SRC1[31:16]
DEST[31:16] := SRC1[47:32] - SRC1[63:48]
DEST[47:32] := SRC1[79:64] - SRC1[95:80]
DEST[63:48] := SRC1[111:96] - SRC1[127:112]
DEST[79:64] := SRC2[15:0] - SRC2[31:16]
DEST[95:80] := SRC2[47:32] - SRC2[63:48]
DEST[111:96] := SRC2[79:64] - SRC2[95:80]
DEST[127:112] := SRC2[111:96] - SRC2[127:112]
DEST[MAXVL-1:128] := 0

VPHSUBW (VEX.256 Encoded Version)
DEST[15:0] := SRC1[15:0] - SRC1[31:16]
DEST[31:16] := SRC1[47:32] - SRC1[63:48]
DEST[47:32] := SRC1[79:64] - SRC1[95:80]
DEST[63:48] := SRC1[111:96] - SRC1[127:112]
DEST[79:64] := SRC2[15:0] - SRC2[31:16]
DEST[95:80] := SRC2[47:32] - SRC2[63:48]
DEST[111:96] := SRC2[79:64] - SRC2[95:80]
DEST[127:112] := SRC2[111:96] - SRC2[127:112]
DEST[143:128] := SRC1[143:128] - SRC1[159:144]
DEST[159:144] := SRC1[175:160] - SRC1[191:176]
DEST[175:160] := SRC1[207:192] - SRC1[223:208]
DEST[191:176] := SRC1[239:224] - SRC1[255:240]
DEST[207:192] := SRC2[143:128] - SRC2[159:144]
DEST[223:208] := SRC2[175:160] - SRC2[191:176]
DEST[239:224] := SRC2[207:192] - SRC2[223:208]
DEST[255:240] := SRC2[239:224] - SRC2[255:240]

PHSUBD (With 64-bit Operands)
mm1[31-0] = mm1[31-0] - mm1[63-32];
mm1[63-32] = mm2/m64[31-0] - mm2/m64[63-32];
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PHSUBD (With 128-bit Operands)
xmm1[31-0] = xmm1[31-0] - xmm1[63-32]; 
xmm1[63-32] = xmm1[95-64] - xmm1[127-96]; 
xmm1[95-64] = xmm2/m128[31-0] - xmm2/m128[63-32]; 
xmm1[127-96] = xmm2/m128[95-64] - xmm2/m128[127-96]; 

VPHSUBD (VEX.128 Encoded Version)
DEST[31-0] := SRC1[31-0] - SRC1[63-32]
DEST[63-32] := SRC1[95-64] - SRC1[127-96]
DEST[95-64] := SRC2[31-0] - SRC2[63-32]
DEST[127-96] := SRC2[95-64] - SRC2[127-96]
DEST[MAXVL-1:128] := 0

VPHSUBD (VEX.256 Encoded Version)
DEST[31:0] := SRC1[31:0] - SRC1[63:32]
DEST[63:32] := SRC1[95:64] - SRC1[127:96]
DEST[95:64] := SRC2[31:0] - SRC2[63:32]
DEST[127:96] := SRC2[95:64] - SRC2[127:96]
DEST[159:128] := SRC1[159:128] - SRC1[191:160]
DEST[191:160] := SRC1[223:192] - SRC1[255:224]
DEST[223:192] := SRC2[159:128] - SRC2[191:160]
DEST[255:224] := SRC2[223:192] - SRC2[255:224]

Intel C/C++ Compiler Intrinsic Equivalents

PHSUBW __m64 _mm_hsub_pi16 (__m64 a, __m64 b)
PHSUBD __m64 _mm_hsub_pi32 (__m64 a, __m64 b)
(V)PHSUBW __m128i _mm_hsub_epi16 (__m128i a, __m128i b)
(V)PHSUBD __m128i _mm_hsub_epi32 (__m128i a, __m128i b)
VPHSUBW __m256i _mm256_hsub_epi16 (__m256i a, __m256i b)
VPHSUBD __m256i _mm256_hsub_epi32 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions 
None. 

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:
#UD If VEX.L = 1.
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PINSRB/PINSRD/PINSRQ—Insert Byte/Dword/Qword

Instruction Operand Encoding

Description

Copies a byte/dword/qword from the source operand (second operand) and inserts it in the destination operand 
(first operand) at the location specified with the count operand (third operand). (The other elements in the desti-
nation register are left untouched.) The source operand can be a general-purpose register or a memory location. 
(When the source operand is a general-purpose register, PINSRB copies the low byte of the register.) The destina-

Opcode/
Instruction

Op/ En 64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 3A 20 /r ib
PINSRB xmm1, r32/m8, imm8

A V/V SSE4_1 Insert a byte integer value from r32/m8 into 
xmm1 at the destination element in xmm1 
specified by imm8.

66 0F 3A 22 /r ib
PINSRD xmm1, r/m32, imm8

A V/V SSE4_1 Insert a dword integer value from r/m32 into 
the xmm1 at the destination element 
specified by imm8.

66 REX.W 0F 3A 22 /r ib
PINSRQ xmm1, r/m64, imm8

A V/N. E. SSE4_1 Insert a qword integer value from r/m64 into 
the xmm1 at the destination element 
specified by imm8.

VEX.128.66.0F3A.W0 20 /r ib
VPINSRB xmm1, xmm2, r32/m8, imm8

B V1/V

NOTES:
1. In 64-bit mode, VEX.W1 is ignored for VPINSRB (similar to legacy REX.W=1 prefix with PINSRB).

AVX Merge a byte integer value from r32/m8 and 
rest from xmm2 into xmm1 at the byte offset 
in imm8.

VEX.128.66.0F3A.W0 22 /r ib
VPINSRD xmm1, xmm2, r/m32, imm8

B V/V AVX Insert a dword integer value from r32/m32 
and rest from xmm2 into xmm1 at the dword 
offset in imm8.

VEX.128.66.0F3A.W1 22 /r ib
VPINSRQ xmm1, xmm2, r/m64, imm8

B V/I2

2. VEX.W/EVEX.W in non-64 bit is ignored; the instructions behaves as if the W0 version is used.

AVX Insert a qword integer value from r64/m64 
and rest from xmm2 into xmm1 at the qword 
offset in imm8.

EVEX.128.66.0F3A.WIG 20 /r ib
VPINSRB xmm1, xmm2, r32/m8, imm8

C V/V AVX512BW 
OR AVX10.13

3. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Merge a byte integer value from r32/m8 and 
rest from xmm2 into xmm1 at the byte offset 
in imm8.

EVEX.128.66.0F3A.W0 22 /r ib
VPINSRD xmm1, xmm2, r32/m32, imm8

C V/V AVX512DQ 
OR AVX10.13

Insert a dword integer value from r32/m32 
and rest from xmm2 into xmm1 at the dword 
offset in imm8.

EVEX.128.66.0F3A.W1 22 /r ib
VPINSRQ xmm1, xmm2, r64/m64, imm8

C V/N.E.2 AVX512DQ 
OR AVX10.13

Insert a qword integer value from r64/m64 
and rest from xmm2 into xmm1 at the qword 
offset in imm8.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) imm8 N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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tion operand is an XMM register. The count operand is an 8-bit immediate. When specifying a qword[dword, byte] 
location in an XMM register, the [2, 4] least-significant bit(s) of the count operand specify the location.
In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of 64 bit general purpose regis-
ters.
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (MAXVL-1:128) of the destination register are zeroed. VEX.L must be 0, otherwise 
the instruction will #UD. Attempt to execute VPINSRQ in non-64-bit mode will cause #UD.
EVEX.128 encoded version: Bits (MAXVL-1:128) of the destination register are zeroed. EVEX.L’L must be 0, other-
wise the instruction will #UD. 

Operation

CASE OF
PINSRB: SEL := COUNT[3:0];

MASK := (0FFH << (SEL * 8)); 
TEMP := (((SRC[7:0] << (SEL *8)) AND MASK);

PINSRD: SEL := COUNT[1:0];
MASK := (0FFFFFFFFH << (SEL * 32)); 
TEMP := (((SRC << (SEL *32)) AND MASK) ;

PINSRQ: SEL := COUNT[0]
MASK := (0FFFFFFFFFFFFFFFFH << (SEL * 64)); 
TEMP := (((SRC << (SEL *64)) AND MASK) ;

ESAC;
DEST := ((DEST AND NOT MASK) OR TEMP); 

VPINSRB (VEX/EVEX Encoded Version)
SEL := imm8[3:0]
DEST[127:0] := write_b_element(SEL, SRC2, SRC1)
DEST[MAXVL-1:128] := 0

VPINSRD (VEX/EVEX Encoded Version)
SEL := imm8[1:0]
DEST[127:0] := write_d_element(SEL, SRC2, SRC1)
DEST[MAXVL-1:128] := 0

VPINSRQ (VEX/EVEX Encoded Version)
SEL := imm8[0]
DEST[127:0] := write_q_element(SEL, SRC2, SRC1)
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

PINSRB __m128i _mm_insert_epi8 (__m128i s1, int s2, const int ndx);
PINSRD __m128i _mm_insert_epi32 (__m128i s2, int s, const int ndx);
PINSRQ __m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.
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Other Exceptions
EVEX-encoded instruction, see Table 2-22, “Type 5 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-59, “Type E9NF Class Exception Conditions.”
Additionally:
#UD If VEX.L = 1 or EVEX.L’L > 0.
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PINSRW—Insert Word

Instruction Operand Encoding

Description

Three operand MMX and SSE instructions:

Copies a word from the source operand and inserts it in the destination operand at the location specified with the 
count operand. (The other words in the destination register are left untouched.) The source operand can be a 
general-purpose register or a 16-bit memory location. (When the source operand is a general-purpose register, the 
low word of the register is copied.) The destination operand can be an MMX technology register or an XMM register. 
The count operand is an 8-bit immediate. When specifying a word location in an MMX technology register, the 2 
least-significant bits of the count operand specify the location; for an XMM register, the 3 least-significant bits 
specify the location.
Bits (MAXVL-1:128) of the corresponding YMM destination register remain unchanged.
Four operand AVX and AVX-512 instructions: 

Combines a word from the first source operand with the second source operand, and inserts it in the destination 
operand at the location specified with the count operand. The second source operand can be a general-purpose 
register or a 16-bit memory location. (When the source operand is a general-purpose register, the low word of the 
register is copied.) The first source and destination operands are XMM registers. The count operand is an 8-bit 
immediate. When specifying a word location, the 3 least-significant bits specify the location.

Bits (MAXVL-1:128) of the destination YMM register are zeroed. VEX.L/EVEX.L’L must be 0, otherwise the instruc-
tion will #UD. 

Opcode/
Instruction

Op/ En 64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F C4 /r ib1

PINSRW mm, r32/m16, imm8

A V/V SSE Insert the low word from r32 or from m16 into 
mm at the word position specified by imm8.

66 0F C4 /r ib

PINSRW xmm, r32/m16, imm8

A V/V SSE2 Move the low word of r32 or from m16 into 
xmm at the word position specified by imm8.

VEX.128.66.0F.W0 C4 /r ib

VPINSRW xmm1, xmm2, r32/m16, imm8

B V2/V AVX Insert the word from r32/m16 at the offset 
indicated by imm8 into the value from xmm2 
and store result in xmm1.

EVEX.128.66.0F.WIG C4 /r ib
VPINSRW xmm1, xmm2, r32/m16, imm8

C V/V AVX512BW OR 
AVX10.13

Insert the word from r32/m16 at the offset 
indicated by imm8 into the value from xmm2 
and store result in xmm1.

NOTES:

1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

2. In 64-bit mode, VEX.W1 is ignored for VPINSRW (similar to legacy REX.W=1 prefix in PINSRW).

3. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the 
processor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported 
vector width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) imm8 N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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Operation

PINSRW dest, src, imm8 (MMX)
SEL := imm8[1:0]

     DEST.word[SEL] := src.word[0]

PINSRW dest, src, imm8 (SSE)
SEL := imm8[2:0]

     DEST.word[SEL] := src.word[0]

VPINSRW dest, src1, src2, imm8 (AVX/AVX512)
SEL := imm8[2:0]
DEST := src1

     DEST.word[SEL] := src2.word[0]
     DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

PINSRW __m64 _mm_insert_pi16 (__m64 a, int d, int n)
PINSRW __m128i _mm_insert_epi16 ( __m128i a, int b, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
EVEX-encoded instruction, see Table 2-22, “Type 5 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-59, “Type E9NF Class Exception Conditions.”
Additionally:
#UD If VEX.L = 1 or EVEX.L’L > 0.
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PMADDUBSW—Multiply and Add Packed Signed and Unsigned Bytes

Instruction Operand Encoding

Description 

(V)PMADDUBSW multiplies vertically each unsigned byte of the destination operand (first operand) with the corre-
sponding signed byte of the source operand (second operand), producing intermediate signed 16-bit integers. 
Each adjacent pair of signed words is added and the saturated result is packed to the destination operand. For 
example, the lowest-order bytes (bits 7-0) in the source and destination operands are multiplied and the interme-
diate signed word result is added with the corresponding intermediate result from the 2nd lowest-order bytes (bits 
15-8) of the operands; the sign-saturated result is stored in the lowest word of the destination register (15-0). The 
same operation is performed on the other pairs of adjacent bytes. Both operands can be MMX register or XMM 
registers. When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte 
boundary or a general-protection exception (#GP) will be generated. 

In 64-bit mode and not encoded with VEX/EVEX, use the REX prefix to access XMM8-XMM15. 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 38 04 /r1 

PMADDUBSW mm1, mm2/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V SSSE3 Multiply signed and unsigned bytes, add 
horizontal pair of signed words, pack saturated 
signed-words to mm1. 

66 0F 38 04 /r 

PMADDUBSW xmm1, xmm2/m128 

A V/V SSSE3 Multiply signed and unsigned bytes, add 
horizontal pair of signed words, pack saturated 
signed-words to xmm1.

VEX.128.66.0F38.WIG 04 /r

VPMADDUBSW xmm1, xmm2, xmm3/m128

B V/V AVX Multiply signed and unsigned bytes, add 
horizontal pair of signed words, pack saturated 
signed-words to xmm1.

VEX.256.66.0F38.WIG 04 /r

VPMADDUBSW ymm1, ymm2, ymm3/m256

B V/V AVX2 Multiply signed and unsigned bytes, add 
horizontal pair of signed words, pack saturated 
signed-words to ymm1.

EVEX.128.66.0F38.WIG 04 /r
VPMADDUBSW xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply signed and unsigned bytes, add 
horizontal pair of signed words, pack saturated 
signed-words to xmm1 under writemask k1.

EVEX.256.66.0F38.WIG 04 /r
VPMADDUBSW ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Multiply signed and unsigned bytes, add 
horizontal pair of signed words, pack saturated 
signed-words to ymm1 under writemask k1.

EVEX.512.66.0F38.WIG 04 /r
VPMADDUBSW zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Multiply signed and unsigned bytes, add 
horizontal pair of signed words, pack saturated 
signed-words to zmm1 under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination 
register remain unchanged.
VEX.128 and EVEX.128 encoded versions: The first source and destination operands are XMM registers. The 
second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding 
destination register are zeroed.
VEX.256 and EVEX.256 encoded versions: The second source operand can be an YMM register or a 256-bit memory 
location. The first source and destination operands are YMM registers. Bits (MAXVL-1:256) of the corresponding 
ZMM register are zeroed.
EVEX.512 encoded version: The second source operand can be an ZMM register or a 512-bit memory location. The 
first source and destination operands are ZMM registers.

Operation

PMADDUBSW (With 64-bit Operands)
DEST[15-0] = SaturateToSignedWord(SRC[15-8]*DEST[15-8]+SRC[7-0]*DEST[7-0]);
DEST[31-16] = SaturateToSignedWord(SRC[31-24]*DEST[31-24]+SRC[23-16]*DEST[23-16]);
DEST[47-32] = SaturateToSignedWord(SRC[47-40]*DEST[47-40]+SRC[39-32]*DEST[39-32]);
DEST[63-48] = SaturateToSignedWord(SRC[63-56]*DEST[63-56]+SRC[55-48]*DEST[55-48]);

PMADDUBSW (With 128-bit Operands)
DEST[15-0] = SaturateToSignedWord(SRC[15-8]* DEST[15-8]+SRC[7-0]*DEST[7-0]);
// Repeat operation for 2nd through 7th word 
SRC1/DEST[127-112] = SaturateToSignedWord(SRC[127-120]*DEST[127-120]+ SRC[119-112]* DEST[119-112]);

VPMADDUBSW (VEX.128 Encoded Version)
DEST[15:0] := SaturateToSignedWord(SRC2[15:8]* SRC1[15:8]+SRC2[7:0]*SRC1[7:0])
// Repeat operation for 2nd through 7th word 
DEST[127:112] := SaturateToSignedWord(SRC2[127:120]*SRC1[127:120]+ SRC2[119:112]* SRC1[119:112])
DEST[MAXVL-1:128] := 0

VPMADDUBSW (VEX.256 Encoded Version)
DEST[15:0] := SaturateToSignedWord(SRC2[15:8]* SRC1[15:8]+SRC2[7:0]*SRC1[7:0])
// Repeat operation for 2nd through 15th word 
DEST[255:240] := SaturateToSignedWord(SRC2[255:248]*SRC1[255:248]+ SRC2[247:240]* SRC1[247:240])
DEST[MAXVL-1:256] := 0

VPMADDUBSW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SaturateToSignedWord(SRC2[i+15:i+8]* SRC1[i+15:i+8] + SRC2[i+7:i]*SRC1[i+7:i])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] = 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalents

VPMADDUBSW __m512i _mm512_maddubs_epi16( __m512i a, __m512i b);
VPMADDUBSW __m512i _mm512_mask_maddubs_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMADDUBSW __m512i _mm512_maskz_maddubs_epi16( __mmask32 k, __m512i a, __m512i b);
VPMADDUBSW __m256i _mm256_mask_maddubs_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMADDUBSW __m256i _mm256_maskz_maddubs_epi16( __mmask16 k, __m256i a, __m256i b);
VPMADDUBSW __m128i _mm_mask_maddubs_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMADDUBSW __m128i _mm_maskz_maddubs_epi16( __mmask8 k, __m128i a, __m128i b);
PMADDUBSW __m64 _mm_maddubs_pi16 (__m64 a, __m64 b)
(V)PMADDUBSW __m128i _mm_maddubs_epi16 (__m128i a, __m128i b)
VPMADDUBSW __m256i _mm256_maddubs_epi16 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions 
None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
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PMADDWD—Multiply and Add Packed Integers

Instruction Operand Encoding

Description

Multiplies the individual signed words of the destination operand (first operand) by the corresponding signed words 
of the source operand (second operand), producing temporary signed, doubleword results. The adjacent double-
word results are then summed and stored in the destination operand. For example, the corresponding low-order 
words (15-0) and (31-16) in the source and destination operands are multiplied by one another and the double-
word results are added together and stored in the low doubleword of the destination register (31-0). The same 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F F5 /r1

PMADDWD mm, mm/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V MMX Multiply the packed words in mm by the packed 
words in mm/m64, add adjacent doubleword 
results, and store in mm.

66 0F F5 /r

PMADDWD xmm1, xmm2/m128

A V/V SSE2 Multiply the packed word integers in xmm1 by 
the packed word integers in xmm2/m128, add 
adjacent doubleword results, and store in 
xmm1.

VEX.128.66.0F.WIG F5 /r

VPMADDWD xmm1, xmm2, xmm3/m128

B V/V AVX Multiply the packed word integers in xmm2 by 
the packed word integers in xmm3/m128, add 
adjacent doubleword results, and store in 
xmm1.

VEX.256.66.0F.WIG F5 /r

VPMADDWD ymm1, ymm2, ymm3/m256

B V/V AVX2 Multiply the packed word integers in ymm2 by 
the packed word integers in ymm3/m256, add 
adjacent doubleword results, and store in 
ymm1.

EVEX.128.66.0F.WIG F5 /r
VPMADDWD xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply the packed word integers in xmm2 by 
the packed word integers in xmm3/m128, add 
adjacent doubleword results, and store in 
xmm1 under writemask k1.

EVEX.256.66.0F.WIG F5 /r
VPMADDWD ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Multiply the packed word integers in ymm2 by 
the packed word integers in ymm3/m256, add 
adjacent doubleword results, and store in 
ymm1 under writemask k1.

EVEX.512.66.0F.WIG F5 /r
VPMADDWD zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Multiply the packed word integers in zmm2 by 
the packed word integers in zmm3/m512, add 
adjacent doubleword results, and store in 
zmm1 under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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operation is performed on the other pairs of adjacent words. (Figure 1-11 shows this operation when using 64-bit 
operands).

The (V)PMADDWD instruction wraps around only in one situation: when the 2 pairs of words being operated on in 
a group are all 8000H. In this case, the result wraps around to 80000000H.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
Legacy SSE version: The first source and destination operands are MMX registers. The second source operand is an 
MMX register or a 64-bit memory location. 

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.
EVEX.512 encoded version: The second source operand can be an ZMM register or a 512-bit memory location. The 
first source and destination operands are ZMM registers.

Operation

PMADDWD (With 64-bit Operands)
DEST[31:0] := (DEST[15:0] ∗ SRC[15:0]) + (DEST[31:16] ∗ SRC[31:16]);
DEST[63:32] := (DEST[47:32] ∗ SRC[47:32]) + (DEST[63:48] ∗ SRC[63:48]);

PMADDWD (With 128-bit Operands)
DEST[31:0] := (DEST[15:0] ∗ SRC[15:0]) + (DEST[31:16] ∗ SRC[31:16]);
DEST[63:32] := (DEST[47:32] ∗ SRC[47:32]) + (DEST[63:48] ∗ SRC[63:48]);
DEST[95:64] := (DEST[79:64] ∗ SRC[79:64]) + (DEST[95:80] ∗ SRC[95:80]);
DEST[127:96] := (DEST[111:96] ∗ SRC[111:96]) + (DEST[127:112] ∗ SRC[127:112]);

VPMADDWD (VEX.128 Encoded Version)
DEST[31:0] := (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16])
DEST[63:32] := (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48])
DEST[95:64] := (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:80])
DEST[127:96] := (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112])
DEST[MAXVL-1:128] := 0

Figure 1-11.  PMADDWD Execution Model Using 64-bit Operands

X3 X2 X1 X0

X3 ∗ Y3 X2 ∗ Y2 X1 ∗ Y1 X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

(X1∗Y1) + (X0∗Y0)(X3∗Y3) + (X2∗Y2) 

TEMP
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VPMADDWD (VEX.256 Encoded Version)
DEST[31:0] := (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16])
DEST[63:32] := (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48])
DEST[95:64] := (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:80])
DEST[127:96] := (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112])
DEST[159:128] := (SRC1[143:128] * SRC2[143:128]) + (SRC1[159:144] * SRC2[159:144])
DEST[191:160] := (SRC1[175:160] * SRC2[175:160]) + (SRC1[191:176] * SRC2[191:176])
DEST[223:192] := (SRC1[207:192] * SRC2[207:192]) + (SRC1[223:208] * SRC2[223:208])
DEST[255:224] := (SRC1[239:224] * SRC2[239:224]) + (SRC1[255:240] * SRC2[255:240])
DEST[MAXVL-1:256] := 0

VPMADDWD (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := (SRC2[i+31:i+16]* SRC1[i+31:i+16]) + (SRC2[i+15:i]*SRC1[i+15:i])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] = 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPMADDWD __m512i _mm512_madd_epi16( __m512i a, __m512i b);
VPMADDWD __m512i _mm512_mask_madd_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMADDWD __m512i _mm512_maskz_madd_epi16( __mmask32 k, __m512i a, __m512i b);
VPMADDWD __m256i _mm256_mask_madd_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMADDWD __m256i _mm256_maskz_madd_epi16( __mmask16 k, __m256i a, __m256i b);
VPMADDWD __m128i _mm_mask_madd_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMADDWD __m128i _mm_maskz_madd_epi16( __mmask8 k, __m128i a, __m128i b);
PMADDWD __m64 _mm_madd_pi16(__m64 m1, __m64 m2)
(V)PMADDWD __m128i _mm_madd_epi16 ( __m128i a, __m128i b)
VPMADDWD __m256i _mm256_madd_epi16 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
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PMAXSB/PMAXSW/PMAXSD/PMAXSQ—Maximum of Packed Signed Integers
Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F EE /r1

PMAXSW mm1, mm2/m64

A V/V SSE Compare signed word integers in mm2/m64 and 
mm1 and return maximum values.

66 0F 38 3C /r
PMAXSB xmm1, xmm2/m128

A V/V SSE4_1 Compare packed signed byte integers in xmm1 
and xmm2/m128 and store packed maximum 
values in xmm1.

66 0F EE /r
PMAXSW xmm1, xmm2/m128

A V/V SSE2 Compare packed signed word integers in 
xmm2/m128 and xmm1 and stores maximum 
packed values in xmm1.

66 0F 38 3D /r
PMAXSD xmm1, xmm2/m128

A V/V SSE4_1 Compare packed signed dword integers in xmm1 
and xmm2/m128 and store packed maximum 
values in xmm1.

VEX.128.66.0F38.WIG 3C /r
VPMAXSB xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed signed byte integers in xmm2 
and xmm3/m128 and store packed maximum 
values in xmm1.

VEX.128.66.0F.WIG EE /r
VPMAXSW xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed signed word integers in 
xmm3/m128 and xmm2 and store packed 
maximum values in xmm1.

VEX.128.66.0F38.WIG 3D /r
VPMAXSD xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed signed dword integers in xmm2 
and xmm3/m128 and store packed maximum 
values in xmm1.

VEX.256.66.0F38.WIG 3C /r
VPMAXSB ymm1, ymm2, ymm3/m256

B V/V AVX2 Compare packed signed byte integers in ymm2 
and ymm3/m256 and store packed maximum 
values in ymm1.

VEX.256.66.0F.WIG EE /r
VPMAXSW ymm1, ymm2, ymm3/m256

B V/V AVX2 Compare packed signed word integers in 
ymm3/m256 and ymm2 and store packed 
maximum values in ymm1.

VEX.256.66.0F38.WIG 3D /r
VPMAXSD ymm1, ymm2, ymm3/m256

B V/V AVX2 Compare packed signed dword integers in ymm2 
and ymm3/m256 and store packed maximum 
values in ymm1.

EVEX.128.66.0F38.WIG 3C /r
VPMAXSB xmm1{k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Compare packed signed byte integers in xmm2 
and xmm3/m128 and store packed maximum 
values in xmm1 under writemask k1.

EVEX.256.66.0F38.WIG 3C /r
VPMAXSB ymm1{k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Compare packed signed byte integers in ymm2 
and ymm3/m256 and store packed maximum 
values in ymm1 under writemask k1.

EVEX.512.66.0F38.WIG 3C /r
VPMAXSB zmm1{k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW OR 
AVX10.11

Compare packed signed byte integers in zmm2 
and zmm3/m512 and store packed maximum 
values in zmm1 under writemask k1.

EVEX.128.66.0F.WIG EE /r
VPMAXSW xmm1{k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Compare packed signed word integers in xmm2 
and xmm3/m128 and store packed maximum 
values in xmm1 under writemask k1.

EVEX.256.66.0F.WIG EE /r
VPMAXSW ymm1{k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Compare packed signed word integers in ymm2 
and ymm3/m256 and store packed maximum 
values in ymm1 under writemask k1.

EVEX.512.66.0F.WIG EE /r
VPMAXSW zmm1{k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW OR 
AVX10.11

Compare packed signed word integers in zmm2 
and zmm3/m512 and store packed maximum 
values in zmm1 under writemask k1.
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Instruction Operand Encoding

Description

Performs a SIMD compare of the packed signed byte, word, dword or qword integers in the second source operand 
and the first source operand and returns the maximum value for each pair of integers to the destination operand. 
Legacy SSE version PMAXSW: The source operand can be an MMX technology register or a 64-bit memory location. 
The destination operand can be an MMX technology register.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination 
register are zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers. Bits (MAXVL-1:256) of the corresponding destination 
register are zeroed.

EVEX.128.66.0F38.W0 3D /r
VPMAXSD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed signed dword integers in xmm2 
and xmm3/m128/m32bcst and store packed 
maximum values in xmm1 using writemask k1.

EVEX.256.66.0F38.W0 3D /r
VPMAXSD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed signed dword integers in ymm2 
and ymm3/m256/m32bcst and store packed 
maximum values in ymm1 using writemask k1.

EVEX.512.66.0F38.W0 3D /r
VPMAXSD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

D V/V AVX512F 
OR AVX10.11

Compare packed signed dword integers in zmm2 
and zmm3/m512/m32bcst and store packed 
maximum values in zmm1 using writemask k1.

EVEX.128.66.0F38.W1 3D /r
VPMAXSQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed signed qword integers in xmm2 
and xmm3/m128/m64bcst and store packed 
maximum values in xmm1 using writemask k1.

EVEX.256.66.0F38.W1 3D /r
VPMAXSQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed signed qword integers in ymm2 
and ymm3/m256/m64bcst and store packed 
maximum values in ymm1 using writemask k1.

EVEX.512.66.0F38.W1 3D /r
VPMAXSQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

D V/V AVX512F 
OR AVX10.11

Compare packed signed qword integers in zmm2 
and zmm3/m512/m64bcst and store packed 
maximum values in zmm1 using writemask k1.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

D Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description
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EVEX encoded VPMAXSD/Q: The first source operand is a ZMM/YMM/XMM register; The second source operand is 
a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 
32/64-bit memory location. The destination operand is conditionally updated based on writemask k1.
EVEX encoded VPMAXSB/W: The first source operand is a ZMM/YMM/XMM register; The second source operand is 
a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand is conditionally updated 
based on writemask k1.

Operation

PMAXSW (64-bit Operands)
IF DEST[15:0] > SRC[15:0]) THEN

DEST[15:0] := DEST[15:0];
ELSE

DEST[15:0] := SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] > SRC[63:48]) THEN

DEST[63:48] := DEST[63:48];
ELSE

DEST[63:48] := SRC[63:48]; FI;

PMAXSB (128-bit Legacy SSE Version)
IF DEST[7:0] > SRC[7:0] THEN

DEST[7:0] := DEST[7:0];
ELSE

DEST[7:0] := SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] >SRC[127:120] THEN

DEST[127:120] := DEST[127:120];
ELSE

DEST[127:120] := SRC[127:120]; FI;
DEST[MAXVL-1:128] (Unmodified)

VPMAXSB (VEX.128 Encoded Version)
IF SRC1[7:0] > SRC2[7:0] THEN

DEST[7:0] := SRC1[7:0];
ELSE

DEST[7:0] := SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] >SRC2[127:120] THEN

DEST[127:120] := SRC1[127:120];
ELSE

DEST[127:120] := SRC2[127:120]; FI;
DEST[MAXVL-1:128] := 0

VPMAXSB (VEX.256 Encoded Version)
IF SRC1[7:0] > SRC2[7:0] THEN

DEST[7:0] := SRC1[7:0];
ELSE

DEST[7:0] := SRC2[7:0]; FI;
(* Repeat operation for 2nd through 31st bytes in source and destination operands *)
IF SRC1[255:248] >SRC2[255:248] THEN

DEST[255:248] := SRC1[255:248];
ELSE

DEST[255:248] := SRC2[255:248]; FI;
DEST[MAXVL-1:256] := 0
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VPMAXSB (EVEX Encoded Versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8
IF k1[j] OR *no writemask* THEN

IF SRC1[i+7:i] > SRC2[i+7:i] 
THEN DEST[i+7:i] := SRC1[i+7:i];
ELSE DEST[i+7:i] := SRC2[i+7:i]; 

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+7:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

PMAXSW (128-bit Legacy SSE Version)
IF DEST[15:0] >SRC[15:0] THEN

DEST[15:0] := DEST[15:0];
ELSE

DEST[15:0] := SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] >SRC[127:112] THEN

DEST[127:112] := DEST[127:112];
ELSE

DEST[127:112] := SRC[127:112]; FI;
DEST[MAXVL-1:128] (Unmodified)

VPMAXSW (VEX.128 Encoded Version)
IF SRC1[15:0] > SRC2[15:0] THEN

DEST[15:0] := SRC1[15:0];
ELSE

DEST[15:0] := SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] >SRC2[127:112] THEN

DEST[127:112] := SRC1[127:112];
ELSE

DEST[127:112] := SRC2[127:112]; FI;
DEST[MAXVL-1:128] := 0

VPMAXSW (VEX.256 Encoded Version)
IF SRC1[15:0] > SRC2[15:0] THEN

DEST[15:0] := SRC1[15:0];
ELSE

DEST[15:0] := SRC2[15:0]; FI;
(* Repeat operation for 2nd through 15th words in source and destination operands *)
IF SRC1[255:240] >SRC2[255:240] THEN

DEST[255:240] := SRC1[255:240];
ELSE

DEST[255:240] := SRC2[255:240]; FI;
DEST[MAXVL-1:256] := 0
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VPMAXSW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask* THEN

IF SRC1[i+15:i] > SRC2[i+15:i] 
THEN DEST[i+15:i] := SRC1[i+15:i];
ELSE DEST[i+15:i] := SRC2[i+15:i]; 

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

PMAXSD (128-bit Legacy SSE Version)
IF DEST[31:0] >SRC[31:0] THEN

DEST[31:0] := DEST[31:0];
ELSE

DEST[31:0] := SRC[31:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:96] >SRC[127:96] THEN

DEST[127:96] := DEST[127:96];
ELSE

DEST[127:96] := SRC[127:96]; FI;
DEST[MAXVL-1:128] (Unmodified)

VPMAXSD (VEX.128 Encoded Version)
IF SRC1[31:0] > SRC2[31:0] THEN

DEST[31:0] := SRC1[31:0];
ELSE

DEST[31:0] := SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:96] > SRC2[127:96] THEN

DEST[127:96] := SRC1[127:96];
ELSE

DEST[127:96] := SRC2[127:96]; FI;
DEST[MAXVL-1:128] := 0

VPMAXSD (VEX.256 Encoded Version)
IF SRC1[31:0] > SRC2[31:0] THEN

DEST[31:0] := SRC1[31:0];
ELSE

DEST[31:0] := SRC2[31:0]; FI;
(* Repeat operation for 2nd through 7th dwords in source and destination operands *)
IF SRC1[255:224] > SRC2[255:224] THEN

DEST[255:224] := SRC1[255:224];
ELSE

DEST[255:224] := SRC2[255:224]; FI;
DEST[MAXVL-1:256] := 0
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VPMAXSD (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN 

IF SRC1[i+31:i] > SRC2[31:0] 
THEN DEST[i+31:i] := SRC1[i+31:i];
ELSE DEST[i+31:i] := SRC2[31:0]; 

FI;
ELSE 

IF SRC1[i+31:i] > SRC2[i+31:i] 
THEN DEST[i+31:i] := SRC1[i+31:i];
ELSE DEST[i+31:i] := SRC2[i+31:i]; 

FI;
FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE  DEST[i+31:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VPMAXSQ (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN 

IF SRC1[i+63:i] > SRC2[63:0] 
THEN DEST[i+63:i] := SRC1[i+63:i];
ELSE DEST[i+63:i] := SRC2[63:0]; 

FI;
ELSE 

IF SRC1[i+63:i] > SRC2[i+63:i] 
THEN DEST[i+63:i] := SRC1[i+63:i];
ELSE DEST[i+63:i] := SRC2[i+63:i]; 

FI;
FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[i+63:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPMAXSB __m512i _mm512_max_epi8( __m512i a, __m512i b);
VPMAXSB __m512i _mm512_mask_max_epi8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPMAXSB __m512i _mm512_maskz_max_epi8( __mmask64 k, __m512i a, __m512i b);
VPMAXSW __m512i _mm512_max_epi16( __m512i a, __m512i b);
VPMAXSW __m512i _mm512_mask_max_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMAXSW __m512i _mm512_maskz_max_epi16( __mmask32 k, __m512i a, __m512i b);
VPMAXSB __m256i _mm256_mask_max_epi8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPMAXSB __m256i _mm256_maskz_max_epi8( __mmask32 k, __m256i a, __m256i b);
VPMAXSW __m256i _mm256_mask_max_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMAXSW __m256i _mm256_maskz_max_epi16( __mmask16 k, __m256i a, __m256i b);
VPMAXSB __m128i _mm_mask_max_epi8(__m128i s, __mmask16 k, __m128i a, __m128i b);
VPMAXSB __m128i _mm_maskz_max_epi8( __mmask16 k, __m128i a, __m128i b);
VPMAXSW __m128i _mm_mask_max_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMAXSW __m128i _mm_maskz_max_epi16( __mmask8 k, __m128i a, __m128i b);
VPMAXSD __m256i _mm256_mask_max_epi32(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMAXSD __m256i _mm256_maskz_max_epi32( __mmask16 k, __m256i a, __m256i b);
VPMAXSQ __m256i _mm256_mask_max_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPMAXSQ __m256i _mm256_maskz_max_epi64( __mmask8 k, __m256i a, __m256i b);
VPMAXSD __m128i _mm_mask_max_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMAXSD __m128i _mm_maskz_max_epi32( __mmask8 k, __m128i a, __m128i b);
VPMAXSQ __m128i _mm_mask_max_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMAXSQ __m128i _mm_maskz_max_epu64( __mmask8 k, __m128i a, __m128i b);
VPMAXSD __m512i _mm512_max_epi32( __m512i a, __m512i b);
VPMAXSD __m512i _mm512_mask_max_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPMAXSD __m512i _mm512_maskz_max_epi32( __mmask16 k, __m512i a, __m512i b);
VPMAXSQ __m512i _mm512_max_epi64( __m512i a, __m512i b);
VPMAXSQ __m512i _mm512_mask_max_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPMAXSQ __m512i _mm512_maskz_max_epi64( __mmask8 k, __m512i a, __m512i b);
(V)PMAXSB __m128i _mm_max_epi8 ( __m128i a, __m128i b);
(V)PMAXSW __m128i _mm_max_epi16 ( __m128i a, __m128i b)
(V)PMAXSD __m128i _mm_max_epi32 ( __m128i a, __m128i b);
VPMAXSB __m256i _mm256_max_epi8 ( __m256i a, __m256i b);
VPMAXSW __m256i _mm256_max_epi16 ( __m256i a, __m256i b)
VPMAXSD __m256i _mm256_max_epi32 ( __m256i a, __m256i b);
PMAXSW:__m64 _mm_max_pi16(__m64 a, __m64 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded VPMAXSD/Q, see Table 2-51, “Type E4 Class Exception Conditions.”
EVEX-encoded VPMAXSB/W, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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PMAXUB/PMAXUW—Maximum of Packed Unsigned Integers
Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F DE /r1

PMAXUB mm1, mm2/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V  SSE Compare unsigned byte integers in mm2/m64 and 
mm1 and returns maximum values.

66 0F DE /r
PMAXUB xmm1, xmm2/m128

A V/V SSE2 Compare packed unsigned byte integers in xmm1 
and xmm2/m128 and store packed maximum 
values in xmm1.

66 0F 38 3E/r
PMAXUW xmm1, xmm2/m128

A V/V SSE4_1 Compare packed unsigned word integers in 
xmm2/m128 and xmm1 and stores maximum 
packed values in xmm1.

VEX.128.66.0F DE /r
VPMAXUB xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed unsigned byte integers in xmm2 
and xmm3/m128 and store packed maximum 
values in xmm1.

VEX.128.66.0F38 3E/r
VPMAXUW xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed unsigned word integers in 
xmm3/m128 and xmm2 and store maximum 
packed values in xmm1.

VEX.256.66.0F DE /r
VPMAXUB ymm1, ymm2, ymm3/m256

B V/V AVX2 Compare packed unsigned byte integers in ymm2 
and ymm3/m256 and store packed maximum 
values in ymm1.

VEX.256.66.0F38 3E/r
VPMAXUW ymm1, ymm2, ymm3/m256

B V/V AVX2 Compare packed unsigned word integers in 
ymm3/m256 and ymm2 and store maximum 
packed values in ymm1.

EVEX.128.66.0F.WIG DE /r
VPMAXUB xmm1{k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare packed unsigned byte integers in xmm2 
and xmm3/m128 and store packed maximum 
values in xmm1 under writemask k1.

EVEX.256.66.0F.WIG DE /r
VPMAXUB ymm1{k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compare packed unsigned byte integers in ymm2 
and ymm3/m256 and store packed maximum 
values in ymm1 under writemask k1.

EVEX.512.66.0F.WIG DE /r
VPMAXUB zmm1{k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Compare packed unsigned byte integers in zmm2 
and zmm3/m512 and store packed maximum 
values in zmm1 under writemask k1.

EVEX.128.66.0F38.WIG 3E /r
VPMAXUW xmm1{k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compare packed unsigned word integers in xmm2 
and xmm3/m128 and store packed maximum 
values in xmm1 under writemask k1.

EVEX.256.66.0F38.WIG 3E /r
VPMAXUW ymm1{k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compare packed unsigned word integers in ymm2 
and ymm3/m256 and store packed maximum 
values in ymm1 under writemask k1.

EVEX.512.66.0F38.WIG 3E /r
VPMAXUW zmm1{k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Compare packed unsigned word integers in zmm2 
and zmm3/m512 and store packed maximum 
values in zmm1 under writemask k1.
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Instruction Operand Encoding

Description

Performs a SIMD compare of the packed unsigned byte, word integers in the second source operand and the first 
source operand and returns the maximum value for each pair of integers to the destination operand. 
Legacy SSE version PMAXUB: The source operand can be an MMX technology register or a 64-bit memory location. 
The destination operand can be an MMX technology register.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination 
register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination 
register are zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register; The second source operand is a 
ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operand is conditionally updated 
based on writemask k1.

Operation

PMAXUB (64-bit Operands)
IF DEST[7:0] > SRC[17:0]) THEN

DEST[7:0] := DEST[7:0];
ELSE

DEST[7:0] := SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] > SRC[63:56]) THEN

DEST[63:56] := DEST[63:56];
ELSE

DEST[63:56] := SRC[63:56]; FI;

PMAXUB (128-bit Legacy SSE Version)
IF DEST[7:0] >SRC[7:0] THEN

DEST[7:0] := DEST[7:0];
ELSE

DEST[15:0] := SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] >SRC[127:120] THEN

DEST[127:120] := DEST[127:120];
ELSE

DEST[127:120] := SRC[127:120]; FI;
DEST[MAXVL-1:128] (Unmodified)

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VPMAXUB (VEX.128 Encoded Version)
IF SRC1[7:0] >SRC2[7:0] THEN

DEST[7:0] := SRC1[7:0];
ELSE

DEST[7:0] := SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] >SRC2[127:120] THEN

DEST[127:120] := SRC1[127:120];
ELSE

DEST[127:120] := SRC2[127:120]; FI;
DEST[MAXVL-1:128] := 0

VPMAXUB (VEX.256 Encoded Version)
IF SRC1[7:0] >SRC2[7:0] THEN

DEST[7:0] := SRC1[7:0];
ELSE

DEST[15:0] := SRC2[7:0]; FI;
(* Repeat operation for 2nd through 31st bytes in source and destination operands *)
IF SRC1[255:248] >SRC2[255:248] THEN

DEST[255:248] := SRC1[255:248];
ELSE

DEST[255:248] := SRC2[255:248]; FI;
DEST[MAXVL-1:128] := 0

VPMAXUB (EVEX Encoded Versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8
IF k1[j] OR *no writemask* THEN

IF SRC1[i+7:i] > SRC2[i+7:i] 
THEN DEST[i+7:i] := SRC1[i+7:i];
ELSE DEST[i+7:i] := SRC2[i+7:i]; 

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+7:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

PMAXUW (128-bit Legacy SSE Version)
IF DEST[15:0] >SRC[15:0] THEN

DEST[15:0] := DEST[15:0];
ELSE

DEST[15:0] := SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] >SRC[127:112] THEN

DEST[127:112] := DEST[127:112];
ELSE

DEST[127:112] := SRC[127:112]; FI;
DEST[MAXVL-1:128] (Unmodified)
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VPMAXUW (VEX.128 Encoded Version)
IF SRC1[15:0] > SRC2[15:0] THEN

DEST[15:0] := SRC1[15:0];
ELSE

DEST[15:0] := SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] >SRC2[127:112] THEN

DEST[127:112] := SRC1[127:112];
ELSE

DEST[127:112] := SRC2[127:112]; FI;
DEST[MAXVL-1:128] := 0

VPMAXUW (VEX.256 Encoded Version)
IF SRC1[15:0] > SRC2[15:0] THEN

DEST[15:0] := SRC1[15:0];
ELSE

DEST[15:0] := SRC2[15:0]; FI;
(* Repeat operation for 2nd through 15th words in source and destination operands *)
IF SRC1[255:240] >SRC2[255:240] THEN

DEST[255:240] := SRC1[255:240];
ELSE

DEST[255:240] := SRC2[255:240]; FI;
DEST[MAXVL-1:128] := 0

VPMAXUW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask* THEN

IF SRC1[i+15:i] > SRC2[i+15:i] 
THEN DEST[i+15:i] := SRC1[i+15:i];
ELSE DEST[i+15:i] := SRC2[i+15:i]; 

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPMAXUB __m512i _mm512_max_epu8( __m512i a, __m512i b);
VPMAXUB __m512i _mm512_mask_max_epu8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPMAXUB __m512i _mm512_maskz_max_epu8( __mmask64 k, __m512i a, __m512i b);
VPMAXUW __m512i _mm512_max_epu16( __m512i a, __m512i b);
VPMAXUW __m512i _mm512_mask_max_epu16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMAXUW __m512i _mm512_maskz_max_epu16( __mmask32 k, __m512i a, __m512i b);
VPMAXUB __m256i _mm256_mask_max_epu8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPMAXUB __m256i _mm256_maskz_max_epu8( __mmask32 k, __m256i a, __m256i b);
VPMAXUW __m256i _mm256_mask_max_epu16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMAXUW __m256i _mm256_maskz_max_epu16( __mmask16 k, __m256i a, __m256i b);
VPMAXUB __m128i _mm_mask_max_epu8(__m128i s, __mmask16 k, __m128i a, __m128i b);
VPMAXUB __m128i _mm_maskz_max_epu8( __mmask16 k, __m128i a, __m128i b);
VPMAXUW __m128i _mm_mask_max_epu16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMAXUW __m128i _mm_maskz_max_epu16( __mmask8 k, __m128i a, __m128i b);
(V)PMAXUB __m128i _mm_max_epu8 ( __m128i a, __m128i b);
(V)PMAXUW __m128i _mm_max_epu16 ( __m128i a, __m128i b)
VPMAXUB __m256i _mm256_max_epu8 ( __m256i a, __m256i b);
VPMAXUW __m256i _mm256_max_epu16 ( __m256i a, __m256i b);
PMAXUB __m64 _mm_max_pu8(__m64 a, __m64 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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PMAXUD/PMAXUQ—Maximum of Packed Unsigned Integers

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed unsigned dword or qword integers in the second source operand and the 
first source operand and returns the maximum value for each pair of integers to the destination operand. 
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination 
register remain unchanged.

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 38 3F /r
PMAXUD xmm1, xmm2/m128

A V/V SSE4_1 Compare packed unsigned dword integers in xmm1 
and xmm2/m128 and store packed maximum 
values in xmm1.

VEX.128.66.0F38.WIG 3F /r
VPMAXUD xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed unsigned dword integers in xmm2 
and xmm3/m128 and store packed maximum 
values in xmm1.

VEX.256.66.0F38.WIG 3F /r
VPMAXUD ymm1, ymm2, ymm3/m256

B V/V AVX2 Compare packed unsigned dword integers in ymm2 
and ymm3/m256 and store packed maximum 
values in ymm1.

EVEX.128.66.0F38.W0 3F /r
VPMAXUD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare packed unsigned dword integers in xmm2 
and xmm3/m128/m32bcst and store packed 
maximum values in xmm1 under writemask k1.

EVEX.256.66.0F38.W0 3F /r
VPMAXUD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed unsigned dword integers in ymm2 
and ymm3/m256/m32bcst and store packed 
maximum values in ymm1 under writemask k1.

EVEX.512.66.0F38.W0 3F /r
VPMAXUD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

C V/V AVX512F 
OR AVX10.11

Compare packed unsigned dword integers in zmm2 
and zmm3/m512/m32bcst and store packed 
maximum values in zmm1 under writemask k1.

EVEX.128.66.0F38.W1 3F /r
VPMAXUQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed unsigned qword integers in xmm2 
and xmm3/m128/m64bcst and store packed 
maximum values in xmm1 under writemask k1.

EVEX.256.66.0F38.W1 3F /r
VPMAXUQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed unsigned qword integers in ymm2 
and ymm3/m256/m64bcst and store packed 
maximum values in ymm1 under writemask k1.

EVEX.512.66.0F38.W1 3F /r
VPMAXUQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512F 
OR AVX10.11

Compare packed unsigned qword integers in zmm2 
and zmm3/m512/m64bcst and store packed 
maximum values in zmm1 under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) N/A
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VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination 
register are zeroed.
VEX.256 encoded version: The first source operand is a YMM register; The second source operand is a YMM register 
or 256-bit memory location. Bits (MAXVL-1:256) of the corresponding destination register are zeroed.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register; The second source operand is a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 
32/64-bit memory location. The destination operand is conditionally updated based on writemask k1.

Operation

PMAXUD (128-bit Legacy SSE Version)
IF DEST[31:0] >SRC[31:0] THEN

DEST[31:0] := DEST[31:0];
ELSE

DEST[31:0] := SRC[31:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:96] >SRC[127:96] THEN

DEST[127:96] := DEST[127:96];
ELSE

DEST[127:96] := SRC[127:96]; FI;
DEST[MAXVL-1:128] (Unmodified)

VPMAXUD (VEX.128 Encoded Version)
IF SRC1[31:0] > SRC2[31:0] THEN

DEST[31:0] := SRC1[31:0];
ELSE

DEST[31:0] := SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:96] > SRC2[127:96] THEN

DEST[127:96] := SRC1[127:96];
ELSE

DEST[127:96] := SRC2[127:96]; FI;
DEST[MAXVL-1:128] := 0

VPMAXUD (VEX.256 Encoded Version)
IF SRC1[31:0] > SRC2[31:0] THEN

DEST[31:0] := SRC1[31:0];
ELSE

DEST[31:0] := SRC2[31:0]; FI;
(* Repeat operation for 2nd through 7th dwords in source and destination operands *)
IF SRC1[255:224] > SRC2[255:224] THEN

DEST[255:224] := SRC1[255:224];
ELSE

DEST[255:224] := SRC2[255:224]; FI;
DEST[MAXVL-1:256] := 0
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VPMAXUD (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN 

IF SRC1[i+31:i] > SRC2[31:0] 
THEN DEST[i+31:i] := SRC1[i+31:i];
ELSE DEST[i+31:i] := SRC2[31:0]; 

FI;
ELSE 

IF SRC1[i+31:i] > SRC2[i+31:i] 
THEN DEST[i+31:i] := SRC1[i+31:i];
ELSE DEST[i+31:i] := SRC2[i+31:i]; 

FI;
FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[i+31:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

VPMAXUQ (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN 

IF SRC1[i+63:i] > SRC2[63:0] 
THEN DEST[i+63:i] := SRC1[i+63:i];
ELSE DEST[i+63:i] := SRC2[63:0]; 

FI;
ELSE 

IF SRC1[i+31:i] > SRC2[i+31:i] 
THEN DEST[i+63:i] := SRC1[i+63:i];
ELSE DEST[i+63:i] := SRC2[i+63:i]; 

FI;
FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[i+63:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPMAXUD __m512i _mm512_max_epu32( __m512i a, __m512i b);
VPMAXUD __m512i _mm512_mask_max_epu32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPMAXUD __m512i _mm512_maskz_max_epu32( __mmask16 k, __m512i a, __m512i b);
VPMAXUQ __m512i _mm512_max_epu64( __m512i a, __m512i b);
VPMAXUQ __m512i _mm512_mask_max_epu64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPMAXUQ __m512i _mm512_maskz_max_epu64( __mmask8 k, __m512i a, __m512i b);
VPMAXUD __m256i _mm256_mask_max_epu32(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMAXUD __m256i _mm256_maskz_max_epu32( __mmask16 k, __m256i a, __m256i b);
VPMAXUQ __m256i _mm256_mask_max_epu64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPMAXUQ __m256i _mm256_maskz_max_epu64( __mmask8 k, __m256i a, __m256i b);
VPMAXUD __m128i _mm_mask_max_epu32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMAXUD __m128i _mm_maskz_max_epu32( __mmask8 k, __m128i a, __m128i b);
VPMAXUQ __m128i _mm_mask_max_epu64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMAXUQ __m128i _mm_maskz_max_epu64( __mmask8 k, __m128i a, __m128i b);
(V)PMAXUD __m128i _mm_max_epu32 ( __m128i a, __m128i b);
VPMAXUD __m256i _mm256_max_epu32 ( __m256i a, __m256i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
PMAXUD/PMAXUQ—Maximum of Packed Unsigned Integers Vol. 2B 4-329



PMINSB/PMINSW—Minimum of Packed Signed Integers
Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F EA /r1

PMINSW mm1, mm2/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V SSE Compare signed word integers in mm2/m64 and 
mm1 and return minimum values.

66 0F 38 38 /r
PMINSB xmm1, xmm2/m128

A V/V SSE4_1 Compare packed signed byte integers in xmm1 and 
xmm2/m128 and store packed minimum values in 
xmm1.

66 0F EA /r
PMINSW xmm1, xmm2/m128

A V/V SSE2 Compare packed signed word integers in 
xmm2/m128 and xmm1 and store packed 
minimum values in xmm1.

VEX.128.66.0F38 38 /r
VPMINSB xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed signed byte integers in xmm2 and 
xmm3/m128 and store packed minimum values in 
xmm1.

VEX.128.66.0F EA /r
VPMINSW xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed signed word integers in 
xmm3/m128 and xmm2 and return packed 
minimum values in xmm1.

VEX.256.66.0F38 38 /r
VPMINSB ymm1, ymm2, ymm3/m256

B V/V AVX2 Compare packed signed byte integers in ymm2 and 
ymm3/m256 and store packed minimum values in 
ymm1.

VEX.256.66.0F EA /r
VPMINSW ymm1, ymm2, ymm3/m256

B V/V AVX2 Compare packed signed word integers in 
ymm3/m256 and ymm2 and return packed 
minimum values in ymm1.

EVEX.128.66.0F38.WIG 38 /r
VPMINSB xmm1{k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare packed signed byte integers in xmm2 and 
xmm3/m128 and store packed minimum values in 
xmm1 under writemask k1.

EVEX.256.66.0F38.WIG 38 /r
VPMINSB ymm1{k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compare packed signed byte integers in ymm2 and 
ymm3/m256 and store packed minimum values in 
ymm1 under writemask k1.

EVEX.512.66.0F38.WIG 38 /r
VPMINSB zmm1{k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW OR 
AVX10.12

Compare packed signed byte integers in zmm2 and 
zmm3/m512 and store packed minimum values in 
zmm1 under writemask k1.

EVEX.128.66.0F.WIG EA /r
VPMINSW xmm1{k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compare packed signed word integers in xmm2 
and xmm3/m128 and store packed minimum 
values in xmm1 under writemask k1.

EVEX.256.66.0F.WIG EA /r
VPMINSW ymm1{k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compare packed signed word integers in ymm2 
and ymm3/m256 and store packed minimum 
values in ymm1 under writemask k1.

EVEX.512.66.0F.WIG EA /r
VPMINSW zmm1{k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW OR 
AVX10.12

Compare packed signed word integers in zmm2 and 
zmm3/m512 and store packed minimum values in 
zmm1 under writemask k1.
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Instruction Operand Encoding

Description

Performs a SIMD compare of the packed signed byte, word, or dword integers in the second source operand and 
the first source operand and returns the minimum value for each pair of integers to the destination operand. 
Legacy SSE version PMINSW: The source operand can be an MMX technology register or a 64-bit memory location. 
The destination operand can be an MMX technology register.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination 
register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination 
register are zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register; The second source operand is a 
ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operand is conditionally updated 
based on writemask k1.

Operation

PMINSW (64-bit Operands)
IF DEST[15:0] < SRC[15:0] THEN

DEST[15:0] := DEST[15:0];
ELSE

DEST[15:0] := SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] < SRC[63:48] THEN

DEST[63:48] := DEST[63:48];
ELSE

DEST[63:48] := SRC[63:48]; FI;

PMINSB (128-bit Legacy SSE Version)
IF DEST[7:0] < SRC[7:0] THEN

DEST[7:0] := DEST[7:0];
ELSE

DEST[15:0] := SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN

DEST[127:120] := DEST[127:120];
ELSE

DEST[127:120] := SRC[127:120]; FI;
DEST[MAXVL-1:128] (Unmodified)

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VPMINSB (VEX.128 Encoded Version)
IF SRC1[7:0] < SRC2[7:0] THEN

DEST[7:0] := SRC1[7:0];
ELSE

DEST[7:0] := SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] < SRC2[127:120] THEN

DEST[127:120] := SRC1[127:120];
ELSE

DEST[127:120] := SRC2[127:120]; FI;
DEST[MAXVL-1:128] := 0

VPMINSB (VEX.256 Encoded Version)
IF SRC1[7:0] < SRC2[7:0] THEN

DEST[7:0] := SRC1[7:0];
ELSE

DEST[15:0] := SRC2[7:0]; FI;
(* Repeat operation for 2nd through 31st bytes in source and destination operands *)
IF SRC1[255:248] < SRC2[255:248] THEN

DEST[255:248] := SRC1[255:248];
ELSE

DEST[255:248] := SRC2[255:248]; FI;
DEST[MAXVL-1:256] := 0

VPMINSB (EVEX Encoded Versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8
IF k1[j] OR *no writemask* THEN

IF SRC1[i+7:i] < SRC2[i+7:i] 
THEN DEST[i+7:i] := SRC1[i+7:i];
ELSE DEST[i+7:i] := SRC2[i+7:i]; 

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+7:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

PMINSW (128-bit Legacy SSE Version)
IF DEST[15:0] < SRC[15:0] THEN

DEST[15:0] := DEST[15:0];
ELSE

DEST[15:0] := SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC[127:112] THEN

DEST[127:112] := DEST[127:112];
ELSE

DEST[127:112] := SRC[127:112]; FI;
DEST[MAXVL-1:128] (Unmodified)
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VPMINSW (VEX.128 Encoded Version)
IF SRC1[15:0] < SRC2[15:0] THEN

DEST[15:0] := SRC1[15:0];
ELSE

DEST[15:0] := SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] < SRC2[127:112] THEN

DEST[127:112] := SRC1[127:112];
ELSE

DEST[127:112] := SRC2[127:112]; FI;
DEST[MAXVL-1:128] := 0

VPMINSW (VEX.256 Encoded Version)
IF SRC1[15:0] < SRC2[15:0] THEN

DEST[15:0] := SRC1[15:0];
ELSE

DEST[15:0] := SRC2[15:0]; FI;
(* Repeat operation for 2nd through 15th words in source and destination operands *)
IF SRC1[255:240] < SRC2[255:240] THEN

DEST[255:240] := SRC1[255:240];
ELSE

DEST[255:240] := SRC2[255:240]; FI;
DEST[MAXVL-1:256] := 0

VPMINSW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask* THEN

IF SRC1[i+15:i] < SRC2[i+15:i] 
THEN DEST[i+15:i] := SRC1[i+15:i];
ELSE DEST[i+15:i] := SRC2[i+15:i]; 

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPMINSB __m512i _mm512_min_epi8( __m512i a, __m512i b);
VPMINSB __m512i _mm512_mask_min_epi8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPMINSB __m512i _mm512_maskz_min_epi8( __mmask64 k, __m512i a, __m512i b);
VPMINSW __m512i _mm512_min_epi16( __m512i a, __m512i b);
VPMINSW __m512i _mm512_mask_min_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMINSW __m512i _mm512_maskz_min_epi16( __mmask32 k, __m512i a, __m512i b);
VPMINSB __m256i _mm256_mask_min_epi8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPMINSB __m256i _mm256_maskz_min_epi8( __mmask32 k, __m256i a, __m256i b);
VPMINSW __m256i _mm256_mask_min_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMINSW __m256i _mm256_maskz_min_epi16( __mmask16 k, __m256i a, __m256i b);
VPMINSB __m128i _mm_mask_min_epi8(__m128i s, __mmask16 k, __m128i a, __m128i b);
VPMINSB __m128i _mm_maskz_min_epi8( __mmask16 k, __m128i a, __m128i b);
VPMINSW __m128i _mm_mask_min_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMINSW __m128i _mm_maskz_min_epi16( __mmask8 k, __m128i a, __m128i b);
(V)PMINSB __m128i _mm_min_epi8 ( __m128i a, __m128i b);
(V)PMINSW __m128i _mm_min_epi16 ( __m128i a, __m128i b)
VPMINSB __m256i _mm256_min_epi8 ( __m256i a, __m256i b);
VPMINSW __m256i _mm256_min_epi16 ( __m256i a, __m256i b)
PMINSW__m64 _mm_min_pi16 (__m64 a, __m64 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
Additionally:
#MF (64-bit operations only) If there is a pending x87 FPU exception.
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PMINSD/PMINSQ—Minimum of Packed Signed Integers

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed signed dword or qword integers in the second source operand and the first 
source operand and returns the minimum value for each pair of integers to the destination operand. 
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination 
register remain unchanged.

Opcode/
Instruction

Op/E
n

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 38 39 /r
PMINSD xmm1, xmm2/m128

A V/V SSE4_1 Compare packed signed dword integers in xmm1 
and xmm2/m128 and store packed minimum values 
in xmm1.

VEX.128.66.0F38.WIG 39 /r
VPMINSD xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed signed dword integers in xmm2 
and xmm3/m128 and store packed minimum values 
in xmm1.

VEX.256.66.0F38.WIG 39 /r
VPMINSD ymm1, ymm2, ymm3/m256

B V/V AVX2 Compare packed signed dword integers in ymm2 
and ymm3/m128 and store packed minimum values 
in ymm1.

EVEX.128.66.0F38.W0 39 /r
VPMINSD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare packed signed dword integers in xmm2 
and xmm3/m128 and store packed minimum values 
in xmm1 under writemask k1.

EVEX.256.66.0F38.W0 39 /r
VPMINSD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed signed dword integers in ymm2 
and ymm3/m256 and store packed minimum values 
in ymm1 under writemask k1.

EVEX.512.66.0F38.W0 39 /r
VPMINSD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

C V/V AVX512F 
OR AVX10.11

Compare packed signed dword integers in zmm2 
and zmm3/m512/m32bcst and store packed 
minimum values in zmm1 under writemask k1.

EVEX.128.66.0F38.W1 39 /r
VPMINSQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed signed qword integers in xmm2 
and xmm3/m128 and store packed minimum values 
in xmm1 under writemask k1.

EVEX.256.66.0F38.W1 39 /r
VPMINSQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed signed qword integers in ymm2 
and ymm3/m256 and store packed minimum values 
in ymm1 under writemask k1.

EVEX.512.66.0F38.W1 39 /r
VPMINSQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512F 
OR AVX10.11

Compare packed signed qword integers in zmm2 
and zmm3/m512/m64bcst and store packed 
minimum values in zmm1 under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination 
register are zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers. Bits (MAXVL-1:256) of the corresponding destination 
register are zeroed.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register; The second source operand is a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 
32/64-bit memory location. The destination operand is conditionally updated based on writemask k1.

Operation

PMINSD (128-bit Legacy SSE Version)
IF DEST[31:0] < SRC[31:0] THEN

DEST[31:0] := DEST[31:0];
ELSE

DEST[31:0] := SRC[31:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:96] < SRC[127:96] THEN

DEST[127:96] := DEST[127:96];
ELSE

DEST[127:96] := SRC[127:96]; FI;
DEST[MAXVL-1:128] (Unmodified)

VPMINSD (VEX.128 Encoded Version)
IF SRC1[31:0] < SRC2[31:0] THEN

DEST[31:0] := SRC1[31:0];
ELSE

DEST[31:0] := SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:96] < SRC2[127:96] THEN

DEST[127:96] := SRC1[127:96];
ELSE

DEST[127:96] := SRC2[127:96]; FI;
DEST[MAXVL-1:128] := 0

VPMINSD (VEX.256 Encoded Version)
IF SRC1[31:0] < SRC2[31:0] THEN

DEST[31:0] := SRC1[31:0];
ELSE

DEST[31:0] := SRC2[31:0]; FI;
(* Repeat operation for 2nd through 7th dwords in source and destination operands *)
IF SRC1[255:224] < SRC2[255:224] THEN

DEST[255:224] := SRC1[255:224];
ELSE

DEST[255:224] := SRC2[255:224]; FI;
DEST[MAXVL-1:256] := 0
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VPMINSD (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN 

IF SRC1[i+31:i] < SRC2[31:0] 
THEN DEST[i+31:i] := SRC1[i+31:i];
ELSE DEST[i+31:i] := SRC2[31:0]; 

FI;
ELSE 

IF SRC1[i+31:i] < SRC2[i+31:i] 
THEN DEST[i+31:i] := SRC1[i+31:i];
ELSE DEST[i+31:i] := SRC2[i+31:i]; 

FI;
FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

VPMINSQ (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN 

IF SRC1[i+63:i] < SRC2[63:0] 
THEN DEST[i+63:i] := SRC1[i+63:i];
ELSE DEST[i+63:i] := SRC2[63:0]; 

FI;
ELSE 

IF SRC1[i+63:i] < SRC2[i+63:i] 
THEN DEST[i+63:i] := SRC1[i+63:i];
ELSE DEST[i+63:i] := SRC2[i+63:i]; 

FI;
FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPMINSD __m512i _mm512_min_epi32( __m512i a, __m512i b);
VPMINSD __m512i _mm512_mask_min_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPMINSD __m512i _mm512_maskz_min_epi32( __mmask16 k, __m512i a, __m512i b);
VPMINSQ __m512i _mm512_min_epi64( __m512i a, __m512i b);
VPMINSQ __m512i _mm512_mask_min_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPMINSQ __m512i _mm512_maskz_min_epi64( __mmask8 k, __m512i a, __m512i b);
VPMINSD __m256i _mm256_mask_min_epi32(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMINSD __m256i _mm256_maskz_min_epi32( __mmask16 k, __m256i a, __m256i b);
VPMINSQ __m256i _mm256_mask_min_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPMINSQ __m256i _mm256_maskz_min_epi64( __mmask8 k, __m256i a, __m256i b);
VPMINSD __m128i _mm_mask_min_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMINSD __m128i _mm_maskz_min_epi32( __mmask8 k, __m128i a, __m128i b);
VPMINSQ __m128i _mm_mask_min_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMINSQ __m128i _mm_maskz_min_epu64( __mmask8 k, __m128i a, __m128i b);
(V)PMINSD __m128i _mm_min_epi32 ( __m128i a, __m128i b);
VPMINSD __m256i _mm256_min_epi32 (__m256i a, __m256i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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PMINUB/PMINUW—Minimum of Packed Unsigned Integers
Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F DA /r1

PMINUB mm1, mm2/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V SSE Compare unsigned byte integers in mm2/m64 and 
mm1 and returns minimum values.

66 0F DA /r
PMINUB xmm1, xmm2/m128

A V/V SSE2 Compare packed unsigned byte integers in xmm1 
and xmm2/m128 and store packed minimum values 
in xmm1.

66 0F 38 3A/r
PMINUW xmm1, xmm2/m128

A V/V SSE4_1 Compare packed unsigned word integers in 
xmm2/m128 and xmm1 and store packed minimum 
values in xmm1.

VEX.128.66.0F DA /r
VPMINUB xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed unsigned byte integers in xmm2 
and xmm3/m128 and store packed minimum values 
in xmm1.

VEX.128.66.0F38 3A/r
VPMINUW xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed unsigned word integers in 
xmm3/m128 and xmm2 and return packed 
minimum values in xmm1.

VEX.256.66.0F DA /r
VPMINUB ymm1, ymm2, ymm3/m256

B V/V AVX2 Compare packed unsigned byte integers in ymm2 
and ymm3/m256 and store packed minimum values 
in ymm1.

VEX.256.66.0F38 3A/r
VPMINUW ymm1, ymm2, ymm3/m256

B V/V AVX2 Compare packed unsigned word integers in 
ymm3/m256 and ymm2 and return packed 
minimum values in ymm1.

EVEX.128.66.0F DA /r
VPMINUB xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare packed unsigned byte integers in xmm2 
and xmm3/m128 and store packed minimum values 
in xmm1 under writemask k1.

EVEX.256.66.0F DA /r
VPMINUB ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compare packed unsigned byte integers in ymm2 
and ymm3/m256 and store packed minimum values 
in ymm1 under writemask k1.

EVEX.512.66.0F DA /r
VPMINUB zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Compare packed unsigned byte integers in zmm2 
and zmm3/m512 and store packed minimum values 
in zmm1 under writemask k1.

EVEX.128.66.0F38 3A/r
VPMINUW xmm1{k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compare packed unsigned word integers in 
xmm3/m128 and xmm2 and return packed 
minimum values in xmm1 under writemask k1.

EVEX.256.66.0F38 3A/r
VPMINUW ymm1{k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Compare packed unsigned word integers in 
ymm3/m256 and ymm2 and return packed 
minimum values in ymm1 under writemask k1.

EVEX.512.66.0F38 3A/r
VPMINUW zmm1{k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Compare packed unsigned word integers in 
zmm3/m512 and zmm2 and return packed 
minimum values in zmm1 under writemask k1.
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Instruction Operand Encoding

Description

Performs a SIMD compare of the packed unsigned byte or word integers in the second source operand and the first 
source operand and returns the minimum value for each pair of integers to the destination operand. 
Legacy SSE version PMINUB: The source operand can be an MMX technology register or a 64-bit memory location. 
The destination operand can be an MMX technology register.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination 
register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination 
register are zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register; The second source operand is a 
ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operand is conditionally updated 
based on writemask k1.

Operation

PMINUB (64-bit Operands)
IF DEST[7:0] < SRC[17:0] THEN

DEST[7:0] := DEST[7:0];
ELSE

DEST[7:0] := SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] < SRC[63:56] THEN

DEST[63:56] := DEST[63:56];
ELSE

DEST[63:56] := SRC[63:56]; FI;

PMINUB (128-bit Operands)
IF DEST[7:0] < SRC[7:0] THEN

DEST[7:0] := DEST[7:0];
ELSE

DEST[15:0] := SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN

DEST[127:120] := DEST[127:120];
ELSE

DEST[127:120] := SRC[127:120]; FI;
DEST[MAXVL-1:128] (Unmodified)

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
PMINUB/PMINUW—Minimum of Packed Unsigned Integers Vol. 2B 4-340



VPMINUB (VEX.128 Encoded Version)
IF SRC1[7:0] < SRC2[7:0] THEN

DEST[7:0] := SRC1[7:0];
ELSE

DEST[7:0] := SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] < SRC2[127:120] THEN

DEST[127:120] := SRC1[127:120];
ELSE

DEST[127:120] := SRC2[127:120]; FI;
DEST[MAXVL-1:128] := 0

VPMINUB (VEX.256 Encoded Version)
IF SRC1[7:0] < SRC2[7:0] THEN

DEST[7:0] := SRC1[7:0];
ELSE

DEST[15:0] := SRC2[7:0]; FI;
(* Repeat operation for 2nd through 31st bytes in source and destination operands *)
IF SRC1[255:248] < SRC2[255:248] THEN

DEST[255:248] := SRC1[255:248];
ELSE

DEST[255:248] := SRC2[255:248]; FI;
DEST[MAXVL-1:256] := 0

VPMINUB (EVEX Encoded Versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8
IF k1[j] OR *no writemask* THEN

IF SRC1[i+7:i] < SRC2[i+7:i] 
THEN DEST[i+7:i] := SRC1[i+7:i];
ELSE DEST[i+7:i] := SRC2[i+7:i]; 

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+7:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

PMINUW (128-bit Operands)
IF DEST[15:0] < SRC[15:0] THEN

DEST[15:0] := DEST[15:0];
ELSE

DEST[15:0] := SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC[127:112] THEN

DEST[127:112] := DEST[127:112];
ELSE

DEST[127:112] := SRC[127:112]; FI;
DEST[MAXVL-1:128] (Unmodified)
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VPMINUW (VEX.128 Encoded Version)
IF SRC1[15:0] < SRC2[15:0] THEN

DEST[15:0] := SRC1[15:0];
ELSE

DEST[15:0] := SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] < SRC2[127:112] THEN

DEST[127:112] := SRC1[127:112];
ELSE

DEST[127:112] := SRC2[127:112]; FI;
DEST[MAXVL-1:128] := 0

VPMINUW (VEX.256 Encoded Version)
IF SRC1[15:0] < SRC2[15:0] THEN

DEST[15:0] := SRC1[15:0];
ELSE

DEST[15:0] := SRC2[15:0]; FI;
(* Repeat operation for 2nd through 15th words in source and destination operands *)
IF SRC1[255:240] < SRC2[255:240] THEN

DEST[255:240] := SRC1[255:240];
ELSE

DEST[255:240] := SRC2[255:240]; FI;
DEST[MAXVL-1:256] := 0

VPMINUW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask* THEN

IF SRC1[i+15:i] < SRC2[i+15:i] 
THEN DEST[i+15:i] := SRC1[i+15:i];
ELSE DEST[i+15:i] := SRC2[i+15:i]; 

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPMINUB __m512i _mm512_min_epu8( __m512i a, __m512i b);
VPMINUB __m512i _mm512_mask_min_epu8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPMINUB __m512i _mm512_maskz_min_epu8( __mmask64 k, __m512i a, __m512i b);
VPMINUW __m512i _mm512_min_epu16( __m512i a, __m512i b);
VPMINUW __m512i _mm512_mask_min_epu16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMINUW __m512i _mm512_maskz_min_epu16( __mmask32 k, __m512i a, __m512i b);
VPMINUB __m256i _mm256_mask_min_epu8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPMINUB __m256i _mm256_maskz_min_epu8( __mmask32 k, __m256i a, __m256i b);
VPMINUW __m256i _mm256_mask_min_epu16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMINUW __m256i _mm256_maskz_min_epu16( __mmask16 k, __m256i a, __m256i b);
VPMINUB __m128i _mm_mask_min_epu8(__m128i s, __mmask16 k, __m128i a, __m128i b);
VPMINUB __m128i _mm_maskz_min_epu8( __mmask16 k, __m128i a, __m128i b);
VPMINUW __m128i _mm_mask_min_epu16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMINUW __m128i _mm_maskz_min_epu16( __mmask8 k, __m128i a, __m128i b);
(V)PMINUB __m128i _mm_min_epu8 ( __m128i a, __m128i b)
(V)PMINUW __m128i _mm_min_epu16 ( __m128i a, __m128i b);
VPMINUB __m256i _mm256_min_epu8 ( __m256i a, __m256i b)
VPMINUW __m256i _mm256_min_epu16 ( __m256i a, __m256i b);
PMINUB __m64 _m_min_pu8 (__m64 a, __m64 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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PMINUD/PMINUQ—Minimum of Packed Unsigned Integers

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed unsigned dword/qword integers in the second source operand and the first 
source operand and returns the minimum value for each pair of integers to the destination operand. 
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination 
register remain unchanged.

Opcode/
Instruction

Op/E
n

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 38 3B /r
PMINUD xmm1, xmm2/m128

A V/V SSE4_1 Compare packed unsigned dword integers in xmm1 
and xmm2/m128 and store packed minimum values in 
xmm1.

VEX.128.66.0F38.WIG 3B /r
VPMINUD xmm1, xmm2, 
xmm3/m128

B V/V AVX Compare packed unsigned dword integers in xmm2 
and xmm3/m128 and store packed minimum values in 
xmm1.

VEX.256.66.0F38.WIG 3B /r
VPMINUD ymm1, ymm2, 
ymm3/m256

B V/V AVX2 Compare packed unsigned dword integers in ymm2 
and ymm3/m256 and store packed minimum values in 
ymm1.

EVEX.128.66.0F38.W0 3B /r
VPMINUD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare packed unsigned dword integers in xmm2 
and xmm3/m128/m32bcst and store packed minimum 
values in xmm1 under writemask k1.

EVEX.256.66.0F38.W0 3B /r
VPMINUD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed unsigned dword integers in ymm2 
and ymm3/m256/m32bcst and store packed minimum 
values in ymm1 under writemask k1.

EVEX.512.66.0F38.W0 3B /r
VPMINUD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

C V/V AVX512F 
OR AVX10.11

Compare packed unsigned dword integers in zmm2 
and zmm3/m512/m32bcst and store packed minimum 
values in zmm1 under writemask k1.

EVEX.128.66.0F38.W1 3B /r
VPMINUQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed unsigned qword integers in xmm2 
and xmm3/m128/m64bcst and store packed minimum 
values in xmm1 under writemask k1.

EVEX.256.66.0F38.W1 3B /r
VPMINUQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed unsigned qword integers in ymm2 
and ymm3/m256/m64bcst and store packed minimum 
values in ymm1 under writemask k1.

EVEX.512.66.0F38.W1 3B /r
VPMINUQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512F 
OR AVX10.11

Compare packed unsigned qword integers in zmm2 
and zmm3/m512/m64bcst and store packed minimum 
values in zmm1 under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination 
register are zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers. Bits (MAXVL-1:256) of the corresponding destination 
register are zeroed.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register; The second source operand is a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 
32/64-bit memory location. The destination operand is conditionally updated based on writemask k1.

Operation

PMINUD (128-bit Legacy SSE Version)
PMINUD instruction for 128-bit operands:

IF DEST[31:0] < SRC[31:0] THEN
DEST[31:0] := DEST[31:0];

ELSE
DEST[31:0] := SRC[31:0]; FI;

(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:96] < SRC[127:96] THEN

DEST[127:96] := DEST[127:96];
ELSE

DEST[127:96] := SRC[127:96]; FI;
DEST[MAXVL-1:128] (Unmodified)

VPMINUD (VEX.128 Encoded Version)
VPMINUD instruction for 128-bit operands:

IF SRC1[31:0] < SRC2[31:0] THEN
DEST[31:0] := SRC1[31:0];

ELSE
DEST[31:0] := SRC2[31:0]; FI;

(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:96] < SRC2[127:96] THEN

DEST[127:96] := SRC1[127:96];
ELSE

DEST[127:96] := SRC2[127:96]; FI;
DEST[MAXVL-1:128] := 0

VPMINUD (VEX.256 Encoded Version)
VPMINUD instruction for 128-bit operands:

IF SRC1[31:0] < SRC2[31:0] THEN
DEST[31:0] := SRC1[31:0];

ELSE
DEST[31:0] := SRC2[31:0]; FI;

(* Repeat operation for 2nd through 7th dwords in source and destination operands *)
IF SRC1[255:224] < SRC2[255:224] THEN

DEST[255:224] := SRC1[255:224];
ELSE

DEST[255:224] := SRC2[255:224]; FI;
DEST[MAXVL-1:256] := 0
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VPMINUD (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN 

IF SRC1[i+31:i] < SRC2[31:0] 
THEN DEST[i+31:i] := SRC1[i+31:i];
ELSE DEST[i+31:i] := SRC2[31:0]; 

FI;
ELSE 

IF SRC1[i+31:i] < SRC2[i+31:i] 
THEN DEST[i+31:i] := SRC1[i+31:i];
ELSE DEST[i+31:i] := SRC2[i+31:i]; 

FI;
FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

VPMINUQ (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN 

IF SRC1[i+63:i] < SRC2[63:0] 
THEN DEST[i+63:i] := SRC1[i+63:i];
ELSE DEST[i+63:i] := SRC2[63:0]; 

FI;
ELSE 

IF SRC1[i+63:i] < SRC2[i+63:i] 
THEN DEST[i+63:i] := SRC1[i+63:i];
ELSE DEST[i+63:i] := SRC2[i+63:i]; 

FI;
FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
PMINUD/PMINUQ—Minimum of Packed Unsigned Integers Vol. 2B 4-346



Intel C/C++ Compiler Intrinsic Equivalent

VPMINUD __m512i _mm512_min_epu32( __m512i a, __m512i b);
VPMINUD __m512i _mm512_mask_min_epu32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPMINUD __m512i _mm512_maskz_min_epu32( __mmask16 k, __m512i a, __m512i b);
VPMINUQ __m512i _mm512_min_epu64( __m512i a, __m512i b);
VPMINUQ __m512i _mm512_mask_min_epu64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPMINUQ __m512i _mm512_maskz_min_epu64( __mmask8 k, __m512i a, __m512i b);
VPMINUD __m256i _mm256_mask_min_epu32(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMINUD __m256i _mm256_maskz_min_epu32( __mmask16 k, __m256i a, __m256i b);
VPMINUQ __m256i _mm256_mask_min_epu64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPMINUQ __m256i _mm256_maskz_min_epu64( __mmask8 k, __m256i a, __m256i b);
VPMINUD __m128i _mm_mask_min_epu32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMINUD __m128i _mm_maskz_min_epu32( __mmask8 k, __m128i a, __m128i b);
VPMINUQ __m128i _mm_mask_min_epu64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMINUQ __m128i _mm_maskz_min_epu64( __mmask8 k, __m128i a, __m128i b);
(V)PMINUD __m128i _mm_min_epu32 ( __m128i a, __m128i b);
VPMINUD __m256i _mm256_min_epu32 ( __m256i a, __m256i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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PMOVMSKB—Move Byte Mask

Instruction Operand Encoding

Description

Creates a mask made up of the most significant bit of each byte of the source operand (second operand) and stores 
the result in the low byte or word of the destination operand (first operand).
The byte mask is 8 bits for 64-bit source operand, 16 bits for 128-bit source operand and 32 bits for 256-bit source 
operand. The destination operand is a general-purpose register. 

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when used with a REX.R 
prefix. The default operand size is 64-bit in 64-bit mode.
Legacy SSE version: The source operand is an MMX technology register.
128-bit Legacy SSE version: The source operand is an XMM register.

VEX.128 encoded version: The source operand is an XMM register.
VEX.256 encoded version: The source operand is a YMM register.
Note: VEX.vvvv is reserved and must be 1111b. 

Operation

PMOVMSKB (With 64-bit Source Operand and r32)
r32[0] := SRC[7];
r32[1] := SRC[15];
(* Repeat operation for bytes 2 through 6 *)
r32[7] := SRC[63]; 
r32[31:8] := ZERO_FILL;

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F D7 /r1

PMOVMSKB reg, mm

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

RM V/V SSE Move a byte mask of mm to reg. The upper 
bits of r32 or r64 are zeroed

66 0F D7 /r

PMOVMSKB reg, xmm

RM V/V SSE2 Move a byte mask of xmm to reg. The upper 
bits of r32 or r64 are zeroed

VEX.128.66.0F.WIG D7 /r

VPMOVMSKB reg, xmm1

RM V/V AVX Move a byte mask of xmm1 to reg. The upper 
bits of r32 or r64 are filled with zeros.

VEX.256.66.0F.WIG D7 /r

VPMOVMSKB reg, ymm1

RM V/V AVX2 Move a 32-bit mask of ymm1 to reg. The 
upper bits of r64 are filled with zeros.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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(V)PMOVMSKB (With 128-bit Source Operand and r32)
r32[0] := SRC[7];
r32[1] := SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r32[15] := SRC[127]; 
r32[31:16] := ZERO_FILL;

VPMOVMSKB (With 256-bit Source Operand and r32)
r32[0] := SRC[7];
r32[1] := SRC[15];
(* Repeat operation for bytes 3rd through 31*)
r32[31] := SRC[255];

PMOVMSKB (With 64-bit Source Operand and r64)
r64[0] := SRC[7];
r64[1] := SRC[15];
(* Repeat operation for bytes 2 through 6 *)
r64[7] := SRC[63]; 
r64[63:8] := ZERO_FILL;

(V)PMOVMSKB (With 128-bit Source Operand and r64)
r64[0] := SRC[7];
r64[1] := SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r64[15] := SRC[127]; 
r64[63:16] := ZERO_FILL;

VPMOVMSKB (With 256-bit Source Operand and r64)
r64[0] := SRC[7];
r64[1] := SRC[15];
(* Repeat operation for bytes 2 through 31*)
r64[31] := SRC[255];
r64[63:32] := ZERO_FILL;

Intel C/C++ Compiler Intrinsic Equivalent

PMOVMSKB int _mm_movemask_pi8(__m64 a)
(V)PMOVMSKB int _mm_movemask_epi8 ( __m128i a)
VPMOVMSKB int _mm256_movemask_epi8 ( __m256i a)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Table 2-24, “Type 7 Class Exception Conditions,” additionally:
#UD If VEX.vvvv ≠ 1111B.
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PMOVSX—Packed Move With Sign Extend 
Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0f 38 20 /r
PMOVSXBW xmm1, xmm2/m64

A V/V SSE4_1 Sign extend 8 packed 8-bit integers in the low 8 bytes 
of xmm2/m64 to 8 packed 16-bit integers in xmm1.

66 0f 38 21 /r
PMOVSXBD xmm1, xmm2/m32

A V/V SSE4_1 Sign extend 4 packed 8-bit integers in the low 4 bytes 
of xmm2/m32 to 4 packed 32-bit integers in xmm1.

66 0f 38 22 /r
PMOVSXBQ xmm1, xmm2/m16

A V/V SSE4_1 Sign extend 2 packed 8-bit integers in the low 2 bytes 
of xmm2/m16 to 2 packed 64-bit integers in xmm1.

66 0f 38 23/r
PMOVSXWD xmm1, xmm2/m64

A V/V SSE4_1 Sign extend 4 packed 16-bit integers in the low 8 
bytes of xmm2/m64 to 4 packed 32-bit integers in 
xmm1.

66 0f 38 24 /r
PMOVSXWQ xmm1, xmm2/m32

A V/V SSE4_1 Sign extend 2 packed 16-bit integers in the low 4 
bytes of xmm2/m32 to 2 packed 64-bit integers in 
xmm1.

66 0f 38 25 /r
PMOVSXDQ xmm1, xmm2/m64

A V/V SSE4_1 Sign extend 2 packed 32-bit integers in the low 8 
bytes of xmm2/m64 to 2 packed 64-bit integers in 
xmm1.

VEX.128.66.0F38.WIG 20 /r
VPMOVSXBW xmm1, xmm2/m64

A V/V AVX Sign extend 8 packed 8-bit integers in the low 8 bytes 
of xmm2/m64 to 8 packed 16-bit integers in xmm1.

VEX.128.66.0F38.WIG 21 /r
VPMOVSXBD xmm1, xmm2/m32

A V/V AVX Sign extend 4 packed 8-bit integers in the low 4 bytes 
of xmm2/m32 to 4 packed 32-bit integers in xmm1.

VEX.128.66.0F38.WIG 22 /r
VPMOVSXBQ xmm1, xmm2/m16

A V/V AVX Sign extend 2 packed 8-bit integers in the low 2 bytes 
of xmm2/m16 to 2 packed 64-bit integers in xmm1.

VEX.128.66.0F38.WIG 23 /r
VPMOVSXWD xmm1, xmm2/m64

A V/V AVX Sign extend 4 packed 16-bit integers in the low 8 
bytes of xmm2/m64 to 4 packed 32-bit integers in 
xmm1.

VEX.128.66.0F38.WIG 24 /r
VPMOVSXWQ xmm1, xmm2/m32

A V/V AVX Sign extend 2 packed 16-bit integers in the low 4 
bytes of xmm2/m32 to 2 packed 64-bit integers in 
xmm1.

VEX.128.66.0F38.WIG 25 /r
VPMOVSXDQ xmm1, xmm2/m64

A V/V AVX Sign extend 2 packed 32-bit integers in the low 8 
bytes of xmm2/m64 to 2 packed 64-bit integers in 
xmm1.

VEX.256.66.0F38.WIG 20 /r
VPMOVSXBW ymm1, xmm2/m128

A V/V AVX2 Sign extend 16 packed 8-bit integers in xmm2/m128 
to 16 packed 16-bit integers in ymm1.

VEX.256.66.0F38.WIG 21 /r
VPMOVSXBD ymm1, xmm2/m64

A V/V AVX2 Sign extend 8 packed 8-bit integers in the low 8 bytes 
of xmm2/m64 to 8 packed 32-bit integers in ymm1.

VEX.256.66.0F38.WIG 22 /r
VPMOVSXBQ ymm1, xmm2/m32

A V/V AVX2 Sign extend 4 packed 8-bit integers in the low 4 bytes 
of xmm2/m32 to 4 packed 64-bit integers in ymm1.

VEX.256.66.0F38.WIG 23 /r
VPMOVSXWD ymm1, xmm2/m128

A V/V AVX2 Sign extend 8 packed 16-bit integers in the low 16 
bytes of xmm2/m128 to 8 packed 32-bit integers in 
ymm1.

VEX.256.66.0F38.WIG 24 /r
VPMOVSXWQ ymm1, xmm2/m64

A V/V AVX2 Sign extend 4 packed 16-bit integers in the low 8 
bytes of xmm2/m64 to 4 packed 64-bit integers in 
ymm1.

VEX.256.66.0F38.WIG 25 /r
VPMOVSXDQ ymm1, xmm2/m128

A V/V AVX2 Sign extend 4 packed 32-bit integers in the low 16 
bytes of xmm2/m128 to 4 packed 64-bit integers in 
ymm1.
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EVEX.128.66.0F38.WIG 20 /r
VPMOVSXBW xmm1 {k1}{z}, 
xmm2/m64

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Sign extend 8 packed 8-bit integers in xmm2/m64 to 
8 packed 16-bit integers in zmm1.

EVEX.256.66.0F38.WIG 20 /r
VPMOVSXBW ymm1 {k1}{z}, 
xmm2/m128

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Sign extend 16 packed 8-bit integers in xmm2/m128 
to 16 packed 16-bit integers in ymm1.

EVEX.512.66.0F38.WIG 20 /r
VPMOVSXBW zmm1 {k1}{z}, 
ymm2/m256

B V/V AVX512BW 
OR AVX10.11

Sign extend 32 packed 8-bit integers in ymm2/m256 
to 32 packed 16-bit integers in zmm1.

EVEX.128.66.0F38.WIG 21 /r
VPMOVSXBD xmm1 {k1}{z}, 
xmm2/m32

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Sign extend 4 packed 8-bit integers in the low 4 bytes 
of xmm2/m32 to 4 packed 32-bit integers in xmm1 
subject to writemask k1.

EVEX.256.66.0F38.WIG 21 /r
VPMOVSXBD ymm1 {k1}{z}, 
xmm2/m64

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Sign extend 8 packed 8-bit integers in the low 8 bytes 
of xmm2/m64 to 8 packed 32-bit integers in ymm1 
subject to writemask k1.

EVEX.512.66.0F38.WIG 21 /r
VPMOVSXBD zmm1 {k1}{z}, 
xmm2/m128

C V/V AVX512F 
OR AVX10.11

Sign extend 16 packed 8-bit integers in the low 16 
bytes of xmm2/m128 to 16 packed 32-bit integers in 
zmm1 subject to writemask k1.

EVEX.128.66.0F38.WIG 22 /r
VPMOVSXBQ xmm1 {k1}{z}, 
xmm2/m16

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Sign extend 2 packed 8-bit integers in the low 2 bytes 
of xmm2/m16 to 2 packed 64-bit integers in xmm1 
subject to writemask k1.

EVEX.256.66.0F38.WIG 22 /r
VPMOVSXBQ ymm1 {k1}{z}, 
xmm2/m32

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Sign extend 4 packed 8-bit integers in the low 4 bytes 
of xmm2/m32 to 4 packed 64-bit integers in ymm1 
subject to writemask k1.

EVEX.512.66.0F38.WIG 22 /r
VPMOVSXBQ zmm1 {k1}{z}, 
xmm2/m64

D V/V AVX512F 
OR AVX10.11

Sign extend 8 packed 8-bit integers in the low 8 bytes 
of xmm2/m64 to 8 packed 64-bit integers in zmm1 
subject to writemask k1.

EVEX.128.66.0F38.WIG 23 /r
VPMOVSXWD xmm1 {k1}{z}, 
xmm2/m64

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Sign extend 4 packed 16-bit integers in the low 8 
bytes of ymm2/mem to 4 packed 32-bit integers in 
xmm1 subject to writemask k1.

EVEX.256.66.0F38.WIG 23 /r
VPMOVSXWD ymm1 {k1}{z}, 
xmm2/m128

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Sign extend 8 packed 16-bit integers in the low 16 
bytes of ymm2/m128 to 8 packed 32-bit integers in 
ymm1 subject to writemask k1.

EVEX.512.66.0F38.WIG 23 /r
VPMOVSXWD zmm1 {k1}{z}, 
ymm2/m256

B V/V AVX512F 
OR AVX10.11

Sign extend 16 packed 16-bit integers in the low 32 
bytes of ymm2/m256 to 16 packed 32-bit integers in 
zmm1 subject to writemask k1. 

EVEX.128.66.0F38.WIG 24 /r
VPMOVSXWQ xmm1 {k1}{z}, 
xmm2/m32

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Sign extend 2 packed 16-bit integers in the low 4 
bytes of xmm2/m32 to 2 packed 64-bit integers in 
xmm1 subject to writemask k1.

EVEX.256.66.0F38.WIG 24 /r
VPMOVSXWQ ymm1 {k1}{z}, 
xmm2/m64

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Sign extend 4 packed 16-bit integers in the low 8 
bytes of xmm2/m64 to 4 packed 64-bit integers in 
ymm1 subject to writemask k1.

EVEX.512.66.0F38.WIG 24 /r
VPMOVSXWQ zmm1 {k1}{z}, 
xmm2/m128

C V/V AVX512F 
OR AVX10.11

Sign extend 8 packed 16-bit integers in the low 16 
bytes of xmm2/m128 to 8 packed 64-bit integers in 
zmm1 subject to writemask k1.

EVEX.128.66.0F38.W0 25 /r
VPMOVSXDQ xmm1 {k1}{z}, 
xmm2/m64

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Sign extend 2 packed 32-bit integers in the low 8 
bytes of xmm2/m64 to 2 packed 64-bit integers in 
zmm1 using writemask k1.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description
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Instruction Operand Encoding

Description

Legacy and VEX encoded versions: Packed byte, word, or dword integers in the low bytes of the source operand 
(second operand) are sign extended to word, dword, or quadword integers and stored in packed signed bytes the 
destination operand.
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding destination register remain unchanged.
VEX.128 and EVEX.128 encoded versions: Bits (MAXVL-1:128) of the corresponding destination register are 
zeroed.
VEX.256 and EVEX.256 encoded versions: Bits (MAXVL-1:256) of the corresponding destination register are 
zeroed. 
EVEX encoded versions: Packed byte, word or dword integers starting from the low bytes of the source operand 
(second operand) are sign extended to word, dword or quadword integers and stored to the destination operand 
under the writemask. The destination register is XMM, YMM or ZMM Register.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

Operation

Packed_Sign_Extend_BYTE_to_WORD(DEST, SRC)
DEST[15:0] := SignExtend(SRC[7:0]);
DEST[31:16] := SignExtend(SRC[15:8]);
DEST[47:32] := SignExtend(SRC[23:16]);
DEST[63:48] := SignExtend(SRC[31:24]);
DEST[79:64] := SignExtend(SRC[39:32]);
DEST[95:80] := SignExtend(SRC[47:40]);
DEST[111:96] := SignExtend(SRC[55:48]);
DEST[127:112] := SignExtend(SRC[63:56]);

EVEX.256.66.0F38.W0 25 /r
VPMOVSXDQ ymm1 {k1}{z}, 
xmm2/m128

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Sign extend 4 packed 32-bit integers in the low 16 
bytes of xmm2/m128 to 4 packed 64-bit integers in 
zmm1 using writemask k1.

EVEX.512.66.0F38.W0 25 /r
VPMOVSXDQ zmm1 {k1}{z}, 
ymm2/m256

B V/V AVX512F 
OR AVX10.11

Sign extend 8 packed 32-bit integers in the low 32 
bytes of ymm2/m256 to 8 packed 64-bit integers in 
zmm1 using writemask k1. 

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Half Mem ModRM:reg (w) ModRM:r/m (r) N/A N/A

C Quarter Mem ModRM:reg (w) ModRM:r/m (r) N/A N/A

D Eighth Mem ModRM:reg (w) ModRM:r/m (r) N/A N/A

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description
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Packed_Sign_Extend_BYTE_to_DWORD(DEST, SRC)
DEST[31:0] := SignExtend(SRC[7:0]);
DEST[63:32] := SignExtend(SRC[15:8]);
DEST[95:64] := SignExtend(SRC[23:16]);
DEST[127:96] := SignExtend(SRC[31:24]);

Packed_Sign_Extend_BYTE_to_QWORD(DEST, SRC)
DEST[63:0] := SignExtend(SRC[7:0]);
DEST[127:64] := SignExtend(SRC[15:8]);

Packed_Sign_Extend_WORD_to_DWORD(DEST, SRC)
DEST[31:0] := SignExtend(SRC[15:0]);
DEST[63:32] := SignExtend(SRC[31:16]);
DEST[95:64] := SignExtend(SRC[47:32]);
DEST[127:96] := SignExtend(SRC[63:48]);

Packed_Sign_Extend_WORD_to_QWORD(DEST, SRC)
DEST[63:0] := SignExtend(SRC[15:0]);
DEST[127:64] := SignExtend(SRC[31:16]);

Packed_Sign_Extend_DWORD_to_QWORD(DEST, SRC)
DEST[63:0] := SignExtend(SRC[31:0]);
DEST[127:64] := SignExtend(SRC[63:32]);

VPMOVSXBW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
Packed_Sign_Extend_BYTE_to_WORD(TMP_DEST[127:0], SRC[63:0])
IF VL >= 256

Packed_Sign_Extend_BYTE_to_WORD(TMP_DEST[255:128], SRC[127:64])
FI;
IF VL >= 512

Packed_Sign_Extend_BYTE_to_WORD(TMP_DEST[383:256], SRC[191:128])
Packed_Sign_Extend_BYTE_to_WORD(TMP_DEST[511:384], SRC[255:192])

FI;
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TEMP_DEST[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VPMOVSXBD (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
Packed_Sign_Extend_BYTE_to_DWORD(TMP_DEST[127:0], SRC[31:0])
IF VL >= 256

Packed_Sign_Extend_BYTE_to_DWORD(TMP_DEST[255:128], SRC[63:32])
FI;
IF VL >= 512

Packed_Sign_Extend_BYTE_to_DWORD(TMP_DEST[383:256], SRC[95:64])
Packed_Sign_Extend_BYTE_to_DWORD(TMP_DEST[511:384], SRC[127:96])

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TEMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPMOVSXBQ (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
Packed_Sign_Extend_BYTE_to_QWORD(TMP_DEST[127:0], SRC[15:0])
IF VL >= 256

Packed_Sign_Extend_BYTE_to_QWORD(TMP_DEST[255:128], SRC[31:16])
FI;
IF VL >= 512

Packed_Sign_Extend_BYTE_to_QWORD(TMP_DEST[383:256], SRC[47:32])
Packed_Sign_Extend_BYTE_to_QWORD(TMP_DEST[511:384], SRC[63:48])

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TEMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VPMOVSXWD (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
Packed_Sign_Extend_WORD_to_DWORD(TMP_DEST[127:0], SRC[63:0])
IF VL >= 256

Packed_Sign_Extend_WORD_to_DWORD(TMP_DEST[255:128], SRC[127:64])
FI;
IF VL >= 512

Packed_Sign_Extend_WORD_to_DWORD(TMP_DEST[383:256], SRC[191:128])
Packed_Sign_Extend_WORD_to_DWORD(TMP_DEST[511:384], SRC[256:192])

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TEMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPMOVSXWQ (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
Packed_Sign_Extend_WORD_to_QWORD(TMP_DEST[127:0], SRC[31:0])
IF VL >= 256

Packed_Sign_Extend_WORD_to_QWORD(TMP_DEST[255:128], SRC[63:32])
FI;
IF VL >= 512

Packed_Sign_Extend_WORD_to_QWORD(TMP_DEST[383:256], SRC[95:64])
Packed_Sign_Extend_WORD_to_QWORD(TMP_DEST[511:384], SRC[127:96])

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TEMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VPMOVSXDQ (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
Packed_Sign_Extend_DWORD_to_QWORD(TEMP_DEST[127:0], SRC[63:0])
IF VL >= 256

Packed_Sign_Extend_DWORD_to_QWORD(TEMP_DEST[255:128], SRC[127:64])
FI;
IF VL >= 512

Packed_Sign_Extend_DWORD_to_QWORD(TEMP_DEST[383:256], SRC[191:128])
Packed_Sign_Extend_DWORD_to_QWORD(TEMP_DEST[511:384], SRC[255:192])

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TEMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPMOVSXBW (VEX.256 Encoded Version)
Packed_Sign_Extend_BYTE_to_WORD(DEST[127:0], SRC[63:0])
Packed_Sign_Extend_BYTE_to_WORD(DEST[255:128], SRC[127:64])
DEST[MAXVL-1:256] := 0

VPMOVSXBD (VEX.256 Encoded Version)
Packed_Sign_Extend_BYTE_to_DWORD(DEST[127:0], SRC[31:0])
Packed_Sign_Extend_BYTE_to_DWORD(DEST[255:128], SRC[63:32])
DEST[MAXVL-1:256] := 0

VPMOVSXBQ (VEX.256 Encoded Version)
Packed_Sign_Extend_BYTE_to_QWORD(DEST[127:0], SRC[15:0])
Packed_Sign_Extend_BYTE_to_QWORD(DEST[255:128], SRC[31:16])
DEST[MAXVL-1:256] := 0

VPMOVSXWD (VEX.256 Encoded Version)
Packed_Sign_Extend_WORD_to_DWORD(DEST[127:0], SRC[63:0])
Packed_Sign_Extend_WORD_to_DWORD(DEST[255:128], SRC[127:64])
DEST[MAXVL-1:256] := 0

VPMOVSXWQ (VEX.256 Encoded Version)
Packed_Sign_Extend_WORD_to_QWORD(DEST[127:0], SRC[31:0])
Packed_Sign_Extend_WORD_to_QWORD(DEST[255:128], SRC[63:32])
DEST[MAXVL-1:256] := 0

VPMOVSXDQ (VEX.256 Encoded Version)
Packed_Sign_Extend_DWORD_to_QWORD(DEST[127:0], SRC[63:0])
Packed_Sign_Extend_DWORD_to_QWORD(DEST[255:128], SRC[127:64])
DEST[MAXVL-1:256] := 0
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VPMOVSXBW (VEX.128 Encoded Version)
Packed_Sign_Extend_BYTE_to_WORDDEST[127:0], SRC[127:0]()
DEST[MAXVL-1:128] := 0

VPMOVSXBD (VEX.128 Encoded Version)
Packed_Sign_Extend_BYTE_to_DWORD(DEST[127:0], SRC[127:0])
DEST[MAXVL-1:128] := 0

VPMOVSXBQ (VEX.128 Encoded Version)
Packed_Sign_Extend_BYTE_to_QWORD(DEST[127:0], SRC[127:0])
DEST[MAXVL-1:128] := 0

VPMOVSXWD (VEX.128 Encoded Version)
Packed_Sign_Extend_WORD_to_DWORD(DEST[127:0], SRC[127:0])
DEST[MAXVL-1:128] := 0

VPMOVSXWQ (VEX.128 Encoded Version)
Packed_Sign_Extend_WORD_to_QWORD(DEST[127:0], SRC[127:0])
DEST[MAXVL-1:128] := 0

VPMOVSXDQ (VEX.128 Encoded Version)
Packed_Sign_Extend_DWORD_to_QWORD(DEST[127:0], SRC[127:0])
DEST[MAXVL-1:128] := 0

PMOVSXBW
Packed_Sign_Extend_BYTE_to_WORD(DEST[127:0], SRC[127:0])
DEST[MAXVL-1:128] (Unmodified)

PMOVSXBD
Packed_Sign_Extend_BYTE_to_DWORD(DEST[127:0], SRC[127:0])
DEST[MAXVL-1:128] (Unmodified)

PMOVSXBQ
Packed_Sign_Extend_BYTE_to_QWORD(DEST[127:0], SRC[127:0])
DEST[MAXVL-1:128] (Unmodified)

PMOVSXWD
Packed_Sign_Extend_WORD_to_DWORD(DEST[127:0], SRC[127:0])
DEST[MAXVL-1:128] (Unmodified)

PMOVSXWQ
Packed_Sign_Extend_WORD_to_QWORD(DEST[127:0], SRC[127:0])
DEST[MAXVL-1:128] (Unmodified)

PMOVSXDQ
Packed_Sign_Extend_DWORD_to_QWORD(DEST[127:0], SRC[127:0])
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VPMOVSXBW __m512i _mm512_cvtepi8_epi16(__m512i a);
VPMOVSXBW __m512i _mm512_mask_cvtepi8_epi16(__m512i a, __mmask32 k, __m512i b);
VPMOVSXBW __m512i _mm512_maskz_cvtepi8_epi16( __mmask32 k, __m512i b);
VPMOVSXBD __m512i _mm512_cvtepi8_epi32(__m512i a);
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VPMOVSXBD __m512i _mm512_mask_cvtepi8_epi32(__m512i a, __mmask16 k, __m512i b);
VPMOVSXBD __m512i _mm512_maskz_cvtepi8_epi32( __mmask16 k, __m512i b);
VPMOVSXBQ __m512i _mm512_cvtepi8_epi64(__m512i a);
VPMOVSXBQ __m512i _mm512_mask_cvtepi8_epi64(__m512i a, __mmask8 k, __m512i b);
VPMOVSXBQ __m512i _mm512_maskz_cvtepi8_epi64( __mmask8 k, __m512i a);
VPMOVSXDQ __m512i _mm512_cvtepi32_epi64(__m512i a);
VPMOVSXDQ __m512i _mm512_mask_cvtepi32_epi64(__m512i a, __mmask8 k, __m512i b);
VPMOVSXDQ __m512i _mm512_maskz_cvtepi32_epi64( __mmask8 k, __m512i a);
VPMOVSXWD __m512i _mm512_cvtepi16_epi32(__m512i a);
VPMOVSXWD __m512i _mm512_mask_cvtepi16_epi32(__m512i a, __mmask16 k, __m512i b);
VPMOVSXWD __m512i _mm512_maskz_cvtepi16_epi32(__mmask16 k, __m512i a);
VPMOVSXWQ __m512i _mm512_cvtepi16_epi64(__m512i a);
VPMOVSXWQ __m512i _mm512_mask_cvtepi16_epi64(__m512i a, __mmask8 k, __m512i b);
VPMOVSXWQ __m512i _mm512_maskz_cvtepi16_epi64( __mmask8 k, __m512i a);
VPMOVSXBW __m256i _mm256_cvtepi8_epi16(__m256i a);
VPMOVSXBW __m256i  _mm256_mask_cvtepi8_epi16(__m256i a, __mmask16 k, __m256i b);
VPMOVSXBW __m256i _mm256_maskz_cvtepi8_epi16( __mmask16 k, __m256i b);
VPMOVSXBD __m256i _mm256_cvtepi8_epi32(__m256i a);
VPMOVSXBD __m256i _mm256_mask_cvtepi8_epi32(__m256i a, __mmask8 k, __m256i b);
VPMOVSXBD __m256i _mm256_maskz_cvtepi8_epi32( __mmask8 k, __m256i b);
VPMOVSXBQ __m256i _mm256_cvtepi8_epi64(__m256i a);
VPMOVSXBQ __m256i _mm256_mask_cvtepi8_epi64(__m256i a, __mmask8 k, __m256i b);
VPMOVSXBQ __m256i _mm256_maskz_cvtepi8_epi64( __mmask8 k, __m256i a);
VPMOVSXDQ __m256i _mm256_cvtepi32_epi64(__m256i a);
VPMOVSXDQ __m256i _mm256_mask_cvtepi32_epi64(__m256i a, __mmask8 k, __m256i b);
VPMOVSXDQ __m256i _mm256_maskz_cvtepi32_epi64( __mmask8 k, __m256i a);
VPMOVSXWD __m256i _mm256_cvtepi16_epi32(__m256i a);
VPMOVSXWD __m256i _mm256_mask_cvtepi16_epi32(__m256i a, __mmask16 k, __m256i b);
VPMOVSXWD __m256i _mm256_maskz_cvtepi16_epi32(__mmask16 k, __m256i a);
VPMOVSXWQ __m256i _mm256_cvtepi16_epi64(__m256i a);
VPMOVSXWQ __m256i _mm256_mask_cvtepi16_epi64(__m256i a, __mmask8 k, __m256i b);
VPMOVSXWQ __m256i _mm256_maskz_cvtepi16_epi64( __mmask8 k, __m256i a);
VPMOVSXBW __m128i  _mm_mask_cvtepi8_epi16(__m128i a, __mmask8 k, __m128i b);
VPMOVSXBW __m128i _mm_maskz_cvtepi8_epi16( __mmask8 k, __m128i b);
VPMOVSXBD __m128i _mm_mask_cvtepi8_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVSXBD __m128i _mm_maskz_cvtepi8_epi32( __mmask8 k, __m128i b);
VPMOVSXBQ __m128i _mm_mask_cvtepi8_epi64(__m128i a, __mmask8 k, __m128i b);
VPMOVSXBQ __m128i _mm_maskz_cvtepi8_epi64( __mmask8 k, __m128i a);
VPMOVSXDQ __m128i _mm_mask_cvtepi32_epi64(__m128i a, __mmask8 k, __m128i b);
VPMOVSXDQ __m128i _mm_maskz_cvtepi32_epi64( __mmask8 k, __m128i a);
VPMOVSXWD __m128i _mm_mask_cvtepi16_epi32(__m128i a, __mmask16 k, __m128i b);
VPMOVSXWD __m128i _mm_maskz_cvtepi16_epi32(__mmask16 k, __m128i a);
VPMOVSXWQ __m128i _mm_mask_cvtepi16_epi64(__m128i a, __mmask8 k, __m128i b);
VPMOVSXWQ __m128i _mm_maskz_cvtepi16_epi64( __mmask8 k, __m128i a);
PMOVSXBW __m128i _mm_ cvtepi8_epi16 ( __m128i a);
PMOVSXBD __m128i _mm_ cvtepi8_epi32 ( __m128i a);
PMOVSXBQ __m128i _mm_ cvtepi8_epi64 ( __m128i a);
PMOVSXWD __m128i _mm_ cvtepi16_epi32 ( __m128i a);
PMOVSXWQ __m128i _mm_ cvtepi16_epi64 ( __m128i a);
PMOVSXDQ __m128i _mm_ cvtepi32_epi64 ( __m128i a);

SIMD Floating-Point Exceptions

None.
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Other Exceptions
Non-EVEX-encoded instruction, see Table 2-22, “Type 5 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-53, “Type E5 Class Exception Conditions.”
Additionally:
#UD If VEX.vvvv != 1111B, or EVEX.vvvv != 1111B.
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PMOVZX—Packed Move With Zero Extend 
Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0f 38 30 /r
PMOVZXBW xmm1, xmm2/m64

A V/V SSE4_1 Zero extend 8 packed 8-bit integers in the low 8 
bytes of xmm2/m64 to 8 packed 16-bit integers in 
xmm1.

66 0f 38 31 /r
PMOVZXBD xmm1, xmm2/m32

A V/V SSE4_1 Zero extend 4 packed 8-bit integers in the low 4 
bytes of xmm2/m32 to 4 packed 32-bit integers in 
xmm1.

66 0f 38 32 /r
PMOVZXBQ xmm1, xmm2/m16

A V/V SSE4_1 Zero extend 2 packed 8-bit integers in the low 2 
bytes of xmm2/m16 to 2 packed 64-bit integers in 
xmm1.

66 0f 38 33 /r
PMOVZXWD xmm1, xmm2/m64

A V/V SSE4_1 Zero extend 4 packed 16-bit integers in the low 8 
bytes of xmm2/m64 to 4 packed 32-bit integers in 
xmm1.

66 0f 38 34 /r
PMOVZXWQ xmm1, xmm2/m32

A V/V SSE4_1 Zero extend 2 packed 16-bit integers in the low 4 
bytes of xmm2/m32 to 2 packed 64-bit integers in 
xmm1.

66 0f 38 35 /r
PMOVZXDQ xmm1, xmm2/m64

A V/V SSE4_1 Zero extend 2 packed 32-bit integers in the low 8 
bytes of xmm2/m64 to 2 packed 64-bit integers in 
xmm1.

VEX.128.66.0F38.WIG 30 /r
VPMOVZXBW xmm1, xmm2/m64

A V/V AVX Zero extend 8 packed 8-bit integers in the low 8 
bytes of xmm2/m64 to 8 packed 16-bit integers in 
xmm1.

VEX.128.66.0F38.WIG 31 /r
VPMOVZXBD xmm1, xmm2/m32

A V/V AVX Zero extend 4 packed 8-bit integers in the low 4 
bytes of xmm2/m32 to 4 packed 32-bit integers in 
xmm1.

VEX.128.66.0F38.WIG 32 /r
VPMOVZXBQ xmm1, xmm2/m16

A V/V AVX Zero extend 2 packed 8-bit integers in the low 2 
bytes of xmm2/m16 to 2 packed 64-bit integers in 
xmm1.

VEX.128.66.0F38.WIG 33 /r
VPMOVZXWD xmm1, xmm2/m64

A V/V AVX Zero extend 4 packed 16-bit integers in the low 8 
bytes of xmm2/m64 to 4 packed 32-bit integers in 
xmm1.

VEX.128.66.0F38.WIG 34 /r
VPMOVZXWQ xmm1, xmm2/m32

A V/V AVX Zero extend 2 packed 16-bit integers in the low 4 
bytes of xmm2/m32 to 2 packed 64-bit integers in 
xmm1.

VEX.128.66.0F 38.WIG 35 /r
VPMOVZXDQ xmm1, xmm2/m64

A V/V AVX Zero extend 2 packed 32-bit integers in the low 8 
bytes of xmm2/m64 to 2 packed 64-bit integers in 
xmm1.

VEX.256.66.0F38.WIG 30 /r
VPMOVZXBW ymm1, xmm2/m128

A V/V AVX2 Zero extend 16 packed 8-bit integers in 
xmm2/m128 to 16 packed 16-bit integers in ymm1.

VEX.256.66.0F38.WIG 31 /r
VPMOVZXBD ymm1, xmm2/m64

A V/V AVX2 Zero extend 8 packed 8-bit integers in the low 8 
bytes of xmm2/m64 to 8 packed 32-bit integers in 
ymm1.

VEX.256.66.0F38.WIG 32 /r
VPMOVZXBQ ymm1, xmm2/m32

A V/V AVX2 Zero extend 4 packed 8-bit integers in the low 4 
bytes of xmm2/m32 to 4 packed 64-bit integers in 
ymm1.

VEX.256.66.0F38.WIG 33 /r
VPMOVZXWD ymm1, xmm2/m128

A V/V AVX2 Zero extend 8 packed 16-bit integers xmm2/m128 
to 8 packed 32-bit integers in ymm1.
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VEX.256.66.0F38.WIG 34 /r
VPMOVZXWQ ymm1, xmm2/m64

A V/V AVX2 Zero extend 4 packed 16-bit integers in the low 8 
bytes of xmm2/m64 to 4 packed 64-bit integers in 
xmm1.

VEX.256.66.0F38.WIG 35 /r
VPMOVZXDQ ymm1, xmm2/m128

A V/V AVX2 Zero extend 4 packed 32-bit integers in 
xmm2/m128 to 4 packed 64-bit integers in ymm1.

EVEX.128.66.0F38 30.WIG /r
VPMOVZXBW xmm1 {k1}{z}, 
xmm2/m64

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Zero extend 8 packed 8-bit integers in the low 8 
bytes of xmm2/m64 to 8 packed 16-bit integers in 
xmm1.

EVEX.256.66.0F38.WIG 30 /r
VPMOVZXBW ymm1 {k1}{z}, 
xmm2/m128

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Zero extend 16 packed 8-bit integers in 
xmm2/m128 to 16 packed 16-bit integers in ymm1.

EVEX.512.66.0F38.WIG 30 /r
VPMOVZXBW zmm1 {k1}{z}, 
ymm2/m256

B V/V AVX512BW 
OR AVX10.11

Zero extend 32 packed 8-bit integers in 
ymm2/m256 to 32 packed 16-bit integers in zmm1.

EVEX.128.66.0F38.WIG 31 /r
VPMOVZXBD xmm1 {k1}{z}, 
xmm2/m32

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Zero extend 4 packed 8-bit integers in the low 4 
bytes of xmm2/m32 to 4 packed 32-bit integers in 
xmm1 subject to writemask k1.

EVEX.256.66.0F38.WIG 31 /r
VPMOVZXBD ymm1 {k1}{z}, 
xmm2/m64

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Zero extend 8 packed 8-bit integers in the low 8 
bytes of xmm2/m64 to 8 packed 32-bit integers in 
ymm1 subject to writemask k1.

EVEX.512.66.0F38.WIG 31 /r
VPMOVZXBD zmm1 {k1}{z}, 
xmm2/m128

C V/V AVX512F 
OR AVX10.11

Zero extend 16 packed 8-bit integers in 
xmm2/m128 to 16 packed 32-bit integers in zmm1 
subject to writemask k1.

EVEX.128.66.0F38.WIG 32 /r
VPMOVZXBQ xmm1 {k1}{z}, 
xmm2/m16

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Zero extend 2 packed 8-bit integers in the low 2 
bytes of xmm2/m16 to 2 packed 64-bit integers in 
xmm1 subject to writemask k1.

EVEX.256.66.0F38.WIG 32 /r
VPMOVZXBQ ymm1 {k1}{z}, 
xmm2/m32

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Zero extend 4 packed 8-bit integers in the low 4 
bytes of xmm2/m32 to 4 packed 64-bit integers in 
ymm1 subject to writemask k1.

EVEX.512.66.0F38.WIG 32 /r
VPMOVZXBQ zmm1 {k1}{z}, 
xmm2/m64

D V/V AVX512F 
OR AVX10.11

Zero extend 8 packed 8-bit integers in the low 8 
bytes of xmm2/m64 to 8 packed 64-bit integers in 
zmm1 subject to writemask k1.

EVEX.128.66.0F38.WIG 33 /r
VPMOVZXWD xmm1 {k1}{z}, 
xmm2/m64

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Zero extend 4 packed 16-bit integers in the low 8 
bytes of xmm2/m64 to 4 packed 32-bit integers in 
xmm1 subject to writemask k1.

EVEX.256.66.0F38.WIG 33 /r
VPMOVZXWD ymm1 {k1}{z}, 
xmm2/m128

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Zero extend 8 packed 16-bit integers in 
xmm2/m128 to 8 packed 32-bit integers in zmm1 
subject to writemask k1.

EVEX.512.66.0F38.WIG 33 /r
VPMOVZXWD zmm1 {k1}{z}, 
ymm2/m256

B V/V AVX512F 
OR AVX10.11

Zero extend 16 packed 16-bit integers in 
ymm2/m256 to 16 packed 32-bit integers in zmm1 
subject to writemask k1.

EVEX.128.66.0F38.WIG 34 /r
VPMOVZXWQ xmm1 {k1}{z}, 
xmm2/m32

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Zero extend 2 packed 16-bit integers in the low 4 
bytes of xmm2/m32 to 2 packed 64-bit integers in 
xmm1 subject to writemask k1.

EVEX.256.66.0F38.WIG 34 /r
VPMOVZXWQ ymm1 {k1}{z}, 
xmm2/m64

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Zero extend 4 packed 16-bit integers in the low 8 
bytes of xmm2/m64 to 4 packed 64-bit integers in 
ymm1 subject to writemask k1.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description
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Instruction Operand Encoding

Description

Legacy, VEX, and EVEX encoded versions: Packed byte, word, or dword integers starting from the low bytes of the 
source operand (second operand) are zero extended to word, dword, or quadword integers and stored in packed 
signed bytes the destination operand.
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding destination register remain unchanged.
VEX.128 encoded version: Bits (MAXVL-1:128) of the corresponding destination register are zeroed.
VEX.256 encoded version: Bits (MAXVL-1:256) of the corresponding destination register are zeroed. 
EVEX encoded versions: Packed dword integers starting from the low bytes of the source operand (second 
operand) are zero extended to quadword integers and stored to the destination operand under the writemask.The 
destination register is XMM, YMM or ZMM Register.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

Operation

Packed_Zero_Extend_BYTE_to_WORD(DEST, SRC)
DEST[15:0] := ZeroExtend(SRC[7:0]);
DEST[31:16] := ZeroExtend(SRC[15:8]);
DEST[47:32] := ZeroExtend(SRC[23:16]);
DEST[63:48] := ZeroExtend(SRC[31:24]);
DEST[79:64] := ZeroExtend(SRC[39:32]);
DEST[95:80] := ZeroExtend(SRC[47:40]);
DEST[111:96] := ZeroExtend(SRC[55:48]);
DEST[127:112] := ZeroExtend(SRC[63:56]);

EVEX.512.66.0F38.WIG 34 /r
VPMOVZXWQ zmm1 {k1}{z}, 
xmm2/m128

C V/V AVX512F 
OR AVX10.11

Zero extend 8 packed 16-bit integers in 
xmm2/m128 to 8 packed 64-bit integers in zmm1 
subject to writemask k1.

EVEX.128.66.0F38.W0 35 /r
VPMOVZXDQ xmm1 {k1}{z}, 
xmm2/m64

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Zero extend 2 packed 32-bit integers in the low 8 
bytes of xmm2/m64 to 2 packed 64-bit integers in 
zmm1 using writemask k1.

EVEX.256.66.0F38.W0 35 /r
VPMOVZXDQ ymm1 {k1}{z}, 
xmm2/m128

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Zero extend 4 packed 32-bit integers in 
xmm2/m128 to 4 packed 64-bit integers in zmm1 
using writemask k1.

EVEX.512.66.0F38.W0 35 /r
VPMOVZXDQ zmm1 {k1}{z}, 
ymm2/m256

B V/V AVX512F 
OR AVX10.11

Zero extend 8 packed 32-bit integers in 
ymm2/m256 to 8 packed 64-bit integers in zmm1 
using writemask k1.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Half Mem ModRM:reg (w) ModRM:r/m (r) N/A N/A

C Quarter Mem ModRM:reg (w) ModRM:r/m (r) N/A N/A

D Eighth Mem ModRM:reg (w) ModRM:r/m (r) N/A N/A

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description
PMOVZX—Packed Move With Zero Extend Vol. 2B 4-362



Packed_Zero_Extend_BYTE_to_DWORD(DEST, SRC)
DEST[31:0] := ZeroExtend(SRC[7:0]);
DEST[63:32] := ZeroExtend(SRC[15:8]);
DEST[95:64] := ZeroExtend(SRC[23:16]);
DEST[127:96] := ZeroExtend(SRC[31:24]);

Packed_Zero_Extend_BYTE_to_QWORD(DEST, SRC)
DEST[63:0] := ZeroExtend(SRC[7:0]);
DEST[127:64] := ZeroExtend(SRC[15:8]);

Packed_Zero_Extend_WORD_to_DWORD(DEST, SRC)
DEST[31:0] := ZeroExtend(SRC[15:0]);
DEST[63:32] := ZeroExtend(SRC[31:16]);
DEST[95:64] := ZeroExtend(SRC[47:32]);
DEST[127:96] := ZeroExtend(SRC[63:48]);

Packed_Zero_Extend_WORD_to_QWORD(DEST, SRC)
DEST[63:0] := ZeroExtend(SRC[15:0]);
DEST[127:64] := ZeroExtend(SRC[31:16]);

Packed_Zero_Extend_DWORD_to_QWORD(DEST, SRC)
DEST[63:0] := ZeroExtend(SRC[31:0]);
DEST[127:64] := ZeroExtend(SRC[63:32]);

VPMOVZXBW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
Packed_Zero_Extend_BYTE_to_WORD(TMP_DEST[127:0], SRC[63:0])
IF VL >= 256

Packed_Zero_Extend_BYTE_to_WORD(TMP_DEST[255:128], SRC[127:64])
FI;
IF VL >= 512

Packed_Zero_Extend_BYTE_to_WORD(TMP_DEST[383:256], SRC[191:128])
Packed_Zero_Extend_BYTE_to_WORD(TMP_DEST[511:384], SRC[255:192])

FI;
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TEMP_DEST[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VPMOVZXBD (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
Packed_Zero_Extend_BYTE_to_DWORD(TMP_DEST[127:0], SRC[31:0])
IF VL >= 256

Packed_Zero_Extend_BYTE_to_DWORD(TMP_DEST[255:128], SRC[63:32])
FI;
IF VL >= 512

Packed_Zero_Extend_BYTE_to_DWORD(TMP_DEST[383:256], SRC[95:64])
Packed_Zero_Extend_BYTE_to_DWORD(TMP_DEST[511:384], SRC[127:96])

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TEMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPMOVZXBQ (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
Packed_Zero_Extend_BYTE_to_QWORD(TMP_DEST[127:0], SRC[15:0])
IF VL >= 256

Packed_Zero_Extend_BYTE_to_QWORD(TMP_DEST[255:128], SRC[31:16])
FI;
IF VL >= 512

Packed_Zero_Extend_BYTE_to_QWORD(TMP_DEST[383:256], SRC[47:32])
Packed_Zero_Extend_BYTE_to_QWORD(TMP_DEST[511:384], SRC[63:48])

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TEMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VPMOVZXWD (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
Packed_Zero_Extend_WORD_to_DWORD(TMP_DEST[127:0], SRC[63:0])
IF VL >= 256

Packed_Zero_Extend_WORD_to_DWORD(TMP_DEST[255:128], SRC[127:64])
FI;
IF VL >= 512

Packed_Zero_Extend_WORD_to_DWORD(TMP_DEST[383:256], SRC[191:128])
Packed_Zero_Extend_WORD_to_DWORD(TMP_DEST[511:384], SRC[256:192])

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TEMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPMOVZXWQ (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
Packed_Zero_Extend_WORD_to_QWORD(TMP_DEST[127:0], SRC[31:0])
IF VL >= 256

Packed_Zero_Extend_WORD_to_QWORD(TMP_DEST[255:128], SRC[63:32])
FI;
IF VL >= 512

Packed_Zero_Extend_WORD_to_QWORD(TMP_DEST[383:256], SRC[95:64])
Packed_Zero_Extend_WORD_to_QWORD(TMP_DEST[511:384], SRC[127:96])

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TEMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VPMOVZXDQ (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
Packed_Zero_Extend_DWORD_to_QWORD(TEMP_DEST[127:0], SRC[63:0])
IF VL >= 256

Packed_Zero_Extend_DWORD_to_QWORD(TEMP_DEST[255:128], SRC[127:64])
FI;
IF VL >= 512

Packed_Zero_Extend_DWORD_to_QWORD(TEMP_DEST[383:256], SRC[191:128])
Packed_Zero_Extend_DWORD_to_QWORD(TEMP_DEST[511:384], SRC[255:192])

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TEMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPMOVZXBW (VEX.256 Encoded Version)
Packed_Zero_Extend_BYTE_to_WORD(DEST[127:0], SRC[63:0])
Packed_Zero_Extend_BYTE_to_WORD(DEST[255:128], SRC[127:64])
DEST[MAXVL-1:256] := 0

VPMOVZXBD (VEX.256 Encoded Version)
Packed_Zero_Extend_BYTE_to_DWORD(DEST[127:0], SRC[31:0])
Packed_Zero_Extend_BYTE_to_DWORD(DEST[255:128], SRC[63:32])
DEST[MAXVL-1:256] := 0

VPMOVZXBQ (VEX.256 Encoded Version)
Packed_Zero_Extend_BYTE_to_QWORD(DEST[127:0], SRC[15:0])
Packed_Zero_Extend_BYTE_to_QWORD(DEST[255:128], SRC[31:16])
DEST[MAXVL-1:256] := 0

VPMOVZXWD (VEX.256 Encoded Version)
Packed_Zero_Extend_WORD_to_DWORD(DEST[127:0], SRC[63:0])
Packed_Zero_Extend_WORD_to_DWORD(DEST[255:128], SRC[127:64])
DEST[MAXVL-1:256] := 0

VPMOVZXWQ (VEX.256 Encoded Version)
Packed_Zero_Extend_WORD_to_QWORD(DEST[127:0], SRC[31:0])
Packed_Zero_Extend_WORD_to_QWORD(DEST[255:128], SRC[63:32])
DEST[MAXVL-1:256] := 0

VPMOVZXDQ (VEX.256 Encoded Version)
Packed_Zero_Extend_DWORD_to_QWORD(DEST[127:0], SRC[63:0])
Packed_Zero_Extend_DWORD_to_QWORD(DEST[255:128], SRC[127:64])
DEST[MAXVL-1:256] := 0
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VPMOVZXBW (VEX.128 Encoded Version)
Packed_Zero_Extend_BYTE_to_WORD()
DEST[MAXVL-1:128] := 0

VPMOVZXBD (VEX.128 Encoded Version)
Packed_Zero_Extend_BYTE_to_DWORD()
DEST[MAXVL-1:128] := 0

VPMOVZXBQ (VEX.128 Encoded Version)
Packed_Zero_Extend_BYTE_to_QWORD()
DEST[MAXVL-1:128] := 0

VPMOVZXWD (VEX.128 Encoded Version)
Packed_Zero_Extend_WORD_to_DWORD()
DEST[MAXVL-1:128] := 0

VPMOVZXWQ (VEX.128 Encoded Version)
Packed_Zero_Extend_WORD_to_QWORD()
DEST[MAXVL-1:128] := 0

VPMOVZXDQ (VEX.128 Encoded Version)
Packed_Zero_Extend_DWORD_to_QWORD()
DEST[MAXVL-1:128] := 0

PMOVZXBW
Packed_Zero_Extend_BYTE_to_WORD()
DEST[MAXVL-1:128] (Unmodified)

PMOVZXBD
Packed_Zero_Extend_BYTE_to_DWORD()
DEST[MAXVL-1:128] (Unmodified)

PMOVZXBQ
Packed_Zero_Extend_BYTE_to_QWORD()
DEST[MAXVL-1:128] (Unmodified)

PMOVZXWD
Packed_Zero_Extend_WORD_to_DWORD()
DEST[MAXVL-1:128] (Unmodified)

PMOVZXWQ
Packed_Zero_Extend_WORD_to_QWORD()
DEST[MAXVL-1:128] (Unmodified)

PMOVZXDQ
Packed_Zero_Extend_DWORD_to_QWORD()
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VPMOVZXBW __m512i _mm512_cvtepu8_epi16(__m256i a);
VPMOVZXBW __m512i _mm512_mask_cvtepu8_epi16(__m512i a, __mmask32 k, __m256i b);
VPMOVZXBW __m512i _mm512_maskz_cvtepu8_epi16( __mmask32 k, __m256i b);
VPMOVZXBD __m512i _mm512_cvtepu8_epi32(__m128i a);
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VPMOVZXBD __m512i _mm512_mask_cvtepu8_epi32(__m512i a, __mmask16 k, __m128i b);
VPMOVZXBD __m512i _mm512_maskz_cvtepu8_epi32( __mmask16 k, __m128i b);
VPMOVZXBQ __m512i _mm512_cvtepu8_epi64(__m128i a);
VPMOVZXBQ __m512i _mm512_mask_cvtepu8_epi64(__m512i a, __mmask8 k, __m128i b);
VPMOVZXBQ __m512i _mm512_maskz_cvtepu8_epi64( __mmask8 k, __m128i a);
VPMOVZXDQ __m512i _mm512_cvtepu32_epi64(__m256i a);
VPMOVZXDQ __m512i _mm512_mask_cvtepu32_epi64(__m512i a, __mmask8 k, __m256i b);
VPMOVZXDQ __m512i _mm512_maskz_cvtepu32_epi64( __mmask8 k, __m256i a);
VPMOVZXWD __m512i _mm512_cvtepu16_epi32(__m128i a);
VPMOVZXWD __m512i _mm512_mask_cvtepu16_epi32(__m512i a, __mmask16 k, __m128i b);
VPMOVZXWD __m512i _mm512_maskz_cvtepu16_epi32(__mmask16 k, __m128i a);
VPMOVZXWQ __m512i _mm512_cvtepu16_epi64(__m256i a);
VPMOVZXWQ __m512i _mm512_mask_cvtepu16_epi64(__m512i a, __mmask8 k, __m256i b);
VPMOVZXWQ __m512i _mm512_maskz_cvtepu16_epi64( __mmask8 k, __m256i a);
VPMOVZXBW __m256i _mm256_cvtepu8_epi16(__m256i a);
VPMOVZXBW __m256i  _mm256_mask_cvtepu8_epi16(__m256i a, __mmask16 k, __m128i b);
VPMOVZXBW __m256i _mm256_maskz_cvtepu8_epi16( __mmask16 k, __m128i b);
VPMOVZXBD __m256i _mm256_cvtepu8_epi32(__m128i a);
VPMOVZXBD __m256i _mm256_mask_cvtepu8_epi32(__m256i a, __mmask8 k, __m128i b);
VPMOVZXBD __m256i _mm256_maskz_cvtepu8_epi32( __mmask8 k, __m128i b);
VPMOVZXBQ __m256i _mm256_cvtepu8_epi64(__m128i a);
VPMOVZXBQ __m256i _mm256_mask_cvtepu8_epi64(__m256i a, __mmask8 k, __m128i b);
VPMOVZXBQ __m256i _mm256_maskz_cvtepu8_epi64( __mmask8 k, __m128i a);
VPMOVZXDQ __m256i _mm256_cvtepu32_epi64(__m128i a);
VPMOVZXDQ __m256i _mm256_mask_cvtepu32_epi64(__m256i a, __mmask8 k, __m128i b);
VPMOVZXDQ __m256i _mm256_maskz_cvtepu32_epi64( __mmask8 k, __m128i a);
VPMOVZXWD __m256i _mm256_cvtepu16_epi32(__m128i a);
VPMOVZXWD __m256i _mm256_mask_cvtepu16_epi32(__m256i a, __mmask16 k, __m128i b);
VPMOVZXWD __m256i _mm256_maskz_cvtepu16_epi32(__mmask16 k, __m128i a);
VPMOVZXWQ __m256i _mm256_cvtepu16_epi64(__m128i a);
VPMOVZXWQ __m256i _mm256_mask_cvtepu16_epi64(__m256i a, __mmask8 k, __m128i b);
VPMOVZXWQ __m256i _mm256_maskz_cvtepu16_epi64( __mmask8 k, __m128i a);
VPMOVZXBW __m128i  _mm_mask_cvtepu8_epi16(__m128i a, __mmask8 k, __m128i b);
VPMOVZXBW __m128i _mm_maskz_cvtepu8_epi16( __mmask8 k, __m128i b);
VPMOVZXBD __m128i _mm_mask_cvtepu8_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVZXBD __m128i _mm_maskz_cvtepu8_epi32( __mmask8 k, __m128i b);
VPMOVZXBQ __m128i _mm_mask_cvtepu8_epi64(__m128i a, __mmask8 k, __m128i b);
VPMOVZXBQ __m128i _mm_maskz_cvtepu8_epi64( __mmask8 k, __m128i a);
VPMOVZXDQ __m128i _mm_mask_cvtepu32_epi64(__m128i a, __mmask8 k, __m128i b);
VPMOVZXDQ __m128i _mm_maskz_cvtepu32_epi64( __mmask8 k, __m128i a);
VPMOVZXWD __m128i _mm_mask_cvtepu16_epi32(__m128i a, __mmask16 k, __m128i b);
VPMOVZXWD __m128i _mm_maskz_cvtepu16_epi32(__mmask8 k, __m128i a);
VPMOVZXWQ __m128i _mm_mask_cvtepu16_epi64(__m128i a, __mmask8 k, __m128i b);
VPMOVZXWQ __m128i _mm_maskz_cvtepu16_epi64( __mmask8 k, __m128i a);
PMOVZXBW __m128i _mm_ cvtepu8_epi16 ( __m128i a);
PMOVZXBD __m128i _mm_ cvtepu8_epi32 ( __m128i a);
PMOVZXBQ __m128i _mm_ cvtepu8_epi64 ( __m128i a);
PMOVZXWD __m128i _mm_ cvtepu16_epi32 ( __m128i a);
PMOVZXWQ __m128i _mm_ cvtepu16_epi64 ( __m128i a);
PMOVZXDQ __m128i _mm_ cvtepu32_epi64 ( __m128i a);

SIMD Floating-Point Exceptions

None.
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Other Exceptions
Non-EVEX-encoded instruction, see Table 2-22, “Type 5 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-53, “Type E5 Class Exception Conditions.”
Additionally:
#UD If VEX.vvvv != 1111B, or EVEX.vvvv != 1111B.
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PMULDQ—Multiply Packed Doubleword Integers

Instruction Operand Encoding

Description

Multiplies packed signed doubleword integers in the even-numbered (zero-based reference) elements of the first 
source operand with the packed signed doubleword integers in the corresponding elements of the second source 
operand and stores packed signed quadword results in the destination operand. 
128-bit Legacy SSE version: The input signed doubleword integers are taken from the even-numbered elements of 
the source operands, i.e., the first (low) and third doubleword element. For 128-bit memory operands, 128 bits are 
fetched from memory, but only the first and third doublewords are used in the computation. The first source 
operand and the destination XMM operand is the same. The second source operand can be an XMM register or 128-
bit memory location. Bits (MAXVL-1:128) of the corresponding destination register remain unchanged.
VEX.128 encoded version: The input signed doubleword integers are taken from the even-numbered elements of 
the source operands, i.e., the first (low) and third doubleword element. For 128-bit memory operands, 128 bits are 
fetched from memory, but only the first and third doublewords are used in the computation.The first source 
operand and the destination operand are XMM registers. The second source operand can be an XMM register or 
128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination register are zeroed.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 38 28 /r
PMULDQ xmm1, xmm2/m128

A V/V SSE4_1 Multiply packed signed doubleword integers in xmm1 by 
packed signed doubleword integers in xmm2/m128, and 
store the quadword results in xmm1.

VEX.128.66.0F38.WIG 28 /r
VPMULDQ xmm1, xmm2, 
xmm3/m128

B V/V AVX Multiply packed signed doubleword integers in xmm2 by 
packed signed doubleword integers in xmm3/m128, and 
store the quadword results in xmm1.

VEX.256.66.0F38.WIG 28 /r
VPMULDQ ymm1, ymm2, 
ymm3/m256

B V/V AVX2 Multiply packed signed doubleword integers in ymm2 by 
packed signed doubleword integers in ymm3/m256, and 
store the quadword results in ymm1.

EVEX.128.66.0F38.W1 28 /r
VPMULDQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply packed signed doubleword integers in xmm2 by 
packed signed doubleword integers in 
xmm3/m128/m64bcst, and store the quadword results 
in xmm1 using writemask k1.

EVEX.256.66.0F38.W1 28 /r
VPMULDQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Multiply packed signed doubleword integers in ymm2 by 
packed signed doubleword integers in 
ymm3/m256/m64bcst, and store the quadword results 
in ymm1 using writemask k1.

EVEX.512.66.0F38.W1 28 /r
VPMULDQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512F 
OR AVX10.11

Multiply packed signed doubleword integers in zmm2 by 
packed signed doubleword integers in 
zmm3/m512/m64bcst, and store the quadword results 
in zmm1 using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VEX.256 encoded version: The input signed doubleword integers are taken from the even-numbered elements of 
the source operands, i.e., the first, 3rd, 5th, 7th doubleword element. For 256-bit memory operands, 256 bits are 
fetched from memory, but only the four even-numbered doublewords are used in the computation. The first source 
operand and the destination operand are YMM registers. The second source operand can be a YMM register or 256-
bit memory location. Bits (MAXVL-1:256) of the corresponding destination ZMM register are zeroed.
EVEX encoded version: The input signed doubleword integers are taken from the even-numbered elements of the 
source operands. The first source operand is a ZMM/YMM/XMM registers. The second source operand can be an 
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-
bit memory location. The destination is a ZMM/YMM/XMM register, and updated according to the writemask at 64-
bit granularity. 

Operation

VPMULDQ (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN DEST[i+63:i] := SignExtend64( SRC1[i+31:i]) * SignExtend64( SRC2[31:0])
ELSE DEST[i+63:i] := SignExtend64( SRC1[i+31:i]) * SignExtend64( SRC2[i+31:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPMULDQ (VEX.256 Encoded Version)
DEST[63:0] := SignExtend64( SRC1[31:0]) * SignExtend64( SRC2[31:0])
DEST[127:64] := SignExtend64( SRC1[95:64]) * SignExtend64( SRC2[95:64])
DEST[191:128] := SignExtend64( SRC1[159:128]) * SignExtend64( SRC2[159:128])
DEST[255:192] := SignExtend64( SRC1[223:192]) * SignExtend64( SRC2[223:192])
DEST[MAXVL-1:256] := 0

VPMULDQ (VEX.128 Encoded Version)
DEST[63:0] := SignExtend64( SRC1[31:0]) * SignExtend64( SRC2[31:0])
DEST[127:64] := SignExtend64( SRC1[95:64]) * SignExtend64( SRC2[95:64])
DEST[MAXVL-1:128] := 0

PMULDQ (128-bit Legacy SSE Version)
DEST[63:0] := SignExtend64( DEST[31:0]) * SignExtend64( SRC[31:0])
DEST[127:64] := SignExtend64( DEST[95:64]) * SignExtend64( SRC[95:64])
DEST[MAXVL-1:128] (Unmodified)
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Intel C/C++ Compiler Intrinsic Equivalent

VPMULDQ __m512i _mm512_mul_epi32(__m512i a, __m512i b);
VPMULDQ __m512i _mm512_mask_mul_epi32(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPMULDQ __m512i _mm512_maskz_mul_epi32( __mmask8 k, __m512i a, __m512i b);
VPMULDQ __m256i _mm256_mask_mul_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPMULDQ __m256i _mm256_mask_mul_epi32( __mmask8 k, __m256i a, __m256i b);
VPMULDQ __m128i _mm_mask_mul_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULDQ __m128i _mm_mask_mul_epi32( __mmask8 k, __m128i a, __m128i b);
(V)PMULDQ __m128i _mm_mul_epi32( __m128i a, __m128i b);
VPMULDQ __m256i _mm256_mul_epi32( __m256i a, __m256i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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PMULHRSW—Packed Multiply High With Round and Scale 

Instruction Operand Encoding

Description 

PMULHRSW multiplies vertically each signed 16-bit integer from the destination operand (first operand) with the 
corresponding signed 16-bit integer of the source operand (second operand), producing intermediate, signed 32-
bit integers. Each intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is always 
performed by adding 1 to the least significant bit of the 18-bit intermediate result. The final result is obtained by 
selecting the 16 bits immediately to the right of the most significant bit of each 18-bit intermediate result and 
packed to the destination operand. 

When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a 
general-protection exception (#GP) will be generated. 

In 64-bit mode and not encoded with VEX/EVEX, use the REX prefix to access XMM8-XMM15 registers. 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 38 0B /r1 

PMULHRSW mm1, mm2/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V SSSE3 Multiply 16-bit signed words, scale and 
round signed doublewords, pack high 16 
bits to mm1.

66 0F 38 0B /r

PMULHRSW xmm1, xmm2/m128 

A V/V SSSE3 Multiply 16-bit signed words, scale and 
round signed doublewords, pack high 16 
bits to xmm1.

VEX.128.66.0F38.WIG 0B /r

VPMULHRSW xmm1, xmm2, xmm3/m128

B V/V AVX Multiply 16-bit signed words, scale and 
round signed doublewords, pack high 16 
bits to xmm1.

VEX.256.66.0F38.WIG 0B /r

VPMULHRSW ymm1, ymm2, ymm3/m256

B V/V AVX2 Multiply 16-bit signed words, scale and 
round signed doublewords, pack high 16 
bits to ymm1.

EVEX.128.66.0F38.WIG 0B /r
VPMULHRSW xmm1 {k1}{z}, xmm2, xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply 16-bit signed words, scale and 
round signed doublewords, pack high 16 
bits to xmm1 under writemask k1.

EVEX.256.66.0F38.WIG 0B /r
VPMULHRSW ymm1 {k1}{z}, ymm2, ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Multiply 16-bit signed words, scale and 
round signed doublewords, pack high 16 
bits to ymm1 under writemask k1.

EVEX.512.66.0F38.WIG 0B /r
VPMULHRSW zmm1 {k1}{z}, zmm2, zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Multiply 16-bit signed words, scale and 
round signed doublewords, pack high 16 
bits to zmm1 under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Legacy SSE version 64-bit operand: Both operands can be MMX registers. The second source operand is an MMX 
register or a 64-bit memory location.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be 
a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand is a ZMM/YMM/XMM 
register conditionally updated with writemask k1.

Operation

PMULHRSW (With 64-bit Operands)
temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >> 14) + 1;
temp3[31:0] = INT32 ((DEST[63:48] * SRc[63:48]) >> 14) + 1;
DEST[15:0] = temp0[16:1];
DEST[31:16] = temp1[16:1];
DEST[47:32] = temp2[16:1];
DEST[63:48] = temp3[16:1];

PMULHRSW (With 128-bit Operands)
temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >>14) + 1;
temp3[31:0] = INT32 ((DEST[63:48] * SRC[63:48]) >>14) + 1;
temp4[31:0] = INT32 ((DEST[79:64] * SRC[79:64]) >>14) + 1;
temp5[31:0] = INT32 ((DEST[95:80] * SRC[95:80]) >>14) + 1;
temp6[31:0] = INT32 ((DEST[111:96] * SRC[111:96]) >>14) + 1;
temp7[31:0] = INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1;
DEST[15:0] = temp0[16:1];
DEST[31:16] = temp1[16:1];
DEST[47:32] = temp2[16:1];
DEST[63:48] = temp3[16:1];
DEST[79:64] = temp4[16:1];
DEST[95:80] = temp5[16:1];
DEST[111:96] = temp6[16:1];
DEST[127:112] = temp7[16:1];

VPMULHRSW (VEX.128 Encoded Version)
temp0[31:0] := INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
temp1[31:0] := INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0] := INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0] := INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0] := INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0] := INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0] := INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
temp7[31:0] := INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
DEST[15:0] := temp0[16:1]
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DEST[31:16] := temp1[16:1]
DEST[47:32] := temp2[16:1]
DEST[63:48] := temp3[16:1]
DEST[79:64] := temp4[16:1]
DEST[95:80] := temp5[16:1]
DEST[111:96] := temp6[16:1]
DEST[127:112] := temp7[16:1]
DEST[MAXVL-1:128] := 0

VPMULHRSW (VEX.256 Encoded Version)
temp0[31:0] := INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
temp1[31:0] := INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0] := INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0] := INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0] := INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0] := INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0] := INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
temp7[31:0] := INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
temp8[31:0] := INT32 ((SRC1[143:128] * SRC2[143:128]) >>14) + 1
temp9[31:0] := INT32 ((SRC1[159:144] * SRC2[159:144]) >>14) + 1
temp10[31:0] := INT32 ((SRC1[75:160] * SRC2[175:160]) >>14) + 1
temp11[31:0] := INT32 ((SRC1[191:176] * SRC2[191:176]) >>14) + 1
temp12[31:0] := INT32 ((SRC1[207:192] * SRC2[207:192]) >>14) + 1
temp13[31:0] := INT32 ((SRC1[223:208] * SRC2[223:208]) >>14) + 1
temp14[31:0] := INT32 ((SRC1[239:224] * SRC2[239:224]) >>14) + 1
temp15[31:0] := INT32 ((SRC1[255:240] * SRC2[255:240) >>14) + 1

DEST[15:0] := temp0[16:1]
DEST[31:16] := temp1[16:1]
DEST[47:32] := temp2[16:1]
DEST[63:48] := temp3[16:1]
DEST[79:64] := temp4[16:1]
DEST[95:80] := temp5[16:1]
DEST[111:96] := temp6[16:1]
DEST[127:112] := temp7[16:1]
DEST[143:128] := temp8[16:1]
DEST[159:144] := temp9[16:1]
DEST[175:160] := temp10[16:1]
DEST[191:176] := temp11[16:1]
DEST[207:192] := temp12[16:1]
DEST[223:208] := temp13[16:1]
DEST[239:224] := temp14[16:1]
DEST[255:240] := temp15[16:1]
DEST[MAXVL-1:256] := 0
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VPMULHRSW (EVEX Encoded Version)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask*

THEN 
temp[31:0] := ((SRC1[i+15:i] * SRC2[i+15:i]) >>14) + 1
DEST[i+15:i] := tmp[16:1]

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalents

VPMULHRSW __m512i _mm512_mulhrs_epi16(__m512i a, __m512i b);
VPMULHRSW __m512i _mm512_mask_mulhrs_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMULHRSW __m512i _mm512_maskz_mulhrs_epi16( __mmask32 k, __m512i a, __m512i b);
VPMULHRSW __m256i _mm256_mask_mulhrs_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMULHRSW __m256i _mm256_maskz_mulhrs_epi16( __mmask16 k, __m256i a, __m256i b);
VPMULHRSW __m128i _mm_mask_mulhrs_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULHRSW __m128i _mm_maskz_mulhrs_epi16( __mmask8 k, __m128i a, __m128i b);
PMULHRSW __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)
(V)PMULHRSW __m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)
VPMULHRSW __m256i _mm256_mulhrs_epi16 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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PMULHUW—Multiply Packed Unsigned Integers and Store High Result

Instruction Operand Encoding

Description

Performs a SIMD unsigned multiply of the packed unsigned word integers in the destination operand (first operand) 
and the source operand (second operand), and stores the high 16 bits of each 32-bit intermediate results in the 
destination operand. (Figure 1-12 shows this operation when using 64-bit operands.)

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
Legacy SSE version 64-bit operand: The source operand can be an MMX technology register or a 64-bit memory 
location. The destination operand is an MMX technology register.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F E4 /r1

PMULHUW mm1, mm2/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V SSE Multiply the packed unsigned word integers 
in mm1 register and mm2/m64, and store the 
high 16 bits of the results in mm1. 

66 0F E4 /r

PMULHUW xmm1, xmm2/m128

A V/V SSE2 Multiply the packed unsigned word integers 
in xmm1 and xmm2/m128, and store the 
high 16 bits of the results in xmm1.

VEX.128.66.0F.WIG E4 /r

VPMULHUW xmm1, xmm2, xmm3/m128

B V/V AVX Multiply the packed unsigned word integers 
in xmm2 and xmm3/m128, and store the 
high 16 bits of the results in xmm1.

VEX.256.66.0F.WIG E4 /r

VPMULHUW ymm1, ymm2, ymm3/m256

B V/V AVX2 Multiply the packed unsigned word integers 
in ymm2 and ymm3/m256, and store the 
high 16 bits of the results in ymm1.

EVEX.128.66.0F.WIG E4 /r
VPMULHUW xmm1 {k1}{z}, xmm2, xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply the packed unsigned word integers 
in xmm2 and xmm3/m128, and store the 
high 16 bits of the results in xmm1 under 
writemask k1.

EVEX.256.66.0F.WIG E4 /r
VPMULHUW ymm1 {k1}{z}, ymm2, ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Multiply the packed unsigned word integers 
in ymm2 and ymm3/m256, and store the 
high 16 bits of the results in ymm1 under 
writemask k1.

EVEX.512.66.0F.WIG E4 /r
VPMULHUW zmm1 {k1}{z}, zmm2, zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Multiply the packed unsigned word integers 
in zmm2 and zmm3/m512, and store the 
high 16 bits of the results in zmm1 under 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be 
a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand is a ZMM/YMM/XMM 
register conditionally updated with writemask k1.

Operation

PMULHUW (With 64-bit Operands)
TEMP0[31:0] := DEST[15:0] ∗ SRC[15:0]; (* Unsigned multiplication *)
TEMP1[31:0] := DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] := DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] := DEST[63:48] ∗ SRC[63:48];
DEST[15:0] := TEMP0[31:16];
DEST[31:16] := TEMP1[31:16];
DEST[47:32] := TEMP2[31:16];
DEST[63:48] := TEMP3[31:16];

PMULHUW (With 128-bit Operands)
TEMP0[31:0] := DEST[15:0] ∗ SRC[15:0]; (* Unsigned multiplication *)
TEMP1[31:0] := DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] := DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] := DEST[63:48] ∗ SRC[63:48];
TEMP4[31:0] := DEST[79:64] ∗ SRC[79:64];
TEMP5[31:0] := DEST[95:80] ∗ SRC[95:80];
TEMP6[31:0] := DEST[111:96] ∗ SRC[111:96];
TEMP7[31:0] := DEST[127:112] ∗ SRC[127:112];
DEST[15:0] := TEMP0[31:16];
DEST[31:16] := TEMP1[31:16];
DEST[47:32] := TEMP2[31:16];
DEST[63:48] := TEMP3[31:16];
DEST[79:64] := TEMP4[31:16];
DEST[95:80] := TEMP5[31:16];
DEST[111:96] := TEMP6[31:16];

Figure 1-12.  PMULHUW and PMULHW Instruction Operation Using 64-bit Operands

X3 X2 X1 X0

Z3 = X3 ∗ Y3 Z2 = X2 ∗ Y2 Z1 = X1 ∗ Y1 Z0 = X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

TEMP

Z3[31:16] Z2[31:16] Z1[31:16] Z0[31:16]
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DEST[127:112] := TEMP7[31:16];

VPMULHUW (VEX.128 Encoded Version)
TEMP0[31:0] := SRC1[15:0] * SRC2[15:0]
TEMP1[31:0] := SRC1[31:16] * SRC2[31:16]
TEMP2[31:0] := SRC1[47:32] * SRC2[47:32]
TEMP3[31:0] := SRC1[63:48] * SRC2[63:48]
TEMP4[31:0] := SRC1[79:64] * SRC2[79:64]
TEMP5[31:0] := SRC1[95:80] * SRC2[95:80]
TEMP6[31:0] := SRC1[111:96] * SRC2[111:96]
TEMP7[31:0] := SRC1[127:112] * SRC2[127:112]
DEST[15:0] := TEMP0[31:16]
DEST[31:16] := TEMP1[31:16]
DEST[47:32] := TEMP2[31:16]
DEST[63:48] := TEMP3[31:16]
DEST[79:64] := TEMP4[31:16]
DEST[95:80] := TEMP5[31:16]
DEST[111:96] := TEMP6[31:16]
DEST[127:112] := TEMP7[31:16]
DEST[MAXVL-1:128] := 0

PMULHUW (VEX.256 Encoded Version)
TEMP0[31:0] := SRC1[15:0] * SRC2[15:0]
TEMP1[31:0] := SRC1[31:16] * SRC2[31:16]
TEMP2[31:0] := SRC1[47:32] * SRC2[47:32]
TEMP3[31:0] := SRC1[63:48] * SRC2[63:48]
TEMP4[31:0] := SRC1[79:64] * SRC2[79:64]
TEMP5[31:0] := SRC1[95:80] * SRC2[95:80]
TEMP6[31:0] := SRC1[111:96] * SRC2[111:96]
TEMP7[31:0] := SRC1[127:112] * SRC2[127:112]
TEMP8[31:0] := SRC1[143:128] * SRC2[143:128]
TEMP9[31:0] := SRC1[159:144] * SRC2[159:144]
TEMP10[31:0] := SRC1[175:160] * SRC2[175:160]
TEMP11[31:0] := SRC1[191:176] * SRC2[191:176]
TEMP12[31:0] := SRC1[207:192] * SRC2[207:192]
TEMP13[31:0] := SRC1[223:208] * SRC2[223:208]
TEMP14[31:0] := SRC1[239:224] * SRC2[239:224]
TEMP15[31:0] := SRC1[255:240] * SRC2[255:240]
DEST[15:0] := TEMP0[31:16]
DEST[31:16] := TEMP1[31:16]
DEST[47:32] := TEMP2[31:16]
DEST[63:48] := TEMP3[31:16]
DEST[79:64] := TEMP4[31:16]
DEST[95:80] := TEMP5[31:16]
DEST[111:96] := TEMP6[31:16]
DEST[127:112] := TEMP7[31:16]
DEST[143:128] := TEMP8[31:16]
DEST[159:144] := TEMP9[31:16]
DEST[175:160] := TEMP10[31:16]
DEST[191:176] := TEMP11[31:16]
DEST[207:192] := TEMP12[31:16]
DEST[223:208] := TEMP13[31:16]
DEST[239:224] := TEMP14[31:16]
DEST[255:240] := TEMP15[31:16]
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DEST[MAXVL-1:256] := 0

PMULHUW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask*

THEN 
temp[31:0] := SRC1[i+15:i] * SRC2[i+15:i]
DEST[i+15:i] := tmp[31:16]

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPMULHUW __m512i _mm512_mulhi_epu16(__m512i a, __m512i b);
VPMULHUW __m512i _mm512_mask_mulhi_epu16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMULHUW __m512i _mm512_maskz_mulhi_epu16( __mmask32 k, __m512i a, __m512i b);
VPMULHUW __m256i _mm256_mask_mulhi_epu16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMULHUW __m256i _mm256_maskz_mulhi_epu16( __mmask16 k, __m256i a, __m256i b);
VPMULHUW __m128i _mm_mask_mulhi_epu16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULHUW __m128i _mm_maskz_mulhi_epu16( __mmask8 k, __m128i a, __m128i b);
PMULHUW __m64 _mm_mulhi_pu16(__m64 a, __m64 b)
(V)PMULHUW __m128i _mm_mulhi_epu16 ( __m128i a, __m128i b)
VPMULHUW __m256i _mm256_mulhi_epu16 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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PMULHW—Multiply Packed Signed Integers and Store High Result

Instruction Operand Encoding

Description

Performs a SIMD signed multiply of the packed signed word integers in the destination operand (first operand) and 
the source operand (second operand), and stores the high 16 bits of each intermediate 32-bit result in the destina-
tion operand. (Figure 1-12 shows this operation when using 64-bit operands.) 

n 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
Legacy SSE version 64-bit operand: The source operand can be an MMX technology register or a 64-bit memory 
location. The destination operand is an MMX technology register.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F E5 /r1

PMULHW mm, mm/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V MMX Multiply the packed signed word integers in mm1 
register and mm2/m64, and store the high 16 
bits of the results in mm1. 

66 0F E5 /r

PMULHW xmm1, xmm2/m128

A V/V SSE2 Multiply the packed signed word integers in 
xmm1 and xmm2/m128, and store the high 16 
bits of the results in xmm1. 

VEX.128.66.0F.WIG E5 /r

VPMULHW xmm1, xmm2, xmm3/m128

B V/V AVX Multiply the packed signed word integers in 
xmm2 and xmm3/m128, and store the high 16 
bits of the results in xmm1.

VEX.256.66.0F.WIG E5 /r

VPMULHW ymm1, ymm2, ymm3/m256

B V/V AVX2 Multiply the packed signed word integers in 
ymm2 and ymm3/m256, and store the high 16 
bits of the results in ymm1.

EVEX.128.66.0F.WIG E5 /r
VPMULHW xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply the packed signed word integers in 
xmm2 and xmm3/m128, and store the high 16 
bits of the results in xmm1 under writemask k1.

EVEX.256.66.0F.WIG E5 /r
VPMULHW ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Multiply the packed signed word integers in 
ymm2 and ymm3/m256, and store the high 16 
bits of the results in ymm1 under writemask k1.

EVEX.512.66.0F.WIG E5 /r
VPMULHW zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Multiply the packed signed word integers in 
zmm2 and zmm3/m512, and store the high 16 
bits of the results in zmm1 under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be 
a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand is a ZMM/YMM/XMM 
register conditionally updated with writemask k1.

Operation

PMULHW (With 64-bit Operands)
TEMP0[31:0] := DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] := DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] := DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] := DEST[63:48] ∗ SRC[63:48];
DEST[15:0] := TEMP0[31:16];
DEST[31:16] := TEMP1[31:16];
DEST[47:32] := TEMP2[31:16];
DEST[63:48] := TEMP3[31:16];

PMULHW (With 128-bit Operands)
TEMP0[31:0] := DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] := DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] := DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] := DEST[63:48] ∗ SRC[63:48];
TEMP4[31:0] := DEST[79:64] ∗ SRC[79:64];
TEMP5[31:0] := DEST[95:80] ∗ SRC[95:80];
TEMP6[31:0] := DEST[111:96] ∗ SRC[111:96];
TEMP7[31:0] := DEST[127:112] ∗ SRC[127:112];
DEST[15:0] := TEMP0[31:16];
DEST[31:16] := TEMP1[31:16];
DEST[47:32] := TEMP2[31:16];
DEST[63:48] := TEMP3[31:16];
DEST[79:64] := TEMP4[31:16];
DEST[95:80] := TEMP5[31:16];
DEST[111:96] := TEMP6[31:16];
DEST[127:112] := TEMP7[31:16];

VPMULHW (VEX.128 Encoded Version)
TEMP0[31:0] := SRC1[15:0] * SRC2[15:0] (*Signed Multiplication*)
TEMP1[31:0] := SRC1[31:16] * SRC2[31:16]
TEMP2[31:0] := SRC1[47:32] * SRC2[47:32]
TEMP3[31:0] := SRC1[63:48] * SRC2[63:48]
TEMP4[31:0] := SRC1[79:64] * SRC2[79:64]
TEMP5[31:0] := SRC1[95:80] * SRC2[95:80]
TEMP6[31:0] := SRC1[111:96] * SRC2[111:96]
TEMP7[31:0] := SRC1[127:112] * SRC2[127:112]
DEST[15:0] := TEMP0[31:16]
DEST[31:16] := TEMP1[31:16]
DEST[47:32] := TEMP2[31:16]
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DEST[63:48] := TEMP3[31:16]
DEST[79:64] := TEMP4[31:16]
DEST[95:80] := TEMP5[31:16]
DEST[111:96] := TEMP6[31:16]
DEST[127:112] := TEMP7[31:16]
DEST[MAXVL-1:128] := 0

PMULHW (VEX.256 Encoded Version)
TEMP0[31:0] := SRC1[15:0] * SRC2[15:0] (*Signed Multiplication*)
TEMP1[31:0] := SRC1[31:16] * SRC2[31:16]
TEMP2[31:0] := SRC1[47:32] * SRC2[47:32]
TEMP3[31:0] := SRC1[63:48] * SRC2[63:48]
TEMP4[31:0] := SRC1[79:64] * SRC2[79:64]
TEMP5[31:0] := SRC1[95:80] * SRC2[95:80]
TEMP6[31:0] := SRC1[111:96] * SRC2[111:96]
TEMP7[31:0] := SRC1[127:112] * SRC2[127:112]
TEMP8[31:0] := SRC1[143:128] * SRC2[143:128]
TEMP9[31:0] := SRC1[159:144] * SRC2[159:144]
TEMP10[31:0] := SRC1[175:160] * SRC2[175:160]
TEMP11[31:0] := SRC1[191:176] * SRC2[191:176]
TEMP12[31:0] := SRC1[207:192] * SRC2[207:192]
TEMP13[31:0] := SRC1[223:208] * SRC2[223:208]
TEMP14[31:0] := SRC1[239:224] * SRC2[239:224]
TEMP15[31:0] := SRC1[255:240] * SRC2[255:240]
DEST[15:0] := TEMP0[31:16]
DEST[31:16] := TEMP1[31:16]
DEST[47:32] := TEMP2[31:16]
DEST[63:48] := TEMP3[31:16]
DEST[79:64] := TEMP4[31:16]
DEST[95:80] := TEMP5[31:16]
DEST[111:96] := TEMP6[31:16]
DEST[127:112] := TEMP7[31:16]
DEST[143:128] := TEMP8[31:16]
DEST[159:144] := TEMP9[31:16]
DEST[175:160] := TEMP10[31:16]
DEST[191:176] := TEMP11[31:16]
DEST[207:192] := TEMP12[31:16]
DEST[223:208] := TEMP13[31:16]
DEST[239:224] := TEMP14[31:16]
DEST[255:240] := TEMP15[31:16]
DEST[MAXVL-1:256] := 0
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PMULHW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask*

THEN 
temp[31:0] := SRC1[i+15:i] * SRC2[i+15:i]
DEST[i+15:i] := tmp[31:16]

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPMULHW __m512i _mm512_mulhi_epi16(__m512i a, __m512i b);
VPMULHW __m512i _mm512_mask_mulhi_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMULHW __m512i _mm512_maskz_mulhi_epi16( __mmask32 k, __m512i a, __m512i b);
VPMULHW __m256i _mm256_mask_mulhi_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMULHW __m256i _mm256_maskz_mulhi_epi16( __mmask16 k, __m256i a, __m256i b);
VPMULHW __m128i _mm_mask_mulhi_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULHW __m128i _mm_maskz_mulhi_epi16( __mmask8 k, __m128i a, __m128i b);
PMULHW __m64 _mm_mulhi_pi16 (__m64 m1, __m64 m2)
(V)PMULHW __m128i _mm_mulhi_epi16 ( __m128i a, __m128i b)
VPMULHW __m256i _mm256_mulhi_epi16 ( __m256i a, __m256i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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PMULLD/PMULLQ—Multiply Packed Integers and Store Low Result

Instruction Operand Encoding

Description

Performs a SIMD signed multiply of the packed signed dword/qword integers from each element of the first source 
operand with the corresponding element in the second source operand. The low 32/64 bits of each 64/128-bit 
intermediate results are stored to the destination operand. 
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding ZMM destina-
tion register remain unchanged.

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 38 40 /r
PMULLD xmm1, xmm2/m128

A V/V SSE4_1 Multiply the packed dword signed integers in xmm1 and 
xmm2/m128 and store the low 32 bits of each product 
in xmm1.

VEX.128.66.0F38.WIG 40 /r
VPMULLD xmm1, xmm2, 
xmm3/m128

B V/V AVX Multiply the packed dword signed integers in xmm2 and 
xmm3/m128 and store the low 32 bits of each product 
in xmm1.

VEX.256.66.0F38.WIG 40 /r
VPMULLD ymm1, ymm2, 
ymm3/m256

B V/V AVX2 Multiply the packed dword signed integers in ymm2 and 
ymm3/m256 and store the low 32 bits of each product 
in ymm1.

EVEX.128.66.0F38.W0 40 /r
VPMULLD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply the packed dword signed integers in xmm2 and 
xmm3/m128/m32bcst and store the low 32 bits of 
each product in xmm1 under writemask k1.

EVEX.256.66.0F38.W0 40 /r
VPMULLD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Multiply the packed dword signed integers in ymm2 and 
ymm3/m256/m32bcst and store the low 32 bits of 
each product in ymm1 under writemask k1.

EVEX.512.66.0F38.W0 40 /r
VPMULLD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

C V/V AVX512F 
OR AVX10.11

Multiply the packed dword signed integers in zmm2 and 
zmm3/m512/m32bcst and store the low 32 bits of 
each product in zmm1 under writemask k1.

EVEX.128.66.0F38.W1 40 /r
VPMULLQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Multiply the packed qword signed integers in xmm2 and 
xmm3/m128/m64bcst and store the low 64 bits of 
each product in xmm1 under writemask k1.

EVEX.256.66.0F38.W1 40 /r
VPMULLQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Multiply the packed qword signed integers in ymm2 and 
ymm3/m256/m64bcst and store the low 64 bits of 
each product in ymm1 under writemask k1.

EVEX.512.66.0F38.W1 40 /r
VPMULLQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512DQ 
OR AVX10.11

Multiply the packed qword signed integers in zmm2 and 
zmm3/m512/m64bcst and store the low 64 bits of 
each product in zmm1 under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding ZMM register 
are zeroed.
VEX.256 encoded version: The first source operand is a YMM register; The second source operand is a YMM register 
or 256-bit memory location. Bits (MAXVL-1:256) of the corresponding destination ZMM register are zeroed.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand is a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 
32/64-bit memory location. The destination operand is conditionally updated based on writemask k1.

Operation

VPMULLQ (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN Temp[127:0] := SRC1[i+63:i] * SRC2[63:0]
ELSE Temp[127:0] := SRC1[i+63:i] * SRC2[i+63:i]

FI;
DEST[i+63:i] := Temp[63:0]

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPMULLD (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN Temp[63:0] := SRC1[i+31:i] * SRC2[31:0]
ELSE Temp[63:0] := SRC1[i+31:i] * SRC2[i+31:i]

FI;
DEST[i+31:i] := Temp[31:0]

ELSE 
IF *merging-masking* ; merging-masking

*DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VPMULLD (VEX.256 Encoded Version)
Temp0[63:0] := SRC1[31:0] * SRC2[31:0]
Temp1[63:0] := SRC1[63:32] * SRC2[63:32]
Temp2[63:0] := SRC1[95:64] * SRC2[95:64]
Temp3[63:0] := SRC1[127:96] * SRC2[127:96]
Temp4[63:0] := SRC1[159:128] * SRC2[159:128]
Temp5[63:0] := SRC1[191:160] * SRC2[191:160]
Temp6[63:0] := SRC1[223:192] * SRC2[223:192]
Temp7[63:0] := SRC1[255:224] * SRC2[255:224]

DEST[31:0] := Temp0[31:0]
DEST[63:32] := Temp1[31:0]
DEST[95:64] := Temp2[31:0]
DEST[127:96] := Temp3[31:0]
DEST[159:128] := Temp4[31:0]
DEST[191:160] := Temp5[31:0]
DEST[223:192] := Temp6[31:0]
DEST[255:224] := Temp7[31:0]
DEST[MAXVL-1:256] := 0

VPMULLD (VEX.128 Encoded Version)
Temp0[63:0] := SRC1[31:0] * SRC2[31:0]
Temp1[63:0] := SRC1[63:32] * SRC2[63:32]
Temp2[63:0] := SRC1[95:64] * SRC2[95:64]
Temp3[63:0] := SRC1[127:96] * SRC2[127:96]
DEST[31:0] := Temp0[31:0]
DEST[63:32] := Temp1[31:0]
DEST[95:64] := Temp2[31:0]
DEST[127:96] := Temp3[31:0]
DEST[MAXVL-1:128] := 0

PMULLD (128-bit Legacy SSE Version)
Temp0[63:0] := DEST[31:0] * SRC[31:0]
Temp1[63:0] := DEST[63:32] * SRC[63:32]
Temp2[63:0] := DEST[95:64] * SRC[95:64]
Temp3[63:0] := DEST[127:96] * SRC[127:96]
DEST[31:0] := Temp0[31:0]
DEST[63:32] := Temp1[31:0]
DEST[95:64] := Temp2[31:0]
DEST[127:96] := Temp3[31:0]
DEST[MAXVL-1:128] (Unmodified)
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Intel C/C++ Compiler Intrinsic Equivalent

VPMULLD __m512i _mm512_mullo_epi32(__m512i a, __m512i b);
VPMULLD __m512i _mm512_mask_mullo_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPMULLD __m512i _mm512_maskz_mullo_epi32( __mmask16 k, __m512i a, __m512i b);
VPMULLD __m256i _mm256_mask_mullo_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPMULLD __m256i _mm256_maskz_mullo_epi32( __mmask8 k, __m256i a, __m256i b);
VPMULLD __m128i _mm_mask_mullo_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULLD __m128i _mm_maskz_mullo_epi32( __mmask8 k, __m128i a, __m128i b);
VPMULLD __m256i _mm256_mullo_epi32(__m256i a, __m256i b);
PMULLD __m128i _mm_mullo_epi32(__m128i a, __m128i b);
VPMULLQ __m512i _mm512_mullo_epi64(__m512i a, __m512i b);
VPMULLQ __m512i _mm512_mask_mullo_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPMULLQ __m512i _mm512_maskz_mullo_epi64( __mmask8 k, __m512i a, __m512i b);
VPMULLQ __m256i _mm256_mullo_epi64(__m256i a, __m256i b);
VPMULLQ __m256i _mm256_mask_mullo_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPMULLQ __m256i _mm256_maskz_mullo_epi64( __mmask8 k, __m256i a, __m256i b);
VPMULLQ __m128i _mm_mullo_epi64(__m128i a, __m128i b);
VPMULLQ __m128i _mm_mask_mullo_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULLQ __m128i _mm_maskz_mullo_epi64( __mmask8 k, __m128i a, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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PMULLW—Multiply Packed Signed Integers and Store Low Result

Instruction Operand Encoding

Description

Performs a SIMD signed multiply of the packed signed word integers in the destination operand (first operand) and 
the source operand (second operand), and stores the low 16 bits of each intermediate 32-bit result in the destina-
tion operand. (Figure 1-12 shows this operation when using 64-bit operands.)

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
Legacy SSE version 64-bit operand: The source operand can be an MMX technology register or a 64-bit memory 
location. The destination operand is an MMX technology register.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F D5 /r1

PMULLW mm, mm/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V MMX Multiply the packed signed word integers in 
mm1 register and mm2/m64, and store the low 
16 bits of the results in mm1. 

66 0F D5 /r

PMULLW xmm1, xmm2/m128

A V/V SSE2 Multiply the packed signed word integers in 
xmm1 and xmm2/m128, and store the low 16 
bits of the results in xmm1. 

VEX.128.66.0F.WIG D5 /r

VPMULLW xmm1, xmm2, xmm3/m128

B V/V AVX Multiply the packed dword signed integers in 
xmm2 and xmm3/m128 and store the low 32 
bits of each product in xmm1.

VEX.256.66.0F.WIG D5 /r

VPMULLW ymm1, ymm2, ymm3/m256

B V/V AVX2 Multiply the packed signed word integers in 
ymm2 and ymm3/m256, and store the low 16 
bits of the results in ymm1.

EVEX.128.66.0F.WIG D5 /r
VPMULLW xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply the packed signed word integers in 
xmm2 and xmm3/m128, and store the low 16 
bits of the results in xmm1 under writemask k1.

EVEX.256.66.0F.WIG D5 /r
VPMULLW ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Multiply the packed signed word integers in 
ymm2 and ymm3/m256, and store the low 16 
bits of the results in ymm1 under writemask k1.

EVEX.512.66.0F.WIG D5 /r
VPMULLW zmm1 {k1}{z}, zmm2, zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Multiply the packed signed word integers in 
zmm2 and zmm3/m512, and store the low 16 
bits of the results in zmm1 under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
PMULLW—Multiply Packed Signed Integers and Store Low Result Vol. 2B 4-389



128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand is a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand is conditionally updated 
based on writemask k1.

Operation

PMULLW (With 64-bit Operands)
TEMP0[31:0] := DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] := DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] := DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] := DEST[63:48] ∗ SRC[63:48];
DEST[15:0] := TEMP0[15:0];
DEST[31:16] := TEMP1[15:0];
DEST[47:32] := TEMP2[15:0];
DEST[63:48] := TEMP3[15:0];

PMULLW (With 128-bit Operands)
TEMP0[31:0] := DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] := DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] := DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] := DEST[63:48] ∗ SRC[63:48];
TEMP4[31:0] := DEST[79:64] ∗ SRC[79:64];
TEMP5[31:0] := DEST[95:80] ∗ SRC[95:80];
TEMP6[31:0] := DEST[111:96] ∗ SRC[111:96];
TEMP7[31:0] := DEST[127:112] ∗ SRC[127:112];
DEST[15:0] := TEMP0[15:0];
DEST[31:16] := TEMP1[15:0];
DEST[47:32] := TEMP2[15:0];
DEST[63:48] := TEMP3[15:0];
DEST[79:64] := TEMP4[15:0];
DEST[95:80] := TEMP5[15:0];
DEST[111:96] := TEMP6[15:0];
DEST[127:112] := TEMP7[15:0];

DEST[MAXVL-1:256] := 0

Figure 1-13.  PMULLU Instruction Operation Using 64-bit Operands

X3 X2 X1 X0

Z3 = X3 ∗ Y3 Z2 = X2 ∗ Y2 Z1 = X1 ∗ Y1 Z0 = X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

TEMP

Z3[15:0] Z2[15:0] Z1[15:0] Z0[15:0]
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VPMULLW (VEX.128 Encoded Version)
Temp0[31:0] := SRC1[15:0] * SRC2[15:0]
Temp1[31:0] := SRC1[31:16] * SRC2[31:16]
Temp2[31:0] := SRC1[47:32] * SRC2[47:32]
Temp3[31:0] := SRC1[63:48] * SRC2[63:48]
Temp4[31:0] := SRC1[79:64] * SRC2[79:64]
Temp5[31:0] := SRC1[95:80] * SRC2[95:80]
Temp6[31:0] := SRC1[111:96] * SRC2[111:96]
Temp7[31:0] := SRC1[127:112] * SRC2[127:112]
DEST[15:0] := Temp0[15:0]
DEST[31:16] := Temp1[15:0]
DEST[47:32] := Temp2[15:0]
DEST[63:48] := Temp3[15:0]
DEST[79:64] := Temp4[15:0]
DEST[95:80] := Temp5[15:0]
DEST[111:96] := Temp6[15:0]
DEST[127:112] := Temp7[15:0]
DEST[MAXVL-1:128] := 0

PMULLW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask*

THEN 
temp[31:0] := SRC1[i+15:i] * SRC2[i+15:i]
DEST[i+15:i] := temp[15:0]

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPMULLW __m512i _mm512_mullo_epi16(__m512i a, __m512i b);
VPMULLW __m512i _mm512_mask_mullo_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMULLW __m512i _mm512_maskz_mullo_epi16( __mmask32 k, __m512i a, __m512i b);
VPMULLW __m256i _mm256_mask_mullo_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMULLW __m256i _mm256_maskz_mullo_epi16( __mmask16 k, __m256i a, __m256i b);
VPMULLW __m128i _mm_mask_mullo_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULLW __m128i _mm_maskz_mullo_epi16( __mmask8 k, __m128i a, __m128i b);
PMULLW __m64 _mm_mullo_pi16(__m64 m1, __m64 m2)
(V)PMULLW __m128i _mm_mullo_epi16 ( __m128i a, __m128i b)
VPMULLW __m256i _mm256_mullo_epi16 ( __m256i a, __m256i b);

Flags Affected

None.
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SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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PMULUDQ—Multiply Packed Unsigned Doubleword Integers

Instruction Operand Encoding

Description

Multiplies the first operand (destination operand) by the second operand (source operand) and stores the result in 
the destination operand. 

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F F4 /r1

PMULUDQ mm1, mm2/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V SSE2 Multiply unsigned doubleword integer in mm1 by 
unsigned doubleword integer in mm2/m64, and 
store the quadword result in mm1. 

66 0F F4 /r

PMULUDQ xmm1, xmm2/m128

A V/V SSE2 Multiply packed unsigned doubleword integers in 
xmm1 by packed unsigned doubleword integers 
in xmm2/m128, and store the quadword results 
in xmm1. 

VEX.128.66.0F.WIG F4 /r

VPMULUDQ xmm1, xmm2, xmm3/m128

B V/V AVX Multiply packed unsigned doubleword integers in 
xmm2 by packed unsigned doubleword integers 
in xmm3/m128, and store the quadword results 
in xmm1.

VEX.256.66.0F.WIG F4 /r

VPMULUDQ ymm1, ymm2, ymm3/m256

B V/V AVX2 Multiply packed unsigned doubleword integers in 
ymm2 by packed unsigned doubleword integers 
in ymm3/m256, and store the quadword results 
in ymm1.

EVEX.128.66.0F.W1 F4 /r
VPMULUDQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply packed unsigned doubleword integers in 
xmm2 by packed unsigned doubleword integers 
in xmm3/m128/m64bcst, and store the 
quadword results in xmm1 under writemask k1.

EVEX.256.66.0F.W1 F4 /r
VPMULUDQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Multiply packed unsigned doubleword integers in 
ymm2 by packed unsigned doubleword integers 
in ymm3/m256/m64bcst, and store the 
quadword results in ymm1 under writemask k1.

EVEX.512.66.0F.W1 F4 /r
VPMULUDQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512F 
OR AVX10.12

Multiply packed unsigned doubleword integers in 
zmm2 by packed unsigned doubleword integers 
in zmm3/m512/m64bcst, and store the 
quadword results in zmm1 under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
PMULUDQ—Multiply Packed Unsigned Doubleword Integers Vol. 2B 4-393



Legacy SSE version 64-bit operand: The source operand can be an unsigned doubleword integer stored in the low 
doubleword of an MMX technology register or a 64-bit memory location. The destination operand can be an 
unsigned doubleword integer stored in the low doubleword an MMX technology register. The result is an unsigned 
quadword integer stored in the destination an MMX technology register. When a quadword result is too large to be 
represented in 64 bits (overflow), the result is wrapped around and the low 64 bits are written to the destination 
element (that is, the carry is ignored).

For 64-bit memory operands, 64 bits are fetched from memory, but only the low doubleword is used in the compu-
tation.

128-bit Legacy SSE version: The second source operand is two packed unsigned doubleword integers stored in the 
first (low) and third doublewords of an XMM register or a 128-bit memory location. For 128-bit memory operands, 
128 bits are fetched from memory, but only the first and third doublewords are used in the computation. The first 
source operand is two packed unsigned doubleword integers stored in the first and third doublewords of an XMM 
register. The destination contains two packed unsigned quadword integers stored in an XMM register. Bits (MAXVL-
1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: The second source operand is two packed unsigned doubleword integers stored in the 
first (low) and third doublewords of an XMM register or a 128-bit memory location. For 128-bit memory operands, 
128 bits are fetched from memory, but only the first and third doublewords are used in the computation. The first 
source operand is two packed unsigned doubleword integers stored in the first and third doublewords of an XMM 
register. The destination contains two packed unsigned quadword integers stored in an XMM register. Bits (MAXVL-
1:128) of the destination YMM register are zeroed. 
VEX.256 encoded version: The second source operand is four packed unsigned doubleword integers stored in the 
first (low), third, fifth, and seventh doublewords of a YMM register or a 256-bit memory location. For 256-bit 
memory operands, 256 bits are fetched from memory, but only the first, third, fifth, and seventh doublewords are 
used in the computation. The first source operand is four packed unsigned doubleword integers stored in the first, 
third, fifth, and seventh doublewords of an YMM register. The destination contains four packed unaligned quadword 
integers stored in an YMM register.
EVEX encoded version: The input unsigned doubleword integers are taken from the even-numbered elements of 
the source operands. The first source operand is a ZMM/YMM/XMM registers. The second source operand can be an 
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-
bit memory location. The destination is a ZMM/YMM/XMM register, and updated according to the writemask at 64-
bit granularity. 

Operation

PMULUDQ (With 64-Bit Operands)
DEST[63:0] := DEST[31:0] ∗ SRC[31:0];

PMULUDQ (With 128-Bit Operands)
DEST[63:0] := DEST[31:0] ∗ SRC[31:0];
DEST[127:64] := DEST[95:64] ∗ SRC[95:64];

VPMULUDQ (VEX.128 Encoded Version)
DEST[63:0] := SRC1[31:0] * SRC2[31:0]
DEST[127:64] := SRC1[95:64] * SRC2[95:64]
DEST[MAXVL-1:128] := 0

VPMULUDQ (VEX.256 Encoded Version)
DEST[63:0] := SRC1[31:0] * SRC2[31:0]
DEST[127:64] := SRC1[95:64] * SRC2[95:64
DEST[191:128] := SRC1[159:128] * SRC2[159:128]
DEST[255:192] := SRC1[223:192] * SRC2[223:192]
DEST[MAXVL-1:256] := 0
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VPMULUDQ (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] := ZeroExtend64( SRC1[i+31:i]) * ZeroExtend64( SRC2[31:0] )
ELSE DEST[i+63:i] := ZeroExtend64( SRC1[i+31:i]) * ZeroExtend64( SRC2[i+31:i] )

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPMULUDQ __m512i _mm512_mul_epu32(__m512i a, __m512i b);
VPMULUDQ __m512i _mm512_mask_mul_epu32(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPMULUDQ __m512i _mm512_maskz_mul_epu32( __mmask8 k, __m512i a, __m512i b);
VPMULUDQ __m256i _mm256_mask_mul_epu32(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPMULUDQ __m256i _mm256_maskz_mul_epu32( __mmask8 k, __m256i a, __m256i b);
VPMULUDQ __m128i _mm_mask_mul_epu32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULUDQ __m128i _mm_maskz_mul_epu32( __mmask8 k, __m128i a, __m128i b);
PMULUDQ __m64 _mm_mul_su32 (__m64 a, __m64 b)
(V)PMULUDQ __m128i _mm_mul_epu32 ( __m128i a, __m128i b)
VPMULUDQ __m256i _mm256_mul_epu32( __m256i a, __m256i b);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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POP—Pop a Value From the Stack

Instruction Operand Encoding

Description

Loads the value from the top of the stack to the location specified with the destination operand (or explicit opcode) 
and then increments the stack pointer. The destination operand can be a general-purpose register, memory loca-
tion, or segment register.

Address and operand sizes are determined and used as follows:
• Address size. The D flag in the current code-segment descriptor determines the default address size; it may be 

overridden by an instruction prefix (67H).
The address size is used only when writing to a destination operand in memory.

• Operand size. The D flag in the current code-segment descriptor determines the default operand size; it may 
be overridden by instruction prefixes (66H or REX.W).
The operand size (16, 32, or 64 bits) determines the amount by which the stack pointer is incremented (2, 4
or 8).

• Stack-address size. Outside of 64-bit mode, the B flag in the current stack-segment descriptor determines the 
size of the stack pointer (16 or 32 bits); in 64-bit mode, the size of the stack pointer is always 64 bits.
The stack-address size determines the width of the stack pointer when reading from the stack in memory and
when incrementing the stack pointer. (As stated above, the amount by which the stack pointer is incremented
is determined by the operand size.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the value loaded into the register 
must be a valid segment selector. In protected mode, popping a segment selector into a segment register automat-

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

8F /0 POP r/m16 M Valid Valid Pop top of stack into m16; increment stack pointer.

8F /0 POP r/m32 M N.E. Valid Pop top of stack into m32; increment stack pointer.

8F /0 POP r/m64 M Valid N.E. Pop top of stack into m64; increment stack pointer. Cannot 
encode 32-bit operand size.

58+ rw POP r16 O Valid Valid Pop top of stack into r16; increment stack pointer.

58+ rd POP r32 O N.E. Valid Pop top of stack into r32; increment stack pointer.

58+ rd POP r64 O Valid N.E. Pop top of stack into r64; increment stack pointer. Cannot 
encode 32-bit operand size.

1F POP DS ZO Invalid Valid Pop top of stack into DS; increment stack pointer.

07 POP ES ZO Invalid Valid Pop top of stack into ES; increment stack pointer.

17 POP SS ZO Invalid Valid Pop top of stack into SS; increment stack pointer.

0F A1 POP FS ZO Valid Valid Pop top of stack into FS; increment stack pointer by 16 bits. 

0F A1 POP FS ZO N.E. Valid Pop top of stack into FS; increment stack pointer by 32 bits. 

0F A1 POP FS ZO Valid N.E. Pop top of stack into FS; increment stack pointer by 64 bits. 

0F A9 POP GS ZO Valid Valid Pop top of stack into GS; increment stack pointer by 16 bits. 

0F A9 POP GS ZO N.E. Valid Pop top of stack into GS; increment stack pointer by 32 bits. 

0F A9 POP GS ZO Valid N.E. Pop top of stack into GS; increment stack pointer by 64 bits. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A

O opcode + rd (w) N/A N/A N/A

ZO N/A N/A N/A N/A
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ically causes the descriptor information associated with that segment selector to be loaded into the hidden 
(shadow) part of the segment register and causes the selector and the descriptor information to be validated (see 
the “Operation” section below).

A NULL value (0000-0003) may be popped into the DS, ES, FS, or GS register without causing a general protection 
fault. However, any subsequent attempt to reference a segment whose corresponding segment register is loaded 
with a NULL value causes a general protection exception (#GP). In this situation, no memory reference occurs and 
the saved value of the segment register is NULL.

The POP instruction cannot pop a value into the CS register. To load the CS register from the stack, use the RET 
instruction.

If the ESP register is used as a base register for addressing a destination operand in memory, the POP instruction 
computes the effective address of the operand after it increments the ESP register. For the case of a 16-bit stack 
where ESP wraps to 0H as a result of the POP instruction, the resulting location of the memory write is processor-
family-specific.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top of stack is written into the 
destination.

Loading the SS register with a POP instruction suppresses or inhibits some debug exceptions and inhibits interrupts 
on the following instruction boundary. (The inhibition ends after delivery of an exception or the execution of the 
next instruction.) This behavior allows a stack pointer to be loaded into the ESP register with the next instruction 
(POP ESP) before an event can be delivered. See Section 7.8.3, “Masking Exceptions and Interrupts When 
Switching Stacks,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. Intel recom-
mends that software use the LSS instruction to load the SS register and ESP together.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). When in 
64-bit mode, POPs using 32-bit operands are not encodable and POPs to DS, ES, SS are not valid. See the 
summary chart at the beginning of this section for encoding data and limits.

Operation

IF StackAddrSize = 32
THEN

IF OperandSize = 32
THEN

DEST := SS:ESP; (* Copy a doubleword *)
ESP := ESP + 4;

ELSE (* OperandSize = 16*)
DEST := SS:ESP; (* Copy a word *)
ESP := ESP + 2;

FI;
ELSE IF StackAddrSize = 64

THEN
IF OperandSize = 64

THEN
DEST := SS:RSP; (* Copy quadword *)
RSP := RSP + 8;

ELSE (* OperandSize = 16*)
DEST := SS:RSP; (* Copy a word *)
RSP := RSP + 2;

FI;
FI;

ELSE StackAddrSize = 16
THEN

IF OperandSize = 16
THEN

DEST := SS:SP; (* Copy a word *)
SP := SP + 2;
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ELSE (* OperandSize = 32 *)
DEST := SS:SP; (* Copy a doubleword *)
SP := SP + 4;

FI;

FI;

Loading a segment register while in protected mode results in special actions, as described in the following listing. 
These checks are performed on the segment selector and the segment descriptor it points to.

64-BIT_MODE
IF FS, or GS is loaded with non-NULL selector;

THEN
IF segment selector index is outside descriptor table limits

OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND ((RPL > DPL) or (CPL > DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister := segment selector;
SegmentRegister := segment descriptor;

FI;
FI;
IF FS, or GS is loaded with a NULL selector;

THEN
SegmentRegister := segment selector;
SegmentRegister := segment descriptor;

FI;

PREOTECTED MODE OR COMPATIBILITY MODE;

IF SS is loaded;
THEN

IF segment selector is NULL
THEN #GP(0); 

FI;
IF segment selector index is outside descriptor table limits 

or segment selector's RPL ≠ CPL
or segment is not a writable data segment
or DPL ≠ CPL

THEN #GP(selector); 
FI;
IF segment not marked present 

THEN #SS(selector); 
ELSE

SS := segment selector;
SS := segment descriptor; 

FI;
FI;

IF DS, ES, FS, or GS is loaded with non-NULL selector;
THEN
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IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and ((RPL > DPL) or (CPL > DPL))

THEN #GP(selector); 
FI;
IF segment not marked present

THEN #NP(selector);
ELSE

SegmentRegister := segment selector;
SegmentRegister := segment descriptor;

 FI;
FI;

IF DS, ES, FS, or GS is loaded with a NULL selector
THEN

SegmentRegister := segment selector;
SegmentRegister := segment descriptor;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with NULL segment selector.

If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#GP(selector) If segment selector index is outside descriptor table limits. 
If the SS register is being loaded and the segment selector's RPL and the segment descriptor’s 
DPL are not equal to the CPL. 
If the SS register is being loaded and the segment pointed to is a
non-writable data segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or 
readable code segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or 
nonconforming code segment, but both the RPL and the CPL are greater than the DPL.

#SS(0) If the current top of stack is not within the stack segment.
If a memory operand effective address is outside the SS segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not present.
#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed to is marked not 

present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level is 3 and alignment 

checking is enabled.
#UD If the LOCK prefix is used.
POP—Pop a Value From the Stack Vol. 2B 4-399



Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#GP(selector) If the descriptor is outside the descriptor table limit.

If the FS or GS register is being loaded and the segment pointed to is not a data or readable 
code segment.
If the FS or GS register is being loaded and the segment pointed to is a data or nonconforming 
code segment, but both the RPL and the CPL are greater than the DPL.

#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#PF(fault-code) If a page fault occurs.
#NP If the FS or GS register is being loaded and the segment pointed to is marked not present.
#UD If the LOCK prefix is used.

If the DS, ES, or SS register is being loaded.
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POPA/POPAD—Pop All General-Purpose Registers

Instruction Operand Encoding

Description

Pops doublewords (POPAD) or words (POPA) from the stack into the general-purpose registers. The registers are 
loaded in the following order: EDI, ESI, EBP, EBX, EDX, ECX, and EAX (if the operand-size attribute is 32) and DI, 
SI, BP, BX, DX, CX, and AX (if the operand-size attribute is 16). (These instructions reverse the operation of the 
PUSHA/PUSHAD instructions.) The value on the stack for the ESP or SP register is ignored. Instead, the ESP or SP 
register is incremented after each register is loaded.

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same opcode. The POPA instruction is 
intended for use when the operand-size attribute is 16 and the POPAD instruction for when the operand-size attri-
bute is 32. Some assemblers may force the operand size to 16 when POPA is used and to 32 when POPAD is used 
(using the operand-size override prefix [66H] if necessary). Others may treat these mnemonics as synonyms 
(POPA/POPAD) and use the current setting of the operand-size attribute to determine the size of values to be 
popped from the stack, regardless of the mnemonic used. (The D flag in the current code segment’s segment 
descriptor determines the operand-size attribute.)

This instruction executes as described in non-64-bit modes. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

IF OperandSize = 32 (* Instruction = POPAD *)
THEN

EDI := Pop();
ESI := Pop();
EBP := Pop();
Increment ESP by 4; (* Skip next 4 bytes of stack *)
EBX := Pop();
EDX := Pop();
ECX := Pop();
EAX := Pop();

ELSE (* OperandSize = 16, instruction = POPA *)
DI := Pop();
SI := Pop();
BP := Pop();
Increment ESP by 2; (* Skip next 2 bytes of stack *)
BX := Pop();
DX := Pop();
CX := Pop();
AX := Pop();

FI;
FI;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

61 POPA ZO Invalid Valid Pop DI, SI, BP, BX, DX, CX, and AX.

61 POPAD ZO Invalid Valid Pop EDI, ESI, EBP, EBX, EDX, ECX, and EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the starting or ending stack address is not within the stack segment. 
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level is 3 and alignment 

checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#SS If the starting or ending stack address is not within the stack segment.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#SS(0) If the starting or ending stack address is not within the stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
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POPCNT—Return the Count of Number of Bits Set to 1

Instruction Operand Encoding

Description

This instruction calculates the number of bits set to 1 in the second operand (source) and returns the count in the 
first operand (a destination register).

Operation

Count = 0;
For (i=0; i < OperandSize; i++) 
{  IF (SRC[ i] = 1) // i’th bit

THEN Count++; FI;
}
DEST := Count;

Flags Affected

OF, SF, ZF, AF, CF, PF are all cleared. ZF is set if SRC = 0, otherwise ZF is cleared.

Intel C/C++ Compiler Intrinsic Equivalent

POPCNT int _mm_popcnt_u32(unsigned int a);
POPCNT int64_t _mm_popcnt_u64(unsigned __int64 a);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS segments.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while the current privilege level is 3 and alignment 

checking is enabled.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F3 0F B8 /r POPCNT r16, r/m16 RM Valid Valid POPCNT on r/m16

F3 0F B8 /r POPCNT r32, r/m32 RM Valid Valid POPCNT on r/m32

F3 REX.W 0F B8 /r POPCNT r64, r/m64 RM Valid N.E. POPCNT on r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
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POPF/POPFD/POPFQ—Pop Stack Into EFLAGS Register

Instruction Operand Encoding

Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size attribute is 32) and stores the 
value in the EFLAGS register, or pops a word from the top of the stack (if the operand-size attribute is 16) and 
stores it in the lower 16 bits of the EFLAGS register (that is, the FLAGS register). These instructions reverse the 
operation of the PUSHF/PUSHFD/PUSHFQ instructions. 

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same opcode. The POPF instruction 
is intended for use when the operand-size attribute is 16; the POPFD instruction is intended for use when the 
operand-size attribute is 32. Some assemblers may force the operand size to 16 for POPF and to 32 for POPFD. 
Others may treat the mnemonics as synonyms (POPF/POPFD) and use the setting of the operand-size attribute to 
determine the size of values to pop from the stack.

The effect of POPF/POPFD on the EFLAGS register changes, depending on the mode of operation. See Table 1-16 
and the key below for details.

When operating in protected, compatibility, or 64-bit mode at privilege level 0 (or in real-address mode, the equiv-
alent to privilege level 0), all non-reserved flags in the EFLAGS register except RF1, VIP, VIF, and VM may be modi-
fied. VIP, VIF, and VM remain unaffected.

When operating in protected, compatibility, or 64-bit mode with a privilege level greater than 0, but less than or 
equal to IOPL, all flags can be modified except the IOPL field and RF, IF, VIP, VIF, and VM; these remain unaffected. 
The AC and ID flags can only be modified if the operand-size attribute is 32. The interrupt flag (IF) is altered only 
when executing at a level at least as privileged as the IOPL. If a POPF/POPFD instruction is executed with insuffi-
cient privilege, an exception does not occur but privileged bits do not change.

When operating in virtual-8086 mode (EFLAGS.VM = 1) without the virtual-8086 mode extensions (CR4.VME = 0), 
the POPF/POPFD instructions can be used only if IOPL = 3; otherwise, a general-protection exception (#GP) 
occurs. If the virtual-8086 mode extensions are enabled (CR4.VME = 1), POPF (but not POPFD) can be executed in 
virtual-8086 mode with IOPL < 3.

(The protected-mode virtual-interrupt feature — enabled by setting CR4.PVI — affects the CLI and STI instructions 
in the same manner as the virtual-8086 mode extensions. POPF, however, is not affected by CR4.PVI.)

In 64-bit mode, the mnemonic assigned is POPFQ (note that the 32-bit operand is not encodable). POPFQ pops 64 
bits from the stack. Reserved bits of RFLAGS (including the upper 32 bits of RFLAGS) are not affected.

See Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more informa-
tion about the EFLAGS registers.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

9D POPF ZO Valid Valid Pop top of stack into lower 16 bits of EFLAGS.

9D POPFD ZO N.E. Valid Pop top of stack into EFLAGS.

9D POPFQ ZO Valid N.E. Pop top of stack and zero-extend into RFLAGS. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

1. RF is always zero after the execution of POPF. This is because POPF, like all instructions, clears RF as it begins to execute.
POPF/POPFD/POPFQ—Pop Stack Into EFLAGS Register Vol. 2B 4-405



Operation

IF EFLAGS.VM = 0 (* Not in Virtual-8086 Mode *)
THEN IF CPL = 0 OR CR0.PE = 0

THEN
IF OperandSize = 32;

THEN 
EFLAGS := Pop(); (* 32-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified; 
VIP, VIF, VM, and all reserved bits are unaffected. RF is cleared. *)

ELSE IF (Operandsize = 64)
RFLAGS = Pop(); (* 64-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified; 
VIP, VIF, VM, and all reserved bits are unaffected. RF is cleared. *)

Table 1-16.  Effect of POPF/POPFD on the EFLAGS Register 

Mode
Operand

Size
CPL IOPL

Flags
Notes

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

Real-Address 
Mode

(CR0.PE = 0)

16 0 0-3 N N N N N 0 S S S S S S S S S S S

32 0 0-3 S N N S N 0 S S S S S S S S S S S

Protected, 
Compatibility, 

and 64-Bit 
Modes

(CR0.PE = 1 
EFLAGS.VM = 0)

16 0 0-3 N N N N N 0 S S S S S S S S S S S

16 1-3 <CPL N N N N N 0 S N S S N S S S S S S

16 1-3 ≥CPL N N N N N 0 S N S S S S S S S S S

32, 64 0 0-3 S N N S N 0 S S S S S S S S S S S

32, 64 1-3 <CPL S N N S N 0 S N S S N S S S S S S

32, 64 1-3 ≥CPL S N N S N 0 S N S S S S S S S S S

Virtual-8086
(CR0.PE = 1

EFLAGS.VM = 1
CR4.VME = 0)

16 3 0-2 X X X X X X X X X X X X X X X X X 1

16 3 3 N N N N N 0 S N S S S S S S S S S

32 3 0-2 X X X X X X X X X X X X X X X X X 1

32 3 3 S N N S N 0 S N S S S S S S S S S

VME
(CR0.PE = 1

EFLAGS.VM = 1
CR4.VME = 1)

16 3 0-2 N/
X

N/
X

SV/
X

N/
X

N/
X

0/
X

S/
X

N/X S/
X

S/
X

N/
X

S/
X

S/
X

S/
X

S/
X

S/
X

S/
X

2,3

16 3 3 N N N N N 0 S N S S S S S S S S S

32 3 0-2 X X X X X X X X X X X X X X X X X 1

32 3 3 S N N S N 0 S N S S S S S S S S S

NOTES:
1. #GP fault - no flag update
2. #GP fault with no flag update if VIP=1 in EFLAGS register and IF=1 in FLAGS value on stack
3. #GP fault with no flag update if TF=1 in FLAGS value on stack

Key

S Updated from stack

SV Updated from IF (bit 9) in FLAGS value on stack

N No change in value

X No EFLAGS update

0 Value is cleared
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ELSE (* OperandSize = 16 *)
EFLAGS[15:0] := Pop(); (* 16-bit pop *)
(* All non-reserved flags can be modified. *)

FI;
ELSE (* CPL > 0 *)

IF OperandSize = 32
THEN 

IF CPL > IOPL
THEN

EFLAGS := Pop(); (* 32-bit pop *)
(* All non-reserved bits except IF, IOPL, VIP, VIF, VM, and RF can be modified; 
IF, IOPL, VIP, VIF, VM, and all reserved bits are unaffected; RF is cleared. *)

ELSE
EFLAGS := Pop(); (* 32-bit pop *)
(* All non-reserved bits except IOPL, VIP, VIF, VM, and RF can be modified; 
IOPL, VIP, VIF, VM, and all reserved bits are unaffected; RF is cleared. *)

FI;
ELSE IF (Operandsize = 64)

IF CPL > IOPL
THEN

RFLAGS := Pop(); (* 64-bit pop *)
(* All non-reserved bits except IF, IOPL, VIP, VIF, VM, and RF can be modified; 
IF, IOPL, VIP, VIF, VM, and all reserved bits are unaffected; RF is cleared. *)

ELSE
RFLAGS := Pop(); (* 64-bit pop *)
(* All non-reserved bits except IOPL, VIP, VIF, VM, and RF can be modified; 
IOPL, VIP, VIF, VM, and all reserved bits are unaffected; RF is cleared. *)

FI;
ELSE (* OperandSize = 16 *)

EFLAGS[15:0] := Pop(); (* 16-bit pop *)
(* All non-reserved bits except IOPL can be modified; IOPL and all
reserved bits are unaffected. *)

FI;
FI;

ELSE (* In virtual-8086 mode *)
IF IOPL = 3

THEN
IF OperandSize = 32 

THEN 
EFLAGS := Pop();
(* All non-reserved bits except IOPL, VIP, VIF, VM, and RF can be modified; 
VIP, VIF, VM, IOPL, and all reserved bits are unaffected. RF is cleared. *)

ELSE 
EFLAGS[15:0] := Pop(); FI;
(* All non-reserved bits except IOPL can be modified; IOPL and all reserved bits are unaffected. *)

FI;
ELSE (* IOPL < 3 *)

IF (Operandsize = 32) OR (CR4.VME = 0)
THEN #GP(0); (* Trap to virtual-8086 monitor. *)
ELSE (* Operandsize = 16 and CR4.VME = 1 *)

tempFLAGS := Pop();
IF (EFLAGS.VIP = 1 AND tempFLAGS[9] = 1) OR tempFLAGS[8] = 1

      THEN #GP(0);
      ELSE
POPF/POPFD/POPFQ—Pop Stack Into EFLAGS Register Vol. 2B 4-407



                  EFLAGS.VIF := tempFLAGS[9];
                  EFLAGS[15:0] := tempFLAGS;
                  (* All non-reserved bits except IOPL and IF can be modified;

IOPL, IF, and all reserved bits are unaffected. *)
FI;

FI;
FI;

FI;

Flags Affected

All flags may be affected; see the Operation section for details.

Protected Mode Exceptions
#SS(0) If the top of stack is not within the stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while CPL = 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#SS If the top of stack is not within the stack segment.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If IOPL < 3 and VME is not enabled.

If IOPL < 3 and the 32-bit operand size is used.
If IOPL < 3, EFLAGS.VIP = 1, and bit 9 (IF) is set in the FLAGS value on the stack.
If IOPL < 3 and bit 8 (TF) is set in the FLAGS value on the stack.
If an attempt is made to execute the POPF/POPFD instruction with an operand-size override 
prefix.

#SS(0) If the top of stack is not within the stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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POR—Bitwise Logical OR

Instruction Operand Encoding

Description

Performs a bitwise logical OR operation on the source operand (second operand) and the destination operand (first 
operand) and stores the result in the destination operand. Each bit of the result is set to 1 if either or both of the 
corresponding bits of the first and second operands are 1; otherwise, it is set to 0.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F EB /r1

POR mm, mm/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V MMX Bitwise OR of mm/m64 and mm.

66 0F EB /r

POR xmm1, xmm2/m128

A V/V SSE2 Bitwise OR of xmm2/m128 and xmm1.

VEX.128.66.0F.WIG EB /r

VPOR xmm1, xmm2, xmm3/m128

B V/V AVX Bitwise OR of xmm2/m128 and xmm3.

VEX.256.66.0F.WIG EB /r

VPOR ymm1, ymm2, ymm3/m256

B V/V AVX2 Bitwise OR of ymm2/m256 and ymm3.

EVEX.128.66.0F.W0 EB /r
VPORD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst 

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Bitwise OR of packed doubleword integers in 
xmm2 and xmm3/m128/m32bcst using 
writemask k1. 

EVEX.256.66.0F.W0 EB /r
VPORD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst 

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Bitwise OR of packed doubleword integers in 
ymm2 and ymm3/m256/m32bcst using 
writemask k1. 

EVEX.512.66.0F.W0 EB /r
VPORD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst 

C V/V AVX512F 
OR AVX10.12

Bitwise OR of packed doubleword integers in 
zmm2 and zmm3/m512/m32bcst using 
writemask k1. 

EVEX.128.66.0F.W1 EB /r
VPORQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Bitwise OR of packed quadword integers in 
xmm2 and xmm3/m128/m64bcst using 
writemask k1. 

EVEX.256.66.0F.W1 EB /r
VPORQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Bitwise OR of packed quadword integers in 
ymm2 and ymm3/m256/m64bcst using 
writemask k1. 

EVEX.512.66.0F.W1 EB /r
VPORQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512F 
OR AVX10.12

Bitwise OR of packed quadword integers in 
zmm2 and zmm3/m512/m64bcst using 
writemask k1. 

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
Legacy SSE version: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand is an MMX technology register.

128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first 
source and destination operands can be XMM registers. Bits (MAXVL-1:128) of the corresponding YMM destination 
register remain unchanged.
VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first 
source and destination operands can be XMM registers. Bits (MAXVL-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: The second source operand is an YMM register or a 256-bit memory location. The first 
source and destination operands can be YMM registers.
EVEX encoded version: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 
32/64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write-
mask k1 at 32/64-bit granularity.

Operation

POR (64-bit Operand)
DEST := DEST OR SRC

POR (128-bit Legacy SSE Version)
DEST := DEST OR SRC
DEST[MAXVL-1:128] (Unmodified)

VPOR (VEX.128 Encoded Version)
DEST := SRC1 OR SRC2
DEST[MAXVL-1:128] := 0

VPOR (VEX.256 Encoded Version)
DEST := SRC1 OR SRC2
DEST[MAXVL-1:256] := 0

VPORD (EVEX Encoded Versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] := SRC1[i+31:i] BITWISE OR SRC2[31:0]
ELSE DEST[i+31:i] := SRC1[i+31:i] BITWISE OR SRC2[i+31:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
*DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI;

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPORD __m512i _mm512_or_epi32(__m512i a, __m512i b);
VPORD __m512i _mm512_mask_or_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPORD __m512i _mm512_maskz_or_epi32( __mmask16 k, __m512i a, __m512i b);
VPORD __m256i _mm256_or_epi32(__m256i a, __m256i b);
VPORD __m256i _mm256_mask_or_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b,);
VPORD __m256i _mm256_maskz_or_epi32( __mmask8 k, __m256i a, __m256i b);
VPORD __m128i _mm_or_epi32(__m128i a, __m128i b);
VPORD __m128i _mm_mask_or_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPORD __m128i _mm_maskz_or_epi32( __mmask8 k, __m128i a, __m128i b);
VPORQ __m512i _mm512_or_epi64(__m512i a, __m512i b);
VPORQ __m512i _mm512_mask_or_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPORQ __m512i _mm512_maskz_or_epi64(__mmask8 k, __m512i a, __m512i b);
VPORQ __m256i _mm256_or_epi64(__m256i a, int imm);
VPORQ __m256i _mm256_mask_or_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPORQ __m256i _mm256_maskz_or_epi64( __mmask8 k, __m256i a, __m256i b);
VPORQ __m128i _mm_or_epi64(__m128i a, __m128i b);
VPORQ __m128i _mm_mask_or_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPORQ __m128i _mm_maskz_or_epi64( __mmask8 k, __m128i a, __m128i b);
POR __m64 _mm_or_si64(__m64 m1, __m64 m2)
(V)POR __m128i _mm_or_si128(__m128i m1, __m128i m2)
VPOR __m256i _mm256_or_si256 ( __m256i a, __m256i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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PREFETCHh—Prefetch Data Into Caches

Instruction Operand Encoding

Description

Fetches the line of data or code (instructions’ bytes) from memory that contains the byte specified with the source 
operand to a location in the cache hierarchy specified by a locality hint:
• T0 (temporal data)—prefetch data into all levels of the cache hierarchy.
• T1 (temporal data with respect to first level cache misses)—prefetch data into level 2 cache and higher.
• T2 (temporal data with respect to second level cache misses)—prefetch data into level 3 cache and higher, or 

an implementation-specific choice.
• NTA (non-temporal data with respect to all cache levels)—prefetch data into non-temporal cache structure and 

into a location close to the processor, minimizing cache pollution.
• IT0 (temporal code)—prefetch code into all levels of the cache hierarchy.
• IT1 (temporal code with respect to first level cache misses)—prefetch code into all but the first-level of the 

cache hierarchy.

The source operand is a byte memory location. (The locality hints are encoded into the machine level instruction 
using bits 3 through 5 of the ModR/M byte.) Some locality hints may prefetch only for RIP-relative memory 
addresses; see additional details below. The address to prefetch is NextRIP + 32-bit displacement, where NextRIP 
is the first byte of the instruction that follows the prefetch instruction itself.

If the line selected is already present in the cache hierarchy at a level closer to the processor, no data movement 
occurs. Prefetches from uncacheable or WC memory are ignored.

The PREFETCHh instruction is merely a hint and does not affect program behavior. If executed, this instruction 
moves data closer to the processor in anticipation of future use.

The implementation of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by a 
processor implementation. The amount of data or code lines prefetched is also processor implementation-depen-
dent. It will, however, be a minimum of 32 bytes. Additional details of the implementation-dependent locality hints 
are described in Section 7.4 of Intel® 64 and IA-32 Architectures Optimization Reference Manual.

It should be noted that processors are free to speculatively fetch and cache data from system memory regions that 
are assigned a memory-type that permits speculative reads (that is, the WB, WC, and WT memory types). A 

Opcode/
Instruction

Op/ 
En

64/32 Bit 
Mode 
Support

Description

0F 18 /1

PREFETCHT0 m8

M V/V Move data from m8 closer to the processor using T0 hint.

0F 18 /2

PREFETCHT1 m8

M V/V Move data from m8 closer to the processor using T1 hint.

0F 18 /3

PREFETCHT2 m8

M V/V Move data from m8 closer to the processor using T2 hint.

0F 18 /0

PREFETCHNTA m8

M V/V Move data from m8 closer to the processor using NTA hint.

0F 18 /7 

PREFETCHIT0 m8 

M V/I Move code from relative address closer to the processor using IT0 hint.

0F 18 /6 

PREFETCHIT1 m8 

M V/I Move code from relative address closer to the processor using IT1 hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A
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PREFETCHh instruction is considered a hint to this speculative behavior. Because this speculative fetching can occur 
at any time and is not tied to instruction execution, a PREFETCHh instruction is not ordered with respect to the 
fence instructions (MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHh instruction is also 
unordered with respect to CLFLUSH and CLFLUSHOPT instructions, other PREFETCHh instructions, or any other 
general instruction. It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and MOV CR.
PREFETCHIT0/1 can be used in 64-bit mode with RIP-relative addressing; they remain NOPs otherwise. For optimal 
performance, the addresses used with these instructions should be the starting byte of a real instruction.
PREFETCHIT0/1 instructions are enumerated by CPUID.(EAX=07H, ECX=01H).EDX.PREFETCHI[bit 14].The encod-
ings remain NOPs in processors that do not enumerate these instructions.

Operation

FETCH (m8);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char *p, int i)
The argument “*p” gives the address of the byte (and corresponding cache line) to be prefetched. The value “i” gives a constant 
(_MM_HINT_T0, _MM_HINT_T1, _MM_HINT_T2, _MM_HINT_NTA, _MM_HINT_IT0, or _MM_HINT_IT1) that specifies the type of 
prefetch operation to be performed.

Numeric Exceptions

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
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PREFETCHW—Prefetch Data Into Caches in Anticipation of a Write

Instruction Operand Encoding

Description

Fetches the cache line of data from memory that contains the byte specified with the source operand to a location 
in the 1st or 2nd level cache and invalidates other cached instances of the line.
The source operand is a byte memory location. If the line selected is already present in the lowest level cache and 
is already in an exclusively owned state, no data movement occurs. Prefetches from non-writeback memory are 
ignored.
The PREFETCHW instruction is merely a hint and does not affect program behavior. If executed, this instruction 
moves data closer to the processor and invalidates other cached copies in anticipation of the line being written to 
in the future.
The characteristic of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by a 
processor implementation. The amount of data prefetched is also processor implementation-dependent. It will, 
however, be a minimum of 32 bytes. Additional details of the implementation-dependent locality hints are 
described in Section 7.4 of Intel® 64 and IA-32 Architectures Optimization Reference Manual.
It should be noted that processors are free to speculatively fetch and cache data with exclusive ownership from 
system memory regions that permit such accesses (that is, the WB memory type). A PREFETCHW instruction is 
considered a hint to this speculative behavior. Because this speculative fetching can occur at any time and is not 
tied to instruction execution, a PREFETCHW instruction is not ordered with respect to the fence instructions 
(MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHW instruction is also unordered with 
respect to CLFLUSH and CLFLUSHOPT instructions, other PREFETCHW instructions, or any other general instruction
It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and MOV CR.
This instruction's operation is the same in non-64-bit modes and 64-bit mode.

Operation

FETCH_WITH_EXCLUSIVE_OWNERSHIP (m8);

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

void _m_prefetchw( void * );

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

0F 0D /1
PREFETCHW m8

M V/V PREFETCHW Move data from m8 closer to the processor in anticipation of a 
write.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A
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Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
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PSADBW—Compute Sum of Absolute Differences

Instruction Operand Encoding

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F F6 /r1

PSADBW mm1, mm2/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V SSE Computes the absolute differences of the packed 
unsigned byte integers from mm2 /m64 and 
mm1; differences are then summed to produce an 
unsigned word integer result.

66 0F F6 /r

PSADBW xmm1, xmm2/m128

A V/V SSE2 Computes the absolute differences of the packed 
unsigned byte integers from xmm2 /m128 and 
xmm1; the 8 low differences and 8 high 
differences are then summed separately to 
produce two unsigned word integer results.

VEX.128.66.0F.WIG F6 /r

VPSADBW xmm1, xmm2, xmm3/m128

B V/V AVX Computes the absolute differences of the packed 
unsigned byte integers from xmm3 /m128 and 
xmm2; the 8 low differences and 8 high 
differences are then summed separately to 
produce two unsigned word integer results.

VEX.256.66.0F.WIG F6 /r

VPSADBW ymm1, ymm2, ymm3/m256

B V/V AVX2 Computes the absolute differences of the packed 
unsigned byte integers from ymm3 /m256 and 
ymm2; then each consecutive 8 differences are 
summed separately to produce four unsigned 
word integer results.

EVEX.128.66.0F.WIG F6 /r
VPSADBW xmm1, xmm2, xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Computes the absolute differences of the packed 
unsigned byte integers from xmm3 /m128 and 
xmm2; then each consecutive 8 differences are 
summed separately to produce two unsigned 
word integer results.

EVEX.256.66.0F.WIG F6 /r
VPSADBW ymm1, ymm2, ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Computes the absolute differences of the packed 
unsigned byte integers from ymm3 /m256 and 
ymm2; then each consecutive 8 differences are 
summed separately to produce four unsigned 
word integer results.

EVEX.512.66.0F.WIG F6 /r
VPSADBW zmm1, zmm2, zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Computes the absolute differences of the packed 
unsigned byte integers from zmm3 /m512 and 
zmm2; then each consecutive 8 differences are 
summed separately to produce eight unsigned 
word integer results.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) N/A
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Description

Computes the absolute value of the difference of 8 unsigned byte integers from the source operand (second 
operand) and from the destination operand (first operand). These 8 differences are then summed to produce an 
unsigned word integer result that is stored in the destination operand. Figure 1-14 shows the operation of the 
PSADBW instruction when using 64-bit operands.

When operating on 64-bit operands, the word integer result is stored in the low word of the destination operand, 
and the remaining bytes in the destination operand are cleared to all 0s.

When operating on 128-bit operands, two packed results are computed. Here, the 8 low-order bytes of the source 
and destination operands are operated on to produce a word result that is stored in the low word of the destination 
operand, and the 8 high-order bytes are operated on to produce a word result that is stored in bits 64 through 79 
of the destination operand. The remaining bytes of the destination operand are cleared.
For 256-bit version, the third group of 8 differences are summed to produce an unsigned word in bits[143:128] of 
the destination register and the fourth group of 8 differences are summed to produce an unsigned word in 
bits[207:192] of the destination register. The remaining words of the destination are set to 0. 
For 512-bit version, the fifth group result is stored in bits [271:256] of the destination. The result from the sixth 
group is stored in bits [335:320]. The results for the seventh and eighth group are stored respectively in bits 
[399:384] and bits [463:447], respectively. The remaining bits in the destination are set to 0.

In 64-bit mode and not encoded by VEX/EVEX prefix, using a REX prefix in the form of REX.R permits this instruc-
tion to access additional registers (XMM8-XMM15).
Legacy SSE version: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand is an MMX technology register.
128-bit Legacy SSE version: The first source operand and destination register are XMM registers. The second 
source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding ZMM 
destination register remain unchanged.
VEX.128 and EVEX.128 encoded versions: The first source operand and destination register are XMM registers. The 
second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding 
ZMM register are zeroed.
VEX.256 and EVEX.256 encoded versions: The first source operand and destination register are YMM registers. The 
second source operand is an YMM register or a 256-bit memory location. Bits (MAXVL-1:256) of the corresponding 
ZMM register are zeroed.
EVEX.512 encoded version: The first source operand and destination register are ZMM registers. The second 
source operand is a ZMM register or a 512-bit memory location.

Figure 1-14.  PSADBW Instruction Operation Using 64-bit Operands

X3 X2 X1 X0SRC

DEST

TEMP

X4X5X6X7

Y3 Y2 Y1 Y0Y4Y5Y6Y7

ABS(X0:Y0)ABS(X7:Y7) ABS(X6:Y6) ABS(X5:Y5) ABS(X4:Y4) ABS(X3:Y3) ABS(X2:Y2) ABS(X1:Y1)

DEST 00H 00H00H00H00H00H SUM(TEMP7...TEMP0)
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Operation

VPSADBW (EVEX Encoded Versions)
VL = 128, 256, 512
TEMP0 := ABS(SRC1[7:0] - SRC2[7:0])
(* Repeat operation for bytes 1 through 15 *)
TEMP15 := ABS(SRC1[127:120] - SRC2[127:120])
DEST[15:0] := SUM(TEMP0:TEMP7)
DEST[63:16] := 000000000000H
DEST[79:64] := SUM(TEMP8:TEMP15)
DEST[127:80] := 00000000000H

IF VL >= 256
(* Repeat operation for bytes 16 through 31*)
TEMP31 := ABS(SRC1[255:248] - SRC2[255:248])
DEST[143:128] := SUM(TEMP16:TEMP23)
DEST[191:144] := 000000000000H
DEST[207:192] := SUM(TEMP24:TEMP31)
DEST[223:208] := 00000000000H

FI;
IF VL >= 512
(* Repeat operation for bytes 32 through 63*)

TEMP63 := ABS(SRC1[511:504] - SRC2[511:504])
DEST[271:256] := SUM(TEMP0:TEMP7)
DEST[319:272] := 000000000000H
DEST[335:320] := SUM(TEMP8:TEMP15)
DEST[383:336] := 00000000000H
DEST[399:384] := SUM(TEMP16:TEMP23)
DEST[447:400] := 000000000000H
DEST[463:448] := SUM(TEMP24:TEMP31)
DEST[511:464] := 00000000000H

FI;
DEST[MAXVL-1:VL] := 0

VPSADBW (VEX.256 Encoded Version)
TEMP0 := ABS(SRC1[7:0] - SRC2[7:0])
(* Repeat operation for bytes 2 through 30*)
TEMP31 := ABS(SRC1[255:248] - SRC2[255:248])
DEST[15:0] := SUM(TEMP0:TEMP7)
DEST[63:16] := 000000000000H
DEST[79:64] := SUM(TEMP8:TEMP15)
DEST[127:80] := 00000000000H
DEST[143:128] := SUM(TEMP16:TEMP23)
DEST[191:144] := 000000000000H
DEST[207:192] := SUM(TEMP24:TEMP31)
DEST[223:208] := 00000000000H
DEST[MAXVL-1:256] := 0
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VPSADBW (VEX.128 Encoded Version)
TEMP0 := ABS(SRC1[7:0] - SRC2[7:0])
(* Repeat operation for bytes 2 through 14 *)
TEMP15 := ABS(SRC1[127:120] - SRC2[127:120])
DEST[15:0] := SUM(TEMP0:TEMP7)
DEST[63:16] := 000000000000H
DEST[79:64] := SUM(TEMP8:TEMP15)
DEST[127:80] := 00000000000H
DEST[MAXVL-1:128] := 0

PSADBW (128-bit Legacy SSE Version)
TEMP0 := ABS(DEST[7:0] - SRC[7:0])
(* Repeat operation for bytes 2 through 14 *)
TEMP15 := ABS(DEST[127:120] - SRC[127:120])
DEST[15:0] := SUM(TEMP0:TEMP7)
DEST[63:16] := 000000000000H
DEST[79:64] := SUM(TEMP8:TEMP15)
DEST[127:80] := 00000000000
DEST[MAXVL-1:128] (Unmodified)

PSADBW (64-bit Operand)
TEMP0 := ABS(DEST[7:0] - SRC[7:0])
(* Repeat operation for bytes 2 through 6 *)
TEMP7 := ABS(DEST[63:56] - SRC[63:56])
DEST[15:0] := SUM(TEMP0:TEMP7)
DEST[63:16] := 000000000000H

Intel C/C++ Compiler Intrinsic Equivalent

VPSADBW __m512i _mm512_sad_epu8( __m512i a, __m512i b)
PSADBW __m64 _mm_sad_pu8(__m64 a,__m64 b)
(V)PSADBW __m128i _mm_sad_epu8(__m128i a, __m128i b)
VPSADBW __m256i _mm256_sad_epu8( __m256i a, __m256i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
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PSHUFB—Packed Shuffle Bytes

Instruction Operand Encoding

Description 

PSHUFB performs in-place shuffles of bytes in the destination operand (the first operand) according to the shuffle 
control mask in the source operand (the second operand). The instruction permutes the data in the destination 
operand, leaving the shuffle mask unaffected. If the most significant bit (bit[7]) of each byte of the shuffle control 
mask is set, then constant zero is written in the result byte. Each byte in the shuffle control mask forms an index 
to permute the corresponding byte in the destination operand. The value of each index is the least significant 4 bits 
(128-bit operation) or 3 bits (64-bit operation) of the shuffle control byte. When the source operand is a 128-bit 
memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will 
be generated. 

In 64-bit mode and not encoded with VEX/EVEX, use the REX prefix to access XMM8-XMM15 registers. 
Legacy SSE version 64-bit operand: Both operands can be MMX registers.

128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAXVL-
1:128) of the corresponding YMM destination register remain unchanged.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 38 00 /r1 

PSHUFB mm1, mm2/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V SSSE3 Shuffle bytes in mm1 according to contents of 
mm2/m64. 

66 0F 38 00 /r 

PSHUFB xmm1, xmm2/m128

A V/V SSSE3 Shuffle bytes in xmm1 according to contents of 
xmm2/m128.

VEX.128.66.0F38.WIG 00 /r

VPSHUFB xmm1, xmm2, xmm3/m128

B V/V AVX Shuffle bytes in xmm2 according to contents of 
xmm3/m128.

VEX.256.66.0F38.WIG 00 /r

VPSHUFB ymm1, ymm2, ymm3/m256

B V/V AVX2 Shuffle bytes in ymm2 according to contents of 
ymm3/m256.

EVEX.128.66.0F38.WIG 00 /r
VPSHUFB xmm1 {k1}{z}, xmm2, xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Shuffle bytes in xmm2 according to contents of 
xmm3/m128 under write mask k1.

EVEX.256.66.0F38.WIG 00 /r
VPSHUFB ymm1 {k1}{z}, ymm2, ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Shuffle bytes in ymm2 according to contents of 
ymm3/m256 under write mask k1.

EVEX.512.66.0F38.WIG 00 /r
VPSHUFB zmm1 {k1}{z}, zmm2, zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Shuffle bytes in zmm2 according to contents of 
zmm3/m512 under write mask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VEX.128 encoded version: The destination operand is the first operand, the first source operand is the second 
operand, the second source operand is the third operand. Bits (MAXVL-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: Bits (255:128) of the destination YMM register stores the 16-byte shuffle result of the 
upper 16 bytes of the first source operand, using the upper 16-bytes of the second source operand as control 
mask. The value of each index is for the high 128-bit lane is the least significant 4 bits of the respective shuffle 
control byte. The index value selects a source data element within each 128-bit lane.
EVEX encoded version: The second source operand is an ZMM/YMM/XMM register or an 512/256/128-bit memory 
location. The first source operand and destination operands are ZMM/YMM/XMM registers. The destination is condi-
tionally updated with writemask k1.
EVEX and VEX encoded version: Four/two in-lane 128-bit shuffles.

Operation 

PSHUFB (With 64-bit Operands)
TEMP := DEST
for i = 0 to 7 { 

if (SRC[(i * 8)+7] = 1 ) then
DEST[(i*8)+7...(i*8)+0] := 0;

else 
index[2..0] := SRC[(i*8)+2 .. (i*8)+0];
DEST[(i*8)+7...(i*8)+0] := TEMP[(index*8+7)..(index*8+0)];

endif;
}
PSHUFB (with 128 bit operands)
TEMP := DEST
for i = 0 to 15 { 

if (SRC[(i * 8)+7] = 1 ) then
DEST[(i*8)+7..(i*8)+0] := 0;

 else 
index[3..0] := SRC[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] := TEMP[(index*8+7)..(index*8+0)];

endif
}

VPSHUFB (VEX.128 Encoded Version)
for i = 0 to 15 {

if (SRC2[(i * 8)+7] = 1) then
DEST[(i*8)+7..(i*8)+0] := 0;
else
index[3..0] := SRC2[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] := SRC1[(index*8+7)..(index*8+0)];

endif
}
DEST[MAXVL-1:128] := 0

VPSHUFB (VEX.256 Encoded Version)
for i = 0 to 15 {

if (SRC2[(i * 8)+7] == 1 ) then
DEST[(i*8)+7..(i*8)+0] := 0;
else
index[3..0] := SRC2[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] := SRC1[(index*8+7)..(index*8+0)];

endif
if (SRC2[128 + (i * 8)+7] == 1 ) then
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DEST[128 + (i*8)+7..(i*8)+0] := 0;
else
index[3..0] := SRC2[128 + (i*8)+3 .. (i*8)+0];
DEST[128 + (i*8)+7..(i*8)+0] := SRC1[128 + (index*8+7)..(index*8+0)];

endif
}

VPSHUFB (EVEX Encoded Versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
jmask := (KL-1) & ~0xF // 0x00, 0x10, 0x30 depending on the VL
FOR j = 0 TO KL-1 // dest

IF kl[ i ] or no_masking
index := src.byte[ j ];
IF index & 0x80

Dest.byte[ j ] := 0;
ELSE

index := (index & 0xF) + (j & jmask); // 16-element in-lane lookup
Dest.byte[ j ] := src.byte[ index ];

ELSE if zeroing
Dest.byte[ j ] := 0;

DEST[MAXVL-1:VL] := 0;

Intel C/C++ Compiler Intrinsic Equivalent

VPSHUFB __m512i _mm512_shuffle_epi8(__m512i a, __m512i b);
VPSHUFB __m512i _mm512_mask_shuffle_epi8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPSHUFB __m512i _mm512_maskz_shuffle_epi8( __mmask64 k, __m512i a, __m512i b);
VPSHUFB __m256i _mm256_mask_shuffle_epi8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPSHUFB __m256i _mm256_maskz_shuffle_epi8( __mmask32 k, __m256i a, __m256i b);
VPSHUFB __m128i _mm_mask_shuffle_epi8(__m128i s, __mmask16 k, __m128i a, __m128i b);
VPSHUFB __m128i _mm_maskz_shuffle_epi8( __mmask16 k, __m128i a, __m128i b);
PSHUFB: __m64 _mm_shuffle_pi8 (__m64 a, __m64 b)
(V)PSHUFB: __m128i _mm_shuffle_epi8 (__m128i a, __m128i b)
VPSHUFB:__m256i _mm256_shuffle_epi8(__m256i a, __m256i b)

Figure 1-15.  PSHUFB with 64-Bit Operands

07H         07H              FFH               80H               01H           00H               00H            00H

04H         01H              07H               03H               02H           02H               FFH            01H

04H         04H              00H               00H               FFH           01H               01H            01H

MM2

MM1

MM1
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SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
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PSHUFD—Shuffle Packed Doublewords

Instruction Operand Encoding

Description

Copies doublewords from source operand (second operand) and inserts them in the destination operand (first 
operand) at the locations selected with the order operand (third operand). Figure 1-16 shows the operation of the 
256-bit VPSHUFD instruction and the encoding of the order operand. Each 2-bit field in the order operand selects 
the contents of one doubleword location within a 128-bit lane and copy to the target element in the destination 
operand. For example, bits 0 and 1 of the order operand targets the first doubleword element in the low and high 
128-bit lane of the destination operand for 256-bit VPSHUFD. The encoded value of bits 1:0 of the order operand 
(see the field encoding in Figure 1-16) determines which doubleword element (from the respective 128-bit lane) of 
the source operand will be copied to doubleword 0 of the destination operand. 
For 128-bit operation, only the low 128-bit lane are operative. The source operand can be an XMM register or a 
128-bit memory location. The destination operand is an XMM register. The order operand is an 8-bit immediate. 
Note that this instruction permits a doubleword in the source operand to be copied to more than one doubleword 
location in the destination operand.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 70 /r ib

PSHUFD xmm1, xmm2/m128, imm8

A V/V  SSE2 Shuffle the doublewords in xmm2/m128 based on 
the encoding in imm8 and store the result in xmm1.

VEX.128.66.0F.WIG 70 /r ib

VPSHUFD xmm1, xmm2/m128, imm8

A V/V AVX Shuffle the doublewords in xmm2/m128 based on 
the encoding in imm8 and store the result in xmm1.

VEX.256.66.0F.WIG 70 /r ib

VPSHUFD ymm1, ymm2/m256, imm8

A V/V AVX2 Shuffle the doublewords in ymm2/m256 based on 
the encoding in imm8 and store the result in ymm1.

EVEX.128.66.0F.W0 70 /r ib
VPSHUFD xmm1 {k1}{z}, 
xmm2/m128/m32bcst, imm8

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Shuffle the doublewords in xmm2/m128/m32bcst 
based on the encoding in imm8 and store the result 
in xmm1 using writemask k1.

EVEX.256.66.0F.W0 70 /r ib
VPSHUFD ymm1 {k1}{z}, 
ymm2/m256/m32bcst, imm8

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shuffle the doublewords in ymm2/m256/m32bcst 
based on the encoding in imm8 and store the result 
in ymm1 using writemask k1.

EVEX.512.66.0F.W0 70 /r ib
VPSHUFD zmm1 {k1}{z}, 
zmm2/m512/m32bcst, imm8

B V/V AVX512F 
OR AVX10.11

Shuffle the doublewords in zmm2/m512/m32bcst 
based on the encoding in imm8 and store the result 
in zmm1 using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) imm8 N/A

B Full ModRM:reg (w) ModRM:r/m (r) imm8 N/A
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Figure 1-16.  256-bit VPSHUFD Instruction Operation

The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM 
register. The order operand is an 8-bit immediate. Note that this instruction permits a doubleword in the source 
operand to be copied to more than one doubleword location in the destination operand.
In 64-bit mode and not encoded in VEX/EVEX, using REX.R permits this instruction to access XMM8-XMM15.
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: The source operand can be an XMM register or a 128-bit memory location. The destina-
tion operand is an XMM register. Bits (MAXVL-1:128) of the corresponding ZMM register are zeroed.
VEX.256 encoded version: The source operand can be an YMM register or a 256-bit memory location. The destina-
tion operand is an YMM register. Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed. Bits (255-
1:128) of the destination stores the shuffled results of the upper 16 bytes of the source operand using the imme-
diate byte as the order operand.
EVEX encoded version: The source operand can be an ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion, or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a 
ZMM/YMM/XMM register updated according to the writemask. 
Each 128-bit lane of the destination stores the shuffled results of the respective lane of the source operand using 
the immediate byte as the order operand.
Note: EVEX.vvvv and VEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

Operation

PSHUFD (128-bit Legacy SSE Version)
DEST[31:0] := (SRC >> (ORDER[1:0] * 32))[31:0];
DEST[63:32] := (SRC >> (ORDER[3:2] * 32))[31:0];
DEST[95:64] := (SRC >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] := (SRC >> (ORDER[7:6] * 32))[31:0];
DEST[MAXVL-1:128] (Unmodified)

VPSHUFD (VEX.128 Encoded Version)
DEST[31:0] := (SRC >> (ORDER[1:0] * 32))[31:0];
DEST[63:32] := (SRC >> (ORDER[3:2] * 32))[31:0];
DEST[95:64] := (SRC >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] := (SRC >> (ORDER[7:6] * 32))[31:0];
DEST[MAXVL-1:128] := 0

X7 X6 X5 X4SRC

DEST Y7 Y6 Y5 Y4

ORDER
00B - X0
01B - X1
10B - X2
11B - X3

Encoding
of Fields in

ORDER01234567 Operand

Y3 Y2 Y1 Y0

X3 X2 X1 X0

00B - X4
01B - X5
10B - X6
11B - X7

Encoding
of Fields in

ORDER
Operand
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VPSHUFD (VEX.256 Encoded Version)
DEST[31:0] := (SRC[127:0] >> (ORDER[1:0] * 32))[31:0];
DEST[63:32] := (SRC[127:0] >> (ORDER[3:2] * 32))[31:0];
DEST[95:64] := (SRC[127:0] >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] := (SRC[127:0] >> (ORDER[7:6] * 32))[31:0];
DEST[159:128] := (SRC[255:128] >> (ORDER[1:0] * 32))[31:0];
DEST[191:160] := (SRC[255:128] >> (ORDER[3:2] * 32))[31:0];
DEST[223:192] := (SRC[255:128] >> (ORDER[5:4] * 32))[31:0];
DEST[255:224] := (SRC[255:128] >> (ORDER[7:6] * 32))[31:0];
DEST[MAXVL-1:256] := 0

VPSHUFD (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF (EVEX.b = 1) AND (SRC *is memory*)

THEN TMP_SRC[i+31:i] := SRC[31:0]
ELSE TMP_SRC[i+31:i] := SRC[i+31:i]

FI;
ENDFOR;
IF VL >= 128

TMP_DEST[31:0] := (TMP_SRC[127:0] >> (ORDER[1:0] * 32))[31:0];
TMP_DEST[63:32] := (TMP_SRC[127:0] >> (ORDER[3:2] * 32))[31:0];
TMP_DEST[95:64] := (TMP_SRC[127:0] >> (ORDER[5:4] * 32))[31:0];
TMP_DEST[127:96] := (TMP_SRC[127:0] >> (ORDER[7:6] * 32))[31:0];

FI;
IF VL >= 256

TMP_DEST[159:128] := (TMP_SRC[255:128] >> (ORDER[1:0] * 32))[31:0];
TMP_DEST[191:160] := (TMP_SRC[255:128] >> (ORDER[3:2] * 32))[31:0];
TMP_DEST[223:192] := (TMP_SRC[255:128] >> (ORDER[5:4] * 32))[31:0];
TMP_DEST[255:224] := (TMP_SRC[255:128] >> (ORDER[7:6] * 32))[31:0];

FI;
IF VL >= 512

TMP_DEST[287:256] := (TMP_SRC[383:256] >> (ORDER[1:0] * 32))[31:0];
TMP_DEST[319:288] := (TMP_SRC[383:256] >> (ORDER[3:2] * 32))[31:0];
TMP_DEST[351:320] := (TMP_SRC[383:256] >> (ORDER[5:4] * 32))[31:0];
TMP_DEST[383:352] := (TMP_SRC[383:256] >> (ORDER[7:6] * 32))[31:0];
TMP_DEST[415:384] := (TMP_SRC[511:384] >> (ORDER[1:0] * 32))[31:0];
TMP_DEST[447:416] := (TMP_SRC[511:384] >> (ORDER[3:2] * 32))[31:0];
TMP_DEST[479:448] := (TMP_SRC[511:384] >> (ORDER[5:4] * 32))[31:0];
TMP_DEST[511:480] := (TMP_SRC[511:384] >> (ORDER[7:6] * 32))[31:0];

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
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DEST[MAXVL-1:VL] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VPSHUFD __m512i _mm512_shuffle_epi32(__m512i a, int n );
VPSHUFD __m512i _mm512_mask_shuffle_epi32(__m512i s, __mmask16 k, __m512i a, int n );
VPSHUFD __m512i _mm512_maskz_shuffle_epi32( __mmask16 k, __m512i a, int n );
VPSHUFD __m256i _mm256_mask_shuffle_epi32(__m256i s, __mmask8 k, __m256i a, int n );
VPSHUFD __m256i _mm256_maskz_shuffle_epi32( __mmask8 k, __m256i a, int n );
VPSHUFD __m128i _mm_mask_shuffle_epi32(__m128i s, __mmask8 k, __m128i a, int n );
VPSHUFD __m128i _mm_maskz_shuffle_epi32( __mmask8 k, __m128i a, int n );
(V)PSHUFD __m128i _mm_shuffle_epi32(__m128i a, int n)
VPSHUFD __m256i _mm256_shuffle_epi32(__m256i a, const int n)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-52, “Type E4NF Class Exception Conditions.”
Additionally:
#UD If VEX.vvvv ≠ 1111B or EVEX.vvvv ≠ 1111B.
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PSHUFHW—Shuffle Packed High Words

Instruction Operand Encoding

Description

Copies words from the high quadword of a 128-bit lane of the source operand and inserts them in the high quad-
word of the destination operand at word locations (of the respective lane) selected with the immediate operand. 
This 256-bit operation is similar to the in-lane operation used by the 256-bit VPSHUFD instruction, which is illus-
trated in Figure 1-16. For 128-bit operation, only the low 128-bit lane is operative. Each 2-bit field in the immediate 
operand selects the contents of one word location in the high quadword of the destination operand. The binary 
encodings of the immediate operand fields select words (0, 1, 2 or 3, 4) from the high quadword of the source 
operand to be copied to the destination operand. The low quadword of the source operand is copied to the low 
quadword of the destination operand, for each 128-bit lane.
Note that this instruction permits a word in the high quadword of the source operand to be copied to more than one 
word location in the high quadword of the destination operand.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination operand is an XMM register. The source operand can be an XMM 
register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destination register remain 
unchanged.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F3 0F 70 /r ib

PSHUFHW xmm1, xmm2/m128, imm8

A V/V SSE2 Shuffle the high words in xmm2/m128 based 
on the encoding in imm8 and store the result in 
xmm1.

VEX.128.F3.0F.WIG 70 /r ib

VPSHUFHW xmm1, xmm2/m128, imm8

A V/V AVX Shuffle the high words in xmm2/m128 based 
on the encoding in imm8 and store the result in 
xmm1.

VEX.256.F3.0F.WIG 70 /r ib

VPSHUFHW ymm1, ymm2/m256, imm8

A V/V AVX2 Shuffle the high words in ymm2/m256 based 
on the encoding in imm8 and store the result in 
ymm1.

EVEX.128.F3.0F.WIG 70 /r ib
VPSHUFHW xmm1 {k1}{z}, xmm2/m128, 
imm8

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Shuffle the high words in xmm2/m128 based 
on the encoding in imm8 and store the result in 
xmm1 under write mask k1.

EVEX.256.F3.0F.WIG 70 /r ib
VPSHUFHW ymm1 {k1}{z}, ymm2/m256, 
imm8

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Shuffle the high words in ymm2/m256 based 
on the encoding in imm8 and store the result in 
ymm1 under write mask k1.

EVEX.512.F3.0F.WIG 70 /r ib
VPSHUFHW zmm1 {k1}{z}, zmm2/m512, 
imm8

B V/V AVX512BW 
OR AVX10.11

Shuffle the high words in zmm2/m512 based 
on the encoding in imm8 and store the result in 
zmm1 under write mask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) imm8 N/A

B Full Mem ModRM:reg (w) ModRM:r/m (r) imm8 N/A
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VEX.128 encoded version: The destination operand is an XMM register. The source operand can be an XMM register 
or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are zeroed. VEX.vvvv is 
reserved and must be 1111b, VEX.L must be 0, otherwise the instruction will #UD.
VEX.256 encoded version: The destination operand is an YMM register. The source operand can be an YMM register 
or a 256-bit memory location. 
EVEX encoded version: The destination operand is a ZMM/YMM/XMM registers. The source operand can be a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination is updated according to the write-
mask.
Note: In VEX encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

PSHUFHW (128-bit Legacy SSE Version)
DEST[63:0] := SRC[63:0]
DEST[79:64] := (SRC >> (imm[1:0] *16))[79:64]
DEST[95:80] := (SRC >> (imm[3:2] * 16))[79:64]
DEST[111:96] := (SRC >> (imm[5:4] * 16))[79:64]
DEST[127:112] := (SRC >> (imm[7:6] * 16))[79:64]
DEST[MAXVL-1:128] (Unmodified)

VPSHUFHW (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0]
DEST[79:64] := (SRC1 >> (imm[1:0] *16))[79:64]
DEST[95:80] := (SRC1 >> (imm[3:2] * 16))[79:64]
DEST[111:96] := (SRC1 >> (imm[5:4] * 16))[79:64]
DEST[127:112] := (SRC1 >> (imm[7:6] * 16))[79:64]
DEST[MAXVL-1:128] := 0

VPSHUFHW (VEX.256 Encoded Version)
DEST[63:0] := SRC1[63:0]
DEST[79:64] := (SRC1 >> (imm[1:0] *16))[79:64]
DEST[95:80] := (SRC1 >> (imm[3:2] * 16))[79:64]
DEST[111:96] := (SRC1 >> (imm[5:4] * 16))[79:64]
DEST[127:112] := (SRC1 >> (imm[7:6] * 16))[79:64]
DEST[191:128] := SRC1[191:128]
DEST[207192] := (SRC1 >> (imm[1:0] *16))[207:192]
DEST[223:208] := (SRC1 >> (imm[3:2] * 16))[207:192]
DEST[239:224] := (SRC1 >> (imm[5:4] * 16))[207:192]
DEST[255:240] := (SRC1 >> (imm[7:6] * 16))[207:192]
DEST[MAXVL-1:256] := 0

VPSHUFHW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL >= 128

TMP_DEST[63:0] := SRC1[63:0]
TMP_DEST[79:64] := (SRC1 >> (imm[1:0] *16))[79:64]
TMP_DEST[95:80] := (SRC1 >> (imm[3:2] * 16))[79:64]
TMP_DEST[111:96] := (SRC1 >> (imm[5:4] * 16))[79:64]
TMP_DEST[127:112] := (SRC1 >> (imm[7:6] * 16))[79:64]

FI;
IF VL >= 256

TMP_DEST[191:128] := SRC1[191:128]
TMP_DEST[207:192] := (SRC1 >> (imm[1:0] *16))[207:192]
TMP_DEST[223:208] := (SRC1 >> (imm[3:2] * 16))[207:192]
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TMP_DEST[239:224] := (SRC1 >> (imm[5:4] * 16))[207:192]
TMP_DEST[255:240] := (SRC1 >> (imm[7:6] * 16))[207:192]

FI;
IF VL >= 512

TMP_DEST[319:256] := SRC1[319:256]
TMP_DEST[335:320] := (SRC1 >> (imm[1:0] *16))[335:320]
TMP_DEST[351:336] := (SRC1 >> (imm[3:2] * 16))[335:320]
TMP_DEST[367:352] := (SRC1 >> (imm[5:4] * 16))[335:320]
TMP_DEST[383:368] := (SRC1 >> (imm[7:6] * 16))[335:320]
TMP_DEST[447:384] := SRC1[447:384]
TMP_DEST[463:448] := (SRC1 >> (imm[1:0] *16))[463:448]
TMP_DEST[479:464] := (SRC1 >> (imm[3:2] * 16))[463:448]
TMP_DEST[495:480] := (SRC1 >> (imm[5:4] * 16))[463:448]
TMP_DEST[511:496] := (SRC1 >> (imm[7:6] * 16))[463:448]

FI;

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TMP_DEST[i+15:i];
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VPSHUFHW __m512i _mm512_shufflehi_epi16(__m512i a, int n);
VPSHUFHW __m512i _mm512_mask_shufflehi_epi16(__m512i s, __mmask16 k, __m512i a, int n );
VPSHUFHW __m512i _mm512_maskz_shufflehi_epi16( __mmask16 k, __m512i a, int n );
VPSHUFHW __m256i _mm256_mask_shufflehi_epi16(__m256i s, __mmask8 k, __m256i a, int n );
VPSHUFHW __m256i _mm256_maskz_shufflehi_epi16( __mmask8 k, __m256i a, int n );
VPSHUFHW __m128i _mm_mask_shufflehi_epi16(__m128i s, __mmask8 k, __m128i a, int n );
VPSHUFHW __m128i _mm_maskz_shufflehi_epi16( __mmask8 k, __m128i a, int n );
(V)PSHUFHW __m128i _mm_shufflehi_epi16(__m128i a, int n)
VPSHUFHW __m256i _mm256_shufflehi_epi16(__m256i a, const int n)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
Additionally:
#UD If VEX.vvvv != 1111B, or EVEX.vvvv != 1111B.
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PSHUFLW—Shuffle Packed Low Words

Instruction Operand Encoding

Description

Copies words from the low quadword of a 128-bit lane of the source operand and inserts them in the low quadword 
of the destination operand at word locations (of the respective lane) selected with the immediate operand. The 
256-bit operation is similar to the in-lane operation used by the 256-bit VPSHUFD instruction, which is illustrated 
in Figure 1-16. For 128-bit operation, only the low 128-bit lane is operative. Each 2-bit field in the immediate 
operand selects the contents of one word location in the low quadword of the destination operand. The binary 
encodings of the immediate operand fields select words (0, 1, 2 or 3) from the low quadword of the source operand 
to be copied to the destination operand. The high quadword of the source operand is copied to the high quadword 
of the destination operand, for each 128-bit lane.
Note that this instruction permits a word in the low quadword of the source operand to be copied to more than one 
word location in the low quadword of the destination operand.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination operand is an XMM register. The source operand can be an XMM 
register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: The destination operand is an XMM register. The source operand can be an XMM register 
or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are zeroed. 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F2 0F 70 /r ib

PSHUFLW xmm1, xmm2/m128, imm8

A V/V SSE2 Shuffle the low words in xmm2/m128 based on 
the encoding in imm8 and store the result in 
xmm1.

VEX.128.F2.0F.WIG 70 /r ib

VPSHUFLW xmm1, xmm2/m128, imm8

A V/V AVX Shuffle the low words in xmm2/m128 based on 
the encoding in imm8 and store the result in 
xmm1.

VEX.256.F2.0F.WIG 70 /r ib

VPSHUFLW ymm1, ymm2/m256, imm8

A V/V AVX2 Shuffle the low words in ymm2/m256 based on 
the encoding in imm8 and store the result in 
ymm1.

EVEX.128.F2.0F.WIG 70 /r ib
VPSHUFLW xmm1 {k1}{z}, xmm2/m128, 
imm8

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Shuffle the low words in xmm2/m128 based on 
the encoding in imm8 and store the result in 
xmm1 under write mask k1.

EVEX.256.F2.0F.WIG 70 /r ib
VPSHUFLW ymm1 {k1}{z}, ymm2/m256, 
imm8

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Shuffle the low words in ymm2/m256 based on 
the encoding in imm8 and store the result in 
ymm1 under write mask k1.

EVEX.512.F2.0F.WIG 70 /r ib
VPSHUFLW zmm1 {k1}{z}, zmm2/m512, 
imm8

B V/V AVX512BW 
OR AVX10.11

Shuffle the low words in zmm2/m512 based on 
the encoding in imm8 and store the result in 
zmm1 under write mask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) imm8 N/A

B Full Mem ModRM:reg (w) ModRM:r/m (r) imm8 N/A
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VEX.256 encoded version: The destination operand is an YMM register. The source operand can be an YMM register 
or a 256-bit memory location. 
EVEX encoded version: The destination operand is a ZMM/YMM/XMM registers. The source operand can be a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination is updated according to the write-
mask.
Note: In VEX encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

PSHUFLW (128-bit Legacy SSE Version)
DEST[15:0] := (SRC >> (imm[1:0] *16))[15:0]
DEST[31:16] := (SRC >> (imm[3:2] * 16))[15:0]
DEST[47:32] := (SRC >> (imm[5:4] * 16))[15:0]
DEST[63:48] := (SRC >> (imm[7:6] * 16))[15:0]
DEST[127:64] := SRC[127:64]
DEST[MAXVL-1:128] (Unmodified)

VPSHUFLW (VEX.128 Encoded Version)
DEST[15:0] := (SRC1 >> (imm[1:0] *16))[15:0]
DEST[31:16] := (SRC1 >> (imm[3:2] * 16))[15:0]
DEST[47:32] := (SRC1 >> (imm[5:4] * 16))[15:0]
DEST[63:48] := (SRC1 >> (imm[7:6] * 16))[15:0]
DEST[127:64] := SRC[127:64]
DEST[MAXVL-1:128] := 0

VPSHUFLW (VEX.256 Encoded Version)
DEST[15:0] := (SRC1 >> (imm[1:0] *16))[15:0]
DEST[31:16] := (SRC1 >> (imm[3:2] * 16))[15:0]
DEST[47:32] := (SRC1 >> (imm[5:4] * 16))[15:0]
DEST[63:48] := (SRC1 >> (imm[7:6] * 16))[15:0]
DEST[127:64] := SRC1[127:64]
DEST[143:128] := (SRC1 >> (imm[1:0] *16))[143:128]
DEST[159:144] := (SRC1 >> (imm[3:2] * 16))[143:128]
DEST[175:160] := (SRC1 >> (imm[5:4] * 16))[143:128]
DEST[191:176] := (SRC1 >> (imm[7:6] * 16))[143:128]
DEST[255:192] := SRC1[255:192]
DEST[MAXVL-1:256] := 0

VPSHUFLW (EVEX.U1.512 Encoded Version)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL >= 128

TMP_DEST[15:0] := (SRC1 >> (imm[1:0] *16))[15:0]
TMP_DEST[31:16] := (SRC1 >> (imm[3:2] * 16))[15:0]
TMP_DEST[47:32] := (SRC1 >> (imm[5:4] * 16))[15:0]
TMP_DEST[63:48] := (SRC1 >> (imm[7:6] * 16))[15:0]
TMP_DEST[127:64] := SRC1[127:64]

FI;
IF VL >= 256

TMP_DEST[143:128] := (SRC1 >> (imm[1:0] *16))[143:128]
TMP_DEST[159:144] := (SRC1 >> (imm[3:2] * 16))[143:128]
TMP_DEST[175:160] := (SRC1 >> (imm[5:4] * 16))[143:128]
TMP_DEST[191:176] := (SRC1 >> (imm[7:6] * 16))[143:128]
TMP_DEST[255:192] := SRC1[255:192]

FI;
IF VL >= 512
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TMP_DEST[271:256] := (SRC1 >> (imm[1:0] *16))[271:256]
TMP_DEST[287:272] := (SRC1 >> (imm[3:2] * 16))[271:256]
TMP_DEST[303:288] := (SRC1 >> (imm[5:4] * 16))[271:256]
TMP_DEST[319:304] := (SRC1 >> (imm[7:6] * 16))[271:256]
TMP_DEST[383:320] := SRC1[383:320]
TMP_DEST[399:384] := (SRC1 >> (imm[1:0] *16))[399:384]
TMP_DEST[415:400] := (SRC1 >> (imm[3:2] * 16))[399:384]
TMP_DEST[431:416] := (SRC1 >> (imm[5:4] * 16))[399:384]
TMP_DEST[447:432] := (SRC1 >> (imm[7:6] * 16))[399:384]
TMP_DEST[511:448] := SRC1[511:448]

FI;

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TMP_DEST[i+15:i];
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VPSHUFLW __m512i _mm512_shufflelo_epi16(__m512i a, int n);
VPSHUFLW __m512i _mm512_mask_shufflelo_epi16(__m512i s, __mmask16 k, __m512i a, int n );
VPSHUFLW __m512i _mm512_maskz_shufflelo_epi16( __mmask16 k, __m512i a, int n );
VPSHUFLW __m256i _mm256_mask_shufflelo_epi16(__m256i s, __mmask8 k, __m256i a, int n );
VPSHUFLW __m256i _mm256_maskz_shufflelo_epi16( __mmask8 k, __m256i a, int n );
VPSHUFLW __m128i _mm_mask_shufflelo_epi16(__m128i s, __mmask8 k, __m128i a, int n );
VPSHUFLW __m128i _mm_maskz_shufflelo_epi16( __mmask8 k, __m128i a, int n );
(V)PSHUFLW:__m128i _mm_shufflelo_epi16(__m128i a, int n)
VPSHUFLW:__m256i _mm256_shufflelo_epi16(__m256i a, const int n)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
Additionally:
#UD If VEX.vvvv != 1111B, or EVEX.vvvv != 1111B.
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PSHUFW—Shuffle Packed Words

Instruction Operand Encoding

Description

Copies words from the source operand (second operand) and inserts them in the destination operand (first 
operand) at word locations selected with the order operand (third operand). This operation is similar to the opera-
tion used by the PSHUFD instruction, which is illustrated in Figure 1-16. For the PSHUFW instruction, each 2-bit 
field in the order operand selects the contents of one word location in the destination operand. The encodings of 
the order operand fields select words from the source operand to be copied to the destination operand.

The source operand can be an MMX technology register or a 64-bit memory location. The destination operand is an 
MMX technology register. The order operand is an 8-bit immediate. Note that this instruction permits a word in the 
source operand to be copied to more than one word location in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

Operation

DEST[15:0] := (SRC >> (ORDER[1:0] * 16))[15:0];
DEST[31:16] := (SRC >> (ORDER[3:2] * 16))[15:0];
DEST[47:32] := (SRC >> (ORDER[5:4] * 16))[15:0];
DEST[63:48] := (SRC >> (ORDER[7:6] * 16))[15:0];

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFW __m64 _mm_shuffle_pi16(__m64 a, int n)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Table 24-7, “Exception Conditions for SIMD/MMX Instructions with Memory Reference,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3B.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

NP 0F 70 /r ib

PSHUFW mm1, mm2/m64, imm8

RMI Valid Valid Shuffle the words in mm2/m64 based on the 
encoding in imm8 and store the result in mm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 N/A



PSIGNB/PSIGNW/PSIGND—Packed SIGN 

Instruction Operand Encoding

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 38 08 /r1 

PSIGNB mm1, mm2/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

RM V/V SSSE3 Negate/zero/preserve packed byte integers in 
mm1 depending on the corresponding sign in 
mm2/m64.

66 0F 38 08 /r 

PSIGNB xmm1, xmm2/m128

RM V/V SSSE3 Negate/zero/preserve packed byte integers in 
xmm1 depending on the corresponding sign in 
xmm2/m128.

NP 0F 38 09 /r1 

PSIGNW mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve packed word integers 
in mm1 depending on the corresponding sign 
in mm2/m128.

66 0F 38 09 /r 

PSIGNW xmm1, xmm2/m128

RM V/V SSSE3 Negate/zero/preserve packed word integers 
in xmm1 depending on the corresponding sign 
in xmm2/m128.

NP 0F 38 0A /r1

PSIGND mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve packed doubleword 
integers in mm1 depending on the 
corresponding sign in mm2/m128.

66 0F 38 0A /r 

PSIGND xmm1, xmm2/m128 

RM V/V SSSE3 Negate/zero/preserve packed doubleword 
integers in xmm1 depending on the 
corresponding sign in xmm2/m128. 

VEX.128.66.0F38.WIG 08 /r

VPSIGNB xmm1, xmm2, xmm3/m128

RVM V/V AVX Negate/zero/preserve packed byte integers in 
xmm2 depending on the corresponding sign in 
xmm3/m128.

VEX.128.66.0F38.WIG 09 /r

VPSIGNW xmm1, xmm2, xmm3/m128

RVM V/V AVX Negate/zero/preserve packed word integers 
in xmm2 depending on the corresponding sign 
in xmm3/m128.

VEX.128.66.0F38.WIG 0A /r

VPSIGND xmm1, xmm2, xmm3/m128

RVM V/V AVX Negate/zero/preserve packed doubleword 
integers in xmm2 depending on the 
corresponding sign in xmm3/m128.

VEX.256.66.0F38.WIG 08 /r

VPSIGNB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Negate packed byte integers in ymm2 if the 
corresponding sign in ymm3/m256 is less 
than zero.

VEX.256.66.0F38.WIG 09 /r

VPSIGNW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Negate packed 16-bit integers in ymm2 if the 
corresponding sign in ymm3/m256 is less 
than zero.

VEX.256.66.0F38.WIG 0A /r

VPSIGND ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Negate packed doubleword integers in ymm2 
if the corresponding sign in ymm3/m256 is 
less than zero.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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Description 

(V)PSIGNB/(V)PSIGNW/(V)PSIGND negates each data element of the destination operand (the first operand) if the 
signed integer value of the corresponding data element in the source operand (the second operand) is less than 
zero. If the signed integer value of a data element in the source operand is positive, the corresponding data 
element in the destination operand is unchanged. If a data element in the source operand is zero, the corre-
sponding data element in the destination operand is set to zero.

(V)PSIGNB operates on signed bytes. (V)PSIGNW operates on 16-bit signed words. (V)PSIGND operates on signed 
32-bit integers.

Legacy SSE instructions: Both operands can be MMX registers. In 64-bit mode, use the REX prefix to access addi-
tional registers. 
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise instructions will #UD.
VEX.256 encoded version: The first source and destination operands are YMM registers. The second source 
operand is an YMM register or a 256-bit memory location.

Operation 

def byte_sign(control, input_val):
   if control<0:
      return negate(input_val)
   elif control==0:
      return 0
   return input_val
   
def word_sign(control, input_val):
   if control<0:
      return negate(input_val)
   elif control==0:
      return 0
   return input_val
   
def dword_sign(control, input_val):
   if control<0:
      return negate(input_val)
   elif control==0:
      return 0
   return input_val

PSIGNB srcdest, src // MMX 64-bit Operands
VL=64
KL := VL/8
for i in 0...KL-1:
   srcdest.byte[i] := byte_sign(src.byte[i], srcdest.byte[i])

PSIGNW srcdest, src   // MMX 64-bit Operands
VL=64
KL := VL/16
FOR i in 0...KL-1:
   srcdest.word[i] := word_sign(src.word[i], srcdest.word[i])
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PSIGND srcdest, src   // MMX 64-bit Operands
VL=64
KL := VL/32
FOR i in 0...KL-1:
   srcdest.dword[i] := dword_sign(src.dword[i], srcdest.dword[i])

PSIGNB srcdest, src   // SSE 128-bit Operands
VL=128
KL := VL/8
FOR i in 0...KL-1:
   srcdest.byte[i] := byte_sign(src.byte[i], srcdest.byte[i])

PSIGNW srcdest, src   // SSE 128-bit Operands
VL=128
KL := VL/16
FOR i in 0...KL-1:
   srcdest.word[i] := word_sign(src.word[i], srcdest.word[i])

PSIGND srcdest, src   // SSE 128-bit Operands
VL=128
KL := VL/32
FOR i in 0...KL-1:
   srcdest.dword[i] := dword_sign(src.dword[i], srcdest.dword[i])

VPSIGNB dest, src1, src2   // AVX 128-bit or 256-bit Operands
VL=(128,256)
KL := VL/8
FOR i in 0...KL-1:
   dest.byte[i] := byte_sign(src2.byte[i], src1.byte[i])
DEST[MAXVL-1:VL] := 0

VPSIGNW dest, src1, src2   // AVX 128-bit or 256-bit Operands
VL=(128,256)
KL := VL/16
FOR i in 0...KL-1:
   dest.word[i] := word_sign(src2.word[i], src1.word[i])
DEST[MAXVL-1:VL] := 0

VPSIGND dest, src1, src2    // AVX 128-bit or 256-bit Operands
VL=(128,256)
KL := VL/32
FOR i in 0...KL-1:
   dest.dword[i] := dword_sign(src2.dword[i], src1.dword[i])
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

PSIGNB __m64 _mm_sign_pi8 (__m64 a, __m64 b)
(V)PSIGNB __m128i _mm_sign_epi8 (__m128i a, __m128i b)
VPSIGNB __m256i _mm256_sign_epi8 (__m256i a, __m256i b)
PSIGNW __m64 _mm_sign_pi16 (__m64 a, __m64 b)
(V)PSIGNW __m128i _mm_sign_epi16 (__m128i a, __m128i b)
VPSIGNW __m256i _mm256_sign_epi16 (__m256i a, __m256i b)
PSIGND __m64 _mm_sign_pi32 (__m64 a, __m64 b)
(V)PSIGND __m128i _mm_sign_epi32 (__m128i a, __m128i b)
VPSIGND __m256i _mm256_sign_epi32 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:
#UD If VEX.L = 1.
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PSLLDQ—Shift Double Quadword Left Logical

Instruction Operand Encoding

Description

Shifts the destination operand (first operand) to the left by the number of bytes specified in the count operand 
(second operand). The empty low-order bytes are cleared (set to all 0s). If the value specified by the count operand 
is greater than 15, the destination operand is set to all 0s. The count operand is an 8-bit immediate.
128-bit Legacy SSE version: The source and destination operands are the same. Bits (MAXVL-1:128) of the corre-
sponding YMM destination register remain unchanged.
VEX.128 encoded version: The source and destination operands are XMM registers. Bits (MAXVL-1:128) of the 
destination YMM register are zeroed. 
VEX.256 encoded version: The source operand is YMM register. The destination operand is an YMM register. Bits 
(MAXVL-1:256) of the corresponding ZMM register are zeroed. The count operand applies to both the low and high 
128-bit lanes.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location. 
The destination operand is a ZMM/YMM/XMM register. The count operand applies to each 128-bit lanes.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 73 /7 ib

PSLLDQ xmm1, imm8 

A V/V SSE2 Shift xmm1 left by imm8 bytes while shifting 
in 0s.

VEX.128.66.0F.WIG 73 /7 ib

VPSLLDQ xmm1, xmm2, imm8

B V/V AVX Shift xmm2 left by imm8 bytes while shifting 
in 0s and store result in xmm1.

VEX.256.66.0F.WIG 73 /7 ib

VPSLLDQ ymm1, ymm2, imm8

B V/V AVX2 Shift ymm2 left by imm8 bytes while shifting 
in 0s and store result in ymm1.

EVEX.128.66.0F.WIG 73 /7 ib
VPSLLDQ xmm1,xmm2/ m128, imm8

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Shift xmm2/m128 left by imm8 bytes while 
shifting in 0s and store result in xmm1.

EVEX.256.66.0F.WIG 73 /7 ib
VPSLLDQ ymm1, ymm2/m256, imm8

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Shift ymm2/m256 left by imm8 bytes while 
shifting in 0s and store result in ymm1.

EVEX.512.66.0F.WIG 73 /7 ib
VPSLLDQ zmm1, zmm2/m512, imm8

C V/V AVX512BW 
OR AVX10.11

Shift zmm2/m512 left by imm8 bytes while 
shifting in 0s and store result in zmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (r, w) imm8 N/A N/A

B N/A VEX.vvvv (w) ModRM:r/m (r) imm8 N/A

C Full Mem EVEX.vvvv (w) ModRM:r/m (r) imm8 N/A
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Operation

VPSLLDQ (EVEX.U1.512 Encoded Version)
TEMP := COUNT
IF (TEMP > 15) THEN TEMP := 16; FI
DEST[127:0] := SRC[127:0] << (TEMP * 8)
DEST[255:128] := SRC[255:128] << (TEMP * 8)
DEST[383:256] := SRC[383:256] << (TEMP * 8)
DEST[511:384] := SRC[511:384] << (TEMP * 8)
DEST[MAXVL-1:512] := 0

VPSLLDQ (VEX.256 and EVEX.256 Encoded Version)
TEMP := COUNT
IF (TEMP > 15) THEN TEMP := 16; FI
DEST[127:0] := SRC[127:0] << (TEMP * 8)
DEST[255:128] := SRC[255:128] << (TEMP * 8)
DEST[MAXVL-1:256] := 0

VPSLLDQ (VEX.128 and EVEX.128 Encoded Version)
TEMP := COUNT
IF (TEMP > 15) THEN TEMP := 16; FI
DEST := SRC << (TEMP * 8)
DEST[MAXVL-1:128] := 0

PSLLDQ(128-bit Legacy SSE Version)
TEMP := COUNT
IF (TEMP > 15) THEN TEMP := 16; FI
DEST := DEST << (TEMP * 8)
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V)PSLLDQ __m128i _mm_slli_si128 ( __m128i a, int imm)
VPSLLDQ __m256i _mm256_slli_si256 ( __m256i a, const int imm)
VPSLLDQ __m512i _mm512_bslli_epi128 ( __m512i a, const int imm)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-24, “Type 7 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
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PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F F1 /r1

PSLLW mm, mm/m64

A V/V MMX Shift words in mm left mm/m64 while shifting in 
0s.

66 0F F1 /r

PSLLW xmm1, xmm2/m128

A V/V SSE2 Shift words in xmm1 left by xmm2/m128 while 
shifting in 0s.

NP 0F 71 /6 ib

PSLLW mm1, imm8

B V/V MMX Shift words in mm left by imm8 while shifting in 
0s.

66 0F 71 /6 ib

PSLLW xmm1, imm8

B V/V SSE2 Shift words in xmm1 left by imm8 while shifting 
in 0s.

NP 0F F2 /r1

PSLLD mm, mm/m64

A V/V MMX Shift doublewords in mm left by mm/m64 while 
shifting in 0s.

66 0F F2 /r

PSLLD xmm1, xmm2/m128

A V/V SSE2 Shift doublewords in xmm1 left by xmm2/m128 
while shifting in 0s.

NP 0F 72 /6 ib1

PSLLD mm, imm8

B V/V MMX Shift doublewords in mm left by imm8 while 
shifting in 0s.

66 0F 72 /6 ib

PSLLD xmm1, imm8

B V/V SSE2 Shift doublewords in xmm1 left by imm8 while 
shifting in 0s.

NP 0F F3 /r1

PSLLQ mm, mm/m64

A V/V MMX Shift quadword in mm left by mm/m64 while 
shifting in 0s.

66 0F F3 /r

PSLLQ xmm1, xmm2/m128

A V/V SSE2 Shift quadwords in xmm1 left by xmm2/m128 
while shifting in 0s.

NP 0F 73 /6 ib1

PSLLQ mm, imm8

B V/V MMX Shift quadword in mm left by imm8 while 
shifting in 0s.

66 0F 73 /6 ib

PSLLQ xmm1, imm8

B V/V SSE2 Shift quadwords in xmm1 left by imm8 while 
shifting in 0s.

VEX.128.66.0F.WIG F1 /r

VPSLLW xmm1, xmm2, xmm3/m128

C V/V AVX Shift words in xmm2 left by amount specified in 
xmm3/m128 while shifting in 0s.

VEX.128.66.0F.WIG 71 /6 ib

VPSLLW xmm1, xmm2, imm8

D V/V AVX Shift words in xmm2 left by imm8 while shifting 
in 0s.

VEX.128.66.0F.WIG F2 /r

VPSLLD xmm1, xmm2, xmm3/m128

C V/V AVX Shift doublewords in xmm2 left by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.128.66.0F.WIG 72 /6 ib

VPSLLD xmm1, xmm2, imm8

D V/V AVX Shift doublewords in xmm2 left by imm8 while 
shifting in 0s.

VEX.128.66.0F.WIG F3 /r

VPSLLQ xmm1, xmm2, xmm3/m128

C V/V AVX Shift quadwords in xmm2 left by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.128.66.0F.WIG 73 /6 ib

VPSLLQ xmm1, xmm2, imm8

D V/V AVX Shift quadwords in xmm2 left by imm8 while 
shifting in 0s.

VEX.256.66.0F.WIG F1 /r

VPSLLW ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift words in ymm2 left by amount specified in 
xmm3/m128 while shifting in 0s.

VEX.256.66.0F.WIG 71 /6 ib

VPSLLW ymm1, ymm2, imm8

D V/V AVX2 Shift words in ymm2 left by imm8 while shifting 
in 0s.
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VEX.256.66.0F.WIG F2 /r

VPSLLD ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift doublewords in ymm2 left by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.256.66.0F.WIG 72 /6 ib

VPSLLD ymm1, ymm2, imm8

D V/V AVX2 Shift doublewords in ymm2 left by imm8 while 
shifting in 0s.

VEX.256.66.0F.WIG F3 /r

VPSLLQ ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift quadwords in ymm2 left by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.256.66.0F.WIG 73 /6 ib

VPSLLQ ymm1, ymm2, imm8

D V/V AVX2 Shift quadwords in ymm2 left by imm8 while 
shifting in 0s.

EVEX.128.66.0F.WIG F1 /r
VPSLLW xmm1 {k1}{z}, xmm2, 
xmm3/m128

G V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Shift words in xmm2 left by amount specified in 
xmm3/m128 while shifting in 0s using 
writemask k1.

EVEX.256.66.0F.WIG F1 /r
VPSLLW ymm1 {k1}{z}, ymm2, 
xmm3/m128

G V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Shift words in ymm2 left by amount specified in 
xmm3/m128 while shifting in 0s using 
writemask k1.

EVEX.512.66.0F.WIG F1 /r
VPSLLW zmm1 {k1}{z}, zmm2, 
xmm3/m128

G V/V AVX512BW 
OR AVX10.12

Shift words in zmm2 left by amount specified in 
xmm3/m128 while shifting in 0s using 
writemask k1.

EVEX.128.66.0F.WIG 71 /6 ib
VPSLLW xmm1 {k1}{z}, xmm2/m128, 
imm8

E V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Shift words in xmm2/m128 left by imm8 while 
shifting in 0s using writemask k1.

EVEX.256.66.0F.WIG 71 /6 ib
VPSLLW ymm1 {k1}{z}, ymm2/m256, 
imm8

E V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Shift words in ymm2/m256 left by imm8 while 
shifting in 0s using writemask k1.

EVEX.512.66.0F.WIG 71 /6 ib
VPSLLW zmm1 {k1}{z}, zmm2/m512, 
imm8

E V/V AVX512BW 
OR AVX10.12

Shift words in zmm2/m512 left by imm8 while 
shifting in 0 using writemask k1.

EVEX.128.66.0F.W0 F2 /r
VPSLLD xmm1 {k1}{z}, xmm2, 
xmm3/m128

G V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift doublewords in xmm2 left by amount 
specified in xmm3/m128 while shifting in 0s 
under writemask k1.

EVEX.256.66.0F.W0 F2 /r
VPSLLD ymm1 {k1}{z}, ymm2, 
xmm3/m128

G V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift doublewords in ymm2 left by amount 
specified in xmm3/m128 while shifting in 0s 
under writemask k1.

EVEX.512.66.0F.W0 F2 /r
VPSLLD zmm1 {k1}{z}, zmm2, 
xmm3/m128

G V/V AVX512F 
OR AVX10.12

Shift doublewords in zmm2 left by amount 
specified in xmm3/m128 while shifting in 0s 
under writemask k1.

EVEX.128.66.0F.W0 72 /6 ib
VPSLLD xmm1 {k1}{z}, 
xmm2/m128/m32bcst, imm8

F V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift doublewords in xmm2/m128/m32bcst left 
by imm8 while shifting in 0s using writemask k1.

EVEX.256.66.0F.W0 72 /6 ib
VPSLLD ymm1 {k1}{z}, 
ymm2/m256/m32bcst, imm8

F V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift doublewords in ymm2/m256/m32bcst left 
by imm8 while shifting in 0s using writemask k1.

EVEX.512.66.0F.W0 72 /6 ib
VPSLLD zmm1 {k1}{z}, 
zmm2/m512/m32bcst, imm8

F V/V AVX512F 
OR AVX10.12

Shift doublewords in zmm2/m512/m32bcst left 
by imm8 while shifting in 0s using writemask k1.

EVEX.128.66.0F.W1 F3 /r
VPSLLQ xmm1 {k1}{z}, xmm2, 
xmm3/m128

G V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift quadwords in xmm2 left by amount 
specified in xmm3/m128 while shifting in 0s 
using writemask k1.

Opcode/
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Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the destination operand (first 
operand) to the left by the number of bits specified in the count operand (second operand). As the bits in the data 
elements are shifted left, the empty low-order bits are cleared (set to 0). If the value specified by the count 
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quadword), then the destination operand 
is set to all 0s. Figure 1-17 gives an example of shifting words in a 64-bit operand. 

EVEX.256.66.0F.W1 F3 /r
VPSLLQ ymm1 {k1}{z}, ymm2, 
xmm3/m128

G V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift quadwords in ymm2 left by amount 
specified in xmm3/m128 while shifting in 0s 
using writemask k1.

EVEX.512.66.0F.W1 F3 /r
VPSLLQ zmm1 {k1}{z}, zmm2, 
xmm3/m128

G V/V AVX512F 
OR AVX10.12

Shift quadwords in zmm2 left by amount 
specified in xmm3/m128 while shifting in 0s 
using writemask k1.

EVEX.128.66.0F.W1 73 /6 ib
VPSLLQ xmm1 {k1}{z}, 
xmm2/m128/m64bcst, imm8

F V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift quadwords in xmm2/m128/m64bcst left 
by imm8 while shifting in 0s using writemask k1.

EVEX.256.66.0F.W1 73 /6 ib
VPSLLQ ymm1 {k1}{z}, 
ymm2/m256/m64bcst, imm8

F V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift quadwords in ymm2/m256/m64bcst left 
by imm8 while shifting in 0s using writemask k1.

EVEX.512.66.0F.W1 73 /6 ib
VPSLLQ zmm1 {k1}{z}, 
zmm2/m512/m64bcst, imm8

F V/V AVX512F 
OR AVX10.12

Shift quadwords in zmm2/m512/m64bcst left 
by imm8 while shifting in 0s using writemask k1.

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:r/m (r, w) imm8 N/A N/A

C N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

D N/A VEX.vvvv (w) ModRM:r/m (r) imm8 N/A

E Full Mem EVEX.vvvv (w) ModRM:r/m (r) imm8 N/A

F Full EVEX.vvvv (w) ModRM:r/m (r) imm8 N/A

G Mem128 ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description
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The (V)PSLLW instruction shifts each of the words in the destination operand to the left by the number of bits spec-
ified in the count operand; the (V)PSLLD instruction shifts each of the doublewords in the destination operand; and 
the (V)PSLLQ instruction shifts the quadword (or quadwords) in the destination operand.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Legacy SSE instructions 64-bit operand: The destination operand is an MMX technology register; the count 
operand can be either an MMX technology register or an 64-bit memory location.
128-bit Legacy SSE version: The destination and first source operands are XMM registers. Bits (MAXVL-1:128) of 
the corresponding YMM destination register remain unchanged. The count operand can be either an XMM register 
or a 128-bit memory location or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded 
but the upper 64 bits are ignored.
VEX.128 encoded version: The destination and first source operands are XMM registers. Bits (MAXVL-1:128) of the 
destination YMM register are zeroed. The count operand can be either an XMM register or a 128-bit memory loca-
tion or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded but the upper 64 bits are 
ignored.
VEX.256 encoded version: The destination operand is a YMM register. The source operand is a YMM register or a 
memory location. The count operand can come either from an XMM register or a memory location or an 8-bit 
immediate. Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed.
EVEX encoded versions: The destination operand is a ZMM register updated according to the writemask. The count 
operand is either an 8-bit immediate (the immediate count version) or an 8-bit value from an XMM register or a 
memory location (the variable count version). For the immediate count version, the source operand (the second 
operand) can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit 
memory location. For the variable count version, the first source operand (the second operand) is a ZMM register, 
the second source operand (the third operand, 8-bit variable count) can be an XMM register or a memory location.
Note: In VEX/EVEX encoded versions of shifts with an immediate count, vvvv of VEX/EVEX encode the destination 
register, and VEX.B/EVEX.B + ModRM.r/m encodes the source register.

Note: For shifts with an immediate count (VEX.128.66.0F 71-73 /6, or EVEX.128.66.0F 71-73 /6), 
VEX.vvvv/EVEX.vvvv encodes the destination register. 

Operation

PSLLW (With 64-bit Operand)
IF (COUNT > 15)
THEN 

DEST[64:0] := 0000000000000000H;
ELSE

DEST[15:0] := ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] := ZeroExtend(DEST[63:48] << COUNT);

FI;
PSLLD (with 64-bit operand)

IF (COUNT > 31)
THEN 

Figure 1-17.  PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Left

X0

X0 << COUNT

X3 X2 X1

X1 << COUNTX2 << COUNTX3 << COUNT

with Zero
Extension
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DEST[64:0] := 0000000000000000H;
ELSE

DEST[31:0] := ZeroExtend(DEST[31:0] << COUNT);
DEST[63:32] := ZeroExtend(DEST[63:32] << COUNT);

FI;

PSLLQ (With 64-bit Operand)
IF (COUNT > 63)
THEN 

DEST[64:0] := 0000000000000000H;
ELSE

DEST := ZeroExtend(DEST << COUNT);
FI;

LOGICAL_LEFT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 15)
THEN

DEST[127:0] := 00000000000000000000000000000000H
ELSE

DEST[15:0] := ZeroExtend(SRC[15:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] := ZeroExtend(SRC[127:112] << COUNT);

FI;

LOGICAL_LEFT_SHIFT_DWORDS1(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[31:0] := 0
ELSE

DEST[31:0] := ZeroExtend(SRC[31:0] << COUNT);
FI;

LOGICAL_LEFT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[127:0] := 00000000000000000000000000000000H
ELSE

DEST[31:0] := ZeroExtend(SRC[31:0] << COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] := ZeroExtend(SRC[127:96] << COUNT);

FI;

LOGICAL_LEFT_SHIFT_QWORDS1(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[63:0] := 0
ELSE

DEST[63:0] := ZeroExtend(SRC[63:0] << COUNT);
FI;
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LOGICAL_LEFT_SHIFT_QWORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[127:0] := 00000000000000000000000000000000H
ELSE

DEST[63:0] := ZeroExtend(SRC[63:0] << COUNT);
DEST[127:64] := ZeroExtend(SRC[127:64] << COUNT);

FI;
LOGICAL_LEFT_SHIFT_WORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 15)
THEN

DEST[127:0] := 00000000000000000000000000000000H
DEST[255:128] := 00000000000000000000000000000000H

ELSE
DEST[15:0] := ZeroExtend(SRC[15:0] << COUNT);
(* Repeat shift operation for 2nd through 15th words *)
DEST[255:240] := ZeroExtend(SRC[255:240] << COUNT);

FI;

LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[127:0] := 00000000000000000000000000000000H
DEST[255:128] := 00000000000000000000000000000000H

ELSE
DEST[31:0] := ZeroExtend(SRC[31:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[255:224] := ZeroExtend(SRC[255:224] << COUNT);

FI;

LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[127:0] := 00000000000000000000000000000000H
DEST[255:128] := 00000000000000000000000000000000H

ELSE
DEST[63:0] := ZeroExtend(SRC[63:0] << COUNT);
DEST[127:64] := ZeroExtend(SRC[127:64] << COUNT)
DEST[191:128] := ZeroExtend(SRC[191:128] << COUNT);
DEST[255:192] := ZeroExtend(SRC[255:192] << COUNT);

FI;

VPSLLW (EVEX Versions, xmm/m128)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_LEFT_SHIFT_WORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
FI;
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IF VL = 512
TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[511:256], SRC2)

FI;

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TMP_DEST[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+15:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSLLW (EVEX Versions, imm8)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_LEFT_SHIFT_WORDS_128b(SRC1[127:0], imm8)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
TMP_DEST[511:256] := LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[511:256], imm8)

FI;

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TMP_DEST[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+15:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSLLW (ymm, ymm, xmm/m128) - VEX.256 Encoding
DEST[255:0] := LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0;

VPSLLW (ymm, imm8) - VEX.256 Encoding
DEST[255:0] := LOGICAL_LEFT_SHIFT_WORD_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0;
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VPSLLW (xmm, xmm, xmm/m128) - VEX.128 Encoding
DEST[127:0] := LOGICAL_LEFT_SHIFT_WORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSLLW (xmm, imm8) - VEX.128 Encoding
DEST[127:0] := LOGICAL_LEFT_SHIFT_WORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0

PSLLW (xmm, xmm, xmm/m128) 
DEST[127:0] := LOGICAL_LEFT_SHIFT_WORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSLLW (xmm, imm8)
DEST[127:0] := LOGICAL_LEFT_SHIFT_WORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

VPSLLD (EVEX versions, imm8)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+31:i] := LOGICAL_LEFT_SHIFT_DWORDS1(SRC1[31:0], imm8)
ELSE DEST[i+31:i] := LOGICAL_LEFT_SHIFT_DWORDS1(SRC1[i+31:i], imm8)

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSLLD (EVEX Versions, xmm/m128)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_LEFT_SHIFT_DWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1[511:256], SRC2)

FI;

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
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THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSLLD (ymm, ymm, xmm/m128) - VEX.256 Encoding
DEST[255:0] := LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0;

VPSLLD (ymm, imm8) - VEX.256 Encoding
DEST[255:0] := LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0;

VPSLLD (xmm, xmm, xmm/m128) - VEX.128 Encoding
DEST[127:0] := LOGICAL_LEFT_SHIFT_DWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSLLD (xmm, imm8) - VEX.128 Encoding
DEST[127:0] := LOGICAL_LEFT_SHIFT_DWORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0

PSLLD (xmm, xmm, xmm/m128)
DEST[127:0] := LOGICAL_LEFT_SHIFT_DWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSLLD (xmm, imm8)
DEST[127:0] := LOGICAL_LEFT_SHIFT_DWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

VPSLLQ (EVEX Versions, imm8)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+63:i] := LOGICAL_LEFT_SHIFT_QWORDS1(SRC1[63:0], imm8)
ELSE DEST[i+63:i] := LOGICAL_LEFT_SHIFT_QWORDS1(SRC1[i+63:i], imm8)

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+63:i] := 0
FI

FI;
ENDFOR

VPSLLQ (EVEX Versions, xmm/m128)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_LEFT_SHIFT_QWORDS_128b(SRC1[127:0], SRC2)
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FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1[511:256], SRC2)

FI;

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSLLQ (ymm, ymm, xmm/m128) - VEX.256 Encoding
DEST[255:0] := LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0;

VPSLLQ (ymm, imm8) - VEX.256 Encoding
DEST[255:0] := LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0;

VPSLLQ (xmm, xmm, xmm/m128) - VEX.128 Encoding
DEST[127:0] := LOGICAL_LEFT_SHIFT_QWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSLLQ (xmm, imm8) - VEX.128 Encoding
DEST[127:0] := LOGICAL_LEFT_SHIFT_QWORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0

PSLLQ (xmm, xmm, xmm/m128)
DEST[127:0] := LOGICAL_LEFT_SHIFT_QWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSLLQ (xmm, imm8)
DEST[127:0] := LOGICAL_LEFT_SHIFT_QWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalents

VPSLLD __m512i _mm512_slli_epi32(__m512i a, unsigned int imm);
VPSLLD __m512i _mm512_mask_slli_epi32(__m512i s, __mmask16 k, __m512i a, unsigned int imm);
VPSLLD __m512i _mm512_maskz_slli_epi32( __mmask16 k, __m512i a, unsigned int imm);
VPSLLD __m256i _mm256_mask_slli_epi32(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSLLD __m256i _mm256_maskz_slli_epi32( __mmask8 k, __m256i a, unsigned int imm);
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VPSLLD __m128i _mm_mask_slli_epi32(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSLLD __m128i _mm_maskz_slli_epi32( __mmask8 k, __m128i a, unsigned int imm);
VPSLLD __m512i _mm512_sll_epi32(__m512i a, __m128i cnt);
VPSLLD __m512i _mm512_mask_sll_epi32(__m512i s, __mmask16 k, __m512i a, __m128i cnt);
VPSLLD __m512i _mm512_maskz_sll_epi32( __mmask16 k, __m512i a, __m128i cnt);
VPSLLD __m256i _mm256_mask_sll_epi32(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSLLD __m256i _mm256_maskz_sll_epi32( __mmask8 k, __m256i a, __m128i cnt);
VPSLLD __m128i _mm_mask_sll_epi32(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLD __m128i _mm_maskz_sll_epi32( __mmask8 k, __m128i a, __m128i cnt);
VPSLLQ __m512i _mm512_mask_slli_epi64(__m512i a, unsigned int imm);
VPSLLQ __m512i _mm512_mask_slli_epi64(__m512i s, __mmask8 k, __m512i a, unsigned int imm);
VPSLLQ __m512i _mm512_maskz_slli_epi64( __mmask8 k, __m512i a, unsigned int imm);
VPSLLQ __m256i _mm256_mask_slli_epi64(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSLLQ __m256i _mm256_maskz_slli_epi64( __mmask8 k, __m256i a, unsigned int imm);
VPSLLQ __m128i _mm_mask_slli_epi64(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSLLQ __m128i _mm_maskz_slli_epi64( __mmask8 k, __m128i a, unsigned int imm);
VPSLLQ __m512i _mm512_mask_sll_epi64(__m512i a, __m128i cnt);
VPSLLQ __m512i _mm512_mask_sll_epi64(__m512i s, __mmask8 k, __m512i a, __m128i cnt);
VPSLLQ __m512i _mm512_maskz_sll_epi64( __mmask8 k, __m512i a, __m128i cnt);
VPSLLQ __m256i _mm256_mask_sll_epi64(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSLLQ __m256i _mm256_maskz_sll_epi64( __mmask8 k, __m256i a, __m128i cnt);
VPSLLQ __m128i _mm_mask_sll_epi64(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLQ __m128i _mm_maskz_sll_epi64( __mmask8 k, __m128i a, __m128i cnt);
VPSLLW __m512i _mm512_slli_epi16(__m512i a, unsigned int imm);
VPSLLW __m512i _mm512_mask_slli_epi16(__m512i s, __mmask32 k, __m512i a, unsigned int imm);
VPSLLW __m512i _mm512_maskz_slli_epi16( __mmask32 k, __m512i a, unsigned int imm);
VPSLLW __m256i _mm256_mask_slli_epi16(__m256i s, __mmask16 k, __m256i a, unsigned int imm);
VPSLLW __m256i _mm256_maskz_slli_epi16( __mmask16 k, __m256i a, unsigned int imm);
VPSLLW __m128i _mm_mask_slli_epi16(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSLLW __m128i _mm_maskz_slli_epi16( __mmask8 k, __m128i a, unsigned int imm);
VPSLLW __m512i _mm512_sll_epi16(__m512i a, __m128i cnt);
VPSLLW __m512i _mm512_mask_sll_epi16(__m512i s, __mmask32 k, __m512i a, __m128i cnt);
VPSLLW __m512i _mm512_maskz_sll_epi16( __mmask32 k, __m512i a, __m128i cnt);
VPSLLW __m256i _mm256_mask_sll_epi16(__m256i s, __mmask16 k, __m256i a, __m128i cnt);
VPSLLW __m256i _mm256_maskz_sll_epi16( __mmask16 k, __m256i a, __m128i cnt);
VPSLLW __m128i _mm_mask_sll_epi16(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLW __m128i _mm_maskz_sll_epi16( __mmask8 k, __m128i a, __m128i cnt);
PSLLW __m64 _mm_slli_pi16 (__m64 m, int count)
PSLLW __m64 _mm_sll_pi16(__m64 m, __m64 count)
(V)PSLLW __m128i _mm_slli_epi16(__m64 m, int count)
(V)PSLLW __m128i _mm_sll_epi16(__m128i m, __m128i count)
VPSLLW __m256i _mm256_slli_epi16 (__m256i m, int count)
VPSLLW __m256i _mm256_sll_epi16 (__m256i m, __m128i count)
PSLLD __m64 _mm_slli_pi32(__m64 m, int count)
PSLLD __m64 _mm_sll_pi32(__m64 m, __m64 count)
(V)PSLLD __m128i _mm_slli_epi32(__m128i m, int count)
(V)PSLLD __m128i _mm_sll_epi32(__m128i m, __m128i count)
VPSLLD __m256i _mm256_slli_epi32 (__m256i m, int count)
VPSLLD __m256i _mm256_sll_epi32 (__m256i m, __m128i count)
PSLLQ __m64 _mm_slli_si64(__m64 m, int count)
PSLLQ __m64 _mm_sll_si64(__m64 m, __m64 count)
(V)PSLLQ __m128i _mm_slli_epi64(__m128i m, int count)
(V)PSLLQ __m128i _mm_sll_epi64(__m128i m, __m128i count)
VPSLLQ __m256i _mm256_slli_epi64 (__m256i m, int count)
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VPSLLQ __m256i _mm256_sll_epi64 (__m256i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

• VEX-encoded instructions:

— Syntax with RM/RVM operand encoding (A/C in the operand encoding table), see Table 2-21, “Type 4 Class 
Exception Conditions.”

— Syntax with MI/VMI operand encoding (B/D in the operand encoding table), see Table 2-24, “Type 7 Class 
Exception Conditions.”

• EVEX-encoded VPSLLW (E in the operand encoding table), see Exceptions Type E4NF.nb in Table 2-52, “Type 
E4NF Class Exception Conditions.”

• EVEX-encoded VPSLLD/Q:

— Syntax with Mem128 tuple type (G in the operand encoding table), see Exceptions Type E4NF.nb in 
Table 2-52, “Type E4NF Class Exception Conditions.”

— Syntax with Full tuple type (F in the operand encoding table), see Table 2-51, “Type E4 Class Exception 
Conditions.”
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PSRAW/PSRAD/PSRAQ—Shift Packed Data Right Arithmetic
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F E1 /r1

PSRAW mm, mm/m64

A V/V MMX Shift words in mm right by mm/m64 while 
shifting in sign bits.

66 0F E1 /r

PSRAW xmm1, xmm2/m128

A V/V SSE2 Shift words in xmm1 right by xmm2/m128 
while shifting in sign bits.

NP 0F 71 /4 ib1

PSRAW mm, imm8

B V/V MMX Shift words in mm right by imm8 while shifting 
in sign bits

66 0F 71 /4 ib

PSRAW xmm1, imm8

B V/V SSE2 Shift words in xmm1 right by imm8 while 
shifting in sign bits

NP 0F E2 /r1

PSRAD mm, mm/m64

A V/V MMX Shift doublewords in mm right by mm/m64 
while shifting in sign bits.

66 0F E2 /r

PSRAD xmm1, xmm2/m128

A V/V SSE2 Shift doubleword in xmm1 right by xmm2 
/m128 while shifting in sign bits.

NP 0F 72 /4 ib1

PSRAD mm, imm8

B V/V MMX Shift doublewords in mm right by imm8 while 
shifting in sign bits.

66 0F 72 /4 ib

PSRAD xmm1, imm8

B V/V SSE2 Shift doublewords in xmm1 right by imm8 while 
shifting in sign bits.

VEX.128.66.0F.WIG E1 /r

VPSRAW xmm1, xmm2, xmm3/m128

C V/V AVX Shift words in xmm2 right by amount specified 
in xmm3/m128 while shifting in sign bits.

VEX.128.66.0F.WIG 71 /4 ib

VPSRAW xmm1, xmm2, imm8

D V/V AVX Shift words in xmm2 right by imm8 while 
shifting in sign bits.

VEX.128.66.0F.WIG E2 /r

VPSRAD xmm1, xmm2, xmm3/m128

C V/V AVX Shift doublewords in xmm2 right by amount 
specified in xmm3/m128 while shifting in sign 
bits.

VEX.128.66.0F.WIG 72 /4 ib

VPSRAD xmm1, xmm2, imm8

D V/V AVX Shift doublewords in xmm2 right by imm8 while 
shifting in sign bits.

VEX.256.66.0F.WIG E1 /r

VPSRAW ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift words in ymm2 right by amount specified 
in xmm3/m128 while shifting in sign bits.

VEX.256.66.0F.WIG 71 /4 ib

VPSRAW ymm1, ymm2, imm8

D V/V AVX2 Shift words in ymm2 right by imm8 while 
shifting in sign bits.

VEX.256.66.0F.WIG E2 /r

VPSRAD ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift doublewords in ymm2 right by amount 
specified in xmm3/m128 while shifting in sign 
bits.

VEX.256.66.0F.WIG 72 /4 ib

VPSRAD ymm1, ymm2, imm8

D V/V AVX2 Shift doublewords in ymm2 right by imm8 while 
shifting in sign bits.

EVEX.128.66.0F.WIG E1 /r
VPSRAW xmm1 {k1}{z}, xmm2, 
xmm3/m128

G V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Shift words in xmm2 right by amount specified 
in xmm3/m128 while shifting in sign bits using 
writemask k1.

EVEX.256.66.0F.WIG E1 /r
VPSRAW ymm1 {k1}{z}, ymm2, 
xmm3/m128

G V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Shift words in ymm2 right by amount specified 
in xmm3/m128 while shifting in sign bits using 
writemask k1.

EVEX.512.66.0F.WIG E1 /r
VPSRAW zmm1 {k1}{z}, zmm2, 
xmm3/m128

G V/V AVX512BW 
OR AVX10.12

Shift words in zmm2 right by amount specified 
in xmm3/m128 while shifting in sign bits using 
writemask k1.
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EVEX.128.66.0F.WIG 71 /4 ib
VPSRAW xmm1 {k1}{z}, xmm2/m128, 
imm8

E V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Shift words in xmm2/m128 right by imm8 while 
shifting in sign bits using writemask k1.

EVEX.256.66.0F.WIG 71 /4 ib
VPSRAW ymm1 {k1}{z}, ymm2/m256, 
imm8

E V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Shift words in ymm2/m256 right by imm8 while 
shifting in sign bits using writemask k1.

EVEX.512.66.0F.WIG 71 /4 ib
VPSRAW zmm1 {k1}{z}, zmm2/m512, 
imm8

E V/V AVX512BW 
OR AVX10.12

Shift words in zmm2/m512 right by imm8 while 
shifting in sign bits using writemask k1.

EVEX.128.66.0F.W0 E2 /r
VPSRAD xmm1 {k1}{z}, xmm2, 
xmm3/m128

G V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift doublewords in xmm2 right by amount 
specified in xmm3/m128 while shifting in sign 
bits using writemask k1.

EVEX.256.66.0F.W0 E2 /r
VPSRAD ymm1 {k1}{z}, ymm2, 
xmm3/m128

G V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift doublewords in ymm2 right by amount 
specified in xmm3/m128 while shifting in sign 
bits using writemask k1.

EVEX.512.66.0F.W0 E2 /r
VPSRAD zmm1 {k1}{z}, zmm2, 
xmm3/m128

G V/V AVX512F 
OR AVX10.12

Shift doublewords in zmm2 right by amount 
specified in xmm3/m128 while shifting in sign 
bits using writemask k1.

EVEX.128.66.0F.W0 72 /4 ib
VPSRAD xmm1 {k1}{z}, 
xmm2/m128/m32bcst, imm8

F V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift doublewords in xmm2/m128/m32bcst 
right by imm8 while shifting in sign bits using 
writemask k1.

EVEX.256.66.0F.W0 72 /4 ib
VPSRAD ymm1 {k1}{z}, 
ymm2/m256/m32bcst, imm8

F V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift doublewords in ymm2/m256/m32bcst 
right by imm8 while shifting in sign bits using 
writemask k1.

EVEX.512.66.0F.W0 72 /4 ib
VPSRAD zmm1 {k1}{z}, 
zmm2/m512/m32bcst, imm8

F V/V AVX512F 
OR AVX10.12

Shift doublewords in zmm2/m512/m32bcst 
right by imm8 while shifting in sign bits using 
writemask k1.

EVEX.128.66.0F.W1 E2 /r
VPSRAQ xmm1 {k1}{z}, xmm2, 
xmm3/m128

G V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift quadwords in xmm2 right by amount 
specified in xmm3/m128 while shifting in sign 
bits using writemask k1.

EVEX.256.66.0F.W1 E2 /r
VPSRAQ ymm1 {k1}{z}, ymm2, 
xmm3/m128

G V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift quadwords in ymm2 right by amount 
specified in xmm3/m128 while shifting in sign 
bits using writemask k1.

EVEX.512.66.0F.W1 E2 /r
VPSRAQ zmm1 {k1}{z}, zmm2, 
xmm3/m128

G V/V AVX512F 
OR AVX10.12

Shift quadwords in zmm2 right by amount 
specified in xmm3/m128 while shifting in sign 
bits using writemask k1.

EVEX.128.66.0F.W1 72 /4 ib
VPSRAQ xmm1 {k1}{z}, 
xmm2/m128/m64bcst, imm8

F V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift quadwords in xmm2/m128/m64bcst right 
by imm8 while shifting in sign bits using 
writemask k1.

EVEX.256.66.0F.W1 72 /4 ib
VPSRAQ ymm1 {k1}{z}, 
ymm2/m256/m64bcst, imm8

F V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift quadwords in ymm2/m256/m64bcst right 
by imm8 while shifting in sign bits using 
writemask k1.

EVEX.512.66.0F.W1 72 /4 ib
VPSRAQ zmm1 {k1}{z}, 
zmm2/m512/m64bcst, imm8

F V/V AVX512F 
OR AVX10.12

Shift quadwords in zmm2/m512/m64bcst right 
by imm8 while shifting in sign bits using 
writemask k1.

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description
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Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words, doublewords or quadwords) in the destination operand (first 
operand) to the right by the number of bits specified in the count operand (second operand). As the bits in the data 
elements are shifted right, the empty high-order bits are filled with the initial value of the sign bit of the data 
element. If the value specified by the count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for 
quadwords), each destination data element is filled with the initial value of the sign bit of the element. (Figure 1-18 
gives an example of shifting words in a 64-bit operand.)

Note that only the first 64-bits of a 128-bit count operand are checked to compute the count. If the second source 
operand is a memory address, 128 bits are loaded.

The (V)PSRAW instruction shifts each of the words in the destination operand to the right by the number of bits 
specified in the count operand, and the (V)PSRAD instruction shifts each of the doublewords in the destination 
operand.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Legacy SSE instructions 64-bit operand: The destination operand is an MMX technology register; the count 
operand can be either an MMX technology register or an 64-bit memory location. 
128-bit Legacy SSE version: The destination and first source operands are XMM registers. Bits (MAXVL-1:128) of 
the corresponding YMM destination register remain unchanged. The count operand can be either an XMM register 
or a 128-bit memory location or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded 
but the upper 64 bits are ignored.
VEX.128 encoded version: The destination and first source operands are XMM registers. Bits (MAXVL-1:128) of the 
destination YMM register are zeroed. The count operand can be either an XMM register or a 128-bit memory loca-

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:r/m (r, w) imm8 N/A N/A

C N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

D N/A VEX.vvvv (w) ModRM:r/m (r) imm8 N/A

E Full Mem EVEX.vvvv (w) ModRM:r/m (r) imm8 N/A

F Full EVEX.vvvv (w) ModRM:r/m (r) imm8 N/A

G Mem128 ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Figure 1-18.  PSRAW and PSRAD Instruction Operation Using a 64-bit Operand
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tion or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded but the upper 64 bits are 
ignored.
VEX.256 encoded version: The destination operand is a YMM register. The source operand is a YMM register or a 
memory location. The count operand can come either from an XMM register or a memory location or an 8-bit 
immediate. Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed.
EVEX encoded versions: The destination operand is a ZMM register updated according to the writemask. The count 
operand is either an 8-bit immediate (the immediate count version) or an 8-bit value from an XMM register or a 
memory location (the variable count version). For the immediate count version, the source operand (the second 
operand) can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit 
memory location. For the variable count version, the first source operand (the second operand) is a ZMM register, 
the second source operand (the third operand, 8-bit variable count) can be an XMM register or a memory location.
Note: In VEX/EVEX encoded versions of shifts with an immediate count, vvvv of VEX/EVEX encode the destination 
register, and VEX.B/EVEX.B + ModRM.r/m encodes the source register.

Note: For shifts with an immediate count (VEX.128.66.0F 71-73 /4, EVEX.128.66.0F 71-73 /4), 
VEX.vvvv/EVEX.vvvv encodes the destination register.

Operation

PSRAW (With 64-bit Operand)
IF (COUNT > 15)

THEN COUNT := 16;
FI;
DEST[15:0] := SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] := SignExtend(DEST[63:48] >> COUNT);

PSRAD (with 64-bit operand)
IF (COUNT > 31)

THEN COUNT := 32;
FI;
DEST[31:0] := SignExtend(DEST[31:0] >> COUNT);
DEST[63:32] := SignExtend(DEST[63:32] >> COUNT);

ARITHMETIC_RIGHT_SHIFT_DWORDS1(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[31:0] := SignBit
ELSE

DEST[31:0] := SignExtend(SRC[31:0] >> COUNT);
FI;

ARITHMETIC_RIGHT_SHIFT_QWORDS1(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[63:0] := SignBit
ELSE

DEST[63:0] := SignExtend(SRC[63:0] >> COUNT);
FI;

ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 15)
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THEN COUNT := 16;
FI;
DEST[15:0] := SignExtend(SRC[15:0] >> COUNT);

(* Repeat shift operation for 2nd through 15th words *)
DEST[255:240] := SignExtend(SRC[255:240] >> COUNT);

ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)

THEN COUNT := 32;
FI;
DEST[31:0] := SignExtend(SRC[31:0] >> COUNT);

(* Repeat shift operation for 2nd through 7th words *)
DEST[255:224] := SignExtend(SRC[255:224] >> COUNT);

ARITHMETIC_RIGHT_SHIFT_QWORDS(SRC, COUNT_SRC, VL) ; VL: 128b, 256b or 512b
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)

THEN COUNT := 64;
FI;
DEST[63:0] := SignExtend(SRC[63:0] >> COUNT);

(* Repeat shift operation for 2nd through 7th words *)
DEST[VL-1:VL-64] := SignExtend(SRC[VL-1:VL-64] >> COUNT);

ARITHMETIC_RIGHT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 15)

THEN COUNT := 16;
FI;
DEST[15:0] := SignExtend(SRC[15:0] >> COUNT);

(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] := SignExtend(SRC[127:112] >> COUNT);

ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)

THEN COUNT := 32;
FI;
DEST[31:0] := SignExtend(SRC[31:0] >> COUNT);

(* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] := SignExtend(SRC[127:96] >> COUNT);

VPSRAW (EVEX versions, xmm/m128)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[127:0] := ARITHMETIC_RIGHT_SHIFT_WORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1[511:256], SRC2)

FI;
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FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TMP_DEST[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+15:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRAW (EVEX Versions, imm8)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[127:0] := ARITHMETIC_RIGHT_SHIFT_WORDS_128b(SRC1[127:0], imm8)
FI;
IF VL = 256

TMP_DEST[255:0] := ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
FI;
IF VL = 512

TMP_DEST[255:0] := ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
TMP_DEST[511:256] := ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1[511:256], imm8)

FI;

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TMP_DEST[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+15:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRAW (ymm, ymm, xmm/m128) - VEX
DEST[255:0] := ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0

VPSRAW (ymm, imm8) - VEX
DEST[255:0] := ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0

VPSRAW (xmm, xmm, xmm/m128) - VEX
DEST[127:0] := ARITHMETIC_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0
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VPSRAW (xmm, imm8) - VEX
DEST[127:0] := ARITHMETIC_RIGHT_SHIFT_WORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0

PSRAW (xmm, xmm, xmm/m128)
DEST[127:0] := ARITHMETIC_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSRAW (xmm, imm8)
DEST[127:0] := ARITHMETIC_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

VPSRAD (EVEX Versions, imm8)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+31:i] := ARITHMETIC_RIGHT_SHIFT_DWORDS1(SRC1[31:0], imm8)
ELSE DEST[i+31:i] := ARITHMETIC_RIGHT_SHIFT_DWORDS1(SRC1[i+31:i], imm8)

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRAD (EVEX Versions, xmm/m128)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL = 128

TMP_DEST[127:0] := ARITHMETIC_RIGHT_SHIFT_DWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1[511:256], SRC2)

FI;

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+31:i] := 0
FI
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FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRAD (ymm, ymm, xmm/m128) - VEX
DEST[255:0] := ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0

VPSRAD (ymm, imm8) - VEX
DEST[255:0] := ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0

VPSRAD (xmm, xmm, xmm/m128) - VEX
DEST[127:0] := ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSRAD (xmm, imm8) - VEX
DEST[127:0] := ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0

PSRAD (xmm, xmm, xmm/m128)
DEST[127:0] := ARITHMETIC_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSRAD (xmm, imm8)
DEST[127:0] := ARITHMETIC_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

VPSRAQ (EVEX Versions, imm8)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+63:i] := ARITHMETIC_RIGHT_SHIFT_QWORDS1(SRC1[63:0], imm8)
ELSE DEST[i+63:i] := ARITHMETIC_RIGHT_SHIFT_QWORDS1(SRC1[i+63:i], imm8)

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRAQ (EVEX Versions, xmm/m128)
(KL, VL) = (2, 128), (4, 256), (8, 512)
TMP_DEST[VL-1:0] := ARITHMETIC_RIGHT_SHIFT_QWORDS(SRC1[VL-1:0], SRC2, VL)

FOR j := 0 TO 7
i := j * 64
IF k1[j] OR *no writemask*
PSRAW/PSRAD/PSRAQ—Shift Packed Data Right Arithmetic Vol. 2B 4-460



THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalents

VPSRAD __m512i _mm512_srai_epi32(__m512i a, unsigned int imm);
VPSRAD __m512i _mm512_mask_srai_epi32(__m512i s, __mmask16 k, __m512i a, unsigned int imm);
VPSRAD __m512i _mm512_maskz_srai_epi32( __mmask16 k, __m512i a, unsigned int imm);
VPSRAD __m256i _mm256_mask_srai_epi32(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSRAD __m256i _mm256_maskz_srai_epi32( __mmask8 k, __m256i a, unsigned int imm);
VPSRAD __m128i _mm_mask_srai_epi32(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRAD __m128i _mm_maskz_srai_epi32( __mmask8 k, __m128i a, unsigned int imm);
VPSRAD __m512i _mm512_sra_epi32(__m512i a, __m128i cnt);
VPSRAD __m512i _mm512_mask_sra_epi32(__m512i s, __mmask16 k, __m512i a, __m128i cnt);
VPSRAD __m512i _mm512_maskz_sra_epi32( __mmask16 k, __m512i a, __m128i cnt);
VPSRAD __m256i _mm256_mask_sra_epi32(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSRAD __m256i _mm256_maskz_sra_epi32( __mmask8 k, __m256i a, __m128i cnt);
VPSRAD __m128i _mm_mask_sra_epi32(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRAD __m128i _mm_maskz_sra_epi32( __mmask8 k, __m128i a, __m128i cnt);
VPSRAQ __m512i _mm512_srai_epi64(__m512i a, unsigned int imm);
VPSRAQ __m512i _mm512_mask_srai_epi64(__m512i s, __mmask8 k, __m512i a, unsigned int imm)
VPSRAQ __m512i _mm512_maskz_srai_epi64( __mmask8 k, __m512i a, unsigned int imm)
VPSRAQ __m256i _mm256_mask_srai_epi64(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSRAQ __m256i _mm256_maskz_srai_epi64( __mmask8 k, __m256i a, unsigned int imm);
VPSRAQ __m128i _mm_mask_srai_epi64(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRAQ __m128i _mm_maskz_srai_epi64( __mmask8 k, __m128i a, unsigned int imm);
VPSRAQ __m512i _mm512_sra_epi64(__m512i a, __m128i cnt);
VPSRAQ __m512i _mm512_mask_sra_epi64(__m512i s, __mmask8 k, __m512i a, __m128i cnt)
VPSRAQ __m512i _mm512_maskz_sra_epi64( __mmask8 k, __m512i a, __m128i cnt)
VPSRAQ __m256i _mm256_mask_sra_epi64(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSRAQ __m256i _mm256_maskz_sra_epi64( __mmask8 k, __m256i a, __m128i cnt);
VPSRAQ __m128i _mm_mask_sra_epi64(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRAQ __m128i _mm_maskz_sra_epi64( __mmask8 k, __m128i a, __m128i cnt);
VPSRAW __m512i _mm512_srai_epi16(__m512i a, unsigned int imm);
VPSRAW __m512i _mm512_mask_srai_epi16(__m512i s, __mmask32 k, __m512i a, unsigned int imm);
VPSRAW __m512i _mm512_maskz_srai_epi16( __mmask32 k, __m512i a, unsigned int imm);
VPSRAW __m256i _mm256_mask_srai_epi16(__m256i s, __mmask16 k, __m256i a, unsigned int imm);
VPSRAW __m256i _mm256_maskz_srai_epi16( __mmask16 k, __m256i a, unsigned int imm);
VPSRAW __m128i _mm_mask_srai_epi16(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRAW __m128i _mm_maskz_srai_epi16( __mmask8 k, __m128i a, unsigned int imm);
VPSRAW __m512i _mm512_sra_epi16(__m512i a, __m128i cnt);
VPSRAW __m512i _mm512_mask_sra_epi16(__m512i s, __mmask16 k, __m512i a, __m128i cnt);
VPSRAW __m512i _mm512_maskz_sra_epi16( __mmask16 k, __m512i a, __m128i cnt);
VPSRAW __m256i _mm256_mask_sra_epi16(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSRAW __m256i _mm256_maskz_sra_epi16( __mmask8 k, __m256i a, __m128i cnt);
VPSRAW __m128i _mm_mask_sra_epi16(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
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VPSRAW __m128i _mm_maskz_sra_epi16( __mmask8 k, __m128i a, __m128i cnt);
PSRAW __m64 _mm_srai_pi16 (__m64 m, int count)
PSRAW __m64 _mm_sra_pi16 (__m64 m, __m64 count)
(V)PSRAW __m128i _mm_srai_epi16(__m128i m, int count)
(V)PSRAW __m128i _mm_sra_epi16(__m128i m, __m128i count)
VPSRAW __m256i _mm256_srai_epi16 (__m256i m, int count)
VPSRAW __m256i _mm256_sra_epi16 (__m256i m, __m128i count)
PSRAD __m64 _mm_srai_pi32 (__m64 m, int count)
PSRAD __m64 _mm_sra_pi32 (__m64 m, __m64 count)
(V)PSRAD __m128i _mm_srai_epi32 (__m128i m, int count)
(V)PSRAD __m128i _mm_sra_epi32 (__m128i m, __m128i count)
VPSRAD __m256i _mm256_srai_epi32 (__m256i m, int count)
VPSRAD __m256i _mm256_sra_epi32 (__m256i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

• VEX-encoded instructions:

— Syntax with RM/RVM operand encoding (A/C in the operand encoding table), see Table 2-21, “Type 4 Class 
Exception Conditions.”

— Syntax with MI/VMI operand encoding (B/D in the operand encoding table), see Table 2-24, “Type 7 Class 
Exception Conditions.”

• EVEX-encoded VPSRAW (E in the operand encoding table), see Exceptions Type E4NF.nb in Table 2-52, “Type 
E4NF Class Exception Conditions.”

• EVEX-encoded VPSRAD/Q:

— Syntax with Mem128 tuple type (G in the operand encoding table), see Exceptions Type E4NF.nb in 
Table 2-52, “Type E4NF Class Exception Conditions.”

— Syntax with Full tuple type (F in the operand encoding table), see Table 2-51, “Type E4 Class Exception 
Conditions.”
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PSRLDQ—Shift Double Quadword Right Logical

Instruction Operand Encoding

Description

Shifts the destination operand (first operand) to the right by the number of bytes specified in the count operand 
(second operand). The empty high-order bytes are cleared (set to all 0s). If the value specified by the count 
operand is greater than 15, the destination operand is set to all 0s. The count operand is an 8-bit immediate.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The source and destination operands are the same. Bits (MAXVL-1:128) of the corre-
sponding YMM destination register remain unchanged.
VEX.128 encoded version: The source and destination operands are XMM registers. Bits (MAXVL-1:128) of the 
destination YMM register are zeroed. 
VEX.256 encoded version: The source operand is a YMM register. The destination operand is a YMM register. The 
count operand applies to both the low and high 128-bit lanes.
VEX.256 encoded version: The source operand is YMM register. The destination operand is an YMM register. Bits 
(MAXVL-1:256) of the corresponding ZMM register are zeroed. The count operand applies to both the low and high 
128-bit lanes.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location. 
The destination operand is a ZMM/YMM/XMM register. The count operand applies to each 128-bit lanes.

Note: VEX.vvvv/EVEX.vvvv encodes the destination register.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 73 /3 ib

PSRLDQ xmm1, imm8

A V/V SSE2 Shift xmm1 right by imm8 while shifting in 0s.

VEX.128.66.0F.WIG 73 /3 ib

VPSRLDQ xmm1, xmm2, imm8

B V/V AVX Shift xmm2 right by imm8 bytes while shifting in 
0s.

VEX.256.66.0F.WIG 73 /3 ib

VPSRLDQ ymm1, ymm2, imm8

B V/V AVX2 Shift ymm1 right by imm8 bytes while shifting in 
0s.

EVEX.128.66.0F.WIG 73 /3 ib
VPSRLDQ xmm1, xmm2/m128, imm8

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Shift xmm2/m128 right by imm8 bytes while 
shifting in 0s and store result in xmm1.

EVEX.256.66.0F.WIG 73 /3 ib
VPSRLDQ ymm1, ymm2/m256, imm8

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Shift ymm2/m256 right by imm8 bytes while 
shifting in 0s and store result in ymm1.

EVEX.512.66.0F.WIG 73 /3 ib
VPSRLDQ zmm1, zmm2/m512, imm8

C V/V AVX512BW 
OR AVX10.11

Shift zmm2/m512 right by imm8 bytes while 
shifting in 0s and store result in zmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (r, w) imm8 N/A N/A

B N/A VEX.vvvv (w) ModRM:r/m (r) imm8 N/A

C Full Mem EVEX.vvvv (w) ModRM:r/m (r) imm8 N/A
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Operation

VPSRLDQ (EVEX.512 Encoded Version)
TEMP := COUNT
IF (TEMP > 15) THEN TEMP := 16; FI
DEST[127:0] := SRC[127:0] >> (TEMP * 8)
DEST[255:128] := SRC[255:128] >> (TEMP * 8)
DEST[383:256] := SRC[383:256] >> (TEMP * 8)
DEST[511:384] := SRC[511:384] >> (TEMP * 8)
DEST[MAXVL-1:512] := 0;

VPSRLDQ (VEX.256 and EVEX.256 Encoded Version)
TEMP := COUNT
IF (TEMP > 15) THEN TEMP := 16; FI
DEST[127:0] := SRC[127:0] >> (TEMP * 8)
DEST[255:128] := SRC[255:128] >> (TEMP * 8)
DEST[MAXVL-1:256] := 0;

VPSRLDQ (VEX.128 and EVEX.128 Encoded Version)
TEMP := COUNT
IF (TEMP > 15) THEN TEMP := 16; FI
DEST := SRC >> (TEMP * 8)
DEST[MAXVL-1:128] := 0;

PSRLDQ (128-bit Legacy SSE Version)
TEMP := COUNT
IF (TEMP > 15) THEN TEMP := 16; FI
DEST := DEST >> (TEMP * 8)
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalents

(V)PSRLDQ __m128i _mm_srli_si128 ( __m128i a, int imm)
VPSRLDQ __m256i _mm256_bsrli_epi128 ( __m256i, const int)
VPSRLDQ __m512i _mm512_bsrli_epi128 ( __m512i, int)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-24, “Type 7 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
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PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F D1 /r1

PSRLW mm, mm/m64

A V/V MMX Shift words in mm right by amount specified in 
mm/m64 while shifting in 0s.

66 0F D1 /r

PSRLW xmm1, xmm2/m128

A V/V SSE2 Shift words in xmm1 right by amount specified 
in xmm2/m128 while shifting in 0s.

NP 0F 71 /2 ib1

PSRLW mm, imm8

B V/V MMX Shift words in mm right by imm8 while shifting 
in 0s.

66 0F 71 /2 ib

PSRLW xmm1, imm8

B V/V SSE2 Shift words in xmm1 right by imm8 while 
shifting in 0s.

NP 0F D2 /r1

PSRLD mm, mm/m64

A V/V MMX Shift doublewords in mm right by amount 
specified in mm/m64 while shifting in 0s.

66 0F D2 /r

PSRLD xmm1, xmm2/m128

A V/V SSE2 Shift doublewords in xmm1 right by amount 
specified in xmm2 /m128 while shifting in 0s.

NP 0F 72 /2 ib1

PSRLD mm, imm8

B V/V MMX Shift doublewords in mm right by imm8 while 
shifting in 0s.

66 0F 72 /2 ib

PSRLD xmm1, imm8

B V/V SSE2 Shift doublewords in xmm1 right by imm8 
while shifting in 0s.

NP 0F D3 /r1

PSRLQ mm, mm/m64

A V/V MMX Shift mm right by amount specified in 
mm/m64 while shifting in 0s.

66 0F D3 /r

PSRLQ xmm1, xmm2/m128

A V/V SSE2 Shift quadwords in xmm1 right by amount 
specified in xmm2/m128 while shifting in 0s.

NP 0F 73 /2 ib1

PSRLQ mm, imm8

B V/V MMX Shift mm right by imm8 while shifting in 0s.

66 0F 73 /2 ib

PSRLQ xmm1, imm8

B V/V SSE2 Shift quadwords in xmm1 right by imm8 while 
shifting in 0s.

VEX.128.66.0F.WIG D1 /r

VPSRLW xmm1, xmm2, xmm3/m128

C V/V AVX Shift words in xmm2 right by amount specified 
in xmm3/m128 while shifting in 0s.

VEX.128.66.0F.WIG 71 /2 ib

VPSRLW xmm1, xmm2, imm8

D V/V AVX Shift words in xmm2 right by imm8 while 
shifting in 0s.

VEX.128.66.0F.WIG D2 /r

VPSRLD xmm1, xmm2, xmm3/m128

C V/V AVX Shift doublewords in xmm2 right by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.128.66.0F.WIG 72 /2 ib

VPSRLD xmm1, xmm2, imm8

D V/V AVX Shift doublewords in xmm2 right by imm8 
while shifting in 0s.

VEX.128.66.0F.WIG D3 /r

VPSRLQ xmm1, xmm2, xmm3/m128

C V/V AVX Shift quadwords in xmm2 right by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.128.66.0F.WIG 73 /2 ib

VPSRLQ xmm1, xmm2, imm8

D V/V AVX Shift quadwords in xmm2 right by imm8 while 
shifting in 0s.

VEX.256.66.0F.WIG D1 /r

VPSRLW ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift words in ymm2 right by amount specified 
in xmm3/m128 while shifting in 0s.

VEX.256.66.0F.WIG 71 /2 ib

VPSRLW ymm1, ymm2, imm8

D V/V AVX2 Shift words in ymm2 right by imm8 while 
shifting in 0s.
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VEX.256.66.0F.WIG D2 /r

VPSRLD ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift doublewords in ymm2 right by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.256.66.0F.WIG 72 /2 ib

VPSRLD ymm1, ymm2, imm8

D V/V AVX2 Shift doublewords in ymm2 right by imm8 
while shifting in 0s.

VEX.256.66.0F.WIG D3 /r

VPSRLQ ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift quadwords in ymm2 right by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.256.66.0F.WIG 73 /2 ib

VPSRLQ ymm1, ymm2, imm8

D V/V AVX2 Shift quadwords in ymm2 right by imm8 while 
shifting in 0s.

EVEX.128.66.0F.WIG D1 /r
VPSRLW xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Shift words in xmm2 right by amount specified 
in xmm3/m128 while shifting in 0s using 
writemask k1.

EVEX.256.66.0F.WIG D1 /r
VPSRLW ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Shift words in ymm2 right by amount specified 
in xmm3/m128 while shifting in 0s using 
writemask k1.

EVEX.512.66.0F.WIG D1 /r
VPSRLW zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512BW OR 
AVX10.12

Shift words in zmm2 right by amount specified 
in xmm3/m128 while shifting in 0s using 
writemask k1.

EVEX.128.66.0F.WIG 71 /2 ib
VPSRLW xmm1 {k1}{z}, xmm2/m128, imm8

E V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Shift words in xmm2/m128 right by imm8 
while shifting in 0s using writemask k1.

EVEX.256.66.0F.WIG 71 /2 ib
VPSRLW ymm1 {k1}{z}, ymm2/m256, imm8

E V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Shift words in ymm2/m256 right by imm8 
while shifting in 0s using writemask k1.

EVEX.512.66.0F.WIG 71 /2 ib
VPSRLW zmm1 {k1}{z}, zmm2/m512, imm8

E V/V AVX512BW OR 
AVX10.12

Shift words in zmm2/m512 right by imm8 
while shifting in 0s using writemask k1.

EVEX.128.66.0F.W0 D2 /r
VPSRLD xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift doublewords in xmm2 right by amount 
specified in xmm3/m128 while shifting in 0s 
using writemask k1.

EVEX.256.66.0F.W0 D2 /r
VPSRLD ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift doublewords in ymm2 right by amount 
specified in xmm3/m128 while shifting in 0s 
using writemask k1.

EVEX.512.66.0F.W0 D2 /r
VPSRLD zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512F 
OR AVX10.12

Shift doublewords in zmm2 right by amount 
specified in xmm3/m128 while shifting in 0s 
using writemask k1.

EVEX.128.66.0F.W0 72 /2 ib
VPSRLD xmm1 {k1}{z}, 
xmm2/m128/m32bcst, imm8

F V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift doublewords in xmm2/m128/m32bcst 
right by imm8 while shifting in 0s using 
writemask k1.

EVEX.256.66.0F.W0 72 /2 ib
VPSRLD ymm1 {k1}{z}, 
ymm2/m256/m32bcst, imm8

F V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift doublewords in ymm2/m256/m32bcst 
right by imm8 while shifting in 0s using 
writemask k1.

EVEX.512.66.0F.W0 72 /2 ib
VPSRLD zmm1 {k1}{z}, 
zmm2/m512/m32bcst, imm8

F V/V AVX512F 
OR AVX10.12

Shift doublewords in zmm2/m512/m32bcst 
right by imm8 while shifting in 0s using 
writemask k1.

EVEX.128.66.0F.W1 D3 /r
VPSRLQ xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift quadwords in xmm2 right by amount 
specified in xmm3/m128 while shifting in 0s 
using writemask k1.
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Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the destination operand (first 
operand) to the right by the number of bits specified in the count operand (second operand). As the bits in the data 
elements are shifted right, the empty high-order bits are cleared (set to 0). If the value specified by the count 
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quadword), then the destination operand 
is set to all 0s. Figure 1-19 gives an example of shifting words in a 64-bit operand. 

Note that only the low 64-bits of a 128-bit count operand are checked to compute the count.

EVEX.256.66.0F.W1 D3 /r
VPSRLQ ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift quadwords in ymm2 right by amount 
specified in xmm3/m128 while shifting in 0s 
using writemask k1.

EVEX.512.66.0F.W1 D3 /r
VPSRLQ zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512F 
OR AVX10.12

Shift quadwords in zmm2 right by amount 
specified in xmm3/m128 while shifting in 0s 
using writemask k1.

EVEX.128.66.0F.W1 73 /2 ib
VPSRLQ xmm1 {k1}{z}, 
xmm2/m128/m64bcst, imm8

F V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift quadwords in xmm2/m128/m64bcst 
right by imm8 while shifting in 0s using 
writemask k1.

EVEX.256.66.0F.W1 73 /2 ib
VPSRLQ ymm1 {k1}{z}, 
ymm2/m256/m64bcst, imm8

F V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Shift quadwords in ymm2/m256/m64bcst 
right by imm8 while shifting in 0s using 
writemask k1.

EVEX.512.66.0F.W1 73 /2 ib
VPSRLQ zmm1 {k1}{z}, 
zmm2/m512/m64bcst, imm8

F V/V AVX512F 
OR AVX10.12

Shift quadwords in zmm2/m512/m64bcst 
right by imm8 while shifting in 0s using 
writemask k1.

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:r/m (r, w) imm8 N/A N/A

C N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

D N/A VEX.vvvv (w) ModRM:r/m (r) imm8 N/A

E Full Mem EVEX.vvvv (w) ModRM:r/m (r) imm8 N/A

F Full EVEX.vvvv (w) ModRM:r/m (r) imm8 N/A

G Mem128 ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag
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The (V)PSRLW instruction shifts each of the words in the destination operand to the right by the number of bits 
specified in the count operand; the (V)PSRLD instruction shifts each of the doublewords in the destination operand; 
and the PSRLQ instruction shifts the quadword (or quadwords) in the destination operand.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Legacy SSE instruction 64-bit operand: The destination operand is an MMX technology register; the count operand 
can be either an MMX technology register or an 64-bit memory location.
128-bit Legacy SSE version: The destination operand is an XMM register; the count operand can be either an XMM 
register or a 128-bit memory location, or an 8-bit immediate. If the count operand is a memory address, 128 bits 
are loaded but the upper 64 bits are ignored. Bits (MAXVL-1:128) of the corresponding YMM destination register 
remain unchanged.
VEX.128 encoded version: The destination operand is an XMM register; the count operand can be either an XMM 
register or a 128-bit memory location, or an 8-bit immediate. If the count operand is a memory address, 128 bits 
are loaded but the upper 64 bits are ignored. Bits (MAXVL-1:128) of the destination YMM register are zeroed.
VEX.256 encoded version: The destination operand is a YMM register. The source operand is a YMM register or a 
memory location. The count operand can come either from an XMM register or a memory location or an 8-bit 
immediate. Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed.
EVEX encoded versions: The destination operand is a ZMM register updated according to the writemask. The count 
operand is either an 8-bit immediate (the immediate count version) or an 8-bit value from an XMM register or a 
memory location (the variable count version). For the immediate count version, the source operand (the second 
operand) can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit 
memory location. For the variable count version, the first source operand (the second operand) is a ZMM register, 
the second source operand (the third operand, 8-bit variable count) can be an XMM register or a memory location.
Note: In VEX/EVEX encoded versions of shifts with an immediate count, vvvv of VEX/EVEX encode the destination 
register, and VEX.B/EVEX.B + ModRM.r/m encodes the source register.

Note: For shifts with an immediate count (VEX.128.66.0F 71-73 /2, or EVEX.128.66.0F 71-73 /2), 
VEX.vvvv/EVEX.vvvv encodes the destination register.

Operation

PSRLW (With 64-bit Operand)
IF (COUNT > 15)
THEN 

DEST[64:0] := 0000000000000000H
ELSE

DEST[15:0] := ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] := ZeroExtend(DEST[63:48] >> COUNT);

FI;

Figure 1-19.  PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand
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PSRLD (With 64-bit Operand)
IF (COUNT > 31)
THEN 

DEST[64:0] := 0000000000000000H
ELSE

DEST[31:0] := ZeroExtend(DEST[31:0] >> COUNT);
DEST[63:32] := ZeroExtend(DEST[63:32] >> COUNT);

FI;

PSRLQ (With 64-bit Operand)
IF (COUNT > 63)
THEN 

DEST[64:0] := 0000000000000000H
ELSE

DEST := ZeroExtend(DEST >> COUNT);
FI;

LOGICAL_RIGHT_SHIFT_DWORDS1(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[31:0] := 0
ELSE

DEST[31:0] := ZeroExtend(SRC[31:0] >> COUNT);
FI;

LOGICAL_RIGHT_SHIFT_QWORDS1(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[63:0] := 0
ELSE

DEST[63:0] := ZeroExtend(SRC[63:0] >> COUNT);
FI;
LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 15)
THEN

DEST[255:0] := 0
ELSE

DEST[15:0] := ZeroExtend(SRC[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 15th words *)
DEST[255:240] := ZeroExtend(SRC[255:240] >> COUNT);

FI;

LOGICAL_RIGHT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 15)
THEN

DEST[127:0] := 00000000000000000000000000000000H
ELSE

DEST[15:0] := ZeroExtend(SRC[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] := ZeroExtend(SRC[127:112] >> COUNT);

FI;
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LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[255:0] := 0
ELSE

DEST[31:0] := ZeroExtend(SRC[31:0] >> COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[255:224] := ZeroExtend(SRC[255:224] >> COUNT);

FI;

LOGICAL_RIGHT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[127:0] := 00000000000000000000000000000000H
ELSE

DEST[31:0] := ZeroExtend(SRC[31:0] >> COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] := ZeroExtend(SRC[127:96] >> COUNT);

FI;
LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[255:0] := 0
ELSE

DEST[63:0] := ZeroExtend(SRC[63:0] >> COUNT);
DEST[127:64] := ZeroExtend(SRC[127:64] >> COUNT);
DEST[191:128] := ZeroExtend(SRC[191:128] >> COUNT);
DEST[255:192] := ZeroExtend(SRC[255:192] >> COUNT);

FI;

LOGICAL_RIGHT_SHIFT_QWORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[127:0] := 00000000000000000000000000000000H
ELSE

DEST[63:0] := ZeroExtend(SRC[63:0] >> COUNT);
DEST[127:64] := ZeroExtend(SRC[127:64] >> COUNT);

FI;

VPSRLW (EVEX Versions, xmm/m128)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_RIGHT_SHIFT_WORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
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TMP_DEST[511:256] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[511:256], SRC2)
FI;

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TMP_DEST[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+15:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRLW (EVEX Versions, imm8)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_RIGHT_SHIFT_WORDS_128b(SRC1[127:0], imm8)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
TMP_DEST[511:256] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[511:256], imm8)

FI;

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TMP_DEST[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+15:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRLW (ymm, ymm, xmm/m128) - VEX.256 Encoding
DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0;

VPSRLW (ymm, imm8) - VEX.256 Encoding
DEST[255:0] := LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0;
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VPSRLW (xmm, xmm, xmm/m128) - VEX.128 Encoding
DEST[127:0] := LOGICAL_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSRLW (xmm, imm8) - VEX.128 Encoding
DEST[127:0] := LOGICAL_RIGHT_SHIFT_WORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0

PSRLW (xmm, xmm, xmm/m128)
DEST[127:0] := LOGICAL_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSRLW (xmm, imm8)
DEST[127:0] := LOGICAL_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

VPSRLD (EVEX Versions, xmm/m128)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_RIGHT_SHIFT_DWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1[511:256], SRC2)

FI;

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRLD (EVEX Versions, imm8)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+31:i] := LOGICAL_RIGHT_SHIFT_DWORDS1(SRC1[31:0], imm8)
ELSE DEST[i+31:i] := LOGICAL_RIGHT_SHIFT_DWORDS1(SRC1[i+31:i], imm8)

FI;
ELSE 

IF *merging-masking* ; merging-masking
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THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRLD (ymm, ymm, xmm/m128) - VEX.256 Encoding
DEST[255:0] := LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0;

VPSRLD (ymm, imm8) - VEX.256 Encoding
DEST[255:0] := LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0;

VPSRLD (xmm, xmm, xmm/m128) - VEX.128 Encoding
DEST[127:0] := LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSRLD (xmm, imm8) - VEX.128 Encoding
DEST[127:0] := LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0

PSRLD (xmm, xmm, xmm/m128)
DEST[127:0] := LOGICAL_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSRLD (xmm, imm8)
DEST[127:0] := LOGICAL_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

VPSRLQ (EVEX Versions, xmm/m128)
(KL, VL) = (2, 128), (4, 256), (8, 512)
TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[511:256], SRC2)
IF VL = 128

TMP_DEST[127:0] := LOGICAL_RIGHT_SHIFT_QWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[511:256], SRC2)

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 
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DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRLQ (EVEX Versions, imm8)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+63:i] := LOGICAL_RIGHT_SHIFT_QWORDS1(SRC1[63:0], imm8)
ELSE DEST[i+63:i] := LOGICAL_RIGHT_SHIFT_QWORDS1(SRC1[i+63:i], imm8)

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSRLQ (ymm, ymm, xmm/m128) - VEX.256 Encoding
DEST[255:0] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0;

VPSRLQ (ymm, imm8) - VEX.256 Encoding
DEST[255:0] := LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] := 0;
VPSRLQ (xmm, xmm, xmm/m128) - VEX.128 Encoding
DEST[127:0] := LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPSRLQ (xmm, imm8) - VEX.128 Encoding
DEST[127:0] := LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, imm8)
DEST[MAXVL-1:128] := 0

PSRLQ (xmm, xmm, xmm/m128)
DEST[127:0] := LOGICAL_RIGHT_SHIFT_QWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSRLQ (xmm, imm8)
DEST[127:0] := LOGICAL_RIGHT_SHIFT_QWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalents

VPSRLD __m512i _mm512_srli_epi32(__m512i a, unsigned int imm);
VPSRLD __m512i _mm512_mask_srli_epi32(__m512i s, __mmask16 k, __m512i a, unsigned int imm);
VPSRLD __m512i _mm512_maskz_srli_epi32( __mmask16 k, __m512i a, unsigned int imm);
VPSRLD __m256i _mm256_mask_srli_epi32(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
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VPSRLD __m256i _mm256_maskz_srli_epi32( __mmask8 k, __m256i a, unsigned int imm);
VPSRLD __m128i _mm_mask_srli_epi32(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRLD __m128i _mm_maskz_srli_epi32( __mmask8 k, __m128i a, unsigned int imm);
VPSRLD __m512i _mm512_srl_epi32(__m512i a, __m128i cnt);
VPSRLD __m512i _mm512_mask_srl_epi32(__m512i s, __mmask16 k, __m512i a, __m128i cnt);
VPSRLD __m512i _mm512_maskz_srl_epi32( __mmask16 k, __m512i a, __m128i cnt);
VPSRLD __m256i _mm256_mask_srl_epi32(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSRLD __m256i _mm256_maskz_srl_epi32( __mmask8 k, __m256i a, __m128i cnt);
VPSRLD __m128i _mm_mask_srl_epi32(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLD __m128i _mm_maskz_srl_epi32( __mmask8 k, __m128i a, __m128i cnt);
VPSRLQ __m512i _mm512_srli_epi64(__m512i a, unsigned int imm);
VPSRLQ __m512i _mm512_mask_srli_epi64(__m512i s, __mmask8 k, __m512i a, unsigned int imm);
VPSRLQ __m512i _mm512_mask_srli_epi64( __mmask8 k, __m512i a, unsigned int imm);
VPSRLQ __m256i _mm256_mask_srli_epi64(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSRLQ __m256i _mm256_maskz_srli_epi64( __mmask8 k, __m256i a, unsigned int imm);
VPSRLQ __m128i _mm_mask_srli_epi64(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRLQ __m128i _mm_maskz_srli_epi64( __mmask8 k, __m128i a, unsigned int imm);
VPSRLQ __m512i _mm512_srl_epi64(__m512i a, __m128i cnt);
VPSRLQ __m512i _mm512_mask_srl_epi64(__m512i s, __mmask8 k, __m512i a, __m128i cnt);
VPSRLQ __m512i _mm512_mask_srl_epi64( __mmask8 k, __m512i a, __m128i cnt);
VPSRLQ __m256i _mm256_mask_srl_epi64(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSRLQ __m256i _mm256_maskz_srl_epi64( __mmask8 k, __m256i a, __m128i cnt);
VPSRLQ __m128i _mm_mask_srl_epi64(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLQ __m128i _mm_maskz_srl_epi64( __mmask8 k, __m128i a, __m128i cnt);
VPSRLW __m512i _mm512_srli_epi16(__m512i a, unsigned int imm);
VPSRLW __m512i _mm512_mask_srli_epi16(__m512i s, __mmask32 k, __m512i a, unsigned int imm);
VPSRLW __m512i _mm512_maskz_srli_epi16( __mmask32 k, __m512i a, unsigned int imm);
VPSRLW __m256i _mm256_mask_srli_epi16(__m256i s, __mmask16 k, __m256i a, unsigned int imm);
VPSRLW __m256i _mm256_maskz_srli_epi16( __mmask16 k, __m256i a, unsigned int imm);
VPSRLW __m128i _mm_mask_srli_epi16(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRLW __m128i _mm_maskz_srli_epi16( __mmask8 k, __m128i a, unsigned int imm);
VPSRLW __m512i _mm512_srl_epi16(__m512i a, __m128i cnt);
VPSRLW __m512i _mm512_mask_srl_epi16(__m512i s, __mmask32 k, __m512i a, __m128i cnt);
VPSRLW __m512i _mm512_maskz_srl_epi16( __mmask32 k, __m512i a, __m128i cnt);
VPSRLW __m256i _mm256_mask_srl_epi16(__m256i s, __mmask16 k, __m256i a, __m128i cnt);
VPSRLW __m256i _mm256_maskz_srl_epi16( __mmask8 k, __mmask16 a, __m128i cnt);
VPSRLW __m128i _mm_mask_srl_epi16(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLW __m128i _mm_maskz_srl_epi16( __mmask8 k, __m128i a, __m128i cnt);
PSRLW __m64 _mm_srli_pi16(__m64 m, int count)
PSRLW __m64 _mm_srl_pi16 (__m64 m, __m64 count)
(V)PSRLW __m128i _mm_srli_epi16 (__m128i m, int count)
(V)PSRLW __m128i _mm_srl_epi16 (__m128i m, __m128i count)
VPSRLW __m256i _mm256_srli_epi16 (__m256i m, int count)
VPSRLW __m256i _mm256_srl_epi16 (__m256i m, __m128i count)
PSRLD __m64 _mm_srli_pi32 (__m64 m, int count)
PSRLD __m64 _mm_srl_pi32 (__m64 m, __m64 count)
(V)PSRLD __m128i _mm_srli_epi32 (__m128i m, int count)
(V)PSRLD __m128i _mm_srl_epi32 (__m128i m, __m128i count)
VPSRLD __m256i _mm256_srli_epi32 (__m256i m, int count)
VPSRLD __m256i _mm256_srl_epi32 (__m256i m, __m128i count)
PSRLQ __m64 _mm_srli_si64 (__m64 m, int count)
PSRLQ __m64 _mm_srl_si64 (__m64 m, __m64 count)
(V)PSRLQ __m128i _mm_srli_epi64 (__m128i m, int count)
(V)PSRLQ __m128i _mm_srl_epi64 (__m128i m, __m128i count)
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VPSRLQ __m256i _mm256_srli_epi64 (__m256i m, int count)
VPSRLQ __m256i _mm256_srl_epi64 (__m256i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

• VEX-encoded instructions:

— Syntax with RM/RVM operand encoding (A/C in the operand encoding table), see Table 2-21, “Type 4 Class 
Exception Conditions.”

— Syntax with MI/VMI operand encoding (B/D in the operand encoding table), see Table 2-24, “Type 7 Class 
Exception Conditions.”

• EVEX-encoded VPSRLW (E in the operand encoding table), see Exceptions Type E4NF.nb in Table 2-52, “Type 
E4NF Class Exception Conditions.”

• EVEX-encoded VPSRLD/Q:

— Syntax with Mem128 tuple type (G in the operand encoding table), see Exceptions Type E4NF.nb in 
Table 2-52, “Type E4NF Class Exception Conditions.”

— Syntax with Full tuple type (F in the operand encoding table), see Table 2-51, “Type E4 Class Exception 
Conditions.”
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PSUBB/PSUBW/PSUBD—Subtract Packed Integers
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F F8 /r1

PSUBB mm, mm/m64

A V/V MMX Subtract packed byte integers in mm/m64 
from packed byte integers in mm.

66 0F F8 /r

PSUBB xmm1, xmm2/m128

A V/V SSE2 Subtract packed byte integers in xmm2/m128 
from packed byte integers in xmm1.

NP 0F F9 /r1

PSUBW mm, mm/m64

A V/V MMX Subtract packed word integers in mm/m64 
from packed word integers in mm.

66 0F F9 /r

PSUBW xmm1, xmm2/m128

A V/V SSE2 Subtract packed word integers in 
xmm2/m128 from packed word integers in 
xmm1.

NP 0F FA /r1

PSUBD mm, mm/m64

A V/V MMX Subtract packed doubleword integers in 
mm/m64 from packed doubleword integers in 
mm.

66 0F FA /r

PSUBD xmm1, xmm2/m128

A V/V SSE2 Subtract packed doubleword integers in 
xmm2/mem128 from packed doubleword 
integers in xmm1.

VEX.128.66.0F.WIG F8 /r
VPSUBB xmm1, xmm2, xmm3/m128

B V/V AVX Subtract packed byte integers in xmm3/m128 
from xmm2.

VEX.128.66.0F.WIG F9 /r

VPSUBW xmm1, xmm2, xmm3/m128

B V/V AVX Subtract packed word integers in 
xmm3/m128 from xmm2.

VEX.128.66.0F.WIG FA /r
VPSUBD xmm1, xmm2, xmm3/m128

B V/V AVX Subtract packed doubleword integers in 
xmm3/m128 from xmm2.

VEX.256.66.0F.WIG F8 /r
VPSUBB ymm1, ymm2, ymm3/m256

B V/V AVX2 Subtract packed byte integers in ymm3/m256 
from ymm2.

VEX.256.66.0F.WIG F9 /r
VPSUBW ymm1, ymm2, ymm3/m256

B V/V AVX2 Subtract packed word integers in 
ymm3/m256 from ymm2.

VEX.256.66.0F.WIG FA /r
VPSUBD ymm1, ymm2, ymm3/m256

B V/V AVX2 Subtract packed doubleword integers in 
ymm3/m256 from ymm2.

EVEX.128.66.0F.WIG F8 /r
VPSUBB xmm1 {k1}{z}, xmm2, xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Subtract packed byte integers in xmm3/m128 
from xmm2 and store in xmm1 using 
writemask k1.

EVEX.256.66.0F.WIG F8 /r
VPSUBB ymm1 {k1}{z}, ymm2, ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Subtract packed byte integers in ymm3/m256 
from ymm2 and store in ymm1 using 
writemask k1.

EVEX.512.66.0F.WIG F8 /r
VPSUBB zmm1 {k1}{z}, zmm2, zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Subtract packed byte integers in zmm3/m512 
from zmm2 and store in zmm1 using 
writemask k1.

EVEX.128.66.0F.WIG F9 /r
VPSUBW xmm1 {k1}{z}, xmm2, xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Subtract packed word integers in 
xmm3/m128 from xmm2 and store in xmm1 
using writemask k1.

EVEX.256.66.0F.WIG F9 /r
VPSUBW ymm1 {k1}{z}, ymm2, ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Subtract packed word integers in 
ymm3/m256 from ymm2 and store in ymm1 
using writemask k1.

EVEX.512.66.0F.WIG F9 /r
VPSUBW zmm1 {k1}{z}, zmm2, zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Subtract packed word integers in 
zmm3/m512 from zmm2 and store in zmm1 
using writemask k1.
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Instruction Operand Encoding

Description

Performs a SIMD subtract of the packed integers of the source operand (second operand) from the packed integers 
of the destination operand (first operand), and stores the packed integer results in the destination operand. See 
Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a 
SIMD operation. Overflow is handled with wraparound, as described in the following paragraphs.

The (V)PSUBB instruction subtracts packed byte integers. When an individual result is too large or too small to be 
represented in a byte, the result is wrapped around and the low 8 bits are written to the destination element.

The (V)PSUBW instruction subtracts packed word integers. When an individual result is too large or too small to be 
represented in a word, the result is wrapped around and the low 16 bits are written to the destination element.

The (V)PSUBD instruction subtracts packed doubleword integers. When an individual result is too large or too small 
to be represented in a doubleword, the result is wrapped around and the low 32 bits are written to the destination 
element.

Note that the (V)PSUBB, (V)PSUBW, and (V)PSUBD instructions can operate on either unsigned or signed (two's 
complement notation) packed integers; however, it does not set bits in the EFLAGS register to indicate overflow 
and/or a carry. To prevent undetected overflow conditions, software must control the ranges of values upon which 
it operates.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Legacy SSE version 64-bit operand: The destination operand must be an MMX technology register and the source 
operand can be either an MMX technology register or a 64-bit memory location.

EVEX.128.66.0F.W0 FA /r
VPSUBD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst 

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Subtract packed doubleword integers in 
xmm3/m128/m32bcst from xmm2 and store 
in xmm1 using writemask k1.

EVEX.256.66.0F.W0 FA /r
VPSUBD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Subtract packed doubleword integers in 
ymm3/m256/m32bcst from ymm2 and store 
in ymm1 using writemask k1.

EVEX.512.66.0F.W0 FA /r
VPSUBD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst 

D V/V AVX512F 
OR AVX10.12

Subtract packed doubleword integers in 
zmm3/m512/m32bcst from zmm2 and store 
in zmm1 using writemask k1

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

D Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description
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128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the destination YMM register 
are zeroed. 
VEX.256 encoded versions: The second source operand is an YMM register or an 256-bit memory location. The first 
source operand and destination operands are YMM registers. Bits (MAXVL-1:256) of the corresponding ZMM 
register are zeroed.
EVEX encoded VPSUBD: The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. The first source operand and 
destination operands are ZMM/YMM/XMM registers. The destination is conditionally updated with writemask k1.
EVEX encoded VPSUBB/W: The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory 
location. The first source operand and destination operands are ZMM/YMM/XMM registers. The destination is condi-
tionally updated with writemask k1.

Operation

PSUBB (With 64-bit Operands)
DEST[7:0] := DEST[7:0] − SRC[7:0]; 
(* Repeat subtract operation for 2nd through 7th byte *)
DEST[63:56] := DEST[63:56] − SRC[63:56];

PSUBW (With 64-bit Operands)
DEST[15:0] := DEST[15:0] − SRC[15:0];
(* Repeat subtract operation for 2nd and 3rd word *)
DEST[63:48] := DEST[63:48] − SRC[63:48];

PSUBD (With 64-bit Operands)
DEST[31:0] := DEST[31:0] − SRC[31:0];
DEST[63:32] := DEST[63:32] − SRC[63:32];

PSUBD (With 128-bit Operands)
DEST[31:0] := DEST[31:0] − SRC[31:0];
(* Repeat subtract operation for 2nd and 3rd doubleword *)
DEST[127:96] := DEST[127:96] − SRC[127:96];

VPSUBB (EVEX Encoded Versions) 
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SRC1[i+7:i] - SRC2[i+7:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] = 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
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VPSUBW (EVEX Encoded Versions) 
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SRC1[i+15:i] - SRC2[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] = 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

VPSUBD (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] := SRC1[i+31:i] - SRC2[31:0]
ELSE DEST[i+31:i] := SRC1[i+31:i] - SRC2[i+31:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

VPSUBB (VEX.256 Encoded Version)
DEST[7:0] := SRC1[7:0]-SRC2[7:0]
DEST[15:8] := SRC1[15:8]-SRC2[15:8]
DEST[23:16] := SRC1[23:16]-SRC2[23:16]
DEST[31:24] := SRC1[31:24]-SRC2[31:24]
DEST[39:32] := SRC1[39:32]-SRC2[39:32]
DEST[47:40] := SRC1[47:40]-SRC2[47:40]
DEST[55:48] := SRC1[55:48]-SRC2[55:48]
DEST[63:56] := SRC1[63:56]-SRC2[63:56]
DEST[71:64] := SRC1[71:64]-SRC2[71:64]
DEST[79:72] := SRC1[79:72]-SRC2[79:72]
DEST[87:80] := SRC1[87:80]-SRC2[87:80]
DEST[95:88] := SRC1[95:88]-SRC2[95:88]
DEST[103:96] := SRC1[103:96]-SRC2[103:96]
DEST[111:104] := SRC1[111:104]-SRC2[111:104]
DEST[119:112] := SRC1[119:112]-SRC2[119:112]
DEST[127:120] := SRC1[127:120]-SRC2[127:120]
DEST[135:128] := SRC1[135:128]-SRC2[135:128]
DEST[143:136] := SRC1[143:136]-SRC2[143:136]
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DEST[151:144] := SRC1[151:144]-SRC2[151:144]
DEST[159:152] := SRC1[159:152]-SRC2[159:152]
DEST[167:160] := SRC1[167:160]-SRC2[167:160]
DEST[175:168] := SRC1[175:168]-SRC2[175:168]
DEST[183:176] := SRC1[183:176]-SRC2[183:176]
DEST[191:184] := SRC1[191:184]-SRC2[191:184]
DEST[199:192] := SRC1[199:192]-SRC2[199:192]
DEST[207:200] := SRC1[207:200]-SRC2[207:200]
DEST[215:208] := SRC1[215:208]-SRC2[215:208]
DEST[223:216] := SRC1[223:216]-SRC2[223:216]
DEST[231:224] := SRC1[231:224]-SRC2[231:224]
DEST[239:232] := SRC1[239:232]-SRC2[239:232]
DEST[247:240] := SRC1[247:240]-SRC2[247:240]
DEST[255:248] := SRC1[255:248]-SRC2[255:248]
DEST[MAXVL-1:256] := 0

VPSUBB (VEX.128 Encoded Version)
DEST[7:0] := SRC1[7:0]-SRC2[7:0]
DEST[15:8] := SRC1[15:8]-SRC2[15:8]
DEST[23:16] := SRC1[23:16]-SRC2[23:16]
DEST[31:24] := SRC1[31:24]-SRC2[31:24]
DEST[39:32] := SRC1[39:32]-SRC2[39:32]
DEST[47:40] := SRC1[47:40]-SRC2[47:40]
DEST[55:48] := SRC1[55:48]-SRC2[55:48]
DEST[63:56] := SRC1[63:56]-SRC2[63:56]
DEST[71:64] := SRC1[71:64]-SRC2[71:64]
DEST[79:72] := SRC1[79:72]-SRC2[79:72]
DEST[87:80] := SRC1[87:80]-SRC2[87:80]
DEST[95:88] := SRC1[95:88]-SRC2[95:88]
DEST[103:96] := SRC1[103:96]-SRC2[103:96]
DEST[111:104] := SRC1[111:104]-SRC2[111:104]
DEST[119:112] := SRC1[119:112]-SRC2[119:112]
DEST[127:120] := SRC1[127:120]-SRC2[127:120]
DEST[MAXVL-1:128] := 0

PSUBB (128-bit Legacy SSE Version)
DEST[7:0] := DEST[7:0]-SRC[7:0]
DEST[15:8] := DEST[15:8]-SRC[15:8]
DEST[23:16] := DEST[23:16]-SRC[23:16]
DEST[31:24] := DEST[31:24]-SRC[31:24]
DEST[39:32] := DEST[39:32]-SRC[39:32]
DEST[47:40] := DEST[47:40]-SRC[47:40]
DEST[55:48] := DEST[55:48]-SRC[55:48]
DEST[63:56] := DEST[63:56]-SRC[63:56]
DEST[71:64] := DEST[71:64]-SRC[71:64]
DEST[79:72] := DEST[79:72]-SRC[79:72]
DEST[87:80] := DEST[87:80]-SRC[87:80]
DEST[95:88] := DEST[95:88]-SRC[95:88]
DEST[103:96] := DEST[103:96]-SRC[103:96]
DEST[111:104] := DEST[111:104]-SRC[111:104]
DEST[119:112] := DEST[119:112]-SRC[119:112]
DEST[127:120] := DEST[127:120]-SRC[127:120]
DEST[MAXVL-1:128] (Unmodified)
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VPSUBW (VEX.256 Encoded Version)
DEST[15:0] := SRC1[15:0]-SRC2[15:0]
DEST[31:16] := SRC1[31:16]-SRC2[31:16]
DEST[47:32] := SRC1[47:32]-SRC2[47:32]
DEST[63:48] := SRC1[63:48]-SRC2[63:48]
DEST[79:64] := SRC1[79:64]-SRC2[79:64]
DEST[95:80] := SRC1[95:80]-SRC2[95:80]
DEST[111:96] := SRC1[111:96]-SRC2[111:96]
DEST[127:112] := SRC1[127:112]-SRC2[127:112]
DEST[143:128] := SRC1[143:128]-SRC2[143:128]
DEST[159:144] := SRC1[159:144]-SRC2[159:144]
DEST[175:160] := SRC1[175:160]-SRC2[175:160]
DEST[191:176] := SRC1[191:176]-SRC2[191:176]
DEST[207:192] := SRC1207:192]-SRC2[207:192]
DEST[223:208] := SRC1[223:208]-SRC2[223:208]
DEST[239:224] := SRC1[239:224]-SRC2[239:224]
DEST[255:240] := SRC1[255:240]-SRC2[255:240]
DEST[MAXVL-1:256] := 0

VPSUBW (VEX.128 Encoded Version)
DEST[15:0] := SRC1[15:0]-SRC2[15:0]
DEST[31:16] := SRC1[31:16]-SRC2[31:16]
DEST[47:32] := SRC1[47:32]-SRC2[47:32]
DEST[63:48] := SRC1[63:48]-SRC2[63:48]
DEST[79:64] := SRC1[79:64]-SRC2[79:64]
DEST[95:80] := SRC1[95:80]-SRC2[95:80]
DEST[111:96] := SRC1[111:96]-SRC2[111:96]
DEST[127:112] := SRC1[127:112]-SRC2[127:112]
DEST[MAXVL-1:128] := 0

PSUBW (128-bit Legacy SSE Version)
DEST[15:0] := DEST[15:0]-SRC[15:0]
DEST[31:16] := DEST[31:16]-SRC[31:16]
DEST[47:32] := DEST[47:32]-SRC[47:32]
DEST[63:48] := DEST[63:48]-SRC[63:48]
DEST[79:64] := DEST[79:64]-SRC[79:64]
DEST[95:80] := DEST[95:80]-SRC[95:80]
DEST[111:96] := DEST[111:96]-SRC[111:96]
DEST[127:112] := DEST[127:112]-SRC[127:112]
DEST[MAXVL-1:128] (Unmodified)

VPSUBD (VEX.256 Encoded Version)
DEST[31:0] := SRC1[31:0]-SRC2[31:0]
DEST[63:32] := SRC1[63:32]-SRC2[63:32]
DEST[95:64] := SRC1[95:64]-SRC2[95:64]
DEST[127:96] := SRC1[127:96]-SRC2[127:96]
DEST[159:128] := SRC1[159:128]-SRC2[159:128]
DEST[191:160] := SRC1[191:160]-SRC2[191:160]
DEST[223:192] := SRC1[223:192]-SRC2[223:192]
DEST[255:224] := SRC1[255:224]-SRC2[255:224]
DEST[MAXVL-1:256] := 0
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VPSUBD (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0]-SRC2[31:0]
DEST[63:32] := SRC1[63:32]-SRC2[63:32]
DEST[95:64] := SRC1[95:64]-SRC2[95:64]
DEST[127:96] := SRC1[127:96]-SRC2[127:96]
DEST[MAXVL-1:128] := 0

PSUBD (128-bit Legacy SSE Version)
DEST[31:0] := DEST[31:0]-SRC[31:0]
DEST[63:32] := DEST[63:32]-SRC[63:32]
DEST[95:64] := DEST[95:64]-SRC[95:64]
DEST[127:96] := DEST[127:96]-SRC[127:96]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalents

VPSUBB __m512i _mm512_sub_epi8(__m512i a, __m512i b);
VPSUBB __m512i _mm512_mask_sub_epi8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPSUBB __m512i _mm512_maskz_sub_epi8( __mmask64 k, __m512i a, __m512i b);
VPSUBB __m256i _mm256_mask_sub_epi8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPSUBB __m256i _mm256_maskz_sub_epi8( __mmask32 k, __m256i a, __m256i b);
VPSUBB __m128i _mm_mask_sub_epi8(__m128i s, __mmask16 k, __m128i a, __m128i b);
VPSUBB __m128i _mm_maskz_sub_epi8( __mmask16 k, __m128i a, __m128i b);
VPSUBW __m512i _mm512_sub_epi16(__m512i a, __m512i b);
VPSUBW __m512i _mm512_mask_sub_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPSUBW __m512i _mm512_maskz_sub_epi16( __mmask32 k, __m512i a, __m512i b);
VPSUBW __m256i _mm256_mask_sub_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPSUBW __m256i _mm256_maskz_sub_epi16( __mmask16 k, __m256i a, __m256i b);
VPSUBW __m128i _mm_mask_sub_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPSUBW __m128i _mm_maskz_sub_epi16( __mmask8 k, __m128i a, __m128i b);
VPSUBD __m512i _mm512_sub_epi32(__m512i a, __m512i b);
VPSUBD __m512i _mm512_mask_sub_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPSUBD __m512i _mm512_maskz_sub_epi32( __mmask16 k, __m512i a, __m512i b);
VPSUBD __m256i _mm256_mask_sub_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPSUBD __m256i _mm256_maskz_sub_epi32( __mmask8 k, __m256i a, __m256i b);
VPSUBD __m128i _mm_mask_sub_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPSUBD __m128i _mm_maskz_sub_epi32( __mmask8 k, __m128i a, __m128i b);
PSUBB __m64 _mm_sub_pi8(__m64 m1, __m64 m2)
(V)PSUBB __m128i _mm_sub_epi8 ( __m128i a, __m128i b)
VPSUBB __m256i _mm256_sub_epi8 ( __m256i a, __m256i b)
PSUBW __m64 _mm_sub_pi16(__m64 m1, __m64 m2)
(V)PSUBW __m128i _mm_sub_epi16 ( __m128i a, __m128i b)
VPSUBW __m256i _mm256_sub_epi16 ( __m256i a, __m256i b)
PSUBD __m64 _mm_sub_pi32(__m64 m1, __m64 m2)
(V)PSUBD __m128i _mm_sub_epi32 ( __m128i a, __m128i b)
VPSUBD __m256i _mm256_sub_epi32 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.
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Other Exceptions

Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded VPSUBD, see Table 2-51, “Type E4 Class Exception Conditions.”
EVEX-encoded VPSUBB/W, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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PSUBQ—Subtract Packed Quadword Integers 

Instruction Operand Encoding

Description

Subtracts the second operand (source operand) from the first operand (destination operand) and stores the result 
in the destination operand. When packed quadword operands are used, a SIMD subtract is performed. When a 
quadword result is too large to be represented in 64 bits (overflow), the result is wrapped around and the low 64 
bits are written to the destination element (that is, the carry is ignored).

Note that the (V)PSUBQ instruction can operate on either unsigned or signed (two’s complement notation) inte-
gers; however, it does not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent undetected 
overflow conditions, software must control the ranges of the values upon which it operates.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Legacy SSE version 64-bit operand: The source operand can be a quadword integer stored in an MMX technology 
register or a 64-bit memory location. 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F FB /r1

PSUBQ mm1, mm2/m64

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V SSE2 Subtract quadword integer in mm1 from mm2 
/m64.

66 0F FB /r

PSUBQ xmm1, xmm2/m128

A V/V SSE2 Subtract packed quadword integers in xmm1 
from xmm2 /m128.

VEX.128.66.0F.WIG FB/r

VPSUBQ xmm1, xmm2, xmm3/m128

B V/V AVX Subtract packed quadword integers in 
xmm3/m128 from xmm2.

VEX.256.66.0F.WIG FB /r

VPSUBQ ymm1, ymm2, ymm3/m256

B V/V AVX2 Subtract packed quadword integers in 
ymm3/m256 from ymm2.

EVEX.128.66.0F.W1 FB /r
VPSUBQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Subtract packed quadword integers in 
xmm3/m128/m64bcst from xmm2 and store 
in xmm1 using writemask k1.

EVEX.256.66.0F.W1 FB /r
VPSUBQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Subtract packed quadword integers in 
ymm3/m256/m64bcst from ymm2 and store 
in ymm1 using writemask k1.

EVEX.512.66.0F.W1 FB/r
VPSUBQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512F 
OR AVX10.12

Subtract packed quadword integers in 
zmm3/m512/m64bcst from zmm2 and store 
in zmm1 using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the destination YMM register 
are zeroed. 
VEX.256 encoded versions: The second source operand is an YMM register or an 256-bit memory location. The first 
source operand and destination operands are YMM registers. Bits (MAXVL-1:256) of the corresponding ZMM 
register are zeroed.
EVEX encoded VPSUBQ: The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. The first source operand and 
destination operands are ZMM/YMM/XMM registers. The destination is conditionally updated with writemask k1.

Operation

PSUBQ (With 64-Bit Operands)
DEST[63:0] := DEST[63:0] − SRC[63:0];

PSUBQ (With 128-Bit Operands)
DEST[63:0] := DEST[63:0] − SRC[63:0];
DEST[127:64] := DEST[127:64] − SRC[127:64];

VPSUBQ (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0]-SRC2[63:0]
DEST[127:64] := SRC1[127:64]-SRC2[127:64]
DEST[MAXVL-1:128] := 0

VPSUBQ (VEX.256 Encoded Version)
DEST[63:0] := SRC1[63:0]-SRC2[63:0]
DEST[127:64] := SRC1[127:64]-SRC2[127:64]
DEST[191:128] := SRC1[191:128]-SRC2[191:128]
DEST[255:192] := SRC1[255:192]-SRC2[255:192]
DEST[MAXVL-1:256] := 0

VPSUBQ (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] := SRC1[i+63:i] - SRC2[63:0]
ELSE DEST[i+63:i] := SRC1[i+63:i] - SRC2[i+63:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalents

VPSUBQ __m512i _mm512_sub_epi64(__m512i a, __m512i b);
VPSUBQ __m512i _mm512_mask_sub_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPSUBQ __m512i _mm512_maskz_sub_epi64( __mmask8 k, __m512i a, __m512i b);
VPSUBQ __m256i _mm256_mask_sub_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPSUBQ __m256i _mm256_maskz_sub_epi64( __mmask8 k, __m256i a, __m256i b);
VPSUBQ __m128i _mm_mask_sub_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPSUBQ __m128i _mm_maskz_sub_epi64( __mmask8 k, __m128i a, __m128i b);
PSUBQ __m64 _mm_sub_si64(__m64 m1, __m64 m2)
(V)PSUBQ __m128i _mm_sub_epi64(__m128i m1, __m128i m2)
VPSUBQ __m256i _mm256_sub_epi64(__m256i m1, __m256i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded VPSUBQ, see Table 2-51, “Type E4 Class Exception Conditions.”
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PSUBSB/PSUBSW—Subtract Packed Signed Integers With Signed Saturation
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F E8 /r1

PSUBSB mm, mm/m64

A V/V MMX Subtract signed packed bytes in mm/m64 from 
signed packed bytes in mm and saturate results.

66 0F E8 /r

PSUBSB xmm1, xmm2/m128

A V/V SSE2 Subtract packed signed byte integers in 
xmm2/m128 from packed signed byte integers in 
xmm1 and saturate results.

NP 0F E9 /r1

PSUBSW mm, mm/m64

A V/V MMX Subtract signed packed words in mm/m64 from 
signed packed words in mm and saturate results.

66 0F E9 /r

PSUBSW xmm1, xmm2/m128

A V/V SSE2 Subtract packed signed word integers in 
xmm2/m128 from packed signed word integers in 
xmm1 and saturate results.

VEX.128.66.0F.WIG E8 /r

VPSUBSB xmm1, xmm2, xmm3/m128

B V/V AVX Subtract packed signed byte integers in 
xmm3/m128 from packed signed byte integers in 
xmm2 and saturate results.

VEX.128.66.0F.WIG E9 /r

VPSUBSW xmm1, xmm2, xmm3/m128

B V/V AVX Subtract packed signed word integers in 
xmm3/m128 from packed signed word integers in 
xmm2 and saturate results.

VEX.256.66.0F.WIG E8 /r

VPSUBSB ymm1, ymm2, ymm3/m256

B V/V AVX2 Subtract packed signed byte integers in 
ymm3/m256 from packed signed byte integers in 
ymm2 and saturate results.

VEX.256.66.0F.WIG E9 /r

VPSUBSW ymm1, ymm2, ymm3/m256

B V/V AVX2 Subtract packed signed word integers in 
ymm3/m256 from packed signed word integers in 
ymm2 and saturate results.

EVEX.128.66.0F.WIG E8 /r
VPSUBSB xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Subtract packed signed byte integers in 
xmm3/m128 from packed signed byte integers in 
xmm2 and saturate results and store in xmm1 
using writemask k1.

EVEX.256.66.0F.WIG E8 /r
VPSUBSB ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Subtract packed signed byte integers in 
ymm3/m256 from packed signed byte integers in 
ymm2 and saturate results and store in ymm1 
using writemask k1.

EVEX.512.66.0F.WIG E8 /r
VPSUBSB zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Subtract packed signed byte integers in 
zmm3/m512 from packed signed byte integers in 
zmm2 and saturate results and store in zmm1 using 
writemask k1.

EVEX.128.66.0F.WIG E9 /r
VPSUBSW xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Subtract packed signed word integers in 
xmm3/m128 from packed signed word integers in 
xmm2 and saturate results and store in xmm1 
using writemask k1.

EVEX.256.66.0F.WIG E9 /r
VPSUBSW ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Subtract packed signed word integers in 
ymm3/m256 from packed signed word integers in 
ymm2 and saturate results and store in ymm1 
using writemask k1.

EVEX.512.66.0F.WIG E9 /r
VPSUBSW zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Subtract packed signed word integers in 
zmm3/m512 from packed signed word integers in 
zmm2 and saturate results and store in zmm1 using 
writemask k1.
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Instruction Operand Encoding

Description

Performs a SIMD subtract of the packed signed integers of the source operand (second operand) from the packed 
signed integers of the destination operand (first operand), and stores the packed integer results in the destination 
operand. See Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an 
illustration of a SIMD operation. Overflow is handled with signed saturation, as described in the following para-
graphs.

The (V)PSUBSB instruction subtracts packed signed byte integers. When an individual byte result is beyond the 
range of a signed byte integer (that is, greater than 7FH or less than 80H), the saturated value of 7FH or 80H, 
respectively, is written to the destination operand.

The (V)PSUBSW instruction subtracts packed signed word integers. When an individual word result is beyond the 
range of a signed word integer (that is, greater than 7FFFH or less than 8000H), the saturated value of 7FFFH or 
8000H, respectively, is written to the destination operand.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Legacy SSE version 64-bit operand: The destination operand must be an MMX technology register and the source 
operand can be either an MMX technology register or a 64-bit memory location.
128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the destination YMM register 
are zeroed. 
VEX.256 encoded versions: The second source operand is an YMM register or an 256-bit memory location. The first 
source operand and destination operands are YMM registers. Bits (MAXVL-1:256) of the corresponding ZMM 
register are zeroed.
EVEX encoded version: The second source operand is an ZMM/YMM/XMM register or an 512/256/128-bit memory 
location. The first source operand and destination operands are ZMM/YMM/XMM registers. The destination is condi-
tionally updated with writemask k1.

Operation

PSUBSB (With 64-bit Operands)
DEST[7:0] := SaturateToSignedByte (DEST[7:0] − SRC (7:0]);
(* Repeat subtract operation for 2nd through 7th bytes *)
DEST[63:56] := SaturateToSignedByte (DEST[63:56] − SRC[63:56] );

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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PSUBSW (With 64-bit Operands)
DEST[15:0] := SaturateToSignedWord (DEST[15:0] − SRC[15:0] );
(* Repeat subtract operation for 2nd and 7th words *)
DEST[63:48] := SaturateToSignedWord (DEST[63:48] − SRC[63:48] );

VPSUBSB (EVEX Encoded Versions) 
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8;
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SaturateToSignedByte (SRC1[i+7:i] - SRC2[i+7:i])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] := 0;
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

VPSUBSW (EVEX Encoded Versions) 
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SaturateToSignedWord (SRC1[i+15:i] - SRC2[i+15:i])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0;
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0;

VPSUBSB (VEX.256 Encoded Version)
DEST[7:0] := SaturateToSignedByte (SRC1[7:0] - SRC2[7:0]);
(* Repeat subtract operation for 2nd through 31th bytes *)
DEST[255:248] := SaturateToSignedByte (SRC1[255:248] - SRC2[255:248]);
DEST[MAXVL-1:256] := 0;

VPSUBSB (VEX.128 Encoded Version)
DEST[7:0] := SaturateToSignedByte (SRC1[7:0] - SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] := SaturateToSignedByte (SRC1[127:120] - SRC2[127:120]);
DEST[MAXVL-1:128] := 0;

PSUBSB (128-bit Legacy SSE Version)
DEST[7:0] := SaturateToSignedByte (DEST[7:0] - SRC[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] := SaturateToSignedByte (DEST[127:120] - SRC[127:120]);
DEST[MAXVL-1:128] (Unmodified);
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VPSUBSW (VEX.256 Encoded Version)
DEST[15:0] := SaturateToSignedWord (SRC1[15:0] - SRC2[15:0]);
(* Repeat subtract operation for 2nd through 15th words *)
DEST[255:240] := SaturateToSignedWord (SRC1[255:240] - SRC2[255:240]);
DEST[MAXVL-1:256] := 0;

VPSUBSW (VEX.128 Encoded Version)
DEST[15:0] := SaturateToSignedWord (SRC1[15:0] - SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] := SaturateToSignedWord (SRC1[127:112] - SRC2[127:112]);
DEST[MAXVL-1:128] := 0;

PSUBSW (128-bit Legacy SSE Version) 
DEST[15:0] := SaturateToSignedWord (DEST[15:0] - SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] := SaturateToSignedWord (DEST[127:112] - SRC[127:112]);
DEST[MAXVL-1:128] (Unmodified);

Intel C/C++ Compiler Intrinsic Equivalents

VPSUBSB __m512i _mm512_subs_epi8(__m512i a, __m512i b);
VPSUBSB __m512i _mm512_mask_subs_epi8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPSUBSB __m512i _mm512_maskz_subs_epi8( __mmask64 k, __m512i a, __m512i b);
VPSUBSB __m256i _mm256_mask_subs_epi8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPSUBSB __m256i _mm256_maskz_subs_epi8( __mmask32 k, __m256i a, __m256i b);
VPSUBSB __m128i _mm_mask_subs_epi8(__m128i s, __mmask16 k, __m128i a, __m128i b);
VPSUBSB __m128i _mm_maskz_subs_epi8( __mmask16 k, __m128i a, __m128i b);
VPSUBSW __m512i _mm512_subs_epi16(__m512i a, __m512i b);
VPSUBSW __m512i _mm512_mask_subs_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPSUBSW __m512i _mm512_maskz_subs_epi16( __mmask32 k, __m512i a, __m512i b);
VPSUBSW __m256i _mm256_mask_subs_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPSUBSW __m256i _mm256_maskz_subs_epi16( __mmask16 k, __m256i a, __m256i b);
VPSUBSW __m128i _mm_mask_subs_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPSUBSW __m128i _mm_maskz_subs_epi16( __mmask8 k, __m128i a, __m128i b);
PSUBSB __m64 _mm_subs_pi8(__m64 m1, __m64 m2)
(V)PSUBSB __m128i _mm_subs_epi8(__m128i m1, __m128i m2)
VPSUBSB __m256i _mm256_subs_epi8(__m256i m1, __m256i m2)
PSUBSW __m64 _mm_subs_pi16(__m64 m1, __m64 m2)
(V)PSUBSW __m128i _mm_subs_epi16(__m128i m1, __m128i m2)
VPSUBSW __m256i _mm256_subs_epi16(__m256i m1, __m256i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers With Unsigned Saturation
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F D8 /r1

PSUBUSB mm, mm/m64

A V/V MMX Subtract unsigned packed bytes in mm/m64 
from unsigned packed bytes in mm and saturate 
result.

66 0F D8 /r

PSUBUSB xmm1, xmm2/m128

A V/V SSE2 Subtract packed unsigned byte integers in 
xmm2/m128 from packed unsigned byte 
integers in xmm1 and saturate result.

NP 0F D9 /r1

PSUBUSW mm, mm/m64

A V/V MMX Subtract unsigned packed words in mm/m64 
from unsigned packed words in mm and saturate 
result.

66 0F D9 /r

PSUBUSW xmm1, xmm2/m128

A V/V SSE2 Subtract packed unsigned word integers in 
xmm2/m128 from packed unsigned word 
integers in xmm1 and saturate result.

VEX.128.66.0F.WIG D8 /r

VPSUBUSB xmm1, xmm2, xmm3/m128

B V/V AVX Subtract packed unsigned byte integers in 
xmm3/m128 from packed unsigned byte 
integers in xmm2 and saturate result.

VEX.128.66.0F.WIG D9 /r

VPSUBUSW xmm1, xmm2, xmm3/m128

B V/V AVX Subtract packed unsigned word integers in 
xmm3/m128 from packed unsigned word 
integers in xmm2 and saturate result.

VEX.256.66.0F.WIG D8 /r

VPSUBUSB ymm1, ymm2, ymm3/m256

B V/V AVX2 Subtract packed unsigned byte integers in 
ymm3/m256 from packed unsigned byte 
integers in ymm2 and saturate result.

VEX.256.66.0F.WIG D9 /r

VPSUBUSW ymm1, ymm2, ymm3/m256

B V/V AVX2 Subtract packed unsigned word integers in 
ymm3/m256 from packed unsigned word 
integers in ymm2 and saturate result.

EVEX.128.66.0F.WIG D8 /r
VPSUBUSB xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Subtract packed unsigned byte integers in 
xmm3/m128 from packed unsigned byte 
integers in xmm2, saturate results and store in 
xmm1 using writemask k1.

EVEX.256.66.0F.WIG D8 /r
VPSUBUSB ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Subtract packed unsigned byte integers in 
ymm3/m256 from packed unsigned byte 
integers in ymm2, saturate results and store in 
ymm1 using writemask k1.

EVEX.512.66.0F.WIG D8 /r
VPSUBUSB zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Subtract packed unsigned byte integers in 
zmm3/m512 from packed unsigned byte 
integers in zmm2, saturate results and store in 
zmm1 using writemask k1.

EVEX.128.66.0F.WIG D9 /r
VPSUBUSW xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Subtract packed unsigned word integers in 
xmm3/m128 from packed unsigned word 
integers in xmm2 and saturate results and store 
in xmm1 using writemask k1.

EVEX.256.66.0F.WIG D9 /r
VPSUBUSW ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Subtract packed unsigned word integers in 
ymm3/m256 from packed unsigned word 
integers in ymm2, saturate results and store in 
ymm1 using writemask k1.

EVEX.512.66.0F.WIG D9 /r
VPSUBUSW zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Subtract packed unsigned word integers in 
zmm3/m512 from packed unsigned word 
integers in zmm2, saturate results and store in 
zmm1 using writemask k1.
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Instruction Operand Encoding

Description

Performs a SIMD subtract of the packed unsigned integers of the source operand (second operand) from the 
packed unsigned integers of the destination operand (first operand), and stores the packed unsigned integer 
results in the destination operand. See Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, for an illustration of a SIMD operation. Overflow is handled with unsigned saturation, as 
described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands.

The (V)PSUBUSB instruction subtracts packed unsigned byte integers. When an individual byte result is less than 
zero, the saturated value of 00H is written to the destination operand.

The (V)PSUBUSW instruction subtracts packed unsigned word integers. When an individual word result is less than 
zero, the saturated value of 0000H is written to the destination operand.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Legacy SSE version 64-bit operand: The destination operand must be an MMX technology register and the source 
operand can be either an MMX technology register or a 64-bit memory location. 
128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the destination YMM register 
are zeroed. 
VEX.256 encoded versions: The second source operand is an YMM register or an 256-bit memory location. The first 
source operand and destination operands are YMM registers. Bits (MAXVL-1:256) of the corresponding ZMM 
register are zeroed.
EVEX encoded version: The second source operand is an ZMM/YMM/XMM register or an 512/256/128-bit memory 
location. The first source operand and destination operands are ZMM/YMM/XMM registers. The destination is condi-
tionally updated with writemask k1.

Operation

PSUBUSB (With 64-bit Operands)
DEST[7:0] := SaturateToUnsignedByte (DEST[7:0] − SRC (7:0] );
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] := SaturateToUnsignedByte (DEST[63:56] − SRC[63:56]; 

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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PSUBUSW (With 64-bit Operands)
DEST[15:0] := SaturateToUnsignedWord (DEST[15:0] − SRC[15:0] );
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] := SaturateToUnsignedWord (DEST[63:48] − SRC[63:48] );

VPSUBUSB (EVEX Encoded Versions) 
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8;
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SaturateToUnsignedByte (SRC1[i+7:i] - SRC2[i+7:i])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] := 0;
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0;

VPSUBUSW (EVEX Encoded Versions) 
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16;
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SaturateToUnsignedWord (SRC1[i+15:i] - SRC2[i+15:i])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0;
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0;

VPSUBUSB (VEX.256 Encoded Version)
DEST[7:0] := SaturateToUnsignedByte (SRC1[7:0] - SRC2[7:0]);
(* Repeat subtract operation for 2nd through 31st bytes *)
DEST[255:148] := SaturateToUnsignedByte (SRC1[255:248] - SRC2[255:248]);
DEST[MAXVL-1:256] := 0;

VPSUBUSB (VEX.128 Encoded Version)
DEST[7:0] := SaturateToUnsignedByte (SRC1[7:0] - SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] := SaturateToUnsignedByte (SRC1[127:120] - SRC2[127:120]);
DEST[MAXVL-1:128] := 0

PSUBUSB (128-bit Legacy SSE Version)
DEST[7:0] := SaturateToUnsignedByte (DEST[7:0] - SRC[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] := SaturateToUnsignedByte (DEST[127:120] - SRC[127:120]);
DEST[MAXVL-1:128] (Unmodified)
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VPSUBUSW (VEX.256 Encoded Version)
DEST[15:0] := SaturateToUnsignedWord (SRC1[15:0] - SRC2[15:0]);
(* Repeat subtract operation for 2nd through 15th words *)
DEST[255:240] := SaturateToUnsignedWord (SRC1[255:240] - SRC2[255:240]);
DEST[MAXVL-1:256] := 0;

VPSUBUSW (VEX.128 Encoded Version)
DEST[15:0] := SaturateToUnsignedWord (SRC1[15:0] - SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] := SaturateToUnsignedWord (SRC1[127:112] - SRC2[127:112]);
DEST[MAXVL-1:128] := 0

PSUBUSW (128-bit Legacy SSE Version)
DEST[15:0] := SaturateToUnsignedWord (DEST[15:0] - SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] := SaturateToUnsignedWord (DEST[127:112] - SRC[127:112]);
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalents

VPSUBUSB __m512i _mm512_subs_epu8(__m512i a, __m512i b);
VPSUBUSB __m512i _mm512_mask_subs_epu8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPSUBUSB __m512i _mm512_maskz_subs_epu8( __mmask64 k, __m512i a, __m512i b);
VPSUBUSB __m256i _mm256_mask_subs_epu8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPSUBUSB __m256i _mm256_maskz_subs_epu8( __mmask32 k, __m256i a, __m256i b);
VPSUBUSB __m128i _mm_mask_subs_epu8(__m128i s, __mmask16 k, __m128i a, __m128i b);
VPSUBUSB __m128i _mm_maskz_subs_epu8( __mmask16 k, __m128i a, __m128i b);
VPSUBUSW __m512i _mm512_subs_epu16(__m512i a, __m512i b);
VPSUBUSW __m512i _mm512_mask_subs_epu16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPSUBUSW __m512i _mm512_maskz_subs_epu16( __mmask32 k, __m512i a, __m512i b);
VPSUBUSW __m256i _mm256_mask_subs_epu16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPSUBUSW __m256i _mm256_maskz_subs_epu16( __mmask16 k, __m256i a, __m256i b);
VPSUBUSW __m128i _mm_mask_subs_epu16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPSUBUSW __m128i _mm_maskz_subs_epu16( __mmask8 k, __m128i a, __m128i b);
PSUBUSB __m64 _mm_subs_pu8(__m64 m1, __m64 m2)
(V)PSUBUSB __m128i _mm_subs_epu8(__m128i m1, __m128i m2)
VPSUBUSB __m256i _mm256_subs_epu8(__m256i m1, __m256i m2)
PSUBUSW __m64 _mm_subs_pu16(__m64 m1, __m64 m2)
(V)PSUBUSW __m128i _mm_subs_epu16(__m128i m1, __m128i m2)
VPSUBUSW __m256i _mm256_subs_epu16(__m256i m1, __m256i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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PTEST—Logical Compare

Instruction Operand Encoding

Description

PTEST and VPTEST set the ZF flag if all bits in the result are 0 of the bitwise AND of the first source operand (first 
operand) and the second source operand (second operand). VPTEST sets the CF flag if all bits in the result are 0 of 
the bitwise AND of the second source operand (second operand) and the logical NOT of the destination operand.
The first source register is specified by the ModR/M reg field.
128-bit versions: The first source register is an XMM register. The second source register can be an XMM register 
or a 128-bit memory location. The destination register is not modified.
VEX.256 encoded version: The first source register is a YMM register. The second source register can be a YMM 
register or a 256-bit memory location. The destination register is not modified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

(V)PTEST (128-bit Version)
IF (SRC[127:0] BITWISE AND DEST[127:0] = 0) 

THEN ZF := 1;
ELSE ZF := 0;

IF (SRC[127:0] BITWISE AND NOT DEST[127:0] = 0) 
THEN CF := 1;
ELSE CF := 0;

DEST (unmodified)
AF := OF := PF := SF := 0;

VPTEST (VEX.256 Encoded Version)
IF (SRC[255:0] BITWISE AND DEST[255:0] = 0) THEN ZF := 1;

ELSE ZF := 0;
IF (SRC[255:0] BITWISE AND NOT DEST[255:0] = 0) THEN CF := 1;

ELSE CF := 0;
DEST (unmodified)
AF := OF := PF := SF := 0;

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 17 /r
PTEST xmm1, xmm2/m128

RM V/V SSE4_1 Set ZF if xmm2/m128 AND xmm1 result is all 
0s. Set CF if xmm2/m128 AND NOT xmm1 
result is all 0s.

VEX.128.66.0F38.WIG 17 /r
VPTEST xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on bitwise AND and 
ANDN of sources.

VEX.256.66.0F38.WIG 17 /r
VPTEST ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on bitwise AND and 
ANDN of sources.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) N/A N/A
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Intel C/C++ Compiler Intrinsic Equivalent

PTEST int _mm_testz_si128 (__m128i s1, __m128i s2);
PTEST int _mm_testc_si128 (__m128i s1, __m128i s2);
PTEST int _mm_testnzc_si128 (__m128i s1, __m128i s2);
VPTEST int _mm256_testz_si256 (__m256i s1, __m256i s2);
VPTEST int _mm256_testc_si256 (__m256i s1, __m256i s2);
VPTEST int _mm256_testnzc_si256 (__m256i s1, __m256i s2);
VPTEST int _mm_testz_si128 (__m128i s1, __m128i s2);
VPTEST int _mm_testc_si128 (__m128i s1, __m128i s2);
VPTEST int _mm_testnzc_si128 (__m128i s1, __m128i s2);

Flags Affected

The OF, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the operation.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:
#UD If VEX.vvvv ≠ 1111B.
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PTWRITE—Write Data to a Processor Trace Packet

Instruction Operand Encoding

Description

This instruction reads data in the source operand and sends it to the Intel Processor Trace hardware to be encoded 
in a PTW packet if TriggerEn, ContextEn, FilterEn, and PTWEn are all set to 1. For more details on these values, see 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, Section 34.2.2, “Software Trace 
Instrumentation with PTWRITE.” The size of data is 64-bit if using REX.W in 64-bit mode, otherwise 32-bits of data 
are copied from the source operand.
Note: The instruction will #UD if prefix 66H is used.

Operation

IF (IA32_RTIT_STATUS.TriggerEn & IA32_RTIT_STATUS.ContextEn & IA32_RTIT_STATUS.FilterEn & IA32_RTIT_CTL.PTWEn) = 1
PTW.PayloadBytes := Encoded payload size;
PTW.IP := IA32_RTIT_CTL.FUPonPTW 
IF IA32_RTIT_CTL.FUPonPTW = 1

Insert FUP packet with IP of PTWRITE;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS segments.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while the current privilege level is 3 and alignment 

checking is enabled.
#UD If CPUID.(EAX=14H, ECX=0H):EBX.PTWRITE [Bit 4] = 0.

If LOCK prefix is used.
If 66H prefix is used.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 REX.W 0F AE /4
PTWRITE r64/m64

RM V/N.E PTWRITE Reads the data from r64/m64 to encode into a PTW 
packet if dependencies are met (see details below).

F3 0F AE /4
PTWRITE r32/m32

RM V/V PTWRITE Reads the data from r32/m32 to encode into a PTW 
packet if dependencies are met (see details below).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:rm (r) N/A N/A N/A
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Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CPUID.(EAX=14H, ECX=0H):EBX.PTWRITE [Bit 4] = 0.

If LOCK prefix is used.
If 66H prefix is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If CPUID.(EAX=14H, ECX=0H):EBX.PTWRITE [Bit 4] = 0.

If LOCK prefix is used.
If 66H prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If CPUID.(EAX=14H, ECX=0H):EBX.PTWRITE [Bit 4] = 0.

If LOCK prefix is used.
If 66H prefix is used.
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PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 68 /r1

PUNPCKHBW mm, mm/m64

A V/V MMX Unpack and interleave high-order bytes from 
mm and mm/m64 into mm.

66 0F 68 /r

PUNPCKHBW xmm1, xmm2/m128

A V/V SSE2 Unpack and interleave high-order bytes from 
xmm1 and xmm2/m128 into xmm1.

NP 0F 69 /r1

PUNPCKHWD mm, mm/m64

A V/V MMX Unpack and interleave high-order words from 
mm and mm/m64 into mm.

66 0F 69 /r

PUNPCKHWD xmm1, xmm2/m128

A V/V SSE2 Unpack and interleave high-order words from 
xmm1 and xmm2/m128 into xmm1.

NP 0F 6A /r1

PUNPCKHDQ mm, mm/m64

A V/V MMX Unpack and interleave high-order 
doublewords from mm and mm/m64 into mm.

66 0F 6A /r

PUNPCKHDQ xmm1, xmm2/m128

A V/V SSE2 Unpack and interleave high-order 
doublewords from xmm1 and xmm2/m128 
into xmm1.

66 0F 6D /r

PUNPCKHQDQ xmm1, xmm2/m128

A V/V SSE2 Unpack and interleave high-order quadwords 
from xmm1 and xmm2/m128 into xmm1.

VEX.128.66.0F.WIG 68/r

VPUNPCKHBW xmm1,xmm2, xmm3/m128

B V/V AVX Interleave high-order bytes from xmm2 and 
xmm3/m128 into xmm1.

VEX.128.66.0F.WIG 69/r

VPUNPCKHWD xmm1,xmm2, xmm3/m128

B V/V AVX Interleave high-order words from xmm2 and 
xmm3/m128 into xmm1.

VEX.128.66.0F.WIG 6A/r

VPUNPCKHDQ xmm1, xmm2, xmm3/m128

B V/V AVX Interleave high-order doublewords from 
xmm2 and xmm3/m128 into xmm1.

VEX.128.66.0F.WIG 6D/r
VPUNPCKHQDQ xmm1, xmm2, xmm3/m128

B V/V AVX Interleave high-order quadword from xmm2 
and xmm3/m128 into xmm1 register.

VEX.256.66.0F.WIG 68 /r
VPUNPCKHBW ymm1, ymm2, ymm3/m256

B V/V AVX2 Interleave high-order bytes from ymm2 and 
ymm3/m256 into ymm1 register.

VEX.256.66.0F.WIG 69 /r
VPUNPCKHWD ymm1, ymm2, ymm3/m256

B V/V AVX2 Interleave high-order words from ymm2 and 
ymm3/m256 into ymm1 register.

VEX.256.66.0F.WIG 6A /r
VPUNPCKHDQ ymm1, ymm2, ymm3/m256

B V/V AVX2 Interleave high-order doublewords from 
ymm2 and ymm3/m256 into ymm1 register.

VEX.256.66.0F.WIG 6D /r
VPUNPCKHQDQ ymm1, ymm2, ymm3/m256

B V/V AVX2 Interleave high-order quadword from ymm2 
and ymm3/m256 into ymm1 register.

EVEX.128.66.0F.WIG 68 /r
VPUNPCKHBW xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Interleave high-order bytes from xmm2 and 
xmm3/m128 into xmm1 register using k1 
write mask.

EVEX.128.66.0F.WIG 69 /r
VPUNPCKHWD xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Interleave high-order words from xmm2 and 
xmm3/m128 into xmm1 register using k1 
write mask.

EVEX.128.66.0F.W0 6A /r
VPUNPCKHDQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Interleave high-order doublewords from 
xmm2 and xmm3/m128/m32bcst into xmm1 
register using k1 write mask.

EVEX.128.66.0F.W1 6D /r
VPUNPCKHQDQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Interleave high-order quadword from xmm2 
and xmm3/m128/m64bcst into xmm1 
register using k1 write mask.
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Instruction Operand Encoding

Description

Unpacks and interleaves the high-order data elements (bytes, words, doublewords, or quadwords) of the destina-
tion operand (first operand) and source operand (second operand) into the destination operand. Figure 1-20 shows 
the unpack operation for bytes in 64-bit operands. The low-order data elements are ignored. 

EVEX.256.66.0F.WIG 68 /r
VPUNPCKHBW ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Interleave high-order bytes from ymm2 and 
ymm3/m256 into ymm1 register using k1 
write mask.

EVEX.256.66.0F.WIG 69 /r
VPUNPCKHWD ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Interleave high-order words from ymm2 and 
ymm3/m256 into ymm1 register using k1 
write mask.

EVEX.256.66.0F.W0 6A /r
VPUNPCKHDQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Interleave high-order doublewords from 
ymm2 and ymm3/m256/m32bcst into ymm1 
register using k1 write mask.

EVEX.256.66.0F.W1 6D /r
VPUNPCKHQDQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Interleave high-order quadword from ymm2 
and ymm3/m256/m64bcst into ymm1 
register using k1 write mask.

EVEX.512.66.0F.WIG 68/r
VPUNPCKHBW zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Interleave high-order bytes from zmm2 and 
zmm3/m512 into zmm1 register.

EVEX.512.66.0F.WIG 69/r
VPUNPCKHWD zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Interleave high-order words from zmm2 and 
zmm3/m512 into zmm1 register.

EVEX.512.66.0F.W0 6A /r
VPUNPCKHDQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

D V/V AVX512F 
OR AVX10.12

Interleave high-order doublewords from 
zmm2 and zmm3/m512/m32bcst into zmm1 
register using k1 write mask.

EVEX.512.66.0F.W1 6D /r
VPUNPCKHQDQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

D V/V AVX512F 
OR AVX10.12

Interleave high-order quadword from zmm2 
and zmm3/m512/m64bcst into zmm1 register 
using k1 write mask.

NOTES:
1.  See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

D Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description
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Figure 1-21.  256-bit VPUNPCKHDQ Instruction Operation

When the source data comes from a 64-bit memory operand, the full 64-bit operand is accessed from memory, but 
the instruction uses only the high-order 32 bits. When the source data comes from a 128-bit memory operand, an 
implementation may fetch only the appropriate 64 bits; however, alignment to a 16-byte boundary and normal 
segment checking will still be enforced.

The (V)PUNPCKHBW instruction interleaves the high-order bytes of the source and destination operands, the 
(V)PUNPCKHWD instruction interleaves the high-order words of the source and destination operands, the (V)PUNP-
CKHDQ instruction interleaves the high-order doubleword (or doublewords) of the source and destination oper-
ands, and the (V)PUNPCKHQDQ instruction interleaves the high-order quadwords of the source and destination 
operands.

These instructions can be used to convert bytes to words, words to doublewords, doublewords to quadwords, and 
quadwords to double quadwords, respectively, by placing all 0s in the source operand. Here, if the source operand 
contains all 0s, the result (stored in the destination operand) contains zero extensions of the high-order data 
elements from the original value in the destination operand. For example, with the (V)PUNPCKHBW instruction the 
high-order bytes are zero extended (that is, unpacked into unsigned word integers), and with the (V)PUNPCKHWD 
instruction, the high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Legacy SSE versions 64-bit operand: The source operand can be an MMX technology register or a 64-bit memory 
location. The destination operand is an MMX technology register.
128-bit Legacy SSE versions: The second source operand is an XMM register or a 128-bit memory location. The 
first source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM 
destination register remain unchanged.
VEX.128 encoded versions: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the destination YMM register 
are zeroed. 
VEX.256 encoded version: The second source operand is an YMM register or an 256-bit memory location. The first 
source operand and destination operands are YMM registers. 

Figure 1-20.  PUNPCKHBW Instruction Operation Using 64-bit Operands

X4X7 X6 X5 Y4Y7 Y6 Y5

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC DEST

DEST

X2X7 X6 X3 Y2Y7 Y6 Y3

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC

DEST

0255 31

0

0255

255

31
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data Vol. 2B 4-502



EVEX encoded VPUNPCKHDQ/QDQ: The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit 
memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. The first source 
operand and destination operands are ZMM/YMM/XMM registers. The destination is conditionally updated with 
writemask k1.
EVEX encoded VPUNPCKHWD/BW: The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit 
memory location. The first source operand and destination operands are ZMM/YMM/XMM registers. The destination 
is conditionally updated with writemask k1.

Operation

PUNPCKHBW Instruction With 64-bit Operands:
DEST[7:0] := DEST[39:32];
DEST[15:8] := SRC[39:32];
DEST[23:16] := DEST[47:40];
DEST[31:24] := SRC[47:40];
DEST[39:32] := DEST[55:48];
DEST[47:40] := SRC[55:48];
DEST[55:48] := DEST[63:56];
DEST[63:56] := SRC[63:56];

PUNPCKHW Instruction With 64-bit Operands:
DEST[15:0] := DEST[47:32]; 
DEST[31:16] := SRC[47:32];
DEST[47:32] := DEST[63:48];
DEST[63:48] := SRC[63:48];

PUNPCKHDQ Instruction With 64-bit Operands:
DEST[31:0] := DEST[63:32];
DEST[63:32] := SRC[63:32];

INTERLEAVE_HIGH_BYTES_512b (SRC1, SRC2)
TMP_DEST[255:0] := INTERLEAVE_HIGH_BYTES_256b(SRC1[255:0], SRC[255:0])
TMP_DEST[511:256] := INTERLEAVE_HIGH_BYTES_256b(SRC1[511:256], SRC[511:256])

INTERLEAVE_HIGH_BYTES_256b (SRC1, SRC2) 
DEST[7:0] := SRC1[71:64]
DEST[15:8] := SRC2[71:64]
DEST[23:16] := SRC1[79:72]
DEST[31:24] := SRC2[79:72]
DEST[39:32] := SRC1[87:80]
DEST[47:40] := SRC2[87:80]
DEST[55:48] := SRC1[95:88]
DEST[63:56] := SRC2[95:88]
DEST[71:64] := SRC1[103:96]
DEST[79:72] := SRC2[103:96]
DEST[87:80] := SRC1[111:104]
DEST[95:88] := SRC2[111:104]
DEST[103:96] := SRC1[119:112]
DEST[111:104] := SRC2[119:112]
DEST[119:112] := SRC1[127:120]
DEST[127:120] := SRC2[127:120]
DEST[135:128] := SRC1[199:192]
DEST[143:136] := SRC2[199:192]
DEST[151:144] := SRC1[207:200]
DEST[159:152] := SRC2[207:200]
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DEST[167:160] := SRC1[215:208]
DEST[175:168] := SRC2[215:208]
DEST[183:176] := SRC1[223:216]
DEST[191:184] := SRC2[223:216]
DEST[199:192] := SRC1[231:224]
DEST[207:200] := SRC2[231:224]
DEST[215:208] := SRC1[239:232]
DEST[223:216] := SRC2[239:232]
DEST[231:224] := SRC1[247:240]
DEST[239:232] := SRC2[247:240]
DEST[247:240] := SRC1[255:248]
DEST[255:248] := SRC2[255:248]

INTERLEAVE_HIGH_BYTES (SRC1, SRC2) 
DEST[7:0] := SRC1[71:64]
DEST[15:8] := SRC2[71:64]
DEST[23:16] := SRC1[79:72]
DEST[31:24] := SRC2[79:72]
DEST[39:32] := SRC1[87:80]
DEST[47:40] := SRC2[87:80]
DEST[55:48] := SRC1[95:88]
DEST[63:56] := SRC2[95:88]
DEST[71:64] := SRC1[103:96]
DEST[79:72] := SRC2[103:96]
DEST[87:80] := SRC1[111:104]
DEST[95:88] := SRC2[111:104]
DEST[103:96] := SRC1[119:112]
DEST[111:104] := SRC2[119:112]
DEST[119:112] := SRC1[127:120]
DEST[127:120] := SRC2[127:120]

INTERLEAVE_HIGH_WORDS_512b (SRC1, SRC2)
TMP_DEST[255:0] := INTERLEAVE_HIGH_WORDS_256b(SRC1[255:0], SRC[255:0])
TMP_DEST[511:256] := INTERLEAVE_HIGH_WORDS_256b(SRC1[511:256], SRC[511:256])

INTERLEAVE_HIGH_WORDS_256b(SRC1, SRC2)
DEST[15:0] := SRC1[79:64]
DEST[31:16] := SRC2[79:64]
DEST[47:32] := SRC1[95:80]
DEST[63:48] := SRC2[95:80]
DEST[79:64] := SRC1[111:96]
DEST[95:80] := SRC2[111:96]
DEST[111:96] := SRC1[127:112]
DEST[127:112] := SRC2[127:112]
DEST[143:128] := SRC1[207:192]
DEST[159:144] := SRC2[207:192]
DEST[175:160] := SRC1[223:208]
DEST[191:176] := SRC2[223:208]
DEST[207:192] := SRC1[239:224]
DEST[223:208] := SRC2[239:224]
DEST[239:224] := SRC1[255:240]
DEST[255:240] := SRC2[255:240]

INTERLEAVE_HIGH_WORDS (SRC1, SRC2)
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data Vol. 2B 4-504



DEST[15:0] := SRC1[79:64]
DEST[31:16] := SRC2[79:64]
DEST[47:32] := SRC1[95:80]
DEST[63:48] := SRC2[95:80]
DEST[79:64] := SRC1[111:96]
DEST[95:80] := SRC2[111:96]
DEST[111:96] := SRC1[127:112]
DEST[127:112] := SRC2[127:112]

INTERLEAVE_HIGH_DWORDS_512b (SRC1, SRC2)
TMP_DEST[255:0] := INTERLEAVE_HIGH_DWORDS_256b(SRC1[255:0], SRC2[255:0])
TMP_DEST[511:256] := INTERLEAVE_HIGH_DWORDS_256b(SRC1[511:256], SRC2[511:256])

INTERLEAVE_HIGH_DWORDS_256b(SRC1, SRC2)
DEST[31:0] := SRC1[95:64]
DEST[63:32] := SRC2[95:64]
DEST[95:64] := SRC1[127:96]
DEST[127:96] := SRC2[127:96]
DEST[159:128] := SRC1[223:192]
DEST[191:160] := SRC2[223:192]
DEST[223:192] := SRC1[255:224]
DEST[255:224] := SRC2[255:224]

INTERLEAVE_HIGH_DWORDS(SRC1, SRC2)
DEST[31:0] := SRC1[95:64]
DEST[63:32] := SRC2[95:64]
DEST[95:64] := SRC1[127:96]
DEST[127:96] := SRC2[127:96]

INTERLEAVE_HIGH_QWORDS_512b (SRC1, SRC2)
TMP_DEST[255:0] := INTERLEAVE_HIGH_QWORDS_256b(SRC1[255:0], SRC2[255:0])
TMP_DEST[511:256] := INTERLEAVE_HIGH_QWORDS_256b(SRC1[511:256], SRC2[511:256])

INTERLEAVE_HIGH_QWORDS_256b(SRC1, SRC2)
DEST[63:0] := SRC1[127:64]
DEST[127:64] := SRC2[127:64]
DEST[191:128] := SRC1[255:192]
DEST[255:192] := SRC2[255:192]

INTERLEAVE_HIGH_QWORDS(SRC1, SRC2)
DEST[63:0] := SRC1[127:64]
DEST[127:64] := SRC2[127:64]

PUNPCKHBW (128-bit Legacy SSE Version)
DEST[127:0] := INTERLEAVE_HIGH_BYTES(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKHBW (VEX.128 Encoded Version)
DEST[127:0] := INTERLEAVE_HIGH_BYTES(SRC1, SRC2)
DEST[MAXVL-1:127] := 0

VPUNPCKHBW (VEX.256 Encoded Version)
DEST[255:0] := INTERLEAVE_HIGH_BYTES_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0
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VPUNPCKHBW (EVEX Encoded Versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
IF VL = 128

TMP_DEST[VL-1:0] := INTERLEAVE_HIGH_BYTES(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
IF VL = 256

TMP_DEST[VL-1:0] := INTERLEAVE_HIGH_BYTES_256b(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
IF VL = 512

TMP_DEST[VL-1:0] := INTERLEAVE_HIGH_BYTES_512b(SRC1[VL-1:0], SRC2[VL-1:0])
FI;

FOR j := 0 TO KL-1
i := j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := TMP_DEST[i+7:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

PUNPCKHWD (128-bit Legacy SSE Version)
DEST[127:0] := INTERLEAVE_HIGH_WORDS(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKHWD (VEX.128 Encoded Version)
DEST[127:0] := INTERLEAVE_HIGH_WORDS(SRC1, SRC2)
DEST[MAXVL-1:127] := 0

VPUNPCKHWD (VEX.256 Encoded Version)
DEST[255:0] := INTERLEAVE_HIGH_WORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0

VPUNPCKHWD (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[VL-1:0] := INTERLEAVE_HIGH_WORDS(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
IF VL = 256

TMP_DEST[VL-1:0] := INTERLEAVE_HIGH_WORDS_256b(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
IF VL = 512

TMP_DEST[VL-1:0] := INTERLEAVE_HIGH_WORDS_512b(SRC1[VL-1:0], SRC2[VL-1:0])
FI;

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*
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THEN DEST[i+15:i] := TMP_DEST[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

PUNPCKHDQ (128-bit Legacy SSE Version)
DEST[127:0] := INTERLEAVE_HIGH_DWORDS(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKHDQ (VEX.128 Encoded Version)
DEST[127:0] := INTERLEAVE_HIGH_DWORDS(SRC1, SRC2)
DEST[MAXVL-1:127] := 0

VPUNPCKHDQ (VEX.256 Encoded Version)
DEST[255:0] := INTERLEAVE_HIGH_DWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0

VPUNPCKHDQ (EVEX.512 Encoded Version)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN TMP_SRC2[i+31:i] := SRC2[31:0]
ELSE TMP_SRC2[i+31:i] := SRC2[i+31:i]

FI;
ENDFOR;
IF VL = 128

TMP_DEST[VL-1:0] := INTERLEAVE_HIGH_DWORDS(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
IF VL = 256

TMP_DEST[VL-1:0] := INTERLEAVE_HIGH_DWORDS_256b(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
IF VL = 512

TMP_DEST[VL-1:0] := INTERLEAVE_HIGH_DWORDS_512b(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
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DEST[MAXVL-1:VL] := 0

PUNPCKHQDQ (128-bit Legacy SSE Version)
DEST[127:0] := INTERLEAVE_HIGH_QWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

VPUNPCKHQDQ (VEX.128 Encoded Version)
DEST[127:0] := INTERLEAVE_HIGH_QWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPUNPCKHQDQ (VEX.256 Encoded Version)
DEST[255:0] := INTERLEAVE_HIGH_QWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0

VPUNPCKHQDQ (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN TMP_SRC2[i+63:i] := SRC2[63:0]
ELSE TMP_SRC2[i+63:i] := SRC2[i+63:i]

FI;
ENDFOR;
IF VL = 128

TMP_DEST[VL-1:0] := INTERLEAVE_HIGH_QWORDS(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
IF VL = 256

TMP_DEST[VL-1:0] := INTERLEAVE_HIGH_QWORDS_256b(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
IF VL = 512

TMP_DEST[VL-1:0] := INTERLEAVE_HIGH_QWORDS_512b(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalents

VPUNPCKHBW __m512i _mm512_unpackhi_epi8(__m512i a, __m512i b);
VPUNPCKHBW __m512i _mm512_mask_unpackhi_epi8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPUNPCKHBW __m512i _mm512_maskz_unpackhi_epi8( __mmask64 k, __m512i a, __m512i b);
VPUNPCKHBW __m256i _mm256_mask_unpackhi_epi8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPUNPCKHBW __m256i _mm256_maskz_unpackhi_epi8( __mmask32 k, __m256i a, __m256i b);
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VPUNPCKHBW __m128i _mm_mask_unpackhi_epi8(v s, __mmask16 k, __m128i a, __m128i b);
VPUNPCKHBW __m128i _mm_maskz_unpackhi_epi8( __mmask16 k, __m128i a, __m128i b);
VPUNPCKHWD __m512i _mm512_unpackhi_epi16(__m512i a, __m512i b);
VPUNPCKHWD __m512i _mm512_mask_unpackhi_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPUNPCKHWD __m512i _mm512_maskz_unpackhi_epi16( __mmask32 k, __m512i a, __m512i b);
VPUNPCKHWD __m256i _mm256_mask_unpackhi_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPUNPCKHWD __m256i _mm256_maskz_unpackhi_epi16( __mmask16 k, __m256i a, __m256i b);
VPUNPCKHWD __m128i _mm_mask_unpackhi_epi16(v s, __mmask8 k, __m128i a, __m128i b);
VPUNPCKHWD __m128i _mm_maskz_unpackhi_epi16( __mmask8 k, __m128i a, __m128i b);
VPUNPCKHDQ __m512i _mm512_unpackhi_epi32(__m512i a, __m512i b);
VPUNPCKHDQ __m512i _mm512_mask_unpackhi_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPUNPCKHDQ __m512i _mm512_maskz_unpackhi_epi32( __mmask16 k, __m512i a, __m512i b);
VPUNPCKHDQ __m256i _mm256_mask_unpackhi_epi32(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPUNPCKHDQ __m256i _mm256_maskz_unpackhi_epi32( __mmask8 k, __m512i a, __m512i b);
VPUNPCKHDQ __m128i _mm_mask_unpackhi_epi32(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPUNPCKHDQ __m128i _mm_maskz_unpackhi_epi32( __mmask8 k, __m512i a, __m512i b);
VPUNPCKHQDQ __m512i _mm512_unpackhi_epi64(__m512i a, __m512i b);
VPUNPCKHQDQ __m512i _mm512_mask_unpackhi_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPUNPCKHQDQ __m512i _mm512_maskz_unpackhi_epi64( __mmask8 k, __m512i a, __m512i b);
VPUNPCKHQDQ __m256i _mm256_mask_unpackhi_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPUNPCKHQDQ __m256i _mm256_maskz_unpackhi_epi64( __mmask8 k, __m512i a, __m512i b);
VPUNPCKHQDQ __m128i _mm_mask_unpackhi_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPUNPCKHQDQ __m128i _mm_maskz_unpackhi_epi64( __mmask8 k, __m512i a, __m512i b);
PUNPCKHBW __m64 _mm_unpackhi_pi8(__m64 m1, __m64 m2)
(V)PUNPCKHBW __m128i _mm_unpackhi_epi8(__m128i m1, __m128i m2)
VPUNPCKHBW __m256i _mm256_unpackhi_epi8(__m256i m1, __m256i m2)
PUNPCKHWD __m64 _mm_unpackhi_pi16(__m64 m1,__m64 m2)
(V)PUNPCKHWD __m128i _mm_unpackhi_epi16(__m128i m1,__m128i m2)
VPUNPCKHWD __m256i _mm256_unpackhi_epi16(__m256i m1,__m256i m2)
PUNPCKHDQ __m64 _mm_unpackhi_pi32(__m64 m1, __m64 m2)
(V)PUNPCKHDQ __m128i _mm_unpackhi_epi32(__m128i m1, __m128i m2)
VPUNPCKHDQ __m256i _mm256_unpackhi_epi32(__m256i m1, __m256i m2)
(V)PUNPCKHQDQ __m128i _mm_unpackhi_epi64 ( __m128i a, __m128i b)
VPUNPCKHQDQ __m256i _mm256_unpackhi_epi64 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded VPUNPCKHQDQ/QDQ, see Table 2-52, “Type E4NF Class Exception Conditions.”
EVEX-encoded VPUNPCKHBW/WD, see Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Condi-
tions.”
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PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 60 /r1

PUNPCKLBW mm, mm/m32

A V/V MMX Interleave low-order bytes from mm and 
mm/m32 into mm.

66 0F 60 /r

PUNPCKLBW xmm1, xmm2/m128

A V/V SSE2 Interleave low-order bytes from xmm1 and 
xmm2/m128 into xmm1.

NP 0F 61 /r1

PUNPCKLWD mm, mm/m32

A V/V MMX Interleave low-order words from mm and 
mm/m32 into mm.

66 0F 61 /r

PUNPCKLWD xmm1, xmm2/m128

A V/V SSE2 Interleave low-order words from xmm1 and 
xmm2/m128 into xmm1.

NP 0F 62 /r1

PUNPCKLDQ mm, mm/m32

A V/V MMX Interleave low-order doublewords from mm 
and mm/m32 into mm.

66 0F 62 /r

PUNPCKLDQ xmm1, xmm2/m128

A V/V SSE2 Interleave low-order doublewords from xmm1 
and xmm2/m128 into xmm1.

66 0F 6C /r

PUNPCKLQDQ xmm1, xmm2/m128

A V/V SSE2 Interleave low-order quadword from xmm1 
and xmm2/m128 into xmm1 register.

VEX.128.66.0F.WIG 60/r

VPUNPCKLBW xmm1,xmm2, xmm3/m128

B V/V AVX Interleave low-order bytes from xmm2 and 
xmm3/m128 into xmm1.

VEX.128.66.0F.WIG 61/r

VPUNPCKLWD xmm1,xmm2, xmm3/m128

B V/V AVX Interleave low-order words from xmm2 and 
xmm3/m128 into xmm1.

VEX.128.66.0F.WIG 62/r

VPUNPCKLDQ xmm1, xmm2, xmm3/m128

B V/V AVX Interleave low-order doublewords from xmm2 
and xmm3/m128 into xmm1.

VEX.128.66.0F.WIG 6C/r

VPUNPCKLQDQ xmm1, xmm2, xmm3/m128

B V/V AVX Interleave low-order quadword from xmm2 
and xmm3/m128 into xmm1 register.

VEX.256.66.0F.WIG 60 /r

VPUNPCKLBW ymm1, ymm2, ymm3/m256

B V/V AVX2 Interleave low-order bytes from ymm2 and 
ymm3/m256 into ymm1 register.

VEX.256.66.0F.WIG 61 /r

VPUNPCKLWD ymm1, ymm2, ymm3/m256

B V/V AVX2 Interleave low-order words from ymm2 and 
ymm3/m256 into ymm1 register.

VEX.256.66.0F.WIG 62 /r

VPUNPCKLDQ ymm1, ymm2, ymm3/m256

B V/V AVX2 Interleave low-order doublewords from ymm2 
and ymm3/m256 into ymm1 register.

VEX.256.66.0F.WIG 6C /r

VPUNPCKLQDQ ymm1, ymm2, ymm3/m256

B V/V AVX2 Interleave low-order quadword from ymm2 
and ymm3/m256 into ymm1 register.

EVEX.128.66.0F.WIG 60 /r
VPUNPCKLBW xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Interleave low-order bytes from xmm2 and 
xmm3/m128 into xmm1 register subject to 
write mask k1.

EVEX.128.66.0F.WIG 61 /r
VPUNPCKLWD xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Interleave low-order words from xmm2 and 
xmm3/m128 into xmm1 register subject to 
write mask k1.

EVEX.128.66.0F.W0 62 /r
VPUNPCKLDQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Interleave low-order doublewords from xmm2 
and xmm3/m128/m32bcst into xmm1 
register subject to write mask k1.

EVEX.128.66.0F.W1 6C /r
VPUNPCKLQDQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Interleave low-order quadword from zmm2 
and zmm3/m512/m64bcst into zmm1 
register subject to write mask k1.
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Instruction Operand Encoding

Description

Unpacks and interleaves the low-order data elements (bytes, words, doublewords, and quadwords) of the destina-
tion operand (first operand) and source operand (second operand) into the destination operand. (Figure 1-22 
shows the unpack operation for bytes in 64-bit operands.). The high-order data elements are ignored.

EVEX.256.66.0F.WIG 60 /r
VPUNPCKLBW ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Interleave low-order bytes from ymm2 and 
ymm3/m256 into ymm1 register subject to 
write mask k1.

EVEX.256.66.0F.WIG 61 /r
VPUNPCKLWD ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.12

Interleave low-order words from ymm2 and 
ymm3/m256 into ymm1 register subject to 
write mask k1.

EVEX.256.66.0F.W0 62 /r
VPUNPCKLDQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Interleave low-order doublewords from ymm2 
and ymm3/m256/m32bcst into ymm1 
register subject to write mask k1.

EVEX.256.66.0F.W1 6C /r
VPUNPCKLQDQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Interleave low-order quadword from ymm2 
and ymm3/m256/m64bcst into ymm1 
register subject to write mask k1.

EVEX.512.66.0F.WIG 60/r
VPUNPCKLBW zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Interleave low-order bytes from zmm2 and 
zmm3/m512 into zmm1 register subject to 
write mask k1.

EVEX.512.66.0F.WIG 61/r
VPUNPCKLWD zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.12

Interleave low-order words from zmm2 and 
zmm3/m512 into zmm1 register subject to 
write mask k1.

EVEX.512.66.0F.W0 62 /r
VPUNPCKLDQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

D V/V AVX512F
OR AVX10.12

Interleave low-order doublewords from zmm2 
and zmm3/m512/m32bcst into zmm1 
register subject to write mask k1.

EVEX.512.66.0F.W1 6C /r
VPUNPCKLQDQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

D V/V AVX512F
OR AVX10.12

Interleave low-order quadword from zmm2 
and zmm3/m512/m64bcst into zmm1 
register subject to write mask k1.

NOTES:
1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

D Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description
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Figure 1-23.  256-bit VPUNPCKLDQ Instruction Operation

When the source data comes from a 128-bit memory operand, an implementation may fetch only the appropriate 
64 bits; however, alignment to a 16-byte boundary and normal segment checking will still be enforced.

The (V)PUNPCKLBW instruction interleaves the low-order bytes of the source and destination operands, the 
(V)PUNPCKLWD instruction interleaves the low-order words of the source and destination operands, the (V)PUNP-
CKLDQ instruction interleaves the low-order doubleword (or doublewords) of the source and destination operands, 
and the (V)PUNPCKLQDQ instruction interleaves the low-order quadwords of the source and destination operands.

These instructions can be used to convert bytes to words, words to doublewords, doublewords to quadwords, and 
quadwords to double quadwords, respectively, by placing all 0s in the source operand. Here, if the source operand 
contains all 0s, the result (stored in the destination operand) contains zero extensions of the high-order data 
elements from the original value in the destination operand. For example, with the (V)PUNPCKLBW instruction the 
high-order bytes are zero extended (that is, unpacked into unsigned word integers), and with the (V)PUNPCKLWD 
instruction, the high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Legacy SSE versions 64-bit operand: The source operand can be an MMX technology register or a 32-bit memory 
location. The destination operand is an MMX technology register. 
128-bit Legacy SSE versions: The second source operand is an XMM register or a 128-bit memory location. The 
first source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM 
destination register remain unchanged.
VEX.128 encoded versions: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the destination YMM register 
are zeroed. 
VEX.256 encoded version: The second source operand is an YMM register or an 256-bit memory location. The first 
source operand and destination operands are YMM registers. Bits (MAXVL-1:256) of the corresponding ZMM 
register are zeroed.
EVEX encoded VPUNPCKLDQ/QDQ: The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit 
memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. The first source 

Figure 1-22.  PUNPCKLBW Instruction Operation Using 64-bit Operands

X0X3 X2 X1 Y0Y3 Y2 Y1

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC DEST

DEST

X0X5 X4 X1 Y0Y5 Y4 Y1

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC

DEST

0255 31

0

0255

255

31
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operand and destination operands are ZMM/YMM/XMM registers. The destination is conditionally updated with 
writemask k1.
EVEX encoded VPUNPCKLWD/BW: The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit 
memory location. The first source operand and destination operands are ZMM/YMM/XMM registers. The destination 
is conditionally updated with writemask k1.

Operation

PUNPCKLBW Instruction With 64-bit Operands:
DEST[63:56] := SRC[31:24];
DEST[55:48] := DEST[31:24];
DEST[47:40] := SRC[23:16];
DEST[39:32] := DEST[23:16];
DEST[31:24] := SRC[15:8];
DEST[23:16] := DEST[15:8];
DEST[15:8] := SRC[7:0];
DEST[7:0] := DEST[7:0];

PUNPCKLWD Instruction With 64-bit Operands:
DEST[63:48] := SRC[31:16];
DEST[47:32] := DEST[31:16];
DEST[31:16] := SRC[15:0];
DEST[15:0] := DEST[15:0];

PUNPCKLDQ Instruction With 64-bit Operands:
DEST[63:32] := SRC[31:0];
DEST[31:0] := DEST[31:0];

INTERLEAVE_BYTES_512b (SRC1, SRC2)
TMP_DEST[255:0] := INTERLEAVE_BYTES_256b(SRC1[255:0], SRC[255:0])
TMP_DEST[511:256] := INTERLEAVE_BYTES_256b(SRC1[511:256], SRC[511:256])

INTERLEAVE_BYTES_256b (SRC1, SRC2) 
DEST[7:0] := SRC1[7:0]
DEST[15:8] := SRC2[7:0]
DEST[23:16] := SRC1[15:8]
DEST[31:24] := SRC2[15:8]
DEST[39:32] := SRC1[23:16]
DEST[47:40] := SRC2[23:16]
DEST[55:48] := SRC1[31:24]
DEST[63:56] := SRC2[31:24]
DEST[71:64] := SRC1[39:32]
DEST[79:72] := SRC2[39:32]
DEST[87:80] := SRC1[47:40]
DEST[95:88] := SRC2[47:40]
DEST[103:96] := SRC1[55:48]
DEST[111:104] := SRC2[55:48]
DEST[119:112] := SRC1[63:56]
DEST[127:120] := SRC2[63:56]
DEST[135:128] := SRC1[135:128]
DEST[143:136] := SRC2[135:128]
DEST[151:144] := SRC1[143:136]
DEST[159:152] := SRC2[143:136]
DEST[167:160] := SRC1[151:144]
DEST[175:168] := SRC2[151:144]
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DEST[183:176] := SRC1[159:152]
DEST[191:184] := SRC2[159:152]
DEST[199:192] := SRC1[167:160]
DEST[207:200] := SRC2[167:160]
DEST[215:208] := SRC1[175:168]
DEST[223:216] := SRC2[175:168]
DEST[231:224] := SRC1[183:176]
DEST[239:232] := SRC2[183:176]
DEST[247:240] := SRC1[191:184]
DEST[255:248] := SRC2[191:184]

INTERLEAVE_BYTES (SRC1, SRC2) 
DEST[7:0] := SRC1[7:0]
DEST[15:8] := SRC2[7:0]
DEST[23:16] := SRC1[15:8]
DEST[31:24] := SRC2[15:8]
DEST[39:32] := SRC1[23:16]
DEST[47:40] := SRC2[23:16]
DEST[55:48] := SRC1[31:24]
DEST[63:56] := SRC2[31:24]
DEST[71:64] := SRC1[39:32]
DEST[79:72] := SRC2[39:32]
DEST[87:80] := SRC1[47:40]
DEST[95:88] := SRC2[47:40]
DEST[103:96] := SRC1[55:48]
DEST[111:104] := SRC2[55:48]
DEST[119:112] := SRC1[63:56]
DEST[127:120] := SRC2[63:56]

INTERLEAVE_WORDS_512b (SRC1, SRC2)
TMP_DEST[255:0] := INTERLEAVE_WORDS_256b(SRC1[255:0], SRC[255:0])
TMP_DEST[511:256] := INTERLEAVE_WORDS_256b(SRC1[511:256], SRC[511:256])

INTERLEAVE_WORDS_256b(SRC1, SRC2)
DEST[15:0] := SRC1[15:0]
DEST[31:16] := SRC2[15:0]
DEST[47:32] := SRC1[31:16]
DEST[63:48] := SRC2[31:16]
DEST[79:64] := SRC1[47:32]
DEST[95:80] := SRC2[47:32]
DEST[111:96] := SRC1[63:48]
DEST[127:112] := SRC2[63:48]
DEST[143:128] := SRC1[143:128]
DEST[159:144] := SRC2[143:128]
DEST[175:160] := SRC1[159:144]
DEST[191:176] := SRC2[159:144]
DEST[207:192] := SRC1[175:160]
DEST[223:208] := SRC2[175:160]
DEST[239:224] := SRC1[191:176]
DEST[255:240] := SRC2[191:176]

INTERLEAVE_WORDS (SRC1, SRC2)
DEST[15:0] := SRC1[15:0]
DEST[31:16] := SRC2[15:0]
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DEST[47:32] := SRC1[31:16]
DEST[63:48] := SRC2[31:16]
DEST[79:64] := SRC1[47:32]
DEST[95:80] := SRC2[47:32]
DEST[111:96] := SRC1[63:48]
DEST[127:112] := SRC2[63:48]

INTERLEAVE_DWORDS_512b (SRC1, SRC2)
TMP_DEST[255:0] := INTERLEAVE_DWORDS_256b(SRC1[255:0], SRC2[255:0])
TMP_DEST[511:256] := INTERLEAVE_DWORDS_256b(SRC1[511:256], SRC2[511:256])

INTERLEAVE_DWORDS_256b(SRC1, SRC2)
DEST[31:0] := SRC1[31:0]
DEST[63:32] := SRC2[31:0]
DEST[95:64] := SRC1[63:32]
DEST[127:96] := SRC2[63:32]
DEST[159:128] := SRC1[159:128]
DEST[191:160] := SRC2[159:128]
DEST[223:192] := SRC1[191:160]
DEST[255:224] := SRC2[191:160]

INTERLEAVE_DWORDS(SRC1, SRC2)
DEST[31:0] := SRC1[31:0]
DEST[63:32] := SRC2[31:0]
DEST[95:64] := SRC1[63:32]
DEST[127:96] := SRC2[63:32]
INTERLEAVE_QWORDS_512b (SRC1, SRC2)
TMP_DEST[255:0] := INTERLEAVE_QWORDS_256b(SRC1[255:0], SRC2[255:0])
TMP_DEST[511:256] := INTERLEAVE_QWORDS_256b(SRC1[511:256], SRC2[511:256])

INTERLEAVE_QWORDS_256b(SRC1, SRC2)
DEST[63:0] := SRC1[63:0]
DEST[127:64] := SRC2[63:0]
DEST[191:128] := SRC1[191:128]
DEST[255:192] := SRC2[191:128]

INTERLEAVE_QWORDS(SRC1, SRC2)
DEST[63:0] := SRC1[63:0]
DEST[127:64] := SRC2[63:0]

PUNPCKLBW
DEST[127:0] := INTERLEAVE_BYTES(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKLBW (VEX.128 Encoded Instruction)
DEST[127:0] := INTERLEAVE_BYTES(SRC1, SRC2)
DEST[MAXVL-1:127] := 0

VPUNPCKLBW (VEX.256 Encoded Instruction)
DEST[255:0] := INTERLEAVE_BYTES_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0
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VPUNPCKLBW (EVEX.512 Encoded Instruction)
(KL, VL) = (16, 128), (32, 256), (64, 512)
IF VL = 128

TMP_DEST[VL-1:0] := INTERLEAVE_BYTES(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
IF VL = 256

TMP_DEST[VL-1:0] := INTERLEAVE_BYTES_256b(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
IF VL = 512

TMP_DEST[VL-1:0] := INTERLEAVE_BYTES_512b(SRC1[VL-1:0], SRC2[VL-1:0])
FI;

FOR j := 0 TO KL-1
i := j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := TMP_DEST[i+7:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
DEST[511:0] := INTERLEAVE_BYTES_512b(SRC1, SRC2)

PUNPCKLWD
DEST[127:0] := INTERLEAVE_WORDS(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKLWD (VEX.128 Encoded Instruction)
DEST[127:0] := INTERLEAVE_WORDS(SRC1, SRC2)
DEST[MAXVL-1:127] := 0

VPUNPCKLWD (VEX.256 Encoded Instruction)
DEST[255:0] := INTERLEAVE_WORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0

VPUNPCKLWD (EVEX.512 Encoded Instruction)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[VL-1:0] := INTERLEAVE_WORDS(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
IF VL = 256

TMP_DEST[VL-1:0] := INTERLEAVE_WORDS_256b(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
IF VL = 512

TMP_DEST[VL-1:0] := INTERLEAVE_WORDS_512b(SRC1[VL-1:0], SRC2[VL-1:0])
FI;

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*
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THEN DEST[i+15:i] := TMP_DEST[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
DEST[511:0] := INTERLEAVE_WORDS_512b(SRC1, SRC2)

PUNPCKLDQ
DEST[127:0] := INTERLEAVE_DWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

VPUNPCKLDQ (VEX.128 Encoded Instruction)
DEST[127:0] := INTERLEAVE_DWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPUNPCKLDQ (VEX.256 Encoded Instruction)
DEST[255:0] := INTERLEAVE_DWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0

VPUNPCKLDQ (EVEX Encoded Instructions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN TMP_SRC2[i+31:i] := SRC2[31:0]
ELSE TMP_SRC2[i+31:i] := SRC2[i+31:i]

FI;
ENDFOR;
IF VL = 128

TMP_DEST[VL-1:0] := INTERLEAVE_DWORDS(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
IF VL = 256

TMP_DEST[VL-1:0] := INTERLEAVE_DWORDS_256b(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
IF VL = 512

TMP_DEST[VL-1:0] := INTERLEAVE_DWORDS_512b(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
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ENDFOR
DEST511:0] := INTERLEAVE_DWORDS_512b(SRC1, SRC2)
DEST[MAXVL-1:VL] := 0

PUNPCKLQDQ
DEST[127:0] := INTERLEAVE_QWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

VPUNPCKLQDQ (VEX.128 Encoded Instruction)
DEST[127:0] := INTERLEAVE_QWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] := 0

VPUNPCKLQDQ (VEX.256 Encoded Instruction)
DEST[255:0] := INTERLEAVE_QWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] := 0

VPUNPCKLQDQ (EVEX Encoded Instructions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN TMP_SRC2[i+63:i] := SRC2[63:0]
ELSE TMP_SRC2[i+63:i] := SRC2[i+63:i]

FI;
ENDFOR;
IF VL = 128

TMP_DEST[VL-1:0] := INTERLEAVE_QWORDS(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
IF VL = 256

TMP_DEST[VL-1:0] := INTERLEAVE_QWORDS_256b(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
IF VL = 512

TMP_DEST[VL-1:0] := INTERLEAVE_QWORDS_512b(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalents

VPUNPCKLBW __m512i _mm512_unpacklo_epi8(__m512i a, __m512i b);
VPUNPCKLBW __m512i _mm512_mask_unpacklo_epi8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPUNPCKLBW __m512i _mm512_maskz_unpacklo_epi8( __mmask64 k, __m512i a, __m512i b);
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VPUNPCKLBW __m256i _mm256_mask_unpacklo_epi8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPUNPCKLBW __m256i _mm256_maskz_unpacklo_epi8( __mmask32 k, __m256i a, __m256i b);
VPUNPCKLBW __m128i _mm_mask_unpacklo_epi8(v s, __mmask16 k, __m128i a, __m128i b);
VPUNPCKLBW __m128i _mm_maskz_unpacklo_epi8( __mmask16 k, __m128i a, __m128i b);
VPUNPCKLWD __m512i _mm512_unpacklo_epi16(__m512i a, __m512i b);
VPUNPCKLWD __m512i _mm512_mask_unpacklo_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPUNPCKLWD __m512i _mm512_maskz_unpacklo_epi16( __mmask32 k, __m512i a, __m512i b);
VPUNPCKLWD __m256i _mm256_mask_unpacklo_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPUNPCKLWD __m256i _mm256_maskz_unpacklo_epi16( __mmask16 k, __m256i a, __m256i b);
VPUNPCKLWD __m128i _mm_mask_unpacklo_epi16(v s, __mmask8 k, __m128i a, __m128i b);
VPUNPCKLWD __m128i _mm_maskz_unpacklo_epi16( __mmask8 k, __m128i a, __m128i b);
VPUNPCKLDQ __m512i _mm512_unpacklo_epi32(__m512i a, __m512i b);
VPUNPCKLDQ __m512i _mm512_mask_unpacklo_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPUNPCKLDQ __m512i _mm512_maskz_unpacklo_epi32( __mmask16 k, __m512i a, __m512i b);
VPUNPCKLDQ __m256i _mm256_mask_unpacklo_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPUNPCKLDQ __m256i _mm256_maskz_unpacklo_epi32( __mmask8 k, __m256i a, __m256i b);
VPUNPCKLDQ __m128i _mm_mask_unpacklo_epi32(v s, __mmask8 k, __m128i a, __m128i b);
VPUNPCKLDQ __m128i _mm_maskz_unpacklo_epi32( __mmask8 k, __m128i a, __m128i b);
VPUNPCKLQDQ __m512i _mm512_unpacklo_epi64(__m512i a, __m512i b);
VPUNPCKLQDQ __m512i _mm512_mask_unpacklo_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPUNPCKLQDQ __m512i _mm512_maskz_unpacklo_epi64( __mmask8 k, __m512i a, __m512i b);
VPUNPCKLQDQ __m256i _mm256_mask_unpacklo_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPUNPCKLQDQ __m256i _mm256_maskz_unpacklo_epi64( __mmask8 k, __m256i a, __m256i b);
VPUNPCKLQDQ __m128i _mm_mask_unpacklo_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPUNPCKLQDQ __m128i _mm_maskz_unpacklo_epi64( __mmask8 k, __m128i a, __m128i b);
PUNPCKLBW __m64 _mm_unpacklo_pi8 (__m64 m1, __m64 m2)
(V)PUNPCKLBW __m128i _mm_unpacklo_epi8 (__m128i m1, __m128i m2)
VPUNPCKLBW __m256i _mm256_unpacklo_epi8 (__m256i m1, __m256i m2)
PUNPCKLWD __m64 _mm_unpacklo_pi16 (__m64 m1, __m64 m2)
(V)PUNPCKLWD __m128i _mm_unpacklo_epi16 (__m128i m1, __m128i m2)
VPUNPCKLWD __m256i _mm256_unpacklo_epi16 (__m256i m1, __m256i m2)
PUNPCKLDQ __m64 _mm_unpacklo_pi32 (__m64 m1, __m64 m2)
(V)PUNPCKLDQ __m128i _mm_unpacklo_epi32 (__m128i m1, __m128i m2)
VPUNPCKLDQ __m256i _mm256_unpacklo_epi32 (__m256i m1, __m256i m2)
(V)PUNPCKLQDQ __m128i _mm_unpacklo_epi64 (__m128i m1, __m128i m2)
VPUNPCKLQDQ __m256i _mm256_unpacklo_epi64 (__m256i m1, __m256i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded VPUNPCKLDQ/QDQ, see Table 2-52, “Type E4NF Class Exception Conditions.”
EVEX-encoded VPUNPCKLBW/WD, see Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Condi-
tions.”
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PUSH—Push Word, Doubleword, or Quadword Onto the Stack

Instruction Operand Encoding

Description

Decrements the stack pointer and then stores the source operand on the top of the stack. Address and operand 
sizes are determined and used as follows:
• Address size. The D flag in the current code-segment descriptor determines the default address size; it may be 

overridden by an instruction prefix (67H).
The address size is used only when referencing a source operand in memory.

• Operand size. The D flag in the current code-segment descriptor determines the default operand size; it may 
be overridden by instruction prefixes (66H or REX.W).
The operand size (16, 32, or 64 bits) determines the amount by which the stack pointer is decremented (2, 4
or 8).
If the source operand is an immediate of size less than the operand size, a sign-extended value is pushed on
the stack. If the source operand is a segment register (16 bits) and the operand size is 64-bits, a zero-
extended value is pushed on the stack; if the operand size is 32-bits, either a zero-extended value is pushed
on the stack or the segment selector is written on the stack using a 16-bit move. For the last case, all recent
Intel Core and Intel Atom processors perform a 16-bit move, leaving the upper portion of the stack location
unmodified.

Opcode1

NOTES:
1. See the IA-32 Architecture Compatibility section below.

Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

FF /6 PUSH r/m16 M Valid Valid Push r/m16.

FF /6 PUSH r/m32 M N.E. Valid Push r/m32.

FF /6 PUSH r/m64 M Valid N.E. Push r/m64. 

50+rw PUSH r16 O Valid Valid Push r16.

50+rd PUSH r32 O N.E. Valid Push r32.

50+rd PUSH r64 O Valid N.E. Push r64.

6A ib PUSH imm8 I Valid Valid Push imm8.

68 iw PUSH imm16 I Valid Valid Push imm16.

68 id PUSH imm32 I Valid Valid Push imm32.

0E PUSH CS ZO Invalid Valid Push CS.

16 PUSH SS ZO Invalid Valid Push SS.

1E PUSH DS ZO Invalid Valid Push DS.

06 PUSH ES ZO Invalid Valid Push ES.

0F A0 PUSH FS ZO Valid Valid Push FS.

0F A8 PUSH GS ZO Valid Valid Push GS.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A

O opcode + rd (r) N/A N/A N/A

I imm8/16/32 N/A N/A N/A

ZO N/A N/A N/A N/A
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• Stack-address size. Outside of 64-bit mode, the B flag in the current stack-segment descriptor determines the 
size of the stack pointer (16 or 32 bits); in 64-bit mode, the size of the stack pointer is always 64 bits.
The stack-address size determines the width of the stack pointer when writing to the stack in memory and
when decrementing the stack pointer. (As stated above, the amount by which the stack pointer is
decremented is determined by the operand size.)
If the operand size is less than the stack-address size, the PUSH instruction may result in a misaligned stack
pointer (a stack pointer that is not aligned on a doubleword or quadword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before the instruction was executed. If 
a PUSH instruction uses a memory operand in which the ESP register is used for computing the operand address, 
the address of the operand is computed before the ESP register is decremented. 

If the ESP or SP register is 1 when the PUSH instruction is executed in real-address mode, a stack-fault exception 
(#SS) is generated (because the limit of the stack segment is violated). Its delivery encounters a second stack-
fault exception (for the same reason), causing generation of a double-fault exception (#DF). Delivery of the 
double-fault exception encounters a third stack-fault exception, and the logical processor enters shutdown mode. 
See the discussion of the double-fault exception in Chapter 7 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.

IA-32 Architecture Compatibility

For IA-32 processors from the Intel 286 on, the PUSH ESP instruction pushes the value of the ESP register as it 
existed before the instruction was executed. (This is also true for Intel 64 architecture, real-address and virtual-
8086 modes of IA-32 architecture.) For the Intel® 8086 processor, the PUSH SP instruction pushes the new value 
of the SP register (that is the value after it has been decremented by 2).

Operation

(* See Description section for possible sign-extension or zero-extension of source operand and for *)
(* a case in which the size of the memory store may be smaller than the instruction’s operand size *)
IF StackAddrSize = 64

THEN
IF OperandSize = 64

THEN
RSP := RSP – 8;
Memory[SS:RSP] := SRC; (* push quadword *)

ELSE IF OperandSize = 32
THEN

RSP := RSP – 4;
Memory[SS:RSP] := SRC; (* push dword *)

ELSE (* OperandSize = 16 *)
RSP := RSP – 2;
Memory[SS:RSP] := SRC; (* push word *)

FI;

ELSE IF StackAddrSize = 32
THEN

IF OperandSize = 64
THEN

ESP := ESP – 8;
Memory[SS:ESP] := SRC; (* push quadword *)

ELSE IF OperandSize = 32
THEN

ESP := ESP – 4;
Memory[SS:ESP] := SRC; (* push dword *)

ELSE (* OperandSize = 16 *)
ESP := ESP – 2;
Memory[SS:ESP] := SRC; (* push word *)
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FI;
ELSE (* StackAddrSize = 16 *)

IF OperandSize = 32
THEN

SP := SP – 4;
Memory[SS:SP] := SRC; (* push dword *)

ELSE (* OperandSize = 16 *)
SP := SP – 2;
Memory[SS:SP] := SRC; (* push word *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

If the new value of the SP or ESP register is outside the stack segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

If the PUSH is of CS, SS, DS, or ES.
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PUSHA/PUSHAD—Push All General-Purpose Registers

Instruction Operand Encoding

Description

Pushes the contents of the general-purpose registers onto the stack. The registers are stored on the stack in the 
following order: EAX, ECX, EDX, EBX, ESP (original value), EBP, ESI, and EDI (if the current operand-size attribute 
is 32) and AX, CX, DX, BX, SP (original value), BP, SI, and DI (if the operand-size attribute is 16). These instruc-
tions perform the reverse operation of the POPA/POPAD instructions. The value pushed for the ESP or SP register 
is its value before prior to pushing the first register (see the “Operation” section below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same opcode. The PUSHA instruc-
tion is intended for use when the operand-size attribute is 16 and the PUSHAD instruction for when the operand-
size attribute is 32. Some assemblers may force the operand size to 16 when PUSHA is used and to 32 when 
PUSHAD is used. Others may treat these mnemonics as synonyms (PUSHA/PUSHAD) and use the current setting 
of the operand-size attribute to determine the size of values to be pushed from the stack, regardless of the 
mnemonic used.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when PUSHA/PUSHAD executes: an #SS exception 
is generated but not delivered (the stack error reported prevents #SS delivery). Next, the processor generates a 
#DF exception and enters a shutdown state as described in the #DF discussion in Chapter 7 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-bit Mode 
THEN #UD

FI;
IF OperandSize = 32 (* PUSHAD instruction *)

THEN
Temp := (ESP);
Push(EAX);
Push(ECX);
Push(EDX);
Push(EBX);
Push(Temp);
Push(EBP);
Push(ESI);
Push(EDI);

ELSE (* OperandSize = 16, PUSHA instruction *)
Temp := (SP);
Push(AX);
Push(CX);
Push(DX);
Push(BX);
Push(Temp);

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

60 PUSHA ZO Invalid Valid Push AX, CX, DX, BX, original SP, BP, SI, and DI.

60 PUSHAD ZO Invalid Valid Push EAX, ECX, EDX, EBX, original ESP, EBP, 
ESI, and EDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Push(BP);
Push(SI);
Push(DI);

FI;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the starting or ending stack address is outside the stack segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level is 3 and alignment 

checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the ESP or SP register contains 7, 9, 11, 13, or 15.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the ESP or SP register contains 7, 9, 11, 13, or 15.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
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PUSHF/PUSHFD/PUSHFQ—Push EFLAGS Register Onto the Stack

Instruction Operand Encoding

Description

Decrements the stack pointer by 4 (if the current operand-size attribute is 32) and pushes the entire contents of 
the EFLAGS register onto the stack, or decrements the stack pointer by 2 (if the operand-size attribute is 16) and 
pushes the lower 16 bits of the EFLAGS register (that is, the FLAGS register) onto the stack. These instructions 
reverse the operation of the POPF/POPFD instructions. 

When copying the entire EFLAGS register to the stack, the VM and RF flags (bits 16 and 17) are not copied; instead, 
the values for these flags are cleared in the EFLAGS image stored on the stack. See Chapter 3 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, for more information about the EFLAGS register. 

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the same opcode. The PUSHF 
instruction is intended for use when the operand-size attribute is 16 and the PUSHFD instruction for when the 
operand-size attribute is 32. Some assemblers may force the operand size to 16 when PUSHF is used and to 32 
when PUSHFD is used. Others may treat these mnemonics as synonyms (PUSHF/PUSHFD) and use the current 
setting of the operand-size attribute to determine the size of values to be pushed from the stack, regardless of the 
mnemonic used.

In 64-bit mode, the instruction’s default operation is to decrement the stack pointer (RSP) by 8 and pushes RFLAGS 
on the stack. 16-bit operation is supported using the operand size override prefix 66H. 32-bit operand size cannot 
be encoded in this mode. When copying RFLAGS to the stack, the VM and RF flags (bits 16 and 17) are not copied; 
instead, values for these flags are cleared in the RFLAGS image stored on the stack.

When operating in virtual-8086 mode (EFLAGS.VM = 1) without the virtual-8086 mode extensions (CR4.VME = 0), 
the PUSHF/PUSHFD instructions can be used only if IOPL = 3; otherwise, a general-protection exception (#GP) 
occurs. If the virtual-8086 mode extensions are enabled (CR4.VME = 1), PUSHF (but not PUSHFD) can be executed 
in virtual-8086 mode with IOPL < 3.

(The protected-mode virtual-interrupt feature — enabled by setting CR4.PVI — affects the CLI and STI instructions 
in the same manner as the virtual-8086 mode extensions. PUSHF, however, is not affected by CR4.PVI.)

In the real-address mode, if the ESP or SP register is 1 when PUSHF/PUSHFD instruction executes: an #SS excep-
tion is generated but not delivered (the stack error reported prevents #SS delivery). Next, the processor generates 
a #DF exception and enters a shutdown state as described in the #DF discussion in Chapter 7 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Operation

IF (PE = 0) or (PE = 1 and ((VM = 0) or (VM = 1 and IOPL = 3)))
(* Real-Address Mode, Protected mode, or Virtual-8086 mode with IOPL equal to 3 *)

THEN
IF OperandSize = 32

THEN 
push (EFLAGS AND 00FCFFFFH);
(* VM and RF bits are cleared in image stored on the stack *)

ELSE 
push (EFLAGS); (* Lower 16 bits only *)

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

9C PUSHF ZO Valid Valid Push lower 16 bits of EFLAGS.

9C PUSHFD ZO N.E. Valid Push EFLAGS.

9C PUSHFQ ZO Valid N.E. Push RFLAGS.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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FI;

ELSE IF 64-bit MODE (* In 64-bit Mode *)
IF OperandSize = 64

THEN 
push (RFLAGS AND 00000000_00FCFFFFH);
(* VM and RF bits are cleared in image stored on the stack; *)

ELSE 
push (EFLAGS); (* Lower 16 bits only *)

FI;

ELSE (* In Virtual-8086 Mode with IOPL less than 3 *)
IF (CR4.VME = 0) OR (OperandSize = 32)

THEN #GP(0); (* Trap to virtual-8086 monitor *)
ELSE

tempFLAGS = EFLAGS[15:0];
tempFLAGS[9] = tempFLAGS[19]; (* VIF replaces IF *)
tempFlags[13:12] = 3; (* IOPL is set to 3 in image stored on the stack *)
push (tempFLAGS);

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the new value of the ESP register is outside the stack segment boundary. 
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while CPL = 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the I/O privilege level is less than 3.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while CPL = 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.
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PXOR—Logical Exclusive OR

Instruction Operand Encoding

Description

Performs a bitwise logical exclusive-OR (XOR) operation on the source operand (second operand) and the destina-
tion operand (first operand) and stores the result in the destination operand. Each bit of the result is 1 if the corre-
sponding bits of the two operands are different; each bit is 0 if the corresponding bits of the operands are the 
same.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F EF /r1

PXOR mm, mm/m64

NOTES:
1.  See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A, and Section 24.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX 
Registers,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

A V/V MMX Bitwise XOR of mm/m64 and mm.

66 0F EF /r

PXOR xmm1, xmm2/m128

A V/V SSE2 Bitwise XOR of xmm2/m128 and xmm1.

VEX.128.66.0F.WIG EF /r
VPXOR xmm1, xmm2, xmm3/m128

B V/V AVX Bitwise XOR of xmm3/m128 and xmm2.

VEX.256.66.0F.WIG EF /r
VPXOR ymm1, ymm2, ymm3/m256

B V/V AVX2 Bitwise XOR of ymm3/m256 and ymm2.

EVEX.128.66.0F.W0 EF /r
VPXORD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst 

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Bitwise XOR of packed doubleword integers in 
xmm2 and xmm3/m128 using writemask k1. 

EVEX.256.66.0F.W0 EF /r
VPXORD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst 

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Bitwise XOR of packed doubleword integers in 
ymm2 and ymm3/m256 using writemask k1. 

EVEX.512.66.0F.W0 EF /r
VPXORD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst 

C V/V AVX512F 
OR AVX10.12

Bitwise XOR of packed doubleword integers in 
zmm2 and zmm3/m512/m32bcst using 
writemask k1. 

EVEX.128.66.0F.W1 EF /r
VPXORQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst 

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Bitwise XOR of packed quadword integers in 
xmm2 and xmm3/m128 using writemask k1. 

EVEX.256.66.0F.W1 EF /r
VPXORQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst 

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.12

Bitwise XOR of packed quadword integers in 
ymm2 and ymm3/m256 using writemask k1. 

EVEX.512.66.0F.W1 EF /r
VPXORQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst 

C V/V AVX512F 
OR AVX10.12

Bitwise XOR of packed quadword integers in 
zmm2 and zmm3/m512/m64bcst using 
writemask k1. 

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Legacy SSE instructions 64-bit operand: The source operand can be an MMX technology register or a 64-bit 
memory location. The destination operand is an MMX technology register.
128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the destination YMM register 
are zeroed. 
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the 
corresponding register destination are zeroed.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be 
a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 
32/64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write-
mask k1.

Operation

PXOR (64-bit Operand)
DEST := DEST XOR SRC

PXOR (128-bit Legacy SSE Version)
DEST := DEST XOR SRC
DEST[MAXVL-1:128] (Unmodified)

VPXOR (VEX.128 Encoded Version)
DEST := SRC1 XOR SRC2
DEST[MAXVL-1:128] := 0

VPXOR (VEX.256 Encoded Version)
DEST := SRC1 XOR SRC2
DEST[MAXVL-1:256] := 0

VPXORD (EVEX Encoded Versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] := SRC1[i+31:i] BITWISE XOR SRC2[31:0]
ELSE DEST[i+31:i] := SRC1[i+31:i] BITWISE XOR SRC2[i+31:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

DEST[31:0] := 0
FI;

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
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VPXORQ (EVEX Encoded Versions) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] := SRC1[i+63:i] BITWISE XOR SRC2[63:0]
ELSE DEST[i+63:i] := SRC1[i+63:i] BITWISE XOR SRC2[i+63:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

DEST[63:0] := 0
FI;

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent
VPXORD __m512i _mm512_xor_epi32(__m512i a, __m512i b)
VPXORD __m512i _mm512_mask_xor_epi32(__m512i s, __mmask16 m, __m512i a, __m512i b)
VPXORD __m512i _mm512_maskz_xor_epi32( __mmask16 m, __m512i a, __m512i b)
VPXORD __m256i _mm256_xor_epi32(__m256i a, __m256i b)
VPXORD __m256i _mm256_mask_xor_epi32(__m256i s, __mmask8 m, __m256i a, __m256i b)
VPXORD __m256i _mm256_maskz_xor_epi32( __mmask8 m, __m256i a, __m256i b)
VPXORD __m128i _mm_xor_epi32(__m128i a, __m128i b)
VPXORD __m128i _mm_mask_xor_epi32(__m128i s, __mmask8 m, __m128i a, __m128i b)
VPXORD __m128i _mm_maskz_xor_epi32( __mmask16 m, __m128i a, __m128i b)
VPXORQ __m512i _mm512_xor_epi64( __m512i a, __m512i b);
VPXORQ __m512i _mm512_mask_xor_epi64(__m512i s, __mmask8 m, __m512i a, __m512i b);
VPXORQ __m512i _mm512_maskz_xor_epi64(__mmask8 m, __m512i a, __m512i b);
VPXORQ __m256i _mm256_xor_epi64( __m256i a, __m256i b);
VPXORQ __m256i _mm256_mask_xor_epi64(__m256i s, __mmask8 m, __m256i a, __m256i b);
VPXORQ __m256i _mm256_maskz_xor_epi64(__mmask8 m, __m256i a, __m256i b);
VPXORQ __m128i _mm_xor_epi64( __m128i a, __m128i b);
VPXORQ __m128i _mm_mask_xor_epi64(__m128i s, __mmask8 m, __m128i a, __m128i b);
VPXORQ __m128i _mm_maskz_xor_epi64(__mmask8 m, __m128i a, __m128i b);
PXOR:__m64 _mm_xor_si64 (__m64 m1, __m64 m2)
(V)PXOR:__m128i _mm_xor_si128 ( __m128i a, __m128i b)
VPXOR:__m256i _mm256_xor_si256 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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RCL/RCR/ROL/ROR—Rotate

Opcode1 Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

D0 /2 RCL r/m8, 1 M1 Valid Valid Rotate 9 bits (CF, r/m8) left once.

REX + D0 /2 RCL r/m82, 1 M1 Valid N.E. Rotate 9 bits (CF, r/m8) left once. 

D2 /2 RCL r/m8, CL MC Valid Valid Rotate 9 bits (CF, r/m8) left CL times. 

REX + D2 /2 RCL r/m82, CL MC Valid N.E. Rotate 9 bits (CF, r/m8) left CL times. 

C0 /2 ib RCL r/m8, imm8 MI Valid Valid Rotate 9 bits (CF, r/m8) left imm8 times.

REX + C0 /2 ib RCL r/m82, imm8 MI Valid N.E. Rotate 9 bits (CF, r/m8) left imm8 times.

D1 /2 RCL r/m16, 1 M1 Valid Valid Rotate 17 bits (CF, r/m16) left once.

D3 /2 RCL r/m16, CL MC Valid Valid Rotate 17 bits (CF, r/m16) left CL times.

C1 /2 ib RCL r/m16, imm8 MI Valid Valid Rotate 17 bits (CF, r/m16) left imm8 times.

D1 /2 RCL r/m32, 1 M1 Valid Valid Rotate 33 bits (CF, r/m32) left once.

REX.W + D1 /2 RCL r/m64, 1 M1 Valid N.E. Rotate 65 bits (CF, r/m64) left once. Uses a 6 
bit count.

D3 /2 RCL r/m32, CL MC Valid Valid Rotate 33 bits (CF, r/m32) left CL times.

REX.W + D3 /2 RCL r/m64, CL MC Valid N.E. Rotate 65 bits (CF, r/m64) left CL times. Uses a 
6 bit count.

C1 /2 ib RCL r/m32, imm8 MI Valid Valid Rotate 33 bits (CF, r/m32) left imm8 times.

REX.W + C1 /2 ib RCL r/m64, imm8 MI Valid N.E. Rotate 65 bits (CF, r/m64) left imm8 times. 
Uses a 6 bit count.

D0 /3 RCR r/m8, 1 M1 Valid Valid Rotate 9 bits (CF, r/m8) right once. 

REX + D0 /3 RCR r/m82, 1 M1 Valid N.E. Rotate 9 bits (CF, r/m8) right once. 

D2 /3 RCR r/m8, CL MC Valid Valid Rotate 9 bits (CF, r/m8) right CL times. 

REX + D2 /3 RCR r/m82, CL MC Valid N.E. Rotate 9 bits (CF, r/m8) right CL times. 

C0 /3 ib RCR r/m8, imm8 MI Valid Valid Rotate 9 bits (CF, r/m8) right imm8 times. 

REX + C0 /3 ib RCR r/m82, imm8 MI Valid N.E. Rotate 9 bits (CF, r/m8) right imm8 times. 

D1 /3 RCR r/m16, 1 M1 Valid Valid Rotate 17 bits (CF, r/m16) right once.

D3 /3 RCR r/m16, CL MC Valid Valid Rotate 17 bits (CF, r/m16) right CL times.

C1 /3 ib RCR r/m16, imm8 MI Valid Valid Rotate 17 bits (CF, r/m16) right imm8 times.

D1 /3 RCR r/m32, 1 M1 Valid Valid Rotate 33 bits (CF, r/m32) right once. Uses a 6 
bit count.

REX.W + D1 /3 RCR r/m64, 1 M1 Valid N.E. Rotate 65 bits (CF, r/m64) right once. Uses a 6 
bit count.

D3 /3 RCR r/m32, CL MC Valid Valid Rotate 33 bits (CF, r/m32) right CL times.

REX.W + D3 /3 RCR r/m64, CL MC Valid N.E. Rotate 65 bits (CF, r/m64) right CL times. Uses 
a 6 bit count.

C1 /3 ib RCR r/m32, imm8 MI Valid Valid Rotate 33 bits (CF, r/m32) right imm8 times.

REX.W + C1 /3 ib RCR r/m64, imm8 MI Valid N.E. Rotate 65 bits (CF, r/m64) right imm8 times. 
Uses a 6 bit count.

D0 /0 ROL r/m8, 1 M1 Valid Valid Rotate 8 bits r/m8 left once.

REX + D0 /0 ROL r/m82, 1 M1 Valid N.E. Rotate 8 bits r/m8 left once

D2 /0 ROL r/m8, CL MC Valid Valid Rotate 8 bits r/m8 left CL times.

REX + D2 /0 ROL r/m82, CL MC Valid N.E. Rotate 8 bits r/m8 left CL times.

C0 /0 ib ROL r/m8, imm8 MI Valid Valid Rotate 8 bits r/m8 left imm8 times.
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Instruction Operand Encoding

REX + C0 /0 ib ROL r/m82, imm8 MI Valid N.E. Rotate 8 bits r/m8 left imm8 times.

D1 /0 ROL r/m16, 1 M1 Valid Valid Rotate 16 bits r/m16 left once.

D3 /0 ROL r/m16, CL MC Valid Valid Rotate 16 bits r/m16 left CL times.

C1 /0 ib ROL r/m16, imm8 MI Valid Valid Rotate 16 bits r/m16 left imm8 times.

D1 /0 ROL r/m32, 1 M1 Valid Valid Rotate 32 bits r/m32 left once.

REX.W + D1 /0 ROL r/m64, 1 M1 Valid N.E. Rotate 64 bits r/m64 left once. Uses a 6 bit 
count.

D3 /0 ROL r/m32, CL MC Valid Valid Rotate 32 bits r/m32 left CL times.

REX.W + D3 /0 ROL r/m64, CL MC Valid N.E. Rotate 64 bits r/m64 left CL times. Uses a 6 
bit count.

C1 /0 ib ROL r/m32, imm8 MI Valid Valid Rotate 32 bits r/m32 left imm8 times.

REX.W + C1 /0 ib ROL r/m64, imm8 MI Valid N.E. Rotate 64 bits r/m64 left imm8 times. Uses a 
6 bit count.

D0 /1 ROR r/m8, 1 M1 Valid Valid Rotate 8 bits r/m8 right once.

REX + D0 /1 ROR r/m82, 1 M1 Valid N.E. Rotate 8 bits r/m8 right once.

D2 /1 ROR r/m8, CL MC Valid Valid Rotate 8 bits r/m8 right CL times.

REX + D2 /1 ROR r/m82, CL MC Valid N.E. Rotate 8 bits r/m8 right CL times.

C0 /1 ib ROR r/m8, imm8 MI Valid Valid Rotate 8 bits r/m16 right imm8 times.

REX + C0 /1 ib ROR r/m82, imm8 MI Valid N.E. Rotate 8 bits r/m16 right imm8 times.

D1 /1 ROR r/m16, 1 M1 Valid Valid Rotate 16 bits r/m16 right once.

D3 /1 ROR r/m16, CL MC Valid Valid Rotate 16 bits r/m16 right CL times.

C1 /1 ib ROR r/m16, imm8 MI Valid Valid Rotate 16 bits r/m16 right imm8 times.

D1 /1 ROR r/m32, 1 M1 Valid Valid Rotate 32 bits r/m32 right once.

REX.W + D1 /1 ROR r/m64, 1 M1 Valid N.E. Rotate 64 bits r/m64 right once. Uses a 6 bit 
count.

D3 /1 ROR r/m32, CL MC Valid Valid Rotate 32 bits r/m32 right CL times.

REX.W + D3 /1 ROR r/m64, CL MC Valid N.E. Rotate 64 bits r/m64 right CL times. Uses a 6 
bit count.

C1 /1 ib ROR r/m32, imm8 MI Valid Valid Rotate 32 bits r/m32 right imm8 times.

REX.W + C1 /1 ib ROR r/m64, imm8 MI Valid N.E. Rotate 64 bits r/m64 right imm8 times. Uses a 
6 bit count.

NOTES:
1. See the IA-32 Architecture Compatibility section below.
2. In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M1 ModRM:r/m (w) 1 N/A N/A

MC ModRM:r/m (w) CL N/A N/A

MI ModRM:r/m (w) imm8 N/A N/A

Opcode1 Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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Description

Shifts (rotates) the bits of the first operand (destination operand) the number of bit positions specified in the 
second operand (count operand) and stores the result in the destination operand. The destination operand can be 
a register or a memory location; the count operand is an unsigned integer that can be an immediate or a value in 
the CL register. The count is masked to 5 bits (or 6 bits if in 64-bit mode and REX.W = 1).

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits toward more-significant bit 
positions, except for the most-significant bit, which is rotated to the least-significant bit location. The rotate right 
(ROR) and rotate through carry right (RCR) instructions shift all the bits toward less significant bit positions, except 
for the least-significant bit, which is rotated to the most-significant bit location.

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction shifts the CF flag into the 
least-significant bit and shifts the most-significant bit into the CF flag. The RCR instruction shifts the CF flag into the 
most-significant bit and shifts the least-significant bit into the CF flag. For the ROL and ROR instructions, the orig-
inal value of the CF flag is not a part of the result, but the CF flag receives a copy of the bit that was shifted from 
one end to the other.

The OF flag is defined only for the 1-bit rotates; it is undefined in all other cases (except RCL and RCR instructions 
only: a zero-bit rotate does nothing, that is affects no flags). For left rotates, the OF flag is set to the exclusive OR 
of the CF bit (after the rotate) and the most-significant bit of the result. For right rotates, the OF flag is set to the 
exclusive OR of the two most-significant bits of the result.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Use of 
REX.W promotes the first operand to 64 bits and causes the count operand to become a 6-bit counter.

IA-32 Architecture Compatibility

The 8086 does not mask the rotation count. However, all other IA-32 processors (starting with the Intel 286 
processor) do mask the rotation count to 5 bits, resulting in a maximum count of 31. This masking is done in all 
operating modes (including the virtual-8086 mode) to reduce the maximum execution time of the instructions.

Operation

(* RCL and RCR Instructions *)
SIZE := OperandSize;
CASE (determine count) OF

SIZE := 8: tempCOUNT := (COUNT AND 1FH) MOD 9;
SIZE := 16: tempCOUNT := (COUNT AND 1FH) MOD 17;
SIZE := 32: tempCOUNT := COUNT AND 1FH;
SIZE := 64: tempCOUNT := COUNT AND 3FH;

ESAC;
IF OperandSize = 64

THEN COUNTMASK = 3FH;
ELSE COUNTMASK = 1FH;

FI;

(* RCL Instruction Operation *)
WHILE (tempCOUNT ≠ 0)

DO
tempCF := MSB(DEST);
DEST := (DEST ∗ 2) + CF;
CF := tempCF;
tempCOUNT := tempCOUNT – 1;

OD;
ELIHW;
IF (COUNT & COUNTMASK) = 1

THEN OF := MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
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(* RCR Instruction Operation *)
IF (COUNT & COUNTMASK) = 1

THEN OF := MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
WHILE (tempCOUNT ≠ 0)

DO
tempCF := LSB(SRC);
DEST := (DEST / 2) + (CF * 2SIZE);
CF := tempCF;
tempCOUNT := tempCOUNT – 1;

OD;

(* ROL Instruction Operation *)
tempCOUNT := (COUNT & COUNTMASK) MOD SIZE

WHILE (tempCOUNT ≠ 0)
DO

tempCF := MSB(DEST);
DEST := (DEST ∗ 2) + tempCF;
tempCOUNT := tempCOUNT – 1;

OD;
ELIHW;
IF (COUNT & COUNTMASK) ≠ 0

THEN CF := LSB(DEST);
FI;
IF (COUNT & COUNTMASK) = 1

THEN OF := MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;

(* ROR Instruction Operation *)
tempCOUNT := (COUNT & COUNTMASK) MOD SIZE
WHILE (tempCOUNT ≠ 0)

DO
tempCF := LSB(SRC);
DEST := (DEST / 2) + (tempCF ∗ 2SIZE);
tempCOUNT := tempCOUNT – 1;

OD;
ELIHW;
IF (COUNT & COUNTMASK) ≠ 0

THEN CF := MSB(DEST);
FI;
IF (COUNT & COUNTMASK) = 1

THEN OF := MSB(DEST) XOR MSB − 1(DEST);
ELSE OF is undefined;

FI;

Flags Affected

For RCL and RCR instructions, a zero-bit rotate does nothing, i.e., affects no flags. For ROL and ROR instructions, if 
the masked count is 0, the flags are not affected. If the masked count is 1, then the OF flag is affected, otherwise 
(masked count is greater than 1) the OF flag is undefined. 
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For all instructions, the CF flag is affected when the masked count is non-zero. The SF, ZF, AF, and PF flags are 
always unaffected.

Protected Mode Exceptions
#GP(0) If the source operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the source operand is located in a nonwritable segment.

If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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RCPPS—Compute Reciprocals of Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD computation of the approximate reciprocals of the four packed single precision floating-point 
values in the source operand (second operand) stores the packed single precision floating-point results in the desti-
nation operand. The source operand can be an XMM register or a 128-bit memory location. The destination 
operand is an XMM register. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, for an illustration of a SIMD single precision floating-point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12 

The RCPPS instruction is not affected by the rounding control bits in the MXCSR register. When a source value is a 
0.0, an ∞ of the sign of the source value is returned. A denormal source value is treated as a 0.0 (of the same sign). 
Tiny results (see Section 4.9.1.5, “Numeric Underflow Exception (#U)” in Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1) are always flushed to 0.0, with the sign of the operand. (Input values greater 
than or equal to |1.11111111110100000000000B∗2125| are guaranteed to not produce tiny results; input values 
less than or equal to |1.00000000000110000000001B*2126| are guaranteed to produce tiny results, which are in 
turn flushed to 0.0; and input values in between this range may or may not produce tiny results, depending on the 
implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN or the source QNaN 
is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 53 /r

RCPPS xmm1, xmm2/m128

RM V/V SSE Computes the approximate reciprocals of the 
packed single precision floating-point values in 
xmm2/m128 and stores the results in xmm1.

VEX.128.0F.WIG 53 /r

VRCPPS xmm1, xmm2/m128

RM V/V AVX Computes the approximate reciprocals of 
packed single precision values in xmm2/mem 
and stores the results in xmm1.

VEX.256.0F.WIG 53 /r

VRCPPS ymm1, ymm2/m256

RM V/V AVX Computes the approximate reciprocals of 
packed single precision values in ymm2/mem 
and stores the results in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation

RCPPS (128-bit Legacy SSE Version)
DEST[31:0] := APPROXIMATE(1/SRC[31:0])
DEST[63:32] := APPROXIMATE(1/SRC[63:32])
DEST[95:64] := APPROXIMATE(1/SRC[95:64])
DEST[127:96] := APPROXIMATE(1/SRC[127:96])
DEST[MAXVL-1:128] (Unmodified)

VRCPPS (VEX.128 Encoded Version)
DEST[31:0] := APPROXIMATE(1/SRC[31:0])
DEST[63:32] := APPROXIMATE(1/SRC[63:32])
DEST[95:64] := APPROXIMATE(1/SRC[95:64])
DEST[127:96] := APPROXIMATE(1/SRC[127:96])
DEST[MAXVL-1:128] := 0

VRCPPS (VEX.256 Encoded Version)
DEST[31:0] := APPROXIMATE(1/SRC[31:0])
DEST[63:32] := APPROXIMATE(1/SRC[63:32])
DEST[95:64] := APPROXIMATE(1/SRC[95:64])
DEST[127:96] := APPROXIMATE(1/SRC[127:96])
DEST[159:128] := APPROXIMATE(1/SRC[159:128])
DEST[191:160] := APPROXIMATE(1/SRC[191:160])
DEST[223:192] := APPROXIMATE(1/SRC[223:192])
DEST[255:224] := APPROXIMATE(1/SRC[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

RCCPS __m128 _mm_rcp_ps(__m128 a)
RCPPS __m256 _mm256_rcp_ps (__m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:
#UD If VEX.vvvv ≠ 1111B.
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RCPSS—Compute Reciprocal of Scalar Single Precision Floating-Point Values 

Instruction Operand Encoding

Description

Computes of an approximate reciprocal of the low single precision floating-point value in the source operand 
(second operand) and stores the single precision floating-point result in the destination operand. The source 
operand can be an XMM register or a 32-bit memory location. The destination operand is an XMM register. The 
three high-order doublewords of the destination operand remain unchanged. See Figure 10-6 in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a scalar single precision floating-
point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12 

The RCPSS instruction is not affected by the rounding control bits in the MXCSR register. When a source value is a 
0.0, an ∞ of the sign of the source value is returned. A denormal source value is treated as a 0.0 (of the same sign). 
Tiny results (see Section 4.9.1.5, “Numeric Underflow Exception (#U)” in Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1) are always flushed to 0.0, with the sign of the operand. (Input values greater 
than or equal to |1.11111111110100000000000B∗2125| are guaranteed to not produce tiny results; input values 
less than or equal to |1.00000000000110000000001B*2126| are guaranteed to produce tiny results, which are in 
turn flushed to 0.0; and input values in between this range may or may not produce tiny results, depending on the 
implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN or the source QNaN 
is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAXVL-
1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (MAXVL-1:128) of the destination YMM register are zeroed.

Operation

RCPSS (128-bit Legacy SSE Version)
DEST[31:0] := APPROXIMATE(1/SRC[31:0])
DEST[MAXVL-1:32] (Unmodified)

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 53 /r

RCPSS xmm1, xmm2/m32

RM V/V SSE Computes the approximate reciprocal of the scalar single 
precision floating-point value in xmm2/m32 and stores 
the result in xmm1.

VEX.LIG.F3.0F.WIG 53 /r

VRCPSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Computes the approximate reciprocal of the scalar single 
precision floating-point value in xmm3/m32 and stores 
the result in xmm1. Also, upper single precision floating-
point values (bits[127:32]) from xmm2 are copied to 
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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VRCPSS (VEX.128 Encoded Version)
DEST[31:0] := APPROXIMATE(1/SRC2[31:0])
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

RCPSS __m128 _mm_rcp_ss(__m128 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-22, “Type 5 Class Exception Conditions.”
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RDFSBASE/RDGSBASE—Read FS/GS Segment Base

Instruction Operand Encoding

Description

Loads the general-purpose register indicated by the ModR/M:r/m field with the FS or GS segment base address.

The destination operand may be either a 32-bit or a 64-bit general-purpose register. The REX.W prefix indicates the 
operand size is 64 bits. If no REX.W prefix is used, the operand size is 32 bits; the upper 32 bits of the source base 
address (for FS or GS) are ignored and upper 32 bits of the destination register are cleared. 
This instruction is supported only in 64-bit mode.

Operation

DEST := FS/GS segment base address;

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

RDFSBASE unsigned int _readfsbase_u32(void );
RDFSBASE unsigned __int64 _readfsbase_u64(void );
RDGSBASE unsigned int _readgsbase_u32(void );
RDGSBASE unsigned __int64 _readgsbase_u64(void );

Protected Mode Exceptions
#UD The RDFSBASE and RDGSBASE instructions are not recognized in protected mode.

Real-Address Mode Exceptions
#UD The RDFSBASE and RDGSBASE instructions are not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The RDFSBASE and RDGSBASE instructions are not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The RDFSBASE and RDGSBASE instructions are not recognized in compatibility mode.

Opcode/
Instruction

Op/ 
En

64/32-
bit 
Mode

CPUID Fea-
ture Flag

Description

F3 0F AE /0
RDFSBASE r32

M V/I FSGSBASE Load the 32-bit destination register with the FS 
base address.

F3 REX.W 0F AE /0
RDFSBASE r64

M V/I FSGSBASE Load the 64-bit destination register with the FS 
base address.

F3 0F AE /1
RDGSBASE r32

M V/I FSGSBASE Load the 32-bit destination register with the GS 
base address.

F3 REX.W 0F AE /1
RDGSBASE r64

M V/I FSGSBASE Load the 64-bit destination register with the GS 
base address.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A
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64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.FSGSBASE[bit 16] = 0.
If CPUID.07H.0H:EBX.FSGSBASE[bit 0] = 0.
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RDMSR—Read From Model Specific Register

Instruction Operand Encoding

Description

Reads the contents of a 64-bit model specific register (MSR) specified in the ECX register into registers EDX:EAX. 
(On processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The EDX register 
is loaded with the high-order 32 bits of the MSR and the EAX register is loaded with the low-order 32 bits. (On 
processors that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are cleared.) If 
fewer than 64 bits are implemented in the MSR being read, the values returned to EDX:EAX in unimplemented bit 
locations are undefined.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a general protection 
exception #GP(0) will be generated. Specifying a reserved or unimplemented MSR address in ECX will also cause a 
general protection exception.

The MSRs control functions for testability, execution tracing, performance-monitoring, and machine check errors. 
Chapter 2, “Model-Specific Registers (MSRs)” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 4, lists all the MSRs that can be read with this instruction and their addresses. Note that each 
processor family has its own set of MSRs.

The CPUID instruction should be used to determine whether MSRs are supported (CPUID.01H:EDX[5] = 1) before 
using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the RDMSR instruction were introduced into the IA-32 Architecture with 
the Pentium processor. Execution of this instruction by an IA-32 processor earlier than the Pentium processor 
results in an invalid opcode exception #UD.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 26 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Operation

EDX:EAX := MSR[ECX];

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR address.
#UD If the LOCK prefix is used.

Opcode1

NOTES:
1. See the IA-32 Architecture Compatibility section below.

Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 32 RDMSR ZO Valid Valid Read MSR specified by ECX into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Real-Address Mode Exceptions
#GP If the value in ECX specifies a reserved or unimplemented MSR address.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0)  The RDMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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RDMSRLIST—Read List of Model Specific Registers

Instruction Operand Encoding

Description

This instruction reads a software-provided list of up to 64 MSRs and stores their values in memory.
RDMSRLIST takes three implied input operands:
• RSI: Linear address of a table of MSR addresses (8 bytes per address)1.
• RDI: Linear address of a table into which MSR data is stored (8 bytes per MSR).
• RCX: 64-bit bitmask of valid bits for the MSRs. Bit 0 is the valid bit for entry 0 in each table, etc.
For each RCX bit [n] from 0 to 63, if RCX[n] is 1, RDMSRLIST will read the MSR specified at entry [n] in the RSI-
based table and write it out to memory at the entry [n] in the RDI-based table.
This implies a maximum of 64 MSRs that can be processed by this instruction. The processor will clear RCX[n] after 
it finishes handling that MSR. Similar to repeated string operations, RDMSRLIST supports partial completion for 
interrupts, exceptions, and traps. In these situations, the RIP register saved will point to the RDMSRLIST instruc-
tion while the RCX register will have cleared bits corresponding to all completed iterations.
This instruction must be executed at privilege level 0; otherwise, a general protection exception #GP(0) is gener-
ated. This instruction performs MSR-specific checks in the same manner as RDMSR. 
Although RDMSRLIST accesses the entries in the two tables in order, the actual reads of the MSRs may be 
performed out of order: for table entries m < n, the processor may read the MSR for entry n before reading the 
MSR for entry m. (This may be true also for a sequence of executions of RDMSR.) Ordering is guaranteed if the 
address of the IA32_BARRIER MSR (2FH) appears in the table of MSR addresses. Specifically, if IA32_BARRIER 
appears at entry m, then the MSR read for any entry n with n > m will not occur until (1) all instructions prior to 
RDMSRLIST have completed locally; and (2) MSRs have been read for all table entries before entry m.
The processor is allowed (but not required) to “load ahead” in the list. For example, it may cause a page fault for 
an access to a table entry after the nth, despite the processor having read only n MSRs.2

Operation
DO WHILE RCX != 0

MSR_index := position of least significant bit set in RCX;
Load MSR_address_table_entry from 8 bytes at the linear address RSI + (MSR_index * 8);
IF MSR_address_table_entry[63:32] != 0 THEN #GP(0); FI;
MSR_address := MSR_address_table_entry[31:0];
IF RDMSR of the MSR with address MSR_address would #GP THEN #GP(0); FI;
Store the value of the MSR with address MSR_address into 8 bytes at the linear address RDI + (MSR_index * 8);
RCX[MSR_index] := 0;
Allow delivery of any pending interrupts or traps;

OD;

Opcode /
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature Flag Description

F2 0F 01 C6

RDMSRLIST

ZO V/N.E. MSRLIST Read the requested list of MSRs, and store 
the read values to memory.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

1. Since MSR addresses are only 32-bits wide, bits 63:32 of each MSR address table entry is reserved.

2. For example, the processor may take a page fault due to a linear address for the 10th entry in the MSR address table despite only 
having completed the MSR reads up to entry 5.
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Flags Affected

None.

Protected Mode Exceptions
#UD The RDMSRLIST instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The RDMSRLIST instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD  The RDMSRLIST instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD  The RDMSRLIST instruction is not recognized in compatibility mode.
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64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If RSI [2:0] ≠ 0, RDI [2:0] ≠ 0, or bits 63:32 of an MSR-address table entry are not all zero.
If an execution of RDMSR from a specified MSR would generate a general protection exception 
#GP(0).

#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=01H):EAX.MSRLIST[bit 27] = 0.
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RDPID—Read Processor ID Vol. 2B 4-547

RDPID—Read Processor ID

Instruction Operand Encoding1

Description

Reads the value of the IA32_TSC_AUX MSR (address C0000103H) into the destination register. The value of CS.D 
and operand-size prefixes (66H and REX.W) do not affect the behavior of the RDPID instruction.

Operation

DEST := IA32_TSC_AUX 

Flags Affected

None.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.7H.0:ECX.RDPID[bit 22] = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode/
Instruction

Op/ 
En

64/32-
bit 
Mode

CPUID
Feature Flag

Description

F3 0F C7 /7
RDPID r32

R N.E./V RDPID Read IA32_TSC_AUX into r32.

F3 0F C7 /7
RDPID r64

R V/N.E. RDPID Read IA32_TSC_AUX into r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

R ModRM:r/m (w) N/A N/A N/A

1.ModRM.MOD = 011B required



RDPKRU—Read Protection Key Rights for User Pages

Instruction Operand Encoding

Description

Reads the value of PKRU into EAX and clears EDX. ECX must be 0 when RDPKRU is executed; otherwise, a general-
protection exception (#GP) occurs.

RDPKRU can be executed only if CR4.PKE = 1; otherwise, an invalid-opcode exception (#UD) occurs. Software can 
discover the value of CR4.PKE by examining CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4].

On processors that support the Intel 64 Architecture, the high-order 32-bits of RCX are ignored and the high-order 
32-bits of RDX and RAX are cleared.

Operation

IF (ECX = 0) 
THEN

EAX := PKRU;
EDX := 0;

ELSE #GP(0); 
FI;

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

RDPKRU uint32_t _rdpkru_u32(void);

Protected Mode Exceptions
#GP(0) If ECX ≠ 0. 
#UD If the LOCK prefix is used.

If CR4.PKE = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Opcode* Instruction Op/ 
En

64/32bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 01 EE RDPKRU ZO V/V OSPKE Reads PKRU into EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
RDPKRU—Read Protection Key Rights for User Pages Vol. 2B 4-548



64-Bit Mode Exceptions
Same exceptions as in protected mode.
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RDPMC—Read Performance-Monitoring Counters

Instruction Operand Encoding

Description

Reads the contents of the performance monitoring counter (PMC) specified in ECX register into registers EDX:EAX. 
(On processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The EDX register 
is loaded with the high-order 32 bits of the PMC and the EAX register is loaded with the low-order 32 bits. (On 
processors that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are cleared.) If 
fewer than 64 bits are implemented in the PMC being read, unimplemented bits returned to EDX:EAX will have 
value zero. 

The width of PMCs on processors supporting architectural performance monitoring (CPUID.0AH:EAX[7:0] ≠ 0) are 
reported by CPUID.0AH:EAX[23:16]. On processors that do not support architectural performance monitoring 
(CPUID.0AH:EAX[7:0]=0), the width of general-purpose performance PMCs is 40 bits, while the widths of special-
purpose PMCs are implementation specific.

Use of ECX to specify a PMC depends on whether the processor supports architectural performance monitoring:
• If the processor does not support architectural performance monitoring (CPUID.0AH:EAX[7:0]=0), ECX[30:0] 

specifies the index of the PMC to be read. Setting ECX[31] selects “fast” read mode if supported. In this mode, 
RDPMC returns bits 31:0 of the PMC in EAX while clearing EDX to zero.

• If the processor does support architectural performance monitoring (CPUID.0AH:EAX[7:0] ≠ 0), ECX[31:16] 
specifies type of PMC while ECX[15:0] specifies the index of the PMC to be read within that type. The following 
PMC types are currently defined:

— General-purpose counters use type 0. To read IA32_PMCx, one of the following must hold for the index x:

• It is less than the value enumerated by CPUID.0AH.EAX[15:8]; or

• It is at most 31 and the value enumerated by CPUID.(EAX=23H,ECX=1):EAX[bit x] is 1.

— Fixed-function counters use type 4000H. To read IA32_FIXED_CTRx, one of the following must hold for the 
index x:

• It is less than the value enumerated by CPUID.0AH:EDX[4:0];

• It is at most 31 and the value enumerated by CPUID.0AH:ECX[bit x] is 1; or

• It is at most 31 and the value enumerated by CPUID.(EAX=23H,ECX=1):EBX[bit x] is 1.

— Performance metrics use type 2000H. This type can be used only if IA32_PERF_CAPABILITIES.PERF_MET-
RICS_AVAILABLE[bit 15]=1. For this type, the index in ECX[15:0] is implementation specific.

Specifying an unsupported PMC encoding will cause a general protection exception #GP(0). For PMC details see 
Chapter 21, “Performance Monitoring,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B.

When in protected or virtual 8086 mode, the Performance-monitoring Counters Enabled (PCE) flag in register 
CR4 restricts the use of the RDPMC instruction. When the PCE flag is set, the RDPMC instruction can be executed 
at any privilege level; when the flag is clear, the instruction can only be executed at privilege level 0. (When in real-
address mode, the RDPMC instruction is always enabled.) The PMCs can also be read with the RDMSR instruction, 
when executing at privilege level 0.

Processors that support performance metrics may also support clearing them on read if the 
IA32_PERF_CAPABILITIES.RDPMC_METRICS_CLEAR[bit 19] is set. Since the IA32_PERF_CAPABILITIES MSR 

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 33 RDPMC ZO Valid Valid Read performance-monitoring counter 
specified by ECX into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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enumerates non-architectural PMU features, software should check DisplayFamily and DisplayModel to confirm 
that the processor supports the functionality described in the next paragraph.

When the IA32_FIXED_CTR_CTRL.METRICS_CLEAR_EN[bit 14] is set, an RDPMC instruction for PERF_METRICS 
(that is, when ECX=0x2000'0000) clears PERF_METRICS-related resources as well as fixed-function performance 
monitoring counter 3 after the read is performed. When METRICS_CLEAR_EN is clear, the RDPMC instruction only 
reads PERF_METRICS.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that all the events caused by the 
preceding instructions have been completed or that events caused by subsequent instructions have not begun. If 
an exact event count is desired, software must insert a serializing instruction (such as the CPUID instruction) 
before and/or after the RDPMC instruction.

Performing back-to-back fast reads are not guaranteed to be monotonic. To guarantee monotonicity on back-to-
back reads, a serializing instruction must be placed between the two RDPMC instructions.

The RDPMC instruction can execute in 16-bit addressing mode or virtual-8086 mode; however, the full contents of 
the ECX register are used to select the PMC, and the event count is stored in the full EAX and EDX registers. The 
RDPMC instruction was introduced into the IA-32 Architecture in the Pentium Pro processor and the Pentium 
processor with MMX technology. The earlier Pentium processors have PMCs, but they must be read with the RDMSR 
instruction.

Operation

MSCB = Most Significant Counter Bit (* Model-specific *)
IF (((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0)) and (ECX indicates a supported counter))

THEN
EAX := counter[31:0];
EDX := ZeroExtend(counter[MSCB:32]); 

ELSE (* ECX is not valid or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0); 

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If an invalid performance counter index is specified.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified.
#UD If the LOCK prefix is used.
RDPMC—Read Performance-Monitoring Counters Vol. 2B 4-552



RDRAND—Read Random Number

Instruction Operand Encoding

Description

Loads a hardware generated random value and store it in the destination register. The size of the random value is 
determined by the destination register size and operating mode. The Carry Flag indicates whether a random value 
is available at the time the instruction is executed. CF=1 indicates that the data in the destination is valid. Other-
wise CF=0 and the data in the destination operand will be returned as zeros for the specified width. All other flags 
are forced to 0 in either situation. Software must check the state of CF=1 for determining if a valid random value 
has been returned, otherwise it is expected to loop and retry execution of RDRAND (see Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, Section 7.3.17, “Random Number Generator Instructions”).
This instruction is available at all privilege levels.
In 64-bit mode, the instruction's default operand size is 32 bits. Using a REX prefix in the form of REX.B permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bit oper-
ands. See the summary chart at the beginning of this section for encoding data and limits.

Operation

IF HW_RND_GEN.ready = 1
THEN 

CASE of
operand size is 64: DEST[63:0] := HW_RND_GEN.data;
operand size is 32: DEST[31:0] := HW_RND_GEN.data;
operand size is 16: DEST[15:0] := HW_RND_GEN.data;

ESAC
CF := 1;

ELSE
CASE of

operand size is 64: DEST[63:0] := 0;
operand size is 32: DEST[31:0] := 0;
operand size is 16: DEST[15:0] := 0;

ESAC
CF := 0;

FI
OF, SF, ZF, AF, PF := 0;

Flags Affected

The CF flag is set according to the result (see the “Operation” section above). The OF, SF, ZF, AF, and PF flags are 
set to 0.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NFx 0F C7 /6

RDRAND r16

M V/V RDRAND Read a 16-bit random number and store in the destination 
register.

NFx 0F C7 /6

RDRAND r32

M V/V RDRAND Read a 32-bit random number and store in the destination 
register.

NFx REX.W + 0F C7 /6

RDRAND r64

M V/I RDRAND Read a 64-bit random number and store in the destination 
register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A
RDRAND—Read Random Number Vol. 2B 4-553



Intel C/C++ Compiler Intrinsic Equivalent

RDRAND int _rdrand16_step( unsigned short * );
RDRAND int _rdrand32_step( unsigned int * );
RDRAND int _rdrand64_step( unsigned __int64 *);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.01H:ECX.RDRAND[bit 30] = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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RDSEED—Read Random SEED

Instruction Operand Encoding

Description

Loads a hardware generated random value and store it in the destination register. The random value is generated 
from an Enhanced NRBG (Non Deterministic Random Bit Generator) that is compliant to NIST SP800-90B and NIST 
SP800-90C in the XOR construction mode. The size of the random value is determined by the destination register 
size and operating mode. The Carry Flag indicates whether a random value is available at the time the instruction 
is executed. CF=1 indicates that the data in the destination is valid. Otherwise CF=0 and the data in the destination 
operand will be returned as zeros for the specified width. All other flags are forced to 0 in either situation. Software 
must check the state of CF=1 for determining if a valid random seed value has been returned, otherwise it is 
expected to loop and retry execution of RDSEED (see Section 1.2).
The RDSEED instruction is available at all privilege levels. The RDSEED instruction executes normally either inside 
or outside a transaction region.
In 64-bit mode, the instruction's default operand size is 32 bits. Using a REX prefix in the form of REX.B permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bit oper-
ands. See the summary chart at the beginning of this section for encoding data and limits.

Operation

IF HW_NRND_GEN.ready = 1
THEN 

CASE of
operand size is 64: DEST[63:0] := HW_NRND_GEN.data;
operand size is 32: DEST[31:0] := HW_NRND_GEN.data;
operand size is 16: DEST[15:0] := HW_NRND_GEN.data;

ESAC;
CF := 1;

ELSE
CASE of

operand size is 64: DEST[63:0] := 0;
operand size is 32: DEST[31:0] := 0;
operand size is 16: DEST[15:0] := 0;

ESAC;
CF := 0;

FI;

OF, SF, ZF, AF, PF := 0;

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

NFx 0F C7 /7
RDSEED r16

M V/V RDSEED Read a 16-bit NIST SP800-90B & C compliant random value and 
store in the destination register.

NFx 0F C7 /7
RDSEED r32

M V/V RDSEED Read a 32-bit NIST SP800-90B & C compliant random value and 
store in the destination register.

NFx REX.W + 0F C7 /7
RDSEED r64

M V/I RDSEED Read a 64-bit NIST SP800-90B & C compliant random value and 
store in the destination register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A
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Flags Affected

The CF flag is set according to the result (see the “Operation” section above). The OF, SF, ZF, AF, and PF flags are 
set to 0.

C/C++ Compiler Intrinsic Equivalent

RDSEED int _rdseed16_step( unsigned short * );
RDSEED int _rdseed32_step( unsigned int * );
RDSEED int _rdseed64_step( unsigned __int64 *);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 0.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 0.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 0.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 0.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 0.
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RDSSPD/RDSSPQ—Read Shadow Stack Pointer Vol. 2B 4-557

RDSSPD/RDSSPQ—Read Shadow Stack Pointer

Instruction Operand Encoding

Description

Copies the current shadow stack pointer (SSP) register to the register destination. This opcode is a NOP when CET 
shadow stacks are not enabled and on processors that do not support CET.

Operation

IF CPL = 3
IF CR4.CET & IA32_U_CET.SH_STK_EN

IF (operand size is 64 bit)
THEN

Dest := SSP;
ELSE

Dest := SSP[31:0];
FI;

FI;
ELSE

IF CR4.CET & IA32_S_CET.SH_STK_EN
IF (operand size is 64 bit)

THEN
Dest := SSP;

ELSE
Dest := SSP[31:0];

FI;
FI;

FI;

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

RDSSPD__int32 _rdsspd_i32(void);
RDSSPQ__int64 _rdsspq_i64(void);

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F3 0F 1E /1 (mod=11)
RDSSPD r32

R V/V CET_SS Copy low 32 bits of shadow stack pointer (SSP) to r32.

F3 REX.W 0F 1E /1 (mod=11)
RDSSPQ r64

R V/N.E. CET_SS Copies shadow stack pointer (SSP) to r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

R ModRM:r/m (w) N/A N/A N/A



RDTSCP—Read Time-Stamp Counter and Processor ID

Instruction Operand Encoding

Description

Reads the current value of the processor’s time-stamp counter (a 64-bit MSR) into the EDX:EAX registers and also 
reads the value of the IA32_TSC_AUX MSR (address C0000103H) into the ECX register. The EDX register is loaded 
with the high-order 32 bits of the IA32_TSC MSR; the EAX register is loaded with the low-order 32 bits of the 
IA32_TSC MSR; and the ECX register is loaded with the low-order 32-bits of IA32_TSC_AUX MSR. On processors 
that support the Intel 64 architecture, the high-order 32 bits of each of RAX, RDX, and RCX are cleared.

The processor monotonically increments the time-stamp counter MSR every clock cycle and resets it to 0 whenever 
the processor is reset. See “Time Stamp Counter” in Chapter 19 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3B, for specific details of the time stamp counter behavior.

The time stamp disable (TSD) flag in register CR4 restricts the use of the RDTSCP instruction as follows. When the 
flag is clear, the RDTSCP instruction can be executed at any privilege level; when the flag is set, the instruction can 
only be executed at privilege level 0.

The RDTSCP instruction is not a serializing instruction, but it does wait until all previous instructions have executed 
and all previous loads are globally visible.1 But it does not wait for previous stores to be globally visible, and subse-
quent instructions may begin execution before the read operation is performed. The following items may guide 
software seeking to order executions of RDTSCP:
• If software requires RDTSCP to be executed only after all previous stores are globally visible, it can execute 

MFENCE immediately before RDTSCP.
• If software requires RDTSCP to be executed prior to execution of any subsequent instruction (including any 

memory accesses), it can execute LFENCE immediately after RDTSCP.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 26 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0) 
THEN 

EDX:EAX := TimeStampCounter;
ECX := IA32_TSC_AUX[31:0];

ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)
#GP(0);

FI;

Flags Affected

None.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 F9 RDTSCP ZO Valid Valid Read 64-bit time-stamp counter and 
IA32_TSC_AUX value into EDX:EAX and ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

1. A load is considered to become globally visible when the value to be loaded is determined.
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Protected Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 0.
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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RDTSC—Read Time-Stamp Counter

Instruction Operand Encoding

Description

Reads the current value of the processor’s time-stamp counter (a 64-bit MSR) into the EDX:EAX registers. The EDX 
register is loaded with the high-order 32 bits of the MSR and the EAX register is loaded with the low-order 32 bits. 
(On processors that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are cleared.)

The processor monotonically increments the time-stamp counter MSR every clock cycle and resets it to 0 whenever 
the processor is reset. See “Time Stamp Counter” in Chapter 19 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3B, for specific details of the time stamp counter behavior.

The time stamp disable (TSD) flag in register CR4 restricts the use of the RDTSC instruction as follows. When the 
flag is clear, the RDTSC instruction can be executed at any privilege level; when the flag is set, the instruction can 
only be executed at privilege level 0.

The time-stamp counter can also be read with the RDMSR instruction, when executing at privilege level 0.

The RDTSC instruction is not a serializing instruction. It does not necessarily wait until all previous instructions 
have been executed before reading the counter. Similarly, subsequent instructions may begin execution before the 
read operation is performed. The following items may guide software seeking to order executions of RDTSC:
• If software requires RDTSC to be executed only after all previous instructions have executed and all previous 

loads are globally visible,1 it can execute LFENCE immediately before RDTSC.
• If software requires RDTSC to be executed only after all previous instructions have executed and all previous 

loads and stores are globally visible, it can execute the sequence MFENCE;LFENCE immediately before RDTSC.
• If software requires RDTSC to be executed prior to execution of any subsequent instruction (including any 

memory accesses), it can execute the sequence LFENCE immediately after RDTSC.

This instruction was introduced by the Pentium processor.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 26 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0) 
THEN EDX:EAX := TimeStampCounter;
ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)

#GP(0);
FI;

Flags Affected

None.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 31 RDTSC ZO Valid Valid Read time-stamp counter into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

1. A load is considered to become globally visible when the value to be loaded is determined.
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Protected Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix
Opcode Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

F3 6C REP INS m8, DX ZO Valid Valid Input (E)CX bytes from port DX into ES:[(E)DI].

F3 6C REP INS m8, DX ZO Valid N.E. Input RCX bytes from port DX into [RDI].

F3 6D REP INS m16, DX ZO Valid Valid Input (E)CX words from port DX into ES:[(E)DI.]

F3 6D REP INS m32, DX ZO Valid Valid Input (E)CX doublewords from port DX into 
ES:[(E)DI].

F3 6D REP INS r/m32, DX ZO Valid N.E. Input RCX default size from port DX into [RDI].

F3 A4 REP MOVS m8, m8 ZO Valid Valid Move (E)CX bytes from DS:[(E)SI] to ES:[(E)DI].

F3 REX.W A4 REP MOVS m8, m8 ZO Valid N.E. Move RCX bytes from [RSI] to [RDI].

F3 A5 REP MOVS m16, m16 ZO Valid Valid Move (E)CX words from DS:[(E)SI] to ES:[(E)DI].

F3 A5 REP MOVS m32, m32 ZO Valid Valid Move (E)CX doublewords from DS:[(E)SI] to 
ES:[(E)DI].

F3 REX.W A5 REP MOVS m64, m64 ZO Valid N.E. Move RCX quadwords from [RSI] to [RDI].

F3 6E REP OUTS DX, r/m8 ZO Valid Valid Output (E)CX bytes from DS:[(E)SI] to port DX.

F3 REX 6E REP OUTS DX, r/m81 ZO Valid N.E. Output (E)CX bytes from DS:[(E)SI] to port DX.

F3 REX.W 6E REP OUTS DX, r/m81 ZO Valid N.E. Output RCX bytes from [RSI] to port DX.

F3 6F REP OUTS DX, r/m16 ZO Valid Valid Output (E)CX words from DS:[(E)SI] to port DX.

F3 6F REP OUTS DX, r/m32 ZO Valid Valid Output (E)CX doublewords from DS:[(E)SI] to 
port DX.

F3 REX.W 6F REP OUTS DX, r/m32 ZO Valid N.E. Output RCX default size from [RSI] to port DX.

F3 AC REP LODS AL ZO Valid Valid Load (E)CX bytes from DS:[(E)SI] to AL.

F3 REX.W AC REP LODS AL ZO Valid N.E. Load RCX bytes from [RSI] to AL.

F3 AD REP LODS AX ZO Valid Valid Load (E)CX words from DS:[(E)SI] to AX.

F3 AD REP LODS EAX ZO Valid Valid Load (E)CX doublewords from DS:[(E)SI] to 
EAX.

F3 REX.W AD REP LODS RAX ZO Valid N.E. Load RCX quadwords from [RSI] to RAX.

F3 AA REP STOS m8 ZO Valid Valid Fill (E)CX bytes at ES:[(E)DI] with AL.

F3 REX.W AA REP STOS m8 ZO Valid N.E. Fill RCX bytes at [RDI] with AL.

F3 AB REP STOS m16 ZO Valid Valid Fill (E)CX words at ES:[(E)DI] with AX.

F3 AB REP STOS m32 ZO Valid Valid Fill (E)CX doublewords at ES:[(E)DI] with EAX.

F3 REX.W AB REP STOS m64 ZO Valid N.E. Fill RCX quadwords at [RDI] with RAX.

F3 A6 REPE CMPS m8, m8 ZO Valid Valid Find nonmatching bytes in ES:[(E)DI] and 
DS:[(E)SI].

F3 REX.W A6 REPE CMPS m8, m8 ZO Valid N.E. Find non-matching bytes in [RDI] and [RSI].

F3 A7 REPE CMPS m16, m16 ZO Valid Valid Find nonmatching words in ES:[(E)DI] and 
DS:[(E)SI].

F3 A7 REPE CMPS m32, m32 ZO Valid Valid Find nonmatching doublewords in ES:[(E)DI] 
and DS:[(E)SI].

F3 REX.W A7 REPE CMPS m64, m64 ZO Valid N.E. Find non-matching quadwords in [RDI] and 
[RSI].

F3 AE REPE SCAS m8 ZO Valid Valid Find non-AL byte starting at ES:[(E)DI].

F3 REX.W AE REPE SCAS m8 ZO Valid N.E. Find non-AL byte starting at [RDI].

F3 AF REPE SCAS m16 ZO Valid Valid Find non-AX word starting at ES:[(E)DI].
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Instruction Operand Encoding

Description

Repeats a string instruction the number of times specified in the count register or until the indicated condition of 
the ZF flag is no longer met. The REP (repeat), REPE (repeat while equal), REPNE (repeat while not equal), REPZ 
(repeat while zero), and REPNZ (repeat while not zero) mnemonics are prefixes that can be added to one of the 
string instructions. The REP prefix can be added to the INS, OUTS, MOVS, LODS, and STOS instructions, and the 
REPE, REPNE, REPZ, and REPNZ prefixes can be added to the CMPS and SCAS instructions. (The REPZ and REPNZ 
prefixes are synonymous forms of the REPE and REPNE prefixes, respectively.) The F3H prefix is defined for the 
following instructions and undefined for the rest:

• F3H as REP/REPE/REPZ for string and input/output instruction.

• F3H is a mandatory prefix for POPCNT, LZCNT, and ADOX.

The REP prefixes apply only to one string instruction at a time. To repeat a block of instructions, use the LOOP 
instruction or another looping construct. All of these repeat prefixes cause the associated instruction to be 
repeated until the count in register is decremented to 0. See Table 1-17.

F3 AF REPE SCAS m32 ZO Valid Valid Find non-EAX doubleword starting at 
ES:[(E)DI].

F3 REX.W AF REPE SCAS m64 ZO Valid N.E. Find non-RAX quadword starting at [RDI].

F2 A6 REPNE CMPS m8, m8 ZO Valid Valid Find matching bytes in ES:[(E)DI] and DS:[(E)SI].

F2 REX.W A6 REPNE CMPS m8, m8 ZO Valid N.E. Find matching bytes in [RDI] and [RSI].

F2 A7 REPNE CMPS m16, m16 ZO Valid Valid Find matching words in ES:[(E)DI] and 
DS:[(E)SI].

F2 A7 REPNE CMPS m32, m32 ZO Valid Valid Find matching doublewords in ES:[(E)DI] and 
DS:[(E)SI].

F2 REX.W A7 REPNE CMPS m64, m64 ZO Valid N.E. Find matching doublewords in [RDI] and [RSI].

F2 AE REPNE SCAS m8 ZO Valid Valid Find AL, starting at ES:[(E)DI].

F2 REX.W AE REPNE SCAS m8 ZO Valid N.E. Find AL, starting at [RDI].

F2 AF REPNE SCAS m16 ZO Valid Valid Find AX, starting at ES:[(E)DI].

F2 AF REPNE SCAS m32 ZO Valid Valid Find EAX, starting at ES:[(E)DI].

F2 REX.W AF REPNE SCAS m64 ZO Valid N.E. Find RAX, starting at [RDI].

NOTES:
1. In 64-bit mode, r/m8 cannot be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

Table 1-17.  Repeat Prefixes

Repeat Prefix Termination Condition 1* Termination Condition 2

REP RCX or (E)CX = 0 None

REPE/REPZ RCX or (E)CX = 0 ZF = 0

REPNE/REPNZ RCX or (E)CX = 0 ZF = 1

NOTES:
* Count register is CX, ECX or RCX by default, depending on attributes of the operating modes.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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The REPE, REPNE, REPZ, and REPNZ prefixes also check the state of the ZF flag after each iteration and terminate 
the repeat loop if the ZF flag is not in the specified state. When both termination conditions are tested, the cause 
of a repeat termination can be determined either by testing the count register with a JECXZ instruction or by 
testing the ZF flag (with a JZ, JNZ, or JNE instruction).

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not require initialization because both 
the CMPS and SCAS instructions affect the ZF flag according to the results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When this happens, the state of the 
registers is preserved to allow the string operation to be resumed upon a return from the exception or interrupt 
handler. The source and destination registers point to the next string elements to be operated on, the EIP register 
points to the string instruction, and the ECX register has the value it held following the last successful iteration of 
the instruction. This mechanism allows long string operations to proceed without affecting the interrupt response 
time of the system.

When a fault occurs during the execution of a CMPS or SCAS instruction that is prefixed with REPE or REPNE, the 
EFLAGS value is restored to the state prior to the execution of the instruction. Since the SCAS and CMPS instruc-
tions do not use EFLAGS as an input, the processor can resume the instruction after the page fault handler.

Use the REP INS and REP OUTS instructions with caution. Not all I/O ports can handle the rate at which these 
instructions execute. Note that a REP STOS instruction is the fastest way to initialize a large block of memory.

In 64-bit mode, the operand size of the count register is associated with the address size attribute. Thus the default 
count register is RCX; REX.W has no effect on the address size and the count register. In 64-bit mode, if 67H is 
used to override address size attribute, the count register is ECX and any implicit source/destination operand will 
use the corresponding 32-bit index register. See the summary chart at the beginning of this section for encoding 
data and limits.

REP INS may read from the I/O port without writing to the memory location if an exception or VM exit occurs due 
to the write (e.g., #PF). If this would be problematic, for example because the I/O port read has side-effects, soft-
ware should ensure the write to the memory location does not cause an exception or VM exit.

Operation

IF AddressSize = 16
    THEN
        Use CX for CountReg;
        Implicit Source/Dest operand for memory use of SI/DI;
    ELSE IF AddressSize = 64
        THEN Use RCX for CountReg; 
        Implicit Source/Dest operand for memory use of RSI/RDI;
    ELSE
        Use ECX for CountReg;
        Implicit Source/Dest operand for memory use of ESI/EDI;
FI;
WHILE CountReg ≠ 0

DO
Service pending interrupts (if any);
Execute associated string instruction;
CountReg := (CountReg – 1);
IF CountReg = 0

THEN exit WHILE loop; FI;
IF (Repeat prefix is REPZ or REPE) and (ZF = 0)
or (Repeat prefix is REPNZ or REPNE) and (ZF = 1)

THEN exit WHILE loop; FI;
OD;

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the EFLAGS register.
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Exceptions (All Operating Modes)

Exceptions may be generated by an instruction associated with the prefix.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
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RET—Return From Procedure

Instruction Operand Encoding

Description

Transfers program control to a return address located on the top of the stack. The address is usually placed on the 
stack by a CALL instruction, and the return is made to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the return address is popped; 
the default is none. This operand can be used to release parameters from the stack that were passed to the called 
procedure and are no longer needed. It must be used when the CALL instruction used to switch to a new procedure 
uses a call gate with a non-zero word count to access the new procedure. Here, the source operand for the RET 
instruction must specify the same number of bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:
• Near return — A return to a calling procedure within the current code segment (the segment currently pointed 

to by the CS register), sometimes referred to as an intrasegment return.
• Far return — A return to a calling procedure located in a different segment than the current code segment, 

sometimes referred to as an intersegment return.
• Inter-privilege-level far return — A far return to a different privilege level than that of the currently 

executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode. See the section titled “Calling Proce-
dures Using Call and RET” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, for detailed information on near, far, and inter-privilege-level returns.

When executing a near return, the processor pops the return instruction pointer (offset) from the top of the stack 
into the EIP register and begins program execution at the new instruction pointer. The CS register is unchanged. 

When executing a far return, the processor pops the return instruction pointer from the top of the stack into the EIP 
register, then pops the segment selector from the top of the stack into the CS register. The processor then begins 
program execution in the new code segment at the new instruction pointer.

The mechanics of an inter-privilege-level far return are similar to an intersegment return, except that the 
processor examines the privilege levels and access rights of the code and stack segments being returned to deter-
mine if the control transfer is allowed to be made. The DS, ES, FS, and GS segment registers are cleared by the RET 
instruction during an inter-privilege-level return if they refer to segments that are not allowed to be accessed at the 
new privilege level. Since a stack switch also occurs on an inter-privilege level return, the ESP and SS registers are 
loaded from the stack. 

If parameters are passed to the called procedure during an inter-privilege level call, the optional source operand 
must be used with the RET instruction to release the parameters on the return. Here, the parameters are released 
both from the called procedure’s stack and the calling procedure’s stack (that is, the stack being returned to).

In 64-bit mode, the default operation size of this instruction is the stack-address size, i.e., 64 bits. This applies to 
near returns, not far returns; the default operation size of far returns is 32 bits.

Opcode* Instruction Op/
En

64-Bit 
Mode

Compat/
Leg Mode

Description

C3 RET ZO Valid Valid Near return to calling procedure.

CB RET ZO Valid Valid Far return to calling procedure.

C2 iw RET imm16 I Valid Valid Near return to calling procedure and pop 
imm16 bytes from stack.

CA iw RET imm16 I Valid Valid Far return to calling procedure and pop imm16 
bytes from stack.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

I imm16 N/A N/A N/A
RET—Return From Procedure Vol. 2B 4-566



Refer to Chapter 6, “Procedure Calls, Interrupts, and Exceptions‚” and Chapter 18, “Control-flow Enforcement 
Technology (CET)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for CET 
details.

Instruction ordering. Instructions following a far return may be fetched from memory before earlier instructions 
complete execution, but they will not execute (even speculatively) until all instructions prior to the far return have 
completed execution (the later instructions may execute before data stored by the earlier instructions have 
become globally visible).

Unlike near indirect CALL and near indirect JMP, the processor will not speculatively execute the next sequential 
instruction after a near RET unless that instruction is also the target of a jump or is a target in a branch predictor.

Operation

(* Near return *)
IF instruction = near return 

THEN;
IF OperandSize = 32

THEN
IF top 4 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP := Pop();
IF ShadowStackEnabled(CPL)

tempSsEIP = ShadowStackPop4B();
IF EIP != TempSsEIP

THEN #CP(NEAR_RET); FI;
FI;

ELSE
IF OperandSize = 64

THEN
IF top 8 bytes of stack not within stack limits

THEN #SS(0); FI;
RIP := Pop();
IF ShadowStackEnabled(CPL)

tempSsEIP = ShadowStackPop8B();
IF RIP != tempSsEIP

THEN #CP(NEAR_RET); FI;
FI;

ELSE (* OperandSize = 16 *)
IF top 2 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP := Pop();
tempEIP := tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP := tempEIP;
IF ShadowStackEnabled(CPL)

tempSsEip = ShadowStackPop4B();
IF EIP != tempSsEIP

THEN #CP(NEAR_RET); FI;
FI;

FI;
FI;

IF instruction has immediate operand
THEN (* Release parameters from stack *)

IF StackAddressSize = 32
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THEN 
ESP := ESP + SRC;

ELSE
IF StackAddressSize = 64

THEN 
RSP := RSP + SRC;

ELSE (* StackAddressSize = 16 *)
SP := SP + SRC;

FI;
FI;

FI;
FI;

(* Real-address mode or virtual-8086 mode *)
IF ((PE = 0) or (PE = 1 AND VM = 1)) and instruction = far return

THEN
IF OperandSize = 32

THEN
IF top 8 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP := Pop(); 
CS := Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE (* OperandSize = 16 *)
IF top 4 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP := Pop(); 
tempEIP := tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP := tempEIP;
CS := Pop(); (* 16-bit pop *)

FI;
IF instruction has immediate operand 

THEN (* Release parameters from stack *)
SP := SP + (SRC AND FFFFH);

FI;
FI;

(* Protected mode, not virtual-8086 mode *)
IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 0) and instruction = far return

THEN
IF OperandSize = 32

THEN 
IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)

IF second word on stack is not within stack limits
THEN #SS(0); FI;

FI;
IF return code segment selector is NULL

THEN #GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit 

THEN #GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
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IF return code segment descriptor is not a code segment
THEN #GP(selector); FI;

IF return code segment selector RPL < CPL
THEN #GP(selector); FI;

IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming and return code 
segment DPL ≠ return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL 

THEN GOTO RETURN-TO-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL;

FI;
FI; 

RETURN-TO-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit 

THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP := Pop();
CS := Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE (* OperandSize = 16 *)
EIP := Pop();
EIP := EIP AND 0000FFFFH;
CS := Pop(); (* 16-bit pop *)

FI;
IF instruction has immediate operand

THEN (* Release parameters from stack *)
IF StackAddressSize = 32

THEN 
ESP := ESP + SRC;

ELSE (* StackAddressSize = 16 *)
SP := SP + SRC;

FI;
FI;
IF ShadowStackEnabled(CPL)

(* SSP must be 8 byte aligned *)
IF SSP AND 0x7 != 0

THEN #CP(FAR-RET/IRET); FI;
tempSsCS = shadow_stack_load 8 bytes from SSP+16;
tempSsLIP = shadow_stack_load 8 bytes from SSP+8;
prevSSP = shadow_stack_load 8 bytes from SSP;
SSP = SSP + 24;
(* do a 64 bit-compare to check if any bits beyond bit 15 are set *)
tempCS = CS; (* zero pad to 64 bit *)
IF tempCS != tempSsCS

THEN #CP(FAR-RET/IRET); FI;
(* do a 64 bit-compare; pad CSBASE+RIP with 0 for 32 bit LIP*)
IF CSBASE + RIP != tempSsLIP

THEN #CP(FAR-RET/IRET); FI;
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(* prevSSP must be 4 byte aligned *)
IF prevSSP AND 0x3 != 0

THEN #CP(FAR-RET/IRET); FI;
(* In legacy mode SSP must be in low 4GB *)
IF prevSSP[63:32] != 0

THEN #GP(0); FI;
SSP := prevSSP

FI;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32) 
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;
Read return segment selector;
IF stack segment selector is NULL

THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present

THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP := Pop();
CS := Pop(); (* 32-bit pop, high-order 16 bits discarded; segment descriptor loaded *)
CS(RPL) := ReturnCodeSegmentSelector(RPL);
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN 
ESP := ESP + SRC;

ELSE (* StackAddressSize = 16 *)
SP := SP + SRC;

FI;
FI;
tempESP := Pop();
tempSS := Pop(); (* 32-bit pop, high-order 16 bits discarded; seg. descriptor loaded *)

ELSE (* OperandSize = 16 *)
EIP := Pop();
EIP := EIP AND 0000FFFFH;
CS := Pop(); (* 16-bit pop; segment descriptor loaded *)
CS(RPL) := ReturnCodeSegmentSelector(RPL);
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN 
ESP := ESP + SRC;

ELSE (* StackAddressSize = 16 *)
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SP := SP + SRC;
FI;

FI;
tempESP := Pop();
tempSS := Pop(); (* 16-bit pop; segment descriptor loaded *)

FI;
IF ShadowStackEnabled(CPL)

(* check if 8 byte aligned *)
IF SSP AND 0x7 != 0

THEN #CP(FAR-RET/IRET); FI;
IF ReturnCodeSegmentSelector(RPL) !=3

THEN
tempSsCS = shadow_stack_load 8 bytes from SSP+16;
tempSsLIP = shadow_stack_load 8 bytes from SSP+8;
tempSSP = shadow_stack_load 8 bytes from SSP;
SSP = SSP + 24;
(* Do 64 bit compare to detect bits beyond 15 being set *)
tempCS = CS; (* zero extended to 64 bit *)
IF tempCS != tempSsCS

THEN #CP(FAR-RET/IRET); FI;
(* Do 64 bit compare; pad CSBASE+RIP with 0 for 32 bit LA *)
IF CSBASE + RIP != tempSsLIP

THEN #CP(FAR-RET/IRET); FI;
(* check if 4 byte aligned *)
IF tempSSP AND 0x3 != 0

THEN #CP(FAR-RET/IRET); FI;
FI;

FI;
tempOldCPL = CPL;

CPL := ReturnCodeSegmentSelector(RPL);
ESP := tempESP;
SS := tempSS;
tempOldSSP = SSP;
IF ShadowStackEnabled(CPL)

IF CPL = 3
THEN tempSSP := IA32_PL3_SSP; FI;

IF tempSSP[63:32] != 0
THEN #GP(0); FI;

SSP := tempSSP
FI;
(* Now past all faulting points; safe to free the token. The token free is done using the old SSP
 * and using a supervisor override as old CPL was a supervisor privilege level *)
IF ShadowStackEnabled(tempOldCPL)

expected_token_value = tempOldSSP | BUSY_BIT (* busy bit - bit position 0 - must be set *)
new_token_value = tempOldSSP                      (* clear the busy bit *)
shadow_stack_lock_cmpxchg8b(tempOldSSP, new_token_value, expected_token_value)

FI;
FI;

FOR each SegReg in (ES, FS, GS, and DS)
DO

tempDesc := descriptor cache for SegReg (* hidden part of segment register *)
IF (SegmentSelector == NULL) OR (tempDesc(DPL) < CPL AND tempDesc(Type) is (data or non-conforming code)))
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THEN (* Segment register invalid *)
SegmentSelector := 0; (*Segment selector becomes null*)

FI;
OD;

IF instruction has immediate operand
THEN (* Release parameters from calling procedure’s stack *)

IF StackAddressSize = 32
THEN 

ESP := ESP + SRC;
ELSE (* StackAddressSize = 16 *)

SP := SP + SRC;
FI;

FI;

(* IA-32e Mode *)
IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 1) and instruction = far return

THEN
IF OperandSize = 32

THEN 
IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;
IF first or second doubleword on stack is not in canonical space

THEN #SS(0); FI;
ELSE 

IF OperandSize = 16
THEN

IF second word on stack is not within stack limits
THEN #SS(0); FI;

IF first or second word on stack is not in canonical space
THEN #SS(0); FI;

ELSE (* OperandSize = 64 *)
IF first or second quadword on stack is not in canonical space 

THEN #SS(0); FI;
FI

FI;
IF return code segment selector is NULL

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit 

THEN GP(selector); FI;
IF return code segment selector addresses descriptor in non-canonical space

THEN GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment 

THEN #GP(selector); FI;
IF return code segment descriptor has L-bit = 1 and D-bit = 1 

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL 

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming
and return code segment DPL ≠ return code segment selector RPL
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THEN #GP(selector); FI;
IF return code segment descriptor is not present 

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL 

THEN GOTO IA-32E-MODE-RETURN-TO-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO IA-32E-MODE-RETURN-TO-SAME-PRIVILEGE-LEVEL;

FI; 
FI;

IA-32E-MODE-RETURN-TO-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit 

THEN #GP(0); FI;
IF the return instruction pointer is not within canonical address space

THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP := Pop();
CS := Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE 
IF OperandSize = 16

THEN
EIP := Pop();
EIP := EIP AND 0000FFFFH;
CS := Pop(); (* 16-bit pop *)

ELSE (* OperandSize = 64 *)
RIP := Pop();
CS := Pop(); (* 64-bit pop, high-order 48 bits discarded *)

FI;
FI; 
IF instruction has immediate operand

THEN (* Release parameters from stack *)
IF StackAddressSize = 32

THEN 
ESP := ESP + SRC;

ELSE
IF StackAddressSize = 16

THEN
SP := SP + SRC;

ELSE (* StackAddressSize = 64 *)
RSP := RSP + SRC;

FI;
FI;

FI;
IF ShadowStackEnabled(CPL)

IF SSP AND 0x7 != 0 (* check if aligned to 8 bytes *)
THEN #CP(FAR-RET/IRET); FI;

tempSsCS = shadow_stack_load 8 bytes from SSP+16;
tempSsLIP = shadow_stack_load 8 bytes from SSP+8;
tempSSP = shadow_stack_load 8 bytes from SSP;
SSP = SSP + 24;
tempCS = CS; (* zero padded to 64 bit *)
IF tempCS != tempSsCS (* 64 bit compare; CS zero padded to 64 bits *)

THEN #CP(FAR-RET/IRET); FI;
IF CSBASE + RIP != tempSsLIP (* 64 bit compare *)
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THEN #CP(FAR-RET/IRET); FI;
IF tempSSP AND 0x3 != 0 (* check if aligned to 4 bytes *)

THEN #CP(FAR-RET/IRET); FI;
IF (CS.L = 0 AND tempSSP[63:32] != 0) OR

(CS.L = 1 AND tempSSP is not canonical relative to the current paging mode)
THEN #GP(0); FI;

SSP := tempSSP
FI;

IA-32E-MODE-RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32) 
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;
IF top (16 + SRC) bytes of stack are not in canonical address space (OperandSize =32) 
or top (8 + SRC) bytes of stack are not in canonical address space (OperandSize = 16)
or top (32 + SRC) bytes of stack are not in canonical address space (OperandSize = 64)

THEN #SS(0); FI;
Read return stack segment selector;
IF stack segment selector is NULL

THEN
IF new CS descriptor L-bit = 0 

THEN #GP(selector);
IF stack segment selector RPL = 3

THEN #GP(selector);
FI;
IF return stack segment descriptor is not within descriptor table limits

THEN #GP(selector); FI;
IF return stack segment descriptor is in non-canonical address space

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present 

THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit 

THEN #GP(0); FI:
IF the return instruction pointer is not within canonical address space 

THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP := Pop();
CS := Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor loaded *)
CS(RPL) := ReturnCodeSegmentSelector(RPL);
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN 
ESP := ESP + SRC;

ELSE
IF StackAddressSize = 16

THEN
SP := SP + SRC;
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ELSE (* StackAddressSize = 64 *)
RSP := RSP + SRC;

FI;
FI;

FI;
tempESP := Pop();
tempSS := Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor loaded *)

ELSE 
IF OperandSize = 16

THEN
EIP := Pop();
EIP := EIP AND 0000FFFFH;
CS := Pop(); (* 16-bit pop; segment descriptor loaded *)
CS(RPL) := ReturnCodeSegmentSelector(RPL);
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN 
ESP := ESP + SRC;

ELSE
IF StackAddressSize = 16

THEN
SP := SP + SRC;

ELSE (* StackAddressSize = 64 *)
RSP := RSP + SRC;

FI;
FI;

FI;
tempESP := Pop();
tempSS := Pop(); (* 16-bit pop; segment descriptor loaded *)

ELSE (* OperandSize = 64 *)
RIP := Pop();
CS := Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. descriptor loaded *)
CS(RPL) := ReturnCodeSegmentSelector(RPL);
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
RSP := RSP + SRC;

FI;
tempESP := Pop();
tempSS := Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. desc. loaded *)

FI;
FI;

IF ShadowStackEnabled(CPL)
(* check if 8 byte aligned *)
IF SSP AND 0x7 != 0

THEN #CP(FAR-RET/IRET); FI;
IF ReturnCodeSegmentSelector(RPL) !=3

THEN
tempSsCS = shadow_stack_load 8 bytes from SSP+16;
tempSsLIP = shadow_stack_load 8 bytes from SSP+8;
tempSSP = shadow_stack_load 8 bytes from SSP;
SSP = SSP + 24;
(* Do 64 bit compare to detect bits beyond 15 being set *)
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tempCS = CS; (* zero padded to 64 bit *)
IF tempCS != tempSsCS

THEN #CP(FAR-RET/IRET); FI;
(* Do 64 bit compare; pad CSBASE+RIP with 0 for 32 bit LIP *)
IF CSBASE + RIP != tempSsLIP

THEN #CP(FAR-RET/IRET); FI;
(* check if 4 byte aligned *)
IF tempSSP AND 0x3 != 0

THEN #CP(FAR-RET/IRET); FI;
FI;

FI;
tempOldCPL = CPL;
CPL := ReturnCodeSegmentSelector(RPL);
ESP := tempESP;
SS := tempSS;
tempOldSSP = SSP;
IF ShadowStackEnabled(CPL)

IF CPL = 3
THEN tempSSP := IA32_PL3_SSP; FI;

IF (CS.L = 0 AND tempSSP[63:32] != 0) OR
(CS.L = 1 AND tempSSP is not canonical relative to the current paging mode)

THEN #GP(0); FI;
SSP := tempSSP

FI;
(* Now past all faulting points; safe to free the token. The token free is done using the old SSP
* and using a supervisor override as old CPL was a supervisor privilege level *)
IF ShadowStackEnabled(tempOldCPL)

expected_token_value = tempOldSSP | BUSY_BIT  (* busy bit - bit position 0 - must be set *)
new_token_value = tempOldSSP                      (* clear the busy bit *)
shadow_stack_lock_cmpxchg8b(tempOldSSP, new_token_value, expected_token_value)

FI;

FOR each of segment register (ES, FS, GS, and DS)
DO

IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)

THEN SegmentSelector := 0; (* SegmentSelector invalid *)
FI;

OD;

IF instruction has immediate operand
THEN (* Release parameters from calling procedure’s stack *)

IF StackAddressSize = 32
THEN 

ESP := ESP + SRC;
ELSE

IF StackAddressSize = 16
THEN

SP := SP + SRC;
ELSE (* StackAddressSize = 64 *)

RSP := RSP + SRC;
FI;

FI;
FI;
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Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector is NULL.

If the return instruction pointer is not within the return code segment limit.
If returning to 32-bit or compatibility mode and the previous SSP from shadow stack (when 
returning to CPL <3) or from IA32_PL3_SSP (returning to CPL 3) is beyond 4GB.

#GP(selector) If the RPL of the return code segment selector is less then the CPL.
If the return code or stack segment selector index is not within its descriptor table limits.
If the return code segment descriptor does not indicate a code segment.
If the return code segment is non-conforming and the segment selector’s DPL is not equal to 
the RPL of the code segment’s segment selector
If the return code segment is conforming and the segment selector’s DPL greater than the RPL 
of the code segment’s segment selector
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment 
selector.

#SS(0) If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

#NP(selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when the CPL is 3 and alignment checking is enabled.
#CP(Far-RET/IRET) If the previous SSP from shadow stack (when returning to CPL <3) or from IA32_PL3_SSP 

(returning to CPL 3) is not 4 byte aligned.
If return instruction pointer from stack and shadow stack do not match.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code segment limit 
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code segment limit 
#SS(0) If the top bytes of stack are not within stack limits.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when alignment checking is enabled.

Compatibility Mode Exceptions
Same as 64-bit mode exceptions.
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64-Bit Mode Exceptions
#GP(0) If the return instruction pointer is non-canonical.

If the return instruction pointer is not within the return code segment limit.
If the stack segment selector is NULL going back to compatibility mode.
If the stack segment selector is NULL going back to CPL3 64-bit mode.
If a NULL stack segment selector RPL is not equal to CPL going back to non-CPL3 64-bit mode.
If the return code segment selector is NULL.
If returning to 32-bit or compatibility mode and the previous SSP from shadow stack (when 
returning to CPL <3) or from IA32_PL3_SSP (returning to CPL 3) is beyond 4GB.

#GP(selector) If the proposed segment descriptor for a code segment does not indicate it is a code segment. 
If the proposed new code segment descriptor has both the D-bit and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment 
selector.
If CPL is greater than the RPL of the code segment selector.
If the DPL of a conforming-code segment is greater than the return code segment selector 
RPL.
If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment 
selector.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector. 

#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical address to be referenced.

#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#CP(Far-RET/IRET) If the previous SSP from shadow stack (when returning to CPL <3) or from IA32_PL3_SSP 

(returning to CPL 3) is not 4 byte aligned.
If return instruction pointer from stack and shadow stack do not match.
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RORX — Rotate Right Logical Without Affecting Flags Vol. 2B 4-579

RORX — Rotate Right Logical Without Affecting Flags

Instruction Operand Encoding

Description 

Rotates the bits of second operand right by the count value specified in imm8 without affecting arithmetic flags. 
The RORX instruction does not read or write the arithmetic flags.
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

IF (OperandSize = 32)
y := imm8 AND 1FH;
DEST := (SRC >> y) | (SRC << (32-y));

ELSEIF (OperandSize = 64 ) 
y := imm8 AND 3FH;
DEST := (SRC >> y) | (SRC << (64-y));

FI;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

Auto-generated from high-level language.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-29, “Type 13 Class Exception Conditions.”

Opcode/
Instruction

Op/ 
En

64/32-
bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.LZ.F2.0F3A.W0 F0 /r ib
RORX r32, r/m32, imm8

RMI V/V BMI2 Rotate 32-bit r/m32 right imm8 times without affecting arithmetic 
flags.

VEX.LZ.F2.0F3A.W1 F0 /r ib
RORX r64, r/m64, imm8

RMI V/N.E. BMI2 Rotate 64-bit r/m64 right imm8 times without affecting arithmetic 
flags.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 N/A



ROUNDPD—Round Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the 2 double precision floating-point values in the source operand (second operand) using the rounding 
mode specified in the immediate operand (third operand) and place the results in the destination operand (first 
operand). The rounding process rounds each input floating-point value to an integer value and returns the integer 
result as a double precision floating-point value. 

The immediate operand specifies control fields for the rounding operation, three bit fields are defined and shown in 
Figure 1-24. Bit 3 of the immediate byte controls processor behavior for a precision exception, bit 2 selects the 
source of rounding mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 1-18 lists the encoded 
values for rounding-mode field). 

The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is an 
SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero before 
rounding.
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit memory location. The destina-
tion is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding YMM 
register destination are unmodified.
VEX.128 encoded version: the source operand second source operand or a 128-bit memory location. The destina-
tion operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 09 /r ib
ROUNDPD xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Round packed double precision floating-point 
values in xmm2/m128 and place the result in 
xmm1. The rounding mode is determined by 
imm8.

VEX.128.66.0F3A.WIG 09 /r ib
VROUNDPD xmm1, xmm2/m128, imm8

RMI V/V AVX Round packed double precision floating-point 
values in xmm2/m128 and place the result in 
xmm1. The rounding mode is determined by 
imm8.

VEX.256.66.0F3A.WIG 09 /r ib
VROUNDPD ymm1, ymm2/m256, imm8

RMI V/V AVX Round packed double precision floating-point 
values in ymm2/m256 and place the result in 
ymm1. The rounding mode is determined by 
imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 N/A
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Operation

IF (imm[2] = ‘1) 
THEN // rounding mode is determined by MXCSR.RC 

DEST[63:0] := ConvertDPFPToInteger_M(SRC[63:0]);
DEST[127:64] := ConvertDPFPToInteger_M(SRC[127:64]);

ELSE // rounding mode is determined by IMM8.RC
DEST[63:0] := ConvertDPFPToInteger_Imm(SRC[63:0]);
DEST[127:64] := ConvertDPFPToInteger_Imm(SRC[127:64]);

FI

ROUNDPD (128-bit Legacy SSE Version)
DEST[63:0] := RoundToInteger(SRC[63:0]], ROUND_CONTROL)
DEST[127:64] := RoundToInteger(SRC[127:64]], ROUND_CONTROL)
DEST[MAXVL-1:128] (Unmodified)

VROUNDPD (VEX.128 Encoded Version)
DEST[63:0] := RoundToInteger(SRC[63:0]], ROUND_CONTROL)
DEST[127:64] := RoundToInteger(SRC[127:64]], ROUND_CONTROL)
DEST[MAXVL-1:128] := 0

VROUNDPD (VEX.256 Encoded Version)
DEST[63:0] := RoundToInteger(SRC[63:0], ROUND_CONTROL)
DEST[127:64] := RoundToInteger(SRC[127:64]], ROUND_CONTROL)
DEST[191:128] := RoundToInteger(SRC[191:128]], ROUND_CONTROL)
DEST[255:192] := RoundToInteger(SRC[255:192] ], ROUND_CONTROL)

Figure 1-24.  Bit Control Fields of Immediate Byte for ROUNDxx Instruction

Table 1-18.  Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding 
Mode

RC Field 
Setting

Description

Round to 
nearest (even)

00B Rounded result is the closest to the infinitely precise result. If two values are equally close, the result is 
the even value (i.e., the integer value with the least-significant bit of zero). 

Round down 
(toward −∞)

01B Rounded result is closest to but no greater than the infinitely precise result.

Round up 
(toward +∞)

10B Rounded result is closest to but no less than the infinitely precise result.

Round toward 
zero (Truncate)

11B Rounded result is closest to but no greater in absolute value than the infinitely precise result.

8

RS — Rounding select; 1: MXCSR.RC, 0: Imm8.RC
RC — Rounding mode

3 2 1 0

P — Precision Mask; 0: normal, 1: inexact

Reserved
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Intel C/C++ Compiler Intrinsic Equivalent

__m128 _mm_round_pd(__m128d s1, int iRoundMode);
__m128 _mm_floor_pd(__m128d s1);
__m128 _mm_ceil_pd(__m128d s1)
__m256 _mm256_round_pd(__m256d s1, int iRoundMode);
__m256 _mm256_floor_pd(__m256d s1);
__m256 _mm256_ceil_pd(__m256d s1)

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN).
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the MXSCSR is ignored and preci-
sion exception is not signaled.)
Note that Denormal is not signaled by ROUNDPD.

Other Exceptions
See Table 2-19, “Type 2 Class Exception Conditions,” additionally:
#UD If VEX.vvvv ≠ 1111B.
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ROUNDPS—Round Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the 4 single precision floating-point values in the source operand (second operand) using the rounding mode 
specified in the immediate operand (third operand) and place the results in the destination operand (first operand). 
The rounding process rounds each input floating-point value to an integer value and returns the integer result as a 
single precision floating-point value. 

The immediate operand specifies control fields for the rounding operation, three bit fields are defined and shown in 
Figure 1-24. Bit 3 of the immediate byte controls processor behavior for a precision exception, bit 2 selects the 
source of rounding mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 1-18 lists the encoded 
values for rounding-mode field). 

The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is an 
SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero before 
rounding.
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit memory location. The destina-
tion is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding YMM 
register destination are unmodified.
VEX.128 encoded version: the source operand second source operand or a 128-bit memory location. The destina-
tion operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

IF (imm[2] = ‘1) 
THEN // rounding mode is determined by MXCSR.RC 

DEST[31:0] := ConvertSPFPToInteger_M(SRC[31:0]);
DEST[63:32] := ConvertSPFPToInteger_M(SRC[63:32]);
DEST[95:64] := ConvertSPFPToInteger_M(SRC[95:64]);
DEST[127:96] := ConvertSPFPToInteger_M(SRC[127:96]);

ELSE // rounding mode is determined by IMM8.RC

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 08
/r ib
ROUNDPS xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Round packed single precision floating-point 
values in xmm2/m128 and place the result in 
xmm1. The rounding mode is determined by 
imm8.

VEX.128.66.0F3A.WIG 08 /r ib
VROUNDPS xmm1, xmm2/m128, imm8

RMI V/V AVX Round packed single precision floating-point 
values in xmm2/m128 and place the result in 
xmm1. The rounding mode is determined by 
imm8.

VEX.256.66.0F3A.WIG 08 /r ib
VROUNDPS ymm1, ymm2/m256, imm8

RMI V/V AVX Round packed single precision floating-point 
values in ymm2/m256 and place the result in 
ymm1. The rounding mode is determined by 
imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 N/A
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DEST[31:0] := ConvertSPFPToInteger_Imm(SRC[31:0]);
DEST[63:32] := ConvertSPFPToInteger_Imm(SRC[63:32]);
DEST[95:64] := ConvertSPFPToInteger_Imm(SRC[95:64]);
DEST[127:96] := ConvertSPFPToInteger_Imm(SRC[127:96]);

FI;

ROUNDPS(128-bit Legacy SSE Version)
DEST[31:0] := RoundToInteger(SRC[31:0], ROUND_CONTROL)
DEST[63:32] := RoundToInteger(SRC[63:32], ROUND_CONTROL)
DEST[95:64] := RoundToInteger(SRC[95:64]], ROUND_CONTROL)
DEST[127:96] := RoundToInteger(SRC[127:96]], ROUND_CONTROL)
DEST[MAXVL-1:128] (Unmodified)

VROUNDPS (VEX.128 Encoded Version)
DEST[31:0] := RoundToInteger(SRC[31:0], ROUND_CONTROL)
DEST[63:32] := RoundToInteger(SRC[63:32], ROUND_CONTROL)
DEST[95:64] := RoundToInteger(SRC[95:64]], ROUND_CONTROL)
DEST[127:96] := RoundToInteger(SRC[127:96]], ROUND_CONTROL)
DEST[MAXVL-1:128] := 0

VROUNDPS (VEX.256 Encoded Version)
DEST[31:0] := RoundToInteger(SRC[31:0], ROUND_CONTROL)
DEST[63:32] := RoundToInteger(SRC[63:32], ROUND_CONTROL)
DEST[95:64] := RoundToInteger(SRC[95:64]], ROUND_CONTROL)
DEST[127:96] := RoundToInteger(SRC[127:96]], ROUND_CONTROL)
DEST[159:128] := RoundToInteger(SRC[159:128]], ROUND_CONTROL)
DEST[191:160] := RoundToInteger(SRC[191:160]], ROUND_CONTROL)
DEST[223:192] := RoundToInteger(SRC[223:192] ], ROUND_CONTROL)
DEST[255:224] := RoundToInteger(SRC[255:224] ], ROUND_CONTROL)

Intel C/C++ Compiler Intrinsic Equivalent

__m128 _mm_round_ps(__m128 s1, int iRoundMode);
__m128 _mm_floor_ps(__m128 s1);
__m128 _mm_ceil_ps(__m128 s1)
__m256 _mm256_round_ps(__m256 s1, int iRoundMode);
__m256 _mm256_floor_ps(__m256 s1);
__m256 _mm256_ceil_ps(__m256 s1)

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN).
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the MXSCSR is ignored and preci-
sion exception is not signaled.)
Note that Denormal is not signaled by ROUNDPS.

Other Exceptions
See Table 2-19, “Type 2 Class Exception Conditions,” additionally:
#UD If VEX.vvvv ≠ 1111B.
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ROUNDSD—Round Scalar Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the double precision floating-point value in the lower qword of the source operand (second operand) using 
the rounding mode specified in the immediate operand (third operand) and place the result in the destination 
operand (first operand). The rounding process rounds a double precision floating-point input to an integer value 
and returns the integer result as a double precision floating-point value in the lowest position. The upper double 
precision floating-point value in the destination is retained. 

The immediate operand specifies control fields for the rounding operation, three bit fields are defined and shown in 
Figure 1-24. Bit 3 of the immediate byte controls processor behavior for a precision exception, bit 2 selects the 
source of rounding mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 1-18 lists the encoded 
values for rounding-mode field). 

The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is an 
SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero before 
rounding.
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAXVL-
1:64) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (MAXVL-1:128) of the destination YMM register are zeroed.

Operation

IF (imm[2] = ‘1) 
THEN // rounding mode is determined by MXCSR.RC 

DEST[63:0] := ConvertDPFPToInteger_M(SRC[63:0]);
ELSE // rounding mode is determined by IMM8.RC

DEST[63:0] := ConvertDPFPToInteger_Imm(SRC[63:0]);
FI;
DEST[127:63] remains unchanged ;

ROUNDSD (128-bit Legacy SSE Version)
DEST[63:0] := RoundToInteger(SRC[63:0], ROUND_CONTROL)
DEST[MAXVL-1:64] (Unmodified)

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 0B /r ib
ROUNDSD xmm1, xmm2/m64, imm8

RMI V/V SSE4_1 Round the low packed double precision 
floating-point value in xmm2/m64 and place 
the result in xmm1. The rounding mode is 
determined by imm8.

VEX.LIG.66.0F3A.WIG 0B /r ib
VROUNDSD xmm1, xmm2, xmm3/m64, imm8

RVMI V/V AVX Round the low packed double precision 
floating-point value in xmm3/m64 and place 
the result in xmm1. The rounding mode is 
determined by imm8. Upper packed double 
precision floating-point value (bits[127:64]) 
from xmm2 is copied to xmm1[127:64].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 N/A

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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VROUNDSD (VEX.128 Encoded Version)
DEST[63:0] := RoundToInteger(SRC2[63:0], ROUND_CONTROL)
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSD __m128d mm_round_sd(__m128d dst, __m128d s1, int iRoundMode);
ROUNDSD __m128d mm_floor_sd(__m128d dst, __m128d s1);
ROUNDSD __m128d mm_ceil_sd(__m128d dst, __m128d s1);

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN).
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the MXSCSR is ignored and preci-
sion exception is not signaled.)
Note that Denormal is not signaled by ROUNDSD.

Other Exceptions
See Table 2-20, “Type 3 Class Exception Conditions.”
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ROUNDSS—Round Scalar Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the single precision floating-point value in the lowest dword of the source operand (second operand) using 
the rounding mode specified in the immediate operand (third operand) and place the result in the destination 
operand (first operand). The rounding process rounds a single precision floating-point input to an integer value and 
returns the result as a single precision floating-point value in the lowest position. The upper three single precision 
floating-point values in the destination are retained. 

The immediate operand specifies control fields for the rounding operation, three bit fields are defined and shown in 
Figure 1-24. Bit 3 of the immediate byte controls processor behavior for a precision exception, bit 2 selects the 
source of rounding mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 1-18 lists the encoded 
values for rounding-mode field). 

The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is an 
SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero before 
rounding.
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAXVL-
1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (MAXVL-1:128) of the destination YMM register are zeroed.

Operation

IF (imm[2] = ‘1) 
THEN // rounding mode is determined by MXCSR.RC 

DEST[31:0] := ConvertSPFPToInteger_M(SRC[31:0]);
ELSE // rounding mode is determined by IMM8.RC

DEST[31:0] := ConvertSPFPToInteger_Imm(SRC[31:0]);
FI;
DEST[127:32] remains unchanged ;

ROUNDSS (128-bit Legacy SSE Version)
DEST[31:0] := RoundToInteger(SRC[31:0], ROUND_CONTROL)
DEST[MAXVL-1:32] (Unmodified)

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 0A /r ib
ROUNDSS xmm1, xmm2/m32, imm8

RMI V/V SSE4_1 Round the low packed single precision floating-
point value in xmm2/m32 and place the result in 
xmm1. The rounding mode is determined by imm8.

VEX.LIG.66.0F3A.WIG 0A /r ib
VROUNDSS xmm1, xmm2, xmm3/m32, imm8

RVMI V/V AVX Round the low packed single precision floating-
point value in xmm3/m32 and place the result in 
xmm1. The rounding mode is determined by imm8. 
Also, upper packed single precision floating-point 
values (bits[127:32]) from xmm2 are copied to 
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 N/A

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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VROUNDSS (VEX.128 Encoded Version)
DEST[31:0] := RoundToInteger(SRC2[31:0], ROUND_CONTROL)
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSS __m128 mm_round_ss(__m128 dst, __m128 s1, int iRoundMode);
ROUNDSS __m128 mm_floor_ss(__m128 dst, __m128 s1);
ROUNDSS __m128 mm_ceil_ss(__m128 dst, __m128 s1);

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN).
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the MXSCSR is ignored and preci-
sion exception is not signaled.)
Note that Denormal is not signaled by ROUNDSS.

Other Exceptions
See Table 2-20, “Type 3 Class Exception Conditions.”
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RSM—Resume From System Management Mode

Instruction Operand Encoding

Description

Returns program control from system management mode (SMM) to the application program or operating-system 
procedure that was interrupted when the processor received an SMM interrupt. The processor’s state is restored 
from the dump created upon entering SMM. If the processor detects invalid state information during state resto-
ration, it enters the shutdown state. The following invalid information can cause a shutdown:
• Any reserved bit of CR4 is set to 1.
• Any illegal combination of bits in CR0, such as (PG=1 and PE=0) or (NW=1 and CD=0).
• (Intel Pentium and Intel486™ processors only.) The value stored in the state dump base field is not a 32-KByte 

aligned address.

The contents of the model-specific registers are not affected by a return from SMM.

The SMM state map used by RSM supports resuming processor context for non-64-bit modes and 64-bit mode. 

See Chapter 33, “System Management Mode,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3C, for more information about SMM and the behavior of the RSM instruction.

Operation

ReturnFromSMM;
IF (IA-32e mode supported) or (CPUID DisplayFamily_DisplayModel = 06H_0CH )

THEN
ProcessorState := Restore(SMMDump(IA-32e SMM STATE MAP));

Else
ProcessorState := Restore(SMMDump(Non-32-Bit-Mode SMM STATE MAP));

FI

Flags Affected

All.

Protected Mode Exceptions
#UD If an attempt is made to execute this instruction when the processor is not in SMM.

If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AA RSM ZO Valid Valid Resume operation of interrupted program.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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64-Bit Mode Exceptions
Same exceptions as in protected mode.
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RSQRTPS—Compute Reciprocals of Square Roots of Packed Single Precision Floating-Point 
Values

Instruction Operand Encoding

Description

Performs a SIMD computation of the approximate reciprocals of the square roots of the four packed single precision 
floating-point values in the source operand (second operand) and stores the packed single precision floating-point 
results in the destination operand. The source operand can be an XMM register or a 128-bit memory location. The 
destination operand is an XMM register. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for an illustration of a SIMD single precision floating-point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12 

The RSQRTPS instruction is not affected by the rounding control bits in the MXCSR register. When a source value is 
a 0.0, an ∞ of the sign of the source value is returned. A denormal source value is treated as a 0.0 (of the same 
sign). When a source value is a negative value (other than −0.0), a floating-point indefinite is returned. When a 
source value is an SNaN or QNaN, the SNaN is converted to a QNaN or the source QNaN is returned. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 52 /r

RSQRTPS xmm1, xmm2/m128

RM V/V SSE Computes the approximate reciprocals of the square 
roots of the packed single precision floating-point 
values in xmm2/m128 and stores the results in 
xmm1.

VEX.128.0F.WIG 52 /r

VRSQRTPS xmm1, xmm2/m128

RM V/V AVX Computes the approximate reciprocals of the square 
roots of packed single precision values in xmm2/mem 
and stores the results in xmm1.

VEX.256.0F.WIG 52 /r

VRSQRTPS ymm1, ymm2/m256

RM V/V AVX Computes the approximate reciprocals of the square 
roots of packed single precision values in ymm2/mem 
and stores the results in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation

RSQRTPS (128-bit Legacy SSE Version)
DEST[31:0] := APPROXIMATE(1/SQRT(SRC[31:0]))
DEST[63:32] := APPROXIMATE(1/SQRT(SRC1[63:32]))
DEST[95:64] := APPROXIMATE(1/SQRT(SRC1[95:64]))
DEST[127:96] := APPROXIMATE(1/SQRT(SRC2[127:96]))
DEST[MAXVL-1:128] (Unmodified)

VRSQRTPS (VEX.128 Encoded Version)
DEST[31:0] := APPROXIMATE(1/SQRT(SRC[31:0]))
DEST[63:32] := APPROXIMATE(1/SQRT(SRC1[63:32]))
DEST[95:64] := APPROXIMATE(1/SQRT(SRC1[95:64]))
DEST[127:96] := APPROXIMATE(1/SQRT(SRC2[127:96]))
DEST[MAXVL-1:128] := 0

VRSQRTPS (VEX.256 Encoded Version)
DEST[31:0] := APPROXIMATE(1/SQRT(SRC[31:0]))
DEST[63:32] := APPROXIMATE(1/SQRT(SRC1[63:32]))
DEST[95:64] := APPROXIMATE(1/SQRT(SRC1[95:64]))
DEST[127:96] := APPROXIMATE(1/SQRT(SRC2[127:96]))
DEST[159:128] := APPROXIMATE(1/SQRT(SRC2[159:128]))
DEST[191:160] := APPROXIMATE(1/SQRT(SRC2[191:160]))
DEST[223:192] := APPROXIMATE(1/SQRT(SRC2[223:192]))
DEST[255:224] := APPROXIMATE(1/SQRT(SRC2[255:224]))

Intel C/C++ Compiler Intrinsic Equivalent

RSQRTPS __m128 _mm_rsqrt_ps(__m128 a)
RSQRTPS __m256 _mm256_rsqrt_ps (__m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions,” additionally:
#UD If VEX.vvvv ≠ 1111B.
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RSQRTSS—Compute Reciprocal of Square Root of Scalar Single Precision Floating-Point Value

Instruction Operand Encoding

Description

Computes an approximate reciprocal of the square root of the low single precision floating-point value in the source 
operand (second operand) stores the single precision floating-point result in the destination operand. The source 
operand can be an XMM register or a 32-bit memory location. The destination operand is an XMM register. The 
three high-order doublewords of the destination operand remain unchanged. See Figure 10-6 in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a scalar single precision floating-
point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12 

The RSQRTSS instruction is not affected by the rounding control bits in the MXCSR register. When a source value is 
a 0.0, an ∞ of the sign of the source value is returned. A denormal source value is treated as a 0.0 (of the same 
sign). When a source value is a negative value (other than −0.0), a floating-point indefinite is returned. When a 
source value is an SNaN or QNaN, the SNaN is converted to a QNaN or the source QNaN is returned. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAXVL-
1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (MAXVL-1:128) of the destination YMM register are zeroed.

Operation

RSQRTSS (128-bit Legacy SSE Version)
DEST[31:0] := APPROXIMATE(1/SQRT(SRC2[31:0]))
DEST[MAXVL-1:32] (Unmodified)

VRSQRTSS (VEX.128 Encoded Version)
DEST[31:0] := APPROXIMATE(1/SQRT(SRC2[31:0]))
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 52 /r

RSQRTSS xmm1, xmm2/m32

RM V/V SSE Computes the approximate reciprocal of the square 
root of the low single precision floating-point value in 
xmm2/m32 and stores the results in xmm1.

VEX.LIG.F3.0F.WIG 52 /r
VRSQRTSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Computes the approximate reciprocal of the square 
root of the low single precision floating-point value in 
xmm3/m32 and stores the results in xmm1. Also, 
upper single precision floating-point values 
(bits[127:32]) from xmm2 are copied to 
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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Intel C/C++ Compiler Intrinsic Equivalent

RSQRTSS __m128 _mm_rsqrt_ss(__m128 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-22, “Type 5 Class Exception Conditions.”
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RSTORSSP—Restore Saved Shadow Stack Pointer

Instruction Operand Encoding

Description

Restores SSP from the shadow-stack-restore token pointed to by m64. If the SSP restore was successful then the 
instruction replaces the shadow-stack-restore token with a previous-ssp token. The instruction sets the CF flag to 
indicate whether the SSP address recorded in the shadow-stack-restore token that was processed was 4 byte 
aligned, i.e., whether an alignment hole was created when the restore-shadow-stack token was pushed on this 
shadow stack. 
Following RSTORSSP if a restore-shadow-stack token needs to be saved on the previous shadow stack, use the 
SAVEPREVSSP instruction. 
If pushing a restore-shadow-stack token on the previous shadow stack is not required, the previous-ssp token can 
be popped using the INCSSPQ instruction. If the CF flag was set to indicate presence of an alignment hole, an addi-
tional INCSSPD instruction is needed to advance the SSP past the alignment hole.

Operation

IF CPL = 3
IF (CR4.CET & IA32_U_CET.SH_STK_EN) = 0

THEN #UD; FI;
ELSE

IF (CR4.CET & IA32_S_CET.SH_STK_EN) = 0
THEN #UD; FI;

FI;

SSP_LA = Linear_Address(mem operand)
IF SSP_LA not aligned to 8 bytes

THEN #GP(0); FI;

previous_ssp_token = SSP | (IA32_EFER.LMA AND CS.L) | 0x02
Start Atomic Execution
restore_ssp_token = Locked shadow_stack_load 8 bytes from SSP_LA
fault = 0

IF ((restore_ssp_token & 0x03) != (IA32_EFER.LMA & CS.L))
THEN fault = 1; FI; (* If L flag in token does not match IA32_EFER.LMA & CS.L or bit 1 is not 0 *)

IF ((IA32_EFER.LMA AND CS.L) = 0 AND restore_ssp_token[63:32] != 0)
THEN fault = 1; FI; (* If compatibility/legacy mode and SSP to be restored not below 4G *)

TMP = restore_ssp_token & ~0x01
TMP = (TMP - 8)
TMP = TMP & ~0x07
IF TMP != SSP_LA

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 01 /5 (mod!=11, /5, memory only)
RSTORSSP m64

M V/V CET_SS Restore SSP.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) N/A N/A N/A
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THEN fault = 1; FI; (* If address in token does not match the requested top of stack *)

TMP = (fault == 0) ? previous_ssp_token : restore_ssp_token
shadow_stack_store 8 bytes of TMP to SSP_LA and release lock
End Atomic Execution

IF fault == 1
    THEN #CP(RSTORSSP); FI;

SSP = SSP_LA

// Set the CF if the SSP in the restore token was 4 byte aligned, i.e., there is an alignment hole
RFLAGS.CF = (restore_ssp_token & 0x04) ? 1 : 0;
RFLAGS.ZF,PF,AF,OF,SF := 0;

Flags Affected

CF is set to indicate if the shadow stack pointer in the restore token was 4 byte aligned, else it is cleared. ZF, PF, AF, 
OF, and SF are cleared.

C/C++ Compiler Intrinsic Equivalent

RSTORSSP void _rstorssp(void *);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
IF CPL = 3 and IA32_U_CET.SH_STK_EN = 0.
IF CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

#GP(0) If linear address of memory operand not 8 byte aligned.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If destination is located in a non-writeable segment.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#CP(rstorssp) If L bit in token does not match (IA32_EFER.LMA & CS.L).

If address in token does not match linear address of memory operand.
If in 32-bit or compatibility mode and the address in token is not below 4G.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#UD The RSTORSSP instruction is not recognized in real-address mode. 

Virtual-8086 Mode Exceptions
#UD The RSTORSSP instruction is not recognized in virtual-8086 mode. 

Compatibility Mode Exceptions
Same as protected mode exceptions.
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64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
If CPL = 3 and IA32_U_CET.SH_STK_EN = 0.
If CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

#GP(0) If linear address of memory operand not 8 byte aligned.
If a memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#CP(rstorssp) If L bit in token does not match (IA32_EFER.LMA & CS.L).

If address in token does not match linear address of memory operand.
#PF(fault-code) If a page fault occurs.
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SAHF—Store AH Into Flags

Instruction Operand Encoding

Description

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the corresponding bits in the AH 
register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3, and 5 of register AH are ignored; the corresponding reserved 
bits (1, 3, and 5) in the EFLAGS register remain as shown in the “Operation” section below.

This instruction executes as described above in compatibility mode and legacy mode. It is valid in 64-bit mode only 
if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

Operation

IF IA-64 Mode
THEN

IF CPUID.80000001H.ECX[0] = 1;
THEN

RFLAGS(SF:ZF:0:AF:0:PF:1:CF) := AH;
ELSE

#UD;
FI

ELSE
EFLAGS(SF:ZF:0:AF:0:PF:1:CF) := AH;

FI;

Flags Affected

The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1, 3, and 5 of the EFLAGS register 
are unaffected, with the values remaining 1, 0, and 0, respectively.

Protected Mode Exceptions
None.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
None.

Compatibility Mode Exceptions
None.

Opcode1

NOTES:
1. Valid in specific steppings. See Description section.

Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

9E SAHF ZO Invalid* Valid Loads SF, ZF, AF, PF, and CF from AH into the EFLAGS 
register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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64-Bit Mode Exceptions
#UD If CPUID.80000001H.ECX[0] = 0.

If the LOCK prefix is used.
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SAL/SAR/SHL/SHR—Shift
Opcode1 Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

D0 /4 SAL r/m8, 1 M1 Valid Valid Multiply r/m8 by 2, once. 

REX + D0 /4 SAL r/m82, 1 M1 Valid N.E. Multiply r/m8 by 2, once. 

D2 /4 SAL r/m8, CL MC Valid Valid Multiply r/m8 by 2, CL times.

REX + D2 /4 SAL r/m82, CL MC Valid N.E. Multiply r/m8 by 2, CL times.

C0 /4 ib SAL r/m8, imm8 MI Valid Valid Multiply r/m8 by 2, imm8 times.

REX + C0 /4 ib SAL r/m82, imm8 MI Valid N.E. Multiply r/m8 by 2, imm8 times.

D1 /4 SAL r/m16, 1 M1 Valid Valid Multiply r/m16 by 2, once.

D3 /4 SAL r/m16, CL MC Valid Valid Multiply r/m16 by 2, CL times.

C1 /4 ib SAL r/m16, imm8 MI Valid Valid Multiply r/m16 by 2, imm8 times.

D1 /4 SAL r/m32, 1 M1 Valid Valid Multiply r/m32 by 2, once.

REX.W + D1 /4 SAL r/m64, 1 M1 Valid N.E. Multiply r/m64 by 2, once.

D3 /4 SAL r/m32, CL MC Valid Valid Multiply r/m32 by 2, CL times.

REX.W + D3 /4 SAL r/m64, CL MC Valid N.E. Multiply r/m64 by 2, CL times.

C1 /4 ib SAL r/m32, imm8 MI Valid Valid Multiply r/m32 by 2, imm8 times.

REX.W + C1 /4 ib SAL r/m64, imm8 MI Valid N.E. Multiply r/m64 by 2, imm8 times.

D0 /7 SAR r/m8, 1 M1 Valid Valid Signed divide3 r/m8 by 2, once.

REX + D0 /7 SAR r/m82, 1 M1 Valid N.E. Signed divide3 r/m8 by 2, once.

D2 /7 SAR r/m8, CL MC Valid Valid Signed divide3 r/m8 by 2, CL times.

REX + D2 /7 SAR r/m82, CL MC Valid N.E. Signed divide3 r/m8 by 2, CL times.

C0 /7 ib SAR r/m8, imm8 MI Valid Valid Signed divide3 r/m8 by 2, imm8 times.

REX + C0 /7 ib SAR r/m82, imm8 MI Valid N.E. Signed divide3 r/m8 by 2, imm8 times.

D1 /7 SAR r/m16,1 M1 Valid Valid Signed divide3 r/m16 by 2, once.

D3 /7 SAR r/m16, CL MC Valid Valid Signed divide3 r/m16 by 2, CL times.

C1 /7 ib SAR r/m16, imm8 MI Valid Valid Signed divide3 r/m16 by 2, imm8 times.

D1 /7 SAR r/m32, 1 M1 Valid Valid Signed divide3 r/m32 by 2, once.

REX.W + D1 /7 SAR r/m64, 1 M1 Valid N.E. Signed divide3 r/m64 by 2, once.

D3 /7 SAR r/m32, CL MC Valid Valid Signed divide3 r/m32 by 2, CL times.

REX.W + D3 /7 SAR r/m64, CL MC Valid N.E. Signed divide3 r/m64 by 2, CL times.

C1 /7 ib SAR r/m32, imm8 MI Valid Valid Signed divide3 r/m32 by 2, imm8 times.

REX.W + C1 /7 ib SAR r/m64, imm8 MI Valid N.E. Signed divide3 r/m64 by 2, imm8 times

D0 /4 SHL r/m8, 1 M1 Valid Valid Multiply r/m8 by 2, once.

REX + D0 /4 SHL r/m82, 1 M1 Valid N.E. Multiply r/m8 by 2, once.

D2 /4 SHL r/m8, CL MC Valid Valid Multiply r/m8 by 2, CL times.

REX + D2 /4 SHL r/m82, CL MC Valid N.E. Multiply r/m8 by 2, CL times.

C0 /4 ib SHL r/m8, imm8 MI Valid Valid Multiply r/m8 by 2, imm8 times.

REX + C0 /4 ib SHL r/m82, imm8 MI Valid N.E. Multiply r/m8 by 2, imm8 times.

D1 /4 SHL r/m16,1 M1 Valid Valid Multiply r/m16 by 2, once.

D3 /4 SHL r/m16, CL MC Valid Valid Multiply r/m16 by 2, CL times.

C1 /4 ib SHL r/m16, imm8 MI Valid Valid Multiply r/m16 by 2, imm8 times.

D1 /4 SHL r/m32,1 M1 Valid Valid Multiply r/m32 by 2, once.
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Instruction Operand Encoding

Description

Shifts the bits in the first operand (destination operand) to the left or right by the number of bits specified in the 
second operand (count operand). Bits shifted beyond the destination operand boundary are first shifted into the CF 
flag, then discarded. At the end of the shift operation, the CF flag contains the last bit shifted out of the destination 
operand. 

The destination operand can be a register or a memory location. The count operand can be an immediate value or 
the CL register. The count is masked to 5 bits (or 6 bits with a 64-bit operand). The count range is limited to 0 to 
31 (or 63 with a 64-bit operand). A special opcode encoding is provided for a count of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the same operation; they shift the 
bits in the destination operand to the left (toward more significant bit locations). For each shift count, the most 
significant bit of the destination operand is shifted into the CF flag, and the least significant bit is cleared (see 
Figure 7-7 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

REX.W + D1 /4 SHL r/m64,1 M1 Valid N.E. Multiply r/m64 by 2, once.

D3 /4 SHL r/m32, CL MC Valid Valid Multiply r/m32 by 2, CL times.

REX.W + D3 /4 SHL r/m64, CL MC Valid N.E. Multiply r/m64 by 2, CL times.

C1 /4 ib SHL r/m32, imm8 MI Valid Valid Multiply r/m32 by 2, imm8 times.

REX.W + C1 /4 ib SHL r/m64, imm8 MI Valid N.E. Multiply r/m64 by 2, imm8 times.

D0 /5 SHR r/m8,1 M1 Valid Valid Unsigned divide r/m8 by 2, once.

REX + D0 /5 SHR r/m82, 1 M1 Valid N.E. Unsigned divide r/m8 by 2, once.

D2 /5 SHR r/m8, CL MC Valid Valid Unsigned divide r/m8 by 2, CL times.

REX + D2 /5 SHR r/m82, CL MC Valid N.E. Unsigned divide r/m8 by 2, CL times.

C0 /5 ib SHR r/m8, imm8 MI Valid Valid Unsigned divide r/m8 by 2, imm8 times.

REX + C0 /5 ib SHR r/m82, imm8 MI Valid N.E. Unsigned divide r/m8 by 2, imm8 times.

D1 /5 SHR r/m16, 1 M1 Valid Valid Unsigned divide r/m16 by 2, once.

D3 /5 SHR r/m16, CL MC Valid Valid Unsigned divide r/m16 by 2, CL times

C1 /5 ib SHR r/m16, imm8 MI Valid Valid Unsigned divide r/m16 by 2, imm8 times.

D1 /5 SHR r/m32, 1 M1 Valid Valid Unsigned divide r/m32 by 2, once.

REX.W + D1 /5 SHR r/m64, 1 M1 Valid N.E. Unsigned divide r/m64 by 2, once.

D3 /5 SHR r/m32, CL MC Valid Valid Unsigned divide r/m32 by 2, CL times.

REX.W + D3 /5 SHR r/m64, CL MC Valid N.E. Unsigned divide r/m64 by 2, CL times.

C1 /5 ib SHR r/m32, imm8 MI Valid Valid Unsigned divide r/m32 by 2, imm8 times.

REX.W + C1 /5 ib SHR r/m64, imm8 MI Valid N.E. Unsigned divide r/m64 by 2, imm8 times.

NOTES:
1. See the IA-32 Architecture Compatibility section below.
2. In 64-bit mode, r/m8 cannot be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.
3. Not the same form of division as IDIV; rounding is toward negative infinity.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M1 ModRM:r/m (r, w) 1 N/A N/A

MC ModRM:r/m (r, w) CL N/A N/A

MI ModRM:r/m (r, w) imm8 N/A N/A

Opcode1 Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits of the destination operand to 
the right (toward less significant bit locations). For each shift count, the least significant bit of the destination 
operand is shifted into the CF flag, and the most significant bit is either set or cleared depending on the instruction 
type. The SHR instruction clears the most significant bit (see Figure 7-8 in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1); the SAR instruction sets or clears the most significant bit to correspond 
to the sign (most significant bit) of the original value in the destination operand. In effect, the SAR instruction fills 
the empty bit position’s shifted value with the sign of the unshifted value (see Figure 7-9 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1).

The SAR and SHR instructions can be used to perform signed or unsigned division, respectively, of the destination 
operand by powers of 2. For example, using the SAR instruction to shift a signed integer 1 bit to the right divides 
the value by 2.

Using the SAR instruction to perform a division operation does not produce the same result as the IDIV instruction. 
The quotient from the IDIV instruction is rounded toward zero, whereas the “quotient” of the SAR instruction is 
rounded toward negative infinity. This difference is apparent only for negative numbers. For example, when the 
IDIV instruction is used to divide -9 by 4, the result is -2 with a remainder of -1. If the SAR instruction is used to 
shift -9 right by two bits, the result is -3 and the “remainder” is +3; however, the SAR instruction stores only the 
most significant bit of the remainder (in the CF flag). 

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is set to 0 if the most-significant bit of the 
result is the same as the CF flag (that is, the top two bits of the original operand were the same); otherwise, it is 
set to 1. For the SAR instruction, the OF flag is cleared for all 1-bit shifts. For the SHR instruction, the OF flag is set 
to the most-significant bit of the original operand.

In 64-bit mode, the instruction’s default operation size is 32 bits and the mask width for CL is 5 bits. Using a REX 
prefix in the form of REX.R permits access to additional registers (R8-R15). Using a REX prefix in the form of REX.W 
promotes operation to 64-bits and sets the mask width for CL to 6 bits. See the summary chart at the beginning of 
this section for encoding data and limits.

IA-32 Architecture Compatibility

The 8086 does not mask the shift count. However, all other IA-32 processors (starting with the Intel 286 processor) 
do mask the shift count to 5 bits, resulting in a maximum count of 31. This masking is done in all operating modes 
(including the virtual-8086 mode) to reduce the maximum execution time of the instructions.

Operation

IF OperandSize = 64
THEN

countMASK := 3FH;
ELSE

countMASK := 1FH;
FI

tempCOUNT := (COUNT AND countMASK);
tempDEST := DEST;
WHILE (tempCOUNT ≠ 0)
DO

IF instruction is SAL or SHL
THEN 

CF := MSB(DEST);
ELSE (* Instruction is SAR or SHR *)

CF := LSB(DEST);
FI;
IF instruction is SAL or SHL

THEN 
DEST := DEST ∗ 2;

ELSE 
IF instruction is SAR
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THEN 
DEST := DEST / 2; (* Signed divide, rounding toward negative infinity *)

ELSE (* Instruction is SHR *)
DEST := DEST / 2 ; (* Unsigned divide *)

FI;
FI;
tempCOUNT := tempCOUNT – 1;

OD;

(* Determine overflow for the various instructions *)
IF (COUNT and countMASK) = 1

THEN
IF instruction is SAL or SHL

THEN 
OF := MSB(DEST) XOR CF;

ELSE 
IF instruction is SAR

THEN 
OF := 0;

ELSE (* Instruction is SHR *)
OF := MSB(tempDEST);

FI;
FI;

ELSE IF (COUNT AND countMASK) = 0
THEN

All flags unchanged;
ELSE (* COUNT not 1 or 0 *)

OF := undefined;
FI;

FI;

Flags Affected

The CF flag contains the value of the last bit shifted out of the destination operand; it is undefined for SHL and SHR 
instructions where the count is greater than or equal to the size (in bits) of the destination operand. The OF flag is 
affected only for 1-bit shifts (see “Description” above); otherwise, it is undefined. The SF, ZF, and PF flags are set 
according to the result. If the count is 0, the flags are not affected. For a non-zero count, the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.
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Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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SARX/SHLX/SHRX—Shift Without Affecting Flags 

Instruction Operand Encoding

Description

Shifts the bits of the first source operand (the second operand) to the left or right by a COUNT value specified in the 
second source operand (the third operand). The result is written to the destination operand (the first operand).
The shift arithmetic right (SARX) and shift logical right (SHRX) instructions shift the bits of the destination operand 
to the right (toward less significant bit locations), SARX keeps and propagates the most significant bit (sign bit) 
while shifting.
The logical shift left (SHLX) shifts the bits of the destination operand to the left (toward more significant bit loca-
tions). 
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.
If the value specified in the first source operand exceeds OperandSize -1, the COUNT value is masked.
SARX,SHRX, and SHLX instructions do not update flags. 

Operation

TEMP := SRC1;
IF VEX.W1 and CS.L = 1
THEN

countMASK := 3FH;
ELSE

countMASK := 1FH;
FI
COUNT := (SRC2 AND countMASK)

DEST[OperandSize -1] = TEMP[OperandSize -1];
DO WHILE (COUNT ≠ 0)

IF instruction is SHLX
THEN

Opcode/
Instruction

Op/ 
En

64/32-
bit Mode

CPUID 
Feature 
Flag

Description

VEX.LZ.F3.0F38.W0 F7 /r
SARX r32a, r/m32, r32b

RMV V/V BMI2 Shift r/m32 arithmetically right with count specified in r32b.

VEX.LZ.66.0F38.W0 F7 /r
SHLX r32a, r/m32, r32b

RMV V/V BMI2 Shift r/m32 logically left with count specified in r32b.

VEX.LZ.F2.0F38.W0 F7 /r
SHRX r32a, r/m32, r32b

RMV V/V BMI2 Shift r/m32 logically right with count specified in r32b.

VEX.LZ.F3.0F38.W1 F7 /r
SARX r64a, r/m64, r64b

RMV V/N.E. BMI2 Shift r/m64 arithmetically right with count specified in r64b.

VEX.LZ.66.0F38.W1 F7 /r
SHLX r64a, r/m64, r64b

RMV V/N.E. BMI2 Shift r/m64 logically left with count specified in r64b.

VEX.LZ.F2.0F38.W1 F7 /r
SHRX r64a, r/m64, r64b

RMV V/N.E. BMI2 Shift r/m64 logically right with count specified in r64b.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMV ModRM:reg (w) ModRM:r/m (r) VEX.vvvv (r) N/A
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DEST[] := DEST *2;
ELSE IF instruction is SHRX

THEN
DEST[] := DEST /2; //unsigned divide

ELSE // SARX
DEST[] := DEST /2; // signed divide, round toward negative infinity

FI;
COUNT := COUNT - 1;

OD

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

Auto-generated from high-level language.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-29, “Type 13 Class Exception Conditions.”
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SAVEPREVSSP—Save Previous Shadow Stack Pointer

Instruction Operand Encoding

Description

Push a restore-shadow-stack token on the previous shadow stack at the next 8 byte aligned boundary. The 
previous SSP is obtained from the previous-ssp token at the top of the current shadow stack.

Operation

IF CPL = 3
IF (CR4.CET & IA32_U_CET.SH_STK_EN) = 0

THEN #UD; FI;
ELSE

IF (CR4.CET & IA32_S_CET.SH_STK_EN) = 0
THEN #UD; FI;

FI;

IF SSP not aligned to 8 bytes
THEN #GP(0); FI;

(* Pop the “previous-ssp” token from current shadow stack *)
previous_ssp_token = ShadowStackPop8B(SSP)

(* If the CF flag indicates there was a alignment hole on current shadow stack then pop that alignment hole *)
(* Note that the alignment hole must be zero and can be present only when in legacy/compatibility mode *)
IF RFLAGS.CF == 1 AND (IA32_EFER.LMA AND CS.L)

#GP(0)
FI;
IF RFLAGS.CF == 1

must_be_zero = ShadowStackPop4B(SSP)
IF must_be_zero != 0 THEN #GP(0)

FI;

(* Previous SSP token must have the bit 1 set *)
IF ((previous_ssp_token & 0x02) == 0)

THEN #GP(0); (* bit 1 was 0 *)

IF ((IA32_EFER.LMA AND CS.L) = 0 AND previous_ssp_token [63:32] != 0)
THEN #GP(0); FI; (* If compatibility/legacy mode and SSP not in 4G *)

(* Save Prev SSP from previous_ssp_token to the old shadow stack at next 8 byte aligned address *)
old_SSP = previous_ssp_token & ~0x03
temp := (old_SSP | (IA32_EFER.LMA & CS.L));
Shadow_stack_store 4 bytes of 0 to (old_SSP - 4)
old_SSP := old_SSP & ~0x07;

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 01 EA (mod!=11, /5, RM=010)
SAVEPREVSSP

ZO V/V CET_SS Save a restore-shadow-stack token on previous shadow stack.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Shadow_stack_store 8 bytes of temp to (old_SSP - 8)

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

SAVEPREVSSP void _saveprevssp(void);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
IF CPL = 3 and IA32_U_CET.SH_STK_EN = 0.
IF CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

#GP(0) If SSP not 8 byte aligned.
If alignment hole on shadow stack is not 0.
If bit 1 of the previous-ssp token is not set to 1.
If in 32-bit/compatibility mode and SSP recorded in previous-ssp token is beyond 4G.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#UD The SAVEPREVSSP instruction is not recognized in real-address mode. 

Virtual-8086 Mode Exceptions
#UD The SAVEPREVSSP instruction is not recognized in virtual-8086 mode. 

Compatibility Mode Exceptions
Same as protected mode exceptions.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
If CPL = 3 and IA32_U_CET.SH_STK_EN = 0.
If CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

#GP(0) If SSP not 8 byte aligned.
If carry flag is set.
If bit 1 of the previous-ssp token is not set to 1.

#PF(fault-code) If a page fault occurs.
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SBB—Integer Subtraction With Borrow

Instruction Operand Encoding

Description

Adds the source operand (second operand) and the carry (CF) flag, and subtracts the result from the destination 
operand (first operand). The result of the subtraction is stored in the destination operand. The destination operand 
can be a register or a memory location; the source operand can be an immediate, a register, or a memory location. 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

1C ib SBB AL, imm8 I Valid Valid Subtract with borrow imm8 from AL.

1D iw SBB AX, imm16 I Valid Valid Subtract with borrow imm16 from AX.

1D id SBB EAX, imm32 I Valid Valid Subtract with borrow imm32 from EAX.

REX.W + 1D id SBB RAX, imm32 I Valid N.E. Subtract with borrow sign-extended imm.32 
to 64-bits from RAX.

80 /3 ib SBB r/m8, imm8 MI Valid Valid Subtract with borrow imm8 from r/m8.

REX + 80 /3 ib SBB r/m81, imm8

NOTES:
1. In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

MI Valid N.E. Subtract with borrow imm8 from r/m8.

81 /3 iw SBB r/m16, imm16 MI Valid Valid Subtract with borrow imm16 from r/m16.

81 /3 id SBB r/m32, imm32 MI Valid Valid Subtract with borrow imm32 from r/m32.

REX.W + 81 /3 id SBB r/m64, imm32 MI Valid N.E. Subtract with borrow sign-extended imm32 to 
64-bits from r/m64.

83 /3 ib SBB r/m16, imm8 MI Valid Valid Subtract with borrow sign-extended imm8 
from r/m16.

83 /3 ib SBB r/m32, imm8 MI Valid Valid Subtract with borrow sign-extended imm8 
from r/m32.

REX.W + 83 /3 ib SBB r/m64, imm8 MI Valid N.E. Subtract with borrow sign-extended imm8 
from r/m64.

18 /r SBB r/m8, r8 MR Valid Valid Subtract with borrow r8 from r/m8.

REX + 18 /r SBB r/m81, r8 MR Valid N.E. Subtract with borrow r8 from r/m8.

19 /r SBB r/m16, r16 MR Valid Valid Subtract with borrow r16 from r/m16.

19 /r SBB r/m32, r32 MR Valid Valid Subtract with borrow r32 from r/m32.

REX.W + 19 /r SBB r/m64, r64 MR Valid N.E. Subtract with borrow r64 from r/m64.

1A /r SBB r8, r/m8 RM Valid Valid Subtract with borrow r/m8 from r8.

REX + 1A /r SBB r81, r/m81 RM Valid N.E. Subtract with borrow r/m8 from r8.

1B /r SBB r16, r/m16 RM Valid Valid Subtract with borrow r/m16 from r16.

1B /r SBB r32, r/m32 RM Valid Valid Subtract with borrow r/m32 from r32.

REX.W + 1B /r SBB r64, r/m64 RM Valid N.E. Subtract with borrow r/m64 from r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 N/A N/A

MI ModRM:r/m (w) imm8/16/32 N/A N/A

MR ModRM:r/m (w) ModRM:reg (r) N/A N/A

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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(However, two memory operands cannot be used in one instruction.) The state of the CF flag represents a borrow 
from a previous subtraction.

When an immediate value is used as an operand, it is sign-extended to the length of the destination operand 
format.

The SBB instruction does not distinguish between signed or unsigned operands. Instead, the processor evaluates 
the result for both data types and sets the OF and CF flags to indicate a borrow in the signed or unsigned result, 
respectively. The SF flag indicates the sign of the signed result.

The SBB instruction is usually executed as part of a multibyte or multiword subtraction in which a SUB instruction 
is followed by a SBB instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST := (DEST – (SRC + CF));

Intel C/C++ Compiler Intrinsic Equivalent

SBB extern unsigned char _subborrow_u8(unsigned char c_in, unsigned char src1, unsigned char src2, unsigned char *diff_out);
SBB extern unsigned char _subborrow_u16(unsigned char c_in, unsigned short src1, unsigned short src2, unsigned short *diff_out);
SBB extern unsigned char _subborrow_u32(unsigned char c_in, unsigned int src1, unsigned char int, unsigned int *diff_out);
SBB extern unsigned char _subborrow_u64(unsigned char c_in, unsigned __int64 src1, unsigned __int64 src2, unsigned __int64 
*diff_out);

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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SCAS/SCASB/SCASW/SCASD—Scan String 

Instruction Operand Encoding

Description

In non-64-bit modes and in default 64-bit mode: this instruction compares a byte, word, doubleword or quadword 
specified using a memory operand with the value in AL, AX, or EAX. It then sets status flags in EFLAGS recording 
the results. The memory operand address is read from ES:(E)DI register (depending on the address-size attribute 
of the instruction and the current operational mode). Note that ES cannot be overridden with a segment override 
prefix.

At the assembly-code level, two forms of this instruction are allowed. The explicit-operand form and the no-oper-
ands form. The explicit-operand form (specified using the SCAS mnemonic) allows a memory operand to be spec-
ified explicitly. The memory operand must be a symbol that indicates the size and location of the operand value. 
The register operand is then automatically selected to match the size of the memory operand (AL register for byte 
comparisons, AX for word comparisons, EAX for doubleword comparisons). The explicit-operand form is provided 
to allow documentation. Note that the documentation provided by this form can be misleading. That is, the 
memory operand symbol must specify the correct type (size) of the operand (byte, word, or doubleword) but it 
does not have to specify the correct location. The location is always specified by ES:(E)DI.

The no-operands form of the instruction uses a short form of SCAS. Again, ES:(E)DI is assumed to be the memory 
operand and AL, AX, or EAX is assumed to be the register operand. The size of operands is selected by the 
mnemonic: SCASB (byte comparison), SCASW (word comparison), or SCASD (doubleword comparison).

After the comparison, the (E)DI register is incremented or decremented automatically according to the setting of 
the DF flag in the EFLAGS register. If the DF flag is 0, the (E)DI register is incremented; if the DF flag is 1, the (E)DI 
register is decremented. The register is incremented or decremented by 1 for byte operations, by 2 for word oper-
ations, and by 4 for doubleword operations.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

AE SCAS m8 ZO Valid Valid Compare AL with byte at ES:(E)DI or RDI, then set 
status flags.1

NOTES:
1. In 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit mode, only 32-bit (EDI) and 16-bit (DI) 

address sizes are supported.

AF SCAS m16 ZO Valid Valid Compare AX with word at ES:(E)DI or RDI, then set 
status flags.1

AF SCAS m32 ZO Valid Valid Compare EAX with doubleword at ES(E)DI or RDI then 
set status flags.1

REX.W + AF SCAS m64 ZO Valid N.E. Compare RAX with quadword at RDI or EDI then set 
status flags.

AE SCASB ZO Valid Valid Compare AL with byte at ES:(E)DI or RDI then set 
status flags.1

AF SCASW ZO Valid Valid Compare AX with word at ES:(E)DI or RDI then set 
status flags.1

AF SCASD ZO Valid Valid Compare EAX with doubleword at ES:(E)DI or RDI 
then set status flags.1

REX.W + AF SCASQ ZO Valid N.E. Compare RAX with quadword at RDI or EDI then set 
status flags.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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SCAS, SCASB, SCASW, SCASD, and SCASQ can be preceded by the REP prefix for block comparisons of ECX bytes, 
words, doublewords, or quadwords. Often, however, these instructions will be used in a LOOP construct that takes 
some action based on the setting of status flags. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation 
Prefix” in this chapter for a description of the REP prefix.

In 64-bit mode, the instruction’s default address size is 64-bits, 32-bit address size is supported using the prefix 
67H. Using a REX prefix in the form of REX.W promotes operation on doubleword operand to 64 bits. The 64-bit no-
operand mnemonic is SCASQ. Address of the memory operand is specified in either RDI or EDI, and 
AL/AX/EAX/RAX may be used as the register operand. After a comparison, the destination register is incremented 
or decremented by the current operand size (depending on the value of the DF flag). See the summary chart at the 
beginning of this section for encoding data and limits.

Operation

Non-64-bit Mode:
IF (Byte comparison)

THEN
temp := AL − SRC;
SetStatusFlags(temp);

THEN IF DF = 0 
THEN (E)DI := (E)DI + 1; 
ELSE (E)DI := (E)DI – 1; FI;

ELSE IF (Word comparison)
THEN

temp := AX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (E)DI := (E)DI + 2; 
ELSE (E)DI := (E)DI – 2; FI;

FI;
ELSE IF (Doubleword comparison)

THEN
temp := EAX – SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (E)DI := (E)DI + 4; 
ELSE (E)DI := (E)DI – 4; FI;

FI;
FI;

64-bit Mode:
IF (Byte comparison)

THEN
temp := AL − SRC;
SetStatusFlags(temp);

THEN IF DF = 0 
THEN (R|E)DI := (R|E)DI + 1; 
ELSE (R|E)DI := (R|E)DI – 1; FI;

ELSE IF (Word comparison)
THEN

temp := AX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI := (R|E)DI + 2; 
ELSE (R|E)DI := (R|E)DI – 2; FI;

FI;
SCAS/SCASB/SCASW/SCASD—Scan String Vol. 2B 4-613



ELSE IF (Doubleword comparison)
THEN

temp := EAX – SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI := (R|E)DI + 4; 
ELSE (R|E)DI := (R|E)DI – 4; FI;

FI;
ELSE IF (Quadword comparison using REX.W )

THEN
temp := RAX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI := (R|E)DI + 8; 
ELSE (R|E)DI := (R|E)DI – 8; 

FI;
FI;

FI;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the limit of the ES segment.

If the ES register contains a NULL segment selector.
If an illegal memory operand effective address in the ES segment is given.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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SENDUIPI—Send User Interprocessor Interrupt

Instruction Operand Encoding

Description

The SENDUIPI instruction sends the user interprocessor interrupt (IPI) indicated by its register operand. (The 
operand always has 64 bits; operand-size overrides such as the prefix 66 are ignored.)

SENDUIPI uses a data structure called the user-interrupt target table (UITT). This table is located at the linear 
address UITTADDR (in the IA32_UINTR_TT MSR); it comprises UITTSZ+1 16-byte entries, where UITTSZ = 
IA32_UINT_MISC[31:0]. SENDUIPI uses the UITT entry (UITTE) indexed by the instruction's register operand. 
Each UITTE has the following format:
• Bit 0: V, a valid bit.
• Bits 7:1 are reserved and must be 0.
• Bits 15:8: UV, the user-interrupt vector (in the range 0–63, so bits 15:14 must be 0).
• Bits 63:16 are reserved.
• Bits 127:64: UPIDADDR, the linear address of a user posted-interrupt descriptor (UPID). (UPIDADDR is 64-

byte aligned, so bits 69:64 of each UITTE must be 0.)

Each UPID has the following format (fields and bits not referenced are reserved):
• Bit 0 (ON) indicates an outstanding notification. If this bit is set, there is a notification outstanding for one or 

more user interrupts in PIR.
• Bit 1 (SN) indicates that notifications should be suppressed. If this bit is set, agents (including SENDUIPI) 

should not send notifications when posting user interrupts in this descriptor.
• Bits 23:16 (NV) contain the notification vector. This is used by agents sending user-interrupt notifications 

(including SENDUIPI).
• Bits 63:32 (NDST) contain the notification destination. This is the target physical APIC ID (in xAPIC mode, 

bits 47:40 are the 8-bit APIC ID; in x2APIC mode, the entire field forms the 32-bit APIC ID).
• Bits 127:64 (PIF) contain posted-interrupt requests. There is one bit for each user-interrupt vector. There is a 

user-interrupt request for a vector if the corresponding bit is 1.
Although SENDUIPI may be executed at any privilege level, all of the instruction’s memory accesses (to a UITTE 
and a UPID) are performed with supervisor privilege.

SENDUIPI sends a user interrupt by posting a user interrupt with vector V in the UPID referenced by UPIDADDR 
and then sending, as an ordinary IPI, any notification interrupt specified in that UPID.

Operation

IF reg > UITTSZ;
THEN #GP(0);

FI;
read tempUITTE from 16 bytes at UITTADDR+ (reg « 4);
IF tempUITTE.V = 0 or tempUITTE sets any reserved bit

THEN #GP(0);
FI;

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F3 0F C7 /6 
SENDUIPI reg

A V/I UINTR Send interprocessor user interrupt.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r) N/A N/A N/A
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read tempUPID from 16 bytes at tempUITTE.UPIDADDR;// under lock
IF tempUPID sets any reserved bits or bits that must be zero

THEN #GP(0); // release lock
FI;
tempUPID.PIR[tempUITTE.UV] := 1;
IF tempUPID.SN = tempUPID.ON = 0

THEN
tempUPID.ON := 1;
sendNotify := 1;

ELSE sendNotify := 0;
FI;
write tempUPID to 16 bytes at tempUITTE.UPIDADDR;// release lock
IF sendNotify = 1

THEN
IF local APIC is in x2APIC mode

THEN send ordinary IPI with vector tempUPID.NV
to 32-bit physical APIC ID tempUPID.NDST;

ELSE send ordinary IPI with vector tempUPID.NV
to 8-bit physical APIC ID tempUPID.NDST[15:8];

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#UD The SENDUIPI instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The SENDUIPI instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The SENDUIPI instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The SENDUIPI instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If executed inside an enclave.
If CR4.UINTR = 0.
If IA32_UINTR_TT[0] = 0.
If CPUID.07H.0H:EDX.UINTR[bit 5] = 0.

#PF If a page fault occurs.
#GP If the value of the register operand exceeds UITTSZ.

If the selected UITTE is not valid or sets any reserved bits.
If the selected UPID sets any reserved bits.
If there is an attempt to access memory using a linear address that is not canonical relative to 
the current paging mode.
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SERIALIZE—Serialize Instruction Execution Vol. 2B 4-618

SERIALIZE—Serialize Instruction Execution 

Instruction Operand Encoding

Description

Serializes instruction execution. Before the next instruction is fetched and executed, the SERIALIZE instruction 
ensures that all modifications to flags, registers, and memory by previous instructions are completed, draining all 
buffered writes to memory. This instruction is also a serializing instruction as defined in the section “Serializing 
Instructions” in Chapter 10 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
SERIALIZE does not modify registers, arithmetic flags, or memory. 

Operation

Wait_On_Fetch_And_Execution_Of_Next_Instruction_Until(preceding_instructions_complete_and_preceding_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

SERIALIZE void _serialize(void);

SIMD Floating-Point Exceptions

None.

Other Exceptions
#UD If the LOCK prefix is used.

If CPUID.07H.0H:EDX.SERIALIZE[bit 14] = 0.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 01 E8
SERIALIZE

ZO V/V SERIALIZE Serialize instruction fetch and execution.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A N/A



SETcc—Set Byte on Condition
Opcode Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

0F 97 SETA r/m8 M Valid Valid Set byte if above (CF=0 and ZF=0).

REX + 0F 97 SETA r/m81 M Valid N.E. Set byte if above (CF=0 and ZF=0).

0F 93 SETAE r/m8 M Valid Valid Set byte if above or equal (CF=0).

REX + 0F 93 SETAE r/m81 M Valid N.E. Set byte if above or equal (CF=0).

0F 92 SETB r/m8 M Valid Valid Set byte if below (CF=1).

REX + 0F 92 SETB r/m81 M Valid N.E. Set byte if below (CF=1).

0F 96 SETBE r/m8 M Valid Valid Set byte if below or equal (CF=1 or ZF=1).

REX + 0F 96 SETBE r/m81 M Valid N.E. Set byte if below or equal (CF=1 or ZF=1).

0F 92 SETC r/m8 M Valid Valid Set byte if carry (CF=1).

REX + 0F 92 SETC r/m81 M Valid N.E. Set byte if carry (CF=1).

0F 94 SETE r/m8 M Valid Valid Set byte if equal (ZF=1).

REX + 0F 94 SETE r/m81 M Valid N.E. Set byte if equal (ZF=1).

0F 9F SETG r/m8 M Valid Valid Set byte if greater (ZF=0 and SF=OF).

REX + 0F 9F SETG r/m81 M Valid N.E. Set byte if greater (ZF=0 and SF=OF).

0F 9D SETGE r/m8 M Valid Valid Set byte if greater or equal (SF=OF).

REX + 0F 9D SETGE r/m81 M Valid N.E. Set byte if greater or equal (SF=OF).

0F 9C SETL r/m8 M Valid Valid Set byte if less (SF≠ OF).

REX + 0F 9C SETL r/m81 M Valid N.E. Set byte if less (SF≠ OF).

0F 9E SETLE r/m8 M Valid Valid Set byte if less or equal (ZF=1 or SF≠ OF).

REX + 0F 9E SETLE r/m81 M Valid N.E. Set byte if less or equal (ZF=1 or SF≠ OF).

0F 96 SETNA r/m8 M Valid Valid Set byte if not above (CF=1 or ZF=1).

REX + 0F 96 SETNA r/m81 M Valid N.E. Set byte if not above (CF=1 or ZF=1).

0F 92 SETNAE r/m8 M Valid Valid Set byte if not above or equal (CF=1).

REX + 0F 92 SETNAE r/m81 M Valid N.E. Set byte if not above or equal (CF=1).

0F 93 SETNB r/m8 M Valid Valid Set byte if not below (CF=0).

REX + 0F 93 SETNB r/m81 M Valid N.E. Set byte if not below (CF=0).

0F 97 SETNBE r/m8 M Valid Valid Set byte if not below or equal (CF=0 and ZF=0).

REX + 0F 97 SETNBE r/m81 M Valid N.E. Set byte if not below or equal (CF=0 and ZF=0).

0F 93 SETNC r/m8 M Valid Valid Set byte if not carry (CF=0).

REX + 0F 93 SETNC r/m81 M Valid N.E. Set byte if not carry (CF=0).

0F 95 SETNE r/m8 M Valid Valid Set byte if not equal (ZF=0).

REX + 0F 95 SETNE r/m81 M Valid N.E. Set byte if not equal (ZF=0).

0F 9E SETNG r/m8 M Valid Valid Set byte if not greater (ZF=1 or SF≠ OF)

REX + 0F 9E SETNG r/m81 M Valid N.E. Set byte if not greater (ZF=1 or SF≠ OF).

0F 9C SETNGE r/m8 M Valid Valid Set byte if not greater or equal (SF≠ OF).

REX + 0F 9C SETNGE r/m81 M Valid N.E. Set byte if not greater or equal (SF≠ OF).

0F 9D SETNL r/m8 M Valid Valid Set byte if not less (SF=OF).

REX + 0F 9D SETNL r/m81 M Valid N.E. Set byte if not less (SF=OF).

0F 9F SETNLE r/m8 M Valid Valid Set byte if not less or equal (ZF=0 and SF=OF).

REX + 0F 9F SETNLE r/m81 M Valid N.E. Set byte if not less or equal (ZF=0 and SF=OF).
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Instruction Operand Encoding

Description

Sets the destination operand to 0 or 1 depending on the settings of the status flags (CF, SF, OF, ZF, and PF) in the 
EFLAGS register. The destination operand points to a byte register or a byte in memory. The condition code suffix 
(cc) indicates the condition being tested for. 

The terms “above” and “below” are associated with the CF flag and refer to the relationship between two unsigned 
integer values. The terms “greater” and “less” are associated with the SF and OF flags and refer to the relationship 
between two signed integer values.

Many of the SETcc instruction opcodes have alternate mnemonics. For example, SETG (set byte if greater) and 
SETNLE (set if not less or equal) have the same opcode and test for the same condition: ZF equals 0 and SF equals 
OF. These alternate mnemonics are provided to make code more intelligible. Appendix B, “EFLAGS Condition 
Codes,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, shows the alternate 
mnemonics for various test conditions.

Some languages represent a logical one as an integer with all bits set. This representation can be obtained by 
choosing the logically opposite condition for the SETcc instruction, then decrementing the result. For example, to 
test for overflow, use the SETNO instruction, then decrement the result.

0F 91 SETNO r/m8 M Valid Valid Set byte if not overflow (OF=0).

REX + 0F 91 SETNO r/m81 M Valid N.E. Set byte if not overflow (OF=0).

0F 9B SETNP r/m8 M Valid Valid Set byte if not parity (PF=0).

REX + 0F 9B SETNP r/m81 M Valid N.E. Set byte if not parity (PF=0).

0F 99 SETNS r/m8 M Valid Valid Set byte if not sign (SF=0).

REX + 0F 99 SETNS r/m81 M Valid N.E. Set byte if not sign (SF=0).

0F 95 SETNZ r/m8 M Valid Valid Set byte if not zero (ZF=0).

REX + 0F 95 SETNZ r/m81 M Valid N.E. Set byte if not zero (ZF=0).

0F 90 SETO r/m8 M Valid Valid Set byte if overflow (OF=1)

REX + 0F 90 SETO r/m81 M Valid N.E. Set byte if overflow (OF=1).

0F 9A SETP r/m8 M Valid Valid Set byte if parity (PF=1).

REX + 0F 9A SETP r/m81 M Valid N.E. Set byte if parity (PF=1).

0F 9A SETPE r/m8 M Valid Valid Set byte if parity even (PF=1).

REX + 0F 9A SETPE r/m81 M Valid N.E. Set byte if parity even (PF=1).

0F 9B SETPO r/m8 M Valid Valid Set byte if parity odd (PF=0).

REX + 0F 9B SETPO r/m81 M Valid N.E. Set byte if parity odd (PF=0).

0F 98 SETS r/m8 M Valid Valid Set byte if sign (SF=1).

REX + 0F 98 SETS r/m81 M Valid N.E. Set byte if sign (SF=1).

0F 94 SETZ r/m8 M Valid Valid Set byte if zero (ZF=1).

REX + 0F 94 SETZ r/m81 M Valid N.E. Set byte if zero (ZF=1).

NOTES:
1. In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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The reg field of the ModR/M byte is not used for the SETCC instruction and those opcode bits are ignored by the 
processor.

In IA-64 mode, the operand size is fixed at 8 bits. Use of REX prefix enable uniform addressing to additional byte 
registers. Otherwise, this instruction’s operation is the same as in legacy mode and compatibility mode. 

Operation

IF condition
THEN DEST := 1; 
ELSE DEST := 0; 

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
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SETSSBSY—Mark Shadow Stack Busy

Instruction Operand Encoding

Description

The SETSSBSY instruction verifies the presence of a non-busy supervisor shadow stack token at the address in the 
IA32_PL0_SSP MSR and marks it busy. Following successful execution of the instruction, the SSP is set to the value 
of the IA32_PL0_SSP MSR.

Operation

IF (CR4.CET = 0)
THEN #UD; FI;

IF (IA32_S_CET.SH_STK_EN = 0)
THEN #UD; FI;

IF CPL > 0
THEN GP(0); FI;

SSP_LA = IA32_PL0_SSP
If SSP_LA not aligned to 8 bytes

THEN #GP(0); FI;

expected_token_value = SSP_LA (* busy bit must not be set *)
new_token_value          = SSP_LA | BUSY_BIT (* set busy bit; bit position 0 *)
IF shadow_stack_lock_cmpxchg8B(SSP_LA, new_token_value, expected_token_value) != expected_token_value

THEN #CP(SETSSBSY); FI;
SSP = SSP_LA

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

SETSSBSYvoid _setssbsy(void);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
IF IA32_S_CET.SH_STK_EN = 0.

#GP(0) If IA32_PL0_SSP not aligned to 8 bytes.
If CPL is not 0.

#CP(setssbsy) If busy bit in token is set.
If in 32-bit or compatibility mode, and the address in token is not below 4G.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F3 0F 01 E8
SETSSBSY

ZO V/V CET_SS Set busy flag in supervisor shadow stack token reference by 
IA32_PL0_SSP.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#UD The SETSSBSY instruction is not recognized in real-address mode. 

Virtual-8086 Mode Exceptions
#UD The SETSSBSY instruction is not recognized in virtual-8086 mode. 

Compatibility Mode Exceptions
Same as protected mode exceptions.

64-Bit Mode Exceptions
Same as protected mode exceptions.
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SFENCE—Store Fence

Instruction Operand Encoding

Description

Orders processor execution relative to all memory stores prior to the SFENCE instruction. The processor ensures 
that every store prior to SFENCE is globally visible before any store after SFENCE becomes globally visible. The 
SFENCE instruction is ordered with respect to memory stores, other SFENCE instructions, MFENCE instructions, 
and any serializing instructions (such as the CPUID instruction). It is not ordered with respect to memory loads or 
the LFENCE instruction. 

Weakly ordered memory types can be used to achieve higher processor performance through such techniques as 
out-of-order issue, write-combining, and write-collapsing. The degree to which a consumer of data recognizes or 
knows that the data is weakly ordered varies among applications and may be unknown to the producer of this data. 
The SFENCE instruction provides a performance-efficient way of ensuring store ordering between routines that 
produce weakly-ordered results and routines that consume this data.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Specification of the instruction's opcode above indicates a ModR/M byte of F8. For this instruction, the processor 
ignores the r/m field of the ModR/M byte. Thus, SFENCE is encoded by any opcode of the form 0F AE Fx, where x 
is in the range 8-F.

Operation

Wait_On_Following_Stores_Until(preceding_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_sfence(void)

Exceptions (All Operating Modes)
#UD If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

NP 0F AE F8 SFENCE ZO Valid Valid Serializes store operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A



SGDT—Store Global Descriptor Table Register

Instruction Operand Encoding

Description

Stores the content of the global descriptor table register (GDTR) in the destination operand. The destination 
operand specifies a memory location. 

In legacy or compatibility mode, the destination operand is a 6-byte memory location. If the operand-size attribute 
is 16 or 32 bits, the 16-bit limit field of the register is stored in the low 2 bytes of the memory location and the 32-
bit base address is stored in the high 4 bytes.

In 64-bit mode, the operand size is fixed at 8+2 bytes. The instruction stores an 8-byte base and a 2-byte limit.

SGDT is useful only by operating-system software. However, it can be used in application programs without causing 
an exception to be generated if CR4.UMIP = 0. See “LGDT/LIDT—Load Global/Interrupt Descriptor Table Register” 
in Chapter 3, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for information on 
loading the GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of the SGDT is compatible with the Intel 286 processor if the upper 8 bits are not referenced. The 
Intel 286 processor fills these bits with 1s; processor generations later than the Intel 286 processor fill these bits 
with 0s.

Operation

IF instruction is SGDT
IF OperandSize =16 or OperandSize = 32 (* Legacy or Compatibility Mode *)

THEN 
DEST[0:15] := GDTR(Limit);
DEST[16:47] := GDTR(Base); (* Full 32-bit base address stored *)
FI;

ELSE (* 64-bit Mode *)
DEST[0:15] := GDTR(Limit);
DEST[16:79] := GDTR(Base); (* Full 64-bit base address stored *)

FI; 
FI;

Flags Affected

None.

Opcode1

NOTES:
1. See the IA-32 Architecture Compatibility section below.

Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /0 SGDT m M Valid Valid Store GDTR to m.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A
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Protected Mode Exceptions
#UD If the LOCK prefix is used.
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If CR4.UMIP = 1 and CPL > 0.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If CR4.UMIP = 1.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#UD If the LOCK prefix is used.
#GP(0) If the memory address is in a non-canonical form.

If CR4.UMIP = 1 and CPL > 0.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.
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SHA1MSG1—Perform an Intermediate Calculation for the Next Four SHA1 Message Dwords

Instruction Operand Encoding

Description

The SHA1MSG1 instruction is one of two SHA1 message scheduling instructions. The instruction performs an inter-
mediate calculation for the next four SHA1 message dwords.

Operation

SHA1MSG1 
W0 := SRC1[127:96] ; 
W1 := SRC1[95:64] ; 
W2 := SRC1[63: 32] ; 
W3 := SRC1[31: 0] ; 
W4 := SRC2[127:96] ; 
W5 := SRC2[95:64] ; 

DEST[127:96] := W2 XOR W0; 
DEST[95:64] := W3 XOR W1; 
DEST[63:32] := W4 XOR W2; 
DEST[31:0] := W5 XOR W3; 

Intel C/C++ Compiler Intrinsic Equivalent

SHA1MSG1 __m128i _mm_sha1msg1_epu32(__m128i, __m128i);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions.”

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 38 C9 /r 
SHA1MSG1 xmm1, 
xmm2/m128

RM V/V SHA Performs an intermediate calculation for the next four SHA1 mes-
sage dwords using previous message dwords from xmm1 and 
xmm2/m128, storing the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (r, w) ModRM:r/m (r) N/A
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SHA1MSG2—Perform a Final Calculation for the Next Four SHA1 Message Dwords

Instruction Operand Encoding

Description

The SHA1MSG2 instruction is one of two SHA1 message scheduling instructions. The instruction performs the final 
calculation to derive the next four SHA1 message dwords.

Operation

SHA1MSG2 
W13 := SRC2[95:64] ; 
W14 := SRC2[63: 32] ; 
W15 := SRC2[31: 0] ; 
W16 := (SRC1[127:96] XOR W13 ) ROL 1; 
W17 := (SRC1[95:64] XOR W14) ROL 1; 
W18 := (SRC1[63: 32] XOR W15) ROL 1; 
W19 := (SRC1[31: 0] XOR W16) ROL 1; 

DEST[127:96] := W16; 
DEST[95:64] := W17; 
DEST[63:32] := W18; 
DEST[31:0] := W19; 

Intel C/C++ Compiler Intrinsic Equivalent

SHA1MSG2 __m128i _mm_sha1msg2_epu32(__m128i, __m128i);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions.”

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 38 CA /r 
SHA1MSG2 xmm1, 
xmm2/m128

RM V/V SHA Performs the final calculation for the next four SHA1 message 
dwords using intermediate results from xmm1 and the previous 
message dwords from xmm2/m128, storing the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (r, w) ModRM:r/m (r) N/A
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SHA1NEXTE—Calculate SHA1 State Variable E After Four Rounds

Instruction Operand Encoding

Description

The SHA1NEXTE calculates the SHA1 state variable E after four rounds of operation from the current SHA1 state 
variable A in the destination operand. The calculated value of the SHA1 state variable E is added to the source 
operand, which contains the scheduled dwords.

Operation

SHA1NEXTE 
TMP := (SRC1[127:96] ROL 30); 

DEST[127:96] := SRC2[127:96] + TMP; 
DEST[95:64] := SRC2[95:64]; 
DEST[63:32] := SRC2[63:32]; 
DEST[31:0] := SRC2[31:0]; 

Intel C/C++ Compiler Intrinsic Equivalent

SHA1NEXTE __m128i _mm_sha1nexte_epu32(__m128i, __m128i);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions.”

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 38 C8 /r 
SHA1NEXTE xmm1, 
xmm2/m128

RM V/V SHA Calculates SHA1 state variable E after four rounds of operation 
from the current SHA1 state variable A in xmm1. The calculated 
value of the SHA1 state variable E is added to the scheduled 
dwords in xmm2/m128, and stored with some of the scheduled 
dwords in xmm1.

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (r, w) ModRM:r/m (r) N/A



SHA1RNDS4—Perform Four Rounds of SHA1 Operation

Instruction Operand Encoding

Description

The SHA1RNDS4 instruction performs four rounds of SHA1 operation using an initial SHA1 state (A,B,C,D) from the 
first operand (which is a source operand and the destination operand) and some pre-computed sum of the next 4 
round message dwords, and state variable E from the second operand (a source operand). The updated SHA1 state 
(A,B,C,D) after four rounds of processing is stored in the destination operand.

Operation

SHA1RNDS4 
The function f() and Constant K are dependent on the value of the immediate.

IF ( imm8[1:0] = 0 )
THEN f() := f0(), K := K0; 

ELSE IF ( imm8[1:0] = 1 ) 
THEN f() := f1(), K := K1; 

ELSE IF ( imm8[1:0] = 2 ) 
THEN f() := f2(), K := K2; 

ELSE IF ( imm8[1:0] = 3 ) 
THEN f() := f3(), K := K3; 

FI;

A := SRC1[127:96]; 
B := SRC1[95:64]; 
C := SRC1[63:32]; 
D := SRC1[31:0]; 
W0E := SRC2[127:96]; 
W1 := SRC2[95:64]; 
W2 := SRC2[63:32]; 
W3 := SRC2[31:0]; 

Round i = 0 operation:
A_1 := f (B, C, D) + (A ROL 5) +W0E +K; 
B_1 := A; 
C_1 := B ROL 30; 
D_1 := C; 
E_1 := D; 

FOR i = 1 to 3
A_(i +1) := f (B_i, C_i, D_i) + (A_i ROL 5) +Wi+ E_i +K; 

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 3A CC /r ib
SHA1RNDS4 xmm1, 
xmm2/m128, imm8

RMI V/V SHA Performs four rounds of SHA1 operation operating on SHA1 state 
(A,B,C,D) from xmm1, with a pre-computed sum of the next 4 round 
message dwords and state variable E from xmm2/m128. The 
immediate byte controls logic functions and round constants.

Op/En Operand 1 Operand 2 Operand 3

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8
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B_(i +1) := A_i; 
C_(i +1) := B_i ROL 30; 
D_(i +1) := C_i; 
E_(i +1) := D_i; 

ENDFOR

DEST[127:96] := A_4; 
DEST[95:64] := B_4; 
DEST[63:32] := C_4; 
DEST[31:0] := D_4; 

Intel C/C++ Compiler Intrinsic Equivalent

SHA1RNDS4 __m128i _mm_sha1rnds4_epu32(__m128i, __m128i, const int);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions.”
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SHA256MSG1—Perform an Intermediate Calculation for the Next Four SHA256 Message 
Dwords

Instruction Operand Encoding

Description

The SHA256MSG1 instruction is one of two SHA256 message scheduling instructions. The instruction performs an 
intermediate calculation for the next four SHA256 message dwords.

Operation

SHA256MSG1 
W4 := SRC2[31: 0] ; 
W3 := SRC1[127:96] ; 
W2 := SRC1[95:64] ; 
W1 := SRC1[63: 32] ; 
W0 := SRC1[31: 0] ; 

DEST[127:96] := W3 + σ0( W4); 
DEST[95:64] := W2 + σ0( W3); 
DEST[63:32] := W1 + σ0( W2); 
DEST[31:0] := W0 + σ0( W1); 

Intel C/C++ Compiler Intrinsic Equivalent

SHA256MSG1 __m128i _mm_sha256msg1_epu32(__m128i, __m128i);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions.”

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 38 CC /r 
SHA256MSG1 xmm1, 
xmm2/m128

RM V/V SHA Performs an intermediate calculation for the next four SHA256 
message dwords using previous message dwords from xmm1 and 
xmm2/m128, storing the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (r, w) ModRM:r/m (r) N/A
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SHA256MSG2—Perform a Final Calculation for the Next Four SHA256 Message Dwords

Instruction Operand Encoding

Description

The SHA256MSG2 instruction is one of two SHA2 message scheduling instructions. The instruction performs the 
final calculation for the next four SHA256 message dwords.

Operation

SHA256MSG2 
W14 := SRC2[95:64] ; 
W15 := SRC2[127:96] ; 
W16 := SRC1[31: 0] + σ1( W14) ; 
W17 := SRC1[63: 32] + σ1( W15) ; 
W18 := SRC1[95: 64] + σ1( W16) ; 
W19 := SRC1[127: 96] + σ1( W17) ; 

DEST[127:96] := W19 ; 
DEST[95:64] := W18 ; 
DEST[63:32] := W17 ; 
DEST[31:0] := W16; 

Intel C/C++ Compiler Intrinsic Equivalent

SHA256MSG2 __m128i _mm_sha256msg2_epu32(__m128i, __m128i);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions.”

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 38 CD /r 
SHA256MSG2 xmm1, 
xmm2/m128

RM V/V SHA Performs the final calculation for the next four SHA256 message 
dwords using previous message dwords from xmm1 and 
xmm2/m128, storing the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (r, w) ModRM:r/m (r) N/A



SHA256RNDS2—Perform Two Rounds of SHA256 Operation

Instruction Operand Encoding

Description

The SHA256RNDS2 instruction performs 2 rounds of SHA256 operation using an initial SHA256 state (C,D,G,H) 
from the first operand, an initial SHA256 state (A,B,E,F) from the second operand, and a pre-computed sum of the 
next 2 round message dwords and the corresponding round constants from the implicit operand xmm0. Note that 
only the two lower dwords of XMM0 are used by the instruction.
The updated SHA256 state (A,B,E,F) is written to the first operand, and the second operand can be used as the 
updated state (C,D,G,H) in later rounds.

Operation

SHA256RNDS2 
A_0 := SRC2[127:96]; 
B_0 := SRC2[95:64]; 
C_0 := SRC1[127:96]; 
D_0 := SRC1[95:64]; 
E_0 := SRC2[63:32]; 
F_0 := SRC2[31:0]; 
G_0 := SRC1[63:32]; 
H_0 := SRC1[31:0]; 
WK0 := XMM0[31: 0]; 
WK1 := XMM0[63: 32]; 

FOR i = 0 to 1
A_(i +1) := Ch (E_i, F_i, G_i) +Σ1( E_i) +WKi+ H_i + Maj(A_i , B_i, C_i) +Σ0( A_i); 
B_(i +1) := A_i; 
C_(i +1) := B_i ; 
D_(i +1) := C_i; 
E_(i +1) := Ch (E_i, F_i, G_i) +Σ1( E_i) +WKi+ H_i + D_i; 
F_(i +1) := E_i ; 
G_(i +1) := F_i; 
H_(i +1) := G_i; 

ENDFOR

DEST[127:96] := A_2; 
DEST[95:64] := B_2; 
DEST[63:32] := E_2; 
DEST[31:0] := F_2; 

Opcode/
Instruction

Op/En 64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 38 CB /r 
SHA256RNDS2 xmm1, 
xmm2/m128, <XMM0>

RMI V/V SHA Perform 2 rounds of SHA256 operation using an initial SHA256 
state (C,D,G,H) from xmm1, an initial SHA256 state (A,B,E,F) from 
xmm2/m128, and a pre-computed sum of the next 2 round mes-
sage dwords and the corresponding round constants from the 
implicit operand XMM0, storing the updated SHA256 state 
(A,B,E,F) result in xmm1.

Op/En Operand 1 Operand 2 Operand 3

RMI ModRM:reg (r, w) ModRM:r/m (r) Implicit XMM0 (r)
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Intel C/C++ Compiler Intrinsic Equivalent

SHA256RNDS2 __m128i _mm_sha256rnds2_epu32(__m128i, __m128i, __m128i);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions.”
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SHLD—Double Precision Shift Left

Instruction Operand Encoding

Description

The SHLD instruction is used for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the left the number of bits specified by the third 
operand (count operand). The second operand (source operand) provides bits to shift in from the right (starting 
with bit 0 of the destination operand). 

The destination operand can be a register or a memory location; the source operand is a register. The count 
operand is an unsigned integer that can be stored in an immediate byte or in the CL register. If the count operand 
is CL, the shift count is the logical AND of CL and a count mask. In non-64-bit modes and default 64-bit mode; only 
bits 0 through 4 of the count are used. This masks the count to a value between 0 and 31. If a count is greater than 
the operand size, the result is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination operand. For a 1-bit 
shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If the count operand is 0, flags are not 
affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits 
(upgrading the count mask to 6 bits). See the summary chart at the beginning of this section for encoding data and 
limits.

Operation

IF (In 64-Bit Mode and REX.W = 1) 
THEN COUNT := COUNT MOD 64;
ELSE COUNT := COUNT MOD 32;

FI
SIZE := OperandSize;
IF COUNT = 0

THEN 
No operation;

ELSE

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F A4 /r ib SHLD r/m16, r16, imm8 MRI Valid Valid Shift r/m16 to left imm8 places while shifting 
bits from r16 in from the right.

0F A5 /r SHLD r/m16, r16, CL MRC Valid Valid Shift r/m16 to left CL places while shifting bits 
from r16 in from the right.

0F A4 /r ib SHLD r/m32, r32, imm8 MRI Valid Valid Shift r/m32 to left imm8 places while shifting 
bits from r32 in from the right.

REX.W + 0F A4 /r ib SHLD r/m64, r64, imm8 MRI Valid N.E. Shift r/m64 to left imm8 places while shifting 
bits from r64 in from the right.

0F A5 /r SHLD r/m32, r32, CL MRC Valid Valid Shift r/m32 to left CL places while shifting bits 
from r32 in from the right.

REX.W + 0F A5 /r SHLD r/m64, r64, CL MRC Valid N.E. Shift r/m64 to left CL places while shifting bits 
from r64 in from the right.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 N/A

MRC ModRM:r/m (w) ModRM:reg (r) CL N/A
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IF COUNT > SIZE
THEN (* Bad parameters *)

DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF := BIT[DEST, SIZE – COUNT];
(* Last bit shifted out on exit *)
FOR i := SIZE – 1 DOWN TO COUNT

DO
Bit(DEST, i) := Bit(DEST, i – COUNT);

OD;
FOR i := COUNT – 1 DOWN TO 0

DO
BIT[DEST, i] := BIT[SRC, i – COUNT + SIZE];

OD;
FI;

FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination operand and the SF, 
ZF, and PF flags are set according to the value of the result. For a 1-bit shift, the OF flag is set if a sign change 
occurred; otherwise, it is cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF flag 
is undefined. If the count operand is 0, the flags are not affected. If the count is greater than the operand size, the 
flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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SHRD—Double Precision Shift Right

Instruction Operand Encoding

Description

The SHRD instruction is useful for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the right the number of bits specified by the third 
operand (count operand). The second operand (source operand) provides bits to shift in from the left (starting with 
the most significant bit of the destination operand). 

The destination operand can be a register or a memory location; the source operand is a register. The count 
operand is an unsigned integer that can be stored in an immediate byte or the CL register. If the count operand is 
CL, the shift count is the logical AND of CL and a count mask. In non-64-bit modes and default 64-bit mode, the 
width of the count mask is 5 bits. Only bits 0 through 4 of the count register are used (masking the count to a value 
between 0 and 31). If the count is greater than the operand size, the result is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination operand. For a 1-bit 
shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If the count operand is 0, flags are not 
affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits 
(upgrading the count mask to 6 bits). See the summary chart at the beginning of this section for encoding data and 
limits.

Operation

IF (In 64-Bit Mode and REX.W = 1) 
THEN COUNT := COUNT MOD 64;
ELSE COUNT := COUNT MOD 32;

FI
SIZE := OperandSize;
IF COUNT = 0

THEN 
No operation;

ELSE

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AC /r ib SHRD r/m16, r16, imm8 MRI Valid Valid Shift r/m16 to right imm8 places while 
shifting bits from r16 in from the left.

0F AD /r SHRD r/m16, r16, CL MRC Valid Valid Shift r/m16 to right CL places while shifting 
bits from r16 in from the left.

0F AC /r ib SHRD r/m32, r32, imm8 MRI Valid Valid Shift r/m32 to right imm8 places while 
shifting bits from r32 in from the left.

REX.W + 0F AC /r ib SHRD r/m64, r64, imm8 MRI Valid N.E. Shift r/m64 to right imm8 places while 
shifting bits from r64 in from the left.

0F AD /r SHRD r/m32, r32, CL MRC Valid Valid Shift r/m32 to right CL places while shifting 
bits from r32 in from the left.

REX.W + 0F AD /r SHRD r/m64, r64, CL MRC Valid N.E. Shift r/m64 to right CL places while shifting 
bits from r64 in from the left.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 N/A

MRC ModRM:r/m (w) ModRM:reg (r) CL N/A
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IF COUNT > SIZE
THEN (* Bad parameters *)

DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF := BIT[DEST, COUNT – 1]; (* Last bit shifted out on exit *)
FOR i := 0 TO SIZE – 1 – COUNT

DO
BIT[DEST, i] := BIT[DEST, i + COUNT];

OD;
FOR i := SIZE – COUNT TO SIZE – 1

DO
BIT[DEST,i] := BIT[SRC, i + COUNT – SIZE];

OD;
FI;

FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination operand and the SF, 
ZF, and PF flags are set according to the value of the result. For a 1-bit shift, the OF flag is set if a sign change 
occurred; otherwise, it is cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF flag 
is undefined. If the count operand is 0, the flags are not affected. If the count is greater than the operand size, the 
flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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SHUFPD—Packed Interleave Shuffle of Pairs of Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Selects a double precision floating-point value of an input pair using a bit control and move to a designated element 
of the destination operand. The low-to-high order of double precision element of the destination operand is inter-
leaved between the first source operand and the second source operand at the granularity of input pair of 128 bits. 
Each bit in the imm8 byte, starting from bit 0, is the select control of the corresponding element of the destination 
to received the shuffled result of an input pair. 
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be 
a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 
64-bit memory location The destination operand is a ZMM/YMM/XMM register updated according to the writemask. 
The select controls are the lower 8/4/2 bits of the imm8 byte.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F C6 /r ib
SHUFPD xmm1, xmm2/m128, imm8

A V/V SSE2 Shuffle two pairs of double precision floating-point 
values from xmm1 and xmm2/m128 using imm8 to 
select from each pair, interleaved result is stored in 
xmm1.

VEX.128.66.0F.WIG C6 /r ib
VSHUFPD xmm1, xmm2, 
xmm3/m128, imm8

B V/V AVX Shuffle two pairs of double precision floating-point 
values from xmm2 and xmm3/m128 using imm8 to 
select from each pair, interleaved result is stored in 
xmm1.

VEX.256.66.0F.WIG C6 /r ib
VSHUFPD ymm1, ymm2, 
ymm3/m256, imm8

B V/V AVX Shuffle four pairs of double precision floating-point 
values from ymm2 and ymm3/m256 using imm8 to 
select from each pair, interleaved result is stored in 
xmm1.

EVEX.128.66.0F.W1 C6 /r ib
VSHUFPD xmm1{k1}{z}, xmm2, 
xmm3/m128/m64bcst, imm8

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Shuffle two pairs of double precision floating-point 
values from xmm2 and xmm3/m128/m64bcst using 
imm8 to select from each pair. store interleaved 
results in xmm1 subject to writemask k1.

EVEX.256.66.0F.W1 C6 /r ib
VSHUFPD ymm1{k1}{z}, ymm2, 
ymm3/m256/m64bcst, imm8

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shuffle four pairs of double precision floating-point 
values from ymm2 and ymm3/m256/m64bcst using 
imm8 to select from each pair. store interleaved 
results in ymm1 subject to writemask k1.

EVEX.512.66.0F.W1 C6 /r ib
VSHUFPD zmm1{k1}{z}, zmm2, 
zmm3/m512/m64bcst, imm8

C V/V AVX512F 
OR AVX10.11

Shuffle eight pairs of double precision floating-point 
values from zmm2 and zmm3/m512/m64bcst using 
imm8 to select from each pair. store interleaved 
results in zmm1 subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. The select controls are the bit 3:0 
of the imm8 byte, imm8[7:4) are ignored.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM 
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed. The select controls are the bit 1:0 of the imm8 byte, 
imm8[7:2) are ignored.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation operand and the first source operand is the same and is an XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are unmodified. The select controls are the bit 1:0 of the imm8 byte, 
imm8[7:2) are ignored.

Operation

VSHUFPD (EVEX Encoded Versions When SRC2 is a Vector Register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF IMM0[0] = 0

THEN TMP_DEST[63:0] := SRC1[63:0]
ELSE TMP_DEST[63:0] := SRC1[127:64] FI;

IF IMM0[1] = 0
THEN TMP_DEST[127:64] := SRC2[63:0]
ELSE TMP_DEST[127:64] := SRC2[127:64] FI;

IF VL >= 256
IF IMM0[2] = 0

THEN TMP_DEST[191:128] := SRC1[191:128]
ELSE TMP_DEST[191:128] := SRC1[255:192] FI;

IF IMM0[3] = 0
THEN TMP_DEST[255:192] := SRC2[191:128]
ELSE TMP_DEST[255:192] := SRC2[255:192] FI;

FI;
IF VL >= 512

IF IMM0[4] = 0
THEN TMP_DEST[319:256] := SRC1[319:256]
ELSE TMP_DEST[319:256] := SRC1[383:320] FI;

IF IMM0[5] = 0
THEN TMP_DEST[383:320] := SRC2[319:256]
ELSE TMP_DEST[383:320] := SRC2[383:320] FI;

IF IMM0[6] = 0
THEN TMP_DEST[447:384] := SRC1[447:384]
ELSE TMP_DEST[447:384] := SRC1[511:448] FI;

IF IMM0[7] = 0

Figure 1-25.  256-bit VSHUFPD Operation of Four Pairs of Double Precision Floating-Point Values

Y2 or Y3 X2 or X3 Y0 or Y1 X0 or X1DEST

X3 X2SRC1 X1 X0

Y3 Y2 Y1 Y0SRC2
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THEN TMP_DEST[511:448] := SRC2[447:384]
ELSE TMP_DEST[511:448] := SRC2[511:448] FI;

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VSHUFPD (EVEX Encoded Versions When SRC2 is Memory)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF (EVEX.b = 1) 

THEN TMP_SRC2[i+63:i] := SRC2[63:0]
ELSE TMP_SRC2[i+63:i] := SRC2[i+63:i]

FI;
ENDFOR;
IF IMM0[0] = 0

THEN TMP_DEST[63:0] := SRC1[63:0]
ELSE TMP_DEST[63:0] := SRC1[127:64] FI;

IF IMM0[1] = 0
THEN TMP_DEST[127:64] := TMP_SRC2[63:0]
ELSE TMP_DEST[127:64] := TMP_SRC2[127:64] FI;

IF VL >= 256
IF IMM0[2] = 0

THEN TMP_DEST[191:128] := SRC1[191:128]
ELSE TMP_DEST[191:128] := SRC1[255:192] FI;

IF IMM0[3] = 0
THEN TMP_DEST[255:192] := TMP_SRC2[191:128]
ELSE TMP_DEST[255:192] := TMP_SRC2[255:192] FI;

FI;
IF VL >= 512

IF IMM0[4] = 0
THEN TMP_DEST[319:256] := SRC1[319:256]
ELSE TMP_DEST[319:256] := SRC1[383:320] FI;

IF IMM0[5] = 0
THEN TMP_DEST[383:320] := TMP_SRC2[319:256]
ELSE TMP_DEST[383:320] := TMP_SRC2[383:320] FI;

IF IMM0[6] = 0
THEN TMP_DEST[447:384] := SRC1[447:384]
ELSE TMP_DEST[447:384] := SRC1[511:448] FI;

IF IMM0[7] = 0
THEN TMP_DEST[511:448] := TMP_SRC2[447:384]
ELSE TMP_DEST[511:448] := TMP_SRC2[511:448] FI;
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FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VSHUFPD (VEX.256 Encoded Version)
IF IMM0[0] = 0

THEN DEST[63:0] := SRC1[63:0]
ELSE DEST[63:0] := SRC1[127:64] FI;

IF IMM0[1] = 0
THEN DEST[127:64] := SRC2[63:0]
ELSE DEST[127:64] := SRC2[127:64] FI;

IF IMM0[2] = 0
THEN DEST[191:128] := SRC1[191:128]
ELSE DEST[191:128] := SRC1[255:192] FI;

IF IMM0[3] = 0
THEN DEST[255:192] := SRC2[191:128]
ELSE DEST[255:192] := SRC2[255:192] FI;

DEST[MAXVL-1:256] (Unmodified)

VSHUFPD (VEX.128 Encoded Version)
IF IMM0[0] = 0

THEN DEST[63:0] := SRC1[63:0]
ELSE DEST[63:0] := SRC1[127:64] FI;

IF IMM0[1] = 0
THEN DEST[127:64] := SRC2[63:0]
ELSE DEST[127:64] := SRC2[127:64] FI;

DEST[MAXVL-1:128] := 0

VSHUFPD (128-bit Legacy SSE Version)
IF IMM0[0] = 0

THEN DEST[63:0] := SRC1[63:0]
ELSE DEST[63:0] := SRC1[127:64] FI;

IF IMM0[1] = 0
THEN DEST[127:64] := SRC2[63:0]
ELSE DEST[127:64] := SRC2[127:64] FI;

DEST[MAXVL-1:128] (Unmodified)
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Intel C/C++ Compiler Intrinsic Equivalent

VSHUFPD __m512d _mm512_shuffle_pd(__m512d a, __m512d b, int imm);
VSHUFPD __m512d _mm512_mask_shuffle_pd(__m512d s, __mmask8 k, __m512d a, __m512d b, int imm);
VSHUFPD __m512d _mm512_maskz_shuffle_pd( __mmask8 k, __m512d a, __m512d b, int imm);
VSHUFPD __m256d _mm256_shuffle_pd (__m256d a, __m256d b, const int select);
VSHUFPD __m256d _mm256_mask_shuffle_pd(__m256d s, __mmask8 k, __m256d a, __m256d b, int imm);
VSHUFPD __m256d _mm256_maskz_shuffle_pd( __mmask8 k, __m256d a, __m256d b, int imm);
SHUFPD __m128d _mm_shuffle_pd (__m128d a, __m128d b, const int select);
VSHUFPD __m128d _mm_mask_shuffle_pd(__m128d s, __mmask8 k, __m128d a, __m128d b, int imm);
VSHUFPD __m128d _mm_maskz_shuffle_pd( __mmask8 k, __m128d a, __m128d b, int imm);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-52, “Type E4NF Class Exception Conditions.”
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SHUFPS—Packed Interleave Shuffle of Quadruplets of Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Selects a single precision floating-point value of an input quadruplet using a two-bit control and move to a desig-
nated element of the destination operand. Each 64-bit element-pair of a 128-bit lane of the destination operand is 
interleaved between the corresponding lane of the first source operand and the second source operand at the gran-
ularity 128 bits. Each two bits in the imm8 byte, starting from bit 0, is the select control of the corresponding 
element of a 128-bit lane of the destination to received the shuffled result of an input quadruplet. The two lower 
elements of a 128-bit lane in the destination receives shuffle results from the quadruple of the first source operand. 
The next two elements of the destination receives shuffle results from the quadruple of the second source operand. 
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be 
a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 
32-bit memory location. The destination operand is a ZMM/YMM/XMM register updated according to the writemask. 
imm8[7:0] provides 4 select controls for each applicable 128-bit lane of the destination.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. Imm8[7:0] provides 4 select 
controls for the high and low 128-bit of the destination.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F C6 /r ib
SHUFPS xmm1, xmm3/m128, imm8

A V/V SSE Select from quadruplet of single precision floating-
point values in xmm1 and xmm2/m128 using 
imm8, interleaved result pairs are stored in xmm1.

VEX.128.0F.WIG C6 /r ib
VSHUFPS xmm1, xmm2, xmm3/m128, 
imm8

B V/V AVX Select from quadruplet of single precision floating-
point values in xmm1 and xmm2/m128 using 
imm8, interleaved result pairs are stored in xmm1.

VEX.256.0F.WIG C6 /r ib
VSHUFPS ymm1, ymm2, ymm3/m256, 
imm8

B V/V AVX Select from quadruplet of single precision floating-
point values in ymm2 and ymm3/m256 using 
imm8, interleaved result pairs are stored in ymm1.

EVEX.128.0F.W0 C6 /r ib
VSHUFPS xmm1{k1}{z}, xmm2, 
xmm3/m128/m32bcst, imm8

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Select from quadruplet of single precision floating-
point values in xmm1 and xmm2/m128 using 
imm8, interleaved result pairs are stored in xmm1, 
subject to writemask k1.

EVEX.256.0F.W0 C6 /r ib
VSHUFPS ymm1{k1}{z}, ymm2, 
ymm3/m256/m32bcst, imm8

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Select from quadruplet of single precision floating-
point values in ymm2 and ymm3/m256 using 
imm8, interleaved result pairs are stored in ymm1, 
subject to writemask k1.

EVEX.512.0F.W0 C6 /r ib
VSHUFPS zmm1{k1}{z}, zmm2, 
zmm3/m512/m32bcst, imm8

C V/V AVX512F 
OR AVX10.11

Select from quadruplet of single precision floating-
point values in zmm2 and zmm3/m512 using imm8, 
interleaved result pairs are stored in zmm1, subject 
to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) imm8 N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM 
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed. Imm8[7:0] provides 4 select controls for each element of 
the destination.
128-bit Legacy SSE version: The source can be an XMM register or an 128-bit memory location. The destination is 
not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding ZMM 
register destination are unmodified. Imm8[7:0] provides 4 select controls for each element of the destination.

Operation

Select4(SRC, control) {
CASE (control[1:0]) OF

0: TMP := SRC[31:0];
1: TMP := SRC[63:32];
2: TMP := SRC[95:64];
3: TMP := SRC[127:96];

ESAC;
RETURN TMP
}

VPSHUFPS (EVEX Encoded Versions When SRC2 is a Vector Register)
(KL, VL) = (4, 128), (8, 256), (16, 512)

TMP_DEST[31:0] := Select4(SRC1[127:0], imm8[1:0]);
TMP_DEST[63:32] := Select4(SRC1[127:0], imm8[3:2]);
TMP_DEST[95:64] := Select4(SRC2[127:0], imm8[5:4]);
TMP_DEST[127:96] := Select4(SRC2[127:0], imm8[7:6]);
IF VL >= 256

TMP_DEST[159:128] := Select4(SRC1[255:128], imm8[1:0]);
TMP_DEST[191:160] := Select4(SRC1[255:128], imm8[3:2]);
TMP_DEST[223:192] := Select4(SRC2[255:128], imm8[5:4]);
TMP_DEST[255:224] := Select4(SRC2[255:128], imm8[7:6]);

FI;
IF VL >= 512

TMP_DEST[287:256] := Select4(SRC1[383:256], imm8[1:0]);
TMP_DEST[319:288] := Select4(SRC1[383:256], imm8[3:2]);
TMP_DEST[351:320] := Select4(SRC2[383:256], imm8[5:4]);
TMP_DEST[383:352] := Select4(SRC2[383:256], imm8[7:6]);
TMP_DEST[415:384] := Select4(SRC1[511:384], imm8[1:0]);
TMP_DEST[447:416] := Select4(SRC1[511:384], imm8[3:2]);
TMP_DEST[479:448] := Select4(SRC2[511:384], imm8[5:4]);
TMP_DEST[511:480] := Select4(SRC2[511:384], imm8[7:6]);

Figure 1-26.  256-bit VSHUFPS Operation of Selection from Input Quadruplet and Pair-wise Interleaved Result

Y7 .. Y4 X7 .. X4 Y3 ..Y0 X3 .. X0DEST

SRC1 X0

SRC2

X1X2X3X4X5X6X7

Y0Y1Y2Y3Y4Y5Y6Y7

X3 .. X0Y7 .. Y4 X7 .. X4 Y3 ..Y0
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FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPSHUFPS (EVEX Encoded Versions When SRC2 is Memory)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF (EVEX.b = 1) 

THEN TMP_SRC2[i+31:i] := SRC2[31:0]
ELSE TMP_SRC2[i+31:i] := SRC2[i+31:i]

FI;
ENDFOR;
TMP_DEST[31:0] := Select4(SRC1[127:0], imm8[1:0]);
TMP_DEST[63:32] := Select4(SRC1[127:0], imm8[3:2]);
TMP_DEST[95:64] := Select4(TMP_SRC2[127:0], imm8[5:4]);
TMP_DEST[127:96] := Select4(TMP_SRC2[127:0], imm8[7:6]);
IF VL >= 256

TMP_DEST[159:128] := Select4(SRC1[255:128], imm8[1:0]);
TMP_DEST[191:160] := Select4(SRC1[255:128], imm8[3:2]);
TMP_DEST[223:192] := Select4(TMP_SRC2[255:128], imm8[5:4]);
TMP_DEST[255:224] := Select4(TMP_SRC2[255:128], imm8[7:6]);

FI;
IF VL >= 512

TMP_DEST[287:256] := Select4(SRC1[383:256], imm8[1:0]);
TMP_DEST[319:288] := Select4(SRC1[383:256], imm8[3:2]);
TMP_DEST[351:320] := Select4(TMP_SRC2[383:256], imm8[5:4]);
TMP_DEST[383:352] := Select4(TMP_SRC2[383:256], imm8[7:6]);
TMP_DEST[415:384] := Select4(SRC1[511:384], imm8[1:0]);
TMP_DEST[447:416] := Select4(SRC1[511:384], imm8[3:2]);
TMP_DEST[479:448] := Select4(TMP_SRC2[511:384], imm8[5:4]);
TMP_DEST[511:480] := Select4(TMP_SRC2[511:384], imm8[7:6]);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI
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FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VSHUFPS (VEX.256 Encoded Version)
DEST[31:0] := Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] := Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] := Select4(SRC2[127:0], imm8[5:4]);
DEST[127:96] := Select4(SRC2[127:0], imm8[7:6]);
DEST[159:128] := Select4(SRC1[255:128], imm8[1:0]);
DEST[191:160] := Select4(SRC1[255:128], imm8[3:2]);
DEST[223:192] := Select4(SRC2[255:128], imm8[5:4]);
DEST[255:224] := Select4(SRC2[255:128], imm8[7:6]);
DEST[MAXVL-1:256] := 0

VSHUFPS (VEX.128 Encoded Version)
DEST[31:0] := Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] := Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] := Select4(SRC2[127:0], imm8[5:4]);
DEST[127:96] := Select4(SRC2[127:0], imm8[7:6]);
DEST[MAXVL-1:128] := 0

SHUFPS (128-bit Legacy SSE Version)
DEST[31:0] := Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] := Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] := Select4(SRC2[127:0], imm8[5:4]);
DEST[127:96] := Select4(SRC2[127:0], imm8[7:6]);
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VSHUFPS __m512 _mm512_shuffle_ps(__m512 a, __m512 b, int imm);
VSHUFPS __m512 _mm512_mask_shuffle_ps(__m512 s, __mmask16 k, __m512 a, __m512 b, int imm);
VSHUFPS __m512 _mm512_maskz_shuffle_ps(__mmask16 k, __m512 a, __m512 b, int imm);
VSHUFPS __m256 _mm256_shuffle_ps (__m256 a, __m256 b, const int select);
VSHUFPS __m256 _mm256_mask_shuffle_ps(__m256 s, __mmask8 k, __m256 a, __m256 b, int imm);
VSHUFPS __m256 _mm256_maskz_shuffle_ps(__mmask8 k, __m256 a, __m256 b, int imm);
SHUFPS __m128 _mm_shuffle_ps (__m128 a, __m128 b, const int select);
VSHUFPS __m128 _mm_mask_shuffle_ps(__m128 s, __mmask8 k, __m128 a, __m128 b, int imm);
VSHUFPS __m128 _mm_maskz_shuffle_ps(__mmask8 k, __m128 a, __m128 b, int imm);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-52, “Type E4NF Class Exception Conditions.”
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SIDT—Store Interrupt Descriptor Table Register

Instruction Operand Encoding

Description

Stores the content the interrupt descriptor table register (IDTR) in the destination operand. The destination 
operand specifies a 6-byte memory location. 

In non-64-bit modes, the 16-bit limit field of the register is stored in the low 2 bytes of the memory location and 
the 32-bit base address is stored in the high 4 bytes.

In 64-bit mode, the operand size fixed at 8+2 bytes. The instruction stores 8-byte base and 2-byte limit values.

SIDT is only useful in operating-system software; however, it can be used in application programs without causing 
an exception to be generated if CR4.UMIP = 0. See “LGDT/LIDT—Load Global/Interrupt Descriptor Table Register” 
in Chapter 3, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for information on 
loading the GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of SIDT is compatible with the Intel 286 processor if the upper 8 bits are not referenced. The Intel 
286 processor fills these bits with 1s; processor generations later than the Intel 286 processor fill these bits with 
0s.

Operation

IF instruction is SIDT
THEN

IF OperandSize =16 or OperandSize = 32 (* Legacy or Compatibility Mode *)
THEN 

DEST[0:15] := IDTR(Limit);
DEST[16:47] := IDTR(Base); FI; (* Full 32-bit base address stored *)

ELSE (* 64-bit Mode *)
DEST[0:15] := IDTR(Limit);
DEST[16:79] := IDTR(Base); (* Full 64-bit base address stored *)

FI;
FI;

Flags Affected

None.

Opcode1

NOTES:
1. See the IA-32 Architecture Compatibility section below.

Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /1 SIDT m M Valid Valid Store IDTR to m.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A
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Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If CR4.UMIP = 1 and CPL > 0.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If CR4.UMIP = 1.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#UD If the LOCK prefix is used.
#GP(0) If the memory address is in a non-canonical form.

If CR4.UMIP = 1 and CPL > 0.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.
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SLDT—Store Local Descriptor Table Register

Instruction Operand Encoding

Description

Stores the segment selector from the local descriptor table register (LDTR) in the destination operand. The desti-
nation operand can be a general-purpose register or a memory location. The segment selector stored with this 
instruction points to the segment descriptor (located in the GDT) for the current LDT. This instruction can only be 
executed in protected mode.

Outside IA-32e mode, when the destination operand is a 32-bit register, the 16-bit segment selector is copied into 
the low-order 16 bits of the register. The high-order 16 bits of the register are cleared for the Pentium 4, Intel Xeon, 
and P6 family processors. They are undefined for Pentium, Intel486, and Intel386 processors. When the destina-
tion operand is a memory location, the segment selector is written to memory as a 16-bit quantity, regardless of 
the operand size.

In compatibility mode, when the destination operand is a 32-bit register, the 16-bit segment selector is copied into 
the low-order 16 bits of the register. The high-order 16 bits of the register are cleared. When the destination 
operand is a memory location, the segment selector is written to memory as a 16-bit quantity, regardless of the 
operand size.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). The 
behavior of SLDT with a 64-bit register is to zero-extend the 16-bit selector and store it in the register. If the desti-
nation is memory and operand size is 64, SLDT will write the 16-bit selector to memory as a 16-bit quantity, 
regardless of the operand size.

Operation

DEST := LDTR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If CR4.UMIP = 1 and CPL > 0.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The SLDT instruction is not recognized in real-address mode.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 00 /0 SLDT r/m16 M Valid Valid Stores segment selector from LDTR in r/m16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A
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Virtual-8086 Mode Exceptions
#UD The SLDT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If CR4.UMIP = 1 and CPL > 0.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.
#UD If the LOCK prefix is used.
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SMSW—Store Machine Status Word

Instruction Operand Encoding

Description

Stores the machine status word (bits 0 through 15 of control register CR0) into the destination operand. The desti-
nation operand can be a general-purpose register or a memory location.

In non-64-bit modes, when the destination operand is a 32-bit register, the low-order 16 bits of register CR0 are 
copied into the low-order 16 bits of the register and the high-order 16 bits are undefined. When the destination 
operand is a memory location, the low-order 16 bits of register CR0 are written to memory as a 16-bit quantity, 
regardless of the operand size.

In 64-bit mode, the behavior of the SMSW instruction is defined by the following examples:
• SMSW r16 operand size 16, store CR0[15:0] in r16
• SMSW r32 operand size 32, zero-extend CR0[31:0], and store in r32
• SMSW r64 operand size 64, zero-extend CR0[63:0], and store in r64
• SMSW m16 operand size 16, store CR0[15:0] in m16
• SMSW m16 operand size 32, store CR0[15:0] in m16 (not m32)
• SMSW m16 operands size 64, store CR0[15:0] in m16 (not m64)

SMSW is only useful in operating-system software. However, it is not a privileged instruction and can be used in 
application programs if CR4.UMIP = 0. It is provided for compatibility with the Intel 286 processor. Programs and 
procedures intended to run on IA-32 and Intel 64 processors beginning with the Intel386 processors should use the 
MOV CR instruction to load the machine status word.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 26 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Operation

DEST := CR0[15:0]; 
(* Machine status word *)

Flags Affected

None.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /4 SMSW r/m16 M Valid Valid Store machine status word to r/m16.

0F 01 /4 SMSW r32/m16 M Valid Valid Store machine status word in low-order 16 
bits of r32/m16; high-order 16 bits of r32 are 
undefined.

REX.W + 0F 01 /4 SMSW r64/m16 M Valid Valid Store machine status word in low-order 16 
bits of r64/m16; high-order 16 bits of r32 are 
undefined.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A
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Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If CR4.UMIP = 1 and CPL > 0.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If CR4.UMIP = 1.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If CR4.UMIP = 1 and CPL > 0.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.
#UD If the LOCK prefix is used.
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SQRTPD—Square Root of Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD computation of the square roots of the two, four or eight packed double precision floating-point 
values in the source operand (the second operand) stores the packed double precision floating-point results in the 
destination operand (the first operand). 
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or 
a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is a 
ZMM/YMM/XMM register updated according to the writemask.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are 
zeroed.
VEX.128 encoded version: the source operand second source operand or a 128-bit memory location. The destina-
tion operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are 
zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit memory location. The destina-
tion is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding ZMM 
register destination are unmodified.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 51 /r
SQRTPD xmm1, xmm2/m128

A V/V SSE2 Computes Square Roots of the packed double precision 
floating-point values in xmm2/m128 and stores the 
result in xmm1.

VEX.128.66.0F.WIG 51 /r
VSQRTPD xmm1, xmm2/m128

A V/V AVX Computes Square Roots of the packed double precision 
floating-point values in xmm2/m128 and stores the 
result in xmm1.

VEX.256.66.0F.WIG 51 /r
VSQRTPD ymm1, ymm2/m256

A V/V AVX Computes Square Roots of the packed double precision 
floating-point values in ymm2/m256 and stores the 
result in ymm1.

EVEX.128.66.0F.W1 51 /r
VSQRTPD xmm1 {k1}{z}, 
xmm2/m128/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Computes Square Roots of the packed double precision 
floating-point values in xmm2/m128/m64bcst and 
stores the result in xmm1 subject to writemask k1.

EVEX.256.66.0F.W1 51 /r
VSQRTPD ymm1 {k1}{z}, 
ymm2/m256/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Computes Square Roots of the packed double precision 
floating-point values in ymm2/m256/m64bcst and 
stores the result in ymm1 subject to writemask k1.

EVEX.512.66.0F.W1 51 /r
VSQRTPD zmm1 {k1}{z}, 
zmm2/m512/m64bcst{er}

B V/V AVX512F OR 
AVX10.11

Computes Square Roots of the packed double precision 
floating-point values in zmm2/m512/m64bcst and 
stores the result in zmm1 subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation

VSQRTPD (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1) AND (SRC *is register*)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+63:i] := SQRT(SRC[63:0])
ELSE DEST[i+63:i] := SQRT(SRC[i+63:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VSQRTPD (VEX.256 Encoded Version)
DEST[63:0] := SQRT(SRC[63:0])
DEST[127:64] := SQRT(SRC[127:64])
DEST[191:128] := SQRT(SRC[191:128])
DEST[255:192] := SQRT(SRC[255:192])
DEST[MAXVL-1:256] := 0
.
VSQRTPD (VEX.128 Encoded Version)
DEST[63:0] := SQRT(SRC[63:0])
DEST[127:64] := SQRT(SRC[127:64])
DEST[MAXVL-1:128] := 0

SQRTPD (128-bit Legacy SSE Version)
DEST[63:0] := SQRT(SRC[63:0])
DEST[127:64] := SQRT(SRC[127:64])
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VSQRTPD __m512d _mm512_sqrt_round_pd(__m512d a, int r);
VSQRTPD __m512d _mm512_mask_sqrt_round_pd(__m512d s, __mmask8 k, __m512d a, int r);
VSQRTPD __m512d _mm512_maskz_sqrt_round_pd( __mmask8 k, __m512d a, int r);
VSQRTPD __m256d _mm256_sqrt_pd (__m256d a);
VSQRTPD __m256d _mm256_mask_sqrt_pd(__m256d s, __mmask8 k, __m256d a, int r);
VSQRTPD __m256d _mm256_maskz_sqrt_pd( __mmask8 k, __m256d a, int r);
SQRTPD __m128d _mm_sqrt_pd (__m128d a);
VSQRTPD __m128d _mm_mask_sqrt_pd(__m128d s, __mmask8 k, __m128d a, int r);
VSQRTPD __m128d _mm_maskz_sqrt_pd( __mmask8 k, __m128d a, int r);
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SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-19, “Type 2 Class Exception Conditions,” additionally:
#UD If VEX.vvvv != 1111B.
EVEX-encoded instruction, see Table 2-48, “Type E2 Class Exception Conditions,” additionally:
#UD If EVEX.vvvv != 1111B.
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SQRTPS—Square Root of Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD computation of the square roots of the four, eight or sixteen packed single precision floating-point 
values in the source operand (second operand) stores the packed single precision floating-point results in the desti-
nation operand. 
EVEX.512 encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location 
or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a 
ZMM/YMM/XMM register updated according to the writemask.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are 
zeroed.
VEX.128 encoded version: the source operand second source operand or a 128-bit memory location. The destina-
tion operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are 
zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit memory location. The destina-
tion is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding ZMM 
register destination are unmodified.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 51 /r
SQRTPS xmm1, xmm2/m128

A V/V SSE Computes Square Roots of the packed single precision 
floating-point values in xmm2/m128 and stores the result 
in xmm1.

VEX.128.0F.WIG 51 /r
VSQRTPS xmm1, xmm2/m128

A V/V AVX Computes Square Roots of the packed single precision 
floating-point values in xmm2/m128 and stores the result 
in xmm1.

VEX.256.0F.WIG 51/r
VSQRTPS ymm1, ymm2/m256

A V/V AVX Computes Square Roots of the packed single precision 
floating-point values in ymm2/m256 and stores the result 
in ymm1.

EVEX.128.0F.W0 51 /r
VSQRTPS xmm1 {k1}{z}, 
xmm2/m128/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Computes Square Roots of the packed single precision 
floating-point values in xmm2/m128/m32bcst and stores 
the result in xmm1 subject to writemask k1.

EVEX.256.0F.W0 51 /r
VSQRTPS ymm1 {k1}{z}, 
ymm2/m256/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Computes Square Roots of the packed single precision 
floating-point values in ymm2/m256/m32bcst and stores 
the result in ymm1 subject to writemask k1.

EVEX.512.0F.W0 51/r
VSQRTPS zmm1 {k1}{z}, 
zmm2/m512/m32bcst{er}

B V/V AVX512F 
OR AVX10.11

Computes Square Roots of the packed single precision 
floating-point values in zmm2/m512/m32bcst and stores 
the result in zmm1 subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
SQRTPS—Square Root of Single Precision Floating-Point Values Vol. 2B 4-660



Operation

VSQRTPS (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1) AND (SRC *is register*)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+31:i] := SQRT(SRC[31:0])
ELSE DEST[i+31:i] := SQRT(SRC[i+31:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VSQRTPS (VEX.256 Encoded Version)
DEST[31:0] := SQRT(SRC[31:0])
DEST[63:32] := SQRT(SRC[63:32])
DEST[95:64] := SQRT(SRC[95:64])
DEST[127:96] := SQRT(SRC[127:96])
DEST[159:128] := SQRT(SRC[159:128])
DEST[191:160] := SQRT(SRC[191:160])
DEST[223:192] := SQRT(SRC[223:192])
DEST[255:224] := SQRT(SRC[255:224])

VSQRTPS (VEX.128 Encoded Version)
DEST[31:0] := SQRT(SRC[31:0])
DEST[63:32] := SQRT(SRC[63:32])
DEST[95:64] := SQRT(SRC[95:64])
DEST[127:96] := SQRT(SRC[127:96])
DEST[MAXVL-1:128] := 0

SQRTPS (128-bit Legacy SSE Version)
DEST[31:0] := SQRT(SRC[31:0])
DEST[63:32] := SQRT(SRC[63:32])
DEST[95:64] := SQRT(SRC[95:64])
DEST[127:96] := SQRT(SRC[127:96])
DEST[MAXVL-1:128] (Unmodified)
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Intel C/C++ Compiler Intrinsic Equivalent

VSQRTPS __m512 _mm512_sqrt_round_ps(__m512 a, int r);
VSQRTPS __m512 _mm512_mask_sqrt_round_ps(__m512 s, __mmask16 k, __m512 a, int r);
VSQRTPS __m512 _mm512_maskz_sqrt_round_ps( __mmask16 k, __m512 a, int r);
VSQRTPS __m256 _mm256_sqrt_ps (__m256 a);
VSQRTPS __m256 _mm256_mask_sqrt_ps(__m256 s, __mmask8 k, __m256 a, int r);
VSQRTPS __m256 _mm256_maskz_sqrt_ps( __mmask8 k, __m256 a, int r);
SQRTPS __m128 _mm_sqrt_ps (__m128 a);
VSQRTPS __m128 _mm_mask_sqrt_ps(__m128 s, __mmask8 k, __m128 a, int r);
VSQRTPS __m128 _mm_maskz_sqrt_ps( __mmask8 k, __m128 a, int r);

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-19, “Type 2 Class Exception Conditions,” additionally:
#UD If VEX.vvvv != 1111B.
EVEX-encoded instruction, see Table 2-48, “Type E2 Class Exception Conditions,” additionally:
#UD If EVEX.vvvv != 1111B.
SQRTPS—Square Root of Single Precision Floating-Point Values Vol. 2B 4-662



SQRTSD—Compute Square Root of Scalar Double Precision Floating-Point Value 

Instruction Operand Encoding

Description

Computes the square root of the low double precision floating-point value in the second source operand and stores 
the double precision floating-point result in the destination operand. The second source operand can be an XMM 
register or a 64-bit memory location. The first source and destination operands are XMM registers. 
128-bit Legacy SSE version: The first source operand and the destination operand are the same. The quadword at 
bits 127:64 of the destination operand remains unchanged. Bits (MAXVL-1:64) of the corresponding destination 
register remain unchanged.
VEX.128 and EVEX encoded versions: Bits 127:64 of the destination operand are copied from the corresponding 
bits of the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination operand is updated according to the write-
mask.
Software should ensure VSQRTSD is encoded with VEX.L=0. Encoding VSQRTSD with VEX.L=1 may encounter 
unpredictable behavior across different processor generations.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F2 0F 51/r
SQRTSD xmm1,xmm2/m64

A V/V SSE2 Computes square root of the low double precision floating-
point value in xmm2/m64 and stores the results in xmm1.

VEX.LIG.F2.0F.WIG 51/r
VSQRTSD xmm1,xmm2, xmm3/m64

B V/V AVX Computes square root of the low double precision floating-
point value in xmm3/m64 and stores the results in xmm1. 
Also, upper double precision floating-point value 
(bits[127:64]) from xmm2 is copied to xmm1[127:64].

EVEX.LLIG.F2.0F.W1 51/r
VSQRTSD xmm1 {k1}{z}, xmm2, 
xmm3/m64{er}

C V/V AVX512F 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Computes square root of the low double precision floating-
point value in xmm3/m64 and stores the results in xmm1 
under writemask k1. Also, upper double precision floating-
point value (bits[127:64]) from xmm2 is copied to 
xmm1[127:64].

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VSQRTSD (EVEX Encoded Version)
IF (EVEX.b = 1) AND (SRC2 *is register*)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[63:0] := SQRT(SRC2[63:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

VSQRTSD (VEX.128 Encoded Version)
DEST[63:0] := SQRT(SRC2[63:0])
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

SQRTSD (128-bit Legacy SSE Version)
DEST[63:0] := SQRT(SRC[63:0])
DEST[MAXVL-1:64] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VSQRTSD __m128d _mm_sqrt_round_sd(__m128d a, __m128d b, int r);
VSQRTSD __m128d _mm_mask_sqrt_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int r);
VSQRTSD __m128d _mm_maskz_sqrt_round_sd(__mmask8 k, __m128d a, __m128d b, int r);
SQRTSD __m128d _mm_sqrt_sd (__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-49, “Type E3 Class Exception Conditions.”
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SQRTSS—Compute Square Root of Scalar Single Precision Value 

Instruction Operand Encoding

Description

Computes the square root of the low single precision floating-point value in the second source operand and stores 
the single precision floating-point result in the destination operand. The second source operand can be an XMM 
register or a 32-bit memory location. The first source and destination operands is an XMM register. 
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAXVL-
1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 and EVEX encoded versions: Bits 127:32 of the destination operand are copied from the corresponding 
bits of the first source operand. Bits (MAXVL-1:128) of the destination ZMM register are zeroed.
EVEX encoded version: The low doubleword element of the destination operand is updated according to the write-
mask.
Software should ensure VSQRTSS is encoded with VEX.L=0. Encoding VSQRTSS with VEX.L=1 may encounter 
unpredictable behavior across different processor generations.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F3 0F 51 /r
SQRTSS xmm1, xmm2/m32

A V/V SSE Computes square root of the low single precision floating-
point value in xmm2/m32 and stores the results in xmm1.

VEX.LIG.F3.0F.WIG 51 /r
VSQRTSS xmm1, xmm2, 
xmm3/m32

B V/V AVX Computes square root of the low single precision floating-
point value in xmm3/m32 and stores the results in xmm1. 
Also, upper single precision floating-point values 
(bits[127:32]) from xmm2 are copied to xmm1[127:32].

EVEX.LLIG.F3.0F.W0 51 /r
VSQRTSS xmm1 {k1}{z}, xmm2, 
xmm3/m32{er}

C V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Computes square root of the low single precision floating-
point value in xmm3/m32 and stores the results in xmm1 
under writemask k1. Also, upper single precision floating-
point values (bits[127:32]) from xmm2 are copied to 
xmm1[127:32].

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VSQRTSS (EVEX Encoded Version)
IF (EVEX.b = 1) AND (SRC2 *is register*)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[31:0] := SQRT(SRC2[31:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

DEST[31:0] := 0
FI;

FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

VSQRTSS (VEX.128 Encoded Version)
DEST[31:0] := SQRT(SRC2[31:0])
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

SQRTSS (128-bit Legacy SSE Version)
DEST[31:0] := SQRT(SRC2[31:0])
DEST[MAXVL-1:32] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VSQRTSS __m128 _mm_sqrt_round_ss(__m128 a, __m128 b, int r);
VSQRTSS __m128 _mm_mask_sqrt_round_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, int r);
VSQRTSS __m128 _mm_maskz_sqrt_round_ss( __mmask8 k, __m128 a, __m128 b, int r);
SQRTSS __m128 _mm_sqrt_ss(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Other Exceptions
Non-EVEX-encoded instruction, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-49, “Type E3 Class Exception Conditions.”
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STAC—Set AC Flag in EFLAGS Register Vol. 2B 4-667

STAC—Set AC Flag in EFLAGS Register

Instruction Operand Encoding

Description

Sets the AC flag bit in EFLAGS register. This may enable alignment checking of user-mode data accesses. This 
allows explicit supervisor-mode data accesses to user-mode pages even if the SMAP bit is set in the CR4 register.
This instruction's operation is the same in non-64-bit modes and 64-bit mode. Attempts to execute STAC when 
CPL > 0 cause #UD.

Operation

EFLAGS.AC := 1;

Flags Affected

AC set. Other flags are unaffected.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

Virtual-8086 Mode Exceptions
#UD The STAC instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 01 CB

STAC

ZO V/V SMAP Set the AC flag in the EFLAGS register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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STC—Set Carry Flag

Instruction Operand Encoding

Description

Sets the CF flag in the EFLAGS register. Operation is the same in all modes.

Operation

CF := 1;

Flags Affected

The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F9 STC ZO Valid Valid Set CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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STD—Set Direction Flag

Instruction Operand Encoding

Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations decrement the index regis-
ters (ESI and/or EDI). Operation is the same in all modes.

Operation

DF := 1;

Flags Affected

The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

FD STD ZO Valid Valid Set DF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A



STI—Set Interrupt Flag

Instruction Operand Encoding

Description

In most cases, STI sets the interrupt flag (IF) in the EFLAGS register. This allows the processor to respond to 
maskable hardware interrupts.

If IF = 0, maskable hardware interrupts remain inhibited on the instruction boundary following an execution of STI. 
(The delayed effect of this instruction is provided to allow interrupts to be enabled just before returning from a 
procedure or subroutine. For instance, if an STI instruction is followed by an RET instruction, the RET instruction is 
allowed to execute before external interrupts are recognized. No interrupts can be recognized if an execution of CLI 
immediately follow such an execution of STI.) The inhibition ends after delivery of another event (e.g., exception) 
or the execution of the next instruction.

The IF flag and the STI and CLI instructions do not prohibit the generation of exceptions and nonmaskable inter-
rupts (NMIs). However, NMIs (and system-management interrupts) may be inhibited on the instruction boundary 
following an execution of STI that begins with IF = 0.

Operation is different in two modes defined as follows:
• PVI mode (protected-mode virtual interrupts): CR0.PE = 1, EFLAGS.VM = 0, CPL = 3, and CR4.PVI = 1;
• VME mode (virtual-8086 mode extensions): CR0.PE = 1, EFLAGS.VM = 1, and CR4.VME = 1.

If IOPL < 3, EFLAGS.VIP = 1, and either VME mode or PVI mode is active, STI sets the VIF flag in the EFLAGS 
register, leaving IF unaffected.

Table 1-19 indicates the action of the STI instruction depending on the processor operating mode, IOPL, CPL, and 
EFLAGS.VIP.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

FB STI ZO Valid Valid Set interrupt flag; external, maskable 
interrupts enabled at the end of the next 
instruction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

Table 1-19.  Decision Table for STI Results 
Mode IOPL EFLAGS.VIP STI Result

Real-address X1

NOTES:
1. X = This setting has no effect on instruction operation.

X IF = 1

Protected, not PVI2
≥ CPL X IF = 1

< CPL X #GP fault

Protected, PVI3
3 X IF = 1

0–2
0 VIF = 1

1 #GP fault

Virtual-8086, not VME3 3 X IF = 1

0–2 X #GP fault

Virtual-8086, VME3

3 X IF = 1

0–2
0 VIF = 1

1 #GP fault
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Operation

IF CR0.PE = 0  (* Executing in real-address mode *)
THEN IF := 1; (* Set Interrupt Flag *)
ELSE

IF IOPL ≥ CPL (* CPL = 3 if EFLAGS.VM = 1 *)
THEN IF := 1; (* Set Interrupt Flag *)
ELSE

IF VME mode OR PVI mode
THEN

IF EFLAGS.VIP = 0
THEN VIF := 1; (* Set Virtual Interrupt Flag *)
ELSE #GP(0); 

FI;
ELSE #GP(0); 

FI;
FI;

FI;

Flags Affected

Either the IF flag or the VIF flag is set to 1. Other flags are unaffected.

Protected Mode Exceptions
#GP(0) If CPL is greater than IOPL and PVI mode is not active.

If CPL is greater than IOPL and EFLAGS.VIP = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If IOPL is less than 3 and VME mode is not active.

If IOPL is less than 3 and EFLAGS.VIP = 1.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

2. For this table, “protected mode” applies whenever CR0.PE = 1 and EFLAGS.VM = 0; it includes compatibility mode and 64-bit mode.
3. PVI mode and virtual-8086 mode each imply CPL = 3.
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STMXCSR—Store MXCSR Register State

Instruction Operand Encoding

Description

Stores the contents of the MXCSR control and status register to the destination operand. The destination operand 
is a 32-bit memory location. The reserved bits in the MXCSR register are stored as 0s.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
VEX.L must be 0, otherwise instructions will #UD.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

m32 := MXCSR;

Intel C/C++ Compiler Intrinsic Equivalent

_mm_getcsr(void)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-22, “Type 5 Class Exception Conditions,” additionally:
#UD If VEX.L= 1,

If VEX.vvvv ≠ 1111B.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F AE /3

STMXCSR m32

M V/V SSE Store contents of MXCSR register to m32.

VEX.LZ.0F.WIG AE /3

VSTMXCSR m32

M V/V AVX Store contents of MXCSR register to m32.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A



STOS/STOSB/STOSW/STOSD/STOSQ—Store String

Instruction Operand Encoding

Description

In non-64-bit and default 64-bit mode; stores a byte, word, or doubleword from the AL, AX, or EAX register 
(respectively) into the destination operand. The destination operand is a memory location, the address of which is 
read from either the ES:EDI or ES:DI register (depending on the address-size attribute of the instruction and the 
mode of operation). The ES segment cannot be overridden with a segment override prefix.

At the assembly-code level, two forms of the instruction are allowed: the “explicit-operands” form and the “no-
operands” form. The explicit-operands form (specified with the STOS mnemonic) allows the destination operand to 
be specified explicitly. Here, the destination operand should be a symbol that indicates the size and location of the 
destination value. The source operand is then automatically selected to match the size of the destination operand 
(the AL register for byte operands, AX for word operands, EAX for doubleword operands). The explicit-operands 
form is provided to allow documentation; however, note that the documentation provided by this form can be 
misleading. That is, the destination operand symbol must specify the correct type (size) of the operand (byte, 
word, or doubleword), but it does not have to specify the correct location. The location is always specified by the 
ES:(E)DI register. These must be loaded correctly before the store string instruction is executed.

The no-operands form provides “short forms” of the byte, word, doubleword, and quadword versions of the STOS 
instructions. Here also ES:(E)DI is assumed to be the destination operand and AL, AX, or EAX is assumed to be the 
source operand. The size of the destination and source operands is selected by the mnemonic: STOSB (byte read 
from register AL), STOSW (word from AX), STOSD (doubleword from EAX).

After the byte, word, or doubleword is transferred from the register to the memory location, the (E)DI register is 
incremented or decremented according to the setting of the DF flag in the EFLAGS register. If the DF flag is 0, the 
register is incremented; if the DF flag is 1, the register is decremented (the register is incremented or decremented 
by 1 for byte operations, by 2 for word operations, by 4 for doubleword operations).

NOTE
To improve performance, more recent processors support modifications to the processor’s 
operation during the string store operations initiated with STOS and STOSB. See Section 7.3.9.3 in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for additional 
information on fast-string operation.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

AA STOS m8 ZO Valid Valid For legacy mode, store AL at address ES:(E)DI; For 64-
bit mode store AL at address RDI or EDI.

AB STOS m16 ZO Valid Valid For legacy mode, store AX at address ES:(E)DI; For 64-
bit mode store AX at address RDI or EDI.

AB STOS m32 ZO Valid Valid For legacy mode, store EAX at address ES:(E)DI; For 
64-bit mode store EAX at address RDI or EDI.

REX.W + AB STOS m64 ZO Valid N.E. Store RAX at address RDI or EDI.

AA STOSB ZO Valid Valid For legacy mode, store AL at address ES:(E)DI; For 64-
bit mode store AL at address RDI or EDI.

AB STOSW ZO Valid Valid For legacy mode, store AX at address ES:(E)DI; For 64-
bit mode store AX at address RDI or EDI.

AB STOSD ZO Valid Valid For legacy mode, store EAX at address ES:(E)DI; For 
64-bit mode store EAX at address RDI or EDI.

REX.W + AB STOSQ ZO Valid N.E. Store RAX at address RDI or EDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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In 64-bit mode, the default address size is 64 bits, 32-bit address size is supported using the prefix 67H. Using a 
REX prefix in the form of REX.W promotes operation on doubleword operand to 64 bits. The promoted no-operand 
mnemonic is STOSQ. STOSQ (and its explicit operands variant) store a quadword from the RAX register into the 
destination addressed by RDI or EDI. See the summary chart at the beginning of this section for encoding data and 
limits.

The STOS, STOSB, STOSW, STOSD, STOSQ instructions can be preceded by the REP prefix for block stores of ECX 
bytes, words, or doublewords. More often, however, these instructions are used within a LOOP construct because 
data needs to be moved into the AL, AX, or EAX register before it can be stored. See “REP/REPE/REPZ 
/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a description of the REP prefix.

Operation

Non-64-bit Mode:
IF (Byte store)

THEN
DEST := AL;

THEN IF DF = 0
THEN (E)DI := (E)DI + 1; 
ELSE (E)DI := (E)DI – 1; 

FI;
ELSE IF (Word store)

THEN
DEST := AX;

THEN IF DF = 0
THEN (E)DI := (E)DI + 2; 
ELSE (E)DI := (E)DI – 2; 

FI;
FI;

ELSE IF (Doubleword store)
THEN

DEST := EAX;
THEN IF DF = 0

THEN (E)DI := (E)DI + 4; 
ELSE (E)DI := (E)DI – 4; 

FI;
FI;

FI;

64-bit Mode:
IF (Byte store)

THEN
DEST := AL;

THEN IF DF = 0
THEN (R|E)DI := (R|E)DI + 1; 
ELSE (R|E)DI := (R|E)DI – 1; 

FI;
ELSE IF (Word store)

THEN
DEST := AX;

THEN IF DF = 0
THEN (R|E)DI := (R|E)DI + 2; 
ELSE (R|E)DI := (R|E)DI – 2; 

FI;
FI;

ELSE IF (Doubleword store)
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THEN
DEST := EAX;

THEN IF DF = 0
THEN (R|E)DI := (R|E)DI + 4; 
ELSE (R|E)DI := (R|E)DI – 4; 

FI;
FI;

ELSE IF (Quadword store using REX.W )
THEN

DEST := RAX;
THEN IF DF = 0

THEN (R|E)DI := (R|E)DI + 8; 
ELSE (R|E)DI := (R|E)DI – 8; 

FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the limit of the ES segment.
If the ES register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the ES segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the ES segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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STR—Store Task Register

Instruction Operand Encoding

Description

Stores the segment selector from the task register (TR) in the destination operand. The destination operand can be 
a general-purpose register or a memory location. The segment selector stored with this instruction points to the 
task state segment (TSS) for the currently running task.

When the destination operand is a 32-bit register, the 16-bit segment selector is copied into the lower 16 bits of the 
register and the upper 16 bits of the register are cleared. When the destination operand is a memory location, the 
segment selector is written to memory as a 16-bit quantity, regardless of operand size.

In 64-bit mode, operation is the same. The size of the memory operand is fixed at 16 bits. In register stores, the 
2-byte TR is zero extended if stored to a 64-bit register.

The STR instruction is useful only in operating-system software. It can only be executed in protected mode.

Operation

DEST := TR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is a memory operand that is located in a non-writable segment or if the 

effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If CR4.UMIP = 1 and CPL > 0.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The STR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The STR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 00 /1 STR r/m16 M Valid Valid Stores segment selector from TR in r/m16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A
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64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If CR4.UMIP = 1 and CPL > 0.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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STTILECFG—Store Tile Configuration

Instruction Operand Encoding

Description

The STTILECFG instruction takes a pointer to a 64-byte memory location (described in Table 1-63 in the “LDTI-
LECFG—Load Tile Configuration” entry) that will, after successful execution of this instruction, contain the descrip-
tion of the tiles that were configured. In order to configure tiles, the AMX-TILE bit in CPUID must be set and the 
operating system has to have enabled the tiles architecture.
If the tiles are not configured, then STTILECFG stores 64B of zeros to the indicated memory location. 
Any attempt to execute the STTILECFG instruction inside an Intel TSX transaction will result in a transaction abort.

Operation

STTILECFG mem
if TILES_CONFIGURED == 0:

//write 64 bytes of zeros at mem pointer 
buf[0..63] := 0
write_memory(mem, 64, buf) 

else:
buf.byte[0] := tilecfg.palette_id 
buf.byte[1] := tilecfg.start_row 
buf.byte[2..15] := 0

p := 16
for n in 0 ... palette_table[tilecfg.palette_id].max_names-1: 

buf.word[p/2] := tilecfg.t[n].colsb
p := p + 2 

if p < 47:
buf.byte[p..47] := 0

p := 48
for n in 0 ... palette_table[tilecfg.palette_id].max_names-1: 

buf.byte[p++] := tilecfg.t[n].rows
if p < 63:

buf.byte[p..63] := 0

write_memory(mem, 64, buf)

Intel C/C++ Compiler Intrinsic Equivalent

STTILECFGvoid _tile_storeconfig(void *);

Flags Affected
None.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 49 !(11):000:bbb
STTILECFG m512

A V/N.E. AMX-TILE Store tile configuration in m512.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (w) N/A N/A N/A
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Exceptions
AMX-E2; see Section 2.10, “Intel® AMX Instruction Exception Classes,” for details.
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STUI—Set User Interrupt Flag Vol. 2B 4-680

STUI—Set User Interrupt Flag

Instruction Operand Encoding

Description

STUI sets the user interrupt flag (UIF). Its effect takes place immediately; a user interrupt may be delivered on the 
instruction boundary following STUI. (This is in contrast with STI, whose effect is delayed by one instruction).
An execution of STUI inside a transactional region causes a transactional abort; the abort loads EAX as it would 
have had it been due to an execution of STI.

Operation

UIF := 1;

Flags Affected

None.

Protected Mode Exceptions
#UD The STUI instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The STUI instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The STUI instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The STUI instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If executed inside an enclave.
If CR4.UINTR = 0.
If CPUID.07H.0H:EDX.UINTR[bit 5] = 0.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F3 0F 01 EF
STUI

ZO V/I UINTR Set user interrupt flag.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A N/A



SUB—Subtract

Instruction Operand Encoding

Description

Subtracts the second operand (source operand) from the first operand (destination operand) and stores the result 
in the destination operand. The destination operand can be a register or a memory location; the source operand 
can be an immediate, register, or memory location. (However, two memory operands cannot be used in one 
instruction.) When an immediate value is used as an operand, it is sign-extended to the length of the destination 
operand format.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

2C ib SUB AL, imm8 I Valid Valid Subtract imm8 from AL.

2D iw SUB AX, imm16 I Valid Valid Subtract imm16 from AX.

2D id SUB EAX, imm32 I Valid Valid Subtract imm32 from EAX.

REX.W + 2D id SUB RAX, imm32 I Valid N.E. Subtract imm32 sign-extended to 64-bits 
from RAX.

80 /5 ib SUB r/m8, imm8 MI Valid Valid Subtract imm8 from r/m8.

REX + 80 /5 ib SUB r/m81, imm8

NOTES:
1. In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

MI Valid N.E. Subtract imm8 from r/m8.

81 /5 iw SUB r/m16, imm16 MI Valid Valid Subtract imm16 from r/m16.

81 /5 id SUB r/m32, imm32 MI Valid Valid Subtract imm32 from r/m32.

REX.W + 81 /5 id SUB r/m64, imm32 MI Valid N.E. Subtract imm32 sign-extended to 64-bits 
from r/m64.

83 /5 ib SUB r/m16, imm8 MI Valid Valid Subtract sign-extended imm8 from r/m16.

83 /5 ib SUB r/m32, imm8 MI Valid Valid Subtract sign-extended imm8 from r/m32.

REX.W + 83 /5 ib SUB r/m64, imm8 MI Valid N.E. Subtract sign-extended imm8 from r/m64.

28 /r SUB r/m8, r8 MR Valid Valid Subtract r8 from r/m8.

REX + 28 /r SUB r/m81, r81 MR Valid N.E. Subtract r8 from r/m8.

29 /r SUB r/m16, r16 MR Valid Valid Subtract r16 from r/m16.

29 /r SUB r/m32, r32 MR Valid Valid Subtract r32 from r/m32.

REX.W + 29 /r SUB r/m64, r64 MR Valid N.E. Subtract r64 from r/m64.

2A /r SUB r8, r/m8 RM Valid Valid Subtract r/m8 from r8.

REX + 2A /r SUB r81, r/m81 RM Valid N.E. Subtract r/m8 from r8.

2B /r SUB r16, r/m16 RM Valid Valid Subtract r/m16 from r16.

2B /r SUB r32, r/m32 RM Valid Valid Subtract r/m32 from r32.

REX.W + 2B /r SUB r64, r/m64 RM Valid N.E. Subtract r/m64 from r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 N/A N/A

MI ModRM:r/m (r, w) imm8/16/32 N/A N/A

MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
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The SUB instruction performs integer subtraction. It evaluates the result for both signed and unsigned integer 
operands and sets the OF and CF flags to indicate an overflow in the signed or unsigned result, respectively. The SF 
flag indicates the sign of the signed result.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

Operation

DEST := (DEST – SRC);

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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SUBPD—Subtract Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD subtract of the two, four or eight packed double precision floating-point values of the second 
Source operand from the first Source operand, and stores the packed double precision floating-point results in the 
destination operand.
VEX.128 and EVEX.128 encoded versions: The second source operand is an XMM register or an 128-bit memory 
location. The first source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the corre-
sponding destination register are zeroed.
VEX.256 and EVEX.256 encoded versions: The second source operand is an YMM register or an 256-bit memory 
location. The first source operand and destination operands are YMM registers. Bits (MAXVL-1:256) of the corre-
sponding destination register are zeroed.
EVEX.512 encoded version: The second source operand is a ZMM register, a 512-bit memory location or a 512-bit 
vector broadcasted from a 64-bit memory location. The first source operand and destination operands are ZMM 
registers. The destination operand is conditionally updated according to the writemask.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper Bits (MAXVL-1:128) of the corresponding 
register destination are unmodified.

Opcode/
Instruction

Op/E
n

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 5C /r
SUBPD xmm1, xmm2/m128

A V/V SSE2 Subtract packed double precision floating-point values 
in xmm2/mem from xmm1 and store result in xmm1.

VEX.128.66.0F.WIG 5C /r
VSUBPD xmm1,xmm2, xmm3/m128

B V/V AVX Subtract packed double precision floating-point values 
in xmm3/mem from xmm2 and store result in xmm1.

VEX.256.66.0F.WIG 5C /r
VSUBPD ymm1, ymm2, ymm3/m256

B V/V AVX Subtract packed double precision floating-point values 
in ymm3/mem from ymm2 and store result in ymm1.

EVEX.128.66.0F.W1 5C /r
VSUBPD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst 

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Subtract packed double precision floating-point values 
from xmm3/m128/m64bcst to xmm2 and store result 
in xmm1 with writemask k1.

EVEX.256.66.0F.W1 5C /r
VSUBPD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Subtract packed double precision floating-point values 
from ymm3/m256/m64bcst to ymm2 and store result 
in ymm1 with writemask k1.

EVEX.512.66.0F.W1 5C /r
VSUBPD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst{er}

C V/V AVX512F 
OR AVX10.11

Subtract packed double precision floating-point values 
from zmm3/m512/m64bcst to zmm2 and store result 
in zmm1 with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VSUBPD (EVEX Encoded Versions When SRC2 Operand is a Vector Register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC1[i+63:i] - SRC2[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

DEST[63:0] := 0
FI;

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VSUBPD (EVEX Encoded Versions When SRC2 Operand is a Memory Source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1)
THEN DEST[i+63:i] := SRC1[i+63:i] - SRC2[63:0];
ELSE EST[i+63:i] := SRC1[i+63:i] - SRC2[i+63:i];

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

DEST[63:0] := 0
FI;

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VSUBPD (VEX.256 Encoded Version)
DEST[63:0] := SRC1[63:0] - SRC2[63:0]
DEST[127:64] := SRC1[127:64] - SRC2[127:64]
DEST[191:128] := SRC1[191:128] - SRC2[191:128]
DEST[255:192] := SRC1[255:192] - SRC2[255:192]
DEST[MAXVL-1:256] := 0
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VSUBPD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0] - SRC2[63:0]
DEST[127:64] := SRC1[127:64] - SRC2[127:64]
DEST[MAXVL-1:128] := 0

SUBPD (128-bit Legacy SSE Version)
DEST[63:0] := DEST[63:0] - SRC[63:0]
DEST[127:64] := DEST[127:64] - SRC[127:64]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VSUBPD __m512d _mm512_sub_pd (__m512d a, __m512d b);
VSUBPD __m512d _mm512_mask_sub_pd (__m512d s, __mmask8 k, __m512d a, __m512d b);
VSUBPD __m512d _mm512_maskz_sub_pd (__mmask8 k, __m512d a, __m512d b);
VSUBPD __m512d _mm512_sub_round_pd (__m512d a, __m512d b, int);
VSUBPD __m512d _mm512_mask_sub_round_pd (__m512d s, __mmask8 k, __m512d a, __m512d b, int);
VSUBPD __m512d _mm512_maskz_sub_round_pd (__mmask8 k, __m512d a, __m512d b, int);
VSUBPD __m256d _mm256_sub_pd (__m256d a, __m256d b);
VSUBPD __m256d _mm256_mask_sub_pd (__m256d s, __mmask8 k, __m256d a, __m256d b);
VSUBPD __m256d _mm256_maskz_sub_pd (__mmask8 k, __m256d a, __m256d b);
SUBPD __m128d _mm_sub_pd (__m128d a, __m128d b);
VSUBPD __m128d _mm_mask_sub_pd (__m128d s, __mmask8 k, __m128d a, __m128d b);
VSUBPD __m128d _mm_maskz_sub_pd (__mmask8 k, __m128d a, __m128d b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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SUBPS—Subtract Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD subtract of the packed single precision floating-point values in the second Source operand from 
the First Source operand, and stores the packed single precision floating-point results in the destination operand.
VEX.128 and EVEX.128 encoded versions: The second source operand is an XMM register or an 128-bit memory 
location. The first source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the corre-
sponding destination register are zeroed.
VEX.256 and EVEX.256 encoded versions: The second source operand is an YMM register or an 256-bit memory 
location. The first source operand and destination operands are YMM registers. Bits (MAXVL-1:256) of the corre-
sponding destination register are zeroed.
EVEX.512 encoded version: The second source operand is a ZMM register, a 512-bit memory location or a 512-bit 
vector broadcasted from a 32-bit memory location. The first source operand and destination operands are ZMM 
registers. The destination operand is conditionally updated according to the writemask.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper Bits (MAXVL-1:128) of the corresponding 
register destination are unmodified.

Opcode/
Instruction

Op/E
n

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 5C /r
SUBPS xmm1, xmm2/m128

A V/V SSE Subtract packed single precision floating-point values 
in xmm2/mem from xmm1 and store result in xmm1.

VEX.128.0F.WIG 5C /r
VSUBPS xmm1,xmm2, xmm3/m128

B V/V AVX Subtract packed single precision floating-point values 
in xmm3/mem from xmm2 and stores result in xmm1.

VEX.256.0F.WIG 5C /r
VSUBPS ymm1, ymm2, ymm3/m256

B V/V AVX Subtract packed single precision floating-point values 
in ymm3/mem from ymm2 and stores result in ymm1.

EVEX.128.0F.W0 5C /r
VSUBPS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst 

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Subtract packed single precision floating-point values 
from xmm3/m128/m32bcst to xmm2 and stores 
result in xmm1 with writemask k1.

EVEX.256.0F.W0 5C /r
VSUBPS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Subtract packed single precision floating-point values 
from ymm3/m256/m32bcst to ymm2 and stores 
result in ymm1 with writemask k1.

EVEX.512.0F.W0 5C /r
VSUBPS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst{er} 

C V/V AVX512F 
OR AVX10.11

Subtract packed single precision floating-point values 
in zmm3/m512/m32bcst from zmm2 and stores result 
in zmm1 with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VSUBPS (EVEX Encoded Versions When SRC2 Operand is a Vector Register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC1[i+31:i] - SRC2[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

DEST[31:0] := 0
FI;

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

VSUBPS (EVEX Encoded Versions When SRC2 Operand is a Memory Source)
(KL, VL) = (4, 128), (8, 256),(16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1)
THEN DEST[i+31:i] := SRC1[i+31:i] - SRC2[31:0];
ELSE DEST[i+31:i] := SRC1[i+31:i] - SRC2[i+31:i];

FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

DEST[31:0] := 0
FI;

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

VSUBPS (VEX.256 Encoded Version)
DEST[31:0] := SRC1[31:0] - SRC2[31:0]
DEST[63:32] := SRC1[63:32] - SRC2[63:32]
DEST[95:64] := SRC1[95:64] - SRC2[95:64]
DEST[127:96] := SRC1[127:96] - SRC2[127:96]
DEST[159:128] := SRC1[159:128] - SRC2[159:128]
DEST[191:160] := SRC1[191:160] - SRC2[191:160]
DEST[223:192] := SRC1[223:192] - SRC2[223:192]
DEST[255:224] := SRC1[255:224] - SRC2[255:224].
DEST[MAXVL-1:256] := 0
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VSUBPS (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0] - SRC2[31:0]
DEST[63:32] := SRC1[63:32] - SRC2[63:32]
DEST[95:64] := SRC1[95:64] - SRC2[95:64]
DEST[127:96] := SRC1[127:96] - SRC2[127:96]
DEST[MAXVL-1:128] := 0

SUBPS (128-bit Legacy SSE Version)
DEST[31:0] := SRC1[31:0] - SRC2[31:0]
DEST[63:32] := SRC1[63:32] - SRC2[63:32]
DEST[95:64] := SRC1[95:64] - SRC2[95:64]
DEST[127:96] := SRC1[127:96] - SRC2[127:96]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VSUBPS __m512 _mm512_sub_ps (__m512 a, __m512 b);
VSUBPS __m512 _mm512_mask_sub_ps (__m512 s, __mmask16 k, __m512 a, __m512 b);
VSUBPS __m512 _mm512_maskz_sub_ps (__mmask16 k, __m512 a, __m512 b);
VSUBPS __m512 _mm512_sub_round_ps (__m512 a, __m512 b, int);
VSUBPS __m512 _mm512_mask_sub_round_ps (__m512 s, __mmask16 k, __m512 a, __m512 b, int);
VSUBPS __m512 _mm512_maskz_sub_round_ps (__mmask16 k, __m512 a, __m512 b, int);
VSUBPS __m256 _mm256_sub_ps (__m256 a, __m256 b);
VSUBPS __m256 _mm256_mask_sub_ps (__m256 s, __mmask8 k, __m256 a, __m256 b);
VSUBPS __m256 _mm256_maskz_sub_ps (__mmask16 k, __m256 a, __m256 b);
SUBPS __m128 _mm_sub_ps (__m128 a, __m128 b);
VSUBPS __m128 _mm_mask_sub_ps (__m128 s, __mmask8 k, __m128 a, __m128 b);
VSUBPS __m128 _mm_maskz_sub_ps (__mmask16 k, __m128 a, __m128 b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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SUBSD—Subtract Scalar Double Precision Floating-Point Value

Instruction Operand Encoding

Description

Subtract the low double precision floating-point value in the second source operand from the first source operand 
and stores the double precision floating-point result in the low quadword of the destination operand.
The second source operand can be an XMM register or a 64-bit memory location. The first source and destination 
operands are XMM registers. 
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (MAXVL-1:64) of the 
corresponding destination register remain unchanged.
VEX.128 and EVEX encoded versions: Bits (127:64) of the XMM register destination are copied from corresponding 
bits in the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination operand is updated according to the write-
mask.
Software should ensure VSUBSD is encoded with VEX.L=0. Encoding VSUBSD with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

F2 0F 5C /r
SUBSD xmm1, xmm2/m64

A V/V SSE2 Subtract the low double precision floating-point value in 
xmm2/m64 from xmm1 and store the result in xmm1.

VEX.LIG.F2.0F.WIG 5C /r
VSUBSD xmm1,xmm2, xmm3/m64

B V/V AVX Subtract the low double precision floating-point value in 
xmm3/m64 from xmm2 and store the result in xmm1.

EVEX.LLIG.F2.0F.W1 5C /r
VSUBSD xmm1 {k1}{z}, xmm2, 
xmm3/m64{er}

C V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Subtract the low double precision floating-point value in 
xmm3/m64 from xmm2 and store the result in xmm1 
under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VSUBSD (EVEX Encoded Version)
IF (SRC2 *is register*) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[63:0] := SRC1[63:0] - SRC2[63:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

VSUBSD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0] - SRC2[63:0]
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

SUBSD (128-bit Legacy SSE Version)
DEST[63:0] := DEST[63:0] - SRC[63:0]
DEST[MAXVL-1:64] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VSUBSD __m128d _mm_mask_sub_sd (__m128d s, __mmask8 k, __m128d a, __m128d b);
VSUBSD __m128d _mm_maskz_sub_sd (__mmask8 k, __m128d a, __m128d b);
VSUBSD __m128d _mm_sub_round_sd (__m128d a, __m128d b, int);
VSUBSD __m128d _mm_mask_sub_round_sd (__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VSUBSD __m128d _mm_maskz_sub_round_sd (__mmask8 k, __m128d a, __m128d b, int);
SUBSD __m128d _mm_sub_sd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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SUBSS—Subtract Scalar Single Precision Floating-Point Value

Instruction Operand Encoding

Description

Subtract the low single precision floating-point value from the second source operand and the first source operand 
and store the double precision floating-point result in the low doubleword of the destination operand.
The second source operand can be an XMM register or a 32-bit memory location. The first source and destination 
operands are XMM registers. 
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (MAXVL-1:32) of the 
corresponding destination register remain unchanged.
VEX.128 and EVEX encoded versions: Bits (127:32) of the XMM register destination are copied from corresponding 
bits in the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.
EVEX encoded version: The low doubleword element of the destination operand is updated according to the write-
mask.
Software should ensure VSUBSS is encoded with VEX.L=0. Encoding VSUBSD with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F3 0F 5C /r
SUBSS xmm1, xmm2/m32

A V/V SSE Subtract the low single precision floating-point value in 
xmm2/m32 from xmm1 and store the result in xmm1.

VEX.LIG.F3.0F.WIG 5C /r
VSUBSS xmm1,xmm2, xmm3/m32

B V/V AVX Subtract the low single precision floating-point value in 
xmm3/m32 from xmm2 and store the result in xmm1.

EVEX.LLIG.F3.0F.W0 5C /r
VSUBSS xmm1 {k1}{z}, xmm2, 
xmm3/m32{er}

C V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Subtract the low single precision floating-point value in 
xmm3/m32 from xmm2 and store the result in xmm1 
under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VSUBSS (EVEX Encoded Version)
IF (SRC2 *is register*) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[31:0] := SRC1[31:0] - SRC2[31:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

VSUBSS (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0] - SRC2[31:0]
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

SUBSS (128-bit Legacy SSE Version)
DEST[31:0] := DEST[31:0] - SRC[31:0]
DEST[MAXVL-1:32] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VSUBSS __m128 _mm_mask_sub_ss (__m128 s, __mmask8 k, __m128 a, __m128 b);
VSUBSS __m128 _mm_maskz_sub_ss (__mmask8 k, __m128 a, __m128 b);
VSUBSS __m128 _mm_sub_round_ss (__m128 a, __m128 b, int);
VSUBSS __m128 _mm_mask_sub_round_ss (__m128 s, __mmask8 k, __m128 a, __m128 b, int);
VSUBSS __m128 _mm_maskz_sub_round_ss (__mmask8 k, __m128 a, __m128 b, int);
SUBSS __m128 _mm_sub_ss (__m128 a, __m128 b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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SWAPGS—Swap GS Base Register

Instruction Operand Encoding

Description

SWAPGS exchanges the current GS base register value with the value contained in MSR address C0000102H 
(IA32_KERNEL_GS_BASE). The SWAPGS instruction is a privileged instruction intended for use by system soft-
ware. 

When using SYSCALL to implement system calls, there is no kernel stack at the OS entry point. Neither is there a 
straightforward method to obtain a pointer to kernel structures from which the kernel stack pointer could be read. 
Thus, the kernel cannot save general purpose registers or reference memory. 

By design, SWAPGS does not require any general purpose registers or memory operands. No registers need to be 
saved before using the instruction. SWAPGS exchanges the CPL 0 data pointer from the IA32_KERNEL_GS_BASE 
MSR with the GS base register. The kernel can then use the GS prefix on normal memory references to access 
kernel data structures. Similarly, when the OS kernel is entered using an interrupt or exception (where the kernel 
stack is already set up), SWAPGS can be used to quickly get a pointer to the kernel data structures.

The IA32_KERNEL_GS_BASE MSR itself is only accessible using RDMSR/WRMSR instructions. Those instructions 
are only accessible at privilege level 0. The WRMSR instruction ensures that the IA32_KERNEL_GS_BASE MSR 
contains a canonical address.

Operation

IF CS.L ≠ 1 (* Not in 64-Bit Mode *)
THEN

#UD; FI;

IF CPL ≠ 0
THEN #GP(0); FI;

tmp := GS.base;
GS.base := IA32_KERNEL_GS_BASE;
IA32_KERNEL_GS_BASE := tmp;

Flags Affected

None.

Protected Mode Exceptions
#UD If Mode ≠ 64-Bit.

Real-Address Mode Exceptions
#UD If Mode ≠ 64-Bit.

Virtual-8086 Mode Exceptions
#UD If Mode ≠ 64-Bit.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 F8 SWAPGS ZO Valid Invalid Exchanges the current GS base register value with 
the value contained in MSR address C0000102H.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Compatibility Mode Exceptions
#UD If Mode ≠ 64-Bit.

64-Bit Mode Exceptions
#GP(0) If CPL ≠ 0.
#UD If the LOCK prefix is used.
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SYSCALL—Fast System Call

Instruction Operand Encoding

Description

SYSCALL invokes an OS system-call handler at privilege level 0. It does so by loading RIP from the IA32_LSTAR 
MSR (after saving the address of the instruction following SYSCALL into RCX). (The WRMSR instruction ensures 
that the IA32_LSTAR MSR always contain a canonical address.)

SYSCALL also saves RFLAGS into R11 and then masks RFLAGS using the IA32_FMASK MSR (MSR address 
C0000084H); specifically, the processor clears in RFLAGS every bit corresponding to a bit that is set in the 
IA32_FMASK MSR.

SYSCALL loads the CS and SS selectors with values derived from bits 47:32 of the IA32_STAR MSR. However, the 
CS and SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those selectors. 
Instead, the descriptor caches are loaded with fixed values. See the Operation section for details. It is the respon-
sibility of OS software to ensure that the descriptors (in GDT or LDT) referenced by those selector values corre-
spond to the fixed values loaded into the descriptor caches; the SYSCALL instruction does not ensure this 
correspondence.

The SYSCALL instruction does not save the stack pointer (RSP). If the OS system-call handler will change the stack 
pointer, it is the responsibility of software to save the previous value of the stack pointer. This might be done prior 
to executing SYSCALL, with software restoring the stack pointer with the instruction following SYSCALL (which will 
be executed after SYSRET). Alternatively, the OS system-call handler may save the stack pointer and restore it 
before executing SYSRET.

When shadow stacks are enabled at a privilege level where the SYSCALL instruction is invoked, the SSP is saved to 
the IA32_PL3_SSP MSR. If shadow stacks are enabled at privilege level 0, the SSP is loaded with 0. Refer to 
Chapter 6, “Procedure Calls, Interrupts, and Exceptions‚” and Chapter 18, “Control-flow Enforcement Technology 
(CET)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for additional CET details.

Instruction ordering. Instructions following a SYSCALL may be fetched from memory before earlier instructions 
complete execution, but they will not execute (even speculatively) until all instructions prior to the SYSCALL have 
completed execution (the later instructions may execute before data stored by the earlier instructions have 
become globally visible).

Operation

IF (CS.L ≠ 1 ) or (IA32_EFER.LMA ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD;
FI;

RCX := RIP; (* Will contain address of next instruction *)
RIP := IA32_LSTAR;
R11 := RFLAGS;
RFLAGS := RFLAGS AND NOT(IA32_FMASK);

CS.Selector := IA32_STAR[47:32] AND FFFCH (* Operating system provides CS; RPL forced to 0 *)
(* Set rest of CS to a fixed value *)
CS.Base := 0; (* Flat segment *)
CS.Limit := FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
CS.Type := 11; (* Execute/read code, accessed *)

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 05 SYSCALL ZO Valid Invalid Fast call to privilege level 0 system procedures.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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CS.S := 1;
CS.DPL := 0;
CS.P := 1;
CS.L := 1; (* Entry is to 64-bit mode *)
CS.D := 0; (* Required if CS.L = 1 *)
CS.G := 1; (* 4-KByte granularity *)

IF ShadowStackEnabled(CPL)
THEN (* adjust so bits 63:N get the value of bit N–1, where N is the CPU’s maximum linear-address width *)

IA32_PL3_SSP := LA_adjust(SSP);
(* With shadow stacks enabled the system call is supported from Ring 3 to Ring 0 *)
(* OS supporting Ring 0 to Ring 0 system calls or Ring 1/2 to ring 0 system call *)
(* Must preserve the contents of IA32_PL3_SSP to avoid losing ring 3 state *)

FI;

CPL := 0;

IF ShadowStackEnabled(CPL)
SSP := 0;

FI;
IF EndbranchEnabled(CPL)

IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0

FI;

SS.Selector := IA32_STAR[47:32] + 8; (* SS just above CS *)
(* Set rest of SS to a fixed value *)
SS.Base := 0; (* Flat segment *)
SS.Limit := FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
SS.Type := 3; (* Read/write data, accessed *)
SS.S := 1;
SS.DPL := 0;
SS.P := 1;
SS.B := 1; (* 32-bit stack segment *)
SS.G := 1; (* 4-KByte granularity *)

Flags Affected

All.

Protected Mode Exceptions
#UD The SYSCALL instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The SYSCALL instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The SYSCALL instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The SYSCALL instruction is not recognized in compatibility mode.
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64-Bit Mode Exceptions
#UD If IA32_EFER.SCE = 0.

If the LOCK prefix is used.
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SYSENTER—Fast System Call

Instruction Operand Encoding

Description

Executes a fast call to a level 0 system procedure or routine. SYSENTER is a companion instruction to SYSEXIT. The 
instruction is optimized to provide the maximum performance for system calls from user code running at privilege 
level 3 to operating system or executive procedures running at privilege level 0.

When executed in IA-32e mode, the SYSENTER instruction transitions the logical processor to 64-bit mode; other-
wise, the logical processor remains in protected mode.

Prior to executing the SYSENTER instruction, software must specify the privilege level 0 code segment and code 
entry point, and the privilege level 0 stack segment and stack pointer by writing values to the following MSRs:
• IA32_SYSENTER_CS (MSR address 174H) — The lower 16 bits of this MSR are the segment selector for the 

privilege level 0 code segment. This value is also used to determine the segment selector of the privilege level 
0 stack segment (see the Operation section). This value cannot indicate a null selector.

• IA32_SYSENTER_EIP (MSR address 176H) — The value of this MSR is loaded into RIP (thus, this value 
references the first instruction of the selected operating procedure or routine). In protected mode, only 
bits 31:0 are loaded.

• IA32_SYSENTER_ESP (MSR address 175H) — The value of this MSR is loaded into RSP (thus, this value 
contains the stack pointer for the privilege level 0 stack). This value cannot represent a non-canonical address. 
In protected mode, only bits 31:0 are loaded.

These MSRs can be read from and written to using RDMSR/WRMSR. The WRMSR instruction ensures that the 
IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs always contain canonical addresses.

While SYSENTER loads the CS and SS selectors with values derived from the IA32_SYSENTER_CS MSR, the CS and 
SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those selectors. Instead, 
the descriptor caches are loaded with fixed values. See the Operation section for details. It is the responsibility of 
OS software to ensure that the descriptors (in GDT or LDT) referenced by those selector values correspond to the 
fixed values loaded into the descriptor caches; the SYSENTER instruction does not ensure this correspondence.

The SYSENTER instruction can be invoked from all operating modes except real-address mode. 

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not constitute a call/return pair. 
When executing a SYSENTER instruction, the processor does not save state information for the user code (e.g., the 
instruction pointer), and neither the SYSENTER nor the SYSEXIT instruction supports passing parameters on the 
stack.

To use the SYSENTER and SYSEXIT instructions as companion instructions for transitions between privilege level 3 
code and privilege level 0 operating system procedures, the following conventions must be followed:
• The segment descriptors for the privilege level 0 code and stack segments and for the privilege level 3 code and 

stack segments must be contiguous in a descriptor table. This convention allows the processor to compute the 
segment selectors from the value entered in the SYSENTER_CS_MSR MSR.

• The fast system call “stub” routines executed by user code (typically in shared libraries or DLLs) must save the 
required return IP and processor state information if a return to the calling procedure is required. Likewise, the 
operating system or executive procedures called with SYSENTER instructions must have access to and use this 
saved return and state information when returning to the user code.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the Pentium II processor. 
The availability of these instructions on a processor is indicated with the SYSENTER/SYSEXIT present (SEP) feature 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 34 SYSENTER ZO Valid Valid Fast call to privilege level 0 system procedures.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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flag returned to the EDX register by the CPUID instruction. An operating system that qualifies the SEP flag must 
also qualify the processor family and model to ensure that the SYSENTER/SYSEXIT instructions are actually 
present. For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3) 

THEN
SYSENTER/SYSEXIT_Not_Supported; FI;

ELSE 
SYSENTER/SYSEXIT_Supported; FI;

FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor returns a the SEP 
flag as set, but does not support the SYSENTER/SYSEXIT instructions.

When shadow stacks are enabled at privilege level where SYSENTER instruction is invoked, the SSP is saved to the 
IA32_PL3_SSP MSR. If shadow stacks are enabled at privilege level 0, the SSP is loaded with 0. Refer to Chapter 
6, “Procedure Calls, Interrupts, and Exceptions‚” and Chapter 18, “Control-flow Enforcement Technology (CET)‚” in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for additional CET details.

Instruction ordering. Instructions following a SYSENTER may be fetched from memory before earlier instructions 
complete execution, but they will not execute (even speculatively) until all instructions prior to the SYSENTER have 
completed execution (the later instructions may execute before data stored by the earlier instructions have 
become globally visible).

Operation

IF CR0.PE = 0 OR IA32_SYSENTER_CS[15:2] = 0 THEN #GP(0); FI;

RFLAGS.VM := 0; (* Ensures protected mode execution *)
RFLAGS.IF := 0; (* Mask interrupts *)
IF in IA-32e mode

THEN
RSP := IA32_SYSENTER_ESP;
RIP := IA32_SYSENTER_EIP;

ELSE
ESP := IA32_SYSENTER_ESP[31:0];
EIP := IA32_SYSENTER_EIP[31:0];

FI;

CS.Selector := IA32_SYSENTER_CS[15:0] AND FFFCH;
(* Operating system provides CS; RPL forced to 0 *)

(* Set rest of CS to a fixed value *)
CS.Base := 0; (* Flat segment *)
CS.Limit := FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
CS.Type := 11; (* Execute/read code, accessed *)
CS.S := 1;
CS.DPL := 0;
CS.P := 1;
IF in IA-32e mode

THEN
CS.L := 1; (* Entry is to 64-bit mode *)
CS.D := 0; (* Required if CS.L = 1 *)

ELSE
CS.L := 0;
CS.D := 1; (* 32-bit code segment*)

FI;
CS.G := 1; (* 4-KByte granularity *)
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IF ShadowStackEnabled(CPL)
THEN

IF IA32_EFER.LMA = 0
THEN IA32_PL3_SSP := SSP;
ELSE (* adjust so bits 63:N get the value of bit N–1, where N is the CPU’s maximum linear-address width *)

IA32_PL3_SSP := LA_adjust(SSP);
FI;

FI;

CPL := 0;

IF ShadowStackEnabled(CPL)
SSP := 0;

FI;
IF EndbranchEnabled(CPL)

IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0

FI;

SS.Selector := CS.Selector + 8; (* SS just above CS *)
(* Set rest of SS to a fixed value *)
SS.Base := 0; (* Flat segment *)
SS.Limit := FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
SS.Type := 3; (* Read/write data, accessed *)
SS.S := 1;
SS.DPL := 0;
SS.P := 1;
SS.B := 1; (* 32-bit stack segment*)
SS.G := 1; (* 4-KByte granularity *)

Flags Affected

VM, IF (see Operation above).

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP The SYSENTER instruction is not recognized in real-address mode.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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SYSEXIT—Fast Return from Fast System Call

Instruction Operand Encoding

Description

Executes a fast return to privilege level 3 user code. SYSEXIT is a companion instruction to the SYSENTER instruc-
tion. The instruction is optimized to provide the maximum performance for returns from system procedures 
executing at protections levels 0 to user procedures executing at protection level 3. It must be executed from code 
executing at privilege level 0. 

With a 64-bit operand size, SYSEXIT remains in 64-bit mode; otherwise, it either enters compatibility mode (if the 
logical processor is in IA-32e mode) or remains in protected mode (if it is not).

Prior to executing SYSEXIT, software must specify the privilege level 3 code segment and code entry point, and the 
privilege level 3 stack segment and stack pointer by writing values into the following MSR and general-purpose 
registers:
• IA32_SYSENTER_CS (MSR address 174H) — Contains a 32-bit value that is used to determine the segment 

selectors for the privilege level 3 code and stack segments (see the Operation section)
• RDX — The canonical address in this register is loaded into RIP (thus, this value references the first instruction 

to be executed in the user code). If the return is not to 64-bit mode, only bits 31:0 are loaded.
• ECX — The canonical address in this register is loaded into RSP (thus, this value contains the stack pointer for 

the privilege level 3 stack). If the return is not to 64-bit mode, only bits 31:0 are loaded.

The IA32_SYSENTER_CS MSR can be read from and written to using RDMSR and WRMSR.

While SYSEXIT loads the CS and SS selectors with values derived from the IA32_SYSENTER_CS MSR, the CS and 
SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those selectors. Instead, 
the descriptor caches are loaded with fixed values. See the Operation section for details. It is the responsibility of 
OS software to ensure that the descriptors (in GDT or LDT) referenced by those selector values correspond to the 
fixed values loaded into the descriptor caches; the SYSEXIT instruction does not ensure this correspondence.

The SYSEXIT instruction can be invoked from all operating modes except real-address mode and virtual-8086 
mode. 

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the Pentium II processor. 
The availability of these instructions on a processor is indicated with the SYSENTER/SYSEXIT present (SEP) feature 
flag returned to the EDX register by the CPUID instruction. An operating system that qualifies the SEP flag must 
also qualify the processor family and model to ensure that the SYSENTER/SYSEXIT instructions are actually 
present. For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3) 

THEN
SYSENTER/SYSEXIT_Not_Supported; FI;

ELSE 
SYSENTER/SYSEXIT_Supported; FI;

FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor returns a the SEP 
flag as set, but does not support the SYSENTER/SYSEXIT instructions.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 35 SYSEXIT ZO Valid Valid Fast return to privilege level 3 user code.

REX.W + 0F 35 SYSEXIT ZO Valid Valid Fast return to 64-bit mode privilege level 3 user code.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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When shadow stacks are enabled at privilege level 3 the instruction loads SSP with value from IA32_PL3_SSP MSR. 
Refer to Chapter 7, “Interrupt and Exception Handling‚” and Chapter 18, “Control-flow Enforcement Technology 
(CET)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for additional CET details.

Instruction ordering. Instructions following a SYSEXIT may be fetched from memory before earlier instructions 
complete execution, but they will not execute (even speculatively) until all instructions prior to the SYSEXIT have 
completed execution (the later instructions may execute before data stored by the earlier instructions have 
become globally visible).

Operation

IF IA32_SYSENTER_CS[15:2] = 0 OR CR0.PE = 0 OR CPL ≠ 0 THEN #GP(0); FI;

IF operand size is 64-bit
THEN (* Return to 64-bit mode *)

RSP := RCX;
RIP := RDX;

ELSE (* Return to protected mode or compatibility mode *)
RSP := ECX;
RIP := EDX;

FI;

IF operand size is 64-bit (* Operating system provides CS; RPL forced to 3 *)
THEN CS.Selector := IA32_SYSENTER_CS[15:0] + 32;
ELSE CS.Selector := IA32_SYSENTER_CS[15:0] + 16;

FI;
CS.Selector := CS.Selector OR 3; (* RPL forced to 3 *)
(* Set rest of CS to a fixed value *)
CS.Base := 0; (* Flat segment *)
CS.Limit := FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
CS.Type := 11; (* Execute/read code, accessed *)
CS.S := 1;
CS.DPL := 3;
CS.P := 1;
IF operand size is 64-bit

THEN (* return to 64-bit mode *)
CS.L := 1; (* 64-bit code segment *)
CS.D := 0; (* Required if CS.L = 1 *)

ELSE (* return to protected mode or compatibility mode *)
CS.L := 0;
CS.D := 1; (* 32-bit code segment*)

FI;
CS.G := 1; (* 4-KByte granularity *)
CPL := 3;

IF ShadowStackEnabled(CPL)
THEN SSP := IA32_PL3_SSP;

FI;

SS.Selector := CS.Selector + 8; (* SS just above CS *)
(* Set rest of SS to a fixed value *)
SS.Base := 0; (* Flat segment *)
SS.Limit := FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
SS.Type := 3; (* Read/write data, accessed *)
SS.S := 1;
SS.DPL := 3;
SS.P := 1;
SS.B := 1; (* 32-bit stack segment*)
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SS.G := 1; (* 4-KByte granularity *)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.

If CPL ≠ 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP The SYSEXIT instruction is not recognized in real-address mode.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The SYSEXIT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If IA32_SYSENTER_CS = 0.

If CPL ≠ 0.
If RCX or RDX contains a non-canonical address.

#UD If the LOCK prefix is used.
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SYSRET—Return From Fast System Call

Instruction Operand Encoding

Description

SYSRET is a companion instruction to the SYSCALL instruction. It returns from an OS system-call handler to user 
code at privilege level 3. It does so by loading RIP from RCX and loading RFLAGS from R11.1 With a 64-bit operand 
size, SYSRET remains in 64-bit mode; otherwise, it enters compatibility mode and only the low 32 bits of the regis-
ters are loaded.

SYSRET loads the CS and SS selectors with values derived from bits 63:48 of the IA32_STAR MSR. However, the 
CS and SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those selectors. 
Instead, the descriptor caches are loaded with fixed values. See the Operation section for details. It is the respon-
sibility of OS software to ensure that the descriptors (in GDT or LDT) referenced by those selector values corre-
spond to the fixed values loaded into the descriptor caches; the SYSRET instruction does not ensure this 
correspondence.

The SYSRET instruction does not modify the stack pointer (ESP or RSP). For that reason, it is necessary for soft-
ware to switch to the user stack. The OS may load the user stack pointer (if it was saved after SYSCALL) before 
executing SYSRET; alternatively, user code may load the stack pointer (if it was saved before SYSCALL) after 
receiving control from SYSRET.

If the OS loads the stack pointer before executing SYSRET, it must ensure that the handler of any interrupt or 
exception delivered between restoring the stack pointer and successful execution of SYSRET is not invoked with the 
user stack. It can do so using approaches such as the following:
• External interrupts. The OS can prevent an external interrupt from being delivered by clearing EFLAGS.IF 

before loading the user stack pointer.
• Nonmaskable interrupts (NMIs). The OS can ensure that the NMI handler is invoked with the correct stack by 

using the interrupt stack table (IST) mechanism for gate 2 (NMI) in the IDT (see Section 7.14.5, “Interrupt 
Stack Table,” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

• General-protection exceptions (#GP). The SYSRET instruction generates #GP(0) if the value of RCX is not 
canonical. The OS can address this possibility using one or more of the following approaches:

— Confirming that the value of RCX is canonical before executing SYSRET.

— Using paging to ensure that the SYSCALL instruction will never save a non-canonical value into RCX.

— Using the IST mechanism for gate 13 (#GP) in the IDT.

When shadow stacks are enabled at privilege level 3 the instruction loads SSP with value from IA32_PL3_SSP MSR. 
Refer to Chapter 6, “Procedure Calls, Interrupts, and Exceptions‚” and Chapter 18, “Control-flow Enforcement 
Technology (CET)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for additional 
CET details.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 07 SYSRET ZO Valid Invalid Return to compatibility mode from fast 
system call.

REX.W + 0F 07 SYSRET ZO Valid Invalid Return to 64-bit mode from fast system call.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

1. Regardless of the value of R11, the RF and VM flags are always 0 in RFLAGS after execution of SYSRET. In addition, all reserved bits 
in RFLAGS retain the fixed values.
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Instruction ordering. Instructions following a SYSRET may be fetched from memory before earlier instructions 
complete execution, but they will not execute (even speculatively) until all instructions prior to the SYSRET have 
completed execution (the later instructions may execute before data stored by the earlier instructions have 
become globally visible).

Operation

IF (CS.L ≠ 1 ) or (IA32_EFER.LMA ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
IF (CPL ≠ 0) THEN #GP(0); FI;

IF (operand size is 64-bit) 
THEN (* Return to 64-Bit Mode *)

IF (RCX is not canonical) THEN #GP(0);
RIP := RCX;

ELSE (* Return to Compatibility Mode *)
RIP := ECX;

FI;
RFLAGS := (R11 & 3C7FD7H) | 2; (* Clear RF, VM, reserved bits; set bit 1 *)

IF (operand size is 64-bit) 
THEN CS.Selector := IA32_STAR[63:48]+16;
ELSE CS.Selector := IA32_STAR[63:48];

FI;
CS.Selector := CS.Selector OR 3; (* RPL forced to 3 *)
(* Set rest of CS to a fixed value *)
CS.Base := 0; (* Flat segment *)
CS.Limit := FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
CS.Type := 11; (* Execute/read code, accessed *)
CS.S := 1;
CS.DPL := 3;
CS.P := 1;
IF (operand size is 64-bit) 

THEN (* Return to 64-Bit Mode *)
CS.L := 1; (* 64-bit code segment *)
CS.D := 0; (* Required if CS.L = 1 *)

ELSE (* Return to Compatibility Mode *)
CS.L := 0; (* Compatibility mode *)
CS.D := 1; (* 32-bit code segment *)

FI;
CS.G := 1; (* 4-KByte granularity *)
CPL := 3;
IF ShadowStackEnabled(CPL)

SSP := IA32_PL3_SSP;
FI;

SS.Selector := (IA32_STAR[63:48]+8) OR 3; (* RPL forced to 3 *)
(* Set rest of SS to a fixed value *)
SS.Base := 0; (* Flat segment *)
SS.Limit := FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
SS.Type := 3; (* Read/write data, accessed *)
SS.S := 1;
SS.DPL := 3;
SS.P := 1;
SS.B := 1; (* 32-bit stack segment*)
SS.G := 1; (* 4-KByte granularity *)
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Flags Affected

All.

Protected Mode Exceptions
#UD The SYSRET instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The SYSRET instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The SYSRET instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The SYSRET instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE = 0.

If the LOCK prefix is used.
#GP(0) If CPL ≠ 0.

If the return is to 64-bit mode and RCX contains a non-canonical address.
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TDPBF16PS—Dot Product of BF16 Tiles Accumulated into Packed Single Precision Tile

Instruction Operand Encoding

Description

This instruction performs a set of SIMD dot-products of two BF16 elements and accumulates the results into a 
packed single precision tile. Each dword element in input tiles tmm2 and tmm3 is interpreted as a BF16 pair. For 
each possible combination of (row of tmm2, column of tmm3), the instruction performs a set of SIMD dot-products 
on all corresponding BF16 pairs (one pair from tmm2 and one pair from tmm3), adds the results of those dot-prod-
ucts, and then accumulates the result into the corresponding row and column of tmm1.
“Round to nearest even” rounding mode is used when doing each accumulation of the FMA. Output denormals are 
always flushed to zero and input denormals are always treated as zero. MXCSR is not consulted nor updated. 
Any attempt to execute the TDPBF16PS instruction inside a TSX transaction will result in a transaction abort.

Operation

define make_fp32(x):
// The x parameter is bfloat16. Pack it in to upper 16b of a dword.
// The bit pattern is a legal fp32 value. Return that bit pattern. 
dword: = 0
dword[31:16] := x 

return dword

TDPBF16PS tsrcdest, tsrc1, tsrc2
// C = m x n (tsrcdest), A = m x k (tsrc1), B = k x n (tsrc2)

# src1 and src2 elements are pairs of bfloat16
elements_src1 := tsrc1.colsb / 4
elements_src2 := tsrc2.colsb / 4
elements_dest := tsrcdest.colsb / 4
elements_temp := tsrcdest.colsb / 2 // Count is in bfloat16 prior to horizontal

for m in 0 ... tsrcdest.rows-1:
temp1[ 0 ... elements_temp-1 ] := 0
for k in 0 ... elements_src1-1:

for n in 0 ... elements_dest-1:

// FP32 FMA with DAZ=FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.
// No exceptions raised or denoted.

temp1.fp32[2*n+0] += make_fp32(tsrc1.row[m].bfloat16[2*k+0]) * make_fp32(tsrc2.row[k].bfloat16[2*n+0])
temp1.fp32[2*n+1] += make_fp32(tsrc1.row[m].bfloat16[2*k+1]) * make_fp32(tsrc2.row[k].bfloat16[2*n+1])

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F3.0F38.W0 5C 11:rrr:bbb
TDPBF16PS tmm1, tmm2, tmm3

A V/N.E. AMX-BF16 Matrix multiply BF16 elements from tmm2 and 
tmm3, and accumulate the packed single 
precision elements in tmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) VEX.vvvv (r) N/A
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for n in 0 ... elements_dest-1:
// DAZ=FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.
// No exceptions raised or denoted.
tmpf32 := temp1.fp32[2*n] + temp1.fp32[2*n+1]
tsrcdest.row[m].fp32[n] := tsrcdest.row[m].fp32[n] + tmpf32

write_row_and_zero(tsrcdest, m, tmp, tsrcdest.colsb)

zero_upper_rows(tsrcdest, tsrcdest.rows)
zero_tilecfg_start()

Intel C/C++ Compiler Intrinsic Equivalent

TDPBF16PS void _tile_dpbf16ps(__tile dst, __tile src1, __tile src2);

Flags Affected

None.

Exceptions
AMX-E4; see Section 2.10, “Intel® AMX Instruction Exception Classes,” for details.
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TDPBSSD/TDPBSUD/TDPBUSD/TDPBUUD—Dot Product of Signed/Unsigned Bytes with Dword 
Accumulation 

Instruction Operand Encoding

Description

For each possible combination of (row of tmm2, column of tmm3), the instruction performs a set of SIMD dot-prod-
ucts on all corresponding four byte elements, one from tmm2 and one from tmm3, adds the results of those dot-
products, and then accumulates the result into the corresponding row and column of tmm1. Each dword in input 
tiles tmm2 and tmm3 is interpreted as four byte elements. These may be signed or unsigned. Each letter in the 
two-letter pattern SU, US, SS, UU indicates the signed/unsigned nature of the values in tmm2 and tmm3, respec-
tively.
Any attempt to execute the TDPBSSD/TDPBSUD/TDPBUSD/TDPBUUD instructions inside an Intel TSX transaction 
will result in a transaction abort.

Operation

define DPBD(c,x,y):// arguments are dwords 
if *x operand is signed*:

extend_src1 := SIGN_EXTEND 
else:

extend_src1 := ZERO_EXTEND

if *y operand is signed*: 
extend_src2 := SIGN_EXTEND

else:
extend_src2 := ZERO_EXTEND

p0dword := extend_src1(x.byte[0]) * extend_src2(y.byte[0]) 
p1dword := extend_src1(x.byte[1]) * extend_src2(y.byte[1]) 
p2dword := extend_src1(x.byte[2]) * extend_src2(y.byte[2]) 
p3dword := extend_src1(x.byte[3]) * extend_src2(y.byte[3])

c := c + p0dword + p1dword + p2dword + p3dword

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F2.0F38.W0 5E 11:rrr:bbb
TDPBSSD tmm1, tmm2, tmm3

A V/N.E. AMX-INT8 Matrix multiply signed byte elements from tmm2 
by signed byte elements from tmm3 and 
accumulate the dword elements in tmm1.

VEX.128.F3.0F38.W0 5E 11:rrr:bbb
TDPBSUD tmm1, tmm2, tmm3

A V/N.E. AMX-INT8 Matrix multiply signed byte elements from tmm2 
by unsigned byte elements from tmm3 and 
accumulate the dword elements in tmm1.

VEX.128.66.0F38.W0 5E 11:rrr:bbb
TDPBUSD tmm1, tmm2, tmm3

A V/N.E. AMX-INT8 Matrix multiply unsigned byte elements from 
tmm2 by signed byte elements from tmm3 and 
accumulate the dword elements in tmm1.

VEX.128.NP.0F38.W0 5E 11:rrr:bbb
TDPBUUD tmm1, tmm2, tmm3

A V/N.E. AMX-INT8 Matrix multiply unsigned byte elements from 
tmm2 by unsigned byte elements from tmm3 
and accumulate the dword elements in tmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) VEX.vvvv (r) N/A
TDPBSSD/TDPBSUD/TDPBUSD/TDPBUUD—Dot Product of Signed/Unsigned Bytes with Dword Accumulation Vol. 2B 4-709



TDPBSSD, TDPBSUD, TDPBUSD, TDPBUUD tsrcdest, tsrc1, tsrc2 (Register Only Version)
// C = m x n (tsrcdest), A = m x k (tsrc1), B = k x n (tsrc2)

tsrc1_elements_per_row := tsrc1.colsb / 4 
tsrc2_elements_per_row := tsrc2.colsb / 4 
tsrcdest_elements_per_row := tsrcdest.colsb / 4

for m in 0 ... tsrcdest.rows-1: 
tmp := tsrcdest.row[m]
for k in 0 ... tsrc1_elements_per_row-1:

for n in 0 ... tsrcdest_elements_per_row-1: 
DPBD( tmp.dword[n], tsrc1.row[m].dword[k], tsrc2.row[k].dword[n] ) 

write_row_and_zero(tsrcdest, m, tmp, tsrcdest.colsb)

zero_upper_rows(tsrcdest, tsrcdest.rows) 
zero_tilecfg_start()

Intel C/C++ Compiler Intrinsic Equivalent

TDPBSSD void _tile_dpbssd(__tile dst, __tile src1, __tile src2);
TDPBSUD void _tile_dpbsud(__tile dst, __tile src1, __tile src2);
TDPBUSD void _tile_dpbusd(__tile dst, __tile src1, __tile src2);
TDPBUUD void _tile_dpbuud(__tile dst, __tile src1, __tile src2);

Flags Affected

None.

Exceptions
AMX-E4; see Section 2.10, “Intel® AMX Instruction Exception Classes,” for details.
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TDPFP16PS—Dot Product of FP16 Tiles Accumulated into Packed Single Precision Tile

Instruction Operand Encoding

Description

This instruction performs a set of SIMD dot-products of two FP16 elements and accumulates the results into a 
packed single precision tile. Each dword element in input tiles tmm2 and tmm3 is interpreted as a FP16 pair. For 
each possible combination of (row of tmm2, column of tmm3), the instruction performs a set of SIMD dot-products 
on all corresponding FP16 pairs (one pair from tmm2 and one pair from tmm3), adds the results of those dot-prod-
ucts, and then accumulates the result into the corresponding row and column of tmm1.
“Round to nearest even” rounding mode is used when doing each accumulation of the Fused Multiply-Add (FMA). 
Output FP32 denormals are always flushed to zero. Input FP16 denormals are always handled and not treated as 
zero.
MXCSR is not consulted nor updated.
Any attempt to execute the TDPFP16PS instruction inside an Intel TSX transaction will result in a transaction abort.

Operation

TDPFP16PS tsrcdest, tsrc1, tsrc2
// C = m x n (tsrcdest), A = m x k (tsrc1), B = k x n (tsrc2)

# src1 and src2 elements are pairs of fp16
elements_src1 := tsrc1.colsb / 4
elements_src2 := tsrc2.colsb / 4
elements_dest := tsrcdest.colsb / 4
elements_temp := tsrcdest.colsb / 2 // Count is in fp16 prior to horizontal

for m in 0 ... tsrcdest.rows-1:
temp1[ 0 ... elements_temp-1 ] := 0
for k in 0 ... elements_src1-1:

for n in 0 ... elements_dest-1:

// For this operation:
// Handle FP16 denorms. Not forcing input FP16 denorms to 0.
// FP32 FMA with DAZ=FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.
// No exceptions raised or denoted.

temp1.fp32[2*n+0] += cvt_fp16_to_fp32(tsrc1.row[m].fp16[2*k+0]) *cvt_fp16_to_fp32(tsrc2.row[k].fp16[2*n+0])
temp1.fp32[2*n+1] += cvt_fp16_to_fp32(tsrc1.row[m].fp16[2*k+1]) *cvt_fp16_to_fp32(tsrc2.row[k].fp16[2*n+1])

for n in 0 ... elements_dest-1:
// DAZ=FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F2.0F38.W0 5C 11:rrr:bbb
TDPFP16PS tmm1, tmm2, tmm3

A V/N.E. AMX-FP16 Matrix multiply FP16 elements from tmm2 and 
tmm3, and accumulate the packed single precision 
elements in tmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) VEX.vvvv (r) N/A
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// No exceptions raised or denoted.
tmpf32 := temp1.fp32[2*n] + temp1.fp32[2*n+1]
srcdest.row[m].fp32[n] := srcdest.row[m].fp32[n] + tmpf32

write_row_and_zero(tsrcdest, m, tmp, tsrcdest.colsb)
zero_upper_rows(tsrcdest, tsrcdest.rows)
zero_tileconfig_start()

Flags Affected

None.

Exceptions

AMX-E4; see Section 2.10, “Intel® AMX Instruction Exception Classes,” for details.
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TEST—Logical Compare

Instruction Operand Encoding

Description

Computes the bit-wise logical AND of first operand (source 1 operand) and the second operand (source 2 operand) 
and sets the SF, ZF, and PF status flags according to the result. The result is then discarded.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a 
REX prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this 
section for encoding data and limits.

Operation

TEMP := SRC1 AND SRC2;
SF := MSB(TEMP);

IF TEMP = 0
THEN ZF := 1;
ELSE ZF := 0;

FI:

PF := BitwiseXNOR(TEMP[0:7]);

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

A8 ib TEST AL, imm8 I Valid Valid AND imm8 with AL; set SF, ZF, PF according to result.

A9 iw TEST AX, imm16 I Valid Valid AND imm16 with AX; set SF, ZF, PF according to result.

A9 id TEST EAX, imm32 I Valid Valid AND imm32 with EAX; set SF, ZF, PF according to 
result.

REX.W + A9 id TEST RAX, imm32 I Valid N.E. AND imm32 sign-extended to 64-bits with RAX; set SF, 
ZF, PF according to result.

F6 /0 ib TEST r/m8, imm8 MI Valid Valid AND imm8 with r/m8; set SF, ZF, PF according to result.

REX + F6 /0 ib TEST r/m81, imm8

NOTES:
1. In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

MI Valid N.E. AND imm8 with r/m8; set SF, ZF, PF according to result.

F7 /0 iw TEST r/m16, imm16 MI Valid Valid AND imm16 with r/m16; set SF, ZF, PF according to 
result.

F7 /0 id TEST r/m32, imm32 MI Valid Valid AND imm32 with r/m32; set SF, ZF, PF according to 
result.

REX.W + F7 /0 id TEST r/m64, imm32 MI Valid N.E. AND imm32 sign-extended to 64-bits with r/m64; set 
SF, ZF, PF according to result.

84 /r TEST r/m8, r8 MR Valid Valid AND r8 with r/m8; set SF, ZF, PF according to result.

REX + 84 /r TEST r/m81, r81 MR Valid N.E. AND r8 with r/m8; set SF, ZF, PF according to result.

85 /r TEST r/m16, r16 MR Valid Valid AND r16 with r/m16; set SF, ZF, PF according to result.

85 /r TEST r/m32, r32 MR Valid Valid AND r32 with r/m32; set SF, ZF, PF according to result.

REX.W + 85 /r TEST r/m64, r64 MR Valid N.E. AND r64 with r/m64; set SF, ZF, PF according to result.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 N/A N/A

MI ModRM:r/m (r) imm8/16/32 N/A N/A

MR ModRM:r/m (r) ModRM:reg (r) N/A N/A
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CF := 0;
OF := 0;
(* AF is undefined *)

Flags Affected

The OF and CF flags are set to 0. The SF, ZF, and PF flags are set according to the result (see the “Operation” 
section above). The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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TESTUI—Determine User Interrupt Flag

Instruction Operand Encoding

TESTUI copies the current value of the user interrupt flag (UIF) into EFLAGS.CF. This instruction can be executed 
regardless of CPL.
TESTUI may be executed normally inside a transactional region.

Operation

CF := UIF;
ZF := AF := OF := PF := SF := 0;

Flags Affected
The ZF, OF, AF, PF, SF flags are cleared and the CF flags to the value of the user interrupt flag.

Protected Mode Exceptions
#UD The TESTUI instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The TESTUI instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The TESTUI instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The TESTUI instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If executed inside an enclave.
If CR4.UINTR = 0.
If CPUID.07H.0H:EDX.UINTR[bit 5] = 0.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F3 0F 01 ED
TESTUI

ZO V/I UINTR Copies the current value of UIF into EFLAGS.CF.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A N/A



TILELOADD/TILELOADDT1—Load Tile

Instruction Operand Encoding

Description

This instruction is required to use SIB addressing. The index register serves as a stride indicator. If the SIB 
encoding omits an index register, the value zero is assumed for the content of the index register.
This instruction loads a tile destination with rows and columns as specified by the tile configuration. The “T1” 
version provides a hint to the implementation that the data would be reused but does not need to be resident in the 
nearest cache levels.
The TILECFG.start_row in the TILECFG data should be initialized to '0' in order to load the entire tile and is set to 
zero on successful completion of the TILELOADD instruction. TILELOADD is a restartable instruction and the 
TILECFG.start_row will be non-zero when restartable events occur during the instruction execution. 
Only memory operands are supported and they can only be accessed using a SIB addressing mode, similar to the 
V[P]GATHER*/V[P]SCATTER* instructions.
Any attempt to execute the TILELOADD/TILELOADDT1 instructions inside an Intel TSX transaction will result in a 
transaction abort.

Operation

TILELOADD[,T1] tdest, tsib 

start := tilecfg.start_row

zero_upper_rows(tdest,start)

membegin := tsib.base + displacement
// if no index register in the SIB encoding, the value zero is used. 
stride := tsib.index << tsib.scale
nbytes := tdest.colsb 
while start < tdest.rows:

memptr := membegin + start * stride 
write_row_and_zero(tdest, start, read_memory(memptr, nbytes), nbytes)
start := start + 1 

zero_tilecfg_start()
// In the case of a memory fault in the middle of an instruction, the tilecfg.start_row := start

Intel C/C++ Compiler Intrinsic Equivalent

TILELOADD void _tile_loadd(__tile dst, const void *base, int stride);
TILELOADDT1 void _tile_stream_loadd(__tile dst, const void *base, int stride);

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F2.0F38.W0 4B !(11):rrr:100
TILELOADD tmm1, sibmem

A V/N.E. AMX-TILE Load data into tmm1 as specified by information 
in sibmem.

VEX.128.66.0F38.W0 4B !(11):rrr:100
TILELOADDT1 tmm1, sibmem

A V/N.E. AMX-TILE Load data into tmm1 as specified by information 
in sibmem with hint to optimize data caching.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Flags Affected

None.

Exceptions
AMX-E3; see Section 2.10, “Intel® AMX Instruction Exception Classes,” for details.
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TILERELEASE—Release Tile

Instruction Operand Encoding

Description

This instruction returns TILECFG and TILEDATA to the INIT state.
Any attempt to execute the TILERELEASE instruction inside an Intel TSX transaction will result in a transaction 
abort.

Operation

zero_all_tile_data()
tilecfg := 0// equivalent to 64B of zeros 
TILES_CONFIGURED := 0

Intel C/C++ Compiler Intrinsic Equivalent

TILERELEASE void _tile_release(void);

Flags Affected

None.

Exceptions
AMX-E6; see Section 2.10, “Intel® AMX Instruction Exception Classes,” for details.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.NP.0F38.W0 49 C0 
TILERELEASE

A V/N.E. AMX-TILE Initialize TILECFG and TILEDATA.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A N/A N/A N/A N/A



TILESTORED—Store Tile Vol. 2B 4-719

TILESTORED—Store Tile

Instruction Operand Encoding

Description

This instruction is required to use SIB addressing. The index register serves as a stride indicator. If the SIB 
encoding omits an index register, the value zero is assumed for the content of the index register.
This instruction stores a tile source of rows and columns as specified by the tile configuration.
The TILECFG.start_row in the TILECFG data should be initialized to '0' in order to store the entire tile and are set to 
zero on successful completion of the TILESTORED instruction. TILESTORED is a restartable instruction and the 
TILECFG.start_row will be non-zero when restartable events occur during the instruction execution.
Only memory operands are supported and they can only be accessed using a SIB addressing mode, similar to the 
V[P]GATHER*/V[P]SCATTER* instructions. 
Any attempt to execute the TILESTORED instruction inside an Intel TSX transaction will result in a transaction 
abort.

Operation

TILESTORED tsib, tsrc

start := tilecfg.start_row

membegin := tsib.base + displacement
// if no index register in the SIB encoding, the value zero is used. 
stride := tsib.index << tsib.scale

while start < tdest.rows:
memptr := membegin + start * stride 
write_memory(memptr, tsrc.colsb, tsrc.row[start]) 
start := start + 1

zero_tilecfg_start()
// In the case of a memory fault in the middle of an instruction, the tilecfg.start_row := start

Intel C/C++ Compiler Intrinsic Equivalent

TILESTORED void _tile_stored(__tile src, void *base, int stride);

Flags Affected

None.

Exceptions
AMX-E3; see Section 2.10, “Intel® AMX Instruction Exception Classes,” for details.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F3.0F38.W0 4B !(11):rrr:100
TILESTORED sibmem, tmm1

A V/N.E. AMX-TILE Store a tile in sibmem as specified in tmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A
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TILEZERO—Zero Tile

Instruction Operand Encoding

Description

This instruction zeroes the destination tile.
Any attempt to execute the TILEZERO instruction inside an Intel TSX transaction will result in a transaction abort.

Operation

TILEZERO tdest

nbytes := palette_table[palette_id].bytes_per_row 

for i in 0 ... palette_table[palette_id].max_rows-1:
for j in 0 ... nbytes-1: 

tdest.row[i].byte[j] := 0
zero_tilecfg_start()

Intel C/C++ Compiler Intrinsic Equivalent

TILEZERO void _tile_zero(__tile dst);

Flags Affected

None.

Exceptions
AMX-E5; see Section 2.10, “Intel® AMX Instruction Exception Classes,” for details.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F2.0F38.W0 49 11:rrr:000
TILEZERO tmm1

A V/N.E. AMX-TILE Zero the destination tile.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) N/A N/A N/A



TPAUSE—Timed PAUSE

Instruction Operand Encoding1

Description

TPAUSE instructs the processor to enter an implementation-dependent optimized state. There are two such opti-
mized states to choose from: light-weight power/performance optimized state, and improved power/performance 
optimized state. The selection between the two is governed by the explicit input register bit[0] source operand.

TPAUSE is available when CPUID.7.0:ECX.WAITPKG[bit 5] is enumerated as 1. TPAUSE may be executed at any 
privilege level. This instruction’s operation is the same in non-64-bit modes and in 64-bit mode.

Unlike PAUSE, the TPAUSE instruction will not cause an abort when used inside a transactional region, described in 
the chapter Chapter 16, “Programming with Intel® AVX10,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.
The input register contains information such as the preferred optimized state the processor should enter as 
described in the following table. Bits other than bit 0 are reserved and will result in #GP if non-zero.

The instruction execution wakes up when the time-stamp counter reaches or exceeds the implicit EDX:EAX 64-bit 
input value.

Prior to executing the TPAUSE instruction, an operating system may specify the maximum delay it allows the 
processor to suspend its operation. It can do so by writing TSC-quanta value to the following 32-bit MSR 
(IA32_UMWAIT_CONTROL at MSR index E1H):
• IA32_UMWAIT_CONTROL[31:2] — Determines the maximum time in TSC-quanta that the processor can reside 

in either C0.1 or C0.2. A zero value indicates no maximum time. The maximum time value is a 32-bit value 
where the upper 30 bits come from this field and the lower two bits are zero.

• IA32_UMWAIT_CONTROL[1] — Reserved.
• IA32_UMWAIT_CONTROL[0] — C0.2 is not allowed by the OS. Value of “1” means all C0.2 requests revert to 

C0.1.
If the processor that executed a TPAUSE instruction wakes due to the expiration of the operating system time-limit, 
the instructions sets RFLAGS.CF; otherwise, that flag is cleared.
The following additional events cause the processor to exit the implementation-dependent optimized state: a store 
to the read-set range within the transactional region, an NMI or SMI, a debug exception, a machine check excep-
tion, the BINIT# signal, the INIT# signal, and the RESET# signal.

Opcode /
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F AE /6

TPAUSE r32, <edx>, <eax>

A V/V WAITPKG Directs the processor to enter an implementation-dependent 
optimized state until the TSC reaches the value in EDX:EAX.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (r) N/A N/A N/A

1. The Mod field of the ModR/M byte must have value 11B.

Table 1-20.  TPAUSE Input Register Bit Definitions

Bit Value State Name Wakeup Time Power Savings Other Benefits

bit[0] = 0 C0.2 Slower Larger Improves performance of the other SMT thread(s) 
on the same core.

bit[0] = 1 C0.1 Faster Smaller N/A

bits[31:1] N/A N/A N/A Reserved
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Other implementation-dependent events may cause the processor to exit the implementation-dependent opti-
mized state proceeding to the instruction following TPAUSE. In addition, an external interrupt causes the processor 
to exit the implementation-dependent optimized state regardless of whether maskable-interrupts are inhibited 
(EFLAGS.IF =0). It should be noted that if maskable-interrupts are inhibited execution will proceed to the instruc-
tion following TPAUSE.

Operation

os_deadline := TSC+(IA32_UMWAIT_CONTROL[31:2]<<2)
instr_deadline := UINT64(EDX:EAX)

IF os_deadline < instr_deadline:
deadline := os_deadline
using_os_deadline := 1

ELSE:
deadline := instr_deadline
using_os_deadline := 0

WHILE TSC < deadline:
implementation_dependent_optimized_state(Source register, deadline, IA32_UMWAIT_CONTROL[0])

IF using_os_deadline AND TSC ≥ deadline:
RFLAGS.CF := 1

ELSE:
RFLAGS.CF := 0

RFLAGS.AF,PF,SF,ZF,OF := 0

Intel C/C++ Compiler Intrinsic Equivalent

TPAUSE uint8_t _tpause(uint32_t control, uint64_t counter);

Numeric Exceptions

None.

Exceptions (All Operating Modes)
#GP(0) If src[31:1] != 0.

If CR4.TSD = 1 and CPL != 0.
#UD If CPUID.7.0:ECX.WAITPKG[bit 5]=0. 
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TZCNT—Count the Number of Trailing Zero Bits

Instruction Operand Encoding

Description 

TZCNT counts the number of trailing least significant zero bits in source operand (second operand) and returns the 
result in destination operand (first operand). TZCNT is an extension of the BSF instruction. The key difference 
between TZCNT and BSF instruction is that TZCNT provides operand size as output when source operand is zero 
while in the case of BSF instruction, if source operand is zero, the content of destination operand are undefined. On 
processors that do not support TZCNT, the instruction byte encoding is executed as BSF.

Operation

temp := 0
DEST := 0
DO WHILE ( (temp < OperandSize) and (SRC[ temp] = 0) )

temp := temp +1
DEST := DEST+ 1

OD

IF DEST = OperandSize
CF := 1

ELSE
CF := 0

FI

IF DEST = 0
ZF := 1

ELSE
ZF := 0

FI

Flags Affected

ZF is set to 1 in case of zero output (least significant bit of the source is set), and to 0 otherwise, CF is set to 1 if 
the input was zero and cleared otherwise. OF, SF, PF, and AF flags are undefined.

Intel C/C++ Compiler Intrinsic Equivalent

TZCNT unsigned __int32 _tzcnt_u32(unsigned __int32 src);
TZCNT unsigned __int64 _tzcnt_u64(unsigned __int64 src);

Opcode/
Instruction

Op/ 
En

64/32-
bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F BC /r
TZCNT r16, r/m16

A V/V BMI1 Count the number of trailing zero bits in r/m16, return result in r16.

F3 0F BC /r
TZCNT r32, r/m32

A V/V BMI1 Count the number of trailing zero bits in r/m32, return result in r32.

F3 REX.W 0F BC /r
TZCNT r64, r/m64

A V/N.E. BMI1 Count the number of trailing zero bits in r/m64, return result in r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment 
selector.

#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If LOCK prefix is used.

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) For an illegal address in the SS segment.
#UD If LOCK prefix is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If LOCK prefix is used.
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UCOMISD—Unordered Compare Scalar Double Precision Floating-Point Values and Set EFLAGS 

Instruction Operand Encoding

Description

Performs an unordered compare of the double precision floating-point values in the low quadwords of operand 1 
(first operand) and operand 2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according 
to the result (unordered, greater than, less than, or equal). The OF, SF, and AF flags in the EFLAGS register are set 
to 0. The unordered result is returned if either source operand is a NaN (QNaN or SNaN).
Operand 1 is an XMM register; operand 2 can be an XMM register or a 64 bit memory
location. 
The UCOMISD instruction differs from the COMISD instruction in that it signals a SIMD floating-point invalid oper-
ation exception (#I) only when a source operand is an SNaN. The COMISD instruction signals an invalid operation 
exception only if a source operand is either an SNaN or a QNaN.
The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Software should ensure VCOMISD is encoded with VEX.L=0. Encoding VCOMISD with VEX.L=1 may encounter 
unpredictable behavior across different processor generations.

Operation

(V)UCOMISD (All Versions)
RESULT := UnorderedCompare(DEST[63:0] <> SRC[63:0]) {
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZF,PF,CF := 111;
GREATER_THAN: ZF,PF,CF := 000;
LESS_THAN: ZF,PF,CF := 001;
EQUAL: ZF,PF,CF := 100;

ESAC;
OF, AF, SF := 0; }

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 2E /r
UCOMISD xmm1, xmm2/m64

A V/V SSE2 Compare low double precision floating-point values in 
xmm1 and xmm2/mem64 and set the EFLAGS flags 
accordingly.

VEX.LIG.66.0F.WIG 2E /r
VUCOMISD xmm1, xmm2/m64

A V/V AVX Compare low double precision floating-point values in 
xmm1 and xmm2/mem64 and set the EFLAGS flags 
accordingly.

EVEX.LLIG.66.0F.W1 2E /r
VUCOMISD xmm1, xmm2/m64{sae}

B V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare low double precision floating-point values in 
xmm1 and xmm2/m64 and set the EFLAGS flags 
accordingly.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r) ModRM:r/m (r) N/A N/A

B Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VUCOMISD int _mm_comi_round_sd(__m128d a, __m128d b, int imm, int sae); 
UCOMISD int _mm_ucomieq_sd(__m128d a, __m128d b)
UCOMISD int _mm_ucomilt_sd(__m128d a, __m128d b)
UCOMISD int _mm_ucomile_sd(__m128d a, __m128d b)
UCOMISD int _mm_ucomigt_sd(__m128d a, __m128d b)
UCOMISD int _mm_ucomige_sd(__m128d a, __m128d b)
UCOMISD int _mm_ucomineq_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (if SNaN operands), Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions,” additionally:
#UD If VEX.vvvv != 1111B.
EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”
UCOMISD—Unordered Compare Scalar Double Precision Floating-Point Values and Set EFLAGS Vol. 2B 4-726



UCOMISS—Unordered Compare Scalar Single Precision Floating-Point Values and Set EFLAGS 

Instruction Operand Encoding

Description

Compares the single precision floating-point values in the low doublewords of operand 1 (first operand) and 
operand 2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the result (unor-
dered, greater than, less than, or equal). The OF, SF, and AF flags in the EFLAGS register are set to 0. The unor-
dered result is returned if either source operand is a NaN (QNaN or SNaN).
Operand 1 is an XMM register; operand 2 can be an XMM register or a 32 bit memory location. 
The UCOMISS instruction differs from the COMISS instruction in that it signals a SIMD floating-point invalid opera-
tion exception (#I) only if a source operand is an SNaN. The COMISS instruction signals an invalid operation excep-
tion when a source operand is either a QNaN or SNaN.
The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Software should ensure VCOMISS is encoded with VEX.L=0. Encoding VCOMISS with VEX.L=1 may encounter 
unpredictable behavior across different processor generations.

Operation

(V)UCOMISS (All Versions)
RESULT := UnorderedCompare(DEST[31:0] <> SRC[31:0]) {
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZF,PF,CF := 111;
GREATER_THAN: ZF,PF,CF := 000;
LESS_THAN: ZF,PF,CF := 001;
EQUAL: ZF,PF,CF := 100;

ESAC;
OF, AF, SF := 0; }

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 2E /r
UCOMISS xmm1, xmm2/m32

A V/V SSE Compare low single precision floating-point values in 
xmm1 and xmm2/mem32 and set the EFLAGS flags 
accordingly.

VEX.LIG.0F.WIG 2E /r
VUCOMISS xmm1, xmm2/m32

A V/V AVX Compare low single precision floating-point values in 
xmm1 and xmm2/mem32 and set the EFLAGS flags 
accordingly.

EVEX.LLIG.0F.W0 2E /r
VUCOMISS xmm1, xmm2/m32{sae}

B V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare low single precision floating-point values in 
xmm1 and xmm2/mem32 and set the EFLAGS flags 
accordingly.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r) ModRM:r/m (r) N/A N/A

B Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VUCOMISS int _mm_comi_round_ss(__m128 a, __m128 b, int imm, int sae); 
UCOMISS int _mm_ucomieq_ss(__m128 a, __m128 b);
UCOMISS int _mm_ucomilt_ss(__m128 a, __m128 b);
UCOMISS int _mm_ucomile_ss(__m128 a, __m128 b);
UCOMISS int _mm_ucomigt_ss(__m128 a, __m128 b);
UCOMISS int _mm_ucomige_ss(__m128 a, __m128 b);
UCOMISS int _mm_ucomineq_ss(__m128 a, __m128 b);

SIMD Floating-Point Exceptions

Invalid (if SNaN Operands), Denormal.

Other Exceptions
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions,” additionally:
#UD If VEX.vvvv != 1111B.
EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”
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UD—Undefined Instruction Vol. 2B 4-729

UD—Undefined Instruction

Instruction Operand Encoding

Description

Generates an invalid opcode exception. This instruction is provided for software testing to explicitly generate an 
invalid opcode exception. The opcodes for this instruction are reserved for this purpose.

Other than raising the invalid opcode exception, this instruction has no effect on processor state or memory.

Even though it is the execution of the UD instruction that causes the invalid opcode exception, the instruction 
pointer saved by delivery of the exception references the UD instruction (and not the following instruction).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

#UD (* Generates invalid opcode exception *);

Flags Affected

None.

Exceptions (All Operating Modes)
#UD Raises an invalid opcode exception in all operating modes.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F FF /r UD01 r32, r/m32

NOTES:
1. Some processors decode the UD0 instruction without a ModR/M byte. As a result, those processors would deliver an invalid-opcode 

exception instead of a fault on instruction fetch when the instruction with a ModR/M byte (and any implied bytes) would cross a page 
or segment boundary.

RM Valid Valid Raise invalid opcode exception.

0F B9 /r UD1 r32, r/m32 RM Valid Valid Raise invalid opcode exception.

0F 0B UD2 ZO Valid Valid Raise invalid opcode exception.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

RM ModRM:reg (r) ModRM:r/m (r) N/A N/A



UIRET—User-Interrupt Return

Instruction Operand Encoding

Description

UIRET returns from the handling of a user interrupt. It can be executed regardless of CPL.
Execution of UIRET inside a transactional region causes a transactional abort; the abort loads EAX as it would have 
had it been due to an execution of IRET.
UIRET can be tracked by Architectural Last Branch Records (LBRs), Intel Processor Trace (Intel PT), and Perfor-
mance Monitoring. For both Intel PT and LBRs, UIRET is recorded in precisely the same manner as IRET. Hence for 
LBRs, UIRETs fall into the OTHER_BRANCH category, which implies that IA32_LBR_CTL.OTHER_BRANCH[bit 22] 
must be set to record user-interrupt delivery, and that the IA32_LBR_x_INFO.BR_TYPE field will indicate 
OTHER_BRANCH for any recorded user interrupt. For Intel PT, control flow tracing must be enabled by setting 
IA32_RTIT_CTL.BranchEn[bit 13].
UIRET will also increment performance counters for which counting BR_INST_RETIRED.FAR_BRANCH is enabled.

Operation

Pop tempRIP;
Pop tempRFLAGS; // see below for how this is used to load RFLAGS
Pop tempRSP;
IF tempRIP is not canonical in current paging mode

THEN #GP(0);
FI;
IF ShadowStackEnabled(CPL)

THEN
PopShadowStack SSRIP;
IF SSRIP ≠ tempRIP

THEN #CP (FAR-RET/IRET);
FI;

FI;
RIP := tempRIP;
// update in RFLAGS only CF, PF, AF, ZF, SF, TF, DF, OF, NT, RF, AC, and ID
RFLAGS := (RFLAGS & ~254DD5H) | (tempRFLAGS & 254DD5H);
RSP := tempRSP;
IF CPUID.(EAX=07H, ECX=01H):EDX.UIRET_UIF[bit 17] = 1

THEN UIF := tempRFLAGS[1];
ELSE UIF := 1;

FI;
Clear any cache-line monitoring established by MONITOR or UMONITOR;

Flags Affected
See the Operation section.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F3 0F 01 EC
UIRET 

ZO V/I UINTR Return from handling a user interrupt.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A N/A
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Protected Mode Exceptions
#UD The UIRET instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The UIRET instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The UIRET instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The UIRET instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the return instruction pointer is non-canonical.
#SS(0) If an attempt to pop a value off the stack causes a non-canonical address to be referenced.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3. 
#CP If return instruction pointer from stack and shadow stack do not match.
#UD If the LOCK prefix is used.

If executed inside an enclave.
If CR4.UINTR = 0.
If CPUID.07H.0H:EDX.UINTR[bit 5] = 0.
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UMONITOR—User Level Set Up Monitor Address

Instruction Operand Encoding1

Description

The UMONITOR instruction arms address monitoring hardware using an address specified in the source register 
(the address range that the monitoring hardware checks for store operations can be determined by using the 
CPUID monitor leaf function, EAX=05H). A store to an address within the specified address range triggers the 
monitoring hardware. The state of monitor hardware is used by UMWAIT.

The content of the source register is an effective address. By default, the DS segment is used to create a linear 
address that is monitored. Segment overrides can be used. The address range must use memory of the write-back 
type. Only write-back memory is guaranteed to correctly trigger the monitoring hardware. Additional information 
on determining what address range to use in order to prevent false wake-ups is described in Chapter 10, “Multiple-
Processor Management‚” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

The UMONITOR instruction is ordered as a load operation with respect to other memory transactions. The instruc-
tion is subject to the permission checking and faults associated with a byte load. Like a load, UMONITOR sets the 
A-bit but not the D-bit in page tables.

UMONITOR and UMWAIT are available when CPUID.7.0:ECX.WAITPKG[bit 5] is enumerated as 1. UMONITOR and 
UMWAIT may be executed at any privilege level. Except for the width of the source register, the instruction’s oper-
ation is the same in non-64-bit modes and in 64-bit mode.

UMONITOR does not interoperate with the legacy MWAIT instruction. If UMONITOR was executed prior to executing 
MWAIT and following the most recent execution of the legacy MONITOR instruction, MWAIT will not enter an opti-
mized state. Execution will continue to the instruction following MWAIT.

The UMONITOR instruction causes a transactional abort when used inside a transactional region.
The width of the source register (16b, 32b or 64b) is determined by the effective addressing width, which is 
affected in the standard way by the machine mode settings and 67 prefix.

Operation

UMONITOR sets up an address range for the monitor hardware using the content of source register as an effective 
address and puts the monitor hardware in armed state. A store to the specified address range will trigger the 
monitor hardware.

Intel C/C++ Compiler Intrinsic Equivalent

UMONITOR void _umonitor(void *address);

Numeric Exceptions

None.

Opcode /
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F AE /6

UMONITOR r16/r32/r64

A V/V WAITPKG Sets up a linear address range to be monitored by 
hardware and activates the monitor. The address range 
should be a write-back memory caching type. The 
address is contained in r16/r32/r64.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (r) N/A N/A N/A

1. The Mod field of the ModR/M byte must have value 11B.
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Protected Mode Exceptions
#GP(0) If the specified segment is not SS and the source register is outside the specified segment 

limit.
If the specified segment register contains a NULL segment selector.

#SS(0) If the specified segment is SS and the source register is outside the SS segment limit.
#PF(fault-code) For a page fault.
#UD If CPUID.7.0:ECX.WAITPKG[bit 5]=0.

If the LOCK prefix is used.

Real Address Mode Exceptions
#GP If the specified segment is not SS and the source register is outside of the effective address 

space from 0 to FFFFH.
#SS If the specified segment is SS and the source register is outside of the effective address space 

from 0 to FFFFH.
#UD If CPUID.7.0:ECX.WAITPKG[bit 5]=0.

If the LOCK prefix is used.

Virtual 8086 Mode Exceptions

Same exceptions as in real address mode; additionally:
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the specified segment is not SS and the linear address is in non-canonical form.
#SS(0) If the specified segment is SS and the source register is in non-canonical form.
#PF(fault-code) For a page fault.
#UD If CPUID.7.0:ECX.WAITPKG[bit 5]=0.

If the LOCK prefix is used.
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UMWAIT—User Level Monitor Wait 

Instruction Operand Encoding1

Description

UMWAIT instructs the processor to enter an implementation-dependent optimized state while monitoring a range 
of addresses. The optimized state may be either a light-weight power/performance optimized state or an improved 
power/performance optimized state. The selection between the two states is governed by the explicit input register 
bit[0] source operand.
UMWAIT is available when CPUID.7.0:ECX.WAITPKG[bit 5] is enumerated as 1. UMWAIT may be executed at any 
privilege level. This instruction’s operation is the same in non-64-bit modes and in 64-bit mode.
The input register contains information such as the preferred optimized state the processor should enter as 
described in the following table. Bits other than bit 0 are reserved and will result in #GP if nonzero.

The instruction wakes up when the time-stamp counter reaches or exceeds the implicit EDX:EAX 64-bit input value 
(if the monitoring hardware did not trigger beforehand).
Prior to executing the UMWAIT instruction, an operating system may specify the maximum delay it allows the 
processor to suspend its operation. It can do so by writing TSC-quanta value to the following 32bit MSR (IA32_UM-
WAIT_CONTROL at MSR index E1H):
• IA32_UMWAIT_CONTROL[31:2] — Determines the maximum time in TSC-quanta that the processor can reside 

in either C0.1 or C0.2. A zero value indicates no maximum time. The maximum time value is a 32-bit value 
where the upper 30 bits come from this field and the lower two bits are zero.

• IA32_UMWAIT_CONTROL[1] — Reserved.
• IA32_UMWAIT_CONTROL[0] — C0.2 is not allowed by the OS. Value of “1” means all C0.2 requests revert to 

C0.1.
If the processor that executed a UMWAIT instruction wakes due to the expiration of the operating system time-
limit, the instructions sets RFLAGS.CF; otherwise, that flag is cleared.
The UMWAIT instruction causes a transactional abort when used inside a transactional region.
The UMWAIT instruction operates with the UMONITOR instruction. The two instructions allow the definition of an 
address at which to wait (UMONITOR) and an implementation-dependent optimized operation to perform while 
waiting (UMWAIT). The execution of UMWAIT is a hint to the processor that it can enter an implementation-depen-
dent-optimized state while waiting for an event or a store operation to the address range armed by UMONITOR. 
The UMWAIT instruction will not wait (will not enter an implementation-dependent optimized state) if any of the 

Opcode /
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F2 0F AE /6

UMWAIT r32, <edx>, <eax>

A V/V WAITPKG A hint that allows the processor to stop instruction 
execution and enter an implementation-dependent 
optimized state until occurrence of a class of events.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (r) N/A N/A N/A

1. The Mod field of the ModR/M byte must have value 11B.

Table 1-21.  UMWAIT Input Register Bit Definitions

Bit Value State Name Wakeup Time Power Savings Other Benefits

bit[0] = 0 C0.2 Slower Larger Improves performance of the other SMT thread(s) on the same core.

bit[0] = 1 C0.1 Faster Smaller N/A

bits[31:1] N/A N/A N/A Reserved
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following instructions were executed before UMWAIT and after the most recent execution of UMONITOR: IRET, 
MONITOR, SYSEXIT, SYSRET, and far RET (the last if it is changing CPL).
The following additional events cause the processor to exit the implementation-dependent optimized state: a store 
to the address range armed by the UMONITOR instruction, an NMI or SMI, a debug exception, a machine check 
exception, the BINIT# signal, the INIT# signal, and the RESET# signal. Other implementation-dependent events 
may also cause the processor to exit the implementation-dependent optimized state.
In addition, an external interrupt causes the processor to exit the implementation-dependent optimized state 
regardless of whether maskable-interrupts are inhibited (EFLAGS.IF =0).
Following exit from the implementation-dependent-optimized state, control passes to the instruction after the 
UMWAIT instruction. A pending interrupt that is not masked (including an NMI or an SMI) may be delivered before 
execution of that instruction.
Unlike the HLT instruction, the UMWAIT instruction does not restart at the UMWAIT instruction following the 
handling of an SMI.
If the preceding UMONITOR instruction did not successfully arm an address range or if UMONITOR was not 
executed prior to executing UMWAIT and following the most recent execution of the legacy MONITOR instruction 
(UMWAIT does not interoperate with MONITOR), then the processor will not enter an optimized state. Execution 
will continue to the instruction following UMWAIT.
A store to the address range armed by the UMONITOR instruction will cause the processor to exit UMWAIT if either 
the store was originated by other processor agents or the store was originated by a non-processor agent.

Operation

os_deadline := TSC+(IA32_UMWAIT_CONTROL[31:2]<<2)
instr_deadline := UINT64(EDX:EAX)

IF os_deadline < instr_deadline:
deadline := os_deadline
using_os_deadline := 1

ELSE:
deadline := instr_deadline
using_os_deadline := 0

WHILE monitor hardware armed AND TSC < deadline:
implementation_dependent_optimized_state(Source register, deadline, IA32_UMWAIT_CONTROL[0] )

IF using_os_deadline AND TSC ≥ deadline:
RFLAGS.CF := 1

ELSE:
RFLAGS.CF := 0

RFLAGS.AF,PF,SF,ZF,OF := 0

Intel C/C++ Compiler Intrinsic Equivalent

UMWAIT uint8_t _umwait(uint32_t control, uint64_t counter);

Numeric Exceptions

None.

Exceptions (All Operating Modes)
#GP(0) If src[31:1] != 0.

If CR4.TSD = 1 and CPL != 0.
#UD If CPUID.7.0:ECX.WAITPKG[bit 5]=0.
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UNPCKHPD—Unpack and Interleave High Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the high double precision floating-point values from the first source operand and 
the second source operand. See Figure 4-15 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2B.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
ZMM register destination are unmodified. When unpacking from a memory operand, an implementation may fetch 
only the appropriate 64 bits; however, alignment to 16-byte boundary and normal segment checking will still be 
enforced.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM 
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed. 
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register.
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM 
register, a 512-bit memory location, or a 512-bit vector broadcasted from a 64-bit memory location. The destina-
tion operand is a ZMM register, conditionally updated using writemask k1. 

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 15 /r
UNPCKHPD xmm1, xmm2/m128

A V/V SSE2 Unpacks and Interleaves double precision floating-
point values from high quadwords of xmm1 and 
xmm2/m128.

VEX.128.66.0F.WIG 15 /r
VUNPCKHPD xmm1,xmm2, 
xmm3/m128

B V/V AVX Unpacks and Interleaves double precision floating-
point values from high quadwords of xmm2 and 
xmm3/m128.

VEX.256.66.0F.WIG 15 /r
VUNPCKHPD ymm1,ymm2, 
ymm3/m256

B V/V AVX Unpacks and Interleaves double precision floating-
point values from high quadwords of ymm2 and 
ymm3/m256.

EVEX.128.66.0F.W1 15 /r
VUNPCKHPD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Unpacks and Interleaves double precision floating-
point values from high quadwords of xmm2 and 
xmm3/m128/m64bcst subject to writemask k1.

EVEX.256.66.0F.W1 15 /r
VUNPCKHPD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Unpacks and Interleaves double precision floating-
point values from high quadwords of ymm2 and 
ymm3/m256/m64bcst subject to writemask k1.

EVEX.512.66.0F.W1 15 /r
VUNPCKHPD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512F 
OR AVX10.11

Unpacks and Interleaves double precision floating-
point values from high quadwords of zmm2 and 
zmm3/m512/m64bcst subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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EVEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM 
register, a 256-bit memory location, or a 256-bit vector broadcasted from a 64-bit memory location. The destina-
tion operand is a YMM register, conditionally updated using writemask k1. 
EVEX.128 encoded version: The first source operand is a XMM register. The second source operand is a XMM 
register, a 128-bit memory location, or a 128-bit vector broadcasted from a 64-bit memory location. The destina-
tion operand is a XMM register, conditionally updated using writemask k1. 

Operation

VUNPCKHPD (EVEX Encoded Versions When SRC2 is a Register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF VL >= 128

TMP_DEST[63:0] := SRC1[127:64]
TMP_DEST[127:64] := SRC2[127:64]

FI;
IF VL >= 256

TMP_DEST[191:128] := SRC1[255:192]
TMP_DEST[255:192] := SRC2[255:192]

FI;
IF VL >= 512

TMP_DEST[319:256] := SRC1[383:320]
TMP_DEST[383:320] := SRC2[383:320]
TMP_DEST[447:384] := SRC1[511:448]
TMP_DEST[511:448] := SRC2[511:448]

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VUNPCKHPD (EVEX Encoded Version When SRC2 is Memory)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF (EVEX.b = 1)

THEN TMP_SRC2[i+63:i] := SRC2[63:0]
ELSE TMP_SRC2[i+63:i] := SRC2[i+63:i]

FI;
ENDFOR;
IF VL >= 128

TMP_DEST[63:0] := SRC1[127:64]
TMP_DEST[127:64] := TMP_SRC2[127:64]

FI;
IF VL >= 256

TMP_DEST[191:128] := SRC1[255:192]
TMP_DEST[255:192] := TMP_SRC2[255:192]

FI;
IF VL >= 512

TMP_DEST[319:256] := SRC1[383:320]
TMP_DEST[383:320] := TMP_SRC2[383:320]
TMP_DEST[447:384] := SRC1[511:448]
TMP_DEST[511:448] := TMP_SRC2[511:448]

FI;

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VUNPCKHPD (VEX.256 Encoded Version)
DEST[63:0] := SRC1[127:64]
DEST[127:64] := SRC2[127:64]
DEST[191:128] := SRC1[255:192]
DEST[255:192] := SRC2[255:192]
DEST[MAXVL-1:256] := 0

VUNPCKHPD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[127:64]
DEST[127:64] := SRC2[127:64]
DEST[MAXVL-1:128] := 0

UNPCKHPD (128-bit Legacy SSE Version)
DEST[63:0] := SRC1[127:64]
DEST[127:64] := SRC2[127:64]
DEST[MAXVL-1:128] (Unmodified)
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Intel C/C++ Compiler Intrinsic Equivalent

VUNPCKHPD __m512d _mm512_unpackhi_pd( __m512d a, __m512d b);
VUNPCKHPD __m512d _mm512_mask_unpackhi_pd(__m512d s, __mmask8 k, __m512d a, __m512d b);
VUNPCKHPD __m512d _mm512_maskz_unpackhi_pd(__mmask8 k, __m512d a, __m512d b);
VUNPCKHPD __m256d _mm256_unpackhi_pd(__m256d a, __m256d b)
VUNPCKHPD __m256d _mm256_mask_unpackhi_pd(__m256d s, __mmask8 k, __m256d a, __m256d b);
VUNPCKHPD __m256d _mm256_maskz_unpackhi_pd(__mmask8 k, __m256d a, __m256d b);
UNPCKHPD __m128d _mm_unpackhi_pd(__m128d a, __m128d b)
VUNPCKHPD __m128d _mm_mask_unpackhi_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VUNPCKHPD __m128d _mm_maskz_unpackhi_pd(__mmask8 k, __m128d a, __m128d b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instructions, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-52, “Type E4NF Class Exception Conditions.”
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UNPCKHPS—Unpack and Interleave High Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the high single precision floating-point values from the first source operand and 
the second source operand. 
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
ZMM register destination are unmodified. When unpacking from a memory operand, an implementation may fetch 
only the appropriate 64 bits; however, alignment to 16-byte boundary and normal segment checking will still be 
enforced.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM 
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.
VEX.256 encoded version: The second source operand is an YMM register or an 256-bit memory location. The first 
source operand and destination operands are YMM registers.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 15 /r
UNPCKHPS xmm1, xmm2/m128

A V/V SSE Unpacks and Interleaves single precision floating-point 
values from high quadwords of xmm1 and xmm2/m128.

VEX.128.0F.WIG 15 /r
VUNPCKHPS xmm1, xmm2, 
xmm3/m128

B V/V AVX Unpacks and Interleaves single precision floating-point 
values from high quadwords of xmm2 and xmm3/m128.

VEX.256.0F.WIG 15 /r
VUNPCKHPS ymm1, ymm2, 
ymm3/m256

B V/V AVX Unpacks and Interleaves single precision floating-point 
values from high quadwords of ymm2 and ymm3/m256.

EVEX.128.0F.W0 15 /r
VUNPCKHPS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Unpacks and Interleaves single precision floating-point 
values from high quadwords of xmm2 and 
xmm3/m128/m32bcst and write result to xmm1 
subject to writemask k1.

EVEX.256.0F.W0 15 /r
VUNPCKHPS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Unpacks and Interleaves single precision floating-point 
values from high quadwords of ymm2 and 
ymm3/m256/m32bcst and write result to ymm1 
subject to writemask k1.

EVEX.512.0F.W0 15 /r
VUNPCKHPS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

C V/V AVX512F 
OR AVX10.11

Unpacks and Interleaves single precision floating-point 
values from high quadwords of zmm2 and 
zmm3/m512/m32bcst and write result to zmm1 subject 
to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM 
register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a ZMM register, conditionally updated using writemask k1. 
EVEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM 
register, a 256-bit memory location, or a 256-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a YMM register, conditionally updated using writemask k1. 
EVEX.128 encoded version: The first source operand is a XMM register. The second source operand is a XMM 
register, a 128-bit memory location, or a 128-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a XMM register, conditionally updated using writemask k1. 

Operation

VUNPCKHPS (EVEX Encoded Version When SRC2 is a Register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL >= 128

TMP_DEST[31:0] := SRC1[95:64]
TMP_DEST[63:32] := SRC2[95:64]
TMP_DEST[95:64] := SRC1[127:96]
TMP_DEST[127:96] := SRC2[127:96]

FI;
IF VL >= 256

TMP_DEST[159:128] := SRC1[223:192]
TMP_DEST[191:160] := SRC2[223:192]
TMP_DEST[223:192] := SRC1[255:224]
TMP_DEST[255:224] := SRC2[255:224]

FI;
IF VL >= 512

TMP_DEST[287:256] := SRC1[351:320]
TMP_DEST[319:288] := SRC2[351:320]
TMP_DEST[351:320] := SRC1[383:352]
TMP_DEST[383:352] := SRC2[383:352]
TMP_DEST[415:384] := SRC1[479:448]
TMP_DEST[447:416] := SRC2[479:448]
TMP_DEST[479:448] := SRC1[511:480]
TMP_DEST[511:480] := SRC2[511:480]

FI;

Figure 1-27.  VUNPCKHPS Operation
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FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VUNPCKHPS (EVEX Encoded Version When SRC2 is Memory)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF (EVEX.b = 1)

THEN TMP_SRC2[i+31:i] := SRC2[31:0]
ELSE TMP_SRC2[i+31:i] := SRC2[i+31:i]

FI;
ENDFOR;
IF VL >= 128

TMP_DEST[31:0] := SRC1[95:64]
TMP_DEST[63:32] := TMP_SRC2[95:64]
TMP_DEST[95:64] := SRC1[127:96]
TMP_DEST[127:96] := TMP_SRC2[127:96]

FI;
IF VL >= 256

TMP_DEST[159:128] := SRC1[223:192]
TMP_DEST[191:160] := TMP_SRC2[223:192]
TMP_DEST[223:192] := SRC1[255:224]
TMP_DEST[255:224] := TMP_SRC2[255:224]

FI;
IF VL >= 512

TMP_DEST[287:256] := SRC1[351:320]
TMP_DEST[319:288] := TMP_SRC2[351:320]
TMP_DEST[351:320] := SRC1[383:352]
TMP_DEST[383:352] := TMP_SRC2[383:352]
TMP_DEST[415:384] := SRC1[479:448]
TMP_DEST[447:416] := TMP_SRC2[479:448]
TMP_DEST[479:448] := SRC1[511:480]
TMP_DEST[511:480] := TMP_SRC2[511:480]

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
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FI;
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VUNPCKHPS (VEX.256 Encoded Version)
DEST[31:0] := SRC1[95:64]
DEST[63:32] := SRC2[95:64]
DEST[95:64] := SRC1[127:96]
DEST[127:96] := SRC2[127:96]
DEST[159:128] := SRC1[223:192]
DEST[191:160] := SRC2[223:192]
DEST[223:192] := SRC1[255:224]
DEST[255:224] := SRC2[255:224]
DEST[MAXVL-1:256] := 0

VUNPCKHPS (VEX.128 Encoded Version)
DEST[31:0] := SRC1[95:64]
DEST[63:32] := SRC2[95:64]
DEST[95:64] := SRC1[127:96]
DEST[127:96] := SRC2[127:96]
DEST[MAXVL-1:128] := 0

UNPCKHPS (128-bit Legacy SSE Version)
DEST[31:0] := SRC1[95:64]
DEST[63:32] := SRC2[95:64]
DEST[95:64] := SRC1[127:96]
DEST[127:96] := SRC2[127:96]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VUNPCKHPS __m512 _mm512_unpackhi_ps( __m512 a, __m512 b);
VUNPCKHPS __m512 _mm512_mask_unpackhi_ps(__m512 s, __mmask16 k, __m512 a, __m512 b);
VUNPCKHPS __m512 _mm512_maskz_unpackhi_ps(__mmask16 k, __m512 a, __m512 b);
VUNPCKHPS __m256 _mm256_unpackhi_ps (__m256 a, __m256 b);
VUNPCKHPS __m256 _mm256_mask_unpackhi_ps(__m256 s, __mmask8 k, __m256 a, __m256 b);
VUNPCKHPS __m256 _mm256_maskz_unpackhi_ps(__mmask8 k, __m256 a, __m256 b);
UNPCKHPS __m128 _mm_unpackhi_ps (__m128 a, __m128 b);
VUNPCKHPS __m128 _mm_mask_unpackhi_ps(__m128 s, __mmask8 k, __m128 a, __m128 b);
VUNPCKHPS __m128 _mm_maskz_unpackhi_ps(__mmask8 k, __m128 a, __m128 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instructions, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-52, “Type E4NF Class Exception Conditions.”
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UNPCKLPD—Unpack and Interleave Low Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the low double precision floating-point values from the first source operand and 
the second source operand.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
ZMM register destination are unmodified. When unpacking from a memory operand, an implementation may fetch 
only the appropriate 64 bits; however, alignment to 16-byte boundary and normal segment checking will still be 
enforced.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM 
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register.
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM 
register, a 512-bit memory location, or a 512-bit vector broadcasted from a 64-bit memory location. The destina-
tion operand is a ZMM register, conditionally updated using writemask k1. 

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 14 /r
UNPCKLPD xmm1, xmm2/m128

A V/V SSE2 Unpacks and Interleaves double precision floating-point 
values from low quadwords of xmm1 and xmm2/m128.

VEX.128.66.0F.WIG 14 /r
VUNPCKLPD xmm1,xmm2, 
xmm3/m128

B V/V AVX Unpacks and Interleaves double precision floating-point 
values from low quadwords of xmm2 and xmm3/m128.

VEX.256.66.0F.WIG 14 /r
VUNPCKLPD ymm1,ymm2, 
ymm3/m256

B V/V AVX Unpacks and Interleaves double precision floating-point 
values from low quadwords of ymm2 and ymm3/m256.

EVEX.128.66.0F.W1 14 /r
VUNPCKLPD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Unpacks and Interleaves double precision floating-point 
values from low quadwords of xmm2 and 
xmm3/m128/m64bcst subject to write mask k1.

EVEX.256.66.0F.W1 14 /r
VUNPCKLPD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Unpacks and Interleaves double precision floating-point 
values from low quadwords of ymm2 and 
ymm3/m256/m64bcst subject to write mask k1.

EVEX.512.66.0F.W1 14 /r
VUNPCKLPD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512F 
OR AVX10.11

Unpacks and Interleaves double precision floating-point 
values from low quadwords of zmm2 and 
zmm3/m512/m64bcst subject to write mask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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EVEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM 
register, a 256-bit memory location, or a 256-bit vector broadcasted from a 64-bit memory location. The destina-
tion operand is a YMM register, conditionally updated using writemask k1. 
EVEX.128 encoded version: The first source operand is an XMM register. The second source operand is a XMM 
register, a 128-bit memory location, or a 128-bit vector broadcasted from a 64-bit memory location. The destina-
tion operand is a XMM register, conditionally updated using writemask k1. 

Operation

VUNPCKLPD (EVEX Encoded Versions When SRC2 is a Register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF VL >= 128

TMP_DEST[63:0] := SRC1[63:0]
TMP_DEST[127:64] := SRC2[63:0]

FI;
IF VL >= 256

TMP_DEST[191:128] := SRC1[191:128]
TMP_DEST[255:192] := SRC2[191:128]

FI;
IF VL >= 512

TMP_DEST[319:256] := SRC1[319:256]
TMP_DEST[383:320] := SRC2[319:256]
TMP_DEST[447:384] := SRC1[447:384]
TMP_DEST[511:448] := SRC2[447:384]

FI;

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VUNPCKLPD (EVEX Encoded Version When SRC2 is Memory)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF (EVEX.b = 1)

THEN TMP_SRC2[i+63:i] := SRC2[63:0]
ELSE TMP_SRC2[i+63:i] := SRC2[i+63:i]

FI;
ENDFOR;
IF VL >= 128

TMP_DEST[63:0] := SRC1[63:0]
TMP_DEST[127:64] := TMP_SRC2[63:0]

FI;
IF VL >= 256

TMP_DEST[191:128] := SRC1[191:128]
TMP_DEST[255:192] := TMP_SRC2[191:128]

FI;
IF VL >= 512

TMP_DEST[319:256] := SRC1[319:256]
TMP_DEST[383:320] := TMP_SRC2[319:256]
TMP_DEST[447:384] := SRC1[447:384]
TMP_DEST[511:448] := TMP_SRC2[447:384]

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VUNPCKLPD (VEX.256 Encoded Version)
DEST[63:0] := SRC1[63:0]
DEST[127:64] := SRC2[63:0]
DEST[191:128] := SRC1[191:128]
DEST[255:192] := SRC2[191:128]
DEST[MAXVL-1:256] := 0

VUNPCKLPD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0]
DEST[127:64] := SRC2[63:0]
DEST[MAXVL-1:128] := 0

UNPCKLPD (128-bit Legacy SSE Version)
DEST[63:0] := SRC1[63:0]
DEST[127:64] := SRC2[63:0]
DEST[MAXVL-1:128] (Unmodified)
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Intel C/C++ Compiler Intrinsic Equivalent

VUNPCKLPD __m512d _mm512_unpacklo_pd( __m512d a, __m512d b);
VUNPCKLPD __m512d _mm512_mask_unpacklo_pd(__m512d s, __mmask8 k, __m512d a, __m512d b);
VUNPCKLPD __m512d _mm512_maskz_unpacklo_pd(__mmask8 k, __m512d a, __m512d b);
VUNPCKLPD __m256d _mm256_unpacklo_pd(__m256d a, __m256d b)
VUNPCKLPD __m256d _mm256_mask_unpacklo_pd(__m256d s, __mmask8 k, __m256d a, __m256d b);
VUNPCKLPD __m256d _mm256_maskz_unpacklo_pd(__mmask8 k, __m256d a, __m256d b);
UNPCKLPD __m128d _mm_unpacklo_pd(__m128d a, __m128d b)
VUNPCKLPD __m128d _mm_mask_unpacklo_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VUNPCKLPD __m128d _mm_maskz_unpacklo_pd(__mmask8 k, __m128d a, __m128d b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instructions, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-52, “Type E4NF Class Exception Conditions.”
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UNPCKLPS—Unpack and Interleave Low Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the low single precision floating-point values from the first source operand and 
the second source operand. 
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
ZMM register destination are unmodified. When unpacking from a memory operand, an implementation may fetch 
only the appropriate 64 bits; however, alignment to 16-byte boundary and normal segment checking will still be 
enforced.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM 
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of 
the corresponding ZMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 14 /r
UNPCKLPS xmm1, xmm2/m128

A V/V SSE Unpacks and Interleaves single precision floating-point 
values from low quadwords of xmm1 and xmm2/m128.

VEX.128.0F.WIG 14 /r
VUNPCKLPS xmm1,xmm2, 
xmm3/m128

B V/V AVX Unpacks and Interleaves single precision floating-point 
values from low quadwords of xmm2 and xmm3/m128.

VEX.256.0F.WIG 14 /r
VUNPCKLPS 
ymm1,ymm2,ymm3/m256

B V/V AVX Unpacks and Interleaves single precision floating-point 
values from low quadwords of ymm2 and ymm3/m256.

EVEX.128.0F.W0 14 /r
VUNPCKLPS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Unpacks and Interleaves single precision floating-point 
values from low quadwords of xmm2 and xmm3/mem 
and write result to xmm1 subject to write mask k1.

EVEX.256.0F.W0 14 /r
VUNPCKLPS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Unpacks and Interleaves single precision floating-point 
values from low quadwords of ymm2 and ymm3/mem 
and write result to ymm1 subject to write mask k1.

EVEX.512.0F.W0 14 /r
VUNPCKLPS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

C V/V AVX512F 
OR AVX10.11

Unpacks and Interleaves single precision floating-point 
values from low quadwords of zmm2 and 
zmm3/m512/m32bcst and write result to zmm1 
subject to write mask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM 
register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a ZMM register, conditionally updated using writemask k1. 
EVEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM 
register, a 256-bit memory location, or a 256-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a YMM register, conditionally updated using writemask k1. 
EVEX.128 encoded version: The first source operand is an XMM register. The second source operand is a XMM 
register, a 128-bit memory location, or a 128-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a XMM register, conditionally updated using writemask k1. 

Operation

VUNPCKLPS (EVEX Encoded Version When SRC2 is a ZMM Register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL >= 128

TMP_DEST[31:0] := SRC1[31:0]
TMP_DEST[63:32] := SRC2[31:0]
TMP_DEST[95:64] := SRC1[63:32]
TMP_DEST[127:96] := SRC2[63:32]

FI;
IF VL >= 256

TMP_DEST[159:128] := SRC1[159:128]
TMP_DEST[191:160] := SRC2[159:128]
TMP_DEST[223:192] := SRC1[191:160]
TMP_DEST[255:224] := SRC2[191:160]

FI;
IF VL >= 512

TMP_DEST[287:256] := SRC1[287:256]
TMP_DEST[319:288] := SRC2[287:256]
TMP_DEST[351:320] := SRC1[319:288]
TMP_DEST[383:352] := SRC2[319:288]
TMP_DEST[415:384] := SRC1[415:384]
TMP_DEST[447:416] := SRC2[415:384]
TMP_DEST[479:448] := SRC1[447:416]
TMP_DEST[511:480] := SRC2[447:416]

FI;
FOR j := 0 TO KL-1

Figure 1-28.  VUNPCKLPS Operation

DEST

SRC1

SRC2

X0X1X2X3

Y0Y1Y2Y3

X0Y0X1Y1X4Y4X5Y5

X4X5X6X7

Y4Y5Y6Y7
UNPCKLPS—Unpack and Interleave Low Packed Single Precision Floating-Point Values Vol. 2B 4-749



i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VUNPCKLPS (EVEX Encoded Version When SRC2 is Memory)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 31
IF (EVEX.b = 1)

THEN TMP_SRC2[i+31:i] := SRC2[31:0]
ELSE TMP_SRC2[i+31:i] := SRC2[i+31:i]

FI;
ENDFOR;
IF VL >= 128
TMP_DEST[31:0] := SRC1[31:0]
TMP_DEST[63:32] := TMP_SRC2[31:0]
TMP_DEST[95:64] := SRC1[63:32]
TMP_DEST[127:96] := TMP_SRC2[63:32]
FI;
IF VL >= 256

TMP_DEST[159:128] := SRC1[159:128]
TMP_DEST[191:160] := TMP_SRC2[159:128]
TMP_DEST[223:192] := SRC1[191:160]
TMP_DEST[255:224] := TMP_SRC2[191:160]

FI;
IF VL >= 512

TMP_DEST[287:256] := SRC1[287:256]
TMP_DEST[319:288] := TMP_SRC2[287:256]
TMP_DEST[351:320] := SRC1[319:288]
TMP_DEST[383:352] := TMP_SRC2[319:288]
TMP_DEST[415:384] := SRC1[415:384]
TMP_DEST[447:416] := TMP_SRC2[415:384]
TMP_DEST[479:448] := SRC1[447:416]
TMP_DEST[511:480] := TMP_SRC2[447:416]

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI
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FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

UNPCKLPS (VEX.256 Encoded Version)
DEST[31:0] := SRC1[31:0]
DEST[63:32] := SRC2[31:0]
DEST[95:64] := SRC1[63:32]
DEST[127:96] := SRC2[63:32]
DEST[159:128] := SRC1[159:128]
DEST[191:160] := SRC2[159:128]
DEST[223:192] := SRC1[191:160]
DEST[255:224] := SRC2[191:160]
DEST[MAXVL-1:256] := 0

VUNPCKLPS (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0]
DEST[63:32] := SRC2[31:0]
DEST[95:64] := SRC1[63:32]
DEST[127:96] := SRC2[63:32]
DEST[MAXVL-1:128] := 0

UNPCKLPS (128-bit Legacy SSE Version)
DEST[31:0] := SRC1[31:0]
DEST[63:32] := SRC2[31:0]
DEST[95:64] := SRC1[63:32]
DEST[127:96] := SRC2[63:32]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VUNPCKLPS __m512 _mm512_unpacklo_ps(__m512 a, __m512 b);
VUNPCKLPS __m512 _mm512_mask_unpacklo_ps(__m512 s, __mmask16 k, __m512 a, __m512 b);
VUNPCKLPS __m512 _mm512_maskz_unpacklo_ps(__mmask16 k, __m512 a, __m512 b);
VUNPCKLPS __m256 _mm256_unpacklo_ps (__m256 a, __m256 b);
VUNPCKLPS __m256 _mm256_mask_unpacklo_ps(__m256 s, __mmask8 k, __m256 a, __m256 b);
VUNPCKLPS __m256 _mm256_maskz_unpacklo_ps(__mmask8 k, __m256 a, __m256 b);
UNPCKLPS __m128 _mm_unpacklo_ps (__m128 a, __m128 b);
VUNPCKLPS __m128 _mm_mask_unpacklo_ps(__m128 s, __mmask8 k, __m128 a, __m128 b);
VUNPCKLPS __m128 _mm_maskz_unpacklo_ps(__mmask8 k, __m128 a, __m128 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
Non-EVEX-encoded instructions, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-52, “Type E4NF Class Exception Conditions.”
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CHAPTER 5
INSTRUCTION SET REFERENCE, V

5.1 TERNARY BIT VECTOR LOGIC TABLE
VPTERNLOGD/VPTERNLOGQ instructions operate on dword/qword elements and take three bit vectors of the 
respective input data elements to form a set of 32/64 indices, where each 3-bit value provides an index into an 8-
bit lookup table represented by the imm8 byte of the instruction. The 256 possible values of the imm8 byte is 
constructed as a 16x16 boolean logic table. The 16 rows of the table uses the lower 4 bits of imm8 as row index. 
The 16 columns are referenced by imm8[7:4]. The 16 columns of the table are present in two halves, with 8 
columns shown in Table 5-1 for the column index value between 0:7, followed by Table 5-2 showing the 8 columns 
corresponding to column index 8:15. This section presents the two-halves of the 256-entry table using a short-
hand notation representing simple or compound boolean logic expressions with three input bit source data. 
The three input bit source data will be denoted with the capital letters: A, B, C; where A represents a bit from the 
first source operand (also the destination operand), B and C represent a bit from the 2nd and 3rd source operands. 
Each map entry takes the form of a logic expression consisting of one of more component expressions. Each 
component expression consists of either a unary or binary boolean operator and associated operands. Each binary 
boolean operator is expressed in lowercase letters, and operands concatenated after the logic operator. The unary 
operator ‘not’ is expressed using ‘!’. Additionally, the conditional expression “A?B:C” expresses a result returning B 
if A is set, returning C otherwise.
A binary boolean operator is followed by two operands, e.g., andAB. For a compound binary expression that contain 
commutative components and comprising the same logic operator, the 2nd logic operator is omitted and three 
operands can be concatenated in sequence, e.g., andABC. When the 2nd operand of the first binary boolean 
expression comes from the result of another boolean expression, the 2nd boolean expression is concatenated after 
the uppercase operand of the first logic expression, e.g., norBnandAC. When the result is independent of an 
operand, that operand is omitted in the logic expression, e.g., zeros or norCB.
The 3-input expression “majorABC” returns 0 if two or more input bits are 0, returns 1 if two or more input bits are 
1. The 3-input expression “minorABC” returns 1 if two or more input bits are 0, returns 0 if two or more input bits 
are 1.
The building-block bit logic functions used in Table 5-1 and Table 5-2 include:
• Constants: TRUE (1), FALSE (0);
• Unary function: Not (!);
• Binary functions: and, nand, or, nor, xor, xnor;
• Conditional function: Select (?:);
• Tertiary functions: major, minor.
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Table 5-2 shows the half of 256-entry map corresponding to column index values 8:15.

Table 5-1. Lower 8 columns of the 16x16 Map of VPTERNLOG Boolean Logic Operations

Imm [7:4]

[3:0] 0H 1H 2H 3H 4H 5H 6H 7H

00H FALSE andAnorBC norBnandAC andA!B norCnandBA andA!C andAxorBC andAnandBC

01H norABC norCB norBxorAC A?!B:norBC norCxorBA A?!C:norBC A?xorBC:norB
C

A?nandBC:no
rBC

02H andCnorBA norBxnorAC andC!B norBnorAC C?norBA:and
BA

C?norBA:A C?!B:andBA C?!B:A

03H norBA norBandAC C?!B:norBA !B C?norBA:xnor
BA

A?!C:!B A?xorBC:!B A?nandBC:!B

04H andBnorAC norCxnorBA B?norAC:and
AC

B?norAC:A andB!C norCnorBA B?!C:andAC B?!C:A

05H norCA norCandBA B?norAC:xnor
AC

A?!B:!C B?!C:norAC !C A?xorBC:!C A?nandBC:!C

06H norAxnorBC A?norBC:xorB
C

B?norAC:C xorBorAC C?norBA:B xorCorBA xorCB B?!C:orAC

07H norAandBC minorABC C?!B:!A nandBorAC B?!C:!A nandCorBA A?xorBC:nan
dBC

nandCB

08H norAnandBC A?norBC:and
BC

andCxorBA A?!B:andBC andBxorAC A?!C:andBC A?xorBC:and
BC

xorAandBC

09H norAxorBC A?norBC:xnor
BC

C?xorBA:norB
A

A?!B:xnorBC B?xorAC:norA
C

A?!C:xnorBC xnorABC A?nandBC:xn
orBC

0AH andC!A A?norBC:C andCnandBA A?!B:C C?!A:andBA xorCA xorCandBA A?nandBC:C

0BH C?!A:norBA C?!A:!B C?nandBA:no
rBA

C?nandBA:!B B?xorAC:!A B?xorAC:nan
dAC

C?nandBA:xn
orBA

nandBxnorAC

0CH andB!A A?norBC:B B?!A:andAC xorBA andBnandAC A?!C:B xorBandAC A?nandBC:B

0DH B?!A:norAC B?!A:!C B?!A:xnorAC C?xorBA:nan
dBA

B?nandAC:no
rAC

B?nandAC:!C B?nandAC:xn
orAC

nandCxnorBA

0EH norAnorBC xorAorBC B?!A:C A?!B:orBC C?!A:B A?!C:orBC B?nandAC:C A?nandBC:or
BC

0FH !A nandAorBC C?nandBA:!A nandBA B?nandAC:!A nandCA nandAxnorBC nandABC
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Table 5-1 and Table 5-2 translate each of the possible value of the imm8 byte to a Boolean expression. These tables 
can also be used by software to translate Boolean expressions to numerical constants to form the imm8 value 
needed to construct the VPTERNLOG syntax. There is a unique set of three byte constants (F0H, CCH, AAH) that 
can be used for this purpose as input operands in conjunction with the Boolean expressions defined in those tables. 
The reverse mapping can be expressed as:
Result_imm8 = Table_Lookup_Entry( 0F0H, 0CCH, 0AAH)
Table_Lookup_Entry is the Boolean expression defined in Table 5-1 and Table 5-2.

Table 5-2. Upper 8 columns of the 16x16 Map of VPTERNLOG Boolean Logic Operations

Imm [7:4]

[3:0] 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH

00H andABC andAxnorBC andCA B?andAC:A andBA C?andBA:A andAorBC A

01H A?andBC:nor
BC

B?andAC:!C A?C:norBC C?A:!B A?B:norBC B?A:!C xnorAorBC orAnorBC

02H andCxnorBA B?andAC:xor
AC

B?andAC:C B?andAC:orA
C

C?xnorBA:an
dBA

B?A:xorAC B?A:C B?A:orAC

03H A?andBC:!B xnorBandAC A?C:!B nandBnandA
C

xnorBA B?A:nandAC A?orBC:!B orA!B

04H andBxnorAC C?andBA:xor
BA

B?xnorAC:an
dAC

B?xnorAC:A C?andBA:B C?andBA:orB
A

C?A:B C?A:orBA

05H A?andBC:!C xnorCandBA xnorCA C?A:nandBA A?B:!C nandCnandB
A

A?orBC:!C orA!C

06H A?andBC:xor
BC

xorABC A?C:xorBC B?xnorAC:orA
C

A?B:xorBC C?xnorBA:orB
A

A?orBC:xorBC orAxorBC

07H xnorAandBC A?xnorBC:na
ndBC

A?C:nandBC nandBxorAC A?B:nandBC nandCxorBA A?orBCnandB
C

orAnandBC

08H andCB A?xnorBC:an
dBC

andCorAB B?C:A andBorAC C?B:A majorABC orAandBC

09H B?C:norAC xnorCB xnorCorBA C?orBA:!B xnorBorAC B?orAC:!C A?orBC:xnorB
C

orAxnorBC

0AH A?andBC:C A?xnorBC:C C B?C:orAC A?B:C B?orAC:xorAC orCandBA orCA

0BH B?C:!A B?C:nandAC orCnorBA orC!B B?orAC:!A B?orAC:nand
AC

orCxnorBA nandBnorAC

0CH A?andBC:B A?xnorBC:B A?C:B C?orBA:xorBA B C?B:orBA orBandAC orBA

0DH C?B!A C?B:nandBA C?orBA:!A C?orBA:nand
BA

orBnorAC orB!C orBxnorAC nandCnorBA

0EH A?andBC:orB
C

A?xnorBC:orB
C

A?C:orBC orCxorBA A?B:orBC orBxorAC orCB orABC

0FH nandAnandB
C

nandAxorBC orC!A orCnandBA orB!A orBnandAC nandAnorBC TRUE
Vol. 2C 5-3



INSTRUCTION SET REFERENCE, V
5.2 INSTRUCTIONS (V)
Chapter 5 continues an alphabetical discussion of Intel® 64 and IA-32 instructions (V). See also: Chapter 3, 
“Instruction Set Reference, A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A; Chapter 5, “Instruction Set Reference, V‚” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2B; and Chapter 5, “Instruction Set Reference, V,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2D.
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VADDPH—Add Packed FP16 Values

Instruction Operand Encoding

Description

This instruction adds packed FP16 values from source operands and stores the packed FP16 result in the destina-
tion operand. The destination elements are updated according to the writemask.

Operation

VADDPH (EVEX Encoded Versions) When SRC2 Operand is a Register 
VL = 128, 256 or 512
KL := VL/16
IF (VL = 512) AND (EVEX.b = 1): 

SET_RM(EVEX.RC)
ELSE

SET_RM(MXCSR.RC)
FOR j := 0 TO KL-1:

IF k1[j] OR *no writemask*:
DEST.fp16[j] := SRC1.fp16[j] + SRC2.fp16[j]

ELSEIF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged
DEST[MAXVL-1:VL] := 0

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.MAP5.W0 58 /r
VADDPH xmm1{k1}{z}, xmm2, 
xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Add packed FP16 value from 
xmm3/m128/m16bcst to xmm2, and store result 
in xmm1 subject to writemask k1.

EVEX.256.NP.MAP5.W0 58 /r
VADDPH ymm1{k1}{z}, ymm2, 
ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Add packed FP16 value from 
ymm3/m256/m16bcst to ymm2, and store result 
in ymm1 subject to writemask k1.

EVEX.512.NP.MAP5.W0 58 /r
VADDPH zmm1{k1}{z}, zmm2, 
zmm3/m512/m16bcst {er}

A V/V AVX512-FP16 
OR AVX10.11

Add packed FP16 value from 
zmm3/m512/m16bcst to zmm2, and store result 
in zmm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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VADDPH (EVEX Encoded Versions) When SRC2 Operand is a Memory Source
VL = 128, 256 or 512
KL := VL/16
FOR j := 0 TO KL-1:

IF k1[j] OR *no writemask*:
IF EVEX.b = 1:

DEST.fp16[j] := SRC1.fp16[j] + SRC2.fp16[0]
ELSE:

DEST.fp16[j] := SRC1.fp16[j] + SRC2.fp16[j]
ELSE IF *zeroing*:

DEST.fp16[j] := 0
// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VADDPH __m128h _mm_add_ph (__m128h a, __m128h b);
VADDPH __m128h _mm_mask_add_ph (__m128h src, __mmask8 k, __m128h a, __m128h b);
VADDPH __m128h _mm_maskz_add_ph (__mmask8 k, __m128h a, __m128h b);
VADDPH __m256h _mm256_add_ph (__m256h a, __m256h b);
VADDPH __m256h _mm256_mask_add_ph (__m256h src, __mmask16 k, __m256h a, __m256h b);
VADDPH __m256h _mm256_maskz_add_ph (__mmask16 k, __m256h a, __m256h b);
VADDPH __m512h _mm512_add_ph (__m512h a, __m512h b);
VADDPH __m512h _mm512_add_ph (__m512h a, __m512h b);
VADDPH __m512h _mm512_mask_add_ph (__m512h src, __mmask32 k, __m512h a, __m512h b);
VADDPH __m512h _mm512_maskz_add_ph (__mmask32 k, __m512h a, __m512h b);
VADDPH __m512h _mm512_add_round_ph (__m512h a, __m512h b, int rounding);
VADDPH __m512h _mm512_mask_add_round_ph (__m512h src, __mmask32 k, __m512h a, __m512h b, int rounding);
VADDPH __m512h _mm512_maskz_add_round_ph (__mmask32 k, __m512h a, __m512h b, int rounding);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VADDSH—Add Scalar FP16 Values

Instruction Operand Encoding

Description

This instruction adds the low FP16 value from the source operands and stores the FP16 result in the destination 
operand.
Bits 127:16 of the destination operand are copied from the corresponding bits of the first source operand. Bits 
MAXVL-1:128 of the destination operand are zeroed. The low FP16 element of the destination is updated according 
to the writemask.

Operation

VADDSH (EVEX Encoded Versions) 
IF EVEX.b = 1 and SRC2 is a register: 

SET_RM(EVEX.RC)
ELSE

SET_RM(MXCSR.RC)
IF k1[0] OR *no writemask*:

DEST.fp16[0] := SRC1.fp16[0] + SRC2.fp16[0]
ELSEIF *zeroing*:

DEST.fp16[0] := 0
// else dest.fp16[0] remains unchanged
DEST[127:16] := SRC1[127:16] 
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VADDSH __m128h _mm_add_round_sh (__m128h a, __m128h b, int rounding);
VADDSH ___m128h _mm_mask_add_round_sh (__m128h src, __mmask8 k, __m128h a, __m128h b, int rounding);
VADDSH ___m128h _mm_maskz_add_round_sh (__mmask8 k, __m128h a, __m128h b, int rounding);
VADDSH ___m128h _mm_add_sh (__m128h a, __m128h b);
VADDSH ___m128h _mm_mask_add_sh (__m128h src, __mmask8 k, __m128h a, __m128h b);
VADDSH ___m128h _mm_maskz_add_sh (__mmask8 k, __m128h a, __m128h b);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F3.MAP5.W0 58 /r
VADDSH xmm1{k1}{z}, xmm2, 
xmm3/m16 {er}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Add the low FP16 value from xmm3/m16 to 
xmm2, and store the result in xmm1 subject to 
writemask k1. Bits 127:16 of xmm2 are copied 
to xmm1[127:16].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VALIGND/VALIGNQ—Align Doubleword/Quadword Vectors

Instruction Operand Encoding

Description

Concatenates and shifts right doubleword/quadword elements of the first source operand (the second operand) 
and the second source operand (the third operand) into a 1024/512/256-bit intermediate vector. The low 
512/256/128-bit of the intermediate vector is written to the destination operand (the first operand) using the 
writemask k1. The destination and first source operands are ZMM/YMM/XMM registers. The second source operand 
can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted 
from a 32/64-bit memory location.
This instruction is writemasked, so only those elements with the corresponding bit set in vector mask register k1 
are computed and stored into zmm1. Elements in zmm1 with the corresponding bit clear in k1 retain their previous 
values (merging-masking) or are set to 0 (zeroing-masking).

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W0 03 /r ib
VALIGND xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Shift right and merge vectors xmm2 and 
xmm3/m128/m32bcst with double-word granularity 
using imm8 as number of elements to shift, and store 
the final result in xmm1, under writemask.

EVEX.128.66.0F3A.W1 03 /r ib
VALIGNQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shift right and merge vectors xmm2 and 
xmm3/m128/m64bcst with quad-word granularity 
using imm8 as number of elements to shift, and store 
the final result in xmm1, under writemask.

EVEX.256.66.0F3A.W0 03 /r ib
VALIGND ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shift right and merge vectors ymm2 and 
ymm3/m256/m32bcst with double-word granularity 
using imm8 as number of elements to shift, and store 
the final result in ymm1, under writemask.

EVEX.256.66.0F3A.W1 03 /r ib
VALIGNQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shift right and merge vectors ymm2 and 
ymm3/m256/m64bcst with quad-word granularity 
using imm8 as number of elements to shift, and store 
the final result in ymm1, under writemask.

EVEX.512.66.0F3A.W0 03 /r ib
VALIGND zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst, imm8

A V/V AVX512F
OR AVX10.11

Shift right and merge vectors zmm2 and 
zmm3/m512/m32bcst with double-word granularity 
using imm8 as number of elements to shift, and store 
the final result in zmm1, under writemask.

EVEX.512.66.0F3A.W1 03 /r ib
VALIGNQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst, imm8

A V/V AVX512F
OR AVX10.11

Shift right and merge vectors zmm2 and 
zmm3/m512/m64bcst with quad-word granularity 
using imm8 as number of elements to shift, and store 
the final result in zmm1, under writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VALIGND (EVEX Encoded Versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)

IF (SRC2 *is memory*) (AND EVEX.b = 1)
THEN 

FOR j := 0 TO KL-1
i := j * 32
src[i+31:i] := SRC2[31:0]

ENDFOR;
ELSE src := SRC2

FI
; Concatenate sources
tmp[VL-1:0] := src[VL-1:0]
tmp[2VL-1:VL] := SRC1[VL-1:0]
; Shift right doubleword elements
IF VL = 128

THEN SHIFT = imm8[1:0]
ELSE 

IF VL = 256
THEN SHIFT = imm8[2:0]
ELSE SHIFT = imm8[3:0]

FI
FI;
tmp[2VL-1:0] := tmp[2VL-1:0] >> (32*SHIFT)
; Apply writemask
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := tmp[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

VALIGNQ (EVEX Encoded Versions) 
(KL, VL) = (2, 128), (4, 256),(8, 512)
IF (SRC2 *is memory*) (AND EVEX.b = 1)

THEN 
FOR j := 0 TO KL-1

i := j * 64
src[i+63:i] := SRC2[63:0]

ENDFOR;
ELSE src := SRC2

FI
; Concatenate sources
tmp[VL-1:0] := src[VL-1:0]
tmp[2VL-1:VL] := SRC1[VL-1:0]
; Shift right quadword elements
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IF VL = 128
THEN SHIFT = imm8[0]
ELSE 

IF VL = 256
THEN SHIFT = imm8[1:0]
ELSE SHIFT = imm8[2:0]

FI
FI;
tmp[2VL-1:0] := tmp[2VL-1:0] >> (64*SHIFT)
; Apply writemask
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := tmp[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VALIGND __m512i _mm512_alignr_epi32( __m512i a, __m512i b, int cnt);
VALIGND __m512i _mm512_mask_alignr_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b, int cnt);
VALIGND __m512i _mm512_maskz_alignr_epi32( __mmask16 k, __m512i a, __m512i b, int cnt);
VALIGND __m256i _mm256_mask_alignr_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b, int cnt);
VALIGND __m256i _mm256_maskz_alignr_epi32( __mmask8 k, __m256i a, __m256i b, int cnt);
VALIGND __m128i _mm_mask_alignr_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b, int cnt);
VALIGND __m128i _mm_maskz_alignr_epi32( __mmask8 k, __m128i a, __m128i b, int cnt);
VALIGNQ __m512i _mm512_alignr_epi64( __m512i a, __m512i b, int cnt);
VALIGNQ __m512i _mm512_mask_alignr_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b, int cnt);
VALIGNQ __m512i _mm512_maskz_alignr_epi64( __mmask8 k, __m512i a, __m512i b, int cnt);
VALIGNQ __m256i _mm256_mask_alignr_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b, int cnt);
VALIGNQ __m256i _mm256_maskz_alignr_epi64( __mmask8 k, __m256i a, __m256i b, int cnt);
VALIGNQ __m128i _mm_mask_alignr_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b, int cnt);
VALIGNQ __m128i _mm_maskz_alignr_epi64( __mmask8 k, __m128i a, __m128i b, int cnt);

Exceptions

See Table 2-52, “Type E4NF Class Exception Conditions.”
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VBCSTNEBF162PS—Load BF16 Element and Convert to FP32 Element With Broadcast

Instruction Operand Encoding

Description
This instruction loads one BF16 element from memory, converts it to FP32, and broadcasts it to a SIMD register.
This instruction does not generate floating-point exceptions and does not consult or update MXCSR. 
Since any BF16 number can be represented in FP32, the conversion result is exact and no rounding is needed.

Operation
VBCSTNEBF162PS dest, src (VEX encoded version)
VL = (128, 256)
KL = VL/32

FOR i in range(0, KL):
tmp.dword[i].word[0] = src.word[0] // reads 16b from memory

FOR i in range(0, KL):
dest.dword[i] = make_fp32(TMP.dword[i].word[0])

DEST[MAXVL-1:VL] := 0

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
VBCSTNEBF162PS __m128 _mm_bcstnebf16_ps (const __bf16* __A);
VBCSTNEBF162PS __m256 _mm256_bcstnebf16_ps (const __bf16* __A);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Table 2-22, “Type 5 Class Exception Conditions.”

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F3.0F38.W0 B1 
!(11):rrr:bbb

VBCSTNEBF162PS xmm1, m16

A V/V AVX-NE-
CONVERT

Load one BF16 floating-point element from 
m16, convert to FP32 and store result in 
xmm1.

VEX.256.F3.0F38.W0 B1 
!(11):rrr:bbb

VBCSTNEBF162PS ymm1, m16

A V/V AVX-NE-
CONVERT

Load one BF16 floating-point element from 
m16, convert to FP32 and store result in 
ymm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
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VBCSTNESH2PS—Load FP16 Element and Convert to FP32 Element with Broadcast

Instruction Operand Encoding

Description
This instruction loads one FP16 element from memory, converts it to FP32, and broadcasts it to a SIMD register.
This instruction does not generate floating-point exceptions and does not consult or update MXCSR. 
Input FP16 denormals are converted to normal FP32 numbers and not treated as zero. Since any FP16 number can 
be represented in FP32, the conversion result is exact and no rounding is needed.

Operation
VBCSTNESH2PS dest, src (VEX encoded version)
VL = (128, 256)
KL = VL/32

FOR i in range(0, KL):
tmp.dword[i].word[0] = src.word[0] // read 16b from memory

FOR i in range(0, KL):
dest.dword[i] = convert_fp16_to_fp32(tmp.dword[i].word[0]) //SAE

DEST[MAXVL-1:VL] := 0

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
VBCSTNESH2PS __m128 _mm_bcstnesh_ps (const _Float16* __A);
VBCSTNESH2PS __m256 _mm256_bcstnesh_ps (const _Float16* __A);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Table 2-22, “Type 5 Class Exception Conditions.”

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 B1 !(11):rrr:bbb

VBCSTNESH2PS xmm1, m16

A V/V AVX-NE-
CONVERT

Load one FP16 element from m16, convert 
to FP32, and store result in xmm1.

VEX.256.66.0F38.W0 B1 !(11):rrr:bbb

VBCSTNESH2PS ymm1, m16

A V/V AVX-NE-
CONVERT

Load one FP16 element from m16, convert 
to FP32, and store result in ymm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A



VBLENDMPD/VBLENDMPS—Blend Float64/Float32 Vectors Using an OpMask Control

Instruction Operand Encoding

Description

Performs an element-by-element blending between float64/float32 elements in the first source operand (the 
second operand) with the elements in the second source operand (the third operand) using an opmask register as 
select control. The blended result is written to the destination register.
The destination and first source operands are ZMM/YMM/XMM registers. The second source operand can be a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-
bit memory location.
The opmask register is not used as a writemask for this instruction. Instead, the mask is used as an element 
selector: every element of the destination is conditionally selected between first source or second source using the 
value of the related mask bit (0 for first source operand, 1 for second source operand).
If EVEX.z is set, the elements with corresponding mask bit value of 0 in the destination operand are zeroed.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W1 65 /r
VBLENDMPD xmm1 {k1}{z}, 
xmm2, xmm3/m128/m64bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Blend double precision vector xmm2 and double 
precision vector xmm3/m128/m64bcst and store the 
result in xmm1, under control mask.

EVEX.256.66.0F38.W1 65 /r
VBLENDMPD ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Blend double precision vector ymm2 and double 
precision vector ymm3/m256/m64bcst and store the 
result in ymm1, under control mask.

EVEX.512.66.0F38.W1 65 /r
VBLENDMPD zmm1 {k1}{z}, 
zmm2, zmm3/m512/m64bcst

A V/V AVX512F 
OR AVX10.11

Blend double precision vector zmm2 and double 
precision vector zmm3/m512/m64bcst and store the 
result in zmm1, under control mask.

EVEX.128.66.0F38.W0 65 /r
VBLENDMPS xmm1 {k1}{z}, 
xmm2, xmm3/m128/m32bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Blend single precision vector xmm2 and single 
precision vector xmm3/m128/m32bcst and store the 
result in xmm1, under control mask.

EVEX.256.66.0F38.W0 65 /r
VBLENDMPS ymm1 {k1}{z}, 
ymm2, ymm3/m256/m32bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Blend single precision vector ymm2 and single 
precision vector ymm3/m256/m32bcst and store the 
result in ymm1, under control mask.

EVEX.512.66.0F38.W0 65 /r
VBLENDMPS zmm1 {k1}{z}, 
zmm2, zmm3/m512/m32bcst

A V/V AVX512F 
OR AVX10.11

Blend single precision vector zmm2 and single 
precision vector zmm3/m512/m32bcst using k1 as 
select control and store the result in zmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VBLENDMPD (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no controlmask*

THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
DEST[i+63:i] := SRC2[63:0]

ELSE 
DEST[i+63:i] := SRC2[i+63:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN DEST[i+63:i] := SRC1[i+63:i]
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI;

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VBLENDMPS (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no controlmask*

THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
DEST[i+31:i] := SRC2[31:0]

ELSE 
DEST[i+31:i] := SRC2[i+31:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN DEST[i+31:i] := SRC1[i+31:i]
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI;

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VBLENDMPD __m512d _mm512_mask_blend_pd(__mmask8 k, __m512d a, __m512d b);
VBLENDMPD __m256d _mm256_mask_blend_pd(__mmask8 k, __m256d a, __m256d b);
VBLENDMPD __m128d _mm_mask_blend_pd(__mmask8 k, __m128d a, __m128d b);
VBLENDMPS __m512 _mm512_mask_blend_ps(__mmask16 k, __m512 a, __m512 b);
VBLENDMPS __m256 _mm256_mask_blend_ps(__mmask8 k, __m256 a, __m256 b);
VBLENDMPS __m128 _mm_mask_blend_ps(__mmask8 k, __m128 a, __m128 b);
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SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-51, “Type E4 Class Exception Conditions.”
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VBROADCAST—Load with Broadcast Floating-Point Data
Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 18 /r
VBROADCASTSS xmm1, m32

A V/V AVX Broadcast single precision floating-point 
element in mem to four locations in xmm1.

VEX.256.66.0F38.W0 18 /r
VBROADCASTSS ymm1, m32

A V/V AVX Broadcast single precision floating-point 
element in mem to eight locations in ymm1.

VEX.256.66.0F38.W0 19 /r
VBROADCASTSD ymm1, m64

A V/V AVX Broadcast double precision floating-point 
element in mem to four locations in ymm1.

VEX.256.66.0F38.W0 1A /r
VBROADCASTF128 ymm1, m128

A V/V AVX Broadcast 128 bits of floating-point data in 
mem to low and high 128-bits in ymm1.

VEX.128.66.0F38.W0 18/r

VBROADCASTSS xmm1, xmm2

A V/V AVX2 Broadcast the low single precision floating-point 
element in the source operand to four locations 
in xmm1.

VEX.256.66.0F38.W0 18 /r

VBROADCASTSS ymm1, xmm2

A V/V AVX2 Broadcast low single precision floating-point 
element in the source operand to eight 
locations in ymm1.

VEX.256.66.0F38.W0 19 /r

VBROADCASTSD ymm1, xmm2

A V/V AVX2 Broadcast low double precision floating-point 
element in the source operand to four locations 
in ymm1.

EVEX.256.66.0F38.W1 19 /r
VBROADCASTSD ymm1 {k1}{z}, 
xmm2/m64

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Broadcast low double precision floating-point 
element in xmm2/m64 to four locations in 
ymm1 using writemask k1.

EVEX.512.66.0F38.W1 19 /r
VBROADCASTSD zmm1 {k1}{z}, 
xmm2/m64

B V/V AVX512F
OR AVX10.11

Broadcast low double precision floating-point 
element in xmm2/m64 to eight locations in 
zmm1 using writemask k1.

EVEX.256.66.0F38.W0 19 /r
VBROADCASTF32X2 ymm1 {k1}{z}, 
xmm2/m64

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Broadcast two single precision floating-point 
elements in xmm2/m64 to locations in ymm1 
using writemask k1.

EVEX.512.66.0F38.W0 19 /r
VBROADCASTF32X2 zmm1 {k1}{z}, 
xmm2/m64

C V/V AVX512DQ 
OR AVX10.11

Broadcast two single precision floating-point 
elements in xmm2/m64 to locations in zmm1 
using writemask k1.

EVEX.128.66.0F38.W0 18 /r
VBROADCASTSS xmm1 {k1}{z}, 
xmm2/m32

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Broadcast low single precision floating-point 
element in xmm2/m32 to all locations in xmm1 
using writemask k1.

EVEX.256.66.0F38.W0 18 /r
VBROADCASTSS ymm1 {k1}{z}, 
xmm2/m32

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Broadcast low single precision floating-point 
element in xmm2/m32 to all locations in ymm1 
using writemask k1.

EVEX.512.66.0F38.W0 18 /r
VBROADCASTSS zmm1 {k1}{z}, 
xmm2/m32

B V/V AVX512F 
OR AVX10.11

Broadcast low single precision floating-point 
element in xmm2/m32 to all locations in zmm1 
using writemask k1.

EVEX.256.66.0F38.W0 1A /r
VBROADCASTF32X4 ymm1 {k1}{z}, 
m128

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Broadcast 128 bits of 4 single precision 
floating-point data in mem to locations in ymm1 
using writemask k1.

EVEX.512.66.0F38.W0 1A /r
VBROADCASTF32X4 zmm1 {k1}{z}, 
m128

D V/V AVX512F 
OR AVX10.11

Broadcast 128 bits of 4 single precision 
floating-point data in mem to locations in zmm1 
using writemask k1.

EVEX.256.66.0F38.W1 1A /r
VBROADCASTF64X2 ymm1 {k1}{z}, 
m128

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Broadcast 128 bits of 2 double precision 
floating-point data in mem to locations in ymm1 
using writemask k1.
VBROADCAST—Load with Broadcast Floating-Point Data Vol. 2C 5-17



Instruction Operand Encoding

Description

VBROADCASTSD/VBROADCASTSS/VBROADCASTF128 load floating-point values as one tuple from the source 
operand (second operand) in memory and broadcast to all elements of the destination operand (first operand). 

VEX256-encoded versions: The destination operand is a YMM register. The source operand is either a 32-bit, 64-
bit, or 128-bit memory location. Register source encodings are reserved and will #UD. Bits (MAXVL-1:256) of the 
destination register are zeroed.

EVEX-encoded versions: The destination operand is a ZMM/YMM/XMM register and updated according to the write-
mask k1. The source operand is either a 32-bit, 64-bit memory location or the low doubleword/quadword element 
of an XMM register. 
VBROADCASTF32X2/VBROADCASTF32X4/VBROADCASTF64X2/VBROADCASTF32X8/VBROADCASTF64X4 load 
floating-point values as tuples from the source operand (the second operand) in memory or register and broadcast 
to all elements of the destination operand (the first operand). The destination operand is a YMM/ZMM register 
updated according to the writemask k1. The source operand is either a register or 64-bit/128-bit/256-bit memory 
location.
VBROADCASTSD and VBROADCASTF128,F32x4 and F64x2 are only supported as 256-bit and 512-bit wide 
versions and up. VBROADCASTSS is supported in 128-bit, 256-bit and 512-bit wide versions. F32x8 and F64x4 are 
only supported as 512-bit wide versions.
VBROADCASTF32X2/VBROADCASTF32X4/VBROADCASTF32X8 have 32-bit granularity. VBROADCASTF64X2 and 
VBROADCASTF64X4 have 64-bit granularity. 
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
If VBROADCASTSD or VBROADCASTF128 is encoded with VEX.L= 0, an attempt to execute the instruction encoded 
with VEX.L= 0 will cause an #UD exception.

EVEX.512.66.0F38.W1 1A /r
VBROADCASTF64X2 zmm1 {k1}{z}, 
m128

C V/V AVX512DQ 
OR AVX10.11

Broadcast 128 bits of 2 double precision 
floating-point data in mem to locations in zmm1 
using writemask k1.

EVEX.512.66.0F38.W0 1B /r
VBROADCASTF32X8 zmm1 {k1}{z}, 
m256

E V/V AVX512DQ 
OR AVX10.11

Broadcast 256 bits of 8 single precision 
floating-point data in mem to locations in zmm1 
using writemask k1.

EVEX.512.66.0F38.W1 1B /r
VBROADCASTF64X4 zmm1 {k1}{z}, 
m256

D V/V AVX512F 
OR AVX10.11

Broadcast 256 bits of 4 double precision 
floating-point data in mem to locations in zmm1 
using writemask k1.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A

C Tuple2 ModRM:reg (w) ModRM:r/m (r) N/A N/A

D Tuple4 ModRM:reg (w) ModRM:r/m (r) N/A N/A

E Tuple8 ModRM:reg (w) ModRM:r/m (r) N/A N/A

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description
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Figure 1-1.  VBROADCASTSS Operation (VEX.256 encoded version)

Figure 1-2.  VBROADCASTSS Operation (VEX.128-bit version)

Figure 1-3.  VBROADCASTSD Operation (VEX.256-bit version)

Figure 1-4.  VBROADCASTF128 Operation (VEX.256-bit version)

DEST

m32 X0

X0X0 X0X0 X0X0 X0X0

DEST

m32 X0

X0X0 X00 X00 00

DEST

m64 X0

X0X0X0X0

DEST

m128 X0

X0X0
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Operation

VBROADCASTSS (128-bit Version VEX and Legacy)
temp := SRC[31:0]
DEST[31:0] := temp
DEST[63:32] := temp
DEST[95:64] := temp
DEST[127:96] := temp
DEST[MAXVL-1:128] := 0

VBROADCASTSS (VEX.256 Encoded Version)
temp := SRC[31:0]
DEST[31:0] := temp
DEST[63:32] := temp
DEST[95:64] := temp
DEST[127:96] := temp
DEST[159:128] := temp
DEST[191:160] := temp
DEST[223:192] := temp
DEST[255:224] := temp
DEST[MAXVL-1:256] := 0

VBROADCASTSS (EVEX Encoded Versions)
(KL, VL) (4, 128), (8, 256),= (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[31:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Figure 1-5.  VBROADCASTF64X4 Operation (512-bit version with writemask all 1s)

DEST

m256 X0

X0X0
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VBROADCASTSD (VEX.256 Encoded Version)
temp := SRC[63:0]
DEST[63:0] := temp
DEST[127:64] := temp
DEST[191:128] := temp
DEST[255:192] := temp
DEST[MAXVL-1:256] := 0

VBROADCASTSD (EVEX Encoded Versions)
(KL, VL) = (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[63:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VBROADCASTF32x2 (EVEX Encoded Versions)
(KL, VL) = (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
n := (j mod 2) * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[n+31:n]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VBROADCASTF128 (VEX.256 Encoded Version)
temp := SRC[127:0]
DEST[127:0] := temp
DEST[255:128] := temp
DEST[MAXVL-1:256] := 0
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VBROADCASTF32X4 (EVEX Encoded Versions)
(KL, VL) = (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j* 32
n := (j modulo 4) * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[n+31:n]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VBROADCASTF64X2 (EVEX Encoded Versions)
(KL, VL) = (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
n := (j modulo 2) * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[n+63:n]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] = 0
FI

FI;
ENDFOR;

VBROADCASTF32X8 (EVEX.U1.512 Encoded Version)
FOR j := 0 TO 15

i := j * 32
n := (j modulo 8) * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[n+31:n]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VBROADCASTF64X4 (EVEX.512 Encoded Version)
FOR j := 0 TO 7

i := j * 64
n := (j modulo 4) * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[n+63:n]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VBROADCASTF32x2 __m512 _mm512_broadcast_f32x2( __m128 a);
VBROADCASTF32x2 __m512 _mm512_mask_broadcast_f32x2(__m512 s, __mmask16 k, __m128 a);
VBROADCASTF32x2 __m512 _mm512_maskz_broadcast_f32x2( __mmask16 k, __m128 a);
VBROADCASTF32x2 __m256 _mm256_broadcast_f32x2( __m128 a);
VBROADCASTF32x2 __m256 _mm256_mask_broadcast_f32x2(__m256 s, __mmask8 k, __m128 a);
VBROADCASTF32x2 __m256 _mm256_maskz_broadcast_f32x2( __mmask8 k, __m128 a);
VBROADCASTF32x4 __m512 _mm512_broadcast_f32x4( __m128 a);
VBROADCASTF32x4 __m512 _mm512_mask_broadcast_f32x4(__m512 s, __mmask16 k, __m128 a);
VBROADCASTF32x4 __m512 _mm512_maskz_broadcast_f32x4( __mmask16 k, __m128 a);
VBROADCASTF32x4 __m256 _mm256_broadcast_f32x4( __m128 a);
VBROADCASTF32x4 __m256 _mm256_mask_broadcast_f32x4(__m256 s, __mmask8 k, __m128 a);
VBROADCASTF32x4 __m256 _mm256_maskz_broadcast_f32x4( __mmask8 k, __m128 a);
VBROADCASTF32x8 __m512 _mm512_broadcast_f32x8( __m256 a);
VBROADCASTF32x8 __m512 _mm512_mask_broadcast_f32x8(__m512 s, __mmask16 k, __m256 a);
VBROADCASTF32x8 __m512 _mm512_maskz_broadcast_f32x8( __mmask16 k, __m256 a);
VBROADCASTF64x2 __m512d _mm512_broadcast_f64x2( __m128d a);
VBROADCASTF64x2 __m512d _mm512_mask_broadcast_f64x2(__m512d s, __mmask8 k, __m128d a);
VBROADCASTF64x2 __m512d _mm512_maskz_broadcast_f64x2( __mmask8 k, __m128d a);
VBROADCASTF64x2 __m256d _mm256_broadcast_f64x2( __m128d a);
VBROADCASTF64x2 __m256d _mm256_mask_broadcast_f64x2(__m256d s, __mmask8 k, __m128d a);
VBROADCASTF64x2 __m256d _mm256_maskz_broadcast_f64x2( __mmask8 k, __m128d a);
VBROADCASTF64x4 __m512d _mm512_broadcast_f64x4( __m256d a);
VBROADCASTF64x4 __m512d _mm512_mask_broadcast_f64x4(__m512d s, __mmask8 k, __m256d a);
VBROADCASTF64x4 __m512d _mm512_maskz_broadcast_f64x4( __mmask8 k, __m256d a);
VBROADCASTSD __m512d _mm512_broadcastsd_pd( __m128d a); 
VBROADCASTSD __m512d _mm512_mask_broadcastsd_pd(__m512d s, __mmask8 k, __m128d a); 
VBROADCASTSD __m512d _mm512_maskz_broadcastsd_pd(__mmask8 k, __m128d a); 
VBROADCASTSD __m256d _mm256_broadcastsd_pd(__m128d a);
VBROADCASTSD __m256d _mm256_mask_broadcastsd_pd(__m256d s, __mmask8 k, __m128d a);
VBROADCASTSD __m256d _mm256_maskz_broadcastsd_pd( __mmask8 k, __m128d a);
VBROADCASTSD __m256d _mm256_broadcast_sd(double *a);
VBROADCASTSS __m512 _mm512_broadcastss_ps( __m128 a); 
VBROADCASTSS __m512 _mm512_mask_broadcastss_ps(__m512 s, __mmask16 k, __m128 a); 
VBROADCASTSS __m512 _mm512_maskz_broadcastss_ps( __mmask16 k, __m128 a); 
VBROADCASTSS __m256 _mm256_broadcastss_ps(__m128 a);
VBROADCASTSS __m256 _mm256_mask_broadcastss_ps(__m256 s, __mmask8 k, __m128 a);
VBROADCASTSS __m256 _mm256_maskz_broadcastss_ps( __mmask8 k, __m128 a);
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VBROADCASTSS __m128 _mm_broadcastss_ps(__m128 a);
VBROADCASTSS __m128 _mm_mask_broadcastss_ps(__m128 s, __mmask8 k, __m128 a);
VBROADCASTSS __m128 _mm_maskz_broadcastss_ps( __mmask8 k, __m128 a);
VBROADCASTSS __m128 _mm_broadcast_ss(float *a);
VBROADCASTSS __m256 _mm256_broadcast_ss(float *a);
VBROADCASTF128 __m256 _mm256_broadcast_ps(__m128 * a);
VBROADCASTF128 __m256d _mm256_broadcast_pd(__m128d * a);

Exceptions

VEX-encoded instructions, see Table 2-23, “Type 6 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-55, “Type E6 Class Exception Conditions.”
Additionally:
#UD If VEX.L = 0 for VBROADCASTSD or VBROADCASTF128.

If EVEX.L’L = 0 for VBROADCASTSD/VBROADCASTF32X2/VBROADCASTF32X4/VBROAD-
CASTF64X2.
If EVEX.L’L < 10b for VBROADCASTF32X8/VBROADCASTF64X4.
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VCMPPH—Compare Packed FP16 Values

Instruction Operand Encoding

Description

This instruction compares packed FP16 values from source operands and stores the result in the destination mask 
operand. The comparison predicate operand (immediate byte bits 4:0) specifies the type of comparison performed 
on each of the pairs of packed values. The destination elements are updated according to the writemask.

Operation

CASE (imm8 & 0x1F) OF
0: CMP_OPERATOR := EQ_OQ;
1: CMP_OPERATOR := LT_OS;
2: CMP_OPERATOR := LE_OS;
3: CMP_OPERATOR := UNORD_Q;
4: CMP_OPERATOR := NEQ_UQ;
5: CMP_OPERATOR := NLT_US;
6: CMP_OPERATOR := NLE_US;
7: CMP_OPERATOR := ORD_Q;
8: CMP_OPERATOR := EQ_UQ;
9: CMP_OPERATOR := NGE_US;
10: CMP_OPERATOR := NGT_US;
11: CMP_OPERATOR := FALSE_OQ;
12: CMP_OPERATOR := NEQ_OQ;
13: CMP_OPERATOR := GE_OS;
14: CMP_OPERATOR := GT_OS;
15: CMP_OPERATOR := TRUE_UQ;
16: CMP_OPERATOR := EQ_OS;

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.0F3A.W0 C2 /r /ib
VCMPPH k1{k2}, xmm2, 
xmm3/m128/m16bcst, imm8

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare packed FP16 values in 
xmm3/m128/m16bcst and xmm2 using bits 4:0 of 
imm8 as a comparison predicate subject to 
writemask k2, and store the result in mask 
register k1.

EVEX.256.NP.0F3A.W0 C2 /r /ib
VCMPPH k1{k2}, ymm2, 
ymm3/m256/m16bcst, imm8

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Compare packed FP16 values in 
ymm3/m256/m16bcst and ymm2 using bits 4:0 of 
imm8 as a comparison predicate subject to 
writemask k2, and store the result in mask 
register k1.

EVEX.512.NP.0F3A.W0 C2 /r /ib
VCMPPH k1{k2}, zmm2, 
zmm3/m512/m16bcst {sae}, imm8

A V/V AVX512-FP16 
OR AVX10.11

Compare packed FP16 values in 
zmm3/m512/m16bcst and zmm2 using bits 4:0 of 
imm8 as a comparison predicate subject to 
writemask k2, and store the result in mask 
register k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8 (r)
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17: CMP_OPERATOR := LT_OQ;
18: CMP_OPERATOR := LE_OQ;
19: CMP_OPERATOR := UNORD_S;
20: CMP_OPERATOR := NEQ_US;
21: CMP_OPERATOR := NLT_UQ;
22: CMP_OPERATOR := NLE_UQ;
23: CMP_OPERATOR := ORD_S;
24: CMP_OPERATOR := EQ_US;
25: CMP_OPERATOR := NGE_UQ;
26: CMP_OPERATOR := NGT_UQ;
27: CMP_OPERATOR := FALSE_OS;
28: CMP_OPERATOR := NEQ_OS;
29: CMP_OPERATOR := GE_OQ;
30: CMP_OPERATOR := GT_OQ;
31: CMP_OPERATOR := TRUE_US;
ESAC

VCMPPH (EVEX Encoded Versions)
VL = 128, 256 or 512
KL := VL/16

FOR j := 0 TO KL-1:
IF k2[j] OR *no writemask*:

IF EVEX.b = 1:
tsrc2 := SRC2.fp16[0]

ELSE:
tsrc2 := SRC2.fp16[j]

DEST.bit[j] := SRC1.fp16[j] CMP_OPERATOR tsrc2
ELSE

DEST.bit[j] := 0

DEST[MAXKL-1:KL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCMPPH ___mmask8 _mm_cmp_ph_mask (__m128h a, __m128h b, const int imm8);
VCMPPH ___mmask8 _mm_mask_cmp_ph_mask (__mmask8 k1, __m128h a, __m128h b, const int imm8);
VCMPPH ___mmask16 _mm256_cmp_ph_mask (__m256h a, __m256h b, const int imm8);
VCMPPH ___mmask16 _mm256_mask_cmp_ph_mask (__mmask16 k1, __m256h a, __m256h b, const int imm8);
VCMPPH ___mmask32 _mm512_cmp_ph_mask (__m512h a, __m512h b, const int imm8);
VCMPPH ___mmask32 _mm512_mask_cmp_ph_mask (__mmask32 k1, __m512h a, __m512h b, const int imm8);
VCMPPH ___mmask32 _mm512_cmp_round_ph_mask (__m512h a, __m512h b, const int imm8, const int sae);
VCMPPH ___mmask32 _mm512_mask_cmp_round_ph_mask (__mmask32 k1, __m512h a, __m512h b, const int imm8, const int sae);

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCMPSH—Compare Scalar FP16 Values

Instruction Operand Encoding

Description

This instruction compares the FP16 values from the lowest element of the source operands and stores the result in 
the destination mask operand. The comparison predicate operand (immediate byte bits 4:0) specifies the type of 
comparison performed on the pair of packed FP16 values. The low destination bit is updated according to the write-
mask. Bits MAXKL-1:1 of the destination operand are zeroed.

Operation

CASE (imm8 & 0x1F) OF
0: CMP_OPERATOR := EQ_OQ;
1: CMP_OPERATOR := LT_OS;
2: CMP_OPERATOR := LE_OS;
3: CMP_OPERATOR := UNORD_Q;
4: CMP_OPERATOR := NEQ_UQ;
5: CMP_OPERATOR := NLT_US;
6: CMP_OPERATOR := NLE_US;
7: CMP_OPERATOR := ORD_Q;
8: CMP_OPERATOR := EQ_UQ;
9: CMP_OPERATOR := NGE_US;
10: CMP_OPERATOR := NGT_US;
11: CMP_OPERATOR := FALSE_OQ;
12: CMP_OPERATOR := NEQ_OQ;
13: CMP_OPERATOR := GE_OS;
14: CMP_OPERATOR := GT_OS;
15: CMP_OPERATOR := TRUE_UQ;
16: CMP_OPERATOR := EQ_OS;
17: CMP_OPERATOR := LT_OQ;
18: CMP_OPERATOR := LE_OQ;
19: CMP_OPERATOR := UNORD_S;
20: CMP_OPERATOR := NEQ_US;
21: CMP_OPERATOR := NLT_UQ;
22: CMP_OPERATOR := NLE_UQ;
23: CMP_OPERATOR := ORD_S;
24: CMP_OPERATOR := EQ_US;
25: CMP_OPERATOR := NGE_UQ;

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F3.0F3A.W0 C2 /r /ib
VCMPSH k1{k2}, xmm2, xmm3/m16 
{sae}, imm8

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare low FP16 values in xmm3/m16 and 
xmm2 using bits 4:0 of imm8 as a comparison 
predicate subject to writemask k2, and store the 
result in mask register k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8 (r)
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26: CMP_OPERATOR := NGT_UQ;
27: CMP_OPERATOR := FALSE_OS;
28: CMP_OPERATOR := NEQ_OS;
29: CMP_OPERATOR := GE_OQ;
30: CMP_OPERATOR := GT_OQ;
31: CMP_OPERATOR := TRUE_US;
ESAC 

VCMPSH (EVEX Encoded Versions)
IF k2[0] OR *no writemask*:

DEST.bit[0] := SRC1.fp16[0] CMP_OPERATOR SRC2.fp16[0]
ELSE

DEST.bit[0] := 0

DEST[MAXKL-1:1] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCMPSH __mmask8 _mm_cmp_round_sh_mask (__m128h a, __m128h b, const int imm8, const int sae);
VCMPSH __mmask8 _mm_mask_cmp_round_sh_mask (__mmask8 k1, __m128h a, __m128h b, const int imm8, const int sae);
VCMPSH __mmask8 _mm_cmp_sh_mask (__m128h a, __m128h b, const int imm8);
VCMPSH __mmask8 _mm_mask_cmp_sh_mask (__mmask8 k1, __m128h a, __m128h b, const int imm8);

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VCOMISH—Compare Scalar Ordered FP16 Values and Set EFLAGS

Instruction Operand Encoding

Description

This instruction compares the FP16 values in the low word of operand 1 (first operand) and operand 2 (second 
operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the result (unordered, greater than, 
less than, or equal). The OF, SF and AF flags in the EFLAGS register are set to 0. The unordered result is returned 
if either source operand is a NaN (QNaN or SNaN).
Operand 1 is an XMM register; operand 2 can be an XMM register or a 16-bit memory location.
The VCOMISH instruction differs from the VUCOMISH instruction in that it signals a SIMD floating-point invalid oper-
ation exception (#I) when a source operand is either a QNaN or SNaN. The VUCOMISH instruction signals an invalid 
numeric exception only if a source operand is an SNaN.
The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated. EVEX.vvvv is 
reserved and must be 1111b, otherwise instructions will #UD.

Operation

VCOMISH SRC1, SRC2 
RESULT := OrderedCompare(SRC1.fp16[0],SRC2.fp16[0])
IF RESULT is UNORDERED:

ZF, PF, CF := 1, 1, 1
ELSE IF RESULT is GREATER_THAN:

ZF, PF, CF := 0, 0, 0
ELSE IF RESULT is LESS_THAN:

ZF, PF, CF := 0, 0, 1
ELSE: // RESULT is EQUALS

ZF, PF, CF := 1, 0, 0

OF, AF, SF := 0, 0, 0 

Intel C/C++ Compiler Intrinsic Equivalent

VCOMISH int _mm_comi_round_sh (__m128h a, __m128h b, const int imm8, const int sae);
VCOMISH int _mm_comi_sh (__m128h a, __m128h b, const int imm8);
VCOMISH int _mm_comieq_sh (__m128h a, __m128h b);
VCOMISH int _mm_comige_sh (__m128h a, __m128h b);
VCOMISH int _mm_comigt_sh (__m128h a, __m128h b);
VCOMISH int _mm_comile_sh (__m128h a, __m128h b);
VCOMISH int _mm_comilt_sh (__m128h a, __m128h b);
VCOMISH int _mm_comineq_sh (__m128h a, __m128h b);

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.NP.MAP5.W0 2F /r
VCOMISH xmm1, xmm2/m16 {sae}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare low FP16 values in xmm1 and 
xmm2/m16, and set the EFLAGS flags accordingly.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (r) ModRM:r/m (r) N/A N/A
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SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”
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VCOMPRESSPD—Store Sparse Packed Double Precision Floating-Point Values Into Dense 
Memory

Instruction Operand Encoding

Description 

Compress (store) up to 8 double precision floating-point values from the source operand (the second operand) as 
a contiguous vector to the destination operand (the first operand) The source operand is a ZMM/YMM/XMM register, 
the destination operand can be a ZMM/YMM/XMM register or a 512/256/128-bit memory location.
The opmask register k1 selects the active elements (partial vector or possibly non-contiguous if less than 8 active 
elements) from the source operand to compress into a contiguous vector. The contiguous vector is written to the 
destination starting from the low element of the destination operand.
Memory destination version: Only the contiguous vector is written to the destination memory location. EVEX.z 
must be zero.
Register destination version: If the vector length of the contiguous vector is less than that of the input vector in the 
source operand, the upper bits of the destination register are unmodified if EVEX.z is not set, otherwise the upper 
bits are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element 
instead of the size of the full vector.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W1 8A /r
VCOMPRESSPD xmm1/m128 {k1}{z}, 
xmm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compress packed double precision floating-
point values from xmm2 to xmm1/m128 using 
writemask k1.

EVEX.256.66.0F38.W1 8A /r
VCOMPRESSPD ymm1/m256 {k1}{z}, 
ymm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compress packed double precision floating-
point values from ymm2 to ymm1/m256 using 
writemask k1.

EVEX.512.66.0F38.W1 8A /r
VCOMPRESSPD zmm1/m512 {k1}{z}, 
zmm2

A V/V AVX512F 
OR AVX10.11

Compress packed double precision floating-
point values from zmm2 using control mask k1 
to zmm1/m512.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Operation

VCOMPRESSPD (EVEX Encoded Versions) Store Form
(KL, VL) = (2, 128), (4, 256), (8, 512)
SIZE := 64
k := 0
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
DEST[k+SIZE-1:k] := SRC[i+63:i]
k := k + SIZE

FI;

ENDFOR

VCOMPRESSPD (EVEX Encoded Versions) Reg-Reg Form
(KL, VL) = (2, 128), (4, 256), (8, 512)
SIZE := 64
k := 0
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
DEST[k+SIZE-1:k] := SRC[i+63:i]
k := k + SIZE

FI;
ENDFOR
IF *merging-masking* 

THEN *DEST[VL-1:k] remains unchanged*
ELSE DEST[VL-1:k] := 0

FI
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCOMPRESSPD __m512d _mm512_mask_compress_pd( __m512d s, __mmask8 k, __m512d a);
VCOMPRESSPD __m512d _mm512_maskz_compress_pd( __mmask8 k, __m512d a);
VCOMPRESSPD void _mm512_mask_compressstoreu_pd( void * d, __mmask8 k, __m512d a);
VCOMPRESSPD __m256d _mm256_mask_compress_pd( __m256d s, __mmask8 k, __m256d a);
VCOMPRESSPD __m256d _mm256_maskz_compress_pd( __mmask8 k, __m256d a);
VCOMPRESSPD void _mm256_mask_compressstoreu_pd( void * d, __mmask8 k, __m256d a);
VCOMPRESSPD __m128d _mm_mask_compress_pd( __m128d s, __mmask8 k, __m128d a);
VCOMPRESSPD __m128d _mm_maskz_compress_pd( __mmask8 k, __m128d a);
VCOMPRESSPD void _mm_mask_compressstoreu_pd( void * d, __mmask8 k, __m128d a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instructions, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VCOMPRESSPS—Store Sparse Packed Single Precision Floating-Point Values Into Dense Memory

Instruction Operand Encoding

Description 

Compress (stores) up to 16 single precision floating-point values from the source operand (the second operand) to 
the destination operand (the first operand). The source operand is a ZMM/YMM/XMM register, the destination 
operand can be a ZMM/YMM/XMM register or a 512/256/128-bit memory location.
The opmask register k1 selects the active elements (a partial vector or possibly non-contiguous if less than 16 
active elements) from the source operand to compress into a contiguous vector. The contiguous vector is written to 
the destination starting from the low element of the destination operand.
Memory destination version: Only the contiguous vector is written to the destination memory location. EVEX.z 
must be zero.
Register destination version: If the vector length of the contiguous vector is less than that of the input vector in the 
source operand, the upper bits of the destination register are unmodified if EVEX.z is not set, otherwise the upper 
bits are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element 
instead of the size of the full vector.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 8A /r
VCOMPRESSPS xmm1/m128 {k1}{z}, 
xmm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compress packed single precision floating-
point values from xmm2 to xmm1/m128 using 
writemask k1.

EVEX.256.66.0F38.W0 8A /r
VCOMPRESSPS ymm1/m256 {k1}{z}, 
ymm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compress packed single precision floating-
point values from ymm2 to ymm1/m256 using 
writemask k1.

EVEX.512.66.0F38.W0 8A /r
VCOMPRESSPS zmm1/m512 {k1}{z}, 
zmm2

A V/V AVX512F 
OR AVX10.11

Compress packed single precision floating-
point values from zmm2 using control mask k1 
to zmm1/m512.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Operation

VCOMPRESSPS (EVEX Encoded Versions) Store Form
(KL, VL) = (4, 128), (8, 256), (16, 512)
SIZE := 32
k := 0
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
DEST[k+SIZE-1:k] := SRC[i+31:i]
k := k + SIZE 

FI;

ENDFOR;

VCOMPRESSPS (EVEX Encoded Versions) Reg-Reg Form
(KL, VL) = (4, 128), (8, 256), (16, 512)
SIZE := 32
k := 0
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
DEST[k+SIZE-1:k] := SRC[i+31:i]
k := k + SIZE

FI;
ENDFOR
IF *merging-masking* 

THEN *DEST[VL-1:k] remains unchanged*
ELSE DEST[VL-1:k] := 0

FI
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCOMPRESSPS __m512 _mm512_mask_compress_ps( __m512 s, __mmask16 k, __m512 a);
VCOMPRESSPS __m512 _mm512_maskz_compress_ps( __mmask16 k, __m512 a);
VCOMPRESSPS void _mm512_mask_compressstoreu_ps( void * d, __mmask16 k, __m512 a);
VCOMPRESSPS __m256 _mm256_mask_compress_ps( __m256 s, __mmask8 k, __m256 a);
VCOMPRESSPS __m256 _mm256_maskz_compress_ps( __mmask8 k, __m256 a);
VCOMPRESSPS void _mm256_mask_compressstoreu_ps( void * d, __mmask8 k, __m256 a);
VCOMPRESSPS __m128 _mm_mask_compress_ps( __m128 s, __mmask8 k, __m128 a);
VCOMPRESSPS __m128 _mm_maskz_compress_ps( __mmask8 k, __m128 a);
VCOMPRESSPS void _mm_mask_compressstoreu_ps( void * d, __mmask8 k, __m128 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instructions, see Exceptions Type E4.nb. in Table 2-51, “Type E4 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VCVTDQ2PH—Convert Packed Signed Doubleword Integers to Packed FP16 Values

Instruction Operand Encoding

Description

This instruction converts four, eight, or sixteen packed signed doubleword integers in the source operand to four, 
eight, or sixteen packed FP16 values in the destination operand.
EVEX encoded versions: The source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcast from a 32-bit memory location. The destination operand is a YMM/XMM 
register conditionally updated with writemask k1.
EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
If the result of the convert operation is overflow and MXCSR.OM=0 then a SIMD exception will be raised with OE=1, 
PE=1.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.MAP5.W0 5B /r
VCVTDQ2PH xmm1{k1}{z}, 
xmm2/m128/m32bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert four packed signed doubleword integers 
from xmm2/m128/m32bcst to four packed FP16 
values, and store the result in xmm1 subject to 
writemask k1.

EVEX.256.NP.MAP5.W0 5B /r
VCVTDQ2PH xmm1{k1}{z}, 
ymm2/m256/m32bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert eight packed signed doubleword integers 
from ymm2/m256/m32bcst to eight packed 
FP16 values, and store the result in xmm1 
subject to writemask k1.

EVEX.512.NP.MAP5.W0 5B /r
VCVTDQ2PH ymm1{k1}{z}, 
zmm2/m512/m32bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Convert sixteen packed signed doubleword 
integers from zmm2/m512/m32bcst to sixteen 
packed FP16 values, and store the result in 
ymm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation

VCVTDQ2PH DEST, SRC 
VL = 128, 256 or 512
KL := VL / 32

IF *SRC is a register* and (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE:
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.dword[0]

ELSE
tsrc := SRC.dword[j]

DEST.fp16[j] := Convert_integer32_to_fp16(tsrc)
ELSE IF *zeroing*:

DEST.fp16[j] := 0
// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL/2] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTDQ2PH __m256h _mm512_cvt_roundepi32_ph (__m512i a, int rounding);
VCVTDQ2PH __m256h _mm512_mask_cvt_roundepi32_ph (__m256h src, __mmask16 k, __m512i a, int rounding);
VCVTDQ2PH __m256h _mm512_maskz_cvt_roundepi32_ph (__mmask16 k, __m512i a, int rounding);
VCVTDQ2PH __m128h _mm_cvtepi32_ph (__m128i a);
VCVTDQ2PH __m128h _mm_mask_cvtepi32_ph (__m128h src, __mmask8 k, __m128i a);
VCVTDQ2PH __m128h _mm_maskz_cvtepi32_ph (__mmask8 k, __m128i a);
VCVTDQ2PH __m128h _mm256_cvtepi32_ph (__m256i a);
VCVTDQ2PH __m128h _mm256_mask_cvtepi32_ph (__m128h src, __mmask8 k, __m256i a);
VCVTDQ2PH __m128h _mm256_maskz_cvtepi32_ph (__mmask8 k, __m256i a);
VCVTDQ2PH __m256h _mm512_cvtepi32_ph (__m512i a);
VCVTDQ2PH __m256h _mm512_mask_cvtepi32_ph (__m256h src, __mmask16 k, __m512i a);
VCVTDQ2PH __m256h _mm512_maskz_cvtepi32_ph (__mmask16 k, __m512i a);

SIMD Floating-Point Exceptions

Overflow, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCVTNE2PS2BF16—Convert Two Packed Single Data to One Packed BF16 Data

Instruction Operand Encoding

Description

Converts two SIMD registers of packed single data into a single register of packed BF16 data.
This instruction does not support memory fault suppression.
This instruction uses “Round to nearest (even)” rounding mode. Output denormals are always flushed to zero and 
input denormals are always treated as zero. MXCSR is not consulted nor updated. No floating-point exceptions are 
generated.

Operation

VCVTNE2PS2BF16 dest, src1, src2
VL = (128, 256, 512)
KL = VL/16

origdest := dest
FOR i := 0 to KL-1:

IF k1[ i ] or *no writemask*:
IF i < KL/2:

IF src2 is memory and evex.b == 1:
t := src2.fp32[0]

ELSE:
t := src2.fp32[ i ]

ELSE:
t := src1.fp32[ i-KL/2]

// See VCVTNEPS2BF16 for definition of convert helper function 
dest.word[i] := convert_fp32_to_bfloat16(t)

ELSE IF *zeroing*:
dest.word[ i ] := 0

ELSE:  // Merge masking, dest element unchanged

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F2.0F38.W0 72 /r
VCVTNE2PS2BF16 xmm1{k1}{z}, 
xmm2, xmm3/m128/m32bcst

A V/V (AVX512_BF16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert packed single data from xmm2 and 
xmm3/m128/m32bcst to packed BF16 data in 
xmm1 with writemask k1.

EVEX.256.F2.0F38.W0 72 /r
VCVTNE2PS2BF16 ymm1{k1}{z}, 
ymm2, ymm3/m256/m32bcst

A V/V (AVX512_BF16 
AND AVX512VL) 
OR AVX10.11

Convert packed single data from ymm2 and 
ymm3/m256/m32bcst to packed BF16 data in 
ymm1 with writemask k1.

EVEX.512.F2.0F38.W0 72 /r
VCVTNE2PS2BF16 zmm1{k1}{z}, 
zmm2, zmm3/m512/m32bcst

A V/V (AVX512_BF16 
AND AVX512F) 
OR AVX10.11

Convert packed single data from zmm2 and 
zmm3/m512/m32bcst to packed BF16 data in 
zmm1 with writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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dest.word[ i ] := origdest.word[ i ]
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTNE2PS2BF16 __m128bh _mm_cvtne2ps_pbh (__m128, __m128);
VCVTNE2PS2BF16 __m128bh _mm_mask_cvtne2ps_pbh (__m128bh, __mmask8, __m128, __m128);
VCVTNE2PS2BF16 __m128bh _mm_maskz_cvtne2ps_pbh (__mmask8, __m128, __m128);
VCVTNE2PS2BF16 __m256bh _mm256_cvtne2ps_pbh (__m256, __m256);
VCVTNE2PS2BF16 __m256bh _mm256_mask_cvtne2ps_pbh (__m256bh, __mmask16, __m256, __m256);
VCVTNE2PS2BF16 __m256bh _mm256_maskz_cvtne2ps_ pbh (__mmask16, __m256, __m256);
VCVTNE2PS2BF16 __m512bh _mm512_cvtne2ps_pbh (__m512, __m512);
VCVTNE2PS2BF16 __m512bh _mm512_mask_cvtne2ps_pbh (__m512bh, __mmask32, __m512, __m512);
VCVTNE2PS2BF16 __m512bh _mm512_maskz_cvtne2ps_pbh (__mmask32, __m512, __m512);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-52, “Type E4NF Class Exception Conditions.”
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VCVTNEEBF162PS—Convert Even Elements of Packed BF16 Values to FP32 Values

Instruction Operand Encoding

Description
This instruction loads packed BF16 elements from memory, converts the even elements to FP32, and writes the 
result to the destination SIMD register.
This instruction does not generate floating-point exceptions and does not consult or update MXCSR.
Since any BF16 number can be represented in FP32, the conversion result is exact and no rounding is needed.

Operation
VCVTNEEBF162PS dest, src (VEX encoded version)
VL = (128, 256)
KL = VL/32

FOR i in range(0, KL):
dest.dword[i] = make_fp32(src.dword[i].word[0])

DEST[MAXVL-1:VL] := 0

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
VCVTNEEBF162PS __m128 _mm_cvtneebf16_ps (const __m128bh* __A);
VCVTNEEBF162PS __m256 _mm256_cvtneebf16_ps (const __m256bh* __A);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions.”

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F3.0F38.W0 B0 !(11):rrr:bbb

VCVTNEEBF162PS xmm1, m128

A V/V AVX-NE-
CONVERT

Convert even elements of packed BF16 
values from m128 to FP32 values and store 
in xmm1.

VEX.256.F3.0F38.W0 B0 !(11):rrr:bbb

VCVTNEEBF162PS ymm1, m256

A V/V AVX-NE-
CONVERT

Convert even elements of packed BF16 
values from m256 to FP32 values and store 
in ymm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
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VCVTNEEPH2PS—Convert Even Elements of Packed FP16 Values to FP32 Values

Instruction Operand Encoding

Description
This instruction loads packed FP16 elements from memory, converts the even elements to FP32, and writes the 
result to the destination SIMD register.
This instruction does not generate floating-point exceptions and does not consult or update MXCSR. 
Input FP16 denormals are converted to normal FP32 numbers and not treated as zero. Since any FP16 number can 
be represented in FP32, the conversion result is exact and no rounding is needed.

Operation
VCVTNEEPH2PS dest, src (VEX encoded version)
VL = (128, 256)
KL = VL/32

FOR i in range(0, KL):
dest.dword[i] = convert_fp16_to_fp32(src.dword[i].word[0]) //SAE

DEST[MAXVL-1:VL] := 0

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
VCVTNEEPH2PS __m128 _mm_cvtneeph_ps (const __m128h* __A);
VCVTNEEPH2PS __m256 _mm256_cvtneeph_ps (const __m256h* __A);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions.”

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 B0 !(11):rrr:bbb

VCVTNEEPH2PS xmm1, m128

A V/V AVX-NE-
CONVERT

Convert even elements of packed FP16 
values from m128 to FP32 values and store 
in xmm1.

VEX.256.66.0F38.W0 B0 !(11):rrr:bbb

VCVTNEEPH2PS ymm1, m256

A V/V AVX-NE-
CONVERT

Convert even elements of packed FP16 
values from m256 to FP32 values and store 
in ymm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
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VCVTNEOBF162PS—Convert Odd Elements of Packed BF16 Values to FP32 Values

Instruction Operand Encoding

Description
This instruction loads packed BF16 elements from memory, converts the odd elements to FP32, and writes the 
result to the destination SIMD register.
This instruction does not generate floating-point exceptions and does not consult or update MXCSR.
Since any BF16 number can be represented in FP32, the conversion result is exact and no rounding is needed.

Operation
VCVTNEOBF162PS dest, src (VEX encoded version)
VL = (128, 256)
KL = VL/32

FOR i in range(0, KL):
dest.dword[i] = make_fp32(src.dword[i].word[1])

DEST[MAXVL-1:VL] := 0

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
VCVTNEOBF162PS __m128 _mm_cvtneobf16_ps (const __m128bh* __A);
VCVTNEOBF162PS __m256 _mm256_cvtneobf16_ps (const __m256bh* __A);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions.”

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F2.0F38.W0 B0 !(11):rrr:bbb

VCVTNEOBF162PS xmm1, m128

A V/V AVX-NE-
CONVERT

Convert odd elements of packed BF16 values 
from m128 to FP32 values and store in 
xmm1.

VEX.256.F2.0F38.W0 B0 !(11):rrr:bbb

VCVTNEOBF162PS ymm1, m256

A V/V AVX-NE-
CONVERT

Convert odd elements of packed BF16 values 
from m256 to FP32 values and store in 
ymm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
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VCVTNEOPH2PS—Convert Odd Elements of Packed FP16 Values to FP32 Values

Instruction Operand Encoding

Description
This instruction loads packed FP16 elements from memory, converts the odd elements to FP32, and writes the 
result to the destination SIMD register.
This instruction does not generate floating-point exceptions and does not consult or update MXCSR. 
Input FP16 denormals are converted to normal FP32 numbers and not treated as zero. Since any FP16 number can 
be represented in FP32, the conversion result is exact and no rounding is needed.

Operation
VCVTNEOPH2PS dest, src (VEX encoded version)
VL = (128, 256)
KL = VL/32

FOR i in range(0, KL):
dest.dword[i] = convert_fp16_to_fp32(src.dword[i].word[1]) //SAE

DEST[MAXVL-1:VL] := 0

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
VCVTNEOPH2PS __m128 _mm_cvtneoph_ps (const __m128h* __A);
VCVTNEOPH2PS __m256 _mm256_cvtneoph_ps (const __m256h* __A);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions.”

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.NP.0F38.W0 B0 !(11):rrr:bbb

VCVTNEOPH2PS xmm1, m128

A V/V AVX-NE-
CONVERT

Convert odd elements of packed FP16 values 
from m128 to FP32 values and store in 
xmm1.

VEX.256.NP.0F38.W0 B0 !(11):rrr:bbb

VCVTNEOPH2PS ymm1, m256

A V/V AVX-NE-
CONVERT

Convert odd elements of packed FP16 values 
from m256 to FP32 values and store in 
ymm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A



VCVTNEPS2BF16—Convert Packed Single Data to Packed BF16 Data

Instruction Operand Encoding

Description
This instruction loads packed FP32 elements from a SIMD register or memory, converts the elements to BF16, and 
writes the result to the destination SIMD register.
The upper bits of the destination register beyond the down-converted BF16 elements are zeroed.
This instruction uses “Round to nearest (even)” rounding mode. Output denormals are always flushed to zero and 
input denormals are always treated as zero. MXCSR is not consulted nor updated.
As the instruction operand encoding table shows, the EVEX.vvvv field is not used for encoding an operand. 
EVEX.vvvv is reserved and must be 0b1111 otherwise instructions will #UD.

Operation

Define convert_fp32_to_bfloat16(x):
IF x is zero or denormal:

dest[15] := x[31] // sign preserving zero (denormal go to zero)
dest[14:0] := 0

ELSE IF x is infinity:
dest[15:0] := x[31:16]

ELSE IF x is NAN:
dest[15:0] := x[31:16] // truncate and set MSB of the mantissa to force QNAN
dest[6] := 1

ELSE // normal number

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F3.0F38.W0 72 /r

VCVTNEPS2BF16 xmm1, 
xmm2/m128

A V/V AVX-NE-
CONVERT

Convert packed single precision floating-point 
values from xmm2/m128 to packed BF16 
values and store in xmm1.

VEX.256.F3.0F38.W0 72 /r

VCVTNEPS2BF16 xmm1, 
ymm2/m256

A V/V AVX-NE-
CONVERT

Convert packed single precision floating-point 
values from ymm2/m256 to packed BF16 
values and store in xmm1.

EVEX.128.F3.0F38.W0 72 /r
VCVTNEPS2BF16 xmm1{k1}{z}, 
xmm2/m128/m32bcst

B V/V (AVX512_BF16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert packed single data from xmm2/m128 
to packed BF16 data in xmm1 with writemask 
k1.

EVEX.256.F3.0F38.W0 72 /r
VCVTNEPS2BF16 xmm1{k1}{z}, 
ymm2/m256/m32bcst

B V/V (AVX512_BF16 
AND AVX512VL) 
OR AVX10.11

Convert packed single data from ymm2/m256 
to packed BF16 data in xmm1 with writemask 
k1.

EVEX.512.F3.0F38.W0 72 /r
VCVTNEPS2BF16 ymm1{k1}{z}, 
zmm2/m512/m32bcst

B V/V (AVX512_BF16 
AND AVX512F) 
OR AVX10.11

Convert packed single data from zmm2/m512 
to packed BF16 data in ymm1 with writemask 
k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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LSB := x[16]
rounding_bias := 0x00007FFF + LSB
temp[31:0] := x[31:0] + rounding_bias // integer add
dest[15:0] := temp[31:16]

RETURN dest

VCVTNEPS2BF16 dest, src (VEX encoded version)
VL = (128, 256)
KL = VL/16

FOR i := 0 to KL/2-1:
t := src.fp32[i]
dest.word[i] := convert_fp32_to_bfloat16(t)

DEST[MAXVL-1:VL/2] := 0

VCVTNEPS2BF16 dest, src (EVEX encoded version)
VL = (128, 256, 512)
KL = VL/16

origdest := dest
FOR i := 0 to KL/2-1:

IF k1[ i ] or *no writemask*:
IF src is memory and evex.b == 1:

t := src.fp32[0]
ELSE:

t := src.fp32[ i ]

dest.word[i] := convert_fp32_to_bfloat16(t)

ELSE IF *zeroing*:
dest.word[ i ] := 0

ELSE:  // Merge masking, dest element unchanged
dest.word[ i ] := origdest.word[ i ]

DEST[MAXVL-1:VL/2] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTNEPS2BF16 __m128bh _mm_cvtneps_avx_pbh (__m128 __A);
VCVTNEPS2BF16 __m128bh _mm256_cvtneps_avx_pbh (__m256 __A);
VCVTNEPS2BF16 __m128bh _mm_cvtneps_pbh (__m128 a);
VCVTNEPS2BF16 __m128bh _mm_cvtneps_pbh (__m128 __A);
VCVTNEPS2BF16 __m128bh _mm_mask_cvtneps_pbh (__m128bh src, __mmask8 k, __m128 a);
VCVTNEPS2BF16 __m128bh _mm_maskz_cvtneps_pbh (__mmask8 k, __m128 a);
VCVTNEPS2BF16 __m128bh _mm256_cvtneps_pbh (__m256 a);
VCVTNEPS2BF16 __m128bh _mm256_cvtneps_pbh (__m256 __A);
VCVTNEPS2BF16 __m128bh _mm256_mask_cvtneps_pbh (__m128bh src, __mmask8 k, __m256 a);
VCVTNEPS2BF16 __m128bh _mm256_maskz_cvtneps_pbh (__mmask8 k, __m256 a);
VCVTNEPS2BF16 __m256bh _mm512_cvtneps_pbh (__m512 a);
VCVTNEPS2BF16 __m256bh _mm512_mask_cvtneps_pbh (__m256bh src, __mmask16 k, __m512 a);
VCVTNEPS2BF16 __m256bh _mm512_maskz_cvtneps_pbh (__mmask16 k, __m512 a);

SIMD Floating-Point Exceptions

None.
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Other Exceptions

VEX-encoded instructions, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-51, “Type E4 Class Exception Conditions.”
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VCVTPD2PH—Convert Packed Double Precision FP Values to Packed FP16 Values

Instruction Operand Encoding

Description

This instruction converts two, four, or eight packed double precision floating-point values in the source operand 
(second operand) to two, four, or eight packed FP16 values in the destination operand (first operand). When a 
conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register or 
the embedded rounding control bits.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or 
a 512/256/128-bit vector broadcasts from a 64-bit memory location. The destination operand is a XMM register 
conditionally updated with writemask k1. The upper bits (MAXVL-1:128/64/32) of the corresponding destination 
are zeroed.
EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
This instruction uses MXCSR.DAZ for handling FP64 inputs. FP16 outputs can be normal or denormal, and are not 
conditionally flushed to zero.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.MAP5.W1 5A /r
VCVTPD2PH xmm1{k1}{z}, 
xmm2/m128/m64bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed double precision floating-
point values in xmm2/m128/m64bcst to two 
packed FP16 values, and store the result in xmm1 
subject to writemask k1.

EVEX.256.66.MAP5.W1 5A /r
VCVTPD2PH xmm1{k1}{z}, 
ymm2/m256/m64bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert four packed double precision floating-
point values in ymm2/m256/m64bcst to four 
packed FP16 values, and store the result in xmm1 
subject to writemask k1.

EVEX.512.66.MAP5.W1 5A /r
VCVTPD2PH xmm1{k1}{z}, 
zmm2/m512/m64bcst {er}

A V/V AVX512-FP16 
OR AVX10.11

Convert eight packed double precision floating-
point values in zmm2/m512/m64bcst to eight 
packed FP16 values, and store the result in ymm1 
subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation

VCVTPD2PH DEST, SRC 
VL = 128, 256 or 512
KL := VL / 64

IF *SRC is a register* and (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE:
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.double[0]

ELSE
tsrc := SRC.double[j]

DEST.fp16[j] := Convert_fp64_to_fp16(tsrc)
ELSE IF *zeroing*:

DEST.fp16[j] := 0
// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL/4] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPD2PH __m128h _mm512_cvt_roundpd_ph (__m512d a, int rounding);
VCVTPD2PH __m128h _mm512_mask_cvt_roundpd_ph (__m128h src, __mmask8 k, __m512d a, int rounding);
VCVTPD2PH __m128h _mm512_maskz_cvt_roundpd_ph (__mmask8 k, __m512d a, int rounding);
VCVTPD2PH __m128h _mm_cvtpd_ph (__m128d a);
VCVTPD2PH __m128h _mm_mask_cvtpd_ph (__m128h src, __mmask8 k, __m128d a);
VCVTPD2PH __m128h _mm_maskz_cvtpd_ph (__mmask8 k, __m128d a);
VCVTPD2PH __m128h _mm256_cvtpd_ph (__m256d a);
VCVTPD2PH __m128h _mm256_mask_cvtpd_ph (__m128h src, __mmask8 k, __m256d a);
VCVTPD2PH __m128h _mm256_maskz_cvtpd_ph (__mmask8 k, __m256d a);
VCVTPD2PH __m128h _mm512_cvtpd_ph (__m512d a);
VCVTPD2PH __m128h _mm512_mask_cvtpd_ph (__m128h src, __mmask8 k, __m512d a);
VCVTPD2PH __m128h _mm512_maskz_cvtpd_ph (__mmask8 k, __m512d a);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCVTPD2QQ—Convert Packed Double Precision Floating-Point Values to Packed Quadword 
Integers

Instruction Operand Encoding

Description

Converts packed double precision floating-point values in the source operand (second operand) to packed quad-
word integers in the destination operand (first operand). 
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location. 
The destination operation is a ZMM/YMM/XMM register conditionally updated with writemask k1. 
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value 
(2w-1, where w represents the number of bits in the destination format) is returned.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VCVTPD2QQ (EVEX Encoded Version) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL == 512) AND (EVEX.b == 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] :=
Convert_Double_Precision_Floating_Point_To_QuadInteger(SRC[i+63:i])

ELSE 

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F.W1 7B /r
VCVTPD2QQ xmm1 {k1}{z}, 
xmm2/m128/m64bcst

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed double precision floating-point values 
from xmm2/m128/m64bcst to two packed quadword 
integers in xmm1 with writemask k1.

EVEX.256.66.0F.W1 7B /r
VCVTPD2QQ ymm1 {k1}{z}, 
ymm2/m256/m64bcst 

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Convert four packed double precision floating-point 
values from ymm2/m256/m64bcst to four packed 
quadword integers in ymm1 with writemask k1.

EVEX.512.66.0F.W1 7B /r
VCVTPD2QQ zmm1 {k1}{z}, 
zmm2/m512/m64bcst {er}

A V/V AVX512DQ 
OR AVX10.11

Convert eight packed double precision floating-point 
values from zmm2/m512/m64bcst to eight packed 
quadword integers in zmm1 with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTPD2QQ (EVEX Encoded Version) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b == 1) 

THEN
DEST[i+63:i] := Convert_Double_Precision_Floating_Point_To_QuadInteger(SRC[63:0])

ELSE 
DEST[i+63:i] := Convert_Double_Precision_Floating_Point_To_QuadInteger(SRC[i+63:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPD2QQ __m512i _mm512_cvtpd_epi64( __m512d a);
VCVTPD2QQ __m512i _mm512_mask_cvtpd_epi64( __m512i s, __mmask8 k, __m512d a);
VCVTPD2QQ __m512i _mm512_maskz_cvtpd_epi64( __mmask8 k, __m512d a);
VCVTPD2QQ __m512i _mm512_cvt_roundpd_epi64( __m512d a, int r);
VCVTPD2QQ __m512i _mm512_mask_cvt_roundpd_epi64( __m512i s, __mmask8 k, __m512d a, int r);
VCVTPD2QQ __m512i _mm512_maskz_cvt_roundpd_epi64( __mmask8 k, __m512d a, int r);
VCVTPD2QQ __m256i _mm256_mask_cvtpd_epi64( __m256i s, __mmask8 k, __m256d a);
VCVTPD2QQ __m256i _mm256_maskz_cvtpd_epi64( __mmask8 k, __m256d a);
VCVTPD2QQ __m128i _mm_mask_cvtpd_epi64( __m128i s, __mmask8 k, __m128d a);
VCVTPD2QQ __m128i _mm_maskz_cvtpd_epi64( __mmask8 k, __m128d a);
VCVTPD2QQ __m256i _mm256_cvtpd_epi64 (__m256d src)
VCVTPD2QQ __m128i _mm_cvtpd_epi64 (__m128d src)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VCVTPD2UDQ—Convert Packed Double Precision Floating-Point Values to Packed Unsigned 
Doubleword Integers

Instruction Operand Encoding

Description

Converts packed double precision floating-point values in the source operand (the second operand) to packed 
unsigned doubleword integers in the destination operand (the first operand). 
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the integer value 2w – 1 is 
returned, where w represents the number of bits in the destination format.
The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector 
broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally 
updated with writemask k1. The upper bits (MAXVL-1:256) of the corresponding destination are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VCVTPD2UDQ (EVEX Encoded Versions) When SRC2 Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;

FOR j := 0 TO KL-1
i := j * 32
k := j * 64

Opcode
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.0F.W1 79 /r
VCVTPD2UDQ xmm1 {k1}{z}, 
xmm2/m128/m64bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed double precision floating-point 
values in xmm2/m128/m64bcst to two unsigned 
doubleword integers in xmm1 subject to writemask 
k1.

EVEX.256.0F.W1 79 /r
VCVTPD2UDQ xmm1 {k1}{z}, 
ymm2/m256/m64bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Convert four packed double precision floating-point 
values in ymm2/m256/m64bcst to four unsigned 
doubleword integers in xmm1 subject to writemask 
k1.

EVEX.512.0F.W1 79 /r
VCVTPD2UDQ ymm1 {k1}{z}, 
zmm2/m512/m64bcst {er}

A V/V AVX512F 
OR AVX10.11

Convert eight packed double precision floating-point 
values in zmm2/m512/m64bcst to eight unsigned 
doubleword integers in ymm1 subject to writemask 
k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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IF k1[j] OR *no writemask*
THEN 

DEST[i+31:i] :=
Convert_Double_Precision_Floating_Point_To_UInteger(SRC[k+63:k])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0

VCVTPD2UDQ (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 32
k := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] :=

Convert_Double_Precision_Floating_Point_To_UInteger(SRC[63:0])
ELSE 

DEST[i+31:i] :=
Convert_Double_Precision_Floating_Point_To_UInteger(SRC[k+63:k])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPD2UDQ __m256i _mm512_cvtpd_epu32( __m512d a);
VCVTPD2UDQ __m256i _mm512_mask_cvtpd_epu32( __m256i s, __mmask8 k, __m512d a);
VCVTPD2UDQ __m256i _mm512_maskz_cvtpd_epu32( __mmask8 k, __m512d a);
VCVTPD2UDQ __m256i _mm512_cvt_roundpd_epu32( __m512d a, int r);
VCVTPD2UDQ __m256i _mm512_mask_cvt_roundpd_epu32( __m256i s, __mmask8 k, __m512d a, int r);
VCVTPD2UDQ __m256i _mm512_maskz_cvt_roundpd_epu32( __mmask8 k, __m512d a, int r);
VCVTPD2UDQ __m128i _mm256_mask_cvtpd_epu32( __m128i s, __mmask8 k, __m256d a);
VCVTPD2UDQ __m128i _mm256_maskz_cvtpd_epu32( __mmask8 k, __m256d a);
VCVTPD2UDQ __m128i _mm_mask_cvtpd_epu32( __m128i s, __mmask8 k, __m128d a);
VCVTPD2UDQ __m128i _mm_maskz_cvtpd_epu32( __mmask8 k, __m128d a);

SIMD Floating-Point Exceptions

Invalid, Precision.
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Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”

Additionally:
#UD If EVEX.vvvv != 1111B.
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VCVTPD2UQQ—Convert Packed Double Precision Floating-Point Values to Packed Unsigned 
Quadword Integers

Instruction Operand Encoding

Description

Converts packed double precision floating-point values in the source operand (second operand) to packed unsigned 
quadword integers in the destination operand (first operand). 
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the integer value 2w – 1 is 
returned, where w represents the number of bits in the destination format.
The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operation 
is a ZMM/YMM/XMM register conditionally updated with writemask k1. 
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VCVTPD2UQQ (EVEX Encoded Versions) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL == 512) AND (EVEX.b == 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] :=
Convert_Double_Precision_Floating_Point_To_UQuadInteger(SRC[i+63:i])

ELSE 

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F.W1 79 /r
VCVTPD2UQQ xmm1 {k1}{z}, 
xmm2/m128/m64bcst 

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed double precision floating-point 
values from xmm2/mem to two packed unsigned 
quadword integers in xmm1 with writemask k1.

EVEX.256.66.0F.W1 79 /r
VCVTPD2UQQ ymm1 {k1}{z}, 
ymm2/m256/m64bcst

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Convert fourth packed double precision floating-point 
values from ymm2/mem to four packed unsigned 
quadword integers in ymm1 with writemask k1.

EVEX.512.66.0F.W1 79 /r
VCVTPD2UQQ zmm1 {k1}{z}, 
zmm2/m512/m64bcst {er} 

A V/V AVX512DQ 
OR AVX10.11

Convert eight packed double precision floating-point 
values from zmm2/mem to eight packed unsigned 
quadword integers in zmm1 with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTPD2UQQ (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b == 1) 

THEN
DEST[i+63:i] :=

Convert_Double_Precision_Floating_Point_To_UQuadInteger(SRC[63:0])
ELSE 

DEST[i+63:i] :=
Convert_Double_Precision_Floating_Point_To_UQuadInteger(SRC[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPD2UQQ __m512i _mm512_cvtpd_epu64( __m512d a);
VCVTPD2UQQ __m512i _mm512_mask_cvtpd_epu64( __m512i s, __mmask8 k, __m512d a);
VCVTPD2UQQ __m512i _mm512_maskz_cvtpd_epu64( __mmask8 k, __m512d a);
VCVTPD2UQQ __m512i _mm512_cvt_roundpd_epu64( __m512d a, int r);
VCVTPD2UQQ __m512i _mm512_mask_cvt_roundpd_epu64( __m512i s, __mmask8 k, __m512d a, int r);
VCVTPD2UQQ __m512i _mm512_maskz_cvt_roundpd_epu64( __mmask8 k, __m512d a, int r);
VCVTPD2UQQ __m256i _mm256_mask_cvtpd_epu64( __m256i s, __mmask8 k, __m256d a);
VCVTPD2UQQ __m256i _mm256_maskz_cvtpd_epu64( __mmask8 k, __m256d a);
VCVTPD2UQQ __m128i _mm_mask_cvtpd_epu64( __m128i s, __mmask8 k, __m128d a);
VCVTPD2UQQ __m128i _mm_maskz_cvtpd_epu64( __mmask8 k, __m128d a);
VCVTPD2UQQ __m256i _mm256_cvtpd_epu64 (__m256d src)
VCVTPD2UQQ __m128i _mm_cvtpd_epu64 (__m128d src)

SIMD Floating-Point Exceptions

Invalid, Precision.
VCVTPD2UQQ—Convert Packed Double Precision Floating-Point Values to Packed Unsigned Quadword Integers Vol. 2C 5-54



Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VCVTPH2DQ—Convert Packed FP16 Values to Signed Doubleword Integers

Instruction Operand Encoding

Description

This instruction converts packed FP16 values in the source operand to signed doubleword integers in destination 
operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value is 
returned.
The destination elements are updated according to the writemask.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.MAP5.W0 5B /r
VCVTPH2DQ xmm1{k1}{z}, 
xmm2/m64/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert four packed FP16 values in 
xmm2/m64/m16bcst to four signed doubleword 
integers, and store the result in xmm1 subject to 
writemask k1.

EVEX.256.66.MAP5.W0 5B /r
VCVTPH2DQ ymm1{k1}{z}, 
xmm2/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert eight packed FP16 values in 
xmm2/m128/m16bcst to eight signed 
doubleword integers, and store the result in 
ymm1 subject to writemask k1.

EVEX.512.66.MAP5.W0 5B /r
VCVTPH2DQ zmm1{k1}{z}, 
ymm2/m256/m16bcst {er}

A V/V AVX512-FP16 
OR AVX10.11

Convert sixteen packed FP16 values in 
ymm2/m256/m16bcst to sixteen signed 
doubleword integers, and store the result in 
zmm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Half ModRM:reg (w) ModRM:r/m (r) N/A N/A
VCVTPH2DQ—Convert Packed FP16 Values to Signed Doubleword Integers Vol. 2C 5-56



Operation

VCVTPH2DQ DEST, SRC 
VL = 128, 256 or 512
KL := VL / 32

IF *SRC is a register* and (VL = 512) and (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE:
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.fp16[0]

ELSE
tsrc := SRC.fp16[j]

DEST.dword[j] := Convert_fp16_to_integer32(tsrc)
ELSE IF *zeroing*:

DEST.dword[j] := 0
// else dest.dword[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPH2DQ __m512i _mm512_cvt_roundph_epi32 (__m256h a, int rounding);
VCVTPH2DQ __m512i _mm512_mask_cvt_roundph_epi32 (__m512i src, __mmask16 k, __m256h a, int rounding);
VCVTPH2DQ __m512i _mm512_maskz_cvt_roundph_epi32 (__mmask16 k, __m256h a, int rounding);
VCVTPH2DQ __m128i _mm_cvtph_epi32 (__m128h a);
VCVTPH2DQ __m128i _mm_mask_cvtph_epi32 (__m128i src, __mmask8 k, __m128h a);
VCVTPH2DQ __m128i _mm_maskz_cvtph_epi32 (__mmask8 k, __m128h a);
VCVTPH2DQ __m256i _mm256_cvtph_epi32 (__m128h a);
VCVTPH2DQ __m256i _mm256_mask_cvtph_epi32 (__m256i src, __mmask8 k, __m128h a);
VCVTPH2DQ __m256i _mm256_maskz_cvtph_epi32 (__mmask8 k, __m128h a);
VCVTPH2DQ __m512i _mm512_cvtph_epi32 (__m256h a);
VCVTPH2DQ __m512i _mm512_mask_cvtph_epi32 (__m512i src, __mmask16 k, __m256h a);
VCVTPH2DQ __m512i _mm512_maskz_cvtph_epi32 (__mmask16 k, __m256h a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCVTPH2PD—Convert Packed FP16 Values to FP64 Values

Instruction Operand Encoding

Description

This instruction converts packed FP16 values to FP64 values in the destination register. The destination elements 
are updated according to the writemask.
This instruction handles both normal and denormal FP16 inputs.

Operation

VCVTPH2PD DEST, SRC 
VL = 128, 256, or 512
KL := VL/64

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.fp16[0]

ELSE
tsrc := SRC.fp16[j]

DEST.fp64[j] := Convert_fp16_to_fp64(tsrc)
ELSE IF *zeroing*:

DEST.fp64[j] := 0
// else dest.fp64[j] remains unchanged

DEST[MAXVL-1:VL] := 0

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.MAP5.W0 5A /r
VCVTPH2PD xmm1{k1}{z}, 
xmm2/m32/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert packed FP16 values in 
xmm2/m32/m16bcst to FP64 values, and store 
result in xmm1 subject to writemask k1.

EVEX.256.NP.MAP5.W0 5A /r
VCVTPH2PD ymm1{k1}{z}, 
xmm2/m64/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert packed FP16 values in 
xmm2/m64/m16bcst to FP64 values, and store 
result in ymm1 subject to writemask k1.

EVEX.512.NP.MAP5.W0 5A /r
VCVTPH2PD zmm1{k1}{z}, 
xmm2/m128/m16bcst {sae}

A V/V AVX512-FP16
OR AVX10.11

Convert packed FP16 values in 
xmm2/m128/m16bcst to FP64 values, and store 
result in zmm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Quarter ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTPH2PD __m512d _mm512_cvt_roundph_pd (__m128h a, int sae);
VCVTPH2PD __m512d _mm512_mask_cvt_roundph_pd (__m512d src, __mmask8 k, __m128h a, int sae);
VCVTPH2PD __m512d _mm512_maskz_cvt_roundph_pd (__mmask8 k, __m128h a, int sae);
VCVTPH2PD __m128d _mm_cvtph_pd (__m128h a);
VCVTPH2PD __m128d _mm_mask_cvtph_pd (__m128d src, __mmask8 k, __m128h a);
VCVTPH2PD __m128d _mm_maskz_cvtph_pd (__mmask8 k, __m128h a);
VCVTPH2PD __m256d _mm256_cvtph_pd (__m128h a);
VCVTPH2PD __m256d _mm256_mask_cvtph_pd (__m256d src, __mmask8 k, __m128h a);
VCVTPH2PD __m256d _mm256_maskz_cvtph_pd (__mmask8 k, __m128h a);
VCVTPH2PD __m512d _mm512_cvtph_pd (__m128h a);
VCVTPH2PD __m512d _mm512_mask_cvtph_pd (__m512d src, __mmask8 k, __m128h a);
VCVTPH2PD __m512d _mm512_maskz_cvtph_pd (__mmask8 k, __m128h a);

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCVTPH2PS/VCVTPH2PSX—Convert Packed FP16 Values to Single Precision Floating-Point 
Values

Instruction Operand Encoding

Description

This instruction converts packed half precision (16-bits) floating-point values in the low-order bits of the source 
operand (the second operand) to packed single precision floating-point values and writes the converted values into 
the destination operand (the first operand).
If case of a denormal operand, the correct normal result is returned. MXCSR.DAZ is ignored and is treated as if it 
0. No denormal exception is reported on MXCSR.
VEX.128 version: The source operand is a XMM register or 64-bit memory location. The destination operand is a 
XMM register. The upper bits (MAXVL-1:128) of the corresponding destination register are zeroed.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 13 /r 
VCVTPH2PS xmm1, xmm2/m64

A V/V F16C Convert four packed FP16 values in xmm2/m64 to 
packed single precision floating-point value in xmm1. 

VEX.256.66.0F38.W0 13 /r 
VCVTPH2PS ymm1, xmm2/m128

A V/V F16C Convert eight packed FP16 values in xmm2/m128 to 
packed single precision floating-point value in ymm1. 

EVEX.128.66.0F38.W0 13 /r 
VCVTPH2PS xmm1 {k1}{z}, 
xmm2/m64

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert four packed FP16 values in xmm2/m64 to 
packed single precision floating-point values in xmm1 
subject to writemask k1. 

EVEX.256.66.0F38.W0 13 /r 
VCVTPH2PS ymm1 {k1}{z}, 
xmm2/m128

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Convert eight packed FP16 values in xmm2/m128 to 
packed single precision floating-point values in ymm1 
subject to writemask k1. 

EVEX.512.66.0F38.W0 13 /r 
VCVTPH2PS zmm1 {k1}{z}, 
ymm2/m256 {sae}

B V/V AVX512F 
OR AVX10.11

Convert sixteen packed FP16 values in ymm2/m256 
to packed single precision floating-point values in 
zmm1 subject to writemask k1. 

EVEX.128.66.MAP6.W0 13 /r
VCVTPH2PSX xmm1{k1}{z}, 
xmm2/m64/m16bcst

C V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert four packed FP16 values in 
xmm2/m64/m16bcst to four packed single precision 
floating-point values, and store result in xmm1 
subject to writemask k1.

EVEX.256.66.MAP6.W0 13 /r
VCVTPH2PSX ymm1{k1}{z}, 
xmm2/m128/m16bcst

C V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert eight packed FP16 values in 
xmm2/m128/m16bcst to eight packed single 
precision floating-point values, and store result in 
ymm1 subject to writemask k1.

EVEX.512.66.MAP6.W0 13 /r
VCVTPH2PSX zmm1{k1}{z}, 
ymm2/m256/m16bcst {sae}

C V/V AVX512-FP16
OR AVX10.11

Convert sixteen packed FP16 values in 
ymm2/m256/m16bcst to sixteen packed single 
precision floating-point values, and store result in 
zmm1 subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Half Mem ModRM:reg (w) ModRM:r/m (r) N/A N/A

C Half ModRM:reg (w) ModRM:r/m (r) N/A N/A
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VEX.256 version: The source operand is a XMM register or 128-bit memory location. The destination operand is a 
YMM register. Bits (MAXVL-1:256) of the corresponding destination register are zeroed.
EVEX encoded versions: The source operand is a YMM/XMM/XMM (low 64-bits) register or a 256/128/64-bit 
memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1. 
The diagram below illustrates how data is converted from four packed half precision (in 64 bits) to four single preci-
sion (in 128 bits) floating-point values.
Note: VEX.vvvv and EVEX.vvvv are reserved (must be 1111b).

The VCVTPH2PSX instruction is a new form of the PH to PS conversion instruction, encoded in map 6. The previous 
version of the instruction, VCVTPH2PS, that is present in AVX512F (encoded in map 2, 0F38) does not support 
embedded broadcasting. The VCVTPH2PSX instruction has the embedded broadcasting option available.

The instructions associated with AVX512_FP16 always handle FP16 denormal number inputs; denormal inputs are 
not treated as zero.

Operation

vCvt_h2s(SRC1[15:0])
{
RETURN Cvt_Half_Precision_To_Single_Precision(SRC1[15:0]);
}

VCVTPH2PS (EVEX Encoded Versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
k := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] :=
vCvt_h2s(SRC[k+15:k])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Figure 1-6.  VCVTPH2PS (128-bit Version)

VH0VH1VH2VH3
15             031           1647           3263           4895                                64127                              96

VS0VS1VS2VS3
31                                  063                                3295                                64127                              96

convert convert
convertconvert

xmm2/mem64

xmm1

VCVTPH2PS xmm1, xmm2/mem64,  imm8
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VCVTPH2PS (VEX.256 Encoded Version)
DEST[31:0] := vCvt_h2s(SRC1[15:0]);
DEST[63:32] := vCvt_h2s(SRC1[31:16]);
DEST[95:64] := vCvt_h2s(SRC1[47:32]);
DEST[127:96] := vCvt_h2s(SRC1[63:48]);
DEST[159:128] := vCvt_h2s(SRC1[79:64]);
DEST[191:160] := vCvt_h2s(SRC1[95:80]);
DEST[223:192] := vCvt_h2s(SRC1[111:96]);
DEST[255:224] := vCvt_h2s(SRC1[127:112]);
DEST[MAXVL-1:256] := 0

VCVTPH2PS (VEX.128 Encoded Version) 
DEST[31:0] := vCvt_h2s(SRC1[15:0]);
DEST[63:32] := vCvt_h2s(SRC1[31:16]);
DEST[95:64] := vCvt_h2s(SRC1[47:32]);
DEST[127:96] := vCvt_h2s(SRC1[63:48]);
DEST[MAXVL-1:128] := 0

VCVTPH2PSX DEST, SRC 
VL = 128, 256, or 512
KL := VL/32

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.fp16[0]

ELSE
tsrc := SRC.fp16[j]

DEST.fp32[j] := Convert_fp16_to_fp32(tsrc)
ELSE IF *zeroing*:

DEST.fp32[j] := 0
// else dest.fp32[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPH2PS __m512 _mm512_cvtph_ps( __m256i a);
VCVTPH2PS __m512 _mm512_mask_cvtph_ps(__m512 s, __mmask16 k, __m256i a);
VCVTPH2PS __m512 _mm512_maskz_cvtph_ps(__mmask16 k, __m256i a);
VCVTPH2PS __m512 _mm512_cvt_roundph_ps( __m256i a, int sae);
VCVTPH2PS __m512 _mm512_mask_cvt_roundph_ps(__m512 s, __mmask16 k, __m256i a, int sae);
VCVTPH2PS __m512 _mm512_maskz_cvt_roundph_ps( __mmask16 k, __m256i a, int sae);
VCVTPH2PS __m256 _mm256_mask_cvtph_ps(__m256 s, __mmask8 k, __m128i a);
VCVTPH2PS __m256 _mm256_maskz_cvtph_ps(__mmask8 k, __m128i a);
VCVTPH2PS __m128 _mm_mask_cvtph_ps(__m128 s, __mmask8 k, __m128i a);
VCVTPH2PS __m128 _mm_maskz_cvtph_ps(__mmask8 k, __m128i a);
VCVTPH2PS __m128 _mm_cvtph_ps ( __m128i m1);
VCVTPH2PS __m256 _mm256_cvtph_ps ( __m128i m1)
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VCVTPH2PSX __m512 _mm512_cvtx_roundph_ps (__m256h a, int sae);
VCVTPH2PSX __m512 _mm512_mask_cvtx_roundph_ps (__m512 src, __mmask16 k, __m256h a, int sae);
VCVTPH2PSX __m512 _mm512_maskz_cvtx_roundph_ps (__mmask16 k, __m256h a, int sae);
VCVTPH2PSX __m128 _mm_cvtxph_ps (__m128h a);
VCVTPH2PSX __m128 _mm_mask_cvtxph_ps (__m128 src, __mmask8 k, __m128h a);
VCVTPH2PSX __m128 _mm_maskz_cvtxph_ps (__mmask8 k, __m128h a);
VCVTPH2PSX __m256 _mm256_cvtxph_ps (__m128h a);
VCVTPH2PSX __m256 _mm256_mask_cvtxph_ps (__m256 src, __mmask8 k, __m128h a);
VCVTPH2PSX __m256 _mm256_maskz_cvtxph_ps (__mmask8 k, __m128h a);
VCVTPH2PSX __m512 _mm512_cvtxph_ps (__m256h a);
VCVTPH2PSX __m512 _mm512_mask_cvtxph_ps (__m512 src, __mmask16 k, __m256h a);
VCVTPH2PSX __m512 _mm512_maskz_cvtxph_ps (__mmask16 k, __m256h a);

SIMD Floating-Point Exceptions

VEX-encoded instructions: Invalid.
EVEX-encoded instructions: Invalid.
EVEX-encoded instructions with broadcast (VCVTPH2PSX): Invalid, Denormal.

Other Exceptions

VEX-encoded instructions, see Table 2-26, “Type 11 Class Exception Conditions” (do not report #AC).
EVEX-encoded instructions, see Table 2-62, “Type E11 Class Exception Conditions.”

EVEX-encoded instructions with broadcast (VCVTPH2PSX), see Table 2-46, “Type E2 Class Exception Conditions.”

Additionally:
#UD If VEX.W=1.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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VCVTPH2QQ—Convert Packed FP16 Values to Signed Quadword Integer Values

Instruction Operand Encoding

Description

This instruction converts packed FP16 values in the source operand to signed quadword integers in destination 
operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value is 
returned.
The destination elements are updated according to the writemask.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.MAP5.W0 7B /r
VCVTPH2QQ xmm1{k1}{z}, 
xmm2/m32/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed FP16 values in 
xmm2/m32/m16bcst to two signed quadword 
integers, and store the result in xmm1 subject to 
writemask k1.

EVEX.256.66.MAP5.W0 7B /r
VCVTPH2QQ ymm1{k1}{z}, 
xmm2/m64/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert four packed FP16 values in 
xmm2/m64/m16bcst to four signed quadword 
integers, and store the result in ymm1 subject to 
writemask k1.

EVEX.512.66.MAP5.W0 7B /r
VCVTPH2QQ zmm1{k1}{z}, 
xmm2/m128/m16bcst {er}

A V/V AVX512-FP16 
OR AVX10.11

Convert eight packed FP16 values in 
xmm2/m128/m16bcst to eight signed quadword 
integers, and store the result in zmm1 subject to 
writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Quarter ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation

VCVTPH2QQ DEST, SRC 
VL = 128, 256 or 512
KL := VL / 64

IF *SRC is a register* and (VL = 512) and (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE:
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.fp16[0]

ELSE
tsrc := SRC.fp16[j]

DEST.qword[j] := Convert_fp16_to_integer64(tsrc)
ELSE IF *zeroing*:

DEST.qword[j] := 0
// else dest.qword[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPH2QQ __m512i _mm512_cvt_roundph_epi64 (__m128h a, int rounding);
VCVTPH2QQ __m512i _mm512_mask_cvt_roundph_epi64 (__m512i src, __mmask8 k, __m128h a, int rounding);
VCVTPH2QQ __m512i _mm512_maskz_cvt_roundph_epi64 (__mmask8 k, __m128h a, int rounding);
VCVTPH2QQ __m128i _mm_cvtph_epi64 (__m128h a);
VCVTPH2QQ __m128i _mm_mask_cvtph_epi64 (__m128i src, __mmask8 k, __m128h a);
VCVTPH2QQ __m128i _mm_maskz_cvtph_epi64 (__mmask8 k, __m128h a);
VCVTPH2QQ __m256i _mm256_cvtph_epi64 (__m128h a);
VCVTPH2QQ __m256i _mm256_mask_cvtph_epi64 (__m256i src, __mmask8 k, __m128h a);
VCVTPH2QQ __m256i _mm256_maskz_cvtph_epi64 (__mmask8 k, __m128h a);
VCVTPH2QQ __m512i _mm512_cvtph_epi64 (__m128h a);
VCVTPH2QQ __m512i _mm512_mask_cvtph_epi64 (__m512i src, __mmask8 k, __m128h a);
VCVTPH2QQ __m512i _mm512_maskz_cvtph_epi64 (__mmask8 k, __m128h a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCVTPH2UDQ—Convert Packed FP16 Values to Unsigned Doubleword Integers

Instruction Operand Encoding

Description

This instruction converts packed FP16 values in the source operand to unsigned doubleword integers in destination 
operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value is 
returned.
The destination elements are updated according to the writemask.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.MAP5.W0 79 /r
VCVTPH2UDQ xmm1{k1}{z}, 
xmm2/m64/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert four packed FP16 values in 
xmm2/m64/m16bcst to four unsigned 
doubleword integers, and store the result in 
xmm1 subject to writemask k1.

EVEX.256.NP.MAP5.W0 79 /r
VCVTPH2UDQ ymm1{k1}{z}, 
xmm2/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert eight packed FP16 values in 
xmm2/m128/m16bcst to eight unsigned 
doubleword integers, and store the result in 
ymm1 subject to writemask k1.

EVEX.512.NP.MAP5.W0 79 /r
VCVTPH2UDQ zmm1{k1}{z}, 
ymm2/m256/m16bcst {er}

A V/V AVX512-FP16 
OR AVX10.11

Convert sixteen packed FP16 values in 
ymm2/m256/m16bcst to sixteen unsigned 
doubleword integers, and store the result in 
zmm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Half ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation

VCVTPH2UDQ DEST, SRC 
VL = 128, 256 or 512
KL := VL / 32

IF *SRC is a register* and (VL = 512) and (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE:
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.fp16[0]

ELSE
tsrc := SRC.fp16[j]
DEST.dword[j] := Convert_fp16_to_unsigned_integer32(tsrc)

ELSE IF *zeroing*:
DEST.dword[j] := 0

// else dest.dword[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPH2UDQ __m512i _mm512_cvt_roundph_epu32 (__m256h a, int rounding);
VCVTPH2UDQ __m512i _mm512_mask_cvt_roundph_epu32 (__m512i src, __mmask16 k, __m256h a, int rounding);
VCVTPH2UDQ __m512i _mm512_maskz_cvt_roundph_epu32 (__mmask16 k, __m256h a, int rounding);
VCVTPH2UDQ __m128i _mm_cvtph_epu32 (__m128h a);
VCVTPH2UDQ __m128i _mm_mask_cvtph_epu32 (__m128i src, __mmask8 k, __m128h a);
VCVTPH2UDQ __m128i _mm_maskz_cvtph_epu32 (__mmask8 k, __m128h a);
VCVTPH2UDQ __m256i _mm256_cvtph_epu32 (__m128h a);
VCVTPH2UDQ __m256i _mm256_mask_cvtph_epu32 (__m256i src, __mmask8 k, __m128h a);
VCVTPH2UDQ __m256i _mm256_maskz_cvtph_epu32 (__mmask8 k, __m128h a);
VCVTPH2UDQ __m512i _mm512_cvtph_epu32 (__m256h a);
VCVTPH2UDQ __m512i _mm512_mask_cvtph_epu32 (__m512i src, __mmask16 k, __m256h a);
VCVTPH2UDQ __m512i _mm512_maskz_cvtph_epu32 (__mmask16 k, __m256h a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCVTPH2UQQ—Convert Packed FP16 Values to Unsigned Quadword Integers

Instruction Operand Encoding

Description

This instruction converts packed FP16 values in the source operand to unsigned quadword integers in destination 
operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value is 
returned.
The destination elements are updated according to the writemask.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.MAP5.W0 79 /r
VCVTPH2UQQ xmm1{k1}{z}, 
xmm2/m32/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed FP16 values in 
xmm2/m32/m16bcst to two unsigned quadword 
integers, and store the result in xmm1 subject to 
writemask k1.

EVEX.256.66.MAP5.W0 79 /r
VCVTPH2UQQ ymm1{k1}{z}, 
xmm2/m64/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert four packed FP16 values in 
xmm2/m64/m16bcst to four unsigned quadword 
integers, and store the result in ymm1 subject to 
writemask k1.

EVEX.512.66.MAP5.W0 79 /r
VCVTPH2UQQ zmm1{k1}{z}, 
xmm2/m128/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Convert eight packed FP16 values in 
xmm2/m128/m16bcst to eight unsigned 
quadword integers, and store the result in zmm1 
subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Quarter ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation

VCVTPH2UQQ DEST, SRC 
VL = 128, 256 or 512
KL := VL / 64

IF *SRC is a register* and (VL = 512) and (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE:
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.fp16[0]

ELSE
tsrc := SRC.fp16[j]

DEST.qword[j] := Convert_fp16_to_unsigned_integer64(tsrc)
ELSE IF *zeroing*:

DEST.qword[j] := 0
// else dest.qword[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPH2UQQ __m512i _mm512_cvt_roundph_epu64 (__m128h a, int rounding);
VCVTPH2UQQ __m512i _mm512_mask_cvt_roundph_epu64 (__m512i src, __mmask8 k, __m128h a, int rounding);
VCVTPH2UQQ __m512i _mm512_maskz_cvt_roundph_epu64 (__mmask8 k, __m128h a, int rounding);
VCVTPH2UQQ __m128i _mm_cvtph_epu64 (__m128h a);
VCVTPH2UQQ __m128i _mm_mask_cvtph_epu64 (__m128i src, __mmask8 k, __m128h a);
VCVTPH2UQQ __m128i _mm_maskz_cvtph_epu64 (__mmask8 k, __m128h a);
VCVTPH2UQQ __m256i _mm256_cvtph_epu64 (__m128h a);
VCVTPH2UQQ __m256i _mm256_mask_cvtph_epu64 (__m256i src, __mmask8 k, __m128h a);
VCVTPH2UQQ __m256i _mm256_maskz_cvtph_epu64 (__mmask8 k, __m128h a);
VCVTPH2UQQ __m512i _mm512_cvtph_epu64 (__m128h a);
VCVTPH2UQQ __m512i _mm512_mask_cvtph_epu64 (__m512i src, __mmask8 k, __m128h a);
VCVTPH2UQQ __m512i _mm512_maskz_cvtph_epu64 (__mmask8 k, __m128h a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCVTPH2UW—Convert Packed FP16 Values to Unsigned Word Integers

Instruction Operand Encoding

Description

This instruction converts packed FP16 values in the source operand to unsigned word integers in the destination 
operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value is 
returned.
The destination elements are updated according to the writemask.

Operation

VCVTPH2UW DEST, SRC 
VL = 128, 256 or 512
KL := VL / 16

IF *SRC is a register* and (VL = 512) and (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE:
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.fp16[0]

ELSE
tsrc := SRC.fp16[j]

DEST.word[j] := Convert_fp16_to_unsigned_integer16(tsrc)
ELSE IF *zeroing*:

DEST.word[j] := 0
// else dest.word[j] remains unchanged

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.MAP5.W0 7D /r
VCVTPH2UW xmm1{k1}{z}, 
xmm2/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert packed FP16 values in 
xmm2/m128/m16bcst to unsigned word integers, 
and store the result in xmm1.

EVEX.256.NP.MAP5.W0 7D /r
VCVTPH2UW ymm1{k1}{z}, 
ymm2/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert packed FP16 values in 
ymm2/m256/m16bcst to unsigned word integers, 
and store the result in ymm1.

EVEX.512.NP.MAP5.W0 7D /r
VCVTPH2UW zmm1{k1}{z}, 
zmm2/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Convert packed FP16 values in 
zmm2/m512/m16bcst to unsigned word integers, 
and store the result in zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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DEST[MAXVL-1:VL] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPH2UW __m512i _mm512_cvt_roundph_epu16 (__m512h a, int sae);
VCVTPH2UW __m512i _mm512_mask_cvt_roundph_epu16 (__m512i src, __mmask32 k, __m512h a, int sae);
VCVTPH2UW __m512i _mm512_maskz_cvt_roundph_epu16 (__mmask32 k, __m512h a, int sae);
VCVTPH2UW __m128i _mm_cvtph_epu16 (__m128h a);
VCVTPH2UW __m128i _mm_mask_cvtph_epu16 (__m128i src, __mmask8 k, __m128h a);
VCVTPH2UW __m128i _mm_maskz_cvtph_epu16 (__mmask8 k, __m128h a);
VCVTPH2UW __m256i _mm256_cvtph_epu16 (__m256h a);
VCVTPH2UW __m256i _mm256_mask_cvtph_epu16 (__m256i src, __mmask16 k, __m256h a);
VCVTPH2UW __m256i _mm256_maskz_cvtph_epu16 (__mmask16 k, __m256h a);
VCVTPH2UW __m512i _mm512_cvtph_epu16 (__m512h a);
VCVTPH2UW __m512i _mm512_mask_cvtph_epu16 (__m512i src, __mmask32 k, __m512h a);
VCVTPH2UW __m512i _mm512_maskz_cvtph_epu16 (__mmask32 k, __m512h a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCVTPH2W—Convert Packed FP16 Values to Signed Word Integers

Instruction Operand Encoding

Description

This instruction converts packed FP16 values in the source operand to signed word integers in the destination 
operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value is 
returned.
The destination elements are updated according to the writemask.

Operation

VCVTPH2W DEST, SRC
VL = 128, 256 or 512
KL := VL / 16

IF *SRC is a register* and (VL = 512) and (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE:
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.fp16[0]

ELSE
tsrc := SRC.fp16[j]

DEST.word[j] := Convert_fp16_to_integer16(tsrc)
ELSE IF *zeroing*:

DEST.word[j] := 0
// else dest.word[j] remains unchanged

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.MAP5.W0 7D /r
VCVTPH2W xmm1{k1}{z}, 
xmm2/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert packed FP16 values in 
xmm2/m128/m16bcst to signed word integers, 
and store the result in xmm1.

EVEX.256.66.MAP5.W0 7D /r
VCVTPH2W ymm1{k1}{z}, 
ymm2/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert packed FP16 values in 
ymm2/m256/m16bcst to signed word integers, 
and store the result in ymm1.

EVEX.512.66.MAP5.W0 7D /r
VCVTPH2W zmm1{k1}{z}, 
zmm2/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Convert packed FP16 values in 
zmm2/m512/m16bcst to signed word integers, 
and store the result in zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
VCVTPH2W—Convert Packed FP16 Values to Signed Word Integers Vol. 2C 5-72



DEST[MAXVL-1:VL] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPH2W __m512i _mm512_cvt_roundph_epi16 (__m512h a, int rounding);
VCVTPH2W __m512i _mm512_mask_cvt_roundph_epi16 (__m512i src, __mmask32 k, __m512h a, int rounding);
VCVTPH2W __m512i _mm512_maskz_cvt_roundph_epi16 (__mmask32 k, __m512h a, int rounding);
VCVTPH2W __m128i _mm_cvtph_epi16 (__m128h a);
VCVTPH2W __m128i _mm_mask_cvtph_epi16 (__m128i src, __mmask8 k, __m128h a);
VCVTPH2W __m128i _mm_maskz_cvtph_epi16 (__mmask8 k, __m128h a);
VCVTPH2W __m256i _mm256_cvtph_epi16 (__m256h a);
VCVTPH2W __m256i _mm256_mask_cvtph_epi16 (__m256i src, __mmask16 k, __m256h a);
VCVTPH2W __m256i _mm256_maskz_cvtph_epi16 (__mmask16 k, __m256h a);
VCVTPH2W __m512i _mm512_cvtph_epi16 (__m512h a);
VCVTPH2W __m512i _mm512_mask_cvtph_epi16 (__m512i src, __mmask32 k, __m512h a);
VCVTPH2W __m512i _mm512_maskz_cvtph_epi16 (__mmask32 k, __m512h a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCVTPS2PH—Convert Single Precision FP Value to 16-bit FP Value

Instruction Operand Encoding

Description

Convert packed single precision floating values in the source operand to half-precision (16-bit) floating-point 
values and store to the destination operand. The rounding mode is specified using the immediate field (imm8).
Underflow results (i.e., tiny results) are converted to denormals. MXCSR.FTZ is ignored. If a source element is 
denormal relative to the input format with DM masked and at least one of PM or UM unmasked; a SIMD exception 
will be raised with DE, UE and PE set.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F3A.W0 1D /r ib
VCVTPS2PH xmm1/m64, xmm2, 
imm8

A V/V F16C Convert four packed single precision floating-point 
values in xmm2 to packed half-precision (16-bit) 
floating-point values in xmm1/m64. Imm8 provides 
rounding controls.

VEX.256.66.0F3A.W0 1D /r ib
VCVTPS2PH xmm1/m128, ymm2, 
imm8

A V/V F16C Convert eight packed single precision floating-point 
values in ymm2 to packed half-precision (16-bit) 
floating-point values in xmm1/m128. Imm8 provides 
rounding controls.

EVEX.128.66.0F3A.W0 1D /r ib
VCVTPS2PH xmm1/m64 {k1}{z}, 
xmm2, imm8

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert four packed single-precision floating-point 
values in xmm2 to packed half-precision (16-bit) 
floating-point values in xmm1/m64. Imm8 provides 
rounding controls.

EVEX.256.66.0F3A.W0 1D /r ib
VCVTPS2PH xmm1/m128 {k1}{z}, 
ymm2, imm8

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Convert eight packed single-precision floating-point 
values in ymm2 to packed half-precision (16-bit) 
floating-point values in xmm1/m128. Imm8 provides 
rounding controls.

EVEX.512.66.0F3A.W0 1D /r ib
VCVTPS2PH ymm1/m256 {k1}{z}, 
zmm2 {sae}, imm8

B V/V AVX512F 
OR AVX10.11

Convert sixteen packed single-precision floating-
point values in zmm2 to packed half-precision (16-
bit) floating-point values in ymm1/m256. Imm8 
provides rounding controls.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (w) ModRM:reg (r) imm8 N/A

B Half Mem ModRM:r/m (w) ModRM:reg (r) imm8 N/A
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The immediate byte defines several bit fields that control rounding operation. The effect and encoding of the RC 
field are listed in Table 1-1.

VEX.128 version: The source operand is a XMM register. The destination operand is a XMM register or 64-bit 
memory location. If the destination operand is a register then the upper bits (MAXVL-1:64) of corresponding 
register are zeroed.
VEX.256 version: The source operand is a YMM register. The destination operand is a XMM register or 128-bit 
memory location. If the destination operand is a register, the upper bits (MAXVL-1:128) of the corresponding desti-
nation register are zeroed.
Note: VEX.vvvv and EVEX.vvvv are reserved (must be 1111b).
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register. The destination operand is a 
YMM/XMM/XMM (low 64-bits) register or a 256/128/64-bit memory location, conditionally updated with writemask 
k1. Bits (MAXVL-1:256/128/64) of the corresponding destination register are zeroed.

Operation

vCvt_s2h(SRC1[31:0])
{
IF Imm[2] = 0
THEN ; using Imm[1:0] for rounding control, see Table 1-1

RETURN Cvt_Single_Precision_To_Half_Precision_FP_Imm(SRC1[31:0]);
ELSE ; using MXCSR.RC for rounding control

RETURN Cvt_Single_Precision_To_Half_Precision_FP_Mxcsr(SRC1[31:0]);
FI;
}

Figure 1-7.  VCVTPS2PH (128-bit Version)

Table 1-1.  Immediate Byte Encoding for 16-bit Floating-Point Conversion Instructions

Bits Field Name/value Description Comment

Imm[1:0] RC=00B Round to nearest even If Imm[2] = 0

RC=01B Round down

RC=10B Round up

RC=11B Truncate

Imm[2] MS1=0 Use imm[1:0] for rounding Ignore MXCSR.RC 

MS1=1 Use MXCSR.RC for rounding

Imm[7:3] Ignored Ignored by processor

VH0VH1VH2VH3
15             031           1647           3263           4895                                64127                              96

VS0VS1VS2VS3
31                                  063                                3295                                64127                              96

xmm1/mem64

xmm2

VCVTPS2PH xmm1/mem64, xmm2,  imm8

convertconvert convertconvert
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VCVTPS2PH (EVEX Encoded Versions) When DEST is a Register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 16
k := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] :=
vCvt_s2h(SRC[k+31:k])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0

VCVTPS2PH (EVEX Encoded Versions) When DEST is Memory
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 16
k := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] :=
vCvt_s2h(SRC[k+31:k])

ELSE 
*DEST[i+15:i] remains unchanged* ; merging-masking

FI;
ENDFOR

VCVTPS2PH (VEX.256 Encoded Version)
DEST[15:0] := vCvt_s2h(SRC1[31:0]);
DEST[31:16] := vCvt_s2h(SRC1[63:32]);
DEST[47:32] := vCvt_s2h(SRC1[95:64]);
DEST[63:48] := vCvt_s2h(SRC1[127:96]);
DEST[79:64] := vCvt_s2h(SRC1[159:128]);
DEST[95:80] := vCvt_s2h(SRC1[191:160]);
DEST[111:96] := vCvt_s2h(SRC1[223:192]);
DEST[127:112] := vCvt_s2h(SRC1[255:224]);
DEST[MAXVL-1:128] := 0

VCVTPS2PH (VEX.128 Encoded Version) 
DEST[15:0] := vCvt_s2h(SRC1[31:0]);
DEST[31:16] := vCvt_s2h(SRC1[63:32]);
DEST[47:32] := vCvt_s2h(SRC1[95:64]);
DEST[63:48] := vCvt_s2h(SRC1[127:96]);
DEST[MAXVL-1:64] := 0

Flags Affected

None.
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTPS2PH __m256i _mm512_cvtps_ph(__m512 a);
VCVTPS2PH __m256i _mm512_mask_cvtps_ph(__m256i s, __mmask16 k,__m512 a);
VCVTPS2PH __m256i _mm512_maskz_cvtps_ph(__mmask16 k,__m512 a);
VCVTPS2PH __m256i _mm512_cvt_roundps_ph(__m512 a, const int imm);
VCVTPS2PH __m256i _mm512_mask_cvt_roundps_ph(__m256i s, __mmask16 k,__m512 a, const int imm);
VCVTPS2PH __m256i _mm512_maskz_cvt_roundps_ph(__mmask16 k,__m512 a, const int imm);
VCVTPS2PH __m128i _mm256_mask_cvtps_ph(__m128i s, __mmask8 k,__m256 a);
VCVTPS2PH __m128i _mm256_maskz_cvtps_ph(__mmask8 k,__m256 a);
VCVTPS2PH __m128i _mm_mask_cvtps_ph(__m128i s, __mmask8 k,__m128 a);
VCVTPS2PH __m128i _mm_maskz_cvtps_ph(__mmask8 k,__m128 a);
VCVTPS2PH __m128i _mm_cvtps_ph ( __m128 m1, const int imm);
VCVTPS2PH __m128i _mm256_cvtps_ph(__m256 m1, const int imm);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal (if MXCSR.DAZ=0).

Other Exceptions

VEX-encoded instructions, see Table 2-26, “Type 11 Class Exception Conditions” (do not report #AC); 
EVEX-encoded instructions, see Table 2-62, “Type E11 Class Exception Conditions.”

Additionally:
#UD If VEX.W=1.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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VCVTPS2PHX—Convert Packed Single Precision Floating-Point Values to Packed FP16 Values

Instruction Operand Encoding

Description

This instruction converts packed single precision floating values in the source operand to FP16 values and stores to 
the destination operand. 
The VCVTPS2PHX instruction supports broadcasting. 
This instruction uses MXCSR.DAZ for handling FP32 inputs. FP16 outputs can be normal or denormal numbers, and 
are not conditionally flushed based on MXCSR settings.

Operation

VCVTPS2PHX DEST, SRC (AVX512_FP16 Load Version With Broadcast Support)
VL = 128, 256, or 512
KL := VL / 32

IF *SRC is a register* and (VL == 512) and (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE:
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.fp32[0]

ELSE
tsrc := SRC.fp32[j]

DEST.fp16[j] := Convert_fp32_to_fp16(tsrc)
ELSE IF *zeroing*:

DEST.fp16[j] := 0

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.MAP5.W0 1D /r
VCVTPS2PHX xmm1{k1}{z}, 
xmm2/m128/m32bcst

A V/V (AVX512-FP16
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert four packed single precision floating-
point values in xmm2/m128/m32bcst to 
packed FP16 values, and store the result in 
xmm1 subject to writemask k1.

EVEX.256.66.MAP5.W0 1D /r
VCVTPS2PHX xmm1{k1}{z}, 
ymm2/m256/m32bcst

A V/V (AVX512-FP16
AND AVX512VL) 
OR AVX10.11

Convert eight packed single precision floating-
point values in ymm2/m256/m32bcst to 
packed FP16 values, and store the result in 
xmm1 subject to writemask k1.

EVEX.512.66.MAP5.W0 1D /r
VCVTPS2PHX ymm1{k1}{z}, 
zmm2/m512/m32bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Convert sixteen packed single precision 
floating-point values in zmm2 /m512/m32bcst 
to packed FP16 values, and store the result in 
ymm1 subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL/2] := 0 

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPS2PHX __m256h _mm512_cvtx_roundps_ph (__m512 a, int rounding);
VCVTPS2PHX __m256h _mm512_mask_cvtx_roundps_ph (__m256h src, __mmask16 k, __m512 a, int rounding);
VCVTPS2PHX __m256h _mm512_maskz_cvtx_roundps_ph (__mmask16 k, __m512 a, int rounding);
VCVTPS2PHX __m128h _mm_cvtxps_ph (__m128 a);
VCVTPS2PHX __m128h _mm_mask_cvtxps_ph (__m128h src, __mmask8 k, __m128 a);
VCVTPS2PHX __m128h _mm_maskz_cvtxps_ph (__mmask8 k, __m128 a);
VCVTPS2PHX __m128h _mm256_cvtxps_ph (__m256 a);
VCVTPS2PHX __m128h _mm256_mask_cvtxps_ph (__m128h src, __mmask8 k, __m256 a);
VCVTPS2PHX __m128h _mm256_maskz_cvtxps_ph (__mmask8 k, __m256 a);
VCVTPS2PHX __m256h _mm512_cvtxps_ph (__m512 a);
VCVTPS2PHX __m256h _mm512_mask_cvtxps_ph (__m256h src, __mmask16 k, __m512 a);
VCVTPS2PHX __m256h _mm512_maskz_cvtxps_ph (__mmask16 k, __m512 a);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal (if MXCSR.DAZ=0).

Other Exceptions

EVEX-encoded instructions, see Table 2-46, “Type E2 Class Exception Conditions.”

Additionally:
#UD If VEX.W=1.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
VCVTPS2PHX—Convert Packed Single Precision Floating-Point Values to Packed FP16 Values Vol. 2C 5-79



VCVTPS2QQ—Convert Packed Single Precision Floating-Point Values to Packed Signed 
Quadword Integer Values

Instruction Operand Encoding

Description

Converts eight packed single precision floating-point values in the source operand to eight signed quadword inte-
gers in the destination operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value 
(2w-1, where w represents the number of bits in the destination format) is returned.
The source operand is a YMM/XMM/XMM (low 64- bits) register or a 256/128/64-bit memory location. The destina-
tion operation is a ZMM/YMM/XMM register conditionally updated with writemask k1. 
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VCVTPS2QQ (EVEX Encoded Versions) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL == 512) AND (EVEX.b == 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] :=
Convert_Single_Precision_To_QuadInteger(SRC[k+31:k])

ELSE 

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F.W0 7B /r
VCVTPS2QQ xmm1 {k1}{z}, 
xmm2/m64/m32bcst

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed single precision floating-point values 
from xmm2/m64/m32bcst to two packed signed 
quadword values in xmm1 subject to writemask k1.

EVEX.256.66.0F.W0 7B /r
VCVTPS2QQ ymm1 {k1}{z}, 
xmm2/m128/m32bcst

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Convert four packed single precision floating-point values 
from xmm2/m128/m32bcst to four packed signed 
quadword values in ymm1 subject to writemask k1.

EVEX.512.66.0F.W0 7B /r
VCVTPS2QQ zmm1 {k1}{z}, 
ymm2/m256/m32bcst {er}

A V/V AVX512DQ 
OR AVX10.11

Convert eight packed single precision floating-point values 
from ymm2/m256/m32bcst to eight packed signed 
quadword values in zmm1 subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Half ModRM:reg (w) ModRM:r/m (r) N/A N/A
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IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTPS2QQ (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
k := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b == 1) 

THEN
DEST[i+63:i] :=

Convert_Single_Precision_To_QuadInteger(SRC[31:0])
ELSE 

DEST[i+63:i] :=
Convert_Single_Precision_To_QuadInteger(SRC[k+31:k])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPS2QQ __m512i _mm512_cvtps_epi64( __m512 a);
VCVTPS2QQ __m512i _mm512_mask_cvtps_epi64( __m512i s, __mmask16 k, __m512 a);
VCVTPS2QQ __m512i _mm512_maskz_cvtps_epi64( __mmask16 k, __m512 a);
VCVTPS2QQ __m512i _mm512_cvt_roundps_epi64( __m512 a, int r);
VCVTPS2QQ __m512i _mm512_mask_cvt_roundps_epi64( __m512i s, __mmask16 k, __m512 a, int r);
VCVTPS2QQ __m512i _mm512_maskz_cvt_roundps_epi64( __mmask16 k, __m512 a, int r);
VCVTPS2QQ __m256i _mm256_cvtps_epi64( __m256 a);
VCVTPS2QQ __m256i _mm256_mask_cvtps_epi64( __m256i s, __mmask8 k, __m256 a);
VCVTPS2QQ __m256i _mm256_maskz_cvtps_epi64( __mmask8 k, __m256 a);
VCVTPS2QQ __m128i _mm_cvtps_epi64( __m128 a);
VCVTPS2QQ __m128i _mm_mask_cvtps_epi64( __m128i s, __mmask8 k, __m128 a);
VCVTPS2QQ __m128i _mm_maskz_cvtps_epi64( __mmask8 k, __m128 a);

SIMD Floating-Point Exceptions

Invalid, Precision.
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Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VCVTPS2UDQ—Convert Packed Single Precision Floating-Point Values to Packed Unsigned 
Doubleword Integer Values

Instruction Operand Encoding

Description

Converts sixteen packed single precision floating-point values in the source operand to sixteen unsigned double-
word integers in the destination operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the integer value 2w – 1 is 
returned, where w represents the number of bits in the destination format.
The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector 
broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally 
updated with writemask k1. 
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.0F.W0 79 /r
VCVTPS2UDQ xmm1 {k1}{z}, 
xmm2/m128/m32bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert four packed single precision floating-
point values from xmm2/m128/m32bcst to four 
packed unsigned doubleword values in xmm1 
subject to writemask k1.

EVEX.256.0F.W0 79 /r
VCVTPS2UDQ ymm1 {k1}{z}, 
ymm2/m256/m32bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Convert eight packed single precision floating-
point values from ymm2/m256/m32bcst to eight 
packed unsigned doubleword values in ymm1 
subject to writemask k1.

EVEX.512.0F.W0 79 /r
VCVTPS2UDQ zmm1 {k1}{z}, 
zmm2/m512/m32bcst {er}

A V/V AVX512F 
OR AVX10.11

Convert sixteen packed single precision floating-
point values from zmm2/m512/m32bcst to 
sixteen packed unsigned doubleword values in 
zmm1 subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation

VCVTPS2UDQ (EVEX Encoded Versions) When SRC Operand is a Register
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] :=
Convert_Single_Precision_Floating_Point_To_UInteger(SRC[i+31:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTPS2UDQ (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no *

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] :=

Convert_Single_Precision_Floating_Point_To_UInteger(SRC[31:0])
ELSE 

DEST[i+31:i] :=
Convert_Single_Precision_Floating_Point_To_UInteger(SRC[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTPS2UDQ __m512i _mm512_cvtps_epu32( __m512 a);
VCVTPS2UDQ __m512i _mm512_mask_cvtps_epu32( __m512i s, __mmask16 k, __m512 a);
VCVTPS2UDQ __m512i _mm512_maskz_cvtps_epu32( __mmask16 k, __m512 a);
VCVTPS2UDQ __m512i _mm512_cvt_roundps_epu32( __m512 a, int r);
VCVTPS2UDQ __m512i _mm512_mask_cvt_roundps_epu32( __m512i s, __mmask16 k, __m512 a, int r);
VCVTPS2UDQ __m512i _mm512_maskz_cvt_roundps_epu32( __mmask16 k, __m512 a, int r);
VCVTPS2UDQ __m256i _mm256_cvtps_epu32( __m256d a);
VCVTPS2UDQ __m256i _mm256_mask_cvtps_epu32( __m256i s, __mmask8 k, __m256 a);
VCVTPS2UDQ __m256i _mm256_maskz_cvtps_epu32( __mmask8 k, __m256 a);
VCVTPS2UDQ __m128i _mm_cvtps_epu32( __m128 a);
VCVTPS2UDQ __m128i _mm_mask_cvtps_epu32( __m128i s, __mmask8 k, __m128 a);
VCVTPS2UDQ __m128i _mm_maskz_cvtps_epu32( __mmask8 k, __m128 a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”

Additionally:
#UD If EVEX.vvvv != 1111B.
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VCVTPS2UQQ—Convert Packed Single Precision Floating-Point Values to Packed Unsigned 
Quadword Integer Values

Instruction Operand Encoding

Description

Converts up to eight packed single precision floating-point values in the source operand to unsigned quadword 
integers in the destination operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the integer value 2w – 1 is 
returned, where w represents the number of bits in the destination format.
The source operand is a YMM/XMM/XMM (low 64- bits) register or a 256/128/64-bit memory location. The destina-
tion operation is a ZMM/YMM/XMM register conditionally updated with writemask k1. 
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VCVTPS2UQQ (EVEX Encoded Versions) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL == 512) AND (EVEX.b == 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] :=
Convert_Single_Precision_To_UQuadInteger(SRC[k+31:k])

ELSE 

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F.W0 79 /r
VCVTPS2UQQ xmm1 {k1}{z}, 
xmm2/m64/m32bcst

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed single precision floating-point values 
from zmm2/m64/m32bcst to two packed unsigned 
quadword values in zmm1 subject to writemask k1.

EVEX.256.66.0F.W0 79 /r
VCVTPS2UQQ ymm1 {k1}{z}, 
xmm2/m128/m32bcst

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Convert four packed single precision floating-point values 
from xmm2/m128/m32bcst to four packed unsigned 
quadword values in ymm1 subject to writemask k1.

EVEX.512.66.0F.W0 79 /r
VCVTPS2UQQ zmm1 {k1}{z}, 
ymm2/m256/m32bcst {er}

A V/V AVX512DQ 
OR AVX10.11

Convert eight packed single precision floating-point values 
from ymm2/m256/m32bcst to eight packed unsigned 
quadword values in zmm1 subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Half ModRM:reg (w) ModRM:r/m (r) N/A N/A
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IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTPS2UQQ (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
k := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b == 1) 

THEN
DEST[i+63:i] :=

Convert_Single_Precision_To_UQuadInteger(SRC[31:0])
ELSE 

DEST[i+63:i] :=
Convert_Single_Precision_To_UQuadInteger(SRC[k+31:k])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPS2UQQ __m512i _mm512_cvtps_epu64( __m512 a);
VCVTPS2UQQ __m512i _mm512_mask_cvtps_epu64( __m512i s, __mmask16 k, __m512 a);
VCVTPS2UQQ __m512i _mm512_maskz_cvtps_epu64( __mmask16 k, __m512 a);
VCVTPS2UQQ __m512i _mm512_cvt_roundps_epu64( __m512 a, int r);
VCVTPS2UQQ __m512i _mm512_mask_cvt_roundps_epu64( __m512i s, __mmask16 k, __m512 a, int r);
VCVTPS2UQQ __m512i _mm512_maskz_cvt_roundps_epu64( __mmask16 k, __m512 a, int r);
VCVTPS2UQQ __m256i _mm256_cvtps_epu64( __m256 a);
VCVTPS2UQQ __m256i _mm256_mask_cvtps_epu64( __m256i s, __mmask8 k, __m256 a);
VCVTPS2UQQ __m256i _mm256_maskz_cvtps_epu64( __mmask8 k, __m256 a);
VCVTPS2UQQ __m128i _mm_cvtps_epu64( __m128 a);
VCVTPS2UQQ __m128i _mm_mask_cvtps_epu64( __m128i s, __mmask8 k, __m128 a);
VCVTPS2UQQ __m128i _mm_maskz_cvtps_epu64( __mmask8 k, __m128 a);

SIMD Floating-Point Exceptions

Invalid, Precision.
VCVTPS2UQQ—Convert Packed Single Precision Floating-Point Values to Packed Unsigned Quadword Integer Values Vol. 2C 5-87



Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VCVTQQ2PD—Convert Packed Quadword Integers to Packed Double Precision Floating-Point 
Values

Instruction Operand Encoding

Description

Converts packed quadword integers in the source operand (second operand) to packed double precision floating-
point values in the destination operand (first operand). 
The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operation 
is a ZMM/YMM/XMM register conditionally updated with writemask k1. 
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VCVTQQ2PD (EVEX2 Encoded Versions) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL == 512) AND (EVEX.b == 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] :=
Convert_QuadInteger_To_Double_Precision_Floating_Point(SRC[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F3.0F.W1 E6 /r
VCVTQQ2PD xmm1 {k1}{z}, 
xmm2/m128/m64bcst

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed quadword integers from 
xmm2/m128/m64bcst to packed double precision 
floating-point values in xmm1 with writemask k1.

EVEX.256.F3.0F.W1 E6 /r
VCVTQQ2PD ymm1 {k1}{z}, 
ymm2/m256/m64bcst

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Convert four packed quadword integers from 
ymm2/m256/m64bcst to packed double precision 
floating-point values in ymm1 with writemask k1.

EVEX.512.F3.0F.W1 E6 /r
VCVTQQ2PD zmm1 {k1}{z}, 
zmm2/m512/m64bcst {er}

A V/V AVX512DQ 
OR AVX10.11

Convert eight packed quadword integers from 
zmm2/m512/m64bcst to eight packed double precision 
floating-point values in zmm1 with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTQQ2PD (EVEX Encoded Versions) when SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b == 1) 

THEN
DEST[i+63:i] :=

Convert_QuadInteger_To_Double_Precision_Floating_Point(SRC[63:0])
ELSE 

DEST[i+63:i] :=
Convert_QuadInteger_To_Double_Precision_Floating_Point(SRC[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTQQ2PD __m512d _mm512_cvtepi64_pd( __m512i a);
VCVTQQ2PD __m512d _mm512_mask_cvtepi64_pd( __m512d s, __mmask16 k, __m512i a);
VCVTQQ2PD __m512d _mm512_maskz_cvtepi64_pd( __mmask16 k, __m512i a);
VCVTQQ2PD __m512d _mm512_cvt_roundepi64_pd( __m512i a, int r);
VCVTQQ2PD __m512d _mm512_mask_cvt_roundepi64_pd( __m512d s, __mmask8 k, __m512i a, int r);
VCVTQQ2PD __m512d _mm512_maskz_cvt_roundepi64_pd( __mmask8 k, __m512i a, int r);
VCVTQQ2PD __m256d _mm256_mask_cvtepi64_pd( __m256d s, __mmask8 k, __m256i a);
VCVTQQ2PD __m256d _mm256_maskz_cvtepi64_pd( __mmask8 k, __m256i a);
VCVTQQ2PD __m128d _mm_mask_cvtepi64_pd( __m128d s, __mmask8 k, __m128i a);
VCVTQQ2PD __m128d _mm_maskz_cvtepi64_pd( __mmask8 k, __m128i a);

SIMD Floating-Point Exceptions

Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VCVTQQ2PH—Convert Packed Signed Quadword Integers to Packed FP16 Values

Instruction Operand Encoding

Description

This instruction converts packed signed quadword integers in the source operand to packed FP16 values in the desti-
nation operand. The destination elements are updated according to the writemask.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
If the result of the convert operation is overflow and MXCSR.OM=0 then a SIMD exception will be raised with OE=1, 
PE=1.

Operation

VCVTQQ2PH DEST, SRC 
VL = 128, 256 or 512
KL := VL / 64

IF *SRC is a register* and (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE:
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.qword[0]

ELSE
tsrc := SRC.qword[j]

DEST.fp16[j] := Convert_integer64_to_fp16(tsrc)
ELSE IF *zeroing*:

DEST.fp16[j] := 0

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.MAP5.W1 5B /r
VCVTQQ2PH xmm1{k1}{z}, 
xmm2/m128/m64bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed signed quadword integers in 
xmm2/m128/m64bcst to packed FP16 values, 
and store the result in xmm1 subject to 
writemask k1.

EVEX.256.NP.MAP5.W1 5B /r
VCVTQQ2PH xmm1{k1}{z}, 
ymm2/m256/m64bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert four packed signed quadword integers in 
ymm2/m256/m64bcst to packed FP16 values, 
and store the result in xmm1 subject to 
writemask k1.

EVEX.512.NP.MAP5.W1 5B /r
VCVTQQ2PH xmm1{k1}{z}, 
zmm2/m512/m64bcst {er}

A V/V AVX512-FP16 
OR AVX10.11

Convert eight packed signed quadword integers in 
zmm2/m512/m64bcst to packed FP16 values, 
and store the result in xmm1 subject to 
writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL/4] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTQQ2PH __m128h _mm512_cvt_roundepi64_ph (__m512i a, int rounding);
VCVTQQ2PH __m128h _mm512_mask_cvt_roundepi64_ph (__m128h src, __mmask8 k, __m512i a, int rounding);
VCVTQQ2PH __m128h _mm512_maskz_cvt_roundepi64_ph (__mmask8 k, __m512i a, int rounding);
VCVTQQ2PH __m128h _mm_cvtepi64_ph (__m128i a);
VCVTQQ2PH __m128h _mm_mask_cvtepi64_ph (__m128h src, __mmask8 k, __m128i a);
VCVTQQ2PH __m128h _mm_maskz_cvtepi64_ph (__mmask8 k, __m128i a);
VCVTQQ2PH __m128h _mm256_cvtepi64_ph (__m256i a);
VCVTQQ2PH __m128h _mm256_mask_cvtepi64_ph (__m128h src, __mmask8 k, __m256i a);
VCVTQQ2PH __m128h _mm256_maskz_cvtepi64_ph (__mmask8 k, __m256i a);
VCVTQQ2PH __m128h _mm512_cvtepi64_ph (__m512i a);
VCVTQQ2PH __m128h _mm512_mask_cvtepi64_ph (__m128h src, __mmask8 k, __m512i a);
VCVTQQ2PH __m128h _mm512_maskz_cvtepi64_ph (__mmask8 k, __m512i a);

SIMD Floating-Point Exceptions

Overflow, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCVTQQ2PS—Convert Packed Quadword Integers to Packed Single Precision Floating-Point 
Values

Instruction Operand Encoding

Description

Converts packed quadword integers in the source operand (second operand) to packed single precision floating-
point values in the destination operand (first operand). 
The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operation 
is a YMM/XMM/XMM (lower 64 bits) register conditionally updated with writemask k1. 
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VCVTQQ2PS (EVEX Encoded Versions) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
k := j * 32
IF k1[j] OR *no writemask*

THEN DEST[k+31:k] :=
Convert_QuadInteger_To_Single_Precision_Floating_Point(SRC[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[k+31:k] remains unchanged*
ELSE ; zeroing-masking

DEST[k+31:k] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.0F.W1 5B /r
VCVTQQ2PS xmm1 {k1}{z}, 
xmm2/m128/m64bcst 

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed quadword integers from xmm2/mem 
to packed single precision floating-point values in xmm1 
with writemask k1.

EVEX.256.0F.W1 5B /r
VCVTQQ2PS xmm1 {k1}{z}, 
ymm2/m256/m64bcst

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Convert four packed quadword integers from ymm2/mem 
to packed single precision floating-point values in xmm1 
with writemask k1.

EVEX.512.0F.W1 5B /r
VCVTQQ2PS ymm1 {k1}{z}, 
zmm2/m512/m64bcst {er}

A V/V AVX512DQ 
OR AVX10.11

Convert eight packed quadword integers from 
zmm2/mem to eight packed single precision floating-point 
values in ymm1 with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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VCVTQQ2PS (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
k := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b == 1) 

THEN
DEST[k+31:k] :=

Convert_QuadInteger_To_Single_Precision_Floating_Point(SRC[63:0])
ELSE 

DEST[k+31:k] :=
Convert_QuadInteger_To_Single_Precision_Floating_Point(SRC[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[k+31:k] remains unchanged*
ELSE ; zeroing-masking

DEST[k+31:k] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTQQ2PS __m256 _mm512_cvtepi64_ps( __m512i a);
VCVTQQ2PS __m256 _mm512_mask_cvtepi64_ps( __m256 s, __mmask16 k, __m512i a);
VCVTQQ2PS __m256 _mm512_maskz_cvtepi64_ps( __mmask16 k, __m512i a);
VCVTQQ2PS __m256 _mm512_cvt_roundepi64_ps( __m512i a, int r);
VCVTQQ2PS __m256 _mm512_mask_cvt_roundepi_ps( __m256 s, __mmask8 k, __m512i a, int r);
VCVTQQ2PS __m256 _mm512_maskz_cvt_roundepi64_ps( __mmask8 k, __m512i a, int r);
VCVTQQ2PS __m128 _mm256_cvtepi64_ps( __m256i a);
VCVTQQ2PS __m128 _mm256_mask_cvtepi64_ps( __m128 s, __mmask8 k, __m256i a);
VCVTQQ2PS __m128 _mm256_maskz_cvtepi64_ps( __mmask8 k, __m256i a);
VCVTQQ2PS __m128 _mm_cvtepi64_ps( __m128i a);
VCVTQQ2PS __m128 _mm_mask_cvtepi64_ps( __m128 s, __mmask8 k, __m128i a);
VCVTQQ2PS __m128 _mm_maskz_cvtepi64_ps( __mmask8 k, __m128i a);

SIMD Floating-Point Exceptions

Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VCVTSD2SH—Convert Low FP64 Value to an FP16 Value

Instruction Operand Encoding

Description

This instruction converts the low FP64 value in the second source operand to an FP16 value, and stores the result in 
the low element of the destination operand.
When the conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register.
Bits 127:16 of the destination operand are copied from the corresponding bits of the first source operand. Bits 
MAXVL-1:128 of the destination operand are zeroed. The low FP16 element of the destination is updated according 
to the writemask.

Operation

VCVTSD2SH dest, src1, src2 
IF *SRC2 is a register* and (EVEX.b = 1):

SET_RM(EVEX.RC)
ELSE:

SET_RM(MXCSR.RC)

IF k1[0] OR *no writemask*:
DEST.fp16[0] := Convert_fp64_to_fp16(SRC2.fp64[0])

ELSE IF *zeroing*:
DEST.fp16[0] := 0

// else dest.fp16[0] remains unchanged

DEST[127:16] := SRC1[127:16]
DEST[MAXVL-1:128] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTSD2SH __m128h _mm_cvt_roundsd_sh (__m128h a, __m128d b, const int rounding);
VCVTSD2SH __m128h _mm_mask_cvt_roundsd_sh (__m128h src, __mmask8 k, __m128h a, __m128d b, const int rounding);
VCVTSD2SH __m128h _mm_maskz_cvt_roundsd_sh (__mmask8 k, __m128h a, __m128d b, const int rounding);
VCVTSD2SH __m128h _mm_cvtsd_sh (__m128h a, __m128d b);
VCVTSD2SH __m128h _mm_mask_cvtsd_sh (__m128h src, __mmask8 k, __m128h a, __m128d b);
VCVTSD2SH __m128h _mm_maskz_cvtsd_sh (__mmask8 k, __m128h a, __m128d b);

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F2.MAP5.W1 5A /r
VCVTSD2SH xmm1{k1}{z}, xmm2, 
xmm3/m64 {er}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert the low FP64 value in xmm3/m64 to an 
FP16 value and store the result in the low 
element of xmm1 subject to writemask k1. Bits 
127:16 of xmm2 are copied to xmm1[127:16].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VCVTSD2USI—Convert Scalar Double Precision Floating-Point Value to Unsigned Doubleword 
Integer

Instruction Operand Encoding

Description

Converts a double precision floating-point value in the source operand (the second operand) to an unsigned 
doubleword integer in the destination operand (the first operand). The source operand can be an XMM register or 
a 64-bit memory location. The destination operand is a general-purpose register. When the source operand is an 
XMM register, the double precision floating-point value is contained in the low quadword of the register.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the integer value 2w – 1 is 
returned, where w represents the number of bits in the destination format.

Operation

VCVTSD2USI (EVEX Encoded Version)
IF (SRC *is register*) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF 64-Bit Mode and OperandSize = 64

THEN DEST[63:0] := Convert_Double_Precision_Floating_Point_To_UInteger(SRC[63:0]);
ELSE DEST[31:0] := Convert_Double_Precision_Floating_Point_To_UInteger(SRC[63:0]);

FI

Intel C/C++ Compiler Intrinsic Equivalent

VCVTSD2USI unsigned int _mm_cvtsd_u32(__m128d);
VCVTSD2USI unsigned int _mm_cvt_roundsd_u32(__m128d, int r);
VCVTSD2USI unsigned __int64 _mm_cvtsd_u64(__m128d);
VCVTSD2USI unsigned __int64 _mm_cvt_roundsd_u64(__m128d, int r);

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID 
Feature 
Flag

Description

EVEX.LLIG.F2.0F.W0 79 /r
VCVTSD2USI r32, xmm1/m64{er}

A V/V AVX512F
OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert one double precision floating-point value from 
xmm1/m64 to one unsigned doubleword integer r32.

EVEX.LLIG.F2.0F.W1 79 /r
VCVTSD2USI r64, xmm1/m64{er}

A V/N.E.2

2. EVEX.W1 in non-64 bit is ignored; the instruction behaves as if the W0 version is used.

AVX512F
OR 
AVX10.11

Convert one double precision floating-point value from 
xmm1/m64 to one unsigned quadword integer zero-
extended into r64.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Fixed ModRM:reg (w) ModRM:r/m (r) N/A N/A
VCVTSD2USI—Convert Scalar Double Precision Floating-Point Value to Unsigned Doubleword Integer Vol. 2C 5-97



SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”
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VCVTSH2SD—Convert Low FP16 Value to an FP64 Value Vol. 2C 5-99

VCVTSH2SD—Convert Low FP16 Value to an FP64 Value

Instruction Operand Encoding

Description

This instruction converts the low FP16 element in the second source operand to a FP64 element in the low element 
of the destination operand.
Bits 127:64 of the destination operand are copied from the corresponding bits of the first source operand. Bits 
MAXVL-1:128 of the destination operand are zeroed. The low FP64 element of the destination is updated according 
to the writemask.

Operation

VCVTSH2SD dest, src1, src2 
IF k1[0] OR *no writemask*:

DEST.fp64[0] := Convert_fp16_to_fp64(SRC2.fp16[0])
ELSE IF *zeroing*:

DEST.fp64[0] := 0
// else dest.fp64[0] remains unchanged

DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTSH2SD __m128d _mm_cvt_roundsh_sd (__m128d a, __m128h b, const int sae);
VCVTSH2SD __m128d _mm_mask_cvt_roundsh_sd (__m128d src, __mmask8 k, __m128d a, __m128h b, const int sae);
VCVTSH2SD __m128d _mm_maskz_cvt_roundsh_sd (__mmask8 k, __m128d a, __m128h b, const int sae);
VCVTSH2SD __m128d _mm_cvtsh_sd (__m128d a, __m128h b);
VCVTSH2SD __m128d _mm_mask_cvtsh_sd (__m128d src, __mmask8 k, __m128d a, __m128h b);
VCVTSH2SD __m128d _mm_maskz_cvtsh_sd (__mmask8 k, __m128d a, __m128h b);

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F3.MAP5.W0 5A /r
VCVTSH2SD xmm1{k1}{z}, xmm2, 
xmm3/m16 {sae}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert the low FP16 value in xmm3/m16 to an 
FP64 value and store the result in the low 
element of xmm1 subject to writemask k1. Bits 
127:64 of xmm2 are copied to xmm1[127:64].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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VCVTSH2SI—Convert Low FP16 Value to Signed Integer

Instruction Operand Encoding

Description

This instruction converts the low FP16 element in the source operand to a signed integer in the destination general 
purpose register.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the integer indefinite value is 
returned.

Operation

VCVTSH2SI dest, src 
IF *SRC is a register* and (EVEX.b = 1):

SET_RM(EVEX.RC)
ELSE:

SET_RM(MXCSR.RC)

IF 64-mode and OperandSize == 64:
DEST.qword := Convert_fp16_to_integer64(SRC.fp16[0])

ELSE:
DEST.dword := Convert_fp16_to_integer32(SRC.fp16[0]) 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTSH2SI int _mm_cvt_roundsh_i32 (__m128h a, int rounding);
VCVTSH2SI __int64 _mm_cvt_roundsh_i64 (__m128h a, int rounding);
VCVTSH2SI int _mm_cvtsh_i32 (__m128h a);
VCVTSH2SI __int64 _mm_cvtsh_i64 (__m128h a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F3.MAP5.W0 2D /r
VCVTSH2SI r32, xmm1/m16 {er}

A V/V1

NOTES:
1. Outside of 64b mode, the EVEX.W field is ignored. The instruction behaves as if W=0 was used.

AVX512-FP16 
OR AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert the low FP16 element in xmm1/m16 to a 
signed integer and store the result in r32.

EVEX.LLIG.F3.MAP5.W1 2D /r
VCVTSH2SI r64, xmm1/m16 {er}

A V/N.E. AVX512-FP16 
OR AVX10.12

Convert the low FP16 element in xmm1/m16 to a 
signed integer and store the result in r64.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A
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VCVTSH2SS—Convert Low FP16 Value to FP32 Value

Instruction Operand Encoding

Description

This instruction converts the low FP16 element in the second source operand to the low FP32 element of the desti-
nation operand.
Bits 127:32 of the destination operand are copied from the corresponding bits of the first source operand. Bits 
MAXVL-1:128 of the destination operand are zeroed. The low FP16 element of the destination is updated according 
to the writemask.

Operation

VCVTSH2SS dest, src1, src2 
IF k1[0] OR *no writemask*:

DEST.fp32[0] := Convert_fp16_to_fp32(SRC2.fp16[0])
ELSE IF *zeroing*:

DEST.fp32[0] := 0
// else dest.fp32[0] remains unchanged

DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTSH2SS __m128 _mm_cvt_roundsh_ss (__m128 a, __m128h b, const int sae);
VCVTSH2SS __m128 _mm_mask_cvt_roundsh_ss (__m128 src, __mmask8 k, __m128 a, __m128h b, const int sae);
VCVTSH2SS __m128 _mm_maskz_cvt_roundsh_ss (__mmask8 k, __m128 a, __m128h b, const int sae);
VCVTSH2SS __m128 _mm_cvtsh_ss (__m128 a, __m128h b);
VCVTSH2SS __m128 _mm_mask_cvtsh_ss (__m128 src, __mmask8 k, __m128 a, __m128h b);
VCVTSH2SS __m128 _mm_maskz_cvtsh_ss (__mmask8 k, __m128 a, __m128h b);

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.NP.MAP6.W0 13 /r
VCVTSH2SS xmm1{k1}{z}, xmm2, 
xmm3/m16 {sae}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert the low FP16 element in xmm3/m16 to 
an FP32 value and store in the low element of 
xmm1 subject to writemask k1. Bits 127:32 of 
xmm2 are copied to xmm1[127:32].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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VCVTSH2USI—Convert Low FP16 Value to Unsigned Integer

Instruction Operand Encoding

Description

This instruction converts the low FP16 element in the source operand to an unsigned integer in the destination 
general purpose register.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the integer indefinite value is 
returned.

Operation

VCVTSH2USI dest, src
// SET_RM() sets the rounding mode used for this instruction.
IF *SRC is a register* and (EVEX.b = 1):

SET_RM(EVEX.RC)
ELSE:

SET_RM(MXCSR.RC)

IF 64-mode and OperandSize == 64:
DEST.qword := Convert_fp16_to_unsigned_integer64(SRC.fp16[0])

ELSE:
DEST.dword := Convert_fp16_to_unsigned_integer32(SRC.fp16[0]) 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTSH2USI unsigned int _mm_cvt_roundsh_u32 (__m128h a, int sae);
VCVTSH2USI unsigned __int64 _mm_cvt_roundsh_u64 (__m128h a, int rounding);
VCVTSH2USI unsigned int _mm_cvtsh_u32 (__m128h a);
VCVTSH2USI unsigned __int64 _mm_cvtsh_u64 (__m128h a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F3.MAP5.W0 79 /r
VCVTSH2USI r32, xmm1/m16 {er}

A V/V1

NOTES:
1. Outside of 64b mode, the EVEX.W field is ignored. The instruction behaves as if W=0 was used.

AVX512-FP16 
OR AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert the low FP16 element in xmm1/m16 to 
an unsigned integer and store the result in r32.

EVEX.LLIG.F3.MAP5.W1 79 /r
VCVTSH2USI r64, xmm1/m16 {er}

A V/N.E. AVX512-FP16 
OR AVX10.12

Convert the low FP16 element in xmm1/m16 to 
an unsigned integer and store the result in r64.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A



VCVTSI2SH—Convert a Signed Doubleword/Quadword Integer to an FP16 Value

Instruction Operand Encoding

Description

This instruction converts a signed doubleword integer (or signed quadword integer if operand size is 64 bits) in the 
second source operand to an FP16 value in the destination operand. The result is stored in the low word of the desti-
nation operand. When conversion is inexact, the value returned is rounded according to the rounding control bits 
in the MXCSR register or embedded rounding controls.
The second source operand can be a general-purpose register or a 32/64-bit memory location. The first source and 
destination operands are XMM registers. Bits 127:16 of the XMM register destination are copied from corre-
sponding bits in the first source operand. Bits MAXVL-1:128 of the destination register are zeroed.
If the result of the convert operation is overflow and MXCSR.OM=0 then a SIMD exception will be raised with OE=1, 
PE=1.

Operation

VCVTSI2SH dest, src1, src2
IF *SRC2 is a register* and (EVEX.b = 1):

SET_RM(EVEX.RC)
ELSE:

SET_RM(MXCSR.RC)

IF 64-mode and OperandSize == 64:
DEST.fp16[0] := Convert_integer64_to_fp16(SRC2.qword)

ELSE:
DEST.fp16[0] := Convert_integer32_to_fp16(SRC2.dword)

DEST[127:16] := SRC1[127:16]
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F3.MAP5.W0 2A /r
VCVTSI2SH xmm1, xmm2, r32/m32 
{er}

A V/V1

NOTES:
1. Outside of 64b mode, the EVEX.W field is ignored. The instruction behaves as if W=0 was used.

AVX512-FP16 
OR AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert the signed doubleword integer in 
r32/m32 to an FP16 value and store the result in 
xmm1. Bits 127:16 of xmm2 are copied to 
xmm1[127:16].

EVEX.LLIG.F3.MAP5.W1 2A /r
VCVTSI2SH xmm1, xmm2, r64/m64 
{er}

A V/N.E. AVX512-FP16 
OR AVX10.12

Convert the signed quadword integer in r64/m64 
to an FP16 value and store the result in xmm1. 
Bits 127:16 of xmm2 are copied to 
xmm1[127:16].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTSI2SH __m128h _mm_cvt_roundi32_sh (__m128h a, int b, int rounding);
VCVTSI2SH __m128h _mm_cvt_roundi64_sh (__m128h a, __int64 b, int rounding);
VCVTSI2SH __m128h _mm_cvti32_sh (__m128h a, int b);
VCVTSI2SH __m128h _mm_cvti64_sh (__m128h a, __int64 b);

SIMD Floating-Point Exceptions

Overflow, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”
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VCVTSS2SH—Convert Low FP32 Value to an FP16 Value

Instruction Operand Encoding

Description

This instruction converts the low FP32 value in the second source operand to a FP16 value in the low element of the 
destination operand.
When the conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register.
Bits 127:16 of the destination operand are copied from the corresponding bits of the first source operand. Bits 
MAXVL-1:128 of the destination operand are zeroed. The low FP16 element of the destination is updated according 
to the writemask.

Operation

VCVTSS2SH dest, src1, src2
IF *SRC2 is a register* and (EVEX.b = 1):

SET_RM(EVEX.RC)
ELSE:

SET_RM(MXCSR.RC)

IF k1[0] OR *no writemask*:
DEST.fp16[0] := Convert_fp32_to_fp16(SRC2.fp32[0])

ELSE IF *zeroing*:
DEST.fp16[0] := 0

// else dest.fp16[0] remains unchanged

DEST[127:16] := SRC1[127:16]
DEST[MAXVL-1:128] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTSS2SH __m128h _mm_cvt_roundss_sh (__m128h a, __m128 b, const int rounding);
VCVTSS2SH __m128h _mm_mask_cvt_roundss_sh (__m128h src, __mmask8 k, __m128h a, __m128 b, const int rounding);
VCVTSS2SH __m128h _mm_maskz_cvt_roundss_sh (__mmask8 k, __m128h a, __m128 b, const int rounding);
VCVTSS2SH __m128h _mm_cvtss_sh (__m128h a, __m128 b);
VCVTSS2SH __m128h _mm_mask_cvtss_sh (__m128h src, __mmask8 k, __m128h a, __m128 b);
VCVTSS2SH __m128h _mm_maskz_cvtss_sh (__mmask8 k, __m128h a, __m128 b);

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.NP.MAP5.W0 1D /r
VCVTSS2SH xmm1{k1}{z}, xmm2, 
xmm3/m32 {er}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert low FP32 value in xmm3/m32 to an 
FP16 value and store in the low element of 
xmm1 subject to writemask k1. Bits 127:16 from 
xmm2 are copied to xmm1[127:16].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VCVTSS2USI—Convert Scalar Single Precision Floating-Point Value to Unsigned Doubleword 
Integer

Instruction Operand Encoding

Description

Converts a single precision floating-point value in the source operand (the second operand) to an unsigned double-
word integer (or unsigned quadword integer if operand size is 64 bits) in the destination operand (the first 
operand). The source operand can be an XMM register or a memory location. The destination operand is a general-
purpose register. When the source operand is an XMM register, the single precision floating-point value is contained 
in the low doubleword of the register.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register or the embedded rounding control bits. If a converted result cannot be represented in the destination 
format, the floating-point invalid exception is raised, and if this exception is masked, the integer value 2w – 1 is 
returned, where w represents the number of bits in the destination format.
VEX.W1 and EVEX.W1 versions: promotes the instruction to produce 64-bit data in 64-bit mode.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

VCVTSS2USI (EVEX Encoded Version)
IF (SRC *is register*) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF 64-bit Mode and OperandSize = 64
THEN

DEST[63:0] := Convert_Single_Precision_Floating_Point_To_UInteger(SRC[31:0]);
ELSE

DEST[31:0] := Convert_Single_Precision_Floating_Point_To_UInteger(SRC[31:0]);
FI;

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.F3.0F.W0 79 /r
VCVTSS2USI r32, xmm1/m32{er}

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert one single precision floating-point value 
from xmm1/m32 to one unsigned doubleword 
integer in r32.

EVEX.LLIG.F3.0F.W1 79 /r
VCVTSS2USI r64, xmm1/m32{er}

A V/N.E.2

2. EVEX.W1 in non-64 bit is ignored; the instruction behaves as if the W0 version is used.

AVX512F
OR AVX10.11

Convert one single precision floating-point value 
from xmm1/m32 to one unsigned quadword 
integer in r64.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Fixed ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTSS2USI unsigned _mm_cvtss_u32( __m128 a);
VCVTSS2USI unsigned _mm_cvt_roundss_u32( __m128 a, int r);
VCVTSS2USI unsigned __int64 _mm_cvtss_u64( __m128 a);
VCVTSS2USI unsigned __int64 _mm_cvt_roundss_u64( __m128 a, int r);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”
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VCVTTPD2QQ—Convert With Truncation Packed Double Precision Floating-Point Values to 
Packed Quadword Integers

Instruction Operand Encoding

Description

Converts with truncation packed double precision floating-point values in the source operand (second operand) to 
packed quadword integers in the destination operand (first operand). 
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location. 
The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1. 
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be 
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, 
the indefinite integer value (2w-1, where w represents the number of bits in the destination format) is returned.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

VCVTTPD2QQ (EVEX Encoded Version) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] :=
Convert_Double_Precision_Floating_Point_To_QuadInteger_Truncate(SRC[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F.W1 7A /r
VCVTTPD2QQ xmm1 {k1}{z}, 
xmm2/m128/m64bcst

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed double precision floating-point 
values from zmm2/m128/m64bcst to two packed 
quadword integers in zmm1 using truncation with 
writemask k1.

EVEX.256.66.0F.W1 7A /r
VCVTTPD2QQ ymm1 {k1}{z}, 
ymm2/m256/m64bcst

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Convert four packed double precision floating-point 
values from ymm2/m256/m64bcst to four packed 
quadword integers in ymm1 using truncation with 
writemask k1.

EVEX.512.66.0F.W1 7A /r
VCVTTPD2QQ zmm1 {k1}{z}, 
zmm2/m512/m64bcst {sae}

A V/V AVX512DQ 
OR AVX10.11

Convert eight packed double precision floating-point 
values from zmm2/m512 to eight packed quadword 
integers in zmm1 using truncation with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTTPD2QQ (EVEX Encoded Version) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b == 1) 

THEN
DEST[i+63:i] := Convert_Double_Precision_Floating_Point_To_QuadInteger_Truncate(SRC[63:0])

ELSE 
DEST[i+63:i] := Convert_Double_Precision_Floating_Point_To_QuadInteger_Truncate(SRC[i+63:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPD2QQ __m512i _mm512_cvttpd_epi64( __m512d a);
VCVTTPD2QQ __m512i _mm512_mask_cvttpd_epi64( __m512i s, __mmask8 k, __m512d a);
VCVTTPD2QQ __m512i _mm512_maskz_cvttpd_epi64( __mmask8 k, __m512d a);
VCVTTPD2QQ __m512i _mm512_cvtt_roundpd_epi64( __m512d a, int sae);
VCVTTPD2QQ __m512i _mm512_mask_cvtt_roundpd_epi64( __m512i s, __mmask8 k, __m512d a, int sae);
VCVTTPD2QQ __m512i _mm512_maskz_cvtt_roundpd_epi64( __mmask8 k, __m512d a, int sae);
VCVTTPD2QQ __m256i _mm256_mask_cvttpd_epi64( __m256i s, __mmask8 k, __m256d a);
VCVTTPD2QQ __m256i _mm256_maskz_cvttpd_epi64( __mmask8 k, __m256d a);
VCVTTPD2QQ __m128i _mm_mask_cvttpd_epi64( __m128i s, __mmask8 k, __m128d a);
VCVTTPD2QQ __m128i _mm_maskz_cvttpd_epi64( __mmask8 k, __m128d a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VCVTTPD2UDQ—Convert With Truncation Packed Double Precision Floating-Point Values to 
Packed Unsigned Doubleword Integers

Instruction Operand Encoding

Description

Converts with truncation packed double precision floating-point values in the source operand (the second operand) 
to packed unsigned doubleword integers in the destination operand (the first operand). 
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be 
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, 
the integer value 2w – 1 is returned, where w represents the number of bits in the destination format.
The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector 
broadcasted from a 64-bit memory location. The destination operand is a YMM/XMM/XMM (low 64 bits) register 
conditionally updated with writemask k1. The upper bits (MAXVL-1:256) of the corresponding destination are 
zeroed.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

VCVTTPD2UDQ (EVEX Encoded Versions) When SRC2 Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 32
k := j * 64
IF k1[j] OR *no writemask*

THEN 
DEST[i+31:i] :=
Convert_Double_Precision_Floating_Point_To_UInteger_Truncate(SRC[k+63:k])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*

Opcode
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.0F.W1 78 /r
VCVTTPD2UDQ xmm1 {k1}{z}, 
xmm2/m128/m64bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed double precision floating-point 
values in xmm2/m128/m64bcst to two unsigned 
doubleword integers in xmm1 using truncation 
subject to writemask k1.

EVEX.256.0F.W1 78 02 /r
VCVTTPD2UDQ xmm1 {k1}{z}, 
ymm2/m256/m64bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Convert four packed double precision floating-point 
values in ymm2/m256/m64bcst to four unsigned 
doubleword integers in xmm1 using truncation 
subject to writemask k1.

EVEX.512.0F.W1 78 /r
VCVTTPD2UDQ ymm1 {k1}{z}, 
zmm2/m512/m64bcst {sae}

A V/V AVX512F 
OR AVX10.11

Convert eight packed double precision floating-point 
values in zmm2/m512/m64bcst to eight unsigned 
doubleword integers in ymm1 using truncation 
subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
VCVTTPD2UDQ—Convert With Truncation Packed Double Precision Floating-Point Values to Packed Unsigned Doubleword Integers Vol. 2C 5-111



ELSE ; zeroing-masking
DEST[i+31:i] := 0

FI
FI;

ENDFOR
DEST[MAXVL-1:VL/2] := 0

VCVTTPD2UDQ (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256),(8, 512)

FOR j := 0 TO KL-1
i := j * 32
k := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] :=

Convert_Double_Precision_Floating_Point_To_UInteger_Truncate(SRC[63:0])
ELSE 

DEST[i+31:i] :=
Convert_Double_Precision_Floating_Point_To_UInteger_Truncate(SRC[k+63:k])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPD2UDQ __m256i _mm512_cvttpd_epu32( __m512d a);
VCVTTPD2UDQ __m256i _mm512_mask_cvttpd_epu32( __m256i s, __mmask8 k, __m512d a);
VCVTTPD2UDQ __m256i _mm512_maskz_cvttpd_epu32( __mmask8 k, __m512d a);
VCVTTPD2UDQ __m256i _mm512_cvtt_roundpd_epu32( __m512d a, int sae);
VCVTTPD2UDQ __m256i _mm512_mask_cvtt_roundpd_epu32( __m256i s, __mmask8 k, __m512d a, int sae);
VCVTTPD2UDQ __m256i _mm512_maskz_cvtt_roundpd_epu32( __mmask8 k, __m512d a, int sae);
VCVTTPD2UDQ __m128i _mm256_mask_cvttpd_epu32( __m128i s, __mmask8 k, __m256d a);
VCVTTPD2UDQ __m128i _mm256_maskz_cvttpd_epu32( __mmask8 k, __m256d a);
VCVTTPD2UDQ __m128i _mm_mask_cvttpd_epu32( __m128i s, __mmask8 k, __m128d a);
VCVTTPD2UDQ __m128i _mm_maskz_cvttpd_epu32( __mmask8 k, __m128d a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
VCVTTPD2UDQ—Convert With Truncation Packed Double Precision Floating-Point Values to Packed Unsigned Doubleword Integers Vol. 2C 5-112



VCVTTPD2UQQ—Convert With Truncation Packed Double Precision Floating-Point Values to 
Packed Unsigned Quadword Integers

Instruction Operand Encoding

Description

Converts with truncation packed double precision floating-point values in the source operand (second operand) to 
packed unsigned quadword integers in the destination operand (first operand). 
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be 
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, 
the integer value 2w – 1 is returned, where w represents the number of bits in the destination format.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location. 
The destination operation is a ZMM/YMM/XMM register conditionally updated with writemask k1. 
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

VCVTTPD2UQQ (EVEX Encoded Versions) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] :=
Convert_Double_Precision_Floating_Point_To_UQuadInteger_Truncate(SRC[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F.W1 78 /r
VCVTTPD2UQQ xmm1 {k1}{z}, 
xmm2/m128/m64bcst

A V/V (AVX512VL AND 
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed double precision floating-point 
values from xmm2/m128/m64bcst to two packed 
unsigned quadword integers in xmm1 using truncation 
with writemask k1.

EVEX.256.66.0F.W1 78 /r
VCVTTPD2UQQ ymm1 {k1}{z}, 
ymm2/m256/m64bcst

A V/V (AVX512VL AND 
AVX512DQ) OR 
AVX10.11

Convert four packed double precision floating-point 
values from ymm2/m256/m64bcst to four packed 
unsigned quadword integers in ymm1 using truncation 
with writemask k1.

EVEX.512.66.0F.W1 78 /r
VCVTTPD2UQQ zmm1 {k1}{z}, 
zmm2/m512/m64bcst {sae}

A V/V AVX512DQ 
OR AVX10.11

Convert eight packed double precision floating-point 
values from zmm2/mem to eight packed unsigned 
quadword integers in zmm1 using truncation with 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTTPD2UQQ (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b == 1) 

THEN
DEST[i+63:i] :=

Convert_Double_Precision_Floating_Point_To_UQuadInteger_Truncate(SRC[63:0])
ELSE 

DEST[i+63:i] :=
Convert_Double_Precision_Floating_Point_To_UQuadInteger_Truncate(SRC[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPD2UQQ _mm<size>[_mask[z]]_cvtt[_round]pd_epu64
VCVTTPD2UQQ __m512i _mm512_cvttpd_epu64( __m512d a);
VCVTTPD2UQQ __m512i _mm512_mask_cvttpd_epu64( __m512i s, __mmask8 k, __m512d a);
VCVTTPD2UQQ __m512i _mm512_maskz_cvttpd_epu64( __mmask8 k, __m512d a);
VCVTTPD2UQQ __m512i _mm512_cvtt_roundpd_epu64( __m512d a, int sae);
VCVTTPD2UQQ __m512i _mm512_mask_cvtt_roundpd_epu64( __m512i s, __mmask8 k, __m512d a, int sae);
VCVTTPD2UQQ __m512i _mm512_maskz_cvtt_roundpd_epu64( __mmask8 k, __m512d a, int sae);
VCVTTPD2UQQ __m256i _mm256_mask_cvttpd_epu64( __m256i s, __mmask8 k, __m256d a);
VCVTTPD2UQQ __m256i _mm256_maskz_cvttpd_epu64( __mmask8 k, __m256d a);
VCVTTPD2UQQ __m128i _mm_mask_cvttpd_epu64( __m128i s, __mmask8 k, __m128d a);
VCVTTPD2UQQ __m128i _mm_maskz_cvttpd_epu64( __mmask8 k, __m128d a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VCVTTPH2DQ—Convert with Truncation Packed FP16 Values to Signed Doubleword Integers

Instruction Operand Encoding

Description

This instruction converts packed FP16 values in the source operand to signed doubleword integers in destination 
operand.
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result is larger than 
the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is 
masked, the indefinite integer value is returned.
The destination elements are updated according to the writemask.

Operation

VCVTTPH2DQ dest, src 
VL = 128, 256 or 512
KL := VL / 32

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.fp16[0]

ELSE
tsrc := SRC.fp16[j]

DEST.fp32[j] := Convert_fp16_to_integer32_truncate(tsrc)
ELSE IF *zeroing*:

DEST.fp32[j] := 0
// else dest.fp32[j] remains unchanged

DEST[MAXVL-1:VL] := 0

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F3.MAP5.W0 5B /r
VCVTTPH2DQ xmm1{k1}{z}, 
xmm2/m64/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert four packed FP16 values in 
xmm2/m64/m16bcst to four signed doubleword 
integers, and store the result in xmm1 using 
truncation subject to writemask k1.

EVEX.256.F3.MAP5.W0 5B /r
VCVTTPH2DQ ymm1{k1}{z}, 
xmm2/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert eight packed FP16 values in 
xmm2/m128/m16bcst to eight signed 
doubleword integers, and store the result in 
ymm1 using truncation subject to writemask k1.

EVEX.512.F3.MAP5.W0 5B /r
VCVTTPH2DQ zmm1{k1}{z}, 
ymm2/m256/m16bcst {sae}

A V/V AVX512-FP16
OR AVX10.11

Convert sixteen packed FP16 values in 
ymm2/m256/m16bcst to sixteen signed 
doubleword integers, and store the result in 
zmm1 using truncation subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Half ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPH2DQ __m512i _mm512_cvtt_roundph_epi32 (__m256h a, int sae);
VCVTTPH2DQ __m512i _mm512_mask_cvtt_roundph_epi32 (__m512i src, __mmask16 k, __m256h a, int sae);
VCVTTPH2DQ __m512i _mm512_maskz_cvtt_roundph_epi32 (__mmask16 k, __m256h a, int sae);
VCVTTPH2DQ __m128i _mm_cvttph_epi32 (__m128h a);
VCVTTPH2DQ __m128i _mm_mask_cvttph_epi32 (__m128i src, __mmask8 k, __m128h a);
VCVTTPH2DQ __m128i _mm_maskz_cvttph_epi32 (__mmask8 k, __m128h a);
VCVTTPH2DQ __m256i _mm256_cvttph_epi32 (__m128h a);
VCVTTPH2DQ __m256i _mm256_mask_cvttph_epi32 (__m256i src, __mmask8 k, __m128h a);
VCVTTPH2DQ __m256i _mm256_maskz_cvttph_epi32 (__mmask8 k, __m128h a);
VCVTTPH2DQ __m512i _mm512_cvttph_epi32 (__m256h a);
VCVTTPH2DQ __m512i _mm512_mask_cvttph_epi32 (__m512i src, __mmask16 k, __m256h a);
VCVTTPH2DQ __m512i _mm512_maskz_cvttph_epi32 (__mmask16 k, __m256h a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCVTTPH2QQ—Convert with Truncation Packed FP16 Values to Signed Quadword Integers

Instruction Operand Encoding

Description

This instruction converts packed FP16 values in the source operand to signed quadword integers in the destination 
operand.
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be 
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, 
the indefinite integer value is returned.
The destination elements are updated according to the writemask.

Operation

VCVTTPH2QQ dest, src
VL = 128, 256 or 512
KL := VL / 64

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.fp16[0]

ELSE
tsrc := SRC.fp16[j]

DEST.qword[j] := Convert_fp16_to_integer64_truncate(tsrc)
ELSE IF *zeroing*:

DEST.qword[j] := 0
// else dest.qword[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.MAP5.W0 7A /r
VCVTTPH2QQ xmm1{k1}{z}, 
xmm2/m32/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed FP16 values in 
xmm2/m32/m16bcst to two signed quadword 
integers, and store the result in xmm1 using 
truncation subject to writemask k1.

EVEX.256.66.MAP5.W0 7A /r
VCVTTPH2QQ ymm1{k1}{z}, 
xmm2/m64/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert four packed FP16 values in 
xmm2/m64/m16bcst to four signed quadword 
integers, and store the result in ymm1 using 
truncation subject to writemask k1.

EVEX.512.66.MAP5.W0 7A /r
VCVTTPH2QQ zmm1{k1}{z}, 
xmm2/m128/m16bcst {sae}

A V/V AVX512-FP16
OR AVX10.11

Convert eight packed FP16 values in 
xmm2/m128/m16bcst to eight signed quadword 
integers, and store the result in zmm1 using 
truncation subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Quarter ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPH2QQ __m512i _mm512_cvtt_roundph_epi64 (__m128h a, int sae);
VCVTTPH2QQ __m512i _mm512_mask_cvtt_roundph_epi64 (__m512i src, __mmask8 k, __m128h a, int sae);
VCVTTPH2QQ __m512i _mm512_maskz_cvtt_roundph_epi64 (__mmask8 k, __m128h a, int sae);
VCVTTPH2QQ __m128i _mm_cvttph_epi64 (__m128h a);
VCVTTPH2QQ __m128i _mm_mask_cvttph_epi64 (__m128i src, __mmask8 k, __m128h a);
VCVTTPH2QQ __m128i _mm_maskz_cvttph_epi64 (__mmask8 k, __m128h a);
VCVTTPH2QQ __m256i _mm256_cvttph_epi64 (__m128h a);
VCVTTPH2QQ __m256i _mm256_mask_cvttph_epi64 (__m256i src, __mmask8 k, __m128h a);
VCVTTPH2QQ __m256i _mm256_maskz_cvttph_epi64 (__mmask8 k, __m128h a);
VCVTTPH2QQ __m512i _mm512_cvttph_epi64 (__m128h a);
VCVTTPH2QQ __m512i _mm512_mask_cvttph_epi64 (__m512i src, __mmask8 k, __m128h a);
VCVTTPH2QQ __m512i _mm512_maskz_cvttph_epi64 (__mmask8 k, __m128h a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCVTTPH2UDQ—Convert with Truncation Packed FP16 Values to Unsigned Doubleword 
Integers

Instruction Operand Encoding

Description

This instruction converts packed FP16 values in the source operand to unsigned doubleword integers in the destina-
tion operand.
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be 
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, 
the integer indefinite value is returned.
The destination elements are updated according to the writemask.

Operation

VCVTTPH2UDQ dest, src
VL = 128, 256 or 512
KL := VL / 32

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.fp16[0]

ELSE
tsrc := SRC.fp16[j]

DEST.dword[j] := Convert_fp16_to_unsigned_integer32_truncate(tsrc)
ELSE IF *zeroing*:

DEST.dword[j] := 0
// else dest.dword[j] remains unchanged

DEST[MAXVL-1:VL] := 0

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.MAP5.W0 78 /r
VCVTTPH2UDQ xmm1{k1}{z}, 
xmm2/m64/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert four packed FP16 values in 
xmm2/m64/m16bcst to four unsigned 
doubleword integers, and store the result in 
xmm1 using truncation subject to writemask k1.

EVEX.256.NP.MAP5.W0 78 /r
VCVTTPH2UDQ ymm1{k1}{z}, 
xmm2/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert eight packed FP16 values in 
xmm2/m128/m16bcst to eight unsigned 
doubleword integers, and store the result in 
ymm1 using truncation subject to writemask k1.

EVEX.512.NP.MAP5.W0 78 /r
VCVTTPH2UDQ zmm1{k1}{z}, 
ymm2/m256/m16bcst {sae}

A V/V AVX512-FP16
OR AVX10.11

Convert sixteen packed FP16 values in 
ymm2/m256/m16bcst to sixteen unsigned 
doubleword integers, and store the result in 
zmm1 using truncation subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Half ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPH2UDQ __m512i _mm512_cvtt_roundph_epu32 (__m256h a, int sae);
VCVTTPH2UDQ __m512i _mm512_mask_cvtt_roundph_epu32 (__m512i src, __mmask16 k, __m256h a, int sae);
VCVTTPH2UDQ __m512i _mm512_maskz_cvtt_roundph_epu32 (__mmask16 k, __m256h a, int sae);
VCVTTPH2UDQ __m128i _mm_cvttph_epu32 (__m128h a);
VCVTTPH2UDQ __m128i _mm_mask_cvttph_epu32 (__m128i src, __mmask8 k, __m128h a);
VCVTTPH2UDQ __m128i _mm_maskz_cvttph_epu32 (__mmask8 k, __m128h a);
VCVTTPH2UDQ __m256i _mm256_cvttph_epu32 (__m128h a);
VCVTTPH2UDQ __m256i _mm256_mask_cvttph_epu32 (__m256i src, __mmask8 k, __m128h a);
VCVTTPH2UDQ __m256i _mm256_maskz_cvttph_epu32 (__mmask8 k, __m128h a);
VCVTTPH2UDQ __m512i _mm512_cvttph_epu32 (__m256h a);
VCVTTPH2UDQ __m512i _mm512_mask_cvttph_epu32 (__m512i src, __mmask16 k, __m256h a);
VCVTTPH2UDQ __m512i _mm512_maskz_cvttph_epu32 (__mmask16 k, __m256h a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCVTTPH2UQQ—Convert with Truncation Packed FP16 Values to Unsigned Quadword Integers

Instruction Operand Encoding

Description

This instruction converts packed FP16 values in the source operand to unsigned quadword integers in the destina-
tion operand.
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be 
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, 
the integer indefinite value is returned.
The destination elements are updated according to the writemask.

Operation

VCVTTPH2UQQ dest, src
VL = 128, 256 or 512
KL := VL / 64

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.fp16[0]

ELSE
tsrc := SRC.fp16[j]

DEST.qword[j] := Convert_fp16_to_unsigned_integer64_truncate(tsrc)
ELSE IF *zeroing*:

DEST.qword[j] := 0
// else dest.qword[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.MAP5.W0 78 /r
VCVTTPH2UQQ xmm1{k1}{z}, 
xmm2/m32/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed FP16 values in 
xmm2/m32/m16bcst to two unsigned quadword 
integers, and store the result in xmm1 using 
truncation subject to writemask k1.

EVEX.256.66.MAP5.W0 78 /r
VCVTTPH2UQQ ymm1{k1}{z}, 
xmm2/m64/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert four packed FP16 values in 
xmm2/m64/m16bcst to four unsigned quadword 
integers, and store the result in ymm1 using 
truncation subject to writemask k1.

EVEX.512.66.MAP5.W0 78 /r
VCVTTPH2UQQ zmm1{k1}{z}, 
xmm2/m128/m16bcst {sae}

A V/V AVX512-FP16
OR AVX10.11

Convert eight packed FP16 values in 
xmm2/m128/m16bcst to eight unsigned 
quadword integers, and store the result in zmm1 
using truncation subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Quarter ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPH2UQQ __m512i _mm512_cvtt_roundph_epu64 (__m128h a, int sae);
VCVTTPH2UQQ __m512i _mm512_mask_cvtt_roundph_epu64 (__m512i src, __mmask8 k, __m128h a, int sae);
VCVTTPH2UQQ __m512i _mm512_maskz_cvtt_roundph_epu64 (__mmask8 k, __m128h a, int sae);
VCVTTPH2UQQ __m128i _mm_cvttph_epu64 (__m128h a);
VCVTTPH2UQQ __m128i _mm_mask_cvttph_epu64 (__m128i src, __mmask8 k, __m128h a);
VCVTTPH2UQQ __m128i _mm_maskz_cvttph_epu64 (__mmask8 k, __m128h a);
VCVTTPH2UQQ __m256i _mm256_cvttph_epu64 (__m128h a);
VCVTTPH2UQQ __m256i _mm256_mask_cvttph_epu64 (__m256i src, __mmask8 k, __m128h a);
VCVTTPH2UQQ __m256i _mm256_maskz_cvttph_epu64 (__mmask8 k, __m128h a);
VCVTTPH2UQQ __m512i _mm512_cvttph_epu64 (__m128h a);
VCVTTPH2UQQ __m512i _mm512_mask_cvttph_epu64 (__m512i src, __mmask8 k, __m128h a);
VCVTTPH2UQQ __m512i _mm512_maskz_cvttph_epu64 (__mmask8 k, __m128h a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCVTTPH2UW—Convert Packed FP16 Values to Unsigned Word Integers

Instruction Operand Encoding

Description

This instruction converts packed FP16 values in the source operand to unsigned word integers in the destination 
operand.
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be 
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, 
the integer indefinite value is returned.
The destination elements are updated according to the writemask.

Operation

VCVTTPH2UW dest, src
VL = 128, 256 or 512
KL := VL / 16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.fp16[0]

ELSE
tsrc := SRC.fp16[j]

DEST.word[j] := Convert_fp16_to_unsigned_integer16_truncate(tsrc)
ELSE IF *zeroing*:

DEST.word[j] := 0
// else dest.word[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.MAP5.W0 7C /r
VCVTTPH2UW xmm1{k1}{z}, 
xmm2/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert eight packed FP16 values in 
xmm2/m128/m16bcst to eight unsigned word 
integers, and store the result in xmm1 using 
truncation subject to writemask k1.

EVEX.256.NP.MAP5.W0 7C /r
VCVTTPH2UW ymm1{k1}{z}, 
ymm2/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert sixteen packed FP16 values in 
ymm2/m256/m16bcst to sixteen unsigned word 
integers, and store the result in ymm1 using 
truncation subject to writemask k1.

EVEX.512.NP.MAP5.W0 7C /r
VCVTTPH2UW zmm1{k1}{z}, 
zmm2/m512/m16bcst {sae}

A V/V AVX512-FP16
OR AVX10.11

Convert thirty-two packed FP16 values in 
zmm2/m512/m16bcst to thirty-two unsigned 
word integers, and store the result in zmm1 
using truncation subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPH2UW __m512i _mm512_cvtt_roundph_epu16 (__m512h a, int sae);
VCVTTPH2UW __m512i _mm512_mask_cvtt_roundph_epu16 (__m512i src, __mmask32 k, __m512h a, int sae);
VCVTTPH2UW __m512i _mm512_maskz_cvtt_roundph_epu16 (__mmask32 k, __m512h a, int sae);
VCVTTPH2UW __m128i _mm_cvttph_epu16 (__m128h a);
VCVTTPH2UW __m128i _mm_mask_cvttph_epu16 (__m128i src, __mmask8 k, __m128h a);
VCVTTPH2UW __m128i _mm_maskz_cvttph_epu16 (__mmask8 k, __m128h a);
VCVTTPH2UW __m256i _mm256_cvttph_epu16 (__m256h a);
VCVTTPH2UW __m256i _mm256_mask_cvttph_epu16 (__m256i src, __mmask16 k, __m256h a);
VCVTTPH2UW __m256i _mm256_maskz_cvttph_epu16 (__mmask16 k, __m256h a);
VCVTTPH2UW __m512i _mm512_cvttph_epu16 (__m512h a);
VCVTTPH2UW __m512i _mm512_mask_cvttph_epu16 (__m512i src, __mmask32 k, __m512h a);
VCVTTPH2UW __m512i _mm512_maskz_cvttph_epu16 (__mmask32 k, __m512h a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCVTTPH2W—Convert Packed FP16 Values to Signed Word Integers

Instruction Operand Encoding

Description

This instruction converts packed FP16 values in the source operand to signed word integers in the destination 
operand.
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be 
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, 
the integer indefinite value is returned.
The destination elements are updated according to the writemask.

Operation

VCVTTPH2W dest, src
VL = 128, 256 or 512
KL := VL / 16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.fp16[0]

ELSE
tsrc := SRC.fp16[j]

DEST.word[j] := Convert_fp16_to_integer16_truncate(tsrc)
ELSE IF *zeroing*:

DEST.word[j] := 0
// else dest.word[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.MAP5.W0 7C /r
VCVTTPH2W xmm1{k1}{z}, 
xmm2/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert eight packed FP16 values in 
xmm2/m128/m16bcst to eight signed word 
integers, and store the result in xmm1 using 
truncation subject to writemask k1.

EVEX.256.66.MAP5.W0 7C /r
VCVTTPH2W ymm1{k1}{z}, 
ymm2/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert sixteen packed FP16 values in 
ymm2/m256/m16bcst to sixteen signed word 
integers, and store the result in ymm1 using 
truncation subject to writemask k1.

EVEX.512.66.MAP5.W0 7C /r
VCVTTPH2W zmm1{k1}{z}, 
zmm2/m512/m16bcst {sae}

A V/V AVX512-FP16
OR AVX10.11

Convert thirty-two packed FP16 values in 
zmm2/m512/m16bcst to thirty-two signed word 
integers, and store the result in zmm1 using 
truncation subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPH2W __m512i _mm512_cvtt_roundph_epi16 (__m512h a, int sae);
VCVTTPH2W __m512i _mm512_mask_cvtt_roundph_epi16 (__m512i src, __mmask32 k, __m512h a, int sae);
VCVTTPH2W __m512i _mm512_maskz_cvtt_roundph_epi16 (__mmask32 k, __m512h a, int sae);
VCVTTPH2W __m128i _mm_cvttph_epi16 (__m128h a);
VCVTTPH2W __m128i _mm_mask_cvttph_epi16 (__m128i src, __mmask8 k, __m128h a);
VCVTTPH2W __m128i _mm_maskz_cvttph_epi16 (__mmask8 k, __m128h a);
VCVTTPH2W __m256i _mm256_cvttph_epi16 (__m256h a);
VCVTTPH2W __m256i _mm256_mask_cvttph_epi16 (__m256i src, __mmask16 k, __m256h a);
VCVTTPH2W __m256i _mm256_maskz_cvttph_epi16 (__mmask16 k, __m256h a);
VCVTTPH2W __m512i _mm512_cvttph_epi16 (__m512h a);
VCVTTPH2W __m512i _mm512_mask_cvttph_epi16 (__m512i src, __mmask32 k, __m512h a);
VCVTTPH2W __m512i _mm512_maskz_cvttph_epi16 (__mmask32 k, __m512h a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCVTTPS2QQ—Convert With Truncation Packed Single Precision Floating-Point Values to 
Packed Signed Quadword Integer Values

Instruction Operand Encoding

Description

Converts with truncation packed single precision floating-point values in the source operand to eight signed quad-
word integers in the destination operand.
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be 
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, 
the indefinite integer value (2w-1, where w represents the number of bits in the destination format) is returned.
EVEX encoded versions: The source operand is a YMM/XMM/XMM (low 64 bits) register or a 256/128/64-bit 
memory location. The destination operation is a vector register conditionally updated with writemask k1. 
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VCVTTPS2QQ (EVEX Encoded Versions) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] :=
Convert_Single_Precision_To_QuadInteger_Truncate(SRC[k+31:k])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F.W0 7A /r
VCVTTPS2QQ xmm1 {k1}{z}, 
xmm2/m64/m32bcst

A V/V (AVX512VL AND 
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed single precision floating-point values 
from xmm2/m64/m32bcst to two packed signed 
quadword values in xmm1 using truncation subject to 
writemask k1.

EVEX.256.66.0F.W0 7A /r
VCVTTPS2QQ ymm1 {k1}{z}, 
xmm2/m128/m32bcst

A V/V (AVX512VL AND 
AVX512DQ) OR 
AVX10.11

Convert four packed single precision floating-point values 
from xmm2/m128/m32bcst to four packed signed 
quadword values in ymm1 using truncation subject to 
writemask k1.

EVEX.512.66.0F.W0 7A /r
VCVTTPS2QQ zmm1 {k1}{z}, 
ymm2/m256/m32bcst {sae}

A V/V AVX512DQ 
OR AVX10.11

Convert eight packed single precision floating-point values 
from ymm2/m256/m32bcst to eight packed signed 
quadword values in zmm1 using truncation subject to 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Half ModRM:reg (w) ModRM:r/m (r) N/A N/A
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FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTTPS2QQ (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
k := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b == 1) 

THEN
DEST[i+63:i] :=

Convert_Single_Precision_To_QuadInteger_Truncate(SRC[31:0])
ELSE 

DEST[i+63:i] :=
Convert_Single_Precision_To_QuadInteger_Truncate(SRC[k+31:k])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPS2QQ __m512i _mm512_cvttps_epi64( __m256 a);
VCVTTPS2QQ __m512i _mm512_mask_cvttps_epi64( __m512i s, __mmask16 k, __m256 a);
VCVTTPS2QQ __m512i _mm512_maskz_cvttps_epi64( __mmask16 k, __m256 a);
VCVTTPS2QQ __m512i _mm512_cvtt_roundps_epi64( __m256 a, int sae);
VCVTTPS2QQ __m512i _mm512_mask_cvtt_roundps_epi64( __m512i s, __mmask16 k, __m256 a, int sae);
VCVTTPS2QQ __m512i _mm512_maskz_cvtt_roundps_epi64( __mmask16 k, __m256 a, int sae);
VCVTTPS2QQ __m256i _mm256_mask_cvttps_epi64( __m256i s, __mmask8 k, __m128 a);
VCVTTPS2QQ __m256i _mm256_maskz_cvttps_epi64( __mmask8 k, __m128 a);
VCVTTPS2QQ __m128i _mm_mask_cvttps_epi64( __m128i s, __mmask8 k, __m128 a);
VCVTTPS2QQ __m128i _mm_maskz_cvttps_epi64( __mmask8 k, __m128 a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VCVTTPS2UDQ—Convert With Truncation Packed Single Precision Floating-Point Values to 
Packed Unsigned Doubleword Integer Values

Instruction Operand Encoding

Description

Converts with truncation packed single precision floating-point values in the source operand to sixteen unsigned 
doubleword integers in the destination operand.
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be 
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, 
the integer value 2w – 1 is returned, where w represents the number of bits in the destination format.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location or 
a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a 
ZMM/YMM/XMM register conditionally updated with writemask k1. 
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VCVTTPS2UDQ (EVEX Encoded Versions) When SRC Operand is a Register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] :=
Convert_Single_Precision_Floating_Point_To_UInteger_Truncate(SRC[i+31:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.0F.W0 78 /r
VCVTTPS2UDQ xmm1 {k1}{z}, 
xmm2/m128/m32bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert four packed single precision floating-
point values from xmm2/m128/m32bcst to four 
packed unsigned doubleword values in xmm1 
using truncation subject to writemask k1.

EVEX.256.0F.W0 78 /r
VCVTTPS2UDQ ymm1 {k1}{z}, 
ymm2/m256/m32bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Convert eight packed single precision floating-
point values from ymm2/m256/m32bcst to eight 
packed unsigned doubleword values in ymm1 
using truncation subject to writemask k1.

EVEX.512.0F.W0 78 /r
VCVTTPS2UDQ zmm1 {k1}{z}, 
zmm2/m512/m32bcst {sae}

A V/V AVX512F 
OR AVX10.11

Convert sixteen packed single precision floating-
point values from zmm2/m512/m32bcst to 
sixteen packed unsigned doubleword values in 
zmm1 using truncation subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTTPS2UDQ (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] :=

Convert_Single_Precision_Floating_Point_To_UInteger_Truncate(SRC[31:0])
ELSE 

DEST[i+31:i] :=
Convert_Single_Precision_Floating_Point_To_UInteger_Truncate(SRC[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPS2UDQ __m512i _mm512_cvttps_epu32( __m512 a);
VCVTTPS2UDQ __m512i _mm512_mask_cvttps_epu32( __m512i s, __mmask16 k, __m512 a);
VCVTTPS2UDQ __m512i _mm512_maskz_cvttps_epu32( __mmask16 k, __m512 a);
VCVTTPS2UDQ __m512i _mm512_cvtt_roundps_epu32( __m512 a, int sae);
VCVTTPS2UDQ __m512i _mm512_mask_cvtt_roundps_epu32( __m512i s, __mmask16 k, __m512 a, int sae);
VCVTTPS2UDQ __m512i _mm512_maskz_cvtt_roundps_epu32( __mmask16 k, __m512 a, int sae);
VCVTTPS2UDQ __m256i _mm256_mask_cvttps_epu32( __m256i s, __mmask8 k, __m256 a);
VCVTTPS2UDQ __m256i _mm256_maskz_cvttps_epu32( __mmask8 k, __m256 a);
VCVTTPS2UDQ __m128i _mm_mask_cvttps_epu32( __m128i s, __mmask8 k, __m128 a);
VCVTTPS2UDQ __m128i _mm_maskz_cvttps_epu32( __mmask8 k, __m128 a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VCVTTPS2UQQ—Convert With Truncation Packed Single Precision Floating-Point Values to 
Packed Unsigned Quadword Integer Values

Instruction Operand Encoding

Description

Converts with truncation up to eight packed single precision floating-point values in the source operand to 
unsigned quadword integers in the destination operand.
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be 
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, 
the integer value 2w – 1 is returned, where w represents the number of bits in the destination format.
EVEX encoded versions: The source operand is a YMM/XMM/XMM (low 64 bits) register or a 256/128/64-bit 
memory location. The destination operation is a vector register conditionally updated with writemask k1. 
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VCVTTPS2UQQ (EVEX Encoded Versions) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] :=
Convert_Single_Precision_To_UQuadInteger_Truncate(SRC[k+31:k])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F.W0 78 /r
VCVTTPS2UQQ xmm1 {k1}{z}, 
xmm2/m64/m32bcst

A V/V (AVX512VL AND 
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed single precision floating-point 
values from xmm2/m64/m32bcst to two packed 
unsigned quadword values in xmm1 using truncation 
subject to writemask k1.

EVEX.256.66.0F.W0 78 /r
VCVTTPS2UQQ ymm1 {k1}{z}, 
xmm2/m128/m32bcst

A V/V (AVX512VL AND 
AVX512DQ) OR 
AVX10.11

Convert four packed single precision floating-point 
values from xmm2/m128/m32bcst to four packed 
unsigned quadword values in ymm1 using truncation 
subject to writemask k1.

EVEX.512.66.0F.W0 78 /r
VCVTTPS2UQQ zmm1 {k1}{z}, 
ymm2/m256/m32bcst {sae}

A V/V AVX512DQ 
OR AVX10.11

Convert eight packed single precision floating-point 
values from ymm2/m256/m32bcst to eight packed 
unsigned quadword values in zmm1 using truncation 
subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Half ModRM:reg (w) ModRM:r/m (r) N/A N/A
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FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTTPS2UQQ (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
k := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b == 1) 

THEN
DEST[i+63:i] :=

Convert_Single_Precision_To_UQuadInteger_Truncate(SRC[31:0])
ELSE 

DEST[i+63:i] :=
Convert_Single_Precision_To_UQuadInteger_Truncate(SRC[k+31:k])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPS2UQQ _mm<size>[_mask[z]]_cvtt[_round]ps_epu64
VCVTTPS2UQQ __m512i _mm512_cvttps_epu64( __m256 a);
VCVTTPS2UQQ __m512i _mm512_mask_cvttps_epu64( __m512i s, __mmask16 k, __m256 a);
VCVTTPS2UQQ __m512i _mm512_maskz_cvttps_epu64( __mmask16 k, __m256 a);
VCVTTPS2UQQ __m512i _mm512_cvtt_roundps_epu64( __m256 a, int sae);
VCVTTPS2UQQ __m512i _mm512_mask_cvtt_roundps_epu64( __m512i s, __mmask16 k, __m256 a, int sae);
VCVTTPS2UQQ __m512i _mm512_maskz_cvtt_roundps_epu64( __mmask16 k, __m256 a, int sae);
VCVTTPS2UQQ __m256i _mm256_mask_cvttps_epu64( __m256i s, __mmask8 k, __m128 a);
VCVTTPS2UQQ __m256i _mm256_maskz_cvttps_epu64( __mmask8 k, __m128 a);
VCVTTPS2UQQ __m128i _mm_mask_cvttps_epu64( __m128i s, __mmask8 k, __m128 a);
VCVTTPS2UQQ __m128i _mm_maskz_cvttps_epu64( __mmask8 k, __m128 a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VCVTTSD2USI—Convert With Truncation Scalar Double Precision Floating-Point Value to 
Unsigned Integer

Instruction Operand Encoding

Description

Converts with truncation a double precision floating-point value in the source operand (the second operand) to an 
unsigned doubleword integer (or unsigned quadword integer if operand size is 64 bits) in the destination operand 
(the first operand). The source operand can be an XMM register or a 64-bit memory location. The destination 
operand is a general-purpose register. When the source operand is an XMM register, the double precision floating-
point value is contained in the low quadword of the register.
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be 
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, 
the integer value 2w – 1 is returned, where w represents the number of bits in the destination format.
EVEX.W1 version: promotes the instruction to produce 64-bit data in 64-bit mode.

Operation

VCVTTSD2USI (EVEX Encoded Version)
IF 64-Bit Mode and OperandSize = 64

THEN DEST[63:0] := Convert_Double_Precision_Floating_Point_To_UInteger_Truncate(SRC[63:0]);
ELSE DEST[31:0] := Convert_Double_Precision_Floating_Point_To_UInteger_Truncate(SRC[63:0]);

FI

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTSD2USI unsigned int _mm_cvttsd_u32(__m128d);
VCVTTSD2USI unsigned int _mm_cvtt_roundsd_u32(__m128d, int sae);
VCVTTSD2USI unsigned __int64 _mm_cvttsd_u64(__m128d);
VCVTTSD2USI unsigned __int64 _mm_cvtt_roundsd_u64(__m128d, int sae);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.F2.0F.W0 78 /r
VCVTTSD2USI r32, xmm1/m64{sae}

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert one double precision floating-point value 
from xmm1/m64 to one unsigned doubleword 
integer r32 using truncation.

EVEX.LLIG.F2.0F.W1 78 /r
VCVTTSD2USI r64, xmm1/m64{sae}

A V/N.E.2

2. For this specific instruction, EVEX.W in non-64 bit is ignored; the instruction behaves as if the W0 version is used.

AVX512F
OR AVX10.11

Convert one double precision floating-point value 
from xmm1/m64 to one unsigned quadword 
integer zero-extended into r64 using truncation.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Fixed ModRM:reg (w) ModRM:r/m (r) N/A N/A
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VCVTTSH2SI—Convert with Truncation Low FP16 Value to a Signed Integer

Instruction Operand Encoding

Description

This instruction converts the low FP16 element in the source operand to a signed integer in the destination general 
purpose register.
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be 
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, 
the integer indefinite value is returned.

Operation

VCVTTSH2SI dest, src
IF 64-mode and OperandSize == 64:

DEST.qword := Convert_fp16_to_integer64_truncate(SRC.fp16[0])
ELSE:

DEST.dword := Convert_fp16_to_integer32_truncate(SRC.fp16[0]) 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTSH2SI int _mm_cvtt_roundsh_i32 (__m128h a, int sae);
VCVTTSH2SI __int64 _mm_cvtt_roundsh_i64 (__m128h a, int sae);
VCVTTSH2SI int _mm_cvttsh_i32 (__m128h a);
VCVTTSH2SI __int64 _mm_cvttsh_i64 (__m128h a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F3.MAP5.W0 2C /r
VCVTTSH2SI r32, xmm1/m16 {sae}

A V/V1

NOTES:
1. Outside of 64b mode, the EVEX.W field is ignored. The instruction behaves as if W=0 was used.

AVX512-FP16 
OR AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert FP16 value in the low element of 
xmm1/m16 to a signed integer and store the 
result in r32 using truncation.

EVEX.LLIG.F3.MAP5.W1 2C /r
VCVTTSH2SI r64, xmm1/m16 {sae}

A V/N.E. AVX512-FP16 
OR AVX10.12

Convert FP16 value in the low element of 
xmm1/m16 to a signed integer and store the 
result in r64 using truncation.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A
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VCVTTSH2USI—Convert with Truncation Low FP16 Value to an Unsigned Integer

Instruction Operand Encoding

Description

This instruction converts the low FP16 element in the source operand to an unsigned integer in the destination 
general purpose register.
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be 
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, 
the integer indefinite value is returned.

Operation

VCVTTSH2USI dest, src 
IF 64-mode and OperandSize == 64:

DEST.qword := Convert_fp16_to_unsigned_integer64_truncate(SRC.fp16[0])
ELSE:

DEST.dword := Convert_fp16_to_unsigned_integer32_truncate(SRC.fp16[0]) 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTSH2USI unsigned int _mm_cvtt_roundsh_u32 (__m128h a, int sae);
VCVTTSH2USI unsigned __int64 _mm_cvtt_roundsh_u64 (__m128h a, int sae);
VCVTTSH2USI unsigned int _mm_cvttsh_u32 (__m128h a);
VCVTTSH2USI unsigned __int64 _mm_cvttsh_u64 (__m128h a);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F3.MAP5.W0 78 /r
VCVTTSH2USI r32, xmm1/m16 {sae}

A V/V1

NOTES:
1. Outside of 64b mode, the EVEX.W field is ignored. The instruction behaves as if W=0 was used.

AVX512-FP16 
OR AVX10.12

2. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert FP16 value in the low element of 
xmm1/m16 to an unsigned integer and store the 
result in r32 using truncation.

EVEX.LLIG.F3.MAP5.W1 78 /r
VCVTTSH2USI r64, xmm1/m16 {sae}

A V/N.E. AVX512-FP16 
OR AVX10.12

Convert FP16 value in the low element of 
xmm1/m16 to an unsigned integer and store the 
result in r64 using truncation.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A



VCVTTSS2USI—Convert With Truncation Scalar Single Precision Floating-Point Value to 
Unsigned Integer

Instruction Operand Encoding

Description

Converts with truncation a single precision floating-point value in the source operand (the second operand) to an 
unsigned doubleword integer (or unsigned quadword integer if operand size is 64 bits) in the destination operand 
(the first operand). The source operand can be an XMM register or a memory location. The destination operand is 
a general-purpose register. When the source operand is an XMM register, the single precision floating-point value 
is contained in the low doubleword of the register.
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be 
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, 
the integer value 2w – 1 is returned, where w represents the number of bits in the destination format.
EVEX.W1 version: promotes the instruction to produce 64-bit data in 64-bit mode.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

VCVTTSS2USI (EVEX Encoded Version)
IF 64-bit Mode and OperandSize = 64
THEN

DEST[63:0] := Convert_Single_Precision_Floating_Point_To_UInteger_Truncate(SRC[31:0]);
ELSE

DEST[31:0] := Convert_Single_Precision_Floating_Point_To_UInteger_Truncate(SRC[31:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTSS2USI unsigned int _mm_cvttss_u32( __m128 a);
VCVTTSS2USI unsigned int _mm_cvtt_roundss_u32( __m128 a, int sae);
VCVTTSS2USI unsigned __int64 _mm_cvttss_u64( __m128 a);
VCVTTSS2USI unsigned __int64 _mm_cvtt_roundss_u64( __m128 a, int sae);

SIMD Floating-Point Exceptions

Invalid, Precision.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F3.0F.W0 78 /r
VCVTTSS2USI r32, xmm1/m32{sae}

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert one single precision floating-point value 
from xmm1/m32 to one unsigned doubleword 
integer in r32 using truncation.

EVEX.LLIG.F3.0F.W1 78 /r
VCVTTSS2USI r64, xmm1/m32{sae}

A V/N.E.2

2. For this specific instruction, EVEX.W in non-64 bit is ignored; the instruction behaves as if the W0 version is used.

AVX512F
OR AVX10.11

Convert one single precision floating-point value 
from xmm1/m32 to one unsigned quadword 
integer in r64 using truncation.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Fixed ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Other Exceptions

EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”
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VCVTUDQ2PD—Convert Packed Unsigned Doubleword Integers to Packed Double Precision 
Floating-Point Values

Instruction Operand Encoding

Description

Converts packed unsigned doubleword integers in the source operand (second operand) to packed double precision 
floating-point values in the destination operand (first operand). 
The source operand is a YMM/XMM/XMM (low 64 bits) register, a 256/128/64-bit memory location or a 
256/128/64-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM 
register conditionally updated with writemask k1. 
Attempt to encode this instruction with EVEX embedded rounding is ignored.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

VCVTUDQ2PD (EVEX Encoded Versions) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] :=
Convert_UInteger_To_Double_Precision_Floating_Point(SRC[k+31:k])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F3.0F.W0 7A /r
VCVTUDQ2PD xmm1 {k1}{z}, 
xmm2/m64/m32bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed unsigned doubleword integers 
from ymm2/m64/m32bcst to packed double 
precision floating-point values in zmm1 with 
writemask k1.

EVEX.256.F3.0F.W0 7A /r
VCVTUDQ2PD ymm1 {k1}{z}, 
xmm2/m128/m32bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Convert four packed unsigned doubleword integers 
from xmm2/m128/m32bcst to packed double 
precision floating-point values in zmm1 with 
writemask k1.

EVEX.512.F3.0F.W0 7A /r
VCVTUDQ2PD zmm1 {k1}{z}, 
ymm2/m256/m32bcst

A V/V AVX512F 
OR AVX10.11

Convert eight packed unsigned doubleword integers 
from ymm2/m256/m32bcst to eight packed double 
precision floating-point values in zmm1 with 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Half ModRM:reg (w) ModRM:r/m (r) N/A N/A
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FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTUDQ2PD (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
k := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] :=

Convert_UInteger_To_Double_Precision_Floating_Point(SRC[31:0])
ELSE 

DEST[i+63:i] :=
Convert_UInteger_To_Double_Precision_Floating_Point(SRC[k+31:k])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTUDQ2PD __m512d _mm512_cvtepu32_pd( __m256i a);
VCVTUDQ2PD __m512d _mm512_mask_cvtepu32_pd( __m512d s, __mmask8 k, __m256i a);
VCVTUDQ2PD __m512d _mm512_maskz_cvtepu32_pd( __mmask8 k, __m256i a);
VCVTUDQ2PD __m256d _mm256_cvtepu32_pd( __m128i a);
VCVTUDQ2PD __m256d _mm256_mask_cvtepu32_pd( __m256d s, __mmask8 k, __m128i a);
VCVTUDQ2PD __m256d _mm256_maskz_cvtepu32_pd( __mmask8 k, __m128i a);
VCVTUDQ2PD __m128d _mm_cvtepu32_pd( __m128i a);
VCVTUDQ2PD __m128d _mm_mask_cvtepu32_pd( __m128d s, __mmask8 k, __m128i a);
VCVTUDQ2PD __m128d _mm_maskz_cvtepu32_pd( __mmask8 k, __m128i a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instructions, see Table 2-53, “Type E5 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
VCVTUDQ2PD—Convert Packed Unsigned Doubleword Integers to Packed Double Precision Floating-Point Values Vol. 2C 5-139



VCVTUDQ2PH—Convert Packed Unsigned Doubleword Integers to Packed FP16 Values

Instruction Operand Encoding

Description

This instruction converts packed unsigned doubleword integers in the source operand to packed FP16 values in the 
destination operand. The destination elements are updated according to the writemask.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
If the result of the convert operation is overflow and MXCSR.OM=0 then a SIMD exception will be raised with OE=1, 
PE=1.

Operation

VCVTUDQ2PH dest, src
VL = 128, 256 or 512
KL := VL / 32

IF *SRC is a register* and (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE:
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.dword[0]

ELSE
tsrc := SRC.dword[j]

DEST.fp16[j] := Convert_unsigned_integer32_to_fp16(tsrc)
ELSE IF *zeroing*:

DEST.fp16[j] := 0

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F2.MAP5.W0 7A /r
VCVTUDQ2PH xmm1{k1}{z}, 
xmm2/m128/m32bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert four packed unsigned doubleword 
integers from xmm2/m128/m32bcst to packed 
FP16 values, and store the result in xmm1 
subject to writemask k1.

EVEX.256.F2.MAP5.W0 7A /r
VCVTUDQ2PH xmm1{k1}{z}, 
ymm2/m256/m32bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert eight packed unsigned doubleword 
integers from ymm2/m256/m32bcst to packed 
FP16 values, and store the result in xmm1 
subject to writemask k1.

EVEX.512.F2.MAP5.W0 7A /r
VCVTUDQ2PH ymm1{k1}{z}, 
zmm2/m512/m32bcst {er}

A V/V AVX512-FP16 
OR AVX10.11

Convert sixteen packed unsigned doubleword 
integers from zmm2/m512/m32bcst to packed 
FP16 values, and store the result in ymm1 
subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL/2] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTUDQ2PH __m256h _mm512_cvt_roundepu32_ph (__m512i a, int rounding);
VCVTUDQ2PH __m256h _mm512_mask_cvt_roundepu32_ph (__m256h src, __mmask16 k, __m512i a, int rounding);
VCVTUDQ2PH __m256h _mm512_maskz_cvt_roundepu32_ph (__mmask16 k, __m512i a, int rounding);
VCVTUDQ2PH __m128h _mm_cvtepu32_ph (__m128i a);
VCVTUDQ2PH __m128h _mm_mask_cvtepu32_ph (__m128h src, __mmask8 k, __m128i a);
VCVTUDQ2PH __m128h _mm_maskz_cvtepu32_ph (__mmask8 k, __m128i a);
VCVTUDQ2PH __m128h _mm256_cvtepu32_ph (__m256i a);
VCVTUDQ2PH __m128h _mm256_mask_cvtepu32_ph (__m128h src, __mmask8 k, __m256i a);
VCVTUDQ2PH __m128h _mm256_maskz_cvtepu32_ph (__mmask8 k, __m256i a);
VCVTUDQ2PH __m256h _mm512_cvtepu32_ph (__m512i a);
VCVTUDQ2PH __m256h _mm512_mask_cvtepu32_ph (__m256h src, __mmask16 k, __m512i a);
VCVTUDQ2PH __m256h _mm512_maskz_cvtepu32_ph (__mmask16 k, __m512i a);

SIMD Floating-Point Exceptions

Overflow, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
VCVTUDQ2PH—Convert Packed Unsigned Doubleword Integers to Packed FP16 Values Vol. 2C 5-141



VCVTUDQ2PS—Convert Packed Unsigned Doubleword Integers to Packed Single Precision 
Floating-Point Values

Instruction Operand Encoding

Description

Converts packed unsigned doubleword integers in the source operand (second operand) to single precision 
floating-point values in the destination operand (first operand). 
The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally 
updated with writemask k1. 
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

VCVTUDQ2PS (EVEX Encoded Version) When SRC Operand is a Register
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] :=
Convert_UInteger_To_Single_Precision_Floating_Point(SRC[i+31:i])

ELSE 
IF *merging-masking* ; merging-masking

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F2.0F.W0 7A /r
VCVTUDQ2PS xmm1 {k1}{z}, 
xmm2/m128/m32bcst 

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert four packed unsigned doubleword integers 
from xmm2/m128/m32bcst to packed single 
precision floating-point values in xmm1 with 
writemask k1.

EVEX.256.F2.0F.W0 7A /r
VCVTUDQ2PS ymm1 {k1}{z}, 
ymm2/m256/m32bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Convert eight packed unsigned doubleword integers 
from ymm2/m256/m32bcst to packed single 
precision floating-point values in zmm1 with 
writemask k1.

EVEX.512.F2.0F.W0 7A /r
VCVTUDQ2PS zmm1 {k1}{z}, 
zmm2/m512/m32bcst {er} 

A V/V AVX512F 
OR AVX10.11

Convert sixteen packed unsigned doubleword 
integers from zmm2/m512/m32bcst to sixteen 
packed single precision floating-point values in 
zmm1 with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTUDQ2PS (EVEX Encoded Version) When SRC Operand is a Memory Source
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] :=

Convert_UInteger_To_Single_Precision_Floating_Point(SRC[31:0])
ELSE 

DEST[i+31:i] :=
Convert_UInteger_To_Single_Precision_Floating_Point(SRC[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTUDQ2PS __m512 _mm512_cvtepu32_ps( __m512i a);
VCVTUDQ2PS __m512 _mm512_mask_cvtepu32_ps( __m512 s, __mmask16 k, __m512i a);
VCVTUDQ2PS __m512 _mm512_maskz_cvtepu32_ps( __mmask16 k, __m512i a);
VCVTUDQ2PS __m512 _mm512_cvt_roundepu32_ps( __m512i a, int r);
VCVTUDQ2PS __m512 _mm512_mask_cvt_roundepu32_ps( __m512 s, __mmask16 k, __m512i a, int r);
VCVTUDQ2PS __m512 _mm512_maskz_cvt_roundepu32_ps( __mmask16 k, __m512i a, int r);
VCVTUDQ2PS __m256 _mm256_cvtepu32_ps( __m256i a);
VCVTUDQ2PS __m256 _mm256_mask_cvtepu32_ps( __m256 s, __mmask8 k, __m256i a);
VCVTUDQ2PS __m256 _mm256_maskz_cvtepu32_ps( __mmask8 k, __m256i a);
VCVTUDQ2PS __m128 _mm_cvtepu32_ps( __m128i a);
VCVTUDQ2PS __m128 _mm_mask_cvtepu32_ps( __m128 s, __mmask8 k, __m128i a);
VCVTUDQ2PS __m128 _mm_maskz_cvtepu32_ps( __mmask8 k, __m128i a);

SIMD Floating-Point Exceptions

Precision.
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Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VCVTUQQ2PD—Convert Packed Unsigned Quadword Integers to Packed Double Precision 
Floating-Point Values

Instruction Operand Encoding

Description

Converts packed unsigned quadword integers in the source operand (second operand) to packed double precision 
floating-point values in the destination operand (first operand). 
The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally 
updated with writemask k1. 
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

VCVTUQQ2PD (EVEX Encoded Version) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL == 512) AND (EVEX.b == 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] :=
Convert_UQuadInteger_To_Double_Precision_Floating_Point(SRC[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F3.0F.W1 7A /r
VCVTUQQ2PD xmm1 {k1}{z}, 
xmm2/m128/m64bcst 

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed unsigned quadword integers from 
xmm2/m128/m64bcst to two packed double precision 
floating-point values in xmm1 with writemask k1.

EVEX.256.F3.0F.W1 7A /r
VCVTUQQ2PD ymm1 {k1}{z}, 
ymm2/m256/m64bcst

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Convert four packed unsigned quadword integers from 
ymm2/m256/m64bcst to packed double precision 
floating-point values in ymm1 with writemask k1.

EVEX.512.F3.0F.W1 7A /r
VCVTUQQ2PD zmm1 {k1}{z}, 
zmm2/m512/m64bcst {er} 

A V/V AVX512DQ 
OR AVX10.11

Convert eight packed unsigned quadword integers 
from zmm2/m512/m64bcst to eight packed double 
precision floating-point values in zmm1 with 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTUQQ2PD (EVEX Encoded Version) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b == 1) 

THEN
DEST[i+63:i] :=

Convert_UQuadInteger_To_Double_Precision_Floating_Point(SRC[63:0])
ELSE 

DEST[i+63:i] :=
Convert_UQuadInteger_To_Double_Precision_Floating_Point(SRC[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTUQQ2PD __m512d _mm512_cvtepu64_ps( __m512i a);
VCVTUQQ2PD __m512d _mm512_mask_cvtepu64_ps( __m512d s, __mmask8 k, __m512i a);
VCVTUQQ2PD __m512d _mm512_maskz_cvtepu64_ps( __mmask8 k, __m512i a);
VCVTUQQ2PD __m512d _mm512_cvt_roundepu64_ps( __m512i a, int r);
VCVTUQQ2PD __m512d _mm512_mask_cvt_roundepu64_ps( __m512d s, __mmask8 k, __m512i a, int r);
VCVTUQQ2PD __m512d _mm512_maskz_cvt_roundepu64_ps( __mmask8 k, __m512i a, int r);
VCVTUQQ2PD __m256d _mm256_cvtepu64_ps( __m256i a);
VCVTUQQ2PD __m256d _mm256_mask_cvtepu64_ps( __m256d s, __mmask8 k, __m256i a);
VCVTUQQ2PD __m256d _mm256_maskz_cvtepu64_ps( __mmask8 k, __m256i a);
VCVTUQQ2PD __m128d _mm_cvtepu64_ps( __m128i a);
VCVTUQQ2PD __m128d _mm_mask_cvtepu64_ps( __m128d s, __mmask8 k, __m128i a);
VCVTUQQ2PD __m128d _mm_maskz_cvtepu64_ps( __mmask8 k, __m128i a);

SIMD Floating-Point Exceptions

Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VCVTUQQ2PH—Convert Packed Unsigned Quadword Integers to Packed FP16 Values

Instruction Operand Encoding

Description

This instruction converts packed unsigned quadword integers in the source operand to packed FP16 values in the 
destination operand. The destination elements are updated according to the writemask.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
If the result of the convert operation is overflow and MXCSR.OM=0 then a SIMD exception will be raised with OE=1, 
PE=1.

Operation

VCVTUQQ2PH dest, src
VL = 128, 256 or 512
KL := VL / 64

IF *SRC is a register* and (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE:
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.qword[0]

ELSE
tsrc := SRC.qword[j]

DEST.fp16[j] := Convert_unsigned_integer64_to_fp16(tsrc)
ELSE IF *zeroing*:

DEST.fp16[j] := 0

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F2.MAP5.W1 7A /r
VCVTUQQ2PH xmm1{k1}{z}, 
xmm2/m128/m64bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed unsigned doubleword 
integers from xmm2/m128/m64bcst to packed 
FP16 values, and store the result in xmm1 
subject to writemask k1.

EVEX.256.F2.MAP5.W1 7A /r
VCVTUQQ2PH xmm1{k1}{z}, 
ymm2/m256/m64bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert four packed unsigned doubleword 
integers from ymm2/m256/m64bcst to packed 
FP16 values, and store the result in xmm1 
subject to writemask k1.

EVEX.512.F2.MAP5.W1 7A /r
VCVTUQQ2PH xmm1{k1}{z}, 
zmm2/m512/m64bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Convert eight packed unsigned doubleword 
integers from zmm2/m512/m64bcst to packed 
FP16 values, and store the result in xmm1 
subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL/4] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VCVTUQQ2PH __m128h _mm512_cvt_roundepu64_ph (__m512i a, int rounding);
VCVTUQQ2PH __m128h _mm512_mask_cvt_roundepu64_ph (__m128h src, __mmask8 k, __m512i a, int rounding);
VCVTUQQ2PH __m128h _mm512_maskz_cvt_roundepu64_ph (__mmask8 k, __m512i a, int rounding);
VCVTUQQ2PH __m128h _mm_cvtepu64_ph (__m128i a);
VCVTUQQ2PH __m128h _mm_mask_cvtepu64_ph (__m128h src, __mmask8 k, __m128i a);
VCVTUQQ2PH __m128h _mm_maskz_cvtepu64_ph (__mmask8 k, __m128i a);
VCVTUQQ2PH __m128h _mm256_cvtepu64_ph (__m256i a);
VCVTUQQ2PH __m128h _mm256_mask_cvtepu64_ph (__m128h src, __mmask8 k, __m256i a);
VCVTUQQ2PH __m128h _mm256_maskz_cvtepu64_ph (__mmask8 k, __m256i a);
VCVTUQQ2PH __m128h _mm512_cvtepu64_ph (__m512i a);
VCVTUQQ2PH __m128h _mm512_mask_cvtepu64_ph (__m128h src, __mmask8 k, __m512i a);
VCVTUQQ2PH __m128h _mm512_maskz_cvtepu64_ph (__mmask8 k, __m512i a);

SIMD Floating-Point Exceptions

Overflow, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCVTUQQ2PS—Convert Packed Unsigned Quadword Integers to Packed Single Precision 
Floating-Point Values

Instruction Operand Encoding

Description

Converts packed unsigned quadword integers in the source operand (second operand) to single precision floating-
point values in the destination operand (first operand). 
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location. 
The destination operand is a YMM/XMM/XMM (low 64 bits) register conditionally updated with writemask k1. 
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

VCVTUQQ2PS (EVEX Encoded Version) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;

FOR j := 0 TO KL-1
i := j * 32
k := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] :=
Convert_UQuadInteger_To_Single_Precision_Floating_Point(SRC[k+63:k])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F2.0F.W1 7A /r
VCVTUQQ2PS xmm1 {k1}{z}, 
xmm2/m128/m64bcst 

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert two packed unsigned quadword integers from 
xmm2/m128/m64bcst to packed single precision 
floating-point values in zmm1 with writemask k1.

EVEX.256.F2.0F.W1 7A /r
VCVTUQQ2PS xmm1 {k1}{z}, 
ymm2/m256/m64bcst

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Convert four packed unsigned quadword integers from 
ymm2/m256/m64bcst to packed single precision 
floating-point values in xmm1 with writemask k1.

EVEX.512.F2.0F.W1 7A /r
VCVTUQQ2PS ymm1 {k1}{z}, 
zmm2/m512/m64bcst {er}

A V/V AVX512DQ 
OR AVX10.11

Convert eight packed unsigned quadword integers from 
zmm2/m512/m64bcst to eight packed single precision 
floating-point values in zmm1 with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0

VCVTUQQ2PS (EVEX Encoded Version) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 32
k := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] :=

Convert_UQuadInteger_To_Single_Precision_Floating_Point(SRC[63:0])
ELSE 

DEST[i+31:i] :=
Convert_UQuadInteger_To_Single_Precision_Floating_Point(SRC[k+63:k])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTUQQ2PS __m256 _mm512_cvtepu64_ps( __m512i a);
VCVTUQQ2PS __m256 _mm512_mask_cvtepu64_ps( __m256 s, __mmask8 k, __m512i a);
VCVTUQQ2PS __m256 _mm512_maskz_cvtepu64_ps( __mmask8 k, __m512i a);
VCVTUQQ2PS __m256 _mm512_cvt_roundepu64_ps( __m512i a, int r);
VCVTUQQ2PS __m256 _mm512_mask_cvt_roundepu64_ps( __m256 s, __mmask8 k, __m512i a, int r);
VCVTUQQ2PS __m256 _mm512_maskz_cvt_roundepu64_ps( __mmask8 k, __m512i a, int r);
VCVTUQQ2PS __m128 _mm256_cvtepu64_ps( __m256i a);
VCVTUQQ2PS __m128 _mm256_mask_cvtepu64_ps( __m128 s, __mmask8 k, __m256i a);
VCVTUQQ2PS __m128 _mm256_maskz_cvtepu64_ps( __mmask8 k, __m256i a);
VCVTUQQ2PS __m128 _mm_cvtepu64_ps( __m128i a);
VCVTUQQ2PS __m128 _mm_mask_cvtepu64_ps( __m128 s, __mmask8 k, __m128i a);
VCVTUQQ2PS __m128 _mm_maskz_cvtepu64_ps( __mmask8 k, __m128i a);

SIMD Floating-Point Exceptions

Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VCVTUSI2SD—Convert Unsigned Integer to Scalar Double Precision Floating-Point Value

Instruction Operand Encoding

Description

Converts an unsigned doubleword integer (or unsigned quadword integer if operand size is 64 bits) in the second 
source operand to a double precision floating-point value in the destination operand. The result is stored in the low 
quadword of the destination operand. When conversion is inexact, the value returned is rounded according to the 
rounding control bits in the MXCSR register.
The second source operand can be a general-purpose register or a 32/64-bit memory location. The first source and 
destination operands are XMM registers. Bits (127:64) of the XMM register destination are copied from corre-
sponding bits in the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.
EVEX.W1 version: promotes the instruction to use 64-bit input value in 64-bit mode.
EVEX.W0 version: attempt to encode this instruction with EVEX embedded rounding is ignored.

Operation

VCVTUSI2SD (EVEX Encoded Version)
IF (SRC2 *is register*) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[63:0] := Convert_UInteger_To_Double_Precision_Floating_Point(SRC2[63:0]);
ELSE

DEST[63:0] := Convert_UInteger_To_Double_Precision_Floating_Point(SRC2[31:0]);
FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.F2.0F.W0 7B /r
VCVTUSI2SD xmm1, xmm2, r/m32

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert one unsigned doubleword integer from 
r/m32 to one double precision floating-point 
value in xmm1.

EVEX.LLIG.F2.0F.W1 7B /r
VCVTUSI2SD xmm1, xmm2, r/m64{er}

A V/N.E.2

2. For this specific instruction, EVEX.W in non-64 bit is ignored; the instruction behaves as if the W0 version is used.

AVX512F
OR AVX10.11

Convert one unsigned quadword integer from 
r/m64 to one double precision floating-point 
value in xmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTUSI2SD __m128d _mm_cvtu32_sd( __m128d s, unsigned a); 
VCVTUSI2SD __m128d _mm_cvtu64_sd( __m128d s, unsigned __int64 a);
VCVTUSI2SD __m128d _mm_cvt_roundu64_sd( __m128d s, unsigned __int64 a, int r);

SIMD Floating-Point Exceptions

Precision.

Other Exceptions

See Table 2-50, “Type E3NF Class Exception Conditions” if W1; otherwise, see Table 2-61, “Type E10NF Class 
Exception Conditions.”
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VCVTUSI2SH—Convert Unsigned Doubleword Integer to an FP16 Value

Instruction Operand Encoding

Description

This instruction converts an unsigned doubleword integer (or unsigned quadword integer if operand size is 64 bits) 
in the second source operand to a FP16 value in the destination operand. The result is stored in the low word of the 
destination operand. When conversion is inexact, the value returned is rounded according to the rounding control 
bits in the MXCSR register or embedded rounding controls.
The second source operand can be a general-purpose register or a 32/64-bit memory location. The first source and 
destination operands are XMM registers. Bits 127:16 of the XMM register destination are copied from corre-
sponding bits in the first source operand. Bits MAXVL-1:128 of the destination register are zeroed.
If the result of the convert operation is overflow and MXCSR.OM=0 then a SIMD exception will be raised with OE=1, 
PE=1.

Operation

VCVTUSI2SH dest, src1, src2
IF *SRC2 is a register* and (EVEX.b = 1):

SET_RM(EVEX.RC)
ELSE:

SET_RM(MXCSR.RC)

IF 64-mode and OperandSize == 64:
DEST.fp16[0] := Convert_unsigned_integer64_to_fp16(SRC2.qword)

ELSE:
DEST.fp16[0] := Convert_unsigned_integer32_to_fp16(SRC2.dword)

DEST[127:16] := SRC1[127:16]
DEST[MAXVL-1:128] := 0 

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F3.MAP5.W0 7B /r
VCVTUSI2SH xmm1, xmm2, r32/m32 
{er}

A V/V1

NOTES:
1. Outside of 64b mode, the EVEX.W field is ignored. The instruction behaves as if W=0 was used.

AVX512-FP16 Convert an unsigned doubleword integer from 
r32/m32 to an FP16 value, and store the result in 
xmm1. Bits 127:16 from xmm2 are copied to 
xmm1[127:16].

EVEX.LLIG.F3.MAP5.W1 7B /r
VCVTUSI2SH xmm1, xmm2, r64/m64 
{er}

A V/N.E. AVX512-FP16 Convert an unsigned quadword integer from r64/
m64 to an FP16 value, and store the result in 
xmm1. Bits 127:16 from xmm2 are copied to 
xmm1[127:16].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTUSI2SH __m128h _mm_cvt_roundu32_sh (__m128h a, unsigned int b, int rounding);
VCVTUSI2SH __m128h _mm_cvt_roundu64_sh (__m128h a, unsigned __int64 b, int rounding);
VCVTUSI2SH __m128h _mm_cvtu32_sh (__m128h a, unsigned int b);
VCVTUSI2SH __m128h _mm_cvtu64_sh (__m128h a, unsigned __int64 b);

SIMD Floating-Point Exceptions

Overflow, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”
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VCVTUSI2SS—Convert Unsigned Integer to Scalar Single Precision Floating-Point Value

Instruction Operand Encoding

Description

Converts a unsigned doubleword integer (or unsigned quadword integer if operand size is 64 bits) in the source 
operand (second operand) to a single precision floating-point value in the destination operand (first operand). The 
source operand can be a general-purpose register or a memory location. The destination operand is an XMM 
register. The result is stored in the low doubleword of the destination operand. When a conversion is inexact, the 
value returned is rounded according to the rounding control bits in the MXCSR register or the embedded rounding 
control bits.
The second source operand can be a general-purpose register or a 32/64-bit memory location. The first source and 
destination operands are XMM registers. Bits (127:32) of the XMM register destination are copied from corre-
sponding bits in the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.
EVEX.W1 version: promotes the instruction to use 64-bit input value in 64-bit mode.

Operation

VCVTUSI2SS (EVEX Encoded Version)
IF (SRC2 *is register*) AND (EVEX.b = 1) 

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[31:0] := Convert_UInteger_To_Single_Precision_Floating_Point(SRC[63:0]);
ELSE

DEST[31:0] := Convert_UInteger_To_Single_Precision_Floating_Point(SRC[31:0]);
FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.F3.0F.W0 7B /r
VCVTUSI2SS xmm1, xmm2, r/m32{er}

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert one signed doubleword integer from r/m32 
to one single precision floating-point value in 
xmm1.

EVEX.LLIG.F3.0F.W1 7B /r
VCVTUSI2SS xmm1, xmm2, r/m64{er}

A V/N.E.2

2. For this specific instruction, EVEX.W in non-64 bit is ignored; the instruction behaves as if the W0 version is used.

AVX512F
OR AVX10.11

Convert one signed quadword integer from r/m64 
to one single precision floating-point value in 
xmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTUSI2SS __m128 _mm_cvtu32_ss( __m128 s, unsigned a);
VCVTUSI2SS __m128 _mm_cvt_roundu32_ss( __m128 s, unsigned a, int r);
VCVTUSI2SS __m128 _mm_cvtu64_ss( __m128 s, unsigned __int64 a);
VCVTUSI2SS __m128 _mm_cvt_roundu64_ss( __m128 s, unsigned __int64 a, int r);

SIMD Floating-Point Exceptions

Precision.

Other Exceptions

See Table 2-50, “Type E3NF Class Exception Conditions.”
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VCVTUW2PH—Convert Packed Unsigned Word Integers to FP16 Values

Instruction Operand Encoding

Description

This instruction converts packed unsigned word integers in the source operand to FP16 values in the destination 
operand. When conversion is inexact, the value returned is rounded according to the rounding control bits in the 
MXCSR register or embedded rounding controls.
The destination elements are updated according to the writemask.
If the result of the convert operation is overflow and MXCSR.OM=0 then a SIMD exception will be raised with OE=1, 
PE=1.

Operation

VCVTUW2PH dest, src
VL = 128, 256 or 512
KL := VL / 16

IF *SRC is a register* and (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE:
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.word[0]

ELSE
tsrc := SRC.word[j]

DEST.fp16[j] := Convert_unsignd_integer16_to_fp16(tsrc)
ELSE IF *zeroing*:

DEST.fp16[j] := 0
// else dest.fp16[j] remains unchanged

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F2.MAP5.W0 7D /r
VCVTUW2PH xmm1{k1}{z}, 
xmm2/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert eight packed unsigned word integers 
from xmm2/m128/m16bcst to FP16 values, and 
store the result in xmm1 subject to writemask k1.

EVEX.256.F2.MAP5.W0 7D /r
VCVTUW2PH ymm1{k1}{z}, 
ymm2/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert sixteen packed unsigned word integers 
from ymm2/m256/m16bcst to FP16 values, and 
store the result in ymm1 subject to writemask k1.

EVEX.512.F2.MAP5.W0 7D /r
VCVTUW2PH zmm1{k1}{z}, 
zmm2/m512/m16bcst {er}

A V/V AVX512-FP16 
OR AVX10.11

Convert thirty-two packed unsigned word 
integers from zmm2/m512/m16bcst to FP16 
values, and store the result in zmm1 subject to 
writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTUW2PH __m512h _mm512_cvt_roundepu16_ph (__m512i a, int rounding);
VCVTUW2PH __m512h _mm512_mask_cvt_roundepu16_ph (__m512h src, __mmask32 k, __m512i a, int rounding);
VCVTUW2PH __m512h _mm512_maskz_cvt_roundepu16_ph (__mmask32 k, __m512i a, int rounding);
VCVTUW2PH __m128h _mm_cvtepu16_ph (__m128i a);
VCVTUW2PH __m128h _mm_mask_cvtepu16_ph (__m128h src, __mmask8 k, __m128i a);
VCVTUW2PH __m128h _mm_maskz_cvtepu16_ph (__mmask8 k, __m128i a);
VCVTUW2PH __m256h _mm256_cvtepu16_ph (__m256i a);
VCVTUW2PH __m256h _mm256_mask_cvtepu16_ph (__m256h src, __mmask16 k, __m256i a);
VCVTUW2PH __m256h _mm256_maskz_cvtepu16_ph (__mmask16 k, __m256i a);
VCVTUW2PH __m512h _mm512_cvtepu16_ph (__m512i a);
VCVTUW2PH __m512h _mm512_mask_cvtepu16_ph (__m512h src, __mmask32 k, __m512i a);
VCVTUW2PH __m512h _mm512_maskz_cvtepu16_ph (__mmask32 k, __m512i a);

SIMD Floating-Point Exceptions

Overflow, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VCVTW2PH—Convert Packed Signed Word Integers to FP16 Values

Instruction Operand Encoding

Description

This instruction converts packed signed word integers in the source operand to FP16 values in the destination 
operand. When conversion is inexact, the value returned is rounded according to the rounding control bits in the 
MXCSR register or embedded rounding controls.
The destination elements are updated according to the writemask.

Operation

VCVTW2PH dest, src
VL = 128, 256 or 512
KL := VL / 16

IF *SRC is a register* and (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE:
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *SRC is memory* and EVEX.b = 1:
tsrc := SRC.word[0]

ELSE
tsrc := SRC.word[j]

DEST.fp16[j] := Convert_integer16_to_fp16(tsrc)
ELSE IF *zeroing*:

DEST.fp16[j] := 0
// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F3.MAP5.W0 7D /r
VCVTW2PH xmm1{k1}{z}, 
xmm2/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert eight packed signed word integers from 
xmm2/m128/m16bcst to FP16 values, and store 
the result in xmm1 subject to writemask k1.

EVEX.256.F3.MAP5.W0 7D /r
VCVTW2PH ymm1{k1}{z}, 
ymm2/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert sixteen packed signed word integers 
from ymm2/m256/m16bcst to FP16 values, and 
store the result in ymm1 subject to writemask k1.

EVEX.512.F3.MAP5.W0 7D /r
VCVTW2PH zmm1{k1}{z}, 
zmm2/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Convert thirty-two packed signed word integers 
from zmm2/m512/m16bcst to FP16 values, and 
store the result in zmm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VCVTW2PH __m512h _mm512_cvt_roundepi16_ph (__m512i a, int rounding);
VCVTW2PH __m512h _mm512_mask_cvt_roundepi16_ph (__m512h src, __mmask32 k, __m512i a, int rounding);
VCVTW2PH __m512h _mm512_maskz_cvt_roundepi16_ph (__mmask32 k, __m512i a, int rounding);
VCVTW2PH __m128h _mm_cvtepi16_ph (__m128i a);
VCVTW2PH __m128h _mm_mask_cvtepi16_ph (__m128h src, __mmask8 k, __m128i a);
VCVTW2PH __m128h _mm_maskz_cvtepi16_ph (__mmask8 k, __m128i a);
VCVTW2PH __m256h _mm256_cvtepi16_ph (__m256i a);
VCVTW2PH __m256h _mm256_mask_cvtepi16_ph (__m256h src, __mmask16 k, __m256i a);
VCVTW2PH __m256h _mm256_maskz_cvtepi16_ph (__mmask16 k, __m256i a);
VCVTW2PH __m512h _mm512_cvtepi16_ph (__m512i a);
VCVTW2PH __m512h _mm512_mask_cvtepi16_ph (__m512h src, __mmask32 k, __m512i a);
VCVTW2PH __m512h _mm512_maskz_cvtepi16_ph (__mmask32 k, __m512i a);

SIMD Floating-Point Exceptions

Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VDBPSADBW—Double Block Packed Sum-Absolute-Differences (SAD) on Unsigned Bytes

Instruction Operand Encoding

Description

Compute packed SAD (sum of absolute differences) word results of unsigned bytes from two 32-bit dword 
elements. Packed SAD word results are calculated in multiples of qword superblocks, producing 4 SAD word results 
in each 64-bit superblock of the destination register. 
Within each super block of packed word results, the SAD results from two 32-bit dword elements are calculated as 
follows:
• The lower two word results are calculated each from the SAD operation between a sliding dword element within 

a qword superblock from an intermediate vector with a stationary dword element in the corresponding qword 
superblock of the first source operand. The intermediate vector, see “Tmp1” in Figure 1-8, is constructed from 
the second source operand the imm8 byte as shuffle control to select dword elements within a 128-bit lane of 
the second source operand. The two sliding dword elements in a qword superblock of Tmp1 are located at byte 
offset 0 and 1 within the superblock, respectively. The stationary dword element in the qword superblock from 
the first source operand is located at byte offset 0.

• The next two word results are calculated each from the SAD operation between a sliding dword element within 
a qword superblock from the intermediate vector Tmp1 with a second stationary dword element in the corre-
sponding qword superblock of the first source operand. The two sliding dword elements in a qword superblock 
of Tmp1 are located at byte offset 2and 3 within the superblock, respectively. The stationary dword element in 
the qword superblock from the first source operand is located at byte offset 4.

• The intermediate vector is constructed in 128-bits lanes. Within each 128-bit lane, each dword element of the 
intermediate vector is selected by a two-bit field within the imm8 byte on the corresponding 128-bits of the 
second source operand. The imm8 byte serves as dword shuffle control within each 128-bit lanes of the inter-
mediate vector and the second source operand, similarly to PSHUFD.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W0 42 /r ib
VDBPSADBW xmm1 {k1}{z}, xmm2, 
xmm3/m128, imm8

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the processor a

run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector width an
as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compute packed SAD word results of unsigned bytes in 
dword block from xmm2 with unsigned bytes of dword 
blocks transformed from xmm3/m128 using the shuffle
controls in imm8. Results are written to xmm1 under the
writemask k1.

EVEX.256.66.0F3A.W0 42 /r ib
VDBPSADBW ymm1 {k1}{z}, ymm2, 
ymm3/m256, imm8

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Compute packed SAD word results of unsigned bytes in 
dword block from ymm2 with unsigned bytes of dword 
blocks transformed from ymm3/m256 using the shuffle
controls in imm8. Results are written to ymm1 under the
writemask k1.

EVEX.512.66.0F3A.W0 42 /r ib
VDBPSADBW zmm1 {k1}{z}, zmm2, 
zmm3/m512, imm8

A V/V AVX512BW 
OR AVX10.11

Compute packed SAD word results of unsigned bytes in 
dword block from zmm2 with unsigned bytes of dword 
blocks transformed from zmm3/m512 using the shuffle
controls in imm8. Results are written to zmm1 under the
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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The first source operand is a ZMM/YMM/XMM register. The second source operand is a ZMM/YMM/XMM register, or 
a 512/256/128-bit memory location. The destination operand is conditionally updated based on writemask k1 at 
16-bit word granularity.

Operation

VDBPSADBW (EVEX Encoded Versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
Selection of quadruplets:
FOR I = 0 to VL step 128

TMP1[I+31:I] := select (SRC2[I+127: I], imm8[1:0])
TMP1[I+63: I+32] := select (SRC2[I+127: I], imm8[3:2])
TMP1[I+95: I+64] := select (SRC2[I+127: I], imm8[5:4])
TMP1[I+127: I+96]  := select (SRC2[I+127: I], imm8[7:6])

END FOR

SAD of quadruplets:

Figure 1-8.  64-bit Super Block of SAD Operation in VDBPSADBW 
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FOR I =0 to VL step 64
TMP_DEST[I+15:I] := ABS(SRC1[I+7: I] - TMP1[I+7: I]) +

ABS(SRC1[I+15: I+8]- TMP1[I+15: I+8]) +
ABS(SRC1[I+23: I+16]- TMP1[I+23: I+16]) +
ABS(SRC1[I+31: I+24]- TMP1[I+31: I+24]) 

TMP_DEST[I+31: I+16] := ABS(SRC1[I+7: I] - TMP1[I+15: I+8]) +
ABS(SRC1[I+15: I+8]- TMP1[I+23: I+16]) +
ABS(SRC1[I+23: I+16]- TMP1[I+31: I+24]) +
ABS(SRC1[I+31: I+24]- TMP1[I+39: I+32])

TMP_DEST[I+47: I+32] := ABS(SRC1[I+39: I+32] - TMP1[I+23: I+16]) +
ABS(SRC1[I+47: I+40]- TMP1[I+31: I+24]) +
ABS(SRC1[I+55: I+48]- TMP1[I+39: I+32]) +
ABS(SRC1[I+63: I+56]- TMP1[I+47: I+40]) 

TMP_DEST[I+63: I+48] := ABS(SRC1[I+39: I+32] - TMP1[I+31: I+24]) +
ABS(SRC1[I+47: I+40] - TMP1[I+39: I+32]) +
ABS(SRC1[I+55: I+48] - TMP1[I+47: I+40]) +
ABS(SRC1[I+63: I+56] - TMP1[I+55: I+48])

ENDFOR

FOR j :=  0 TO KL-1
i :=  j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] :=  TMP_DEST[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] :=  0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] :=  0

Intel C/C++ Compiler Intrinsic Equivalent

VDBPSADBW __m512i _mm512_dbsad_epu8(__m512i a, __m512i b int imm8);
VDBPSADBW __m512i _mm512_mask_dbsad_epu8(__m512i s, __mmask32 m, __m512i a, __m512i b int imm8);
VDBPSADBW __m512i _mm512_maskz_dbsad_epu8(__mmask32 m, __m512i a, __m512i b int imm8);
VDBPSADBW __m256i _mm256_dbsad_epu8(__m256i a, __m256i b int imm8);
VDBPSADBW __m256i _mm256_mask_dbsad_epu8(__m256i s, __mmask16 m, __m256i a, __m256i b int imm8);
VDBPSADBW __m256i _mm256_maskz_dbsad_epu8(__mmask16 m, __m256i a, __m256i b int imm8);
VDBPSADBW __m128i _mm_dbsad_epu8(__m128i a, __m128i b int imm8);
VDBPSADBW __m128i _mm_mask_dbsad_epu8(__m128i s, __mmask8 m, __m128i a, __m128i b int imm8);
VDBPSADBW __m128i _mm_maskz_dbsad_epu8(__mmask8 m, __m128i a, __m128i b int imm8);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
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VDIVPH—Divide Packed FP16 Values

Instruction Operand Encoding

Description

This instruction divides packed FP16 values from the first source operand by the corresponding elements in the 
second source operand, storing the packed FP16 result in the destination operand. The destination elements are 
updated according to the writemask.

Operation

VDIVPH (EVEX Encoded Versions) When SRC2 Operand is a Register
VL = 128, 256 or 512
KL := VL/16

IF (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

DEST.fp16[j] := SRC1.fp16[j] / SRC2.fp16[j]
ELSE IF *zeroing*:

DEST.fp16[j] := 0
// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.MAP5.W0 5E /r
VDIVPH xmm1{k1}{z}, xmm2, 
xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Divide packed FP16 values in xmm2 by packed 
FP16 values in xmm3/m128/m16bcst, and store 
the result in xmm1 subject to writemask k1.

EVEX.256.NP.MAP5.W0 5E /r
VDIVPH ymm1{k1}{z}, ymm2, 
ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Divide packed FP16 values in ymm2 by packed 
FP16 values in ymm3/m256/m16bcst, and store 
the result in ymm1 subject to writemask k1.

EVEX.512.NP.MAP5.W0 5E /r
VDIVPH zmm1{k1}{z}, zmm2, 
zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Divide packed FP16 values in zmm2 by packed 
FP16 values in zmm3/m512/m16bcst, and store 
the result in zmm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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VDIVPH (EVEX Encoded Versions) When SRC2 Operand is a Memory Source
VL = 128, 256 or 512
KL := VL/16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF EVEX.b = 1:
DEST.fp16[j] := SRC1.fp16[j] / SRC2.fp16[0]

ELSE:
DEST.fp16[j] := SRC1.fp16[j] / SRC2.fp16[j]

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VDIVPH __m128h _mm_div_ph (__m128h a, __m128h b);
VDIVPH __m128h _mm_mask_div_ph (__m128h src, __mmask8 k, __m128h a, __m128h b);
VDIVPH __m128h _mm_maskz_div_ph (__mmask8 k, __m128h a, __m128h b);
VDIVPH __m256h _mm256_div_ph (__m256h a, __m256h b);
VDIVPH __m256h _mm256_mask_div_ph (__m256h src, __mmask16 k, __m256h a, __m256h b);
VDIVPH __m256h _mm256_maskz_div_ph (__mmask16 k, __m256h a, __m256h b);
VDIVPH __m512h _mm512_div_ph (__m512h a, __m512h b);
VDIVPH __m512h _mm512_mask_div_ph (__m512h src, __mmask32 k, __m512h a, __m512h b);
VDIVPH __m512h _mm512_maskz_div_ph (__mmask32 k, __m512h a, __m512h b);
VDIVPH __m512h _mm512_div_round_ph (__m512h a, __m512h b, int rounding);
VDIVPH __m512h _mm512_mask_div_round_ph (__m512h src, __mmask32 k, __m512h a, __m512h b, int rounding);
VDIVPH __m512h _mm512_maskz_div_round_ph (__mmask32 k, __m512h a, __m512h b, int rounding);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal, Zero.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VDIVSH—Divide Scalar FP16 Values

Instruction Operand Encoding

Description

This instruction divides the low FP16 value from the first source operand by the corresponding value in the second 
source operand, storing the FP16 result in the destination operand. Bits 127:16 of the destination operand are 
copied from the corresponding bits of the first source operand. Bits MAXVL-1:128 of the destination operand are 
zeroed. The low FP16 element of the destination is updated according to the writemask.

Operation

VDIVSH (EVEX Encoded Versions)
IF EVEX.b = 1 and SRC2 is a register:

SET_RM(EVEX.RC)
ELSE

SET_RM(MXCSR.RC)

IF k1[0] OR *no writemask*:
DEST.fp16[0] := SRC1.fp16[0] / SRC2.fp16[0]

ELSE IF *zeroing*:
DEST.fp16[0] := 0

// else dest.fp16[0] remains unchanged

DEST[127:16] := SRC1[127:16]
DEST[MAXVL-1:128] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VDIVSH __m128h _mm_div_round_sh (__m128h a, __m128h b, int rounding);
VDIVSH __m128h _mm_mask_div_round_sh (__m128h src, __mmask8 k, __m128h a, __m128h b, int rounding);
VDIVSH __m128h _mm_maskz_div_round_sh (__mmask8 k, __m128h a, __m128h b, int rounding);
VDIVSH __m128h _mm_div_sh (__m128h a, __m128h b);
VDIVSH __m128h _mm_mask_div_sh (__m128h src, __mmask8 k, __m128h a, __m128h b);
VDIVSH __m128h _mm_maskz_div_sh (__mmask8 k, __m128h a, __m128h b);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal, Zero.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F3.MAP5.W0 5E /r
VDIVSH xmm1{k1}{z}, xmm2, 
xmm3/m16 {er}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Divide low FP16 value in xmm2 by low FP16 
value in xmm3/m16, and store the result in xmm1 
subject to writemask k1. Bits 127:16 of xmm2 
are copied to xmm1[127:16].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VDPBF16PS—Dot Product of BF16 Pairs Accumulated Into Packed Single Precision

Instruction Operand Encoding

Description

This instruction performs a SIMD dot-product of two BF16 pairs and accumulates into a packed single precision 
register.
“Round to nearest even” rounding mode is used when doing each accumulation of the FMA. Output denormals are 
always flushed to zero and input denormals are always treated as zero. MXCSR is not consulted nor updated. 

NaN propagation priorities are described in Table 1-2. 

Operation

Define make_fp32(x):
// The x parameter is bfloat16. Pack it in to upper 16b of a dword. The bit pattern is a legal fp32 value. Return that bit pattern.
dword := 0
dword[31:16] := x
RETURN dword

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F3.0F38.W0 52 /r
VDPBF16PS xmm1{k1}{z}, xmm2, 
xmm3/m128/m32bcst

A V/V (AVX512_BF16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply BF16 pairs from xmm2 and 
xmm3/m128, and accumulate the resulting 
packed single precision results in xmm1 with 
writemask k1.

EVEX.256.F3.0F38.W0 52 /r
VDPBF16PS ymm1{k1}{z}, ymm2, 
ymm3/m256/m32bcst

A V/V (AVX512_BF16 
AND AVX512VL) 
OR AVX10.11

Multiply BF16 pairs from ymm2 and 
ymm3/m256, and accumulate the resulting 
packed single precision results in ymm1 with 
writemask k1.

EVEX.512.F3.0F38.W0 52 /r
VDPBF16PS zmm1{k1}{z}, zmm2, 
zmm3/m512/m32bcst

A V/V (AVX512_BF16 
AND AVX512F) 
OR AVX10.11

Multiply BF16 pairs from zmm2 and 
zmm3/m512, and accumulate the resulting 
packed single precision results in zmm1 with 
writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Table 1-2.  NaN Propagation Priorities

NaN Priority Description Comments

1 src1 low is NaN
Lower part has priority over upper part, i.e., it overrides the upper part.

2 src2 low is NaN

3 src1 high is NaN
Upper part may be overridden if lower has NaN.

4 src2 high is NaN

5 srcdest is NaN Dest is propagated if no NaN is encountered by src2.
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VDPBF16PS srcdest, src1, src2
VL = (128, 256, 512)
KL = VL/32

origdest := srcdest
FOR i := 0 to KL-1:

IF k1[ i ] or *no writemask*:
IF src2 is memory and evex.b == 1:

t := src2.dword[0]
ELSE:

t := src2.dword[ i ]

// FP32 FMA with daz in, ftz out and RNE rounding. MXCSR neither consulted nor updated.

srcdest.fp32[ i ] += make_fp32(src1.bfloat16[2*i+1]) * make_fp32(t.bfloat[1])
srcdest.fp32[ i ] += make_fp32(src1.bfloat16[2*i+0]) * make_fp32(t.bfloat[0])

ELSE IF *zeroing*:
srcdest.dword[ i ] := 0

ELSE: // merge masking, dest element unchanged
srcdest.dword[ i ] := origdest.dword[ i ]

srcdest[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VDPBF16PS __m128 _mm_dpbf16_ps(__m128, __m128bh, __m128bh);
VDPBF16PS __m128 _mm_mask_dpbf16_ps( __m128, __mmask8, __m128bh, __m128bh);
VDPBF16PS __m128 _mm_maskz_dpbf16_ps(__mmask8, __m128, __m128bh, __m128bh);
VDPBF16PS __m256 _mm256_dpbf16_ps(__m256, __m256bh, __m256bh);
VDPBF16PS __m256 _mm256_mask_dpbf16_ps(__m256, __mmask8, __m256bh, __m256bh);
VDPBF16PS __m256 _mm256_maskz_dpbf16_ps(__mmask8, __m256, __m256bh, __m256bh);
VDPBF16PS __m512 _mm512_dpbf16_ps(__m512, __m512bh, __m512bh);
VDPBF16PS __m512 _mm512_mask_dpbf16_ps(__m512, __mmask16, __m512bh, __m512bh);
VDPBF16PS __m512 _mm512_maskz_dpbf16_ps(__mmask16, __m512, __m512bh, __m512bh);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-51, “Type E4 Class Exception Conditions.”
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VERR/VERW—Verify a Segment for Reading or Writing

Instruction Operand Encoding

Description

Verifies whether the code or data segment specified with the source operand is readable (VERR) or writable 
(VERW) from the current privilege level (CPL). The source operand is a 16-bit register or a memory location that 
contains the segment selector for the segment to be verified. If the segment is accessible and readable (VERR) or 
writable (VERW), the ZF flag is set; otherwise, the ZF flag is cleared. Code segments are never verified as writable. 
This check cannot be performed on system segments. 

To set the ZF flag, the following conditions must be met:
• The segment selector is not NULL.
• The selector must denote a descriptor within the bounds of the descriptor table (GDT or LDT).
• The selector must denote the descriptor of a code or data segment (not that of a system segment or gate).
• For the VERR instruction, the segment must be readable.
• For the VERW instruction, the segment must be a writable data segment.
• If the segment is not a conforming code segment, the segment’s DPL must be greater than or equal to (have 

less or the same privilege as) both the CPL and the segment selector's RPL.

The validation performed is the same as is performed when a segment selector is loaded into the DS, ES, FS, or GS 
register, and the indicated access (read or write) is performed. The segment selector's value cannot result in a 
protection exception, enabling the software to anticipate possible segment access problems.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode. The operand size is fixed at 16 bits.

Operation

IF SRC(Offset) > (GDTR(Limit) or (LDTR(Limit))
THEN ZF := 0; FI;

Read segment descriptor;

IF SegmentDescriptor(DescriptorType) = 0 (* System segment *)
or (SegmentDescriptor(Type) ≠ conforming code segment) 
and (CPL > DPL) or (RPL > DPL)

THEN
ZF := 0;

ELSE
IF ((Instruction = VERR) and (Segment readable))
or ((Instruction = VERW) and (Segment writable))

THEN 
ZF := 1;

ELSE
ZF := 0;

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg 
Mode

Description

0F 00 /4

VERR r/m16

M Valid Valid Set ZF=1 if segment specified with r/m16 can be read.

0F 00 /5

VERW r/m16

M Valid Valid Set ZF=1 if segment specified with r/m16 can be written.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A
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FI;
FI;

Flags Affected

The ZF flag is set to 1 if the segment is accessible and readable (VERR) or writable (VERW); otherwise, it is set to 0.

Protected Mode Exceptions

The only exceptions generated for these instructions are those related to illegal addressing of the source operand.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The VERR and VERW instructions are not recognized in real-address mode.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD The VERR and VERW instructions are not recognized in virtual-8086 mode.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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VEXPANDPD—Load Sparse Packed Double Precision Floating-Point Values From Dense Memory

Instruction Operand Encoding

Description 

Expand (load) up to 8/4/2, contiguous, double precision floating-point values of the input vector in the source 
operand (the second operand) to sparse elements in the destination operand (the first operand) selected by the 
writemask k1. 
The destination operand is a ZMM/YMM/XMM register, the source operand can be a ZMM/YMM/XMM register or a 
512/256/128-bit memory location.
The input vector starts from the lowest element in the source operand. The writemask register k1 selects the desti-
nation elements (a partial vector or sparse elements if less than 8 elements) to be replaced by the ascending 
elements in the input vector. Destination elements not selected by the writemask k1 are either unmodified or 
zeroed, depending on EVEX.z.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element 
instead of the size of the full vector.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W1 88 /r
VEXPANDPD xmm1 {k1}{z}, 
xmm2/m128

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Expand packed double precision floating-point 
values from xmm2/m128 to xmm1 using 
writemask k1.

EVEX.256.66.0F38.W1 88 /r
VEXPANDPD ymm1 {k1}{z}, ymm2/m256

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Expand packed double precision floating-point 
values from ymm2/m256 to ymm1 using 
writemask k1.

EVEX.512.66.0F38.W1 88 /r
VEXPANDPD zmm1 {k1}{z}, zmm2/m512

A V/V AVX512F 
OR AVX10.11

Expand packed double precision floating-point 
values from zmm2/m512 to zmm1 using 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation

VEXPANDPD (EVEX Encoded Versions) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
k := 0
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
DEST[i+63:i] := SRC[k+63:k];
k := k + 64

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VEXPANDPD __m512d _mm512_mask_expand_pd( __m512d s, __mmask8 k, __m512d a);
VEXPANDPD __m512d _mm512_maskz_expand_pd( __mmask8 k, __m512d a);
VEXPANDPD __m512d _mm512_mask_expandloadu_pd( __m512d s, __mmask8 k, void * a);
VEXPANDPD __m512d _mm512_maskz_expandloadu_pd( __mmask8 k, void * a);
VEXPANDPD __m256d _mm256_mask_expand_pd( __m256d s, __mmask8 k, __m256d a);
VEXPANDPD __m256d _mm256_maskz_expand_pd( __mmask8 k, __m256d a);
VEXPANDPD __m256d _mm256_mask_expandloadu_pd( __m256d s, __mmask8 k, void * a);
VEXPANDPD __m256d _mm256_maskz_expandloadu_pd( __mmask8 k, void * a);
VEXPANDPD __m128d _mm_mask_expand_pd( __m128d s, __mmask8 k, __m128d a);
VEXPANDPD __m128d _mm_maskz_expand_pd( __mmask8 k, __m128d a);
VEXPANDPD __m128d _mm_mask_expandloadu_pd( __m128d s, __mmask8 k, void * a);
VEXPANDPD __m128d _mm_maskz_expandloadu_pd( __mmask8 k, void * a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VEXPANDPS—Load Sparse Packed Single Precision Floating-Point Values From Dense Memory

Instruction Operand Encoding

Description 

Expand (load) up to 16/8/4, contiguous, single precision floating-point values of the input vector in the source 
operand (the second operand) to sparse elements of the destination operand (the first operand) selected by the 
writemask k1. 
The destination operand is a ZMM/YMM/XMM register, the source operand can be a ZMM/YMM/XMM register or a 
512/256/128-bit memory location.
The input vector starts from the lowest element in the source operand. The writemask k1 selects the destination 
elements (a partial vector or sparse elements if less than 16 elements) to be replaced by the ascending elements 
in the input vector. Destination elements not selected by the writemask k1 are either unmodified or zeroed, 
depending on EVEX.z.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element 
instead of the size of the full vector.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 88 /r
VEXPANDPS xmm1 {k1}{z}, xmm2/m128

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Expand packed single precision floating-point 
values from xmm2/m128 to xmm1 using 
writemask k1.

EVEX.256.66.0F38.W0 88 /r
VEXPANDPS ymm1 {k1}{z}, ymm2/m256

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Expand packed single precision floating-point 
values from ymm2/m256 to ymm1 using 
writemask k1.

EVEX.512.66.0F38.W0 88 /r
VEXPANDPS zmm1 {k1}{z}, zmm2/m512

A V/V AVX512F 
OR AVX10.11

Expand packed single precision floating-point 
values from zmm2/m512 to zmm1 using 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation

VEXPANDPS (EVEX Encoded Versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
k := 0
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
DEST[i+31:i] := SRC[k+31:k];
k := k + 32

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VEXPANDPS __m512 _mm512_mask_expand_ps( __m512 s, __mmask16 k, __m512 a);
VEXPANDPS __m512 _mm512_maskz_expand_ps( __mmask16 k, __m512 a);
VEXPANDPS __m512 _mm512_mask_expandloadu_ps( __m512 s, __mmask16 k, void * a);
VEXPANDPS __m512 _mm512_maskz_expandloadu_ps( __mmask16 k, void * a);
VEXPANDPD __m256 _mm256_mask_expand_ps( __m256 s, __mmask8 k, __m256 a);
VEXPANDPD __m256 _mm256_maskz_expand_ps( __mmask8 k, __m256 a);
VEXPANDPD __m256 _mm256_mask_expandloadu_ps( __m256 s, __mmask8 k, void * a);
VEXPANDPD __m256 _mm256_maskz_expandloadu_ps( __mmask8 k, void * a);
VEXPANDPD __m128 _mm_mask_expand_ps( __m128 s, __mmask8 k, __m128 a);
VEXPANDPD __m128 _mm_maskz_expand_ps( __mmask8 k, __m128 a);
VEXPANDPD __m128 _mm_mask_expandloadu_ps( __m128 s, __mmask8 k, void * a);
VEXPANDPD __m128 _mm_maskz_expandloadu_ps( __mmask8 k, void * a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VEXTRACTF128/VEXTRACTF32x4/VEXTRACTF64x2/VEXTRACTF32x8/VEXTRACTF64x4— 
Extract Packed Floating-Point Values

Instruction Operand Encoding

Description

VEXTRACTF128/VEXTRACTF32x4 and VEXTRACTF64x2 extract 128-bits of single precision floating-point values 
from the source operand (the second operand) and store to the low 128-bit of the destination operand (the first 
operand). The 128-bit data extraction occurs at an 128-bit granular offset specified by imm8[0] (256-bit) or 
imm8[1:0] as the multiply factor. The destination may be either a vector register or an 128-bit memory location.
VEXTRACTF32x4: The low 128-bit of the destination operand is updated at 32-bit granularity according to the 
writemask.
VEXTRACTF32x8 and VEXTRACTF64x4 extract 256-bits of double precision floating-point values from the source 
operand (second operand) and store to the low 256-bit of the destination operand (the first operand). The 256-bit 
data extraction occurs at an 256-bit granular offset specified by imm8[0] (256-bit) or imm8[0] as the multiply 
factor The destination may be either a vector register or a 256-bit memory location.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.256.66.0F3A.W0 19 /r ib
VEXTRACTF128 xmm1/m128, ymm2, 
imm8

A V/V AVX Extract 128 bits of packed floating-point values 
from ymm2 and store results in xmm1/m128.

EVEX.256.66.0F3A.W0 19 /r ib
VEXTRACTF32X4 xmm1/m128 {k1}{z}, 
ymm2, imm8

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Extract 128 bits of packed single precision 
floating-point values from ymm2 and store 
results in xmm1/m128 subject to writemask k1.

EVEX.512.66.0F3A.W0 19 /r ib
VEXTRACTF32x4 xmm1/m128 {k1}{z}, 
zmm2, imm8

C V/V AVX512F 
OR AVX10.11

Extract 128 bits of packed single precision 
floating-point values from zmm2 and store 
results in xmm1/m128 subject to writemask k1.

EVEX.256.66.0F3A.W1 19 /r ib
VEXTRACTF64X2 xmm1/m128 {k1}{z}, 
ymm2, imm8

B V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Extract 128 bits of packed double precision 
floating-point values from ymm2 and store 
results in xmm1/m128 subject to writemask k1.

EVEX.512.66.0F3A.W1 19 /r ib
VEXTRACTF64X2 xmm1/m128 {k1}{z}, 
zmm2, imm8

B V/V AVX512DQ 
OR AVX10.11

Extract 128 bits of packed double precision 
floating-point values from zmm2 and store 
results in xmm1/m128 subject to writemask k1.

EVEX.512.66.0F3A.W0 1B /r ib
VEXTRACTF32X8 ymm1/m256 {k1}{z}, 
zmm2, imm8

D V/V AVX512DQ 
OR AVX10.11

Extract 256 bits of packed single precision 
floating-point values from zmm2 and store 
results in ymm1/m256 subject to writemask k1.

EVEX.512.66.0F3A.W1 1B /r ib
VEXTRACTF64x4 ymm1/m256 {k1}{z}, 
zmm2, imm8

C V/V AVX512F 
OR AVX10.11

Extract 256 bits of packed double precision 
floating-point values from zmm2 and store 
results in ymm1/m256 subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (w) ModRM:reg (r) imm8 N/A

B Tuple2 ModRM:r/m (w) ModRM:reg (r) imm8 N/A

C Tuple4 ModRM:r/m (w) ModRM:reg (r) imm8 N/A

D Tuple8 ModRM:r/m (w) ModRM:reg (r) imm8 N/A
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VEXTRACTF64x4: The low 256-bit of the destination operand is updated at 64-bit granularity according to the 
writemask.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
The high 6 bits of the immediate are ignored.
If VEXTRACTF128 is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will 
cause an #UD exception.

Operation

VEXTRACTF32x4 (EVEX Encoded Versions) When Destination is a Register
VL = 256, 512
IF VL = 256

CASE (imm8[0]) OF
0: TMP_DEST[127:0] := SRC1[127:0]
1: TMP_DEST[127:0] := SRC1[255:128]

ESAC.
FI;
IF VL = 512 

CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] := SRC1[127:0]
01: TMP_DEST[127:0] := SRC1[255:128]
10: TMP_DEST[127:0] := SRC1[383:256]
11: TMP_DEST[127:0] := SRC1[511:384]

ESAC.
FI;
FOR j := 0 TO 3

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:128] := 0

VEXTRACTF32x4 (EVEX Encoded Versions) When Destination is Memory
VL = 256, 512
IF VL = 256

CASE (imm8[0]) OF
0: TMP_DEST[127:0] := SRC1[127:0]
1: TMP_DEST[127:0] := SRC1[255:128]

ESAC.
FI;
IF VL = 512 

CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] := SRC1[127:0]
01: TMP_DEST[127:0] := SRC1[255:128]
10: TMP_DEST[127:0] := SRC1[383:256]
11: TMP_DEST[127:0] := SRC1[511:384]

ESAC.
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FI;

FOR j := 0 TO 3
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking

FI;
ENDFOR

VEXTRACTF64x2 (EVEX Encoded Versions) When Destination is a Register
VL = 256, 512
IF VL = 256

CASE (imm8[0]) OF
0: TMP_DEST[127:0] := SRC1[127:0]
1: TMP_DEST[127:0] := SRC1[255:128]

ESAC.
FI;
IF VL = 512 

CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] := SRC1[127:0]
01: TMP_DEST[127:0] := SRC1[255:128]
10: TMP_DEST[127:0] := SRC1[383:256]
11: TMP_DEST[127:0] := SRC1[511:384]

ESAC.
FI;

FOR j := 0 TO 1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:128] := 0

VEXTRACTF64x2 (EVEX Encoded Versions) When Destination is Memory
VL = 256, 512
IF VL = 256

CASE (imm8[0]) OF
0: TMP_DEST[127:0] := SRC1[127:0]
1: TMP_DEST[127:0] := SRC1[255:128]

ESAC.
FI;
IF VL = 512 

CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] := SRC1[127:0]
01: TMP_DEST[127:0] := SRC1[255:128]
10: TMP_DEST[127:0] := SRC1[383:256]
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11: TMP_DEST[127:0] := SRC1[511:384]
ESAC.

FI;

FOR j := 0 TO 1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE *DEST[i+63:i] remains unchanged* ; merging-masking

FI;
ENDFOR

VEXTRACTF32x8 (EVEX.U1.512 Encoded Version) When Destination is a Register
VL = 512
CASE (imm8[0]) OF

0: TMP_DEST[255:0] := SRC1[255:0]
1: TMP_DEST[255:0] := SRC1[511:256]

ESAC.

FOR j := 0 TO 7
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:256] := 0

VEXTRACTF32x8 (EVEX.U1.512 Encoded Version) When Destination is Memory
CASE (imm8[0]) OF

0: TMP_DEST[255:0] := SRC1[255:0]
1: TMP_DEST[255:0] := SRC1[511:256]

ESAC.

FOR j := 0 TO 7
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking

FI;
ENDFOR

VEXTRACTF64x4 (EVEX.512 Encoded Version) When Destination is a Register
VL = 512
CASE (imm8[0]) OF

0: TMP_DEST[255:0] := SRC1[255:0]
1: TMP_DEST[255:0] := SRC1[511:256]

ESAC.
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FOR j := 0 TO 3
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:256] := 0

VEXTRACTF64x4 (EVEX.512 Encoded Version) When Destination is Memory
CASE (imm8[0]) OF

0: TMP_DEST[255:0] := SRC1[255:0]
1: TMP_DEST[255:0] := SRC1[511:256]

ESAC.

FOR j := 0 TO 3
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE ; merging-masking

*DEST[i+63:i] remains unchanged*
FI;

ENDFOR

VEXTRACTF128 (Memory Destination Form)
CASE (imm8[0]) OF

0: DEST[127:0] := SRC1[127:0]
1: DEST[127:0] := SRC1[255:128]

ESAC.

VEXTRACTF128 (Register Destination Form)
CASE (imm8[0]) OF

0: DEST[127:0] := SRC1[127:0]
1: DEST[127:0] := SRC1[255:128]

ESAC.
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VEXTRACTF32x4 __m128 _mm512_extractf32x4_ps(__m512 a, const int nidx);
VEXTRACTF32x4 __m128 _mm512_mask_extractf32x4_ps(__m128 s, __mmask8 k, __m512 a, const int nidx);
VEXTRACTF32x4 __m128 _mm512_maskz_extractf32x4_ps( __mmask8 k, __m512 a, const int nidx);
VEXTRACTF32x4 __m128 _mm256_extractf32x4_ps(__m256 a, const int nidx);
VEXTRACTF32x4 __m128 _mm256_mask_extractf32x4_ps(__m128 s, __mmask8 k, __m256 a, const int nidx);
VEXTRACTF32x4 __m128 _mm256_maskz_extractf32x4_ps( __mmask8 k, __m256 a, const int nidx);
VEXTRACTF32x8 __m256 _mm512_extractf32x8_ps(__m512 a, const int nidx);
VEXTRACTF32x8 __m256 _mm512_mask_extractf32x8_ps(__m256 s, __mmask8 k, __m512 a, const int nidx);
VEXTRACTF32x8 __m256 _mm512_maskz_extractf32x8_ps( __mmask8 k, __m512 a, const int nidx);
VEXTRACTF64x2 __m128d _mm512_extractf64x2_pd(__m512d a, const int nidx);
VEXTRACTF64x2 __m128d _mm512_mask_extractf64x2_pd(__m128d s, __mmask8 k, __m512d a, const int nidx);
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VEXTRACTF64x2 __m128d _mm512_maskz_extractf64x2_pd( __mmask8 k, __m512d a, const int nidx);
VEXTRACTF64x2 __m128d _mm256_extractf64x2_pd(__m256d a, const int nidx);
VEXTRACTF64x2 __m128d _mm256_mask_extractf64x2_pd(__m128d s, __mmask8 k, __m256d a, const int nidx);
VEXTRACTF64x2 __m128d _mm256_maskz_extractf64x2_pd( __mmask8 k, __m256d a, const int nidx);
VEXTRACTF64x4 __m256d _mm512_extractf64x4_pd( __m512d a, const int nidx);
VEXTRACTF64x4 __m256d _mm512_mask_extractf64x4_pd(__m256d s, __mmask8 k, __m512d a, const int nidx);
VEXTRACTF64x4 __m256d _mm512_maskz_extractf64x4_pd( __mmask8 k, __m512d a, const int nidx);
VEXTRACTF128 __m128 _mm256_extractf128_ps (__m256 a, int offset);
VEXTRACTF128 __m128d _mm256_extractf128_pd (__m256d a, int offset);
VEXTRACTF128 __m128i_mm256_extractf128_si256(__m256i a, int offset);

SIMD Floating-Point Exceptions

None.

Other Exceptions

VEX-encoded instructions, see Table 2-23, “Type 6 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-56, “Type E6NF Class Exception Conditions.”
Additionally:
#UD IF VEX.L = 0.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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VEXTRACTI128/VEXTRACTI32x4/VEXTRACTI64x2/VEXTRACTI32x8/VEXTRACTI64x4—Extract 
Packed Integer Values

Instruction Operand Encoding

Description

VEXTRACTI128/VEXTRACTI32x4 and VEXTRACTI64x2 extract 128-bits of doubleword integer values from the 
source operand (the second operand) and store to the low 128-bit of the destination operand (the first operand). 
The 128-bit data extraction occurs at an 128-bit granular offset specified by imm8[0] (256-bit) or imm8[1:0] as 
the multiply factor. The destination may be either a vector register or an 128-bit memory location.
VEXTRACTI32x4: The low 128-bit of the destination operand is updated at 32-bit granularity according to the 
writemask.
VEXTRACTI64x2: The low 128-bit of the destination operand is updated at 64-bit granularity according to the 
writemask.
VEXTRACTI32x8 and VEXTRACTI64x4 extract 256-bits of quadword integer values from the source operand (the 
second operand) and store to the low 256-bit of the destination operand (the first operand). The 256-bit data 

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.256.66.0F3A.W0 39 /r ib
VEXTRACTI128 xmm1/m128, ymm2, 
imm8

A V/V AVX2 Extract 128 bits of integer data from ymm2 
and store results in xmm1/m128.

EVEX.256.66.0F3A.W0 39 /r ib
VEXTRACTI32X4 xmm1/m128 {k1}{z}, 
ymm2, imm8

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Extract 128 bits of double-word integer values 
from ymm2 and store results in xmm1/m128 
subject to writemask k1.

EVEX.512.66.0F3A.W0 39 /r ib
VEXTRACTI32x4 xmm1/m128 {k1}{z}, 
zmm2, imm8

C V/V AVX512F 
OR AVX10.11

Extract 128 bits of double-word integer values 
from zmm2 and store results in xmm1/m128 
subject to writemask k1.

EVEX.256.66.0F3A.W1 39 /r ib
VEXTRACTI64X2 xmm1/m128 {k1}{z}, 
ymm2, imm8

B V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Extract 128 bits of quad-word integer values 
from ymm2 and store results in xmm1/m128 
subject to writemask k1.

EVEX.512.66.0F3A.W1 39 /r ib
VEXTRACTI64X2 xmm1/m128 {k1}{z}, 
zmm2, imm8

B V/V AVX512DQ 
OR AVX10.11

Extract 128 bits of quad-word integer values 
from zmm2 and store results in xmm1/m128 
subject to writemask k1.

EVEX.512.66.0F3A.W0 3B /r ib
VEXTRACTI32X8 ymm1/m256 {k1}{z}, 
zmm2, imm8

D V/V AVX512DQ 
OR AVX10.11

Extract 256 bits of double-word integer values 
from zmm2 and store results in ymm1/m256 
subject to writemask k1.

EVEX.512.66.0F3A.W1 3B /r ib
VEXTRACTI64x4 ymm1/m256 {k1}{z}, 
zmm2, imm8

C V/V AVX512F 
OR AVX10.11

Extract 256 bits of quad-word integer values 
from zmm2 and store results in ymm1/m256 
subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (w) ModRM:reg (r) imm8 N/A

B Tuple2 ModRM:r/m (w) ModRM:reg (r) imm8 N/A

C Tuple4 ModRM:r/m (w) ModRM:reg (r) imm8 N/A

D Tuple8 ModRM:r/m (w) ModRM:reg (r) imm8 N/A
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extraction occurs at an 256-bit granular offset specified by imm8[0] (256-bit) or imm8[0] as the multiply factor 
The destination may be either a vector register or a 256-bit memory location.
VEXTRACTI32x8: The low 256-bit of the destination operand is updated at 32-bit granularity according to the 
writemask.
VEXTRACTI64x4: The low 256-bit of the destination operand is updated at 64-bit granularity according to the 
writemask.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
The high 7 bits (6 bits in EVEX.512) of the immediate are ignored.
If VEXTRACTI128 is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will 
cause an #UD exception.

Operation

VEXTRACTI32x4 (EVEX encoded versions) when destination is a register
VL = 256, 512
IF VL = 256

CASE (imm8[0]) OF
0: TMP_DEST[127:0] := SRC1[127:0]
1: TMP_DEST[127:0] := SRC1[255:128]

ESAC.
FI;
IF VL = 512 

CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] := SRC1[127:0]
01: TMP_DEST[127:0] := SRC1[255:128]
10: TMP_DEST[127:0] := SRC1[383:256]
11: TMP_DEST[127:0] := SRC1[511:384]

ESAC.
FI;
FOR j := 0 TO 3

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:128] := 0

VEXTRACTI32x4 (EVEX encoded versions) when destination is memory
VL = 256, 512
IF VL = 256

CASE (imm8[0]) OF
0: TMP_DEST[127:0] := SRC1[127:0]
1: TMP_DEST[127:0] := SRC1[255:128]

ESAC.
FI;
IF VL = 512 

CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] := SRC1[127:0]
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01: TMP_DEST[127:0] := SRC1[255:128]
10: TMP_DEST[127:0] := SRC1[383:256]
11: TMP_DEST[127:0] := SRC1[511:384]

ESAC.
FI;

FOR j := 0 TO 3
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking

FI;
ENDFOR

VEXTRACTI64x2 (EVEX encoded versions) when destination is a register
VL = 256, 512
IF VL = 256

CASE (imm8[0]) OF
0: TMP_DEST[127:0] := SRC1[127:0]
1: TMP_DEST[127:0] := SRC1[255:128]

ESAC.
FI;
IF VL = 512 

CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] := SRC1[127:0]
01: TMP_DEST[127:0] := SRC1[255:128]
10: TMP_DEST[127:0] := SRC1[383:256]
11: TMP_DEST[127:0] := SRC1[511:384]

ESAC.
FI;

FOR j := 0 TO 1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:128] := 0

VEXTRACTI64x2 (EVEX encoded versions) when destination is memory
VL = 256, 512
IF VL = 256

CASE (imm8[0]) OF
0: TMP_DEST[127:0] := SRC1[127:0]
1: TMP_DEST[127:0] := SRC1[255:128]

ESAC.
FI;
IF VL = 512 
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CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] := SRC1[127:0]
01: TMP_DEST[127:0] := SRC1[255:128]
10: TMP_DEST[127:0] := SRC1[383:256]
11: TMP_DEST[127:0] := SRC1[511:384]

ESAC.
FI;

FOR j := 0 TO 1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE *DEST[i+63:i] remains unchanged* ; merging-masking

FI;
ENDFOR

VEXTRACTI32x8 (EVEX.U1.512 encoded version) when destination is a register
VL = 512
CASE (imm8[0]) OF

0: TMP_DEST[255:0] := SRC1[255:0]
1: TMP_DEST[255:0] := SRC1[511:256]

ESAC.

FOR j := 0 TO 7
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:256] := 0

VEXTRACTI32x8 (EVEX.U1.512 encoded version) when destination is memory
CASE (imm8[0]) OF

0: TMP_DEST[255:0] := SRC1[255:0]
1: TMP_DEST[255:0] := SRC1[511:256]

ESAC.

FOR j := 0 TO 7
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking

FI;
ENDFOR
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VEXTRACTI64x4 (EVEX.512 encoded version) when destination is a register
VL = 512
CASE (imm8[0]) OF

0: TMP_DEST[255:0] := SRC1[255:0]
1: TMP_DEST[255:0] := SRC1[511:256]

ESAC.

FOR j := 0 TO 3
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:256] := 0

VEXTRACTI64x4 (EVEX.512 encoded version) when destination is memory
CASE (imm8[0]) OF

0: TMP_DEST[255:0] := SRC1[255:0]
1: TMP_DEST[255:0] := SRC1[511:256]

ESAC.
FOR j := 0 TO 3

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE *DEST[i+63:i] remains unchanged* ; merging-masking

FI;
ENDFOR

VEXTRACTI128 (memory destination form)
CASE (imm8[0]) OF

0: DEST[127:0] := SRC1[127:0]
1: DEST[127:0] := SRC1[255:128]

ESAC.

VEXTRACTI128 (register destination form)
CASE (imm8[0]) OF

0: DEST[127:0] := SRC1[127:0]
1: DEST[127:0] := SRC1[255:128]

ESAC.
DEST[MAXVL-1:128] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VEXTRACTI32x4 __m128i _mm512_extracti32x4_epi32(__m512i a, const int nidx);
VEXTRACTI32x4 __m128i _mm512_mask_extracti32x4_epi32(__m128i s, __mmask8 k, __m512i a, const int nidx);
VEXTRACTI32x4 __m128i _mm512_maskz_extracti32x4_epi32( __mmask8 k, __m512i a, const int nidx);
VEXTRACTI32x4 __m128i _mm256_extracti32x4_epi32(__m256i a, const int nidx);
VEXTRACTI32x4 __m128i _mm256_mask_extracti32x4_epi32(__m128i s, __mmask8 k, __m256i a, const int nidx);
VEXTRACTI32x4 __m128i _mm256_maskz_extracti32x4_epi32( __mmask8 k, __m256i a, const int nidx);
VEXTRACTI32x8 __m256i _mm512_extracti32x8_epi32(__m512i a, const int nidx);
VEXTRACTI32x8 __m256i _mm512_mask_extracti32x8_epi32(__m256i s, __mmask8 k, __m512i a, const int nidx);
VEXTRACTI32x8 __m256i _mm512_maskz_extracti32x8_epi32( __mmask8 k, __m512i a, const int nidx);
VEXTRACTI64x2 __m128i _mm512_extracti64x2_epi64(__m512i a, const int nidx);
VEXTRACTI64x2 __m128i _mm512_mask_extracti64x2_epi64(__m128i s, __mmask8 k, __m512i a, const int nidx);
VEXTRACTI64x2 __m128i _mm512_maskz_extracti64x2_epi64( __mmask8 k, __m512i a, const int nidx);
VEXTRACTI64x2 __m128i _mm256_extracti64x2_epi64(__m256i a, const int nidx);
VEXTRACTI64x2 __m128i _mm256_mask_extracti64x2_epi64(__m128i s, __mmask8 k, __m256i a, const int nidx);
VEXTRACTI64x2 __m128i _mm256_maskz_extracti64x2_epi64( __mmask8 k, __m256i a, const int nidx);
VEXTRACTI64x4 __m256i _mm512_extracti64x4_epi64(__m512i a, const int nidx);
VEXTRACTI64x4 __m256i _mm512_mask_extracti64x4_epi64(__m256i s, __mmask8 k, __m512i a, const int nidx);
VEXTRACTI64x4 __m256i _mm512_maskz_extracti64x4_epi64( __mmask8 k, __m512i a, const int nidx);
VEXTRACTI128 __m128i _mm256_extracti128_si256(__m256i a, int offset);

SIMD Floating-Point Exceptions

None

Other Exceptions

VEX-encoded instructions, see Table 2-23, “Type 6 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-56, “Type E6NF Class Exception Conditions.”
Additionally:
#UD IF VEX.L = 0.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
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VFCMADDCPH/VFMADDCPH—Complex Multiply and Accumulate FP16 Values

Instruction Operand Encoding

Description

This instruction performs a complex multiply and accumulate operation. There are normal and complex conjugate 
forms of the operation.
The broadcasting and masking for this operation is done on 32-bit quantities representing a pair of FP16 values.
Rounding is performed at every FMA (fused multiply and add) boundary. Execution occurs as if all MXCSR excep-
tions are masked. MXCSR status bits are updated to reflect exceptional conditions.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F2.MAP6.W0 56 /r
VFCMADDCPH xmm1{k1}{z}, xmm2, 
xmm3/m128/m32bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Complex multiply a pair of FP16 values from 
xmm2 and xmm3/m128/m32bcst, add to xmm1 
and store the result in xmm1 subject to 
writemask k1.

EVEX.256.F2.MAP6.W0 56 /r
VFCMADDCPH ymm1{k1}{z}, ymm2, 
ymm3/m256/m32bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Complex multiply a pair of FP16 values from 
ymm2 and ymm3/m256/m32bcst, add to ymm1 
and store the result in ymm1 subject to 
writemask k1.

EVEX.512.F2.MAP6.W0 56 /r
VFCMADDCPH zmm1{k1}{z}, zmm2, 
zmm3/m512/m32bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Complex multiply a pair of FP16 values from 
zmm2 and zmm3/m512/m32bcst, add to zmm1 
and store the result in zmm1 subject to 
writemask k1.

EVEX.128.F3.MAP6.W0 56 /r
VFMADDCPH xmm1{k1}{z}, xmm2, 
xmm3/m128/m32bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Complex multiply a pair of FP16 values from 
xmm2 and the complex conjugate of 
xmm3/m128/m32bcst, add to xmm1 and store 
the result in xmm1 subject to writemask k1.

EVEX.256.F3.MAP6.W0 56 /r
VFMADDCPH ymm1{k1}{z}, ymm2, 
ymm3/m256/m32bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Complex multiply a pair of FP16 values from 
ymm2 and the complex conjugate of 
ymm3/m256/m32bcst, add to ymm1 and store 
the result in ymm1 subject to writemask k1.

EVEX.512.F3.MAP6.W0 56 /r
VFMADDCPH zmm1{k1}{z}, zmm2, 
zmm3/m512/m32bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Complex multiply a pair of FP16 values from 
zmm2 and the complex conjugate of 
zmm3/m512/m32bcst, add to zmm1 and store 
the result in zmm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VFCMADDCPH dest{k1}, src1, src2 (AVX512)
VL = 128, 256, 512
KL := VL / 32

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

IF broadcasting and src2 is memory:
tsrc2.fp16[2*i+0] := src2.fp16[0]
tsrc2.fp16[2*i+1] := src2.fp16[1]

ELSE:
tsrc2.fp16[2*i+0] := src2.fp16[2*i+0]
tsrc2.fp16[2*i+1] := src2.fp16[2*i+1]

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

tmp[2*i+0] := dest.fp16[2*i+0] + src1.fp16[2*i+0] * tsrc2.fp16[2*i+0]
tmp[2*i+1] := dest.fp16[2*i+1] + src1.fp16[2*i+1] * tsrc2.fp16[2*i+0]

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

// conjugate version subtracts odd final term
dest.fp16[2*i+0] := tmp[2*i+0] + src1.fp16[2*i+1] * tsrc2.fp16[2*i+1]
dest.fp16[2*i+1] := tmp[2*i+1] - src1.fp16[2*i+0] * tsrc2.fp16[2*i+1]

ELSE IF *zeroing*:
dest.fp16[2*i+0] := 0
dest.fp16[2*i+1] := 0

DEST[MAXVL-1:VL] := 0

VFMADDCPH dest{k1}, src1, src2 (AVX512)
VL = 128, 256, 512
KL := VL / 32

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

IF broadcasting and src2 is memory:
tsrc2.fp16[2*i+0] := src2.fp16[0]
tsrc2.fp16[2*i+1] := src2.fp16[1]

ELSE:
tsrc2.fp16[2*i+0] := src2.fp16[2*i+0]
tsrc2.fp16[2*i+1] := src2.fp16[2*i+1]

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

tmp[2*i+0] := dest.fp16[2*i+0] + src1.fp16[2*i+0] * tsrc2.fp16[2*i+0]
tmp[2*i+1] := dest.fp16[2*i+1] + src1.fp16[2*i+1] * tsrc2.fp16[2*i+0]

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

// non-conjugate version subtracts even term
dest.fp16[2*i+0] := tmp[2*i+0] - src1.fp16[2*i+1] * tsrc2.fp16[2*i+1]
dest.fp16[2*i+1] := tmp[2*i+1] + src1.fp16[2*i+0] * tsrc2.fp16[2*i+1]

ELSE IF *zeroing*:
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dest.fp16[2*i+0] := 0
dest.fp16[2*i+1] := 0

DEST[MAXVL-1:VL] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VFCMADDCPH __m128h _mm_fcmadd_pch (__m128h a, __m128h b, __m128h c);
VFCMADDCPH __m128h _mm_mask_fcmadd_pch (__m128h a, __mmask8 k, __m128h b, __m128h c);
VFCMADDCPH __m128h _mm_mask3_fcmadd_pch (__m128h a, __m128h b, __m128h c, __mmask8 k);
VFCMADDCPH __m128h _mm_maskz_fcmadd_pch (__mmask8 k, __m128h a, __m128h b, __m128h c);
VFCMADDCPH __m256h _mm256_fcmadd_pch (__m256h a, __m256h b, __m256h c);
VFCMADDCPH __m256h _mm256_mask_fcmadd_pch (__m256h a, __mmask8 k, __m256h b, __m256h c);
VFCMADDCPH __m256h _mm256_mask3_fcmadd_pch (__m256h a, __m256h b, __m256h c, __mmask8 k);
VFCMADDCPH __m256h _mm256_maskz_fcmadd_pch (__mmask8 k, __m256h a, __m256h b, __m256h c);
VFCMADDCPH __m512h _mm512_fcmadd_pch (__m512h a, __m512h b, __m512h c);
VFCMADDCPH __m512h _mm512_mask_fcmadd_pch (__m512h a, __mmask16 k, __m512h b, __m512h c);
VFCMADDCPH __m512h _mm512_mask3_fcmadd_pch (__m512h a, __m512h b, __m512h c, __mmask16 k);
VFCMADDCPH __m512h _mm512_maskz_fcmadd_pch (__mmask16 k, __m512h a, __m512h b, __m512h c);
VFCMADDCPH __m512h _mm512_fcmadd_round_pch (__m512h a, __m512h b, __m512h c, const int rounding);
VFCMADDCPH __m512h _mm512_mask_fcmadd_round_pch (__m512h a, __mmask16 k, __m512h b, __m512h c, const int rounding);
VFCMADDCPH __m512h _mm512_mask3_fcmadd_round_pch (__m512h a, __m512h b, __m512h c, __mmask16 k, const int rounding);
VFCMADDCPH __m512h _mm512_maskz_fcmadd_round_pch (__mmask16 k, __m512h a, __m512h b, __m512h c, const int rounding);

VFMADDCPH __m128h _mm_fmadd_pch (__m128h a, __m128h b, __m128h c);
VFMADDCPH __m128h _mm_mask_fmadd_pch (__m128h a, __mmask8 k, __m128h b, __m128h c);
VFMADDCPH __m128h _mm_mask3_fmadd_pch (__m128h a, __m128h b, __m128h c, __mmask8 k);
VFMADDCPH __m128h _mm_maskz_fmadd_pch (__mmask8 k, __m128h a, __m128h b, __m128h c);
VFMADDCPH __m256h _mm256_fmadd_pch (__m256h a, __m256h b, __m256h c);
VFMADDCPH __m256h _mm256_mask_fmadd_pch (__m256h a, __mmask8 k, __m256h b, __m256h c);
VFMADDCPH __m256h _mm256_mask3_fmadd_pch (__m256h a, __m256h b, __m256h c, __mmask8 k);
VFMADDCPH __m256h _mm256_maskz_fmadd_pch (__mmask8 k, __m256h a, __m256h b, __m256h c);
VFMADDCPH __m512h _mm512_fmadd_pch (__m512h a, __m512h b, __m512h c);
VFMADDCPH __m512h _mm512_mask_fmadd_pch (__m512h a, __mmask16 k, __m512h b, __m512h c);
VFMADDCPH __m512h _mm512_mask3_fmadd_pch (__m512h a, __m512h b, __m512h c, __mmask16 k);
VFMADDCPH __m512h _mm512_maskz_fmadd_pch (__mmask16 k, __m512h a, __m512h b, __m512h c);
VFMADDCPH __m512h _mm512_fmadd_round_pch (__m512h a, __m512h b, __m512h c, const int rounding);
VFMADDCPH __m512h _mm512_mask_fmadd_round_pch (__m512h a, __mmask16 k, __m512h b, __m512h c, const int rounding);
VFMADDCPH __m512h _mm512_mask3_fmadd_round_pch (__m512h a, __m512h b, __m512h c, __mmask16 k, const int rounding);
VFMADDCPH __m512h _mm512_maskz_fmadd_round_pch (__mmask16 k, __m512h a, __m512h b, __m512h c, const int rounding);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-51, “Type E4 Class Exception Conditions.”
Additionally:
#UD If (dest_reg == src1_reg) or (dest_reg == src2_reg).
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VFCMADDCSH/VFMADDCSH—Complex Multiply and Accumulate Scalar FP16 Values

Instruction Operand Encoding

Description

This instruction performs a complex multiply and accumulate operation. There are normal and complex conjugate 
forms of the operation.
The masking for this operation is done on 32-bit quantities representing a pair of FP16 values.
Bits 127:32 of the destination operand are copied from the corresponding bits of the first source operand. Bits 
MAXVL-1:128 of the destination operand are zeroed. The low FP16 element of the destination is updated according 
to the writemask.
Rounding is performed at every FMA (fused multiply and add) boundary. Execution occurs as if all MXCSR excep-
tions are masked. MXCSR status bits are updated to reflect exceptional conditions.

Operation

VFCMADDCSH dest{k1}, src1, src2 (AVX512)
IF k1[0] or *no writemask*:

tmp[0] := dest.fp16[0] + src1.fp16[0] * src2.fp16[0]
tmp[1] := dest.fp16[1] + src1.fp16[1] * src2.fp16[0]

// conjugate version subtracts odd final term
dest.fp16[0] := tmp[0] + src1.fp16[1] * src2.fp16[1]
dest.fp16[1] := tmp[1] - src1.fp16[0] * src2.fp16[1]

ELSE IF *zeroing*:
dest.fp16[0] := 0
dest.fp16[1] := 0

DEST[127:32] := src1[127:32] // copy upper part of src1
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F2.MAP6.W0 57 /r
VFCMADDCSH xmm1{k1}{z}, xmm2, 
xmm3/m32 {er}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Complex multiply a pair of FP16 values from 
xmm2 and xmm3/m32, add to xmm1 and store 
the result in xmm1 subject to writemask k1. Bits 
127:32 of xmm2 are copied to xmm1[127:32].

EVEX.LLIG.F3.MAP6.W0 57 /r
VFMADDCSH xmm1{k1}{z}, xmm2, 
xmm3/m32 {er}

A V/V AVX512-FP16 
OR AVX10.11

Complex multiply a pair of FP16 values from 
xmm2 and the complex conjugate of xmm3/m32, 
add to xmm1 and store the result in xmm1 
subject to writemask k1. Bits 127:32 of xmm2 
are copied to xmm1[127:32].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A
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VFMADDCSH dest{k1}, src1, src2 (AVX512)
IF k1[0] or *no writemask*:

tmp[0] := dest.fp16[0] + src1.fp16[0] * src2.fp16[0]
tmp[1] := dest.fp16[1] + src1.fp16[1] * src2.fp16[0]

// non-conjugate version subtracts last even term
dest.fp16[0] := tmp[0] - src1.fp16[1] * src2.fp16[1]
dest.fp16[1] := tmp[1] + src1.fp16[0] * src2.fp16[1]

ELSE IF *zeroing*:
dest.fp16[0] := 0
dest.fp16[1] := 0

DEST[127:32] := src1[127:32] // copy upper part of src1
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFCMADDCSH __m128h _mm_fcmadd_round_sch (__m128h a, __m128h b, __m128h c, const int rounding);
VFCMADDCSH __m128h _mm_mask_fcmadd_round_sch (__m128h a, __mmask8 k, __m128h b, __m128h c, const int rounding);
VFCMADDCSH __m128h _mm_mask3_fcmadd_round_sch (__m128h a, __m128h b, __m128h c, __mmask8 k, const int rounding);
VFCMADDCSH __m128h _mm_maskz_fcmadd_round_sch (__mmask8 k, __m128h a, __m128h b, __m128h c, const int rounding);
VFCMADDCSH __m128h _mm_fcmadd_sch (__m128h a, __m128h b, __m128h c);
VFCMADDCSH __m128h _mm_mask_fcmadd_sch (__m128h a, __mmask8 k, __m128h b, __m128h c);
VFCMADDCSH __m128h _mm_mask3_fcmadd_sch (__m128h a, __m128h b, __m128h c, __mmask8 k);
VFCMADDCSH __m128h _mm_maskz_fcmadd_sch (__mmask8 k, __m128h a, __m128h b, __m128h c);

VFMADDCSH __m128h _mm_fmadd_round_sch (__m128h a, __m128h b, __m128h c, const int rounding);
VFMADDCSH __m128h _mm_mask_fmadd_round_sch (__m128h a, __mmask8 k, __m128h b, __m128h c, const int rounding);
VFMADDCSH __m128h _mm_mask3_fmadd_round_sch (__m128h a, __m128h b, __m128h c, __mmask8 k, const int rounding);
VFMADDCSH __m128h _mm_maskz_fmadd_round_sch (__mmask8 k, __m128h a, __m128h b, __m128h c, const int rounding);
VFMADDCSH __m128h _mm_fmadd_sch (__m128h a, __m128h b, __m128h c);
VFMADDCSH __m128h _mm_mask_fmadd_sch (__m128h a, __mmask8 k, __m128h b, __m128h c);
VFMADDCSH __m128h _mm_mask3_fmadd_sch (__m128h a, __m128h b, __m128h c, __mmask8 k);
VFMADDCSH __m128h _mm_maskz_fmadd_sch (__mmask8 k, __m128h a, __m128h b, __m128h c);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-60, “Type E10 Class Exception Conditions.”
Additionally:
#UD If (dest_reg == src1_reg) or (dest_reg == src2_reg).
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VFCMULCPH/VFMULCPH—Complex Multiply FP16 Values

Instruction Operand Encoding

Description

This instruction performs a complex multiply operation. There are normal and complex conjugate forms of the oper-
ation. The broadcasting and masking for this operation is done on 32-bit quantities representing a pair of FP16 
values.
Rounding is performed at every FMA (fused multiply and add) boundary. Execution occurs as if all MXCSR excep-
tions are masked. MXCSR status bits are updated to reflect exceptional conditions.

Operation

VFCMULCPH dest{k1}, src1, src2 (AVX512)
VL = 128, 256 or 512
KL := VL/32

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

IF broadcasting and src2 is memory:
tsrc2.fp16[2*i+0] := src2.fp16[0]
tsrc2.fp16[2*i+1] := src2.fp16[1]

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F2.MAP6.W0 D6 /r
VFCMULCPH xmm1{k1}{z}, xmm2, 
xmm3/m128/m32bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Complex multiply a pair of FP16 values from 
xmm2 and xmm3/m128/m32bcst, and store the 
result in xmm1 subject to writemask k1.

EVEX.256.F2.MAP6.W0 D6 /r
VFCMULCPH ymm1{k1}{z}, ymm2, 
ymm3/m256/m32bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Complex multiply a pair of FP16 values from 
ymm2 and ymm3/m256/m32bcst, and store the 
result in ymm1 subject to writemask k1.

EVEX.512.F2.MAP6.W0 D6 /r
VFCMULCPH zmm1{k1}{z}, zmm2, 
zmm3/m512/m32bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Complex multiply a pair of FP16 values from 
zmm2 and zmm3/m512/m32bcst, and store the 
result in zmm1 subject to writemask k1.

EVEX.128.F3.MAP6.W0 D6 /r
VFMULCPH xmm1{k1}{z}, xmm2, 
xmm3/m128/m32bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Complex multiply a pair of FP16 values from 
xmm2 and the complex conjugate of 
xmm3/m128/m32bcst, and store the result in 
xmm1 subject to writemask k1.

EVEX.256.F3.MAP6.W0 D6 /r
VFMULCPH ymm1{k1}{z}, ymm2, 
ymm3/m256/m32bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Complex multiply a pair of FP16 values from 
ymm2 and the complex conjugate of 
ymm3/m256/m32bcst, and store the result in 
ymm1 subject to writemask k1.

EVEX.512.F3.MAP6.W0 D6 /r
VFMULCPH zmm1{k1}{z}, zmm2, 
zmm3/m512/m32bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Complex multiply a pair of FP16 values from 
zmm2 and the complex conjugate of 
zmm3/m512/m32bcst, and store the result in 
zmm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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ELSE:
tsrc2.fp16[2*i+0] := src2.fp16[2*i+0]
tsrc2.fp16[2*i+1] := src2.fp16[2*i+1]

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

tmp.fp16[2*i+0] := src1.fp16[2*i+0] * tsrc2.fp16[2*i+0]
tmp.fp16[2*i+1] := src1.fp16[2*i+1] * tsrc2.fp16[2*i+0]

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

// conjugate version subtracts odd final term
dest.fp16[2*i] := tmp.fp16[2*i+0] +src1.fp16[2*i+1] * tsrc2.fp16[2*i+1]
dest.fp16[2*i+1] := tmp.fp16[2*i+1] - src1.fp16[2*i+0] * tsrc2.fp16[2*i+1]

ELSE IF *zeroing*:
dest.fp16[2*i+0] := 0
dest.fp16[2*i+1] := 0

DEST[MAXVL-1:VL] := 0 

VFMULCPH dest{k1}, src1, src2 (AVX512)
VL = 128, 256 or 512
KL := VL/32

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

IF broadcasting and src2 is memory:
tsrc2.fp16[2*i+0] := src2.fp16[0]
tsrc2.fp16[2*i+1] := src2.fp16[1]

ELSE:
tsrc2.fp16[2*i+0] := src2.fp16[2*i+0]
tsrc2.fp16[2*i+1] := src2.fp16[2*i+1]

FOR i := 0 to kl-1:
IF k1[i] or *no writemask*:

tmp.fp16[2*i+0] := src1.fp16[2*i+0] * tsrc2.fp16[2*i+0]
tmp.fp16[2*i+1] := src1.fp16[2*i+1] * tsrc2.fp16[2*i+0]

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

// non-conjugate version subtracts last even term
dest.fp16[2*i+0] := tmp.fp16[2*i+0] - src1.fp16[2*i+1] * tsrc2.fp16[2*i+1]
dest.fp16[2*i+1] := tmp.fp16[2*i+1] + src1.fp16[2*i+0] * tsrc2.fp16[2*i+1]

ELSE IF *zeroing*:
dest.fp16[2*i+0] := 0
dest.fp16[2*i+1] := 0

DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VFCMULCPH __m128h _mm_cmul_pch (__m128h a, __m128h b);
VFCMULCPH __m128h _mm_mask_cmul_pch (__m128h src, __mmask8 k, __m128h a, __m128h b);
VFCMULCPH __m128h _mm_maskz_cmul_pch (__mmask8 k, __m128h a, __m128h b);
VFCMULCPH __m256h _mm256_cmul_pch (__m256h a, __m256h b);
VFCMULCPH __m256h _mm256_mask_cmul_pch (__m256h src, __mmask8 k, __m256h a, __m256h b);
VFCMULCPH __m256h _mm256_maskz_cmul_pch (__mmask8 k, __m256h a, __m256h b);
VFCMULCPH __m512h _mm512_cmul_pch (__m512h a, __m512h b);
VFCMULCPH __m512h _mm512_mask_cmul_pch (__m512h src, __mmask16 k, __m512h a, __m512h b);
VFCMULCPH __m512h _mm512_maskz_cmul_pch (__mmask16 k, __m512h a, __m512h b);
VFCMULCPH __m512h _mm512_cmul_round_pch (__m512h a, __m512h b, const int rounding);
VFCMULCPH __m512h _mm512_mask_cmul_round_pch (__m512h src, __mmask16 k, __m512h a, __m512h b, const int rounding);
VFCMULCPH __m512h _mm512_maskz_cmul_round_pch (__mmask16 k, __m512h a, __m512h b, const int rounding);
VFCMULCPH __m128h _mm_fcmul_pch (__m128h a, __m128h b);
VFCMULCPH __m128h _mm_mask_fcmul_pch (__m128h src, __mmask8 k, __m128h a, __m128h b);
VFCMULCPH __m128h _mm_maskz_fcmul_pch (__mmask8 k, __m128h a, __m128h b);
VFCMULCPH __m256h _mm256_fcmul_pch (__m256h a, __m256h b);
VFCMULCPH __m256h _mm256_mask_fcmul_pch (__m256h src, __mmask8 k, __m256h a, __m256h b);
VFCMULCPH __m256h _mm256_maskz_fcmul_pch (__mmask8 k, __m256h a, __m256h b);
VFCMULCPH __m512h _mm512_fcmul_pch (__m512h a, __m512h b);
VFCMULCPH __m512h _mm512_mask_fcmul_pch (__m512h src, __mmask16 k, __m512h a, __m512h b);
VFCMULCPH __m512h _mm512_maskz_fcmul_pch (__mmask16 k, __m512h a, __m512h b);
VFCMULCPH __m512h _mm512_fcmul_round_pch (__m512h a, __m512h b, const int rounding);
VFCMULCPH __m512h _mm512_mask_fcmul_round_pch (__m512h src, __mmask16 k, __m512h a, __m512h b, const int rounding);
VFCMULCPH __m512h _mm512_maskz_fcmul_round_pch (__mmask16 k, __m512h a, __m512h b, const int rounding);

VFMULCPH __m128h _mm_fmul_pch (__m128h a, __m128h b);
VFMULCPH __m128h _mm_mask_fmul_pch (__m128h src, __mmask8 k, __m128h a, __m128h b);
VFMULCPH __m128h _mm_maskz_fmul_pch (__mmask8 k, __m128h a, __m128h b);
VFMULCPH __m256h _mm256_fmul_pch (__m256h a, __m256h b);
VFMULCPH __m256h _mm256_mask_fmul_pch (__m256h src, __mmask8 k, __m256h a, __m256h b);
VFMULCPH __m256h _mm256_maskz_fmul_pch (__mmask8 k, __m256h a, __m256h b);
VFMULCPH __m512h _mm512_fmul_pch (__m512h a, __m512h b);
VFMULCPH __m512h _mm512_mask_fmul_pch (__m512h src, __mmask16 k, __m512h a, __m512h b);
VFMULCPH __m512h _mm512_maskz_fmul_pch (__mmask16 k, __m512h a, __m512h b);
VFMULCPH __m512h _mm512_fmul_round_pch (__m512h a, __m512h b, const int rounding);
VFMULCPH __m512h _mm512_mask_fmul_round_pch (__m512h src, __mmask16 k, __m512h a, __m512h b, const int rounding);
VFMULCPH __m512h _mm512_maskz_fmul_round_pch (__mmask16 k, __m512h a, __m512h b, const int rounding);
VFMULCPH __m128h _mm_mask_mul_pch (__m128h src, __mmask8 k, __m128h a, __m128h b);
VFMULCPH __m128h _mm_maskz_mul_pch (__mmask8 k, __m128h a, __m128h b);
VFMULCPH __m128h _mm_mul_pch (__m128h a, __m128h b);
VFMULCPH __m256h _mm256_mask_mul_pch (__m256h src, __mmask8 k, __m256h a, __m256h b);
VFMULCPH __m256h _mm256_maskz_mul_pch (__mmask8 k, __m256h a, __m256h b);
VFMULCPH __m256h _mm256_mul_pch (__m256h a, __m256h b);
VFMULCPH __m512h _mm512_mask_mul_pch (__m512h src, __mmask16 k, __m512h a, __m512h b);
VFMULCPH __m512h _mm512_maskz_mul_pch (__mmask16 k, __m512h a, __m512h b);
VFMULCPH __m512h _mm512_mul_pch (__m512h a, __m512h b);
VFMULCPH __m512h _mm512_mask_mul_round_pch (__m512h src, __mmask16 k, __m512h a, __m512h b, const int rounding);
VFMULCPH __m512h _mm512_maskz_mul_round_pch (__mmask16 k, __m512h a, __m512h b, const int rounding);
VFMULCPH __m512h _mm512_mul_round_pch (__m512h a, __m512h b, const int rounding);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal.
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Other Exceptions

EVEX-encoded instructions, see Table 2-51, “Type E4 Class Exception Conditions.”
Additionally:
#UD If (dest_reg == src1_reg) or (dest_reg == src2_reg).
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VFCMULCSH/VFMULCSH—Complex Multiply Scalar FP16 Values

Instruction Operand Encoding

Description

This instruction performs a complex multiply operation. There are normal and complex conjugate forms of the oper-
ation. The masking for this operation is done on 32-bit quantities representing a pair of FP16 values.
Bits 127:32 of the destination operand are copied from the corresponding bits of the first source operand. Bits 
MAXVL-1:128 of the destination operand are zeroed. The low FP16 element of the destination is updated according 
to the writemask.
Rounding is performed at every FMA (fused multiply and add) boundary. Execution occurs as if all MXCSR excep-
tions are masked. MXCSR status bits are updated to reflect exceptional conditions.

Operation

VFCMULCSH dest{k1}, src1, src2 (AVX512)
KL := VL / 32

IF k1[0] or *no writemask*:
tmp.fp16[0] := src1.fp16[0] * src2.fp16[0]
tmp.fp16[1] := src1.fp16[1] * src2.fp16[0]

// conjugate version subtracts odd final term
dest.fp16[0] := tmp.fp16[0] + src1.fp16[1] * src2.fp16[1]
dest.fp16[1] := tmp.fp16[1] - src1.fp16[0] * src2.fp16[1]

ELSE IF *zeroing*:
dest.fp16[0] := 0
dest.fp16[1] := 0

DEST[127:32] := src1[127:32] // copy upper part of src1
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F2.MAP6.W0 D7 /r
VFCMULCSH xmm1{k1}{z}, xmm2, 
xmm3/m32 {er}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Complex multiply a pair of FP16 values from 
xmm2 and xmm3/m32, and store the result in 
xmm1 subject to writemask k1. Bits 127:32 of 
xmm2 are copied to xmm1[127:32].

EVEX.LLIG.F3.MAP6.W0 D7 /r
VFMULCSH xmm1{k1}{z}, xmm2, 
xmm3/m32 {er}

A V/V AVX512-FP16 
OR AVX10.11

Complex multiply a pair of FP16 values from 
xmm2 and the complex conjugate of xmm3/m32, 
and store the result in xmm1 subject to 
writemask k1. Bits 127:32 of xmm2 are copied to 
xmm1[127:32].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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VFMULCSH dest{k1}, src1, src2 (AVX512)
KL := VL / 32

IF k1[0] or *no writemask*:
// non-conjugate version subtracts last even term
tmp.fp16[0] := src1.fp16[0] * src2.fp16[0]
tmp.fp16[1] := src1.fp16[1] * src2.fp16[0]
dest.fp16[0] := tmp.fp16[0] - src1.fp16[1] * src2.fp16[1]
dest.fp16[1] := tmp.fp16[1] + src1.fp16[0] * src2.fp16[1]

ELSE IF *zeroing*:
dest.fp16[0] := 0
dest.fp16[1] := 0

DEST[127:32] := src1[127:32] // copy upper part of src1
DEST[MAXVL-1:128] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VFCMULCSH __m128h _mm_cmul_round_sch (__m128h a, __m128h b, const int rounding);
VFCMULCSH __m128h _mm_mask_cmul_round_sch (__m128h src, __mmask8 k, __m128h a, __m128h b, const int rounding);
VFCMULCSH __m128h _mm_maskz_cmul_round_sch (__mmask8 k, __m128h a, __m128h b, const int rounding);
VFCMULCSH __m128h _mm_cmul_sch (__m128h a, __m128h b);
VFCMULCSH __m128h _mm_mask_cmul_sch (__m128h src, __mmask8 k, __m128h a, __m128h b);
VFCMULCSH __m128h _mm_maskz_cmul_sch (__mmask8 k, __m128h a, __m128h b);
VFCMULCSH __m128h _mm_fcmul_round_sch (__m128h a, __m128h b, const int rounding);
VFCMULCSH __m128h _mm_mask_fcmul_round_sch (__m128h src, __mmask8 k, __m128h a, __m128h b, const int rounding);
VFCMULCSH __m128h _mm_maskz_fcmul_round_sch (__mmask8 k, __m128h a, __m128h b, const int rounding);
VFCMULCSH __m128h _mm_fcmul_sch (__m128h a, __m128h b);
VFCMULCSH __m128h _mm_mask_fcmul_sch (__m128h src, __mmask8 k, __m128h a, __m128h b);
VFCMULCSH __m128h _mm_maskz_fcmul_sch (__mmask8 k, __m128h a, __m128h b);

VFMULCSH __m128h _mm_fmul_round_sch (__m128h a, __m128h b, const int rounding);
VFMULCSH __m128h _mm_mask_fmul_round_sch (__m128h src, __mmask8 k, __m128h a, __m128h b, const int rounding);
VFMULCSH __m128h _mm_maskz_fmul_round_sch (__mmask8 k, __m128h a, __m128h b, const int rounding);
VFMULCSH __m128h _mm_fmul_sch (__m128h a, __m128h b);
VFMULCSH __m128h _mm_mask_fmul_sch (__m128h src, __mmask8 k, __m128h a, __m128h b);
VFMULCSH __m128h _mm_maskz_fmul_sch (__mmask8 k, __m128h a, __m128h b);
VFMULCSH __m128h _mm_mask_mul_round_sch (__m128h src, __mmask8 k, __m128h a, __m128h b, const int rounding);
VFMULCSH __m128h _mm_maskz_mul_round_sch (__mmask8 k, __m128h a, __m128h b, const int rounding);
VFMULCSH __m128h _mm_mul_round_sch (__m128h a, __m128h b, const int rounding);
VFMULCSH __m128h _mm_mask_mul_sch (__m128h src, __mmask8 k, __m128h a, __m128h b);
VFMULCSH __m128h _mm_maskz_mul_sch (__mmask8 k, __m128h a, __m128h b);
VFMULCSH __m128h _mm_mul_sch (__m128h a, __m128h b);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-60, “Type E10 Class Exception Conditions.”
Additionally:
#UD If (dest_reg == src1_reg) or (dest_reg == src2_reg).
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VFIXUPIMMPD—Fix Up Special Packed Float64 Values

Instruction Operand Encoding

Description

Perform fix-up of quad-word elements encoded in double precision floating-point format in the first source operand 
(the second operand) using a 32-bit, two-level look-up table specified in the corresponding quadword element of 
the second source operand (the third operand) with exception reporting specifier imm8. The elements that are 
fixed-up are selected by mask bits of 1 specified in the opmask k1. Mask bits of 0 in the opmask k1 or table 
response action of 0000b preserves the corresponding element of the first operand. The fixed-up elements from 
the first source operand and the preserved element in the first operand are combined as the final results in the 
destination operand (the first operand). 
The destination and the first source operands are ZMM/YMM/XMM registers. The second source operand can be a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-
bit memory location.
The two-level look-up table perform a fix-up of each double precision floating-point input data in the first source 
operand by decoding the input data encoding into 8 token types. A response table is defined for each token type 
that converts the input encoding in the first source operand with one of 16 response actions. 
This instruction is specifically intended for use in fixing up the results of arithmetic calculations involving one source 
so that they match the spec, although it is generally useful for fixing up the results of multiple-instruction 
sequences to reflect special-number inputs. For example, consider rcp(0). Input 0 to rcp, and you should get INF 
according to the DX10 spec. However, evaluating rcp via Newton-Raphson, where x=approx(1/0), yields an incor-
rect result. To deal with this, VFIXUPIMMPD can be used after the N-R reciprocal sequence to set the result to the 
correct value (i.e., INF when the input is 0).
If MXCSR.DAZ is not set, denormal input elements in the first source operand are considered as normal inputs and 
do not trigger any fixup nor fault reporting.
Imm8 is used to set the required flags reporting. It supports #ZE and #IE fault reporting (see details below).
MXCSR mask bits are ignored and are treated as if all mask bits are set to masked response). If any of the imm8 
bits is set and the condition met for fault reporting, MXCSR.IE or MXCSR.ZE might be updated.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W1 54 /r ib
VFIXUPIMMPD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Fix up special numbers in float64 vector xmm1, 
float64 vector xmm2 and int64 vector 
xmm3/m128/m64bcst and store the result in 
xmm1, under writemask.

EVEX.256.66.0F3A.W1 54 /r ib
VFIXUPIMMPD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Fix up special numbers in float64 vector ymm1, 
float64 vector ymm2 and int64 vector 
ymm3/m256/m64bcst and store the result in 
ymm1, under writemask.

EVEX.512.66.0F3A.W1 54 /r ib
VFIXUPIMMPD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst{sae}, imm8

A V/V AVX512F 
OR AVX10.11

Fix up elements of float64 vector in zmm2 using 
int64 vector table in zmm3/m512/m64bcst, 
combine with preserved elements from zmm1, 
and store the result in zmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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This instruction is writemasked, so only those elements with the corresponding bit set in vector mask register k1 
are computed and stored into zmm1. Elements in the destination with the corresponding bit clear in k1 retain their 
previous values or are set to 0.

Operation

enum TOKEN_TYPE
{

QNAN_TOKEN := 0,
SNAN_TOKEN := 1,
ZERO_VALUE_TOKEN := 2,
POS_ONE_VALUE_TOKEN := 3,
NEG_INF_TOKEN := 4,
POS_INF_TOKEN := 5,
NEG_VALUE_TOKEN := 6,
POS_VALUE_TOKEN := 7

}

FIXUPIMM_DP (dest[63:0], src1[63:0],tbl3[63:0], imm8 [7:0]){
tsrc[63:0] := ((src1[62:52] = 0) AND (MXCSR.DAZ =1)) ? 0.0 : src1[63:0]
CASE(tsrc[63:0] of TOKEN_TYPE) {

QNAN_TOKEN: j := 0;
SNAN_TOKEN: j := 1;
ZERO_VALUE_TOKEN: j := 2;
POS_ONE_VALUE_TOKEN: j := 3;
NEG_INF_TOKEN: j := 4;
POS_INF_TOKEN: j := 5;
NEG_VALUE_TOKEN: j := 6;
POS_VALUE_TOKEN: j := 7;

} ; end source special CASE(tsrc…)

; The required response from src3 table is extracted
token_response[3:0] = tbl3[3+4*j:4*j];

CASE(token_response[3:0]) {
0000: dest[63:0] := dest[63:0];  ; preserve content of DEST
0001: dest[63:0] := tsrc[63:0];   ; pass through src1 normal input value, denormal as zero
0010: dest[63:0] := QNaN(tsrc[63:0]);
0011: dest[63:0] := QNAN_Indefinite;
0100: dest[63:0] := -INF;
0101: dest[63:0] := +INF;
0110: dest[63:0] := tsrc.sign? –INF : +INF;
0111: dest[63:0] := -0;
1000: dest[63:0] := +0;
1001: dest[63:0] := -1;
1010: dest[63:0] := +1;
1011: dest[63:0] := ½;
1100: dest[63:0] := 90.0;
1101: dest[63:0] := PI/2;
1110: dest[63:0] := MAX_FLOAT;
1111: dest[63:0] := -MAX_FLOAT;

} ; end of token_response CASE

; The required fault reporting from imm8 is extracted
; TOKENs are mutually exclusive and TOKENs priority defines the order.  
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; Multiple faults related to a single token can occur simultaneously.
IF (tsrc[63:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[0] then set #ZE;
IF (tsrc[63:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[1] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[2] then set #ZE;
IF (tsrc[63:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[3] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: SNAN_TOKEN) AND imm8[4] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: NEG_INF_TOKEN) AND imm8[5] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: NEG_VALUE_TOKEN) AND imm8[6] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: POS_INF_TOKEN) AND imm8[7] then set #IE;

; end fault reporting 
return dest[63:0];

} ; end of FIXUPIMM_DP()

VFIXUPIMMPD 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
DEST[i+63:i] := FIXUPIMM_DP(DEST[i+63:i], SRC1[i+63:i], SRC2[63:0], imm8 [7:0])

ELSE 
DEST[i+63:i] := FIXUPIMM_DP(DEST[i+63:i], SRC1[i+63:i], SRC2[i+63:i], imm8 [7:0])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE  DEST[i+63:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

Immediate Control Description:

Figure 1-9.  VFIXUPIMMPD Immediate Control Description

7 6 5 4 3 2 1 0

+ INF  #IE

- INF  #IE

SNaN  #IE

- VE   #IE

ONE   #IE

ONE   #ZE

ZERO  #IE

ZERO  #ZE
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Intel C/C++ Compiler Intrinsic Equivalent

VFIXUPIMMPD __m512d _mm512_fixupimm_pd( __m512d a, __m512d b, __m512i c, int imm8);
VFIXUPIMMPD __m512d _mm512_mask_fixupimm_pd(__m512d a, __mmask8 k, __m512d b, __m512i c, int imm8);
VFIXUPIMMPD __m512d _mm512_maskz_fixupimm_pd( __mmask8 k, __m512d a, __m512d b, __m512i c, int imm8);
VFIXUPIMMPD __m512d _mm512_fixupimm_round_pd( __m512d a, __m512d b, __m512i c, int imm8, int sae);
VFIXUPIMMPD __m512d _mm512_mask_fixupimm_round_pd(__m512d a, __mmask8 k, __m512d b, __m512i c, int imm8, int sae);
VFIXUPIMMPD __m512d _mm512_maskz_fixupimm_round_pd( __mmask8 k, __m512d a, __m512d b, __m512i c, int imm8, int sae);
VFIXUPIMMPD __m256d _mm256_fixupimm_pd( __m256d a, m256d b, __m256i c, int imm8);
VFIXUPIMMPD __m256d _mm256_mask_fixupimm_pd(__m256d a, __mmask8 k, __m256d b, __m256i c, int imm8);
VFIXUPIMMPD __m256d _mm256_maskz_fixupimm_pd( __mmask8 k, __m256d a, __m256d b, __m256i c, int imm8);
VFIXUPIMMPD __m128d _mm_fixupimm_pd( __m128d a, __m128d b, __m128i c, int imm8);
VFIXUPIMMPD __m128d _mm_mask_fixupimm_pd(__m128d a, __mmask8 k, __m128d b, __m128i c, int imm8);
VFIXUPIMMPD __m128d _mm_maskz_fixupimm_pd( __mmask8 k, __m128d a, __m128d b, __m128i c, int imm8);

SIMD Floating-Point Exceptions

Zero, Invalid.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”
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VFIXUPIMMPS—Fix Up Special Packed Float32 Values

Instruction Operand Encoding

Description

Perform fix-up of doubleword elements encoded in single precision floating-point format in the first source operand 
(the second operand) using a 32-bit, two-level look-up table specified in the corresponding doubleword element of 
the second source operand (the third operand) with exception reporting specifier imm8. The elements that are 
fixed-up are selected by mask bits of 1 specified in the opmask k1. Mask bits of 0 in the opmask k1 or table 
response action of 0000b preserves the corresponding element of the first operand. The fixed-up elements from 
the first source operand and the preserved element in the first operand are combined as the final results in the 
destination operand (the first operand). 
The destination and the first source operands are ZMM/YMM/XMM registers. The second source operand can be a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-
bit memory location.
The two-level look-up table perform a fix-up of each single precision floating-point input data in the first source 
operand by decoding the input data encoding into 8 token types. A response table is defined for each token type 
that converts the input encoding in the first source operand with one of 16 response actions. 
This instruction is specifically intended for use in fixing up the results of arithmetic calculations involving one source 
so that they match the spec, although it is generally useful for fixing up the results of multiple-instruction 
sequences to reflect special-number inputs. For example, consider rcp(0). Input 0 to rcp, and you should get INF 
according to the DX10 spec. However, evaluating rcp via Newton-Raphson, where x=approx(1/0), yields an incor-
rect result. To deal with this, VFIXUPIMMPS can be used after the N-R reciprocal sequence to set the result to the 
correct value (i.e., INF when the input is 0).
If MXCSR.DAZ is not set, denormal input elements in the first source operand are considered as normal inputs and 
do not trigger any fixup nor fault reporting.
Imm8 is used to set the required flags reporting. It supports #ZE and #IE fault reporting (see details below).
MXCSR.DAZ is used and refer to zmm2 only (i.e., zmm1 is not considered as zero in case MXCSR.DAZ is set).
MXCSR mask bits are ignored and are treated as if all mask bits are set to masked response). If any of the imm8 
bits is set and the condition met for fault reporting, MXCSR.IE or MXCSR.ZE might be updated.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W0 54 /r
VFIXUPIMMPS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Fix up special numbers in float32 vector xmm1, 
float32 vector xmm2 and int32 vector 
xmm3/m128/m32bcst and store the result in 
xmm1, under writemask.

EVEX.256.66.0F3A.W0 54 /r
VFIXUPIMMPS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Fix up special numbers in float32 vector ymm1, 
float32 vector ymm2 and int32 vector 
ymm3/m256/m32bcst and store the result in 
ymm1, under writemask.

EVEX.512.66.0F3A.W0 54 /r ib
VFIXUPIMMPS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst{sae}, imm8

A V/V AVX512F 
OR AVX10.11

Fix up elements of float32 vector in zmm2 using 
int32 vector table in zmm3/m512/m32bcst, 
combine with preserved elements from zmm1, 
and store the result in zmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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Operation

enum TOKEN_TYPE
{

QNAN_TOKEN := 0,
SNAN_TOKEN := 1,
ZERO_VALUE_TOKEN := 2,
POS_ONE_VALUE_TOKEN := 3,
NEG_INF_TOKEN := 4,
POS_INF_TOKEN := 5,
NEG_VALUE_TOKEN := 6,
POS_VALUE_TOKEN := 7

}

FIXUPIMM_SP ( dest[31:0], src1[31:0],tbl3[31:0], imm8 [7:0]){
tsrc[31:0] := ((src1[30:23] = 0) AND (MXCSR.DAZ =1)) ? 0.0 : src1[31:0]
CASE(tsrc[31:0] of TOKEN_TYPE) {

QNAN_TOKEN: j := 0;
SNAN_TOKEN: j := 1;
ZERO_VALUE_TOKEN: j := 2;
POS_ONE_VALUE_TOKEN: j := 3;
NEG_INF_TOKEN: j := 4;
POS_INF_TOKEN: j := 5;
NEG_VALUE_TOKEN: j := 6;
POS_VALUE_TOKEN: j := 7;

} ; end source special CASE(tsrc…) 

; The required response from src3 table is extracted
token_response[3:0] = tbl3[3+4*j:4*j];

CASE(token_response[3:0]) {
0000: dest[31:0] := dest[31:0];  ; preserve content of DEST
0001: dest[31:0] := tsrc[31:0];   ; pass through src1 normal input value, denormal as zero
0010: dest[31:0] := QNaN(tsrc[31:0]);
0011: dest[31:0] := QNAN_Indefinite;
0100: dest[31:0] := -INF;
0101: dest[31:0] := +INF;
0110: dest[31:0] := tsrc.sign? –INF : +INF;
0111: dest[31:0] := -0;
1000: dest[31:0] := +0;
1001: dest[31:0] := -1;
1010: dest[31:0] := +1;
1011:  dest[31:0] := ½;
1100: dest[31:0] := 90.0;
1101: dest[31:0] := PI/2;
1110: dest[31:0] := MAX_FLOAT;
1111: dest[31:0] := -MAX_FLOAT;

} ; end of token_response CASE 

; The required fault reporting from imm8 is extracted 
; TOKENs are mutually exclusive and TOKENs priority defines the order.  
; Multiple faults related to a single token can occur simultaneously.
IF (tsrc[31:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[0] then set #ZE;
IF (tsrc[31:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[1] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[2] then set #ZE;
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IF (tsrc[31:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[3] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: SNAN_TOKEN) AND imm8[4] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: NEG_INF_TOKEN) AND imm8[5] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: NEG_VALUE_TOKEN) AND imm8[6] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: POS_INF_TOKEN) AND imm8[7] then set #IE;

; end fault reporting 
return dest[31:0];

} ; end of FIXUPIMM_SP()

VFIXUPIMMPS (EVEX)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
DEST[i+31:i] := FIXUPIMM_SP(DEST[i+31:i], SRC1[i+31:i], SRC2[31:0], imm8 [7:0])

ELSE 
DEST[i+31:i] := FIXUPIMM_SP(DEST[i+31:i], SRC1[i+31:i], SRC2[i+31:i], imm8 [7:0])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE  DEST[i+31:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

Immediate Control Description:

Figure 1-10.  VFIXUPIMMPS Immediate Control Description

7 6 5 4 3 2 1 0

+ INF  #IE

- INF  #IE

SNaN  #IE

- VE   #IE

ONE   #IE

ONE   #ZE

ZERO  #IE

ZERO  #ZE
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Intel C/C++ Compiler Intrinsic Equivalent

VFIXUPIMMPS __m512 _mm512_fixupimm_ps( __m512 a, __m512 b, __m512i c, int imm8);
VFIXUPIMMPS __m512 _mm512_mask_fixupimm_ps(__m512 a, __mmask16 k, __m512 b, __m512i c, int imm8);
VFIXUPIMMPS __m512 _mm512_maskz_fixupimm_ps( __mmask16 k, __m512 a, __m512 b, __m512i c, int imm8);
VFIXUPIMMPS __m512 _mm512_fixupimm_round_ps( __m512 a, __m512 b, __m512i c, int imm8, int sae);
VFIXUPIMMPS __m512 _mm512_mask_fixupimm_round_ps(__m512 a, __mmask16 k, __m512 b, __m512i c, int imm8, int sae);
VFIXUPIMMPS __m512 _mm512_maskz_fixupimm_round_ps( __mmask16 k, __m512 a, __m512 b, __m512i c, int imm8, int sae);
VFIXUPIMMPS __m256 _mm256_fixupimm_ps( __m256 a, __m256 b, __m256i c, int imm8);
VFIXUPIMMPS __m256 _mm256_mask_fixupimm_ps(__m256 a, __mmask8 k, __m256 b, __m256i c, int imm8);
VFIXUPIMMPS __m256 _mm256_maskz_fixupimm_ps( __mmask8 k, __m256 a, __m256 b, __m256i c, int imm8);
VFIXUPIMMPS __m128 _mm_fixupimm_ps( __m128 a, __m128 b, __m128i c, int imm8);
VFIXUPIMMPS __m128 _mm_mask_fixupimm_ps(__m128 a, __mmask8 k, __m128 b, __m128i c, int imm8);
VFIXUPIMMPS __m128 _mm_maskz_fixupimm_ps( __mmask8 k, __m128 a, __m128 b, __m128i c, int imm8);

SIMD Floating-Point Exceptions

Zero, Invalid.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”
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VFIXUPIMMSD—Fix Up Special Scalar Float64 Value

Instruction Operand Encoding

Description

Perform a fix-up of the low quadword element encoded in double precision floating-point format in the first source 
operand (the second operand) using a 32-bit, two-level look-up table specified in the low quadword element of the 
second source operand (the third operand) with exception reporting specifier imm8. The element that is fixed-up 
is selected by mask bit of 1 specified in the opmask k1. Mask bit of 0 in the opmask k1 or table response action of 
0000b preserves the corresponding element of the first operand. The fixed-up element from the first source 
operand or the preserved element in the first operand becomes the low quadword element of the destination 
operand (the first operand). Bits 127:64 of the destination operand is copied from the corresponding bits of the 
first source operand. The destination and first source operands are XMM registers. The second source operand can 
be a XMM register or a 64- bit memory location.
The two-level look-up table perform a fix-up of each double precision floating-point input data in the first source 
operand by decoding the input data encoding into 8 token types. A response table is defined for each token type 
that converts the input encoding in the first source operand with one of 16 response actions. 
This instruction is specifically intended for use in fixing up the results of arithmetic calculations involving one source 
so that they match the spec, although it is generally useful for fixing up the results of multiple-instruction 
sequences to reflect special-number inputs. For example, consider rcp(0). Input 0 to rcp, and you should get INF 
according to the DX10 spec. However, evaluating rcp via Newton-Raphson, where x=approx(1/0), yields an incor-
rect result. To deal with this, VFIXUPIMMPD can be used after the N-R reciprocal sequence to set the result to the 
correct value (i.e., INF when the input is 0).
If MXCSR.DAZ is not set, denormal input elements in the first source operand are considered as normal inputs and 
do not trigger any fixup nor fault reporting.
Imm8 is used to set the required flags reporting. It supports #ZE and #IE fault reporting (see details below).
MXCSR.DAZ is used and refer to zmm2 only (i.e., zmm1 is not considered as zero in case MXCSR.DAZ is set).
MXCSR mask bits are ignored and are treated as if all mask bits are set to masked response). If any of the imm8 
bits is set and the condition met for fault reporting, MXCSR.IE or MXCSR.ZE might be updated.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.66.0F3A.W1 55 /r ib
VFIXUPIMMSD xmm1 {k1}{z}, 
xmm2, xmm3/m64{sae}, imm8

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Fix up a float64 number in the low quadword element 
of xmm2 using scalar int32 table in xmm3/m64 and 
store the result in xmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) imm8
VFIXUPIMMSD—Fix Up Special Scalar Float64 Value Vol. 2C 5-207



Operation

enum TOKEN_TYPE
{

QNAN_TOKEN := 0,
SNAN_TOKEN := 1,
ZERO_VALUE_TOKEN := 2,
POS_ONE_VALUE_TOKEN := 3,
NEG_INF_TOKEN := 4,
POS_INF_TOKEN := 5,
NEG_VALUE_TOKEN := 6,
POS_VALUE_TOKEN := 7

}

FIXUPIMM_DP (dest[63:0], src1[63:0],tbl3[63:0], imm8 [7:0]){
tsrc[63:0] := ((src1[62:52] = 0) AND (MXCSR.DAZ =1)) ? 0.0 : src1[63:0]
CASE(tsrc[63:0] of TOKEN_TYPE) {

QNAN_TOKEN: j := 0;
SNAN_TOKEN: j := 1;
ZERO_VALUE_TOKEN: j := 2;
POS_ONE_VALUE_TOKEN: j := 3;
NEG_INF_TOKEN: j := 4;
POS_INF_TOKEN: j := 5;
NEG_VALUE_TOKEN: j := 6;
POS_VALUE_TOKEN: j := 7;

} ; end source special CASE(tsrc…)

; The required response from src3 table is extracted
token_response[3:0] = tbl3[3+4*j:4*j];

CASE(token_response[3:0]) {
0000: dest[63:0] := dest[63:0]  ; preserve content of DEST
0001: dest[63:0] := tsrc[63:0];   ; pass through src1 normal input value, denormal as zero
0010: dest[63:0] := QNaN(tsrc[63:0]);
0011: dest[63:0] := QNAN_Indefinite;
0100:dest[63:0] := -INF;
0101: dest[63:0] := +INF;
0110: dest[63:0] := tsrc.sign? –INF : +INF;
0111: dest[63:0] := -0;
1000: dest[63:0] := +0;
1001: dest[63:0] := -1;
1010: dest[63:0] := +1;
1011: dest[63:0] := ½;
1100: dest[63:0] := 90.0;
1101: dest[63:0] := PI/2;
1110: dest[63:0] := MAX_FLOAT;
1111: dest[63:0] := -MAX_FLOAT;

} ; end of token_response CASE

; The required fault reporting from imm8 is extracted
; TOKENs are mutually exclusive and TOKENs priority defines the order.  
; Multiple faults related to a single token can occur simultaneously.
IF (tsrc[63:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[0] then set #ZE;
IF (tsrc[63:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[1] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[2] then set #ZE;
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IF (tsrc[63:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[3] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: SNAN_TOKEN) AND imm8[4] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: NEG_INF_TOKEN) AND imm8[5] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: NEG_VALUE_TOKEN) AND imm8[6] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: POS_INF_TOKEN) AND imm8[7] then set #IE;

; end fault reporting 
return dest[63:0];

} ; end of FIXUPIMM_DP()

VFIXUPIMMSD (EVEX encoded version)
IF k1[0] OR *no writemask*

THEN DEST[63:0] := FIXUPIMM_DP(DEST[63:0], SRC1[63:0], SRC2[63:0], imm8 [7:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE  DEST[63:0] := 0 ; zeroing-masking

FI
FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

Immediate Control Description:

Intel C/C++ Compiler Intrinsic Equivalent

VFIXUPIMMSD __m128d _mm_fixupimm_sd( __m128d a, __m128d b, __m128i c, int imm8);
VFIXUPIMMSD __m128d _mm_mask_fixupimm_sd(__m128d a, __mmask8 k, __m128d b, __m128i c, int imm8);
VFIXUPIMMSD __m128d _mm_maskz_fixupimm_sd( __mmask8 k, __m128d a, __m128d b, __m128i c, int imm8);
VFIXUPIMMSD __m128d _mm_fixupimm_round_sd( __m128d a, __m128d b, __m128i c, int imm8, int sae);
VFIXUPIMMSD __m128d _mm_mask_fixupimm_round_sd(__m128d a, __mmask8 k, __m128d b, __m128i c, int imm8, int sae);
VFIXUPIMMSD __m128d _mm_maskz_fixupimm_round_sd( __mmask8 k, __m128d a, __m128d b, __m128i c, int imm8, int sae);

SIMD Floating-Point Exceptions

Zero, Invalid

Figure 1-11.  VFIXUPIMMSD Immediate Control Description
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+ INF  #IE

- INF  #IE

SNaN  #IE

- VE   #IE

ONE   #IE

ONE   #ZE

ZERO  #IE

ZERO  #ZE
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Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”
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VFIXUPIMMSS—Fix Up Special Scalar Float32 Value

Instruction Operand Encoding

Description

Perform a fix-up of the low doubleword element encoded in single precision floating-point format in the first source 
operand (the second operand) using a 32-bit, two-level look-up table specified in the low doubleword element of 
the second source operand (the third operand) with exception reporting specifier imm8. The element that is fixed-
up is selected by mask bit of 1 specified in the opmask k1. Mask bit of 0 in the opmask k1 or table response action 
of 0000b preserves the corresponding element of the first operand. The fixed-up element from the first source 
operand or the preserved element in the first operand becomes the low doubleword element of the destination 
operand (the first operand) Bits 127:32 of the destination operand is copied from the corresponding bits of the first 
source operand. The destination and first source operands are XMM registers. The second source operand can be a 
XMM register or a 32-bit memory location.
The two-level look-up table perform a fix-up of each single precision floating-point input data in the first source 
operand by decoding the input data encoding into 8 token types. A response table is defined for each token type 
that converts the input encoding in the first source operand with one of 16 response actions. 
This instruction is specifically intended for use in fixing up the results of arithmetic calculations involving one source 
so that they match the spec, although it is generally useful for fixing up the results of multiple-instruction 
sequences to reflect special-number inputs. For example, consider rcp(0). Input 0 to rcp, and you should get INF 
according to the DX10 spec. However, evaluating rcp via Newton-Raphson, where x=approx(1/0), yields an incor-
rect result. To deal with this, VFIXUPIMMPD can be used after the N-R reciprocal sequence to set the result to the 
correct value (i.e., INF when the input is 0).
If MXCSR.DAZ is not set, denormal input elements in the first source operand are considered as normal inputs and 
do not trigger any fixup nor fault reporting.
Imm8 is used to set the required flags reporting. It supports #ZE and #IE fault reporting (see details below).
MXCSR.DAZ is used and refer to zmm2 only (i.e., zmm1 is not considered as zero in case MXCSR.DAZ is set).
MXCSR mask bits are ignored and are treated as if all mask bits are set to masked response). If any of the imm8 
bits is set and the condition met for fault reporting, MXCSR.IE or MXCSR.ZE might be updated.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.66.0F3A.W0 55 /r ib
VFIXUPIMMSS xmm1 {k1}{z}, xmm2, 
xmm3/m32{sae}, imm8

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Fix up a float32 number in the low doubleword 
element in xmm2 using scalar int32 table in 
xmm3/m32 and store the result in xmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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Operation

enum TOKEN_TYPE
{

QNAN_TOKEN := 0,
SNAN_TOKEN := 1,
ZERO_VALUE_TOKEN := 2,
POS_ONE_VALUE_TOKEN := 3,
NEG_INF_TOKEN := 4,
POS_INF_TOKEN := 5,
NEG_VALUE_TOKEN := 6,
POS_VALUE_TOKEN := 7

}

FIXUPIMM_SP (dest[31:0], src1[31:0],tbl3[31:0], imm8 [7:0]){
tsrc[31:0] := ((src1[30:23] = 0) AND (MXCSR.DAZ =1)) ? 0.0 : src1[31:0]
CASE(tsrc[63:0] of TOKEN_TYPE) {

QNAN_TOKEN: j := 0;
SNAN_TOKEN: j := 1;
ZERO_VALUE_TOKEN: j := 2;
POS_ONE_VALUE_TOKEN: j := 3;
NEG_INF_TOKEN: j := 4;
POS_INF_TOKEN: j := 5;
NEG_VALUE_TOKEN: j := 6;
POS_VALUE_TOKEN: j := 7;

} ; end source special CASE(tsrc…)

; The required response from src3 table is extracted 
token_response[3:0] = tbl3[3+4*j:4*j];

CASE(token_response[3:0]) {
0000: dest[31:0] := dest[31:0];  ; preserve content of DEST
0001: dest[31:0] := tsrc[31:0];   ; pass through src1 normal input value, denormal as zero
0010: dest[31:0] := QNaN(tsrc[31:0]);
0011: dest[31:0] := QNAN_Indefinite;
0100: dest[31:0] := -INF;
0101: dest[31:0] := +INF;
0110: dest[31:0] := tsrc.sign? –INF : +INF;
0111: dest[31:0] := -0;
1000: dest[31:0] := +0;
1001: dest[31:0] := -1;
1010: dest[31:0] := +1;
1011: dest[31:0] := ½;
1100: dest[31:0] := 90.0;
1101: dest[31:0] := PI/2;
1110: dest[31:0] := MAX_FLOAT;
1111: dest[31:0] := -MAX_FLOAT;

} ; end of token_response CASE 

; The required fault reporting from imm8 is extracted 
; TOKENs are mutually exclusive and TOKENs priority defines the order.  
; Multiple faults related to a single token can occur simultaneously.
IF (tsrc[31:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[0] then set #ZE;
IF (tsrc[31:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[1] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[2] then set #ZE;
VFIXUPIMMSS—Fix Up Special Scalar Float32 Value Vol. 2C 5-212



IF (tsrc[31:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[3] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: SNAN_TOKEN) AND imm8[4] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: NEG_INF_TOKEN) AND imm8[5] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: NEG_VALUE_TOKEN) AND imm8[6] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: POS_INF_TOKEN) AND imm8[7] then set #IE;

; end fault reporting 
return dest[31:0];

} ; end of FIXUPIMM_SP()

VFIXUPIMMSS (EVEX encoded version)
IF k1[0] OR *no writemask*

THEN DEST[31:0] := FIXUPIMM_SP(DEST[31:0], SRC1[31:0], SRC2[31:0], imm8 [7:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE  DEST[31:0] := 0 ; zeroing-masking

FI
FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

Immediate Control Description:

Intel C/C++ Compiler Intrinsic Equivalent

VFIXUPIMMSS __m128 _mm_fixupimm_ss( __m128 a, __m128 b, __m128i c, int imm8);
VFIXUPIMMSS __m128 _mm_mask_fixupimm_ss(__m128 a, __mmask8 k, __m128 b, __m128i c, int imm8);
VFIXUPIMMSS __m128 _mm_maskz_fixupimm_ss( __mmask8 k, __m128 a, __m128 b, __m128i c, int imm8);
VFIXUPIMMSS __m128 _mm_fixupimm_round_ss( __m128 a, __m128 b, __m128i c, int imm8, int sae);
VFIXUPIMMSS __m128 _mm_mask_fixupimm_round_ss(__m128 a, __mmask8 k, __m128 b, __m128i c, int imm8, int sae);
VFIXUPIMMSS __m128 _mm_maskz_fixupimm_round_ss( __mmask8 k, __m128 a, __m128 b, __m128i c, int imm8, int sae);

Figure 1-12.  VFIXUPIMMSS Immediate Control Description

7 6 5 4 3 2 1 0

+ INF  #IE

- INF  #IE

SNaN  #IE

- VE   #IE

ONE   #IE

ONE   #ZE

ZERO  #IE

ZERO  #ZE
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SIMD Floating-Point Exceptions

Zero, Invalid

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”
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VFMADD132PD/VFMADD213PD/VFMADD231PD—Fused Multiply-Add of Packed Double 
Precision Floating-Point Values

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W1 98 /r 
VFMADD132PD xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed double precision floating-point 
values from xmm1 and xmm3/mem, add to 
xmm2 and put result in xmm1.

VEX.128.66.0F38.W1 A8 /r 
VFMADD213PD xmm1, xmm2, 
xmm3/m128 

A V/V FMA Multiply packed double precision floating-point 
values from xmm1 and xmm2, add to 
xmm3/mem and put result in xmm1.

VEX.128.66.0F38.W1 B8 /r 
VFMADD231PD xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed double precision floating-point 
values from xmm2 and xmm3/mem, add to 
xmm1 and put result in xmm1.

VEX.256.66.0F38.W1 98 /r
VFMADD132PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double precision floating-point 
values from ymm1 and ymm3/mem, add to 
ymm2 and put result in ymm1.

VEX.256.66.0F38.W1 A8 /r 
VFMADD213PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double precision floating-point 
values from ymm1 and ymm2, add to 
ymm3/mem and put result in ymm1.

VEX.256.66.0F38.W1 B8 /r 
VFMADD231PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double precision floating-point 
values from ymm2 and ymm3/mem, add to 
ymm1 and put result in ymm1.

EVEX.128.66.0F38.W1 98 /r 
VFMADD132PD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from xmm1 and xmm3/m128/m64bcst, 
add to xmm2 and put result in xmm1.

EVEX.128.66.0F38.W1 A8 /r 
VFMADD213PD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from xmm1 and xmm2, add to 
xmm3/m128/m64bcst and put result in xmm1.

EVEX.128.66.0F38.W1 B8 /r 
VFMADD231PD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from xmm2 and xmm3/m128/m64bcst, 
add to xmm1 and put result in xmm1.

EVEX.256.66.0F38.W1 98 /r 
VFMADD132PD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from ymm1 and ymm3/m256/m64bcst, 
add to ymm2 and put result in ymm1.

EVEX.256.66.0F38.W1 A8 /r 
VFMADD213PD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from ymm1 and ymm2, add to 
ymm3/m256/m64bcst and put result in ymm1.

EVEX.256.66.0F38.W1 B8 /r 
VFMADD231PD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from ymm2 and ymm3/m256/m64bcst, 
add to ymm1 and put result in ymm1.

EVEX.512.66.0F38.W1 98 /r 
VFMADD132PD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point 
values from zmm1 and zmm3/m512/m64bcst, 
add to zmm2 and put result in zmm1.

EVEX.512.66.0F38.W1 A8 /r 
VFMADD213PD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point 
values from zmm1 and zmm2, add to 
zmm3/m512/m64bcst and put result in zmm1.

EVEX.512.66.0F38.W1 B8 /r 
VFMADD231PD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point 
values from zmm2 and zmm3/m512/m64bcst, 
add to zmm1 and put result in zmm1.
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Instruction Operand Encoding

Description

Performs a set of SIMD multiply-add computation on packed double precision floating-point values using three 
source operands and writes the multiply-add results in the destination operand. The destination operand is also the 
first source operand. The second operand must be a SIMD register. The third source operand can be a SIMD 
register or a memory location. 
VFMADD132PD: Multiplies the two, four or eight packed double precision floating-point values from the first source 
operand to the two, four or eight packed double precision floating-point values in the third source operand, adds 
the infinite precision intermediate result to the two, four or eight packed double precision floating-point values in 
the second source operand, performs rounding and stores the resulting two, four or eight packed double precision 
floating-point values to the destination operand (first source operand).
VFMADD213PD: Multiplies the two, four or eight packed double precision floating-point values from the second 
source operand to the two, four or eight packed double precision floating-point values in the first source operand, 
adds the infinite precision intermediate result to the two, four or eight packed double precision floating-point 
values in the third source operand, performs rounding and stores the resulting two, four or eight packed double 
precision floating-point values to the destination operand (first source operand).
VFMADD231PD: Multiplies the two, four or eight packed double precision floating-point values from the second 
source to the two, four or eight packed double precision floating-point values in the third source operand, adds the 
infinite precision intermediate result to the two, four or eight packed double precision floating-point values in the 
first source operand, performs rounding and stores the resulting two, four or eight packed double precision 
floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) is a ZMM register and encoded in 
reg_field. The second source operand is a ZMM register and encoded in EVEX.vvvv. The third source operand is a 
ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 64-bit memory location. The 
destination operand is conditionally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no 
rounding).

VFMADD132PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 64*i;
DEST[n+63:n] := RoundFPControl_MXCSR(DEST[n+63:n]*SRC3[n+63:n] + SRC2[n+63:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFMADD213PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 64*i;
DEST[n+63:n] := RoundFPControl_MXCSR(SRC2[n+63:n]*DEST[n+63:n] + SRC3[n+63:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFMADD231PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 64*i;
DEST[n+63:n] := RoundFPControl_MXCSR(SRC2[n+63:n]*SRC3[n+63:n] + DEST[n+63:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI
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VFMADD132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := 
RoundFPControl(DEST[i+63:i]*SRC3[i+63:i] + SRC2[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADD132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[63:0] + SRC2[i+63:i])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[i+63:i] + SRC2[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VFMADD213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := 
RoundFPControl(SRC2[i+63:i]*DEST[i+63:i] + SRC3[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADD213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] + SRC3[63:0])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] + SRC3[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VFMADD231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := 
RoundFPControl(SRC2[i+63:i]*SRC3[i+63:i] + DEST[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADD231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[63:0] + DEST[i+63:i])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[i+63:i] + DEST[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VFMADDxxxPD __m512d _mm512_fmadd_pd(__m512d a, __m512d b, __m512d c);
VFMADDxxxPD __m512d _mm512_fmadd_round_pd(__m512d a, __m512d b, __m512d c, int r);
VFMADDxxxPD __m512d _mm512_mask_fmadd_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
VFMADDxxxPD __m512d _mm512_maskz_fmadd_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
VFMADDxxxPD __m512d _mm512_mask3_fmadd_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
VFMADDxxxPD __m512d _mm512_mask_fmadd_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d c, int r);
VFMADDxxxPD __m512d _mm512_maskz_fmadd_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d c, int r);
VFMADDxxxPD __m512d _mm512_mask3_fmadd_round_pd(__m512d a, __m512d b, __m512d c, __mmask8 k, int r);
VFMADDxxxPD __m256d _mm256_mask_fmadd_pd(__m256d a, __mmask8 k, __m256d b, __m256d c);
VFMADDxxxPD __m256d _mm256_maskz_fmadd_pd(__mmask8 k, __m256d a, __m256d b, __m256d c);
VFMADDxxxPD __m256d _mm256_mask3_fmadd_pd(__m256d a, __m256d b, __m256d c, __mmask8 k);
VFMADDxxxPD __m128d _mm_mask_fmadd_pd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFMADDxxxPD __m128d _mm_maskz_fmadd_pd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFMADDxxxPD __m128d _mm_mask3_fmadd_pd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFMADDxxxPD __m128d _mm_fmadd_pd (__m128d a, __m128d b, __m128d c);
VFMADDxxxPD __m256d _mm256_fmadd_pd (__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VF[,N]MADD[132,213,231]PH—Fused Multiply-Add of Packed FP16 Values
Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.MAP6.W0 98 /r
VFMADD132PH xmm1{k1}{z}, xmm2, 
xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from xmm1 and 
xmm3/m128/m16bcst, add to xmm2, and store 
the result in xmm1.

EVEX.256.66.MAP6.W0 98 /r
VFMADD132PH ymm1{k1}{z}, ymm2, 
ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from ymm1 and 
ymm3/m256/m16bcst, add to ymm2, and store 
the result in ymm1.

EVEX.512.66.MAP6.W0 98 /r
VFMADD132PH zmm1{k1}{z}, zmm2, 
zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values from zmm1 and 
zmm3/m512/m16bcst, add to zmm2, and store 
the result in zmm1.

EVEX.128.66.MAP6.W0 A8 /r
VFMADD213PH xmm1{k1}{z}, xmm2, 
xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from xmm1 and 
xmm2, add to xmm3/m128/m16bcst, and store 
the result in xmm1.

EVEX.256.66.MAP6.W0 A8 /r
VFMADD213PH ymm1{k1}{z}, ymm2, 
ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from ymm1 and 
ymm2, add to ymm3/m256/m16bcst, and store 
the result in ymm1.

EVEX.512.66.MAP6.W0 A8 /r
VFMADD213PH zmm1{k1}{z}, zmm2, 
zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values from zmm1 and 
zmm2, add to zmm3/m512/m16bcst, and store 
the result in zmm1.

EVEX.128.66.MAP6.W0 B8 /r
VFMADD231PH xmm1{k1}{z}, xmm2, 
xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from xmm2 and 
xmm3/m128/m16bcst, add to xmm1, and store 
the result in xmm1.

EVEX.256.66.MAP6.W0 B8 /r
VFMADD231PH ymm1{k1}{z}, ymm2, 
ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from ymm2 and 
ymm3/m256/m16bcst, add to ymm1, and store 
the result in ymm1.

EVEX.512.66.MAP6.W0 B8 /r
VFMADD231PH zmm1{k1}{z}, zmm2, 
zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values from zmm2 and 
zmm3/m512/m16bcst, add to zmm1, and store 
the result in zmm1.

EVEX.128.66.MAP6.W0 9C /r
VFNMADD132PH xmm1{k1}{z}, 
xmm2, xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from xmm1 and 
xmm3/m128/m16bcst, and negate the value. 
Add this value to xmm2, and store the result in 
xmm1.

EVEX.256.66.MAP6.W0 9C /r
VFNMADD132PH ymm1{k1}{z}, 
ymm2, ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from ymm1 and 
ymm3/m256/m16bcst, and negate the value. 
Add this value to ymm2, and store the result in 
ymm1.

EVEX.512.66.MAP6.W0 9C /r
VFNMADD132PH zmm1{k1}{z}, 
zmm2, zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values from zmm1 and 
zmm3/m512/m16bcst, and negate the value. 
Add this value to zmm2, and store the result in 
zmm1.

EVEX.128.66.MAP6.W0 AC /r
VFNMADD213PH xmm1{k1}{z}, 
xmm2, xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from xmm1 and 
xmm2, and negate the value. Add this value to 
xmm3/m128/m16bcst, and store the result in 
xmm1.

EVEX.256.66.MAP6.W0 AC /r
VFNMADD213PH ymm1{k1}{z}, 
ymm2, ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from ymm1 and 
ymm2, and negate the value. Add this value to 
ymm3/m256/m16bcst, and store the result in 
ymm1.
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Instruction Operand Encoding

Description

This instruction performs a packed multiply-add or negated multiply-add computation on FP16 values using three 
source operands and writes the results in the destination operand. The destination operand is also the first source 
operand. The “N” (negated) forms of this instruction add the negated infinite precision intermediate product to the 
corresponding remaining operand. The notation’ “132”, “213” and “231” indicate the use of the operands in ±A * B 
+ C, where each digit corresponds to the operand number, with the destination being operand 1; see Table 1-3.
The destination elements are updated according to the writemask.

EVEX.512.66.MAP6.W0 AC /r
VFNMADD213PH zmm1{k1}{z}, 
zmm2, zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values from zmm1 and 
zmm2, and negate the value. Add this value to 
zmm3/m512/m16bcst, and store the result in 
zmm1.

EVEX.128.66.MAP6.W0 BC /r
VFNMADD231PH xmm1{k1}{z}, 
xmm2, xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from xmm2 and 
xmm3/m128/m16bcst, and negate the value. 
Add this value to xmm1, and store the result in 
xmm1.

EVEX.256.66.MAP6.W0 BC /r
VFNMADD231PH ymm1{k1}{z}, 
ymm2, ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from ymm2 and 
ymm3/m256/m16bcst, and negate the value. 
Add this value to ymm1, and store the result in 
ymm1.

EVEX.512.66.MAP6.W0 BC /r
VFNMADD231PH zmm1{k1}{z}, 
zmm2, zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values from zmm2 and 
zmm3/m512/m16bcst, and negate the value. 
Add this value to zmm1, and store the result in 
zmm1.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

Table 1-3.  VF[,N]MADD[132,213,231]PH Notation for Operands

Notation Operands

132 dest = ± dest*src3+src2

231 dest = ± src2*src3+dest

213 dest = ± src2*dest+src3

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description
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Operation

VF[,N]MADD132PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a register
VL = 128, 256 or 512
KL := VL/16

IF (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *negative form*:
DEST.fp16[j] := RoundFPControl(-DEST.fp16[j]*SRC3.fp16[j] + SRC2.fp16[j])

ELSE:
DEST.fp16[j] := RoundFPControl(DEST.fp16[j]*SRC3.fp16[j] + SRC2.fp16[j])

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0

VF[,N]MADD132PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a memory source 
VL = 128, 256 or 512
KL := VL/16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF EVEX.b = 1:
t3 := SRC3.fp16[0]

ELSE:
t3 := SRC3.fp16[j]

IF *negative form*:
DEST.fp16[j] := RoundFPControl(-DEST.fp16[j] * t3 + SRC2.fp16[j])

ELSE:
DEST.fp16[j] := RoundFPControl(DEST.fp16[j] * t3 + SRC2.fp16[j])

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0 
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VF[,N]MADD213PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a register
VL = 128, 256 or 512
KL := VL/16

IF (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *negative form*:
DEST.fp16[j] := RoundFPControl(-SRC2.fp16[j]*DEST.fp16[j] + SRC3.fp16[j])

ELSE
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j]*DEST.fp16[j] + SRC3.fp16[j])

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0

VF[,N]MADD213PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a memory source 
VL = 128, 256 or 512
KL := VL/16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF EVEX.b = 1:
t3 := SRC3.fp16[0]

ELSE:
t3 := SRC3.fp16[j]

IF *negative form*:
DEST.fp16[j] := RoundFPControl(-SRC2.fp16[j] * DEST.fp16[j] + t3 )

ELSE:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j] * DEST.fp16[j] + t3 )

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0 
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VF[,N]MADD231PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a register
VL = 128, 256 or 512
KL := VL/16

IF (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *negative form:
DEST.fp16[j] := RoundFPControl(-SRC2.fp16[j]*SRC3.fp16[j] + DEST.fp16[j])

ELSE:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j]*SRC3.fp16[j] + DEST.fp16[j])

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

VF[,N]MADD231PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a memory source 
VL = 128, 256 or 512
KL := VL/16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF EVEX.b = 1:
t3 := SRC3.fp16[0]

ELSE:
t3 := SRC3.fp16[j]

IF *negative form*:
DEST.fp16[j] := RoundFPControl(-SRC2.fp16[j] * t3 + DEST.fp16[j] )

ELSE:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j] * t3 + DEST.fp16[j] )

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VFMADD132PH, VFMADD213PH , and VFMADD231PH:
__m128h _mm_fmadd_ph (__m128h a, __m128h b, __m128h c);
__m128h _mm_mask_fmadd_ph (__m128h a, __mmask8 k, __m128h b, __m128h c);
__m128h _mm_mask3_fmadd_ph (__m128h a, __m128h b, __m128h c, __mmask8 k);
__m128h _mm_maskz_fmadd_ph (__mmask8 k, __m128h a, __m128h b, __m128h c);
__m256h _mm256_fmadd_ph (__m256h a, __m256h b, __m256h c);
__m256h _mm256_mask_fmadd_ph (__m256h a, __mmask16 k, __m256h b, __m256h c);
__m256h _mm256_mask3_fmadd_ph (__m256h a, __m256h b, __m256h c, __mmask16 k);
__m256h _mm256_maskz_fmadd_ph (__mmask16 k, __m256h a, __m256h b, __m256h c);
__m512h _mm512_fmadd_ph (__m512h a, __m512h b, __m512h c);
__m512h _mm512_mask_fmadd_ph (__m512h a, __mmask32 k, __m512h b, __m512h c);
__m512h _mm512_mask3_fmadd_ph (__m512h a, __m512h b, __m512h c, __mmask32 k);
__m512h _mm512_maskz_fmadd_ph (__mmask32 k, __m512h a, __m512h b, __m512h c);
__m512h _mm512_fmadd_round_ph (__m512h a, __m512h b, __m512h c, const int rounding);
__m512h _mm512_mask_fmadd_round_ph (__m512h a, __mmask32 k, __m512h b, __m512h c, const int rounding);
__m512h _mm512_mask3_fmadd_round_ph (__m512h a, __m512h b, __m512h c, __mmask32 k, const int rounding);
__m512h _mm512_maskz_fmadd_round_ph (__mmask32 k, __m512h a, __m512h b, __m512h c, const int rounding);

VFNMADD132PH, VFNMADD213PH, and VFNMADD231PH:
__m128h _mm_fnmadd_ph (__m128h a, __m128h b, __m128h c);
__m128h _mm_mask_fnmadd_ph (__m128h a, __mmask8 k, __m128h b, __m128h c);
__m128h _mm_mask3_fnmadd_ph (__m128h a, __m128h b, __m128h c, __mmask8 k);
__m128h _mm_maskz_fnmadd_ph (__mmask8 k, __m128h a, __m128h b, __m128h c);
__m256h _mm256_fnmadd_ph (__m256h a, __m256h b, __m256h c);
__m256h _mm256_mask_fnmadd_ph (__m256h a, __mmask16 k, __m256h b, __m256h c);
__m256h _mm256_mask3_fnmadd_ph (__m256h a, __m256h b, __m256h c, __mmask16 k);
__m256h _mm256_maskz_fnmadd_ph (__mmask16 k, __m256h a, __m256h b, __m256h c);
__m512h _mm512_fnmadd_ph (__m512h a, __m512h b, __m512h c);
__m512h _mm512_mask_fnmadd_ph (__m512h a, __mmask32 k, __m512h b, __m512h c);
__m512h _mm512_mask3_fnmadd_ph (__m512h a, __m512h b, __m512h c, __mmask32 k);
__m512h _mm512_maskz_fnmadd_ph (__mmask32 k, __m512h a, __m512h b, __m512h c);
__m512h _mm512_fnmadd_round_ph (__m512h a, __m512h b, __m512h c, const int rounding);
__m512h _mm512_mask_fnmadd_round_ph (__m512h a, __mmask32 k, __m512h b, __m512h c, const int rounding);
__m512h _mm512_mask3_fnmadd_round_ph (__m512h a, __m512h b, __m512h c, __mmask32 k, const int rounding);
__m512h _mm512_maskz_fnmadd_round_ph (__mmask32 k, __m512h a, __m512h b, __m512h c, const int rounding);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VFMADD132PS/VFMADD213PS/VFMADD231PS—Fused Multiply-Add of Packed Single 
Precision Floating-Point Values

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 98 /r 
VFMADD132PS xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed single precision floating-point 
values from xmm1 and xmm3/mem, add to 
xmm2 and put result in xmm1.

VEX.128.66.0F38.W0 A8 /r 
VFMADD213PS xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed single precision floating-point 
values from xmm1 and xmm2, add to 
xmm3/mem and put result in xmm1.

VEX.128.66.0F38.W0 B8 /r 
VFMADD231PS xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed single precision floating-point 
values from xmm2 and xmm3/mem, add to 
xmm1 and put result in xmm1.

VEX.256.66.0F38.W0 98 /r 
VFMADD132PS ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed single precision floating-point 
values from ymm1 and ymm3/mem, add to 
ymm2 and put result in ymm1.

VEX.256.66.0F38.W0 A8 /r 
VFMADD213PS ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed single precision floating-point 
values from ymm1 and ymm2, add to 
ymm3/mem and put result in ymm1.

VEX.256.66.0F38.0 B8 /r 
VFMADD231PS ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed single precision floating-point 
values from ymm2 and ymm3/mem, add to 
ymm1 and put result in ymm1.

EVEX.128.66.0F38.W0 98 /r 
VFMADD132PS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

B V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Multiply packed single precision floating-point 
values from xmm1 and xmm3/m128/m32bcst, 
add to xmm2 and put result in xmm1.

EVEX.128.66.0F38.W0 A8 /r 
VFMADD213PS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

B V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Multiply packed single precision floating-point 
values from xmm1 and xmm2, add to 
xmm3/m128/m32bcst and put result in xmm1.

EVEX.128.66.0F38.W0 B8 /r 
VFMADD231PS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

B V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Multiply packed single precision floating-point 
values from xmm2 and xmm3/m128/m32bcst, 
add to xmm1 and put result in xmm1.

EVEX.256.66.0F38.W0 98 /r 
VFMADD132PS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

B V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Multiply packed single precision floating-point 
values from ymm1 and ymm3/m256/m32bcst, 
add to ymm2 and put result in ymm1.

EVEX.256.66.0F38.W0 A8 /r 
VFMADD213PS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

B V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Multiply packed single precision floating-point 
values from ymm1 and ymm2, add to 
ymm3/m256/m32bcst and put result in ymm1.

EVEX.256.66.0F38.W0 B8 /r 
VFMADD231PS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

B V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Multiply packed single precision floating-point 
values from ymm2 and ymm3/m256/m32bcst, 
add to ymm1 and put result in ymm1.

EVEX.512.66.0F38.W0 98 /r 
VFMADD132PS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed single precision floating-point 
values from zmm1 and zmm3/m512/m32bcst, 
add to zmm2 and put result in zmm1.

EVEX.512.66.0F38.W0 A8 /r 
VFMADD213PS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed single precision floating-point 
values from zmm1 and zmm2, add to 
zmm3/m512/m32bcst and put result in zmm1.

EVEX.512.66.0F38.W0 B8 /r 
VFMADD231PS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed single precision floating-point 
values from zmm2 and zmm3/m512/m32bcst, 
add to zmm1 and put result in zmm1.
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at 
nd 
Instruction Operand Encoding

Description

Performs a set of SIMD multiply-add computation on packed single precision floating-point values using three 
source operands and writes the multiply-add results in the destination operand. The destination operand is also the 
first source operand. The second operand must be a SIMD register. The third source operand can be a SIMD 
register or a memory location. 
VFMADD132PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the first 
source operand to the four, eight or sixteen packed single precision floating-point values in the third source 
operand, adds the infinite precision intermediate result to the four, eight or sixteen packed single precision floating-
point values in the second source operand, performs rounding and stores the resulting four, eight or sixteen packed 
single precision floating-point values to the destination operand (first source operand).
VFMADD213PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the second 
source operand to the four, eight or sixteen packed single precision floating-point values in the first source 
operand, adds the infinite precision intermediate result to the four, eight or sixteen packed single precision floating-
point values in the third source operand, performs rounding and stores the resulting the four, eight or sixteen 
packed single precision floating-point values to the destination operand (first source operand).
VFMADD231PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the second 
source operand to the four, eight or sixteen packed single precision floating-point values in the third source 
operand, adds the infinite precision intermediate result to the four, eight or sixteen packed single precision floating-
point values in the first source operand, performs rounding and stores the resulting four, eight or sixteen packed 
single precision floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) is a ZMM register and encoded in 
reg_field. The second source operand is a ZMM register and encoded in EVEX.vvvv. The third source operand is a 
ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit memory location. The 
destination operand is conditionally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

Operation

In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no 
rounding).

VFMADD132PS DEST, SRC2, SRC3 
IF (VEX.128) THEN 

MAXNUM := 4
ELSEIF (VEX.256)

MAXNUM := 8

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the processor 

run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector width a
as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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FI
For i = 0 to MAXNUM-1 {

n := 32*i;
DEST[n+31:n] := RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] + SRC2[n+31:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFMADD213PS DEST, SRC2, SRC3 
IF (VEX.128) THEN 

MAXNUM := 4
ELSEIF (VEX.256)

MAXNUM := 8
FI
For i = 0 to MAXNUM-1 {

n := 32*i;
DEST[n+31:n] := RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] + SRC3[n+31:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFMADD231PS DEST, SRC2, SRC3 
IF (VEX.128) THEN 

MAXNUM := 4
ELSEIF (VEX.256)

MAXNUM := 8
FI
For i = 0 to MAXNUM-1 {

n := 32*i;
DEST[n+31:n] := RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] + DEST[n+31:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFMADD132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*
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THEN DEST[i+31:i] := 
RoundFPControl(DEST[i+31:i]*SRC3[i+31:i] + SRC2[i+31:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADD132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[31:0] + SRC2[i+31:i])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[i+31:i] + SRC2[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADD213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := 
RoundFPControl(SRC2[i+31:i]*DEST[i+31:i] + SRC3[i+31:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
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DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADD213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] + SRC3[31:0])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] + SRC3[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADD231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := 
RoundFPControl(SRC2[i+31:i]*SRC3[i+31:i] + DEST[i+31:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VFMADD231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[31:0] + DEST[i+31:i])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] + DEST[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMADDxxxPS __m512 _mm512_fmadd_ps(__m512 a, __m512 b, __m512 c);
VFMADDxxxPS __m512 _mm512_fmadd_round_ps(__m512 a, __m512 b, __m512 c, int r);
VFMADDxxxPS __m512 _mm512_mask_fmadd_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
VFMADDxxxPS __m512 _mm512_maskz_fmadd_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);
VFMADDxxxPS __m512 _mm512_mask3_fmadd_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);
VFMADDxxxPS __m512 _mm512_mask_fmadd_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int r);
VFMADDxxxPS __m512 _mm512_maskz_fmadd_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c, int r);
VFMADDxxxPS __m512 _mm512_mask3_fmadd_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k, int r);
VFMADDxxxPS __m256 _mm256_mask_fmadd_ps(__m256 a, __mmask8 k, __m256 b, __m256 c);
VFMADDxxxPS __m256 _mm256_maskz_fmadd_ps(__mmask8 k, __m256 a, __m256 b, __m256 c);
VFMADDxxxPS __m256 _mm256_mask3_fmadd_ps(__m256 a, __m256 b, __m256 c, __mmask8 k);
VFMADDxxxPS __m128 _mm_mask_fmadd_ps(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFMADDxxxPS __m128 _mm_maskz_fmadd_ps(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFMADDxxxPS __m128 _mm_mask3_fmadd_ps(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFMADDxxxPS __m128 _mm_fmadd_ps (__m128 a, __m128 b, __m128 c);
VFMADDxxxPS __m256 _mm256_fmadd_ps (__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VFMADD132SD/VFMADD213SD/VFMADD231SD—Fused Multiply-Add of Scalar Double 
Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply-add computation on the low double precision floating-point values using three source 
operands and writes the multiply-add result in the destination operand. The destination operand is also the first 
source operand. The first and second operand are XMM registers. The third source operand can be an XMM register 
or a 64-bit memory location. 
VFMADD132SD: Multiplies the low double precision floating-point value from the first source operand to the low 
double precision floating-point value in the third source operand, adds the infinite precision intermediate result to 
the low double precision floating-point values in the second source operand, performs rounding and stores the 
resulting double precision floating-point value to the destination operand (first source operand).
VFMADD213SD: Multiplies the low double precision floating-point value from the second source operand to the low 
double precision floating-point value in the first source operand, adds the infinite precision intermediate result to 
the low double precision floating-point value in the third source operand, performs rounding and stores the 
resulting double precision floating-point value to the destination operand (first source operand).
VFMADD231SD: Multiplies the low double precision floating-point value from the second source to the low double 
precision floating-point value in the third source operand, adds the infinite precision intermediate result to the low 
double precision floating-point value in the first source operand, performs rounding and stores the resulting double 
precision floating-point value to the destination operand (first source operand).

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID 
Feature Flag

Description

VEX.LIG.66.0F38.W1 99 /r 
VFMADD132SD xmm1, xmm2, 
xmm3/m64

A V/V FMA Multiply scalar double precision floating-point 
value from xmm1 and xmm3/m64, add to xmm2 
and put result in xmm1.

VEX.LIG.66.0F38.W1 A9 /r 
VFMADD213SD xmm1, xmm2, 
xmm3/m64

A V/V FMA Multiply scalar double precision floating-point 
value from xmm1 and xmm2, add to xmm3/m64 
and put result in xmm1.

VEX.LIG.66.0F38.W1 B9 /r
VFMADD231SD xmm1, xmm2, 
xmm3/m64

A V/V FMA Multiply scalar double precision floating-point 
value from xmm2 and xmm3/m64, add to xmm1 
and put result in xmm1.

EVEX.LLIG.66.0F38.W1 99 /r 
VFMADD132SD xmm1 {k1}{z}, xmm2, 
xmm3/m64{er}

B V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply scalar double precision floating-point 
value from xmm1 and xmm3/m64, add to xmm2 
and put result in xmm1.

EVEX.LLIG.66.0F38.W1 A9 /r 
VFMADD213SD xmm1 {k1}{z}, xmm2, 
xmm3/m64{er} 

B V/V AVX512F
OR AVX10.11

Multiply scalar double precision floating-point 
value from xmm1 and xmm2, add to xmm3/m64 
and put result in xmm1.

EVEX.LLIG.66.0F38.W1 B9 /r 
VFMADD231SD xmm1 {k1}{z}, xmm2, 
xmm3/m64{er}

B V/V AVX512F
OR AVX10.11

Multiply scalar double precision floating-point 
value from xmm2 and xmm3/m64, add to xmm1 
and put result in xmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Tuple1 Scalar ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field. 
The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field. 
Bits 127:64 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination is updated according to the writemask.

Operation

In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no 
rounding).

VFMADD132SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[63:0] := RoundFPControl(DEST[63:0]*SRC3[63:0] + SRC2[63:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0

VFMADD213SD DEST, SRC2, SRC3 (EVEX encoded version) 
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[63:0] := RoundFPControl(SRC2[63:0]*DEST[63:0] + SRC3[63:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0
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VFMADD231SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[63:0] := RoundFPControl(SRC2[63:0]*SRC3[63:0] + DEST[63:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0

VFMADD132SD DEST, SRC2, SRC3 (VEX encoded version) 
DEST[63:0] := MAXVL-1:128RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] + SRC2[63:0])
DEST[127:63] := DEST[127:63]
DEST[MAXVL-1:128] := 0

VFMADD213SD DEST, SRC2, SRC3 (VEX encoded version) 
DEST[63:0] := RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] + SRC3[63:0])
DEST[127:63] := DEST[127:63]
DEST[MAXVL-1:128] := 0

VFMADD231SD DEST, SRC2, SRC3 (VEX encoded version) 
DEST[63:0] := RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] + DEST[63:0])
DEST[127:63] := DEST[127:63]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMADDxxxSD __m128d _mm_fmadd_round_sd(__m128d a, __m128d b, __m128d c, int r);
VFMADDxxxSD __m128d _mm_mask_fmadd_sd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFMADDxxxSD __m128d _mm_maskz_fmadd_sd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFMADDxxxSD __m128d _mm_mask3_fmadd_sd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFMADDxxxSD __m128d _mm_mask_fmadd_round_sd(__m128d a, __mmask8 k, __m128d b, __m128d c, int r);
VFMADDxxxSD __m128d _mm_maskz_fmadd_round_sd(__mmask8 k, __m128d a, __m128d b, __m128d c, int r);
VFMADDxxxSD __m128d _mm_mask3_fmadd_round_sd(__m128d a, __m128d b, __m128d c, __mmask8 k, int r);
VFMADDxxxSD __m128d _mm_fmadd_sd (__m128d a, __m128d b, __m128d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VF[,N]MADD[132,213,231]SH—Fused Multiply-Add of Scalar FP16 Values

Instruction Operand Encoding

Description

Performs a scalar multiply-add or negated multiply-add computation on the low FP16 values using three source 
operands and writes the result in the destination operand. The destination operand is also the first source operand. 
The “N” (negated) forms of this instruction add the negated infinite precision intermediate product to the corre-
sponding remaining operand. The notation’ “132”, “213” and “231” indicate the use of the operands in ±A * B + C, 
where each digit corresponds to the operand number, with the destination being operand 1; see Table 1-4.
Bits 127:16 of the destination operand are preserved. Bits MAXVL-1:128 of the destination operand are zeroed. The 
low FP16 element of the destination is updated according to the writemask.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.66.MAP6.W0 99 /r
VFMADD132SH xmm1{k1}{z}, xmm2, 
xmm3/m16 {er}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply FP16 values from xmm1 and 
xmm3/m16, add to xmm2, and store the result in 
xmm1.

EVEX.LLIG.66.MAP6.W0 A9 /r
VFMADD213SH xmm1{k1}{z}, xmm2, 
xmm3/m16 {er}

A V/V AVX512-FP16 
OR AVX10.11

Multiply FP16 values from xmm1 and xmm2, add 
to xmm3/m16, and store the result in xmm1.

EVEX.LLIG.66.MAP6.W0 B9 /r
VFMADD231SH xmm1{k1}{z}, xmm2, 
xmm3/m16 {er}

A V/V AVX512-FP16 
OR AVX10.11

Multiply FP16 values from xmm2 and 
xmm3/m16, add to xmm1, and store the result in 
xmm1.

EVEX.LLIG.66.MAP6.W0 9D /r
VFNMADD132SH xmm1{k1}{z}, 
xmm2, xmm3/m16 {er}

A V/V AVX512-FP16 
OR AVX10.11

Multiply FP16 values from xmm1 and 
xmm3/m16, and negate the value. Add this value 
to xmm2, and store the result in xmm1.

EVEX.LLIG.66.MAP6.W0 AD /r
VFNMADD213SH xmm1{k1}{z}, 
xmm2, xmm3/m16 {er}

A V/V AVX512-FP16 
OR AVX10.11

Multiply FP16 values from xmm1 and xmm2, and 
negate the value. Add this value to xmm3/m16, 
and store the result in xmm1.

EVEX.LLIG.66.MAP6.W0 BD /r
VFNMADD231SH xmm1{k1}{z}, 
xmm2, xmm3/m16 {er}

A V/V AVX512-FP16 
OR AVX10.11

Multiply FP16 values from xmm2 and 
xmm3/m16, and negate the value. Add this value 
to xmm1, and store the result in xmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

Table 1-4.  VF[,N]MADD[132,213,231]SH Notation for Operands

Notation Operands

132 dest = ± dest*src3+src2

231 dest = ± src2*src3+dest

213 dest = ± src2*dest+src3
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Operation

VF[,N]MADD132SH DEST, SRC2, SRC3 (EVEX encoded versions) 
IF EVEX.b = 1 and SRC3 is a register:

SET_RM(EVEX.RC)
ELSE

SET_RM(MXCSR.RC)

IF k1[0] OR *no writemask*:
IF *negative form*:

DEST.fp16[0] := RoundFPControl(-DEST.fp16[0]*SRC3.fp16[0] + SRC2.fp16[0])
ELSE:

DEST.fp16[0] := RoundFPControl(DEST.fp16[0]*SRC3.fp16[0] + SRC2.fp16[0])
ELSE IF *zeroing*:

DEST.fp16[0] := 0
// else DEST.fp16[0] remains unchanged

//DEST[127:16] remains unchanged
DEST[MAXVL-1:128] := 0

VF[,N]MADD213SH DEST, SRC2, SRC3 (EVEX encoded versions) 
IF EVEX.b = 1 and SRC3 is a register:

SET_RM(EVEX.RC)
ELSE

SET_RM(MXCSR.RC)

IF k1[0] OR *no writemask*:
IF *negative form:

DEST.fp16[0] := RoundFPControl(-SRC2.fp16[0]*DEST.fp16[0] + SRC3.fp16[0])
ELSE:

DEST.fp16[0] := RoundFPControl(SRC2.fp16[0]*DEST.fp16[0] + SRC3.fp16[0])
ELSE IF *zeroing*:

DEST.fp16[0] := 0
// else DEST.fp16[0] remains unchanged

//DEST[127:16] remains unchanged
DEST[MAXVL-1:128] := 0 

VF[,N]MADD231SH DEST, SRC2, SRC3 (EVEX encoded versions) 
IF EVEX.b = 1 and SRC3 is a register:

SET_RM(EVEX.RC)
ELSE

SET_RM(MXCSR.RC)

IF k1[0] OR *no writemask*:
IF *negative form*:

DEST.fp16[0] := RoundFPControl(-SRC2.fp16[0]*SRC3.fp16[0] + DEST.fp16[0])
ELSE:

DEST.fp16[0] := RoundFPControl(SRC2.fp16[0]*SRC3.fp16[0] + DEST.fp16[0])
ELSE IF *zeroing*:

DEST.fp16[0] := 0
// else DEST.fp16[0] remains unchanged

//DEST[127:16] remains unchanged
DEST[MAXVL-1:128] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VFMADD132SH, VFMADD213SH, and VFMADD231SH:
__m128h _mm_fmadd_round_sh (__m128h a, __m128h b, __m128h c, const int rounding);
__m128h _mm_mask_fmadd_round_sh (__m128h a, __mmask8 k, __m128h b, __m128h c, const int rounding);
__m128h _mm_mask3_fmadd_round_sh (__m128h a, __m128h b, __m128h c, __mmask8 k, const int rounding);
__m128h _mm_maskz_fmadd_round_sh (__mmask8 k, __m128h a, __m128h b, __m128h c, const int rounding);
__m128h _mm_fmadd_sh (__m128h a, __m128h b, __m128h c);
__m128h _mm_mask_fmadd_sh (__m128h a, __mmask8 k, __m128h b, __m128h c);
__m128h _mm_mask3_fmadd_sh (__m128h a, __m128h b, __m128h c, __mmask8 k);
__m128h _mm_maskz_fmadd_sh (__mmask8 k, __m128h a, __m128h b, __m128h c);

VFNMADD132SH, VFNMADD213SH, and VFNMADD231SH:
__m128h _mm_fnmadd_round_sh (__m128h a, __m128h b, __m128h c, const int rounding);
__m128h _mm_mask_fnmadd_round_sh (__m128h a, __mmask8 k, __m128h b, __m128h c, const int rounding);
__m128h _mm_mask3_fnmadd_round_sh (__m128h a, __m128h b, __m128h c, __mmask8 k, const int rounding);
__m128h _mm_maskz_fnmadd_round_sh (__mmask8 k, __m128h a, __m128h b, __m128h c, const int rounding);
__m128h _mm_fnmadd_sh (__m128h a, __m128h b, __m128h c);
__m128h _mm_mask_fnmadd_sh (__m128h a, __mmask8 k, __m128h b, __m128h c);
__m128h _mm_mask3_fnmadd_sh (__m128h a, __m128h b, __m128h c, __mmask8 k);
__m128h _mm_maskz_fnmadd_sh (__mmask8 k, __m128h a, __m128h b, __m128h c);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal

Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VFMADD132SS/VFMADD213SS/VFMADD231SS—Fused Multiply-Add of Scalar Single Precision 
Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply-add computation on single precision floating-point values using three source operands 
and writes the multiply-add results in the destination operand. The destination operand is also the first source 
operand. The first and second operands are XMM registers. The third source operand can be a XMM register or a 
32-bit memory location. 
VFMADD132SS: Multiplies the low single precision floating-point value from the first source operand to the low 
single precision floating-point value in the third source operand, adds the infinite precision intermediate result to 
the low single precision floating-point value in the second source operand, performs rounding and stores the 
resulting single precision floating-point value to the destination operand (first source operand).
VFMADD213SS: Multiplies the low single precision floating-point value from the second source operand to the low 
single precision floating-point value in the first source operand, adds the infinite precision intermediate result to 
the low single precision floating-point value in the third source operand, performs rounding and stores the resulting 
single precision floating-point value to the destination operand (first source operand).
VFMADD231SS: Multiplies the low single precision floating-point value from the second source operand to the low 
single precision floating-point value in the third source operand, adds the infinite precision intermediate result to 
the low single precision floating-point value in the first source operand, performs rounding and stores the resulting 
single precision floating-point value to the destination operand (first source operand).

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID 
Feature Flag

Description

VEX.LIG.66.0F38.W0 99 /r 
VFMADD132SS xmm1, xmm2, 
xmm3/m32

A V/V FMA Multiply scalar single precision floating-point 
value from xmm1 and xmm3/m32, add to xmm2 
and put result in xmm1.

VEX.LIG.66.0F38.W0 A9 /r 
VFMADD213SS xmm1, xmm2, 
xmm3/m32

A V/V FMA Multiply scalar single precision floating-point 
value from xmm1 and xmm2, add to xmm3/m32 
and put result in xmm1.

VEX.LIG.66.0F38.W0 B9 /r 
VFMADD231SS xmm1, xmm2, 
xmm3/m32

A V/V FMA Multiply scalar single precision floating-point 
value from xmm2 and xmm3/m32, add to xmm1 
and put result in xmm1.

EVEX.LLIG.66.0F38.W0 99 /r 
VFMADD132SS xmm1 {k1}{z}, xmm2, 
xmm3/m32{er}

B V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply scalar single precision floating-point 
value from xmm1 and xmm3/m32, add to xmm2 
and put result in xmm1.

EVEX.LLIG.66.0F38.W0 A9 /r 
VFMADD213SS xmm1 {k1}{z}, xmm2, 
xmm3/m32{er}

B V/V AVX512F
OR AVX10.11

Multiply scalar single precision floating-point 
value from xmm1 and xmm2, add to xmm3/m32 
and put result in xmm1.

EVEX.LLIG.66.0F38.W0 B9 /r 
VFMADD231SS xmm1 {k1}{z}, xmm2, 
xmm3/m32{er}

B V/V AVX512F
OR AVX10.11

Multiply scalar single precision floating-point 
value from xmm2 and xmm3/m32, add to xmm1 
and put result in xmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Tuple1 Scalar ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field. 
The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field. 
Bits 127:32 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.
EVEX encoded version: The low doubleword element of the destination is updated according to the writemask.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column.

Operation

In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no 
rounding).

VFMADD132SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[31:0] := RoundFPControl(DEST[31:0]*SRC3[31:0] + SRC2[31:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

VFMADD213SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[31:0] := RoundFPControl(SRC2[31:0]*DEST[31:0] + SRC3[31:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0
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VFMADD231SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[31:0] := RoundFPControl(SRC2[31:0]*SRC3[31:0] + DEST[31:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0]] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

VFMADD132SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] := RoundFPControl_MXCSR(DEST[31:0]*SRC3[31:0] + SRC2[31:0])
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

VFMADD213SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] := RoundFPControl_MXCSR(SRC2[31:0]*DEST[31:0] + SRC3[31:0])
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

VFMADD231SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] := RoundFPControl_MXCSR(SRC2[31:0]*SRC3[31:0] + DEST[31:0])
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMADDxxxSS __m128 _mm_fmadd_round_ss(__m128 a, __m128 b, __m128 c, int r);
VFMADDxxxSS __m128 _mm_mask_fmadd_ss(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFMADDxxxSS __m128 _mm_maskz_fmadd_ss(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFMADDxxxSS __m128 _mm_mask3_fmadd_ss(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFMADDxxxSS __m128 _mm_mask_fmadd_round_ss(__m128 a, __mmask8 k, __m128 b, __m128 c, int r);
VFMADDxxxSS __m128 _mm_maskz_fmadd_round_ss(__mmask8 k, __m128 a, __m128 b, __m128 c, int r);
VFMADDxxxSS __m128 _mm_mask3_fmadd_round_ss(__m128 a, __m128 b, __m128 c, __mmask8 k, int r);
VFMADDxxxSS __m128 _mm_fmadd_ss (__m128 a, __m128 b, __m128 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD—Fused Multiply-Alternating 
Add/Subtract of Packed Double Precision Floating-Point Values

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W1 96 /r 
VFMADDSUB132PD xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed double precision floating-point 
values from xmm1 and xmm3/mem, 
add/subtract elements in xmm2 and put result 
in xmm1.

VEX.128.66.0F38.W1 A6 /r 
VFMADDSUB213PD xmm1, xmm2, 
xmm3/m128 

A V/V FMA Multiply packed double precision floating-point 
values from xmm1 and xmm2, add/subtract 
elements in xmm3/mem and put result in xmm1.

VEX.128.66.0F38.W1 B6 /r 
VFMADDSUB231PD xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed double precision floating-point 
values from xmm2 and xmm3/mem, 
add/subtract elements in xmm1 and put result 
in xmm1.

VEX.256.66.0F38.W1 96 /r 
VFMADDSUB132PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double precision floating-point 
values from ymm1 and ymm3/mem, 
add/subtract elements in ymm2 and put result 
in ymm1.

VEX.256.66.0F38.W1 A6 /r 
VFMADDSUB213PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double precision floating-point 
values from ymm1 and ymm2, add/subtract 
elements in ymm3/mem and put result in ymm1.

VEX.256.66.0F38.W1 B6 /r 
VFMADDSUB231PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double precision floating-point 
values from ymm2 and ymm3/mem, 
add/subtract elements in ymm1 and put result 
in ymm1.

EVEX.128.66.0F38.W1 A6 /r 
VFMADDSUB213PD xmm1 {k1}{z}, 
xmm2, xmm3/m128/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from xmm1 and xmm2, add/subtract 
elements in xmm3/m128/m64bcst and put 
result in xmm1 subject to writemask k1.

EVEX.128.66.0F38.W1 B6 /r
VFMADDSUB231PD xmm1 {k1}{z}, 
xmm2, xmm3/m128/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from xmm2 and xmm3/m128/m64bcst, 
add/subtract elements in xmm1 and put result 
in xmm1 subject to writemask k1.

EVEX.128.66.0F38.W1 96 /r 
VFMADDSUB132PD xmm1 {k1}{z}, 
xmm2, xmm3/m128/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from xmm1 and xmm3/m128/m64bcst, 
add/subtract elements in xmm2 and put result 
in xmm1 subject to writemask k1.

EVEX.256.66.0F38.W1 A6 /r 
VFMADDSUB213PD ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from ymm1 and ymm2, add/subtract 
elements in ymm3/m256/m64bcst and put 
result in ymm1 subject to writemask k1.

EVEX.256.66.0F38.W1 B6 /r 
VFMADDSUB231PD ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from ymm2 and ymm3/m256/m64bcst, 
add/subtract elements in ymm1 and put result 
in ymm1 subject to writemask k1.

EVEX.256.66.0F38.W1 96 /r 
VFMADDSUB132PD ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from ymm1 and ymm3/m256/m64bcst, 
add/subtract elements in ymm2 and put result 
in ymm1 subject to writemask k1.
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Instruction Operand Encoding

Description

VFMADDSUB132PD: Multiplies the two, four, or eight packed double precision floating-point values from the first 
source operand to the two or four packed double precision floating-point values in the third source operand. From 
the infinite precision intermediate result, adds the odd double precision floating-point elements and subtracts the 
even double precision floating-point values in the second source operand, performs rounding and stores the 
resulting two or four packed double precision floating-point values to the destination operand (first source 
operand).
VFMADDSUB213PD: Multiplies the two, four, or eight packed double precision floating-point values from the second 
source operand to the two or four packed double precision floating-point values in the first source operand. From 
the infinite precision intermediate result, adds the odd double precision floating-point elements and subtracts the 
even double precision floating-point values in the third source operand, performs rounding and stores the resulting 
two or four packed double precision floating-point values to the destination operand (first source operand).
VFMADDSUB231PD: Multiplies the two, four, or eight packed double precision floating-point values from the second 
source operand to the two or four packed double precision floating-point values in the third source operand. From 
the infinite precision intermediate result, adds the odd double precision floating-point elements and subtracts the 
even double precision floating-point values in the first source operand, performs rounding and stores the resulting 
two or four packed double precision floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are 
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 

EVEX.512.66.0F38.W1 A6 /r 
VFMADDSUB213PD zmm1 {k1}{z}, 
zmm2, zmm3/m512/m64bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point 
values from zmm1and zmm2, add/subtract 
elements in zmm3/m512/m64bcst and put 
result in zmm1 subject to writemask k1.

EVEX.512.66.0F38.W1 B6 /r 
VFMADDSUB231PD zmm1 {k1}{z}, 
zmm2, zmm3/m512/m64bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point 
values from zmm2 and zmm3/m512/m64bcst, 
add/subtract elements in zmm1 and put result 
in zmm1 subject to writemask k1.

EVEX.512.66.0F38.W1 96 /r 
VFMADDSUB132PD zmm1 {k1}{z}, 
zmm2, zmm3/m512/m64bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point 
values from zmm1 and zmm3/m512/m64bcst, 
add/subtract elements in zmm2 and put result 
in zmm1 subject to writemask k1.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description
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VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column.

Operation

In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no 
rounding).

VFMADDSUB132PD DEST, SRC2, SRC3 
IF (VEX.128) THEN 

DEST[63:0] := RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] - SRC2[63:0])
DEST[127:64] := RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] + SRC2[127:64])
DEST[MAXVL-1:128] := 0

ELSEIF (VEX.256)
DEST[63:0] := RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] - SRC2[63:0])
DEST[127:64] := RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] + SRC2[127:64])
DEST[191:128] := RoundFPControl_MXCSR(DEST[191:128]*SRC3[191:128] - SRC2[191:128])
DEST[255:192] := RoundFPControl_MXCSR(DEST[255:192]*SRC3[255:192] + SRC2[255:192]

FI

VFMADDSUB213PD DEST, SRC2, SRC3 
IF (VEX.128) THEN 

DEST[63:0] := RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] - SRC3[63:0])
DEST[127:64] := RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] + SRC3[127:64])
DEST[MAXVL-1:128] := 0

ELSEIF (VEX.256)
DEST[63:0] := RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] - SRC3[63:0])
DEST[127:64] := RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] + SRC3[127:64])
DEST[191:128] := RoundFPControl_MXCSR(SRC2[191:128]*DEST[191:128] - SRC3[191:128])
DEST[255:192] := RoundFPControl_MXCSR(SRC2[255:192]*DEST[255:192] + SRC3[255:192]

FI

VFMADDSUB231PD DEST, SRC2, SRC3 
IF (VEX.128) THEN 

DEST[63:0] := RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] - DEST[63:0])
DEST[127:64] := RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] + DEST[127:64])
DEST[MAXVL-1:128] := 0

ELSEIF (VEX.256)
DEST[63:0] := RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] - DEST[63:0])
DEST[127:64] := RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] + DEST[127:64])
DEST[191:128] := RoundFPControl_MXCSR(SRC2[191:128]*SRC3[191:128] - DEST[191:128])
DEST[255:192] := RoundFPControl_MXCSR(SRC2[255:192]*SRC3[255:192] + DEST[255:192]

FI
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VFMADDSUB132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN DEST[i+63:i] := 
RoundFPControl(DEST[i+63:i]*SRC3[i+63:i] - SRC2[i+63:i])

ELSE DEST[i+63:i] := 
RoundFPControl(DEST[i+63:i]*SRC3[i+63:i] + SRC2[i+63:i])

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADDSUB132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[63:0] - SRC2[i+63:i])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[i+63:i] - SRC2[i+63:i])

FI;
ELSE 

IF (EVEX.b = 1) 
THEN

DEST[i+63:i] := 
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[63:0] + SRC2[i+63:i])

ELSE 
DEST[i+63:i] := 

RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[i+63:i] + SRC2[i+63:i])
FI;
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FI

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADDSUB213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN DEST[i+63:i] := 
RoundFPControl(SRC2[i+63:i]*DEST[i+63:i] - SRC3[i+63:i])

ELSE DEST[i+63:i] := 
RoundFPControl(SRC2[i+63:i]*DEST[i+63:i] + SRC3[i+63:i])

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADDSUB213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] - SRC3[63:0])
ELSE 
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DEST[i+63:i] := 
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] - SRC3[i+63:i])
FI;

ELSE 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] + SRC3[63:0])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] + SRC3[i+63:i])
FI;

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADDSUB231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN DEST[i+63:i] := 
RoundFPControl(SRC2[i+63:i]*SRC3[i+63:i] - DEST[i+63:i])

ELSE DEST[i+63:i] := 
RoundFPControl(SRC2[i+63:i]*SRC3[i+63:i] + DEST[i+63:i])

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VFMADDSUB231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[63:0] - DEST[i+63:i])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[i+63:i] - DEST[i+63:i])

FI;
ELSE 

IF (EVEX.b = 1) 
THEN

DEST[i+63:i] := 
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[63:0] + DEST[i+63:i])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[i+63:i] + DEST[i+63:i])

FI;
FI

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMADDSUBxxxPD __m512d _mm512_fmaddsub_pd(__m512d a, __m512d b, __m512d c);
VFMADDSUBxxxPD __m512d _mm512_fmaddsub_round_pd(__m512d a, __m512d b, __m512d c, int r);
VFMADDSUBxxxPD __m512d _mm512_mask_fmaddsub_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
VFMADDSUBxxxPD __m512d _mm512_maskz_fmaddsub_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
VFMADDSUBxxxPD __m512d _mm512_mask3_fmaddsub_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
VFMADDSUBxxxPD __m512d _mm512_mask_fmaddsub_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d c, int r);
VFMADDSUBxxxPD __m512d _mm512_maskz_fmaddsub_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d c, int r);
VFMADDSUBxxxPD __m512d _mm512_mask3_fmaddsub_round_pd(__m512d a, __m512d b, __m512d c, __mmask8 k, int r);
VFMADDSUBxxxPD __m256d _mm256_mask_fmaddsub_pd(__m256d a, __mmask8 k, __m256d b, __m256d c);
VFMADDSUBxxxPD __m256d _mm256_maskz_fmaddsub_pd(__mmask8 k, __m256d a, __m256d b, __m256d c);
VFMADDSUBxxxPD __m256d _mm256_mask3_fmaddsub_pd(__m256d a, __m256d b, __m256d c, __mmask8 k);
VFMADDSUBxxxPD __m128d _mm_mask_fmaddsub_pd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFMADDSUBxxxPD __m128d _mm_maskz_fmaddsub_pd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFMADDSUBxxxPD __m128d _mm_mask3_fmaddsub_pd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFMADDSUBxxxPD __m128d _mm_fmaddsub_pd (__m128d a, __m128d b, __m128d c);
VFMADDSUBxxxPD __m256d _mm256_fmaddsub_pd (__m256d a, __m256d b, __m256d c);
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SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VFMADDSUB132PH/VFMADDSUB213PH/VFMADDSUB231PH—Fused Multiply-Alternating 
Add/Subtract of Packed FP16 Values

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.MAP6.W0 96 /r
VFMADDSUB132PH xmm1{k1}{z}, 
xmm2, xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply packed FP16 values from xmm1 and 
xmm3/m128/m16bcst, add/subtract elements in 
xmm2, and store the result in xmm1 subject to 
writemask k1.

EVEX.256.66.MAP6.W0 96 /r
VFMADDSUB132PH ymm1{k1}{z}, 
ymm2, ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from ymm1 and 
ymm3/m256/m16bcst, add/subtract elements in 
ymm2, and store the result in ymm1 subject to 
writemask k1.

EVEX.512.66.MAP6.W0 96 /r
VFMADDSUB132PH zmm1{k1}{z}, 
zmm2, zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values from zmm1 and 
zmm3/m512/m16bcst, add/subtract elements in 
zmm2, and store the result in zmm1 subject to 
writemask k1.

EVEX.128.66.MAP6.W0 A6 /r
VFMADDSUB213PH xmm1{k1}{z}, 
xmm2, xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from xmm1 and 
xmm2, add/subtract elements in 
xmm3/m128/m16bcst, and store the result in 
xmm1 subject to writemask k1.

EVEX.256.66.MAP6.W0 A6 /r
VFMADDSUB213PH ymm1{k1}{z}, 
ymm2, ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from ymm1 and 
ymm2, add/subtract elements in 
ymm3/m256/m16bcst, and store the result in 
ymm1 subject to writemask k1.

EVEX.512.66.MAP6.W0 A6 /r
VFMADDSUB213PH zmm1{k1}{z}, 
zmm2, zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values from zmm1 and 
zmm2, add/subtract elements in 
zmm3/m512/m16bcst, and store the result in 
zmm1 subject to writemask k1.

EVEX.128.66.MAP6.W0 B6 /r
VFMADDSUB231PH xmm1{k1}{z}, 
xmm2, xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from xmm2 and 
xmm3/m128/m16bcst, add/subtract elements in 
xmm1, and store the result in xmm1 subject to 
writemask k1.

EVEX.256.66.MAP6.W0 B6 /r
VFMADDSUB231PH ymm1{k1}{z}, 
ymm2, ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from ymm2 and 
ymm3/m256/m16bcst, add/subtract elements in 
ymm1, and store the result in ymm1 subject to 
writemask k1.

EVEX.512.66.MAP6.W0 B6 /r
VFMADDSUB231PH zmm1{k1}{z}, 
zmm2, zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values from zmm2 and 
zmm3/m512/m16bcst, add/subtract elements in 
zmm1, and store the result in zmm1 subject to 
writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A
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Description

This instruction performs a packed multiply-add (odd elements) or multiply-subtract (even elements) computation 
on FP16 values using three source operands and writes the results in the destination operand. The destination 
operand is also the first source operand. The notation’ “132”, “213” and “231” indicate the use of the operands in A 
* B ± C, where each digit corresponds to the operand number, with the destination being operand 1; see Table 1-8.
The destination elements are updated according to the writemask.

Operation

VFMADDSUB132PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a register 
VL = 128, 256 or 512
KL := VL/16

IF (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *j is even*:
DEST.fp16[j] := RoundFPControl(DEST.fp16[j] * SRC3.fp16[j] - SRC2.fp16[j])

ELSE:
DEST.fp16[j] := RoundFPControl(DEST.fp16[j] * SRC3.fp16[j] + SRC2.fp16[j])

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

VFMADDSUB132PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a memory source 
VL = 128, 256 or 512
KL := VL/16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF EVEX.b = 1:
t3 := SRC3.fp16[0]

ELSE:
t3 := SRC3.fp16[j]

IF *j is even*:
DEST.fp16[j] := RoundFPControl(DEST.fp16[j] * t3 - SRC2.fp16[j])

ELSE:
DEST.fp16[j] := RoundFPControl(DEST.fp16[j] * t3 + SRC2.fp16[j])

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

Table 1-5.  VFMADDSUB[132,213,231]PH Notation for Odd and Even Elements

Notation Odd Elements Even Elements

132 dest = dest*src3+src2 dest = dest*src3-src2

231 dest = src2*src3+dest dest = src2*src3-dest

213 dest = src2*dest+src3 dest = src2*dest-src3
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DEST[MAXVL-1:VL] := 0

VFMADDSUB213PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a register 
VL = 128, 256 or 512
KL := VL/16

IF (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *j is even*:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j]*DEST.fp16[j] - SRC3.fp16[j])

ELSE
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j]*DEST.fp16[j] + SRC3.fp16[j])

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

VFMADDSUB213PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a memory source
VL = 128, 256 or 512
KL := VL/16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF EVEX.b = 1:
t3 := SRC3.fp16[0]

ELSE:
t3 := SRC3.fp16[j]

IF *j is even*:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j] * DEST.fp16[j] - t3)

ELSE:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j] * DEST.fp16[j] + t3)

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0 
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VFMADDSUB231PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a register
VL = 128, 256 or 512
KL := VL/16

IF (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *j is even:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j] * SRC3.fp16[j] - DEST.fp16[j])

ELSE:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j] * SRC3.fp16[j] + DEST.fp16[j])

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

VFMADDSUB231PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a memory source
VL = 128, 256 or 512
KL := VL/16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF EVEX.b = 1:
t3 := SRC3.fp16[0]

ELSE:
t3 := SRC3.fp16[j]

IF *j is even*:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j] * t3 - DEST.fp16[j])

ELSE:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j] * t3 + DEST.fp16[j])

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0 
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Intel C/C++ Compiler Intrinsic Equivalent

VFMADDSUB132PH, VFMADDSUB213PH, and VFMADDSUB231PH:
__m128h _mm_fmaddsub_ph (__m128h a, __m128h b, __m128h c);
__m128h _mm_mask_fmaddsub_ph (__m128h a, __mmask8 k, __m128h b, __m128h c);
__m128h _mm_mask3_fmaddsub_ph (__m128h a, __m128h b, __m128h c, __mmask8 k);
__m128h _mm_maskz_fmaddsub_ph (__mmask8 k, __m128h a, __m128h b, __m128h c);
__m256h _mm256_fmaddsub_ph (__m256h a, __m256h b, __m256h c);
__m256h _mm256_mask_fmaddsub_ph (__m256h a, __mmask16 k, __m256h b, __m256h c);
__m256h _mm256_mask3_fmaddsub_ph (__m256h a, __m256h b, __m256h c, __mmask16 k);
__m256h _mm256_maskz_fmaddsub_ph (__mmask16 k, __m256h a, __m256h b, __m256h c);
__m512h _mm512_fmaddsub_ph (__m512h a, __m512h b, __m512h c);
__m512h _mm512_mask_fmaddsub_ph (__m512h a, __mmask32 k, __m512h b, __m512h c);
__m512h _mm512_mask3_fmaddsub_ph (__m512h a, __m512h b, __m512h c, __mmask32 k);
__m512h _mm512_maskz_fmaddsub_ph (__mmask32 k, __m512h a, __m512h b, __m512h c);
__m512h _mm512_fmaddsub_round_ph (__m512h a, __m512h b, __m512h c, const int rounding);
__m512h _mm512_mask_fmaddsub_round_ph (__m512h a, __mmask32 k, __m512h b, __m512h c, const int rounding);
__m512h _mm512_mask3_fmaddsub_round_ph (__m512h a, __m512h b, __m512h c, __mmask32 k, const int rounding); 
__m512h _mm512_maskz_fmaddsub_round_ph (__mmask32 k, __m512h a, __m512h b, __m512h c, const int rounding);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS—Fused Multiply-Alternating 
Add/Subtract of Packed Single Precision Floating-Point Values

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 96 /r 
VFMADDSUB132PS xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed single precision floating-point 
values from xmm1 and xmm3/mem, add/subtract 
elements in xmm2 and put result in xmm1.

VEX.128.66.0F38.W0 A6 /r 
VFMADDSUB213PS xmm1, xmm2, 
xmm3/m128 

A V/V FMA Multiply packed single precision floating-point 
values from xmm1 and xmm2, add/subtract 
elements in xmm3/mem and put result in xmm1.

VEX.128.66.0F38.W0 B6 /r 
VFMADDSUB231PS xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed single precision floating-point 
values from xmm2 and xmm3/mem, add/subtract 
elements in xmm1 and put result in xmm1.

VEX.256.66.0F38.W0 96 /r 
VFMADDSUB132PS ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed single precision floating-point 
values from ymm1 and ymm3/mem, add/subtract 
elements in ymm2 and put result in ymm1.

VEX.256.66.0F38.W0 A6 /r 
VFMADDSUB213PS ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed single precision floating-point 
values from ymm1 and ymm2, add/subtract 
elements in ymm3/mem and put result in ymm1.

VEX.256.66.0F38.W0 B6 /r 
VFMADDSUB231PS ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed single precision floating-point 
values from ymm2 and ymm3/mem, add/subtract 
elements in ymm1 and put result in ymm1.

EVEX.128.66.0F38.W0 A6 /r 
VFMADDSUB213PS xmm1 {k1}{z}, 
xmm2, xmm3/m128/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point 
values from xmm1 and xmm2, add/subtract 
elements in xmm3/m128/m32bcst and put result in 
xmm1 subject to writemask k1.

EVEX.128.66.0F38.W0 B6 /r 
VFMADDSUB231PS xmm1 {k1}{z}, 
xmm2, xmm3/m128/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point 
values from xmm2 and xmm3/m128/m32bcst, 
add/subtract elements in xmm1 and put result in 
xmm1 subject to writemask k1.

EVEX.128.66.0F38.W0 96 /r
VFMADDSUB132PS xmm1 {k1}{z}, 
xmm2, xmm3/m128/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point 
values from xmm1 and xmm3/m128/m32bcst, 
add/subtract elements in zmm2 and put result in 
xmm1 subject to writemask k1.

EVEX.256.66.0F38.W0 A6 /r 
VFMADDSUB213PS ymm1 {k1}{z}, 
ymm2, ymm3/m256/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point 
values from ymm1 and ymm2, add/subtract 
elements in ymm3/m256/m32bcst and put result in 
ymm1 subject to writemask k1.

EVEX.256.66.0F38.W0 B6 /r
VFMADDSUB231PS ymm1 {k1}{z}, 
ymm2, ymm3/m256/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point 
values from ymm2 and ymm3/m256/m32bcst, 
add/subtract elements in ymm1 and put result in 
ymm1 subject to writemask k1.

EVEX.256.66.0F38.W0 96 /r 
VFMADDSUB132PS ymm1 {k1}{z}, 
ymm2, ymm3/m256/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point 
values from ymm1 and ymm3/m256/m32bcst, 
add/subtract elements in ymm2 and put result in 
ymm1 subject to writemask k1.
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Instruction Operand Encoding

Description

VFMADDSUB132PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the first 
source operand to the corresponding packed single precision floating-point values in the third source operand. 
From the infinite precision intermediate result, adds the odd single precision floating-point elements and subtracts 
the even single precision floating-point values in the second source operand, performs rounding and stores the 
resulting packed single precision floating-point values to the destination operand (first source operand).
VFMADDSUB213PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the 
second source operand to the corresponding packed single precision floating-point values in the first source 
operand. From the infinite precision intermediate result, adds the odd single precision floating-point elements and 
subtracts the even single precision floating-point values in the third source operand, performs rounding and stores 
the resulting packed single precision floating-point values to the destination operand (first source operand).
VFMADDSUB231PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the 
second source operand to the corresponding packed single precision floating-point values in the third source 
operand. From the infinite precision intermediate result, adds the odd single precision floating-point elements and 
subtracts the even single precision floating-point values in the first source operand, performs rounding and stores 
the resulting packed single precision floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are 
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

EVEX.512.66.0F38.W0 A6 /r 
VFMADDSUB213PS zmm1 {k1}{z}, 
zmm2, zmm3/m512/m32bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed single precision floating-point 
values from zmm1 and zmm2, add/subtract 
elements in zmm3/m512/m32bcst and put result in 
zmm1 subject to writemask k1.

EVEX.512.66.0F38.W0 B6 /r 
VFMADDSUB231PS zmm1 {k1}{z}, 
zmm2, zmm3/m512/m32bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed single precision floating-point 
values from zmm2 and zmm3/m512/m32bcst, 
add/subtract elements in zmm1 and put result in 
zmm1 subject to writemask k1.

EVEX.512.66.0F38.W0 96 /r 
VFMADDSUB132PS zmm1 {k1}{z}, 
zmm2, zmm3/m512/m32bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed single precision floating-point 
values from zmm1 and zmm3/m512/m32bcst, 
add/subtract elements in zmm2 and put result in 
zmm1 subject to writemask k1.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description
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Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column.

Operation

In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no 
rounding).

VFMADDSUB132PS DEST, SRC2, SRC3 
IF (VEX.128) THEN 

MAXNUM :=2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM -1{

n := 64*i;
DEST[n+31:n] := RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] - SRC2[n+31:n])
DEST[n+63:n+32] := RoundFPControl_MXCSR(DEST[n+63:n+32]*SRC3[n+63:n+32] + SRC2[n+63:n+32])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFMADDSUB213PS DEST, SRC2, SRC3 
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM -1{

n := 64*i;
DEST[n+31:n] := RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] - SRC3[n+31:n])
DEST[n+63:n+32] := RoundFPControl_MXCSR(SRC2[n+63:n+32]*DEST[n+63:n+32] + SRC3[n+63:n+32])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFMADDSUB231PS DEST, SRC2, SRC3 
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM -1{

n := 64*i;
DEST[n+31:n] := RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] - DEST[n+31:n])
DEST[n+63:n+32] :=RoundFPControl_MXCSR(SRC2[n+63:n+32]*SRC3[n+63:n+32] + DEST[n+63:n+32])

}
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IF (VEX.128) THEN
DEST[MAXVL-1:128] := 0

ELSEIF (VEX.256)
DEST[MAXVL-1:256] := 0

FI

VFMADDSUB132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) (4, 128), (8, 256),= (16, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN DEST[i+31:i] := 
RoundFPControl(DEST[i+31:i]*SRC3[i+31:i] - SRC2[i+31:i])

ELSE DEST[i+31:i] := 
RoundFPControl(DEST[i+31:i]*SRC3[i+31:i] + SRC2[i+31:i])

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADDSUB132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[31:0] - SRC2[i+31:i])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[i+31:i] - SRC2[i+31:i])
FI;

ELSE 
IF (EVEX.b = 1) 

THEN
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DEST[i+31:i] := 
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[31:0] + SRC2[i+31:i])

ELSE 
DEST[i+31:i] := 

RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[i+31:i] + SRC2[i+31:i])
FI;

FI

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADDSUB213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN DEST[i+31:i] := 
RoundFPControl(SRC2[i+31:i]*DEST[i+31:i] - SRC3[i+31:i])

ELSE DEST[i+31:i] := 
RoundFPControl(SRC2[i+31:i]*DEST[i+31:i] + SRC3[i+31:i])

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADDSUB213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF j *is even*
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THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[31:0])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[i+31:i])
FI;

ELSE 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] + SRC3[31:0])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] + SRC3[i+31:i])
FI;

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADDSUB231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN DEST[i+31:i] := 
RoundFPControl(SRC2[i+31:i]*SRC3[i+31:i] - DEST[i+31:i])

ELSE DEST[i+31:i] := 
RoundFPControl(SRC2[i+31:i]*SRC3[i+31:i] + DEST[i+31:i])

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
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ENDFOR
DEST[MAXVL-1:VL] := 0

VFMADDSUB231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[31:0] - DEST[i+31:i])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] - DEST[i+31:i])
FI;

ELSE 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[31:0] + DEST[i+31:i])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] + DEST[i+31:i])
FI;

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMADDSUBxxxPS __m512 _mm512_fmaddsub_ps(__m512 a, __m512 b, __m512 c);
VFMADDSUBxxxPS __m512 _mm512_fmaddsub_round_ps(__m512 a, __m512 b, __m512 c, int r);
VFMADDSUBxxxPS __m512 _mm512_mask_fmaddsub_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
VFMADDSUBxxxPS __m512 _mm512_maskz_fmaddsub_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);
VFMADDSUBxxxPS __m512 _mm512_mask3_fmaddsub_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);
VFMADDSUBxxxPS __m512 _mm512_mask_fmaddsub_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int r);
VFMADDSUBxxxPS __m512 _mm512_maskz_fmaddsub_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c, int r);
VFMADDSUBxxxPS __m512 _mm512_mask3_fmaddsub_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k, int r);
VFMADDSUBxxxPS __m256 _mm256_mask_fmaddsub_ps(__m256 a, __mmask8 k, __m256 b, __m256 c);
VFMADDSUBxxxPS __m256 _mm256_maskz_fmaddsub_ps(__mmask8 k, __m256 a, __m256 b, __m256 c);
VFMADDSUBxxxPS __m256 _mm256_mask3_fmaddsub_ps(__m256 a, __m256 b, __m256 c, __mmask8 k);
VFMADDSUBxxxPS __m128 _mm_mask_fmaddsub_ps(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFMADDSUBxxxPS __m128 _mm_maskz_fmaddsub_ps(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS—Fused Multiply-Alternating Add/Subtract of Packed Single Precision Vol. 2C 5-262



VFMADDSUBxxxPS __m128 _mm_mask3_fmaddsub_ps(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFMADDSUBxxxPS __m128 _mm_fmaddsub_ps (__m128 a, __m128 b, __m128 c);
VFMADDSUBxxxPS __m256 _mm256_fmaddsub_ps (__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VFMSUB132PD/VFMSUB213PD/VFMSUB231PD—Fused Multiply-Subtract of Packed Double 
Precision Floating-Point Values

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W1 9A /r 
VFMSUB132PD xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed double precision floating-point 
values from xmm1 and xmm3/mem, subtract xmm2 
and put result in xmm1.

VEX.128.66.0F38.W1 AA /r 
VFMSUB213PD xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed double precision floating-point 
values from xmm1 and xmm2, subtract xmm3/mem 
and put result in xmm1.

VEX.128.66.0F38.W1 BA /r 
VFMSUB231PD xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed double precision floating-point 
values from xmm2 and xmm3/mem, subtract xmm1 
and put result in xmm1.

VEX.256.66.0F38.W1 9A /r 
VFMSUB132PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double precision floating-point 
values from ymm1 and ymm3/mem, subtract ymm2 
and put result in ymm1.

VEX.256.66.0F38.W1 AA /r 
VFMSUB213PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double precision floating-point 
values from ymm1 and ymm2, subtract ymm3/mem 
and put result in ymm1.

VEX.256.66.0F38.W1 BA /r 
VFMSUB231PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double precision floating-point 
values from ymm2 and ymm3/mem, subtract ymm1 
and put result in ymm1.S

EVEX.128.66.0F38.W1 9A /r 
VFMSUB132PD xmm1 {k1}{z}, 
xmm2, xmm3/m128/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from xmm1 and xmm3/m128/m64bcst, 
subtract xmm2 and put result in xmm1 subject to 
writemask k1.

EVEX.128.66.0F38.W1 AA /r 
VFMSUB213PD xmm1 {k1}{z}, 
xmm2, xmm3/m128/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from xmm1 and xmm2, subtract   
xmm3/m128/m64bcst and put result in xmm1 
subject to writemask k1.

EVEX.128.66.0F38.W1 BA /r
VFMSUB231PD xmm1 {k1}{z}, 
xmm2, xmm3/m128/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from xmm2 and xmm3/m128/m64bcst, 
subtract   xmm1 and put result in xmm1 subject to 
writemask k1.

EVEX.256.66.0F38.W1 9A /r 
VFMSUB132PD ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from ymm1 and ymm3/m256/m64bcst, 
subtract ymm2 and put result in ymm1 subject to 
writemask k1.

EVEX.256.66.0F38.W1 AA /r 
VFMSUB213PD ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from ymm1 and ymm2, subtract 
ymm3/m256/m64bcst and put result in ymm1 
subject to writemask k1.

EVEX.256.66.0F38.W1 BA /r
VFMSUB231PD ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from ymm2 and ymm3/m256/m64bcst, 
subtract ymm1 and put result in ymm1 subject to 
writemask k1.
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Instruction Operand Encoding

Description

Performs a set of SIMD multiply-subtract computation on packed double precision floating-point values using three 
source operands and writes the multiply-subtract results in the destination operand. The destination operand is 
also the first source operand. The second operand must be a SIMD register. The third source operand can be a 
SIMD register or a memory location. 
VFMSUB132PD: Multiplies the two, four or eight packed double precision floating-point values from the first source 
operand to the two, four or eight packed double precision floating-point values in the third source operand. From 
the infinite precision intermediate result, subtracts the two, four or eight packed double precision floating-point 
values in the second source operand, performs rounding and stores the resulting two, four or eight packed double 
precision floating-point values to the destination operand (first source operand).
VFMSUB213PD: Multiplies the two, four or eight packed double precision floating-point values from the second 
source operand to the two, four or eight packed double precision floating-point values in the first source operand. 
From the infinite precision intermediate result, subtracts the two, four or eight packed double precision floating-
point values in the third source operand, performs rounding and stores the resulting two, four or eight packed 
double precision floating-point values to the destination operand (first source operand).
VFMSUB231PD: Multiplies the two, four or eight packed double precision floating-point values from the second 
source to the two, four or eight packed double precision floating-point values in the third source operand. From the 
infinite precision intermediate result, subtracts the two, four or eight packed double precision floating-point values 
in the first source operand, performs rounding and stores the resulting two, four or eight packed double precision 
floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are 
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 

EVEX.512.66.0F38.W1 9A /r
VFMSUB132PD zmm1 {k1}{z}, 
zmm2, zmm3/m512/m64bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point 
values from zmm1 and zmm3/m512/m64bcst, 
subtract zmm2 and put result in zmm1 subject to 
writemask k1.

EVEX.512.66.0F38.W1 AA /r
VFMSUB213PD zmm1 {k1}{z}, 
zmm2, zmm3/m512/m64bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point 
values from zmm1 and zmm2, subtract 
zmm3/m512/m64bcst and put result in zmm1 
subject to writemask k1.

EVEX.512.66.0F38.W1 BA /r 
VFMSUB231PD zmm1 {k1}{z}, 
zmm2, zmm3/m512/m64bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point 
values from zmm2 and zmm3/m512/m64bcst, 
subtract zmm1 and put result in zmm1 subject to 
writemask k1.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description
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VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

Operation

In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no 
rounding).

VFMSUB132PD DEST, SRC2, SRC3 (VEX Encoded Versions)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 64*i;
DEST[n+63:n] := RoundFPControl_MXCSR(DEST[n+63:n]*SRC3[n+63:n] - SRC2[n+63:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFMSUB213PD DEST, SRC2, SRC3 (VEX Encoded Versions)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 64*i;
DEST[n+63:n] := RoundFPControl_MXCSR(SRC2[n+63:n]*DEST[n+63:n] - SRC3[n+63:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFMSUB231PD DEST, SRC2, SRC3 (VEX Encoded Versions)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 64*i;
DEST[n+63:n] := RoundFPControl_MXCSR(SRC2[n+63:n]*SRC3[n+63:n] - DEST[n+63:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)
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DEST[MAXVL-1:256] := 0
FI

VFMSUB132PD DEST, SRC2, SRC3 (EVEX Encoded Versions, When SRC3 Operand is a Register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := 
RoundFPControl(DEST[i+63:i]*SRC3[i+63:i] - SRC2[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMSUB132PD DEST, SRC2, SRC3 (EVEX Encoded Versions, When SRC3 Operand is a Memory Source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[63:0] - SRC2[i+63:i])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[i+63:i] - SRC2[i+63:i])
FI;
ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VFMSUB213PD DEST, SRC2, SRC3 (EVEX Encoded Versions, When SRC3 Operand is a Register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := 
RoundFPControl(SRC2[i+63:i]*DEST[i+63:i] - SRC3[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMSUB213PD DEST, SRC2, SRC3 (EVEX Encoded Versions, When SRC3 Operand is a Memory Source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] - SRC3[63:0])
+31:i])

ELSE 
DEST[i+63:i] := 

RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] - SRC3[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VFMSUB231PD DEST, SRC2, SRC3 (EVEX Encoded Versions, When SRC3 Operand is a Register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := 
RoundFPControl(SRC2[i+63:i]*SRC3[i+63:i] - DEST[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMSUB231PD DEST, SRC2, SRC3 (EVEX Encoded Versions, When SRC3 Operand is a Memory Source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[63:0] - DEST[i+63:i])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[i+63:i] - DEST[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VFMSUBxxxPD __m512d _mm512_fmsub_pd(__m512d a, __m512d b, __m512d c);
VFMSUBxxxPD __m512d _mm512_fmsub_round_pd(__m512d a, __m512d b, __m512d c, int r);
VFMSUBxxxPD __m512d _mm512_mask_fmsub_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
VFMSUBxxxPD __m512d _mm512_maskz_fmsub_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
VFMSUBxxxPD __m512d _mm512_mask3_fmsub_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
VFMSUBxxxPD __m512d _mm512_mask_fmsub_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d c, int r);
VFMSUBxxxPD __m512d _mm512_maskz_fmsub_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d c, int r);
VFMSUBxxxPD __m512d _mm512_mask3_fmsub_round_pd(__m512d a, __m512d b, __m512d c, __mmask8 k, int r);
VFMSUBxxxPD __m256d _mm256_mask_fmsub_pd(__m256d a, __mmask8 k, __m256d b, __m256d c);
VFMSUBxxxPD __m256d _mm256_maskz_fmsub_pd(__mmask8 k, __m256d a, __m256d b, __m256d c);
VFMSUBxxxPD __m256d _mm256_mask3_fmsub_pd(__m256d a, __m256d b, __m256d c, __mmask8 k);
VFMSUBxxxPD __m128d _mm_mask_fmsub_pd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFMSUBxxxPD __m128d _mm_maskz_fmsub_pd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFMSUBxxxPD __m128d _mm_mask3_fmsub_pd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFMSUBxxxPD __m128d _mm_fmsub_pd (__m128d a, __m128d b, __m128d c);
VFMSUBxxxPD __m256d _mm256_fmsub_pd (__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VF[,N]MSUB[132,213,231]PH—Fused Multiply-Subtract of Packed FP16 Values
Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.MAP6.W0 9A /r
VFMSUB132PH xmm1{k1}{z}, xmm2, 
xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from xmm1 and 
xmm3/m128/m16bcst, subtract xmm2, and store 
the result in xmm1 subject to writemask k1.

EVEX.256.66.MAP6.W0 9A /r
VFMSUB132PH ymm1{k1}{z}, ymm2, 
ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from ymm1 and 
ymm3/m256/m16bcst, subtract ymm2, and store 
the result in ymm1 subject to writemask k1.

EVEX.512.66.MAP6.W0 9A /r
VFMSUB132PH zmm1{k1}{z}, zmm2, 
zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values from zmm1 and 
zmm3/m512/m16bcst, subtract zmm2, and store 
the result in zmm1 subject to writemask k1.

EVEX.128.66.MAP6.W0 AA /r
VFMSUB213PH xmm1{k1}{z}, xmm2, 
xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from xmm1 and 
xmm2, subtract xmm3/m128/m16bcst, and store 
the result in xmm1 subject to writemask k1.

EVEX.256.66.MAP6.W0 AA /r
VFMSUB213PH ymm1{k1}{z}, ymm2, 
ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from ymm1 and 
ymm2, subtract ymm3/m256/m16bcst, and store 
the result in ymm1 subject to writemask k1.

EVEX.512.66.MAP6.W0 AA /r
VFMSUB213PH zmm1{k1}{z}, zmm2, 
zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values from zmm1 and 
zmm2, subtract zmm3/m512/m16bcst, and store 
the result in zmm1 subject to writemask k1.

EVEX.128.66.MAP6.W0 BA /r
VFMSUB231PH xmm1{k1}{z}, xmm2, 
xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from xmm2 and 
xmm3/m128/m16bcst, subtract xmm1, and store 
the result in xmm1 subject to writemask k1.

EVEX.256.66.MAP6.W0 BA /r
VFMSUB231PH ymm1{k1}{z}, ymm2, 
ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from ymm2 and 
ymm3/m256/m16bcst, subtract ymm1, and store 
the result in ymm1 subject to writemask k1.

EVEX.512.66.MAP6.W0 BA /r
VFMSUB231PH zmm1{k1}{z}, zmm2, 
zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values from zmm2 and 
zmm3/m512/m16bcst, subtract zmm1, and store 
the result in zmm1 subject to writemask k1.

EVEX.128.66.MAP6.W0 9E /r
VFNMSUB132PH xmm1{k1}{z}, 
xmm2, xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from xmm1 and 
xmm3/m128/m16bcst, and negate the value. 
Subtract xmm2 from this value, and store the 
result in xmm1 subject to writemask k1.

EVEX.256.66.MAP6.W0 9E /r
VFNMSUB132PH ymm1{k1}{z}, 
ymm2, ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from ymm1 and 
ymm3/m256/m16bcst, and negate the value. 
Subtract ymm2 from this value, and store the 
result in ymm1 subject to writemask k1.

EVEX.512.66.MAP6.W0 9E /r
VFNMSUB132PH zmm1{k1}{z}, 
zmm2, zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values from zmm1 and 
zmm3/m512/m16bcst, and negate the value. 
Subtract zmm2 from this value, and store the 
result in zmm1 subject to writemask k1.

EVEX.128.66.MAP6.W0 AE /r
VFNMSUB213PH xmm1{k1}{z}, 
xmm2, xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from xmm1 and 
xmm2, and negate the value. Subtract 
xmm3/m128/m16bcst from this value, and store 
the result in xmm1 subject to writemask k1.

EVEX.256.66.MAP6.W0 AE /r
VFNMSUB213PH ymm1{k1}{z}, 
ymm2, ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from ymm1 and 
ymm2, and negate the value. Subtract 
ymm3/m256/m16bcst from this value, and store 
the result in ymm1 subject to writemask k1.
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Instruction Operand Encoding

Description

This instruction performs a packed multiply-subtract or a negated multiply-subtract computation on FP16 values 
using three source operands and writes the results in the destination operand. The destination operand is also the 
first source operand. The “N” (negated) forms of this instruction subtract the remaining operand from the negated 
infinite precision intermediate product. The notation’ “132”, “213” and “231” indicate the use of the operands in ±A 
* B − C, where each digit corresponds to the operand number, with the destination being operand 1; see Table 1-6.
The destination elements are updated according to the writemask.

EVEX.512.66.MAP6.W0 AE /r
VFNMSUB213PH zmm1{k1}{z}, 
zmm2, zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values from zmm1 and 
zmm2, and negate the value. Subtract 
zmm3/m512/m16bcst from this value, and store 
the result in zmm1 subject to writemask k1.

EVEX.128.66.MAP6.W0 BE /r
VFNMSUB231PH xmm1{k1}{z}, 
xmm2, xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from xmm2 and 
xmm3/m128/m16bcst, and negate the value. 
Subtract xmm1 from this value, and store the 
result in xmm1 subject to writemask k1.

EVEX.256.66.MAP6.W0 BE /r
VFNMSUB231PH ymm1{k1}{z}, 
ymm2, ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from ymm2 and 
ymm3/m256/m16bcst, and negate the value. 
Subtract ymm1 from this value, and store the 
result in ymm1 subject to writemask k1.

EVEX.512.66.MAP6.W0 BE /r
VFNMSUB231PH zmm1{k1}{z}, 
zmm2, zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values from zmm2 and 
zmm3/m512/m16bcst, and negate the value. 
Subtract zmm1 from this value, and store the 
result in zmm1 subject to writemask k1.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

Table 1-6.  VF[,N]MSUB[132,213,231]PH Notation for Operands

Notation Operands

132 dest = ± dest*src3-src2

231 dest = ± src2*src3-dest

213 dest = ± src2*dest-src3

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description
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Operation

VF[,N]MSUB132PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a register 
VL = 128, 256 or 512
KL := VL/16

IF (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *negative form*:
DEST.fp16[j] := RoundFPControl(-DEST.fp16[j]*SRC3.fp16[j] - SRC2.fp16[j])

ELSE:
DEST.fp16[j] := RoundFPControl(DEST.fp16[j]*SRC3.fp16[j] - SRC2.fp16[j])

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

VF[,N]MSUB132PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a memory source
VL = 128, 256 or 512
KL := VL/16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF EVEX.b = 1:
t3 := SRC3.fp16[0]

ELSE:
t3 := SRC3.fp16[j]

IF *negative form*:
DEST.fp16[j] := RoundFPControl(-DEST.fp16[j] * t3 - SRC2.fp16[j])

ELSE:
DEST.fp16[j] := RoundFPControl(DEST.fp16[j] * t3 - SRC2.fp16[j])

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0
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VF[,N]MSUB213PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a register 
VL = 128, 256 or 512
KL := VL/16

IF (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *negative form*:
DEST.fp16[j] := RoundFPControl(-SRC2.fp16[j]*DEST.fp16[j] - SRC3.fp16[j])

ELSE
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j]*DEST.fp16[j] - SRC3.fp16[j])

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

VF[,N]MSUB213PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a memory source 
VL = 128, 256 or 512
KL := VL/16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF EVEX.b = 1:
t3 := SRC3.fp16[0]

ELSE:
t3 := SRC3.fp16[j]

IF *negative form*:
DEST.fp16[j] := RoundFPControl(-SRC2.fp16[j] * DEST.fp16[j] - t3 )

ELSE:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j] * DEST.fp16[j] - t3 )

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0
VF[,N]MSUB[132,213,231]PH—Fused Multiply-Subtract of Packed FP16 Values Vol. 2C 5-274



VF[,N]MSUB231PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a register 
VL = 128, 256 or 512
KL := VL/16

IF (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *negative form:
DEST.fp16[j] := RoundFPControl(-SRC2.fp16[j]*SRC3.fp16[j] - DEST.fp16[j])

ELSE:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j]*SRC3.fp16[j] - DEST.fp16[j])

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0

VF[,N]MSUB231PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a memory source
VL = 128, 256 or 512
KL := VL/16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF EVEX.b = 1:
t3 := SRC3.fp16[0]

ELSE:
t3 := SRC3.fp16[j]

IF *negative form*:
DEST.fp16[j] := RoundFPControl(-SRC2.fp16[j] * t3 - DEST.fp16[j] )

ELSE:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j] * t3 - DEST.fp16[j] )

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VFMSUB132PH, VFMSUB213PH, and VFMSUB231PH:
__m128h _mm_fmsub_ph (__m128h a, __m128h b, __m128h c);
__m128h _mm_mask_fmsub_ph (__m128h a, __mmask8 k, __m128h b, __m128h c);
__m128h _mm_mask3_fmsub_ph (__m128h a, __m128h b, __m128h c, __mmask8 k);
__m128h _mm_maskz_fmsub_ph (__mmask8 k, __m128h a, __m128h b, __m128h c);
__m256h _mm256_fmsub_ph (__m256h a, __m256h b, __m256h c);
__m256h _mm256_mask_fmsub_ph (__m256h a, __mmask16 k, __m256h b, __m256h c);
__m256h _mm256_mask3_fmsub_ph (__m256h a, __m256h b, __m256h c, __mmask16 k);
__m256h _mm256_maskz_fmsub_ph (__mmask16 k, __m256h a, __m256h b, __m256h c);
__m512h _mm512_fmsub_ph (__m512h a, __m512h b, __m512h c);
__m512h _mm512_mask_fmsub_ph (__m512h a, __mmask32 k, __m512h b, __m512h c);
__m512h _mm512_mask3_fmsub_ph (__m512h a, __m512h b, __m512h c, __mmask32 k);
__m512h _mm512_maskz_fmsub_ph (__mmask32 k, __m512h a, __m512h b, __m512h c);
__m512h _mm512_fmsub_round_ph (__m512h a, __m512h b, __m512h c, const int rounding);
__m512h _mm512_mask_fmsub_round_ph (__m512h a, __mmask32 k, __m512h b, __m512h c, const int rounding);
__m512h _mm512_mask3_fmsub_round_ph (__m512h a, __m512h b, __m512h c, __mmask32 k, const int rounding);
__m512h _mm512_maskz_fmsub_round_ph (__mmask32 k, __m512h a, __m512h b, __m512h c, const int rounding);

VFNMSUB132PH, VFNMSUB213PH, and VFNMSUB231PH:
__m128h _mm_fnmsub_ph (__m128h a, __m128h b, __m128h c);
__m128h _mm_mask_fnmsub_ph (__m128h a, __mmask8 k, __m128h b, __m128h c);
__m128h _mm_mask3_fnmsub_ph (__m128h a, __m128h b, __m128h c, __mmask8 k);
__m128h _mm_maskz_fnmsub_ph (__mmask8 k, __m128h a, __m128h b, __m128h c);
__m256h _mm256_fnmsub_ph (__m256h a, __m256h b, __m256h c);
__m256h _mm256_mask_fnmsub_ph (__m256h a, __mmask16 k, __m256h b, __m256h c);
__m256h _mm256_mask3_fnmsub_ph (__m256h a, __m256h b, __m256h c, __mmask16 k);
__m256h _mm256_maskz_fnmsub_ph (__mmask16 k, __m256h a, __m256h b, __m256h c);
__m512h _mm512_fnmsub_ph (__m512h a, __m512h b, __m512h c);
__m512h _mm512_mask_fnmsub_ph (__m512h a, __mmask32 k, __m512h b, __m512h c);
__m512h _mm512_mask3_fnmsub_ph (__m512h a, __m512h b, __m512h c, __mmask32 k);
__m512h _mm512_maskz_fnmsub_ph (__mmask32 k, __m512h a, __m512h b, __m512h c);
__m512h _mm512_fnmsub_round_ph (__m512h a, __m512h b, __m512h c, const int rounding);
__m512h _mm512_mask_fnmsub_round_ph (__m512h a, __mmask32 k, __m512h b, __m512h c, const int rounding);
__m512h _mm512_mask3_fnmsub_round_ph (__m512h a, __m512h b, __m512h c, __mmask32 k, const int rounding);
__m512h _mm512_maskz_fnmsub_round_ph (__mmask32 k, __m512h a, __m512h b, __m512h c, const int rounding);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VFMSUB132PS/VFMSUB213PS/VFMSUB231PS—Fused Multiply-Subtract of Packed Single 
Precision Floating-Point Values

Opcode/
Instruction

Op/ 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 9A /r 
VFMSUB132PS xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed single precision floating-point 
values from xmm1 and xmm3/mem, subtract 
xmm2 and put result in xmm1.

VEX.128.66.0F38.W0 AA /r 
VFMSUB213PS xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed single precision floating-point 
values from xmm1 and xmm2, subtract 
xmm3/mem and put result in xmm1.

VEX.128.66.0F38.W0 BA /r 
VFMSUB231PS xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed single precision floating-point 
values from xmm2 and xmm3/mem, subtract 
xmm1 and put result in xmm1.

VEX.256.66.0F38.W0 9A /r 
VFMSUB132PS ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed single precision floating-point 
values from ymm1 and ymm3/mem, subtract 
ymm2 and put result in ymm1.

VEX.256.66.0F38.W0 AA /r 
VFMSUB213PS ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed single precision floating-point 
values from ymm1 and ymm2, subtract 
ymm3/mem and put result in ymm1.

VEX.256.66.0F38.0 BA /r 
VFMSUB231PS ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed single precision floating-point 
values from ymm2 and ymm3/mem, subtract 
ymm1 and put result in ymm1.

EVEX.128.66.0F38.W0 9A /r 
VFMSUB132PS xmm1 {k1}{z}, 
xmm2, xmm3/m128/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point 
values from xmm1 and xmm3/m128/m32bcst, 
subtract   xmm2 and put result in xmm1.

EVEX.128.66.0F38.W0 AA /r 
VFMSUB213PS xmm1 {k1}{z}, 
xmm2, xmm3/m128/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point 
values from xmm1 and xmm2, subtract   
xmm3/m128/m32bcst and put result in xmm1.

EVEX.128.66.0F38.W0 BA /r
VFMSUB231PS xmm1 {k1}{z}, 
xmm2, xmm3/m128/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point 
values from xmm2 and xmm3/m128/m32bcst, 
subtract   xmm1 and put result in xmm1.

EVEX.256.66.0F38.W0 9A /r
VFMSUB132PS ymm1 {k1}{z}, 
ymm2, ymm3/m256/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point 
values from ymm1 and ymm3/m256/m32bcst, 
subtract   ymm2 and put result in ymm1.

EVEX.256.66.0F38.W0 AA /r 
VFMSUB213PS ymm1 {k1}{z}, 
ymm2, ymm3/m256/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point 
values from ymm1 and ymm2, subtract   
ymm3/m256/m32bcst and put result in ymm1.

EVEX.256.66.0F38.W0 BA /r
VFMSUB231PS ymm1 {k1}{z}, 
ymm2, ymm3/m256/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point 
values from ymm2 and ymm3/m256/m32bcst, 
subtract   ymm1 and put result in ymm1.

EVEX.512.66.0F38.W0 9A /r 
VFMSUB132PS zmm1 {k1}{z}, 
zmm2, zmm3/m512/m32bcst{er}

B V/V AVX512F OR 
AVX10.11

Multiply packed single precision floating-point 
values from zmm1 and zmm3/m512/m32bcst, 
subtract zmm2 and put result in zmm1.

EVEX.512.66.0F38.W0 AA /r 
VFMSUB213PS zmm1 {k1}{z}, 
zmm2, zmm3/m512/m32bcst{er}

B V/V AVX512F OR 
AVX10.11

Multiply packed single precision floating-point 
values from zmm1 and zmm2, subtract 
zmm3/m512/m32bcst and put result in zmm1.

EVEX.512.66.0F38.W0 BA /r 
VFMSUB231PS zmm1 {k1}{z}, 
zmm2, zmm3/m512/m32bcst{er}

B V/V AVX512F OR 
AVX10.11

Multiply packed single precision floating-point 
values from zmm2 and zmm3/m512/m32bcst, 
subtract zmm1 and put result in zmm1.
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Instruction Operand Encoding

Description

Performs a set of SIMD multiply-subtract computation on packed single precision floating-point values using three 
source operands and writes the multiply-subtract results in the destination operand. The destination operand is 
also the first source operand. The second operand must be a SIMD register. The third source operand can be a 
SIMD register or a memory location. 
VFMSUB132PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the first 
source operand to the four, eight or sixteen packed single precision floating-point values in the third source 
operand. From the infinite precision intermediate result, subtracts the four, eight or sixteen packed single precision 
floating-point values in the second source operand, performs rounding and stores the resulting four, eight or 
sixteen packed single precision floating-point values to the destination operand (first source operand).
VFMSUB213PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the second 
source operand to the four, eight or sixteen packed single precision floating-point values in the first source 
operand. From the infinite precision intermediate result, subtracts the four, eight or sixteen packed single precision 
floating-point values in the third source operand, performs rounding and stores the resulting four, eight or sixteen 
packed single precision floating-point values to the destination operand (first source operand).
VFMSUB231PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the second 
source to the four, eight or sixteen packed single precision floating-point values in the third source operand. From 
the infinite precision intermediate result, subtracts the four, eight or sixteen packed single precision floating-point 
values in the first source operand, performs rounding and stores the resulting four, eight or sixteen packed single 
precision floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are 
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

Operation

In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no 
rounding).

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VFMSUB132PS DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 32*i;
DEST[n+31:n] := RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] - SRC2[n+31:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFMSUB213PS DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 32*i;
DEST[n+31:n] := RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] - SRC3[n+31:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFMSUB231PS DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 32*i;
DEST[n+31:n] := RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] - DEST[n+31:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI
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VFMSUB132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := 
RoundFPControl(DEST[i+31:i]*SRC3[i+31:i] - SRC2[i+31:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMSUB132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[31:0] - SRC2[i+31:i])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[i+31:i] - SRC2[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VFMSUB213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := 
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[i+31:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMSUB213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[31:0])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VFMSUB231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := 
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] - DEST[i+31:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMSUB231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[31:0] - DEST[i+31:i])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] - DEST[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VFMSUBxxxPS __m512 _mm512_fmsub_ps(__m512 a, __m512 b, __m512 c);
VFMSUBxxxPS __m512 _mm512_fmsub_round_ps(__m512 a, __m512 b, __m512 c, int r);
VFMSUBxxxPS __m512 _mm512_mask_fmsub_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
VFMSUBxxxPS __m512 _mm512_maskz_fmsub_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);
VFMSUBxxxPS __m512 _mm512_mask3_fmsub_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);
VFMSUBxxxPS __m512 _mm512_mask_fmsub_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int r);
VFMSUBxxxPS __m512 _mm512_maskz_fmsub_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c, int r);
VFMSUBxxxPS __m512 _mm512_mask3_fmsub_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k, int r);
VFMSUBxxxPS __m256 _mm256_mask_fmsub_ps(__m256 a, __mmask8 k, __m256 b, __m256 c);
VFMSUBxxxPS __m256 _mm256_maskz_fmsub_ps(__mmask8 k, __m256 a, __m256 b, __m256 c);
VFMSUBxxxPS __m256 _mm256_mask3_fmsub_ps(__m256 a, __m256 b, __m256 c, __mmask8 k);
VFMSUBxxxPS __m128 _mm_mask_fmsub_ps(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFMSUBxxxPS __m128 _mm_maskz_fmsub_ps(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFMSUBxxxPS __m128 _mm_mask3_fmsub_ps(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFMSUBxxxPS __m128 _mm_fmsub_ps (__m128 a, __m128 b, __m128 c);
VFMSUBxxxPS __m256 _mm256_fmsub_ps (__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VFMSUB132SD/VFMSUB213SD/VFMSUB231SD—Fused Multiply-Subtract of Scalar Double 
Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply-subtract computation on the low packed double precision floating-point values using 
three source operands and writes the multiply-subtract result in the destination operand. The destination operand 
is also the first source operand. The second operand must be a XMM register. The third source operand can be a 
XMM register or a 64-bit memory location. 
VFMSUB132SD: Multiplies the low packed double precision floating-point value from the first source operand to the 
low packed double precision floating-point value in the third source operand. From the infinite precision interme-
diate result, subtracts the low packed double precision floating-point values in the second source operand, 
performs rounding and stores the resulting packed double precision floating-point value to the destination operand 
(first source operand).
VFMSUB213SD: Multiplies the low packed double precision floating-point value from the second source operand to 
the low packed double precision floating-point value in the first source operand. From the infinite precision inter-
mediate result, subtracts the low packed double precision floating-point value in the third source operand, 
performs rounding and stores the resulting packed double precision floating-point value to the destination operand 
(first source operand).
VFMSUB231SD: Multiplies the low packed double precision floating-point value from the second source to the low 
packed double precision floating-point value in the third source operand. From the infinite precision intermediate 
result, subtracts the low packed double precision floating-point value in the first source operand, performs 

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.LIG.66.0F38.W1 9B /r 
VFMSUB132SD xmm1, xmm2, 
xmm3/m64

A V/V FMA Multiply scalar double precision floating-point value 
from xmm1 and xmm3/m64, subtract xmm2 and 
put result in xmm1.

VEX.LIG.66.0F38.W1 AB /r 
VFMSUB213SD xmm1, xmm2, 
xmm3/m64

A V/V FMA Multiply scalar double precision floating-point value 
from xmm1 and xmm2, subtract xmm3/m64 and 
put result in xmm1.

VEX.LIG.66.0F38.W1 BB /r 
VFMSUB231SD xmm1, xmm2, 
xmm3/m64

A V/V FMA Multiply scalar double precision floating-point value 
from xmm2 and xmm3/m64, subtract xmm1 and 
put result in xmm1.

EVEX.LLIG.66.0F38.W1 9B /r
VFMSUB132SD xmm1 {k1}{z}, 
xmm2, xmm3/m64{er}

B V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply scalar double precision floating-point value 
from xmm1 and xmm3/m64, subtract xmm2 and 
put result in xmm1.

EVEX.LLIG.66.0F38.W1 AB /r
VFMSUB213SD xmm1 {k1}{z}, 
xmm2, xmm3/m64{er}

B V/V AVX512F
OR AVX10.11

Multiply scalar double precision floating-point value 
from xmm1 and xmm2, subtract xmm3/m64 and 
put result in xmm1.

EVEX.LLIG.66.0F38.W1 BB /r 
VFMSUB231SD xmm1 {k1}{z}, 
xmm2, xmm3/m64{er}

B V/V AVX512F
OR AVX10.11

Multiply scalar double precision floating-point value 
from xmm2 and xmm3/m64, subtract xmm1 and 
put result in xmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Tuple1 Scalar ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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rounding and stores the resulting packed double precision floating-point value to the destination operand (first 
source operand).
VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field. 
The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field. 
Bits 127:64 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination is updated according to the writemask.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column.

Operation

In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no 
rounding).

VFMSUB132SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[63:0] := RoundFPControl(DEST[63:0]*SRC3[63:0] - SRC2[63:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0

VFMSUB213SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[63:0] := RoundFPControl(SRC2[63:0]*DEST[63:0] - SRC3[63:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0
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VFMSUB231SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[63:0] := RoundFPControl(SRC2[63:0]*SRC3[63:0] - DEST[63:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0

VFMSUB132SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] := RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] - SRC2[63:0])
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0

VFMSUB213SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] := RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] - SRC3[63:0])
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0

VFMSUB231SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] := RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] - DEST[63:0])
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUBxxxSD __m128d _mm_fmsub_round_sd(__m128d a, __m128d b, __m128d c, int r);
VFMSUBxxxSD __m128d _mm_mask_fmsub_sd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFMSUBxxxSD __m128d _mm_maskz_fmsub_sd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFMSUBxxxSD __m128d _mm_mask3_fmsub_sd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFMSUBxxxSD __m128d _mm_mask_fmsub_round_sd(__m128d a, __mmask8 k, __m128d b, __m128d c, int r);
VFMSUBxxxSD __m128d _mm_maskz_fmsub_round_sd(__mmask8 k, __m128d a, __m128d b, __m128d c, int r);
VFMSUBxxxSD __m128d _mm_mask3_fmsub_round_sd(__m128d a, __m128d b, __m128d c, __mmask8 k, int r);
VFMSUBxxxSD __m128d _mm_fmsub_sd (__m128d a, __m128d b, __m128d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VF[,N]MSUB[132,213,231]SH—Fused Multiply-Subtract of Scalar FP16 Values

Instruction Operand Encoding

Description

This instruction performs a scalar multiply-subtract or negated multiply-subtract computation on the low FP16 
values using three source operands and writes the result in the destination operand. The destination operand is also 
the first source operand. The “N” (negated) forms of this instruction subtract the remaining operand from the 
negated infinite precision intermediate product. The notation’ “132”, “213” and “231” indicate the use of the oper-
ands in ±A * B − C, where each digit corresponds to the operand number, with the destination being operand 1; 
see Table 1-7.
Bits 127:16 of the destination operand are preserved. Bits MAXVL-1:128 of the destination operand are zeroed. The 
low FP16 element of the destination is updated according to the writemask.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.66.MAP6.W0 9B /r
VFMSUB132SH xmm1{k1}{z}, xmm2, 
xmm3/m16 {er}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply FP16 values from xmm1 and 
xmm3/m16, subtract xmm2, and store the result 
in xmm1 subject to writemask k1.

EVEX.LLIG.66.MAP6.W0 AB /r
VFMSUB213SH xmm1{k1}{z}, xmm2, 
xmm3/m16 {er}

A V/V AVX512-FP16 
OR AVX10.11

Multiply FP16 values from xmm1 and xmm2, 
subtract xmm3/m16, and store the result in 
xmm1 subject to writemask k1.

EVEX.LLIG.66.MAP6.W0 BB /r
VFMSUB231SH xmm1{k1}{z}, xmm2, 
xmm3/m16 {er}

A V/V AVX512-FP16 
OR AVX10.11

Multiply FP16 values from xmm2 and 
xmm3/m16, subtract xmm1, and store the result 
in xmm1 subject to writemask k1.

EVEX.LLIG.66.MAP6.W0 9F /r
VFNMSUB132SH xmm1{k1}{z}, 
xmm2, xmm3/m16 {er}

A V/V AVX512-FP16 
OR AVX10.11

Multiply FP16 values from xmm1 and 
xmm3/m16, and negate the value. Subtract 
xmm2 from this value, and store the result in 
xmm1 subject to writemask k1.

EVEX.LLIG.66.MAP6.W0 AF /r
VFNMSUB213SH xmm1{k1}{z}, 
xmm2, xmm3/m16 {er}

A V/V AVX512-FP16 
OR AVX10.11

Multiply FP16 values from xmm1 and xmm2, and 
negate the value. Subtract xmm3/m16 from this 
value, and store the result in xmm1 subject to 
writemask k1.

EVEX.LLIG.66.MAP6.W0 BF /r
VFNMSUB231SH xmm1{k1}{z}, 
xmm2, xmm3/m16 {er}

A V/V AVX512-FP16 
OR AVX10.11

Multiply FP16 values from xmm2 and 
xmm3/m16, and negate the value. Subtract 
xmm1 from this value, and store the result in 
xmm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

Table 1-7.  VF[,N]MSUB[132,213,231]SH Notation for Operands

Notation Operands

132 dest = ± dest*src3-src2

231 dest = ± src2*src3-dest

213 dest = ± src2*dest-src3
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Operation

VF[,N]MSUB132SH DEST, SRC2, SRC3 (EVEX encoded versions)
IF EVEX.b = 1 and SRC3 is a register:

SET_RM(EVEX.RC)
ELSE

SET_RM(MXCSR.RC)

IF k1[0] OR *no writemask*:
IF *negative form*:

DEST.fp16[0] := RoundFPControl(-DEST.fp16[0]*SRC3.fp16[0] - SRC2.fp16[0])
ELSE:

DEST.fp16[0] := RoundFPControl(DEST.fp16[0]*SRC3.fp16[0] - SRC2.fp16[0])
ELSE IF *zeroing*:

DEST.fp16[0] := 0
// else DEST.fp16[0] remains unchanged

//DEST[127:16] remains unchanged
DEST[MAXVL-1:128] := 0 

VF[,N]MSUB213SH DEST, SRC2, SRC3 (EVEX encoded versions) 
IF EVEX.b = 1 and SRC3 is a register:

SET_RM(EVEX.RC)
ELSE

SET_RM(MXCSR.RC)

IF k1[0] OR *no writemask*:
IF *negative form:

DEST.fp16[0] := RoundFPControl(-SRC2.fp16[0]*DEST.fp16[0] - SRC3.fp16[0])
ELSE:

DEST.fp16[0] := RoundFPControl(SRC2.fp16[0]*DEST.fp16[0] - SRC3.fp16[0])
ELSE IF *zeroing*:

DEST.fp16[0] := 0
// else DEST.fp16[0] remains unchanged

//DEST[127:16] remains unchanged
DEST[MAXVL-1:128] := 0 

VF[,N]MSUB231SH DEST, SRC2, SRC3 (EVEX encoded versions) 
IF EVEX.b = 1 and SRC3 is a register:

SET_RM(EVEX.RC)
ELSE

SET_RM(MXCSR.RC)

IF k1[0] OR *no writemask*:
IF *negative form*:

DEST.fp16[0] := RoundFPControl(-SRC2.fp16[0]*SRC3.fp16[0] - DEST.fp16[0])
ELSE:

DEST.fp16[0] := RoundFPControl(SRC2.fp16[0]*SRC3.fp16[0] - DEST.fp16[0])
ELSE IF *zeroing*:

DEST.fp16[0] := 0
// else DEST.fp16[0] remains unchanged

//DEST[127:16] remains unchanged
DEST[MAXVL-1:128] := 0 
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Intel C/C++ Compiler Intrinsic Equivalent

VFMSUB132SH, VFMSUB213SH, and VFMSUB231SH:
__m128h _mm_fmsub_round_sh (__m128h a, __m128h b, __m128h c, const int rounding);
__m128h _mm_mask_fmsub_round_sh (__m128h a, __mmask8 k, __m128h b, __m128h c, const int rounding);
__m128h _mm_mask3_fmsub_round_sh (__m128h a, __m128h b, __m128h c, __mmask8 k, const int rounding);
__m128h _mm_maskz_fmsub_round_sh (__mmask8 k, __m128h a, __m128h b, __m128h c, const int rounding);
__m128h _mm_fmsub_sh (__m128h a, __m128h b, __m128h c);
__m128h _mm_mask_fmsub_sh (__m128h a, __mmask8 k, __m128h b, __m128h c);
__m128h _mm_mask3_fmsub_sh (__m128h a, __m128h b, __m128h c, __mmask8 k);
__m128h _mm_maskz_fmsub_sh (__mmask8 k, __m128h a, __m128h b, __m128h c);

VFNMSUB132SH, VFNMSUB213SH, and VFNMSUB231SH:
__m128h _mm_fnmsub_round_sh (__m128h a, __m128h b, __m128h c, const int rounding);
__m128h _mm_mask_fnmsub_round_sh (__m128h a, __mmask8 k, __m128h b, __m128h c, const int rounding);
__m128h _mm_mask3_fnmsub_round_sh (__m128h a, __m128h b, __m128h c, __mmask8 k, const int rounding);
__m128h _mm_maskz_fnmsub_round_sh (__mmask8 k, __m128h a, __m128h b, __m128h c, const int rounding);
__m128h _mm_fnmsub_sh (__m128h a, __m128h b, __m128h c);
__m128h _mm_mask_fnmsub_sh (__m128h a, __mmask8 k, __m128h b, __m128h c);
__m128h _mm_mask3_fnmsub_sh (__m128h a, __m128h b, __m128h c, __mmask8 k);
__m128h _mm_maskz_fnmsub_sh (__mmask8 k, __m128h a, __m128h b, __m128h c);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal

Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VFMSUB132SS/VFMSUB213SS/VFMSUB231SS—Fused Multiply-Subtract of Scalar Single 
Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply-subtract computation on the low packed single precision floating-point values using 
three source operands and writes the multiply-subtract result in the destination operand. The destination operand 
is also the first source operand. The second operand must be a XMM register. The third source operand can be a 
XMM register or a 32-bit memory location. 
VFMSUB132SS: Multiplies the low packed single precision floating-point value from the first source operand to the 
low packed single precision floating-point value in the third source operand. From the infinite precision interme-
diate result, subtracts the low packed single precision floating-point values in the second source operand, performs 
rounding and stores the resulting packed single precision floating-point value to the destination operand (first 
source operand).
VFMSUB213SS: Multiplies the low packed single precision floating-point value from the second source operand to 
the low packed single precision floating-point value in the first source operand. From the infinite precision interme-
diate result, subtracts the low packed single precision floating-point value in the third source operand, performs 
rounding and stores the resulting packed single precision floating-point value to the destination operand (first 
source operand).
VFMSUB231SS: Multiplies the low packed single precision floating-point value from the second source to the low 
packed single precision floating-point value in the third source operand. From the infinite precision intermediate 
result, subtracts the low packed single precision floating-point value in the first source operand, performs rounding 

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.LIG.66.0F38.W0 9B /r 
VFMSUB132SS xmm1, xmm2, 
xmm3/m32

A V/V FMA Multiply scalar single precision floating-point value 
from xmm1 and xmm3/m32, subtract xmm2 and put 
result in xmm1.

VEX.LIG.66.0F38.W0 AB /r
VFMSUB213SS xmm1, xmm2, 
xmm3/m32 

A V/V FMA Multiply scalar single precision floating-point value 
from xmm1 and xmm2, subtract xmm3/m32 and put 
result in xmm1.

VEX.LIG.66.0F38.W0 BB /r 
VFMSUB231SS xmm1, xmm2, 
xmm3/m32

A V/V FMA Multiply scalar single precision floating-point value 
from xmm2 and xmm3/m32, subtract xmm1 and put 
result in xmm1.

EVEX.LLIG.66.0F38.W0 9B /r 
VFMSUB132SS xmm1 {k1}{z}, 
xmm2, xmm3/m32{er}

B V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply scalar single precision floating-point value 
from xmm1 and xmm3/m32, subtract xmm2 and put 
result in xmm1.

EVEX.LLIG.66.0F38.W0 AB /r 
VFMSUB213SS xmm1 {k1}{z}, 
xmm2, xmm3/m32{er} 

B V/V AVX512F
OR AVX10.11

Multiply scalar single precision floating-point value 
from xmm1 and xmm2, subtract xmm3/m32 and put 
result in xmm1.

EVEX.LLIG.66.0F38.W0 BB /r 
VFMSUB231SS xmm1 {k1}{z}, 
xmm2, xmm3/m32{er}

B V/V AVX512F
OR AVX10.11

Multiply scalar single precision floating-point value 
from xmm2 and xmm3/m32, subtract xmm1 and put 
result in xmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Tuple1 Scalar ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
VFMSUB132SS/VFMSUB213SS/VFMSUB231SS—Fused Multiply-Subtract of Scalar Single Precision Floating-Point Values Vol. 2C 5-290



and stores the resulting packed single precision floating-point value to the destination operand (first source 
operand).
VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field. 
The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field. 
Bits 127:32 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.
EVEX encoded version: The low doubleword element of the destination is updated according to the writemask.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column.

Operation

In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no 
rounding).

VFMSUB132SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[31:0] := RoundFPControl(DEST[31:0]*SRC3[31:0] - SRC2[31:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

VFMSUB213SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[31:0] := RoundFPControl(SRC2[31:0]*DEST[31:0] - SRC3[31:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0
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VFMSUB231SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[31:0] := RoundFPControl(SRC2[31:0]*SRC3[63:0] - DEST[31:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

VFMSUB132SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] := RoundFPControl_MXCSR(DEST[31:0]*SRC3[31:0] - SRC2[31:0])
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

VFMSUB213SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] := RoundFPControl_MXCSR(SRC2[31:0]*DEST[31:0] - SRC3[31:0])
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

VFMSUB231SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] := RoundFPControl_MXCSR(SRC2[31:0]*SRC3[31:0] - DEST[31:0])
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUBxxxSS __m128 _mm_fmsub_round_ss(__m128 a, __m128 b, __m128 c, int r);
VFMSUBxxxSS __m128 _mm_mask_fmsub_ss(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFMSUBxxxSS __m128 _mm_maskz_fmsub_ss(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFMSUBxxxSS __m128 _mm_mask3_fmsub_ss(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFMSUBxxxSS __m128 _mm_mask_fmsub_round_ss(__m128 a, __mmask8 k, __m128 b, __m128 c, int r);
VFMSUBxxxSS __m128 _mm_maskz_fmsub_round_ss(__mmask8 k, __m128 a, __m128 b, __m128 c, int r);
VFMSUBxxxSS __m128 _mm_mask3_fmsub_round_ss(__m128 a, __m128 b, __m128 c, __mmask8 k, int r);
VFMSUBxxxSS __m128 _mm_fmsub_ss (__m128 a, __m128 b, __m128 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
VFMSUB132SS/VFMSUB213SS/VFMSUB231SS—Fused Multiply-Subtract of Scalar Single Precision Floating-Point Values Vol. 2C 5-292



VFMSUBADD132PD/VFMSUBADD213PD/VFMSUBADD231PD—Fused Multiply-Alternating 
Subtract/Add of Packed Double Precision Floating-Point Values

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W1 97 /r 
VFMSUBADD132PD xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed double precision floating-point 
values from xmm1 and xmm3/mem, 
subtract/add elements in xmm2 and put result 
in xmm1.

VEX.128.66.0F38.W1 A7 /r 
VFMSUBADD213PD xmm1, xmm2, 
xmm3/m128 

A V/V FMA Multiply packed double precision floating-point 
values from xmm1 and xmm2, subtract/add 
elements in xmm3/mem and put result in xmm1.

VEX.128.66.0F38.W1 B7 /r 
VFMSUBADD231PD xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed double precision floating-point 
values from xmm2 and xmm3/mem, 
subtract/add elements in xmm1 and put result 
in xmm1.

VEX.256.66.0F38.W1 97 /r 
VFMSUBADD132PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double precision floating-point 
values from ymm1 and ymm3/mem, 
subtract/add elements in ymm2 and put result 
in ymm1.

VEX.256.66.0F38.W1 A7 /r 
VFMSUBADD213PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double precision floating-point 
values from ymm1 and ymm2, subtract/add 
elements in ymm3/mem and put result in ymm1.

VEX.256.66.0F38.W1 B7 /r 
VFMSUBADD231PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double precision floating-point 
values from ymm2 and ymm3/mem, 
subtract/add elements in ymm1 and put result 
in ymm1.

EVEX.128.66.0F38.W1 97 /r 
VFMSUBADD132PD xmm1 {k1}{z}, 
xmm2, xmm3/m128/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from xmm1 and xmm3/m128/m64bcst, 
subtract/add elements in xmm2 and put result 
in xmm1 subject to writemask k1.

EVEX.128.66.0F38.W1 A7 /r 
VFMSUBADD213PD xmm1 {k1}{z}, 
xmm2, xmm3/m128/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from xmm1 and xmm2, subtract/add 
elements in xmm3/m128/m64bcst and put 
result in xmm1 subject to writemask k1.

EVEX.128.66.0F38.W1 B7 /r 
VFMSUBADD231PD xmm1 {k1}{z}, 
xmm2, xmm3/m128/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from xmm2 and xmm3/m128/m64bcst, 
subtract/add elements in xmm1 and put result 
in xmm1 subject to writemask k1.

EVEX.256.66.0F38.W1 97 /r 
VFMSUBADD132PD ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from ymm1 and ymm3/m256/m64bcst, 
subtract/add elements in ymm2 and put result 
in ymm1 subject to writemask k1.

EVEX.256.66.0F38.W1 A7 /r 
VFMSUBADD213PD ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from ymm1 and ymm2, subtract/add 
elements in ymm3/m256/m64bcst and put 
result in ymm1 subject to writemask k1.

EVEX.256.66.0F38.W1 B7 /r
VFMSUBADD231PD ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from ymm2 and ymm3/m256/m64bcst, 
subtract/add elements in ymm1 and put result 
in ymm1 subject to writemask k1.
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Instruction Operand Encoding

Description

VFMSUBADD132PD: Multiplies the two, four, or eight packed double precision floating-point values from the first 
source operand to the two or four packed double precision floating-point values in the third source operand. From 
the infinite precision intermediate result, subtracts the odd double precision floating-point elements and adds the 
even double precision floating-point values in the second source operand, performs rounding and stores the 
resulting two or four packed double precision floating-point values to the destination operand (first source 
operand).
VFMSUBADD213PD: Multiplies the two, four, or eight packed double precision floating-point values from the second 
source operand to the two or four packed double precision floating-point values in the first source operand. From 
the infinite precision intermediate result, subtracts the odd double precision floating-point elements and adds the 
even double precision floating-point values in the third source operand, performs rounding and stores the resulting 
two or four packed double precision floating-point values to the destination operand (first source operand).
VFMSUBADD231PD: Multiplies the two, four, or eight packed double precision floating-point values from the second 
source operand to the two or four packed double precision floating-point values in the third source operand. From 
the infinite precision intermediate result, subtracts the odd double precision floating-point elements and adds the 
even double precision floating-point values in the first source operand, performs rounding and stores the resulting 
two or four packed double precision floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are 
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 

EVEX.512.66.0F38.W1 97 /r 
VFMSUBADD132PD zmm1 {k1}{z}, 
zmm2, zmm3/m512/m64bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point 
values from zmm1 and zmm3/m512/m64bcst, 
subtract/add elements in zmm2 and put result in 
zmm1 subject to writemask k1.

EVEX.512.66.0F38.W1 A7 /r 
VFMSUBADD213PD zmm1 {k1}{z}, 
zmm2, zmm3/m512/m64bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point 
values from zmm1 and zmm2, subtract/add 
elements in zmm3/m512/m64bcst and put 
result in zmm1 subject to writemask k1.

EVEX.512.66.0F38.W1 B7 /r
VFMSUBADD231PD zmm1 {k1}{z}, 
zmm2, zmm3/m512/m64bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point 
values from zmm2 and zmm3/m512/m64bcst, 
subtract/add elements in zmm1 and put result in 
zmm1 subject to writemask k1.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description
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XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column.

Operation

In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no 
rounding).

VFMSUBADD132PD DEST, SRC2, SRC3 
IF (VEX.128) THEN 

DEST[63:0] := RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] + SRC2[63:0])
DEST[127:64] := RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] - SRC2[127:64])
DEST[MAXVL-1:128] := 0

ELSEIF (VEX.256)
DEST[63:0] := RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] + SRC2[63:0])
DEST[127:64] := RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] - SRC2[127:64])
DEST[191:128] := RoundFPControl_MXCSR(DEST[191:128]*SRC3[191:128] + SRC2[191:128])
DEST[255:192] := RoundFPControl_MXCSR(DEST[255:192]*SRC3[255:192] - SRC2[255:192]

FI

VFMSUBADD213PD DEST, SRC2, SRC3 
IF (VEX.128) THEN 

DEST[63:0] := RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] + SRC3[63:0])
DEST[127:64] := RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] - SRC3[127:64])
DEST[MAXVL-1:128] := 0

ELSEIF (VEX.256)
DEST[63:0] := RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] + SRC3[63:0])
DEST[127:64] := RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] - SRC3[127:64])
DEST[191:128] := RoundFPControl_MXCSR(SRC2[191:128]*DEST[191:128] + SRC3[191:128])
DEST[255:192] := RoundFPControl_MXCSR(SRC2[255:192]*DEST[255:192] - SRC3[255:192]

FI

VFMSUBADD231PD DEST, SRC2, SRC3 
IF (VEX.128) THEN 

DEST[63:0] := RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] + DEST[63:0])
DEST[127:64] := RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] - DEST[127:64])
DEST[MAXVL-1:128] := 0

ELSEIF (VEX.256)
DEST[63:0] := RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] + DEST[63:0])
DEST[127:64] := RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] - DEST[127:64])
DEST[191:128] := RoundFPControl_MXCSR(SRC2[191:128]*SRC3[191:128] + DEST[191:128])
DEST[255:192] := RoundFPControl_MXCSR(SRC2[255:192]*SRC3[255:192] - DEST[255:192]

FI

VFMSUBADD132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);
VFMSUBADD132PD/VFMSUBADD213PD/VFMSUBADD231PD—Fused Multiply-Alternating Subtract/Add of Packed Double Precision Vol. 2C 5-295



FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN DEST[i+63:i] := 
RoundFPControl(DEST[i+63:i]*SRC3[i+63:i] + SRC2[i+63:i])

ELSE DEST[i+63:i] := 
RoundFPControl(DEST[i+63:i]*SRC3[i+63:i] - SRC2[i+63:i])

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMSUBADD132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[63:0] + SRC2[i+63:i])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[i+63:i] + SRC2[i+63:i])
FI;

ELSE 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[63:0] - SRC2[i+63:i])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[i+63:i] - SRC2[i+63:i])
FI;

FI

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
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FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VFMSUBADD213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN DEST[i+63:i] := 
RoundFPControl(SRC2[i+63:i]*DEST[i+63:i] + SRC3[i+63:i])

ELSE DEST[i+63:i] := 
RoundFPControl(SRC2[i+63:i]*DEST[i+63:i] - SRC3[i+63:i])

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMSUBADD213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] + SRC3[63:0])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] + SRC3[i+63:i])
FI;

ELSE 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 
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RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] - SRC3[63:0])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] - SRC3[i+63:i])
FI;

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMSUBADD231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN DEST[i+63:i] := 
RoundFPControl(SRC2[i+63:i]*SRC3[i+63:i] + DEST[i+63:i])

ELSE DEST[i+63:i] := 
RoundFPControl(SRC2[i+63:i]*SRC3[i+63:i] - DEST[i+63:i])

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMSUBADD231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN 
IF (EVEX.b = 1) 
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THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[63:0] + DEST[i+63:i])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[i+63:i] + DEST[i+63:i])
FI;

ELSE 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[63:0] - DEST[i+63:i])

ELSE 
DEST[i+63:i] := 

RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[i+63:i] - DEST[i+63:i])
FI;

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUBADDxxxPD __m512d _mm512_fmsubadd_pd(__m512d a, __m512d b, __m512d c);
VFMSUBADDxxxPD __m512d _mm512_fmsubadd_round_pd(__m512d a, __m512d b, __m512d c, int r);
VFMSUBADDxxxPD __m512d _mm512_mask_fmsubadd_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
VFMSUBADDxxxPD __m512d _mm512_maskz_fmsubadd_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
VFMSUBADDxxxPD __m512d _mm512_mask3_fmsubadd_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
VFMSUBADDxxxPD __m512d _mm512_mask_fmsubadd_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d c, int r);
VFMSUBADDxxxPD __m512d _mm512_maskz_fmsubadd_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d c, int r);
VFMSUBADDxxxPD __m512d _mm512_mask3_fmsubadd_round_pd(__m512d a, __m512d b, __m512d c, __mmask8 k, int r);
VFMSUBADDxxxPD __m256d _mm256_mask_fmsubadd_pd(__m256d a, __mmask8 k, __m256d b, __m256d c);
VFMSUBADDxxxPD __m256d _mm256_maskz_fmsubadd_pd(__mmask8 k, __m256d a, __m256d b, __m256d c);
VFMSUBADDxxxPD __m256d _mm256_mask3_fmsubadd_pd(__m256d a, __m256d b, __m256d c, __mmask8 k);
VFMSUBADDxxxPD __m128d _mm_mask_fmsubadd_pd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFMSUBADDxxxPD __m128d _mm_maskz_fmsubadd_pd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFMSUBADDxxxPD __m128d _mm_mask3_fmsubadd_pd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFMSUBADDxxxPD __m128d _mm_fmsubadd_pd (__m128d a, __m128d b, __m128d c);
VFMSUBADDxxxPD __m256d _mm256_fmsubadd_pd (__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VFMSUBADD132PH/VFMSUBADD213PH/VFMSUBADD231PH—Fused Multiply-Alternating 
Subtract/Add of Packed FP16 Values

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.MAP6.W0 97 /r
VFMSUBADD132PH xmm1{k1}{z}, 
xmm2, xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply packed FP16 values from xmm1 and 
xmm3/m128/m16bcst, subtract/add elements in 
xmm2, and store the result in xmm1 subject to 
writemask k1.

EVEX.256.66.MAP6.W0 97 /r
VFMSUBADD132PH ymm1{k1}{z}, 
ymm2, ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from ymm1 and 
ymm3/m256/m16bcst, subtract/add elements in 
ymm2, and store the result in ymm1 subject to 
writemask k1.

EVEX.512.66.MAP6.W0 97 /r
VFMSUBADD132PH zmm1{k1}{z}, 
zmm2, zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values from zmm1 and 
zmm3/m512/m16bcst, subtract/add elements in 
zmm2, and store the result in zmm1 subject to 
writemask k1.

EVEX.128.66.MAP6.W0 A7 /r
VFMSUBADD213PH xmm1{k1}{z}, 
xmm2, xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from xmm1 and 
xmm2, subtract/add elements in 
xmm3/m128/m16bcst, and store the result in 
xmm1 subject to writemask k1.

EVEX.256.66.MAP6.W0 A7 /r
VFMSUBADD213PH ymm1{k1}{z}, 
ymm2, ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from ymm1 and 
ymm2, subtract/add elements in 
ymm3/m256/m16bcst, and store the result in 
ymm1 subject to writemask k1.

EVEX.512.66.MAP6.W0 A7 /r
VFMSUBADD213PH zmm1{k1}{z}, 
zmm2, zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values from zmm1 and 
zmm2, subtract/add elements in 
zmm3/m512/m16bcst, and store the result in 
zmm1 subject to writemask k1.

EVEX.128.66.MAP6.W0 B7 /r
VFMSUBADD231PH xmm1{k1}{z}, 
xmm2, xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from xmm2 and 
xmm3/m128/m16bcst, subtract/add elements in 
xmm1, and store the result in xmm1 subject to 
writemask k1.

EVEX.256.66.MAP6.W0 B7 /r
VFMSUBADD231PH ymm1{k1}{z}, 
ymm2, ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from ymm2 and 
ymm3/m256/m16bcst, subtract/add elements in 
ymm1, and store the result in ymm1 subject to 
writemask k1.

EVEX.512.66.MAP6.W0 B7 /r
VFMSUBADD231PH zmm1{k1}{z}, 
zmm2, zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values from zmm2 and 
zmm3/m512/m16bcst, subtract/add elements in 
zmm1, and store the result in zmm1 subject to 
writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A
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Description

This instruction performs a packed multiply-add (even elements) or multiply-subtract (odd elements) computation 
on FP16 values using three source operands and writes the results in the destination operand. The destination 
operand is also the first source operand. The notation “132”, “213” and “231” indicate the use of the operands in A 
* B ± C, where each digit corresponds to the operand number, with the destination being operand 1; see Table 1-8.
The destination elements are updated according to the writemask.

Operation

VFMSUBADD132PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a register
VL = 128, 256 or 512
KL := VL/16

IF (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *j is even*:
DEST.fp16[j] := RoundFPControl(DEST.fp16[j]*SRC3.fp16[j] + SRC2.fp16[j])

ELSE:
DEST.fp16[j] := RoundFPControl(DEST.fp16[j]*SRC3.fp16[j] - SRC2.fp16[j])

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

VFMSUBADD132PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a memory source
VL = 128, 256 or 512
KL := VL/16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF EVEX.b = 1:
t3 := SRC3.fp16[0]

ELSE:
t3 := SRC3.fp16[j]

IF *j is even*:
DEST.fp16[j] := RoundFPControl(DEST.fp16[j] * t3 + SRC2.fp16[j])

ELSE:
DEST.fp16[j] := RoundFPControl(DEST.fp16[j] * t3 - SRC2.fp16[j])

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

Table 1-8.  VFMSUBADD[132,213,231]PH Notation for Odd and Even Elements

Notation Odd Elements Even Elements

132 dest = dest*src3-src2 dest = dest*src3+src2

231 dest = src2*src3-dest dest = src2*src3+dest

213 dest = src2*dest-src3 dest = src2*dest+src3
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DEST[MAXVL-1:VL] := 0:

VFMSUBADD213PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a register
VL = 128, 256 or 512
KL := VL/16

IF (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *j is even*:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j]*DEST.fp16[j] + SRC3.fp16[j])

ELSE
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j]*DEST.fp16[j] - SRC3.fp16[j])

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0

VFMSUBADD213PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a memory source
VL = 128, 256 or 512
KL := VL/16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF EVEX.b = 1:
t3 := SRC3.fp16[0]

ELSE:
t3 := SRC3.fp16[j]

IF *j is even*:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j] * DEST.fp16[j] + t3 )

ELSE:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j] * DEST.fp16[j] - t3 )

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0:
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VFMSUBADD231PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a register
VL = 128, 256 or 512
KL := VL/16

IF (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF *j is even:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j]*SRC3.fp16[j] + DEST.fp16[j])

ELSE:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j]*SRC3.fp16[j] - DEST.fp16[j])

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0

VFMSUBADD231PH DEST, SRC2, SRC3 (EVEX encoded versions) when src3 operand is a memory source
VL = 128, 256 or 512
KL := VL/16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF EVEX.b = 1:
t3 := SRC3.fp16[0]

ELSE:
t3 := SRC3.fp16[j]

IF *j is even*:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j] * t3 + DEST.fp16[j] )

ELSE:
DEST.fp16[j] := RoundFPControl(SRC2.fp16[j] * t3 - DEST.fp16[j] )

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VFMSUBADD132PH, VFMSUBADD213PH, and VFMSUBADD231PH:
__m128h _mm_fmsubadd_ph (__m128h a, __m128h b, __m128h c);
__m128h _mm_mask_fmsubadd_ph (__m128h a, __mmask8 k, __m128h b, __m128h c);
__m128h _mm_mask3_fmsubadd_ph (__m128h a, __m128h b, __m128h c, __mmask8 k);
__m128h _mm_maskz_fmsubadd_ph (__mmask8 k, __m128h a, __m128h b, __m128h c);
__m256h _mm256_fmsubadd_ph (__m256h a, __m256h b, __m256h c);
__m256h _mm256_mask_fmsubadd_ph (__m256h a, __mmask16 k, __m256h b, __m256h c);
__m256h _mm256_mask3_fmsubadd_ph (__m256h a, __m256h b, __m256h c, __mmask16 k);
__m256h _mm256_maskz_fmsubadd_ph (__mmask16 k, __m256h a, __m256h b, __m256h c);
__m512h _mm512_fmsubadd_ph (__m512h a, __m512h b, __m512h c);
__m512h _mm512_mask_fmsubadd_ph (__m512h a, __mmask32 k, __m512h b, __m512h c);
__m512h _mm512_mask3_fmsubadd_ph (__m512h a, __m512h b, __m512h c, __mmask32 k);
__m512h _mm512_maskz_fmsubadd_ph (__mmask32 k, __m512h a, __m512h b, __m512h c);
__m512h _mm512_fmsubadd_round_ph (__m512h a, __m512h b, __m512h c, const int rounding);
__m512h _mm512_mask_fmsubadd_round_ph (__m512h a, __mmask32 k, __m512h b, __m512h c, const int rounding);
__m512h _mm512_mask3_fmsubadd_round_ph (__m512h a, __m512h b, __m512h c, __mmask32 k, const int rounding);
__m512h _mm512_maskz_fmsubadd_round_ph (__mmask32 k, __m512h a, __m512h b, __m512h c, const int rounding);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VFMSUBADD132PS/VFMSUBADD213PS/VFMSUBADD231PS—Fused Multiply-Alternating 
Subtract/Add of Packed Single Precision Floating-Point Values

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 97 /r 
VFMSUBADD132PS xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed single precision floating-point 
values from xmm1 and xmm3/mem, subtract/add 
elements in xmm2 and put result in xmm1.

VEX.128.66.0F38.W0 A7 /r 
VFMSUBADD213PS xmm1, xmm2, 
xmm3/m128 

A V/V FMA Multiply packed single precision floating-point 
values from xmm1 and xmm2, subtract/add 
elements in xmm3/mem and put result in xmm1.

VEX.128.66.0F38.W0 B7 /r 
VFMSUBADD231PS xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed single precision floating-point 
values from xmm2 and xmm3/mem, subtract/add 
elements in xmm1 and put result in xmm1.

VEX.256.66.0F38.W0 97 /r 
VFMSUBADD132PS ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed single precision floating-point 
values from ymm1 and ymm3/mem, subtract/add 
elements in ymm2 and put result in ymm1.

VEX.256.66.0F38.W0 A7 /r 
VFMSUBADD213PS ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed single precision floating-point 
values from ymm1 and ymm2, subtract/add 
elements in ymm3/mem and put result in ymm1.

VEX.256.66.0F38.W0 B7 /r 
VFMSUBADD231PS ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed single precision floating-point 
values from ymm2 and ymm3/mem, subtract/add 
elements in ymm1 and put result in ymm1.

EVEX.128.66.0F38.W0 97 /r 
VFMSUBADD132PS xmm1 {k1}{z}, 
xmm2, xmm3/m128/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point 
values from xmm1 and xmm3/m128/m32bcst, 
subtract/add elements in xmm2 and put result in 
xmm1 subject to writemask k1.

EVEX.128.66.0F38.W0 A7 /r 
VFMSUBADD213PS xmm1 {k1}{z}, 
xmm2, xmm3/m128/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point 
values from xmm1 and xmm2, subtract/add 
elements in xmm3/m128/m32bcst and put result 
in xmm1 subject to writemask k1.

EVEX.128.66.0F38.W0 B7 /r 
VFMSUBADD231PS xmm1 {k1}{z}, 
xmm2, xmm3/m128/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point 
values from xmm2 and xmm3/m128/m32bcst, 
subtract/add elements in xmm1 and put result in 
xmm1 subject to writemask k1.

EVEX.256.66.0F38.W0 97 /r 
VFMSUBADD132PS ymm1 {k1}{z}, 
ymm2, ymm3/m256/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point 
values from ymm1 and ymm3/m256/m32bcst, 
subtract/add elements in ymm2 and put result in 
ymm1 subject to writemask k1.

EVEX.256.66.0F38.W0 A7 /r 
VFMSUBADD213PS ymm1 {k1}{z}, 
ymm2, ymm3/m256/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point 
values from ymm1 and ymm2, subtract/add 
elements in ymm3/m256/m32bcst and put result 
in ymm1 subject to writemask k1.

EVEX.256.66.0F38.W0 B7 /r 
VFMSUBADD231PS ymm1 {k1}{z}, 
ymm2, ymm3/m256/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point 
values from ymm2 and ymm3/m256/m32bcst, 
subtract/add elements in ymm1 and put result in 
ymm1 subject to writemask k1.
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Instruction Operand Encoding

Description

VFMSUBADD132PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the first 
source operand to the corresponding packed single precision floating-point values in the third source operand. 
From the infinite precision intermediate result, subtracts the odd single precision floating-point elements and adds 
the even single precision floating-point values in the second source operand, performs rounding and stores the 
resulting packed single precision floating-point values to the destination operand (first source operand).
VFMSUBADD213PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the 
second source operand to the corresponding packed single precision floating-point values in the first source 
operand. From the infinite precision intermediate result, subtracts the odd single precision floating-point elements 
and adds the even single precision floating-point values in the third source operand, performs rounding and stores 
the resulting packed single precision floating-point values to the destination operand (first source operand).
VFMSUBADD231PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the 
second source operand to the corresponding packed single precision floating-point values in the third source 
operand. From the infinite precision intermediate result, subtracts the odd single precision floating-point elements 
and adds the even single precision floating-point values in the first source operand, performs rounding and stores 
the resulting packed single precision floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are 
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

EVEX.512.66.0F38.W0 97 /r 
VFMSUBADD132PS zmm1 {k1}{z}, 
zmm2, zmm3/m512/m32bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed single precision floating-point 
values from zmm1 and zmm3/m512/m32bcst, 
subtract/add elements in zmm2 and put result in 
zmm1 subject to writemask k1.

EVEX.512.66.0F38.W0 A7 /r 
VFMSUBADD213PS zmm1 {k1}{z}, 
zmm2, zmm3/m512/m32bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed single precision floating-point 
values from zmm1 and zmm2, subtract/add 
elements in zmm3/m512/m32bcst and put result 
in zmm1 subject to writemask k1.

EVEX.512.66.0F38.W0 B7 /r 
VFMSUBADD231PS zmm1 {k1}{z}, 
zmm2, zmm3/m512/m32bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed single precision floating-point 
values from zmm2 and zmm3/m512/m32bcst, 
subtract/add elements in zmm1 and put result in 
zmm1 subject to writemask k1.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description
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Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column.

Operation

In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no 
rounding).

VFMSUBADD132PS DEST, SRC2, SRC3 
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM -1{

n := 64*i;
DEST[n+31:n] := RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] + SRC2[n+31:n])
DEST[n+63:n+32] := RoundFPControl_MXCSR(DEST[n+63:n+32]*SRC3[n+63:n+32] -SRC2[n+63:n+32])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFMSUBADD213PS DEST, SRC2, SRC3 
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM -1{

n := 64*i;
DEST[n+31:n] := RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] +SRC3[n+31:n])
DEST[n+63:n+32] := RoundFPControl_MXCSR(SRC2[n+63:n+32]*DEST[n+63:n+32] -SRC3[n+63:n+32])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFMSUBADD231PS DEST, SRC2, SRC3 
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM -1{

n := 64*i;
DEST[n+31:n] := RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] + DEST[n+31:n])
DEST[n+63:n+32] := RoundFPControl_MXCSR(SRC2[n+63:n+32]*SRC3[n+63:n+32] -DEST[n+63:n+32])

}
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IF (VEX.128) THEN
DEST[MAXVL-1:128] := 0

ELSEIF (VEX.256)
DEST[MAXVL-1:256] := 0

FI

VFMSUBADD132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN DEST[i+31:i] := 
RoundFPControl(DEST[i+31:i]*SRC3[i+31:i] + SRC2[i+31:i])

ELSE DEST[i+31:i] := 
RoundFPControl(DEST[i+31:i]*SRC3[i+31:i] - SRC2[i+31:i])

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMSUBADD132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[31:0] + SRC2[i+31:i])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[i+31:i] + SRC2[i+31:i])

FI;
ELSE 

IF (EVEX.b = 1) 
THEN
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DEST[i+31:i] := 
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[31:0] - SRC2[i+31:i])

ELSE 
DEST[i+31:i] := 

RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[i+31:i] - SRC2[i+31:i])
FI;

FI

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMSUBADD213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN DEST[i+31:i] := 
RoundFPControl(SRC2[i+31:i]*DEST[i+31:i] + SRC3[i+31:i])

ELSE DEST[i+31:i] := 
RoundFPControl(SRC2[i+31:i]*DEST[i+31:i] - SRC3[i+31:i])

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMSUBADD213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF j *is even*
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THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] + SRC3[31:0])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] + SRC3[i+31:i])

FI;
ELSE 

IF (EVEX.b = 1) 
THEN

DEST[i+31:i] := 
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[i+31:i])

ELSE 
DEST[i+31:i] := 

RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[31:0])
FI;

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFMSUBADD231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN DEST[i+31:i] := 
RoundFPControl(SRC2[i+31:i]*SRC3[i+31:i] + DEST[i+31:i])

ELSE DEST[i+31:i] := 
RoundFPControl(SRC2[i+31:i]*SRC3[i+31:i] - DEST[i+31:i])

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
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ENDFOR
DEST[MAXVL-1:VL] := 0

VFMSUBADD231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF j *is even*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[31:0] + DEST[i+31:i])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] + DEST[i+31:i])

FI;
ELSE 

IF (EVEX.b = 1) 
THEN

DEST[i+31:i] := 
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[31:0] - DEST[i+31:i])

ELSE 
DEST[i+31:i] := 

RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] - DEST[i+31:i])
FI;

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUBADDxxxPS __m512 _mm512_fmsubadd_ps(__m512 a, __m512 b, __m512 c);
VFMSUBADDxxxPS __m512 _mm512_fmsubadd_round_ps(__m512 a, __m512 b, __m512 c, int r);
VFMSUBADDxxxPS __m512 _mm512_mask_fmsubadd_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
VFMSUBADDxxxPS __m512 _mm512_maskz_fmsubadd_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);
VFMSUBADDxxxPS __m512 _mm512_mask3_fmsubadd_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);
VFMSUBADDxxxPS __m512 _mm512_mask_fmsubadd_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int r);
VFMSUBADDxxxPS __m512 _mm512_maskz_fmsubadd_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c, int r);
VFMSUBADDxxxPS __m512 _mm512_mask3_fmsubadd_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k, int r);
VFMSUBADDxxxPS __m256 _mm256_mask_fmsubadd_ps(__m256 a, __mmask8 k, __m256 b, __m256 c);
VFMSUBADDxxxPS __m256 _mm256_maskz_fmsubadd_ps(__mmask8 k, __m256 a, __m256 b, __m256 c);
VFMSUBADDxxxPS __m256 _mm256_mask3_fmsubadd_ps(__m256 a, __m256 b, __m256 c, __mmask8 k);
VFMSUBADDxxxPS __m128 _mm_mask_fmsubadd_ps(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFMSUBADDxxxPS __m128 _mm_maskz_fmsubadd_ps(__mmask8 k, __m128 a, __m128 b, __m128 c);
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VFMSUBADDxxxPS __m128 _mm_mask3_fmsubadd_ps(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFMSUBADDxxxPS __m128 _mm_fmsubadd_ps (__m128 a, __m128 b, __m128 c);
VFMSUBADDxxxPS __m256 _mm256_fmsubadd_ps (__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VFNMADD132PD/VFNMADD213PD/VFNMADD231PD—Fused Negative Multiply-Add of Packed 
Double Precision Floating-Point Values

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W1 9C /r 
VFNMADD132PD xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed double precision floating-point 
values from xmm1 and xmm3/mem, negate the 
multiplication result and add to xmm2 and put result 
in xmm1.

VEX.128.66.0F38.W1 AC /r 
VFNMADD213PD xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed double precision floating-point 
values from xmm1 and xmm2, negate the 
multiplication result and add to xmm3/mem and put 
result in xmm1.

VEX.128.66.0F38.W1 BC /r 
VFNMADD231PD xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed double precision floating-point 
values from xmm2 and xmm3/mem, negate the 
multiplication result and add to xmm1 and put result 
in xmm1.

VEX.256.66.0F38.W1 9C /r 
VFNMADD132PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double precision floating-point 
values from ymm1 and ymm3/mem, negate the 
multiplication result and add to ymm2 and put result 
in ymm1.

VEX.256.66.0F38.W1 AC /r 
VFNMADD213PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double precision floating-point 
values from ymm1 and ymm2, negate the 
multiplication result and add to ymm3/mem and put 
result in ymm1.

VEX.256.66.0F38.W1 BC /r 
VFNMADD231PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double precision floating-point 
values from ymm2 and ymm3/mem, negate the 
multiplication result and add to ymm1 and put result 
in ymm1.

EVEX.128.66.0F38.W1 9C /r 
VFNMADD132PD xmm0 {k1}{z}, 
xmm1, xmm2/m128/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from xmm1 and xmm3/m128/m64bcst, 
negate the multiplication result and add to xmm2 
and put result in xmm1.

EVEX.128.66.0F38.W1 AC /r
VFNMADD213PD xmm1 {k1}{z}, 
xmm2, xmm3/m128/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from xmm1 and xmm2, negate the 
multiplication result and add to 
xmm3/m128/m64bcst and put result in xmm1.

EVEX.128.66.0F38.W1 BC /r 
VFNMADD231PD xmm1 {k1}{z}, 
xmm2, xmm3/m128/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from xmm2 and xmm3/m128/m64bcst, 
negate the multiplication result and add to xmm1 
and put result in xmm1.

EVEX.256.66.0F38.W1 9C /r 
VFNMADD132PD ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from ymm1 and ymm3/m256/m64bcst, 
negate the multiplication result and add to ymm2 
and put result in ymm1.

EVEX.256.66.0F38.W1 AC /r 
VFNMADD213PD ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from ymm1 and ymm2, negate the 
multiplication result and add to 
ymm3/m256/m64bcst and put result in ymm1.

EVEX.256.66.0F38.W1 BC /r 
VFNMADD231PD ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point 
values from ymm2 and ymm3/m256/m64bcst, 
negate the multiplication result and add to ymm1 
and put result in ymm1.
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Instruction Operand Encoding

Description

VFNMADD132PD: Multiplies the two, four or eight packed double precision floating-point values from the first 
source operand to the two, four or eight packed double precision floating-point values in the third source operand, 
adds the negated infinite precision intermediate result to the two, four or eight packed double precision floating-
point values in the second source operand, performs rounding and stores the resulting two, four or eight packed 
double precision floating-point values to the destination operand (first source operand).
VFNMADD213PD: Multiplies the two, four or eight packed double precision floating-point values from the second 
source operand to the two, four or eight packed double precision floating-point values in the first source operand, 
adds the negated infinite precision intermediate result to the two, four or eight packed double precision floating-
point values in the third source operand, performs rounding and stores the resulting two, four or eight packed 
double precision floating-point values to the destination operand (first source operand).
VFNMADD231PD: Multiplies the two, four or eight packed double precision floating-point values from the second 
source to the two, four or eight packed double precision floating-point values in the third source operand, the 
negated infinite precision intermediate result to the two, four or eight packed double precision floating-point values 
in the first source operand, performs rounding and stores the resulting two, four or eight packed double precision 
floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are 
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

EVEX.512.66.0F38.W1 9C /r 
VFNMADD132PD zmm1 {k1}{z}, 
zmm2, zmm3/m512/m64bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point 
values from zmm1 and zmm3/m512/m64bcst, 
negate the multiplication result and add to zmm2 
and put result in zmm1.

EVEX.512.66.0F38.W1 AC /r 
VFNMADD213PD zmm1 {k1}{z}, 
zmm2, zmm3/m512/m64bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point 
values from zmm1 and zmm2, negate the 
multiplication result and add to 
zmm3/m512/m64bcst and put result in zmm1.

EVEX.512.66.0F38.W1 BC /r 
VFNMADD231PD zmm1 {k1}{z}, 
zmm2, zmm3/m512/m64bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point 
values from zmm2 and zmm3/m512/m64bcst, 
negate the multiplication result and add to zmm1 
and put result in zmm1.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description
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Operation

In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no 
rounding).

VFNMADD132PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 64*i;
DEST[n+63:n] := RoundFPControl_MXCSR(-(DEST[n+63:n]*SRC3[n+63:n]) + SRC2[n+63:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFNMADD213PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 64*i;
DEST[n+63:n] := RoundFPControl_MXCSR(-(SRC2[n+63:n]*DEST[n+63:n]) + SRC3[n+63:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFNMADD231PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 64*i;
DEST[n+63:n] := RoundFPControl_MXCSR(-(SRC2[n+63:n]*SRC3[n+63:n]) + DEST[n+63:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI
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VFNMADD132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := 
RoundFPControl(-(DEST[i+63:i]*SRC3[i+63:i]) + SRC2[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFNMADD132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(-(DEST[i+63:i]*SRC3[63:0]) + SRC2[i+63:i])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(-(DEST[i+63:i]*SRC3[i+63:i]) + SRC2[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VFNMADD213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := 
RoundFPControl(-(SRC2[i+63:i]*DEST[i+63:i]) + SRC3[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFNMADD213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(-(SRC2[i+63:i]*DEST[i+63:i]) + SRC3[63:0])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(-(SRC2[i+63:i]*DEST[i+63:i]) + SRC3[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VFNMADD231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := 
RoundFPControl(-(SRC2[i+63:i]*SRC3[i+63:i]) + DEST[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFNMADD231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(-(SRC2[i+63:i]*SRC3[63:0]) + DEST[i+63:i])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(-(SRC2[i+63:i]*SRC3[i+63:i]) + DEST[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VFNMADDxxxPD __m512d _mm512_fnmadd_pd(__m512d a, __m512d b, __m512d c);
VFNMADDxxxPD __m512d _mm512_fnmadd_round_pd(__m512d a, __m512d b, __m512d c, int r);
VFNMADDxxxPD __m512d _mm512_mask_fnmadd_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
VFNMADDxxxPD __m512d _mm512_maskz_fnmadd_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
VFNMADDxxxPD __m512d _mm512_mask3_fnmadd_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
VFNMADDxxxPD __m512d _mm512_mask_fnmadd_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d c, int r);
VFNMADDxxxPD __m512d _mm512_maskz_fnmadd_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d c, int r);
VFNMADDxxxPD __m512d _mm512_mask3_fnmadd_round_pd(__m512d a, __m512d b, __m512d c, __mmask8 k, int r);
VFNMADDxxxPD __m256d _mm256_mask_fnmadd_pd(__m256d a, __mmask8 k, __m256d b, __m256d c);
VFNMADDxxxPD __m256d _mm256_maskz_fnmadd_pd(__mmask8 k, __m256d a, __m256d b, __m256d c);
VFNMADDxxxPD __m256d _mm256_mask3_fnmadd_pd(__m256d a, __m256d b, __m256d c, __mmask8 k);
VFNMADDxxxPD __m128d _mm_mask_fnmadd_pd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFNMADDxxxPD __m128d _mm_maskz_fnmadd_pd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFNMADDxxxPD __m128d _mm_mask3_fnmadd_pd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFNMADDxxxPD __m128d _mm_fnmadd_pd (__m128d a, __m128d b, __m128d c);
VFNMADDxxxPD __m256d _mm256_fnmadd_pd (__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
VFNMADD132PD/VFNMADD213PD/VFNMADD231PD—Fused Negative Multiply-Add of Packed Double Precision Floating-Point Values Vol. 2C 5-319



VFNMADD132PS/VFNMADD213PS/VFNMADD231PS—Fused Negative Multiply-Add of Packed 
Single Precision Floating-Point Values

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 9C /r
VFNMADD132PS xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed single precision floating-point values 
from xmm1 and xmm3/mem, negate the 
multiplication result and add to xmm2 and put result 
in xmm1.

VEX.128.66.0F38.W0 AC /r 
VFNMADD213PS xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed single precision floating-point values 
from xmm1 and xmm2, negate the multiplication 
result and add to xmm3/mem and put result in xmm1.

VEX.128.66.0F38.W0 BC /r 
VFNMADD231PS xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed single precision floating-point values 
from xmm2 and xmm3/mem, negate the 
multiplication result and add to xmm1 and put result 
in xmm1.

VEX.256.66.0F38.W0 9C /r 
VFNMADD132PS ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed single precision floating-point values 
from ymm1 and ymm3/mem, negate the 
multiplication result and add to ymm2 and put result 
in ymm1.

VEX.256.66.0F38.W0 AC /r 
VFNMADD213PS ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed single precision floating-point values 
from ymm1 and ymm2, negate the multiplication 
result and add to ymm3/mem and put result in ymm1.

VEX.256.66.0F38.0 BC /r 
VFNMADD231PS ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed single precision floating-point values 
from ymm2 and ymm3/mem, negate the 
multiplication result and add to ymm1 and put result 
in ymm1.

EVEX.128.66.0F38.W0 9C /r
VFNMADD132PS xmm1 {k1}{z}, 
xmm2, xmm3/m128/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point values 
from xmm1 and xmm3/m128/m32bcst, negate the 
multiplication result and add to xmm2 and put result 
in xmm1.

EVEX.128.66.0F38.W0 AC /r 
VFNMADD213PS xmm1 {k1}{z}, 
xmm2, xmm3/m128/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point values 
from xmm1 and xmm2, negate the multiplication 
result and add to xmm3/m128/m32bcst and put 
result in xmm1.

EVEX.128.66.0F38.W0 BC /r 
VFNMADD231PS xmm1 {k1}{z}, 
xmm2, xmm3/m128/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point values 
from xmm2 and xmm3/m128/m32bcst, negate the 
multiplication result and add to xmm1 and put result 
in xmm1.

EVEX.256.66.0F38.W0 9C /r 
VFNMADD132PS ymm1 {k1}{z}, 
ymm2, ymm3/m256/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point values 
from ymm1 and ymm3/m256/m32bcst, negate the 
multiplication result and add to ymm2 and put result 
in ymm1.

EVEX.256.66.0F38.W0 AC /r 
VFNMADD213PS ymm1 {k1}{z}, 
ymm2, ymm3/m256/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point values 
from ymm1 and ymm2, negate the multiplication 
result and add to ymm3/m256/m32bcst and put 
result in ymm1.

EVEX.256.66.0F38.W0 BC /r 
VFNMADD231PS ymm1 {k1}{z}, 
ymm2, ymm3/m256/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point values 
from ymm2 and ymm3/m256/m32bcst, negate the 
multiplication result and add to ymm1 and put result 
in ymm1.
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Instruction Operand Encoding

Description

VFNMADD132PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the first 
source operand to the four, eight or sixteen packed single precision floating-point values in the third source 
operand, adds the negated infinite precision intermediate result to the four, eight or sixteen packed single precision 
floating-point values in the second source operand, performs rounding and stores the resulting four, eight or 
sixteen packed single precision floating-point values to the destination operand (first source operand).
VFNMADD213PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the second 
source operand to the four, eight or sixteen packed single precision floating-point values in the first source 
operand, adds the negated infinite precision intermediate result to the four, eight or sixteen packed single precision 
floating-point values in the third source operand, performs rounding and stores the resulting the four, eight or 
sixteen packed single precision floating-point values to the destination operand (first source operand).
VFNMADD231PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the second 
source operand to the four, eight or sixteen packed single precision floating-point values in the third source 
operand, adds the negated infinite precision intermediate result to the four, eight or sixteen packed single precision 
floating-point values in the first source operand, performs rounding and stores the resulting four, eight or sixteen 
packed single precision floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are 
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

EVEX.512.66.0F38.W0 9C /r 
VFNMADD132PS zmm1 {k1}{z}, 
zmm2, zmm3/m512/m32bcst{er}

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single precision floating-point values 
from zmm1 and zmm3/m512/m32bcst, negate the 
multiplication result and add to zmm2 and put result 
in zmm1.

EVEX.512.66.0F38.W0 AC /r 
VFNMADD213PS zmm1 {k1}{z}, 
zmm2, zmm3/m512/m32bcst{er}

B V/V AVX512F OR 
AVX10.11

Multiply packed single precision floating-point values 
from zmm1 and zmm2, negate the multiplication 
result and add to zmm3/m512/m32bcst and put 
result in zmm1.

EVEX.512.66.0F38.W0 BC /r 
VFNMADD231PS zmm1 {k1}{z}, 
zmm2, zmm3/m512/m32bcst{er}

B V/V AVX512F OR 
AVX10.11

Multiply packed single precision floating-point values 
from zmm2 and zmm3/m512/m32bcst, negate the 
multiplication result and add to zmm1 and put result 
in zmm1.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description
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Operation

In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no 
rounding).

VFNMADD132PS DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 32*i;
DEST[n+31:n] := RoundFPControl_MXCSR(- (DEST[n+31:n]*SRC3[n+31:n]) + SRC2[n+31:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI
VFNMADD213PS DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 32*i;
DEST[n+31:n] := RoundFPControl_MXCSR(- (SRC2[n+31:n]*DEST[n+31:n]) + SRC3[n+31:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFNMADD231PS DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 32*i;
DEST[n+31:n] := RoundFPControl_MXCSR(- (SRC2[n+31:n]*SRC3[n+31:n]) + DEST[n+31:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI
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VFNMADD132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := 
RoundFPControl(-(DEST[i+31:i]*SRC3[i+31:i]) + SRC2[i+31:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFNMADD132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(-(DEST[i+31:i]*SRC3[31:0]) + SRC2[i+31:i])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(-(DEST[i+31:i]*SRC3[i+31:i]) + SRC2[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VFNMADD213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := 
RoundFPControl(-(SRC2[i+31:i]*DEST[i+31:i]) + SRC3[i+31:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFNMADD213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(-(SRC2[i+31:i]*DEST[i+31:i]) + SRC3[31:0])

ELSE 
DEST[i+31:i] := 

RoundFPControl_MXCSR(-(SRC2[i+31:i]*DEST[i+31:i]) + SRC3[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VFNMADD231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := 
RoundFPControl(-(SRC2[i+31:i]*SRC3[i+31:i]) + DEST[i+31:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFNMADD231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(-(SRC2[i+31:i]*SRC3[31:0]) + DEST[i+31:i])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(-(SRC2[i+31:i]*SRC3[i+31:i]) + DEST[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VFNMADDxxxPS __m512 _mm512_fnmadd_ps(__m512 a, __m512 b, __m512 c);
VFNMADDxxxPS __m512 _mm512_fnmadd_round_ps(__m512 a, __m512 b, __m512 c, int r);
VFNMADDxxxPS __m512 _mm512_mask_fnmadd_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
VFNMADDxxxPS __m512 _mm512_maskz_fnmadd_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);
VFNMADDxxxPS __m512 _mm512_mask3_fnmadd_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);
VFNMADDxxxPS __m512 _mm512_mask_fnmadd_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int r);
VFNMADDxxxPS __m512 _mm512_maskz_fnmadd_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c, int r);
VFNMADDxxxPS __m512 _mm512_mask3_fnmadd_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k, int r);
VFNMADDxxxPS __m256 _mm256_mask_fnmadd_ps(__m256 a, __mmask8 k, __m256 b, __m256 c);
VFNMADDxxxPS __m256 _mm256_maskz_fnmadd_ps(__mmask8 k, __m256 a, __m256 b, __m256 c);
VFNMADDxxxPS __m256 _mm256_mask3_fnmadd_ps(__m256 a, __m256 b, __m256 c, __mmask8 k);
VFNMADDxxxPS __m128 _mm_mask_fnmadd_ps(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFNMADDxxxPS __m128 _mm_maskz_fnmadd_ps(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFNMADDxxxPS __m128 _mm_mask3_fnmadd_ps(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFNMADDxxxPS __m128 _mm_fnmadd_ps (__m128 a, __m128 b, __m128 c);
VFNMADDxxxPS __m256 _mm256_fnmadd_ps (__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VFNMADD132SD/VFNMADD213SD/VFNMADD231SD—Fused Negative Multiply-Add of Scalar 
Double Precision Floating-Point Values

Instruction Operand Encoding

Description

VFNMADD132SD: Multiplies the low packed double precision floating-point value from the first source operand to 
the low packed double precision floating-point value in the third source operand, adds the negated infinite precision 
intermediate result to the low packed double precision floating-point values in the second source operand, 
performs rounding and stores the resulting packed double precision floating-point value to the destination operand 
(first source operand).
VFNMADD213SD: Multiplies the low packed double precision floating-point value from the second source operand 
to the low packed double precision floating-point value in the first source operand, adds the negated infinite preci-
sion intermediate result to the low packed double precision floating-point value in the third source operand, 
performs rounding and stores the resulting packed double precision floating-point value to the destination operand 
(first source operand).
VFNMADD231SD: Multiplies the low packed double precision floating-point value from the second source to the low 
packed double precision floating-point value in the third source operand, adds the negated infinite precision inter-
mediate result to the low packed double precision floating-point value in the first source operand, performs 
rounding and stores the resulting packed double precision floating-point value to the destination operand (first 
source operand).

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID 
Feature Flag

Description

VEX.LIG.66.0F38.W1 9D /r 
VFNMADD132SD xmm1, xmm2, 
xmm3/m64

A V/V FMA Multiply scalar double precision floating-point value from 
xmm1 and xmm3/mem, negate the multiplication result 
and add to xmm2 and put result in xmm1.

VEX.LIG.66.0F38.W1 AD /r
VFNMADD213SD xmm1, xmm2, 
xmm3/m64

A V/V FMA Multiply scalar double precision floating-point value from 
xmm1 and xmm2, negate the multiplication result and add 
to xmm3/mem and put result in xmm1.

VEX.LIG.66.0F38.W1 BD /r 
VFNMADD231SD xmm1, xmm2, 
xmm3/m64

A V/V FMA Multiply scalar double precision floating-point value from 
xmm2 and xmm3/mem, negate the multiplication result 
and add to xmm1 and put result in xmm1.

EVEX.LLIG.66.0F38.W1 9D /r
VFNMADD132SD xmm1 {k1}{z}, 
xmm2, xmm3/m64{er}

B V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply scalar double precision floating-point value from 
xmm1 and xmm3/m64, negate the multiplication result 
and add to xmm2 and put result in xmm1.

EVEX.LLIG.66.0F38.W1 AD /r 
VFNMADD213SD xmm1 {k1}{z}, 
xmm2, xmm3/m64{er} 

B V/V AVX512F
OR AVX10.11

Multiply scalar double precision floating-point value from 
xmm1 and xmm2, negate the multiplication result and add 
to xmm3/m64 and put result in xmm1.

EVEX.LLIG.66.0F38.W1 BD /r 
VFNMADD231SD xmm1 {k1}{z}, 
xmm2, xmm3/m64{er}

B V/V AVX512F
OR AVX10.11

Multiply scalar double precision floating-point value from 
xmm2 and xmm3/m64, negate the multiplication result 
and add to xmm1 and put result in xmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Tuple1 Scalar ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field. 
The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field. 
Bits 127:64 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination is updated according to the writemask.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column.

Operation

In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no 
rounding).

VFNMADD132SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[63:0] := RoundFPControl(-(DEST[63:0]*SRC3[63:0]) + SRC2[63:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0

VFNMADD213SD DEST, SRC2, SRC3 (EVEX encoded version) 
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[63:0] := RoundFPControl(-(SRC2[63:0]*DEST[63:0]) + SRC3[63:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0
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VFNMADD231SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[63:0] := RoundFPControl(-(SRC2[63:0]*SRC3[63:0]) + DEST[63:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0

VFNMADD132SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] := RoundFPControl_MXCSR(- (DEST[63:0]*SRC3[63:0]) + SRC2[63:0])
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0

VFNMADD213SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] := RoundFPControl_MXCSR(- (SRC2[63:0]*DEST[63:0]) + SRC3[63:0])
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0

VFNMADD231SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] := RoundFPControl_MXCSR(- (SRC2[63:0]*SRC3[63:0]) + DEST[63:0])
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMADDxxxSD __m128d _mm_fnmadd_round_sd(__m128d a, __m128d b, __m128d c, int r);
VFNMADDxxxSD __m128d _mm_mask_fnmadd_sd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFNMADDxxxSD __m128d _mm_maskz_fnmadd_sd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFNMADDxxxSD __m128d _mm_mask3_fnmadd_sd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFNMADDxxxSD __m128d _mm_mask_fnmadd_round_sd(__m128d a, __mmask8 k, __m128d b, __m128d c, int r);
VFNMADDxxxSD __m128d _mm_maskz_fnmadd_round_sd(__mmask8 k, __m128d a, __m128d b, __m128d c, int r);
VFNMADDxxxSD __m128d _mm_mask3_fnmadd_round_sd(__m128d a, __m128d b, __m128d c, __mmask8 k, int r);
VFNMADDxxxSD __m128d _mm_fnmadd_sd (__m128d a, __m128d b, __m128d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VFNMADD132SS/VFNMADD213SS/VFNMADD231SS—Fused Negative Multiply-Add of Scalar 
Single Precision Floating-Point Values

Instruction Operand Encoding

Description

VFNMADD132SS: Multiplies the low packed single precision floating-point value from the first source operand to 
the low packed single precision floating-point value in the third source operand, adds the negated infinite precision 
intermediate result to the low packed single precision floating-point value in the second source operand, performs 
rounding and stores the resulting packed single precision floating-point value to the destination operand (first 
source operand).
VFNMADD213SS: Multiplies the low packed single precision floating-point value from the second source operand to 
the low packed single precision floating-point value in the first source operand, adds the negated infinite precision 
intermediate result to the low packed single precision floating-point value in the third source operand, performs 
rounding and stores the resulting packed single precision floating-point value to the destination operand (first 
source operand).
VFNMADD231SS: Multiplies the low packed single precision floating-point value from the second source operand to 
the low packed single precision floating-point value in the third source operand, adds the negated infinite precision 
intermediate result to the low packed single precision floating-point value in the first source operand, performs 
rounding and stores the resulting packed single precision floating-point value to the destination operand (first 
source operand).

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID 
Feature Flag

Description

VEX.LIG.66.0F38.W0 9D /r 
VFNMADD132SS xmm1, xmm2, 
xmm3/m32

A V/V FMA Multiply scalar single precision floating-point value 
from xmm1 and xmm3/m32, negate the multiplication 
result and add to xmm2 and put result in xmm1.

VEX.LIG.66.0F38.W0 AD /r 
VFNMADD213SS xmm1, xmm2, 
xmm3/m32

A V/V FMA Multiply scalar single precision floating-point value 
from xmm1 and xmm2, negate the multiplication 
result and add to xmm3/m32 and put result in xmm1.

VEX.LIG.66.0F38.W0 BD /r 
VFNMADD231SS xmm1, xmm2, 
xmm3/m32

A V/V FMA Multiply scalar single precision floating-point value 
from xmm2 and xmm3/m32, negate the multiplication 
result and add to xmm1 and put result in xmm1.

EVEX.LLIG.66.0F38.W0 9D /r 
VFNMADD132SS xmm1 {k1}{z}, 
xmm2, xmm3/m32{er}

B V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply scalar single-precision floating-point value 
from xmm1 and xmm3/m32, negate the multiplication 
result and add to xmm2 and put result in xmm1.

EVEX.LLIG.66.0F38.W0 AD /r 
VFNMADD213SS xmm1 {k1}{z}, 
xmm2, xmm3/m32{er}

B V/V AVX512F
OR AVX10.11

Multiply scalar single-precision floating-point value 
from xmm1 and xmm2, negate the multiplication 
result and add to xmm3/m32 and put result in xmm1.

EVEX.LLIG.66.0F38.W0 BD /r 
VFNMADD231SS xmm1 {k1}{z}, 
xmm2, xmm3/m32{er}

B V/V AVX512F
OR AVX10.11

Multiply scalar single-precision floating-point value 
from xmm2 and xmm3/m32, negate the multiplication 
result and add to xmm1 and put result in xmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Tuple1 Scalar ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field. 
The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field. 
Bits 127:32 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.
EVEX encoded version: The low doubleword element of the destination is updated according to the writemask.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column.

Operation

In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no 
rounding).

VFNMADD132SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[31:0] := RoundFPControl(-(DEST[31:0]*SRC3[31:0]) + SRC2[31:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

VFNMADD213SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[31:0] := RoundFPControl(-(SRC2[31:0]*DEST[31:0]) + SRC3[31:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0
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VFNMADD231SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[31:0] := RoundFPControl(-(SRC2[31:0]*SRC3[63:0]) + DEST[31:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

VFNMADD132SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] := RoundFPControl_MXCSR(- (DEST[31:0]*SRC3[31:0]) + SRC2[31:0])
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

VFNMADD213SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] := RoundFPControl_MXCSR(- (SRC2[31:0]*DEST[31:0]) + SRC3[31:0])
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

VFNMADD231SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] := RoundFPControl_MXCSR(- (SRC2[31:0]*SRC3[31:0]) + DEST[31:0])
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMADDxxxSS __m128 _mm_fnmadd_round_ss(__m128 a, __m128 b, __m128 c, int r);
VFNMADDxxxSS __m128 _mm_mask_fnmadd_ss(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFNMADDxxxSS __m128 _mm_maskz_fnmadd_ss(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFNMADDxxxSS __m128 _mm_mask3_fnmadd_ss(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFNMADDxxxSS __m128 _mm_mask_fnmadd_round_ss(__m128 a, __mmask8 k, __m128 b, __m128 c, int r);
VFNMADDxxxSS __m128 _mm_maskz_fnmadd_round_ss(__mmask8 k, __m128 a, __m128 b, __m128 c, int r);
VFNMADDxxxSS __m128 _mm_mask3_fnmadd_round_ss(__m128 a, __m128 b, __m128 c, __mmask8 k, int r);
VFNMADDxxxSS __m128 _mm_fnmadd_ss (__m128 a, __m128 b, __m128 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VFNMSUB132PD/VFNMSUB213PD/VFNMSUB231PD—Fused Negative Multiply-Subtract of 
Packed Double Precision Floating-Point Values

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W1 9E /r
VFNMSUB132PD xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed double precision floating-point values 
from xmm1 and xmm3/mem, negate the 
multiplication result and subtract xmm2 and put 
result in xmm1.

VEX.128.66.0F38.W1 AE /r
VFNMSUB213PD xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed double precision floating-point values 
from xmm1 and xmm2, negate the multiplication 
result and subtract xmm3/mem and put result in 
xmm1.

VEX.128.66.0F38.W1 BE /r 
VFNMSUB231PD xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed double precision floating-point values 
from xmm2 and xmm3/mem, negate the 
multiplication result and subtract xmm1 and put 
result in xmm1.

VEX.256.66.0F38.W1 9E /r
VFNMSUB132PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double precision floating-point values 
from ymm1 and ymm3/mem, negate the 
multiplication result and subtract ymm2 and put 
result in ymm1.

VEX.256.66.0F38.W1 AE /r 
VFNMSUB213PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double precision floating-point values 
from ymm1 and ymm2, negate the multiplication 
result and subtract ymm3/mem and put result in 
ymm1.

VEX.256.66.0F38.W1 BE /r 
VFNMSUB231PD ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed double precision floating-point values 
from ymm2 and ymm3/mem, negate the 
multiplication result and subtract ymm1 and put 
result in ymm1.

EVEX.128.66.0F38.W1 9E /r 
VFNMSUB132PD xmm1 {k1}{z}, 
xmm2, xmm3/m128/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point values 
from xmm1 and xmm3/m128/m64bcst, negate the 
multiplication result and subtract xmm2 and put 
result in xmm1.

EVEX.128.66.0F38.W1 AE /r
VFNMSUB213PD xmm1 {k1}{z}, 
xmm2, xmm3/m128/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point values 
from xmm1 and xmm2, negate the multiplication 
result and subtract xmm3/m128/m64bcst and put 
result in xmm1.

EVEX.128.66.0F38.W1 BE /r 
VFNMSUB231PD xmm1 {k1}{z}, 
xmm2, xmm3/m128/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point values 
from xmm2 and xmm3/m128/m64bcst, negate the 
multiplication result and subtract xmm1 and put 
result in xmm1.

EVEX.256.66.0F38.W1 9E /r 
VFNMSUB132PD ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point values 
from ymm1 and ymm3/m256/m64bcst, negate the 
multiplication result and subtract ymm2 and put 
result in ymm1.

EVEX.256.66.0F38.W1 AE /r 
VFNMSUB213PD ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point values 
from ymm1 and ymm2, negate the multiplication 
result and subtract ymm3/m256/m64bcst and put 
result in ymm1.

EVEX.256.66.0F38.W1 BE /r 
VFNMSUB231PD ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed double precision floating-point values 
from ymm2 and ymm3/m256/m64bcst, negate the 
multiplication result and subtract ymm1 and put 
result in ymm1.
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Instruction Operand Encoding

Description

VFNMSUB132PD: Multiplies the two, four or eight packed double precision floating-point values from the first 
source operand to the two, four or eight packed double precision floating-point values in the third source operand. 
From negated infinite precision intermediate results, subtracts the two, four or eight packed double precision 
floating-point values in the second source operand, performs rounding and stores the resulting two, four or eight 
packed double precision floating-point values to the destination operand (first source operand).
VFNMSUB213PD: Multiplies the two, four or eight packed double precision floating-point values from the second 
source operand to the two, four or eight packed double precision floating-point values in the first source operand. 
From negated infinite precision intermediate results, subtracts the two, four or eight packed double precision 
floating-point values in the third source operand, performs rounding and stores the resulting two, four or eight 
packed double precision floating-point values to the destination operand (first source operand).
VFNMSUB231PD: Multiplies the two, four or eight packed double precision floating-point values from the second 
source to the two, four or eight packed double precision floating-point values in the third source operand. From 
negated infinite precision intermediate results, subtracts the two, four or eight packed double precision floating-
point values in the first source operand, performs rounding and stores the resulting two, four or eight packed 
double precision floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are 
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

EVEX.512.66.0F38.W1 9E /r 
VFNMSUB132PD zmm1 {k1}{z}, 
zmm2, zmm3/m512/m64bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point values 
from zmm1 and zmm3/m512/m64bcst, negate the 
multiplication result and subtract zmm2 and put 
result in zmm1.

EVEX.512.66.0F38.W1 AE /r 
VFNMSUB213PD zmm1 {k1}{z}, 
zmm2, zmm3/m512/m64bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point values 
from zmm1 and zmm2, negate the multiplication 
result and subtract zmm3/m512/m64bcst and put 
result in zmm1.

EVEX.512.66.0F38.W1 BE /r 
VFNMSUB231PD zmm1 {k1}{z}, 
zmm2, zmm3/m512/m64bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed double precision floating-point values 
from zmm2 and zmm3/m512/m64bcst, negate the 
multiplication result and subtract zmm1 and put 
result in zmm1.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description
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Operation

In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no 
rounding).

VFNMSUB132PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 64*i;
DEST[n+63:n] := RoundFPControl_MXCSR( - (DEST[n+63:n]*SRC3[n+63:n]) - SRC2[n+63:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFNMSUB213PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 64*i;
DEST[n+63:n] := RoundFPControl_MXCSR( - (SRC2[n+63:n]*DEST[n+63:n]) - SRC3[n+63:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFNMSUB231PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 64*i;
DEST[n+63:n] := RoundFPControl_MXCSR( - (SRC2[n+63:n]*SRC3[n+63:n]) - DEST[n+63:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI
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VFNMSUB132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := 
RoundFPControl(-(DEST[i+63:i]*SRC3[i+63:i]) - SRC2[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFNMSUB132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(-(DEST[i+63:i]*SRC3[63:0]) - SRC2[i+63:i])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(-(DEST[i+63:i]*SRC3[i+63:i]) - SRC2[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VFNMSUB213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := 
RoundFPControl(-(SRC2[i+63:i]*DEST[i+63:i]) - SRC3[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFNMSUB213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(-(SRC2[i+63:i]*DEST[i+63:i]) - SRC3[63:0])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(-(SRC2[i+63:i]*DEST[i+63:i]) - SRC3[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VFNMSUB231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := 
RoundFPControl(-(SRC2[i+63:i]*SRC3[i+63:i]) - DEST[i+63:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFNMSUB231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+63:i] := 

RoundFPControl_MXCSR(-(SRC2[i+63:i]*SRC3[63:0]) - DEST[i+63:i])
ELSE 

DEST[i+63:i] := 
RoundFPControl_MXCSR(-(SRC2[i+63:i]*SRC3[i+63:i]) - DEST[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VFNMSUBxxxPD __m512d _mm512_fnmsub_pd(__m512d a, __m512d b, __m512d c);
VFNMSUBxxxPD __m512d _mm512_fnmsub_round_pd(__m512d a, __m512d b, __m512d c, int r);
VFNMSUBxxxPD __m512d _mm512_mask_fnmsub_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
VFNMSUBxxxPD __m512d _mm512_maskz_fnmsub_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
VFNMSUBxxxPD __m512d _mm512_mask3_fnmsub_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
VFNMSUBxxxPD __m512d _mm512_mask_fnmsub_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d c, int r);
VFNMSUBxxxPD __m512d _mm512_maskz_fnmsub_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d c, int r);
VFNMSUBxxxPD __m512d _mm512_mask3_fnmsub_round_pd(__m512d a, __m512d b, __m512d c, __mmask8 k, int r);
VFNMSUBxxxPD __m256d _mm256_mask_fnmsub_pd(__m256d a, __mmask8 k, __m256d b, __m256d c);
VFNMSUBxxxPD __m256d _mm256_maskz_fnmsub_pd(__mmask8 k, __m256d a, __m256d b, __m256d c);
VFNMSUBxxxPD __m256d _mm256_mask3_fnmsub_pd(__m256d a, __m256d b, __m256d c, __mmask8 k);
VFNMSUBxxxPD __m128d _mm_mask_fnmsub_pd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFNMSUBxxxPD __m128d _mm_maskz_fnmsub_pd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFNMSUBxxxPD __m128d _mm_mask3_fnmsub_pd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFNMSUBxxxPD __m128d _mm_fnmsub_pd (__m128d a, __m128d b, __m128d c);
VFNMSUBxxxPD __m256d _mm256_fnmsub_pd (__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.” 
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VFNMSUB132PS/VFNMSUB213PS/VFNMSUB231PS—Fused Negative Multiply-Subtract of 
Packed Single Precision Floating-Point Values

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 9E /r
VFNMSUB132PS xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed single precision floating-point values 
from xmm1 and xmm3/mem, negate the 
multiplication result and subtract xmm2 and put 
result in xmm1.

VEX.128.66.0F38.W0 AE /r 
VFNMSUB213PS xmm1, xmm2, 
xmm3/m128 

A V/V FMA Multiply packed single precision floating-point values 
from xmm1 and xmm2, negate the multiplication 
result and subtract xmm3/mem and put result in 
xmm1.

VEX.128.66.0F38.W0 BE /r 
VFNMSUB231PS xmm1, xmm2, 
xmm3/m128

A V/V FMA Multiply packed single precision floating-point values 
from xmm2 and xmm3/mem, negate the 
multiplication result and subtract xmm1 and put 
result in xmm1.

VEX.256.66.0F38.W0 9E /r 
VFNMSUB132PS ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed single precision floating-point values 
from ymm1 and ymm3/mem, negate the 
multiplication result and subtract ymm2 and put 
result in ymm1.

VEX.256.66.0F38.W0 AE /r 
VFNMSUB213PS ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed single precision floating-point values 
from ymm1 and ymm2, negate the multiplication 
result and subtract ymm3/mem and put result in 
ymm1.

VEX.256.66.0F38.0 BE /r 
VFNMSUB231PS ymm1, ymm2, 
ymm3/m256

A V/V FMA Multiply packed single precision floating-point values 
from ymm2 and ymm3/mem, negate the 
multiplication result and subtract ymm1 and put 
result in ymm1.

EVEX.128.66.0F38.W0 9E /r 
VFNMSUB132PS xmm1 {k1}{z}, 
xmm2, xmm3/m128/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single-precision floating-point values 
from xmm1 and xmm3/m128/m32bcst, negate the 
multiplication result and subtract xmm2 and put 
result in xmm1.

EVEX.128.66.0F38.W0 AE /r
VFNMSUB213PS xmm1 {k1}{z}, 
xmm2, xmm3/m128/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single-precision floating-point values 
from xmm1 and xmm2, negate the multiplication 
result and subtract xmm3/m128/m32bcst and put 
result in xmm1.

EVEX.128.66.0F38.W0 BE /r 
VFNMSUB231PS xmm1 {k1}{z}, 
xmm2, xmm3/m128/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single-precision floating-point values 
from xmm2 and xmm3/m128/m32bcst, negate the 
multiplication result subtract add to xmm1 and put 
result in xmm1.

EVEX.256.66.0F38.W0 9E /r 
VFNMSUB132PS ymm1 {k1}{z}, 
ymm2, ymm3/m256/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single-precision floating-point values 
from ymm1 and ymm3/m256/m32bcst, negate the 
multiplication result and subtract ymm2 and put 
result in ymm1.

EVEX.256.66.0F38.W0 AE /r
VFNMSUB213PS ymm1 {k1}{z}, 
ymm2, ymm3/m256/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single-precision floating-point values 
from ymm1 and ymm2, negate the multiplication 
result and subtract ymm3/m256/m32bcst and put 
result in ymm1.

EVEX.256.66.0F38.W0 BE /r 
VFNMSUB231PS ymm1 {k1}{z}, 
ymm2, ymm3/m256/m32bcst

B V/V (AVX512VL AND 
AVX512F) OR 
AVX10.11

Multiply packed single-precision floating-point values 
from ymm2 and ymm3/m256/m32bcst, negate the 
multiplication result subtract add to ymm1 and put 
result in ymm1.
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Instruction Operand Encoding

Description

VFNMSUB132PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the first 
source operand to the four, eight or sixteen packed single precision floating-point values in the third source 
operand. From negated infinite precision intermediate results, subtracts the four, eight or sixteen packed single 
precision floating-point values in the second source operand, performs rounding and stores the resulting four, eight 
or sixteen packed single precision floating-point values to the destination operand (first source operand).
VFNMSUB213PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the second 
source operand to the four, eight or sixteen packed single precision floating-point values in the first source 
operand. From negated infinite precision intermediate results, subtracts the four, eight or sixteen packed single 
precision floating-point values in the third source operand, performs rounding and stores the resulting four, eight 
or sixteen packed single precision floating-point values to the destination operand (first source operand).
VFNMSUB231PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the second 
source to the four, eight or sixteen packed single precision floating-point values in the third source operand. From 
negated infinite precision intermediate results, subtracts the four, eight or sixteen packed single precision floating-
point values in the first source operand, performs rounding and stores the resulting four, eight or sixteen packed 
single precision floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are 
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

EVEX.512.66.0F38.W0 9E /r 
VFNMSUB132PS zmm1 {k1}{z}, 
zmm2, zmm3/m512/m32bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed single-precision floating-point values 
from zmm1 and zmm3/m512/m32bcst, negate the 
multiplication result and subtract zmm2 and put 
result in zmm1.

EVEX.512.66.0F38.W0 AE /r 
VFNMSUB213PS zmm1 {k1}{z}, 
zmm2, zmm3/m512/m32bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed single-precision floating-point values 
from zmm1 and zmm2, negate the multiplication 
result and subtract zmm3/m512/m32bcst and put 
result in zmm1.

EVEX.512.66.0F38.W0 BE /r 
VFNMSUB231PS zmm1 {k1}{z}, 
zmm2, zmm3/m512/m32bcst{er}

B V/V AVX512F 
OR AVX10.11

Multiply packed single-precision floating-point values 
from zmm2 and zmm3/m512/m32bcst, negate the 
multiplication result subtract add to zmm1 and put 
result in zmm1.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description
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Operation

In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no 
rounding).

VFNMSUB132PS DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 32*i;
DEST[n+31:n] := RoundFPControl_MXCSR( - (DEST[n+31:n]*SRC3[n+31:n]) - SRC2[n+31:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFNMSUB213PS DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 32*i;
DEST[n+31:n] := RoundFPControl_MXCSR( - (SRC2[n+31:n]*DEST[n+31:n]) - SRC3[n+31:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI

VFNMSUB231PS DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN 

MAXNUM := 2
ELSEIF (VEX.256)

MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {

n := 32*i;
DEST[n+31:n] := RoundFPControl_MXCSR( - (SRC2[n+31:n]*SRC3[n+31:n]) - DEST[n+31:n])

}
IF (VEX.128) THEN

DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)

DEST[MAXVL-1:256] := 0
FI
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VFNMSUB132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := 
RoundFPControl(-(DEST[i+31:i]*SRC3[i+31:i]) - SRC2[i+31:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFNMSUB132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(-(DEST[i+31:i]*SRC3[31:0]) - SRC2[i+31:i])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(-(DEST[i+31:i]*SRC3[i+31:i]) - SRC2[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
VFNMSUB132PS/VFNMSUB213PS/VFNMSUB231PS—Fused Negative Multiply-Subtract of Packed Single Precision Floating-Point Val- Vol. 2C 5-343



VFNMSUB213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := 
RoundFPControl_MXCSR(-(SRC2[i+31:i]*DEST[i+31:i]) - SRC3[i+31:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFNMSUB213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(-(SRC2[i+31:i]*DEST[i+31:i]) - SRC3[31:0])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(-(SRC2[i+31:i]*DEST[i+31:i]) - SRC3[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VFNMSUB231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := 
RoundFPControl_MXCSR(-(SRC2[i+31:i]*SRC3[i+31:i]) - DEST[i+31:i])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VFNMSUB231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) 

THEN
DEST[i+31:i] := 

RoundFPControl_MXCSR(-(SRC2[i+31:i]*SRC3[31:0]) - DEST[i+31:i])
ELSE 

DEST[i+31:i] := 
RoundFPControl_MXCSR(-(SRC2[i+31:i]*SRC3[i+31:i]) - DEST[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VFNMSUBxxxPS __m512 _mm512_fnmsub_ps(__m512 a, __m512 b, __m512 c);
VFNMSUBxxxPS __m512 _mm512_fnmsub_round_ps(__m512 a, __m512 b, __m512 c, int r);
VFNMSUBxxxPS __m512 _mm512_mask_fnmsub_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
VFNMSUBxxxPS __m512 _mm512_maskz_fnmsub_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);
VFNMSUBxxxPS __m512 _mm512_mask3_fnmsub_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);
VFNMSUBxxxPS __m512 _mm512_mask_fnmsub_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int r);
VFNMSUBxxxPS __m512 _mm512_maskz_fnmsub_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c, int r);
VFNMSUBxxxPS __m512 _mm512_mask3_fnmsub_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k, int r);
VFNMSUBxxxPS __m256 _mm256_mask_fnmsub_ps(__m256 a, __mmask8 k, __m256 b, __m256 c);
VFNMSUBxxxPS __m256 _mm256_maskz_fnmsub_ps(__mmask8 k, __m256 a, __m256 b, __m256 c);
VFNMSUBxxxPS __m256 _mm256_mask3_fnmsub_ps(__m256 a, __m256 b, __m256 c, __mmask8 k);
VFNMSUBxxxPS __m128 _mm_mask_fnmsub_ps(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFNMSUBxxxPS __m128 _mm_maskz_fnmsub_ps(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFNMSUBxxxPS __m128 _mm_mask3_fnmsub_ps(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFNMSUBxxxPS __m128 _mm_fnmsub_ps (__m128 a, __m128 b, __m128 c);
VFNMSUBxxxPS __m256 _mm256_fnmsub_ps (__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VFNMSUB132SD/VFNMSUB213SD/VFNMSUB231SD—Fused Negative Multiply-Subtract of 
Scalar Double Precision Floating-Point Values

Instruction Operand Encoding

Description

VFNMSUB132SD: Multiplies the low packed double precision floating-point value from the first source operand to 
the low packed double precision floating-point value in the third source operand. From negated infinite precision 
intermediate result, subtracts the low double precision floating-point value in the second source operand, performs 
rounding and stores the resulting packed double precision floating-point value to the destination operand (first 
source operand).
VFNMSUB213SD: Multiplies the low packed double precision floating-point value from the second source operand 
to the low packed double precision floating-point value in the first source operand. From negated infinite precision 
intermediate result, subtracts the low double precision floating-point value in the third source operand, performs 
rounding and stores the resulting packed double precision floating-point value to the destination operand (first 
source operand).
VFNMSUB231SD: Multiplies the low packed double precision floating-point value from the second source to the low 
packed double precision floating-point value in the third source operand. From negated infinite precision interme-
diate result, subtracts the low double precision floating-point value in the first source operand, performs rounding 
and stores the resulting packed double precision floating-point value to the destination operand (first source 
operand).

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID 
Feature Flag

Description

VEX.LIG.66.0F38.W1 9F /r 
VFNMSUB132SD xmm1, xmm2, 
xmm3/m64

A V/V FMA Multiply scalar double precision floating-point value from 
xmm1 and xmm3/mem, negate the multiplication result 
and subtract xmm2 and put result in xmm1.

VEX.LIG.66.0F38.W1 AF /r 
VFNMSUB213SD xmm1, xmm2, 
xmm3/m64

A V/V FMA Multiply scalar double precision floating-point value from 
xmm1 and xmm2, negate the multiplication result and 
subtract xmm3/mem and put result in xmm1.

VEX.LIG.66.0F38.W1 BF /r 
VFNMSUB231SD xmm1, xmm2, 
xmm3/m64

A V/V FMA Multiply scalar double precision floating-point value from 
xmm2 and xmm3/mem, negate the multiplication result 
and subtract xmm1 and put result in xmm1.

EVEX.LLIG.66.0F38.W1 9F /r 
VFNMSUB132SD xmm1 {k1}{z}, 
xmm2, xmm3/m64{er}

B V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply scalar double precision floating-point value from 
xmm1 and xmm3/m64, negate the multiplication result 
and subtract xmm2 and put result in xmm1.

EVEX.LLIG.66.0F38.W1 AF /r 
VFNMSUB213SD xmm1 {k1}{z}, 
xmm2, xmm3/m64{er} 

B V/V AVX512F
OR AVX10.11

Multiply scalar double precision floating-point value from 
xmm1 and xmm2, negate the multiplication result and 
subtract xmm3/m64 and put result in xmm1.

EVEX.LLIG.66.0F38.W1 BF /r 
VFNMSUB231SD xmm1 {k1}{z}, 
xmm2, xmm3/m64{er}

B V/V AVX512F
OR AVX10.11

Multiply scalar double precision floating-point value from 
xmm2 and xmm3/m64, negate the multiplication result 
and subtract xmm1 and put result in xmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Tuple1 Scalar ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field. 
The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field. 
Bits 127:64 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination is updated according to the writemask.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column.

Operation

In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no 
rounding).

VFNMSUB132SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[63:0] := RoundFPControl(-(DEST[63:0]*SRC3[63:0]) - SRC2[63:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0

VFNMSUB213SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[63:0] := RoundFPControl(-(SRC2[63:0]*DEST[63:0]) - SRC3[63:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0
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VFNMSUB231SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[63:0] := RoundFPControl(-(SRC2[63:0]*SRC3[63:0]) - DEST[63:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0

VFNMSUB132SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] := RoundFPControl_MXCSR(- (DEST[63:0]*SRC3[63:0]) - SRC2[63:0])
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0

VFNMSUB213SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] := RoundFPControl_MXCSR(- (SRC2[63:0]*DEST[63:0]) - SRC3[63:0])
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0

VFNMSUB231SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] := RoundFPControl_MXCSR(- (SRC2[63:0]*SRC3[63:0]) - DEST[63:0])
DEST[127:64] := DEST[127:64]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMSUBxxxSD __m128d _mm_fnmsub_round_sd(__m128d a, __m128d b, __m128d c, int r);
VFNMSUBxxxSD __m128d _mm_mask_fnmsub_sd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFNMSUBxxxSD __m128d _mm_maskz_fnmsub_sd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFNMSUBxxxSD __m128d _mm_mask3_fnmsub_sd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFNMSUBxxxSD __m128d _mm_mask_fnmsub_round_sd(__m128d a, __mmask8 k, __m128d b, __m128d c, int r);
VFNMSUBxxxSD __m128d _mm_maskz_fnmsub_round_sd(__mmask8 k, __m128d a, __m128d b, __m128d c, int r);
VFNMSUBxxxSD __m128d _mm_mask3_fnmsub_round_sd(__m128d a, __m128d b, __m128d c, __mmask8 k, int r);
VFNMSUBxxxSD __m128d _mm_fnmsub_sd (__m128d a, __m128d b, __m128d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VFNMSUB132SS/VFNMSUB213SS/VFNMSUB231SS—Fused Negative Multiply-Subtract of 
Scalar Single Precision Floating-Point Values

Instruction Operand Encoding

Description

VFNMSUB132SS: Multiplies the low packed single precision floating-point value from the first source operand to 
the low packed single precision floating-point value in the third source operand. From negated infinite precision 
intermediate result, the low single precision floating-point value in the second source operand, performs rounding 
and stores the resulting packed single precision floating-point value to the destination operand (first source 
operand).
VFNMSUB213SS: Multiplies the low packed single precision floating-point value from the second source operand to 
the low packed single precision floating-point value in the first source operand. From negated infinite precision 
intermediate result, the low single precision floating-point value in the third source operand, performs rounding 
and stores the resulting packed single precision floating-point value to the destination operand (first source 
operand).
VFNMSUB231SS: Multiplies the low packed single precision floating-point value from the second source to the low 
packed single precision floating-point value in the third source operand. From negated infinite precision interme-
diate result, the low single precision floating-point value in the first source operand, performs rounding and stores 
the resulting packed single precision floating-point value to the destination operand (first source operand).
VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field. 
The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field. 
Bits 127:32 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID 
Feature Flag

Description

VEX.LIG.66.0F38.W0 9F /r 
VFNMSUB132SS xmm1, xmm2, 
xmm3/m32

A V/V FMA Multiply scalar single precision floating-point value from 
xmm1 and xmm3/m32, negate the multiplication result 
and subtract xmm2 and put result in xmm1.

VEX.LIG.66.0F38.W0 AF /r 
VFNMSUB213SS xmm1, xmm2, 
xmm3/m32

A V/V FMA Multiply scalar single precision floating-point value from 
xmm1 and xmm2, negate the multiplication result and 
subtract xmm3/m32 and put result in xmm1.

VEX.LIG.66.0F38.W0 BF /r 
VFNMSUB231SS xmm1, xmm2, 
xmm3/m32

A V/V FMA Multiply scalar single precision floating-point value from 
xmm2 and xmm3/m32, negate the multiplication result 
and subtract xmm1 and put result in xmm1.

EVEX.LLIG.66.0F38.W0 9F /r 
VFNMSUB132SS xmm1 {k1}{z}, 
xmm2, xmm3/m32{er}

B V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply scalar single-precision floating-point value from 
xmm1 and xmm3/m32, negate the multiplication result 
and subtract xmm2 and put result in xmm1.

EVEX.LLIG.66.0F38.W0 AF /r 
VFNMSUB213SS xmm1 {k1}{z}, 
xmm2, xmm3/m32{er} 

B V/V AVX512F
OR AVX10.11

Multiply scalar single-precision floating-point value from 
xmm1 and xmm2, negate the multiplication result and 
subtract xmm3/m32 and put result in xmm1.

EVEX.LLIG.66.0F38.W0 BF /r 
VFNMSUB231SS xmm1 {k1}{z}, 
xmm2, xmm3/m32{er}

B V/V AVX512F
OR AVX10.11

Multiply scalar single-precision floating-point value from 
xmm2 and xmm3/m32, negate the multiplication result 
and subtract xmm1 and put result in xmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Tuple1 Scalar ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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EVEX encoded version: The low doubleword element of the destination is updated according to the writemask.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column.

Operation

In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no 
rounding).

VFNMSUB132SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[31:0] := RoundFPControl(-(DEST[31:0]*SRC3[31:0]) - SRC2[31:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

VFNMSUB213SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[31:0] := RoundFPControl(-(SRC2[31:0]*DEST[31:0]) - SRC3[31:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0
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VFNMSUB231SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] or *no writemask*

THEN DEST[31:0] := RoundFPControl(-(SRC2[31:0]*SRC3[63:0]) - DEST[31:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

VFNMSUB132SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] := RoundFPControl_MXCSR(- (DEST[31:0]*SRC3[31:0]) - SRC2[31:0])
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

VFNMSUB213SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] := RoundFPControl_MXCSR(- (SRC2[31:0]*DEST[31:0]) - SRC3[31:0])
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

VFNMSUB231SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] := RoundFPControl_MXCSR(- (SRC2[31:0]*SRC3[31:0]) - DEST[31:0])
DEST[127:32] := DEST[127:32]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMSUBxxxSS __m128 _mm_fnmsub_round_ss(__m128 a, __m128 b, __m128 c, int r);
VFNMSUBxxxSS __m128 _mm_mask_fnmsub_ss(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFNMSUBxxxSS __m128 _mm_maskz_fnmsub_ss(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFNMSUBxxxSS __m128 _mm_mask3_fnmsub_ss(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFNMSUBxxxSS __m128 _mm_mask_fnmsub_round_ss(__m128 a, __mmask8 k, __m128 b, __m128 c, int r);
VFNMSUBxxxSS __m128 _mm_maskz_fnmsub_round_ss(__mmask8 k, __m128 a, __m128 b, __m128 c, int r);
VFNMSUBxxxSS __m128 _mm_mask3_fnmsub_round_ss(__m128 a, __m128 b, __m128 c, __mmask8 k, int r);
VFNMSUBxxxSS __m128 _mm_fnmsub_ss (__m128 a, __m128 b, __m128 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VFPCLASSPD—Tests Types of Packed Float64 Values

Instruction Operand Encoding

Description

The FPCLASSPD instruction checks the packed double precision floating-point values for special categories, speci-
fied by the set bits in the imm8 byte. Each set bit in imm8 specifies a category of floating-point values that the 
input data element is classified against. The classified results of all specified categories of an input value are ORed 
together to form the final boolean result for the input element. The result of each element is written to the corre-
sponding bit in a mask register k2 according to the writemask k1. Bits [MAX_KL-1:8/4/2] of the destination are 
cleared.
The classification categories specified by imm8 are shown in Figure 1-13. The classification test for each category 
is listed in Table 1-9.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W1 66 /r ib
VFPCLASSPD k2 {k1}, 
xmm2/m128/m64bcst, imm8

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Tests the input for the following categories:  NaN, +0, -
0, +Infinity, -Infinity, denormal, finite negative. The 
immediate field provides a mask bit for each of these 
category tests. The masked test results are OR-ed 
together to form a mask result.

EVEX.256.66.0F3A.W1 66 /r ib
VFPCLASSPD k2 {k1}, 
ymm2/m256/m64bcst, imm8

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Tests the input for the following categories:  NaN, +0, -
0, +Infinity, -Infinity, denormal, finite negative. The 
immediate field provides a mask bit for each of these 
category tests. The masked test results are OR-ed 
together to form a mask result.

EVEX.512.66.0F3A.W1 66 /r ib
VFPCLASSPD k2 {k1}, 
zmm2/m512/m64bcst, imm8

A V/V AVX512DQ 
OR AVX10.11

Tests the input for the following categories:  NaN, +0, -
0, +Infinity, -Infinity, denormal, finite negative. The 
immediate field provides a mask bit for each of these 
category tests. The masked test results are OR-ed 
together to form a mask result.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A

Figure 1-13.  Imm8 Byte Specifier of Special Case Floating-Point Values for VFPCLASSPD/SD/PS/SS

7 0246 5 3 1

QNaNSNaN Neg. Finite Denormal Neg. INF +INF Neg. 0 +0
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The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector 
broadcasted from a 64-bit memory location.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

CheckFPClassDP (tsrc[63:0], imm8[7:0]){

//* Start checking the source operand for special type *//
NegNum  := tsrc[63];
IF (tsrc[62:52]=07FFh) Then ExpAllOnes := 1; FI;
IF (tsrc[62:52]=0h) Then ExpAllZeros := 1;
IF (ExpAllZeros AND MXCSR.DAZ) Then 

MantAllZeros := 1;
ELSIF (tsrc[51:0]=0h) Then

MantAllZeros := 1;
FI;
ZeroNumber := ExpAllZeros AND MantAllZeros
SignalingBit := tsrc[51];

sNaN_res := ExpAllOnes AND NOT(MantAllZeros) AND NOT(SignalingBit); // sNaN
qNaN_res := ExpAllOnes AND NOT(MantAllZeros) AND SignalingBit; // qNaN
Pzero_res := NOT(NegNum) AND ExpAllZeros AND MantAllZeros; // +0
Nzero_res := NegNum AND ExpAllZeros AND MantAllZeros; // -0
PInf_res := NOT(NegNum) AND ExpAllOnes AND MantAllZeros; // +Inf
NInf_res := NegNum AND ExpAllOnes AND MantAllZeros; // -Inf
Denorm_res := ExpAllZeros AND NOT(MantAllZeros); // denorm
FinNeg_res := NegNum AND NOT(ExpAllOnes) AND NOT(ZeroNumber); // -finite

bResult = ( imm8[0] AND qNaN_res ) OR (imm8[1] AND Pzero_res ) OR
( imm8[2] AND Nzero_res ) OR ( imm8[3] AND PInf_res ) OR
( imm8[4] AND NInf_res ) OR ( imm8[5] AND Denorm_res ) OR
( imm8[6] AND FinNeg_res ) OR ( imm8[7] AND sNaN_res );

Return bResult;
} //* end of CheckFPClassDP() *//

Table 1-9.  Classifier Operations for VFPCLASSPD/SD/PS/SS

Bits Imm8[0] Imm8[1] Imm8[2] Imm8[3] Imm8[4] Imm8[5] Imm8[6] Imm8[7]

Category QNAN PosZero NegZero PosINF NegINF Denormal Negative SNAN

Classifier Checks for 
QNaN

Checks for 
+0

Checks for -
0

Checks for 
+INF

Checks for -
INF

Checks for 
Denormal

Checks for 
Negative finite

Checks for 
SNaN
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VFPCLASSPD (EVEX Encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b == 1) AND (SRC *is memory*)

THEN
DEST[j] := CheckFPClassDP(SRC1[63:0], imm8[7:0]);

ELSE 
DEST[j] := CheckFPClassDP(SRC1[i+63:i], imm8[7:0]);

FI;
ELSE DEST[j] := 0 ; zeroing-masking only

FI;
ENDFOR
DEST[MAX_KL-1:KL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFPCLASSPD __mmask8 _mm512_fpclass_pd_mask( __m512d a, int c);
VFPCLASSPD __mmask8 _mm512_mask_fpclass_pd_mask( __mmask8 m, __m512d a, int c)
VFPCLASSPD __mmask8 _mm256_fpclass_pd_mask( __m256d a, int c)
VFPCLASSPD __mmask8 _mm256_mask_fpclass_pd_mask( __mmask8 m, __m256d a, int c)
VFPCLASSPD __mmask8 _mm_fpclass_pd_mask( __m128d a, int c)
VFPCLASSPD __mmask8 _mm_mask_fpclass_pd_mask( __mmask8 m, __m128d a, int c)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-51, “Type E4 Class Exception Conditions.”

Additionally:
#UD If EVEX.vvvv != 1111B.
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VFPCLASSPH—Test Types of Packed FP16 Values

Instruction Operand Encoding

Description

This instruction checks the packed FP16 values in the source operand for special categories, specified by the set 
bits in the imm8 byte. Each set bit in imm8 specifies a category of floating-point values that the input data element 
is classified against; see Table 1-10 for the categories. The classified results of all specified categories of an input 
value are ORed together to form the final boolean result for the input element. The result is written to the corre-
sponding bits in the destination mask register according to the writemask.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.0F3A.W0 66 /r /ib
VFPCLASSPH k1{k2}, 
xmm1/m128/m16bcst, imm8

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Test the input for the following categories:  NaN, 
+0, -0, +Infinity, -Infinity, denormal, finite 
negative. The immediate field provides a mask 
bit for each of these category tests. The masked 
test results are OR-ed together to form a mask 
result.

EVEX.256.NP.0F3A.W0 66 /r /ib
VFPCLASSPH k1{k2}, 
ymm1/m256/m16bcst, imm8

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Test the input for the following categories:  NaN, 
+0, -0, +Infinity, -Infinity, denormal, finite 
negative. The immediate field provides a mask 
bit for each of these category tests. The masked 
test results are OR-ed together to form a mask 
result.

EVEX.512.NP.0F3A.W0 66 /r /ib
VFPCLASSPH k1{k2}, 
zmm1/m512/m16bcst, imm8

A V/V AVX512-FP16 
OR AVX10.11

Test the input for the following categories:  NaN, 
+0, -0, +Infinity, -Infinity, denormal, finite 
negative. The immediate field provides a mask 
bit for each of these category tests. The masked 
test results are OR-ed together to form a mask 
result.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) imm8 (r) N/A

Table 1-10.  Classifier Operations for VFPCLASSPH/VFPCLASSSH

Bits Category Classifier

imm8[0] QNAN Checks for QNAN

imm8[1] PosZero Checks +0

imm8[2] NegZero Checks for -0

imm8[3] PosINF Checks for +∞
imm8[4] NegINF Checks for −∞
imm8[5] Denormal Checks for Denormal

imm8[6] Negative Checks for Negative finite

imm8[7] SNAN Checks for SNAN
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Operation

def check_fp_class_fp16(tsrc, imm8):
negative := tsrc[15]
exponent_all_ones := (tsrc[14:10] == 0x1F)
exponent_all_zeros := (tsrc[14:10] == 0)
mantissa_all_zeros := (tsrc[9:0] == 0)
zero := exponent_all_zeros and mantissa_all_zeros
signaling_bit := tsrc[9]

snan := exponent_all_ones and not(mantissa_all_zeros) and not(signaling_bit)
qnan := exponent_all_ones and not(mantissa_all_zeros) and signaling_bit
positive_zero := not(negative) and zero
negative_zero := negative and zero
positive_infinity := not(negative) and exponent_all_ones and mantissa_all_zeros
negative_infinity := negative and exponent_all_ones and mantissa_all_zeros
denormal := exponent_all_zeros and not(mantissa_all_zeros)
finite_negative := negative and not(exponent_all_ones) and not(zero)

return (imm8[0] and qnan) OR
(imm8[1] and positive_zero) OR
(imm8[2] and negative_zero) OR
(imm8[3] and positive_infinity) OR
(imm8[4] and negative_infinity) OR
(imm8[5] and denormal) OR
(imm8[6] and finite_negative) OR
(imm8[7] and snan)

VFPCLASSPH dest{k2}, src, imm8
VL = 128, 256 or 512
KL := VL/16

FOR i := 0 to KL-1:
IF k2[i] or *no writemask*:

IF SRC is memory and (EVEX.b = 1):
tsrc := SRC.fp16[0]

ELSE:
tsrc := SRC.fp16[i]

DEST.bit[i] := check_fp_class_fp16(tsrc, imm8)
ELSE:

DEST.bit[i] := 0

DEST[MAXKL-1:kl] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFPCLASSPH __mmask8 _mm_fpclass_ph_mask (__m128h a, int imm8);
VFPCLASSPH __mmask8 _mm_mask_fpclass_ph_mask (__mmask8 k1, __m128h a, int imm8);
VFPCLASSPH __mmask16 _mm256_fpclass_ph_mask (__m256h a, int imm8);
VFPCLASSPH __mmask16 _mm256_mask_fpclass_ph_mask (__mmask16 k1, __m256h a, int imm8);
VFPCLASSPH __mmask32 _mm512_fpclass_ph_mask (__m512h a, int imm8);
VFPCLASSPH __mmask32 _mm512_mask_fpclass_ph_mask (__mmask32 k1, __m512h a, int imm8);

SIMD Floating-Point Exceptions

None.
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Other Exceptions

EVEX-encoded instructions, see Table 2-51, “Type E4 Class Exception Conditions.”
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VFPCLASSPS—Tests Types of Packed Float32 Values

Instruction Operand Encoding

Description

The FPCLASSPS instruction checks the packed single precision floating-point values for special categories, specified 
by the set bits in the imm8 byte. Each set bit in imm8 specifies a category of floating-point values that the input 
data element is classified against. The classified results of all specified categories of an input value are ORed 
together to form the final boolean result for the input element. The result of each element is written to the corre-
sponding bit in a mask register k2 according to the writemask k1. Bits [MAX_KL-1:16/8/4] of the destination are 
cleared.
The classification categories specified by imm8 are shown in Figure 1-13. The classification test for each category 
is listed in Table 1-9.
The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector 
broadcasted from a 32-bit memory location.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

CheckFPClassSP (tsrc[31:0], imm8[7:0]){

//* Start checking the source operand for special type *//
NegNum  := tsrc[31];
IF (tsrc[30:23]=0FFh) Then ExpAllOnes := 1; FI;
IF (tsrc[30:23]=0h) Then ExpAllZeros := 1;
IF (ExpAllZeros AND MXCSR.DAZ) Then 

MantAllZeros := 1;
ELSIF (tsrc[22:0]=0h) Then

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W0 66 /r ib
VFPCLASSPS k2 {k1}, 
xmm2/m128/m32bcst, imm8

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Tests the input for the following categories:  NaN, +0, -
0, +Infinity, -Infinity, denormal, finite negative. The 
immediate field provides a mask bit for each of these 
category tests. The masked test results are OR-ed 
together to form a mask result.

EVEX.256.66.0F3A.W0 66 /r ib
VFPCLASSPS k2 {k1}, 
ymm2/m256/m32bcst, imm8

A V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Tests the input for the following categories:  NaN, +0, -
0, +Infinity, -Infinity, denormal, finite negative. The 
immediate field provides a mask bit for each of these 
category tests. The masked test results are OR-ed 
together to form a mask result.

EVEX.512.66.0F3A.W0 66 /r ib
VFPCLASSPS k2 {k1}, 
zmm2/m512/m32bcst, imm8

A V/V AVX512DQ 
OR AVX10.11

Tests the input for the following categories:  NaN, +0, -
0, +Infinity, -Infinity, denormal, finite negative. The 
immediate field provides a mask bit for each of these 
category tests. The masked test results are OR-ed 
together to form a mask result.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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MantAllZeros := 1;
FI;
ZeroNumber= ExpAllZeros AND MantAllZeros
SignalingBit= tsrc[22];

sNaN_res := ExpAllOnes AND NOT(MantAllZeros) AND NOT(SignalingBit); // sNaN
qNaN_res := ExpAllOnes AND NOT(MantAllZeros) AND SignalingBit; // qNaN
Pzero_res := NOT(NegNum) AND ExpAllZeros AND MantAllZeros; // +0
Nzero_res := NegNum AND ExpAllZeros AND MantAllZeros; // -0
PInf_res := NOT(NegNum) AND ExpAllOnes AND MantAllZeros; // +Inf
NInf_res := NegNum AND ExpAllOnes AND MantAllZeros; // -Inf
Denorm_res := ExpAllZeros AND NOT(MantAllZeros); // denorm
FinNeg_res := NegNum AND NOT(ExpAllOnes) AND NOT(ZeroNumber); // -finite

bResult = ( imm8[0] AND qNaN_res ) OR (imm8[1] AND Pzero_res ) OR
( imm8[2] AND Nzero_res ) OR ( imm8[3] AND PInf_res ) OR
( imm8[4] AND NInf_res ) OR ( imm8[5] AND Denorm_res ) OR
( imm8[6] AND FinNeg_res ) OR ( imm8[7] AND sNaN_res );

Return bResult;
} //* end of CheckSPClassSP() *//

VFPCLASSPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b == 1) AND (SRC *is memory*)

THEN
DEST[j] := CheckFPClassDP(SRC1[31:0], imm8[7:0]);

ELSE 
DEST[j] := CheckFPClassDP(SRC1[i+31:i], imm8[7:0]);

FI;
ELSE  DEST[j] := 0 ; zeroing-masking only

FI;
ENDFOR
DEST[MAX_KL-1:KL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFPCLASSPS __mmask16 _mm512_fpclass_ps_mask( __m512 a, int c);
VFPCLASSPS __mmask16 _mm512_mask_fpclass_ps_mask( __mmask16 m, __m512 a, int c)
VFPCLASSPS __mmask8 _mm256_fpclass_ps_mask( __m256 a, int c)
VFPCLASSPS __mmask8 _mm256_mask_fpclass_ps_mask( __mmask8 m, __m256 a, int c)
VFPCLASSPS __mmask8 _mm_fpclass_ps_mask( __m128 a, int c)
VFPCLASSPS __mmask8 _mm_mask_fpclass_ps_mask( __mmask8 m, __m128 a, int c)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-51, “Type E4 Class Exception Conditions.”

Additionally:
#UD If EVEX.vvvv != 1111B.
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VFPCLASSSD—Tests Type of a Scalar Float64 Value

Instruction Operand Encoding

Description

The FPCLASSSD instruction checks the low double precision floating-point value in the source operand for special 
categories, specified by the set bits in the imm8 byte. Each set bit in imm8 specifies a category of floating-point 
values that the input data element is classified against. The classified results of all specified categories of an input 
value are ORed together to form the final boolean result for the input element. The result is written to the low bit 
in a mask register k2 according to the writemask k1. Bits MAX_KL-1: 1 of the destination are cleared.
The classification categories specified by imm8 are shown in Figure 1-13. The classification test for each category 
is listed in Table 1-9.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

CheckFPClassDP (tsrc[63:0], imm8[7:0]){

NegNum  := tsrc[63];
IF (tsrc[62:52]=07FFh) Then ExpAllOnes := 1; FI;
IF (tsrc[62:52]=0h) Then ExpAllZeros := 1;
IF (ExpAllZeros AND MXCSR.DAZ) Then 

MantAllZeros := 1;
ELSIF (tsrc[51:0]=0h) Then

MantAllZeros := 1;
FI;
ZeroNumber := ExpAllZeros AND MantAllZeros
SignalingBit := tsrc[51];

sNaN_res := ExpAllOnes AND NOT(MantAllZeros) AND NOT(SignalingBit); // sNaN
qNaN_res := ExpAllOnes AND NOT(MantAllZeros) AND SignalingBit; // qNaN
Pzero_res := NOT(NegNum) AND ExpAllZeros AND MantAllZeros; // +0
Nzero_res := NegNum AND ExpAllZeros AND MantAllZeros; // -0
PInf_res := NOT(NegNum) AND ExpAllOnes AND MantAllZeros; // +Inf
NInf_res := NegNum AND ExpAllOnes AND MantAllZeros; // -Inf
Denorm_res := ExpAllZeros AND NOT(MantAllZeros); // denorm
FinNeg_res := NegNum AND NOT(ExpAllOnes) AND NOT(ZeroNumber); // -finite

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.66.0F3A.W1 67 /r ib
VFPCLASSSD k2 {k1}, 
xmm2/m64, imm8

A V/V AVX512DQ 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Tests the input for the following categories: NaN, +0, -0, 
+Infinity, -Infinity, denormal, finite negative. The 
immediate field provides a mask bit for each of these 
category tests. The masked test results are OR-ed 
together to form a mask result. 

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A
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bResult = ( imm8[0] AND qNaN_res ) OR (imm8[1] AND Pzero_res ) OR
( imm8[2] AND Nzero_res ) OR ( imm8[3] AND PInf_res ) OR
( imm8[4] AND NInf_res ) OR ( imm8[5] AND Denorm_res ) OR
( imm8[6] AND FinNeg_res ) OR ( imm8[7] AND sNaN_res );

Return bResult;
} //* end of CheckFPClassDP() *//

VFPCLASSSD (EVEX encoded version)
IF k1[0] OR *no writemask*

THEN DEST[0] := 
CheckFPClassDP(SRC1[63:0], imm8[7:0])

ELSE  DEST[0] := 0 ; zeroing-masking only
FI;
DEST[MAX_KL-1:1] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFPCLASSSD __mmask8 _mm_fpclass_sd_mask( __m128d a, int c)
VFPCLASSSD __mmask8 _mm_mask_fpclass_sd_mask( __mmask8 m, __m128d a, int c)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-55, “Type E6 Class Exception Conditions.”

Additionally:
#UD If EVEX.vvvv != 1111B.
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VFPCLASSSH—Test Types of Scalar FP16 Values Vol. 2C 5-363

VFPCLASSSH—Test Types of Scalar FP16 Values

Instruction Operand Encoding

Description

This instruction checks the low FP16 value in the source operand for special categories, specified by the set bits in 
the imm8 byte. Each set bit in imm8 specifies a category of floating-point values that the input data element is clas-
sified against; see Table 1-10 for the categories. The classified results of all specified categories of an input value 
are ORed together to form the final boolean result for the input element. The result is written to the low bit in the 
destination mask register according to the writemask. The other bits in the destination mask register are zeroed.

Operation

VFPCLASSSH dest{k2}, src, imm8 
IF k2[0] or *no writemask*:

DEST.bit[0] := check_fp_class_fp16(src.fp16[0], imm8) // see VFPCLASSPH
ELSE:

DEST.bit[0] := 0

DEST[MAXKL-1:1] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VFPCLASSSH __mmask8 _mm_fpclass_sh_mask (__m128h a, int imm8);
VFPCLASSSH __mmask8 _mm_mask_fpclass_sh_mask (__mmask8 k1, __m128h a, int imm8);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instructions, see Table 2-60, “Type E10 Class Exception Conditions.”

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.NP.0F3A.W0 67 /r /ib
VFPCLASSSH k1{k2}, xmm1/m16, 
imm8

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Test the input for the following categories:  NaN, 
+0, -0, +Infinity, -Infinity, denormal, finite 
negative. The immediate field provides a mask 
bit for each of these category tests. The masked 
test results are OR-ed together to form a mask 
result.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) ModRM:r/m (r) imm8 (r) N/A



VFPCLASSSS—Tests Type of a Scalar Float32 Value

Instruction Operand Encoding

Description

The FPCLASSSS instruction checks the low single precision floating-point value in the source operand for special 
categories, specified by the set bits in the imm8 byte. Each set bit in imm8 specifies a category of floating-point 
values that the input data element is classified against. The classified results of all specified categories of an input 
value are ORed together to form the final boolean result for the input element. The result is written to the low bit 
in a mask register k2 according to the writemask k1. Bits MAX_KL-1: 1 of the destination are cleared.
The classification categories specified by imm8 are shown in Figure 1-13. The classification test for each category 
is listed in Table 1-9.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

CheckFPClassSP (tsrc[31:0], imm8[7:0]){

//* Start checking the source operand for special type *//
NegNum  := tsrc[31];
IF (tsrc[30:23]=0FFh) Then ExpAllOnes := 1; FI;
IF (tsrc[30:23]=0h) Then ExpAllZeros := 1;
IF (ExpAllZeros AND MXCSR.DAZ) Then 

MantAllZeros := 1;
ELSIF (tsrc[22:0]=0h) Then

MantAllZeros := 1;
FI;
ZeroNumber= ExpAllZeros AND MantAllZeros
SignalingBit= tsrc[22];

sNaN_res := ExpAllOnes AND NOT(MantAllZeros) AND NOT(SignalingBit); // sNaN
qNaN_res := ExpAllOnes AND NOT(MantAllZeros) AND SignalingBit; // qNaN
Pzero_res := NOT(NegNum) AND ExpAllZeros AND MantAllZeros; // +0
Nzero_res := NegNum AND ExpAllZeros AND MantAllZeros; // -0
PInf_res := NOT(NegNum) AND ExpAllOnes AND MantAllZeros; // +Inf
NInf_res := NegNum AND ExpAllOnes AND MantAllZeros; // -Inf
Denorm_res := ExpAllZeros AND NOT(MantAllZeros); // denorm
FinNeg_res := NegNum AND NOT(ExpAllOnes) AND NOT(ZeroNumber); // -finite

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.66.0F3A.W0 67 /r
VFPCLASSSS k2 {k1}, 
xmm2/m32, imm8

A V/V AVX512DQ 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Tests the input for the following categories: NaN, +0, -0, 
+Infinity, -Infinity, denormal, finite negative. The immediate 
field provides a mask bit for each of these category tests. 
The masked test results are OR-ed together to form a mask 
result.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A
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bResult = ( imm8[0] AND qNaN_res ) OR (imm8[1] AND Pzero_res ) OR
( imm8[2] AND Nzero_res ) OR ( imm8[3] AND PInf_res ) OR
( imm8[4] AND NInf_res ) OR ( imm8[5] AND Denorm_res ) OR
( imm8[6] AND FinNeg_res ) OR ( imm8[7] AND sNaN_res );

Return bResult;
} //* end of CheckSPClassSP() *//

VFPCLASSSS (EVEX encoded version)
IF k1[0] OR *no writemask*

THEN DEST[0] := 
CheckFPClassSP(SRC1[31:0], imm8[7:0])

ELSE  DEST[0] := 0 ; zeroing-masking only
FI;
DEST[MAX_KL-1:1] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VFPCLASSSS __mmask8 _mm_fpclass_ss_mask( __m128 a, int c)
VFPCLASSSS __mmask8 _mm_mask_fpclass_ss_mask( __mmask8 m, __m128 a, int c)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-55, “Type E6 Class Exception Conditions.”

Additionally:
#UD If EVEX.vvvv != 1111B.
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VGATHERDPD/VGATHERQPD—Gather Packed Double Precision Floating-Point Values Using 
Signed Dword/Qword Indices 

Instruction Operand Encoding

Description

The instruction conditionally loads up to 2 or 4 double precision floating-point values from memory addresses spec-
ified by the memory operand (the second operand) and using qword indices. The memory operand uses the VSIB 
form of the SIB byte to specify a general purpose register operand as the common base, a vector register for an 
array of indices relative to the base and a constant scale factor.
The mask operand (the third operand) specifies the conditional load operation from each memory address and the 
corresponding update of each data element of the destination operand (the first operand). Conditionality is speci-
fied by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the 
corresponding element of the destination register is left unchanged. The width of data element in the destination 
register and mask register are identical. The entire mask register will be set to zero by this instruction unless the 
instruction causes an exception. 
Using dword indices in the lower half of the mask register, the instruction conditionally loads up to 2 or 4 double 
precision floating-point values from the VSIB addressing memory operand, and updates the destination register. 
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception 
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination 
register and the mask operand are partially updated; those elements that have been gathered are placed into the 
destination register and have their mask bits set to zero. If any traps or interrupts are pending from already gath-
ered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction 
breakpoint is not re-triggered when the instruction is continued.
If the data size and index size are different, part of the destination register and part of the mask register do not 
correspond to any elements being gathered. This instruction sets those parts to zero. It may do this to one or both 
of those registers even if the instruction triggers an exception, and even if the instruction triggers the exception 
before gathering any elements.
VEX.128 version: The instruction will gather two double precision floating-point values. For dword indices, only the 
lower two indices in the vector index register are used.

Opcode/
Instruction

Op/ 
En

64/32 
Bit Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.128.66.0F38.W1 92 /r
VGATHERDPD xmm1, vm32x, xmm2

RMV V/V AVX2 Using dword indices specified in vm32x, gather double 
precision floating-point values from memory conditioned 
on mask specified by xmm2. Conditionally gathered ele-
ments are merged into xmm1.

VEX.128.66.0F38.W1 93 /r
VGATHERQPD xmm1, vm64x, xmm2

RMV V/V AVX2 Using qword indices specified in vm64x, gather double 
precision floating-point values from memory conditioned 
on mask specified by xmm2. Conditionally gathered ele-
ments are merged into xmm1.

VEX.256.66.0F38.W1 92 /r
VGATHERDPD ymm1, vm32x, ymm2

RMV V/V AVX2 Using dword indices specified in vm32x, gather double 
precision floating-point values from memory conditioned 
on mask specified by ymm2. Conditionally gathered ele-
ments are merged into ymm1.

VEX.256.66.0F38.W1 93 /r
VGATHERQPD ymm1, vm64y, ymm2

RMV V/V AVX2 Using qword indices specified in vm64y, gather double 
precision floating-point values from memory conditioned 
on mask specified by ymm2. Conditionally gathered ele-
ments are merged into ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMV ModRM:reg (r,w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

VEX.vvvv (r, w) N/A
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VEX.256 version: The instruction will gather four double precision floating-point values. For dword indices, only the 
lower four indices in the vector index register are used.
Note that:
• If any pair of the index, mask, or destination registers are the same, this instruction results a #UD fault.
• The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-

64 memory-ordering model.
• Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all 

elements closer to the LSB of the destination will be completed (and non-faulting). Individual elements closer 
to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered in the 
conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements to 
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this 
instruction is repeatable - given the same input values and architectural state, the same set of elements to the 
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• This instruction will cause a #UD if the address size attribute is 16-bit.
• This instruction will cause a #UD if the memory operand is encoded without the SIB byte.
• This instruction should not be used to access memory mapped I/O as the ordering of the individual loads it does 

is implementation specific, and some implementations may use loads larger than the data element size or load 
elements an indeterminate number of times.

• The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address 
bits are ignored.

Operation

DEST := SRC1;
BASE_ADDR: base register encoded in VSIB addressing;
VINDEX: the vector index register encoded by VSIB addressing;
SCALE: scale factor encoded by SIB:[7:6];
DISP: optional 1, 4 byte displacement;
MASK := SRC3;

VGATHERDPD (VEX.128 version)
MASK[MAXVL-1:128] := 0;
FOR j := 0 to 1

i := j * 64;
IF MASK[63+i] THEN

MASK[i +63:i] := FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i] := 0;
FI;

ENDFOR
FOR j := 0 to 1

k := j * 32;
i := j * 64;
DATA_ADDR := BASE_ADDR + (SignExtend(VINDEX[k+31:k])*SCALE + DISP;
IF MASK[63+i] THEN

DEST[i +63:i] := FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +63: i] := 0;

ENDFOR
DEST[MAXVL-1:128] := 0;
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VGATHERQPD (VEX.128 version)
MASK[MAXVL-1:128] := 0;
FOR j := 0 to 1

i := j * 64;
IF MASK[63+i] THEN

MASK[i +63:i] := FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i] := 0;
FI;

ENDFOR
FOR j := 0 to 1 

i := j * 64;
DATA_ADDR := BASE_ADDR + (SignExtend(VINDEX1[i+63:i])*SCALE + DISP;
IF MASK[63+i] THEN

DEST[i +63:i] := FETCH_64BITS(DATA_ADDR); // a fault exits this instruction
FI;
MASK[i +63: i] := 0;

ENDFOR
DEST[MAXVL-1:128] := 0;

VGATHERQPD (VEX.256 version)
MASK[MAXVL-1:256] := 0;
FOR j := 0 to 3

i := j * 64;
IF MASK[63+i] THEN

MASK[i +63:i] := FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i] := 0;
FI;

ENDFOR
FOR j := 0 to 3

i := j * 64;
DATA_ADDR := BASE_ADDR + (SignExtend(VINDEX1[i+63:i])*SCALE + DISP;
IF MASK[63+i] THEN

DEST[i +63:i] := FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +63: i] := 0;

ENDFOR
DEST[MAXVL-1:256] := 0;

VGATHERDPD (VEX.256 version)
MASK[MAXVL-1:256] := 0;
FOR j := 0 to 3

i := j * 64;
IF MASK[63+i] THEN

MASK[i +63:i] := FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i] := 0;
FI;

ENDFOR
FOR j := 0 to 3

k := j * 32;
i := j * 64;
DATA_ADDR := BASE_ADDR + (SignExtend(VINDEX1[k+31:k])*SCALE + DISP;
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IF MASK[63+i] THEN
DEST[i +63:i] := FETCH_64BITS(DATA_ADDR); // a fault exits the instruction

FI;
MASK[i +63:i] := 0;

ENDFOR
DEST[MAXVL-1:256] := 0;

Intel C/C++ Compiler Intrinsic Equivalent

VGATHERDPD: __m128d _mm_i32gather_pd (double const * base, __m128i index, const int scale);

VGATHERDPD: __m128d _mm_mask_i32gather_pd (__m128d src, double const * base, __m128i index, __m128d mask, const int 
scale);

VGATHERDPD: __m256d _mm256_i32gather_pd (double const * base, __m128i index, const int scale);

VGATHERDPD: __m256d _mm256_mask_i32gather_pd (__m256d src, double const * base, __m128i index, __m256d mask, const int 
scale);

VGATHERQPD: __m128d _mm_i64gather_pd (double const * base, __m128i index, const int scale);

VGATHERQPD: __m128d _mm_mask_i64gather_pd (__m128d src, double const * base, __m128i index, __m128d mask, const int 
scale);

VGATHERQPD: __m256d _mm256_i64gather_pd (double const * base, __m256i index, const int scale);

VGATHERQPD: __m256d _mm256_mask_i64gather_pd (__m256d src, double const * base, __m256i index, __m256d mask, const int 
scale);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-27, “Type 12 Class Exception Conditions.”
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VGATHERDPS/VGATHERDPD—Gather Packed Single, Packed Double with Signed Dword Indices

Instruction Operand Encoding

Description

A set of single precision/double precision faulting-point memory locations pointed by base address BASE_ADDR 
and index vector V_INDEX with scale SCALE are gathered. The result is written into a vector register. The elements 
are specified via the VSIB (i.e., the index register is a vector register, holding packed indices). Elements will only 
be loaded if their corresponding mask bit is one. If an element’s mask bit is not set, the corresponding element of 
the destination register is left unchanged. The entire mask register will be set to zero by this instruction unless it 
triggers an exception.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception 
is triggered by an element other than the right most one with its mask bit set). When this happens, the destination 
register and the mask register (k1) are partially updated; those elements that have been gathered are placed into 
the destination register and have their mask bits set to zero. If any traps or interrupts are pending from already 
gathered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruc-
tion breakpoint is not re-triggered when the instruction is continued.
If the data element size is less than the index element size, the higher part of the destination register and the mask 
register do not correspond to any elements being gathered. This instruction sets those higher parts to zero. It may 
update these unused elements to one or both of those registers even if the instruction triggers an exception, and 
even if the instruction triggers the exception before gathering any elements.
Note that:
• The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-

64 memory-ordering model.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 92 /vsib 
VGATHERDPS xmm1 {k1}, vm32x

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Using signed dword indices, gather single-precision 
floating-point values from memory using k1 as 
completion mask.

EVEX.256.66.0F38.W0 92 /vsib 
VGATHERDPS ymm1 {k1}, vm32y

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed dword indices, gather single-precision 
floating-point values from memory using k1 as 
completion mask.

EVEX.512.66.0F38.W0 92 /vsib 
VGATHERDPS zmm1 {k1}, vm32z

A V/V AVX512F 
OR AVX10.11

Using signed dword indices, gather single-precision 
floating-point values from memory using k1 as 
completion mask.

EVEX.128.66.0F38.W1 92 /vsib 
VGATHERDPD xmm1 {k1}, 
vm32x

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed dword indices, gather float64 vector into 
float64 vector xmm1 using k1 as completion mask.

EVEX.256.66.0F38.W1 92 /vsib 
VGATHERDPD ymm1 {k1}, 
vm32x

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed dword indices, gather float64 vector into 
float64 vector ymm1 using k1 as completion mask.

EVEX.512.66.0F38.W1 92 /vsib 
VGATHERDPD zmm1 {k1}, vm32y

A V/V AVX512F 
OR AVX10.11

Using signed dword indices, gather float64 vector into 
float64 vector zmm1 using k1 as completion mask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w)
BaseReg (R): VSIB:base,

VectorReg(R): VSIB:index
N/A N/A
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• Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all 
elements closer to the LSB of the destination zmm will be completed (and non-faulting). Individual elements 
closer to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered 
in the conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to left order; thus, elements to 
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this 
instruction is repeatable - given the same input values and architectural state, the same set of elements to the 
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• Not valid with 16-bit effective addresses. Will deliver a #UD fault.
Note that the presence of VSIB byte is enforced in this instruction. Hence, the instruction will #UD fault if 
ModRM.rm is different than 100b.
This instruction has special disp8*N and alignment rules. N is considered to be the size of a single vector element.
The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-bit 
mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address bits are 
ignored.
The instruction will #UD fault if the destination vector zmm1 is the same as index vector VINDEX. The instruction 
will #UD fault if the k0 mask register is specified.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a vector register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1 or 4 byte displacement

VGATHERDPS (EVEX encoded version)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] 

THEN DEST[i+31:i] := 
MEM[BASE_ADDR +

SignExtend(VINDEX[i+31:i]) * SCALE + DISP]
k1[j] := 0

ELSE *DEST[i+31:i] := remains unchanged*
FI;

ENDFOR
k1[MAX_KL-1:KL] := 0
DEST[MAXVL-1:VL] := 0

VGATHERDPD (EVEX encoded version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j] 

THEN DEST[i+63:i] := MEM[BASE_ADDR +
SignExtend(VINDEX[k+31:k]) * SCALE + DISP]

k1[j] := 0
ELSE *DEST[i+63:i] := remains unchanged*

FI;
ENDFOR
k1[MAX_KL-1:KL] := 0
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DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VGATHERDPD __m512d _mm512_i32gather_pd( __m256i vdx, void * base, int scale);
VGATHERDPD __m512d _mm512_mask_i32gather_pd(__m512d s, __mmask8 k, __m256i vdx, void * base, int scale);
VGATHERDPD __m256d _mm256_mmask_i32gather_pd(__m256d s, __mmask8 k, __m128i vdx, void * base, int scale);
VGATHERDPD __m128d _mm_mmask_i32gather_pd(__m128d s, __mmask8 k, __m128i vdx, void * base, int scale);
VGATHERDPS __m512 _mm512_i32gather_ps( __m512i vdx, void * base, int scale);
VGATHERDPS __m512 _mm512_mask_i32gather_ps(__m512 s, __mmask16 k, __m512i vdx, void * base, int scale);
VGATHERDPS __m256 _mm256_mmask_i32gather_ps(__m256 s, __mmask8 k, __m256i vdx, void * base, int scale);
GATHERDPS __m128 _mm_mmask_i32gather_ps(__m128 s, __mmask8 k, __m128i vdx, void * base, int scale);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-63, “Type E12 Class Exception Conditions.”
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VGATHERDPS/VGATHERQPS—Gather Packed Single Precision Floating-Point Values Using 
Signed Dword/Qword Indices 

Instruction Operand Encoding

Description

The instruction conditionally loads up to 4 or 8 single precision floating-point values from memory addresses spec-
ified by the memory operand (the second operand) and using dword indices. The memory operand uses the VSIB 
form of the SIB byte to specify a general purpose register operand as the common base, a vector register for an 
array of indices relative to the base and a constant scale factor.
The mask operand (the third operand) specifies the conditional load operation from each memory address and the 
corresponding update of each data element of the destination operand (the first operand). Conditionality is speci-
fied by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the 
corresponding element of the destination register is left unchanged. The width of data element in the destination 
register and mask register are identical. The entire mask register will be set to zero by this instruction unless the 
instruction causes an exception. 
Using qword indices, the instruction conditionally loads up to 2 or 4 single precision floating-point values from the 
VSIB addressing memory operand, and updates the lower half of the destination register. The upper 128 or 256 bits 
of the destination register are zero’ed with qword indices.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception 
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination 
register and the mask operand are partially updated; those elements that have been gathered are placed into the 
destination register and have their mask bits set to zero. If any traps or interrupts are pending from already gath-
ered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction 
breakpoint is not re-triggered when the instruction is continued.
If the data size and index size are different, part of the destination register and part of the mask register do not 
correspond to any elements being gathered. This instruction sets those parts to zero. It may do this to one or both 
of those registers even if the instruction triggers an exception, and even if the instruction triggers the exception 
before gathering any elements.

Opcode/
Instruction

Op/ 
En

64/32 
Bit Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.128.66.0F38.W0 92 /r
VGATHERDPS xmm1, vm32x, xmm2

A V/V AVX2 Using dword indices specified in vm32x, gather single 
precision floating-point values from memory conditioned 
on mask specified by xmm2. Conditionally gathered ele-
ments are merged into xmm1.

VEX.128.66.0F38.W0 93 /r
VGATHERQPS xmm1, vm64x, xmm2

A V/V AVX2 Using qword indices specified in vm64x, gather single 
precision floating-point values from memory conditioned 
on mask specified by xmm2. Conditionally gathered ele-
ments are merged into xmm1.

VEX.256.66.0F38.W0 92 /r
VGATHERDPS ymm1, vm32y, ymm2

A V/V AVX2 Using dword indices specified in vm32y, gather single 
precision floating-point values from memory conditioned 
on mask specified by ymm2. Conditionally gathered ele-
ments are merged into ymm1.

VEX.256.66.0F38.W0 93 /r
VGATHERQPS xmm1, vm64y, xmm2

A V/V AVX2 Using qword indices specified in vm64y, gather single 
precision floating-point values from memory conditioned 
on mask specified by xmm2. Conditionally gathered ele-
ments are merged into xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r,w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

VEX.vvvv (r, w) N/A
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VEX.128 version: For dword indices, the instruction will gather four single precision floating-point values. For 
qword indices, the instruction will gather two values and zero the upper 64 bits of the destination.
VEX.256 version: For dword indices, the instruction will gather eight single precision floating-point values. For 
qword indices, the instruction will gather four values and zero the upper 128 bits of the destination.
Note that:
• If any pair of the index, mask, or destination registers are the same, this instruction results a UD fault.
• The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-

64 memory-ordering model.
• Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all 

elements closer to the LSB of the destination will be completed (and non-faulting). Individual elements closer 
to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered in the 
conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements to 
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this 
instruction is repeatable - given the same input values and architectural state, the same set of elements to the 
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• This instruction will cause a #UD if the address size attribute is 16-bit.
• This instruction will cause a #UD if the memory operand is encoded without the SIB byte.
• This instruction should not be used to access memory mapped I/O as the ordering of the individual loads it does 

is implementation specific, and some implementations may use loads larger than the data element size or load 
elements an indeterminate number of times.

• The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address 
bits are ignored.

Operation

DEST := SRC1;
BASE_ADDR: base register encoded in VSIB addressing;
VINDEX: the vector index register encoded by VSIB addressing;
SCALE: scale factor encoded by SIB:[7:6];
DISP: optional 1, 4 byte displacement;
MASK := SRC3;

VGATHERDPS (VEX.128 version)
MASK[MAXVL-1:128] := 0;
FOR j := 0 to 3

i := j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] := FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] := 0;
FI;

ENDFOR
FOR j := 0 to 3 

i := j * 32;
DATA_ADDR := BASE_ADDR + (SignExtend(VINDEX[i+31:i])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] := FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] := 0;

ENDFOR
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DEST[MAXVL-1:128] := 0;

VGATHERQPS (VEX.128 version)
MASK[MAXVL-1:64] := 0;
FOR j := 0 to 3

i := j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] := FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] := 0;
FI;

ENDFOR
FOR j := 0 to 1 

k := j * 64;
i := j * 32;
DATA_ADDR := BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] := FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] := 0;

ENDFOR
DEST[MAXVL-1:64] := 0;

VGATHERDPS (VEX.256 version)
MASK[MAXVL-1:256] := 0;
FOR j := 0 to 7

i := j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] := FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] := 0;
FI;

ENDFOR
FOR j := 0 to 7

i := j * 32;
DATA_ADDR := BASE_ADDR + (SignExtend(VINDEX1[i+31:i])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] := FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] := 0;

ENDFOR
DEST[MAXVL-1:256] := 0;

VGATHERQPS (VEX.256 version)
MASK[MAXVL-1:128] := 0;
FOR j := 0 to 7

i := j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] := FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] := 0;
FI;

ENDFOR
FOR j := 0 to 3
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k := j * 64;
i := j * 32;
DATA_ADDR := BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] := FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] := 0;

ENDFOR
DEST[MAXVL-1:128] := 0;

Intel C/C++ Compiler Intrinsic Equivalent

VGATHERDPS: __m128 _mm_i32gather_ps (float const * base, __m128i index, const int scale);

VGATHERDPS: __m128 _mm_mask_i32gather_ps (__m128 src, float const * base, __m128i index, __m128 mask, const int scale);

VGATHERDPS: __m256 _mm256_i32gather_ps (float const * base, __m256i index, const int scale);

VGATHERDPS: __m256 _mm256_mask_i32gather_ps (__m256 src, float const * base, __m256i index, __m256 mask, const int 
scale);

VGATHERQPS: __m128 _mm_i64gather_ps (float const * base, __m128i index, const int scale);

VGATHERQPS: __m128 _mm_mask_i64gather_ps (__m128 src, float const * base, __m128i index, __m128 mask, const int scale);

VGATHERQPS: __m128 _mm256_i64gather_ps (float const * base, __m256i index, const int scale);

VGATHERQPS: __m128 _mm256_mask_i64gather_ps (__m128 src, float const * base, __m256i index, __m128 mask, const int 
scale);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-27, “Type 12 Class Exception Conditions.”
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VGATHERQPS/VGATHERQPD—Gather Packed Single, Packed Double with Signed Qword Indices

Instruction Operand Encoding

Description

A set of 8 single precision/double precision faulting-point memory locations pointed by base address BASE_ADDR 
and index vector V_INDEX with scale SCALE are gathered. The result is written into vector a register. The elements 
are specified via the VSIB (i.e., the index register is a vector register, holding packed indices). Elements will only 
be loaded if their corresponding mask bit is one. If an element’s mask bit is not set, the corresponding element of 
the destination register is left unchanged. The entire mask register will be set to zero by this instruction unless it 
triggers an exception.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception 
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination 
register and the mask register (k1) are partially updated; those elements that have been gathered are placed into 
the destination register and have their mask bits set to zero. If any traps or interrupts are pending from already 
gathered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruc-
tion breakpoint is not re-triggered when the instruction is continued.
If the data element size is less than the index element size, the higher part of the destination register and the mask 
register do not correspond to any elements being gathered. This instruction sets those higher parts to zero. It may 
update these unused elements to one or both of those registers even if the instruction triggers an exception, and 
even if the instruction triggers the exception before gathering any elements.
Note that:
• The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-

64 memory-ordering model.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 93 /vsib 
VGATHERQPS xmm1 {k1}, vm64x

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Using signed qword indices, gather single-precision 
floating-point values from memory using k1 as 
completion mask.

EVEX.256.66.0F38.W0 93 /vsib 
VGATHERQPS xmm1 {k1}, vm64y

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed qword indices, gather single-precision 
floating-point values from memory using k1 as 
completion mask.

EVEX.512.66.0F38.W0 93 /vsib 
VGATHERQPS ymm1 {k1}, vm64z

A V/V AVX512F 
OR AVX10.11

Using signed qword indices, gather single-precision 
floating-point values from memory using k1 as 
completion mask.

EVEX.128.66.0F38.W1 93 /vsib 
VGATHERQPD xmm1 {k1}, vm64x

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed qword indices, gather float64 vector into 
float64 vector xmm1 using k1 as completion mask.

EVEX.256.66.0F38.W1 93 /vsib 
VGATHERQPD ymm1 {k1}, vm64y

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed qword indices, gather float64 vector into 
float64 vector ymm1 using k1 as completion mask.

EVEX.512.66.0F38.W1 93 /vsib 
VGATHERQPD zmm1 {k1}, vm64z

A V/V AVX512F 
OR AVX10.11

Using signed qword indices, gather float64 vector into 
float64 vector zmm1 using k1 as completion mask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w)
BaseReg (R): VSIB:base,

VectorReg(R): VSIB:index
N/A N/A
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• Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all 
elements closer to the LSB of the destination zmm will be completed (and non-faulting). Individual elements 
closer to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered 
in the conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to left order; thus, elements to 
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this 
instruction is repeatable - given the same input values and architectural state, the same set of elements to the 
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• Not valid with 16-bit effective addresses. Will deliver a #UD fault.
Note that the presence of VSIB byte is enforced in this instruction. Hence, the instruction will #UD fault if 
ModRM.rm is different than 100b.
This instruction has special disp8*N and alignment rules. N is considered to be the size of a single vector element.
The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-bit 
mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address bits are 
ignored.
The instruction will #UD fault if the destination vector zmm1 is the same as index vector VINDEX. The instruction 
will #UD fault if the k0 mask register is specified.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a ZMM register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1 or 4 byte displacement

VGATHERQPS (EVEX encoded version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 32
k := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := 
MEM[BASE_ADDR + (VINDEX[k+63:k]) * SCALE + DISP]
k1[j] := 0

ELSE *DEST[i+31:i] := remains unchanged*
FI;

ENDFOR
k1[MAX_KL-1:KL] := 0
DEST[MAXVL-1:VL/2] := 0

VGATHERQPD (EVEX encoded version)

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := MEM[BASE_ADDR + (VINDEX[i+63:i]) * SCALE + DISP]
k1[j] := 0

ELSE *DEST[i+63:i] := remains unchanged*
FI;

ENDFOR
k1[MAX_KL-1:KL] := 0
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DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VGATHERQPD __m512d _mm512_i64gather_pd( __m512i vdx, void * base, int scale);
VGATHERQPD __m512d _mm512_mask_i64gather_pd(__m512d s, __mmask8 k, __m512i vdx, void * base, int scale);
VGATHERQPD __m256d _mm256_mask_i64gather_pd(__m256d s, __mmask8 k, __m256i vdx, void * base, int scale);
VGATHERQPD __m128d _mm_mask_i64gather_pd(__m128d s, __mmask8 k, __m128i vdx, void * base, int scale);
VGATHERQPS __m256 _mm512_i64gather_ps( __m512i vdx, void * base, int scale);
VGATHERQPS __m256 _mm512_mask_i64gather_ps(__m256 s, __mmask16 k, __m512i vdx, void * base, int scale);
VGATHERQPS __m128 _mm256_mask_i64gather_ps(__m128 s, __mmask8 k, __m256i vdx, void * base, int scale);
VGATHERQPS __m128 _mm_mask_i64gather_ps(__m128 s, __mmask8 k, __m128i vdx, void * base, int scale);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-63, “Type E12 Class Exception Conditions.”
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VGETEXPPD—Convert Exponents of Packed Double Precision Floating-Point Values to Double 
Precision Floating-Point Values

Instruction Operand Encoding

Description

Extracts the biased exponents from the normalized double precision floating-point representation of each qword 
data element of the source operand (the second operand) as unbiased signed integer value, or convert the 
denormal representation of input data to unbiased negative integer values. Each integer value of the unbiased 
exponent is converted to double precision floating-point value and written to the corresponding qword elements of 
the destination operand (the first operand) as double precision floating-point numbers. 
The destination operand is a ZMM/YMM/XMM register and updated under the writemask. The source operand can 
be a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from 
a 64-bit memory location.
EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Each GETEXP operation converts the exponent value into a floating-point number (permitting input value in 
denormal representation). Special cases of input values are listed in Table 1-11.
The formula is:
GETEXP(x) = floor(log2(|x|)) 
Notation floor(x) stands for the greatest integer not exceeding real number x. 

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W1 42 /r
VGETEXPPD xmm1 {k1}{z}, 
xmm2/m128/m64bcst

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert the exponent of packed double precision floating-
point values in the source operand to double precision 
floating-point results representing unbiased integer 
exponents and stores the results in the destination register.

EVEX.256.66.0F38.W1 42 /r
VGETEXPPD ymm1 {k1}{z}, 
ymm2/m256/m64bcst

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Convert the exponent of packed double precision floating-
point values in the source operand to double precision 
floating-point results representing unbiased integer 
exponents and stores the results in the destination register.

EVEX.512.66.0F38.W1 42 /r
VGETEXPPD zmm1 {k1}{z}, 
zmm2/m512/m64bcst{sae}

A V/V AVX512F 
OR AVX10.11

Convert the exponent of packed double precision floating-
point values in the source operand to double precision 
floating-point results representing unbiased integer 
exponents and stores the results in the destination under 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation

NormalizeExpTinyDPFP(SRC[63:0])
{

// Jbit is the hidden integral bit of a floating-point number. In case of denormal number it has the value of ZERO.
Src.Jbit := 0;
Dst.exp := 1; 
Dst.fraction := SRC[51:0];
WHILE(Src.Jbit = 0)
{

Src.Jbit := Dst.fraction[51]; // Get the fraction MSB
Dst.fraction := Dst.fraction << 1 ; // One bit shift left
Dst.exp-- ; // Decrement the exponent

}
Dst.fraction := 0; // zero out fraction bits
Dst.sign := 1; // Return negative sign
TMP[63:0] := MXCSR.DAZ? 0 : (Dst.sign << 63) OR (Dst.exp << 52) OR (Dst.fraction) ;
Return (TMP[63:0]);

}

ConvertExpDPFP(SRC[63:0])
{

Src.sign := 0; // Zero out sign bit
Src.exp := SRC[62:52];
Src.fraction := SRC[51:0];
// Check for NaN
IF (SRC = NaN) 
{

IF ( SRC = SNAN ) SET IE;
Return QNAN(SRC);

}
// Check for +INF
IF (Src = +INF) RETURN (Src);

// check if zero operand
IF ((Src.exp = 0) AND ((Src.fraction = 0) OR (MXCSR.DAZ = 1))) Return (-INF);
}
ELSE // check if denormal operand (notice that MXCSR.DAZ = 0)
{

IF ((Src.exp = 0) AND (Src.fraction != 0)) 
{

TMP[63:0] := NormalizeExpTinyDPFP(SRC[63:0]) ; // Get Normalized Exponent
Set #DE

}
ELSE // exponent value is correct

Table 1-11.  VGETEXPPD/SD Special Cases

Input Operand Result Comments

src1 = NaN QNaN(src1)
If (SRC = SNaN) then #IE
If (SRC = denormal) then #DE

0 < |src1| < INF floor(log2(|src1|)) 

| src1| = +INF +INF

| src1| = 0 -INF
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{
TMP[63:0] := (Src.sign << 63) OR (Src.exp << 52) OR (Src.fraction) ;

}
TMP := SAR(TMP, 52) ; // Shift Arithmetic Right
TMP := TMP – 1023; // Subtract Bias
Return CvtI2D(TMP); // Convert INT to double precision floating-point number

}
}

VGETEXPPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC *is memory*)

THEN
DEST[i+63:i] :=

ConvertExpDPFP(SRC[63:0])
ELSE 

DEST[i+63:i] :=
ConvertExpDPFP(SRC[i+63:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VGETEXPPD __m512d _mm512_getexp_pd(__m512d a);
VGETEXPPD __m512d _mm512_mask_getexp_pd(__m512d s, __mmask8 k, __m512d a);
VGETEXPPD __m512d _mm512_maskz_getexp_pd( __mmask8 k, __m512d a);
VGETEXPPD __m512d _mm512_getexp_round_pd(__m512d a, int sae);
VGETEXPPD __m512d _mm512_mask_getexp_round_pd(__m512d s, __mmask8 k, __m512d a, int sae);
VGETEXPPD __m512d _mm512_maskz_getexp_round_pd( __mmask8 k, __m512d a, int sae);
VGETEXPPD __m256d _mm256_getexp_pd(__m256d a);
VGETEXPPD __m256d _mm256_mask_getexp_pd(__m256d s, __mmask8 k, __m256d a);
VGETEXPPD __m256d _mm256_maskz_getexp_pd( __mmask8 k, __m256d a);
VGETEXPPD __m128d _mm_getexp_pd(__m128d a);
VGETEXPPD __m128d _mm_mask_getexp_pd(__m128d s, __mmask8 k, __m128d a);
VGETEXPPD __m128d _mm_maskz_getexp_pd( __mmask8 k, __m128d a);

SIMD Floating-Point Exceptions

Invalid, Denormal.
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Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VGETEXPPH—Convert Exponents of Packed FP16 Values to FP16 Values

Instruction Operand Encoding

Description

This instruction extracts the biased exponents from the normalized FP16 representation of each word element of 
the source operand (the second operand) as unbiased signed integer value, or convert the denormal representa-
tion of input data to unbiased negative integer values. Each integer value of the unbiased exponent is converted to 
an FP16 value and written to the corresponding word elements of the destination operand (the first operand) as 
FP16 numbers.
The destination elements are updated according to the writemask.
Each GETEXP operation converts the exponent value into a floating-point number (permitting input value in 
denormal representation). Special cases of input values are listed in Table 1-6.
The formula is:
GETEXP(x) = floor(log2(|x|))
Notation floor(x) stands for maximal integer not exceeding real number x.
Software usage of VGETEXPxx and VGETMANTxx instructions generally involve a combination of GETEXP operation 
and GETMANT operation (see VGETMANTPH). Thus, the VGETEXPPH instruction does not require software to 
handle SIMD floating-point exceptions.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.MAP6.W0 42 /r
VGETEXPPH xmm1{k1}{z}, 
xmm2/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert the exponent of FP16 values in the source 
operand to FP16 results representing unbiased 
integer exponents and stores the results in the 
destination register subject to writemask k1.

EVEX.256.66.MAP6.W0 42 /r
VGETEXPPH ymm1{k1}{z}, 
ymm2/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Convert the exponent of FP16 values in the source 
operand to FP16 results representing unbiased 
integer exponents and stores the results in the 
destination register subject to writemask k1.

EVEX.512.66.MAP6.W0 42 /r
VGETEXPPH zmm1{k1}{z}, 
zmm2/m512/m16bcst {sae}

A V/V AVX512-FP16
OR AVX10.11

Convert the exponent of FP16 values in the source 
operand to FP16 results representing unbiased 
integer exponents and stores the results in the 
destination register subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A

Table 1-12.  VGETEXPPH/VGETEXPSH Special Cases

Input Operand Result Comments

src1 = NaN QNaN(src1)
If (SRC = SNaN), then #IE.
If (SRC = denormal), then #DE.

0 < |src1| < INF floor(log2(|src1|)) 

| src1| = +INF +INF

| src1| = 0 -INF
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Operation

def normalize_exponent_tiny_fp16(src):
jbit := 0
// src & dst are FP16 numbers with sign(1b), exp(5b) and fraction (10b) fields
dst.exp := 1 // write bits 14:10
dst.fraction := src.fraction // copy bits 9:0
while jbit == 0:

jbit := dst.fraction[9] // msb of the fraction
dst.fraction := dst.fraction << 1
dst.exp := dst.exp - 1

dst.fraction := 0
return dst

def getexp_fp16(src):
src.sign := 0 // make positive
exponent_all_ones := (src[14:10] == 0x1F)
exponent_all_zeros := (src[14:10] == 0)
mantissa_all_zeros := (src[9:0] == 0)
zero := exponent_all_zeros and mantissa_all_zeros
signaling_bit := src[9]

nan := exponent_all_ones and not(mantissa_all_zeros)
snan := nan and not(signaling_bit)
qnan := nan and signaling_bit
positive_infinity := not(negative) and exponent_all_ones and mantissa_all_zeros
denormal := exponent_all_zeros and not(mantissa_all_zeros)

if nan:
if snan:

MXCSR.IE := 1
return qnan(src) // convert snan to a qnan

if positive_infinity:
return src

if zero:
return -INF

if denormal:
tmp := normalize_exponent_tiny_fp16(src)
MXCSR.DE := 1

else:
tmp := src

tmp := SAR(tmp, 10) // shift arithmetic right
tmp := tmp - 15 // subtract bias
return convert_integer_to_fp16(tmp)
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VGETEXPPH dest{k1}, src
VL = 128, 256 or 512
KL := VL/16

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

IF SRC is memory and (EVEX.b = 1):
tsrc := src.fp16[0]

ELSE:
tsrc := src.fp16[i]

DEST.fp16[i] := getexp_fp16(tsrc)
ELSE IF *zeroing*:

DEST.fp16[i] := 0
//else DEST.fp16[i] remains unchanged

DEST[MAXVL-1:VL] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VGETEXPPH __m128h _mm_getexp_ph (__m128h a);
VGETEXPPH __m128h _mm_mask_getexp_ph (__m128h src, __mmask8 k, __m128h a);
VGETEXPPH __m128h _mm_maskz_getexp_ph (__mmask8 k, __m128h a);
VGETEXPPH __m256h _mm256_getexp_ph (__m256h a);
VGETEXPPH __m256h _mm256_mask_getexp_ph (__m256h src, __mmask16 k, __m256h a);
VGETEXPPH __m256h _mm256_maskz_getexp_ph (__mmask16 k, __m256h a);
VGETEXPPH __m512h _mm512_getexp_ph (__m512h a);
VGETEXPPH __m512h _mm512_mask_getexp_ph (__m512h src, __mmask32 k, __m512h a);
VGETEXPPH __m512h _mm512_maskz_getexp_ph (__mmask32 k, __m512h a);
VGETEXPPH __m512h _mm512_getexp_round_ph (__m512h a, const int sae);
VGETEXPPH __m512h _mm512_mask_getexp_round_ph (__m512h src, __mmask32 k, __m512h a, const int sae);
VGETEXPPH __m512h _mm512_maskz_getexp_round_ph (__mmask32 k, __m512h a, const int sae);

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VGETEXPPS—Convert Exponents of Packed Single Precision Floating-Point Values to Single 
Precision Floating-Point Values

Instruction Operand Encoding

Description

Extracts the biased exponents from the normalized single precision floating-point representation of each dword 
element of the source operand (the second operand) as unbiased signed integer value, or convert the denormal 
representation of input data to unbiased negative integer values. Each integer value of the unbiased exponent is 
converted to single precision floating-point value and written to the corresponding dword elements of the destina-
tion operand (the first operand) as single precision floating-point numbers. 
The destination operand is a ZMM/YMM/XMM register and updated under the writemask. The source operand can 
be a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from 
a 32-bit memory location.
EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Each GETEXP operation converts the exponent value into a floating-point number (permitting input value in 
denormal representation). Special cases of input values are listed in Table 1-13.
The formula is:
GETEXP(x) = floor(log2(|x|)) 
Notation floor(x) stands for maximal integer not exceeding real number x. 
Software usage of VGETEXPxx and VGETMANTxx instructions generally involve a combination of GETEXP operation 
and GETMANT operation (see VGETMANTPD). Thus VGETEXPxx instruction do not require software to handle SIMD 
floating-point exceptions.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 42 /r
VGETEXPPS xmm1 {k1}{z}, 
xmm2/m128/m32bcst

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert the exponent of packed single-precision floating-
point values in the source operand to single-precision 
floating-point results representing unbiased integer 
exponents and stores the results in the destination 
register.

EVEX.256.66.0F38.W0 42 /r
VGETEXPPS ymm1 {k1}{z}, 
ymm2/m256/m32bcst

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Convert the exponent of packed single-precision floating-
point values in the source operand to single-precision 
floating-point results representing unbiased integer 
exponents and stores the results in the destination 
register.

EVEX.512.66.0F38.W0 42 /r
VGETEXPPS zmm1 {k1}{z}, 
zmm2/m512/m32bcst{sae}

A V/V AVX512F 
OR AVX10.11

Convert the exponent of packed single-precision floating-
point values in the source operand to single-precision 
floating-point results representing unbiased integer 
exponents and stores the results in the destination 
register.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Figure 1-14 illustrates the VGETEXPPS functionality on input values with normalized representation.

Operation

NormalizeExpTinySPFP(SRC[31:0])
{

// Jbit is the hidden integral bit of a floating-point number. In case of denormal number it has the value of ZERO.
Src.Jbit := 0;
Dst.exp := 1; 
Dst.fraction := SRC[22:0];
WHILE(Src.Jbit = 0)
{

Src.Jbit := Dst.fraction[22]; // Get the fraction MSB
Dst.fraction := Dst.fraction << 1 ; // One bit shift left
Dst.exp-- ; // Decrement the exponent

}
Dst.fraction := 0; // zero out fraction bits
Dst.sign := 1; // Return negative sign
TMP[31:0] := MXCSR.DAZ? 0 : (Dst.sign << 31) OR (Dst.exp << 23) OR (Dst.fraction) ;
Return (TMP[31:0]);

}
ConvertExpSPFP(SRC[31:0])
{

Src.sign := 0; // Zero out sign bit
Src.exp := SRC[30:23];
Src.fraction := SRC[22:0];
// Check for NaN
IF (SRC = NaN) 
{

IF ( SRC = SNAN ) SET IE;

Table 1-13.  VGETEXPPS/SS Special Cases

Input Operand Result Comments

src1 = NaN QNaN(src1)
If (SRC = SNaN) then #IE
If (SRC = denormal) then #DE

0 < |src1| < INF floor(log2(|src1|)) 

| src1| = +INF +INF

| src1| = 0 -INF

Figure 1-14.  VGETEXPPS Functionality On Normal Input values

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
s

Src = 2 1̂ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SAR Src, 23 = 080h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

-Bias 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1

Tmp - Bias = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Cvt_PI2PS(01h) = 2 0̂ 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

exp Fraction
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Return QNAN(SRC);
}
// Check for +INF
IF (Src = +INF) RETURN (Src);

// check if zero operand
IF ((Src.exp = 0) AND ((Src.fraction = 0) OR (MXCSR.DAZ = 1))) Return (-INF);
}
ELSE // check if denormal operand (notice that MXCSR.DAZ = 0)
{

IF ((Src.exp = 0) AND (Src.fraction != 0)) 
{

TMP[31:0] := NormalizeExpTinySPFP(SRC[31:0]) ; // Get Normalized Exponent
Set #DE

}
ELSE // exponent value is correct
{

TMP[31:0] := (Src.sign << 31) OR (Src.exp << 23) OR (Src.fraction) ;
}
TMP := SAR(TMP, 23) ; // Shift Arithmetic Right
TMP := TMP – 127; // Subtract Bias
Return CvtI2S(TMP); // Convert INT to single precision floating-point number

}
}

VGETEXPPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC *is memory*)

THEN
DEST[i+31:i] :=

ConvertExpSPFP(SRC[31:0])
ELSE 

DEST[i+31:i] :=
ConvertExpSPFP(SRC[i+31:i])
FI;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VGETEXPPS __m512 _mm512_getexp_ps( __m512 a);
VGETEXPPS __m512 _mm512_mask_getexp_ps(__m512 s, __mmask16 k, __m512 a);
VGETEXPPS __m512 _mm512_maskz_getexp_ps( __mmask16 k, __m512 a);
VGETEXPPS __m512 _mm512_getexp_round_ps( __m512 a, int sae);
VGETEXPPS __m512 _mm512_mask_getexp_round_ps(__m512 s, __mmask16 k, __m512 a, int sae);
VGETEXPPS __m512 _mm512_maskz_getexp_round_ps( __mmask16 k, __m512 a, int sae);
VGETEXPPS __m256 _mm256_getexp_ps(__m256 a);
VGETEXPPS __m256 _mm256_mask_getexp_ps(__m256 s, __mmask8 k, __m256 a);
VGETEXPPS __m256 _mm256_maskz_getexp_ps( __mmask8 k, __m256 a);
VGETEXPPS __m128 _mm_getexp_ps(__m128 a);
VGETEXPPS __m128 _mm_mask_getexp_ps(__m128 s, __mmask8 k, __m128 a);
VGETEXPPS __m128 _mm_maskz_getexp_ps( __mmask8 k, __m128 a);

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VGETEXPSD—Convert Exponents of Scalar Double Precision Floating-Point Value to Double 
Precision Floating-Point Value

Instruction Operand Encoding

Description

Extracts the biased exponent from the normalized double precision floating-point representation of the low qword 
data element of the source operand (the third operand) as unbiased signed integer value, or convert the denormal 
representation of input data to unbiased negative integer values. The integer value of the unbiased exponent is 
converted to double precision floating-point value and written to the destination operand (the first operand) as 
double precision floating-point numbers. Bits (127:64) of the XMM register destination are copied from corre-
sponding bits in the first source operand.
The destination must be a XMM register, the source operand can be a XMM register or a float64 memory location.

If writemasking is used, the low quadword element of the destination operand is conditionally updated depending 
on the value of writemask register k1. If writemasking is not used, the low quadword element of the destination 
operand is unconditionally updated.
Each GETEXP operation converts the exponent value into a floating-point number (permitting input value in 
denormal representation). Special cases of input values are listed in Table 1-11.
The formula is:
GETEXP(x) = floor(log2(|x|)) 
Notation floor(x) stands for maximal integer not exceeding real number x. 

Operation

// NormalizeExpTinyDPFP(SRC[63:0]) is defined in the Operation section of VGETEXPPD

// ConvertExpDPFP(SRC[63:0]) is defined in the Operation section of VGETEXPPD

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.66.0F38.W1 43 /r
VGETEXPSD xmm1 {k1}{z}, 
xmm2, xmm3/m64{sae}

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert the biased exponent (bits 62:52) of the low 
double precision floating-point value in xmm3/m64 to a 
double precision floating-point value representing 
unbiased integer exponent. Stores the result to the low 
64-bit of xmm1 under the writemask k1 and merge with 
the other elements of xmm2.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VGETEXPSD (EVEX encoded version) 
IF k1[0] OR *no writemask*

THEN DEST[63:0] :=
ConvertExpDPFP(SRC2[63:0])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

DEST[63:0] := 0
FI

FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VGETEXPSD __m128d _mm_getexp_sd( __m128d a, __m128d b);
VGETEXPSD __m128d _mm_mask_getexp_sd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VGETEXPSD __m128d _mm_maskz_getexp_sd( __mmask8 k, __m128d a, __m128d b);
VGETEXPSD __m128d _mm_getexp_round_sd( __m128d a, __m128d b, int sae);
VGETEXPSD __m128d _mm_mask_getexp_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int sae);
VGETEXPSD __m128d _mm_maskz_getexp_round_sd( __mmask8 k, __m128d a, __m128d b, int sae);

SIMD Floating-Point Exceptions

Invalid, Denormal

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”
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VGETEXPSH—Convert Exponents of Scalar FP16 Values to FP16 Values

Instruction Operand Encoding

Description

This instruction extracts the biased exponents from the normalized FP16 representation of the low word element of 
the source operand (the second operand) as unbiased signed integer value, or convert the denormal representa-
tion of input data to an unbiased negative integer value. The integer value of the unbiased exponent is converted 
to an FP16 value and written to the low word element of the destination operand (the first operand) as an FP16 
number.
Bits 127:16 of the destination operand are copied from the corresponding bits of the first source operand. Bits 
MAXVL-1:128 of the destination operand are zeroed. The low FP16 element of the destination is updated according 
to the writemask.
Each GETEXP operation converts the exponent value into a floating-point number (permitting input value in 
denormal representation). Special cases of input values are listed in Table 1-12.
The formula is:
GETEXP(x) = floor(log2(|x|))
Notation floor(x) stands for maximal integer not exceeding real number x.
Software usage of VGETEXPxx and VGETMANTxx instructions generally involve a combination of GETEXP operation 
and GETMANT operation (see VGETMANTSH). Thus, the VGETEXPSH instruction does not require software to 
handle SIMD floating-point exceptions.

Operation

VGETEXPSH dest{k1}, src1, src2 
IF k1[0] or *no writemask*:

DEST.fp16[0] := getexp_fp16(src2.fp16[0]) // see VGETEXPPH
ELSE IF *zeroing*:

DEST.fp16[0] := 0
//else DEST.fp16[0] remains unchanged

DEST[127:16] := src1[127:16]
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.66.MAP6.W0 43 /r
VGETEXPSH xmm1{k1}{z}, xmm2, 
xmm3/m16 {sae}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert the exponent of FP16 values in the low 
word of the source operand to FP16 results 
representing unbiased integer exponents, and stores 
the results in the low word of the destination 
register subject to writemask k1. Bits 127:16 of 
xmm2 are copied to xmm1[127:16].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VGETEXPSH __m128h _mm_getexp_round_sh (__m128h a, __m128h b, const int sae);
VGETEXPSH __m128h _mm_mask_getexp_round_sh (__m128h src, __mmask8 k, __m128h a, __m128h b, const int sae);
VGETEXPSH __m128h _mm_maskz_getexp_round_sh (__mmask8 k, __m128h a, __m128h b, const int sae);
VGETEXPSH __m128h _mm_getexp_sh (__m128h a, __m128h b);
VGETEXPSH __m128h _mm_mask_getexp_sh (__m128h src, __mmask8 k, __m128h a, __m128h b);
VGETEXPSH __m128h _mm_maskz_getexp_sh (__mmask8 k, __m128h a, __m128h b);

SIMD Floating-Point Exceptions

Invalid, Denormal

Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VGETEXPSS—Convert Exponents of Scalar Single Precision Floating-Point Value to Single 
Precision Floating-Point Value

Instruction Operand Encoding

Description

Extracts the biased exponent from the normalized single precision floating-point representation of the low double-
word data element of the source operand (the third operand) as unbiased signed integer value, or convert the 
denormal representation of input data to unbiased negative integer values. The integer value of the unbiased expo-
nent is converted to single precision floating-point value and written to the destination operand (the first operand) 
as single precision floating-point numbers. Bits (127:32) of the XMM register destination are copied from corre-
sponding bits in the first source operand.
The destination must be a XMM register, the source operand can be a XMM register or a float32 memory location.

If writemasking is used, the low doubleword element of the destination operand is conditionally updated depending 
on the value of writemask register k1. If writemasking is not used, the low doubleword element of the destination 
operand is unconditionally updated.
Each GETEXP operation converts the exponent value into a floating-point number (permitting input value in 
denormal representation). Special cases of input values are listed in Table 1-13.
The formula is:
GETEXP(x) = floor(log2(|x|)) 
Notation floor(x) stands for maximal integer not exceeding real number x. 
Software usage of VGETEXPxx and VGETMANTxx instructions generally involve a combination of GETEXP operation 
and GETMANT operation (see VGETMANTPD). Thus VGETEXPxx instruction do not require software to handle SIMD 
floating-point exceptions.

Operation

// NormalizeExpTinySPFP(SRC[31:0]) is defined in the Operation section of VGETEXPPS
// ConvertExpSPFP(SRC[31:0]) is defined in the Operation section of VGETEXPPS

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.66.0F38.W0 43 /r
VGETEXPSS xmm1 {k1}{z}, xmm2, 
xmm3/m32{sae}

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Convert the biased exponent (bits 30:23) of the low 
single-precision floating-point value in xmm3/m32 to a 
single-precision floating-point value representing 
unbiased integer exponent. Stores the result to xmm1 
under the writemask k1 and merge with the other 
elements of xmm2.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VGETEXPSS (EVEX encoded version) 
IF k1[0] OR *no writemask*

THEN DEST[31:0] :=
ConvertExpDPFP(SRC2[31:0])

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

DEST[31:0]:= 0
FI

FI;
ENDFOR
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VGETEXPSS __m128 _mm_getexp_ss( __m128 a, __m128 b);
VGETEXPSS __m128 _mm_mask_getexp_ss(__m128 s, __mmask8 k, __m128 a, __m128 b);
VGETEXPSS __m128 _mm_maskz_getexp_ss( __mmask8 k, __m128 a, __m128 b);
VGETEXPSS __m128 _mm_getexp_round_ss( __m128 a, __m128 b, int sae);
VGETEXPSS __m128 _mm_mask_getexp_round_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, int sae);
VGETEXPSS __m128 _mm_maskz_getexp_round_ss( __mmask8 k, __m128 a, __m128 b, int sae);

SIMD Floating-Point Exceptions

Invalid, Denormal

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”
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VGETMANTPD—Extract Float64 Vector of Normalized Mantissas From Float64 Vector

Instruction Operand Encoding

Description

Convert double precision floating values in the source operand (the second operand) to double precision floating-
point values with the mantissa normalization and sign control specified by the imm8 byte, see Figure 1-15. The 
converted results are written to the destination operand (the first operand) using writemask k1. The normalized 
mantissa is specified by interv (imm8[1:0]) and the sign control (sc) is specified by bits 3:2 of the immediate byte. 
The destination operand is a ZMM/YMM/XMM register updated under the writemask. The source operand can be a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 64-
bit memory location.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W1 26 /r ib
VGETMANTPD xmm1 {k1}{z}, 
xmm2/m128/m64bcst, imm8

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Get Normalized Mantissa from float64 vector 
xmm2/m128/m64bcst and store the result in xmm1, 
using imm8 for sign control and mantissa interval 
normalization, under writemask.

EVEX.256.66.0F3A.W1 26 /r ib
VGETMANTPD ymm1 {k1}{z}, 
ymm2/m256/m64bcst, imm8

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Get Normalized Mantissa from float64 vector 
ymm2/m256/m64bcst and store the result in ymm1, 
using imm8 for sign control and mantissa interval 
normalization, under writemask.

EVEX.512.66.0F3A.W1 26 /r ib
VGETMANTPD zmm1 {k1}{z}, 
zmm2/m512/m64bcst{sae}, 
imm8

A V/V AVX512F 
OR AVX10.11

Get Normalized Mantissa from float64 vector 
zmm2/m512/m64bcst and store the result in zmm1, 
using imm8 for sign control and mantissa interval 
normalization, under writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) imm8 N/A

Figure 1-15.  Imm8 Controls for VGETMANTPD/SD/PS/SS

7 0246 5 3 1

Normaiization IntervalMust Be Zero

Imm8[3:2] = 00b : sign(SRC)

Sign Control (SC)

Imm8[3:2] = 01b : 0

Imm8[3] = 1b : qNan_Indefinite if sign(SRC) != 0, regardless of imm8[2].

Imm8[1:0] = 00b : Interval is [ 1, 2)

Imm8[1:0] = 01b : Interval is [1/2, 2)

Imm8[1:0] = 10b : Interval is [ 1/2, 1)

Imm8[1:0] = 11b : Interval is [3/4, 3/2)

imm8
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For each input double precision floating-point value x, The conversion operation is:

GetMant(x) = ±2k|x.significand|
where:

1 <= |x.significand| < 2

Unbiased exponent k can be either 0 or -1, depending on the interval range defined by interv, the range of the 
significand and whether the exponent of the source is even or odd. The sign of the final result is determined by sc 
and the source sign. The encoded value of imm8[1:0] and sign control are shown in Figure 1-15.
Each converted double precision floating-point result is encoded according to the sign control, the unbiased expo-
nent k (adding bias) and a mantissa normalized to the range specified by interv.
The GetMant() function follows Table 1-14 when dealing with floating-point special numbers.
This instruction is writemasked, so only those elements with the corresponding bit set in vector mask register k1 
are computed and stored into the destination. Elements in zmm1 with the corresponding bit clear in k1 retain their 
previous values.
Note: EVEX.vvvv is reserved and must be 1111b; otherwise instructions will #UD.

Operation

def getmant_fp64(src, sign_control, normalization_interval): 
bias := 1023
dst.sign := sign_control[0] ? 0 : src.sign
signed_one := sign_control[0] ? +1.0 : -1.0
dst.exp := src.exp
dst.fraction := src.fraction
zero := (dst.exp = 0) and ((dst.fraction = 0) or (MXCSR.DAZ=1))
denormal := (dst.exp = 0) and (dst.fraction != 0) and (MXCSR.DAZ=0)
infinity := (dst.exp = 0x7FF) and (dst.fraction = 0)
nan := (dst.exp = 0x7FF) and (dst.fraction != 0)
src_signaling := src.fraction[51]
snan := nan and (src_signaling = 0)
positive := (src.sign = 0)
negative := (src.sign = 1)
if nan:

Table 1-14.  GetMant() Special Float Values Behavior

Input Result Exceptions / Comments

NaN QNaN(SRC) Ignore interv
If (SRC = SNaN) then #IE

+∞ 1.0 Ignore interv

+0 1.0 Ignore interv

-0 IF (SC[0]) THEN +1.0
                  ELSE -1.0

Ignore interv

-∞ IF (SC[1]) THEN {QNaN_Indefinite} 
ELSE {
   IF (SC[0]) THEN +1.0
                     ELSE -1.0

Ignore interv
If (SC[1]) then #IE

negative SC[1] ? QNaN_Indefinite : Getmant(SRC)1

NOTES:
1. In case SC[1]==0, the sign of Getmant(SRC) is declared according to SC[0].

If (SC[1]) then #IE
VGETMANTPD—Extract Float64 Vector of Normalized Mantissas From Float64 Vector Vol. 2C 5-398



if snan:
MXCSR.IE := 1

return qnan(src)

if positive and (zero or infinity):
return 1.0

if negative:
if zero:

return signed_one
if infinity:

if sign_control[1]:
MXCSR.IE := 1
return QNaN_Indefinite

return signed_one
if sign_control[1]:

MXCSR.IE := 1
return QNaN_Indefinite

if denormal:
jbit := 0
dst.exp := bias 
while jbit = 0:

jbit := dst.fraction[51]
dst.fraction := dst.fraction << 1
dst.exp : = dst.exp - 1

MXCSR.DE := 1

unbiased_exp := dst.exp - bias
odd_exp := unbiased_exp[0]
signaling_bit := dst.fraction[51]
if normalization_interval = 0b00:

dst.exp := bias
else if normalization_interval = 0b01:

dst.exp := odd_exp ? bias-1 : bias 
else if normalization_interval = 0b10:

dst.exp := bias-1 
else if normalization_interval = 0b11:

dst.exp := signaling_bit ? bias-1 : bias
return dst
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VGETMANTPD (EVEX Encoded Versions)
VGETMANTPD dest{k1}, src, imm8
VL = 128, 256, or 512
KL := VL / 64
sign_control := imm8[3:2] 
normalization_interval := imm8[1:0]

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

IF SRC is memory and (EVEX.b = 1):
tsrc := src.double[0]

ELSE:
tsrc := src.double[i]

DEST.double[i] := getmant_fp64(tsrc, sign_control, normalization_interval)
ELSE IF *zeroing*:

DEST.double[i] := 0
//else DEST.double[i] remains unchanged

DEST[MAX_VL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VGETMANTPD __m512d _mm512_getmant_pd( __m512d a, enum intv, enum sgn);
VGETMANTPD __m512d _mm512_mask_getmant_pd(__m512d s, __mmask8 k, __m512d a, enum intv, enum sgn);
VGETMANTPD __m512d _mm512_maskz_getmant_pd( __mmask8 k, __m512d a, enum intv, enum sgn);
VGETMANTPD __m512d _mm512_getmant_round_pd( __m512d a, enum intv, enum sgn, int r);
VGETMANTPD __m512d _mm512_mask_getmant_round_pd(__m512d s, __mmask8 k, __m512d a, enum intv, enum sgn, int r);
VGETMANTPD __m512d _mm512_maskz_getmant_round_pd( __mmask8 k, __m512d a, enum intv, enum sgn, int r);
VGETMANTPD __m256d _mm256_getmant_pd( __m256d a, enum intv, enum sgn);
VGETMANTPD __m256d _mm256_mask_getmant_pd(__m256d s, __mmask8 k, __m256d a, enum intv, enum sgn);
VGETMANTPD __m256d _mm256_maskz_getmant_pd( __mmask8 k, __m256d a, enum intv, enum sgn);
VGETMANTPD __m128d _mm_getmant_pd( __m128d a, enum intv, enum sgn);
VGETMANTPD __m128d _mm_mask_getmant_pd(__m128d s, __mmask8 k, __m128d a, enum intv, enum sgn);
VGETMANTPD __m128d _mm_maskz_getmant_pd( __mmask8 k, __m128d a, enum intv, enum sgn);

SIMD Floating-Point Exceptions

Denormal, Invalid.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VGETMANTPH—Extract FP16 Vector of Normalized Mantissas from FP16 Vector

Instruction Operand Encoding

Description

This instruction converts the FP16 values in the source operand (the second operand) to FP16 values with the 
mantissa normalization and sign control specified by the imm8 byte, see Table 1-15. The converted results are 
written to the destination operand (the first operand) using writemask k1. The normalized mantissa is specified by 
interv (imm8[1:0]) and the sign control (SC) is specified by bits 3:2 of the immediate byte.
The destination elements are updated according to the writemask.

For each input FP16 value x, The conversion operation is:

GetMant(x) = ±2k|x.significand|
where:

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.0F3A.W0 26 /r /ib
VGETMANTPH xmm1{k1}{z}, 
xmm2/m128/m16bcst, imm8

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Get normalized mantissa from FP16 vector 
xmm2/m128/m16bcst and store the result in 
xmm1, using imm8 for sign control and mantissa 
interval normalization, subject to writemask k1.

EVEX.256.NP.0F3A.W0 26 /r /ib
VGETMANTPH ymm1{k1}{z}, 
ymm2/m256/m16bcst, imm8

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Get normalized mantissa from FP16 vector 
ymm2/m256/m16bcst and store the result in 
ymm1, using imm8 for sign control and mantissa 
interval normalization, subject to writemask k1.

EVEX.512.NP.0F3A.W0 26 /r /ib
VGETMANTPH zmm1{k1}{z}, 
zmm2/m512/m16bcst {sae}, imm8

A V/V AVX512-FP16
OR AVX10.11

Get normalized mantissa from FP16 vector 
zmm2/m512/m16bcst and store the result in 
zmm1, using imm8 for sign control and mantissa 
interval normalization, subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) imm8 (r) N/A

Table 1-15.  imm8 Controls for VGETMANTPH/VGETMANTSH

imm8 Bits Definition

imm8[7:4] Must be zero.

imm8[3:2] Sign Control (SC)
0b00: Sign(SRC) 
0b01: 0
0b1x: QNaN_Indefinite if sign(SRC)!=0

imm8[1:0] Interv
0b00: Interval is [1, 2) 
0b01: Interval is [1/2, 2) 
0b10: Interval is [1/2, 1)
0b11: Interval is [3/4, 3/2)
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1 ≤ |x.significand| < 2

Unbiased exponent k depends on the interval range defined by interv and whether the exponent of the source is 
even or odd. The sign of the final result is determined by the sign control and the source sign and the leading frac-
tion bit.
The encoded value of imm8[1:0] and sign control are shown in Table 1-15.
Each converted FP16 result is encoded according to the sign control, the unbiased exponent k (adding bias) and a 
mantissa normalized to the range specified by interv.
The GetMant() function follows Table 1-16 when dealing with floating-point special numbers.

Operation

def getmant_fp16(src, sign_control, normalization_interval):
bias := 15
dst.sign := sign_control[0] ? 0 : src.sign
signed_one := sign_control[0] ? +1.0 : -1.0
dst.exp := src.exp
dst.fraction := src.fraction
zero := (dst.exp = 0) and (dst.fraction = 0)
denormal := (dst.exp = 0) and (dst.fraction != 0)
infinity := (dst.exp = 0x1F) and (dst.fraction = 0)
nan := (dst.exp = 0x1F) and (dst.fraction != 0)
src_signaling := src.fraction[9]
snan := nan and (src_signaling = 0)
positive := (src.sign = 0)
negative := (src.sign = 1)
if nan:

if snan:
MXCSR.IE := 1

return qnan(src)

if positive and (zero or infinity):
return 1.0

if negative:
if zero:

Table 1-16.  GetMant() Special Float Values Behavior

Input Result Exceptions / Comments

NaN QNaN(SRC) Ignore interv.
If (SRC = SNaN), then #IE.

+∞ 1.0 Ignore interv.

+0 1.0 Ignore interv.

-0 IF (SC[0]) THEN +1.0
                  ELSE -1.0

Ignore interv.

-∞ IF (SC[1]) THEN {QNaN_Indefinite} 
ELSE {
   IF (SC[0]) THEN +1.0
                     ELSE -1.0

Ignore interv.
If (SC[1]), then #IE.

negative SC[1] ? QNaN_Indefinite : Getmant(SRC)1

NOTES:
1. In case SC[1]==0, the sign of Getmant(SRC) is declared according to SC[0].

If (SC[1]), then #IE.
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return signed_one
if infinity:

if sign_control[1]:
MXCSR.IE := 1
return QNaN_Indefinite

return signed_one
if sign_control[1]:

MXCSR.IE := 1
return QNaN_Indefinite

if denormal:
jbit := 0
dst.exp := bias // set exponent to bias value
while jbit = 0:

jbit := dst.fraction[9]
dst.fraction := dst.fraction << 1
dst.exp : = dst.exp - 1

MXCSR.DE := 1

unbaiased_exp := dst.exp - bias
odd_exp := unbaiased_exp[0]
signaling_bit := dst.fraction[9]
if normalization_interval = 0b00:

dst.exp := bias
else if normalization_interval = 0b01:

dst.exp := odd_exp ? bias-1 : bias
else if normalization_interval = 0b10:

dst.exp := bias-1
else if normalization_interval = 0b11:

dst.exp := signaling_bit ? bias-1 : bias
return dst

VGETMANTPH dest{k1}, src, imm8 
VL = 128, 256 or 512
KL := VL/16

sign_control := imm8[3:2]
normalization_interval := imm8[1:0]

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

IF SRC is memory and (EVEX.b = 1):
tsrc := src.fp16[0]

ELSE:
tsrc := src.fp16[i]

DEST.fp16[i] := getmant_fp16(tsrc, sign_control, normalization_interval)
ELSE IF *zeroing*:

DEST.fp16[i] := 0
//else DEST.fp16[i] remains unchanged

DEST[MAXVL-1:VL] := 0
VGETMANTPH—Extract FP16 Vector of Normalized Mantissas from FP16 Vector Vol. 2C 5-403



Intel C/C++ Compiler Intrinsic Equivalent

VGETMANTPH __m128h _mm_getmant_ph (__m128h a, _MM_MANTISSA_NORM_ENUM norm, _MM_MANTISSA_SIGN_ENUM sign);
VGETMANTPH __m128h _mm_mask_getmant_ph (__m128h src, __mmask8 k, __m128h a, _MM_MANTISSA_NORM_ENUM norm, 

_MM_MANTISSA_SIGN_ENUM sign);
VGETMANTPH __m128h _mm_maskz_getmant_ph (__mmask8 k, __m128h a, _MM_MANTISSA_NORM_ENUM norm, 

_MM_MANTISSA_SIGN_ENUM sign);
VGETMANTPH __m256h _mm256_getmant_ph (__m256h a, _MM_MANTISSA_NORM_ENUM norm, _MM_MANTISSA_SIGN_ENUM sign);
VGETMANTPH __m256h _mm256_mask_getmant_ph (__m256h src, __mmask16 k, __m256h a, _MM_MANTISSA_NORM_ENUM norm, 

_MM_MANTISSA_SIGN_ENUM sign);
VGETMANTPH __m256h _mm256_maskz_getmant_ph (__mmask16 k, __m256h a, _MM_MANTISSA_NORM_ENUM norm, 

_MM_MANTISSA_SIGN_ENUM sign);
VGETMANTPH __m512h _mm512_getmant_ph (__m512h a, _MM_MANTISSA_NORM_ENUM norm, _MM_MANTISSA_SIGN_ENUM sign);
VGETMANTPH __m512h _mm512_mask_getmant_ph (__m512h src, __mmask32 k, __m512h a, _MM_MANTISSA_NORM_ENUM norm, 

_MM_MANTISSA_SIGN_ENUM sign);
VGETMANTPH __m512h _mm512_maskz_getmant_ph (__mmask32 k, __m512h a, _MM_MANTISSA_NORM_ENUM norm, 

_MM_MANTISSA_SIGN_ENUM sign);
VGETMANTPH __m512h _mm512_getmant_round_ph (__m512h a, _MM_MANTISSA_NORM_ENUM norm, 

_MM_MANTISSA_SIGN_ENUM sign, const int sae);
VGETMANTPH __m512h _mm512_mask_getmant_round_ph (__m512h src, __mmask32 k, __m512h a, _MM_MANTISSA_NORM_ENUM 

norm, _MM_MANTISSA_SIGN_ENUM sign, const int sae);
VGETMANTPH __m512h _mm512_maskz_getmant_round_ph (__mmask32 k, __m512h a, _MM_MANTISSA_NORM_ENUM norm, 

_MM_MANTISSA_SIGN_ENUM sign, const int sae);

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VGETMANTPS—Extract Float32 Vector of Normalized Mantissas From Float32 Vector

Instruction Operand Encoding

Description

Convert single precision floating values in the source operand (the second operand) to single precision floating-
point values with the mantissa normalization and sign control specified by the imm8 byte, see Figure 1-15. The 
converted results are written to the destination operand (the first operand) using writemask k1. The normalized 
mantissa is specified by interv (imm8[1:0]) and the sign control (sc) is specified by bits 3:2 of the immediate byte. 
The destination operand is a ZMM/YMM/XMM register updated under the writemask. The source operand can be a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 32-
bit memory location.
For each input single precision floating-point value x, The conversion operation is:

GetMant(x) = ±2k|x.significand|
where:

1 <= |x.significand| < 2

Unbiased exponent k can be either 0 or -1, depending on the interval range defined by interv, the range of the 
significand and whether the exponent of the source is even or odd. The sign of the final result is determined by sc 
and the source sign. The encoded value of imm8[1:0] and sign control are shown in Figure 1-15.
Each converted single precision floating-point result is encoded according to the sign control, the unbiased expo-
nent k (adding bias) and a mantissa normalized to the range specified by interv.
The GetMant() function follows Table 1-14 when dealing with floating-point special numbers.
This instruction is writemasked, so only those elements with the corresponding bit set in vector mask register k1 
are computed and stored into the destination. Elements in zmm1 with the corresponding bit clear in k1 retain their 
previous values.
Note: EVEX.vvvv is reserved and must be 1111b, VEX.L must be 0; otherwise instructions will #UD.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W0 26 /r ib
VGETMANTPS xmm1 {k1}{z}, 
xmm2/m128/m32bcst, imm8

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Get normalized mantissa from float32 vector 
xmm2/m128/m32bcst and store the result in xmm1, using 
imm8 for sign control and mantissa interval normalization, 
under writemask.

EVEX.256.66.0F3A.W0 26 /r ib
VGETMANTPS ymm1 {k1}{z}, 
ymm2/m256/m32bcst, imm8

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Get normalized mantissa from float32 vector 
ymm2/m256/m32bcst and store the result in ymm1, using 
imm8 for sign control and mantissa interval normalization, 
under writemask.

EVEX.512.66.0F3A.W0 26 /r ib
VGETMANTPS zmm1 {k1}{z}, 
zmm2/m512/m32bcst{sae}, 
imm8

A V/V AVX512F 
OR AVX10.11

Get normalized mantissa from float32 vector 
zmm2/m512/m32bcst and store the result in zmm1, using 
imm8 for sign control and mantissa interval normalization, 
under writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) imm8 N/A
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Operation

def getmant_fp32(src, sign_control, normalization_interval):
bias := 127
dst.sign := sign_control[0] ? 0 : src.sign
signed_one := sign_control[0] ? +1.0 : -1.0
dst.exp := src.exp
dst.fraction := src.fraction
zero := (dst.exp = 0) and ((dst.fraction = 0) or (MXCSR.DAZ=1))
denormal := (dst.exp = 0) and (dst.fraction != 0) and (MXCSR.DAZ=0)
infinity := (dst.exp = 0xFF) and (dst.fraction = 0)
nan := (dst.exp = 0xFF) and (dst.fraction != 0)
src_signaling := src.fraction[22]
snan := nan and (src_signaling = 0)
positive := (src.sign = 0)
negative := (src.sign = 1)
if nan:

if snan:
MXCSR.IE := 1

return qnan(src)

if positive and (zero or infinity):
return 1.0

if negative:
if zero:

return signed_one
if infinity:

if sign_control[1]:
MXCSR.IE := 1
return QNaN_Indefinite

return signed_one
if sign_control[1]:

MXCSR.IE := 1
return QNaN_Indefinite

if denormal:
jbit := 0
dst.exp := bias
while jbit = 0:

jbit := dst.fraction[22]
dst.fraction := dst.fraction << 1
dst.exp : = dst.exp - 1

MXCSR.DE := 1

unbiased_exp := dst.exp - bias
odd_exp  := unbiased_exp[0]
signaling_bit := dst.fraction[22]
if normalization_interval = 0b00:

dst.exp := bias
else if normalization_interval = 0b01:

dst.exp := odd_exp ? bias-1 : bias
else if normalization_interval = 0b10:

dst.exp := bias-1
else if normalization_interval = 0b11:

dst.exp := signaling_bit ? bias-1 : bias
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return dst

VGETMANTPS (EVEX encoded versions)
VGETMANTPS dest{k1}, src, imm8
VL = 128, 256, or 512
KL := VL / 32
sign_control := imm8[3:2] 
normalization_interval := imm8[1:0]

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

IF SRC is memory and (EVEX.b = 1):
tsrc := src.float[0]

ELSE:
tsrc := src.float[i]

DEST.float[i] := getmant_fp32(tsrc, sign_control, normalization_interval)
ELSE IF *zeroing*:

DEST.float[i] := 0
//else DEST.float[i] remains unchanged

DEST[MAX_VL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VGETMANTPS __m512 _mm512_getmant_ps( __m512 a, enum intv, enum sgn);
VGETMANTPS __m512 _mm512_mask_getmant_ps(__m512 s, __mmask16 k, __m512 a, enum intv, enum sgn;
VGETMANTPS __m512 _mm512_maskz_getmant_ps(__mmask16 k, __m512 a, enum intv, enum sgn);
VGETMANTPS __m512 _mm512_getmant_round_ps( __m512 a, enum intv, enum sgn, int r);
VGETMANTPS __m512 _mm512_mask_getmant_round_ps(__m512 s, __mmask16 k, __m512 a, enum intv, enum sgn, int r);
VGETMANTPS __m512 _mm512_maskz_getmant_round_ps(__mmask16 k, __m512 a, enum intv, enum sgn, int r);
VGETMANTPS __m256 _mm256_getmant_ps( __m256 a, enum intv, enum sgn);
VGETMANTPS __m256 _mm256_mask_getmant_ps(__m256 s, __mmask8 k, __m256 a, enum intv, enum sgn);
VGETMANTPS __m256 _mm256_maskz_getmant_ps( __mmask8 k, __m256 a, enum intv, enum sgn);
VGETMANTPS __m128 _mm_getmant_ps( __m128 a, enum intv, enum sgn);
VGETMANTPS __m128 _mm_mask_getmant_ps(__m128 s, __mmask8 k, __m128 a, enum intv, enum sgn);
VGETMANTPS __m128 _mm_maskz_getmant_ps( __mmask8 k, __m128 a, enum intv, enum sgn);

SIMD Floating-Point Exceptions

Denormal, Invalid.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VGETMANTSD—Extract Float64 of Normalized Mantissa From Float64 Scalar

Instruction Operand Encoding

Description

Convert the double precision floating values in the low quadword element of the second source operand (the third 
operand) to double precision floating-point value with the mantissa normalization and sign control specified by the 
imm8 byte, see Figure 1-15. The converted result is written to the low quadword element of the destination 
operand (the first operand) using writemask k1. Bits (127:64) of the XMM register destination are copied from 
corresponding bits in the first source operand. The normalized mantissa is specified by interv (imm8[1:0]) and the 
sign control (sc) is specified by bits 3:2 of the immediate byte. 
The conversion operation is:

GetMant(x) = ±2k|x.significand|
where:

1 <= |x.significand| < 2

Unbiased exponent k can be either 0 or -1, depending on the interval range defined by interv, the range of the 
significand and whether the exponent of the source is even or odd. The sign of the final result is determined by sc 
and the source sign. The encoded value of imm8[1:0] and sign control are shown in Figure 1-15.
The converted double precision floating-point result is encoded according to the sign control, the unbiased expo-
nent k (adding bias) and a mantissa normalized to the range specified by interv.
The GetMant() function follows Table 1-14 when dealing with floating-point special numbers.
If writemasking is used, the low quadword element of the destination operand is conditionally updated depending 
on the value of writemask register k1. If writemasking is not used, the low quadword element of the destination 
operand is unconditionally updated.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.66.0F3A.W1 27 /r ib
VGETMANTSD xmm1 {k1}{z}, xmm2, 
xmm3/m64{sae}, imm8

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Extract the normalized mantissa of the low float64 
element in xmm3/m64 using imm8 for sign control 
and mantissa interval normalization. Store the 
mantissa to xmm1 under the writemask k1 and 
merge with the other elements of xmm2.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

// getmant_fp64(src, sign_control, normalization_interval) is defined in the operation section of VGETMANTPD

VGETMANTSD (EVEX encoded version) 
SignCtrl[1:0] := IMM8[3:2];
Interv[1:0] := IMM8[1:0];
IF k1[0] OR *no writemask*

THEN DEST[63:0] :=
getmant_fp64(src, sign_control, normalization_interval)

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

DEST[63:0] := 0
FI

FI;
DEST[127:64] := SRC1[127:64] 
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VGETMANTSD __m128d _mm_getmant_sd( __m128d a, __m128 b, enum intv, enum sgn);
VGETMANTSD __m128d _mm_mask_getmant_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, enum intv, enum sgn);
VGETMANTSD __m128d _mm_maskz_getmant_sd( __mmask8 k, __m128 a, __m128d b, enum intv, enum sgn);
VGETMANTSD __m128d _mm_getmant_round_sd( __m128d a, __m128 b, enum intv, enum sgn, int r);
VGETMANTSD __m128d _mm_mask_getmant_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, enum intv, enum sgn, int r);
VGETMANTSD __m128d _mm_maskz_getmant_round_sd( __mmask8 k, __m128d a, __m128d b, enum intv, enum sgn, int r);

SIMD Floating-Point Exceptions

Denormal, Invalid

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”
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VGETMANTSH—Extract FP16 of Normalized Mantissa from FP16 Scalar

Instruction Operand Encoding

Description

This instruction converts the FP16 value in the low element of the second source operand to FP16 values with the 
mantissa normalization and sign control specified by the imm8 byte, see Table 1-15. The converted result is written 
to the low element of the destination operand using writemask k1. The normalized mantissa is specified by interv 
(imm8[1:0]) and the sign control (SC) is specified by bits 3:2 of the immediate byte.
Bits 127:16 of the destination operand are copied from the corresponding bits of the first source operand. Bits 
MAXVL-1:128 of the destination operand are zeroed. The low FP16 element of the destination is updated according 
to the writemask.
For each input FP16 value x, The conversion operation is:

GetMant(x) = ±2k|x.significand|
where:

1 ≤ |x.significand| < 2
Unbiased exponent k depends on the interval range defined by interv and whether the exponent of the source is 
even or odd. The sign of the final result is determined by the sign control and the source sign and the leading frac-
tion bit.
The encoded value of imm8[1:0] and sign control are shown in Table 1-15.
Each converted FP16 result is encoded according to the sign control, the unbiased exponent k (adding bias) and a 
mantissa normalized to the range specified by interv.
The GetMant() function follows Table 1-16 when dealing with floating-point special numbers.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.NP.0F3A.W0 27 /r /ib
VGETMANTSH xmm1{k1}{z}, xmm2, 
xmm3/m16 {sae}, imm8

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Extract the normalized mantissa of the low FP16 
element in xmm3/m16 using imm8 for sign 
control and mantissa interval normalization. Store 
the mantissa to xmm1 subject to writemask k1 
and merge with the other elements of xmm2. Bits 
127:16 of xmm2 are copied to xmm1[127:16].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8 (r)
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Operation

VGETMANTSH dest{k1}, src1, src2, imm8
sign_control := imm8[3:2]
normalization_interval := imm8[1:0]

IF k1[0] or *no writemask*:
dest.fp16[0] := getmant_fp16(src2.fp16[0], // see VGETMANTPH

sign_control,
normalization_interval)

ELSE IF *zeroing*:
dest.fp16[0] := 0

//else dest.fp16[0] remains unchanged

DEST[127:16] := src1[127:16]
DEST[MAXVL-1:128] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VGETMANTSH __m128h _mm_getmant_round_sh (__m128h a, __m128h b, _MM_MANTISSA_NORM_ENUM norm, 
_MM_MANTISSA_SIGN_ENUM sign, const int sae);

VGETMANTSH __m128h _mm_mask_getmant_round_sh (__m128h src, __mmask8 k, __m128h a, __m128h b, 
_MM_MANTISSA_NORM_ENUM norm, _MM_MANTISSA_SIGN_ENUM sign, const int sae);

VGETMANTSH __m128h _mm_maskz_getmant_round_sh (__mmask8 k, __m128h a, __m128h b, _MM_MANTISSA_NORM_ENUM norm, 
_MM_MANTISSA_SIGN_ENUM sign, const int sae);

VGETMANTSH __m128h _mm_getmant_sh (__m128h a, __m128h b, _MM_MANTISSA_NORM_ENUM norm, 
_MM_MANTISSA_SIGN_ENUM sign);

VGETMANTSH __m128h _mm_mask_getmant_sh (__m128h src, __mmask8 k, __m128h a, __m128h b, _MM_MANTISSA_NORM_ENUM 
norm, _MM_MANTISSA_SIGN_ENUM sign);

VGETMANTSH __m128h _mm_maskz_getmant_sh (__mmask8 k, __m128h a, __m128h b, _MM_MANTISSA_NORM_ENUM norm, 
_MM_MANTISSA_SIGN_ENUM sign);

SIMD Floating-Point Exceptions

Invalid, Denormal

Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VGETMANTSS—Extract Float32 Vector of Normalized Mantissa From Float32 Scalar

Instruction Operand Encoding

Description

Convert the single precision floating values in the low doubleword element of the second source operand (the third 
operand) to single precision floating-point value with the mantissa normalization and sign control specified by the 
imm8 byte, see Figure 1-15. The converted result is written to the low doubleword element of the destination 
operand (the first operand) using writemask k1. Bits (127:32) of the XMM register destination are copied from 
corresponding bits in the first source operand. The normalized mantissa is specified by interv (imm8[1:0]) and the 
sign control (sc) is specified by bits 3:2 of the immediate byte. 
The conversion operation is:

GetMant(x) = ±2k|x.significand|
where:

1 <= |x.significand| < 2

Unbiased exponent k can be either 0 or -1, depending on the interval range defined by interv, the range of the 
significand and whether the exponent of the source is even or odd. The sign of the final result is determined by sc 
and the source sign. The encoded value of imm8[1:0] and sign control are shown in Figure 1-15.
The converted single precision floating-point result is encoded according to the sign control, the unbiased exponent 
k (adding bias) and a mantissa normalized to the range specified by interv.
The GetMant() function follows Table 1-14 when dealing with floating-point special numbers.
If writemasking is used, the low doubleword element of the destination operand is conditionally updated depending 
on the value of writemask register k1. If writemasking is not used, the low doubleword element of the destination 
operand is unconditionally updated.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.66.0F3A.W0 27 /r ib
VGETMANTSS xmm1 {k1}{z}, xmm2, 
xmm3/m32{sae}, imm8

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Extract the normalized mantissa from the low float32 
element of xmm3/m32 using imm8 for sign control 
and mantissa interval normalization, store the 
mantissa to xmm1 under the writemask k1 and merge 
with the other elements of xmm2.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

// getmant_fp32(src, sign_control, normalization_interval) is defined in the operation section of VGETMANTPS

VGETMANTSS (EVEX encoded version) 
SignCtrl[1:0] := IMM8[3:2];
Interv[1:0] := IMM8[1:0];
IF k1[0] OR *no writemask*

THEN DEST[31:0] :=
getmant_fp32(src, sign_control, normalization_interval)

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

DEST[31:0] := 0
FI

FI;
DEST[127:32] := SRC1[127:32] 
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VGETMANTSS __m128 _mm_getmant_ss( __m128 a, __m128 b, enum intv, enum sgn);
VGETMANTSS __m128 _mm_mask_getmant_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, enum intv, enum sgn);
VGETMANTSS __m128 _mm_maskz_getmant_ss( __mmask8 k, __m128 a, __m128 b, enum intv, enum sgn);
VGETMANTSS __m128 _mm_getmant_round_ss( __m128 a, __m128 b, enum intv, enum sgn, int r);
VGETMANTSS __m128 _mm_mask_getmant_round_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, enum intv, enum sgn, int r);
VGETMANTSS __m128 _mm_maskz_getmant_round_ss( __mmask8 k, __m128 a, __m128 b, enum intv, enum sgn, int r);

SIMD Floating-Point Exceptions

Denormal, Invalid

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”
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VINSERTF128/VINSERTF32x4/VINSERTF64x2/VINSERTF32x8/VINSERTF64x4—Insert Packed 
Floating-Point Values

Instruction Operand Encoding

Description

VINSERTF128/VINSERTF32x4 and VINSERTF64x2 insert 128-bits of packed floating-point values from the second 
source operand (the third operand) into the destination operand (the first operand) at an 128-bit granularity offset 
multiplied by imm8[0] (256-bit) or imm8[1:0]. The remaining portions of the destination operand are copied from 
the corresponding fields of the first source operand (the second operand). The second source operand can be either 
an XMM register or a 128-bit memory location. The destination and first source operands are vector registers.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.256.66.0F3A.W0 18 /r ib
VINSERTF128 ymm1, ymm2, 
xmm3/m128, imm8

A V/V AVX Insert 128 bits of packed floating-point values 
from xmm3/m128 and the remaining values 
from ymm2 into ymm1.

EVEX.256.66.0F3A.W0 18 /r ib
VINSERTF32X4 ymm1 {k1}{z}, ymm2, 
xmm3/m128, imm8

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Insert 128 bits of packed single-precision 
floating-point values from xmm3/m128 and the 
remaining values from ymm2 into ymm1 under 
writemask k1.

EVEX.512.66.0F3A.W0 18 /r ib
VINSERTF32X4 zmm1 {k1}{z}, zmm2, 
xmm3/m128, imm8

C V/V AVX512F
OR AVX10.11

Insert 128 bits of packed single-precision 
floating-point values from xmm3/m128 and the 
remaining values from zmm2 into zmm1 under 
writemask k1.

EVEX.256.66.0F3A.W1 18 /r ib
VINSERTF64X2 ymm1 {k1}{z}, ymm2, 
xmm3/m128, imm8

B V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Insert 128 bits of packed double precision 
floating-point values from xmm3/m128 and the 
remaining values from ymm2 into ymm1 under 
writemask k1.

EVEX.512.66.0F3A.W1 18 /r ib
VINSERTF64X2 zmm1 {k1}{z}, zmm2, 
xmm3/m128, imm8

B V/V AVX512DQ 
OR AVX10.11

Insert 128 bits of packed double precision 
floating-point values from xmm3/m128 and the 
remaining values from zmm2 into zmm1 under 
writemask k1.

EVEX.512.66.0F3A.W0 1A /r ib
VINSERTF32X8 zmm1 {k1}{z}, zmm2, 
ymm3/m256, imm8

D V/V AVX512DQ 
OR AVX10.11

Insert 256 bits of packed single-precision 
floating-point values from ymm3/m256 and the 
remaining values from zmm2 into zmm1 under 
writemask k1.

EVEX.512.66.0F3A.W1 1A /r ib
VINSERTF64X4 zmm1 {k1}{z}, zmm2, 
ymm3/m256, imm8

C V/V AVX512F
OR AVX10.11

Insert 256 bits of packed double precision 
floating-point values from ymm3/m256 and the 
remaining values from zmm2 into zmm1 under 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

B Tuple2 ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8

C Tuple4 ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8

D Tuple8 ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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VINSERTF32x4: The destination operand is a ZMM/YMM register and updated at 32-bit granularity according to the 
writemask. The high 6/7 bits of the immediate are ignored. 
VINSERTF64x2: The destination operand is a ZMM/YMM register and updated at 64-bit granularity according to the 
writemask. The high 6/7 bits of the immediate are ignored. 
VINSERTF32x8 and VINSERTF64x4 inserts 256-bits of packed floating-point values from the second source operand 
(the third operand) into the destination operand (the first operand) at a 256-bit granular offset multiplied by 
imm8[0]. The remaining portions of the destination are copied from the corresponding fields of the first source 
operand (the second operand). The second source operand can be either an YMM register or a 256-bit memory 
location. The high 7 bits of the immediate are ignored. The destination operand is a ZMM register and updated at 
32/64-bit granularity according to the writemask.

Operation

VINSERTF32x4 (EVEX encoded versions) 
(KL, VL) = (8, 256), (16, 512)
TEMP_DEST[VL-1:0] := SRC1[VL-1:0]
IF VL = 256

CASE (imm8[0]) OF
0: TMP_DEST[127:0] := SRC2[127:0]
1: TMP_DEST[255:128] := SRC2[127:0]

ESAC.
FI;
IF VL = 512

CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] := SRC2[127:0]
01: TMP_DEST[255:128] := SRC2[127:0]
10: TMP_DEST[383:256] := SRC2[127:0]
11: TMP_DEST[511:384] := SRC2[127:0]

ESAC.
FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VINSERTF64x2 (EVEX encoded versions) 
(KL, VL) = (4, 256), (8, 512)
TEMP_DEST[VL-1:0] := SRC1[VL-1:0]
IF VL = 256

CASE (imm8[0]) OF
0: TMP_DEST[127:0] := SRC2[127:0]
1: TMP_DEST[255:128] := SRC2[127:0]

ESAC.
FI;
IF VL = 512

CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] := SRC2[127:0]
01: TMP_DEST[255:128] := SRC2[127:0]
10: TMP_DEST[383:256] := SRC2[127:0]
11: TMP_DEST[511:384] := SRC2[127:0]

ESAC.
FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VINSERTF32x8 (EVEX.U1.512 encoded version)
TEMP_DEST[VL-1:0] := SRC1[VL-1:0]
CASE (imm8[0]) OF

0: TMP_DEST[255:0] := SRC2[255:0]
1: TMP_DEST[511:256] := SRC2[255:0]

ESAC.

FOR j := 0 TO 15
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VINSERTF64x4 (EVEX.512 encoded version) 
VL = 512
TEMP_DEST[VL-1:0] := SRC1[VL-1:0]
CASE (imm8[0]) OF

0: TMP_DEST[255:0] := SRC2[255:0]
1: TMP_DEST[511:256] := SRC2[255:0]

ESAC.

FOR j := 0 TO 7
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VINSERTF128 (VEX encoded version)
TEMP[255:0] := SRC1[255:0]
CASE (imm8[0]) OF

0: TEMP[127:0] := SRC2[127:0]
1: TEMP[255:128] := SRC2[127:0]

ESAC
DEST := TEMP

Intel C/C++ Compiler Intrinsic Equivalent

VINSERTF32x4 __m512 _mm512_insertf32x4( __m512 a, __m128 b, int imm);
VINSERTF32x4 __m512 _mm512_mask_insertf32x4(__m512 s, __mmask16 k, __m512 a, __m128 b, int imm);
VINSERTF32x4 __m512 _mm512_maskz_insertf32x4( __mmask16 k, __m512 a, __m128 b, int imm);
VINSERTF32x4 __m256 _mm256_insertf32x4( __m256 a, __m128 b, int imm);
VINSERTF32x4 __m256 _mm256_mask_insertf32x4(__m256 s, __mmask8 k, __m256 a, __m128 b, int imm);
VINSERTF32x4 __m256 _mm256_maskz_insertf32x4( __mmask8 k, __m256 a, __m128 b, int imm);
VINSERTF32x8 __m512 _mm512_insertf32x8( __m512 a, __m256 b, int imm);
VINSERTF32x8 __m512 _mm512_mask_insertf32x8(__m512 s, __mmask16 k, __m512 a, __m256 b, int imm);
VINSERTF32x8 __m512 _mm512_maskz_insertf32x8( __mmask16 k, __m512 a, __m256 b, int imm);
VINSERTF64x2 __m512d _mm512_insertf64x2( __m512d a, __m128d b, int imm);
VINSERTF64x2 __m512d _mm512_mask_insertf64x2(__m512d s, __mmask8 k, __m512d a, __m128d b, int imm);
VINSERTF64x2 __m512d _mm512_maskz_insertf64x2( __mmask8 k, __m512d a, __m128d b, int imm);
VINSERTF64x2 __m256d _mm256_insertf64x2( __m256d a, __m128d b, int imm);
VINSERTF64x2 __m256d _mm256_mask_insertf64x2(__m256d s, __mmask8 k, __m256d a, __m128d b, int imm);
VINSERTF64x2 __m256d _mm256_maskz_insertf64x2( __mmask8 k, __m256d a, __m128d b, int imm);
VINSERTF64x4 __m512d _mm512_insertf64x4( __m512d a, __m256d b, int imm);
VINSERTF64x4 __m512d _mm512_mask_insertf64x4(__m512d s, __mmask8 k, __m512d a, __m256d b, int imm);
VINSERTF64x4 __m512d _mm512_maskz_insertf64x4( __mmask8 k, __m512d a, __m256d b, int imm);
VINSERTF128 __m256 _mm256_insertf128_ps (__m256 a, __m128 b, int offset);
VINSERTF128 __m256d _mm256_insertf128_pd (__m256d a, __m128d b, int offset);
VINSERTF128 __m256i _mm256_insertf128_si256 (__m256i a, __m128i b, int offset);
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SIMD Floating-Point Exceptions

None

Other Exceptions

VEX-encoded instruction, see Table 2-23, “Type 6 Class Exception Conditions.”
Additionally:
#UD If VEX.L = 0.
EVEX-encoded instruction, see Table 2-56, “Type E6NF Class Exception Conditions.”
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VINSERTI128/VINSERTI32x4/VINSERTI64x2/VINSERTI32x8/VINSERTI64x4—Insert Packed 
Integer Values

Instruction Operand Encoding

Description

VINSERTI32x4 and VINSERTI64x2 inserts 128-bits of packed integer values from the second source operand (the 
third operand) into the destination operand (the first operand) at an 128-bit granular offset multiplied by imm8[0] 
(256-bit) or imm8[1:0]. The remaining portions of the destination are copied from the corresponding fields of the 
first source operand (the second operand). The second source operand can be either an XMM register or a 128-bit 
memory location. The high 6/7bits of the immediate are ignored. The destination operand is a ZMM/YMM register 
and updated at 32 and 64-bit granularity according to the writemask.

Opcode/
Instruction

Op / 
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.256.66.0F3A.W0 38 /r ib
VINSERTI128 ymm1, ymm2, 
xmm3/m128, imm8

A V/V AVX2 Insert 128 bits of integer data from xmm3/m128 
and the remaining values from ymm2 into ymm1.

EVEX.256.66.0F3A.W0 38 /r ib
VINSERTI32X4 ymm1 {k1}{z}, ymm2, 
xmm3/m128, imm8

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Insert 128 bits of packed doubleword integer 
values from xmm3/m128 and the remaining 
values from ymm2 into ymm1 under writemask 
k1.

EVEX.512.66.0F3A.W0 38 /r ib
VINSERTI32X4 zmm1 {k1}{z}, zmm2, 
xmm3/m128, imm8

C V/V AVX512F 
OR AVX10.11

Insert 128 bits of packed doubleword integer 
values from xmm3/m128 and the remaining 
values from zmm2 into zmm1 under writemask 
k1.

EVEX.256.66.0F3A.W1 38 /r ib
VINSERTI64X2 ymm1 {k1}{z}, ymm2, 
xmm3/m128, imm8

B V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Insert 128 bits of packed quadword integer 
values from xmm3/m128 and the remaining 
values from ymm2 into ymm1 under writemask 
k1.

EVEX.512.66.0F3A.W1 38 /r ib
VINSERTI64X2 zmm1 {k1}{z}, zmm2, 
xmm3/m128, imm8

B V/V AVX512DQ OR 
AVX10.11

Insert 128 bits of packed quadword integer 
values from xmm3/m128 and the remaining 
values from zmm2 into zmm1 under writemask 
k1.

EVEX.512.66.0F3A.W0 3A /r ib
VINSERTI32X8 zmm1 {k1}{z}, zmm2, 
ymm3/m256, imm8

D V/V AVX512DQ OR 
AVX10.11

Insert 256 bits of packed doubleword integer 
values from ymm3/m256 and the remaining 
values from zmm2 into zmm1 under writemask 
k1.

EVEX.512.66.0F3A.W1 3A /r ib
VINSERTI64X4 zmm1 {k1}{z}, zmm2, 
ymm3/m256, imm8

C V/V AVX512F 
OR AVX10.11

Insert 256 bits of packed quadword integer 
values from ymm3/m256 and the remaining 
values from zmm2 into zmm1 under writemask 
k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

B Tuple2 ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8

C Tuple4 ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8

D Tuple8 ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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VINSERTI32x8 and VINSERTI64x4 inserts 256-bits of packed integer values from the second source operand (the 
third operand) into the destination operand (the first operand) at a 256-bit granular offset multiplied by imm8[0]. 
The remaining portions of the destination are copied from the corresponding fields of the first source operand (the 
second operand). The second source operand can be either an YMM register or a 256-bit memory location. The 
upper bits of the immediate are ignored. The destination operand is a ZMM register and updated at 32 and 64-bit 
granularity according to the writemask.
VINSERTI128 inserts 128-bits of packed integer data from the second source operand (the third operand) into the 
destination operand (the first operand) at a 128-bit granular offset multiplied by imm8[0]. The remaining portions 
of the destination are copied from the corresponding fields of the first source operand (the second operand). The 
second source operand can be either an XMM register or a 128-bit memory location. The high 7 bits of the imme-
diate are ignored. VEX.L must be 1, otherwise attempt to execute this instruction with VEX.L=0 will cause #UD.

Operation

VINSERTI32x4 (EVEX encoded versions) 
(KL, VL) = (8, 256), (16, 512)
TEMP_DEST[VL-1:0] := SRC1[VL-1:0]
IF VL = 256

CASE (imm8[0]) OF
0: TMP_DEST[127:0] := SRC2[127:0]
1: TMP_DEST[255:128] := SRC2[127:0]

ESAC.
FI;
IF VL = 512

CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] := SRC2[127:0]
01: TMP_DEST[255:128] := SRC2[127:0]
10: TMP_DEST[383:256] := SRC2[127:0]
11: TMP_DEST[511:384] := SRC2[127:0]

ESAC.
FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VINSERTI64x2 (EVEX encoded versions) 
(KL, VL) = (4, 256), (8, 512)
TEMP_DEST[VL-1:0] := SRC1[VL-1:0]
IF VL = 256

CASE (imm8[0]) OF
0: TMP_DEST[127:0] := SRC2[127:0]
1: TMP_DEST[255:128] := SRC2[127:0]

ESAC.
FI;
IF VL = 512

CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] := SRC2[127:0]
01: TMP_DEST[255:128] := SRC2[127:0]
10: TMP_DEST[383:256] := SRC2[127:0]
11: TMP_DEST[511:384] := SRC2[127:0]

ESAC.
FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VINSERTI32x8 (EVEX.U1.512 encoded version)
TEMP_DEST[VL-1:0] := SRC1[VL-1:0]
CASE (imm8[0]) OF

0: TMP_DEST[255:0] := SRC2[255:0]
1: TMP_DEST[511:256] := SRC2[255:0]

ESAC.

FOR j := 0 TO 15
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VINSERTI64x4 (EVEX.512 encoded version) 
VL = 512
TEMP_DEST[VL-1:0] := SRC1[VL-1:0]
CASE (imm8[0]) OF

0: TMP_DEST[255:0] := SRC2[255:0]
1: TMP_DEST[511:256] := SRC2[255:0]

ESAC.

FOR j := 0 TO 7
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
VINSERTI128
TEMP[255:0] := SRC1[255:0]
CASE (imm8[0]) OF

0: TEMP[127:0] := SRC2[127:0]
1: TEMP[255:128] := SRC2[127:0]

ESAC
DEST := TEMP

Intel C/C++ Compiler Intrinsic Equivalent

VINSERTI32x4 _mm512i _inserti32x4( __m512i a, __m128i b, int imm);
VINSERTI32x4 _mm512i _mask_inserti32x4(__m512i s, __mmask16 k, __m512i a, __m128i b, int imm);
VINSERTI32x4 _mm512i _maskz_inserti32x4( __mmask16 k, __m512i a, __m128i b, int imm);
VINSERTI32x4 __m256i _mm256_inserti32x4( __m256i a, __m128i b, int imm);
VINSERTI32x4 __m256i _mm256_mask_inserti32x4(__m256i s, __mmask8 k, __m256i a, __m128i b, int imm);
VINSERTI32x4 __m256i _mm256_maskz_inserti32x4( __mmask8 k, __m256i a, __m128i b, int imm);
VINSERTI32x8 __m512i _mm512_inserti32x8( __m512i a, __m256i b, int imm);
VINSERTI32x8 __m512i _mm512_mask_inserti32x8(__m512i s, __mmask16 k, __m512i a, __m256i b, int imm);
VINSERTI32x8 __m512i _mm512_maskz_inserti32x8( __mmask16 k, __m512i a, __m256i b, int imm);
VINSERTI64x2 __m512i _mm512_inserti64x2( __m512i a, __m128i b, int imm);
VINSERTI64x2 __m512i _mm512_mask_inserti64x2(__m512i s, __mmask8 k, __m512i a, __m128i b, int imm);
VINSERTI64x2 __m512i _mm512_maskz_inserti64x2( __mmask8 k, __m512i a, __m128i b, int imm);
VINSERTI64x2 __m256i _mm256_inserti64x2( __m256i a, __m128i b, int imm);
VINSERTI64x2 __m256i _mm256_mask_inserti64x2(__m256i s, __mmask8 k, __m256i a, __m128i b, int imm);
VINSERTI64x2 __m256i _mm256_maskz_inserti64x2( __mmask8 k, __m256i a, __m128i b, int imm);
VINSERTI64x4 _mm512_inserti64x4( __m512i a, __m256i b, int imm);
VINSERTI64x4 _mm512_mask_inserti64x4(__m512i s, __mmask8 k, __m512i a, __m256i b, int imm);
VINSERTI64x4 _mm512_maskz_inserti64x4( __mmask m, __m512i a, __m256i b, int imm);
VINSERTI128 __m256i _mm256_insertf128_si256 (__m256i a, __m128i b, int offset);

SIMD Floating-Point Exceptions

None.
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Other Exceptions

VEX-encoded instruction, see Table 2-23, “Type 6 Class Exception Conditions.”
Additionally:
#UD If VEX.L = 0.
EVEX-encoded instruction, see Table 2-56, “Type E6NF Class Exception Conditions.”
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VMASKMOV—Conditional SIMD Packed Loads and Stores

Instruction Operand Encoding

Description

Conditionally moves packed data elements from the second source operand into the corresponding data element 
of the destination operand, depending on the mask bits associated with each data element. The mask bits are 
specified in the first source operand. 
The mask bit for each data element is the most significant bit of that element in the first source operand. If a mask 
is 1, the corresponding data element is copied from the second source operand to the destination operand. If the 
mask is 0, the corresponding data element is set to zero in the load form of these instructions, and unmodified in 
the store form. 
The second source operand is a memory address for the load form of these instruction. The destination operand is 
a memory address for the store form of these instructions. The other operands are both XMM registers (for 
VEX.128 version) or YMM registers (for VEX.256 version).
Faults occur only due to mask-bit required memory accesses that caused the faults. Faults will not occur due to 
referencing any memory location if the corresponding mask bit for that memory location is 0. For example, no 
faults will be detected if the mask bits are all zero.
Unlike previous MASKMOV instructions (MASKMOVQ and MASKMOVDQU), a nontemporal hint is not applied to 
these instructions.
Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with mask bits 
of all 1s.
VMASKMOV should not be used to access memory mapped I/O and un-cached memory as the access and the 
ordering of the individual loads or stores it does is implementation specific. 

Opcode/
Instruction

Op/ 
En

64/32-
bit Mode

CPUID 
Feature 
Flag

Description

VEX.128.66.0F38.W0 2C /r

VMASKMOVPS xmm1, xmm2, m128

RV
M

V/V AVX Conditionally load packed single precision values from 
m128 using mask in xmm2 and store in xmm1.

VEX.256.66.0F38.W0 2C /r

VMASKMOVPS ymm1, ymm2, m256

RV
M

V/V AVX Conditionally load packed single precision values from 
m256 using mask in ymm2 and store in ymm1.

VEX.128.66.0F38.W0 2D /r

VMASKMOVPD xmm1, xmm2, m128

RV
M

V/V AVX Conditionally load packed double precision values from 
m128 using mask in xmm2 and store in xmm1.

VEX.256.66.0F38.W0 2D /r

VMASKMOVPD ymm1, ymm2, m256

RV
M

V/V AVX Conditionally load packed double precision values from 
m256 using mask in ymm2 and store in ymm1.

VEX.128.66.0F38.W0 2E /r

VMASKMOVPS m128, xmm1, xmm2

MV
R

V/V AVX Conditionally store packed single precision values from 
xmm2 using mask in xmm1.

VEX.256.66.0F38.W0 2E /r

VMASKMOVPS m256, ymm1, ymm2

MV
R

V/V AVX Conditionally store packed single precision values from 
ymm2 using mask in ymm1.

VEX.128.66.0F38.W0 2F /r

VMASKMOVPD m128, xmm1, xmm2

MV
R

V/V AVX Conditionally store packed double precision values from 
xmm2 using mask in xmm1.

VEX.256.66.0F38.W0 2F /r

VMASKMOVPD m256, ymm1, ymm2

MV
R

V/V AVX Conditionally store packed double precision values from 
ymm2 using mask in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

MVR ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) N/A
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In cases where mask bits indicate data should not be loaded or stored paging A and D bits will be set in an imple-
mentation dependent way. However, A and D bits are always set for pages where data is actually loaded/stored.
Note: for load forms, the first source (the mask) is encoded in VEX.vvvv; the second source is encoded in rm_field, 
and the destination register is encoded in reg_field.
Note: for store forms, the first source (the mask) is encoded in VEX.vvvv; the second source register is encoded in 
reg_field, and the destination memory location is encoded in rm_field.

Operation

VMASKMOVPS -128-bit load 
DEST[31:0] := IF (SRC1[31]) Load_32(mem) ELSE 0 
DEST[63:32] := IF (SRC1[63]) Load_32(mem + 4) ELSE 0 
DEST[95:64] := IF (SRC1[95]) Load_32(mem + 8) ELSE 0 
DEST[127:97] := IF (SRC1[127]) Load_32(mem + 12) ELSE 0 
DEST[MAXVL-1:128] := 0

VMASKMOVPS - 256-bit load
DEST[31:0] := IF (SRC1[31]) Load_32(mem) ELSE 0 
DEST[63:32] := IF (SRC1[63]) Load_32(mem + 4) ELSE 0 
DEST[95:64] := IF (SRC1[95]) Load_32(mem + 8) ELSE 0 
DEST[127:96] := IF (SRC1[127]) Load_32(mem + 12) ELSE 0 
DEST[159:128] := IF (SRC1[159]) Load_32(mem + 16) ELSE 0 
DEST[191:160] := IF (SRC1[191]) Load_32(mem + 20) ELSE 0 
DEST[223:192] := IF (SRC1[223]) Load_32(mem + 24) ELSE 0 
DEST[255:224] := IF (SRC1[255]) Load_32(mem + 28) ELSE 0 

VMASKMOVPD - 128-bit load 
DEST[63:0] := IF (SRC1[63]) Load_64(mem) ELSE 0 
DEST[127:64] := IF (SRC1[127]) Load_64(mem + 16) ELSE 0
DEST[MAXVL-1:128] := 0

VMASKMOVPD - 256-bit load
DEST[63:0] := IF (SRC1[63]) Load_64(mem) ELSE 0 
DEST[127:64] := IF (SRC1[127]) Load_64(mem + 8) ELSE 0 
DEST[195:128] := IF (SRC1[191]) Load_64(mem + 16) ELSE 0 
DEST[255:196] := IF (SRC1[255]) Load_64(mem + 24) ELSE 0 

VMASKMOVPS - 128-bit store
IF (SRC1[31]) DEST[31:0] := SRC2[31:0] 
IF (SRC1[63]) DEST[63:32] := SRC2[63:32] 
IF (SRC1[95]) DEST[95:64] := SRC2[95:64] 
IF (SRC1[127]) DEST[127:96] := SRC2[127:96] 

VMASKMOVPS - 256-bit store
IF (SRC1[31]) DEST[31:0] := SRC2[31:0] 
IF (SRC1[63]) DEST[63:32] := SRC2[63:32] 
IF (SRC1[95]) DEST[95:64] := SRC2[95:64] 
IF (SRC1[127]) DEST[127:96] := SRC2[127:96] 
IF (SRC1[159]) DEST[159:128] :=SRC2[159:128] 
IF (SRC1[191]) DEST[191:160] := SRC2[191:160] 
IF (SRC1[223]) DEST[223:192] := SRC2[223:192] 
IF (SRC1[255]) DEST[255:224] := SRC2[255:224] 
VMASKMOV—Conditional SIMD Packed Loads and Stores Vol. 2C 5-425



VMASKMOVPD - 128-bit store
IF (SRC1[63]) DEST[63:0] := SRC2[63:0] 
IF (SRC1[127]) DEST[127:64] := SRC2[127:64] 

VMASKMOVPD - 256-bit store
IF (SRC1[63]) DEST[63:0] := SRC2[63:0] 
IF (SRC1[127]) DEST[127:64] := SRC2[127:64] 
IF (SRC1[191]) DEST[191:128] := SRC2[191:128] 
IF (SRC1[255]) DEST[255:192] := SRC2[255:192] 

Intel C/C++ Compiler Intrinsic Equivalent

__m256  _mm256_maskload_ps(float const *a, __m256i mask)

void    _mm256_maskstore_ps(float *a, __m256i mask, __m256 b)

__m256d _mm256_maskload_pd(double *a, __m256i mask);

void    _mm256_maskstore_pd(double *a, __m256i mask, __m256d b);

__m128 _mm_maskload_ps(float const *a, __m128i mask)

void    _mm_maskstore_ps(float *a, __m128i mask, __m128 b)

__m128d _mm_maskload_pd(double const *a, __m128i mask);

void    _mm_maskstore_pd(double *a, __m128i mask, __m128d b);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-23, “Type 6 Class Exception Conditions” (No AC# reported for any mask bit combinations).
Additionally:
#UD If VEX.W = 1.
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VMAXPH—Return Maximum of Packed FP16 Values

Instruction Operand Encoding

Description

This instruction performs a SIMD compare of the packed FP16 values in the first source operand and the second 
source operand and returns the maximum value for each pair of values to the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is 
returned. If a value in the second operand is an SNaN, then SNaN is forwarded unchanged to the destination (that 
is, a QNaN version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN 
or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source 
operand (from either the first or second operand) be returned, the action of VMAXPH can be emulated using a 
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcast from a 16-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally 
updated with writemask k1.

Operation

def MAX(SRC1, SRC2):
IF (SRC1 = 0.0) and (SRC2 = 0.0):

DEST := SRC2
ELSE IF (SRC1 = NaN):

DEST := SRC2
ELSE IF (SRC2 = NaN):

DEST := SRC2
ELSE IF (SRC1 > SRC2):

DEST := SRC1
ELSE:

DEST := SRC2 

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.MAP5.W0 5F /r
VMAXPH xmm1{k1}{z}, xmm2, 
xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the maximum packed FP16 values 
between xmm2 and xmm3/m128/m16bcst and 
store the result in xmm1 subject to writemask k1.

EVEX.256.NP.MAP5.W0 5F /r
VMAXPH ymm1{k1}{z}, ymm2, 
ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Return the maximum packed FP16 values 
between ymm2 and ymm3/m256/m16bcst and 
store the result in ymm1 subject to writemask k1.

EVEX.512.NP.MAP5.W0 5F /r
VMAXPH zmm1{k1}{z}, zmm2, 
zmm3/m512/m16bcst {sae}

A V/V AVX512-FP16
OR AVX10.11

Return the maximum packed FP16 values 
between zmm2 and zmm3/m512/m16bcst and 
store the result in zmm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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VMAXPH dest, src1, src2
VL = 128, 256 or 512
KL := VL/16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF EVEX.b = 1:
tsrc2 := SRC2.fp16[0]

ELSE:
tsrc2 := SRC2.fp16[j]

DEST.fp16[j] := MAX(SRC1.fp16[j], tsrc2)
ELSE IF *zeroing*:

DEST.fp16[j] := 0
// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VMAXPH __m128h _mm_mask_max_ph (__m128h src, __mmask8 k, __m128h a, __m128h b);
VMAXPH __m128h _mm_maskz_max_ph (__mmask8 k, __m128h a, __m128h b);
VMAXPH __m128h _mm_max_ph (__m128h a, __m128h b);
VMAXPH __m256h _mm256_mask_max_ph (__m256h src, __mmask16 k, __m256h a, __m256h b);
VMAXPH __m256h _mm256_maskz_max_ph (__mmask16 k, __m256h a, __m256h b);
VMAXPH __m256h _mm256_max_ph (__m256h a, __m256h b);
VMAXPH __m512h _mm512_mask_max_ph (__m512h src, __mmask32 k, __m512h a, __m512h b);
VMAXPH __m512h _mm512_maskz_max_ph (__mmask32 k, __m512h a, __m512h b);
VMAXPH __m512h _mm512_max_ph (__m512h a, __m512h b);
VMAXPH __m512h _mm512_mask_max_round_ph (__m512h src, __mmask32 k, __m512h a, __m512h b, int sae);
VMAXPH __m512h _mm512_maskz_max_round_ph (__mmask32 k, __m512h a, __m512h b, int sae);
VMAXPH __m512h _mm512_max_round_ph (__m512h a, __m512h b, int sae);

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VMAXSH—Return Maximum of Scalar FP16 Values

Instruction Operand Encoding

Description

This instruction performs a compare of the low packed FP16 values in the first source operand and the second 
source operand and returns the maximum value for the pair of values to the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is 
returned. If a value in the second operand is an SNaN, then SNaN is forwarded unchanged to the destination (that 
is, a QNaN version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN 
or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source 
operand (from either the first or second operand) be returned, the action of VMAXSH can be emulated using a 
sequence of instructions, such as, a comparison followed by AND, ANDN, and OR.
Bits 127:16 of the destination operand are copied from the corresponding bits of the first source operand. Bits 
MAXVL-1:128 of the destination operand are zeroed. The low FP16 element of the destination is updated according 
to the writemask.

Operation

def MAX(SRC1, SRC2):
IF (SRC1 = 0.0) and (SRC2 = 0.0):

DEST := SRC2
ELSE IF (SRC1 = NaN):

DEST := SRC2
ELSE IF (SRC2 = NaN):

DEST := SRC2
ELSE IF (SRC1 > SRC2):

DEST := SRC1
ELSE:

DEST := SRC2

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F3.MAP5.W0 5F /r
VMAXSH xmm1{k1}{z}, xmm2, 
xmm3/m16 {sae}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the maximum low FP16 value between 
xmm3/m16 and xmm2 and store the result in 
xmm1 subject to writemask k1. Bits 127:16 of 
xmm2 are copied to xmm1[127:16].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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VMAXSH dest, src1, src2
IF k1[0] OR *no writemask*:

DEST.fp16[0] := MAX(SRC1.fp16[0], SRC2.fp16[0])
ELSE IF *zeroing*:

DEST.fp16[0] := 0
// else dest.fp16[j] remains unchanged

DEST[127:16] := SRC1[127:16]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VMAXSH __m128h _mm_mask_max_round_sh (__m128h src, __mmask8 k, __m128h a, __m128h b, int sae);
VMAXSH __m128h _mm_maskz_max_round_sh (__mmask8 k, __m128h a, __m128h b, int sae);
VMAXSH __m128h _mm_max_round_sh (__m128h a, __m128h b, int sae);
VMAXSH __m128h _mm_mask_max_sh (__m128h src, __mmask8 k, __m128h a, __m128h b);
VMAXSH __m128h _mm_maskz_max_sh (__mmask8 k, __m128h a, __m128h b);
VMAXSH __m128h _mm_max_sh (__m128h a, __m128h b);

SIMD Floating-Point Exceptions

Invalid, Denormal

Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VMINPH—Return Minimum of Packed FP16 Values

Instruction Operand Encoding

Description

This instruction performs a SIMD compare of the packed FP16 values in the first source operand and the second 
source operand and returns the minimum value for each pair of values to the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is 
returned. If a value in the second operand is an SNaN, then SNaN is forwarded unchanged to the destination (that 
is, a QNaN version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN 
or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source 
operand (from either the first or second operand) be returned, the action of VMINPH can be emulated using a 
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcast from a 16-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally 
updated with writemask k1.

Operation

def MIN(SRC1, SRC2):
IF (SRC1 = 0.0) and (SRC2 = 0.0):

DEST := SRC2
ELSE IF (SRC1 = NaN):

DEST := SRC2
ELSE IF (SRC2 = NaN):

DEST := SRC2
ELSE IF (SRC1 < SRC2):

DEST := SRC1
ELSE:

DEST := SRC2 

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.MAP5.W0 5D /r
VMINPH xmm1{k1}{z}, xmm2, 
xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the minimum packed FP16 values between 
xmm2 and xmm3/m128/m16bcst and store the 
result in xmm1 subject to writemask k1.

EVEX.256.NP.MAP5.W0 5D /r
VMINPH ymm1{k1}{z}, ymm2, 
ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Return the minimum packed FP16 values between 
ymm2 and ymm3/m256/m16bcst and store the 
result in ymm1 subject to writemask k1.

EVEX.512.NP.MAP5.W0 5D /r
VMINPH zmm1{k1}{z}, zmm2, 
zmm3/m512/m16bcst {sae}

A V/V AVX512-FP16
OR AVX10.11

Return the minimum packed FP16 values between 
zmm2 and zmm3/m512/m16bcst and store the 
result in zmm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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VMINPH dest, src1, src2
VL = 128, 256 or 512
KL := VL/16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF EVEX.b = 1:
tsrc2 := SRC2.fp16[0]

ELSE:
tsrc2 := SRC2.fp16[j]

DEST.fp16[j] := MIN(SRC1.fp16[j], tsrc2)
ELSE IF *zeroing*:

DEST.fp16[j] := 0
// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VMINPH __m128h _mm_mask_min_ph (__m128h src, __mmask8 k, __m128h a, __m128h b);
VMINPH __m128h _mm_maskz_min_ph (__mmask8 k, __m128h a, __m128h b);
VMINPH __m128h _mm_min_ph (__m128h a, __m128h b);
VMINPH __m256h _mm256_mask_min_ph (__m256h src, __mmask16 k, __m256h a, __m256h b);
VMINPH __m256h _mm256_maskz_min_ph (__mmask16 k, __m256h a, __m256h b);
VMINPH __m256h _mm256_min_ph (__m256h a, __m256h b);
VMINPH __m512h _mm512_mask_min_ph (__m512h src, __mmask32 k, __m512h a, __m512h b);
VMINPH __m512h _mm512_maskz_min_ph (__mmask32 k, __m512h a, __m512h b);
VMINPH __m512h _mm512_min_ph (__m512h a, __m512h b);
VMINPH __m512h _mm512_mask_min_round_ph (__m512h src, __mmask32 k, __m512h a, __m512h b, int sae);
VMINPH __m512h _mm512_maskz_min_round_ph (__mmask32 k, __m512h a, __m512h b, int sae);
VMINPH __m512h _mm512_min_round_ph (__m512h a, __m512h b, int sae);

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VMINSH—Return Minimum Scalar FP16 Value

Instruction Operand Encoding

Description

This instruction performs a compare of the low packed FP16 values in the first source operand and the second 
source operand and returns the minimum value for the pair of values to the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is 
returned. If a value in the second operand is an SNaN, then SNaN is forwarded unchanged to the destination (that 
is, a QNaN version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN 
or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source 
operand (from either the first or second operand) be returned, the action of VMINSH can be emulated using a 
sequence of instructions, such as, a comparison followed by AND, ANDN, and OR.
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second 
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector 
broadcast from a 16-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally 
updated with writemask k1.
Bits 127:16 of the destination operand are copied from the corresponding bits of the first source operand. Bits 
MAXVL-1:128 of the destination operand are zeroed. The low FP16 element of the destination is updated according 
to the writemask.

Operation

def MIN(SRC1, SRC2):
IF (SRC1 = 0.0) and (SRC2 = 0.0):

DEST := SRC2
ELSE IF (SRC1 = NaN):

DEST := SRC2
ELSE IF (SRC2 = NaN):

DEST := SRC2
ELSE IF (SRC1 < SRC2):

DEST := SRC1
ELSE:

DEST := SRC2

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F3.MAP5.W0 5D /r
VMINSH xmm1{k1}{z}, xmm2, 
xmm3/m16 {sae}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the minimum low FP16 value between 
xmm3/m16 and xmm2. Stores the result in 
xmm1 subject to writemask k1. Bits 127:16 of 
xmm2 are copied to xmm1[127:16].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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VMINSH dest, src1, src2 
IF k1[0] OR *no writemask*:

DEST.fp16[0] := MIN(SRC1.fp16[0], SRC2.fp16[0])
ELSE IF *zeroing*:

DEST.fp16[0] := 0
// else dest.fp16[j] remains unchanged

DEST[127:16] := SRC1[127:16]
DEST[MAXVL-1:128] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VMINSH __m128h _mm_mask_min_round_sh (__m128h src, __mmask8 k, __m128h a, __m128h b, int sae);
VMINSH __m128h _mm_maskz_min_round_sh (__mmask8 k, __m128h a, __m128h b, int sae);
VMINSH __m128h _mm_min_round_sh (__m128h a, __m128h b, int sae);
VMINSH __m128h _mm_mask_min_sh (__m128h src, __mmask8 k, __m128h a, __m128h b);
VMINSH __m128h _mm_maskz_min_sh (__mmask8 k, __m128h a, __m128h b);
VMINSH __m128h _mm_min_sh (__m128h a, __m128h b);

SIMD Floating-Point Exceptions

Invalid, Denormal

Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VMOVSH—Move Scalar FP16 Value

Instruction Operand Encoding

Description

This instruction moves a FP16 value to a register or memory location.
The two register-only forms are aliases and differ only in where their operands are encoded; this is a side effect of 
the encodings selected.

Operation

VMOVSH dest, src (two operand load)
IF k1[0] or no writemask:

DEST.fp16[0] := SRC.fp16[0]
ELSE IF *zeroing*:

DEST.fp16[0] := 0
// ELSE DEST.fp16[0] remains unchanged

DEST[MAXVL:16] := 0

VMOVSH dest, src (two operand store)
IF k1[0] or no writemask:

DEST.fp16[0] := SRC.fp16[0]
// ELSE DEST.fp16[0] remains unchanged 

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F3.MAP5.W0 10 /r
VMOVSH xmm1{k1}{z}, m16

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Move FP16 value from m16 to xmm1 subject to 
writemask k1.

EVEX.LLIG.F3.MAP5.W0 11 /r
VMOVSH m16{k1}, xmm1

B V/V AVX512-FP16 
OR AVX10.11

Move low FP16 value from xmm1 to m16 subject 
to writemask k1.

EVEX.LLIG.F3.MAP5.W0 10 /r
VMOVSH xmm1{k1}{z}, xmm2, xmm3

C V/V AVX512-FP16 
OR AVX10.11

Move low FP16 values from xmm3 to xmm1 
subject to writemask k1. Bits 127:16 of xmm2 
are copied to xmm1[127:16].

EVEX.LLIG.F3.MAP5.W0 11 /r
VMOVSH xmm1{k1}{z}, xmm2, xmm3

D V/V AVX512-FP16 
OR AVX10.11

Move low FP16 values from xmm3 to xmm1 
subject to writemask k1. Bits 127:16 of xmm2 
are copied to xmm1[127:16].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Scalar ModRM:r/m (w) ModRM:reg (r) N/A N/A

C N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

D N/A ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) N/A
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VMOVSH dest, src1, src2 (three operand copy)
IF k1[0] or no writemask:

DEST.fp16[0] := SRC2.fp16[0]
ELSE IF *zeroing*:

DEST.fp16[0] := 0
// ELSE DEST.fp16[0] remains unchanged

DEST[127:16] := SRC1[127:16]
DEST[MAXVL:128] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VMOVSH __m128h _mm_load_sh (void const* mem_addr);
VMOVSH __m128h _mm_mask_load_sh (__m128h src, __mmask8 k, void const* mem_addr);
VMOVSH __m128h _mm_maskz_load_sh (__mmask8 k, void const* mem_addr);
VMOVSH __m128h _mm_mask_move_sh (__m128h src, __mmask8 k, __m128h a, __m128h b);
VMOVSH __m128h _mm_maskz_move_sh (__mmask8 k, __m128h a, __m128h b);
VMOVSH __m128h _mm_move_sh (__m128h a, __m128h b);
VMOVSH void _mm_mask_store_sh (void * mem_addr, __mmask8 k, __m128h a);
VMOVSH void _mm_store_sh (void * mem_addr, __m128h a);

SIMD Floating-Point Exceptions

None

Other Exceptions

EVEX-encoded instruction, see Table 2-53, “Type E5 Class Exception Conditions.”
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VMOVW—Move Word Vol. 2C 5-437

VMOVW—Move Word 

Instruction Operand Encoding

Description

This instruction either (a) copies one word element from an XMM register to a general-purpose register or memory 
location or (b) copies one word element from a general-purpose register or memory location to an XMM register. 
When writing a general-purpose register, the lower 16-bits of the register will contain the word value. The upper bits 
of the general-purpose register are written with zeros.

Operation

VMOVW dest, src (two operand load)
DEST.word[0] := SRC.word[0]
DEST[MAXVL:16] := 0 

VMOVW dest, src (two operand store)
DEST.word[0] := SRC.word[0]
// upper bits of GPR DEST are zeroed 

Intel C/C++ Compiler Intrinsic Equivalent

VMOVW short _mm_cvtsi128_si16 (__m128i a);
VMOVW __m128i _mm_cvtsi16_si128 (short a);

SIMD Floating-Point Exceptions

None

Other Exceptions

EVEX-encoded instructions, see Table 2-59, “Type E9NF Class Exception Conditions.”

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.MAP5.WIG 6E /r
VMOVW xmm1, reg/m16

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Copy word from reg/m16 to xmm1.

EVEX.128.66.MAP5.WIG 7E /r
VMOVW reg/m16, xmm1

B V/V AVX512-FP16 
OR AVX10.11

Copy word from xmm1 to reg/m16.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Scalar ModRM:r/m (w) ModRM:reg (r) N/A N/A



VMULPH—Multiply Packed FP16 Values

Instruction Operand Encoding

Description

This instruction multiplies packed FP16 values from source operands and stores the packed FP16 result in the desti-
nation operand. The destination elements are updated according to the writemask.

Operation

VMULPH (EVEX encoded versions) when src2 operand is a register
VL = 128, 256 or 512
KL := VL/16

IF (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

DEST.fp16[j] := SRC1.fp16[j] * SRC2.fp16[j]
ELSE IF *zeroing*:

DEST.fp16[j] := 0
// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.MAP5.W0 59 /r
VMULPH xmm1{k1}{z}, xmm2, 
xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply packed FP16 values from 
xmm3/m128/m16bcst to xmm2 and store the 
result in xmm1 subject to writemask k1.

EVEX.256.NP.MAP5.W0 59 /r
VMULPH ymm1{k1}{z}, ymm2, 
ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Multiply packed FP16 values from 
ymm3/m256/m16bcst to ymm2 and store the 
result in ymm1 subject to writemask k1.

EVEX.512.NP.MAP5.W0 59 /r
VMULPH zmm1{k1}{z}, zmm2, 
zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Multiply packed FP16 values in 
zmm3/m512/m16bcst with zmm2 and store the 
result in zmm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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VMULPH (EVEX encoded versions) when src2 operand is a memory source
VL = 128, 256 or 512
KL := VL/16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF EVEX.b = 1:
DEST.fp16[j] := SRC1.fp16[j] * SRC2.fp16[0]

ELSE:
DEST.fp16[j] := SRC1.fp16[j] * SRC2.fp16[j]

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VMULPH __m128h _mm_mask_mul_ph (__m128h src, __mmask8 k, __m128h a, __m128h b);
VMULPH __m128h _mm_maskz_mul_ph (__mmask8 k, __m128h a, __m128h b);
VMULPH __m128h _mm_mul_ph (__m128h a, __m128h b);
VMULPH __m256h _mm256_mask_mul_ph (__m256h src, __mmask16 k, __m256h a, __m256h b);
VMULPH __m256h _mm256_maskz_mul_ph (__mmask16 k, __m256h a, __m256h b);
VMULPH __m256h _mm256_mul_ph (__m256h a, __m256h b);
VMULPH __m512h _mm512_mask_mul_ph (__m512h src, __mmask32 k, __m512h a, __m512h b);
VMULPH __m512h _mm512_maskz_mul_ph (__mmask32 k, __m512h a, __m512h b);
VMULPH __m512h _mm512_mul_ph (__m512h a, __m512h b);
VMULPH __m512h _mm512_mask_mul_round_ph (__m512h src, __mmask32 k, __m512h a, __m512h b, int rounding);
VMULPH __m512h _mm512_maskz_mul_round_ph (__mmask32 k, __m512h a, __m512h b, int rounding);
VMULPH __m512h _mm512_mul_round_ph (__m512h a, __m512h b, int rounding);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal

Other Exceptions

EVEX-encoded instructions, see Table 2-48, “Type E2 Class Exception Conditions.”
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VMULSH—Multiply Scalar FP16 Values

Instruction Operand Encoding

Description

This instruction multiplies the low FP16 value from the source operands and stores the FP16 result in the destina-
tion operand. Bits 127:16 of the destination operand are copied from the corresponding bits of the first source 
operand. Bits MAXVL-1:128 of the destination operand are zeroed. The low FP16 element of the destination is 
updated according to the writemask.

Operation

VMULSH (EVEX encoded versions)
IF EVEX.b = 1 and SRC2 is a register:

SET_RM(EVEX.RC)
ELSE

SET_RM(MXCSR.RC)

IF k1[0] OR *no writemask*:
DEST.fp16[0] := SRC1.fp16[0] * SRC2.fp16[0]

ELSE IF *zeroing*:
DEST.fp16[0] := 0

// else dest.fp16[0] remains unchanged

DEST[127:16] := SRC1[127:16]
DEST[MAXVL-1:VL] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VMULSH __m128h _mm_mask_mul_round_sh (__m128h src, __mmask8 k, __m128h a, __m128h b, int rounding);
VMULSH __m128h _mm_maskz_mul_round_sh (__mmask8 k, __m128h a, __m128h b, int rounding);
VMULSH __m128h _mm_mul_round_sh (__m128h a, __m128h b, int rounding);
VMULSH __m128h _mm_mask_mul_sh (__m128h src, __mmask8 k, __m128h a, __m128h b);
VMULSH __m128h _mm_maskz_mul_sh (__mmask8 k, __m128h a, __m128h b);
VMULSH __m128h _mm_mul_sh (__m128h a, __m128h b);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F3.MAP5.W0 59 /r
VMULSH xmm1{k1}{z}, xmm2, 
xmm3/m16 {er}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply the low FP16 value in xmm3/m16 by low 
FP16 value in xmm2, and store the result in 
xmm1 subject to writemask k1. Bits 127:16 of 
xmm2 are copied to xmm1[127:16].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VP2INTERSECTD/VP2INTERSECTQ—Compute Intersection Between DWORDS/QUADWORDS to a 
Pair of Mask Registers 

Instruction Operand Encoding

Description

This instruction writes an even/odd pair of mask registers. The mask register destination indicated in the 
MODRM.REG field is used to form the basis of the register pair. The low bit of that field is masked off (set to zero) 
to create the first register of the pair.
EVEX.aaa and EVEX.z must be zero.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature Flag Description

EVEX.NDS.128.F2.0F38.W0 68 /r 
VP2INTERSECTD k1+1, xmm2, 
xmm3/m128/m32bcst

A V/V AVX512VL
AVX512_VP2INTERSECT

Store, in an even/odd pair of mask registers, 
the indicators of the locations of value 
matches between dwords in 
xmm3/m128/m32bcst and xmm2.

EVEX.NDS.256.F2.0F38.W0 68 /r
VP2INTERSECTD k1+1, ymm2, 
ymm3/m256/m32bcst

A V/V AVX512VL
AVX512_VP2INTERSECT

Store, in an even/odd pair of mask registers, 
the indicators of the locations of value 
matches between dwords in 
ymm3/m256/m32bcst and ymm2.

EVEX.NDS.512.F2.0F38.W0 68 /r
VP2INTERSECTD k1+1, zmm2, 
zmm3/m512/m32bcst

A V/V AVX512F
AVX512_VP2INTERSECT

Store, in an even/odd pair of mask registers, 
the indicators of the locations of value 
matches between dwords in 
zmm3/m512/m32bcst and zmm2.

EVEX.NDS.128.F2.0F38.W1 68 /r
VP2INTERSECTQ k1+1, xmm2, 
xmm3/m128/m64bcst

A V/V AVX512VL
AVX512_VP2INTERSECT

Store, in an even/odd pair of mask registers, 
the indicators of the locations of value 
matches between quadwords in 
xmm3/m128/m64bcst and xmm2.

EVEX.NDS.256.F2.0F38.W1 68 /r
VP2INTERSECTQ k1+1, ymm2, 
ymm3/m256/m64bcst

A V/V AVX512VL
AVX512_VP2INTERSECT

Store, in an even/odd pair of mask registers, 
the indicators of the locations of value 
matches between quadwords in 
ymm3/m256/m64bcst and ymm2.

EVEX.NDS.512.F2.0F38.W1 68 /r
VP2INTERSECTQ k1+1, zmm2, 
zmm3/m512/m64bcst

A V/V AVX512F
AVX512_VP2INTERSECT

Store, in an even/odd pair of mask registers, 
the indicators of the locations of value 
matches between quadwords in 
zmm3/m512/m64bcst and zmm2.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VP2INTERSECTD destmask, src1, src2
(KL, VL) = (4, 128), (8, 256), (16, 512)

// dest_mask_reg_id is the register id specified in the instruction for destmask
dest_base := dest_mask_reg_id & ~1

// maskregs[ ] is an array representing the mask registers
maskregs[dest_base+0][MAX_KL-1:0] := 0
maskregs[dest_base+1][MAX_KL-1:0] := 0

FOR i := 0 to KL-1:
FOR j := 0 to KL-1:

match := (src1.dword[i] == src2.dword[j])
maskregs[dest_base+0].bit[i] |= match
maskregs[dest_base+1].bit[j] |= match

VP2INTERSECTQ destmask, src1, src2
(KL, VL) = (2, 128), (4, 256), (8, 512)

// dest_mask_reg_id is the register id specified in the instruction for destmask
dest_base := dest_mask_reg_id & ~1

// maskregs[ ] is an array representing the mask registers
maskregs[dest_base+0][MAX_KL-1:0] := 0
maskregs[dest_base+1][MAX_KL-1:0] := 0

FOR i = 0 to KL-1:
FOR j = 0 to KL-1:

match := (src1.qword[i] == src2.qword[j])
maskregs[dest_base+0].bit[i] |=  match
maskregs[dest_base+1].bit[j] |=  match

Intel C/C++ Compiler Intrinsic Equivalent

VP2INTERSECTD void _mm_2intersect_epi32(__m128i, __m128i, __mmask8 *, __mmask8 *);
VP2INTERSECTD void _mm256_2intersect_epi32(__m256i, __m256i, __mmask8 *, __mmask8 *);
VP2INTERSECTD void _mm512_2intersect_epi32(__m512i, __m512i, __mmask16 *, __mmask16 *);
VP2INTERSECTQ void _mm_2intersect_epi64(__m128i, __m128i, __mmask8 *, __mmask8 *);
VP2INTERSECTQ void _mm256_2intersect_epi64(__m256i, __m256i, __mmask8 *, __mmask8 *);
VP2INTERSECTQ void _mm512_2intersect_epi64(__m512i, __m512i, __mmask8 *, __mmask8 *);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-52, “Type E4NF Class Exception Conditions.”
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VPBLENDD—Blend Packed Dwords

Instruction Operand Encoding

Description

Dword elements from the source operand (second operand) are conditionally written to the destination operand 
(first operand) depending on bits in the immediate operand (third operand). The immediate bits (bits 7:0) form a 
mask that determines whether the corresponding dword in the destination is copied from the source. If a bit in the 
mask, corresponding to a dword, is “1", then the dword is copied, else the dword is unchanged.
VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source and destination operands are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM register 
are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. 

Operation

VPBLENDD (VEX.256 encoded version)
IF (imm8[0] == 1) THEN DEST[31:0] := SRC2[31:0]
ELSE DEST[31:0] := SRC1[31:0]
IF (imm8[1] == 1) THEN DEST[63:32] := SRC2[63:32]
ELSE DEST[63:32] := SRC1[63:32]
IF (imm8[2] == 1) THEN DEST[95:64] := SRC2[95:64]
ELSE DEST[95:64] := SRC1[95:64]
IF (imm8[3] == 1) THEN DEST[127:96] := SRC2[127:96]
ELSE DEST[127:96] := SRC1[127:96]
IF (imm8[4] == 1) THEN DEST[159:128] := SRC2[159:128]
ELSE DEST[159:128] := SRC1[159:128]
IF (imm8[5] == 1) THEN DEST[191:160] := SRC2[191:160]
ELSE DEST[191:160] := SRC1[191:160]
IF (imm8[6] == 1) THEN DEST[223:192] := SRC2[223:192]
ELSE DEST[223:192] := SRC1[223:192]
IF (imm8[7] == 1) THEN DEST[255:224] := SRC2[255:224]
ELSE DEST[255:224] := SRC1[255:224]

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.128.66.0F3A.W0 02 /r ib
VPBLENDD xmm1, xmm2, xmm3/m128, imm8

RVMI V/V AVX2 Select dwords from xmm2 and xmm3/m128 from 
mask specified in imm8 and store the values into 
xmm1.

VEX.256.66.0F3A.W0 02 /r ib
VPBLENDD ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX2 Select dwords from ymm2 and ymm3/m256 from 
mask specified in imm8 and store the values into 
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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VPBLENDD (VEX.128 encoded version)
IF (imm8[0] == 1) THEN DEST[31:0] := SRC2[31:0]
ELSE DEST[31:0] := SRC1[31:0]
IF (imm8[1] == 1) THEN DEST[63:32] := SRC2[63:32]
ELSE DEST[63:32] := SRC1[63:32]
IF (imm8[2] == 1) THEN DEST[95:64] := SRC2[95:64]
ELSE DEST[95:64] := SRC1[95:64]
IF (imm8[3] == 1) THEN DEST[127:96] := SRC2[127:96]
ELSE DEST[127:96] := SRC1[127:96]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPBLENDD: __m128i _mm_blend_epi32 (__m128i v1, __m128i v2, const int mask)

VPBLENDD: __m256i _mm256_blend_epi32 (__m256i v1, __m256i v2, const int mask)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions.”
Additionally:
#UD If VEX.W = 1.
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VPBLENDMB/VPBLENDMW—Blend Byte/Word Vectors Using an Opmask Control

Instruction Operand Encoding

Description

Performs an element-by-element blending of byte/word elements between the first source operand byte vector 
register and the second source operand byte vector from memory or register, using the instruction mask as 
selector. The result is written into the destination byte vector register.
The destination and first source operands are ZMM/YMM/XMM registers. The second source operand can be a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit memory location.
The mask is not used as a writemask for this instruction. Instead, the mask is used as an element selector: every 
element of the destination is conditionally selected between first source or second source using the value of the 
related mask bit (0 for first source, 1 for second source).

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 66 /r
VPBLENDMB xmm1 {k1}{z}, 
xmm2, xmm3/m128

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Blend byte integer vector xmm2 and byte vector 
xmm3/m128 and store the result in xmm1, under 
control mask.

EVEX.256.66.0F38.W0 66 /r 
VPBLENDMB ymm1 {k1}{z}, 
ymm2, ymm3/m256

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Blend byte integer vector ymm2 and byte vector 
ymm3/m256 and store the result in ymm1, under 
control mask.

EVEX.512.66.0F38.W0 66 /r
VPBLENDMB zmm1 {k1}{z}, 
zmm2, zmm3/m512

A V/V AVX512BW 
OR AVX10.11

Blend byte integer vector zmm2 and byte vector 
zmm3/m512 and store the result in zmm1, under 
control mask.

EVEX.128.66.0F38.W1 66 /r
VPBLENDMW xmm1 {k1}{z}, 
xmm2, xmm3/m128

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Blend word integer vector xmm2 and word vector 
xmm3/m128 and store the result in xmm1, under 
control mask.

EVEX.256.66.0F38.W1 66 /r
VPBLENDMW ymm1 {k1}{z}, 
ymm2, ymm3/m256

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Blend word integer vector ymm2 and word vector 
ymm3/m256 and store the result in ymm1, under 
control mask.

EVEX.512.66.0F38.W1 66 /r
VPBLENDMW zmm1 {k1}{z}, 
zmm2, zmm3/m512

A V/V AVX512BW 
OR AVX10.11

Blend word integer vector zmm2 and word vector 
zmm3/m512 and store the result in zmm1, under 
control mask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VPBLENDMB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)

FOR j := 0 TO KL-1
i := j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SRC2[i+7:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN DEST[i+7:i] := SRC1[i+7:i]
ELSE ; zeroing-masking

DEST[i+7:i] := 0
FI;

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0;

VPBLENDMW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SRC2[i+15:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN DEST[i+15:i] := SRC1[i+15:i]
ELSE ; zeroing-masking

DEST[i+15:i] := 0
FI;

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPBLENDMB __m512i _mm512_mask_blend_epi8(__mmask64 m, __m512i a, __m512i b);
VPBLENDMB __m256i _mm256_mask_blend_epi8(__mmask32 m, __m256i a, __m256i b);
VPBLENDMB __m128i _mm_mask_blend_epi8(__mmask16 m, __m128i a, __m128i b);
VPBLENDMW __m512i _mm512_mask_blend_epi16(__mmask32 m, __m512i a, __m512i b);
VPBLENDMW __m256i _mm256_mask_blend_epi16(__mmask16 m, __m256i a, __m256i b);
VPBLENDMW __m128i _mm_mask_blend_epi16(__mmask8 m, __m128i a, __m128i b);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Table 2-51, “Type E4 Class Exception Conditions.”
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VPBLENDMD/VPBLENDMQ—Blend Int32/Int64 Vectors Using an OpMask Control

Instruction Operand Encoding

Description

Performs an element-by-element blending of dword/qword elements between the first source operand (the second 
operand) and the elements of the second source operand (the third operand) using an opmask register as select 
control. The blended result is written into the destination. 
The destination and first source operands are ZMM registers. The second source operand can be a ZMM register, a 
512-bit memory location or a 512-bit vector broadcasted from a 32-bit memory location.
The opmask register is not used as a writemask for this instruction. Instead, the mask is used as an element 
selector: every element of the destination is conditionally selected between first source or second source using the 
value of the related mask bit (0 for the first source operand, 1 for the second source operand).
If EVEX.z is set, the elements with corresponding mask bit value of 0 in the destination operand are zeroed.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 64 /r 
VPBLENDMD xmm1 {k1}{z}, 
xmm2, xmm3/m128/m32bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Blend doubleword integer vector xmm2 and 
doubleword vector xmm3/m128/m32bcst and 
store the result in xmm1, under control mask.

EVEX.256.66.0F38.W0 64 /r 
VPBLENDMD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Blend doubleword integer vector ymm2 and 
doubleword vector ymm3/m256/m32bcst and 
store the result in ymm1, under control mask.

EVEX.512.66.0F38.W0 64 /r 
VPBLENDMD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

A V/V AVX512F 
OR AVX10.11

Blend doubleword integer vector zmm2 and 
doubleword vector zmm3/m512/m32bcst and 
store the result in zmm1, under control mask.

EVEX.128.66.0F38.W1 64 /r
VPBLENDMQ xmm1 {k1}{z}, 
xmm2, xmm3/m128/m64bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Blend quadword integer vector xmm2 and 
quadword vector xmm3/m128/m64bcst and store 
the result in xmm1, under control mask.

EVEX.256.66.0F38.W1 64 /r
VPBLENDMQ ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Blend quadword integer vector ymm2 and 
quadword vector ymm3/m256/m64bcst and store 
the result in ymm1, under control mask.

EVEX.512.66.0F38.W1 64 /r
VPBLENDMQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

A V/V AVX512F 
OR AVX10.11

Blend quadword integer vector zmm2 and 
quadword vector zmm3/m512/m64bcst and store 
the result in zmm1, under control mask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
VPBLENDMD/VPBLENDMQ—Blend Int32/Int64 Vectors Using an OpMask Control Vol. 2C 5-448



Operation

VPBLENDMD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no controlmask*

THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
DEST[i+31:i] := SRC2[31:0]

ELSE 
DEST[i+31:i] := SRC2[i+31:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN DEST[i+31:i] := SRC1[i+31:i]
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI;

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0;

VPBLENDMD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no controlmask*

THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN
DEST[i+31:i] := SRC2[31:0]

ELSE 
DEST[i+31:i] := SRC2[i+31:i]

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN DEST[i+31:i] := SRC1[i+31:i]
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI;

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPBLENDMD __m512i _mm512_mask_blend_epi32(__mmask16 k, __m512i a, __m512i b);
VPBLENDMD __m256i _mm256_mask_blend_epi32(__mmask8 m, __m256i a, __m256i b);
VPBLENDMD __m128i _mm_mask_blend_epi32(__mmask8 m, __m128i a, __m128i b);
VPBLENDMQ __m512i _mm512_mask_blend_epi64(__mmask8 k, __m512i a, __m512i b);
VPBLENDMQ __m256i _mm256_mask_blend_epi64(__mmask8 m, __m256i a, __m256i b);
VPBLENDMQ __m128i _mm_mask_blend_epi64(__mmask8 m, __m128i a, __m128i b);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Table 2-51, “Type E4 Class Exception Conditions.”
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VPBROADCAST—Load Integer and Broadcast
Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 78 /r
VPBROADCASTB xmm1, xmm2/m8

A V/V AVX2 Broadcast a byte integer in the source 
operand to sixteen locations in xmm1.

VEX.256.66.0F38.W0 78 /r
VPBROADCASTB ymm1, xmm2/m8

A V/V AVX2 Broadcast a byte integer in the source 
operand to thirty-two locations in ymm1.

EVEX.128.66.0F38.W0 78 /r
VPBROADCASTB xmm1{k1}{z}, xmm2/m8

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Broadcast a byte integer in the source 
operand to locations in xmm1 subject to 
writemask k1.

EVEX.256.66.0F38.W0 78 /r
VPBROADCASTB ymm1{k1}{z}, xmm2/m8

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Broadcast a byte integer in the source 
operand to locations in ymm1 subject to 
writemask k1.

EVEX.512.66.0F38.W0 78 /r
VPBROADCASTB zmm1{k1}{z}, xmm2/m8

B V/V AVX512BW 
OR AVX10.11

Broadcast a byte integer in the source 
operand to 64 locations in zmm1 subject to 
writemask k1.

VEX.128.66.0F38.W0 79 /r
VPBROADCASTW xmm1, xmm2/m16

A V/V AVX2 Broadcast a word integer in the source 
operand to eight locations in xmm1.

VEX.256.66.0F38.W0 79 /r
VPBROADCASTW ymm1, xmm2/m16

A V/V AVX2 Broadcast a word integer in the source 
operand to sixteen locations in ymm1.

EVEX.128.66.0F38.W0 79 /r
VPBROADCASTW xmm1{k1}{z}, xmm2/m16

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Broadcast a word integer in the source 
operand to locations in xmm1 subject to 
writemask k1.

EVEX.256.66.0F38.W0 79 /r
VPBROADCASTW ymm1{k1}{z}, xmm2/m16

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Broadcast a word integer in the source 
operand to locations in ymm1 subject to 
writemask k1.

EVEX.512.66.0F38.W0 79 /r
VPBROADCASTW zmm1{k1}{z}, xmm2/m16

B V/V AVX512BW 
OR AVX10.11

Broadcast a word integer in the source 
operand to 32 locations in zmm1 subject to 
writemask k1.

VEX.128.66.0F38.W0 58 /r
VPBROADCASTD xmm1, xmm2/m32

A V/V AVX2 Broadcast a dword integer in the source 
operand to four locations in xmm1.

VEX.256.66.0F38.W0 58 /r
VPBROADCASTD ymm1, xmm2/m32

A V/V AVX2 Broadcast a dword integer in the source 
operand to eight locations in ymm1.

EVEX.128.66.0F38.W0 58 /r
VPBROADCASTD xmm1 {k1}{z}, xmm2/m32

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Broadcast a dword integer in the source 
operand to locations in xmm1 subject to 
writemask k1.

EVEX.256.66.0F38.W0 58 /r
VPBROADCASTD ymm1 {k1}{z}, xmm2/m32

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Broadcast a dword integer in the source 
operand to locations in ymm1 subject to 
writemask k1.

EVEX.512.66.0F38.W0 58 /r
VPBROADCASTD zmm1 {k1}{z}, xmm2/m32

B V/V AVX512F 
OR AVX10.11

Broadcast a dword integer in the source 
operand to locations in zmm1 subject to 
writemask k1.

VEX.128.66.0F38.W0 59 /r
VPBROADCASTQ xmm1, xmm2/m64

A V/V AVX2 Broadcast a qword element in source 
operand to two locations in xmm1.

VEX.256.66.0F38.W0 59 /r
VPBROADCASTQ ymm1, xmm2/m64

A V/V AVX2 Broadcast a qword element in source 
operand to four locations in ymm1.

EVEX.128.66.0F38.W1 59 /r
VPBROADCASTQ xmm1 {k1}{z}, xmm2/m64

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Broadcast a qword element in source 
operand to locations in xmm1 subject to 
writemask k1.
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EVEX.256.66.0F38.W1 59 /r
VPBROADCASTQ ymm1 {k1}{z}, xmm2/m64

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Broadcast a qword element in source 
operand to locations in ymm1 subject to 
writemask k1.

EVEX.512.66.0F38.W1 59 /r
VPBROADCASTQ zmm1 {k1}{z}, xmm2/m64

B V/V AVX512F 
OR AVX10.11

Broadcast a qword element in source 
operand to locations in zmm1 subject to 
writemask k1.

EVEX.128.66.0F38.W0 59 /r
VBROADCASTI32x2 xmm1 {k1}{z}, 
xmm2/m64

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Broadcast two dword elements in source 
operand to locations in xmm1 subject to 
writemask k1.

EVEX.256.66.0F38.W0 59 /r
VBROADCASTI32x2 ymm1 {k1}{z}, 
xmm2/m64

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Broadcast two dword elements in source 
operand to locations in ymm1 subject to 
writemask k1.

EVEX.512.66.0F38.W0 59 /r
VBROADCASTI32x2 zmm1 {k1}{z}, 
xmm2/m64

C V/V AVX512DQ 
OR AVX10.11

Broadcast two dword elements in source 
operand to locations in zmm1 subject to 
writemask k1.

VEX.256.66.0F38.W0 5A /r
VBROADCASTI128 ymm1, m128

A V/V AVX2 Broadcast 128 bits of integer data in mem 
to low and high 128-bits in ymm1.

EVEX.256.66.0F38.W0 5A /r
VBROADCASTI32X4 ymm1 {k1}{z}, m128

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Broadcast 128 bits of 4 doubleword integer 
data in mem to locations in ymm1 using 
writemask k1.

EVEX.512.66.0F38.W0 5A /r
VBROADCASTI32X4 zmm1 {k1}{z}, m128

D V/V AVX512F 
OR AVX10.11

Broadcast 128 bits of 4 doubleword integer 
data in mem to locations in zmm1 using 
writemask k1.

EVEX.256.66.0F38.W1 5A /r
VBROADCASTI64X2 ymm1 {k1}{z}, m128

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Broadcast 128 bits of 2 quadword integer 
data in mem to locations in ymm1 using 
writemask k1.

EVEX.512.66.0F38.W1 5A /r
VBROADCASTI64X2 zmm1 {k1}{z}, m128

C V/V AVX512DQ 
OR AVX10.11

Broadcast 128 bits of 2 quadword integer 
data in mem to locations in zmm1 using 
writemask k1.

EVEX.512.66.0F38.W0 5B /r
VBROADCASTI32X8 zmm1 {k1}{z}, m256

E V/V AVX512DQ 
OR AVX10.11

Broadcast 256 bits of 8 doubleword integer 
data in mem to locations in zmm1 using 
writemask k1.

EVEX.512.66.0F38.W1 5B /r
VBROADCASTI64X4 zmm1 {k1}{z}, m256

D V/V AVX512F
OR AVX10.11

Broadcast 256 bits of 4 quadword integer 
data in mem to locations in zmm1 using 
writemask k1.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description
VPBROADCAST—Load Integer and Broadcast Vol. 2C 5-452



Instruction Operand Encoding

Description

Load integer data from the source operand (the second operand) and broadcast to all elements of the destination 
operand (the first operand).
VEX256-encoded VPBROADCASTB/W/D/Q: The source operand is 8-bit, 16-bit, 32-bit, 64-bit memory location or 
the low 8-bit, 16-bit 32-bit, 64-bit data in an XMM register. The destination operand is a YMM register. VPBROAD-
CASTI128 support the source operand of 128-bit memory location. Register source encodings for VPBROADCAS-
TI128 is reserved and will #UD. Bits (MAXVL-1:256) of the destination register are zeroed.
EVEX-encoded VPBROADCASTD/Q: The source operand is a 32-bit, 64-bit memory location or the low 32-bit, 64-
bit data in an XMM register. The destination operand is a ZMM/YMM/XMM register and updated according to the 
writemask k1. 
VPBROADCASTI32X4 and VPBROADCASTI64X4: The destination operand is a ZMM register and updated according 
to the writemask k1. The source operand is 128-bit or 256-bit memory location. Register source encodings for 
VBROADCASTI32X4 and VBROADCASTI64X4 are reserved and will #UD.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
If VPBROADCASTI128 is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will 
cause an #UD exception.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A

C Tuple2 ModRM:reg (w) ModRM:r/m (r) N/A N/A

D Tuple4 ModRM:reg (w) ModRM:r/m (r) N/A N/A

E Tuple8 ModRM:reg (w) ModRM:r/m (r) N/A N/A

Figure 1-16.  VPBROADCASTD Operation (VEX.256 encoded version)

Figure 1-17.  VPBROADCASTD Operation (128-bit version)

DEST

m32 X0

X0X0 X0X0 X0X0 X0X0

DEST

m32 X0

X0X0 X00 X00 00
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Figure 1-18.  VPBROADCASTQ Operation (256-bit version)

Figure 1-19.  VBROADCASTI128 Operation (256-bit version)

Figure 1-20.  VBROADCASTI256 Operation (512-bit version)

DEST

m64 X0

X0X0X0X0

DEST

m128 X0

X0X0

DEST

m256 X0

X0X0
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Operation

VPBROADCASTB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SRC[7:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+7:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPBROADCASTW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SRC[15:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPBROADCASTD (128 bit version)
temp := SRC[31:0]
DEST[31:0] := temp
DEST[63:32] := temp
DEST[95:64] := temp
DEST[127:96] := temp
DEST[MAXVL-1:128] := 0

VPBROADCASTD (VEX.256 encoded version)
temp := SRC[31:0]
DEST[31:0] := temp
DEST[63:32] := temp
DEST[95:64] := temp
DEST[127:96] := temp
DEST[159:128] := temp
DEST[191:160] := temp
DEST[223:192] := temp
DEST[255:224] := temp
DEST[MAXVL-1:256] := 0
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VPBROADCASTD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[31:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPBROADCASTQ (VEX.256 encoded version)
temp := SRC[63:0]
DEST[63:0] := temp
DEST[127:64] := temp
DEST[191:128] := temp
DEST[255:192] := temp
DEST[MAXVL-1:256] := 0

VPBROADCASTQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[63:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
VBROADCASTI32x2 (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
n := (j mod 2) * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[n+31:n]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
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DEST[MAXVL-1:VL] := 0

VBROADCASTI128 (VEX.256 encoded version)
temp := SRC[127:0]
DEST[127:0] := temp
DEST[255:128] := temp
DEST[MAXVL-1:256] := 0

VBROADCASTI32X4 (EVEX encoded versions)
(KL, VL) = (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j* 32
n := (j modulo 4) * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[n+31:n]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VBROADCASTI64X2 (EVEX encoded versions)
(KL, VL) = (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 64
n := (j modulo 2) * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[n+63:n]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] = 0
FI

FI;
ENDFOR;

VBROADCASTI32X8 (EVEX.U1.512 encoded version)
FOR j := 0 TO 15

i := j * 32
n := (j modulo 8) * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[n+31:n]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
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ENDFOR
DEST[MAXVL-1:VL] := 0

VBROADCASTI64X4 (EVEX.512 encoded version)
FOR j := 0 TO 7

i := j * 64
n := (j modulo 4) * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[n+63:n]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPBROADCASTB __m512i _mm512_broadcastb_epi8( __m128i a);
VPBROADCASTB __m512i _mm512_mask_broadcastb_epi8(__m512i s, __mmask64 k, __m128i a);
VPBROADCASTB __m512i _mm512_maskz_broadcastb_epi8( __mmask64 k, __m128i a);
VPBROADCASTB __m256i _mm256_broadcastb_epi8(__m128i a);
VPBROADCASTB __m256i _mm256_mask_broadcastb_epi8(__m256i s, __mmask32 k, __m128i a);
VPBROADCASTB __m256i _mm256_maskz_broadcastb_epi8( __mmask32 k, __m128i a);
VPBROADCASTB __m128i _mm_mask_broadcastb_epi8(__m128i s, __mmask16 k, __m128i a);
VPBROADCASTB __m128i _mm_maskz_broadcastb_epi8( __mmask16 k, __m128i a);
VPBROADCASTB __m128i _mm_broadcastb_epi8(__m128i a);
VPBROADCASTD __m512i _mm512_broadcastd_epi32( __m128i a);
VPBROADCASTD __m512i _mm512_mask_broadcastd_epi32(__m512i s, __mmask16 k, __m128i a);
VPBROADCASTD __m512i _mm512_maskz_broadcastd_epi32( __mmask16 k, __m128i a);
VPBROADCASTD __m256i _mm256_broadcastd_epi32( __m128i a);
VPBROADCASTD __m256i _mm256_mask_broadcastd_epi32(__m256i s, __mmask8 k, __m128i a);
VPBROADCASTD __m256i _mm256_maskz_broadcastd_epi32( __mmask8 k, __m128i a);
VPBROADCASTD __m128i _mm_broadcastd_epi32(__m128i a);
VPBROADCASTD __m128i _mm_mask_broadcastd_epi32(__m128i s, __mmask8 k, __m128i a);
VPBROADCASTD __m128i _mm_maskz_broadcastd_epi32( __mmask8 k, __m128i a);
VPBROADCASTQ __m512i _mm512_broadcastq_epi64( __m128i a);
VPBROADCASTQ __m512i _mm512_mask_broadcastq_epi64(__m512i s, __mmask8 k, __m128i a);
VPBROADCASTQ __m512i _mm512_maskz_broadcastq_epi64( __mmask8 k, __m128i a);
VPBROADCASTQ __m256i _mm256_broadcastq_epi64(__m128i a);
VPBROADCASTQ __m256i _mm256_mask_broadcastq_epi64(__m256i s, __mmask8 k, __m128i a);
VPBROADCASTQ __m256i _mm256_maskz_broadcastq_epi64( __mmask8 k, __m128i a);
VPBROADCASTQ __m128i _mm_broadcastq_epi64(__m128i a);
VPBROADCASTQ __m128i _mm_mask_broadcastq_epi64(__m128i s, __mmask8 k, __m128i a);
VPBROADCASTQ __m128i _mm_maskz_broadcastq_epi64( __mmask8 k, __m128i a);
VPBROADCASTW __m512i _mm512_broadcastw_epi16(__m128i a);
VPBROADCASTW __m512i _mm512_mask_broadcastw_epi16(__m512i s, __mmask32 k, __m128i a);
VPBROADCASTW __m512i _mm512_maskz_broadcastw_epi16( __mmask32 k, __m128i a);
VPBROADCASTW __m256i _mm256_broadcastw_epi16(__m128i a);
VPBROADCASTW __m256i _mm256_mask_broadcastw_epi16(__m256i s, __mmask16 k, __m128i a);
VPBROADCASTW __m256i _mm256_maskz_broadcastw_epi16( __mmask16 k, __m128i a);
VPBROADCASTW __m128i _mm_broadcastw_epi16(__m128i a);
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VPBROADCASTW __m128i _mm_mask_broadcastw_epi16(__m128i s, __mmask8 k, __m128i a);
VPBROADCASTW __m128i _mm_maskz_broadcastw_epi16( __mmask8 k, __m128i a);
VBROADCASTI32x2 __m512i _mm512_broadcast_i32x2( __m128i a);
VBROADCASTI32x2 __m512i _mm512_mask_broadcast_i32x2(__m512i s, __mmask16 k, __m128i a);
VBROADCASTI32x2 __m512i _mm512_maskz_broadcast_i32x2( __mmask16 k, __m128i a);
VBROADCASTI32x2 __m256i _mm256_broadcast_i32x2( __m128i a);
VBROADCASTI32x2 __m256i _mm256_mask_broadcast_i32x2(__m256i s, __mmask8 k, __m128i a);
VBROADCASTI32x2 __m256i _mm256_maskz_broadcast_i32x2( __mmask8 k, __m128i a);
VBROADCASTI32x2 __m128i _mm_broadcast_i32x2(__m128i a);
VBROADCASTI32x2 __m128i _mm_mask_broadcast_i32x2(__m128i s, __mmask8 k, __m128i a);
VBROADCASTI32x2 __m128i _mm_maskz_broadcast_i32x2( __mmask8 k, __m128i a);
VBROADCASTI32x4 __m512i _mm512_broadcast_i32x4( __m128i a);
VBROADCASTI32x4 __m512i _mm512_mask_broadcast_i32x4(__m512i s, __mmask16 k, __m128i a);
VBROADCASTI32x4 __m512i _mm512_maskz_broadcast_i32x4( __mmask16 k, __m128i a);
VBROADCASTI32x4 __m256i _mm256_broadcast_i32x4( __m128i a);
VBROADCASTI32x4 __m256i _mm256_mask_broadcast_i32x4(__m256i s, __mmask8 k, __m128i a);
VBROADCASTI32x4 __m256i _mm256_maskz_broadcast_i32x4( __mmask8 k, __m128i a);
VBROADCASTI32x8 __m512i _mm512_broadcast_i32x8( __m256i a);
VBROADCASTI32x8 __m512i _mm512_mask_broadcast_i32x8(__m512i s, __mmask16 k, __m256i a);
VBROADCASTI32x8 __m512i _mm512_maskz_broadcast_i32x8( __mmask16 k, __m256i a);
VBROADCASTI64x2 __m512i _mm512_broadcast_i64x2( __m128i a);
VBROADCASTI64x2 __m512i _mm512_mask_broadcast_i64x2(__m512i s, __mmask8 k, __m128i a);
VBROADCASTI64x2 __m512i _mm512_maskz_broadcast_i64x2( __mmask8 k, __m128i a);
VBROADCASTI64x2 __m256i _mm256_broadcast_i64x2( __m128i a);
VBROADCASTI64x2 __m256i _mm256_mask_broadcast_i64x2(__m256i s, __mmask8 k, __m128i a);
VBROADCASTI64x2 __m256i _mm256_maskz_broadcast_i64x2( __mmask8 k, __m128i a);
VBROADCASTI64x4 __m512i _mm512_broadcast_i64x4( __m256i a);
VBROADCASTI64x4 __m512i _mm512_mask_broadcast_i64x4(__m512i s, __mmask8 k, __m256i a);
VBROADCASTI64x4 __m512i _mm512_maskz_broadcast_i64x4( __mmask8 k, __m256i a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instructions, see Table 2-23, “Type 6 Class Exception Conditions.”
EVEX-encoded instructions, syntax with reg/mem operand, see Table 2-55, “Type E6 Class Exception Conditions.”
Additionally:
#UD If VEX.L = 0 for VPBROADCASTQ, VPBROADCASTI128.

If EVEX.L’L = 0 for VBROADCASTI32X4/VBROADCASTI64X2.
If EVEX.L’L < 10b for VBROADCASTI32X8/VBROADCASTI64X4.
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VPBROADCASTB/W/D/Q—Load With Broadcast Integer Data From General Purpose Register

Instruction Operand Encoding

Opcode/
Instruction

Op / 
En

64/32 
bit 
Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 7A /r
VPBROADCASTB xmm1 {k1}{z}, reg

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Broadcast an 8-bit value from a GPR to all bytes in 
the 128-bit destination subject to writemask k1.

EVEX.256.66.0F38.W0 7A /r
VPBROADCASTB ymm1 {k1}{z}, reg

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Broadcast an 8-bit value from a GPR to all bytes in 
the 256-bit destination subject to writemask k1.

EVEX.512.66.0F38.W0 7A /r
VPBROADCASTB zmm1 {k1}{z}, reg

A V/V AVX512BW 
OR AVX10.11

Broadcast an 8-bit value from a GPR to all bytes in 
the 512-bit destination subject to writemask k1.

EVEX.128.66.0F38.W0 7B /r
VPBROADCASTW xmm1 {k1}{z}, reg

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Broadcast a 16-bit value from a GPR to all words in 
the 128-bit destination subject to writemask k1.

EVEX.256.66.0F38.W0 7B /r
VPBROADCASTW ymm1 {k1}{z}, reg

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Broadcast a 16-bit value from a GPR to all words in 
the 256-bit destination subject to writemask k1.

EVEX.512.66.0F38.W0 7B /r
VPBROADCASTW zmm1 {k1}{z}, reg

A V/V AVX512BW 
OR AVX10.11

Broadcast a 16-bit value from a GPR to all words in 
the 512-bit destination subject to writemask k1.

EVEX.128.66.0F38.W0 7C /r
VPBROADCASTD xmm1 {k1}{z}, r32

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Broadcast a 32-bit value from a GPR to all 
doublewords in the 128-bit destination subject to 
writemask k1.

EVEX.256.66.0F38.W0 7C /r
VPBROADCASTD ymm1 {k1}{z}, r32

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Broadcast a 32-bit value from a GPR to all 
doublewords in the 256-bit destination subject to 
writemask k1.

EVEX.512.66.0F38.W0 7C /r
VPBROADCASTD zmm1 {k1}{z}, r32

A V/V AVX512F 
OR AVX10.11

Broadcast a 32-bit value from a GPR to all 
doublewords in the 512-bit destination subject to 
writemask k1.

EVEX.128.66.0F38.W1 7C /r
VPBROADCASTQ xmm1 {k1}{z}, r64

A V/N.E.1 (AVX512VL AND
AVX512F) OR 
AVX10.11

Broadcast a 64-bit value from a GPR to all 
quadwords in the 128-bit destination subject to 
writemask k1.

EVEX.256.66.0F38.W1 7C /r
VPBROADCASTQ ymm1 {k1}{z}, r64

A V/N.E.1 (AVX512VL AND
AVX512F) OR 
AVX10.11

Broadcast a 64-bit value from a GPR to all 
quadwords in the 256-bit destination subject to 
writemask k1.

EVEX.512.66.0F38.W1 7C /r
VPBROADCASTQ zmm1 {k1}{z}, r64

A V/N.E.2

2. EVEX.W in non-64 bit is ignored; the instruction behaves as if the W0 version is used.

AVX512F 
OR AVX10.11

Broadcast a 64-bit value from a GPR to all 
quadwords in the 512-bit destination subject to 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A
VPBROADCASTB/W/D/Q—Load With Broadcast Integer Data From General Purpose Register Vol. 2C 5-460



Description

Broadcasts a 8-bit, 16-bit, 32-bit or 64-bit value from a general-purpose register (the second operand) to all the 
locations in the destination vector register (the first operand) using the writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VPBROADCASTB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SRC[7:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+7:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPBROADCASTW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SRC[15:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPBROADCASTD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[31:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VPBROADCASTQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[63:0]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPBROADCASTB __m512i _mm512_mask_set1_epi8(__m512i s, __mmask64 k, int a);
VPBROADCASTB __m512i _mm512_maskz_set1_epi8( __mmask64 k, int a);
VPBROADCASTB __m256i _mm256_mask_set1_epi8(__m256i s, __mmask32 k, int a);
VPBROADCASTB __m256i _mm256_maskz_set1_epi8( __mmask32 k, int a);
VPBROADCASTB __m128i _mm_mask_set1_epi8(__m128i s, __mmask16 k, int a);
VPBROADCASTB __m128i _mm_maskz_set1_epi8( __mmask16 k, int a);
VPBROADCASTD __m512i _mm512_mask_set1_epi32(__m512i s, __mmask16 k, int a);
VPBROADCASTD __m512i _mm512_maskz_set1_epi32( __mmask16 k, int a);
VPBROADCASTD __m256i _mm256_mask_set1_epi32(__m256i s, __mmask8 k, int a);
VPBROADCASTD __m256i _mm256_maskz_set1_epi32( __mmask8 k, int a);
VPBROADCASTD __m128i _mm_mask_set1_epi32(__m128i s, __mmask8 k, int a);
VPBROADCASTD __m128i _mm_maskz_set1_epi32( __mmask8 k, int a);
VPBROADCASTQ __m512i _mm512_mask_set1_epi64(__m512i s, __mmask8 k, __int64 a);
VPBROADCASTQ __m512i _mm512_maskz_set1_epi64( __mmask8 k, __int64 a);
VPBROADCASTQ __m256i _mm256_mask_set1_epi64(__m256i s, __mmask8 k, __int64 a);
VPBROADCASTQ __m256i _mm256_maskz_set1_epi64( __mmask8 k, __int64 a);
VPBROADCASTQ __m128i _mm_mask_set1_epi64(__m128i s, __mmask8 k, __int64 a);
VPBROADCASTQ __m128i _mm_maskz_set1_epi64( __mmask8 k, __int64 a);
VPBROADCASTW __m512i _mm512_mask_set1_epi16(__m512i s, __mmask32 k, int a);
VPBROADCASTW __m512i _mm512_maskz_set1_epi16( __mmask32 k, int a);
VPBROADCASTW __m256i _mm256_mask_set1_epi16(__m256i s, __mmask16 k, int a);
VPBROADCASTW __m256i _mm256_maskz_set1_epi16( __mmask16 k, int a);
VPBROADCASTW __m128i _mm_mask_set1_epi16(__m128i s, __mmask8 k, int a);
VPBROADCASTW __m128i _mm_maskz_set1_epi16( __mmask8 k, int a);

Exceptions

EVEX-encoded instructions, see Table 2-57, “Type E7NM Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VPBROADCASTM—Broadcast Mask to Vector Register 

Instruction Operand Encoding

Description

Broadcasts the zero-extended 64/32 bit value of the low byte/word of the source operand (the second operand) to 
each 64/32 bit element of the destination operand (the first operand). The source operand is an opmask register. 
The destination operand is a ZMM register (EVEX.512), YMM register (EVEX.256), or XMM register (EVEX.128).
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VPBROADCASTMB2Q
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j*64
DEST[i+63:i] := ZeroExtend(SRC[7:0])

ENDFOR
DEST[MAXVL-1:VL] := 0

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F3.0F38.W1 2A /r
VPBROADCASTMB2Q xmm1, k1

RM V/V (AVX512VL AND
AVX512CD) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Broadcast low byte value in k1 to two locations in 
xmm1.

EVEX.256.F3.0F38.W1 2A /r
VPBROADCASTMB2Q ymm1, k1

RM V/V (AVX512VL AND
AVX512CD) OR 
AVX10.11

Broadcast low byte value in k1 to four locations in 
ymm1.

EVEX.512.F3.0F38.W1 2A /r
VPBROADCASTMB2Q zmm1, k1

RM V/V AVX512CD
OR AVX10.11

Broadcast low byte value in k1 to eight locations in 
zmm1.

EVEX.128.F3.0F38.W0 3A /r
VPBROADCASTMW2D xmm1, k1

RM V/V (AVX512VL AND
AVX512CD) OR 
AVX10.11

Broadcast low word value in k1 to four locations in 
xmm1.

EVEX.256.F3.0F38.W0 3A /r
VPBROADCASTMW2D ymm1, k1

RM V/V (AVX512VL AND
AVX512CD) OR 
AVX10.11

Broadcast low word value in k1 to eight locations 
in ymm1.

EVEX.512.F3.0F38.W0 3A /r
VPBROADCASTMW2D zmm1, k1

RM V/V AVX512CD
OR AVX10.11

Broadcast low word value in k1 to sixteen 
locations in zmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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VPBROADCASTMW2D
(KL, VL) = (4, 128), (8, 256),(16, 512)
FOR j := 0 TO KL-1

i := j*32
DEST[i+31:i] := ZeroExtend(SRC[15:0])

ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPBROADCASTMB2Q __m512i _mm512_broadcastmb_epi64( __mmask8);
VPBROADCASTMW2D __m512i _mm512_broadcastmw_epi32( __mmask16);
VPBROADCASTMB2Q __m256i _mm256_broadcastmb_epi64( __mmask8);
VPBROADCASTMW2D __m256i _mm256_broadcastmw_epi32( __mmask8);
VPBROADCASTMB2Q __m128i _mm_broadcastmb_epi64( __mmask8);
VPBROADCASTMW2D __m128i _mm_broadcastmw_epi32( __mmask8);

SIMD Floating-Point Exceptions

None

Other Exceptions

EVEX-encoded instruction, see Table 2-56, “Type E6NF Class Exception Conditions.”
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VPCMPB/VPCMPUB—Compare Packed Byte Values Into Mask

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed byte values in the second source operand and the first source operand and 
returns the results of the comparison to the mask destination operand. The comparison predicate operand (imme-
diate byte) specifies the type of comparison performed on each pair of packed values in the two source operands. 
The result of each comparison is a single mask bit result of 1 (comparison true) or 0 (comparison false).
VPCMPB performs a comparison between pairs of signed byte values.
VPCMPUB performs a comparison between pairs of unsigned byte values.
The first source operand (second operand) is a ZMM/YMM/XMM register. The second source operand can be a 
ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operand (first operand) is a mask 
register k1. Up to 64/32/16 comparisons are performed with results written to the destination operand under the 
writemask k2.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W0 3F /r ib
VPCMPB k1 {k2}, xmm2, 
xmm3/m128, imm8

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare packed signed byte values in xmm3/m128 
and xmm2 using bits 2:0 of imm8 as a comparison 
predicate with writemask k2 and leave the result in 
mask register k1.

EVEX.256.66.0F3A.W0 3F /r ib
VPCMPB k1 {k2}, ymm2, 
ymm3/m256, imm8

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Compare packed signed byte values in ymm3/m256 
and ymm2 using bits 2:0 of imm8 as a comparison 
predicate with writemask k2 and leave the result in 
mask register k1.

EVEX.512.66.0F3A.W0 3F /r ib
VPCMPB k1 {k2}, zmm2, 
zmm3/m512, imm8

A V/V AVX512BW 
OR AVX10.11

Compare packed signed byte values in zmm3/m512 
and zmm2 using bits 2:0 of imm8 as a comparison 
predicate with writemask k2 and leave the result in 
mask register k1.

EVEX.128.66.0F3A.W0 3E /r ib
VPCMPUB k1 {k2}, xmm2, 
xmm3/m128, imm8

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Compare packed unsigned byte values in 
xmm3/m128 and xmm2 using bits 2:0 of imm8 as a 
comparison predicate with writemask k2 and leave 
the result in mask register k1.

EVEX.256.66.0F3A.W0 3E /r ib
VPCMPUB k1 {k2}, ymm2, 
ymm3/m256, imm8

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Compare packed unsigned byte values in 
ymm3/m256 and ymm2 using bits 2:0 of imm8 as a 
comparison predicate with writemask k2 and leave 
the result in mask register k1.

EVEX.512.66.0F3A.W0 3E /r ib
VPCMPUB k1 {k2}, zmm2, 
zmm3/m512, imm8

A V/V AVX512BW 
OR AVX10.11

Compare packed unsigned byte values in 
zmm3/m512 and zmm2 using bits 2:0 of imm8 as a 
comparison predicate with writemask k2 and leave 
the result in mask register k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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The comparison predicate operand is an 8-bit immediate: bits 2:0 define the type of comparison to be performed. 
Bits 3 through 7 of the immediate are reserved. Compiler can implement the pseudo-op mnemonic listed in Table 
1-17.

:

Operation

CASE (COMPARISON PREDICATE) OF
0: OP := EQ; 
1: OP := LT; 
2: OP := LE; 
3: OP := FALSE;
4: OP := NEQ;
5: OP := NLT; 
6: OP := NLE; 
7: OP := TRUE;

ESAC;

VPCMPB (EVEX encoded versions) 
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8
IF k2[j] OR *no writemask*

THEN 
CMP := SRC1[i+7:i] OP SRC2[i+7:i];
IF CMP = TRUE

THEN DEST[j] := 1;
ELSE DEST[j] := 0; FI;

ELSE DEST[j] = 0 ; zeroing-masking onlyFI;
FI;

ENDFOR
DEST[MAX_KL-1:KL] := 0

Table 1-17.  Pseudo-Op and VPCMP* Implementation

Pseudo-Op PCMPM Implementation

VPCMPEQ* reg1, reg2, reg3 VPCMP* reg1, reg2, reg3, 0

VPCMPLT* reg1, reg2, reg3 VPCMP*reg1, reg2, reg3, 1

VPCMPLE* reg1, reg2, reg3 VPCMP* reg1, reg2, reg3, 2

VPCMPNEQ* reg1, reg2, reg3 VPCMP* reg1, reg2, reg3, 4

VPPCMPNLT* reg1, reg2, reg3 VPCMP* reg1, reg2, reg3, 5

VPCMPNLE* reg1, reg2, reg3 VPCMP* reg1, reg2, reg3, 6
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VPCMPUB (EVEX encoded versions) 
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8
IF k2[j] OR *no writemask*

THEN 
CMP := SRC1[i+7:i] OP SRC2[i+7:i];
IF CMP = TRUE

THEN DEST[j] := 1;
ELSE DEST[j] := 0; FI;

ELSE DEST[j] = 0 ; zeroing-masking onlyFI;
FI;

ENDFOR
DEST[MAX_KL-1:KL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPCMPB __mmask64 _mm512_cmp_epi8_mask( __m512i a, __m512i b, int cmp);
VPCMPB __mmask64 _mm512_mask_cmp_epi8_mask( __mmask64 m, __m512i a, __m512i b, int cmp);
VPCMPB __mmask32 _mm256_cmp_epi8_mask( __m256i a, __m256i b, int cmp);
VPCMPB __mmask32 _mm256_mask_cmp_epi8_mask( __mmask32 m, __m256i a, __m256i b, int cmp);
VPCMPB __mmask16 _mm_cmp_epi8_mask( __m128i a, __m128i b, int cmp);
VPCMPB __mmask16 _mm_mask_cmp_epi8_mask( __mmask16 m, __m128i a, __m128i b, int cmp);
VPCMPB __mmask64 _mm512_cmp[eq|ge|gt|le|lt|neq]_epi8_mask( __m512i a, __m512i b);
VPCMPB __mmask64 _mm512_mask_cmp[eq|ge|gt|le|lt|neq]_epi8_mask( __mmask64 m, __m512i a, __m512i b);
VPCMPB __mmask32 _mm256_cmp[eq|ge|gt|le|lt|neq]_epi8_mask( __m256i a, __m256i b);
VPCMPB __mmask32 _mm256_mask_cmp[eq|ge|gt|le|lt|neq]_epi8_mask( __mmask32 m, __m256i a, __m256i b);
VPCMPB __mmask16 _mm_cmp[eq|ge|gt|le|lt|neq]_epi8_mask( __m128i a, __m128i b);
VPCMPB __mmask16 _mm_mask_cmp[eq|ge|gt|le|lt|neq]_epi8_mask( __mmask16 m, __m128i a, __m128i b);
VPCMPUB __mmask64 _mm512_cmp_epu8_mask( __m512i a, __m512i b, int cmp);
VPCMPUB __mmask64 _mm512_mask_cmp_epu8_mask( __mmask64 m, __m512i a, __m512i b, int cmp);
VPCMPUB __mmask32 _mm256_cmp_epu8_mask( __m256i a, __m256i b, int cmp);
VPCMPUB __mmask32 _mm256_mask_cmp_epu8_mask( __mmask32 m, __m256i a, __m256i b, int cmp);
VPCMPUB __mmask16 _mm_cmp_epu8_mask( __m128i a, __m128i b, int cmp);
VPCMPUB __mmask16 _mm_mask_cmp_epu8_mask( __mmask16 m, __m128i a, __m128i b, int cmp);
VPCMPUB __mmask64 _mm512_cmp[eq|ge|gt|le|lt|neq]_epu8_mask( __m512i a, __m512i b, int cmp);
VPCMPUB __mmask64 _mm512_mask_cmp[eq|ge|gt|le|lt|neq]_epu8_mask( __mmask64 m, __m512i a, __m512i b, int cmp);
VPCMPUB __mmask32 _mm256_cmp[eq|ge|gt|le|lt|neq]_epu8_mask( __m256i a, __m256i b, int cmp);
VPCMPUB __mmask32 _mm256_mask_cmp[eq|ge|gt|le|lt|neq]_epu8_mask( __mmask32 m, __m256i a, __m256i b, int cmp);
VPCMPUB __mmask16 _mm_cmp[eq|ge|gt|le|lt|neq]_epu8_mask( __m128i a, __m128i b, int cmp);
VPCMPUB __mmask16 _mm_mask_cmp[eq|ge|gt|le|lt|neq]_epu8_mask( __mmask16 m, __m128i a, __m128i b, int cmp);

SIMD Floating-Point Exceptions

None

Other Exceptions

EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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VPCMPD/VPCMPUD—Compare Packed Integer Values Into Mask

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed integer values in the second source operand and the first source operand 
and returns the results of the comparison to the mask destination operand. The comparison predicate operand 
(immediate byte) specifies the type of comparison performed on each pair of packed values in the two source oper-
ands. The result of each comparison is a single mask bit result of 1 (comparison true) or 0 (comparison false).
VPCMPD/VPCMPUD performs a comparison between pairs of signed/unsigned doubleword integer values.
The first source operand (second operand) is a ZMM/YMM/XMM register. The second source operand can be a 
ZMM/YMM/XMM register or a 512/256/128-bit memory location or a 512-bit vector broadcasted from a 32-bit 
memory location. The destination operand (first operand) is a mask register k1. Up to 16/8/4 comparisons are 
performed with results written to the destination operand under the writemask k2.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W0 1F /r ib
VPCMPD k1 {k2}, xmm2, 
xmm3/m128/m32bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare packed signed doubleword integer values in 
xmm3/m128/m32bcst and xmm2 using bits 2:0 of 
imm8 as a comparison predicate with writemask k2 
and leave the result in mask register k1.

EVEX.256.66.0F3A.W0 1F /r ib
VPCMPD k1 {k2}, ymm2, 
ymm3/m256/m32bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed signed doubleword integer values in 
ymm3/m256/m32bcst and ymm2 using bits 2:0 of 
imm8 as a comparison predicate with writemask k2 
and leave the result in mask register k1.

EVEX.512.66.0F3A.W0 1F /r ib
VPCMPD k1 {k2}, zmm2, 
zmm3/m512/m32bcst, imm8

A V/V AVX512F 
OR AVX10.11

Compare packed signed doubleword integer values in 
zmm2 and zmm3/m512/m32bcst using bits 2:0 of 
imm8 as a comparison predicate. The comparison 
results are written to the destination k1 under 
writemask k2.

EVEX.128.66.0F3A.W0 1E /r ib
VPCMPUD k1 {k2}, xmm2, 
xmm3/m128/m32bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed unsigned doubleword integer values 
in xmm3/m128/m32bcst and xmm2 using bits 2:0 of 
imm8 as a comparison predicate with writemask k2 
and leave the result in mask register k1.

EVEX.256.66.0F3A.W0 1E /r ib
VPCMPUD k1 {k2}, ymm2, 
ymm3/m256/m32bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed unsigned doubleword integer values 
in ymm3/m256/m32bcst and ymm2 using bits 2:0 of 
imm8 as a comparison predicate with writemask k2 
and leave the result in mask register k1.

EVEX.512.66.0F3A.W0 1E /r ib
VPCMPUD k1 {k2}, zmm2, 
zmm3/m512/m32bcst, imm8

A V/V AVX512F 
OR AVX10.11

Compare packed unsigned doubleword integer values 
in zmm2 and zmm3/m512/m32bcst using bits 2:0 of 
imm8 as a comparison predicate. The comparison 
results are written to the destination k1 under 
writemask k2.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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The comparison predicate operand is an 8-bit immediate: bits 2:0 define the type of comparison to be performed. 
Bits 3 through 7 of the immediate are reserved. Compiler can implement the pseudo-op mnemonic listed in Table 
1-17.

Operation

CASE (COMPARISON PREDICATE) OF
0: OP := EQ; 
1: OP := LT; 
2: OP := LE; 
3: OP := FALSE;
4: OP := NEQ;
5: OP := NLT; 
6: OP := NLE; 
7: OP := TRUE;

ESAC;

VPCMPD (EVEX encoded versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k2[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN CMP := SRC1[i+31:i] OP SRC2[31:0];
ELSE CMP := SRC1[i+31:i] OP SRC2[i+31:i];

FI;
IF CMP = TRUE

THEN DEST[j] := 1;
ELSE DEST[j] := 0; FI;

ELSE DEST[j] := 0 ; zeroing-masking onlyFI;
FI;

ENDFOR
DEST[MAX_KL-1:KL] := 0

VPCMPUD (EVEX encoded versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k2[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN CMP := SRC1[i+31:i] OP SRC2[31:0];
ELSE CMP := SRC1[i+31:i] OP SRC2[i+31:i];

FI;
IF CMP = TRUE

THEN DEST[j] := 1;
ELSE DEST[j] := 0; FI;

ELSE DEST[j] := 0 ; zeroing-masking onlyFI;
FI;

ENDFOR
DEST[MAX_KL-1:KL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPCMPD __mmask16 _mm512_cmp_epi32_mask( __m512i a, __m512i b, int imm);
VPCMPD __mmask16 _mm512_mask_cmp_epi32_mask(__mmask16 k, __m512i a, __m512i b, int imm);
VPCMPD __mmask16 _mm512_cmp[eq|ge|gt|le|lt|neq]_epi32_mask( __m512i a, __m512i b);
VPCMPD __mmask16 _mm512_mask_cmp[eq|ge|gt|le|lt|neq]_epi32_mask(__mmask16 k, __m512i a, __m512i b);
VPCMPUD __mmask16 _mm512_cmp_epu32_mask( __m512i a, __m512i b, int imm);
VPCMPUD __mmask16 _mm512_mask_cmp_epu32_mask(__mmask16 k, __m512i a, __m512i b, int imm);
VPCMPUD __mmask16 _mm512_cmp[eq|ge|gt|le|lt|neq]_epu32_mask( __m512i a, __m512i b);
VPCMPUD __mmask16 _mm512_mask_cmp[eq|ge|gt|le|lt|neq]_epu32_mask(__mmask16 k, __m512i a, __m512i b);
VPCMPD __mmask8 _mm256_cmp_epi32_mask( __m256i a, __m256i b, int imm);
VPCMPD __mmask8 _mm256_mask_cmp_epi32_mask(__mmask8 k, __m256i a, __m256i b, int imm);
VPCMPD __mmask8 _mm256_cmp[eq|ge|gt|le|lt|neq]_epi32_mask( __m256i a, __m256i b);
VPCMPD __mmask8 _mm256_mask_cmp[eq|ge|gt|le|lt|neq]_epi32_mask(__mmask8 k, __m256i a, __m256i b);
VPCMPUD __mmask8 _mm256_cmp_epu32_mask( __m256i a, __m256i b, int imm);
VPCMPUD __mmask8 _mm256_mask_cmp_epu32_mask(__mmask8 k, __m256i a, __m256i b, int imm);
VPCMPUD __mmask8 _mm256_cmp[eq|ge|gt|le|lt|neq]_epu32_mask( __m256i a, __m256i b);
VPCMPUD __mmask8 _mm256_mask_cmp[eq|ge|gt|le|lt|neq]_epu32_mask(__mmask8 k, __m256i a, __m256i b);
VPCMPD __mmask8 _mm_cmp_epi32_mask( __m128i a, __m128i b, int imm);
VPCMPD __mmask8 _mm_mask_cmp_epi32_mask(__mmask8 k, __m128i a, __m128i b, int imm);
VPCMPD __mmask8 _mm_cmp[eq|ge|gt|le|lt|neq]_epi32_mask( __m128i a, __m128i b);
VPCMPD __mmask8 _mm_mask_cmp[eq|ge|gt|le|lt|neq]_epi32_mask(__mmask8 k, __m128i a, __m128i b);
VPCMPUD __mmask8 _mm_cmp_epu32_mask( __m128i a, __m128i b, int imm);
VPCMPUD __mmask8 _mm_mask_cmp_epu32_mask(__mmask8 k, __m128i a, __m128i b, int imm);
VPCMPUD __mmask8 _mm_cmp[eq|ge|gt|le|lt|neq]_epu32_mask( __m128i a, __m128i b);
VPCMPUD __mmask8 _mm_mask_cmp[eq|ge|gt|le|lt|neq]_epu32_mask(__mmask8 k, __m128i a, __m128i b);

SIMD Floating-Point Exceptions

None

Other Exceptions

EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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VPCMPQ/VPCMPUQ—Compare Packed Integer Values Into Mask

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed integer values in the second source operand and the first source operand 
and returns the results of the comparison to the mask destination operand. The comparison predicate operand 
(immediate byte) specifies the type of comparison performed on each pair of packed values in the two source oper-
ands. The result of each comparison is a single mask bit result of 1 (comparison true) or 0 (comparison false).
VPCMPQ/VPCMPUQ performs a comparison between pairs of signed/unsigned quadword integer values.
The first source operand (second operand) is a ZMM/YMM/XMM register. The second source operand can be a 
ZMM/YMM/XMM register or a 512/256/128-bit memory location or a 512-bit vector broadcasted from a 64-bit 
memory location. The destination operand (first operand) is a mask register k1. Up to 8/4/2 comparisons are 
performed with results written to the destination operand under the writemask k2.
The comparison predicate operand is an 8-bit immediate: bits 2:0 define the type of comparison to be performed. 
Bits 3 through 7 of the immediate are reserved. Compiler can implement the pseudo-op mnemonic listed in Table 
1-17.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W1 1F /r ib
VPCMPQ k1 {k2}, xmm2, 
xmm3/m128/m64bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare packed signed quadword integer values in 
xmm3/m128/m64bcst and xmm2 using bits 2:0 of 
imm8 as a comparison predicate with writemask k2 
and leave the result in mask register k1.

EVEX.256.66.0F3A.W1 1F /r ib
VPCMPQ k1 {k2}, ymm2, 
ymm3/m256/m64bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed signed quadword integer values in 
ymm3/m256/m64bcst and ymm2 using bits 2:0 of 
imm8 as a comparison predicate with writemask k2 
and leave the result in mask register k1.

EVEX.512.66.0F3A.W1 1F /r ib
VPCMPQ k1 {k2}, zmm2, 
zmm3/m512/m64bcst, imm8

A V/V AVX512F 
OR AVX10.11

Compare packed signed quadword integer values in 
zmm3/m512/m64bcst and zmm2 using bits 2:0 of 
imm8 as a comparison predicate with writemask k2 
and leave the result in mask register k1.

EVEX.128.66.0F3A.W1 1E /r ib
VPCMPUQ k1 {k2}, xmm2, 
xmm3/m128/m64bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed unsigned quadword integer values 
in xmm3/m128/m64bcst and xmm2 using bits 2:0 of 
imm8 as a comparison predicate with writemask k2 
and leave the result in mask register k1.

EVEX.256.66.0F3A.W1 1E /r ib
VPCMPUQ k1 {k2}, ymm2, 
ymm3/m256/m64bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compare packed unsigned quadword integer values 
in ymm3/m256/m64bcst and ymm2 using bits 2:0 of 
imm8 as a comparison predicate with writemask k2 
and leave the result in mask register k1.

EVEX.512.66.0F3A.W1 1E /r ib
VPCMPUQ k1 {k2}, zmm2, 
zmm3/m512/m64bcst, imm8

A V/V AVX512F 
OR AVX10.11

Compare packed unsigned quadword integer values 
in zmm3/m512/m64bcst and zmm2 using bits 2:0 of 
imm8 as a comparison predicate with writemask k2 
and leave the result in mask register k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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Operation

CASE (COMPARISON PREDICATE) OF
0: OP := EQ; 
1: OP := LT; 
2: OP := LE; 
3: OP := FALSE;
4: OP := NEQ;
5: OP := NLT; 
6: OP := NLE; 
7: OP := TRUE;

ESAC;

VPCMPQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k2[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN CMP := SRC1[i+63:i] OP SRC2[63:0];
ELSE CMP := SRC1[i+63:i] OP SRC2[i+63:i];

FI;
IF CMP = TRUE

THEN DEST[j] := 1;
ELSE DEST[j] := 0; FI;

ELSE DEST[j] := 0 ; zeroing-masking only
FI;

ENDFOR
DEST[MAX_KL-1:KL] := 0

VPCMPUQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k2[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN CMP := SRC1[i+63:i] OP SRC2[63:0];
ELSE CMP := SRC1[i+63:i] OP SRC2[i+63:i];

FI;
IF CMP = TRUE

THEN DEST[j] := 1;
ELSE DEST[j] := 0; FI;

ELSE DEST[j] := 0 ; zeroing-masking only
FI;

ENDFOR
DEST[MAX_KL-1:KL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPCMPQ __mmask8 _mm512_cmp_epi64_mask( __m512i a, __m512i b, int imm);
VPCMPQ __mmask8 _mm512_mask_cmp_epi64_mask(__mmask8 k, __m512i a, __m512i b, int imm);
VPCMPQ __mmask8 _mm512_cmp[eq|ge|gt|le|lt|neq]_epi64_mask( __m512i a, __m512i b);
VPCMPQ __mmask8 _mm512_mask_cmp[eq|ge|gt|le|lt|neq]_epi64_mask(__mmask8 k, __m512i a, __m512i b);
VPCMPUQ __mmask8 _mm512_cmp_epu64_mask( __m512i a, __m512i b, int imm);
VPCMPUQ __mmask8 _mm512_mask_cmp_epu64_mask(__mmask8 k, __m512i a, __m512i b, int imm);
VPCMPUQ __mmask8 _mm512_cmp[eq|ge|gt|le|lt|neq]_epu64_mask( __m512i a, __m512i b);
VPCMPUQ __mmask8 _mm512_mask_cmp[eq|ge|gt|le|lt|neq]_epu64_mask(__mmask8 k, __m512i a, __m512i b);
VPCMPQ __mmask8 _mm256_cmp_epi64_mask( __m256i a, __m256i b, int imm);
VPCMPQ __mmask8 _mm256_mask_cmp_epi64_mask(__mmask8 k, __m256i a, __m256i b, int imm);
VPCMPQ __mmask8 _mm256_cmp[eq|ge|gt|le|lt|neq]_epi64_mask( __m256i a, __m256i b);
VPCMPQ __mmask8 _mm256_mask_cmp[eq|ge|gt|le|lt|neq]_epi64_mask(__mmask8 k, __m256i a, __m256i b);
VPCMPUQ __mmask8 _mm256_cmp_epu64_mask( __m256i a, __m256i b, int imm);
VPCMPUQ __mmask8 _mm256_mask_cmp_epu64_mask(__mmask8 k, __m256i a, __m256i b, int imm);
VPCMPUQ __mmask8 _mm256_cmp[eq|ge|gt|le|lt|neq]_epu64_mask( __m256i a, __m256i b);
VPCMPUQ __mmask8 _mm256_mask_cmp[eq|ge|gt|le|lt|neq]_epu64_mask(__mmask8 k, __m256i a, __m256i b);
VPCMPQ __mmask8 _mm_cmp_epi64_mask( __m128i a, __m128i b, int imm);
VPCMPQ __mmask8 _mm_mask_cmp_epi64_mask(__mmask8 k, __m128i a, __m128i b, int imm);
VPCMPQ __mmask8 _mm_cmp[eq|ge|gt|le|lt|neq]_epi64_mask( __m128i a, __m128i b);
VPCMPQ __mmask8 _mm_mask_cmp[eq|ge|gt|le|lt|neq]_epi64_mask(__mmask8 k, __m128i a, __m128i b);
VPCMPUQ __mmask8 _mm_cmp_epu64_mask( __m128i a, __m128i b, int imm);
VPCMPUQ __mmask8 _mm_mask_cmp_epu64_mask(__mmask8 k, __m128i a, __m128i b, int imm);
VPCMPUQ __mmask8 _mm_cmp[eq|ge|gt|le|lt|neq]_epu64_mask( __m128i a, __m128i b);
VPCMPUQ __mmask8 _mm_mask_cmp[eq|ge|gt|le|lt|neq]_epu64_mask(__mmask8 k, __m128i a, __m128i b);

SIMD Floating-Point Exceptions

None

Other Exceptions

EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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VPCMPW/VPCMPUW—Compare Packed Word Values Into Mask

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed integer word in the second source operand and the first source operand 
and returns the results of the comparison to the mask destination operand. The comparison predicate operand 
(immediate byte) specifies the type of comparison performed on each pair of packed values in the two source oper-
ands. The result of each comparison is a single mask bit result of 1 (comparison true) or 0 (comparison false).
VPCMPW performs a comparison between pairs of signed word values.
VPCMPUW performs a comparison between pairs of unsigned word values.
The first source operand (second operand) is a ZMM/YMM/XMM register. The second source operand can be a 
ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operand (first operand) is a mask 
register k1. Up to 32/16/8 comparisons are performed with results written to the destination operand under the 
writemask k2.
The comparison predicate operand is an 8-bit immediate: bits 2:0 define the type of comparison to be performed. 
Bits 3 through 7 of the immediate are reserved. Compiler can implement the pseudo-op mnemonic listed in Table 
1-17.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W1 3F /r ib
VPCMPW k1 {k2}, xmm2, 
xmm3/m128, imm8

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare packed signed word integers in 
xmm3/m128 and xmm2 using bits 2:0 of imm8 as a 
comparison predicate with writemask k2 and leave 
the result in mask register k1.

EVEX.256.66.0F3A.W1 3F /r ib
VPCMPW k1 {k2}, ymm2, 
ymm3/m256, imm8

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Compare packed signed word integers in 
ymm3/m256 and ymm2 using bits 2:0 of imm8 as a 
comparison predicate with writemask k2 and leave 
the result in mask register k1.

EVEX.512.66.0F3A.W1 3F /r ib
VPCMPW k1 {k2}, zmm2, 
zmm3/m512, imm8

A V/V AVX512BW 
OR AVX10.11

Compare packed signed word integers in 
zmm3/m512 and zmm2 using bits 2:0 of imm8 as a 
comparison predicate with writemask k2 and leave 
the result in mask register k1.

EVEX.128.66.0F3A.W1 3E /r ib
VPCMPUW k1 {k2}, xmm2, 
xmm3/m128, imm8

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Compare packed unsigned word integers in 
xmm3/m128 and xmm2 using bits 2:0 of imm8 as a 
comparison predicate with writemask k2 and leave 
the result in mask register k1.

EVEX.256.66.0F3A.W1 3E /r ib
VPCMPUW k1 {k2}, ymm2, 
ymm3/m256, imm8

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Compare packed unsigned word integers in 
ymm3/m256 and ymm2 using bits 2:0 of imm8 as a 
comparison predicate with writemask k2 and leave 
the result in mask register k1.

EVEX.512.66.0F3A.W1 3E /r ib
VPCMPUW k1 {k2}, zmm2, 
zmm3/m512, imm8

A V/V AVX512BW 
OR AVX10.11

Compare packed unsigned word integers in 
zmm3/m512 and zmm2 using bits 2:0 of imm8 as a 
comparison predicate with writemask k2 and leave 
the result in mask register k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

CASE (COMPARISON PREDICATE) OF
0: OP := EQ; 
1: OP := LT; 
2: OP := LE; 
3: OP := FALSE;
4: OP := NEQ;
5: OP := NLT; 
6: OP := NLE; 
7: OP := TRUE;

ESAC;

VPCMPW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k2[j] OR *no writemask*

THEN 
ICMP := SRC1[i+15:i] OP SRC2[i+15:i];
IF CMP = TRUE

THEN DEST[j] := 1;
ELSE DEST[j] := 0; FI;

ELSE DEST[j] = 0 ; zeroing-masking only
FI;

ENDFOR
DEST[MAX_KL-1:KL] := 0

VPCMPUW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k2[j] OR *no writemask*

THEN 
CMP := SRC1[i+15:i] OP SRC2[i+15:i];
IF CMP = TRUE

THEN DEST[j] := 1;
ELSE DEST[j] := 0; FI;

ELSE DEST[j] = 0 ; zeroing-masking only
FI;

ENDFOR
DEST[MAX_KL-1:KL] := 0
VPCMPW/VPCMPUW—Compare Packed Word Values Into Mask Vol. 2C 5-475



Intel C/C++ Compiler Intrinsic Equivalent

VPCMPW __mmask32 _mm512_cmp_epi16_mask( __m512i a, __m512i b, int cmp);
VPCMPW __mmask32 _mm512_mask_cmp_epi16_mask( __mmask32 m, __m512i a, __m512i b, int cmp);
VPCMPW __mmask16 _mm256_cmp_epi16_mask( __m256i a, __m256i b, int cmp);
VPCMPW __mmask16 _mm256_mask_cmp_epi16_mask( __mmask16 m, __m256i a, __m256i b, int cmp);
VPCMPW __mmask8 _mm_cmp_epi16_mask( __m128i a, __m128i b, int cmp);
VPCMPW __mmask8 _mm_mask_cmp_epi16_mask( __mmask8 m, __m128i a, __m128i b, int cmp);
VPCMPW __mmask32 _mm512_cmp[eq|ge|gt|le|lt|neq]_epi16_mask( __m512i a, __m512i b);
VPCMPW __mmask32 _mm512_mask_cmp[eq|ge|gt|le|lt|neq]_epi16_mask( __mmask32 m, __m512i a, __m512i b);
VPCMPW __mmask16 _mm256_cmp[eq|ge|gt|le|lt|neq]_epi16_mask( __m256i a, __m256i b);
VPCMPW __mmask16 _mm256_mask_cmp[eq|ge|gt|le|lt|neq]_epi16_mask( __mmask16 m, __m256i a, __m256i b);
VPCMPW __mmask8 _mm_cmp[eq|ge|gt|le|lt|neq]_epi16_mask( __m128i a, __m128i b);
VPCMPW __mmask8 _mm_mask_cmp[eq|ge|gt|le|lt|neq]_epi16_mask( __mmask8 m, __m128i a, __m128i b);
VPCMPUW __mmask32 _mm512_cmp_epu16_mask( __m512i a, __m512i b, int cmp);
VPCMPUW __mmask32 _mm512_mask_cmp_epu16_mask( __mmask32 m, __m512i a, __m512i b, int cmp);
VPCMPUW __mmask16 _mm256_cmp_epu16_mask( __m256i a, __m256i b, int cmp);
VPCMPUW __mmask16 _mm256_mask_cmp_epu16_mask( __mmask16 m, __m256i a, __m256i b, int cmp);
VPCMPUW __mmask8 _mm_cmp_epu16_mask( __m128i a, __m128i b, int cmp);
VPCMPUW __mmask8 _mm_mask_cmp_epu16_mask( __mmask8 m, __m128i a, __m128i b, int cmp);
VPCMPUW __mmask32 _mm512_cmp[eq|ge|gt|le|lt|neq]_epu16_mask( __m512i a, __m512i b, int cmp);
VPCMPUW __mmask32 _mm512_mask_cmp[eq|ge|gt|le|lt|neq]_epu16_mask( __mmask32 m, __m512i a, __m512i b, int cmp);
VPCMPUW __mmask16 _mm256_cmp[eq|ge|gt|le|lt|neq]_epu16_mask( __m256i a, __m256i b, int cmp);
VPCMPUW __mmask16 _mm256_mask_cmp[eq|ge|gt|le|lt|neq]_epu16_mask( __mmask16 m, __m256i a, __m256i b, int cmp);
VPCMPUW __mmask8 _mm_cmp[eq|ge|gt|le|lt|neq]_epu16_mask( __m128i a, __m128i b, int cmp);
VPCMPUW __mmask8 _mm_mask_cmp[eq|ge|gt|le|lt|neq]_epu16_mask( __mmask8 m, __m128i a, __m128i b, int cmp);

SIMD Floating-Point Exceptions

None

Other Exceptions

EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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VPCOMPRESSB/VCOMPRESSW—Store Sparse Packed Byte/Word Integer Values Into Dense 
Memory/Register 

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature Flag Description

EVEX.128.66.0F38.W0 63 /r
VPCOMPRESSB m128{k1}, xmm1

A V/V (AVX512_VBMI2 AND
AVX512VL) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compress up to 128 bits of packed byte 
values from xmm1 to m128 with 
writemask k1.

EVEX.128.66.0F38.W0 63 /r
VPCOMPRESSB xmm1{k1}{z}, xmm2

B V/V (AVX512_VBMI2 AND
AVX512VL) OR 
AVX10.11

Compress up to 128 bits of packed byte 
values from xmm2 to xmm1 with 
writemask k1.

EVEX.256.66.0F38.W0 63 /r
VPCOMPRESSB m256{k1}, ymm1

A V/V (AVX512_VBMI2 AND
AVX512VL) OR 
AVX10.11

Compress up to 256 bits of packed byte 
values from ymm1 to m256 with 
writemask k1.

EVEX.256.66.0F38.W0 63 /r
VPCOMPRESSB ymm1{k1}{z}, ymm2

B V/V (AVX512_VBMI2 AND
AVX512VL) OR 
AVX10.11

Compress up to 256 bits of packed byte 
values from ymm2 to ymm1 with 
writemask k1.

EVEX.512.66.0F38.W0 63 /r
VPCOMPRESSB m512{k1}, zmm1

A V/V AVX512_VBMI2 
OR AVX10.11

Compress up to 512 bits of packed byte 
values from zmm1 to m512 with writemask 
k1.

EVEX.512.66.0F38.W0 63 /r
VPCOMPRESSB zmm1{k1}{z}, zmm2

B V/V AVX512_VBMI2 
OR AVX10.11

Compress up to 512 bits of packed byte 
values from zmm2 to zmm1 with 
writemask k1.

EVEX.128.66.0F38.W1 63 /r
VPCOMPRESSW m128{k1}, xmm1

A V/V (AVX512_VBMI2 AND
AVX512VL) OR 
AVX10.11

Compress up to 128 bits of packed word 
values from xmm1 to m128 with 
writemask k1.

EVEX.128.66.0F38.W1 63 /r
VPCOMPRESSW xmm1{k1}{z}, xmm2

B V/V (AVX512_VBMI2 AND
AVX512VL) OR 
AVX10.11

Compress up to 128 bits of packed word 
values from xmm2 to xmm1 with 
writemask k1.

EVEX.256.66.0F38.W1 63 /r
VPCOMPRESSW m256{k1}, ymm1

A V/V (AVX512_VBMI2 AND
AVX512VL) OR 
AVX10.11

Compress up to 256 bits of packed word 
values from ymm1 to m256 with 
writemask k1.

EVEX.256.66.0F38.W1 63 /r
VPCOMPRESSW ymm1{k1}{z}, ymm2

B V/V (AVX512_VBMI2 AND
AVX512VL) OR 
AVX10.11

Compress up to 256 bits of packed word 
values from ymm2 to ymm1 with 
writemask k1.

EVEX.512.66.0F38.W1 63 /r
VPCOMPRESSW m512{k1}, zmm1

A V/V AVX512_VBMI2 
OR AVX10.11

Compress up to 512 bits of packed word 
values from zmm1 to m512 with writemask 
k1.

EVEX.512.66.0F38.W1 63 /r
VPCOMPRESSW zmm1{k1}{z}, zmm2

B V/V AVX512_VBMI2 
OR AVX10.11

Compress up to 512 bits of packed word 
values from zmm2 to zmm1 with 
writemask k1.
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Instruction Operand Encoding

Description

Compress (stores) up to 64 byte values or 32 word values from the source operand (second operand) to the desti-
nation operand (first operand), based on the active elements determined by the writemask operand. Note: 
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Moves up to 512 bits of packed byte values from the source operand (second operand) to the destination operand 
(first operand). This instruction is used to store partial contents of a vector register into a byte vector or single 
memory location using the active elements in operand writemask.
Memory destination version: Only the contiguous vector is written to the destination memory location. EVEX.z 
must be zero.
Register destination version: If the vector length of the contiguous vector is less than that of the input vector in the 
source operand, the upper bits of the destination register are unmodified if EVEX.z is not set, otherwise the upper 
bits are zeroed.
This instruction supports memory fault suppression.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element 
instead of the size of the full vector.

Operation

VPCOMPRESSB store form
(KL, VL) = (16, 128), (32, 256), (64, 512)
k := 0
FOR j := 0 TO KL-1:

IF k1[j] OR *no writemask*:
DEST.byte[k] := SRC.byte[j]
k := k +1

VPCOMPRESSB reg-reg form
(KL, VL) = (16, 128), (32, 256), (64, 512)
k := 0
FOR j := 0 TO KL-1:

IF k1[j] OR *no writemask*:
DEST.byte[k] := SRC.byte[j]
k := k + 1

IF *merging-masking*:
*DEST[VL-1:k*8] remains unchanged*
ELSE DEST[VL-1:k*8] := 0

DEST[MAX_VL-1:VL] := 0

VPCOMPRESSW store form
(KL, VL) = (8, 128), (16, 256), (32, 512)
k := 0
FOR j := 0 TO KL-1:

IF k1[j] OR *no writemask*:
DEST.word[k] := SRC.word[j]
k := k + 1

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:r/m (w) ModRM:reg (r) N/A N/A

B N/A ModRM:r/m (w) ModRM:reg (r) N/A N/A
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VPCOMPRESSW reg-reg form
(KL, VL) = (8, 128), (16, 256), (32, 512)
k := 0
FOR j := 0 TO KL-1:

IF k1[j] OR *no writemask*:
DEST.word[k] := SRC.word[j]
k := k + 1

IF *merging-masking*:
*DEST[VL-1:k*16] remains unchanged*
ELSE DEST[VL-1:k*16] := 0

DEST[MAX_VL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPCOMPRESSB __m128i _mm_mask_compress_epi8(__m128i, __mmask16, __m128i);
VPCOMPRESSB __m128i _mm_maskz_compress_epi8(__mmask16, __m128i);
VPCOMPRESSB __m256i _mm256_mask_compress_epi8(__m256i, __mmask32, __m256i);
VPCOMPRESSB __m256i _mm256_maskz_compress_epi8(__mmask32, __m256i);
VPCOMPRESSB __m512i _mm512_mask_compress_epi8(__m512i, __mmask64, __m512i);
VPCOMPRESSB __m512i _mm512_maskz_compress_epi8(__mmask64, __m512i);
VPCOMPRESSB  void _mm_mask_compressstoreu_epi8(void*, __mmask16, __m128i);
VPCOMPRESSB  void _mm256_mask_compressstoreu_epi8(void*, __mmask32, __m256i);
VPCOMPRESSB  void _mm512_mask_compressstoreu_epi8(void*, __mmask64, __m512i);
VPCOMPRESSW  __m128i  _mm_mask_compress_epi16(__m128i, __mmask8, __m128i);
VPCOMPRESSW  __m128i  _mm_maskz_compress_epi16(__mmask8, __m128i); 
VPCOMPRESSW  __m256i  _mm256_mask_compress_epi16(__m256i, __mmask16, __m256i);
VPCOMPRESSW  __m256i  _mm256_maskz_compress_epi16(__mmask16, __m256i);
VPCOMPRESSW  __m512i  _mm512_mask_compress_epi16(__m512i, __mmask32, __m512i);
VPCOMPRESSW  __m512i  _mm512_maskz_compress_epi16(__mmask32, __m512i);
VPCOMPRESSW  void  _mm_mask_compressstoreu_epi16(void*, __mmask8, __m128i);
VPCOMPRESSW  void  _mm256_mask_compressstoreu_epi16(void*, __mmask16, __m256i);
VPCOMPRESSW  void  _mm512_mask_compressstoreu_epi16(void*, __mmask32, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-51, “Type E4 Class Exception Conditions.”
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VPCOMPRESSD—Store Sparse Packed Doubleword Integer Values Into Dense Memory/Register

Instruction Operand Encoding

Description 

Compress (store) up to 16/8/4 doubleword integer values from the source operand (second operand) to the desti-
nation operand (first operand). The source operand is a ZMM/YMM/XMM register, the destination operand can be a 
ZMM/YMM/XMM register or a 512/256/128-bit memory location.
The opmask register k1 selects the active elements (partial vector or possibly non-contiguous if less than 16 active 
elements) from the source operand to compress into a contiguous vector. The contiguous vector is written to the 
destination starting from the low element of the destination operand.
Memory destination version: Only the contiguous vector is written to the destination memory location. EVEX.z 
must be zero.
Register destination version: If the vector length of the contiguous vector is less than that of the input vector in the 
source operand, the upper bits of the destination register are unmodified if EVEX.z is not set, otherwise the upper 
bits are zeroed.
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element 
instead of the size of the full vector.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 8B /r
VPCOMPRESSD xmm1/m128 {k1}{z}, xmm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compress packed doubleword integer 
values from xmm2 to xmm1/m128 using 
control mask k1.

EVEX.256.66.0F38.W0 8B /r
VPCOMPRESSD ymm1/m256 {k1}{z}, ymm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compress packed doubleword integer 
values from ymm2 to ymm1/m256 using 
control mask k1.

EVEX.512.66.0F38.W0 8B /r
VPCOMPRESSD zmm1/m512 {k1}{z}, zmm2

A V/V AVX512F 
OR AVX10.11

Compress packed doubleword integer 
values from zmm2 to zmm1/m512 using 
control mask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:r/m (w) ModRM:reg (r) N/A N/A
VPCOMPRESSD—Store Sparse Packed Doubleword Integer Values Into Dense Memory/Register Vol. 2C 5-480



Operation

VPCOMPRESSD (EVEX encoded versions) store form
(KL, VL) = (4, 128), (8, 256), (16, 512)
SIZE := 32
k := 0
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no controlmask*

THEN 
DEST[k+SIZE-1:k] := SRC[i+31:i]
k := k + SIZE 

FI;

ENDFOR;

VPCOMPRESSD (EVEX encoded versions) reg-reg form
(KL, VL) = (4, 128), (8, 256), (16, 512)
SIZE := 32
k := 0
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no controlmask*

THEN 
DEST[k+SIZE-1:k] := SRC[i+31:i]
k := k + SIZE

FI;
ENDFOR
IF *merging-masking* 

THEN *DEST[VL-1:k] remains unchanged*
ELSE DEST[VL-1:k] := 0

FI
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPCOMPRESSD __m512i _mm512_mask_compress_epi32(__m512i s, __mmask16 c, __m512i a);
VPCOMPRESSD __m512i _mm512_maskz_compress_epi32( __mmask16 c, __m512i a);
VPCOMPRESSD void _mm512_mask_compressstoreu_epi32(void * a, __mmask16 c, __m512i s);
VPCOMPRESSD __m256i _mm256_mask_compress_epi32(__m256i s, __mmask8 c, __m256i a);
VPCOMPRESSD __m256i _mm256_maskz_compress_epi32( __mmask8 c, __m256i a);
VPCOMPRESSD void _mm256_mask_compressstoreu_epi32(void * a, __mmask8 c, __m256i s);
VPCOMPRESSD __m128i _mm_mask_compress_epi32(__m128i s, __mmask8 c, __m128i a);
VPCOMPRESSD __m128i _mm_maskz_compress_epi32( __mmask8 c, __m128i a);
VPCOMPRESSD void _mm_mask_compressstoreu_epi32(void * a, __mmask8 c, __m128i s);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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VPCOMPRESSQ—Store Sparse Packed Quadword Integer Values Into Dense Memory/Register

Instruction Operand Encoding

Description 

Compress (stores) up to 8/4/2 quadword integer values from the source operand (second operand) to the destina-
tion operand (first operand). The source operand is a ZMM/YMM/XMM register, the destination operand can be a 
ZMM/YMM/XMM register or a 512/256/128-bit memory location.
The opmask register k1 selects the active elements (partial vector or possibly non-contiguous if less than 8 active 
elements) from the source operand to compress into a contiguous vector. The contiguous vector is written to the 
destination starting from the low element of the destination operand.
Memory destination version: Only the contiguous vector is written to the destination memory location. EVEX.z 
must be zero.
Register destination version: If the vector length of the contiguous vector is less than that of the input vector in the 
source operand, the upper bits of the destination register are unmodified if EVEX.z is not set, otherwise the upper 
bits are zeroed.
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element 
instead of the size of the full vector.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W1 8B /r
VPCOMPRESSQ xmm1/m128 {k1}{z}, xmm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compress packed quadword integer values 
from xmm2 to xmm1/m128 using control 
mask k1.

EVEX.256.66.0F38.W1 8B /r
VPCOMPRESSQ ymm1/m256 {k1}{z}, ymm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Compress packed quadword integer values 
from ymm2 to ymm1/m256 using control 
mask k1.

EVEX.512.66.0F38.W1 8B /r
VPCOMPRESSQ zmm1/m512 {k1}{z}, zmm2

A V/V AVX512F 
OR AVX10.11

Compress packed quadword integer values 
from zmm2 to zmm1/m512 using control 
mask k1. 

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Operation

VPCOMPRESSQ (EVEX encoded versions) store form
(KL, VL) = (2, 128), (4, 256), (8, 512)
SIZE := 64
k := 0
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no controlmask*

THEN 
DEST[k+SIZE-1:k] := SRC[i+63:i]
k := k + SIZE

FI;

ENFOR

VPCOMPRESSQ (EVEX encoded versions) reg-reg form
(KL, VL) = (2, 128), (4, 256), (8, 512)
SIZE := 64
k := 0
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no controlmask*

THEN 
DEST[k+SIZE-1:k] := SRC[i+63:i]
k := k + SIZE

FI;
ENDFOR
IF *merging-masking* 

THEN *DEST[VL-1:k] remains unchanged*
ELSE DEST[VL-1:k] := 0

FI
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPCOMPRESSQ __m512i _mm512_mask_compress_epi64(__m512i s, __mmask8 c, __m512i a);
VPCOMPRESSQ __m512i _mm512_maskz_compress_epi64( __mmask8 c, __m512i a);
VPCOMPRESSQ void _mm512_mask_compressstoreu_epi64(void * a, __mmask8 c, __m512i s);
VPCOMPRESSQ __m256i _mm256_mask_compress_epi64(__m256i s, __mmask8 c, __m256i a);
VPCOMPRESSQ __m256i _mm256_maskz_compress_epi64( __mmask8 c, __m256i a);
VPCOMPRESSQ void _mm256_mask_compressstoreu_epi64(void * a, __mmask8 c, __m256i s);
VPCOMPRESSQ __m128i _mm_mask_compress_epi64(__m128i s, __mmask8 c, __m128i a);
VPCOMPRESSQ __m128i _mm_maskz_compress_epi64( __mmask8 c, __m128i a);
VPCOMPRESSQ void _mm_mask_compressstoreu_epi64(void * a, __mmask8 c, __m128i s);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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VPCONFLICTD/Q—Detect Conflicts Within a Vector of Packed Dword/Qword Values Into Dense 
Memory/ Register

Instruction Operand Encoding

Description

Test each dword/qword element of the source operand (the second operand) for equality with all other elements in 
the source operand closer to the least significant element. Each element’s comparison results form a bit vector, 
which is then zero extended and written to the destination according to the writemask.
EVEX.512 encoded version: The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector 
broadcasted from a 32/64-bit memory location. The destination operand is a ZMM register, conditionally updated 
using writemask k1. 
EVEX.256 encoded version: The source operand is a YMM register, a 256-bit memory location, or a 256-bit vector 
broadcasted from a 32/64-bit memory location. The destination operand is a YMM register, conditionally updated 
using writemask k1. 
EVEX.128 encoded version: The source operand is a XMM register, a 128-bit memory location, or a 128-bit vector 
broadcasted from a 32/64-bit memory location. The destination operand is a XMM register, conditionally updated 
using writemask k1. 
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 C4 /r
VPCONFLICTD xmm1 {k1}{z}, 
xmm2/m128/m32bcst

A V/V (AVX512VL AND
AVX512CD) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Detect duplicate double-word values in 
xmm2/m128/m32bcst using writemask k1.

EVEX.256.66.0F38.W0 C4 /r
VPCONFLICTD ymm1 {k1}{z}, 
ymm2/m256/m32bcst

A V/V (AVX512VL AND
AVX512CD) OR 
AVX10.11

Detect duplicate double-word values in 
ymm2/m256/m32bcst using writemask k1.

EVEX.512.66.0F38.W0 C4 /r
VPCONFLICTD zmm1 {k1}{z}, 
zmm2/m512/m32bcst

A V/V AVX512CD
OR AVX10.11

Detect duplicate double-word values in 
zmm2/m512/m32bcst using writemask k1.

EVEX.128.66.0F38.W1 C4 /r
VPCONFLICTQ xmm1 {k1}{z}, 
xmm2/m128/m64bcst

A V/V (AVX512VL AND
AVX512CD) OR 
AVX10.11

Detect duplicate quad-word values in 
xmm2/m128/m64bcst using writemask k1.

EVEX.256.66.0F38.W1 C4 /r
VPCONFLICTQ ymm1 {k1}{z}, 
ymm2/m256/m64bcst

A V/V (AVX512VL AND
AVX512CD) OR 
AVX10.11

Detect duplicate quad-word values in 
ymm2/m256/m64bcst using writemask k1.

EVEX.512.66.0F38.W1 C4 /r
VPCONFLICTQ zmm1 {k1}{z}, 
zmm2/m512/m64bcst

A V/V AVX512CD
OR AVX10.11

Detect duplicate quad-word values in 
zmm2/m512/m64bcst using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
VPCONFLICTD/Q—Detect Conflicts Within a Vector of Packed Dword/Qword Values Into Dense Memory/ Register Vol. 2C 5-484



Operation

VPCONFLICTD
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j*32
IF MaskBit(j) OR *no writemask* THEN 

FOR k := 0 TO j-1
m := k*32
IF ((SRC[i+31:i] = SRC[m+31:m])) THEN 

DEST[i+k] := 1
ELSE 

DEST[i+k] := 0
FI

ENDFOR
DEST[i+31:i+j] := 0

ELSE
IF *merging-masking* THEN 

*DEST[i+31:i] remains unchanged*
ELSE 

DEST[i+31:i] := 0
FI

FI
ENDFOR

DEST[MAXVL-1:VL] := 0

VPCONFLICTQ
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j*64
IF MaskBit(j) OR *no writemask* THEN 

FOR k := 0 TO j-1

m := k*64

IF ((SRC[i+63:i] = SRC[m+63:m])) THEN 
DEST[i+k] := 1

ELSE 
DEST[i+k] := 0

FI
ENDFOR
DEST[i+63:i+j] := 0

ELSE
IF *merging-masking* THEN 

*DEST[i+63:i] remains unchanged*
ELSE

DEST[i+63:i] := 0
 FI

FI
ENDFOR
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPCONFLICTD __m512i _mm512_conflict_epi32( __m512i a);
VPCONFLICTD __m512i _mm512_mask_conflict_epi32(__m512i s, __mmask16 m, __m512i a);
VPCONFLICTD __m512i _mm512_maskz_conflict_epi32(__mmask16 m, __m512i a);
VPCONFLICTQ __m512i _mm512_conflict_epi64( __m512i a);
VPCONFLICTQ __m512i _mm512_mask_conflict_epi64(__m512i s, __mmask8 m, __m512i a);
VPCONFLICTQ __m512i _mm512_maskz_conflict_epi64(__mmask8 m, __m512i a);
VPCONFLICTD __m256i _mm256_conflict_epi32( __m256i a);
VPCONFLICTD __m256i _mm256_mask_conflict_epi32(__m256i s, __mmask8 m, __m256i a);
VPCONFLICTD __m256i _mm256_maskz_conflict_epi32(__mmask8 m, __m256i a);
VPCONFLICTQ __m256i _mm256_conflict_epi64( __m256i a);
VPCONFLICTQ __m256i _mm256_mask_conflict_epi64(__m256i s, __mmask8 m, __m256i a);
VPCONFLICTQ __m256i _mm256_maskz_conflict_epi64(__mmask8 m, __m256i a);
VPCONFLICTD __m128i _mm_conflict_epi32( __m128i a);
VPCONFLICTD __m128i _mm_mask_conflict_epi32(__m128i s, __mmask8 m, __m128i a);
VPCONFLICTD __m128i _mm_maskz_conflict_epi32(__mmask8 m, __m128i a);
VPCONFLICTQ __m128i _mm_conflict_epi64( __m128i a);
VPCONFLICTQ __m128i _mm_mask_conflict_epi64(__m128i s, __mmask8 m, __m128i a);
VPCONFLICTQ __m128i _mm_maskz_conflict_epi64(__mmask8 m, __m128i a);

SIMD Floating-Point Exceptions

None

Other Exceptions

EVEX-encoded instruction, see Table 2-52, “Type E4NF Class Exception Conditions.”
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VPDPB[SU,UU,SS]D[,S]—Multiply and Add Unsigned and Signed Bytes With and Without 
Saturation

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F2.0F38.W0 50 /r

VPDPBSSD xmm1, xmm2, 
xmm3/m128

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of signed bytes in 
xmm3/m128 with corresponding signed bytes 
of xmm2, summing those products and adding 
them to the doubleword result in xmm1.

VEX.256.F2.0F38.W0 50 /r

VPDPBSSD ymm1, ymm2, 
ymm3/m256

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of signed bytes in 
ymm3/m256 with corresponding signed bytes 
of ymm2, summing those products and adding 
them to the doubleword result in ymm1.

VEX.128.F2.0F38.W0 51 /r

VPDPBSSDS xmm1, xmm2, 
xmm3/m128

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of signed bytes in 
xmm3/m128 with corresponding signed bytes 
of xmm2, summing those products and adding 
them to the doubleword result, with signed 
saturation in xmm1.

VEX.256.F2.0F38.W0 51 /r

VPDPBSSDS ymm1, ymm2, 
ymm3/m256

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of signed bytes in 
ymm3/m256 with corresponding signed bytes 
of ymm2, summing those products and adding 
them to the doubleword result, with signed 
saturation in ymm1.

VEX.128.F3.0F38.W0 50 /r

VPDPBSUD xmm1, xmm2, 
xmm3/m128

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of unsigned bytes in 
xmm3/m128 with corresponding signed bytes 
of xmm2, summing those products and adding 
them to doubleword result in xmm1.

VEX.256.F3.0F38.W0 50 /r

VPDPBSUD ymm1, ymm2, 
ymm3/m256

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of unsigned bytes in 
ymm3/m256 with corresponding signed bytes 
of ymm2, summing those products and adding 
them to doubleword result in ymm1.

VEX.128.F3.0F38.W0 51 /r

VPDPBSUDS xmm1, xmm2, 
xmm3/m128

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of unsigned bytes in 
xmm3/m128 with corresponding signed bytes 
of xmm2, summing those products and adding 
them to doubleword result, with signed 
saturation in xmm1.

VEX.256.F3.0F38.W0 51 /r

VPDPBSUDS ymm1, ymm2, 
ymm3/m256

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of unsigned bytes in 
ymm3/m256 with corresponding signed bytes 
of ymm2, summing those products and adding 
them to doubleword result, with signed 
saturation in ymm1.

VEX.128.NP.0F38.W0 50 /r

VPDPBUUD xmm1, xmm2, 
xmm3/m128

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of unsigned bytes in 
xmm3/m128 with corresponding unsigned 
bytes of xmm2, summing those products and 
adding them to doubleword result in xmm1.

VEX.256.NP.0F38.W0 50 /r

VPDPBUUD ymm1, ymm2, 
ymm3/m256

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of unsigned bytes in 
ymm3/m256 with corresponding unsigned 
bytes of ymm2, summing those products and 
adding them to doubleword result in ymm1.
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Instruction Operand Encoding

Description
Multiplies the individual bytes of the first source operand by the corresponding bytes of the second source operand, 
producing intermediate word results. The word results are then summed and accumulated in the destination dword 
element size operand.
For unsigned saturation, when an individual result value is beyond the range of an unsigned doubleword (that is, 
greater than FFFFF_FFFFH), the saturated unsigned doubleword integer value of FFFF_FFFFH is stored in the 
doubleword destination.
For signed saturation, when an individual result is beyond the range of a signed doubleword integer (that is, 
greater than 7FFF_FFFFH or less than 8000_0000H), the saturated value of 7FFF_FFFFH or 8000_0000H, respec-
tively, is written to the destination operand.

Operation
VPDPB[SU,UU,SS]D[,S] dest, src1, src2 (VEX encoded version)
VL = (128, 256)
KL = VL/32

ORIGDEST := DEST
FOR i := 0 TO KL-1:

IF *src1 is signed*:
src1extend := SIGN_EXTEND // SU, SS

ELSE:
src1extend := ZERO_EXTEND // UU

IF *src2 is signed*:
src2extend := SIGN_EXTEND // SS

ELSE:
src2extend := ZERO_EXTEND // UU, SU

p1word := src1extend(SRC1.byte[4*i+0]) * src2extend(SRC2.byte[4*i+0])
p2word := src1extend(SRC1.byte[4*i+1]) * src2extend(SRC2.byte[4*i+1])
p3word := src1extend(SRC1.byte[4*i+2]) * src2extend(SRC2.byte[4*i+2])
p4word := src1extend(SRC1.byte[4*i+3]) * src2extend(SRC2.byte[4*i+3])

IF *saturating*:

VEX.128.NP.0F38.W0 51 /r

VPDPBUUDS xmm1, xmm2, 
xmm3/m128

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of unsigned bytes in 
xmm3/m128 with corresponding unsigned 
bytes of xmm2, summing those products and 
adding them to the doubleword result, with 
unsigned saturation in xmm1.

VEX.256.NP.0F38.W0 51 /r

VPDPBUUDS ymm1, ymm2, 
ymm3/m256

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of unsigned bytes in 
ymm3/m256 with corresponding unsigned 
bytes of ymm2, summing those products and 
adding them to the doubleword result, with 
unsigned saturation in ymm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description
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IF *UU instruction version*:
DEST.dword[i] := UNSIGNED_DWORD_SATURATE(ORIGDEST.dword[i] + p1word + p2word + p3word + p4word)

ELSE:
DEST.dword[i] := SIGNED_DWORD_SATURATE(ORIGDEST.dword[i] + p1word + p2word + p3word + p4word)

ELSE:
DEST.dword[i] := ORIGDEST.dword[i] + p1word + p2word + p3word + p4word

DEST[MAXVL-1:VL] := 0

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
VPDPBSSD __m128i _mm_dpbssd_epi32 (__m128i __W, __m128i __A, __m128i __B);
VPDPBSSD __m256i _mm256_dpbssd_epi32 (__m256i __W, __m256i __A, __m256i __B);
VPDPBSSDS __m128i _mm_dpbssds_epi32 (__m128i __W, __m128i __A, __m128i __B);
VPDPBSSDS __m256i _mm256_dpbssds_epi32 (__m256i __W, __m256i __A, __m256i __B);
VPDPBSUD __m128i _mm_dpbsud_epi32 (__m128i __W, __m128i __A, __m128i __B);
VPDPBSUD __m256i _mm256_dpbsud_epi32 (__m256i __W, __m256i __A, __m256i __B);
VPDPBSUDS __m128i _mm_dpbsuds_epi32 (__m128i __W, __m128i __A, __m128i __B);
VPDPBSUDS __m256i _mm256_dpbsuds_epi32 (__m256i __W, __m256i __A, __m256i __B);
VPDPBUUD __m128i _mm_dpbuud_epi32 (__m128i __W, __m128i __A, __m128i __B);
VPDPBUUD __m256i _mm256_dpbuud_epi32 (__m256i __W, __m256i __A, __m256i __B);
VPDPBUUDS __m128i _mm_dpbuuds_epi32 (__m128i __W, __m128i __A, __m128i __B);
VPDPBUUDS __m256i _mm256_dpbuuds_epi32 (__m256i __W, __m256i __A, __m256i __B);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions.”
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VPDPBUSD—Multiply and Add Unsigned and Signed Bytes

Instruction Operand Encoding

Description

Multiplies the individual unsigned bytes of the first source operand by the corresponding signed bytes of the second 
source operand, producing intermediate signed word results. The word results are then summed and accumulated 
in the destination dword element size operand.
This instruction supports memory fault suppression.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 50 /r 
VPDPBUSD xmm1, xmm2, 
xmm3/m128

A V/V AVX-VNNI Multiply groups of 4 pairs of signed bytes in 
xmm3/m128 with corresponding unsigned bytes of 
xmm2, summing those products and adding them 
to doubleword result in xmm1.

VEX.256.66.0F38.W0 50 /r
VPDPBUSD ymm1, ymm2, 
ymm3/m256

A V/V AVX-VNNI Multiply groups of 4 pairs of signed bytes in 
ymm3/m256 with corresponding unsigned bytes of 
ymm2, summing those products and adding them 
to doubleword result in ymm1.

EVEX.128.66.0F38.W0 50 /r
VPDPBUSD xmm1{k1}{z}, xmm2, 
xmm3/m128/m32bcst

B V/V (AVX512_VNNI 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply groups of 4 pairs of signed bytes in 
xmm3/m128/m32bcst with corresponding 
unsigned bytes of xmm2, summing those products 
and adding them to doubleword result in xmm1 
under writemask k1.

EVEX.256.66.0F38.W0 50 /r
VPDPBUSD ymm1{k1}{z}, ymm2, 
ymm3/m256/m32bcst

B V/V (AVX512_VNNI 
AND AVX512VL) 
OR AVX10.11

Multiply groups of 4 pairs of signed bytes in 
ymm3/m256/m32bcst with corresponding 
unsigned bytes of ymm2, summing those products 
and adding them to doubleword result in ymm1 
under writemask k1.

EVEX.512.66.0F38.W0 50 /r
VPDPBUSD zmm1{k1}{z}, zmm2, 
zmm3/m512/m32bcst

B V/V AVX512_VNNI
OR AVX10.11

Multiply groups of 4 pairs of signed bytes in 
zmm3/m512/m32bcst with corresponding 
unsigned bytes of zmm2, summing those products 
and adding them to doubleword result in zmm1 
under writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VPDPBUSD dest, src1, src2 (VEX encoded versions)
VL=(128, 256)
KL=VL/32

ORIGDEST := DEST
FOR i := 0 TO KL-1:

// Extending to 16b 
// src1extend := ZERO_EXTEND
// src2extend := SIGN_EXTEND

p1word := src1extend(SRC1.byte[4*i+0]) * src2extend(SRC2.byte[4*i+0])
p2word := src1extend(SRC1.byte[4*i+1]) * src2extend(SRC2.byte[4*i+1])
p3word := src1extend(SRC1.byte[4*i+2]) * src2extend(SRC2.byte[4*i+2])
p4word := src1extend(SRC1.byte[4*i+3]) * src2extend(SRC2.byte[4*i+3])
DEST.dword[i] := ORIGDEST.dword[i] + p1word + p2word + p3word + p4word

DEST[MAX_VL-1:VL] := 0

VPDPBUSD dest, src1, src2 (EVEX encoded versions)
(KL,VL)=(4,128), (8,256), (16,512)
ORIGDEST := DEST
FOR i := 0 TO KL-1:

IF k1[i] or *no writemask*:
// Byte elements of SRC1 are zero-extended to 16b and
// byte elements of SRC2 are sign extended to 16b before multiplication.
IF SRC2 is memory and EVEX.b == 1:

t := SRC2.dword[0]
ELSE:

t := SRC2.dword[i]
p1word := ZERO_EXTEND(SRC1.byte[4*i]) * SIGN_EXTEND(t.byte[0])
p2word := ZERO_EXTEND(SRC1.byte[4*i+1]) * SIGN_EXTEND(t.byte[1])
p3word := ZERO_EXTEND(SRC1.byte[4*i+2]) * SIGN_EXTEND(t.byte[2])
p4word := ZERO_EXTEND(SRC1.byte[4*i+3]) * SIGN_EXTEND(t.byte[3])
DEST.dword[i] := ORIGDEST.dword[i] + p1word + p2word + p3word + p4word

ELSE IF *zeroing*:
DEST.dword[i] := 0

ELSE: // Merge masking, dest element unchanged
DEST.dword[i] := ORIGDEST.dword[i]

DEST[MAX_VL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPDPBUSD __m128i _mm_dpbusd_avx_epi32(__m128i, __m128i, __m128i);
VPDPBUSD __m128i _mm_dpbusd_epi32(__m128i, __m128i, __m128i);
VPDPBUSD __m128i _mm_mask_dpbusd_epi32(__m128i, __mmask8, __m128i, __m128i);
VPDPBUSD __m128i _mm_maskz_dpbusd_epi32(__mmask8, __m128i, __m128i, __m128i);
VPDPBUSD __m256i _mm256_dpbusd_avx_epi32(__m256i, __m256i, __m256i);
VPDPBUSD __m256i _mm256_dpbusd_epi32(__m256i, __m256i, __m256i);
VPDPBUSD __m256i _mm256_mask_dpbusd_epi32(__m256i, __mmask8, __m256i, __m256i);
VPDPBUSD __m256i _mm256_maskz_dpbusd_epi32(__mmask8, __m256i, __m256i, __m256i);
VPDPBUSD __m512i _mm512_dpbusd_epi32(__m512i, __m512i, __m512i);
VPDPBUSD __m512i _mm512_mask_dpbusd_epi32(__m512i, __mmask16, __m512i, __m512i);
VPDPBUSD __m512i _mm512_maskz_dpbusd_epi32(__mmask16, __m512i, __m512i, __m512i);
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SIMD Floating-Point Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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VPDPBUSDS—Multiply and Add Unsigned and Signed Bytes With Saturation 

Instruction Operand Encoding

Description

Multiplies the individual unsigned bytes of the first source operand by the corresponding signed bytes of the second 
source operand, producing intermediate signed word results. The word results are then summed and accumulated 
in the destination dword element size operand. If the intermediate sum overflows a 32b signed number the result 
is saturated to either 0x7FFF_FFFF for positive numbers of 0x8000_0000 for negative numbers.
This instruction supports memory fault suppression.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 51 /r
VPDPBUSDS xmm1, xmm2, 
xmm3/m128

A V/V AVX-VNNI Multiply groups of 4 pairs signed bytes in 
xmm3/m128 with corresponding unsigned 
bytes of xmm2, summing those products and 
adding them to doubleword result, with signed 
saturation in xmm1.

VEX.256.66.0F38.W0 51 /r
VPDPBUSDS ymm1, ymm2, 
ymm3/m256

A V/V AVX-VNNI Multiply groups of 4 pairs signed bytes in 
ymm3/m256 with corresponding unsigned 
bytes of ymm2, summing those products and 
adding them to doubleword result, with signed 
saturation in ymm1.

EVEX.128.66.0F38.W0 51 /r
VPDPBUSDS xmm1{k1}{z}, xmm2, 
xmm3/m128/m32bcst

B V/V (AVX512_VNNI 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply groups of 4 pairs signed bytes in 
xmm3/m128/m32bcst with corresponding 
unsigned bytes of xmm2, summing those 
products and adding them to doubleword 
result, with signed saturation in xmm1, under 
writemask k1.

EVEX.256.66.0F38.W0 51 /r
VPDPBUSDS ymm1{k1}{z}, ymm2, 
ymm3/m256/m32bcst

B V/V (AVX512_VNNI 
AND AVX512VL) 
OR AVX10.11

Multiply groups of 4 pairs signed bytes in 
ymm3/m256/m32bcst with corresponding 
unsigned bytes of ymm2, summing those 
products and adding them to doubleword 
result, with signed saturation in ymm1, under 
writemask k1.

EVEX.512.66.0F38.W0 51 /r
VPDPBUSDS zmm1{k1}{z}, zmm2, 
zmm3/m512/m32bcst

B V/V AVX512_VNNI
OR AVX10.11

Multiply groups of 4 pairs signed bytes in 
zmm3/m512/m32bcst with corresponding 
unsigned bytes of zmm2, summing those 
products and adding them to doubleword 
result, with signed saturation in zmm1, under 
writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VPDPBUSDS dest, src1, src2 (VEX encoded versions)
VL=(128, 256)
KL=VL/32

ORIGDEST := DEST
FOR i := 0 TO KL-1:

// Extending to 16b 
// src1extend := ZERO_EXTEND
// src2extend := SIGN_EXTEND

p1word := src1extend(SRC1.byte[4*i+0]) * src2extend(SRC2.byte[4*i+0])
p2word := src1extend(SRC1.byte[4*i+1]) * src2extend(SRC2.byte[4*i+1])
p3word := src1extend(SRC1.byte[4*i+2]) * src2extend(SRC2.byte[4*i+2])
p4word := src1extend(SRC1.byte[4*i+3]) * src2extend(SRC2.byte[4*i+3])
DEST.dword[i] := SIGNED_DWORD_SATURATE(ORIGDEST.dword[i] + p1word + p2word + p3word + p4word)

DEST[MAX_VL-1:VL] := 0

VPDPBUSDS dest, src1, src2 (EVEX encoded versions)
(KL,VL)=(4,128), (8,256), (16,512)
ORIGDEST := DEST
FOR i := 0 TO KL-1:

IF k1[i] or *no writemask*:
// Byte elements of SRC1 are zero-extended to 16b and
// byte elements of SRC2 are sign extended to 16b before multiplication.
IF SRC2 is memory and EVEX.b == 1:

t := SRC2.dword[0]
ELSE:

t := SRC2.dword[i]
p1word := ZERO_EXTEND(SRC1.byte[4*i]) * SIGN_EXTEND(t.byte[0])
p2word := ZERO_EXTEND(SRC1.byte[4*i+1]) * SIGN_EXTEND(t.byte[1])
p3word := ZERO_EXTEND(SRC1.byte[4*i+2]) * SIGN_EXTEND(t.byte[2])
p4word := ZERO_EXTEND(SRC1.byte[4*i+3]) *SIGN_EXTEND(t.byte[3])
DEST.dword[i] := SIGNED_DWORD_SATURATE(ORIGDEST.dword[i] + p1word + p2word + p3word + p4word)

ELSE IF *zeroing*:
DEST.dword[i] := 0

ELSE: // Merge masking, dest element unchanged
DEST.dword[i] := ORIGDEST.dword[i]

DEST[MAX_VL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPDPBUSDS __m128i _mm_dpbusds_avx_epi32(__m128i, __m128i, __m128i);
VPDPBUSDS __m128i _mm_dpbusds_epi32(__m128i, __m128i, __m128i);
VPDPBUSDS __m128i _mm_mask_dpbusds_epi32(__m128i, __mmask8, __m128i, __m128i);
VPDPBUSDS __m128i _mm_maskz_dpbusds_epi32(__mmask8, __m128i, __m128i, __m128i);
VPDPBUSDS __m256i _mm256_dpbusds_avx_epi32(__m256i, __m256i, __m256i);
VPDPBUSDS __m256i _mm256_dpbusds_epi32(__m256i, __m256i, __m256i);
VPDPBUSDS __m256i _mm256_mask_dpbusds_epi32(__m256i, __mmask8, __m256i, __m256i);
VPDPBUSDS __m256i _mm256_maskz_dpbusds_epi32(__mmask8, __m256i, __m256i, __m256i);
VPDPBUSDS __m512i _mm512_dpbusds_epi32(__m512i, __m512i, __m512i);
VPDPBUSDS __m512i _mm512_mask_dpbusds_epi32(__m512i, __mmask16, __m512i, __m512i);
VPDPBUSDS __m512i _mm512_maskz_dpbusds_epi32(__mmask16, __m512i, __m512i, __m512i);
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SIMD Floating-Point Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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VPDPWSSD—Multiply and Add Signed Word Integers

Instruction Operand Encoding

Description

Multiplies the individual signed words of the first source operand by the corresponding signed words of the second 
source operand, producing intermediate signed, doubleword results. The adjacent doubleword results are then 
summed and accumulated in the destination operand.
This instruction supports memory fault suppression.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 52 /r 
VPDPWSSD xmm1, xmm2, 
xmm3/m128

A V/V AVX-VNNI Multiply groups of 2 pairs signed words in 
xmm3/m128 with corresponding signed words 
of xmm2, summing those products and adding 
them to doubleword result in xmm1.

VEX.256.66.0F38.W0 52 /r
VPDPWSSD ymm1, ymm2, 
ymm3/m256

A V/V AVX-VNNI Multiply groups of 2 pairs signed words in 
ymm3/m256 with corresponding signed words 
of ymm2, summing those products and adding 
them to doubleword result in ymm1.

EVEX.128.66.0F38.W0 52 /r
VPDPWSSD xmm1{k1}{z}, xmm2, 
xmm3/m128/m32bcst

B V/V (AVX512_VNNI 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply groups of 2 pairs signed words in 
xmm3/m128/m32bcst with corresponding 
signed words of xmm2, summing those 
products and adding them to doubleword result 
in xmm1, under writemask k1.

EVEX.256.66.0F38.W0 52 /r
VPDPWSSD ymm1{k1}{z}, ymm2, 
ymm3/m256/m32bcst

B V/V (AVX512_VNNI 
AND AVX512VL) 
OR AVX10.11

Multiply groups of 2 pairs signed words in 
ymm3/m256/m32bcst with corresponding 
signed words of ymm2, summing those 
products and adding them to doubleword result 
in ymm1, under writemask k1.

EVEX.512.66.0F38.W0 52 /r
VPDPWSSD zmm1{k1}{z}, zmm2, 
zmm3/m512/m32bcst

B V/V AVX512_VNNI
OR AVX10.11

Multiply groups of 2 pairs signed words in 
zmm3/m512/m32bcst with corresponding 
signed words of zmm2, summing those 
products and adding them to doubleword result 
in zmm1, under writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VPDPWSSD dest, src1, src2 (VEX encoded versions)
VL=(128, 256)
KL=VL/32
ORIGDEST := DEST
FOR i := 0 TO KL-1:

p1dword := SIGN_EXTEND(SRC1.word[2*i+0]) * SIGN_EXTEND(SRC2.word[2*i+0] )
p2dword := SIGN_EXTEND(SRC1.word[2*i+1]) * SIGN_EXTEND(SRC2.word[2*i+1] )
DEST.dword[i] := ORIGDEST.dword[i] + p1dword + p2dword

DEST[MAX_VL-1:VL] := 0

VPDPWSSD dest, src1, src2 (EVEX encoded versions)
(KL,VL)=(4,128), (8,256), (16,512)
ORIGDEST := DEST
FOR i := 0 TO KL-1:

IF k1[i] or *no writemask*:
IF SRC2 is memory and EVEX.b == 1:

t := SRC2.dword[0]
ELSE:

t := SRC2.dword[i]
p1dword := SIGN_EXTEND(SRC1.word[2*i]) * SIGN_EXTEND(t.word[0])
p2dword := SIGN_EXTEND(SRC1.word[2*i+1]) * SIGN_EXTEND(t.word[1])
DEST.dword[i] := ORIGDEST.dword[i] + p1dword + p2dword

ELSE IF *zeroing*:
DEST.dword[i] := 0

ELSE:  // Merge masking, dest element unchanged
DEST.dword[i] := ORIGDEST.dword[i]

DEST[MAX_VL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPDPWSSD __m128i _mm_dpwssd_avx_epi32(__m128i, __m128i, __m128i);
VPDPWSSD __m128i _mm_dpwssd_epi32(__m128i, __m128i, __m128i);
VPDPWSSD __m128i _mm_mask_dpwssd_epi32(__m128i, __mmask8, __m128i, __m128i);
VPDPWSSD __m128i _mm_maskz_dpwssd_epi32(__mmask8, __m128i, __m128i, __m128i);
VPDPWSSD __m256i _mm256_dpwssd_avx_epi32(__m256i, __m256i, __m256i);
VPDPWSSD __m256i _mm256_dpwssd_epi32(__m256i, __m256i, __m256i);
VPDPWSSD __m256i _mm256_mask_dpwssd_epi32(__m256i, __mmask8, __m256i, __m256i);
VPDPWSSD __m256i _mm256_maskz_dpwssd_epi32(__mmask8, __m256i, __m256i, __m256i);
VPDPWSSD __m512i _mm512_dpwssd_epi32(__m512i, __m512i, __m512i);
VPDPWSSD __m512i _mm512_mask_dpwssd_epi32(__m512i, __mmask16, __m512i, __m512i);
VPDPWSSD __m512i _mm512_maskz_dpwssd_epi32(__mmask16, __m512i, __m512i, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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VPDPWSSDS—Multiply and Add Signed Word Integers With Saturation 

Instruction Operand Encoding

Description

Multiplies the individual signed words of the first source operand by the corresponding signed words of the second 
source operand, producing intermediate signed, doubleword results. The adjacent doubleword results are then 
summed and accumulated in the destination operand. If the intermediate sum overflows a 32b signed number, the 
result is saturated to either 0x7FFF_FFFF for positive numbers of 0x8000_0000 for negative numbers.
This instruction supports memory fault suppression.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 53 /r
VPDPWSSDS xmm1, xmm2, 
xmm3/m128

A V/V AVX-VNNI Multiply groups of 2 pairs of signed words in 
xmm3/m128 with corresponding signed words 
of xmm2, summing those products and adding 
them to doubleword result in xmm1, with 
signed saturation.

VEX.256.66.0F38.W0 53 /r
VPDPWSSDS ymm1, ymm2, 
ymm3/m256

A V/V AVX-VNNI Multiply groups of 2 pairs of signed words in 
ymm3/m256 with corresponding signed words 
of ymm2, summing those products and adding 
them to doubleword result in ymm1, with 
signed saturation.

EVEX.128.66.0F38.W0 53 /r
VPDPWSSDS xmm1{k1}{z}, xmm2, 
xmm3/m128/m32bcst

B V/V (AVX512_VNNI 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply groups of 2 pairs of signed words in 
xmm3/m128/m32bcst with corresponding 
signed words of xmm2, summing those 
products and adding them to doubleword result 
in xmm1, with signed saturation, under 
writemask k1.

EVEX.256.66.0F38.W0 53 /r
VPDPWSSDS ymm1{k1}{z}, ymm2, 
ymm3/m256/m32bcst

B V/V (AVX512_VNNI 
AND AVX512VL) 
OR AVX10.11

Multiply groups of 2 pairs of signed words in 
ymm3/m256/m32bcst with corresponding 
signed words of ymm2, summing those 
products and adding them to doubleword result 
in ymm1, with signed saturation, under 
writemask k1.

EVEX.512.66.0F38.W0 53 /r
VPDPWSSDS zmm1{k1}{z}, zmm2, 
zmm3/m512/m32bcst

B V/V AVX512_VNNI
OR AVX10.11

Multiply groups of 2 pairs of signed words in 
zmm3/m512/m32bcst with corresponding 
signed words of zmm2, summing those 
products and adding them to doubleword result 
in zmm1, with signed saturation, under 
writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VPDPWSSDS dest, src1, src2 (VEX encoded versions)
VL=(128, 256)
KL=VL/32
ORIGDEST := DEST
FOR i := 0 TO KL-1:

p1dword := SIGN_EXTEND(SRC1.word[2*i+0]) * SIGN_EXTEND(SRC2.word[2*i+0])
p2dword := SIGN_EXTEND(SRC1.word[2*i+1]) * SIGN_EXTEND(SRC2.word[2*i+1])
DEST.dword[i] := SIGNED_DWORD_SATURATE(ORIGDEST.dword[i] + p1dword + p2dword)

DEST[MAX_VL-1:VL] := 0

VPDPWSSDS dest, src1, src2 (EVEX encoded versions)
(KL,VL)=(4,128), (8,256), (16,512)
ORIGDEST := DEST
FOR i := 0 TO KL-1:

IF k1[i] or *no writemask*:
IF SRC2 is memory and EVEX.b == 1:

t := SRC2.dword[0]
ELSE:

t := SRC2.dword[i]
p1dword := SIGN_EXTEND(SRC1.word[2*i]) * SIGN_EXTEND(t.word[0])
p2dword := SIGN_EXTEND(SRC1.word[2*i+1]) * SIGN_EXTEND(t.word[1])
DEST.dword[i] := SIGNED_DWORD_SATURATE(ORIGDEST.dword[i] + p1dword + p2dword)

ELSE IF *zeroing*:
DEST.dword[i] := 0

ELSE: // Merge masking, dest element unchanged
DEST.dword[i] := ORIGDEST.dword[i]

DEST[MAX_VL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPDPWSSDS __m128i _mm_dpwssds_avx_epi32(__m128i, __m128i, __m128i);
VPDPWSSDS __m128i _mm_dpwssds_epi32(__m128i, __m128i, __m128i);
VPDPWSSDS __m128i _mm_mask_dpwssd_epi32(__m128i, __mmask8, __m128i, __m128i);
VPDPWSSDS __m128i _mm_maskz_dpwssd_epi32(__mmask8, __m128i, __m128i, __m128i);
VPDPWSSDS __m256i _mm256_dpwssds_avx_epi32(__m256i, __m256i, __m256i);
VPDPWSSDS __m256i _mm256_dpwssd_epi32(__m256i, __m256i, __m256i);
VPDPWSSDS __m256i _mm256_mask_dpwssd_epi32(__m256i, __mmask8, __m256i, __m256i);
VPDPWSSDS __m256i _mm256_maskz_dpwssd_epi32(__mmask8, __m256i, __m256i, __m256i);
VPDPWSSDS __m512i _mm512_dpwssd_epi32(__m512i, __m512i, __m512i);
VPDPWSSDS __m512i _mm512_mask_dpwssd_epi32(__m512i, __mmask16, __m512i, __m512i);
VPDPWSSDS __m512i _mm512_maskz_dpwssd_epi32(__mmask16, __m512i, __m512i, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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VPDPW[SU,US,UU]D[,S]—Multiply and Add Unsigned and Signed Words With and Without 
Saturation

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F3.0F38.W0 D2 /r

VPDPWSUD xmm1, xmm2, 
xmm3/m128

A V/V AVX-VNNI-INT16 Multiply groups of 2 pairs of unsigned words in 
xmm3/m128 with corresponding signed words 
of xmm2, summing those products and adding 
them to the doubleword result in xmm1.

VEX.256.F3.0F38.W0 D2 /r 

VPDPWSUD ymm1, ymm2, 
ymm3/m256

A V/V AVX-VNNI-INT16 Multiply groups of 2 pairs of unsigned words in 
ymm3/m256 with corresponding signed words 
of ymm2, summing those products and adding 
them to the doubleword result in ymm1.

VEX.128.F3.0F38.W0 D3 /r 

VPDPWSUDS xmm1, xmm2, 
xmm3/m128

A V/V AVX-VNNI-INT16 Multiply groups of 2 pairs of unsigned words in 
xmm3/m128 with corresponding signed words 
of xmm2, summing those products and adding 
them to the doubleword result, with signed 
saturation in xmm1.

VEX.256.F3.0F38.W0 D3 /r

VPDPWSUDS ymm1, ymm2, 
ymm3/m256

A V/V AVX-VNNI-INT16 Multiply groups of 2 pairs of unsigned words in 
ymm3/m256 with corresponding signed words 
of ymm2, summing those products and adding 
them to the doubleword result, with signed 
saturation in ymm1.

VEX.128.66.0F38.W0 D2 /r

VPDPWUSD xmm1, xmm2, 
xmm3/m128

A V/V AVX-VNNI-INT16 Multiply groups of 2 pairs of signed words in 
xmm3/m128 with corresponding unsigned 
words of xmm2, summing those products and 
adding them to doubleword result in xmm1.

VEX.256.66.0F38.W0 D2 /r

VPDPWUSD ymm1, ymm2, 
ymm3/m256

A V/V AVX-VNNI-INT16 Multiply groups of 2 pairs of signed words in 
ymm3/m256 with corresponding unsigned 
words of ymm2, summing those products and 
adding them to doubleword result in ymm1.

VEX.128.66.0F38.W0 D3 /r

VPDPWUSDS xmm1, xmm2, 
xmm3/m128

A V/V AVX-VNNI-INT16 Multiply groups of 2 pairs of signed words in 
xmm3/m128 with corresponding unsigned 
words of xmm2, summing those products and 
adding them to doubleword result, with signed 
saturation in xmm1.

VEX.256.66.0F38.W0 D3 /r

VPDPWUSDS ymm1, ymm2, 
ymm3/m256

A V/V AVX-VNNI-INT16 Multiply groups of 2 pairs of signed words in 
ymm3/m256 with corresponding unsigned 
words of ymm2, summing those products and 
adding them to doubleword result, with signed 
saturation in ymm1.

VEX.128.NP.0F38.W0 D2 /r

VPDPWUUD xmm1, xmm2, 
xmm3/m128

A V/V AVX-VNNI-INT16 Multiply groups of 2 pairs of unsigned words in 
xmm3/m128 with corresponding unsigned 
words of xmm2, summing those products and 
adding them to doubleword result in xmm1.

VEX.256.NP.0F38.W0 D2 /r

VPDPWUUD ymm1, ymm2, 
ymm3/m256

A V/V AVX-VNNI-INT16 Multiply groups of 2 pairs of unsigned words in 
ymm3/m256 with corresponding unsigned 
words of ymm2, summing those products and 
adding them to doubleword result in ymm1.
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Instruction Operand Encoding

Description
Multiplies the individual words of the first source operand by the corresponding words of the second source 
operand, producing intermediate dword results. The dword results are then summed and accumulated in the desti-
nation dword element size operand.
For unsigned saturation, when an individual result value is beyond the range of an unsigned doubleword (that is, 
greater than FFFF_FFFFH), the saturated unsigned doubleword integer value of FFFF_FFFFH is stored in the double-
word destination.
For signed saturation, when an individual result is beyond the range of a signed doubleword integer (that is, 
greater than 7FFF_FFFFH or less than 8000_0000H), the saturated value of 7FFF_FFFFH or 8000_0000H, respec-
tively, is written to the destination operand. 
The EVEX version of VPDPWSSD[,S] was previously introduced with AVX512-VNNI. The VEX version of 
VPDPWSSD[,S] was previously introduced with AVX-VNNI.

Operation

VPDPW[UU,SU,US]D[,S] dest, src1, src2 (VEX encoded version)
VL = (128, 256)
KL = VL/32

ORIGDEST := DEST

IF *src1 is signed*: // SU
src1extend := SIGN_EXTEND

ELSE: // UU, US
src1extend := ZERO_EXTEND

IF *src2 is signed*: // US
src2extend := SIGN_EXTEND

ELSE: // UU, SU
src2extend := ZERO_EXTEND

FOR i := 0 TO KL-1:
p1dword := src1extend(SRC1.word[2*i+0]) * src2extend(SRC2.word[2*i+0])
p2dword := src1extend(SRC1.word[2*i+1]) * src2extend(SRC2.word[2*i+1])
IF *saturating version*:

IF *UU instruction version*:

VEX.128.NP.0F38.W0 D3 /r

VPDPWUUDS xmm1, xmm2, 
xmm3/m128

A V/V AVX-VNNI-INT16 Multiply groups of 2 pairs of unsigned words in 
xmm3/m128 with corresponding unsigned 
words of xmm2, summing those products and 
adding them to the doubleword result, with 
unsigned saturation in xmm1.

VEX.256.NP.0F38.W0 D3 /r

VPDPWUUDS ymm1, ymm2, 
ymm3/m256

A V/V AVX-VNNI-INT16 Multiply groups of 2 pairs of unsigned words in 
ymm3/m256 with corresponding unsigned 
words of ymm2, summing those products and 
adding them to the doubleword result, with 
unsigned saturation in ymm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description
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DEST.dword[i] := UNSIGNED_DWORD_SATURATE(ORIGDEST.dword[i] + p1dword + p2dword)
ELSE:

DEST.dword[i] := SIGNED_DWORD_SATURATE(ORIGDEST.dword[i] + p1dword + p2dword)
ELSE:

DEST.dword[i] := ORIGDEST.dword[i] + p1dword + p2dword
DEST[MAX_VL-1:VL] := 0

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
VPDPWSUD __m128i _mm_dpwsud_epi32 (__m128i __W, __m128i __A, __m128i __B);
VPDPWSUD __m256i _mm256_dpwsud_epi32 (__m256i __W, __m256i __A, __m256i __B);
VPDPWSUDS __m128i _mm_dpwsuds_epi32 (__m128i __W, __m128i __A, __m128i __B);
VPDPWSUDS __m256i _mm256_dpwsuds_epi32 (__m256i __W, __m256i __A, __m256i __B);
VPDPWUSD __m128i _mm_dpwusd_epi32 (__m128i __W, __m128i __A, __m128i __B);
VPDPWUSD __m256i _mm256_dpwusd_epi32 (__m256i __W, __m256i __A, __m256i __B);
VPDPWUSDS __m128i _mm_dpwusds_epi32 (__m128i __W, __m128i __A, __m128i __B);
VPDPWUSDS __m256i _mm256_dpwusds_epi32 (__m256i __W, __m256i __A, __m256i __B);
VPDPWUUD __m128i _mm_dpwuud_epi32 (__m128i __W, __m128i __A, __m128i __B);
VPDPWUUD __m256i _mm256_dpwuud_epi32 (__m256i __W, __m256i __A, __m256i __B);
VPDPWUUDS __m128i _mm_dpwuuds_epi32 (__m128i __W, __m128i __A, __m128i __B);
VPDPWUUDS __m256i _mm256_dpwuuds_epi32 (__m256i __W, __m256i __A, __m256i __B);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions.”
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VPERM2F128—Permute Floating-Point Values

Instruction Operand Encoding

Description

Permute 128 bit floating-point-containing fields from the first source operand (second operand) and second source 
operand (third operand) using bits in the 8-bit immediate and store results in the destination operand (first 
operand). The first source operand is a YMM register, the second source operand is a YMM register or a 256-bit 
memory location, and the destination operand is a YMM register.

Figure 1-21.  VPERM2F128 Operation

Imm8[1:0] select the source for the first destination 128-bit field, imm8[5:4] select the source for the second 
destination field. If imm8[3] is set, the low 128-bit field is zeroed. If imm8[7] is set, the high 128-bit field is zeroed.
VEX.L must be 1, otherwise the instruction will #UD.

Opcode/
Instruction

Op/ 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.256.66.0F3A.W0 06 /r ib
VPERM2F128 ymm1, ymm2, ymm3/m256, imm8

RV
MI

V/V AVX Permute 128-bit floating-point fields in 
ymm2 and ymm3/mem using controls from 
imm8 and store result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

DEST

SRC1 X0X1

X0, X1, Y0, or Y1

Y0Y1

X0, X1, Y0, or Y1

SRC2
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Operation

VPERM2F128
CASE IMM8[1:0] of 
0: DEST[127:0] := SRC1[127:0]
1: DEST[127:0] := SRC1[255:128]
2: DEST[127:0] := SRC2[127:0]
3: DEST[127:0] := SRC2[255:128]
ESAC

CASE IMM8[5:4] of 
0: DEST[255:128] := SRC1[127:0]
1: DEST[255:128] := SRC1[255:128]
2: DEST[255:128] := SRC2[127:0]
3: DEST[255:128] := SRC2[255:128]
ESAC
IF (imm8[3])
DEST[127:0] := 0
FI

IF (imm8[7])
DEST[MAXVL-1:128] := 0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VPERM2F128:  __m256 _mm256_permute2f128_ps (__m256 a, __m256 b, int control)

VPERM2F128:  __m256d _mm256_permute2f128_pd (__m256d a, __m256d b, int control)

VPERM2F128:  __m256i _mm256_permute2f128_si256 (__m256i a, __m256i b, int control)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-23, “Type 6 Class Exception Conditions.”
Additionally:
#UD If VEX.L = 0

If VEX.W = 1.
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VPERM2I128—Permute Integer Values

Instruction Operand Encoding

Description

Permute 128 bit integer data from the first source operand (second operand) and second source operand (third 
operand) using bits in the 8-bit immediate and store results in the destination operand (first operand). The first 
source operand is a YMM register, the second source operand is a YMM register or a 256-bit memory location, and 
the destination operand is a YMM register.

Figure 1-22.  VPERM2I128 Operation

Imm8[1:0] select the source for the first destination 128-bit field, imm8[5:4] select the source for the second 
destination field. If imm8[3] is set, the low 128-bit field is zeroed. If imm8[7] is set, the high 128-bit field is zeroed.
VEX.L must be 1, otherwise the instruction will #UD.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.256.66.0F3A.W0 46 /r ib
VPERM2I128 ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX2 Permute 128-bit integer data in ymm2 and 
ymm3/mem using controls from imm8 and 
store result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

DEST

SRC1 X0X1

X0, X1, Y0, or Y1

Y0Y1

X0, X1, Y0, or Y1

SRC2
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Operation

VPERM2I128
CASE IMM8[1:0] of 
0: DEST[127:0] := SRC1[127:0]
1: DEST[127:0] := SRC1[255:128]
2: DEST[127:0] := SRC2[127:0]
3: DEST[127:0] := SRC2[255:128]
ESAC
CASE IMM8[5:4] of 
0: DEST[255:128] := SRC1[127:0]
1: DEST[255:128] := SRC1[255:128]
2: DEST[255:128] := SRC2[127:0]
3: DEST[255:128] := SRC2[255:128]
ESAC
IF (imm8[3])
DEST[127:0] := 0
FI

IF (imm8[7])
DEST[255:128] := 0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VPERM2I128: __m256i _mm256_permute2x128_si256 (__m256i a, __m256i b, int control)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Table 2-23, “Type 6 Class Exception Conditions.”
Additionally:
#UD If VEX.L = 0,

If VEX.W = 1.
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VPERMB—Permute Packed Bytes Elements 

Instruction Operand Encoding

Description

Copies bytes from the second source operand (the third operand) to the destination operand (the first operand) 
according to the byte indices in the first source operand (the second operand). Note that this instruction permits a 
byte in the source operand to be copied to more than one location in the destination operand. 
Only the low 6(EVEX.512)/5(EVEX.256)/4(EVEX.128) bits of each byte index is used to select the location of the 
source byte from the second source operand.

The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM reg-
ister, a 512/256/128-bit memory location. The destination operand is a ZMM/YMM/XMM register updated at byte 
granularity by the writemask k1.

Operation

VPERMB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
IF VL = 128:

n := 3;
ELSE IF VL = 256:

n := 4;
ELSE IF VL = 512:

n := 5;
FI;
FOR j := 0 TO KL-1:

id := SRC1[j*8 + n : j*8] ; // location of the source byte
IF k1[j] OR *no writemask* THEN

DEST[j*8 + 7: j*8] := SRC2[id*8 +7: id*8];
ELSE IF zeroing-masking THEN

DEST[j*8 + 7: j*8] := 0;
*ELSE 

DEST[j*8 + 7: j*8] remains unchanged*
FI

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 8D /r
VPERMB xmm1 {k1}{z}, xmm2, 
xmm3/m128

A V/V (AVX512VL AND
AVX512_VBMI) 
OR AVX10.11 

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Permute bytes in xmm3/m128 using byte indexes 
in xmm2 and store the result in xmm1 using 
writemask k1.

EVEX.256.66.0F38.W0 8D /r
VPERMB ymm1 {k1}{z}, ymm2, 
ymm3/m256

A V/V AVX512VL
AVX512_VBMI) 
OR AVX10.11

Permute bytes in ymm3/m256 using byte indexes 
in ymm2 and store the result in ymm1 using 
writemask k1.

EVEX.512.66.0F38.W0 8D /r
VPERMB zmm1 {k1}{z}, zmm2, 
zmm3/m512

A V/V AVX512_VBMI 
OR AVX10.11

Permute bytes in zmm3/m512 using byte indexes 
in zmm2 and store the result in zmm1 using 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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ENDFOR
DEST[MAX_VL-1:VL] := 0;

Intel C/C++ Compiler Intrinsic Equivalent

VPERMB __m512i _mm512_permutexvar_epi8( __m512i idx, __m512i a);
VPERMB __m512i _mm512_mask_permutexvar_epi8(__m512i s, __mmask64 k, __m512i idx, __m512i a);
VPERMB __m512i _mm512_maskz_permutexvar_epi8( __mmask64 k, __m512i idx, __m512i a);
VPERMB __m256i _mm256_permutexvar_epi8( __m256i idx, __m256i a);
VPERMB __m256i _mm256_mask_permutexvar_epi8(__m256i s, __mmask32 k, __m256i idx, __m256i a);
VPERMB __m256i _mm256_maskz_permutexvar_epi8( __mmask32 k, __m256i idx, __m256i a);
VPERMB __m128i _mm_permutexvar_epi8( __m128i idx, __m128i a);
VPERMB __m128i _mm_mask_permutexvar_epi8(__m128i s, __mmask16 k, __m128i idx, __m128i a);
VPERMB __m128i _mm_maskz_permutexvar_epi8( __mmask16 k, __m128i idx, __m128i a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
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VPERMD/VPERMW—Permute Packed Doubleword/Word Elements

Instruction Operand Encoding

Description

Copies doublewords (or words) from the second source operand (the third operand) to the destination operand 
(the first operand) according to the indices in the first source operand (the second operand). Note that this instruc-
tion permits a doubleword (word) in the source operand to be copied to more than one location in the destination 
operand.
VEX.256 encoded VPERMD: The first and second operands are YMM registers, the third operand can be a YMM 
register or memory location. Bits (MAXVL-1:256) of the corresponding destination register are zeroed. 
EVEX encoded VPERMD: The first and second operands are ZMM/YMM registers, the third operand can be a 
ZMM/YMM register, a 512/256-bit memory location or a 512/256-bit vector broadcasted from a 32-bit memory 
location. The elements in the destination are updated using the writemask k1.
VPERMW: first and second operands are ZMM/YMM/XMM registers, the third operand can be a ZMM/YMM/XMM 
register, or a 512/256/128-bit memory location. The destination is updated using the writemask k1.
EVEX.128 encoded versions: Bits (MAXVL-1:128) of the corresponding ZMM register are zeroed.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.256.66.0F38.W0 36 /r
VPERMD ymm1, ymm2, ymm3/m256

A V/V AVX2 Permute doublewords in ymm3/m256 using 
indices in ymm2 and store the result in ymm1.

EVEX.256.66.0F38.W0 36 /r
VPERMD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Permute doublewords in ymm3/m256/m32bcst 
using indexes in ymm2 and store the result in 
ymm1 using writemask k1.

EVEX.512.66.0F38.W0 36 /r
VPERMD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

B V/V AVX512F
OR AVX10.11

Permute doublewords in zmm3/m512/m32bcst 
using indices in zmm2 and store the result in 
zmm1 using writemask k1.

EVEX.128.66.0F38.W1 8D /r
VPERMW xmm1 {k1}{z}, xmm2, 
xmm3/m128

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Permute word integers in xmm3/m128 using 
indexes in xmm2 and store the result in xmm1 
using writemask k1.

EVEX.256.66.0F38.W1 8D /r
VPERMW ymm1 {k1}{z}, ymm2, 
ymm3/m256

C V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Permute word integers in ymm3/m256 using 
indexes in ymm2 and store the result in ymm1 
using writemask k1.

EVEX.512.66.0F38.W1 8D /r
VPERMW zmm1 {k1}{z}, zmm2, 
zmm3/m512

C V/V AVX512BW 
OR AVX10.11

Permute word integers in zmm3/m512 using 
indexes in zmm2 and store the result in zmm1 
using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VPERMD (EVEX encoded versions)
(KL, VL) = (8, 256), (16, 512)
IF VL = 256 THEN n := 2; FI;
IF VL = 512 THEN n := 3; FI;
FOR j := 0 TO KL-1

i := j * 32
id := 32*SRC1[i+n:i]
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN DEST[i+31:i] := SRC2[31:0];
ELSE DEST[i+31:i] := SRC2[id+31:id];

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPERMD (VEX.256 encoded version)
DEST[31:0] := (SRC2[255:0] >> (SRC1[2:0] * 32))[31:0];
DEST[63:32] := (SRC2[255:0] >> (SRC1[34:32] * 32))[31:0];
DEST[95:64] := (SRC2[255:0] >> (SRC1[66:64] * 32))[31:0];
DEST[127:96] := (SRC2[255:0] >> (SRC1[98:96] * 32))[31:0];
DEST[159:128] := (SRC2[255:0] >> (SRC1[130:128] * 32))[31:0];
DEST[191:160] := (SRC2[255:0] >> (SRC1[162:160] * 32))[31:0];
DEST[223:192] := (SRC2[255:0] >> (SRC1[194:192] * 32))[31:0];
DEST[255:224] := (SRC2[255:0] >> (SRC1[226:224] * 32))[31:0];
DEST[MAXVL-1:256] := 0

VPERMW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128 THEN n := 2; FI;
IF VL = 256 THEN n := 3; FI;
IF VL = 512 THEN n := 4; FI;
FOR j := 0 TO KL-1

i := j * 16
id := 16*SRC1[i+n:i]
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SRC2[id+15:id]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPERMD __m512i _mm512_permutexvar_epi32( __m512i idx, __m512i a);
VPERMD __m512i _mm512_mask_permutexvar_epi32(__m512i s, __mmask16 k, __m512i idx, __m512i a);
VPERMD __m512i _mm512_maskz_permutexvar_epi32( __mmask16 k, __m512i idx, __m512i a);
VPERMD __m256i _mm256_permutexvar_epi32( __m256i idx, __m256i a);
VPERMD __m256i _mm256_mask_permutexvar_epi32(__m256i s, __mmask8 k, __m256i idx, __m256i a);
VPERMD __m256i _mm256_maskz_permutexvar_epi32( __mmask8 k, __m256i idx, __m256i a);
VPERMW __m512i _mm512_permutexvar_epi16( __m512i idx, __m512i a);
VPERMW __m512i _mm512_mask_permutexvar_epi16(__m512i s, __mmask32 k, __m512i idx, __m512i a);
VPERMW __m512i _mm512_maskz_permutexvar_epi16( __mmask32 k, __m512i idx, __m512i a);
VPERMW __m256i _mm256_permutexvar_epi16( __m256i idx, __m256i a);
VPERMW __m256i _mm256_mask_permutexvar_epi16(__m256i s, __mmask16 k, __m256i idx, __m256i a);
VPERMW __m256i _mm256_maskz_permutexvar_epi16( __mmask16 k, __m256i idx, __m256i a);
VPERMW __m128i _mm_permutexvar_epi16( __m128i idx, __m128i a);
VPERMW __m128i _mm_mask_permutexvar_epi16(__m128i s, __mmask8 k, __m128i idx, __m128i a);
VPERMW __m128i _mm_maskz_permutexvar_epi16( __mmask8 k, __m128i idx, __m128i a);

SIMD Floating-Point Exceptions

None

Other Exceptions

Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded VPERMD, see Table 2-52, “Type E4NF Class Exception Conditions.”
EVEX-encoded VPERMW, see Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
Additionally:
#UD If VEX.L = 0.

If EVEX.L’L = 0 for VPERMD.
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VPERMI2B—Full Permute of Bytes From Two Tables Overwriting the Index

Instruction Operand Encoding

Description

Permutes byte values in the second operand (the first source operand) and the third operand (the second source 
operand) using the byte indices in the first operand (the destination operand) to select byte elements from the 
second or third source operands. The selected byte elements are written to the destination at byte granularity 
under the writemask k1. 
The first and second operands are ZMM/YMM/XMM registers. The first operand contains input indices to select 
elements from the two input tables in the 2nd and 3rd operands. The first operand is also the destination of the 
result. The third operand can be a ZMM/YMM/XMM register, or a 512/256/128-bit memory location. In each index 
byte, the id bit for table selection is bit 6/5/4, and bits [5:0]/[4:0]/[3:0] selects element within each input table.
Note that these instructions permit a byte value in the source operands to be copied to more than one location in 
the destination operand. Also, the same tables can be reused in subsequent iterations, but the index elements are 
overwritten.
Bits (MAX_VL-1:256/128) of the destination are zeroed for VL=256,128.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 75 /r
VPERMI2B xmm1 {k1}{z}, xmm2, 
xmm3/m128

A V/V (AVX512VL AND
AVX512_VBMI) 
OR AVX10.11 

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Permute bytes in xmm3/m128 and xmm2 using 
byte indexes in xmm1 and store the byte results 
in xmm1 using writemask k1.

EVEX.256.66.0F38.W0 75 /r
VPERMI2B ymm1 {k1}{z}, ymm2, 
ymm3/m256

A V/V (AVX512VL
AVX512_VBMI) 
OR AVX10.11

Permute bytes in ymm3/m256 and ymm2 using 
byte indexes in ymm1 and store the byte results 
in ymm1 using writemask k1.

EVEX.512.66.0F38.W0 75 /r
VPERMI2B zmm1 {k1}{z}, zmm2, 
zmm3/m512

A V/V AVX512_VBMI 
OR AVX10.11

Permute bytes in zmm3/m512 and zmm2 using 
byte indexes in zmm1 and store the byte results 
in zmm1 using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VPERMI2B (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
IF VL = 128:

id := 3;
ELSE IF VL = 256:

id := 4;
ELSE IF VL = 512:

id := 5;
FI;
TMP_DEST[VL-1:0] := DEST[VL-1:0];
FOR j := 0 TO KL-1

off := 8*SRC1[j*8 + id: j*8] ;
IF k1[j] OR *no writemask*:

DEST[j*8 + 7: j*8] := TMP_DEST[j*8+id+1]? SRC2[off+7:off] : SRC1[off+7:off];
ELSE IF *zeroing-masking*

DEST[j*8 + 7: j*8] := 0;
*ELSE 

DEST[j*8 + 7: j*8] remains unchanged*
FI;

ENDFOR
DEST[MAX_VL-1:VL] := 0;

Intel C/C++ Compiler Intrinsic Equivalent

VPERMI2B __m512i _mm512_permutex2var_epi8(__m512i a, __m512i idx, __m512i b);
VPERMI2B __m512i _mm512_mask2_permutex2var_epi8(__m512i a, __m512i idx, __mmask64 k, __m512i b);
VPERMI2B __m512i _mm512_maskz_permutex2var_epi8(__mmask64 k, __m512i a, __m512i idx, __m512i b);
VPERMI2B __m256i _mm256_permutex2var_epi8(__m256i a, __m256i idx, __m256i b);
VPERMI2B __m256i _mm256_mask2_permutex2var_epi8(__m256i a, __m256i idx, __mmask32 k, __m256i b);
VPERMI2B __m256i _mm256_maskz_permutex2var_epi8(__mmask32 k, __m256i a, __m256i idx, __m256i b);
VPERMI2B __m128i _mm_permutex2var_epi8(__m128i a, __m128i idx, __m128i b);
VPERMI2B __m128i _mm_mask2_permutex2var_epi8(__m128i a, __m128i idx, __mmask16 k, __m128i b);
VPERMI2B __m128i _mm_maskz_permutex2var_epi8(__mmask16 k, __m128i a, __m128i idx, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
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VPERMI2W/D/Q/PS/PD—Full Permute From Two Tables Overwriting the Index
Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W1 75 /r
VPERMI2W xmm1 {k1}{z}, xmm2, 
xmm3/m128

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Permute word integers from two tables in 
xmm3/m128 and xmm2 using indexes in xmm1 
and store the result in xmm1 using writemask k1.

EVEX.256.66.0F38.W1 75 /r
VPERMI2W ymm1 {k1}{z}, ymm2, 
ymm3/m256

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Permute word integers from two tables in 
ymm3/m256 and ymm2 using indexes in ymm1 
and store the result in ymm1 using writemask k1.

EVEX.512.66.0F38.W1 75 /r
VPERMI2W zmm1 {k1}{z}, zmm2, 
zmm3/m512

A V/V AVX512BW 
OR AVX10.11

Permute word integers from two tables in 
zmm3/m512 and zmm2 using indexes in zmm1 
and store the result in zmm1 using writemask k1.

EVEX.128.66.0F38.W0 76 /r
VPERMI2D xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute double-words from two tables in 
xmm3/m128/m32bcst and xmm2 using indexes in 
xmm1 and store the result in xmm1 using 
writemask k1.

EVEX.256.66.0F38.W0 76 /r
VPERMI2D ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute double-words from two tables in 
ymm3/m256/m32bcst and ymm2 using indexes in 
ymm1 and store the result in ymm1 using 
writemask k1.

EVEX.512.66.0F38.W0 76 /r
VPERMI2D zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

B V/V AVX512F 
OR AVX10.11

Permute double-words from two tables in 
zmm3/m512/m32bcst and zmm2 using indices in 
zmm1 and store the result in zmm1 using 
writemask k1.

EVEX.128.66.0F38.W1 76 /r
VPERMI2Q xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute quad-words from two tables in 
xmm3/m128/m64bcst and xmm2 using indexes in 
xmm1 and store the result in xmm1 using 
writemask k1.

EVEX.256.66.0F38.W1 76 /r
VPERMI2Q ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute quad-words from two tables in 
ymm3/m256/m64bcst and ymm2 using indexes in 
ymm1 and store the result in ymm1 using 
writemask k1.

EVEX.512.66.0F38.W1 76 /r
VPERMI2Q zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

B V/V AVX512F 
OR AVX10.11

Permute quad-words from two tables in 
zmm3/m512/m64bcst and zmm2 using indices in 
zmm1 and store the result in zmm1 using 
writemask k1.

EVEX.128.66.0F38.W0 77 /r
VPERMI2PS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute single-precision floating-point values 
from two tables in xmm3/m128/m32bcst and 
xmm2 using indexes in xmm1 and store the result 
in xmm1 using writemask k1.

EVEX.256.66.0F38.W0 77 /r
VPERMI2PS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute single-precision floating-point values 
from two tables in ymm3/m256/m32bcst and 
ymm2 using indexes in ymm1 and store the result 
in ymm1 using writemask k1.

EVEX.512.66.0F38.W0 77 /r
VPERMI2PS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

B V/V AVX512F 
OR AVX10.11

Permute single-precision floating-point values 
from two tables in zmm3/m512/m32bcst and 
zmm2 using indices in zmm1 and store the result 
in zmm1 using writemask k1.
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Instruction Operand Encoding

Description

Permutes 16-bit/32-bit/64-bit values in the second operand (the first source operand) and the third operand (the 
second source operand) using indices in the first operand to select elements from the second and third operands. 
The selected elements are written to the destination operand (the first operand) according to the writemask k1. 
The first and second operands are ZMM/YMM/XMM registers. The first operand contains input indices to select 
elements from the two input tables in the 2nd and 3rd operands. The first operand is also the destination of the 
result. 
D/Q/PS/PD element versions: The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit 
memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. Broadcast from the 
low 32/64-bit memory location is performed if EVEX.b and the id bit for table selection are set (selecting table_2).
Dword/PS versions: The id bit for table selection is bit 4/3/2, depending on VL=512, 256, 128. Bits 
[3:0]/[2:0]/[1:0] of each element in the input index vector select an element within the two source operands, If 
the id bit is 0, table_1 (the first source) is selected; otherwise the second source operand is selected.
Qword/PD versions: The id bit for table selection is bit 3/2/1, and bits [2:0]/[1:0] /bit 0 selects element within each 
input table.
Word element versions: The second source operand can be a ZMM/YMM/XMM register, or a 512/256/128-bit 
memory location. The id bit for table selection is bit 5/4/3, and bits [4:0]/[3:0]/[2:0] selects element within each 
input table. 
Note that these instructions permit a 16-bit/32-bit/64-bit value in the source operands to be copied to more than 
one location in the destination operand. Note also that in this case, the same table can be reused for example for a 
second iteration, while the index elements are overwritten.
Bits (MAXVL-1:256/128) of the destination are zeroed for VL=256,128. 

EVEX.128.66.0F38.W1 77 /r
VPERMI2PD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute double precision floating-point values 
from two tables in xmm3/m128/m64bcst and 
xmm2 using indexes in xmm1 and store the result 
in xmm1 using writemask k1.

EVEX.256.66.0F38.W1 77 /r
VPERMI2PD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute double precision floating-point values 
from two tables in ymm3/m256/m64bcst and 
ymm2 using indexes in ymm1 and store the result 
in ymm1 using writemask k1.

EVEX.512.66.0F38.W1 77 /r
VPERMI2PD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

B V/V AVX512F 
OR AVX10.11

Permute double precision floating-point values 
from two tables in zmm3/m512/m64bcst and 
zmm2 using indices in zmm1 and store the result 
in zmm1 using writemask k1.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (r,w) EVEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description
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Operation

VPERMI2W (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

id := 2
FI;
IF VL = 256

id := 3
FI;
IF VL = 512

id := 4
FI;
TMP_DEST := DEST
FOR j := 0 TO KL-1

i := j * 16
off := 16*TMP_DEST[i+id:i]
IF k1[j] OR *no writemask*

THEN 
DEST[i+15:i]=TMP_DEST[i+id+1] ? SRC2[off+15:off] 

       : SRC1[off+15:off]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPERMI2D/VPERMI2PS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL = 128

id := 1
FI;
IF VL = 256

id := 2
FI;
IF VL = 512

id := 3
FI;
TMP_DEST := DEST
FOR j := 0 TO KL-1

i := j * 32
off := 32*TMP_DEST[i+id:i]
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN 
DEST[i+31:i]  := TMP_DEST[i+id+1] ? SRC2[31:0] 

       : SRC1[off+31:off]
ELSE 

DEST[i+31:i] := TMP_DEST[i+id+1] ? SRC2[off+31:off] 
       : SRC1[off+31:off]
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FI 
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPERMI2Q/VPERMI2PD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8 512)
IF VL = 128

id := 0
FI;
IF VL = 256

id := 1
FI;
IF VL = 512

id := 2
FI;
TMP_DEST:= DEST
FOR j := 0 TO KL-1

i := j * 64
off := 64*TMP_DEST[i+id:i]
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN 
DEST[i+63:i] := TMP_DEST[i+id+1] ? SRC2[63:0] 

       : SRC1[off+63:off]
ELSE 

DEST[i+63:i] := TMP_DEST[i+id+1] ? SRC2[off+63:off] 
       : SRC1[off+63:off]

FI 
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPERMI2D __m512i _mm512_permutex2var_epi32(__m512i a, __m512i idx, __m512i b);
VPERMI2D __m512i _mm512_mask_permutex2var_epi32(__m512i a, __mmask16 k, __m512i idx, __m512i b);
VPERMI2D __m512i _mm512_mask2_permutex2var_epi32(__m512i a, __m512i idx, __mmask16 k, __m512i b);
VPERMI2D __m512i _mm512_maskz_permutex2var_epi32(__mmask16 k, __m512i a, __m512i idx, __m512i b);
VPERMI __m256i _mm256_permutex2var_epi32(__m256i a, __m256i idx, __m256i b);
VPERMI2D __m256i _mm256_mask_permutex2var_epi32(__m256i a, __mmask8 k, __m256i idx, __m256i b);
VPERMI2D __m256i _mm256_mask2_permutex2var_epi32(__m256i a, __m256i idx, __mmask8 k, __m256i b);
VPERMI2D __m256i _mm256_maskz_permutex2var_epi32(__mmask8 k, __m256i a, __m256i idx, __m256i b);
VPERMI2D __m128i _mm_permutex2var_epi32(__m128i a, __m128i idx, __m128i b);
VPERMI2D __m128i _mm_mask_permutex2var_epi32(__m128i a, __mmask8 k, __m128i idx, __m128i b);
VPERMI2D __m128i _mm_mask2_permutex2var_epi32(__m128i a, __m128i idx, __mmask8 k, __m128i b);
VPERMI2D __m128i _mm_maskz_permutex2var_epi32(__mmask8 k, __m128i a, __m128i idx, __m128i b);
VPERMI2PD __m512d _mm512_permutex2var_pd(__m512d a, __m512i idx, __m512d b);
VPERMI2PD __m512d _mm512_mask_permutex2var_pd(__m512d a, __mmask8 k, __m512i idx, __m512d b);
VPERMI2PD __m512d _mm512_mask2_permutex2var_pd(__m512d a, __m512i idx, __mmask8 k, __m512d b);
VPERMI2PD __m512d _mm512_maskz_permutex2var_pd(__mmask8 k, __m512d a, __m512i idx, __m512d b);
VPERMI2PD __m256d _mm256_permutex2var_pd(__m256d a, __m256i idx, __m256d b);
VPERMI2PD __m256d _mm256_mask_permutex2var_pd(__m256d a, __mmask8 k, __m256i idx, __m256d b);
VPERMI2PD __m256d _mm256_mask2_permutex2var_pd(__m256d a, __m256i idx, __mmask8 k, __m256d b);
VPERMI2PD __m256d _mm256_maskz_permutex2var_pd(__mmask8 k, __m256d a, __m256i idx, __m256d b);
VPERMI2PD __m128d _mm_permutex2var_pd(__m128d a, __m128i idx, __m128d b);
VPERMI2PD __m128d _mm_mask_permutex2var_pd(__m128d a, __mmask8 k, __m128i idx, __m128d b);
VPERMI2PD __m128d _mm_mask2_permutex2var_pd(__m128d a, __m128i idx, __mmask8 k, __m128d b);
VPERMI2PD __m128d _mm_maskz_permutex2var_pd(__mmask8 k, __m128d a, __m128i idx, __m128d b);
VPERMI2PS __m512 _mm512_permutex2var_ps(__m512 a, __m512i idx, __m512 b);
VPERMI2PS __m512 _mm512_mask_permutex2var_ps(__m512 a, __mmask16 k, __m512i idx, __m512 b);
VPERMI2PS __m512 _mm512_mask2_permutex2var_ps(__m512 a, __m512i idx, __mmask16 k, __m512 b);
VPERMI2PS __m512 _mm512_maskz_permutex2var_ps(__mmask16 k, __m512 a, __m512i idx, __m512 b);
VPERMI2PS __m256 _mm256_permutex2var_ps(__m256 a, __m256i idx, __m256 b);
VPERMI2PS __m256 _mm256_mask_permutex2var_ps(__m256 a, __mmask8 k, __m256i idx, __m256 b);
VPERMI2PS __m256 _mm256_mask2_permutex2var_ps(__m256 a, __m256i idx, __mmask8 k, __m256 b);
VPERMI2PS __m256 _mm256_maskz_permutex2var_ps(__mmask8 k, __m256 a, __m256i idx, __m256 b);
VPERMI2PS __m128 _mm_permutex2var_ps(__m128 a, __m128i idx, __m128 b);
VPERMI2PS __m128 _mm_mask_permutex2var_ps(__m128 a, __mmask8 k, __m128i idx, __m128 b);
VPERMI2PS __m128 _mm_mask2_permutex2var_ps(__m128 a, __m128i idx, __mmask8 k, __m128 b);
VPERMI2PS __m128 _mm_maskz_permutex2var_ps(__mmask8 k, __m128 a, __m128i idx, __m128 b);
VPERMI2Q __m512i _mm512_permutex2var_epi64(__m512i a, __m512i idx, __m512i b);
VPERMI2Q __m512i _mm512_mask_permutex2var_epi64(__m512i a, __mmask8 k, __m512i idx, __m512i b);
VPERMI2Q __m512i _mm512_mask2_permutex2var_epi64(__m512i a, __m512i idx, __mmask8 k, __m512i b);
VPERMI2Q __m512i _mm512_maskz_permutex2var_epi64(__mmask8 k, __m512i a, __m512i idx, __m512i b);
VPERMI2Q __m256i _mm256_permutex2var_epi64(__m256i a, __m256i idx, __m256i b);
VPERMI2Q __m256i _mm256_mask_permutex2var_epi64(__m256i a, __mmask8 k, __m256i idx, __m256i b);
VPERMI2Q __m256i _mm256_mask2_permutex2var_epi64(__m256i a, __m256i idx, __mmask8 k, __m256i b);
VPERMI2Q __m256i _mm256_maskz_permutex2var_epi64(__mmask8 k, __m256i a, __m256i idx, __m256i b);
VPERMI2Q __m128i _mm_permutex2var_epi64(__m128i a, __m128i idx, __m128i b);
VPERMI2Q __m128i _mm_mask_permutex2var_epi64(__m128i a, __mmask8 k, __m128i idx, __m128i b);
VPERMI2Q __m128i _mm_mask2_permutex2var_epi64(__m128i a, __m128i idx, __mmask8 k, __m128i b);
VPERMI2Q __m128i _mm_maskz_permutex2var_epi64(__mmask8 k, __m128i a, __m128i idx, __m128i b);
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VPERMI2W __m512i _mm512_permutex2var_epi16(__m512i a, __m512i idx, __m512i b);
VPERMI2W __m512i _mm512_mask_permutex2var_epi16(__m512i a, __mmask32 k, __m512i idx, __m512i b);
VPERMI2W __m512i _mm512_mask2_permutex2var_epi16(__m512i a, __m512i idx, __mmask32 k, __m512i b);
VPERMI2W __m512i _mm512_maskz_permutex2var_epi16(__mmask32 k, __m512i a, __m512i idx, __m512i b);
VPERMI2W __m256i _mm256_permutex2var_epi16(__m256i a, __m256i idx, __m256i b);
VPERMI2W __m256i _mm256_mask_permutex2var_epi16(__m256i a, __mmask16 k, __m256i idx, __m256i b);
VPERMI2W __m256i _mm256_mask2_permutex2var_epi16(__m256i a, __m256i idx, __mmask16 k, __m256i b);
VPERMI2W __m256i _mm256_maskz_permutex2var_epi16(__mmask16 k, __m256i a, __m256i idx, __m256i b);
VPERMI2W __m128i _mm_permutex2var_epi16(__m128i a, __m128i idx, __m128i b);
VPERMI2W __m128i _mm_mask_permutex2var_epi16(__m128i a, __mmask8 k, __m128i idx, __m128i b);
VPERMI2W __m128i _mm_mask2_permutex2var_epi16(__m128i a, __m128i idx, __mmask8 k, __m128i b);
VPERMI2W __m128i _mm_maskz_permutex2var_epi16(__mmask8 k, __m128i a, __m128i idx, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

VPERMI2D/Q/PS/PD: See Table 2-52, “Type E4NF Class Exception Conditions.”
VPERMI2W: See Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
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VPERMILPD—Permute In-Lane of Pairs of Double Precision Floating-Point Values
Opcode/
Instruction

Op / En 64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 0D /r
VPERMILPD xmm1, xmm2, 
xmm3/m128

A V/V AVX Permute double precision floating-point values 
in xmm2 using controls from xmm3/m128 and 
store result in xmm1.

VEX.256.66.0F38.W0 0D /r
VPERMILPD ymm1, ymm2, 
ymm3/m256

A V/V AVX Permute double precision floating-point values 
in ymm2 using controls from ymm3/m256 and 
store result in ymm1.

EVEX.128.66.0F38.W1 0D /r
VPERMILPD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Permute double precision floating-point values 
in xmm2 using control from 
xmm3/m128/m64bcst and store the result in 
xmm1 using writemask k1. 

EVEX.256.66.0F38.W1 0D /r
VPERMILPD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute double precision floating-point values 
in ymm2 using control from 
ymm3/m256/m64bcst and store the result in 
ymm1 using writemask k1. 

EVEX.512.66.0F38.W1 0D /r 
VPERMILPD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512F 
OR AVX10.11

Permute double precision floating-point values 
in zmm2 using control from 
zmm3/m512/m64bcst and store the result in 
zmm1 using writemask k1. 

VEX.128.66.0F3A.W0 05 /r ib
VPERMILPD xmm1, xmm2/m128, 
imm8

B V/V AVX Permute double precision floating-point values 
in xmm2/m128 using controls from imm8.

VEX.256.66.0F3A.W0 05 /r ib
VPERMILPD ymm1, ymm2/m256, 
imm8

B V/V AVX Permute double precision floating-point values 
in ymm2/m256 using controls from imm8.

EVEX.128.66.0F3A.W1 05 /r ib
VPERMILPD xmm1 {k1}{z}, 
xmm2/m128/m64bcst, imm8

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute double precision floating-point values 
in xmm2/m128/m64bcst using controls from 
imm8 and store the result in xmm1 using 
writemask k1. 

EVEX.256.66.0F3A.W1 05 /r ib
VPERMILPD ymm1 {k1}{z}, 
ymm2/m256/m64bcst, imm8

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute double precision floating-point values 
in ymm2/m256/m64bcst using controls from 
imm8 and store the result in ymm1 using 
writemask k1. 

EVEX.512.66.0F3A.W1 05 /r ib
VPERMILPD zmm1 {k1}{z}, 
zmm2/m512/m64bcst, imm8

D V/V AVX512F 
OR AVX10.11

Permute double precision floating-point values 
in zmm2/m512/m64bcst using controls from 
imm8 and store the result in zmm1 using 
writemask k1. 
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Instruction Operand Encoding

Description

(Variable control version)
Permute pairs of double precision floating-point values in the first source operand (second operand), each using a 
1-bit control field residing in the corresponding quadword element of the second source operand (third operand). 
Permuted results are stored in the destination operand (first operand). 
The control bits are located at bit 0 of each quadword element (see Figure 1-24). Each control determines which of 
the source element in an input pair is selected for the destination element. Each pair of source elements must lie in 
the same 128-bit region as the destination.
EVEX version: The second source operand (third operand) is a ZMM/YMM/XMM register, a 512/256/128-bit 
memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory location. Permuted results are 
written to the destination under the writemask.

VEX.256 encoded version: Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed. 

Immediate control version: Permute pairs of double precision floating-point values in the first source operand 
(second operand), each pair using a 1-bit control field in the imm8 byte. Each element in the destination operand 
(first operand) use a separate control bit of the imm8 byte.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

B N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

D Full ModRM:reg (w) ModRM:r/m (r) N/A N/A

Figure 1-23.  VPERMILPD Operation

Figure 1-24.  VPERMILPD Shuffle Control
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VEX version: The source operand is a YMM/XMM register or a 256/128-bit memory location and the destination 
operand is a YMM/XMM register. Imm8 byte provides the lower 4/2 bit as permute control fields.
EVEX version: The source operand (second operand) is a ZMM/YMM/XMM register, a 512/256/128-bit memory 
location or a 512/256/128-bit vector broadcasted from a 64-bit memory location. Permuted results are written to 
the destination under the writemask. Imm8 byte provides the lower 8/4/2 bit as permute control fields.
Note: For the imm8 versions, VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instruction will 
#UD.

Operation

VPERMILPD (EVEX immediate versions)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF (EVEX.b = 1) AND (SRC1 *is memory*)

THEN TMP_SRC1[i+63:i] := SRC1[63:0];
ELSE TMP_SRC1[i+63:i] := SRC1[i+63:i];

FI;
ENDFOR;
IF (imm8[0] = 0) THEN TMP_DEST[63:0] := SRC1[63:0]; FI;
IF (imm8[0] = 1) THEN TMP_DEST[63:0] := TMP_SRC1[127:64]; FI;
IF (imm8[1] = 0) THEN TMP_DEST[127:64] := TMP_SRC1[63:0]; FI;
IF (imm8[1] = 1) THEN TMP_DEST[127:64] := TMP_SRC1[127:64]; FI;
IF VL >= 256

IF (imm8[2] = 0) THEN TMP_DEST[191:128] := TMP_SRC1[191:128]; FI;
IF (imm8[2] = 1) THEN TMP_DEST[191:128] := TMP_SRC1[255:192]; FI;
IF (imm8[3] = 0) THEN TMP_DEST[255:192] := TMP_SRC1[191:128]; FI;
IF (imm8[3] = 1) THEN TMP_DEST[255:192] := TMP_SRC1[255:192]; FI;

FI;
IF VL >= 512

IF (imm8[4] = 0) THEN TMP_DEST[319:256] := TMP_SRC1[319:256]; FI;
IF (imm8[4] = 1) THEN TMP_DEST[319:256] := TMP_SRC1[383:320]; FI;
IF (imm8[5] = 0) THEN TMP_DEST[383:320] := TMP_SRC1[319:256]; FI;
IF (imm8[5] = 1) THEN TMP_DEST[383:320] := TMP_SRC1[383:320]; FI;
IF (imm8[6] = 0) THEN TMP_DEST[447:384] := TMP_SRC1[447:384]; FI;
IF (imm8[6] = 1) THEN TMP_DEST[447:384] := TMP_SRC1[511:448]; FI;
IF (imm8[7] = 0) THEN TMP_DEST[511:448] := TMP_SRC1[447:384]; FI;
IF (imm8[7] = 1) THEN TMP_DEST[511:448] := TMP_SRC1[511:448]; FI;

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0 
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VPERMILPD (256-bit immediate version)
IF (imm8[0] = 0) THEN DEST[63:0] := SRC1[63:0]
IF (imm8[0] = 1) THEN DEST[63:0] := SRC1[127:64]
IF (imm8[1] = 0) THEN DEST[127:64] := SRC1[63:0]
IF (imm8[1] = 1) THEN DEST[127:64] := SRC1[127:64]
IF (imm8[2] = 0) THEN DEST[191:128] := SRC1[191:128]
IF (imm8[2] = 1) THEN DEST[191:128] := SRC1[255:192]
IF (imm8[3] = 0) THEN DEST[255:192] := SRC1[191:128]
IF (imm8[3] = 1) THEN DEST[255:192] := SRC1[255:192]
DEST[MAXVL-1:256] := 0

VPERMILPD (128-bit immediate version)
IF (imm8[0] = 0) THEN DEST[63:0] := SRC1[63:0]
IF (imm8[0] = 1) THEN DEST[63:0] := SRC1[127:64]
IF (imm8[1] = 0) THEN DEST[127:64] := SRC1[63:0]
IF (imm8[1] = 1) THEN DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

VPERMILPD (EVEX variable versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN TMP_SRC2[i+63:i] := SRC2[63:0];
ELSE TMP_SRC2[i+63:i] := SRC2[i+63:i];

FI;
ENDFOR;

IF (TMP_SRC2[1] = 0) THEN TMP_DEST[63:0] := SRC1[63:0]; FI;
IF (TMP_SRC2[1] = 1) THEN TMP_DEST[63:0] := SRC1[127:64]; FI;
IF (TMP_SRC2[65] = 0) THEN TMP_DEST[127:64] := SRC1[63:0]; FI;
IF (TMP_SRC2[65] = 1) THEN TMP_DEST[127:64] := SRC1[127:64]; FI;
IF VL >= 256

IF (TMP_SRC2[129] = 0) THEN TMP_DEST[191:128] := SRC1[191:128]; FI;
IF (TMP_SRC2[129] = 1) THEN TMP_DEST[191:128] := SRC1[255:192]; FI;
IF (TMP_SRC2[193] = 0) THEN TMP_DEST[255:192] := SRC1[191:128]; FI;
IF (TMP_SRC2[193] = 1) THEN TMP_DEST[255:192] := SRC1[255:192]; FI;

FI;
IF VL >= 512

IF (TMP_SRC2[257] = 0) THEN TMP_DEST[319:256] := SRC1[319:256]; FI;
IF (TMP_SRC2[257] = 1) THEN TMP_DEST[319:256] := SRC1[383:320]; FI;
IF (TMP_SRC2[321] = 0) THEN TMP_DEST[383:320] := SRC1[319:256]; FI;
IF (TMP_SRC2[321] = 1) THEN TMP_DEST[383:320] := SRC1[383:320]; FI;
IF (TMP_SRC2[385] = 0) THEN TMP_DEST[447:384] := SRC1[447:384]; FI;
IF (TMP_SRC2[385] = 1) THEN TMP_DEST[447:384] := SRC1[511:448]; FI;
IF (TMP_SRC2[449] = 0) THEN TMP_DEST[511:448] := SRC1[447:384]; FI;
IF (TMP_SRC2[449] = 1) THEN TMP_DEST[511:448] := SRC1[511:448]; FI;

FI;

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 
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IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPERMILPD (256-bit variable version)
IF (SRC2[1] = 0) THEN DEST[63:0] := SRC1[63:0]
IF (SRC2[1] = 1) THEN DEST[63:0] := SRC1[127:64]
IF (SRC2[65] = 0) THEN DEST[127:64] := SRC1[63:0]
IF (SRC2[65] = 1) THEN DEST[127:64] := SRC1[127:64]
IF (SRC2[129] = 0) THEN DEST[191:128] := SRC1[191:128]
IF (SRC2[129] = 1) THEN DEST[191:128] := SRC1[255:192]
IF (SRC2[193] = 0) THEN DEST[255:192] := SRC1[191:128]
IF (SRC2[193] = 1) THEN DEST[255:192] := SRC1[255:192]
DEST[MAXVL-1:256] := 0

VPERMILPD (128-bit variable version)
IF (SRC2[1] = 0) THEN DEST[63:0] := SRC1[63:0]
IF (SRC2[1] = 1) THEN DEST[63:0] := SRC1[127:64]
IF (SRC2[65] = 0) THEN DEST[127:64] := SRC1[63:0]
IF (SRC2[65] = 1) THEN DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPERMILPD __m512d _mm512_permute_pd( __m512d a, int imm);
VPERMILPD __m512d _mm512_mask_permute_pd(__m512d s, __mmask8 k, __m512d a, int imm);
VPERMILPD __m512d _mm512_maskz_permute_pd( __mmask8 k, __m512d a, int imm);
VPERMILPD __m256d _mm256_mask_permute_pd(__m256d  s, __mmask8 k, __m256d a, int imm);
VPERMILPD __m256d _mm256_maskz_permute_pd( __mmask8 k, __m256d a, int imm);
VPERMILPD __m128d _mm_mask_permute_pd(__m128d s, __mmask8 k, __m128d a, int imm);
VPERMILPD __m128d _mm_maskz_permute_pd( __mmask8 k, __m128d a, int imm);
VPERMILPD __m512d _mm512_permutevar_pd( __m512i i, __m512d a);
VPERMILPD __m512d _mm512_mask_permutevar_pd(__m512d s, __mmask8 k, __m512i i, __m512d a);
VPERMILPD __m512d _mm512_maskz_permutevar_pd( __mmask8 k, __m512i i, __m512d a);
VPERMILPD __m256d _mm256_mask_permutevar_pd(__m256d s, __mmask8 k, __m256d i, __m256d a);
VPERMILPD __m256d _mm256_maskz_permutevar_pd( __mmask8 k, __m256d i, __m256d a);
VPERMILPD __m128d _mm_mask_permutevar_pd(__m128d s, __mmask8 k, __m128d i, __m128d a);
VPERMILPD __m128d _mm_maskz_permutevar_pd( __mmask8 k, __m128d i, __m128d a);
VPERMILPD __m128d _mm_permute_pd (__m128d a, int control)
VPERMILPD __m256d _mm256_permute_pd (__m256d a, int control)
VPERMILPD __m128d _mm_permutevar_pd (__m128d a, __m128i control);
VPERMILPD __m256d _mm256_permutevar_pd (__m256d a, __m256i control);

SIMD Floating-Point Exceptions

None.
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Other Exceptions

Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
Additionally:
#UD If VEX.W = 1.
EVEX-encoded instruction, see Table 2-52, “Type E4NF Class Exception Conditions.”
Additionally:
#UD If either (E)VEX.vvvv != 1111B and with imm8.
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VPERMILPS—Permute In-Lane of Quadruples of Single Precision Floating-Point Values

Instruction Operand Encoding

Opcode/
Instruction

Op / En 64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 0C /r 
VPERMILPS xmm1, xmm2, 
xmm3/m128

A V/V AVX Permute single precision floating-point values in 
xmm2 using controls from xmm3/m128 and 
store result in xmm1.

VEX.128.66.0F3A.W0 04 /r ib
VPERMILPS xmm1, xmm2/m128, 
imm8

B V/V AVX Permute single precision floating-point values in 
xmm2/m128 using controls from imm8 and store 
result in xmm1.

VEX.256.66.0F38.W0 0C /r 
VPERMILPS ymm1, ymm2, 
ymm3/m256

A V/V AVX Permute single precision floating-point values in 
ymm2 using controls from ymm3/m256 and 
store result in ymm1.

VEX.256.66.0F3A.W0 04 /r ib
VPERMILPS ymm1, ymm2/m256, 
imm8

B V/V AVX Permute single precision floating-point values in 
ymm2/m256 using controls from imm8 and store 
result in ymm1.

EVEX.128.66.0F38.W0 0C /r
VPERMILPS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Permute single-precision floating-point values 
xmm2 using control from xmm3/m128/m32bcst 
and store the result in xmm1 using writemask k1.

EVEX.256.66.0F38.W0 0C /r 
VPERMILPS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute single-precision floating-point values 
ymm2 using control from ymm3/m256/m32bcst 
and store the result in ymm1 using writemask k1.

EVEX.512.66.0F38.W0 0C /r 
VPERMILPS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

C V/V AVX512F 
OR AVX10.11

Permute single-precision floating-point values 
zmm2 using control from zmm3/m512/m32bcst 
and store the result in zmm1 using writemask k1.

EVEX.128.66.0F3A.W0 04 /r ib
VPERMILPS xmm1 {k1}{z}, 
xmm2/m128/m32bcst, imm8

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute single-precision floating-point values 
xmm2/m128/m32bcst using controls from imm8 
and store the result in xmm1 using writemask k1.

EVEX.256.66.0F3A.W0 04 /r ib
VPERMILPS ymm1 {k1}{z}, 
ymm2/m256/m32bcst, imm8

D V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute single-precision floating-point values 
ymm2/m256/m32bcst using controls from imm8 
and store the result in ymm1 using writemask k1.

EVEX.512.66.0F3A.W0 04 /r 
ibVPERMILPS zmm1 {k1}{z}, 
zmm2/m512/m32bcst, imm8

D V/V AVX512F 
OR AVX10.11

Permute single-precision floating-point values 
zmm2/m512/m32bcst using controls from imm8 
and store the result in zmm1 using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

B N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

D Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Description

Variable control version:
Permute quadruples of single precision floating-point values in the first source operand (second operand), each 
quadruplet using a 2-bit control field in the corresponding dword element of the second source operand. Permuted 
results are stored in the destination operand (first operand). 
The 2-bit control fields are located at the low two bits of each dword element (see Figure 1-26). Each control deter-
mines which of the source element in an input quadruple is selected for the destination element. Each quadruple of 
source elements must lie in the same 128-bit region as the destination.
EVEX version: The second source operand (third operand) is a ZMM/YMM/XMM register, a 512/256/128-bit 
memory location or a 512/256/128-bit vector broadcasted from a 32-bit memory location. Permuted results are 
written to the destination under the writemask.

(Immediate control version)
Permute quadruples of single precision floating-point values in the first source operand (second operand), each 
quadruplet using a 2-bit control field in the imm8 byte. Each 128-bit lane in the destination operand (first operand) 
use the four control fields of the same imm8 byte.
VEX version: The source operand is a YMM/XMM register or a 256/128-bit memory location and the destination 
operand is a YMM/XMM register. 
EVEX version: The source operand (second operand) is a ZMM/YMM/XMM register, a 512/256/128-bit memory 
location or a 512/256/128-bit vector broadcasted from a 32-bit memory location. Permuted results are written to 
the destination under the writemask.
Note: For the imm8 version, VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instruction will 
#UD.

Figure 1-25.  VPERMILPS Operation

Figure 1-26.  VPERMILPS Shuffle Control

X7 .. X4 X7 .. X4 X3 ..X0 X3 .. X0DEST

SRC1 X0X1X2X3X4X5X6X7

X3 .. X0X7 .. X4 X7 .. X4 X3 ..X0

sel 

Bit
34 33 32

sel . . .

226 225 224

sel ignored

Control Field 1Control Field 2Control Field 7

1 0255

ignored ignored

63 31
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Operation

Select4(SRC, control) {
CASE (control[1:0]) OF

0: TMP := SRC[31:0];
1: TMP := SRC[63:32];
2: TMP := SRC[95:64];
3: TMP := SRC[127:96];

ESAC;
RETURN TMP
}

VPERMILPS (EVEX immediate versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF (EVEX.b = 1) AND (SRC1 *is memory*)

THEN TMP_SRC1[i+31:i] := SRC1[31:0];
ELSE TMP_SRC1[i+31:i] := SRC1[i+31:i];

FI;
ENDFOR;

TMP_DEST[31:0] := Select4(TMP_SRC1[127:0], imm8[1:0]);
TMP_DEST[63:32] := Select4(TMP_SRC1[127:0], imm8[3:2]);
TMP_DEST[95:64] := Select4(TMP_SRC1[127:0], imm8[5:4]);
TMP_DEST[127:96] := Select4(TMP_SRC1[127:0], imm8[7:6]); FI;
IF VL >= 256

TMP_DEST[159:128] := Select4(TMP_SRC1[255:128], imm8[1:0]); FI;
TMP_DEST[191:160] := Select4(TMP_SRC1[255:128], imm8[3:2]); FI;
TMP_DEST[223:192] := Select4(TMP_SRC1[255:128], imm8[5:4]); FI;
TMP_DEST[255:224] := Select4(TMP_SRC1[255:128], imm8[7:6]); FI; 

FI;
IF VL >= 512

TMP_DEST[287:256] := Select4(TMP_SRC1[383:256], imm8[1:0]); FI;
TMP_DEST[319:288] := Select4(TMP_SRC1[383:256], imm8[3:2]); FI;
TMP_DEST[351:320] := Select4(TMP_SRC1[383:256], imm8[5:4]); FI;
TMP_DEST[383:352] := Select4(TMP_SRC1[383:256], imm8[7:6]); FI;
TMP_DEST[415:384] := Select4(TMP_SRC1[511:384], imm8[1:0]); FI;
TMP_DEST[447:416] := Select4(TMP_SRC1[511:384], imm8[3:2]); FI;
TMP_DEST[479:448] := Select4(TMP_SRC1[511:384], imm8[5:4]); FI;
TMP_DEST[511:480] := Select4(TMP_SRC1[511:384], imm8[7:6]); FI;

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking*
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] := 0 ;zeroing-masking

FI;
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0
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VPERMILPS (256-bit immediate version)
DEST[31:0] := Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] := Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] := Select4(SRC1[127:0], imm8[5:4]);
DEST[127:96] := Select4(SRC1[127:0], imm8[7:6]);
DEST[159:128] := Select4(SRC1[255:128], imm8[1:0]);
DEST[191:160] := Select4(SRC1[255:128], imm8[3:2]);
DEST[223:192] := Select4(SRC1[255:128], imm8[5:4]);
DEST[255:224] := Select4(SRC1[255:128], imm8[7:6]);

VPERMILPS (128-bit immediate version)
DEST[31:0] := Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] := Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] := Select4(SRC1[127:0], imm8[5:4]);
DEST[127:96] := Select4(SRC1[127:0], imm8[7:6]);
DEST[MAXVL-1:128] := 0

VPERMILPS (EVEX variable versions)
(KL, VL) = (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN TMP_SRC2[i+31:i] := SRC2[31:0];
ELSE TMP_SRC2[i+31:i] := SRC2[i+31:i];

FI;
ENDFOR;
TMP_DEST[31:0] := Select4(SRC1[127:0], TMP_SRC2[1:0]);
TMP_DEST[63:32] := Select4(SRC1[127:0], TMP_SRC2[33:32]);
TMP_DEST[95:64] := Select4(SRC1[127:0], TMP_SRC2[65:64]);
TMP_DEST[127:96] := Select4(SRC1[127:0], TMP_SRC2[97:96]);
IF VL >= 256

TMP_DEST[159:128] := Select4(SRC1[255:128], TMP_SRC2[129:128]);
TMP_DEST[191:160] := Select4(SRC1[255:128], TMP_SRC2[161:160]);
TMP_DEST[223:192] := Select4(SRC1[255:128], TMP_SRC2[193:192]);
TMP_DEST[255:224] := Select4(SRC1[255:128], TMP_SRC2[225:224]);

FI;
IF VL >= 512

TMP_DEST[287:256] := Select4(SRC1[383:256], TMP_SRC2[257:256]);
TMP_DEST[319:288] := Select4(SRC1[383:256], TMP_SRC2[289:288]);
TMP_DEST[351:320] := Select4(SRC1[383:256], TMP_SRC2[321:320]);
TMP_DEST[383:352] := Select4(SRC1[383:256], TMP_SRC2[353:352]);
TMP_DEST[415:384] := Select4(SRC1[511:384], TMP_SRC2[385:384]);
TMP_DEST[447:416] := Select4(SRC1[511:384], TMP_SRC2[417:416]);
TMP_DEST[479:448] := Select4(SRC1[511:384], TMP_SRC2[449:448]);
TMP_DEST[511:480] := Select4(SRC1[511:384], TMP_SRC2[481:480]);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking*
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] := 0 ;zeroing-masking
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FI;
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VPERMILPS (256-bit variable version)
DEST[31:0] := Select4(SRC1[127:0], SRC2[1:0]);
DEST[63:32] := Select4(SRC1[127:0], SRC2[33:32]);
DEST[95:64] := Select4(SRC1[127:0], SRC2[65:64]);
DEST[127:96] := Select4(SRC1[127:0], SRC2[97:96]);
DEST[159:128] := Select4(SRC1[255:128], SRC2[129:128]);
DEST[191:160] := Select4(SRC1[255:128], SRC2[161:160]);
DEST[223:192] := Select4(SRC1[255:128], SRC2[193:192]);
DEST[255:224] := Select4(SRC1[255:128], SRC2[225:224]);
DEST[MAXVL-1:256] := 0

VPERMILPS (128-bit variable version)
DEST[31:0] := Select4(SRC1[127:0], SRC2[1:0]);
DEST[63:32] := Select4(SRC1[127:0], SRC2[33:32]);
DEST[95:64] :=Select4(SRC1[127:0], SRC2[65:64]);
DEST[127:96] := Select4(SRC1[127:0], SRC2[97:96]);
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPERMILPS __m512 _mm512_permute_ps( __m512 a, int imm);
VPERMILPS __m512 _mm512_mask_permute_ps(__m512 s, __mmask16 k, __m512 a, int imm);
VPERMILPS __m512 _mm512_maskz_permute_ps( __mmask16 k, __m512 a, int imm);
VPERMILPS __m256 _mm256_mask_permute_ps(__m256 s, __mmask8 k, __m256 a, int imm);
VPERMILPS __m256 _mm256_maskz_permute_ps( __mmask8 k, __m256 a, int imm);
VPERMILPS __m128 _mm_mask_permute_ps(__m128 s, __mmask8 k, __m128 a, int imm);
VPERMILPS __m128 _mm_maskz_permute_ps( __mmask8 k, __m128 a, int imm);
VPERMILPS __m512 _mm512_permutevar_ps( __m512i i, __m512 a);
VPERMILPS __m512 _mm512_mask_permutevar_ps(__m512 s, __mmask16 k, __m512i i, __m512 a);
VPERMILPS __m512 _mm512_maskz_permutevar_ps( __mmask16 k, __m512i i, __m512 a);
VPERMILPS __m256 _mm256_mask_permutevar_ps(__m256 s, __mmask8 k, __m256 i, __m256 a);
VPERMILPS __m256 _mm256_maskz_permutevar_ps( __mmask8 k, __m256 i, __m256 a);
VPERMILPS __m128 _mm_mask_permutevar_ps(__m128 s, __mmask8 k, __m128 i, __m128 a);
VPERMILPS __m128 _mm_maskz_permutevar_ps( __mmask8 k, __m128 i, __m128 a);
VPERMILPS __m128 _mm_permute_ps (__m128 a, int control);
VPERMILPS __m256 _mm256_permute_ps (__m256 a, int control);
VPERMILPS __m128 _mm_permutevar_ps (__m128 a, __m128i control);
VPERMILPS __m256 _mm256_permutevar_ps (__m256 a, __m256i control);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
Additionally:
#UD If VEX.W = 1.
EVEX-encoded instruction, see Table 2-52, “Type E4NF Class Exception Conditions.”
Additionally:
#UD If either (E)VEX.vvvv != 1111B and with imm8.
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VPERMPD—Permute Double Precision Floating-Point Elements 

Instruction Operand Encoding

Description

The imm8 version: Copies quadword elements of double precision floating-point values from the source operand 
(the second operand) to the destination operand (the first operand) according to the indices specified by the imme-
diate operand (the third operand). Each two-bit value in the immediate byte selects a qword element in the source 
operand. 
VEX version: The source operand can be a YMM register or a memory location. Bits (MAXVL-1:256) of the corre-
sponding destination register are zeroed.
In EVEX.512 encoded version, The elements in the destination are updated using the writemask k1 and the imm8 
bits are reused as control bits for the upper 256-bit half when the control bits are coming from immediate. The 
source operand can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit 
memory location.
The imm8 versions: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
The vector control version: Copies quadword elements of double precision floating-point values from the second 
source operand (the third operand) to the destination operand (the first operand) according to the indices in the 
first source operand (the second operand). The first 3 bits of each 64 bit element in the index operand selects which 
quadword in the second source operand to copy. The first and second operands are ZMM registers, the third 
operand can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit memory 
location. The elements in the destination are updated using the writemask k1.

Opcode/
Instruction

Op / En 64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.256.66.0F3A.W1 01 /r ib
VPERMPD ymm1, ymm2/m256, 
imm8

A V/V AVX2 Permute double precision floating-point elements 
in ymm2/m256 using indices in imm8 and store the 
result in ymm1.

EVEX.256.66.0F3A.W1 01 /r ib
VPERMPD ymm1 {k1}{z}, 
ymm2/m256/m64bcst, imm8

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Permute double precision floating-point elements 
in ymm2/m256/m64bcst using indexes in imm8 
and store the result in ymm1 subject to writemask 
k1.

EVEX.512.66.0F3A.W1 01 /r ib
VPERMPD zmm1 {k1}{z}, 
zmm2/m512/m64bcst, imm8

B V/V AVX512F 
OR AVX10.11

Permute double precision floating-point elements 
in zmm2/m512/m64bcst using indices in imm8 and 
store the result in zmm1 subject to writemask k1.

EVEX.256.66.0F38.W1 16 /r
VPERMPD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute double precision floating-point elements 
in ymm3/m256/m64bcst using indexes in ymm2 
and store the result in ymm1 subject to writemask 
k1.

EVEX.512.66.0F38.W1 16 /r 
VPERMPD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512F 
OR AVX10.11

Permute double precision floating-point elements 
in zmm3/m512/m64bcst using indices in zmm2 
and store the result in zmm1 subject to writemask 
k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) imm8 N/A

B Full ModRM:reg (w) ModRM:r/m (r) imm8 N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Note that this instruction permits a qword in the source operand to be copied to multiple locations in the destination 
operand. 
If VPERMPD is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will cause an 
#UD exception.

Operation

VPERMPD (EVEX - imm8 control forms)
(KL, VL) = (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF (EVEX.b = 1) AND (SRC *is memory*)

THEN TMP_SRC[i+63:i] := SRC[63:0];
ELSE TMP_SRC[i+63:i] := SRC[i+63:i];

FI;
ENDFOR;

TMP_DEST[63:0] := (TMP_SRC[256:0] >> (IMM8[1:0] * 64))[63:0];
TMP_DEST[127:64] := (TMP_SRC[256:0] >> (IMM8[3:2] * 64))[63:0];
TMP_DEST[191:128] := (TMP_SRC[256:0] >> (IMM8[5:4] * 64))[63:0];
TMP_DEST[255:192] := (TMP_SRC[256:0] >> (IMM8[7:6] * 64))[63:0];
IF VL >= 512

TMP_DEST[319:256] := (TMP_SRC[511:256] >> (IMM8[1:0] * 64))[63:0];
TMP_DEST[383:320] := (TMP_SRC[511:256] >> (IMM8[3:2] * 64))[63:0];
TMP_DEST[447:384] := (TMP_SRC[511:256] >> (IMM8[5:4] * 64))[63:0];
TMP_DEST[511:448] := (TMP_SRC[511:256] >> (IMM8[7:6] * 64))[63:0];

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0 ;zeroing-masking
FI;

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VPERMPD (EVEX - vector control forms)
(KL, VL) = (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN TMP_SRC2[i+63:i] := SRC2[63:0];
ELSE TMP_SRC2[i+63:i] := SRC2[i+63:i];

FI;
ENDFOR;

IF VL = 256
TMP_DEST[63:0] := (TMP_SRC2[255:0] >> (SRC1[1:0] * 64))[63:0];
TMP_DEST[127:64] := (TMP_SRC2[255:0] >> (SRC1[65:64] * 64))[63:0];
TMP_DEST[191:128] := (TMP_SRC2[255:0] >> (SRC1[129:128] * 64))[63:0];
TMP_DEST[255:192] := (TMP_SRC2[255:0] >> (SRC1[193:192] * 64))[63:0];

FI;
IF VL = 512

TMP_DEST[63:0] := (TMP_SRC2[511:0] >> (SRC1[2:0] * 64))[63:0];
TMP_DEST[127:64] := (TMP_SRC2[511:0] >> (SRC1[66:64] * 64))[63:0];
TMP_DEST[191:128] := (TMP_SRC2[511:0] >> (SRC1[130:128] * 64))[63:0];
TMP_DEST[255:192] := (TMP_SRC2[511:0] >> (SRC1[194:192] * 64))[63:0];
TMP_DEST[319:256] := (TMP_SRC2[511:0] >> (SRC1[258:256] * 64))[63:0];
TMP_DEST[383:320] := (TMP_SRC2[511:0] >> (SRC1[322:320] * 64))[63:0];
TMP_DEST[447:384] := (TMP_SRC2[511:0] >> (SRC1[386:384] * 64))[63:0];
TMP_DEST[511:448] := (TMP_SRC2[511:0] >> (SRC1[450:448] * 64))[63:0];

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0 ;zeroing-masking
FI;

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPERMPD (VEX.256 encoded version)
DEST[63:0] := (SRC[255:0] >> (IMM8[1:0] * 64))[63:0];
DEST[127:64] := (SRC[255:0] >> (IMM8[3:2] * 64))[63:0];
DEST[191:128] := (SRC[255:0] >> (IMM8[5:4] * 64))[63:0];
DEST[255:192] := (SRC[255:0] >> (IMM8[7:6] * 64))[63:0];
DEST[MAXVL-1:256] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPERMPD __m512d _mm512_permutex_pd( __m512d a, int imm);
VPERMPD __m512d _mm512_mask_permutex_pd(__m512d s, __mmask16 k, __m512d a, int imm);
VPERMPD __m512d _mm512_maskz_permutex_pd( __mmask16 k, __m512d a, int imm);
VPERMPD __m512d _mm512_permutexvar_pd( __m512i i, __m512d a);
VPERMPD __m512d _mm512_mask_permutexvar_pd(__m512d s, __mmask16 k, __m512i i, __m512d a);
VPERMPD __m512d _mm512_maskz_permutexvar_pd( __mmask16 k, __m512i i, __m512d a);
VPERMPD __m256d _mm256_permutex_epi64( __m256d a, int imm);
VPERMPD __m256d _mm256_mask_permutex_epi64(__m256i s, __mmask8 k, __m256d a, int imm);
VPERMPD __m256d _mm256_maskz_permutex_epi64( __mmask8 k, __m256d a, int imm);
VPERMPD __m256d _mm256_permutexvar_epi64( __m256i i, __m256d a);
VPERMPD __m256d _mm256_mask_permutexvar_epi64(__m256i s, __mmask8 k, __m256i i, __m256d a);
VPERMPD __m256d _mm256_maskz_permutexvar_epi64( __mmask8 k, __m256i i, __m256d a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions”; additionally:
#UD If VEX.L = 0.

If VEX.vvvv != 1111B.
EVEX-encoded instruction, see Table 2-52, “Type E4NF Class Exception Conditions”; additionally:
#UD If encoded with EVEX.128.

If EVEX.vvvv != 1111B and with imm8.
VPERMPD—Permute Double Precision Floating-Point Elements Vol. 2C 5-534



VPERMPS—Permute Single Precision Floating-Point Elements 

Instruction Operand Encoding

Description

Copies doubleword elements of single precision floating-point values from the second source operand (the third 
operand) to the destination operand (the first operand) according to the indices in the first source operand (the 
second operand). Note that this instruction permits a doubleword in the source operand to be copied to more than 
one location in the destination operand.
VEX.256 versions: The first and second operands are YMM registers, the third operand can be a YMM register or 
memory location. Bits (MAXVL-1:256) of the corresponding destination register are zeroed.
EVEX encoded version: The first and second operands are ZMM registers, the third operand can be a ZMM register, 
a 512-bit memory location or a 512-bit vector broadcasted from a 32-bit memory location. The elements in the 
destination are updated using the writemask k1.
If VPERMPS is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will cause an 
#UD exception.

Operation

VPERMPS (EVEX forms)
(KL, VL) (8, 256),= (16, 512)
FOR j := 0 TO KL-1

i := j * 64
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN TMP_SRC2[i+31:i] := SRC2[31:0];
ELSE TMP_SRC2[i+31:i] := SRC2[i+31:i];

FI;
ENDFOR;

IF VL = 256
TMP_DEST[31:0] := (TMP_SRC2[255:0] >> (SRC1[2:0] * 32))[31:0];
TMP_DEST[63:32] := (TMP_SRC2[255:0] >> (SRC1[34:32] * 32))[31:0];

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.256.66.0F38.W0 16 /r
VPERMPS ymm1, ymm2, 
ymm3/m256

A V/V AVX2 Permute single precision floating-point elements in 
ymm3/m256 using indices in ymm2 and store the 
result in ymm1.

EVEX.256.66.0F38.W0 16 /r
VPERMPS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Permute single-precision floating-point elements in 
ymm3/m256/m32bcst using indexes in ymm2 and 
store the result in ymm1 subject to write mask k1.

EVEX.512.66.0F38.W0 16 /r
VPERMPS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

B V/V AVX512F 
OR AVX10.11

Permute single-precision floating-point values in 
zmm3/m512/m32bcst using indices in zmm2 and 
store the result in zmm1 subject to write mask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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TMP_DEST[95:64] := (TMP_SRC2[255:0] >> (SRC1[66:64] * 32))[31:0];
TMP_DEST[127:96] := (TMP_SRC2[255:0] >> (SRC1[98:96] * 32))[31:0];
TMP_DEST[159:128] := (TMP_SRC2[255:0] >> (SRC1[130:128] * 32))[31:0];
TMP_DEST[191:160] := (TMP_SRC2[255:0] >> (SRC1[162:160] * 32))[31:0];
TMP_DEST[223:192] := (TMP_SRC2[255:0] >> (SRC1[193:192] * 32))[31:0];
TMP_DEST[255:224] := (TMP_SRC2[255:0] >> (SRC1[226:224] * 32))[31:0];

FI;
IF VL = 512

TMP_DEST[31:0] := (TMP_SRC2[511:0] >> (SRC1[3:0] * 32))[31:0];
TMP_DEST[63:32] := (TMP_SRC2[511:0] >> (SRC1[35:32] * 32))[31:0];
TMP_DEST[95:64] := (TMP_SRC2[511:0] >> (SRC1[67:64] * 32))[31:0];
TMP_DEST[127:96] := (TMP_SRC2[511:0] >> (SRC1[99:96] * 32))[31:0];
TMP_DEST[159:128] := (TMP_SRC2[511:0] >> (SRC1[131:128] * 32))[31:0];
TMP_DEST[191:160] := (TMP_SRC2[511:0] >> (SRC1[163:160] * 32))[31:0];
TMP_DEST[223:192] := (TMP_SRC2[511:0] >> (SRC1[195:192] * 32))[31:0];
TMP_DEST[255:224] := (TMP_SRC2[511:0] >> (SRC1[227:224] * 32))[31:0];
TMP_DEST[287:256] := (TMP_SRC2[511:0] >> (SRC1[259:256] * 32))[31:0];
TMP_DEST[319:288] := (TMP_SRC2[511:0] >> (SRC1[291:288] * 32))[31:0];
TMP_DEST[351:320] := (TMP_SRC2[511:0] >> (SRC1[323:320] * 32))[31:0];
TMP_DEST[383:352] := (TMP_SRC2[511:0] >> (SRC1[355:352] * 32))[31:0];
TMP_DEST[415:384] := (TMP_SRC2[511:0] >> (SRC1[387:384] * 32))[31:0];
TMP_DEST[447:416] := (TMP_SRC2[511:0] >> (SRC1[419:416] * 32))[31:0];
TMP_DEST[479:448] :=(TMP_SRC2[511:0] >> (SRC1[451:448] * 32))[31:0];
TMP_DEST[511:480] := (TMP_SRC2[511:0] >> (SRC1[483:480] * 32))[31:0];

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0 ;zeroing-masking
FI;

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPERMPS (VEX.256 encoded version)
DEST[31:0] := (SRC2[255:0] >> (SRC1[2:0] * 32))[31:0];
DEST[63:32] := (SRC2[255:0] >> (SRC1[34:32] * 32))[31:0];
DEST[95:64] := (SRC2[255:0] >> (SRC1[66:64] * 32))[31:0];
DEST[127:96] := (SRC2[255:0] >> (SRC1[98:96] * 32))[31:0];
DEST[159:128] := (SRC2[255:0] >> (SRC1[130:128] * 32))[31:0];
DEST[191:160] := (SRC2[255:0] >> (SRC1[162:160] * 32))[31:0];
DEST[223:192] := (SRC2[255:0] >> (SRC1[194:192] * 32))[31:0];
DEST[255:224] := (SRC2[255:0] >> (SRC1[226:224] * 32))[31:0];
DEST[MAXVL-1:256] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPERMPS __m512 _mm512_permutexvar_ps(__m512i i, __m512 a);
VPERMPS __m512 _mm512_mask_permutexvar_ps(__m512 s, __mmask16 k, __m512i i, __m512 a);
VPERMPS __m512 _mm512_maskz_permutexvar_ps( __mmask16 k, __m512i i, __m512 a);
VPERMPS __m256 _mm256_permutexvar_ps(__m256 i, __m256 a);
VPERMPS __m256 _mm256_mask_permutexvar_ps(__m256 s, __mmask8 k, __m256 i, __m256 a);
VPERMPS __m256 _mm256_maskz_permutexvar_ps( __mmask8 k, __m256 i, __m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”

Additionally:
#UD If VEX.L = 0.
EVEX-encoded instruction, see Table 2-52, “Type E4NF Class Exception Conditions.”
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VPERMQ—Qwords Element Permutation 

Instruction Operand Encoding

Description

The imm8 version: Copies quadwords from the source operand (the second operand) to the destination operand 
(the first operand) according to the indices specified by the immediate operand (the third operand). Each two-bit 
value in the immediate byte selects a qword element in the source operand. 
VEX version: The source operand can be a YMM register or a memory location. Bits (MAXVL-1:256) of the corre-
sponding destination register are zeroed.
In EVEX.512 encoded version, The elements in the destination are updated using the writemask k1 and the imm8 
bits are reused as control bits for the upper 256-bit half when the control bits are coming from immediate. The 
source operand can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit 
memory location.
Immediate control versions: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will 
#UD.
The vector control version: Copies quadwords from the second source operand (the third operand) to the destina-
tion operand (the first operand) according to the indices in the first source operand (the second operand). The first 
3 bits of each 64 bit element in the index operand selects which quadword in the second source operand to copy. 
The first and second operands are ZMM registers, the third operand can be a ZMM register, a 512-bit memory loca-
tion or a 512-bit vector broadcasted from a 64-bit memory location. The elements in the destination are updated 
using the writemask k1.
Note that this instruction permits a qword in the source operand to be copied to multiple locations in the destination 
operand. 

Opcode/
Instruction

Op / En 64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.256.66.0F3A.W1 00 /r ib
VPERMQ ymm1, ymm2/m256, imm8

A V/V AVX2 Permute qwords in ymm2/m256 using 
indices in imm8 and store the result in ymm1.

EVEX.256.66.0F3A.W1 00 /r ib
VPERMQ ymm1 {k1}{z}, 
ymm2/m256/m64bcst, imm8

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Permute qwords in ymm2/m256/m64bcst 
using indexes in imm8 and store the result in 
ymm1.

EVEX.512.66.0F3A.W1 00 /r ib
VPERMQ zmm1 {k1}{z}, 
zmm2/m512/m64bcst, imm8

B V/V AVX512F 
OR AVX10.11

Permute qwords in zmm2/m512/m64bcst 
using indices in imm8 and store the result in 
zmm1.

EVEX.256.66.0F38.W1 36 /r
VPERMQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute qwords in ymm3/m256/m64bcst 
using indexes in ymm2 and store the result in 
ymm1.

EVEX.512.66.0F38.W1 36 /r 
VPERMQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512F 
OR AVX10.11

Permute qwords in zmm3/m512/m64bcst 
using indices in zmm2 and store the result in 
zmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) imm8 N/A

B Full ModRM:reg (w) ModRM:r/m (r) imm8 N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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If VPERMPQ is encoded with VEX.L= 0 or EVEX.128, an attempt to execute the instruction will cause an #UD excep-
tion.

Operation

VPERMQ (EVEX - imm8 control forms)
(KL, VL) = (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF (EVEX.b = 1) AND (SRC *is memory*)

THEN TMP_SRC[i+63:i] := SRC[63:0];
ELSE TMP_SRC[i+63:i] := SRC[i+63:i];

FI;
ENDFOR;

TMP_DEST[63:0] := (TMP_SRC[255:0] >> (IMM8[1:0] * 64))[63:0];
TMP_DEST[127:64] := (TMP_SRC[255:0] >> (IMM8[3:2] * 64))[63:0];
TMP_DEST[191:128] := (TMP_SRC[255:0] >> (IMM8[5:4] * 64))[63:0];
TMP_DEST[255:192] := (TMP_SRC[255:0] >> (IMM8[7:6] * 64))[63:0];

IF VL >= 512
TMP_DEST[319:256] := (TMP_SRC[511:256] >> (IMM8[1:0] * 64))[63:0];
TMP_DEST[383:320] := (TMP_SRC[511:256] >> (IMM8[3:2] * 64))[63:0];
TMP_DEST[447:384] := (TMP_SRC[511:256] >> (IMM8[5:4] * 64))[63:0];
TMP_DEST[511:448] := (TMP_SRC[511:256] >> (IMM8[7:6] * 64))[63:0];

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0 ;zeroing-masking
FI;

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPERMQ (EVEX - vector control forms)
(KL, VL) = (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN TMP_SRC2[i+63:i] := SRC2[63:0];
ELSE TMP_SRC2[i+63:i] := SRC2[i+63:i];

FI;
ENDFOR;
IF VL = 256

TMP_DEST[63:0] := (TMP_SRC2[255:0] >> (SRC1[1:0] * 64))[63:0];
TMP_DEST[127:64] := (TMP_SRC2[255:0] >> (SRC1[65:64] * 64))[63:0];
TMP_DEST[191:128] := (TMP_SRC2[255:0] >> (SRC1[129:128] * 64))[63:0];
TMP_DEST[255:192] := (TMP_SRC2[255:0] >> (SRC1[193:192] * 64))[63:0];

FI;
IF VL = 512

TMP_DEST[63:0] := (TMP_SRC2[511:0] >> (SRC1[2:0] * 64))[63:0];
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TMP_DEST[127:64] := (TMP_SRC2[511:0] >> (SRC1[66:64] * 64))[63:0];
TMP_DEST[191:128] := (TMP_SRC2[511:0] >> (SRC1[130:128] * 64))[63:0];
TMP_DEST[255:192] := (TMP_SRC2[511:0] >> (SRC1[194:192] * 64))[63:0];
TMP_DEST[319:256] := (TMP_SRC2[511:0] >> (SRC1[258:256] * 64))[63:0];
TMP_DEST[383:320] := (TMP_SRC2[511:0] >> (SRC1[322:320] * 64))[63:0];
TMP_DEST[447:384] := (TMP_SRC2[511:0] >> (SRC1[386:384] * 64))[63:0];
TMP_DEST[511:448] := (TMP_SRC2[511:0] >> (SRC1[450:448] * 64))[63:0];

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0 ;zeroing-masking
FI;

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPERMQ (VEX.256 encoded version)
DEST[63:0] := (SRC[255:0] >> (IMM8[1:0] * 64))[63:0];
DEST[127:64] := (SRC[255:0] >> (IMM8[3:2] * 64))[63:0];
DEST[191:128] := (SRC[255:0] >> (IMM8[5:4] * 64))[63:0];
DEST[255:192] := (SRC[255:0] >> (IMM8[7:6] * 64))[63:0];
DEST[MAXVL-1:256] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPERMQ __m512i _mm512_permutex_epi64( __m512i a, int imm);
VPERMQ __m512i _mm512_mask_permutex_epi64(__m512i s, __mmask8 k, __m512i a, int imm);
VPERMQ __m512i _mm512_maskz_permutex_epi64( __mmask8 k, __m512i a, int imm);
VPERMQ __m512i _mm512_permutexvar_epi64( __m512i a, __m512i b);
VPERMQ __m512i _mm512_mask_permutexvar_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPERMQ __m512i _mm512_maskz_permutexvar_epi64( __mmask8 k, __m512i a, __m512i b);
VPERMQ __m256i _mm256_permutex_epi64( __m256i a, int imm);
VPERMQ __m256i _mm256_mask_permutex_epi64(__m256i s, __mmask8 k, __m256i a, int imm);
VPERMQ __m256i _mm256_maskz_permutex_epi64( __mmask8 k, __m256i a, int imm);
VPERMQ __m256i _mm256_permutexvar_epi64( __m256i a, __m256i b);
VPERMQ __m256i _mm256_mask_permutexvar_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPERMQ __m256i _mm256_maskz_permutexvar_epi64( __mmask8 k, __m256i a, __m256i b);

SIMD Floating-Point Exceptions

None.
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Other Exceptions

Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”

Additionally:
#UD If VEX.L = 0.

If VEX.vvvv != 1111B.
EVEX-encoded instruction, see Table 2-52, “Type E4NF Class Exception Conditions.”
Additionally:
#UD If encoded with EVEX.128.

If EVEX.vvvv != 1111B and with imm8.
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VPERMT2B—Full Permute of Bytes From Two Tables Overwriting a Table

Instruction Operand Encoding

Description

Permutes byte values from two tables, comprising of the first operand (also the destination operand) and the third 
operand (the second source operand). The second operand (the first source operand) provides byte indices to 
select byte results from the two tables. The selected byte elements are written to the destination at byte granu-
larity under the writemask k1. 
The first and second operands are ZMM/YMM/XMM registers. The second operand contains input indices to select 
elements from the two input tables in the 1st and 3rd operands. The first operand is also the destination of the 
result. The second source operand can be a ZMM/YMM/XMM register, or a 512/256/128-bit memory location. In 
each index byte, the id bit for table selection is bit 6/5/4, and bits [5:0]/[4:0]/[3:0] selects element within each 
input table.
Note that these instructions permit a byte value in the source operands to be copied to more than one location in 
the destination operand. Also, the second table and the indices can be reused in subsequent iterations, but the first 
table is overwritten.
Bits (MAX_VL-1:256/128) of the destination are zeroed for VL=256,128.

Opcode/
Instruction

Op
/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 7D /r
VPERMT2B xmm1 {k1}{z}, xmm2, 
xmm3/m128

A V/V (AVX512VL AND
AVX512_VBMI) 
OR AVX10.11 

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Permute bytes in xmm3/m128 and xmm1 using 
byte indexes in xmm2 and store the byte results in 
xmm1 using writemask k1.

EVEX.256.66.0F38.W0 7D /r
VPERMT2B ymm1 {k1}{z}, ymm2, 
ymm3/m256

A V/V (AVX512VL
AVX512_VBMI) 
OR AVX10.11

Permute bytes in ymm3/m256 and ymm1 using 
byte indexes in ymm2 and store the byte results in 
ymm1 using writemask k1.

EVEX.512.66.0F38.W0 7D /r
VPERMT2B zmm1 {k1}{z}, zmm2, 
zmm3/m512

A V/V AVX512_VBMI 
OR AVX10.11

Permute bytes in zmm3/m512 and zmm1 using 
byte indexes in zmm2 and store the byte results in 
zmm1 using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VPERMT2B (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
IF VL = 128:

id := 3;
ELSE IF VL = 256:

id := 4;
ELSE IF VL = 512:

id := 5;
FI;
TMP_DEST[VL-1:0] := DEST[VL-1:0];
FOR j := 0 TO KL-1

off := 8*SRC1[j*8 + id: j*8] ;
IF k1[j] OR *no writemask*:

DEST[j*8 + 7: j*8] := SRC1[j*8+id+1]? SRC2[off+7:off] : TMP_DEST[off+7:off];
ELSE IF *zeroing-masking*

DEST[j*8 + 7: j*8] := 0;
*ELSE 

DEST[j*8 + 7: j*8] remains unchanged*
FI;

ENDFOR
DEST[MAX_VL-1:VL] := 0;

Intel C/C++ Compiler Intrinsic Equivalent

VPERMT2B __m512i _mm512_permutex2var_epi8(__m512i a, __m512i idx, __m512i b);
VPERMT2B __m512i _mm512_mask_permutex2var_epi8(__m512i a, __mmask64 k, __m512i idx, __m512i b);
VPERMT2B __m512i _mm512_maskz_permutex2var_epi8(__mmask64 k, __m512i a, __m512i idx, __m512i b);
VPERMT2B __m256i _mm256_permutex2var_epi8(__m256i a, __m256i idx, __m256i b);
VPERMT2B __m256i _mm256_mask_permutex2var_epi8(__m256i a, __mmask32 k, __m256i idx, __m256i b);
VPERMT2B __m256i _mm256_maskz_permutex2var_epi8(__mmask32 k, __m256i a, __m256i idx, __m256i b);
VPERMT2B __m128i _mm_permutex2var_epi8(__m128i a, __m128i idx, __m128i b);
VPERMT2B __m128i _mm_mask_permutex2var_epi8(__m128i a, __mmask16 k, __m128i idx, __m128i b);
VPERMT2B __m128i _mm_maskz_permutex2var_epi8(__mmask16 k, __m128i a, __m128i idx, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
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VPERMT2W/D/Q/PS/PD—Full Permute From Two Tables Overwriting One Table
Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W1 7D /r
VPERMT2W xmm1 {k1}{z}, xmm2, 
xmm3/m128

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Permute word integers from two tables in 
xmm3/m128 and xmm1 using indexes in xmm2 and 
store the result in xmm1 using writemask k1.

EVEX.256.66.0F38.W1 7D /r
VPERMT2W ymm1 {k1}{z}, ymm2, 
ymm3/m256

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Permute word integers from two tables in 
ymm3/m256 and ymm1 using indexes in ymm2 and 
store the result in ymm1 using writemask k1.

EVEX.512.66.0F38.W1 7D /r
VPERMT2W zmm1 {k1}{z}, zmm2, 
zmm3/m512

A V/V AVX512BW 
OR AVX10.11

Permute word integers from two tables in 
zmm3/m512 and zmm1 using indexes in zmm2 and 
store the result in zmm1 using writemask k1.

EVEX.128.66.0F38.W0 7E /r
VPERMT2D xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute double-words from two tables in 
xmm3/m128/m32bcst and xmm1 using indexes in 
xmm2 and store the result in xmm1 using 
writemask k1.

EVEX.256.66.0F38.W0 7E /r
VPERMT2D ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute double-words from two tables in 
ymm3/m256/m32bcst and ymm1 using indexes in 
ymm2 and store the result in ymm1 using 
writemask k1.

EVEX.512.66.0F38.W0 7E /r
VPERMT2D zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

B V/V AVX512F 
OR AVX10.11

Permute double-words from two tables in 
zmm3/m512/m32bcst and zmm1 using indices in 
zmm2 and store the result in zmm1 using 
writemask k1.

EVEX.128.66.0F38.W1 7E /r
VPERMT2Q xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute quad-words from two tables in 
xmm3/m128/m64bcst and xmm1 using indexes in 
xmm2 and store the result in xmm1 using 
writemask k1.

EVEX.256.66.0F38.W1 7E /r
VPERMT2Q ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute quad-words from two tables in 
ymm3/m256/m64bcst and ymm1 using indexes in 
ymm2 and store the result in ymm1 using 
writemask k1.

EVEX.512.66.0F38.W1 7E /r
VPERMT2Q zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

B V/V AVX512F 
OR AVX10.11

Permute quad-words from two tables in 
zmm3/m512/m64bcst and zmm1 using indices in 
zmm2 and store the result in zmm1 using 
writemask k1.

EVEX.128.66.0F38.W0 7F /r
VPERMT2PS xmm1 {k1}{z}, 
xmm2, xmm3/m128/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute single-precision floating-point values from 
two tables in xmm3/m128/m32bcst and xmm1 
using indexes in xmm2 and store the result in xmm1 
using writemask k1.

EVEX.256.66.0F38.W0 7F /r
VPERMT2PS ymm1 {k1}{z}, 
ymm2, ymm3/m256/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute single-precision floating-point values from 
two tables in ymm3/m256/m32bcst and ymm1 
using indexes in ymm2 and store the result in ymm1 
using writemask k1.

EVEX.512.66.0F38.W0 7F /r
VPERMT2PS zmm1 {k1}{z}, 
zmm2, zmm3/m512/m32bcst

B V/V AVX512F 
OR AVX10.11

Permute single-precision floating-point values from 
two tables in zmm3/m512/m32bcst and zmm1 
using indices in zmm2 and store the result in zmm1 
using writemask k1.
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Instruction Operand Encoding

Description

Permutes 16-bit/32-bit/64-bit values in the first operand and the third operand (the second source operand) using 
indices in the second operand (the first source operand) to select elements from the first and third operands. The 
selected elements are written to the destination operand (the first operand) according to the writemask k1. 
The first and second operands are ZMM/YMM/XMM registers. The second operand contains input indices to select 
elements from the two input tables in the 1st and 3rd operands. The first operand is also the destination of the 
result. 
D/Q/PS/PD element versions: The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit 
memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. Broadcast from the 
low 32/64-bit memory location is performed if EVEX.b and the id bit for table selection are set (selecting table_2).
Dword/PS versions: The id bit for table selection is bit 4/3/2, depending on VL=512, 256, 128. Bits 
[3:0]/[2:0]/[1:0] of each element in the input index vector select an element within the two source operands, If 
the id bit is 0, table_1 (the first source) is selected; otherwise the second source operand is selected.
Qword/PD versions: The id bit for table selection is bit 3/2/1, and bits [2:0]/[1:0] /bit 0 selects element within each 
input table.
Word element versions: The second source operand can be a ZMM/YMM/XMM register, or a 512/256/128-bit 
memory location. The id bit for table selection is bit 5/4/3, and bits [4:0]/[3:0]/[2:0] selects element within each 
input table. 
Note that these instructions permit a 16-bit/32-bit/64-bit value in the source operands to be copied to more than 
one location in the destination operand. Note also that in this case, the same index can be reused for example for 
a second iteration, while the table elements being permuted are overwritten.
Bits (MAXVL-1:256/128) of the destination are zeroed for VL=256,128. 

EVEX.128.66.0F38.W1 7F /r
VPERMT2PD xmm1 {k1}{z}, 
xmm2, xmm3/m128/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute double precision floating-point values from 
two tables in xmm3/m128/m64bcst and xmm1 
using indexes in xmm2 and store the result in xmm1 
using writemask k1.

EVEX.256.66.0F38.W1 7F /r
VPERMT2PD ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Permute double precision floating-point values from 
two tables in ymm3/m256/m64bcst and ymm1 
using indexes in ymm2 and store the result in ymm1 
using writemask k1.

EVEX.512.66.0F38.W1 7F /r
VPERMT2PD zmm1 {k1}{z}, 
zmm2, zmm3/m512/m64bcst

B V/V AVX512F 
OR AVX10.11

Permute double precision floating-point values from 
two tables in zmm3/m512/m64bcst and zmm1 
using indices in zmm2 and store the result in zmm1 
using writemask k1.

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (r,w) EVEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description
VPERMT2W/D/Q/PS/PD—Full Permute From Two Tables Overwriting One Table Vol. 2C 5-545



Operation

VPERMT2W (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

id := 2
FI;
IF VL = 256

id := 3
FI;
IF VL = 512

id := 4
FI;
TMP_DEST := DEST
FOR j := 0 TO KL-1

i := j * 16
off := 16*SRC1[i+id:i]
IF k1[j] OR *no writemask*

THEN 
DEST[i+15:i]=SRC1[i+id+1] ? SRC2[off+15:off] 

       : TMP_DEST[off+15:off]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPERMT2D/VPERMT2PS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL = 128

id := 1
FI;
IF VL = 256

id := 2
FI;
IF VL = 512

id := 3
FI;
TMP_DEST := DEST
FOR j := 0 TO KL-1

i := j * 32
off := 32*SRC1[i+id:i]
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN 
DEST[i+31:i] := SRC1[i+id+1] ? SRC2[31:0] 

       : TMP_DEST[off+31:off]
ELSE 

DEST[i+31:i] := SRC1[i+id+1] ? SRC2[off+31:off] 
       : TMP_DEST[off+31:off]
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FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPERMT2Q/VPERMT2PD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8 512)
IF VL = 128

id := 0
FI;
IF VL = 256

id := 1
FI;
IF VL = 512

id := 2
FI;
TMP_DEST:= DEST
FOR j := 0 TO KL-1

i := j * 64
off := 64*SRC1[i+id:i]
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN 
DEST[i+63:i] := SRC1[i+id+1] ? SRC2[63:0] 

       : TMP_DEST[off+63:off]
ELSE 

DEST[i+63:i] := SRC1[i+id+1] ? SRC2[off+63:off] 
       : TMP_DEST[off+63:off]

FI
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPERMT2D __m512i _mm512_permutex2var_epi32(__m512i a, __m512i idx, __m512i b);
VPERMT2D __m512i _mm512_mask_permutex2var_epi32(__m512i a, __mmask16 k, __m512i idx, __m512i b);
VPERMT2D __m512i _mm512_mask2_permutex2var_epi32(__m512i a, __m512i idx, __mmask16 k, __m512i b);
VPERMT2D __m512i _mm512_maskz_permutex2var_epi32(__mmask16 k, __m512i a, __m512i idx, __m512i b);
VPERMT2D __m256i _mm256_permutex2var_epi32(__m256i a, __m256i idx, __m256i b);
VPERMT2D __m256i _mm256_mask_permutex2var_epi32(__m256i a, __mmask8 k, __m256i idx, __m256i b);
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VPERMT2D __m256i _mm256_mask2_permutex2var_epi32(__m256i a, __m256i idx, __mmask8 k, __m256i b);
VPERMT2D __m256i _mm256_maskz_permutex2var_epi32(__mmask8 k, __m256i a, __m256i idx, __m256i b);
VPERMT2D __m128i _mm_permutex2var_epi32(__m128i a, __m128i idx, __m128i b);
VPERMT2D __m128i _mm_mask_permutex2var_epi32(__m128i a, __mmask8 k, __m128i idx, __m128i b);
VPERMT2D __m128i _mm_mask2_permutex2var_epi32(__m128i a, __m128i idx, __mmask8 k, __m128i b);
VPERMT2D __m128i _mm_maskz_permutex2var_epi32(__mmask8 k, __m128i a, __m128i idx, __m128i b);
VPERMT2PD __m512d _mm512_permutex2var_pd(__m512d a, __m512i idx, __m512d b);
VPERMT2PD __m512d _mm512_mask_permutex2var_pd(__m512d a, __mmask8 k, __m512i idx, __m512d b);
VPERMT2PD __m512d _mm512_mask2_permutex2var_pd(__m512d a, __m512i idx, __mmask8 k, __m512d b);
VPERMT2PD __m512d _mm512_maskz_permutex2var_pd(__mmask8 k, __m512d a, __m512i idx, __m512d b);
VPERMT2PD __m256d _mm256_permutex2var_pd(__m256d a, __m256i idx, __m256d b);
VPERMT2PD __m256d _mm256_mask_permutex2var_pd(__m256d a, __mmask8 k, __m256i idx, __m256d b);
VPERMT2PD __m256d _mm256_mask2_permutex2var_pd(__m256d a, __m256i idx, __mmask8 k, __m256d b);
VPERMT2PD __m256d _mm256_maskz_permutex2var_pd(__mmask8 k, __m256d a, __m256i idx, __m256d b);
VPERMT2PD __m128d _mm_permutex2var_pd(__m128d a, __m128i idx, __m128d b);
VPERMT2PD __m128d _mm_mask_permutex2var_pd(__m128d a, __mmask8 k, __m128i idx, __m128d b);
VPERMT2PD __m128d _mm_mask2_permutex2var_pd(__m128d a, __m128i idx, __mmask8 k, __m128d b);
VPERMT2PD __m128d _mm_maskz_permutex2var_pd(__mmask8 k, __m128d a, __m128i idx, __m128d b);
VPERMT2PS __m512 _mm512_permutex2var_ps(__m512 a, __m512i idx, __m512 b);
VPERMT2PS __m512 _mm512_mask_permutex2var_ps(__m512 a, __mmask16 k, __m512i idx, __m512 b);
VPERMT2PS __m512 _mm512_mask2_permutex2var_ps(__m512 a, __m512i idx, __mmask16 k, __m512 b);
VPERMT2PS __m512 _mm512_maskz_permutex2var_ps(__mmask16 k, __m512 a, __m512i idx, __m512 b);
VPERMT2PS __m256 _mm256_permutex2var_ps(__m256 a, __m256i idx, __m256 b);
VPERMT2PS __m256 _mm256_mask_permutex2var_ps(__m256 a, __mmask8 k, __m256i idx, __m256 b);
VPERMT2PS __m256 _mm256_mask2_permutex2var_ps(__m256 a, __m256i idx, __mmask8 k, __m256 b);
VPERMT2PS __m256 _mm256_maskz_permutex2var_ps(__mmask8 k, __m256 a, __m256i idx, __m256 b);
VPERMT2PS __m128 _mm_permutex2var_ps(__m128 a, __m128i idx, __m128 b);
VPERMT2PS __m128 _mm_mask_permutex2var_ps(__m128 a, __mmask8 k, __m128i idx, __m128 b);
VPERMT2PS __m128 _mm_mask2_permutex2var_ps(__m128 a, __m128i idx, __mmask8 k, __m128 b);
VPERMT2PS __m128 _mm_maskz_permutex2var_ps(__mmask8 k, __m128 a, __m128i idx, __m128 b);
VPERMT2Q __m512i _mm512_permutex2var_epi64(__m512i a, __m512i idx, __m512i b);
VPERMT2Q __m512i _mm512_mask_permutex2var_epi64(__m512i a, __mmask8 k, __m512i idx, __m512i b);
VPERMT2Q __m512i _mm512_mask2_permutex2var_epi64(__m512i a, __m512i idx, __mmask8 k, __m512i b);
VPERMT2Q __m512i _mm512_maskz_permutex2var_epi64(__mmask8 k, __m512i a, __m512i idx, __m512i b);
VPERMT2Q __m256i _mm256_permutex2var_epi64(__m256i a, __m256i idx, __m256i b);
VPERMT2Q __m256i _mm256_mask_permutex2var_epi64(__m256i a, __mmask8 k, __m256i idx, __m256i b);
VPERMT2Q __m256i _mm256_mask2_permutex2var_epi64(__m256i a, __m256i idx, __mmask8 k, __m256i b);
VPERMT2Q __m256i _mm256_maskz_permutex2var_epi64(__mmask8 k, __m256i a, __m256i idx, __m256i b);
VPERMT2Q __m128i _mm_permutex2var_epi64(__m128i a, __m128i idx, __m128i b);
VPERMT2Q __m128i _mm_mask_permutex2var_epi64(__m128i a, __mmask8 k, __m128i idx, __m128i b);
VPERMT2Q __m128i _mm_mask2_permutex2var_epi64(__m128i a, __m128i idx, __mmask8 k, __m128i b);
VPERMT2Q __m128i _mm_maskz_permutex2var_epi64(__mmask8 k, __m128i a, __m128i idx, __m128i b);
VPERMT2W __m512i _mm512_permutex2var_epi16(__m512i a, __m512i idx, __m512i b);
VPERMT2W __m512i _mm512_mask_permutex2var_epi16(__m512i a, __mmask32 k, __m512i idx, __m512i b);
VPERMT2W __m512i _mm512_mask2_permutex2var_epi16(__m512i a, __m512i idx, __mmask32 k, __m512i b);
VPERMT2W __m512i _mm512_maskz_permutex2var_epi16(__mmask32 k, __m512i a, __m512i idx, __m512i b);
VPERMT2W __m256i _mm256_permutex2var_epi16(__m256i a, __m256i idx, __m256i b);
VPERMT2W __m256i _mm256_mask_permutex2var_epi16(__m256i a, __mmask16 k, __m256i idx, __m256i b);
VPERMT2W __m256i _mm256_mask2_permutex2var_epi16(__m256i a, __m256i idx, __mmask16 k, __m256i b);
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VPERMT2W __m256i _mm256_maskz_permutex2var_epi16(__mmask16 k, __m256i a, __m256i idx, __m256i b);
VPERMT2W __m128i _mm_permutex2var_epi16(__m128i a, __m128i idx, __m128i b);
VPERMT2W __m128i _mm_mask_permutex2var_epi16(__m128i a, __mmask8 k, __m128i idx, __m128i b);
VPERMT2W __m128i _mm_mask2_permutex2var_epi16(__m128i a, __m128i idx, __mmask8 k, __m128i b);
VPERMT2W __m128i _mm_maskz_permutex2var_epi16(__mmask8 k, __m128i a, __m128i idx, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

VPERMT2D/Q/PS/PD: See Table 2-52, “Type E4NF Class Exception Conditions.”
VPERMT2W: See Exceptions Type E4NF.nb in Table 2-52, “Type E4NF Class Exception Conditions.”
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VPEXPANDB/VPEXPANDW—Expand Byte/Word Values

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 62 /r
VPEXPANDB xmm1{k1}{z}, m128

A V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Expands up to 128 bits of packed byte values 
from m128 to xmm1 with writemask k1.

EVEX.128.66.0F38.W0 62 /r
VPEXPANDB xmm1{k1}{z}, xmm2

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Expands up to 128 bits of packed byte values 
from xmm2 to xmm1 with writemask k1.

EVEX.256.66.0F38.W0 62 /r
VPEXPANDB ymm1{k1}{z}, m256

A V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Expands up to 256 bits of packed byte values 
from m256 to ymm1 with writemask k1.

EVEX.256.66.0F38.W0 62 /r
VPEXPANDB ymm1{k1}{z}, ymm2

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Expands up to 256 bits of packed byte values 
from ymm2 to ymm1 with writemask k1.

EVEX.512.66.0F38.W0 62 /r
VPEXPANDB zmm1{k1}{z}, m512

A V/V AVX512_VBMI2 
OR AVX10.11

Expands up to 512 bits of packed byte values 
from m512 to zmm1 with writemask k1.

EVEX.512.66.0F38.W0 62 /r
VPEXPANDB zmm1{k1}{z}, zmm2

B V/V AVX512_VBMI2 
OR AVX10.11

Expands up to 512 bits of packed byte values 
from zmm2 to zmm1 with writemask k1.

EVEX.128.66.0F38.W1 62 /r
VPEXPANDW xmm1{k1}{z}, m128

A V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Expands up to 128 bits of packed word values 
from m128 to xmm1 with writemask k1.

EVEX.128.66.0F38.W1 62 /r
VPEXPANDW xmm1{k1}{z}, xmm2

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Expands up to 128 bits of packed word values 
from xmm2 to xmm1 with writemask k1.

EVEX.256.66.0F38.W1 62 /r
VPEXPANDW ymm1{k1}{z}, m256

A V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Expands up to 256 bits of packed word values 
from m256 to ymm1 with writemask k1.

EVEX.256.66.0F38.W1 62 /r
VPEXPANDW ymm1{k1}{z}, ymm2

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Expands up to 256 bits of packed word values 
from ymm2 to ymm1 with writemask k1.

EVEX.512.66.0F38.W1 62 /r
VPEXPANDW zmm1{k1}{z}, m512

A V/V AVX512_VBMI2 
OR AVX10.11

Expands up to 512 bits of packed word values 
from m512 to zmm1 with writemask k1.

EVEX.512.66.0F38.W1 62 /r
VPEXPANDW zmm1{k1}{z}, zmm2

B V/V AVX512_VBMI2 
OR AVX10.11

Expands up to 512 bits of packed byte integer 
values from zmm2 to zmm1 with writemask 
k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Description

Expands (loads) up to 64 byte integer values or 32 word integer values from the source operand (memory 
operand) to the destination operand (register operand), based on the active elements determined by the write-
mask operand.
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Moves 128, 256 or 512 bits of packed byte integer values from the source operand (memory operand) to the desti-
nation operand (register operand). This instruction is used to load from an int8 vector register or memory location 
while inserting the data into sparse elements of destination vector register using the active elements pointed out 
by the operand writemask.
This instruction supports memory fault suppression.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element 
instead of the size of the full vector.

Operation

VPEXPANDB
(KL, VL) = (16, 128), (32, 256), (64, 512)
k := 0
FOR j := 0 TO KL-1:

IF k1[j] OR *no writemask*:
DEST.byte[j] := SRC.byte[k];
k := k + 1
ELSE:

IF *merging-masking*:
*DEST.byte[j] remains unchanged*
ELSE: ; zeroing-masking

DEST.byte[j] := 0
DEST[MAX_VL-1:VL] := 0

VPEXPANDW
(KL, VL) = (8,128), (16,256), (32, 512)
k := 0
FOR j := 0 TO KL-1:

IF k1[j] OR *no writemask*:
DEST.word[j] := SRC.word[k];
k := k + 1
ELSE:

IF *merging-masking*:
*DEST.word[j] remains unchanged*
ELSE:  ; zeroing-masking

DEST.word[j] := 0
DEST[MAX_VL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPEXPAND __m128i _mm_mask_expand_epi8(__m128i, __mmask16, __m128i);
VPEXPAND __m128i _mm_maskz_expand_epi8(__mmask16, __m128i);
VPEXPAND __m128i _mm_mask_expandloadu_epi8(__m128i, __mmask16, const void*);
VPEXPAND __m128i _mm_maskz_expandloadu_epi8(__mmask16, const void*);
VPEXPAND __m256i _mm256_mask_expand_epi8(__m256i, __mmask32, __m256i);
VPEXPAND __m256i _mm256_maskz_expand_epi8(__mmask32, __m256i);
VPEXPAND __m256i _mm256_mask_expandloadu_epi8(__m256i, __mmask32, const void*);
VPEXPAND __m256i _mm256_maskz_expandloadu_epi8(__mmask32, const void*);
VPEXPAND __m512i _mm512_mask_expand_epi8(__m512i, __mmask64, __m512i);
VPEXPAND __m512i _mm512_maskz_expand_epi8(__mmask64, __m512i);
VPEXPAND __m512i _mm512_mask_expandloadu_epi8(__m512i, __mmask64, const void*);
VPEXPAND __m512i _mm512_maskz_expandloadu_epi8(__mmask64, const void*);
VPEXPANDW __m128i _mm_mask_expand_epi16(__m128i, __mmask8, __m128i);
VPEXPANDW __m128i _mm_maskz_expand_epi16(__mmask8, __m128i);
VPEXPANDW __m128i _mm_mask_expandloadu_epi16(__m128i, __mmask8, const void*);
VPEXPANDW __m128i _mm_maskz_expandloadu_epi16(__mmask8, const void *);
VPEXPANDW __m256i _mm256_mask_expand_epi16(__m256i, __mmask16, __m256i);
VPEXPANDW __m256i _mm256_maskz_expand_epi16(__mmask16, __m256i);
VPEXPANDW __m256i _mm256_mask_expandloadu_epi16(__m256i, __mmask16, const void*);
VPEXPANDW __m256i _mm256_maskz_expandloadu_epi16(__mmask16, const void*);
VPEXPANDW __m512i _mm512_mask_expand_epi16(__m512i, __mmask32, __m512i);
VPEXPANDW __m512i _mm512_maskz_expand_epi16(__mmask32, __m512i);
VPEXPANDW __m512i _mm512_mask_expandloadu_epi16(__m512i, __mmask32, const void*);
VPEXPANDW __m512i _mm512_maskz_expandloadu_epi16(__mmask32, const void*);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-51, “Type E4 Class Exception Conditions.”
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VPEXPANDD—Load Sparse Packed Doubleword Integer Values From Dense Memory/Register

Instruction Operand Encoding

Description 

Expand (load) up to 16 contiguous doubleword integer values of the input vector in the source operand (the second 
operand) to sparse elements in the destination operand (the first operand), selected by the writemask k1. The 
destination operand is a ZMM register, the source operand can be a ZMM register or memory location.
The input vector starts from the lowest element in the source operand. The opmask register k1 selects the desti-
nation elements (a partial vector or sparse elements if less than 8 elements) to be replaced by the ascending 
elements in the input vector. Destination elements not selected by the writemask k1 are either unmodified or 
zeroed, depending on EVEX.z.
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element 
instead of the size of the full vector.

Operation

VPEXPANDD (EVEX encoded versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
k := 0
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
DEST[i+31:i] := SRC[k+31:k];
k := k + 32

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 89 /r
VPEXPANDD xmm1 {k1}{z}, 
xmm2/m128

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Expand packed double-word integer values from 
xmm2/m128 to xmm1 using writemask k1.

EVEX.256.66.0F38.W0 89 /r
VPEXPANDD ymm1 {k1}{z}, 
ymm2/m256

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Expand packed double-word integer values from 
ymm2/m256 to ymm1 using writemask k1.

EVEX.512.66.0F38.W0 89 /r
VPEXPANDD zmm1 {k1}{z}, 
zmm2/m512

A V/V AVX512F 
OR AVX10.11

Expand packed double-word integer values from 
zmm2/m512 to zmm1 using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A
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ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPEXPANDD __m512i _mm512_mask_expandloadu_epi32(__m512i s, __mmask16 k, void * a);
VPEXPANDD __m512i _mm512_maskz_expandloadu_epi32( __mmask16 k, void * a);
VPEXPANDD __m512i _mm512_mask_expand_epi32(__m512i s, __mmask16 k, __m512i a);
VPEXPANDD __m512i _mm512_maskz_expand_epi32( __mmask16 k, __m512i a);
VPEXPANDD __m256i _mm256_mask_expandloadu_epi32(__m256i s, __mmask8 k, void * a);
VPEXPANDD __m256i _mm256_maskz_expandloadu_epi32( __mmask8 k, void * a);
VPEXPANDD __m256i _mm256_mask_expand_epi32(__m256i s, __mmask8 k, __m256i a);
VPEXPANDD __m256i _mm256_maskz_expand_epi32( __mmask8 k, __m256i a);
VPEXPANDD __m128i _mm_mask_expandloadu_epi32(__m128i s, __mmask8 k, void * a);
VPEXPANDD __m128i _mm_maskz_expandloadu_epi32( __mmask8 k, void * a);
VPEXPANDD __m128i _mm_mask_expand_epi32(__m128i s, __mmask8 k, __m128i a);
VPEXPANDD __m128i _mm_maskz_expand_epi32( __mmask8 k, __m128i a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VPEXPANDQ—Load Sparse Packed Quadword Integer Values From Dense Memory/Register

Instruction Operand Encoding

Description 

Expand (load) up to 8 quadword integer values from the source operand (the second operand) to sparse elements 
in the destination operand (the first operand), selected by the writemask k1. The destination operand is a ZMM 
register, the source operand can be a ZMM register or memory location.
The input vector starts from the lowest element in the source operand. The opmask register k1 selects the desti-
nation elements (a partial vector or sparse elements if less than 8 elements) to be replaced by the ascending 
elements in the input vector. Destination elements not selected by the writemask k1 are either unmodified or 
zeroed, depending on EVEX.z.
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element 
instead of the size of the full vector.

Operation

VPEXPANDQ (EVEX encoded versions) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
k := 0
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
DEST[i+63:i] := SRC[k+63:k];
k := k + 64

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[i+63:i] := 0
FI

FI;

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W1 89 /r
VPEXPANDQ xmm1 {k1}{z}, xmm2/m128

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Expand packed quad-word integer values 
from xmm2/m128 to xmm1 using 
writemask k1.

EVEX.256.66.0F38.W1 89 /r
VPEXPANDQ ymm1 {k1}{z}, ymm2/m256

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Expand packed quad-word integer values 
from ymm2/m256 to ymm1 using 
writemask k1.

EVEX.512.66.0F38.W1 89 /r
VPEXPANDQ zmm1 {k1}{z}, zmm2/m512

A V/V AVX512F 
OR AVX10.11

Expand packed quad-word integer values 
from zmm2/m512 to zmm1 using writemask 
k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A
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ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPEXPANDQ __m512i _mm512_mask_expandloadu_epi64(__m512i s, __mmask8 k, void * a);
VPEXPANDQ __m512i _mm512_maskz_expandloadu_epi64( __mmask8 k, void * a);
VPEXPANDQ __m512i _mm512_mask_expand_epi64(__m512i s, __mmask8 k, __m512i a);
VPEXPANDQ __m512i _mm512_maskz_expand_epi64( __mmask8 k, __m512i a);
VPEXPANDQ __m256i _mm256_mask_expandloadu_epi64(__m256i s, __mmask8 k, void * a);
VPEXPANDQ __m256i _mm256_maskz_expandloadu_epi64( __mmask8 k, void * a);
VPEXPANDQ __m256i _mm256_mask_expand_epi64(__m256i s, __mmask8 k, __m256i a);
VPEXPANDQ __m256i _mm256_maskz_expand_epi64( __mmask8 k, __m256i a);
VPEXPANDQ __m128i _mm_mask_expandloadu_epi64(__m128i s, __mmask8 k, void * a);
VPEXPANDQ __m128i _mm_maskz_expandloadu_epi64( __mmask8 k, void * a);
VPEXPANDQ __m128i _mm_mask_expand_epi64(__m128i s, __mmask8 k, __m128i a);
VPEXPANDQ __m128i _mm_maskz_expand_epi64( __mmask8 k, __m128i a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VPGATHERDD/VPGATHERDQ—Gather Packed Dword, Packed Qword With Signed Dword Indices

Instruction Operand Encoding

Description

A set of 16 or 8 doubleword/quadword memory locations pointed to by base address BASE_ADDR and index vector 
VINDEX with scale SCALE are gathered. The result is written into vector zmm1. The elements are specified via the 
VSIB (i.e., the index register is a zmm, holding packed indices). Elements will only be loaded if their corresponding 
mask bit is one. If an element’s mask bit is not set, the corresponding element of the destination register (zmm1) 
is left unchanged. The entire mask register will be set to zero by this instruction unless it triggers an exception.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception 
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination 
register and the mask register (k1) are partially updated; those elements that have been gathered are placed into 
the destination register and have their mask bits set to zero. If any traps or interrupts are pending from already 
gathered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruc-
tion breakpoint is not re-triggered when the instruction is continued.
If the data element size is less than the index element size, the higher part of the destination register and the mask 
register do not correspond to any elements being gathered. This instruction sets those higher parts to zero. It may 
update these unused elements to one or both of those registers even if the instruction triggers an exception, and 
even if the instruction triggers the exception before gathering any elements.
Note that:
• The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-

64 memory-ordering model.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 90 /vsib 
VPGATHERDD xmm1 {k1}, vm32x

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Using signed dword indices, gather dword values 
from memory using writemask k1 for merging-
masking.

EVEX.256.66.0F38.W0 90 /vsib 
VPGATHERDD ymm1 {k1}, vm32y

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed dword indices, gather dword values 
from memory using writemask k1 for merging-
masking.

EVEX.512.66.0F38.W0 90 /vsib 
VPGATHERDD zmm1 {k1}, vm32z

A V/V AVX512F 
OR AVX10.11

Using signed dword indices, gather dword values 
from memory using writemask k1 for merging-
masking.

EVEX.128.66.0F38.W1 90 /vsib 
VPGATHERDQ xmm1 {k1}, vm32x

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed dword indices, gather quadword values 
from memory using writemask k1 for merging-
masking.

EVEX.256.66.0F38.W1 90 /vsib 
VPGATHERDQ ymm1 {k1}, vm32x

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed dword indices, gather quadword values 
from memory using writemask k1 for merging-
masking.

EVEX.512.66.0F38.W1 90 /vsib 
VPGATHERDQ zmm1 {k1}, vm32y

A V/V AVX512F 
OR AVX10.11

Using signed dword indices, gather quadword values 
from memory using writemask k1 for merging-
masking.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w)
BaseReg (R): VSIB:base,

VectorReg(R): VSIB:index
N/A N/A
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• Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all 
elements closer to the LSB of the destination zmm will be completed (and non-faulting). Individual elements 
closer to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered 
in the conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements to 
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this 
instruction is repeatable - given the same input values and architectural state, the same set of elements to the 
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• Not valid with 16-bit effective addresses. Will deliver a #UD fault.
• These instructions do not accept zeroing-masking since the 0 values in k1 are used to determine completion.
Note that the presence of VSIB byte is enforced in this instruction. Hence, the instruction will #UD fault if 
ModRM.rm is different than 100b.
This instruction has the same disp8*N and alignment rules as for scalar instructions (Tuple 1).
The instruction will #UD fault if the destination vector zmm1 is the same as index vector VINDEX. The instruction 
will #UD fault if the k0 mask register is specified.
The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-bit 
mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address bits are 
ignored.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a ZMM register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1 or 4 byte displacement

VPGATHERDD (EVEX encoded version)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j]

THEN DEST[i+31:i] := MEM[BASE_ADDR +
SignExtend(VINDEX[i+31:i]) * SCALE + DISP]

k1[j] := 0
ELSE *DEST[i+31:i] := remains unchanged*  ; Only merging masking is allowed

FI;
ENDFOR
k1[MAX_KL-1:KL] := 0
DEST[MAXVL-1:VL] := 0

VPGATHERDQ (EVEX encoded version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j]

THEN DEST[i+63:i] := 
MEM[BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP]
k1[j] := 0

ELSE *DEST[i+63:i] := remains unchanged*  ; Only merging masking is allowed
FI;

ENDFOR
k1[MAX_KL-1:KL] := 0
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DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPGATHERDD __m512i _mm512_i32gather_epi32( __m512i vdx, void * base, int scale);
VPGATHERDD __m512i _mm512_mask_i32gather_epi32(__m512i s, __mmask16 k, __m512i vdx, void * base, int scale);
VPGATHERDD __m256i _mm256_mmask_i32gather_epi32(__m256i s, __mmask8 k, __m256i vdx, void * base, int scale);
VPGATHERDD __m128i _mm_mmask_i32gather_epi32(__m128i s, __mmask8 k, __m128i vdx, void * base, int scale);
VPGATHERDQ __m512i _mm512_i32logather_epi64( __m256i vdx, void * base, int scale);
VPGATHERDQ __m512i _mm512_mask_i32logather_epi64(__m512i s, __mmask8 k, __m256i vdx, void * base, int scale);
VPGATHERDQ __m256i _mm256_mmask_i32logather_epi64(__m256i s, __mmask8 k, __m128i vdx, void * base, int scale);
VPGATHERDQ __m128i _mm_mmask_i32gather_epi64(__m128i s, __mmask8 k, __m128i vdx, void * base, int scale);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-63, “Type E12 Class Exception Conditions.”
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VPGATHERDD/VPGATHERQD—Gather Packed Dword Values Using Signed Dword/Qword Indices 

Instruction Operand Encoding

Description

The instruction conditionally loads up to 4 or 8 dword values from memory addresses specified by the memory 
operand (the second operand) and using dword indices. The memory operand uses the VSIB form of the SIB byte 
to specify a general purpose register operand as the common base, a vector register for an array of indices relative 
to the base and a constant scale factor.
The mask operand (the third operand) specifies the conditional load operation from each memory address and the 
corresponding update of each data element of the destination operand (the first operand). Conditionality is speci-
fied by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the 
corresponding element of the destination register is left unchanged. The width of data element in the destination 
register and mask register are identical. The entire mask register will be set to zero by this instruction unless the 
instruction causes an exception. 
Using qword indices, the instruction conditionally loads up to 2 or 4 qword values from the VSIB addressing 
memory operand, and updates the lower half of the destination register. The upper 128 or 256 bits of the destina-
tion register are zero’ed with qword indices.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception 
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination 
register and the mask operand are partially updated; those elements that have been gathered are placed into the 
destination register and have their mask bits set to zero. If any traps or interrupts are pending from already gath-
ered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction 
breakpoint is not re-triggered when the instruction is continued.
If the data size and index size are different, part of the destination register and part of the mask register do not 
correspond to any elements being gathered. This instruction sets those parts to zero. It may do this to one or both 
of those registers even if the instruction triggers an exception, and even if the instruction triggers the exception 
before gathering any elements.
VEX.128 version: For dword indices, the instruction will gather four dword values. For qword indices, the instruc-
tion will gather two values and zero the upper 64 bits of the destination.
VEX.256 version: For dword indices, the instruction will gather eight dword values. For qword indices, the instruc-
tion will gather four values and zero the upper 128 bits of the destination.
Note that:

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.128.66.0F38.W0 90 /r
VPGATHERDD xmm1, vm32x, xmm2

RMV V/V AVX2 Using dword indices specified in vm32x, gather dword val-
ues from memory conditioned on mask specified by xmm2. 
Conditionally gathered elements are merged into xmm1.

VEX.128.66.0F38.W0 91 /r
VPGATHERQD xmm1, vm64x, xmm2

RMV V/V AVX2 Using qword indices specified in vm64x, gather dword val-
ues from memory conditioned on mask specified by xmm2. 
Conditionally gathered elements are merged into xmm1.

VEX.256.66.0F38.W0 90 /r
VPGATHERDD ymm1, vm32y, ymm2

RMV V/V AVX2 Using dword indices specified in vm32y, gather dword 
from memory conditioned on mask specified by ymm2. 
Conditionally gathered elements are merged into ymm1.

VEX.256.66.0F38.W0 91 /r
VPGATHERQD xmm1, vm64y, xmm2

RMV V/V AVX2 Using qword indices specified in vm64y, gather dword val-
ues from memory conditioned on mask specified by xmm2. 
Conditionally gathered elements are merged into xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMV ModRM:reg (r,w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

VEX.vvvv (r, w) N/A
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• If any pair of the index, mask, or destination registers are the same, this instruction results a UD fault.
• The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-

64 memory-ordering model.
• Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all 

elements closer to the LSB of the destination will be completed (and non-faulting). Individual elements closer 
to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered in the 
conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements to 
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this 
instruction is repeatable - given the same input values and architectural state, the same set of elements to the 
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• This instruction will cause a #UD if the address size attribute is 16-bit.
• This instruction will cause a #UD if the memory operand is encoded without the SIB byte.
• This instruction should not be used to access memory mapped I/O as the ordering of the individual loads it does 

is implementation specific, and some implementations may use loads larger than the data element size or load 
elements an indeterminate number of times.

• The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address 
bits are ignored.

Operation

DEST := SRC1;
BASE_ADDR: base register encoded in VSIB addressing;
VINDEX: the vector index register encoded by VSIB addressing;
SCALE: scale factor encoded by SIB:[7:6];
DISP: optional 1, 4 byte displacement;
MASK := SRC3;

VPGATHERDD (VEX.128 version)
MASK[MAXVL-1:128] := 0;
FOR j := 0 to 3

i := j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] := FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] := 0;
FI;

ENDFOR
FOR j := 0 to 3 

i := j * 32;
DATA_ADDR := BASE_ADDR + (SignExtend(VINDEX[i+31:i])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] := FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] := 0;

ENDFOR
DEST[MAXVL-1:128] := 0;
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VPGATHERQD (VEX.128 version)
MASK[MAXVL-1:64] := 0;
FOR j := 0 to 3

i := j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] := FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] := 0;
FI;

ENDFOR
FOR j := 0 to 1 

k := j * 64;
i := j * 32;
DATA_ADDR := BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] := FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] := 0;

ENDFOR
DEST[MAXVL-1:64] := 0;

VPGATHERDD (VEX.256 version)
MASK[MAXVL-1:256] := 0;
FOR j := 0 to 7

i := j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] := FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] := 0;
FI;

ENDFOR
FOR j := 0 to 7

i := j * 32;
DATA_ADDR := BASE_ADDR + (SignExtend(VINDEX1[i+31:i])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] := FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] := 0;

ENDFOR
DEST[MAXVL-1:256] := 0;
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VPGATHERQD (VEX.256 version)
MASK[MAXVL-1:128] := 0;
FOR j := 0 to 7

i := j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] := FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] := 0;
FI;

ENDFOR
FOR j := 0 to 3

k := j * 64;
i := j * 32;
DATA_ADDR := BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] := FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] := 0;

ENDFOR
DEST[MAXVL-1:128] := 0;

Intel C/C++ Compiler Intrinsic Equivalent

VPGATHERDD: __m128i _mm_i32gather_epi32 (int const * base, __m128i index, const int scale);

VPGATHERDD: __m128i _mm_mask_i32gather_epi32 (__m128i src, int const * base, __m128i index, __m128i mask, const int scale);

VPGATHERDD: __m256i _mm256_i32gather_epi32 ( int const * base, __m256i index, const int scale);

VPGATHERDD: __m256i _mm256_mask_i32gather_epi32 (__m256i src, int const * base, __m256i index, __m256i mask, const int 
scale);

VPGATHERQD: __m128i _mm_i64gather_epi32 (int const * base, __m128i index, const int scale);

VPGATHERQD: __m128i _mm_mask_i64gather_epi32 (__m128i src, int const * base, __m128i index, __m128i mask, const int scale);

VPGATHERQD: __m128i _mm256_i64gather_epi32 (int const * base, __m256i index, const int scale);

VPGATHERQD: __m128i _mm256_mask_i64gather_epi32 (__m128i src, int const * base, __m256i index, __m128i mask, const int 
scale);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-27, “Type 12 Class Exception Conditions.”
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VPGATHERDQ/VPGATHERQQ—Gather Packed Qword Values Using Signed Dword/Qword Indices 

Instruction Operand Encoding

Description

The instruction conditionally loads up to 2 or 4 qword values from memory addresses specified by the memory 
operand (the second operand) and using qword indices. The memory operand uses the VSIB form of the SIB byte 
to specify a general purpose register operand as the common base, a vector register for an array of indices relative 
to the base and a constant scale factor.
The mask operand (the third operand) specifies the conditional load operation from each memory address and the 
corresponding update of each data element of the destination operand (the first operand). Conditionality is speci-
fied by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the 
corresponding element of the destination register is left unchanged. The width of data element in the destination 
register and mask register are identical. The entire mask register will be set to zero by this instruction unless the 
instruction causes an exception. 
Using dword indices in the lower half of the mask register, the instruction conditionally loads up to 2 or 4 qword 
values from the VSIB addressing memory operand, and updates the destination register. 
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception 
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination 
register and the mask operand are partially updated; those elements that have been gathered are placed into the 
destination register and have their mask bits set to zero. If any traps or interrupts are pending from already gath-
ered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction 
breakpoint is not re-triggered when the instruction is continued.
If the data size and index size are different, part of the destination register and part of the mask register do not 
correspond to any elements being gathered. This instruction sets those parts to zero. It may do this to one or both 
of those registers even if the instruction triggers an exception, and even if the instruction triggers the exception 
before gathering any elements.
VEX.128 version: The instruction will gather two qword values. For dword indices, only the lower two indices in the 
vector index register are used.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.128.66.0F38.W1 90 /r
VPGATHERDQ xmm1, vm32x, xmm2

A V/V AVX2 Using dword indices specified in vm32x, gather qword val-
ues from memory conditioned on mask specified by 
xmm2. Conditionally gathered elements are merged into 
xmm1.

VEX.128.66.0F38.W1 91 /r
VPGATHERQQ xmm1, vm64x, xmm2

A V/V AVX2 Using qword indices specified in vm64x, gather qword val-
ues from memory conditioned on mask specified by 
xmm2. Conditionally gathered elements are merged into 
xmm1.

VEX.256.66.0F38.W1 90 /r
VPGATHERDQ ymm1, vm32x, ymm2

A V/V AVX2 Using dword indices specified in vm32x, gather qword val-
ues from memory conditioned on mask specified by 
ymm2. Conditionally gathered elements are merged into 
ymm1.

VEX.256.66.0F38.W1 91 /r
VPGATHERQQ ymm1, vm64y, ymm2

A V/V AVX2 Using qword indices specified in vm64y, gather qword val-
ues from memory conditioned on mask specified by 
ymm2. Conditionally gathered elements are merged into 
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r,w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

VEX.vvvv (r, w) N/A
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VEX.256 version: The instruction will gather four qword values. For dword indices, only the lower four indices in the 
vector index register are used.
Note that:
• If any pair of the index, mask, or destination registers are the same, this instruction results a UD fault.
• The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-

64 memory-ordering model.
• Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all 

elements closer to the LSB of the destination will be completed (and non-faulting). Individual elements closer 
to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered in the 
conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements to 
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this 
instruction is repeatable - given the same input values and architectural state, the same set of elements to the 
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• This instruction will cause a #UD if the address size attribute is 16-bit.
• This instruction will cause a #UD if the memory operand is encoded without the SIB byte.
• This instruction should not be used to access memory mapped I/O as the ordering of the individual loads it does 

is implementation specific, and some implementations may use loads larger than the data element size or load 
elements an indeterminate number of times.

• The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address 
bits are ignored.

Operation

DEST := SRC1;
BASE_ADDR: base register encoded in VSIB addressing;
VINDEX: the vector index register encoded by VSIB addressing;
SCALE: scale factor encoded by SIB:[7:6];
DISP: optional 1, 4 byte displacement;
MASK := SRC3;

VPGATHERDQ (VEX.128 version)
MASK[MAXVL-1:128] := 0;
FOR j := 0 to 1

i := j * 64;
IF MASK[63+i] THEN

MASK[i +63:i] := FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i] := 0;
FI;

ENDFOR
FOR j := 0 to 1

k := j * 32;
i := j * 64;
DATA_ADDR := BASE_ADDR + (SignExtend(VINDEX[k+31:k])*SCALE + DISP);
IF MASK[63+i] THEN

DEST[i +63:i] := FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +63:i] := 0;

ENDFOR
DEST[MAXVL-1:128] := 0;
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VPGATHERQQ (VEX.128 version)
MASK[MAXVL-1:128] := 0;
FOR j := 0 to 1

i := j * 64;
IF MASK[63+i] THEN

MASK[i +63:i] := FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i] := 0;
FI;

ENDFOR
FOR j := 0 to 1 

i := j * 64;
DATA_ADDR := BASE_ADDR + (SignExtend(VINDEX1[i+63:i])*SCALE + DISP);
IF MASK[63+i] THEN

DEST[i +63:i] := FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +63:i] := 0;

ENDFOR
DEST[MAXVL-1:128] := 0;

VPGATHERQQ (VEX.256 version)
MASK[MAXVL-1:256] := 0;
FOR j := 0 to 3

i := j * 64;
IF MASK[63+i] THEN

MASK[i +63:i] := FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i] := 0;
FI;

ENDFOR
FOR j := 0 to 3

i := j * 64;
DATA_ADDR := BASE_ADDR + (SignExtend(VINDEX1[i+63:i])*SCALE + DISP);
IF MASK[63+i] THEN

DEST[i +63:i] := FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +63:i] := 0;

ENDFOR
DEST[MAXVL-1:256] := 0;

VPGATHERDQ (VEX.256 version)
MASK[MAXVL-1:256] := 0;
FOR j := 0 to 3

i := j * 64;
IF MASK[63+i] THEN

MASK[i +63:i] := FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i] := 0;
FI;

ENDFOR
FOR j := 0 to 3

k := j * 32;
i := j * 64;
DATA_ADDR := BASE_ADDR + (SignExtend(VINDEX1[k+31:k])*SCALE + DISP);
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IF MASK[63+i] THEN
DEST[i +63:i] := FETCH_64BITS(DATA_ADDR); // a fault exits the instruction

FI;
MASK[i +63:i] := 0;

ENDFOR
DEST[MAXVL-1:256] := 0;

Intel C/C++ Compiler Intrinsic Equivalent

VPGATHERDQ: __m128i _mm_i32gather_epi64 (__int64 const * base, __m128i index, const int scale);

VPGATHERDQ: __m128i _mm_mask_i32gather_epi64 (__m128i src, __int64 const * base, __m128i index, __m128i mask, const int 
scale);

VPGATHERDQ: __m256i _mm256_i32gather_epi64 (__int64 const * base, __m128i index, const int scale);

VPGATHERDQ: __m256i _mm256_mask_i32gather_epi64 (__m256i src, __int64 const * base, __m128i index, __m256i mask, const 
int scale);

VPGATHERQQ: __m128i _mm_i64gather_epi64 (__int64 const * base, __m128i index, const int scale);

VPGATHERQQ: __m128i _mm_mask_i64gather_epi64 (__m128i src, __int64 const * base, __m128i index, __m128i mask, const int 
scale);

VPGATHERQQ: __m256i _mm256_i64gather_epi64 __(int64 const * base, __m256i index, const int scale);

VPGATHERQQ: __m256i _mm256_mask_i64gather_epi64 (__m256i src, __int64 const * base, __m256i index, __m256i mask, const 
int scale);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-27, “Type 12 Class Exception Conditions.”
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VPGATHERQD/VPGATHERQQ—Gather Packed Dword, Packed Qword with Signed Qword Indices

Instruction Operand Encoding

Description

A set of 8 doubleword/quadword memory locations pointed to by base address BASE_ADDR and index vector 
VINDEX with scale SCALE are gathered. The result is written into a vector register. The elements are specified via 
the VSIB (i.e., the index register is a vector register, holding packed indices). Elements will only be loaded if their 
corresponding mask bit is one. If an element’s mask bit is not set, the corresponding element of the destination 
register is left unchanged. The entire mask register will be set to zero by this instruction unless it triggers an excep-
tion.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception 
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination 
register and the mask register (k1) are partially updated; those elements that have been gathered are placed into 
the destination register and have their mask bits set to zero. If any traps or interrupts are pending from already 
gathered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruc-
tion breakpoint is not re-triggered when the instruction is continued.
If the data element size is less than the index element size, the higher part of the destination register and the mask 
register do not correspond to any elements being gathered. This instruction sets those higher parts to zero. It may 
update these unused elements to one or both of those registers even if the instruction triggers an exception, and 
even if the instruction triggers the exception before gathering any elements.
Note that:

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 91 /vsib 
VPGATHERQD xmm1 {k1}, vm64x

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Using signed qword indices, gather dword values 
from memory using writemask k1 for merging-
masking.

EVEX.256.66.0F38.W0 91 /vsib 
VPGATHERQD xmm1 {k1}, vm64y

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed qword indices, gather dword values 
from memory using writemask k1 for merging-
masking.

EVEX.512.66.0F38.W0 91 /vsib 
VPGATHERQD ymm1 {k1}, vm64z

A V/V AVX512F 
OR AVX10.11

Using signed qword indices, gather dword values 
from memory using writemask k1 for merging-
masking.

EVEX.128.66.0F38.W1 91 /vsib 
VPGATHERQQ xmm1 {k1}, vm64x

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed qword indices, gather quadword 
values from memory using writemask k1 for 
merging-masking.

EVEX.256.66.0F38.W1 91 /vsib 
VPGATHERQQ ymm1 {k1}, vm64y

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed qword indices, gather quadword 
values from memory using writemask k1 for 
merging-masking.

EVEX.512.66.0F38.W1 91 /vsib 
VPGATHERQQ zmm1 {k1}, vm64z

A V/V AVX512F 
OR AVX10.11

Using signed qword indices, gather quadword 
values from memory using writemask k1 for 
merging-masking.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w)
BaseReg (R): VSIB:base,

VectorReg(R): VSIB:index
N/A N/A
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• The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-
64 memory-ordering model.

• Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all 
elements closer to the LSB of the destination zmm will be completed (and non-faulting). Individual elements 
closer to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered 
in the conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements to 
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this 
instruction is repeatable - given the same input values and architectural state, the same set of elements to the 
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• Not valid with 16-bit effective addresses. Will deliver a #UD fault.
• These instructions do not accept zeroing-masking since the 0 values in k1 are used to determine completion.
Note that the presence of VSIB byte is enforced in this instruction. Hence, the instruction will #UD fault if 
ModRM.rm is different than 100b.
This instruction has the same disp8*N and alignment rules as for scalar instructions (Tuple 1).
The instruction will #UD fault if the destination vector zmm1 is the same as index vector VINDEX. The instruction 
will #UD fault if the k0 mask register is specified.
The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-bit 
mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address bits are 
ignored.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a ZMM register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1 or 4 byte displacement

VPGATHERQD (EVEX encoded version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 32
k := j * 64
IF k1[j]

THEN DEST[i+31:i] := MEM[BASE_ADDR + (VINDEX[k+63:k]) * SCALE + DISP]
k1[j] := 0

ELSE *DEST[i+31:i] := remains unchanged*  ; Only merging masking is allowed
FI;

ENDFOR
k1[MAX_KL-1:KL] := 0
DEST[MAXVL-1:VL/2] := 0

VPGATHERQQ (EVEX encoded version)
(KL, VL) = (2, 64), (4, 128), (8, 256)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j]

THEN DEST[i+63:i] := 
MEM[BASE_ADDR + (VINDEX[i+63:i]) * SCALE + DISP]
k1[j] := 0

ELSE *DEST[i+63:i] := remains unchanged*  ; Only merging masking is allowed
FI;
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ENDFOR
k1[MAX_KL-1:KL] := 0
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPGATHERQD __m256i _mm512_i64gather_epi32(__m512i vdx, void * base, int scale);
VPGATHERQD __m256i _mm512_mask_i64gather_epi32lo(__m256i s, __mmask8 k, __m512i vdx, void * base, int scale);
VPGATHERQD __m128i _mm256_mask_i64gather_epi32lo(__m128i s, __mmask8 k, __m256i vdx, void * base, int scale);
VPGATHERQD __m128i _mm_mask_i64gather_epi32(__m128i s, __mmask8 k, __m128i vdx, void * base, int scale);
VPGATHERQQ __m512i _mm512_i64gather_epi64( __m512i vdx, void * base, int scale);
VPGATHERQQ __m512i _mm512_mask_i64gather_epi64(__m512i s, __mmask8 k, __m512i vdx, void * base, int scale);
VPGATHERQQ __m256i _mm256_mask_i64gather_epi64(__m256i s, __mmask8 k, __m256i vdx, void * base, int scale);
VPGATHERQQ __m128i _mm_mask_i64gather_epi64(__m128i s, __mmask8 k, __m128i vdx, void * base, int scale);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-63, “Type E12 Class Exception Conditions.”
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VPLZCNTD/Q—Count the Number of Leading Zero Bits for Packed Dword, Packed Qword Values

Instruction Operand Encoding

Description

Counts the number of leading most significant zero bits in each dword or qword element of the source operand (the 
second operand) and stores the results in the destination register (the first operand) according to the writemask. 
If an element is zero, the result for that element is the operand size of the element. 
EVEX.512 encoded version: The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector 
broadcasted from a 32/64-bit memory location. The destination operand is a ZMM register, conditionally updated 
using writemask k1. 
EVEX.256 encoded version: The source operand is a YMM register, a 256-bit memory location, or a 256-bit vector 
broadcasted from a 32/64-bit memory location. The destination operand is a YMM register, conditionally updated 
using writemask k1. 
EVEX.128 encoded version: The source operand is a XMM register, a 128-bit memory location, or a 128-bit vector 
broadcasted from a 32/64-bit memory location. The destination operand is a XMM register, conditionally updated 
using writemask k1. 
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 44 /r
VPLZCNTD xmm1 {k1}{z}, 
xmm2/m128/m32bcst

A V/V (AVX512VL AND
AVX512CD) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Count the number of leading zero bits in each dword 
element of xmm2/m128/m32bcst using writemask k1.

EVEX.256.66.0F38.W0 44 /r
VPLZCNTD ymm1 {k1}{z}, 
ymm2/m256/m32bcst

A V/V (AVX512VL AND
AVX512CD) OR 
AVX10.11

Count the number of leading zero bits in each dword 
element of ymm2/m256/m32bcst using writemask k1.

EVEX.512.66.0F38.W0 44 /r
VPLZCNTD zmm1 {k1}{z}, 
zmm2/m512/m32bcst

A V/V AVX512CD
OR AVX10.11

Count the number of leading zero bits in each dword 
element of zmm2/m512/m32bcst using writemask k1.

EVEX.128.66.0F38.W1 44 /r
VPLZCNTQ xmm1 {k1}{z}, 
xmm2/m128/m64bcst

A V/V (AVX512VL AND
AVX512CD) OR 
AVX10.11

Count the number of leading zero bits in each qword 
element of xmm2/m128/m64bcst using writemask k1.

EVEX.256.66.0F38.W1 44 /r
VPLZCNTQ ymm1 {k1}{z}, 
ymm2/m256/m64bcst

A V/V (AVX512VL AND
AVX512CD) OR 
AVX10.11

Count the number of leading zero bits in each qword 
element of ymm2/m256/m64bcst using writemask k1.

EVEX.512.66.0F38.W1 44 /r
VPLZCNTQ zmm1 {k1}{z}, 
zmm2/m512/m64bcst

A V/V AVX512CD
OR AVX10.11

Count the number of leading zero bits in each qword 
element of zmm2/m512/m64bcst using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation

VPLZCNTD
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j*32
IF MaskBit(j) OR *no writemask*

THEN 
   temp := 32
   DEST[i+31:i] := 0
   WHILE (temp > 0) AND (SRC[i+temp-1] = 0)

   DO
temp := temp – 1
DEST[i+31:i] := DEST[i+31:i] + 1

   OD
ELSE
   IF *merging-masking* 

THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] := 0

   FI
FI

ENDFOR
DEST[MAXVL-1:VL] := 0

VPLZCNTQ
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j*64
IF MaskBit(j) OR *no writemask*

THEN
   temp := 64
   DEST[i+63:i] := 0
   WHILE (temp > 0) AND (SRC[i+temp-1] = 0)

  DO
temp := temp – 1
DEST[i+63:i] := DEST[i+63:i] + 1

   OD
ELSE
   IF *merging-masking* 

THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] := 0

   FI
FI

ENDFOR
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPLZCNTD __m512i _mm512_lzcnt_epi32(__m512i a);
VPLZCNTD __m512i _mm512_mask_lzcnt_epi32(__m512i s, __mmask16 m, __m512i a);
VPLZCNTD __m512i _mm512_maskz_lzcnt_epi32( __mmask16 m, __m512i a);
VPLZCNTQ __m512i _mm512_lzcnt_epi64(__m512i a);
VPLZCNTQ __m512i _mm512_mask_lzcnt_epi64(__m512i s, __mmask8 m, __m512i a);
VPLZCNTQ __m512i _mm512_maskz_lzcnt_epi64(__mmask8 m, __m512i a);
VPLZCNTD __m256i _mm256_lzcnt_epi32(__m256i a);
VPLZCNTD __m256i _mm256_mask_lzcnt_epi32(__m256i s, __mmask8 m, __m256i a);
VPLZCNTD __m256i _mm256_maskz_lzcnt_epi32( __mmask8 m, __m256i a);
VPLZCNTQ __m256i _mm256_lzcnt_epi64(__m256i a);
VPLZCNTQ __m256i _mm256_mask_lzcnt_epi64(__m256i s, __mmask8 m, __m256i a);
VPLZCNTQ __m256i _mm256_maskz_lzcnt_epi64(__mmask8 m, __m256i a);
VPLZCNTD __m128i _mm_lzcnt_epi32(__m128i a);
VPLZCNTD __m128i _mm_mask_lzcnt_epi32(__m128i s, __mmask8 m, __m128i a);
VPLZCNTD __m128i _mm_maskz_lzcnt_epi32( __mmask8 m, __m128i a);
VPLZCNTQ __m128i _mm_lzcnt_epi64(__m128i a);
VPLZCNTQ __m128i _mm_mask_lzcnt_epi64(__m128i s, __mmask8 m, __m128i a);
VPLZCNTQ __m128i _mm_maskz_lzcnt_epi64(__mmask8 m, __m128i a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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VPMADD52HUQ—Packed Multiply of Unsigned 52-Bit Unsigned Integers and Add High 52-Bit 
Products to 64-Bit Accumulators

Instruction Operand Encoding

Description

Multiplies packed unsigned 52-bit integers in each qword element of the first source operand (the second oper-
and) with the packed unsigned 52-bit integers in the corresponding elements of the second source operand (the 
third operand) to form packed 104-bit intermediate results. The high 52-bit, unsigned integer of each 104-bit 
product is added to the corresponding qword unsigned integer of the destination operand (the first operand) 
under the writemask k1.

The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM reg-
ister, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory loca-
tion. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1 at 64-bit 
granularity.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W1 B5 /r

VPMADD52HUQ xmm1, xmm2, 
xmm3/m128

A V/V AVX512_IFMA Multiply unsigned 52-bit integers in xmm2 and 
xmm3/m128 and add the high 52 bits of the 
104-bit product to the qword unsigned integers 
in xmm1.

VEX.256.66.0F38.W1 B5 /r

VPMADD52HUQ ymm1, ymm2, 
ymm3/m256

A V/V AVX512_IFMA Multiply unsigned 52-bit integers in ymm2 and 
ymm3/m256 and add the high 52 bits of the 
104-bit product to the qword unsigned integers 
in ymm1.

EVEX.128.66.0F38.W1 B5 /r
VPMADD52HUQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

B V/V (AVX512_IFMA
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply unsigned 52-bit integers in xmm2 and 
xmm3/m128 and add the high 52 bits of the 
104-bit product to the qword unsigned integers 
in xmm1 using writemask k1.

EVEX.256.66.0F38.W1 B5 /r
VPMADD52HUQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

B V/V (AVX512_IFMA
AND AVX512VL) 
OR AVX10.11

Multiply unsigned 52-bit integers in ymm2 and 
ymm3/m256 and add the high 52 bits of the 
104-bit product to the qword unsigned integers 
in ymm1 using writemask k1.

EVEX.512.66.0F38.W1 B5 /r
VPMADD52HUQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

B V/V AVX512_IFMA
OR AVX10.11

Multiply unsigned 52-bit integers in zmm2 and 
zmm3/m512 and add the high 52 bits of the 
104-bit product to the qword unsigned integers 
in zmm1 using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VPMADDHUQ srcdest, src1, src2 (VEX version)
VL = (128,256)
KL = VL/64

FOR i in 0 .. KL-1:
temp128 := zeroextend64(src1.qword[i][51:0]) *zeroextend64(src2.qword[i][51:0])
srcdest.qword[i] := srcdest.qword[i] +zeroextend64(temp128[103:52])

srcdest[MAXVL:VL] := 0

VPMADD52HUQ (EVEX encoded)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64;
IF k1[j] OR *no writemask* THEN

IF src2 is Memory AND EVEX.b=1 THEN
tsrc2[63:0] := ZeroExtend64(src2[51:0]);

ELSE
tsrc2[63:0] := ZeroExtend64(src2[i+51:i];

FI;
Temp128[127:0] := ZeroExtend64(src1[i+51:i]) * tsrc2[63:0];
Temp2[63:0] := DEST[i+63:i] + ZeroExtend64(temp128[103:52]) ;
DEST[i+63:i] := Temp2[63:0];

ELSE 
IF *zeroing-masking* THEN

DEST[i+63:i] := 0;
ELSE *merge-masking*

DEST[i+63:i] is unchanged;
FI;

FI;
ENDFOR
DEST[MAX_VL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent
VPMADD52HUQ __m128i _mm_madd52hi_avx_epu64 (__m128i __X, __m128i __Y, __m128i __Z);
VPMADD52HUQ __m128i _mm_maskz_madd52hi_epu64( __mmask8 k, __m128i a, __m128i b, __m128i c);
VPMADD52HUQ __m128i _mm_madd52hi_epu64 (__m128i __X, __m128i __Y, __m128i __Z);
VPMADD52HUQ __m128i _mm_madd52hi_epu64( __m128i a, __m128i b, __m128i c);
VPMADD52HUQ __m128i _mm_mask_madd52hi_epu64(__m128i s, __mmask8 k, __m128i a, __m128i b, __m128i c);
VPMADD52HUQ __m256i _mm256_madd52hi_avx_epu64 (__m256i __X, __m256i __Y, __m256i __Z);
VPMADD52HUQ __m256i _mm256_madd52hi_epu64( __m256i a, __m256i b, __m256i c);
VPMADD52HUQ __m256i _mm256_madd52hi_epu64 (__m256i __X, __m256i __Y, __m256i __Z);
VPMADD52HUQ __m256i _mm256_mask_madd52hi_epu64(__m256i s, __mmask8 k, __m256i a, __m256i b, __m256i c);
VPMADD52HUQ __m256i _mm256_maskz_madd52hi_epu64( __mmask8 k, __m256i a, __m256i b, __m256i c);
VPMADD52HUQ __m512i _mm512_madd52hi_epu64( __m512i a, __m512i b, __m512i c);
VPMADD52HUQ __m512i _mm512_mask_madd52hi_epu64(__m512i s, __mmask8 k, __m512i a, __m512i b, __m512i c);
VPMADD52HUQ __m512i _mm512_maskz_madd52hi_epu64( __mmask8 k, __m512i a, __m512i b, __m512i c);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.
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Other Exceptions

VEX-encoded instructions, see Table 2-21, “Type 4 Class Exception Conditions.”

EVEX-encoded instructions, see Table 2-51, “Type E4 Class Exception Conditions.”
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VPMADD52LUQ—Packed Multiply of Unsigned 52-Bit Integers and Add the Low 52-Bit Products 
to Qword Accumulators

Instruction Operand Encoding

Description

Multiplies packed unsigned 52-bit integers in each qword element of the first source operand (the second oper-
and) with the packed unsigned 52-bit integers in the corresponding elements of the second source operand (the 
third operand) to form packed 104-bit intermediate results. The low 52-bit, unsigned integer of each 104-bit 
product is added to the corresponding qword unsigned integer of the destination operand (the first operand) 
under the writemask k1.

The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM reg-
ister, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory loca-
tion. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1 at 64-bit 
granularity.

Opcode/
Instruction

Op/
En

64/32 
Bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W1 B4 /r

VPMADD52LUQ xmm1, xmm2, 
xmm3/m128

A V/V AVX512_IFMA Multiply unsigned 52-bit integers in xmm2 and 
xmm3/m128 and add the low 52 bits of the 104-bit 
product to the qword unsigned integers in xmm1.

VEX.256.66.0F38.W1 B4 /r

VPMADD52LUQ ymm1, ymm2, 
ymm3/m256

A V/V AVX512_IFMA Multiply unsigned 52-bit integers in ymm2 and 
ymm3/m256 and add the low 52 bits of the 104-bit 
product to the qword unsigned integers in ymm1.

EVEX.128.66.0F38.W1 B4 /r
VPMADD52LUQ xmm1 {k1}{z}, 
xmm2,xmm3/m128/m64bcst

B V/V (AVX512_IFMA
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Multiply unsigned 52-bit integers in xmm2 and 
xmm3/m128 and add the low 52 bits of the 104-bit 
product to the qword unsigned integers in xmm1 
using writemask k1.

EVEX.256.66.0F38.W1 B4 /r
VPMADD52LUQ ymm1 {k1}{z}, 
ymm2, ymm3/m256/m64bcst

B V/V (AVX512_IFMA
AND AVX512VL) 
OR AVX10.11

Multiply unsigned 52-bit integers in ymm2 and 
ymm3/m256 and add the low 52 bits of the 104-bit 
product to the qword unsigned integers in ymm1 
using writemask k1.

EVEX.512.66.0F38.W1 B4 /r
VPMADD52LUQ zmm1 {k1}{z}, 
zmm2,zmm3/m512/m64bcst

B V/V AVX512_IFMA
OR AVX10.11

Multiply unsigned 52-bit integers in zmm2 and 
zmm3/m512 and add the low 52 bits of the 104-bit 
product to the qword unsigned integers in zmm1 
using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m(r) N/A
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Operation

VPMADDLUQ srcdest, src1, src2 (VEX version)
VL = (128,256)
KL = VL/64

FOR i in 0 .. KL-1:
temp128 := zeroextend64(src1.qword[i][51:0]) *zeroextend64(src2.qword[i][51:0])
srcdest.qword[i] := srcdest.qword[i] +zeroextend64(temp128[51:0])

srcdest[MAXVL:VL] := 0

VPMADD52LUQ (EVEX encoded)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64;
IF k1[j] OR *no writemask* THEN

IF src2 is Memory AND EVEX.b=1 THEN
tsrc2[63:0] := ZeroExtend64(src2[51:0]);

ELSE
tsrc2[63:0] := ZeroExtend64(src2[i+51:i];

FI;
Temp128[127:0] := ZeroExtend64(src1[i+51:i]) * tsrc2[63:0];
Temp2[63:0] := DEST[i+63:i] + ZeroExtend64(temp128[51:0]) ;
DEST[i+63:i] := Temp2[63:0];

ELSE 
IF *zeroing-masking* THEN

DEST[i+63:i] := 0;
ELSE *merge-masking*

DEST[i+63:i] is unchanged;
FI;

FI;
ENDFOR

DEST[MAX_VL-1:VL] := 0;

Intel C/C++ Compiler Intrinsic Equivalent
VPMADD52LUQ __m128i _mm_madd52lo_avx_epu64 (__m128i __X, __m128i __Y, __m128i __Z);
VPMADD52LUQ __m128i _mm_madd52lo_epu64( __m128i a, __m128i b, __m128i c);
VPMADD52LUQ __m128i _mm_madd52lo_epu64 (__m128i __X, __m128i __Y, __m128i __Z);
VPMADD52LUQ __m128i _mm_mask_madd52lo_epu64(__m128i s, __mmask8 k, __m128i a, __m128i b, __m128i c);
VPMADD52LUQ __m128i _mm_maskz_madd52lo_epu64( __mmask8 k, __m128i a, __m128i b, __m128i c);
VPMADD52LUQ __m256i _mm256_madd52lo_avx_epu64 (__m256i __X, __m256i __Y, __m256i __Z);
VPMADD52LUQ __m256i _mm256_madd52lo_epu64( __m256i a, __m256i b, __m256i c);
VPMADD52LUQ __m256i _mm256_madd52lo_epu64 (__m256i __X, __m256i __Y, __m256i __Z);
VPMADD52LUQ __m256i _mm256_mask_madd52lo_epu64(__m256i s, __mmask8 k, __m256i a, __m256i b, __m256i c);
VPMADD52LUQ __m256i _mm256_maskz_madd52lo_epu64( __mmask8 k, __m256i a, __m256i b, __m256i c);
VPMADD52LUQ __m512i _mm512_madd52lo_epu64( __m512i a, __m512i b, __m512i c);
VPMADD52LUQ __m512i _mm512_mask_madd52lo_epu64(__m512i s, __mmask8 k, __m512i a, __m512i b, __m512i c);
VPMADD52LUQ __m512i _mm512_maskz_madd52lo_epu64( __mmask8 k, __m512i a, __m512i b, __m512i c);

Flags Affected

None.
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SIMD Floating-Point Exceptions

None.

Other Exceptions

VEX-encoded instructions, see Table 2-21, “Type 4 Class Exception Conditions.”

EVEX-encoded instructions, see Table 2-51, “Type E4 Class Exception Conditions.”
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VPMASKMOV—Conditional SIMD Integer Packed Loads and Stores

Instruction Operand Encoding

Description

Conditionally moves packed data elements from the second source operand into the corresponding data element 
of the destination operand, depending on the mask bits associated with each data element. The mask bits are 
specified in the first source operand. 
The mask bit for each data element is the most significant bit of that element in the first source operand. If a mask 
is 1, the corresponding data element is copied from the second source operand to the destination operand. If the 
mask is 0, the corresponding data element is set to zero in the load form of these instructions, and unmodified in 
the store form. 
The second source operand is a memory address for the load form of these instructions. The destination operand 
is a memory address for the store form of these instructions. The other operands are either XMM registers (for 
VEX.128 version) or YMM registers (for VEX.256 version).
Faults occur only due to mask-bit required memory accesses that caused the faults. Faults will not occur due to 
referencing any memory location if the corresponding mask bit for that memory location is 0. For example, no 
faults will be detected if the mask bits are all zero.
Unlike previous MASKMOV instructions (MASKMOVQ and MASKMOVDQU), a nontemporal hint is not applied to 
these instructions.
Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with mask bits 
of all 1s.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.128.66.0F38.W0 8C /r
VPMASKMOVD xmm1, xmm2, m128

RVM V/V AVX2 Conditionally load dword values from m128 using mask 
in xmm2 and store in xmm1.

VEX.256.66.0F38.W0 8C /r
VPMASKMOVD ymm1, ymm2, m256

RVM V/V AVX2 Conditionally load dword values from m256 using mask 
in ymm2 and store in ymm1.

VEX.128.66.0F38.W1 8C /r
VPMASKMOVQ xmm1, xmm2, m128

RVM V/V AVX2 Conditionally load qword values from m128 using mask 
in xmm2 and store in xmm1.

VEX.256.66.0F38.W1 8C /r
VPMASKMOVQ ymm1, ymm2, m256

RVM V/V AVX2 Conditionally load qword values from m256 using mask 
in ymm2 and store in ymm1.

VEX.128.66.0F38.W0 8E /r
VPMASKMOVD m128, xmm1, xmm2

MVR V/V AVX2 Conditionally store dword values from xmm2 using 
mask in xmm1.

VEX.256.66.0F38.W0 8E /r
VPMASKMOVD m256, ymm1, ymm2

MVR V/V AVX2 Conditionally store dword values from ymm2 using 
mask in ymm1.

VEX.128.66.0F38.W1 8E /r
VPMASKMOVQ m128, xmm1, xmm2

MVR V/V AVX2 Conditionally store qword values from xmm2 using 
mask in xmm1.

VEX.256.66.0F38.W1 8E /r
VPMASKMOVQ m256, ymm1, ymm2

MVR V/V AVX2 Conditionally store qword values from ymm2 using 
mask in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

MVR ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) N/A
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VMASKMOV should not be used to access memory mapped I/O as the ordering of the individual loads or stores it 
does is implementation specific. 
In cases where mask bits indicate data should not be loaded or stored paging A and D bits will be set in an imple-
mentation dependent way. However, A and D bits are always set for pages where data is actually loaded/stored.
Note: for load forms, the first source (the mask) is encoded in VEX.vvvv; the second source is encoded in rm_field, 
and the destination register is encoded in reg_field.
Note: for store forms, the first source (the mask) is encoded in VEX.vvvv; the second source register is encoded in 
reg_field, and the destination memory location is encoded in rm_field.

Operation

VPMASKMOVD - 256-bit load
DEST[31:0] := IF (SRC1[31]) Load_32(mem) ELSE 0 
DEST[63:32] := IF (SRC1[63]) Load_32(mem + 4) ELSE 0 
DEST[95:64] := IF (SRC1[95]) Load_32(mem + 8) ELSE 0 
DEST[127:96] := IF (SRC1[127]) Load_32(mem + 12) ELSE 0 
DEST[159:128] := IF (SRC1[159]) Load_32(mem + 16) ELSE 0 
DEST[191:160] := IF (SRC1[191]) Load_32(mem + 20) ELSE 0 
DEST[223:192] := IF (SRC1[223]) Load_32(mem + 24) ELSE 0 
DEST[255:224] := IF (SRC1[255]) Load_32(mem + 28) ELSE 0 

VPMASKMOVD -128-bit load 
DEST[31:0] := IF (SRC1[31]) Load_32(mem) ELSE 0 
DEST[63:32] := IF (SRC1[63]) Load_32(mem + 4) ELSE 0 
DEST[95:64] := IF (SRC1[95]) Load_32(mem + 8) ELSE 0 
DEST[127:97] := IF (SRC1[127]) Load_32(mem + 12) ELSE 0 
DEST[MAXVL-1:128] := 0

VPMASKMOVQ - 256-bit load
DEST[63:0] := IF (SRC1[63]) Load_64(mem) ELSE 0 
DEST[127:64] := IF (SRC1[127]) Load_64(mem + 8) ELSE 0 
DEST[195:128] := IF (SRC1[191]) Load_64(mem + 16) ELSE 0 
DEST[255:196] := IF (SRC1[255]) Load_64(mem + 24) ELSE 0 

VPMASKMOVQ - 128-bit load 
DEST[63:0] := IF (SRC1[63]) Load_64(mem) ELSE 0 
DEST[127:64] := IF (SRC1[127]) Load_64(mem + 16) ELSE 0
DEST[MAXVL-1:128] := 0

VPMASKMOVD - 256-bit store
IF (SRC1[31]) DEST[31:0] := SRC2[31:0] 
IF (SRC1[63]) DEST[63:32] := SRC2[63:32] 
IF (SRC1[95]) DEST[95:64] := SRC2[95:64] 
IF (SRC1[127]) DEST[127:96] := SRC2[127:96] 
IF (SRC1[159]) DEST[159:128] :=SRC2[159:128] 
IF (SRC1[191]) DEST[191:160] := SRC2[191:160] 
IF (SRC1[223]) DEST[223:192] := SRC2[223:192] 
IF (SRC1[255]) DEST[255:224] := SRC2[255:224] 
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VPMASKMOVD - 128-bit store
IF (SRC1[31]) DEST[31:0] := SRC2[31:0] 
IF (SRC1[63]) DEST[63:32] := SRC2[63:32] 
IF (SRC1[95]) DEST[95:64] := SRC2[95:64] 
IF (SRC1[127]) DEST[127:96] := SRC2[127:96] 

VPMASKMOVQ - 256-bit store
IF (SRC1[63]) DEST[63:0] := SRC2[63:0] 
IF (SRC1[127]) DEST[127:64] :=SRC2[127:64] 
IF (SRC1[191]) DEST[191:128] := SRC2[191:128] 
IF (SRC1[255]) DEST[255:192] := SRC2[255:192] 

VPMASKMOVQ - 128-bit store
IF (SRC1[63]) DEST[63:0] := SRC2[63:0] 
IF (SRC1[127]) DEST[127:64] :=SRC2[127:64] 

Intel C/C++ Compiler Intrinsic Equivalent

VPMASKMOVD: __m256i _mm256_maskload_epi32(int const *a, __m256i mask)

VPMASKMOVD: void    _mm256_maskstore_epi32(int *a, __m256i mask, __m256i b)

VPMASKMOVQ: __m256i _mm256_maskload_epi64(__int64 const *a, __m256i mask);

VPMASKMOVQ: void    _mm256_maskstore_epi64(__int64 *a, __m256i mask, __m256d b);

VPMASKMOVD: __m128i _mm_maskload_epi32(int const *a, __m128i mask)

VPMASKMOVD: void    _mm_maskstore_epi32(int *a, __m128i mask, __m128 b)

VPMASKMOVQ: __m128i _mm_maskload_epi64(__int cont *a, __m128i mask);

VPMASKMOVQ: void    _mm_maskstore_epi64(__int64 *a, __m128i mask, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 2-23, “Type 6 Class Exception Conditions” (No AC# reported for any mask bit combinations).
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VPMOVB2M/VPMOVW2M/VPMOVD2M/VPMOVQ2M—Convert a Vector Register to a Mask 

Instruction Operand Encoding

Description 

Converts a vector register to a mask register. Each element in the destination register is set to 1 or 0 depending on 
the value of most significant bit of the corresponding element in the source register.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F3.0F38.W0 29 /r 
VPMOVB2M k1, xmm1

RM V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Sets each bit in k1 to 1 or 0 based on the value of the 
most significant bit of the corresponding byte in XMM1. 

EVEX.256.F3.0F38.W0 29 /r 
VPMOVB2M k1, ymm1

RM V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Sets each bit in k1 to 1 or 0 based on the value of the 
most significant bit of the corresponding byte in YMM1. 

EVEX.512.F3.0F38.W0 29 /r 
VPMOVB2M k1, zmm1 

RM V/V AVX512BW 
OR AVX10.11

Sets each bit in k1 to 1 or 0 based on the value of the 
most significant bit of the corresponding byte in ZMM1. 

EVEX.128.F3.0F38.W1 29 /r 
VPMOVW2M k1, xmm1 

RM V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Sets each bit in k1 to 1 or 0 based on the value of the 
most significant bit of the corresponding word in XMM1. 

EVEX.256.F3.0F38.W1 29 /r 
VPMOVW2M k1, ymm1

RM V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Sets each bit in k1 to 1 or 0 based on the value of the 
most significant bit of the corresponding word in YMM1. 

EVEX.512.F3.0F38.W1 29 /r 
VPMOVW2M k1, zmm1

RM V/V AVX512BW 
OR AVX10.11

Sets each bit in k1 to 1 or 0 based on the value of the 
most significant bit of the corresponding word in ZMM1. 

EVEX.128.F3.0F38.W0 39 /r 
VPMOVD2M k1, xmm1 

RM V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Sets each bit in k1 to 1 or 0 based on the value of the 
most significant bit of the corresponding doubleword in 
XMM1. 

EVEX.256.F3.0F38.W0 39 /r 
VPMOVD2M k1, ymm1 

RM V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Sets each bit in k1 to 1 or 0 based on the value of the 
most significant bit of the corresponding doubleword in 
YMM1. 

EVEX.512.F3.0F38.W0 39 /r 
VPMOVD2M k1, zmm1

RM V/V AVX512DQ 
OR AVX10.11

Sets each bit in k1 to 1 or 0 based on the value of the 
most significant bit of the corresponding doubleword in 
ZMM1. 

EVEX.128.F3.0F38.W1 39 /r 
VPMOVQ2M k1, xmm1 

RM V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Sets each bit in k1 to 1 or 0 based on the value of the 
most significant bit of the corresponding quadword in 
XMM1. 

EVEX.256.F3.0F38.W1 39 /r 
VPMOVQ2M k1, ymm1 

RM V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Sets each bit in k1 to 1 or 0 based on the value of the 
most significant bit of the corresponding quadword in 
YMM1. 

EVEX.512.F3.0F38.W1 39 /r 
VPMOVQ2M k1, zmm1 

RM V/V AVX512DQ 
OR AVX10.11

Sets each bit in k1 to 1 or 0 based on the value of the 
most significant bit of the corresponding quadword in 
ZMM1. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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The source operand is a ZMM/YMM/XMM register. The destination operand is a mask register.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VPMOVB2M (EVEX encoded versions) 
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8
IF SRC[i+7]

THEN DEST[j] := 1 
ELSE DEST[j] := 0

FI;
ENDFOR
DEST[MAX_KL-1:KL] := 0

VPMOVW2M (EVEX encoded versions) 
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF SRC[i+15]

THEN DEST[j] := 1 
ELSE DEST[j] := 0

FI;
ENDFOR
DEST[MAX_KL-1:KL] := 0

VPMOVD2M (EVEX encoded versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF SRC[i+31]

THEN DEST[j] := 1 
ELSE DEST[j] := 0

FI;
ENDFOR
DEST[MAX_KL-1:KL] := 0

VPMOVQ2M (EVEX encoded versions) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF SRC[i+63]

THEN DEST[j] := 1 
ELSE DEST[j] := 0

FI;
ENDFOR
DEST[MAX_KL-1:KL] := 0
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Intel C/C++ Compiler Intrinsic Equivalents

VPMPOVB2M __mmask64 _mm512_movepi8_mask( __m512i );
VPMPOVD2M __mmask16 _mm512_movepi32_mask( __m512i );
VPMPOVQ2M __mmask8 _mm512_movepi64_mask( __m512i );
VPMPOVW2M __mmask32 _mm512_movepi16_mask( __m512i );
VPMPOVB2M __mmask32 _mm256_movepi8_mask( __m256i );
VPMPOVD2M __mmask8 _mm256_movepi32_mask( __m256i );
VPMPOVQ2M __mmask8 _mm256_movepi64_mask( __m256i );
VPMPOVW2M __mmask16 _mm256_movepi16_mask( __m256i );
VPMPOVB2M __mmask16 _mm_movepi8_mask( __m128i );
VPMPOVD2M __mmask8 _mm_movepi32_mask( __m128i );
VPMPOVQ2M __mmask8 _mm_movepi64_mask( __m128i );
VPMPOVW2M __mmask8 _mm_movepi16_mask( __m128i );

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Table 2-57, “Type E7NM Class Exception Conditions.”

Additionally:
#UD If EVEX.vvvv != 1111B.
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VPMOVDB/VPMOVSDB/VPMOVUSDB—Down Convert DWord to Byte

Instruction Operand Encoding

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F3.0F38.W0 31 /r
VPMOVDB xmm1/m32 {k1}{z}, xmm2

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Converts 4 packed double-word integers from 
xmm2 into 4 packed byte integers in 
xmm1/m32 with truncation under writemask 
k1.

EVEX.128.F3.0F38.W0 21 /r
VPMOVSDB xmm1/m32 {k1}{z}, xmm2

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Converts 4 packed signed double-word integers 
from xmm2 into 4 packed signed byte integers 
in xmm1/m32 using signed saturation under 
writemask k1.

EVEX.128.F3.0F38.W0 11 /r
VPMOVUSDB xmm1/m32 {k1}{z}, xmm2

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Converts 4 packed unsigned double-word 
integers from xmm2 into 4 packed unsigned 
byte integers in xmm1/m32 using unsigned 
saturation under writemask k1.

EVEX.256.F3.0F38.W0 31 /r
VPMOVDB xmm1/m64 {k1}{z}, ymm2

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Converts 8 packed double-word integers from 
ymm2 into 8 packed byte integers in 
xmm1/m64 with truncation under writemask 
k1.

EVEX.256.F3.0F38.W0 21 /r
VPMOVSDB xmm1/m64 {k1}{z}, ymm2

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Converts 8 packed signed double-word integers 
from ymm2 into 8 packed signed byte integers 
in xmm1/m64 using signed saturation under 
writemask k1.

EVEX.256.F3.0F38.W0 11 /r
VPMOVUSDB xmm1/m64 {k1}{z}, ymm2

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Converts 8 packed unsigned double-word 
integers from ymm2 into 8 packed unsigned 
byte integers in xmm1/m64 using unsigned 
saturation under writemask k1.

EVEX.512.F3.0F38.W0 31 /r
VPMOVDB xmm1/m128 {k1}{z}, zmm2

A V/V AVX512F 
OR AVX10.11

Converts 16 packed double-word integers from 
zmm2 into 16 packed byte integers in 
xmm1/m128 with truncation under writemask 
k1.

EVEX.512.F3.0F38.W0 21 /r
VPMOVSDB xmm1/m128 {k1}{z}, zmm2

A V/V AVX512F 
OR AVX10.11

Converts 16 packed signed double-word 
integers from zmm2 into 16 packed signed byte 
integers in xmm1/m128 using signed saturation 
under writemask k1.

EVEX.512.F3.0F38.W0 11 /r
VPMOVUSDB xmm1/m128 {k1}{z}, 
zmm2

A V/V AVX512F 
OR AVX10.11

Converts 16 packed unsigned double-word 
integers from zmm2 into 16 packed unsigned 
byte integers in xmm1/m128 using unsigned 
saturation under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Quarter Mem ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Description 

VPMOVDB down converts 32-bit integer elements in the source operand (the second operand) into packed bytes 
using truncation. VPMOVSDB converts signed 32-bit integers into packed signed bytes using signed saturation. 
VPMOVUSDB convert unsigned double-word values into unsigned byte values using unsigned saturation. 

The source operand is a ZMM/YMM/XMM register. The destination operand is a XMM register or a 128/64/32-bit 
memory location.

Down-converted byte elements are written to the destination operand (the first operand) from the least-significant 
byte. Byte elements of the destination operand are updated according to the writemask. Bits (MAXVL-1:128/64/32) 
of the register destination are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VPMOVDB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 8
m := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := TruncateDoubleWordToByte (SRC[m+31:m])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/4] := 0;

VPMOVDB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 8
m := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := TruncateDoubleWordToByte (SRC[m+31:m])
ELSE *DEST[i+7:i] remains unchanged* ; merging-masking

FI;
ENDFOR

VPMOVSDB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 8
m := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SaturateSignedDoubleWordToByte (SRC[m+31:m])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] := 0
FI
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FI;
ENDFOR
DEST[MAXVL-1:VL/4] := 0;

VPMOVSDB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 8
m := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SaturateSignedDoubleWordToByte (SRC[m+31:m])
ELSE *DEST[i+7:i] remains unchanged* ; merging-masking

FI;
ENDFOR

VPMOVUSDB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 8
m := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SaturateUnsignedDoubleWordToByte (SRC[m+31:m])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/4] := 0;

VPMOVUSDB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 8
m := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SaturateUnsignedDoubleWordToByte (SRC[m+31:m])
ELSE *DEST[i+7:i] remains unchanged* ; merging-masking

FI;
ENDFOR
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Intel C/C++ Compiler Intrinsic Equivalents

VPMOVDB __m128i _mm512_cvtepi32_epi8( __m512i a);
VPMOVDB __m128i _mm512_mask_cvtepi32_epi8(__m128i s, __mmask16 k, __m512i a);
VPMOVDB __m128i _mm512_maskz_cvtepi32_epi8( __mmask16 k, __m512i a);
VPMOVDB void _mm512_mask_cvtepi32_storeu_epi8(void * d, __mmask16 k, __m512i a);
VPMOVSDB __m128i _mm512_cvtsepi32_epi8( __m512i a);
VPMOVSDB __m128i _mm512_mask_cvtsepi32_epi8(__m128i s, __mmask16 k, __m512i a);
VPMOVSDB __m128i _mm512_maskz_cvtsepi32_epi8( __mmask16 k, __m512i a);
VPMOVSDB void _mm512_mask_cvtsepi32_storeu_epi8(void * d, __mmask16 k, __m512i a);
VPMOVUSDB __m128i _mm512_cvtusepi32_epi8( __m512i a);
VPMOVUSDB __m128i _mm512_mask_cvtusepi32_epi8(__m128i s, __mmask16 k, __m512i a);
VPMOVUSDB __m128i _mm512_maskz_cvtusepi32_epi8( __mmask16 k, __m512i a);
VPMOVUSDB void _mm512_mask_cvtusepi32_storeu_epi8(void * d, __mmask16 k, __m512i a);
VPMOVUSDB __m128i _mm256_cvtusepi32_epi8(__m256i a);
VPMOVUSDB __m128i _mm256_mask_cvtusepi32_epi8(__m128i a, __mmask8 k, __m256i b);
VPMOVUSDB __m128i _mm256_maskz_cvtusepi32_epi8( __mmask8 k, __m256i b);
VPMOVUSDB void _mm256_mask_cvtusepi32_storeu_epi8(void * , __mmask8 k, __m256i b);
VPMOVUSDB __m128i _mm_cvtusepi32_epi8(__m128i a);
VPMOVUSDB __m128i _mm_mask_cvtusepi32_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVUSDB __m128i _mm_maskz_cvtusepi32_epi8( __mmask8 k, __m128i b);
VPMOVUSDB void _mm_mask_cvtusepi32_storeu_epi8(void * , __mmask8 k, __m128i b);
VPMOVSDB __m128i _mm256_cvtsepi32_epi8(__m256i a);
VPMOVSDB __m128i _mm256_mask_cvtsepi32_epi8(__m128i a, __mmask8 k, __m256i b);
VPMOVSDB __m128i _mm256_maskz_cvtsepi32_epi8( __mmask8 k, __m256i b);
VPMOVSDB void _mm256_mask_cvtsepi32_storeu_epi8(void * , __mmask8 k, __m256i b);
VPMOVSDB __m128i _mm_cvtsepi32_epi8(__m128i a);
VPMOVSDB __m128i _mm_mask_cvtsepi32_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVSDB __m128i _mm_maskz_cvtsepi32_epi8( __mmask8 k, __m128i b);
VPMOVSDB void _mm_mask_cvtsepi32_storeu_epi8(void * , __mmask8 k, __m128i b);
VPMOVDB __m128i _mm256_cvtepi32_epi8(__m256i a);
VPMOVDB __m128i _mm256_mask_cvtepi32_epi8(__m128i a, __mmask8 k, __m256i b);
VPMOVDB __m128i _mm256_maskz_cvtepi32_epi8( __mmask8 k, __m256i b);
VPMOVDB void _mm256_mask_cvtepi32_storeu_epi8(void * , __mmask8 k, __m256i b);
VPMOVDB __m128i _mm_cvtepi32_epi8(__m128i a);
VPMOVDB __m128i _mm_mask_cvtepi32_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVDB __m128i _mm_maskz_cvtepi32_epi8( __mmask8 k, __m128i b);
VPMOVDB void _mm_mask_cvtepi32_storeu_epi8(void * , __mmask8 k, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Table 2-55, “Type E6 Class Exception Conditions.”

Additionally:
#UD If EVEX.vvvv != 1111B.
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VPMOVDW/VPMOVSDW/VPMOVUSDW—Down Convert DWord to Word

Instruction Operand Encoding

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F3.0F38.W0 33 /r
VPMOVDW xmm1/m64 {k1}{z}, xmm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Converts 4 packed double-word integers 
from xmm2 into 4 packed word integers in 
xmm1/m64 with truncation under 
writemask k1.

EVEX.128.F3.0F38.W0 23 /r
VPMOVSDW xmm1/m64 {k1}{z}, xmm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 4 packed signed double-word 
integers from xmm2 into 4 packed signed 
word integers in ymm1/m64 using signed 
saturation under writemask k1.

EVEX.128.F3.0F38.W0 13 /r
VPMOVUSDW xmm1/m64 {k1}{z}, xmm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 4 packed unsigned double-word 
integers from xmm2 into 4 packed unsigned 
word integers in xmm1/m64 using unsigned 
saturation under writemask k1.

EVEX.256.F3.0F38.W0 33 /r
VPMOVDW xmm1/m128 {k1}{z}, ymm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 8 packed double-word integers 
from ymm2 into 8 packed word integers in 
xmm1/m128 with truncation under 
writemask k1.

EVEX.256.F3.0F38.W0 23 /r
VPMOVSDW xmm1/m128 {k1}{z}, ymm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 8 packed signed double-word 
integers from ymm2 into 8 packed signed 
word integers in xmm1/m128 using signed 
saturation under writemask k1.

EVEX.256.F3.0F38.W0 13 /r
VPMOVUSDW xmm1/m128 {k1}{z}, 
ymm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 8 packed unsigned double-word 
integers from ymm2 into 8 packed unsigned 
word integers in xmm1/m128 using 
unsigned saturation under writemask k1.

EVEX.512.F3.0F38.W0 33 /r
VPMOVDW ymm1/m256 {k1}{z}, zmm2

A V/V AVX512F 
OR AVX10.11

Converts 16 packed double-word integers 
from zmm2 into 16 packed word integers in 
ymm1/m256 with truncation under 
writemask k1.

EVEX.512.F3.0F38.W0 23 /r
VPMOVSDW ymm1/m256 {k1}{z}, zmm2

A V/V AVX512F 
OR AVX10.11

Converts 16 packed signed double-word 
integers from zmm2 into 16 packed signed 
word integers in ymm1/m256 using signed 
saturation under writemask k1.

EVEX.512.F3.0F38.W0 13 /r
VPMOVUSDW ymm1/m256 {k1}{z}, 
zmm2

A V/V AVX512F 
OR AVX10.11

Converts 16 packed unsigned double-word 
integers from zmm2 into 16 packed unsigned 
word integers in ymm1/m256 using 
unsigned saturation under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Half Mem ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Description 

VPMOVDW down converts 32-bit integer elements in the source operand (the second operand) into packed words 
using truncation. VPMOVSDW converts signed 32-bit integers into packed signed words using signed saturation. 
VPMOVUSDW convert unsigned double-word values into unsigned word values using unsigned saturation. 

The source operand is a ZMM/YMM/XMM register. The destination operand is a YMM/XMM/XMM register or a 
256/128/64-bit memory location.

Down-converted word elements are written to the destination operand (the first operand) from the least-significant 
word. Word elements of the destination operand are updated according to the writemask. Bits (MAXVL-
1:256/128/64) of the register destination are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VPMOVDW instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 16
m := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TruncateDoubleWordToWord (SRC[m+31:m])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0;

VPMOVDW instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 16
m := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TruncateDoubleWordToWord (SRC[m+31:m])
ELSE 

*DEST[i+15:i] remains unchanged* ; merging-masking
FI;

ENDFOR

VPMOVSDW instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 16
m := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SaturateSignedDoubleWordToWord (SRC[m+31:m])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
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FI
FI;

ENDFOR
DEST[MAXVL-1:VL/2] := 0;

VPMOVSDW instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 16
m := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SaturateSignedDoubleWordToWord (SRC[m+31:m])
ELSE 

*DEST[i+15:i] remains unchanged* ; merging-masking
FI;

ENDFOR

VPMOVUSDW instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 16
m := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SaturateUnsignedDoubleWordToWord (SRC[m+31:m])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0;

VPMOVUSDW instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 16
m := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SaturateUnsignedDoubleWordToWord (SRC[m+31:m])
ELSE 

*DEST[i+15:i] remains unchanged* ; merging-masking
FI;

ENDFOR
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Intel C/C++ Compiler Intrinsic Equivalents

VPMOVDW __m256i _mm512_cvtepi32_epi16( __m512i a);
VPMOVDW __m256i _mm512_mask_cvtepi32_epi16(__m256i s, __mmask16 k, __m512i a);
VPMOVDW __m256i _mm512_maskz_cvtepi32_epi16( __mmask16 k, __m512i a);
VPMOVDW void _mm512_mask_cvtepi32_storeu_epi16(void * d, __mmask16 k, __m512i a);
VPMOVSDW __m256i _mm512_cvtsepi32_epi16( __m512i a);
VPMOVSDW __m256i _mm512_mask_cvtsepi32_epi16(__m256i s, __mmask16 k, __m512i a);
VPMOVSDW __m256i _mm512_maskz_cvtsepi32_epi16( __mmask16 k, __m512i a);
VPMOVSDW void _mm512_mask_cvtsepi32_storeu_epi16(void * d, __mmask16 k, __m512i a);
VPMOVUSDW __m256i _mm512_cvtusepi32_epi16 __m512i a);
VPMOVUSDW __m256i _mm512_mask_cvtusepi32_epi16(__m256i s, __mmask16 k, __m512i a);
VPMOVUSDW __m256i _mm512_maskz_cvtusepi32_epi16( __mmask16 k, __m512i a);
VPMOVUSDW void _mm512_mask_cvtusepi32_storeu_epi16(void * d, __mmask16 k, __m512i a);
VPMOVUSDW __m128i _mm256_cvtusepi32_epi16(__m256i a);
VPMOVUSDW __m128i _mm256_mask_cvtusepi32_epi16(__m128i a, __mmask8 k, __m256i b);
VPMOVUSDW __m128i _mm256_maskz_cvtusepi32_epi16( __mmask8 k, __m256i b);
VPMOVUSDW void _mm256_mask_cvtusepi32_storeu_epi16(void * , __mmask8 k, __m256i b);
VPMOVUSDW __m128i _mm_cvtusepi32_epi16(__m128i a);
VPMOVUSDW __m128i _mm_mask_cvtusepi32_epi16(__m128i a, __mmask8 k, __m128i b);
VPMOVUSDW __m128i _mm_maskz_cvtusepi32_epi16( __mmask8 k, __m128i b);
VPMOVUSDW void _mm_mask_cvtusepi32_storeu_epi16(void * , __mmask8 k, __m128i b);
VPMOVSDW __m128i _mm256_cvtsepi32_epi16(__m256i a);
VPMOVSDW __m128i _mm256_mask_cvtsepi32_epi16(__m128i a, __mmask8 k, __m256i b);
VPMOVSDW __m128i _mm256_maskz_cvtsepi32_epi16( __mmask8 k, __m256i b);
VPMOVSDW void _mm256_mask_cvtsepi32_storeu_epi16(void * , __mmask8 k, __m256i b);
VPMOVSDW __m128i _mm_cvtsepi32_epi16(__m128i a);
VPMOVSDW __m128i _mm_mask_cvtsepi32_epi16(__m128i a, __mmask8 k, __m128i b);
VPMOVSDW __m128i _mm_maskz_cvtsepi32_epi16( __mmask8 k, __m128i b);
VPMOVSDW void _mm_mask_cvtsepi32_storeu_epi16(void * , __mmask8 k, __m128i b);
VPMOVDW __m128i _mm256_cvtepi32_epi16(__m256i a);
VPMOVDW __m128i _mm256_mask_cvtepi32_epi16(__m128i a, __mmask8 k, __m256i b);
VPMOVDW __m128i _mm256_maskz_cvtepi32_epi16( __mmask8 k, __m256i b);
VPMOVDW void _mm256_mask_cvtepi32_storeu_epi16(void * , __mmask8 k, __m256i b);
VPMOVDW __m128i _mm_cvtepi32_epi16(__m128i a);
VPMOVDW __m128i _mm_mask_cvtepi32_epi16(__m128i a, __mmask8 k, __m128i b);
VPMOVDW __m128i _mm_maskz_cvtepi32_epi16( __mmask8 k, __m128i b);
VPMOVDW void _mm_mask_cvtepi32_storeu_epi16(void * , __mmask8 k, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Table 2-55, “Type E6 Class Exception Conditions.”

Additionally:
#UD If EVEX.vvvv != 1111B.
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VPMOVM2B/VPMOVM2W/VPMOVM2D/VPMOVM2Q—Convert a Mask Register to a Vector 
Register

Instruction Operand Encoding

Description 

Converts a mask register to a vector register. Each element in the destination register is set to all 1’s or all 0’s 
depending on the value of the corresponding bit in the source mask register.
The source operand is a mask register. The destination operand is a ZMM/YMM/XMM register.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F3.0F38.W0 28 /r 
VPMOVM2B xmm1, k1

RM V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Sets each byte in XMM1 to all 1’s or all 0’s based on the 
value of the corresponding bit in k1. 

EVEX.256.F3.0F38.W0 28 /r 
VPMOVM2B ymm1, k1

RM V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Sets each byte in YMM1 to all 1’s or all 0’s based on the 
value of the corresponding bit in k1. 

EVEX.512.F3.0F38.W0 28 /r 
VPMOVM2B zmm1, k1

RM V/V AVX512BW 
OR AVX10.11

Sets each byte in ZMM1 to all 1’s or all 0’s based on the 
value of the corresponding bit in k1. 

EVEX.128.F3.0F38.W1 28 /r 
VPMOVM2W xmm1, k1 

RM V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Sets each word in XMM1 to all 1’s or all 0’s based on 
the value of the corresponding bit in k1. 

EVEX.256.F3.0F38.W1 28 /r
VPMOVM2W ymm1, k1 

RM V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Sets each word in YMM1 to all 1’s or all 0’s based on 
the value of the corresponding bit in k1. 

EVEX.512.F3.0F38.W1 28 /r 
VPMOVM2W zmm1, k1 

RM V/V AVX512BW 
OR AVX10.11

Sets each word in ZMM1 to all 1’s or all 0’s based on 
the value of the corresponding bit in k1. 

EVEX.128.F3.0F38.W0 38 /r 
VPMOVM2D xmm1, k1

RM V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Sets each doubleword in XMM1 to all 1’s or all 0’s 
based on the value of the corresponding bit in k1. 

EVEX.256.F3.0F38.W0 38 /r 
VPMOVM2D ymm1, k1

RM V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Sets each doubleword in YMM1 to all 1’s or all 0’s based 
on the value of the corresponding bit in k1. 

EVEX.512.F3.0F38.W0 38 /r 
VPMOVM2D zmm1, k1

RM V/V AVX512DQ 
OR AVX10.11

Sets each doubleword in ZMM1 to all 1’s or all 0’s based 
on the value of the corresponding bit in k1. 

EVEX.128.F3.0F38.W1 38 /r 
VPMOVM2Q xmm1, k1 

RM V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Sets each quadword in XMM1 to all 1’s or all 0’s based 
on the value of the corresponding bit in k1. 

EVEX.256.F3.0F38.W1 38 /r 
VPMOVM2Q ymm1, k1 

RM V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Sets each quadword in YMM1 to all 1’s or all 0’s based 
on the value of the corresponding bit in k1. 

EVEX.512.F3.0F38.W1 38 /r 
VPMOVM2Q zmm1, k1 

RM V/V AVX512DQ 
OR AVX10.11

Sets each quadword in ZMM1 to all 1’s or all 0’s based 
on the value of the corresponding bit in k1. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
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Operation

VPMOVM2B (EVEX encoded versions) 
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8
IF SRC[j]

THEN DEST[i+7:i] := -1 
ELSE DEST[i+7:i] := 0

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPMOVM2W (EVEX encoded versions) 
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF SRC[j]

THEN DEST[i+15:i] := -1 
ELSE DEST[i+15:i] := 0

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPMOVM2D (EVEX encoded versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF SRC[j]

THEN DEST[i+31:i] := -1 
ELSE DEST[i+31:i] := 0

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPMOVM2Q (EVEX encoded versions) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF SRC[j]

THEN DEST[i+63:i] := -1 
ELSE DEST[i+63:i] := 0

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalents

VPMOVM2B __m512i _mm512_movm_epi8(__mmask64 );
VPMOVM2D __m512i _mm512_movm_epi32(__mmask8 );
VPMOVM2Q __m512i _mm512_movm_epi64(__mmask16 );
VPMOVM2W __m512i _mm512_movm_epi16(__mmask32 );
VPMOVM2B __m256i _mm256_movm_epi8(__mmask32 );
VPMOVM2D __m256i _mm256_movm_epi32(__mmask8 );
VPMOVM2Q __m256i _mm256_movm_epi64(__mmask8 );
VPMOVM2W __m256i _mm256_movm_epi16(__mmask16 );
VPMOVM2B __m128i _mm_movm_epi8(__mmask16 );
VPMOVM2D __m128i _mm_movm_epi32(__mmask8 );
VPMOVM2Q __m128i _mm_movm_epi64(__mmask8 );
VPMOVM2W __m128i _mm_movm_epi16(__mmask8 );

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Table 2-57, “Type E7NM Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VPMOVQB/VPMOVSQB/VPMOVUSQB—Down Convert QWord to Byte

Instruction Operand Encoding

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F3.0F38.W0 32 /r
VPMOVQB xmm1/m16 {k1}{z}, xmm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Converts 2 packed quad-word integers from 
xmm2 into 2 packed byte integers in 
xmm1/m16 with truncation under writemask 
k1.

EVEX.128.F3.0F38.W0 22 /r
VPMOVSQB xmm1/m16 {k1}{z}, xmm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 2 packed signed quad-word integers 
from xmm2 into 2 packed signed byte integers 
in xmm1/m16 using signed saturation under 
writemask k1.

EVEX.128.F3.0F38.W0 12 /r
VPMOVUSQB xmm1/m16 {k1}{z}, 
xmm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 2 packed unsigned quad-word 
integers from xmm2 into 2 packed unsigned 
byte integers in xmm1/m16 using unsigned 
saturation under writemask k1.

EVEX.256.F3.0F38.W0 32 /r
VPMOVQB xmm1/m32 {k1}{z}, ymm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 4 packed quad-word integers from 
ymm2 into 4 packed byte integers in 
xmm1/m32 with truncation under writemask 
k1.

EVEX.256.F3.0F38.W0 22 /r
VPMOVSQB xmm1/m32 {k1}{z}, ymm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 4 packed signed quad-word integers 
from ymm2 into 4 packed signed byte integers 
in xmm1/m32 using signed saturation under 
writemask k1.

EVEX.256.F3.0F38.W0 12 /r
VPMOVUSQB xmm1/m32 {k1}{z}, 
ymm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 4 packed unsigned quad-word 
integers from ymm2 into 4 packed unsigned 
byte integers in xmm1/m32 using unsigned 
saturation under writemask k1.

EVEX.512.F3.0F38.W0 32 /r
VPMOVQB xmm1/m64 {k1}{z}, zmm2

A V/V AVX512F 
OR AVX10.11

Converts 8 packed quad-word integers from 
zmm2 into 8 packed byte integers in 
xmm1/m64 with truncation under writemask 
k1.

EVEX.512.F3.0F38.W0 22 /r
VPMOVSQB xmm1/m64 {k1}{z}, zmm2

A V/V AVX512F 
OR AVX10.11

Converts 8 packed signed quad-word integers 
from zmm2 into 8 packed signed byte integers 
in xmm1/m64 using signed saturation under 
writemask k1.

EVEX.512.F3.0F38.W0 12 /r
VPMOVUSQB xmm1/m64 {k1}{z}, 
zmm2

A V/V AVX512F 
OR AVX10.11

Converts 8 packed unsigned quad-word 
integers from zmm2 into 8 packed unsigned 
byte integers in xmm1/m64 using unsigned 
saturation under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Eighth Mem ModRM:r/m (w) ModRM:reg (r) N/A N/A
VPMOVQB/VPMOVSQB/VPMOVUSQB—Down Convert QWord to Byte Vol. 2C 5-598



Description 

VPMOVQB down converts 64-bit integer elements in the source operand (the second operand) into packed byte 
elements using truncation. VPMOVSQB converts signed 64-bit integers into packed signed bytes using signed satu-
ration. VPMOVUSQB convert unsigned quad-word values into unsigned byte values using unsigned saturation. The 
source operand is a vector register. The destination operand is an XMM register or a memory location.

Down-converted byte elements are written to the destination operand (the first operand) from the least-significant 
byte. Byte elements of the destination operand are updated according to the writemask. Bits (MAXVL-1:64) of the 
destination are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VPMOVQB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 8
m := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := TruncateQuadWordToByte (SRC[m+63:m])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/8] := 0;

VPMOVQB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 8
m := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := TruncateQuadWordToByte (SRC[m+63:m])
ELSE 

*DEST[i+7:i] remains unchanged* ; merging-masking
FI;

ENDFOR

VPMOVSQB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 8
m := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SaturateSignedQuadWordToByte (SRC[m+63:m])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] := 0
FI
VPMOVQB/VPMOVSQB/VPMOVUSQB—Down Convert QWord to Byte Vol. 2C 5-599



FI;
ENDFOR
DEST[MAXVL-1:VL/8] := 0;

VPMOVSQB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 8
m := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SaturateSignedQuadWordToByte (SRC[m+63:m])
ELSE 

*DEST[i+7:i] remains unchanged* ; merging-masking
FI;

ENDFOR

VPMOVUSQB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 8
m := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SaturateUnsignedQuadWordToByte (SRC[m+63:m])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/8] := 0;

VPMOVUSQB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 8
m := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SaturateUnsignedQuadWordToByte (SRC[m+63:m])
ELSE 

*DEST[i+7:i] remains unchanged* ; merging-masking
FI;

ENDFOR
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Intel C/C++ Compiler Intrinsic Equivalents

VPMOVQB __m128i _mm512_cvtepi64_epi8( __m512i a);
VPMOVQB __m128i _mm512_mask_cvtepi64_epi8(__m128i s, __mmask8 k, __m512i a);
VPMOVQB __m128i _mm512_maskz_cvtepi64_epi8( __mmask8 k, __m512i a);
VPMOVQB void _mm512_mask_cvtepi64_storeu_epi8(void * d, __mmask8 k, __m512i a);
VPMOVSQB __m128i _mm512_cvtsepi64_epi8( __m512i a);
VPMOVSQB __m128i _mm512_mask_cvtsepi64_epi8(__m128i s, __mmask8 k, __m512i a);
VPMOVSQB __m128i _mm512_maskz_cvtsepi64_epi8( __mmask8 k, __m512i a);
VPMOVSQB void _mm512_mask_cvtsepi64_storeu_epi8(void * d, __mmask8 k, __m512i a);
VPMOVUSQB __m128i _mm512_cvtusepi64_epi8( __m512i a);
VPMOVUSQB __m128i _mm512_mask_cvtusepi64_epi8(__m128i s, __mmask8 k, __m512i a);
VPMOVUSQB __m128i _mm512_maskz_cvtusepi64_epi8( __mmask8 k, __m512i a);
VPMOVUSQB void _mm512_mask_cvtusepi64_storeu_epi8(void * d, __mmask8 k, __m512i a);
VPMOVUSQB __m128i _mm256_cvtusepi64_epi8(__m256i a);
VPMOVUSQB __m128i _mm256_mask_cvtusepi64_epi8(__m128i a, __mmask8 k, __m256i b);
VPMOVUSQB __m128i _mm256_maskz_cvtusepi64_epi8( __mmask8 k, __m256i b);
VPMOVUSQB void _mm256_mask_cvtusepi64_storeu_epi8(void * , __mmask8 k, __m256i b);
VPMOVUSQB __m128i _mm_cvtusepi64_epi8(__m128i a);
VPMOVUSQB __m128i _mm_mask_cvtusepi64_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVUSQB __m128i _mm_maskz_cvtusepi64_epi8( __mmask8 k, __m128i b);
VPMOVUSQB void _mm_mask_cvtusepi64_storeu_epi8(void * , __mmask8 k, __m128i b);
VPMOVSQB __m128i _mm256_cvtsepi64_epi8(__m256i a);
VPMOVSQB __m128i _mm256_mask_cvtsepi64_epi8(__m128i a, __mmask8 k, __m256i b);
VPMOVSQB __m128i _mm256_maskz_cvtsepi64_epi8( __mmask8 k, __m256i b);
VPMOVSQB void _mm256_mask_cvtsepi64_storeu_epi8(void * , __mmask8 k, __m256i b);
VPMOVSQB __m128i _mm_cvtsepi64_epi8(__m128i a);
VPMOVSQB __m128i _mm_mask_cvtsepi64_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVSQB __m128i _mm_maskz_cvtsepi64_epi8( __mmask8 k, __m128i b);
VPMOVSQB void _mm_mask_cvtsepi64_storeu_epi8(void * , __mmask8 k, __m128i b);
VPMOVQB __m128i _mm256_cvtepi64_epi8(__m256i a);
VPMOVQB __m128i _mm256_mask_cvtepi64_epi8(__m128i a, __mmask8 k, __m256i b);
VPMOVQB __m128i _mm256_maskz_cvtepi64_epi8( __mmask8 k, __m256i b);
VPMOVQB void _mm256_mask_cvtepi64_storeu_epi8(void * , __mmask8 k, __m256i b);
VPMOVQB __m128i _mm_cvtepi64_epi8(__m128i a);
VPMOVQB __m128i _mm_mask_cvtepi64_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVQB __m128i _mm_maskz_cvtepi64_epi8( __mmask8 k, __m128i b);
VPMOVQB void _mm_mask_cvtepi64_storeu_epi8(void * , __mmask8 k, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Table 2-55, “Type E6 Class Exception Conditions.”

Additionally:
#UD If EVEX.vvvv != 1111B.
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VPMOVQD/VPMOVSQD/VPMOVUSQD—Down Convert QWord to DWord

Instruction Operand Encoding

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F3.0F38.W0 35 /r
VPMOVQD xmm1/m128 {k1}{z}, xmm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Converts 2 packed quad-word integers from 
xmm2 into 2 packed double-word integers in 
xmm1/m128 with truncation subject to 
writemask k1.

EVEX.128.F3.0F38.W0 25 /r
VPMOVSQD xmm1/m64 {k1}{z}, xmm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 2 packed signed quad-word integers 
from xmm2 into 2 packed signed double-word 
integers in xmm1/m64 using signed saturation 
subject to writemask k1.

EVEX.128.F3.0F38.W0 15 /r
VPMOVUSQD xmm1/m64 {k1}{z}, 
xmm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 2 packed unsigned quad-word integers 
from xmm2 into 2 packed unsigned double-word 
integers in xmm1/m64 using unsigned 
saturation subject to writemask k1.

EVEX.256.F3.0F38.W0 35 /r
VPMOVQD xmm1/m128 {k1}{z}, ymm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 4 packed quad-word integers from 
ymm2 into 4 packed double-word integers in 
xmm1/m128 with truncation subject to 
writemask k1.

EVEX.256.F3.0F38.W0 25 /r
VPMOVSQD xmm1/m128 {k1}{z}, ymm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 4 packed signed quad-word integers 
from ymm2 into 4 packed signed double-word 
integers in xmm1/m128 using signed saturation 
subject to writemask k1.

EVEX.256.F3.0F38.W0 15 /r
VPMOVUSQD xmm1/m128 {k1}{z}, 
ymm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 4 packed unsigned quad-word integers 
from ymm2 into 4 packed unsigned double-word 
integers in xmm1/m128 using unsigned 
saturation subject to writemask k1.

EVEX.512.F3.0F38.W0 35 /r
VPMOVQD ymm1/m256 {k1}{z}, zmm2

A V/V AVX512F 
OR AVX10.11

Converts 8 packed quad-word integers from 
zmm2 into 8 packed double-word integers in 
ymm1/m256 with truncation subject to 
writemask k1.

EVEX.512.F3.0F38.W0 25 /r
VPMOVSQD ymm1/m256 {k1}{z}, zmm2

A V/V AVX512F 
OR AVX10.11

Converts 8 packed signed quad-word integers 
from zmm2 into 8 packed signed double-word 
integers in ymm1/m256 using signed saturation 
subject to writemask k1.

EVEX.512.F3.0F38.W0 15 /r
VPMOVUSQD ymm1/m256 {k1}{z}, 
zmm2

A V/V AVX512F 
OR AVX10.11

Converts 8 packed unsigned quad-word integers 
from zmm2 into 8 packed unsigned double-word 
integers in ymm1/m256 using unsigned 
saturation subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Half Mem ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Description 

VPMOVQW down converts 64-bit integer elements in the source operand (the second operand) into packed double-
words using truncation. VPMOVSQW converts signed 64-bit integers into packed signed doublewords using signed 
saturation. VPMOVUSQW convert unsigned quad-word values into unsigned double-word values using unsigned 
saturation. 

The source operand is a ZMM/YMM/XMM register. The destination operand is a YMM/XMM/XMM register or a 
256/128/64-bit memory location.

Down-converted doubleword elements are written to the destination operand (the first operand) from the least-
significant doubleword. Doubleword elements of the destination operand are updated according to the writemask. 
Bits (MAXVL-1:256/128/64) of the register destination are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VPMOVQD instruction (EVEX encoded version) reg-reg form
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 32
m := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TruncateQuadWordToDWord (SRC[m+63:m])
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0;

VPMOVQD instruction (EVEX encoded version) memory form
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 32
m := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TruncateQuadWordToDWord (SRC[m+63:m])
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking

FI;
ENDFOR

VPMOVSQD instruction (EVEX encoded version) reg-reg form
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 32
m := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SaturateSignedQuadWordToDWord (SRC[m+63:m])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
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DEST[MAXVL-1:VL/2] := 0;

VPMOVSQD instruction (EVEX encoded version) memory form
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 32
m := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SaturateSignedQuadWordToDWord (SRC[m+63:m])
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking

FI;
ENDFOR

VPMOVUSQD instruction (EVEX encoded version) reg-reg form
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 32
m := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SaturateUnsignedQuadWordToDWord (SRC[m+63:m])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0;

VPMOVUSQD instruction (EVEX encoded version) memory form
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 32
m := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SaturateUnsignedQuadWordToDWord (SRC[m+63:m])
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking

FI;
ENDFOR
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Intel C/C++ Compiler Intrinsic Equivalents

VPMOVQD __m256i _mm512_cvtepi64_epi32( __m512i a);
VPMOVQD __m256i _mm512_mask_cvtepi64_epi32(__m256i s, __mmask8 k, __m512i a);
VPMOVQD __m256i _mm512_maskz_cvtepi64_epi32( __mmask8 k, __m512i a);
VPMOVQD void _mm512_mask_cvtepi64_storeu_epi32(void * d, __mmask8 k, __m512i a);
VPMOVSQD __m256i _mm512_cvtsepi64_epi32( __m512i a);
VPMOVSQD __m256i _mm512_mask_cvtsepi64_epi32(__m256i s, __mmask8 k, __m512i a);
VPMOVSQD __m256i _mm512_maskz_cvtsepi64_epi32( __mmask8 k, __m512i a);
VPMOVSQD void _mm512_mask_cvtsepi64_storeu_epi32(void * d, __mmask8 k, __m512i a);
VPMOVUSQD __m256i _mm512_cvtusepi64_epi32( __m512i a);
VPMOVUSQD __m256i _mm512_mask_cvtusepi64_epi32(__m256i s, __mmask8 k, __m512i a);
VPMOVUSQD __m256i _mm512_maskz_cvtusepi64_epi32( __mmask8 k, __m512i a);
VPMOVUSQD void _mm512_mask_cvtusepi64_storeu_epi32(void * d, __mmask8 k, __m512i a);
VPMOVUSQD __m128i _mm256_cvtusepi64_epi32(__m256i a);
VPMOVUSQD __m128i _mm256_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVUSQD __m128i _mm256_maskz_cvtusepi64_epi32( __mmask8 k, __m256i b);
VPMOVUSQD void _mm256_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVUSQD __m128i _mm_cvtusepi64_epi32(__m128i a);
VPMOVUSQD __m128i _mm_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVUSQD __m128i _mm_maskz_cvtusepi64_epi32( __mmask8 k, __m128i b);
VPMOVUSQD void _mm_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
VPMOVSQD __m128i _mm256_cvtsepi64_epi32(__m256i a);
VPMOVSQD __m128i _mm256_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVSQD __m128i _mm256_maskz_cvtsepi64_epi32( __mmask8 k, __m256i b);
VPMOVSQD void _mm256_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVSQD __m128i _mm_cvtsepi64_epi32(__m128i a);
VPMOVSQD __m128i _mm_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVSQD __m128i _mm_maskz_cvtsepi64_epi32( __mmask8 k, __m128i b);
VPMOVSQD void _mm_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
VPMOVQD __m128i _mm256_cvtepi64_epi32(__m256i a);
VPMOVQD __m128i _mm256_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVQD __m128i _mm256_maskz_cvtepi64_epi32( __mmask8 k, __m256i b);
VPMOVQD void _mm256_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVQD __m128i _mm_cvtepi64_epi32(__m128i a);
VPMOVQD __m128i _mm_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVQD __m128i _mm_maskz_cvtepi64_epi32( __mmask8 k, __m128i b);
VPMOVQD void _mm_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Table 2-55, “Type E6 Class Exception Conditions.”

Additionally:
#UD If EVEX.vvvv != 1111B.
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VPMOVQW/VPMOVSQW/VPMOVUSQW—Down Convert QWord to Word

Instruction Operand Encoding

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F3.0F38.W0 34 /r
VPMOVQW xmm1/m32 {k1}{z}, xmm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Converts 2 packed quad-word integers from 
xmm2 into 2 packed word integers in 
xmm1/m32 with truncation under writemask 
k1.

EVEX.128.F3.0F38.W0 24 /r
VPMOVSQW xmm1/m32 {k1}{z}, xmm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 8 packed signed quad-word integers 
from zmm2 into 8 packed signed word 
integers in xmm1/m32 using signed 
saturation under writemask k1.

EVEX.128.F3.0F38.W0 14 /r
VPMOVUSQW xmm1/m32 {k1}{z}, xmm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 2 packed unsigned quad-word 
integers from xmm2 into 2 packed unsigned 
word integers in xmm1/m32 using unsigned 
saturation under writemask k1.

EVEX.256.F3.0F38.W0 34 /r
VPMOVQW xmm1/m64 {k1}{z}, ymm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 4 packed quad-word integers from 
ymm2 into 4 packed word integers in 
xmm1/m64 with truncation under writemask 
k1.

EVEX.256.F3.0F38.W0 24 /r
VPMOVSQW xmm1/m64 {k1}{z}, ymm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 4 packed signed quad-word integers 
from ymm2 into 4 packed signed word 
integers in xmm1/m64 using signed 
saturation under writemask k1.

EVEX.256.F3.0F38.W0 14 /r
VPMOVUSQW xmm1/m64 {k1}{z}, ymm2

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Converts 4 packed unsigned quad-word 
integers from ymm2 into 4 packed unsigned 
word integers in xmm1/m64 using unsigned 
saturation under writemask k1.

EVEX.512.F3.0F38.W0 34 /r
VPMOVQW xmm1/m128 {k1}{z}, zmm2

A V/V AVX512F 
OR AVX10.11

Converts 8 packed quad-word integers from 
zmm2 into 8 packed word integers in 
xmm1/m128 with truncation under 
writemask k1.

EVEX.512.F3.0F38.W0 24 /r
VPMOVSQW xmm1/m128 {k1}{z}, zmm2

A V/V AVX512F 
OR AVX10.11

Converts 8 packed signed quad-word integers 
from zmm2 into 8 packed signed word 
integers in xmm1/m128 using signed 
saturation under writemask k1.

EVEX.512.F3.0F38.W0 14 /r
VPMOVUSQW xmm1/m128 {k1}{z}, 
zmm2

A V/V AVX512F 
OR AVX10.11

Converts 8 packed unsigned quad-word 
integers from zmm2 into 8 packed unsigned 
word integers in xmm1/m128 using unsigned 
saturation under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Quarter Mem ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Description 

VPMOVQW down converts 64-bit integer elements in the source operand (the second operand) into packed words 
using truncation. VPMOVSQW converts signed 64-bit integers into packed signed words using signed saturation. 
VPMOVUSQW convert unsigned quad-word values into unsigned word values using unsigned saturation. 

The source operand is a ZMM/YMM/XMM register. The destination operand is a XMM register or a 128/64/32-bit 
memory location.

Down-converted word elements are written to the destination operand (the first operand) from the least-significant 
word. Word elements of the destination operand are updated according to the writemask. Bits (MAXVL-
1:128/64/32) of the register destination are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VPMOVQW instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 16
m := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TruncateQuadWordToWord (SRC[m+63:m])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/4] := 0;

VPMOVQW instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 16
m := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := TruncateQuadWordToWord (SRC[m+63:m])
ELSE 

*DEST[i+15:i] remains unchanged* ; merging-masking
FI;

ENDFOR

VPMOVSQW instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 16
m := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SaturateSignedQuadWordToWord (SRC[m+63:m])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
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FI
FI;

ENDFOR
DEST[MAXVL-1:VL/4] := 0;

VPMOVSQW instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 16
m := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SaturateSignedQuadWordToWord (SRC[m+63:m])
ELSE 

*DEST[i+15:i] remains unchanged* ; merging-masking
FI;

ENDFOR

VPMOVUSQW instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 16
m := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SaturateUnsignedQuadWordToWord (SRC[m+63:m])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/4] := 0;

VPMOVUSQW instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 16
m := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SaturateUnsignedQuadWordToWord (SRC[m+63:m])
ELSE 

*DEST[i+15:i] remains unchanged* ; merging-masking
FI;

ENDFOR
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Intel C/C++ Compiler Intrinsic Equivalents

VPMOVQW __m128i _mm512_cvtepi64_epi16( __m512i a);
VPMOVQW __m128i _mm512_mask_cvtepi64_epi16(__m128i s, __mmask8 k, __m512i a);
VPMOVQW __m128i _mm512_maskz_cvtepi64_epi16( __mmask8 k, __m512i a);
VPMOVQW void _mm512_mask_cvtepi64_storeu_epi16(void * d, __mmask8 k, __m512i a);
VPMOVSQW __m128i _mm512_cvtsepi64_epi16( __m512i a);
VPMOVSQW __m128i _mm512_mask_cvtsepi64_epi16(__m128i s, __mmask8 k, __m512i a);
VPMOVSQW __m128i _mm512_maskz_cvtsepi64_epi16( __mmask8 k, __m512i a);
VPMOVSQW void _mm512_mask_cvtsepi64_storeu_epi16(void * d, __mmask8 k, __m512i a);
VPMOVUSQW __m128i _mm512_cvtusepi64_epi16( __m512i a);
VPMOVUSQW __m128i _mm512_mask_cvtusepi64_epi16(__m128i s, __mmask8 k, __m512i a);
VPMOVUSQW __m128i _mm512_maskz_cvtusepi64_epi16( __mmask8 k, __m512i a);
VPMOVUSQW void _mm512_mask_cvtusepi64_storeu_epi16(void * d, __mmask8 k, __m512i a);
VPMOVUSQD __m128i _mm256_cvtusepi64_epi32(__m256i a);
VPMOVUSQD __m128i _mm256_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVUSQD __m128i _mm256_maskz_cvtusepi64_epi32( __mmask8 k, __m256i b);
VPMOVUSQD void _mm256_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVUSQD __m128i _mm_cvtusepi64_epi32(__m128i a);
VPMOVUSQD __m128i _mm_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVUSQD __m128i _mm_maskz_cvtusepi64_epi32( __mmask8 k, __m128i b);
VPMOVUSQD void _mm_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
VPMOVSQD __m128i _mm256_cvtsepi64_epi32(__m256i a);
VPMOVSQD __m128i _mm256_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVSQD __m128i _mm256_maskz_cvtsepi64_epi32( __mmask8 k, __m256i b);
VPMOVSQD void _mm256_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVSQD __m128i _mm_cvtsepi64_epi32(__m128i a);
VPMOVSQD __m128i _mm_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVSQD __m128i _mm_maskz_cvtsepi64_epi32( __mmask8 k, __m128i b);
VPMOVSQD void _mm_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
VPMOVQD __m128i _mm256_cvtepi64_epi32(__m256i a);
VPMOVQD __m128i _mm256_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVQD __m128i _mm256_maskz_cvtepi64_epi32( __mmask8 k, __m256i b);
VPMOVQD void _mm256_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVQD __m128i _mm_cvtepi64_epi32(__m128i a);
VPMOVQD __m128i _mm_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVQD __m128i _mm_maskz_cvtepi64_epi32( __mmask8 k, __m128i b);
VPMOVQD void _mm_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Table 2-55, “Type E6 Class Exception Conditions.”

Additionally:
#UD If EVEX.vvvv != 1111B.
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VPMOVWB/VPMOVSWB/VPMOVUSWB—Down Convert Word to Byte

Instruction Operand Encoding

Description 

VPMOVWB down converts 16-bit integers into packed bytes using truncation. VPMOVSWB converts signed 16-bit 
integers into packed signed bytes using signed saturation. VPMOVUSWB convert unsigned word values into 
unsigned byte values using unsigned saturation. 

The source operand is a ZMM/YMM/XMM register. The destination operand is a YMM/XMM/XMM register or a 
256/128/64-bit memory location.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F3.0F38.W0 30 /r
VPMOVWB xmm1/m64 {k1}{z}, xmm2

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Converts 8 packed word integers from xmm2 
into 8 packed bytes in xmm1/m64 with 
truncation under writemask k1.

EVEX.128.F3.0F38.W0 20 /r
VPMOVSWB xmm1/m64 {k1}{z}, 
xmm2

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Converts 8 packed signed word integers from 
xmm2 into 8 packed signed bytes in xmm1/m64 
using signed saturation under writemask k1.

EVEX.128.F3.0F38.W0 10 /r
VPMOVUSWB xmm1/m64 {k1}{z}, 
xmm2

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Converts 8 packed unsigned word integers from 
xmm2 into 8 packed unsigned bytes in 
8mm1/m64 using unsigned saturation under 
writemask k1.

EVEX.256.F3.0F38.W0 30 /r
VPMOVWB xmm1/m128 {k1}{z}, 
ymm2

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Converts 16 packed word integers from ymm2 
into 16 packed bytes in xmm1/m128 with 
truncation under writemask k1.

EVEX.256.F3.0F38.W0 20 /r
VPMOVSWB xmm1/m128 {k1}{z}, 
ymm2

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Converts 16 packed signed word integers from 
ymm2 into 16 packed signed bytes in 
xmm1/m128 using signed saturation under 
writemask k1.

EVEX.256.F3.0F38.W0 10 /r
VPMOVUSWB xmm1/m128 {k1}{z}, 
ymm2

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Converts 16 packed unsigned word integers 
from ymm2 into 16 packed unsigned bytes in 
xmm1/m128 using unsigned saturation under 
writemask k1.

EVEX.512.F3.0F38.W0 30 /r
VPMOVWB ymm1/m256 {k1}{z}, 
zmm2

A V/V AVX512BW 
OR AVX10.11

Converts 32 packed word integers from zmm2 
into 32 packed bytes in ymm1/m256 with 
truncation under writemask k1.

EVEX.512.F3.0F38.W0 20 /r
VPMOVSWB ymm1/m256 {k1}{z}, 
zmm2

A V/V AVX512BW 
OR AVX10.11

Converts 32 packed signed word integers from 
zmm2 into 32 packed signed bytes in 
ymm1/m256 using signed saturation under 
writemask k1.

EVEX.512.F3.0F38.W0 10 /r
VPMOVUSWB ymm1/m256 {k1}{z}, 
zmm2

A V/V AVX512BW 
OR AVX10.11

Converts 32 packed unsigned word integers 
from zmm2 into 32 packed unsigned bytes in 
ymm1/m256 using unsigned saturation under 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Half Mem ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Down-converted byte elements are written to the destination operand (the first operand) from the least-significant 
byte. Byte elements of the destination operand are updated according to the writemask. Bits (MAXVL-
1:256/128/64) of the register destination are zeroed.
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VPMOVWB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO Kl-1

i := j * 8
m := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := TruncateWordToByte (SRC[m+15:m])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0;

VPMOVWB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO Kl-1

i := j * 8
m := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := TruncateWordToByte (SRC[m+15:m])
ELSE 

*DEST[i+7:i] remains unchanged* ; merging-masking
FI;

ENDFOR

VPMOVSWB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO Kl-1

i := j * 8
m := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SaturateSignedWordToByte (SRC[m+15:m])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0;
VPMOVWB/VPMOVSWB/VPMOVUSWB—Down Convert Word to Byte Vol. 2C 5-611



VPMOVSWB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO Kl-1

i := j * 8
m := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SaturateSignedWordToByte (SRC[m+15:m])
ELSE 

*DEST[i+7:i] remains unchanged* ; merging-masking
FI;

ENDFOR

VPMOVUSWB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO Kl-1

i := j * 8
m := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SaturateUnsignedWordToByte (SRC[m+15:m])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0;

VPMOVUSWB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO Kl-1

i := j * 8
m := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SaturateUnsignedWordToByte (SRC[m+15:m])
ELSE 

*DEST[i+7:i] remains unchanged* ; merging-masking
FI;

ENDFOR
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Intel C/C++ Compiler Intrinsic Equivalents

VPMOVUSWB __m256i _mm512_cvtusepi16_epi8(__m512i a);
VPMOVUSWB __m256i _mm512_mask_cvtusepi16_epi8(__m256i a, __mmask32 k, __m512i b);
VPMOVUSWB __m256i _mm512_maskz_cvtusepi16_epi8( __mmask32 k, __m512i b);
VPMOVUSWB void _mm512_mask_cvtusepi16_storeu_epi8(void * , __mmask32 k, __m512i b);
VPMOVSWB __m256i _mm512_cvtsepi16_epi8(__m512i a);
VPMOVSWB __m256i _mm512_mask_cvtsepi16_epi8(__m256i a, __mmask32 k, __m512i b);
VPMOVSWB __m256i _mm512_maskz_cvtsepi16_epi8( __mmask32 k, __m512i b);
VPMOVSWB void _mm512_mask_cvtsepi16_storeu_epi8(void * , __mmask32 k, __m512i b);
VPMOVWB __m256i _mm512_cvtepi16_epi8(__m512i a);
VPMOVWB __m256i _mm512_mask_cvtepi16_epi8(__m256i a, __mmask32 k, __m512i b);
VPMOVWB __m256i _mm512_maskz_cvtepi16_epi8( __mmask32 k, __m512i b);
VPMOVWB void _mm512_mask_cvtepi16_storeu_epi8(void * , __mmask32 k, __m512i b);
VPMOVUSWB __m128i _mm256_cvtusepi16_epi8(__m256i a);
VPMOVUSWB __m128i _mm256_mask_cvtusepi16_epi8(__m128i a, __mmask16 k, __m256i b);
VPMOVUSWB __m128i _mm256_maskz_cvtusepi16_epi8( __mmask16 k, __m256i b);
VPMOVUSWB void _mm256_mask_cvtusepi16_storeu_epi8(void * , __mmask16 k, __m256i b);
VPMOVUSWB __m128i _mm_cvtusepi16_epi8(__m128i a);
VPMOVUSWB __m128i _mm_mask_cvtusepi16_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVUSWB __m128i _mm_maskz_cvtusepi16_epi8( __mmask8 k, __m128i b);
VPMOVUSWB void _mm_mask_cvtusepi16_storeu_epi8(void * , __mmask8 k, __m128i b);
VPMOVSWB __m128i _mm256_cvtsepi16_epi8(__m256i a);
VPMOVSWB __m128i _mm256_mask_cvtsepi16_epi8(__m128i a, __mmask16 k, __m256i b);
VPMOVSWB __m128i _mm256_maskz_cvtsepi16_epi8( __mmask16 k, __m256i b);
VPMOVSWB void _mm256_mask_cvtsepi16_storeu_epi8(void * , __mmask16 k, __m256i b);
VPMOVSWB __m128i _mm_cvtsepi16_epi8(__m128i a);
VPMOVSWB __m128i _mm_mask_cvtsepi16_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVSWB __m128i _mm_maskz_cvtsepi16_epi8( __mmask8 k, __m128i b);
VPMOVSWB void _mm_mask_cvtsepi16_storeu_epi8(void * , __mmask8 k, __m128i b);
VPMOVWB __m128i _mm256_cvtepi16_epi8(__m256i a);
VPMOVWB __m128i _mm256_mask_cvtepi16_epi8(__m128i a, __mmask16 k, __m256i b);
VPMOVWB __m128i _mm256_maskz_cvtepi16_epi8( __mmask16 k, __m256i b);
VPMOVWB void _mm256_mask_cvtepi16_storeu_epi8(void * , __mmask16 k, __m256i b);
VPMOVWB __m128i _mm_cvtepi16_epi8(__m128i a);
VPMOVWB __m128i _mm_mask_cvtepi16_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVWB __m128i _mm_maskz_cvtepi16_epi8( __mmask8 k, __m128i b);
VPMOVWB void _mm_mask_cvtepi16_storeu_epi8(void * , __mmask8 k, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Table 2-55, “Type E6 Class Exception Conditions.”

Additionally:
#UD If EVEX.vvvv != 1111B.
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VPMULTISHIFTQB—Select Packed Unaligned Bytes From Quadword Sources

Instruction Operand Encoding

Description

This instruction selects eight unaligned bytes from each input qword element of the second source operand (the 
third operand) and writes eight assembled bytes for each qword element in the destination operand (the first 
operand). Each byte result is selected using a byte-granular shift control within the corresponding qword element 
of the first source operand (the second operand). Each byte result in the destination operand is updated under the 
writemask k1.
Only the low 6 bits of each control byte are used to select an 8-bit slot to extract the output byte from the qword 
data in the second source operand. The starting bit of the 8-bit slot can be unaligned relative to any byte boundary 
and is extracted from the input qword source at the location specified in the low 6-bit of the control byte. If the 8-
bit slot would exceed the qword boundary, the out-of-bound portion of the 8-bit slot is wrapped back to start from 
bit 0 of the input qword element.

The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM reg-
ister, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory loca-
tion. The destination operand is a ZMM/YMM/XMM register.

Opcode / 
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W1 83 /r
VPMULTISHIFTQB xmm1 {k1}{z}, 
xmm2,xmm3/m128/m64bcst

A V/V (AVX512VL AND
AVX512_VBMI) 
OR AVX10.11 

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Select unaligned bytes from qwords in 
xmm3/m128/m64bcst using control bytes in 
xmm2, write byte results to xmm1 under k1.

EVEX.256.66.0F38.W1 83 /r
VPMULTISHIFTQB ymm1 {k1}{z}, 
ymm2,ymm3/m256/m64bcst

A V/V (AVX512VL
AVX512_VBMI) 
OR AVX10.11

Select unaligned bytes from qwords in 
ymm3/m256/m64bcst using control bytes in 
ymm2, write byte results to ymm1 under k1.

EVEX.512.66.0F38.W1 83 /r
VPMULTISHIFTQB zmm1 {k1}{z}, 
zmm2,zmm3/m512/m64bcst

A V/V AVX512_VBMI 
OR AVX10.11

Select unaligned bytes from qwords in 
zmm3/m512/m64bcst using control bytes in 
zmm2, write byte results to zmm1 under k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VPMULTISHIFTQB DEST, SRC1, SRC2 (EVEX encoded version)
(KL, VL) = (2, 128),(4, 256), (8, 512)
FOR i := 0 TO KL-1

IF EVEX.b=1 AND src2 is memory THEN
tcur := src2.qword[0]; //broadcasting

ELSE
tcur := src2.qword[i];

FI;
FOR j := 0 to 7 

ctrl := src1.qword[i].byte[j] & 63;
FOR k := 0 to 7 

res.bit[k] := tcur.bit[ (ctrl+k) mod 64 ];
ENDFOR
IF k1[i*8+j] or no writemask THEN

DEST.qword[i].byte[j] := res;
ELSE IF zeroing-masking THEN

DEST.qword[i].byte[j] := 0;
ENDFOR

ENDFOR
DEST.qword[MAX_VL-1:VL] := 0;

Intel C/C++ Compiler Intrinsic Equivalent

VPMULTISHIFTQB __m512i _mm512_multishift_epi64_epi8( __m512i a, __m512i b);
VPMULTISHIFTQB __m512i _mm512_mask_multishift_epi64_epi8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPMULTISHIFTQB __m512i _mm512_maskz_multishift_epi64_epi8( __mmask64 k, __m512i a, __m512i b);
VPMULTISHIFTQB __m256i _mm256_multishift_epi64_epi8( __m256i a, __m256i b);
VPMULTISHIFTQB __m256i _mm256_mask_multishift_epi64_epi8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPMULTISHIFTQB __m256i _mm256_maskz_multishift_epi64_epi8( __mmask32 k, __m256i a, __m256i b);
VPMULTISHIFTQB __m128i _mm_multishift_epi64_epi8( __m128i a, __m128i b);
VPMULTISHIFTQB __m128i _mm_mask_multishift_epi64_epi8(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULTISHIFTQB __m128i _mm_maskz_multishift_epi64_epi8( __mmask8 k, __m128i a, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-52, “Type E4NF Class Exception Conditions.”
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VPOPCNT—Return the Count of Number of Bits Set to 1 in BYTE/WORD/DWORD/QWORD

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature Flag Description

EVEX.128.66.0F38.W0 54 /r
VPOPCNTB xmm1{k1}{z}, 
xmm2/m128

A V/V (AVX512_BITALG
AND AVX512VL) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Counts the number of bits set to one in 
xmm2/m128 and puts the result in xmm1 with 
writemask k1.

EVEX.256.66.0F38.W0 54 /r
VPOPCNTB ymm1{k1}{z}, 
ymm2/m256

A V/V (AVX512_BITALG
AND AVX512VL) OR 
AVX10.11

Counts the number of bits set to one in 
ymm2/m256 and puts the result in ymm1 with 
writemask k1.

EVEX.512.66.0F38.W0 54 /r
VPOPCNTB zmm1{k1}{z}, 
zmm2/m512

A V/V AVX512_BITALG
OR AVX10.11

Counts the number of bits set to one in 
zmm2/m512 and puts the result in zmm1 with 
writemask k1.

EVEX.128.66.0F38.W1 54 /r
VPOPCNTW xmm1{k1}{z}, 
xmm2/m128

A V/V (AVX512_BITALG
AND AVX512VL) OR 
AVX10.11

Counts the number of bits set to one in 
xmm2/m128 and puts the result in xmm1 with 
writemask k1.

EVEX.256.66.0F38.W1 54 /r
VPOPCNTW ymm1{k1}{z}, 
ymm2/m256

A V/V (AVX512_BITALG
AND AVX512VL) OR 
AVX10.11

Counts the number of bits set to one in 
ymm2/m256 and puts the result in ymm1 with 
writemask k1.

EVEX.512.66.0F38.W1 54 /r
VPOPCNTW zmm1{k1}{z}, 
zmm2/m512

A V/V AVX512_BITALG
OR AVX10.11

Counts the number of bits set to one in 
zmm2/m512 and puts the result in zmm1 with 
writemask k1.

EVEX.128.66.0F38.W0 55 /r
VPOPCNTD xmm1{k1}{z}, 
xmm2/m128/m32bcst

B V/V (AVX512_VPOPCNTDQ
AND AVX512VL) OR 
AVX10.11

Counts the number of bits set to one in 
xmm2/m128/m32bcst and puts the result in 
xmm1 with writemask k1.

EVEX.256.66.0F38.W0 55 /r
VPOPCNTD ymm1{k1}{z}, 
ymm2/m256/m32bcst

B V/V (AVX512_VPOPCNTDQ
AND AVX512VL) OR 
AVX10.11

Counts the number of bits set to one in 
ymm2/m256/m32bcst and puts the result in 
ymm1 with writemask k1.

EVEX.512.66.0F38.W0 55 /r
VPOPCNTD zmm1{k1}{z}, 
zmm2/m512/m32bcst

B V/V AVX512_VPOPCNTDQ
OR AVX10.11

Counts the number of bits set to one in 
zmm2/m512/m32bcst and puts the result in 
zmm1 with writemask k1.

EVEX.128.66.0F38.W1 55 /r
VPOPCNTQ xmm1{k1}{z}, 
xmm2/m128/m64bcst

B V/V (AVX512_VPOPCNTDQ
AND AVX512VL) OR 
AVX10.11

Counts the number of bits set to one in 
xmm2/m128/m32bcst and puts the result in 
xmm1 with writemask k1.

EVEX.256.66.0F38.W1 55 /r
VPOPCNTQ ymm1{k1}{z}, 
ymm2/m256/m64bcst

B V/V (AVX512_VPOPCNTDQ
AND AVX512VL) OR 
AVX10.11

Counts the number of bits set to one in 
ymm2/m256/m32bcst and puts the result in 
ymm1 with writemask k1.

EVEX.512.66.0F38.W1 55 /r
VPOPCNTQ zmm1{k1}{z}, 
zmm2/m512/m64bcst

B V/V AVX512_VPOPCNTDQ
OR AVX10.11

Counts the number of bits set to one in 
zmm2/m512/m64bcst and puts the result in 
zmm1 with writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) ModRM:r/m (r) N/A N/A

B Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Description

This instruction counts the number of bits set to one in each byte, word, dword or qword element of its source (e.g., 
zmm2 or memory) and places the results in the destination register (zmm1). This instruction supports memory 
fault suppression.

Operation

VPOPCNTB
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1:

IF MaskBit(j) OR *no writemask*:
DEST.byte[j] := POPCNT(SRC.byte[j])

ELSE IF *merging-masking*:
*DEST.byte[j] remains unchanged*

ELSE:
DEST.byte[j] := 0

DEST[MAX_VL-1:VL] := 0

VPOPCNTW
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1:

IF MaskBit(j) OR *no writemask*:
DEST.word[j] := POPCNT(SRC.word[j])

ELSE IF *merging-masking*:
*DEST.word[j] remains unchanged*

ELSE:
DEST.word[j] := 0

DEST[MAX_VL-1:VL] := 0

VPOPCNTD
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1:

IF MaskBit(j) OR *no writemask*:
IF SRC is broadcast memop:

t := SRC.dword[0]
ELSE:

t := SRC.dword[j]
DEST.dword[j] := POPCNT(t)

ELSE IF *merging-masking*:
*DEST..dword[j] remains unchanged*

ELSE:
DEST..dword[j] := 0

DEST[MAX_VL-1:VL] := 0
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VPOPCNTQ
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1:

IF MaskBit(j) OR *no writemask*:
IF SRC is broadcast memop:

t := SRC.qword[0]
ELSE:

t := SRC.qword[j]
DEST.qword[j] := POPCNT(t)

ELSE IF *merging-masking*:
*DEST..qword[j] remains unchanged*

ELSE:
DEST..qword[j] := 0

DEST[MAX_VL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPOPCNTW __m128i _mm_popcnt_epi16(__m128i);
VPOPCNTW __m128i _mm_mask_popcnt_epi16(__m128i, __mmask8, __m128i);
VPOPCNTW __m128i _mm_maskz_popcnt_epi16(__mmask8, __m128i);
VPOPCNTW __m256i _mm256_popcnt_epi16(__m256i);
VPOPCNTW __m256i _mm256_mask_popcnt_epi16(__m256i, __mmask16, __m256i);
VPOPCNTW __m256i _mm256_maskz_popcnt_epi16(__mmask16, __m256i);
VPOPCNTW __m512i _mm512_popcnt_epi16(__m512i);
VPOPCNTW __m512i _mm512_mask_popcnt_epi16(__m512i, __mmask32, __m512i);
VPOPCNTW __m512i  _mm512_maskz_popcnt_epi16(__mmask32, __m512i);
VPOPCNTQ __m128i  _mm_popcnt_epi64(__m128i);
VPOPCNTQ __m128i  _mm_mask_popcnt_epi64(__m128i, __mmask8, __m128i);
VPOPCNTQ __m128i  _mm_maskz_popcnt_epi64(__mmask8, __m128i);
VPOPCNTQ __m256i  _mm256_popcnt_epi64(__m256i);
VPOPCNTQ __m256i  _mm256_mask_popcnt_epi64(__m256i, __mmask8, __m256i);
VPOPCNTQ __m256i  _mm256_maskz_popcnt_epi64(__mmask8, __m256i);
VPOPCNTQ __m512i  _mm512_popcnt_epi64(__m512i);
VPOPCNTQ __m512i  _mm512_mask_popcnt_epi64(__m512i, __mmask8, __m512i);
VPOPCNTQ __m512i  _mm512_maskz_popcnt_epi64(__mmask8, __m512i);
VPOPCNTD __m128i  _mm_popcnt_epi32(__m128i);
VPOPCNTD __m128i  _mm_mask_popcnt_epi32(__m128i, __mmask8, __m128i);
VPOPCNTD __m128i  _mm_maskz_popcnt_epi32(__mmask8, __m128i);
VPOPCNTD __m256i  _mm256_popcnt_epi32(__m256i);
VPOPCNTD __m256i  _mm256_mask_popcnt_epi32(__m256i, __mmask8, __m256i);
VPOPCNTD __m256i  _mm256_maskz_popcnt_epi32(__mmask8, __m256i);
VPOPCNTD __m512i  _mm512_popcnt_epi32(__m512i);
VPOPCNTD __m512i  _mm512_mask_popcnt_epi32(__m512i, __mmask16, __m512i);
VPOPCNTD __m512i  _mm512_maskz_popcnt_epi32(__mmask16, __m512i);
VPOPCNTB __m128i  _mm_popcnt_epi8(__m128i);
VPOPCNTB __m128i  _mm_mask_popcnt_epi8(__m128i, __mmask16, __m128i);
VPOPCNTB __m128i  _mm_maskz_popcnt_epi8(__mmask16, __m128i);
VPOPCNTB __m256i  _mm256_popcnt_epi8(__m256i);
VPOPCNTB __m256i  _mm256_mask_popcnt_epi8(__m256i, __mmask32, __m256i);
VPOPCNTB __m256i  _mm256_maskz_popcnt_epi8(__mmask32, __m256i);
VPOPCNTB __m512i  _mm512_popcnt_epi8(__m512i);
VPOPCNTB __m512i  _mm512_mask_popcnt_epi8(__m512i, __mmask64, __m512i);
VPOPCNTB __m512i  _mm512_maskz_popcnt_epi8(__mmask64, __m512i);
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SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-51, “Type E4 Class Exception Conditions.”
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VPROLD/VPROLVD/VPROLQ/VPROLVQ—Bit Rotate Left 

Instruction Operand Encoding

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 15 /r
VPROLVD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Rotate doublewords in xmm2 left by count in the 
corresponding element of xmm3/m128/m32bcst. 
Result written to xmm1 under writemask k1.

EVEX.128.66.0F.W0 72 /1 ib
VPROLD xmm1 {k1}{z}, 
xmm2/m128/m32bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Rotate doublewords in xmm2/m128/m32bcst 
left by imm8. Result written to xmm1 using 
writemask k1.

EVEX.128.66.0F38.W1 15 /r
VPROLVQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Rotate quadwords in xmm2 left by count in the 
corresponding element of xmm3/m128/m64bcst. 
Result written to xmm1 under writemask k1.

EVEX.128.66.0F.W1 72 /1 ib
VPROLQ xmm1 {k1}{z}, 
xmm2/m128/m64bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Rotate quadwords in xmm2/m128/m64bcst left 
by imm8. Result written to xmm1 using 
writemask k1.

EVEX.256.66.0F38.W0 15 /r
VPROLVD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Rotate doublewords in ymm2 left by count in the 
corresponding element of ymm3/m256/m32bcst. 
Result written to ymm1 under writemask k1.

EVEX.256.66.0F.W0 72 /1 ib
VPROLD ymm1 {k1}{z}, 
ymm2/m256/m32bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Rotate doublewords in ymm2/m256/m32bcst 
left by imm8. Result written to ymm1 using 
writemask k1.

EVEX.256.66.0F38.W1 15 /r
VPROLVQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Rotate quadwords in ymm2 left by count in the 
corresponding element of ymm3/m256/m64bcst. 
Result written to ymm1 under writemask k1.

EVEX.256.66.0F.W1 72 /1 ib
VPROLQ ymm1 {k1}{z}, 
ymm2/m256/m64bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Rotate quadwords in ymm2/m256/m64bcst left 
by imm8. Result written to ymm1 using 
writemask k1.

EVEX.512.66.0F38.W0 15 /r
VPROLVD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

B V/V AVX512F 
OR AVX10.11

Rotate left of doublewords in zmm2 by count in 
the corresponding element of 
zmm3/m512/m32bcst. Result written to zmm1 
using writemask k1.

EVEX.512.66.0F.W0 72 /1 ib
VPROLD zmm1 {k1}{z}, 
zmm2/m512/m32bcst, imm8

A V/V AVX512F 
OR AVX10.11

Rotate left of doublewords in 
zmm3/m512/m32bcst by imm8. Result written 
to zmm1 using writemask k1.

EVEX.512.66.0F38.W1 15 /r
VPROLVQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

B V/V AVX512F 
OR AVX10.11

Rotate quadwords in zmm2 left by count in the 
corresponding element of zmm3/m512/m64bcst. 
Result written to zmm1under writemask k1.

EVEX.512.66.0F.W1 72 /1 ib
VPROLQ zmm1 {k1}{z}, 
zmm2/m512/m64bcst, imm8

A V/V AVX512F 
OR AVX10.11

Rotate quadwords in zmm2/m512/m64bcst left 
by imm8. Result written to zmm1 using 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full VEX.vvvv (w) ModRM:r/m (R) imm8 N/A

B Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Description

Rotates the bits in the individual data elements (doublewords, or quadword) in the first source operand to the left 
by the number of bits specified in the count operand. If the value specified by the count operand is greater than 31 
(for doublewords), or 63 (for a quadword), then the count operand modulo the data size (32 or 64) is used. 
EVEX.128 encoded version: The destination operand is a XMM register. The source operand is a XMM register or a 
memory location (for immediate form). The count operand can come either from an XMM register or a memory 
location or an 8-bit immediate. Bits (MAXVL-1:128) of the corresponding ZMM register are zeroed.
EVEX.256 encoded version: The destination operand is a YMM register. The source operand is a YMM register or a 
memory location (for immediate form). The count operand can come either from an XMM register or a memory 
location or an 8-bit immediate. Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed.
EVEX.512 encoded version: The destination operand is a ZMM register updated according to the writemask. For the 
count operand in immediate form, the source operand can be a ZMM register, a 512-bit memory location or a 512-
bit vector broadcasted from a 32/64-bit memory location, the count operand is an 8-bit immediate. For the count 
operand in variable form, the first source operand (the second operand) is a ZMM register and the counter operand 
(the third operand) is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit 
memory location. 

Operation

LEFT_ROTATE_DWORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC modulo 32;
DEST[31:0] := (SRC << COUNT) | (SRC >> (32 - COUNT));

LEFT_ROTATE_QWORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC modulo 64;
DEST[63:0] := (SRC << COUNT) | (SRC >> (64 - COUNT));

VPROLD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+31:i] := LEFT_ROTATE_DWORDS(SRC1[31:0], imm8)
ELSE DEST[i+31:i] := LEFT_ROTATE_DWORDS(SRC1[i+31:i], imm8)

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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VPROLVD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] := LEFT_ROTATE_DWORDS(SRC1[i+31:i], SRC2[31:0])
ELSE DEST[i+31:i] := LEFT_ROTATE_DWORDS(SRC1[i+31:i], SRC2[i+31:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPROLQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+63:i] := LEFT_ROTATE_QWORDS(SRC1[63:0], imm8)
ELSE DEST[i+63:i] := LEFT_ROTATE_QWORDS(SRC1[i+63:i], imm8)

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPROLVQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] := LEFT_ROTATE_QWORDS(SRC1[i+63:i], SRC2[63:0])
ELSE DEST[i+63:i] := LEFT_ROTATE_QWORDS(SRC1[i+63:i], SRC2[i+63:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+63:i] := 0
FI

FI;
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ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPROLD __m512i _mm512_rol_epi32(__m512i a, int imm);
VPROLD __m512i _mm512_mask_rol_epi32(__m512i a, __mmask16 k, __m512i b, int imm);
VPROLD __m512i _mm512_maskz_rol_epi32( __mmask16 k, __m512i a, int imm);
VPROLD __m256i _mm256_rol_epi32(__m256i a, int imm);
VPROLD __m256i _mm256_mask_rol_epi32(__m256i a, __mmask8 k, __m256i b, int imm);
VPROLD __m256i _mm256_maskz_rol_epi32( __mmask8 k, __m256i a, int imm);
VPROLD __m128i _mm_rol_epi32(__m128i a, int imm);
VPROLD __m128i _mm_mask_rol_epi32(__m128i a, __mmask8 k, __m128i b, int imm);
VPROLD __m128i _mm_maskz_rol_epi32( __mmask8 k, __m128i a, int imm);
VPROLQ __m512i _mm512_rol_epi64(__m512i a, int imm);
VPROLQ __m512i _mm512_mask_rol_epi64(__m512i a, __mmask8 k, __m512i b, int imm);
VPROLQ __m512i _mm512_maskz_rol_epi64(__mmask8 k, __m512i a, int imm);
VPROLQ __m256i _mm256_rol_epi64(__m256i a, int imm);
VPROLQ __m256i _mm256_mask_rol_epi64(__m256i a, __mmask8 k, __m256i b, int imm);
VPROLQ __m256i _mm256_maskz_rol_epi64( __mmask8 k, __m256i a, int imm);
VPROLQ __m128i _mm_rol_epi64(__m128i a, int imm);
VPROLQ __m128i _mm_mask_rol_epi64(__m128i a, __mmask8 k, __m128i b, int imm);
VPROLQ __m128i _mm_maskz_rol_epi64( __mmask8 k, __m128i a, int imm);
VPROLVD __m512i _mm512_rolv_epi32(__m512i a, __m512i cnt);
VPROLVD __m512i _mm512_mask_rolv_epi32(__m512i a, __mmask16 k, __m512i b, __m512i cnt);
VPROLVD __m512i _mm512_maskz_rolv_epi32(__mmask16 k, __m512i a, __m512i cnt);
VPROLVD __m256i _mm256_rolv_epi32(__m256i a, __m256i cnt);
VPROLVD __m256i _mm256_mask_rolv_epi32(__m256i a, __mmask8 k, __m256i b, __m256i cnt);
VPROLVD __m256i _mm256_maskz_rolv_epi32(__mmask8 k, __m256i a, __m256i cnt);
VPROLVD __m128i _mm_rolv_epi32(__m128i a, __m128i cnt);
VPROLVD __m128i _mm_mask_rolv_epi32(__m128i a, __mmask8 k, __m128i b, __m128i cnt);
VPROLVD __m128i _mm_maskz_rolv_epi32(__mmask8 k, __m128i a, __m128i cnt);
VPROLVQ __m512i _mm512_rolv_epi64(__m512i a, __m512i cnt);
VPROLVQ __m512i _mm512_mask_rolv_epi64(__m512i a, __mmask8 k, __m512i b, __m512i cnt);
VPROLVQ __m512i _mm512_maskz_rolv_epi64( __mmask8 k, __m512i a, __m512i cnt);
VPROLVQ __m256i _mm256_rolv_epi64(__m256i a, __m256i cnt);
VPROLVQ __m256i _mm256_mask_rolv_epi64(__m256i a, __mmask8 k, __m256i b, __m256i cnt);
VPROLVQ __m256i _mm256_maskz_rolv_epi64(__mmask8 k, __m256i a, __m256i cnt);
VPROLVQ __m128i _mm_rolv_epi64(__m128i a, __m128i cnt);
VPROLVQ __m128i _mm_mask_rolv_epi64(__m128i a, __mmask8 k, __m128i b, __m128i cnt);
VPROLVQ __m128i _mm_maskz_rolv_epi64(__mmask8 k, __m128i a, __m128i cnt);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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VPRORD/VPRORVD/VPRORQ/VPRORVQ—Bit Rotate Right 

Instruction Operand Encoding

Opcode/
Instruction

Op 
/ En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 14 /r
VPRORVD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Rotate doublewords in xmm2 right by count in the 
corresponding element of xmm3/m128/m32bcst, 
store result using writemask k1.

EVEX.128.66.0F.W0 72 /0 ib
VPRORD xmm1 {k1}{z}, 
xmm2/m128/m32bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Rotate doublewords in xmm2/m128/m32bcst right 
by imm8, store result using writemask k1.

EVEX.128.66.0F38.W1 14 /r
VPRORVQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Rotate quadwords in xmm2 right by count in the 
corresponding element of xmm3/m128/m64bcst, 
store result using writemask k1.

EVEX.128.66.0F.W1 72 /0 ib
VPRORQ xmm1 {k1}{z}, 
xmm2/m128/m64bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Rotate quadwords in xmm2/m128/m64bcst right 
by imm8, store result using writemask k1.

EVEX.256.66.0F38.W0 14 /r
VPRORVD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Rotate doublewords in ymm2 right by count in the 
corresponding element of ymm3/m256/m32bcst, 
store using result writemask k1.

EVEX.256.66.0F.W0 72 /0 ib
VPRORD ymm1 {k1}{z}, 
ymm2/m256/m32bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Rotate doublewords in ymm2/m256/m32bcst right 
by imm8, store result using writemask k1.

EVEX.256.66.0F38.W1 14 /r
VPRORVQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Rotate quadwords in ymm2 right by count in the 
corresponding element of ymm3/m256/m64bcst, 
store result using writemask k1.

EVEX.256.66.0F.W1 72 /0 ib
VPRORQ ymm1 {k1}{z}, 
ymm2/m256/m64bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Rotate quadwords in ymm2/m256/m64bcst right 
by imm8, store result using writemask k1.

EVEX.512.66.0F38.W0 14 /r
VPRORVD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

B V/V AVX512F 
OR AVX10.11

Rotate doublewords in zmm2 right by count in the 
corresponding element of zmm3/m512/m32bcst, 
store result using writemask k1.

EVEX.512.66.0F.W0 72 /0 ib
VPRORD zmm1 {k1}{z}, 
zmm2/m512/m32bcst, imm8

A V/V AVX512F 
OR AVX10.11

Rotate doublewords in zmm2/m512/m32bcst right 
by imm8, store result using writemask k1.

EVEX.512.66.0F38.W1 14 /r
VPRORVQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

B V/V AVX512F 
OR AVX10.11

Rotate quadwords in zmm2 right by count in the 
corresponding element of zmm3/m512/m64bcst, 
store result using writemask k1.

EVEX.512.66.0F.W1 72 /0 ib
VPRORQ zmm1 {k1}{z}, 
zmm2/m512/m64bcst, imm8

A V/V AVX512F 
OR AVX10.11

Rotate quadwords in zmm2/m512/m64bcst right 
by imm8, store result using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full VEX.vvvv (w) ModRM:r/m (R) imm8 N/A

B Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Description

Rotates the bits in the individual data elements (doublewords, or quadword) in the first source operand to the right 
by the number of bits specified in the count operand. If the value specified by the count operand is greater than 31 
(for doublewords), or 63 (for a quadword), then the count operand modulo the data size (32 or 64) is used. 
EVEX.128 encoded version: The destination operand is a XMM register. The source operand is a XMM register or a 
memory location (for immediate form). The count operand can come either from an XMM register or a memory 
location or an 8-bit immediate. Bits (MAXVL-1:128) of the corresponding ZMM register are zeroed.
EVEX.256 encoded version: The destination operand is a YMM register. The source operand is a YMM register or a 
memory location (for immediate form). The count operand can come either from an XMM register or a memory 
location or an 8-bit immediate. Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed.
EVEX.512 encoded version: The destination operand is a ZMM register updated according to the writemask. For the 
count operand in immediate form, the source operand can be a ZMM register, a 512-bit memory location or a 512-
bit vector broadcasted from a 32/64-bit memory location, the count operand is an 8-bit immediate. For the count 
operand in variable form, the first source operand (the second operand) is a ZMM register and the counter operand 
(the third operand) is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit 
memory location. 

Operation

RIGHT_ROTATE_DWORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC modulo 32;
DEST[31:0] := (SRC >> COUNT) | (SRC << (32 - COUNT));

RIGHT_ROTATE_QWORDS(SRC, COUNT_SRC)
COUNT := COUNT_SRC modulo 64;
DEST[63:0] := (SRC >> COUNT) | (SRC << (64 - COUNT));

VPRORD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+31:i] := RIGHT_ROTATE_DWORDS( SRC1[31:0], imm8)
ELSE DEST[i+31:i] := RIGHT_ROTATE_DWORDS(SRC1[i+31:i], imm8)

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPRORVD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] := RIGHT_ROTATE_DWORDS(SRC1[i+31:i], SRC2[31:0])
ELSE DEST[i+31:i] := RIGHT_ROTATE_DWORDS(SRC1[i+31:i], SRC2[i+31:i])

FI;
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ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPRORQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+63:i] := RIGHT_ROTATE_QWORDS(SRC1[63:0], imm8)
ELSE DEST[i+63:i] := RIGHT_ROTATE_QWORDS(SRC1[i+63:i], imm8])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VPRORVQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] := RIGHT_ROTATE_QWORDS(SRC1[i+63:i], SRC2[63:0])
ELSE DEST[i+63:i] := RIGHT_ROTATE_QWORDS(SRC1[i+63:i], SRC2[i+63:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking 

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPRORD __m512i _mm512_ror_epi32(__m512i a, int imm);
VPRORD __m512i _mm512_mask_ror_epi32(__m512i a, __mmask16 k, __m512i b, int imm);
VPRORD __m512i _mm512_maskz_ror_epi32( __mmask16 k, __m512i a, int imm);
VPRORD __m256i _mm256_ror_epi32(__m256i a, int imm);
VPRORD __m256i _mm256_mask_ror_epi32(__m256i a, __mmask8 k, __m256i b, int imm);
VPRORD __m256i _mm256_maskz_ror_epi32( __mmask8 k, __m256i a, int imm);
VPRORD __m128i _mm_ror_epi32(__m128i a, int imm);
VPRORD __m128i _mm_mask_ror_epi32(__m128i a, __mmask8 k, __m128i b, int imm);
VPRORD __m128i _mm_maskz_ror_epi32( __mmask8 k, __m128i a, int imm);
VPRORQ __m512i _mm512_ror_epi64(__m512i a, int imm);
VPRORQ __m512i _mm512_mask_ror_epi64(__m512i a, __mmask8 k, __m512i b, int imm);
VPRORQ __m512i _mm512_maskz_ror_epi64(__mmask8 k, __m512i a, int imm);
VPRORQ __m256i _mm256_ror_epi64(__m256i a, int imm);
VPRORQ __m256i _mm256_mask_ror_epi64(__m256i a, __mmask8 k, __m256i b, int imm);
VPRORQ __m256i _mm256_maskz_ror_epi64( __mmask8 k, __m256i a, int imm);
VPRORQ __m128i _mm_ror_epi64(__m128i a, int imm);
VPRORQ __m128i _mm_mask_ror_epi64(__m128i a, __mmask8 k, __m128i b, int imm);
VPRORQ __m128i _mm_maskz_ror_epi64( __mmask8 k, __m128i a, int imm);
VPRORVD __m512i _mm512_rorv_epi32(__m512i a, __m512i cnt);
VPRORVD __m512i _mm512_mask_rorv_epi32(__m512i a, __mmask16 k, __m512i b, __m512i cnt);
VPRORVD __m512i _mm512_maskz_rorv_epi32(__mmask16 k, __m512i a, __m512i cnt);
VPRORVD __m256i _mm256_rorv_epi32(__m256i a, __m256i cnt);
VPRORVD __m256i _mm256_mask_rorv_epi32(__m256i a, __mmask8 k, __m256i b, __m256i cnt);
VPRORVD __m256i _mm256_maskz_rorv_epi32(__mmask8 k, __m256i a, __m256i cnt);
VPRORVD __m128i _mm_rorv_epi32(__m128i a, __m128i cnt);
VPRORVD __m128i _mm_mask_rorv_epi32(__m128i a, __mmask8 k, __m128i b, __m128i cnt);
VPRORVD __m128i _mm_maskz_rorv_epi32(__mmask8 k, __m128i a, __m128i cnt);
VPRORVQ __m512i _mm512_rorv_epi64(__m512i a, __m512i cnt);
VPRORVQ __m512i _mm512_mask_rorv_epi64(__m512i a, __mmask8 k, __m512i b, __m512i cnt);
VPRORVQ __m512i _mm512_maskz_rorv_epi64( __mmask8 k, __m512i a, __m512i cnt);
VPRORVQ __m256i _mm256_rorv_epi64(__m256i a, __m256i cnt);
VPRORVQ __m256i _mm256_mask_rorv_epi64(__m256i a, __mmask8 k, __m256i b, __m256i cnt);
VPRORVQ __m256i _mm256_maskz_rorv_epi64(__mmask8 k, __m256i a, __m256i cnt);
VPRORVQ __m128i _mm_rorv_epi64(__m128i a, __m128i cnt);
VPRORVQ __m128i _mm_mask_rorv_epi64(__m128i a, __mmask8 k, __m128i b, __m128i cnt);
VPRORVQ __m128i _mm_maskz_rorv_epi64(__mmask8 k, __m128i a, __m128i cnt);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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VPSCATTERDD/VPSCATTERDQ/VPSCATTERQD/VPSCATTERQQ—Scatter Packed Dword, Packed 
Qword with Signed Dword, Signed Qword Indices

Instruction Operand Encoding

Description

Stores up to 16 elements (8 elements for qword indices) in doubleword vector or 8 elements in quadword vector to 
the memory locations pointed by base address BASE_ADDR and index vector VINDEX, with scale SCALE. The 

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 A0 /vsib 
VPSCATTERDD vm32x {k1}, xmm1

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Using signed dword indices, scatter dword values 
to memory using writemask k1.

EVEX.256.66.0F38.W0 A0 /vsib
VPSCATTERDD vm32y {k1}, ymm1

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed dword indices, scatter dword values 
to memory using writemask k1.

EVEX.512.66.0F38.W0 A0 /vsib 
VPSCATTERDD vm32z {k1}, zmm1

A V/V AVX512F 
OR AVX10.11

Using signed dword indices, scatter dword values 
to memory using writemask k1.

EVEX.128.66.0F38.W1 A0 /vsib 
VPSCATTERDQ vm32x {k1}, xmm1

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed dword indices, scatter qword values 
to memory using writemask k1.

EVEX.256.66.0F38.W1 A0 /vsib 
VPSCATTERDQ vm32x {k1}, ymm1

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed dword indices, scatter qword values 
to memory using writemask k1.

EVEX.512.66.0F38.W1 A0 /vsib 
VPSCATTERDQ vm32y {k1}, zmm1

A V/V AVX512F 
OR AVX10.11

Using signed dword indices, scatter qword values 
to memory using writemask k1.

EVEX.128.66.0F38.W0 A1 /vsib 
VPSCATTERQD vm64x {k1}, xmm1

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed qword indices, scatter dword values 
to memory using writemask k1.

EVEX.256.66.0F38.W0 A1 /vsib 
VPSCATTERQD vm64y {k1}, xmm1

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed qword indices, scatter dword values 
to memory using writemask k1.

EVEX.512.66.0F38.W0 A1 /vsib 
VPSCATTERQD vm64z {k1}, ymm1

A V/V AVX512F 
OR AVX10.11

Using signed qword indices, scatter dword values 
to memory using writemask k1.

EVEX.128.66.0F38.W1 A1 /vsib 
VPSCATTERQQ vm64x {k1}, xmm1

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed qword indices, scatter qword values 
to memory using writemask k1.

EVEX.256.66.0F38.W1 A1 /vsib 
VPSCATTERQQ vm64y {k1}, ymm1

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed qword indices, scatter qword values 
to memory using writemask k1.

EVEX.512.66.0F38.W1 A1 /vsib
VPSCATTERQQ vm64z {k1}, zmm1

A V/V AVX512F 
OR AVX10.11

Using signed qword indices, scatter qword values 
to memory using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar
BaseReg (R): VSIB:base,

VectorReg(R): VSIB:index
ModRM:reg (r) N/A N/A
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elements are specified via the VSIB (i.e., the index register is a vector register, holding packed indices). Elements 
will only be stored if their corresponding mask bit is one. The entire mask register will be set to zero by this instruc-
tion unless it triggers an exception.
This instruction can be suspended by an exception if at least one element is already scattered (i.e., if the exception 
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination 
register and the mask register are partially updated. If any traps or interrupts are pending from already scattered 
elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction 
breakpoint is not re-triggered when the instruction is continued.
Note that:
• Only writes to overlapping vector indices are guaranteed to be ordered with respect to each other (from LSB to 

MSB of the source registers). Note that this also include partially overlapping vector indices. Writes that are not 
overlapped may happen in any order. Memory ordering with other instructions follows the Intel-64 memory 
ordering model. Note that this does not account for non-overlapping indices that map into the same physical 
address locations.

• If two or more destination indices completely overlap, the “earlier” write(s) may be skipped.
• Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all 

elements closer to the LSB of the destination ZMM will be completed (and non-faulting). Individual elements 
closer to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered 
in the conventional order.

• Elements may be scattered in any order, but faults must be delivered in a right-to left order; thus, elements to 
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this 
instruction is repeatable - given the same input values and architectural state, the same set of elements to the 
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• Not valid with 16-bit effective addresses. Will deliver a #UD fault.
• If this instruction overwrites itself and then takes a fault, only a subset of elements may be completed before 

the fault is delivered (as described above). If the fault handler completes and attempts to re-execute this 
instruction, the new instruction will be executed, and the scatter will not complete.

Note that the presence of VSIB byte is enforced in this instruction. Hence, the instruction will #UD fault if 
ModRM.rm is different than 100b.
This instruction has special disp8*N and alignment rules. N is considered to be the size of a single vector element.
The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-bit 
mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address bits are 
ignored.
The instruction will #UD fault if the k0 mask register is specified.
The instruction will #UD fault if EVEX.Z = 1. 

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a ZMM register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1 or 4 byte displacement

VPSCATTERDD (EVEX encoded versions)
(KL, VL)= (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN MEM[BASE_ADDR +SignExtend(VINDEX[i+31:i]) * SCALE + DISP] := SRC[i+31:i]
k1[j] := 0

FI;
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ENDFOR
k1[MAX_KL-1:KL] := 0

VPSCATTERDQ (EVEX encoded versions)
(KL, VL)= (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j] OR *no writemask*

THEN MEM[BASE_ADDR +SignExtend(VINDEX[k+31:k]) * SCALE + DISP] := SRC[i+63:i]
k1[j] := 0

FI;
ENDFOR
k1[MAX_KL-1:KL] := 0

VPSCATTERQD (EVEX encoded versions)
(KL, VL)= (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 32
k := j * 64
IF k1[j] OR *no writemask*

THEN MEM[BASE_ADDR + (VINDEX[k+63:k]) * SCALE + DISP] := SRC[i+31:i]
k1[j] := 0

FI;
ENDFOR
k1[MAX_KL-1:KL] := 0

VPSCATTERQQ (EVEX encoded versions)
(KL, VL)= (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN MEM[BASE_ADDR + (VINDEX[j+63:j]) * SCALE + DISP] := SRC[i+63:i]
FI;

ENDFOR
k1[MAX_KL-1:KL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPSCATTERDD void _mm512_i32scatter_epi32(void * base, __m512i vdx, __m512i a, int scale);
VPSCATTERDD void _mm256_i32scatter_epi32(void * base, __m256i vdx, __m256i a, int scale);
VPSCATTERDD void _mm_i32scatter_epi32(void * base, __m128i vdx, __m128i a, int scale);
VPSCATTERDD void _mm512_mask_i32scatter_epi32(void * base, __mmask16 k, __m512i vdx, __m512i a, int scale);
VPSCATTERDD void _mm256_mask_i32scatter_epi32(void * base, __mmask8 k, __m256i vdx, __m256i a, int scale);
VPSCATTERDD void _mm_mask_i32scatter_epi32(void * base, __mmask8 k, __m128i vdx, __m128i a, int scale);
VPSCATTERDQ void _mm512_i32scatter_epi64(void * base, __m256i vdx, __m512i a, int scale);
VPSCATTERDQ void _mm256_i32scatter_epi64(void * base, __m128i vdx, __m256i a, int scale);
VPSCATTERDQ void _mm_i32scatter_epi64(void * base, __m128i vdx, __m128i a, int scale);
VPSCATTERDQ void _mm512_mask_i32scatter_epi64(void * base, __mmask8 k, __m256i vdx, __m512i a, int scale);
VPSCATTERDQ void _mm256_mask_i32scatter_epi64(void * base, __mmask8 k, __m128i vdx, __m256i a, int scale);
VPSCATTERDQ void _mm_mask_i32scatter_epi64(void * base, __mmask8 k, __m128i vdx, __m128i a, int scale);
VPSCATTERQD void _mm512_i64scatter_epi32(void * base, __m512i vdx, __m256i a, int scale);
VPSCATTERQD void _mm256_i64scatter_epi32(void * base, __m256i vdx, __m128i a, int scale);
VPSCATTERQD void _mm_i64scatter_epi32(void * base, __m128i vdx, __m128i a, int scale);
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VPSCATTERQD void _mm512_mask_i64scatter_epi32(void * base, __mmask8 k, __m512i vdx, __m256i a, int scale);
VPSCATTERQD void _mm256_mask_i64scatter_epi32(void * base, __mmask8 k, __m256i vdx, __m128i a, int scale);
VPSCATTERQD void _mm_mask_i64scatter_epi32(void * base, __mmask8 k, __m128i vdx, __m128i a, int scale);
VPSCATTERQQ void _mm512_i64scatter_epi64(void * base, __m512i vdx, __m512i a, int scale);
VPSCATTERQQ void _mm256_i64scatter_epi64(void * base, __m256i vdx, __m256i a, int scale);
VPSCATTERQQ void _mm_i64scatter_epi64(void * base, __m128i vdx, __m128i a, int scale);
VPSCATTERQQ void _mm512_mask_i64scatter_epi64(void * base, __mmask8 k, __m512i vdx, __m512i a, int scale);
VPSCATTERQQ void _mm256_mask_i64scatter_epi64(void * base, __mmask8 k, __m256i vdx, __m256i a, int scale);
VPSCATTERQQ void _mm_mask_i64scatter_epi64(void * base, __mmask8 k, __m128i vdx, __m128i a, int scale);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-63, “Type E12 Class Exception Conditions.”
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VPSHLD—Concatenate and Shift Packed Data Left Logical

Instruction Operand Encoding

Description

Concatenate packed data, extract result shifted to the left by constant value.
This instruction supports memory fault suppression.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W1 70 /r /ib
VPSHLDW xmm1{k1}{z}, xmm2, 
xmm3/m128, imm8

A V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Concatenate destination and source operands, 
extract result shifted to the left by constant 
value in imm8 into xmm1.

EVEX.256.66.0F3A.W1 70 /r /ib
VPSHLDW ymm1{k1}{z}, ymm2, 
ymm3/m256, imm8

A V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate destination and source operands, 
extract result shifted to the left by constant 
value in imm8 into ymm1.

EVEX.512.66.0F3A.W1 70 /r /ib
VPSHLDW zmm1{k1}{z}, zmm2, 
zmm3/m512, imm8

A V/V AVX512_VBMI2 
OR AVX10.11

Concatenate destination and source operands, 
extract result shifted to the left by constant 
value in imm8 into zmm1.

EVEX.128.66.0F3A.W0 71 /r /ib
VPSHLDD xmm1{k1}{z}, xmm2, 
xmm3/m128/m32bcst, imm8

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate destination and source operands, 
extract result shifted to the left by constant 
value in imm8 into xmm1.

EVEX.256.66.0F3A.W0 71 /r /ib
VPSHLDD ymm1{k1}{z}, ymm2, 
ymm3/m256/m32bcst, imm8

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate destination and source operands, 
extract result shifted to the left by constant 
value in imm8 into ymm1.

EVEX.512.66.0F3A.W0 71 /r /ib
VPSHLDD zmm1{k1}{z}, zmm2, 
zmm3/m512/m32bcst, imm8

B V/V AVX512_VBMI2 
OR AVX10.11

Concatenate destination and source operands, 
extract result shifted to the left by constant 
value in imm8 into zmm1.

EVEX.128.66.0F3A.W1 71 /r /ib
VPSHLDQ xmm1{k1}{z}, xmm2, 
xmm3/m128/m64bcst, imm8

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate destination and source operands, 
extract result shifted to the left by constant 
value in imm8 into xmm1.

EVEX.256.66.0F3A.W1 71 /r /ib
VPSHLDQ ymm1{k1}{z}, ymm2, 
ymm3/m256/m64bcst, imm8

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate destination and source operands, 
extract result shifted to the left by constant 
value in imm8 into ymm1.

EVEX.512.66.0F3A.W1 71 /r /ib
VPSHLDQ zmm1{k1}{z}, zmm2, 
zmm3/m512/m64bcst, imm8

B V/V AVX512_VBMI2 
OR AVX10.11

Concatenate destination and source operands, 
extract result shifted to the left by constant 
value in imm8 into zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)

B Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)
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Operation

VPSHLDW DEST, SRC2, SRC3, imm8
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1:

IF MaskBit(j) OR *no writemask*:
tmp := concat(SRC2.word[j], SRC3.word[j]) << (imm8 & 15)
DEST.word[j] := tmp.word[1]

ELSE IF *zeroing*:
DEST.word[j] := 0

*ELSE DEST.word[j] remains unchanged*
DEST[MAX_VL-1:VL] := 0

VPSHLDD DEST, SRC2, SRC3, imm8
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1:

IF SRC3 is broadcast memop:
tsrc3 := SRC3.dword[0]

ELSE:
tsrc3 := SRC3.dword[j]

IF MaskBit(j) OR *no writemask*:
tmp := concat(SRC2.dword[j], tsrc3) << (imm8 & 31)
DEST.dword[j] := tmp.dword[1]

ELSE IF *zeroing*:
DEST.dword[j] := 0

*ELSE DEST.dword[j] remains unchanged*
DEST[MAX_VL-1:VL] := 0

VPSHLDQ DEST, SRC2, SRC3, imm8
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1:

IF SRC3 is broadcast memop:
tsrc3 := SRC3.qword[0]

ELSE:
tsrc3 := SRC3.qword[j]

IF MaskBit(j) OR *no writemask*:
tmp := concat(SRC2.qword[j], tsrc3) << (imm8 & 63)
DEST.qword[j] := tmp.qword[1]

ELSE IF *zeroing*:
DEST.qword[j] := 0

*ELSE DEST.qword[j] remains unchanged*
DEST[MAX_VL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPSHLDD __m128i _mm_shldi_epi32(__m128i, __m128i, int);
VPSHLDD __m128i _mm_mask_shldi_epi32(__m128i, __mmask8, __m128i, __m128i, int);
VPSHLDD __m128i _mm_maskz_shldi_epi32(__mmask8, __m128i, __m128i, int);
VPSHLDD __m256i _mm256_shldi_epi32(__m256i, __m256i, int);
VPSHLDD __m256i _mm256_mask_shldi_epi32(__m256i, __mmask8, __m256i, __m256i, int);
VPSHLDD __m256i _mm256_maskz_shldi_epi32(__mmask8, __m256i, __m256i, int);
VPSHLDD __m512i _mm512_shldi_epi32(__m512i, __m512i, int);
VPSHLDD __m512i _mm512_mask_shldi_epi32(__m512i, __mmask16, __m512i, __m512i, int);
VPSHLDD __m512i _mm512_maskz_shldi_epi32(__mmask16, __m512i, __m512i, int);
VPSHLDQ __m128i _mm_shldi_epi64(__m128i, __m128i, int);
VPSHLDQ __m128i _mm_mask_shldi_epi64(__m128i, __mmask8, __m128i, __m128i, int);
VPSHLDQ __m128i _mm_maskz_shldi_epi64(__mmask8, __m128i, __m128i, int);
VPSHLDQ __m256i _mm256_shldi_epi64(__m256i, __m256i, int);
VPSHLDQ __m256i _mm256_mask_shldi_epi64(__m256i, __mmask8, __m256i, __m256i, int);
VPSHLDQ __m256i _mm256_maskz_shldi_epi64(__mmask8, __m256i, __m256i, int);
VPSHLDQ __m512i _mm512_shldi_epi64(__m512i, __m512i, int);
VPSHLDQ __m512i _mm512_mask_shldi_epi64(__m512i, __mmask8, __m512i, __m512i, int);
VPSHLDQ __m512i _mm512_maskz_shldi_epi64(__mmask8, __m512i, __m512i, int);
VPSHLDW __m128i _mm_shldi_epi16(__m128i, __m128i, int);
VPSHLDW __m128i _mm_mask_shldi_epi16(__m128i, __mmask8, __m128i, __m128i, int);
VPSHLDW __m128i _mm_maskz_shldi_epi16(__mmask8, __m128i, __m128i, int);
VPSHLDW __m256i _mm256_shldi_epi16(__m256i, __m256i, int);
VPSHLDW __m256i _mm256_mask_shldi_epi16(__m256i, __mmask16, __m256i, __m256i, int);
VPSHLDW __m256i _mm256_maskz_shldi_epi16(__mmask16, __m256i, __m256i, int);
VPSHLDW __m512i _mm512_shldi_epi16(__m512i, __m512i, int);
VPSHLDW __m512i _mm512_mask_shldi_epi16(__m512i, __mmask32, __m512i, __m512i, int);
VPSHLDW __m512i _mm512_maskz_shldi_epi16(__mmask32, __m512i, __m512i, int);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-51, “Type E4 Class Exception Conditions.”
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VPSHLDV—Concatenate and Variable Shift Packed Data Left Logical 

Instruction Operand Encoding

Description

Concatenate packed data, extract result shifted to the left by variable value.
This instruction supports memory fault suppression.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W1 70 /r
VPSHLDVW xmm1{k1}{z}, xmm2, 
xmm3/m128

A V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Concatenate xmm1 and xmm2, extract result 
shifted to the left by value in xmm3/m128 into 
xmm1.

EVEX.256.66.0F38.W1 70 /r
VPSHLDVW ymm1{k1}{z}, ymm2, 
ymm3/m256

A V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate ymm1 and ymm2, extract result 
shifted to the left by value in xmm3/m256 into 
ymm1.

EVEX.512.66.0F38.W1 70 /r
VPSHLDVW zmm1{k1}{z}, zmm2, 
zmm3/m512

A V/V AVX512_VBMI2 
OR AVX10.11

Concatenate zmm1 and zmm2, extract result 
shifted to the left by value in zmm3/m512 into 
zmm1.

EVEX.128.66.0F38.W0 71 /r
VPSHLDVD xmm1{k1}{z}, xmm2, 
xmm3/m128/m32bcst

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate xmm1 and xmm2, extract result 
shifted to the left by value in xmm3/m128 into 
xmm1.

EVEX.256.66.0F38.W0 71 /r
VPSHLDVD ymm1{k1}{z}, ymm2, 
ymm3/m256/m32bcst

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate ymm1 and ymm2, extract result 
shifted to the left by value in xmm3/m256 into 
ymm1.

EVEX.512.66.0F38.W0 71 /r
VPSHLDVD zmm1{k1}{z}, zmm2, 
zmm3/m512/m32bcst

B V/V AVX512_VBMI2 
OR AVX10.11

Concatenate zmm1 and zmm2, extract result 
shifted to the left by value in zmm3/m512 into 
zmm1.

EVEX.128.66.0F38.W1 71 /r
VPSHLDVQ xmm1{k1}{z}, xmm2, 
xmm3/m128/m64bcst

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate xmm1 and xmm2, extract result 
shifted to the left by value in xmm3/m128 into 
xmm1.

EVEX.256.66.0F38.W1 71 /r
VPSHLDVQ ymm1{k1}{z}, ymm2, 
ymm3/m256/m64bcst

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate ymm1 and ymm2, extract result 
shifted to the left by value in xmm3/m256 into 
ymm1.

EVEX.512.66.0F38.W1 71 /r
VPSHLDVQ zmm1{k1}{z}, zmm2, 
zmm3/m512/m64bcst

B V/V AVX512_VBMI2 
OR AVX10.11

Concatenate zmm1 and zmm2, extract result 
shifted to the left by value in zmm3/m512 into 
zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

FUNCTION concat(a,b):
IF words:

d.word[1] := a
d.word[0] := b
return d

ELSE IF dwords:
q.dword[1] := a
q.dword[0] := b
return q

ELSE IF qwords:
o.qword[1] := a
o.qword[0] := b
return o

VPSHLDVW DEST, SRC2, SRC3
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1:

IF MaskBit(j) OR *no writemask*:
tmp := concat(DEST.word[j], SRC2.word[j]) << (SRC3.word[j] & 15)
DEST.word[j] := tmp.word[1]

ELSE IF *zeroing*:
DEST.word[j] := 0

*ELSE DEST.word[j] remains unchanged*
DEST[MAX_VL-1:VL] := 0

VPSHLDVD DEST, SRC2, SRC3
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1:

IF SRC3 is broadcast memop:
tsrc3 := SRC3.dword[0]

ELSE:
tsrc3 := SRC3.dword[j]

IF MaskBit(j) OR *no writemask*:
tmp := concat(DEST.dword[j], SRC2.dword[j]) << (tsrc3 & 31)
DEST.dword[j] := tmp.dword[1]

ELSE IF *zeroing*:
DEST.dword[j] := 0

*ELSE DEST.dword[j] remains unchanged*
DEST[MAX_VL-1:VL] := 0
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VPSHLDVQ DEST, SRC2, SRC3
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1:

IF SRC3 is broadcast memop:
tsrc3 := SRC3.qword[0]

ELSE:
tsrc3 := SRC3.qword[j]

IF MaskBit(j) OR *no writemask*:
tmp := concat(DEST.qword[j], SRC2.qword[j]) << (tsrc3 & 63)
DEST.qword[j] := tmp.qword[1]

ELSE IF *zeroing*:
DEST.qword[j] := 0

*ELSE DEST.qword[j] remains unchanged*
DEST[MAX_VL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPSHLDVW __m128i _mm_shldv_epi16(__m128i, __m128i, __m128i);
VPSHLDVW __m128i _mm_mask_shldv_epi16(__m128i, __mmask8, __m128i, __m128i);
VPSHLDVW __m128i _mm_maskz_shldv_epi16(__mmask8, __m128i, __m128i, __m128i);
VPSHLDVW __m256i _mm256_shldv_epi16(__m256i, __m256i, __m256i);
VPSHLDVW __m256i _mm256_mask_shldv_epi16(__m256i, __mmask16, __m256i, __m256i);
VPSHLDVW __m256i _mm256_maskz_shldv_epi16(__mmask16, __m256i, __m256i, __m256i);
VPSHLDVQ __m512i  _mm512_shldv_epi64(__m512i, __m512i, __m512i);
VPSHLDVQ __m512i  _mm512_mask_shldv_epi64(__m512i, __mmask8, __m512i, __m512i);
VPSHLDVQ __m512i  _mm512_maskz_shldv_epi64(__mmask8, __m512i, __m512i, __m512i);
VPSHLDVW __m128i  _mm_shldv_epi16(__m128i, __m128i, __m128i);
VPSHLDVW __m128i  _mm_mask_shldv_epi16(__m128i, __mmask8, __m128i, __m128i);
VPSHLDVW __m128i  _mm_maskz_shldv_epi16(__mmask8, __m128i, __m128i, __m128i);
VPSHLDVW __m256i  _mm256_shldv_epi16(__m256i, __m256i, __m256i);
VPSHLDVW __m256i  _mm256_mask_shldv_epi16(__m256i, __mmask16, __m256i, __m256i);
VPSHLDVW __m256i  _mm256_maskz_shldv_epi16(__mmask16, __m256i, __m256i, __m256i);
VPSHLDVW __m512i  _mm512_shldv_epi16(__m512i, __m512i, __m512i);
VPSHLDVW __m512i  _mm512_mask_shldv_epi16(__m512i, __mmask32, __m512i, __m512i);
VPSHLDVW __m512i  _mm512_maskz_shldv_epi16(__mmask32, __m512i, __m512i, __m512i);
VPSHLDVD __m128i  _mm_shldv_epi32(__m128i, __m128i, __m128i);
VPSHLDVD __m128i  _mm_mask_shldv_epi32(__m128i, __mmask8, __m128i, __m128i);
VPSHLDVD __m128i  _mm_maskz_shldv_epi32(__mmask8, __m128i, __m128i, __m128i);
VPSHLDVD __m256i  _mm256_shldv_epi32(__m256i, __m256i, __m256i);
VPSHLDVD __m256i  _mm256_mask_shldv_epi32(__m256i, __mmask8, __m256i, __m256i);
VPSHLDVD __m256i  _mm256_maskz_shldv_epi32(__mmask8, __m256i, __m256i, __m256i);
VPSHLDVD __m512i  _mm512_shldv_epi32(__m512i, __m512i, __m512i);
VPSHLDVD __m512i  _mm512_mask_shldv_epi32(__m512i, __mmask16, __m512i, __m512i);
VPSHLDVD __m512i  _mm512_maskz_shldv_epi32(__mmask16, __m512i, __m512i, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-51, “Type E4 Class Exception Conditions.”
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VPSHRD—Concatenate and Shift Packed Data Right Logical 

Instruction Operand Encoding

Description

Concatenate packed data, extract result shifted to the right by constant value.
This instruction supports memory fault suppression.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W1 72 /r /ib
VPSHRDW xmm1{k1}{z}, xmm2, 
xmm3/m128, imm8

A V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Concatenate destination and source operands, 
extract result shifted to the right by constant 
value in imm8 into xmm1.

EVEX.256.66.0F3A.W1 72 /r /ib
VPSHRDW ymm1{k1}{z}, ymm2, 
ymm3/m256, imm8

A V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate destination and source operands, 
extract result shifted to the right by constant 
value in imm8 into ymm1.

EVEX.512.66.0F3A.W1 72 /r /ib
VPSHRDW zmm1{k1}{z}, zmm2, 
zmm3/m512, imm8

A V/V AVX512_VBMI2 
OR AVX10.11

Concatenate destination and source operands, 
extract result shifted to the right by constant 
value in imm8 into zmm1.

EVEX.128.66.0F3A.W0 73 /r /ib
VPSHRDD xmm1{k1}{z}, xmm2, 
xmm3/m128/m32bcst, imm8

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate destination and source operands, 
extract result shifted to the right by constant 
value in imm8 into xmm1.

EVEX.256.66.0F3A.W0 73 /r /ib
VPSHRDD ymm1{k1}{z}, ymm2, 
ymm3/m256/m32bcst, imm8

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate destination and source operands, 
extract result shifted to the right by constant 
value in imm8 into ymm1.

EVEX.512.66.0F3A.W0 73 /r /ib
VPSHRDD zmm1{k1}{z}, zmm2, 
zmm3/m512/m32bcst, imm8

B V/V AVX512_VBMI2 
OR AVX10.11

Concatenate destination and source operands, 
extract result shifted to the right by constant 
value in imm8 into zmm1.

EVEX.128.66.0F3A.W1 73 /r /ib
VPSHRDQ xmm1{k1}{z}, xmm2, 
xmm3/m128/m64bcst, imm8

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate destination and source operands, 
extract result shifted to the right by constant 
value in imm8 into xmm1.

EVEX.256.66.0F3A.W1 73 /r /ib
VPSHRDQ ymm1{k1}{z}, ymm2, 
ymm3/m256/m64bcst, imm8

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate destination and source operands, 
extract result shifted to the right by constant 
value in imm8 into ymm1.

EVEX.512.66.0F3A.W1 73 /r /ib
VPSHRDQ zmm1{k1}{z}, zmm2, 
zmm3/m512/m64bcst, imm8

B V/V AVX512_VBMI2 
OR AVX10.11

Concatenate destination and source operands, 
extract result shifted to the right by constant 
value in imm8 into zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)

B Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)
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Operation

VPSHRDW DEST, SRC2, SRC3, imm8
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1:

IF MaskBit(j) OR *no writemask*:
DEST.word[j] := concat(SRC3.word[j], SRC2.word[j]) >> (imm8 & 15)

ELSE IF *zeroing*:
DEST.word[j] := 0

*ELSE DEST.word[j] remains unchanged*
DEST[MAX_VL-1:VL] := 0

VPSHRDD DEST, SRC2, SRC3, imm8
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1:

IF SRC3 is broadcast memop:
tsrc3 := SRC3.dword[0]

ELSE:
tsrc3 := SRC3.dword[j]

IF MaskBit(j) OR *no writemask*:
DEST.dword[j] := concat(tsrc3, SRC2.dword[j]) >> (imm8 & 31)

ELSE IF *zeroing*:
DEST.dword[j] := 0

*ELSE DEST.dword[j] remains unchanged*
DEST[MAX_VL-1:VL] := 0

VPSHRDQ DEST, SRC2, SRC3, imm8
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1:

IF SRC3 is broadcast memop:
tsrc3 := SRC3.qword[0]

ELSE:
tsrc3 := SRC3.qword[j]

IF MaskBit(j) OR *no writemask*:
DEST.qword[j] := concat(tsrc3, SRC2.qword[j]) >> (imm8 & 63)

ELSE IF *zeroing*:
DEST.qword[j] := 0

*ELSE DEST.qword[j] remains unchanged*
DEST[MAX_VL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPSHRDQ __m128i  _mm_shrdi_epi64(__m128i, __m128i, int);
VPSHRDQ __m128i  _mm_mask_shrdi_epi64(__m128i, __mmask8, __m128i, __m128i, int);
VPSHRDQ __m128i  _mm_maskz_shrdi_epi64(__mmask8, __m128i, __m128i, int);
VPSHRDQ __m256i  _mm256_shrdi_epi64(__m256i, __m256i, int);
VPSHRDQ __m256i  _mm256_mask_shrdi_epi64(__m256i, __mmask8, __m256i, __m256i, int);
VPSHRDQ __m256i  _mm256_maskz_shrdi_epi64(__mmask8, __m256i, __m256i, int);
VPSHRDQ __m512i  _mm512_shrdi_epi64(__m512i, __m512i, int);
VPSHRDQ __m512i  _mm512_mask_shrdi_epi64(__m512i, __mmask8, __m512i, __m512i, int);
VPSHRDQ __m512i  _mm512_maskz_shrdi_epi64(__mmask8, __m512i, __m512i, int);
VPSHRDD __m128i _mm_shrdi_epi32(__m128i, __m128i, int);
VPSHRDD __m128i _mm_mask_shrdi_epi32(__m128i, __mmask8, __m128i, __m128i, int);
VPSHRDD __m128i _mm_maskz_shrdi_epi32(__mmask8, __m128i, __m128i, int);
VPSHRDD __m256i _mm256_shrdi_epi32(__m256i, __m256i, int);
VPSHRDD __m256i _mm256_mask_shrdi_epi32(__m256i, __mmask8, __m256i, __m256i, int);
VPSHRDD __m256i _mm256_maskz_shrdi_epi32(__mmask8, __m256i, __m256i, int);
VPSHRDD __m512i _mm512_shrdi_epi32(__m512i, __m512i, int);
VPSHRDD __m512i _mm512_mask_shrdi_epi32(__m512i, __mmask16, __m512i, __m512i, int);
VPSHRDD __m512i _mm512_maskz_shrdi_epi32(__mmask16, __m512i, __m512i, int);
VPSHRDW __m128i _mm_shrdi_epi16(__m128i, __m128i, int);
VPSHRDW __m128i _mm_mask_shrdi_epi16(__m128i, __mmask8, __m128i, __m128i, int);
VPSHRDW __m128i _mm_maskz_shrdi_epi16(__mmask8, __m128i, __m128i, int);
VPSHRDW __m256i _mm256_shrdi_epi16(__m256i, __m256i, int);
VPSHRDW __m256i _mm256_mask_shrdi_epi16(__m256i, __mmask16, __m256i, __m256i, int);
VPSHRDW __m256i _mm256_maskz_shrdi_epi16(__mmask16, __m256i, __m256i, int);
VPSHRDW __m512i _mm512_shrdi_epi16(__m512i, __m512i, int);
VPSHRDW __m512i _mm512_mask_shrdi_epi16(__m512i, __mmask32, __m512i, __m512i, int);
VPSHRDW __m512i _mm512_maskz_shrdi_epi16(__mmask32, __m512i, __m512i, int);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-51, “Type E4 Class Exception Conditions.”
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VPSHRDV—Concatenate and Variable Shift Packed Data Right Logical

Instruction Operand Encoding

Description

Concatenate packed data, extract result shifted to the right by variable value.
This instruction supports memory fault suppression.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W1 72 /r
VPSHRDVW xmm1{k1}{z}, xmm2, 
xmm3/m128

A V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Concatenate xmm1 and xmm2, extract result 
shifted to the right by value in xmm3/m128 
into xmm1.

EVEX.256.66.0F38.W1 72 /r
VPSHRDVW ymm1{k1}{z}, ymm2, 
ymm3/m256

A V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate ymm1 and ymm2, extract result 
shifted to the right by value in xmm3/m256 
into ymm1.

EVEX.512.66.0F38.W1 72 /r
VPSHRDVW zmm1{k1}{z}, zmm2, 
zmm3/m512

A V/V AVX512_VBMI2 
OR AVX10.11

Concatenate zmm1 and zmm2, extract result 
shifted to the right by value in zmm3/m512 
into zmm1.

EVEX.128.66.0F38.W0 73 /r
VPSHRDVD xmm1{k1}{z}, xmm2, 
xmm3/m128/m32bcst

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate xmm1 and xmm2, extract result 
shifted to the right by value in xmm3/m128 
into xmm1.

EVEX.256.66.0F38.W0 73 /r
VPSHRDVD ymm1{k1}{z}, ymm2, 
ymm3/m256/m32bcst

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate ymm1 and ymm2, extract result 
shifted to the right by value in xmm3/m256 
into ymm1.

EVEX.512.66.0F38.W0 73 /r
VPSHRDVD zmm1{k1}{z}, zmm2, 
zmm3/m512/m32bcst

B V/V AVX512_VBMI2 
OR AVX10.11

Concatenate zmm1 and zmm2, extract result 
shifted to the right by value in zmm3/m512 
into zmm1.

EVEX.128.66.0F38.W1 73 /r
VPSHRDVQ xmm1{k1}{z}, xmm2, 
xmm3/m128/m64bcst

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate xmm1 and xmm2, extract result 
shifted to the right by value in xmm3/m128 
into xmm1.

EVEX.256.66.0F38.W1 73 /r
VPSHRDVQ ymm1{k1}{z}, ymm2, 
ymm3/m256/m64bcst

B V/V (AVX512_VBMI2 
AND AVX512VL) 
OR AVX10.11

Concatenate ymm1 and ymm2, extract result 
shifted to the right by value in xmm3/m256 
into ymm1.

EVEX.512.66.0F38.W1 73 /r
VPSHRDVQ zmm1{k1}{z}, zmm2, 
zmm3/m512/m64bcst

B V/V AVX512_VBMI2 
OR AVX10.11

Concatenate zmm1 and zmm2, extract result 
shifted to the right by value in zmm3/m512 
into zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VPSHRDVW DEST, SRC2, SRC3
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1:

IF MaskBit(j) OR *no writemask*:
DEST.word[j] := concat(SRC2.word[j], DEST.word[j]) >> (SRC3.word[j] & 15)

ELSE IF *zeroing*:
DEST.word[j] := 0

*ELSE DEST.word[j] remains unchanged*
DEST[MAX_VL-1:VL] := 0

VPSHRDVD DEST, SRC2, SRC3
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1:

IF SRC3 is broadcast memop:
tsrc3 := SRC3.dword[0]

ELSE:
tsrc3 := SRC3.dword[j]

IF MaskBit(j) OR *no writemask*:
DEST.dword[j] := concat(SRC2.dword[j], DEST.dword[j]) >> (tsrc3 & 31)

ELSE IF *zeroing*:
DEST.dword[j] := 0

*ELSE DEST.dword[j] remains unchanged*
DEST[MAX_VL-1:VL] := 0

VPSHRDVQ DEST, SRC2, SRC3
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1:

IF SRC3 is broadcast memop:
tsrc3 := SRC3.qword[0]

ELSE:
tsrc3 := SRC3.qword[j]

IF MaskBit(j) OR *no writemask*:
DEST.qword[j] := concat(SRC2.qword[j], DEST.qword[j]) >> (tsrc3 & 63)

ELSE IF *zeroing*:
DEST.qword[j] := 0

*ELSE DEST.qword[j] remains unchanged*
DEST[MAX_VL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VPSHRDVQ __m128i  _mm_shrdv_epi64(__m128i, __m128i, __m128i);
VPSHRDVQ __m128i  _mm_mask_shrdv_epi64(__m128i, __mmask8, __m128i, __m128i);
VPSHRDVQ __m128i  _mm_maskz_shrdv_epi64(__mmask8, __m128i, __m128i, __m128i);
VPSHRDVQ __m256i  _mm256_shrdv_epi64(__m256i, __m256i, __m256i);
VPSHRDVQ __m256i  _mm256_mask_shrdv_epi64(__m256i, __mmask8, __m256i, __m256i);
VPSHRDVQ __m256i  _mm256_maskz_shrdv_epi64(__mmask8, __m256i, __m256i, __m256i);
VPSHRDVQ __m512i  _mm512_shrdv_epi64(__m512i, __m512i, __m512i);
VPSHRDVQ __m512i  _mm512_mask_shrdv_epi64(__m512i, __mmask8, __m512i, __m512i);
VPSHRDVQ __m512i  _mm512_maskz_shrdv_epi64(__mmask8, __m512i, __m512i, __m512i);
VPSHRDVD __m128i _mm_shrdv_epi32(__m128i, __m128i, __m128i);
VPSHRDVD __m128i _mm_mask_shrdv_epi32(__m128i, __mmask8, __m128i, __m128i);
VPSHRDVD __m128i _mm_maskz_shrdv_epi32(__mmask8, __m128i, __m128i, __m128i);
VPSHRDVD __m256i _mm256_shrdv_epi32(__m256i, __m256i, __m256i);
VPSHRDVD __m256i _mm256_mask_shrdv_epi32(__m256i, __mmask8, __m256i, __m256i);
VPSHRDVD __m256i _mm256_maskz_shrdv_epi32(__mmask8, __m256i, __m256i, __m256i);
VPSHRDVD __m512i _mm512_shrdv_epi32(__m512i, __m512i, __m512i);
VPSHRDVD __m512i _mm512_mask_shrdv_epi32(__m512i, __mmask16, __m512i, __m512i);
VPSHRDVD __m512i _mm512_maskz_shrdv_epi32(__mmask16, __m512i, __m512i, __m512i);
VPSHRDVW __m128i _mm_shrdv_epi16(__m128i, __m128i, __m128i);
VPSHRDVW __m128i _mm_mask_shrdv_epi16(__m128i, __mmask8, __m128i, __m128i);
VPSHRDVW __m128i _mm_maskz_shrdv_epi16(__mmask8, __m128i, __m128i, __m128i);
VPSHRDVW __m256i _mm256_shrdv_epi16(__m256i, __m256i, __m256i);
VPSHRDVW __m256i _mm256_mask_shrdv_epi16(__m256i, __mmask16, __m256i, __m256i);
VPSHRDVW __m256i _mm256_maskz_shrdv_epi16(__mmask16, __m256i, __m256i, __m256i);
VPSHRDVW __m512i _mm512_shrdv_epi16(__m512i, __m512i, __m512i);
VPSHRDVW __m512i _mm512_mask_shrdv_epi16(__m512i, __mmask32, __m512i, __m512i);
VPSHRDVW __m512i _mm512_maskz_shrdv_epi16(__mmask32, __m512i, __m512i, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-51, “Type E4 Class Exception Conditions.”
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VPSHUFBITQMB—Shuffle Bits From Quadword Elements Using Byte Indexes Into Mask 

Instruction Operand Encoding

Description

The VPSHUFBITQMB instruction performs a bit gather select using second source as control and first source as 
data. Each bit uses 6 control bits (2nd source operand) to select which data bit is going to be gathered (first source 
operand). A given bit can only access 64 different bits of data (first 64 destination bits can access first 64 data bits, 
second 64 destination bits can access second 64 data bits, etc.).
Control data for each output bit is stored in 8 bit elements of SRC2, but only the 6 least significant bits of each 
element are used.
This instruction uses write masking (zeroing only). This instruction supports memory fault suppression.
The first source operand is a ZMM register. The second source operand is a ZMM register or a memory location. The 
destination operand is a mask register.

Operation

VPSHUFBITQMB DEST, SRC1, SRC2
(KL, VL) = (16,128), (32,256), (64, 512)
FOR i := 0 TO KL/8-1: //Qword

FOR j := 0 to 7: // Byte
IF k2[i*8+j] or *no writemask*:

m := SRC2.qword[i].byte[j] & 0x3F
k1[i*8+j] := SRC1.qword[i].bit[m]

ELSE:
k1[i*8+j] := 0

k1[MAX_KL-1:KL] := 0

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 8F /r
VPSHUFBITQMB k1{k2}, xmm2, 
xmm3/m128

A V/V (AVX512_BITALG
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Extract values in xmm2 using control bits of 
xmm3/m128 with writemask k2 and leave the 
result in mask register k1.

EVEX.256.66.0F38.W0 8F /r
VPSHUFBITQMB k1{k2}, ymm2, 
ymm3/m256

A V/V (AVX512_BITALG
AND AVX512VL) 
OR AVX10.11

Extract values in ymm2 using control bits of 
ymm3/m256 with writemask k2 and leave the 
result in mask register k1.

EVEX.512.66.0F38.W0 8F /r
VPSHUFBITQMB k1{k2}, zmm2, 
zmm3/m512

A V/V AVX512_BITALG
OR AVX10.11

Extract values in zmm2 using control bits of 
zmm3/m512 with writemask k2 and leave the 
result in mask register k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VPSHUFBITQMB __mmask16 _mm_bitshuffle_epi64_mask(__m128i, __m128i);
VPSHUFBITQMB __mmask16 _mm_mask_bitshuffle_epi64_mask(__mmask16, __m128i, __m128i);
VPSHUFBITQMB __mmask32 _mm256_bitshuffle_epi64_mask(__m256i, __m256i);
VPSHUFBITQMB __mmask32 _mm256_mask_bitshuffle_epi64_mask(__mmask32, __m256i, __m256i);
VPSHUFBITQMB __mmask64 _mm512_bitshuffle_epi64_mask(__m512i, __m512i);

VPSHUFBITQMB __mmask64 _mm512_mask_bitshuffle_epi64_mask(__mmask64, __m512i, __m512i);
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VPSLLVW/VPSLLVD/VPSLLVQ—Variable Bit Shift Left Logical 
Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 47 /r
VPSLLVD xmm1, xmm2, xmm3/m128

A V/V AVX2 Shift doublewords in xmm2 left by amount 
specified in the corresponding element of 
xmm3/m128 while shifting in 0s.

VEX.128.66.0F38.W1 47 /r
VPSLLVQ xmm1, xmm2, xmm3/m128

A V/V AVX2 Shift quadwords in xmm2 left by amount specified 
in the corresponding element of xmm3/m128 
while shifting in 0s.

VEX.256.66.0F38.W0 47 /r
VPSLLVD ymm1, ymm2, ymm3/m256

A V/V AVX2 Shift doublewords in ymm2 left by amount 
specified in the corresponding element of 
ymm3/m256 while shifting in 0s.

VEX.256.66.0F38.W1 47 /r
VPSLLVQ ymm1, ymm2, ymm3/m256

A V/V AVX2 Shift quadwords in ymm2 left by amount specified 
in the corresponding element of ymm3/m256 
while shifting in 0s.

EVEX.128.66.0F38.W1 12 /r
VPSLLVW xmm1 {k1}{z}, xmm2, 
xmm3/m128

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Shift words in xmm2 left by amount specified in 
the corresponding element of xmm3/m128 while 
shifting in 0s using writemask k1.

EVEX.256.66.0F38.W1 12 /r
VPSLLVW ymm1 {k1}{z}, ymm2, 
ymm3/m256

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Shift words in ymm2 left by amount specified in 
the corresponding element of ymm3/m256 while 
shifting in 0s using writemask k1.

EVEX.512.66.0F38.W1 12 /r
VPSLLVW zmm1 {k1}{z}, zmm2, 
zmm3/m512

B V/V AVX512BW 
OR AVX10.11

Shift words in zmm2 left by amount specified in 
the corresponding element of zmm3/m512 while 
shifting in 0s using writemask k1.

EVEX.128.66.0F38.W0 47 /r
VPSLLVD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shift doublewords in xmm2 left by amount 
specified in the corresponding element of 
xmm3/m128/m32bcst while shifting in 0s using 
writemask k1.

EVEX.256.66.0F38.W0 47 /r
VPSLLVD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shift doublewords in ymm2 left by amount 
specified in the corresponding element of 
ymm3/m256/m32bcst while shifting in 0s using 
writemask k1.

EVEX.512.66.0F38.W0 47 /r
VPSLLVD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

C V/V AVX512F 
OR AVX10.11

Shift doublewords in zmm2 left by amount 
specified in the corresponding element of 
zmm3/m512/m32bcst while shifting in 0s using 
writemask k1.

EVEX.128.66.0F38.W1 47 /r
VPSLLVQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shift quadwords in xmm2 left by amount specified 
in the corresponding element of 
xmm3/m128/m64bcst while shifting in 0s using 
writemask k1.

EVEX.256.66.0F38.W1 47 /r
VPSLLVQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shift quadwords in ymm2 left by amount specified 
in the corresponding element of 
ymm3/m256/m64bcst while shifting in 0s using 
writemask k1.

EVEX.512.66.0F38.W1 47 /r
VPSLLVQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512F 
OR AVX10.11

Shift quadwords in zmm2 left by amount specified 
in the corresponding element of 
zmm3/m512/m64bcst while shifting in 0s using 
writemask k1.
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Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words, doublewords or quadword) in the first source operand to the 
left by the count value of respective data elements in the second source operand. As the bits in the data elements 
are shifted left, the empty low-order bits are cleared (set to 0). 
The count values are specified individually in each data element of the second source operand. If the unsigned 
integer value specified in the respective data element of the second source operand is greater than 15 (for word), 
31 (for doublewords), or 63 (for a quadword), then the destination data element are written with 0. 
VEX.128 encoded version: The destination and first source operands are XMM registers. The count operand can be 
either an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination register 
are zeroed.
VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be 
either an YMM register or a 256-bit memory. Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed.
EVEX encoded VPSLLVD/Q: The destination and first source operands are ZMM/YMM/XMM registers. The count 
operand can be either a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512-bit vector broad-
casted from a 32/64-bit memory location. The destination is conditionally updated with writemask k1.
EVEX encoded VPSLLVW: The destination and first source operands are ZMM/YMM/XMM registers. The count 
operand can be either a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination is condition-
ally updated with writemask k1.

Operation

VPSLLVW (EVEX encoded version) 
(KL, VL) = (8, 128), (16, 256), (32, 512)

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := ZeroExtend(SRC1[i+15:i] << SRC2[i+15:i])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0;

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VPSLLVD (VEX.128 version)
COUNT_0 := SRC2[31 : 0]

(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)
COUNT_3 := SRC2[127 : 96];
IF COUNT_0 < 32 THEN
DEST[31:0] := ZeroExtend(SRC1[31:0] << COUNT_0);
ELSE
DEST[31:0] := 0;

(* Repeat shift operation for 2nd through 4th dwords *)
IF COUNT_3 < 32 THEN
DEST[127:96] := ZeroExtend(SRC1[127:96] << COUNT_3);
ELSE
DEST[127:96] := 0;
DEST[MAXVL-1:128] := 0;

VPSLLVD (VEX.256 version)
COUNT_0 := SRC2[31 : 0];

(* Repeat Each COUNT_i for the 2nd through 7th dwords of SRC2*)
COUNT_7 := SRC2[255 : 224];
IF COUNT_0 < 32 THEN
DEST[31:0] := ZeroExtend(SRC1[31:0] << COUNT_0);
ELSE
DEST[31:0] := 0;

(* Repeat shift operation for 2nd through 7th dwords *)
IF COUNT_7 < 32 THEN
DEST[255:224] := ZeroExtend(SRC1[255:224] << COUNT_7);
ELSE
DEST[255:224] := 0;
DEST[MAXVL-1:256] := 0;

VPSLLVD (EVEX encoded version) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] := ZeroExtend(SRC1[i+31:i] << SRC2[31:0])
ELSE DEST[i+31:i] := ZeroExtend(SRC1[i+31:i] << SRC2[i+31:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0;
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VPSLLVQ (VEX.128 version)
COUNT_0 := SRC2[63 : 0];
COUNT_1 := SRC2[127 : 64];
IF COUNT_0 < 64THEN
DEST[63:0] := ZeroExtend(SRC1[63:0] << COUNT_0);
ELSE
DEST[63:0] := 0;
IF COUNT_1 < 64 THEN
DEST[127:64] := ZeroExtend(SRC1[127:64] << COUNT_1);
ELSE
DEST[127:96] := 0;
DEST[MAXVL-1:128] := 0;

VPSLLVQ (VEX.256 version)
COUNT_0 := SRC2[63 : 0];

(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)
COUNT_3 := SRC2[255 : 192];
IF COUNT_0 < 64THEN
DEST[63:0] := ZeroExtend(SRC1[63:0] << COUNT_0);
ELSE
DEST[63:0] := 0;

(* Repeat shift operation for 2nd through 4th dwords *)
IF COUNT_3 < 64 THEN
DEST[255:192] := ZeroExtend(SRC1[255:192] << COUNT_3);
ELSE
DEST[255:192] := 0;
DEST[MAXVL-1:256] := 0;

VPSLLVQ (EVEX encoded version) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] := ZeroExtend(SRC1[i+63:i] << SRC2[63:0])
ELSE DEST[i+63:i] := ZeroExtend(SRC1[i+63:i] << SRC2[i+63:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0;
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Intel C/C++ Compiler Intrinsic Equivalent

VPSLLVW __m512i _mm512_sllv_epi16(__m512i a, __m512i cnt);
VPSLLVW __m512i _mm512_mask_sllv_epi16(__m512i s, __mmask32 k, __m512i a, __m512i cnt);
VPSLLVW __m512i _mm512_maskz_sllv_epi16( __mmask32 k, __m512i a, __m512i cnt);
VPSLLVW __m256i _mm256_mask_sllv_epi16(__m256i s, __mmask16 k, __m256i a, __m256i cnt);
VPSLLVW __m256i _mm256_maskz_sllv_epi16( __mmask16 k, __m256i a, __m256i cnt);
VPSLLVW __m128i _mm_mask_sllv_epi16(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLVW __m128i _mm_maskz_sllv_epi16( __mmask8 k, __m128i a, __m128i cnt);
VPSLLVD __m512i _mm512_sllv_epi32(__m512i a, __m512i cnt);
VPSLLVD __m512i _mm512_mask_sllv_epi32(__m512i s, __mmask16 k, __m512i a, __m512i cnt);
VPSLLVD __m512i _mm512_maskz_sllv_epi32( __mmask16 k, __m512i a, __m512i cnt);
VPSLLVD __m256i _mm256_mask_sllv_epi32(__m256i s, __mmask8 k, __m256i a, __m256i cnt);
VPSLLVD __m256i _mm256_maskz_sllv_epi32( __mmask8 k, __m256i a, __m256i cnt);
VPSLLVD __m128i _mm_mask_sllv_epi32(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLVD __m128i _mm_maskz_sllv_epi32( __mmask8 k, __m128i a, __m128i cnt);
VPSLLVQ __m512i _mm512_sllv_epi64(__m512i a, __m512i cnt);
VPSLLVQ __m512i _mm512_mask_sllv_epi64(__m512i s, __mmask8 k, __m512i a, __m512i cnt);
VPSLLVQ __m512i _mm512_maskz_sllv_epi64( __mmask8 k, __m512i a, __m512i cnt);
VPSLLVD __m256i _mm256_mask_sllv_epi64(__m256i s, __mmask8 k, __m256i a, __m256i cnt);
VPSLLVD __m256i _mm256_maskz_sllv_epi64( __mmask8 k, __m256i a, __m256i cnt);
VPSLLVD __m128i _mm_mask_sllv_epi64(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLVD __m128i _mm_maskz_sllv_epi64( __mmask8 k, __m128i a, __m128i cnt);
VPSLLVD __m256i _mm256_sllv_epi32 (__m256i m, __m256i count)
VPSLLVQ __m256i _mm256_sllv_epi64 (__m256i m, __m256i count)

SIMD Floating-Point Exceptions

None.

Other Exceptions

VEX-encoded instructions, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded VPSLLVD/VPSLLVQ, see Table 2-51, “Type E4 Class Exception Conditions.”
EVEX-encoded VPSLLVW, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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VPSRAVW/VPSRAVD/VPSRAVQ—Variable Bit Shift Right Arithmetic 
Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 46 /r
VPSRAVD xmm1, xmm2, xmm3/m128

A V/V AVX2 Shift doublewords in xmm2 right by amount 
specified in the corresponding element of 
xmm3/m128 while shifting in sign bits.

VEX.256.66.0F38.W0 46 /r
VPSRAVD ymm1, ymm2, ymm3/m256

A V/V AVX2 Shift doublewords in ymm2 right by amount 
specified in the corresponding element of 
ymm3/m256 while shifting in sign bits.

EVEX.128.66.0F38.W1 11 /r
VPSRAVW xmm1 {k1}{z}, xmm2, 
xmm3/m128

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Shift words in xmm2 right by amount specified 
in the corresponding element of xmm3/m128 
while shifting in sign bits using writemask k1.

EVEX.256.66.0F38.W1 11 /r
VPSRAVW ymm1 {k1}{z}, ymm2, 
ymm3/m256

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Shift words in ymm2 right by amount specified 
in the corresponding element of ymm3/m256 
while shifting in sign bits using writemask k1.

EVEX.512.66.0F38.W1 11 /r
VPSRAVW zmm1 {k1}{z}, zmm2, 
zmm3/m512

B V/V AVX512BW 
OR AVX10.11

Shift words in zmm2 right by amount specified in 
the corresponding element of zmm3/m512 
while shifting in sign bits using writemask k1.

EVEX.128.66.0F38.W0 46 /r
VPSRAVD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shift doublewords in xmm2 right by amount 
specified in the corresponding element of 
xmm3/m128/m32bcst while shifting in sign bits 
using writemask k1.

EVEX.256.66.0F38.W0 46 /r
VPSRAVD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shift doublewords in ymm2 right by amount 
specified in the corresponding element of 
ymm3/m256/m32bcst while shifting in sign bits 
using writemask k1.

EVEX.512.66.0F38.W0 46 /r
VPSRAVD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

C V/V AVX512F 
OR AVX10.11

Shift doublewords in zmm2 right by amount 
specified in the corresponding element of 
zmm3/m512/m32bcst while shifting in sign bits 
using writemask k1.

EVEX.128.66.0F38.W1 46 /r
VPSRAVQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shift quadwords in xmm2 right by amount 
specified in the corresponding element of 
xmm3/m128/m64bcst while shifting in sign bits 
using writemask k1.

EVEX.256.66.0F38.W1 46 /r
VPSRAVQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shift quadwords in ymm2 right by amount 
specified in the corresponding element of 
ymm3/m256/m64bcst while shifting in sign bits 
using writemask k1.

EVEX.512.66.0F38.W1 46 /r
VPSRAVQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512F 
OR AVX10.11

Shift quadwords in zmm2 right by amount 
specified in the corresponding element of 
zmm3/m512/m64bcst while shifting in sign bits 
using writemask k1.
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Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (word/doublewords/quadword) in the first source operand (the 
second operand) to the right by the number of bits specified in the count value of respective data elements in the 
second source operand (the third operand). As the bits in the data elements are shifted right, the empty high-order 
bits are set to the MSB (sign extension). 
The count values are specified individually in each data element of the second source operand. If the unsigned 
integer value specified in the respective data element of the second source operand is greater than 15 (for words), 
31 (for doublewords), or 63 (for a quadword), then the destination data element is filled with the corresponding 
sign bit of the source element.
VEX.128 encoded version: The destination and first source operands are XMM registers. The count operand can be 
either an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination register 
are zeroed.
VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be 
either an YMM register or a 256-bit memory. Bits (MAXVL-1:256) of the corresponding destination register are 
zeroed.
EVEX.512/256/128 encoded VPSRAVD/W: The destination and first source operands are ZMM/YMM/XMM registers. 
The count operand can be either a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 
512/256/128-bit vector broadcasted from a 32/64-bit memory location. The destination is conditionally updated 
with writemask k1.
EVEX.512/256/128 encoded VPSRAVQ: The destination and first source operands are ZMM/YMM/XMM registers. 
The count operand can be either a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination 
is conditionally updated with writemask k1.

Operation

VPSRAVW (EVEX encoded version) 
(KL, VL) = (8, 128), (16, 256), (32, 512)

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN 
COUNT := SRC2[i+3:i]
IF COUNT < 16

THEN DEST[i+15:i] := SignExtend(SRC1[i+15:i] >> COUNT)
ELSE 

FOR k := 0 TO 15 
DEST[i+k] := SRC1[i+15]

ENDFOR;
FI

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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ENDFOR;
DEST[MAXVL-1:VL] := 0;

VPSRAVD (VEX.128 version)
COUNT_0 := SRC2[31 : 0]

(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)
COUNT_3 := SRC2[127 : 96];
DEST[31:0] := SignExtend(SRC1[31:0] >> COUNT_0);

(* Repeat shift operation for 2nd through 4th dwords *)
DEST[127:96] := SignExtend(SRC1[127:96] >> COUNT_3);
DEST[MAXVL-1:128] := 0;

VPSRAVD (VEX.256 version)
COUNT_0 := SRC2[31 : 0];

(* Repeat Each COUNT_i for the 2nd through 8th dwords of SRC2*)
COUNT_7 := SRC2[255 : 224];
DEST[31:0] := SignExtend(SRC1[31:0] >> COUNT_0);

(* Repeat shift operation for 2nd through 7th dwords *)
DEST[255:224] := SignExtend(SRC1[255:224] >> COUNT_7);
DEST[MAXVL-1:256] := 0;

VPSRAVD (EVEX encoded version) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN 

COUNT := SRC2[4:0]
IF COUNT < 32

THEN DEST[i+31:i] := SignExtend(SRC1[i+31:i] >> COUNT)
ELSE 

FOR k := 0 TO 31 
DEST[i+k] := SRC1[i+31]

ENDFOR;
FI

ELSE 
COUNT := SRC2[i+4:i]
IF COUNT < 32

THEN DEST[i+31:i] := SignExtend(SRC1[i+31:i] >> COUNT)
ELSE 

FOR k := 0 TO 31 
DEST[i+k] := SRC1[i+31]

ENDFOR;
FI

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

DEST[31:0] := 0
FI

FI;
ENDFOR;
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DEST[MAXVL-1:VL] := 0;

VPSRAVQ (EVEX encoded version) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN 

COUNT := SRC2[5:0]
IF COUNT < 64

THEN DEST[i+63:i] := SignExtend(SRC1[i+63:i] >> COUNT)
ELSE 

FOR k := 0 TO 63 
DEST[i+k] := SRC1[i+63]

ENDFOR;
FI

ELSE 
COUNT := SRC2[i+5:i]
IF COUNT < 64

THEN DEST[i+63:i] := SignExtend(SRC1[i+63:i] >> COUNT)
ELSE 

FOR k := 0 TO 63 
DEST[i+k] := SRC1[i+63]

ENDFOR;
FI

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

DEST[63:0] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0;
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Intel C/C++ Compiler Intrinsic Equivalent

VPSRAVD __m512i _mm512_srav_epi32(__m512i a, __m512i cnt);
VPSRAVD __m512i _mm512_mask_srav_epi32(__m512i s, __mmask16 m, __m512i a, __m512i cnt);
VPSRAVD __m512i _mm512_maskz_srav_epi32(__mmask16 m, __m512i a, __m512i cnt);
VPSRAVD __m256i _mm256_srav_epi32(__m256i a, __m256i cnt);
VPSRAVD __m256i _mm256_mask_srav_epi32(__m256i s, __mmask8 m, __m256i a, __m256i cnt);
VPSRAVD __m256i _mm256_maskz_srav_epi32(__mmask8 m, __m256i a, __m256i cnt);
VPSRAVD __m128i _mm_srav_epi32(__m128i a, __m128i cnt);
VPSRAVD __m128i _mm_mask_srav_epi32(__m128i s, __mmask8 m, __m128i a, __m128i cnt);
VPSRAVD __m128i _mm_maskz_srav_epi32(__mmask8 m, __m128i a, __m128i cnt);
VPSRAVQ __m512i _mm512_srav_epi64(__m512i a, __m512i cnt);
VPSRAVQ __m512i _mm512_mask_srav_epi64(__m512i s, __mmask8 m, __m512i a, __m512i cnt);
VPSRAVQ __m512i _mm512_maskz_srav_epi64( __mmask8 m, __m512i a, __m512i cnt);
VPSRAVQ __m256i _mm256_srav_epi64(__m256i a, __m256i cnt);
VPSRAVQ __m256i _mm256_mask_srav_epi64(__m256i s, __mmask8 m, __m256i a, __m256i cnt);
VPSRAVQ __m256i _mm256_maskz_srav_epi64( __mmask8 m, __m256i a, __m256i cnt);
VPSRAVQ __m128i _mm_srav_epi64(__m128i a, __m128i cnt);
VPSRAVQ __m128i _mm_mask_srav_epi64(__m128i s, __mmask8 m, __m128i a, __m128i cnt);
VPSRAVQ __m128i _mm_maskz_srav_epi64( __mmask8 m, __m128i a, __m128i cnt);
VPSRAVW __m512i _mm512_srav_epi16(__m512i a, __m512i cnt);
VPSRAVW __m512i _mm512_mask_srav_epi16(__m512i s, __mmask32 m, __m512i a, __m512i cnt);
VPSRAVW __m512i _mm512_maskz_srav_epi16(__mmask32 m, __m512i a, __m512i cnt);
VPSRAVW __m256i _mm256_srav_epi16(__m256i a, __m256i cnt);
VPSRAVW __m256i _mm256_mask_srav_epi16(__m256i s, __mmask16 m, __m256i a, __m256i cnt);
VPSRAVW __m256i _mm256_maskz_srav_epi16(__mmask16 m, __m256i a, __m256i cnt);
VPSRAVW __m128i _mm_srav_epi16(__m128i a, __m128i cnt);
VPSRAVW __m128i _mm_mask_srav_epi16(__m128i s, __mmask8 m, __m128i a, __m128i cnt);
VPSRAVW __m128i _mm_maskz_srav_epi32(__mmask8 m, __m128i a, __m128i cnt);
VPSRAVD __m256i _mm256_srav_epi32 (__m256i m, __m256i count)

SIMD Floating-Point Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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VPSRLVW/VPSRLVD/VPSRLVQ—Variable Bit Shift Right Logical 
Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 45 /r
VPSRLVD xmm1, xmm2, 
xmm3/m128

A V/V AVX2 Shift doublewords in xmm2 right by amount 
specified in the corresponding element of 
xmm3/m128 while shifting in 0s.

VEX.128.66.0F38.W1 45 /r
VPSRLVQ xmm1, xmm2, 
xmm3/m128

A V/V AVX2 Shift quadwords in xmm2 right by amount 
specified in the corresponding element of 
xmm3/m128 while shifting in 0s.

VEX.256.66.0F38.W0 45 /r
VPSRLVD ymm1, ymm2, 
ymm3/m256

A V/V AVX2 Shift doublewords in ymm2 right by amount 
specified in the corresponding element of 
ymm3/m256 while shifting in 0s.

VEX.256.66.0F38.W1 45 /r
VPSRLVQ ymm1, ymm2, 
ymm3/m256

A V/V AVX2 Shift quadwords in ymm2 right by amount 
specified in the corresponding element of 
ymm3/m256 while shifting in 0s.

EVEX.128.66.0F38.W1 10 /r
VPSRLVW xmm1 {k1}{z}, xmm2, 
xmm3/m128

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Shift words in xmm2 right by amount specified in 
the corresponding element of xmm3/m128 while 
shifting in 0s using writemask k1.

EVEX.256.66.0F38.W1 10 /r
VPSRLVW ymm1 {k1}{z}, ymm2, 
ymm3/m256

B V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Shift words in ymm2 right by amount specified in 
the corresponding element of ymm3/m256 while 
shifting in 0s using writemask k1.

EVEX.512.66.0F38.W1 10 /r
VPSRLVW zmm1 {k1}{z}, zmm2, 
zmm3/m512

B V/V AVX512BW 
OR AVX10.11

Shift words in zmm2 right by amount specified in 
the corresponding element of zmm3/m512 while 
shifting in 0s using writemask k1.

EVEX.128.66.0F38.W0 45 /r
VPSRLVD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shift doublewords in xmm2 right by amount 
specified in the corresponding element of 
xmm3/m128/m32bcst while shifting in 0s using 
writemask k1.

EVEX.256.66.0F38.W0 45 /r
VPSRLVD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shift doublewords in ymm2 right by amount 
specified in the corresponding element of 
ymm3/m256/m32bcst while shifting in 0s using 
writemask k1.

EVEX.512.66.0F38.W0 45 /r
VPSRLVD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

C V/V AVX512F 
OR AVX10.11

Shift doublewords in zmm2 right by amount 
specified in the corresponding element of 
zmm3/m512/m32bcst while shifting in 0s using 
writemask k1.

EVEX.128.66.0F38.W1 45 /r
VPSRLVQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shift quadwords in xmm2 right by amount 
specified in the corresponding element of 
xmm3/m128/m64bcst while shifting in 0s using 
writemask k1.

EVEX.256.66.0F38.W1 45 /r
VPSRLVQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shift quadwords in ymm2 right by amount 
specified in the corresponding element of 
ymm3/m256/m64bcst while shifting in 0s using 
writemask k1.

EVEX.512.66.0F38.W1 45 /r
VPSRLVQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512F 
OR AVX10.11

Shift quadwords in zmm2 right by amount 
specified in the corresponding element of 
zmm3/m512/m64bcst while shifting in 0s using 
writemask k1.
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Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words, doublewords or quadword) in the first source operand to the 
right by the count value of respective data elements in the second source operand. As the bits in the data elements 
are shifted right, the empty high-order bits are cleared (set to 0). 
The count values are specified individually in each data element of the second source operand. If the unsigned 
integer value specified in the respective data element of the second source operand is greater than 15 (for word), 
31 (for doublewords), or 63 (for a quadword), then the destination data element are written with 0. 
VEX.128 encoded version: The destination and first source operands are XMM registers. The count operand can be 
either an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination register 
are zeroed.
VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be 
either an YMM register or a 256-bit memory. Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed.
EVEX encoded VPSRLVD/Q: The destination and first source operands are ZMM/YMM/XMM registers. The count 
operand can be either a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512-bit vector broad-
casted from a 32/64-bit memory location. The destination is conditionally updated with writemask k1.
EVEX encoded VPSRLVW: The destination and first source operands are ZMM/YMM/XMM registers. The count 
operand can be either a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination is condition-
ally updated with writemask k1.

Operation

VPSRLVW (EVEX encoded version) 
(KL, VL) = (8, 128), (16, 256), (32, 512)

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := ZeroExtend(SRC1[i+15:i] >> SRC2[i+15:i])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0;

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

B Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VPSRLVD (VEX.128 version)
COUNT_0 := SRC2[31 : 0]

(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)
COUNT_3 := SRC2[127 : 96];
IF COUNT_0 < 32 THEN

DEST[31:0] := ZeroExtend(SRC1[31:0] >> COUNT_0);
ELSE

DEST[31:0] := 0;
(* Repeat shift operation for 2nd through 4th dwords *)

IF COUNT_3 < 32 THEN
DEST[127:96] := ZeroExtend(SRC1[127:96] >> COUNT_3);

ELSE
DEST[127:96] := 0;

DEST[MAXVL-1:128] := 0;

VPSRLVD (VEX.256 version)
COUNT_0 := SRC2[31 : 0];

(* Repeat Each COUNT_i for the 2nd through 7th dwords of SRC2*)
COUNT_7 := SRC2[255 : 224];
IF COUNT_0 < 32 THEN
DEST[31:0] := ZeroExtend(SRC1[31:0] >> COUNT_0);
ELSE
DEST[31:0] := 0;

(* Repeat shift operation for 2nd through 7th dwords *)
IF COUNT_7 < 32 THEN

DEST[255:224] := ZeroExtend(SRC1[255:224] >> COUNT_7);
ELSE

DEST[255:224] := 0;
DEST[MAXVL-1:256] := 0;

VPSRLVD (EVEX encoded version) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] := ZeroExtend(SRC1[i+31:i] >> SRC2[31:0])
ELSE DEST[i+31:i] := ZeroExtend(SRC1[i+31:i] >> SRC2[i+31:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0;
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VPSRLVQ (VEX.128 version)
COUNT_0 := SRC2[63 : 0];
COUNT_1 := SRC2[127 : 64];
IF COUNT_0 < 64 THEN

DEST[63:0] := ZeroExtend(SRC1[63:0] >> COUNT_0);
ELSE

DEST[63:0] := 0;
IF COUNT_1 < 64 THEN

DEST[127:64] := ZeroExtend(SRC1[127:64] >> COUNT_1);
ELSE

DEST[127:64] := 0;
DEST[MAXVL-1:128] := 0;

VPSRLVQ (VEX.256 version)
COUNT_0 := SRC2[63 : 0];

(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)
COUNT_3 := SRC2[255 : 192];
IF COUNT_0 < 64 THEN
DEST[63:0] := ZeroExtend(SRC1[63:0] >> COUNT_0);
ELSE
DEST[63:0] := 0;

(* Repeat shift operation for 2nd through 4th dwords *)
IF COUNT_3 < 64 THEN

DEST[255:192] := ZeroExtend(SRC1[255:192] >> COUNT_3);
ELSE

DEST[255:192] := 0;
DEST[MAXVL-1:256] := 0;

VPSRLVQ (EVEX encoded version) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] := ZeroExtend(SRC1[i+63:i] >> SRC2[63:0])
ELSE DEST[i+63:i] := ZeroExtend(SRC1[i+63:i] >> SRC2[i+63:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0;
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Intel C/C++ Compiler Intrinsic Equivalent

VPSRLVW __m512i _mm512_srlv_epi16(__m512i a, __m512i cnt);
VPSRLVW __m512i _mm512_mask_srlv_epi16(__m512i s, __mmask32 k, __m512i a, __m512i cnt);
VPSRLVW __m512i _mm512_maskz_srlv_epi16( __mmask32 k, __m512i a, __m512i cnt);
VPSRLVW __m256i _mm256_mask_srlv_epi16(__m256i s, __mmask16 k, __m256i a, __m256i cnt);
VPSRLVW __m256i _mm256_maskz_srlv_epi16( __mmask16 k, __m256i a, __m256i cnt);
VPSRLVW __m128i _mm_mask_srlv_epi16(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLVW __m128i _mm_maskz_srlv_epi16( __mmask8 k, __m128i a, __m128i cnt);
VPSRLVW __m256i _mm256_srlv_epi32 (__m256i m, __m256i count)
VPSRLVD __m512i _mm512_srlv_epi32(__m512i a, __m512i cnt);
VPSRLVD __m512i _mm512_mask_srlv_epi32(__m512i s, __mmask16 k, __m512i a, __m512i cnt);
VPSRLVD __m512i _mm512_maskz_srlv_epi32( __mmask16 k, __m512i a, __m512i cnt);
VPSRLVD __m256i _mm256_mask_srlv_epi32(__m256i s, __mmask8 k, __m256i a, __m256i cnt);
VPSRLVD __m256i _mm256_maskz_srlv_epi32( __mmask8 k, __m256i a, __m256i cnt);
VPSRLVD __m128i _mm_mask_srlv_epi32(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLVD __m128i _mm_maskz_srlv_epi32( __mmask8 k, __m128i a, __m128i cnt);
VPSRLVQ __m512i _mm512_srlv_epi64(__m512i a, __m512i cnt);
VPSRLVQ __m512i _mm512_mask_srlv_epi64(__m512i s, __mmask8 k, __m512i a, __m512i cnt);
VPSRLVQ __m512i _mm512_maskz_srlv_epi64( __mmask8 k, __m512i a, __m512i cnt);
VPSRLVQ __m256i _mm256_mask_srlv_epi64(__m256i s, __mmask8 k, __m256i a, __m256i cnt);
VPSRLVQ __m256i _mm256_maskz_srlv_epi64( __mmask8 k, __m256i a, __m256i cnt);
VPSRLVQ __m128i _mm_mask_srlv_epi64(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLVQ __m128i _mm_maskz_srlv_epi64( __mmask8 k, __m128i a, __m128i cnt);
VPSRLVQ __m256i _mm256_srlv_epi64 (__m256i m, __m256i count)
VPSRLVD __m128i _mm_srlv_epi32( __m128i a, __m128i cnt);
VPSRLVQ __m128i _mm_srlv_epi64( __m128i a, __m128i cnt);

SIMD Floating-Point Exceptions

None.

Other Exceptions

VEX-encoded instructions, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded VPSRLVD/Q, see Table 2-51, “Type E4 Class Exception Conditions.”
EVEX-encoded VPSRLVW, see Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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VPTERNLOGD/VPTERNLOGQ—Bitwise Ternary Logic

Instruction Operand Encoding

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W0 25 /r ib
VPTERNLOGD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Bitwise ternary logic taking xmm1, xmm2, and 
xmm3/m128/m32bcst as source operands and 
writing the result to xmm1 under writemask k1 
with dword granularity. The immediate value 
determines the specific binary function being 
implemented.

EVEX.256.66.0F3A.W0 25 /r ib
VPTERNLOGD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Bitwise ternary logic taking ymm1, ymm2, and 
ymm3/m256/m32bcst as source operands and 
writing the result to ymm1 under writemask k1 
with dword granularity. The immediate value 
determines the specific binary function being 
implemented.

EVEX.512.66.0F3A.W0 25 /r ib
VPTERNLOGD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst, imm8

A V/V AVX512F 
OR AVX10.11

Bitwise ternary logic taking zmm1, zmm2, and 
zmm3/m512/m32bcst as source operands and 
writing the result to zmm1 under writemask k1 
with dword granularity. The immediate value 
determines the specific binary function being 
implemented.

EVEX.128.66.0F3A.W1 25 /r ib
VPTERNLOGQ xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Bitwise ternary logic taking xmm1, xmm2, and 
xmm3/m128/m64bcst as source operands and 
writing the result to xmm1 under writemask k1 
with qword granularity. The immediate value 
determines the specific binary function being 
implemented. 

EVEX.256.66.0F3A.W1 25 /r ib
VPTERNLOGQ ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Bitwise ternary logic taking ymm1, ymm2, and 
ymm3/m256/m64bcst as source operands and 
writing the result to ymm1 under writemask k1 
with qword granularity. The immediate value 
determines the specific binary function being 
implemented. 

EVEX.512.66.0F3A.W1 25 /r ib
VPTERNLOGQ zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst, imm8

A V/V AVX512F 
OR AVX10.11

Bitwise ternary logic taking zmm1, zmm2, and 
zmm3/m512/m64bcst as source operands and 
writing the result to zmm1 under writemask k1 
with qword granularity. The immediate value 
determines the specific binary function being 
implemented. 

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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Description 

VPTERNLOGD/Q takes three bit vectors of 512-bit length (in the first, second, and third operand) as input data to 
form a set of 512 indices, each index is comprised of one bit from each input vector. The imm8 byte specifies a 
boolean logic table producing a binary value for each 3-bit index value. The final 512-bit boolean result is written 
to the destination operand (the first operand) using the writemask k1 with the granularity of doubleword element 
or quadword element into the destination.

The destination operand is a ZMM (EVEX.512)/YMM (EVEX.256)/XMM (EVEX.128) register. The first source 
operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 
512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location The 
destination operand is a ZMM register conditionally updated with writemask k1.
Table 1-18 shows two examples of Boolean functions specified by immediate values 0xE2 and 0xE4, with the look 
up result listed in the fourth column following the three columns containing all possible values of the 3-bit index.

Specifying different values in imm8 will allow any arbitrary three-input Boolean functions to be implemented in 
software using VPTERNLOGD/Q. Table 5-1 and Table 5-2 provide a mapping of all 256 possible imm8 values to 
various Boolean expressions.

Operation

VPTERNLOGD (EVEX encoded versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
FOR k := 0 TO 31 

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[j][k] := imm[(DEST[i+k] << 2) + (SRC1[ i+k ] << 1) + SRC2[ k ]]
ELSE DEST[j][k] := imm[(DEST[i+k] << 2) + (SRC1[ i+k ] << 1) + SRC2[ i+k ]]

FI;
; table lookup of immediate bellow;

ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[31+i:i] remains unchanged*
ELSE ; zeroing-masking

DEST[31+i:i] := 0
FI;

FI;
ENDFOR;

Table 1-18.  Examples of VPTERNLOGD/Q Imm8 Boolean Function and Input Index Values

VPTERNLOGD reg1, reg2, src3, 0xE2 Bit Result with 
Imm8=0xE2

VPTERNLOGD reg1, reg2, src3, 0xE4 Bit Result with 
Imm8=0xE4

Bit(reg1) Bit(reg2) Bit(src3) Bit(reg1) Bit(reg2) Bit(src3)

0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 0

0 1 0 0 0 1 0 1

0 1 1 0 0 1 1 0

1 0 0 0 1 0 0 0

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1
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DEST[MAXVL-1:VL] := 0

VPTERNLOGQ (EVEX encoded versions) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
FOR k := 0 TO 63 

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[j][k] := imm[(DEST[i+k] << 2) + (SRC1[ i+k ] << 1) + SRC2[ k ]]
ELSE DEST[j][k] := imm[(DEST[i+k] << 2) + (SRC1[ i+k ] << 1) + SRC2[ i+k ]]

FI; ; table lookup of immediate bellow;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63+i:i] remains unchanged*
ELSE ; zeroing-masking

DEST[63+i:i] := 0
FI;

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalents

VPTERNLOGD __m512i _mm512_ternarylogic_epi32(__m512i a, __m512i b, int imm);
VPTERNLOGD __m512i _mm512_mask_ternarylogic_epi32(__m512i s, __mmask16 m, __m512i a, __m512i b, int imm);
VPTERNLOGD __m512i _mm512_maskz_ternarylogic_epi32(__mmask m, __m512i a, __m512i b, int imm);
VPTERNLOGD __m256i _mm256_ternarylogic_epi32(__m256i a, __m256i b, int imm);
VPTERNLOGD __m256i _mm256_mask_ternarylogic_epi32(__m256i s, __mmask8 m, __m256i a, __m256i b, int imm);
VPTERNLOGD __m256i _mm256_maskz_ternarylogic_epi32( __mmask8 m, __m256i a, __m256i b, int imm);
VPTERNLOGD __m128i _mm_ternarylogic_epi32(__m128i a, __m128i b, int imm);
VPTERNLOGD __m128i _mm_mask_ternarylogic_epi32(__m128i s, __mmask8 m, __m128i a, __m128i b, int imm);
VPTERNLOGD __m128i _mm_maskz_ternarylogic_epi32( __mmask8 m, __m128i a, __m128i b, int imm);
VPTERNLOGQ __m512i _mm512_ternarylogic_epi64(__m512i a, __m512i b, int imm);
VPTERNLOGQ __m512i _mm512_mask_ternarylogic_epi64(__m512i s, __mmask8 m, __m512i a, __m512i b, int imm);
VPTERNLOGQ __m512i _mm512_maskz_ternarylogic_epi64( __mmask8 m, __m512i a, __m512i b, int imm);
VPTERNLOGQ __m256i _mm256_ternarylogic_epi64(__m256i a, __m256i b, int imm);
VPTERNLOGQ __m256i _mm256_mask_ternarylogic_epi64(__m256i s, __mmask8 m, __m256i a, __m256i b, int imm);
VPTERNLOGQ __m256i _mm256_maskz_ternarylogic_epi64( __mmask8 m, __m256i a, __m256i b, int imm);
VPTERNLOGQ __m128i _mm_ternarylogic_epi64(__m128i a, __m128i b, int imm);
VPTERNLOGQ __m128i _mm_mask_ternarylogic_epi64(__m128i s, __mmask8 m, __m128i a, __m128i b, int imm);
VPTERNLOGQ __m128i _mm_maskz_ternarylogic_epi64( __mmask8 m, __m128i a, __m128i b, int imm);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-51, “Type E4 Class Exception Conditions.”
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VPTESTMB/VPTESTMW/VPTESTMD/VPTESTMQ—Logical AND and Set Mask
Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 26 /r 
VPTESTMB k2 {k1}, xmm2, 
xmm3/m128 

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Bitwise AND of packed byte integers in xmm2 and 
xmm3/m128 and set mask k2 to reflect the zero/non-
zero status of each element of the result, under 
writemask k1. 

EVEX.256.66.0F38.W0 26 /r 
VPTESTMB k2 {k1}, ymm2, 
ymm3/m256

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Bitwise AND of packed byte integers in ymm2 and 
ymm3/m256 and set mask k2 to reflect the zero/non-
zero status of each element of the result, under 
writemask k1. 

EVEX.512.66.0F38.W0 26 /r 
VPTESTMB k2 {k1}, zmm2, 
zmm3/m512

A V/V AVX512BW 
OR AVX10.11

Bitwise AND of packed byte integers in zmm2 and 
zmm3/m512 and set mask k2 to reflect the zero/non-
zero status of each element of the result, under 
writemask k1. 

EVEX.128.66.0F38.W1 26 /r 
VPTESTMW k2 {k1}, xmm2, 
xmm3/m128

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Bitwise AND of packed word integers in xmm2 and 
xmm3/m128 and set mask k2 to reflect the zero/non-
zero status of each element of the result, under 
writemask k1. 

EVEX.256.66.0F38.W1 26 /r 
VPTESTMW k2 {k1}, ymm2, 
ymm3/m256

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Bitwise AND of packed word integers in ymm2 and 
ymm3/m256 and set mask k2 to reflect the zero/non-
zero status of each element of the result, under 
writemask k1. 

EVEX.512.66.0F38.W1 26 /r 
VPTESTMW k2 {k1}, zmm2, 
zmm3/m512

A V/V AVX512BW 
OR AVX10.11

Bitwise AND of packed word integers in zmm2 and 
zmm3/m512 and set mask k2 to reflect the zero/non-
zero status of each element of the result, under 
writemask k1. 

EVEX.128.66.0F38.W0 27 /r 
VPTESTMD k2 {k1}, xmm2, 
xmm3/m128/m32bcst 

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Bitwise AND of packed doubleword integers in xmm2 
and xmm3/m128/m32bcst and set mask k2 to reflect 
the zero/non-zero status of each element of the result, 
under writemask k1. 

EVEX.256.66.0F38.W0 27 /r 
VPTESTMD k2 {k1}, ymm2, 
ymm3/m256/m32bcst 

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Bitwise AND of packed doubleword integers in ymm2 
and ymm3/m256/m32bcst and set mask k2 to reflect 
the zero/non-zero status of each element of the result, 
under writemask k1. 

EVEX.512.66.0F38.W0 27 /r 
VPTESTMD k2 {k1}, zmm2, 
zmm3/m512/m32bcst 

B V/V AVX512F 
OR AVX10.11

Bitwise AND of packed doubleword integers in zmm2 
and zmm3/m512/m32bcst and set mask k2 to reflect 
the zero/non-zero status of each element of the result, 
under writemask k1. 

EVEX.128.66.0F38.W1 27 /r 
VPTESTMQ k2 {k1}, xmm2, 
xmm3/m128/m64bcst 

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Bitwise AND of packed quadword integers in xmm2 and 
xmm3/m128/m64bcst and set mask k2 to reflect the 
zero/non-zero status of each element of the result, 
under writemask k1. 

EVEX.256.66.0F38.W1 27 /r 
VPTESTMQ k2 {k1}, ymm2, 
ymm3/m256/m64bcst 

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Bitwise AND of packed quadword integers in ymm2 and 
ymm3/m256/m64bcst and set mask k2 to reflect the 
zero/non-zero status of each element of the result, 
under writemask k1. 

EVEX.512.66.0F38.W1 27 /r 
VPTESTMQ k2 {k1}, zmm2, 
zmm3/m512/m64bcst 

B V/V AVX512F 
OR AVX10.11

Bitwise AND of packed quadword integers in zmm2 and 
zmm3/m512/m64bcst and set mask k2 to reflect the 
zero/non-zero status of each element of the result, 
under writemask k1. 
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Instruction Operand Encoding

Description 

Performs a bitwise logical AND operation on the first source operand (the second operand) and second source 
operand (the third operand) and stores the result in the destination operand (the first operand) under the write-
mask. Each bit of the result is set to 1 if the bitwise AND of the corresponding elements of the first and second src 
operands is non-zero; otherwise it is set to 0.
VPTESTMD/VPTESTMQ: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a 
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 
32/64-bit memory location. The destination operand is a mask register updated under the writemask.
VPTESTMB/VPTESTMW: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a 
ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operand is a mask register 
updated under the writemask.

Operation

VPTESTMB (EVEX encoded versions) 
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j * 8
IF k1[j] OR *no writemask*

THEN DEST[j] := (SRC1[i+7:i] BITWISE AND SRC2[i+7:i] != 0)? 1 : 0;
ELSE DEST[j] = 0 ; zeroing-masking only

FI;
ENDFOR
DEST[MAX_KL-1:KL] := 0

VPTESTMW (EVEX encoded versions) 
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[j] := (SRC1[i+15:i] BITWISE AND SRC2[i+15:i] != 0)? 1 : 0;
ELSE DEST[j] = 0 ; zeroing-masking only

FI;
ENDFOR
DEST[MAX_KL-1:KL] := 0

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VPTESTMD (EVEX encoded versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN DEST[j] := (SRC1[i+31:i] BITWISE AND SRC2[31:0] != 0)? 1 : 0;
ELSE DEST[j] := (SRC1[i+31:i] BITWISE AND SRC2[i+31:i] != 0)? 1 : 0;

FI;
ELSE DEST[j] := 0 ; zeroing-masking only

FI;
ENDFOR
DEST[MAX_KL-1:KL] := 0

VPTESTMQ (EVEX encoded versions) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN DEST[j] := (SRC1[i+63:i] BITWISE AND SRC2[63:0] != 0)? 1 : 0;
ELSE DEST[j] := (SRC1[i+63:i] BITWISE AND SRC2[i+63:i] != 0)? 1 : 0;

FI;
ELSE DEST[j] := 0 ; zeroing-masking only

FI;
ENDFOR
DEST[MAX_KL-1:KL] := 0

Intel C/C++ Compiler Intrinsic Equivalents

VPTESTMB __mmask64 _mm512_test_epi8_mask( __m512i a, __m512i b);
VPTESTMB __mmask64 _mm512_mask_test_epi8_mask(__mmask64, __m512i a, __m512i b);
VPTESTMW __mmask32 _mm512_test_epi16_mask( __m512i a, __m512i b);
VPTESTMW __mmask32 _mm512_mask_test_epi16_mask(__mmask32, __m512i a, __m512i b);
VPTESTMD __mmask16 _mm512_test_epi32_mask( __m512i a, __m512i b);
VPTESTMD __mmask16 _mm512_mask_test_epi32_mask(__mmask16, __m512i a, __m512i b);
VPTESTMQ __mmask8 _mm512_test_epi64_mask(__m512i a, __m512i b);
VPTESTMQ __mmask8 _mm512_mask_test_epi64_mask(__mmask8, __m512i a, __m512i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

VPTESTMD/Q: See Table 2-51, “Type E4 Class Exception Conditions.”
VPTESTMB/W: See Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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VPTESTNMB/W/D/Q—Logical NAND and Set
Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.F3.0F38.W0 26 /r
VPTESTNMB k2 {k1}, xmm2, 
xmm3/m128

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Bitwise NAND of packed byte integers in xmm2 and 
xmm3/m128 and set mask k2 to reflect the zero/non-
zero status of each element of the result, under 
writemask k1.

EVEX.256.F3.0F38.W0 26 /r
VPTESTNMB k2 {k1}, ymm2, 
ymm3/m256

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Bitwise NAND of packed byte integers in ymm2 and 
ymm3/m256 and set mask k2 to reflect the zero/non-
zero status of each element of the result, under 
writemask k1.

EVEX.512.F3.0F38.W0 26 /r
VPTESTNMB k2 {k1}, zmm2, 
zmm3/m512

A V/V (AVX512F AND
AVX512BW) OR 
AVX10.11

Bitwise NAND of packed byte integers in zmm2 and 
zmm3/m512 and set mask k2 to reflect the zero/non-
zero status of each element of the result, under 
writemask k1.

EVEX.128.F3.0F38.W1 26 /r
VPTESTNMW k2 {k1}, xmm2, 
xmm3/m128

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Bitwise NAND of packed word integers in xmm2 and 
xmm3/m128 and set mask k2 to reflect the zero/non-
zero status of each element of the result, under 
writemask k1.

EVEX.256.F3.0F38.W1 26 /r
VPTESTNMW k2 {k1}, ymm2, 
ymm3/m256

A V/V (AVX512VL AND
AVX512BW) OR 
AVX10.11

Bitwise NAND of packed word integers in ymm2 and 
ymm3/m256 and set mask k2 to reflect the zero/non-
zero status of each element of the result, under 
writemask k1.

EVEX.512.F3.0F38.W1 26 /r
VPTESTNMW k2 {k1}, zmm2, 
zmm3/m512

A V/V (AVX512F AND
AVX512BW) OR 
AVX10.11

Bitwise NAND of packed word integers in zmm2 and 
zmm3/m512 and set mask k2 to reflect the zero/non-
zero status of each element of the result, under 
writemask k1.

EVEX.128.F3.0F38.W0 27 /r
VPTESTNMD k2 {k1}, xmm2, 
xmm3/m128/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Bitwise NAND of packed doubleword integers in 
xmm2 and xmm3/m128/m32bcst and set mask k2 to 
reflect the zero/non-zero status of each element of 
the result, under writemask k1.

EVEX.256.F3.0F38.W0 27 /r
VPTESTNMD k2 {k1}, ymm2, 
ymm3/m256/m32bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Bitwise NAND of packed doubleword integers in 
ymm2 and ymm3/m256/m32bcst and set mask k2 to 
reflect the zero/non-zero status of each element of 
the result, under writemask k1.

EVEX.512.F3.0F38.W0 27 /r
VPTESTNMD k2 {k1}, zmm2, 
zmm3/m512/m32bcst

B V/V AVX512F 
OR AVX10.11

Bitwise NAND of packed doubleword integers in 
zmm2 and zmm3/m512/m32bcst and set mask k2 to 
reflect the zero/non-zero status of each element of 
the result, under writemask k1.

EVEX.128.F3.0F38.W1 27 /r
VPTESTNMQ k2 {k1}, xmm2, 
xmm3/m128/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Bitwise NAND of packed quadword integers in xmm2 
and xmm3/m128/m64bcst and set mask k2 to reflect 
the zero/non-zero status of each element of the 
result, under writemask k1.

EVEX.256.F3.0F38.W1 27 /r
VPTESTNMQ k2 {k1}, ymm2, 
ymm3/m256/m64bcst

B V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Bitwise NAND of packed quadword integers in ymm2 
and ymm3/m256/m64bcst and set mask k2 to reflect 
the zero/non-zero status of each element of the 
result, under writemask k1.

EVEX.512.F3.0F38.W1 27 /r
VPTESTNMQ k2 {k1}, zmm2, 
zmm3/m512/m64bcst

B V/V AVX512F 
OR AVX10.11

Bitwise NAND of packed quadword integers in zmm2 
and zmm3/m512/m64bcst and set mask k2 to reflect 
the zero/non-zero status of each element of the 
result, under writemask k1.
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Instruction Operand Encoding

Description

Performs a bitwise logical NAND operation on the byte/word/doubleword/quadword element of the first source 
operand (the second operand) with the corresponding element of the second source operand (the third operand) 
and stores the logical comparison result into each bit of the destination operand (the first operand) according to the 
writemask k1. Each bit of the result is set to 1 if the bitwise AND of the corresponding elements of the first and 
second src operands is zero; otherwise it is set to 0.
EVEX encoded VPTESTNMD/Q: The first source operand is a ZMM/YMM/XMM registers. The second source operand 
can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted 
from a 32/64-bit memory location. The destination is updated according to the writemask.
EVEX encoded VPTESTNMB/W: The first source operand is a ZMM/YMM/XMM registers. The second source operand 
can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination is updated according to the 
writemask.

Operation

VPTESTNMB
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j := 0 TO KL-1

i := j*8
IF MaskBit(j) OR *no writemask*

THEN 
   DEST[j] := (SRC1[i+7:i] BITWISE AND SRC2[i+7:i] == 0)? 1 : 0

ELSE DEST[j] := 0; zeroing masking only
FI

ENDFOR
DEST[MAX_KL-1:KL] := 0

VPTESTNMW
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1

i := j*16
IF MaskBit(j) OR *no writemask*

THEN 
   DEST[j] := (SRC1[i+15:i] BITWISE AND SRC2[i+15:i] == 0)? 1 : 0

ELSE DEST[j] := 0; zeroing masking only
FI

ENDFOR
DEST[MAX_KL-1:KL] := 0

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

B Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VPTESTNMD
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j*32
IF MaskBit(j) OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

   THEN DEST[i+31:i] := (SRC1[i+31:i] BITWISE AND SRC2[31:0] == 0)? 1 : 0
ELSE DEST[j] := (SRC1[i+31:i] BITWISE AND SRC2[i+31:i] == 0)? 1 : 0

FI
ELSE DEST[j] := 0; zeroing masking only

FI
ENDFOR
DEST[MAX_KL-1:KL] := 0

VPTESTNMQ
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j*64
IF MaskBit(j) OR *no writemask*

THEN 
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN DEST[j] := (SRC1[i+63:i] BITWISE AND SRC2[63:0] == 0)? 1 : 0;
ELSE DEST[j] := (SRC1[i+63:i] BITWISE AND SRC2[i+63:i] == 0)? 1 : 0;

FI;
ELSE DEST[j] := 0; zeroing masking only

FI
ENDFOR
DEST[MAX_KL-1:KL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VPTESTNMB __mmask64 _mm512_testn_epi8_mask( __m512i a, __m512i b);
VPTESTNMB __mmask64 _mm512_mask_testn_epi8_mask(__mmask64, __m512i a, __m512i b);
VPTESTNMB __mmask32 _mm256_testn_epi8_mask(__m256i a, __m256i b);
VPTESTNMB __mmask32 _mm256_mask_testn_epi8_mask(__mmask32, __m256i a, __m256i b);
VPTESTNMB __mmask16 _mm_testn_epi8_mask(__m128i a, __m128i b);
VPTESTNMB __mmask16 _mm_mask_testn_epi8_mask(__mmask16, __m128i a, __m128i b);
VPTESTNMW __mmask32 _mm512_testn_epi16_mask( __m512i a, __m512i b);
VPTESTNMW __mmask32 _mm512_mask_testn_epi16_mask(__mmask32, __m512i a, __m512i b);
VPTESTNMW __mmask16 _mm256_testn_epi16_mask(__m256i a, __m256i b);
VPTESTNMW __mmask16 _mm256_mask_testn_epi16_mask(__mmask16, __m256i a, __m256i b);
VPTESTNMW __mmask8 _mm_testn_epi16_mask(__m128i a, __m128i b);
VPTESTNMW __mmask8 _mm_mask_testn_epi16_mask(__mmask8, __m128i a, __m128i b);
VPTESTNMD __mmask16 _mm512_testn_epi32_mask( __m512i a, __m512i b);
VPTESTNMD __mmask16 _mm512_mask_testn_epi32_mask(__mmask16, __m512i a, __m512i b);
VPTESTNMD __mmask8 _mm256_testn_epi32_mask(__m256i a, __m256i b);
VPTESTNMD __mmask8 _mm256_mask_testn_epi32_mask(__mmask8, __m256i a, __m256i b);
VPTESTNMD __mmask8 _mm_testn_epi32_mask(__m128i a, __m128i b);
VPTESTNMD __mmask8 _mm_mask_testn_epi32_mask(__mmask8, __m128i a, __m128i b);
VPTESTNMQ __mmask8 _mm512_testn_epi64_mask(__m512i a, __m512i b);
VPTESTNMQ __mmask8 _mm512_mask_testn_epi64_mask(__mmask8, __m512i a, __m512i b);
VPTESTNMQ __mmask8 _mm256_testn_epi64_mask(__m256i a, __m256i b);
VPTESTNMQ __mmask8 _mm256_mask_testn_epi64_mask(__mmask8, __m256i a, __m256i b);
VPTESTNMQ __mmask8 _mm_testn_epi64_mask(__m128i a, __m128i b);
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VPTESTNMQ __mmask8 _mm_mask_testn_epi64_mask(__mmask8, __m128i a, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

VPTESTNMD/VPTESTNMQ: See Table 2-51, “Type E4 Class Exception Conditions.”
VPTESTNMB/VPTESTNMW: See Exceptions Type E4.nb in Table 2-51, “Type E4 Class Exception Conditions.”
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VRANGEPD—Range Restriction Calculation for Packed Pairs of Float64 Values

Instruction Operand Encoding

Description

This instruction calculates 2/4/8 range operation outputs from two sets of packed input double precision floating-
point values in the first source operand (the second operand) and the second source operand (the third operand). 
The range outputs are written to the destination operand (the first operand) under the writemask k1. 
Bits7:4 of imm8 byte must be zero. The range operation output is performed in two parts, each configured by a 
two-bit control field within imm8[3:0]:
• Imm8[1:0] specifies the initial comparison operation to be one of max, min, max absolute value or min 

absolute value of the input value pair. Each comparison of two input values produces an intermediate result 
that combines with the sign selection control (imm8[3:2]) to determine the final range operation output.

• Imm8[3:2] specifies the sign of the range operation output to be one of the following: from the first input 
value, from the comparison result, set or clear.

The encodings of imm8[1:0] and imm8[3:2] are shown in Figure 1-27.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W1 50 /r ib
VRANGEPD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst, imm8

A V/V (AVX512VL
AND AVX512DQ) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Calculate two RANGE operation output value from 2 
pairs of double precision floating-point values in 
xmm2 and xmm3/m128/m32bcst, store the results 
to xmm1 under the writemask k1. Imm8 specifies 
the comparison and sign of the range operation.

EVEX.256.66.0F3A.W1 50 /r ib
VRANGEPD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst, imm8

A V/V (AVX512VL
AND AVX512DQ) 
OR AVX10.11

Calculate four RANGE operation output value from 
4pairs of double precision floating-point values in 
ymm2 and ymm3/m256/m32bcst, store the results 
to ymm1 under the writemask k1. Imm8 specifies 
the comparison and sign of the range operation.

EVEX.512.66.0F3A.W1 50 /r ib
VRANGEPD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst{sae}, imm8

A V/V AVX512DQ 
OR AVX10.11

Calculate eight RANGE operation output value from 
8 pairs of double precision floating-point values in 
zmm2 and zmm3/m512/m32bcst, store the results 
to zmm1 under the writemask k1. Imm8 specifies 
the comparison and sign of the range operation.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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When one or more of the input value is a NAN, the comparison operation may signal invalid exception (IE). Details 
with one of more input value is NAN is listed in Table 1-19. If the comparison raises an IE, the sign select control 
(imm8[3:2]) has no effect to the range operation output; this is indicated also in Table 1-19.
When both input values are zeros of opposite signs, the comparison operation of MIN/MAX in the range compare 
operation is slightly different from the conceptually similar floating-point MIN/MAX operation that are found in the 
instructions VMAXPD/VMINPD. The details of MIN/MAX/MIN_ABS/MAX_ABS operation for VRANGEPD/PS/SD/SS 
for magnitude-0, opposite-signed input cases are listed in Table 1-20.
Additionally, non-zero, equal-magnitude with opposite-sign input values perform MIN_ABS or MAX_ABS compar-
ison operation with result listed in Table 1-21.

Figure 1-27.  Imm8 Controls for VRANGEPD/SD/PS/SS

Table 1-19.  Signaling of Comparison Operation of One or More NaN Input Values and Effect of Imm8[3:2]

Src1 Src2 Result IE Signaling Due to Comparison Imm8[3:2] Effect to Range Output

sNaN1 sNaN2 Quiet(sNaN1) Yes Ignored

sNaN1 qNaN2 Quiet(sNaN1) Yes Ignored

sNaN1 Norm2 Quiet(sNaN1) Yes Ignored

qNaN1 sNaN2 Quiet(sNaN2) Yes Ignored

qNaN1 qNaN2 qNaN1 No Applicable

qNaN1 Norm2 Norm2 No Applicable

Norm1 sNaN2 Quiet(sNaN2) Yes Ignored

Norm1 qNaN2 Norm1 No Applicable

Table 1-20.  Comparison Result for Opposite-Signed Zero Cases for MIN, MIN_ABS, and MAX, MAX_ABS

MIN and MIN_ABS MAX and MAX_ABS

Src1 Src2 Result Src1 Src2 Result

+0 -0 -0 +0 -0 +0

-0 +0 -0 -0 +0 +0

Table 1-21.  Comparison Result of Equal-Magnitude Input Cases for MIN_ABS and MAX_ABS, (|a| = |b|, a>0, b<0)

MIN_ABS (|a| = |b|, a>0, b<0) MAX_ABS (|a| = |b|, a>0, b<0)

Src1 Src2 Result Src1 Src2 Result

a b b a b a

b a b b a a

7 0246 5 3 1

Compare Operation SelectMust Be Zero

Imm8[3:2] = 00b : Select sign(SRC1)

Sign Control (SC)

Imm8[3:2] = 01b : Select sign(Compare_Result)

Imm8[3:2] = 10b : Set sign to 0

Imm8[1:0] = 00b : Select Min value

Imm8[1:0] = 01b : Select Max value

Imm8[1:0] = 10b : Select Min-Abs value

Imm8[1:0] = 11b : Select Max-Abs value

imm8

Imm8[3:2] = 11b : Set sign to 1
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Operation

RangeDP(SRC1[63:0], SRC2[63:0], CmpOpCtl[1:0], SignSelCtl[1:0])
{

// Check if SNAN and report IE, see also Table 1-19
IF (SRC1 = SNAN) THEN RETURN (QNAN(SRC1), set IE);
IF (SRC2 = SNAN) THEN RETURN (QNAN(SRC2), set IE);

Src1.exp := SRC1[62:52];
Src1.fraction := SRC1[51:0];
IF ((Src1.exp = 0 ) and (Src1.fraction != 0)) THEN// Src1 is a denormal number

IF DAZ THEN Src1.fraction := 0;
ELSE IF (SRC2 <> QNAN) Set DE; FI;

FI;
Src2.exp := SRC2[62:52];
Src2.fraction := SRC2[51:0];
IF ((Src2.exp = 0) and (Src2.fraction !=0 )) THEN// Src2 is a denormal number

IF DAZ THEN Src2.fraction := 0;
ELSE IF (SRC1 <> QNAN) Set DE; FI;

FI;

IF (SRC2 = QNAN) THEN{TMP[63:0] := SRC1[63:0]}
ELSE IF(SRC1 = QNAN) THEN{TMP[63:0] := SRC2[63:0]}
ELSE IF (Both SRC1, SRC2 are magnitude-0 and opposite-signed) TMP[63:0] := from Table 1-20
ELSE IF (Both SRC1, SRC2 are magnitude-equal and opposite-signed and CmpOpCtl[1:0] > 01) TMP[63:0] := from Table 1-21
ELSE 

Case(CmpOpCtl[1:0])
00: TMP[63:0] := (SRC1[63:0] ≤ SRC2[63:0]) ? SRC1[63:0] : SRC2[63:0];
01: TMP[63:0] := (SRC1[63:0] ≤ SRC2[63:0]) ? SRC2[63:0] : SRC1[63:0];
10: TMP[63:0] := (ABS(SRC1[63:0]) ≤ ABS(SRC2[63:0])) ? SRC1[63:0] : SRC2[63:0];
11: TMP[63:0] := (ABS(SRC1[63:0]) ≤ ABS(SRC2[63:0])) ? SRC2[63:0] : SRC1[63:0];
ESAC;

FI;

Case(SignSelCtl[1:0])
00: dest := (SRC1[63] << 63) OR (TMP[62:0]);// Preserve Src1 sign bit
01: dest := TMP[63:0];// Preserve sign of compare result
10: dest := (0 << 63) OR (TMP[62:0]);// Zero out sign bit
11: dest := (1 << 63) OR (TMP[62:0]);// Set the sign bit
ESAC;
RETURN dest[63:0];

}

CmpOpCtl[1:0]= imm8[1:0];
SignSelCtl[1:0]=imm8[3:2];

VRANGEPD (EVEX encoded versions) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] := RangeDP (SRC1[i+63:i], SRC2[63:0], CmpOpCtl[1:0], SignSelCtl[1:0]);
ELSE DEST[i+63:i] := RangeDP (SRC1[i+63:i], SRC2[i+63:i], CmpOpCtl[1:0], SignSelCtl[1:0]);
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FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] = 0
FI;

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

The following example describes a common usage of this instruction for checking that the input operand is
bounded between ±1023.
VRANGEPD zmm_dst, zmm_src, zmm_1023, 02h;

Where:
zmm_dst is the destination operand.
zmm_src is the input operand to compare against ±1023 (this is SRC1).
zmm_1023 is the reference operand, contains the value of 1023 (and this is SRC2).
IMM=02(imm8[1:0]='10) selects the Min Absolute value operation with selection of SRC1.sign.

In case |zmm_src| < 1023 (i.e., SRC1 is smaller than 1023 in magnitude), then its value will be written into
zmm_dst. Otherwise, the value stored in zmm_dst will get the value of 1023 (received on zmm_1023, which is
SRC2).
However, the sign control (imm8[3:2]='00) instructs to select the sign of SRC1 received from zmm_src. So, even
in the case of |zmm_src| ≥ 1023, the selected sign of SRC1 is kept. 
Thus, if zmm_src < -1023, the result of VRANGEPD will be the minimal value of -1023 while if zmm_src > +1023,
the result of VRANGE will be the maximal value of +1023.

Intel C/C++ Compiler Intrinsic Equivalent

VRANGEPD __m512d _mm512_range_pd ( __m512d a, __m512d b, int imm);
VRANGEPD __m512d _mm512_range_round_pd ( __m512d a, __m512d b, int imm, int sae);
VRANGEPD __m512d _mm512_mask_range_pd (__m512 ds, __mmask8 k, __m512d a, __m512d b, int imm);
VRANGEPD __m512d _mm512_mask_range_round_pd (__m512d s, __mmask8 k, __m512d a, __m512d b, int imm, int sae);
VRANGEPD __m512d _mm512_maskz_range_pd ( __mmask8 k, __m512d a, __m512d b, int imm);
VRANGEPD __m512d _mm512_maskz_range_round_pd ( __mmask8 k, __m512d a, __m512d b, int imm, int sae);
VRANGEPD __m256d _mm256_range_pd ( __m256d a, __m256d b, int imm);
VRANGEPD __m256d _mm256_mask_range_pd (__m256d s, __mmask8 k, __m256d a, __m256d b, int imm);
VRANGEPD __m256d _mm256_maskz_range_pd ( __mmask8 k, __m256d a, __m256d b, int imm);
VRANGEPD __m128d _mm_range_pd ( __m128 a, __m128d b, int imm);
VRANGEPD __m128d _mm_mask_range_pd (__m128 s, __mmask8 k, __m128d a, __m128d b, int imm);
VRANGEPD __m128d _mm_maskz_range_pd ( __mmask8 k, __m128d a, __m128d b, int imm);

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”
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VRANGEPS—Range Restriction Calculation for Packed Pairs of Float32 Values

Instruction Operand Encoding

Description

This instruction calculates 4/8/16 range operation outputs from two sets of packed input single precision floating-
point values in the first source operand (the second operand) and the second source operand (the third operand). 
The range outputs are written to the destination operand (the first operand) under the writemask k1. 
Bits7:4 of imm8 byte must be zero. The range operation output is performed in two parts, each configured by a 
two-bit control field within imm8[3:0]:
• Imm8[1:0] specifies the initial comparison operation to be one of max, min, max absolute value or min 

absolute value of the input value pair. Each comparison of two input values produces an intermediate result 
that combines with the sign selection control (imm8[3:2]) to determine the final range operation output.

• Imm8[3:2] specifies the sign of the range operation output to be one of the following: from the first input 
value, from the comparison result, set or clear.

The encodings of imm8[1:0] and imm8[3:2] are shown in Figure 1-27.
When one or more of the input value is a NAN, the comparison operation may signal invalid exception (IE). Details 
with one of more input value is NAN is listed in Table 1-19. If the comparison raises an IE, the sign select control 
(imm8[3:2]) has no effect to the range operation output; this is indicated also in Table 1-19.
When both input values are zeros of opposite signs, the comparison operation of MIN/MAX in the range compare 
operation is slightly different from the conceptually similar floating-point MIN/MAX operation that are found in the 
instructions VMAXPD/VMINPD. The details of MIN/MAX/MIN_ABS/MAX_ABS operation for VRANGEPD/PS/SD/SS 
for magnitude-0, opposite-signed input cases are listed in Table 1-20.
Additionally, non-zero, equal-magnitude with opposite-sign input values perform MIN_ABS or MAX_ABS compar-
ison operation with result listed in Table 1-21.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W0 50 /r ib
VRANGEPS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst, imm8

A V/V (AVX512VL
AND AVX512DQ) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Calculate four RANGE operation output value from 
4 pairs of single-precision floating-point values in 
xmm2 and xmm3/m128/m32bcst, store the results 
to xmm1 under the writemask k1. Imm8 specifies 
the comparison and sign of the range operation.

EVEX.256.66.0F3A.W0 50 /r ib
VRANGEPS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst, imm8

A V/V (AVX512VL
AND AVX512DQ) 
OR AVX10.11

Calculate eight RANGE operation output value from 
8 pairs of single-precision floating-point values in 
ymm2 and ymm3/m256/m32bcst, store the results 
to ymm1 under the writemask k1. Imm8 specifies 
the comparison and sign of the range operation.

EVEX.512.66.0F3A.W0 50 /r ib
VRANGEPS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst{sae}, imm8

A V/V AVX512DQ 
OR AVX10.11

Calculate 16 RANGE operation output value from 
16 pairs of single-precision floating-point values in 
zmm2 and zmm3/m512/m32bcst, store the results 
to zmm1 under the writemask k1. Imm8 specifies 
the comparison and sign of the range operation.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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Operation

RangeSP(SRC1[31:0], SRC2[31:0], CmpOpCtl[1:0], SignSelCtl[1:0])
{

// Check if SNAN and report IE, see also Table 1-19
IF (SRC1=SNAN) THEN RETURN (QNAN(SRC1), set IE);
IF (SRC2=SNAN) THEN RETURN (QNAN(SRC2), set IE);

Src1.exp := SRC1[30:23];
Src1.fraction := SRC1[22:0];
IF ((Src1.exp = 0 ) and (Src1.fraction != 0 )) THEN// Src1 is a denormal number

IF DAZ THEN Src1.fraction := 0;
ELSE IF (SRC2 <> QNAN) Set DE; FI;

FI;
Src2.exp := SRC2[30:23];
Src2.fraction := SRC2[22:0];
IF ((Src2.exp = 0 ) and (Src2.fraction != 0 )) THEN// Src2 is a denormal number

IF DAZ THEN Src2.fraction := 0;
ELSE IF (SRC1 <> QNAN) Set DE; FI;

FI;

IF (SRC2 = QNAN) THEN{TMP[31:0] := SRC1[31:0]}
ELSE IF(SRC1 = QNAN) THEN{TMP[31:0] := SRC2[31:0]}
ELSE IF (Both SRC1, SRC2 are magnitude-0 and opposite-signed) TMP[31:0] := from Table 1-20
ELSE IF (Both SRC1, SRC2 are magnitude-equal and opposite-signed and CmpOpCtl[1:0] > 01) TMP[31:0] := from Table 1-21
ELSE 

Case(CmpOpCtl[1:0])
00: TMP[31:0] := (SRC1[31:0] ≤ SRC2[31:0]) ? SRC1[31:0] : SRC2[31:0];
01: TMP[31:0] := (SRC1[31:0] ≤ SRC2[31:0]) ? SRC2[31:0] : SRC1[31:0];
10: TMP[31:0] := (ABS(SRC1[31:0]) ≤ ABS(SRC2[31:0])) ? SRC1[31:0] : SRC2[31:0];
11: TMP[31:0] := (ABS(SRC1[31:0]) ≤ ABS(SRC2[31:0])) ? SRC2[31:0] : SRC1[31:0];
ESAC;

FI;
Case(SignSelCtl[1:0])
00: dest := (SRC1[31] << 31) OR (TMP[30:0]);// Preserve Src1 sign bit
01: dest := TMP[31:0];// Preserve sign of compare result
10: dest := (0 << 31) OR (TMP[30:0]);// Zero out sign bit
11: dest := (1 << 31) OR (TMP[30:0]);// Set the sign bit
ESAC;
RETURN dest[31:0];

}

CmpOpCtl[1:0]= imm8[1:0];
SignSelCtl[1:0]=imm8[3:2];

VRANGEPS 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] := RangeSP (SRC1[i+31:i], SRC2[31:0], CmpOpCtl[1:0], SignSelCtl[1:0]);
ELSE DEST[i+31:i] := RangeSP (SRC1[i+31:i], SRC2[i+31:i], CmpOpCtl[1:0], SignSelCtl[1:0]);

FI;
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ELSE 
IF *merging-masking* ; merging-masking

THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] = 0
FI;

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

The following example describes a common usage of this instruction for checking that the input operand is
bounded between ±150.

VRANGEPS zmm_dst, zmm_src, zmm_150, 02h;

Where:
zmm_dst is the destination operand.
zmm_src is the input operand to compare against ±150.
zmm_150 is the reference operand, contains the value of 150.
IMM=02(imm8[1:0]=’10) selects the Min Absolute value operation with selection of src1.sign.

In case |zmm_src| < 150, then its value will be written into zmm_dst. Otherwise, the value stored in zmm_dst
will get the value of 150 (received on zmm_150).
However, the sign control (imm8[3:2]=’00) instructs to select the sign of SRC1 received from zmm_src. So, even
in the case of |zmm_src| ≥ 150, the selected sign of SRC1 is kept. 
Thus, if zmm_src < -150, the result of VRANGEPS will be the minimal value of -150 while if zmm_src > +150,
the result of VRANGE will be the maximal value of +150.

Intel C/C++ Compiler Intrinsic Equivalent

VRANGEPS __m512 _mm512_range_ps ( __m512 a, __m512 b, int imm);
VRANGEPS __m512 _mm512_range_round_ps ( __m512 a, __m512 b, int imm, int sae);
VRANGEPS __m512 _mm512_mask_range_ps (__m512 s, __mmask16 k, __m512 a, __m512 b, int imm);
VRANGEPS __m512 _mm512_mask_range_round_ps (__m512 s, __mmask16 k, __m512 a, __m512 b, int imm, int sae);
VRANGEPS __m512 _mm512_maskz_range_ps ( __mmask16 k, __m512 a, __m512 b, int imm);
VRANGEPS __m512 _mm512_maskz_range_round_ps ( __mmask16 k, __m512 a, __m512 b, int imm, int sae);
VRANGEPS __m256 _mm256_range_ps ( __m256 a, __m256 b, int imm);
VRANGEPS __m256 _mm256_mask_range_ps (__m256 s, __mmask8 k, __m256 a, __m256 b, int imm);
VRANGEPS __m256 _mm256_maskz_range_ps ( __mmask8 k, __m256 a, __m256 b, int imm);
VRANGEPS __m128 _mm_range_ps ( __m128 a, __m128 b, int imm);
VRANGEPS __m128 _mm_mask_range_ps (__m128 s, __mmask8 k, __m128 a, __m128 b, int imm);
VRANGEPS __m128 _mm_maskz_range_ps ( __mmask8 k, __m128 a, __m128 b, int imm);

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”
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VRANGESD—Range Restriction Calculation From a Pair of Scalar Float64 Values

Instruction Operand Encoding

Description

This instruction calculates a range operation output from two input double precision floating-point values in the low 
qword element of the first source operand (the second operand) and second source operand (the third operand). 
The range output is written to the low qword element of the destination operand (the first operand) under the 
writemask k1. 
Bits7:4 of imm8 byte must be zero. The range operation output is performed in two parts, each configured by a 
two-bit control field within imm8[3:0]:
• Imm8[1:0] specifies the initial comparison operation to be one of max, min, max absolute value or min 

absolute value of the input value pair. Each comparison of two input values produces an intermediate result 
that combines with the sign selection control (imm8[3:2]) to determine the final range operation output.

• Imm8[3:2] specifies the sign of the range operation output to be one of the following: from the first input 
value, from the comparison result, set or clear.

The encodings of imm8[1:0] and imm8[3:2] are shown in Figure 1-27.
Bits 128:63 of the destination operand are copied from the respective element of the first source operand.
When one or more of the input value is a NAN, the comparison operation may signal invalid exception (IE). Details 
with one of more input value is NAN is listed in Table 1-19. If the comparison raises an IE, the sign select control 
(imm8[3:2]) has no effect to the range operation output; this is indicated also in Table 1-19.
When both input values are zeros of opposite signs, the comparison operation of MIN/MAX in the range compare 
operation is slightly different from the conceptually similar floating-point MIN/MAX operation that are found in the 
instructions VMAXPD/VMINPD. The details of MIN/MAX/MIN_ABS/MAX_ABS operation for VRANGEPD/PS/SD/SS 
for magnitude-0, opposite-signed input cases are listed in Table 1-20.
Additionally, non-zero, equal-magnitude with opposite-sign input values perform MIN_ABS or MAX_ABS compar-
ison operation with result listed in Table 1-21.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.66.0F3A.W1 51 /r
VRANGESD xmm1 {k1}{z}, 
xmm2, xmm3/m64{sae}, imm8

A V/V AVX512DQ
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Calculate a RANGE operation output value from 2 double 
precision floating-point values in xmm2 and xmm3/m64, 
store the output to xmm1 under writemask. Imm8 
specifies the comparison and sign of the range operation.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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Operation

RangeDP(SRC1[63:0], SRC2[63:0], CmpOpCtl[1:0], SignSelCtl[1:0])
{

// Check if SNAN and report IE, see also Table 1-19
IF (SRC1 = SNAN) THEN RETURN (QNAN(SRC1), set IE);
IF (SRC2 = SNAN) THEN RETURN (QNAN(SRC2), set IE);

Src1.exp := SRC1[62:52];
Src1.fraction := SRC1[51:0];
IF ((Src1.exp = 0 ) and (Src1.fraction != 0)) THEN// Src1 is a denormal number

IF DAZ THEN Src1.fraction := 0;
ELSE IF (SRC2 <> QNAN) Set DE; FI;

FI;

Src2.exp := SRC2[62:52];
Src2.fraction := SRC2[51:0];
IF ((Src2.exp = 0) and (Src2.fraction !=0 )) THEN// Src2 is a denormal number

IF DAZ THEN Src2.fraction := 0;
ELSE IF (SRC1 <> QNAN) Set DE; FI;

FI;

IF (SRC2 = QNAN) THEN{TMP[63:0] := SRC1[63:0]}
ELSE IF(SRC1 = QNAN) THEN{TMP[63:0] := SRC2[63:0]}
ELSE IF (Both SRC1, SRC2 are magnitude-0 and opposite-signed) TMP[63:0] := from Table 1-20
ELSE IF (Both SRC1, SRC2 are magnitude-equal and opposite-signed and CmpOpCtl[1:0] > 01) TMP[63:0] := from Table 1-21
ELSE 

Case(CmpOpCtl[1:0])
00: TMP[63:0] := (SRC1[63:0] ≤ SRC2[63:0]) ? SRC1[63:0] : SRC2[63:0];
01: TMP[63:0] := (SRC1[63:0] ≤ SRC2[63:0]) ? SRC2[63:0] : SRC1[63:0];
10: TMP[63:0] := (ABS(SRC1[63:0]) ≤ ABS(SRC2[63:0])) ? SRC1[63:0] : SRC2[63:0];
11: TMP[63:0] := (ABS(SRC1[63:0]) ≤ ABS(SRC2[63:0])) ? SRC2[63:0] : SRC1[63:0];
ESAC;

FI;

Case(SignSelCtl[1:0])
00: dest := (SRC1[63] << 63) OR (TMP[62:0]);// Preserve Src1 sign bit
01: dest := TMP[63:0];// Preserve sign of compare result
10: dest := (0 << 63) OR (TMP[62:0]);// Zero out sign bit
11: dest := (1 << 63) OR (TMP[62:0]);// Set the sign bit
ESAC;
RETURN dest[63:0];

}

CmpOpCtl[1:0]= imm8[1:0];
SignSelCtl[1:0]=imm8[3:2];
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VRANGESD 
IF k1[0] OR *no writemask*

THEN DEST[63:0] := RangeDP (SRC1[63:0], SRC2[63:0], CmpOpCtl[1:0], SignSelCtl[1:0]);
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

DEST[63:0] = 0
FI;

FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

The following example describes a common usage of this instruction for checking that the input operand is
bounded between ±1023.

VRANGESD xmm_dst, xmm_src, xmm_1023, 02h;

Where:
xmm_dst is the destination operand.
xmm_src is the input operand to compare against ±1023.
xmm_1023 is the reference operand, contains the value of 1023.
IMM=02(imm8[1:0]=’10) selects the Min Absolute value operation with selection of src1.sign.

In case |xmm_src| < 1023, then its value will be written into xmm_dst. Otherwise, the value stored in xmm_dst
will get the value of 1023 (received on xmm_1023).
However, the sign control (imm8[3:2]=’00) instructs to select the sign of SRC1 received from xmm_src. So, even
in the case of |xmm_src| ≥ 1023, the selected sign of SRC1 is kept. 
Thus, if xmm_src < -1023, the result of VRANGEPD will be the minimal value of -1023while if xmm_src > +1023,
the result of VRANGE will be the maximal value of +1023.

Intel C/C++ Compiler Intrinsic Equivalent

VRANGESD __m128d _mm_range_sd ( __m128d a, __m128d b, int imm);
VRANGESD __m128d _mm_range_round_sd ( __m128d a, __m128d b, int imm, int sae);
VRANGESD __m128d _mm_mask_range_sd (__m128d s, __mmask8 k, __m128d a, __m128d b, int imm);
VRANGESD __m128d _mm_mask_range_round_sd (__m128d s, __mmask8 k, __m128d a, __m128d b, int imm, int sae);
VRANGESD __m128d _mm_maskz_range_sd ( __mmask8 k, __m128d a, __m128d b, int imm);
VRANGESD __m128d _mm_maskz_range_round_sd ( __mmask8 k, __m128d a, __m128d b, int imm, int sae);

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”
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VRANGESS—Range Restriction Calculation From a Pair of Scalar Float32 Values

Instruction Operand Encoding

Description

This instruction calculates a range operation output from two input single precision floating-point values in the low 
dword element of the first source operand (the second operand) and second source operand (the third operand). 
The range output is written to the low dword element of the destination operand (the first operand) under the 
writemask k1. 
Bits7:4 of imm8 byte must be zero. The range operation output is performed in two parts, each configured by a 
two-bit control field within imm8[3:0]:
• Imm8[1:0] specifies the initial comparison operation to be one of max, min, max absolute value or min 

absolute value of the input value pair. Each comparison of two input values produces an intermediate result 
that combines with the sign selection control (imm8[3:2]) to determine the final range operation output.

• Imm8[3:2] specifies the sign of the range operation output to be one of the following: from the first input 
value, from the comparison result, set or clear.

The encodings of imm8[1:0] and imm8[3:2] are shown in Figure 1-27.
Bits 128:31 of the destination operand are copied from the respective elements of the first source operand.
When one or more of the input value is a NAN, the comparison operation may signal invalid exception (IE). Details 
with one of more input value is NAN is listed in Table 1-19. If the comparison raises an IE, the sign select control 
(imm8[3:2]) has no effect to the range operation output; this is indicated also in Table 1-19.
When both input values are zeros of opposite signs, the comparison operation of MIN/MAX in the range compare 
operation is slightly different from the conceptually similar floating-point MIN/MAX operation that are found in the 
instructions VMAXPD/VMINPD. The details of MIN/MAX/MIN_ABS/MAX_ABS operation for VRANGEPD/PS/SD/SS 
for magnitude-0, opposite-signed input cases are listed in Table 1-20.
Additionally, non-zero, equal-magnitude with opposite-sign input values perform MIN_ABS or MAX_ABS compar-
ison operation with result listed in Table 1-21.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.66.0F3A.W0 51 /r
VRANGESS xmm1 {k1}{z}, 
xmm2, xmm3/m32{sae}, imm8

A V/V AVX512DQ
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Calculate a RANGE operation output value from 2 
single-precision floating-point values in xmm2 and 
xmm3/m32, store the output to xmm1 under 
writemask. Imm8 specifies the comparison and sign of 
the range operation.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

RangeSP(SRC1[31:0], SRC2[31:0], CmpOpCtl[1:0], SignSelCtl[1:0])
{

// Check if SNAN and report IE, see also Table 1-19
IF (SRC1=SNAN) THEN RETURN (QNAN(SRC1), set IE);
IF (SRC2=SNAN) THEN RETURN (QNAN(SRC2), set IE);

Src1.exp := SRC1[30:23];
Src1.fraction := SRC1[22:0];
IF ((Src1.exp = 0 ) and (Src1.fraction != 0 )) THEN// Src1 is a denormal number

IF DAZ THEN Src1.fraction := 0;
ELSE IF (SRC2 <> QNAN) Set DE; FI;

FI;
Src2.exp := SRC2[30:23];
Src2.fraction := SRC2[22:0];
IF ((Src2.exp = 0 ) and (Src2.fraction != 0 )) THEN// Src2 is a denormal number

IF DAZ THEN Src2.fraction := 0;
ELSE IF (SRC1 <> QNAN) Set DE; FI;

FI;

IF (SRC2 = QNAN) THEN{TMP[31:0] := SRC1[31:0]}
ELSE IF(SRC1 = QNAN) THEN{TMP[31:0] := SRC2[31:0]}
ELSE IF (Both SRC1, SRC2 are magnitude-0 and opposite-signed) TMP[31:0] := from Table 1-20
ELSE IF (Both SRC1, SRC2 are magnitude-equal and opposite-signed and CmpOpCtl[1:0] > 01) TMP[31:0] := from Table 1-21
ELSE 

Case(CmpOpCtl[1:0])
00: TMP[31:0] := (SRC1[31:0] ≤ SRC2[31:0]) ? SRC1[31:0] : SRC2[31:0];
01: TMP[31:0] := (SRC1[31:0] ≤ SRC2[31:0]) ? SRC2[31:0] : SRC1[31:0];
10: TMP[31:0] := (ABS(SRC1[31:0]) ≤ ABS(SRC2[31:0])) ? SRC1[31:0] : SRC2[31:0];
11: TMP[31:0] := (ABS(SRC1[31:0]) ≤ ABS(SRC2[31:0])) ? SRC2[31:0] : SRC1[31:0];
ESAC;

FI;
Case(SignSelCtl[1:0])
00: dest := (SRC1[31] << 31) OR (TMP[30:0]);// Preserve Src1 sign bit
01: dest := TMP[31:0];// Preserve sign of compare result
10: dest := (0 << 31) OR (TMP[30:0]);// Zero out sign bit
11: dest := (1 << 31) OR (TMP[30:0]);// Set the sign bit
ESAC;
RETURN dest[31:0];

}

CmpOpCtl[1:0]= imm8[1:0];
SignSelCtl[1:0]=imm8[3:2];
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VRANGESS 
IF k1[0] OR *no writemask*

THEN DEST[31:0] := RangeSP (SRC1[31:0], SRC2[31:0], CmpOpCtl[1:0], SignSelCtl[1:0]);
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

DEST[31:0] = 0
FI;

FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

The following example describes a common usage of this instruction for checking that the input operand is
bounded between ±150.

VRANGESS zmm_dst, zmm_src, zmm_150, 02h;

Where:
xmm_dst is the destination operand.
xmm_src is the input operand to compare against ±150.
xmm_150 is the reference operand, contains the value of 150.
IMM=02(imm8[1:0]=’10) selects the Min Absolute value operation with selection of src1.sign.

In case |xmm_src| < 150, then its value will be written into zmm_dst. Otherwise, the value stored in xmm_dst
will get the value of 150 (received on zmm_150).
However, the sign control (imm8[3:2]=’00) instructs to select the sign of SRC1 received from xmm_src. So, even
in the case of |xmm_src| ≥ 150, the selected sign of SRC1 is kept. 
Thus, if xmm_src < -150, the result of VRANGESS will be the minimal value of -150 while if xmm_src > +150,
the result of VRANGE will be the maximal value of +150.

Intel C/C++ Compiler Intrinsic Equivalent

VRANGESS __m128 _mm_range_ss ( __m128 a, __m128 b, int imm);
VRANGESS __m128 _mm_range_round_ss ( __m128 a, __m128 b, int imm, int sae);
VRANGESS __m128 _mm_mask_range_ss (__m128 s, __mmask8 k, __m128 a, __m128 b, int imm);
VRANGESS __m128 _mm_mask_range_round_ss (__m128 s, __mmask8 k, __m128 a, __m128 b, int imm, int sae);
VRANGESS __m128 _mm_maskz_range_ss ( __mmask8 k, __m128 a, __m128 b, int imm);
VRANGESS __m128 _mm_maskz_range_round_ss ( __mmask8 k, __m128 a, __m128 b, int imm, int sae);

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”
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VRCP14PD—Compute Approximate Reciprocals of Packed Float64 Values

Instruction Operand Encoding

Description

This instruction performs a SIMD computation of the approximate reciprocals of eight/four/two packed double 
precision floating-point values in the source operand (the second operand) and stores the packed double precision 
floating-point results in the destination operand. The maximum relative error for this approximation is less than 2-
14. 
The source operand can be a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 64-
bit memory location. The destination operand is a ZMM register conditionally updated according to the writemask.
The VRCP14PD instruction is not affected by the rounding control bits in the MXCSR register. When a source value 
is a 0.0, an ∞ with the sign of the source value is returned. A denormal source value will be treated as zero only in 
case of DAZ bit set in MXCSR. Otherwise it is treated correctly (i.e., not as a 0.0). Underflow results are flushed to 
zero only in case of FTZ bit set in MXCSR. Otherwise it will be treated correctly (i.e., correct underflow result is 
written) with the sign of the operand. When a source value is a SNaN or QNaN, the SNaN is converted to a QNaN 
or the source QNaN is returned.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
MXCSR exception flags are not affected by this instruction and floating-point exceptions are not reported.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W1 4C /r
VRCP14PD xmm1 {k1}{z}, 
xmm2/m128/m64bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Computes the approximate reciprocals of the packed 
double precision floating-point values in 
xmm2/m128/m64bcst and stores the results in xmm1. 
Under writemask.

EVEX.256.66.0F38.W1 4C /r
VRCP14PD ymm1 {k1}{z}, 
ymm2/m256/m64bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Computes the approximate reciprocals of the packed 
double precision floating-point values in 
ymm2/m256/m64bcst and stores the results in ymm1. 
Under writemask.

EVEX.512.66.0F38.W1 4C /r
VRCP14PD zmm1 {k1}{z}, 
zmm2/m512/m64bcst

A V/V AVX512F 
OR AVX10.11

Computes the approximate reciprocals of the packed 
double precision floating-point values in 
zmm2/m512/m64bcst and stores the results in zmm1. 
Under writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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* in this case the mantissa is shifted right by one or two bits

A numerically exact implementation of VRCP14xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP14PD ((EVEX encoded versions) 
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+63:i] := APPROXIMATE(1.0/SRC[63:0]);
ELSE DEST[i+63:i] := APPROXIMATE(1.0/SRC[i+63:i]);

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI;

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VRCP14PD __m512d _mm512_rcp14_pd( __m512d a);
VRCP14PD __m512d _mm512_mask_rcp14_pd(__m512d s, __mmask8 k, __m512d a);
VRCP14PD __m512d _mm512_maskz_rcp14_pd( __mmask8 k, __m512d a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-51, “Type E4 Class Exception Conditions.”

Table 1-22.  VRCP14PD/VRCP14SD Special Cases

Input value Result value Comments

0 ≤ X ≤ 2-1024 INF Very small denormal

-2-1024 ≤ X ≤ -0 -INF Very small denormal

X > 21022 Underflow Up to 18 bits of fractions are returned*

X < -21022 -Underflow Up to 18 bits of fractions are returned*

X = 2-n 2n

X = -2-n -2n
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VRCP14PS—Compute Approximate Reciprocals of Packed Float32 Values

Instruction Operand Encoding

Description

This instruction performs a SIMD computation of the approximate reciprocals of the packed single precision 
floating-point values in the source operand (the second operand) and stores the packed single precision floating-
point results in the destination operand (the first operand). The maximum relative error for this approximation is 
less than 2-14. 
The source operand can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32-
bit memory location. The destination operand is a ZMM register conditionally updated according to the writemask.
The VRCP14PS instruction is not affected by the rounding control bits in the MXCSR register. When a source value 
is a 0.0, an ∞ with the sign of the source value is returned. A denormal source value will be treated as zero only in 
case of DAZ bit set in MXCSR. Otherwise it is treated correctly (i.e., not as a 0.0). Underflow results are flushed to 
zero only in case of FTZ bit set in MXCSR. Otherwise it will be treated correctly (i.e., correct underflow result is 
written) with the sign of the operand. When a source value is a SNaN or QNaN, the SNaN is converted to a QNaN 
or the source QNaN is returned.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
MXCSR exception flags are not affected by this instruction and floating-point exceptions are not reported.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 4C /r
VRCP14PS xmm1 {k1}{z}, 
xmm2/m128/m32bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Computes the approximate reciprocals of the packed 
single-precision floating-point values in 
xmm2/m128/m32bcst and stores the results in xmm1. 
Under writemask.

EVEX.256.66.0F38.W0 4C /r
VRCP14PS ymm1 {k1}{z}, 
ymm2/m256/m32bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Computes the approximate reciprocals of the packed 
single-precision floating-point values in 
ymm2/m256/m32bcst and stores the results in ymm1. 
Under writemask.

EVEX.512.66.0F38.W0 4C /r
VRCP14PS zmm1 {k1}{z}, 
zmm2/m512/m32bcst

A V/V AVX512F 
OR AVX10.11

Computes the approximate reciprocals of the packed 
single-precision floating-point values in 
zmm2/m512/m32bcst and stores the results in zmm1. 
Under writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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A numerically exact implementation of VRCP14xx can be found at:

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-
vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP14PS (EVEX encoded versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+31:i] := APPROXIMATE(1.0/SRC[31:0]);
ELSE DEST[i+31:i] := APPROXIMATE(1.0/SRC[i+31:i]);

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI;

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VRCP14PS __m512 _mm512_rcp14_ps( __m512 a);
VRCP14PS __m512 _mm512_mask_rcp14_ps(__m512 s, __mmask16 k, __m512 a);
VRCP14PS __m512 _mm512_maskz_rcp14_ps( __mmask16 k, __m512 a);
VRCP14PS __m256 _mm256_rcp14_ps( __m256 a);
VRCP14PS __m256 _mm512_mask_rcp14_ps(__m256 s, __mmask8 k, __m256 a);
VRCP14PS __m256 _mm512_maskz_rcp14_ps( __mmask8 k, __m256 a);
VRCP14PS __m128 _mm_rcp14_ps( __m128 a);
VRCP14PS __m128 _mm_mask_rcp14_ps(__m128 s, __mmask8 k, __m128 a);
VRCP14PS __m128 _mm_maskz_rcp14_ps( __mmask8 k, __m128 a);

SIMD Floating-Point Exceptions

None.

Table 1-23.  VRCP14PS/VRCP14SS Special Cases

Input value Result value Comments

0 ≤ X ≤ 2-128 INF Very small denormal

-2-128 ≤ X ≤ -0 -INF Very small denormal

X > 2126 Underflow Up to 18 bits of fractions are returned1

NOTES:
1. In this case, the mantissa is shifted right by one or two bits.

X < -2126 -Underflow Up to 18 bits of fractions are returned1

X = 2-n 2n

X = -2-n -2n
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Other Exceptions

See Table 2-51, “Type E4 Class Exception Conditions.”
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VRCP14SD—Compute Approximate Reciprocal of Scalar Float64 Value

Instruction Operand Encoding

Description

This instruction performs a SIMD computation of the approximate reciprocal of the low double precision floating-
point value in the second source operand (the third operand) stores the result in the low quadword element of the 
destination operand (the first operand) according to the writemask k1. Bits (127:64) of the XMM register destina-
tion are copied from corresponding bits in the first source operand (the second operand). The maximum relative 
error for this approximation is less than 2-14. The source operand can be an XMM register or a 64-bit memory loca-
tion. The destination operand is an XMM register.
The VRCP14SD instruction is not affected by the rounding control bits in the MXCSR register. When a source value 
is a 0.0, an ∞ with the sign of the source value is returned. A denormal source value will be treated as zero only in 
case of DAZ bit set in MXCSR. Otherwise it is treated correctly (i.e., not as a 0.0). Underflow results are flushed to 
zero only in case of FTZ bit set in MXCSR. Otherwise it will be treated correctly (i.e., correct underflow result is 
written) with the sign of the operand. When a source value is a SNaN or QNaN, the SNaN is converted to a QNaN 
or the source QNaN is returned. See Table 1-22 for special-case input values.
MXCSR exception flags are not affected by this instruction and floating-point exceptions are not reported.
A numerically exact implementation of VRCP14xx can be found at:

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-
vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP14SD (EVEX version)
IF k1[0] OR *no writemask*

THEN DEST[63:0] := APPROXIMATE(1.0/SRC2[63:0]);
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

DEST[63:0] := 0
FI;

FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op 
/ En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.66.0F38.W1 4D /r
VRCP14SD xmm1 {k1}{z}, xmm2, 
xmm3/m64

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Computes the approximate reciprocal of the scalar 
double precision floating-point value in xmm3/m64 and 
stores the result in xmm1 using writemask k1. Also, 
upper double precision floating-point value (bits[127:64]) 
from xmm2 is copied to xmm1[127:64]. 

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VRCP14SD __m128d _mm_rcp14_sd( __m128d a, __m128d b);
VRCP14SD __m128d _mm_mask_rcp14_sd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VRCP14SD __m128d _mm_maskz_rcp14_sd( __mmask8 k, __m128d a, __m128d b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-53, “Type E5 Class Exception Conditions.”
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VRCP14SS—Compute Approximate Reciprocal of Scalar Float32 Value

Instruction Operand Encoding

Description

This instruction performs a SIMD computation of the approximate reciprocal of the low single precision floating-
point value in the second source operand (the third operand) and stores the result in the low quadword element of 
the destination operand (the first operand) according to the writemask k1. Bits (127:32) of the XMM register desti-
nation are copied from corresponding bits in the first source operand (the second operand). The maximum relative 
error for this approximation is less than 2-14. The source operand can be an XMM register or a 32-bit memory loca-
tion. The destination operand is an XMM register.
The VRCP14SS instruction is not affected by the rounding control bits in the MXCSR register. When a source value 
is a 0.0, an ∞ with the sign of the source value is returned. A denormal source value will be treated as zero only in 
case of DAZ bit set in MXCSR. Otherwise it is treated correctly (i.e., not as a 0.0). Underflow results are flushed to 
zero only in case of FTZ bit set in MXCSR. Otherwise it will be treated correctly (i.e., correct underflow result is 
written) with the sign of the operand. When a source value is a SNaN or QNaN, the SNaN is converted to a QNaN 
or the source QNaN is returned. See Table 1-23 for special-case input values.
MXCSR exception flags are not affected by this instruction and floating-point exceptions are not reported.
A numerically exact implementation of VRCP14xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP14SS (EVEX version)
IF k1[0] OR *no writemask*

THEN DEST[31:0] := APPROXIMATE(1.0/SRC2[31:0]);
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

DEST[31:0] := 0
FI;

FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.66.0F38.W0 4D /r
VRCP14SS xmm1 {k1}{z}, xmm2, 
xmm3/m32

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Computes the approximate reciprocal of the scalar 
single-precision floating-point value in xmm3/m32 and 
stores the results in xmm1 using writemask k1. Also, 
upper double precision floating-point value 
(bits[127:32]) from xmm2 is copied to xmm1[127:32]. 

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VRCP14SS __m128 _mm_rcp14_ss( __m128 a, __m128 b);
VRCP14SS __m128 _mm_mask_rcp14_ss(__m128 s, __mmask8 k, __m128 a, __m128 b);
VRCP14SS __m128 _mm_maskz_rcp14_ss( __mmask8 k, __m128 a, __m128 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-53, “Type E5 Class Exception Conditions.”
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VRCPPH—Compute Reciprocals of Packed FP16 Values

Instruction Operand Encoding

Description

This instruction performs a SIMD computation of the approximate reciprocals of 8/16/32 packed FP16 values in the 
source operand (the second operand) and stores the packed FP16 results in the destination operand. The maximum 
relative error for this approximation is less than 2−11 + 2−14.
For special cases, see Table 1-24.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.MAP6.W0 4C /r
VRCPPH xmm1{k1}{z}, 
xmm2/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compute the approximate reciprocals of packed 
FP16 values in xmm2/m128/m16bcst and store 
the result in xmm1 subject to writemask k1.

EVEX.256.66.MAP6.W0 4C /r
VRCPPH ymm1{k1}{z}, 
ymm2/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Compute the approximate reciprocals of packed 
FP16 values in ymm2/m256/m16bcst and store 
the result in ymm1 subject to writemask k1.

EVEX.512.66.MAP6.W0 4C /r
VRCPPH zmm1{k1}{z}, 
zmm2/m512/m16bcst

A V/V AVX512-FP16 
OR AVX10.11

Compute the approximate reciprocals of packed 
FP16 values in zmm2/m512/m16bcst and store 
the result in zmm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A

Table 1-24.  VRCPPH/VRCPSH Special Cases

Input Value Result Value Comments

0 ≤ X ≤ 2-16 INF Very small denormal−2-16 ≤ X ≤ -0 −INF Very small denormal

X > +∞ +0

X < −∞ −0

X = 2-n 2n

X = −2-n −2n
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Operation

VRCPPH dest{k1}, src 
VL = 128, 256 or 512
KL := VL/16

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

IF SRC is memory and (EVEX.b = 1):
tsrc := src.fp16[0]

ELSE:
tsrc := src.fp16[i]

DEST.fp16[i] := APPROXIMATE(1.0 / tsrc)
ELSE IF *zeroing*:

DEST.fp16[i] := 0
//else DEST.fp16[i] remains unchanged

DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VRCPPH __m128h _mm_mask_rcp_ph (__m128h src, __mmask8 k, __m128h a);
VRCPPH __m128h _mm_maskz_rcp_ph (__mmask8 k, __m128h a);
VRCPPH __m128h _mm_rcp_ph (__m128h a);
VRCPPH __m256h _mm256_mask_rcp_ph (__m256h src, __mmask16 k, __m256h a);
VRCPPH __m256h _mm256_maskz_rcp_ph (__mmask16 k, __m256h a);
VRCPPH __m256h _mm256_rcp_ph (__m256h a);
VRCPPH __m512h _mm512_mask_rcp_ph (__m512h src, __mmask32 k, __m512h a);
VRCPPH __m512h _mm512_maskz_rcp_ph (__mmask32 k, __m512h a);
VRCPPH __m512h _mm512_rcp_ph (__m512h a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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VRCPSH—Compute Reciprocal of Scalar FP16 Value

Instruction Operand Encoding

Description

This instruction performs a SIMD computation of the approximate reciprocal of the low FP16 value in the second 
source operand (the third operand) and stores the result in the low word element of the destination operand (the 
first operand) according to the writemask k1. Bits 127:16 of the XMM register destination are copied from corre-
sponding bits in the first source operand (the second operand). The maximum relative error for this approximation 
is less than 2−11 + 2−14.
Bits 127:16 of the destination operand are copied from the corresponding bits of the first source operand. Bits 
MAXVL-1:128 of the destination operand are zeroed. The low FP16 element of the destination is updated according 
to the writemask.
For special cases, see Table 1-24.

Operation

VRCPSH dest{k1}, src1, src2 
IF k1[0] or *no writemask*:

DEST.fp16[0] := APPROXIMATE(1.0 / src2.fp16[0])
ELSE IF *zeroing*:

DEST.fp16[0] := 0
//else DEST.fp16[0] remains unchanged

DEST[127:16] := src1[127:16]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VRCPSH __m128h _mm_mask_rcp_sh (__m128h src, __mmask8 k, __m128h a, __m128h b);
VRCPSH __m128h _mm_maskz_rcp_sh (__mmask8 k, __m128h a, __m128h b);
VRCPSH __m128h _mm_rcp_sh (__m128h a, __m128h b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Table 2-60, “Type E10 Class Exception Conditions.”

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.66.MAP6.W0 4D /r
VRCPSH xmm1{k1}{z}, xmm2, 
xmm3/m16

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compute the approximate reciprocal of the low 
FP16 value in xmm3/m16 and store the result in 
xmm1 subject to writemask k1. Bits 127:16 from 
xmm2 are copied to xmm1[127:16].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A



VREDUCEPD—Perform Reduction Transformation on Packed Float64 Values

Instruction Operand Encoding

Description

Perform reduction transformation of the packed binary encoded double precision floating-point values in the source 
operand (the second operand) and store the reduced results in binary floating-point format to the destination 
operand (the first operand) under the writemask k1. 
The reduction transformation subtracts the integer part and the leading M fractional bits from the binary floating-
point source value, where M is a unsigned integer specified by imm8[7:4], see Figure 1-28. Specifically, the reduc-
tion transformation can be expressed as:

dest = src – (ROUND(2M*src))*2-M;

where “Round()” treats “src”, “2M”, and their product as binary floating-point numbers with normalized signifi-
cand and biased exponents.

The magnitude of the reduced result can be expressed by considering src= 2p*man2,
where ‘man2’ is the normalized significand and ‘p’ is the unbiased exponent 

Then if RC = RNE: 0<=|Reduced Result|<=2p-M-1

Then if RC ≠ RNE: 0<=|Reduced Result|<2p-M

This instruction might end up with a precision exception set. However, in case of SPE set (i.e., Suppress Precision 
Exception, which is imm8[3]=1), no precision exception is reported.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W1 56 /r ib
VREDUCEPD xmm1 {k1}{z}, 
xmm2/m128/m64bcst, imm8

A V/V (AVX512VL
AND AVX512DQ) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Perform reduction transformation on packed double 
precision floating-point values in 
xmm2/m128/m32bcst by subtracting a number of 
fraction bits specified by the imm8 field. Stores the 
result in xmm1 register under writemask k1.

EVEX.256.66.0F3A.W1 56 /r ib
VREDUCEPD ymm1 {k1}{z}, 
ymm2/m256/m64bcst, imm8

A V/V (AVX512VL
AND AVX512DQ) 
OR AVX10.11

Perform reduction transformation on packed double 
precision floating-point values in 
ymm2/m256/m32bcst by subtracting a number of 
fraction bits specified by the imm8 field. Stores the 
result in ymm1 register under writemask k1.

EVEX.512.66.0F3A.W1 56 /r ib
VREDUCEPD zmm1 {k1}{z}, 
zmm2/m512/m64bcst{sae}, 
imm8

A V/V AVX512DQ 
OR AVX10.11

Perform reduction transformation on double precision 
floating-point values in zmm2/m512/m32bcst by 
subtracting a number of fraction bits specified by the 
imm8 field. Stores the result in zmm1 register under 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) imm8 N/A
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Handling of special case of input values are listed in Table 1-25.

* Round control = (imm8.MS1)? MXCSR.RC: imm8.RC

Operation

ReduceArgumentDP(SRC[63:0], imm8[7:0])
{

// Check for NaN
IF (SRC [63:0] = NAN) THEN

RETURN (Convert SRC[63:0] to QNaN); FI;
M := imm8[7:4]; // Number of fraction bits of the normalized significand to be subtracted
RC := imm8[1:0];// Round Control for ROUND() operation
RC source := imm[2];
SPE := imm[3];// Suppress Precision Exception
TMP[63:0] := 2-M *{ROUND(2M*SRC[63:0], SPE, RC_source, RC)}; // ROUND() treats SRC and 2M as standard binary FP values
TMP[63:0] := SRC[63:0] – TMP[63:0]; // subtraction under the same RC,SPE controls
RETURN TMP[63:0]; // binary encoded FP with biased exponent and normalized significand

}

Figure 1-28.  Imm8 Controls for VREDUCEPD/SD/PS/SS

Table 1-25.  VREDUCEPD/SD/PS/SS Special Cases

Round Mode Returned value 

|Src1| < 2-M-1 RNE Src1

|Src1| < 2-M

RPI, Src1 > 0 Round (Src1-2-M) *

RPI, Src1 ≤ 0 Src1

RNI, Src1 ≥ 0 Src1

RNI, Src1 < 0 Round (Src1+2-M) *

Src1 = ±0, or
Dest = ±0 (Src1!=INF)

NOT RNI +0.0

RNI -0.0

Src1 = ±INF any +0.0

Src1= ±NAN n/a QNaN(Src1)

7 0246 5 3 1

Round Control OverrideFixed point length

Imm8[7:4] : Number of fixed points to subtract

RS

Imm8[1:0] = 00b : Round nearest even

Imm8[1:0] = 01b : Round down

Imm8[1:0] = 10b : Round up

Imm8[1:0] = 11b : Truncate

imm8 SPE

Round Select: Imm8[2] 

Imm8[2] = 0b : Use Imm8[1:0]

Imm8[2] = 1b : Use MXCSR

Suppress Precision Exception: Imm8[3] 

Imm8[3] = 0b : Use MXCSR exception mask

Imm8[3] = 1b : Suppress
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VREDUCEPD 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b == 1) AND (SRC *is memory*)
THEN DEST[i+63:i] := ReduceArgumentDP(SRC[63:0], imm8[7:0]);
ELSE DEST[i+63:i] := ReduceArgumentDP(SRC[i+63:i], imm8[7:0]);

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] = 0
FI;

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VREDUCEPD __m512d _mm512_mask_reduce_pd( __m512d a, int imm, int sae)
VREDUCEPD __m512d _mm512_mask_reduce_pd(__m512d s, __mmask8 k, __m512d a, int imm, int sae)
VREDUCEPD __m512d _mm512_maskz_reduce_pd(__mmask8 k, __m512d a, int imm, int sae)
VREDUCEPD __m256d _mm256_mask_reduce_pd( __m256d a, int imm)
VREDUCEPD __m256d _mm256_mask_reduce_pd(__m256d s, __mmask8 k, __m256d a, int imm)
VREDUCEPD __m256d _mm256_maskz_reduce_pd(__mmask8 k, __m256d a, int imm)
VREDUCEPD __m128d _mm_mask_reduce_pd( __m128d a, int imm)
VREDUCEPD __m128d _mm_mask_reduce_pd(__m128d s, __mmask8 k, __m128d a, int imm)
VREDUCEPD __m128d _mm_maskz_reduce_pd(__mmask8 k, __m128d a, int imm)

SIMD Floating-Point Exceptions

Invalid, Precision.

If SPE is enabled, precision exception is not reported (regardless of MXCSR exception mask).

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”
Additionally:
#UD If EVEX.vvvv != 1111B.
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VREDUCEPH—Perform Reduction Transformation on Packed FP16 Values

Instruction Operand Encoding

Description

This instruction performs a reduction transformation of the packed binary encoded FP16 values in the source 
operand (the second operand) and store the reduced results in binary FP format to the destination operand (the 
first operand) under the writemask k1.
The reduction transformation subtracts the integer part and the leading M fractional bits from the binary FP source 
value, where M is a unsigned integer specified by imm8[7:4]. Specifically, the reduction transformation can be 
expressed as:
dest = src − (ROUND(2M * src)) * 2−M

where ROUND() treats src, 2M, and their product as binary FP numbers with normalized significand and biased 
exponents.
The magnitude of the reduced result can be expressed by considering src = 2p * man2, where ‘man2’ is the normal-
ized significand and ‘p’ is the unbiased exponent.
Then if RC=RNE: 0 ≤ |ReducedResult| ≤ 2−M−1.
Then if RC ≠ RNE: 0 ≤ |ReducedResult| < 2−M.
This instruction might end up with a precision exception set. However, in case of SPE set (i.e., Suppress Precision 
Exception, which is imm8[3]=1), no precision exception is reported.
This instruction may generate tiny non-zero result. If it does so, it does not report underflow exception, even if 
underflow exceptions are unmasked (UM flag in MXCSR register is 0).
For special cases, see Table 1-26.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.0F3A.W0 56 /r /ib
VREDUCEPH xmm1{k1}{z}, 
xmm2/m128/m16bcst, imm8

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Perform reduction transformation on packed 
FP16 values in xmm2/m128/m16bcst by 
subtracting a number of fraction bits specified by 
the imm8 field. Store the result in xmm1 subject 
to writemask k1.

EVEX.256.NP.0F3A.W0 56 /r /ib
VREDUCEPH ymm1{k1}{z}, 
ymm2/m256/m16bcst, imm8

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Perform reduction transformation on packed 
FP16 values in ymm2/m256/m16bcst by 
subtracting a number of fraction bits specified by 
the imm8 field. Store the result in ymm1 subject 
to writemask k1.

EVEX.512.NP.0F3A.W0 56 /r /ib
VREDUCEPH zmm1{k1}{z}, 
zmm2/m512/m16bcst {sae}, imm8

A V/V AVX512-FP16
OR AVX10.11

Perform reduction transformation on packed 
FP16 values in zmm2/m512/m16bcst by 
subtracting a number of fraction bits specified by 
the imm8 field. Store the result in zmm1 subject 
to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) imm8 (r) N/A
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Operation

def reduce_fp16(src, imm8):
nan := (src.exp = 0x1F) and (src.fraction != 0)
if nan:

return QNAN(src)
m := imm8[7:4]
rc := imm8[1:0]
rc_source := imm8[2]
spe := imm[3] // suppress precision exception
tmp := 2^(-m) * ROUND(2^m * src, spe, rc_source, rc)
tmp := src - tmp // using same RC, SPE controls
return tmp

VREDUCEPH dest{k1}, src, imm8 
VL = 128, 256 or 512
KL := VL/16

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

IF SRC is memory and (EVEX.b = 1):
tsrc := src.fp16[0]

ELSE:
tsrc := src.fp16[i]

DEST.fp16[i] := reduce_fp16(tsrc, imm8)
ELSE IF *zeroing*:

DEST.fp16[i] := 0
//else DEST.fp16[i] remains unchanged

DEST[MAXVL-1:VL] := 0 

Table 1-26.  VREDUCEPH/VREDUCESH Special Cases

Input value Round Mode Returned Value

|Src1| < 2−M−1 RNE Src1

|Src1| < 2−M

RU, Src1 > 0 Round(Src1 − 2−M)1

RU, Src1 ≤ 0 Src1

RD, Src1 ≥ 0 Src1

RD, Src1 < 0 Round(Src1 + 2−M)

Src1 = ±0 or
Dest = ±0 (Src1 ≠ ∞)

NOT RD +0.0

RD −0.0

Src1 = ±∞ Any +0.0

Src1 = ±NAN Any QNaN (Src1)

NOTES:
1. The Round(.) function uses rounding controls specified by (imm8[2]? MXCSR.RC: imm8[1:0]).
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Intel C/C++ Compiler Intrinsic Equivalent

VREDUCEPH __m128h _mm_mask_reduce_ph (__m128h src, __mmask8 k, __m128h a, int imm8);
VREDUCEPH __m128h _mm_maskz_reduce_ph (__mmask8 k, __m128h a, int imm8);
VREDUCEPH __m128h _mm_reduce_ph (__m128h a, int imm8);
VREDUCEPH __m256h _mm256_mask_reduce_ph (__m256h src, __mmask16 k, __m256h a, int imm8);
VREDUCEPH __m256h _mm256_maskz_reduce_ph (__mmask16 k, __m256h a, int imm8);
VREDUCEPH __m256h _mm256_reduce_ph (__m256h a, int imm8);
VREDUCEPH __m512h _mm512_mask_reduce_ph (__m512h src, __mmask32 k, __m512h a, int imm8);
VREDUCEPH __m512h _mm512_maskz_reduce_ph (__mmask32 k, __m512h a, int imm8);
VREDUCEPH __m512h _mm512_reduce_ph (__m512h a, int imm8);
VREDUCEPH __m512h _mm512_mask_reduce_round_ph (__m512h src, __mmask32 k, __m512h a, int imm8, const int sae);
VREDUCEPH __m512h _mm512_maskz_reduce_round_ph (__mmask32 k, __m512h a, int imm8, const int sae);
VREDUCEPH __m512h _mm512_reduce_round_ph (__m512h a, int imm8, const int sae);

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instruction, see Table 2-48, “Type E2 Class Exception Conditions.”
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VREDUCEPS—Perform Reduction Transformation on Packed Float32 Values

Instruction Operand Encoding

Description

Perform reduction transformation of the packed binary encoded single precision floating-point values in the source 
operand (the second operand) and store the reduced results in binary floating-point format to the destination 
operand (the first operand) under the writemask k1. 
The reduction transformation subtracts the integer part and the leading M fractional bits from the binary floating-
point source value, where M is a unsigned integer specified by imm8[7:4], see Figure 1-28. Specifically, the reduc-
tion transformation can be expressed as:

dest = src – (ROUND(2M*src))*2-M;

where “Round()” treats “src”, “2M”, and their product as binary floating-point numbers with normalized signifi-
cand and biased exponents.

The magnitude of the reduced result can be expressed by considering src= 2p*man2,
where ‘man2’ is the normalized significand and ‘p’ is the unbiased exponent 

Then if RC = RNE: 0<=|Reduced Result|<=2p-M-1

Then if RC ≠ RNE: 0<=|Reduced Result|<2p-M

This instruction might end up with a precision exception set. However, in case of SPE set (i.e., Suppress Precision 
Exception, which is imm8[3]=1), no precision exception is reported.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Handling of special case of input values are listed in Table 1-25.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W0 56 /r ib
VREDUCEPS xmm1 {k1}{z}, 
xmm2/m128/m32bcst, imm8

A V/V (AVX512VL
AND AVX512DQ) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Perform reduction transformation on packed single-
precision floating-point values in 
xmm2/m128/m32bcst by subtracting a number of 
fraction bits specified by the imm8 field. Stores the 
result in xmm1 register under writemask k1.

EVEX.256.66.0F3A.W0 56 /r ib
VREDUCEPS ymm1 {k1}{z}, 
ymm2/m256/m32bcst, imm8

A V/V (AVX512VL
AND AVX512DQ) 
OR AVX10.11

Perform reduction transformation on packed single-
precision floating-point values in 
ymm2/m256/m32bcst by subtracting a number of 
fraction bits specified by the imm8 field. Stores the 
result in ymm1 register under writemask k1.

EVEX.512.66.0F3A.W0 56 /r ib
VREDUCEPS zmm1 {k1}{z}, 
zmm2/m512/m32bcst{sae}, 
imm8

A V/V AVX512DQ 
OR AVX10.11

Perform reduction transformation on packed single-
precision floating-point values in 
zmm2/m512/m32bcst by subtracting a number of 
fraction bits specified by the imm8 field. Stores the 
result in zmm1 register under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) imm8 N/A
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Operation

ReduceArgumentSP(SRC[31:0], imm8[7:0])
{

// Check for NaN
IF (SRC [31:0] = NAN) THEN

RETURN (Convert SRC[31:0] to QNaN); FI
M := imm8[7:4]; // Number of fraction bits of the normalized significand to be subtracted
RC := imm8[1:0];// Round Control for ROUND() operation
RC source := imm[2];
SPE := imm[3];// Suppress Precision Exception
TMP[31:0] := 2-M *{ROUND(2M*SRC[31:0], SPE, RC_source, RC)}; // ROUND() treats SRC and 2M as standard binary FP values
TMP[31:0] := SRC[31:0] – TMP[31:0]; // subtraction under the same RC,SPE controls

RETURN TMP[31:0]; // binary encoded FP with biased exponent and normalized significand
}

VREDUCEPS 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b == 1) AND (SRC *is memory*)
THEN DEST[i+31:i] := ReduceArgumentSP(SRC[31:0], imm8[7:0]);
ELSE DEST[i+31:i] := ReduceArgumentSP(SRC[i+31:i], imm8[7:0]);

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] = 0
FI;

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VREDUCEPS __m512 _mm512_mask_reduce_ps( __m512 a, int imm, int sae)
VREDUCEPS __m512 _mm512_mask_reduce_ps(__m512 s, __mmask16 k, __m512 a, int imm, int sae)
VREDUCEPS __m512 _mm512_maskz_reduce_ps(__mmask16 k, __m512 a, int imm, int sae)
VREDUCEPS __m256 _mm256_mask_reduce_ps( __m256 a, int imm)
VREDUCEPS __m256 _mm256_mask_reduce_ps(__m256 s, __mmask8 k, __m256 a, int imm)
VREDUCEPS __m256 _mm256_maskz_reduce_ps(__mmask8 k, __m256 a, int imm)
VREDUCEPS __m128 _mm_mask_reduce_ps( __m128 a, int imm)
VREDUCEPS __m128 _mm_mask_reduce_ps(__m128 s, __mmask8 k, __m128 a, int imm)
VREDUCEPS __m128 _mm_maskz_reduce_ps(__mmask8 k, __m128 a, int imm)

SIMD Floating-Point Exceptions

Invalid, Precision.

If SPE is enabled, precision exception is not reported (regardless of MXCSR exception mask).

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions”; additionally:
#UD If EVEX.vvvv != 1111B.
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VREDUCESD—Perform a Reduction Transformation on a Scalar Float64 Value 

Instruction Operand Encoding

Description

Perform a reduction transformation of the binary encoded double precision floating-point value in the low qword 
element of the second source operand (the third operand) and store the reduced result in binary floating-point 
format to the low qword element of the destination operand (the first operand) under the writemask k1. Bits 
127:64 of the destination operand are copied from respective qword elements of the first source operand (the 
second operand). 
The reduction transformation subtracts the integer part and the leading M fractional bits from the binary floating-
point source value, where M is a unsigned integer specified by imm8[7:4], see Figure 1-28. Specifically, the reduc-
tion transformation can be expressed as:

dest = src – (ROUND(2M*src))*2-M;

where “Round()” treats “src”, “2M”, and their product as binary floating-point numbers with normalized signifi-
cand and biased exponents.

The magnitude of the reduced result can be expressed by considering src= 2p*man2,
where ‘man2’ is the normalized significand and ‘p’ is the unbiased exponent 

Then if RC = RNE: 0<=|Reduced Result|<=2p-M-1

Then if RC ≠ RNE: 0<=|Reduced Result|<2p-M

This instruction might end up with a precision exception set. However, in case of SPE set (i.e., Suppress Precision 
Exception, which is imm8[3]=1), no precision exception is reported.
The operation is write masked.
Handling of special case of input values are listed in Table 1-25.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.66.0F3A.W1 57
VREDUCESD xmm1 {k1}{z}, 
xmm2, xmm3/m64{sae}, 
imm8/r 

A V/V AVX512DQ
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Perform a reduction transformation on a scalar double 
precision floating-point value in xmm3/m64 by 
subtracting a number of fraction bits specified by the 
imm8 field. Also, upper double precision floating-point 
value (bits[127:64]) from xmm2 are copied to 
xmm1[127:64]. Stores the result in xmm1 register.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

ReduceArgumentDP(SRC[63:0], imm8[7:0])
{

// Check for NaN
IF (SRC [63:0] = NAN) THEN

RETURN (Convert SRC[63:0] to QNaN); FI;
M := imm8[7:4]; // Number of fraction bits of the normalized significand to be subtracted
RC := imm8[1:0];// Round Control for ROUND() operation
RC source := imm[2];
SPE := imm[3];// Suppress Precision Exception
TMP[63:0] := 2-M *{ROUND(2M*SRC[63:0], SPE, RC_source, RC)}; // ROUND() treats SRC and 2M as standard binary FP values
TMP[63:0] := SRC[63:0] – TMP[63:0]; // subtraction under the same RC,SPE controls
RETURN TMP[63:0]; // binary encoded FP with biased exponent and normalized significand

}

VREDUCESD 
IF k1[0] or *no writemask*

THEN DEST[63:0] := ReduceArgumentDP(SRC2[63:0], imm8[7:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] = 0
FI;

FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VREDUCESD __m128d _mm_mask_reduce_sd( __m128d a, __m128d b, int imm, int sae)
VREDUCESD __m128d _mm_mask_reduce_sd(__m128d s, __mmask16 k, __m128d a, __m128d b, int imm, int sae)
VREDUCESD __m128d _mm_maskz_reduce_sd(__mmask16 k, __m128d a, __m128d b, int imm, int sae)

SIMD Floating-Point Exceptions

Invalid, Precision.

If SPE is enabled, precision exception is not reported (regardless of MXCSR exception mask).

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”
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VREDUCESH—Perform Reduction Transformation on Scalar FP16 Value

Instruction Operand Encoding

Description

This instruction performs a reduction transformation of the low binary encoded FP16 value in the source operand 
(the second operand) and store the reduced result in binary FP format to the low element of the destination 
operand (the first operand) under the writemask k1. For further details see the description of VREDUCEPH.
Bits 127:16 of the destination operand are copied from the corresponding bits of the first source operand. Bits 
MAXVL-1:128 of the destination operand are zeroed. The low FP16 element of the destination is updated according 
to the writemask.
This instruction might end up with a precision exception set. However, in case of SPE set (i.e., Suppress Precision 
Exception, which is imm8[3]=1), no precision exception is reported.
This instruction may generate tiny non-zero result. If it does so, it does not report underflow exception, even if 
underflow exceptions are unmasked (UM flag in MXCSR register is 0).
For special cases, see Table 1-26.

Operation

VREDUCESH dest{k1}, src, imm8 
IF k1[0] or *no writemask*:

dest.fp16[0] := reduce_fp16(src2.fp16[0], imm8) // see VREDUCEPH
ELSE IF *zeroing*:

dest.fp16[0] := 0
//else dest.fp16[0] remains unchanged

DEST[127:16] := src1[127:16]
DEST[MAXVL-1:128] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VREDUCESH __m128h _mm_mask_reduce_round_sh (__m128h src, __mmask8 k, __m128h a, __m128h b, int imm8, const int sae);
VREDUCESH __m128h _mm_maskz_reduce_round_sh (__mmask8 k, __m128h a, __m128h b, int imm8, const int sae);
VREDUCESH __m128h _mm_reduce_round_sh (__m128h a, __m128h b, int imm8, const int sae);
VREDUCESH __m128h _mm_mask_reduce_sh (__m128h src, __mmask8 k, __m128h a, __m128h b, int imm8);
VREDUCESH __m128h _mm_maskz_reduce_sh (__mmask8 k, __m128h a, __m128h b, int imm8);
VREDUCESH __m128h _mm_reduce_sh (__m128h a, __m128h b, int imm8);

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.NP.0F3A.W0 57 /r /ib
VREDUCESH xmm1{k1}{z}, xmm2, 
xmm3/m16 {sae}, imm8

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Perform a reduction transformation on the low 
binary encoded FP16 value in xmm3/m16 by 
subtracting a number of fraction bits specified by 
the imm8 field. Store the result in xmm1 subject 
to writemask k1. Bits 127:16 from xmm2 are 
copied to xmm1[127:16]. 

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8 (r)
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SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VREDUCESS—Perform a Reduction Transformation on a Scalar Float32 Value

Instruction Operand Encoding

Description

Perform a reduction transformation of the binary encoded single precision floating-point value in the low dword 
element of the second source operand (the third operand) and store the reduced result in binary floating-point 
format to the low dword element of the destination operand (the first operand) under the writemask k1. Bits 
127:32 of the destination operand are copied from respective dword elements of the first source operand (the 
second operand). 
The reduction transformation subtracts the integer part and the leading M fractional bits from the binary floating-
point source value, where M is a unsigned integer specified by imm8[7:4], see Figure 1-28. Specifically, the reduc-
tion transformation can be expressed as:

dest = src – (ROUND(2M*src))*2-M;

where “Round()” treats “src”, “2M”, and their product as binary floating-point numbers with normalized signifi-
cand and biased exponents.

The magnitude of the reduced result can be expressed by considering src= 2p*man2,
where ‘man2’ is the normalized significand and ‘p’ is the unbiased exponent 

Then if RC = RNE: 0<=|Reduced Result|<=2p-M-1

Then if RC ≠ RNE: 0<=|Reduced Result|<2p-M

This instruction might end up with a precision exception set. However, in case of SPE set (i.e., Suppress Precision 
Exception, which is imm8[3]=1), no precision exception is reported.
Handling of special case of input values are listed in Table 1-25.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.66.0F3A.W0 57 /r /ib
VREDUCESS xmm1 {k1}{z}, 
xmm2, xmm3/m32{sae}, imm8

A V/V AVX512DQ
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Perform a reduction transformation on a scalar single-
precision floating-point value in xmm3/m32 by 
subtracting a number of fraction bits specified by the 
imm8 field. Also, upper single-precision floating-point 
values (bits[127:32]) from xmm2 are copied to 
xmm1[127:32]. Stores the result in xmm1 register.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

ReduceArgumentSP(SRC[31:0], imm8[7:0])
{

// Check for NaN
IF (SRC [31:0] = NAN) THEN

RETURN (Convert SRC[31:0] to QNaN); FI
M := imm8[7:4]; // Number of fraction bits of the normalized significand to be subtracted
RC := imm8[1:0];// Round Control for ROUND() operation
RC source := imm[2];
SPE := imm[3];// Suppress Precision Exception
TMP[31:0] := 2-M *{ROUND(2M*SRC[31:0], SPE, RC_source, RC)}; // ROUND() treats SRC and 2M as standard binary FP values
TMP[31:0] := SRC[31:0] – TMP[31:0]; // subtraction under the same RC,SPE controls

RETURN TMP[31:0]; // binary encoded FP with biased exponent and normalized significand
}

VREDUCESS 
IF k1[0] or *no writemask*

THEN DEST[31:0] := ReduceArgumentSP(SRC2[31:0], imm8[7:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] = 0
FI;

FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VREDUCESS __m128 _mm_mask_reduce_ss( __m128 a, __m128 b, int imm, int sae)
VREDUCESS __m128 _mm_mask_reduce_ss(__m128 s, __mmask16 k, __m128 a, __m128 b, int imm, int sae)
VREDUCESS __m128 _mm_maskz_reduce_ss(__mmask16 k, __m128 a, __m128 b, int imm, int sae)

SIMD Floating-Point Exceptions

Invalid, Precision.

If SPE is enabled, precision exception is not reported (regardless of MXCSR exception mask).

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”
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VRNDSCALEPD—Round Packed Float64 Values to Include a Given Number of Fraction Bits

Instruction Operand Encoding

Description

Round the double precision floating-point values in the source operand by the rounding mode specified in the 
immediate operand (see Figure 1-29) and places the result in the destination operand.
The destination operand (the first operand) is a ZMM/YMM/XMM register conditionally updated according to the 
writemask. The source operand (the second operand) can be a ZMM/YMM/XMM register, a 512/256/128-bit 
memory location, or a 512/256/128-bit vector broadcasted from a 64-bit memory location.
The rounding process rounds the input to an integral value, plus number bits of fraction that are specified by 
imm8[7:4] (to be included in the result) and returns the result as a double precision floating-point value.
It should be noticed that no overflow is induced while executing this instruction (although the source is scaled by 
the imm8[7:4] value).
The immediate operand also specifies control fields for the rounding operation, three bit fields are defined and 
shown in the “Immediate Control Description” figure below. Bit 3 of the immediate byte controls the processor 
behavior for a precision exception, bit 2 selects the source of rounding mode control. Bits 1:0 specify a non-sticky 
rounding-mode value (immediate control table below lists the encoded values for rounding-mode field).
The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is an 
SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero before 
rounding. 
The sign of the result of this instruction is preserved, including the sign of zero.
The formula of the operation on each data element for VRNDSCALEPD is

ROUND(x) = 2-M*Round_to_INT(x*2M, round_ctrl), 

round_ctrl = imm[3:0];

M=imm[7:4];
The operation of x*2M is computed as if the exponent range is unlimited (i.e., no overflow ever occurs).

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W1 09 /r ib
VRNDSCALEPD xmm1 {k1}{z}, 
xmm2/m128/m64bcst, imm8

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Rounds packed double precision floating-point values 
in xmm2/m128/m64bcst to a number of fraction bits 
specified by the imm8 field. Stores the result in xmm1 
register. Under writemask.

EVEX.256.66.0F3A.W1 09 /r ib
VRNDSCALEPD ymm1 {k1}{z}, 
ymm2/m256/m64bcst, imm8

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Rounds packed double precision floating-point values 
in ymm2/m256/m64bcst to a number of fraction bits 
specified by the imm8 field. Stores the result in ymm1 
register. Under writemask.

EVEX.512.66.0F3A.W1 09 /r ib
VRNDSCALEPD zmm1 {k1}{z}, 
zmm2/m512/m64bcst{sae}, imm8

A V/V AVX512F 
OR AVX10.11

Rounds packed double precision floating-point values 
in zmm2/m512/m64bcst to a number of fraction bits 
specified by the imm8 field. Stores the result in zmm1 
register using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) imm8 N/A
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VRNDSCALEPD is a more general form of the VEX-encoded VROUNDPD instruction. In VROUNDPD, the formula of 
the operation on each element is

ROUND(x) = Round_to_INT(x, round_ctrl), 

round_ctrl = imm[3:0];

Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Handling of special case of input values are listed in Table 1-27.

Operation

RoundToIntegerDP(SRC[63:0], imm8[7:0]) {
if (imm8[2] = 1)

rounding_direction := MXCSR:RC ; get round control from MXCSR
else

rounding_direction := imm8[1:0] ; get round control from imm8[1:0]
FI
M := imm8[7:4] ; get the scaling factor

case (rounding_direction)
00: TMP[63:0] := round_to_nearest_even_integer(2M*SRC[63:0])
01: TMP[63:0] := round_to_equal_or_smaller_integer(2M*SRC[63:0])
10: TMP[63:0] := round_to_equal_or_larger_integer(2M*SRC[63:0])
11: TMP[63:0] := round_to_nearest_smallest_magnitude_integer(2M*SRC[63:0])
ESAC

Dest[63:0] := 2-M* TMP[63:0] ; scale down back to 2-M

if (imm8[3] = 0) Then ; check SPE
if (SRC[63:0] != Dest[63:0]) Then ; check precision lost

set_precision() ; set #PE
FI;

FI;

Figure 1-29.  Imm8 Controls for VRNDSCALEPD/SD/PS/SS

Table 1-27.  VRNDSCALEPD/SD/PS/SS Special Cases

Returned value 

Src1=±inf Src1

Src1=±NAN Src1 converted to QNAN

Src1=±0 Src1

7 0246 5 3 1

Round Control OverrideFixed point length

Imm8[7:4] : Number of fixed points to preserve

RS

Imm8[1:0] = 00b : Round nearest even

Imm8[1:0] = 01b : Round down

Imm8[1:0] = 10b : Round up

Imm8[1:0] = 11b : Truncate

imm8 SPE

Round Select: Imm8[2] 

Imm8[2] = 0b : Use Imm8[1:0]

Imm8[2] = 1b : Use MXCSR

Suppress Precision Exception: Imm8[3] 

Imm8[3] = 0b : Use MXCSR exception mask

Imm8[3] = 1b : Suppress
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return(Dest[63:0])
}

VRNDSCALEPD (EVEX encoded versions) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF *src is a memory operand*

THEN TMP_SRC := BROADCAST64(SRC, VL, k1)
ELSE TMP_SRC := SRC

FI;

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := RoundToIntegerDP((TMP_SRC[i+63:i], imm8[7:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI;

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VRNDSCALEPD __m512d _mm512_roundscale_pd( __m512d a, int imm);
VRNDSCALEPD __m512d _mm512_roundscale_round_pd( __m512d a, int imm, int sae);
VRNDSCALEPD __m512d _mm512_mask_roundscale_pd(__m512d s, __mmask8 k, __m512d a, int imm);
VRNDSCALEPD __m512d _mm512_mask_roundscale_round_pd(__m512d s, __mmask8 k, __m512d a, int imm, int sae);
VRNDSCALEPD __m512d _mm512_maskz_roundscale_pd( __mmask8 k, __m512d a, int imm);
VRNDSCALEPD __m512d _mm512_maskz_roundscale_round_pd( __mmask8 k, __m512d a, int imm, int sae);
VRNDSCALEPD __m256d _mm256_roundscale_pd( __m256d a, int imm);
VRNDSCALEPD __m256d _mm256_mask_roundscale_pd(__m256d s, __mmask8 k, __m256d a, int imm);
VRNDSCALEPD __m256d _mm256_maskz_roundscale_pd( __mmask8 k, __m256d a, int imm);
VRNDSCALEPD __m128d _mm_roundscale_pd( __m128d a, int imm);
VRNDSCALEPD __m128d _mm_mask_roundscale_pd(__m128d s, __mmask8 k, __m128d a, int imm);
VRNDSCALEPD __m128d _mm_maskz_roundscale_pd( __mmask8 k, __m128d a, int imm);

SIMD Floating-Point Exceptions

Invalid, Precision.

If SPE is enabled, precision exception is not reported (regardless of MXCSR exception mask).

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”
VRNDSCALEPD—Round Packed Float64 Values to Include a Given Number of Fraction Bits Vol. 2C 5-712



VRNDSCALEPH—Round Packed FP16 Values to Include a Given Number of Fraction Bits

Instruction Operand Encoding

Description

This instruction rounds the FP16 values in the source operand by the rounding mode specified in the immediate 
operand (see Table 1-28) and places the result in the destination operand. The destination operand is conditionally 
updated according to the writemask.
The rounding process rounds the input to an integral value, plus number bits of fraction that are specified by 
imm8[7:4] (to be included in the result), and returns the result as an FP16 value.
Note that no overflow is induced while executing this instruction (although the source is scaled by the imm8[7:4] 
value).
The immediate operand also specifies control fields for the rounding operation. Three bit fields are defined and 
shown in Table 1-28, “Imm8 Controls for VRNDSCALEPH/VRNDSCALESH.” Bit 3 of the immediate byte controls the 
processor behavior for a precision exception, bit 2 selects the source of rounding mode control, and bits 1:0 specify 
a non-sticky rounding-mode value.
The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is an 
SNaN then it will be converted to a QNaN.
The sign of the result of this instruction is preserved, including the sign of zero. Special cases are described in Table 
1-29.
The formula of the operation on each data element for VRNDSCALEPH is 

ROUND(x) = 2−M *Round_to_INT(x * 2M, round_ctrl),
round_ctrl = imm[3:0];
M=imm[7:4];

The operation of x * 2M is computed as if the exponent range is unlimited (i.e., no overflow ever occurs).
If this instruction encoding’s SPE bit (bit 3) in the immediate operand is 1, VRNDSCALEPH can set MXCSR.UE 
without MXCSR.PE.
EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.0F3A.W0 08 /r /ib
VRNDSCALEPH xmm1{k1}{z}, 
xmm2/m128/m16bcst, imm8

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Round packed FP16 values in 
xmm2/m128/m16bcst to a number of fraction 
bits specified by the imm8 field. Store the result 
in xmm1 subject to writemask k1.

EVEX.256.NP.0F3A.W0 08 /r /ib
VRNDSCALEPH ymm1{k1}{z}, 
ymm2/m256/m16bcst, imm8

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Round packed FP16 values in 
ymm2/m256/m16bcst to a number of fraction 
bits specified by the imm8 field. Store the result 
in ymm1 subject to writemask k1.

EVEX.512.NP.0F3A.W0 08 /r /ib
VRNDSCALEPH zmm1{k1}{z}, 
zmm2/m512/m16bcst {sae}, imm8

A V/V AVX512-FP16
OR AVX10.11

Round packed FP16 values in 
zmm2/m512/m16bcst to a number of fraction 
bits specified by the imm8 field. Store the result 
in zmm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) imm8 (r) N/A
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Operation

def round_fp16_to_integer(src, imm8):
if imm8[2] = 1:

rounding_direction := MXCSR.RC
else:

rounding_direction := imm8[1:0]
m := imm8[7:4] // scaling factor

tsrc1 := 2^m * src

if rounding_direction = 0b00:
tmp := round_to_nearest_even_integer(trc1)

else if rounding_direction = 0b01:
tmp := round_to_equal_or_smaller_integer(trc1)

else if rounding_direction = 0b10:
tmp := round_to_equal_or_larger_integer(trc1)

else if rounding_direction = 0b11:
tmp := round_to_smallest_magnitude_integer(trc1)

dst := 2^(-m) * tmp

if imm8[3]==0: // check SPE
if src != dst:

MXCSR.PE := 1
return dst 

Table 1-28.  Imm8 Controls for VRNDSCALEPH/VRNDSCALESH

Imm8 Bits Description

imm8[7:4] Number of fixed points to preserve.

imm8[3] Suppress Precision Exception (SPE)
0b00: Implies use of MXCSR exception mask.
0b01: Implies suppress.

imm8[2] Round Select (RS)
0b00: Implies use of imm8[1:0].
0b01: Implies use of MXCSR.

imm8[1:0] Round Control Override:
0b00: Round nearest even.
0b01: Round down.
0b10: Round up.
0b11: Truncate.

Table 1-29.  VRNDSCALEPH/VRNDSCALESH Special Cases

Input Value Returned Value

Src1 = ±∞ Src1

Src1 = ±NaN Src1 converted to QNaN

Src1 = ±0 Src1
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VRNDSCALEPH dest{k1}, src, imm8
VL = 128, 256 or 512
KL := VL/16

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

IF SRC is memory and (EVEX.b = 1):
tsrc := src.fp16[0]

ELSE:
tsrc := src.fp16[i]

DEST.fp16[i] := round_fp16_to_integer(tsrc, imm8)
ELSE IF *zeroing*:

DEST.fp16[i] := 0
//else DEST.fp16[i] remains unchanged

DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VRNDSCALEPH __m128h _mm_mask_roundscale_ph (__m128h src, __mmask8 k, __m128h a, int imm8);
VRNDSCALEPH __m128h _mm_maskz_roundscale_ph (__mmask8 k, __m128h a, int imm8);
VRNDSCALEPH __m128h _mm_roundscale_ph (__m128h a, int imm8);
VRNDSCALEPH __m256h _mm256_mask_roundscale_ph (__m256h src, __mmask16 k, __m256h a, int imm8);
VRNDSCALEPH __m256h _mm256_maskz_roundscale_ph (__mmask16 k, __m256h a, int imm8);
VRNDSCALEPH __m256h _mm256_roundscale_ph (__m256h a, int imm8);
VRNDSCALEPH __m512h _mm512_mask_roundscale_ph (__m512h src, __mmask32 k, __m512h a, int imm8);
VRNDSCALEPH __m512h _mm512_maskz_roundscale_ph (__mmask32 k, __m512h a, int imm8);
VRNDSCALEPH __m512h _mm512_roundscale_ph (__m512h a, int imm8);
VRNDSCALEPH __m512h _mm512_mask_roundscale_round_ph (__m512h src, __mmask32 k, __m512h a, int imm8, const int sae);
VRNDSCALEPH __m512h _mm512_maskz_roundscale_round_ph (__mmask32 k, __m512h a, int imm8, const int sae);
VRNDSCALEPH __m512h _mm512_roundscale_round_ph (__m512h a, int imm8, const int sae);

SIMD Floating-Point Exceptions

Invalid, Underflow, Precision.

Other Exceptions

EVEX-encoded instruction, see Table 2-48, “Type E2 Class Exception Conditions.”
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VRNDSCALEPS—Round Packed Float32 Values to Include a Given Number of Fraction Bits

Instruction Operand Encoding

Description

Round the single precision floating-point values in the source operand by the rounding mode specified in the imme-
diate operand (see Figure 1-29) and places the result in the destination operand.
The destination operand (the first operand) is a ZMM register conditionally updated according to the writemask. 
The source operand (the second operand) can be a ZMM register, a 512-bit memory location, or a 512-bit vector 
broadcasted from a 32-bit memory location.
The rounding process rounds the input to an integral value, plus number bits of fraction that are specified by 
imm8[7:4] (to be included in the result) and returns the result as a single precision floating-point value.
It should be noticed that no overflow is induced while executing this instruction (although the source is scaled by 
the imm8[7:4] value).
The immediate operand also specifies control fields for the rounding operation, three bit fields are defined and 
shown in the “Immediate Control Description” figure below. Bit 3 of the immediate byte controls the processor 
behavior for a precision exception, bit 2 selects the source of rounding mode control. Bits 1:0 specify a non-sticky 
rounding-mode value (immediate control table below lists the encoded values for rounding-mode field).
The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is an 
SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero before 
rounding.
The sign of the result of this instruction is preserved, including the sign of zero.

The formula of the operation on each data element for VRNDSCALEPS is

ROUND(x) = 2-M*Round_to_INT(x*2M, round_ctrl), 

round_ctrl = imm[3:0];

M=imm[7:4];
The operation of x*2M is computed as if the exponent range is unlimited (i.e., no overflow ever occurs).

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F3A.W0 08 /r ib
VRNDSCALEPS xmm1 {k1}{z}, 
xmm2/m128/m32bcst, imm8

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Rounds packed single-precision floating-point values 
in xmm2/m128/m32bcst to a number of fraction bits 
specified by the imm8 field. Stores the result in xmm1 
register. Under writemask.

EVEX.256.66.0F3A.W0 08 /r ib
VRNDSCALEPS ymm1 {k1}{z}, 
ymm2/m256/m32bcst, imm8

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Rounds packed single-precision floating-point values 
in ymm2/m256/m32bcst to a number of fraction bits 
specified by the imm8 field. Stores the result in ymm1 
register. Under writemask.

EVEX.512.66.0F3A.W0 08 /r ib
VRNDSCALEPS zmm1 {k1}{z}, 
zmm2/m512/m32bcst{sae}, imm8

A V/V AVX512F 
OR AVX10.11

Rounds packed single-precision floating-point values 
in zmm2/m512/m32bcst to a number of fraction bits 
specified by the imm8 field. Stores the result in zmm1 
register using writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) imm8 N/A
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VRNDSCALEPS is a more general form of the VEX-encoded VROUNDPS instruction. In VROUNDPS, the formula of 
the operation on each element is

ROUND(x) = Round_to_INT(x, round_ctrl), 

round_ctrl = imm[3:0];
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Handling of special case of input values are listed in Table 1-27.

Operation

RoundToIntegerSP(SRC[31:0], imm8[7:0]) {
if (imm8[2] = 1)

rounding_direction := MXCSR:RC ; get round control from MXCSR
else

rounding_direction := imm8[1:0] ; get round control from imm8[1:0]
FI
M := imm8[7:4] ; get the scaling factor

case (rounding_direction)
00: TMP[31:0] := round_to_nearest_even_integer(2M*SRC[31:0])
01: TMP[31:0] := round_to_equal_or_smaller_integer(2M*SRC[31:0])
10: TMP[31:0] := round_to_equal_or_larger_integer(2M*SRC[31:0])
11: TMP[31:0] := round_to_nearest_smallest_magnitude_integer(2M*SRC[31:0])
ESAC;

Dest[31:0] := 2-M* TMP[31:0] ; scale down back to 2-M

if (imm8[3] = 0) Then ; check SPE
if (SRC[31:0] != Dest[31:0]) Then ; check precision lost

set_precision() ; set #PE
FI;

FI;
return(Dest[31:0])

}

VRNDSCALEPS (EVEX encoded versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF *src is a memory operand*

THEN TMP_SRC := BROADCAST32(SRC, VL, k1)
ELSE TMP_SRC := SRC

FI;

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := RoundToIntegerSP(TMP_SRC[i+31:i]), imm8[7:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI;

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VRNDSCALEPS __m512 _mm512_roundscale_ps( __m512 a, int imm);
VRNDSCALEPS __m512 _mm512_roundscale_round_ps( __m512 a, int imm, int sae);
VRNDSCALEPS __m512 _mm512_mask_roundscale_ps(__m512 s, __mmask16 k, __m512 a, int imm);
VRNDSCALEPS __m512 _mm512_mask_roundscale_round_ps(__m512 s, __mmask16 k, __m512 a, int imm, int sae);
VRNDSCALEPS __m512 _mm512_maskz_roundscale_ps( __mmask16 k, __m512 a, int imm);
VRNDSCALEPS __m512 _mm512_maskz_roundscale_round_ps( __mmask16 k, __m512 a, int imm, int sae);
VRNDSCALEPS __m256 _mm256_roundscale_ps( __m256 a, int imm);
VRNDSCALEPS __m256 _mm256_mask_roundscale_ps(__m256 s, __mmask8 k, __m256 a, int imm);
VRNDSCALEPS __m256 _mm256_maskz_roundscale_ps( __mmask8 k, __m256 a, int imm);
VRNDSCALEPS __m128 _mm_roundscale_ps( __m256 a, int imm);
VRNDSCALEPS __m128 _mm_mask_roundscale_ps(__m128 s, __mmask8 k, __m128 a, int imm);
VRNDSCALEPS __m128 _mm_maskz_roundscale_ps( __mmask8 k, __m128 a, int imm);

SIMD Floating-Point Exceptions

Invalid, Precision.

If SPE is enabled, precision exception is not reported (regardless of MXCSR exception mask).

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”
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VRNDSCALESD—Round Scalar Float64 Value to Include a Given Number of Fraction Bits

Instruction Operand Encoding

Description

Rounds a double precision floating-point value in the low quadword (see Figure 1-29) element of the second source 
operand (the third operand) by the rounding mode specified in the immediate operand and places the result in the 
corresponding element of the destination operand (the first operand) according to the writemask. The quadword 
element at bits 127:64 of the destination is copied from the first source operand (the second operand).
The destination and first source operands are XMM registers, the 2nd source operand can be an XMM register or 
memory location. Bits MAXVL-1:128 of the destination register are cleared.
The rounding process rounds the input to an integral value, plus number bits of fraction that are specified by 
imm8[7:4] (to be included in the result) and returns the result as a double precision floating-point value.
It should be noticed that no overflow is induced while executing this instruction (although the source is scaled by 
the imm8[7:4] value).
The immediate operand also specifies control fields for the rounding operation, three bit fields are defined and 
shown in the “Immediate Control Description” figure below. Bit 3 of the immediate byte controls the processor 
behavior for a precision exception, bit 2 selects the source of rounding mode control. Bits 1:0 specify a non-sticky 
rounding-mode value (immediate control table below lists the encoded values for rounding-mode field).
The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is an 
SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero before 
rounding.
The sign of the result of this instruction is preserved, including the sign of zero.

The formula of the operation for VRNDSCALESD is

ROUND(x) = 2-M*Round_to_INT(x*2M, round_ctrl), 

round_ctrl = imm[3:0];

M=imm[7:4];
The operation of x*2M is computed as if the exponent range is unlimited (i.e., no overflow ever occurs).
VRNDSCALESD is a more general form of the VEX-encoded VROUNDSD instruction. In VROUNDSD, the formula of 
the operation is

ROUND(x) = Round_to_INT(x, round_ctrl), 

round_ctrl = imm[3:0];

EVEX encoded version: The source operand is a XMM register or a 64-bit memory location. The destination operand 
is a XMM register.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.66.0F3A.W1 0B /r ib
VRNDSCALESD xmm1 {k1}{z}, xmm2, 
xmm3/m64{sae}, imm8

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Rounds scalar double precision floating-point value in 
xmm3/m64 to a number of fraction bits specified by 
the imm8 field. Stores the result in xmm1 register.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8
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Handling of special case of input values are listed in Table 1-27.

Operation

RoundToIntegerDP(SRC[63:0], imm8[7:0]) {
if (imm8[2] = 1)

rounding_direction := MXCSR:RC ; get round control from MXCSR
else

rounding_direction := imm8[1:0] ; get round control from imm8[1:0]
FI
M := imm8[7:4] ; get the scaling factor

case (rounding_direction)
00: TMP[63:0] := round_to_nearest_even_integer(2M*SRC[63:0])
01: TMP[63:0] := round_to_equal_or_smaller_integer(2M*SRC[63:0])
10: TMP[63:0] := round_to_equal_or_larger_integer(2M*SRC[63:0])
11: TMP[63:0] := round_to_nearest_smallest_magnitude_integer(2M*SRC[63:0])
ESAC

Dest[63:0] := 2-M* TMP[63:0] ; scale down back to 2-M

if (imm8[3] = 0) Then ; check SPE
if (SRC[63:0] != Dest[63:0]) Then ; check precision lost

set_precision() ; set #PE
FI;

FI;
return(Dest[63:0])

}

VRNDSCALESD (EVEX encoded version)
IF k1[0] or *no writemask*

THEN DEST[63:0] := RoundToIntegerDP(SRC2[63:0], Zero_upper_imm[7:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VRNDSCALESD __m128d _mm_roundscale_sd ( __m128d a, __m128d b, int imm);
VRNDSCALESD __m128d _mm_roundscale_round_sd ( __m128d a, __m128d b, int imm, int sae);
VRNDSCALESD __m128d _mm_mask_roundscale_sd (__m128d s, __mmask8 k, __m128d a, __m128d b, int imm);
VRNDSCALESD __m128d _mm_mask_roundscale_round_sd (__m128d s, __mmask8 k, __m128d a, __m128d b, int imm, int sae);
VRNDSCALESD __m128d _mm_maskz_roundscale_sd ( __mmask8 k, __m128d a, __m128d b, int imm);
VRNDSCALESD __m128d _mm_maskz_roundscale_round_sd ( __mmask8 k, __m128d a, __m128d b, int imm, int sae);

SIMD Floating-Point Exceptions

Invalid, Precision.

If SPE is enabled, precision exception is not reported (regardless of MXCSR exception mask).
VRNDSCALESD—Round Scalar Float64 Value to Include a Given Number of Fraction Bits Vol. 2C 5-720



Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”
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VRNDSCALESH—Round Scalar FP16 Value to Include a Given Number of Fraction Bits

Instruction Operand Encoding

Description

This instruction rounds the low FP16 value in the second source operand by the rounding mode specified in the 
immediate operand (see Table 1-28) and places the result in the destination operand.
Bits 127:16 of the destination operand are copied from the corresponding bits of the first source operand. Bits 
MAXVL-1:128 of the destination operand are zeroed. The low FP16 element of the destination is updated according 
to the writemask.
The rounding process rounds the input to an integral value, plus number bits of fraction that are specified by 
imm8[7:4] (to be included in the result), and returns the result as a FP16 value.
Note that no overflow is induced while executing this instruction (although the source is scaled by the imm8[7:4] 
value).
The immediate operand also specifies control fields for the rounding operation. Three bit fields are defined and 
shown in Table 1-28, “Imm8 Controls for VRNDSCALEPH/VRNDSCALESH.” Bit 3 of the immediate byte controls the 
processor behavior for a precision exception, bit 2 selects the source of rounding mode control, and bits 1:0 specify 
a non-sticky rounding-mode value.
The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is an 
SNaN then it will be converted to a QNaN.
The sign of the result of this instruction is preserved, including the sign of zero. Special cases are described in Table 
1-29.
If this instruction encoding’s SPE bit (bit 3) in the immediate operand is 1, VRNDSCALESH can set MXCSR.UE 
without MXCSR.PE.
The formula of the operation on each data element for VRNDSCALESH is:

ROUND(x) = 2−M *Round_to_INT(x * 2M, round_ctrl), 
round_ctrl = imm[3:0];
M=imm[7:4];

The operation of x * 2M is computed as if the exponent range is unlimited (i.e., no overflow ever occurs).

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.NP.0F3A.W0 0A /r /ib
VRNDSCALESH xmm1{k1}{z}, xmm2, 
xmm3/m16 {sae}, imm8

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Round the low FP16 value in xmm3/m16 to a 
number of fraction bits specified by the imm8 
field. Store the result in xmm1 subject to 
writemask k1. Bits 127:16 from xmm2 are 
copied to xmm1[127:16]. 

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8 (r)
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Operation

VRNDSCALESH dest{k1}, src1, src2, imm8
IF k1[0] or *no writemask*:

DEST.fp16[0] := round_fp16_to_integer(src2.fp16[0], imm8) // see VRNDSCALEPH
ELSE IF *zeroing*:

DEST.fp16[0] := 0
//else DEST.fp16[0] remains unchanged

DEST[127:16] = src1[127:16]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VRNDSCALESH __m128h _mm_mask_roundscale_round_sh (__m128h src, __mmask8 k, __m128h a, __m128h b, int imm8, const int 
sae);

VRNDSCALESH __m128h _mm_maskz_roundscale_round_sh (__mmask8 k, __m128h a, __m128h b, int imm8, const int sae);
VRNDSCALESH __m128h _mm_roundscale_round_sh (__m128h a, __m128h b, int imm8, const int sae);
VRNDSCALESH __m128h _mm_mask_roundscale_sh (__m128h src, __mmask8 k, __m128h a, __m128h b, int imm8);
VRNDSCALESH __m128h _mm_maskz_roundscale_sh (__mmask8 k, __m128h a, __m128h b, int imm8);
VRNDSCALESH __m128h _mm_roundscale_sh (__m128h a, __m128h b, int imm8);

SIMD Floating-Point Exceptions

Invalid, Underflow, Precision.

Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”
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VRNDSCALESS—Round Scalar Float32 Value to Include a Given Number of Fraction Bits

Instruction Operand Encoding

Description

Rounds the single precision floating-point value in the low doubleword element of the second source operand (the 
third operand) by the rounding mode specified in the immediate operand (see Figure 1-29) and places the result in 
the corresponding element of the destination operand (the first operand) according to the writemask. The double-
word elements at bits 127:32 of the destination are copied from the first source operand (the second operand).
The destination and first source operands are XMM registers, the 2nd source operand can be an XMM register or 
memory location. Bits MAXVL-1:128 of the destination register are cleared.
The rounding process rounds the input to an integral value, plus number bits of fraction that are specified by 
imm8[7:4] (to be included in the result) and returns the result as a single precision floating-point value.
It should be noticed that no overflow is induced while executing this instruction (although the source is scaled by 
the imm8[7:4] value).
The immediate operand also specifies control fields for the rounding operation, three bit fields are defined and 
shown in the “Immediate Control Description” figure below. Bit 3 of the immediate byte controls the processor 
behavior for a precision exception, bit 2 selects the source of rounding mode control. Bits 1:0 specify a non-sticky 
rounding-mode value (immediate control tables below lists the encoded values for rounding-mode field).
The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is an 
SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero before 
rounding.
The sign of the result of this instruction is preserved, including the sign of zero.

The formula of the operation for VRNDSCALESS is

ROUND(x) = 2-M*Round_to_INT(x*2M, round_ctrl), 

round_ctrl = imm[3:0];

M=imm[7:4];
The operation of x*2M is computed as if the exponent range is unlimited (i.e., no overflow ever occurs).
VRNDSCALESS is a more general form of the VEX-encoded VROUNDSS instruction. In VROUNDSS, the formula of 
the operation on each element is

ROUND(x) = Round_to_INT(x, round_ctrl), 

round_ctrl = imm[3:0];

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.66.0F3A.W0 0A /r ib
VRNDSCALESS xmm1 {k1}{z}, xmm2, 
xmm3/m32{sae}, imm8

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Rounds scalar single-precision floating-point value in 
xmm3/m32 to a number of fraction bits specified by 
the imm8 field. Stores the result in xmm1 register 
under writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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EVEX encoded version: The source operand is a XMM register or a 32-bit memory location. The destination operand 
is a XMM register.
Handling of special case of input values are listed in Table 1-27.

Operation

RoundToIntegerSP(SRC[31:0], imm8[7:0]) {
if (imm8[2] = 1)

rounding_direction := MXCSR:RC ; get round control from MXCSR
else

rounding_direction := imm8[1:0] ; get round control from imm8[1:0]
FI
M := imm8[7:4] ; get the scaling factor

case (rounding_direction)
00: TMP[31:0] := round_to_nearest_even_integer(2M*SRC[31:0])
01: TMP[31:0] := round_to_equal_or_smaller_integer(2M*SRC[31:0])
10: TMP[31:0] := round_to_equal_or_larger_integer(2M*SRC[31:0])
11: TMP[31:0] := round_to_nearest_smallest_magnitude_integer(2M*SRC[31:0])
ESAC;

Dest[31:0] := 2-M* TMP[31:0] ; scale down back to 2-M

if (imm8[3] = 0) Then ; check SPE
if (SRC[31:0] != Dest[31:0]) Then ; check precision lost

set_precision() ; set #PE
FI;

FI;
return(Dest[31:0])

}

VRNDSCALESS (EVEX encoded version)
IF k1[0] or *no writemask*

THEN DEST[31:0] := RoundToIntegerSP(SRC2[31:0], Zero_upper_imm[7:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VRNDSCALESS __m128 _mm_roundscale_ss ( __m128 a, __m128 b, int imm);
VRNDSCALESS __m128 _mm_roundscale_round_ss ( __m128 a, __m128 b, int imm, int sae);
VRNDSCALESS __m128 _mm_mask_roundscale_ss (__m128 s, __mmask8 k, __m128 a, __m128 b, int imm);
VRNDSCALESS __m128 _mm_mask_roundscale_round_ss (__m128 s, __mmask8 k, __m128 a, __m128 b, int imm, int sae);
VRNDSCALESS __m128 _mm_maskz_roundscale_ss ( __mmask8 k, __m128 a, __m128 b, int imm);
VRNDSCALESS __m128 _mm_maskz_roundscale_round_ss ( __mmask8 k, __m128 a, __m128 b, int imm, int sae);

SIMD Floating-Point Exceptions

Invalid, Precision.
If SPE is enabled, precision exception is not reported (regardless of MXCSR exception mask).
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Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”
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VRSQRT14PD—Compute Approximate Reciprocals of Square Roots of Packed Float64 Values

Instruction Operand Encoding

Description

This instruction performs a SIMD computation of the approximate reciprocals of the square roots of the eight 
packed double precision floating-point values in the source operand (the second operand) and stores the packed 
double precision floating-point results in the destination operand (the first operand) according to the writemask. 
The maximum relative error for this approximation is less than 2-14. 
EVEX.512 encoded version: The source operand can be a ZMM register, a 512-bit memory location, or a 512-bit 
vector broadcasted from a 64-bit memory location. The destination operand is a ZMM register, conditionally 
updated using writemask k1. 
EVEX.256 encoded version: The source operand is a YMM register, a 256-bit memory location, or a 256-bit vector 
broadcasted from a 64-bit memory location. The destination operand is a YMM register, conditionally updated using 
writemask k1. 
EVEX.128 encoded version: The source operand is a XMM register, a 128-bit memory location, or a 128-bit vector 
broadcasted from a 64-bit memory location. The destination operand is a XMM register, conditionally updated using 
writemask k1. 
The VRSQRT14PD instruction is not affected by the rounding control bits in the MXCSR register. When a source 
value is a 0.0, an ∞ with the sign of the source value is returned. When the source operand is an +∞ then +ZERO 
value is returned. A denormal source value is treated as zero only if DAZ bit is set in MXCSR. Otherwise it is treated 
correctly and performs the approximation with the specified masked response. When a source value is a negative 
value (other than 0.0) a floating-point QNaN_indefinite is returned. When a source value is an SNaN or QNaN, the 
SNaN is converted to a QNaN or the source QNaN is returned.
MXCSR exception flags are not affected by this instruction and floating-point exceptions are not reported.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
A numerically exact implementation of VRSQRT14xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W1 4E /r
VRSQRT14PD xmm1 {k1}{z}, 
xmm2/m128/m64bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Computes the approximate reciprocal square roots of 
the packed double precision floating-point values in 
xmm2/m128/m64bcst and stores the results in 
xmm1. Under writemask.

EVEX.256.66.0F38.W1 4E /r
VRSQRT14PD ymm1 {k1}{z}, 
ymm2/m256/m64bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Computes the approximate reciprocal square roots of 
the packed double precision floating-point values in 
ymm2/m256/m64bcst and stores the results in 
ymm1. Under writemask.

EVEX.512.66.0F38.W1 4E /r
VRSQRT14PD zmm1 {k1}{z}, 
zmm2/m512/m64bcst

A V/V AVX512F 
OR AVX10.11

Computes the approximate reciprocal square roots of 
the packed double precision floating-point values in 
zmm2/m512/m64bcst and stores the results in 
zmm1 under writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation

VRSQRT14PD (EVEX encoded versions) 
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+63:i] := APPROXIMATE(1.0/ SQRT(SRC[63:0]));
ELSE DEST[i+63:i] := APPROXIMATE(1.0/ SQRT(SRC[i+63:i]));

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI;

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT14PD __m512d _mm512_rsqrt14_pd( __m512d a);
VRSQRT14PD __m512d _mm512_mask_rsqrt14_pd(__m512d s, __mmask8 k, __m512d a);
VRSQRT14PD __m512d _mm512_maskz_rsqrt14_pd( __mmask8 k, __m512d a);
VRSQRT14PD __m256d _mm256_rsqrt14_pd( __m256d a);
VRSQRT14PD __m256d _mm512_mask_rsqrt14_pd(__m256d s, __mmask8 k, __m256d a);
VRSQRT14PD __m256d _mm512_maskz_rsqrt14_pd( __mmask8 k, __m256d a);
VRSQRT14PD __m128d _mm_rsqrt14_pd( __m128d a);
VRSQRT14PD __m128d _mm_mask_rsqrt14_pd(__m128d s, __mmask8 k, __m128d a);
VRSQRT14PD __m128d _mm_maskz_rsqrt14_pd( __mmask8 k, __m128d a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-51, “Type E4 Class Exception Conditions.”

Table 1-30.  VRSQRT14PD Special Cases

Input value Result value Comments

Any denormal Normal Cannot generate overflow

X = 2-2n 2n

X < 0 QNaN_Indefinite Including -INF

X = -0 -INF

X = +0 +INF

X = +INF +0
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VRSQRT14PS—Compute Approximate Reciprocals of Square Roots of Packed Float32 Values

Instruction Operand Encoding

Description

This instruction performs a SIMD computation of the approximate reciprocals of the square roots of 16 packed 
single precision floating-point values in the source operand (the second operand) and stores the packed single 
precision floating-point results in the destination operand (the first operand) according to the writemask. The 
maximum relative error for this approximation is less than 2-14. 
EVEX.512 encoded version: The source operand can be a ZMM register, a 512-bit memory location or a 512-bit 
vector broadcasted from a 32-bit memory location. The destination operand is a ZMM register, conditionally 
updated using writemask k1. 
EVEX.256 encoded version: The source operand is a YMM register, a 256-bit memory location, or a 256-bit vector 
broadcasted from a 32-bit memory location. The destination operand is a YMM register, conditionally updated using 
writemask k1. 
EVEX.128 encoded version: The source operand is a XMM register, a 128-bit memory location, or a 128-bit vector 
broadcasted from a 32-bit memory location. The destination operand is a XMM register, conditionally updated using 
writemask k1. 
The VRSQRT14PS instruction is not affected by the rounding control bits in the MXCSR register. When a source 
value is a 0.0, an ∞ with the sign of the source value is returned. When the source operand is an +∞ then +ZERO 
value is returned. A denormal source value is treated as zero only if DAZ bit is set in MXCSR. Otherwise it is treated 
correctly and performs the approximation with the specified masked response. When a source value is a negative 
value (other than 0.0) a floating-point QNaN_indefinite is returned. When a source value is an SNaN or QNaN, the 
SNaN is converted to a QNaN or the source QNaN is returned.
MXCSR exception flags are not affected by this instruction and floating-point exceptions are not reported.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
A numerically exact implementation of VRSQRT14xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 4E /r
VRSQRT14PS xmm1 {k1}{z}, 
xmm2/m128/m32bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Computes the approximate reciprocal square roots of 
the packed single-precision floating-point values in 
xmm2/m128/m32bcst and stores the results in xmm1. 
Under writemask.

EVEX.256.66.0F38.W0 4E /r
VRSQRT14PS ymm1 {k1}{z}, 
ymm2/m256/m32bcst

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Computes the approximate reciprocal square roots of 
the packed single-precision floating-point values in 
ymm2/m256/m32bcst and stores the results in ymm1. 
Under writemask.

EVEX.512.66.0F38.W0 4E /r
VRSQRT14PS zmm1 {k1}{z}, 
zmm2/m512/m32bcst

A V/V AVX512F 
OR AVX10.11

Computes the approximate reciprocal square roots of 
the packed single-precision floating-point values in 
zmm2/m512/m32bcst and stores the results in zmm1. 
Under writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Operation

VRSQRT14PS (EVEX encoded versions) 
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+31:i] := APPROXIMATE(1.0/ SQRT(SRC[31:0]));
ELSE DEST[i+31:i] := APPROXIMATE(1.0/ SQRT(SRC[i+31:i]));

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI;

FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT14PS __m512 _mm512_rsqrt14_ps( __m512 a);
VRSQRT14PS __m512 _mm512_mask_rsqrt14_ps(__m512 s, __mmask16 k, __m512 a);
VRSQRT14PS __m512 _mm512_maskz_rsqrt14_ps( __mmask16 k, __m512 a);
VRSQRT14PS __m256 _mm256_rsqrt14_ps( __m256 a);
VRSQRT14PS __m256 _mm256_mask_rsqrt14_ps(__m256 s, __mmask8 k, __m256 a);
VRSQRT14PS __m256 _mm256_maskz_rsqrt14_ps( __mmask8 k, __m256 a);
VRSQRT14PS __m128 _mm_rsqrt14_ps( __m128 a);
VRSQRT14PS __m128 _mm_mask_rsqrt14_ps(__m128 s, __mmask8 k, __m128 a);
VRSQRT14PS __m128 _mm_maskz_rsqrt14_ps( __mmask8 k, __m128 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions.”

Table 1-31.  VRSQRT14PS Special Cases

Input value Result value Comments

Any denormal Normal Cannot generate overflow

X = 2-2n 2n

X < 0 QNaN_Indefinite Including -INF

X = -0 -INF

X = +0 +INF

X = +INF +0
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VRSQRT14SD—Compute Approximate Reciprocal of Square Root of Scalar Float64 Value

Instruction Operand Encoding

Description

Computes the approximate reciprocal of the square roots of the scalar double precision floating-point value in the 
low quadword element of the source operand (the second operand) and stores the result in the low quadword 
element of the destination operand (the first operand) according to the writemask. The maximum relative error for 
this approximation is less than 2-14. The source operand can be an XMM register or a 32-bit memory location. The 
destination operand is an XMM register. 
Bits (127:64) of the XMM register destination are copied from corresponding bits in the first source operand. Bits 
(MAXVL-1:128) of the destination register are zeroed.
The VRSQRT14SD instruction is not affected by the rounding control bits in the MXCSR register. When a source 
value is a 0.0, an ∞ with the sign of the source value is returned. When the source operand is an +∞ then +ZERO 
value is returned. A denormal source value is treated as zero only if DAZ bit is set in MXCSR. Otherwise it is treated 
correctly and performs the approximation with the specified masked response. When a source value is a negative 
value (other than 0.0) a floating-point QNaN_indefinite is returned. When a source value is an SNaN or QNaN, the 
SNaN is converted to a QNaN or the source QNaN is returned.
MXCSR exception flags are not affected by this instruction and floating-point exceptions are not reported.
A numerically exact implementation of VRSQRT14xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT14SD (EVEX version)
IF k1[0] or *no writemask*

THEN DEST[63:0] := APPROXIMATE(1.0/ SQRT(SRC2[63:0]))
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[63:0] := 0
FI;

FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.66.0F38.W1 4F /r
VRSQRT14SD xmm1 {k1}{z}, 
xmm2, xmm3/m64

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Computes the approximate reciprocal square root of the 
scalar double precision floating-point value in 
xmm3/m64 and stores the result in the low quadword 
element of xmm1 using writemask k1. Bits[127:64] of 
xmm2 is copied to xmm1[127:64]. 

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT14SD __m128d _mm_rsqrt14_sd( __m128d a, __m128d b);
VRSQRT14SD __m128d _mm_mask_rsqrt14_sd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VRSQRT14SD __m128d _mm_maskz_rsqrt14_sd( __mmask8d m, __m128d a, __m128d b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-53, “Type E5 Class Exception Conditions.”

Table 1-32.  VRSQRT14SD Special Cases

Input value Result value Comments

Any denormal Normal Cannot generate overflow

X = 2-2n 2n

X < 0 QNaN_Indefinite Including -INF

X = -0 -INF

X = +0 +INF

X = +INF +0
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VRSQRT14SS—Compute Approximate Reciprocal of Square Root of Scalar Float32 Value

Instruction Operand Encoding

Description

Computes of the approximate reciprocal of the square root of the scalar single precision floating-point value in the 
low doubleword element of the source operand (the second operand) and stores the result in the low doubleword 
element of the destination operand (the first operand) according to the writemask. The maximum relative error for 
this approximation is less than 2-14. The source operand can be an XMM register or a 32-bit memory location. The 
destination operand is an XMM register. 
Bits (127:32) of the XMM register destination are copied from corresponding bits in the first source operand. Bits 
(MAXVL-1:128) of the destination register are zeroed.
The VRSQRT14SS instruction is not affected by the rounding control bits in the MXCSR register. When a source 
value is a 0.0, an ∞ with the sign of the source value is returned. When the source operand is an ∞, zero with the 
sign of the source value is returned. A denormal source value is treated as zero only if DAZ bit is set in MXCSR. 
Otherwise it is treated correctly and performs the approximation with the specified masked response. When a 
source value is a negative value (other than 0.0) a floating-point indefinite is returned. When a source value is an 
SNaN or QNaN, the SNaN is converted to a QNaN or the source QNaN is returned.
MXCSR exception flags are not affected by this instruction and floating-point exceptions are not reported.
A numerically exact implementation of VRSQRT14xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT14SS (EVEX version)
IF k1[0] or *no writemask*

THEN DEST[31:0] := APPROXIMATE(1.0/ SQRT(SRC2[31:0]))
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

THEN DEST[31:0] := 0
FI;

FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.66.0F38.W0 4F /r
VRSQRT14SS xmm1 {k1}{z}, 
xmm2, xmm3/m32

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Computes the approximate reciprocal square root of the 
scalar single-precision floating-point value in xmm3/m32 
and stores the result in the low doubleword element of 
xmm1 using writemask k1. Bits[127:32] of xmm2 is 
copied to xmm1[127:32]. 

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
VRSQRT14SS—Compute Approximate Reciprocal of Square Root of Scalar Float32 Value Vol. 2C 5-733

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2


Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT14SS __m128 _mm_rsqrt14_ss( __m128 a, __m128 b);
VRSQRT14SS __m128 _mm_mask_rsqrt14_ss(__m128 s, __mmask8 k, __m128 a, __m128 b);
VRSQRT14SS __m128 _mm_maskz_rsqrt14_ss( __mmask8 k, __m128 a, __m128 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-53, “Type E5 Class Exception Conditions.”

Table 1-33.  VRSQRT14SS Special Cases

Input value Result value Comments

Any denormal Normal Cannot generate overflow

X = 2-2n 2n

X < 0 QNaN_Indefinite Including -INF

X = -0 -INF

X = +0 +INF

X = +INF +0
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VRSQRTPH—Compute Reciprocals of Square Roots of Packed FP16 Values

Instruction Operand Encoding

Description

This instruction performs a SIMD computation of the approximate reciprocals square-root of 8/16/32 packed FP16 
floating-point values in the source operand (the second operand) and stores the packed FP16 floating-point results 
in the destination operand.
The maximum relative error for this approximation is less than 2−11 + 2−14. For special cases, see Table 1-34.
The destination elements are updated according to the writemask.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.MAP6.W0 4E /r
VRSQRTPH xmm1{k1}{z}, 
xmm2/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compute the approximate reciprocals of the 
square roots of packed FP16 values in 
xmm2/m128/m16bcst and store the result in 
xmm1 subject to writemask k1.

EVEX.256.66.MAP6.W0 4E /r
VRSQRTPH ymm1{k1}{z}, 
ymm2/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Compute the approximate reciprocals of the 
square roots of packed FP16 values in 
ymm2/m256/m16bcst and store the result in 
ymm1 subject to writemask k1.

EVEX.512.66.MAP6.W0 4E /r
VRSQRTPH zmm1{k1}{z}, 
zmm2/m512/m16bcst

A V/V AVX512-FP16 
OR AVX10.11

Compute the approximate reciprocals of the 
square roots of packed FP16 values in 
zmm2/m512/m16bcst and store the result in 
zmm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A

Table 1-34.  VRSQRTPH/VRSQRTSH Special Cases

Input value Reset Value Comments

Any denormal Normal Cannot generate overflow

X = 2−2n 2n

X < 0 QNaN_Indefinite Including −∞
X = −0 −∞
X = +0 +∞
X = +∞ +0
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Operation

VRSQRTPH dest{k1}, src 
VL = 128, 256 or 512
KL := VL/16

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

IF SRC is memory and (EVEX.b = 1):
tsrc := src.fp16[0]

ELSE:
tsrc := src.fp16[i]

DEST.fp16[i] := APPROXIMATE(1.0 / SQRT(tsrc) )
ELSE IF *zeroing*:

DEST.fp16[i] := 0
//else DEST.fp16[i] remains unchanged

DEST[MAXVL-1:VL] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRTPH __m128h _mm_mask_rsqrt_ph (__m128h src, __mmask8 k, __m128h a);
VRSQRTPH __m128h _mm_maskz_rsqrt_ph (__mmask8 k, __m128h a);
VRSQRTPH __m128h _mm_rsqrt_ph (__m128h a);
VRSQRTPH __m256h _mm256_mask_rsqrt_ph (__m256h src, __mmask16 k, __m256h a);
VRSQRTPH __m256h _mm256_maskz_rsqrt_ph (__mmask16 k, __m256h a);
VRSQRTPH __m256h _mm256_rsqrt_ph (__m256h a);
VRSQRTPH __m512h _mm512_mask_rsqrt_ph (__m512h src, __mmask32 k, __m512h a);
VRSQRTPH __m512h _mm512_maskz_rsqrt_ph (__mmask32 k, __m512h a);
VRSQRTPH __m512h _mm512_rsqrt_ph (__m512h a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Table 2-51, “Type E4 Class Exception Conditions.”
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VRSQRTSH—Compute Approximate Reciprocal of Square Root of Scalar FP16 Value

Instruction Operand Encoding

Description

This instruction performs the computation of the approximate reciprocal square-root of the low FP16 value in the 
second source operand (the third operand) and stores the result in the low word element of the destination operand 
(the first operand) according to the writemask k1.
The maximum relative error for this approximation is less than 2−11 + 2−14.
Bits 127:16 of the destination operand are copied from the corresponding bits of the first source operand. Bits 
MAXVL−1:128 of the destination operand are zeroed.
For special cases, see Table 1-34.

Operation

VRSQRTSH dest{k1}, src1, src2
VL = 128, 256 or 512
KL := VL/16

IF k1[0] or *no writemask*:
DEST.fp16[0] := APPROXIMATE(1.0 / SQRT(src2.fp16[0]))

ELSE IF *zeroing*:
DEST.fp16[0] := 0

//else DEST.fp16[0] remains unchanged
DEST[127:16] := src1[127:16]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRTSH __m128h _mm_mask_rsqrt_sh (__m128h src, __mmask8 k, __m128h a, __m128h b);
VRSQRTSH __m128h _mm_maskz_rsqrt_sh (__mmask8 k, __m128h a, __m128h b);
VRSQRTSH __m128h _mm_rsqrt_sh (__m128h a, __m128h b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Table 2-60, “Type E10 Class Exception Conditions.”

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.66.MAP6.W0 4F /r
VRSQRTSH xmm1{k1}{z}, xmm2, 
xmm3/m16

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compute the approximate reciprocal square root 
of the FP16 value in xmm3/m16 and store the 
result in the low word element of xmm1 subject 
to writemask k1. Bits 127:16 of xmm2 are 
copied to xmm1[127:16].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A



VSCALEFPD—Scale Packed Float64 Values With Float64 Values

Instruction Operand Encoding

Description

Performs a floating-point scale of the packed double precision floating-point values in the first source operand by 
multiplying them by 2 to the power of the double precision floating-point values in second source operand.
The equation of this operation is given by:

zmm1 := zmm2*2floor(zmm3).
Floor(zmm3) means maximum integer value ≤ zmm3.
If the result cannot be represented in double precision, then the proper overflow response (for positive scaling 
operand), or the proper underflow response (for negative scaling operand) is issued. The overflow and underflow 
responses are dependent on the rounding mode (for IEEE-compliant rounding), as well as on other settings in 
MXCSR (exception mask bits, FTZ bit), and on the SAE bit.
The first source operand is a ZMM/YMM/XMM register. The second source operand is a ZMM/YMM/XMM register, a 
512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The 
destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.
Handling of special-case input values are listed in Table 1-35 and Table 1-36.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W1 2C /r 
VSCALEFPD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Scale the packed double precision floating-point 
values in xmm2 using values from 
xmm3/m128/m64bcst. Under writemask k1.

EVEX.256.66.0F38.W1 2C /r 
VSCALEFPD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Scale the packed double precision floating-point 
values in ymm2 using values from 
ymm3/m256/m64bcst. Under writemask k1.

EVEX.512.66.0F38.W1 2C /r 
VSCALEFPD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst{er}

A V/V AVX512F 
OR AVX10.11

Scale the packed double precision floating-point 
values in zmm2 using values from 
zmm3/m512/m64bcst. Under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Table 1-35.  VSCALEFPD/SD/PS/SS Special Cases

Operation

SCALE(SRC1, SRC2)
{
TMP_SRC2 := SRC2
TMP_SRC1 := SRC1
IF (SRC2 is denormal AND MXCSR.DAZ) THEN TMP_SRC2=0
IF (SRC1 is denormal AND MXCSR.DAZ) THEN TMP_SRC1=0
/* SRC2 is a 64 bits floating-point value */
DEST[63:0] := TMP_SRC1[63:0] * POW(2, Floor(TMP_SRC2[63:0]))
}
VSCALEFPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1) AND (SRC2 *is register*)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] := SCALE(SRC1[i+63:i], SRC2[63:0]);
ELSE DEST[i+63:i] := SCALE(SRC1[i+63:i], SRC2[i+63:i]);

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Src2 Set IE

±NaN +Inf -Inf 0/Denorm/Norm

Src1 ±QNaN QNaN(Src1) +INF +0 QNaN(Src1) IF either source is SNAN

±SNaN QNaN(Src1) QNaN(Src1) QNaN(Src1) QNaN(Src1) YES

±Inf QNaN(Src2) Src1 QNaN_Indefinite Src1 IF Src2 is SNAN or -INF

±0 QNaN(Src2) QNaN_Indefinite Src1 Src1 IF Src2 is SNAN or +INF

Denorm/Norm QNaN(Src2) ±INF (Src1 sign) ±0 (Src1 sign) Compute Result IF Src2 is SNAN

Table 1-36.  Additional VSCALEFPD/SD Special Cases

Special Case  Returned value Faults

|result| < 2-1074 ±0 or ±Min-Denormal (Src1 sign) Underflow

|result| ≥ 21024 ±INF (Src1 sign) or ±Max-normal (Src1 sign) Overflow
VSCALEFPD—Scale Packed Float64 Values With Float64 Values Vol. 2C 5-739



Intel C/C++ Compiler Intrinsic Equivalent

VSCALEFPD __m512d _mm512_scalef_round_pd(__m512d a, __m512d b, int rounding);
VSCALEFPD __m512d _mm512_mask_scalef_round_pd(__m512d s, __mmask8 k, __m512d a, __m512d b, int rounding);
VSCALEFPD __m512d _mm512_maskz_scalef_round_pd(__mmask8 k, __m512d a, __m512d b, int rounding);
VSCALEFPD __m512d _mm512_scalef_pd(__m512d a, __m512d b);
VSCALEFPD __m512d _mm512_mask_scalef_pd(__m512d s, __mmask8 k, __m512d a, __m512d b);
VSCALEFPD __m512d _mm512_maskz_scalef_pd(__mmask8 k, __m512d a, __m512d b);
VSCALEFPD __m256d _mm256_scalef_pd(__m256d a, __m256d b);
VSCALEFPD __m256d _mm256_mask_scalef_pd(__m256d s, __mmask8 k, __m256d a, __m256d b);
VSCALEFPD __m256d _mm256_maskz_scalef_pd(__mmask8 k, __m256d a, __m256d b);
VSCALEFPD __m128d _mm_scalef_pd(__m128d a, __m128d b);
VSCALEFPD __m128d _mm_mask_scalef_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VSCALEFPD __m128d _mm_maskz_scalef_pd(__mmask8 k, __m128d a, __m128d b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal (for Src1).
Denormal is not reported for Src2.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”
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VSCALEFPH—Scale Packed FP16 Values with FP16 Values

Instruction Operand Encoding

Description

This instruction performs a floating-point scale of the packed FP16 values in the first source operand by multiplying 
it by 2 to the power of the FP16 values in second source operand. The destination elements are updated according 
to the writemask.
The equation of this operation is given by:

zmm1 := zmm2 * 2floor(zmm3).
Floor(zmm3) means maximum integer value ≤ zmm3.
If the result cannot be represented in FP16, then the proper overflow response (for positive scaling operand), or 
the proper underflow response (for negative scaling operand), is issued. The overflow and underflow responses are 
dependent on the rounding mode (for IEEE-compliant rounding), as well as on other settings in MXCSR (exception 
mask bits), and on the SAE bit.
Handling of special-case input values are listed in Table 1-37 and Table 1-38.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.MAP6.W0 2C /r
VSCALEFPH xmm1{k1}{z}, xmm2, 
xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Scale the packed FP16 values in xmm2 using 
values from xmm3/m128/m16bcst, and store 
the result in xmm1 subject to writemask k1.

EVEX.256.66.MAP6.W0 2C /r
VSCALEFPH ymm1{k1}{z}, ymm2, 
ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Scale the packed FP16 values in ymm2 using 
values from ymm3/m256/m16bcst, and store the 
result in ymm1 subject to writemask k1.

EVEX.512.66.MAP6.W0 2C /r
VSCALEFPH zmm1{k1}{z}, zmm2, 
zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Scale the packed FP16 values in zmm2 using 
values from zmm3/m512/m16bcst, and store the 
result in zmm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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Table 1-37.  VSCALEFPH/VSCALEFSH Special Cases

Operation

def scale_fp16(src1,src2):
tmp1 := src1
tmp2 := src2
return tmp1 * POW(2, FLOOR(tmp2)) 

VSCALEFPH dest{k1}, src1, src2
VL = 128, 256, or 512
KL := VL / 16

IF (VL = 512) AND (EVEX.b = 1) and no memory operand:
SET_RM(EVEX.RC)

ELSE
SET_RM(MXCSR.RC)

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

IF SRC2 is memory and (EVEX.b = 1):
tsrc := src2.fp16[0]

ELSE:
tsrc := src2.fp16[i]

dest.fp16[i] := scale_fp16(src1.fp16[i],tsrc)
ELSE IF *zeroing*:

dest.fp16[i] := 0
//else dest.fp16[i] remains unchanged

DEST[MAXVL-1:VL] := 0

Src1
Src2

Set IE
±NaN +INF −INF 0/Denorm/Norm

±QNaN QNaN(Src1) +INF +0 QNaN(Src1) IF either source is SNaN

±SNaN QNaN(Src1) QNaN(Src1) QNaN(Src1) QNaN(Src1) YES

±INF QNaN(Src2) Src1 QNaN_Indefinite Src1 IF Src2 is SNaN or −INF

±0 QNaN(Src2) QNaN_Indefinite Src1 Src1 IF Src2 is SNaN or +INF

Denorm/Norm QNaN(Src2) ±INF (Src1 sign) ±0 (Src1 sign) Compute Result IF Src2 is SNaN

Table 1-38.  Additional VSCALEFPH/VSCALEFSH Special Cases

Special Case  Returned Value Faults

|result| < 2-24 ±0 or ±Min-Denormal (Src1 sign) Underflow

|result| ≥ 216 ±INF (Src1 sign) or ±Max-Denormal (Src1 sign) Overflow
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Intel C/C++ Compiler Intrinsic Equivalent

VSCALEFPH __m128h _mm_mask_scalef_ph (__m128h src, __mmask8 k, __m128h a, __m128h b);
VSCALEFPH __m128h _mm_maskz_scalef_ph (__mmask8 k, __m128h a, __m128h b);
VSCALEFPH __m128h _mm_scalef_ph (__m128h a, __m128h b);
VSCALEFPH __m256h _mm256_mask_scalef_ph (__m256h src, __mmask16 k, __m256h a, __m256h b);
VSCALEFPH __m256h _mm256_maskz_scalef_ph (__mmask16 k, __m256h a, __m256h b);
VSCALEFPH __m256h _mm256_scalef_ph (__m256h a, __m256h b);
VSCALEFPH __m512h _mm512_mask_scalef_ph (__m512h src, __mmask32 k, __m512h a, __m512h b);
VSCALEFPH __m512h _mm512_maskz_scalef_ph (__mmask32 k, __m512h a, __m512h b);
VSCALEFPH __m512h _mm512_scalef_ph (__m512h a, __m512h b);
VSCALEFPH __m512h _mm512_mask_scalef_round_ph (__m512h src, __mmask32 k, __m512h a, __m512h b, const int rounding);
VSCALEFPH __m512h _mm512_maskz_scalef_round_ph (__mmask32 k, __m512h a, __m512h b, const int;
VSCALEFPH __m512h _mm512_scalef_round_ph (__m512h a, __m512h b, const int rounding);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal.

Other Exceptions

EVEX-encoded instruction, see Table 2-48, “Type E2 Class Exception Conditions”.

Denormal-operand exception (#D) is checked and signaled for src1 operand, but not for src2 operand. The 
denormal-operand exception is checked for src1 operand only if the src2 operand is not NaN. If the src2 operand is 
NaN, the processor generates NaN and does not signal denormal-operand exception, even if src1 operand is 
denormal.
VSCALEFPH—Scale Packed FP16 Values with FP16 Values Vol. 2C 5-743



VSCALEFPS—Scale Packed Float32 Values With Float32 Values

Instruction Operand Encoding

Description

Performs a floating-point scale of the packed single precision floating-point values in the first source operand by 
multiplying them by 2 to the power of the float32 values in second source operand.
The equation of this operation is given by:

zmm1 := zmm2*2floor(zmm3).
Floor(zmm3) means maximum integer value ≤ zmm3.

If the result cannot be represented in single precision, then the proper overflow response (for positive scaling 
operand), or the proper underflow response (for negative scaling operand) is issued. The overflow and underflow 
responses are dependent on the rounding mode (for IEEE-compliant rounding), as well as on other settings in 
MXCSR (exception mask bits, FTZ bit), and on the SAE bit.
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM 
register, a 512-bit memory location or a 512-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a ZMM register conditionally updated with writemask k1.
EVEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM 
register, a 256-bit memory location, or a 256-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a YMM register, conditionally updated using writemask k1. 
EVEX.128 encoded version: The first source operand is an XMM register. The second source operand is a XMM 
register, a 128-bit memory location, or a 128-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a XMM register, conditionally updated using writemask k1. 
Handling of special-case input values are listed in Table 1-35 and Table 1-39.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 2C /r 
VSCALEFPS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Scale the packed single-precision floating-point 
values in xmm2 using values from 
xmm3/m128/m32bcst. Under writemask k1.

EVEX.256.66.0F38.W0 2C /r 
VSCALEFPS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

A V/V (AVX512VL 
AND AVX512F) 
OR AVX10.11

Scale the packed single-precision values in ymm2 
using floating-point values from 
ymm3/m256/m32bcst. Under writemask k1.

EVEX.512.66.0F38.W0 2C /r 
VSCALEFPS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst{er}

A V/V AVX512F 
OR AVX10.11

Scale the packed single-precision floating-point 
values in zmm2 using floating-point values from 
zmm3/m512/m32bcst. Under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Table 1-39.  Additional VSCALEFPS/SS Special Cases

Special Case  Returned value Faults

|result| < 2-149 ±0 or ±Min-Denormal (Src1 sign) Underflow

|result| ≥ 2128 ±INF (Src1 sign) or ±Max-normal (Src1 sign) Overflow
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Operation

SCALE(SRC1, SRC2)
{ ; Check for denormal operands
TMP_SRC2 := SRC2
TMP_SRC1 := SRC1
IF (SRC2 is denormal AND MXCSR.DAZ) THEN TMP_SRC2=0
IF (SRC1 is denormal AND MXCSR.DAZ) THEN TMP_SRC1=0
/* SRC2 is a 32 bits floating-point value */
DEST[31:0] := TMP_SRC1[31:0] * POW(2, Floor(TMP_SRC2[31:0]))
}

VSCALEFPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1) AND (SRC2 *is register*)

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] := SCALE(SRC1[i+31:i], SRC2[31:0]);
ELSE DEST[i+31:i] := SCALE(SRC1[i+31:i], SRC2[i+31:i]);

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0;

Intel C/C++ Compiler Intrinsic Equivalent

VSCALEFPS __m512 _mm512_scalef_round_ps(__m512 a, __m512 b, int rounding);
VSCALEFPS __m512 _mm512_mask_scalef_round_ps(__m512 s, __mmask16 k, __m512 a, __m512 b, int rounding);
VSCALEFPS __m512 _mm512_maskz_scalef_round_ps(__mmask16 k, __m512 a, __m512 b, int rounding);
VSCALEFPS __m512 _mm512_scalef_ps(__m512 a, __m512 b);
VSCALEFPS __m512 _mm512_mask_scalef_ps(__m512 s, __mmask16 k, __m512 a, __m512 b);
VSCALEFPS __m512 _mm512_maskz_scalef_ps(__mmask16 k, __m512 a, __m512 b);
VSCALEFPS __m256 _mm256_scalef_ps(__m256 a, __m256 b);
VSCALEFPS __m256 _mm256_mask_scalef_ps(__m256 s, __mmask8 k, __m256 a, __m256 b);
VSCALEFPS __m256 _mm256_maskz_scalef_ps(__mmask8 k, __m256 a, __m256 b);
VSCALEFPS __m128 _mm_scalef_ps(__m128 a, __m128 b);
VSCALEFPS __m128 _mm_mask_scalef_ps(__m128 s, __mmask8 k, __m128 a, __m128 b);
VSCALEFPS __m128 _mm_maskz_scalef_ps(__mmask8 k, __m128 a, __m128 b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal (for Src1).
Denormal is not reported for Src2.
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Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”
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VSCALEFSD—Scale Scalar Float64 Values With Float64 Values

Instruction Operand Encoding

Description

Performs a floating-point scale of the scalar double precision floating-point value in the first source operand by 
multiplying it by 2 to the power of the double precision floating-point value in second source operand.
The equation of this operation is given by:

xmm1 := xmm2*2floor(xmm3).
Floor(xmm3) means maximum integer value ≤ xmm3.
If the result cannot be represented in double precision, then the proper overflow response (for positive scaling 
operand), or the proper underflow response (for negative scaling operand) is issued. The overflow and underflow 
responses are dependent on the rounding mode (for IEEE-compliant rounding), as well as on other settings in 
MXCSR (exception mask bits, FTZ bit), and on the SAE bit.
EVEX encoded version: The first source operand is an XMM register. The second source operand is an XMM register 
or a memory location. The destination operand is an XMM register conditionally updated with writemask k1.
Handling of special-case input values are listed in Table 1-35 and Table 1-36.

Operation

SCALE(SRC1, SRC2)
{

; Check for denormal operands
TMP_SRC2 := SRC2
TMP_SRC1 := SRC1
IF (SRC2 is denormal AND MXCSR.DAZ) THEN TMP_SRC2=0
IF (SRC1 is denormal AND MXCSR.DAZ) THEN TMP_SRC1=0
/* SRC2 is a 64 bits floating-point value */
DEST[63:0] := TMP_SRC1[63:0] * POW(2, Floor(TMP_SRC2[63:0]))
}

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.66.0F38.W1 2D /r 
VSCALEFSD xmm1 {k1}{z}, xmm2, 
xmm3/m64{er}

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Scale the scalar double precision floating-point values 
in xmm2 using the value from xmm3/m64. Under 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VSCALEFSD (EVEX encoded version)
IF (EVEX.b= 1) and SRC2 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] OR *no writemask*

THEN DEST[63:0] := SCALE(SRC1[63:0], SRC2[63:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking

DEST[63:0] := 0
FI

FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VSCALEFSD __m128d _mm_scalef_round_sd(__m128d a, __m128d b, int);
VSCALEFSD __m128d _mm_mask_scalef_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VSCALEFSD __m128d _mm_maskz_scalef_round_sd(__mmask8 k, __m128d a, __m128d b, int);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal (for Src1).
Denormal is not reported for Src2.

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”
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VSCALEFSH—Scale Scalar FP16 Values with FP16 Values

Instruction Operand Encoding

Description

This instruction performs a floating-point scale of the low FP16 element in the first source operand by multiplying it 
by 2 to the power of the low FP16 element in second source operand, storing the result in the low element of the 
destination operand.
Bits 127:16 of the destination operand are copied from the corresponding bits of the first source operand. Bits 
MAXVL-1:128 of the destination operand are zeroed. The low FP16 element of the destination is updated according 
to the writemask.
The equation of this operation is given by:

xmm1 := xmm2 * 2floor(xmm3).
Floor(xmm3) means maximum integer value ≤ xmm3.
If the result cannot be represented in FP16, then the proper overflow response (for positive scaling operand), or 
the proper underflow response (for negative scaling operand), is issued. The overflow and underflow responses are 
dependent on the rounding mode (for IEEE-compliant rounding), as well as on other settings in MXCSR (exception 
mask bits, FTZ bit), and on the SAE bit.
Handling of special-case input values are listed in Table 1-37 and Table 1-38.

Operation

VSCALEFSH dest{k1}, src1, src2
IF (EVEX.b = 1) and no memory operand:

SET_RM(EVEX.RC)
ELSE

SET_RM(MXCSR.RC)

IF k1[0] or *no writemask*:
dest.fp16[0] := scale_fp16(src1.fp16[0], src2.fp16[0]) // see VSCALEFPH

ELSE IF *zeroing*:
dest.fp16[0] := 0

//else DEST.fp16[0] remains unchanged

DEST[127:16] := src1[127:16]
DEST[MAXVL-1:128] := 0 

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.66.MAP6.W0 2D /r
VSCALEFSH xmm1{k1}{z}, xmm2, 
xmm3/m16 {er}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Scale the FP16 values in xmm2 using the value 
from xmm3/m16 and store the result in xmm1 
subject to writemask k1. Bits 127:16 from xmm2 
are copied to xmm1[127:16]. 

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VSCALEFSH __m128h _mm_mask_scalef_round_sh (__m128h src, __mmask8 k, __m128h a, __m128h b, const int rounding);
VSCALEFSH __m128h _mm_maskz_scalef_round_sh (__mmask8 k, __m128h a, __m128h b, const int rounding);
VSCALEFSH __m128h _mm_scalef_round_sh (__m128h a, __m128h b, const int rounding);
VSCALEFSH __m128h _mm_mask_scalef_sh (__m128h src, __mmask8 k, __m128h a, __m128h b);
VSCALEFSH __m128h _mm_maskz_scalef_sh (__mmask8 k, __m128h a, __m128h b);
VSCALEFSH __m128h _mm_scalef_sh (__m128h a, __m128h b);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”

Denormal-operand exception (#D) is checked and signaled for src1 operand, but not for src2 operand. The 
denormal-operand exception is checked for src1 operand only if the src2 operand is not NaN. If the src2 operand is 
NaN, the processor generates NaN and does not signal denormal-operand exception, even if src1 operand is 
denormal.
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VSCALEFSS—Scale Scalar Float32 Value With Float32 Value

Instruction Operand Encoding

Description

Performs a floating-point scale of the scalar single precision floating-point value in the first source operand by 
multiplying it by 2 to the power of the float32 value in second source operand.
The equation of this operation is given by:

xmm1 := xmm2*2floor(xmm3).
Floor(xmm3) means maximum integer value ≤ xmm3.

If the result cannot be represented in single precision, then the proper overflow response (for positive scaling 
operand), or the proper underflow response (for negative scaling operand) is issued. The overflow and underflow 
responses are dependent on the rounding mode (for IEEE-compliant rounding), as well as on other settings in 
MXCSR (exception mask bits, FTZ bit), and on the SAE bit.
EVEX encoded version: The first source operand is an XMM register. The second source operand is an XMM register 
or a memory location. The destination operand is an XMM register conditionally updated with writemask k1.
Handling of special-case input values are listed in Table 1-35 and Table 1-39.

Operation

SCALE(SRC1, SRC2)
{

; Check for denormal operands
TMP_SRC2 := SRC2
TMP_SRC1 := SRC1
IF (SRC2 is denormal AND MXCSR.DAZ) THEN TMP_SRC2=0
IF (SRC1 is denormal AND MXCSR.DAZ) THEN TMP_SRC1=0
/* SRC2 is a 32 bits floating-point value */
DEST[31:0] := TMP_SRC1[31:0] * POW(2, Floor(TMP_SRC2[31:0]))
}

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature Flag

Description

EVEX.LLIG.66.0F38.W0 2D /r 
VSCALEFSS xmm1 {k1}{z}, xmm2, 
xmm3/m32{er}

A V/V AVX512F
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Scale the scalar single-precision floating-point value in 
xmm2 using floating-point value from xmm3/m32. Under 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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VSCALEFSS (EVEX encoded version)
IF (EVEX.b= 1) and SRC2 *is a register*

THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);

ELSE 
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);

FI;
IF k1[0] OR *no writemask*

THEN DEST[31:0] := SCALE(SRC1[31:0], SRC2[31:0])
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking

DEST[31:0] := 0
FI

FI;
DEST[127:32] := SRC1[127:32]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VSCALEFSS __m128 _mm_scalef_round_ss(__m128 a, __m128 b, int);
VSCALEFSS __m128 _mm_mask_scalef_round_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, int);
VSCALEFSS __m128 _mm_maskz_scalef_round_ss(__mmask8 k, __m128 a, __m128 b, int);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal (for Src1).
Denormal is not reported for Src2.

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”
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VSCATTERDPS/VSCATTERDPD/VSCATTERQPS/VSCATTERQPD—Scatter Packed Single Precision, 
Packed Double Precision Floating-Point Values with Signed Dword and Qword Indices

Instruction Operand Encoding

Opcode/
Instruction

Op/E
n

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.66.0F38.W0 A2 /vsib 
VSCATTERDPS vm32x {k1}, xmm1

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Using signed dword indices, scatter single-
precision floating-point values to memory using 
writemask k1.

EVEX.256.66.0F38.W0 A2 /vsib 
VSCATTERDPS vm32y {k1}, ymm1

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed dword indices, scatter single-
precision floating-point values to memory using 
writemask k1.

EVEX.512.66.0F38.W0 A2 /vsib 
VSCATTERDPS vm32z {k1}, zmm1

A V/V AVX512F 
OR AVX10.11

Using signed dword indices, scatter single-
precision floating-point values to memory using 
writemask k1.

EVEX.128.66.0F38.W1 A2 /vsib
VSCATTERDPD vm32x {k1}, xmm1

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed dword indices, scatter double 
precision floating-point values to memory using 
writemask k1.

EVEX.256.66.0F38.W1 A2 /vsib 
VSCATTERDPD vm32y {k1}, ymm1

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed dword indices, scatter double 
precision floating-point values to memory using 
writemask k1.

EVEX.512.66.0F38.W1 A2 /vsib 
VSCATTERDPD vm32z {k1}, zmm1

A V/V AVX512F 
OR AVX10.11

Using signed dword indices, scatter double 
precision floating-point values to memory using 
writemask k1.

EVEX.128.66.0F38.W0 A3 /vsib
VSCATTERQPS vm64x {k1}, xmm1

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed qword indices, scatter single-
precision floating-point values to memory using 
writemask k1.

EVEX.256.66.0F38.W0 A3 /vsib 
VSCATTERQPS vm64y {k1}, xmm1

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed qword indices, scatter single-
precision floating-point values to memory using 
writemask k1.

EVEX.512.66.0F38.W0 A3 /vsib 
VSCATTERQPS vm64z {k1}, ymm1

A V/V AVX512F 
OR AVX10.11

Using signed qword indices, scatter single-
precision floating-point values to memory using 
writemask k1.

EVEX.128.66.0F38.W1 A3 /vsib 
VSCATTERQPD vm64x {k1}, xmm1

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed qword indices, scatter double 
precision floating-point values to memory using 
writemask k1.

EVEX.256.66.0F38.W1 A3 /vsib 
VSCATTERQPD vm64y {k1}, ymm1

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Using signed qword indices, scatter double 
precision floating-point values to memory using 
writemask k1.

EVEX.512.66.0F38.W1 A3 /vsib 
VSCATTERQPD vm64z {k1}, zmm1

A V/V AVX512F 
OR AVX10.11

Using signed qword indices, scatter double 
precision floating-point values to memory using 
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar
BaseReg (R): VSIB:base,

VectorReg(R): VSIB:index
ModRM:reg (r) N/A N/A
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Description

Stores up to four, eight, or 16 single precision elements (or two, four, or eight double precision elements) in double-
word/quadword vector xmm1, ymm1, or zmm1, to the memory locations pointed by base address BASE_ADDR 
and index vector VINDEX, with scale SCALE. The elements are specified via the VSIB (i.e., the index register is a 
vector register, holding packed indices). Elements will only be stored if their corresponding mask bit is one. The 
entire mask register will be set to zero by this instruction unless it triggers an exception.
This instruction can be suspended by an exception if at least one element is already scattered (i.e., if the exception 
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination 
register and the mask register (k1) are partially updated. If any traps or interrupts are pending from already scat-
tered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction 
breakpoint is not re-triggered when the instruction is continued.
Note that:
• Only writes to overlapping vector indices are guaranteed to be ordered with respect to each other (from LSB to 

MSB of the source registers). Note that this also include partially overlapping vector indices. Writes that are not 
overlapped may happen in any order. Memory ordering with other instructions follows the Intel-64 memory 
ordering model. Note that this does not account for non-overlapping indices that map into the same physical 
address locations.

• If two or more destination indices completely overlap, the “earlier” write(s) may be skipped.
• Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all 

elements closer to the LSB of the source register xmm, ymm, or zmm will be completed (and non-faulting). 
Individual elements closer to the MSB may or may not be completed. If a given element triggers multiple faults, 
they are delivered in the conventional order.

• Elements may be scattered in any order, but faults must be delivered in a right-to left order; thus, elements to 
the left of a faulting one may be scattered before the fault is delivered. A given implementation of this 
instruction is repeatable - given the same input values and architectural state, the same set of elements to the 
left of the faulting one will be scattered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• Not valid with 16-bit effective addresses. Will deliver a #UD fault.
• If this instruction overwrites itself and then takes a fault, only a subset of elements may be completed before 

the fault is delivered (as described above). If the fault handler completes and attempts to re-execute this 
instruction, the new instruction will be executed, and the scatter will not complete.

Note that the presence of VSIB byte is enforced in this instruction. Hence, the instruction will #UD fault if 
ModRM.rm is different than 100b.
This instruction has special disp8*N and alignment rules. N is considered to be the size of a single vector element.
The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-bit 
mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address bits are 
ignored.
The instruction will #UD fault if the k0 mask register is specified.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a ZMM register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1 or 4 byte displacement
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VSCATTERDPS (EVEX encoded versions)
(KL, VL)= (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN MEM[BASE_ADDR +SignExtend(VINDEX[i+31:i]) * SCALE + DISP] :=
SRC[i+31:i]
k1[j] := 0

FI;
ENDFOR
k1[MAX_KL-1:KL] := 0

VSCATTERDPD (EVEX encoded versions)
(KL, VL)= (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j] OR *no writemask*

THEN MEM[BASE_ADDR +SignExtend(VINDEX[k+31:k]) * SCALE + DISP] :=
SRC[i+63:i]
k1[j] := 0

FI;
ENDFOR
k1[MAX_KL-1:KL] := 0

VSCATTERQPS (EVEX encoded versions)
(KL, VL)= (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
k := j * 64
IF k1[j] OR *no writemask*

THEN MEM[BASE_ADDR + (VINDEX[k+63:k]) * SCALE + DISP] :=
SRC[i+31:i]
k1[j] := 0

FI;
ENDFOR
k1[MAX_KL-1:KL] := 0

VSCATTERQPD (EVEX encoded versions)
(KL, VL)= (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN MEM[BASE_ADDR + (VINDEX[i+63:i]) * SCALE + DISP] :=
SRC[i+63:i]
k1[j] := 0

FI;
ENDFOR
k1[MAX_KL-1:KL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VSCATTERDPD void _mm512_i32scatter_pd(void * base, __m512i vdx, __m512d a, int scale);
VSCATTERDPD void _mm512_mask_i32scatter_pd(void * base, __mmask8 k, __m512i vdx, __m512d a, int scale);
VSCATTERDPS void _mm512_i32scatter_ps(void * base, __m512i vdx, __m512 a, int scale);
VSCATTERDPS void _mm512_mask_i32scatter_ps(void * base, __mmask16 k, __m512i vdx, __m512 a, int scale);
VSCATTERQPD void _mm512_i64scatter_pd(void * base, __m512i vdx, __m512d a, int scale);
VSCATTERQPD void _mm512_mask_i64scatter_pd(void * base, __mmask8 k, __m512i vdx, __m512d a, int scale);
VSCATTERQPS void _mm512_i64scatter_ps(void * base, __m512i vdx, __m512 a, int scale);
VSCATTERQPS void _mm512_mask_i64scatter_ps(void * base, __mmask8 k, __m512i vdx, __m512 a, int scale);
VSCATTERDPD void _mm256_i32scatter_pd(void * base, __m256i vdx, __m256d a, int scale);
VSCATTERDPD void _mm256_mask_i32scatter_pd(void * base, __mmask8 k, __m256i vdx, __m256d a, int scale);
VSCATTERDPS void _mm256_i32scatter_ps(void * base, __m256i vdx, __m256 a, int scale);
VSCATTERDPS void _mm256_mask_i32scatter_ps(void * base, __mmask8 k, __m256i vdx, __m256 a, int scale);
VSCATTERQPD void _mm256_i64scatter_pd(void * base, __m256i vdx, __m256d a, int scale);
VSCATTERQPD void _mm256_mask_i64scatter_pd(void * base, __mmask8 k, __m256i vdx, __m256d a, int scale);
VSCATTERQPS void _mm256_i64scatter_ps(void * base, __m256i vdx, __m256 a, int scale);
VSCATTERQPS void _mm256_mask_i64scatter_ps(void * base, __mmask8 k, __m256i vdx, __m256 a, int scale);
VSCATTERDPD void _mm_i32scatter_pd(void * base, __m128i vdx, __m128d a, int scale);
VSCATTERDPD void _mm_mask_i32scatter_pd(void * base, __mmask8 k, __m128i vdx, __m128d a, int scale);
VSCATTERDPS void _mm_i32scatter_ps(void * base, __m128i vdx, __m128 a, int scale);
VSCATTERDPS void _mm_mask_i32scatter_ps(void * base, __mmask8 k, __m128i vdx, __m128 a, int scale);
VSCATTERQPD void _mm_i64scatter_pd(void * base, __m128i vdx, __m128d a, int scale);
VSCATTERQPD void _mm_mask_i64scatter_pd(void * base, __mmask8 k, __m128i vdx, __m128d a, int scale);
VSCATTERQPS void _mm_i64scatter_ps(void * base, __m128i vdx, __m128 a, int scale);
VSCATTERQPS void _mm_mask_i64scatter_ps(void * base, __mmask8 k, __m128i vdx, __m128 a, int scale);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-63, “Type E12 Class Exception Conditions.”
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VSHA512MSG1—Perform an Intermediate Calculation for the Next Four SHA512 Message 
Qwords

Instruction Operand Encoding

Description
The VSHA512MSG1 instruction is one of the two SHA512 message scheduling instructions. The instruction 
performs an intermediate calculation for the next four SHA512 message qwords.
See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf for more information on the SHA512 standard.

Operation
define ROR64(qword, n):

count := n % 64
dest := (qword >> count) | (qword << (64-count))
return dest

define SHR64(qword, n):
return qword >> n

define s0(qword):
return ROR64(qword,1) ^ ROR64(qword, 8) ^ SHR64(qword, 7)

VSHA512MSG1 SRCDEST, SRC1
W[4] := SRC1.qword[0]
W[3] := SRCDEST.qword[3]
W[2] := SRCDEST.qword[2]
W[1] := SRCDEST.qword[1]
W[0] := SRCDEST.qword[0]

SRCDEST.qword[3] := W[3] + s0(W[4])
SRCDEST.qword[2] := W[2] + s0(W[3])
SRCDEST.qword[1] := W[1] + s0(W[2])
SRCDEST.qword[0] := W[0] + s0(W[1])

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
VSHA512MSG1 __m256i _mm256_sha512msg1_epi64 (__m256i __A, __m128i __B);

SIMD Floating-Point Exceptions
None.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.256.F2.0F38.W0 CC 11:rrr:bbb

VSHA512MSG1 ymm1, xmm2

A V/V AVX

SHA512

Performs an intermediate calculation for the 
next four SHA512 message qwords using 
previous message qwords from ymm1 and 
xmm2, storing the result in ymm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
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Other Exceptions

See Table 2-23, “Type 6 Class Exception Conditions.”
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VSHA512MSG2—Perform a Final Calculation for the Next Four SHA512 Message Qwords

Instruction Operand Encoding

Description
The VSHA512MSG2 instruction is one of the two SHA512 message scheduling instructions. The instruction 
performs the final calculation for the next four SHA512 message qwords.
See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf for more information on the SHA512 standard.

Operation
define ROR64(qword, n):

count := n % 64
dest := (qword >> count) | (qword << (64-count))
return dest

define SHR64(qword, n):
return qword >> n

define s1(qword):
return ROR64(qword,19) ^ ROR64(qword, 61) ^ SHR64(qword, 6)

VSHA512MSG2 SRCDEST, SRC1
W[14] := SRC1.qword[2]
W[15] := SRC1.qword[3]
W[16] := SRCDEST.qword[0] + s1(W[14])
W[17] := SRCDEST.qword[1] + s1(W[15])
W[18] := SRCDEST.qword[2] + s1(W[16])
W[19] := SRCDEST.qword[3] + s1(W[17])

SRCDEST.qword[3] := W[19]
SRCDEST.qword[2] := W[18]
SRCDEST.qword[1] := W[17]
SRCDEST.qword[0] := W[16]

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
VSHA512MSG2 __m256i _mm256_sha512msg2_epi64 (__m256i __A, __m256i __B);

SIMD Floating-Point Exceptions
None.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.256.F2.0F38.W0 CD 11:rrr:bbb

VSHA512MSG2 ymm1, ymm2

A V/V AVX

SHA512

Performs the final calculation for the next four 
SHA512 message qwords using previous 
message qwords from ymm1 and ymm2, 
storing the result in ymm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
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Other Exceptions
See Table 2-23, “Type 6 Class Exception Conditions.”
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VSHA512RNDS2—Perform Two Rounds of SHA512 Operation

Instruction Operand Encoding

Description
The VSHA512RNDS2 instruction performs two rounds of SHA512 operation using initial SHA512 state (C,D,G,H) 
from the first operand, an initial SHA512 state (A,B,E,F) from the second operand, and a pre-computed sum of the 
next two round message qwords and the corresponding round constants from the third operand (only the two 
lower qwords of the third operand). The updated SHA512 state (A,B,E,F) is written to the first operand, and the 
second operand can be used as the updated state (C,D,G,H) in later rounds.
See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf for more information on the SHA512 standard.

Operation
define ROR64(qword, n):

count := n % 64
dest := (qword >> count) | (qword << (64-count))
return dest

define SHR64(qword, n):
return qword >> n

define cap_sigma0(qword):
return ROR64(qword,28) ^ ROR64(qword, 34) ^ ROR64(qword, 39)

define cap_sigma1(qword):
return ROR64(qword,14) ^ ROR64(qword, 18) ^ ROR64(qword, 41)

define MAJ(a,b,c):
return (a & b) ^ (a & c) ^ (b & c)

define CH(e,f,g):
return (e & f) ^ (g & ~e)

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.256.F2.0F38.W0 CB 11:rrr:bbb

VSHA512RNDS2 ymm1, ymm2, 
xmm3

A V/V AVX

SHA512

Perform 2 rounds of SHA512 operation using 
an initial SHA512 state (C,D,G,H) from ymm1, 
an initial SHA512 state (A,B,E,F) from ymm2, 
and a pre-computed sum of the next 2 round 
message qwords and the corresponding round 
constants from xmm3, storing the updated 
SHA512 state (A,B,E,F) result in ymm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A
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VSHA512RNDS2 SRCDEST, SRC1, SRC2
A[0] := SRC1.qword[3]
B[0] := SRC1.qword[2]
C[0] := SRCDEST.qword[3]
D[0] := SRCDEST.qword[2]
E[0] := SRC1.qword[1]
F[0] := SRC1.qword[0]
G[0] := SRCDEST.qword[1]
H[0] := SRCDEST.qword[0]
WK[0]:= SRC2.qword[0]
WK[1]:= SRC2.qword[1]

FOR i in 0..1:
A[i+1] := CH(E[i], F[i], G[i]) +

cap_sigma1(E[i]) + WK[i] + H[i] +
MAJ(A[i], B[i], C[i]) +
cap_sigma0(A[i])

B[i+1] := A[i]
C[i+1] := B[i]
D[i+1] := C[i]
E[i+1] := CH(E[i], F[i], G[i]) +

cap_sigma1(E[i]) + WK[i] + H[i] + D[i]
F[i+1] := E[i]
G[i+1] := F[i]
H[i+1] := G[i]

SRCDEST.qword[3] = A[2]
SRCDEST.qword[2] = B[2]
SRCDEST.qword[1] = E[2]
SRCDEST.qword[0] = F[2]

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
VSHA512RNDS2 __m256i _mm256_sha512rnds2_epi64 (__m256i __A, __m256i __B, __m128i __C);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Table 2-23, “Type 6 Class Exception Conditions.”
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VSHUFF32x4/VSHUFF64x2/VSHUFI32x4/VSHUFI64x2—Shuffle Packed Values at 128-Bit 
Granularity

Instruction Operand Encoding

Description

256-bit Version: Moves one of the two 128-bit packed single precision floating-point values from the first source 
operand (second operand) into the low 128-bit of the destination operand (first operand); moves one of the two 
packed 128-bit floating-point values from the second source operand (third operand) into the high 128-bit of the 
destination operand. The selector operand (third operand) determines which values are moved to the destination 
operand.

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.256.66.0F3A.W0 23 /r ib
VSHUFF32X4 ymm1{k1}{z}, ymm2, 
ymm3/m256/m32bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Shuffle 128-bit packed single-precision floating-
point values selected by imm8 from ymm2 and 
ymm3/m256/m32bcst and place results in ymm1 
subject to writemask k1.

EVEX.512.66.0F3A.W0 23 /r ib
VSHUFF32x4 zmm1{k1}{z}, zmm2, 
zmm3/m512/m32bcst, imm8

A V/V AVX512F 
OR AVX10.11

Shuffle 128-bit packed single-precision floating-
point values selected by imm8 from zmm2 and 
zmm3/m512/m32bcst and place results in zmm1 
subject to writemask k1.

EVEX.256.66.0F3A.W1 23 /r ib
VSHUFF64X2 ymm1{k1}{z}, ymm2, 
ymm3/m256/m64bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shuffle 128-bit packed double precision floating-
point values selected by imm8 from ymm2 and 
ymm3/m256/m64bcst and place results in ymm1 
subject to writemask k1.

EVEX.512.66.0F3A.W1 23 /r ib
VSHUFF64x2 zmm1{k1}{z}, zmm2, 
zmm3/m512/m64bcst, imm8

A V/V AVX512F 
OR AVX10.11

Shuffle 128-bit packed double precision floating-
point values selected by imm8 from zmm2 and 
zmm3/m512/m64bcst and place results in zmm1 
subject to writemask k1.

EVEX.256.66.0F3A.W0 43 /r ib
VSHUFI32X4 ymm1{k1}{z}, ymm2, 
ymm3/m256/m32bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shuffle 128-bit packed double-word values 
selected by imm8 from ymm2 and 
ymm3/m256/m32bcst and place results in ymm1 
subject to writemask k1.

EVEX.512.66.0F3A.W0 43 /r ib
VSHUFI32x4 zmm1{k1}{z}, zmm2, 
zmm3/m512/m32bcst, imm8

A V/V AVX512F 
OR AVX10.11

Shuffle 128-bit packed double-word values 
selected by imm8 from zmm2 and 
zmm3/m512/m32bcst and place results in zmm1 
subject to writemask k1.

EVEX.256.66.0F3A.W1 43 /r ib
VSHUFI64X2 ymm1{k1}{z}, ymm2, 
ymm3/m256/m64bcst, imm8

A V/V (AVX512VL AND
AVX512F) OR 
AVX10.11

Shuffle 128-bit packed quad-word values selected 
by imm8 from ymm2 and ymm3/m256/m64bcst 
and place results in ymm1 subject to writemask k1.

EVEX.512.66.0F3A.W1 43 /r ib
VSHUFI64x2 zmm1{k1}{z}, zmm2, 
zmm3/m512/m64bcst, imm8

A V/V AVX512F 
OR AVX10.11

Shuffle 128-bit packed quad-word values selected 
by imm8 from zmm2 and zmm3/m512/m64bcst 
and place results in zmm1 subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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512-bit Version: Moves two of the four 128-bit packed single precision floating-point values from the first source 
operand (second operand) into the low 256-bit of each double qword of the destination operand (first operand); 
moves two of the four packed 128-bit floating-point values from the second source operand (third operand) into 
the high 256-bit of the destination operand. The selector operand (third operand) determines which values are 
moved to the destination operand.
The first source operand is a vector register. The second source operand can be a ZMM register, a 512-bit memory 
location or a 512-bit vector broadcasted from a 32/64-bit memory location. The destination operand is a vector 
register.
The writemask updates the destination operand with the granularity of 32/64-bit data elements.

Operation

Select2(SRC, control) {
CASE (control[0]) OF

0: TMP := SRC[127:0];
1: TMP := SRC[255:128];

ESAC;
RETURN TMP
}

Select4(SRC, control) {
CASE (control[1:0]) OF

0: TMP := SRC[127:0];
1: TMP := SRC[255:128];
2: TMP := SRC[383:256];
3: TMP := SRC[511:384];

ESAC;
RETURN TMP
}

VSHUFF32x4 (EVEX versions)
(KL, VL) = (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN TMP_SRC2[i+31:i] := SRC2[31:0]
ELSE TMP_SRC2[i+31:i] := SRC2[i+31:i]

FI;
ENDFOR;
IF VL = 256

TMP_DEST[127:0] := Select2(SRC1[255:0], imm8[0]);
TMP_DEST[255:128] := Select2(SRC2[255:0], imm8[1]);

FI;
IF VL = 512

TMP_DEST[127:0] := Select4(SRC1[511:0], imm8[1:0]);
TMP_DEST[255:128] := Select4(SRC1[511:0], imm8[3:2]);
TMP_DEST[383:256] := Select4(TMP_SRC2[511:0], imm8[5:4]);
TMP_DEST[511:384] := Select4(TMP_SRC2[511:0], imm8[7:6]);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
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THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

THEN DEST[i+31:i] := 0
FI;

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VSHUFF64x2 (EVEX 512-bit version)
(KL, VL) = (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN TMP_SRC2[i+63:i] := SRC2[63:0]
ELSE TMP_SRC2[i+63:i] := SRC2[i+63:i]

FI;
ENDFOR;
IF VL = 256

TMP_DEST[127:0] := Select2(SRC1[255:0], imm8[0]);
TMP_DEST[255:128] := Select2(SRC2[255:0], imm8[1]);

FI;
IF VL = 512

TMP_DEST[127:0] := Select4(SRC1[511:0], imm8[1:0]);
TMP_DEST[255:128] := Select4(SRC1[511:0], imm8[3:2]);
TMP_DEST[383:256] := Select4(TMP_SRC2[511:0], imm8[5:4]);
TMP_DEST[511:384] := Select4(TMP_SRC2[511:0], imm8[7:6]);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

THEN DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VSHUFI32x4 (EVEX 512-bit version)
(KL, VL) = (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN TMP_SRC2[i+31:i] := SRC2[31:0]
ELSE TMP_SRC2[i+31:i] := SRC2[i+31:i]

FI;
ENDFOR;
IF VL = 256

TMP_DEST[127:0] := Select2(SRC1[255:0], imm8[0]);
TMP_DEST[255:128] := Select2(SRC2[255:0], imm8[1]);

FI;
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IF VL = 512
TMP_DEST[127:0] := Select4(SRC1[511:0], imm8[1:0]);
TMP_DEST[255:128] := Select4(SRC1[511:0], imm8[3:2]);
TMP_DEST[383:256] := Select4(TMP_SRC2[511:0], imm8[5:4]);
TMP_DEST[511:384] := Select4(TMP_SRC2[511:0], imm8[7:6]);

FI;
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

THEN DEST[i+31:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VSHUFI64x2 (EVEX 512-bit version)
(KL, VL) = (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN TMP_SRC2[i+63:i] := SRC2[63:0]
ELSE TMP_SRC2[i+63:i] := SRC2[i+63:i]

FI;
ENDFOR;
IF VL = 256

TMP_DEST[127:0] := Select2(SRC1[255:0], imm8[0]);
TMP_DEST[255:128] := Select2(SRC2[255:0], imm8[1]);

FI;
IF VL = 512

TMP_DEST[127:0] := Select4(SRC1[511:0], imm8[1:0]);
TMP_DEST[255:128] := Select4(SRC1[511:0], imm8[3:2]);
TMP_DEST[383:256] := Select4(TMP_SRC2[511:0], imm8[5:4]);
TMP_DEST[511:384] := Select4(TMP_SRC2[511:0], imm8[7:6]);

FI;
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

THEN DEST[i+63:i] := 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
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Intel C/C++ Compiler Intrinsic Equivalent

VSHUFI32x4 __m512i _mm512_shuffle_i32x4(__m512i a, __m512i b, int imm);
VSHUFI32x4 __m512i _mm512_mask_shuffle_i32x4(__m512i s, __mmask16 k, __m512i a, __m512i b, int imm);
VSHUFI32x4 __m512i _mm512_maskz_shuffle_i32x4( __mmask16 k, __m512i a, __m512i b, int imm);
VSHUFI32x4 __m256i _mm256_shuffle_i32x4(__m256i a, __m256i b, int imm);
VSHUFI32x4 __m256i _mm256_mask_shuffle_i32x4(__m256i s, __mmask8 k, __m256i a, __m256i b, int imm);
VSHUFI32x4 __m256i _mm256_maskz_shuffle_i32x4( __mmask8 k, __m256i a, __m256i b, int imm);
VSHUFF32x4 __m512 _mm512_shuffle_f32x4(__m512 a, __m512 b, int imm);
VSHUFF32x4 __m512 _mm512_mask_shuffle_f32x4(__m512 s, __mmask16 k, __m512 a, __m512 b, int imm);
VSHUFF32x4 __m512 _mm512_maskz_shuffle_f32x4( __mmask16 k, __m512 a, __m512 b, int imm);
VSHUFI64x2 __m512i _mm512_shuffle_i64x2(__m512i a, __m512i b, int imm);
VSHUFI64x2 __m512i _mm512_mask_shuffle_i64x2(__m512i s, __mmask8 k, __m512i b, __m512i b, int imm);
VSHUFI64x2 __m512i _mm512_maskz_shuffle_i64x2( __mmask8 k, __m512i a, __m512i b, int imm);
VSHUFF64x2 __m512d _mm512_shuffle_f64x2(__m512d a, __m512d b, int imm);
VSHUFF64x2 __m512d _mm512_mask_shuffle_f64x2(__m512d s, __mmask8 k, __m512d a, __m512d b, int imm);
VSHUFF64x2 __m512d _mm512_maskz_shuffle_f64x2( __mmask8 k, __m512d a, __m512d b, int imm);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-52, “Type E4NF Class Exception Conditions.”
Additionally:
#UD If EVEX.L’L = 0 for VSHUFF32x4/VSHUFF64x2.
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VSM3MSG1—Perform Initial Calculation for the Next Four SM3 Message Words

Instruction Operand Encoding

Description
The VSM3MSG1 instruction is one of the two SM3 message scheduling instructions. The instruction performs an 
initial calculation for the next four SM3 message words.

Operation
define ROL32(dword, n):

count := n % 32
dest := (dword << count) | (dword >> (32-count))
return dest

define P1(x):
return x ^ ROL32(x, 15) ^ ROL32(x, 23)

VSM3MSG1 SRCDEST, SRC1, SRC2
W[0] := SRC2.dword[0]
W[1] := SRC2.dword[1]
W[2] := SRC2.dword[2]
W[3] := SRC2.dword[3]

W[7] := SRCDEST.dword[0]
W[8] := SRCDEST.dword[1]
W[9] := SRCDEST.dword[2]
W[10] := SRCDEST.dword[3]

W[13] := SRC1.dword[0]
W[14] := SRC1.dword[1]
W[15] := SRC1.dword[2]

TMP0 := W[7] ^ W[0] ^ ROL32(W[13], 15)
TMP1 := W[8] ^ W[1] ^ ROL32(W[14], 15)
TMP2 := W[9] ^ W[2] ^ ROL32(W[15], 15)
TMP3 := W[10] ^ W[3]

SRCDEST.dword[0] := P1(TMP0)
SRCDEST.dword[1] := P1(TMP1)
SRCDEST.dword[2] := P1(TMP2)
SRCDEST.dword[3] := P1(TMP3)

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.NP.0F38.W0 DA /r

VSM3MSG1 xmm1, xmm2, 
xmm3/m128

A V/V AVX

SM3

Performs an initial calculation for the next four 
SM3 message words using previous message 
words from xmm2 and xmm3/m128, storing 
the result in xmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A
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Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
VSM3MSG1 __m128i _mm_sm3msg1_epi32 (__m128i __A, __m128i __B, __m128i __C);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions.”
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VSM3MSG2—Perform Final Calculation for the Next Four SM3 Message Words

Instruction Operand Encoding

Description
The VSM3MSG2 instruction is one of the two SM3 message scheduling instructions. The instruction performs the 
final calculation for the next four SM3 message words.

Operation
//see the VSM3MSG1 instruction for definition of ROL32()

VSM3MSG2 SRCDEST, SRC1, SRC2

WTMP[0] := SRCDEST.dword[0]
WTMP[1] := SRCDEST.dword[1]
WTMP[2] := SRCDEST.dword[2]
WTMP[3] := SRCDEST.dword[3]

// Dword array W[] has indices are based on the SM3 specification.
W[3] := SRC1.dword[0]
W[4] := SRC1.dword[1]
W[5] := SRC1.dword[2]
W[6] := SRC1.dword[3]
W[10] := SRC2.dword[0]
W[11] := SRC2.dword[1]
W[12] := SRC2.dword[2]
W[13] := SRC2.dword[3]

W[16] := ROL32(W[3], 7) ^ W[10] ^ WTMP[0]
W[17] := ROL32(W[4], 7) ^ W[11] ^ WTMP[1]
W[18] := ROL32(W[5], 7) ^ W[12] ^ WTMP[2]
W[19] := ROL32(W[6], 7) ^ W[13] ^ WTMP[3]

W[19] := W[19] ^ ROL32(W[16], 6) ^ ROL32(W[16], 15) ^ ROL32(W[16], 30)

SRCDEST.dword[0] := W[16]
SRCDEST.dword[1] := W[17]
SRCDEST.dword[2] := W[18]
SRCDEST.dword[3] := W[19]

Flags Affected
None.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 DA /r

VSM3MSG2 xmm1, xmm2, 
xmm3/m128

A V/V AVX

SM3

Performs the final calculation for the next four 
SM3 message words using previous message 
words from xmm2 and xmm3/m128, storing 
the result in xmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A
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Intel C/C++ Compiler Intrinsic Equivalent
VSM3MSG2 __m128i _mm_sm3msg2_epi32 (__m128i __A, __m128i __B, __m128i __C);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions.”
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VSM3RNDS2—Perform Two Rounds of SM3 Operation

Instruction Operand Encoding

Description
The VSM3RNDS2 instruction performs two rounds of SM3 operation using initial SM3 state (C, D, G, H) from the 
first operand, an initial SM3 states (A, B, E, F) from the second operand and a pre-computed words from the third 
operand. The first operand with initial SM3 state of (C, D, G, H) assumes input of non-rotated left variables from 
previous state. The updated SM3 state (A, B, E, F) is written to the first operand.
The imm8 should contain the even round number for the first of the two rounds computed by this instruction. The 
computation masks the imm8 value by AND’ing it with 0x3E so that only even round numbers from 0 through 62 
are used for this operation.

Operation
//see the VSM3MSG1 instruction for definition of ROL32()

define P0(dword):
return dword ^ ROL32(dword, 9) ^ ROL32(dword, 17)

define FF(x,y,z, round):
if round < 16:

return (x ^ y ^ z)
else:

return (x & y) | (x & z) | (y & z)

define GG(x,y,z, round):
if round < 16:

return (x ^ y ^ z)
else:

return (x & y) | (~x & z)

VSM3RNDS2 SRCDEST, SRC1, SRC2, IMM8
A[0] := SRC1.dword[3]
B[0] := SRC1.dword[2]
C[0] := SRCDEST.dword[3]
D[0] := SRCDEST.dword[2]
E[0] := SRC1.dword[1]
F[0] := SRC1.dword[0]
G[0] := SRCDEST.dword[1]
H[0] := SRCDEST.dword[0]
W[0] := SRC2.dword[0]
W[1] := SRC2.dword[1]
W[4] := SRC2.dword[2]

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F3A.W0 DE /r /ib

VSM3RNDS2 xmm1, xmm2, 
xmm3/m128, imm8

A V/V AVX

SM3

Performs two rounds of SM3 operation using 
the initial SM3 states from xmm1 and xmm2, 
and pre-computed words from xmm3/m128, 
storing the result in xmm1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) imm8
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W[5] := SRC2.dword[3]

C[0] := ROL32(C[0], 9)
D[0] := ROL32(D[0], 9)
G[0] := ROL32(G[0], 19)
H[0] := ROL32(H[0], 19)

ROUND := IMM8 & 0x3E // even numbers 0...62
IF ROUND < 16:

CONST := 0x79cc4519
ELSE:

CONST := 0x7a879d8a
CONST := ROL32(CONST,ROUND)

FOR i in 0..1:
S1 := ROL32((ROL32(A[i], 12) + E[i] + CONST), 7)
S2 := S1 ^ ROL32(A[i],12)
T1 := FF(A[i], B[i], C[i], ROUND) + D[i] + S2 + (W[i]^W[i+4])
T2 := GG(E[i], F[i], G[i], ROUND) + H[i] + S1 + W[i]
D[i+1] := C[i]
C[i+1] := ROL32(B[i],9)
B[i+1] := A[i]
A[i+1] := T1
H[i+1] := G[i]
G[i+1] := ROL32(F[i], 19)
F[i+1] := E[i]
E[i+1] := P0(T2)
CONST := ROL32(CONST, 1)

SRCDEST.dword[3] := A[2]
SRCDEST.dword[2] := B[2]
SRCDEST.dword[1] := E[2]
SRCDEST.dword[0] := F[2]

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
VSM3RNDS2 __m128i _mm_sm3rnds2_epi32 (__m128i __A, __m128i __B, __m128i __C, const int imm8);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Table 2-21, “Type 4 Class Exception Conditions.”
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VSM4KEY4—Perform Four Rounds of SM4 Key Expansion

Instruction Operand Encoding

Description
The VSM4KEY4 instruction performs four rounds of SM4 key expansion. The instruction operates on independent 
128-bit lanes.
Additional details can be found at: https://tools.ietf.org/html/draft-ribose-cfrg-sm4-10.
Both SM4 instructions use a common sbox table:
BYTE sbox[256] = {
0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7, 0x16, 0xB6, 0x14, 0xC2, 0x28, 0xFB, 0x2C, 0x05,
0x2B, 0x67, 0x9A, 0x76, 0x2A, 0xBE, 0x04, 0xC3, 0xAA, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99,
0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF, 0x98, 0x7A, 0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62,
0xE4, 0xB3, 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95, 0x80, 0xDF, 0x94, 0xFA, 0x75, 0x8F, 0x3F, 0xA6,
0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73, 0x17, 0xBA, 0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85, 0x4F, 0xA8,
0x68, 0x6B, 0x81, 0xB2, 0x71, 0x64, 0xDA, 0x8B, 0xF8, 0xEB, 0x0F, 0x4B, 0x70, 0x56, 0x9D, 0x35,
0x1E, 0x24, 0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2, 0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 0x78, 0x87,
0xD4, 0x00, 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52, 0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E,
0xEA, 0xBF, 0x8A, 0xD2, 0x40, 0xC7, 0x38, 0xB5, 0xA3, 0xF7, 0xF2, 0xCE, 0xF9, 0x61, 0x15, 0xA1,
0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55, 0xAD, 0x93, 0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3,
0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60, 0xC0, 0x29, 0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F,
0xD5, 0xDB, 0x37, 0x45, 0xDE, 0xFD, 0x8E, 0x2F, 0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C, 0x5B, 0x51,
0x8D, 0x1B, 0xAF, 0x92, 0xBB, 0xDD, 0xBC, 0x7F, 0x11, 0xD9, 0x5C, 0x41, 0x1F, 0x10, 0x5A, 0xD8,
0x0A, 0xC1, 0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD, 0x2D, 0x74, 0xD0, 0x12, 0xB8, 0xE5, 0xB4, 0xB0,
0x89, 0x69, 0x97, 0x4A, 0x0C, 0x96, 0x77, 0x7E, 0x65, 0xB9, 0xF1, 0x09, 0xC5, 0x6E, 0xC6, 0x84,
0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D, 0x20, 0x79, 0xEE, 0x5F, 0x3E, 0xD7, 0xCB, 0x39, 0x48
}

Operation
define ROL32(dword, n):

count := n % 32
dest := (dword << count) | (dword >> (32-count))
return dest

define SBOX_BYTE(dword, i):
// sbox[] array defined in introduction
return sbox[dword.byte[i]]

define lower_t(dword):
tmp.byte[0] := SBOX_BYTE(dword, 0)

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F3.0F38.W0 DA /r

VSM4KEY4 xmm1, xmm2, 
xmm3/m128

A V/V AVX

SM4

Performs four rounds of SM4 key expansion.

VEX.256.F3.0F38.W0 DA /r 

VSM4KEY4 ymm1, ymm2, 
ymm3/m256

A V/V AVX

SM4

Performs four rounds of SM4 key expansion.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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tmp.byte[1] := SBOX_BYTE(dword, 1)
tmp.byte[2] := SBOX_BYTE(dword, 2)
tmp.byte[3] := SBOX_BYTE(dword, 3)
return tmp

define L_KEY(dword):
return dword ^ ROL32(dword, 13) ^ ROL32(dword, 23)

define T_KEY(dword):
return L_KEY(lower_t(dword))

define F_KEY(X0, X1, X2, X3, round_key):
return X0 ^ T_KEY(X1 ^ X2 ^ X3 ^ round_key)

VSM4KEY4 DEST, SRC1, SRC2
VL = (128, 256) // VEX versions
// or
VL = (128,256,512) // EVEX versions
KL := VL/128

for i in 0..KL-1:
P[0] := SRC1.xmm[i].dword[0]
P[1] := SRC1.xmm[i].dword[1]
P[2] := SRC1.xmm[i].dword[2]
P[3] := SRC1.xmm[i].dword[3]

C[0] := F_KEY(P[0], P[1], P[2], P[3], SRC2.xmm[i].dword[0])
C[1] := F_KEY(P[1], P[2], P[3], C[0], SRC2.xmm[i].dword[1])
C[2] := F_KEY(P[2], P[3], C[0], C[1], SRC2.xmm[i].dword[2])
C[3] := F_KEY(P[3], C[0], C[1], C[2], SRC2.xmm[i].dword[3])

DEST.xmm[i].dword[0] := C[0]
DEST.xmm[i].dword[1] := C[1]
DEST.xmm[i].dword[2] := C[2]
DEST.xmm[i].dword[3] := C[3]

DEST[MAXVL-1:VL] := 0

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
VSM4KEY4 __m128i _mm_sm4key4_epi32 (__m128i __A, __m128i __B);
VSM4KEY4 __m256i _mm256_sm4key4_epi32 (__m256i __A, __m256i __B);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Table 2-23, “Type 6 Class Exception Conditions.”
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VSM4RNDS4—Performs Four Rounds of SM4 Encryption

Instruction Operand Encoding

Description
The SM4RNDS4 instruction performs four rounds of SM4 encryption. The instruction operates on independent 128-
bit lanes.
Additional details can be found at: https://tools.ietf.org/html/draft-ribose-cfrg-sm4-10.
See “VSM4KEY4—Perform Four Rounds of SM4 Key Expansion” for the sbox table.

Operation
// see the VSM4KEY4 instruction for the definition of ROL32, lower_t

define L_RND(dword):
tmp := dword
tmp := tmp ^ ROL32(dword, 2)
tmp := tmp ^ ROL32(dword, 10)
tmp := tmp ^ ROL32(dword, 18)
tmp := tmp ^ ROL32(dword, 24)
return tmp

define T_RND(dword):
return L_RND(lower_t(dword))

define F_RND(X0, X1, X2, X3, round_key):
return X0 ^ T_RND(X1 ^ X2 ^ X3 ^ round_key)

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F2.0F38.W0 DA /r

VSM4RNDS4 xmm1, xmm2, 
xmm3/m128

A V/V AVX

SM4

Performs four rounds of SM4 encryption.

VEX.256.F2.0F38.W0 DA /r

VSM4RNDS4 ymm1, ymm2, 
ymm3/m256

A V/V AVX

SM4

Performs four rounds of SM4 encryption.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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VSM4RNDS4 DEST, SRC1, SRC2
VL = (128, 256) // VEX versions
KL := VL/128

for i in 0..KL-1:
P[0] := SRC1.xmm[i].dword[0]
P[1] := SRC1.xmm[i].dword[1]
P[2] := SRC1.xmm[i].dword[2]
P[3] := SRC1.xmm[i].dword[3]

C[0] := F_RND(P[0], P[1], P[2], P[3], SRC2.xmm[i].dword[0])
C[1] := F_RND(P[1], P[2], P[3], C[0], SRC2.xmm[i].dword[1])
C[2] := F_RND(P[2], P[3], C[0], C[1], SRC2.xmm[i].dword[2])
C[3] := F_RND(P[3], C[0], C[1], C[2], SRC2.xmm[i].dword[3])

DEST.xmm[i].dword[0] := C[0]
DEST.xmm[i].dword[1] := C[1]
DEST.xmm[i].dword[2] := C[2]
DEST.xmm[i].dword[3] := C[3]

DEST[MAXVL-1:VL] := 0

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
VSM4RNDS4 __m128i _mm_sm4rnds4_epi32 (__m128i __A, __m128i __B);
VSM4RNDS4 __m256i _mm256_sm4rnds4_epi32 (__m256i __A, __m256i __B);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Table 2-23, “Type 6 Class Exception Conditions.”
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VSQRTPH—Compute Square Root of Packed FP16 Values

Instruction Operand Encoding

Description

This instruction performs a packed FP16 square-root computation on the values from source operand and stores 
the packed FP16 result in the destination operand. The destination elements are updated according to the write-
mask.

Operation

VSQRTPH dest{k1}, src
VL = 128, 256 or 512
KL := VL/16

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

IF SRC is memory and (EVEX.b = 1):
tsrc := src.fp16[0]

ELSE:
tsrc := src.fp16[i]

DEST.fp16[i] := SQRT(tsrc)
ELSE IF *zeroing*:

DEST.fp16[i] := 0
//else DEST.fp16[i] remains unchanged

DEST[MAXVL-1:VL] := 0 

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.MAP5.W0 51 /r
VSQRTPH xmm1{k1}{z}, 
xmm2/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compute square roots of the packed FP16 values 
in xmm2/m128/m16bcst, and store the result in 
xmm1 subject to writemask k1.

EVEX.256.NP.MAP5.W0 51 /r
VSQRTPH ymm1{k1}{z}, 
ymm2/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Compute square roots of the packed FP16 values 
in ymm2/m256/m16bcst, and store the result in 
ymm1 subject to writemask k1.

EVEX.512.NP.MAP5.W0 51 /r
VSQRTPH zmm1{k1}{z}, 
zmm2/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Compute square roots of the packed FP16 values 
in zmm2/m512/m16bcst, and store the result in 
zmm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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Intel C/C++ Compiler Intrinsic Equivalent

VSQRTPH __m128h _mm_mask_sqrt_ph (__m128h src, __mmask8 k, __m128h a);
VSQRTPH __m128h _mm_maskz_sqrt_ph (__mmask8 k, __m128h a);
VSQRTPH __m128h _mm_sqrt_ph (__m128h a);
VSQRTPH __m256h _mm256_mask_sqrt_ph (__m256h src, __mmask16 k, __m256h a);
VSQRTPH __m256h _mm256_maskz_sqrt_ph (__mmask16 k, __m256h a);
VSQRTPH __m256h _mm256_sqrt_ph (__m256h a);
VSQRTPH __m512h _mm512_mask_sqrt_ph (__m512h src, __mmask32 k, __m512h a);
VSQRTPH __m512h _mm512_maskz_sqrt_ph (__mmask32 k, __m512h a);
VSQRTPH __m512h _mm512_sqrt_ph (__m512h a);
VSQRTPH __m512h _mm512_mask_sqrt_round_ph (__m512h src, __mmask32 k, __m512h a, const int rounding);
VSQRTPH __m512h _mm512_maskz_sqrt_round_ph (__mmask32 k, __m512h a, const int rounding);
VSQRTPH __m512h _mm512_sqrt_round_ph (__m512h a, const int rounding);

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Other Exceptions

EVEX-encoded instruction, see Table 2-48, “Type E2 Class Exception Conditions.”
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VSQRTSH—Compute Square Root of Scalar FP16 Value Vol. 2C 5-780

VSQRTSH—Compute Square Root of Scalar FP16 Value

Instruction Operand Encoding

Description

This instruction performs a scalar FP16 square-root computation on the source operand and stores the FP16 result 
in the destination operand. Bits 127:16 of the destination operand are copied from the corresponding bits of the 
first source operand. Bits MAXVL-1:128 of the destination operand are zeroed. The low FP16 element of the desti-
nation is updated according to the writemask.

Operation

VSQRTSH dest{k1}, src1, src2
IF k1[0] or *no writemask*:

DEST.fp16[0] := SQRT(src2.fp16[0])
ELSE IF *zeroing*:

DEST.fp16[0] := 0
//else DEST.fp16[0] remains unchanged

DEST[127:16] := src1[127:16]
DEST[MAXVL-1:128] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VSQRTSH __m128h _mm_mask_sqrt_round_sh (__m128h src, __mmask8 k, __m128h a, __m128h b, const int rounding);
VSQRTSH __m128h _mm_maskz_sqrt_round_sh (__mmask8 k, __m128h a, __m128h b, const int rounding);
VSQRTSH __m128h _mm_sqrt_round_sh (__m128h a, __m128h b, const int rounding);
VSQRTSH __m128h _mm_mask_sqrt_sh (__m128h src, __mmask8 k, __m128h a, __m128h b);
VSQRTSH __m128h _mm_maskz_sqrt_sh (__mmask8 k, __m128h a, __m128h b);
VSQRTSH __m128h _mm_sqrt_sh (__m128h a, __m128h b);

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal

Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F3.MAP5.W0 51 /r
VSQRTSH xmm1{k1}{z}, xmm2, 
xmm3/m16 {er}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compute square root of the low FP16 value in 
xmm3/m16 and store the result in xmm1 subject 
to writemask k1. Bits 127:16 from xmm2 are 
copied to xmm1[127:16].

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A



VSUBPH—Subtract Packed FP16 Values

Instruction Operand Encoding

Description

This instruction subtracts packed FP16 values from second source operand from the corresponding elements in the 
first source operand, storing the packed FP16 result in the destination operand. The destination elements are 
updated according to the writemask.

Operation

VSUBPH (EVEX encoded versions) when src2 operand is a register
VL = 128, 256 or 512
KL := VL/16

IF (VL = 512) AND (EVEX.b = 1):
SET_RM(EVEX.RC)

ELSE
SET_RM(MXCSR.RC)

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

DEST.fp16[j] := SRC1.fp16[j] - SRC2.fp16[j]
ELSE IF *zeroing*:

DEST.fp16[j] := 0
// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.128.NP.MAP5.W0 5C /r
VSUBPH xmm1{k1}{z}, xmm2, 
xmm3/m128/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Subtract packed FP16 values from 
xmm3/m128/m16bcst to xmm2, and store the 
result in xmm1 subject to writemask k1.

EVEX.256.NP.MAP5.W0 5C /r
VSUBPH ymm1{k1}{z}, ymm2, 
ymm3/m256/m16bcst

A V/V (AVX512-FP16 
AND AVX512VL) 
OR AVX10.11

Subtract packed FP16 values from 
ymm3/m256/m16bcst to ymm2, and store the 
result in ymm1 subject to writemask k1.

EVEX.512.NP.MAP5.W0 5C /r
VSUBPH zmm1{k1}{z}, zmm2, 
zmm3/m512/m16bcst {er}

A V/V AVX512-FP16
OR AVX10.11

Subtract packed FP16 values from 
zmm3/m512/m16bcst to zmm2, and store the 
result in zmm1 subject to writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
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VSUBPH (EVEX encoded versions) when src2 operand is a memory source 
VL = 128, 256 or 512
KL := VL/16

FOR j := 0 TO KL-1:
IF k1[j] OR *no writemask*:

IF EVEX.b = 1:
DEST.fp16[j] := SRC1.fp16[j] - SRC2.fp16[0]

ELSE:
DEST.fp16[j] := SRC1.fp16[j] - SRC2.fp16[j]

ELSE IF *zeroing*:
DEST.fp16[j] := 0

// else dest.fp16[j] remains unchanged

DEST[MAXVL-1:VL] := 0 

Intel C/C++ Compiler Intrinsic Equivalent

VSUBPH __m128h _mm_mask_sub_ph (__m128h src, __mmask8 k, __m128h a, __m128h b);
VSUBPH __m128h _mm_maskz_sub_ph (__mmask8 k, __m128h a, __m128h b);
VSUBPH __m128h _mm_sub_ph (__m128h a, __m128h b);
VSUBPH __m256h _mm256_mask_sub_ph (__m256h src, __mmask16 k, __m256h a, __m256h b);
VSUBPH __m256h _mm256_maskz_sub_ph (__mmask16 k, __m256h a, __m256h b);
VSUBPH __m256h _mm256_sub_ph (__m256h a, __m256h b);
VSUBPH __m512h _mm512_mask_sub_ph (__m512h src, __mmask32 k, __m512h a, __m512h b);
VSUBPH __m512h _mm512_maskz_sub_ph (__mmask32 k, __m512h a, __m512h b);
VSUBPH __m512h _mm512_sub_ph (__m512h a, __m512h b);
VSUBPH __m512h _mm512_mask_sub_round_ph (__m512h src, __mmask32 k, __m512h a, __m512h b, int rounding);
VSUBPH __m512h _mm512_maskz_sub_round_ph (__mmask32 k, __m512h a, __m512h b, int rounding);
VSUBPH __m512h _mm512_sub_round_ph (__m512h a, __m512h b, int rounding);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal.

Other Exceptions

EVEX-encoded instruction, see Table 2-48, “Type E2 Class Exception Conditions.”
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VSUBSH—Subtract Scalar FP16 Value Vol. 2C 5-783

VSUBSH—Subtract Scalar FP16 Value

Instruction Operand Encoding

Description

This instruction subtracts the low FP16 value from the second source operand from the corresponding value in the 
first source operand, storing the FP16 result in the destination operand. Bits 127:16 of the destination operand are 
copied from the corresponding bits of the first source operand. Bits MAXVL-1:128 of the destination operand are 
zeroed. The low FP16 element of the destination is updated according to the writemask.

Operation

VSUBSH (EVEX encoded versions)
IF EVEX.b = 1 and SRC2 is a register:

SET_RM(EVEX.RC)
ELSE

SET_RM(MXCSR.RC)

IF k1[0] OR *no writemask*:
DEST.fp16[0] := SRC1.fp16[0] - SRC2.fp16[0]

ELSE IF *zeroing*:
DEST.fp16[0] := 0

// else dest.fp16[0] remains unchanged
DEST[127:16] := SRC1[127:16]
DEST[MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VSUBSH __m128h _mm_mask_sub_round_sh (__m128h src, __mmask8 k, __m128h a, __m128h b, int rounding);
VSUBSH __m128h _mm_maskz_sub_round_sh (__mmask8 k, __m128h a, __m128h b, int rounding);
VSUBSH __m128h _mm_sub_round_sh (__m128h a, __m128h b, int rounding);
VSUBSH __m128h _mm_mask_sub_sh (__m128h src, __mmask8 k, __m128h a, __m128h b);
VSUBSH __m128h _mm_maskz_sub_sh (__mmask8 k, __m128h a, __m128h b);
VSUBSH __m128h _mm_sub_sh (__m128h a, __m128h b);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-49, “Type E3 Class Exception Conditions.”

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F3.MAP5.W0 5C /r
VSUBSH xmm1{k1}{z}, xmm2, 
xmm3/m16 {er}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Subtract the low FP16 value in xmm3/m16 from 
xmm2 and store the result in xmm1 subject to 
writemask k1. Bits 127:16 from xmm2 are 
copied to xmm1[127:16]. 

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A



VTESTPD/VTESTPS—Packed Bit Test

Instruction Operand Encoding

Description

VTESTPS performs a bitwise comparison of all the sign bits of the packed single precision elements in the first 
source operation and corresponding sign bits in the second source operand. If the AND of the source sign bits with 
the dest sign bits produces all zeros, the ZF is set else the ZF is clear. If the AND of the source sign bits with the 
inverted dest sign bits produces all zeros the CF is set else the CF is clear. An attempt to execute VTESTPS with 
VEX.W=1 will cause #UD.
VTESTPD performs a bitwise comparison of all the sign bits of the double precision elements in the first source 
operation and corresponding sign bits in the second source operand. If the AND of the source sign bits with the dest 
sign bits produces all zeros, the ZF is set else the ZF is clear. If the AND the source sign bits with the inverted dest 
sign bits produces all zeros the CF is set else the CF is clear. An attempt to execute VTESTPS with VEX.W=1 will 
cause #UD.
The first source register is specified by the ModR/M reg field.
128-bit version: The first source register is an XMM register. The second source register can be an XMM register or 
a 128-bit memory location. The destination register is not modified.
VEX.256 encoded version: The first source register is a YMM register. The second source register can be a YMM 
register or a 256-bit memory location. The destination register is not modified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Opcode/
Instruction

Op
/ 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.128.66.0F38.W0 0E /r
VTESTPS xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on sign bit AND and 
ANDN of packed single precision floating-point 
sources.

VEX.256.66.0F38.W0 0E /r
VTESTPS ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on sign bit AND and 
ANDN of packed single precision floating-point 
sources.

VEX.128.66.0F38.W0 0F /r
VTESTPD xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on sign bit AND and 
ANDN of packed double precision floating-point 
sources.

VEX.256.66.0F38.W0 0F /r
VTESTPD ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on sign bit AND and 
ANDN of packed double precision floating-point 
sources.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) N/A N/A
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Operation

VTESTPS (128-bit version)
TEMP[127:0] := SRC[127:0] AND DEST[127:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127] = 0)

THEN ZF := 1;
ELSE ZF := 0;

TEMP[127:0] := SRC[127:0] AND NOT DEST[127:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127] = 0)

THEN CF := 1;
ELSE CF := 0;

DEST (unmodified)
AF := OF := PF := SF := 0;

VTESTPS (VEX.256 encoded version)
TEMP[255:0] := SRC[255:0] AND DEST[255:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127]= TEMP[160] =TEMP[191] = TEMP[224] = TEMP[255] = 0)

THEN ZF := 1;
ELSE ZF := 0;

TEMP[255:0] := SRC[255:0] AND NOT DEST[255:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127]= TEMP[160] =TEMP[191] = TEMP[224] = TEMP[255] = 0)

THEN CF := 1;
ELSE CF := 0;

DEST (unmodified)
AF := OF := PF := SF := 0;

VTESTPD (128-bit version)
TEMP[127:0] := SRC[127:0] AND DEST[127:0]
IF ( TEMP[63] = TEMP[127] = 0)

THEN ZF := 1;
ELSE ZF := 0;

TEMP[127:0] := SRC[127:0] AND NOT DEST[127:0]
IF ( TEMP[63] = TEMP[127] = 0)

THEN CF := 1;
ELSE CF := 0;

DEST (unmodified)
AF := OF := PF := SF := 0;

VTESTPD (VEX.256 encoded version)
TEMP[255:0] := SRC[255:0] AND DEST[255:0]
IF (TEMP[63] = TEMP[127] = TEMP[191] = TEMP[255] = 0)

THEN ZF := 1;
ELSE ZF := 0;

TEMP[255:0] := SRC[255:0] AND NOT DEST[255:0]
IF (TEMP[63] = TEMP[127] = TEMP[191] = TEMP[255] = 0)

THEN CF := 1;
ELSE CF := 0;

DEST (unmodified)
AF := OF := PF := SF := 0;
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Intel C/C++ Compiler Intrinsic Equivalent

VTESTPS

int _mm256_testz_ps (__m256 s1, __m256 s2);

int _mm256_testc_ps (__m256 s1, __m256 s2);

int _mm256_testnzc_ps (__m256 s1, __m128 s2);

int _mm_testz_ps (__m128 s1, __m128 s2);

int _mm_testc_ps (__m128 s1, __m128 s2);

int _mm_testnzc_ps (__m128 s1, __m128 s2);

VTESTPD

int _mm256_testz_pd (__m256d s1, __m256d s2);

int _mm256_testc_pd (__m256d s1, __m256d s2);

int _mm256_testnzc_pd (__m256d s1, __m256d s2);

int _mm_testz_pd (__m128d s1, __m128d s2);

int _mm_testc_pd (__m128d s1, __m128d s2);

int _mm_testnzc_pd (__m128d s1, __m128d s2);

Flags Affected

The OF, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the operation.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-21, “Type 4 Class Exception Conditions.”
Additionally:
#UD If VEX.vvvv ≠ 1111B.

If VEX.W = 1 for VTESTPS or VTESTPD.
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VUCOMISH—Unordered Compare Scalar FP16 Values and Set EFLAGS

Instruction Operand Encoding

Description

This instruction compares the FP16 values in the low word of operand 1 (first operand) and operand 2 (second 
operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the result (unordered, greater than, 
less than, or equal). The OF, SF and AF flags in the EFLAGS register are set to 0. The unordered result is returned 
if either source operand is a NaN (QNaN or SNaN).
Operand 1 is an XMM register; operand 2 can be an XMM register or a 16-bit memory location.
The VUCOMISH instruction differs from the VCOMISH instruction in that it signals a SIMD floating-point invalid oper-
ation exception (#I) only if a source operand is an SNaN. The COMISS instruction signals an invalid numeric excep-
tion when a source operand is either a QNaN or SNaN.
The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated. EVEX.vvvv are 
reserved and must be 1111b, otherwise instructions will #UD.

Operation

VUCOMISH
RESULT := UnorderedCompare(SRC1.fp16[0],SRC2.fp16[0])
if RESULT is UNORDERED:

ZF, PF, CF := 1, 1, 1
else if RESULT is GREATER_THAN:

ZF, PF, CF := 0, 0, 0
else if RESULT is LESS_THAN:

ZF, PF, CF := 0, 0, 1
else: // RESULT is EQUALS

ZF, PF, CF := 1, 0, 0

OF, AF, SF := 0, 0, 0 

Intel C/C++ Compiler Intrinsic Equivalent

VUCOMISH int _mm_ucomieq_sh (__m128h a, __m128h b);
VUCOMISH int _mm_ucomige_sh (__m128h a, __m128h b);
VUCOMISH int _mm_ucomigt_sh (__m128h a, __m128h b);
VUCOMISH int _mm_ucomile_sh (__m128h a, __m128h b);
VUCOMISH int _mm_ucomilt_sh (__m128h a, __m128h b);
VUCOMISH int _mm_ucomineq_sh (__m128h a, __m128h b);

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.NP.MAP5.W0 2E /r
VUCOMISH xmm1, xmm2/m16 {sae}

A V/V AVX512-FP16 
OR AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Compare low FP16 values in xmm1 and 
xmm2/m16 and set the EFLAGS flags accordingly.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Scalar ModRM:reg (w) ModRM:r/m (r) N/A N/A
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SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

EVEX-encoded instructions, see Table 2-50, “Type E3NF Class Exception Conditions.”
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VZEROALL—Zero XMM, YMM, and ZMM Registers Vol. 2C 5-789

VZEROALL—Zero XMM, YMM, and ZMM Registers

Instruction Operand Encoding

Description

In 64-bit mode, the instruction zeroes XMM0-XMM15, YMM0-YMM15, and ZMM0-ZMM15. Outside 64-bit mode, it 
zeroes only XMM0-XMM7, YMM0-YMM7, and ZMM0-ZMM7. VZEROALL does not modify ZMM16-ZMM31.
Note: VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD. In Compatibility and legacy 32-bit 
mode only the lower 8 registers are modified.

Operation
simd_reg_file[][] is a two dimensional array representing the SIMD register file containing all the overlapping xmm, ymm, and zmm 
registers present in that implementation. The major dimension is the register number: 0 for xmm0, ymm0, and zmm0; 1 for xmm1, 
ymm1, and zmm1; etc. The minor dimension size is the width of the implemented SIMD state measured in bits. On a machine 
supporting Intel AVX-512, the width is 512.

VZEROALL (VEX.256 encoded version)
IF (64-bit mode)

limit :=15
ELSE

limit := 7
FOR i in 0 .. limit:

simd_reg_file[i][MAXVL-1:0] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VZEROALL:  _mm256_zeroall()

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-25, “Type 8 Class Exception Conditions.”

Opcode/
Instruction

Op
/ 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.256.0F.WIG 77

VZEROALL

ZO V/V AVX Zero some of the XMM, YMM, and ZMM 
registers.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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VZEROUPPER—Zero Upper Bits of YMM and ZMM Registers

Instruction Operand Encoding

Description

In 64-bit mode, the instruction zeroes the bits in positions 128 and higher in YMM0-YMM15 and ZMM0-ZMM15. 
Outside 64-bit mode, it zeroes those bits only in YMM0-YMM7 and ZMM0-ZMM7. VZEROUPPER does not modify the 
lower 128 bits of these registers and it does not modify ZMM16-ZMM31.
This instruction is recommended when transitioning between AVX and legacy SSE code; it will eliminate perfor-
mance penalties caused by false dependencies.
Note: VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. In Compatibility and legacy 32-bit 
mode only the lower 8 registers are modified.

Operation
simd_reg_file[][] is a two dimensional array representing the SIMD register file containing all the overlapping xmm, ymm, and zmm 
registers present in that implementation. The major dimension is the register number: 0 for xmm0, ymm0, and zmm0; 1 for xmm1, 
ymm1, and zmm1; etc. The minor dimension size is the width of the implemented SIMD state measured in bits. 

VZEROUPPER 
IF (64-bit mode)

limit :=15
ELSE

limit := 7
FOR i in 0 .. limit:

simd_reg_file[i][MAXVL-1:128] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VZEROUPPER:  _mm256_zeroupper()

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-25, “Type 8 Class Exception Conditions.”

Opcode/
Instruction

Op
/ 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.128.0F.WIG 77

VZEROUPPER

ZO V/V AVX Zero bits in positions 128 and higher of 
some YMM and ZMM registers.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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CHAPTER 6
INSTRUCTION SET REFERENCE, W-Z

6.1 INSTRUCTIONS (W-Z)
Chapter 6 continues an alphabetical discussion of Intel® 64 and IA-32 instructions (W-Z). See also: Chapter 3, 
“Instruction Set Reference, A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A; Chapter 4, “Instruction Set Reference, M-U‚” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2B; and Chapter 5, “Instruction Set Reference, V‚” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2D.
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WAIT/FWAIT—Wait

Instruction Operand Encoding

Description

Causes the processor to check for and handle pending, unmasked, floating-point exceptions before proceeding. 
(FWAIT is an alternate mnemonic for WAIT.)

This instruction is useful for synchronizing exceptions in critical sections of code. Coding a WAIT instruction after a 
floating-point instruction ensures that any unmasked floating-point exceptions the instruction may raise are 
handled before the processor can modify the instruction’s results. See the section titled “Floating-Point Exception 
Synchronization” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for 
more information on using the WAIT/FWAIT instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CheckForPendingUnmaskedFloatingPointExceptions;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None. 

Protected Mode Exceptions
#NM If CR0.MP[bit 1] = 1 and CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

9B WAIT ZO Valid Valid Check pending unmasked floating-point 
exceptions.

9B FWAIT ZO Valid Valid Check pending unmasked floating-point 
exceptions.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A



WBINVD—Write Back and Invalidate Cache

Instruction Operand Encoding

Description

Writes back all modified cache lines in the processor’s internal cache to main memory and invalidates (flushes) the 
internal caches. The instruction then issues a special-function bus cycle that directs external caches to also write 
back modified data and another bus cycle to indicate that the external caches should be invalidated.

After executing this instruction, the processor does not wait for the external caches to complete their write-back 
and flushing operations before proceeding with instruction execution. It is the responsibility of hardware to respond 
to the cache write-back and flush signals. The amount of time or cycles for WBINVD to complete will vary due to 
size and other factors of different cache hierarchies. As a consequence, the use of the WBINVD instruction can have 
an impact on logical processor interrupt/event response time. Additional information of WBINVD behavior in a 
cache hierarchy with hierarchical sharing topology can be found in Chapter 2 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

The WBINVD instruction is a privileged instruction. When the processor is running in protected mode, the CPL of a 
program or procedure must be 0 to execute this instruction. This instruction is also a serializing instruction (see 
“Serializing Instructions” in Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A).

In situations where cache coherency with main memory is not a concern, software can use the INVD instruction. 

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The WBINVD instruction is implementation dependent, and its function may be implemented differently on future 
Intel 64 and IA-32 processors. The instruction is not supported on IA-32 processors earlier than the Intel486 
processor.

Operation

WriteBack(InternalCaches);
Flush(InternalCaches);
SignalWriteBack(ExternalCaches);
SignalFlush(ExternalCaches);
Continue; (* Continue execution *)

Intel C/C++ Compiler Intrinsic Equivalent

WBINVD void _wbinvd(void);

Flags Affected

None.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 09 WBINVD ZO Valid Valid Write back and flush Internal caches; initiate 
writing-back and flushing of external caches.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) WBINVD cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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WBNOINVD—Write Back and Do Not Invalidate Cache

Instruction Operand Encoding

Description

The WBNOINVD instruction writes back all modified cache lines in the processor’s internal cache to main memory 
but does not invalidate (flush) the internal caches.

After executing this instruction, the processor does not wait for the external caches to complete their write-back 
operation before proceeding with instruction execution. It is the responsibility of hardware to respond to the cache 
write-back signal. The amount of time or cycles for WBNOINVD to complete will vary due to size and other factors 
of different cache hierarchies. As a consequence, the use of the WBNOINVD instruction can have an impact on 
logical processor interrupt/event response time. 

The WBNOINVD instruction is a privileged instruction. When the processor is running in protected mode, the CPL of 
a program or procedure must be 0 to execute this instruction. This instruction is also a serializing instruction (see 
“Serializing Instructions” in Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

WriteBack(InternalCaches);
Continue; (* Continue execution *)

Intel C/C++ Compiler Intrinsic Equivalent

WBNOINVD void _wbnoinvd(void);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) WBNOINVD cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Opcode /
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 09

WBNOINVD

ZO V/V WBNOINVD Write back and do not flush internal caches; 
initiate writing-back without flushing of external 
caches.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A N/A
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64-Bit Mode Exceptions
Same exceptions as in protected mode.
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WRFSBASE/WRGSBASE—Write FS/GS Segment Base

Instruction Operand Encoding

Description

Loads the FS or GS segment base address with the general-purpose register indicated by the modR/M:r/m field.

The source operand may be either a 32-bit or a 64-bit general-purpose register. The REX.W prefix indicates the 
operand size is 64 bits. If no REX.W prefix is used, the operand size is 32 bits; the upper 32 bits of the source 
register are ignored and upper 32 bits of the base address (for FS or GS) are cleared. 
This instruction is supported only in 64-bit mode.

Operation

FS/GS segment base address := SRC;

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

WRFSBASE  void _writefsbase_u32( unsigned int );
WRFSBASE  _writefsbase_u64( unsigned __int64 );
WRGSBASE  void _writegsbase_u32( unsigned int );
WRGSBASE  _writegsbase_u64( unsigned __int64 );

Protected Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized in protected mode.

Real-Address Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized in compatibility mode.

Opcode/
Instruction

Op/ 
En

64/32-
bit 
Mode

CPUID Fea-
ture Flag

Description

F3 0F AE /2
WRFSBASE r32

M V/I FSGSBASE Load the FS base address with the 32-bit value in the 
source register.

F3 REX.W 0F AE /2
WRFSBASE r64

M V/I FSGSBASE Load the FS base address with the 64-bit value in the 
source register.

F3 0F AE /3
WRGSBASE r32

M V/I FSGSBASE Load the GS base address with the 32-bit value in the 
source register.

F3 REX.W 0F AE /3
WRGSBASE r64

M V/I FSGSBASE Load the GS base address with the 64-bit value in the 
source register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A
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64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.FSGSBASE[bit 16] = 0.
If CPUID.07H.0H:EBX.FSGSBASE[bit 0] = 0

#GP(0) If the source register contains a non-canonical address.
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WRMSR—Write to Model Specific Register

Instruction Operand Encoding

Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR) specified in the ECX register. 
(On processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The contents of 
the EDX register are copied to high-order 32 bits of the selected MSR and the contents of the EAX register are 
copied to low-order 32 bits of the MSR. (On processors that support the Intel 64 architecture, the high-order 32 
bits of each of RAX and RDX are ignored.) Undefined or reserved bits in an MSR should be set to values previously 
read.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a general protection 
exception #GP(0) is generated. Specifying a reserved or unimplemented MSR address in ECX will also cause a 
general protection exception. The processor will also generate a general protection exception if software attempts 
to write to bits in a reserved MSR.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated. This includes global entries 
(see “Translation Lookaside Buffers (TLBs)” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A).

MSRs control functions for testability, execution tracing, performance-monitoring and machine check errors. 
Chapter 2, “Model-Specific Registers (MSRs),” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 4, lists all MSRs that can be written with this instruction and their addresses. Note that each 
processor family has its own set of MSRs.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in Chapter 9 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A). Note that WRMSR to the IA32_TSC_DEADLINE MSR 
(MSR index 6E0H) and the X2APIC MSRs (MSR indices 802H to 83FH) are not serializing.

The CPUID instruction should be used to determine whether MSRs are supported (CPUID.01H:EDX[5] = 1) before 
using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the WRMSR instruction were introduced into the IA-32 architecture with 
the Pentium processor. Execution of this instruction by an IA-32 processor earlier than the Pentium processor 
results in an invalid opcode exception #UD.

Operation

MSR[ECX] := EDX:EAX;

Flags Affected

None.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 30 WRMSR ZO Valid Valid Write the value in EDX:EAX to MSR specified 
by ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR address.
If the value in EDX:EAX sets bits that are reserved in the MSR specified by ECX.
If the source register contains a non-canonical address and ECX specifies one of the following 
MSRs: IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE, IA32_KERNEL_GS_BASE, IA32_L-
STAR, IA32_SYSENTER_EIP, IA32_SYSENTER_ESP.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the value in ECX specifies a reserved or unimplemented MSR address.

If the value in EDX:EAX sets bits that are reserved in the MSR specified by ECX.
If the source register contains a non-canonical address and ECX specifies one of the following 
MSRs: IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE, IA32_KERNEL_GS_BASE, IA32_L-
STAR, IA32_SYSENTER_EIP, IA32_SYSENTER_ESP.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0)  The WRMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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WRMSRLIST—Write List of Model Specific Registers

Instruction Operand Encoding

Description

This instruction writes a software-provided list of up to 64 MSRs with values loaded from memory.

WRMSRLIST takes three implied input operands:
• RSI: Linear address of a table of MSR addresses (8 bytes per address)1.
• RDI: Linear address of a table from which MSR data is loaded (8 bytes per MSR).
• RCX: 64-bit bitmask of valid bits for the MSRs. Bit 0 is the valid bit for entry 0 in each table, etc.

For each RCX bit [n] from 0 to 63, if RCX[n] is 1, WRMSRLIST will write the MSR specified at entry [n] in the RSI-
based table with the value read from memory at the entry [n] in the RDI-based table.

This implies a maximum of 64 MSRs that can be processed by this instruction. The processor will clear RCX[n] after 
it finishes handling that MSR. Similar to repeated string operations, WRMSRLIST supports partial completion for 
interrupts, exceptions, and traps. In these situations, the RIP register saved will point to the MSRLIST instruction 
while the RCX register will have cleared bits corresponding to all completed iterations.

This instruction must be executed at privilege level 0; otherwise, a general protection exception #GP(0) is gener-
ated. This instruction performs MSR-specific checks in the same manner as WRMSR.
Like WRMSRNS (and unlike WRMSR), WRMSRLIST is not defined as a serializing instruction (see “Serializing 
Instructions” in Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). This 
means that software should not rely on WRMSRLIST to drain all buffered writes to memory before the next instruc-
tion is fetched and executed. For implementation reasons, some processors may serialize when writing certain 
MSRs, even though that is not guaranteed.
Like WRMSR and WRMSRNS, WRMSRLIST ensures that all operations before WRMSRLIST do not use any new MSR 
value and that all operations after WRMSRLIST do use the new values. An exception to this rule is certain store 
related performance-monitor events that only count stores when they are drained to memory. Since WRMSRLIST 
is not a serializing instruction, if software uses WRMSRLIST to change the controls for such performance-monitor 
events, stores issued before WRMSRLIST may be counted based on the controls established by WRMSRLIST. Soft-
ware can insert the SERIALIZE instruction before the WRMSRLIST if so desired.
Those MSRs that cause a TLB invalidation when they are written via WRMSR (e.g., MTRRs) will also cause the same 
TLB invalidation when written by WRMSRLIST.
In places where WRMSR is being used as a proxy for a serializing instruction, a different serializing instruction can 
be used (e.g., SERIALIZE).
WRMSRLIST writes MSRs in order, which means the processor will ensure that an MSR in iteration “n” will be 
written only after previous iterations (“n-1”). If the older MSR writes had a side effect that affects the behavior of 
the next MSR, the processor will ensure that side effect is honored.
The processor is allowed (but not required) to “load ahead” in the list. The following are examples of things the 
processor may do:
• Use an old memory type or TLB entry for loads or stores to memory containing the tables despite an MSR 

written by a previous iteration changing MTRR or invalidating TLBs.

Opcode /
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature Flag Description

F3 0F 01 C6

WRMSRLIST

ZO V/N.E. MSRLIST Write requested list of MSRs with the values 
specified in memory.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

1. Since MSR addresses are only 32-bits wide, bits 63:32 of each MSR address table entry is reserved.
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• Cause a page fault for access to a table entry after the nth, despite the processor having written only n MSRs.1

Operation
DO WHILE RCX != 0

MSR_index := position of least significant bit set in RCX;
Load MSR_address_table_entry from 8 bytes at the linear address RSI + (MSR_index * 8);
IF MSR_address_table_entry[63:32] != 0 THEN #GP(0); FI;
MSR_address := MSR_address_table_entry[31:0];
Load MSR_data from 8 bytes at the linear address RDI + (MSR_index * 8);
IF WRMSR of MSR_data to the MSR with address MSR_address would #GP THEN #GP(0); FI;
Load the MSR with address MSR_address with MSR_data;
RCX[MSR_index] := 0;
Allow delivery of any pending interrupts or traps;

OD;

Flags Affected

None.

Protected Mode Exceptions
#UD The WRMSRLIST instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The WRMSRLIST instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD  The WRMSRLIST instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD  The WRMSRLIST instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If RSI [2:0] ≠ 0, RDI [2:0] ≠ 0, or bits 63:32 of an MSR-address table entry are not all zero.
If an execution of WRMSR to a specified MSR with a specified value would generate a general-
protection exception (#GP(0)).

#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=01H):EAX.MSRLIST[bit 27] = 0.

1. For example, the processor may take a page fault due to a linear address for the 10th entry in the MSR address table despite only 
having completed the MSR writes up to entry 5.
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WRMSRNS—Non-Serializing Write to Model Specific Register

Instruction Operand Encoding

Description

WRMSRNS is an instruction that behaves like WRMSR except that it is not a serializing instruction by default. It can 
be executed only at privilege level 0 or in real-address mode; otherwise, a general protection exception #GP(0) is 
generated. 
The instruction writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR) specified in 
the ECX register. The contents of the EDX register are copied to the high-order 32 bits of the selected MSR and the 
contents of the EAX register are copied to the low-order 32 bits of the MSR. The high-order 32 bits of RAX, RCX, 
and RDX are ignored.
Unlike WRMSR, WRMSRNS is not defined as a serializing instruction (see “Serializing Instructions” in Chapter 9 of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). This means that software should 
not rely on it to drain all buffered writes to memory before the next instruction is fetched and executed. For imple-
mentation reasons, some processors may serialize when writing certain MSRs, even though that is not guaranteed.
Like WRMSR, WRMSRNS will ensure that all operations before it do not use the new MSR value and that all opera-
tions after the WRMSRNS do use the new value. An exception to this rule is certain store related performance-
monitor events that only count stores when they are drained to memory. Since WRMSRNS is not a serializing 
instruction, if software uses WRMSRNS to change the controls for such performance-monitor events, stores issued 
before WRMSRMS may be counted based on the controls established by WRMSRNS. Software can insert the 
SERIALIZE instruction before the WRMSRNS if so desired.
Those MSRs that cause a TLB invalidation when they are written via WRMSR (e.g., MTRRs) will also cause the same 
TLB invalidation when written by WRMSRNS.
In order to improve performance, software may replace WRMSR with WRMSRNS. In places where WRMSR is being 
used as a proxy for a serializing instruction, a different serializing instruction can be used (e.g., SERIALIZE).

Operation
MSR[ECX] := EDX:EAX;

Flags Affected

None.

Opcode/
Instruction

Op/ 
En

64/32 Bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 01 C6

WRMSRNS

ZO V/V WRMSRNS Write the value in EDX:EAX to MSR specified by 
ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the specified MSR address is reserved or unimplemented MSR.
If the source data sets bits that are reserved in the specified MSR.
If the source data contains a non-canonical address and the specified MSR is one of the 
following: IA32_BNDCFGS, IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE, 
IA32_INTERRUPT_SSP_TABLE_ADDR, IA32_KERNEL_GS_BASE, IA32_LSTAR, 
IA32_PL0_SSP, IA32_PL1_SSP, IA32_PL2_SSP, IA32_PL3_SSP, IA32_RTIT_ADDR0_A, 
IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A, 
IA32_RTIT_ADDR2_B, IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B, IA32_S_CET, 
IA32_SYSENTER_EIP, IA32_SYSENTER_ESP, IA32_UINTR_HANDLER, IA32_UINTR_PD, 
IA32_UINTR_STACKADJUST, IA32_U_CET, and IA32_UINTR_TT.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP(0) If the specified MSR address is reserved or unimplemented MSR.

If the source data sets bits that are reserved in the specified MSR.
If the source data contains a non-canonical address and the specified MSR is one of the 
following: IA32_BNDCFGS, IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE, 
IA32_INTERRUPT_SSP_TABLE_ADDR, IA32_KERNEL_GS_BASE, IA32_LSTAR, 
IA32_PL0_SSP, IA32_PL1_SSP, IA32_PL2_SSP, IA32_PL3_SSP, IA32_RTIT_ADDR0_A, 
IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A, 
IA32_RTIT_ADDR2_B, IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B, IA32_S_CET, 
IA32_SYSENTER_EIP, IA32_SYSENTER_ESP, IA32_UINTR_HANDLER, IA32_UINTR_PD, 
IA32_UINTR_STACKADJUST, IA32_U_CET, and IA32_UINTR_TT.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The WRMSRNS instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the specified MSR address is reserved or unimplemented MSR.
If the source data sets bits that are reserved in the specified MSR.
If the source data contains a non-canonical address and the specified MSR is one of the 
following: IA32_BNDCFGS, IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE, 
IA32_INTERRUPT_SSP_TABLE_ADDR, IA32_KERNEL_GS_BASE, IA32_LSTAR, 
IA32_PL0_SSP, IA32_PL1_SSP, IA32_PL2_SSP, IA32_PL3_SSP, IA32_RTIT_ADDR0_A, 
IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A, 
IA32_RTIT_ADDR2_B, IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B, IA32_S_CET, 
IA32_SYSENTER_EIP, IA32_SYSENTER_ESP, IA32_UINTR_HANDLER, IA32_UINTR_PD, 
IA32_UINTR_STACKADJUST, IA32_U_CET, and IA32_UINTR_TT.

#UD If the LOCK prefix is used.
WRMSRNS—Non-Serializing Write to Model Specific Register Vol. 2D 6-14



WRPKRU—Write Data to User Page Key Register

Instruction Operand Encoding

Description

Writes the value of EAX into PKRU. ECX and EDX must be 0 when WRPKRU is executed; otherwise, a general-
protection exception (#GP) occurs.

WRPKRU can be executed only if CR4.PKE = 1; otherwise, an invalid-opcode exception (#UD) occurs. Software can 
discover the value of CR4.PKE by examining CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4].

On processors that support the Intel 64 Architecture, the high-order 32-bits of RCX, RDX, and RAX are ignored.

WRPKRU will never execute speculatively. Memory accesses affected by PKRU register will not execute (even 
speculatively) until all prior executions of WRPKRU have completed execution and updated the PKRU register.

Operation

IF (ECX = 0 AND EDX = 0) 
THEN PKRU := EAX;
ELSE #GP(0); 

FI;

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

WRPKRU void _wrpkru(uint32_t);

Protected Mode Exceptions
#GP(0) If ECX ≠ 0.

If EDX ≠ 0.
#UD If the LOCK prefix is used.

If CR4.PKE = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Opcode/
Instruction

Op/ 
En

64/32bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 01 EF

WRPKRU

ZO V/V OSPKE Writes EAX into PKRU.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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64-Bit Mode Exceptions
Same exceptions as in protected mode.
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WRSSD/WRSSQ—Write to Shadow Stack

Instruction Operand Encoding

Description

Writes bytes in register source to the shadow stack.

Operation

IF CPL = 3
IF (CR4.CET & IA32_U_CET.SH_STK_EN) = 0

THEN #UD; FI;
IF (IA32_U_CET.WR_SHSTK_EN) = 0

THEN #UD; FI;
ELSE

IF (CR4.CET & IA32_S_CET.SH_STK_EN) = 0
THEN #UD; FI;

IF (IA32_S_CET.WR_SHSTK_EN) = 0
THEN #UD; FI;

FI;
DEST_LA = Linear_Address(mem operand)
IF (operand size is 64 bit)

THEN
(* Destination not 8B aligned *)
IF DEST_LA[2:0]

THEN GP(0); FI;
Shadow_stack_store 8 bytes of SRC to DEST_LA;

ELSE
(* Destination not 4B aligned *)
IF DEST_LA[1:0]

THEN GP(0); FI;
Shadow_stack_store 4 bytes of SRC[31:0] to DEST_LA;

FI;

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

WRSSD void _wrssd(__int32, void *);
WRSSQ void _wrssq(__int64, void *);

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

0F 38 F6 !(11):rrr:bbb
WRSSD m32, r32

MR V/V CET_SS Write 4 bytes to shadow stack.

REX.W 0F 38 F6 !(11):rrr:bbb
WRSSQ m64, r64

MR V/N.E. CET_SS Write 8 bytes to shadow stack.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Protected Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
If CPL = 3 and IA32_U_CET.SH_STK_EN = 0.
If CPL < 3 and IA32_S_CET.SH_STK_EN = 0.
If CPL = 3 and IA32_U_CET.WR_SHSTK_EN = 0.
If CPL < 3 and IA32_S_CET.WR_SHSTK_EN = 0.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If destination is located in a non-writeable segment.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If linear address of destination is not 4 byte aligned.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs if destination is not a user shadow stack when CPL3 and not a supervisor 

shadow stack when CPL < 3.
Other terminal and non-terminal faults.

Real-Address Mode Exceptions
#UD The WRSS instruction is not recognized in real-address mode. 

Virtual-8086 Mode Exceptions
#UD The WRSS instruction is not recognized in virtual-8086 mode. 

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
If CPL = 3 and IA32_U_CET.SH_STK_EN = 0.
If CPL < 3 and IA32_S_CET.SH_STK_EN = 0.
If CPL = 3 and IA32_U_CET.WR_SHSTK_EN = 0.
If CPL < 3 and IA32_S_CET.WR_SHSTK_EN = 0.

#PF(fault-code) If a page fault occurs if destination is not a user shadow stack when CPL3 and not a supervisor 
shadow stack when CPL < 3.
Other terminal and non-terminal faults.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
If CPL = 3 and IA32_U_CET.SH_STK_EN = 0.
If CPL < 3 and IA32_S_CET.SH_STK_EN = 0.
If CPL = 3 and IA32_U_CET.WR_SHSTK_EN = 0.
If CPL < 3 and IA32_S_CET.WR_SHSTK_EN = 0.

#GP(0) If a memory address is in a non-canonical form.
If linear address of destination is not 4 byte aligned.

#PF(fault-code) If a page fault occurs if destination is not a user shadow stack when CPL3 and not a supervisor 
shadow stack when CPL < 3.
Other terminal and non-terminal faults.
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WRUSSD/WRUSSQ—Write to User Shadow Stack

Instruction Operand Encoding

Description

Writes bytes in register source to a user shadow stack page. The WRUSS instruction can be executed only if CPL = 
0, however the processor treats its shadow-stack accesses as user accesses.

Operation

IF CR4.CET = 0
THEN #UD; FI;

IF CPL > 0
THEN #GP(0); FI;

DEST_LA = Linear_Address(mem operand)
IF (operand size is 64 bit)

THEN
(* Destination not 8B aligned *)
IF DEST_LA[2:0]

THEN GP(0); FI;
Shadow_stack_store 8 bytes of SRC to DEST_LA as user-mode access;

ELSE
(* Destination not 4B aligned *)
IF DEST_LA[1:0]

THEN GP(0); FI;
Shadow_stack_store 4 bytes of SRC[31:0] to DEST_LA as user-mode access;

FI;

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

WRUSSD void _wrussd(__int32, void *);
WRUSSQ void _wrussq(__int64, void *);

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature Flag

Description

66 0F 38 F5 !(11):rrr:bbb
WRUSSD m32, r32

MR V/V CET_SS Write 4 bytes to shadow stack.

66 REX.W 0F 38 F5 !(11):rrr:bbb
WRUSSQ m64, r64

MR V/N.E. CET_SS Write 8 bytes to shadow stack.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) N/A N/A
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Protected Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If destination is located in a non-writeable segment.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If linear address of destination is not 4 byte aligned.
If CPL is not 0.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If destination is not a user shadow stack.

Other terminal and non-terminal faults.

Real-Address Mode Exceptions
#UD The WRUSS instruction is not recognized in real-address mode. 

Virtual-8086 Mode Exceptions
#UD The WRUSS instruction is not recognized in virtual-8086 mode. 

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
#GP(0) If a memory address is in a non-canonical form.

If linear address of destination is not 4 byte aligned.
If CPL is not 0.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If destination is not a user shadow stack.

Other terminal and non-terminal faults.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
#GP(0) If a memory address is in a non-canonical form.

If linear address of destination is not 4 byte aligned.
If CPL is not 0.

#PF(fault-code) If destination is not a user shadow stack.
Other terminal and non-terminal faults.
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XABORT—Transactional Abort

Instruction Operand Encoding

Description

XABORT forces an RTM abort. Following an RTM abort, the logical processor resumes execution at the fallback 
address computed through the outermost XBEGIN instruction. The EAX register is updated to reflect an XABORT 
instruction caused the abort, and the imm8 argument will be provided in bits 31:24 of EAX. 

Operation

XABORT
IF RTM_ACTIVE = 0

THEN 
Treat as NOP;

ELSE
GOTO RTM_ABORT_PROCESSING;

FI;

(* For any RTM abort condition encountered during RTM execution *)
RTM_ABORT_PROCESSING:

Restore architectural register state;
Discard memory updates performed in transaction;
Update EAX with status and XABORT argument;
RTM_NEST_COUNT:= 0;
RTM_ACTIVE:= 0;
SUSLDTRK_ACTIVE := 0;
IF 64-bit Mode

THEN
RIP:= fallbackRIP;

ELSE
EIP := fallbackEIP;

FI;
END

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent

XABORT void _xabort( unsigned int);

SIMD Floating-Point Exceptions

None.

Opcode/Instruction Op/ 
En

64/32bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

C6 F8 ib
XABORT imm8

A V/V RTM Causes an RTM abort if in RTM execution.

Op/En Operand 1 Operand2 Operand3 Operand4

A imm8 N/A N/A N/A
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Other Exceptions
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] = 0.

If LOCK prefix is used.
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XACQUIRE/XRELEASE—Hardware Lock Elision Prefix Hints

Description

The XACQUIRE prefix is a hint to start lock elision on the memory address specified by the instruction and the 
XRELEASE prefix is a hint to end lock elision on the memory address specified by the instruction.
The XACQUIRE prefix hint can only be used with the following instructions (these instructions are also referred to 
as XACQUIRE-enabled when used with the XACQUIRE prefix):
• Instructions with an explicit LOCK prefix (F0H) prepended to forms of the instruction where the destination 

operand is a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHG8B, DEC, INC, NEG, NOT, 
OR, SBB, SUB, XOR, XADD, and XCHG. 

• The XCHG instruction either with or without the presence of the LOCK prefix. 
The XRELEASE prefix hint can only be used with the following instructions (also referred to as XRELEASE-enabled 
when used with the XRELEASE prefix):
• Instructions with an explicit LOCK prefix (F0H) prepended to forms of the instruction where the destination 

operand is a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHG8B, DEC, INC, NEG, NOT, 
OR, SBB, SUB, XOR, XADD, and XCHG. 

• The XCHG instruction either with or without the presence of the LOCK prefix. 
• The “MOV mem, reg” (Opcode 88H/89H) and “MOV mem, imm” (Opcode C6H/C7H) instructions. In these 

cases, the XRELEASE is recognized without the presence of the LOCK prefix.
The lock variables must satisfy the guidelines described in Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, Section 16.3.3, for elision to be successful, otherwise an HLE abort may be signaled.
If an encoded byte sequence that meets XACQUIRE/XRELEASE requirements includes both prefixes, then the HLE 
semantic is determined by the prefix byte that is placed closest to the instruction opcode. For example, an F3F2C6 
will not be treated as a XRELEASE-enabled instruction since the F2H (XACQUIRE) is closest to the instruction 
opcode C6. Similarly, an F2F3F0 prefixed instruction will be treated as a XRELEASE-enabled instruction since F3H 
(XRELEASE) is closest to the instruction opcode.

Opcode/Instruction 64/32bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F2
XACQUIRE

V/V HLE1

NOTES:
1. Software is not required to check the HLE feature flag to use XACQUIRE or XRELEASE, as they are treated as regular prefix if HLE

feature flag reports 0.

A hint used with an “XACQUIRE-enabled“ instruction to start lock 
elision on the instruction memory operand address.

F3
XRELEASE

V/V HLE A hint used with an “XRELEASE-enabled“ instruction to end lock 
elision on the instruction memory operand address.
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Intel 64 and IA-32 Compatibility
The effect of the XACQUIRE/XRELEASE prefix hint is the same in non-64-bit modes and in 64-bit mode.
For instructions that do not support the XACQUIRE hint, the presence of the F2H prefix behaves the same way as 
prior hardware, according to
• REPNE/REPNZ semantics for string instructions,
• Serve as SIMD prefix for legacy SIMD instructions operating on XMM register
• Cause #UD if prepending the VEX prefix.
• Undefined for non-string instructions or other situations.
For instructions that do not support the XRELEASE hint, the presence of the F3H prefix behaves the same way as 
in prior hardware, according to
• REP/REPE/REPZ semantics for string instructions,
• Serve as SIMD prefix for legacy SIMD instructions operating on XMM register
• Cause #UD if prepending the VEX prefix.
• Undefined for non-string instructions or other situations.

Operation

XACQUIRE
IF XACQUIRE-enabled instruction

THEN
IF (HLE_NEST_COUNT < MAX_HLE_NEST_COUNT) THEN

HLE_NEST_COUNT++
IF (HLE_NEST_COUNT = 1) THEN

HLE_ACTIVE := 1
IF 64-bit mode

THEN 
restartRIP := instruction pointer of the XACQUIRE-enabled instruction

ELSE
restartEIP := instruction pointer of the XACQUIRE-enabled instruction

FI;
Enter HLE Execution (* record register state, start tracking memory state *)

FI; (* HLE_NEST_COUNT = 1*)
IF ElisionBufferAvailable 

THEN
Allocate elision buffer
Record address and data for forwarding and commit checking
Perform elision

ELSE 
Perform lock acquire operation transactionally but without elision

FI;
ELSE (* HLE_NEST_COUNT = MAX_HLE_NEST_COUNT*)

GOTO HLE_ABORT_PROCESSING
FI;

ELSE
Treat instruction as non-XACQUIRE F2H prefixed legacy instruction

FI;
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XRELEASE
IF XRELEASE-enabled instruction 

THEN
IF (HLE_NEST_COUNT > 0) 

THEN
HLE_NEST_COUNT--
IF lock address matches in elision buffer THEN

IF lock satisfies address and value requirements THEN
Deallocate elision buffer

ELSE
GOTO HLE_ABORT_PROCESSING

FI;
FI;
IF (HLE_NEST_COUNT = 0) 

THEN
IF NoAllocatedElisionBuffer 

THEN
Try to commit transactional execution
IF fail to commit transactional execution 

THEN
GOTO HLE_ABORT_PROCESSING;

ELSE (* commit success *)
HLE_ACTIVE := 0

FI;
ELSE

GOTO HLE_ABORT_PROCESSING
FI;

FI;
FI; (* HLE_NEST_COUNT > 0 *)

ELSE 
Treat instruction as non-XRELEASE F3H prefixed legacy instruction

FI;

(* For any HLE abort condition encountered during HLE execution *)
HLE_ABORT_PROCESSING:
 HLE_ACTIVE := 0

HLE_NEST_COUNT := 0
Restore architectural register state
Discard memory updates performed in transaction
Free any allocated lock elision buffers
IF 64-bit mode

THEN 
RIP := restartRIP

ELSE
EIP := restartEIP

FI;
Execute and retire instruction at RIP (or EIP) and ignore any HLE hint

END
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SIMD Floating-Point Exceptions

None.

Other Exceptions
#GP(0) If the use of prefix causes instruction length to exceed 15 bytes.
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XADD—Exchange and Add

Instruction Operand Encoding

Description

Exchanges the first operand (destination operand) with the second operand (source operand), then loads the sum 
of the two values into the destination operand. The destination operand can be a register or a memory location; the 
source operand is a register.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

IA-32 Architecture Compatibility

IA-32 processors earlier than the Intel486 processor do not recognize this instruction. If this instruction is used, 
you should provide an equivalent code sequence that runs on earlier processors.

Operation

TEMP := SRC + DEST;
SRC := DEST;
DEST := TEMP;

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are set according to the result of the addition, which is stored in the destination 
operand. 

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F C0 /r XADD r/m8, r8 MR Valid Valid Exchange r8 and r/m8; load sum into r/m8.

REX + 0F C0 /r XADD r/m8*, r8* MR Valid N.E. Exchange r8 and r/m8; load sum into r/m8.

0F C1 /r XADD r/m16, r16 MR Valid Valid Exchange r16 and r/m16; load sum into r/m16.

0F C1 /r XADD r/m32, r32 MR Valid Valid Exchange r32 and r/m32; load sum into r/m32.

REX.W + 0F C1 /r XADD r/m64, r64 MR Valid N.E. Exchange r64 and r/m64; load sum into r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r, w) N/A N/A
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Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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XBEGIN—Transactional Begin

Instruction Operand Encoding

Description

The XBEGIN instruction specifies the start of an RTM code region. If the logical processor was not already in trans-
actional execution, then the XBEGIN instruction causes the logical processor to transition into transactional execu-
tion. The XBEGIN instruction that transitions the logical processor into transactional execution is referred to as the 
outermost XBEGIN instruction. The instruction also specifies a relative offset to compute the address of the fallback 
code path following a transactional abort. (Use of the 16-bit operand size does not cause this address to be trun-
cated to 16 bits, unlike a near jump to a relative offset.)
On an RTM abort, the logical processor discards all architectural register and memory updates performed during 
the RTM execution and restores architectural state to that corresponding to the outermost XBEGIN instruction. The 
fallback address following an abort is computed from the outermost XBEGIN instruction.

Execution of XBEGIN while in a suspend read address tracking region causes a transactional abort.

Operation

XBEGIN
IF RTM_NEST_COUNT < MAX_RTM_NEST_COUNT AND SUSLDTRK_ACTIVE = 0

THEN
RTM_NEST_COUNT++
IF RTM_NEST_COUNT = 1 THEN

IF 64-bit Mode
THEN

IF OperandSize = 16
THEN fallbackRIP := RIP + SignExtend64(rel16);
ELSE fallbackRIP := RIP + SignExtend64(rel32);

FI;
IF fallbackRIP is not canonical

THEN #GP(0);
FI;

ELSE
IF OperandSize = 16

THEN fallbackEIP := EIP + SignExtend32(rel16);
ELSE fallbackEIP := EIP + rel32;

FI;
IF fallbackEIP outside code segment limit

THEN #GP(0);
FI;

FI;

Opcode/Instruction Op/ 
En

64/32bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

C7 F8
XBEGIN rel16

A V/V RTM Specifies the start of an RTM region. Provides a 16-bit relative offset 
to compute the address of the fallback instruction address at which 
execution resumes following an RTM abort.

C7 F8
XBEGIN rel32

A V/V RTM Specifies the start of an RTM region. Provides a 32-bit relative offset 
to compute the address of the fallback instruction address at which 
execution resumes following an RTM abort.

Op/En Operand 1 Operand2 Operand3 Operand4

A Offset N/A N/A N/A
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RTM_ACTIVE := 1
Enter RTM Execution (* record register state, start tracking memory state*)

FI; (* RTM_NEST_COUNT = 1 *)
ELSE (* RTM_NEST_COUNT = MAX_RTM_NEST_COUNT OR SUSLDTRK_ACTIVE = 1 *)

GOTO RTM_ABORT_PROCESSING
FI;

(* For any RTM abort condition encountered during RTM execution *)
RTM_ABORT_PROCESSING:

Restore architectural register state
Discard memory updates performed in transaction
Update EAX with status
RTM_NEST_COUNT := 0
RTM_ACTIVE := 0
SUSLDTRK_ACTIVE := 0
IF 64-bit mode

THEN
RIP := fallbackRIP

ELSE
EIP := fallbackEIP

FI;
END

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent

XBEGIN unsigned int _xbegin( void );

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11]=0.

If LOCK prefix is used.
#GP(0) If the fallback address is outside the CS segment.

Real-Address Mode Exceptions
#GP(0) If the fallback address is outside the address space 0000H and FFFFH.
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11]=0.

If LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the fallback address is outside the address space 0000H and FFFFH.
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11]=0.

If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-bit Mode Exceptions
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] = 0.

If LOCK prefix is used.
#GP(0) If the fallback address is non-canonical.
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XCHG—Exchange Register/Memory With Register

Instruction Operand Encoding

Description

Exchanges the contents of the destination (first) and source (second) operands. The operands can be two general-
purpose registers or a register and a memory location. If a memory operand is referenced, the processor’s locking 
protocol is automatically implemented for the duration of the exchange operation, regardless of the presence or 
absence of the LOCK prefix or of the value of the IOPL. (See the LOCK prefix description in this chapter for more 
information on the locking protocol.)

This instruction is useful for implementing semaphores or similar data structures for process synchronization. (See 
“Bus Locking” in Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for 
more information on bus locking.) 

The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit operands.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

90+rw XCHG AX, r16 O Valid Valid Exchange r16 with AX.

90+rw XCHG r16, AX O Valid Valid Exchange AX with r16.

90+rd XCHG EAX, r32 O Valid Valid Exchange r32 with EAX.

REX.W + 90+rd XCHG RAX, r64 O Valid N.E. Exchange r64 with RAX.

90+rd XCHG r32, EAX O Valid Valid Exchange EAX with r32.

REX.W + 90+rd XCHG r64, RAX O Valid N.E. Exchange RAX with r64.

86 /r XCHG r/m8, r8 MR Valid Valid Exchange r8 (byte register) with byte from 
r/m8.

REX + 86 /r XCHG r/m8*, r8* MR Valid N.E. Exchange r8 (byte register) with byte from 
r/m8.

86 /r XCHG r8, r/m8 RM Valid Valid Exchange byte from r/m8 with r8 (byte 
register).

REX + 86 /r XCHG r8*, r/m8* RM Valid N.E. Exchange byte from r/m8 with r8 (byte 
register).

87 /r XCHG r/m16, r16 MR Valid Valid Exchange r16 with word from r/m16.

87 /r XCHG r16, r/m16 RM Valid Valid Exchange word from r/m16 with r16.

87 /r XCHG r/m32, r32 MR Valid Valid Exchange r32 with doubleword from r/m32.

REX.W + 87 /r XCHG r/m64, r64 MR Valid N.E. Exchange r64 with quadword from r/m64.

87 /r XCHG r32, r/m32 RM Valid Valid Exchange doubleword from r/m32 with r32.

REX.W + 87 /r XCHG r64, r/m64 RM Valid N.E. Exchange quadword from r/m64 with r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

O AX/EAX/RAX (r, w) opcode + rd (r, w) N/A N/A

O opcode + rd (r, w) AX/EAX/RAX (r, w) N/A N/A

MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
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NOTE
XCHG (E)AX, (E)AX (encoded instruction byte is 90H) is an alias for NOP regardless of data size 
prefixes, including REX.W.

Operation

TEMP := DEST;
DEST := SRC;
SRC := TEMP;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If either operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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XEND—Transactional End

Instruction Operand Encoding

Description

The instruction marks the end of an RTM code region. If this corresponds to the outermost scope (that is, including 
this XEND instruction, the number of XBEGIN instructions is the same as number of XEND instructions), the logical 
processor will attempt to commit the logical processor state atomically. If the commit fails, the logical processor 
will rollback all architectural register and memory updates performed during the RTM execution. The logical 
processor will resume execution at the fallback address computed from the outermost XBEGIN instruction. The EAX 
register is updated to reflect RTM abort information.

Execution of XEND outside a transactional region causes a general-protection exception (#GP). Execution of XEND 
while in a suspend read address tracking region causes a transactional abort.

Operation

XEND
IF (RTM_ACTIVE = 0) THEN

SIGNAL #GP
ELSE

IF SUSLDTRK_ACTIVE = 1
THEN GOTO RTM_ABORT_PROCESSING;

FI;
RTM_NEST_COUNT--
IF (RTM_NEST_COUNT = 0) THEN

Try to commit transaction
IF fail to commit transactional execution

THEN
GOTO RTM_ABORT_PROCESSING;

ELSE (* commit success *)
RTM_ACTIVE := 0

FI;
FI;

FI;

(* For any RTM abort condition encountered during RTM execution *)
RTM_ABORT_PROCESSING:

Restore architectural register state
Discard memory updates performed in transaction
Update EAX with status
RTM_NEST_COUNT := 0
RTM_ACTIVE := 0
SUSLDTRK_ACTIVE := 0
IF 64-bit Mode

THEN

Opcode/Instruction Op/ 
En

64/32bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 01 D5
XEND

A V/V RTM Specifies the end of an RTM code region.

Op/En Operand 1 Operand2 Operand3 Operand4

A N/A N/A N/A N/A
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RIP := fallbackRIP
ELSE

EIP := fallbackEIP
FI;

END

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent

XEND void _xend( void );

SIMD Floating-Point Exceptions

None.

Other Exceptions
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] = 0.

If LOCK prefix is used.
#GP(0) If RTM_ACTIVE = 0.
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XGETBV—Get Value of Extended Control Register

Instruction Operand Encoding

Description

Reads the contents of the extended control register (XCR) specified in the ECX register into registers EDX:EAX. (On 
processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The EDX register is 
loaded with the high-order 32 bits of the XCR and the EAX register is loaded with the low-order 32 bits. (On proces-
sors that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are cleared.) If fewer 
than 64 bits are implemented in the XCR being read, the values returned to EDX:EAX in unimplemented bit loca-
tions are undefined.

XCR0 is supported on any processor that supports the XGETBV instruction. If 
CPUID.(EAX=0DH,ECX=1):EAX.XG1[bit 2] = 1, executing XGETBV with ECX = 1 returns in EDX:EAX the logical-
AND of XCR0 and the current value of the XINUSE state-component bitmap. This allows software to discover the 
state of the init optimization used by XSAVEOPT and XSAVES. See Chapter 13, “Managing State Using the XSAVE 
Feature Set‚” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

Use of any other value for ECX results in a general-protection (#GP) exception.

Operation

EDX:EAX := XCR[ECX];

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XGETBV unsigned __int64 _xgetbv( unsigned int);

Protected Mode Exceptions
#GP(0) If an invalid XCR is specified in ECX (includes ECX = 1 if 

CPUID.(EAX=0DH,ECX=1):EAX.XG1[bit 2] = 0).
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP(0) If an invalid XCR is specified in ECX (includes ECX = 1 if 

CPUID.(EAX=0DH,ECX=1):EAX.XG1[bit 2] = 0).
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

NP 0F 01 D0 XGETBV ZO Valid Valid Reads an XCR specified by ECX into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
XGETBV—Get Value of Extended Control Register Vol. 2D 6-37



XLAT/XLATB—Table Look-up Translation

Instruction Operand Encoding

Description

Locates a byte entry in a table in memory, using the contents of the AL register as a table index, then copies the 
contents of the table entry back into the AL register. The index in the AL register is treated as an unsigned integer. 
The XLAT and XLATB instructions get the base address of the table in memory from either the DS:EBX or the DS:BX 
registers (depending on the address-size attribute of the instruction, 32 or 16, respectively). (The DS segment 
may be overridden with a segment override prefix.)

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operand” form and the “no-
operand” form. The explicit-operand form (specified with the XLAT mnemonic) allows the base address of the table 
to be specified explicitly with a symbol. This explicit-operands form is provided to allow documentation; however, 
note that the documentation provided by this form can be misleading. That is, the symbol does not have to specify 
the correct base address. The base address is always specified by the DS:(E)BX registers, which must be loaded 
correctly before the XLAT instruction is executed.

The no-operands form (XLATB) provides a “short form” of the XLAT instructions. Here also the processor assumes 
that the DS:(E)BX registers contain the base address of the table.

In 64-bit mode, operation is similar to that in legacy or compatibility mode. AL is used to specify the table index 
(the operand size is fixed at 8 bits). RBX, however, is used to specify the table’s base address. See the summary 
chart at the beginning of this section for encoding data and limits.

Operation

IF AddressSize = 16
THEN

AL := (DS:BX + ZeroExtend(AL));
ELSE IF (AddressSize = 32)

AL := (DS:EBX + ZeroExtend(AL)); FI;
ELSE (AddressSize = 64)

AL := (RBX + ZeroExtend(AL));
FI;

Flags Affected

None.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

D7 XLAT m8 ZO Valid Valid Set AL to memory byte DS:[(E)BX + unsigned 
AL].

D7 XLATB ZO Valid Valid Set AL to memory byte DS:[(E)BX + unsigned 
AL].

REX.W + D7 XLATB ZO Valid N.E. Set AL to memory byte [RBX + unsigned AL].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
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XOR—Logical Exclusive OR

Instruction Operand Encoding

Description

Performs a bitwise exclusive OR (XOR) operation on the destination (first) and source (second) operands and 
stores the result in the destination operand location. The source operand can be an immediate, a register, or a 
memory location; the destination operand can be a register or a memory location. (However, two memory oper-
ands cannot be used in one instruction.) Each bit of the result is 1 if the corresponding bits of the operands are 
different; each bit is 0 if the corresponding bits are the same.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

34 ib XOR AL, imm8 I Valid Valid AL XOR imm8.

35 iw XOR AX, imm16 I Valid Valid AX XOR imm16.

35 id XOR EAX, imm32 I Valid Valid EAX XOR imm32.

REX.W + 35 id XOR RAX, imm32 I Valid N.E. RAX XOR imm32 (sign-extended).

80 /6 ib XOR r/m8, imm8 MI Valid Valid r/m8 XOR imm8.

REX + 80 /6 ib XOR r/m8*, imm8 MI Valid N.E. r/m8 XOR imm8.

81 /6 iw XOR r/m16, imm16 MI Valid Valid r/m16 XOR imm16.

81 /6 id XOR r/m32, imm32 MI Valid Valid r/m32 XOR imm32.

REX.W + 81 /6 id XOR r/m64, imm32 MI Valid N.E. r/m64 XOR imm32 (sign-extended).

83 /6 ib XOR r/m16, imm8 MI Valid Valid r/m16 XOR imm8 (sign-extended).

83 /6 ib XOR r/m32, imm8 MI Valid Valid r/m32 XOR imm8 (sign-extended).

REX.W + 83 /6 ib XOR r/m64, imm8 MI Valid N.E. r/m64 XOR imm8 (sign-extended).

30 /r XOR r/m8, r8 MR Valid Valid r/m8 XOR r8.

REX + 30 /r XOR r/m8*, r8* MR Valid N.E. r/m8 XOR r8.

31 /r XOR r/m16, r16 MR Valid Valid r/m16 XOR r16.

31 /r XOR r/m32, r32 MR Valid Valid r/m32 XOR r32.

REX.W + 31 /r XOR r/m64, r64 MR Valid N.E. r/m64 XOR r64.

32 /r XOR r8, r/m8 RM Valid Valid r8 XOR r/m8.

REX + 32 /r XOR r8*, r/m8* RM Valid N.E. r8 XOR r/m8.

33 /r XOR r16, r/m16 RM Valid Valid r16 XOR r/m16.

33 /r XOR r32, r/m32 RM Valid Valid r32 XOR r/m32.

REX.W + 33 /r XOR r64, r/m64 RM Valid N.E. r64 XOR r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 N/A N/A

MI ModRM:r/m (r, w) imm8/16/32 N/A N/A

MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
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In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a 
REX prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this 
section for encoding data and limits.

Operation

DEST := DEST XOR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state of the AF flag is 
undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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XORPD—Bitwise Logical XOR of Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical XOR of the two, four or eight packed double precision floating-point values from the first 
source operand and the second source operand, and stores the result in the destination operand.
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand can be a ZMM 
register or a vector memory location. The destination operand is a ZMM register conditionally updated with write-
mask k1.
VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register. The second source operand 
is a YMM register or a 256-bit memory location. The destination operand is a YMM register (conditionally updated 
with writemask k1 in case of EVEX). The upper bits (MAXVL-1:256) of the corresponding ZMM register destination 
are zeroed.
VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand 
is an XMM register or 128-bit memory location. The destination operand is an XMM register (conditionally updated 
with writemask k1 in case of EVEX). The upper bits (MAXVL-1:128) of the corresponding ZMM register destination 
are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
register destination are unmodified.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

66 0F 57/r
XORPD xmm1, xmm2/m128

A V/V SSE2 Return the bitwise logical XOR of packed double 
precision floating-point values in xmm1 and 
xmm2/mem.

VEX.128.66.0F.WIG 57 /r
VXORPD xmm1,xmm2, xmm3/m128

B V/V AVX Return the bitwise logical XOR of packed double 
precision floating-point values in xmm2 and 
xmm3/mem.

VEX.256.66.0F.WIG 57 /r
VXORPD ymm1, ymm2, ymm3/m256

B V/V AVX Return the bitwise logical XOR of packed double 
precision floating-point values in ymm2 and 
ymm3/mem.

EVEX.128.66.0F.W1 57 /r
VXORPD xmm1 {k1}{z}, xmm2, 
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the bitwise logical XOR of packed double 
precision floating-point values in xmm2 and 
xmm3/m128/m64bcst subject to writemask k1.

EVEX.256.66.0F.W1 57 /r
VXORPD ymm1 {k1}{z}, ymm2, 
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Return the bitwise logical XOR of packed double 
precision floating-point values in ymm2 and 
ymm3/m256/m64bcst subject to writemask k1.

EVEX.512.66.0F.W1 57 /r
VXORPD zmm1 {k1}{z}, zmm2, 
zmm3/m512/m64bcst

C V/V AVX512DQ 
OR AVX10.11

Return the bitwise logical XOR of packed double 
precision floating-point values in zmm2 and 
zmm3/m512/m64bcst subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VXORPD (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] := SRC1[i+63:i] BITWISE XOR SRC2[63:0];
ELSE DEST[i+63:i] := SRC1[i+63:i] BITWISE XOR SRC2[i+63:i];

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VXORPD (VEX.256 Encoded Version)
DEST[63:0] := SRC1[63:0] BITWISE XOR SRC2[63:0]
DEST[127:64] := SRC1[127:64] BITWISE XOR SRC2[127:64]
DEST[191:128] := SRC1[191:128] BITWISE XOR SRC2[191:128]
DEST[255:192] := SRC1[255:192] BITWISE XOR SRC2[255:192]
DEST[MAXVL-1:256] := 0

VXORPD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0] BITWISE XOR SRC2[63:0]
DEST[127:64] := SRC1[127:64] BITWISE XOR SRC2[127:64]
DEST[MAXVL-1:128] := 0

XORPD (128-bit Legacy SSE Version)
DEST[63:0] := DEST[63:0] BITWISE XOR SRC[63:0]
DEST[127:64] := DEST[127:64] BITWISE XOR SRC[127:64]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VXORPD __m512d _mm512_xor_pd (__m512d a, __m512d b);
VXORPD __m512d _mm512_mask_xor_pd (__m512d a, __mmask8 m, __m512d b);
VXORPD __m512d _mm512_maskz_xor_pd (__mmask8 m, __m512d a);
VXORPD __m256d _mm256_xor_pd (__m256d a, __m256d b);
VXORPD __m256d _mm256_mask_xor_pd (__m256d a, __mmask8 m, __m256d b);
VXORPD __m256d _mm256_maskz_xor_pd (__mmask8 m, __m256d a);
XORPD __m128d _mm_xor_pd (__m128d a, __m128d b);
VXORPD __m128d _mm_mask_xor_pd (__m128d a, __mmask8 m, __m128d b);
VXORPD __m128d _mm_maskz_xor_pd (__mmask8 m, __m128d a);

SIMD Floating-Point Exceptions

None.
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Other Exceptions

Non-EVEX-encoded instructions, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E4 Class Exception Conditions.”
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XORPS—Bitwise Logical XOR of Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical XOR of the four, eight or sixteen packed single precision floating-point values from the 
first source operand and the second source operand, and stores the result in the destination operand
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand can be a ZMM 
register or a vector memory location. The destination operand is a ZMM register conditionally updated with write-
mask k1.
VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register. The second source operand 
is a YMM register or a 256-bit memory location. The destination operand is a YMM register (conditionally updated 
with writemask k1 in case of EVEX). The upper bits (MAXVL-1:256) of the corresponding ZMM register destination 
are zeroed.
VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand 
is an XMM register or 128-bit memory location. The destination operand is an XMM register (conditionally updated 
with writemask k1 in case of EVEX). The upper bits (MAXVL-1:128) of the corresponding ZMM register destination 
are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding 
register destination are unmodified.

Opcode/
Instruction

Op / 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 57 /r
XORPS xmm1, xmm2/m128

A V/V SSE Return the bitwise logical XOR of packed single 
precision floating-point values in xmm1 and 
xmm2/mem.

VEX.128.0F.WIG 57 /r
VXORPS xmm1,xmm2, xmm3/m128

B V/V AVX Return the bitwise logical XOR of packed single 
precision floating-point values in xmm2 and 
xmm3/mem.

VEX.256.0F.WIG 57 /r
VXORPS ymm1, ymm2, ymm3/m256

B V/V AVX Return the bitwise logical XOR of packed single 
precision floating-point values in ymm2 and 
ymm3/mem.

EVEX.128.0F.W0 57 /r
VXORPS xmm1 {k1}{z}, xmm2, 
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

NOTES:
1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-

sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vector 
width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Return the bitwise logical XOR of packed single-
precision floating-point values in xmm2 and 
xmm3/m128/m32bcst subject to writemask k1.

EVEX.256.0F.W0 57 /r
VXORPS ymm1 {k1}{z}, ymm2, 
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512DQ) OR 
AVX10.11

Return the bitwise logical XOR of packed single-
precision floating-point values in ymm2 and 
ymm3/m256/m32bcst subject to writemask k1.

EVEX.512.0F.W0 57 /r
VXORPS zmm1 {k1}{z}, zmm2, 
zmm3/m512/m32bcst

C V/V AVX512DQ 
OR AVX10.11

Return the bitwise logical XOR of packed single-
precision floating-point values in zmm2 and 
zmm3/m512/m32bcst subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

VXORPS (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] := SRC1[i+31:i] BITWISE XOR SRC2[31:0];
ELSE DEST[i+31:i] := SRC1[i+31:i] BITWISE XOR SRC2[i+31:i];

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VXORPS (VEX.256 Encoded Version)
DEST[31:0] := SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[159:128] := SRC1[159:128] BITWISE XOR SRC2[159:128]
DEST[191:160] := SRC1[191:160] BITWISE XOR SRC2[191:160]
DEST[223:192] := SRC1[223:192] BITWISE XOR SRC2[223:192]
DEST[255:224] := SRC1[255:224] BITWISE XOR SRC2[255:224].
DEST[MAXVL-1:256] := 0

VXORPS (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[MAXVL-1:128] := 0

XORPS (128-bit Legacy SSE Version)
DEST[31:0] := SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[MAXVL-1:128] (Unmodified)
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Intel C/C++ Compiler Intrinsic Equivalent

VXORPS __m512 _mm512_xor_ps (__m512 a, __m512 b);
VXORPS __m512 _mm512_mask_xor_ps (__m512 a, __mmask16 m, __m512 b);
VXORPS __m512 _mm512_maskz_xor_ps (__mmask16 m, __m512 a);
VXORPS __m256 _mm256_xor_ps (__m256 a, __m256 b);
VXORPS __m256 _mm256_mask_xor_ps (__m256 a, __mmask8 m, __m256 b);
VXORPS __m256 _mm256_maskz_xor_ps (__mmask8 m, __m256 a);
XORPS __m128 _mm_xor_ps (__m128 a, __m128 b);
VXORPS __m128 _mm_mask_xor_ps (__m128 a, __mmask8 m, __m128 b);
VXORPS __m128 _mm_maskz_xor_ps (__mmask8 m, __m128 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Non-EVEX-encoded instructions, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E4 Class Exception Conditions.”
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XRESLDTRK—Resume Tracking Load Addresses Vol. 2D 6-48

XRESLDTRK—Resume Tracking Load Addresses

Instruction Operand Encoding

Description

The instruction marks the end of an Intel TSX (RTM) suspend load address tracking region. If the instruction is used 
inside a suspend load address tracking region it will end the suspend region and all following load addresses will be 
added to the transaction read set. If this instruction is used inside an active transaction but not in a suspend region 
it will cause transaction abort.
If the instruction is used outside of a transactional region it behaves like a NOP.
Chapter 16, “Programming with Intel® Transactional Synchronization Extensions‚” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1 provides additional information on Intel® TSX Suspend Load 
Address Tracking.

Operation

XRESLDTRK
IF RTM_ACTIVE = 1:

IF SUSLDTRK_ACTIVE = 1:
SUSLDTRK_ACTIVE := 0

ELSE:
RTM_ABORT

ELSE:
NOP

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XRESLDTRK void _xresldtrk(void);

SIMD Floating-Point Exceptions

None.

Other Exceptions

#UD If CPUID.(EAX=7, ECX=0):EDX.TSXLDTRK[bit 16] = 0.
If the LOCK prefix is used.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F2 0F 01 E9
XRESLDTRK

ZO V/V TSXLDTRK Specifies the end of an Intel TSX suspend read 
address tracking region.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A N/A



XRSTOR—Restore Processor Extended States

Instruction Operand Encoding

Description

Performs a full or partial restore of processor state components from the XSAVE area located at the memory 
address specified by the source operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. 
The specific state components restored correspond to the bits set in the requested-feature bitmap (RFBM), which 
is the logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state depends 
on a REX.W prefix; see Section 13.5.1, “x87 State” of Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1.

Section 13.8, “Operation of XRSTOR,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
1 provides a detailed description of the operation of the XRSTOR instruction. The following items provide a high-
level outline:
• Execution of XRSTOR may take one of two forms: standard and compacted. Bit 63 of the XCOMP_BV field in the 

XSAVE header determines which form is used: value 0 specifies the standard form, while value 1 specifies the 
compacted form.

• If RFBM[i] = 0, XRSTOR does not update state component i.1

• If RFBM[i] = 1 and bit i is clear in the XSTATE_BV field in the XSAVE header, XRSTOR initializes state 
component i.

• If RFBM[i] = 1 and XSTATE_BV[i] = 1, XRSTOR loads state component i from the XSAVE area.
• The standard form of XRSTOR treats MXCSR (which is part of state component 1 — SSE) differently from the 

XMM registers. If either form attempts to load MXCSR with an illegal value, a general-protection exception 
(#GP) occurs.

• XRSTOR loads the internal value XRSTOR_INFO, which may be used to optimize a subsequent execution of 
XSAVEOPT or XSAVES.

• Immediately following an execution of XRSTOR, the processor tracks as in-use (not in initial configuration) any 
state component i for which RFBM[i] = 1 and XSTATE_BV[i] = 1; it tracks as modified any state component 
i for which RFBM[i] = 0.

Use of a source operand not aligned to 64-byte boundary (for 64-bit and 32-bit modes) results in a general-protec-
tion (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

See Section 13.6, “Processor Tracking of XSAVE-Managed State,” of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1 for discussion of the bitmaps XINUSE and XMODIFIED and of the quantity 
XRSTOR_INFO.

Opcode /
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F AE /5

XRSTOR mem

M V/V XSAVE Restore state components specified by EDX:EAX from 
mem.

NP REX.W + 0F AE /5

XRSTOR64 mem

M V/N.E. XSAVE Restore state components specified by EDX:EAX from 
mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A

1. There is an exception if RFBM[1] = 0 and RFBM[2] = 1. In this case, the standard form of XRSTOR will load MXCSR from memory, 
even though MXCSR is part of state component 1 — SSE. The compacted form of XRSTOR does not make this exception.
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Operation

RFBM := XCR0 AND EDX:EAX; /* bitwise logical AND */
COMPMASK := XCOMP_BV field from XSAVE header;
RSTORMASK := XSTATE_BV field from XSAVE header;

IF COMPMASK[63] = 0
THEN

/* Standard form of XRSTOR */
TO_BE_RESTORED := RFBM AND RSTORMASK;
TO_BE_INITIALIZED := RFBM AND NOT RSTORMASK;

IF TO_BE_RESTORED[0] = 1
THEN

XINUSE[0] := 1;
load x87 state from legacy region of XSAVE area;

ELSIF TO_BE_INITIALIZED[0] = 1
THEN

XINUSE[0] := 0;
initialize x87 state;

FI;

IF RFBM[1] = 1 OR RFBM[2] = 1
THEN load MXCSR from legacy region of XSAVE area;

FI;

IF TO_BE_RESTORED[1] = 1
THEN

XINUSE[1] := 1;
load XMM registers from legacy region of XSAVE area; // this step does not load MXCSR

ELSIF TO_BE_INITIALIZED[1] = 1
THEN

XINUSE[1] := 0;
set all XMM registers to 0; // this step does not initialize MXCSR

FI;

FOR i := 2 TO 62 
IF TO_BE_RESTORED[i] = 1

THEN
XINUSE[i] := 1;
load XSAVE state component i at offset n from base of XSAVE area;

// n enumerated by CPUID(EAX=0DH,ECX=i):EBX)
ELSIF TO_BE_INITIALIZED[i] = 1

THEN
XINUSE[i] := 0;
initialize XSAVE state component i;

FI;
ENDFOR;

ELSE
/* Compacted form of XRSTOR */
IF CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0

THEN /* compacted form not supported */
#GP(0);

FI;
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FORMAT = COMPMASK AND 7FFFFFFF_FFFFFFFFH;
RESTORE_FEATURES = FORMAT AND RFBM;
TO_BE_RESTORED := RESTORE_FEATURES AND RSTORMASK;
FORCE_INIT := RFBM AND NOT FORMAT;
TO_BE_INITIALIZED = (RFBM AND NOT RSTORMASK) OR FORCE_INIT;

IF TO_BE_RESTORED[0] = 1
THEN

XINUSE[0] := 1;
load x87 state from legacy region of XSAVE area;

ELSIF TO_BE_INITIALIZED[0] = 1
THEN

XINUSE[0] := 0;
initialize x87 state;

FI;

IF TO_BE_RESTORED[1] = 1
THEN

XINUSE[1] := 1;
load SSE state from legacy region of XSAVE area; // this step loads the XMM registers and MXCSR

ELSIF TO_BE_INITIALIZED[1] = 1
THEN

set all XMM registers to 0;
XINUSE[1] := 0;
MXCSR := 1F80H;

FI;

NEXT_FEATURE_OFFSET = 576; // Legacy area and XSAVE header consume 576 bytes
FOR i := 2 TO 62  

IF FORMAT[i] = 1
THEN

IF TO_BE_RESTORED[i] = 1
THEN

XINUSE[i] := 1;
load XSAVE state component i at offset NEXT_FEATURE_OFFSET from base of XSAVE area;

FI;
NEXT_FEATURE_OFFSET = NEXT_FEATURE_OFFSET + n (n enumerated by CPUID(EAX=0DH,ECX=i):EAX);

FI;
IF TO_BE_INITIALIZED[i] = 1

THEN
XINUSE[i] := 0;
initialize XSAVE state component i;

FI;
ENDFOR;

FI;

XMODIFIED := NOT RFBM;

IF in VMX non-root operation
THEN VMXNR := 1;
ELSE VMXNR := 0;

FI;
LAXA := linear address of XSAVE area;
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XRSTOR_INFO := CPL,VMXNR,LAXA,COMPMASK;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XRSTOR void _xrstor( void * , unsigned __int64);
XRSTOR void _xrstor64( void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 1 and 
CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.
If the standard form is executed and a bit in XCR0 is 0 and the corresponding bit in the 
XSTATE_BV field of the XSAVE header is 1.
If the standard form is executed and bytes 23:8 of the XSAVE header are not all zero.
If the compacted form is executed and a bit in XCR0 is 0 and the corresponding bit in the 
XCOMP_BV field of the XSAVE header is 1.
If the compacted form is executed and a bit in the XCOMP_BV field in the XSAVE header is 0 
and the corresponding bit in the XSTATE_BV field is 1.
If the compacted form is executed and bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 64-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
If bit 63 of the XCOMP_BV field of the XSAVE header is 1 and 
CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.
If the standard form is executed and a bit in XCR0 is 0 and the corresponding bit in the 
XSTATE_BV field of the XSAVE header is 1.
If the standard form is executed and bytes 23:8 of the XSAVE header are not all zero.
If the compacted form is executed and a bit in XCR0 is 0 and the corresponding bit in the 
XCOMP_BV field of the XSAVE header is 1.
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If the compacted form is executed and a bit in the XCOMP_BV field in the XSAVE header is 0 
and the corresponding bit in the XSTATE_BV field is 1.
If the compacted form is executed and bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If a memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 1 and 
CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.
If the standard form is executed and a bit in XCR0 is 0 and the corresponding bit in the 
XSTATE_BV field of the XSAVE header is 1.
If the standard form is executed and bytes 23:8 of the XSAVE header are not all zero.
If the compacted form is executed and a bit in XCR0 is 0 and the corresponding bit in the 
XCOMP_BV field of the XSAVE header is 1.
If the compacted form is executed and a bit in the XCOMP_BV field in the XSAVE header is 0 
and the corresponding bit in the XSTATE_BV field is 1.
If the compacted form is executed and bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 64-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).
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XRSTORS—Restore Processor Extended States Supervisor

Instruction Operand Encoding

Description

Performs a full or partial restore of processor state components from the XSAVE area located at the memory 
address specified by the source operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. 
The specific state components restored correspond to the bits set in the requested-feature bitmap (RFBM), which 
is the logical-AND of EDX:EAX and the logical-OR of XCR0 with the IA32_XSS MSR. XRSTORS may be executed only 
if CPL = 0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state depends 
on a REX.W prefix; see Section 13.5.1, “x87 State” of Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1.

Section 13.12, “Operation of XRSTORS,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1 provides a detailed description of the operation of the XRSTOR instruction. The following items provide a 
high-level outline:
• Execution of XRSTORS is similar to that of the compacted form of XRSTOR; XRSTORS cannot restore from an 

XSAVE area in which the extended region is in the standard format (see Section 13.4.3, “Extended Region of an 
XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

• XRSTORS differs from XRSTOR in that it can restore state components corresponding to bits set in the 
IA32_XSS MSR.

• If RFBM[i] = 0, XRSTORS does not update state component i.
• If RFBM[i] = 1 and bit i is clear in the XSTATE_BV field in the XSAVE header, XRSTORS initializes state 

component i.
• If RFBM[i] = 1 and XSTATE_BV[i] = 1, XRSTORS loads state component i from the XSAVE area.
• If XRSTORS attempts to load MXCSR with an illegal value, a general-protection exception (#GP) occurs.
• XRSTORS loads the internal value XRSTOR_INFO, which may be used to optimize a subsequent execution of 

XSAVEOPT or XSAVES.
• Immediately following an execution of XRSTORS, the processor tracks as in-use (not in initial configuration) 

any state component i for which RFBM[i] = 1 and XSTATE_BV[i] = 1; it tracks as modified any state component 
i for which RFBM[i] = 0.

Use of a source operand not aligned to 64-byte boundary (for 64-bit and 32-bit modes) results in a general-protec-
tion (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

See Section 13.6, “Processor Tracking of XSAVE-Managed State,” of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1 for discussion of the bitmaps XINUSE and XMODIFIED and of the quantity 
XRSTOR_INFO.

Opcode /
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F C7 /3

XRSTORS mem

M V/V XSS Restore state components specified by EDX:EAX from 
mem.

NP REX.W + 0F C7 /3

XRSTORS64 mem

M V/N.E. XSS Restore state components specified by EDX:EAX from 
mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A
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Operation

RFBM := (XCR0 OR IA32_XSS) AND EDX:EAX; /* bitwise logical OR and AND */
COMPMASK := XCOMP_BV field from XSAVE header;
RSTORMASK := XSTATE_BV field from XSAVE header;

FORMAT = COMPMASK AND 7FFFFFFF_FFFFFFFFH;
RESTORE_FEATURES = FORMAT AND RFBM;
TO_BE_RESTORED := RESTORE_FEATURES AND RSTORMASK;
FORCE_INIT := RFBM AND NOT FORMAT;
TO_BE_INITIALIZED = (RFBM AND NOT RSTORMASK) OR FORCE_INIT;

IF TO_BE_RESTORED[0] = 1
THEN

XINUSE[0] := 1;
load x87 state from legacy region of XSAVE area;

ELSIF TO_BE_INITIALIZED[0] = 1
THEN

XINUSE[0] := 0;
initialize x87 state;

FI;

IF TO_BE_RESTORED[1] = 1
THEN

XINUSE[1] := 1;
load SSE state from legacy region of XSAVE area; // this step loads the XMM registers and MXCSR

ELSIF TO_BE_INITIALIZED[1] = 1
THEN

set all XMM registers to 0;
XINUSE[1] := 0;
MXCSR := 1F80H;

FI;

NEXT_FEATURE_OFFSET = 576; // Legacy area and XSAVE header consume 576 bytes
FOR i := 2 TO 62  

IF FORMAT[i] = 1
THEN

IF TO_BE_RESTORED[i] = 1
THEN

XINUSE[i] := 1;
load XSAVE state component i at offset NEXT_FEATURE_OFFSET from base of XSAVE area;

FI;
NEXT_FEATURE_OFFSET = NEXT_FEATURE_OFFSET + n (n enumerated by CPUID(EAX=0DH,ECX=i):EAX);

FI;
IF TO_BE_INITIALIZED[i] = 1

THEN
XINUSE[i] := 0;
initialize XSAVE state component i;

FI;
ENDFOR;

XMODIFIED := NOT RFBM;

IF in VMX non-root operation
THEN VMXNR := 1;
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ELSE VMXNR := 0;
FI;
LAXA := linear address of XSAVE area;
XRSTOR_INFO := CPL,VMXNR,LAXA,COMPMASK;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XRSTORS void _xrstors( void * , unsigned __int64);
XRSTORS64 void _xrstors64( void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If CPL > 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 0.
If a bit in XCR0|IA32_XSS is 0 and the corresponding bit in the XCOMP_BV field of the XSAVE 
header is 1.
If a bit in the XCOMP_BV field in the XSAVE header is 0 and the corresponding bit in the 
XSTATE_BV field is 1.
If bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
If bit 63 of the XCOMP_BV field of the XSAVE header is 0.
If a bit in XCR0|IA32_XSS is 0 and the corresponding bit in the XCOMP_BV field of the XSAVE 
header is 1.
If a bit in the XCOMP_BV field in the XSAVE header is 0 and the corresponding bit in the 
XSTATE_BV field is 1.
If bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If CPL > 0.

If a memory address is in a non-canonical form.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 0.
If a bit in XCR0|IA32_XSS is 0 and the corresponding bit in the XCOMP_BV field of the XSAVE 
header is 1.
If a bit in the XCOMP_BV field in the XSAVE header is 0 and the corresponding bit in the 
XSTATE_BV field is 1.
If bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
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XSAVE—Save Processor Extended States

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address 
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The 
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the 
logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state depends 
on a REX.W prefix; see Section 13.5.1, “x87 State” of Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1.

Section 13.7, “Operation of XSAVE,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 
provides a detailed description of the operation of the XSAVE instruction. The following items provide a high-level 
outline:
• XSAVE saves state component i if and only if RFBM[i] = 1.1

• XSAVE does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy 
Region of an XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

• XSAVE reads the XSTATE_BV field of the XSAVE header (see Section 13.4.2, “XSAVE Header” of Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1) and writes a modified value back to memory as 
follows. If RFBM[i] = 1, XSAVE writes XSTATE_BV[i] with the value of XINUSE[i]. (XINUSE is a bitmap by which 
the processor tracks the status of various state components. See Section 13.6, “Processor Tracking of XSAVE-
Managed State” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.) If RFBM[i] = 0, 
XSAVE writes XSTATE_BV[i] with the value that it read from memory (it does not modify the bit). XSAVE does 
not write to any part of the XSAVE header other than the XSTATE_BV field.

• XSAVE always uses the standard format of the extended region of the XSAVE area (see Section 13.4.3, 
“Extended Region of an XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a 
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Opcode /
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F AE /4

XSAVE mem

M V/V XSAVE Save state components specified by EDX:EAX to mem.

NP REX.W + 0F AE /4

XSAVE64 mem

M V/N.E. XSAVE Save state components specified by EDX:EAX to mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) N/A N/A N/A

1. An exception is made for MXCSR and MXCSR_MASK, which belong to state component 1 — SSE. XSAVE saves these values to mem-
ory if either RFBM[1] or RFBM[2] is 1.
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Operation

RFBM := XCR0 AND EDX:EAX; /* bitwise logical AND */
OLD_BV := XSTATE_BV field from XSAVE header;

IF RFBM[0] = 1
THEN store x87 state into legacy region of XSAVE area;

FI;

IF RFBM[1] = 1
THEN store XMM registers into legacy region of XSAVE area; // this step does not save MXCSR or MXCSR_MASK

FI;

IF RFBM[1] = 1 OR RFBM[2] = 1
THEN store MXCSR and MXCSR_MASK into legacy region of XSAVE area;

FI;

FOR i := 2 TO 62
IF RFBM[i] = 1

THEN save XSAVE state component i at offset n from base of XSAVE area (n enumerated by CPUID(EAX=0DH,ECX=i):EBX);
FI;

ENDFOR;

XSTATE_BV field in XSAVE header := (OLD_BV AND NOT RFBM) OR (XINUSE AND RFBM);

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVE void _xsave( void * , unsigned __int64);
XSAVE void _xsave64( void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 64-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).
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Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 64-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).
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XSAVEC—Save Processor Extended States With Compaction

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address 
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The 
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the 
logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state depends 
on a REX.W prefix; see Section 13.5.1, “x87 State” of Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1.

Section 13.10, “Operation of XSAVEC,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
1 provides a detailed description of the operation of the XSAVEC instruction. The following items provide a high-
level outline:
• Execution of XSAVEC is similar to that of XSAVE. XSAVEC differs from XSAVE in that it uses compaction and that 

it may use the init optimization.
• XSAVEC saves state component i if and only if RFBM[i] = 1 and XINUSE[i] = 1.1 (XINUSE is a bitmap by which 

the processor tracks the status of various state components. See Section 13.6, “Processor Tracking of XSAVE-
Managed State” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.)

• XSAVEC does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy 
Region of an XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

• XSAVEC writes the logical AND of RFBM and XINUSE to the XSTATE_BV field of the XSAVE header.2,3 (See 
Section 13.4.2, “XSAVE Header” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.) 
XSAVEC sets bit 63 of the XCOMP_BV field and sets bits 62:0 of that field to RFBM[62:0]. XSAVEC does not 
write to any parts of the XSAVE header other than the XSTATE_BV and XCOMP_BV fields.

• XSAVEC always uses the compacted format of the extended region of the XSAVE area (see Section 13.4.3, 
“Extended Region of an XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a 
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Opcode /
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F C7 /4

XSAVEC mem

M V/V XSAVEC Save state components specified by EDX:EAX to mem with 
compaction.

NP REX.W + 0F C7 /4

XSAVEC64 mem

M V/N.E. XSAVEC Save state components specified by EDX:EAX to mem with 
compaction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A

1. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not 
have its initial value of 1F80H. In this case, XSAVEC saves SSE state as long as RFBM[1] = 1.

2. Unlike XSAVE and XSAVEOPT, XSAVEC clears bits in the XSTATE_BV field that correspond to bits that are clear in RFBM.

3. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not 
have its initial value of 1F80H. In this case, XSAVEC sets XSTATE_BV[1] to 1 as long as RFBM[1] = 1.
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Operation

RFBM := XCR0 AND EDX:EAX; /* bitwise logical AND */
TO_BE_SAVED := RFBM AND XINUSE; /* bitwise logical AND */
If MXCSR ≠ 1F80H AND RFBM[1]

TO_BE_SAVED[1] = 1;
FI;

IF TO_BE_SAVED[0] = 1
THEN store x87 state into legacy region of XSAVE area;

FI;

IF TO_BE_SAVED[1] = 1
THEN store SSE state into legacy region of XSAVE area; // this step saves the XMM registers, MXCSR, and MXCSR_MASK

FI;

NEXT_FEATURE_OFFSET = 576; // Legacy area and XSAVE header consume 576 bytes
FOR i := 2 TO 62

IF RFBM[i] = 1
THEN

IF TO_BE_SAVED[i]
THEN save XSAVE state component i at offset NEXT_FEATURE_OFFSET from base of XSAVE area;

FI;
NEXT_FEATURE_OFFSET = NEXT_FEATURE_OFFSET + n (n enumerated by CPUID(EAX=0DH,ECX=i):EAX);

FI;
ENDFOR;

XSTATE_BV field in XSAVE header := TO_BE_SAVED;
XCOMP_BV field in XSAVE header := RFBM OR 80000000_00000000H;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVEC void _xsavec( void * , unsigned __int64);
XSAVEC64 void _xsavec64( void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
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#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 64-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 64-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).
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XSAVEOPT—Save Processor Extended States Optimized

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address 
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The 
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the 
logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state depends 
on a REX.W prefix; see Section 13.5.1, “x87 State” of Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1.

Section 13.9, “Operation of XSAVEOPT,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
1 provides a detailed description of the operation of the XSAVEOPT instruction. The following items provide a high-
level outline:
• Execution of XSAVEOPT is similar to that of XSAVE. XSAVEOPT differs from XSAVE in that it may use the init and 

modified optimizations. The performance of XSAVEOPT will be equal to or better than that of XSAVE.
• XSAVEOPT saves state component i only if RFBM[i] = 1 and XINUSE[i] = 1.1 (XINUSE is a bitmap by which the 

processor tracks the status of various state components. See Section 13.6, “Processor Tracking of XSAVE-
Managed State,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.) Even if 
both bits are 1, XSAVEOPT may optimize and not save state component i if (1) state component i has not been 
modified since the last execution of XRSTOR or XRSTORS; and (2) this execution of XSAVES corresponds to 
that last execution of XRSTOR or XRSTORS as determined by the internal value XRSTOR_INFO (see the 
Operation section below).

• XSAVEOPT does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy 
Region of an XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

• XSAVEOPT reads the XSTATE_BV field of the XSAVE header (see Section 13.4.2, “XSAVE Header,” of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1) and writes a modified value back to 
memory as follows. If RFBM[i] = 1, XSAVEOPT writes XSTATE_BV[i] with the value of XINUSE[i]. If RFBM[i] = 
0, XSAVEOPT writes XSTATE_BV[i] with the value that it read from memory (it does not modify the bit). 
XSAVEOPT does not write to any part of the XSAVE header other than the XSTATE_BV field.

• XSAVEOPT always uses the standard format of the extended region of the XSAVE area (see Section 13.4.3, 
“Extended Region of an XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) will result in a 
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F AE /6

XSAVEOPT mem

M V/V XSAVEOPT Save state components specified by EDX:EAX 
to mem, optimizing if possible.

NP REX.W + 0F AE /6

XSAVEOPT64 mem

M V/V XSAVEOPT Save state components specified by EDX:EAX 
to mem, optimizing if possible.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) N/A N/A N/A

1. There is an exception made for MXCSR and MXCSR_MASK, which belong to state component 1 — SSE. XSAVEOPT always saves 
these to memory if RFBM[1] = 1 or RFBM[2] = 1, regardless of the value of XINUSE.
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See Section 13.6, “Processor Tracking of XSAVE-Managed State,” of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1 for discussion of the bitmap XMODIFIED and of the quantity XRSTOR_INFO.

Operation

RFBM := XCR0 AND EDX:EAX; /* bitwise logical AND */
OLD_BV := XSTATE_BV field from XSAVE header;
TO_BE_SAVED := RFBM AND XINUSE;

IF in VMX non-root operation
THEN VMXNR := 1;
ELSE VMXNR := 0;

FI;
LAXA := linear address of XSAVE area;
IF XRSTOR_INFO = CPL,VMXNR,LAXA,00000000_00000000H

THEN TO_BE_SAVED := TO_BE_SAVED AND XMODIFIED;
FI;

IF TO_BE_SAVED[0] = 1
THEN store x87 state into legacy region of XSAVE area;

FI;

IF TO_BE_SAVED[1]
THEN store XMM registers into legacy region of XSAVE area; // this step does not save MXCSR or MXCSR_MASK

FI;

IF RFBM[1] = 1 or RFBM[2] = 1
THEN store MXCSR and MXCSR_MASK into legacy region of XSAVE area;

FI;

FOR i := 2 TO 62
IF TO_BE_SAVED[i] = 1

THEN save XSAVE state component i at offset n from base of XSAVE area (n enumerated by CPUID(EAX=0DH,ECX=i):EBX);
FI;

ENDFOR;

XSTATE_BV field in XSAVE header := (OLD_BV AND NOT RFBM) OR (XINUSE AND RFBM);

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVEOPT void _xsaveopt( void * , unsigned __int64);
XSAVEOPT void _xsaveopt64( void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
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#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] = 
0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 64-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] = 

0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] = 

0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 64-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).
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XSAVES—Save Processor Extended States Supervisor

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address 
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The 
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), the logical-
AND of EDX:EAX and the logical-OR of XCR0 with the IA32_XSS MSR. XSAVES may be executed only if CPL = 0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state 
depends on a REX.W prefix; see Section 13.5.1, “x87 State,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.

Section 13.11, “Operation of XSAVES,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1 provides a detailed description of the operation of the XSAVES instruction. The following items provide a 
high-level outline:
• Execution of XSAVES is similar to that of XSAVEC. XSAVES differs from XSAVEC in that it can save state 

components corresponding to bits set in the IA32_XSS MSR and that it may use the modified optimization.
• XSAVES saves state component i only if RFBM[i] = 1 and XINUSE[i] = 1.1 (XINUSE is a bitmap by which the 

processor tracks the status of various state components. See Section 13.6, “Processor Tracking of XSAVE-
Managed State,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.) Even if 
both bits are 1, XSAVES may optimize and not save state component i if (1) state component i has not been 
modified since the last execution of XRSTOR or XRSTORS; and (2) this execution of XSAVES correspond to that 
last execution of XRSTOR or XRSTORS as determined by XRSTOR_INFO (see the Operation section below).

• XSAVES does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy 
Region of an XSAVE Area,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

• XSAVES writes the logical AND of RFBM and XINUSE to the XSTATE_BV field of the XSAVE header.2 (See Section 
13.4.2, “XSAVE Header,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.) 
XSAVES sets bit 63 of the XCOMP_BV field and sets bits 62:0 of that field to RFBM[62:0]. XSAVES does not 
write to any parts of the XSAVE header other than the XSTATE_BV and XCOMP_BV fields.

• XSAVES always uses the compacted format of the extended region of the XSAVE area (see Section 13.4.3, 
“Extended Region of an XSAVE Area,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a 
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Opcode /
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F C7 /5

XSAVES mem

M V/V XSS Save state components specified by EDX:EAX to 
mem with compaction, optimizing if possible.

NP REX.W + 0F C7 /5

XSAVES64 mem

M V/N.E. XSS Save state components specified by EDX:EAX to 
mem with compaction, optimizing if possible.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A

1. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not 
have its initial value of 1F80H. In this case, the init optimization does not apply and XSAVEC will save SSE state as long as RFBM[1] = 
1 and the modified optimization is not being applied.

2. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not 
have its initial value of 1F80H. In this case, XSAVES sets XSTATE_BV[1] to 1 as long as RFBM[1] = 1.
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See Section 13.6, “Processor Tracking of XSAVE-Managed State,” of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1 for discussion of the bitmap XMODIFIED and of the quantity XRSTOR_INFO.

Operation

RFBM := (XCR0 OR IA32_XSS) AND EDX:EAX; /* bitwise logical OR and AND */
IF in VMX non-root operation

THEN VMXNR := 1;
ELSE VMXNR := 0;

FI;
LAXA := linear address of XSAVE area;
COMPMASK := RFBM OR 80000000_00000000H;
TO_BE_SAVED := RFBM AND XINUSE;
IF XRSTOR_INFO = CPL,VMXNR,LAXA,COMPMASK

THEN TO_BE_SAVED := TO_BE_SAVED AND XMODIFIED;
FI;
IF MXCSR ≠ 1F80H AND RFBM[1]

THEN TO_BE_SAVED[1] = 1;
FI;

IF TO_BE_SAVED[0] = 1
THEN store x87 state into legacy region of XSAVE area;

FI;

IF TO_BE_SAVED[1] = 1
THEN store SSE state into legacy region of XSAVE area; // this step saves the XMM registers, MXCSR, and MXCSR_MASK

FI;

NEXT_FEATURE_OFFSET = 576; // Legacy area and XSAVE header consume 576 bytes
FOR i := 2 TO 62

IF RFBM[i] = 1
THEN

IF TO_BE_SAVED[i]
THEN

save XSAVE state component i at offset NEXT_FEATURE_OFFSET from base of XSAVE area;
IF i = 8 // state component 8 is for PT state

THEN IA32_RTIT_CTL.TraceEn[bit 0] := 0;
FI;

FI;
NEXT_FEATURE_OFFSET = NEXT_FEATURE_OFFSET + n (n enumerated by CPUID(EAX=0DH,ECX=i):EAX);

FI;
ENDFOR;

NEW_HEADER := RFBM AND XINUSE;
IF MXCSR ≠ 1F80H AND RFBM[1]

THEN NEW_HEADER[1] = 1;
FI;
XSTATE_BV field in XSAVE header := NEW_HEADER;
XCOMP_BV field in XSAVE header := COMPMASK;

Flags Affected

None.
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Intel C/C++ Compiler Intrinsic Equivalent

XSAVES void _xsaves( void * , unsigned __int64);
XSAVES64 void _xsaves64( void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If CPL > 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If CPL > 0.

If the memory address is in a non-canonical form.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
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XSETBV—Set Extended Control Register

Instruction Operand Encoding

Description

Writes the contents of registers EDX:EAX into the 64-bit extended control register (XCR) specified in the ECX 
register. (On processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The 
contents of the EDX register are copied to high-order 32 bits of the selected XCR and the contents of the EAX 
register are copied to low-order 32 bits of the XCR. (On processors that support the Intel 64 architecture, the high-
order 32 bits of each of RAX and RDX are ignored.) Undefined or reserved bits in an XCR should be set to values 
previously read.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a general protection 
exception #GP(0) is generated. Specifying a reserved or unimplemented XCR in ECX will also cause a general 
protection exception. The processor will also generate a general protection exception if software attempts to write 
to reserved bits in an XCR.

Currently, only XCR0 is supported. Thus, all other values of ECX are reserved and will cause a #GP(0). Note that 
bit 0 of XCR0 (corresponding to x87 state) must be set to 1; the instruction will cause a #GP(0) if an attempt is 
made to clear this bit. In addition, the instruction causes a #GP(0) if an attempt is made to set XCR0[2] (AVX state) 
while clearing XCR0[1] (SSE state); it is necessary to set both bits to use AVX instructions; Section 13.3, “Enabling 
the XSAVE Feature Set and XSAVE-Enabled Features,” of Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1.

Operation

XCR[ECX] := EDX:EAX;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSETBV void _xsetbv( unsigned int, unsigned __int64);

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an invalid XCR is specified in ECX.
If the value in EDX:EAX sets bits that are reserved in the XCR specified by ECX.
If an attempt is made to clear bit 0 of XCR0.
If an attempt is made to set XCR0[2:1] to 10b.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

NP 0F 01 D1 XSETBV ZO Valid Valid Write the value in EDX:EAX to the XCR 
specified by ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
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Real-Address Mode Exceptions
#GP If an invalid XCR is specified in ECX.

If the value in EDX:EAX sets bits that are reserved in the XCR specified by ECX.
If an attempt is made to clear bit 0 of XCR0.
If an attempt is made to set XCR0[2:1] to 10b.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The XSETBV instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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XSUSLDTRK—Suspend Tracking Load Addresses Vol. 2D 6-72

XSUSLDTRK—Suspend Tracking Load Addresses

Instruction Operand Encoding

Description

The instruction marks the start of an Intel TSX (RTM) suspend load address tracking region. If the instruction is 
used inside a transactional region, subsequent loads are not added to the read set of the transaction. If the instruc-
tion is used inside a suspend load address tracking region it will cause transaction abort.
If the instruction is used outside of a transactional region it behaves like a NOP.
Chapter 16, “Programming with Intel® Transactional Synchronization Extensions‚” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1 provides additional information on Intel® TSX Suspend Load 
Address Tracking.

Operation

XSUSLDTRK
IF RTM_ACTIVE = 1:

IF SUSLDTRK_ACTIVE = 0:
SUSLDTRK_ACTIVE := 1

ELSE:
RTM_ABORT

ELSE:
NOP

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSUSLDTRK void _xsusldtrk(void);

SIMD Floating-Point Exceptions

None.

Other Exceptions

#UD If CPUID.(EAX=7, ECX=0):EDX.TSXLDTRK[bit 16] = 0.
If the LOCK prefix is used.

Opcode/
Instruction

Op/
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

F2 0F 01 E8
XSUSLDTRK

ZO V/V TSXLDTRK Specifies the start of an Intel TSX suspend read 
address tracking region.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A N/A
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XTEST—Test if in Transactional Execution 

Instruction Operand Encoding

Description

The XTEST instruction queries the transactional execution status. If the instruction executes inside a transaction-
ally executing RTM region or a transactionally executing HLE region, then the ZF flag is cleared, else it is set.

Operation

XTEST
IF (RTM_ACTIVE = 1 OR HLE_ACTIVE = 1)

THEN
ZF := 0

ELSE
ZF := 1

FI;

Flags Affected

The ZF flag is cleared if the instruction is executed transactionally; otherwise it is set to 1. The CF, OF, SF, PF, and 
AF, flags are cleared.

Intel C/C++ Compiler Intrinsic Equivalent

XTEST int _xtest( void );

SIMD Floating-Point Exceptions

None.

Other Exceptions
#UD CPUID.(EAX=7, ECX=0):EBX.HLE[bit 4] = 0 and CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] = 

0.
If LOCK prefix is used.

Opcode/Instruction Op/ 
En

64/32bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 01 D6
XTEST

ZO V/V HLE or 
RTM

Test if executing in a transactional region.

Op/En Operand 1 Operand2 Operand3 Operand4

ZO N/A N/A N/A N/A



CHAPTER 7
SAFER MODE EXTENSIONS REFERENCE

7.1 OVERVIEW
This chapter describes the Safer Mode Extensions (SMX) for the Intel 64 and IA-32 architectures. Safer Mode 
Extensions (SMX) provide a programming interface for system software to establish a measured environment 
within the platform to support trust decisions by end users. The measured environment includes:
• Measured launch of a system executive, referred to as a Measured Launched Environment (MLE)1. The system 

executive may be based on a Virtual Machine Monitor (VMM), a measured VMM is referred to as MVMM2.
• Mechanisms to ensure the above measurement is protected and stored in a secure location in the platform.
• Protection mechanisms that allow the VMM to control attempts to modify the VMM.

The measurement and protection mechanisms used by a measured environment are supported by the capabilities 
of an Intel® Trusted Execution Technology (Intel® TXT) platform: 
• The SMX are the processor’s programming interface in an Intel TXT platform. 
• The chipset in an Intel TXT platform provides enforcement of the protection mechanisms.
• Trusted Platform Module (TPM) 1.2 in the platform provides platform configuration registers (PCRs) to store 

software measurement values.

7.2 SMX FUNCTIONALITY
SMX functionality is provided in an Intel 64 processor through the GETSEC instruction via leaf functions. The 
GETSEC instruction supports multiple leaf functions. Leaf functions are selected by the value in EAX at the time 
GETSEC is executed. Each GETSEC leaf function is documented separately in the reference pages with a unique 
mnemonic (even though these mnemonics share the same opcode, 0F 37).

7.2.1 Detecting and Enabling SMX
Software can detect support for SMX operation using the CPUID instruction. If software executes CPUID with 1 in 
EAX, a value of 1 in bit 6 of ECX indicates support for SMX operation (GETSEC is available), see CPUID instruction 
for the layout of feature flags of reported by CPUID.01H:ECX.

System software enables SMX operation by setting CR4.SMXE[Bit 14] = 1 before attempting to execute GETSEC. 
Otherwise, execution of GETSEC results in the processor signaling an invalid opcode exception (#UD). 

If the CPUID SMX feature flag is clear (CPUID.01H.ECX[Bit 6] = 0), attempting to set CR4.SMXE[Bit 14] results in 
a general protection exception. 

The IA32_FEATURE_CONTROL MSR (at address 03AH) provides feature control bits that configure operation of 
VMX and SMX. These bits are documented in Table 7-1.

1. See the Intel® Trusted Execution Technology Measured Launched Environment Programming Guide.

2. An MVMM is sometimes referred to as a measured launched environment (MLE). See the Intel® Trusted Execution Technology Mea-
sured Launched Environment Programming Guide. 

Table 7-1.  Layout of IA32_FEATURE_CONTROL

Bit Position Description

0 Lock bit (0 = unlocked, 1 = locked). When set to '1' further writes to this MSR are blocked.

1 Enable VMX in SMX operation.

2 Enable VMX outside SMX operation.
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SAFER MODE EXTENSIONS REFERENCE
• Bit 0 is a lock bit. If the lock bit is clear, an attempt to execute VMXON will cause a general-protection 
exception. Attempting to execute GETSEC[SENTER] when the lock bit is clear will also cause a general-
protection exception. If the lock bit is set, WRMSR to the IA32_FEATURE_CONTROL MSR will cause a general-
protection exception. Once the lock bit is set, the MSR cannot be modified until a power-on reset. System BIOS 
can use this bit to provide a setup option for BIOS to disable support for VMX, SMX or both VMX and SMX. 

• Bit 1 enables VMX in SMX operation (between executing the SENTER and SEXIT leaves of GETSEC). If this bit 
is clear, an attempt to execute VMXON in SMX will cause a general-protection exception if executed in SMX 
operation. Attempts to set this bit on logical processors that do not support both VMX operation (Chapter 7, 
“Safer Mode Extensions Reference”) and SMX operation cause general-protection exceptions.

• Bit 2 enables VMX outside SMX operation. If this bit is clear, an attempt to execute VMXON will cause a general-
protection exception if executed outside SMX operation. Attempts to set this bit on logical processors that do 
not support VMX operation cause general-protection exceptions.

• Bits 8 through 14 specify enabled functionality of the SENTER leaf function. Each bit in the field represents an 
enable control for a corresponding SENTER function. Only enabled SENTER leaf functionality can be used when 
executing SENTER. 

• Bits 15 specify global enable of all SENTER functionalities. 

7.2.2 SMX Instruction Summary
System software must first query for available GETSEC leaf functions by executing GETSEC[CAPABILITIES]. The 
CAPABILITIES leaf function returns a bit map of available GETSEC leaves. An attempt to execute an unsupported 
leaf index results in an undefined opcode (#UD) exception. 

7:3 Reserved

14:8 SENTER Local Function Enables: When set, each bit in the field represents an enable control for a corresponding 
SENTER function.

15 SENTER Global Enable: Must be set to ‘1’ to enable operation of GETSEC[SENTER].

16 Reserved

17 SGX Launch Control Enable: Must be set to ‘1’ to enable runtime re-configuration of SGX Launch Control via the 
IA32_SGXLEPUBKEYHASHn MSR. 

18 SGX Global Enable: Must be set to ‘1’ to enable Intel SGX leaf functions. 

19 Reserved

20 LMCE On: When set, system software can program the MSRs associated with LMCE to configure delivery of some 
machine check exceptions to a single logical processor. 

63:21 Reserved

Table 7-1.  Layout of IA32_FEATURE_CONTROL
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SAFER MODE EXTENSIONS REFERENCE
7.2.2.1  GETSEC[CAPABILITIES]
The SMX functionality provides an architectural interface for newer processor generations to extend SMX capabili-
ties. Specifically, the GETSEC instruction provides a capability leaf function for system software to discover the 
available GETSEC leaf functions that are supported in a processor. Table 7-2 lists the currently available GETSEC 
leaf functions.
.

7.2.2.2  GETSEC[ENTERACCS]
The GETSEC[ENTERACCS] leaf enables authenticated code execution mode. The ENTERACCS leaf function 
performs an authenticated code module load using the chipset public key as the signature verification. ENTERACCS 
requires the existence of an Intel® Trusted Execution Technology capable chipset since it unlocks the chipset 
private configuration register space after successful authentication of the loaded module. The physical base 
address and size of the authenticated code module are specified as input register values in EBX and ECX, respec-
tively. 

While in the authenticated code execution mode, certain processor state properties change. For this reason, the 
time in which the processor operates in authenticated code execution mode should be limited to minimize impact 
on external system events. 

Upon entry into , the previous paging context is disabled (since the authenticated code module image is specified 
with physical addresses and can no longer rely upon external memory-based page-table structures).

Prior to executing the GETSEC[ENTERACCS] leaf, system software must ensure the logical processor issuing 
GETSEC[ENTERACCS] is the boot-strap processor (BSP), as indicated by IA32_APIC_BASE.BSP = 1. System soft-
ware must ensure other logical processors are in a suitable idle state and not marked as BSP.

The GETSEC[ENTERACCS] leaf may be used by different agents to load different authenticated code modules to 
perform functions related to different aspects of a measured environment, for example system software and 
Intel® TXT enabled BIOS may use more than one authenticated code modules.

7.2.2.3  GETSEC[EXITAC]
GETSEC[EXITAC] takes the processor out of authenticated code execution mode. When this instruction leaf is 
executed, the contents of the authenticated code execution area are scrubbed and control is transferred to the 
non-authenticated context defined by a near pointer passed with the GETSEC[EXITAC] instruction. 

The authenticated code execution area is no longer accessible after completion of GETSEC[EXITAC]. RBX (or EBX) 
holds the address of the near absolute indirect target to be taken. 

Table 7-2.  GETSEC Leaf Functions 

Index (EAX) Leaf function Description

0 CAPABILITIES Returns the available leaf functions of the GETSEC instruction.

1 Undefined Reserved

2 ENTERACCS Enter 

3 EXITAC Exit 

4 SENTER Launch an MLE.

5 SEXIT Exit the MLE.

6 PARAMETERS Return SMX related parameter information.

7 SMCTRL SMX mode control.

8 WAKEUP Wake up sleeping processors in safer mode.

9 - (4G-1) Undefined Reserved
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7.2.2.4  GETSEC[SENTER]
The GETSEC[SENTER] leaf function is used by the initiating logical processor (ILP) to launch an MLE. 
GETSEC[SENTER] can be considered a superset of the ENTERACCS leaf, because it enters as part of the measured 
environment launch. 

Measured environment startup consists of the following steps:
• the ILP rendezvous the responding logical processors (RLPs) in the platform into a controlled state (At the 

completion of this handshake, all the RLPs except for the ILP initiating the measured environment launch are 
placed in a newly defined SENTER sleep state).

• Load and authenticate the authenticated code module required by the measured environment, and enter 
authenticated code execution mode.

• Verify and lock certain system configuration parameters.
• Measure the dynamic root of trust and store into the PCRs in TPM. 
• Transfer control to the MLE with interrupts disabled.

Prior to executing the GETSEC[SENTER] leaf, system software must ensure the platform’s TPM is ready for access 
and the ILP is the boot-strap processor (BSP), as indicated by IA32_APIC_BASE.BSP. System software must ensure 
other logical processors (RLPs) are in a suitable idle state and not marked as BSP.

System software launching a measurement environment is responsible for providing a proper authenticate code 
module address when executing GETSEC[SENTER]. The AC module responsible for the launch of a measured envi-
ronment and loaded by GETSEC[SENTER] is referred to as SINIT. See Intel® Trusted Execution Technology 
Measured Launched Environment Programming Guide for additional information on system software requirements 
prior to executing GETSEC[SENTER].

7.2.2.5  GETSEC[SEXIT]
System software exits the measured environment by executing the instruction GETSEC[SEXIT] on the ILP. This 
instruction rendezvous the responding logical processors in the platform for exiting from the measured environ-
ment. External events (if left masked) are unmasked and Intel® TXT-capable chipset’s private configuration space 
is re-locked. 

7.2.2.6  GETSEC[PARAMETERS]
The GETSEC[PARAMETERS] leaf function is used to report attributes, options, and limitations of SMX operation. 
Software uses this leaf to identify operating limits or additional options. 

The information reported by GETSEC[PARAMETERS] may require executing the leaf multiple times using EBX as an 
index. If the GETSEC[PARAMETERS] instruction leaf or if a specific parameter field is not available, then SMX oper-
ation should be interpreted to use the default limits of respective GETSEC leaves or parameter fields defined in the 
GETSEC[PARAMETERS] leaf.

7.2.2.7  GETSEC[SMCTRL]
The GETSEC[SMCTRL] leaf function is used for providing additional control over specific conditions associated with 
the SMX architecture. An input register is supported for selecting the control operation to be performed. See the 
specific leaf description for details on the type of control provided.

7.2.2.8  GETSEC[WAKEUP]
Responding logical processors (RLPs) are placed in the SENTER sleep state after the initiating logical processor 
executes GETSEC[SENTER]. The ILP can wake up RLPs to join the measured environment by using 
GETSEC[WAKEUP]. When the RLPs in SENTER sleep state wake up, these logical processors begin execution at the 
entry point defined in a data structure held in system memory (pointed to by an chipset register LT.MLE.JOIN) in 
TXT configuration space.
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7.2.3 Measured Environment and SMX
This section gives a simplified view of a representative life cycle of a measured environment that is launched by a 
system executive using SMX leaf functions. The Intel® Trusted Execution Technology Measured Launched Environ-
ment Programming Guide provides more detailed examples of using SMX and chipset resources (including chipset 
registers, Trusted Platform Module) to launch an MVMM.

The life cycle starts with the system executive (an OS, an OS loader, and so forth) loading the MLE and SINIT AC 
module into available system memory. The system executive must validate and prepare the platform for the 
measured launch. When the platform is properly configured, the system executive executes GETSEC[SENTER] on 
the initiating logical processor (ILP) to rendezvous the responding logical processors into an SENTER sleep state, 
the ILP then enters into using the SINIT AC module. In a multi-threaded or multi-processing environment, the 
system executive must ensure that other logical processors are already in an idle loop, or asleep (such as after 
executing HLT) before executing GETSEC[SENTER].

After the GETSEC[SENTER] rendezvous handshake is performed between all logical processors in the platform, the 
ILP loads the chipset authenticated code module (SINIT) and performs an authentication check. If the check 
passes, the processor hashes the SINIT AC module and stores the result into TPM PCR 17. It then switches execu-
tion context to the SINIT AC module. The SINIT AC module will perform a number of platform operations, 
including: verifying the system configuration, protecting the system memory used by the MLE from I/O devices 
capable of DMA, producing a hash of the MLE, storing the hash value in TPM PCR 18, and various other operations. 
When SINIT completes execution, it executes the GETSEC[EXITAC] instruction and transfers control the MLE at the 
designated entry point. 

Upon receiving control from the SINIT AC module, the MLE must establish its protection and isolation controls 
before enabling DMA and interrupts and transferring control to other software modules. It must also wake up the 
RLPs from their SENTER sleep state using the GETSEC[WAKEUP] instruction and bring them into its protection and 
isolation environment.

While executing in a measured environment, the MVMM can access the Trusted Platform Module (TPM) in locality 2. 
The MVMM has complete access to all TPM commands and may use the TPM to report current measurement values 
or use the measurement values to protect information such that only when the platform configuration registers 
(PCRs) contain the same value is the information released from the TPM. This protection mechanism is known as 
sealing. 

A measured environment shutdown is ultimately completed by executing GETSEC[SEXIT]. Prior to this step system 
software is responsible for scrubbing sensitive information left in the processor caches, system memory.

7.3 GETSEC LEAF FUNCTIONS
This section provides detailed descriptions of each leaf function of the GETSEC instruction. GETSEC is available only 
if CPUID.01H:ECX[Bit 6] = 1. This indicates the availability of SMX and the GETSEC instruction. Before GETSEC can 
be executed, SMX must be enabled by setting CR4.SMXE[Bit 14] = 1.

A GETSEC leaf can only be used if it is shown to be available as reported by the GETSEC[CAPABILITIES] function. 
Attempts to access a GETSEC leaf index not supported by the processor, or if CR4.SMXE is 0, results in the signaling 
of an undefined opcode exception.

All GETSEC leaf functions are available in protected mode, including the compatibility sub-mode of IA-32e mode 
and the 64-bit sub-mode of IA-32e mode. Unless otherwise noted, the behavior of all GETSEC functions and inter-
actions related to the measured environment are independent of IA-32e mode. This also applies to the interpreta-
tion of register widths1 passed as input parameters to GETSEC functions and to register results returned as output 
parameters.

1.  This chapter uses the 64-bit notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because processors that support SMX also 
support Intel 64 Architecture. The MVMM can be launched in IA-32e mode or outside IA-32e mode. The 64-bit notation of processor 
registers also refer to its 32-bit forms if SMX is used in 32-bit environment. In some places, notation such as EAX is used to refer 
specifically to lower 32 bits of the indicated register.
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The GETSEC functions ENTERACCS, SENTER, SEXIT, and WAKEUP require a Intel® TXT capable-chipset to be 
present in the platform. The GETSEC[CAPABILITIES] returned bit vector in position 0 indicates an Intel® TXT-
capable chipset has been sampled present1 by the processor.

The processor's operating mode also affects the execution of the following GETSEC leaf functions: SMCTRL, ENTER-
ACCS, EXITAC, SENTER, SEXIT, and WAKEUP. These functions are only allowed in protected mode at CPL = 0. They 
are not allowed while in SMM in order to prevent potential intra-mode conflicts. Further execution qualifications 
exist to prevent potential architectural conflicts (for example: nesting of the measured environment or authenti-
cated code execution mode). See the definitions of the GETSEC leaf functions for specific requirements.

For the purpose of performance monitor counting, the execution of GETSEC functions is counted as a single instruc-
tion with respect to retired instructions. The response by a responding logical processor (RLP) to messages associ-
ated with GETSEC[SENTER] or GTSEC[SEXIT] is transparent to the retired instruction count on the ILP.

1. Sampled present means that the processor sent a message to the chipset and the chipset responded that it (a) knows about the 
message and (b) is capable of executing SENTER. This means that the chipset CAN support Intel® TXT, and is configured and WILLING 
to support it.
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GETSEC[CAPABILITIES]—Report the SMX Capabilities

Description

The GETSEC[CAPABILITIES] function returns a bit vector of supported GETSEC leaf functions. The CAPABILITIES 
leaf of GETSEC is selected with EAX set to 0 at entry. EBX is used as the selector for returning the bit vector field in 
EAX. GETSEC[CAPABILITIES] may be executed at all privilege levels, but the CR4.SMXE bit must be set or an unde-
fined opcode exception (#UD) is returned.

With EBX = 0 upon execution of GETSEC[CAPABILITIES], EAX returns the a bit vector representing status on the 
presence of a Intel® TXT-capable chipset and the first 30 available GETSEC leaf functions. The format of the 
returned bit vector is provided in Table 7-3. 

If bit 0 is set to 1, then an Intel® TXT-capable chipset has been sampled present by the processor. If bits in the range 
of 1-30 are set, then the corresponding GETSEC leaf function is available. If the bit value at a given bit index is 0, 
then the GETSEC leaf function corresponding to that index is unsupported and attempted execution results in a 
#UD. 

Bit 31 of EAX indicates if further leaf indexes are supported. If the Extended Leafs bit 31 is set, then additional leaf 
functions are accessed by repeating GETSEC[CAPABILITIES] with EBX incremented by one. When the most signifi-
cant bit of EAX is not set, then additional GETSEC leaf functions are not supported; indexing EBX to a higher value 
results in EAX returning zero.

Opcode Instruction Description

NP 0F 37 

(EAX = 0)

GETSEC[CAPABILITIES] Report the SMX capabilities. 

The capabilities index is input in EBX with the result returned in EAX.

Table 7-3.  GETSEC Capability Result Encoding (EBX = 0) 

Field Bit position Description

Chipset Present 0 Intel® TXT-capable chipset is present.

Undefined 1 Reserved

ENTERACCS 2 GETSEC[ENTERACCS] is available.

EXITAC 3 GETSEC[EXITAC] is available.

SENTER 4 GETSEC[SENTER] is available.

SEXIT 5 GETSEC[SEXIT] is available.

PARAMETERS 6 GETSEC[PARAMETERS] is available.

SMCTRL 7 GETSEC[SMCTRL] is available.

WAKEUP 8 GETSEC[WAKEUP] is available.

Undefined 30:9 Reserved

Extended Leafs 31 Reserved for extended information reporting of GETSEC capabilities.
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Operation

IF (CR4.SMXE=0)
THEN #UD;

ELSIF (in VMX non-root operation)
THEN VM Exit (reason=”GETSEC instruction”);

IF (EBX=0) THEN
BitVector := 0;
IF (TXT chipset present)

BitVector[Chipset present] := 1;
IF (ENTERACCS Available)

THEN BitVector[ENTERACCS] := 1;
IF (EXITAC Available)

THEN BitVector[EXITAC] := 1;
IF (SENTER Available)

THEN BitVector[SENTER] := 1;
IF (SEXIT Available)

THEN BitVector[SEXIT] := 1;
IF (PARAMETERS Available)

THEN BitVector[PARAMETERS] := 1;
IF (SMCTRL Available)

THEN BitVector[SMCTRL] := 1;
IF (WAKEUP Available)

THEN BitVector[WAKEUP] := 1;
EAX := BitVector;

ELSE
EAX := 0;

END;;

Flags Affected
None.

Use of Prefixes
LOCK Causes #UD.
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.
NP 66/F2/F3 prefixes are not allowed.
Segment overrides Ignored.
Address size Ignored.
REX Ignored.

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

Compatibility Mode Exceptions
#UD If CR4.SMXE = 0.
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64-Bit Mode Exceptions
#UD If CR4.SMXE = 0.

VM-exit Condition
Reason (GETSEC) If in VMX non-root operation.
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GETSEC[ENTERACCS]—Execute Authenticated Chipset Code

Description

The GETSEC[ENTERACCS] function loads, authenticates, and executes an authenticated code module using an 
Intel® TXT platform chipset's public key. The ENTERACCS leaf of GETSEC is selected with EAX set to 2 at entry.

There are certain restrictions enforced by the processor for the execution of the GETSEC[ENTERACCS] instruction: 
• Execution is not allowed unless the processor is in protected mode or IA-32e mode with CPL = 0 and 

EFLAGS.VM = 0. 
• Processor cache must be available and not disabled, that is, CR0.CD and CR0.NW bits must be 0. 
• For processor packages containing more than one logical processor, CR0.CD is checked to ensure consistency 

between enabled logical processors. 
• For enforcing consistency of operation with numeric exception reporting using Interrupt 16, CR0.NE must be 

set. 
• An Intel TXT-capable chipset must be present as communicated to the processor by sampling of the power-on 

configuration capability field after reset. 
• The processor can not already be in authenticated code execution mode as launched by a previous 

GETSEC[ENTERACCS] or GETSEC[SENTER] instruction without a subsequent exiting using GETSEC[EXITAC]). 
• To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction 

if it currently is in SMM or VMX operation. 
• To ensure consistent handling of SIPI messages, the processor executing the GETSEC[ENTERACCS] instruction 

must also be designated the BSP (boot-strap processor) as defined by IA32_APIC_BASE.BSP (Bit 8). 

Failure to conform to the above conditions results in the processor signaling a general protection exception.

Prior to execution of the ENTERACCS leaf, other logical processors, i.e., RLPs, in the platform must be:
• Idle in a wait-for-SIPI state (as initiated by an INIT assertion or through reset for non-BSP designated 

processors), or 
• In the SENTER sleep state as initiated by a GETSEC[SENTER] from the initiating logical processor (ILP). 

If other logical processor(s) in the same package are not idle in one of these states, execution of ENTERACCS 
signals a general protection exception. The same requirement and action applies if the other logical processor(s) of 
the same package do not have CR0.CD = 0. 

A successful execution of ENTERACCS results in the ILP entering an authenticated code execution mode. Prior to 
reaching this point, the processor performs several checks. These include: 
• Establish and check the location and size of the specified authenticated code module to be executed by the 

processor.
• Inhibit the ILP’s response to the external events: INIT, A20M, NMI, and SMI.
• Broadcast a message to enable protection of memory and I/O from other processor agents.
• Load the designated code module into an authenticated code execution area.
• Isolate the contents of the authenticated code execution area from further state modification by external 

agents.
• Authenticate the authenticated code module.
• Initialize the initiating logical processor state based on information contained in the authenticated code module 

header.
• Unlock the Intel® TXT-capable chipset private configuration space and TPM locality 3 space.

Opcode Instruction Description

NP 0F 37 

(EAX = 2)

GETSEC[ENTERACCS] Enter authenticated code execution mode.

EBX holds the authenticated code module physical base address. ECX holds the authenticated 
code module size (bytes).
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• Begin execution in the authenticated code module at the defined entry point.

The GETSEC[ENTERACCS] function requires two additional input parameters in the general purpose registers EBX 
and ECX. EBX holds the authenticated code (AC) module physical base address (the AC module must reside below 
4 GBytes in physical address space) and ECX holds the AC module size (in bytes). The physical base address and 
size are used to retrieve the code module from system memory and load it into the internal authenticated code 
execution area. The base physical address is checked to verify it is on a modulo-4096 byte boundary. The size is 
verified to be a multiple of 64, that it does not exceed the internal authenticated code execution area capacity (as 
reported by GETSEC[CAPABILITIES]), and that the top address of the AC module does not exceed 32 bits. An error 
condition results in an abort of the authenticated code execution launch and the signaling of a general protection 
exception.

As an integrity check for proper processor hardware operation, execution of GETSEC[ENTERACCS] will also check 
the contents of all the machine check status registers (as reported by the MSRs IA32_MCi_STATUS) for any valid 
uncorrectable error condition. In addition, the global machine check status register IA32_MCG_STATUS MCIP bit 
must be cleared and the IERR processor package pin (or its equivalent) must not be asserted, indicating that no 
machine check exception processing is currently in progress. These checks are performed prior to initiating the 
load of the authenticated code module. Any outstanding valid uncorrectable machine check error condition present 
in these status registers at this point will result in the processor signaling a general protection violation.

The ILP masks the response to the assertion of the external signals INIT#, A20M, NMI#, and SMI#. This masking 
remains active until optionally unmasked by GETSEC[EXITAC] (this defined unmasking behavior assumes 
GETSEC[ENTERACCS] was not executed by a prior GETSEC[SENTER]). The purpose of this masking control is to 
prevent exposure to existing external event handlers that may not be under the control of the authenticated code 
module. 

The ILP sets an internal flag to indicate it has entered authenticated code execution mode. The state of the A20M 
pin is likewise masked and forced internally to a de-asserted state so that any external assertion is not recognized 
during authenticated code execution mode. 

To prevent other (logical) processors from interfering with the ILP operating in authenticated code execution mode, 
memory (excluding implicit write-back transactions) access and I/O originating from other processor agents are 
blocked. This protection starts when the ILP enters into authenticated code execution mode. Only memory and I/O 
transactions initiated from the ILP are allowed to proceed. Exiting authenticated code execution mode is done by 
executing GETSEC[EXITAC]. The protection of memory and I/O activities remains in effect until the ILP executes 
GETSEC[EXITAC].

Prior to launching the authenticated execution module using GETSEC[ENTERACCS] or GETSEC[SENTER], the 
processor’s MTRRs (Memory Type Range Registers) must first be initialized to map out the authenticated RAM 
addresses as WB (writeback). Failure to do so may affect the ability for the processor to maintain isolation of the 
loaded authenticated code module. If the processor detected this requirement is not met, it will signal an Intel® 
TXT reset condition with an error code during the loading of the authenticated code module.

While physical addresses within the load module must be mapped as WB, the memory type for locations outside of 
the module boundaries must be mapped to one of the supported memory types as returned by GETSEC[PARAME-
TERS] (or UC as default).

To conform to the minimum granularity of MTRR MSRs for specifying the memory type, authenticated code RAM 
(ACRAM) is allocated to the processor in 4096 byte granular blocks. If an AC module size as specified in ECX is not 
a multiple of 4096 then the processor will allocate up to the next 4096 byte boundary for mapping as ACRAM with 
indeterminate data. This pad area will not be visible to the authenticated code module as external memory nor can 
it depend on the value of the data used to fill the pad area.

At the successful completion of GETSEC[ENTERACCS], the architectural state of the processor is partially initialized 
from contents held in the header of the authenticated code module. The processor GDTR, CS, and DS selectors are 
initialized from fields within the authenticated code module. Since the authenticated code module must be relocat-
able, all address references must be relative to the authenticated code module base address in EBX. The processor 
GDTR base value is initialized to the AC module header field GDTBasePtr + module base address held in EBX and 
the GDTR limit is set to the value in the GDTLimit field. The CS selector is initialized to the AC module header 
SegSel field, while the DS selector is initialized to CS + 8. The segment descriptor fields are implicitly initialized to 
BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write access for DS, and execute/read access for CS. The 
processor begins the authenticated code module execution with the EIP set to the AC module header EntryPoint 
field + module base address (EBX). The AC module based fields used for initializing the processor state are checked 
for consistency and any failure results in a shutdown condition.
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A summary of the register state initialization after successful completion of GETSEC[ENTERACCS] is given for the 
processor in Table 7-4. The paging is disabled upon entry into authenticated code execution mode. The authenti-
cated code module is loaded and initially executed using physical addresses. It is up to the system software after 
execution of GETSEC[ENTERACCS] to establish a new (or restore its previous) paging environment with an appro-
priate mapping to meet new protection requirements. EBP is initialized to the authenticated code module base 
physical address for initial execution in the authenticated environment. As a result, the authenticated code can 
reference EBP for relative address based references, given that the authenticated code module must be position 
independent.

The segmentation related processor state that has not been initialized by GETSEC[ENTERACCS] requires appro-
priate initialization before use. Since a new GDT context has been established, the previous state of the segment 
selector values held in ES, SS, FS, GS, TR, and LDTR might not be valid. 

The MSR IA32_EFER is also unconditionally cleared as part of the processor state initialized by ENTERACCS. Since 
paging is disabled upon entering authenticated code execution mode, a new paging environment will have to be 
reestablished in order to establish IA-32e mode while operating in authenticated code execution mode.

Debug exception and trap related signaling is also disabled as part of GETSEC[ENTERACCS]. This is achieved by 
resetting DR7, TF in EFLAGs, and the MSR IA32_DEBUGCTL. These debug functions are free to be re-enabled once 
supporting exception handler(s), descriptor tables, and debug registers have been properly initialized following 
entry into authenticated code execution mode. Also, any pending single-step trap condition will have been cleared 
upon entry into this mode.

Table 7-4.  Register State Initialization After GETSEC[ENTERACCS] 

Register State Initialization Status Comment

CR0 PG←0, AM←0, WP←0: Others unchanged Paging, Alignment Check, Write-protection are 
disabled.

CR4 MCE←0, CET←0, PCIDE←0: Others unchanged Machine Check Exceptions, Control-flow 
Enforcement Technology, and Process-context 
Identifiers disabled.

EFLAGS 00000002H

IA32_EFER 0H IA-32e mode disabled.

EIP AC.base + EntryPoint AC.base is in EBX as input to GETSEC[ENTERACCS].

[E|R]BX Pre-ENTERACCS state: Next [E|R]IP prior to 
GETSEC[ENTERACCS]

Carry forward 64-bit processor state across 
GETSEC[ENTERACCS].

ECX Pre-ENTERACCS state: [31:16]=GDTR.limit; 
[15:0]=CS.sel

Carry forward processor state across 
GETSEC[ENTERACCS].

[E|R]DX Pre-ENTERACCS state: 
GDTR base

Carry forward 64-bit processor state across 
GETSEC[ENTERACCS].

EBP AC.base

CS Sel=[SegSel], base=0, limit=FFFFFh, G=1, D=1, AR=9BH

DS Sel=[SegSel] +8, base=0, limit=FFFFFh, G=1, D=1, 
AR=93H

GDTR Base= AC.base (EBX) + [GDTBasePtr], Limit=[GDTLimit]

DR7 00000400H

IA32_DEBUGCTL 0H

IA32_MISC_ENABLE See Table 7-5 for example. The number of initialized fields may change due to 
processor implementation.

Performance 
counters and counter 
control registers

0H
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Performance related counters and counter control registers are cleared as part of execution of ENTERACCS. This 
implies any active performance counters at any time of ENTERACCS execution will be disabled. To reactive the 
processor performance counters, this state must be re-initialized and re-enabled.

The IA32_MISC_ENABLE MSR is initialized upon entry into authenticated execution mode. Certain bits of this MSR 
are preserved because preserving these bits may be important to maintain previously established platform settings 
(See the footnote for Table 7-5.). The remaining bits are cleared for the purpose of establishing a more consistent 
environment for the execution of authenticated code modules. One of the impacts of initializing this MSR is any 
previous condition established by the MONITOR instruction will be cleared. 

To support the possible return to the processor architectural state prior to execution of GETSEC[ENTERACCS], 
certain critical processor state is captured and stored in the general- purpose registers at instruction completion. 
[E|R]BX holds effective address ([E|R]IP) of the instruction that would execute next after GETSEC[ENTERACCS], 
ECX[15:0] holds the CS selector value, ECX[31:16] holds the GDTR limit field, and [E|R]DX holds the GDTR base 
field. The subsequent authenticated code can preserve the contents of these registers so that this state can be 
manually restored if needed, prior to exiting authenticated code execution mode with GETSEC[EXITAC]. For the 
processor state after exiting authenticated code execution mode, see the description of GETSEC[SEXIT].

The IDTR will also require reloading with a new IDT context after entering authenticated code execution mode, 
before any exceptions or the external interrupts INTR and NMI can be handled. Since external interrupts are re-
enabled at the completion of authenticated code execution mode (as terminated with EXITAC), it is recommended 
that a new IDT context be established before this point. Until such a new IDT context is established, the 
programmer must take care in not executing an INT n instruction or any other operation that would result in an 
exception or trap signaling.

Prior to completion of the GETSEC[ENTERACCS] instruction and after successful authentication of the AC module, 
the private configuration space of the Intel TXT chipset is unlocked. The authenticated code module alone can gain 
access to this normally restricted chipset state for the purpose of securing the platform. 

Once the authenticated code module is launched at the completion of GETSEC[ENTERACCS], it is free to enable 
interrupts by setting EFLAGS.IF and enable NMI by execution of IRET. This presumes that it has re-established 
interrupt handling support through initialization of the IDT, GDT, and corresponding interrupt handling code.

Table 7-5.  IA32_MISC_ENABLE MSR Initialization1 by ENTERACCS and SENTER

NOTES:
1. The number of IA32_MISC_ENABLE fields that are initialized may vary due to processor implementations.

Field Bit position Description

Fast strings enable 0 Clear to 0.

FOPCODE compatibility mode 
enable

2 Clear to 0.

Thermal monitor enable 3 Set to 1 if other thermal monitor capability is not enabled.2

2. ENTERACCS (and SENTER) initialize the state of processor thermal throttling such that at least a minimum level is enabled. If thermal 
throttling is already enabled when executing one of these GETSEC leaves, then no change in the thermal throttling control settings 
will occur. If thermal throttling is disabled, then it will be enabled via setting of the thermal throttle control bit 3 as a result of execut-
ing these GETSEC leaves.

Split-lock disable 4 Clear to 0.

Bus lock on cache line splits 
disable

8 Clear to 0.

Hardware prefetch disable 9 Clear to 0.

GV1/2 legacy enable 15 Clear to 0.

MONITOR/MWAIT s/m enable 18 Clear to 0.

Adjacent sector prefetch disable 19 Clear to 0.
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Operation in a Uni-Processor Platform

(* The state of the internal flag ACMODEFLAG persists across instruction boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSIF (GETSEC leaf unsupported)

THEN #UD;
ELSIF ((in VMX operation) or

(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or
(TXT chipset not present) or
(ACMODEFLAG=1) or (IN_SMM=1))

THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)

FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO
IF (IA32_MC[I]_STATUS = uncorrectable error)

THEN #GP(0);
OD;

FI;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN #GP(0);
ACBASE := EBX;
ACSIZE := ECX;
IF (((ACBASE MOD 4096) ≠ 0) or ((ACSIZE MOD 64 ) ≠ 0 ) or (ACSIZE < minimum module size) OR (ACSIZE > authenticated RAM 
capacity)) or ((ACBASE+ACSIZE) > (2^32 -1)))

THEN #GP(0);
IF (secondary thread(s) CR0.CD = 1) or ((secondary thread(s) NOT(wait-for-SIPI)) and

(secondary thread(s) not in SENTER sleep state)
THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;
IA32_MISC_ENABLE := (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M := 0;
IA32_DEBUGCTL := 0;
Invalidate processor TLB(s);
Drain Outgoing Transactions;
ACMODEFLAG := 1;
SignalTXTMessage(ProcessorHold);
Load the internal ACRAM based on the AC module size;
(* Ensure that all ACRAM loads hit Write Back memory space *)
IF (ACRAM memory type ≠ WB)

THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version isnot supported) OR (ACRAM[ModuleType] ≠ 2)

THEN TXT-SHUTDOWN(#UnsupportedACM);
 (* Authenticate the AC Module and shutdown with an error if it fails *)
KEY := GETKEY(ACRAM, ACBASE);
KEYHASH := HASH(KEY);
CSKEYHASH := READ(TXT.PUBLIC.KEY);
IF (KEYHASH ≠ CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE := DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
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FOR I=0 to SIGNATURE_LEN_CONST - 1 DO
ACRAM[SCRATCH.I] := SIGNATURE[I];

COMPUTEDSIGNATURE := HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I] := COMPUTEDSIGNATURE[I];
IF (SIGNATURE ≠ COMPUTEDSIGNATURE)

THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL := ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR

((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))
THEN ACEntryPoint := ACBASE+ACRAM[ErrorEntryPoint];

ELSE
ACEntryPoint := ACBASE+ACRAM[EntryPoint];

IF ((ACEntryPoint >= ACSIZE) OR (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))THEN TXT-SHUTDOWN(#BadACMFormat);
IF (ACRAM[GDTLimit] & FFFF0000h)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) OR (ACRAM[SegSel] < 8))

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel].TI=1) OR (ACRAM[SegSel].RPL≠0))

THEN TXT-SHUTDOWN(#BadACMFormat);
CR0.[PG.AM.WP] := 0;
CR4.MCE := 0;
EFLAGS := 00000002h;
IA32_EFER := 0h;
[E|R]BX := [E|R]IP of the instruction after GETSEC[ENTERACCS];
ECX := Pre-GETSEC[ENTERACCS] GDT.limit:CS.sel;
[E|R]DX := Pre-GETSEC[ENTERACCS] GDT.base;
EBP := ACBASE;
GDTR.BASE := ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT := ACRAM[GDTLimit];
CS.SEL := ACRAM[SegSel];
CS.BASE := 0;
CS.LIMIT := FFFFFh;
CS.G := 1;
CS.D := 1;
CS.AR := 9Bh;
DS.SEL := ACRAM[SegSel]+8;
DS.BASE := 0;
DS.LIMIT := FFFFFh;
DS.G := 1;
DS.D := 1;
DS.AR := 93h;
DR7 := 00000400h;
IA32_DEBUGCTL := 0;
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
EIP := ACEntryPoint;
END;
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Flags Affected
All flags are cleared.

Use of Prefixes
LOCK Causes #UD.
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.
NP 66/F2/F3 prefixes are not allowed.
Segment overrides Ignored.
Address size Ignored.
REX Ignored.

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If a Intel® TXT-capable chipset is not present.
If in VMX root operation.
If the initiating processor is not designated as the bootstrap processor via the MSR bit 
IA32_APIC_BASE.BSP.
If the processor is already in authenticated code execution mode.
If the processor is in SMM.
If a valid uncorrectable machine check error is logged in IA32_MC[I]_STATUS.
If the authenticated code base is not on a 4096 byte boundary.
If the authenticated code size > processor internal authenticated code area capacity.
If the authenticated code size is not modulo 64.
If other enabled logical processor(s) of the same package CR0.CD = 1.
If other enabled logical processor(s) of the same package are not in the wait-for-SIPI or 
SENTER sleep state.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[ENTERACCS] is not recognized in real-address mode.
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Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[ENTERACCS] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.
#GP  If AC code module does not reside in physical address below 2^32 -1.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP  If AC code module does not reside in physical address below 2^32 -1.

VM-exit Condition
Reason (GETSEC) If in VMX non-root operation.
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GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

Description

The GETSEC[EXITAC] leaf function exits the ILP out of authenticated code execution mode established by 
GETSEC[ENTERACCS] or GETSEC[SENTER]. The EXITAC leaf of GETSEC is selected with EAX set to 3 at entry. EBX 
(or RBX, if in 64-bit mode) holds the near jump target offset for where the processor execution resumes upon 
exiting authenticated code execution mode. EDX contains additional parameter control information. Currently only 
an input value of 0 in EDX is supported. All other EDX settings are considered reserved and result in a general 
protection violation.

GETSEC[EXITAC] can only be executed if the processor is in protected mode with CPL = 0 and EFLAGS.VM = 0. The 
processor must also be in authenticated code execution mode. To avoid potential operability conflicts between 
modes, the processor is not allowed to execute this instruction if it is in SMM or in VMX operation. A violation of 
these conditions results in a general protection violation.

Upon completion of the GETSEC[EXITAC] operation, the processor unmasks responses to external event signals 
INIT#, NMI#, and SMI#. This unmasking is performed conditionally, based on whether the authenticated code 
execution mode was entered via execution of GETSEC[SENTER] or GETSEC[ENTERACCS]. If the processor is in 
authenticated code execution mode due to the execution of GETSEC[SENTER], then these external event signals 
will remain masked. In this case, A20M is kept disabled in the measured environment until the measured environ-
ment executes GETSEC[SEXIT]. INIT# is unconditionally unmasked by EXITAC. Note that any events that are 
pending, but have been blocked while in authenticated code execution mode, will be recognized at the completion 
of the GETSEC[EXITAC] instruction if the pin event is unmasked.

The intent of providing the ability to optionally leave the pin events SMI#, and NMI# masked is to support the 
completion of a measured environment bring-up that makes use of VMX. In this envisioned security usage 
scenario, these events will remain masked until an appropriate virtual machine has been established in order to 
field servicing of these events in a safer manner. Details on when and how events are masked and unmasked in 
VMX operation are described in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C. It 
should be cautioned that if no VMX environment is to be activated following GETSEC[EXITAC], that these events 
will remain masked until the measured environment is exited with GETSEC[SEXIT]. If this is not desired then the 
GETSEC function SMCTRL(0) can be used for unmasking SMI# in this context. NMI# can be correspondingly 
unmasked by execution of IRET.

A successful exit of the authenticated code execution mode requires the ILP to perform additional steps as outlined 
below:
• Invalidate the contents of the internal authenticated code execution area. 
• Invalidate processor TLBs. 
• Clear the internal processor AC Mode indicator flag. 
• Re-lock the TPM locality 3 space. 
• Unlock the Intel® TXT-capable chipset memory and I/O protections to allow memory and I/O activity by other 

processor agents. 
• Perform a near absolute indirect jump to the designated instruction location.

The content of the authenticated code execution area is invalidated by hardware in order to protect it from further 
use or visibility. This internal processor storage area can no longer be used or relied upon after GETSEC[EXITAC]. 
Data structures need to be re-established outside of the authenticated code execution area if they are to be refer-
enced after EXITAC. Since addressed memory content formerly mapped to the authenticated code execution area 
may no longer be coherent with external system memory after EXITAC, processor TLBs in support of linear to phys-
ical address translation are also invalidated.

Opcode Instruction Description

NP 0F 37

(EAX=3)

GETSEC[EXITAC] Exit authenticated code execution mode.

RBX holds the Near Absolute Indirect jump target and EDX hold the exit parameter flags.
GETSEC[EXITAC]—Exit Authenticated Code Execution Mode Vol. 2D 7-18



SAFER MODE EXTENSIONS REFERENCE
Upon completion of GETSEC[EXITAC] a near absolute indirect transfer is performed with EIP loaded with the 
contents of EBX (based on the current operating mode size). In 64-bit mode, all 64 bits of RBX are loaded into RIP 
if REX.W precedes GETSEC[EXITAC]. Otherwise RBX is treated as 32 bits even while in 64-bit mode. Conventional 
CS limit checking is performed as part of this control transfer. Any exception conditions generated as part of this 
control transfer will be directed to the existing IDT; thus it is recommended that an IDTR should also be established 
prior to execution of the EXITAC function if there is a need for fault handling. In addition, any segmentation related 
(and paging) data structures to be used after EXITAC should be re-established or validated by the authenticated 
code prior to EXITAC. 

In addition, any segmentation related (and paging) data structures to be used after EXITAC need to be re-estab-
lished and mapped outside of the authenticated RAM designated area by the authenticated code prior to EXITAC. 
Any data structure held within the authenticated RAM allocated area will no longer be accessible after completion 
by EXITAC.

Operation

(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSIF ( in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSIF (GETSEC leaf unsupported)

THEN #UD;
ELSIF ((in VMX operation) or ( (in 64-bit mode) and ( RBX is non-canonical) )

(CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or
(ACMODEFLAG=0) or (IN_SMM=1)) or (EDX ≠ 0))
THEN #GP(0);

IF (OperandSize = 32)
THEN tempEIP := EBX;

ELSIF (OperandSize = 64)
THEN tempEIP := RBX;

ELSE
tempEIP := EBX AND 0000FFFFH;

IF (tempEIP > code segment limit)
THEN #GP(0);

Invalidate ACRAM contents;
Invalidate processor TLB(s);
Drain outgoing messages;
SignalTXTMsg(CloseLocality3);
SignalTXTMsg(LockSMRAM);
SignalTXTMsg(ProcessorRelease);
Unmask INIT;
IF (SENTERFLAG=0)

THEN Unmask SMI, INIT, NMI, and A20M pin event;
ELSEIF (IA32_SMM_MONITOR_CTL[0] = 0)

THEN Unmask SMI pin event;
ACMODEFLAG := 0;
IF IA32_EFER.LMA == 1

THEN CR3 := R8;
EIP := tempEIP;
END;

Flags Affected

None.
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Use of Prefixes
LOCK Causes #UD.
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.
NP 66/F2/F3 prefixes are not allowed.
Segment overrides Ignored.
Address size Ignored.
REX.W Sets 64-bit mode Operand size attribute.

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[EXITAC] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CR0.PE = 0 or CPL>0 or EFLAGS.VM =1.

If in VMX root operation.
If the processor is not currently in authenticated code execution mode.
If the processor is in SMM.
If any reserved bit position is set in the EDX parameter register.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[EXITAC] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[EXITAC] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[EXITAC] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[EXITAC] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP(0) If the target address in RBX is not in a canonical form.

VM-Exit Condition
Reason (GETSEC) If in VMX non-root operation.
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GETSEC[SENTER]—Enter a Measured Environment

Description

The GETSEC[SENTER] instruction initiates the launch of a measured environment and places the initiating logical 
processor (ILP) into the authenticated code execution mode. The SENTER leaf of GETSEC is selected with EAX set 
to 4 at execution. The physical base address of the AC module to be loaded and authenticated is specified in EBX. 
The size of the module in bytes is specified in ECX. EDX controls the level of functionality supported by the 
measured environment launch. To enable the full functionality of the protected environment launch, EDX must be 
initialized to zero.

The authenticated code base address and size parameters (in bytes) are passed to the GETSEC[SENTER] instruc-
tion using EBX and ECX respectively. The ILP evaluates the contents of these registers according to the rules for the 
AC module address in GETSEC[ENTERACCS]. AC module execution follows the same rules, as set by 
GETSEC[ENTERACCS].

The launching software must ensure that the TPM.ACCESS_0.activeLocality bit is clear before executing the 
GETSEC[SENTER] instruction.

There are restrictions enforced by the processor for execution of the GETSEC[SENTER] instruction: 
• Execution is not allowed unless the processor is in protected mode or IA-32e mode with CPL = 0 and 

EFLAGS.VM = 0. 
• Processor cache must be available and not disabled using the CR0.CD and NW bits. 
• For enforcing consistency of operation with numeric exception reporting using Interrupt 16, CR0.NE must be 

set. 
• An Intel TXT-capable chipset must be present as communicated to the processor by sampling of the power-on 

configuration capability field after reset. 
• The processor can not be in authenticated code execution mode or already in a measured environment (as 

launched by a previous GETSEC[ENTERACCS] or GETSEC[SENTER] instruction). 
• To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction 

if it currently is in SMM or VMX operation. 
• To ensure consistent handling of SIPI messages, the processor executing the GETSEC[SENTER] instruction 

must also be designated the BSP (boot-strap processor) as defined by IA32_APIC_BASE.BSP (Bit 8). 
• EDX must be initialized to a setting supportable by the processor. Unless enumeration by the GETSEC[PARAM-

ETERS] leaf reports otherwise, only a value of zero is supported.

Failure to abide by the above conditions results in the processor signaling a general protection violation.

This instruction leaf starts the launch of a measured environment by initiating a rendezvous sequence for all logical 
processors in the platform. The rendezvous sequence involves the initiating logical processor sending a message 
(by executing GETSEC[SENTER]) and other responding logical processors (RLPs) acknowledging the message, 
thus synchronizing the RLP(s) with the ILP.

In response to a message signaling the completion of rendezvous, RLPs clear the bootstrap processor indicator flag 
(IA32_APIC_BASE.BSP) and enter an SENTER sleep state. In this sleep state, RLPs enter an idle processor condi-
tion while waiting to be activated after a measured environment has been established by the system executive. 
RLPs in the SENTER sleep state can only be activated by the GETSEC leaf function WAKEUP in a measured environ-
ment.

Opcode Instruction Description

NP 0F 37

(EAX=4)

GETSEC[SENTER] Launch a measured environment.

EBX holds the SINIT authenticated code module physical base address.

ECX holds the SINIT authenticated code module size (bytes).

EDX controls the level of functionality supported by the measured environment launch.
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A successful launch of the measured environment results in the initiating logical processor entering the authenti-
cated code execution mode. Prior to reaching this point, the ILP performs the following steps internally: 
• Inhibit processor response to the external events: INIT, A20M, NMI, and SMI. 
• Establish and check the location and size of the authenticated code module to be executed by the ILP. 
• Check for the existence of an Intel® TXT-capable chipset. 
• Verify the current power management configuration is acceptable. 
• Broadcast a message to enable protection of memory and I/O from activities from other processor agents. 
• Load the designated AC module into authenticated code execution area. 
• Isolate the content of authenticated code execution area from further state modification by external agents.
• Authenticate the AC module.
• Updated the Trusted Platform Module (TPM) with the authenticated code module's hash. 
• Initialize processor state based on the authenticated code module header information. 
• Unlock the Intel® TXT-capable chipset private configuration register space and TPM locality 3 space. 
• Begin execution in the authenticated code module at the defined entry point.

As an integrity check for proper processor hardware operation, execution of GETSEC[SENTER] will also check the 
contents of all the machine check status registers (as reported by the MSRs IA32_MCi_STATUS) for any valid 
uncorrectable error condition. In addition, the global machine check status register IA32_MCG_STATUS MCIP bit 
must be cleared and the IERR processor package pin (or its equivalent) must be not asserted, indicating that no 
machine check exception processing is currently in-progress. These checks are performed twice: once by the ILP 
prior to the broadcast of the rendezvous message to RLPs, and later in response to RLPs acknowledging the 
rendezvous message. Any outstanding valid uncorrectable machine check error condition present in the machine 
check status registers at the first check point will result in the ILP signaling a general protection violation. If an 
outstanding valid uncorrectable machine check error condition is present at the second check point, then this will 
result in the corresponding logical processor signaling the more severe TXT-shutdown condition with an error code 
of 12.

Before loading and authentication of the target code module is performed, the processor also checks that the 
current voltage and bus ratio encodings correspond to known good values supportable by the processor. The MSR 
IA32_PERF_STATUS values are compared against either the processor supported maximum operating target 
setting, system reset setting, or the thermal monitor operating target. If the current settings do not meet any of 
these criteria then the SENTER function will attempt to change the voltage and bus ratio select controls in a 
processor-specific manner. This adjustment may be to the thermal monitor, minimum (if different), or maximum 
operating target depending on the processor.

This implies that some thermal operating target parameters configured by BIOS may be overridden by SENTER. 
The measured environment software may need to take responsibility for restoring such settings that are deemed 
to be safe, but not necessarily recognized by SENTER. If an adjustment is not possible when an out of range setting 
is discovered, then the processor will abort the measured launch. This may be the case for chipset controlled 
settings of these values or if the controllability is not enabled on the processor. In this case it is the responsibility 
of the external software to program the chipset voltage ID and/or bus ratio select settings to known good values 
recognized by the processor, prior to executing SENTER.

NOTE
For a mobile processor, an adjustment can be made according to the thermal monitor operating 
target. For a quad-core processor the SENTER adjustment mechanism may result in a more conser-
vative but non-uniform voltage setting, depending on the pre-SENTER settings per core.

The ILP and RLPs mask the response to the assertion of the external signals INIT#, A20M, NMI#, and SMI#. The 
purpose of this masking control is to prevent exposure to existing external event handlers until a protected handler 
has been put in place to directly handle these events. Masked external pin events may be unmasked conditionally 
or unconditionally via the GETSEC[EXITAC], GETSEC[SEXIT], GETSEC[SMCTRL] or for specific VMX related opera-
tions such as a VM entry or the VMXOFF instruction (see respective GETSEC leaves and Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more details). The state of the A20M pin is masked and 
forced internally to a de-asserted state so that external assertion is not recognized. A20M masking as set by 
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GETSEC[SENTER] is undone only after taking down the measured environment with the GETSEC[SEXIT] instruc-
tion or processor reset. INTR is masked by simply clearing the EFLAGS.IF bit. It is the responsibility of system soft-
ware to control the processor response to INTR through appropriate management of EFLAGS.

To prevent other (logical) processors from interfering with the ILP operating in authenticated code execution mode, 
memory (excluding implicit write-back transactions) and I/O activities originating from other processor agents are 
blocked. This protection starts when the ILP enters into authenticated code execution mode. Only memory and I/O 
transactions initiated from the ILP are allowed to proceed. Exiting authenticated code execution mode is done by 
executing GETSEC[EXITAC]. The protection of memory and I/O activities remains in effect until the ILP executes 
GETSEC[EXITAC].

Once the authenticated code module has been loaded into the authenticated code execution area, it is protected 
against further modification from external bus snoops. There is also a requirement that the memory type for the 
authenticated code module address range be WB (via initialization of the MTRRs prior to execution of this instruc-
tion). If this condition is not satisfied, it is a violation of security and the processor will force a TXT system reset 
(after writing an error code to the chipset LT.ERRORCODE register). This action is referred to as a Intel® TXT reset 
condition. It is performed when it is considered unreliable to signal an error through the conventional exception 
reporting mechanism. 

To conform to the minimum granularity of MTRR MSRs for specifying the memory type, authenticated code RAM 
(ACRAM) is allocated to the processor in 4096 byte granular blocks. If an AC module size as specified in ECX is not 
a multiple of 4096 then the processor will allocate up to the next 4096 byte boundary for mapping as ACRAM with 
indeterminate data. This pad area will not be visible to the authenticated code module as external memory nor can 
it depend on the value of the data used to fill the pad area.

Once successful authentication has been completed by the ILP, the computed hash is stored in a trusted storage 
facility in the platform. The following trusted storage facility are supported: 
• If the platform register FTM_INTERFACE_ID.[bits 3:0] = 0, the computed hash is stored to the platform’s TPM 

at PCR17 after this register is implicitly reset. PCR17 is a dedicated register for holding the computed hash of 
the authenticated code module loaded and subsequently executed by the GETSEC[SENTER]. As part of this 
process, the dynamic PCRs 18-22 are reset so they can be utilized by subsequently software for registration of 
code and data modules. 

• If the platform register FTM_INTERFACE_ID.[bits 3:0] = 1, the computed hash is stored in a firmware trusted 
module (FTM) using a modified protocol similar to the protocol used to write to TPM’s PCR17. 

After successful execution of SENTER, either PCR17 (if FTM is not enabled) or the FTM (if enabled) contains the 
measurement of AC code and the SENTER launching parameters. 

After authentication is completed successfully, the private configuration space of the Intel® TXT-capable chipset is 
unlocked so that the authenticated code module and measured environment software can gain access to this 
normally restricted chipset state. The Intel® TXT-capable chipset private configuration space can be locked later 
by software writing to the chipset LT.CMD.CLOSE-PRIVATE register or unconditionally using the GETSEC[SEXIT] 
instruction.

The SENTER leaf function also initializes some processor architecture state for the ILP from contents held in the 
header of the authenticated code module. Since the authenticated code module is relocatable, all address refer-
ences are relative to the base address passed in via EBX. The ILP GDTR base value is initialized to EBX + 
[GDTBasePtr] and GDTR limit set to [GDTLimit]. The CS selector is initialized to the value held in the AC module 
header field SegSel, while the DS, SS, and ES selectors are initialized to CS+8. The segment descriptor fields are 
initialized implicitly with BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write/accessed for DS, SS, and ES, 
while execute/read/accessed for CS. Execution in the authenticated code module for the ILP begins with the EIP set 
to EBX + [EntryPoint]. AC module defined fields used for initializing processor state are consistency checked with 
a failure resulting in an TXT-shutdown condition.

Table 7-6 provides a summary of processor state initialization for the ILP and RLP(s) after successful completion of 
GETSEC[SENTER]. For both ILP and RLP(s), paging is disabled upon entry to the measured environment. It is up to 
the ILP to establish a trusted paging environment, with appropriate mappings, to meet protection requirements 
established during the launch of the measured environment. RLP state initialization is not completed until a subse-
quent wake-up has been signaled by execution of the GETSEC[WAKEUP] function by the ILP.
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Segmentation related processor state that has not been initialized by GETSEC[SENTER] requires appropriate 
initialization before use. Since a new GDT context has been established, the previous state of the segment selector 
values held in FS, GS, TR, and LDTR may no longer be valid. The IDTR will also require reloading with a new IDT 
context after launching the measured environment before exceptions or the external interrupts INTR and NMI can 
be handled. In the meantime, the programmer must take care in not executing an INT n instruction or any other 
condition that would result in an exception or trap signaling.

Debug exception and trap related signaling is also disabled as part of execution of GETSEC[SENTER]. This is 
achieved by clearing DR7, TF in EFLAGs, and the MSR IA32_DEBUGCTL as defined in Table 7-6. These can be re-
enabled once supporting exception handler(s), descriptor tables, and debug registers have been properly re-initial-
ized following SENTER. Also, any pending single-step trap condition will be cleared at the completion of SENTER for 
both the ILP and RLP(s).

Performance related counters and counter control registers are cleared as part of execution of SENTER on both the 
ILP and RLP. This implies any active performance counters at the time of SENTER execution will be disabled. To 
reactive the processor performance counters, this state must be re-initialized and re-enabled.

Since MCE along with all other state bits (with the exception of SMXE) are cleared in CR4 upon execution of SENTER 
processing, any enabled machine check error condition that occurs will result in the processor performing the TXT-
shutdown action. This also applies to an RLP while in the SENTER sleep state. For each logical processor CR4.MCE 
must be reestablished with a valid machine check exception handler to otherwise avoid an TXT-shutdown under 
such conditions.

Table 7-6.  Register State Initialization After GETSEC[SENTER] and GETSEC[WAKEUP]

Register State ILP after GETSEC[SENTER] RLP after GETSEC[WAKEUP]

CR0 PG←0, AM←0, WP←0; Others unchanged PG←0, CD←0, NW←0, AM←0, WP←0; PE←1, NE←1

CR4 00004000H 00004000H

EFLAGS 00000002H 00000002H

IA32_EFER 0H 0

EIP [EntryPoint from MLE header1]

NOTES:
1. See the Intel® Trusted Execution Technology Measured Launched Environment Programming Guide for MLE header format.

[LT.MLE.JOIN + 12]

EBX Unchanged [SINIT.BASE] Unchanged

EDX SENTER control flags Unchanged

EBP SINIT.BASE Unchanged

CS Sel=[SINIT SegSel], base=0, limit=FFFFFh, G=1, 
D=1, AR=9BH

Sel = [LT.MLE.JOIN + 8], base = 0, limit = FFFFFH, G = 
1, D = 1, AR = 9BH

DS, ES, SS Sel=[SINIT SegSel] +8, base=0, limit=FFFFFh, G=1, 
D=1, AR=93H

Sel = [LT.MLE.JOIN + 8] +8, base = 0, limit = FFFFFH, G 
= 1, D = 1, AR = 93H

GDTR Base= SINIT.base (EBX) + [SINIT.GDTBasePtr], 
Limit=[SINIT.GDTLimit]

Base = [LT.MLE.JOIN + 4], Limit = [LT.MLE.JOIN]

DR7 00000400H 00000400H

IA32_DEBUGCTL 0H 0H

Performance counters 
and counter control 
registers

0H 0H

IA32_MISC_ENABLE See Table 7-5 See Table 7-5

IA32_SMM_MONITOR_
CTL

Bit 2←0 Bit 2←0
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The MSR IA32_EFER is also unconditionally cleared as part of the processor state initialized by SENTER for both the 
ILP and RLP. Since paging is disabled upon entering authenticated code execution mode, a new paging environ-
ment will have to be re-established if it is desired to enable IA-32e mode while operating in authenticated code 
execution mode. 

The miscellaneous feature control MSR, IA32_MISC_ENABLE, is initialized as part of the measured environment 
launch. Certain bits of this MSR are preserved because preserving these bits may be important to maintain previ-
ously established platform settings. See the footnote for Table 7-5 The remaining bits are cleared for the purpose 
of establishing a more consistent environment for the execution of authenticated code modules. Among the impact 
of initializing this MSR, any previous condition established by the MONITOR instruction will be cleared. 

Effect of MSR IA32_FEATURE_CONTROL MSR

Bits 15:8 of the IA32_FEATURE_CONTROL MSR affect the execution of GETSEC[SENTER]. These bits consist of two 
fields: 
• Bit 15: a global enable control for execution of SENTER.
• Bits 14:8: a parameter control field providing the ability to qualify SENTER execution based on the level of 

functionality specified with corresponding EDX parameter bits 6:0. 

The layout of these fields in the IA32_FEATURE_CONTROL MSR is shown in Table 7-1. 

Prior to the execution of GETSEC[SENTER], the lock bit of IA32_FEATURE_CONTROL MSR must be bit set to affirm 
the settings to be used. Once the lock bit is set, only a power-up reset condition will clear this MSR. The IA32_FEA-
TURE_CONTROL MSR must be configured in accordance to the intended usage at platform initialization. Note that 
this MSR is only available on SMX or VMX enabled processors. Otherwise, IA32_FEATURE_CONTROL is treated as 
reserved.

The Intel® Trusted Execution Technology Measured Launched Environment Programming Guide provides addi-
tional details and requirements for programming measured environment software to launch in an Intel TXT plat-
form.

Operation in a Uni-Processor Platform

(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)

GETSEC[SENTER] (ILP Only):
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((in VMX root operation) or

(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or (TXT chipset not present) or
(SENTERFLAG=1) or (ACMODEFLAG=1) or (IN_SMM=1) or
(TPM interface is not present) or
(EDX ≠ (SENTER_EDX_support_mask & EDX)) or
(IA32_FEATURE_CONTROL[0]=0) or (IA32_FEATURE_CONTROL[15]=0) or
((IA32_FEATURE_CONTROL[14:8] & EDX[6:0]) ≠ EDX[6:0]))

THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)

FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO
IF IA32_MC[I]_STATUS = uncorrectable error

THEN #GP(0);
FI;

OD;
FI;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)
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THEN #GP(0);
ACBASE := EBX;
ACSIZE := ECX;
IF (((ACBASE MOD 4096) ≠ 0) or ((ACSIZE MOD 64) ≠ 0 ) or (ACSIZE < minimum 

module size) or (ACSIZE > AC RAM capacity) or ((ACBASE+ACSIZE) > (2^32 -1)))
THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;
SignalTXTMsg(SENTER);
DO
WHILE (no SignalSENTER message);

TXT_SENTER__MSG_EVENT (ILP & RLP):
Mask and clear SignalSENTER event;
Unmask SignalSEXIT event;
IF (in VMX operation)

THEN TXT-SHUTDOWN(#IllegalEvent);
FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO

IF IA32_MC[I]_STATUS = uncorrectable error
THEN TXT-SHUTDOWN(#UnrecovMCError);

FI;
OD;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN TXT-SHUTDOWN(#UnrecovMCError);
IF (Voltage or bus ratio status are NOT at a known good state)

THEN IF (Voltage select and bus ratio are internally adjustable)
THEN 

Make product-specific adjustment on operating parameters;
ELSE

TXT-SHUTDOWN(#IIlegalVIDBRatio);
FI;

IA32_MISC_ENABLE := (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M := 0;
IA32_DEBUGCTL := 0;
Invalidate processor TLB(s);
Drain outgoing transactions;
Clear performance monitor counters and control;
SENTERFLAG := 1;
SignalTXTMsg(SENTERAck);
IF (logical processor is not ILP)

THEN GOTO RLP_SENTER_ROUTINE;
(* ILP waits for all logical processors to ACK *)
DO

DONE := TXT.READ(LT.STS);
WHILE (not DONE);
SignalTXTMsg(SENTERContinue);
SignalTXTMsg(ProcessorHold);
FOR I=ACBASE to ACBASE+ACSIZE-1 DO

ACRAM[I-ACBASE].ADDR := I;
ACRAM[I-ACBASE].DATA := LOAD(I);

OD;
IF (ACRAM memory type ≠ WB)

THEN TXT-SHUTDOWN(#BadACMMType);
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IF (AC module header version is not supported) OR (ACRAM[ModuleType] ≠ 2)
THEN TXT-SHUTDOWN(#UnsupportedACM);

KEY := GETKEY(ACRAM, ACBASE);
KEYHASH := HASH(KEY);
CSKEYHASH := LT.READ(LT.PUBLIC.KEY);
IF (KEYHASH ≠ CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE := DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.I] := SIGNATURE[I];
COMPUTEDSIGNATURE := HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I] := COMPUTEDSIGNATURE[I];
IF (SIGNATURE ≠ COMPUTEDSIGNATURE)

THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL := ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR 

((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified 
line detected on ACRAM load)) 
THEN ACEntryPoint := ACBASE+ACRAM[ErrorEntryPoint];

ELSE
ACEntryPoint := ACBASE+ACRAM[EntryPoint];

IF ((ACEntryPoint >= ACSIZE) or (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) or (ACRAM[SegSel] < 8))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel].TI=1) or (ACRAM[SegSel].RPL≠0))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF (FTM_INTERFACE_ID.[3:0] = 1 ) (* Alternate FTM Interface has been enabled *)
THEN (* TPM_LOC_CTRL_4 is located at 0FED44008H, TMP_DATA_BUFFER_4 is located at 0FED44080H *)

WRITE(TPM_LOC_CTRL_4) := 01H; (* Modified HASH.START protocol *)
(* Write to firmware storage *)
WRITE(TPM_DATA_BUFFER_4) := SIGNATURE_LEN_CONST + 4;
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

WRITE(TPM_DATA_BUFFER_4 + 2 + I ) := ACRAM[SCRATCH.I];
WRITE(TPM_DATA_BUFFER_4 + 2 + SIGNATURE_LEN_CONST) := EDX;
WRITE(FTM.LOC_CTRL) := 06H; (* Modified protocol combining HASH.DATA and HASH.END *)

ELSE IF (FTM_INTERFACE_ID.[3:0] = 0 ) (* Use standard TPM Interface *)
ACRAM[SCRATCH.SIGNATURE_LEN_CONST] := EDX;
WRITE(TPM.HASH.START) := 0;
FOR I=0 to SIGNATURE_LEN_CONST + 3 DO

WRITE(TPM.HASH.DATA) := ACRAM[SCRATCH.I];
WRITE(TPM.HASH.END) := 0;

FI;
ACMODEFLAG := 1;
CR0.[PG.AM.WP] := 0;
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CR4 := 00004000h;
EFLAGS := 00000002h;
IA32_EFER := 0;
EBP := ACBASE;
GDTR.BASE := ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT := ACRAM[GDTLimit];
CS.SEL := ACRAM[SegSel];
CS.BASE := 0;
CS.LIMIT := FFFFFh;
CS.G := 1;
CS.D := 1;
CS.AR := 9Bh;
DS.SEL := ACRAM[SegSel]+8;
DS.BASE := 0;
DS.LIMIT := FFFFFh;
DS.G := 1;
DS.D := 1;
DS.AR := 93h;
SS := DS;
ES := DS;
DR7 := 00000400h;
IA32_DEBUGCTL := 0;
SignalTXTMsg(UnlockSMRAM);
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
EIP := ACEntryPoint;
END;

RLP_SENTER_ROUTINE: (RLP Only)
Mask SMI, INIT, A20M, and NMI external pin events
Unmask SignalWAKEUP event;
Wait for SignalSENTERContinue message;
IA32_APIC_BASE.BSP := 0;
GOTO SENTER sleep state;
END;

Flags Affected

All flags are cleared.

Use of Prefixes
LOCK Causes #UD.
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.
NP 66/F2/F3 prefixes are not allowed.
Segment overrides Ignored.
Address size Ignored.
REX Ignored.
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Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX root operation.
If the initiating processor is not designated as the bootstrap processor via the MSR bit 
IA32_APIC_BASE.BSP.
If an Intel® TXT-capable chipset is not present.
If an Intel® TXT-capable chipset interface to TPM is not detected as present.
If a protected partition is already active or the processor is already in authenticated code 
mode.
If the processor is in SMM.
If a valid uncorrectable machine check error is logged in IA32_MC[I]_STATUS.
If the authenticated code base is not on a 4096 byte boundary.
If the authenticated code size > processor's authenticated code execution area storage 
capacity.
If the authenticated code size is not modulo 64.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SENTER] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SENTER] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.
#GP  If AC code module does not reside in physical address below 2^32 -1.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP  If AC code module does not reside in physical address below 2^32 -1.

VM-Exit Condition
Reason (GETSEC) If in VMX non-root operation.
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GETSEC[SEXIT]—Exit Measured Environment

Description

The GETSEC[SEXIT] instruction initiates an exit of a measured environment established by GETSEC[SENTER]. The 
SEXIT leaf of GETSEC is selected with EAX set to 5 at execution. This instruction leaf sends a message to all logical 
processors in the platform to signal the measured environment exit. 

There are restrictions enforced by the processor for the execution of the GETSEC[SEXIT] instruction: 
• Execution is not allowed unless the processor is in protected mode (CR0.PE = 1) with CPL = 0 and EFLAGS.VM 

= 0. 
• The processor must be in a measured environment as launched by a previous GETSEC[SENTER] instruction, 

but not still in authenticated code execution mode. 
• To avoid potential interoperability conflicts between modes, the processor is not allowed to execute this 

instruction if it currently is in SMM or in VMX operation. 
• To ensure consistent handling of SIPI messages, the processor executing the GETSEC[SEXIT] instruction must 

also be designated the BSP (bootstrap processor) as defined by the register bit IA32_APIC_BASE.BSP (bit 8). 

Failure to abide by the above conditions results in the processor signaling a general protection violation.

This instruction initiates a sequence to rendezvous the RLPs with the ILP. It then clears the internal processor flag 
indicating the processor is operating in a measured environment.

In response to a message signaling the completion of rendezvous, all RLPs restart execution with the instruction 
that was to be executed at the time GETSEC[SEXIT] was recognized. This applies to all processor conditions, with 
the following exceptions: 
• If an RLP executed HLT and was in this halt state at the time of the message initiated by GETSEC[SEXIT], then 

execution resumes in the halt state. 
• If an RLP was executing MWAIT, then a message initiated by GETSEC[SEXIT] causes an exit of the MWAIT 

state, falling through to the next instruction. 
• If an RLP was executing an intermediate iteration of a string instruction, then the processor resumes execution 

of the string instruction at the point which the message initiated by GETSEC[SEXIT] was recognized. 
• If an RLP is still in the SENTER sleep state (never awakened with GETSEC[WAKEUP]), it will be sent to the wait-

for-SIPI state after first clearing the bootstrap processor indicator flag (IA32_APIC_BASE.BSP) and any 
pending SIPI state. In this case, such RLPs are initialized to an architectural state consistent with having taken 
a soft reset using the INIT# pin. 

Prior to completion of the GETSEC[SEXIT] operation, both the ILP and any active RLPs unmask the response of the 
external event signals INIT#, A20M, NMI#, and SMI#. This unmasking is performed unconditionally to recognize 
pin events which are masked after a GETSEC[SENTER]. The state of A20M is unmasked, as the A20M pin is not 
recognized while the measured environment is active.

On a successful exit of the measured environment, the ILP re-locks the Intel® TXT-capable chipset private config-
uration space. GETSEC[SEXIT] does not affect the content of any PCR.

At completion of GETSEC[SEXIT] by the ILP, execution proceeds to the next instruction. Since EFLAGS and the 
debug register state are not modified by this instruction, a pending trap condition is free to be signaled if previously 
enabled.

Opcode Instruction Description

NP 0F 37

(EAX=5)

GETSEC[SEXIT] Exit measured environment.
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Operation in a Uni-Processor Platform

(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)

GETSEC[SEXIT] (ILP Only):
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((in VMX root operation) or

(CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or
(TXT chipset not present) or
(SENTERFLAG=0) or (ACMODEFLAG=1) or (IN_SMM=1))

THEN #GP(0);
SignalTXTMsg(SEXIT);
DO
WHILE (no SignalSEXIT message);

TXT_SEXIT_MSG_EVENT (ILP & RLP):
Mask and clear SignalSEXIT event;
Clear MONITOR FSM;
Unmask SignalSENTER event;
IF (in VMX operation)

THEN TXT-SHUTDOWN(#IllegalEvent);
SignalTXTMsg(SEXITAck);
IF (logical processor is not ILP)

THEN GOTO RLP_SEXIT_ROUTINE;
(* ILP waits for all logical processors to ACK *)
DO

DONE := READ(LT.STS);
WHILE (NOT DONE);
SignalTXTMsg(SEXITContinue);
SignalTXTMsg(ClosePrivate);
SENTERFLAG := 0;
Unmask SMI, INIT, A20M, and NMI external pin events;
END;

RLP_SEXIT_ROUTINE (RLPs Only):
Wait for SignalSEXITContinue message;
Unmask SMI, INIT, A20M, and NMI external pin events;
IF (prior execution state = HLT)

THEN reenter HLT state;
IF (prior execution state = SENTER sleep)

THEN
IA32_APIC_BASE.BSP := 0;
Clear pending SIPI state;
Call INIT_PROCESSOR_STATE;
Unmask SIPI event;
GOTO WAIT-FOR-SIPI;

FI;
END;
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Flags Affected
ILP: None. 
RLPs: All flags are modified for an RLP. returning to wait-for-SIPI state, none otherwise. 

Use of Prefixes
LOCK Causes #UD.
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.
NP 66/F2/F3 prefixes are not allowed.
Segment overrides Ignored.
Address size Ignored.
REX Ignored.

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SEXIT] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX root operation.
If the initiating processor is not designated via the MSR bit IA32_APIC_BASE.BSP.
If an Intel® TXT-capable chipset is not present.
If a protected partition is not already active or the processor is already in authenticated code 
mode.
If the processor is in SMM.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SEXIT] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SEXIT] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SEXIT] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SEXIT] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-Exit Condition
Reason (GETSEC) If in VMX non-root operation.
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GETSEC[PARAMETERS]—Report the SMX Parameters

Description

The GETSEC[PARAMETERS] instruction returns specific parameter information for SMX features supported by the 
processor. Parameter information is returned in EAX, EBX, and ECX, with the input parameter selected using EBX.

Software retrieves parameter information by searching with an input index for EBX starting at 0, and then reading 
the returned results in EAX, EBX, and ECX. EAX[4:0] is designated to return a parameter type field indicating if a 
parameter is available and what type it is. If EAX[4:0] is returned with 0, this designates a null parameter and indi-
cates no more parameters are available. 

Table 7-7 defines the parameter types supported in current and future implementations.

Opcode Instruction Description

NP 0F 37

(EAX=6)

GETSEC[PARAMETERS] Report the SMX parameters.

The parameters index is input in EBX with the result returned in EAX, EBX, and ECX.

Table 7-7.  SMX Reporting Parameters Format 

Parameter 
Type EAX[4:0] Parameter Description EAX[31:5] EBX[31:0] ECX[31:0]

0 NULL Reserved (0 returned) Reserved (unmodified) Reserved (unmodified)

1 Supported AC module 
versions

Reserved (0 returned) Version comparison mask Version numbers 
supported

2 Max size of authenticated 
code execution area

Multiply by 32 for size in 
bytes

Reserved (unmodified) Reserved (unmodified)

3 External memory types 
supported during AC mode

Memory type bit mask Reserved (unmodified) Reserved (unmodified)

4 Selective SENTER 
functionality control

EAX[14:8] correspond to 
available SENTER function 
disable controls

Reserved (unmodified) Reserved (unmodified)

5 TXT extensions support TXT Feature Extensions 
Flags (see Table )

Reserved Reserved 

6-31 Undefined Reserved (unmodified) Reserved (unmodified) Reserved (unmodified)

Table 7-8.  TXT Feature Extensions Flags 

Bit Definition Description

5 Processor based S-CRTM 
support

Returns 1 if this processor implements a processor-rooted S-CRTM capability and 0 if 
not (S-CRTM is rooted in BIOS).
This flag cannot be used to infer whether the chipset supports TXT or whether the 
processor support SMX.

6 Machine Check Handling Returns 1 if it machine check status registers can be preserved through ENTERACCS 
and SENTER. If this bit is 1, the caller of ENTERACCS and SENTER is not required to 
clear machine check error status bits before invoking these GETSEC leaves.

If this bit returns 0, the caller of ENTERACCS and SENTER must clear all machine 
check error status bits before invoking these GETSEC leaves.

31:7 Reserved Reserved for future use. Will return 0.
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Supported AC module versions (as defined by the AC module HeaderVersion field) can be determined for a partic-
ular SMX capable processor by the type 1 parameter. Using EBX to index through the available parameters reported 
by GETSEC[PARAMETERS] for each unique parameter set returned for type 1, software can determine the 
complete list of AC module version(s) supported. 

For each parameter set, EBX returns the comparison mask and ECX returns the available HeaderVersion field 
values supported, after AND'ing the target HeaderVersion with the comparison mask. Software can then determine 
if a particular AC module version is supported by following the pseudo-code search routine given below:

parameter_search_index= 0
do {

EBX= parameter_search_index++
EAX= 6
GETSEC
if (EAX[4:0] = 1) {

if ((version_query & EBX) = ECX) {
version_is_supported= 1
break

}
}

} while (EAX[4:0] ≠ 0)

If only AC modules with a HeaderVersion of 0 are supported by the processor, then only one parameter set of type 
1 will be returned, as follows: EAX = 00000001H, 

EBX = FFFFFFFFH and ECX = 00000000H.

The maximum capacity for an authenticated code execution area supported by the processor is reported with the 
parameter type of 2. The maximum supported size in bytes is determined by multiplying the returned size in 
EAX[31:5] by 32. Thus, for a maximum supported authenticated RAM size of 32KBytes, EAX returns with 
00008002H. 

Supportable memory types for memory mapped outside of the authenticated code execution area are reported 
with the parameter type of 3. While is active, as initiated by the GETSEC functions SENTER and ENTERACCS and 
terminated by EXITAC, there are restrictions on what memory types are allowed for the rest of system memory. It 
is the responsibility of the system software to initialize the memory type range register (MTRR) MSRs and/or the 
page attribute table (PAT) to only map memory types consistent with the reporting of this parameter. The reporting 
of supportable memory types of external memory is indicated using a bit map returned in EAX[31:8]. These bit 
positions correspond to the memory type encodings defined for the MTRR MSR and PAT programming. See 
Table 7-9.

The parameter type of 4 is used for enumerating the availability of selective GETSEC[SENTER] function disable 
controls. If a 1 is reported in bits 14:8 of the returned parameter EAX, then this indicates a disable control capa-
bility exists with SENTER for a particular function. The enumerated field in bits 14:8 corresponds to use of the EDX 
input parameter bits 6:0 for SENTER. If an enumerated field bit is set to 1, then the corresponding EDX input 
parameter bit of EDX may be set to 1 to disable that designated function. If the enumerated field bit is 0 or this 
parameter is not reported, then no disable capability exists with the corresponding EDX input parameter for 
SENTER, and EDX bit(s) must be cleared to 0 to enable execution of SENTER. If no selective disable capability for 
SENTER exists as enumerated, then the corresponding bits in the IA32_FEATURE_CONTROL MSR bits 14:8 must 
also be programmed to 1 if the SENTER global enable bit 15 of the MSR is set. This is required to enable future 
extensibility of SENTER selective disable capability with respect to potentially separate software initialization of the 
MSR.

Table 7-9.  External Memory Types Using Parameter 3 

EAX Bit Position Parameter Description

8 Uncacheable (UC)

9 Write Combining (WC)

11:10 Reserved

12 Write-through (WT)
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If the GETSEC[PARAMETERS] leaf or specific parameter is not present for a given SMX capable processor, then 
default parameter values should be assumed. These are defined in Table 7-10.

Operation

(* example of a processor supporting only a 0.0 HeaderVersion, 32K ACRAM size, memory types UC and WC *)
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
(* example of a processor supporting a 0.0 HeaderVersion *)

IF (EBX=0) THEN
EAX := 00000001h;
EBX := FFFFFFFFh;
ECX := 00000000h;

ELSE IF (EBX=1)
(* example of a processor supporting a 32K ACRAM size *)
THEN EAX := 00008002h;

ESE IF (EBX= 2)
(* example of a processor supporting external memory types of UC and WC *)
THEN EAX := 00000303h;

ESE IF (EBX= other value(s) less than unsupported index value)
(* EAX value varies. Consult Table 7-7 and Table *)

ELSE (* unsupported index*)
EAX := 00000000h;

END;

Flags Affected

None.

Use of Prefixes
LOCK Causes #UD.
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.

13 Write-protected (WP)

14 Write-back (WB)

31:15 Reserved

Table 7-10.  Default Parameter Values

Parameter Type EAX[4:0] Default Setting Parameter Description

1 0.0 only Supported AC module versions. 

2 32 KBytes Authenticated code execution area size.

3 UC only External memory types supported during AC execution mode.

4 None Available SENTER selective disable controls.

Table 7-9.  External Memory Types Using Parameter 3  (Contd.)
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NP 66/F2/F3 prefixes are not allowed.
Segment overrides Ignored.
Address size Ignored.
REX Ignored.

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[PARAMETERS] is not reported as supported by GETSEC[CAPABILITIES].

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[PARAMETERS] is not reported as supported by GETSEC[CAPABILITIES].

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[PARAMETERS] is not reported as supported by GETSEC[CAPABILITIES].

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-Exit Condition
Reason (GETSEC) If in VMX non-root operation.
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GETSEC[SMCTRL]—SMX Mode Control

Description

The GETSEC[SMCTRL] instruction is available for performing certain SMX specific mode control operations. The 
operation to be performed is selected through the input register EBX. Currently only an input value in EBX of 0 is 
supported. All other EBX settings will result in the signaling of a general protection violation. 

If EBX is set to 0, then the SMCTRL leaf is used to re-enable SMI events. SMI is masked by the ILP executing the 
GETSEC[SENTER] instruction (SMI is also masked in the responding logical processors in response to SENTER 
rendezvous messages.). The determination of when this instruction is allowed and the events that are unmasked 
is dependent on the processor context (See Table 7-11). For brevity, the usage of SMCTRL where EBX=0 will be 
referred to as GETSEC[SMCTRL(0)].

As part of support for launching a measured environment, the SMI, NMI, and INIT events are masked after 
GETSEC[SENTER], and remain masked after exiting authenticated execution mode. Unmasking these events 
should be accompanied by securely enabling these event handlers. These security concerns can be addressed in 
VMX operation by a MVMM. 

The VM monitor can choose two approaches:
• In a dual monitor approach, the executive software will set up an SMM monitor in parallel to the executive VMM 

(i.e., the MVMM), see Chapter 33, “System Management Mode‚” of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3C. The SMM monitor is dedicated to handling SMI events without compromising 
the security of the MVMM. This usage model of handling SMI while a measured environment is active does not 
require the use of GETSEC[SMCTRL(0)] as event re-enabling after the VMX environment launch is handled 
implicitly and through separate VMX based controls. 

• If a dedicated SMM monitor will not be established and SMIs are to be handled within the measured 
environment, then GETSEC[SMCTRL(0)] can be used by the executive software to re-enable SMI that has been 
masked as a result of SENTER.

Table 7-11 defines the processor context in which GETSEC[SMCTRL(0)] can be used and which events will be 
unmasked. Note that the events that are unmasked are dependent upon the currently operating processor context.

Opcode Instruction Description

NP 0F 37 (EAX = 7) GETSEC[SMCTRL] Perform specified SMX mode control as selected with the input EBX.

Table 7-11.  Supported Actions for GETSEC[SMCTRL(0)]

ILP Mode of Operation SMCTRL execution action

In VMX non-root operation VM exit

SENTERFLAG = 0 #GP(0), illegal context

In authenticated code execution mode 
(ACMODEFLAG = 1)

#GP(0), illegal context

SENTERFLAG = 1, not in VMX operation, not in SMM Unmask SMI 

SENTERFLAG = 1, in VMX root operation, not in 
SMM 

Unmask SMI if SMM monitor is not configured, otherwise #GP(0)

SENTERFLAG = 1, In VMX root operation, in SMM #GP(0), illegal context
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Operation

(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((CR0.PE=0) or (CPL>0) OR (EFLAGS.VM=1))

THEN #GP(0);
ELSE IF((EBX=0) and (SENTERFLAG=1) and (ACMODEFLAG=0) and (IN_SMM=0) and

 (((in VMX root operation) and (SMM monitor not configured)) or (not in VMX operation)) )
THEN unmask SMI;

ELSE
#GP(0);

END

Flags Affected
None.

Use of Prefixes
LOCK Causes #UD.
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.
NP 66/F2/F3 prefixes are not allowed.
Segment overrides Ignored.
Address size Ignored.
REX Ignored.

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SMCTRL] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX root operation.
If a protected partition is not already active or the processor is currently in authenticated code 
mode.
If the processor is in SMM.
If the SMM monitor is not configured.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SMCTRL] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SMCTRL] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SMCTRL] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SMCTRL] is not recognized in virtual-8086 mode.
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Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-exit Condition
Reason (GETSEC) If in VMX non-root operation.
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GETSEC[WAKEUP]—Wake Up Sleeping Processors in Measured Environment

Description

The GETSEC[WAKEUP] leaf function broadcasts a wake-up message to all logical processors currently in the 
SENTER sleep state. This GETSEC leaf must be executed only by the ILP, in order to wake-up the RLPs. Responding 
logical processors (RLPs) enter the SENTER sleep state after completion of the SENTER rendezvous sequence. 

The GETSEC[WAKEUP] instruction may only be executed: 
• In a measured environment as initiated by execution of GETSEC[SENTER]. 
• Outside of authenticated code execution mode. 
• Execution is not allowed unless the processor is in protected mode with CPL = 0 and EFLAGS.VM = 0. 
• In addition, the logical processor must be designated as the boot-strap processor as configured by setting 

IA32_APIC_BASE.BSP = 1. 

If these conditions are not met, attempts to execute GETSEC[WAKEUP] result in a general protection violation.

An RLP exits the SENTER sleep state and start execution in response to a WAKEUP signal initiated by ILP’s execu-
tion of GETSEC[WAKEUP]. The RLP retrieves a pointer to a data structure that contains information to enable 
execution from a defined entry point. This data structure is located using a physical address held in the Intel® TXT-
capable chipset configuration register LT.MLE.JOIN. The register is publicly writable in the chipset by all processors 
and is not restricted by the Intel® TXT-capable chipset configuration register lock status. The format of this data 
structure is defined in Table 7-12.

The MLE JOIN data structure contains the information necessary to initialize RLP processor state and permit the 
processor to join the measured environment. The GDTR, LIP, and CS, DS, SS, and ES selector values are initialized 
using this data structure. The CS selector index is derived directly from the segment selector initializer field; DS, 
SS, and ES selectors are initialized to CS+8. The segment descriptor fields are initialized implicitly with BASE = 0, 
LIMIT = FFFFFH, G = 1, D = 1, P = 1, S = 1; read/write/access for DS, SS, and ES; and execute/read/access for 
CS. It is the responsibility of external software to establish a GDT pointed to by the MLE JOIN data structure that 
contains descriptor entries consistent with the implicit settings initialized by the processor (see Table 7-6). Certain 
states from the content of Table 7-12 are checked for consistency by the processor prior to execution. A failure of 
any consistency check results in the RLP aborting entry into the protected environment and signaling an Intel® 
TXT shutdown condition. The specific checks performed are documented later in this section. After successful 
completion of processor consistency checks and subsequent initialization, RLP execution in the measured environ-
ment begins from the entry point at offset 12 (as indicated in Table 7-12).

Opcode Instruction Description

NP 0F 37

(EAX=8)

GETSEC[WAKEUP] Wake up the responding logical processors from the SENTER sleep state.

Table 7-12.  RLP MVMM JOIN Data Structure

Offset Field

0 GDT limit

4 GDT base pointer

8 Segment selector initializer

12 EIP
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Operation

(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or (SENTERFLAG=0) or (ACMODEFLAG=1) or (IN_SMM=0) or (in VMX operation) or 
(IA32_APIC_BASE.BSP=0) or (TXT chipset not present))

THEN #GP(0);
ELSE

SignalTXTMsg(WAKEUP);
END;

RLP_SIPI_WAKEUP_FROM_SENTER_ROUTINE: (RLP Only)
WHILE (no SignalWAKEUP event);
IF (IA32_SMM_MONITOR_CTL[0] ≠ ILP.IA32_SMM_MONITOR_CTL[0])

THEN TXT-SHUTDOWN(#IllegalEvent)
IF (IA32_SMM_MONITOR_CTL[0] = 0)

THEN Unmask SMI pin event;
ELSE

Mask SMI pin event;
Mask A20M, and NMI external pin events (unmask INIT);
Mask SignalWAKEUP event;
Invalidate processor TLB(s);
Drain outgoing transactions;
TempGDTRLIMIT := LOAD(LT.MLE.JOIN);
TempGDTRBASE := LOAD(LT.MLE.JOIN+4);
TempSegSel := LOAD(LT.MLE.JOIN+8);
TempEIP := LOAD(LT.MLE.JOIN+12);
IF (TempGDTLimit & FFFF0000h)

THEN TXT-SHUTDOWN(#BadJOINFormat);
IF ((TempSegSel > TempGDTRLIMIT-15) or (TempSegSel < 8))

THEN TXT-SHUTDOWN(#BadJOINFormat);
IF ((TempSegSel.TI=1) or (TempSegSel.RPL≠0))

THEN TXT-SHUTDOWN(#BadJOINFormat);
CR0.[PG,CD,NW,AM,WP] := 0;
CR0.[NE,PE] := 1;
CR4 := 00004000h;
EFLAGS := 00000002h;
IA32_EFER := 0;
GDTR.BASE := TempGDTRBASE;
GDTR.LIMIT := TempGDTRLIMIT;
CS.SEL := TempSegSel;
CS.BASE := 0;
CS.LIMIT := FFFFFh;
CS.G := 1;
CS.D := 1;
CS.AR := 9Bh;
DS.SEL := TempSegSel+8;
DS.BASE := 0;
DS.LIMIT := FFFFFh;
DS.G := 1;
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DS.D := 1;
DS.AR := 93h;
SS := DS;
ES := DS;
DR7 := 00000400h;
IA32_DEBUGCTL := 0;
EIP := TempEIP;
END;

Flags Affected

None.

Use of Prefixes
LOCK Causes #UD.
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.
NP 66/F2/F3 prefixes are not allowed.
Segment overrides Ignored.
Address size Ignored.
REX Ignored.

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[WAKEUP] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX operation.
If a protected partition is not already active or the processor is currently in authenticated code 
mode.
If the processor is in SMM.

#UD If CR4.SMXE = 0.
If GETSEC[WAKEUP] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[WAKEUP] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[WAKEUP] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[WAKEUP] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-exit Condition
Reason (GETSEC) If in VMX non-root operation.
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CHAPTER 8
INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™

PROCESSORS

This chapter describes the instruction set that is unique to Intel® Xeon Phi™ Processors based on the Knights 
Landing and Knights Mill microarchitectures. The set is not supported in any other Intel processors. Included are 
Intel® AVX-512 instructions. For additional instructions supported on these processors, see Chapter 3, “Instruction 
Set Reference, A-L”; Chapter 4, “Instruction Set Reference, M-U”; Chapter 5, “Instruction Set Reference, V”; and 
Chapter 6, “Instruction Set Reference, W-Z.”
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PREFETCHWT1—Prefetch Vector Data Into Caches With Intent to Write and T1 Hint

Instruction Operand Encoding

Description

Fetches the line of data from memory that contains the byte specified with the source operand to a location in the 
cache hierarchy specified by an intent to write hint (so that data is brought into ‘Exclusive’ state via a request for 
ownership) and a locality hint:
• T1 (temporal data with respect to first level cache)—prefetch data into the second level cache.
The source operand is a byte memory location. (The locality hints are encoded into the machine level instruction 
using bits 3 through 5 of the ModR/M byte. Use of any ModR/M value other than the specified ones will lead to 
unpredictable behavior.)
If the line selected is already present in the cache hierarchy at a level closer to the processor, no data movement 
occurs. Prefetches from uncacheable or WC memory are ignored.
The PREFETCHWT1 instruction is merely a hint and does not affect program behavior. If executed, this instruction 
moves data closer to the processor in anticipation of future use.
The implementation of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by a 
processor implementation. The amount of data prefetched is also processor implementation-dependent. It will, 
however, be a minimum of 32 bytes. Additional details of the implementation-dependent locality hints are 
described in Section 9.5, “Memory Optimization Using Prefetch” of the Intel® 64 and IA-32 Architectures Optimi-
zation Reference Manual.
It should be noted that processors are free to speculatively fetch and cache data from system memory regions that 
are assigned a memory-type that permits speculative reads (that is, the WB, WC, and WT memory types). A 
PREFETCHWT1 instruction is considered a hint to this speculative behavior. Because this speculative fetching can 
occur at any time and is not tied to instruction execution, a PREFETCHWT1 instruction is not ordered with respect 
to the fence instructions (MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHWT1 instruc-
tion is also unordered with respect to CLFLUSH and CLFLUSHOPT instructions, other PREFETCHWT1 instructions, or 
any other general instruction. It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, 
and MOV CR.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request 
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a 
hint for the processor and may be skipped depending on implementation.

Prefetch (m8, Level = 1, EXCLUSIVE=1);

Flags Affected

All flags are affected.

C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch( char const *, int hint= _MM_HINT_ET1);

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID Feature 
Flag

Description

0F 0D /2
PREFETCHWT1 m8

M V/V PREFETCHWT1 Move data from m8 closer to the processor using T1 hint 
with intent to write.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A
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Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
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V4FMADDPS/V4FNMADDPS—Packed Single Precision Floating-Point Fused Multiply-Add 
(4-Iterations)

Instruction Operand Encoding

Description

This instruction computes 4 sequential packed fused single precision floating-point multiply-add instructions with a 
sequentially selected memory operand in each of the four steps.
In the above box, the notation of “+3” is used to denote that the instruction accesses 4 source registers based on 
that operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.
This instruction supports memory fault suppression. The entire memory operand is loaded if any of the 16 lowest 
significant mask bits is set to 1 or if a “no masking” encoding is used.
The tuple type Tuple1_4X implies that four 32-bit elements (16 bytes) are referenced by the memory operation 
portion of this instruction.
Rounding is performed at every FMA (fused multiply and add) boundary. Exceptions are also taken sequentially. 
Pre- and post-computational exceptions of the first FMA take priority over the pre- and post-computational excep-
tions of the second FMA, etc.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.512.F2.0F38.W0 9A /r
V4FMADDPS zmm1{k1}{z}, zmm2+3, 
m128

A V/V AVX512_4FMAPS Multiply packed single precision floating-point 
values from source register block indicated by 
zmm2 by values from m128 and accumulate the 
result in zmm1.

EVEX.512.F2.0F38.W0 AA /r
V4FNMADDPS zmm1{k1}{z}, 
zmm2+3, m128

A V/V AVX512_4FMAPS Multiply and negate packed single precision 
floating-point values from source register block 
indicated by zmm2 by values from m128 and 
accumulate the result in zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1_4X ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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Operation

src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

define NFMA_PS(kl, vl, dest, k1, msrc, regs_loaded, src_base, posneg):
tmpdest := dest

// reg[] is an array representing the SIMD register file.
FOR j := 0 to regs_loaded-1:

FOR i := 0 to kl-1:
IF k1[i] or *no writemask*:

IF posneg = 0:
tmpdest.single[i] := RoundFPControl_MXCSR(tmpdest.single[i] - reg[src_base + j ].single[i] * msrc.single[j])

ELSE:
tmpdest.single[i] := RoundFPControl_MXCSR(tmpdest.single[i] + reg[src_base + j ].single[i] * msrc.single[j])

ELSE IF *zeroing*:
tmpdest.single[i] := 0

dest := tmpdst
dest[MAX_VL-1:VL] := 0

V4FMADDPS and V4FNMADDPS dest{k1}, src1, msrc (AVX512)
KL, VL = (16,512)

regs_loaded := 4
src_base := src_reg_id & ~3 // for src1 operand
posneg := 0 if negative form, 1 otherwise
NFMA_PS(kl, vl, dest, k1, msrc, regs_loaded, src_base, posneg)

Intel C/C++ Compiler Intrinsic Equivalent

V4FMADDPS __m512 _mm512_4fmadd_ps( __m512, __m512x4, __m128 *);
V4FMADDPS __m512 _mm512_mask_4fmadd_ps(__m512, __mmask16, __m512x4, __m128 *);
V4FMADDPS __m512 _mm512_maskz_4fmadd_ps(__mmask16, __m512, __m512x4, __m128 *);
V4FNMADDPS __m512 _mm512_4fnmadd_ps(__m512, __m512x4, __m128 *);
V4FNMADDPS __m512 _mm512_mask_4fnmadd_ps(__m512, __mmask16, __m512x4, __m128 *);
V4FNMADDPS __m512 _mm512_maskz_4fnmadd_ps(__mmask16, __m512, __m512x4, __m128 *);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Type E2; additionally:
#UD If the EVEX broadcast bit is set to 1.
#UD If the MODRM.mod = 0b11.
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V4FMADDSS/V4FNMADDSS—Scalar Single Precision Floating-Point Fused Multiply-Add 
(4-Iterations) 

Instruction Operand Encoding

Description

This instruction computes 4 sequential scalar fused single precision floating-point multiply-add instructions with a 
sequentially selected memory operand in each of the four steps.
In the above box, the notation of “+3” is used to denote that the instruction accesses 4 source registers based that 
operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.
This instruction supports memory fault suppression. The entire memory operand is loaded if the least significant 
mask bit is set to 1 or if a “no masking” encoding is used.
The tuple type Tuple1_4X implies that four 32-bit elements (16 bytes) are referenced by the memory operation 
portion of this instruction.
Rounding is performed at every FMA boundary. Exceptions are also taken sequentially. Pre- and post-computa-
tional exceptions of the first FMA take priority over the pre- and post-computational exceptions of the second FMA, 
etc.

Operation

src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

define NFMA_SS(vl, dest, k1, msrc, regs_loaded, src_base, posneg):
tmpdest := dest
// reg[] is an array representing the SIMD register file.
IF k1[0] or *no writemask*:

FOR j := 0 to regs_loaded - 1:
IF posneg = 0:

tmpdest.single[0] := RoundFPControl_MXCSR(tmpdest.single[0] - reg[src_base + j ].single[0] * msrc.single[j])
ELSE:

tmpdest.single[0] := RoundFPControl_MXCSR(tmpdest.single[0] + reg[src_base + j ].single[0] * msrc.single[j])
ELSE IF *zeroing*:

tmpdest.single[0] := 0
dest := tmpdst
dest[MAX_VL-1:VL] := 0

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.LLIG.F2.0F38.W0 9B /r
V4FMADDSS xmm1{k1}{z}, 
xmm2+3, m128

A V/V AVX512_4FMAPS Multiply scalar single precision floating-point 
values from source register block indicated by 
xmm2 by values from m128 and accumulate the 
result in xmm1.

EVEX.LLIG.F2.0F38.W0 AB /r
V4FNMADDSS xmm1{k1}{z}, 
xmm2+3, m128

A V/V AVX512_4FMAPS Multiply and negate scalar single precision 
floating-point values from source register block 
indicated by xmm2 by values from m128 and 
accumulate the result in xmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1_4X ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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V4FMADDSS and V4FNMADDSS dest{k1}, src1, msrc (AVX512)
VL = 128

regs_loaded := 4
src_base := src_reg_id & ~3 // for src1 operand
posneg := 0 if negative form, 1 otherwise
NFMA_SS(vl, dest, k1, msrc, regs_loaded, src_base, posneg)

Intel C/C++ Compiler Intrinsic Equivalent

V4FMADDSS __m128 _mm_4fmadd_ss(__m128, __m128x4, __m128 *);
V4FMADDSS __m128 _mm_mask_4fmadd_ss(__m128, __mmask8, __m128x4, __m128 *);
V4FMADDSS __m128 _mm_maskz_4fmadd_ss(__mmask8, __m128, __m128x4, __m128 *);
V4FNMADDSS __m128 _mm_4fnmadd_ss(__m128, __m128x4, __m128 *);
V4FNMADDSS __m128 _mm_mask_4fnmadd_ss(__m128, __mmask8, __m128x4, __m128 *);
V4FNMADDSS __m128 _mm_maskz_4fnmadd_ss(__mmask8, __m128, __m128x4, __m128 *);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Type E2; additionally:
#UD If the EVEX broadcast bit is set to 1.
#UD If the MODRM.mod = 0b11.
V4FMADDSS/V4FNMADDSS—Scalar Single Precision Floating-Point Fused Multiply-Add (4-Iterations) Vol. 2D 8-7



INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VEXP2PD—Approximation to the Exponential 2^x of Packed Double Precision Floating-Point 
Values With Less Than 2^-23 Relative Error

Instruction Operand Encoding

Description

Computes the approximate base-2 exponential evaluation of the double precision floating-point values in the 
source operand (the second operand) and stores the results to the destination operand (the first operand) using 
the writemask k1. The approximate base-2 exponential is evaluated with less than 2^-23 of relative error. 
Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results 
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.
The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit 
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1. 
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
A numerically exact implementation of VEXP2xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VEXP2PD 
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+63:i] := EXP2_23_DP(SRC[63:0])
ELSE DEST[i+63:i] := EXP2_23_DP(SRC[i+63:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI;

FI;
ENDFOR;

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EVEX.512.66.0F38.W1 C8 /r
VEXP2PD zmm1 {k1}{z}, 
zmm2/m512/m64bcst {sae}

A V/V AVX512ER Computes approximations to the exponential 2^x (with less 
than 2^-23 of maximum relative error) of the packed double 
precision floating-point values from zmm2/m512/m64bcst and 
stores the floating-point result in zmm1with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
VEXP2PD—Approximation to the Exponential 2^x of Packed Double Precision Floating-Point Values With Less Than 2^-23 Relative Vol. 2D 8-8
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
Intel C/C++ Compiler Intrinsic Equivalent

VEXP2PD __m512d _mm512_exp2a23_round_pd (__m512d a, int sae);
VEXP2PD __m512d _mm512_mask_exp2a23_round_pd (__m512d a, __mmask8 m, __m512d b, int sae);
VEXP2PD __m512d _mm512_maskz_exp2a23_round_pd ( __mmask8 m, __m512d b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Overflow.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”

Table 8-1. Special Values Behavior

Source Input Result Comments

NaN QNaN(src) If (SRC = SNaN) then #I

+∞ +∞

+/-0 1.0f Exact result

-∞ +0.0f

Integral value N 2^ (N) Exact result
VEXP2PD—Approximation to the Exponential 2^x of Packed Double Precision Floating-Point Values With Less Than 2^-23 Relative Vol. 2D 8-9



INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VEXP2PS—Approximation to the Exponential 2^x of Packed Single Precision Floating-Point 
Values With Less Than 2^-23 Relative Error

Instruction Operand Encoding

Description

Computes the approximate base-2 exponential evaluation of the single precision floating-point values in the source 
operand (the second operand) and store the results in the destination operand (the first operand) using the write-
mask k1. The approximate base-2 exponential is evaluated with less than 2^-23 of relative error. 
Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results 
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.
The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit 
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1. 
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
A numerically exact implementation of VEXP2xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VEXP2PS 
(KL, VL) = (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+31:i] := EXP2_23_SP(SRC[31:0])
ELSE DEST[i+31:i] := EXP2_23_SP(SRC[i+31:i])

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI;

FI;
ENDFOR;

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EVEX.512.66.0F38.W0 C8 /r
VEXP2PS zmm1 {k1}{z}, 
zmm2/m512/m32bcst {sae}

A V/V AVX512ER Computes approximations to the exponential 2^x (with less 
than 2^-23 of maximum relative error) of the packed single 
precision floating-point values from zmm2/m512/m32bcst and 
stores the floating-point result in zmm1with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
VEXP2PS—Approximation to the Exponential 2^x of Packed Single Precision Floating-Point Values With Less Than 2^-23 Relative Er- Vol. 2D 8-10
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
Intel C/C++ Compiler Intrinsic Equivalent

VEXP2PS __m512 _mm512_exp2a23_round_ps (__m512 a, int sae);
VEXP2PS __m512 _mm512_mask_exp2a23_round_ps (__m512 a, __mmask16 m, __m512 b, int sae);
VEXP2PS __m512 _mm512_maskz_exp2a23_round_ps (__mmask16 m, __m512 b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Overflow.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”

Table 8-2. Special Values Behavior

Source Input Result Comments

NaN QNaN(src) If (SRC = SNaN) then #I

+∞ +∞

+/-0 1.0f Exact result

-∞ +0.0f

Integral value N 2^ (N) Exact result
VEXP2PS—Approximation to the Exponential 2^x of Packed Single Precision Floating-Point Values With Less Than 2^-23 Relative Er- Vol. 2D 8-11



INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VGATHERPF0DPS/VGATHERPF0QPS/VGATHERPF0DPD/VGATHERPF0QPD—Sparse Prefetch 
Packed SP/DP Data Values With Signed Dword, Signed Qword Indices Using T0 Hint

Instruction Operand Encoding

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The 
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only 
be prefetched if their corresponding mask bit is one. 
Lines prefetched are loaded into to a location in the cache hierarchy specified by a locality hint (T0):
• T0 (temporal data)—prefetch data into the first level cache.
[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.
[PD data] For dword and qword indices, the instruction will prefetch eight memory locations. 
Note that:
(1) The prefetches may happen in any order (or not at all). The instruction is a hint.
(2) The mask is left unchanged.
(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
(4) No FP nor memory faults may be produced by this instruction.
(5) Prefetches do not handle cache line splits
(6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist.
VINDEX stands for the memory operand vector of indices (a vector register).
SCALE stands for the memory operand scalar (1, 2, 4 or 8).
DISP is the optional 1, 2 or 4 byte displacement.
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request 
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a 
hint for the processor and may be skipped depending on implementation.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EVEX.512.66.0F38.W0 C6 /1 /vsib
VGATHERPF0DPS vm32z {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte 
memory locations containing single precision data 
using opmask k1 and T0 hint.

EVEX.512.66.0F38.W0 C7 /1 /vsib 
VGATHERPF0QPS vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte 
memory locations containing single precision data 
using opmask k1 and T0 hint.

EVEX.512.66.0F38.W1 C6 /1 /vsib 
VGATHERPF0DPD vm32y {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte 
memory locations containing double precision data 
using opmask k1 and T0 hint.

EVEX.512.66.0F38.W1 C7 /1 /vsib 
VGATHERPF0QPD vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte 
memory locations containing double precision data 
using opmask k1 and T0 hint.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

N/A N/A N/A
VGATHERPF0DPS/VGATHERPF0QPS/VGATHERPF0DPD/VGATHERPF0QPD—Sparse Prefetch Packed SP/DP Data Values With Signed Vol. 2D 8-12



INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VGATHERPF0DPS (EVEX Encoded Version)
(KL, VL) = (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] 

Prefetch( [BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=0, RFO = 0)
FI;

ENDFOR

VGATHERPF0DPD (EVEX Encoded Version)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j] 

Prefetch( [BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=0, RFO = 0)
FI;

ENDFOR

VGATHERPF0QPS (EVEX Encoded Version)
(KL, VL) = (8, 256)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] 

Prefetch( [BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=0, RFO = 0)
FI;

ENDFOR

VGATHERPF0QPD (EVEX Encoded Version)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 64
IF k1[j] 

Prefetch( [BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=0, RFO = 0)
FI;

ENDFOR

Intel C/C++ Compiler Intrinsic Equivalent

VGATHERPF0DPD void _mm512_mask_prefetch_i32gather_pd(__m256i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPF0DPS void _mm512_mask_prefetch_i32gather_ps(__m512i vdx, __mmask16 m, void * base, int scale, int hint);
VGATHERPF0QPD void _mm512_mask_prefetch_i64gather_pd(__m512i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPF0QPS void _mm512_mask_prefetch_i64gather_ps(__m512i vdx, __mmask8 m, void * base, int scale, int hint);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-64, “Type E12NP Class Exception Conditions.”
VGATHERPF0DPS/VGATHERPF0QPS/VGATHERPF0DPD/VGATHERPF0QPD—Sparse Prefetch Packed SP/DP Data Values With Signed Vol. 2D 8-13



INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHERPF1QPD—Sparse Prefetch 
Packed SP/DP Data Values With Signed Dword, Signed Qword Indices Using T1 Hint

Instruction Operand Encoding

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The 
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only 
be prefetched if their corresponding mask bit is one. 
Lines prefetched are loaded into to a location in the cache hierarchy specified by a locality hint (T1):
• T1 (temporal data)—prefetch data into the second level cache.
[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.
[PD data] For dword and qword indices, the instruction will prefetch eight memory locations. 
Note that:
(1) The prefetches may happen in any order (or not at all). The instruction is a hint.
(2) The mask is left unchanged.
(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
(4) No FP nor memory faults may be produced by this instruction.
(5) Prefetches do not handle cache line splits
(6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist.
VINDEX stands for the memory operand vector of indices (a vector register).
SCALE stands for the memory operand scalar (1, 2, 4 or 8).
DISP is the optional 1, 2 or 4 byte displacement.
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request 
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a 
hint for the processor and may be skipped depending on implementation.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EVEX.512.66.0F38.W0 C6 /2 /vsib 
VGATHERPF1DPS vm32z {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte 
memory locations containing single precision data using 
opmask k1 and T1 hint.

EVEX.512.66.0F38.W0 C7 /2 /vsib 
VGATHERPF1QPS vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte 
memory locations containing single precision data using 
opmask k1 and T1 hint.

EVEX.512.66.0F38.W1 C6 /2 /vsib 
VGATHERPF1DPD vm32y {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte 
memory locations containing double precision data using 
opmask k1 and T1 hint.

EVEX.512.66.0F38.W1 C7 /2 /vsib
VGATHERPF1QPD vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte 
memory locations containing double precision data using 
opmask k1 and T1 hint.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

N/A N/A N/A
VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHERPF1QPD—Sparse Prefetch Packed SP/DP Data Values With Signed Vol. 2D 8-14



INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VGATHERPF1DPS (EVEX Encoded Version)
(KL, VL) = (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] 

Prefetch( [BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=1, RFO = 0)
FI;

ENDFOR

VGATHERPF1DPD (EVEX Encoded Version)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j] 

Prefetch( [BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=1, RFO = 0)
FI;

ENDFOR

VGATHERPF1QPS (EVEX Encoded Version)
(KL, VL) = (8, 256)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] 

Prefetch( [BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=1, RFO = 0)
FI;

ENDFOR

VGATHERPF1QPD (EVEX Encoded Version)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 64
IF k1[j] 

Prefetch( [BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=1, RFO = 0)
FI;

ENDFOR

Intel C/C++ Compiler Intrinsic Equivalent

VGATHERPF1DPD void _mm512_mask_prefetch_i32gather_pd(__m256i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPF1DPS void _mm512_mask_prefetch_i32gather_ps(__m512i vdx, __mmask16 m, void * base, int scale, int hint);
VGATHERPF1QPD void _mm512_mask_prefetch_i64gather_pd(__m512i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPF1QPS void _mm512_mask_prefetch_i64gather_ps(__m512i vdx, __mmask8 m, void * base, int scale, int hint);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-64, “Type E12NP Class Exception Conditions.”
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VP4DPWSSDS—Dot Product of Signed Words With Dword Accumulation and Saturation 
(4-Iterations)

Instruction Operand Encoding

Description

This instruction computes 4 sequential register source-block dot-products of two signed word operands with 
doubleword accumulation and signed saturation. The memory operand is sequentially selected in each of the four 
steps.
In the above box, the notation of “+3” is used to denote that the instruction accesses 4 source registers based on 
that operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.
This instruction supports memory fault suppression. The entire memory operand is loaded if any bit of the lowest 
16-bits of the mask is set to 1 or if a “no masking” encoding is used.
The tuple type Tuple1_4X implies that four 32-bit elements (16 bytes) are referenced by the memory operation 
portion of this instruction.

Operation

src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

VP4DPWSSDS dest, src1, src2
(KL,VL) = (16,512)
N := 4

ORIGDEST := DEST
src_base := src_reg_id & ~ (N-1) // for src1 operand

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

FOR m := 0 to N-1:
t := SRC2.dword[m]
p1dword := reg[src_base+m].word[2*i] * t.word[0]
p2dword := reg[src_base+m].word[2*i+1] * t.word[1]
DEST.dword[i] := SIGNED_DWORD_SATURATE(DEST.dword[i] + p1dword + p2dword)

ELSE IF *zeroing*:
DEST.dword[i] := 0

ELSE
DEST.dword[i] := ORIGDEST.dword[i]

DEST[MAX_VL-1:VL] := 0

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.512.F2.0F38.W0 53 /r
VP4DPWSSDS zmm1{k1}{z}, 
zmm2+3, m128

A V/V AVX512_4VNNIW Multiply signed words from source register block 
indicated by zmm2 by signed words from m128 
and accumulate the resulting dword results with 
signed saturation in zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1_4X ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
VP4DPWSSDS—Dot Product of Signed Words With Dword Accumulation and Saturation (4-Iterations) Vol. 2D 8-16



INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
Intel C/C++ Compiler Intrinsic Equivalent

VP4DPWSSDS __m512i _mm512_4dpwssds_epi32(__m512i, __m512ix4, __m128i *);
VP4DPWSSDS __m512i _mm512_mask_4dpwssds_epi32(__m512i, __mmask16, __m512ix4, __m128i *);
VP4DPWSSDS __m512i _mm512_maskz_4dpwssds_epi32(__mmask16, __m512i, __m512ix4, __m128i *);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Type E4; additionally:
#UD If the EVEX broadcast bit is set to 1.
#UD If the MODRM.mod = 0b11.
VP4DPWSSDS—Dot Product of Signed Words With Dword Accumulation and Saturation (4-Iterations) Vol. 2D 8-17



INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VP4DPWSSD—Dot Product of Signed Words With Dword Accumulation (4-Iterations) 

Instruction Operand Encoding

Description

This instruction computes 4 sequential register source-block dot-products of two signed word operands with 
doubleword accumulation; see Figure 8-1 below. The memory operand is sequentially selected in each of the four 
steps.
In the above box, the notation of “+3”' is used to denote that the instruction accesses 4 source registers based on 
that operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.
This instruction supports memory fault suppression. The entire memory operand is loaded if any bit of the lowest 
16-bits of the mask is set to 1 or if a “no masking” encoding is used.
The tuple type Tuple1_4X implies that four 32-bit elements (16 bytes) are referenced by the memory operation 
portion of this instruction.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

EVEX.512.F2.0F38.W0 52 /r
VP4DPWSSD zmm1{k1}{z}, zmm2+3, 
m128

A V/V AVX512_4VNNIW Multiply signed words from source register block 
indicated by zmm2 by signed words from m128 
and accumulate resulting signed dwords in zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1_4X ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Figure 8-1.  Register Source-Block Dot Product of Two Signed Word Operands With Doubleword Accumulation1

NOTES:
1. For illustration purposes, one source-block dot product instance is shown out of the four.

b1 b0 b1 b0

c1 c0

c1=c1+a2*b0+a3*b1 c0=c0+a0*b0+a1*b1

a3 a2 a1 a0

16b 16b 16b 16b

32b32b

32b 32b
VP4DPWSSD—Dot Product of Signed Words With Dword Accumulation (4-Iterations) Vol. 2D 8-18



INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
Operation

src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

VP4DPWSSD dest, src1, src2
(KL,VL) = (16,512)
N := 4

ORIGDEST := DEST
src_base := src_reg_id & ~ (N-1) // for src1 operand

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

FOR m := 0 to N-1:
t := SRC2.dword[m]
p1dword := reg[src_base+m].word[2*i] * t.word[0]
p2dword := reg[src_base+m].word[2*i+1] * t.word[1]
DEST.dword[i] := DEST.dword[i] + p1dword + p2dword

ELSE IF *zeroing*:
DEST.dword[i] := 0

ELSE
DEST.dword[i] := ORIGDEST.dword[i]

DEST[MAX_VL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VP4DPWSSD __m512i _mm512_4dpwssd_epi32(__m512i, __m512ix4, __m128i *);
VP4DPWSSD __m512i _mm512_mask_4dpwssd_epi32(__m512i, __mmask16, __m512ix4, __m128i *);
VP4DPWSSD __m512i _mm512_maskz_4dpwssd_epi32(__mmask16, __m512i, __m512ix4, __m128i *);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Type E4; additionally:
#UD If the EVEX broadcast bit is set to 1.
#UD If the MODRM.mod = 0b11.
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VRCP28PD—Approximation to the Reciprocal of Packed Double Precision Floating-Point Values 
With Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal approximation of the float64 values in the source operand (the second operand) and store 
the results to the destination operand (the first operand). The approximate reciprocal is evaluated with less than 
2^-28 of maximum relative error. 
Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results 
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.
If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is 
±∞, ±0.0 is returned for that element. Also, if any source element is ±0.0, ±∞ is returned for that element.
The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit 
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1. 
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP28PD (EVEX Encoded Versions) 
(KL, VL) = (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+63:i] := RCP_28_DP(1.0/SRC[63:0]);
ELSE DEST[i+63:i] := RCP_28_DP(1.0/SRC[i+63:i]);

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI;

FI;
ENDFOR;

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EVEX.512.66.0F38.W1 CA /r
VRCP28PD zmm1 {k1}{z}, 
zmm2/m512/m64bcst {sae}

A V/V AVX512ER Computes the approximate reciprocals ( < 2^-28 relative error) 
of the packed double precision floating-point values in 
zmm2/m512/m64bcst and stores the results in zmm1. Under 
writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
Intel C/C++ Compiler Intrinsic Equivalent

VRCP28PD __m512d _mm512_rcp28_round_pd ( __m512d a, int sae);
VRCP28PD __m512d _mm512_mask_rcp28_round_pd(__m512d a, __mmask8 m, __m512d b, int sae);
VRCP28PD __m512d _mm512_maskz_rcp28_round_pd( __mmask8 m, __m512d b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”

Table 8-3. VRCP28PD Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

0 ≤ X < 2-1022 INF Positive input denormal or zero; #Z

-2-1022 < X ≤ -0 -INF Negative input denormal or zero; #Z

X > 21022 +0.0f

X < -21022 -0.0f

X = +∞ +0.0f

X = -∞ -0.0f

X = 2-n 2n Exact result (unless input/output is a denormal)

X = -2-n -2n Exact result (unless input/output is a denormal)
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VRCP28SD—Approximation to the Reciprocal of Scalar Double Precision Floating-Point Value 
With Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal approximation of the low float64 value in the second source operand (the third operand) 
and store the result to the destination operand (the first operand). The approximate reciprocal is evaluated with 
less than 2^-28 of maximum relative error. The result is written into the low float64 element of the destination 
operand according to the writemask k1. Bits 127:64 of the destination is copied from the corresponding bits of the 
first source operand (the second operand).
A denormal input value is treated as zero and does not signal #DE, irrespective of MXCSR.DAZ. A denormal result 
is flushed to zero and does not signal #UE, irrespective of MXCSR.FTZ.
If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is 
±∞, ±0.0 is returned for that element. Also, if any source element is ±0.0, ±∞ is returned for that element.
The first source operand is an XMM register. The second source operand is an XMM register or a 64-bit memory 
location. The destination operand is a XMM register, conditionally updated using writemask k1. 
A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP28SD ((EVEX Encoded Versions) 
IF k1[0] OR *no writemask* THEN

DEST[63: 0] := RCP_28_DP(1.0/SRC2[63: 0]);
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63: 0] remains unchanged*
ELSE ; zeroing-masking

DEST[63: 0] := 0
FI;

FI;
ENDFOR;
DEST[127:64] := SRC1[127: 64]
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EVEX.LLIG.66.0F38.W1 CB /r
VRCP28SD xmm1 {k1}{z}, xmm2, 
xmm3/m64 {sae}

A V/V AVX512ER Computes the approximate reciprocal ( < 2^-28 relative 
error) of the scalar double precision floating-point value in 
xmm3/m64 and stores the results in xmm1. Under 
writemask. Also, upper double precision floating-point 
value (bits[127:64]) from xmm2 is copied to 
xmm1[127:64].

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
Intel C/C++ Compiler Intrinsic Equivalent

VRCP28SD __m128d _mm_rcp28_round_sd ( __m128d a, __m128d b, int sae);
VRCP28SD __m128d _mm_mask_rcp28_round_sd(__m128d s, __mmask8 m, __m128d a, __m128d b, int sae);
VRCP28SD __m128d _mm_maskz_rcp28_round_sd(__mmask8 m, __m128d a, __m128d b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”

Table 8-4. VRCP28SD Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

0 ≤ X < 2-1022 INF Positive input denormal or zero; #Z

-2-1022 < X ≤ -0 -INF Negative input denormal or zero; #Z

X > 21022 +0.0f

X < -21022 -0.0f

X = +∞ +0.0f

X = -∞ -0.0f

X = 2-n 2n Exact result (unless input/output is a denormal)

X = -2-n -2n Exact result (unless input/output is a denormal)
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VRCP28PS—Approximation to the Reciprocal of Packed Single Precision Floating-Point Values 
With Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal approximation of the float32 values in the source operand (the second operand) and store 
the results to the destination operand (the first operand) using the writemask k1. The approximate reciprocal is 
evaluated with less than 2^-28 of maximum relative error prior to final rounding. The final results are rounded to 
< 2^-23 relative error before written to the destination.
Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results 
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.
If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is 
±∞, ±0.0 is returned for that element. Also, if any source element is ±0.0, ±∞ is returned for that element.
The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit 
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1. 
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP28PS (EVEX Encoded Versions) 
(KL, VL) = (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+31:i] := RCP_28_SP(1.0/SRC[31:0]);
ELSE DEST[i+31:i] := RCP_28_SP(1.0/SRC[i+31:i]);

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI;

FI;
ENDFOR;

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EVEX.512.66.0F38.W0 CA /r
VRCP28PS zmm1 {k1}{z}, 
zmm2/m512/m32bcst {sae}

A V/V AVX512ER Computes the approximate reciprocals ( < 2^-28 relative 
error) of the packed single precision floating-point values in 
zmm2/m512/m32bcst and stores the results in zmm1. Under 
writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
Intel C/C++ Compiler Intrinsic Equivalent

VRCP28PS _mm512_rcp28_round_ps ( __m512 a, int sae);
VRCP28PS __m512 _mm512_mask_rcp28_round_ps(__m512 s, __mmask16 m, __m512 a, int sae);
VRCP28PS __m512 _mm512_maskz_rcp28_round_ps( __mmask16 m, __m512 a, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”

Table 8-5. VRCP28PS Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

0 ≤ X < 2-126 INF Positive input denormal or zero; #Z

-2-126 < X ≤ -0 -INF Negative input denormal or zero; #Z

X > 2126 +0.0f

X < -2126 -0.0f

X = +∞ +0.0f

X = -∞ -0.0f

X = 2-n 2n Exact result (unless input/output is a denormal)

X = -2-n -2n Exact result (unless input/output is a denormal)
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VRCP28SS—Approximation to the Reciprocal of Scalar Single Precision Floating-Point Value 
With Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal approximation of the low float32 value in the second source operand (the third operand) 
and store the result to the destination operand (the first operand). The approximate reciprocal is evaluated with 
less than 2^-28 of maximum relative error prior to final rounding. The final result is rounded to < 2^-23 relative 
error before written into the low float32 element of the destination according to writemask k1. Bits 127:32 of the 
destination is copied from the corresponding bits of the first source operand (the second operand).

A denormal input value is treated as zero and does not signal #DE, irrespective of MXCSR.DAZ. A denormal result 
is flushed to zero and does not signal #UE, irrespective of MXCSR.FTZ.
If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is 
±∞, ±0.0 is returned for that element. Also, if any source element is ±0.0, ±∞ is returned for that element.
The first source operand is an XMM register. The second source operand is an XMM register or a 32-bit memory 
location. The destination operand is a XMM register, conditionally updated using writemask k1. 
A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP28SS ((EVEX Encoded Versions) 
IF k1[0] OR *no writemask* THEN

DEST[31: 0] := RCP_28_SP(1.0/SRC2[31: 0]);
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31: 0] remains unchanged*
ELSE ; zeroing-masking

DEST[31: 0] := 0
FI;

FI;
ENDFOR;
DEST[127:32] := SRC1[127: 32]
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EVEX.LLIG.66.0F38.W0 CB /r
VRCP28SS xmm1 {k1}{z}, 
xmm2, xmm3/m32 {sae}

A V/V AVX512ER Computes the approximate reciprocal ( < 2^-28 relative 
error) of the scalar single precision floating-point value in 
xmm3/m32 and stores the results in xmm1. Under 
writemask. Also, upper 3 single precision floating-point 
values (bits[127:32]) from xmm2 is copied to 
xmm1[127:32].

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
Intel C/C++ Compiler Intrinsic Equivalent

VRCP28SS __m128 _mm_rcp28_round_ss ( __m128 a, __m128 b, int sae);
VRCP28SS __m128 _mm_mask_rcp28_round_ss(__m128 s, __mmask8 m, __m128 a, __m128 b, int sae);
VRCP28SS __m128 _mm_maskz_rcp28_round_ss(__mmask8 m, __m128 a, __m128 b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”

Table 8-6. VRCP28SS Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

0 ≤ X < 2-126 INF Positive input denormal or zero; #Z

-2-126 < X ≤ -0 -INF Negative input denormal or zero; #Z

X > 2126 +0.0f

X < -2126 -0.0f

X = +∞ +0.0f

X = -∞ -0.0f

X = 2-n 2n Exact result (unless input/output is a denormal)

X = -2-n -2n Exact result (unless input/output is a denormal)
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VRSQRT28PD—Approximation to the Reciprocal Square Root of Packed Double Precision 
Floating-Point Values With Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal square root of the float64 values in the source operand (the second operand) and store 
the results to the destination operand (the first operand). The approximate reciprocal is evaluated with less than 
2^-28 of maximum relative error. 
If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero) 
source numbers, as well as -∞, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return -∞ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the 
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative 
denormals return -∞ and set the DivByZero flag.
The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit 
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1. 
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT28PD (EVEX Encoded Versions) 
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+63:i] := (1.0/ SQRT(SRC[63:0]));
ELSE DEST[i+63:i] := (1.0/ SQRT(SRC[i+63:i]));

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI;

FI;
ENDFOR;

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EVEX.512.66.0F38.W1 CC /r
VRSQRT28PD zmm1 {k1}{z}, 
zmm2/m512/m64bcst {sae}

A V/V AVX512ER Computes approximations to the Reciprocal square root (<2^-
28 relative error) of the packed double precision floating-point 
values from zmm2/m512/m64bcst and stores result in 
zmm1with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28PD __m512d _mm512_rsqrt28_round_pd(__m512d a, int sae);
VRSQRT28PD __m512d _mm512_mask_rsqrt28_round_pd(__m512d s, __mmask8 m,__m512d a, int sae);
VRSQRT28PD __m512d _mm512_maskz_rsqrt28_round_pd(__mmask8 m,__m512d a, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”

Table 8-7. VRSQRT28PD Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

X = 2-2n 2n

X < 0 QNaN_Indefinite Including -INF

X = -0 or negative denormal -INF #Z

X = +0 or positive denormal +INF #Z

X = +INF +0
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double Precision 
Floating-Point Value With Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal square root of the low float64 value in the second source operand (the third operand) and 
store the result to the destination operand (the first operand). The approximate reciprocal square root is evaluated 
with less than 2^-28 of maximum relative error. The result is written into the low float64 element of xmm1 
according to the writemask k1. Bits 127:64 of the destination is copied from the corresponding bits of the first source operand 
(the second operand).

If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero) 
source numbers, as well as -∞, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return -∞ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the 
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative 
denormals return -∞ and set the DivByZero flag.
The first source operand is an XMM register. The second source operand is an XMM register or a 64-bit memory 
location. The destination operand is a XMM register. 
A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT28SD (EVEX Encoded Versions) 
IF k1[0] OR *no writemask* THEN

 DEST[63: 0] := (1.0/ SQRT(SRC[63: 0]));
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[63: 0] remains unchanged*
ELSE ; zeroing-masking

DEST[63: 0] := 0
FI;

FI;
ENDFOR;
DEST[127:64] := SRC1[127: 64]
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EVEX.LLIG.66.0F38.W1 CD /r
VRSQRT28SD xmm1 {k1}{z}, 
xmm2, xmm3/m64 {sae}

A V/V AVX512ER Computes approximate reciprocal square root (<2^-28 
relative error) of the scalar double precision floating-point 
value from xmm3/m64 and stores result in xmm1with 
writemask k1. Also, upper double precision floating-point 
value (bits[127:64]) from xmm2 is copied to 
xmm1[127:64].

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28SD __m128d _mm_rsqrt28_round_sd(__m128d a, __m128d b, int rounding);
VRSQRT28SD __m128d _mm_mask_rsqrt28_round_sd(__m128d s, __mmask8 m,__m128d a, __m128d b, int rounding);
VRSQRT28SD __m128d _mm_maskz_rsqrt28_round_sd( __mmask8 m,__m128d a, __m128d b, int rounding);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”

Table 8-8. VRSQRT28SD Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

X = 2-2n 2n

X < 0 QNaN_Indefinite Including -INF

X = -0 or negative denormal -INF #Z

X = +0 or positive denormal +INF #Z

X = +INF +0
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VRSQRT28PS—Approximation to the Reciprocal Square Root of Packed Single Precision 
Floating-Point Values With Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal square root of the float32 values in the source operand (the second operand) and store 
the results to the destination operand (the first operand). The approximate reciprocal is evaluated with less than 
2^-28 of maximum relative error prior to final rounding. The final results is rounded to < 2^-23 relative error 
before written to the destination.
If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero) 
source numbers, as well as -∞, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return -∞ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the 
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative 
denormals return -∞ and set the DivByZero flag.
The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit 
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1. 
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT28PS (EVEX Encoded Versions) 
(KL, VL) = (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+31:i] := (1.0/ SQRT(SRC[31:0]));
ELSE DEST[i+31:i] := (1.0/ SQRT(SRC[i+31:i]));

FI;
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI;

FI;
ENDFOR;

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EVEX.512.66.0F38.W0 CC /r
VRSQRT28PS zmm1 {k1}{z}, 
zmm2/m512/m32bcst {sae}

A V/V AVX512ER Computes approximations to the Reciprocal square root 
(<2^-28 relative error) of the packed single precision 
floating-point values from zmm2/m512/m32bcst and stores 
result in zmm1with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28PS __m512 _mm512_rsqrt28_round_ps(__m512 a, int sae);
VRSQRT28PS __m512 _mm512_mask_rsqrt28_round_ps(__m512 s, __mmask16 m,__m512 a, int sae);
VRSQRT28PS __m512 _mm512_maskz_rsqrt28_round_ps(__mmask16 m,__m512 a, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”

Table 8-9. VRSQRT28PS Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

X = 2-2n 2n

X < 0 QNaN_Indefinite Including -INF

X = -0 or negative denormal -INF #Z

X = +0 or positive denormal +INF #Z

X = +INF +0
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single Precision Floating-
Point Value With Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal square root of the low float32 value in the second source operand (the third operand) and 
store the result to the destination operand (the first operand). The approximate reciprocal square root is evaluated 
with less than 2^-28 of maximum relative error prior to final rounding. The final result is rounded to < 2^-23 rela-
tive error before written to the low float32 element of the destination according to the writemask k1. Bits 127:32 of 
the destination is copied from the corresponding bits of the first source operand (the second operand).

If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero) 
source numbers, as well as -∞, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return -∞ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the 
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative 
denormals return -∞ and set the DivByZero flag.
The first source operand is an XMM register. The second source operand is an XMM register or a 32-bit memory 
location. The destination operand is a XMM register. 
A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT28SS (EVEX Encoded Versions) 
IF k1[0] OR *no writemask* THEN

 DEST[31: 0] := (1.0/ SQRT(SRC[31: 0]));
ELSE 

IF *merging-masking* ; merging-masking
THEN *DEST[31: 0] remains unchanged*
ELSE ; zeroing-masking

DEST[31: 0] := 0
FI;

FI;
ENDFOR;
DEST[127:32] := SRC1[127: 32]
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op / 
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EVEX.LLIG.66.0F38.W0 CD /r
VRSQRT28SS xmm1 {k1}{z}, 
xmm2, xmm3/m32 {sae}

A V/V AVX512ER Computes approximate reciprocal square root (<2^-28 
relative error) of the scalar single precision floating-point 
value from xmm3/m32 and stores result in xmm1with 
writemask k1. Also, upper 3 single precision floating-point 
value (bits[127:32]) from xmm2 is copied to 
xmm1[127:32].

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28SS __m128 _mm_rsqrt28_round_ss(__m128 a, __m128 b, int rounding);
VRSQRT28SS __m128 _mm_mask_rsqrt28_round_ss(__m128 s, __mmask8 m,__m128 a,__m128 b, int rounding);
VRSQRT28SS __m128 _mm_maskz_rsqrt28_round_ss(__mmask8 m,__m128 a,__m128 b, int rounding);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”

Table 8-10. VRSQRT28SS Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

X = 2-2n 2n

X < 0 QNaN_Indefinite Including -INF

X = -0 or negative denormal -INF #Z

X = +0 or positive denormal +INF #Z

X = +INF +0
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VSCATTERPF0DPS/VSCATTERPF0QPS/VSCATTERPF0DPD/VSCATTERPF0QPD—Sparse Prefetch 
Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using T0 Hint With Intent 
to Write

Instruction Operand Encoding

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The 
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only 
be prefetched if their corresponding mask bit is one. 
cache lines will be brought into exclusive state (RFO) specified by a locality hint (T0):
• T0 (temporal data)—prefetch data into the first level cache.
[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.
[PD data] For dword and qword indices, the instruction will prefetch eight memory locations. 
Note that:
(1) The prefetches may happen in any order (or not at all). The instruction is a hint.
(2) The mask is left unchanged.
(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
(4) No FP nor memory faults may be produced by this instruction.
(5) Prefetches do not handle cache line splits
(6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist.
VINDEX stands for the memory operand vector of indices (a vector register).
SCALE stands for the memory operand scalar (1, 2, 4 or 8).
DISP is the optional 1, 2 or 4 byte displacement.
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request 
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a 
hint for the processor and may be skipped depending on implementation.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EVEX.512.66.0F38.W0 C6 /5 /vsib 
VSCATTERPF0DPS vm32z {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte 
memory locations containing single precision data using 
writemask k1 and T0 hint with intent to write.

EVEX.512.66.0F38.W0 C7 /5 /vsib 
VSCATTERPF0QPS vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte 
memory locations containing single precision data using 
writemask k1 and T0 hint with intent to write.

EVEX.512.66.0F38.W1 C6 /5 /vsib 
VSCATTERPF0DPD vm32y {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte 
memory locations containing double precision data 
using writemask k1 and T0 hint with intent to write.

EVEX.512.66.0F38.W1 C7 /5 /vsib
VSCATTERPF0QPD vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte 
memory locations containing double precision data 
using writemask k1 and T0 hint with intent to write.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

N/A N/A N/A
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VSCATTERPF0DPS (EVEX Encoded Version)
(KL, VL) = (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] 

Prefetch( [BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=0, RFO = 1)
FI;

ENDFOR

VSCATTERPF0DPD (EVEX Encoded Version)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j] 

Prefetch( [BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=0, RFO = 1)
FI;

ENDFOR

VSCATTERPF0QPS (EVEX Encoded Version)
(KL, VL) = (8, 256)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] 

Prefetch( [BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=0, RFO = 1)
FI;

ENDFOR

VSCATTERPF0QPD (EVEX Encoded Version)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 64
IF k1[j] 

Prefetch( [BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=0, RFO = 1)
FI;

ENDFOR

Intel C/C++ Compiler Intrinsic Equivalent

VSCATTERPF0DPD void _mm512_prefetch_i32scatter_pd(void *base, __m256i vdx, int scale, int hint);
VSCATTERPF0DPD void _mm512_mask_prefetch_i32scatter_pd(void *base, __mmask8 m, __m256i vdx, int scale, int hint);
VSCATTERPF0DPS void _mm512_prefetch_i32scatter_ps(void *base, __m512i vdx, int scale, int hint);
VSCATTERPF0DPS void _mm512_mask_prefetch_i32scatter_ps(void *base, __mmask16 m, __m512i vdx, int scale, int hint);
VSCATTERPF0QPD void _mm512_prefetch_i64scatter_pd(void * base, __m512i vdx, int scale, int hint);
VSCATTERPF0QPD void _mm512_mask_prefetch_i64scatter_pd(void * base, __mmask8 m, __m512i vdx, int scale, int hint);
VSCATTERPF0QPS void _mm512_prefetch_i64scatter_ps(void * base, __m512i vdx, int scale, int hint);
VSCATTERPF0QPS void _mm512_mask_prefetch_i64scatter_ps(void * base, __mmask8 m, __m512i vdx, int scale, int hint);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-64, “Type E12NP Class Exception Conditions.”
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch 
Packed SP/DP Data Values With Signed Dword, Signed Qword Indices Using T1 Hint With Intent 
to Write

Instruction Operand Encoding

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The 
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only 
be prefetched if their corresponding mask bit is one. 
cache lines will be brought into exclusive state (RFO) specified by a locality hint (T1):
• T1 (temporal data)—prefetch data into the second level cache.
[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.
[PD data] For dword and qword indices, the instruction will prefetch eight memory locations. 
Note that:
(1) The prefetches may happen in any order (or not at all). The instruction is a hint.
(2) The mask is left unchanged.
(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
(4) No FP nor memory faults may be produced by this instruction.
(5) Prefetches do not handle cache line splits
(6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist.
VINDEX stands for the memory operand vector of indices (a vector register).
SCALE stands for the memory operand scalar (1, 2, 4 or 8).
DISP is the optional 1, 2 or 4 byte displacement.
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request 
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a 
hint for the processor and may be skipped depending on implementation.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EVEX.512.66.0F38.W0 C6 /6 /vsib 
VSCATTERPF1DPS vm32z {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte memory 
locations containing single precision data using writemask 
k1 and T1 hint with intent to write.

EVEX.512.66.0F38.W0 C7 /6 /vsib
VSCATTERPF1QPS vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte memory 
locations containing single precision data using writemask 
k1 and T1 hint with intent to write.

EVEX.512.66.0F38.W1 C6 /6 /vsib 
VSCATTERPF1DPD vm32y {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte memory 
locations containing double precision data using 
writemask k1 and T1 hint with intent to write.

EVEX.512.66.0F38.W1 C7 /6 /vsib
VSCATTERPF1QPD vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte memory 
locations containing double precision data using 
writemask k1 and T1 hint with intent to write.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

N/A N/A N/A
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INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VSCATTERPF1DPS (EVEX Encoded Version)
(KL, VL) = (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] 

Prefetch( [BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=1, RFO = 1)
FI;

ENDFOR

VSCATTERPF1DPD (EVEX Encoded Version)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j] 

Prefetch( [BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=1, RFO = 1)
FI;

ENDFOR

VSCATTERPF1QPS (EVEX Encoded Version)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] 

Prefetch( [BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=1, RFO = 1)
FI;

ENDFOR

VSCATTERPF1QPD (EVEX Encoded Version)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 64
IF k1[j] 

Prefetch( [BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=1, RFO = 1)
FI;

ENDFOR

Intel C/C++ Compiler Intrinsic Equivalent

VSCATTERPF1DPD void _mm512_prefetch_i32scatter_pd(void *base, __m256i vdx, int scale, int hint);
VSCATTERPF1DPD void _mm512_mask_prefetch_i32scatter_pd(void *base, __mmask8 m, __m256i vdx, int scale, int hint);
VSCATTERPF1DPS void _mm512_prefetch_i32scatter_ps(void *base, __m512i vdx, int scale, int hint);
VSCATTERPF1DPS void _mm512_mask_prefetch_i32scatter_ps(void *base, __mmask16 m, __m512i vdx, int scale, int hint);
VSCATTERPF1QPD void _mm512_prefetch_i64scatter_pd(void * base, __m512i vdx, int scale, int hint);
VSCATTERPF1QPD void _mm512_mask_prefetch_i64scatter_pd(void * base, __mmask8 m, __m512i vdx, int scale, int hint);
VSCATTERPF1QPS void _mm512_prefetch_i64scatter_ps(void *base, __m512i vdx, int scale, int hint);
VSCATTERPF1QPS void _mm512_mask_prefetch_i64scatter_ps(void *base, __mmask8 m, __m512i vdx, int scale, int hint);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-64, “Type E12NP Class Exception Conditions.”
VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch Packed SP/DP Data Values With Vol. 2D 8-39



APPENDIX A
OPCODE MAP

           
Use the opcode tables in this chapter to interpret IA-32 and Intel 64 architecture object code. Instructions are 
divided into encoding groups:
• 1-byte, 2-byte and 3-byte opcode encodings are used to encode integer, system, MMX technology, 

SSE/SSE2/SSE3/SSSE3/SSE4, and VMX instructions. Maps for these instructions are given in Table A-2 
through Table A-6. 

• Escape opcodes (in the format: ESC character, opcode, ModR/M byte) are used for floating-point instructions. 
The maps for these instructions are provided in Table A-7 through Table A-22.

NOTE
All blanks in opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or blank opcodes.

A.1 USING OPCODE TABLES
Tables in this appendix list opcodes of instructions (including required instruction prefixes, opcode extensions in 
associated ModR/M byte). Blank cells in the tables indicate opcodes that are reserved or undefined. Cells marked 
“Reserved-NOP” are also reserved but may behave as NOP on certain processors. Software should not use opcodes 
corresponding blank cells or cells marked “Reserved-NOP” nor depend on the current behavior of those opcodes.

The opcode map tables are organized by hex values of the upper and lower 4 bits of an opcode byte. For 1-byte 
encodings (Table A-2), use the four high-order bits of an opcode to index a row of the opcode table; use the four 
low-order bits to index a column of the table. For 2-byte opcodes beginning with 0FH (Table A-3), skip any instruc-
tion prefixes, the 0FH byte (0FH may be preceded by 66H, F2H, or F3H) and use the upper and lower 4-bit values 
of the next opcode byte to index table rows and columns. Similarly, for 3-byte opcodes beginning with 0F38H or 
0F3AH (Table A-4), skip any instruction prefixes, 0F38H or 0F3AH and use the upper and lower 4-bit values of the 
third opcode byte to index table rows and columns. See Section A.2.4, “Opcode Look-up Examples for One, Two, 
and Three-Byte Opcodes.”

When a ModR/M byte provides opcode extensions, this information qualifies opcode execution. For information on 
how an opcode extension in the ModR/M byte modifies the opcode map in Table A-2 and Table A-3, see Section A.4. 

The escape (ESC) opcode tables for floating-point instructions identify the eight high order bits of opcodes at the 
top of each page. See Section A.5. If the accompanying ModR/M byte is in the range of 00H-BFH, bits 3-5 (the top 
row of the third table on each page) along with the reg bits of ModR/M determine the opcode. ModR/M bytes 
outside the range of 00H-BFH are mapped by the bottom two tables on each page of the section.

A.2 KEY TO ABBREVIATIONS
Operands are identified by a two-character code of the form Zz. The first character, an uppercase letter, specifies 
the addressing method; the second character, a lowercase letter, specifies the type of operand.

A.2.1  Codes for Addressing Method
The following abbreviations are used to document addressing methods:

A Direct address: the instruction has no ModR/M byte; the address of the operand is encoded in the instruc-
tion. No base register, index register, or scaling factor can be applied (for example, far JMP (EA)).

B The VEX.vvvv field of the VEX prefix selects a general purpose register.
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OPCODE MAP
C The reg field of the ModR/M byte selects a control register (for example, MOV (0F20, 0F22)).

D The reg field of the ModR/M byte selects a debug register (for example, 
MOV (0F21,0F23)).

E A ModR/M byte follows the opcode and specifies the operand. The operand is either a general-purpose 
register or a memory address. If it is a memory address, the address is computed from a segment register 
and any of the following values: a base register, an index register, a scaling factor, a displacement.

F EFLAGS/RFLAGS Register.

G The reg field of the ModR/M byte selects a general register (for example, AX (000)).

H The VEX.vvvv field of the VEX prefix selects a 128-bit XMM register or a 256-bit YMM register, determined 
by operand type. For legacy SSE encodings this operand does not exist, changing the instruction to 
destructive form.

I Immediate data: the operand value is encoded in subsequent bytes of the instruction.

J The instruction contains a relative offset to be added to the instruction pointer register (for example, JMP 
(0E9), LOOP).

L The upper 4 bits of the 8-bit immediate selects a 128-bit XMM register or a 256-bit YMM register, deter-
mined by operand type. (the MSB is ignored in 32-bit mode)

M The ModR/M byte may refer only to memory (for example, BOUND, LES, LDS, LSS, LFS, LGS, 
CMPXCHG8B).

N The R/M field of the ModR/M byte selects a packed-quadword, MMX technology register.

O The instruction has no ModR/M byte. The offset of the operand is coded as a word or double word 
(depending on address size attribute) in the instruction. No base register, index register, or scaling factor 
can be applied (for example, MOV (A0–A3)).

P The reg field of the ModR/M byte selects a packed quadword MMX technology register.

Q A ModR/M byte follows the opcode and specifies the operand. The operand is either an MMX technology 
register or a memory address. If it is a memory address, the address is computed from a segment register 
and any of the following values: a base register, an index register, a scaling factor, and a displacement.

R The R/M field of the ModR/M byte may refer only to a general register (for example, MOV (0F20-0F23)).

S The reg field of the ModR/M byte selects a segment register (for example, MOV (8C,8E)).

U The R/M field of the ModR/M byte selects a 128-bit XMM register or a 256-bit YMM register, determined by 
operand type.

V The reg field of the ModR/M byte selects a 128-bit XMM register or a 256-bit YMM register, determined by 
operand type.

W A ModR/M byte follows the opcode and specifies the operand. The operand is either a 128-bit XMM register, 
a 256-bit YMM register (determined by operand type), or a memory address. If it is a memory address, the 
address is computed from a segment register and any of the following values: a base register, an index 
register, a scaling factor, and a displacement.

X Memory addressed by the DS:rSI register pair (for example, MOVS, CMPS, OUTS, or LODS).

Y Memory addressed by the ES:rDI register pair (for example, MOVS, CMPS, INS, STOS, or SCAS).

A.2.2  Codes for Operand Type
The following abbreviations are used to document operand types:

a Two one-word operands in memory or two double-word operands in memory, depending on operand-size 
attribute (used only by the BOUND instruction).

b Byte, regardless of operand-size attribute.

c Byte or word, depending on operand-size attribute.

d Doubleword, regardless of operand-size attribute.
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dq Double-quadword, regardless of operand-size attribute.

p 32-bit, 48-bit, or 80-bit pointer, depending on operand-size attribute.

pd 128-bit or 256-bit packed double precision floating-point data.

pi Quadword MMX technology register (for example: mm0).

ps 128-bit or 256-bit packed single precision floating-point data.

q Quadword, regardless of operand-size attribute.

qq Quad-Quadword (256-bits), regardless of operand-size attribute.

s 6-byte or 10-byte pseudo-descriptor.

sd Scalar element of a 128-bit double precision floating data.

ss Scalar element of a 128-bit single precision floating data.

si Doubleword integer register (for example: eax).

v Word, doubleword or quadword (in 64-bit mode), depending on operand-size attribute.

w Word, regardless of operand-size attribute.

x dq or qq based on the operand-size attribute.

y Doubleword or quadword (in 64-bit mode), depending on operand-size attribute.

z Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size.

A.2.3  Register Codes
When an opcode requires a specific register as an operand, the register is identified by name (for example, AX, CL, 
or ESI). The name indicates whether the register is 64, 32, 16, or 8 bits wide.

A register identifier of the form eXX or rXX is used when register width depends on the operand-size attribute. eXX 
is used when 16 or 32-bit sizes are possible; rXX is used when 16, 32, or 64-bit sizes are possible. For example: 
eAX indicates that the AX register is used when the operand-size attribute is 16 and the EAX register is used when 
the operand-size attribute is 32. rAX can indicate AX, EAX or RAX.

When the REX.B bit is used to modify the register specified in the reg field of the opcode, this fact is indicated by 
adding “/x” to the register name to indicate the additional possibility. For example, rCX/r9 is used to indicate that 
the register could either be rCX or r9. Note that the size of r9 in this case is determined by the operand size attri-
bute (just as for rCX).

A.2.4  Opcode Look-up Examples for One, Two, and Three-Byte Opcodes
This section provides examples that demonstrate how opcode maps are used. 

A.2.4.1  One-Byte Opcode Instructions
The opcode map for 1-byte opcodes is shown in Table A-2. The opcode map for 1-byte opcodes is arranged by row 
(the least-significant 4 bits of the hexadecimal value) and column (the most-significant 4 bits of the hexadecimal 
value). Each entry in the table lists one of the following types of opcodes:
• Instruction mnemonics and operand types using the notations listed in Section A.2
• Opcodes used as an instruction prefix

For each entry in the opcode map that corresponds to an instruction, the rules for interpreting the byte following 
the primary opcode fall into one of the following cases:
• A ModR/M byte is required and is interpreted according to the abbreviations listed in Section A.1 and Chapter 

2, “Instruction Format,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A. 
Operand types are listed according to notations listed in Section A.2.
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• A ModR/M byte is required and includes an opcode extension in the reg field in the ModR/M byte. Use Table A-6 
when interpreting the ModR/M byte.

• Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an instruction prefix or 
entries for instructions without operands that use ModR/M (for example: 60H, PUSHA; 06H, PUSH ES).

Example A-1.  Look-up Example for 1-Byte Opcodes

Opcode 030500000000H for an ADD instruction is interpreted using the 1-byte opcode map (Table A-2) as follows:
• The first digit (0) of the opcode indicates the table row and the second digit (3) indicates the table column. This 

locates an opcode for ADD with two operands. 
• The first operand (type Gv) indicates a general register that is a word or doubleword depending on the operand-

size attribute. The second operand (type Ev) indicates a ModR/M byte follows that specifies whether the 
operand is a word or doubleword general-purpose register or a memory address.

• The ModR/M byte for this instruction is 05H, indicating that a 32-bit displacement follows (00000000H). The 
reg/opcode portion of the ModR/M byte (bits 3-5) is 000, indicating the EAX register. 

The instruction for this opcode is ADD EAX, mem_op, and the offset of mem_op is 00000000H.

Some 1- and 2-byte opcodes point to group numbers (shaded entries in the opcode map table). Group numbers 
indicate that the instruction uses the reg/opcode bits in the ModR/M byte as an opcode extension (refer to Section 
A.4).

A.2.4.2  Two-Byte Opcode Instructions
The two-byte opcode map shown in Table A-3 includes primary opcodes that are either two bytes or three bytes in 
length. Primary opcodes that are 2 bytes in length begin with an escape opcode 0FH. The upper and lower four bits 
of the second opcode byte are used to index a particular row and column in Table A-3. 

Two-byte opcodes that are 3 bytes in length begin with a mandatory prefix (66H, F2H, or F3H) and the escape 
opcode (0FH). The upper and lower four bits of the third byte are used to index a particular row and column in Table 
A-3 (except when the second opcode byte is the 3-byte escape opcodes 38H or 3AH; in this situation refer to 
Section A.2.4.3). 

For each entry in the opcode map, the rules for interpreting the byte following the primary opcode fall into one of 
the following cases:
• A ModR/M byte is required and is interpreted according to the abbreviations listed in Section A.1 and Chapter 

2, “Instruction Format,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A. The 
operand types are listed according to notations listed in Section A.2.

• A ModR/M byte is required and includes an opcode extension in the reg field in the ModR/M byte. Use Table A-6 
when interpreting the ModR/M byte.

• Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an instruction without 
operands that are encoded using ModR/M (for example: 0F77H, EMMS).

Example A-2.  Look-up Example for 2-Byte Opcodes

Look-up opcode 0FA4050000000003H for a SHLD instruction using Table A-3.
• The opcode is located in row A, column 4. The location indicates a SHLD instruction with operands Ev, Gv, and 

Ib. Interpret the operands as follows:

— Ev: The ModR/M byte follows the opcode to specify a word or doubleword operand.

— Gv: The reg field of the ModR/M byte selects a general-purpose register.

— Ib: Immediate data is encoded in the subsequent byte of the instruction.
• The third byte is the ModR/M byte (05H). The mod and opcode/reg fields of ModR/M indicate that a 32-bit 

displacement is used to locate the first operand in memory and eAX as the second operand.
• The next part of the opcode is the 32-bit displacement for the destination memory operand (00000000H). The 

last byte stores immediate byte that provides the count of the shift (03H).
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• By this breakdown, it has been shown that this opcode represents the instruction: SHLD DS:00000000H, EAX, 
3.

A.2.4.3  Three-Byte Opcode Instructions
The three-byte opcode maps shown in Table A-4 and Table A-5 includes primary opcodes that are either 3 or 4 
bytes in length. Primary opcodes that are 3 bytes in length begin with two escape bytes 0F38H or 0F3A. The upper 
and lower four bits of the third opcode byte are used to index a particular row and column in Table A-4 or Table A-5. 

Three-byte opcodes that are 4 bytes in length begin with a mandatory prefix (66H, F2H, or F3H) and two escape 
bytes (0F38H or 0F3AH). The upper and lower four bits of the fourth byte are used to index a particular row and 
column in Table A-4 or Table A-5. 

For each entry in the opcode map, the rules for interpreting the byte following the primary opcode fall into the 
following case:
• A ModR/M byte is required and is interpreted according to the abbreviations listed in A.1 and Chapter 2, 

“Instruction Format,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A. The 
operand types are listed according to notations listed in Section A.2.

Example A-3.  Look-up Example for 3-Byte Opcodes

Look-up opcode 660F3A0FC108H for a PALIGNR instruction using Table A-5.
• 66H is a prefix and 0F3AH indicate to use Table A-5. The opcode is located in row 0, column F indicating a 

PALIGNR instruction with operands Vdq, Wdq, and Ib. Interpret the operands as follows:

— Vdq: The reg field of the ModR/M byte selects a 128-bit XMM register.

— Wdq: The R/M field of the ModR/M byte selects either a 128-bit XMM register or memory location.

— Ib: Immediate data is encoded in the subsequent byte of the instruction.
• The next byte is the ModR/M byte (C1H). The reg field indicates that the first operand is XMM0. The mod shows 

that the R/M field specifies a register and the R/M indicates that the second operand is XMM1.
• The last byte is the immediate byte (08H).
• By this breakdown, it has been shown that this opcode represents the instruction: PALIGNR XMM0, XMM1, 8.

A.2.4.4  VEX Prefix Instructions
Instructions that include a VEX prefix are organized relative to the 2-byte and 3-byte opcode maps, based on the 
VEX.mmmmm field encoding of implied 0F, 0F38H, 0F3AH, respectively. Each entry in the opcode map of a VEX-
encoded instruction is based on the value of the opcode byte, similar to non-VEX-encoded instructions. 

A VEX prefix includes several bit fields that encode implied 66H, F2H, F3H prefix functionality (VEX.pp) and 
operand size/opcode information (VEX.L). See chapter 4 for details. 

Opcode tables A2-A6 include both instructions with a VEX prefix and instructions without a VEX prefix. Many entries 
are only made once, but represent both the VEX and non-VEX forms of the instruction. If the VEX prefix is present 
all the operands are valid and the mnemonic is usually prefixed with a “v”. If the VEX prefix is not present the 
VEX.vvvv operand is not available and the prefix “v” is dropped from the mnemonic. 

A few instructions exist only in VEX form and these are marked with a superscript “v”.

Operand size of VEX prefix instructions can be determined by the operand type code. 128-bit vectors are indicated 
by 'dq', 256-bit vectors are indicated by 'qq', and instructions with operands supporting either 128 or 256-bit, 
determined by VEX.L, are indicated by 'x'. For example, the entry "VMOVUPD Vx,Wx" indicates both VEX.L=0 and 
VEX.L=1 are supported. 
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A.2.5  Superscripts Utilized in Opcode Tables
Table A-1 contains notes on particular encodings. These notes are indicated in the following opcode maps by super-
scripts. Gray cells indicate instruction groupings.

A.3 ONE, TWO, AND THREE-BYTE OPCODE MAPS
See Table A-2 through Table A-5 below. The tables are multiple page presentations. Rows and columns with 
sequential relationships are placed on facing pages to make look-up tasks easier. Note that table footnotes are not 
presented on each page. Table footnotes for each table are presented on the last page of the table.

Table A-1.  Superscripts Utilized in Opcode Tables
Superscript
Symbol

Meaning of Symbol

1A Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (refer to Section A.4, “Opcode Extensions For One-Byte 
And Two-byte Opcodes”).

1B Use the 0F0B opcode (UD2 instruction), the 0FB9H opcode (UD1 instruction), or the 0FFFH opcode (UD0 instruction) 
when deliberately trying to generate an invalid opcode exception (#UD).

1C Some instructions use the same two-byte opcode. If the instruction has variations, or the opcode represents 
different instructions, the ModR/M byte will be used to differentiate the instruction. For the value of the ModR/M 
byte needed to decode the instruction, see Table A-6. 

i64 The instruction is invalid or not encodable in 64-bit mode. 40 through 4F (single-byte INC and DEC) are REX prefix 
combinations when in 64-bit mode (use FE/FF Grp 4 and 5 for INC and DEC).

o64 Instruction is only available when in 64-bit mode.

d64 When in 64-bit mode, instruction defaults to 64-bit operand size and cannot encode 32-bit operand size. 

f64 The operand size is forced to a 64-bit operand size when in 64-bit mode (prefixes that change operand size are 
ignored for this instruction in 64-bit mode).

v VEX form only exists. There is no legacy SSE form of the instruction. For Integer GPR instructions it means VEX 
prefix required.

v1 VEX128 & SSE forms only exist (no VEX256), when can’t be inferred from the data size.
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Table A-2.  One-byte Opcode Map: (00H — F7H) *

0 1 2 3 4 5 6 7

0 ADD PUSH
ESi64

POP
ESi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 ADC PUSH
SSi64

POP
SSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 AND SEG=ES
(Prefix)

DAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 XOR SEG=SS
(Prefix)

AAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 INCi64 general register / REXo64 Prefixes

eAX
REX

eCX
REX.B

eDX
REX.X

eBX
REX.XB

eSP
REX.R

eBP
REX.RB

eSI
REX.RX

eDI
REX.RXB

5 PUSHd64 general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15 

6 PUSHAi64/
PUSHADi64

POPAi64/
POPADi64

BOUNDi64

Gv, Ma
ARPLi64

Ew, Gw
MOVSXDo64

Gv, Ev

SEG=FS
(Prefix)

SEG=GS
(Prefix)

Operand
Size

(Prefix)

Address
Size

(Prefix)

7 Jccf64, Jb - Short-displacement jump on condition

O NO B/NAE/C NB/AE/NC Z/E NZ/NE BE/NA NBE/A

8 Immediate Grp 11A TEST XCHG 

Eb, Ib Ev, Iz  Eb, Ibi64 Ev, Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv 

9 NOP 
PAUSE(F3)

XCHG r8, rAX

XCHG word, double-word or quad-word register with rAX

rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

A MOV MOVS/B
Yb, Xb

MOVS/W/D/Q
Yv, Xv 

CMPS/B
Xb, Yb 

CMPS/W/D
Xv, YvAL, Ob rAX, Ov Ob, AL Ov, rAX 

B MOV immediate byte into byte register

AL/R8B, Ib CL/R9B, Ib DL/R10B, Ib BL/R11B, Ib AH/R12B, Ib CH/R13B, Ib DH/R14B, Ib BH/R15B, Ib

C Shift Grp 21A near RETf64

Iw
near RETf64 LESi64

Gz, Mp 
VEX+2byte

LDSi64

Gz, Mp 
VEX+1byte

Grp 111A - MOV

Eb, Ib Ev, Ib Eb, Ib Ev, Iz

D Shift Grp 21A AAMi64

Ib
AADi64

Ib
XLAT/
XLATB Eb, 1 Ev, 1 Eb, CL Ev, CL 

E LOOPNEf64/
LOOPNZf64

Jb 

LOOPEf64/
LOOPZf64

Jb 

LOOPf64

Jb 
JrCXZf64/

Jb 
IN OUT

AL, Ib eAX, Ib Ib, AL Ib, eAX

F LOCK
(Prefix)

INT1 REPNE
XACQUIRE

(Prefix) 

REP/REPE 
XRELEASE

(Prefix)

HLT CMC Unary Grp 31A

Eb Ev
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Table A-2. One-byte Opcode Map: (08H — FFH) *

8 9 A B C D E F

0 OR PUSH
CSi64

2-byte
escape

(Table A-3) Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 SBB PUSH
DSi64

POP
DSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 SUB SEG=CS 
(Prefix)

DASi64 

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 CMP SEG=DS 
(Prefix)

AASi64 

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 DECi64 general register / REXo64 Prefixes

eAX
REX.W

eCX
REX.WB

eDX
REX.WX

eBX
REX.WXB

eSP
REX.WR

eBP
REX.WRB

eSI
REX.WRX

eDI 
REX.WRXB

5 POPd64 into general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15 

6 PUSHd64

Iz
IMUL

Gv, Ev, Iz
PUSHd64

Ib
IMUL

Gv, Ev, Ib
INS/
INSB

Yb, DX

INS/
INSW/
INSD

Yz, DX

OUTS/
OUTSB
DX, Xb

OUTS/
OUTSW/
OUTSD
DX, Xz

7 Jccf64, Jb- Short displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G 

8 MOV MOV
Ev, Sw

LEA
Gv, M 

MOV
Sw, Ew

Grp 1A1A POPd64 

EvEb, Gb Ev, Gv Gb, Eb Gv, Ev 

9 CBW/
CWDE/
CDQE

CWD/
CDQ/
CQO

far CALLi64

Ap
FWAIT/
WAIT

PUSHF/D/Q d64/
Fv

POPF/D/Q d64/
Fv

SAHF LAHF

A TEST STOS/B
Yb, AL 

STOS/W/D/Q
Yv, rAX 

LODS/B
AL, Xb 

LODS/W/D/Q
rAX, Xv

SCAS/B
AL, Yb

SCAS/W/D/Q
rAX, YvAL, Ib rAX, Iz

B MOV immediate word or double into word, double, or quad register

rAX/r8, Iv rCX/r9, Iv rDX/r10, Iv rBX/r11, Iv rSP/r12, Iv rBP/r13, Iv rSI/r14, Iv rDI/r15 , Iv

C ENTER LEAVEd64 far RET far RET INT3 INT INTOi64 IRET/D/Q 

Iw, Ib Iw Ib

D ESC (Escape to coprocessor instruction set)

E near CALLf64 JMP IN OUT

Jz nearf64

Jz
fari64

Ap
shortf64

Jb
AL, DX eAX, DX DX, AL DX, eAX 

F CLC STC CLI STI CLD STD INC/DEC INC/DEC

Grp 41A Grp 51A

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-3.  Two-byte Opcode Map: 00H — 77H (First Byte is 0FH) *

pfx 0 1 2 3 4 5 6 7

0
Grp 61A Grp 71A LAR

Gv, Ew 
LSL

Gv, Ew 
 SYSCALLo64 CLTS SYSRETo64

1

vmovups
Vps, Wps

vmovups
Wps, Vps

vmovlps
Vq, Hq, Mq
vmovhlps

Vq, Hq, Uq

vmovlps
Mq, Vq

vunpcklps
Vx, Hx, Wx

vunpckhps
Vx, Hx, Wx

vmovhpsv1

Vdq, Hq, Mq 
vmovlhps

Vdq, Hq, Uq

vmovhpsv1

Mq, Vq

66 vmovupd
Vpd, Wpd

vmovupd
Wpd,Vpd

vmovlpd
Vq, Hq, Mq

vmovlpd
Mq, Vq

vunpcklpd
Vx,Hx,Wx

vunpckhpd
Vx,Hx,Wx

vmovhpdv1

Vdq, Hq, Mq
vmovhpdv1

Mq, Vq

F3 vmovss
Vx, Hx, Wss

vmovss
Wss, Hx, Vss

vmovsldup 
Vx, Wx

vmovshdup 
Vx, Wx

F2 vmovsd
Vx, Hx, Wsd

vmovsd
Wsd, Hx, Vsd

vmovddup
Vx, Wx

2

MOV
Rd, Cd

MOV
Rd, Dd

MOV
Cd, Rd

MOV
Dd, Rd

3 WRMSR RDTSC  RDMSR RDPMC SYSENTER SYSEXIT GETSEC

4

CMOVcc, (Gv, Ev) - Conditional Move

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

5

vmovmskps
Gy, Ups

vsqrtps
Vps, Wps

vrsqrtps
Vps, Wps

vrcpps
Vps, Wps

vandps
Vps, Hps, Wps

vandnps
Vps, Hps, Wps

vorps
Vps, Hps, Wps

vxorps
Vps, Hps, Wps

66 vmovmskpd 
Gy,Upd

vsqrtpd
Vpd, Wpd

vandpd
Vpd, Hpd, Wpd

vandnpd
Vpd, Hpd, Wpd

vorpd
Vpd, Hpd, Wpd

vxorpd
Vpd, Hpd, Wpd

F3 vsqrtss
Vss, Hss, Wss

vrsqrtss
Vss, Hss, Wss

vrcpss
Vss, Hss, Wss

F2 vsqrtsd
Vsd, Hsd, Wsd 

6

punpcklbw
Pq, Qd

punpcklwd
Pq, Qd

punpckldq
Pq, Qd

packsswb
Pq, Qq

pcmpgtb
Pq, Qq

pcmpgtw
Pq, Qq

pcmpgtd
Pq, Qq

packuswb
Pq, Qq

66 vpunpcklbw
Vx, Hx, Wx

vpunpcklwd
Vx, Hx, Wx

vpunpckldq
Vx, Hx, Wx

vpacksswb
Vx, Hx, Wx

vpcmpgtb
Vx, Hx, Wx

vpcmpgtw
Vx, Hx, Wx

vpcmpgtd
Vx, Hx, Wx

vpackuswb
Vx, Hx, Wx

F3

7

pshufw
Pq, Qq, Ib

(Grp 121A) (Grp 131A) (Grp 141A) pcmpeqb
Pq, Qq

pcmpeqw
Pq, Qq

pcmpeqd
Pq, Qq

emms 
vzeroupperv 

vzeroallv

66 vpshufd
Vx, Wx, Ib

vpcmpeqb
Vx, Hx, Wx

vpcmpeqw
Vx, Hx, Wx

vpcmpeqd
Vx, Hx, Wx

F3 vpshufhw
Vx, Wx, Ib

F2 vpshuflw
Vx, Wx, Ib
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Table A-3. Two-byte Opcode Map: 08H — 7FH (First Byte is 0FH) *

pfx 8 9 A B C D E F

0 
INVD WBINVD 2-byte Illegal 

Opcodes
UD21B

 prefetchw(/1)
Ev

1

Prefetch1C

(Grp 161A)
Reserved-NOP bndldx bndstx Reserved-NOP NOP /0 Ev

66 bndmov bndmov

F3 bndcl bndmk

F2
bndcu bndcn

2 

vmovaps
Vps, Wps

vmovaps
Wps, Vps

cvtpi2ps
Vps, Qpi

vmovntps
Mps, Vps 

cvttps2pi
Ppi, Wps

cvtps2pi
Ppi, Wps

vucomiss
Vss, Wss

vcomiss
Vss, Wss

66 vmovapd
Vpd, Wpd

vmovapd
Wpd,Vpd

cvtpi2pd
Vpd, Qpi

vmovntpd
Mpd, Vpd

cvttpd2pi
Ppi, Wpd

cvtpd2pi
Qpi, Wpd

vucomisd
Vsd, Wsd

vcomisd
Vsd, Wsd

F3 vcvtsi2ss
Vss, Hss, Ey

vcvttss2si
Gy, Wss

vcvtss2si
Gy, Wss

F2 vcvtsi2sd
Vsd, Hsd, Ey 

vcvttsd2si
Gy, Wsd 

vcvtsd2si
Gy, Wsd 

3 
3-byte escape

(Table A-4) 
3-byte escape

(Table A-5) 

4 

CMOVcc(Gv, Ev) - Conditional Move 
S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

5

vaddps
Vps, Hps, Wps

vmulps
Vps, Hps, Wps

vcvtps2pd
Vpd, Wps

vcvtdq2ps
Vps, Wdq

vsubps 
Vps, Hps, Wps

vminps
Vps, Hps, Wps

vdivps
Vps, Hps, Wps

vmaxps
Vps, Hps, Wps

66 vaddpd
Vpd, Hpd, Wpd

vmulpd
Vpd, Hpd, Wpd

vcvtpd2ps
Vps, Wpd

vcvtps2dq
Vdq, Wps

vsubpd
Vpd, Hpd, Wpd

vminpd
Vpd, Hpd, Wpd

vdivpd
Vpd, Hpd, Wpd

vmaxpd
Vpd, Hpd, Wpd

F3 vaddss
Vss, Hss, Wss

vmulss
Vss, Hss, Wss

vcvtss2sd
Vsd, Hx, Wss

vcvttps2dq
Vdq, Wps

vsubss
Vss, Hss, Wss

vminss
Vss, Hss, Wss

vdivss
Vss, Hss, Wss

vmaxss
Vss, Hss, Wss

F2 vaddsd
Vsd, Hsd, Wsd 

vmulsd
Vsd, Hsd, Wsd 

vcvtsd2ss
Vss, Hx, Wsd 

vsubsd
Vsd, Hsd, Wsd 

vminsd
Vsd, Hsd, Wsd 

vdivsd
Vsd, Hsd, Wsd 

vmaxsd
Vsd, Hsd, Wsd 

6

punpckhbw
Pq, Qd

punpckhwd
Pq, Qd

punpckhdq
Pq, Qd

packssdw
Pq, Qd

movd/q
Pd, Ey

movq
Pq, Qq

66 vpunpckhbw
Vx, Hx, Wx

vpunpckhwd
Vx, Hx, Wx

vpunpckhdq
Vx, Hx, Wx

vpackssdw
Vx, Hx, Wx

vpunpcklqdq
Vx, Hx, Wx

vpunpckhqdq
Vx, Hx, Wx

vmovd/q
Vy, Ey

vmovdqa 

Vx, Wx

F3 vmovdqu
Vx, Wx

7

VMREAD
Ey, Gy

VMWRITE
Gy, Ey

movd/q
Ey, Pd

movq
Qq, Pq

66 vhaddpd
Vpd, Hpd, Wpd

vhsubpd
Vpd, Hpd, Wpd

vmovd/q
Ey, Vy

vmovdqa
Wx,Vx

F3 vmovq
Vq, Wq

vmovdqu
Wx,Vx

F2

vhaddps
Vps, Hps, Wps

vhsubps
Vps, Hps, Wps
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OPCODE MAP
Table A-3. Two-byte Opcode Map: 80H — F7H (First Byte is 0FH) *

pfx 0 1 2 3 4 5 6 7

8
Jccf64, Jz - Long-displacement jump on condition

O NO B/CNAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

9
SETcc, Eb - Byte Set on condition

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

A
PUSHd64

FS
POPd64

FS
CPUID BT

Ev, Gv 
SHLD

Ev, Gv, Ib 
SHLD

Ev, Gv, CL 
 

B
CMPXCHG LSS

Gv, Mp 
BTR

Ev, Gv 
LFS

Gv, Mp 
LGS

Gv, Mp 
MOVZX

Eb, Gb Ev, Gv Gv, Eb Gv, Ew 

C

XADD
Eb, Gb

XADD
Ev, Gv

vcmpps
Vps,Hps,Wps,Ib

movnti
My, Gy

pinsrw
Pq,Ry/Mw,Ib

pextrw
Gd, Nq, Ib

vshufps
Vps,Hps,Wps,Ib

Grp 91A

66 vcmppd
Vpd,Hpd,Wpd,Ib

vpinsrw
Vdq,Hdq,Ry/Mw,Ib

vpextrw
Gd, Udq, Ib

vshufpd
Vpd,Hpd,Wpd,Ib

F3 vcmpss
Vss,Hss,Wss,Ib

F2 vcmpsd
Vsd,Hsd,Wsd,Ib

D

psrlw
Pq, Qq

psrld
Pq, Qq

psrlq
Pq, Qq

paddq
Pq, Qq

pmullw
Pq, Qq

pmovmskb
Gd, Nq

66 vaddsubpd
Vpd, Hpd, Wpd

vpsrlw
Vx, Hx, Wx

vpsrld
Vx, Hx, Wx

vpsrlq
Vx, Hx, Wx

vpaddq
Vx, Hx, Wx

vpmullw
Vx, Hx, Wx

vmovq
Wq, Vq

vpmovmskb 
Gd, Ux

F3 movq2dq
Vdq, Nq

F2 vaddsubps
Vps, Hps, Wps

movdq2q
Pq, Uq

E

pavgb
Pq, Qq

psraw
Pq, Qq

psrad
Pq, Qq

pavgw
Pq, Qq

pmulhuw
Pq, Qq

pmulhw
Pq, Qq

movntq
Mq, Pq

66 vpavgb
Vx, Hx, Wx

vpsraw
Vx, Hx, Wx

vpsrad
Vx, Hx, Wx

vpavgw
Vx, Hx, Wx

vpmulhuw
Vx, Hx, Wx

vpmulhw
Vx, Hx, Wx

vcvttpd2dq
Vx, Wpd

vmovntdq
Mx, Vx

F3 vcvtdq2pd
Vx, Wpd

F2 vcvtpd2dq
Vx, Wpd

F

psllw
Pq, Qq

pslld
Pq, Qq

psllq
Pq, Qq

pmuludq
Pq, Qq

pmaddwd
Pq, Qq

psadbw
Pq, Qq

maskmovq
Pq, Nq

66 vpsllw
Vx, Hx, Wx

vpslld
Vx, Hx, Wx

vpsllq
Vx, Hx, Wx

vpmuludq
Vx, Hx, Wx

vpmaddwd 
Vx, Hx, Wx

vpsadbw
Vx, Hx, Wx

vmaskmovdqu
Vdq, Udq

F2 vlddqu
Vx, Mx
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OPCODE MAP
Table A-3. Two-byte Opcode Map: 88H — FFH (First Byte is 0FH) * 

pfx 8 9 A B C D E F

8  
Jccf64, Jz - Long-displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

9 
SETcc, Eb - Byte Set on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

A PUSHd64

GS
POPd64

GS
RSM BTS

Ev, Gv 
SHRD

Ev, Gv, Ib 
SHRD

Ev, Gv, CL 
(Grp 151A)1C IMUL

Gv, Ev 

B 
 

JMPE
(reserved for 

emulator on IPF)

Grp 101A

Invalid Opcode1B
Grp 81A

Ev, Ib
BTC

Ev, Gv
BSF

Gv, Ev
BSR

Gv, Ev
MOVSX

Gv, Eb Gv, Ew

F3 POPCNT
Gv, Ev

TZCNT 
Gv, Ev

LZCNT 
Gv, Ev

C  

BSWAP

RAX/EAX/
R8/R8D

RCX/ECX/ 
R9/R9D

RDX/EDX/ 
R10/R10D

RBX/EBX/ 
R11/R11D

RSP/ESP/ 
R12/R12D

RBP/EBP/ 
R13/R13D

RSI/ESI/ 
R14/R14D

RDI/EDI/ 
R15/R15D

D

psubusb
Pq, Qq

psubusw
Pq, Qq

pminub
Pq, Qq

pand
Pq, Qq

paddusb
Pq, Qq

paddusw
Pq, Qq

pmaxub
Pq, Qq

pandn
Pq, Qq

66 vpsubusb
Vx, Hx, Wx

vpsubusw
Vx, Hx, Wx

vpminub
Vx, Hx, Wx

vpand
Vx, Hx, Wx

vpaddusb
Vx, Hx, Wx

vpaddusw
Vx, Hx, Wx

vpmaxub
Vx, Hx, Wx

vpandn
Vx, Hx, Wx

F3

F2

E

psubsb
Pq, Qq

psubsw
Pq, Qq

pminsw
Pq, Qq

por
Pq, Qq

paddsb
Pq, Qq

paddsw
Pq, Qq

pmaxsw
Pq, Qq

pxor
Pq, Qq

66 vpsubsb
Vx, Hx, Wx

vpsubsw
Vx, Hx, Wx

vpminsw
Vx, Hx, Wx

vpor
Vx, Hx, Wx

vpaddsb
Vx, Hx, Wx

vpaddsw
Vx, Hx, Wx

vpmaxsw
Vx, Hx, Wx

vpxor
Vx, Hx, Wx

F3

F2

F

psubb
Pq, Qq

psubw
Pq, Qq

psubd
Pq, Qq

psubq
Pq, Qq

paddb
Pq, Qq

paddw
Pq, Qq

paddd
Pq, Qq UD0

66 vpsubb
Vx, Hx, Wx

vpsubw
Vx, Hx, Wx 

vpsubd
Vx, Hx, Wx

vpsubq
Vx, Hx, Wx

vpaddb
Vx, Hx, Wx

vpaddw
Vx, Hx, Wx 

vpaddd
Vx, Hx, Wx

F2

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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OPCODE MAP
Table A-4.  Three-byte Opcode Map: 00H — F7H (First Two Bytes are 0F 38H) *

pfx 0 1 2 3 4 5 6 7

0

pshufb
Pq, Qq

phaddw
Pq, Qq

phaddd
Pq, Qq

phaddsw
Pq, Qq

pmaddubsw
Pq, Qq

phsubw
Pq, Qq

phsubd
Pq, Qq

phsubsw
Pq, Qq

66 vpshufb
Vx, Hx, Wx

vphaddw
Vx, Hx, Wx

vphaddd
Vx, Hx, Wx

vphaddsw
Vx, Hx, Wx

vpmaddubsw
Vx, Hx, Wx

vphsubw
Vx, Hx, Wx

vphsubd
Vx, Hx, Wx

vphsubsw
Vx, Hx, Wx

1 66

pblendvb
Vdq, Wdq

vcvtph2psv

Vx, Wx, Ib
blendvps
Vdq, Wdq

blendvpd
Vdq, Wdq

vpermpsv

Vqq, Hqq, Wqq
vptest
Vx, Wx

2 66 vpmovsxbw
Vx, Ux/Mq

vpmovsxbd
Vx, Ux/Md

vpmovsxbq
Vx, Ux/Mw

vpmovsxwd
Vx, Ux/Mq

vpmovsxwq
Vx, Ux/Md

vpmovsxdq
Vx, Ux/Mq

3 66 vpmovzxbw
Vx, Ux/Mq

vpmovzxbd
Vx, Ux/Md

vpmovzxbq
Vx, Ux/Mw

vpmovzxwd
Vx, Ux/Mq

vpmovzxwq
Vx, Ux/Md

vpmovzxdq
Vx, Ux/Mq

vpermdv

Vqq, Hqq, Wqq
vpcmpgtq

Vx, Hx, Wx

4 66 vpmulld
Vx, Hx, Wx

vphminposuw 
Vdq, Wdq

vpsrlvd/qv

Vx, Hx, Wx
vpsravdv

Vx, Hx, Wx
vpsllvd/qv

Vx, Hx, Wx

5

6

7

8 66

INVEPT 
Gy, Mdq

INVVPID 
Gy, Mdq

INVPCID 
Gy, Mdq

9 66 vgatherdd/qv 
Vx,Hx,Wx

vgatherqd/qv 
Vx,Hx,Wx

vgatherdps/dv 
Vx,Hx,Wx

vgatherqps/dv 
Vx,Hx,Wx

vfmaddsub132ps/dv 
Vx,Hx,Wx

vfmsubadd132ps/dv 
Vx,Hx,Wx

A 66 vfmaddsub213ps/dv 
Vx,Hx,Wx

vfmsubadd213ps/dv 
Vx,Hx,Wx

B 66 vfmaddsub231ps/dv 
Vx,Hx,Wx

vfmsubadd231ps/dv 
Vx,Hx,Wx

C

D

E

F

MOVBE 
Gy, My

MOVBE 
My, Gy

ANDNv

Gy, By, Ey

Grp 171A

BZHIv
Gy, Ey, By

BEXTRv

Gy, Ey, By

66 MOVBE 
Gw, Mw

MOVBE 
Mw, Gw

ADCX
Gy, Ey

SHLXv

Gy, Ey, By

F3 PEXTv

Gy, By, Ey
ADOX
Gy, Ey

SARXv

Gy, Ey, By

F2 CRC32 
Gd, Eb

CRC32 
Gd, Ey

PDEPv

Gy, By, Ey
MULXv

By,Gy,rDX,Ey
SHRXv

Gy, Ey, By
66 & 
F2

CRC32 
Gd, Eb

CRC32 
Gd, Ew
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OPCODE MAP
Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 38H) *

pfx 8 9 A B C D E F

0

psignb
Pq, Qq

psignw
Pq, Qq

psignd
Pq, Qq

pmulhrsw
Pq, Qq

66
vpsignb

Vx, Hx, Wx
vpsignw

Vx, Hx, Wx
vpsignd

Vx, Hx, Wx
vpmulhrsw 
Vx, Hx, Wx

vpermilpsv 
Vx,Hx,Wx

vpermilpdv 
Vx,Hx,Wx

vtestpsv 
Vx, Wx

vtestpdv 
Vx, Wx

1 pabsb
Pq, Qq

pabsw
Pq, Qq

pabsd
Pq, Qq

66 vbroadcastssv 
Vx, Wd

vbroadcastsdv Vqq, 
Wq

vbroadcastf128v Vqq, 
Mdq

vpabsb
Vx, Wx

vpabsw
Vx, Wx

vpabsd
Vx, Wx

2 66 vpmuldq
Vx, Hx, Wx

vpcmpeqq
Vx, Hx, Wx

vmovntdqa
Vx, Mx

vpackusdw
Vx, Hx, Wx

vmaskmovpsv 
Vx,Hx,Mx

vmaskmovpdv 
Vx,Hx,Mx

vmaskmovpsv 
Mx,Hx,Vx

vmaskmovpdv 
Mx,Hx,Vx

3 66 vpminsb
Vx, Hx, Wx

vpminsd
Vx, Hx, Wx

vpminuw
Vx, Hx, Wx

vpminud
Vx, Hx, Wx

vpmaxsb
Vx, Hx, Wx

vpmaxsd
Vx, Hx, Wx

vpmaxuw
Vx, Hx, Wx

vpmaxud
Vx, Hx, Wx

4

5 66 vpbroadcastdv 
Vx, Wx

vpbroadcastqv 
Vx, Wx

vbroadcasti128v 
Vqq, Mdq

6

7 66 vpbroadcastbv 
Vx, Wx

vpbroadcastwv 
Vx, Wx

8 66
vpmaskmovd/qv 

Vx,Hx,Mx
vpmaskmovd/qv 

Mx,Vx,Hx

9 66 vfmadd132ps/dv 
Vx, Hx, Wx

vfmadd132ss/dv 
Vx, Hx, Wx

vfmsub132ps/dv 
Vx, Hx, Wx

vfmsub132ss/dv 
Vx, Hx, Wx

vfnmadd132ps/dv 
Vx, Hx, Wx

vfnmadd132ss/dv 
Vx, Hx, Wx

vfnmsub132ps/dv 
Vx, Hx, Wx

vfnmsub132ss/dv 
Vx, Hx, Wx

A 66 vfmadd213ps/dv 
Vx, Hx, Wx

vfmadd213ss/dv 
Vx, Hx, Wx

vfmsub213ps/dv 
Vx, Hx, Wx

vfmsub213ss/dv 
Vx, Hx, Wx

vfnmadd213ps/dv 
Vx, Hx, Wx

vfnmadd213ss/dv 
Vx, Hx, Wx

vfnmsub213ps/dv 
Vx, Hx, Wx

vfnmsub213ss/dv 
Vx, Hx, Wx

B 66 vfmadd231ps/dv 
Vx, Hx, Wx

vfmadd231ss/dv 
Vx, Hx, Wx

vfmsub231ps/dv 
Vx, Hx, Wx

vfmsub231ss/dv 
Vx, Hx, Wx

vfnmadd231ps/dv 
Vx, Hx, Wx

vfnmadd231ss/dv 
Vx, Hx, Wx

vfnmsub231ps/dv 
Vx, Hx, Wx

vfnmsub231ss/dv 
Vx, Hx, Wx

C
sha1nexte
Vdq,Wdq

sha1msg1
Vdq,Wdq

sha1msg2
Vdq,Wdq

sha256rnds2
Vdq,Wdq

sha256msg1
Vdq,Wdq

sha256msg2
Vdq,Wdq

66

D 66 VAESIMC 
Vdq, Wdq

VAESENC 
Vdq,Hdq,Wdq

VAESENCLAST 
Vdq,Hdq,Wdq

VAESDEC 
Vdq,Hdq,Wdq

VAESDECLAST 
Vdq,Hdq,Wdq

E

F
66
F3
F2

66 & F2

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations. 
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OPCODE MAP
Table A-5.  Three-byte Opcode Map: 00H — F7H (First two bytes are 0F 3AH) *

pfx 0 1 2 3 4 5 6 7

0 66

vpermqv

Vqq, Wqq, Ib
vpermpdv

Vqq, Wqq, Ib
vpblenddv

Vx,Hx,Wx,Ib
vpermilpsv 
Vx, Wx, Ib

vpermilpdv 
Vx, Wx, Ib

vperm2f128v 
Vqq,Hqq,Wqq,Ib

1 66 vpextrb
Rd/Mb, Vdq, Ib

vpextrw
Rd/Mw, Vdq, Ib

vpextrd/q 
Ey, Vdq, Ib 

vextractps 
Ed, Vdq, Ib

2 66 vpinsrb
Vdq,Hdq,Ry/Mb,Ib

vinsertps
Vdq,Hdq,Udq/Md,Ib

vpinsrd/q
Vdq,Hdq,Ey,Ib 

3

4 66 vdpps
Vx,Hx,Wx,Ib

vdppd
Vdq,Hdq,Wdq,Ib

vmpsadbw
Vx,Hx,Wx,Ib

vpclmulqdq
Vdq,Hdq,Wdq,Ib

vperm2i128v

Vqq,Hqq,Wqq,Ib
5

6 66 vpcmpestrm
Vdq, Wdq, Ib 

vpcmpestri 
Vdq, Wdq, Ib 

vpcmpistrm 
Vdq, Wdq, Ib 

vpcmpistri
Vdq, Wdq, Ib 

7
8
9
A
B
C

D

E
F F2 RORXv

Gy, Ey, Ib
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OPCODE MAP
Table A-5. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 3AH) *

pfx 8 9 A B C D E F

0
palignr

Pq, Qq, Ib

66 vroundps
Vx,Wx,Ib

vroundpd
Vx,Wx,Ib

vroundss
Vss,Wss,Ib

vroundsd
Vsd,Wsd,Ib

vblendps
Vx,Hx,Wx,Ib

vblendpd
Vx,Hx,Wx,Ib

vpblendw
Vx,Hx,Wx,Ib

vpalignr
Vx,Hx,Wx,Ib

1 66
vinsertf128v 

Vqq,Hqq,Wqq,Ib
vextractf128v 
Wdq,Vqq,Ib

vcvtps2phv

Wx, Vx, Ib

2

3 66 vinserti128v 
Vqq,Hqq,Wqq,Ib

vextracti128v 
Wdq,Vqq,Ib

4 66 vblendvpsv

 Vx,Hx,Wx,Lx
vblendvpdv 

Vx,Hx,Wx,Lx
vpblendvbv

Vx,Hx,Wx,Lx
5

6

7
8
9
A
B

C sha1rnds4
Vdq,Wdq,Ib

D 66 VAESKEYGEN 
Vdq, Wdq, Ib

E
F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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OPCODE MAP
A.4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTE OPCODES
Some 1-byte and 2-byte opcodes use bits 3-5 of the ModR/M byte (the nnn field in Figure A-1) as an extension of 
the opcode.

Opcodes that have opcode extensions are indicated in Table A-6 and organized by group number. Group numbers 
(from 1 to 16, second column) provide a table entry point. The encoding for the r/m field for each instruction can 
be established using the third column of the table.

A.4.1  Opcode Look-up Examples Using Opcode Extensions
An Example is provided below.

Example A-4.  Interpreting an ADD Instruction

An ADD instruction with a 1-byte opcode of 80H is a Group 1 instruction:
• Table A-6 indicates that the opcode extension field encoded in the ModR/M byte for this instruction is 000B. 
• The r/m field can be encoded to access a register (11B) or a memory address using a specified addressing 

mode (for example: mem = 00B, 01B, 10B).

Example A-5.  Looking Up 0F01C3H

Look up opcode 0F01C3 for a VMRESUME instruction by using Table A-2, Table A-3, and Table A-6:
• 0F indicates that this instruction is in the 2-byte opcode map.
• 01 (row 0, column 1 in Table A-3) reveals that this opcode is in Group 7 of Table A-6.
• C3 is the ModR/M byte. The first two bits of C3 are 11B. This tells us to look at the second of the Group 7 rows 

in Table A-6.
• The Op/Reg bits [5,4,3] are 000B. This tells us to look in the 000 column for Group 7.
• Finally, the R/M bits [2,1,0] are 011B. This identifies the opcode as the VMRESUME instruction.

A.4.2  Opcode Extension Tables
See Table A-6 below.

mod nnn R/M

Figure A-1.  ModR/M Byte nnn Field (Bits 5, 4, and 3)
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OPCODE MAP
Table A-6.  Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
000 001 010 011 100 101 110 111

80-83 1 mem, 11B ADD OR ADC SBB AND SUB XOR CMP

8F 1A mem, 11B POP

C0,C1 reg, imm
D0, D1 reg, 1

D2, D3 reg, CL
2

mem, 11B ROL ROR RCL RCR SHL/SAL SHR SAR

F6, F7 3 mem, 11B TEST 
Ib/Iz

NOT NEG MUL
AL/rAX

IMUL
AL/rAX

DIV
AL/rAX

IDIV
AL/rAX

FE 4 mem, 11B INC
Eb

DEC
Eb

FF 5 mem, 11B INC
Ev

DEC
Ev

near CALLf64

Ev
far CALL

Ep 
near JMPf64

Ev
far JMP

Mp
PUSHd64

Ev

0F 00 6 mem, 11B SLDT
Rv/Mw

STR
Rv/Mw

LLDT
Ew

LTR
Ew 

VERR
Ew

VERW
Ew

0F 01 7

mem SGDT
Ms

SIDT
Ms

LGDT
Ms

LIDT
Ms 

SMSW
Mw/Rv

LMSW
Ew

INVLPG
Mb

11B VMCALL (001) 
VMLAUNCH 

(010) 
VMRESUME 

(011) VMXOFF 
(100) 

MONITOR 
(000)

MWAIT (001)
CLAC (010)
STAC (011)

ENCLS (111)

XGETBV (000)
XSETBV (001)

VMFUNC 
(100)

XEND (101)
XTEST (110)
ENCLU(111)

SWAPGS
o64(000)

RDTSCP (001)

0F BA 8 mem, 11B BT BTS BTR BTC

0F C7 9

mem

CMPXCH8B Mq
CMPXCHG16B

 Mdq

VMPTRLD
Mq

VMPTRST
Mq 

66 VMCLEAR
Mq 

F3 VMXON
Mq 

11B

RDRAND
Rv

RDSEED
Rv

F3 RDPID
Rd/q

0F B9 10
mem UD1

11B

C6

11

mem MOV
Eb, Ib

11B XABORT (000) Ib

C7
mem MOV

Ev, Iz11B XBEGIN (000) Jz

0F 71 12

mem

11B

psrlw
Nq, Ib

psraw
Nq, Ib

psllw
Nq, Ib

66 vpsrlw
Hx,Ux,Ib

vpsraw
Hx,Ux,Ib

vpsllw
Hx,Ux,Ib

0F 72 13

mem

11B

psrld
Nq, Ib

psrad
Nq, Ib

pslld
Nq, Ib

66 vpsrld
Hx,Ux,Ib

vpsrad
Hx,Ux,Ib

vpslld
Hx,Ux,Ib

0F 73 14

mem

11B

psrlq
Nq, Ib

psllq
Nq, Ib

66 vpsrlq
Hx,Ux,Ib

vpsrldq
Hx,Ux,Ib

vpsllq
Hx,Ux,Ib

vpslldq
Hx,Ux,Ib
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Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
000 001 010 011 100 101 110 111

0F AE 15

mem fxsave fxrstor ldmxcsr stmxcsr XSAVE XRSTOR XSAVEOPT clflush

11B

lfence mfence sfence

F3 RDFSBASE  
Ry

RDGSBASE 
Ry

WRFSBASE  
Ry

WRGSBASE 
Ry

0F 18 16
mem

prefetch
NTA

prefetch
T0

prefetch
T1

prefetch
T2

Reserved NOP

11B Reserved NOP

VEX.0F38 F3 17
mem BLSRv

By, Ey
BLSMSKv

By, Ey
BLSIv
By, Ey11B

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-6.  Opcode Extensions for One- and Two-byte Opcodes by Group Number * (Contd.)
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A.5 ESCAPE OPCODE INSTRUCTIONS
Opcode maps for coprocessor escape instruction opcodes (x87 floating-point instruction opcodes) are in Table A-7 
through Table A-22. These maps are grouped by the first byte of the opcode, from D8-DF. Each of these opcodes 
has a ModR/M byte. If the ModR/M byte is within the range of 00H-BFH, bits 3-5 of the ModR/M byte are used as 
an opcode extension, similar to the technique used for 1-and 2-byte opcodes (see A.4). If the ModR/M byte is 
outside the range of 00H through BFH, the entire ModR/M byte is used as an opcode extension.

A.5.1  Opcode Look-up Examples for Escape Instruction Opcodes
Examples are provided below.

Example A-6.  Opcode with ModR/M Byte in the 00H through BFH Range

DD0504000000H can be interpreted as follows:
• The instruction encoded with this opcode can be located in Section . Since the ModR/M byte (05H) is within the 

00H through BFH range, bits 3 through 5 (000) of this byte indicate the opcode for an FLD double-real 
instruction (see Table A-9). 

• The double-real value to be loaded is at 00000004H (the 32-bit displacement that follows and belongs to this 
opcode).

Example A-7.  Opcode with ModR/M Byte outside the 00H through BFH Range

D8C1H can be interpreted as follows:
• This example illustrates an opcode with a ModR/M byte outside the range of 00H through BFH. The instruction 

can be located in Section A.4. 
• In Table A-8, the ModR/M byte C1H indicates row C, column 1 (the FADD instruction using ST(0), ST(1) as 

operands).

A.5.2  Escape Opcode Instruction Tables
Tables are listed below.

A.5.2.1  Escape Opcodes with D8 as First Byte
Table A-7 and A-8 contain maps for the escape instruction opcodes that begin with D8H. Table A-7 shows the map if the ModR/M 
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-7.  D8 Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte (refer to Figure A.4)

000B 001B 010B 011B 100B 101B 110B 111B

FADD
single-real

FMUL
single-real

FCOM
single-real

FCOMP
single-real

FSUB
single-real

FSUBR
single-real

FDIV
single-real

FDIVR
single-real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-8 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects the 
table row and the second digit selects the column.

A.5.2.2  Escape Opcodes with D9 as First Byte
Table A-9 and A-10 contain maps for escape instruction opcodes that begin with D9H. Table A-9 shows the map if the ModR/M 
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.
.

Table A-8.  D8 Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOM

ST(0),ST(0) ST(0),ST(1) ST(0),T(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FSUB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F FDIV

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C FMUL

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOMP

ST(0),ST(0) ST(0),ST(1) ST(0),T(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FSUBR

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F FDIVR

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-9.  D9 Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte 

000B 001B 010B 011B 100B 101B 110B 111B
FLD

single-real
FST

single-real
FSTP

single-real
FLDENV

14/28 bytes
FLDCW
2 bytes

FSTENV
14/28 bytes

FSTCW
2 bytes

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-10 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects the 
table row and the second digit selects the column.

A.5.2.3  Escape Opcodes with DA as First Byte
Table A-11 and A-12 contain maps for escape instruction opcodes that begin with DAH. Table A-11 shows the map if the ModR/M 
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-10.  D9 Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FLD
ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FNOP

E FCHS FABS FTST FXAM

F F2XM1 FYL2X FPTAN FPATAN FXTRACT FPREM1 FDECSTP FINCSTP

8 9 A B C D E F
C FXCH

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)
D

E FLD1 FLDL2T FLDL2E FLDPI FLDLG2 FLDLN2 FLDZ

F FPREM FYL2XP1 FSQRT FSINCOS FRNDINT FSCALE FSIN FCOS

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-11.  DA Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte 

000B 001B 010B 011B 100B 101B 110B 111B

FIADD
dword-integer

FIMUL
dword-integer

FICOM
dword-integer

FICOMP
dword-integer

FISUB
dword-integer

FISUBR
dword-integer

FIDIV
dword-integer

FIDIVR
dword-integer

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-12 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects 
the table row and the second digit selects the column.

A.5.2.4  Escape Opcodes with DB as First Byte
Table A-13 and A-14 contain maps for escape instruction opcodes that begin with DBH. Table A-13 shows the map if the ModR/M 
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-12.  DA Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FCMOVB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E

F

8 9 A B C D E F

C FCMOVE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FUCOMPP

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-13.  DB Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte 

000B 001B 010B 011B 100B 101B 110B 111B

FILD
dword-integer

FISTTP 
dword-integer

FIST
dword-integer

FISTP
dword-integer

FLD
extended-real

FSTP
extended-real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-14 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects the 
table row and the second digit selects the column.

A.5.2.5  Escape Opcodes with DC as First Byte
Table A-15 and A-16 contain maps for escape instruction opcodes that begin with DCH. Table A-15 shows the map if the ModR/M 
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-14.  DB Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FCMOVNB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FCLEX FINIT

F FCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C FCMOVNE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FUCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-15.  DC Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte (refer to Figure A-1)

000B 001B 010B 011B 100B 101B 110B 111B

FADD 
double-real

FMUL 
double-real

FCOM 
double-real

FCOMP 
double-real

FSUB 
double-real

FSUBR 
double-real

FDIV 
double-real

FDIVR 
double-real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-16 shows the map if the ModR/M byte is outside the range of 00H-BFH. In this case the first digit of the ModR/M byte 
selects the table row and the second digit selects the column.

A.5.2.6  Escape Opcodes with DD as First Byte
Table A-17 and A-18 contain maps for escape instruction opcodes that begin with DDH. Table A-17 shows the map if the ModR/M 
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-16.  DC Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADD

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUBR

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVR

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C FMUL

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUB

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIV

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-17.  DD Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FLD 
double-real

FISTTP 
integer64

FST 
double-real

FSTP 
double-real

FRSTOR 
98/108bytes

FSAVE 
98/108bytes

FSTSW 
2 bytes

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-18 shows the map if the ModR/M byte is outside the range of 00H-BFH. The first digit of the ModR/M byte selects the table 
row and the second digit selects the column.

A.5.2.7  Escape Opcodes with DE as First Byte
Table A-19 and A-20 contain opcode maps for escape instruction opcodes that begin with DEH. Table A-19 shows the opcode map 
if the ModR/M byte is in the range of 00H-BFH. In this case, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruc-
tion.

Table A-18.  DD Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FFREE

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

D FST

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOM

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F

8 9 A B C D E F

C

D FSTP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOMP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-19.  DE Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte 

000B 001B 010B 011B 100B 101B 110B 111B

FIADD 
word-integer

FIMUL 
word-integer

FICOM 
word-integer

FICOMP 
word-integer

FISUB 
word-integer

FISUBR 
word-integer

FIDIV 
word-integer

FIDIVR 
word-integer

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-20 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first digit of the ModR/M byte selects 
the table row and the second digit selects the column.

A.5.2.8  Escape Opcodes with DF As First Byte
Table A-21 and A-22 contain the opcode maps for escape instruction opcodes that begin with DFH. Table A-21 shows the opcode 
map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-20.  DE Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADDP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUBRP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVRP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C FMULP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D FCOMPP

E FSUBP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0). ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-21.  DF Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FILD
word-integer

FISTTP
word-integer

FIST 
word-integer

FISTP 
word-integer

FBLD 
packed-BCD

FILD 
qword-integer

FBSTP 
packed-BCD

FISTP 
qword-integer

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-22 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first digit of the ModR/M byte selects 
the table row and the second digit selects the column.

Table A-22.  DF Opcode Map When ModR/M Byte is Outside 00H to BFH *

0 1 2 3 4 5 6 7

C

D

E FSTSW
AX

F FCOMIP

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C

D

E FUCOMIP

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS

This appendix provides machine instruction formats and encodings of IA-32 instructions. The first section describes 
the IA-32 architecture’s machine instruction format. The remaining sections show the formats and encoding of 
general-purpose, MMX, P6 family, SSE/SSE2/SSE3, x87 FPU instructions, and VMX instructions. Those instruction 
formats also apply to Intel 64 architecture. Instruction formats used in 64-bit mode are provided as supersets of 
the above.

B.1 MACHINE INSTRUCTION FORMAT
All Intel Architecture instructions are encoded using subsets of the general machine instruction format shown in 
Figure B-1. Each instruction consists of:
• an opcode
• a register and/or address mode specifier consisting of the ModR/M byte and sometimes the scale-index-base 

(SIB) byte (if required) 
• a displacement and an immediate data field (if required) 

The following sections discuss this format.

B.1.1  Legacy Prefixes
The legacy prefixes noted in Figure B-1 include 66H, 67H, F2H, and F3H. They are optional, except when F2H, F3H, 
and 66H are used in instruction extensions. Legacy prefixes must be placed before REX prefixes.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A, for more information on legacy prefixes.

Figure B-1.  General Machine Instruction Format

ModR/M Byte

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7-6     5-3     2-07-6     5-3     2-0

T T T T T T T T T T T T T T T T

Mod   Reg*  R/M Scale Index Base d32 | 16 | 8 | Noned32 | 16 | 8 | None

SIB Byte Address Displacement
(4, 2, 1 Bytes or None)

Immediate Data
(4,2,1 Bytes or None)

Register and/or Address
Mode Specifier

Legacy Prefixes REX Prefixes

7 6 5 4 3 2 1 0

T T T T T T T T

(optional)Grp 1, Grp 2, 
Grp 3, Grp 4 

NOTE:

*  The Reg Field may be used as an 
opcode extension field (TTT) and as a 
way to  encode diagnostic registers 
(eee).

1, 2, or 3 Byte Opcodes (T = Opcode 
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B.1.2  REX Prefixes
REX prefixes are a set of 16 opcodes that span one row of the opcode map and occupy entries 40H to 4FH. These 
opcodes represent valid instructions (INC or DEC) in IA-32 operating modes and in compatibility mode. In 64-bit 
mode, the same opcodes represent the instruction prefix REX and are not treated as individual instructions.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A, for more information on REX prefixes.

B.1.3  Opcode Fields
The primary opcode for an instruction is encoded in one to three bytes of the instruction. Within the primary 
opcode, smaller encoding fields may be defined. These fields vary according to the class of operation being 
performed.

Almost all instructions that refer to a register and/or memory operand have a register and/or address mode byte 
following the opcode. This byte, the ModR/M byte, consists of the mod field (2 bits), the reg field (3 bits; this field 
is sometimes an opcode extension), and the R/M field (3 bits). Certain encodings of the ModR/M byte indicate that 
a second address mode byte, the SIB byte, must be used.

If the addressing mode specifies a displacement, the displacement value is placed immediately following the 
ModR/M byte or SIB byte. Possible sizes are 8, 16, or 32 bits. If the instruction specifies an immediate value, the 
immediate value follows any displacement bytes. The immediate, if specified, is always the last field of the instruc-
tion.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A, for more information on opcodes.

B.1.4  Special Fields
Table B-1 lists bit fields that appear in certain instructions, sometimes within the opcode bytes. All of these fields 
(except the d bit) occur in the general-purpose instruction formats in Table B-13.

Table B-1.  Special Fields Within Instruction Encodings

Field Name Description
Number of 

Bits

reg General-register specifier (see Table B-4 or B-5). 3

w Specifies if data is byte or full-sized, where full-sized is 16 or 32 bits (see Table B-6). 1

s Specifies sign extension of an immediate field (see Table B-7). 1

sreg2 Segment register specifier for CS, SS, DS, ES (see Table B-8). 2

sreg3 Segment register specifier for CS, SS, DS, ES, FS, GS (see Table B-8). 3

eee Specifies a special-purpose (control or debug) register (see Table B-9). 3

tttn For conditional instructions, specifies a condition asserted or negated (see Table B-12). 4

d Specifies direction of data operation (see Table B-11). 1
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B.1.4.1  Reg Field (reg) for Non-64-Bit Modes
The reg field in the ModR/M byte specifies a general-purpose register operand. The group of registers specified is 
modified by the presence and state of the w bit in an encoding (refer to Section B.1.4.3). Table B-2 shows the 
encoding of the reg field when the w bit is not present in an encoding; Table B-3 shows the encoding of the reg field 
when the w bit is present.

Table B-2.  Encoding of reg Field When w Field is Not Present in Instruction

reg Field
Register Selected during
16-Bit Data Operations

Register Selected during
32-Bit Data Operations

000 AX EAX

001 CX ECX

010 DX EDX

011 BX EBX

100 SP ESP

101 BP EBP

110 SI ESI

111 DI EDI

Table B-3.  Encoding of reg Field When w Field is Present in Instruction

Register Specified by reg Field
During 16-Bit Data Operations

Register Specified by reg Field
During 32-Bit Data Operations

reg
Function of w Field

reg
Function of w Field

When w = 0 When w = 1 When w = 0 When w = 1

000 AL AX 000 AL EAX

001 CL CX 001 CL ECX

010 DL DX 010 DL EDX

011 BL BX 011 BL EBX

100 AH SP 100 AH ESP

101 CH BP 101 CH EBP

110 DH SI 110 DH ESI

111 BH DI 111 BH EDI
Vol. 2D B-3



INSTRUCTION FORMATS AND ENCODINGS
B.1.4.2  Reg Field (reg) for 64-Bit Mode
Just like in non-64-bit modes, the reg field in the ModR/M byte specifies a general-purpose register operand. The 
group of registers specified is modified by the presence of and state of the w bit in an encoding (refer to Section 
B.1.4.3). Table B-4 shows the encoding of the reg field when the w bit is not present in an encoding; Table B-5 
shows the encoding of the reg field when the w bit is present.

B.1.4.3  Encoding of Operand Size (w) Bit 
The current operand-size attribute determines whether the processor is performing 16-bit, 32-bit or 64-bit opera-
tions. Within the constraints of the current operand-size attribute, the operand-size bit (w) can be used to indicate 
operations on 8-bit operands or the full operand size specified with the operand-size attribute. Table B-6 shows the 
encoding of the w bit depending on the current operand-size attribute.

Table B-4.  Encoding of reg Field When w Field is Not Present in Instruction

reg Field
Register Selected during
16-Bit Data Operations

Register Selected during
32-Bit Data Operations

Register Selected during
64-Bit Data Operations

000 AX EAX RAX

001 CX ECX RCX

010 DX EDX RDX

011 BX EBX RBX

100 SP ESP RSP

101 BP EBP RBP

110 SI ESI RSI

111 DI EDI RDI

Table B-5.  Encoding of reg Field When w Field is Present in Instruction 

Register Specified by reg Field
During 16-Bit Data Operations

Register Specified by reg Field
During 32-Bit Data Operations

reg
Function of w Field

reg
Function of w Field

When w = 0 When w = 1 When w = 0 When w = 1

000 AL AX 000 AL EAX

001 CL CX 001 CL ECX

010 DL DX 010 DL EDX

011 BL BX 011 BL EBX

100 AH1 SP 100 AH* ESP

101 CH1 BP 101 CH* EBP

110 DH1 SI 110 DH* ESI

111 BH1 DI 111 BH* EDI

NOTES:
1. AH, CH, DH, BH can not be encoded when REX prefix is used. Such an expression defaults to the low byte.

Table B-6.  Encoding of Operand Size (w) Bit 

w Bit
Operand Size When 

Operand-Size Attribute is 16 Bits
Operand Size When 

Operand-Size Attribute is 32 Bits

0 8 Bits 8 Bits

1 16 Bits 32 Bits
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B.1.4.4  Sign-Extend (s) Bit 
The sign-extend (s) bit occurs in instructions with immediate data fields that are being extended from 8 bits to 16 
or 32 bits. See Table B-7.

B.1.4.5  Segment Register (sreg) Field 
When an instruction operates on a segment register, the reg field in the ModR/M byte is called the sreg field and is 
used to specify the segment register. Table B-8 shows the encoding of the sreg field. This field is sometimes a 2-bit 
field (sreg2) and other times a 3-bit field (sreg3). 

B.1.4.6  Special-Purpose Register (eee) Field 
When control or debug registers are referenced in an instruction they are encoded in the eee field, located in bits 5 
though 3 of the ModR/M byte (an alternate encoding of the sreg field). See Table B-9.

Table B-7.  Encoding of Sign-Extend (s) Bit 

s Effect on 8-Bit
Immediate Data

Effect on 16- or 32-Bit
Immediate Data

0 None None

1 Sign-extend to fill 16-bit or 32-bit destination None

Table B-8.  Encoding of the Segment Register (sreg) Field 

2-Bit sreg2 Field Segment Register Selected 3-Bit sreg3 Field Segment Register Selected

00 ES 000 ES

01 CS 001 CS

10 SS 010 SS

11 DS 011 DS

100 FS

101 GS

110 Reserved1

111 Reserved

NOTES:
1. Do not use reserved encodings.

Table B-9.  Encoding of Special-Purpose Register (eee) Field  

eee Control Register Debug Register

000 CR0 DR0

001 Reserved1 DR1

010 CR2 DR2

011 CR3 DR3

100 CR4 Reserved

101 Reserved Reserved

110 Reserved DR6

111 Reserved DR7

NOTES:
1. Do not use reserved encodings.
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B.1.4.7  Condition Test (tttn) Field 
For conditional instructions (such as conditional jumps and set on condition), the condition test field (tttn) is 
encoded for the condition being tested. The ttt part of the field gives the condition to test and the n part indicates 
whether to use the condition (n = 0) or its negation (n = 1).
• For 1-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the opcode byte. 
• For 2-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the second opcode byte.

Table B-10 shows the encoding of the tttn field.

B.1.4.8  Direction (d) Bit 
In many two-operand instructions, a direction bit (d) indicates which operand is considered the source and which 
is the destination. See Table B-11. 
• When used for integer instructions, the d bit is located at bit 1 of a 1-byte primary opcode. Note that this bit 

does not appear as the symbol “d” in Table B-13; the actual encoding of the bit as 1 or 0 is given. 
• When used for floating-point instructions (in Table B-16), the d bit is shown as bit 2 of the first byte of the 

primary opcode.

B.1.5  Other Notes
Table B-12 contains notes on particular encodings. These notes are indicated in the tables shown in the following 
sections by superscripts.

Table B-10.  Encoding of Conditional Test (tttn) Field
t t t n Mnemonic Condition

0000 O Overflow

0001 NO No overflow

0010 B, NAE Below, Not above or equal

0011 NB, AE Not below, Above or equal

0100 E, Z Equal, Zero

0101 NE, NZ Not equal, Not zero

0110 BE, NA Below or equal, Not above

0111 NBE, A Not below or equal, Above

1000 S Sign

1001 NS Not sign

1010 P, PE Parity, Parity Even

1011 NP, PO Not parity, Parity Odd

1100 L, NGE Less than, Not greater than or equal to

1101 NL, GE Not less than, Greater than or equal to

1110 LE, NG Less than or equal to, Not greater than

1111 NLE, G Not less than or equal to, Greater than

Table B-11.  Encoding of Operation Direction (d) Bit 

d Source Destination

0 reg Field ModR/M or SIB Byte

1 ModR/M or SIB Byte reg Field
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B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND ENCODINGS FOR NON-
64-BIT MODES

Table B-13 shows machine instruction formats and encodings for general purpose instructions in non-64-bit 
modes.

Table B-12.  Notes on Instruction Encoding
Symbol Note

A A value of 11B in bits 7 and 6 of the ModR/M byte is reserved.

B A value of 01B (or 10B) in bits 7 and 6 of the ModR/M byte is reserved.

Table B-13.  General Purpose Instruction Formats and Encodings for Non-64-Bit Modes

Instruction and Format Encoding

AAA – ASCII Adjust after Addition 0011 0111

AAD – ASCII Adjust AX before Division 1101 0101 : 0000 1010

AAM – ASCII Adjust AX after Multiply 1101 0100 : 0000 1010

AAS – ASCII Adjust AL after Subtraction 0011 1111

ADC – ADD with Carry

register1 to register2 0001 000w : 11 reg1 reg2

register2 to register1 0001 001w : 11 reg1 reg2 

memory to register 0001 001w : mod reg r/m

register to memory 0001 000w : mod reg r/m

immediate to register 1000 00sw : 11 010 reg : immediate data

immediate to AL, AX, or EAX 0001 010w : immediate data

immediate to memory 1000 00sw : mod 010 r/m : immediate data

ADD – Add

register1 to register2 0000 000w : 11 reg1 reg2

register2 to register1 0000 001w : 11 reg1 reg2 

memory to register 0000 001w : mod reg r/m

register to memory 0000 000w : mod reg r/m

immediate to register 1000 00sw : 11 000 reg : immediate data

immediate to AL, AX, or EAX 0000 010w : immediate data

immediate to memory 1000 00sw : mod 000 r/m : immediate data

AND – Logical AND

register1 to register2 0010 000w : 11 reg1 reg2

register2 to register1 0010 001w : 11 reg1 reg2 

memory to register 0010 001w : mod reg r/m

register to memory 0010 000w : mod reg r/m

immediate to register 1000 00sw : 11 100 reg : immediate data

immediate to AL, AX, or EAX 0010 010w : immediate data

immediate to memory 1000 00sw : mod 100 r/m : immediate data
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ARPL – Adjust RPL Field of Selector

from register 0110 0011 : 11 reg1 reg2

from memory 0110 0011 : mod reg r/m

BOUND – Check Array Against Bounds 0110 0010 : modA reg r/m

BSF – Bit Scan Forward

register1, register2 0000 1111 : 1011 1100 : 11 reg1 reg2

memory, register 0000 1111 : 1011 1100 : mod reg r/m

BSR – Bit Scan Reverse

register1, register2 0000 1111 : 1011 1101 : 11 reg1 reg2

memory, register 0000 1111 : 1011 1101 : mod reg r/m

BSWAP – Byte Swap 0000 1111 : 1100 1 reg

BT – Bit Test

register, immediate 0000 1111 : 1011 1010 : 11 100 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 100 r/m : imm8 data

register1, register2 0000 1111 : 1010 0011 : 11 reg2 reg1

memory, reg 0000 1111 : 1010 0011 : mod reg r/m

BTC – Bit Test and Complement

register, immediate 0000 1111 : 1011 1010 : 11 111 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 111 r/m : imm8 data

register1, register2 0000 1111 : 1011 1011 : 11 reg2 reg1

memory, reg 0000 1111 : 1011 1011 : mod reg r/m

BTR – Bit Test and Reset

register, immediate 0000 1111 : 1011 1010 : 11 110 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 110 r/m : imm8 data

register1, register2 0000 1111 : 1011 0011 : 11 reg2 reg1

memory, reg 0000 1111 : 1011 0011 : mod reg r/m

BTS – Bit Test and Set

register, immediate 0000 1111 : 1011 1010 : 11 101 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 101 r/m : imm8 data

register1, register2 0000 1111 : 1010 1011 : 11 reg2 reg1

memory, reg 0000 1111 : 1010 1011 : mod reg r/m

CALL – Call Procedure (in same segment)

direct 1110 1000 : full displacement

register indirect 1111 1111 : 11 010 reg

memory indirect 1111 1111 : mod 010 r/m

CALL – Call Procedure (in other segment)

direct 1001 1010 : unsigned full offset, selector

indirect 1111 1111 : mod 011 r/m

Table B-13.  General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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CBW – Convert Byte to Word 1001 1000

CDQ – Convert Doubleword to Qword 1001 1001

CLC – Clear Carry Flag 1111 1000

CLD – Clear Direction Flag 1111 1100

CLI – Clear Interrupt Flag 1111 1010

CLTS – Clear Task-Switched Flag in CR0 0000 1111 : 0000 0110

CMC – Complement Carry Flag 1111 0101

CMP – Compare Two Operands

register1 with register2 0011 100w : 11 reg1 reg2

register2 with register1 0011 101w : 11 reg1 reg2

memory with register 0011 100w : mod reg r/m

register with memory 0011 101w : mod reg r/m

immediate with register 1000 00sw : 11 111 reg : immediate data

immediate with AL, AX, or EAX 0011 110w : immediate data

immediate with memory 1000 00sw : mod 111 r/m : immediate data

CMPS/CMPSB/CMPSW/CMPSD – Compare String Operands 1010 011w

CMPXCHG – Compare and Exchange 

register1, register2 0000 1111 : 1011 000w : 11 reg2 reg1

memory, register 0000 1111 : 1011 000w : mod reg r/m

CPUID – CPU Identification 0000 1111 : 1010 0010

CWD – Convert Word to Doubleword 1001 1001

CWDE – Convert Word to Doubleword 1001 1000

DAA – Decimal Adjust AL after Addition 0010 0111

DAS – Decimal Adjust AL after Subtraction 0010 1111

DEC – Decrement by 1

register 1111 111w : 11 001 reg

register (alternate encoding) 0100 1 reg

memory 1111 111w : mod 001 r/m

DIV – Unsigned Divide

AL, AX, or EAX by register 1111 011w : 11 110 reg

AL, AX, or EAX by memory 1111 011w : mod 110 r/m

HLT – Halt 1111 0100

IDIV – Signed Divide

AL, AX, or EAX by register 1111 011w : 11 111 reg

AL, AX, or EAX by memory 1111 011w : mod 111 r/m

Table B-13.  General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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IMUL – Signed Multiply

AL, AX, or EAX with register 1111 011w : 11 101 reg

AL, AX, or EAX with memory 1111 011w : mod 101 reg

register1 with register2 0000 1111 : 1010 1111 : 11 : reg1 reg2

register with memory 0000 1111 : 1010 1111 : mod reg r/m

register1 with immediate to register2 0110 10s1 : 11 reg1 reg2 : immediate data

memory with immediate to register 0110 10s1 : mod reg r/m : immediate data

IN – Input From Port

fixed port 1110 010w : port number

variable port 1110 110w

INC – Increment by 1

reg 1111 111w : 11 000 reg

reg (alternate encoding) 0100 0 reg

memory 1111 111w : mod 000 r/m

INS – Input from DX Port 0110 110w

INT n – Interrupt Type n 1100 1101 : type

INT – Single-Step Interrupt 3 1100 1100

INTO – Interrupt 4 on Overflow 1100 1110

INVD – Invalidate Cache 0000 1111 : 0000 1000

INVLPG – Invalidate TLB Entry 0000 1111 : 0000 0001 : mod 111 r/m

INVPCID – Invalidate Process-Context Identifier 0110 0110:0000 1111:0011 1000:1000 0010: mod reg r/m

IRET/IRETD – Interrupt Return 1100 1111

Jcc – Jump if Condition is Met

8-bit displacement 0111 tttn : 8-bit displacement

full displacement 0000 1111 : 1000 tttn : full displacement

JCXZ/JECXZ – Jump on CX/ECX Zero
   Address-size prefix differentiates JCXZ 

   and JECXZ
1110 0011 : 8-bit displacement

JMP – Unconditional Jump (to same segment)

short 1110 1011 : 8-bit displacement

direct 1110 1001 : full displacement

register indirect 1111 1111 : 11 100 reg

memory indirect 1111 1111 : mod 100 r/m

JMP – Unconditional Jump (to other segment)

direct intersegment 1110 1010 : unsigned full offset, selector

indirect intersegment 1111 1111 : mod 101 r/m

LAHF – Load Flags into AHRegister 1001 1111

Table B-13.  General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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LAR – Load Access Rights Byte

from register 0000 1111 : 0000 0010 : 11 reg1 reg2

from memory 0000 1111 : 0000 0010 : mod reg r/m

LDS – Load Pointer to DS 1100 0101 : modA,B reg r/m

LEA – Load Effective Address 1000 1101 : modA reg r/m

LEAVE – High Level Procedure Exit 1100 1001

LES – Load Pointer to ES 1100 0100 : modA,B reg r/m

LFS – Load Pointer to FS 0000 1111 : 1011 0100 : modA reg r/m

LGDT – Load Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 010 r/m

LGS – Load Pointer to GS 0000 1111 : 1011 0101 : modA reg r/m

LIDT – Load Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : modA 011 r/m

LLDT – Load Local Descriptor Table Register

LDTR from register 0000 1111 : 0000 0000 : 11 010 reg

LDTR from memory 0000 1111 : 0000 0000 : mod 010 r/m

LMSW – Load Machine Status Word

from register 0000 1111 : 0000 0001 : 11 110 reg

from memory 0000 1111 : 0000 0001 : mod 110 r/m

LOCK – Assert LOCK# Signal Prefix 1111 0000

LODS/LODSB/LODSW/LODSD – Load String Operand 1010 110w

LOOP – Loop Count 1110 0010 : 8-bit displacement

LOOPZ/LOOPE – Loop Count while Zero/Equal 1110 0001 : 8-bit displacement

LOOPNZ/LOOPNE – Loop Count while not Zero/Equal 1110 0000 : 8-bit displacement

LSL – Load Segment Limit

from register 0000 1111 : 0000 0011 : 11 reg1 reg2

from memory 0000 1111 : 0000 0011 : mod reg r/m

LSS – Load Pointer to SS 0000 1111 : 1011 0010 : modA reg r/m

LTR – Load Task Register

from register 0000 1111 : 0000 0000 : 11 011 reg

from memory 0000 1111 : 0000 0000 : mod 011 r/m

MOV – Move Data

register1 to register2 1000 100w : 11 reg1 reg2

register2 to register1 1000 101w : 11 reg1 reg2

memory to reg 1000 101w : mod reg r/m

reg to memory 1000 100w : mod reg r/m

immediate to register 1100 011w : 11 000 reg : immediate data

immediate to register (alternate encoding) 1011 w reg : immediate data

immediate to memory 1100 011w : mod 000 r/m : immediate data

memory to AL, AX, or EAX 1010 000w : full displacement

Table B-13.  General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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AL, AX, or EAX to memory 1010 001w : full displacement

MOV – Move to/from Control Registers

CR0 from register 0000 1111 : 0010 0010 : -- 000 reg

CR2 from register 0000 1111 : 0010 0010 : -- 010reg

CR3 from register 0000 1111 : 0010 0010 : -- 011 reg

CR4 from register 0000 1111 : 0010 0010 : -- 100 reg

register from CR0-CR4 0000 1111 : 0010 0000 : -- eee reg

MOV – Move to/from Debug Registers

DR0-DR3 from register 0000 1111 : 0010 0011 : -- eee reg

DR4-DR5 from register 0000 1111 : 0010 0011 : -- eee reg

DR6-DR7 from register 0000 1111 : 0010 0011 : -- eee reg

register from DR6-DR7 0000 1111 : 0010 0001 : -- eee reg

register from DR4-DR5 0000 1111 : 0010 0001 : -- eee reg

register from DR0-DR3 0000 1111 : 0010 0001 : -- eee reg

MOV – Move to/from Segment Registers

register to segment register 1000 1110 : 11 sreg3 reg

register to SS 1000 1110 : 11 sreg3 reg

memory to segment reg 1000 1110 : mod sreg3 r/m

memory to SS 1000 1110 : mod sreg3 r/m

segment register to register 1000 1100 : 11 sreg3 reg

segment register to memory 1000 1100 : mod sreg3 r/m

MOVBE – Move data after swapping bytes

memory to register 0000 1111 : 0011 1000:1111 0000 : mod reg r/m

register to memory 0000 1111 : 0011 1000:1111 0001 : mod reg r/m

MOVS/MOVSB/MOVSW/MOVSD – Move Data from String to 
String

1010 010w

MOVSX – Move with Sign-Extend

memory to reg 0000 1111 : 1011 111w : mod reg r/m

MOVZX – Move with Zero-Extend

register2 to register1 0000 1111 : 1011 011w : 11 reg1 reg2

memory to register 0000 1111 : 1011 011w : mod reg r/m

MUL – Unsigned Multiply

AL, AX, or EAX with register 1111 011w : 11 100 reg

AL, AX, or EAX with memory 1111 011w : mod 100 r/m

NEG – Two's Complement Negation

register 1111 011w : 11 011 reg

memory 1111 011w : mod 011 r/m

NOP – No Operation 1001 0000

Table B-13.  General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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NOP – Multi-byte No Operation1

register 0000 1111 0001 1111 : 11 000 reg

memory 0000 1111 0001 1111 : mod 000 r/m

NOT – One's Complement Negation

register 1111 011w : 11 010 reg

memory 1111 011w : mod 010 r/m

OR – Logical Inclusive OR

register1 to register2 0000 100w : 11 reg1 reg2

register2 to register1 0000 101w : 11 reg1 reg2 

memory to register 0000 101w : mod reg r/m

register to memory 0000 100w : mod reg r/m

immediate to register 1000 00sw : 11 001 reg : immediate data

immediate to AL, AX, or EAX 0000 110w : immediate data

immediate to memory 1000 00sw : mod 001 r/m : immediate data

OUT – Output to Port

fixed port 1110 011w : port number

variable port 1110 111w

OUTS – Output to DX Port 0110 111w

POP – Pop a Word from the Stack

register 1000 1111 : 11 000 reg

register (alternate encoding) 0101 1 reg

memory 1000 1111 : mod 000 r/m

POP – Pop a Segment Register from the Stack (Note: CS cannot be sreg2 in this usage.)

segment register  DS, ES 000 sreg2 111

segment register  SS 000 sreg2 111

segment register  FS, GS 0000 1111: 10 sreg3 001

POPA/POPAD – Pop All General Registers 0110 0001

POPF/POPFD – Pop Stack into FLAGS or EFLAGS Register 1001 1101

PUSH – Push Operand onto the Stack

register 1111 1111 : 11 110 reg

register (alternate encoding) 0101 0 reg

memory 1111 1111 : mod 110 r/m

immediate 0110 10s0 : immediate data

PUSH – Push Segment Register onto the Stack

segment register CS,DS,ES,SS 000 sreg2 110

segment register FS,GS 0000 1111: 10 sreg3 000

PUSHA/PUSHAD – Push All General Registers 0110 0000

Table B-13.  General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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PUSHF/PUSHFD – Push Flags Register onto the Stack 1001 1100

RCL – Rotate thru Carry Left

register by 1 1101 000w : 11 010 reg

memory by 1 1101 000w : mod 010 r/m

register by CL 1101 001w : 11 010 reg

memory by CL 1101 001w : mod 010 r/m

register by immediate count 1100 000w : 11 010 reg : imm8 data

memory by immediate count 1100 000w : mod 010 r/m : imm8 data

RCR – Rotate thru Carry Right

register by 1 1101 000w : 11 011 reg

memory by 1 1101 000w : mod 011 r/m

register by CL 1101 001w : 11 011 reg

memory by CL 1101 001w : mod 011 r/m

register by immediate count 1100 000w : 11 011 reg : imm8 data

memory by immediate count 1100 000w : mod 011 r/m : imm8 data

RDMSR – Read from Model-Specific Register 0000 1111 : 0011 0010

RDPMC – Read Performance Monitoring Counters 0000 1111 : 0011 0011

RDTSC – Read Time-Stamp Counter 0000 1111 : 0011 0001

RDTSCP – Read Time-Stamp Counter and Processor ID 0000 1111 : 0000 0001: 1111 1001

REP INS – Input String 1111 0011 : 0110 110w

REP LODS – Load String 1111 0011 : 1010 110w

REP MOVS – Move String 1111 0011 : 1010 010w

REP OUTS – Output String 1111 0011 : 0110 111w

REP STOS – Store String 1111 0011 : 1010 101w

REPE CMPS – Compare String 1111 0011 : 1010 011w

REPE SCAS – Scan String 1111 0011 : 1010 111w

REPNE CMPS – Compare String 1111 0010 : 1010 011w

REPNE SCAS – Scan String 1111 0010 : 1010 111w

RET – Return from Procedure (to same segment)

no argument 1100 0011

adding immediate to SP 1100 0010 : 16-bit displacement

RET – Return from Procedure (to other segment)

intersegment 1100 1011

adding immediate to SP 1100 1010 : 16-bit displacement
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ROL – Rotate Left

register by 1 1101 000w : 11 000 reg

memory by 1 1101 000w : mod 000 r/m

register by CL 1101 001w : 11 000 reg

memory by CL 1101 001w : mod 000 r/m

register by immediate count 1100 000w : 11 000 reg : imm8 data

memory by immediate count 1100 000w : mod 000 r/m : imm8 data

ROR – Rotate Right

register by 1 1101 000w : 11 001 reg

memory by 1 1101 000w : mod 001 r/m

register by CL 1101 001w : 11 001 reg

memory by CL 1101 001w : mod 001 r/m

register by immediate count 1100 000w : 11 001 reg : imm8 data

memory by immediate count 1100 000w : mod 001 r/m : imm8 data

RSM – Resume from System Management Mode 0000 1111 : 1010 1010

SAHF – Store AH into Flags 1001 1110

SAL – Shift Arithmetic Left same instruction as SHL

SAR – Shift Arithmetic Right

register by 1 1101 000w : 11 111 reg

memory by 1 1101 000w : mod 111 r/m

register by CL 1101 001w : 11 111 reg

memory by CL 1101 001w : mod 111 r/m

register by immediate count 1100 000w : 11 111 reg : imm8 data

memory by immediate count 1100 000w : mod 111 r/m : imm8 data

SBB – Integer Subtraction with Borrow

register1 to register2 0001 100w : 11 reg1 reg2

register2 to register1 0001 101w : 11 reg1 reg2 

memory to register 0001 101w : mod reg r/m

register to memory 0001 100w : mod reg r/m

immediate to register 1000 00sw : 11 011 reg : immediate data

immediate to AL, AX, or EAX 0001 110w : immediate data

immediate to memory 1000 00sw : mod 011 r/m : immediate data

SCAS/SCASB/SCASW/SCASD – Scan String 1010 111w

SETcc – Byte Set on Condition

register 0000 1111 : 1001 tttn : 11 000 reg

memory 0000 1111 : 1001 tttn : mod 000 r/m

SGDT – Store Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 000 r/m
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SHL – Shift Left

register by 1 1101 000w : 11 100 reg

memory by 1 1101 000w : mod 100 r/m

register by CL 1101 001w : 11 100 reg

memory by CL 1101 001w : mod 100 r/m

register by immediate count 1100 000w : 11 100 reg : imm8 data

memory by immediate count 1100 000w : mod 100 r/m : imm8 data

SHLD – Double Precision Shift Left

register by immediate count 0000 1111 : 1010 0100 : 11 reg2 reg1 : imm8

memory by immediate count 0000 1111 : 1010 0100 : mod reg r/m : imm8

register by CL 0000 1111 : 1010 0101 : 11 reg2 reg1

memory by CL 0000 1111 : 1010 0101 : mod reg r/m

SHR – Shift Right

register by 1 1101 000w : 11 101 reg

memory by 1 1101 000w : mod 101 r/m

register by CL 1101 001w : 11 101 reg

memory by CL 1101 001w : mod 101 r/m

register by immediate count 1100 000w : 11 101 reg : imm8 data

memory by immediate count 1100 000w : mod 101 r/m : imm8 data

SHRD – Double Precision Shift Right

register by immediate count 0000 1111 : 1010 1100 : 11 reg2 reg1 : imm8

memory by immediate count 0000 1111 : 1010 1100 : mod reg r/m : imm8

register by CL 0000 1111 : 1010 1101 : 11 reg2 reg1

memory by CL 0000 1111 : 1010 1101 : mod reg r/m

SIDT – Store Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : modA 001 r/m

SLDT – Store Local Descriptor Table Register

to register 0000 1111 : 0000 0000 : 11 000 reg

to memory 0000 1111 : 0000 0000 : mod 000 r/m

SMSW – Store Machine Status Word

to register 0000 1111 : 0000 0001 : 11 100 reg

to memory 0000 1111 : 0000 0001 : mod 100 r/m

STC – Set Carry Flag 1111 1001

STD – Set Direction Flag 1111 1101

STI – Set Interrupt Flag 1111 1011

STOS/STOSB/STOSW/STOSD – Store String Data 1010 101w

STR – Store Task Register

to register 0000 1111 : 0000 0000 : 11 001 reg

to memory 0000 1111 : 0000 0000 : mod 001 r/m
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SUB – Integer Subtraction

register1 to register2 0010 100w : 11 reg1 reg2

register2 to register1 0010 101w : 11 reg1 reg2 

memory to register 0010 101w : mod reg r/m

register to memory 0010 100w : mod reg r/m

immediate to register 1000 00sw : 11 101 reg : immediate data

immediate to AL, AX, or EAX 0010 110w : immediate data

immediate to memory 1000 00sw : mod 101 r/m : immediate data

TEST – Logical Compare

register1 and register2 1000 010w : 11 reg1 reg2

memory and register 1000 010w : mod reg r/m

immediate and register 1111 011w : 11 000 reg : immediate data

immediate and AL, AX, or EAX 1010 100w : immediate data

immediate and memory 1111 011w : mod 000 r/m : immediate data

UD0 – Undefined instruction 0000 1111 : 1111 1111

UD1 – Undefined instruction 0000 1111 : 0000 1011

UD2 – Undefined instruction 0000 FFFF : 0000 1011

VERR – Verify a Segment for Reading 

register 0000 1111 : 0000 0000 : 11 100 reg

memory 0000 1111 : 0000 0000 : mod 100 r/m

VERW – Verify a Segment for Writing

register 0000 1111 : 0000 0000 : 11 101 reg

memory 0000 1111 : 0000 0000 : mod 101 r/m

WAIT – Wait 1001 1011

WBINVD – Writeback and Invalidate Data Cache 0000 1111 : 0000 1001

WRMSR – Write to Model-Specific Register 0000 1111 : 0011 0000

XADD – Exchange and Add

register1, register2 0000 1111 : 1100 000w : 11 reg2 reg1

memory, reg 0000 1111 : 1100 000w : mod reg r/m

XCHG – Exchange Register/Memory with Register

register1 with register2 1000 011w : 11 reg1 reg2

AX or EAX with reg 1001 0 reg

memory with reg 1000 011w : mod reg r/m

XLAT/XLATB – Table Look-up Translation 1101 0111

XOR – Logical Exclusive OR

register1 to register2 0011 000w : 11 reg1 reg2

register2 to register1 0011 001w : 11 reg1 reg2 

memory to register 0011 001w : mod reg r/m
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INSTRUCTION FORMATS AND ENCODINGS
B.2.1  General Purpose Instruction Formats and Encodings for 64-Bit Mode
Table B-15 shows machine instruction formats and encodings for general purpose instructions in 64-bit mode.

register to memory 0011 000w : mod reg r/m

immediate to register 1000 00sw : 11 110 reg : immediate data

immediate to AL, AX, or EAX 0011 010w : immediate data

immediate to memory 1000 00sw : mod 110 r/m : immediate data

Prefix Bytes

address size 0110 0111

LOCK 1111 0000

operand size 0110 0110

CS segment override 0010 1110

DS segment override 0011 1110

ES segment override 0010 0110

FS segment override 0110 0100

GS segment override 0110 0101

SS segment override 0011 0110

NOTES:
1. The multi-byte NOP instruction does not alter the content of the register and will not issue a memory operation. 

Table B-14.  Special Symbols
Symbol Application

S If the value of REX.W. is 1, it overrides the presence of 66H.

w The value of bit W. in REX is has no effect.

Table B-15.  General Purpose Instruction Formats and Encodings for 64-Bit Mode

Instruction and Format Encoding

ADC – ADD with Carry

register1 to register2 0100 0R0B : 0001 000w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B : 0001 0001 : 11 qwordreg1 qwordreg2

register2 to register1 0100 0R0B : 0001 001w : 11 reg1 reg2 

qwordregister1 to qwordregister2 0100 1R0B : 0001 0011 : 11 qwordreg1 qwordreg2 

memory to register 0100 0RXB : 0001 001w : mod reg r/m

memory to qwordregister 0100 1RXB : 0001 0011 : mod qwordreg r/m

register to memory 0100 0RXB : 0001 000w : mod reg r/m

qwordregister to memory 0100 1RXB : 0001 0001 : mod qwordreg r/m

immediate to register 0100 000B : 1000 00sw : 11 010 reg : immediate

immediate to qwordregister 0100 100B : 1000 0001 : 11 010 qwordreg : imm32

immediate to qwordregister 0100 1R0B : 1000 0011 : 11 010 qwordreg : imm8
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immediate to AL, AX, or EAX 0001 010w : immediate data

immediate to RAX 0100 1000 : 0000 0101 : imm32

immediate to memory 0100 00XB : 1000 00sw : mod 010 r/m : immediate 

immediate32 to memory64 0100 10XB : 1000 0001 : mod 010 r/m : imm32

immediate8 to memory64 0100 10XB : 1000 0031 : mod 010 r/m : imm8

ADD – Add

register1 to register2 0100 0R0B : 0000 000w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 0000 0000 : 11 qwordreg1 qwordreg2

register2 to register1 0100 0R0B : 0000 001w : 11 reg1 reg2 

qwordregister1 to qwordregister2 0100 1R0B 0000 0010 : 11 qwordreg1 qwordreg2

memory to register 0100 0RXB : 0000 001w : mod reg r/m

memory64 to qwordregister 0100 1RXB : 0000 0000 : mod qwordreg r/m

register to memory 0100 0RXB : 0000 000w : mod reg r/m

qwordregister to memory64 0100 1RXB : 0000 0011 : mod qwordreg r/m

immediate to register 0100 0000B : 1000 00sw : 11 000 reg : immediate data

immediate32 to qwordregister 0100 100B : 1000 0001 : 11 010 qwordreg : imm

immediate to AL, AX, or EAX 0000 010w : immediate8

immediate to RAX 0100 1000 : 0000 0101 : imm32

immediate to memory 0100 00XB : 1000 00sw : mod 000 r/m : immediate

immediate32 to memory64 0100 10XB : 1000 0001 : mod 010 r/m : imm32

immediate8 to memory64 0100 10XB : 1000 0011 : mod 010 r/m : imm8

AND – Logical AND

register1 to register2 0100 0R0B 0010 000w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 0010 0001 : 11 qwordreg1 qwordreg2

register2 to register1 0100 0R0B 0010 001w : 11 reg1 reg2 

register1 to register2 0100 1R0B 0010 0011 : 11 qwordreg1 qwordreg2

memory to register 0100 0RXB 0010 001w : mod reg r/m

memory64 to qwordregister 0100 1RXB : 0010 0011 : mod qwordreg r/m

register to memory 0100 0RXB : 0010 000w : mod reg r/m

qwordregister to memory64 0100 1RXB : 0010 0001 : mod qwordreg r/m

immediate to register 0100 000B : 1000 00sw : 11 100 reg : immediate 

immediate32 to qwordregister 0100 100B 1000 0001 : 11 100 qwordreg : imm32

immediate to AL, AX, or EAX 0010 010w : immediate

immediate32 to RAX 0100 1000 0010 1001 : imm32

immediate to memory 0100 00XB : 1000 00sw : mod 100 r/m : immediate 

immediate32 to memory64 0100 10XB : 1000 0001 : mod 100 r/m : immediate32

immediate8 to memory64 0100 10XB : 1000 0011 : mod 100 r/m : imm8

BSF – Bit Scan Forward
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register1, register2 0100 0R0B 0000 1111 : 1011 1100 : 11 reg1 reg2

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1100 : 11 qwordreg1 
qwordreg2

memory, register 0100 0RXB 0000 1111 : 1011 1100 : mod reg r/m

memory64, qwordregister 0100 1RXB 0000 1111 : 1011 1100 : mod qwordreg r/m

BSR – Bit Scan Reverse

register1, register2 0100 0R0B 0000 1111 : 1011 1101 : 11 reg1 reg2

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1101 : 11 qwordreg1 
qwordreg2

memory, register 0100 0RXB 0000 1111 : 1011 1101 : mod reg r/m

memory64, qwordregister 0100 1RXB 0000 1111 : 1011 1101 : mod qwordreg r/m

BSWAP – Byte Swap 0000 1111 : 1100 1 reg

BSWAP – Byte Swap 0100 100B 0000 1111 : 1100 1 qwordreg

BT – Bit Test

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 100 reg: imm8 

qwordregister, immediate8 0100 100B 1111 : 1011 1010 : 11 100 qwordreg: imm8 data

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 100 r/m : imm8 

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 100 r/m : imm8 data

register1, register2 0100 0R0B 0000 1111 : 1010 0011 : 11 reg2 reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1010 0011 : 11 qwordreg2 
qwordreg1

memory, reg 0100 0RXB 0000 1111 : 1010 0011 : mod reg r/m

memory, qwordreg 0100 1RXB 0000 1111 : 1010 0011 : mod qwordreg r/m

BTC – Bit Test and Complement

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 111 reg: imm8 

qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 111 qwordreg: imm8 

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 111 r/m : imm8 

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 111 r/m : imm8 

register1, register2 0100 0R0B 0000 1111 : 1011 1011 : 11 reg2 reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1011 : 11 qwordreg2 
qwordreg1

memory, register 0100 0RXB 0000 1111 : 1011 1011 : mod reg r/m

memory, qwordreg 0100 1RXB 0000 1111 : 1011 1011 : mod qwordreg r/m

BTR – Bit Test and Reset

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 110 reg: imm8 

qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 110 qwordreg: imm8 

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 110 r/m : imm8 

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 110 r/m : imm8 

register1, register2 0100 0R0B 0000 1111 : 1011 0011 : 11 reg2 reg1
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qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 0011 : 11 qwordreg2 
qwordreg1

memory, register 0100 0RXB 0000 1111 : 1011 0011 : mod reg r/m

memory64, qwordreg 0100 1RXB 0000 1111 : 1011 0011 : mod qwordreg r/m

BTS – Bit Test and Set

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 101 reg: imm8

qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 101 qwordreg: imm8 

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 101 r/m : imm8

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 101 r/m : imm8 

register1, register2 0100 0R0B 0000 1111 : 1010 1011 : 11 reg2 reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1010 1011 : 11 qwordreg2 
qwordreg1

memory, register 0100 0RXB 0000 1111 : 1010 1011 : mod reg r/m

memory64, qwordreg 0100 1RXB 0000 1111 : 1010 1011 : mod qwordreg r/m

CALL – Call Procedure (in same segment)

direct 1110 1000 : displacement32

 register indirect 0100 WR00w 1111 1111 : 11 010 reg

memory indirect 0100 W0XBw 1111 1111 : mod 010 r/m

CALL – Call Procedure (in other segment)

indirect 1111 1111 : mod 011 r/m

indirect 0100 10XB 0100 1000 1111 1111 : mod 011 r/m

CBW – Convert Byte to Word 1001 1000

CDQ – Convert Doubleword to Qword+ 1001 1001

CDQE – RAX, Sign-Extend of EAX 0100 1000 1001 1001

CLC – Clear Carry Flag 1111 1000

CLD – Clear Direction Flag 1111 1100

CLI – Clear Interrupt Flag 1111 1010

CLTS – Clear Task-Switched Flag in CR0 0000 1111 : 0000 0110

CMC – Complement Carry Flag 1111 0101

CMP – Compare Two Operands

register1 with register2 0100 0R0B 0011 100w : 11 reg1 reg2

qwordregister1 with qwordregister2 0100 1R0B 0011 1001 : 11 qwordreg1 qwordreg2

register2 with register1 0100 0R0B 0011 101w : 11 reg1 reg2

qwordregister2 with qwordregister1 0100 1R0B 0011 101w : 11 qwordreg1 qwordreg2

memory with register 0100 0RXB 0011 100w : mod reg r/m

memory64 with qwordregister 0100 1RXB 0011 1001 : mod qwordreg r/m

register with memory 0100 0RXB 0011 101w : mod reg r/m

qwordregister with memory64 0100 1RXB 0011 101w1 : mod qwordreg r/m

immediate with register 0100 000B 1000 00sw : 11 111 reg : imm
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immediate32 with qwordregister 0100 100B 1000 0001 : 11 111 qwordreg : imm64

immediate with AL, AX, or EAX 0011 110w : imm

immediate32 with RAX 0100 1000 0011 1101 : imm32

immediate with memory 0100 00XB 1000 00sw : mod 111 r/m : imm

immediate32 with memory64 0100 1RXB 1000 0001 : mod 111 r/m : imm64

immediate8 with memory64 0100 1RXB 1000 0011 : mod 111 r/m : imm8

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ – Compare String Operands

compare string operands [ X at DS:(E)SI with Y at ES:(E)DI ] 1010 011w

qword at address RSI with qword at address RDI 0100 1000 1010 0111

CMPXCHG – Compare and Exchange 

register1, register2 0000 1111 : 1011 000w : 11 reg2 reg1

byteregister1, byteregister2 0100 000B 0000 1111 : 1011 0000 : 11 bytereg2 reg1

qwordregister1, qwordregister2 0100 100B 0000 1111 : 1011 0001 : 11 qwordreg2 reg1

memory, register 0000 1111 : 1011 000w : mod reg r/m

memory8, byteregister 0100 00XB 0000 1111 : 1011 0000 : mod bytereg r/m

memory64, qwordregister 0100 10XB 0000 1111 : 1011 0001 : mod qwordreg r/m

CPUID – CPU Identification 0000 1111 : 1010 0010

CQO – Sign-Extend RAX 0100 1000 1001 1001

CWD – Convert Word to Doubleword 1001 1001

CWDE – Convert Word to Doubleword 1001 1000

DEC – Decrement by 1

register 0100 000B 1111 111w : 11 001 reg

qwordregister 0100 100B 1111 1111 : 11 001 qwordreg

memory 0100 00XB 1111 111w : mod 001 r/m

memory64 0100 10XB 1111 1111 : mod 001 r/m

DIV – Unsigned Divide

AL, AX, or EAX by register 0100 000B 1111 011w : 11 110 reg

Divide RDX:RAX by qwordregister 0100 100B 1111 0111 : 11 110 qwordreg

AL, AX, or EAX by memory 0100 00XB 1111 011w : mod 110 r/m

Divide RDX:RAX by memory64 0100 10XB 1111 0111 : mod 110 r/m

ENTER – Make Stack Frame for High Level Procedure 1100 1000 : 16-bit displacement : 8-bit level (L)

HLT – Halt 1111 0100

IDIV – Signed Divide

AL, AX, or EAX by register 0100 000B 1111 011w : 11 111 reg

RDX:RAX by qwordregister 0100 100B 1111 0111 : 11 111 qwordreg

AL, AX, or EAX by memory 0100 00XB 1111 011w : mod 111 r/m

RDX:RAX by memory64 0100 10XB 1111 0111 : mod 111 r/m

IMUL – Signed Multiply
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AL, AX, or EAX with register 0100 000B 1111 011w : 11 101 reg

RDX:RAX := RAX with qwordregister 0100 100B 1111 0111 : 11 101 qwordreg

AL, AX, or EAX with memory 0100 00XB 1111 011w : mod 101 r/m

RDX:RAX := RAX with memory64 0100 10XB 1111 0111 : mod 101 r/m

register1 with register2 0000 1111 : 1010 1111 : 11 : reg1 reg2

qwordregister1 := qwordregister1 with qwordregister2 0100 1R0B 0000 1111 : 1010 1111 : 11 : qwordreg1 
qwordreg2

register with memory 0100 0RXB 0000 1111 : 1010 1111 : mod reg r/m

qwordregister := qwordregister with memory64 0100 1RXB 0000 1111 : 1010 1111 : mod qwordreg r/m

register1 with immediate to register2 0100 0R0B 0110 10s1 : 11 reg1 reg2 : imm

qwordregister1 := qwordregister2 with sign-extended 
immediate8

0100 1R0B 0110 1011 : 11 qwordreg1 qwordreg2 : imm8

qwordregister1 := qwordregister2 with immediate32 0100 1R0B 0110 1001 : 11 qwordreg1 qwordreg2 : imm32

memory with immediate to register 0100 0RXB 0110 10s1 : mod reg r/m : imm

qwordregister := memory64 with sign-extended immediate8 0100 1RXB 0110 1011 : mod qwordreg r/m : imm8

qwordregister := memory64 with immediate32 0100 1RXB 0110 1001 : mod qwordreg r/m : imm32

IN – Input From Port

fixed port 1110 010w : port number

variable port 1110 110w

INC – Increment by 1

reg 0100 000B 1111 111w : 11 000 reg

qwordreg 0100 100B 1111 1111 : 11 000 qwordreg

memory 0100 00XB 1111 111w : mod 000 r/m

memory64 0100 10XB 1111 1111 : mod 000 r/m

INS – Input from DX Port 0110 110w

INT n – Interrupt Type n 1100 1101 : type

INT – Single-Step Interrupt 3 1100 1100

INTO – Interrupt 4 on Overflow 1100 1110

INVD – Invalidate Cache 0000 1111 : 0000 1000

INVLPG – Invalidate TLB Entry 0000 1111 : 0000 0001 : mod 111 r/m

INVPCID – Invalidate Process-Context Identifier 0110 0110:0000 1111:0011 1000:1000 0010: mod reg r/m

IRETO – Interrupt Return 1100 1111

Jcc – Jump if Condition is Met

8-bit displacement 0111 tttn : 8-bit displacement

displacements (excluding 16-bit relative offsets) 0000 1111 : 1000 tttn : displacement32 

JCXZ/JECXZ – Jump on CX/ECX Zero

Address-size prefix differentiates JCXZ and JECXZ 1110 0011 : 8-bit displacement

JMP – Unconditional Jump (to same segment)

short 1110 1011 : 8-bit displacement
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direct 1110 1001 : displacement32

register indirect 0100 W00Bw : 1111 1111 : 11 100 reg

memory indirect 0100 W0XBw : 1111 1111 : mod 100 r/m

JMP – Unconditional Jump (to other segment)

indirect intersegment 0100 00XB : 1111 1111 : mod 101 r/m

64-bit indirect intersegment 0100 10XB : 1111 1111 : mod 101 r/m

LAR – Load Access Rights Byte

from register 0100 0R0B : 0000 1111 : 0000 0010 : 11 reg1 reg2

from dwordregister to qwordregister, masked by 00FxFF00H 0100 WR0B : 0000 1111 : 0000 0010 : 11 qwordreg1 
dwordreg2

from memory 0100 0RXB : 0000 1111 : 0000 0010 : mod reg r/m

from memory32 to qwordregister, masked by 00FxFF00H 0100 WRXB 0000 1111 : 0000 0010 : mod r/m

LEA – Load Effective Address

in wordregister/dwordregister 0100 0RXB : 1000 1101 : modA reg r/m

in qwordregister 0100 1RXB : 1000 1101 : modA qwordreg r/m

LEAVE – High Level Procedure Exit 1100 1001

LFS – Load Pointer to FS

FS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0100 : modA reg r/m

FS:r64 with far pointer from memory 0100 1RXB : 0000 1111 : 1011 0100 : modA qwordreg r/m

LGDT – Load Global Descriptor Table Register 0100 10XB : 0000 1111 : 0000 0001 : modA 010 r/m

LGS – Load Pointer to GS

GS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0101 : modA reg r/m

GS:r64 with far pointer from memory 0100 1RXB : 0000 1111 : 1011 0101 : modA qwordreg r/m

LIDT – Load Interrupt Descriptor Table Register 0100 10XB : 0000 1111 : 0000 0001 : modA 011 r/m

LLDT – Load Local Descriptor Table Register

LDTR from register 0100 000B : 0000 1111 : 0000 0000 : 11 010 reg

LDTR from memory 0100 00XB :0000 1111 : 0000 0000 : mod 010 r/m

LMSW – Load Machine Status Word

from register 0100 000B : 0000 1111 : 0000 0001 : 11 110 reg

from memory 0100 00XB :0000 1111 : 0000 0001 : mod 110 r/m

LOCK – Assert LOCK# Signal Prefix 1111 0000

LODS/LODSB/LODSW/LODSD/LODSQ – Load String Operand

at DS:(E)SI to AL/EAX/EAX 1010 110w

at (R)SI to RAX 0100 1000 1010 1101

LOOP – Loop Count

if count ≠ 0, 8-bit displacement 1110 0010 

if count ≠ 0, RIP + 8-bit displacement sign-extended to 64-bits 0100 1000 1110 0010 

LOOPE – Loop Count while Zero/Equal
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if count ≠ 0 & ZF =1, 8-bit displacement 1110 0001 

if count ≠ 0 & ZF = 1, RIP + 8-bit displacement sign-extended to 
64-bits

0100 1000 1110 0001 

LOOPNE/LOOPNZ – Loop Count while not Zero/Equal

if count ≠ 0 & ZF = 0, 8-bit displacement 1110 0000 

if count ≠ 0 & ZF = 0, RIP + 8-bit displacement sign-extended to 
64-bits

0100 1000 1110 0000 

LSL – Load Segment Limit

from register 0000 1111 : 0000 0011 : 11 reg1 reg2

from qwordregister 0100 1R00 0000 1111 : 0000 0011 : 11 qwordreg1 reg2

from memory16 0000 1111 : 0000 0011 : mod reg r/m

from memory64 0100 1RXB 0000 1111 : 0000 0011 : mod qwordreg r/m

LSS – Load Pointer to SS

SS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0010 : modA reg r/m

SS:r64 with far pointer from memory 0100 1WXB : 0000 1111 : 1011 0010 : modA qwordreg r/m

LTR – Load Task Register

from register 0100 0R00 : 0000 1111 : 0000 0000 : 11 011 reg

from memory 0100 00XB : 0000 1111 : 0000 0000 : mod 011 r/m

MOV – Move Data

register1 to register2 0100 0R0B : 1000 100w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 1000 1001 : 11 qwordeg1 qwordreg2

register2 to register1 0100 0R0B : 1000 101w : 11 reg1 reg2

qwordregister2 to qwordregister1 0100 1R0B 1000 1011 : 11 qwordreg1 qwordreg2

memory to reg 0100 0RXB : 1000 101w : mod reg r/m

memory64 to qwordregister 0100 1RXB 1000 1011 : mod qwordreg r/m

reg to memory 0100 0RXB : 1000 100w : mod reg r/m

qwordregister to memory64 0100 1RXB 1000 1001 : mod qwordreg r/m

immediate to register 0100 000B : 1100 011w : 11 000 reg : imm

immediate32 to qwordregister (zero extend) 0100 100B 1100 0111 : 11 000 qwordreg : imm32

immediate to register (alternate encoding) 0100 000B : 1011 w reg : imm

immediate64 to qwordregister (alternate encoding) 0100 100B 1011 1000 reg : imm64

immediate to memory 0100 00XB : 1100 011w : mod 000 r/m : imm

immediate32 to memory64 (zero extend) 0100 10XB 1100 0111 : mod 000 r/m : imm32

memory to AL, AX, or EAX 0100 0000 : 1010 000w : displacement

memory64 to RAX 0100 1000 1010 0001 : displacement64

AL, AX, or EAX to memory 0100 0000 : 1010 001w : displacement

RAX to memory64 0100 1000 1010 0011 : displacement64

MOV – Move to/from Control Registers

CR0-CR4 from register 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee reg (eee = CR#)
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CRx from qwordregister 0100 1R0B : 0000 1111 : 0010 0010 : 11 eee qwordreg (Reee 
= CR#)

register from CR0-CR4 0100 0R0B : 0000 1111 : 0010 0000 : 11 eee reg (eee = CR#)

qwordregister from CRx 0100 1R0B 0000 1111 : 0010 0000 : 11 eee qwordreg 

(Reee = CR#)

MOV – Move to/from Debug Registers

DR0-DR7 from register 0000 1111 : 0010 0011 : 11 eee reg (eee = DR#)

DR0-DR7 from quadregister 0100 10OB 0000 1111 : 0010 0011 : 11 eee reg (eee = DR#)

register from DR0-DR7 0000 1111 : 0010 0001 : 11 eee reg (eee = DR#)

quadregister from DR0-DR7 0100 10OB 0000 1111 : 0010 0001 : 11 eee quadreg (eee = 
DR#)

MOV – Move to/from Segment Registers

register to segment register 0100 W00Bw : 1000 1110 : 11 sreg reg

register to SS 0100 000B : 1000 1110 : 11 sreg reg

memory to segment register 0100 00XB : 1000 1110 : mod sreg r/m

memory64 to segment register (lower 16 bits) 0100 10XB 1000 1110 : mod sreg r/m

memory to SS 0100 00XB : 1000 1110 : mod sreg r/m

segment register to register 0100 000B : 1000 1100 : 11 sreg reg

segment register to qwordregister (zero extended) 0100 100B 1000 1100 : 11 sreg qwordreg

segment register to memory 0100 00XB : 1000 1100 : mod sreg r/m

segment register to memory64 (zero extended) 0100 10XB 1000 1100 : mod sreg3 r/m

MOVBE – Move data after swapping bytes

memory to register 0100 0RXB : 0000 1111 : 0011 1000:1111 0000 : mod reg r/m

memory64 to qwordregister 0100 1RXB : 0000 1111 : 0011 1000:1111 0000 : mod reg r/m

register to memory 0100 0RXB :0000 1111 : 0011 1000:1111 0001 : mod reg r/m

qwordregister to memory64 0100 1RXB :0000 1111 : 0011 1000:1111 0001 : mod reg r/m

MOVS/MOVSB/MOVSW/MOVSD/MOVSQ – Move Data from String to String

Move data from string to string 1010 010w

Move data from string to string (qword) 0100 1000 1010 0101

MOVSX/MOVSXD – Move with Sign-Extend

register2 to register1 0100 0R0B : 0000 1111 : 1011 111w : 11 reg1 reg2

byteregister2 to qwordregister1 (sign-extend) 0100 1R0B 0000 1111 : 1011 1110 : 11 quadreg1 bytereg2

wordregister2 to qwordregister1 0100 1R0B 0000 1111  : 1011 1111 : 11 quadreg1 wordreg2

dwordregister2 to qwordregister1 0100 1R0B 0110 0011 : 11 quadreg1 dwordreg2

memory to register 0100 0RXB : 0000 1111 : 1011 111w : mod reg r/m

memory8 to qwordregister (sign-extend) 0100 1RXB 0000 1111 : 1011 1110 : mod qwordreg r/m

memory16 to qwordregister 0100 1RXB 0000 1111 : 1011 1111 : mod qwordreg r/m

memory32 to qwordregister 0100 1RXB 0110 0011 : mod qwordreg r/m

MOVZX – Move with Zero-Extend
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register2 to register1 0100 0R0B : 0000 1111 : 1011 011w : 11 reg1 reg2

dwordregister2 to qwordregister1 0100 1R0B 0000 1111 : 1011 0111 : 11 qwordreg1 
dwordreg2

memory to register 0100 0RXB : 0000 1111 : 1011 011w : mod reg r/m

memory32 to qwordregister 0100 1RXB 0000 1111 : 1011 0111 : mod qwordreg r/m

MUL – Unsigned Multiply

AL, AX, or EAX with register 0100 000B : 1111 011w : 11 100 reg

RAX with qwordregister (to RDX:RAX) 0100 100B 1111 0111 : 11 100 qwordreg

AL, AX, or EAX with memory 0100 00XB 1111 011w : mod 100 r/m

RAX with memory64 (to RDX:RAX) 0100 10XB 1111 0111 : mod 100 r/m

NEG – Two's Complement Negation

register 0100 000B : 1111 011w : 11 011 reg

qwordregister 0100 100B 1111 0111 : 11 011 qwordreg

memory 0100 00XB : 1111 011w : mod 011 r/m

memory64 0100 10XB 1111 0111 : mod 011 r/m

NOP – No Operation 1001 0000

NOT – One's Complement Negation

register 0100 000B : 1111 011w : 11 010 reg

qwordregister 0100 000B 1111 0111 : 11 010 qwordreg

memory 0100 00XB : 1111 011w : mod 010 r/m

memory64 0100 1RXB 1111 0111 : mod 010 r/m

OR – Logical Inclusive OR

register1 to register2 0000 100w : 11 reg1 reg2

byteregister1 to byteregister2 0100 0R0B 0000 1000 : 11 bytereg1 bytereg2

qwordregister1 to qwordregister2 0100 1R0B 0000 1001 : 11 qwordreg1 qwordreg2

register2 to register1 0000 101w : 11 reg1 reg2 

byteregister2 to byteregister1 0100 0R0B 0000 1010 : 11 bytereg1 bytereg2 

qwordregister2 to qwordregister1 0100 0R0B 0000 1011 : 11 qwordreg1 qwordreg2 

memory to register 0000 101w : mod reg r/m

memory8 to byteregister 0100 0RXB 0000 1010 : mod bytereg r/m

memory8 to qwordregister 0100 0RXB 0000 1011 : mod qwordreg r/m

register to memory 0000 100w : mod reg r/m

byteregister to memory8 0100 0RXB 0000 1000 : mod bytereg r/m

qwordregister to memory64 0100 1RXB 0000 1001 : mod qwordreg r/m

immediate to register 1000 00sw : 11 001 reg : imm

immediate8 to byteregister 0100 000B 1000 0000 : 11 001 bytereg : imm8

immediate32 to qwordregister 0100 000B 1000 0001 : 11 001 qwordreg : imm32

immediate8 to qwordregister 0100 000B 1000 0011 : 11 001 qwordreg : imm8

immediate to AL, AX, or EAX 0000 110w : imm
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immediate64 to RAX 0100 1000 0000 1101 : imm64

immediate to memory 1000 00sw : mod 001 r/m : imm

immediate8 to memory8 0100 00XB 1000 0000 : mod 001 r/m : imm8

immediate32 to memory64 0100 00XB 1000 0001 : mod 001 r/m : imm32

immediate8 to memory64 0100 00XB 1000 0011 : mod 001 r/m : imm8

OUT – Output to Port

fixed port 1110 011w : port number

variable port 1110 111w

OUTS – Output to DX Port

output to DX Port 0110 111w

POP – Pop a Value from the Stack

wordregister 0101 0101 : 0100 000B : 1000 1111 : 11 000 reg16

qwordregister 0100 W00BS : 1000 1111 : 11 000 reg64

wordregister (alternate encoding) 0101 0101 : 0100 000B : 0101 1 reg16

qwordregister (alternate encoding) 0100 W00B : 0101 1 reg64

memory64 0100 W0XBS : 1000 1111 : mod 000 r/m

memory16 0101 0101 : 0100 00XB 1000 1111 : mod 000 r/m

POP – Pop a Segment Register from the Stack
(Note: CS cannot be sreg2 in this usage.)

segment register  FS, GS 0000 1111: 10 sreg3 001

POPF/POPFQ – Pop Stack into FLAGS/RFLAGS Register

pop stack to FLAGS register 0101 0101 : 1001 1101

pop Stack to RFLAGS register 0100 1000 1001 1101

PUSH – Push Operand onto the Stack

wordregister 0101 0101 : 0100 000B : 1111 1111 : 11 110 reg16

qwordregister 0100 W00BS : 1111 1111 : 11 110 reg64

wordregister (alternate encoding) 0101 0101 : 0100 000B : 0101 0 reg16

qwordregister (alternate encoding) 0100 W00BS : 0101 0 reg64

memory16 0101 0101 : 0100 000B : 1111 1111 : mod 110 r/m

memory64 0100 W00BS : 1111 1111 : mod 110 r/m

immediate8 0110 1010 : imm8

immediate16 0101 0101 : 0110 1000 : imm16

immediate64 0110 1000 : imm64

PUSH – Push Segment Register onto the Stack

segment register FS,GS 0000 1111: 10 sreg3 000

PUSHF/PUSHFD – Push Flags Register onto the Stack 1001 1100

RCL – Rotate thru Carry Left

register by 1 0100 000B : 1101 000w : 11 010 reg

qwordregister by 1 0100 100B 1101 0001 : 11 010 qwordreg
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memory by 1 0100 00XB : 1101 000w : mod 010 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 010 r/m

register by CL 0100 000B : 1101 001w : 11 010 reg

qwordregister by CL 0100 100B 1101 0011 : 11 010 qwordreg

memory by CL 0100 00XB : 1101 001w : mod 010 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 010 r/m

register by immediate count 0100 000B : 1100 000w : 11 010 reg : imm 

qwordregister by immediate count 0100 100B 1100 0001 : 11 010 qwordreg : imm8

memory by immediate count 0100 00XB : 1100 000w : mod 010 r/m : imm 

memory64 by immediate count 0100 10XB 1100 0001 : mod 010 r/m : imm8

RCR – Rotate thru Carry Right

register by 1 0100 000B : 1101 000w : 11 011 reg

qwordregister by 1 0100 100B 1101 0001 : 11 011 qwordreg

memory by 1 0100 00XB : 1101 000w : mod 011 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 011 r/m

register by CL 0100 000B : 1101 001w : 11 011 reg

qwordregister by CL 0100 000B 1101 0010 : 11 011 qwordreg

memory by CL 0100 00XB : 1101 001w : mod 011 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 011 r/m

register by immediate count 0100 000B : 1100 000w : 11 011 reg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 011 qwordreg : imm8

memory by immediate count 0100 00XB : 1100 000w : mod 011 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 011 r/m : imm8

RDMSR – Read from Model-Specific Register

load ECX-specified register into EDX:EAX 0000 1111 : 0011 0010

RDPMC – Read Performance Monitoring Counters

load ECX-specified performance counter into EDX:EAX 0000 1111 : 0011 0011

RDTSC – Read Time-Stamp Counter

read time-stamp counter into EDX:EAX 0000 1111 : 0011 0001

RDTSCP – Read Time-Stamp Counter and Processor ID 0000 1111 : 0000 0001: 1111 1001

REP INS – Input String

REP LODS – Load String

REP MOVS – Move String

REP OUTS – Output String

REP STOS – Store String

REPE CMPS – Compare String

REPE SCAS – Scan String

REPNE CMPS – Compare String
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REPNE SCAS – Scan String

RET – Return from Procedure (to same segment)

no argument 1100 0011

adding immediate to SP 1100 0010 : 16-bit displacement

RET – Return from Procedure (to other segment)

intersegment 1100 1011

adding immediate to SP 1100 1010 : 16-bit displacement

ROL – Rotate Left

register by 1 0100 000B 1101 000w : 11 000 reg

byteregister by 1 0100 000B 1101 0000 : 11 000 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 000 qwordreg

memory by 1 0100 00XB 1101 000w : mod 000 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 000 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 000 r/m

register by CL 0100 000B 1101 001w : 11 000 reg

byteregister by CL 0100 000B 1101 0010 : 11 000 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 000 qwordreg

memory by CL 0100 00XB 1101 001w : mod 000 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 000 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 000 r/m

register by immediate count 1100 000w : 11 000 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 000 bytereg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 000 bytereg : imm8

memory by immediate count 1100 000w : mod 000 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 000 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 000 r/m : imm8

ROR – Rotate Right

register by 1 0100 000B 1101 000w : 11 001 reg

byteregister by 1 0100 000B 1101 0000 : 11 001 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 001 qwordreg

memory by 1 0100 00XB 1101 000w : mod 001 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 001 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 001 r/m

register by CL 0100 000B 1101 001w : 11 001 reg

byteregister by CL 0100 000B 1101 0010 : 11 001 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 001 qwordreg

memory by CL 0100 00XB 1101 001w : mod 001 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 001 r/m
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memory64 by CL 0100 10XB 1101 0011 : mod 001 r/m

register by immediate count 0100 000B 1100 000w : 11 001 reg : imm8 

byteregister by immediate count 0100 000B 1100 0000 : 11 001 reg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 001 qwordreg : imm8

memory by immediate count 0100 00XB 1100 000w : mod 001 r/m : imm8 

memory8 by immediate count 0100 00XB 1100 0000 : mod 001 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 001 r/m : imm8

RSM – Resume from System Management Mode 0000 1111 : 1010 1010

SAL – Shift Arithmetic Left same instruction as SHL

SAR – Shift Arithmetic Right

register by 1 0100 000B 1101 000w : 11 111 reg

byteregister by 1 0100 000B 1101 0000 : 11 111 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 111 qwordreg

memory by 1 0100 00XB 1101 000w : mod 111 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 111 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 111 r/m

register by CL 0100 000B 1101 001w : 11 111 reg

byteregister by CL 0100 000B 1101 0010 : 11 111 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 111 qwordreg

memory by CL 0100 00XB 1101 001w : mod 111 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 111 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 111 r/m

register by immediate count 0100 000B 1100 000w : 11 111 reg : imm8 

byteregister by immediate count 0100 000B 1100 0000 : 11 111 bytereg : imm8 

qwordregister by immediate count 0100 100B 1100 0001 : 11 111 qwordreg : imm8 

memory by immediate count 0100 00XB 1100 000w : mod 111 r/m : imm8 

memory8 by immediate count 0100 00XB 1100 0000 : mod 111 r/m : imm8 

memory64 by immediate count 0100 10XB 1100 0001 : mod 111 r/m : imm8 

SBB – Integer Subtraction with Borrow

register1 to register2 0100 0R0B 0001 100w : 11 reg1 reg2

byteregister1 to byteregister2 0100 0R0B 0001 1000 : 11 bytereg1 bytereg2

quadregister1 to quadregister2 0100 1R0B 0001 1001 : 11 quadreg1 quadreg2

register2 to register1 0100 0R0B 0001 101w : 11 reg1 reg2 

byteregister2 to byteregister1 0100 0R0B 0001 1010 : 11 reg1 bytereg2 

byteregister2 to byteregister1 0100 1R0B 0001 1011 : 11 reg1 bytereg2 

memory to register 0100 0RXB 0001 101w : mod reg r/m

memory8 to byteregister 0100 0RXB 0001 1010 : mod bytereg r/m

memory64 to byteregister 0100 1RXB 0001 1011 : mod quadreg r/m
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register to memory 0100 0RXB 0001 100w : mod reg r/m

byteregister to memory8 0100 0RXB 0001 1000 : mod reg r/m

quadregister to memory64 0100 1RXB 0001 1001 : mod reg r/m

immediate to register 0100 000B 1000 00sw : 11 011 reg : imm

immediate8 to byteregister 0100 000B 1000 0000 : 11 011 bytereg : imm8

immediate32 to qwordregister 0100 100B 1000 0001 : 11 011 qwordreg : imm32

immediate8 to qwordregister 0100 100B 1000 0011 : 11 011 qwordreg : imm8

immediate to AL, AX, or EAX 0100 000B 0001 110w : imm

immediate32 to RAL 0100 1000 0001 1101 : imm32

immediate to memory 0100 00XB 1000 00sw : mod 011 r/m : imm

immediate8 to memory8 0100 00XB 1000 0000 : mod 011 r/m : imm8

immediate32 to memory64 0100 10XB 1000 0001 : mod 011 r/m : imm32

immediate8 to memory64 0100 10XB 1000 0011 : mod 011 r/m : imm8

SCAS/SCASB/SCASW/SCASD – Scan String

scan string 1010 111w

scan string (compare AL with byte at RDI) 0100 1000 1010 1110

scan string (compare RAX with qword at RDI) 0100 1000 1010 1111

SETcc – Byte Set on Condition

register 0100 000B 0000 1111 : 1001 tttn : 11 000 reg

register 0100 0000 0000 1111 : 1001 tttn : 11 000 reg

memory 0100 00XB 0000 1111 : 1001 tttn : mod 000 r/m

memory 0100 0000 0000 1111 : 1001 tttn : mod 000 r/m

SGDT – Store Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 000 r/m

SHL – Shift Left

register by 1 0100 000B 1101 000w : 11 100 reg

byteregister by 1 0100 000B 1101 0000 : 11 100 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 100 qwordreg

memory by 1 0100 00XB 1101 000w : mod 100 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 100 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 100 r/m

register by CL 0100 000B 1101 001w : 11 100 reg

byteregister by CL 0100 000B 1101 0010 : 11 100 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 100 qwordreg

memory by CL 0100 00XB 1101 001w : mod 100 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 100 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 100 r/m

register by immediate count 0100 000B 1100 000w : 11 100 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 100 bytereg : imm8
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quadregister by immediate count 0100 100B 1100 0001 : 11 100 quadreg : imm8

memory by immediate count 0100 00XB 1100 000w : mod 100 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 100 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 100 r/m : imm8

SHLD – Double Precision Shift Left

register by immediate count 0100 0R0B 0000 1111 : 1010 0100 : 11 reg2 reg1 : imm8

qwordregister by immediate8 0100 1R0B 0000 1111 : 1010 0100 : 11 qworddreg2 
qwordreg1 : imm8

memory by immediate count 0100 0RXB 0000 1111 : 1010 0100 : mod reg r/m : imm8

memory64 by immediate8 0100 1RXB 0000 1111 : 1010 0100 : mod qwordreg r/m : 
imm8

register by CL 0100 0R0B 0000 1111 : 1010 0101 : 11 reg2 reg1

quadregister by CL 0100 1R0B 0000 1111 : 1010 0101 : 11 quadreg2 quadreg1

memory by CL 0100 00XB 0000 1111 : 1010 0101 : mod reg r/m

memory64 by CL 0100 1RXB 0000 1111 : 1010 0101 : mod quadreg r/m

SHR – Shift Right

register by 1 0100 000B 1101 000w : 11 101 reg

byteregister by 1 0100 000B 1101 0000 : 11 101 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 101 qwordreg

memory by 1 0100 00XB 1101 000w : mod 101 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 101 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 101 r/m

register by CL 0100 000B 1101 001w : 11 101 reg

byteregister by CL 0100 000B 1101 0010 : 11 101 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 101 qwordreg

memory by CL 0100 00XB 1101 001w : mod 101 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 101 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 101 r/m

register by immediate count 0100 000B 1100 000w : 11 101 reg : imm8 

byteregister by immediate count 0100 000B 1100 0000 : 11 101 reg : imm8 

qwordregister by immediate count 0100 100B 1100 0001 : 11 101 reg : imm8 

memory by immediate count 0100 00XB 1100 000w : mod 101 r/m : imm8 

memory8 by immediate count 0100 00XB 1100 0000 : mod 101 r/m : imm8 

memory64 by immediate count 0100 10XB 1100 0001 : mod 101 r/m : imm8 

SHRD – Double Precision Shift Right

register by immediate count 0100 0R0B 0000 1111 : 1010 1100 : 11 reg2 reg1 : imm8

qwordregister by immediate8 0100 1R0B 0000 1111 : 1010 1100 : 11 qwordreg2 
qwordreg1 : imm8

memory by immediate count 0100 00XB 0000 1111 : 1010 1100 : mod reg r/m : imm8
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memory64 by immediate8 0100 1RXB 0000 1111 : 1010 1100 : mod qwordreg r/m : 
imm8

register by CL 0100 000B 0000 1111 : 1010 1101 : 11 reg2 reg1

qwordregister by CL 0100 1R0B 0000 1111 : 1010 1101 : 11 qwordreg2 
qwordreg1

memory by CL 0000 1111 : 1010 1101 : mod reg r/m

memory64 by CL 0100 1RXB 0000 1111 : 1010 1101 : mod qwordreg r/m

SIDT – Store Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : modA 001 r/m

SLDT – Store Local Descriptor Table Register

to register 0100 000B 0000 1111 : 0000 0000 : 11 000 reg

to memory 0100 00XB 0000 1111 : 0000 0000 : mod 000 r/m

SMSW – Store Machine Status Word

to register 0100 000B 0000 1111 : 0000 0001 : 11 100 reg

to memory 0100 00XB 0000 1111 : 0000 0001 : mod 100 r/m

STC – Set Carry Flag 1111 1001

STD – Set Direction Flag 1111 1101

STI – Set Interrupt Flag 1111 1011

STOS/STOSB/STOSW/STOSD/STOSQ – Store String Data

store string data 1010 101w

store string data (RAX at address RDI) 0100 1000 1010 1011

STR – Store Task Register

to register 0100 000B 0000 1111 : 0000 0000 : 11 001 reg

to memory 0100 00XB 0000 1111 : 0000 0000 : mod 001 r/m

SUB – Integer Subtraction

register1 from register2 0100 0R0B 0010 100w : 11 reg1 reg2

byteregister1 from byteregister2 0100 0R0B 0010 1000 : 11 bytereg1 bytereg2

qwordregister1 from qwordregister2 0100 1R0B 0010 1000 : 11 qwordreg1 qwordreg2

register2 from register1 0100 0R0B 0010 101w : 11 reg1 reg2 

byteregister2 from byteregister1 0100 0R0B 0010 1010 : 11 bytereg1 bytereg2 

qwordregister2 from qwordregister1 0100 1R0B 0010 1011 : 11 qwordreg1 qwordreg2 

memory from register 0100 00XB 0010 101w : mod reg r/m

memory8 from byteregister 0100 0RXB 0010 1010 : mod bytereg r/m

memory64 from qwordregister 0100 1RXB 0010 1011 : mod qwordreg r/m

register from memory 0100 0RXB 0010 100w : mod reg r/m

byteregister from memory8 0100 0RXB 0010 1000 : mod bytereg r/m

qwordregister from memory8 0100 1RXB 0010 1000 : mod qwordreg r/m

immediate from register 0100 000B 1000 00sw : 11 101 reg : imm

immediate8 from byteregister 0100 000B 1000 0000 : 11 101 bytereg : imm8

immediate32 from qwordregister 0100 100B 1000 0001 : 11 101 qwordreg : imm32

Table B-15.  General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)
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immediate8 from qwordregister 0100 100B 1000 0011 : 11 101 qwordreg : imm8

immediate from AL, AX, or EAX 0100 000B 0010 110w : imm

immediate32 from RAX 0100 1000 0010 1101 : imm32

immediate from memory 0100 00XB 1000 00sw : mod 101 r/m : imm

immediate8 from memory8 0100 00XB 1000 0000 : mod 101 r/m : imm8

immediate32 from memory64 0100 10XB 1000 0001 : mod 101 r/m : imm32

immediate8 from memory64 0100 10XB 1000 0011 : mod 101 r/m : imm8

SWAPGS – Swap GS Base Register

Exchanges the current GS base register value for value in MSR 
C0000102H

0000 1111 0000 0001 1111 1000

SYSCALL – Fast System Call

fast call to privilege level 0 system procedures 0000 1111 0000 0101

SYSRET – Return From Fast System Call

return from fast system call 0000 1111 0000 0111

TEST – Logical Compare

register1 and register2 0100 0R0B 1000 010w : 11 reg1 reg2

byteregister1 and byteregister2 0100 0R0B 1000 0100 : 11 bytereg1 bytereg2

qwordregister1 and qwordregister2 0100 1R0B 1000 0101 : 11 qwordreg1 qwordreg2

memory and register 0100 0R0B 1000 010w : mod reg r/m

memory8 and byteregister 0100 0RXB 1000 0100 : mod bytereg r/m

memory64 and qwordregister 0100 1RXB 1000 0101 : mod qwordreg r/m

immediate and register 0100 000B 1111 011w : 11 000 reg : imm

immediate8 and byteregister 0100 000B 1111 0110 : 11 000 bytereg : imm8

immediate32 and qwordregister 0100 100B 1111 0111 : 11 000 bytereg : imm8

immediate and AL, AX, or EAX 0100 000B 1010 100w : imm

immediate32 and RAX 0100 1000 1010 1001 : imm32

immediate and memory 0100 00XB 1111 011w : mod 000 r/m : imm

immediate8 and memory8 0100 1000 1111 0110 : mod 000 r/m : imm8

immediate32 and memory64 0100 1000 1111 0111 : mod 000 r/m : imm32

UD2 – Undefined instruction 0000 FFFF : 0000 1011

VERR – Verify a Segment for Reading 

register 0100 000B 0000 1111 : 0000 0000 : 11 100 reg

memory 0100 00XB 0000 1111 : 0000 0000 : mod 100 r/m

VERW – Verify a Segment for Writing

register 0100 000B 0000 1111 : 0000 0000 : 11 101 reg

memory 0100 00XB 0000 1111 : 0000 0000 : mod 101 r/m

WAIT – Wait 1001 1011

WBINVD – Writeback and Invalidate Data Cache 0000 1111 : 0000 1001

Table B-15.  General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)
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WRMSR – Write to Model-Specific Register

write EDX:EAX to ECX specified MSR 0000 1111 : 0011 0000

write RDX[31:0]:RAX[31:0] to RCX specified MSR 0100 1000 0000 1111 : 0011 0000

XADD – Exchange and Add

register1, register2 0100 0R0B 0000 1111 : 1100 000w : 11 reg2 reg1

byteregister1, byteregister2 0100 0R0B 0000 1111 : 1100 0000 : 11 bytereg2 bytereg1

qwordregister1, qwordregister2 0100 0R0B 0000 1111 : 1100 0001 : 11 qwordreg2 
qwordreg1

memory, register 0100 0RXB 0000 1111 : 1100 000w : mod reg r/m

memory8, bytereg 0100 1RXB 0000 1111 : 1100 0000 : mod bytereg r/m

memory64, qwordreg 0100 1RXB 0000 1111 : 1100 0001 : mod qwordreg r/m

XCHG – Exchange Register/Memory with Register

register1 with register2 1000 011w : 11 reg1 reg2

AX or EAX with register 1001 0 reg

memory with register 1000 011w : mod reg r/m

XLAT/XLATB – Table Look-up Translation

AL to byte DS:[(E)BX + unsigned AL] 1101 0111

AL to byte DS:[RBX + unsigned AL] 0100 1000 1101 0111

XOR – Logical Exclusive OR

register1 to register2 0100 0RXB 0011 000w : 11 reg1 reg2

byteregister1 to byteregister2 0100 0R0B 0011 0000 : 11 bytereg1 bytereg2

qwordregister1 to qwordregister2 0100 1R0B 0011 0001 : 11 qwordreg1 qwordreg2

register2 to register1 0100 0R0B 0011 001w : 11 reg1 reg2 

byteregister2 to byteregister1 0100 0R0B 0011 0010 : 11 bytereg1 bytereg2 

qwordregister2 to qwordregister1 0100 1R0B 0011 0011 : 11 qwordreg1 qwordreg2 

memory to register 0100 0RXB 0011 001w : mod reg r/m

memory8 to byteregister 0100 0RXB 0011 0010 : mod bytereg r/m

memory64 to qwordregister 0100 1RXB 0011 0011 : mod qwordreg r/m

register to memory 0100 0RXB 0011 000w : mod reg r/m

byteregister to memory8 0100 0RXB 0011 0000 : mod bytereg r/m

qwordregister to memory8 0100 1RXB 0011 0001 : mod qwordreg r/m

immediate to register 0100 000B 1000 00sw : 11 110 reg : imm

immediate8 to byteregister 0100 000B 1000 0000 : 11 110 bytereg : imm8

immediate32 to qwordregister 0100 100B 1000 0001 : 11 110 qwordreg : imm32

immediate8 to qwordregister 0100 100B 1000 0011 : 11 110 qwordreg : imm8

immediate to AL, AX, or EAX 0100 000B 0011 010w : imm

immediate to RAX 0100 1000 0011 0101 : immediate data

immediate to memory 0100 00XB 1000 00sw : mod 110 r/m : imm

immediate8 to memory8 0100 00XB 1000 0000 : mod 110 r/m : imm8

Table B-15.  General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)
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B.3 PENTIUM® PROCESSOR FAMILY INSTRUCTION FORMATS AND ENCODINGS
The following table shows formats and encodings introduced by the Pentium processor family.

B.4 64-BIT MODE INSTRUCTION ENCODINGS FOR SIMD INSTRUCTION 
EXTENSIONS

Non-64-bit mode instruction encodings for MMX Technology, SSE, SSE2, and SSE3 are covered by applying these 
rules to Table B-19 through Table B-31. Table B-34 lists special encodings (instructions that do not follow the rules 
below).

1. The REX instruction has no effect:

• On immediates.

• If both operands are MMX registers.

• On MMX registers and XMM registers.

• If an MMX register is encoded in the reg field of the ModR/M byte.

immediate32 to memory64 0100 10XB 1000 0001 : mod 110 r/m : imm32

immediate8 to memory64 0100 10XB 1000 0011 : mod 110 r/m : imm8

Prefix Bytes

address size 0110 0111

LOCK 1111 0000

operand size 0110 0110

CS segment override 0010 1110

DS segment override 0011 1110

ES segment override 0010 0110

FS segment override 0110 0100

GS segment override 0110 0101

SS segment override 0011 0110

Table B-16.  Pentium® Processor Family Instruction Formats and Encodings, Non-64-Bit Modes

Instruction and Format Encoding

CMPXCHG8B – Compare and Exchange 8 Bytes 

EDX:EAX with memory64 0000 1111 : 1100 0111 : mod 001 r/m

Table B-17.  Pentium® Processor Family Instruction Formats and Encodings, 64-Bit Mode

Instruction and Format Encoding

CMPXCHG8B/CMPXCHG16B – Compare and Exchange Bytes 

EDX:EAX with memory64 0000 1111 : 1100 0111 : mod 001 r/m

RDX:RAX with memory128 0100 10XB 0000 1111 : 1100 0111 : mod 001 r/m

Table B-15.  General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)
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2. If a memory operand is encoded in the r/m field of the ModR/M byte, REX.X and REX.B may be used for 
encoding the memory operand.

3. If a general-purpose register is encoded in the r/m field of the ModR/M byte, REX.B may be used for register 
encoding and REX.W may be used to encode the 64-bit operand size.

4. If an XMM register operand is encoded in the reg field of the ModR/M byte, REX.R may be used for register 
encoding. If an XMM register operand is encoded in the r/m field of the ModR/M byte, REX.B may be used for 
register encoding.

B.5 MMX INSTRUCTION FORMATS AND ENCODINGS
MMX instructions, except the EMMS instruction, use a format similar to the 2-byte Intel Architecture integer format. 
Details of subfield encodings within these formats are presented below.

B.5.1  Granularity Field (gg)
The granularity field (gg) indicates the size of the packed operands that the instruction is operating on. When this 
field is used, it is located in bits 1 and 0 of the second opcode byte. Table B-18 shows the encoding of the gg field.

B.5.2  MMX Technology and General-Purpose Register Fields (mmxreg and reg)
When MMX technology registers (mmxreg) are used as operands, they are encoded in the ModR/M byte in the reg 
field (bits 5, 4, and 3) and/or the R/M field (bits 2, 1, and 0).

If an MMX instruction operates on a general-purpose register (reg), the register is encoded in the R/M field of the 
ModR/M byte.

B.5.3  MMX Instruction Formats and Encodings Table
Table B-19 shows the formats and encodings of the integer instructions.

Table B-18.  Encoding of Granularity of Data Field (gg)

gg Granularity of Data

00 Packed Bytes

01 Packed Words

10 Packed Doublewords

11 Quadword

Table B-19.  MMX Instruction Formats and Encodings

Instruction and Format Encoding

EMMS – Empty MMX technology state 0000 1111:01110111

MOVD – Move doubleword

reg to mmxreg 0000 1111:0110 1110: 11 mmxreg reg

reg from mmxreg 0000 1111:0111 1110: 11 mmxreg reg

mem to mmxreg 0000 1111:0110 1110: mod mmxreg r/m

mem from mmxreg 0000 1111:0111 1110: mod mmxreg r/m

MOVQ – Move quadword

mmxreg2 to mmxreg1 0000 1111:0110 1111: 11 mmxreg1 mmxreg2

mmxreg2 from mmxreg1 0000 1111:0111 1111: 11 mmxreg1 mmxreg2
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mem to mmxreg 0000 1111:0110 1111: mod mmxreg r/m

mem from mmxreg 0000 1111:0111 1111: mod mmxreg r/m

PACKSSDW1 – Pack dword to word data (signed with saturation)

mmxreg2 to mmxreg1 0000 1111:0110 1011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 1011: mod mmxreg r/m

PACKSSWB1 – Pack word to byte data (signed with saturation)

mmxreg2 to mmxreg1 0000 1111:0110 0011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 0011: mod mmxreg r/m

PACKUSWB1 – Pack word to byte data (unsigned with saturation)

mmxreg2 to mmxreg1 0000 1111:0110 0111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 0111: mod mmxreg r/m

PADD – Add with wrap-around

mmxreg2 to mmxreg1 0000 1111: 1111 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 1111 11gg: mod mmxreg r/m

PADDS – Add signed with saturation

mmxreg2 to mmxreg1 0000 1111: 1110 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 1110 11gg: mod mmxreg r/m

PADDUS – Add unsigned with saturation

mmxreg2 to mmxreg1 0000 1111: 1101 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 1101 11gg: mod mmxreg r/m

PAND – Bitwise And

mmxreg2 to mmxreg1 0000 1111:1101 1011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1101 1011: mod mmxreg r/m

PANDN – Bitwise AndNot

mmxreg2 to mmxreg1 0000 1111:1101 1111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1101 1111: mod mmxreg r/m

PCMPEQ – Packed compare for equality

 mmxreg1 with mmxreg2 0000 1111:0111 01gg: 11 mmxreg1 mmxreg2

  mmxreg with memory 0000 1111:0111 01gg: mod mmxreg r/m

PCMPGT – Packed compare greater (signed)

mmxreg1 with mmxreg2 0000 1111:0110 01gg: 11 mmxreg1 mmxreg2

mmxreg with memory 0000 1111:0110 01gg: mod mmxreg r/m

PMADDWD – Packed multiply add

mmxreg2 to mmxreg1 0000 1111:1111 0101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1111 0101: mod mmxreg r/m

PMULHUW – Packed multiplication, store high word (unsigned)

   mmxreg2 to mmxreg1 0000 1111: 1110 0100: 11 mmxreg1 mmxreg2

   memory to mmxreg 0000 1111: 1110 0100: mod mmxreg r/m

Table B-19.  MMX Instruction Formats and Encodings (Contd.)
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PMULHW – Packed multiplication, store high word

mmxreg2 to mmxreg1 0000 1111:1110 0101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1110 0101: mod mmxreg r/m

PMULLW – Packed multiplication, store low word

mmxreg2 to mmxreg1 0000 1111:1101 0101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1101 0101: mod mmxreg r/m

POR – Bitwise Or

mmxreg2 to mmxreg1 0000 1111:1110 1011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1110 1011: mod mmxreg r/m

PSLL2 – Packed shift left logical

mmxreg1 by mmxreg2 0000 1111:1111 00gg: 11 mmxreg1 mmxreg2

mmxreg by memory 0000 1111:1111 00gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:0111 00gg: 11 110 mmxreg: imm8 data

PSRA2 – Packed shift right arithmetic

mmxreg1 by mmxreg2 0000 1111:1110 00gg: 11 mmxreg1 mmxreg2

mmxreg by memory 0000 1111:1110 00gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:0111 00gg: 11 100 mmxreg: imm8 data

PSRL2 – Packed shift right logical

mmxreg1 by mmxreg2 0000 1111:1101 00gg: 11 mmxreg1 mmxreg2

   mmxreg by memory 0000 1111:1101 00gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:0111 00gg: 11 010 mmxreg: imm8 data

PSUB – Subtract with wrap-around

mmxreg2 from mmxreg1 0000 1111:1111 10gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:1111 10gg: mod mmxreg r/m

PSUBS – Subtract signed with saturation

mmxreg2 from mmxreg1 0000 1111:1110 10gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:1110 10gg: mod mmxreg r/m

PSUBUS – Subtract unsigned with saturation

mmxreg2 from mmxreg1 0000 1111:1101 10gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:1101 10gg: mod mmxreg r/m

PUNPCKH – Unpack high data to next larger type

mmxreg2 to mmxreg1 0000 1111:0110 10gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 10gg: mod mmxreg r/m

PUNPCKL – Unpack low data to next larger type

mmxreg2 to mmxreg1 0000 1111:0110 00gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 00gg: mod mmxreg r/m

Table B-19.  MMX Instruction Formats and Encodings (Contd.)
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B.6 PROCESSOR EXTENDED STATE INSTRUCTION FORMATS AND ENCODINGS
Table B-20 shows the formats and encodings for several instructions that relate to processor extended state 
management.

  

B.7 P6 FAMILY INSTRUCTION FORMATS AND ENCODINGS 
Table B-20 shows the formats and encodings for several instructions that were introduced into the IA-32 architec-
ture in the P6 family processors.

  

PXOR – Bitwise Xor

mmxreg2 to mmxreg1 0000 1111:1110 1111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1110 1111: mod mmxreg r/m

NOTES:
1. The pack instructions perform saturation from signed packed data of one type to signed or unsigned data of the next smaller type.
2. The format of the shift instructions has one additional format to support shifting by immediate shift-counts. The shift operations 

are not supported equally for all data types.

Table B-20.  Formats and Encodings of XSAVE/XRSTOR/XGETBV/XSETBV Instructions

Instruction and Format Encoding

XGETBV – Get Value of Extended Control Register 0000 1111:0000 0001: 1101 0000

XRSTOR – Restore Processor Extended States1 0000 1111:1010 1110: modA 101 r/m

XSAVE – Save Processor Extended States1 0000 1111:1010 1110: modA 100 r/m

XSETBV – Set Extended Control Register 0000 1111:0000 0001: 1101 0001

NOTES:
1.   For XSAVE and XRSTOR, “mod = 11” is reserved.

Table B-21.  Formats and Encodings of P6 Family Instructions 

Instruction and Format Encoding

CMOVcc – Conditional Move

register2 to  register1 0000 1111: 0100 tttn : 11 reg1 reg2

memory to register  0000 1111 : 0100 tttn : mod reg r/m

FCMOVcc – Conditional Move on EFLAG Register Condition Codes

move if below (B) 11011 010 : 11 000 ST(i)

move if equal (E) 11011 010 : 11 001 ST(i)

move if below or equal (BE) 11011 010 : 11 010 ST(i)

move if unordered (U) 11011 010 : 11 011 ST(i)

move if not below (NB) 11011 011 : 11 000 ST(i)

move if not equal (NE) 11011 011 : 11 001 ST(i)

move if not below or equal (NBE) 11011 011 : 11 010 ST(i)

Table B-19.  MMX Instruction Formats and Encodings (Contd.)
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B.8 SSE INSTRUCTION FORMATS AND ENCODINGS 
The SSE instructions use the ModR/M format and are preceded by the 0FH prefix byte. In general, operations are 
not duplicated to provide two directions (that is, separate load and store variants).

The following three tables (Tables B-22, B-23, and B-24) show the formats and encodings for the SSE SIMD 
floating-point, SIMD integer, and cacheability and memory ordering instructions, respectively. Some SSE instruc-
tions require a mandatory prefix (66H, F2H, F3H) as part of the two-byte opcode. Mandatory prefixes are included 
in the tables.

move if not unordered (NU) 11011 011 : 11 011 ST(i)

FCOMI – Compare Real and Set EFLAGS 11011 011 : 11 110 ST(i)

FXRSTOR – Restore x87 FPU, MMX, SSE, and SSE2 State1 0000 1111:1010 1110: modA 001 r/m

FXSAVE – Save x87 FPU, MMX, SSE, and SSE2 State1 0000 1111:1010 1110: modA 000 r/m

SYSENTER – Fast System Call 0000 1111:0011 0100

SYSEXIT – Fast Return from Fast System Call 0000 1111:0011 0101

NOTES:
1.   For  FXSAVE and FXRSTOR, “mod = 11” is reserved.

Table B-22.  Formats and Encodings of SSE Floating-Point Instructions 

Instruction and Format Encoding

ADDPS—Add Packed Single Precision Floating-Point Values

   xmmreg2 to xmmreg1 0000 1111:0101 1000:11 xmmreg1 xmmreg2 

   mem to xmmreg 0000 1111:0101 1000:  mod xmmreg r/m

ADDSS—Add Scalar Single Precision Floating-Point Values

   xmmreg2 to xmmreg1 1111 0011:0000 1111:01011000:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0011:0000 1111:01011000: mod xmmreg r/m

ANDNPS—Bitwise Logical AND NOT of Packed Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 0101:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0101 0101:  mod xmmreg r/m

ANDPS—Bitwise Logical AND of Packed Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 0100:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 0100:  mod xmmreg r/m

CMPPS—Compare Packed Single Precision Floating-Point Values

   xmmreg2 to xmmreg1, imm8 0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8

   mem to xmmreg, imm8 0000 1111:1100 0010:  mod xmmreg r/m: imm8

CMPSS—Compare Scalar Single Precision Floating-Point Values

   xmmreg2 to xmmreg1, imm8 1111 0011:0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8

   mem to xmmreg, imm8 1111 0011:0000 1111:1100 0010: mod xmmreg r/m: imm8

COMISS—Compare Scalar Ordered Single Precision Floating-Point Values and Set EFLAGS

   xmmreg2 to xmmreg1 0000 1111:0010 1111:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0010 1111:  mod xmmreg r/m

Table B-21.  Formats and Encodings of P6 Family Instructions  (Contd.)
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CVTPI2PS—Convert Packed Doubleword Integers to Packed Single Precision Floating-Point Values

  mmreg to xmmreg 0000 1111:0010 1010:11 xmmreg1 mmreg1

  mem to xmmreg 0000 1111:0010 1010:  mod xmmreg r/m

CVTPS2PI—Convert Packed Single Precision Floating-Point Values to Packed Doubleword Integers

  xmmreg to mmreg 0000 1111:0010 1101:11 mmreg1 xmmreg1

  mem to mmreg 0000 1111:0010 1101:  mod mmreg r/m

CVTSI2SS—Convert Doubleword Integer to Scalar Single Precision Floating-Point Value

  r32 to xmmreg1 1111 0011:0000 1111:00101010:11 xmmreg1 r32

  mem to xmmreg 1111 0011:0000 1111:00101010: mod xmmreg r/m

CVTSS2SI—Convert Scalar Single Precision Floating-Point Value to Doubleword Integer

  xmmreg to r32 1111 0011:0000 1111:0010 1101:11 r32 xmmreg

  mem to r32 1111 0011:0000 1111:0010 1101: mod r32 r/m

CVTTPS2PI—Convert with Truncation Packed Single Precision Floating-Point Values to Packed Doubleword Integers

  xmmreg to mmreg 0000 1111:0010 1100:11 mmreg1 xmmreg1

  mem to mmreg 0000 1111:0010 1100:  mod mmreg r/m

CVTTSS2SI—Convert with Truncation Scalar Single Precision Floating-Point Value to Doubleword Integer

  xmmreg to r32 1111 0011:0000 1111:0010 1100:11 r32 xmmreg1

  mem to r32 1111 0011:0000 1111:0010 1100: mod r32 r/m

DIVPS—Divide Packed Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 1110:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 1110:  mod xmmreg r/m

DIVSS—Divide Scalar Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1110:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0101 1110: mod xmmreg r/m

LDMXCSR—Load  MXCSR Register State

  m32 to MXCSR 0000 1111:1010 1110:modA 010 mem

MAXPS—Return Maximum Packed Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 1111:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 1111: mod xmmreg r/m

MAXSS—Return Maximum Scalar Double Precision Floating-Point Value

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1111:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0101 1111: mod xmmreg r/m

MINPS—Return Minimum Packed Double Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 1101:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 1101: mod xmmreg r/m

MINSS—Return Minimum Scalar Double Precision Floating-Point Value

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1101:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0101 1101: mod xmmreg r/m

Table B-22.  Formats and Encodings of SSE Floating-Point Instructions  (Contd.)
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MOVAPS—Move Aligned Packed Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0010 1000:11 xmmreg2 xmmreg1

  mem to xmmreg1 0000 1111:0010 1000: mod xmmreg r/m

  xmmreg1 to xmmreg2 0000 1111:0010 1001:11 xmmreg1 xmmreg2

  xmmreg1 to mem 0000 1111:0010 1001: mod xmmreg r/m

MOVHLPS—Move Packed Single Precision Floating-Point Values High to Low

  xmmreg2 to xmmreg1 0000 1111:0001 0010:11 xmmreg1 xmmreg2

MOVHPS—Move High Packed Single Precision Floating-Point Values

  mem to xmmreg 0000 1111:0001 0110: mod xmmreg r/m

  xmmreg to mem 0000 1111:0001 0111: mod xmmreg r/m

MOVLHPS—Move Packed Single Precision Floating-Point Values Low to High

  xmmreg2 to xmmreg1 0000 1111:00010110:11 xmmreg1 xmmreg2

MOVLPS—Move Low Packed Single Precision Floating-Point Values

  mem to xmmreg 0000 1111:0001 0010: mod xmmreg r/m

  xmmreg to mem 0000 1111:0001 0011: mod xmmreg r/m

MOVMSKPS—Extract Packed Single Precision Floating-Point Sign Mask

  xmmreg to r32 0000 1111:0101 0000:11 r32 xmmreg

MOVSS—Move Scalar Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0001 0000:11 xmmreg2 xmmreg1

  mem to xmmreg1 1111 0011:0000 1111:0001 0000: mod xmmreg r/m

  xmmreg1 to xmmreg2 1111 0011:0000 1111:0001 0001:11 xmmreg1 xmmreg2

  xmmreg1 to mem 1111 0011:0000 1111:0001 0001: mod xmmreg r/m

MOVUPS—Move Unaligned Packed Single Precision Floating-Point Values

   xmmreg2 to xmmreg1 0000 1111:0001 0000:11 xmmreg2 xmmreg1

  mem to xmmreg1 0000 1111:0001 0000: mod xmmreg r/m

   xmmreg1 to xmmreg2 0000 1111:0001 0001:11 xmmreg1 xmmreg2

  xmmreg1 to mem 0000 1111:0001 0001: mod xmmreg r/m

MULPS—Multiply Packed Single Precision Floating-Point Values

   xmmreg2 to xmmreg1 0000 1111:0101 1001:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0101 1001: mod xmmreg r/m

MULSS—Multiply Scalar Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1001:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0101 1001: mod xmmreg r/m

ORPS—Bitwise Logical OR of Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 0110:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0101 0110: mod xmmreg r/m

RCPPS—Compute Reciprocals of Packed Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 0011:11 xmmreg1 xmmreg2

Table B-22.  Formats and Encodings of SSE Floating-Point Instructions  (Contd.)

Instruction and Format Encoding
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  mem to xmmreg 0000 1111:0101 0011: mod xmmreg r/m

RCPSS—Compute Reciprocals of Scalar Single Precision Floating-Point Value

  xmmreg2 to xmmreg1 1111 0011:0000 1111:01010011:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0011:0000 1111:01010011: mod xmmreg r/m

RSQRTPS—Compute Reciprocals of Square Roots of Packed Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 0010:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 0010: mode xmmreg r/m

RSQRTSS—Compute Reciprocals of Square Roots of Scalar Single Precision Floating-Point Value

   xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 0010:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0011:0000 1111:0101 0010: mod xmmreg r/m

SHUFPS—Shuffle Packed Single Precision Floating-Point Values

  xmmreg2 to xmmreg1, imm8 0000 1111:1100 0110:11 xmmreg1 xmmreg2: imm8

  mem to xmmreg, imm8 0000 1111:1100 0110: mod xmmreg r/m: imm8

SQRTPS—Compute Square Roots of Packed Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 0001:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 0001: mod xmmreg r/m

SQRTSS—Compute Square Root of Scalar Single Precision Floating-Point Value

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 0001:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0101 0001:mod xmmreg r/m

STMXCSR—Store MXCSR Register State

   MXCSR to mem 0000 1111:1010 1110:modA 011 mem

SUBPS—Subtract Packed Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 1100:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 1100:mod xmmreg r/m

SUBSS—Subtract Scalar Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1100:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0101 1100:mod xmmreg r/m

UCOMISS—Unordered Compare Scalar Ordered Single Precision Floating-Point Values and Set EFLAGS

  xmmreg2 to xmmreg1 0000 1111:0010 1110:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0010 1110: mod xmmreg r/m

UNPCKHPS—Unpack and Interleave High Packed Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0001 0101:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0001 0101: mod xmmreg r/m

UNPCKLPS—Unpack and Interleave Low Packed Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0001 0100:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0001 0100: mod xmmreg r/m

XORPS—Bitwise Logical XOR of Single Precision Floating-Point Values

   xmmreg2 to xmmreg1 0000 1111:0101 0111:11 xmmreg1 xmmreg2

Table B-22.  Formats and Encodings of SSE Floating-Point Instructions  (Contd.)

Instruction and Format Encoding
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   mem to xmmreg 0000 1111:0101 0111: mod xmmreg r/m

Table B-23.  Formats and Encodings of SSE Integer Instructions

Instruction and Format Encoding

PAVGB/PAVGW—Average Packed Integers

   mmreg2 to mmreg1 0000 1111:1110 0000:11 mmreg1 mmreg2

0000 1111:1110 0011:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1110 0000: mod mmreg r/m

0000 1111:1110 0011: mod mmreg r/m

PEXTRW—Extract Word

  mmreg to reg32, imm8 0000 1111:1100 0101:11 r32 mmreg: imm8

PINSRW—Insert Word

  reg32 to mmreg, imm8 0000 1111:1100 0100:11 mmreg r32: imm8

  m16 to mmreg, imm8 0000 1111:1100 0100: mod mmreg r/m: imm8

PMAXSW—Maximum of Packed Signed Word Integers

  mmreg2 to mmreg1 0000 1111:1110 1110:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1110 1110: mod mmreg r/m

PMAXUB—Maximum of Packed Unsigned Byte Integers

  mmreg2 to mmreg1 0000 1111:1101 1110:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1101 1110: mod mmreg r/m

PMINSW—Minimum of Packed Signed Word Integers

   mmreg2 to mmreg1 0000 1111:1110 1010:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1110 1010: mod mmreg r/m

PMINUB—Minimum of Packed Unsigned Byte Integers

   mmreg2 to mmreg1 0000 1111:1101 1010:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1101 1010: mod mmreg r/m

PMOVMSKB—Move Byte Mask To Integer

   mmreg to reg32 0000 1111:1101 0111:11 r32 mmreg

PMULHUW—Multiply Packed Unsigned Integers and Store High Result

  mmreg2 to mmreg1 0000 1111:1110 0100:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1110 0100: mod mmreg r/m

PSADBW—Compute Sum of Absolute Differences

  mmreg2 to mmreg1 0000 1111:1111 0110:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1111 0110: mod mmreg r/m

PSHUFW—Shuffle Packed Words

   mmreg2 to mmreg1, imm8 0000 1111:0111 0000:11 mmreg1 mmreg2: imm8

   mem to mmreg, imm8 0000 1111:0111 0000: mod mmreg r/m: imm8

Table B-22.  Formats and Encodings of SSE Floating-Point Instructions  (Contd.)

Instruction and Format Encoding
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B.9 SSE2 INSTRUCTION FORMATS AND ENCODINGS 
The SSE2 instructions use the ModR/M format and are preceded by the 0FH prefix byte. In general, operations are 
not duplicated to provide two directions (that is, separate load and store variants).

The following three tables show the formats and encodings for the SSE2 SIMD floating-point, SIMD integer, and 
cacheability instructions, respectively. Some SSE2 instructions require a mandatory prefix (66H, F2H, F3H) as part 
of the two-byte opcode. These prefixes are included in the tables.

B.9.1  Granularity Field (gg)
The granularity field (gg) indicates the size of the packed operands that the instruction is operating on. When this 
field is used, it is located in bits 1 and 0 of the second opcode byte. Table B-25 shows the encoding of this gg field.

Table B-24.  Format and Encoding of SSE Cacheability & Memory Ordering Instructions  

Instruction and Format Encoding

MASKMOVQ—Store Selected Bytes of Quadword

   mmreg2 to mmreg1 0000 1111:1111 0111:11 mmreg1 mmreg2

MOVNTPS—Store Packed Single Precision Floating-Point Values Using Non-Temporal Hint

   xmmreg to mem 0000 1111:0010 1011: mod xmmreg r/m

MOVNTQ—Store Quadword Using Non-Temporal Hint

   mmreg to mem 0000 1111:1110 0111: mod mmreg r/m

PREFETCHT0—Prefetch Temporal to All Cache Levels 0000 1111:0001 1000:modA 001 mem

PREFETCHT1—Prefetch Temporal to First Level Cache 0000 1111:0001 1000:modA 010 mem

PREFETCHT2—Prefetch Temporal to Second Level Cache 0000 1111:0001 1000:modA 011 mem

PREFETCHNTA—Prefetch Non-Temporal to All Cache Levels 0000 1111:0001 1000:modA 000 mem

SFENCE—Store Fence 0000 1111:1010 1110:11 111 000

Table B-25.  Encoding of Granularity of Data Field (gg)

gg Granularity of Data

00 Packed Bytes

01 Packed Words

10 Packed Doublewords

11 Quadword
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Table B-26.  Formats and Encodings of SSE2 Floating-Point Instructions

Instruction and Format Encoding

ADDPD—Add Packed Double Precision Floating-Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1000:11 xmmreg1 xmmreg2 

  mem to xmmreg 0110 0110:0000 1111:0101 1000:  mod xmmreg r/m

ADDSD—Add Scalar Double Precision Floating-Point Values

  xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1000:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0010:0000 1111:0101 1000: mod xmmreg r/m

ANDNPD—Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0101:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0101 0101:  mod xmmreg r/m

ANDPD—Bitwise Logical AND of Packed Double Precision Floating-Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0100:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0101 0100:  mod xmmreg r/m

CMPPD—Compare Packed Double Precision Floating-Point Values

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:1100 0010:  mod xmmreg r/m: imm8

CMPSD—Compare Scalar Double Precision Floating-Point Values

  xmmreg2 to xmmreg1, imm8 1111 0010:0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8

  mem to xmmreg, imm8 11110 010:0000 1111:1100 0010: mod xmmreg r/m: imm8

COMISD—Compare Scalar Ordered Double Precision Floating-Point Values and Set EFLAGS

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0010 1111:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0010 1111:  mod xmmreg r/m

CVTPI2PD—Convert Packed Doubleword Integers to Packed Double Precision Floating-Point Values

   mmreg to xmmreg 0110 0110:0000 1111:0010 1010:11 xmmreg1 mmreg1

   mem to xmmreg 0110 0110:0000 1111:0010 1010:  mod xmmreg r/m

CVTPD2PI—Convert Packed Double Precision Floating-Point Values to Packed Doubleword Integers

  xmmreg to mmreg 0110 0110:0000 1111:0010 1101:11 mmreg1 xmmreg1

  mem to mmreg 0110 0110:0000 1111:0010 1101:  mod mmreg r/m

CVTSI2SD—Convert Doubleword Integer to Scalar Double Precision Floating-Point Value

  r32 to xmmreg1 1111 0010:0000 1111:0010 1010:11 xmmreg r32

  mem to xmmreg 1111 0010:0000 1111:0010 1010: mod xmmreg r/m

CVTSD2SI—Convert Scalar Double Precision Floating-Point Value to Doubleword Integer

  xmmreg to r32 1111 0010:0000 1111:0010 1101:11 r32 xmmreg

  mem to r32 1111 0010:0000 1111:0010 1101: mod r32 r/m

CVTTPD2PI—Convert with Truncation Packed Double Precision Floating-Point Values to Packed Doubleword Integers

  xmmreg to mmreg 0110 0110:0000 1111:0010 1100:11 mmreg xmmreg

   mem to mmreg 0110 0110:0000 1111:0010 1100:  mod mmreg r/m

CVTTSD2SI—Convert with Truncation Scalar Double Precision Floating-Point Value to Doubleword Integer

  xmmreg to r32 1111 0010:0000 1111:0010 1100:11 r32 xmmreg
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  mem to r32 1111 0010:0000 1111:0010 1100: mod r32 r/m

CVTPD2PS—Covert Packed Double Precision Floating-Point Values to Packed Single Precision Floating-Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1010:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0101 1010:  mod xmmreg r/m

CVTPS2PD—Covert Packed Single Precision Floating-Point Values to Packed Double Precision Floating-Point Values

   xmmreg2 to xmmreg1 0000 1111:0101 1010:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0101 1010:  mod xmmreg r/m

CVTSD2SS—Covert Scalar Double Precision Floating-Point Value to Scalar Single Precision Floating-Point Value

   xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1010:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0010:0000 1111:0101 1010:  mod xmmreg r/m

CVTSS2SD—Covert Scalar Single Precision Floating-Point Value to Scalar Double Precision Floating-Point Value

   xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1010:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0011:00001 111:0101 1010:  mod xmmreg r/m

CVTPD2DQ—Convert Packed Double Precision Floating-Point Values to Packed Doubleword Integers

   xmmreg2 to xmmreg1 1111 0010:0000 1111:1110 0110:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0010:0000 1111:1110 0110:  mod xmmreg r/m

CVTTPD2DQ—Convert With Truncation Packed Double Precision Floating-Point Values to Packed Doubleword Integers

   xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0110:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:1110 0110:  mod xmmreg r/m

CVTDQ2PD—Convert Packed Doubleword Integers to Packed Single Precision Floating-Point Values

   xmmreg2 to xmmreg1 1111 0011:0000 1111:1110 0110:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0011:0000 1111:1110 0110:  mod xmmreg r/m

CVTPS2DQ—Convert Packed Single Precision Floating-Point Values to Packed Doubleword Integers

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1011:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0101 1011:  mod xmmreg r/m

CVTTPS2DQ—Convert With Truncation Packed Single Precision Floating-Point Values to Packed Doubleword Integers

   xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1011:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0011:0000 1111:0101 1011:  mod xmmreg r/m

CVTDQ2PS—Convert Packed Doubleword Integers to Packed Double Precision Floating-Point Values

   xmmreg2 to xmmreg1 0000 1111:0101 1011:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0101 1011:  mod xmmreg r/m

DIVPD—Divide Packed Double Precision Floating-Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1110:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0101 1110:  mod xmmreg r/m

DIVSD—Divide Scalar Double Precision Floating-Point Values

   xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1110:11 xmmreg1 xmmreg2

Table B-26.  Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
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   mem to xmmreg 1111 0010:0000 1111:0101 1110: mod xmmreg r/m

MAXPD—Return Maximum Packed Double Precision Floating-Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1111:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0101 1111: mod xmmreg r/m

MAXSD—Return Maximum Scalar Double Precision Floating-Point Value

   xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1111:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0010:0000 1111:0101 1111: mod xmmreg r/m

MINPD—Return Minimum Packed Double Precision Floating-Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1101:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0101 1101: mod xmmreg r/m

MINSD—Return Minimum Scalar Double Precision Floating-Point Value

   xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1101:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0010:0000 1111:0101 1101: mod xmmreg r/m

MOVAPD—Move Aligned Packed Double Precision Floating-Point Values

   xmmreg1 to xmmreg2 0110 0110:0000 1111:0010 1001:11 xmmreg2 xmmreg1

   xmmreg1 to mem 0110 0110:0000 1111:0010 1001: mod xmmreg r/m

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0010 1000:11 xmmreg1 xmmreg2

   mem to xmmreg1 0110 0110:0000 1111:0010 1000: mod xmmreg r/m

MOVHPD—Move High Packed Double Precision Floating-Point Values

   xmmreg to mem 0110 0110:0000 1111:0001 0111: mod xmmreg r/m

   mem to xmmreg 0110 0110:0000 1111:0001 0110: mod xmmreg r/m

MOVLPD—Move Low Packed Double Precision Floating-Point Values

   xmmreg to mem 0110 0110:0000 1111:0001 0011: mod xmmreg r/m

   mem to xmmreg 0110 0110:0000 1111:0001 0010: mod xmmreg r/m

MOVMSKPD—Extract Packed Double Precision Floating-Point Sign Mask

   xmmreg to r32 0110 0110:0000 1111:0101 0000:11 r32 xmmreg

MOVSD—Move Scalar Double Precision Floating-Point Values

   xmmreg1 to xmmreg2 1111 0010:0000 1111:0001 0001:11 xmmreg2 xmmreg1

   xmmreg1 to mem 1111 0010:0000 1111:0001 0001: mod xmmreg r/m

   xmmreg2 to xmmreg1 1111 0010:0000 1111:0001 0000:11 xmmreg1 xmmreg2

   mem to xmmreg1 1111 0010:0000 1111:0001 0000: mod xmmreg r/m

MOVUPD—Move Unaligned Packed Double Precision Floating-Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0001 0001:11 xmmreg2 xmmreg1

  mem to xmmreg1 0110 0110:0000 1111:0001 0001: mod xmmreg r/m

  xmmreg1 to xmmreg2 0110 0110:0000 1111:0001 0000:11 xmmreg1 xmmreg2

   xmmreg1 to mem 0110 0110:0000 1111:0001 0000: mod xmmreg r/m

MULPD—Multiply Packed Double Precision Floating-Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1001:11 xmmreg1 xmmreg2

Table B-26.  Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
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  mem to xmmreg 0110 0110:0000 1111:0101 1001: mod xmmreg r/m

MULSD—Multiply Scalar Double Precision Floating-Point Values

   xmmreg2 to xmmreg1 1111 0010:00001111:01011001:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0010:00001111:01011001: mod xmmreg r/m

ORPD—Bitwise Logical OR of Double Precision Floating-Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0110:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0101 0110: mod xmmreg r/m

SHUFPD—Shuffle Packed Double Precision Floating-Point Values

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:1100 0110:11 xmmreg1 xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:1100 0110: mod xmmreg r/m: imm8

SQRTPD—Compute Square Roots of Packed Double Precision Floating-Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0001:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0101 0001: mod xmmreg r/m

SQRTSD—Compute Square Root of Scalar Double Precision Floating-Point Value

  xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 0001:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0010:0000 1111:0101 0001: mod xmmreg r/m

SUBPD—Subtract Packed Double Precision Floating-Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1100:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0101 1100: mod xmmreg r/m

SUBSD—Subtract Scalar Double Precision Floating-Point Values

  xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1100:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0010:0000 1111:0101 1100: mod xmmreg r/m

UCOMISD—Unordered Compare Scalar Ordered Double Precision Floating-Point Values and Set EFLAGS

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0010 1110:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0010 1110: mod xmmreg r/m

UNPCKHPD—Unpack and Interleave High Packed Double Precision Floating-Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0001 0101:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0001 0101: mod xmmreg r/m

UNPCKLPD—Unpack and Interleave Low Packed Double Precision Floating-Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0001 0100:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0001 0100: mod xmmreg r/m

XORPD—Bitwise Logical OR of Double Precision Floating-Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0111:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0101 0111: mod xmmreg r/m

Table B-26.  Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)
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Table B-27.  Formats and Encodings of SSE2 Integer Instructions

Instruction and Format Encoding

MOVD—Move Doubleword

   reg to xmmreg 0110 0110:0000 1111:0110 1110: 11 xmmreg reg

reg from xmmreg 0110 0110:0000 1111:0111 1110: 11 xmmreg reg

mem to xmmreg 0110 0110:0000 1111:0110 1110: mod xmmreg r/m

mem from xmmreg 0110 0110:0000 1111:0111 1110: mod xmmreg r/m

MOVDQA—Move Aligned Double Quadword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1111:11 xmmreg1 xmmreg2

  xmmreg2 from xmmreg1 0110 0110:0000 1111:0111 1111:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0110 1111: mod xmmreg r/m

   mem from xmmreg 0110 0110:0000 1111:0111 1111: mod xmmreg r/m

MOVDQU—Move Unaligned Double Quadword

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0110 1111:11 xmmreg1 xmmreg2

xmmreg2 from xmmreg1 1111 0011:0000 1111:0111 1111:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0110 1111: mod xmmreg r/m

   mem from xmmreg 1111 0011:0000 1111:0111 1111: mod xmmreg r/m

MOVQ2DQ—Move Quadword from MMX to XMM Register

   mmreg to xmmreg 1111 0011:0000 1111:1101 0110:11 mmreg1 mmreg2

MOVDQ2Q—Move Quadword from XMM to MMX Register

   xmmreg to mmreg 1111 0010:0000 1111:1101 0110:11 mmreg1 mmreg2

MOVQ—Move Quadword

xmmreg2 to xmmreg1 1111 0011:0000 1111:0111 1110: 11 xmmreg1 xmmreg2

xmmreg2 from xmmreg1 0110 0110:0000 1111:1101 0110: 11 xmmreg1 xmmreg2

mem to xmmreg 1111 0011:0000 1111:0111 1110: mod xmmreg r/m

mem from xmmreg 0110 0110:0000 1111:1101 0110: mod xmmreg r/m

PACKSSDW1—Pack Dword To Word Data (signed with saturation)

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1011: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111:0110 1011: mod xmmreg r/m

PACKSSWB—Pack  Word To Byte Data (signed with saturation)

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 0011: 11 xmmreg1 xmmreg2

   memory to xmmreg 0110 0110:0000 1111:0110 0011: mod xmmreg r/m

PACKUSWB—Pack Word To Byte Data (unsigned with saturation)

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 0111: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111:0110 0111: mod xmmreg r/m

PADDQ—Add Packed Quadword Integers

   mmreg2 to mmreg1 0000 1111:1101 0100:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1101 0100: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 0100:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1101 0100: mod xmmreg r/m
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PADD—Add With Wrap-around

  xmmreg2 to xmmreg1 0110 0110:0000 1111: 1111 11gg: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111: 1111 11gg: mod xmmreg r/m

PADDS—Add Signed With Saturation

  xmmreg2 to xmmreg1 0110 0110:0000 1111: 1110 11gg: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111: 1110 11gg: mod xmmreg r/m

PADDUS—Add Unsigned With Saturation

  xmmreg2 to xmmreg1 0110 0110:0000 1111: 1101 11gg: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111: 1101 11gg: mod xmmreg r/m

PAND—Bitwise And

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1011: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111:1101 1011: mod xmmreg r/m

PANDN—Bitwise AndNot

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1111: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111:1101 1111: mod xmmreg r/m

PAVGB—Average Packed Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:11100 000:11 xmmreg1 xmmreg2

  mem to xmmreg 01100110:00001111:11100000 mod xmmreg r/m

PAVGW—Average Packed Integers

   xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0011:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1110 0011 mod xmmreg r/m

PCMPEQ—Packed Compare For Equality

  xmmreg1 with xmmreg2 0110 0110:0000 1111:0111 01gg: 11 xmmreg1 xmmreg2

  xmmreg with memory 0110 0110:0000 1111:0111 01gg: mod xmmreg r/m

PCMPGT—Packed Compare Greater (signed)

  xmmreg1 with xmmreg2 0110 0110:0000 1111:0110 01gg: 11 xmmreg1 xmmreg2

  xmmreg with memory 0110 0110:0000 1111:0110 01gg: mod xmmreg r/m

PEXTRW—Extract Word

  xmmreg to reg32, imm8 0110 0110:0000 1111:1100 0101:11 r32 xmmreg: imm8

PINSRW—Insert Word

  reg32 to xmmreg, imm8 0110 0110:0000 1111:1100 0100:11 xmmreg r32: imm8

   m16 to xmmreg, imm8 0110 0110:0000 1111:1100 0100: mod xmmreg r/m: imm8

PMADDWD—Packed Multiply Add

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 0101: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111:1111 0101: mod xmmreg r/m

PMAXSW—Maximum of Packed Signed Word Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1110:11 xmmreg1 xmmreg2

  mem to xmmreg 01100110:00001111:11101110: mod xmmreg r/m

Table B-27.  Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding
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PMAXUB—Maximum of Packed Unsigned Byte Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1110:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1101 1110: mod xmmreg r/m

PMINSW—Minimum of Packed Signed Word Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1010:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1110 1010: mod xmmreg r/m

PMINUB—Minimum of Packed Unsigned Byte Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1010:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1101 1010 mod xmmreg r/m

PMOVMSKB—Move Byte Mask To Integer

  xmmreg to reg32 0110 0110:0000 1111:1101 0111:11 r32 xmmreg

PMULHUW—Packed multiplication, store high word (unsigned)

   xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0100: 11 xmmreg1 xmmreg2

   memory to xmmreg 0110 0110:0000 1111:1110 0100: mod xmmreg r/m

PMULHW—Packed Multiplication, store high word

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0101: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111:1110 0101: mod xmmreg r/m

PMULLW—Packed Multiplication, store low word

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 0101: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111:1101 0101: mod xmmreg r/m

PMULUDQ—Multiply Packed Unsigned Doubleword Integers

  mmreg2 to mmreg1 0000 1111:1111 0100:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1111 0100: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:00001111:1111 0100:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:00001111:1111 0100: mod xmmreg r/m

POR—Bitwise Or

   xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1011: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1110 1011: mod xmmreg r/m

PSADBW—Compute Sum of Absolute Differences

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 0110:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1111 0110: mod xmmreg r/m

PSHUFLW—Shuffle Packed Low Words

  xmmreg2 to xmmreg1, imm8 1111 0010:0000 1111:0111 0000:11 xmmreg1 xmmreg2: imm8

  mem to xmmreg, imm8 1111 0010:0000 1111:0111 0000:11 mod xmmreg r/m: imm8

PSHUFHW—Shuffle Packed High Words

  xmmreg2 to xmmreg1, imm8 1111 0011:0000 1111:0111 0000:11 xmmreg1 xmmreg2: imm8

  mem to xmmreg, imm8 1111 0011:0000 1111:0111 0000: mod xmmreg r/m: imm8

PSHUFD—Shuffle Packed Doublewords

Table B-27.  Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding
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  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0111 0000:11 xmmreg1 xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:0111 0000: mod xmmreg r/m: imm8

PSLLDQ—Shift Double Quadword Left Logical

  xmmreg, imm8 0110 0110:0000 1111:0111 0011:11 111 xmmreg: imm8

PSLL—Packed Shift Left Logical

  xmmreg1 by xmmreg2 0110 0110:0000 1111:1111 00gg: 11 xmmreg1 xmmreg2

  xmmreg by memory 0110 0110:0000 1111:1111 00gg: mod xmmreg r/m

  xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 110 xmmreg: imm8 

PSRA—Packed Shift Right Arithmetic

  xmmreg1 by xmmreg2 0110 0110:0000 1111:1110 00gg: 11 xmmreg1 xmmreg2

  xmmreg by memory 0110 0110:0000 1111:1110 00gg: mod xmmreg r/m

  xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 100 xmmreg: imm8 

PSRLDQ—Shift Double Quadword Right Logical

  xmmreg, imm8 0110 0110:00001111:01110011:11 011 xmmreg: imm8

PSRL—Packed Shift Right Logical

  xmmreg1 by xmmreg2 0110 0110:0000 1111:1101 00gg: 11 xmmreg1 xmmreg2

  xmmreg by memory 0110 0110:0000 1111:1101 00gg: mod xmmreg r/m

  xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 010 xmmreg: imm8 

PSUBQ—Subtract Packed Quadword Integers

  mmreg2 to mmreg1 0000 1111:11111 011:11 mmreg1 mmreg2

   mem to mmreg 0000 1111:1111 1011: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 1011:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1111 1011: mod xmmreg r/m

PSUB—Subtract With Wrap-around

  xmmreg2 from xmmreg1 0110 0110:0000 1111:1111 10gg: 11 xmmreg1 xmmreg2

  memory from xmmreg 0110 0110:0000 1111:1111 10gg: mod xmmreg r/m

PSUBS—Subtract Signed With Saturation

  xmmreg2 from xmmreg1 0110 0110:0000 1111:1110 10gg: 11 xmmreg1 xmmreg2

  memory from xmmreg 0110 0110:0000 1111:1110 10gg: mod xmmreg r/m

PSUBUS—Subtract Unsigned With Saturation

  xmmreg2 from xmmreg1 0000 1111:1101 10gg: 11 xmmreg1 xmmreg2

  memory from xmmreg 0000 1111:1101 10gg: mod xmmreg r/m

PUNPCKH—Unpack High Data To Next Larger Type

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 10gg:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0110 10gg: mod xmmreg r/m

PUNPCKHQDQ—Unpack High Data

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1101:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0110 1101: mod xmmreg r/m

Table B-27.  Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding
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PUNPCKL—Unpack Low Data To Next Larger Type

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 00gg:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0110 00gg: mod xmmreg r/m

PUNPCKLQDQ—Unpack Low Data

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1100:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0110 1100: mod xmmreg r/m

PXOR—Bitwise Xor

xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1111: 11 xmmreg1 xmmreg2

memory to xmmreg 0110 0110:0000 1111:1110 1111: mod xmmreg r/m

Table B-28.  Format and Encoding of SSE2 Cacheability Instructions

Instruction and Format Encoding

MASKMOVDQU—Store Selected Bytes of Double Quadword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 0111:11 xmmreg1 xmmreg2

CLFLUSH—Flush Cache Line

  mem 0000 1111:1010 1110: mod 111 r/m

MOVNTPD—Store Packed Double Precision Floating-Point Values Using Non-Temporal Hint

  xmmreg to mem 0110 0110:0000 1111:0010 1011: mod xmmreg r/m

MOVNTDQ—Store Double Quadword Using Non-Temporal Hint

  xmmreg to mem 0110 0110:0000 1111:1110 0111: mod xmmreg r/m

MOVNTI—Store Doubleword Using Non-Temporal Hint

  reg to mem 0000 1111:1100 0011: mod reg r/m

PAUSE—Spin Loop Hint 1111 0011:1001 0000

LFENCE—Load Fence 0000 1111:1010 1110: 11 101 000

MFENCE—Memory Fence 0000 1111:1010 1110: 11 110 000

Table B-27.  Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding
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B.10 SSE3 FORMATS AND ENCODINGS TABLE
The tables in this section provide SSE3 formats and encodings. Some SSE3 instructions require a mandatory prefix 
(66H, F2H, F3H) as part of the two-byte opcode. These prefixes are included in the tables.

When in IA-32e mode, use of the REX.R prefix permits instructions that use general purpose and XMM registers to 
access additional registers. Some instructions require the REX.W prefix to promote the instruction to 64-bit opera-
tion. Instructions that require the REX.W prefix are listed (with their opcodes) in Section B.13.

Table B-29.  Formats and Encodings of SSE3 Floating-Point Instructions

Instruction and Format Encoding

ADDSUBPD—Add /Sub packed DP FP numbers from XMM2/Mem to XMM1

xmmreg2 to xmmreg1 01100110:00001111:11010000:11 xmmreg1 xmmreg2

mem to xmmreg 01100110:00001111:11010000: mod xmmreg r/m

ADDSUBPS—Add /Sub packed SP FP numbers from XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:11010000:11 xmmreg1 xmmreg2

mem to xmmreg 11110010:00001111:11010000: mod xmmreg r/m

HADDPD—Add horizontally packed DP FP numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 01100110:00001111:01111100:11 xmmreg1 xmmreg2

mem to xmmreg 01100110:00001111:01111100: mod xmmreg r/m

HADDPS—Add horizontally packed SP FP numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:01111100:11 xmmreg1 xmmreg2

mem to xmmreg 11110010:00001111:01111100: mod xmmreg r/m

HSUBPD—Sub horizontally packed DP FP numbers XMM2/Mem to XMM1 

xmmreg2 to xmmreg1 01100110:00001111:01111101:11 xmmreg1 xmmreg2

mem to xmmreg 01100110:00001111:01111101: mod xmmreg r/m

HSUBPS—Sub horizontally packed SP FP numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:01111101:11 xmmreg1 xmmreg2

mem to xmmreg 11110010:00001111:01111101: mod xmmreg r/m

Table B-30.  Formats and Encodings for SSE3 Event Management Instructions 

Instruction and Format Encoding

MONITOR—Set up a linear address range to be monitored by hardware

eax, ecx, edx 0000 1111 : 0000 0001:11 001 000

MWAIT—Wait until write-back store performed within the range specified by the instruction MONITOR

eax, ecx 0000 1111 : 0000 0001:11 001 001

Table B-31.  Formats and Encodings for SSE3 Integer and Move Instructions 

Instruction and Format Encoding

FISTTP—Store ST in int16 (chop) and pop

m16int 11011 111 : modA 001 r/m

FISTTP—Store ST in int32 (chop) and pop

m32int 11011 011 : modA 001 r/m

FISTTP—Store ST in int64 (chop) and pop
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B.11 SSSE3 FORMATS AND ENCODING TABLE
The tables in this section provide SSSE3 formats and encodings. Some SSSE3 instructions require a mandatory 
prefix (66H) as part of the three-byte opcode. These prefixes are included in the table below.

 

m64int 11011 101 : modA 001 r/m

LDDQU—Load unaligned integer 128-bit

xmm, m128 11110010:00001111:11110000: modA xmmreg r/m

MOVDDUP—Move 64 bits representing one DP data from XMM2/Mem to XMM1 and duplicate

xmmreg2 to xmmreg1 11110010:00001111:00010010:11 xmmreg1 xmmreg2

mem to xmmreg 11110010:00001111:00010010: mod xmmreg r/m

MOVSHDUP—Move 128 bits representing 4 SP data from XMM2/Mem to XMM1 and duplicate high

xmmreg2 to xmmreg1 11110011:00001111:00010110:11 xmmreg1 xmmreg2

mem to xmmreg 11110011:00001111:00010110: mod xmmreg r/m

MOVSLDUP—Move 128 bits representing 4 SP data from XMM2/Mem to XMM1 and duplicate low

xmmreg2 to xmmreg1 11110011:00001111:00010010:11 xmmreg1 xmmreg2

mem to xmmreg 11110011:00001111:00010010: mod xmmreg r/m

Table B-32.  Formats and Encodings for SSSE3 Instructions

Instruction and Format Encoding

PABSB—Packed Absolute Value Bytes

   mmreg2 to mmreg1 0000 1111:0011 1000: 0001 1100:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0001 1100: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 1100:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1100: mod xmmreg r/m

PABSD—Packed Absolute Value Double Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0001 1110:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0001 1110: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 1110:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1110: mod xmmreg r/m

PABSW—Packed Absolute Value Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0001 1101:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0001 1101: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 1101:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1101: mod xmmreg r/m

PALIGNR—Packed Align Right

   mmreg2 to mmreg1, imm8 0000 1111:0011 1010: 0000 1111:11 mmreg1 mmreg2: imm8

Table B-31.  Formats and Encodings for SSE3 Integer and Move Instructions  (Contd.)

Instruction and Format Encoding
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  mem to mmreg, imm8 0000 1111:0011 1010: 0000 1111: mod mmreg r/m: imm8

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1111:11 xmmreg1 
xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1111: mod xmmreg r/m: 
imm8

PHADDD—Packed Horizontal Add Double Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0010:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0010: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0010:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0010: mod xmmreg r/m

PHADDSW—Packed Horizontal Add and Saturate

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0011:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0011: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0011:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0011: mod xmmreg r/m

PHADDW—Packed Horizontal Add Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0001:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0001: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0001:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0001: mod xmmreg r/m

PHSUBD—Packed Horizontal Subtract Double Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0110:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0110: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0110:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0110: mod xmmreg r/m

PHSUBSW—Packed Horizontal Subtract and Saturate

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0111:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0111: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0111:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0111: mod xmmreg r/m

PHSUBW—Packed Horizontal Subtract Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0101:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0101: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0101:11 xmmreg1 
xmmreg2

Table B-32.  Formats and Encodings for SSSE3 Instructions (Contd.)

Instruction and Format Encoding
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B.12 AESNI AND PCLMULQDQ INSTRUCTION FORMATS AND ENCODINGS 
Table B-33 shows the formats and encodings for AESNI and PCLMULQDQ instructions.

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0101: mod xmmreg r/m

PMADDUBSW—Multiply and Add Packed Signed and Unsigned Bytes

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0100:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0100: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0100:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0100: mod xmmreg r/m

PMULHRSW—Packed Multiply HIgn with Round and Scale

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1011:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 1011: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1011:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1011: mod xmmreg r/m

PSHUFB—Packed Shuffle Bytes

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0000:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0000: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0000:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0000: mod xmmreg r/m

PSIGNB—Packed Sign Bytes

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1000:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 1000: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1000:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1000: mod xmmreg r/m

PSIGND—Packed Sign Double Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1010:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 1010: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1010:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1010: mod xmmreg r/m

PSIGNW—Packed Sign Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1001:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 1001: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1001:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1001: mod xmmreg r/m

Table B-32.  Formats and Encodings for SSSE3 Instructions (Contd.)

Instruction and Format Encoding
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B.13 SPECIAL ENCODINGS FOR 64-BIT MODE
The following Pentium, P6, MMX, SSE, SSE2, SSE3 instructions are promoted to 64-bit operation in IA-32e mode 
by using REX.W. However, these entries are special cases that do not follow the general rules (specified in Section 
B.4).

Table B-33.  Formats and Encodings of AESNI and PCLMULQDQ Instructions

Instruction and Format Encoding

AESDEC—Perform One Round of an AES Decryption Flow

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 1110:11 xmmreg1 
xmmreg2 

   mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1110: mod xmmreg r/m

AESDECLAST—Perform Last Round of an AES Decryption Flow

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 1111:11 xmmreg1 
xmmreg2 

   mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1111:  mod xmmreg r/m

AESENC—Perform One Round of an AES Encryption Flow

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 1100:11 xmmreg1 
xmmreg2 

   mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1100:  mod xmmreg r/m

AESENCLAST—Perform Last Round of an AES Encryption Flow

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 1101:11 xmmreg1 
xmmreg2 

   mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1101:  mod xmmreg r/m

AESIMC—Perform the AES InvMixColumn Transformation

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 1011:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1011: mod xmmreg r/m

AESKEYGENASSIST—AES Round Key Generation Assist

   xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010:1101 1111:11 xmmreg1 
xmmreg2: imm8

   mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010:1101 1111: mod xmmreg r/m: 
imm8

PCLMULQDQ—Carry-Less Multiplication Quadword

   xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010:0100 0100:11 xmmreg1 
xmmreg2: imm8 

   mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010:0100 0100:  mod xmmreg r/m: 
imm8

Table B-34.  Special Case Instructions Promoted Using REX.W

Instruction and Format Encoding

CMOVcc—Conditional Move
Vol. 2D B-61



INSTRUCTION FORMATS AND ENCODINGS
register2 to  register1 0100 0R0B 0000 1111: 0100 tttn : 11 reg1 reg2

qwordregister2 to qwordregister1 0100 1R0B 0000 1111: 0100 tttn : 11 qwordreg1 qwordreg2

memory to register  0100 0RXB 0000 1111 : 0100 tttn : mod reg r/m

memory64 to qwordregister 0100 1RXB 0000 1111 : 0100 tttn : mod qwordreg r/m

CVTSD2SI—Convert Scalar Double Precision Floating-Point Value to Doubleword Integer

  xmmreg to r32 0100 0R0B 1111 0010:0000 1111:0010 1101:11 r32 
xmmreg

  xmmreg to r64 0100 1R0B 1111 0010:0000 1111:0010 1101:11 r64 
xmmreg

  mem64 to r32 0100 0R0XB 1111 0010:0000 1111:0010 1101: mod r32 r/m

  mem64 to r64 0100 1RXB 1111 0010:0000 1111:0010 1101: mod r64 r/m

CVTSI2SS—Convert Doubleword Integer to Scalar Single Precision Floating-Point Value

  r32 to xmmreg1 0100 0R0B 1111 0011:0000 1111:0010 1010:11 xmmreg 
r32

  r64 to xmmreg1 0100 1R0B 1111 0011:0000 1111:0010 1010:11 xmmreg 
r64

  mem to xmmreg 0100 0RXB 1111 0011:0000 1111:0010 1010: mod xmmreg 
r/m

  mem64 to xmmreg 0100 1RXB 1111 0011:0000 1111:0010 1010: mod xmmreg 
r/m

CVTSI2SD—Convert Doubleword Integer to Scalar Double Precision Floating-Point Value

  r32 to xmmreg1 0100 0R0B 1111 0010:0000 1111:0010 1010:11 xmmreg 
r32

  r64 to xmmreg1 0100 1R0B 1111 0010:0000 1111:0010 1010:11 xmmreg 
r64

  mem to xmmreg 0100 0RXB 1111 0010:0000 1111:00101 010: mod xmmreg 
r/m

  mem64 to xmmreg 0100 1RXB 1111 0010:0000 1111:0010 1010: mod xmmreg 
r/m

CVTSS2SI—Convert Scalar Single Precision Floating-Point Value to Doubleword Integer

  xmmreg to r32 0100 0R0B 1111 0011:0000 1111:0010 1101:11 r32 
xmmreg

  xmmreg to r64 0100 1R0B 1111 0011:0000 1111:0010 1101:11 r64 
xmmreg

  mem to r32 0100 0RXB 11110011:00001111:00101101: mod r32 r/m

  mem32 to r64 0100 1RXB 1111 0011:0000 1111:0010 1101: mod r64 r/m

CVTTSD2SI—Convert with Truncation Scalar Double Precision Floating-Point Value to Doubleword Integer

  xmmreg to r32 0100 0R0B 11110010:00001111:00101100:11 r32 xmmreg

  xmmreg to r64 0100 1R0B 1111 0010:0000 1111:0010 1100:11 r64 
xmmreg

  mem64 to r32 0100 0RXB 1111 0010:0000 1111:0010 1100: mod r32 r/m

  mem64 to r64 0100 1RXB 1111 0010:0000 1111:0010 1100: mod r64 r/m

Table B-34.  Special Case Instructions Promoted Using REX.W (Contd.)
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CVTTSS2SI—Convert with Truncation Scalar Single Precision Floating-Point Value to Doubleword Integer

  xmmreg to r32 0100 0R0B 1111 0011:0000 1111:0010 1100:11 r32 
xmmreg1

  xmmreg to r64 0100 1R0B 1111 0011:0000 1111:0010 1100:11 r64 
xmmreg1

  mem to r32 0100 0RXB 1111 0011:0000 1111:0010 1100: mod r32 r/m

  mem32 to r64 0100 1RXB 1111 0011:0000 1111:0010 1100: mod r64 r/m

MOVD/MOVQ—Move doubleword

reg to mmxreg 0100 0R0B 0000 1111:0110 1110: 11 mmxreg reg

qwordreg to mmxreg 0100 1R0B 0000 1111:0110 1110: 11 mmxreg qwordreg

reg from mmxreg 0100 0R0B 0000 1111:0111 1110: 11 mmxreg reg

qwordreg from mmxreg 0100 1R0B 0000 1111:0111 1110: 11 mmxreg qwordreg

mem to mmxreg 0100 0RXB 0000 1111:0110 1110: mod mmxreg r/m

mem64 to mmxreg 0100 1RXB 0000 1111:0110 1110: mod mmxreg r/m

mem from mmxreg 0100 0RXB 0000 1111:0111 1110: mod mmxreg r/m

mem64 from mmxreg 0100 1RXB 0000 1111:0111 1110: mod mmxreg r/m

mmxreg with memory 0100 0RXB 0000 1111:0110 01gg: mod mmxreg r/m

MOVMSKPS—Extract Packed Single Precision Floating-Point Sign Mask

  xmmreg to r32 0100 0R0B 0000 1111:0101 0000:11 r32 xmmreg

  xmmreg to r64 0100 1R0B 00001111:01010000:11 r64 xmmreg

PEXTRW—Extract Word

  mmreg to reg32, imm8 0100 0R0B 0000 1111:1100 0101:11 r32 mmreg: imm8

  mmreg to reg64, imm8 0100 1R0B 0000 1111:1100 0101:11 r64 mmreg: imm8

  xmmreg to reg32, imm8 0100 0R0B 0110 0110 0000 1111:1100 0101:11 r32 
xmmreg: imm8

  xmmreg to reg64, imm8 0100 1R0B 0110 0110 0000 1111:1100 0101:11 r64 
xmmreg: imm8

PINSRW—Insert Word

  reg32 to mmreg, imm8 0100 0R0B 0000 1111:1100 0100:11 mmreg r32: imm8

  reg64 to mmreg, imm8 0100 1R0B 0000 1111:1100 0100:11 mmreg r64: imm8

  m16 to mmreg, imm8 0100 0R0B 0000 1111:1100 0100 mod mmreg r/m: imm8

  m16 to mmreg, imm8 0100 1RXB 0000 1111:11000100 mod mmreg r/m: imm8

  reg32 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100 0100:11 xmmreg 
r32: imm8

  reg64 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100 0100:11 xmmreg 
r64: imm8

  m16 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100 0100 mod xmmreg 
r/m: imm8

  m16 to xmmreg, imm8 0100 1RXB 0110 0110 0000 1111:1100 0100 mod xmmreg 
r/m: imm8

PMOVMSKB—Move Byte Mask To Integer

Table B-34.  Special Case Instructions Promoted Using REX.W (Contd.)
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B.14 SSE4.1 FORMATS AND ENCODING TABLE
The tables in this section provide SSE4.1 formats and encodings. Some SSE4.1 instructions require a mandatory 
prefix (66H, F2H, F3H) as part of the three-byte opcode. These prefixes are included in the tables. 
In 64-bit mode, some instructions requires REX.W, the byte sequence of REX.W prefix in the opcode sequence is 
shown.

   mmreg to reg32 0100 0RXB 0000 1111:1101 0111:11 r32 mmreg

   mmreg to reg64 0100 1R0B 0000 1111:1101 0111:11 r64 mmreg

   xmmreg to reg32 0100 0RXB 0110 0110 0000 1111:1101 0111:11 r32 mmreg

   xmmreg to reg64 0110 0110 0000 1111:1101 0111:11 r64 xmmreg

Table B-35.  Encodings of SSE4.1 instructions

Instruction and Format Encoding

BLENDPD — Blend Packed Double Precision Floats

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1010: 0000 1101:11 xmmreg1 
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1101: mod xmmreg r/m

BLENDPS — Blend Packed Single Precision Floats

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1010: 0000 1100:11 xmmreg1 
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1100: mod xmmreg r/m

BLENDVPD — Variable Blend Packed Double Precision Floats

 xmmreg2 to xmmreg1 <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0101:11 xmmreg1 
xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0101: mod xmmreg r/m

BLENDVPS — Variable Blend Packed Single Precision Floats

 xmmreg2 to xmmreg1 <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0100:11 xmmreg1 
xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0100: mod xmmreg r/m

DPPD — Packed Double Precision Dot Products

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0100 0001:11 xmmreg1 
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0001: mod xmmreg r/m: 
imm8

DPPS — Packed Single Precision Dot Products

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0100 0000:11 xmmreg1 
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0000: mod xmmreg r/m: 
imm8

EXTRACTPS — Extract From Packed Single Precision Floats

  reg from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0111:11 xmmreg reg: 
imm8

Table B-34.  Special Case Instructions Promoted Using REX.W (Contd.)

Instruction and Format Encoding
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 mem from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0111: mod xmmreg r/m: 
imm8

INSERTPS — Insert Into Packed Single Precision Floats

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0010 0001:11 xmmreg1 
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0001: mod xmmreg r/m: 
imm8

MOVNTDQA — Load Double Quadword Non-temporal Aligned

 m128 to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1010:11 r/m xmmreg2

MPSADBW — Multiple Packed Sums of Absolute Difference

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0100 0010:11 xmmreg1 
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0010: mod xmmreg r/m: 
imm8

PACKUSDW — Pack with Unsigned Saturation

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 1011:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1011: mod xmmreg r/m

PBLENDVB — Variable Blend Packed Bytes

 xmmreg2 to xmmreg1 <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0000:11 xmmreg1 
xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0000: mod xmmreg r/m

PBLENDW — Blend Packed Words

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0001 1110:11 xmmreg1 
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1110: mod xmmreg r/m: 
imm8

PCMPEQQ — Compare Packed Qword Data of Equal

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 1001:11 xmmreg1 
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1001: mod xmmreg r/m

PEXTRB — Extract Byte

 reg from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0100:11 xmmreg reg: 
imm8

 xmmreg to mem, imm8 0110 0110:0000 1111:0011 1010: 0001 0100: mod xmmreg r/m: 
imm8

PEXTRD — Extract DWord

 reg from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0110:11 xmmreg reg: 
imm8

 xmmreg to mem, imm8 0110 0110:0000 1111:0011 1010: 0001 0110: mod 
xmmreg r/m: imm8

Table B-35.  Encodings of SSE4.1 instructions

Instruction and Format Encoding
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PEXTRQ — Extract QWord

 r64 from xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0001 0110:11 xmmreg 
reg: imm8

 m64 from xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0001 0110: mod 
xmmreg r/m: imm8

PEXTRW — Extract Word

 reg from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0101:11 reg xmmreg: 
imm8

  mem from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0101: mod xmmreg r/m: 
imm8

PHMINPOSUW — Packed Horizontal Word Minimum

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0100 0001:11 xmmreg1 
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0100 0001: mod xmmreg r/m

PINSRB — Extract Byte

  reg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0000:11 xmmreg reg: 
imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0000: mod xmmreg r/m: 
imm8

PINSRD — Extract DWord

 reg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0010:11 xmmreg reg: 
imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0010: mod xmmreg r/m: 
imm8

PINSRQ — Extract QWord

 r64 to xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0010 0010:11 xmmreg 
reg: imm8

 m64 to xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0010 0010: mod 
xmmreg r/m: imm8

PMAXSB — Maximum of Packed Signed Byte Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1100:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1100: mod xmmreg r/m

PMAXSD — Maximum of Packed Signed Dword Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1101:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1101: mod xmmreg r/m

PMAXUD — Maximum of Packed Unsigned Dword Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1111:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1111: mod xmmreg r/m

PMAXUW — Maximum of Packed Unsigned Word Integers

Table B-35.  Encodings of SSE4.1 instructions
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  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1110:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1110: mod xmmreg r/m

PMINSB — Minimum of Packed Signed Byte Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1000:11 xmmreg1 
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1000: mod xmmreg r/m

PMINSD — Minimum of Packed Signed Dword Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1001:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1001: mod xmmreg r/m

PMINUD — Minimum of Packed Unsigned Dword Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1011:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1011: mod xmmreg r/m

PMINUW — Minimum of Packed Unsigned Word Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1010:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1010: mod xmmreg r/m

PMOVSXBD — Packed Move Sign Extend - Byte to Dword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0001:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0001: mod xmmreg r/m

PMOVSXBQ — Packed Move Sign Extend - Byte to Qword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0010:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0010: mod xmmreg r/m

PMOVSXBW — Packed Move Sign Extend - Byte to Word

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0000:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0000: mod xmmreg r/m

PMOVSXWD — Packed Move Sign Extend - Word to Dword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0011:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0011: mod xmmreg r/m

PMOVSXWQ — Packed Move Sign Extend - Word to Qword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0100:11 xmmreg1 
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0100: mod xmmreg r/m

PMOVSXDQ — Packed Move Sign Extend - Dword to Qword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0101:11 xmmreg1 
xmmreg2

Table B-35.  Encodings of SSE4.1 instructions
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  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0101: mod xmmreg r/m

PMOVZXBD — Packed Move Zero Extend - Byte to Dword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0001:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0001: mod xmmreg r/m

PMOVZXBQ — Packed Move Zero Extend - Byte to Qword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0010:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0010: mod xmmreg r/m

PMOVZXBW — Packed Move Zero Extend - Byte to Word

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0000:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0000: mod xmmreg r/m

PMOVZXWD — Packed Move Zero Extend - Word to Dword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0011:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0011: mod xmmreg r/m

PMOVZXWQ — Packed Move Zero Extend - Word to Qword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0100:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0100: mod xmmreg r/m

PMOVZXDQ — Packed Move Zero Extend - Dword to Qword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0101:11 xmmreg1 
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0101: mod xmmreg r/m

PMULDQ — Multiply Packed Signed Dword Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 1000:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1000: mod xmmreg r/m

PMULLD — Multiply Packed Signed Dword Integers, Store low Result

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0100 0000:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0100 0000: mod xmmreg r/m

PTEST — Logical Compare

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 0111:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 0111: mod xmmreg r/m

ROUNDPD — Round Packed Double Precision Values

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1001:11 xmmreg1 
xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1001: mod xmmreg r/m: 
imm8

Table B-35.  Encodings of SSE4.1 instructions
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B.15 SSE4.2 FORMATS AND ENCODING TABLE

The tables in this section provide SSE4.2 formats and encodings. Some SSE4.2 instructions require a mandatory 
prefix (66H, F2H, F3H) as part of the three-byte opcode. These prefixes are included in the tables. In 64-bit mode, 
some instructions requires REX.W, the byte sequence of REX.W prefix in the opcode sequence is shown.

ROUNDPS — Round Packed Single Precision Values

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1000:11 xmmreg1 
xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1000: mod xmmreg r/m: 
imm8

ROUNDSD — Round Scalar Double Precision Value

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1011:11 xmmreg1 
xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1011: mod xmmreg r/m: 
imm8

ROUNDSS — Round Scalar Single Precision Value

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1010:11 xmmreg1 
xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1010: mod xmmreg r/m: 
imm8

Table B-36.  Encodings of SSE4.2 instructions

Instruction and Format Encoding

CRC32 — Accumulate CRC32

 reg2 to reg1 1111 0010:0000 1111:0011 1000: 1111 000w :11 reg1 reg2

 mem to reg 1111 0010:0000 1111:0011 1000: 1111 000w : mod reg r/m

 bytereg2 to reg1 1111 0010:0100 WR0B:0000 1111:0011 1000: 1111 0000 :11 
reg1 bytereg2

 m8 to reg 1111 0010:0100 WR0B:0000 1111:0011 1000: 1111 0000 : mod 
reg r/m

 qwreg2 to qwreg1 1111 0010:0100 1R0B:0000 1111:0011 1000: 1111 0001 :11 
qwreg1 qwreg2

 mem64 to qwreg 1111 0010:0100 1R0B:0000 1111:0011 1000: 1111 0001 : mod 
qwreg r/m

PCMPESTRI— Packed Compare Explicit-Length Strings To Index

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0001:11 xmmreg1 
xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0001: mod xmmreg r/m

PCMPESTRM— Packed Compare Explicit-Length Strings To Mask

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0000:11 xmmreg1 
xmmreg2: imm8

Table B-35.  Encodings of SSE4.1 instructions
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B.16 AVX FORMATS AND ENCODING TABLE
The tables in this section provide AVX formats and encodings. A mixed form of bit/hex/symbolic forms are used to 
express the various bytes:

The C4/C5 and opcode bytes are expressed in hex notation; the first and second payload byte of VEX, the modR/M 
byte is expressed in combination of bit/symbolic form. The first payload byte of C4 is expressed as combination of 
bits and hex form, with the hex value preceded by an underscore. The VEX bit field to encode upper register 8-15 
uses 1’s complement form, each of those bit field is expressed as lower case notation rxb, instead of RXB.

The hybrid bit-nibble-byte form is depicted below:

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0000: mod xmmreg r/m

PCMPISTRI— Packed Compare Implicit-Length String To Index

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0011:11 xmmreg1 
xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0011: mod xmmreg r/m

PCMPISTRM— Packed Compare Implicit-Length Strings To Mask

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0010:11 xmmreg1 
xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0010: mod xmmreg r/m

PCMPGTQ— Packed Compare Greater Than

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0111:11 xmmreg1 
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0111: mod xmmreg r/m

POPCNT— Return Number of Bits Set to 1

 reg2 to reg1 1111 0011:0000 1111:1011 1000:11 reg1 reg2

 mem to reg1 1111 0011:0000 1111:1011 1000:mod reg1 r/m

 qwreg2 to qwreg1 1111 0011:0100 1R0B:0000 1111:1011 1000:11 reg1 reg2

 mem64 to qwreg1 1111 0011:0100 1R0B:0000 1111:1011 1000:mod reg1 r/m

Figure B-2.  Hybrid Notation of VEX-Encoded Key Instruction Bytes

Table B-36.  Encodings of SSE4.2 instructions

Instruction and Format Encoding

7 6 ----3 2 1 0 hex notation 7-6     5-3     2-0
R srcreg Lp p Opcode byte Mod   Reg*  R/MC5

7 6 ----3 2 1 0

W srcreg L pp

Two-Byte VEX

hex notation

7 6 5 hex notation 7-6     5-3     2-0

R X B Opcode byte Mod   Reg R/MC4

4 ----- 0

0_hex 

mmmmm

Three-Byte VEX
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Table B-37.  Encodings of AVX instructions
Instruction and Format Encoding

VBLENDPD — Blend Packed Double Precision Floats

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0D:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0D:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 into ymmreg1 C4: rxb0_3: w ymmreg2 101:0D:11 ymmreg1 ymmreg3: imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:0D:mod ymmreg1 r/m: imm

VBLENDPS — Blend Packed Single Precision Floats

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0C:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0C:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 into ymmreg1 C4: rxb0_3: w ymmreg2 101:0C:11 ymmreg1 ymmreg3: imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:0C:mod ymmreg1 r/m: imm

VBLENDVPD — Variable Blend Packed Double Precision Floats

 xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as 
mask

C4: rxb0_3: 0 xmmreg2 001:4B:11 xmmreg1 xmmreg3: xmmreg4

 xmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: 0 xmmreg2 001:4B:mod xmmreg1 r/m: xmmreg4

 ymmreg2 with ymmreg3 into ymmreg1 using ymmreg4 as 
mask

C4: rxb0_3: 0 ymmreg2 101:4B:11 ymmreg1 ymmreg3: ymmreg4

 ymmreg2 with mem to ymmreg1 using ymmreg4 as mask C4: rxb0_3: 0 ymmreg2 101:4B:mod ymmreg1 r/m: ymmreg4

VBLENDVPS — Variable Blend Packed Single Precision Floats

 xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as 
mask

C4: rxb0_3: 0 xmmreg2 001:4A:11 xmmreg1 xmmreg3: xmmreg4

 xmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: 0 xmmreg2 001:4A:mod xmmreg1 r/m: xmmreg4

 ymmreg2 with ymmreg3 into ymmreg1 using ymmreg4 as 
mask

C4: rxb0_3: 0 ymmreg2 101:4A:11 ymmreg1 ymmreg3: ymmreg4

 ymmreg2 with mem to ymmreg1 using ymmreg4 as mask C4: rxb0_3: 0 ymmreg2 101:4A:mod ymmreg1 r/m: ymmreg4

VDPPD — Packed Double Precision Dot Products

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:41:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:41:mod xmmreg1 r/m: imm

VDPPS — Packed Single Precision Dot Products

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:40:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:40:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 into ymmreg1 C4: rxb0_3: w ymmreg2 101:40:11 ymmreg1 ymmreg3: imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:40:mod ymmreg1 r/m: imm

VEXTRACTPS — Extract From Packed Single Precision Floats

 reg from xmmreg1 using imm C4: rxb0_3: w_F 001:17:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: w_F 001:17:mod xmmreg1 r/m: imm

VINSERTPS — Insert Into Packed Single Precision Floats

 use imm to merge xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 xmmreg3: imm

 use imm to merge mem with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:mod xmmreg1 r/m: imm

VMOVNTDQA — Load Double Quadword Non-temporal Aligned

 m128 to xmmreg1 C4: rxb0_2: w_F 001:2A:11 xmmreg1 r/m
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VMPSADBW — Multiple Packed Sums of Absolute Difference

  xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm

  m128 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:mod xmmreg1 r/m: imm

VPACKUSDW — Pack with Unsigned Saturation

 xmmreg3 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:11 xmmreg1 xmmreg3: imm

  m128 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:mod xmmreg1 r/m: imm

VPBLENDVB — Variable Blend Packed Bytes

 xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as 
mask

C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: xmmreg4

 xmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:4C:mod xmmreg1 r/m: xmmreg4

VPBLENDW — Blend Packed Words

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:mod xmmreg1 r/m: imm

VPCMPEQQ — Compare Packed Qword Data of Equal

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:29:mod xmmreg1 r/m:

VPEXTRB — Extract Byte

 reg from xmmreg1 using imm C4: rxb0_3: 0_F 001:14:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 0_F 001:14:mod xmmreg1 r/m: imm

VPEXTRD — Extract DWord

 reg from xmmreg1 using imm C4: rxb0_3: 0_F 001:16:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 0_F 001:16:mod xmmreg1 r/m: imm

VPEXTRQ — Extract QWord

 reg from xmmreg1 using imm C4: rxb0_3: 1_F 001:16:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 1_F 001:16:mod xmmreg1 r/m: imm

VPEXTRW — Extract Word

 reg from xmmreg1 using imm C4: rxb0_3: 0_F 001:15:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 0_F 001:15:mod xmmreg1 r/m: imm

VPHMINPOSUW — Packed Horizontal Word Minimum

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:41:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:41:mod xmmreg1 r/m

VPINSRB — Insert Byte

  reg with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 0 xmmreg2 001:20:11 xmmreg1 reg: imm

 mem with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 0 xmmreg2 001:20:mod xmmreg1 r/m: imm

VPINSRD — Insert DWord

 reg with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 0 xmmreg2 001:22:11 xmmreg1 reg: imm

 mem with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 0 xmmreg2 001:22:mod xmmreg1 r/m: imm

VPINSRQ — Insert QWord

 r64 with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 1 xmmreg2 001:22:11 xmmreg1 reg: imm

Instruction and Format Encoding
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 m64 with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 1 xmmreg2 001:22:mod xmmreg1 r/m: imm

VPMAXSB — Maximum of Packed Signed Byte Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:3C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3C:mod xmmreg1 r/m

VPMAXSD — Maximum of Packed Signed Dword Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:3D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3D:mod xmmreg1 r/m

VPMAXUD — Maximum of Packed Unsigned Dword Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:3F:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3F:mod xmmreg1 r/m

VPMAXUW — Maximum of Packed Unsigned Word Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:3E:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3E:mod xmmreg1 r/m

VPMINSB — Minimum of Packed Signed Byte Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:38:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:38:mod xmmreg1 r/m

VPMINSD — Minimum of Packed Signed Dword Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:39:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:39:mod xmmreg1 r/m

VPMINUD — Minimum of Packed Unsigned Dword Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:3B:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3B:mod xmmreg1 r/m

VPMINUW — Minimum of Packed Unsigned Word Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:3A:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3A:mod xmmreg1 r/m

VPMOVSXBD — Packed Move Sign Extend - Byte to Dword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:21:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:21:mod xmmreg1 r/m

VPMOVSXBQ — Packed Move Sign Extend - Byte to Qword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:22:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:22:mod xmmreg1 r/m

VPMOVSXBW — Packed Move Sign Extend - Byte to Word

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:20:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:20:mod xmmreg1 r/m

VPMOVSXWD — Packed Move Sign Extend - Word to Dword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:23:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:23:mod xmmreg1 r/m

VPMOVSXWQ — Packed Move Sign Extend - Word to Qword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:24:11 xmmreg1 xmmreg2
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 mem to xmmreg1 C4: rxb0_2: w_F 001:24:mod xmmreg1 r/m

VPMOVSXDQ — Packed Move Sign Extend - Dword to Qword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:25:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:25:mod xmmreg1 r/m

VPMOVZXBD — Packed Move Zero Extend - Byte to Dword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:31:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:31:mod xmmreg1 r/m

VPMOVZXBQ — Packed Move Zero Extend - Byte to Qword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:32:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:32:mod xmmreg1 r/m

VPMOVZXBW — Packed Move Zero Extend - Byte to Word

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:30:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:30:mod xmmreg1 r/m

VPMOVZXWD — Packed Move Zero Extend - Word to Dword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:33:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:33:mod xmmreg1 r/m

VPMOVZXWQ — Packed Move Zero Extend - Word to Qword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:34:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:34:mod xmmreg1 r/m

VPMOVZXDQ — Packed Move Zero Extend - Dword to Qword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:35:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:35:mod xmmreg1 r/m

VPMULDQ — Multiply Packed Signed Dword Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:mod xmmreg1 r/m

VPMULLD — Multiply Packed Signed Dword Integers, Store low Result

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:40:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:40:mod xmmreg1 r/m

VPTEST — Logical Compare

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:17:11 xmmreg1 xmmreg2

  mem to xmmreg C4: rxb0_2: w_F 001:17:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_2: w_F 101:17:11 ymmreg1 ymmreg2

  mem to ymmreg C4: rxb0_2: w_F 101:17:mod ymmreg1 r/m

VROUNDPD — Round Packed Double Precision Values

  xmmreg2 to xmmreg1, imm8 C4: rxb0_3: w_F 001:09:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1, imm8 C4: rxb0_3: w_F 001:09:mod xmmreg1 r/m: imm

  ymmreg2 to ymmreg1, imm8 C4: rxb0_3: w_F 101:09:11 ymmreg1 ymmreg2: imm

  mem to ymmreg1, imm8 C4: rxb0_3: w_F 101:09:mod ymmreg1 r/m: imm

VROUNDPS — Round Packed Single Precision Values
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  xmmreg2 to xmmreg1, imm8 C4: rxb0_3: w_F 001:08:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1, imm8 C4: rxb0_3: w_F 001:08:mod xmmreg1 r/m: imm

  ymmreg2 to ymmreg1, imm8 C4: rxb0_3: w_F 101:08:11 ymmreg1 ymmreg2: imm

  mem to ymmreg1, imm8 C4: rxb0_3: w_F 101:08:mod ymmreg1 r/m: imm

VROUNDSD — Round Scalar Double Precision Value

 xmmreg2 and xmmreg3 to xmmreg1, imm8 C4: rxb0_3: w xmmreg2 001:0B:11 xmmreg1 xmmreg3: imm

  xmmreg2 and mem to xmmreg1, imm8 C4: rxb0_3: w xmmreg2 001:0B:mod xmmreg1 r/m: imm

VROUNDSS — Round Scalar Single Precision Value

 xmmreg2 and xmmreg3 to xmmreg1, imm8 C4: rxb0_3: w xmmreg2 001:0A:11 xmmreg1 xmmreg3: imm

  xmmreg2 and mem to xmmreg1, imm8 C4: rxb0_3: w xmmreg2 001:0A:mod xmmreg1 r/m: imm

VPCMPESTRI — Packed Compare Explicit Length Strings, Return Index

  xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:61:11 xmmreg1 xmmreg2: imm

  mem with xmmreg1, imm8 C4: rxb0_3: w_F 001:61:mod xmmreg1 r/m: imm

VPCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

  xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:60:11 xmmreg1 xmmreg2: imm

  mem with xmmreg1, imm8 C4: rxb0_3: w_F 001:60:mod xmmreg1 r/m: imm

VPCMPGTQ — Compare Packed Data for Greater Than

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:mod xmmreg1 r/m

VPCMPISTRI — Packed Compare Implicit Length Strings, Return Index

  xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:63:11 xmmreg1 xmmreg2: imm

  mem with xmmreg1, imm8 C4: rxb0_3: w_F 001:63:mod xmmreg1 r/m: imm

VPCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

  xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:62:11 xmmreg1 xmmreg2: imm

  mem with xmmreg, imm8 C4: rxb0_3: w_F 001:62:mod xmmreg1 r/m: imm

VAESDEC — Perform One Round of an AES Decryption Flow

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DE:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DE:mod xmmreg1 r/m

VAESDECLAST — Perform Last Round of an AES Decryption Flow

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DF:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DF:mod xmmreg1 r/m

VAESENC — Perform One Round of an AES Encryption Flow

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DC:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DC:mod xmmreg1 r/m

VAESENCLAST — Perform Last Round of an AES Encryption Flow

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DD:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DD:mod xmmreg1 r/m

VAESIMC — Perform the AES InvMixColumn Transformation

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:DB:11 xmmreg1 xmmreg2
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  mem to xmmreg1 C4: rxb0_2: w_F 001:DB:mod xmmreg1 r/m

VAESKEYGENASSIST — AES Round Key Generation Assist

  xmmreg2 to xmmreg1, imm8 C4: rxb0_3: w_F 001:DF:11 xmmreg1 xmmreg2: imm

  mem to xmmreg, imm8 C4: rxb0_3: w_F 001:DF:mod xmmreg1 r/m: imm

VPABSB — Packed Absolute Value

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:1C:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:1C:mod xmmreg1 r/m

VPABSD — Packed Absolute Value

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:1E:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:1E:mod xmmreg1 r/m

VPABSW — Packed Absolute Value

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:1D:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:1D:mod xmmreg1 r/m

VPALIGNR — Packed Align Right

  xmmreg2 with xmmreg3 to xmmreg1, imm8 C4: rxb0_3: w xmmreg2 001:DD:11 xmmreg1 xmmreg3: imm

  xmmreg2 with mem to xmmreg1, imm8 C4: rxb0_3: w xmmreg2 001:DD:mod xmmreg1 r/m: imm

VPHADDD — Packed Horizontal Add

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:02:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:02:mod xmmreg1 r/m

VPHADDW — Packed Horizontal Add

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:01:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:01:mod xmmreg1 r/m

VPHADDSW — Packed Horizontal Add and Saturate

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:03:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:03:mod xmmreg1 r/m

VPHSUBD — Packed Horizontal Subtract

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:06:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:06:mod xmmreg1 r/m

VPHSUBW — Packed Horizontal Subtract

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:05:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:05:mod xmmreg1 r/m

VPHSUBSW — Packed Horizontal Subtract and Saturate

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:07:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:07:mod xmmreg1 r/m

VPMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:04:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:04:mod xmmreg1 r/m

VPMULHRSW — Packed Multiply High with Round and Scale

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:0B:11 xmmreg1 xmmreg3
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  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:0B:mod xmmreg1 r/m

VPSHUFB — Packed Shuffle Bytes

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:00:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:00:mod xmmreg1 r/m

VPSIGNB — Packed SIGN

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:08:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:08:mod xmmreg1 r/m

VPSIGND — Packed SIGN

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:0A:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:0A:mod xmmreg1 r/m

VPSIGNW — Packed SIGN

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:09:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:09:mod xmmreg1 r/m

VADDSUBPD — Packed Double-FP Add/Subtract

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D0:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D0:mod xmmreg1 r/m

  xmmreglo21 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D0:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D0:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:D0:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:D0:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:D0:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:D0:mod ymmreg1 r/m

VADDSUBPS — Packed Single-FP Add/Subtract

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:D0:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:D0:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:D0:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:D0:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 111:D0:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 111:D0:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 111:D0:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:D0:mod ymmreg1 r/m

VHADDPD — Packed Double-FP Horizontal Add

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:7C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:7C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:7C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:7C:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:7C:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:7C:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:7C:11 ymmreg1 ymmreglo3
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  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7C:mod ymmreg1 r/m

VHADDPS — Packed Single-FP Horizontal Add

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:7C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:7C:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 111:7C:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 111:7C:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 111:7C:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:7C:mod ymmreg1 r/m

VHSUBPD — Packed Double-FP Horizontal Subtract

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:7D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:7D:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:7D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:7D:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:7D:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:7D:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:7D:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7D:mod ymmreg1 r/m

VHSUBPS — Packed Single-FP Horizontal Subtract

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:7D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7D:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:7D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:7D:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 111:7D:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 111:7D:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 111:7D:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:7D:mod ymmreg1 r/m

VLDDQU — Load Unaligned Integer 128 Bits

  mem to xmmreg1 C4: rxb0_1: w_F 011:F0:mod xmmreg1 r/m

  mem to xmmreg1 C5: r_F 011:F0:mod xmmreg1 r/m

  mem to ymmreg1 C4: rxb0_1: w_F 111:F0:mod ymmreg1 r/m

  mem to ymmreg1 C5: r_F 111:F0:mod ymmreg1 r/m

VMOVDDUP — Move One Double-FP and Duplicate

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 011:12:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 011:12:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 011:12:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 011:12:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 111:12:11 ymmreg1 ymmreg2
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  mem to ymmreg1 C4: rxb0_1: w_F 111:12:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_ F 111:12:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 111:12:mod ymmreg1 r/m

VMOVHLPS — Move Packed Single Precision Floating-Point Values High to Low

  xmmreg2 and xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:12:11 xmmreg1 xmmreg3

  xmmreglo2 and xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:12:11 xmmreg1 xmmreglo3

VMOVSHDUP — Move Packed Single-FP High and Duplicate

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:16:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 010:16:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 010:16:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 010:16:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:16:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 110:16:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 110:16:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 110:16:mod ymmreg1 r/m

VMOVSLDUP — Move Packed Single-FP Low and Duplicate

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:12:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 010:12:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 010:12:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 010:12:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:12:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 110:12:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 110:12:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 110:12:mod ymmreg1 r/m

VADDPD — Add Packed Double Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:58:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:58:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:58:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:58:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:58:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:58:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:58:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:58:mod ymmreg1 r/m

VADDSD — Add Scalar Double Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:58:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:58:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:58:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5 r_xmmreglo2 011:58:mod xmmreg1 r/m

VANDPD — Bitwise Logical AND of Packed Double Precision Floating-Point Values
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  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:54:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:54:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:54:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:54:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:54:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:54:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:54:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:54:mod ymmreg1 r/m

VANDNPD — Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:55:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:55:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:55:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:55:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:55:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:55:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:55:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:55:mod ymmreg1 r/m

VCMPPD — Compare Packed Double Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:C2:11 xmmreg1 xmmreg3: imm

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:C2:mod xmmreg1 r/m: imm

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:C2:11 xmmreg1 xmmreglo3: imm

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:C2:mod xmmreg1 r/m: imm

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:C2:11 ymmreg1 ymmreg3: imm

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:C2:mod ymmreg1 r/m: imm

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:C2:11 ymmreg1 ymmreglo3: imm

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:C2:mod ymmreg1 r/m: imm

VCMPSD — Compare Scalar Double Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:C2:11 xmmreg1 xmmreg3: imm

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:C2:mod xmmreg1 r/m: imm

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:C2:11 xmmreg1 xmmreglo3: imm

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:C2:mod xmmreg1 r/m: imm

VCOMISD — Compare Scalar Ordered Double Precision Floating-Point Values and Set EFLAGS

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:2F:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:2F:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:2F:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:2F:mod xmmreg1 r/m

VCVTDQ2PD— Convert Packed Dword Integers to Packed Double Precision FP Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:E6:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 010:E6:mod xmmreg1 r/m
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  xmmreglo to xmmreg1 C5: r_F 010:E6:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 010:E6:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:E6:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 110:E6:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 110:E6:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 110:E6:mod ymmreg1 r/m

VCVTDQ2PS— Convert Packed Dword Integers to Packed Single Precision FP Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:5B:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:5B:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:5B:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:5B:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:5B:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:5B:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:5B:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:5B:mod ymmreg1 r/m

VCVTPD2DQ— Convert Packed Double Precision FP Values to Packed Dword Integers

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 011:E6:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 011:E6:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 011:E6:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 011:E6:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 111:E6:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 111:E6:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 111:E6:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 111:E6:mod ymmreg1 r/m

VCVTPD2PS— Convert Packed Double Precision FP Values to Packed Single Precision FP Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:5A:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:5A:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:5A:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:5A:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:5A:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:5A:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 101:5A:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:5A:mod ymmreg1 r/m

VCVTPS2DQ— Convert Packed Single Precision FP Values to Packed Dword Integers

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:5B:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:5B:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:5B:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:5B:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:5B:11 ymmreg1 ymmreg2

Instruction and Format Encoding
Vol. 2D B-81



INSTRUCTION FORMATS AND ENCODINGS
  mem to ymmreg1 C4: rxb0_1: w_F 101:5B:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 101:5B:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:5B:mod ymmreg1 r/m

VCVTPS2PD— Convert Packed Single Precision FP Values to Packed Double Precision FP Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:5A:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:5A:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:5A:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:5A:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:5A:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:5A:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:5A:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:5A:mod ymmreg1 r/m

VCVTSD2SI— Convert Scalar Double Precision FP Value to Integer

  xmmreg1 to reg32 C4: rxb0_1: 0_F 011:2D:11 reg xmmreg1

  mem to reg32 C4: rxb0_1: 0_F 011:2D:mod reg r/m

  xmmreglo to reg32 C5: r_F 011:2D:11 reg xmmreglo

  mem to reg32 C5: r_F 011:2D:mod reg r/m

  ymmreg1 to reg64 C4: rxb0_1: 1_F 111:2D:11 reg ymmreg1

  mem to reg64 C4: rxb0_1: 1_F 111:2D:mod reg r/m

VCVTSD2SS — Convert Scalar Double Precision FP Value to Scalar Single Precision FP Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5A:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5A:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:5A:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5A:mod xmmreg1 r/m

VCVTSI2SD— Convert Dword Integer to Scalar Double Precision FP Value

  xmmreg2 with reg to xmmreg1 C4: rxb0_1: 0 xmmreg2 011:2A:11 xmmreg1 reg

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: 0 xmmreg2 011:2A:mod xmmreg1 r/m

  xmmreglo2 with reglo to xmmreg1 C5: r_xmmreglo2 011:2A:11 xmmreg1 reglo

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:2A:mod xmmreg1 r/m

  ymmreg2 with reg to ymmreg1 C4: rxb0_1: 1 ymmreg2 111:2A:11 ymmreg1 reg

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: 1 ymmreg2 111:2A:mod ymmreg1 r/m

VCVTSS2SD — Convert Scalar Single Precision FP Value to Scalar Double Precision FP Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5A:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5A:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:5A:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5A:mod xmmreg1 r/m

VCVTTPD2DQ— Convert with Truncation Packed Double Precision FP Values to Packed Dword Integers

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:E6:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:E6:mod xmmreg1 r/m
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  xmmreglo to xmmreg1 C5: r_F 001:E6:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:E6:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:E6:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:E6:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 101:E6:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:E6:mod ymmreg1 r/m

VCVTTPS2DQ— Convert with Truncation Packed Single Precision FP Values to Packed Dword Integers

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:5B:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 010:5B:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 010:5B:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 010:5B:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:5B:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 110:5B:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 110:5B:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 110:5B:mod ymmreg1 r/m

VCVTTSD2SI— Convert with Truncation Scalar Double Precision FP Value to Signed Integer

  xmmreg1 to reg32 C4: rxb0_1: 0_F 011:2C:11 reg xmmreg1

  mem to reg32 C4: rxb0_1: 0_F 011:2C:mod reg r/m

  xmmreglo to reg32 C5: r_F 011:2C:11 reg xmmreglo

  mem to reg32 C5: r_F 011:2C:mod reg r/m

  xmmreg1 to reg64 C4: rxb0_1: 1_F 011:2C:11 reg xmmreg1

  mem to reg64 C4: rxb0_1: 1_F 011:2C:mod reg r/m

VDIVPD — Divide Packed Double Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5E:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5E:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:5E:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5E:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5E:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5E:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:5E:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5E:mod ymmreg1 r/m

VDIVSD — Divide Scalar Double Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5E:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5E:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:5E:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5E:mod xmmreg1 r/m

VMASKMOVDQU— Store Selected Bytes of Double Quadword

  xmmreg1 to mem; xmmreg2 as mask C4: rxb0_1: w_F 001:F7:11 r/m xmmreg1: xmmreg2

  xmmreg1 to mem; xmmreg2 as mask C5: r_F 001:F7:11 r/m xmmreg1: xmmreg2
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VMAXPD — Return Maximum Packed Double Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5F:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5F:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:5F:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5F:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5F:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5F:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:5F:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5F:mod ymmreg1 r/m

VMAXSD — Return Maximum Scalar Double Precision Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5F:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5F:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:5F:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5F:mod xmmreg1 r/m

VMINPD — Return Minimum Packed Double Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5D:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:5D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5D:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5D:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5D:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:5D:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5D:mod ymmreg1 r/m

VMINSD — Return Minimum Scalar Double Precision Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5D:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:5D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5D:mod xmmreg1 r/m

VMOVAPD — Move Aligned Packed Double Precision Floating-Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:28:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:28:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:28:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:28:mod xmmreg1 r/m

  xmmreg1 to xmmreg2 C4: rxb0_1: w_F 001:29:11 xmmreg2 xmmreg1

  xmmreg1 to mem C4: rxb0_1: w_F 001:29:mod r/m xmmreg1

  xmmreg1 to xmmreglo C5: r_F 001:29:11 xmmreglo xmmreg1

  xmmreg1 to mem C5: r_F 001:29:mod r/m xmmreg1

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:28:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:28:mod ymmreg1 r/m
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  ymmreglo to ymmreg1 C5: r_F 101:28:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:28:mod ymmreg1 r/m

  ymmreg1 to ymmreg2 C4: rxb0_1: w_F 101:29:11 ymmreg2 ymmreg1

  ymmreg1 to mem C4: rxb0_1: w_F 101:29:mod r/m ymmreg1

  ymmreg1 to ymmreglo C5: r_F 101:29:11 ymmreglo ymmreg1

  ymmreg1 to mem C5: r_F 101:29:mod r/m ymmreg1

VMOVD — Move Doubleword

  reg32 to xmmreg1 C4: rxb0_1: 0_F 001:6E:11 xmmreg1 reg32

  mem32 to xmmreg1 C4: rxb0_1: 0_F 001:6E:mod xmmreg1 r/m

  reg32 to xmmreg1 C5: r_F 001:6E:11 xmmreg1 reg32

  mem32 to xmmreg1 C5: r_F 001:6E:mod xmmreg1 r/m

  xmmreg1 to reg32 C4: rxb0_1: 0_F 001:7E:11 reg32 xmmreg1

  xmmreg1 to mem32 C4: rxb0_1: 0_F 001:7E:mod mem32 xmmreg1

  xmmreglo to reg32 C5: r_F 001:7E:11 reg32 xmmreglo

  xmmreglo to mem32 C5: r_F 001:7E:mod mem32 xmmreglo

VMOVQ — Move Quadword

  reg64 to xmmreg1 C4: rxb0_1: 1_F 001:6E:11 xmmreg1 reg64

  mem64 to xmmreg1 C4: rxb0_1: 1_F 001:6E:mod xmmreg1 r/m

  xmmreg1 to reg64 C4: rxb0_1: 1_F 001:7E:11 reg64 xmmreg1

  xmmreg1 to mem64 C4: rxb0_1: 1_F 001:7E:mod r/m xmmreg1

VMOVDQA — Move Aligned Double Quadword

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:6F:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:6F:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:6F:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:6F:mod xmmreg1 r/m

  xmmreg1 to xmmreg2 C4: rxb0_1: w_F 001:7F:11 xmmreg2 xmmreg1

  xmmreg1 to mem C4: rxb0_1: w_F 001:7F:mod r/m xmmreg1

  xmmreg1 to xmmreglo C5: r_F 001:7F:11 xmmreglo xmmreg1

  xmmreg1 to mem C5: r_F 001:7F:mod r/m xmmreg1

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:6F:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:6F:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 101:6F:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:6F:mod ymmreg1 r/m

  ymmreg1 to ymmreg2 C4: rxb0_1: w_F 101:7F:11 ymmreg2 ymmreg1

  ymmreg1 to mem C4: rxb0_1: w_F 101:7F:mod r/m ymmreg1

  ymmreg1 to ymmreglo C5: r_F 101:7F:11 ymmreglo ymmreg1

  ymmreg1 to mem C5: r_F 101:7F:mod r/m ymmreg1

VMOVDQU — Move Unaligned Double Quadword

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:6F:11 xmmreg1 xmmreg2
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  mem to xmmreg1 C4: rxb0_1: w_F 010:6F:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 010:6F:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 010:6F:mod xmmreg1 r/m

  xmmreg1 to xmmreg2 C4: rxb0_1: w_F 010:7F:11 xmmreg2 xmmreg1

  xmmreg1 to mem C4: rxb0_1: w_F 010:7F:mod r/m xmmreg1

  xmmreg1 to xmmreglo C5: r_F 010:7F:11 xmmreglo xmmreg1

  xmmreg1 to mem C5: r_F 010:7F:mod r/m xmmreg1

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:6F:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 110:6F:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 110:6F:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 110:6F:mod ymmreg1 r/m

  ymmreg1 to ymmreg2 C4: rxb0_1: w_F 110:7F:11 ymmreg2 ymmreg1

  ymmreg1 to mem C4: rxb0_1: w_F 110:7F:mod r/m ymmreg1

  ymmreg1 to ymmreglo C5: r_F 110:7F:11 ymmreglo ymmreg1

  ymmreg1 to mem C5: r_F 110:7F:mod r/m ymmreg1

VMOVHPD — Move High Packed Double Precision Floating-Point Value

  xmmreg1 and mem to xmmreg2 C4: rxb0_1: w xmmreg1 001:16:11 xmmreg2 r/m

  xmmreg1 and mem to xmmreglo2 C5: r_xmmreg1 001:16:11 xmmreglo2 r/m

  xmmreg1 to mem C4: rxb0_1: w_F 001:17:mod r/m xmmreg1

  xmmreglo to mem C5: r_F 001:17:mod r/m xmmreglo

VMOVLPD — Move Low Packed Double Precision Floating-Point Value

  xmmreg1 and mem to xmmreg2 C4: rxb0_1: w xmmreg1 001:12:11 xmmreg2 r/m

  xmmreg1 and mem to xmmreglo2 C5: r_xmmreg1 001:12:11 xmmreglo2 r/m

  xmmreg1 to mem C4: rxb0_1: w_F 001:13:mod r/m xmmreg1

  xmmreglo to mem C5: r_F 001:13:mod r/m xmmreglo

VMOVMSKPD — Extract Packed Double Precision Floating-Point Sign Mask

  xmmreg2 to reg C4: rxb0_1: w_F 001:50:11 reg xmmreg1

  xmmreglo to reg C5: r_F 001:50:11 reg xmmreglo

  ymmreg2 to reg C4: rxb0_1: w_F 101:50:11 reg ymmreg1

  ymmreglo to reg C5: r_F 101:50:11 reg ymmreglo

VMOVNTDQ — Store Double Quadword Using Non-Temporal Hint

  xmmreg1 to mem C4: rxb0_1: w_F 001:E7:11 r/m xmmreg1

  xmmreglo to mem C5: r_F 001:E7:11 r/m xmmreglo

  ymmreg1 to mem C4: rxb0_1: w_F 101:E7:11 r/m ymmreg1

  ymmreglo to mem C5: r_F 101:E7:11 r/m ymmreglo

VMOVNTPD — Store Packed Double Precision Floating-Point Values Using Non-Temporal Hint

  xmmreg1 to mem C4: rxb0_1: w_F 001:2B:11 r/m xmmreg1

  xmmreglo to mem C5: r_F 001:2B:11 r/m xmmreglo

  ymmreg1 to mem C4: rxb0_1: w_F 101:2B:11r/m ymmreg1
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  ymmreglo to mem C5: r_F 101:2B:11r/m ymmreglo

VMOVSD — Move Scalar Double Precision Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:10:11 xmmreg1 xmmreg3

  mem to xmmreg1 C4: rxb0_1: w_F 011:10:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:10:11 xmmreg1 xmmreglo3

  mem to xmmreg1 C5: r_F 011:10:mod xmmreg1 r/m

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:11:11 xmmreg1 xmmreg3

  xmmreg1 to mem C4: rxb0_1: w_F 011:11:mod r/m xmmreg1

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:11:11 xmmreg1 xmmreglo3

  xmmreglo to mem C5: r_F 011:11:mod r/m xmmreglo

VMOVUPD — Move Unaligned Packed Double Precision Floating-Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:10:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:10:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:10:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:10:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:10:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:10:mod ymmreg1 r/m 

  ymmreglo to ymmreg1 C5: r_F 101:10:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:10:mod ymmreg1 r/m 

  xmmreg1 to xmmreg2 C4: rxb0_1: w_F 001:11:11 xmmreg2 xmmreg1

  xmmreg1 to mem C4: rxb0_1: w_F 001:11:mod r/m xmmreg1

  xmmreg1 to xmmreglo C5: r_F 001:11:11 xmmreglo xmmreg1

  xmmreg1 to mem C5: r_F 001:11:mod r/m xmmreg1

  ymmreg1 to ymmreg2 C4: rxb0_1: w_F 101:11:11 ymmreg2 ymmreg1

  ymmreg1 to mem C4: rxb0_1: w_F 101:11:mod r/m ymmreg1

  ymmreg1 to ymmreglo C5: r_F 101:11:11 ymmreglo ymmreg1

  ymmreg1 to mem C5: r_F 101:11:mod r/m ymmreg1

VMULPD — Multiply Packed Double Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:59:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:59:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:59:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:59:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:59:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:59:mod ymmreg1 r/m 

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:59:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:59:mod ymmreg1 r/m 

VMULSD — Multiply Scalar Double Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:59:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:59:mod xmmreg1 r/m
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  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:59:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:59:mod xmmreg1 r/m

VORPD — Bitwise Logical OR of Double Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:56:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:56:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:56:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:56:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:56:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:56:mod ymmreg1 r/m 

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:56:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:56:mod ymmreg1 r/m 

VPACKSSWB— Pack with Signed Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:63:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:63:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:63:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:63:mod xmmreg1 r/m

VPACKSSDW— Pack with Signed Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6B:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6B:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:6B:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6B:mod xmmreg1 r/m

VPACKUSWB— Pack with Unsigned Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:67:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:67:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:67:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:67:mod xmmreg1 r/m

VPADDB — Add Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FC:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FC:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:FC:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FC:mod xmmreg1 r/m

VPADDW — Add Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FD:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FD:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:FD:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FD:mod xmmreg1 r/m

VPADDD — Add Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FE:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FE:mod xmmreg1 r/m
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  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:FE:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FE:mod xmmreg1 r/m

VPADDQ — Add Packed Quadword Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D4:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D4:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D4:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D4:mod xmmreg1 r/m

VPADDSB — Add Packed Signed Integers with Signed Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EC:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EC:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:EC:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EC:mod xmmreg1 r/m

VPADDSW — Add Packed Signed Integers with Signed Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:ED:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:ED:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:ED:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:ED:mod xmmreg1 r/m

VPADDUSB — Add Packed Unsigned Integers with Unsigned Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DC:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DC:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:DC:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DC:mod xmmreg1 r/m

VPADDUSW — Add Packed Unsigned Integers with Unsigned Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DD:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DD:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:DD:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DD:mod xmmreg1 r/m

VPAND — Logical AND

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DB:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DB:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:DB:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DB:mod xmmreg1 r/m

VPANDN — Logical AND NOT

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DF:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DF:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:DF:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DF:mod xmmreg1 r/m

VPAVGB — Average Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E0:11 xmmreg1 xmmreg3
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  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E0:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E0:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E0:mod xmmreg1 r/m

VPAVGW — Average Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E3:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E3:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E3:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E3:mod xmmreg1 r/m

VPCMPEQB — Compare Packed Data for Equal

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:74:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:74:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:74:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:74:mod xmmreg1 r/m

VPCMPEQW — Compare Packed Data for Equal

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:75:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:75:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:75:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:75:mod xmmreg1 r/m

VPCMPEQD — Compare Packed Data for Equal

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:76:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:76:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:76:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:76:mod xmmreg1 r/m

VPCMPGTB — Compare Packed Signed Integers for Greater Than

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:64:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:64:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:64:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:64:mod xmmreg1 r/m

VPCMPGTW — Compare Packed Signed Integers for Greater Than

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:65:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:65:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:65:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:65:mod xmmreg1 r/m

VPCMPGTD — Compare Packed Signed Integers for Greater Than

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:66:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:66:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:66:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:66:mod xmmreg1 r/m

VPEXTRW — Extract Word
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  xmmreg1 to reg using imm C4: rxb0_1: 0_F 001:C5:11 reg xmmreg1: imm

  xmmreg1 to reg using imm C5: r_F 001:C5:11 reg xmmreg1: imm

VPINSRW — Insert Word

  xmmreg2 with reg to xmmreg1 C4: rxb0_1: 0 xmmreg2 001:C4:11 xmmreg1 reg: imm

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: 0 xmmreg2 001:C4:mod xmmreg1 r/m: imm

  xmmreglo2 with reglo to xmmreg1 C5: r_xmmreglo2 001:C4:11 xmmreg1 reglo: imm

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:C4:mod xmmreg1 r/m: imm

VPMADDWD — Multiply and Add Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F5:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F5:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F5:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F5:mod xmmreg1 r/m

VPMAXSW — Maximum of Packed Signed Word Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EE:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EE:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:EE:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EE:mod xmmreg1 r/m

VPMAXUB — Maximum of Packed Unsigned Byte Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DE:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DE:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:DE:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DE:mod xmmreg1 r/m

VPMINSW — Minimum of Packed Signed Word Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EA:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EA:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:EA:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EA:mod xmmreg1 r/m

VPMINUB — Minimum of Packed Unsigned Byte Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DA:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DA:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:DA:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DA:mod xmmreg1 r/m

VPMOVMSKB — Move Byte Mask

  xmmreg1 to reg C4: rxb0_1: w_F 001:D7:11 reg xmmreg1

  xmmreg1 to reg C5: r_F 001:D7:11 reg xmmreg1

VPMULHUW — Multiply Packed Unsigned Integers and Store High Result

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E4:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E4:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E4:11 xmmreg1 xmmreglo3
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  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E4:mod xmmreg1 r/m

VPMULHW — Multiply Packed Signed Integers and Store High Result

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E5:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E5:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E5:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E5:mod xmmreg1 r/m

VPMULLW — Multiply Packed Signed Integers and Store Low Result

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D5:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D5:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D5:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D5:mod xmmreg1 r/m

VPMULUDQ — Multiply Packed Unsigned Doubleword Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F4:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F4:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F4:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F4:mod xmmreg1 r/m

VPOR — Bitwise Logical OR

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EB:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EB:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:EB:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EB:mod xmmreg1 r/m

VPSADBW — Compute Sum of Absolute Differences

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F6:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F6:mod xmmreg1 r/m

VPSHUFD — Shuffle Packed Doublewords

  xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:70:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1 using imm C4: rxb0_1: w_F 001:70:mod xmmreg1 r/m: imm

  xmmreglo to xmmreg1 using imm C5: r_F 001:70:11 xmmreg1 xmmreglo: imm

  mem to xmmreg1 using imm C5: r_F 001:70:mod xmmreg1 r/m: imm

VPSHUFHW — Shuffle Packed High Words

  xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1 using imm C4: rxb0_1: w_F 010:70:mod xmmreg1 r/m: imm

  xmmreglo to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreglo: imm

  mem to xmmreg1 using imm C5: r_F 010:70:mod xmmreg1 r/m: imm

VPSHUFLW — Shuffle Packed Low Words

  xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1 using imm C4: rxb0_1: w_F 011:70:mod xmmreg1 r/m: imm
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  xmmreglo to xmmreg1 using imm C5: r_F 011:70:11 xmmreg1 xmmreglo: imm

  mem to xmmreg1 using imm C5: r_F 011:70:mod xmmreg1 r/m: imm

VPSLLDQ — Shift Double Quadword Left Logical

  xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSLLW — Shift Packed Data Left Logical

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F1:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:71:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:71:11 xmmreg1 xmmreglo: imm

VPSLLD — Shift Packed Data Left Logical

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F2:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F2:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F2:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F2:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:72:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:72:11 xmmreg1 xmmreglo: imm

VPSLLQ — Shift Packed Data Left Logical

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F3:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F3:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F3:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F3:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSRAW — Shift Packed Data Right Arithmetic

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E1:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E1:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E1:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E1:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:71:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:71:11 xmmreg1 xmmreglo: imm

VPSRAD — Shift Packed Data Right Arithmetic

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E2:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E2:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E2:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E2:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:72:11 xmmreg1 xmmreg2: imm

Instruction and Format Encoding
Vol. 2D B-93



INSTRUCTION FORMATS AND ENCODINGS
  xmmreglo to xmmreg1 using imm8 C5: r_F 001:72:11 xmmreg1 xmmreglo: imm

VPSRLDQ — Shift Double Quadword Right Logical

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSRLW — Shift Packed Data Right Logical

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D1:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D1:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D1:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D1:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:71:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:71:11 xmmreg1 xmmreglo: imm

VPSRLD — Shift Packed Data Right Logical

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D2:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D2:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D2:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D2:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:72:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:72:11 xmmreg1 xmmreglo: imm

VPSRLQ — Shift Packed Data Right Logical

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D3:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D3:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D3:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D3:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSUBB — Subtract Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F8:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F8:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F8:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F8:mod xmmreg1 r/m

VPSUBW — Subtract Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F9:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F9:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F9:11 xmmreg1 xmmreglo3

  xmmrelog2 with mem to xmmreg1 C5: r_xmmreglo2 001:F9:mod xmmreg1 r/m

VPSUBD — Subtract Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FA:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FA:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:FA:11 xmmreg1 xmmreglo3
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  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FA:mod xmmreg1 r/m

VPSUBQ — Subtract Packed Quadword Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FB:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FB:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:FB:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FB:mod xmmreg1 r/m

VPSUBSB — Subtract Packed Signed Integers with Signed Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E8:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E8:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E8:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E8:mod xmmreg1 r/m

VPSUBSW — Subtract Packed Signed Integers with Signed Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E9:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E9:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E9:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E9:mod xmmreg1 r/m

VPSUBUSB — Subtract Packed Unsigned Integers with Unsigned Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D8:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D8:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D8:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D8:mod xmmreg1 r/m

VPSUBUSW — Subtract Packed Unsigned Integers with Unsigned Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D9:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D9:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D9:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D9:mod xmmreg1 r/m

VPUNPCKHBW — Unpack High Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:68:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:68:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:68:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:68:mod xmmreg1 r/m

VPUNPCKHWD — Unpack High Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:69:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:69:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:69:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:69:mod xmmreg1 r/m

VPUNPCKHDQ — Unpack High Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6A:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6A:mod xmmreg1 r/m
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  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:6A:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6A:mod xmmreg1 r/m

VPUNPCKHQDQ — Unpack High Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6D:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:6D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6D:mod xmmreg1 r/m

VPUNPCKLBW — Unpack Low Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:60:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:60:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:60:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:60:mod xmmreg1 r/m

VPUNPCKLWD — Unpack Low Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:61:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:61:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:61:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:61:mod xmmreg1 r/m

VPUNPCKLDQ — Unpack Low Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:62:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:62:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:62:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:62:mod xmmreg1 r/m

VPUNPCKLQDQ — Unpack Low Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:6C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6C:mod xmmreg1 r/m

VPXOR — Logical Exclusive OR

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EF:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EF:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:EF:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EF:mod xmmreg1 r/m

VSHUFPD — Shuffle Packed Double Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 using imm8 C4: rxb0_1: w xmmreg2 001:C6:11 xmmreg1 xmmreg3: imm

  xmmreg2 with mem to xmmreg1 using imm8 C4: rxb0_1: w xmmreg2 001:C6:mod xmmreg1 r/m: imm

  xmmreglo2 with xmmreglo3 to xmmreg1 using imm8 C5: r_xmmreglo2 001:C6:11 xmmreg1 xmmreglo3: imm

  xmmreglo2 with mem to xmmreg1 using imm8 C5: r_xmmreglo2 001:C6:mod xmmreg1 r/m: imm

  ymmreg2 with ymmreg3 to ymmreg1 using imm8 C4: rxb0_1: w ymmreg2 101:C6:11 ymmreg1 ymmreg3: imm

  ymmreg2 with mem to ymmreg1 using imm8 C4: rxb0_1: w ymmreg2 101:C6:mod ymmreg1 r/m: imm
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  ymmreglo2 with ymmreglo3 to ymmreg1 using imm8 C5: r_ymmreglo2 101:C6:11 ymmreg1 ymmreglo3: imm

  ymmreglo2 with mem to ymmreg1 using imm8 C5: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm

VSQRTPD — Compute Square Roots of Packed Double Precision Floating-Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:51:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:51:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:51:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:51:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:51:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 101:51:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:51:mod ymmreg1 r/m

VSQRTSD — Compute Square Root of Scalar Double Precision Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:51:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:51:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:51:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:51:mod xmmreg1 r/m

VSUBPD — Subtract Packed Double Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:5C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5C:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5C:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5C:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:5C:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5C:mod ymmreg1 r/m

VSUBSD — Subtract Scalar Double Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:5C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5C:mod xmmreg1 r/m

VUCOMISD — Unordered Compare Scalar Double Precision Floating-Point Values and Set EFLAGS

  xmmreg2 with xmmreg1, set EFLAGS C4: rxb0_1: w_F xmmreg1 001:2E:11 xmmreg2

  mem with xmmreg1, set EFLAGS C4: rxb0_1: w_F xmmreg1 001:2E:mod r/m

  xmmreglo with xmmreg1, set EFLAGS C5: r_F xmmreg1 001:2E:11 xmmreglo

  mem with xmmreg1, set EFLAGS C5: r_F xmmreg1 001:2E:mod r/m

VUNPCKHPD — Unpack and Interleave High Packed Double Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:15:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:15:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:15:11 xmmreg1 xmmreglo3
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  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:15:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:15:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:15:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:15:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:15:mod ymmreg1 r/m

VUNPCKHPS — Unpack and Interleave High Packed Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:15:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:15:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:15:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:15:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:15:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:15:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:15:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:15:mod ymmreg1 r/m

VUNPCKLPD — Unpack and Interleave Low Packed Double Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:14:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:14:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:14:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:14:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:14:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:14:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:14:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:14:mod ymmreg1 r/m

VUNPCKLPS — Unpack and Interleave Low Packed Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:14:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:14:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:14:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:14:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:14:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:14:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:14:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:14:mod ymmreg1 r/m

VXORPD — Bitwise Logical XOR for Double Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:57:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:57:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:57:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:57:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:57:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:57:mod ymmreg1 r/m
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  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:57:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:57:mod ymmreg1 r/m

VADDPS — Add Packed Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:58:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:58:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:58:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:58:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:58:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:58:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:58:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:58:mod ymmreg1 r/m

VADDSS — Add Scalar Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:58:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:58:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:58:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:58:mod xmmreg1 r/m

VANDPS — Bitwise Logical AND of Packed Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:54:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:54:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:54:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:54:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:54:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:54:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:54:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:54:mod ymmreg1 r/m

VANDNPS — Bitwise Logical AND NOT of Packed Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:55:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:55:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:55:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:55:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:55:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:55:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:55:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:55:mod ymmreg1 r/m

VCMPPS — Compare Packed Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:C2:11 xmmreg1 xmmreg3: imm

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:C2:mod xmmreg1 r/m: imm

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:C2:11 xmmreg1 xmmreglo3: imm

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:C2:mod xmmreg1 r/m: imm
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  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:C2:11 ymmreg1 ymmreg3: imm

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:C2:mod ymmreg1 r/m: imm

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:C2:11 ymmreg1 ymmreglo3: imm

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:C2:mod ymmreg1 r/m: imm

VCMPSS — Compare Scalar Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:C2:11 xmmreg1 xmmreg3: imm

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:C2:mod xmmreg1 r/m: imm

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:C2:11 xmmreg1 xmmreglo3: imm

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:C2:mod xmmreg1 r/m: imm

VCOMISS — Compare Scalar Ordered Single Precision Floating-Point Values and Set EFLAGS

  xmmreg2 with xmmreg1 C4: rxb0_1: w_F 000:2F:11 xmmreg1 xmmreg2

  mem with xmmreg1 C4: rxb0_1: w_F 000:2F:mod xmmreg1 r/m

  xmmreglo with xmmreg1 C5: r_F 000:2F:11 xmmreg1 xmmreglo

  mem with xmmreg1 C5: r_F 000:2F:mod xmmreg1 r/m

VCVTSI2SS — Convert Dword Integer to Scalar Single Precision FP Value

  xmmreg2 with reg to xmmreg1 C4: rxb0_1: 0 xmmreg2 010:2A:11 xmmreg1 reg

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: 0 xmmreg2 010:2A:mod xmmreg1 r/m

  xmmreglo2 with reglo to xmmreg1 C5: r_xmmreglo2 010:2A:11 xmmreg1 reglo

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:2A:mod xmmreg1 r/m

  xmmreg2 with reg to xmmreg1 C4: rxb0_1: 1 xmmreg2 010:2A:11 xmmreg1 reg

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: 1 xmmreg2 010:2A:mod xmmreg1 r/m

VCVTSS2SI — Convert Scalar Single Precision FP Value to Dword Integer

  xmmreg1 to reg C4: rxb0_1: 0_F 010:2D:11 reg xmmreg1

  mem to reg C4: rxb0_1: 0_F 010:2D:mod reg r/m

  xmmreglo to reg C5: r_F 010:2D:11 reg xmmreglo

  mem to reg C5: r_F 010:2D:mod reg r/m

  xmmreg1 to reg C4: rxb0_1: 1_F 010:2D:11 reg xmmreg1

  mem to reg C4: rxb0_1: 1_F 010:2D:mod reg r/m

VCVTTSS2SI — Convert with Truncation Scalar Single Precision FP Value to Dword Integer

  xmmreg1 to reg C4: rxb0_1: 0_F 010:2C:11 reg xmmreg1

  mem to reg C4: rxb0_1: 0_F 010:2C:mod reg r/m

  xmmreglo to reg C5: r_F 010:2C:11 reg xmmreglo

  mem to reg C5: r_F 010:2C:mod reg r/m

  xmmreg1 to reg C4: rxb0_1: 1_F 010:2C:11 reg xmmreg1

  mem to reg C4: rxb0_1: 1_F 010:2C:mod reg r/m

VDIVPS — Divide Packed Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5E:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5E:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:5E:11 xmmreg1 xmmreglo3
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  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5E:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5E:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5E:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:5E:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5E:mod ymmreg1 r/m

VDIVSS — Divide Scalar Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5E:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5E:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:5E:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5E:mod xmmreg1 r/m

VLDMXCSR — Load MXCSR Register

  mem to MXCSR reg C4: rxb0_1: w_F 000:AEmod 011 r/m

  mem to MXCSR reg C5: r_F 000:AEmod 011 r/m

VMAXPS — Return Maximum Packed Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:5F:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5F:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:5F:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5F:mod ymmreg1 r/m

VMAXSS — Return Maximum Scalar Single Precision Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5F:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5F:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:5F:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5F:mod xmmreg1 r/m

VMINPS — Return Minimum Packed Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5D:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:5D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5D:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5D:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5D:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:5D:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5D:mod ymmreg1 r/m

VMINSS — Return Minimum Scalar Single Precision Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5D:mod xmmreg1 r/m
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  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:5D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5D:mod xmmreg1 r/m

VMOVAPS— Move Aligned Packed Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:28:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:28:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:28:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:28:mod xmmreg1 r/m

  xmmreg1 to xmmreg2 C4: rxb0_1: w_F 000:29:11 xmmreg2 xmmreg1

  xmmreg1 to mem C4: rxb0_1: w_F 000:29:mod r/m xmmreg1

  xmmreg1 to xmmreglo C5: r_F 000:29:11 xmmreglo xmmreg1

  xmmreg1 to mem C5: r_F 000:29:mod r/m xmmreg1

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:28:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:28:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:28:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:28:mod ymmreg1 r/m

  ymmreg1 to ymmreg2 C4: rxb0_1: w_F 100:29:11 ymmreg2 ymmreg1

  ymmreg1 to mem C4: rxb0_1: w_F 100:29:mod r/m ymmreg1

  ymmreg1 to ymmreglo C5: r_F 100:29:11 ymmreglo ymmreg1

  ymmreg1 to mem C5: r_F 100:29:mod r/m ymmreg1

VMOVHPS — Move High Packed Single Precision Floating-Point Values

  xmmreg1 with mem to xmmreg2 C4: rxb0_1: w xmmreg1 000:16:mod xmmreg2 r/m

  xmmreg1 with mem to xmmreglo2 C5: r_xmmreg1 000:16:mod xmmreglo2 r/m

  xmmreg1 to mem C4: rxb0_1: w_F 000:17:mod r/m xmmreg1

  xmmreglo to mem C5: r_F 000:17:mod r/m xmmreglo

VMOVLHPS — Move Packed Single Precision Floating-Point Values Low to High

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:16:11 xmmreg1 xmmreg3

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:16:11 xmmreg1 xmmreglo3

VMOVLPS — Move Low Packed Single Precision Floating-Point Values

  xmmreg1 with mem to xmmreg2 C4: rxb0_1: w xmmreg1 000:12:mod xmmreg2 r/m

  xmmreg1 with mem to xmmreglo2 C5: r_xmmreg1 000:12:mod xmmreglo2 r/m

  xmmreg1 to mem C4: rxb0_1: w_F 000:13:mod r/m xmmreg1

  xmmreglo to mem C5: r_F 000:13:mod r/m xmmreglo

VMOVMSKPS — Extract Packed Single Precision Floating-Point Sign Mask

  xmmreg2 to reg C4: rxb0_1: w_F 000:50:11 reg xmmreg2

  xmmreglo to reg C5: r_F 000:50:11 reg xmmreglo

  ymmreg2 to reg C4: rxb0_1: w_F 100:50:11 reg ymmreg2

  ymmreglo to reg C5: r_F 100:50:11 reg ymmreglo

VMOVNTPS — Store Packed Single Precision Floating-Point Values Using Non-Temporal Hint

  xmmreg1 to mem C4: rxb0_1: w_F 000:2B:mod r/m xmmreg1
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  xmmreglo to mem C5: r_F 000:2B:mod r/m xmmreglo

  ymmreg1 to mem C4: rxb0_1: w_F 100:2B:mod r/m ymmreg1

  ymmreglo to mem C5: r_F 100:2B:mod r/m ymmreglo

VMOVSS — Move Scalar Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:10:11 xmmreg1 xmmreg3

  mem to xmmreg1 C4: rxb0_1: w_F 010:10:mod xmmreg1 r/m

  xmmreg2 with xmmreg3 to xmmreg1 C5: r_xmmreg2 010:10:11 xmmreg1 xmmreg3

  mem to xmmreg1 C5: r_F 010:10:mod xmmreg1 r/m

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:11:11 xmmreg1 xmmreg3

  xmmreg1 to mem C4: rxb0_1: w_F 010:11:mod r/m xmmreg1

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:11:11 xmmreg1 xmmreglo3

  xmmreglo to mem C5: r_F 010:11:mod r/m xmmreglo

VMOVUPS— Move Unaligned Packed Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:10:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:10:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:10:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:10:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:10:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:10:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:10:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:10:mod ymmreg1 r/m

  xmmreg1 to xmmreg2 C4: rxb0_1: w_F 000:11:11 xmmreg2 xmmreg1

  xmmreg1 to mem C4: rxb0_1: w_F 000:11:mod r/m xmmreg1

  xmmreg1 to xmmreglo C5: r_F 000:11:11 xmmreglo xmmreg1

  xmmreg1 to mem C5: r_F 000:11:mod r/m xmmreg1

  ymmreg1 to ymmreg2 C4: rxb0_1: w_F 100:11:11 ymmreg2 ymmreg1

  ymmreg1 to mem C4: rxb0_1: w_F 100:11:mod r/m ymmreg1

  ymmreg1 to ymmreglo C5: r_F 100:11:11 ymmreglo ymmreg1

  ymmreg1 to mem C5: r_F 100:11:mod r/m ymmreg1

VMULPS — Multiply Packed Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:59:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:59:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:59:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:59:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:59:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:59:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:59:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:59:mod ymmreg1 r/m

VMULSS — Multiply Scalar Single Precision Floating-Point Values
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  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:59:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:59:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:59:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:59:mod xmmreg1 r/m

VORPS — Bitwise Logical OR of Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:56:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:56:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:56:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:56:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:56:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:56:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:56:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:56:mod ymmreg1 r/m

VRCPPS — Compute Reciprocals of Packed Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:53:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:53:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:53:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:53:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:53:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:53:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:53:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:53:mod ymmreg1 r/m

VRCPSS — Compute Reciprocal of Scalar Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:53:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:53:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:53:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:53:mod xmmreg1 r/m

VRSQRTPS — Compute Reciprocals of Square Roots of Packed Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:52:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:52:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:52:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:52:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:52:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:52:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:52:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:52:mod ymmreg1 r/m

VRSQRTSS — Compute Reciprocal of Square Root of Scalar Single Precision Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:52:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:52:mod xmmreg1 r/m
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  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:52:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:52:mod xmmreg1 r/m

VSHUFPS — Shuffle Packed Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1, imm8 C4: rxb0_1: w xmmreg2 000:C6:11 xmmreg1 xmmreg3: imm

  xmmreg2 with mem to xmmreg1, imm8 C4: rxb0_1: w xmmreg2 000:C6:mod xmmreg1 r/m: imm

  xmmreglo2 with xmmreglo3 to xmmreg1, imm8 C5: r_xmmreglo2 000:C6:11 xmmreg1 xmmreglo3: imm

  xmmreglo2 with mem to xmmreg1, imm8 C5: r_xmmreglo2 000:C6:mod xmmreg1 r/m: imm

  ymmreg2 with ymmreg3 to ymmreg1, imm8 C4: rxb0_1: w ymmreg2 100:C6:11 ymmreg1 ymmreg3: imm

  ymmreg2 with mem to ymmreg1, imm8 C4: rxb0_1: w ymmreg2 100:C6:mod ymmreg1 r/m: imm

  ymmreglo2 with ymmreglo3 to ymmreg1, imm8 C5: r_ymmreglo2 100:C6:11 ymmreg1 ymmreglo3: imm

  ymmreglo2 with mem to ymmreg1, imm8 C5: r_ymmreglo2 100:C6:mod ymmreg1 r/m: imm

VSQRTPS — Compute Square Roots of Packed Single Precision Floating-Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:51:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:51:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:51:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:51:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:51:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:51:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:51:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:51:mod ymmreg1 r/m

VSQRTSS — Compute Square Root of Scalar Single Precision Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:51:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:51:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:51:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:51:mod xmmreg1 r/m

VSTMXCSR — Store MXCSR Register State

  MXCSR to mem C4: rxb0_1: w_F 000:AE:mod 011 r/m

  MXCSR to mem C5: r_F 000:AE:mod 011 r/m

VSUBPS — Subtract Packed Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:5C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5C:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5C:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5C:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:5C:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5C:mod ymmreg1 r/m

VSUBSS — Subtract Scalar Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5C:11 xmmreg1 xmmreg3
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  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:5C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5C:mod xmmreg1 r/m

VUCOMISS — Unordered Compare Scalar Single Precision Floating-Point Values and Set EFLAGS

  xmmreg2 with xmmreg1 C4: rxb0_1: w_F 000:2E:11 xmmreg1 xmmreg2

  mem with xmmreg1 C4: rxb0_1: w_F 000:2E:mod xmmreg1 r/m

  xmmreglo with xmmreg1 C5: r_F 000:2E:11 xmmreg1 xmmreglo

  mem with xmmreg1 C5: r_F 000:2E:mod xmmreg1 r/m

UNPCKHPS — Unpack and Interleave High Packed Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:15:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:15mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:15:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:15mod ymmreg1 r/m

UNPCKLPS — Unpack and Interleave Low Packed Single Precision Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:14:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:14mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:14:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:14mod ymmreg1 r/m

VXORPS — Bitwise Logical XOR for Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:57:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:57:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:57:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:57:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:57:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:57:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:57:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:57:mod ymmreg1 r/m

VBROADCAST —Load with Broadcast

  mem to xmmreg1 C4: rxb0_2: 0_F 001:18:mod xmmreg1 r/m

  mem to ymmreg1 C4: rxb0_2: 0_F 101:18:mod ymmreg1 r/m

  mem to ymmreg1 C4: rxb0_2: 0_F 101:19:mod ymmreg1 r/m

  mem to ymmreg1 C4: rxb0_2: 0_F 101:1A:mod ymmreg1 r/m

VEXTRACTF128 — Extract Packed Floating-Point Values

 ymmreg2 to xmmreg1, imm8 C4: rxb0_3: 0_F 001:19:11 xmmreg1 ymmreg2: imm

  ymmreg2 to mem, imm8 C4: rxb0_3: 0_F 001:19:mod r/m ymmreg2: imm

VINSERTF128 — Insert Packed Floating-Point Values

 xmmreg3 and merge with ymmreg2 to ymmreg1, imm8 C4: rxb0_3: 0 ymmreg2101:18:11 ymmreg1 xmmreg3: imm

  mem and merge with ymmreg2 to ymmreg1, imm8 C4: rxb0_3: 0 ymmreg2 101:18:mod ymmreg1 r/m: imm

VPERMILPD — Permute Double Precision Floating-Point Values
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  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0D:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0D:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0D:mod ymmreg1 r/m

  xmmreg2 to xmmreg1, imm C4: rxb0_3: 0_F 001:05:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1, imm C4: rxb0_3: 0_F 001:05:mod xmmreg1 r/m: imm

  ymmreg2 to ymmreg1, imm C4: rxb0_3: 0_F 101:05:11 ymmreg1 ymmreg2: imm

  mem to ymmreg1, imm C4: rxb0_3: 0_F 101:05:mod ymmreg1 r/m: imm

VPERMILPS — Permute Single Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0C:mod xmmreg1 r/m

  xmmreg2 to xmmreg1, imm C4: rxb0_3: 0_F 001:04:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1, imm C4: rxb0_3: 0_F 001:04:mod xmmreg1 r/m: imm

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0C:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0C:mod ymmreg1 r/m

  ymmreg2 to ymmreg1, imm C4: rxb0_3: 0_F 101:04:11 ymmreg1 ymmreg2: imm

  mem to ymmreg1, imm C4: rxb0_3: 0_F 101:04:mod ymmreg1 r/m: imm

VPERM2F128 — Permute Floating-Point Values

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_3: 0 ymmreg2 101:06:11 ymmreg1 ymmreg3: imm

  ymmreg2 with mem to ymmreg1 C4: rxb0_3: 0 ymmreg2 101:06:mod ymmreg1 r/m: imm

VTESTPD/VTESTPS — Packed Bit Test

  xmmreg2 to xmmreg1 C4: rxb0_2: 0_F 001:0E:11 xmmreg2 xmmreg1

  mem to xmmreg1 C4: rxb0_2: 0_F 001:0E:mod xmmreg2 r/m

  ymmreg2 to ymmreg1 C4: rxb0_2: 0_F 101:0E:11 ymmreg2 ymmreg1

  mem to ymmreg1 C4: rxb0_2: 0_F 101:0E:mod ymmreg2 r/m

  xmmreg2 to xmmreg1 C4: rxb0_2: 0_F 001:0F:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1 C4: rxb0_2: 0_F 001:0F:mod xmmreg1 r/m: imm

  ymmreg2 to ymmreg1 C4: rxb0_2: 0_F 101:0F:11 ymmreg1 ymmreg2: imm

  mem to ymmreg1 C4: rxb0_2: 0_F 101:0F:mod ymmreg1 r/m: imm

NOTES:
1. The term “lo” refers to the lower eight registers, 0-7

Instruction and Format Encoding
Vol. 2D B-107



INSTRUCTION FORMATS AND ENCODINGS
B.17 FLOATING-POINT INSTRUCTION FORMATS AND ENCODINGS
Table B-38 shows the five different formats used for floating-point instructions. In all cases, instructions are at 
least two bytes long and begin with the bit pattern 11011.

The Mod and R/M fields of the ModR/M byte have the same interpretation as the corresponding fields of the integer 
instructions. The SIB byte and disp (displacement) are optionally present in instructions that have Mod and R/M 
fields. Their presence depends on the values of Mod and R/M, as for integer instructions.

Table B-39 shows the formats and encodings of the floating-point instructions.

Table B-38.  General Floating-Point Instruction Formats

Instruction

First Byte Second Byte Optional Fields

1 11011 OPA 1 mod 1 OPB r/m s-i-b disp

2 11011 MF OPA mod OPB r/m s-i-b disp

3 11011 d P OPA 1 1 OPB R ST(i)

4 11011 0 0 1 1 1 1 OP

5 11011 0 1 1 1 1 1 OP

15–11 10 9 8 7 6 5 4 3 2 1 0

MF = Memory Format
00 — 32-bit real
01 — 32-bit integer
10 — 64-bit real
11 — 16-bit integer

P = Pop
0 — Do not pop stack
1 — Pop stack after operation

d = Destination
0 — Destination is ST(0)
1 — Destination is ST(i)

R XOR d = 0 — Destination OP Source
R XOR d = 1 — Source OP Destination

ST(i) = Register stack element i
000 = Stack Top
001 = Second stack element
 ⋅
 ⋅
 ⋅
111 = Eighth stack element

Table B-39.  Floating-Point Instruction Formats and Encodings

Instruction and Format Encoding

F2XM1 – Compute 2ST(0) – 1 11011 001 : 1111 0000

FABS – Absolute Value 11011 001 : 1110 0001

FADD – Add

   ST(0) := ST(0) + 32-bit memory 11011 000 : mod 000 r/m

ST(0) := ST(0) + 64-bit memory 11011 100 : mod 000 r/m

ST(d) := ST(0) + ST(i) 11011 d00 : 11 000 ST(i)

FADDP – Add and Pop

ST(0) := ST(0) + ST(i) 11011 110 : 11 000 ST(i)

FBLD – Load Binary Coded Decimal 11011 111 : mod 100 r/m 

FBSTP – Store Binary Coded Decimal and Pop 11011 111 : mod 110 r/m

FCHS – Change Sign 11011 001 : 1110 0000

FCLEX – Clear Exceptions 11011 011 : 1110 0010

FCOM – Compare Real
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32-bit memory 11011 000 : mod 010 r/m

64-bit memory 11011 100 : mod 010 r/m

ST(i) 11011 000 : 11 010 ST(i)

FCOMP – Compare Real and Pop

32-bit memory 11011 000 : mod 011 r/m

64-bit memory 11011 100 : mod 011 r/m

ST(i) 11011 000 : 11 011 ST(i)

FCOMPP – Compare Real and Pop Twice 11011 110 : 11 011 001

FCOMIP – Compare Real, Set EFLAGS, and Pop 11011 111 : 11 110 ST(i)

FCOS – Cosine of ST(0) 11011 001 : 1111 1111

FDECSTP – Decrement Stack-Top Pointer  11011 001 : 1111 0110

FDIV – Divide

ST(0) := ST(0) ÷ 32-bit memory 11011 000 : mod 110 r/m

ST(0) := ST(0) ÷ 64-bit memory 11011 100 : mod 110 r/m

ST(d) := ST(0) ÷ ST(i) 11011 d00 : 1111 R ST(i)

FDIVP – Divide and Pop

ST(0) := ST(0) ÷ ST(i) 11011 110 : 1111 1 ST(i)

FDIVR – Reverse Divide

ST(0) := 32-bit memory ÷ ST(0) 11011 000 : mod 111 r/m

ST(0) := 64-bit memory ÷ ST(0) 11011 100 : mod 111 r/m

ST(d) := ST(i) ÷ ST(0) 11011 d00 : 1111 R ST(i)

FDIVRP – Reverse Divide and Pop

ST(0) := ST(i) ÷ ST(0) 11011 110 : 1111 0 ST(i)

FFREE – Free ST(i) Register 11011 101 : 1100 0 ST(i)

FIADD – Add Integer

ST(0) := ST(0) + 16-bit memory 11011 110 : mod 000 r/m

ST(0) := ST(0) + 32-bit memory 11011 010 : mod 000 r/m

FICOM – Compare Integer

16-bit memory 11011 110 : mod 010 r/m

32-bit memory 11011 010 : mod 010 r/m

FICOMP – Compare Integer and Pop

16-bit memory 11011 110 : mod 011 r/m

32-bit memory 11011 010 : mod 011 r/m

FIDIV – Divide

ST(0) := ST(0) ÷ 16-bit memory 11011 110 : mod 110 r/m

ST(0) := ST(0) ÷ 32-bit memory 11011 010 : mod 110 r/m

FIDIVR – Reverse Divide

ST(0) := 16-bit memory ÷ ST(0) 11011 110 : mod 111 r/m

Table B-39.  Floating-Point Instruction Formats and Encodings (Contd.)
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ST(0) := 32-bit memory ÷ ST(0) 11011 010 : mod 111 r/m

FILD – Load Integer

16-bit memory 11011 111 : mod 000 r/m

32-bit memory 11011 011 : mod 000 r/m

64-bit memory 11011 111 : mod 101 r/m

FIMUL– Multiply

ST(0) := ST(0) × 16-bit memory 11011 110 : mod 001 r/m

ST(0) := ST(0) × 32-bit memory 11011 010 : mod 001 r/m

FINCSTP – Increment Stack Pointer 11011 001 : 1111 0111

FINIT – Initialize Floating-Point Unit

FIST – Store Integer

16-bit memory 11011 111 : mod 010 r/m

32-bit memory 11011 011 : mod 010 r/m

FISTP – Store Integer and Pop

16-bit memory 11011 111 : mod 011 r/m

32-bit memory 11011 011 : mod 011 r/m

64-bit memory 11011 111 : mod 111 r/m

FISUB – Subtract

ST(0) := ST(0) - 16-bit memory 11011 110 : mod 100 r/m

ST(0) := ST(0) - 32-bit memory 11011 010 : mod 100 r/m

FISUBR – Reverse Subtract

ST(0) := 16-bit memory − ST(0) 11011 110 : mod 101 r/m

ST(0) := 32-bit memory − ST(0) 11011 010 : mod 101 r/m

FLD – Load Real

32-bit memory 11011 001 : mod 000 r/m

64-bit memory 11011 101 : mod 000 r/m

80-bit memory 11011 011 : mod 101 r/m

ST(i) 11011 001 : 11 000 ST(i)

FLD1 – Load +1.0 into ST(0) 11011 001 : 1110 1000

FLDCW – Load Control Word 11011 001 : mod 101 r/m

FLDENV – Load FPU Environment 11011 001 : mod 100 r/m

FLDL2E – Load log2(ε) into ST(0) 11011 001 : 1110 1010

FLDL2T – Load log2(10) into ST(0) 11011 001 : 1110 1001

FLDLG2 – Load log10(2) into ST(0) 11011 001 : 1110 1100

FLDLN2 – Load logε(2) into ST(0) 11011 001 : 1110 1101

FLDPI – Load π into ST(0) 11011 001 : 1110 1011

FLDZ – Load +0.0 into ST(0) 11011 001 : 1110 1110

FMUL – Multiply

Table B-39.  Floating-Point Instruction Formats and Encodings (Contd.)
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ST(0) := ST(0) × 32-bit memory 11011 000 : mod 001 r/m

ST(0) := ST(0) × 64-bit memory 11011 100 : mod 001 r/m

ST(d) := ST(0) × ST(i) 11011 d00 : 1100 1 ST(i)

FMULP – Multiply

ST(i) := ST(0) × ST(i) 11011 110 : 1100 1 ST(i)

FNOP – No Operation 11011 001 : 1101 0000

FPATAN – Partial Arctangent 11011 001 : 1111 0011

FPREM – Partial Remainder 11011 001 : 1111 1000

FPREM1 – Partial Remainder (IEEE) 11011 001 : 1111 0101

FPTAN – Partial Tangent 11011 001 : 1111 0010

FRNDINT – Round to Integer 11011 001 : 1111 1100

FRSTOR – Restore FPU State 11011 101 : mod 100 r/m

FSAVE – Store FPU State 11011 101 : mod 110 r/m

FSCALE – Scale 11011 001 : 1111 1101

FSIN – Sine 11011 001 : 1111 1110

FSINCOS – Sine and Cosine 11011 001 : 1111 1011

FSQRT – Square Root 11011 001 : 1111 1010

FST – Store Real

32-bit memory 11011 001 : mod 010 r/m

64-bit memory 11011 101 : mod 010 r/m

ST(i) 11011 101 : 11 010 ST(i)

FSTCW – Store Control Word 11011 001 : mod 111 r/m

FSTENV – Store FPU Environment 11011 001 : mod 110 r/m

FSTP – Store Real and Pop

32-bit memory 11011 001 : mod 011 r/m

64-bit memory 11011 101 : mod 011 r/m

80-bit memory 11011 011 : mod 111 r/m

ST(i) 11011 101 : 11 011 ST(i)

FSTSW – Store Status Word into AX 11011 111 : 1110 0000

FSTSW – Store Status Word into Memory 11011 101 : mod 111 r/m

FSUB – Subtract

ST(0) := ST(0) – 32-bit memory 11011 000 : mod 100 r/m

ST(0) := ST(0) – 64-bit memory 11011 100 : mod 100 r/m

ST(d) := ST(0) – ST(i) 11011 d00 : 1110 R ST(i)

FSUBP – Subtract and Pop

ST(0) := ST(0) – ST(i) 11011 110 : 1110 1 ST(i)

FSUBR – Reverse Subtract

ST(0) := 32-bit memory – ST(0) 11011 000 : mod 101 r/m

Table B-39.  Floating-Point Instruction Formats and Encodings (Contd.)
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B.18 VMX INSTRUCTIONS
Table B-40 describes virtual-machine extensions (VMX).

ST(0) := 64-bit memory – ST(0) 11011 100 : mod 101 r/m

ST(d) := ST(i) – ST(0) 11011 d00 : 1110 R ST(i)

FSUBRP – Reverse Subtract and Pop

ST(i) := ST(i) – ST(0) 11011 110 : 1110 0 ST(i)

FTST – Test 11011 001 : 1110 0100

FUCOM – Unordered Compare Real 11011 101 : 1110 0 ST(i)

FUCOMP – Unordered Compare Real and Pop 11011 101 : 1110 1 ST(i)

FUCOMPP – Unordered Compare Real and Pop Twice 11011 010 : 1110 1001

FUCOMI – Unorderd Compare Real and Set EFLAGS 11011 011 : 11 101 ST(i)

FUCOMIP – Unorderd Compare Real, Set EFLAGS, and Pop 11011 111 : 11 101 ST(i)

FXAM – Examine 11011 001 : 1110 0101

FXCH – Exchange ST(0) and ST(i) 11011 001 : 1100 1 ST(i)

FXTRACT – Extract Exponent and Significand 11011 001 : 1111 0100

FYL2X – ST(1) × log2(ST(0)) 11011 001 : 1111 0001

FYL2XP1 – ST(1) × log2(ST(0) + 1.0) 11011 001 : 1111 1001

FWAIT – Wait until FPU Ready 1001 1011 (same instruction as WAIT)

Table B-40.  Encodings for VMX Instructions
Instruction and Format Encoding

INVEPT—Invalidate Cached EPT Mappings

Descriptor m128 according to reg 01100110 00001111 00111000 10000000: mod reg r/m

INVVPID—Invalidate Cached VPID Mappings

Descriptor m128 according to reg 01100110 00001111 00111000 10000001: mod reg r/m

VMCALL—Call to VM Monitor

Call VMM: causes VM exit 00001111 00000001 11000001

VMCLEAR—Clear Virtual-Machine Control Structure

mem32:VMCS_data_ptr 01100110 00001111 11000111: mod 110 r/m

mem64:VMCS_data_ptr 01100110 00001111 11000111: mod 110 r/m

VMFUNC—Invoke VM Function

Invoke VM function specified in EAX 00001111 00000001 11010100

VMLAUNCH—Launch Virtual Machine

Launch VM managed by Current_VMCS 00001111 00000001 11000010

VMRESUME—Resume Virtual Machine

Resume VM managed by Current_VMCS 00001111 00000001 11000011

VMPTRLD—Load Pointer to Virtual-Machine Control Structure

mem32 to Current_VMCS_ptr 00001111 11000111: mod 110 r/m

Table B-39.  Floating-Point Instruction Formats and Encodings (Contd.)
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B.19 SMX INSTRUCTIONS
Table B-38 describes Safer Mode extensions (VMX). GETSEC leaf functions are selected by a valid value in EAX on input.

mem64 to Current_VMCS_ptr 00001111 11000111: mod 110 r/m

VMPTRST—Store Pointer to Virtual-Machine Control Structure

Current_VMCS_ptr to mem32 00001111 11000111: mod 111 r/m

Current_VMCS_ptr to mem64 00001111 11000111: mod 111 r/m

VMREAD—Read Field from Virtual-Machine Control Structure

r32 (VMCS_fieldn) to r32

r32 (VMCS_fieldn) to mem32

r64 (VMCS_fieldn) to r64

r64 (VMCS_fieldn) to mem64

00001111 01111000: 11 reg2 reg1

00001111 01111000: mod r32 r/m

00001111 01111000: 11 reg2 reg1

00001111 01111000: mod r64 r/m

VMWRITE—Write Field to Virtual-Machine Control Structure

r32 to r32 (VMCS_fieldn)

mem32 to r32 (VMCS_fieldn)

r64 to r64 (VMCS_fieldn)

mem64 to r64 (VMCS_fieldn)

00001111 01111001: 11 reg1 reg2

00001111 01111001: mod r32 r/m

00001111 01111001: 11 reg1 reg2

00001111 01111001: mod r64 r/m

VMXOFF—Leave VMX Operation

Leave VMX. 00001111 00000001 11000100

VMXON—Enter VMX Operation

Enter VMX. 11110011 000011111 11000111: mod 110 r/m

Table B-41.  Encodings for SMX Instructions
Instruction and Format Encoding

GETSEC—GETSEC leaf functions are selected by the value in EAX on input

GETSEC[CAPABILITIES] 00001111 00110111 (EAX= 0)

GETSEC[ENTERACCS] 00001111 00110111 (EAX= 2)

GETSEC[EXITAC] 00001111 00110111 (EAX= 3)

GETSEC[SENTER] 00001111 00110111 (EAX= 4)

GETSEC[SEXIT] 00001111 00110111 (EAX= 5)

GETSEC[PARAMETERS] 00001111 00110111 (EAX= 6)

GETSEC[SMCTRL] 00001111 00110111 (EAX= 7)

GETSEC[WAKEUP] 00001111 00110111 (EAX= 8)

Table B-40.  Encodings for VMX Instructions
Instruction and Format Encoding
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APPENDIX C
INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

The two tables in this appendix itemize the Intel C/C++ compiler intrinsics and functional equivalents for the Intel 
MMX technology, SSE, SSE2, SSE3, and SSSE3 instructions.

There may be additional intrinsics that do not have an instruction equivalent. It is strongly recommended that the 
reader reference the compiler documentation for the complete list of supported intrinsics. Please refer to 
http://www.intel.com/support/performancetools/. 

Table C-1 presents simple intrinsics and Table C-2 presents composite intrinsics. Some intrinsics are “composites” 
because they require more than one instruction to implement them.

Intel C/C++ Compiler intrinsic names reflect the following naming conventions:
_mm_<intrin_op>_<suffix>

where:
<intrin_op> Indicates the intrinsics basic operation; for example, add for addition and sub for subtrac-

tion
<suffix> Denotes the type of data operated on by the instruction. The first one or two letters of 

each suffix denotes whether the data is packed (p), extended packed (ep), or scalar (s). 
The remaining letters denote the type:

s single precision floating-point
d double precision floating-point
i128 signed 128-bit integer
i64 signed 64-bit integer
u64 unsigned 64-bit integer
i32 signed 32-bit integer
u32 unsigned 32-bit integer
i16 signed 16-bit integer
u16 unsigned 16-bit integer
i8 signed 8-bit integer
u8 unsigned 8-bit integer

The variable r is generally used for the intrinsic's return value. A number appended to a variable name indicates the 
element of a packed object. For example, r0 is the lowest word of r.

The packed values are represented in right-to-left order, with the lowest value being used for scalar operations. 
Consider the following example operation:

double a[2] = {1.0, 2.0};
__m128d t = _mm_load_pd(a);

The result is the same as either of the following:

__m128d t = _mm_set_pd(2.0, 1.0);
__m128d t = _mm_setr_pd(1.0, 2.0);

In other words, the XMM register that holds the value t will look as follows:

0127 64 63

2.0 1.0
Vol. 2D C-1



INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
The “scalar” element is 1.0. Due to the nature of the instruction, some intrinsics require their arguments to be 
immediates (constant integer literals).

To use an intrinsic in your code, insert a line with the following syntax:

data_type intrinsic_name (parameters)

Where:
data_type Is the return data type, which can be either void, int, __m64, __m128, __m128d, or 

__m128i. Only the _mm_empty intrinsic returns void.
intrinsic_name Is the name of the intrinsic, which behaves like a function that you can use in your C/C++ 

code instead of in-lining the actual instruction.
parameters Represents the parameters required by each intrinsic.

C.1 SIMPLE INTRINSICS

NOTE
For detailed descriptions of the intrinsics in Table C-1, see the corresponding mnemonic in Chapter 
3, “Instruction Set Reference, A-L‚” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A; Chapter 4, “Instruction Set Reference, M-U‚” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B; Chapter 5, “Instruction Set Reference, V,” of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C; or Chapter 6, 
“Instruction Set Reference, W-Z,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2D. 

Table C-1.  Simple Intrinsics
Mnemonic Intrinsic

ADDPD __m128d _mm_add_pd(__m128d a, __m128d b)

ADDPS __m128 _mm_add_ps(__m128 a, __m128 b)

ADDSD __m128d _mm_add_sd(__m128d a, __m128d b)

ADDSS __m128 _mm_add_ss(__m128 a, __m128 b)

ADDSUBPD __m128d _mm_addsub_pd(__m128d a, __m128d b)

ADDSUBPS __m128 _mm_addsub_ps(__m128 a, __m128 b)

AESDEC  __m128i _mm_aesdec (__m128i, __m128i)

AESDECLAST  __m128i _mm_aesdeclast (__m128i, __m128i)

AESENC  __m128i _mm_aesenc (__m128i, __m128i)

AESENCLAST __m128i _mm_aesenclast (__m128i, __m128i)

AESIMC __m128i _mm_aesimc (__m128i)

AESKEYGENASSIST __m128i _mm_aesimc (__m128i, const int)

ANDNPD __m128d _mm_andnot_pd(__m128d a, __m128d b)

ANDNPS __m128 _mm_andnot_ps(__m128 a, __m128 b)

ANDPD __m128d _mm_and_pd(__m128d a, __m128d b)

ANDPS __m128 _mm_and_ps(__m128 a, __m128 b)

BLENDPD __m128d _mm_blend_pd(__m128d v1, __m128d v2, const int mask)

BLENDPS __m128 _mm_blend_ps(__m128 v1, __m128 v2, const int mask)

BLENDVPD __m128d _mm_blendv_pd(__m128d v1, __m128d v2, __m128d v3)

BLENDVPS __m128 _mm_blendv_ps(__m128 v1, __m128 v2, __m128 v3)

CLFLUSH void _mm_clflush(void const *p)
C-2 Vol. 2D



INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
CMPPD __m128d _mm_cmpeq_pd(__m128d a, __m128d b)

__m128d _mm_cmplt_pd(__m128d a, __m128d b)

__m128d _mm_cmple_pd(__m128d a, __m128d b)

__m128d _mm_cmpgt_pd(__m128d a, __m128d b)

__m128d _mm_cmpge_pd(__m128d a, __m128d b)

__m128d _mm_cmpneq_pd(__m128d a, __m128d b)

__m128d _mm_cmpnlt_pd(__m128d a, __m128d b)

__m128d _mm_cmpngt_pd(__m128d a, __m128d b)

__m128d _mm_cmpnge_pd(__m128d a, __m128d b)

__m128d _mm_cmpord_pd(__m128d a, __m128d b)

__m128d _mm_cmpunord_pd(__m128d a, __m128d b)

__m128d _mm_cmpnle_pd(__m128d a, __m128d b)

CMPPS __m128 _mm_cmpeq_ps(__m128 a, __m128 b)

__m128 _mm_cmplt_ps(__m128 a, __m128 b)

__m128 _mm_cmple_ps(__m128 a, __m128 b)

__m128 _mm_cmpgt_ps(__m128 a, __m128 b)

__m128 _mm_cmpge_ps(__m128 a, __m128 b)

__m128 _mm_cmpneq_ps(__m128 a, __m128 b)

__m128 _mm_cmpnlt_ps(__m128 a, __m128 b)

__m128 _mm_cmpngt_ps(__m128 a, __m128 b)

__m128 _mm_cmpnge_ps(__m128 a, __m128 b)

__m128 _mm_cmpord_ps(__m128 a, __m128 b)

__m128 _mm_cmpunord_ps(__m128 a, __m128 b)

__m128 _mm_cmpnle_ps(__m128 a, __m128 b)

CMPSD __m128d _mm_cmpeq_sd(__m128d a, __m128d b)

__m128d _mm_cmplt_sd(__m128d a, __m128d b)

__m128d _mm_cmple_sd(__m128d a, __m128d b)

__m128d _mm_cmpgt_sd(__m128d a, __m128d b)

__m128d _mm_cmpge_sd(__m128d a, __m128d b)

__m128 _mm_cmpneq_sd(__m128d a, __m128d b)

__m128 _mm_cmpnlt_sd(__m128d a, __m128d b)

__m128d _mm_cmpnle_sd(__m128d a, __m128d b)

__m128d _mm_cmpngt_sd(__m128d a, __m128d b)

__m128d _mm_cmpnge_sd(__m128d a, __m128d b)

__m128d _mm_cmpord_sd(__m128d a, __m128d b)

__m128d _mm_cmpunord_sd(__m128d a, __m128d b)

CMPSS __m128 _mm_cmpeq_ss(__m128 a, __m128 b)

__m128 _mm_cmplt_ss(__m128 a, __m128 b)

__m128 _mm_cmple_ss(__m128 a, __m128 b)

__m128 _mm_cmpgt_ss(__m128 a, __m128 b)

__m128 _mm_cmpge_ss(__m128 a, __m128 b)
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__m128 _mm_cmpneq_ss(__m128 a, __m128 b)

__m128 _mm_cmpnlt_ss(__m128 a, __m128 b)

__m128 _mm_cmpnle_ss(__m128 a, __m128 b)

__m128 _mm_cmpngt_ss(__m128 a, __m128 b)

__m128 _mm_cmpnge_ss(__m128 a, __m128 b)

__m128 _mm_cmpord_ss(__m128 a, __m128 b)

__m128 _mm_cmpunord_ss(__m128 a, __m128 b)

COMISD int _mm_comieq_sd(__m128d a, __m128d b)

int _mm_comilt_sd(__m128d a, __m128d b)

int _mm_comile_sd(__m128d a, __m128d b)

int _mm_comigt_sd(__m128d a, __m128d b)

int _mm_comige_sd(__m128d a, __m128d b)

int _mm_comineq_sd(__m128d a, __m128d b)

COMISS int _mm_comieq_ss(__m128 a, __m128 b)

int _mm_comilt_ss(__m128 a, __m128 b)

int _mm_comile_ss(__m128 a, __m128 b)

int _mm_comigt_ss(__m128 a, __m128 b)

int _mm_comige_ss(__m128 a, __m128 b)

int _mm_comineq_ss(__m128 a, __m128 b)

CRC32 unsigned int _mm_crc32_u8(unsigned int crc, unsigned char data)

unsigned int _mm_crc32_u16(unsigned int crc, unsigned short data)

unsigned int _mm_crc32_u32(unsigned int crc, unsigned int data)

unsigned __int64 _mm_crc32_u64(unsigned __int64 crc, unsigned __int64 data)

CVTDQ2PD __m128d _mm_cvtepi32_pd(__m128i a)

CVTDQ2PS __m128 _mm_cvtepi32_ps(__m128i a)

CVTPD2DQ __m128i _mm_cvtpd_epi32(__m128d a)

CVTPD2PI __m64 _mm_cvtpd_pi32(__m128d a)

CVTPD2PS __m128 _mm_cvtpd_ps(__m128d a)

CVTPI2PD __m128d _mm_cvtpi32_pd(__m64 a)

CVTPI2PS __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
__m128 _mm_cvtpi32_ps(__m128 a, __m64 b)

CVTPS2DQ __m128i _mm_cvtps_epi32(__m128 a)

CVTPS2PD __m128d _mm_cvtps_pd(__m128 a)

CVTPS2PI __m64 _mm_cvt_ps2pi(__m128 a)
__m64 _mm_cvtps_pi32(__m128 a)

CVTSD2SI int _mm_cvtsd_si32(__m128d a)

CVTSD2SS __m128 _mm_cvtsd_ss(__m128 a, __m128d b)

CVTSI2SD __m128d _mm_cvtsi32_sd(__m128d a, int b)

CVTSI2SS __m128 _mm_cvt_si2ss(__m128 a, int b)
__m128 _mm_cvtsi32_ss(__m128 a, int b)
__m128 _mm_cvtsi64_ss(__m128 a, __int64 b)

CVTSS2SD __m128d _mm_cvtss_sd(__m128d a, __m128 b)
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CVTSS2SI int _mm_cvt_ss2si(__m128 a)
int _mm_cvtss_si32(__m128 a)

CVTTPD2DQ __m128i _mm_cvttpd_epi32(__m128d a)

CVTTPD2PI __m64 _mm_cvttpd_pi32(__m128d a)

CVTTPS2DQ __m128i _mm_cvttps_epi32(__m128 a)

CVTTPS2PI __m64 _mm_cvtt_ps2pi(__m128 a)
__m64 _mm_cvttps_pi32(__m128 a)

CVTTSD2SI int _mm_cvttsd_si32(__m128d a)

CVTTSS2SI int _mm_cvtt_ss2si(__m128 a)
int _mm_cvttss_si32(__m128 a)

__m64 _mm_cvtsi32_si64(int i)

int _mm_cvtsi64_si32(__m64 m)

DIVPD __m128d _mm_div_pd(__m128d a, __m128d b)

DIVPS __m128 _mm_div_ps(__m128 a, __m128 b)

DIVSD __m128d _mm_div_sd(__m128d a, __m128d b)

DIVSS __m128 _mm_div_ss(__m128 a, __m128 b)

DPPD __m128d _mm_dp_pd(__m128d a, __m128d b, const int mask)

DPPS __m128 _mm_dp_ps(__m128 a, __m128 b, const int mask)

EMMS void _mm_empty()

EXTRACTPS int _mm_extract_ps(__m128 src, const int ndx)

HADDPD __m128d _mm_hadd_pd(__m128d a, __m128d b)

HADDPS __m128 _mm_hadd_ps(__m128 a, __m128 b)

HSUBPD __m128d _mm_hsub_pd(__m128d a, __m128d b)

HSUBPS __m128 _mm_hsub_ps(__m128 a, __m128 b)

INSERTPS __m128 _mm_insert_ps(__m128 dst, __m128 src, const int ndx)

LDDQU __m128i _mm_lddqu_si128(__m128i const *p)

LDMXCSR __mm_setcsr(unsigned int i)

LFENCE void _mm_lfence(void)

MASKMOVDQU void _mm_maskmoveu_si128(__m128i d, __m128i n, char *p)

MASKMOVQ void _mm_maskmove_si64(__m64 d, __m64 n, char *p)

MAXPD __m128d _mm_max_pd(__m128d a, __m128d b)

MAXPS __m128 _mm_max_ps(__m128 a, __m128 b)

MAXSD __m128d _mm_max_sd(__m128d a, __m128d b)

MAXSS __m128 _mm_max_ss(__m128 a, __m128 b)

MFENCE void _mm_mfence(void)

MINPD __m128d _mm_min_pd(__m128d a, __m128d b)

MINPS __m128 _mm_min_ps(__m128 a, __m128 b)

MINSD __m128d _mm_min_sd(__m128d a, __m128d b)

MINSS __m128 _mm_min_ss(__m128 a, __m128 b)

MONITOR void _mm_monitor(void const *p, unsigned extensions, unsigned hints)

MOVAPD __m128d _mm_load_pd(double * p)

void_mm_store_pd(double *p, __m128d a)
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MOVAPS __m128 _mm_load_ps(float * p)

void_mm_store_ps(float *p, __m128 a)

MOVD __m128i _mm_cvtsi32_si128(int a)

int _mm_cvtsi128_si32(__m128i a)

__m64 _mm_cvtsi32_si64(int a)

int _mm_cvtsi64_si32(__m64 a)

MOVDDUP __m128d _mm_movedup_pd(__m128d a)

__m128d _mm_loaddup_pd(double const * dp)

MOVDQA __m128i _mm_load_si128(__m128i * p)

void_mm_store_si128(__m128i *p, __m128i a)

MOVDQU __m128i _mm_loadu_si128(__m128i * p)

void_mm_storeu_si128(__m128i *p, __m128i a)

MOVDQ2Q __m64 _mm_movepi64_pi64(__m128i a)

MOVHLPS __m128 _mm_movehl_ps(__m128 a, __m128 b)

MOVHPD __m128d _mm_loadh_pd(__m128d a, double * p)

void _mm_storeh_pd(double * p, __m128d a)

MOVHPS __m128 _mm_loadh_pi(__m128 a, __m64 * p)

void _mm_storeh_pi(__m64 * p, __m128 a)

MOVLPD __m128d _mm_loadl_pd(__m128d a, double * p)

void _mm_storel_pd(double * p, __m128d a)

MOVLPS __m128 _mm_loadl_pi(__m128 a, __m64 *p)

void_mm_storel_pi(__m64 * p, __m128 a)

MOVLHPS __m128 _mm_movelh_ps(__m128 a, __m128 b)

MOVMSKPD int _mm_movemask_pd(__m128d a)

MOVMSKPS int _mm_movemask_ps(__m128 a)

MOVNTDQA __m128i _mm_stream_load_si128(__m128i *p)

MOVNTDQ void_mm_stream_si128(__m128i * p, __m128i a)

MOVNTPD void_mm_stream_pd(double * p, __m128d a)

MOVNTPS void_mm_stream_ps(float * p, __m128 a)

MOVNTI void_mm_stream_si32(int * p, int a)

MOVNTQ void_mm_stream_pi(__m64 * p, __m64 a)

MOVQ __m128i _mm_loadl_epi64(__m128i * p)

void_mm_storel_epi64(_m128i * p, __m128i a)

__m128i _mm_move_epi64(__m128i a)

MOVQ2DQ __m128i _mm_movpi64_epi64(__m64 a)

MOVSD __m128d _mm_load_sd(double * p)

void_mm_store_sd(double * p, __m128d a)

__m128d _mm_move_sd(__m128d a, __m128d b)

MOVSHDUP __m128 _mm_movehdup_ps(__m128 a)

MOVSLDUP __m128 _mm_moveldup_ps(__m128 a)

MOVSS __m128 _mm_load_ss(float * p)
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void_mm_store_ss(float * p, __m128 a)

__m128 _mm_move_ss(__m128 a, __m128 b)

MOVUPD __m128d _mm_loadu_pd(double * p)

void_mm_storeu_pd(double *p, __m128d a) 

MOVUPS __m128 _mm_loadu_ps(float * p)

void_mm_storeu_ps(float *p, __m128 a) 

MPSADBW __m128i _mm_mpsadbw_epu8(__m128i s1, __m128i s2, const int mask)

MULPD __m128d _mm_mul_pd(__m128d a, __m128d b)

MULPS __m128 _mm_mul_ss(__m128 a, __m128 b)

MULSD __m128d _mm_mul_sd(__m128d a, __m128d b)

MULSS __m128 _mm_mul_ss(__m128 a, __m128 b)

MWAIT void _mm_mwait(unsigned extensions, unsigned hints)

ORPD __m128d _mm_or_pd(__m128d a, __m128d b)

ORPS __m128 _mm_or_ps(__m128 a, __m128 b)

PABSB  __m64 _mm_abs_pi8 (__m64 a)

 __m128i _mm_abs_epi8 (__m128i a)

PABSD  __m64 _mm_abs_pi32 (__m64 a)

 __m128i _mm_abs_epi32 (__m128i a)

PABSW  __m64 _mm_abs_pi16 (__m64 a)

 __m128i _mm_abs_epi16 (__m128i a)

PACKSSWB __m128i _mm_packs_epi16(__m128i m1, __m128i m2)

PACKSSWB __m64 _mm_packs_pi16(__m64 m1, __m64 m2)

PACKSSDW __m128i _mm_packs_epi32 (__m128i m1, __m128i m2)

PACKSSDW __m64 _mm_packs_pi32 (__m64 m1, __m64 m2)

PACKUSDW __m128i _mm_packus_epi32(__m128i m1, __m128i m2)

PACKUSWB __m128i _mm_packus_epi16(__m128i m1, __m128i m2)

PACKUSWB __m64 _mm_packs_pu16(__m64 m1, __m64 m2)

PADDB __m128i _mm_add_epi8(__m128i m1, __m128i m2)

PADDB __m64 _mm_add_pi8(__m64 m1, __m64 m2)

PADDW __m128i _mm_add_epi16(__m128i m1, __m128i m2)

PADDW __m64 _mm_add_pi16(__m64 m1, __m64 m2)

PADDD __m128i _mm_add_epi32(__m128i m1, __m128i m2)

PADDD __m64 _mm_add_pi32(__m64 m1, __m64 m2)

PADDQ __m128i _mm_add_epi64(__m128i m1, __m128i m2)

PADDQ __m64 _mm_add_si64(__m64 m1, __m64 m2)

PADDSB __m128i _mm_adds_epi8(__m128i m1, __m128i m2)

PADDSB __m64 _mm_adds_pi8(__m64 m1, __m64 m2)

PADDSW __m128i _mm_adds_epi16(__m128i m1, __m128i m2)

PADDSW __m64 _mm_adds_pi16(__m64 m1, __m64 m2)

PADDUSB __m128i _mm_adds_epu8(__m128i m1, __m128i m2)

PADDUSB __m64 _mm_adds_pu8(__m64 m1, __m64 m2)
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PADDUSW __m128i _mm_adds_epu16(__m128i m1, __m128i m2)

PADDUSW __m64 _mm_adds_pu16(__m64 m1, __m64 m2)

PALIGNR  __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)

 __m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n)

PAND __m128i _mm_and_si128(__m128i m1, __m128i m2)

PAND __m64 _mm_and_si64(__m64 m1, __m64 m2)

PANDN __m128i _mm_andnot_si128(__m128i m1, __m128i m2)

PANDN __m64 _mm_andnot_si64(__m64 m1, __m64 m2)

PAUSE void _mm_pause(void)

PAVGB __m128i _mm_avg_epu8(__m128i a, __m128i b)

PAVGB __m64 _mm_avg_pu8(__m64 a, __m64 b)

PAVGW __m128i _mm_avg_epu16(__m128i a, __m128i b)

PAVGW __m64 _mm_avg_pu16(__m64 a, __m64 b)

PBLENDVB __m128i _mm_blendv_epi (__m128i v1, __m128i v2, __m128i mask)

PBLENDW __m128i _mm_blend_epi16(__m128i v1, __m128i v2, const int mask)

PCLMULQDQ __m128i _mm_clmulepi64_si128 (__m128i, __m128i, const int)

PCMPEQB __m128i _mm_cmpeq_epi8(__m128i m1, __m128i m2)

PCMPEQB __m64 _mm_cmpeq_pi8(__m64 m1, __m64 m2)

PCMPEQQ __m128i _mm_cmpeq_epi64(__m128i a, __m128i b)

PCMPEQW __m128i _mm_cmpeq_epi16 (__m128i m1, __m128i m2)

PCMPEQW __m64 _mm_cmpeq_pi16 (__m64 m1, __m64 m2)

PCMPEQD __m128i _mm_cmpeq_epi32(__m128i m1, __m128i m2)

PCMPEQD __m64 _mm_cmpeq_pi32(__m64 m1, __m64 m2)

PCMPESTRI int _mm_cmpestri (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode)

PCMPESTRM __m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode)

PCMPGTB __m128i _mm_cmpgt_epi8 (__m128i m1, __m128i m2)

PCMPGTB __m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2)

PCMPGTW __m128i _mm_cmpgt_epi16(__m128i m1, __m128i m2)

PCMPGTW __m64 _mm_cmpgt_pi16 (__m64 m1, __m64 m2)

PCMPGTD __m128i _mm_cmpgt_epi32(__m128i m1, __m128i m2)

PCMPGTD __m64 _mm_cmpgt_pi32(__m64 m1, __m64 m2)
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PCMPISTRI __m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpistrz (__m128i a, __m128i b, const int mode)

PCMPISTRM __m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode)

int _mm_cmpistra (__m128i a, __m128i b, const int mode)

int _mm_cmpistrc (__m128i a, __m128i b, const int mode)

int _mm_cmpistro (__m128i a, __m128i b, const int mode)

int _mm_cmpistrs (__m128i a, __m128i b, const int mode)

int _mm_cmpistrz (__m128i a, __m128i b, const int mode)

PCMPGTQ __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)

PEXTRB int _mm_extract_epi8 (__m128i src, const int ndx)

PEXTRD int _mm_extract_epi32 (__m128i src, const int ndx)

PEXTRQ __int64 _mm_extract_epi64 (__m128i src, const int ndx)

PEXTRW int _mm_extract_epi16(__m128i a, int n)

PEXTRW int _mm_extract_pi16(__m64 a, int n)

int _mm_extract_epi16 (__m128i src, int ndx)

PHADDD  __m64 _mm_hadd_pi32 (__m64 a, __m64 b)

 __m128i _mm_hadd_epi32 (__m128i a, __m128i b)

PHADDSW  __m64 _mm_hadds_pi16 (__m64 a, __m64 b)

 __m128i _mm_hadds_epi16 (__m128i a, __m128i b)

PHADDW __m64 _mm_hadd_pi16 (__m64 a, __m64 b)

__m128i _mm_hadd_epi16 (__m128i a, __m128i b)

PHMINPOSUW __m128i _mm_minpos_epu16( __m128i packed_words)

PHSUBD  __m64 _mm_hsub_pi32 (__m64 a, __m64 b)

 __m128i _mm_hsub_epi32 (__m128i a, __m128i b)

PHSUBSW  __m64 _mm_hsubs_pi16 (__m64 a, __m64 b)

 __m128i _mm_hsubs_epi16 (__m128i a, __m128i b)

PHSUBW  __m64 _mm_hsub_pi16 (__m64 a, __m64 b)

 __m128i _mm_hsub_epi16 (__m128i a, __m128i b)

PINSRB __m128i _mm_insert_epi8(__m128i s1, int s2, const int ndx)

PINSRD __m128i _mm_insert_epi32(__m128i s2, int s, const int ndx)

PINSRQ __m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx)

PINSRW __m128i _mm_insert_epi16(__m128i a, int d, int n)

PINSRW __m64 _mm_insert_pi16(__m64 a, int d, int n)

PMADDUBSW  __m64 _mm_maddubs_pi16 (__m64 a, __m64 b)

 __m128i _mm_maddubs_epi16 (__m128i a, __m128i b)

PMADDWD __m128i _mm_madd_epi16(__m128i m1 __m128i m2)

PMADDWD __m64 _mm_madd_pi16(__m64 m1, __m64 m2)
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PMAXSB __m128i _mm_max_epi8( __m128i a, __m128i b)

PMAXSD __m128i _mm_max_epi32( __m128i a, __m128i b)

PMAXSW __m128i _mm_max_epi16(__m128i a, __m128i b)

PMAXSW __m64 _mm_max_pi16(__m64 a, __m64 b)

PMAXUB __m128i _mm_max_epu8(__m128i a, __m128i b)

PMAXUB __m64 _mm_max_pu8(__m64 a, __m64 b)

PMAXUD __m128i _mm_max_epu32( __m128i a, __m128i b)

PMAXUW __m128i _mm_max_epu16( __m128i a, __m128i b)

PMINSB _m128i _mm_min_epi8( __m128i a, __m128i b)

PMINSD __m128i _mm_min_epi32( __m128i a, __m128i b)

PMINSW __m128i _mm_min_epi16(__m128i a, __m128i b)

PMINSW __m64 _mm_min_pi16(__m64 a, __m64 b)

PMINUB __m128i _mm_min_epu8(__m128i a, __m128i b)

PMINUB __m64 _mm_min_pu8(__m64 a, __m64 b)

PMINUD __m128i _mm_min_epu32 ( __m128i a, __m128i b)

PMINUW __m128i _mm_min_epu16 ( __m128i a, __m128i b)

PMOVMSKB int _mm_movemask_epi8(__m128i a)

PMOVMSKB int _mm_movemask_pi8(__m64 a)

PMOVSXBW __m128i _mm_ cvtepi8_epi16( __m128i a)

PMOVSXBD __m128i _mm_ cvtepi8_epi32( __m128i a)

PMOVSXBQ __m128i _mm_ cvtepi8_epi64( __m128i a)

PMOVSXWD __m128i _mm_ cvtepi16_epi32( __m128i a)

PMOVSXWQ __m128i _mm_ cvtepi16_epi64( __m128i a)

PMOVSXDQ __m128i _mm_ cvtepi32_epi64( __m128i a)

PMOVZXBW __m128i _mm_ cvtepu8_epi16( __m128i a)

PMOVZXBD __m128i _mm_ cvtepu8_epi32( __m128i a)

PMOVZXBQ __m128i _mm_ cvtepu8_epi64( __m128i a)

PMOVZXWD __m128i _mm_ cvtepu16_epi32( __m128i a)

PMOVZXWQ __m128i _mm_ cvtepu16_epi64( __m128i a)

PMOVZXDQ __m128i _mm_ cvtepu32_epi64( __m128i a)

PMULDQ __m128i _mm_mul_epi32( __m128i a, __m128i b)

PMULHRSW __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)

__m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)

PMULHUW __m128i _mm_mulhi_epu16(__m128i a, __m128i b)

PMULHUW __m64 _mm_mulhi_pu16(__m64 a, __m64 b)

PMULHW __m128i _mm_mulhi_epi16(__m128i m1, __m128i m2)

PMULHW __m64 _mm_mulhi_pi16(__m64 m1, __m64 m2)

PMULLUD __m128i _mm_mullo_epi32(__m128i a, __m128i b)

PMULLW __m128i _mm_mullo_epi16(__m128i m1, __m128i m2)

PMULLW __m64 _mm_mullo_pi16(__m64 m1, __m64 m2)
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PMULUDQ __m64 _mm_mul_su32(__m64 m1, __m64 m2)

__m128i _mm_mul_epu32(__m128i m1, __m128i m2)

POPCNT int _mm_popcnt_u32(unsigned int a)

int64_t _mm_popcnt_u64(unsigned __int64 a)

POR __m64 _mm_or_si64(__m64 m1, __m64 m2)

POR __m128i _mm_or_si128(__m128i m1, __m128i m2)

PREFETCHh void _mm_prefetch(char *a, int sel)

PSADBW __m128i _mm_sad_epu8(__m128i a, __m128i b)

PSADBW __m64 _mm_sad_pu8(__m64 a, __m64 b)

PSHUFB  __m64 _mm_shuffle_pi8 (__m64 a, __m64 b)

 __m128i _mm_shuffle_epi8 (__m128i a, __m128i b)

PSHUFD __m128i _mm_shuffle_epi32(__m128i a, int n)

PSHUFHW __m128i _mm_shufflehi_epi16(__m128i a, int n)

PSHUFLW __m128i _mm_shufflelo_epi16(__m128i a, int n)

PSHUFW __m64 _mm_shuffle_pi16(__m64 a, int n)

PSIGNB  __m64 _mm_sign_pi8 (__m64 a, __m64 b)

 __m128i _mm_sign_epi8 (__m128i a, __m128i b)

PSIGND  __m64 _mm_sign_pi32 (__m64 a, __m64 b)

 __m128i _mm_sign_epi32 (__m128i a, __m128i b)

PSIGNW  __m64 _mm_sign_pi16 (__m64 a, __m64 b)

 __m128i _mm_sign_epi16 (__m128i a, __m128i b)

PSLLW __m128i _mm_sll_epi16(__m128i m, __m128i count)

PSLLW __m128i _mm_slli_epi16(__m128i m, int count)

PSLLW __m64 _mm_sll_pi16(__m64 m, __m64 count)

__m64 _mm_slli_pi16(__m64 m, int count)

PSLLD __m128i _mm_slli_epi32(__m128i m, int count)

__m128i _mm_sll_epi32(__m128i m, __m128i count)

PSLLD __m64 _mm_slli_pi32(__m64 m, int count)

__m64 _mm_sll_pi32(__m64 m, __m64 count)

PSLLQ __m64 _mm_sll_si64(__m64 m, __m64 count)

__m64 _mm_slli_si64(__m64 m, int count)

PSLLQ __m128i _mm_sll_epi64(__m128i m, __m128i count)

__m128i _mm_slli_epi64(__m128i m, int count)

PSLLDQ __m128i _mm_slli_si128(__m128i m, int imm)

PSRAW __m128i _mm_sra_epi16(__m128i m, __m128i count)

__m128i _mm_srai_epi16(__m128i m, int count)

PSRAW __m64 _mm_sra_pi16(__m64 m, __m64 count)

__m64 _mm_srai_pi16(__m64 m, int count)

PSRAD __m128i _mm_sra_epi32 (__m128i m, __m128i count)

__m128i _mm_srai_epi32 (__m128i m, int count)

PSRAD __m64 _mm_sra_pi32 (__m64 m, __m64 count)
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__m64 _mm_srai_pi32 (__m64 m, int count)

PSRLW _m128i _mm_srl_epi16 (__m128i m, __m128i count)

__m128i _mm_srli_epi16 (__m128i m, int count)

__m64 _mm_srl_pi16 (__m64 m, __m64 count)

__m64 _mm_srli_pi16(__m64 m, int count)

PSRLD __m128i _mm_srl_epi32 (__m128i m, __m128i count)

__m128i _mm_srli_epi32 (__m128i m, int count)

PSRLD __m64 _mm_srl_pi32 (__m64 m, __m64 count)

__m64 _mm_srli_pi32 (__m64 m, int count)

PSRLQ __m128i _mm_srl_epi64 (__m128i m, __m128i count)

__m128i _mm_srli_epi64 (__m128i m, int count)

PSRLQ __m64 _mm_srl_si64 (__m64 m, __m64 count)

__m64 _mm_srli_si64 (__m64 m, int count)

PSRLDQ __m128i _mm_srli_si128(__m128i m, int imm)

PSUBB __m128i _mm_sub_epi8(__m128i m1, __m128i m2)

PSUBB __m64 _mm_sub_pi8(__m64 m1, __m64 m2)

PSUBW __m128i _mm_sub_epi16(__m128i m1, __m128i m2)

PSUBW __m64 _mm_sub_pi16(__m64 m1, __m64 m2)

PSUBD __m128i _mm_sub_epi32(__m128i m1, __m128i m2)

PSUBD __m64 _mm_sub_pi32(__m64 m1, __m64 m2)

PSUBQ __m128i _mm_sub_epi64(__m128i m1, __m128i m2)

PSUBQ __m64 _mm_sub_si64(__m64 m1, __m64 m2)

PSUBSB __m128i _mm_subs_epi8(__m128i m1, __m128i m2)

PSUBSB __m64 _mm_subs_pi8(__m64 m1, __m64 m2)

PSUBSW __m128i _mm_subs_epi16(__m128i m1, __m128i m2)

PSUBSW __m64 _mm_subs_pi16(__m64 m1, __m64 m2)

PSUBUSB __m128i _mm_subs_epu8(__m128i m1, __m128i m2)

PSUBUSB __m64 _mm_subs_pu8(__m64 m1, __m64 m2)

PSUBUSW __m128i _mm_subs_epu16(__m128i m1, __m128i m2)

PSUBUSW __m64 _mm_subs_pu16(__m64 m1, __m64 m2)

PTEST int _mm_testz_si128(__m128i s1, __m128i s2)

int _mm_testc_si128(__m128i s1, __m128i s2)

int _mm_testnzc_si128(__m128i s1, __m128i s2)

PUNPCKHBW __m64 _mm_unpackhi_pi8(__m64 m1, __m64 m2)

PUNPCKHBW __m128i _mm_unpackhi_epi8(__m128i m1, __m128i m2)

PUNPCKHWD __m64 _mm_unpackhi_pi16(__m64 m1,__m64 m2)

PUNPCKHWD __m128i _mm_unpackhi_epi16(__m128i m1, __m128i m2)

PUNPCKHDQ ___m64 _mm_unpackhi_pi32(__m64 m1, __m64 m2)

PUNPCKHDQ __m128i _mm_unpackhi_epi32(__m128i m1, __m128i m2)

PUNPCKHQDQ __m128i _mm_unpackhi_epi64(__m128i m1, __m128i m2)

PUNPCKLBW __m64 _mm_unpacklo_pi8 (__m64 m1, __m64 m2)
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PUNPCKLBW __m128i _mm_unpacklo_epi8 (__m128i m1, __m128i m2)

PUNPCKLWD __m64 _mm_unpacklo_pi16(__m64 m1, __m64 m2)

PUNPCKLWD __m128i _mm_unpacklo_epi16(__m128i m1, __m128i m2)

PUNPCKLDQ __m64 _mm_unpacklo_pi32(__m64 m1, __m64 m2)

PUNPCKLDQ __m128i _mm_unpacklo_epi32(__m128i m1, __m128i m2)

PUNPCKLQDQ __m128i _mm_unpacklo_epi64(__m128i m1, __m128i m2)

PXOR __m64 _mm_xor_si64(__m64 m1, __m64 m2)

PXOR __m128i _mm_xor_si128(__m128i m1, __m128i m2)

RCPPS __m128 _mm_rcp_ps(__m128 a)

RCPSS __m128 _mm_rcp_ss(__m128 a)

ROUNDPD __m128 mm_round_pd(__m128d s1, int iRoundMode)

__m128 mm_floor_pd(__m128d s1)

__m128 mm_ceil_pd(__m128d s1)

ROUNDPS __m128 mm_round_ps(__m128 s1, int iRoundMode)

__m128 mm_floor_ps(__m128 s1)

__m128 mm_ceil_ps(__m128 s1)

ROUNDSD __m128d mm_round_sd(__m128d dst, __m128d s1, int iRoundMode)

__m128d mm_floor_sd(__m128d dst, __m128d s1)

__m128d mm_ceil_sd(__m128d dst, __m128d s1)

ROUNDSS __m128 mm_round_ss(__m128 dst, __m128 s1, int iRoundMode)

__m128 mm_floor_ss(__m128 dst, __m128 s1)

__m128 mm_ceil_ss(__m128 dst, __m128 s1)

RSQRTPS __m128 _mm_rsqrt_ps(__m128 a)

RSQRTSS __m128 _mm_rsqrt_ss(__m128 a)

SFENCE void_mm_sfence(void)

SHUFPD __m128d _mm_shuffle_pd(__m128d a, __m128d b, unsigned int imm8)

SHUFPS __m128 _mm_shuffle_ps(__m128 a, __m128 b, unsigned int imm8)

SQRTPD __m128d _mm_sqrt_pd(__m128d a)

SQRTPS __m128 _mm_sqrt_ps(__m128 a)

SQRTSD __m128d _mm_sqrt_sd(__m128d a)

SQRTSS __m128 _mm_sqrt_ss(__m128 a)

STMXCSR _mm_getcsr(void)

SUBPD __m128d _mm_sub_pd(__m128d a, __m128d b)

SUBPS __m128 _mm_sub_ps(__m128 a, __m128 b)

SUBSD __m128d _mm_sub_sd(__m128d a, __m128d b)

SUBSS __m128 _mm_sub_ss(__m128 a, __m128 b)

UCOMISD int _mm_ucomieq_sd(__m128d a, __m128d b)

int _mm_ucomilt_sd(__m128d a, __m128d b)

int _mm_ucomile_sd(__m128d a, __m128d b)

int _mm_ucomigt_sd(__m128d a, __m128d b)

int _mm_ucomige_sd(__m128d a, __m128d b)
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C.2 COMPOSITE INTRINSICS

int _mm_ucomineq_sd(__m128d a, __m128d b)

UCOMISS int _mm_ucomieq_ss(__m128 a, __m128 b)

int _mm_ucomilt_ss(__m128 a, __m128 b)

int _mm_ucomile_ss(__m128 a, __m128 b)

int _mm_ucomigt_ss(__m128 a, __m128 b)

int _mm_ucomige_ss(__m128 a, __m128 b)

int _mm_ucomineq_ss(__m128 a, __m128 b)

UNPCKHPD __m128d _mm_unpackhi_pd(__m128d a, __m128d b)

UNPCKHPS __m128 _mm_unpackhi_ps(__m128 a, __m128 b)

UNPCKLPD __m128d _mm_unpacklo_pd(__m128d a, __m128d b)

UNPCKLPS __m128 _mm_unpacklo_ps(__m128 a, __m128 b)

XORPD __m128d _mm_xor_pd(__m128d a, __m128d b)

XORPS __m128 _mm_xor_ps(__m128 a, __m128 b)

Table C-2.  Composite Intrinsics
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(composite) __m128i _mm_set_epi64(__m64 q1, __m64 q0)

(composite) __m128i _mm_set_epi32(int i3, int i2, int i1, int i0)

(composite) __m128i _mm_set_epi16(short w7,short w6, short w5, short w4, short w3, short w2, 
 short w1,short w0)

(composite) __m128i _mm_set_epi8(char w15,char w14, char w13, char w12, char w11, char w10,
 char w9, char w8, char w7,char w6, char w5, char w4, char w3, char w2,char w1, char w0)

(composite) __m128i _mm_set1_epi64(__m64 q)

(composite) __m128i _mm_set1_epi32(int a)

(composite) __m128i _mm_set1_epi16(short a)

(composite) __m128i _mm_set1_epi8(char a)

(composite) __m128i _mm_setr_epi64(__m64 q1, __m64 q0)

(composite) __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)

(composite) __m128i _mm_setr_epi16(short w7,short w6, short w5, short w4, short w3, short w2, short w,
short w0)

(composite) __m128i _mm_setr_epi8(char w15,char w14, char w13, char w12, char w11, char w10,
char w9, char w8,char w7, char w6,char w5, char w4, char w3, char w2,char w1,char w0)

(composite) __m128i _mm_setzero_si128()

(composite) __m128 _mm_set_ps1(float w)
__m128 _mm_set1_ps(float w)

(composite) __m128cmm_set1_pd(double w)

(composite) __m128d _mm_set_sd(double w)

(composite) __m128d _mm_set_pd(double z, double y)

(composite) __m128 _mm_set_ps(float z, float y, float x, float w)

(composite) __m128d _mm_setr_pd(double z, double y)

(composite) __m128 _mm_setr_ps(float z, float y, float x, float w)
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(composite) __m128d _mm_setzero_pd(void)

(composite) __m128 _mm_setzero_ps(void)

MOVSD + shuffle __m128d _mm_load_pd(double * p)
__m128d _mm_load1_pd(double *p)

MOVSS + shuffle __m128 _mm_load_ps1(float * p)
__m128 _mm_load1_ps(float *p)

MOVAPD + shuffle __m128d _mm_loadr_pd(double * p)

MOVAPS + shuffle __m128 _mm_loadr_ps(float * p)

MOVSD + shuffle void _mm_store1_pd(double *p, __m128d a)

MOVSS + shuffle void _mm_store_ps1(float * p, __m128 a)
void _mm_store1_ps(float *p, __m128 a)

MOVAPD + shuffle _mm_storer_pd(double * p, __m128d a)

MOVAPS + shuffle _mm_storer_ps(float * p, __m128 a)
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CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System Programming Guide, Part 
1 (order number 253668), the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System 
Programming Guide, Part 2 (order number 253669), the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3C: System Programming Guide, Part 3 (order number 326019), and the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3D:System Programming Guide, Part 4 (order number 
332831) are part of a set that describes the architecture and programming environment of Intel 64 and IA-32 
Architecture processors. The other volumes in this set are:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number 

253665).
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D: Instruction Set 

Reference (order numbers 253666, 253667, 326018, and 334569).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers 

(order number 335592).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture 
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C, & 3D, describe 
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3B, and Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, address the programming 
environment for classes of software that host operating systems. The Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 4, describes the model-specific registers of Intel 64 and IA-32 processors.

1.1 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all volumes of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, with chapter-specific details for the current volume. 

Chapter 2 — System Architecture Overview. Describes the modes of operation used by Intel 64 and IA-32 
processors and the mechanisms provided by the architectures to support operating systems and executives, 
including the system-oriented registers and data structures and the system-oriented instructions. The steps neces-
sary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data structures, registers, and instructions 
that support segmentation and paging. The chapter explains how they can be used to implement a “flat” (unseg-
mented) memory model or a segmented memory model.

Chapter 4 — Linear-Address Pre-Processing. Describes the processes to which linear addresses are subject 
prior to translation changing. These include fault checking for linear-address-space separation (LASS) and canoni-
cality, as well as linear-address masking (LAM).

Chapter 5 — Paging. Describes the paging modes supported by Intel 64 and IA-32 processors.

Chapter 6 — Protection. Describes the support for page and segment protection provided in the Intel 64 and IA-
32 architectures. This chapter also explains the implementation of privilege rules, stack switching, pointer valida-
tion, user mode, and supervisor mode.

Chapter 7 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms defined in the Intel 
64 and IA-32 architectures, shows how interrupts and exceptions relate to protection, and describes how the archi-
tecture handles each exception type. Reference information for each exception is given in this chapter. Includes 
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programming the LINT0 and LINT1 inputs and gives an example of how to program the LINT0 and LINT1 pins for 
specific interrupt vectors.

Chapter 8 — User Interrupts. Describes user interrupts supported by Intel 64 and IA-32 processors.

Chapter 9 — Task Management. Describes mechanisms the Intel 64 and IA-32 architectures provide to support 
multitasking and inter-task protection.

Chapter 10 — Multiple-Processor Management. Describes the instructions and flags that support multiple 
processors with shared memory, memory ordering, and Intel® Hyper-Threading Technology. Includes MP initializa-
tion for P6 family processors and gives an example of how to use the MP protocol to boot P6 family processors in an 
MP system.

Chapter 11 — Processor Management and Initialization. Defines the state of an Intel 64 or IA-32 processor 
after reset initialization. This chapter also explains how to set up an Intel 64 or IA-32 processor for real-address 
mode operation and protected- mode operation, and how to switch between modes.

Chapter 12 — Advanced Programmable Interrupt Controller (APIC). Describes the programming interface 
to the local APIC and gives an overview of the interface between the local APIC and the I/O APIC. Includes APIC bus 
message formats and describes the message formats for messages transmitted on the APIC bus for P6 family and 
Pentium processors.

Chapter 13 — Memory Cache Control. Describes the general concept of caching and the caching mechanisms 
supported by the Intel 64 or IA-32 architectures. This chapter also describes the memory type range registers 
(MTRRs) and how they can be used to map memory types of physical memory. Information on using the new cache 
control and memory streaming instructions introduced with the Pentium III, Pentium 4, and Intel Xeon processors is 
also given.

Chapter 14 — Intel® MMX™ Technology System Programming. Describes those aspects of the Intel® MMX™ 
technology that must be handled and considered at the system programming level, including: task switching, 
exception handling, and compatibility with existing system environments.

Chapter 15 — System Programming For Instruction Set Extensions And Processor Extended States. 
Describes the operating system requirements to support SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task 
switching, exception handling, and compatibility with existing system environments. The latter part of this chapter 
describes the extensible framework of operating system requirements to support processor extended states. 
Processor extended state may be required by instruction set extensions beyond those of 
SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

Chapter 16 — Power and Thermal Management. Describes facilities of Intel 64 and IA-32 architecture used for 
power management and thermal monitoring.

Chapter 17 — Machine-Check Architecture. Describes the machine-check architecture and machine-check 
exception mechanism found in the Pentium 4, Intel Xeon, and P6 family processors. Additionally, a signaling mech-
anism for software to respond to hardware corrected machine check error is covered.

Chapter 18 — Interpreting Machine-Check Error Codes. Gives an example of how to interpret the error codes 
for a machine-check error that occurred on a P6 family processor.

Chapter 19 — Debug, Branch Profile, TSC, and Resource Monitoring Features. Describes the debugging 
registers and other debug mechanism provided in Intel 64 or IA-32 processors. This chapter also describes the 
time-stamp counter. 

Chapter 20 — Last Branch Records. Describes the Last Branch Records (architectural feature).

Chapter 21 — Performance Monitoring. Describes the Intel 64 and IA-32 architectures’ facilities for monitoring 
performance.

Chapter 22 — 8086 Emulation. Describes the real-address and virtual-8086 modes of the IA-32 architecture.

Chapter 23 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code modules within the 
same program or task.

Chapter 24 — IA-32 Architecture Compatibility. Describes architectural compatibility among IA-32 proces-
sors.

Chapter 25 — Introduction to Virtual Machine Extensions. Describes the basic elements of virtual machine 
architecture and the virtual machine extensions for Intel 64 and IA-32 Architectures.
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Chapter 26 — Virtual Machine Control Structures. Describes components that manage VMX operation. These 
include the working-VMCS pointer and the controlling-VMCS pointer.

Chapter 27 — VMX Non-Root Operation. Describes the operation of a VMX non-root operation. Processor oper-
ation in VMX non-root mode can be restricted programmatically such that certain operations, events or conditions 
can cause the processor to transfer control from the guest (running in VMX non-root mode) to the monitor software 
(running in VMX root mode).

Chapter 28 — VM Entries. Describes VM entries. VM entry transitions the processor from the VMM running in 
VMX root-mode to a VM running in VMX non-root mode. VM-Entry is performed by the execution of VMLAUNCH or 
VMRESUME instructions.

Chapter 29 — VM Exits. Describes VM exits. Certain events, operations or situations while the processor is in VMX 
non-root operation may cause VM-exit transitions. In addition, VM exits can also occur on failed VM entries.

Chapter 30 — VMX Support for Address Translation. Describes virtual-machine extensions that support 
address translation and the virtualization of physical memory.

Chapter 31 — APIC Virtualization and Virtual Interrupts. Describes the VMCS including controls that enable 
the virtualization of interrupts and the Advanced Programmable Interrupt Controller (APIC).

Chapter 32 — VMX Instruction Reference. Describes the virtual-machine extensions (VMX). VMX is intended 
for a system executive to support virtualization of processor hardware and a system software layer acting as a host 
to multiple guest software environments.

Chapter 33 — System Management Mode. Describes Intel 64 and IA-32 architectures’ system management 
mode (SMM) facilities.

Chapter 34 — Intel® Processor Trace. Describes details of Intel® Processor Trace.

Chapter 35 — Introduction to Intel® Software Guard Extensions. Provides an overview of the Intel® Soft-
ware Guard Extensions (Intel® SGX) set of instructions.

Chapter 36 — Enclave Access Control and Data Structures. Describes Enclave Access Control procedures and 
defines various Intel SGX data structures.

Chapter 37 — Enclave Operation. Describes enclave creation and initialization, adding pages and measuring an 
enclave, and enclave entry and exit.

Chapter 38 — Enclave Exiting Events. Describes enclave-exiting events (EEE) and asynchronous enclave exit 
(AEX).

Chapter 39 — SGX Instruction References. Describes the supervisor and user level instructions provided by 
Intel SGX.

Chapter 40 — Intel® SGX Interactions with IA32 and Intel® 64 Architecture. Describes the Intel SGX 
collection of enclave instructions for creating protected execution environments on processors supporting IA32 and 
Intel 64 architectures.

Chapter 41 — Enclave Code Debug and Profiling. Describes enclave code debug processes and options.

Appendix A — VMX Capability Reporting Facility. Describes the VMX capability MSRs. Support for specific VMX 
features is determined by reading capability MSRs.

Appendix B — Field Encoding in VMCS. Enumerates all fields in the VMCS and their encodings. Fields are 
grouped by width (16-bit, 32-bit, etc.) and type (guest-state, host-state, etc.).

Appendix C — VM Basic Exit Reasons. Describes the 32-bit fields that encode reasons for a VM exit. Examples 
of exit reasons include, but are not limited to: software interrupts, processor exceptions, software traps, NMIs, 
external interrupts, and triple faults.
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CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

IA-32 architecture (beginning with the Intel386 processor family) provides extensive support for operating-system 
and system-development software. This support offers multiple modes of operation, which include:
• Real mode, protected mode, virtual 8086 mode, and system management mode. These are sometimes 

referred to as legacy modes.

Intel 64 architecture supports almost all the system programming facilities available in IA-32 architecture and 
extends them to a new operating mode (IA-32e mode) that supports a 64-bit programming environment. IA-32e 
mode allows software to operate in one of two sub-modes: 
• 64-bit mode supports 64-bit OS and 64-bit applications
• Compatibility mode allows most legacy software to run; it co-exists with 64-bit applications under a 64-bit OS.

The IA-32 system-level architecture includes features to assist in the following operations:
• Memory management.
• Protection of software modules.
• Multitasking.
• Exception and interrupt handling.
• Multiprocessing.
• Cache management.
• Hardware resource and power management.
• Debugging and performance monitoring.

This chapter provides a description of each part of this architecture. It also describes the system registers that are 
used to set up and control the processor at the system level and gives a brief overview of the processor’s system-
level (operating system) instructions.

Many features of the system-level architecture are used only by system programmers. However, application 
programmers may need to read this chapter and the following chapters in order to create a reliable and secure 
environment for application programs.

This overview and most subsequent chapters of this book focus on protected-mode operation of the IA-32 architec-
ture. IA-32e mode operation of the Intel 64 architecture, as it differs from protected mode operation, is also 
described. 

All Intel 64 and IA-32 processors enter real-address mode following a power-up or reset (see Chapter 11, 
“Processor Management and Initialization”). Software then initiates the switch from real-address mode to 
protected mode. If IA-32e mode operation is desired, software also initiates a switch from protected mode to IA-
32e mode.

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE
System-level architecture consists of a set of registers, data structures, and instructions designed to support basic 
system-level operations such as memory management, interrupt and exception handling, task management, and 
control of multiple processors.

Figure 2-1 provides a summary of system registers and data structures that applies to 32-bit modes. System regis-
ters and data structures that apply to IA-32e mode are shown in Figure 2-2.
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Figure 2-1.  IA-32 System-Level Registers and Data Structures
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2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or 
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment 
descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage 
information.

Figure 2-2.  System-Level Registers and Data Structures in IA-32e Mode and 4-Level Paging

Local Descriptor
Table (LDT)

CR1
CR2
CR3
CR4

CR0 Global Descriptor
Table (GDT)

Interrupt Descriptor
Table (IDT)

IDTR

GDTR

Interrupt Gate

Trap Gate

LDT Desc.

TSS Desc.

Code
Stack

Code
Stack

Code
Stack

Current TSS
Code

Stack

Interr. Handler

Interrupt Handler

Exception Handler

Protected Procedure

TR

Call-Gate
Segment Selector

Linear Address

PML4

PML4.

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or Stack 
Segment (Base =0)

Interrupt
Vector

Seg. Desc.

Seg. Desc.

NULL

Call Gate

Task-State
Segment (TSS)

Seg. Desc.

NULL

NULL

Segment Selector

Linear Address

Task Register

CR3*

Page

LDTR

This page mapping example is for 4-KByte pages
and 4-level paging.

Register

*Physical Address

Physical Address

CR8
Control Register

RFLAGS

OffsetTableDirectory

Page Table

Entry

Physical
Addr.Page Tbl

Entry

Page Dir.Pg. Dir. Ptr. 

PML4 Dir. Pointer

Pg. Dir.
Entry

Interrupt Gate
IST

 XCR0

PKRU
Vol. 3A 2-3
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Each segment descriptor has an associated segment selector. A segment selector provides the software that uses 
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information. 

To access a byte in a segment, a segment selector and an offset must be supplied. The segment selector provides 
access to the segment descriptor for the segment (in the GDT or LDT). From the segment descriptor, the processor 
obtains the base address of the segment in the linear address space. The offset then provides the location of the 
byte relative to the base address. This mechanism can be used to access any valid code, data, or stack segment, 
provided the segment is accessible from the current privilege level (CPL) at which the processor is operating. The 
CPL is defined as the protection level of the currently executing code segment.

See Figure 2-1. The solid arrows in the figure indicate a linear address, dashed lines indicate a segment selector, 
and the dotted arrows indicate a physical address. For simplicity, many of the segment selectors are shown as 
direct pointers to a segment. However, the actual path from a segment selector to its associated segment is always 
through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR); the linear address of the LDT is 
contained in the LDT register (LDTR).

2.1.1.1  Global and Local Descriptor Tables in IA-32e Mode
GDTR and LDTR registers are expanded to 64-bits wide in both IA-32e sub-modes (64-bit mode and compatibility 
mode). For more information: see Section 3.5.2, “Segment Descriptor Tables in IA-32e Mode.”

Global and local descriptor tables are expanded in 64-bit mode to support 64-bit base addresses, (16-byte LDT 
descriptors hold a 64-bit base address and various attributes). In compatibility mode, descriptors are not 
expanded. 

2.1.2 System Segments, Segment Descriptors, and Gates
Besides code, data, and stack segments that make up the execution environment of a program or procedure, the 
architecture defines two system segments: the task-state segment (TSS) and the LDT. The GDT is not considered 
a segment because it is not accessed by means of a segment selector and segment descriptor. TSSs and LDTs have 
segment descriptors defined for them.

The architecture also defines a set of special descriptors called gates (call gates, interrupt gates, trap gates, and 
task gates). These provide protected gateways to system procedures and handlers that may operate at a different 
privilege level than application programs and most procedures. For example, a CALL to a call gate can provide 
access to a procedure in a code segment that is at the same or a numerically lower privilege level (more privileged) 
than the current code segment. To access a procedure through a call gate, the calling procedure1 supplies the 
selector for the call gate. The processor then performs an access rights check on the call gate, comparing the CPL 
with the privilege level of the call gate and the destination code segment pointed to by the call gate. 

If access to the destination code segment is allowed, the processor gets the segment selector for the destination 
code segment and an offset into that code segment from the call gate. If the call requires a change in privilege 
level, the processor also switches to the stack for the targeted privilege level. The segment selector for the new 
stack is obtained from the TSS for the currently running task. Gates also facilitate transitions between 16-bit and 
32-bit code segments, and vice versa. 

2.1.2.1  Gates in IA-32e Mode
In IA-32e mode, the following descriptors are 16-byte descriptors (expanded to allow a 64-bit base): LDT descrip-
tors, 64-bit TSSs, call gates, interrupt gates, and trap gates.

Call gates facilitate transitions between 64-bit mode and compatibility mode. Task gates are not supported in IA-
32e mode. On privilege level changes, stack segment selectors are not read from the TSS. Instead, they are set to 
NULL.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or block of code (such as a program, pro-
cedure, function, or routine). 
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2.1.3 Task-State Segments and Task Gates
The TSS (see Figure 2-1) defines the state of the execution environment for a task. It includes the state of general-
purpose registers, segment registers, the EFLAGS register, the EIP register, and segment selectors with stack 
pointers for three stack segments (one stack for each privilege level). The TSS also includes the segment selector 
for the LDT associated with the task and the base address of the paging-structure hierarchy. 

All program execution in protected mode happens within the context of a task (called the current task). The 
segment selector for the TSS for the current task is stored in the task register. The simplest method for switching 
to a task is to make a call or jump to the new task. Here, the segment selector for the TSS of the new task is given 
in the CALL or JMP instruction. In switching tasks, the processor performs the following actions:

1. Stores the state of the current task in the current TSS.

2. Loads the task register with the segment selector for the new task.

3. Accesses the new TSS through a segment descriptor in the GDT.

4. Loads the state of the new task from the new TSS into the general-purpose registers, the segment registers, 
the LDTR, control register CR3 (base address of the paging-structure hierarchy), the EFLAGS register, and the 
EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate, except that it provides access 
(through a segment selector) to a TSS rather than a code segment. 

2.1.3.1  Task-State Segments in IA-32e Mode
Hardware task switches are not supported in IA-32e mode. However, TSSs continue to exist. The base address of 
a TSS is specified by its descriptor. 

A 64-bit TSS holds the following information that is important to 64-bit operation: 
• Stack pointer addresses for each privilege level.
• Pointer addresses for the interrupt stack table.
• Offset address of the IO-permission bitmap (from the TSS base).

The task register is expanded to hold 64-bit base addresses in IA-32e mode. See also: Section 9.7, “Task Manage-
ment in 64-bit Mode.”

2.1.4 Interrupt and Exception Handling
External interrupts, software interrupts and exceptions are handled through the interrupt descriptor table (IDT). 
The IDT stores a collection of gate descriptors that provide access to interrupt and exception handlers. Like the 
GDT, the IDT is not a segment. The linear address for the base of the IDT is contained in the IDT register (IDTR).

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors. To access an interrupt or exception 
handler, the processor first receives an interrupt vector from internal hardware, an external interrupt controller, or 
from software by means of an INT n, INTO, INT3, INT1, or BOUND instruction. The interrupt vector provides an 
index into the IDT. If the selected gate descriptor is an interrupt gate or a trap gate, the associated handler proce-
dure is accessed in a manner similar to calling a procedure through a call gate. If the descriptor is a task gate, the 
handler is accessed through a task switch.

2.1.4.1  Interrupt and Exception Handling IA-32e Mode
In IA-32e mode, interrupt gate descriptors are expanded to 16 bytes to support 64-bit base addresses. This is true 
for 64-bit mode and compatibility mode. 

The IDTR register is expanded to hold a 64-bit base address. Task gates are not supported.
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2.1.5 Memory Management
System architecture supports either direct physical addressing of memory or virtual memory (through paging). 
When physical addressing is used, a linear address is treated as a physical address. When paging is used: all code, 
data, stack, and system segments (including the GDT and IDT) can be paged with only the most recently accessed 
pages being held in physical memory.

The location of pages (sometimes called page frames) in physical memory is contained in the paging structures. 
These structures reside in physical memory (see Figure 2-1 for the case of 32-bit paging). 

The base physical address of the paging-structure hierarchy is contained in control register CR3. The entries in the 
paging structures determine the physical address of the base of a page frame, access rights and memory manage-
ment information. 

To use this paging mechanism, a linear address is broken into parts. The parts provide separate offsets into the 
paging structures and the page frame. A system can have a single hierarchy of paging structures or several. For 
example, each task can have its own hierarchy.

2.1.5.1  Memory Management in IA-32e Mode 
In IA-32e mode, physical memory pages are managed by a set of system data structures. In both compatibility 
mode and 64-bit mode, four or five levels of system data structures are used (see Chapter 5, “Paging”). These 
include the following: 
• The page map level 5 (PML5) — An entry in the PML5 table contains the physical address of the base of a 

PML4 table, access rights, and memory management information. The base physical address of the PML5 table 
is stored in CR3. The PML5 table is used only with 5-level paging.

• A page map level 4 (PML4) — An entry in a PML4 table contains the physical address of the base of a page 
directory pointer table, access rights, and memory management information. With 4-level paging, there is only 
one PML4 table and its base physical address is stored in CR3.

• A set of page directory pointer tables — An entry in a page directory pointer table contains the physical 
address of the base of a page directory table, access rights, and memory management information.

• Sets of page directories — An entry in a page directory table contains the physical address of the base of a 
page table, access rights, and memory management information.

• Sets of page tables — An entry in a page table contains the physical address of a page frame, access rights, 
and memory management information.

2.1.6 System Registers
To assist in initializing the processor and controlling system operations, the system architecture provides system 
flags in the EFLAGS register and several system registers:
• The system flags and IOPL field in the EFLAGS register control task and mode switching, interrupt handling, 

instruction tracing, and access rights. See also: Section 2.3, “System Flags and Fields in the EFLAGS Register.”
• The control registers (CR0, CR2, CR3, and CR4) contain a variety of flags and data fields for controlling system-

level operations. Other flags in these registers are used to indicate support for specific processor capabilities 
within the operating system or executive. See also: Chapter 2, “Control Registers,” and Section 2.6, “Extended 
Control Registers (Including XCR0).”

• The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for use in debugging programs 
and systems software. See also: Chapter 19, “Debug, Branch Profile, TSC, and Intel® Resource Director 
Technology (Intel® RDT) Features.”

• The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes (limits) of their respective tables. 
See also: Section 2.4, “Memory-Management Registers.”

• The task register contains the linear address and size of the TSS for the current task. See also: Section 2.4, 
“Memory-Management Registers.”

• Model-specific registers (not shown in Figure 2-1).
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The model-specific registers (MSRs) are a group of registers available primarily to operating-system or executive 
procedures (that is, code running at privilege level 0). These registers control items such as the debug extensions, 
the performance-monitoring counters, the machine- check architecture, and the memory type ranges (MTRRs). 

The number and function of these registers varies among different members of the Intel 64 and IA-32 processor 
families. See also: Section 11.4, “Model-Specific Registers (MSRs),” and Chapter 2, “Model-Specific Registers 
(MSRs),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

Most systems restrict access to system registers (other than the EFLAGS register) by application programs. 
Systems can be designed, however, where all programs and procedures run at the most privileged level (privilege 
level 0). In such a case, application programs would be allowed to modify the system registers.

2.1.6.1  System Registers in IA-32e Mode
In IA-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and TR) are expanded in hardware 
to hold 64-bit base addresses. EFLAGS becomes the 64-bit RFLAGS register. CR0–CR4 are expanded to 64 bits. 
CR8 becomes available. CR8 provides read-write access to the task priority register (TPR) so that the operating 
system can control the priority classes of external interrupts. 

In 64-bit mode, debug registers DR0–DR7 are 64 bits. In compatibility mode, address-matching in DR0–DR3 is 
also done at 64-bit granularity.

On systems that support IA-32e mode, the extended feature enable register (IA32_EFER) is available. This model-
specific register controls activation of IA-32e mode and other IA-32e mode operations. In addition, there are 
several model-specific registers that govern IA-32e mode instructions:
• IA32_KERNEL_GS_BASE — Used by SWAPGS instruction.
• IA32_LSTAR — Used by SYSCALL instruction.
• IA32_FMASK — Used by SYSCALL instruction.
• IA32_STAR — Used by SYSCALL and SYSRET instruction.

2.1.7 Other System Resources
Besides the system registers and data structures described in the previous sections, system architecture provides 
the following additional resources:
• Operating system instructions (see also: Section 2.8, “System Instruction Summary”).
• Performance-monitoring counters (not shown in Figure 2-1).
• Internal caches and buffers (not shown in Figure 2-1).

Performance-monitoring counters are event counters that can be programmed to count processor events such as 
the number of instructions decoded, the number of interrupts received, or the number of cache loads. 

The processor provides several internal caches and buffers. The caches are used to store both data and instruc-
tions. The buffers are used to store things like decoded addresses to system and application segments and write 
operations waiting to be performed. See also: Chapter 13, “Memory Cache Control.”

2.2 MODES OF OPERATION
The IA-32 architecture supports three operating modes and one quasi-operating mode: 
• Protected mode — This is the native operating mode of the processor. It provides a rich set of architectural 

features, flexibility, high performance and backward compatibility to existing software base.
• Real-address mode — This operating mode provides the programming environment of the Intel 8086 

processor, with a few extensions (such as the ability to switch to protected or system management mode).
• System management mode (SMM) — SMM is a standard architectural feature in all IA-32 processors, 

beginning with the Intel386 SL processor. This mode provides an operating system or executive with a 
transparent mechanism for implementing power management and OEM differentiation features. SMM is 
entered through activation of an external system interrupt pin (SMI#), which generates a system management 
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interrupt (SMI). In SMM, the processor switches to a separate address space while saving the context of the 
currently running program or task. SMM-specific code may then be executed transparently. Upon returning 
from SMM, the processor is placed back into its state prior to the SMI.

• Virtual-8086 mode — In protected mode, the processor supports a quasi-operating mode known as virtual-
8086 mode. This mode allows the processor execute 8086 software in a protected, multitasking environment.

Intel 64 architecture supports all operating modes of IA-32 architecture and IA-32e modes:
• IA-32e mode — In IA-32e mode, the processor supports two sub-modes: compatibility mode and 64-bit 

mode. 64-bit mode provides 64-bit linear addressing and support for physical address space larger than 64 
GBytes. Compatibility mode allows most legacy protected-mode applications to run unchanged.

Figure 2-3 shows how the processor moves between operating modes.

The processor is placed in real-address mode following power-up or a reset. The PE flag in control register CR0 then 
controls whether the processor is operating in real-address or protected mode. See also: Section 11.9, “Mode 
Switching,” and Section 5.1.2, “Paging-Mode Enabling.”

The VM flag in the EFLAGS register determines whether the processor is operating in protected mode or virtual-
8086 mode. Transitions between protected mode and virtual-8086 mode are generally carried out as part of a task 
switch or a return from an interrupt or exception handler. See also: Section 22.2.5, “Entering Virtual-8086 Mode.”

The LMA bit (IA32_EFER.LMA[bit 10]) determines whether the processor is operating in IA-32e mode. When 
running in IA-32e mode, 64-bit or compatibility sub-mode operation is determined by CS.L bit of the code segment. 
The processor enters into IA-32e mode from protected mode by enabling paging and setting the LME bit 
(IA32_EFER.LME[bit 8]). See also: Chapter 11, “Processor Management and Initialization.”

The processor switches to SMM whenever it receives an SMI while the processor is in real-address, protected, 
virtual-8086, or IA-32e modes. Upon execution of the RSM instruction, the processor always returns to the mode 
it was in when the SMI occurred.

Figure 2-3.  Transitions Among the Processor’s Operating Modes
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2.2.1 Extended Feature Enable Register
The IA32_EFER MSR provides several fields related to IA-32e mode enabling and operation. It also provides one 
field that relates to page-access right modification (see Section 5.6, “Access Rights”). The layout of the IA32_EFER 
MSR is shown in Figure 2-4.

2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER
The system flags and IOPL field of the EFLAGS register control I/O, maskable hardware interrupts, debugging, task 
switching, and the virtual-8086 mode (see Figure 2-5). Only privileged code (typically operating system or execu-
tive code) should be allowed to modify these bits.

The system flags and IOPL are:

TF Trap (bit 8) — Set to enable single-step mode for debugging; clear to disable single-step mode. In single-
step mode, the processor generates a debug exception after each instruction. This allows the execution 
state of a program to be inspected after each instruction. If an application program sets the TF flag using a 

Figure 2-4.  IA32_EFER MSR Layout

Table 2-1.  IA32_EFER MSR Information
Bit Description

0 SYSCALL Enable: IA32_EFER.SCE (R/W) 

Enables SYSCALL/SYSRET instructions in 64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable: IA32_EFER.LME (R/W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active: IA32_EFER.LMA (R) 

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable: IA32_EFER.NXE (R/W)

Enables page access restriction by preventing instruction fetches from PAE pages with the XD bit set (See Section 5.6).

63:12 Reserved.

Reserved

IA-32e Mode Active

0178910111263

IA32_EFER

IA-32e Mode Enable

Execute Disable Bit Enable

SYSCALL Enable
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POPF, POPFD, or IRET instruction, a debug exception is generated after the instruction that follows the 
POPF, POPFD, or IRET.

IF Interrupt enable (bit 9) — Controls the response of the processor to maskable hardware interrupt 
requests (see also: Section 7.3.2, “Maskable Hardware Interrupts”). The flag is set to respond to maskable 
hardware interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does not affect the gener-
ation of exceptions or nonmaskable interrupts (NMI interrupts). The CPL, IOPL, and the state of the VME 
flag in control register CR4 determine whether the IF flag can be modified by the CLI, STI, POPF, POPFD, 
and IRET.

IOPL I/O privilege level field (bits 12 and 13) — Indicates the I/O privilege level (IOPL) of the currently 
running program or task. The CPL of the currently running program or task must be less than or equal to 
the IOPL to access the I/O address space. The POPF and IRET instructions can modify this field only when 
operating at a CPL of 0. 

The IOPL is also one of the mechanisms that controls the modification of the IF flag and the handling of 
interrupts in virtual-8086 mode when virtual mode extensions are in effect (when CR4.VME = 1). See also: 
Chapter 20, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
1.

NT Nested task (bit 14) — Controls the chaining of interrupted and called tasks. The processor sets this flag 
on calls to a task initiated with a CALL instruction, an interrupt, or an exception. It examines and modifies 
this flag on returns from a task initiated with the IRET instruction. The flag can be explicitly set or cleared 
with the POPF/POPFD instructions; however, changing to the state of this flag can generate unexpected 
exceptions in application programs. 

See also: Section 9.4, “Task Linking.”

RF Resume (bit 16) — Controls the processor’s response to instruction-breakpoint conditions. When set, this 
flag temporarily disables debug exceptions (#DB) from being generated for instruction breakpoints 
(although other exception conditions can cause an exception to be generated). When clear, instruction 
breakpoints will generate debug exceptions. 

The primary function of the RF flag is to allow the restarting of an instruction following a debug exception 
that was caused by an instruction breakpoint condition. Here, debug software must set this flag in the 
EFLAGS image on the stack just prior to returning to the interrupted program with IRETD (to prevent the 
instruction breakpoint from causing another debug exception). The processor then automatically clears 
this flag after the instruction returned to has been successfully executed, enabling instruction breakpoint 
faults again.

See also: Section 19.3.1.1, “Instruction-Breakpoint Exception Condition.”

VM Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to return to protected mode. 

Figure 2-5.  System Flags in the EFLAGS Register
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See also: Section 22.2.1, “Enabling Virtual-8086 Mode.”

AC Alignment check or access control (bit 18) — If the AM bit is set in the CR0 register, alignment 
checking of user-mode data accesses is enabled if and only if this flag is 1. An alignment-check exception 
is generated when reference is made to an unaligned operand, such as a word at an odd byte address or a 
doubleword at an address which is not an integral multiple of four. Alignment-check exceptions are gener-
ated only in user mode (privilege level 3). Memory references that default to privilege level 0, such as 
segment descriptor loads, do not generate this exception even when caused by instructions executed in 
user-mode.

The alignment-check exception can be used to check alignment of data. This is useful when exchanging 
data with processors which require all data to be aligned. The alignment-check exception can also be used 
by interpreters to flag some pointers as special by misaligning the pointer. This eliminates overhead of 
checking each pointer and only handles the special pointer when used.

If the SMAP bit is set in the CR4 register, explicit supervisor-mode data accesses to user-mode pages are 
allowed if and only if this bit is 1. See Section 5.6, “Access Rights.”

VIF Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This flag is used in conjunction with 
the VIP flag. The processor only recognizes the VIF flag when either the VME flag or the PVI flag in control 
register CR4 is set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode extensions; 
the PVI flag enables the protected-mode virtual interrupts.) 

See also: Section 22.3.3.5, “Method 6: Software Interrupt Handling,” and Section 22.4, “Protected-Mode 
Virtual Interrupts.”

VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an interrupt is pending; cleared to 
indicate that no interrupt is pending. This flag is used in conjunction with the VIF flag. The processor reads 
this flag but never modifies it. The processor only recognizes the VIP flag when either the VME flag or the 
PVI flag in control register CR4 is set and the IOPL is less than 3. The VME flag enables the virtual-8086 
mode extensions; the PVI flag enables the protected-mode virtual interrupts. 

See Section 22.3.3.5, “Method 6: Software Interrupt Handling,” and Section 22.4, “Protected-Mode Virtual 
Interrupts.”

ID Identification (bit 21) — The ability of a program or procedure to set or clear this flag indicates support 
for the CPUID instruction.

2.3.1 System Flags and Fields in IA-32e Mode
In 64-bit mode, the RFLAGS register expands to 64 bits with the upper 32 bits reserved. System flags in RFLAGS 
(64-bit mode) or EFLAGS (compatibility mode) are shown in Figure 2-5.

In IA-32e mode, the processor does not allow the VM bit to be set because virtual-8086 mode is not supported 
(attempts to set the bit are ignored). Also, the processor will not set the NT bit. The processor does, however, allow 
software to set the NT bit (note that an IRET causes a general protection fault in IA-32e mode if the NT bit is set).

In IA-32e mode, the SYSCALL/SYSRET instructions have a programmable method of specifying which bits are 
cleared in RFLAGS/EFLAGS. These instructions save/restore EFLAGS/RFLAGS.

2.4 MEMORY-MANAGEMENT REGISTERS
The processor provides four memory-management registers (GDTR, LDTR, IDTR, and TR) that specify the locations 
of the data structures which control segmented memory management (see Figure 2-6). Special instructions are 
provided for loading and storing these registers.
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2.4.1 Global Descriptor Table Register (GDTR)
The GDTR register holds the base address (32 bits in protected mode; 64 bits in IA-32e mode) and the 16-bit table 
limit for the GDT. The base address specifies the linear address of byte 0 of the GDT; the table limit specifies the 
number of bytes in the table. 

The LGDT and SGDT instructions load and store the GDTR register, respectively. On power up or reset of the 
processor, the base address is set to the default value of 0 and the limit is set to 0FFFFH. A new base address must 
be loaded into the GDTR as part of the processor initialization process for protected-mode operation. 

See also: Section 3.5.1, “Segment Descriptor Tables.”

2.4.2 Local Descriptor Table Register (LDTR)
The LDTR register holds the 16-bit segment selector, base address (32 bits in protected mode; 64 bits in IA-32e 
mode), segment limit, and descriptor attributes for the LDT. The base address specifies the linear address of byte 
0 of the LDT segment; the segment limit specifies the number of bytes in the segment. See also: Section 3.5.1, 
“Segment Descriptor Tables.”

The LLDT and SLDT instructions load and store the segment selector part of the LDTR register, respectively. The 
segment that contains the LDT must have a segment descriptor in the GDT. When the LLDT instruction loads a 
segment selector in the LDTR: the base address, limit, and descriptor attributes from the LDT descriptor are auto-
matically loaded in the LDTR. 

When a task switch occurs, the LDTR is automatically loaded with the segment selector and descriptor for the LDT 
for the new task. The contents of the LDTR are not automatically saved prior to writing the new LDT information 
into the register.

On power up or reset of the processor, the segment selector and base address are set to the default value of 0 and 
the limit is set to 0FFFFH.

2.4.3 IDTR Interrupt Descriptor Table Register
The IDTR register holds the base address (32 bits in protected mode; 64 bits in IA-32e mode) and 16-bit table limit 
for the IDT. The base address specifies the linear address of byte 0 of the IDT; the table limit specifies the number 
of bytes in the table. The LIDT and SIDT instructions load and store the IDTR register, respectively. On power up or 
reset of the processor, the base address is set to the default value of 0 and the limit is set to 0FFFFH. The base 
address and limit in the register can then be changed as part of the processor initialization process. 

See also: Section 7.10, “Interrupt Descriptor Table (IDT).”

Figure 2-6.  Memory Management Registers
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2.4.4 Task Register (TR)
The task register holds the 16-bit segment selector, base address (32 bits in protected mode; 64 bits in IA-32e 
mode), segment limit, and descriptor attributes for the TSS of the current task. The selector references the TSS 
descriptor in the GDT. The base address specifies the linear address of byte 0 of the TSS; the segment limit speci-
fies the number of bytes in the TSS. See also: Section 9.2.4, “Task Register.”

The LTR and STR instructions load and store the segment selector part of the task register, respectively. When the 
LTR instruction loads a segment selector in the task register, the base address, limit, and descriptor attributes from 
the TSS descriptor are automatically loaded into the task register. On power up or reset of the processor, the base 
address is set to the default value of 0 and the limit is set to 0FFFFH.

When a task switch occurs, the task register is automatically loaded with the segment selector and descriptor for 
the TSS for the new task. The contents of the task register are not automatically saved prior to writing the new TSS 
information into the register.

2.5 CONTROL REGISTERS
Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-7) determine operating mode of the processor and 
the characteristics of the currently executing task. These registers are 32 bits in all 32-bit modes and compatibility 
mode. 

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions are used to manipulate the 
register bits. Operand-size prefixes for these instructions are ignored. The following is also true:
• The control registers can be read and loaded (or modified) using the move-to-or-from-control-registers forms 

of the MOV instruction. In protected mode, the MOV instructions allow the control registers to be read or loaded 
(at privilege level 0 only). This restriction means that application programs or operating-system procedures 
(running at privilege levels 1, 2, or 3) are prevented from reading or loading the control registers.

• Some of the bits in CR0 and CR4 are reserved and must be written with zeros. Attempting to set any reserved 
bits in CR0[31:0] is ignored. Attempting to set any reserved bits in CR0[63:32] results in a general-protection 
exception, #GP(0). Attempting to set any reserved bits in CR4 results in a general-protection exception, 
#GP(0).

• All 64 bits of CR2 are writable by software. 
• Bits in CR3 in the range 63:MAXPHYADDR that are reserved (see Figure 2-7) must be zero. Attempting to set 

any of them results in #GP(0).
• The MOV CR2 instruction does not check that address written to CR2 is canonical. 
• A 64-bit capable processor will retain the upper 32 bits of each control register when transitioning out of IA-32e 

mode.
• On a 64-bit capable processor, an execution of MOV to CR outside of 64-bit mode zeros the upper 32 bits of the 

control register.
• Register CR8 is available in 64-bit mode only. 

The control registers are summarized below, and each architecturally defined control field in these control registers 
is described individually. In Figure 2-7, the width of the register in 64-bit mode is indicated in parenthesis (except 
for CR0).
• CR0 — Contains system control flags that control operating mode and states of the processor. 
• CR1 — Reserved.
• CR2 — Contains the page-fault linear address (the linear address that caused a page fault).
• CR3 — Contains the physical address of the base of the paging-structure hierarchy and two flags (PCD and 

PWT). Only the most-significant bits (less the lower 12 bits) of the base address are specified; the lower 12 bits 
of the address are assumed to be 0. The first paging structure must thus be aligned to a page (4-KByte) 
boundary. The PCD and PWT flags control caching of that paging structure in the processor’s internal data 
caches (they do not control TLB caching of page-directory information).

When using the physical address extension, the CR3 register contains the base address of the page-directory-
pointer table. With 4-level paging and 5-level paging, the CR3 register contains the base address of the PML4 
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table and PML5 table, respectively. If PCIDs are enabled, CR3 has a format different from that illustrated in 
Figure 2-7. See Section 5.5, “4-Level Paging and 5-Level Paging.”
When linear-address masking is supported, CR3 includes two bits that control the masking of user pointers
(see Section 4.4, “Linear-Address Masking.”

See also: Chapter 5, “Paging.”
• CR4 — Contains a group of flags that enable several architectural extensions, and indicate operating system or 

executive support for specific processor capabilities. Bits CR4[63:32] can only be used for IA-32e mode only 
features that are enabled after entering 64-bit mode. Bits CR4[63:32] do not have any effect outside of IA-32e 
mode. 

• CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold 
value that operating systems use to control the priority class of external interrupts allowed to interrupt the 
processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in 
compatibility mode.

Figure 2-7.  Control Registers
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The flags in control registers are:

CR0.PG

Paging (bit 31 of CR0) — Enables paging when set; disables paging when clear. When paging is 
disabled, all linear addresses are treated as physical addresses. The PG flag has no effect if the PE flag (bit 
0 of register CR0) is not also set; setting the PG flag when the PE flag is clear causes a general-protection 
exception (#GP). See also: Chapter 5, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also requires modifying CR0.PG.

CR0.CD

Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear, caching of memory locations for 
the whole of physical memory in the processor’s internal (and external) caches is enabled. When the CD 
flag is set, caching is restricted as described in Table 13-5. To prevent the processor from accessing and 
updating its caches, the CD flag must be set and the caches must be invalidated so that no cache hits can 
occur.

See also: Section 13.5.3, “Preventing Caching,” and Section 13.5, “Cache Control.”

CR0.NW
Not Write-through (bit 29 of CR0) — When the NW and CD flags are clear, write-back (for Pentium 4, 
Intel Xeon, P6 family, and Pentium processors) or write-through (for Intel486 processors) is enabled for 
writes that hit the cache and invalidation cycles are enabled. See Table 13-5 for detailed information about 
the effect of the NW flag on caching for other settings of the CD and NW flags.

CR0.AM
Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking when set; disables alignment 
checking when clear. Alignment checking is performed only when the AM flag is set, the AC flag in the 
EFLAGS register is set, CPL is 3, and the processor is operating in either protected or virtual-8086 mode.

CR0.WP
Write Protect (bit 16 of CR0) — When set, inhibits supervisor-level procedures from writing into read-
only pages; when clear, allows supervisor-level procedures to write into read-only pages (regardless of the 
U/S bit setting; see Section 5.1.3 and Section 5.6). This flag facilitates implementation of the copy-on-
write method of creating a new process (forking) used by operating systems such as UNIX. This flag must 
be set before software can set CR4.CET, and it cannot be cleared as long as CR4.CET = 1 (see below).

CR0.NE
Numeric Error (bit 5 of CR0) — Enables the native (internal) mechanism for reporting x87 FPU errors 
when set; enables the PC-style x87 FPU error reporting mechanism when clear. When the NE flag is clear 
and the IGNNE# input is asserted, x87 FPU errors are ignored. When the NE flag is clear and the IGNNE# 
input is deasserted, an unmasked x87 FPU error causes the processor to assert the FERR# pin to generate 
an external interrupt and to stop instruction execution immediately before executing the next waiting 
floating-point instruction or WAIT/FWAIT instruction. 

The FERR# pin is intended to drive an input to an external interrupt controller (the FERR# pin emulates the 
ERROR# pin of the Intel 287 and Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and FERR# 
pin are used with external logic to implement PC-style error reporting. Using FERR# and IGNNE# to handle 
floating-point exceptions is deprecated by modern operating systems; this non-native approach also limits 
newer processors to operate with one logical processor active.

See also: Section 8.7, “Handling x87 FPU Exceptions in Software,” in Chapter 8, “Programming with the 
x87 FPU,” and Appendix A, “EFLAGS Cross-Reference,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.

CR0.ET
Extension Type (bit 4 of CR0) — Reserved in the Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors. In the Pentium 4, Intel Xeon, and P6 family processors, this flag is hardcoded to 1. In the Intel386 
and Intel486 processors, this flag indicates support of Intel 387 DX math coprocessor instructions when 
set.

CR0.TS
Task Switched (bit 3 of CR0) — Allows the saving of the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 
context on a task switch to be delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is 
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actually executed by the new task. The processor sets this flag on every task switch and tests it when 
executing x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

• If the TS flag is set and the EM flag (bit 2 of CR0) is clear, a device-not-available exception (#NM) is 
raised prior to the execution of any x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction; with the 
exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT. 
See the paragraph below for the special case of the WAIT/FWAIT instructions.

• If the TS flag is set and the MP flag (bit 1 of CR0) and EM flag are clear, an #NM exception is not raised 
prior to the execution of an x87 FPU WAIT/FWAIT instruction.

• If the EM flag is set, the setting of the TS flag has no effect on the execution of x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-2 shows the actions taken when the processor encounters an x87 FPU instruction based on the 
settings of the TS, EM, and MP flags. Table 14-1 and 15-1 show the actions taken when the processor 
encounters an MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM, and MXCSR registers on a 
task switch. Instead, it sets the TS flag, which causes the processor to raise an #NM exception whenever it 
encounters an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction in the instruction stream for the 
new task (with the exception of the instructions listed above). 

The fault handler for the #NM exception can then be used to clear the TS flag (with the CLTS instruction) 
and save the context of the x87 FPU, XMM, and MXCSR registers. If the task never encounters an x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction, the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 
context is never saved.

CR0.EM
Emulation (bit 2 of CR0) — Indicates that the processor does not have an internal or external x87 FPU when set; 
indicates an x87 FPU is present when clear. This flag also affects the execution of 
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a device-not-available exception 
(#NM). This flag must be set when the processor does not have an internal x87 FPU or is not connected to 
an external math coprocessor. Setting this flag forces all floating-point instructions to be handled by soft-
ware emulation. Table 11-3 shows the recommended setting of this flag, depending on the IA-32 processor 
and x87 FPU or math coprocessor present in the system. Table 2-2 shows the interaction of the EM, MP, and 
TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an invalid-opcode exception (#UD) 
to be generated (see Table 14-1). Thus, if an IA-32 or Intel 64 processor incorporates MMX technology, the 
EM flag must be set to 0 to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is set, execution of most 
SSE/SSE2/SSE3/SSSE3/SSE4 instructions causes an invalid opcode exception (#UD) to be generated (see 

Table 2-2.  Action Taken By x87 FPU Instructions for Different Combinations of EM, MP, and TS

CR0 Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT

0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

1 1 1 #NM Exception #NM exception.
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Table 15-1). If an IA-32 or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 extensions, 
the EM flag must be set to 0 to enable execution of these extensions. SSE/SSE2/SSE3/SSSE3/SSE4 
instructions not affected by the EM flag include: PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, 
CLFLUSH, CRC32, and POPCNT.

CR0.MP
Monitor Coprocessor (bit 1 of CR0) — Controls the interaction of the WAIT (or FWAIT) instruction with 
the TS flag (bit 3 of CR0). If the MP flag is set, a WAIT instruction generates a device-not-available exception 
(#NM) if the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the setting of the TS flag. 
Table 11-3 shows the recommended setting of this flag, depending on the IA-32 processor and x87 FPU or 
math coprocessor present in the system. Table 2-2 shows the interaction of the MP, EM, and TS flags.

CR0.PE
Protection Enable (bit 0 of CR0) — Enables protected mode when set; enables real-address mode when 
clear. This flag does not enable paging directly. It only enables segment-level protection. To enable paging, 
both the PE and PG flags must be set. 

See also: Section 11.9, “Mode Switching.”

CR3.PCD 
Page-level Cache Disable (bit 4 of CR3) — Controls the memory type used to access the first paging 
structure of the current paging-structure hierarchy. See Section 5.9, “Paging and Memory Typing.” This bit 
is not used if paging is disabled, with PAE paging, or with 4-level paging1 or 5-level paging if CR4.PCIDE=1.

CR3.PWT
Page-level Write-Through (bit 3 of CR3) — Controls the memory type used to access the first paging 
structure of the current paging-structure hierarchy. See Section 5.9, “Paging and Memory Typing.” This bit 
is not used if paging is disabled, with PAE paging, or with 4-level paging or 5-level paging if CR4.PCIDE=1.

CR3.LAM_U57
User LAM57 enable (bit 61 of CR3) — When set, enables LAM57 (masking of linear-address bits 62:57) 
for user pointers and overrides CR3.LAM_U48. See Section 4.4, “Linear-Address Masking.”

CR3.LAM_U48
User LAM48 enable (bit 62 of CR3) — When set and CR3.LAM_U57 is clear, enables LAM48 (masking of 
linear-address bits 62:48) for user pointers. See Section 4.4, “Linear-Address Masking.”

CR4.VME
Virtual-8086 Mode Extensions (bit 0 of CR4) — Enables interrupt- and exception-handling extensions 
in virtual-8086 mode when set; disables the extensions when clear. Use of the virtual mode extensions can 
improve the performance of virtual-8086 applications by eliminating the overhead of calling the virtual-
8086 monitor to handle interrupts and exceptions that occur while executing an 8086 program and, 
instead, redirecting the interrupts and exceptions back to the 8086 program’s handlers. It also provides 
hardware support for a virtual interrupt flag (VIF) to improve reliability of running 8086 programs in multi-
tasking and multiple-processor environments.

See also: Section 22.3, “Interrupt and Exception Handling in Virtual-8086 Mode.”

CR4.PVI
Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware support for a virtual interrupt 
flag (VIF) in protected mode when set; disables the VIF flag in protected mode when clear. 

See also: Section 22.4, “Protected-Mode Virtual Interrupts.”

CR4.TSD
Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the RDTSC instruction to procedures 
running at privilege level 0 when set; allows RDTSC instruction to be executed at any privilege level when 
clear. This bit also applies to the RDTSCP instruction if supported (if CPUID.80000001H:EDX[27] = 1).

CR4.DE
Debugging Extensions (bit 3 of CR4) — References to debug registers DR4 and DR5 cause an unde-
fined opcode (#UD) exception to be generated when set; when clear, processor aliases references to regis-
ters DR4 and DR5 for compatibility with software written to run on earlier IA-32 processors. 

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.
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See also: Section 19.2.2, “Debug Registers DR4 and DR5.”

CR4.PSE
Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages with 32-bit paging when set; restricts 
32-bit paging to pages of 4 KBytes when clear.

See also: Section 5.3, “32-Bit Paging.”

CR4.PAE
Physical Address Extension (bit 5 of CR4) — When set, enables paging to produce physical addresses 
with more than 32 bits. When clear, restricts physical addresses to 32 bits. PAE must be set before entering 
IA-32e mode.

See also: Chapter 5, “Paging.”

CR4.MCE
Machine-Check Enable (bit 6 of CR4) — Enables the machine-check exception when set; disables the 
machine-check exception when clear.

See also: Chapter 17, “Machine-Check Architecture.”

CR4.PGE
Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family processors.) Enables the global page 
feature when set; disables the global page feature when clear. The global page feature allows frequently 
used or shared pages to be marked as global to all users (done with the global flag, bit 8, in a page-direc-
tory-pointer-table entry, a page-directory entry, or a page-table entry). Global pages are not flushed from 
the translation-lookaside buffer (TLB) on a task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting the PG flag in control register 
CR0) before the PGE flag is set. Reversing this sequence may affect program correctness, and processor 
performance will be impacted. 

See also: Section 5.10, “Caching Translation Information.”

CR4.PCE
Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables execution of the RDPMC instruc-
tion for programs or procedures running at any protection level when set; RDPMC instruction can be 
executed only at protection level 0 when clear.

CR4.OSFXSR
Operating System Support for FXSAVE and FXRSTOR instructions (bit 9 of CR4) — When set, this 
flag: (1) indicates to software that the operating system supports the use of the FXSAVE and FXRSTOR 
instructions, (2) enables the FXSAVE and FXRSTOR instructions to save and restore the contents of the 
XMM and MXCSR registers along with the contents of the x87 FPU and MMX registers, and (3) enables the 
processor to execute SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE, 
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT. 

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and restore the contents of the x87 FPU 
and MMX registers, but they may not save and restore the contents of the XMM and MXCSR registers. Also, 
the processor will generate an invalid opcode exception (#UD) if it attempts to execute any 
SSE/SSE2/SSE3 instruction, with the exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, 
MOVNTI, CLFLUSH, CRC32, and POPCNT. The operating system or executive must explicitly set this flag.

NOTE
CPUID feature flag FXSR indicates availability of the FXSAVE/FXRSTOR instructions. The OSFXSR 
bit provides operating system software with a means of enabling FXSAVE/FXRSTOR to save/restore 
the contents of the X87 FPU, XMM, and MXCSR registers. Consequently OSFXSR bit indicates that 
the operating system provides context switch support for SSE/SSE2/SSE3/SSSE3/SSE4.

CR4.OSXMMEXCPT
Operating System Support for Unmasked SIMD Floating-Point Exceptions (bit 10 of CR4) — 
When set, indicates that the operating system supports the handling of unmasked SIMD floating-point 
exceptions through an exception handler that is invoked when a SIMD floating-point exception (#XM) is 
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generated. SIMD floating-point exceptions are only generated by SSE/SSE2/SSE3/SSE4.1 SIMD floating-
point instructions. 

The operating system or executive must explicitly set this flag. If this flag is not set, the processor will 
generate an invalid opcode exception (#UD) whenever it detects an unmasked SIMD floating-point excep-
tion.

CR4.UMIP
User-Mode Instruction Prevention (bit 11 of CR4) — When set, the following instructions cannot be 
executed if CPL > 0: SGDT, SIDT, SLDT, SMSW, and STR. An attempt at such execution causes a general-
protection exception (#GP).

CR4.LA57
57-bit linear addresses (bit 12 of CR4) — When set in IA-32e mode, the processor uses 5-level paging 
to translate 57-bit linear addresses. When clear in IA-32e mode, the processor uses 4-level paging to 
translate 48-bit linear addresses. This bit cannot be modified in IA-32e mode.

See also: Chapter 5, “Paging.”

CR4.VMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See Chapter 25, “Introduction to 
Virtual Machine Extensions.”

CR4.SMXE
SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See Chapter 7, “Safer Mode Exten-
sions Reference,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D.

CR4.FSGSBASE
FSGSBASE-Enable Bit (bit 16 of CR4) — Enables the instructions RDFSBASE, RDGSBASE, WRFSBASE, 
and WRGSBASE.

CR4.PCIDE
PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers (PCIDs) when set. See Section 
5.10.1, “Process-Context Identifiers (PCIDs).” Applies only in IA-32e mode (if IA32_EFER.LMA = 1).

CR4.OSXSAVE
XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) — When set, this flag: (1) indi-
cates (via CPUID.01H:ECX.OSXSAVE[bit 27]) that the operating system supports the use of the XGETBV, 
XSAVE, and XRSTOR instructions by general software; (2) enables the XSAVE and XRSTOR instructions to 
save and restore the x87 FPU state (including MMX registers), the SSE state (XMM registers and MXCSR), 
along with other processor extended states enabled in XCR0; (3) enables the processor to execute XGETBV 
and XSETBV instructions in order to read and write XCR0. See Section 2.6 and Chapter 15, “System 
Programming for Instruction Set Extensions and Processor Extended States.”

CR4.KL
Key-Locker-Enable Bit (bit 19 of CR4) — When set, the LOADIWKEY instruction is enabled; in addition, 
if support for the AES Key Locker instructions has been activated by system firmware, 
CPUID.19H:EBX.AESKLE[bit 0] is enumerated as 1 and the AES Key Locker instructions are enabled.1 
When clear, CPUID.19H:EBX.AESKLE[bit 0] is enumerated as 0 and execution of any Key Locker instruction 
causes an invalid-opcode exception (#UD).

CR4.SMEP
SMEP-Enable Bit (bit 20 of CR4) — Enables supervisor-mode execution prevention (SMEP) when set. 
See Section 5.6, “Access Rights.”

CR4.SMAP
SMAP-Enable Bit (bit 21 of CR4) — Enables supervisor-mode access prevention (SMAP) when set. See 
Section 5.6, “Access Rights.”

CR4.PKE
Enable protection keys for user-mode pages (bit 22 of CR4) — 4-level paging and 5-level paging 

1. Software can check CPUID.19H:EBX.AESKLE[bit 0] after setting CR4.KL to determine whether the AES Key Locker instructions have 
been enabled. Note that some processors may allow enabling of those instructions without activation by system firmware. Some 
processors may not support use of the AES Key Locker instructions in system-management mode (SMM). Those processors enumer-
ate CPUID.19H:EBX.AESKLE[bit 0] as 0 in SMM regardless of the setting of CR4.KL.
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associate each user-mode linear address with a protection key. When set, this flag indicates (via 
CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4]) that the operating system supports use of the PKRU 
register to specify, for each protection key, whether user-mode linear addresses with that protection key 
can be read or written. This bit also enables access to the PKRU register using the RDPKRU and WRPKRU 
instructions.

CR4.CET
Control-flow Enforcement Technology (bit 23 of CR4) — Enables control-flow enforcement tech-
nology when set. See Chapter 18, “Control-flow Enforcement Technology (CET)‚” of the IA-32 Intel® Archi-
tecture Software Developer’s Manual, Volume 1. This flag can be set only if CR0.WP is set, and it must be 
clear before CR0.WP can be cleared (see below).

CR4.PKS
Enable protection keys for supervisor-mode pages (bit 24 of CR4) — 4-level paging and 5-level 
paging associate each supervisor-mode linear address with a protection key. When set, this flag allows use 
of the IA32_PKRS MSR to specify, for each protection key, whether supervisor-mode linear addresses with 
that protection key can be read or written.

CR4.UINTR
User Interrupts Enable Bit (bit 25 of CR4) — Enables user interrupts when set, including user-interrupt 
delivery, user-interrupt notification identification, and the user-interrupt instructions.

CR4.LAM_SUP
Supervisor LAM enable (bit 28 of CR4) — When set, enables LAM (linear-address masking) for super-
visor pointers. See Section 4.4, “Linear-Address Masking.”

CR8.TPL
Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corresponding to the highest-
priority interrupt to be blocked. A value of 0 means all interrupts are enabled. This field is available in 64-
bit mode. A value of 15 means all interrupts will be disabled.

2.5.1 CPUID Qualification of Control Register Flags
Not all flags in control register CR4 are implemented on all processors. With the exception of the PCE flag, they can 
be qualified with the CPUID instruction to determine if they are implemented on the processor before they are 
used. 

The CR8 register is available on processors that support Intel 64 architecture.

2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCR0)
If CPUID.01H:ECX.XSAVE[bit 26] is 1, the processor supports one or more extended control registers (XCRs). 
Currently, the only such register defined is XCR0. This register specifies the set of processor state components for 
which the operating system provides context management, e.g., x87 FPU state, SSE state, AVX state. The OS 
programs XCR0 to reflect the features for which it provides context management.
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Software can access XCR0 only if CR4.OSXSAVE[bit 18] = 1. (This bit is also readable as 
CPUID.01H:ECX.OSXSAVE[bit 27].) Software can use CPUID leaf function 0DH to enumerate the bits in XCR0 that 
the processor supports (see CPUID instruction in Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A). Each supported state component is represented by a bit in XCR0. System software enables state 
components by loading an appropriate bit mask value into XCR0 using the XSETBV instruction.
As each bit in XCR0 (except bit 63) corresponds to a processor state component, XCR0 thus provides support for 
up to 63 sets of processor state components. Bit 63 of XCR0 is reserved for future expansion and will not represent 
a processor state component.

Currently, XCR0 defines support for the following state components:
• XCR0.X87 (bit 0): This bit 0 must be 1. An attempt to write 0 to this bit causes a #GP exception.
• XCR0.SSE (bit 1): If 1, the XSAVE feature set can be used to manage MXCSR and the XMM registers (XMM0-

XMM15 in 64-bit mode; otherwise XMM0-XMM7). 
• XCR0.AVX (bit 2): If 1, Intel AVX instructions can be executed and the XSAVE feature set can be used to 

manage the upper halves of the YMM registers (YMM0-YMM15 in 64-bit mode; otherwise YMM0-YMM7).
• XCR0.BNDREG (bit 3): If 1, Intel MPX instructions can be executed and the XSAVE feature set can be used to 

manage the bounds registers BND0–BND3. 
• XCR0.BNDCSR (bit 4): If 1, Intel MPX instructions can be executed and the XSAVE feature set can be used to 

manage the BNDCFGU and BNDSTATUS registers.
• XCR0.opmask (bit 5): If 1, Intel AVX-512 instructions can be executed and the XSAVE feature set can be used 

to manage the opmask registers k0–k7.
• XCR0.ZMM_Hi256 (bit 6): If 1, Intel AVX-512 instructions can be executed and the XSAVE feature set can be 

used to manage the upper halves of the lower ZMM registers (ZMM0-ZMM15 in 64-bit mode; otherwise ZMM0-
ZMM7).

• XCR0.Hi16_ZMM (bit 7): If 1, Intel AVX-512 instructions can be executed and the XSAVE feature set can be 
used to manage the upper ZMM registers (ZMM16-ZMM31, only in 64-bit mode).

• XCR0.PKRU (bit 9): If 1, the XSAVE feature set can be used to manage the PKRU register (see Section 2.7).
• XCR0.TILECFG (bit 17): If 1, and if XCR0.TILEDATA is also 1, Intel AMX instructions can be executed and the 

XSAVE feature set can be used to manage TILECFG.

Figure 2-8.  XCR0
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• XCR0.TILEDATA (bit 18): If 1, and if XCR0.TILECFG is also 1, Intel AMX instructions can be executed and the 
XSAVE feature set can be used to manage TILEDATA.

An attempt to use XSETBV to write to XCR0 results in general-protection exceptions (#GP) if it would do any of the 
following:
• Set a bit reserved in XCR0 for a given processor (as determined by the contents of EAX and EDX after executing 

CPUID with EAX=0DH, ECX= 0H).
• Clear XCR0.x87.
• Clear XCR0.SSE and set XCR0.AVX.
• Clear XCR0.AVX and set any of XCR0.opmask, XCR0.ZMM_Hi256, or XCR0.Hi16_ZMM.
• Set either XCR0.BNDREG or XCR0.BNDCSR while not setting the other.
• Set any of XCR0.opmask, XCR0.ZMM_Hi256, and XCR0.Hi16_ZMM while not setting all of them.
• Set either XCR0.TILECFG or XCR0.TILEDATA while not setting the other.
After reset, all bits (except bit 0) in XCR0 are cleared to zero; XCR0[0] is set to 1.

2.7 PROTECTION-KEY RIGHTS REGISTERS (PKRU AND IA32_PKRS)
Processors may support either or both of two protection-key rights registers: PKRU for user-mode pages and the 
IA32_PKRS MSR (MSR index 6E1H) for supervisor-mode pages. 4-level paging and 5-level paging associate a 4-bit 
protection key with each page. The protection-key rights registers determine accessibility based on a page’s 
protection key.

If CPUID.(EAX=07H,ECX=0H):ECX.PKU [bit 3] = 1, the processor supports the protection-key feature for user-
mode pages. When CR4.PKE = 1, software can use the protection-key rights register for user pages (PKRU) 
to specify the access rights for user-mode pages for each protection key.

If CPUID.(EAX=07H,ECX=0H):ECX.PKS [bit 31] = 1, the processor supports the protection-key feature for super-
visor-mode pages. When CR4.PKS = 1, software can use the protection-key rights register for supervisor 
pages (the IA32_PKRS MSR) to specify the access rights for supervisor-mode pages for each protection key.

The format of each protection-key rights register is given in Figure 2-9. Each contains 16 pairs of disable controls 
to prevent data accesses to linear addresses (user-mode or supervisor-mode, depending on the register) based on 
their protection keys. Each protection key i (0 ≤ i ≤ 15) is associated with two bits in each protection-key rights 
register:
• Bit 2i, shown as “ADi” (access disable): if set, the processor prevents any data accesses to linear addresses 

(user-mode or supervisor-mode, depending on the register) with protection key i.
• Bit 2i+1, shown as “WDi” (write disable): if set, the processor prevents write accesses to linear addresses 

(user-mode or supervisor-mode, depending on the register) with protection key i.

(Bits 63:32 of the IA32_PKRS MSR are reserved and must be zero.)

See Section 5.6.2, “Protection Keys,” for details of how the processor uses the protection-key rights registers to 
control accesses to linear addresses.

Software can read and write PKRU using the RDPKRU and WRPKRU instructions. The IA32_PKRS MSR can be read 
and written with the RDMSR and WRMSR instructions. Writes to the IA32_PKRS MSR using WRMSR are not serial-
izing.

Figure 2-9.  Format of Protection-Key Rights Registers
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2.8 SYSTEM INSTRUCTION SUMMARY
System instructions handle system-level functions such as loading system registers, managing the cache, 
managing interrupts, or setting up the debug registers. Many of these instructions can be executed only by oper-
ating-system or executive procedures (that is, procedures running at privilege level 0). Others can be executed at 
any privilege level and are thus available to application programs. 

Table 2-3 lists the system instructions and indicates whether they are available and useful for application 
programs. These instructions are described in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volumes 2A, 2B, 2C, & 2D.

Table 2-3.  Summary of System Instructions

Instruction Description
Useful to
Application?

Protected from
Application?

LLDT Load LDT Register No Yes

SLDT Store LDT Register No If CR4.UMIP = 1

LGDT Load GDT Register No Yes

SGDT Store GDT Register No If CR4.UMIP = 1

LTR Load Task Register No Yes

STR Store Task Register No If CR4.UMIP = 1

LIDT Load IDT Register No Yes

SIDT Store IDT Register No If CR4.UMIP = 1

MOV CRn Load and store control registers No Yes

SMSW Store MSW Yes If CR4.UMIP = 1

LMSW Load MSW No Yes

CLTS Clear TS flag in CR0 No Yes

ARPL Adjust RPL Yes1, 5 No

LAR Load Access Rights Yes No

LSL Load Segment Limit Yes No

VERR Verify for Reading Yes No

VERW Verify for Writing Yes No

MOV DRn Load and store debug registers No Yes

INVD Invalidate cache, no writeback No Yes

WBINVD Invalidate cache, with writeback No Yes

INVLPG Invalidate TLB entry No Yes

HLT Halt Processor No Yes

LOCK (Prefix) Bus Lock Yes No

RSM Return from system management mode No Yes

RDMSR3 Read Model-Specific Registers No Yes

WRMSR3 Write Model-Specific Registers No Yes

RDPMC4 Read Performance-Monitoring Counter Yes Yes2

RDTSC3 Read Time-Stamp Counter Yes Yes2

RDTSCP7 Read Serialized Time-Stamp Counter Yes Yes2

XGETBV Return the state of XCR0 Yes No

XSETBV Enable one or more processor extended states No6 Yes
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2.8.1 Loading and Storing System Registers
The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for loading data into and storing 
data from the register:
• LGDT (Load GDTR Register) — Loads the GDT base address and limit from memory into the GDTR register.
• SGDT (Store GDTR Register) — Stores the GDT base address and limit from the GDTR register into memory.
• LIDT (Load IDTR Register) — Loads the IDT base address and limit from memory into the IDTR register.
• SIDT (Store IDTR Register) — Stores the IDT base address and limit from the IDTR register into memory.
• LLDT (Load LDTR Register) — Loads the LDT segment selector and segment descriptor from memory into 

the LDTR. (The segment selector operand can also be located in a general-purpose register.)
• SLDT (Store LDTR Register) — Stores the LDT segment selector from the LDTR register into memory or a 

general-purpose register.
• LTR (Load Task Register) — Loads segment selector and segment descriptor for a TSS from memory into the 

task register. (The segment selector operand can also be located in a general-purpose register.)
• STR (Store Task Register) — Stores the segment selector for the current task TSS from the task register into 

memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word) instructions operate on bits 0 
through 15 of control register CR0. These instructions are provided for compatibility with the 16-bit Intel 286 
processor. Programs written to run on 32-bit IA-32 processors should not use these instructions. Instead, they 
should access the control register CR0 using the MOV CR instruction.

The CLTS (clear TS flag in CR0) instruction is provided for use in handling a device-not-available exception (#NM) 
that occurs when the processor attempts to execute a floating-point instruction when the TS flag is set. This 
instruction allows the TS flag to be cleared after the x87 FPU context has been saved, preventing further #NM 
exceptions. See Section 2.5, “Control Registers,” for more information on the TS flag.

The control registers (CR0, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV instruction. The instruction 
loads a control register from a general-purpose register or stores the content of a control register in a general-
purpose register.

2.8.2 Verifying of Access Privileges
The processor provides several instructions for examining segment selectors and segment descriptors to determine 
if access to their associated segments is allowed. These instructions duplicate some of the automatic access rights 
and type checking done by the processor, thus allowing operating-system or executive software to prevent excep-
tions from being generated. 

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a segment selector to match that of 
the program or procedure that supplied the segment selector. See Section 6.10.4, “Checking Caller Access Privi-
leges (ARPL Instruction),” for a detailed explanation of the function and use of this instruction. Note that ARPL is 
not supported in 64-bit mode.

NOTES:
1. Useful to application programs running at a CPL of 1 or 2.
2. The TSD and PCE flags in control register CR4 control access to these instructions by application programs running at a CPL of 3.
3. These instructions were introduced into the IA-32 Architecture with the Pentium processor.
4. This instruction was introduced into the IA-32 Architecture with the Pentium Pro processor and the Pentium processor with MMX technol-

ogy.
5. This instruction is not supported in 64-bit mode.
6. Application uses XGETBV to query which set of processor extended states are enabled.
7. RDTSCP is introduced in Intel Core i7 processor.

Table 2-3.  Summary of System Instructions (Contd.)

Instruction Description
Useful to
Application?

Protected from
Application?
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The LAR (load access rights) instruction verifies the accessibility of a specified segment and loads access rights 
information from the segment’s segment descriptor into a general-purpose register. Software can then examine 
the access rights to determine if the segment type is compatible with its intended use. See Section 6.10.1, 
“Checking Access Rights (LAR Instruction),” for a detailed explanation of the function and use of this instruction.

The LSL (load segment limit) instruction verifies the accessibility of a specified segment and loads the segment 
limit from the segment’s segment descriptor into a general-purpose register. Software can then compare the 
segment limit with an offset into the segment to determine whether the offset lies within the segment. See Section 
6.10.3, “Checking That the Pointer Offset Is Within Limits (LSL Instruction),” for a detailed explanation of the func-
tion and use of this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a selected segment is readable or 
writable, respectively, at a given CPL. See Section 6.10.2, “Checking Read/Write Rights (VERR and VERW Instruc-
tions),” for a detailed explanation of the function and use of these instructions.

2.8.3 Loading and Storing Debug Registers
Internal debugging facilities in the processor are controlled by a set of 8 debug registers (DR0-DR7). The MOV 
instruction allows setup data to be loaded to and stored from these registers.

On processors that support Intel 64 architecture, debug registers DR0-DR7 are 64 bits. In 32-bit modes and 
compatibility mode, writes to a debug register fill the upper 32 bits with zeros. Reads return the lower 32 bits. In 
64-bit mode, the upper 32 bits of DR6-DR7 are reserved and must be written with zeros. Writing one to any of the 
upper 32 bits causes an exception, #GP(0).

In 64-bit mode, MOV DRn instructions read or write all 64 bits of a debug register (operand-size prefixes are 
ignored). All 64 bits of DR0-DR3 are writable by software. However, MOV DRn instructions do not check that 
addresses written to DR0-DR3 are in the limits of the implementation. Address matching is supported only on valid 
addresses generated by the processor implementation.

2.8.4 Invalidating Caches and TLBs
The processor provides several instructions for use in explicitly invalidating its caches and TLB entries. The INVD 
(invalidate cache with no writeback) instruction invalidates all data and instruction entries in the internal caches 
and sends a signal to the external caches indicating that they should also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same function as the INVD instruction, 
except that it writes back modified lines in its internal caches to memory before it invalidates the caches. After 
invalidating the caches local to the executing logical processor or processor core, WBINVD signals caches higher in 
the cache hierarchy (caches shared with the invalidating logical processor or core) to write back any data they have 
in modified state at the time of instruction execution and to invalidate their contents. 

Note, non-shared caches may not be written back nor invalidated. In Figure 2-10 below, if code executing on either 
LP0 or LP1 were to execute a WBINVD, the shared L1 and L2 for LP0/LP1 will be written back and invalidated as will 
the shared L3. However, the L1 and L2 caches not shared with LP0 and LP1 will not be written back nor invalidated.
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The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for a specified page.

2.8.5 Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt (such as NMI or SMI, which are 
normally enabled), a debug exception, the BINIT# signal, the INIT# signal, or the RESET# signal is received. The 
processor generates a special bus cycle to indicate that the halt mode has been entered. 

Hardware may respond to this signal in a number of ways. An indicator light on the front panel may be turned on. 
An NMI interrupt for recording diagnostic information may be generated. Reset initialization may be invoked (note 
that the BINIT# pin was introduced with the Pentium Pro processor). If any non-wake events are pending during 
shutdown, they will be handled after the wake event from shutdown is processed (for example, A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modifying a memory operand. This 
mechanism is used to allow reliable communications between processors in multiprocessor systems, as described 
below:
• In the Pentium processor and earlier IA-32 processors, the LOCK prefix causes the processor to assert the 

LOCK# signal during the instruction. This always causes an explicit bus lock to occur. 
• In the Pentium 4, Intel Xeon, and P6 family processors, the locking operation is handled with either a cache lock 

or bus lock. If a memory access is cacheable and affects only a single cache line, a cache lock is invoked and 
the system bus and the actual memory location in system memory are not locked during the operation. Here, 
other Pentium 4, Intel Xeon, or P6 family processors on the bus write-back any modified data and invalidate 
their caches as necessary to maintain system memory coherency. If the memory access is not cacheable 
and/or it crosses a cache line boundary, the processor’s LOCK# signal is asserted and the processor does not 
respond to requests for bus control during the locked operation.

The RSM (return from SMM) instruction restores the processor (from a context dump) to the state it was in prior to 
a system management mode (SMM) interrupt.

2.8.6 Reading Performance-Monitoring and Time-Stamp Counters
The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp counter) instructions allow 
application programs to read the processor’s performance-monitoring and time-stamp counters, respectively. 
Processors based on Intel NetBurst® microarchitecture have eighteen 40-bit performance-monitoring counters; P6 
family processors have two 40-bit counters. Intel Atom® processors and most of the processors based on the Intel 
Core microarchitecture support two types of performance monitoring counters: programmable performance coun-
ters similar to those available in the P6 family, and three fixed-function performance monitoring counters. Details 

Figure 2-10.  WBINVD Invalidation of Shared and Non-Shared Cache Hierarchy
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of programmable and fixed-function performance monitoring counters for each processor generation are described 
in Chapter 20, “Last Branch Records.”

The programmable performance counters can support counting either the occurrence or duration of events. Events 
that can be monitored on programmable counters generally are model specific (except for architectural perfor-
mance events enumerated by CPUID leaf 0AH); they may include the number of instructions decoded, interrupts 
received, or the number of cache loads. Individual counters can be set up to monitor different events. Use the 
system instruction WRMSR to set up values in one of the IA32_PERFEVTSELx MSR, in one of the 45 ESCRs and one 
of the 18 CCCR MSRs (for Pentium 4 and Intel Xeon processors); or in the PerfEvtSel0 or the PerfEvtSel1 MSR (for 
the P6 family processors). The RDPMC instruction loads the current count from the selected counter into the 
EDX:EAX registers.

Fixed-function performance counters record only specific events that are defined at: https://perfmon-
events.intel.com/, and the width/number of fixed-function counters are enumerated by CPUID leaf 0AH.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each time the processor is reset. If 
not reset, the counter will increment ~9.5 x 1016 times per year when the processor is operating at a clock rate 
of 3GHz. At this clock frequency, it would take over 190 years for the counter to wrap around. The RDTSC 
instruction loads the current count of the time-stamp counter into the EDX:EAX registers.

See Section 21.1, “Performance Monitoring Overview,” and Section 19.17, “Time-Stamp Counter,” for more infor-
mation about the performance monitoring and time-stamp counters.

The RDTSC instruction was introduced into the IA-32 architecture with the Pentium processor. The RDPMC instruc-
tion was introduced into the IA-32 architecture with the Pentium Pro processor and the Pentium processor with 
MMX technology. Earlier Pentium processors have two performance-monitoring counters, but they can be read only 
with the RDMSR instruction, and only at privilege level 0.

2.8.6.1  Reading Counters in 64-Bit Mode
In 64-bit mode, RDTSC operates the same as in protected mode. The count in the time-stamp counter is stored in 
EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] cleared).

RDPMC requires an index to specify the offset of the performance-monitoring counter. In 64-bit mode for Pentium 
4 or Intel Xeon processor families, the index is specified in ECX[30:0]. The current count of the performance-moni-
toring counter is stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] cleared).

2.8.7 Reading and Writing Model-Specific Registers
The RDMSR (read model-specific register) and WRMSR (write model-specific register) instructions allow a 
processor’s 64-bit model-specific registers (MSRs) to be read and written, respectively. The MSR to be read or 
written is specified by the value in the ECX register.

RDMSR reads the value from the specified MSR to the EDX:EAX registers; WRMSR writes the value in the EDX:EAX 
registers to the specified MSR. RDMSR and WRMSR were introduced into the IA-32 architecture with the Pentium 
processor.

See Section 11.4, “Model-Specific Registers (MSRs),” for more information.

2.8.7.1  Reading and Writing Model-Specific Registers in 64-Bit Mode
RDMSR and WRMSR require an index to specify the address of an MSR. In 64-bit mode, the index is 32 bits; it is 
specified using ECX.

2.8.8 Enabling Processor Extended States
The XSETBV instruction is required to enable OS support of individual processor extended states in XCR0 (see 
Section 2.6).
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CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the Intel 64 and IA-32 architecture’s protected-mode memory management facilities, 
including the physical memory requirements, segmentation mechanism, and paging mechanism.

See also: Chapter 6, “Protection‚” (for a description of the processor’s protection mechanism) and Chapter 22, 
“8086 Emulation‚” (for a description of memory addressing protection in real-address and virtual-8086 modes).

3.1 MEMORY MANAGEMENT OVERVIEW
The memory management facilities of the IA-32 architecture are divided into two parts: segmentation and paging. 
Segmentation provides a mechanism of isolating individual code, data, and stack modules so that multiple 
programs (or tasks) can run on the same processor without interfering with one another. Paging provides a mech-
anism for implementing a conventional demand-paged, virtual-memory system where sections of a program’s 
execution environment are mapped into physical memory as needed. Paging can also be used to provide isolation 
between multiple tasks. When operating in protected mode, some form of segmentation must be used. There is 
no mode bit to disable segmentation. The use of paging, however, is optional.

These two mechanisms (segmentation and paging) can be configured to support simple single-program (or single-
task) systems, multitasking systems, or multiple-processor systems that used shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the processor’s addressable memory 
space (called the linear address space) into smaller protected address spaces called segments. Segments can 
be used to hold the code, data, and stack for a program or to hold system data structures (such as a TSS or LDT). 
If more than one program (or task) is running on a processor, each program can be assigned its own set of 
segments. The processor then enforces the boundaries between these segments and ensures that one program 
does not interfere with the execution of another program by writing into the other program’s segments. The 
segmentation mechanism also allows typing of segments so that the operations that may be performed on a partic-
ular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space. To locate a byte in a particular 
segment, a logical address (also called a far pointer) must be provided. A logical address consists of a segment 
selector and an offset. The segment selector is a unique identifier for a segment. Among other things it provides an 
offset into a descriptor table (such as the global descriptor table, GDT) to a data structure called a segment 
descriptor. Each segment has a segment descriptor, which specifies the size of the segment, the access rights and 
privilege level for the segment, the segment type, and the location of the first byte of the segment in the linear 
address space (called the base address of the segment). The offset part of the logical address is added to the base 
address for the segment to locate a byte within the segment. The base address plus the offset thus forms a linear 
address in the processor’s linear address space.
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If paging is not used, the linear address space of the processor is mapped directly into the physical address space 
of processor. The physical address space is defined as the range of addresses that the processor can generate on 
its address bus.

Because multitasking computing systems commonly define a linear address space much larger than it is economi-
cally feasible to contain all at once in physical memory, some method of “virtualizing” the linear address space is 
needed. This virtualization of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space is simulated with a small 
amount of physical memory (RAM and ROM) and some disk storage. When using paging, each segment is divided 
into pages (typically 4 KBytes each in size), which are stored either in physical memory or on the disk. The oper-
ating system or executive maintains a page directory and a set of page tables to keep track of the pages. When a 
program (or task) attempts to access an address location in the linear address space, the processor uses the page 
directory and page tables to translate the linear address into a physical address and then performs the requested 
operation (read or write) on the memory location. 

If the page being accessed is not currently in physical memory, the processor interrupts execution of the program 
(by generating a page-fault exception). The operating system or executive then reads the page into physical 
memory from the disk and continues executing the program. 

When paging is implemented properly in the operating-system or executive, the swapping of pages between phys-
ical memory and the disk is transparent to the correct execution of a program. Even programs written for 16-bit IA-
32 processors can be paged (transparently) when they are run in virtual-8086 mode.

3.2 USING SEGMENTS
The segmentation mechanism supported by the IA-32 architecture can be used to implement a wide variety of 
system designs. These designs range from flat models that make only minimal use of segmentation to protect 

Figure 3-1.  Segmentation and Paging
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PROTECTED-MODE MEMORY MANAGEMENT
programs to multi-segmented models that employ segmentation to create a robust operating environment in 
which multiple programs and tasks can be executed reliably.

The following sections give several examples of how segmentation can be employed in a system to improve 
memory management performance and reliability.

3.2.1 Basic Flat Model
The simplest memory model for a system is the basic “flat model,” in which the operating system and application 
programs have access to a continuous, unsegmented address space. To the greatest extent possible, this basic flat 
model hides the segmentation mechanism of the architecture from both the system designer and the application 
programmer.

To implement a basic flat memory model with the IA-32 architecture, at least two segment descriptors must be 
created, one for referencing a code segment and one for referencing a data segment (see Figure 3-2). Both of 
these segments, however, are mapped to the entire linear address space: that is, both segment descriptors have 
the same base address value of 0 and the same segment limit of 4 GBytes. By setting the segment limit to 4 
GBytes, the segmentation mechanism is kept from generating exceptions for out of limit memory references, even 
if no physical memory resides at a particular address. ROM (EPROM) is generally located at the top of the physical 
address space, because the processor begins execution at FFFF_FFF0H. RAM (DRAM) is placed at the bottom of the 
address space because the initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model
The protected flat model is similar to the basic flat model, except the segment limits are set to include only the 
range of addresses for which physical memory actually exists (see Figure 3-3). A general-protection exception 
(#GP) is then generated on any attempt to access nonexistent memory. This model provides a minimum level of 
hardware protection against some kinds of program bugs.

Figure 3-2.  Flat Model
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More complexity can be added to this protected flat model to provide more protection. For example, for the paging 
mechanism to provide isolation between user and supervisor code and data, four segments need to be defined: 
code and data segments at privilege level 3 for the user, and code and data segments at privilege level 0 for the 
supervisor. Usually these segments all overlay each other and start at address 0 in the linear address space. This 
flat segmentation model along with a simple paging structure can protect the operating system from applications, 
and by adding a separate paging structure for each task or process, it can also protect applications from each other. 
Similar designs are used by several popular multitasking operating systems.

3.2.3 Multi-Segment Model
A multi-segment model (such as the one shown in Figure 3-4) uses the full capabilities of the segmentation mech-
anism to provide hardware enforced protection of code, data structures, and programs and tasks. Here, each 
program (or task) is given its own table of segment descriptors and its own segments. The segments can be 
completely private to their assigned programs or shared among programs. Access to all segments and to the 
execution environments of individual programs running on the system is controlled by hardware.

Figure 3-3.  Protected Flat Model
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Access checks can be used to protect not only against referencing an address outside the limit of a segment, but 
also against performing disallowed operations in certain segments. For example, since code segments are desig-
nated as read-only segments, hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels. Protection levels can be used to 
protect operating-system procedures from unauthorized access by application programs.

3.2.4 Segmentation in IA-32e Mode
In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on whether the processor is running 
in compatibility mode or 64-bit mode. In compatibility mode, segmentation functions just as it does using legacy 
16-bit or 32-bit protected mode semantics.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address 
space. The processor treats the segment base of CS, DS, ES, SS as zero, creating a linear address that is equal to 
the effective address. The FS and GS segments are exceptions. These segment registers (which hold the segment 
base) can be used as additional base registers in linear address calculations. They facilitate addressing local data 
and certain operating system data structures. 

Note that the processor does not perform segment limit checks at runtime in 64-bit mode.

3.2.5 Paging and Segmentation
Paging can be used with any of the segmentation models described in Figures 3-2, 3-3, and 3-4. The processor’s 
paging mechanism divides the linear address space (into which segments are mapped) into pages (as shown in 
Figure 3-1). These linear-address-space pages are then mapped to pages in the physical address space. The 
paging mechanism offers several page-level protection facilities that can be used with or instead of the segment-

Figure 3-4.  Multi-Segment Model
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protection facilities. For example, it lets read-write protection be enforced on a page-by-page basis. The paging 
mechanism also provides two-level user-supervisor protection that can also be specified on a page-by-page basis.

3.3 PHYSICAL ADDRESS SPACE
In protected mode, the IA-32 architecture provides a normal physical address space of 4 GBytes (232

 bytes). This 
is the address space that the processor can address on its address bus. This address space is flat (unsegmented), 
with addresses ranging continuously from 0 to FFFFFFFFH. This physical address space can be mapped to read-
write memory, read-only memory, and memory mapped I/O. The memory mapping facilities described in this 
chapter can be used to divide this physical memory up into segments and/or pages.

Starting with the Pentium Pro processor, the IA-32 architecture also supports an extension of the physical address 
space to 236 bytes (64 GBytes); with a maximum physical address of FFFFFFFFFH. This extension is invoked in 
either of two ways:
• Using the physical address extension (PAE) flag, located in bit 5 of control register CR4. 
• Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium III processors).

Physical address support has since been extended beyond 36 bits. See Chapter 5, “Paging‚” for more information 
about 36-bit physical addressing.

3.3.1 Intel® 64 Processors and Physical Address Space
On processors that support Intel 64 architecture (CPUID.80000001H:EDX[29] = 1), the size of the physical 
address range is implementation-specific and indicated by CPUID.80000008H:EAX[bits 7-0]. 

For the format of information returned in EAX, see “CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A. See also: Chapter 5, “Paging.”

3.4 LOGICAL AND LINEAR ADDRESSES
At the system-architecture level in protected mode, the processor uses two stages of address translation to arrive 
at a physical address: logical-address translation and linear address space paging.

Even with the minimum use of segments, every byte in the processor’s address space is accessed with a logical 
address. A logical address consists of a 16-bit segment selector and a 32-bit offset (see Figure 3-5). The segment 
selector identifies the segment the byte is located in and the offset specifies the location of the byte in the segment 
relative to the base address of the segment. 

The processor translates every logical address into a linear address. A linear address is a 32-bit address in the 
processor’s linear address space. Like the physical address space, the linear address space is a flat (unsegmented), 
232-byte address space, with addresses ranging from 0 to FFFFFFFFH. The linear address space contains all the 
segments and system tables defined for a system. 

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the segment in the GDT or LDT and 
reads it into the processor. (This step is needed only when a new segment selector is loaded into a segment 
register.)

2. Examines the segment descriptor to check the access rights and range of the segment to ensure that the 
segment is accessible and that the offset is within the limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset to form a linear address.
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If paging is not used, the processor maps the linear address directly to a physical address (that is, the linear 
address goes out on the processor’s address bus). If the linear address space is paged, a second level of address 
translation is used to translate the linear address into a physical address. 

See also: Chapter 5, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode
In IA-32e mode, an Intel 64 processor uses the steps described above to translate a logical address to a linear 
address. In 64-bit mode, the offset and base address of the segment are 64-bits instead of 32 bits. The linear 
address format is also 64 bits wide and is subject to linear-address pre-processing (see Chapter 4).

Each code segment descriptor provides an L bit. This bit allows a code segment to execute 64-bit code or legacy 
32-bit code by code segment.

3.4.2 Segment Selectors
A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly to the segment, 
but instead points to the segment descriptor that defines the segment. A segment selector contains the following 
items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or LDT. The processor multiplies 
the index value by 8 (the number of bytes in a segment descriptor) and adds the result to the base 
address of the GDT or LDT (from the GDTR or LDTR register, respectively).

TI (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag selects the GDT; setting this flag 
selects the current LDT.

Figure 3-5.  Logical Address to Linear Address Translation
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Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The privilege level can range from 0 to 
3, with 0 being the most privileged level. See Section 6.5, “Privilege Levels,” for a description of the 
relationship of the RPL to the CPL of the executing program (or task) and the descriptor privilege 
level (DPL) of the descriptor the segment selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points to this entry of the GDT (that 
is, a segment selector with an index of 0 and the TI flag set to 0) is used as a “null segment selector.” The processor 
does not generate an exception when a segment register (other than the CS or SS registers) is loaded with a null 
selector. It does, however, generate an exception when a segment register holding a null selector is used to access 
memory. A null selector can be used to initialize unused segment registers. Loading the CS or SS register with a null 
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values of selectors are 
usually assigned or modified by link editors or linking loaders, not application programs.

3.4.3 Segment Registers
To reduce address translation time and coding complexity, the processor provides registers for holding up to 6 
segment selectors (see Figure 3-7). Each of these segment registers support a specific kind of memory reference 
(code, stack, or data). For virtually any kind of program execution to take place, at least the code-segment (CS), 
data-segment (DS), and stack-segment (SS) registers must be loaded with valid segment selectors. The processor 
also provides three additional data-segment registers (ES, FS, and GS), which can be used to make additional data 
segments available to the currently executing program (or task).

For a program to access a segment, the segment selector for the segment must have been loaded in one of the 
segment registers. So, although a system can define thousands of segments, only 6 can be available for immediate 
use. Other segments can be made available by loading their segment selectors into these registers during program 
execution.

Every segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes referred to as a 
“descriptor cache” or a “shadow register.”) When a segment selector is loaded into the visible part of a segment 
register, the processor also loads the hidden part of the segment register with the base address, segment limit, and 
access control information from the segment descriptor pointed to by the segment selector. The information cached 
in the segment register (visible and hidden) allows the processor to translate addresses without taking extra bus 
cycles to read the base address and limit from the segment descriptor. In systems in which multiple processors 
have access to the same descriptor tables, it is the responsibility of software to reload the segment registers when 
the descriptor tables are modified. If this is not done, an old segment descriptor cached in a segment register might 
be used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instructions. These instructions 
explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and RET instructions, the SYSENTER 
and SYSEXIT instructions, and the IRET, INT n, INTO, INT3, and INT1 instructions. These instructions change 

Figure 3-7.  Segment Registers
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the contents of the CS register (and sometimes other segment registers) as an incidental part of their 
operation.

The MOV instruction can also be used to store the visible part of a segment register in a general-purpose register.

3.4.4 Segment Loading Instructions in IA-32e Mode
Because ES, DS, and SS segment registers are not used in 64-bit mode, their fields (base, limit, and attribute) in 
segment descriptor registers are ignored. Some forms of segment load instructions are also invalid (for example, 
LDS, POP ES). Address calculations that reference the ES, DS, or SS segments are treated as if the segment base 
is zero. 

The processor performs linear-address pre-processing (Chapter 4) instead of performing limit checks. Mode 
switching does not change the contents of the segment registers or the associated descriptor registers. These 
registers are also not changed during 64-bit mode execution, unless explicit segment loads are performed.

In order to set up compatibility mode for an application, segment-load instructions (MOV to Sreg, POP Sreg) work 
normally in 64-bit mode. An entry is read from the system descriptor table (GDT or LDT) and is loaded in the hidden 
portion of the segment register. The descriptor-register base, limit, and attribute fields are all loaded. However, the 
contents of the data and stack segment selector and the descriptor registers are ignored.

When FS and GS segment overrides are used in 64-bit mode, their respective base addresses are used in the linear 
address calculation: (FS or GS).base + index + displacement. FS.base and GS.base are then expanded to the full 
linear-address size supported by the implementation. The resulting effective address calculation can wrap across 
positive and negative addresses; the resulting address is subject to linear-address pre-processing.

In 64-bit mode, memory accesses using FS-segment and GS-segment overrides are not checked for a runtime limit 
nor subjected to attribute-checking. Normal segment loads (MOV to Sreg and POP Sreg) into FS and GS load a 
standard 32-bit base value in the hidden portion of the segment register. The base address bits above the standard 
32 bits are cleared to 0 to allow consistency for implementations that use less than 64 bits. 

The hidden descriptor register fields for FS.base and GS.base are physically mapped to MSRs in order to load all 
address bits supported by a 64-bit implementation. Software with CPL = 0 (privileged software) can load all 
supported linear-address bits into FS.base or GS.base using WRMSR. Addresses written into the 64-bit FS.base 
and GS.base registers must be in canonical form. A WRMSR instruction that attempts to write a non-canonical 
address to those registers causes a #GP fault. See Section 4.5.2.

When in compatibility mode, FS and GS overrides operate as defined by 32-bit mode behavior regardless of the 
value loaded into the upper 32 linear-address bits of the hidden descriptor register base field. Compatibility mode 
ignores the upper 32 bits when calculating an effective address.

A new 64-bit mode instruction, SWAPGS, can be used to load GS base. SWAPGS exchanges the kernel data struc-
ture pointer from the IA32_KERNEL_GS_BASE MSR with the GS base register. The kernel can then use the GS 
prefix on normal memory references to access the kernel data structures. An attempt to write a non-canonical 
value (using WRMSR) to the IA32_KERNEL_GS_BASE MSR causes a #GP fault; see Section 4.5.2.

3.4.5 Segment Descriptors
A segment descriptor is a data structure in a GDT or LDT that provides the processor with the size and location of 
a segment, as well as access control and status information. Segment descriptors are typically created by 
compilers, linkers, loaders, or the operating system or executive, but not application programs. Figure 3-8 illus-
trates the general descriptor format for all types of segment descriptors.
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The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the two segment limit fields to form 
a 20-bit value. The processor interprets the segment limit in one of two ways, depending on the 
setting of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from 1 byte to 1 MByte, in byte incre-
ments.

• If the granularity flag is set, the segment size can range from 4 KBytes to 4 GBytes, in 4-KByte 
increments.

The processor uses the segment limit in two different ways, depending on whether the segment is 
an expand-up or an expand-down segment. See Section 3.4.5.1, “Code- and Data-Segment 
Descriptor Types,” for more information about segment types. For expand-up segments, the offset 
in a logical address can range from 0 to the segment limit. Offsets greater than the segment limit 
generate general-protection exceptions (#GP, for all segments other than SS) or stack-fault excep-
tions (#SS for the SS segment). For expand-down segments, the segment limit has the reverse 
function; the offset can range from the segment limit plus 1 to FFFFFFFFH or FFFFH, depending on 
the setting of the B flag. Offsets less than or equal to the segment limit generate general-protection 
exceptions or stack-fault exceptions. Decreasing the value in the segment limit field for an expand-
down segment allocates new memory at the bottom of the segment's address space, rather than at 
the top. IA-32 architecture stacks always grow downwards, making this mechanism convenient for 
expandable stacks.

Base address fields
Defines the location of byte 0 of the segment within the 4-GByte linear address space. The 
processor puts together the three base address fields to form a single 32-bit value. Segment base 
addresses should be aligned to 16-byte boundaries. Although 16-byte alignment is not required, 
this alignment allows programs to maximize performance by aligning code and data on 16-byte 
boundaries.

Type field Indicates the segment or gate type and specifies the kinds of access that can be made to the 
segment and the direction of growth. The interpretation of this field depends on whether the 
descriptor type flag specifies an application (code or data) descriptor or a system descriptor. The 
encoding of the type field is different for code, data, and system descriptors (see Figure 6-1). See 
Section 3.4.5.1, “Code- and Data-Segment Descriptor Types,” for a description of how this field is 
used to specify code and data-segment types. 

Figure 3-8.  Segment Descriptor
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S (descriptor type) flag
Specifies whether the segment descriptor is for a system segment (S flag is clear) or a code or data 
segment (S flag is set).

DPL (descriptor privilege level) field
Specifies the privilege level of the segment. The privilege level can range from 0 to 3, with 0 being 
the most privileged level. The DPL is used to control access to the segment. See Section 6.5, “Priv-
ilege Levels,” for a description of the relationship of the DPL to the CPL of the executing code 
segment and the RPL of a segment selector.

P (segment-present) flag
Indicates whether the segment is present in memory (set) or not present (clear). If this flag is clear, 
the processor generates a segment-not-present exception (#NP) when a segment selector that 
points to the segment descriptor is loaded into a segment register. Memory management software 
can use this flag to control which segments are actually loaded into physical memory at a given 
time. It offers a control in addition to paging for managing virtual memory.

Figure 3-9 shows the format of a segment descriptor when the segment-present flag is clear. When 
this flag is clear, the operating system or executive is free to use the locations marked “Available” to 
store its own data, such as information regarding the whereabouts of the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound) flag
Performs different functions depending on whether the segment descriptor is an executable code 
segment, an expand-down data segment, or a stack segment. (This flag should always be set to 1 
for 32-bit code and data segments and to 0 for 16-bit code and data segments.)

• Executable code segment. The flag is called the D flag and it indicates the default length for 
effective addresses and operands referenced by instructions in the segment. If the flag is set, 
32-bit addresses and 32-bit or 8-bit operands are assumed; if it is clear, 16-bit addresses and 
16-bit or 8-bit operands are assumed. 
The instruction prefix 66H can be used to select an operand size other than the default, and the 
prefix 67H can be used select an address size other than the default.

• Stack segment (data segment pointed to by the SS register). The flag is called the B (big) 
flag and it specifies the size of the stack pointer used for implicit stack operations (such as 
pushes, pops, and calls). If the flag is set, a 32-bit stack pointer is used, which is stored in the 
32-bit ESP register; if the flag is clear, a 16-bit stack pointer is used, which is stored in the 16-
bit SP register. If the stack segment is set up to be an expand-down data segment (described in 
the next paragraph), the B flag also specifies the upper bound of the stack segment.

• Expand-down data segment. The flag is called the B flag and it specifies the upper bound of 
the segment. If the flag is set, the upper bound is FFFFFFFFH (4 GBytes); if the flag is clear, the 
upper bound is FFFFH (64 KBytes).

G (granularity) flag
Determines the scaling of the segment limit field. When the granularity flag is clear, the segment 
limit is interpreted in byte units; when flag is set, the segment limit is interpreted in 4-KByte units. 
(This flag does not affect the granularity of the base address; it is always byte granular.) When the 
granularity flag is set, the twelve least significant bits of an offset are not tested when checking the 

Figure 3-9.  Segment Descriptor When Segment-Present Flag Is Clear
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offset against the segment limit. For example, when the granularity flag is set, a limit of 0 results in 
valid offsets from 0 to 4095.

L (64-bit code segment) flag
In IA-32e mode, bit 21 of the second doubleword of the segment descriptor indicates whether a 
code segment contains native 64-bit code. A value of 1 indicates instructions in this code segment 
are executed in 64-bit mode. A value of 0 indicates the instructions in this code segment are 
executed in compatibility mode. If the L-bit is set, then the D-bit must be cleared. Bit 21 is not used 
outside IA-32e mode (or for data segments). Because an attempt to activate IA-32e mode will fault 
if the current CS has the L-bit set (see Section 11.8.5), software operating outside IA-32e mode 
should avoid loading CS from a descriptor that sets the L-bit.

Available and reserved bits
Bit 20 of the second doubleword of the segment descriptor is available for use by system software.

3.4.5.1  Code- and Data-Segment Descriptor Types
When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for either a code or a data 
segment. The highest order bit of the type field (bit 11 of the second double word of the segment descriptor) then 
determines whether the descriptor is for a data segment (clear) or a code segment (set). 

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are interpreted as accessed (A), 
write-enable (W), and expansion-direction (E). See Table 3-1 for a description of the encoding of the bits in the 
type field for code and data segments. Data segments can be read-only or read/write segments, depending on the 
setting of the write-enable bit. 

Stack segments are data segments which must be read/write segments. Loading the SS register with a segment 
selector for a nonwritable data segment generates a general-protection exception (#GP). If the size of a stack 
segment needs to be changed dynamically, the stack segment can be an expand-down data segment (expansion-

Table 3-1.  Code- and Data-Segment Types 

Type Field Descriptor
Type

Description

Decimal 11 10
E

9
W

8
A

0 0 0 0 0 Data Read-Only

1 0 0 0 1 Data Read-Only, accessed

2 0 0 1 0 Data Read/Write

3 0 0 1 1 Data Read/Write, accessed

4 0 1 0 0 Data Read-Only, expand-down

5 0 1 0 1 Data Read-Only, expand-down, accessed

6 0 1 1 0 Data Read/Write, expand-down

7 0 1 1 1 Data Read/Write, expand-down, accessed

C R A

8 1 0 0 0 Code Execute-Only

9 1 0 0 1 Code Execute-Only, accessed

10 1 0 1 0 Code Execute/Read

11 1 0 1 1 Code Execute/Read, accessed

12 1 1 0 0 Code Execute-Only, conforming

13 1 1 0 1 Code Execute-Only, conforming, accessed

14 1 1 1 0 Code Execute/Read, conforming

15 1 1 1 1 Code Execute/Read, conforming, accessed
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direction flag set). Here, dynamically changing the segment limit causes stack space to be added to the bottom of 
the stack. If the size of a stack segment is intended to remain static, the stack segment may be either an expand-
up or expand-down type.

The accessed bit indicates whether the segment has been accessed since the last time the operating-system or 
executive cleared the bit. The processor sets this bit whenever it loads a segment selector for the segment into a 
segment register, assuming that the type of memory that contains the segment descriptor supports processor 
writes. The bit remains set until explicitly cleared. This bit can be used both for virtual memory management and 
for debugging. 

For code segments, the three low-order bits of the type field are interpreted as accessed (A), read enable (R), and 
conforming (C). Code segments can be execute-only or execute/read, depending on the setting of the read-enable 
bit. An execute/read segment might be used when constants or other static data have been placed with instruction 
code in a ROM. Here, data can be read from the code segment either by using an instruction with a CS override 
prefix or by loading a segment selector for the code segment in a data-segment register (the DS, ES, FS, or GS 
registers). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution into a more-privileged 
conforming segment allows execution to continue at the current privilege level. A transfer into a nonconforming 
segment at a different privilege level results in a general-protection exception (#GP), unless a call gate or task gate 
is used (see Section 6.8.1, “Direct Calls or Jumps to Code Segments,” for more information on conforming and 
nonconforming code segments). System utilities that do not access protected facilities and handlers for some types 
of exceptions (such as, divide error or overflow) may be loaded in conforming code segments. Utilities that need to 
be protected from less privileged programs and procedures should be placed in nonconforming code segments. 

NOTE
Execution cannot be transferred by a call or a jump to a less-privileged (numerically higher 
privilege level) code segment, regardless of whether the target segment is a conforming or 
nonconforming code segment. Attempting such an execution transfer will result in a general-
protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less privileged programs or proce-
dures (code executing at numerically higher privilege levels). Unlike code segments, however, data segments can 
be accessed by more privileged programs or procedures (code executing at numerically lower privilege levels) 
without using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can enter an indefinite loop if 
software or the processor attempts to update (write to) the ROM-based segment descriptors. To prevent this 
problem, set the accessed bits for all segment descriptors placed in a ROM. Also, remove operating-system or 
executive code that attempts to modify segment descriptors located in ROM.

3.5 SYSTEM DESCRIPTOR TYPES
When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type is a system descriptor. The 
processor recognizes the following types of system descriptors:
• Local descriptor-table (LDT) segment descriptor.
• Task-state segment (TSS) descriptor.
• Call-gate descriptor.
• Interrupt-gate descriptor.
• Trap-gate descriptor.
• Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate descriptors. System-
segment descriptors point to system segments (LDT and TSS segments). Gate descriptors are in themselves 
“gates,” which hold pointers to procedure entry points in code segments (call, interrupt, and trap gates) or which 
hold segment selectors for TSS’s (task gates). 
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Table 3-2 shows the encoding of the type field for system-segment descriptors and gate descriptors. Note that 
system descriptors in IA-32e mode are 16 bytes instead of 8 bytes.

See also: Section 3.5.1, “Segment Descriptor Tables,” and Section 9.2.2, “TSS Descriptor,” (for more information 
on the system-segment descriptors); see Section 6.8.3, “Call Gates,” Section 7.11, “IDT Descriptors,” and Section 
9.2.5, “Task-Gate Descriptor,” (for more information on the gate descriptors).

3.5.1 Segment Descriptor Tables
A segment descriptor table is an array of segment descriptors (see Figure 3-10). A descriptor table is variable in 
length and can contain up to 8192 (213) 8-byte descriptors. There are two kinds of descriptor tables:
• The global descriptor table (GDT).
• The local descriptor tables (LDT).

Table 3-2.  System-Segment and Gate-Descriptor Types

Type Field Description

Decimal 11 10 9 8 32-Bit Mode IA-32e Mode

0 0 0 0 0 Reserved Reserved

1 0 0 0 1 16-bit TSS (Available) Reserved

2 0 0 1 0 LDT LDT

3 0 0 1 1 16-bit TSS (Busy) Reserved

4 0 1 0 0 16-bit Call Gate Reserved

5 0 1 0 1 Task Gate Reserved

6 0 1 1 0 16-bit Interrupt Gate Reserved

7 0 1 1 1 16-bit Trap Gate Reserved

8 1 0 0 0 Reserved Reserved

9 1 0 0 1 32-bit TSS (Available) 64-bit TSS (Available)

10 1 0 1 0 Reserved Reserved

11 1 0 1 1 32-bit TSS (Busy) 64-bit TSS (Busy)

12 1 1 0 0 32-bit Call Gate 64-bit Call Gate

13 1 1 0 1 Reserved Reserved

14 1 1 1 0 32-bit Interrupt Gate 64-bit Interrupt Gate

15 1 1 1 1 32-bit Trap Gate 64-bit Trap Gate
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Each system must have one GDT defined, which may be used for all programs and tasks in the system. Optionally, 
one or more LDTs can be defined. For example, an LDT can be defined for each separate task being run, or some or 
all tasks can share the same LDT.

The GDT is not a segment itself; instead, it is a data structure in linear address space. The base linear address and 
limit of the GDT must be loaded into the GDTR register (see Section 2.4, “Memory-Management Registers”). The 
base address of the GDT should be aligned on an eight-byte boundary to yield the best processor performance. The 
limit value for the GDT is expressed in bytes. As with segments, the limit value is added to the base address to get 
the address of the last valid byte. A limit value of 0 results in exactly one valid byte. Because segment descriptors 
are always 8 bytes long, the GDT limit should always be one less than an integral multiple of eight (that is, 8N – 1).

The first descriptor in the GDT is not used by the processor. A segment selector to this “null descriptor” does not 
generate an exception when loaded into a data-segment register (DS, ES, FS, or GS), but it always generates a 
general-protection exception (#GP) when an attempt is made to access memory using the descriptor. By initializing 
the segment registers with this segment selector, accidental reference to unused segment registers can be guar-
anteed to generate an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a segment descriptor for the LDT 
segment. If the system supports multiple LDTs, each must have a separate segment selector and segment 
descriptor in the GDT. The segment descriptor for an LDT can be located anywhere in the GDT. See Section 3.5, 
“System Descriptor Types,” for information on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when accessing the LDT, the 
segment selector, base linear address, limit, and access rights of the LDT are stored in the LDTR register (see 
Section 2.4, “Memory-Management Registers”). 

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-descriptor” is stored in memory 
(see top diagram in Figure 3-11). To avoid alignment check faults in user mode (privilege level 3), the pseudo-
descriptor should be located at an odd word address (that is, address MOD 4 is equal to 2). This causes the 

Figure 3-10.  Global and Local Descriptor Tables
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processor to store an aligned word, followed by an aligned doubleword. User-mode programs normally do not store 
pseudo-descriptors, but the possibility of generating an alignment check fault can be avoided by aligning pseudo-
descriptors in this way. The same alignment should be used when storing the IDTR register using the SIDT instruc-
tion. When storing the LDTR or task register (using the SLDT or STR instruction, respectively), the pseudo-
descriptor should be located at a doubleword address (that is, address MOD 4 is equal to 0).

3.5.2 Segment Descriptor Tables in IA-32e Mode
In IA-32e mode, a segment descriptor table can contain up to 8192 (213) 8-byte descriptors. An entry in the 
segment descriptor table can be 8 bytes. System descriptors are expanded to 16 bytes (occupying the space of two 
entries). 

GDTR and LDTR registers are expanded to hold 64-bit base address. The corresponding pseudo-descriptor is 80 
bits. (see the bottom diagram in Figure 3-11).

The following system descriptors expand to 16 bytes:

— Call gate descriptors (see Section 6.8.3.1, “IA-32e Mode Call Gates”).

— IDT gate descriptors (see Section 7.14.1, “64-Bit Mode IDT”).

— LDT and TSS descriptors (see Section 9.2.3, “TSS Descriptor in 64-bit mode”).

Figure 3-11.  Pseudo-Descriptor Formats
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CHAPTER 4
LINEAR-ADDRESS PRE-PROCESSING

As described in Chapter 3, “Protected-Mode Memory Management‚” software accesses to memory typically use 
logical addresses. The processor uses segmentation, as detailed in Section 3.4, to generate linear addresses from 
logical addresses. Linear addresses are then translated to physical addresses using paging, as described in Chapter 
5, “Paging.”

In IA-32e mode (if IA32_EFER.LMA = 1), linear addresses may undergo some pre-processing before being trans-
lated through paging.1 Some of this pre-processing is done only if enabled by software, but some occurs uncondi-
tionally. Specifically, linear addresses are subject to pre-processing in IA-32e mode as follows:

1. Linear-address-space separation (LASS). This is a feature that, when enabled by software, may limit the 
linear addresses that are accessible by software, generating faults for accesses out of range.

2. Linear-address masking (LAM). This is a feature that, when enabled by software, masks certain linear-
address bits.

3. Canonicality checking. As will be detailed in Chapter 5, paging does not translate all 64 bits of a linear 
address. Each linear address must be canonical, meaning that the untranslated bits have a fixed value. 
Memory accesses using a non-canonical address generate faults.

Both LASS and canonicality checking can generate faults. For any specific memory access, the two features 
generate the same fault. For that reason, the relative order of that checking is not defined and cannot be deter-
mined by software.

4.1 ENABLING AND ENUMERATION
Software enables LASS by setting CR4.LASS[bit 27]. Enabling of LAM is based on three different bits: 
CR3.LAM_U48[bit 62], CR3.LAM_U57[bit 61], and CR4.LAM_SUP[bit 28]. The use of these bits is explained in 
Section 4.4. Canonicality checking is not enabled by software and is always performed in 64-bit mode.

The processor enumerates support for LASS with CPUID.(EAX=07H,ECX=1):EAX.LASS[bit 6]. If this bit is enumer-
ated as 1, software can set CR4.LASS.

The processor enumerates support for LAM with CPUID.(EAX=07H,ECX=1):EAX.LAM[bit 26]. If this bit is enumer-
ated as 1, software can set CR3.LAM_U48, CR3.LAM_U57, and CR4.LAM_SUP.

4.2 MODE-BASED ACCESSES AND LINEAR-ADDRESS-SPACE PARTITIONING
Every access to a linear address is either a supervisor-mode access or a user-mode access. For all instruction 
fetches and most data accesses, this distinction is determined by the current privilege level (CPL): accesses made 
while CPL < 3 are supervisor-mode accesses, while accesses made while CPL = 3 are user-mode accesses.

Some operations implicitly access system data structures with linear addresses; the resulting accesses to those 
data structures are supervisor-mode accesses regardless of CPL. Such accesses include the following: accesses to 
the global descriptor table (GDT) or local descriptor table (LDT) to load a segment descriptor; accesses to the inter-
rupt descriptor table (IDT) when delivering an interrupt or exception; accesses to the task-state segment (TSS) as 
part of a task switch or change of CPL; and accesses to a user posted-interrupt descriptor (UPID) during user-inter-
rupt notification processing. Such accesses are called implicit supervisor-mode accesses regardless of CPL. 
Other accesses made while CPL < 3 are called explicit supervisor-mode accesses.2

1. The presentation in this chapter focuses on 64-bit addresses. 32-bit and 16-bit addresses can also be used in IA-32e mode. For the 
purposes of this chapter, the upper bits of such addresses (32 bits and 48 bits, respectively) are treated as if they were all zero.

2. The WRUSS instruction is an exception; although it can be executed only if CPL = 0, the processor treats its shadow-stack accesses 
as user-mode accesses.
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Some 64-bit operating systems partition the 64-bit linear-address space into a supervisor portion and a user 
portion. Specifically, the upper half of the linear-address space (comprising addresses in which bit 63 is 1) is used 
for supervisor instructions and data, while the lower half (addresses in which bit 63 is 0) is for user instructions and 
data.

The LASS and LAM features are designed for operating systems that establish such linear-address-space parti-
tioning. However, the features are defined and may be used even if such partitioning is not in effect.

4.3 LINEAR-ADDRESS-SPACE SEPARATION (LASS)
The access rights determined by paging (see Section 5.6) are based on whether a linear address is a supervisor-
mode address or a user-mode address. Paging provides protection by preventing user-mode accesses to super-
visor-mode addresses; in addition, there are paging features that can prevent supervisor-mode accesses to user-
mode addresses.

These paging-based protections prevent malicious software from directly reading or writing memory inappropri-
ately. However, they require the processor to traverse a hierarchy of paging structures in memory. Unprivileged 
software may be able to use the timing information resulting from this traversal to determine details about the 
paging structures, the layout of supervisor memory, or its use by supervisor software.

Linear-address-space separation (LASS) is an independent mechanism that can enforce mode-based protection 
without traversing the paging structures. Because LASS provides this protection as part of linear-address pre-
processing, unprivileged software is denied paging-based timing information.

An operating system can use LASS to provide protections corresponding to the mode-based paging protections if it 
has established the linear-address-space partitioning outlined in Section 4.2.

4.3.1 Enumeration and Enabling
The processor enumerates support for LASS with CPUID.(EAX=07H,ECX=1):EAX.LASS[bit 6].

Software enables LASS by setting CR4.LASS[bit 27]. CR4.LASS can be set to 1 if 
CPUID.(EAX=07H,ECX=1):EAX.LASS[bit 6] is enumerated as 1.

The operation of LASS is also affected by the paging-mode bit CR4.SMAP[bit 21], which enables supervisor-access 
prevention. LASS enforces the equivalent of supervisor-mode execution prevention regardless of the setting of 
CR4.SMEP[bit 17]. See Section 4.3.2 for details.

4.3.2 Operation of Linear-Address-Space Separation (LASS)
This section describes the operation of linear-address-space separation (LASS). This operation applies only in 
IA-32e mode (if IA32_EFER.LMA = 1) and only if CR4.LASS = 1.

As indicated earlier, LASS enforces protections similar to those enforced by paging. Violations of these protections 
are called LASS violations.

LASS violations typically result in faults. In most cases, an access causing a LASS violation results in a general 
protection exception (#GP); for stack accesses (those due to stack-oriented instructions, as well as accesses that 
implicitly or explicitly use the SS segment register), a stack fault (#SS) is generated. In either case, a null error 
code is produced.

Some accesses are not subject to faults due to LASS violations. These include prefetches (e.g., those resulting from 
execution of one of the PREFETCHh instructions), executions of the CLDEMOTE instruction, and accesses resulting 
from the speculative fetch or execution of an instruction. Such an access may cause a LASS violation; if it does, the 
access is not performed but no fault occurs.

The remainder of this section describes how LASS applies to different types of accesses to linear addresses. The 
items below discuss specific LASS violations based on bit 63 of a linear address. For a linear address with only 32 
bits (or 16 bits), the processor treats bit 63 as if it were 0; this includes accesses in compatibility mode.
• A user-mode data access causes a LASS violation if it would access a linear address of which bit 63 is 1.
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• A supervisor-mode data access causes a LASS violation if it would access a linear address of which bit 63 is 0, 
supervisor-mode access protection is enabled (by setting CR4.SMAP), and either RFLAGS.AC = 0 or the access 
is an implicit supervisor-mode access.

• A user-mode instruction fetch causes a LASS violation if it would fetch an instruction using a linear address of 
which bit 63 is 1.

• A supervisor-mode instruction fetch causes a LASS violation if it would accesses a linear address of which bit 63 
is 0. (Unlike paging, this behavior of LASS applies regardless of the setting of CR4.SMEP.)

LASS for instruction fetches applies when the linear address in RIP is used to load an instruction from memory. 
Unlike canonicality checking (see Section 4.5.2), LASS does not apply to branch instructions that load RIP. A 
branch instruction can load RIP with an address that would violate LASS. Only when the address is used to fetch an 
instruction will a LASS violation occur, generating a #GP. (The return instruction pointer of the #GP handler is the 
address that incurred the LASS violation.)

4.4 LINEAR-ADDRESS MASKING
This section describes linear-address masking (LAM). LAM modifies linear addresses before they are subject to 
canonicality checking as described in Section 4.5. Doing so allows untranslated linear-address bits to contain arbi-
trary values.
In IA-32e mode, linear address have 64 bits and are translated either with 4-level paging, which translates the low 
48 bits of each linear address, or with 5-level paging, which translates 57 bits. The upper linear-address bits are 
reserved by canonicality checking (see Section 4.5).
Software usages that associate metadata with a pointer might benefit from being able to place metadata in the 
upper (untranslated) bits of the pointer itself. However, the canonicality enforcement mentioned earlier implies 
that software would have to mask the metadata bits in a pointer (making it canonical) before using it as a linear 
address to access memory. LAM allows software to use pointers with metadata without having to mask the meta-
data bits. With LAM enabled, the processor masks the metadata bits in a pointer before using it as a linear address 
to access memory.
LAM applies only in 64-bit mode and only to addresses used for data accesses. It does not apply to addresses used 
for instruction fetches or to those being loaded into the RIP register (e.g., as targets of jump and call instructions).

4.4.1 Enumeration, Enabling, and Configuration
The processor enumerates support for LAM with CPUID.(EAX=07H,ECX=1):EAX.LAM[bit 26].
Enabling and configuration of LAM is controlled by the following control-register bits: CR3.LAM_U48[bit 62], 
CR3.LAM_U57[bit 61], and CR4.LAM_SUP[bit 28]. The use of these control bits is explained below.
LAM supports configurations that differ regarding which linear-address bits are masked and can be used for meta-
data. With LAM48, linear-address bits 62:48 are masked (resulting in a LAM width of 15); with LAM57, linear-
address bits 62:57 are masked (a LAM width of 6).

Like LASS, LAM was designed for operating systems that establish the linear-address-space partitioning outlined in 
Section 4.2: linear addresses that clear bit 63 are used for user memory, while those that set bit 63 are for super-
visor memory. For LAM, the identification of an address as user or supervisor is based solely on the value of bit 63 
and does not depend on the CPL.

LAM and the LAM width can be configured independently for user and supervisor addresses (as identified in the 
previous paragraph, using bit 63). CR3.LAM_U48 and CR3.LAM_U57 enable and configure LAM for user addresses:
• If CR3.LAM_U48 = CR3.LAM_U57 = 0, LAM is not enabled for user addresses.
• If CR3.LAM_U48 = 1 and CR3.LAM_U57 = 0, LAM48 is enabled for user addresses (a LAM width of 15).
• If CR3.LAM_U57 = 1, LAM57 is enabled for user addresses (a LAM width of 6; CR3.LAM_U48 is ignored in this 

case).
CR4.LAM_SUP enables and configures LAM for supervisor addresses:
• If CR4.LAM_SUP = 0, LAM is not enabled for supervisor addresses.
Vol. 3A 4-3



LINEAR-ADDRESS PRE-PROCESSING
• If CR4.LAM_SUP = 1, LAM is enabled for supervisor addresses with a width determined by the paging mode 
(see Section 5.1.1):

— If 4-level paging is enabled, LAM48 is enabled for supervisor addresses (a LAM width of 15).

— If 5-level paging is enabled, LAM57 is enabled for supervisor addresses (a LAM width of 6).

4.4.2 Treatment of Data Accesses with LAM Active
When LAM is active, linear addresses used to access data are masked before they are subject to the canonicality 
checking identified in Section 4.5. Specifically, LAM modifies a linear address by extending the value of one address 
bit (depending on the LAM width) over others:
• When LAM48 is enabled (see Section 4.4.1), the processor modifies each linear address to replace each of 

bits 62:48 with the value of bit 47.
• When LAM57 is enabled, each of bits 62:57 is replaced by the value of bit 56 (bits 56:48 are not modified).

4.4.3 Paging Interactions
As explained in Section 4.4.2, LAM masks certain bits in a linear address before that address is translated by 
paging.
In most cases, the address bits in the masked positions are not used by address translation. However, if 5-level 
paging is active and LAM48 is enabled for user pointers, bit 47 of a user pointer is extended over bits 62:48 to form 
a linear address, and bits 56:48 are used by 5-level paging.
Page faults report the faulting linear address in CR2. Because LAM masking applies before paging, the faulting 
linear address recorded in CR2 reflects the result of that masking and does not contain any masked metadata.

The INVLPG, INVPCID, and INVVPID instructions can be used to invalidate any translation lookaside buffer (TLB) 
entries for specified linear addresses. LAM does not apply to those addresses, although those addresses are subject 
to canonicality checking (see Section 4.5.4).

4.5 CANONICALITY CHECKING
Memory accesses in IA-32e mode can use 64-bit linear addresses. As detailed in Section 5.5.4, 4-level paging 
translates the low 48 bits of each linear address, while 5-level paging translates the low 57 bits. The remaining 
upper bits (bits 63:48 with 4-level paging; bits 63:57 with 5-level paging) are not translated.

IA-32e mode accounts for the fact that address bits are not translated (and thus should be reserved) with the 
concept of canonicality. In general, a linear address is canonical if the untranslated bits are a sign-extension of 
the most significant translated bit. More specifically, there are two types of canonicality:
• A linear address is paging canonical if it is canonical for the current paging mode: a linear address is canonical 

for 4-level paging (48-bit canonical) if bits 63:47 of the address are identical; it is canonical for 5-level paging 
(57-bit canonical) if bits 63:56 are identical.

• A linear address is CPU canonical if it is canonical relative to the widest linear address supported by the 
processor: 48-bit canonical if the processor supports only 4-level paging and 57-bit canonical if the processor 
supports 5-level paging.

Unlike LASS and LAM, there is no control to enable canonicality checking. It always applies (as described in this 
section) when 64-bit linear addresses are used.

Section 4.5.1 and Section 4.5.2 explain canonicality checking for accesses to memory using linear addresses and 
for loads of the instruction pointer, respectively. Section 4.5.3 details how canonicality checking applies to certain 
system registers that contain linear addresses. Section 4.5.4 explains the role of canonicality checking by instruc-
tions that invalidate TLB entries.
4-4 Vol. 3A



LINEAR-ADDRESS PRE-PROCESSING
NOTE
Section 4.5.2 and Section 4.5.3 discuss the canonicality checking performed by the WRMSR 
instruction. The WRMSRLIST and WRMSRNS instructions perform the same canonicality checking in 
corresponding situations. (Similarly, the characterization of RDMSR in Section 4.5.3 applies also to 
RDMSRLIST.)

4.5.1 Memory Accesses
An access to memory using a linear address is allowed only if the address is paging canonical; if it is not, a canon-
icality violation occurs. In most cases, an access causing a canonicality violation results in a general protection 
exception (#GP); for stack accesses (those due to stack-oriented instructions, as well as accesses that implicitly or 
explicitly use the SS segment register), a stack fault (#SS) is generated. In either case, a null error code is 
produced.

When LAM is enabled, canonicality checking is performed after masking of the linear address. This implies that the 
requirements of canonicality on an original (unmasked) linear address used to access data are effectively relaxed 
when LAM is enabled:
• With LAM48, bit 63 and bit 47 of the original linear address must be identical.
• With LAM57 and 4-level paging, bit 63 and bits 56:47 of the original linear address must be identical.
• With LAM57 and 5-level paging, bit 63 and bit 56 of the original linear address must be identical.

While LAM applies only to data accesses, canonicality checking applies both data accesses and instruction fetches.

4.5.2 Loads of the Instruction Pointer (RIP)
In 64-bit mode, the RIP register contains the linear address of the instruction pointer. Operations that load RIP 
(including both instructions such as JMP as well as control transfers through the IDT) check first whether the value 
to be loaded is paging canonical. If it is not, the operation does not modify RIP and instead causes a #GP. (This #GP 
is delivered as a fault, meaning that the return instruction pointer of the fault handler is the address of the faulting 
instruction and not the non-canonical address whose load was attempted.)

This treatment applies to the SYSRET and SYSEXIT instructions, which load RIP from RCX and RDX, respectively. 
The SYSCALL and SYSENTER instructions load RIP from the IA32_LSTAR and IA32_SYSENTER_EIP MSRs, respec-
tively. On processors that support only 4-level paging, these instructions do not check explicitly that the values 
being loaded are paging canonical. This is because the WRMSR instruction ensures that these MSRs necessarily 
contain values that are CPU canonical, which is the same as being paging canonical on processors that support only 
4-level paging. On processors that support 5-level paging, the checking by WRMSR is relaxed to ensure only 57-bit 
canonicality. (See Section 4.5.3 for the treatment of WRMSR.) On such processors, an execution of SYSCALL or 
SYSENTER with 4-level paging checks that the value being loaded into RIP is 48-bit canonical (paging canonical).

4.5.3 System Registers Containing Linear Addresses

In addition to RIP, the CPU maintains numerous other registers that hold linear addresses:
• GDTR and IDTR (in their base-address portions).
• LDTR, TR, FS, and GS (in the base-address portions of their hidden descriptor caches).
• Control register CR2, which holds the linear address causing a page fault.
• The debug-address registers (DR0 through DR3), which hold the linear addresses of breakpoints.
• The following MSRs: IA32_BNDCFGS, IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE, 

IA32_INTERRUPT_SSP_TABLE_ADDR, IA32_KERNEL_GS_BASE, IA32_LSTAR, IA32_PL0_SSP, IA32_PL1_SSP, 
IA32_PL2_SSP, IA32_PL3_SSP, IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A, 
IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B, IA32_RTIT_ADDR3_A, 
IA32_RTIT_ADDR3_B, IA32_S_CET, IA32_SYSENTER_EIP, IA32_SYSENTER_ESP, IA32_UINTR_HANDLER, 
IA32_UINTR_PD, IA32_UINTR_STACKADJUST, IA32_U_CET, and IA32_UINTR_TT.

• The x87 FPU instruction pointer (FIP).
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• The user-mode configuration register BNDCFGU, used by Intel® MPX.

With a few exceptions, the processor ensures that the addresses in these registers are always canonical in the 
following ways:
• Some instructions fault on attempts to load a linear-address register with a non-canonical address:

— An execution of the LGDT or LIDT instruction causes a general-protection exception (#GP) if the base 
address specified in the instruction’s memory operand is not canonical.

— An execution of the LLDT or LTR instruction causes a #GP if the base address to be loaded from the GDT is 
not canonical.

— An execution of WRFSBASE or WRGSBASE causes a #GP if it would load the base address of either FS or GS 
with a non-canonical address.

— An execution of WRMSR causes a #GP if it would load any of the following MSRs with a non-canonical 
address: IA32_BNDCFGS, IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE, 
IA32_INTERRUPT_SSP_TABLE_ADDR, IA32_KERNEL_GS_BASE, IA32_LSTAR, IA32_PL0_SSP, 
IA32_PL1_SSP, IA32_PL2_SSP, IA32_PL3_SSP, IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B, 
IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B, 
IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B, IA32_S_CET, IA32_SYSENTER_EIP, IA32_SYSENTER_ESP, 
IA32_UINTR_HANDLER, IA32_UINTR_PD, IA32_UINTR_STACKADJUST, IA32_U_CET, and 
IA32_UINTR_TT.1

— An execution of XRSTORS causes a #GP if it would load any of the following MSRs with a non-canonical 
address: IA32_PL0_SSP, IA32_PL1_SSP, IA32_PL2_SSP, IA32_PL3_SSP, IA32_RTIT_ADDR0_A, 
IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A, 
IA32_RTIT_ADDR2_B, IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B, IA32_U_CET, 
IA32_UINTR_HANDLER, IA32_UINTR_PD, IA32_UINTR_STACKADJUST, or IA32_UINTR_TT.

With a small number of exceptions, this enforcement checks for CPU canonicality and is thus independent of the 
current paging mode. Thus, a processor that supports 5-level paging will allow the instructions mentioned 
above to load these registers with addresses that are 57-bit canonical but not 48-bit canonical, even if 4-level 
paging is active. (As a result, instructions that store these values — SGDT, SIDT, SLDT, STR, RDFSBASE, 
RDGSBASE, RDMSR, XSAVE, XSAVEC, XSAVEOPT, and XSAVES — may save addresses that are 57-bit canonical 
but not 48-bit canonical, even if 4-level paging is active.)
The WRFSBASE and WRGSBASE instructions, which load the base address of FS and GS, respectively, operate 
differently. An execution of either of these instructions causes a #GP if it would load a base address with an 
address that is not paging canonical. Thus, if 4-level paging is active, these instructions do not allow loading of 
addresses that are 57-bit canonical but not 48-bit canonical.

• The FXRSTOR, XRSTOR, and XRSTORS instructions ignore attempts to load some of these registers with non-
canonical addresses:

— Loads of FIP ignore any bits in the memory image beyond the enumerated maximum linear-address width. 
The processor sign-extends the most significant bit (e.g., bit 56 on processors that support 5-level paging) 
to ensure that FIP is always CPU canonical.

— Loads of BNDCFGU (by XRSTOR or XRSTORS) ignore any bits in the memory image beyond the enumerated 
maximum linear-address width. The processor sign-extends the most significant bit to ensure that 
BNDCFGU is always CPU canonical.

• Every non-control x87 instruction loads FIP. The value loaded is always paging canonical.
• CR2 can be loaded with the MOV to CR instruction. The instruction allows that register to be loaded with a non-

canonical address. The MOV from CR instruction will return for CR2 the value last loaded into that register by a 
page fault or with the MOV to CR instruction, even if (for the latter case) the address is not canonical. Page 
faults load CR2 only with linear addresses that are paging canonical.

• DR0 through DR3 can be loaded with the MOV to DR instruction. The instruction allows those registers to be 
loaded with non-canonical addresses. The MOV from DR instruction will return for a debug register the value 

1. Such canonicality checking may apply also when the WRMSR instruction is used to load some non-architec-
tural MSRs (not listed here) that hold a linear address.
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last loaded into that register with the MOV to DR instruction, even if the address is not canonical. Breakpoint 
address matching is supported only for linear addresses that are paging canonical.

4.5.4 TLB-Invalidation Instructions
The Intel 64 architecture includes three instructions that may invalidate TLB entries for the linear address of an 
instruction operand: INVLPG, INVPCID, and INVVPID. The following items describe how they are affected by 
canonicality.
• The INVLPG instruction takes a memory operand. It invalidates any TLB entries that the logical processor is 

caching for the linear address of that operand for the current linear address space. The instruction does not 
fault if that address is not paging canonical. However, no invalidation is performed because the processor does 
not cache TLB entries for addresses that are not paging canonical.

• The INVPCID instruction takes a register operand (INVPCID type) and a memory operand (INVPCID 
descriptor). If the INVPCID type is 0, the instruction invalidates any TLB entries that the logical processor is 
caching for the linear address and PCID specified in the INVPCID descriptor. If the linear address is not CPU 
canonical, the instruction causes a #GP. If the processor supports 5-level paging, the instruction will not cause 
such a #GP for an address that is 57-bit canonical, regardless of paging mode, even if 4-level paging is active 
and the address is not 48-bit canonical.

• The INVVPID instruction takes a register operand (INVVPID type) and a memory operand (INVVPID 
descriptor). If the INVPCID type is 0, the instruction invalidates any TLB entries that the logical processor is 
caching for the linear address and VPID specified in the INVVPID descriptor. If the linear address is not CPU 
canonical, the instruction fails.1 If the processor supports 5-level paging, the instruction will not fail for an 
address that is 57-bit canonical, regardless of paging mode, even if 4-level paging is active and the address is 
not 48-bit canonical.

LAM does not apply to the linear addresses that these instructions use to invalidate TLB entries.

1. INVVPID is a VMX instruction. In response to certain conditions, execution of a VMX instruction may fail, meaning that it does not 
complete its normal operation. When a VMX instruction fails, control passes to the next instruction (rather than to a fault handler) 
and a flag is set to report the failure.
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CHAPTER 5
PAGING

Chapter 3 explains how segmentation converts logical addresses to linear addresses. Paging (or linear-address 
translation) is the process of translating linear addresses so that they can be used to access memory or I/O 
devices. Paging translates each linear address to a physical address and determines, for each translation, what 
accesses to the linear address are allowed (the address’s access rights) and the type of caching used for such 
accesses (the address’s memory type).

Intel-64 processors support four different paging modes. These modes are identified and defined in Section 5.1. 
Section 5.2 gives an overview of the translation mechanism that is used in all modes. Section 5.3, Section 5.4, and 
Section 5.5 discuss the four paging modes in detail.

Section 5.6 details how paging determines and uses access rights. Section 5.7 discusses exceptions that may be 
generated by paging (page-fault exceptions). Section 5.8 considers data which the processor writes in response to 
linear-address accesses (accessed and dirty flags).

Section 5.9 describes how paging determines the memory types used for accesses to linear addresses. Section 
5.10 provides details of how a processor may cache information about linear-address translation. Section 5.11 
outlines interactions between paging and certain VMX features. Section 5.12 gives an overview of how paging can 
be used to implement virtual memory.

5.1 PAGING MODES AND CONTROL BITS
Paging behavior is controlled by the following control bits:
• The WP and PG flags in control register CR0 (bit 16 and bit 31, respectively).
• The PSE, PAE, PGE, LA57, PCIDE, SMEP, SMAP, PKE, CET, and PKS flags in control register CR4 (bit 4, bit 5, 

bit 7, bit 12, bit 17, bit 20, bit 21, bit 22, bit 23, and bit 24, respectively).
• The LME and NXE flags in the IA32_EFER MSR (bit 8 and bit 11, respectively).
• The AC flag in the EFLAGS register (bit 18).
• The “enable HLAT” VM-execution control (tertiary processor-based VM-execution control bit 1; see Section 

26.6.2, “Processor-Based VM-Execution Controls,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3C).

Software enables paging by using the MOV to CR0 instruction to set CR0.PG. Before doing so, software should 
ensure that control register CR3 contains the physical address of the first paging structure that the processor will 
use for linear-address translation (see Section 5.2) and that that structure is initialized as desired. See Table 5-3, 
Table 5-7, and Table 5-12 for the use of CR3 in the different paging modes.

Section 5.1.1 describes how the values of CR0.PG, CR4.PAE, CR4.LA57, and IA32_EFER.LME determine whether 
paging is enabled and, if so, which of four paging modes is in use. Section 5.1.2 explains how to manage these bits 
to establish or make changes in paging modes. Section 5.1.3 discusses how CR0.WP, CR4.PSE, CR4.PGE, 
CR4.PCIDE, CR4.SMEP, CR4.SMAP, CR4.PKE, CR4.CET, CR4.PKS, and IA32_EFER.NXE modify the operation of the 
different paging modes.

5.1.1 Four Paging Modes
If CR0.PG = 0, paging is not used. The logical processor treats all linear addresses as if they were physical 
addresses. CR4.PAE, CR4.LA57, and IA32_EFER.LME are ignored by the processor, as are CR0.WP, CR4.PSE, 
CR4.PGE, CR4.SMEP, CR4.SMAP, and IA32_EFER.NXE. (CR4.CET is also ignored insofar as it affects linear-address 
access rights.)

Paging is enabled if CR0.PG = 1. Paging can be enabled only if protection is enabled (CR0.PE = 1). If paging is 
enabled, one of four paging modes is used. The values of CR4.PAE, CR4.LA57, and IA32_EFER.LME determine 
which paging mode is used:
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• If CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed in Section 5.3. 32-bit paging uses CR0.WP, 
CR4.PSE, CR4.PGE, CR4.SMEP, CR4.SMAP, and CR4.CET as described in Section 5.1.3 and Section 5.6.

• If CR4.PAE = 1 and IA32_EFER.LME = 0, PAE paging is used. PAE paging is detailed in Section 5.4. PAE paging 
uses CR0.WP, CR4.PGE, CR4.SMEP, CR4.SMAP, CR4.CET, and IA32_EFER.NXE as described in Section 5.1.3 and 
Section 5.6.

• If CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 0, 4-level paging1 is used.2 4-level paging is detailed 
in Section 5.5 (along with 5-level paging). 4-level paging uses CR0.WP, CR4.PGE, CR4.PCIDE, CR4.SMEP, 
CR4.SMAP, CR4.PKE, CR4.CET, CR4.PKS, and IA32_EFER.NXE as described in Section 5.1.3 and Section 5.6.

• If CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 1, 5-level paging is used. 5-level paging is detailed in 
Section 5.5 (along with 4-level paging). 5-level paging uses CR0.WP, CR4.PGE, CR4.PCIDE, CR4.SMEP, 
CR4.SMAP, CR4.PKE, CR4.CET, CR4.PKS, and IA32_EFER.NXE as described in Section 5.1.3 and Section 5.6.

NOTE
32-bit paging and PAE paging can be used only in legacy protected mode (IA32_EFER.LME = 0). In 
contrast, 4-level paging and 5-level paging can be used only IA-32e mode (IA32_EFER.LME = 1).

The four paging modes differ with regard to the following details:
• Linear-address width. The size of the linear addresses that can be translated.
• Physical-address width. The size of the physical addresses produced by paging.
• Page size. The granularity at which linear addresses are translated. Linear addresses on the same page are 

translated to corresponding physical addresses on the same page.
• Support for execute-disable access rights. In some paging modes, software can be prevented from fetching 

instructions from pages that are otherwise readable.
• Support for PCIDs. With 4-level paging and 5-level paging, software can enable a facility by which a logical 

processor caches information for multiple linear-address spaces. The processor may retain cached information 
when software switches between different linear-address spaces.

• Support for protection keys. With 4-level paging and 5-level paging, each linear address is associated with a 
protection key. Software can use the protection-key rights registers to disable, for each protection key, how 
certain accesses to linear addresses associated with that protection key.

Table 5-1 illustrates the principal differences between the four paging modes.

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

2. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical processor is in IA-32e mode (and thus 
uses either 4-level paging or 5-level paging). The processor always sets IA32_EFER.LMA to CR0.PG & IA32_EFER.LME. Software can-
not directly modify IA32_EFER.LMA; an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.

Table 5-1.  Properties of Different Paging Modes

Paging
Mode

PG in
CR0

PAE in
CR4

LME in
IA32_EFER

LA57 in 
CR4

Lin.-
Addr.
Width

Phys.-
Addr.
Width1

Page
Sizes

Supports
Execute-
Disable?

Supports
PCIDs and 
protection 
keys?

None 0 N/A N/A N/A 32 32 N/A No No

32-bit 1 0 02 N/A 32 Up to 403 4 KB
4 MB4 No No

PAE 1 1 0 N/A 32 Up to 52
4 KB
2 MB

Yes5 No

4-level 1 1 1 0 48 Up to 52
4 KB
2 MB
1 GB6

Yes5 Yes7
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Because 32-bit paging and PAE paging are used only in legacy protected mode and because legacy protected mode 
cannot produce linear addresses larger than 32 bits, 32-bit paging and PAE paging translate 32-bit linear 
addresses.

4-level paging and 5-level paging are used only in IA-32e mode. IA-32e mode has two sub-modes:
• Compatibility mode. This sub-mode uses only 32-bit linear addresses. In this sub-mode, 4-level paging and 5-

level paging treat bits 63:32 of such an address as all 0. These addresses are subject to linear-address pre-
processing, specifically linear-address-space separation (Section 4.3).

• 64-bit mode. This sub-mode produces 64-bit linear addresses. These addresses are then subject to linear-
address pre-processing (Chapter 4). As part of this, the processor enforces canonicality (Section 4.5), 
ensuring that the upper bits of such an address are identical: bits 63:47 for 4-level paging and bits 63:56 for 
5-level paging. 4-level paging (respectively, 5-level paging) does not use bits 63:48 (respectively, bits 63:57) 
of such addresses.

5.1.2 Paging-Mode Enabling
If CR0.PG = 1, a logical processor is in one of four paging modes, depending on the values of CR4.PAE, 
IA32_EFER.LME, and CR4.LA57. Figure 5-1 illustrates how software can enable these modes and make transitions 
between them. The following items identify certain limitations and other details:
• IA32_EFER.LME cannot be modified while paging is enabled (CR0.PG = 1). Attempts to do so using WRMSR 

cause a general-protection exception (#GP(0)).
• Paging cannot be enabled (by setting CR0.PG to 1) while CR4.PAE = 0 and IA32_EFER.LME = 1. Attempts to do 

so using MOV to CR0 cause a general-protection exception (#GP(0)).
• One node in Figure 5-1 is labeled “IA-32e mode.” This node represents either 4-level paging (if CR4.LA57 = 0) 

or 5-level paging (if CR4.LA57 = 1). As noted in the following items, software cannot modify CR4.LA57 
(effecting transition between 4-level paging and 5-level paging) without first disabling paging.

• CR4.PAE and CR4.LA57 cannot be modified while either 4-level paging or 5-level paging is in use (when 
CR0.PG = 1 and IA32_EFER.LME = 1). Attempts to do so using MOV to CR4 cause a general-protection 
exception (#GP(0)).

• Regardless of the current paging mode, software can disable paging by clearing CR0.PG with MOV to CR0.1

5-level 1 1 1 1 57 Up to 52
4 KB
2 MB
1 GB6

Yes5 Yes7

NOTES:
1. The physical-address width is always bounded by MAXPHYADDR; see Section 5.1.4.
2. The processor ensures that IA32_EFER.LME must be 0 if CR0.PG = 1 and CR4.PAE = 0.
3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and only if the PSE-36 mechanism is 

supported; see Section 5.1.4 and Section 5.3.
4. 32-bit paging uses 4-MByte pages only if CR4.PSE = 1; see Section 5.3.
5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 5.6.
6. Processors that support 4-level paging or 5-level paging do not necessarily support 1-GByte pages; see Section 5.1.4.
7. PCIDs are used only if CR4.PCIDE = 1; see Section 5.10.1. Protection keys are used only if certain conditions hold; see Section 5.6.2.

1. If the logical processor is in 64-bit mode or if CR4.PCIDE = 1, an attempt to clear CR0.PG causes a general-protection exception 
(#GP). Software should transition to compatibility mode and clear CR4.PCIDE before attempting to disable paging. 

Table 5-1.  Properties of Different Paging Modes (Contd.)

Paging
Mode

PG in
CR0

PAE in
CR4

LME in
IA32_EFER

LA57 in 
CR4

Lin.-
Addr.
Width

Phys.-
Addr.
Width1

Page
Sizes

Supports
Execute-
Disable?

Supports
PCIDs and 
protection 
keys?
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• Software can transition between 32-bit paging and PAE paging by changing the value of CR4.PAE with MOV to 
CR4.

• Software cannot transition directly between 4-level paging (or 5-level paging) and any of other paging mode. 
It must first disable paging (by clearing CR0.PG with MOV to CR0), then set CR4.PAE, IA32_EFER.LME, and 
CR4.LA57 to the desired values (with MOV to CR4 and WRMSR), and then re-enable paging (by setting CR0.PG 
with MOV to CR0). As noted earlier, an attempt to modify CR4.PAE, IA32_EFER.LME, or CR.LA57 while 4-level 
paging or 5-level paging is enabled causes a general-protection exception (#GP(0)).

• VMX transitions allow transitions between paging modes that are not possible using MOV to CR or WRMSR. This 
is because VMX transitions can load CR0, CR4, and IA32_EFER in one operation. See Section 5.11.1.

5.1.3 Paging-Mode Modifiers
Details of how each paging mode operates are determined by the following control bits:
• The WP flag in CR0 (bit 16).
• The PSE, PGE, PCIDE, SMEP, SMAP, PKE, CET, and PKS flags in CR4 (bit 4, bit 7, bit 17, bit 20, bit 21, bit 22, 

bit 23, and bit 24, respectively).
• The NXE flag in the IA32_EFER MSR (bit 11).
• The “enable HLAT” VM-execution control (tertiary processor-based VM-execution control bit 1).

Figure 5-1.  Enabling and Changing Paging Modes
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CR0.WP allows pages to be protected from supervisor-mode writes. If CR0.WP = 0, supervisor-mode write 
accesses are allowed to linear addresses with read-only access rights; if CR0.WP = 1, they are not. (User-mode 
write accesses are never allowed to linear addresses with read-only access rights, regardless of the value of 
CR0.WP.) Section 5.6 explains how access rights are determined, including the definition of supervisor-mode and 
user-mode accesses.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can use only 4-KByte pages; if 
CR4.PSE = 1, 32-bit paging can use both 4-KByte pages and 4-MByte pages. See Section 5.3 for more information. 
(PAE paging, 4-level paging, and 5-level paging can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across address spaces; if CR4.PGE = 1, 
specified translations may be shared across address spaces. See Section 5.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for 4-level paging and 5-level paging. PCIDs allow a logical 
processor to cache information for multiple linear-address spaces. See Section 5.10.1 for more information.

CR4.SMEP allows pages to be protected from supervisor-mode instruction fetches. If CR4.SMEP = 1, software 
operating in supervisor mode cannot fetch instructions from linear addresses that are accessible in user mode. 
Section 5.6 explains how access rights are determined, including the definition of supervisor-mode accesses and 
user-mode accessibility.

CR4.SMAP allows pages to be protected from supervisor-mode data accesses. If CR4.SMAP = 1, software oper-
ating in supervisor mode cannot access data at linear addresses that are accessible in user mode. Software can 
override this protection by setting EFLAGS.AC. Section 5.6 explains how access rights are determined, including 
the definition of supervisor-mode accesses and user-mode accessibility.

CR4.PKE and CR4.PKS enable specification of access rights based on protection keys. 4-level paging and 5-level 
paging associate each linear address with a protection key. When CR4.PKE = 1, the PKRU register specifies, for 
each protection key, whether user-mode linear addresses with that protection key can be read or written. When 
CR4.PKS = 1, the IA32_PKRS MSR does the same for supervisor-mode linear addresses. See Section 5.6 for more 
information.

CR4.CET enables control-flow enforcement technology, including the shadow-stack feature. If CR4.CET = 1, 
certain memory accesses are identified as shadow-stack accesses and certain linear addresses translate to 
shadow-stack pages. Section 5.6 explains how access rights are determined for these accesses and pages. (The 
processor allows CR4.CET to be set only if CR0.WP is also set.)

IA32_EFER.NXE enables execute-disable access rights for PAE paging, 4-level paging, and 5-level paging. If 
IA32_EFER.NXE = 1, instruction fetches can be prevented from specified linear addresses (even if data reads from 
the addresses are allowed). Section 5.6 explains how access rights are determined. (IA32_EFER.NXE has no effect 
with 32-bit paging. Software that wants to use this feature to limit instruction fetches from readable pages must 
use PAE paging, 4-level paging, or 5-level paging.)

The “enable HLAT” VM-execution control enables HLAT paging for 4-level paging and 5-level paging. HLAT paging 
does not use control register CR3 to identify the address of the first paging structure used for linear-address trans-
lation; instead, that structure is located using a field in the virtual-machine control structure (VMCS). In addition, 
HLAT paging interprets certain bits in paging-structure entries differently than ordinary paging. See Section 5.5 for 
details.

5.1.4 Enumeration of Paging Features by CPUID
Software can discover support for different paging features using the CPUID instruction:
• PSE: page-size extensions for 32-bit paging.

If CPUID.01H:EDX.PSE [bit 3] = 1, CR4.PSE may be set to 1, enabling support for 4-MByte pages with 32-bit 
paging (see Section 5.3).

• PAE: physical-address extension.
If CPUID.01H:EDX.PAE [bit 6] = 1, CR4.PAE may be set to 1, enabling PAE paging (this setting is also required 
for 4-level paging and 5-level paging).

• PGE: global-page support.
If CPUID.01H:EDX.PGE [bit 13] = 1, CR4.PGE may be set to 1, enabling the global-page feature (see Section 
5.10.2.4).
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• PAT: page-attribute table.
If CPUID.01H:EDX.PAT [bit 16] = 1, the 8-entry page-attribute table (PAT) is supported. When the PAT is 
supported, three bits in certain paging-structure entries select a memory type (used to determine type of 
caching used) from the PAT (see Section 5.9.2).

• PSE-36: page-size extensions with 40-bit physical-address extension.
If CPUID.01H:EDX.PSE-36 [bit 17] = 1, the PSE-36 mechanism is supported, indicating that translations using 
4-MByte pages with 32-bit paging may produce physical addresses with up to 40 bits (see Section 5.3).

• PCID: process-context identifiers.
If CPUID.01H:ECX.PCID [bit 17] = 1, CR4.PCIDE may be set to 1, enabling process-context identifiers (see 
Section 5.10.1).

• SMEP: supervisor-mode execution prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMEP [bit 7] = 1, CR4.SMEP may be set to 1, enabling supervisor-mode 
execution prevention (see Section 5.6).

• SMAP: supervisor-mode access prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMAP [bit 20] = 1, CR4.SMAP may be set to 1, enabling supervisor-mode 
access prevention (see Section 5.6).

• PKU: protection keys for user-mode pages.
If CPUID.(EAX=07H,ECX=0H):ECX.PKU [bit 3] = 1, CR4.PKE may be set to 1, enabling protection keys for 
user-mode pages (see Section 5.6).

• OSPKE: enabling of protection keys for user-mode pages.
CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4] returns the value of CR4.PKE. Thus, protection keys for user-
mode pages are enabled if this flag is 1 (see Section 5.6).

• CET: control-flow enforcement technology.
If CPUID.(EAX=07H,ECX=0H):ECX.CET_SS [bit 7] = 1, CR4.CET may be set to 1, enabling shadow-stack 
pages (see Section 5.6).

• LA57: 57-bit linear addresses and 5-level paging.
If CPUID.(EAX=07H,ECX=0):ECX.LA57 [bit 16] = 1, CR4.LA57 may be set to 1, enabling 5-level paging.

• PKS: protection keys for supervisor-mode pages.
If CPUID.(EAX=07H,ECX=0H):ECX.PKS [bit 31] = 1, CR4.PKS may be set to 1, enabling protection keys for 
supervisor-mode pages (see Section 5.6).

• NX: execute disable.
If CPUID.80000001H:EDX.NX [bit 20] = 1, IA32_EFER.NXE may be set to 1, allowing software to disable 
execute access to selected pages (see Section 5.6). (Processors that do not support CPUID function 
80000001H do not allow IA32_EFER.NXE to be set to 1.)

• Page1GB: 1-GByte pages.
If CPUID.80000001H:EDX.Page1GB [bit 26] = 1, 1-GByte pages may be supported with 4-level paging and 5-
level paging (see Section 5.5).

• LM: IA-32e mode support.
If CPUID.80000001H:EDX.LM [bit 29] = 1, IA32_EFER.LME may be set to 1, enabling IA-32e mode (with either 
4-level paging or 5-level paging). (Processors that do not support CPUID function 80000001H do not allow 
IA32_EFER.LME to be set to 1.)

• CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the processor. (For processors 
that do not support CPUID function 80000008H, the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 
and 32 otherwise.) This width is referred to as MAXPHYADDR. MAXPHYADDR is at most 52.

• CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the processor. Generally, this 
value is reported as follows:

— If CPUID.80000001H:EDX.LM [bit 29] = 0, the value is reported as 32.

— If CPUID.80000001H:EDX.LM [bit 29] = 1 and CPUID.(EAX=07H,ECX=0):ECX.LA57 [bit 16] = 0, the 
value is reported as 48.

— If CPUID.(EAX=07H,ECX=0):ECX.LA57 [bit 16] = 1, the value is reported as 57.
(Processors that do not support CPUID function 80000008H, support a linear-address width of 32.)
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5.2 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW
All four paging modes translate linear addresses using hierarchical paging structures. This section provides an 
overview of their operation. Section 5.3, Section 5.4, Section 5.5, and Section 5.6 provide details for the four 
paging modes.

Every paging structure is 4096 Bytes in size and comprises a number of individual entries. With 32-bit paging, 
each entry is 32 bits (4 bytes); there are thus 1024 entries in each structure. With the other paging modes, each 
entry is 64 bits (8 bytes); there are thus 512 entries in each structure. (PAE paging includes one exception, a 
paging structure that is 32 bytes in size, containing 4 64-bit entries.)

The processor uses the upper portion of a linear address to identify a series of paging-structure entries. The last of 
these entries identifies the physical address of the region to which the linear address translates (called the page 
frame). The lower portion of the linear address (called the page offset) identifies the specific address within that 
region to which the linear address translates.

Each paging-structure entry contains a physical address, which is either the address of another paging structure or 
the address of a page frame. In the first case, the entry is said to reference the other paging structure; in the 
latter, the entry is said to map a page.

The first paging structure used for any translation is located at the physical address in CR3.1 A linear address is 
translated using the following iterative procedure. A portion of the linear address (initially the uppermost bits) 
selects an entry in a paging structure (initially the one located using CR3). If that entry references another paging 
structure, the process continues with that paging structure and with the portion of the linear address immediately 
below that just used. If instead the entry maps a page, the process completes: the physical address in the entry is 
that of the page frame and the remaining lower portion of the linear address is the page offset.

The following items give an example for each of the four paging modes (each example locates a 4-KByte page 
frame):
• With 32-bit paging, each paging structure comprises 1024 = 210 entries. For this reason, the translation 

process uses 10 bits at a time from a 32-bit linear address. Bits 31:22 identify the first paging-structure entry 
and bits 21:12 identify a second. The latter identifies the page frame. Bits 11:0 of the linear address are the 
page offset within the 4-KByte page frame. (See Figure 5-2 for an illustration.)

• With PAE paging, the first paging structure comprises only 4 = 22 entries. Translation thus begins by using 
bits 31:30 from a 32-bit linear address to identify the first paging-structure entry. Other paging structures 
comprise 512 =29 entries, so the process continues by using 9 bits at a time. Bits 29:21 identify a second 
paging-structure entry and bits 20:12 identify a third. This last identifies the page frame. (See Figure 5-5 for 
an illustration.)

• With 4-level paging, each paging structure comprises 512 = 29 entries and translation uses 9 bits at a time 
from a 48-bit linear address. Bits 47:39 identify the first paging-structure entry, bits 38:30 identify a second, 
bits 29:21 a third, and bits 20:12 identify a fourth. Again, the last identifies the page frame. (See Figure 5-8 
for an illustration.)

• 5-level paging is similar to 4-level paging except that 5-level paging translates 57-bit linear addresses. 
Bits 56:48 identify the first paging-structure entry, while the remaining bits are used as with 4-level paging.

The translation process in each of the examples above completes by identifying a page frame; the page frame is 
part of the translation of the original linear address. In some cases, however, the paging structures may be 
configured so that the translation process terminates before identifying a page frame. This occurs if the process 
encounters a paging-structure entry that is marked “not present” (because its P flag — bit 0 — is clear) or in which 
a reserved bit is set. In this case, there is no translation for the linear address; an access to that address causes a 
page-fault exception (see Section 5.7).

In the examples above, a paging-structure entry maps a page with a 4-KByte page frame when only 12 bits remain 
in the linear address; entries identified earlier always reference other paging structures. That may not apply in 
other cases. The following items identify when an entry maps a page and when it references another paging struc-
ture:
• If more than 12 bits remain in the linear address, bit 7 (PS — page size) of the current paging-structure entry 

is consulted. If the bit is 0, the entry references another paging structure; if the bit is 1, the entry maps a page.

1. If HLAT paging is in use, a different mechanism is used to identify the first paging structure. See Section 5.5 for more information.
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• If only 12 bits remain in the linear address, the current paging-structure entry always maps a page (bit 7 is 
used for other purposes).

If a paging-structure entry maps a page when more than 12 bits remain in the linear address, the entry identifies 
a page frame larger than 4 KBytes. For example, 32-bit paging uses the upper 10 bits of a linear address to locate 
the first paging-structure entry; 22 bits remain. If that entry maps a page, the page frame is 222 Bytes = 4 MBytes. 
32-bit paging can use 4-MByte pages if CR4.PSE = 1. The other paging modes can use 2-MByte pages (regardless 
of the value of CR4.PSE). 4-level paging and 5-level paging can use 1-GByte pages if the processor supports them 
(see Section 5.1.4).

Paging structures are given different names based on their uses in the translation process. Table 5-2 gives the 
names of the different paging structures. It also provides, for each structure, the source of the physical address 
used to locate it (CR3 or a different paging-structure entry); the bits in the linear address used to select an entry 
from the structure; and details of whether and how such an entry can map a page.

Table 5-2.   Paging Structures in the Different Paging Modes

Paging Structure Entry 
Name Paging Mode

Physical 
Address of 
Structure

Bits Selecting 
Entry Page Mapping

PML5 table PML5E
32-bit, PAE, 4-level N/A

5-level CR31

NOTES:
1. If HLAT paging is in use, a different mechanism is used to identify the first paging structure. See Section 5.5 for more information.

56:48 N/A (PS must be 0)

PML4 table PML4E

32-bit, PAE N/A

4-level CR31

47:39 N/A (PS must be 0)
5-level PML5E

Page-directory-
pointer table

PDPTE

32-bit N/A

PAE CR3 31:30 N/A (PS must be 0)

4-level, 5-level PML4E 38:30 1-GByte page if PS=12

2. Not all processors support 1-GByte pages; see Section 5.1.4.

Page directory PDE
32-bit CR3 31:22 4-MByte page if PS=13

3. 32-bit paging ignores the PS flag in a PDE (and uses the entry to reference a page table) unless CR4.PSE = 1. Not all processors sup-
port 4-MByte pages with 32-bit paging; see Section 5.1.4.

PAE, 4-level, 5-level PDPTE 29:21 2-MByte page if PS=1

Page table PTE
32-bit

PDE
21:12

4-KByte page
PAE, 4-level, 5-level 20:12
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5.3 32-BIT PAGING
A logical processor uses 32-bit paging if CR0.PG = 1 and CR4.PAE = 0. 32-bit paging translates 32-bit linear 
addresses to 40-bit physical addresses.1 Although 40 bits corresponds to 1 TByte, linear addresses are limited to 
32 bits; at most 4 GBytes of linear-address space may be accessed at any given time.

32-bit paging uses a hierarchy of paging structures to produce a translation for a linear address. CR3 is used to 
locate the first paging-structure, the page directory. Table 5-3 illustrates how CR3 is used with 32-bit paging.

32-bit paging may map linear addresses to either 4-KByte pages or 4-MByte pages. Figure 5-2 illustrates the 
translation process when it uses a 4-KByte page; Figure 5-3 covers the case of a 4-MByte page. The following 
items describe the 32-bit paging process in more detail as well has how the page size is determined:
• A 4-KByte naturally aligned page directory is located at the physical address specified in bits 31:12 of CR3 (see 

Table 5-3). A page directory comprises 1024 32-bit entries (PDEs). A PDE is selected using the physical address 
defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from CR3.

— Bits 11:2 are bits 31:22 of the linear address.

— Bits 1:0 are 0.

Because a PDE is identified using bits 31:22 of the linear address, it controls access to a 4-Mbyte region of the 
linear-address space. Use of the PDE depends on CR4.PSE and the PDE’s PS flag (bit 7):
• If CR4.PSE = 1 and the PDE’s PS flag is 1, the PDE maps a 4-MByte page (see Table 5-4). The final physical 

address is computed as follows:

— Bits 39:32 are bits 20:13 of the PDE.

— Bits 31:22 are bits 31:22 of the PDE.2

— Bits 21:0 are from the original linear address.
• If CR4.PSE = 0 or the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical 

address specified in bits 31:12 of the PDE (see Table 5-5). A page table comprises 1024 32-bit entries (PTEs). 
A PTE is selected using the physical address defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PDE.

— Bits 11:2 are bits 21:12 of the linear address.

— Bits 1:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see 

Table 5-6). The final physical address is computed as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the entry is used neither to refer-
ence another paging-structure entry nor to map a page. There is no translation for a linear address whose transla-
tion would use such a paging-structure entry; a reference to such a linear address causes a page-fault exception 
(see Section 5.7).

1. Bits in the range 39:32 are 0 in any physical address used by 32-bit paging except those used to map 4-MByte pages. If the proces-
sor does not support the PSE-36 mechanism, this is true also for physical addresses used to map 4-MByte pages. If the processor 
does support the PSE-36 mechanism and MAXPHYADDR < 40, bits in the range 39:MAXPHYADDR are 0 in any physical address used 
to map a 4-MByte page. (The corresponding bits are reserved in PDEs.) See Section 5.1.4 for how to determine MAXPHYADDR and 
whether the PSE-36 mechanism is supported.

2. The upper bits in the final physical address do not all come from corresponding positions in the PDE; the physical-address bits in the 
PDE are not all contiguous.
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With 32-bit paging, there are reserved bits only if CR4.PSE = 1:
• If the P flag and the PS flag (bit 7) of a PDE are both 1, the bits reserved depend on MAXPHYADDR, and whether 

the PSE-36 mechanism is supported:1

— If the PSE-36 mechanism is not supported, bits 21:13 are reserved.

— If the PSE-36 mechanism is supported, bits 21:(M–19) are reserved, where M is the minimum of 40 and 
MAXPHYADDR.

• If the PAT is not supported:2

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

(If CR4.PSE = 0, no bits are reserved with 32-bit paging.)

A reference using a linear address that is successfully translated to a physical address is performed only if allowed 
by the access rights of the translation; see Section 5.6.

1. See Section 5.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is supported.

2. See Section 5.1.4 for how to determine whether the PAT is supported.

Figure 5-2.  Linear-Address Translation to a 4-KByte Page using 32-Bit Paging
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Figure 5-4 gives a summary of the formats of CR3 and the paging-structure entries with 32-bit paging. For the 
paging structure entries, it identifies separately the format of entries that map pages, those that reference other 
paging structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are high-
lighted because they determine how such an entry is used.

Figure 5-3.  Linear-Address Translation to a 4-MByte Page using 32-Bit Paging
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Figure 5-4.  Formats of CR3 and Paging-Structure Entries with 32-Bit Paging
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Table 5-3.  Use of CR3 with 32-Bit Paging

Bit 
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory during linear-
address translation (see Section 5.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory during linear-
address translation (see Section 5.9)

11:5 Ignored

31:12 Physical address of the 4-KByte aligned page directory used for linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

Table 5-4.  Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte page referenced by this entry (see Section 5.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte page referenced by this entry (see Section 
5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-MByte page referenced by 
this entry (see Section 5.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-MByte page referenced by 
this entry (see Section 5.9)

5 (A) Accessed; indicates whether software has accessed the 4-MByte page referenced by this entry (see Section 5.8)

6 (D) Dirty; indicates whether software has written to the 4-MByte page referenced by this entry (see Section 5.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 5-5)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 5.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-MByte page referenced by this 
entry (see Section 5.9.2); otherwise, reserved (must be 0)1

NOTES:
1. See Section 5.1.4 for how to determine whether the PAT is supported.

(M–20):13 Bits (M–1):32 of physical address of the 4-MByte page referenced by this entry2

2. If the PSE-36 mechanism is not supported, M is 32, and this row does not apply. If the PSE-36 mechanism is supported, M is the min-
imum of 40 and MAXPHYADDR (this row does not apply if MAXPHYADDR = 32). See Section 5.1.4 for how to determine MAXPHY-
ADDR and whether the PSE-36 mechanism is supported.

21:(M–19) Reserved (must be 0)

31:22 Bits 31:22 of physical address of the 4-MByte page referenced by this entry
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Table 5-5.  Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte region controlled by this entry (see Section 5.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte region controlled by this entry (see Section 
5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 5.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 5.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 5.8)

6 Ignored

7 (PS) If CR4.PSE = 1, must be 0 (otherwise, this entry maps a 4-MByte page; see Table 5-4); otherwise, ignored

11:8 Ignored

31:12 Physical address of 4-KByte aligned page table referenced by this entry

Table 5-6.  Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 5.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section 
5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 5.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 5.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 5.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 5.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 5.9.2); otherwise, reserved (must be 0)1

NOTES:
1. See Section 5.1.4 for how to determine whether the PAT is supported.

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 5.10); ignored otherwise

11:9 Ignored

31:12 Physical address of the 4-KByte page referenced by this entry
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5.4 PAE PAGING
A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0. PAE paging translates 
32-bit linear addresses to 52-bit physical addresses.1 Although 52 bits corresponds to 4 PBytes, linear addresses 
are limited to 32 bits; at most 4 GBytes of linear-address space may be accessed at any given time.

With PAE paging, a logical processor maintains a set of four (4) PDPTE registers, which are loaded from an address 
in CR3. Linear address are translated using 4 hierarchies of in-memory paging structures, each located using one 
of the PDPTE registers. (This is different from the other paging modes, in which there is one hierarchy referenced 
by CR3.)

Section 5.4.1 discusses the PDPTE registers. Section 5.4.2 describes linear-address translation with PAE paging.

5.4.1 PDPTE Registers
When PAE paging is used, CR3 references the base of a 32-Byte page-directory-pointer table. Table 5-7 illus-
trates how CR3 is used with PAE paging.

The page-directory-pointer-table comprises four (4) 64-bit entries called PDPTEs. Each PDPTE controls access to a 
1-GByte region of the linear-address space. Corresponding to the PDPTEs, the logical processor maintains a set of 
four (4) internal, non-architectural PDPTE registers, called PDPTE0, PDPTE1, PDPTE2, and PDPTE3. The logical 
processor loads these registers from the PDPTEs in memory as part of certain operations:
• If PAE paging would be in use following an execution of MOV to CR0 or MOV to CR4 (see Section 5.1.1) and the 

instruction is modifying any of CR0.CD, CR0.NW, CR0.PG, CR4.PAE, CR4.PGE, CR4.PSE, or CR4.SMEP; then the 
PDPTEs are loaded from the address in CR3.

• If MOV to CR3 is executed while the logical processor is using PAE paging, the PDPTEs are loaded from the 
address being loaded into CR3.

• If PAE paging is in use and a task switch changes the value of CR3, the PDPTEs are loaded from the address in 
the new CR3 value.

• Certain VMX transitions load the PDPTE registers. See Section 5.11.1.

Table 5-8 gives the format of a PDPTE. If any of the PDPTEs sets both the P flag (bit 0) and any reserved bit, the 
MOV to CR instruction causes a general-protection exception (#GP(0)) and the PDPTEs are not loaded.2 As shown 
in Table 5-8, bits 2:1, 8:5, and 63:MAXPHYADDR are reserved in the PDPTEs.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used by PAE paging. (The corresponding 
bits are reserved in the paging-structure entries.) See Section 5.1.4 for how to determine MAXPHYADDR.

Table 5-7.  Use of CR3 with PAE Paging

Bit 
Position(s)

Contents

4:0 Ignored

31:5 Physical address of the 32-Byte aligned page-directory-pointer table used for linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

2. On some processors, reserved bits are checked even in PDPTEs in which the P flag (bit 0) is 0.
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5.4.2 Linear-Address Translation with PAE Paging
PAE paging may map linear addresses to either 4-KByte pages or 2-MByte pages. Figure 5-5 illustrates the trans-
lation process when it produces a 4-KByte page; Figure 5-6 covers the case of a 2-MByte page. The following items 
describe the PAE paging process in more detail as well has how the page size is determined:
• Bits 31:30 of the linear address select a PDPTE register (see Section 5.4.1); this is PDPTEi, where i is the value 

of bits 31:30.1 Because a PDPTE register is identified using bits 31:30 of the linear address, it controls access 
to a 1-GByte region of the linear-address space. If the P flag (bit 0) of PDPTEi is 0, the processor ignores bits 
63:1, and there is no mapping for the 1-GByte region controlled by PDPTEi. A reference using a linear address 
in this region causes a page-fault exception (see Section 5.7).

• If the P flag of PDPTEi is 1, 4-KByte naturally aligned page directory is located at the physical address specified 
in bits 51:12 of PDPTEi (see Table 5-8 in Section 5.4.1). A page directory comprises 512 64-bit entries (PDEs). 
A PDE is selected using the physical address defined as follows:

— Bits 51:12 are from PDPTEi.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are 0.

Because a PDE is identified using bits 31:21 of the linear address, it controls access to a 2-Mbyte region of the 
linear-address space. Use of the PDE depends on its PS flag (bit 7):
• If the PDE’s PS flag is 1, the PDE maps a 2-MByte page (see Table 5-9). The final physical address is computed 

as follows:

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical address specified in 

bits 51:12 of the PDE (see Table 5-10). A page table comprises 512 64-bit entries (PTEs). A PTE is selected 
using the physical address defined as follows:

— Bits 51:12 are from the PDE.

Table 5-8.  Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE)

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

2:1 Reserved (must be 0)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory referenced by 
this entry (see Section 5.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory referenced by 
this entry (see Section 5.9)

8:5 Reserved (must be 0)

11:9 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry1

63:M Reserved (must be 0)

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 5.1.4.

1. With PAE paging, the processor does not use CR3 when translating a linear address (as it does in the other paging modes). It does 
not access the PDPTEs in the page-directory-pointer table during linear-address translation.
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— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see 

Table 5-11). The final physical address is computed as follows:

— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If the P flag (bit 0) of a PDE or a PTE is 0 or if a PDE or a PTE sets any reserved bit, the entry is used neither to 
reference another paging-structure entry nor to map a page. There is no translation for a linear address whose 
translation would use such a paging-structure entry; a reference to such a linear address causes a page-fault 
exception (see Section 5.7).

The following bits are reserved with PAE paging:
• If the P flag (bit 0) of a PDE or a PTE is 1, bits 62:MAXPHYADDR are reserved.
• If the P flag and the PS flag (bit 7) of a PDE are both 1, bits 20:13 are reserved.
• If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.
• If the PAT is not supported:1

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed 
by the access rights of the translation; see Section 5.6.

1. See Section 5.1.4 for how to determine whether the PAT is supported.

Figure 5-5.  Linear-Address Translation to a 4-KByte Page using PAE Paging
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Figure 5-6.  Linear-Address Translation to a 2-MByte Page using PAE Paging

Table 5-9.  Format of a PAE Page-Directory Entry that Maps a 2-MByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by this entry (see Section 5.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page referenced by this entry (see Section 
5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 2-MByte page referenced by 
this entry (see Section 5.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 2-MByte page referenced by this 
entry (see Section 5.9)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced by this entry (see Section 5.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by this entry (see Section 5.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 5-10)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 5.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 2-MByte page referenced by this 
entry (see Section 5.9.2); otherwise, reserved (must be 0)1

NOTES:
1. See Section 5.1.4 for how to determine whether the PAT is supported.

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte page controlled by 
this entry; see Section 5.6); otherwise, reserved (must be 0)
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Table 5-10.  Format of a PAE Page-Directory Entry that References a Page Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by this entry (see Section 5.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte region controlled by this entry (see 
Section 5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 5.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 5.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 5.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 5-9)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte region controlled 
by this entry; see Section 5.6); otherwise, reserved (must be 0)

Table 5-11.  Format of a PAE Page-Table Entry that Maps a 4-KByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 5.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section 
5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by 
this entry (see Section 5.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 5.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 5.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 5.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 5.9.2); otherwise, reserved (must be 0)1

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 5.10); ignored otherwise
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Figure 5-7 gives a summary of the formats of CR3 and the paging-structure entries with PAE paging. For the paging 
structure entries, it identifies separately the format of entries that map pages, those that reference other paging 
structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted 
because they determine how a paging-structure entry is used.

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by 
this entry; see Section 5.6); otherwise, reserved (must be 0)

NOTES:
1. See Section 5.1.4 for how to determine whether the PAT is supported.
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Figure 5-7.  Formats of CR3 and Paging-Structure Entries with PAE Paging

Table 5-11.  Format of a PAE Page-Table Entry that Maps a 4-KByte Page (Contd.)

Bit 
Position(s)

Contents
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5.5 4-LEVEL PAGING AND 5-LEVEL PAGING
Because the operation of 4-level paging and 5-level paging is very similar, they are described together in this 
section. The following items highlight the distinctions between the two paging modes:
• A logical processor uses 4-level paging if CR0.PG = 1, CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 0. 

4-level paging translates 48-bit linear addresses to 52-bit physical addresses.1 Although 52 bits corresponds to 
4 PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of linear-address space may be accessed 
at any given time.

• A logical processor uses 5-level paging if CR0.PG = 1, CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 1. 
5-level paging translates 57-bit linear addresses to 52-bit physical addresses. Thus, 5-level paging supports a 
linear-address space sufficient to access the entire physical-address space.

5.5.1 Ordinary Paging and HLAT Paging
There are two forms of 4-level paging and 5-level paging that differ principally with regard to how linear-address 
translation identifies the first paging structure.

The normal form is called ordinary paging, and it uses CR3 to locate the first paging structure, similar to what is 
done for 32-bit paging. Section 5.5.2 provides details of this use of CR3.

An alternative form of paging may be used with the VMX feature called hypervisor-managed linear-address trans-
lation (HLAT). Called HLAT paging, this form is used only in VMX non-root operation and only if the “enable HLAT” 
VM-execution control is 1.2 HLAT paging locates the first paging structure using a VM-execution control field in the 
VMCS called the HLAT pointer (HLATP). Section 5.5.3 provides details.

Whether HLAT paging is used to translate a specific linear address depends on the address and on the value of a 
VM-execution control field in the VMCS called the HLAT prefix size:
• If the HLAT prefix size is zero, every linear address is translated using HLAT paging.
• If the HLAT prefix size is not zero, a linear address is translated using HLAT paging if bit 63 of the address is 1.3 

The address is translated using ordinary paging if bit 63 of the address is 0.

In some cases, HLAT paging may specify that a translation of a linear address must be restarted. When this occurs, 
the linear address is then translated using ordinary paging (starting with a paging structure identified using CR3). 
The situations leading to this restart are detailed in Section 5.5.4, and additional details of the restart process are 
given in Section 5.5.5.

5.5.2 Use of CR3 with Ordinary 4-Level Paging and 5-Level Paging
Ordinary 4-level paging and 5-level paging each translate linear addresses using a hierarchy of in-memory paging 
structures located using the contents of CR3, which is used to locate the first paging structure. For 4-level paging, 
this is the PML4 table, and for 5-level paging it is the PML5 table. Use of CR3 with 4-level paging and 5-level paging 
depends on whether process-context identifiers (PCIDs) have been enabled by setting CR4.PCIDE:
• Table 5-12 illustrates how CR3 is used with 4-level paging and 5-level paging if CR4.PCIDE = 0.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used by 4-level paging. (The correspond-
ing bits are reserved in the paging-structure entries.) See Section 5.1.4 for how to determine MAXPHYADDR.

2. HLAT paging is used only with 4-level paging and 5-level paging. It is never used with 32-bit paging or PAE paging, regardless of the 
value of the “enable HLAT” VM-execution control.

3. This behavior applies if the CPU enumerates a maximum HLAT prefix size of 1 in IA32_VMX_EPT_VPID_CAP[53:48] (see Appendix 
A.10). Behavior when a different value is enumerated is not currently defined.

Table 5-12.  Use of CR3 with 4-Level Paging and 5-level Paging and CR4.PCIDE = 0

Bit 
Position(s)

Contents

2:0 Ignored
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• Table 5-13 illustrates how CR3 is used with 4-level paging and 5-level paging if CR4.PCIDE = 1.

After software modifies the value of CR4.PCIDE, the logical processor immediately begins using CR3 as specified 
for the new value. For example, if software changes CR4.PCIDE from 1 to 0, the current PCID immediately changes 
from CR3[11:0] to 000H (see also Section 5.10.4.1). In addition, the logical processor subsequently determines 
the memory type used to access the PML4 table using CR3.PWT and CR3.PCD, which had been bits 4:3 of the PCID.

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the PML4 table or PML5 table 
during linear-address translation (see Section 5.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the PML4 table or PML5 table during 
linear-address translation (see Section 5.9.2)

11:5 Ignored

M–1:12 Physical address of the 4-KByte aligned PML4 table or PML5 table used for linear-address translation1

60:M Reserved (must be 0)

61 Enables LAM57 for user pointers; Section 4.4.2

62 Enables LAM48 for user pointers; ignored if bit 61 is set.2

63 Reserved (must be 0)3

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 5.1.4.
2. LAM is not a paging feature.
3. See Section 5.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.

Table 5-13.  Use of CR3 with 4-Level Paging and 5-Level Paging and CR4.PCIDE = 1

Bit 
Position(s)

Contents

11:0 PCID (see Section 5.10.1)1

NOTES:
1. Section 5.9.2 explains how the processor determines the memory type used to access the PML4 table during linear-address transla-

tion with CR4.PCIDE = 1.

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address translation2

2. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 5.1.4.

60:M Reserved (must be 0)

61 Enables LAM57 for user pointers; Section 4.4.3

3. LAM is not a paging feature.

62 Enables LAM48 for user pointers; ignored if bit 61 is set.3

63 Reserved (must be 0)4

4. See Section 5.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.

Table 5-12.  Use of CR3 with 4-Level Paging and 5-level Paging and CR4.PCIDE = 0 (Contd.)

Bit 
Position(s)

Contents
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5.5.3 Use of HLATP with HLAT 4-Level Paging and 5-Level Paging
With HLAT paging, 4-level paging and 5-level paging each translate linear addresses using a hierarchy of in-
memory paging structures located using the value of HLATP (a VM-execution control field in the VMCS), which is 
used to locate the first paging structure. For 4-level paging, this is the PML4 table, and for 5-level paging it is the 
PML5 table.

HLATP has the same format as that given for CR3 in Table 5-12, with the exception that bits 2:0 and bits 11:5 are 
reserved and must be zero (these bits are checked by VM entry). HLATP does not contain a PCID value. HLAT 
paging with CR4.PCIDE = 1 uses the PCID value in CR3[11:0].

5.5.4 Linear-Address Translation with 4-Level Paging and 5-Level Paging
4-level paging and 5-level paging may map linear addresses to 4-KByte pages, 2-MByte pages, or 1-GByte pages.1 
Figure 5-8 illustrates the translation process for 4-level paging when it produces a 4-KByte page; Figure 5-9 covers 
the case of a 2-MByte page, and Figure 5-10 the case of a 1-GByte page. (The process for 5-level paging is similar.)

1. Not all processors support 1-GByte pages; see Section 5.1.4.

Figure 5-8.  Linear-Address Translation to a 4-KByte Page Using 4-Level Paging
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Figure 5-9.  Linear-Address Translation to a 2-MByte Page using 4-Level Paging

Figure 5-10.  Linear-Address Translation to a 1-GByte Page using 4-Level Paging
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4-level paging and 5-level paging associate with each linear address a protection key. Section 5.6 explains how 
the processor uses the protection key in its determination of the access rights of each linear address.

The remainder of this section describes the translation process used by 4-level paging and 5-level paging in more 
detail, as well has how the page size and protection key are determined. Because the process used by the two 
paging modes is similar, they are described together, with any differences identified, in the following items:
• With 5-level paging, a 4-KByte naturally aligned PML5 table is located at the physical address specified in 

bits 51:12 of CR3 (see Table 5-12). (4-level paging does not use a PML5 table and omits this step.) A PML5 
table comprises 512 64-bit entries (PML5Es). A PML5E is selected using the physical address defined as follows:

— Bits 51:12 are from CR3 or HLATP.

— Bits 11:3 are bits 56:48 of the linear address.

— Bits 2:0 are all 0.
Because a PML5E is identified using bits 56:48 of the linear address, it controls access to a 256-TByte region of 
the linear-address space.
With HLAT paging, if bit 11 of the PML5E is 1, translation is restarted with ordinary paging with a maximum 
page size of 256-TBytes (see Section 5.5.5). Otherwise, the translation process continues as described in the 
next item.

• A 4-KByte naturally aligned PML4 table is located at the physical address specified in bits 51:12 of CR3 (for 4-
level paging; see Table 5-12) or in bits 51:12 of the PML5E (for 5-level paging; see Table 5-14). A PML4 table 
comprises 512 64-bit entries (PML4Es). A PML4E is selected using the physical address defined as follows:

— Bits 51:12 are from CR3 or the HLATP (for 4-level paging) or in bits 51:12 of the PML5E (for 5-level 
paging).

— Bits 11:3 are bits 47:39 of the linear address.

— Bits 2:0 are all 0.
Because a PML4E is identified using bits 47:39 of the linear address, it controls access to a 512-GByte region of 
the linear-address space.
With HLAT paging, if bit 11 of the PML4E is 1, translation is restarted with ordinary paging with a maximum 
page size of 512-GBytes (see Section 5.5.5). Otherwise, the translation process continues as described in the 
next item.

• A 4-KByte naturally aligned page-directory-pointer table is located at the physical address specified in 
bits 51:12 of the PML4E (see Table 5-15). A page-directory-pointer table comprises 512 64-bit entries 
(PDPTEs). A PDPTE is selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.

— Bits 11:3 are bits 38:30 of the linear address.

— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the linear address, it controls access to a 1-GByte region of the 
linear-address space.

With HLAT paging, if bit 11 of the PDPTE is 1, translation is restarted with ordinary paging with a maximum page 
size of 1-GByte (see Section 5.5.5). Otherwise, the translation process continues as described below.

Use of the PDPTE depends on its PS flag (bit 7):1

• If the PDPTE’s PS flag is 1, the PDPTE maps a 1-GByte page (see Table 5-16). The final physical address is 
computed as follows:

— Bits 51:30 are from the PDPTE.

— Bits 29:0 are from the original linear address.
The linear address’s protection key is the value of bits 62:59 of the PDPTE (see Section 5.6.2).

1. The PS flag of a PDPTE is reserved and must be 0 (if the P flag is 1) if 1-GByte pages are not supported. See Section 5.1.4 for how 
to determine whether 1-GByte pages are supported.
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• If the PDPTE’s PS flag is 0, a 4-KByte naturally aligned page directory is located at the physical address 
specified in bits 51:12 of the PDPTE (see Table 5-17). A page directory comprises 512 64-bit entries (PDEs). A 
PDE is selected using the physical address defined as follows:

— Bits 51:12 are from the PDPTE.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are all 0.

Because a PDE is identified using bits 47:21 of the linear address, it controls access to a 2-MByte region of the 
linear-address space.

With HLAT paging, if bit 11 of the PDE is 1, translation is restarted with ordinary paging with a maximum page size 
of 2-MBytes (see Section 5.5.5). Otherwise, the translation process continues as described below.

Use of the PDE depends on its PS flag:
• If the PDE's PS flag is 1, the PDE maps a 2-MByte page (see Table 5-18). The final physical address is computed 

as follows:

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.
The linear address’s protection key is the value of bits 62:59 of the PDE (see Section 5.6.2).

• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical address specified in 
bits 51:12 of the PDE (see Table 5-19). A page table comprises 512 64-bit entries (PTEs). A PTE is selected 
using the physical address defined as follows:

— Bits 51:12 are from the PDE.

— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are all 0.
• Because a PTE is identified using bits 47:12 of the linear address, every PTE maps a 4-KByte page (see 

Table 5-20).
With HLAT paging, if bit 11 of the PTE is 1, translation is restarted with ordinary paging with a maximum page 
size of 4-KBytes (see Section 5.5.5). Otherwise, the final physical address is computed as follows:

— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.
The linear address’s protection key is the value of bits 62:59 of the PTE (see Section 5.6.2).

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the entry is used neither to refer-
ence another paging-structure entry nor to map a page. There is no translation for a linear address whose transla-
tion would use such a paging-structure entry; a reference to such a linear address causes a page-fault exception 
(see Section 5.7).

The following bits in a paging-structure entry are reserved with 4-level paging and 5-level paging (assuming that 
the entry’s P flag is 1):
• Bits 51:MAXPHYADDR are reserved in every paging-structure entry.
• The PS flag is reserved in a PML5E or a PML4E.
• If 1-GByte pages are not supported, the PS flag is reserved in a PDPTE.1

• If the PS flag in a PDPTE is 1, bits 29:13 of the entry are reserved.
• If the PS flag in a PDE is 1, bits 20:13 of the entry are reserved.
• If IA32_EFER.NXE = 0, the XD flag (bit 63) is reserved in every paging-structure entry.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed 
by the access rights of the translation; see Section 5.6.

1. See Section 5.1.4 for how to determine whether 1-GByte pages are supported.
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Figure 5-11 gives a summary of the formats of CR3 and the 4-level and 5-level paging-structure entries. For the 
paging structure entries, it identifies separately the format of entries that map pages, those that reference other 
paging structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted 
because they determine how a paging-structure entry is used.

Table 5-14.  Format of a PML5 Entry (PML5E) that References a PML4 Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a PML4 table

1 (R/W) Read/write; if 0, writes may not be allowed to the 256-TByte region controlled by this entry (see Section 5.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 256-TByte region controlled by this entry (see 
Section 5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the PML4 table referenced by this 
entry (see Section 5.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the PML4 table referenced by this 
entry (see Section 5.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 5.8)

6 Ignored

7 (PS) Reserved (must be 0)

10:8 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary 
paging)

M–1:12 Physical address of 4-KByte aligned PML4 table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 256-TByte region 
controlled by this entry; see Section 5.6); otherwise, reserved (must be 0)

Table 5-15.  Format of a PML4 Entry (PML4E) that References a Page-Directory-Pointer Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page-directory-pointer table

1 (R/W) Read/write; if 0, writes may not be allowed to the 512-GByte region controlled by this entry (see Section 5.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 512-GByte region controlled by this entry (see 
Section 5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page-directory-pointer table 
referenced by this entry (see Section 5.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page-directory-pointer table 
referenced by this entry (see Section 5.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 5.8)

6 Ignored
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7 (PS) Reserved (must be 0)

10:8 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary 
paging)

M–1:12 Physical address of 4-KByte aligned page-directory-pointer table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 512-GByte region 
controlled by this entry; see Section 5.6); otherwise, reserved (must be 0)

Table 5-16.  Format of a Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 1-GByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte page referenced by this entry (see Section 5.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte page referenced by this entry (see Section 
5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 1-GByte page referenced by this 
entry (see Section 5.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 1-GByte page referenced by this 
entry (see Section 5.9.2)

5 (A) Accessed; indicates whether software has accessed the 1-GByte page referenced by this entry (see Section 5.8)

6 (D) Dirty; indicates whether software has written to the 1-GByte page referenced by this entry (see Section 5.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page directory; see Table 5-17)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 5.10); ignored otherwise

10:9 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary 
paging)

12 (PAT) Indirectly determines the memory type used to access the 1-GByte page referenced by this entry (see Section 
5.9.2)1

29:13 Reserved (must be 0)

(M–1):30 Physical address of the 1-GByte page referenced by this entry

Table 5-15.  Format of a PML4 Entry (PML4E) that References a Page-Directory-Pointer Table (Contd.)

Bit 
Position(s)

Contents
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51:M Reserved (must be 0)

58:52 Ignored

62:59 Protection key; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page’s access rights (see Section 5.6.2); otherwise, 
it is ignored and not used to control access rights.

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte page controlled by 
this entry; see Section 5.6); otherwise, reserved (must be 0)

NOTES:
1. The PAT is supported on all processors that support 4-level paging.

Table 5-17.  Format of a Page-Directory-Pointer-Table Entry (PDPTE) that References a Page Directory

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte region controlled by this entry (see Section 5.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte region controlled by this entry (see Section 
5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory referenced by 
this entry (see Section 5.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory referenced by 
this entry (see Section 5.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 5.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 1-GByte page; see Table 5-16)

10:8 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary 
paging)

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte region controlled 
by this entry; see Section 5.6); otherwise, reserved (must be 0)

Table 5-16.  Format of a Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page (Contd.)

Bit 
Position(s)

Contents
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Table 5-18.  Format of a Page-Directory Entry that Maps a 2-MByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by this entry (see Section 5.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page referenced by this entry (see Section 
5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 2-MByte page referenced by 
this entry (see Section 5.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 2-MByte page referenced by 
this entry (see Section 5.9.2)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced by this entry (see Section 5.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by this entry (see Section 5.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 5-19)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 5.10); ignored otherwise

10:9 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary 
paging)

12 (PAT) Indirectly determines the memory type used to access the 2-MByte page referenced by this entry (see Section 
5.9.2)

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

51:M Reserved (must be 0)

58:52 Ignored

62:59 Protection key; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page’s access rights (see Section 5.6.2); 
otherwise, it is ignored and not used to control access rights.

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte page controlled by 
this entry; see Section 5.6); otherwise, reserved (must be 0)
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Table 5-19.  Format of a Page-Directory Entry that References a Page Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by this entry (see Section 5.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte region controlled by this entry (see Section 
5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 5.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 5.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 5.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 5-18)

10:8 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary 
paging)

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte region controlled 
by this entry; see Section 5.6); otherwise, reserved (must be 0)
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Table 5-20.  Format of a Page-Table Entry that Maps a 4-KByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 5.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section 
5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by 
this entry (see Section 5.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 5.9.2)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 5.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 5.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 5.9.2)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 5.10); ignored otherwise

10:9 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary 
paging)

(M–1):12 Physical address of the 4-KByte page referenced by this entry

51:M Reserved (must be 0)

58:52 Ignored

62:59 Protection key; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page’s access rights (see Section 5.6.2); 
otherwise, it is ignored and not used to control access rights.

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by 
this entry; see Section 5.6); otherwise, reserved (must be 0)
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Figure 5-11.  Formats of CR3 and Paging-Structure Entries with 4-Level Paging and 5-Level Paging
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5.5.5 Restart of HLAT Paging
As noted in Section 5.5.1, HLAT paging may specify that a translation of a linear address must be restarted. Specif-
ically, this occurs when HLAT paging encounters a paging-structure entry that sets bit 11 (see Section 5.5.4).

When this occurs, translation of the linear address is restarted using ordinary paging (starting with a paging struc-
ture identified using CR3). The restarted translation proceeds just as if the HLAT feature were not enabled. The 
entire linear address is translated again, including those portions that had been used by HLAT paging prior to the 
restart.

The process of restarting HLAT paging (using ordinary paging) always specifies a maximum page size to be used 
when a resulting translation is cached in the TLBs. This maximum page size depends on the level of the paging-
structure entry that restarts the translation by setting bit 11; details are given in Section 5.5.4. The page size of 
the translation produced by the restarted process is never greater than this maximum page size. See Section 
5.10.2.2 for more discussion.

5.6 ACCESS RIGHTS
There is a translation for a linear address if the processes described in Section 5.3, Section 5.4.2, and Section 5.5 
(depending upon the paging mode) completes and produces a physical address. Whether an access is permitted by 
a translation is determined by the access rights specified by the paging-structure entries controlling the transla-
tion;1 paging-mode modifiers in CR0, CR4, and the IA32_EFER MSR; EFLAGS.AC; and the mode of the access.

Section 5.6.1 describes how the processor determines the access rights for each linear address. Section 5.6.2 
provides additional information about how protection keys contribute to access-rights determination. (They do so 
only with 4-level paging and 5-level paging, and only if CR4.PKE = 1 or CR4.PKS = 1.) 

NOTE
If HLAT paging is restarted, permissions are determined only by the access rights specified by the 
paging-structure entries that the subsequent ordinary paging used to translate the linear address. 
The access rights specified by the entries used earlier by HLAT paging do not apply.

5.6.1 Determination of Access Rights
Every access to a linear address is either a supervisor-mode access or a user-mode access. For all instruction 
fetches and most data accesses, this distinction is determined by the current privilege level (CPL): accesses made 
while CPL < 3 are supervisor-mode accesses, while accesses made while CPL = 3 are user-mode accesses.

Some operations implicitly access system data structures with linear addresses; the resulting accesses to those 
data structures are supervisor-mode accesses regardless of CPL. Examples of such accesses include the following: 
accesses to the global descriptor table (GDT) or local descriptor table (LDT) to load a segment descriptor; accesses 
to the interrupt descriptor table (IDT) when delivering an interrupt or exception; and accesses to the task-state 
segment (TSS) as part of a task switch or change of CPL. All these accesses are called implicit supervisor-mode 
accesses regardless of CPL. Other accesses made while CPL < 3 are called explicit supervisor-mode accesses.

Access rights are also controlled by the mode of a linear address as specified by the paging-structure entries 
controlling the translation of the linear address. If the U/S flag (bit 2) is 0 in at least one of the paging-structure 
entries, the address is a supervisor-mode address. Otherwise, the address is a user-mode address.

When the shadow-stack feature of control-flow enforcement technology (CET) is enabled, certain accesses to 
linear addresses are considered shadow-stack accesses (see Section 18.2, “Shadow Stacks,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1). Like ordinary data accesses, each shadow-stack 
access is defined as being either a user access or a supervisor access. In general, a shadow-stack access is a user 
access if CPL = 3 and a supervisor access if CPL < 3. The WRUSS instruction is an exception; although it can be 
executed only if CPL = 0, the processor treats its shadow-stack accesses as user accesses. 

1. With PAE paging, the PDPTEs do not determine access rights.
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Shadow-stack accesses are allowed only to shadow-stack addresses. A linear address is a shadow-stack 
address if the following are true of the translation of the linear address: (1) the R/W flag (bit 1) is 0 and the dirty 
flag (bit 6) is 1 in the paging-structure entry that maps the page containing the linear address; and (2) the R/W 
flag is 1 in every other paging-structure entry controlling the translation of the linear address.

The following items detail how paging determines access rights (only the items noted explicitly apply to shadow-
stack accesses):

NOTE
Many of the items below refer to an address with a protection key for which read (or write) access 
is permitted. Section 5.6.2 provides details on when a protection key will permit (or not permit) a 
data access (read or write) to a linear address using that protection key.

• For supervisor-mode accesses:

— Data may be read (implicitly or explicitly) from any supervisor-mode address with a protection key for 
which read access is permitted.

— Data reads from user-mode pages.
Access rights depend on the value of CR4.SMAP:

• If CR4.SMAP = 0, data may be read from any user-mode address with a protection key for which read 
access is permitted.

• If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is implicit or 
explicit:

— If EFLAGS.AC = 1 and the access is explicit, data may be read from any user-mode address with a 
protection key for which read access is permitted.

— If EFLAGS.AC = 0 or the access is implicit, data may not be read from any user-mode address.

— Data writes to supervisor-mode addresses.
Access rights depend on the value of CR0.WP:

• If CR0.WP = 0, data may be written to any supervisor-mode address with a protection key for which 
write access is permitted.

• If CR0.WP = 1, data may be written to any supervisor-mode address with a translation for which the 
R/W flag (bit 1) is 1 in every paging-structure entry controlling the translation and with a protection key 
for which write access is permitted; data may not be written to any supervisor-mode address with a 
translation for which the R/W flag is 0 in any paging-structure entry controlling the translation.

— Data writes to user-mode addresses.
Access rights depend on the value of CR0.WP:

• If CR0.WP = 0, access rights depend on the value of CR4.SMAP:

— If CR4.SMAP = 0, data may be written to any user-mode address with a protection key for which 
write access is permitted.

— If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is 
implicit or explicit:

• If EFLAGS.AC = 1 and the access is explicit, data may be written to any user-mode address 
with a protection key for which write access is permitted.

• If EFLAGS.AC = 0 or the access is implicit, data may not be written to any user-mode address.

• If CR0.WP = 1, access rights depend on the value of CR4.SMAP:

— If CR4.SMAP = 0, data may be written to any user-mode address with a translation for which the 
R/W flag is 1 in every paging-structure entry controlling the translation and with a protection key 
for which write access is permitted; data may not be written to any user-mode address with a 
translation for which the R/W flag is 0 in any paging-structure entry controlling the translation.

— If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is 
implicit or explicit:
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• If EFLAGS.AC = 1 and the access is explicit, data may be written to any user-mode address 
with a translation for which the R/W flag is 1 in every paging-structure entry controlling the 
translation and with a protection key for which write access is permitted; data may not be 
written to any user-mode address with a translation for which the R/W flag is 0 in any paging-
structure entry controlling the translation.

• If EFLAGS.AC = 0 or the access is implicit, data may not be written to any user-mode address.

— Instruction fetches from supervisor-mode addresses.

• For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any supervisor-mode 
address.

• For other paging modes with IA32_EFER.NXE = 1, instructions may be fetched from any supervisor-
mode address with a translation for which the XD flag (bit 63) is 0 in every paging-structure entry 
controlling the translation; instructions may not be fetched from any supervisor-mode address with a 
translation for which the XD flag is 1 in any paging-structure entry controlling the translation.

— Instruction fetches from user-mode addresses.
Access rights depend on the values of CR4.SMEP:

• If CR4.SMEP = 0, access rights depend on the paging mode and the value of IA32_EFER.NXE:

— For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any user-mode 
address.

— For other paging modes with IA32_EFER.NXE = 1, instructions may be fetched from any user-
mode address with a translation for which the XD flag is 0 in every paging-structure entry 
controlling the translation; instructions may not be fetched from any user-mode address with a 
translation for which the XD flag is 1 in any paging-structure entry controlling the translation.

• If CR4.SMEP = 1, instructions may not be fetched from any user-mode address.

— Supervisor-mode shadow-stack accesses are allowed only to supervisor-mode shadow-stack addresses 
(see above).

• For user-mode accesses:

— Data reads.
Access rights depend on the mode of the linear address:

• Data may be read from any user-mode address with a protection key for which read access is 
permitted.

• Data may not be read from any supervisor-mode address.

— Data writes.
Access rights depend on the mode of the linear address:

• Data may be written to any user-mode address with a translation for which the R/W flag is 1 in every 
paging-structure entry controlling the translation and with a protection key for which write access is 
permitted.

• Data may not be written to any supervisor-mode address.

— Instruction fetches.
Access rights depend on the mode of the linear address, the paging mode, and the value of 
IA32_EFER.NXE:

• For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any user-mode address.

• For other paging modes with IA32_EFER.NXE = 1, instructions may be fetched from any user-mode 
address with a translation for which the XD flag is 0 in every paging-structure entry controlling the 
translation.

• Instructions may not be fetched from any supervisor-mode address.

— User-mode shadow-stack accesses made outside enclave mode are allowed only to user-mode shadow-
stack addresses (see above). User-mode shadow-stack accesses made in enclave mode are treated like 
ordinary data accesses (see above).
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A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see 
Section 5.10). These structures may include information about access rights. The processor may enforce access 
rights based on the TLBs and paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access rights, the processor might 
not use that change for a subsequent access to an affected linear address (see Section 5.10.4.3). See Section 
5.10.4.2 for how software can ensure that the processor uses the modified access rights.

5.6.2 Protection Keys
4-level paging and 5-level paging associate a 4-bit protection key with each linear address (the protection key 
located in bits 62:59 of the paging-structure entry that mapped the page containing the linear address; see Section 
5.5). Two protection key features control accesses to linear addresses based on their protection keys:
• If CR4.PKE = 1, the PKRU register determines, for each protection key, whether user-mode addresses with that 

protection key may be read or written.
• If CR4.PKS = 1, the IA32_PKRS MSR (MSR index 6E1H) determines, for each protection key, whether 

supervisor-mode addresses with that protection key may be read or written.

32-bit paging and PAE paging do not associate linear addresses with protection keys. For the purposes of Section 
5.6.1, reads and writes are implicitly permitted for all protection keys with either of those paging modes.

The PKRU register (protection-key rights for user pages) is a 32-bit register with the following format: for each i 
(0 ? i ? 15), PKRU[2i] is the access-disable bit for protection key i (ADi); PKRU[2i+1] is the write-disable bit for 
protection key i (WDi). The IA32_PKRS MSR has the same format (bits 63:32 of the MSR are reserved and must be 
zero).

Software can use the RDPKRU and WRPKRU instructions with ECX = 0 to read and write PKRU. In addition, the 
PKRU register is XSAVE-managed state and can thus be read and written by instructions in the XSAVE feature set. 
See Chapter 13, “Managing State Using the XSAVE Feature Set,” of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for more information about the XSAVE feature set.

Software can use the RDMSR and WRMSR instructions to read and write the IA32_PKRS MSR. Writes to the 
IA32_PKRS MSR using WRMSR are not serializing. The IA32_PKRS MSR is not XSAVE-managed.

How a linear address’s protection key controls access to the address depends on the mode of the linear address:
• A linear address’s protection key controls only data accesses to the address. It does not in any way affect 

instructions fetches from the address.
• If CR4.PKE = 0, the protection key of a user-mode address does not control data accesses to the address (for 

the purposes of Section 5.6.1, reads and writes of user-mode addresses are implicitly permitted for all 
protection keys).
If CR4.PKE = 1, use of the protection key i of a user-mode address depends on the value of the PKRU register:

— If ADi = 1, no data accesses are permitted.

— If WDi = 1, permission may be denied to certain data write accesses:

• User-mode write accesses are not permitted.

• Supervisor-mode write accesses are not permitted if CR0.WP = 1. (If CR0.WP = 0, WDi does not affect 
supervisor-mode write accesses to user-mode addresses with protection key i.)

• If CR4.PKS = 0, the protection key of a supervisor-mode address does not control data accesses to the address 
(for the purposes of Section 5.6.1, reads and writes of supervisor-mode addresses are implicitly permitted for 
all protection keys).
If CR4.PKS = 1, use of the protection key i of a supervisor-mode address depends on the value of the 
IA32_PKRS MSR:

— If ADi = 1, no data accesses are permitted.

— If WDi = 1, write accesses are not permitted if CR0.WP = 1. (If CR0.WP = 0, IA32_PKRS.WDi does not 
affect write accesses to supervisor-mode addresses with protection key i.)

Protection keys apply to shadow-stack accesses just as they do to ordinary data accesses.
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5.7 PAGE-FAULT EXCEPTIONS
Accesses using linear addresses may cause page-fault exceptions (#PF; exception 14). An access to a linear 
address may cause a page-fault exception for either of two reasons: (1) there is no translation for the linear 
address; or (2) there is a translation for the linear address, but its access rights do not permit the access.

As noted in Section 5.3, Section 5.4.2, and Section 5.5, there is no translation for a linear address if the translation 
process for that address would use a paging-structure entry in which the P flag (bit 0) is 0 or one that sets a 
reserved bit.1 If there is a translation for a linear address, its access rights are determined as specified in Section 
5.6.

When Intel® Software Guard Extensions (Intel® SGX) are enabled, the processor may deliver exception 14 for 
reasons unrelated to paging. See Section 36.3, “Access-control Requirements,” and Section 36.20, “Enclave Page 
Cache Map (EPCM),” in Chapter 36, “Enclave Access Control and Data Structures.” Such an exception is called an 
SGX-induced page fault. The processor uses the error code to distinguish SGX-induced page faults from ordinary 
page faults.

When a page fault occurs, the processor loads the CR2 register with the linear address that generated the excep-
tion. If linear-address masking had been in effect (Section 4.4), the address recorded reflects the result of that 
masking and does not contain any masked metadata. If the page-fault exception occurred during execution of an 
instruction in enclave mode (and not during delivery of an event incident to enclave mode), bits 11:0 of the address 
are cleared.

Figure 5-12 illustrates the error code that the processor provides on delivery of a page-fault exception. The 
following items explain how the bits in the error code describe the nature of the page-fault exception:

1. If HLAT paging encounters a paging-structure entry that sets a reserved bit, there is no translation even if the bit 11 of the entry 
indicates a restart. In this case, there is a page fault and the translation is not restarted.

Figure 5-12.  Page-Fault Error Code
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• P flag (bit 0).
This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

• W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag describes 
the access causing the page-fault exception, not the access rights specified by paging.

• U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access did so. 
This flag describes the access causing the page-fault exception, not the access rights specified by paging. User-
mode and supervisor-mode accesses are defined in Section 5.6.

• RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the paging-
structure entries used to translate that address. (Because reserved bits are not checked in a paging-structure 
entry whose P flag is 0, bit 3 of the error code can be set only if bit 0 is also set.1)
Bits reserved in the paging-structure entries are reserved for future functionality. Software developers should 
be aware that such bits may be used in the future and that a paging-structure entry that causes a page-fault 
exception on one processor might not do so in the future.

• I/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction fetch; and (2) either 
(a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE paging, 4-level paging, or 5-level paging is in use); 
and (ii) IA32_EFER.NXE = 1. Otherwise, the flag is 0. This flag describes the access causing the page-fault 
exception, not the access rights specified by paging.

• PK flag (bit 5).
This flag is 1 only for data accesses and only with 4-level paging and 5-level paging. In these cases, the setting 
depends on the mode of the address being accessed:

— For accesses to supervisor-mode addresses, the flag is set if (1) CR4.PKS = 1; (2) the linear address has 
protection key i; and (3) the IA32_PKRS MSR (see Section 5.6.2) is such that either (a) ADi = 1; or (b) the 
following all hold: (i) WDi = 1; (ii) the access is a write access; and (iii) either CR0.WP = 1 or the access 
causing the page-fault exception was a user-mode access. (Note that this flag may be set on page faults 
due to user-mode accesses to supervisor-mode addresses.)

— For accesses to user-mode addresses, the flag is set if (1) CR4.PKE = 1; (2) the linear address has 
protection key i; and (3) the PKRU register (see Section 5.6.2) is such that either (a) ADi = 1; or (b) the 
following all hold: (i) WDi = 1; (ii) the access is a write access; and (iii) either CR0.WP = 1 or the access 
causing the page-fault exception was a user-mode access.

• SS (bit 6).
If the access causing the page-fault exception was a shadow-stack access (including shadow-stack accesses in 
enclave mode), this flag is 1; otherwise, it is 0. This flag describes the access causing the page-fault exception, 
not the access rights specified by paging.

• HLAT (bit 7).
This flag is 1 if there is no translation for the linear address using HLAT paging because, in one of the paging-
structure entries used to translate that address, either the P flag was 0 or a reserved bit was set. An error code 
will set this flag only if it clears bit 0 or sets bit 3. This flag will not be set by a page fault resulting from a 
violation of access rights, nor for one encountered during ordinary paging, including the case in which there has 
been a restart of HLAT paging.

• SGX flag (bit 15).
This flag is 1 if the exception is unrelated to paging and resulted from violation of SGX-specific access-control 
requirements. Because such a violation can occur only if there is no ordinary page fault, this flag is set only if 
the P flag (bit 0) is 1 and the RSVD flag (bit 3) and the PK flag (bit 5) are both 0.

Page-fault exceptions occur only due to an attempt to use a linear address. Failures to load the PDPTE registers 
with PAE paging (see Section 5.4.1) cause general-protection exceptions (#GP(0)) and not page-fault exceptions.

1. Some past processors had errata for some page faults that occur when there is no translation for the linear address because the P 
flag was 0 in one of the paging-structure entries used to translate that address. Due to these errata, some such page faults pro-
duced error codes that cleared bit 0 (P flag) and set bit 3 (RSVD flag).
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5.8 ACCESSED AND DIRTY FLAGS
For any paging-structure entry that is used during linear-address translation, bit 5 is the accessed flag.1 For 
paging-structure entries that map a page (as opposed to referencing another paging structure), bit 6 is the dirty 
flag. These flags are provided for use by memory-management software to manage the transfer of pages and 
paging structures into and out of physical memory.

Whenever the processor uses a paging-structure entry as part of linear-address translation, it sets the accessed 
flag in that entry (if it is not already set).

Whenever there is a write to a linear address, the processor sets the dirty flag (if it is not already set) in the paging-
structure entry that identifies the final physical address for the linear address (either a PTE or a paging-structure 
entry in which the PS flag is 1).

The previous two paragraphs apply also to HLAT paging. If HLAT paging encounters a paging-structure entry that 
sets bit 11, indicating a restart, the processor will set the accessed flag in that entry; it will not set the dirty flag 
because, if an entry indicates a restart, it does identify the final physical address for the linear address being trans-
lated.

NOTE
If software on one logical processor writes to a page while software on another logical processor 
concurrently clears the R/W flag in the paging-structure entry that maps the page, execution on 
some processors may result in the entry’s dirty flag being set (due to the write on the first logical 
processor) and the entry’s R/W flag being clear (due to the update to the entry on the second 
logical processor). This will never occur on a processor that supports control-flow enforcement 
technology (CET). Specifically, a processor that supports CET will never set the dirty flag in a 
paging-structure entry in which the R/W flag is clear.

Memory-management software may clear these flags when a page or a paging structure is initially loaded into 
physical memory. These flags are “sticky,” meaning that, once set, the processor does not clear them; only soft-
ware can clear them.

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see 
Section 5.10). This fact implies that, if software changes an accessed flag or a dirty flag from 1 to 0, the processor 
might not set the corresponding bit in memory on a subsequent access using an affected linear address (see 
Section 5.10.4.3). See Section 5.10.4.2 for how software can ensure that these bits are updated as desired.

NOTE
The accesses used by the processor to set these flags may or may not be exposed to the 
processor’s self-modifying code detection logic. If the processor is executing code from the same 
memory area that is being used for the paging structures, the setting of these flags may or may not 
result in an immediate change to the executing code stream.

5.9 PAGING AND MEMORY TYPING
The memory type of a memory access refers to the type of caching used for that access. Chapter 13, “Memory 
Cache Control‚” provides many details regarding memory typing in the Intel-64 and IA-32 architectures. This 
section describes how paging contributes to the determination of memory typing.

The way in which paging contributes to memory typing depends on whether the processor supports the Page 
Attribute Table (PAT; see Section 13.12).2 Section 5.9.1 and Section 5.9.2 explain how paging contributes to 
memory typing depending on whether the PAT is supported.

1. With PAE paging, the PDPTEs are not used during linear-address translation but only to load the PDPTE registers for some execu-
tions of the MOV CR instruction (see Section 5.4.1). For this reason, the PDPTEs do not contain accessed flags with PAE paging. 

2. The PAT is supported on Pentium III and more recent processor families. See Section 5.1.4 for how to determine whether the PAT is 
supported.
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5.9.1 Paging and Memory Typing When the PAT is Not Supported (Pentium Pro and Pentium 
II Processors)

NOTE
The PAT is supported on all processors that support 4-level paging or 5-level paging. Thus, this 
section applies only to 32-bit paging and PAE paging.

If the PAT is not supported, paging contributes to memory typing in conjunction with the memory-type range regis-
ters (MTRRs) as specified in Table 13-6 in Section 13.5.2.1.

For any access to a physical address, the table combines the memory type specified for that physical address by the 
MTRRs with a PCD value and a PWT value. The latter two values are determined as follows:
• For an access to a PDE with 32-bit paging, the PCD and PWT values come from CR3.
• For an access to a PDE with PAE paging, the PCD and PWT values come from the relevant PDPTE register.
• For an access to a PTE, the PCD and PWT values come from the relevant PDE.
• For an access to the physical address that is the translation of a linear address, the PCD and PWT values come 

from the relevant PTE (if the translation uses a 4-KByte page) or the relevant PDE (otherwise).
• With PAE paging, the UC memory type is used when loading the PDPTEs (see Section 5.4.1).

5.9.2 Paging and Memory Typing When the PAT is Supported (Pentium III and More Recent 
Processor Families)

If the PAT is supported, paging contributes to memory typing in conjunction with the PAT and the memory-type 
range registers (MTRRs) as specified in Table 13-7 in Section 13.5.2.2.

The PAT is a 64-bit MSR (IA32_PAT; MSR index 277H) comprising eight (8) 8-bit entries (entry i comprises 
bits 8i+7:8i of the MSR).

For any access to a physical address, the table combines the memory type specified for that physical address by the 
MTRRs with a memory type selected from the PAT. Table 13-11 in Section 13.12.3 specifies how a memory type is 
selected from the PAT. Specifically, it comes from entry i of the PAT, where i is defined as follows:
• For an access to an entry in a paging structure whose address is in CR3 (e.g., the PML4 table with 4-level 

paging):

— For 4-level paging or 5-level paging with CR4.PCIDE = 1, i = 0.

— Otherwise, i = 2*PCD+PWT, where the PCD and PWT values come from CR3. 
• For an access to a PDE with PAE paging, i = 2*PCD+PWT, where the PCD and PWT values come from the 

relevant PDPTE register.
• For an access to a paging-structure entry X whose address is in another paging-structure entry Y, i = 

2*PCD+PWT, where the PCD and PWT values come from Y.
• For an access to the physical address that is the translation of a linear address, i = 4*PAT+2*PCD+PWT, where 

the PAT, PCD, and PWT values come from the relevant PTE (if the translation uses a 4-KByte page), the relevant 
PDE (if the translation uses a 2-MByte page or a 4-MByte page), or the relevant PDPTE (if the translation uses 
a 1-GByte page).

• With PAE paging, the WB memory type is used when loading the PDPTEs (see Section 5.4.1).1

1. Some older IA-32 processors used the UC memory type when loading the PDPTEs. Some processors may use the UC memory type if 
CR0.CD = 1 or if the MTRRs are disabled. These behaviors are model-specific and not architectural.
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5.9.3 Caching Paging-Related Information about Memory Typing
A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see 
Section 5.10). These structures may include information about memory typing. The processor may use memory-
typing information from the TLBs and paging-structure caches instead of from the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change the memory-typing bits, the 
processor might not use that change for a subsequent translation using that entry or for access to an affected 
linear address. See Section 5.10.4.2 for how software can ensure that the processor uses the modified memory 
typing.

5.10 CACHING TRANSLATION INFORMATION
The Intel-64 and IA-32 architectures may accelerate the address-translation process by caching data from the 
paging structures on the processor. Because the processor does not ensure that the data that it caches are always 
consistent with the structures in memory, it is important for software developers to understand how and when the 
processor may cache such data. They should also understand what actions software can take to remove cached 
data that may be inconsistent and when it should do so. This section provides software developers information 
about the relevant processor operation.

Section 5.10.1 introduces process-context identifiers (PCIDs), which a logical processor may use to distinguish 
information cached for different linear-address spaces. Section 5.10.2 and Section 5.10.3 describe how the 
processor may cache information in translation lookaside buffers (TLBs) and paging-structure caches, respectively. 
Section 5.10.4 explains how software can remove inconsistent cached information by invalidating portions of the 
TLBs and paging-structure caches. Section 5.10.5 describes special considerations for multiprocessor systems.

5.10.1 Process-Context Identifiers (PCIDs)
Process-context identifiers (PCIDs) are a facility by which a logical processor may cache information for multiple 
linear-address spaces. The processor may retain cached information when software switches to a different linear-
address space with a different PCID (e.g., by loading CR3; see Section 5.10.4.1 for details).

A PCID is a 12-bit identifier. Non-zero PCIDs are enabled by setting the PCIDE flag (bit 17) of CR4. If CR4.PCIDE = 
0, the current PCID is always 000H; otherwise, the current PCID is the value of bits 11:0 of CR3.1 Not all proces-
sors allow CR4.PCIDE to be set to 1; see Section 5.1.4 for how to determine whether this is allowed.

The processor ensures that CR4.PCIDE can be 1 only in IA-32e mode (thus, 32-bit paging and PAE paging use only 
PCID 000H). In addition, software can change CR4.PCIDE from 0 to 1 only if CR3[11:0] = 000H. These require-
ments are enforced by the following limitations on the MOV CR instruction:
• MOV to CR4 causes a general-protection exception (#GP) if it would change CR4.PCIDE from 0 to 1 and either 

IA32_EFER.LMA = 0 or CR3[11:0] ≠ 000H.
• MOV to CR0 causes a general-protection exception if it would clear CR0.PG to 0 while CR4.PCIDE = 1.

When a logical processor creates entries in the TLBs (Section 5.10.2) and paging-structure caches (Section 
5.10.3), it associates those entries with the current PCID. When using entries in the TLBs and paging-structure 
caches to translate a linear address, a logical processor uses only those entries associated with the current PCID 
(see Section 5.10.2.4 for an exception).

If CR4.PCIDE = 0, a logical processor does not cache information for any PCID other than 000H. This is because 
(1) if CR4.PCIDE = 0, the logical processor will associate any newly cached information with the current PCID, 
000H; and (2) if MOV to CR4 clears CR4.PCIDE, all cached information is invalidated (see Section 5.10.4.1).

1. Note that, while HLAT paging (Section 5.5.3) does not use CR3 to locate the first paging structure, it does use the PCID in CR3[11:0] 
when CR4.PCIDE = 1.
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NOTE
In revisions of this manual that were produced when no processors allowed CR4.PCIDE to be set to 
1, Section 5.10, “Caching Translation Information,” discussed the caching of translation information 
without any reference to PCIDs. While the section now refers to PCIDs in its specification of this 
caching, this documentation change is not intended to imply any change to the behavior of 
processors that do not allow CR4.PCIDE to be set to 1.

5.10.2 Translation Lookaside Buffers (TLBs)
A processor may cache information about the translation of linear addresses in translation lookaside buffers (TLBs). 
In general, TLBs contain entries that map page numbers to page frames; these terms are defined in Section 
5.10.2.1. Section 5.10.2.2 describes how information may be cached in TLBs, and Section 5.10.2.3 gives details of 
TLB usage. Section 5.10.2.4 explains the global-page feature, which allows software to indicate that certain trans-
lations should receive special treatment when cached in the TLBs.

5.10.2.1  Page Numbers, Page Frames, and Page Offsets
Section 5.3, Section 5.4.2, and Section 5.5 give details of how the different paging modes translate linear 
addresses to physical addresses. Specifically, the upper bits of a linear address (called the page number) deter-
mine the upper bits of the physical address (called the page frame); the lower bits of the linear address (called the 
page offset) determine the lower bits of the physical address. The boundary between the page number and the 
page offset is determined by the page size. Specifically:
• 32-bit paging:

— If the translation does not use a PTE (because CR4.PSE = 1 and the PS flag is 1 in the PDE used), the page 
size is 4 MBytes and the page number comprises bits 31:22 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 31:12 of 
the linear address.

• PAE paging:

— If the translation does not use a PTE (because the PS flag is 1 in the PDE used), the page size is 2 MBytes 
and the page number comprises bits 31:21 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 31:12 of 
the linear address.

• 4-level paging and 5-level paging:

— If the translation does not use a PDE (because the PS flag is 1 in the PDPTE used), the page size is 1 GByte 
and the page number comprises bits 47:30 of the linear address.

— If the translation does use a PDE but does not uses a PTE (because the PS flag is 1 in the PDE used), the 
page size is 2 MBytes and the page number comprises bits 47:21 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 47:12 of 
the linear address.

— The page size identified by the preceding items may be reduced if there has been a restart of HLAT paging 
(see Section 5.5.5). Restart of HLAT paging always specifies a maximum page size; this page size is 
determined by the level of the paging-structure entry that caused the restart. The page size used by the 
translation is the minimum of the maximum page size specified by the restart and the page size determined 
by the restarted translation (as specified by the previous items).

For example, suppose that HLAT paging encounters a PDE that sets bit 11, indicating a restart. As a result, 
the restart uses a maximum page size of 2 MBytes. Suppose that the restarted translation encounters a 
PDPTE that sets bit 7, indicating a 1-GByte page. In this case, the translation produced will have a page size 
of 2 MBytes (the smaller of the two sizes).
5-42 Vol. 3A



PAGING
5.10.2.2  Caching Translations in TLBs
The processor may accelerate the paging process by caching individual translations in translation lookaside 
buffers (TLBs). Each entry in a TLB is an individual translation. Each translation is referenced by a page number. 
It contains the following information from the paging-structure entries used to translate linear addresses with the 
page number:
• The physical address corresponding to the page number (the page frame).
• The access rights from the paging-structure entries used to translate linear addresses with the page number 

(see Section 5.6):

— The logical-AND of the R/W flags.

— The logical-AND of the U/S flags.

— The logical-OR of the XD flags (necessary only if IA32_EFER.NXE = 1).

— The protection key (only with 4-level paging and 5-level paging).
• Attributes from a paging-structure entry that identifies the final page frame for the page number (either a PTE 

or a paging-structure entry in which the PS flag is 1):

— The dirty flag (see Section 5.8).

— The memory type (see Section 5.9).

(TLB entries may contain other information as well. A processor may implement multiple TLBs, and some of these 
may be for special purposes, e.g., only for instruction fetches. Such special-purpose TLBs may not contain some of 
this information if it is not necessary. For example, a TLB used only for instruction fetches need not contain infor-
mation about the R/W and dirty flags.)

As noted in Section 5.10.1, any TLB entries created by a logical processor are associated with the current PCID.

Processors need not implement any TLBs. Processors that do implement TLBs may invalidate any TLB entry at any 
time. Software should not rely on the existence of TLBs or on the retention of TLB entries.

5.10.2.3  Details of TLB Use
Because the TLBs cache entries only for linear addresses with translations, there can be a TLB entry for a page 
number only if the P flag is 1 and the reserved bits are 0 in each of the paging-structure entries used to translate 
that page number. In addition, the processor does not cache a translation for a page number unless the accessed 
flag is 1 in each of the paging-structure entries used during translation; before caching a translation, the processor 
sets any of these accessed flags that is not already 1.

Subject to the limitations given in the previous paragraph, the processor may cache a translation for any linear 
address, even if that address is not used to access memory. For example, the processor may cache translations 
required for prefetches and for accesses that result from speculative execution that would never actually occur in 
the executed code path.

If the page number of a linear address corresponds to a TLB entry associated with the current PCID, the processor 
may use that TLB entry to determine the page frame, access rights, and other attributes for accesses to that linear 
address. In this case, the processor may not actually consult the paging structures in memory. The processor may 
retain a TLB entry unmodified even if software subsequently modifies the relevant paging-structure entries in 
memory. See Section 5.10.4.2 for how software can ensure that the processor uses the modified paging-structure 
entries.

If the paging structures specify a translation using a page larger than 4 KBytes, some processors may cache 
multiple smaller-page TLB entries for that translation. Each such TLB entry would be associated with a page 
number corresponding to the smaller page size (e.g., bits 47:12 of a linear address with 4-level paging), even 
though part of that page number (e.g., bits 20:12) is part of the offset with respect to the page specified by the 
paging structures. The upper bits of the physical address in such a TLB entry are derived from the physical address 
in the PDE used to create the translation, while the lower bits come from the linear address of the access for which 
the translation is created. There is no way for software to be aware that multiple translations for smaller pages 
have been used for a large page. For example, an execution of INVLPG for a linear address on such a page invali-
dates any and all smaller-page TLB entries for the translation of any linear address on that page.
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If software modifies the paging structures so that the page size used for a 4-KByte range of linear addresses 
changes, the TLBs may subsequently contain multiple translations for the address range (one for each page size). 
A reference to a linear address in the address range may use any of these translations. Which translation is used 
may vary from one execution to another, and the choice may be implementation-specific.

5.10.2.4  Global Pages
The Intel-64 and IA-32 architectures also allow for global pages when the PGE flag (bit 7) is 1 in CR4. If the G flag 
(bit 8) is 1 in a paging-structure entry that maps a page (either a PTE or a paging-structure entry in which the PS 
flag is 1), any TLB entry cached for a linear address using that paging-structure entry is considered to be global. 
Because the G flag is used only in paging-structure entries that map a page, and because information from such 
entries is not cached in the paging-structure caches, the global-page feature does not affect the behavior of the 
paging-structure caches.

A logical processor may use a global TLB entry to translate a linear address, even if the TLB entry is associated with 
a PCID different from the current PCID.

5.10.3 Paging-Structure Caches
In addition to the TLBs, a processor may cache other information about the paging structures in memory.

5.10.3.1  Caches for Paging Structures
A processor may support any or all of the following paging-structure caches:
• PML5E cache (5-level paging only). Each PML5E-cache entry is referenced by a 9-bit value and is used for 

linear addresses for which bits 56:48 have that value. The entry contains information from the PML5E used to 
translate such linear addresses:

— The physical address from the PML5E (the address of the PML4 table).

— The value of the R/W flag of the PML5E.

— The value of the U/S flag of the PML5E.

— The value of the XD flag of the PML5E.

— The values of the PCD and PWT flags of the PML5E.
The following items detail how a processor may use the PML5E cache:

— If the processor has a PML5E-cache entry for a linear address, it may use that entry when translating the 
linear address (instead of the PML5E in memory).

— The processor does not create a PML5E-cache entry unless the P flag is 1 and all reserved bits are 0 in the 
PML5E in memory.

— The processor does not create a PML5E-cache entry unless the accessed flag is 1 in the PML5E in memory; 
before caching a translation, the processor sets the accessed flag if it is not already 1.

— The processor may create a PML5E-cache entry even if there are no translations for any linear address that 
might use that entry (e.g., because the P flags are 0 in all entries in the referenced PML4 table).

— If the processor creates a PML5E-cache entry, the processor may retain it unmodified even if software 
subsequently modifies the corresponding PML5E in memory.

• PML4E cache (4-level paging and 5-level paging only). The use of the PML4E cache depends on the paging 
mode:

— For 4-level paging, each PML4E-cache entry is referenced by a 9-bit value and is used for linear addresses 
for which bits 47:39 have that value.

— For 5-level paging, each PML4E-cache entry is referenced by an 18-bit value and is used for linear 
addresses for which bits 56:39 have that value.

A PML4E-cache entry contains information from the PML5E and PML4E used to translate the relevant linear 
addresses (for 4-level paging, the PML5E does not apply):
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— The physical address from the PML4E (the address of the page-directory-pointer table).

— The logical-AND of the R/W flags in the PML5E and the PML4E.

— The logical-AND of the U/S flags in the PML5E and the PML4E.

— The logical-OR of the XD flags in the PML5E and the PML4E.

— The values of the PCD and PWT flags of the PML4E.
The following items detail how a processor may use the PML4E cache:

— If the processor has a PML4E-cache entry for a linear address, it may use that entry when translating the 
linear address (instead of the PML5E and PML4E in memory).

— The processor does not create a PML4E-cache entry unless the P flags are 1 and all reserved bits are 0 in 
the PML5E and the PML4E in memory.

— The processor does not create a PML4E-cache entry unless the accessed flags are 1 in the PML5E and the 
PML4E in memory; before caching a translation, the processor sets any accessed flags that are not already 
1.

— The processor may create a PML4E-cache entry even if there are no translations for any linear address that 
might use that entry (e.g., because the P flags are 0 in all entries in the referenced page-directory-pointer 
table).

— If the processor creates a PML4E-cache entry, the processor may retain it unmodified even if software 
subsequently modifies the corresponding PML4E in memory.

• PDPTE cache (4-level paging and 5-level paging only).1 The use of the PML4E cache depends on the paging 
mode:

— For 4-level paging, each PDPTE-cache entry is referenced by an 18-bit value and is used for linear 
addresses for which bits 47:30 have that value.

— For 5-level paging, each PDPTE-cache entry is referenced by a 27-bit value and is used for linear addresses 
for which bits 56:30 have that value.

A PDPTE-cache entry contains information from the PML5E, PML4E, PDPTE used to translate the relevant linear 
addresses (for 4-level paging, the PML5E does not apply):

— The physical address from the PDPTE (the address of the page directory). (No PDPTE-cache entry is created 
for a PDPTE that maps a 1-GByte page.)

— The logical-AND of the R/W flags in the PML5E, PML4E, and PDPTE.

— The logical-AND of the U/S flags in the PML5E, PML4E, and PDPTE.

— The logical-OR of the XD flags in the PML5E, PML4E, and PDPTE.

— The values of the PCD and PWT flags of the PDPTE.
The following items detail how a processor may use the PDPTE cache:

— If the processor has a PDPTE-cache entry for a linear address, it may use that entry when translating the 
linear address (instead of the PML5E, PML4E, and PDPTE in memory).

— The processor does not create a PDPTE-cache entry unless the P flags are 1, the PS flags are 0, and the 
reserved bits are 0 in the PML5E, PML4E, and PDPTE in memory.

— The processor does not create a PDPTE-cache entry unless the accessed flags are 1 in the PML5E, PML4E, 
and PDPTE in memory; before caching a translation, the processor sets any accessed flags that are not 
already 1.

— The processor may create a PDPTE-cache entry even if there are no translations for any linear address that 
might use that entry.

— If the processor creates a PDPTE-cache entry, the processor may retain it unmodified even if software 
subsequently modifies the corresponding PML5E, PML4E, or PDPTE in memory.

1. With PAE paging, the PDPTEs are stored in internal, non-architectural registers. The operation of these registers is described in Sec-
tion 5.4.1 and differs from that described here.
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• PDE cache. The use of the PDE cache depends on the paging mode:

— For 32-bit paging, each PDE-cache entry is referenced by a 10-bit value and is used for linear addresses for 
which bits 31:22 have that value.

— For PAE paging, each PDE-cache entry is referenced by an 11-bit value and is used for linear addresses for 
which bits 31:21 have that value.

— For 4-level paging, each PDE-cache entry is referenced by a 27-bit value and is used for linear addresses for 
which bits 47:21 have that value.

— For 5-level paging, each PDE-cache entry is referenced by a 36-bit value and is used for linear addresses for 
which bits 56:21 have that value.

A PDE-cache entry contains information from the PML5E, PML4E, PDPTE, and PDE used to translate the relevant 
linear addresses (for 32-bit paging and PAE paging, only the PDE applies; for 4-level paging, the PML5E does 
not apply):

— The physical address from the PDE (the address of the page table). (No PDE-cache entry is created for a 
PDE that maps a page.)

— The logical-AND of the R/W flags in the PML5E, PML4E, PDPTE, and PDE.

— The logical-AND of the U/S flags in the PML5E, PML4E, PDPTE, and PDE.

— The logical-OR of the XD flags in the PML5E, PML4E, PDPTE, and PDE.

— The values of the PCD and PWT flags of the PDE.
The following items detail how a processor may use the PDE cache (references below to PML5Es, PML4Es, and 
PDPTEs apply only to 4-level paging and to 5-level paging, as appropriate):

— If the processor has a PDE-cache entry for a linear address, it may use that entry when translating the 
linear address (instead of the PML5E, PML4E, PDPTE, and PDE in memory).

— The processor does not create a PDE-cache entry unless the P flags are 1, the PS flags are 0, and the 
reserved bits are 0 in the PML5E, PML4E, PDPTE, and PDE in memory.

— The processor does not create a PDE-cache entry unless the accessed flag is 1 in the PML5E, PML4E, PDPTE, 
and PDE in memory; before caching a translation, the processor sets any accessed flags that are not 
already 1.

— The processor may create a PDE-cache entry even if there are no translations for any linear address that 
might use that entry.

— If the processor creates a PDE-cache entry, the processor may retain it unmodified even if software subse-
quently modifies the corresponding PML5E, PML4E, PDPTE, or PDE in memory.

Information from a paging-structure entry can be included in entries in the paging-structure caches for other 
paging-structure entries referenced by the original entry. For example, if the R/W flag is 0 in a PML4E, then the R/W 
flag will be 0 in any PDPTE-cache entry for a PDPTE from the page-directory-pointer table referenced by that 
PML4E. This is because the R/W flag of each such PDPTE-cache entry is the logical-AND of the R/W flags in the 
appropriate PML4E and PDPTE.

On processors that support HLAT paging (see Section 5.5.1), each entry in a paging-structure cache indicates 
whether the entry was cached during ordinary paging or HLAT paging. When the processor commences linear-
address translation using ordinary paging (respectively, HLAT paging), it will use only entries that indicate that they 
were cached during ordinary paging (respectively, HLAT paging).

Entries that were cached during HLAT paging also include the restart flag (bit 11) of the original paging-structure 
entry. When the processor commences HLAT paging using such an entry, it immediately restarts (using ordinary 
paging) if this cached restart flag is 1.

The paging-structure caches contain information only from paging-structure entries that reference other paging 
structures (and not those that map pages). Because the G flag is not used in such paging-structure entries, the 
global-page feature does not affect the behavior of the paging-structure caches.

The processor may create entries in paging-structure caches for translations required for prefetches and for 
accesses that are a result of speculative execution that would never actually occur in the executed code path.
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As noted in Section 5.10.1, any entries created in paging-structure caches by a logical processor are associated 
with the current PCID.

A processor may or may not implement any of the paging-structure caches. Software should rely on neither their 
presence nor their absence. The processor may invalidate entries in these caches at any time. Because the 
processor may create the cache entries at the time of translation and not update them following subsequent modi-
fications to the paging structures in memory, software should take care to invalidate the cache entries appropri-
ately when causing such modifications. The invalidation of TLBs and the paging-structure caches is described in 
Section 5.10.4.

5.10.3.2  Using the Paging-Structure Caches to Translate Linear Addresses
When a linear address is accessed, the processor uses a procedure such as the following to determine the physical 
address to which it translates and whether the access should be allowed:
• If the processor finds a TLB entry that is for the page number of the linear address and that is associated with 

the current PCID (or which is global), it may use the physical address, access rights, and other attributes from 
that entry.

• If the processor does not find a relevant TLB entry, it may use the upper bits of the linear address to select an 
entry from the PDE cache that is associated with the current PCID (Section 5.10.3.1 indicates which bits are 
used in each paging mode). It can then use that entry to complete the translation process (locating a PTE, etc.) 
as if it had traversed the PDE (and, for 4-level paging and 5-level paging, the PDPTE, PML4E, and PML5E, as 
appropriate) corresponding to the PDE-cache entry.

• The following items apply when 4-level paging or 5-level paging is used:

— If the processor does not find a relevant TLB entry or PDE-cache entry, it may use the upper bits of the 
linear address (for 4-level paging, bits 47:30; for 5-level paging, bits 56:30) to select an entry from the 
PDPTE cache that is associated with the current PCID. It can then use that entry to complete the translation 
process (locating a PDE, etc.) as if it had traversed the PDPTE, the PML4E, and (for 5-level paging) the 
PML5E corresponding to the PDPTE-cache entry.

— If the processor does not find a relevant TLB entry, PDE-cache entry, or PDPTE-cache entry, it may use the 
upper bits of the linear address (for 4-level paging, bits 47:39; for 5-level paging, bits 56:39) to select an 
entry from the PML4E cache that is associated with the current PCID. It can then use that entry to complete 
the translation process (locating a PDPTE, etc.) as if it had traversed the corresponding PML4E.

— With 5-level paging, if the processor does not find a relevant TLB entry, PDE-cache entry, PDPTE-cache 
entry, or PML4E-cache entry, it may use bits 56:48 of the linear address to select an entry from the PML5E 
cache that is associated with the current PCID. It can then use that entry to complete the translation 
process (locating a PML4E, etc.) as if it had traversed the corresponding PML5E.

(Any of the above steps would be skipped if the processor does not support the cache in question.)

If the processor does not find a TLB or paging-structure-cache entry for the linear address, it uses the linear 
address to traverse the entire paging-structure hierarchy, as described in Section 5.3, Section 5.4.2, and Section 
5.5.

5.10.3.3  Multiple Cached Entries for a Single Paging-Structure Entry
The paging-structure caches and TLBs may contain multiple entries associated with a single PCID and with infor-
mation derived from a single paging-structure entry. The following items give some examples for 4-level paging:
• Suppose that two PML4Es contain the same physical address and thus reference the same page-directory-

pointer table. Any PDPTE in that table may result in two PDPTE-cache entries, each associated with a different 
set of linear addresses. Specifically, suppose that the n1

th and n2
th entries in the PML4 table contain the same 

physical address. This implies that the physical address in the mth PDPTE in the page-directory-pointer table 
would appear in the PDPTE-cache entries associated with both p1 and p2, where (p1 » 9) = n1, (p2 » 9) = n2, 
and (p1 & 1FFH) = (p2 & 1FFH) = m. This is because both PDPTE-cache entries use the same PDPTE, one 
resulting from a reference from the n1

th PML4E and one from the n2
th PML4E.

• Suppose that the first PML4E (i.e., the one in position 0) contains the physical address X in CR3 (the physical 
address of the PML4 table). This implies the following:
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— Any PML4-cache entry associated with linear addresses with 0 in bits 47:39 contains address X.

— Any PDPTE-cache entry associated with linear addresses with 0 in bits 47:30 contains address X. This is 
because the translation for a linear address for which the value of bits 47:30 is 0 uses the value of 
bits 47:39 (0) to locate a page-directory-pointer table at address X (the address of the PML4 table). It then 
uses the value of bits 38:30 (also 0) to find address X again and to store that address in the PDPTE-cache 
entry.

— Any PDE-cache entry associated with linear addresses with 0 in bits 47:21 contains address X for similar 
reasons.

— Any TLB entry for page number 0 (associated with linear addresses with 0 in bits 47:12) translates to page 
frame X » 12 for similar reasons.

The same PML4E contributes its address X to all these cache entries because the self-referencing nature of the 
entry causes it to be used as a PML4E, a PDPTE, a PDE, and a PTE.

5.10.4 Invalidation of TLBs and Paging-Structure Caches
As noted in Section 5.10.2 and Section 5.10.3, the processor may create entries in the TLBs and the paging-struc-
ture caches when linear addresses are translated, and it may retain these entries even after the paging structures 
used to create them have been modified. To ensure that linear-address translation uses the modified paging struc-
tures, software should take action to invalidate any cached entries that may contain information that has since 
been modified.

5.10.4.1  Operations that Invalidate TLBs and Paging-Structure Caches
The following instructions invalidate entries in the TLBs and the paging-structure caches:
• INVLPG. This instruction takes a single operand, which is a linear address. The instruction invalidates any TLB 

entries that are for a page number corresponding to the linear address and that are associated with the current 
PCID. It also invalidates any global TLB entries with that page number, regardless of PCID (see Section 
5.10.2.4).1 INVLPG also invalidates all entries in all paging-structure caches associated with the current PCID, 
regardless of the linear addresses to which they correspond.

• INVPCID. The operation of this instruction is based on instruction operands, called the INVPCID type and the 
INVPCID descriptor. Four INVPCID types are currently defined:

— Individual-address. If the INVPCID type is 0, the logical processor invalidates mappings—except global 
translations—associated with the PCID specified in the INVPCID descriptor and that would be used to 
translate the linear address specified in the INVPCID descriptor.2 (The instruction may also invalidate global 
translations, as well as mappings associated with other PCIDs and for other linear addresses.)

— Single-context. If the INVPCID type is 1, the logical processor invalidates all mappings—except global 
translations—associated with the PCID specified in the INVPCID descriptor. (The instruction may also 
invalidate global translations, as well as mappings associated with other PCIDs.)

— All-context, including globals. If the INVPCID type is 2, the logical processor invalidates 
mappings—including global translations—associated with all PCIDs.

— All-context. If the INVPCID type is 3, the logical processor invalidates mappings—except global transla-
tions—associated with all PCIDs. (The instruction may also invalidate global translations.)

See Chapter 3 of the Intel 64 and IA-32 Architecture Software Developer’s Manual, Volume 2A for details of the 
INVPCID instruction.

• MOV to CR0. The instruction invalidates all TLB entries (including global entries) and all entries in all paging-
structure caches (for all PCIDs) if it changes the value of CR0.PG from 1 to 0.

• MOV to CR3. The behavior of the instruction depends on the value of CR4.PCIDE:

1. If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page 
(see Section 5.10.2.3), the instruction invalidates all of them.

2. If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page 
(see Section 5.10.2.3), the instruction invalidates all of them.
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— If CR4.PCIDE = 0, the instruction invalidates all TLB entries associated with PCID 000H except those for 
global pages. It also invalidates all entries in all paging-structure caches associated with PCID 000H.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 0, the instruction invalidates all TLB 
entries associated with the PCID specified in bits 11:0 of the instruction’s source operand except those for 
global pages. It also invalidates all entries in all paging-structure caches associated with that PCID. It is not 
required to invalidate entries in the TLBs and paging-structure caches that are associated with other PCIDs.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 1, the instruction is not required to 
invalidate any TLB entries or entries in paging-structure caches.

• MOV to CR4. The behavior of the instruction depends on the bits being modified:

— The instruction invalidates all TLB entries (including global entries) and all entries in all paging-structure 
caches (for all PCIDs) if (1) it changes the value of CR4.PGE;1 or (2) it changes the value of the CR4.PCIDE 
from 1 to 0.

— The instruction invalidates all TLB entries and all entries in all paging-structure caches for the current PCID 
if (1) it changes the value of CR4.PAE; or (2) it changes the value of CR4.SMEP from 0 to 1.

• Task switch. If a task switch changes the value of CR3, it invalidates all TLB entries associated with PCID 000H 
except those for global pages. It also invalidates all entries in all paging-structure caches associated with PCID 
000H.2

• VMX transitions. See Section 5.11.1.

The processor is always free to invalidate additional entries in the TLBs and paging-structure caches. The following 
are some examples:
• INVLPG may invalidate TLB entries for pages other than the one corresponding to its linear-address operand. It 

may invalidate TLB entries and paging-structure-cache entries associated with PCIDs other than the current 
PCID.

• INVPCID may invalidate TLB entries for pages other than the one corresponding to the specified linear address. 
It may invalidate TLB entries and paging-structure-cache entries associated with PCIDs other than the 
specified PCID.

• MOV to CR0 may invalidate TLB entries even if CR0.PG is not changing. For example, this may occur if either 
CR0.CD or CR0.NW is modified.

• MOV to CR3 may invalidate TLB entries for global pages. If CR4.PCIDE = 1 and bit 63 of the instruction’s source 
operand is 0, it may invalidate TLB entries and entries in the paging-structure caches associated with PCIDs 
other than the PCID it is establishing. It may invalidate entries if CR4.PCIDE = 1 and bit 63 of the instruction’s 
source operand is 1. 

• MOV to CR4 may invalidate TLB entries when changing CR4.PSE or when changing CR4.SMEP from 1 to 0.
• On a processor supporting Hyper-Threading Technology, invalidations performed on one logical processor may 

invalidate entries in the TLBs and paging-structure caches used by other logical processors.

(Other instructions and operations may invalidate entries in the TLBs and the paging-structure caches, but the 
instructions identified above are recommended.)

In addition to the instructions identified above, page faults invalidate entries in the TLBs and paging-structure 
caches. In particular, a page-fault exception resulting from an attempt to use a linear address will invalidate any 
TLB entries that are for a page number corresponding to that linear address and that are associated with the 
current PCID. It also invalidates all entries in the paging-structure caches that would be used for that linear address 
and that are associated with the current PCID.3 These invalidations ensure that the page-fault exception will not 
recur (if the faulting instruction is re-executed) if it would not be caused by the contents of the paging structures 

1. If CR4.PGE is changing from 0 to 1, there were no global TLB entries before the execution; if CR4.PGE is changing from 1 to 0, there 
will be no global TLB entries after the execution.

2. Task switches do not occur in IA-32e mode and thus cannot occur with 4-level paging. Since CR4.PCIDE can be set only with 4-level 
paging, task switches occur only with CR4.PCIDE = 0.

3. Unlike INVLPG, page faults need not invalidate all entries in the paging-structure caches, only those that would be used to translate 
the faulting linear address.
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in memory (and if, therefore, it resulted from cached entries that were not invalidated after the paging structures 
were modified in memory).

As noted in Section 5.10.2, some processors may choose to cache multiple smaller-page TLB entries for a transla-
tion specified by the paging structures to use a page larger than 4 KBytes. There is no way for software to be aware 
that multiple translations for smaller pages have been used for a large page. The INVLPG instruction and page 
faults provide the same assurances that they provide when a single TLB entry is used: they invalidate all TLB 
entries corresponding to the translation specified by the paging structures.

5.10.4.2  Recommended Invalidation
The following items provide some recommendations regarding when software should perform invalidations:
• If software modifies a paging-structure entry that maps a page (rather than referencing another paging 

structure), it should execute INVLPG for any linear address with a page number whose translation uses that 
paging-structure entry.1

(If the paging-structure entry may be used in the translation of different page numbers — see Section 5.10.3.3 
— software should execute INVLPG for linear addresses with each of those page numbers; alternatively, it could 
use MOV to CR3 or MOV to CR4.)

• If software modifies a paging-structure entry that references another paging structure, it may use one of the 
following approaches depending upon the types and number of translations controlled by the modified entry:

— Execute INVLPG for linear addresses with each of the page numbers with translations that would use the 
entry. However, if no page numbers that would use the entry have translations (e.g., because the P flags are 
0 in all entries in the paging structure referenced by the modified entry), it remains necessary to execute 
INVLPG at least once.

— Execute MOV to CR3 if the modified entry controls no global pages.

— Execute MOV to CR4 to modify CR4.PGE.
• If CR4.PCIDE = 1 and software modifies a paging-structure entry that does not map a page or in which the G 

flag (bit 8) is 0, additional steps are required if the entry may be used for PCIDs other than the current one. Any 
one of the following suffices:

— Execute MOV to CR4 to modify CR4.PGE, either immediately or before again using any of the affected 
PCIDs. For example, software could use different (previously unused) PCIDs for the processes that used the 
affected PCIDs.

— For each affected PCID, execute MOV to CR3 to make that PCID current (and to load the address of the 
appropriate PML4 table). If the modified entry controls no global pages and bit 63 of the source operand to 
MOV to CR3 was 0, no further steps are required. Otherwise, execute INVLPG for linear addresses with each 
of the page numbers with translations that would use the entry; if no page numbers that would use the 
entry have translations, execute INVLPG at least once.

• If software using PAE paging modifies a PDPTE, it should reload CR3 with the register’s current value to ensure 
that the modified PDPTE is loaded into the corresponding PDPTE register (see Section 5.4.1).

• If the nature of the paging structures is such that a single entry may be used for multiple purposes (see Section 
5.10.3.3), software should perform invalidations for all of these purposes. For example, if a single entry might 
serve as both a PDE and PTE, it may be necessary to execute INVLPG with two (or more) linear addresses, one 
that uses the entry as a PDE and one that uses it as a PTE. (Alternatively, software could use MOV to CR3 or 
MOV to CR4.)

• As noted in Section 5.10.2, the TLBs may subsequently contain multiple translations for the address range if 
software modifies the paging structures so that the page size used for a 4-KByte range of linear addresses 
changes. A reference to a linear address in the address range may use any of these translations.
Software wishing to prevent this uncertainty should not write to a paging-structure entry in a way that would 
change, for any linear address, both the page size and either the page frame, access rights, or other attributes. 
It can instead use the following algorithm: first clear the P flag in the relevant paging-structure entry (e.g., 

1. One execution of INVLPG is sufficient even for a page with size greater than 4 KBytes.
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PDE); then invalidate any translations for the affected linear addresses (see above); and then modify the 
relevant paging-structure entry to set the P flag and establish modified translation(s) for the new page size.

• Software should clear bit 63 of the source operand to a MOV to CR3 instruction that establishes a PCID that had 
been used earlier for a different linear-address space (e.g., with a different value in bits 51:12 of CR3). This 
ensures invalidation of any information that may have been cached for the previous linear-address space.
This assumes that both linear-address spaces use the same global pages and that it is thus not necessary to 
invalidate any global TLB entries. If that is not the case, software should invalidate those entries by executing 
MOV to CR4 to modify CR4.PGE.

5.10.4.3  Optional Invalidation
The following items describe cases in which software may choose not to invalidate and the potential consequences 
of that choice:
• If a paging-structure entry is modified to change the P flag from 0 to 1, no invalidation is necessary. This is 

because no TLB entry or paging-structure cache entry is created with information from a paging-structure 
entry in which the P flag is 0.1

• If a paging-structure entry is modified to change the accessed flag from 0 to 1, no invalidation is necessary 
(assuming that an invalidation was performed the last time the accessed flag was changed from 1 to 0). This is 
because no TLB entry or paging-structure cache entry is created with information from a paging-structure 
entry in which the accessed flag is 0.

• If a paging-structure entry is modified to change the R/W flag from 0 to 1, failure to perform an invalidation 
may result in a “spurious” page-fault exception (e.g., in response to an attempted write access) but no other 
adverse behavior. Such an exception will occur at most once for each affected linear address (see Section 
5.10.4.1).

• If CR4.SMEP = 0 and a paging-structure entry is modified to change the U/S flag from 0 to 1, failure to perform 
an invalidation may result in a “spurious” page-fault exception (e.g., in response to an attempted user-mode 
access) but no other adverse behavior. Such an exception will occur at most once for each affected linear 
address (see Section 5.10.4.1).

• If a paging-structure entry is modified to change the XD flag from 1 to 0, failure to perform an invalidation may 
result in a “spurious” page-fault exception (e.g., in response to an attempted instruction fetch) but no other 
adverse behavior. Such an exception will occur at most once for each affected linear address (see Section 
5.10.4.1).

• If a paging-structure entry is modified to change the accessed flag from 1 to 0, failure to perform an invali-
dation may result in the processor not setting that bit in response to a subsequent access to a linear address 
whose translation uses the entry. Software cannot interpret the bit being clear as an indication that such an 
access has not occurred.

• If software modifies a paging-structure entry that identifies the final physical address for a linear address 
(either a PTE or a paging-structure entry in which the PS flag is 1) to change the dirty flag from 1 to 0, failure 
to perform an invalidation may result in the processor not setting that bit in response to a subsequent write to 
a linear address whose translation uses the entry. Software cannot interpret the bit being clear as an indication 
that such a write has not occurred.

• The read of a paging-structure entry in translating an address being used to fetch an instruction may appear to 
execute before an earlier write to that paging-structure entry if there is no serializing instruction between the 
write and the instruction fetch. Note that the invalidating instructions identified in Section 5.10.4.1 are all 
serializing instructions.

• Section 5.10.3.3 describes situations in which a single paging-structure entry may contain information cached 
in multiple entries in the paging-structure caches. Because all entries in these caches are invalidated by any 
execution of INVLPG, it is not necessary to follow the modification of such a paging-structure entry by 
executing INVLPG multiple times solely for the purpose of invalidating these multiple cached entries. (It may be 
necessary to do so to invalidate multiple TLB entries.)

1. If it is also the case that no invalidation was performed the last time the P flag was changed from 1 to 0, the processor may use a 
TLB entry or paging-structure cache entry that was created when the P flag had earlier been 1.
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5.10.4.4  Delayed Invalidation
Required invalidations may be delayed under some circumstances. Software developers should understand that, 
between the modification of a paging-structure entry and execution of the invalidation instruction recommended in 
Section 5.10.4.2, the processor may use translations based on either the old value or the new value of the paging-
structure entry. The following items describe some of the potential consequences of delayed invalidation:
• If a paging-structure entry is modified to change the P flag from 1 to 0, an access to a linear address whose 

translation is controlled by this entry may or may not cause a page-fault exception.
• If a paging-structure entry is modified to change the R/W flag from 0 to 1, write accesses to linear addresses 

whose translation is controlled by this entry may or may not cause a page-fault exception.
• If a paging-structure entry is modified to change the U/S flag from 0 to 1, user-mode accesses to linear 

addresses whose translation is controlled by this entry may or may not cause a page-fault exception.
• If a paging-structure entry is modified to change the XD flag from 1 to 0, instruction fetches from linear 

addresses whose translation is controlled by this entry may or may not cause a page-fault exception.

As noted in Section 10.1.1, an x87 instruction or an SSE instruction that accesses data larger than a quadword may 
be implemented using multiple memory accesses. If such an instruction stores to memory and invalidation has 
been delayed, some of the accesses may complete (writing to memory) while another causes a page-fault excep-
tion.1 In this case, the effects of the completed accesses may be visible to software even though the overall instruc-
tion caused a fault.

In some cases, the consequences of delayed invalidation may not affect software adversely. For example, when 
freeing a portion of the linear-address space (by marking paging-structure entries “not present”), invalidation 
using INVLPG may be delayed if software does not re-allocate that portion of the linear-address space or the 
memory that had been associated with it. However, because of speculative execution (or errant software), there 
may be accesses to the freed portion of the linear-address space before the invalidations occur. In this case, the 
following can happen:
• Reads can occur to the freed portion of the linear-address space. Therefore, invalidation should not be delayed 

for an address range that has read side effects.
• The processor may retain entries in the TLBs and paging-structure caches for an extended period of time. 

Software should not assume that the processor will not use entries associated with a linear address simply 
because time has passed.

• As noted in Section 5.10.3.1, the processor may create an entry in a paging-structure cache even if there are 
no translations for any linear address that might use that entry. Thus, if software has marked “not present” all 
entries in a page table, the processor may subsequently create a PDE-cache entry for the PDE that references 
that page table (assuming that the PDE itself is marked “present”).

• If software attempts to write to the freed portion of the linear-address space, the processor might not generate 
a page fault. (Such an attempt would likely be the result of a software error.) For that reason, the page frames 
previously associated with the freed portion of the linear-address space should not be reallocated for another 
purpose until the appropriate invalidations have been performed.

5.10.5 Propagation of Paging-Structure Changes to Multiple Processors
As noted in Section 5.10.4, software that modifies a paging-structure entry may need to invalidate entries in the 
TLBs and paging-structure caches that were derived from the modified entry before it was modified. In a system 
containing more than one logical processor, software must account for the fact that there may be entries in the 
TLBs and paging-structure caches of logical processors other than the one used to modify the paging-structure 
entry. The process of propagating the changes to a paging-structure entry is commonly referred to as “TLB shoot-
down.”

TLB shootdown can be done using memory-based semaphores and/or interprocessor interrupts (IPI). The following 
items describe a simple but inefficient example of a TLB shootdown algorithm for processors supporting the 
Intel-64 and IA-32 architectures:

1. If the accesses are to different pages, this may occur even if invalidation has not been delayed.
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1. Begin barrier: Stop all but one logical processor; that is, cause all but one to execute the HLT instruction or to 
enter a spin loop.

2. Allow the active logical processor to change the necessary paging-structure entries.

3. Allow all logical processors to perform invalidations appropriate to the modifications to the paging-structure 
entries.

4. Allow all logical processors to resume normal operation.

Alternative, performance-optimized, TLB shootdown algorithms may be developed; however, software developers 
must take care to ensure that the following conditions are met:
• All logical processors that are using the paging structures that are being modified must participate and perform 

appropriate invalidations after the modifications are made.
• If the modifications to the paging-structure entries are made before the barrier or if there is no barrier, the 

operating system must ensure one of the following: (1) that the affected linear-address range is not used 
between the time of modification and the time of invalidation; or (2) that it is prepared to deal with the conse-
quences of the affected linear-address range being used during that period. For example, if the operating 
system does not allow pages being freed to be reallocated for another purpose until after the required invalida-
tions, writes to those pages by errant software will not unexpectedly modify memory that is in use.

• Software must be prepared to deal with reads, instruction fetches, and prefetch requests to the affected linear-
address range that are a result of speculative execution that would never actually occur in the executed code 
path.

When multiple logical processors are using the same linear-address space at the same time, they must coordinate 
before any request to modify the paging-structure entries that control that linear-address space. In these cases, 
the barrier in the TLB shootdown routine may not be required. For example, when freeing a range of linear 
addresses, some other mechanism can assure no logical processor is using that range before the request to free it 
is made. In this case, a logical processor freeing the range can clear the P flags in the PTEs associated with the 
range, free the physical page frames associated with the range, and then signal the other logical processors using 
that linear-address space to perform the necessary invalidations. All the affected logical processors must complete 
their invalidations before the linear-address range and the physical page frames previously associated with that 
range can be reallocated.

5.11 INTERACTIONS WITH VIRTUAL-MACHINE EXTENSIONS (VMX)
The architecture for virtual-machine extensions (VMX) includes features that interact with paging. Section 5.11.1 
discusses ways in which VMX-specific control transfers, called VMX transitions specially affect paging. Section 
5.11.2 gives an overview of VMX features specifically designed to support address translation.

5.11.1 VMX Transitions
The VMX architecture defines two control transfers called VM entries and VM exits; collectively, these are called 
VMX transitions. VM entries and VM exits are described in detail in Chapter 27 and Chapter 28, respectively, in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C. The following items identify 
paging-related details:
• VMX transitions modify the CR0 and CR4 registers and the IA32_EFER MSR concurrently. For this reason, they 

allow transitions between paging modes that would not otherwise be possible:

— VM entries allow transitions from 4-level paging directly to either 32-bit paging or PAE paging.

— VM exits allow transitions from either 32-bit paging or PAE paging directly to 4-level paging or 5-level 
paging.

• VMX transitions that result in PAE paging load the PDPTE registers (see Section 5.4.1) as follows:

— VM entries load the PDPTE registers either from the physical address being loaded into CR3 or from the 
virtual-machine control structure (VMCS); see Section 28.3.2.4.

— VM exits load the PDPTE registers from the physical address being loaded into CR3; see Section 29.5.4.
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• VMX transitions invalidate the TLBs and paging-structure caches based on certain control settings. See Section 
28.3.2.5 and Section 29.5.5 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

5.11.2 VMX Support for Address Translation
Chapter 30, “VMX Support for Address Translation,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3C, describes two features of the virtual-machine extensions (VMX) that interact directly with 
paging. These are virtual-processor identifiers (VPIDs) and the extended page table mechanism (EPT).

VPIDs provide a way for software to identify to the processor the address spaces for different “virtual processors.” 
The processor may use this identification to maintain concurrently information for multiple address spaces in its 
TLBs and paging-structure caches, even when non-zero PCIDs are not being used. See Section 30.1 for details.

When EPT is in use, the addresses in the paging-structures are not used as physical addresses to access memory 
and memory-mapped I/O. Instead, they are treated as guest-physical addresses and are translated through a set 
of EPT paging structures to produce physical addresses. EPT can also specify its own access rights and memory 
typing; these are used on conjunction with those specified in this chapter. See Section 30.3 for more information.

Both VPIDs and EPT may change the way that a processor maintains information in TLBs and paging structure 
caches and the ways in which software can manage that information. Some of the behaviors documented in Section 
5.10 may change. See Section 30.4 for details.

5.12 USING PAGING FOR VIRTUAL MEMORY
With paging, portions of the linear-address space need not be mapped to the physical-address space; data for the 
unmapped addresses can be stored externally (e.g., on disk). This method of mapping the linear-address space is 
referred to as virtual memory or demand-paged virtual memory.

Paging divides the linear address space into fixed-size pages that can be mapped into the physical-address space 
and/or external storage. When a program (or task) references a linear address, the processor uses paging to trans-
late the linear address into a corresponding physical address if such an address is defined.

If the page containing the linear address is not currently mapped into the physical-address space, the processor 
generates a page-fault exception as described in Section 5.7. The handler for page-fault exceptions typically directs 
the operating system or executive to load data for the unmapped page from external storage into physical memory 
(perhaps writing a different page from physical memory out to external storage in the process) and to map it using 
paging (by updating the paging structures). When the page has been loaded into physical memory, a return from 
the exception handler causes the instruction that generated the exception to be restarted.

Paging differs from segmentation through its use of fixed-size pages. Unlike segments, which usually are the same 
size as the code or data structures they hold, pages have a fixed size. If segmentation is the only form of address 
translation used, a data structure present in physical memory will have all of its parts in memory. If paging is used, 
a data structure can be partly in memory and partly in disk storage.

5.13 MAPPING SEGMENTS TO PAGES
The segmentation and paging mechanisms provide support for a wide variety of approaches to memory manage-
ment. When segmentation and paging are combined, segments can be mapped to pages in several ways. To imple-
ment a flat (unsegmented) addressing environment, for example, all the code, data, and stack modules can be 
mapped to one or more large segments (up to 4-GBytes) that share same range of linear addresses (see Figure 3-2 
in Section 3.2.2). Here, segments are essentially invisible to applications and the operating-system or executive. If 
paging is used, the paging mechanism can map a single linear-address space (contained in a single segment) into 
virtual memory. Alternatively, each program (or task) can have its own large linear-address space (contained in its 
own segment), which is mapped into virtual memory through its own paging structures.

Segments can be smaller than the size of a page. If one of these segments is placed in a page which is not shared 
with another segment, the extra memory is wasted. For example, a small data structure, such as a 1-Byte sema-
phore, occupies 4 KBytes if it is placed in a page by itself. If many semaphores are used, it is more efficient to pack 
them into a single page.
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The Intel-64 and IA-32 architectures do not enforce correspondence between the boundaries of pages and 
segments. A page can contain the end of one segment and the beginning of another. Similarly, a segment can 
contain the end of one page and the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some alignment between page and 
segment boundaries. For example, if a segment which can fit in one page is placed in two pages, there may be 
twice as much paging overhead to support access to that segment.

One approach to combining paging and segmentation that simplifies memory-management software is to give 
each segment its own page table, as shown in Figure 5-13. This convention gives the segment a single entry in the 
page directory, and this entry provides the access control information for paging the entire segment.

Figure 5-13.  Memory Management Convention That Assigns a Page Table to Each Segment
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CHAPTER 6
PROTECTION

In protected mode, the Intel 64 and IA-32 architectures provide a protection mechanism that operates at both the 
segment level and the page level. This protection mechanism provides the ability to limit access to certain 
segments or pages based on privilege levels (four privilege levels for segments and two privilege levels for pages). 
For example, critical operating-system code and data can be protected by placing them in more privileged 
segments than those that contain applications code. The processor’s protection mechanism will then prevent appli-
cation code from accessing the operating-system code and data in any but a controlled, defined manner.

Segment and page protection can be used at all stages of software development to assist in localizing and detecting 
design problems and bugs. It can also be incorporated into end-products to offer added robustness to operating 
systems, utilities software, and applications software.

When the protection mechanism is used, each memory reference is checked to verify that it satisfies various 
protection checks. All checks are made before the memory cycle is started; any violation results in an exception. 
Because checks are performed in parallel with address translation, there is no performance penalty. The protection 
checks that are performed fall into the following categories:
• Limit checks.
• Type checks.
• Privilege level checks.
• Restriction of addressable domain.
• Restriction of procedure entry-points.
• Restriction of instruction set.

All protection violation results in an exception being generated. See Chapter 7, “Interrupt and Exception Handling,” 
for an explanation of the exception mechanism. This chapter describes the protection mechanism and the viola-
tions which lead to exceptions.

The following sections describe the protection mechanism available in protected mode. See Chapter 22, “8086 
Emulation,” for information on protection in real-address and virtual-8086 mode.

6.1 ENABLING AND DISABLING SEGMENT AND PAGE PROTECTION
Setting the PE flag in register CR0 causes the processor to switch to protected mode, which in turn enables the 
segment-protection mechanism. Once in protected mode, there is no control bit for turning the protection mecha-
nism on or off. The part of the segment-protection mechanism that is based on privilege levels can essentially be 
disabled while still in protected mode by assigning a privilege level of 0 (most privileged) to all segment selectors 
and segment descriptors. This action disables the privilege level protection barriers between segments, but other 
protection checks such as limit checking and type checking are still carried out.

Page-level protection is automatically enabled when paging is enabled (by setting the PG flag in register CR0). Here 
again there is no mode bit for turning off page-level protection once paging is enabled. However, page-level protec-
tion can be disabled by performing the following operations:
• Clear the WP flag in control register CR0.
• Set the read/write (R/W) and user/supervisor (U/S) flags for each page-directory and page-table entry. 

This action makes each page a writable, user page, which in effect disables page-level protection.
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6.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND PAGE-LEVEL 
PROTECTION

The processor’s protection mechanism uses the following fields and flags in the system data structures to control 
access to segments and pages:
• Descriptor type (S) flag — (Bit 12 in the second doubleword of a segment descriptor.) Determines if the 

segment descriptor is for a system segment or a code or data segment.
• Type field — (Bits 8 through 11 in the second doubleword of a segment descriptor.) Determines the type of 

code, data, or system segment.
• Limit field — (Bits 0 through 15 of the first doubleword and bits 16 through 19 of the second doubleword of a 

segment descriptor.) Determines the size of the segment, along with the G flag and E flag (for data segments).
• G flag — (Bit 23 in the second doubleword of a segment descriptor.) Determines the size of the segment, along 

with the limit field and E flag (for data segments).
• E flag — (Bit 10 in the second doubleword of a data-segment descriptor.) Determines the size of the segment, 

along with the limit field and G flag.
• Descriptor privilege level (DPL) field — (Bits 13 and 14 in the second doubleword of a segment descriptor.) 

Determines the privilege level of the segment.
• Requested privilege level (RPL) field — (Bits 0 and 1 of any segment selector.) Specifies the requested 

privilege level of a segment selector. 
• Current privilege level (CPL) field — (Bits 0 and 1 of the CS segment register.) Indicates the privilege level 

of the currently executing program or procedure. The term current privilege level (CPL) refers to the setting of 
this field.

• User/supervisor (U/S) flag — (Bit 2 of paging-structure entries.) Determines the type of page: user or 
supervisor.

• Read/write (R/W) flag — (Bit 1 of paging-structure entries.) Determines the type of access allowed to a 
page: read-only or read/write.

• Execute-disable (XD) flag — (Bit 63 of certain paging-structure entries.) Determines the type of access 
allowed to a page: executable or not-executable.

Figure 6-1 shows the location of the various fields and flags in the data-, code-, and system-segment descriptors; 
Figure 3-6 shows the location of the RPL (or CPL) field in a segment selector (or the CS register); and Chapter 5 
identifies the locations of the U/S, R/W, and XD flags in the paging-structure entries.
6-2 Vol. 3A



PROTECTION
Many different styles of protection schemes can be implemented with these fields and flags. When the operating 
system creates a descriptor, it places values in these fields and flags in keeping with the particular protection style 
chosen for an operating system or executive. Application programs do not generally access or modify these fields 
and flags. 

The following sections describe how the processor uses these fields and flags to perform the various categories of 
checks described in the introduction to this chapter.

6.2.1 Code-Segment Descriptor in 64-bit Mode
Code segments continue to exist in 64-bit mode even though, for address calculations, the segment base is treated 
as zero. Some code-segment (CS) descriptor content (the base address and limit fields) is ignored; the remaining 
fields function normally (except for the readable bit in the type field). 

Code segment descriptors and selectors are needed in IA-32e mode to establish the processor’s operating mode 
and execution privilege-level. The usage is as follows:

Figure 6-1.  Descriptor Fields Used for Protection

Base 23:16

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type

1
0 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
A
V
L

Limit
19:16B

AWE0

Data-Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type

1
0 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
A
V
L

Limit
19:16D

ARC1

Code-Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type0 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Limit
19:16

System-Segment Descriptor

A

B
C
D
DPL

Accessed

Big
Conforming
Default
Descriptor Privilege Level

Reserved

E
G
R
LIMIT
W
P

Expansion Direction
Granularity
Readable
Segment Limit
Writable
Present

0

AVL Available to Sys. Programmers
Vol. 3A 6-3



PROTECTION
• IA-32e mode uses a previously unused bit in the CS descriptor. Bit 53 is defined as the 64-bit (L) flag and is 
used to select between 64-bit mode and compatibility mode when IA-32e mode is active (IA32_EFER.LMA = 1). 
See Figure 6-2.

— If CS.L = 0 and IA-32e mode is active, the processor is running in compatibility mode. In this case, CS.D 
selects the default size for data and addresses. If CS.D = 0, the default data and address size is 16 bits. If 
CS.D = 1, the default data and address size is 32 bits.

— If CS.L = 1 and IA-32e mode is active, the only valid setting is CS.D = 0. This setting indicates a default 
operand size of 32 bits and a default address size of 64 bits. The CS.L = 1 and CS.D = 1 bit combination is 
reserved for future use and a #GP fault will be generated on an attempt to use a code segment with these 
bits set in IA-32e mode.

• In IA-32e mode, the CS descriptor’s DPL is used for execution privilege checks (as in legacy 32-bit mode).

6.3 LIMIT CHECKING
The limit field of a segment descriptor prevents programs or procedures from addressing memory locations outside 
the segment. The effective value of the limit depends on the setting of the G (granularity) flag (see Figure 6-1). For 
data segments, the limit also depends on the E (expansion direction) flag and the B (default stack pointer size 
and/or upper bound) flag. The E flag is one of the bits in the type field when the segment descriptor is for a data-
segment type.

When the G flag is clear (byte granularity), the effective limit is the value of the 20-bit limit field in the segment 
descriptor. Here, the limit ranges from 0 to FFFFFH (1 MByte). When the G flag is set (4-KByte page granularity), 
the processor scales the value in the limit field by a factor of 212 (4 KBytes). In this case, the effective limit ranges 
from FFFH (4 KBytes) to FFFFFFFFH (4 GBytes). Note that when scaling is used (G flag is set), the lower 12 bits of 
a segment offset (address) are not checked against the limit; for example, note that if the segment limit is 0, 
offsets 0 through FFFH are still valid.

For all types of segments except expand-down data segments, the effective limit is the last address that is allowed 
to be accessed in the segment, which is one less than the size, in bytes, of the segment. The processor causes a 
general-protection exception (or, if the segment is SS, a stack-fault exception) any time an attempt is made to 
access the following addresses in a segment:
• A byte at an offset greater than the effective limit
• A word at an offset greater than the (effective-limit – 1)
• A doubleword at an offset greater than the (effective-limit – 3)
• A quadword at an offset greater than the (effective-limit – 7)

Figure 6-2.  Descriptor Fields with Flags used in IA-32e Mode
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• A double quadword at an offset greater than the (effective limit – 15)

When the effective limit is FFFFFFFFH (4 GBytes), these accesses may or may not cause the indicated exceptions. 
Behavior is implementation-specific and may vary from one execution to another.

For expand-down data segments, the segment limit has the same function but is interpreted differently. Here, the 
effective limit specifies the last address that is not allowed to be accessed within the segment; the range of valid 
offsets is from (effective-limit + 1) to FFFFFFFFH if the B flag is set and from (effective-limit + 1) to FFFFH if the B 
flag is clear. An expand-down segment has maximum size when the segment limit is 0.

Limit checking catches programming errors such as runaway code, runaway subscripts, and invalid pointer calcu-
lations. These errors are detected when they occur, so identification of the cause is easier. Without limit checking, 
these errors could overwrite code or data in another segment.

In addition to checking segment limits, the processor also checks descriptor table limits. The GDTR and IDTR regis-
ters contain 16-bit limit values that the processor uses to prevent programs from selecting a segment descriptors 
outside the respective descriptor tables. The LDTR and task registers contain 32-bit segment limit value (read from 
the segment descriptors for the current LDT and TSS, respectively). The processor uses these segment limits to 
prevent accesses beyond the bounds of the current LDT and TSS. See Section 3.5.1, “Segment Descriptor Tables,” 
for more information on the GDT and LDT limit fields; see Section 7.10, “Interrupt Descriptor Table (IDT),” for more 
information on the IDT limit field; and see Section 9.2.4, “Task Register,” for more information on the TSS segment 
limit field.

6.3.1 Limit Checking in 64-bit Mode
In 64-bit mode, the processor does not perform runtime limit checking on code or data segments. However, the 
processor does check descriptor-table limits.

6.4 TYPE CHECKING
Segment descriptors contain type information in two places:
• The S (descriptor type) flag.
• The type field.

The processor uses this information to detect programming errors that result in an attempt to use a segment or 
gate in an incorrect or unintended manner.

The S flag indicates whether a descriptor is a system type or a code or data type. The type field provides 4 addi-
tional bits for use in defining various types of code, data, and system descriptors. Table 3-1 shows the encoding of 
the type field for code and data descriptors; Table 3-2 shows the encoding of the field for system descriptors.

The processor examines type information at various times while operating on segment selectors and segment 
descriptors. The following list gives examples of typical operations where type checking is performed (this list is not 
exhaustive):
• When a segment selector is loaded into a segment register — Certain segment registers can contain only 

certain descriptor types, for example:

— The CS register only can be loaded with a selector for a code segment.

— Segment selectors for code segments that are not readable or for system segments cannot be loaded into 
data-segment registers (DS, ES, FS, and GS).

— Only segment selectors of writable data segments can be loaded into the SS register.
• When a segment selector is loaded into the LDTR or task register — For example:

— The LDTR can only be loaded with a selector for an LDT.

— The task register can only be loaded with a segment selector for a TSS.
• When instructions access segments whose descriptors are already loaded into segment registers — 

Certain segments can be used by instructions only in certain predefined ways, for example:

— No instruction may write into an executable segment.
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— No instruction may write into a data segment if it is not writable.

— No instruction may read an executable segment unless the readable flag is set.
• When an instruction operand contains a segment selector — Certain instructions can access segments 

or gates of only a particular type, for example:

— A far CALL or far JMP instruction can only access a segment descriptor for a conforming code segment, 
nonconforming code segment, call gate, task gate, or TSS.

— The LLDT instruction must reference a segment descriptor for an LDT.

— The LTR instruction must reference a segment descriptor for a TSS.

— The LAR instruction must reference a segment or gate descriptor for an LDT, TSS, call gate, task gate, code 
segment, or data segment.

— The LSL instruction must reference a segment descriptor for a LDT, TSS, code segment, or data segment.

— IDT entries must be interrupt, trap, or task gates.
• During certain internal operations — For example:

— On a far call or far jump (executed with a far CALL or far JMP instruction), the processor determines the 
type of control transfer to be carried out (call or jump to another code segment, a call or jump through a 
gate, or a task switch) by checking the type field in the segment (or gate) descriptor pointed to by the 
segment (or gate) selector given as an operand in the CALL or JMP instruction. If the descriptor type is for 
a code segment or call gate, a call or jump to another code segment is indicated; if the descriptor type is for 
a TSS or task gate, a task switch is indicated.

— On a call or jump through a call gate (or on an interrupt- or exception-handler call through a trap or 
interrupt gate), the processor automatically checks that the segment descriptor being pointed to by the 
gate is for a code segment.

— On a call or jump to a new task through a task gate (or on an interrupt- or exception-handler call to a new 
task through a task gate), the processor automatically checks that the segment descriptor being pointed to 
by the task gate is for a TSS.

— On a call or jump to a new task by a direct reference to a TSS, the processor automatically checks that the 
segment descriptor being pointed to by the CALL or JMP instruction is for a TSS.

— On return from a nested task (initiated by an IRET instruction), the processor checks that the previous task 
link field in the current TSS points to a TSS.

6.4.1 Null Segment Selector Checking
Attempting to load a null segment selector (see Section 3.4.2, “Segment Selectors”) into the CS or SS segment 
register generates a general-protection exception (#GP). A null segment selector can be loaded into the DS, ES, 
FS, or GS register, but any attempt to access a segment through one of these registers when it is loaded with a null 
segment selector results in a #GP exception being generated. Loading unused data-segment registers with a null 
segment selector is a useful method of detecting accesses to unused segment registers and/or preventing 
unwanted accesses to data segments.

6.4.1.1  NULL Segment Checking in 64-bit Mode
In 64-bit mode, the processor does not perform runtime checking on NULL segment selectors. The processor does 
not cause a #GP fault when an attempt is made to access memory where the referenced segment register has a 
NULL segment selector. 

6.5 PRIVILEGE LEVELS
The processor’s segment-protection mechanism recognizes 4 privilege levels, numbered from 0 to 3. The greater 
numbers mean lesser privileges. Figure 6-3 shows how these levels of privilege can be interpreted as rings of 
protection. 
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The center (reserved for the most privileged code, data, and stacks) is used for the segments containing the critical 
software, usually the kernel of an operating system. Outer rings are used for less critical software. (Systems that 
use only 2 of the 4 possible privilege levels should use levels 0 and 3.) 

The processor uses privilege levels to prevent a program or task operating at a lesser privilege level from accessing 
a segment with a greater privilege, except under controlled situations. When the processor detects a privilege level 
violation, it generates a general-protection exception (#GP).

To carry out privilege-level checks between code segments and data segments, the processor recognizes the 
following three types of privilege levels: 
• Current privilege level (CPL) — The CPL is the privilege level of the currently executing program or task. It 

is stored in bits 0 and 1 of the CS and SS segment registers. Normally, the CPL is equal to the privilege level of 
the code segment from which instructions are being fetched. The processor changes the CPL when program 
control is transferred to a code segment with a different privilege level. The CPL is treated slightly differently 
when accessing conforming code segments. Conforming code segments can be accessed from any privilege 
level that is equal to or numerically greater (less privileged) than the DPL of the conforming code segment. 
Also, the CPL is not changed when the processor accesses a conforming code segment that has a different 
privilege level than the CPL.

• Descriptor privilege level (DPL) — The DPL is the privilege level of a segment or gate. It is stored in the DPL 
field of the segment or gate descriptor for the segment or gate. When the currently executing code segment 
attempts to access a segment or gate, the DPL of the segment or gate is compared to the CPL and RPL of the 
segment or gate selector (as described later in this section). The DPL is interpreted differently, depending on 
the type of segment or gate being accessed:

— Data segment — The DPL indicates the numerically highest privilege level that a program or task can have 
to be allowed to access the segment. For example, if the DPL of a data segment is 1, only programs running 
at a CPL of 0 or 1 can access the segment. 

— Nonconforming code segment (without using a call gate) — The DPL indicates the privilege level that 
a program or task must be at to access the segment. For example, if the DPL of a nonconforming code 
segment is 0, only programs running at a CPL of 0 can access the segment. 

— Call gate — The DPL indicates the numerically highest privilege level that the currently executing program 
or task can be at and still be able to access the call gate. (This is the same access rule as for a data 
segment.)

— Conforming code segment and nonconforming code segment accessed through a call gate — The 
DPL indicates the numerically lowest privilege level that a program or task can have to be allowed to access 
the segment. For example, if the DPL of a conforming code segment is 2, programs running at a CPL of 0 or 
1 cannot access the segment. 

Figure 6-3.  Protection Rings
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— TSS — The DPL indicates the numerically highest privilege level that the currently executing program or 
task can be at and still be able to access the TSS. (This is the same access rule as for a data segment.)

• Requested privilege level (RPL) — The RPL is an override privilege level that is assigned to segment 
selectors. It is stored in bits 0 and 1 of the segment selector. The processor checks the RPL along with the CPL 
to determine if access to a segment is allowed. Even if the program or task requesting access to a segment has 
sufficient privilege to access the segment, access is denied if the RPL is not of sufficient privilege level. That is, 
if the RPL of a segment selector is numerically greater than the CPL, the RPL overrides the CPL, and vice versa. 
The RPL can be used to ensure that privileged code does not access a segment on behalf of an application 
program unless the program itself has access privileges for that segment. See Section 6.10.4, “Checking Caller 
Access Privileges (ARPL Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is loaded into a segment register. 
The checks used for data access differ from those used for transfers of program control among code segments; 
therefore, the two kinds of accesses are considered separately in the following sections.

6.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA SEGMENTS
To access operands in a data segment, the segment selector for the data segment must be loaded into the data-
segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS). (Segment registers can be loaded 
with the MOV, POP, LDS, LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment selector into 
a segment register, it performs a privilege check (see Figure 6-4) by comparing the privilege levels of the currently 
running program or task (the CPL), the RPL of the segment selector, and the DPL of the segment’s segment 
descriptor. The processor loads the segment selector into the segment register if the DPL is numerically greater 
than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is generated and the segment 
register is not loaded.

Figure 6-5 shows four procedures (located in codes segments A, B, C, and D), each running at different privilege 
levels and each attempting to access the same data segment. 

1. The procedure in code segment A is able to access data segment E using segment selector E1, because the CPL 
of code segment A and the RPL of segment selector E1 are equal to the DPL of data segment E.

2. The procedure in code segment B is able to access data segment E using segment selector E2, because the CPL 
of code segment B and the RPL of segment selector E2 are both numerically lower than (more privileged) than 
the DPL of data segment E. A code segment B procedure can also access data segment E using segment 
selector E1.

3. The procedure in code segment C is not able to access data segment E using segment selector E3 (dotted line), 
because the CPL of code segment C and the RPL of segment selector E3 are both numerically greater than (less 
privileged) than the DPL of data segment E. Even if a code segment C procedure were to use segment selector 

Figure 6-4.  Privilege Check for Data Access
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E1 or E2, such that the RPL would be acceptable, it still could not access data segment E because its CPL is not 
privileged enough.

4. The procedure in code segment D should be able to access data segment E because code segment D’s CPL is 
numerically less than the DPL of data segment E. However, the RPL of segment selector E3 (which the code 
segment D procedure is using to access data segment E) is numerically greater than the DPL of data segment 
E, so access is not allowed. If the code segment D procedure were to use segment selector E1 or E2 to access 
the data segment, access would be allowed.

As demonstrated in the previous examples, the addressable domain of a program or task varies as its CPL changes. 
When the CPL is 0, data segments at all privilege levels are accessible; when the CPL is 1, only data segments at 
privilege levels 1 through 3 are accessible; when the CPL is 3, only data segments at privilege level 3 are acces-
sible. 

The RPL of a segment selector can always override the addressable domain of a program or task. When properly 
used, RPLs can prevent problems caused by accidental (or intensional) use of segment selectors for privileged data 
segments by less privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under software control. For 
example, an application program running at a CPL of 3 can set the RPL for a data- segment selector to 0. With the 
RPL set to 0, only the CPL checks, not the RPL checks, will provide protection against deliberate, direct attempts to 
violate privilege-level security for the data segment. To prevent these types of privilege-level-check violations, a 
program or procedure can check access privileges whenever it receives a data-segment selector from another 
procedure (see Section 6.10.4, “Checking Caller Access Privileges (ARPL Instruction)”).

6.6.1 Accessing Data in Code Segments
In some instances it may be desirable to access data structures that are contained in a code segment. The 
following methods of accessing data in code segments are possible:
• Load a data-segment register with a segment selector for a nonconforming, readable, code segment.
• Load a data-segment register with a segment selector for a conforming, readable, code segment.
• Use a code-segment override prefix (CS) to read a readable, code segment whose selector is already loaded in 

the CS register.

The same rules for accessing data segments apply to method 1. Method 2 is always valid because the privilege 
level of a conforming code segment is effectively the same as the CPL, regardless of its DPL. Method 3 is always 
valid because the DPL of the code segment selected by the CS register is the same as the CPL.

Figure 6-5.  Examples of Accessing Data Segments From Various Privilege Levels
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6.7 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS REGISTER
Privilege level checking also occurs when the SS register is loaded with the segment selector for a stack segment. 
Here all privilege levels related to the stack segment must match the CPL; that is, the CPL, the RPL of the stack-
segment selector, and the DPL of the stack-segment descriptor must be the same. If the RPL and DPL are not equal 
to the CPL, a general-protection exception (#GP) is generated.

6.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING PROGRAM CONTROL 
BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector for the destination code 
segment must be loaded into the code-segment register (CS). As part of this loading process, the processor exam-
ines the segment descriptor for the destination code segment and performs various limit, type, and privilege 
checks. If these checks are successful, the CS register is loaded, program control is transferred to the new code 
segment, and program execution begins at the instruction pointed to by the EIP register. 

Program control transfers are carried out with the JMP, CALL, RET, SYSENTER, SYSEXIT, SYSCALL, SYSRET, INT n, 
and IRET instructions, as well as by the exception and interrupt mechanisms. Exceptions, interrupts, and the IRET 
instruction are special cases discussed in Chapter 7, “Interrupt and Exception Handling.” This chapter discusses 
only the JMP, CALL, RET, SYSENTER, SYSEXIT, SYSCALL, and SYSRET instructions.

A JMP or CALL instruction can reference another code segment in any of four ways:
• The target operand contains the segment selector for the target code segment.
• The target operand points to a call-gate descriptor, which contains the segment selector for the target code 

segment.
• The target operand points to a TSS, which contains the segment selector for the target code segment. 
• The target operand points to a task gate, which points to a TSS, which in turn contains the segment selector for 

the target code segment. 

The following sections describe first two types of references. See Section 9.3, “Task Switching,” for information on 
transferring program control through a task gate and/or TSS.

The SYSENTER and SYSEXIT instructions are special instructions for making fast calls to and returns from operating 
system or executive procedures. These instructions are discussed in Section 6.8.7, “Performing Fast Calls to 
System Procedures with the SYSENTER and SYSEXIT Instructions.”

The SYCALL and SYSRET instructions are special instructions for making fast calls to and returns from operating 
system or executive procedures in 64-bit mode. These instructions are discussed in Section 6.8.8, “Fast System 
Calls in 64-Bit Mode.”

6.8.1 Direct Calls or Jumps to Code Segments
The near forms of the JMP, CALL, and RET instructions transfer program control within the current code segment, 
so privilege-level checks are not performed. The far forms of the JMP, CALL, and RET instructions transfer control 
to other code segments, so the processor does perform privilege-level checks. 

When transferring program control to another code segment without going through a call gate, the processor 
examines four kinds of privilege level and type information (see Figure 6-6):
• The CPL. (Here, the CPL is the privilege level of the calling code segment; that is, the code segment that 

contains the procedure that is making the call or jump.)
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• The DPL of the segment descriptor for the destination code segment that contains the called procedure. 
• The RPL of the segment selector of the destination code segment.
• The conforming (C) flag in the segment descriptor for the destination code segment, which determines whether 

the segment is a conforming (C flag is set) or nonconforming (C flag is clear) code segment. See Section 
3.4.5.1, “Code- and Data-Segment Descriptor Types,” for more information about this flag.

The rules that the processor uses to check the CPL, RPL, and DPL depends on the setting of the C flag, as described 
in the following sections.

6.8.1.1  Accessing Nonconforming Code Segments
When accessing nonconforming code segments, the CPL of the calling procedure must be equal to the DPL of the 
destination code segment; otherwise, the processor generates a general-protection exception (#GP). For example 
in Figure 6-7:
• Code segment C is a nonconforming code segment. A procedure in code segment A can call a procedure in code 

segment C (using segment selector C1) because they are at the same privilege level (CPL of code segment A is 
equal to the DPL of code segment C). 

• A procedure in code segment B cannot call a procedure in code segment C (using segment selector C2 or C1) 
because the two code segments are at different privilege levels.

Figure 6-6.  Privilege Check for Control Transfer Without Using a Gate
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The RPL of the segment selector that points to a nonconforming code segment has a limited effect on the privilege 
check. The RPL must be numerically less than or equal to the CPL of the calling procedure for a successful control 
transfer to occur. So, in the example in Figure 6-7, the RPLs of segment selectors C1 and C2 could legally be set to 
0, 1, or 2, but not to 3.

When the segment selector of a nonconforming code segment is loaded into the CS register, the privilege level field 
is not changed; that is, it remains at the CPL (which is the privilege level of the calling procedure). This is true, even 
if the RPL of the segment selector is different from the CPL.

6.8.1.2  Accessing Conforming Code Segments
When accessing conforming code segments, the CPL of the calling procedure may be numerically equal to or 
greater than (less privileged) the DPL of the destination code segment; the processor generates a general-protec-
tion exception (#GP) only if the CPL is less than the DPL. (The segment selector RPL for the destination code 
segment is not checked if the segment is a conforming code segment.)

In the example in Figure 6-7, code segment D is a conforming code segment. Therefore, calling procedures in both 
code segment A and B can access code segment D (using either segment selector D1 or D2, respectively), because 
they both have CPLs that are greater than or equal to the DPL of the conforming code segment. For conforming 
code segments, the DPL represents the numerically lowest privilege level that a calling procedure may 
be at to successfully make a call to the code segment.

(Note that segments selectors D1 and D2 are identical except for their respective RPLs. But since RPLs are not 
checked when accessing conforming code segments, the two segment selectors are essentially interchangeable.)

When program control is transferred to a conforming code segment, the CPL does not change, even if the DPL of 
the destination code segment is less than the CPL. This situation is the only one where the CPL may be different 
from the DPL of the current code segment. Also, since the CPL does not change, no stack switch occurs.

Conforming segments are used for code modules such as math libraries and exception handlers, which support 
applications but do not require access to protected system facilities. These modules are part of the operating 
system or executive software, but they can be executed at numerically higher privilege levels (less privileged 
levels). Keeping the CPL at the level of a calling code segment when switching to a conforming code segment 

Figure 6-7.  Examples of Accessing Conforming and Nonconforming Code Segments From Various Privilege Levels
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PROTECTION
prevents an application program from accessing nonconforming code segments while at the privilege level (DPL) of 
a conforming code segment and thus prevents it from accessing more privileged data.

Most code segments are nonconforming. For these segments, program control can be transferred only to code 
segments at the same level of privilege, unless the transfer is carried out through a call gate, as described in the 
following sections.

6.8.2 Gate Descriptors
To provide controlled access to code segments with different privilege levels, the processor provides special set of 
descriptors called gate descriptors. There are four kinds of gate descriptors:
• Call gates
• Trap gates
• Interrupt gates
• Task gates

Task gates are used for task switching and are discussed in Chapter 9, “Task Management.” Trap and interrupt 
gates are special kinds of call gates used for calling exception and interrupt handlers. The are described in Chapter 
7, “Interrupt and Exception Handling.” This chapter is concerned only with call gates. 

6.8.3 Call Gates
Call gates facilitate controlled transfers of program control between different privilege levels. They are typically 
used only in operating systems or executives that use the privilege-level protection mechanism. Call gates are also 
useful for transferring program control between 16-bit and 32-bit code segments, as described in Section 23.4, 
“Transferring Control Among Mixed-Size Code Segments.”

Figure 6-8 shows the format of a call-gate descriptor. A call-gate descriptor may reside in the GDT or in an LDT, but 
not in the interrupt descriptor table (IDT). It performs six functions:
• It specifies the code segment to be accessed.
• It defines an entry point for a procedure in the specified code segment.
• It specifies the privilege level required for a caller trying to access the procedure.

• If a stack switch occurs, it specifies the number of optional parameters to be copied between stacks.
• It defines the size of values to be pushed onto the target stack: 16-bit gates force 16-bit pushes and 32-bit 

gates force 32-bit pushes.
• It specifies whether the call-gate descriptor is valid. 

The segment selector field in a call gate specifies the code segment to be accessed. The offset field specifies the 
entry point in the code segment. This entry point is generally to the first instruction of a specific procedure. The DPL 
field indicates the privilege level of the call gate, which in turn is the privilege level required to access the selected 

Figure 6-8.  Call-Gate Descriptor
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procedure through the gate. The P flag indicates whether the call-gate descriptor is valid. (The presence of the code 
segment to which the gate points is indicated by the P flag in the code segment’s descriptor.) The parameter count 
field indicates the number of parameters to copy from the calling procedures stack to the new stack if a stack 
switch occurs (see Section 6.8.5, “Stack Switching”). The parameter count specifies the number of words for 16-
bit call gates and doublewords for 32-bit call gates.

Note that the P flag in a gate descriptor is normally always set to 1. If it is set to 0, a not present (#NP) exception 
is generated when a program attempts to access the descriptor. The operating system can use the P flag for special 
purposes. For example, it could be used to track the number of times the gate is used. Here, the P flag is initially 
set to 0 causing a trap to the not-present exception handler. The exception handler then increments a counter and 
sets the P flag to 1, so that on returning from the handler, the gate descriptor will be valid.

6.8.3.1  IA-32e Mode Call Gates
Call-gate descriptors in 32-bit mode provide a 32-bit offset for the instruction pointer (EIP); 64-bit extensions 
double the size of 32-bit mode call gates in order to store 64-bit instruction pointers (RIP). See Figure 6-9:
• The first eight bytes (bytes 7:0) of a 64-bit mode call gate are similar but not identical to legacy 32-bit mode 

call gates. The parameter-copy-count field has been removed. 
• Bytes 11:8 hold the upper 32 bits of the target-segment offset in canonical form. A general-protection 

exception (#GP) is generated if software attempts to use a call gate with a target offset that is not in canonical 
form.

• 16-byte descriptors may reside in the same descriptor table with 16-bit and 32-bit descriptors. A type field, 
used for consistency checking, is defined in bits 12:8 of the 64-bit descriptor’s highest dword (cleared to zero). 
A general-protection exception (#GP) results if an attempt is made to access the upper half of a 64-bit mode 
descriptor as a 32-bit mode descriptor.

• Target code segments referenced by a 64-bit call gate must be 64-bit code segments (CS.L = 1, CS.D = 0). If 
not, the reference generates a general-protection exception, #GP (CS selector). 

• Only 64-bit mode call gates can be referenced in IA-32e mode (64-bit mode and compatibility mode). The 
legacy 32-bit mode call gate type (0CH) is redefined in IA-32e mode as a 64-bit call-gate type; no 32-bit call-
gate type exists in IA-32e mode. 

Figure 6-9.  Call-Gate Descriptor in IA-32e Mode
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• If a far call references a 16-bit call gate type (04H) in IA-32e mode, a general-protection exception (#GP) is 
generated.

When a call references a 64-bit mode call gate, actions taken are identical to those taken in 32-bit mode, with the 
following exceptions:
• Stack pushes are made in eight-byte increments.
• A 64-bit RIP is pushed onto the stack.
• Parameter copying is not performed.

Use a matching far-return instruction size for correct operation (returns from 64-bit calls must be performed with 
a 64-bit operand-size return to process the stack correctly).

6.8.4 Accessing a Code Segment Through a Call Gate
To access a call gate, a far pointer to the gate is provided as a target operand in a CALL or JMP instruction. The 
segment selector from this pointer identifies the call gate (see Figure 6-10); the offset from the pointer is required, 
but not used or checked by the processor. (The offset can be set to any value.) 

When the processor has accessed the call gate, it uses the segment selector from the call gate to locate the 
segment descriptor for the destination code segment. (This segment descriptor can be in the GDT or the LDT.) It 
then combines the base address from the code-segment descriptor with the offset from the call gate to form the 
linear address of the procedure entry point in the code segment.

As shown in Figure 6-11, four different privilege levels are used to check the validity of a program control transfer 
through a call gate:
• The CPL (current privilege level).
• The RPL (requestor privilege level) of the call gate’s selector.
• The DPL (descriptor privilege level) of the call gate descriptor.
• The DPL of the segment descriptor of the destination code segment.

The C flag (conforming) in the segment descriptor for the destination code segment is also checked.

Figure 6-10.  Call-Gate Mechanism
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The privilege checking rules are different depending on whether the control transfer was initiated with a CALL or a 
JMP instruction, as shown in Table 6-1.

The DPL field of the call-gate descriptor specifies the numerically highest privilege level from which a calling proce-
dure can access the call gate; that is, to access a call gate, the CPL of a calling procedure must be equal to or less 
than the DPL of the call gate. For example, in Figure 6-15, call gate A has a DPL of 3. So calling procedures at all 
CPLs (0 through 3) can access this call gate, which includes calling procedures in code segments A, B, and C. Call 
gate B has a DPL of 2, so only calling procedures at a CPL or 0, 1, or 2 can access call gate B, which includes calling 
procedures in code segments B and C. The dotted line shows that a calling procedure in code segment A cannot 
access call gate B.

The RPL of the segment selector to a call gate must satisfy the same test as the CPL of the calling procedure; that 
is, the RPL must be less than or equal to the DPL of the call gate. In the example in Figure 6-15, a calling procedure 
in code segment C can access call gate B using gate selector B2 or B1, but it could not use gate selector B3 to 
access call gate B.

If the privilege checks between the calling procedure and call gate are successful, the processor then checks the 
DPL of the code-segment descriptor against the CPL of the calling procedure. Here, the privilege check rules vary 
between CALL and JMP instructions. Only CALL instructions can use call gates to transfer program control to more 
privileged (numerically lower privilege level) nonconforming code segments; that is, to nonconforming code 
segments with a DPL less than the CPL. A JMP instruction can use a call gate only to transfer program control to a 
nonconforming code segment with a DPL equal to the CPL. CALL and JMP instruction can both transfer program 
control to a more privileged conforming code segment; that is, to a conforming code segment with a DPL less than 
or equal to the CPL.

Figure 6-11.  Privilege Check for Control Transfer with Call Gate
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If a call is made to a more privileged (numerically lower privilege level) nonconforming destination code segment, 
the CPL is lowered to the DPL of the destination code segment and a stack switch occurs (see Section 6.8.5, “Stack 
Switching”). If a call or jump is made to a more privileged conforming destination code segment, the CPL is not 
changed and no stack switch occurs. 

Call gates allow a single code segment to have procedures that can be accessed at different privilege levels. For 
example, an operating system located in a code segment may have some services which are intended to be used 
by both the operating system and application software (such as procedures for handling character I/O). Call gates 
for these procedures can be set up that allow access at all privilege levels (0 through 3). More privileged call gates 
(with DPLs of 0 or 1) can then be set up for other operating system services that are intended to be used only by 
the operating system (such as procedures that initialize device drivers).

6.8.5 Stack Switching
Whenever a call gate is used to transfer program control to a more privileged nonconforming code segment (that 
is, when the DPL of the nonconforming destination code segment is less than the CPL), the processor automatically 
switches to the stack for the destination code segment’s privilege level. This stack switching is carried out to 
prevent more privileged procedures from crashing due to insufficient stack space. It also prevents less privileged 
procedures from interfering (by accident or intent) with more privileged procedures through a shared stack.

Each task must define up to 4 stacks: one for applications code (running at privilege level 3) and one for each of 
the privilege levels 2, 1, and 0 that are used. (If only two privilege levels are used [3 and 0], then only two stacks 
must be defined.) Each of these stacks is located in a separate segment and is identified with a segment selector 
and an offset into the stack segment (a stack pointer).

The segment selector and stack pointer for the privilege level 3 stack is located in the SS and ESP registers, respec-
tively, when privilege-level-3 code is being executed and is automatically stored on the called procedure’s stack 
when a stack switch occurs. 

Pointers to the privilege level 0, 1, and 2 stacks are stored in the TSS for the currently running task (see 
Figure 9-2). Each of these pointers consists of a segment selector and a stack pointer (loaded into the ESP 
register). These initial pointers are strictly read-only values. The processor does not change them while the task is 
running. They are used only to create new stacks when calls are made to more privileged levels (numerically lower 

Figure 6-12.  Example of Accessing Call Gates At Various Privilege Levels
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privilege levels). These stacks are disposed of when a return is made from the called procedure. The next time the 
procedure is called, a new stack is created using the initial stack pointer. (The TSS does not specify a stack for priv-
ilege level 3 because the processor does not allow a transfer of program control from a procedure running at a CPL 
of 0, 1, or 2 to a procedure running at a CPL of 3, except on a return.)

The operating system is responsible for creating stacks and stack-segment descriptors for all the privilege levels to 
be used and for loading initial pointers for these stacks into the TSS. Each stack must be read/write accessible (as 
specified in the type field of its segment descriptor) and must contain enough space (as specified in the limit field) 
to hold the following items:
• The contents of the SS, ESP, CS, and EIP registers for the calling procedure.
• The parameters and temporary variables required by the called procedure.
• The EFLAGS register and error code, when implicit calls are made to an exception or interrupt handler.

The stack will need to require enough space to contain many frames of these items, because procedures often call 
other procedures, and an operating system may support nesting of multiple interrupts. Each stack should be large 
enough to allow for the worst case nesting scenario at its privilege level.

(If the operating system does not use the processor’s multitasking mechanism, it still must create at least one TSS 
for this stack-related purpose.) 

When a procedure call through a call gate results in a change in privilege level, the processor performs the following 
steps to switch stacks and begin execution of the called procedure at a new privilege level:

1. Uses the DPL of the destination code segment (the new CPL) to select a pointer to the new stack (segment
selector and stack pointer) from the TSS. 

2. Reads the segment selector and stack pointer for the stack to be switched to from the current TSS. Any limit 
violations detected while reading the stack-segment selector, stack pointer, or stack-segment descriptor cause 
an invalid TSS (#TS) exception to be generated.

3. Checks the stack-segment descriptor for the proper privileges and type and generates an invalid TSS (#TS) 
exception if violations are detected.

4. Temporarily saves the current values of the SS and ESP registers.

5. Loads the segment selector and stack pointer for the new stack in the SS and ESP registers.

6. Pushes the temporarily saved values for the SS and ESP registers (for the calling procedure) onto the new stack 
(see Figure 6-13).

7. Copies the number of parameter specified in the parameter count field of the call gate from the calling 
procedure’s stack to the new stack. If the count is 0, no parameters are copied.

8. Pushes the return instruction pointer (the current contents of the CS and EIP registers) onto the new stack.

9. Loads the segment selector for the new code segment and the new instruction pointer from the call gate into 
the CS and EIP registers, respectively, and begins execution of the called procedure.

See the description of the CALL instruction in Chapter 3, “Instruction Set Reference, A-L‚”, in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A, for a detailed description of the privilege level 
checks and other protection checks that the processor performs on a far call through a call gate.
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The parameter count field in a call gate specifies the number of data items (up to 31) that the processor should 
copy from the calling procedure’s stack to the stack of the called procedure. If more than 31 data items need to be 
passed to the called procedure, one of the parameters can be a pointer to a data structure, or the saved contents 
of the SS and ESP registers may be used to access parameters in the old stack space. The size of the data items 
passed to the called procedure depends on the call gate size, as described in Section 6.8.3, “Call Gates.”

6.8.5.1  Stack Switching in 64-bit Mode
Although protection-check rules for call gates are unchanged from 32-bit mode, stack-switch changes in 64-bit 
mode are different.

When stacks are switched as part of a 64-bit mode privilege-level change through a call gate, a new SS (stack 
segment) descriptor is not loaded; 64-bit mode only loads an inner-level RSP from the TSS. The new SS is forced 
to NULL and the SS selector’s RPL field is forced to the new CPL. The new SS is set to NULL in order to handle 
nested far transfers (far CALL, INTn, interrupts, and exceptions). The old SS and RSP are saved on the new stack. 

On a subsequent far RET, the old SS is popped from the stack and loaded into the SS register. See Table 6-2.

In 64-bit mode, stack operations resulting from a privilege-level-changing far call or far return are eight-bytes wide 
and change the RSP by eight. The mode does not support the automatic parameter-copy feature found in 32-bit 
mode. The call-gate count field is ignored. Software can access the old stack, if necessary, by referencing the old 
stack-segment selector and stack pointer saved on the new process stack. 

In 64-bit mode, far RET is allowed to load a NULL SS under certain conditions. If the target mode is 64-bit mode 
and the target CPL ≠ 3, IRET allows SS to be loaded with a NULL selector. If the called procedure itself is inter-
rupted, the NULL SS is pushed on the stack frame. On the subsequent far RET, the NULL SS on the stack acts as a 
flag to tell the processor not to load a new SS descriptor.

Figure 6-13.  Stack Switching During an Interprivilege-Level Call
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6.8.6 Returning from a Called Procedure
The RET instruction can be used to perform a near return, a far return at the same privilege level, and a far return 
to a different privilege level. This instruction is intended to execute returns from procedures that were called with 
a CALL instruction. It does not support returns from a JMP instruction, because the JMP instruction does not save a 
return instruction pointer on the stack.

A near return only transfers program control within the current code segment; therefore, the processor performs 
only a limit check. When the processor pops the return instruction pointer from the stack into the EIP register, it 
checks that the pointer does not exceed the limit of the current code segment.

On a far return at the same privilege level, the processor pops both a segment selector for the code segment being 
returned to and a return instruction pointer from the stack. Under normal conditions, these pointers should be 
valid, because they were pushed on the stack by the CALL instruction. However, the processor performs privilege 
checks to detect situations where the current procedure might have altered the pointer or failed to maintain the 
stack properly.

A far return that requires a privilege-level change is only allowed when returning to a less privileged level (that is, 
the DPL of the return code segment is numerically greater than the CPL). The processor uses the RPL field from the 
CS register value saved for the calling procedure (see Figure 6-13) to determine if a return to a numerically higher 
privilege level is required. If the RPL is numerically greater (less privileged) than the CPL, a return across privilege 
levels occurs. 

The processor performs the following steps when performing a far return to a calling procedure (see Figures 6-2 
and 6-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of the 
stack contents prior to and after a return):

1. Checks the RPL field of the saved CS register value to determine if a privilege level change is required on the
return.

2. Loads the CS and EIP registers with the values on the called procedure’s stack. (Type and privilege level checks 
are performed on the code-segment descriptor and RPL of the code- segment selector.)

3. (If the RET instruction includes a parameter count operand and the return requires a privilege level change.) 
Adds the parameter count (in bytes obtained from the RET instruction) to the current ESP register value (after 
popping the CS and EIP values), to step past the parameters on the called procedure’s stack. The resulting 
value in the ESP register points to the saved SS and ESP values for the calling procedure’s stack. (Note that the 
byte count in the RET instruction must be chosen to match the parameter count in the call gate that the calling 
procedure referenced when it made the original call multiplied by the size of the parameters.)

4. (If the return requires a privilege level change.) Loads the SS and ESP registers with the saved SS and ESP 
values and switches back to the calling procedure’s stack. The SS and ESP values for the called procedure’s 
stack are discarded. Any limit violations detected while loading the stack-segment selector or stack pointer 
cause a general-protection exception (#GP) to be generated. The new stack-segment descriptor is also checked 
for type and privilege violations.

5. (If the RET instruction includes a parameter count operand.) Adds the parameter count (in bytes obtained from 
the RET instruction) to the current ESP register value, to step past the parameters on the calling procedure’s 
stack. The resulting ESP value is not checked against the limit of the stack segment. If the ESP value is beyond 
the limit, that fact is not recognized until the next stack operation.

6. (If the return requires a privilege level change.) Checks the contents of the DS, ES, FS, and GS segment 
registers. If any of these registers refer to segments whose DPL is less than the new CPL (excluding conforming 
code segments), the segment register is loaded with a null segment selector.

See the description of the RET instruction in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2B, for a detailed description of the privilege level checks and other protection checks that 
the processor performs on a far return.

6.8.7 Performing Fast Calls to System Procedures with the SYSENTER and SYSEXIT 
Instructions

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the Pentium II processors 
for the purpose of providing a fast (low overhead) mechanism for calling operating system or executive procedures. 
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SYSENTER is intended for use by user code running at privilege level 3 to access operating system or executive 
procedures running at privilege level 0. SYSEXIT is intended for use by privilege level 0 operating system or exec-
utive procedures for fast returns to privilege level 3 user code. SYSENTER can be executed from privilege levels 3, 
2, 1, or 0; SYSEXIT can only be executed from privilege level 0.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not constitute a call/return pair. 
This is because SYSENTER does not save any state information for use by SYSEXIT on a return.

The target instruction and stack pointer for these instructions are not specified through instruction operands. 
Instead, they are specified through parameters entered in MSRs and general-purpose registers. 

For SYSENTER, target fields are generated using the following sources:
• Target code segment — Reads this from IA32_SYSENTER_CS.
• Target instruction — Reads this from IA32_SYSENTER_EIP.
• Stack segment — Computed by adding 8 to the value in IA32_SYSENTER_CS.
• Stack pointer — Reads this from the IA32_SYSENTER_ESP.

For SYSEXIT, target fields are generated using the following sources:
• Target code segment — Computed by adding 16 to the value in the IA32_SYSENTER_CS.
• Target instruction — Reads this from EDX.
• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
• Stack pointer — Reads this from ECX.

The SYSENTER and SYSEXIT instructions perform “fast” calls and returns because they force the processor into a 
predefined privilege level 0 state when SYSENTER is executed and into a predefined privilege level 3 state when 
SYSEXIT is executed. By forcing predefined and consistent processor states, the number of privilege checks ordi-
narily required to perform a far call to another privilege levels are greatly reduced. Also, by predefining the target 
context state in MSRs and general-purpose registers eliminates all memory accesses except when fetching the 
target code.

Any additional state that needs to be saved to allow a return to the calling procedure must be saved explicitly by 
the calling procedure or be predefined through programming conventions.

6.8.7.1  SYSENTER and SYSEXIT Instructions in IA-32e Mode
For Intel 64 processors, the SYSENTER and SYSEXIT instructions are enhanced to allow fast system calls from user 
code running at privilege level 3 (in compatibility mode or 64-bit mode) to 64-bit executive procedures running at 
privilege level 0. IA32_SYSENTER_EIP MSR and IA32_SYSENTER_ESP MSR are expanded to hold 64-bit addresses. 
If IA-32e mode is inactive, only the lower 32-bit addresses stored in these MSRs are used. The WRMSR instruction 
ensures that the addresses stored in these MSRs are canonical. Note that, in 64-bit mode, IA32_SYSENTER_CS 
must not contain a NULL selector. 

When SYSENTER transfers control, the following fields are generated and bits set:
• Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.
• New CS attributes — CS base = 0, CS limit = FFFFFFFFH.
• Target instruction — Reads 64-bit canonical address from IA32_SYSENTER_EIP.
• Stack segment — Computed by adding 8 to the value from IA32_SYSENTER_CS.
• Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.
• New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

When the SYSEXIT instruction transfers control to 64-bit mode user code using REX.W, the following fields are 
generated and bits set:
• Target code segment — Computed by adding 32 to the value in IA32_SYSENTER_CS.
• New CS attributes — L-bit = 1 (go to 64-bit mode).
• Target instruction — Reads 64-bit canonical address in RDX.
• Stack segment — Computed by adding 40 to the value of IA32_SYSENTER_CS.
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• Stack pointer — Update RSP using 64-bit canonical address in RCX.

When SYSEXIT transfers control to compatibility mode user code when the operand size attribute is 32 bits, the 
following fields are generated and bits set:
• Target code segment — Computed by adding 16 to the value in IA32_SYSENTER_CS.
• New CS attributes — L-bit = 0 (go to compatibility mode).
• Target instruction — Fetch the target instruction from 32-bit address in EDX.
• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
• Stack pointer — Update ESP from 32-bit address in ECX.

6.8.8 Fast System Calls in 64-Bit Mode
The SYSCALL and SYSRET instructions are designed for operating systems that use a flat memory model (segmen-
tation is not used). The instructions, along with SYSENTER and SYSEXIT, are suited for IA-32e mode operation. 
SYSCALL and SYSRET, however, are not supported in compatibility mode (or in protected mode). Use CPUID to 
check if SYSCALL and SYSRET are available (CPUID.80000001H.EDX[bit 11] = 1). 

SYSCALL is intended for use by user code running at privilege level 3 to access operating system or executive 
procedures running at privilege level 0. SYSRET is intended for use by privilege level 0 operating system or execu-
tive procedures for fast returns to privilege level 3 user code. 

Stack pointers for SYSCALL/SYSRET are not specified through model specific registers. The clearing of bits in 
RFLAGS is programmable rather than fixed. SYSCALL/SYSRET save and restore the RFLAGS register. 

For SYSCALL, the processor saves RFLAGS into R11 and the RIP of the next instruction into RCX; it then gets the 
privilege-level 0 target code segment, instruction pointer, stack segment, and flags as follows:
• Target code segment — Reads a non-NULL selector from IA32_STAR[47:32].
• Target instruction pointer — Reads a 64-bit address from IA32_LSTAR. (The WRMSR instruction ensures 

that the value of the IA32_LSTAR MSR is canonical.)
• Stack segment — Computed by adding 8 to the value in IA32_STAR[47:32].
• Flags — The processor sets RFLAGS to the logical-AND of its current value with the complement of the value in 

the IA32_FMASK MSR.

When SYSRET transfers control to 64-bit mode user code using REX.W, the processor gets the privilege level 3 
target code segment, instruction pointer, stack segment, and flags as follows:
• Target code segment — Reads a non-NULL selector from IA32_STAR[63:48] + 16.
• Target instruction pointer — Copies the value in RCX into RIP.
• Stack segment — IA32_STAR[63:48] + 8.
• EFLAGS — Loaded from R11.

When SYSRET transfers control to 32-bit mode user code using a 32-bit operand size, the processor gets the priv-
ilege level 3 target code segment, instruction pointer, stack segment, and flags as follows:
• Target code segment — Reads a non-NULL selector from IA32_STAR[63:48].
• Target instruction pointer — Copies the value in ECX into EIP.
• Stack segment — IA32_STAR[63:48] + 8.
• EFLAGS — Loaded from R11.

It is the responsibility of the OS to ensure the descriptors in the GDT/LDT correspond to the selectors loaded by 
SYSCALL/SYSRET (consistent with the base, limit, and attribute values forced by the instructions). 

See Figure 6-14 for the layout of IA32_STAR, IA32_LSTAR, and IA32_FMASK.
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The SYSCALL instruction does not save the stack pointer, and the SYSRET instruction does not restore it. It is likely 
that the OS system-call handler will change the stack pointer from the user stack to the OS stack. If so, it is the 
responsibility of software first to save the user stack pointer. This might be done by user code, prior to executing 
SYSCALL, or by the OS system-call handler after SYSCALL.

Because the SYSRET instruction does not modify the stack pointer, it is necessary for software to switch back to the 
user stack. The OS may load the user stack pointer (if it was saved after SYSCALL) before executing SYSRET; alter-
natively, user code may load the stack pointer (if it was saved before SYSCALL) after receiving control from 
SYSRET.

If the OS loads the stack pointer before executing SYSRET, it must ensure that the handler of any interrupt or 
exception delivered between restoring the stack pointer and successful execution of SYSRET is not invoked with the 
user stack. It can do so using approaches such as the following:
• External interrupts. The OS can prevent an external interrupt from being delivered by clearing EFLAGS.IF 

before loading the user stack pointer.
• Nonmaskable interrupts (NMIs). The OS can ensure that the NMI handler is invoked with the correct stack by 

using the interrupt stack table (IST) mechanism for gate 2 (NMI) in the IDT (see Section 7.14.5, “Interrupt 
Stack Table”).

• General-protection exceptions (#GP). The SYSRET instruction generates #GP(0) if the value of RCX is not 
canonical. The OS can address this possibility using one or more of the following approaches:

— Confirming that the value of RCX is canonical before executing SYSRET.

— Using paging to ensure that the SYSCALL instruction will never save a non-canonical value into RCX.

— Using the IST mechanism for gate 13 (#GP) in the IDT.

6.9 PRIVILEGED INSTRUCTIONS
Some of the system instructions (called “privileged instructions”) are protected from use by application programs. 
The privileged instructions control system functions (such as the loading of system registers). They can be 
executed only when the CPL is 0 (most privileged). If one of these instructions is executed when the CPL is not 0, 
a general-protection exception (#GP) is generated. The following system instructions are privileged instructions:
• LGDT — Load GDT register.
• LLDT — Load LDT register.

Figure 6-14.  MSRs Used by SYSCALL and SYSRET
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• LTR — Load task register.
• LIDT — Load IDT register.
• MOV (control registers) — Load and store control registers.
• LMSW — Load machine status word.
• CLTS — Clear task-switched flag in register CR0.
• MOV (debug registers) — Load and store debug registers.
• INVD — Invalidate cache, without writeback.
• WBINVD — Invalidate cache, with writeback.
• INVLPG —Invalidate TLB entry.
• HLT— Halt processor.
• RDMSR — Read Model-Specific Registers.
• WRMSR —Write Model-Specific Registers.
• RDPMC — Read Performance-Monitoring Counter.
• RDTSC — Read Time-Stamp Counter.

Some of the privileged instructions are available only in the more recent families of Intel 64 and IA-32 processors 
(see Section 24.13, “New Instructions In the Pentium and Later IA-32 Processors”).

The PCE and TSD flags in register CR4 (bits 4 and 2, respectively) enable the RDPMC and RDTSC instructions, 
respectively, to be executed at any CPL.

6.10 POINTER VALIDATION
When operating in protected mode, the processor validates all pointers to enforce protection between segments 
and maintain isolation between privilege levels. Pointer validation consists of the following checks:

1. Checking access rights to determine if the segment type is compatible with its use.

2. Checking read/write rights.

3. Checking if the pointer offset exceeds the segment limit.

4. Checking if the supplier of the pointer is allowed to access the segment.

5. Checking the offset alignment.

The processor automatically performs first, second, and third checks during instruction execution. Software must 
explicitly request the fourth check by issuing an ARPL instruction. The fifth check (offset alignment) is performed 
automatically at privilege level 3 if alignment checking is turned on. Offset alignment does not affect isolation of 
privilege levels.

6.10.1 Checking Access Rights (LAR Instruction)
When the processor accesses a segment using a far pointer, it performs an access rights check on the segment 
descriptor pointed to by the far pointer. This check is performed to determine if type and privilege level (DPL) of the 
segment descriptor are compatible with the operation to be performed. For example, when making a far call in 
protected mode, the segment-descriptor type must be for a conforming or nonconforming code segment, a call 
gate, a task gate, or a TSS. Then, if the call is to a nonconforming code segment, the DPL of the code segment must 
be equal to the CPL, and the RPL of the code segment’s segment selector must be less than or equal to the DPL. If 
type or privilege level are found to be incompatible, the appropriate exception is generated.

To prevent type incompatibility exceptions from being generated, software can check the access rights of a 
segment descriptor using the LAR (load access rights) instruction. The LAR instruction specifies the segment 
selector for the segment descriptor whose access rights are to be checked and a destination register. The instruc-
tion then performs the following operations:

1. Check that the segment selector is not null.
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2. Checks that the segment selector points to a segment descriptor that is within the descriptor table limit (GDT 
or LDT).

3. Checks that the segment descriptor is a code, data, LDT, call gate, task gate, or TSS segment-descriptor type.

4. If the segment is not a conforming code segment, checks if the segment descriptor is visible at the CPL (that 
is, if the CPL and the RPL of the segment selector are less than or equal to the DPL).

5. If the privilege level and type checks pass, loads the second doubleword of the segment descriptor into the 
destination register (masked by the value 00FXFF00H, where X indicates that the corresponding 4 bits are 
undefined) and sets the ZF flag in the EFLAGS register. If the segment selector is not visible at the current 
privilege level or is an invalid type for the LAR instruction, the instruction does not modify the destination 
register and clears the ZF flag.

Once loaded in the destination register, software can perform additional checks on the access rights information.

6.10.2 Checking Read/Write Rights (VERR and VERW Instructions)
When the processor accesses any code or data segment it checks the read/write privileges assigned to the 
segment to verify that the intended read or write operation is allowed. Software can check read/write rights using 
the VERR (verify for reading) and VERW (verify for writing) instructions. Both these instructions specify the 
segment selector for the segment being checked. The instructions then perform the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within the descriptor table limit (GDT 
or LDT).

3. Checks that the segment descriptor is a code or data-segment descriptor type.

4. If the segment is not a conforming code segment, checks if the segment descriptor is visible at the CPL (that 
is, if the CPL and the RPL of the segment selector are less than or equal to the DPL).

5. Checks that the segment is readable (for the VERR instruction) or writable (for the VERW) instruction.

The VERR instruction sets the ZF flag in the EFLAGS register if the segment is visible at the CPL and readable; the 
VERW sets the ZF flag if the segment is visible and writable. (Code segments are never writable.) The ZF flag is 
cleared if any of these checks fail.

6.10.3 Checking That the Pointer Offset Is Within Limits (LSL Instruction)
When the processor accesses any segment it performs a limit check to ensure that the offset is within the limit of 
the segment. Software can perform this limit check using the LSL (load segment limit) instruction. Like the LAR 
instruction, the LSL instruction specifies the segment selector for the segment descriptor whose limit is to be 
checked and a destination register. The instruction then performs the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within the descriptor table limit (GDT 
or LDT).

3. Checks that the segment descriptor is a code, data, LDT, or TSS segment-descriptor type.

4. If the segment is not a conforming code segment, checks if the segment descriptor is visible at the CPL (that 
is, if the CPL and the RPL of the segment selector less than or equal to the DPL).

5. If the privilege level and type checks pass, loads the unscrambled limit (the limit scaled according to the setting 
of the G flag in the segment descriptor) into the destination register and sets the ZF flag in the EFLAGS register. 
If the segment selector is not visible at the current privilege level or is an invalid type for the LSL instruction, 
the instruction does not modify the destination register and clears the ZF flag.

Once loaded in the destination register, software can compare the segment limit with the offset of a pointer. 
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6.10.4 Checking Caller Access Privileges (ARPL Instruction)
The requestor’s privilege level (RPL) field of a segment selector is intended to carry the privilege level of a calling 
procedure (the calling procedure’s CPL) to a called procedure. The called procedure then uses the RPL to determine 
if access to a segment is allowed. The RPL is said to “weaken” the privilege level of the called procedure to that of 
the RPL. 

Operating-system procedures typically use the RPL to prevent less privileged application programs from accessing 
data located in more privileged segments. When an operating-system procedure (the called procedure) receives a 
segment selector from an application program (the calling procedure), it sets the segment selector’s RPL to the 
privilege level of the calling procedure. Then, when the operating system uses the segment selector to access its 
associated segment, the processor performs privilege checks using the calling procedure’s privilege level (stored in 
the RPL) rather than the numerically lower privilege level (the CPL) of the operating-system procedure. The RPL 
thus ensures that the operating system does not access a segment on behalf of an application program unless that 
program itself has access to the segment.

Figure 6-15 shows an example of how the processor uses the RPL field. In this example, an application program 
(located in code segment A) possesses a segment selector (segment selector D1) that points to a privileged data 
structure (that is, a data structure located in a data segment D at privilege level 0). 

The application program cannot access data segment D, because it does not have sufficient privilege, but the oper-
ating system (located in code segment C) can. So, in an attempt to access data segment D, the application 
program executes a call to the operating system and passes segment selector D1 to the operating system as a 
parameter on the stack. Before passing the segment selector, the (well behaved) application program sets the RPL 
of the segment selector to its current privilege level (which in this example is 3). If the operating system attempts 
to access data segment D using segment selector D1, the processor compares the CPL (which is now 0 following 
the call), the RPL of segment selector D1, and the DPL of data segment D (which is 0). Since the RPL is greater than 
the DPL, access to data segment D is denied. The processor’s protection mechanism thus protects data segment D 
from access by the operating system, because application program’s privilege level (represented by the RPL of 
segment selector B) is greater than the DPL of data segment D.

Figure 6-15.  Use of RPL to Weaken Privilege Level of Called Procedure
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Now assume that instead of setting the RPL of the segment selector to 3, the application program sets the RPL to 
0 (segment selector D2). The operating system can now access data segment D, because its CPL and the RPL of 
segment selector D2 are both equal to the DPL of data segment D. 

Because the application program is able to change the RPL of a segment selector to any value, it can potentially use 
a procedure operating at a numerically lower privilege level to access a protected data structure. This ability to 
lower the RPL of a segment selector breaches the processor’s protection mechanism.

Because a called procedure cannot rely on the calling procedure to set the RPL correctly, operating-system proce-
dures (executing at numerically lower privilege-levels) that receive segment selectors from numerically higher 
privilege-level procedures need to test the RPL of the segment selector to determine if it is at the appropriate level. 
The ARPL (adjust requested privilege level) instruction is provided for this purpose. This instruction adjusts the RPL 
of one segment selector to match that of another segment selector.

The example in Figure 6-15 demonstrates how the ARPL instruction is intended to be used. When the operating-
system receives segment selector D2 from the application program, it uses the ARPL instruction to compare the 
RPL of the segment selector with the privilege level of the application program (represented by the code-segment 
selector pushed onto the stack). If the RPL is less than application program’s privilege level, the ARPL instruction 
changes the RPL of the segment selector to match the privilege level of the application program (segment selector 
D1). Using this instruction thus prevents a procedure running at a numerically higher privilege level from 
accessing numerically lower privilege-level (more privileged) segments by lowering the RPL of a segment selector.

Note that the privilege level of the application program can be determined by reading the RPL field of the segment 
selector for the application-program’s code segment. This segment selector is stored on the stack as part of the call 
to the operating system. The operating system can copy the segment selector from the stack into a register for 
use as an operand for the ARPL instruction.

6.10.5 Checking Alignment
When the CPL is 3, alignment of memory references can be checked by setting the AM flag in the CR0 register and 
the AC flag in the EFLAGS register. Unaligned memory references generate alignment exceptions (#AC). The 
processor does not generate alignment exceptions when operating at privilege level 0, 1, or 2. See Table 7-7 for a 
description of the alignment requirements when alignment checking is enabled.

6.11 PAGE-LEVEL PROTECTION
Page-level protection can be used alone or applied to segments. When page-level protection is used with the flat 
memory model, it allows supervisor code and data (the operating system or executive) to be protected from user 
code and data (application programs). It also allows pages containing code to be write protected. When the 
segment- and page-level protection are combined, page-level read/write protection allows more protection granu-
larity within segments.

With page-level protection (as with segment-level protection) each memory reference is checked to verify that 
protection checks are satisfied. All checks are made before the memory cycle is started, and any violation prevents 
the cycle from starting and results in a page-fault exception being generated. Because checks are performed in 
parallel with address translation, there is no performance penalty.

The processor performs two page-level protection checks:
• Restriction of addressable domain (supervisor and user modes).
• Page type (read only or read/write).

Violations of either of these checks results in a page-fault exception being generated. See Chapter 7, “Interrupt 
14—Page-Fault Exception (#PF),” for an explanation of the page-fault exception mechanism. This chapter 
describes the protection violations which lead to page-fault exceptions.
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6.11.1 Page-Protection Flags
Protection information for pages is contained in two flags in a paging-structure entry (see Chapter 5): the 
read/write flag (bit 1) and the user/supervisor flag (bit 2). The protection checks use the flags in all paging struc-
tures. 

6.11.2 Restricting Addressable Domain
The page-level protection mechanism allows restricting access to pages based on two privilege levels:
• Supervisor mode (U/S flag is 0)—(Most privileged) For the operating system or executive, other system 

software (such as device drivers), and protected system data (such as page tables).
• User mode (U/S flag is 1)—(Least privileged) For application code and data.

The segment privilege levels map to the page privilege levels as follows. If the processor is currently operating at 
a CPL of 0, 1, or 2, it is in supervisor mode; if it is operating at a CPL of 3, it is in user mode. When the processor is 
in supervisor mode, it can access all pages; when in user mode, it can access only user-level pages. (Note that the 
WP flag in control register CR0 modifies the supervisor permissions, as described in Section 6.11.3, “Page Type.”)

Note that to use the page-level protection mechanism, code and data segments must be set up for at least two 
segment-based privilege levels: level 0 for supervisor code and data segments and level 3 for user code and data 
segments. (In this model, the stacks are placed in the data segments.) To minimize the use of segments, a flat 
memory model can be used (see Section 3.2.1, “Basic Flat Model”). 

Here, the user and supervisor code and data segments all begin at address zero in the linear address space and 
overlay each other. With this arrangement, operating-system code (running at the supervisor level) and application 
code (running at the user level) can execute as if there are no segments. Protection between operating-system and 
application code and data is provided by the processor’s page-level protection mechanism. 

6.11.3 Page Type
The page-level protection mechanism recognizes two page types:
• Read-only access (R/W flag is 0).
• Read/write access (R/W flag is 1).

When the processor is in supervisor mode and the WP flag in register CR0 is clear (its state following reset initial-
ization), all pages are both readable and writable (write-protection is ignored). When the processor is in user mode, 
it can write only to user-mode pages that are read/write accessible. User-mode pages which are read/write or 
read-only are readable; supervisor-mode pages are neither readable nor writable from user mode. A page-fault 
exception is generated on any attempt to violate the protection rules.

Starting with the P6 family, Intel processors allow user-mode pages to be write-protected against supervisor-mode 
access. Setting CR0.WP = 1 enables supervisor-mode sensitivity to write protected pages. If CR0.WP = 1, read-
only pages are not writable from any privilege level. This supervisor write-protect feature is useful for imple-
menting a “copy-on-write” strategy used by some operating systems, such as UNIX*, for task creation (also called 
forking or spawning). When a new task is created, it is possible to copy the entire address space of the parent task. 
This gives the child task a complete, duplicate set of the parent's segments and pages. An alternative copy-on-
write strategy saves memory space and time by mapping the child's segments and pages to the same segments 
and pages used by the parent task. A private copy of a page gets created only when one of the tasks writes to the 
page. By using the WP flag and marking the shared pages as read-only, the supervisor can detect an attempt to 
write to a page, and can copy the page at that time.

6.11.4 Combining Protection of Both Levels of Page Tables
For any one page, the protection attributes of its page-directory entry (first-level page table) may differ from those 
of its page-table entry (second-level page table). The processor checks the protection for a page in both its page-
directory and the page-table entries. Table 6-3 shows the protection provided by the possible combinations of 
protection attributes when the WP flag is clear.
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6.11.5 Overrides to Page Protection
The following types of memory accesses are checked as if they are privilege-level 0 accesses, regardless of the CPL 
at which the processor is currently operating:
• Access to segment descriptors in the GDT, LDT, or IDT.
• Access to an inner-privilege-level stack during an inter-privilege-level call or a call to in exception or interrupt 

handler, when a change of privilege level occurs.

6.12 COMBINING PAGE AND SEGMENT PROTECTION
When paging is enabled, the processor evaluates segment protection first, then evaluates page protection. If the 
processor detects a protection violation at either the segment level or the page level, the memory access is not 
carried out and an exception is generated. If an exception is generated by segmentation, no paging exception is 
generated.

Page-level protections cannot be used to override segment-level protection. For example, a code segment is by 
definition not writable. If a code segment is paged, setting the R/W flag for the pages to read-write does not make 
the pages writable. Attempts to write into the pages will be blocked by segment-level protection checks.

Page-level protection can be used to enhance segment-level protection. For example, if a large read-write data 
segment is paged, the page-protection mechanism can be used to write-protect individual pages.

Table 6-3.  Combined Page-Directory and Page-Table Protection

Page-Directory Entry Page-Table Entry Combined Effect

Privilege Access Type Privilege Access Type Privilege Access Type

User Read-Only User Read-Only User Read-Only

User Read-Only User Read-Write User Read-Only

User Read-Write User Read-Only User Read-Only 

User Read-Write User Read-Write User Read/Write

User Read-Only Supervisor Read-Only Supervisor Read/Write*

User Read-Only Supervisor Read-Write Supervisor Read/Write*

User Read-Write Supervisor Read-Only Supervisor Read/Write*

User Read-Write Supervisor Read-Write Supervisor Read/Write

Supervisor Read-Only User Read-Only Supervisor Read/Write*

Supervisor Read-Only User Read-Write Supervisor Read/Write*

Supervisor Read-Write User Read-Only Supervisor Read/Write*

Supervisor Read-Write User Read-Write Supervisor Read/Write

Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write

NOTE:
* If CR0.WP = 1, access type is determined by the R/W flags of the page-directory and page-table entries. IF CR0.WP = 0, supervisor 

privilege permits read-write access.
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6.13 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLE BIT
In addition to page-level protection offered by the U/S and R/W flags, paging structures used with PAE paging, 4-
level paging,1 and 5-level paging provide the execute-disable bit (see Chapter 5, “Paging”). This bit offers addi-
tional protection for data pages. 

An Intel 64 or IA-32 processor with the execute-disable bit capability can prevent data pages from being used by 
malicious software to execute code. This capability is provided in:
• 32-bit protected mode with PAE enabled.
• IA-32e mode.

While the execute-disable bit capability does not introduce new instructions, it does require operating systems to 
use a PAE-enabled environment and establish a page-granular protection policy for memory pages. 

If the execute-disable bit of a memory page is set, that page can be used only as data. An attempt to execute code 
from a memory page with the execute-disable bit set causes a page-fault exception. 

The execute-disable capability is not supported with 32-bit paging. Existing page-level protection mechanisms (see 
Section 6.11, “Page-Level Protection”) continue to apply to memory pages independent of the execute-disable 
setting.

6.13.1 Detecting and Enabling the Execute-Disable Capability
Software can detect the presence of the execute-disable capability using the CPUID instruction. 
CPUID.80000001H:EDX.NX [bit 20] = 1 indicates the capability is available.

If the capability is available, software can enable it by setting IA32_EFER.NXE[bit 11] to 1. IA32_EFER is available 
if CPUID.80000001H.EDX[bit 20 or 29] = 1. 

If the execute-disable capability is not available, a write to set IA32_EFER.NXE produces a #GP exception. See 
Table 6-4.

6.13.2 Execute-Disable Page Protection
The execute-disable bit in the paging structures enhances page protection for data pages. Instructions cannot be 
fetched from a memory page if IA32_EFER.NXE =1 and the execute-disable bit is set in any of the paging-structure 
entries used to map the page. Table 6-5 lists the valid usage of a page in relation to the value of execute-disable bit 
(bit 63) of the corresponding entry in each level of the paging structures. Execute-disable protection can be acti-
vated using the execute-disable bit at any level of the paging structure, irrespective of the corresponding entry in 
other levels. When execute-disable protection is not activated, the page can be used as code or data.

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

Table 6-4.  Extended Feature Enable MSR (IA32_EFER)
63:12 11 10 9 8 7:1 0

Reserved Execute-disable bit 
enable (NXE)

IA-32e mode 
active (LMA)

Reserved IA-32e mode 
enable (LME)

Reserved SysCall enable (SCE)
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In legacy PAE-enabled mode, Table 6-6 and Table 6-7 show the effect of setting the execute-disable bit for code 
and data pages.
 

6.13.3 Reserved Bit Checking
The processor enforces reserved bit checking in paging data structure entries. The bits being checked varies with 
paging mode and may vary with the size of physical address space. 

Table 6-8 shows the reserved bits that are checked when the execute disable bit capability is enabled (CR4.PAE = 1 
and IA32_EFER.NXE = 1). Table 6-8 and Table 6-9 show the following paging modes:
• Non-PAE 4-KByte paging: 4-KByte-page only paging (CR4.PAE = 0, CR4.PSE = 0).
• PSE36: 4-KByte and 4-MByte pages (CR4.PAE = 0, CR4.PSE = 1).
• PAE: 4-KByte and 2-MByte pages (CR4.PAE = 1, CR4.PSE = X).

The reserved bit checking depends on the physical address size supported by the implementation, which is 
reported in CPUID.80000008H. See the table note.

Table 6-5.  Page Level Protection Matrix with Execute-Disable Bit Capability with 4-Level Paging
Execute Disable Bit Value (Bit 63) Valid Usage

PML4 PDP PDE PTE

Bit 63 = 1 * * * Data

* Bit 63 = 1 * * Data

* * Bit 63 = 1 * Data

* * * Bit 63 = 1 Data

Bit 63 = 0 Bit 63 = 0 Bit 63 = 0 Bit 63 = 0 Data/Code

NOTES:
* Value not checked.

Table 6-6.  4-KByte Page Level Protection Matrix with Execute-Disable Bit Capability with PAE Paging
Execute Disable Bit Value (Bit 63) Valid Usage

PDE PTE

Bit 63 = 1 * Data

* Bit 63 = 1 Data

Bit 63 = 0 Bit 63 = 0 Data/Code

NOTE:
*  Value not checked.

Table 6-7.  2-MByte Page Level Protection with Execute-Disable Bit Capability with PAE Paging
Execute Disable Bit Value (Bit 63) Valid Usage

PDE

Bit 63 = 1 Data

Bit 63 = 0 Data/Code
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If execute disable bit capability is not enabled or not available, reserved bit checking in 64-bit mode includes bit 63 
and additional bits. This and reserved bit checking for legacy 32-bit paging modes are shown in Table 6-10.

 

6.13.4 Exception Handling
When execute disable bit capability is enabled (IA32_EFER.NXE = 1), conditions for a page fault to occur include 
the same conditions that apply to an Intel 64 or IA-32 processor without execute disable bit capability plus the 

Table 6-8.  Page Level Protection Matrix with Execute-Disable Bit Capability Enabled
Mode Paging Mode Check Bits

32-bit 4-KByte paging (non-PAE) No reserved bits checked

PSE36 - PDE, 4-MByte page Bit [21] 

PSE36 - PDE, 4-KByte page No reserved bits checked

PSE36 - PTE No reserved bits checked

PAE - PDP table entry Bits [63:MAXPHYADDR] & [8:5] & [2:1] *

PAE - PDE, 2-MByte page Bits [62:MAXPHYADDR] & [20:13] *

PAE - PDE, 4-KByte page Bits [62:MAXPHYADDR] *

PAE - PTE Bits [62:MAXPHYADDR] *

64-bit PML5E Bits [51:MAXPHYADDR] *

PML4E Bits [51:MAXPHYADDR] *

PDPTE Bits [51:MAXPHYADDR] *

PDE, 2-MByte page Bits [51:MAXPHYADDR] & [20:13] *

PDE, 4-KByte page Bits [51:MAXPHYADDR] *

PTE Bits [51:MAXPHYADDR] *

NOTES:
* MAXPHYADDR is the maximum physical address size and is indicated by CPUID.80000008H:EAX[bits 7-0].

Table 6-9.  Reserved Bit Checking with Execute-Disable Bit Capability Not Enabled
Mode Paging Mode Check Bits

32-bit KByte paging (non-PAE)  No reserved bits checked

PSE36 - PDE, 4-MByte page  Bit [21] 

PSE36 - PDE, 4-KByte page  No reserved bits checked

PSE36 - PTE  No reserved bits checked

PAE - PDP table entry  Bits [63:MAXPHYADDR] & [8:5] & [2:1]*

PAE - PDE, 2-MByte page  Bits [63:MAXPHYADDR] & [20:13]*

PAE - PDE, 4-KByte page  Bits [63:MAXPHYADDR]*

PAE - PTE  Bits [63:MAXPHYADDR]*

64-bit PML5E  Bit [63], bits [51:MAXPHYADDR]* 

PML4E  Bit [63], bits [51:MAXPHYADDR]* 

PDPTE  Bit [63], bits [51:MAXPHYADDR]* 

PDE, 2-MByte page  Bit [63], bits [51:MAXPHYADDR] & [20:13]* 

PDE, 4-KByte page  Bit [63], bits [51:MAXPHYADDR]* 

PTE  Bit [63], bits [51:MAXPHYADDR]* 

NOTES:
* MAXPHYADDR is the maximum physical address size and is indicated by CPUID.80000008H:EAX[bits 7-0].
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following new condition: an instruction fetch to a linear address that translates to physical address in a memory 
page that has the execute-disable bit set.

An Execute Disable Bit page fault can occur at all privilege levels. It can occur on any instruction fetch, including 
(but not limited to): near branches, far branches, CALL/RET/INT/IRET execution, sequential instruction fetches, 
and task switches. The execute-disable bit in the page translation mechanism is checked only when:
• IA32_EFER.NXE = 1.
• The instruction translation look-aside buffer (ITLB) is loaded with a page that is not already present in the ITLB.
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CHAPTER 7
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the interrupt and exception-handling mechanism when operating in protected mode on an 
Intel 64 or IA-32 processor. Most of the information provided here also applies to interrupt and exception mecha-
nisms used in real-address, virtual-8086 mode, and 64-bit mode. 

Chapter 22, “8086 Emulation,” describes information specific to interrupt and exception mechanisms in real-
address and virtual-8086 mode. Section 7.14, “Exception and Interrupt Handling in 64-bit Mode,” describes infor-
mation specific to interrupt and exception mechanisms in IA-32e mode and 64-bit sub-mode.

7.1 INTERRUPT AND EXCEPTION OVERVIEW
Interrupts and exceptions are events that indicate that a condition exists somewhere in the system, the processor, 
or within the currently executing program or task that requires the attention of a processor. They typically result in 
a forced transfer of execution from the currently running program or task to a special software routine or task 
called an interrupt handler or an exception handler. The action taken by a processor in response to an interrupt or 
exception is referred to as servicing or handling the interrupt or exception.

Interrupts occur at random times during the execution of a program, in response to signals from hardware. System 
hardware uses interrupts to handle events external to the processor, such as requests to service peripheral devices. 
Software can also generate interrupts by executing the INT n instruction. 

Exceptions occur when the processor detects an error condition while executing an instruction, such as division by 
zero. The processor detects a variety of error conditions including protection violations, page faults, and internal 
machine faults. The machine-check architecture of the Pentium 4, Intel Xeon, P6 family, and Pentium processors 
also permits a machine-check exception to be generated when internal hardware errors and bus errors are 
detected.

When an interrupt is received or an exception is detected, the currently running procedure or task is suspended 
while the processor executes an interrupt or exception handler. When execution of the handler is complete, the 
processor resumes execution of the interrupted procedure or task. The resumption of the interrupted procedure or 
task happens without loss of program continuity, unless recovery from an exception was not possible or an inter-
rupt caused the currently running program to be terminated.

This chapter describes the processor’s interrupt and exception-handling mechanism, when operating in protected 
mode. A description of the exceptions and the conditions that cause them to be generated is given at the end of this 
chapter.

7.2 EXCEPTION AND INTERRUPT VECTORS
To aid in handling exceptions and interrupts, each architecturally defined exception and each interrupt condition 
requiring special handling by the processor is assigned a unique identification number, called a vector number. The 
processor uses the vector number assigned to an exception or interrupt as an index into the interrupt descriptor 
table (IDT). The table provides the entry point to an exception or interrupt handler (see Section 7.10, “Interrupt 
Descriptor Table (IDT)”).

The allowable range for vector numbers is 0 to 255. Vector numbers in the range 0 through 31 are reserved by the 
Intel 64 and IA-32 architectures for architecture-defined exceptions and interrupts. Not all of the vector numbers 
in this range have a currently defined function. The unassigned vector numbers in this range are reserved. Do not 
use the reserved vector numbers. 

Vector numbers in the range 32 to 255 are designated as user-defined interrupts and are not reserved by the Intel 
64 and IA-32 architecture. These interrupts are generally assigned to external I/O devices to enable those devices 
to send interrupts to the processor through one of the external hardware interrupt mechanisms (see Section 7.3, 
“Sources of Interrupts”).
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Table 7-1 shows vector number assignments for architecturally defined exceptions and for the NMI interrupt. This 
table gives the exception type (see Section 7.5, “Exception Classifications”) and indicates whether an error code is 
saved on the stack for the exception. The source of each predefined exception and the NMI interrupt is also given.

7.3 SOURCES OF INTERRUPTS
The processor receives interrupts from two sources:
• External (hardware generated) interrupts.
• Software-generated interrupts.

7.3.1 External Interrupts
External interrupts are received through pins on the processor or through the local APIC. The primary interrupt pins 
on Pentium 4, Intel Xeon, P6 family, and Pentium processors are the LINT[1:0] pins, which are connected to the 
local APIC (see Chapter 12, “Advanced Programmable Interrupt Controller (APIC)”). When the local APIC is 
enabled, the LINT[1:0] pins can be programmed through the APIC’s local vector table (LVT) to be associated with 
any of the processor’s exception or interrupt vectors.

When the local APIC is global/hardware disabled, these pins are configured as INTR and NMI pins, respectively. 
Asserting the INTR pin signals the processor that an external interrupt has occurred. The processor reads from the 
system bus the interrupt vector number provided by an external interrupt controller, such as an 8259A (see Section 
7.2, “Exception and Interrupt Vectors”). Asserting the NMI pin signals a non-maskable interrupt (NMI), which is 
assigned to interrupt vector 2.

Table 7-1.  Protected-Mode Exceptions and Interrupts 

Vector Mnemonic Description Type Error 
Code

Source

 0 #DE Divide Error Fault No DIV and IDIV instructions.

 1 #DB Debug Exception Fault/ Trap No Instruction, data, and I/O breakpoints; 
single-step; and others.

 2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.

 3 #BP Breakpoint Trap No INT3 instruction.

 4 #OF Overflow Trap No INTO instruction.

 5 #BR BOUND Range Exceeded Fault No BOUND instruction.

 6 #UD Invalid Opcode (Undefined Opcode) Fault No UD instruction or reserved opcode.

 7 #NM Device Not Available (No Math 
Coprocessor)

Fault No Floating-point or WAIT/FWAIT instruction.

 8 #DF Double Fault Abort Yes 
(zero)

Any instruction that can generate an 
exception, an NMI, or an INTR.

 9 Coprocessor Segment Overrun 
(reserved)

Fault No Floating-point instruction.1

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or accessing 
system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register loads.

13 #GP General Protection Fault Yes Any memory reference and other 
protection checks.

14 #PF Page Fault Fault Yes Any memory reference.
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The processor’s local APIC is normally connected to a system-based I/O APIC. Here, external interrupts received at 
the I/O APIC’s pins can be directed to the local APIC through the system bus (Pentium 4, Intel Core Duo, Intel Core 
2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors). The I/O APIC 
determines the vector number of the interrupt and sends this number to the local APIC. When a system contains 
multiple processors, processors can also send interrupts to one another by means of the system bus (Pentium 4, 
Intel Core Duo, Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium 
processors). 

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium processors that do not contain 
an on-chip local APIC. These processors have dedicated NMI and INTR pins. With these processors, external inter-
rupts are typically generated by a system-based interrupt controller (8259A), with the interrupts being signaled 
through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to occur. However, these interrupts 
are not handled by the interrupt and exception mechanism described in this chapter. These pins include the 
RESET#, FLUSH#, STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular processor is 
implementation dependent. Pin functions are described in the data books for the individual processors. The SMI# 
pin is described in Chapter 33, “System Management Mode.”

7.3.2 Maskable Hardware Interrupts
Any external interrupt that is delivered to the processor by means of the INTR pin or through the local APIC is called 
a maskable hardware interrupt. Maskable hardware interrupts that can be delivered through the INTR pin include 

15 — (Intel reserved. Do not use.) No

16 #MF x87 FPU Floating-Point Error (Math 
Fault)

Fault No x87 FPU floating-point or WAIT/FWAIT 
instruction.

17 #AC Alignment Check Fault Yes 
(Zero)

Any data reference in memory.2

18 #MC Machine Check Abort No Error codes (if any) and source are model 
dependent.3

19 #XM SIMD Floating-Point Exception Fault No SSE/SSE2/SSE3 floating-point 
instructions4

20 #VE Virtualization Exception Fault No EPT violations5

21 #CP Control Protection Exception Fault Yes RET, IRET, RSTORSSP, and SETSSBSY 
instructions can generate this exception. 
When CET indirect branch tracking is 
enabled, this exception can be generated 
due to a missing ENDBRANCH instruction 
at target of an indirect call or jump.

22-31 — Intel reserved. Do not use.

32-255 — User Defined (Non-reserved) 
Interrupts

Interrupt External interrupt or INT n instruction.

NOTES:
1. Processors after the Intel386 processor do not generate this exception.
2. This exception was introduced in the Intel486 processor.
3. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
4. This exception was introduced in the Pentium III processor.
5. This exception can occur only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.

Table 7-1.  Protected-Mode Exceptions and Interrupts  (Contd.)

Vector Mnemonic Description Type Error 
Code

Source
Vol. 3A 7-3



INTERRUPT AND EXCEPTION HANDLING
all IA-32 architecture defined interrupt vectors from 0 through 255; those that can be delivered through the local 
APIC include interrupt vectors 16 through 255. 

The IF flag in the EFLAGS register permits all maskable hardware interrupts to be masked as a group (see Section 
7.8.1, “Masking Maskable Hardware Interrupts”). Note that when interrupts 0 through 15 are delivered through the 
local APIC, the APIC indicates the receipt of an illegal vector. 

7.3.3 Software-Generated Interrupts
The INT n instruction permits interrupts to be generated from within software by supplying an interrupt vector 
number as an operand. For example, the INT 35 instruction forces an implicit call to the interrupt handler for inter-
rupt 35. 

Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruction. If the processor’s 
predefined NMI vector is used, however, the response of the processor will not be the same as it would be from an 
NMI interrupt generated in the normal manner. If vector number 2 (the NMI vector) is used in this instruction, the 
NMI interrupt handler is called, but the processor’s NMI-handling hardware is not activated. 

Interrupts generated in software with the INT n instruction cannot be masked by the IF flag in the EFLAGS register.

7.4 SOURCES OF EXCEPTIONS
The processor receives exceptions from three sources:
• Processor-detected program-error exceptions.
• Software-generated exceptions.
• Machine-check exceptions.

7.4.1 Program-Error Exceptions
The processor generates one or more exceptions when it detects program errors during the execution in an appli-
cation program or the operating system or executive. Intel 64 and IA-32 architectures define a vector number for 
each processor-detectable exception. Exceptions are classified as faults, traps, and aborts (see Section 7.5, 
“Exception Classifications”).

7.4.2 Software-Generated Exceptions
The INTO, INT1, INT3, and BOUND instructions permit exceptions to be generated in software. These instructions 
allow checks for exception conditions to be performed at points in the instruction stream. For example, INT3 causes 
a breakpoint exception to be generated.

The INT n instruction can be used to emulate exceptions in software; but there is a limitation.1 If INT n provides a 
vector for one of the architecturally-defined exceptions, the processor generates an interrupt to the correct vector 
(to access the exception handler) but does not push an error code on the stack. This is true even if the associated 
hardware-generated exception normally produces an error code. The exception handler will still attempt to pop an 
error code from the stack while handling the exception. Because no error code was pushed, the handler will pop off 
and discard the EIP instead (in place of the missing error code). This sends the return to the wrong location.

7.4.3 Machine-Check Exceptions
The P6 family and Pentium processors provide both internal and external machine-check mechanisms for checking 
the operation of the internal chip hardware and bus transactions. These mechanisms are implementation depen-

1. The INT n instruction has opcode CD following by an immediate byte encoding the value of n. In contrast, INT1 has opcode F1 and 
INT3 has opcode CC.
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dent. When a machine-check error is detected, the processor signals a machine-check exception (vector 18) and 
returns an error code. 

See Chapter 7, “Interrupt 18—Machine-Check Exception (#MC),” and Chapter 17, “Machine-Check Architecture,” 
for more information about the machine-check mechanism.

7.5 EXCEPTION CLASSIFICATIONS
Exceptions are classified as faults, traps, or aborts depending on the way they are reported and whether the 
instruction that caused the exception can be restarted without loss of program or task continuity.
• Faults — A fault is an exception that can generally be corrected and that, once corrected, allows the program 

to be restarted with no loss of continuity. When a fault is reported, the processor restores the machine state to 
the state prior to the beginning of execution of the faulting instruction. The return address (saved contents of 
the CS and EIP registers) for the fault handler points to the faulting instruction, rather than to the instruction 
following the faulting instruction.

• Traps — A trap is an exception that is reported immediately following the execution of the trapping instruction. 
Traps allow execution of a program or task to be continued without loss of program continuity. The return 
address for the trap handler points to the instruction to be executed after the trapping instruction.

• Aborts — An abort is an exception that does not always report the precise location of the instruction causing 
the exception and does not allow a restart of the program or task that caused the exception. Aborts are used to 
report severe errors, such as hardware errors and inconsistent or illegal values in system tables.

NOTE
One exception subset normally reported as a fault is not restartable. Such exceptions result in loss 
of some processor state. For example, executing a POPAD instruction where the stack frame 
crosses over the end of the stack segment causes a fault to be reported. In this situation, the 
exception handler sees that the instruction pointer (CS:EIP) has been restored as if the POPAD 
instruction had not been executed. However, internal processor state (the general-purpose 
registers) will have been modified. Such cases are considered programming errors. An application 
causing this class of exceptions should be terminated by the operating system.

7.6 PROGRAM OR TASK RESTART
To allow the restarting of program or task following the handling of an exception or an interrupt, all exceptions 
(except aborts) are guaranteed to report exceptions on an instruction boundary. All interrupts are guaranteed to be 
taken on an instruction boundary.

For fault-class exceptions, the return instruction pointer (saved when the processor generates an exception) points 
to the faulting instruction. So, when a program or task is restarted following the handling of a fault, the faulting 
instruction is restarted (re-executed). Restarting the faulting instruction is commonly used to handle exceptions 
that are generated when access to an operand is blocked. The most common example of this type of fault is a page-
fault exception (#PF) that occurs when a program or task references an operand located on a page that is not in 
memory. When a page-fault exception occurs, the exception handler can load the page into memory and resume 
execution of the program or task by restarting the faulting instruction. To ensure that the restart is handled trans-
parently to the currently executing program or task, the processor saves the necessary registers and stack pointers 
to allow a restart to the state prior to the execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction following the trapping instruction. 
If a trap is detected during an instruction which transfers execution, the return instruction pointer reflects the 
transfer. For example, if a trap is detected while executing a JMP instruction, the return instruction pointer points 
to the destination of the JMP instruction, not to the next address past the JMP instruction. All trap exceptions allow 
program or task restart with no loss of continuity. For example, the overflow exception is a trap exception. Here, 
the return instruction pointer points to the instruction following the INTO instruction that tested EFLAGS.OF (over-
flow) flag. The trap handler for this exception resolves the overflow condition. Upon return from the trap handler, 
program or task execution continues at the instruction following the INTO instruction.
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The abort-class exceptions do not support reliable restarting of the program or task. Abort handlers are designed 
to collect diagnostic information about the state of the processor when the abort exception occurred and then shut 
down the application and system as gracefully as possible.

Interrupts rigorously support restarting of interrupted programs and tasks without loss of continuity. The return 
instruction pointer saved for an interrupt points to the next instruction to be executed at the instruction boundary 
where the processor took the interrupt. If the instruction just executed has a repeat prefix, the interrupt is taken 
at the end of the current iteration with the registers set to execute the next iteration. 

The ability of a P6 family processor to speculatively execute instructions does not affect the taking of interrupts by 
the processor. Interrupts are taken at instruction boundaries located during the retirement phase of instruction 
execution; so they are always taken in the “in-order” instruction stream. See Chapter 2, “Intel® 64 and IA-32 
Architectures,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more informa-
tion about the P6 family processors’ microarchitecture and its support for out-of-order instruction execution.

Note that the Pentium processor and earlier IA-32 processors also perform varying amounts of prefetching and 
preliminary decoding. With these processors as well, exceptions and interrupts are not signaled until actual “in-
order” execution of the instructions. For a given code sample, the signaling of exceptions occurs uniformly when 
the code is executed on any family of IA-32 processors (except where new exceptions or new opcodes have been 
defined).

7.7 NONMASKABLE INTERRUPT (NMI)
The nonmaskable interrupt (NMI) can be generated in either of two ways:
• External hardware asserts the NMI pin.
• The processor receives a message on the system bus (Pentium 4, Intel Core Duo, Intel Core 2, Intel Atom, and 

Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors) with a delivery mode NMI.

When the processor receives a NMI from either of these sources, the processor handles it immediately by calling 
the NMI handler pointed to by interrupt vector number 2. The processor also invokes certain hardware conditions 
to ensure that no other interrupts, including NMI interrupts, are received until the NMI handler has completed 
executing (see Section 7.7.1, “Handling Multiple NMIs”).

Also, when an NMI is received from either of the above sources, it cannot be masked by the IF flag in the EFLAGS 
register.

It is possible to issue a maskable hardware interrupt (through the INTR pin) to vector 2 to invoke the NMI interrupt 
handler; however, this interrupt will not truly be an NMI interrupt. A true NMI interrupt that activates the 
processor’s NMI-handling hardware can only be delivered through one of the mechanisms listed above.

7.7.1 Handling Multiple NMIs
While an NMI interrupt handler is executing, the processor blocks delivery of subsequent NMIs until the next execu-
tion of the IRET instruction. This blocking of NMIs prevents nested execution of the NMI handler. It is recommended 
that the NMI interrupt handler be accessed through an interrupt gate to disable maskable hardware interrupts (see 
Section 7.8.1, “Masking Maskable Hardware Interrupts”). 

An execution of the IRET instruction unblocks NMIs even if the instruction causes a fault. For example, if the IRET 
instruction executes with EFLAGS.VM = 1 and IOPL of less than 3, a general-protection exception is generated (see 
Section 22.2.7, “Sensitive Instructions”). In such a case, NMIs are unmasked before the exception handler is 
invoked.

7.8 ENABLING AND DISABLING INTERRUPTS
The processor inhibits the generation of some interrupts, depending on the state of the processor and of the IF and 
RF flags in the EFLAGS register, as described in the following sections.
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7.8.1 Masking Maskable Hardware Interrupts
The IF flag can disable the servicing of maskable hardware interrupts received on the processor’s INTR pin or 
through the local APIC (see Section 7.3.2, “Maskable Hardware Interrupts”). When the IF flag is clear, the 
processor inhibits interrupts delivered to the INTR pin or through the local APIC from generating an internal inter-
rupt request; when the IF flag is set, interrupts delivered to the INTR or through the local APIC pin are processed 
as normal external interrupts. 

The IF flag does not affect non-maskable interrupts (NMIs) delivered to the NMI pin or delivery mode NMI 
messages delivered through the local APIC, nor does it affect processor generated exceptions. As with the other 
flags in the EFLAGS register, the processor clears the IF flag in response to a hardware reset.

The fact that the group of maskable hardware interrupts includes the reserved interrupt and exception vectors 0 
through 32 can potentially cause confusion. Architecturally, when the IF flag is set, an interrupt for any of the 
vectors from 0 through 32 can be delivered to the processor through the INTR pin and any of the vectors from 16 
through 32 can be delivered through the local APIC. The processor will then generate an interrupt and call the 
interrupt or exception handler pointed to by the vector number. So for example, it is possible to invoke the page-
fault handler through the INTR pin (by means of vector 14); however, this is not a true page-fault exception. It is 
an interrupt. As with the INT n instruction (see Section 7.4.2, “Software-Generated Exceptions”), when an inter-
rupt is generated through the INTR pin to an exception vector, the processor does not push an error code on the 
stack, so the exception handler may not operate correctly.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI (clear interrupt-enable flag) 
instructions, respectively. These instructions may be executed only if the CPL is equal to or less than the IOPL. A 
general-protection exception (#GP) is generated if they are executed when the CPL is greater than the IOPL.1 If 
IF = 0, maskable hardware interrupts remain inhibited on the instruction boundary following an execution of STI.2 
The inhibition ends after delivery of another event (e.g., exception) or the execution of the next instruction.

The IF flag is also affected by the following operations:
• The PUSHF instruction stores all flags on the stack, where they can be examined and modified. The POPF 

instruction can be used to load the modified flags back into the EFLAGS register.
• Task switches and the POPF and IRET instructions load the EFLAGS register; therefore, they can be used to 

modify the setting of the IF flag.
• When an interrupt is handled through an interrupt gate, the IF flag is automatically cleared, which disables 

maskable hardware interrupts. (If an interrupt is handled through a trap gate, the IF flag is not cleared.)

See the descriptions of the CLI, STI, PUSHF, POPF, and IRET instructions in Chapter 3, “Instruction Set Reference, 
A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, and Chapter 4, “Instruc-
tion Set Reference, M-U,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for a 
detailed description of the operations these instructions are allowed to perform on the IF flag.

7.8.2 Masking Instruction Breakpoints
The RF (resume) flag in the EFLAGS register controls the response of the processor to instruction-breakpoint condi-
tions (see the description of the RF flag in Section 2.3, “System Flags and Fields in the EFLAGS Register”). 

When set, it prevents an instruction breakpoint from generating a debug exception (#DB); when clear, instruction 
breakpoints will generate debug exceptions. The primary function of the RF flag is to prevent the processor from 
going into a debug exception loop on an instruction-breakpoint. See Section 19.3.1.1, “Instruction-Breakpoint 
Exception Condition,” for more information on the use of this flag.

As noted in Section 7.8.3, execution of the MOV or POP instruction to load the SS register suppresses any instruc-
tion breakpoint on the next instruction (just as if EFLAGS.RF were 1).

1. The effect of the IOPL on these instructions is modified slightly when the virtual mode extension is enabled by setting the VME flag 
in control register CR4: see Section 22.3, “Interrupt and Exception Handling in Virtual-8086 Mode.” Behavior is also impacted by the 
PVI flag: see Section 22.4, “Protected-Mode Virtual Interrupts.”

2. Nonmaskable interrupts and system-management interrupts may also be inhibited on the instruction boundary following such an 
execution of STI.
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7.8.3 Masking Exceptions and Interrupts When Switching Stacks
To switch to a different stack segment, software often uses a pair of instructions, for example:

MOV SS, AX
MOV ESP, StackTop

(Software might also use the POP instruction to load SS and ESP.)

If an interrupt or exception occurs after the new SS segment descriptor has been loaded but before the ESP register 
has been loaded, these two parts of the logical address into the stack space are inconsistent for the duration of the 
interrupt or exception handler (assuming that delivery of the interrupt or exception does not itself load a new stack 
pointer).

To account for this situation, the processor prevents certain events from being delivered after execution of a MOV 
to SS instruction or a POP to SS instruction. The following items provide details:
• Any instruction breakpoint on the next instruction is suppressed (as if EFLAGS.RF were 1).
• Any data breakpoint on the MOV to SS instruction or POP to SS instruction is inhibited until the instruction 

boundary following the next instruction.
• Any single-step trap that would be delivered following the MOV to SS instruction or POP to SS instruction 

(because EFLAGS.TF is 1) is suppressed.
• The suppression and inhibition ends after delivery of an exception or the execution of the next instruction.
• If a sequence of consecutive instructions each loads the SS register (using MOV or POP), only the first is 

guaranteed to inhibit or suppress events in this way.

Intel recommends that software use the LSS instruction to load the SS register and ESP together. The problem 
identified earlier does not apply to LSS, and the LSS instruction does not inhibit events as detailed above.

7.9 PRIORITIZATION OF CONCURRENT EVENTS 
If more than one event is pending at an instruction boundary (between execution of instructions), the processor 
services them in a predictable order. Table 7-2 shows the priority among classes of event sources.

Table 7-2.  Priority Among Concurrent Events

Priority Description

1 (Highest) Hardware Reset and Machine Checks

- RESET

- Machine Check (#MC)

2 Trap on Task Switch

- T flag in TSS is set (#DB)

3 External Hardware Interventions

- FLUSH

- STOPCLK

- SMI

- INIT

4 Traps on the Previous Instruction

- Trap-class Debug Exceptions (#DB due to TF flag set or data/I-O breakpoint)

5 Nonmaskable Interrupts (NMI) 1

6 Maskable Hardware Interrupts 1

7 Fault-class Debug Exceptions (#DB due to instruction breakpoint)
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The processor first services a pending event from the class which has the highest priority, transferring execution to 
the first instruction of the handler. Lower priority exceptions are discarded; lower priority interrupts are held 
pending. Discarded exceptions may be re-generated when the event handler returns execution to the point in the 
program or task where the original event occurred. While the priority among the classes listed in Table 7-2 is 
consistent across processor implementations, the priority of events within a class is implementation-dependent 
and may vary from processor to processor.

Table 7-2 specifies the prioritization of events that may be pending at an instruction boundary. It does not specify 
the prioritization of faults that arise during instruction execution or event delivery (these include #BR, #TS, #NP, 
#SS, #GP, #PF, #AC, #MF, #XM, #VE, or #CP). It also does not apply to the events generated by the “Call to Inter-
rupt Procedure” instructions (INT n, INTO, INT3, and INT1), as these events are integral to the execution of those 
instructions and do not occur between instructions.

7.10 INTERRUPT DESCRIPTOR TABLE (IDT)
The interrupt descriptor table (IDT) associates each exception or interrupt vector with a gate descriptor for the 
procedure or task used to service the associated exception or interrupt. Like the GDT and LDTs, the IDT is an array 
of 8-byte descriptors (in protected mode). Unlike the GDT, the first entry of the IDT may contain a descriptor. To 
form an index into the IDT, the processor scales the exception or interrupt vector by eight (the number of bytes in 
a gate descriptor). Because there are only 256 interrupt or exception vectors, the IDT need not contain more than 
256 descriptors. It can contain fewer than 256 descriptors, because descriptors are required only for the interrupt 
and exception vectors that may occur. All empty descriptor slots in the IDT should have the present flag for the 
descriptor set to 0.

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize performance of cache line 
fills. The limit value is expressed in bytes and is added to the base address to get the address of the last valid byte. 
A limit value of 0 results in exactly 1 valid byte. Because IDT entries are always eight bytes long, the limit should 
always be one less than an integral multiple of eight (that is, 8N – 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 7-1, the processor locates the IDT 
using the IDTR register. This register holds both a 32-bit base address and 16-bit limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store the contents of the IDTR 
register, respectively. The LIDT instruction loads the IDTR register with the base address and limit held in a 
memory operand. This instruction can be executed only when the CPL is 0. It normally is used by the initialization 
code of an operating system when creating an IDT. An operating system also may use it to change from one IDT to 
another. The SIDT instruction copies the base and limit value stored in IDTR to memory. This instruction can be 
executed at any privilege level. 

If a vector references a descriptor beyond the limit of the IDT, a general-protection exception (#GP) is generated.

8 Faults from Fetching Next Instruction 

- Code-Segment Limit Violation (#GP)

- Code Page Fault (#PF)

9 (Lowest) Faults from Decoding the Next Instruction

- Control protection exception due to missing ENDBRANCH at target of an indirect call or jump (#CP)

- Instruction length > 15 bytes (#GP)

- Invalid Opcode (#UD)

- Coprocessor Not Available (#NM)

NOTE

1. The Intel® 486 processor and earlier processors group nonmaskable and maskable interrupts in the same priority class.

Table 7-2.  Priority Among Concurrent Events (Contd.)

Priority Description
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NOTE
Because interrupts are delivered to the processor core only once, an incorrectly configured IDT 
could result in incomplete interrupt handling and/or the blocking of interrupt delivery. 
IA-32 architecture rules need to be followed for setting up IDTR base/limit/access fields and each 
field in the gate descriptors. The same apply for the Intel 64 architecture. This includes implicit 
referencing of the destination code segment through the GDT or LDT and accessing the stack.

7.11 IDT DESCRIPTORS
The IDT may contain any of three kinds of gate descriptors:
• Task-gate descriptor
• Interrupt-gate descriptor
• Trap-gate descriptor

Figure 7-2 shows the formats for the task-gate, interrupt-gate, and trap-gate descriptors. The format of a task 
gate used in an IDT is the same as that of a task gate used in the GDT or an LDT (see Section 9.2.5, “Task-Gate 
Descriptor”). The task gate contains the segment selector for a TSS for an exception and/or interrupt handler task. 

Interrupt and trap gates are very similar to call gates (see Section 6.8.3, “Call Gates”). They contain a far pointer 
(segment selector and offset) that the processor uses to transfer program execution to a handler procedure in an 
exception- or interrupt-handler code segment. These gates differ in the way the processor handles the IF flag in the 
EFLAGS register (see Section 7.12.1.3, “Flag Usage By Exception- or Interrupt-Handler Procedure”).

Figure 7-1.  Relationship of the IDTR and IDT
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7.12 EXCEPTION AND INTERRUPT HANDLING
The processor handles calls to exception- and interrupt-handlers similar to the way it handles calls with a CALL 
instruction to a procedure or a task. When responding to an exception or interrupt, the processor uses the excep-
tion or interrupt vector as an index to a descriptor in the IDT. If the index points to an interrupt gate or trap gate, 
the processor calls the exception or interrupt handler in a manner similar to a CALL to a call gate (see Section 
6.8.2, “Gate Descriptors,” through Section 6.8.6, “Returning from a Called Procedure”). If index points to a task 
gate, the processor executes a task switch to the exception- or interrupt-handler task in a manner similar to a CALL 
to a task gate (see Section 9.3, “Task Switching”).

Figure 7-2.  IDT Gate Descriptors
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7.12.1 Exception- or Interrupt-Handler Procedures
An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs in the context of 
the currently executing task (see Figure 7-3). The segment selector for the gate points to a segment descriptor for 
an executable code segment in either the GDT or the current LDT. The offset field of the gate descriptor points to 
the beginning of the exception- or interrupt-handling procedure.

Figure 7-3.  Interrupt Procedure Call
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When the processor performs a call to the exception- or interrupt-handler procedure:
• If the handler procedure is going to be executed at a numerically lower privilege level, a stack switch occurs. 

When the stack switch occurs: 

a. The segment selector and stack pointer for the stack to be used by the handler are obtained from the TSS 
for the currently executing task. On this new stack, the processor pushes the stack segment selector and 
stack pointer of the interrupted procedure. 

b. The processor then saves the current state of the EFLAGS, CS, and EIP registers on the new stack (see 
Figure 7-4). 

c. If an exception causes an error code to be saved, it is pushed on the new stack after the EIP value.
• If the handler procedure is going to be executed at the same privilege level as the interrupted procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers on the current stack (see Figure 
7-4). 

b. If an exception causes an error code to be saved, it is pushed on the current stack after the EIP value.

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD) instruction. 
The IRET instruction is similar to the RET instruction except that it restores the saved flags into the EFLAGS 
register. The IOPL field of the EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL 
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for a description of the complete operation performed by the 
IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction switches back to the interrupted 
procedure’s stack on the return.

Figure 7-4.  Stack Usage on Transfers to Interrupt and Exception-Handling Routines
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7.12.1.1  Shadow Stack Usage on Transfers to Interrupt and Exception Handling Routines
When the processor performs a call to the exception- or interrupt-handler procedure:
• If the handler procedure is going to be execute at a numerically lower privilege level, a shadow stack switch 

occurs. When the shadow stack switch occurs:

a. On a transfer from privilege level 3, if shadow stacks are enabled at privilege level 3 then the SSP is saved 
to the IA32_PL3_SSP MSR. 

b. If shadow stacks are enabled at the privilege level where the handler will execute then the shadow stack for 
the handler is obtained from one of the following MSRs based on the privilege level at which the handler 
executes. 

• IA32_PL2_SSP if handler executes at privilege level 2.

• IA32_PL1_SSP if handler executes at privilege level 1.

• IA32_PL0_SSP if handler executes at privilege level 0.

c. The SSP obtained is then verified to ensure it points to a valid supervisory shadow stack that is not currently 
active by verifying a supervisor shadow stack token at the address pointed to by the SSP. The operations 
performed to verify and acquire the supervisor shadow stack token by making it busy are as described in 
Section 18.2.3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

d. On this new shadow stack, the processor pushes the CS, LIP (CS.base + EIP), and SSP of the interrupted 
procedure if the interrupted procedure was executing at privilege level less than 3; see Figure 7-5.1

• If the handler procedure is going to be executed at the same privilege level as the interrupted procedure and 
shadow stacks are enabled at current privilege level:

a. The processor saves the current state of the CS, LIP (CS.base + EIP), and SSP registers on the current 
shadow stack; see Figure 7-5.

1. If any of these pushes leads to an exception or a VM exit, the supervisor shadow-stack token remains busy.
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To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD) instruction. 

When executing a return from an interrupt or exception handler from the same privilege level as the interrupted 
procedure, the processor performs these actions to enforce return address protection:
• Restores the CS and EIP registers to their values prior to the interrupt or exception.

Figure 7-5.  Shadow Stack Usage on Transfers to Interrupt and Exception-Handling Routines
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If shadow stack is enabled:

— Compares the values on shadow stack at address SSP+8 (the LIP) and SSP+16 (the CS) to the CS and 
(CS.base + EIP) popped from the stack and causes a control protection exception (#CP(FAR-RET/IRET)) if 
they do not match. 

— Pops the top-of-stack value (the SSP prior to the interrupt or exception) from shadow stack into SSP 
register.

When executing a return from an interrupt or exception handler from a different privilege level than the interrupted 
procedure, the processor performs the actions below.
• If shadow stack is enabled at current privilege level:

— If SSP is not aligned to 8 bytes then causes a control protection exception (#CP(FAR-RET/IRET)).

— If privilege level of the procedure being returned to is less than 3 (returning to supervisor mode):

• Compares the values on shadow stack at address SSP+8 (the LIP) and SSP+16 (the CS) to the CS and 
(CS.base + EIP) popped from the stack and causes a control protection exception (#CP(FAR-RET/IRET)) 
if they do not match. 

• Temporarily saves the top-of-stack value (the SSP of the procedure being returned to) internally.

— If a busy supervisor shadow stack token is present at address SSP+24, then marks the token free using 
operations described in section Section 18.2.3 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.

— If the privilege level of the procedure being returned to is less than 3 (returning to supervisor mode), 
restores the SSP register from the internally saved value.

— If the privilege level of the procedure being returned to is 3 (returning to user mode) and shadow stack is 
enabled at privilege level 3, then restores the SSP register with value of IA32_PL3_SSP MSR.

7.12.1.2  Protection of Exception- and Interrupt-Handler Procedures
The privilege-level protection for exception- and interrupt-handler procedures is similar to that used for ordinary 
procedure calls when called through a call gate (see Section 6.8.4, “Accessing a Code Segment Through a Call 
Gate”). The processor does not permit transfer of execution to an exception- or interrupt-handler procedure in a 
less privileged code segment (numerically greater privilege level) than the CPL. 

An attempt to violate this rule results in a general-protection exception (#GP). The protection mechanism for 
exception- and interrupt-handler procedures is different in the following ways:
• Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit calls to exception and 

interrupt handlers.
• The processor checks the DPL of the interrupt or trap gate only if an exception or interrupt is generated with an 

INT n, INT3, or INTO instruction.1 Here, the CPL must be less than or equal to the DPL of the gate. This 
restriction prevents application programs or procedures running at privilege level 3 from using a software 
interrupt to access critical exception handlers, such as the page-fault handler, providing that those handlers are 
placed in more privileged code segments (numerically lower privilege level). For hardware-generated interrupts 
and processor-detected exceptions, the processor ignores the DPL of interrupt and trap gates.

Because exceptions and interrupts generally do not occur at predictable times, these privilege rules effectively 
impose restrictions on the privilege levels at which exception and interrupt- handling procedures can run. Either of 
the following techniques can be used to avoid privilege-level violations.
• The exception or interrupt handler can be placed in a conforming code segment. This technique can be used for 

handlers that only need to access data available on the stack (for example, divide error exceptions). If the 
handler needs data from a data segment, the data segment needs to be accessible from privilege level 3, which 
would make it unprotected.

• The handler can be placed in a nonconforming code segment with privilege level 0. This handler would always 
run, regardless of the CPL that the interrupted program or task is running at.

1. This check is not performed by execution of the INT1 instruction (opcode F1); it would be performed by execution of INT 1 (opcode 
CD 01).
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7.12.1.3  Flag Usage By Exception- or Interrupt-Handler Procedure
When accessing an exception or interrupt handler through either an interrupt gate or a trap gate, the processor 
clears the TF flag in the EFLAGS register after it saves the contents of the EFLAGS register on the stack. (On calls 
to exception and interrupt handlers, the processor also clears the VM, RF, and NT flags in the EFLAGS register, after 
they are saved on the stack.) Clearing the TF flag prevents instruction tracing from affecting interrupt response and 
ensures that no single-step exception will be delivered after delivery to the handler. A subsequent IRET instruction 
restores the TF (and VM, RF, and NT) flags to the values in the saved contents of the EFLAGS register on the stack.

The only difference between an interrupt gate and a trap gate is the way the processor handles the IF flag in the 
EFLAGS register. When accessing an exception- or interrupt-handling procedure through an interrupt gate, the 
processor clears the IF flag to prevent other interrupts from interfering with the current interrupt handler. A subse-
quent IRET instruction restores the IF flag to its value in the saved contents of the EFLAGS register on the stack. 
Accessing a handler procedure through a trap gate does not affect the IF flag.

7.12.2 Interrupt Tasks
When an exception or interrupt handler is accessed through a task gate in the IDT, a task switch results. Handling 
an exception or interrupt with a separate task offers several advantages:
• The entire context of the interrupted program or task is saved automatically.
• A new TSS permits the handler to use a new privilege level 0 stack when handling the exception or interrupt. If 

an exception or interrupt occurs when the current privilege level 0 stack is corrupted, accessing the handler 
through a task gate can prevent a system crash by providing the handler with a new privilege level 0 stack.

• The handler can be further isolated from other tasks by giving it a separate address space. This is done by 
giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of machine state that must be 
saved on a task switch makes it slower than using an interrupt gate, resulting in increased interrupt latency.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 7-6). A switch to the handler task is 
handled in the same manner as an ordinary task switch (see Section 9.3, “Task Switching”). The link back to the 
interrupted task is stored in the previous task link field of the handler task’s TSS. If an exception caused an error 
code to be generated, this error code is copied to the stack of the new task.

When exception- or interrupt-handler tasks are used in an operating system, there are actually two mechanisms 
that can be used to dispatch tasks: the software scheduler (part of the operating system) and the hardware sched-
uler (part of the processor's interrupt mechanism). The software scheduler needs to accommodate interrupt tasks 
that may be dispatched when interrupts are enabled.
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NOTE
Because IA-32 architecture tasks are not re-entrant, an interrupt-handler task must disable 
interrupts between the time it completes handling the interrupt and the time it executes the IRET 
instruction. This action prevents another interrupt from occurring while the interrupt task’s TSS is 
still marked busy, which would cause a general-protection (#GP) exception.

7.13 ERROR CODE
When an exception condition is related to a specific segment selector or IDT vector, the processor pushes an error 
code onto the stack of the exception handler (whether it is a procedure or task). The error code has the format 
shown in Figure 7-7. The error code resembles a segment selector; however, instead of a TI flag and RPL field, the 
error code contains 3 flags:

EXT External event (bit 0) — When set, indicates that the exception occurred during delivery of an 
event external to the program, such as an interrupt or an earlier exception.1 The bit is cleared if the 
exception occurred during delivery of a software interrupt (INT n, INT3, or INTO).

IDT Descriptor location (bit 1) — When set, indicates that the index portion of the error code refers 
to a gate descriptor in the IDT; when clear, indicates that the index refers to a descriptor in the GDT 
or the current LDT.

TI GDT/LDT (bit 2) — Only used when the IDT flag is clear. When set, the TI flag indicates that the 
index portion of the error code refers to a segment or gate descriptor in the LDT; when clear, it indi-
cates that the index refers to a descriptor in the current GDT.

Figure 7-6.  Interrupt Task Switch
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The segment selector index field provides an index into the IDT, GDT, or current LDT to the segment or gate 
selector being referenced by the error code. In some cases the error code is null (all bits are clear except possibly 
EXT). A null error code indicates that the error was not caused by a reference to a specific segment or that a null 
segment selector was referenced in an operation.

The format of the error code is different for page-fault exceptions (#PF). See the “Interrupt 14—Page-Fault Excep-
tion (#PF)” section in this chapter.

The format of the error code is different for control protection exceptions (#CP). See the “Interrupt 21—Control 
Protection Exception (#CP)” section in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the default interrupt, trap, or task 
gate size). To keep the stack aligned for doubleword pushes, the upper half of the error code is reserved. Note that 
the error code is not popped when the IRET instruction is executed to return from an exception handler, so the 
handler must remove the error code before executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally (with the INTR or LINT[1:0] 
pins) or the INT n instruction, even if an error code is normally produced for those exceptions.

7.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT MODE
In 64-bit mode, interrupt and exception handling is similar to what has been described for non-64-bit modes. The 
following are the exceptions:
• All interrupt handlers pointed by the IDT are in 64-bit code (this does not apply to the SMI handler).
• The size of interrupt-stack pushes is fixed at 64 bits; and the processor uses 8-byte, zero extended stores.
• The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy modes, this push is conditional 

and based on a change in current privilege level (CPL).
• The new SS is set to NULL if there is a change in CPL.
• IRET behavior changes.
• There is a new interrupt stack-switch mechanism and a new interrupt shadow stack-switch mechanism.
• The alignment of interrupt stack frame is different.

7.14.1 64-Bit Mode IDT
Interrupt and trap gates are 16 bytes in length to provide a 64-bit offset for the instruction pointer (RIP). The 64-
bit RIP referenced by interrupt-gate descriptors allows an interrupt service routine to be located anywhere in the 
linear-address space. See Figure 7-8.

Figure 7-7.  Error Code
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In 64-bit mode, the IDT index is formed by scaling the interrupt vector by 16. The first eight bytes (bytes 7:0) of a 
64-bit mode interrupt gate are similar but not identical to legacy 32-bit interrupt gates. The type field (bits 11:8 in 
bytes 7:4) is described in Table 3-2. The Interrupt Stack Table (IST) field (bits 4:0 in bytes 7:4) is used by the stack 
switching mechanisms described in Section 7.14.5, “Interrupt Stack Table.” Bytes 11:8 hold the upper 32 bits of 
the target RIP (interrupt segment offset) in canonical form. A general-protection exception (#GP) is generated if 
software attempts to reference an interrupt gate with a target RIP that is not in canonical form.

The target code segment referenced by the interrupt gate must be a 64-bit code segment (CS.L = 1, CS.D = 0). If 
the target is not a 64-bit code segment, a general-protection exception (#GP) is generated with the IDT vector 
number reported as the error code.

Only 64-bit interrupt and trap gates can be referenced in IA-32e mode (64-bit mode and compatibility mode). 
Legacy 32-bit interrupt or trap gate types (0EH or 0FH) are redefined in IA-32e mode as 64-bit interrupt and trap 
gate types. No 32-bit interrupt or trap gate type exists in IA-32e mode. If a reference is made to a 16-bit interrupt 
or trap gate (06H or 07H), a general-protection exception (#GP(0)) is generated.

7.14.2 64-Bit Mode Stack Frame
In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of interrupt-stack-frame pushes. 
SS:ESP is pushed only on a CPL change. In 64-bit mode, the size of interrupt stack-frame pushes is fixed at eight 
bytes. This is because only 64-bit mode gates can be referenced. 64-bit mode also pushes SS:RSP unconditionally, 
rather than only on a CPL change.

When shadow stacks are enabled at the interrupt handler’s privilege level and the interrupted procedure was not 
executing at a privilege level 3, then the processor pushes the CS:LIP:SSP of the interrupted procedure on the 
shadow stack of the interrupt handler (where LIP is the linear address of the return address).

Aside from error codes, pushing SS:RSP unconditionally presents operating systems with a consistent interrupt-
stackframe size across all interrupts. Interrupt service-routine entry points that handle interrupts generated by the 
INTn instruction or external INTR# signal can push an additional error code place-holder to maintain consistency.

In legacy mode, the stack pointer may be at any alignment when an interrupt or exception causes a stack frame to 
be pushed. This causes the stack frame and succeeding pushes done by an interrupt handler to be at arbitrary 
alignments. In IA-32e mode, the RSP is aligned to a 16-byte boundary before pushing the stack frame. The stack 
frame itself is aligned on a 16-byte boundary when the interrupt handler is called. The processor can arbitrarily 
realign the new RSP on interrupts because the previous (possibly unaligned) RSP is unconditionally saved on the 
newly aligned stack. The previous RSP will be automatically restored by a subsequent IRET.

Figure 7-8.  64-Bit IDT Gate Descriptors
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Aligning the stack permits exception and interrupt frames to be aligned on a 16-byte boundary before interrupts 
are re-enabled. This allows the stack to be formatted for optimal storage of 16-byte XMM registers, which enables 
the interrupt handler to use faster 16-byte aligned loads and stores (MOVAPS rather than MOVUPS) to save and 
restore XMM registers. 

Although the RSP alignment is always performed when LMA = 1, it is only of consequence for the kernel-mode case 
where there is no stack switch or IST used. For a stack switch or IST, the OS would have presumably put suitably 
aligned RSP values in the TSS.

7.14.3 IRET in IA-32e Mode 
In IA-32e mode, IRET executes with an 8-byte operand size. There is nothing that forces this requirement. The 
stack is formatted in such a way that for actions where IRET is required, the 8-byte IRET operand size works 
correctly. 

Because interrupt stack-frame pushes are always eight bytes in IA-32e mode, an IRET must pop eight byte items 
off the stack. This is accomplished by preceding the IRET with a 64-bit operand-size prefix. The size of the pop is 
determined by the address size of the instruction. The SS/ESP/RSP size adjustment is determined by the stack 
size.

IRET pops SS:RSP unconditionally off the interrupt stack frame only when it is executed in 64-bit mode. In compat-
ibility mode, IRET pops SS:RSP off the stack only if there is a CPL change. This allows legacy applications to 
execute properly in compatibility mode when using the IRET instruction. 64-bit interrupt service routines that exit 
with an IRET unconditionally pop SS:RSP off of the interrupt stack frame, even if the target code segment is 
running in 64-bit mode or at CPL = 0. This is because the original interrupt always pushes SS:RSP.

When shadow stacks are enabled and the target privilege level is not 3, the CS:LIP from the shadow stack frame is 
compared to the return linear address formed by CS:EIP from the stack. If they do not match then the processor 
caused a control protection exception (#CP(FAR-RET/IRET)), else the processor pops the SSP of the interrupted 
procedure from the shadow stack. If the target privilege level is 3 and shadow stacks are enabled at privilege level 
3, then the SSP for the interrupted procedure is restored from the IA32_PL3_SSP MSR.

In IA-32e mode, IRET is allowed to load a NULL SS under certain conditions. If the target mode is 64-bit mode and 
the target CPL ? 3, IRET allows SS to be loaded with a NULL selector. As part of the stack switch mechanism, an 
interrupt or exception sets the new SS to NULL, instead of fetching a new SS selector from the TSS and loading the 
corresponding descriptor from the GDT or LDT. The new SS selector is set to NULL in order to properly handle 
returns from subsequent nested far transfers. If the called procedure itself is interrupted, the NULL SS is pushed 
on the stack frame. On the subsequent IRET, the NULL SS on the stack acts as a flag to tell the processor not to 
load a new SS descriptor.

7.14.4 Stack Switching in IA-32e Mode 
The IA-32 architecture provides a mechanism to automatically switch stack frames in response to an interrupt. The 
64-bit extensions of Intel 64 architecture implement a modified version of the legacy stack-switching mechanism 
and an alternative stack-switching mechanism called the interrupt stack table (IST).

In IA-32 modes, the legacy IA-32 stack-switch mechanism is unchanged. In IA-32e mode, the legacy stack-switch 
mechanism is modified. When stacks are switched as part of a 64-bit mode privilege-level change (resulting from 
an interrupt), a new SS descriptor is not loaded. IA-32e mode loads only an inner-level RSP from the TSS. The new 
SS selector is forced to NULL and the SS selector’s RPL field is set to the new CPL. The new SS is set to NULL in 
order to handle nested far transfers (far CALL, INT, interrupts, and exceptions). The old SS and RSP are saved on 
the new stack (Figure 7-9). On the subsequent IRET, the old SS is popped from the stack and loaded into the SS 
register.

In summary, a stack switch in IA-32e mode works like the legacy stack switch, except that a new SS selector is not 
loaded from the TSS. Instead, the new SS is forced to NULL.
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7.14.5 Interrupt Stack Table 
In IA-32e mode, a new interrupt stack table (IST) mechanism is available as an alternative to the modified legacy 
stack-switching mechanism described above. This mechanism unconditionally switches stacks when it is enabled. 
It can be enabled on an individual interrupt-vector basis using a field in the IDT entry. This means that some inter-
rupt vectors can use the modified legacy mechanism and others can use the IST mechanism. 

The IST mechanism is only available in IA-32e mode. It is part of the 64-bit mode TSS. The motivation for the IST 
mechanism is to provide a method for specific interrupts (such as NMI, double-fault, and machine-check) to always 
execute on a known good stack. In legacy mode, interrupts can use the task-switch mechanism to set up a known-
good stack by accessing the interrupt service routine through a task gate located in the IDT. However, the legacy 
task-switch mechanism is not supported in IA-32e mode. 

The IST mechanism provides up to seven IST pointers in the TSS. The pointers are referenced by an interrupt-gate 
descriptor in the interrupt-descriptor table (IDT); see Figure 7-8. The gate descriptor contains a 3-bit IST index 
field that provides an offset into the IST section of the TSS. Using the IST mechanism, the processor loads the value 
pointed by an IST pointer into the RSP.

When an interrupt occurs, the new SS selector is forced to NULL and the SS selector’s RPL field is set to the new 
CPL. The old SS, RSP, RFLAGS, CS, and RIP are pushed onto the new stack. Interrupt processing then proceeds as 
normal. If the IST index is zero, the modified legacy stack-switching mechanism described above is used.

To support this stack-switching mechanism with shadow stacks enabled, the processor provides an MSR, 
IA32_INTERRUPT_SSP_TABLE, to program the linear address of a table of seven shadow stack pointers that are 
selected using the IST index from the gate descriptor. To switch to a shadow stack selected from the interrupt 
shadow stack table pointed to by the IA32_INTERRUPT_SSP_TABLE, the processor requires that the shadow stack 
addresses programmed into this table point to a supervisor shadow stack token; see Figure 7-10.

Figure 7-9.  IA-32e Mode Stack Usage After Privilege Level Change
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7.15 EXCEPTION AND INTERRUPT REFERENCE
The following sections describe conditions which generate exceptions and interrupts. They are arranged in the 
order of vector numbers. The information contained in these sections are as follows:
• Exception Class — Indicates whether the exception class is a fault, trap, or abort type. Some exceptions can 

be either a fault or trap type, depending on when the error condition is detected. (This section is not applicable 
to interrupts.)

• Description — Gives a general description of the purpose of the exception or interrupt type. It also describes 
how the processor handles the exception or interrupt.

• Exception Error Code — Indicates whether an error code is saved for the exception. If one is saved, the 
contents of the error code are described. (This section is not applicable to interrupts.)

• Saved Instruction Pointer — Describes which instruction the saved (or return) instruction pointer points to. 
It also indicates whether the pointer can be used to restart a faulting instruction.

• Program State Change — Describes the effects of the exception or interrupt on the state of the currently 
running program or task and the possibilities of restarting the program or task without loss of continuity.

Figure 7-10.  Interrupt Shadow Stack Table
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Interrupt 0—Divide Error Exception (#DE)

Exception Class Fault.

Description

Indicates the divisor operand for a DIV or IDIV instruction is 0 or that the result cannot be represented in the 
number of bits specified for the destination operand.

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany the divide error, because the exception occurs before the faulting 
instruction is executed.
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Interrupt 1—Debug Exception (#DB)

Exception Class Trap or Fault. The exception handler can distinguish between traps or faults by exam-
ining the contents of DR6 and the other debug registers.

Description

Indicates that one or more of several debug-exception conditions has been detected. Whether the exception is a 
fault or a trap depends on the condition (see Table 7-3). See Chapter 19, “Debug, Branch Profile, TSC, and Intel® 
Resource Director Technology (Intel® RDT) Features,” for detailed information about the debug exceptions.

Exception Error Code

None. An exception handler can examine the debug registers to determine which condition caused the exception.

Saved Instruction Pointer

Fault — Saved contents of CS and EIP registers point to the instruction that generated the exception.

Trap — Saved contents of CS and EIP registers point to the instruction following the instruction that generated the 
exception.

Program State Change

Fault — A program-state change does not accompany the debug exception, because the exception occurs before 
the faulting instruction is executed. The program can resume normal execution upon returning from the debug 
exception handler.

Trap — A program-state change does accompany the debug exception, because the instruction or task switch being 
executed is allowed to complete before the exception is generated. However, the new state of the program is not 
corrupted and execution of the program can continue reliably.

The following items detail the treatment of debug exceptions on the instruction boundary following execution of the 
MOV or the POP instruction that loads the SS register:
• If EFLAGS.TF is 1, no single-step trap is generated.
• If the instruction encounters a data breakpoint, the resulting debug exception is delivered after completion of 

the instruction after the MOV or POP. This occurs even if the next instruction is INT n, INT3, or INTO.
• Any instruction breakpoint on the instruction after the MOV or POP is suppressed (as if EFLAGS.RF were 1).

Any debug exception inside an RTM region causes a transactional abort and, by default, redirects control flow to the 
fallback instruction address. If advanced debugging of RTM transactional regions has been enabled, any transac-
tional abort due to a debug exception instead causes execution to roll back to just before the XBEGIN instruction 

Table 7-3.  Debug Exception Conditions and Corresponding Exception Classes

Exception Condition Exception Class

Instruction fetch breakpoint Fault

Data read or write breakpoint Trap

I/O read or write breakpoint Trap

General detect condition (in conjunction with in-circuit emulation) Fault

Single-step Trap

Task-switch Trap

Execution of INT11

NOTES:
1. Hardware vendors may use the INT1 instruction for hardware debug. For that reason, Intel recommends software vendors instead 

use the INT3 instruction for software breakpoints.

Trap
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and then delivers a #DB. See Section 17.3.7, “RTM-Enabled Debugger Support,” of Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.
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Interrupt 2—NMI Interrupt

Exception Class Not applicable.

Description

The nonmaskable interrupt (NMI) is generated externally by asserting the processor’s NMI pin or through an NMI 
request set by the I/O APIC to the local APIC. This interrupt causes the NMI interrupt handler to be called.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The processor always takes an NMI interrupt on an instruction boundary. The saved contents of CS and EIP regis-
ters point to the next instruction to be executed at the point the interrupt is taken. See Section 7.5, “Exception 
Classifications,” for more information about when the processor takes NMI interrupts.

Program State Change

The instruction executing when an NMI interrupt is received is completed before the NMI is generated. A program 
or task can thus be restarted upon returning from an interrupt handler without loss of continuity, provided the 
interrupt handler saves the state of the processor before handling the interrupt and restores the processor’s state 
prior to a return.
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Interrupt 3—Breakpoint Exception (#BP)

Exception Class Trap.

Description

Indicates that a breakpoint instruction (INT3, opcode CC) was executed, causing a breakpoint trap to be gener-
ated. Typically, a debugger sets a breakpoint by replacing the first opcode byte of an instruction with the opcode for 
the INT3 instruction. (The INT3 instruction is one byte long, which makes it easy to replace an opcode in a code 
segment in RAM with the breakpoint opcode.) The operating system or a debugging tool can use a data segment 
mapped to the same physical address space as the code segment to place an INT3 instruction in places where it is 
desired to call the debugger.

With the P6 family, Pentium, Intel486, and Intel386 processors, it is more convenient to set breakpoints with the 
debug registers. (See Section 19.3.2, “Breakpoint Exception (#BP)—Interrupt Vector 3,” for information about the 
breakpoint exception.) If more breakpoints are needed beyond what the debug registers allow, the INT3 instruction 
can be used.

Any breakpoint exception inside an RTM region causes a transactional abort and, by default, redirects control flow 
to the fallback instruction address. If advanced debugging of RTM transactional regions has been enabled, any 
transactional abort due to a break exception instead causes execution to roll back to just before the XBEGIN 
instruction and then delivers a debug exception (#DB) — not a breakpoint exception. See Section 17.3.7, “RTM-
Enabled Debugger Support,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

A breakpoint exception can also be generated by executing the INT n instruction with an operand of 3. The action 
of this instruction (INT 3) is slightly different than that of the INT3 instruction (see “INT n/INTO/INT3/INT1—Call to 
Interrupt Procedure” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A).

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction following the INT3 instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the state of the program is 
essentially unchanged because the INT3 instruction does not affect any register or memory locations. The 
debugger can thus resume the suspended program by replacing the INT3 instruction that caused the breakpoint 
with the original opcode and decrementing the saved contents of the EIP register. Upon returning from the 
debugger, program execution resumes with the replaced instruction.
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Interrupt 4—Overflow Exception (#OF)

Exception Class Trap.

Description

Indicates that an overflow trap occurred when an INTO instruction was executed. The INTO instruction checks the 
state of the OF flag in the EFLAGS register. If the OF flag is set, an overflow trap is generated.

Some arithmetic instructions (such as the ADD and SUB) perform both signed and unsigned arithmetic. These 
instructions set the OF and CF flags in the EFLAGS register to indicate signed overflow and unsigned overflow, 
respectively. When performing arithmetic on signed operands, the OF flag can be tested directly or the INTO 
instruction can be used. The benefit of using the INTO instruction is that if the overflow exception is detected, an 
exception handler can be called automatically to handle the overflow condition.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction following the INTO instruction.

Program State Change

Even though the EIP points to the instruction following the INTO instruction, the state of the program is essentially 
unchanged because the INTO instruction does not affect any register or memory locations. The program can thus 
resume normal execution upon returning from the overflow exception handler.
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Interrupt 5—BOUND Range Exceeded Exception (#BR)

Exception Class Fault.

Description

Indicates that a BOUND-range-exceeded fault occurred when a BOUND instruction was executed. The BOUND 
instruction checks that a signed array index is within the upper and lower bounds of an array located in memory. If 
the array index is not within the bounds of the array, a BOUND-range-exceeded fault is generated.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the BOUND instruction that generated the exception.

Program State Change

A program-state change does not accompany the bounds-check fault, because the operands for the BOUND 
instruction are not modified. Returning from the BOUND-range-exceeded exception handler causes the BOUND 
instruction to be restarted.
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Interrupt 6—Invalid Opcode Exception (#UD)

Exception Class Fault.

Description

Indicates that the processor did one of the following things:
• Attempted to execute an invalid or reserved opcode.
• Attempted to execute an instruction with an operand type that is invalid for its accompanying opcode; for 

example, the source operand for a LES instruction is not a memory location.
• Attempted to execute an MMX or SSE/SSE2/SSE3 instruction on an Intel 64 or IA-32 processor that does not 

support the MMX technology or SSE/SSE2/SSE3/SSSE3 extensions, respectively. CPUID feature flags MMX (bit 
23), SSE (bit 25), SSE2 (bit 26), SSE3 (ECX, bit 0), SSSE3 (ECX, bit 9) indicate support for these extensions.

• Attempted to execute an MMX instruction or SSE/SSE2/SSE3/SSSE3 SIMD instruction (with the exception of 
the MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, CLFLUSH, MONITOR, and MWAIT instructions) 
when the EM flag in control register CR0 is set (1).

• Attempted to execute an SSE/SE2/SSE3/SSSE3 instruction when the OSFXSR bit in control register CR4 is 
clear (0). Note this does not include the following SSE/SSE2/SSE3 instructions: MASKMOVQ, MOVNTQ, 
MOVNTI, PREFETCHh, SFENCE, LFENCE, MFENCE, and CLFLUSH; or the 64-bit versions of the PAVGB, PAVGW, 
PEXTRW, PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB, PMOVMSKB, PMULHUW, PSADBW, PSHUFW, PADDQ, 
PSUBQ, PALIGNR, PABSB, PABSD, PABSW, PHADDD, PHADDSW, PHADDW, PHSUBD, PHSUBSW, PHSUBW, 
PMADDUBSM, PMULHRSW, PSHUFB, PSIGNB, PSIGND, and PSIGNW.

• Attempted to execute an SSE/SSE2/SSE3/SSSE3 instruction on an Intel 64 or IA-32 processor that caused a 
SIMD floating-point exception when the OSXMMEXCPT bit in control register CR4 is clear (0).

• Executed a UD0, UD1 or UD2 instruction. Note that even though it is the execution of the UD0, UD1 or UD2 
instruction that causes the invalid opcode exception, the saved instruction pointer will still points at the UD0, 
UD1 or UD2 instruction.

• Detected a LOCK prefix that precedes an instruction that may not be locked or one that may be locked but the 
destination operand is not a memory location.

• Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL instruction while in real-
address or virtual-8086 mode.

• Attempted to execute the RSM instruction when not in SMM mode.

In Intel 64 and IA-32 processors that implement out-of-order execution microarchitectures, this exception is not 
generated until an attempt is made to retire the result of executing an invalid instruction; that is, decoding and 
speculatively attempting to execute an invalid opcode does not generate this exception. Likewise, in the Pentium 
processor and earlier IA-32 processors, this exception is not generated as the result of prefetching and preliminary 
decoding of an invalid instruction. (See Section 7.5, “Exception Classifications,” for general rules for taking of inter-
rupts and exceptions.)

The opcodes D6 and F1 are undefined opcodes reserved by the Intel 64 and IA-32 architectures. These opcodes, 
even though undefined, do not generate an invalid opcode exception.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the invalid instruction is not 
executed.
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Interrupt 7—Device Not Available Exception (#NM)

Exception Class Fault.

Description

Indicates one of the following things:

The device-not-available exception is generated by either of three conditions:
• The processor executed an x87 FPU floating-point instruction while the EM flag in control register CR0 was set 

(1). See the paragraph below for the special case of the WAIT/FWAIT instruction.
• The processor executed a WAIT/FWAIT instruction while the MP and TS flags of register CR0 were set, 

regardless of the setting of the EM flag.
• The processor executed an x87 FPU, MMX, or SSE/SSE2/SSE3 instruction (with the exception of MOVNTI, 

PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, and CLFLUSH) while the TS flag in control register CR0 was set 
and the EM flag is clear.

The EM flag is set when the processor does not have an internal x87 FPU floating-point unit. A device-not-available 
exception is then generated each time an x87 FPU floating-point instruction is encountered, allowing an exception 
handler to call floating-point instruction emulation routines.

The TS flag indicates that a context switch (task switch) has occurred since the last time an x87 floating-point, 
MMX, or SSE/SSE2/SSE3 instruction was executed; but that the context of the x87 FPU, XMM, and MXCSR registers 
were not saved. When the TS flag is set and the EM flag is clear, the processor generates a device-not-available 
exception each time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction is encountered (with the exception 
of the instructions listed above). The exception handler can then save the context of the x87 FPU, XMM, and MXCSR 
registers before it executes the instruction. See Section 2.5, “Control Registers,” for more information about the TS 
flag.

The MP flag in control register CR0 is used along with the TS flag to determine if WAIT or FWAIT instructions should 
generate a device-not-available exception. It extends the function of the TS flag to the WAIT and FWAIT instruc-
tions, giving the exception handler an opportunity to save the context of the x87 FPU before the WAIT or FWAIT 
instruction is executed. The MP flag is provided primarily for use with the Intel 286 and Intel386 DX processors. For 
programs running on the Pentium 4, Intel Xeon, P6 family, Pentium, or Intel486 DX processors, or the Intel 487 SX 
coprocessors, the MP flag should always be set; for programs running on the Intel486 SX processor, the MP flag 
should be clear. 

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point instruction or the WAIT/FWAIT instruction 
that generated the exception.

Program State Change

A program-state change does not accompany a device-not-available fault, because the instruction that generated 
the exception is not executed.

If the EM flag is set, the exception handler can then read the floating-point instruction pointed to by the EIP and call 
the appropriate emulation routine.

If the MP and TS flags are set or the TS flag alone is set, the exception handler can save the context of the x87 FPU, 
clear the TS flag, and continue execution at the interrupted floating-point or WAIT/FWAIT instruction.
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Interrupt 8—Double Fault Exception (#DF)

Exception Class Abort.

Description

Indicates that the processor detected a second exception while calling an exception handler for a prior exception. 
Normally, when the processor detects another exception while trying to call an exception handler, the two excep-
tions can be handled serially. If, however, the processor cannot handle them serially, it signals the double-fault 
exception. To determine when two faults need to be signalled as a double fault, the processor divides the excep-
tions into three classes: benign exceptions, contributory exceptions, and page faults (see Table 7-4).

Table 7-5 shows the various combinations of exception classes that cause a double fault to be generated. A double-
fault exception falls in the abort class of exceptions. The program or task cannot be restarted or resumed. The 
double-fault handler can be used to collect diagnostic information about the state of the machine and/or, when 
possible, to shut the application and/or system down gracefully or restart the system.

Table 7-4.  Interrupt and Exception Classes 

Class Vector Number Description

Benign Exceptions and Interrupts  1
 2
 3
 4
 5
 6
 7
9
16
17
18

19
All
All

Debug
NMI Interrupt
Breakpoint
Overflow
BOUND Range Exceeded
Invalid Opcode
Device Not Available
Coprocessor Segment Overrun
Floating-Point Error
Alignment Check
Machine Check

SIMD floating-point
INT n
INTR

Contributory Exceptions  0
10
11
12
13

21

Divide Error
Invalid TSS
Segment Not Present
Stack Fault
General Protection

Control Protection

Page Faults 14
20

Page Fault
Virtualization Exception
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A segment or page fault may be encountered while prefetching instructions; however, this behavior is outside the 
domain of Table 7-5. Any further faults generated while the processor is attempting to transfer control to the appro-
priate fault handler could still lead to a double-fault sequence.

If another contributory or page fault exception occurs while attempting to call the double-fault handler, the 
processor enters shutdown mode. This mode is similar to the state following execution of an HLT instruction. In this 
mode, the processor stops executing instructions until an NMI interrupt, SMI interrupt, hardware reset, or INIT# is 
received. The processor generates a special bus cycle to indicate that it has entered shutdown mode. Software 
designers may need to be aware of the response of hardware when it goes into shutdown mode. For example, hard-
ware may turn on an indicator light on the front panel, generate an NMI interrupt to record diagnostic information, 
invoke reset initialization, generate an INIT initialization, or generate an SMI. If any events are pending during 
shutdown, they will be handled after an wake event from shutdown is processed (for example, A20M# interrupts).

If a shutdown occurs while the processor is executing an NMI interrupt handler, then only a hardware reset can 
restart the processor. Likewise, if the shutdown occurs while executing in SMM, a hardware reset must be used to 
restart the processor.

Exception Error Code

Zero. The processor always pushes an error code of 0 onto the stack of the double-fault handler. 

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task cannot be resumed or 
restarted. The only available action of the double-fault exception handler is to collect all possible context informa-
tion for use in diagnostics and then close the application and/or shut down or reset the processor.

If the double fault occurs when any portion of the exception handling machine state is corrupted, the handler 
cannot be invoked and the processor must be reset.

Table 7-5.  Conditions for Generating a Double Fault 

First Exception
Second Exception

Benign Contributory Page Fault

Benign Handle Exceptions Serially Handle Exceptions Serially Handle Exceptions Serially

Contributory Handle Exceptions Serially Generate a Double Fault Handle Exceptions Serially

Page Fault Handle Exceptions Serially Generate a Double Fault Generate a Double Fault

Double Fault Handle Exceptions Serially Enter Shutdown Mode Enter Shutdown Mode
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Interrupt 9—Coprocessor Segment Overrun

Exception Class Abort. (Intel reserved; do not use. Recent IA-32 processors do not generate this 
exception.)

Description

Indicates that an Intel386 CPU-based systems with an Intel 387 math coprocessor detected a page or segment 
violation while transferring the middle portion of an Intel 387 math coprocessor operand. The P6 family, Pentium, 
and Intel486 processors do not generate this exception; instead, this condition is detected with a general protec-
tion exception (#GP), interrupt 13.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state following a coprocessor segment-overrun exception is undefined. The program or task cannot 
be resumed or restarted. The only available action of the exception handler is to save the instruction pointer and 
reinitialize the x87 FPU using the FNINIT instruction.
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Interrupt 10—Invalid TSS Exception (#TS)

Exception Class Fault.

Description

Indicates that there was an error related to a TSS. Such an error might be detected during a task switch or during 
the execution of instructions that use information from a TSS. Table 7-6 shows the conditions that cause an invalid 
TSS exception to be generated.

Table 7-6.  Invalid TSS Conditions 
Error Code Index Invalid Condition

TSS segment selector index The TSS segment limit is less than 67H for 32-bit TSS or less than 2CH for 16-bit TSS.

TSS segment selector index During an IRET task switch, the TI flag in the TSS segment selector indicates the LDT.

TSS segment selector index During an IRET task switch, the TSS segment selector exceeds descriptor table limit.

TSS segment selector index During an IRET task switch, the busy flag in the TSS descriptor indicates an inactive task.

TSS segment selector index During a task switch, an attempt to access data in a TSS results in a limit violation or 
canonical fault.

TSS segment selector index During an IRET task switch, the backlink is a NULL selector.

TSS segment selector index During an IRET task switch, the backlink points to a descriptor which is not a busy TSS.

TSS segment selector index The new TSS descriptor is beyond the GDT limit.

TSS segment selector index The new TSS selector is null on an attempt to lock the new TSS.

TSS segment selector index The new TSS selector has the TI bit set on an attempt to lock the new TSS.

TSS segment selector index The new TSS descriptor is not an available TSS descriptor on an attempt to lock the new 
TSS.

LDT segment selector index LDT not valid or not present.

Stack segment selector index The stack segment selector exceeds descriptor table limit.

Stack segment selector index The stack segment selector is NULL.

Stack segment selector index The stack segment descriptor is a non-data segment.

Stack segment selector index The stack segment is not writable.

Stack segment selector index The stack segment DPL ? CPL.

Stack segment selector index The stack segment selector RPL ? CPL.

Code segment selector index The code segment selector exceeds descriptor table limit.

Code segment selector index The code segment selector is NULL.

Code segment selector index The code segment descriptor is not a code segment type.

Code segment selector index The nonconforming code segment DPL ? CPL.

Code segment selector index The conforming code segment DPL is greater than CPL.

Data segment selector index The data segment selector exceeds the descriptor table limit.

Data segment selector index The data segment descriptor is not a readable code or data type.

Data segment selector index The data segment descriptor is a nonconforming code type and RPL > DPL.

Data segment selector index The data segment descriptor is a nonconforming code type and CPL > DPL.

TSS segment selector index The TSS segment descriptor/upper descriptor is beyond the GDT segment limit.

TSS segment selector index The TSS segment descriptor is not an available TSS type.

TSS segment selector index The TSS segment descriptor is an available 286 TSS type in IA-32e mode.
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This exception can generated either in the context of the original task or in the context of the new task (see Section 
9.3, “Task Switching”). Until the processor has completely verified the presence of the new TSS, the exception is 
generated in the context of the original task. Once the existence of the new TSS is verified, the task switch is 
considered complete. Any invalid-TSS conditions detected after this point are handled in the context of the new 
task. (A task switch is considered complete when the task register is loaded with the segment selector for the new 
TSS and, if the switch is due to a procedure call or interrupt, the previous task link field of the new TSS references 
the old TSS.)

The invalid-TSS handler must be a task called using a task gate. Handling this exception inside the faulting TSS 
context is not recommended because the processor state may not be consistent. 

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the violation is pushed 
onto the stack of the exception handler. If the EXT flag is set, it indicates that the exception was caused by an event 
external to the currently running program (for example, if an external interrupt handler using a task gate 
attempted a task switch to an invalid TSS).

Saved Instruction Pointer

If the exception condition was detected before the task switch was carried out, the saved contents of CS and EIP 
registers point to the instruction that invoked the task switch. If the exception condition was detected after the task 
switch was carried out, the saved contents of CS and EIP registers point to the first instruction of the new task. 

Program State Change

The ability of the invalid-TSS handler to recover from the fault depends on the error condition than causes the fault. 
See Section 9.3, “Task Switching,” for more information on the task switch process and the possible recovery 
actions that can be taken.

If an invalid TSS exception occurs during a task switch, it can occur before or after the commit-to-new-task point. 
If it occurs before the commit point, no program state change occurs. If it occurs after the commit point (when the 
segment descriptor information for the new segment selectors have been loaded in the segment registers), the 
processor will load all the state information from the new TSS before it generates the exception. During a task 
switch, the processor first loads all the segment registers with segment selectors from the TSS, then checks their 
contents for validity. If an invalid TSS exception is discovered, the remaining segment registers are loaded but not 
checked for validity and therefore may not be usable for referencing memory. The invalid TSS handler should not 
rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing 
another exception. The exception handler should load all segment registers before trying to resume the new task; 
otherwise, general-protection exceptions (#GP) may result later under conditions that make diagnosis more diffi-
cult. The Intel recommended way of dealing situation is to use a task for the invalid TSS exception handler. The task 
switch back to the interrupted task from the invalid-TSS exception-handler task will then cause the processor to 
check the registers as it loads them from the TSS.

TSS segment selector index The TSS segment upper descriptor is not the correct type.

TSS segment selector index The TSS segment descriptor contains a non-canonical base.

Table 7-6.  Invalid TSS Conditions  (Contd.)
Error Code Index Invalid Condition
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Interrupt 11—Segment Not Present (#NP)

Exception Class Fault.

Description

Indicates that the present flag of a segment or gate descriptor is clear. The processor can generate this exception 
during any of the following operations:
• While attempting to load CS, DS, ES, FS, or GS registers. [Detection of a not-present segment while loading the 

SS register causes a stack fault exception (#SS) to be generated.] This situation can occur while performing a 
task switch.

• While attempting to load the LDTR using an LLDT instruction. Detection of a not-present LDT while loading the 
LDTR during a task switch operation causes an invalid-TSS exception (#TS) to be generated.

• When executing the LTR instruction and the TSS is marked not present.
• While attempting to use a gate descriptor or TSS that is marked segment-not-present, but is otherwise valid.

An operating system typically uses the segment-not-present exception to implement virtual memory at the 
segment level. If the exception handler loads the segment and returns, the interrupted program or task resumes 
execution.

A not-present indication in a gate descriptor, however, does not indicate that a segment is not present (because 
gates do not correspond to segments). The operating system may use the present flag for gate descriptors to 
trigger exceptions of special significance to the operating system.

A contributory exception or page fault that subsequently referenced a not-present segment would cause a double 
fault (#DF) to be generated instead of #NP.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the violation is pushed 
onto the stack of the exception handler. If the EXT flag is set, it indicates that the exception resulted from either:
• an external event (NMI or INTR) that caused an interrupt, which subsequently referenced a not-present 

segment
• a benign exception that subsequently referenced a not-present segment 

The IDT flag is set if the error code refers to an IDT entry. This occurs when the IDT entry for an interrupt being 
serviced references a not-present gate. Such an event could be generated by an INT instruction or a hardware 
interrupt.

Saved Instruction Pointer

The saved contents of CS and EIP registers normally point to the instruction that generated the exception. If the 
exception occurred while loading segment descriptors for the segment selectors in a new TSS, the CS and EIP 
registers point to the first instruction in the new task. If the exception occurred while accessing a gate descriptor, 
the CS and EIP registers point to the instruction that invoked the access (for example a CALL instruction that refer-
ences a call gate).

Program State Change

If the segment-not-present exception occurs as the result of loading a register (CS, DS, SS, ES, FS, GS, or LDTR), 
a program-state change does accompany the exception because the register is not loaded. Recovery from this 
exception is possible by simply loading the missing segment into memory and setting the present flag in the 
segment descriptor.

If the segment-not-present exception occurs while accessing a gate descriptor, a program-state change does not 
accompany the exception. Recovery from this exception is possible merely by setting the present flag in the gate 
descriptor.

If a segment-not-present exception occurs during a task switch, it can occur before or after the commit-to-new-
task point (see Section 9.3, “Task Switching”). If it occurs before the commit point, no program state change 
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occurs. If it occurs after the commit point, the processor will load all the state information from the new TSS 
(without performing any additional limit, present, or type checks) before it generates the exception. The segment-
not-present exception handler should not rely on being able to use the segment selectors found in the CS, SS, DS, 
ES, FS, and GS registers without causing another exception. (See the Program State Change description for “Inter-
rupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.) 
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Interrupt 12—Stack Fault Exception (#SS)

Exception Class Fault.

Description

Indicates that one of the following stack related conditions was detected:
• A limit violation is detected during an operation that refers to the SS register. Operations that can cause a limit 

violation include stack-oriented instructions such as POP, PUSH, CALL, RET, IRET, ENTER, and LEAVE, as well as 
other memory references which implicitly or explicitly use the SS register (for example, MOV AX, [BP+6] or 
MOV AX, SS:[EAX+6]). The ENTER instruction generates this exception when there is not enough stack space 
for allocating local variables.

• A not-present stack segment is detected when attempting to load the SS register. This violation can occur 
during the execution of a task switch, a CALL instruction to a different privilege level, a return to a different 
privilege level, an LSS instruction, or a MOV or POP instruction to the SS register.

• A canonical violation is detected in 64-bit mode during an operation that reference memory using the stack 
pointer register containing a non-canonical memory address.

Recovery from this fault is possible by either extending the limit of the stack segment (in the case of a limit viola-
tion) or loading the missing stack segment into memory (in the case of a not-present violation. 

In the case of a canonical violation that was caused intentionally by software, recovery is possible by loading the 
correct canonical value into RSP. Otherwise, a canonical violation of the address in RSP likely reflects some register 
corruption in the software.

Exception Error Code

If the exception is caused by a not-present stack segment or by overflow of the new stack during an inter-privilege-
level call, the error code contains a segment selector for the segment that caused the exception. Here, the excep-
tion handler can test the present flag in the segment descriptor pointed to by the segment selector to determine 
the cause of the exception. For a normal limit violation (on a stack segment already in use) the error code is set to 
0.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception. 
However, when the exception results from attempting to load a not-present stack segment during a task switch, the 
CS and EIP registers point to the first instruction of the new task.

Program State Change

A program-state change does not generally accompany a stack-fault exception, because the instruction that gener-
ated the fault is not executed. Here, the instruction can be restarted after the exception handler has corrected the 
stack fault condition.

If a stack fault occurs during a task switch, it occurs after the commit-to-new-task point (see Section 9.3, “Task 
Switching”). Here, the processor loads all the state information from the new TSS (without performing any addi-
tional limit, present, or type checks) before it generates the exception. The stack fault handler should thus not rely 
on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing 
another exception. The exception handler should check all segment registers before trying to resume the new 
task; otherwise, general protection faults may result later under conditions that are more difficult to diagnose. (See 
the Program State Change description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional 
information on how to handle this situation.) 
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Interrupt 13—General Protection Exception (#GP)

Exception Class Fault.

Description

Indicates that the processor detected one of a class of protection violations called “general-protection violations.” 
The conditions that cause this exception to be generated comprise all the protection violations that do not cause 
other exceptions to be generated (such as, invalid-TSS, segment-not-present, stack-fault, or page-fault excep-
tions). The following conditions cause general-protection exceptions to be generated:
• Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS segments.
• Exceeding the segment limit when referencing a descriptor table (except during a task switch or a stack 

switch).
• Transferring execution to a segment that is not executable.
• Writing to a code segment or a read-only data segment.
• Reading from an execute-only code segment.
• Loading the SS register with a segment selector for a read-only segment (unless the selector comes from a TSS 

during a task switch, in which case an invalid-TSS exception occurs).
• Loading the SS, DS, ES, FS, or GS register with a segment selector for a system segment.
• Loading the DS, ES, FS, or GS register with a segment selector for an execute-only code segment.
• Loading the SS register with the segment selector of an executable segment or a null segment selector.
• Loading the CS register with a segment selector for a data segment or a null segment selector.
• Accessing memory using the DS, ES, FS, or GS register when it contains a null segment selector.
• Switching to a busy task during a call or jump to a TSS.
• Using a segment selector on a non-IRET task switch that points to a TSS descriptor in the current LDT. TSS 

descriptors can only reside in the GDT. This condition causes a #TS exception during an IRET task switch.
• Violating any of the privilege rules described in Chapter 6, “Protection.”
• Exceeding the instruction length limit of 15 bytes (this only can occur when redundant prefixes are placed 

before an instruction).
• Loading the CR0 register with a set PG flag (paging enabled) and a clear PE flag (protection disabled).
• Loading the CR0 register with a set NW flag and a clear CD flag.
• Referencing an entry in the IDT (following an interrupt or exception) that is not an interrupt, trap, or task gate.
• Attempting to access an interrupt or exception handler through an interrupt or trap gate from virtual-8086 

mode when the handler’s code segment DPL is greater than 0.
• Attempting to write a 1 into a reserved bit of CR4.
• Attempting to execute a privileged instruction when the CPL is not equal to 0 (see Section 6.9, “Privileged 

Instructions,” for a list of privileged instructions).
• Attempting to execute SGDT, SIDT, SLDT, SMSW, or STR when CR4.UMIP = 1 and the CPL is not equal to 0.
• Writing to a reserved bit in an MSR.
• Accessing a gate that contains a null segment selector.
• Executing the INT n instruction when the CPL is greater than the DPL of the referenced interrupt, trap, or task 

gate.
• The segment selector in a call, interrupt, or trap gate does not point to a code segment.
• The segment selector operand in the LLDT instruction is a local type (TI flag is set) or does not point to a 

segment descriptor of the LDT type.
• The segment selector operand in the LTR instruction is local or points to a TSS that is not available.
• The target code-segment selector for a call, jump, or return is null.
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• If the PAE and/or PSE flag in control register CR4 is set and the processor detects any reserved bits in a page-
directory-pointer-table entry set to 1. These bits are checked during a write to control registers CR0, CR3, or 
CR4 that causes a reloading of the page-directory-pointer-table entry.

• Attempting to write a non-zero value into the reserved bits of the MXCSR register.
• Executing an SSE/SSE2/SSE3 instruction that attempts to access a 128-bit memory location that is not aligned 

on a 16-byte boundary when the instruction requires 16-byte alignment. This condition also applies to the stack 
segment.

A program or task can be restarted following any general-protection exception. If the exception occurs while 
attempting to call an interrupt handler, the interrupted program can be restartable, but the interrupt may be lost.

Exception Error Code

The processor pushes an error code onto the exception handler's stack. If the fault condition was detected while 
loading a segment descriptor, the error code contains a segment selector to or IDT vector number for the 
descriptor; otherwise, the error code is 0. The source of the selector in an error code may be any of the following:
• An operand of the instruction.
• A selector from a gate which is the operand of the instruction.
• A selector from a TSS involved in a task switch.
• IDT vector number.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

In general, a program-state change does not accompany a general-protection exception, because the invalid 
instruction or operation is not executed. An exception handler can be designed to correct all of the conditions that 
cause general-protection exceptions and restart the program or task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or after the commit-to-new-task 
point (see Section 9.3, “Task Switching”). If it occurs before the commit point, no program state change occurs. If 
it occurs after the commit point, the processor will load all the state information from the new TSS (without 
performing any additional limit, present, or type checks) before it generates the exception. The general-protection 
exception handler should thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, 
and GS registers without causing another exception. (See the Program State Change description for “Interrupt 
10—Invalid TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.)

General Protection Exception in 64-bit Mode

The following conditions cause general-protection exceptions in 64-bit mode:
• If the memory address is in a non-canonical form.
• If a segment descriptor memory address is in non-canonical form.
• If the target offset in a destination operand of a call or jmp is in a non-canonical form.
• If a code segment or 64-bit call gate overlaps non-canonical space.
• If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the L-bit set and the 

D-bit clear.
• If the EFLAGS.NT bit is set in IRET.
• If the stack segment selector of IRET is null when going back to compatibility mode.
• If the stack segment selector of IRET is null going back to CPL3 and 64-bit mode.
• If a null stack segment selector RPL of IRET is not equal to CPL going back to non-CPL3 and 64-bit mode.
• If the proposed new code segment descriptor of IRET has both the D-bit and the L-bit set.
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• If the segment descriptor pointed to by the segment selector in the destination operand is a code segment and 
it has both the D-bit and the L-bit set.

• If the segment descriptor from a 64-bit call gate is in non-canonical space.
• If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate.
• If the type field of the upper 64 bits of a 64-bit call gate is not 0.
• If an attempt is made to load a null selector in the SS register in compatibility mode.
• If an attempt is made to load null selector in the SS register in CPL3 and 64-bit mode.
• If an attempt is made to load a null selector in the SS register in non-CPL3 and 64-bit mode where RPL is not 

equal to CPL.
• If an attempt is made to clear CR0.PG while IA-32e mode is enabled.
• If an attempt is made to set a reserved bit in CR3, CR4 or CR8.
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Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CR0 register is set), the processor detected one of the 
following conditions while using the page-translation mechanism to translate a linear address to a physical 
address:
• The P (present) flag in a page-directory or page-table entry needed for the address translation is clear, 

indicating that a page table or the page containing the operand is not present in physical memory.
• The procedure does not have sufficient privilege to access the indicated page (that is, a procedure running in 

user mode attempts to access a supervisor-mode page). If the SMAP flag is set in CR4, a page fault may also 
be triggered by code running in supervisor mode that tries to access data at a user-mode address. If either the 
PKE flag or the PKS flag is set in CR4, the protection-key rights registers may cause page faults on data 
accesses to linear addresses with certain protection keys.

• Code running in user mode attempts to write to a read-only page. If the WP flag is set in CR0, the page fault 
will also be triggered by code running in supervisor mode that tries to write to a read-only page.

• An instruction fetch to a linear address that translates to a physical address in a memory page with the 
execute-disable bit set (for information about the execute-disable bit, see Chapter 5, “Paging”). If the SMEP 
flag is set in CR4, a page fault will also be triggered by code running in supervisor mode that tries to fetch an 
instruction from a user-mode address.

• One or more reserved bits in paging-structure entry are set to 1. See description below of RSVD error code flag.
• A shadow-stack access is made to a page that is not a shadow-stack page. See Section 18.2, “Shadow Stacks,” 

in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, and Section 5.6, “Access 
Rights.”

• An enclave access violates one of the specified access-control requirements. See Section 36.3, “Access-control 
Requirements,” and Section 36.20, “Enclave Page Cache Map (EPCM),” in Chapter 36, “Enclave Access Control 
and Data Structures.” In this case, the exception is called an SGX-induced page fault. The processor uses the 
error code (below) to distinguish SGX-induced page faults from ordinary page faults.

The exception handler can recover from page-not-present conditions and restart the program or task without any 
loss of program continuity. It can also restart the program or task after a privilege violation, but the problem that 
caused the privilege violation may be uncorrectable.

See also: Section 5.7, “Page-Fault Exceptions.”

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of information to aid in diag-
nosing the exception and recovering from it:
• An error code on the stack. The error code for a page fault has a format different from that for other exceptions 

(see Figure 7-11). The processor establishes the bits in the error code as follows:

— P flag (bit 0).
This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

— W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag 
describes the access causing the page-fault exception, not the access rights specified by paging.

— U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access did 
so. This flag describes the access causing the page-fault exception, not the access rights specified by 
paging.
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— RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the 
paging-structure entries used to translate that address.

— I/D flag (bit 4).
This flag is 1 if the access causing the page-fault exception was an instruction fetch. This flag describes the 
access causing the page-fault exception, not the access rights specified by paging.

— PK flag (bit 5).
This flag is 1 if the access causing the page-fault exception was a data access to a linear address with a 
protection key for which the protection-key rights registers disallow access.

— SS (bit 6).
If the access causing the page-fault exception was a shadow-stack access (including shadow-stack 
accesses in enclave mode), this flag is 1; otherwise, it is 0. This flag describes the access causing the page-
fault exception, not the access rights specified by paging.

— HLAT (bit 7).
This flag is 1 if there is no translation for the linear address using HLAT paging because, in one of the 
paging-structure entries used to translate that address, either the P flag was 0 or a reserved bit was set. An 
error code will set this flag only if it clears bit 0 or sets bit 3. This flag will not be set by a page fault resulting 
from a violation of access rights, nor for one encountered during ordinary paging, including the case in 
which there has been a restart of HLAT paging.

— SGX flag (bit 15).
This flag is 1 if the exception is unrelated to paging and resulted from violation of SGX-specific access-
control requirements. Because such a violation can occur only if there is no ordinary page fault, this flag is 
set only if the P flag (bit 0) is 1 and the RSVD flag (bit 3) and the PK flag (bit 5) are both 0.

See Section 5.6, “Access Rights,” and Section 5.7, “Page-Fault Exceptions,” for more information about page-
fault exceptions and the error codes that they produce.
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• The contents of the CR2 register. The processor loads the CR2 register with the linear address that generated 
the exception. If linear-address masking had been in effect (Section 4.4), the address recorded reflects the 
result of that masking and does not contain any masked metadata. If the page-fault exception occurred during 
execution of an instruction in enclave mode (and not during delivery of an event incident to enclave mode), bits 
11:0 of the address are cleared.
The page-fault handler can use this address to locate the corresponding paging-structure entries. Another page 
fault can potentially occur during execution of the page-fault handler; the handler should save the contents of 
the CR2 register before a second page fault can occur.1 If a page fault is caused by a page-level protection 
violation, the accessed flags in paging-structure entries may be set when the fault occurs (behavior is model-
specific and not architecturally defined).

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception. If the 
page-fault exception occurred during a task switch, the CS and EIP registers may point to the first instruction of the 
new task (as described in the following “Program State Change” section).

Figure 7-11.  Page-Fault Error Code

1. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an earlier page fault is being deliv-
ered, the faulting linear address of the second fault will overwrite the contents of CR2 (replacing the previous address). These 
updates to CR2 occur even if the page fault results in a double fault or occurs during the delivery of a double fault.
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Program State Change

A program-state change does not normally accompany a page-fault exception, because the instruction that causes 
the exception to be generated is not executed. After the page-fault exception handler has corrected the violation 
(for example, loaded the missing page into memory), execution of the program or task can be resumed.

When a page-fault exception is generated during a task switch, the program-state may change, as follows. During 
a task switch, a page-fault exception can occur during any of following operations:
• While writing the state of the original task into the TSS of that task.
• While reading the GDT to locate the TSS descriptor of the new task.
• While reading the TSS of the new task.
• While reading segment descriptors associated with segment selectors from the new task.
• While reading the LDT of the new task to verify the segment registers stored in the new TSS.

In the last two cases the exception occurs in the context of the new task. The instruction pointer refers to the first 
instruction of the new task, not to the instruction which caused the task switch (or the last instruction to be 
executed, in the case of an interrupt). If the design of the operating system permits page faults to occur during 
task-switches, the page-fault handler should be called through a task gate.

If a page fault occurs during a task switch, the processor will load all the state information from the new TSS 
(without performing any additional limit, present, or type checks) before it generates the exception. The page-fault 
handler should thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS 
registers without causing another exception. (See the Program State Change description for “Interrupt 10—Invalid 
TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.) 

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an explicit stack switch does not cause 
the processor to use an invalid stack pointer (SS:ESP). Software written for 16-bit IA-32 processors often use a 
pair of instructions to change to a new stack, for example:

MOV SS, AX
MOV SP, StackTop

When executing this code on one of the 32-bit IA-32 processors, it is possible to get a page fault, general-protec-
tion fault (#GP), or alignment check fault (#AC) after the segment selector has been loaded into the SS register 
but before the ESP register has been loaded. At this point, the two parts of the stack pointer (SS and ESP) are 
inconsistent. The new stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler switches to a well defined stack 
(that is, the handler is a task or a more privileged procedure). However, if the exception handler is called at the 
same privilege level and from the same task, the processor will attempt to use the inconsistent stack pointer.

In systems that handle page-fault, general-protection, or alignment check exceptions within the faulting task (with 
trap or interrupt gates), software executing at the same privilege level as the exception handler should initialize a 
new stack by using the LSS instruction rather than a pair of MOV instructions, as described earlier in this note. 
When the exception handler is running at privilege level 0 (the normal case), the problem is limited to procedures 
or tasks that run at privilege level 0, typically the kernel of the operating system.
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Interrupt 16—x87 FPU Floating-Point Error (#MF)

Exception Class Fault.

Description

Indicates that the x87 FPU has detected a floating-point error. The NE flag in the register CR0 must be set for an 
interrupt 16 (floating-point error exception) to be generated. (See Section 2.5, “Control Registers,” for a detailed 
description of the NE flag.)

NOTE
SIMD floating-point exceptions (#XM) are signaled through interrupt 19. 

While executing x87 FPU instructions, the x87 FPU detects and reports six types of floating-point error conditions:
• Invalid operation (#I)

— Stack overflow or underflow (#IS)

— Invalid arithmetic operation (#IA)
• Divide-by-zero (#Z)
• Denormalized operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (precision) (#P)

Each of these error conditions represents an x87 FPU exception type, and for each of exception type, the x87 FPU 
provides a flag in the x87 FPU status register and a mask bit in the x87 FPU control register. If the x87 FPU detects 
a floating-point error and the mask bit for the exception type is set, the x87 FPU handles the exception automati-
cally by generating a predefined (default) response and continuing program execution. The default responses have 
been designed to provide a reasonable result for most floating-point applications.

If the mask for the exception is clear and the NE flag in register CR0 is set, the x87 FPU does the following:

1. Sets the necessary flag in the FPU status register.

2. Waits until the next “waiting” x87 FPU instruction or WAIT/FWAIT instruction is encountered in the program’s 
instruction stream.

3. Generates an internal error signal that cause the processor to generate a floating-point exception (#MF).

Prior to executing a waiting x87 FPU instruction or the WAIT/FWAIT instruction, the x87 FPU checks for pending x87 
FPU floating-point exceptions (as described in step 2 above). Pending x87 FPU floating-point exceptions are 
ignored for “non-waiting” x87 FPU instructions, which include the FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW, 
FNSTENV, and FNSAVE instructions. Pending x87 FPU exceptions are also ignored when executing the state 
management instructions FXSAVE and FXRSTOR.

All of the x87 FPU floating-point error conditions can be recovered from. The x87 FPU floating-point-error exception 
handler can determine the error condition that caused the exception from the settings of the flags in the x87 FPU 
status word. See “Software Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for more information on handling x87 FPU floating-point exceptions.

Exception Error Code

None. The x87 FPU provides its own error information.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point or WAIT/FWAIT instruction that was about to 
be executed when the floating-point-error exception was generated. This is not the faulting instruction in which the 
error condition was detected. The address of the faulting instruction is contained in the x87 FPU instruction pointer 
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register. See Section 8.1.8, “x87 FPU Instruction and Data (Operand) Pointers,” in Chapter 8 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, for more information about information the FPU saves 
for use in handling floating-point-error exceptions.

Program State Change

A program-state change generally accompanies an x87 FPU floating-point exception because the handling of the 
exception is delayed until the next waiting x87 FPU floating-point or WAIT/FWAIT instruction following the faulting 
instruction. The x87 FPU, however, saves sufficient information about the error condition to allow recovery from the 
error and re-execution of the faulting instruction if needed.

In situations where non- x87 FPU floating-point instructions depend on the results of an x87 FPU floating-point 
instruction, a WAIT or FWAIT instruction can be inserted in front of a dependent instruction to force a pending x87 
FPU floating-point exception to be handled before the dependent instruction is executed. See “x87 FPU Exception 
Synchronization” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for 
more information about synchronization of x87 floating-point-error exceptions.
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Interrupt 17—Alignment Check Exception (#AC)

Exception Class Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment checking was enabled. Align-
ment checks are only carried out in data (or stack) accesses (not in code fetches or system segment accesses). An 
example of an alignment-check violation is a word stored at an odd byte address, or a doubleword stored at an 
address that is not an integer multiple of 4. Table 7-7 lists the alignment requirements various data types recog-
nized by the processor.

Note that the alignment check exception (#AC) is generated only for data types that must be aligned on word, 
doubleword, and quadword boundaries. A general-protection exception (#GP) is generated 128-bit data types that 
are not aligned on a 16-byte boundary.

To enable alignment checking, the following conditions must be true:
• AM flag in CR0 register is set.
• AC flag in the EFLAGS register is set.
• The CPL is 3 (including virtual-8086 mode).

Alignment-check exceptions (#AC) are generated only when operating at privilege level 3 (user mode). Memory 
references that default to privilege level 0, such as segment descriptor loads, do not generate alignment-check 
exceptions, even when caused by a memory reference made from privilege level 3.

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at privilege level 3 can generate 
an alignment-check exception. Although application programs do not normally store these registers, the fault can 
be avoided by aligning the information stored on an even word-address.

The FXSAVE/XSAVE and FXRSTOR/XRSTOR instructions save and restore a 512-byte data structure, the first byte 
of which must be aligned on a 16-byte boundary. If the alignment-check exception (#AC) is enabled when 
executing these instructions (and CPL is 3), a misaligned memory operand can cause either an alignment-check 
exception or a general-protection exception (#GP) depending on the processor implementation (see “FXSAVE-Save 
x87 FPU, MMX, SSE, and SSE2 State” and “FXRSTOR-Restore x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 

Table 7-7.  Alignment Requirements by Data Type

Data Type Address Must Be Divisible By

Word 2

Doubleword 4

Single precision floating-point (32-bits) 4

Double precision floating-point (64-bits) 8

Double extended precision floating-point (80-bits) 8

Quadword 8

Double quadword 16

Segment Selector 2

32-bit Far Pointer 2

48-bit Far Pointer 4

32-bit Pointer 4

GDTR, IDTR, LDTR, or Task Register Contents 4

FSTENV/FLDENV Save Area 4 or 2, depending on operand size

FSAVE/FRSTOR Save Area 4 or 2, depending on operand size

Bit String 2 or 4 depending on the operand-size attribute.
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of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A; see “XSAVE—Save Processor 
Extended States” and “XRSTOR—Restore Processor Extended States” in Chapter 6 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2D).

The MOVDQU, MOVUPS, and MOVUPD instructions perform 128-bit unaligned loads or stores. The LDDQU instruc-
tions loads 128-bit unaligned data. They do not generate general-protection exceptions (#GP) when operands are 
not aligned on a 16-byte boundary. If alignment checking is enabled, alignment-check exceptions (#AC) may or 
may not be generated depending on processor implementation when data addresses are not aligned on an 8-byte 
boundary.

FSAVE and FRSTOR instructions can generate unaligned references, which can cause alignment-check faults. 
These instructions are rarely needed by application programs. 

Exception Error Code

Yes. The error code is null; all bits are clear except possibly bit 0 — EXT; see Section 7.13. EXT is set if the #AC is 
recognized during delivery of an event other than a software interrupt (see “INT n/INTO/INT3/INT1—Call to Inter-
rupt Procedure” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an alignment-check fault, because the instruction is not executed.
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Interrupt 18—Machine-Check Exception (#MC)

Exception Class Abort.

Description

Indicates that the processor detected an internal machine error or a bus error, or that an external agent detected 
a bus error. The machine-check exception is model-specific, available on the Pentium and later generations of 
processors. The implementation of the machine-check exception is different between different processor families, 
and these implementations may not be compatible with future Intel 64 or IA-32 processors. (Use the CPUID 
instruction to determine whether this feature is present.)

Bus errors detected by external agents are signaled to the processor on dedicated pins: the BINIT# and MCERR# 
pins on the Pentium 4, Intel Xeon, and P6 family processors and the BUSCHK# pin on the Pentium processor. When 
one of these pins is enabled, asserting the pin causes error information to be loaded into machine-check registers 
and a machine-check exception is generated.

The machine-check exception and machine-check architecture are discussed in detail in Chapter 17, “Machine-
Check Architecture.” Also, see the data books for the individual processors for processor-specific hardware infor-
mation. 

Exception Error Code

None. Error information is provided by machine-check MSRs.

Saved Instruction Pointer

For the Pentium 4 and Intel Xeon processors, the saved contents of extended machine-check state registers are 
directly associated with the error that caused the machine-check exception to be generated (see Section 17.3.1.2, 
“IA32_MCG_STATUS MSR,” and Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs”).

For the P6 family processors, if the EIPV flag in the MCG_STATUS MSR is set, the saved contents of CS and EIP 
registers are directly associated with the error that caused the machine-check exception to be generated; if the flag 
is clear, the saved instruction pointer may not be associated with the error (see Section 17.3.1.2, “IA32_MC-
G_STATUS MSR”).

For the Pentium processor, contents of the CS and EIP registers may not be associated with the error.

Program State Change

The machine-check mechanism is enabled by setting the MCE flag in control register CR4. 

For the Pentium 4, Intel Xeon, P6 family, and Pentium processors, a program-state change always accompanies a 
machine-check exception, and an abort class exception is generated. For abort exceptions, information about the 
exception can be collected from the machine-check MSRs, but the program cannot generally be restarted. 

If the machine-check mechanism is not enabled (the MCE flag in control register CR4 is clear), a machine-check 
exception causes the processor to enter the shutdown state.
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Interrupt 19—SIMD Floating-Point Exception (#XM)

Exception Class Fault.

Description

Indicates the processor has detected an SSE/SSE2/SSE3 SIMD floating-point exception. The appropriate status 
flag in the MXCSR register must be set and the particular exception unmasked for this interrupt to be generated.

There are six classes of numeric exception conditions that can occur while executing an SSE/ SSE2/SSE3 SIMD 
floating-point instruction:
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

The invalid operation, divide-by-zero, and denormal-operand exceptions are pre-computation exceptions; that is, 
they are detected before any arithmetic operation occurs. The numeric underflow, numeric overflow, and inexact 
result exceptions are post-computational exceptions.

See “SIMD Floating-Point Exceptions” in Chapter 11 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, for additional information about the SIMD floating-point exception classes.

When a SIMD floating-point exception occurs, the processor does either of the following things:
• It handles the exception automatically by producing the most reasonable result and allowing program 

execution to continue undisturbed. This is the response to masked exceptions.
• It generates a SIMD floating-point exception, which in turn invokes a software exception handler. This is the 

response to unmasked exceptions.

Each of the six SIMD floating-point exception conditions has a corresponding flag bit and mask bit in the MXCSR 
register. If an exception is masked (the corresponding mask bit in the MXCSR register is set), the processor takes 
an appropriate automatic default action and continues with the computation. If the exception is unmasked (the 
corresponding mask bit is clear) and the operating system supports SIMD floating-point exceptions (the OSXM-
MEXCPT flag in control register CR4 is set), a software exception handler is invoked through a SIMD floating-point 
exception. If the exception is unmasked and the OSXMMEXCPT bit is clear (indicating that the operating system 
does not support unmasked SIMD floating-point exceptions), an invalid opcode exception (#UD) is signaled instead 
of a SIMD floating-point exception.

Note that because SIMD floating-point exceptions are precise and occur immediately, the situation does not arise 
where an x87 FPU instruction, a WAIT/FWAIT instruction, or another SSE/SSE2/SSE3 instruction will catch a 
pending unmasked SIMD floating-point exception.

In situations where a SIMD floating-point exception occurred while the SIMD floating-point exceptions were 
masked (causing the corresponding exception flag to be set) and the SIMD floating-point exception was subse-
quently unmasked, then no exception is generated when the exception is unmasked.

When SSE/SSE2/SSE3 SIMD floating-point instructions operate on packed operands (made up of two or four sub-
operands), multiple SIMD floating-point exception conditions may be detected. If no more than one exception 
condition is detected for one or more sets of sub-operands, the exception flags are set for each exception condition 
detected. For example, an invalid exception detected for one sub-operand will not prevent the reporting of a divide-
by-zero exception for another sub-operand. However, when two or more exceptions conditions are generated for 
one sub-operand, only one exception condition is reported, according to the precedences shown in Table 7-8. This 
exception precedence sometimes results in the higher priority exception condition being reported and the lower 
priority exception conditions being ignored.
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Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the SSE/SSE2/SSE3 instruction that was executed when the 
SIMD floating-point exception was generated. This is the faulting instruction in which the error condition was 
detected.

Program State Change

A program-state change does not accompany a SIMD floating-point exception because the handling of the excep-
tion is immediate unless the particular exception is masked. The available state information is often sufficient to 
allow recovery from the error and re-execution of the faulting instruction if needed.

Table 7-8.  SIMD Floating-Point Exceptions Priority

Priority Description

1 (Highest) Invalid operation exception due to SNaN operand (or any NaN operand for maximum, minimum, or certain compare and 
convert operations).

2 QNaN operand1.

3 Any other invalid operation exception not mentioned above or a divide-by-zero exception2.

4 Denormal operand exception2.

5 Numeric overflow and underflow exceptions possibly in conjunction with the inexact result exception2.

6 (Lowest) Inexact result exception.

NOTES:
1. Though a QNaN this is not an exception, the handling of a QNaN operand has precedence over lower priority exceptions. For exam-

ple, a QNaN divided by zero results in a QNaN, not a divide-by-zero- exception.
2. If masked, then instruction execution continues, and a lower priority exception can occur as well.
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Interrupt 20—Virtualization Exception (#VE)

Exception Class Fault.

Description

Indicates that the processor detected an EPT violation in VMX non-root operation. Not all EPT violations cause 
virtualization exceptions. See Section 27.5.7.2 for details.

The exception handler can recover from EPT violations and restart the program or task without any loss of program 
continuity. In some cases, however, the problem that caused the EPT violation may be uncorrectable.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception.

Program State Change

A program-state change does not normally accompany a virtualization exception, because the instruction that 
causes the exception to be generated is not executed. After the virtualization exception handler has corrected the 
violation (for example, by executing the EPTP-switching VM function), execution of the program or task can be 
resumed.

Additional Exception-Handling Information

The processor saves information about virtualization exceptions in the virtualization-exception information area. 
See Section 27.5.7.2 for details.
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Interrupt 21—Control Protection Exception (#CP)

Exception Class Fault.

Description

Indicates a control flow transfer attempt violated the control flow enforcement technology constraints.

Exception Error Code

Yes (special format). The processor provides the control protection exception handler with following information 
through the error code on the stack. 

• Bit 14:0 - CPEC

— 1 - NEAR-RET: Indicates the #CP was caused by a near RET instruction.

— 2 - FAR-RET/IRET: Indicates the #CP was caused by a FAR RET or IRET instruction.

— 3 - ENDBRANCH: indicates the #CP was due to missing ENDBRANCH at target of an indirect call or jump 
instruction.

— 4 - RSTORSSP: Indicates the #CP was caused by a shadow-stack-restore token check failure in the 
RSTORSSP instruction.

— 5- SETSSBSY: Indicates #CP was caused by a supervisor shadow stack token check failure in the SETSSBSY 
instruction.

• Bit 15 (ENCL) of the error code, if set to 1, indicates the #CP occurred during enclave execution.

Saved Instruction Pointer

The saved contents of the CS and EIP registers generally point to the instruction that generated the exception.

Program State Change

A program-state change does not normally accompany a control protection exception, because the instruction that 
causes the exception to be generated is not executed.

When a control protection exception is generated during a task switch, the program-state may change as follows. 
During a task switch, a control protection exception can occur during any of following operations:
• If task switch is initiated by IRET, CS and LIP stored on old task shadow stack do not match CS and LIP of new 

task (where LIP is the linear address of the return address).
• If task switch is initiated by IRET and SSP of new task loaded from shadow stack of old task (if new task CPL is 

< 3), OR the SSP from IA32_PL3_SSP (if new task CPL = 3) is not aligned to 4 bytes or is a value beyond 4GB.

Figure 7-12.  Exception Error Code Information
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In these cases the exception occurs in the context of the new task. The instruction pointer refers to the first instruc-
tion of the new task, not to the instruction which caused the task switch (or the last instruction to be executed, in 
the case of an interrupt). If the design of the operating system permits control protection faults to occur during 
task-switches, the control protection fault handler should be called through a task gate.
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Interrupts 32 to 255—User Defined Interrupts

Exception Class Not applicable.

Description

Indicates that the processor did one of the following things:
• Executed an INT n instruction where the instruction operand is one of the vector numbers from 32 through 255.
• Responded to an interrupt request at the INTR pin or from the local APIC when the interrupt vector number 

associated with the request is from 32 through 255.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that follows the INT n instruction or instruction 
following the instruction on which the INTR signal occurred.

Program State Change

A program-state change does not accompany interrupts generated by the INT n instruction or the INTR signal. The 
INT n instruction generates the interrupt within the instruction stream. When the processor receives an INTR 
signal, it commits all state changes for all previous instructions before it responds to the interrupt; so, program 
execution can resume upon returning from the interrupt handler.
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CHAPTER 8
USER INTERRUPTS

8.1 INTRODUCTION
This chapter provides details of an architectural feature called user interrupts.
This feature defines user interrupts as new events in the architecture. User interrupts are delivered to software 
operating in 64-bit mode with CPL = 3 without any change to segmentation state. An individual user interrupt is 
identified by a 6-bit user-interrupt vector, which is pushed on the stack as part of user-interrupt delivery. The 
UIRET (user-interrupt return) instruction reverses user-interrupt delivery.
System software configures the user-interrupt architecture with MSRs. An operating system (OS) may update the 
content of some of these MSRs when switching between OS-managed threads.
One of these MSRs references a data structure called the user posted-interrupt descriptor (UPID). User inter-
rupts for an OS-managed thread can be posted in the UPID associated with that thread. Such user interrupts will 
be delivered after receipt of an ordinary interrupt (identified in the UPID) called a user-interrupt notification.1

System software can define operations to post user interrupts and to send user-interrupt notifications. In addition, 
the user-interrupt feature defines the SENDUIPI instruction, by which application software can send interprocessor 
user interrupts (user IPIs). An execution of SENDUIPI posts a user interrupt in a UPID and may send a user-inter-
rupt notification. 
(Platforms may include mechanisms to process external interrupts as either ordinary interrupts or user interrupts. 
Those processed as user interrupts would be posted in UPIDs and may result in user-interrupt notifications. 
Specifics of such mechanisms are outside of the scope of this manual.)
Section 8.2 explains how a processor enumerates support for user interrupts and how they are enabled by system 
software. Section 8.3 identifies the new processor state defined for user interrupts. Section 8.4 explains how a 
processor identifies and delivers user interrupts. Section 8.5 describes how a processor identifies and processes 
user-interrupt notifications. Section 8.6 enumerates new instructions that support management of user interrupts. 
Section 8.8 defines new support for user inter-processor interrupts (user IPIs).

8.2 ENUMERATION AND ENABLING
Software enables user interrupts by setting bit 25 (UINTR) in control register CR4. Setting CR4.UINTR enables 
user-interrupt delivery (Section 8.4.2), user-interrupt notification identification (Section 8.5.1), and the user-inter-
rupt instructions (Section 8.6). It does not affect the accessibility of the user-interrupt MSRs (Section 8.3) by 
RDMSR, WRMSR or the XSAVE feature set.
Processor support for user interrupts is enumerated by CPUID.(EAX=7,ECX=0):EDX[5]. If this bit is set, software 
can set CR4.UINTR to 1 and can access the user-interrupt MSRs using RDMSR and WRMSR (see Section 8.3).
The user-interrupt feature is XSAVE-managed (see Section 13.5). This implies that aspects of the feature are 
enumerated as part of enumeration of the XSAVE feature set. See Section 13.5.11 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for details.

8.3 USER-INTERRUPT STATE AND USER-INTERRUPT MSRS
The user-interrupt architecture defines the following new state. Some of this state can be accessed via the RDMSR 
and WRMSR instructions (through new user-interrupt MSRs detailed in Section 8.3.2) and some can be accessed 
using instructions described in Section 8.6.

1. For clarity, this chapter uses the term ordinary interrupts to refer to those events in the existing interrupt architecture, which are 
typically delivered to system software operating with CPL = 0.
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8.3.1 User-Interrupt State
The following are the elements of the user-interrupt state (listed here independent of how they are accessed):
• UIRR: user-interrupt request register.

This value includes one bit for each of the 64 user-interrupt vectors. If UIRR[i] = 1, a user interrupt with
vector i is requesting service. The notation UIRRV is used to refer to the position of the most significant bit
set in UIRR; if UIRR = 0, UIRRV = 0.

• UIF: user-interrupt flag.
If UIF = 0, user-interrupt delivery is blocked; if UIF = 1, user interrupts may be delivered. User-interrupt
delivery clears UIF, and the new UIRET instruction sets it. Section 8.6 defines other instructions for accessing
UIF and Section 8.7 describes an enhancement that allows UIRET to maintain UIF as 0.

• UIHANDLER: user-interrupt handler.
This is the linear address of the user-interrupt handler. User-interrupt delivery loads this address into RIP.

• UISTACKADJUST: user-interrupt stack adjustment.
This value controls adjustment to the stack pointer (RSP) prior to user-interrupt delivery. It can be configured
to load RSP with an alternate stack pointer or configured to prevent user-interrupt delivery from overwriting
data above the current stack top.
The value UISTACKADJUST must be canonical. If bit 0 is 1, user-interrupt delivery loads RSP with UISTACK-
ADJUST; otherwise, it subtracts UISTACKADJUST from RSP. Either way, user-interrupt delivery then aligns
RSP to a 16-byte boundary. See Section 8.4.2 for details.

• UINV: user-interrupt notification vector.
This is the vector of the ordinary interrupts that are treated as user-interrupt notifications (Section 8.5.1).
When the logical processor receives user-interrupt notification, it processes the user interrupts in the user
posted-interrupt descriptor (UPID) referenced by UPIDADDR (see below and Section 8.5.2).

• UPIDADDR: user posted-interrupt descriptor address.
This is the linear address of the UPID that the logical processor consults upon receiving an ordinary interrupt
with vector UINV.

• UITTADDR: user-interrupt target table address.
This is the linear address of user-interrupt target table (UITT), which the logical processor consults when
software executes the SENDUIPI instruction (see Section 8.8).

• UITTSZ: user-interrupt target table size.
This value is the highest index of a valid entry in the UITT (see Section 8.8).

8.3.2 User-Interrupt MSRs
Some of the state elements identified in Section 8.3.1 can be accessed as user-interrupt MSRs using the RDMSR 
and WRMSR instructions:
• IA32_UINTR_RR MSR (MSR address 985H). This MSR is an interface to UIRR (64 bits).

Following a WRMSR to this MSR, the logical processor recognizes a pending user interrupt if and only if some bit 
is set in the MSR.

• IA32_UINTR_HANDLER MSR (MSR address 986H). This MSR is an interface to the UIHANDLER address. This is 
a linear address that must be canonical relative to the maximum linear-address width supported by the 
processor.1 WRMSR to this MSR causes a general-protection fault (#GP) if its source operand does not meet 
this requirement.

• IA32_UINTR_STACKADJUST MSR (MSR address 987H). This MSR is an interface to the UISTACKADJUST value. 
This value includes a linear address that must be canonical relative to the maximum linear-address width 
supported by the processor. WRMSR to this MSR causes a #GP if its source operand does not meet this 
requirement.

1. CPUID.80000008H:EAX[15:8] enumerates the maximum linear-address width supported by the processor.
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Bit 0 of this MSR corresponds to UISTACKADJUST[0], which controls how user-interrupt delivery updates the 
stack pointer. WRMSR may set it to either 0 or 1.

• IA32_UINTR_MISC MSR (MSR address 988H). This MSR is an interface to the UITTSZ and UINV values. The 
MSR has the following format:

— Bits 31:0 are UITTSZ.

— Bits 39:32 are UINV.

— Bits 63:40 are reserved. WRMSR causes a #GP if it would set any of those bits (if 
EDX[31:8] ≠ 000000H).

Because this MSR will share an 8-byte portion of the XSAVE area with UIF (see Section 13.5.11 of Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1), bit 63 of the MSR will never be used and
will always be reserved.

• IA32_UINTR_PD MSR (MSR address 989H). This MSR is an interface to the UPIDADDR address. This is a linear 
address that must be canonical relative to the maximum linear-address width supported by the processor. 
WRMSR to this MSR causes a #GP if its source operand does not meet this requirement.
Bits 5:0 of this MSR are reserved. WRMSR causes a #GP if it would set any of those bits (if 
EAX[5:0] ≠ 000000b).

• IA32_UINTR_TT MSR (MSR address 98AH). This MSR is an interface to the UITTADDR address (in addition, bit 
0 enables SENDUIPI).
Bit 63:4 of this MSR holds the current value of UITTADDR. This a linear address that must be canonical relative 
to the maximum linear-address width supported by the processor. WRMSR to this MSR causes a #GP if its 
source operand does not meet this requirement.
Bits 3:1 of this MSR are reserved. WRMSR causes a #GP if it would set any of those bits (if EAX[3:1] ≠ 000b).
Bit 0 of this MSR determines whether the SENDUIPI instruction is enabled. WRMSR may set it to either 0 or 1.

8.4 EVALUATION AND DELIVERY OF USER INTERRUPTS
A processor determines whether there is a user interrupt to deliver based on UIRR. Section 8.4.1 describes this 
recognition of pending user interrupts. Once a logical processor has recognized a pending user interrupt, it will 
deliver it on a subsequent instruction boundary by causing a control-flow change asynchronous to software execu-
tion. Section 8.4.2 details this process of user-interrupt delivery.

8.4.1 User-Interrupt Recognition
There is a user interrupt pending whenever UIRR ≠ 0.
Any instruction or operation that modifies UIRR updates the logical processor’s recognition of a pending user inter-
rupt. The following instructions and operations may do this:
• WRMSR to the IA32_UINTR_RR MSR (Section 8.3).
• XRSTORS of the user-interrupt state component.
• User-interrupt delivery (Section 8.4.2).
• User-interrupt notification processing (Section 8.5.2).
• VMX transitions that load the IA32_UINTR_RR MSR.
Each of these instructions or operations results in recognition of a pending user interrupt if it completes with 
UIRR ≠ 0; if it completes with UIRR = 0, no pending user interrupt is recognized.
Once recognized, a pending user interrupt may be delivered to software; see Section 8.4.2.
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8.4.2 User-Interrupt Delivery
If CR4.UINTR = 1 and a user interrupt has been recognized (see Section 8.4.1), it will be delivered at an instruction 
boundary when the following conditions all hold: (1) UIF = 1; (2) there is no blocking by MOV SS or by POP SS1; 
(3) CPL = 3; (4) IA32_EFER.LMA = CS.L = 1 (the logical processor is in 64-bit mode); and (5) software is not 
executing inside an enclave.
User-interrupt delivery has priority just below that of ordinary interrupts. It wakes a logical processor from the 
states entered using the TPAUSE and UMWAIT instructions2; it does not wake a logical processor in the shutdown 
state or in the wait-for-SIPI state.
User-interrupt delivery does not change CPL (it occurs entirely with CPL = 3). The following pseudocode details the 
behavior of user-interrupt delivery:

IF UIHANDLER is not canonical in current paging mode
THEN #GP(0);

FI;
holdRSP := RSP;
IF UISTACKADJUST[0] = 1

THEN RSP := UISTACKADJUST;
ELSE RSP := RSP – UISTACKADJUST;

FI;
RSP := RSP & ~FH;  // force the stack to be 16-byte aligned
Push holdRSP;
Push RFLAGS;
Push RIP;
Push UIRRV; // 64-bit push; upper 58 bits pushed as 0
IF shadow stack is enabled for CPL = 3

THEN ShadowStackPush RIP;
FI;
IF end-branch is enabled for CPL = 3

THEN IA32_U_CET.TRACKER := WAIT_FOR_ENDBRANCH;
FI;
UIRR[Vector] := 0;
IF UIRR = 0

THEN cease recognition of any pending user interrupt;
FI;
UIF := 0;
RFLAGS.TF := 0;
RFLAGS.RF := 0;
RIP := UIHANDLER;

If UISTACKADJUST[0] = 0, user-interrupt delivery decrements RSP by UISTACKADJUST; otherwise, it loads RSP 
with UISTACKADJUST. In either case, user-interrupt delivery aligns RSP to a 16-byte boundary by clearing 
RSP[3:0].
User-interrupt delivery that occurs during transactional execution causes transactional execution to abort and a 
transition to a non-transactional execution. The transactional abort loads EAX as it would had it been due to an 
ordinary interrupt. User-interrupt delivery occurs after the transactional abort.

1. Execution of the STI instruction does not block delivery of user interrupts for one instruction as it does ordinary interrupts. If a user 
interrupt is delivered immediately following execution of a STI instruction, ordinary interrupts are not blocked after delivery of the 
user interrupt.

2. User-interrupt delivery occurs only if CPL = 3. Since the HLT and MWAIT instructions can be executed only if CPL = 0, a user inter-
rupt can never be delivered when a logical processor is an activity state that was entered using one of those instructions.
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The stack accesses performed by user-interrupt delivery may incur faults (page faults, or stack faults due to 
canonicality violations). Before such a fault is delivered, RSP is restored to its original value (memory locations 
above the top of the stack may have been written). If such a fault produces an error code that uses the EXT bit, 
that bit will be cleared to 0.
If a fault occurs during user-interrupt delivery, UIRR is not updated and UIF is not cleared and, as a result, the 
logical processor continues to recognize that a user interrupt is pending, and user-interrupt delivery will normally 
recur after the fault is handled.
If the shadow-stack feature of control-flow enforcement technology (CET) is enabled for CPL = 3, user-interrupt 
delivery pushes the return instruction pointer on the shadow stack. If indirect-branch-tracking feature of CET is 
enabled, user-interrupt delivery transitions the indirect branch tracker to the WAIT_FOR_ENDBRANCH state; an 
ENDBR64 instruction is expected as first instruction of the user-interrupt handler.
User-interrupt delivery can be tracked by Architectural Last Branch Records (LBRs), Intel® Processor Trace (Intel® 
PT), and Performance Monitoring. For both Intel PT and LBRs, user-interrupt delivery is recorded in precisely the 
same manner as ordinary interrupt delivery. Hence for LBRs, user interrupts fall into the OTHER_BRANCH category, 
which implies that IA32_LBR_CTL.OTHER_BRANCH[bit 22] must be set to record user-interrupt delivery, and that 
the IA32_LBR_x_INFO.BR_TYPE field will indicate OTHER_BRANCH for any recorded user interrupt. For Intel PT, 
control flow tracing must be enabled by setting IA32_RTIT_CTL.BranchEn[bit 13].
User-interrupt delivery will also increment performance counters for which counting 
BR_INST_RETIRED.FAR_BRANCH is enabled. Some implementations may have dedicated events for counting 
user-interrupt delivery; see processor-specific event lists at https://download.01.org/perfmon/index/.

8.5 USER-INTERRUPT NOTIFICATION IDENTIFICATION AND PROCESSING
User-interrupt posting is the process by which a platform agent (or software operating on a CPU) records user 
interrupts in a user posted-interrupt descriptor (UPID) in memory. The platform agent (or software) may send 
an ordinary interrupt (called a user-interrupt notification) to the logical processor on which the target of the 
user interrupt is operating.
Table 8-1 gives the format of a UPID.

The notation PIR (posted-interrupt requests) refers to the 64 posted-interrupt requests in a UPID.
If an ordinary interrupt arrives while CR4.UINTR = IA32_EFER.LMA = 1, the logical processor determines whether 
the interrupt is a user-interrupt notification. This process is called user-interrupt notification identification 
and is described in Section 8.5.1.
Once a logical processor has identified a user-interrupt notification, it copies user interrupts in the UPID’s PIR into 
UIRR. This process is called user-interrupt notification processing and is described in Section 8.5.2.

Table 8-1.  Format of User Posted-Interrupt Descriptor — UPID

Bit Position(s) Name Description

0 Outstanding notifi-
cation

If this bit is set, there is a notification outstanding for one or more user interrupts in 
PIR.

1 Suppress notification If this bit is set, agents (including SENDUIPI) should not send notifications when 
posting user interrupts in this descriptor.

15:2 Reserved User-interrupt notification processing ignores these bits; must be zero for 
SENDUIPI.

23:16 Notification vector Used by agents sending user-interrupt notifications (including SENDUIPI).

31:24 Reserved User-interrupt notification processing ignores these bits; must be zero for 
SENDUIPI.

63:32 Notification destination
Target physical APIC ID – used by SENDUIPI.
In xAPIC mode, bits 47:40 are the 8-bit APIC ID.
In x2APIC mode, the entire field forms the 32-bit APIC ID.

127:64 Posted-interrupt 
requests (PIR)

One bit for each user-interrupt vector. There is a user-interrupt request for a vector 
if the corresponding bit is 1.
Vol. 3A 8-5

https://download.01.org/perfmon/index/


USER INTERRUPTS
A logical processor is not interruptible during either user-interrupt notification identification or user-interrupt noti-
fication processing or between those operations (when they occur in succession).

8.5.1 User-Interrupt Notification Identification
If CR4.UINTR = IA32_EFER.LMA = 1, a logical processor performs user-interrupt notification identification when it 
receives an ordinary interrupt. The following algorithm describes the response by the processor to an ordinary 
maskable interrupt when CR4.UINTR = IA32_EFER.LMA = 11:

1. The local APIC is acknowledged; this provides the processor core with an interrupt vector, V.

2. If V = UINV, the logical processor continues to the next step. Otherwise, an interrupt with vector V is delivered 
normally through the IDT; the remainder of this algorithm does not apply and user-interrupt notification 
processing does not occur.

3. The processor writes zero to the EOI register in the local APIC; this dismisses the interrupt with vector V = UINV 
from the local APIC.

User-interrupt notification identification involves acknowledgment of the local APIC and thus occurs only when 
ordinary interrupts are not masked.
If user-interrupt notification identification completes step #3, the logical processor then performs user-interrupt 
notification processing as described in Section 8.5.2.
An ordinary interrupt that occurs during transactional execution causes the transactional execution to abort and 
transition to a non-transactional execution. This occurs before user-interrupt notification identification.
An ordinary interrupt that occurs while software is executing inside an enclave causes an asynchronous enclave 
exit (AEX). This AEX occurs before user-interrupt notification identification.

8.5.2 User-Interrupt Notification Processing
Once a logical processor has identified a user-interrupt notification, it performs user-interrupt notification 
processing using the UPID at the linear address in the IA32_UINTR_PD MSR.
The following algorithm describes user-interrupt notification processing:

1. The logical processor clears the outstanding-notification bit (bit 0) in the UPID. This is done atomically so as to 
leave the remainder of the descriptor unmodified.

2. The logical processor reads PIR (bits 127:64 of the UPID) into a temporary register and writes all zeros to PIR. 
This is done atomically so as to ensure that each bit cleared in PIR is set in the temporary register.

3. If any bit is set in the temporary register, the logical processor sets in UIRR each bit corresponding to a bit set 
in the temporary register (e.g., with a logical OR) and recognizes a pending user interrupt (if it has not already 
done so).

The logical processor performs the steps above in an uninterruptible manner. Steps #1 and #2 may be combined 
into a single atomic step. If step #3 leads to recognition of a user interrupt, the processor may deliver that user 
interrupt on the following instruction boundary (see Section 8.4.2).
Although user-interrupt notification processing may occur at any privilege level, all of the memory accesses in 
steps #1 and #2 are performed with supervisor privilege.
Step #1 and step #2 each access the UPID using a linear address and may therefore incur faults (page faults, or 
general-protection faults due to canonicality violations). If such a fault produces an error code that uses the EXT 
bit, that bit will be set to 1.
If a fault occurs during user-interrupt notification processing, updates to architectural state performed by the 
earlier user-interrupt notification identification (Section 8.5.1) remain committed and are not undone; if such a 
fault occurs at step #2 (if it is not performed atomically with step #1), any update to architectural state performed 
by step #1 also remains committed. System software is advised to prevent such faults (e.g., by ensuring that no 

1. If the interrupt arrives between iterations of a REP-prefixed string instruction, the processor first updates state as follows: RIP is 
loaded to reference the string instruction; RCX, RSI, and RDI are updated as appropriate to reflect the iterations completed; and 
RFLAGS.RF is set to 1.
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page fault occurs and that the linear address in the IA32_UINTR_PD MSR is canonical with respect to the paging 
mode in use).

If the user-interrupt notification identification that precedes user-interrupt notification processing occurred due to 
an ordinary interrupt that arrived while the logical processor was in the HLT state, the logical processor returns to 
the HLT state following user-interrupt notification processing.

8.6 USER-INTERRUPT INSTRUCTIONS
The user-interrupt feature defines instructions for control-flow transfer and access to new state. UIRET is an 
instruction to effect a return from a user-interrupt handler. CLUI, STUI, and TESTUI allow software to access UIF. 
SENDUIPI sends a user IPI. See Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 
2C, & 2D for details on the instructions’ operation.

The following items provide high-level overviews of the instructions:
• UIRET pops from the stack the state saved by user-interrupt delivery (see Section 8.4.2) and loads those 

values into the corresponding registers (software should pop the user-interrupt vector from the stack before 
executing UIRET). Because RIP is one of those registers, UIRET effect a return to the that point from which the 
user interrupt was delivered.

• CLUI clears UIF.
• STUI sets UIF.
• TESTUI copies UIF to RFLAGS.CF.
• SENDUIPI is discussed in Section 8.8.

8.7 FLEXIBLE UPDATES OF UIF BY UIRET
There may be software usages that seek to return from the handling of a user interrupt while maintaining UIF as 0. 
This section describes an enhancement to UIRET that allows that.

This enhancement is supported if CPUID.(EAX=07H, ECX=01H):EDX.UIRET_UIF[bit 17] is enumerated as 1.

If the enhancement is supported, UIRET loads UIF with the value of the bit at position 1 in the RFLAGS image on 
the stack. (If the enhancement is not supported, UIRET ignores that bit in the RFLAGS image and always sets UIF 
to 1.)

The value of RFLAGS[1] is fixed as 1. All operations that save RFLAGS to memory save bit 1 as set; all operations 
that load RFLAGS leave bit 1 set.

This implies that user-interrupt delivery always saves on the stack an RFLAGS value that sets bit 1. If software does 
not modify this stack value, UIRET will set UIF to 1, even with the enhancement. Thus, the enhancement should 
not affect the operation of existing software, as long as that software does not modify the stack value saved for 
RFLAGS[1].

If a user-interrupt handler seek to return from the handling of a user interrupt while maintaining UIF as 0, it should 
modify the RFLAGS image on the stack to clear bit 1. Subsequent execution of UIRET will load UIF with 0, as long 
as the enhancement is supported.

Note that UIRET never modifies RFLAGS[1] (always leaving it with value 1) regardless of the stack value and 
regardless of whether enhancement is supported.

See Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D for details on the 
operation of the UIRET instruction.

8.8 USER IPIS
The SENDUIPI instruction sends a user interprocessor interrupt (IPI). The instruction uses a data structure called 
the user-interrupt target table (UITT). This table is located at the linear address UITTADDR and it comprises 
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UITTSZ+1 16-byte entries (the values UITTADDR and UITTSZ are defined in Section 8.3.1). SENDUIPI uses the 
UITT entry (UITTE) indexed by the instruction’s register operand. Each UITTE has the following format:
• Bit 0: V, a valid bit.
• Bits 7:1 are reserved and must be 0.
• Bits 15:8: UV, the user-interrupt vector (in the range 0–63, so bits 15:14 must be 0).
• Bits 63:16 are reserved.
• Bits 127:64: UPIDADDR, the linear address of a UPID (64-byte aligned, so bits 69:64 must be 0).

SENDUIPI sends a user interrupt by posting a user interrupt with vector V in the UPID referenced by UPIDADDR and 
then sending, as an ordinary IPI, any notification interrupt specified in that UPID. Details appear in Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D.
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CHAPTER 9
TASK MANAGEMENT

This chapter describes the IA-32 architecture’s task management facilities. These facilities are only available when 
the processor is running in protected mode.

This chapter focuses on 32-bit tasks and the 32-bit TSS structure. For information on 16-bit tasks and the 16-bit 
TSS structure, see Section 9.6, “16-Bit Task-State Segment (TSS).” For information specific to task management in 
64-bit mode, see Section 9.7, “Task Management in 64-bit Mode.”

9.1 TASK MANAGEMENT OVERVIEW
A task is a unit of work that a processor can dispatch, execute, and suspend. It can be used to execute a program, 
a task or process, an operating-system service utility, an interrupt or exception handler, or a kernel or executive 
utility.

The IA-32 architecture provides a mechanism for saving the state of a task, for dispatching tasks for execution, and 
for switching from one task to another. When operating in protected mode, all processor execution takes place from 
within a task. Even simple systems must define at least one task. More complex systems can use the processor’s 
task management facilities to support multitasking applications.

9.1.1 Task Structure
A task is made up of two parts: a task execution space and a task-state segment (TSS). The task execution space 
consists of a code segment, a stack segment, and one or more data segments (see Figure 9-1). If an operating 
system or executive uses the processor’s privilege-level protection mechanism, the task execution space also 
provides a separate stack for each privilege level.

The TSS specifies the segments that make up the task execution space and provides a storage place for task state 
information. In multitasking systems, the TSS also provides a mechanism for linking tasks.

A task is identified by the segment selector for its TSS. When a task is loaded into the processor for execution, the 
segment selector, base address, limit, and segment descriptor attributes for the TSS are loaded into the task 
register (see Section 2.4.4, “Task Register (TR)”).

If paging is implemented for the task, the base address of the page directory used by the task is loaded into control 
register CR3.
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9.1.2 Task State
The following items define the state of the currently executing task:
• The task’s current execution space, defined by the segment selectors in the segment registers (CS, DS, SS, ES, 

FS, and GS).
• The state of the general-purpose registers.
• The state of the EFLAGS register.
• The state of the EIP register.
• The state of control register CR3.
• The state of the task register.
• The state of the LDTR register.
• The I/O map base address and I/O map (contained in the TSS).
• Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).
• Link to previously executed task (contained in the TSS).
• The state of the shadow stack pointer (SSP).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except the state of the task register. 
Also, the complete contents of the LDTR register are not contained in the TSS, only the segment selector for the 
LDT.

9.1.3 Executing a Task
Software or the processor can dispatch a task for execution in one of the following ways:
• A explicit call to a task with the CALL instruction.
• A explicit jump to a task with the JMP instruction.
• An implicit call (by the processor) to an interrupt-handler task.
• An implicit call to an exception-handler task.
• A return (initiated with an IRET instruction) when the NT flag in the EFLAGS register is set.

All of these methods for dispatching a task identify the task to be dispatched with a segment selector that points to 
a task gate or the TSS for the task. When dispatching a task with a CALL or JMP instruction, the selector in the 
instruction may select the TSS directly or a task gate that holds the selector for the TSS. When dispatching a task 

Figure 9-1.  Structure of a Task
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to handle an interrupt or exception, the IDT entry for the interrupt or exception must contain a task gate that holds 
the selector for the interrupt- or exception-handler TSS. 

When a task is dispatched for execution, a task switch occurs between the currently running task and the 
dispatched task. During a task switch, the execution environment of the currently executing task (called the task’s 
state or context) is saved in its TSS and execution of the task is suspended. The context for the dispatched task is 
then loaded into the processor and execution of that task begins with the instruction pointed to by the newly loaded 
EIP register. If the task has not been run since the system was last initialized, the EIP will point to the first instruc-
tion of the task’s code; otherwise, it will point to the next instruction after the last instruction that the task 
executed when it was last active.

If the currently executing task (the calling task) called the task being dispatched (the called task), the TSS 
segment selector for the calling task is stored in the TSS of the called task to provide a link back to the calling task.

For all IA-32 processors, tasks are not recursive. A task cannot call or jump to itself.

Interrupts and exceptions can be handled with a task switch to a handler task. Here, the processor performs a task 
switch to handle the interrupt or exception and automatically switches back to the interrupted task upon returning 
from the interrupt-handler task or exception-handler task. This mechanism can also handle interrupts that occur 
during interrupt tasks.

As part of a task switch, the processor can also switch to another LDT, allowing each task to have a different logical-
to-physical address mapping for LDT-based segments. The page-directory base register (CR3) also is reloaded on a 
task switch, allowing each task to have its own set of page tables. These protection facilities help isolate tasks and 
prevent them from interfering with one another. 

If protection mechanisms are not used, the processor provides no protection between tasks. This is true even with 
operating systems that use multiple privilege levels for protection. A task running at privilege level 3 that uses the 
same LDT and page tables as other privilege-level-3 tasks can access code and corrupt data and the stack of other 
tasks.

Use of task management facilities for handling multitasking applications is optional. Multitasking can be handled in 
software, with each software defined task executed in the context of a single IA-32 architecture task.

If shadow stack is enabled, then the SSP of the task is located at the 4 bytes at offset 104 in the 32-bit TSS and is 
used by the processor to establish the SSP when a task switch occurs from a task associated with this TSS. Note 
that the processor does not write the SSP of the task initiating the task switch to the TSS of that task, and instead 
the SSP of the previous task is pushed onto the shadow stack of the new task.

9.2 TASK MANAGEMENT DATA STRUCTURES
The processor defines five data structures for handling task-related activities:
• Task-state segment (TSS).
• Task-gate descriptor.
• TSS descriptor.
• Task register.
• NT flag in the EFLAGS register.

When operating in protected mode, a TSS and TSS descriptor must be created for at least one task, and the 
segment selector for the TSS must be loaded into the task register (using the LTR instruction).

9.2.1 Task-State Segment (TSS)
The processor state information needed to restore a task is saved in a system segment called the task-state 
segment (TSS). Figure 9-2 shows the format of a TSS for tasks designed for 32-bit CPUs. The fields of a TSS are 
divided into two main categories: dynamic fields and static fields.

For information about 16-bit Intel 286 processor task structures, see Section 9.6, “16-Bit Task-State Segment 
(TSS).” For information about 64-bit mode task structures, see Section 9.7, “Task Management in 64-bit Mode.”
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The processor updates dynamic fields when a task is suspended during a task switch. The following are dynamic 
fields:
• General-purpose register fields — State of the EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI registers prior 

to the task switch.
• Segment selector fields — Segment selectors stored in the ES, CS, SS, DS, FS, and GS registers prior to the 

task switch.
• EFLAGS register field — State of the EFLAGS register prior to the task switch.

Figure 9-2.  32-Bit Task-State Segment (TSS)
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• EIP (instruction pointer) field — State of the EIP register prior to the task switch.
• Previous task link field — Contains the segment selector for the TSS of the previous task (updated on a task 

switch that was initiated by a call, interrupt, or exception). This field (which is sometimes called the back link 
field) permits a task switch back to the previous task by using the IRET instruction.

The processor reads the static fields, but does not normally change them. These fields are set up when a task is 
created. The following are static fields:
• LDT segment selector field — Contains the segment selector for the task's LDT.
• CR3 control register field — Contains the base physical address of the page directory to be used by the task. 

Control register CR3 is also known as the page-directory base register (PDBR).
• Privilege level-0, -1, and -2 stack pointer fields — These stack pointers consist of a logical address made 

up of the segment selector for the stack segment (SS0, SS1, and SS2) and an offset into the stack (ESP0, 
ESP1, and ESP2). Note that the values in these fields are static for a particular task; whereas, the SS and ESP 
values will change if stack switching occurs within the task.

• T (debug trap) flag (byte 100, bit 0) — When set, the T flag causes the processor to raise a debug exception 
when a task switch to this task occurs (see Section 19.3.1.5, “Task-Switch Exception Condition”).

• I/O map base address field — Contains a 16-bit offset from the base of the TSS to the I/O permission bit 
map and interrupt redirection bitmap. When present, these maps are stored in the TSS at higher addresses. 
The I/O map base address points to the beginning of the I/O permission bit map and the end of the interrupt 
redirection bit map. See Chapter 20, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for more information about the I/O permission bit map. See Section 22.3, 
“Interrupt and Exception Handling in Virtual-8086 Mode,” for a detailed description of the interrupt redirection 
bit map.

• Shadow Stack Pointer (SSP) — Contains task's shadow stack pointer. The shadow stack of the task should 
have a supervisor shadow stack token at the address pointed to by the task SSP (offset 104). This token will be 
verified and made busy when switching to that shadow stack using a CALL/JMP instruction, and made free 
when switching out of that task using an IRET instruction.

If paging is used: 
• Pages corresponding to the previous task’s TSS, the current task’s TSS, and the descriptor table entries for 

each all should be marked as read/write. 
• Task switches are carried out faster if the pages containing these structures are present in memory before the 

task switch is initiated.

9.2.2 TSS Descriptor
The TSS, like all other segments, is defined by a segment descriptor. Figure 9-3 shows the format of a TSS 
descriptor. TSS descriptors may only be placed in the GDT; they cannot be placed in an LDT or the IDT. 

An attempt to access a TSS using a segment selector with its TI flag set (which indicates the current LDT) causes 
a general-protection exception (#GP) to be generated during CALLs and JMPs; it causes an invalid TSS exception 
(#TS) during IRETs. A general-protection exception is also generated if an attempt is made to load a segment 
selector for a TSS into a segment register.

The busy flag (B) in the type field indicates whether the task is busy. A busy task is currently running or suspended. 
A type field with a value of 1001B indicates an inactive task; a value of 1011B indicates a busy task. Tasks are not 
recursive. The processor uses the busy flag to detect an attempt to call a task whose execution has been inter-
rupted. To ensure that there is only one busy flag is associated with a task, each TSS should have only one TSS 
descriptor that points to it.
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The base, limit, and DPL fields and the granularity and present flags have functions similar to their use in data-
segment descriptors (see Section 3.4.5, “Segment Descriptors”). When the G flag is 0 in a TSS descriptor for a 32-
bit TSS, the limit field must have a value equal to or greater than 67H, one byte less than the minimum size of a 
TSS. Attempting to switch to a task whose TSS descriptor has a limit less than 67H generates an invalid-TSS excep-
tion (#TS). A larger limit is required if an I/O permission bit map is included or if the operating system stores addi-
tional data. The processor does not check for a limit greater than 67H on a task switch; however, it does check 
when accessing the I/O permission bit map or interrupt redirection bit map.

Any program or procedure with access to a TSS descriptor (that is, whose CPL is numerically equal to or less than 
the DPL of the TSS descriptor) can dispatch the task with a call or a jump. 

In most systems, the DPLs of TSS descriptors are set to values less than 3, so that only privileged software can 
perform task switching. However, in multitasking applications, DPLs for some TSS descriptors may be set to 3 to 
allow task switching at the application (or user) privilege level.

9.2.3 TSS Descriptor in 64-bit mode
In 64-bit mode, task switching is not supported, but TSS descriptors still exist. The format of a 64-bit TSS is 
described in Section 9.7. 

In 64-bit mode, the TSS descriptor is expanded to 16 bytes (see Figure 9-4). This expansion also applies to an LDT 
descriptor in 64-bit mode. Table 3-2 provides the encoding information for the segment type field.

Figure 9-3.  TSS Descriptor
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9.2.4 Task Register
The task register holds the 16-bit segment selector and the entire segment descriptor (32-bit base address (64 bits 
in IA-32e mode), 16-bit segment limit, and descriptor attributes) for the TSS of the current task (see Figure 2-6). 
This information is copied from the TSS descriptor in the GDT for the current task. Figure 9-5 shows the path the 
processor uses to access the TSS (using the information in the task register).

The task register has a visible part (that can be read and changed by software) and an invisible part (maintained 
by the processor and is inaccessible by software). The segment selector in the visible portion points to a TSS 
descriptor in the GDT. The processor uses the invisible portion of the task register to cache the segment descriptor 
for the TSS. Caching these values in a register makes execution of the task more efficient. The LTR (load task 
register) and STR (store task register) instructions load and read the visible portion of the task register: 

The LTR instruction loads a segment selector (source operand) into the task register that points to a TSS descriptor 
in the GDT. It then loads the invisible portion of the task register with information from the TSS descriptor. LTR is a 
privileged instruction that may be executed only when the CPL is 0. It’s used during system initialization to put an 
initial value in the task register. Afterwards, the contents of the task register are changed implicitly when a task 
switch occurs.

The STR (store task register) instruction stores the visible portion of the task register in a general-purpose register 
or memory. This instruction can be executed by code running at any privilege level in order to identify the currently 
running task. However, it is normally used only by operating system software. (If CR4.UMIP = 1, STR can be 
executed only when CPL = 0.)

On power up or reset of the processor, segment selector and base address are set to the default value of 0; the limit 
is set to FFFFH.

Figure 9-4.  Format of TSS and LDT Descriptors in 64-bit Mode
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9.2.5 Task-Gate Descriptor
A task-gate descriptor provides an indirect, protected reference to a task (see Figure 9-6). It can be placed in the 
GDT, an LDT, or the IDT. The TSS segment selector field in a task-gate descriptor points to a TSS descriptor in the 
GDT. The RPL in this segment selector is not used.

The DPL of a task-gate descriptor controls access to the TSS descriptor during a task switch. When a program or 
procedure makes a call or jump to a task through a task gate, the CPL and the RPL field of the gate selector pointing 
to the task gate must be less than or equal to the DPL of the task-gate descriptor. Note that when a task gate is 
used, the DPL of the destination TSS descriptor is not used.

Figure 9-5.  Task Register

Figure 9-6.  Task-Gate Descriptor
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A task can be accessed either through a task-gate descriptor or a TSS descriptor. Both of these structures satisfy 
the following needs:
• Need for a task to have only one busy flag — Because the busy flag for a task is stored in the TSS 

descriptor, each task should have only one TSS descriptor. There may, however, be several task gates that 
reference the same TSS descriptor. 

• Need to provide selective access to tasks — Task gates fill this need, because they can reside in an LDT and 
can have a DPL that is different from the TSS descriptor's DPL. A program or procedure that does not have 
sufficient privilege to access the TSS descriptor for a task in the GDT (which usually has a DPL of 0) may be 
allowed access to the task through a task gate with a higher DPL. Task gates give the operating system greater 
latitude for limiting access to specific tasks.

• Need for an interrupt or exception to be handled by an independent task — Task gates may also reside 
in the IDT, which allows interrupts and exceptions to be handled by handler tasks. When an interrupt or 
exception vector points to a task gate, the processor switches to the specified task.

Figure 9-7 illustrates how a task gate in an LDT, a task gate in the GDT, and a task gate in the IDT can all point to 
the same task.

9.3 TASK SWITCHING
The processor transfers execution to another task in one of four cases:
• The current program, task, or procedure executes a JMP or CALL instruction to a TSS descriptor in the GDT.
• The current program, task, or procedure executes a JMP or CALL instruction to a task-gate descriptor in the 

GDT or the current LDT.

Figure 9-7.  Task Gates Referencing the Same Task
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• An interrupt or exception vector points to a task-gate descriptor in the IDT.
• The current task executes an IRET when the NT flag in the EFLAGS register is set. 

JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all mechanisms for redirecting a 
program. The referencing of a TSS descriptor or a task gate (when calling or jumping to a task) or the state of the 
NT flag (when executing an IRET instruction) determines whether a task switch occurs.

The processor performs the following operations when switching to a new task:

1. Obtains the TSS segment selector for the new task as the operand of the JMP or CALL instruction, from a task 
gate, or from the previous task link field (for a task switch initiated with an IRET instruction).

2. Checks that the current (old) task is allowed to switch to the new task. Data-access privilege rules apply to JMP 
and CALL instructions. The CPL of the current (old) task and the RPL of the segment selector for the new task 
must be less than or equal to the DPL of the TSS descriptor or task gate being referenced. Exceptions, 
interrupts (except for those identified in the next sentence), and the IRET and INT1 instructions are permitted 
to switch tasks regardless of the DPL of the destination task-gate or TSS descriptor. For interrupts generated by 
the INT n, INT3, and INTO instructions, the DPL is checked and a general-protection exception (#GP) results if 
it is less than the CPL.1

3. Checks that the TSS descriptor of the new task is marked present and has a valid limit (greater than or equal 
to 67H). If the task switch was initiated by IRET and shadow stacks are enabled at the current CPL, then the 
SSP must be aligned to 8 bytes, else a #TS(current task TSS) fault is generated. If CR4.CET is 1, then the TSS 
must be a 32 bit TSS and the limit of the new task’s TSS must be greater than or equal to 107 bytes, else a 
#TS(new task TSS) fault is generated.

4. Checks that the new task is available (call, jump, exception, or interrupt) or busy (IRET return).

5. Checks that the current (old) TSS, new TSS, and all segment descriptors used in the task switch are paged into 
system memory.

6. Saves the state of the current (old) task in the current task’s TSS. The processor finds the base address of the 
current TSS in the task register and then copies the states of the following registers into the current TSS: all the 
general-purpose registers, segment selectors from the segment registers, the temporarily saved image of the 
EFLAGS register, and the instruction pointer register (EIP).

7. Loads the task register with the segment selector and descriptor for the new task's TSS.

8. If CET is enabled, the processor performs following shadow stack actions:
Read CS of new task from new task TSS
Read EFLAGS of new task from new task TSS
IF EFLAGS.VM = 1

THEN
new task CPL = 3;

ELSE
new task CPL = CS.RPL;

FI;
pushCsLipSsp = 0
IF task switch was initiated by CALL instruction, exception or interrupt

IF shadow stack enabled at current CPL
IF new task CPL < CPL and current task CPL = 3

THEN
IA32_PL3_SSP = SSP (* user → supervisor *)

ELSE
pushCsLipSsp = 1 (* no privilege change; supv → supv; supv → user *) tempSSP = SSP

1. The INT1 has opcode F1; the INT n instruction with n=1 has opcode CD 01.
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tempSsLIP =CSBASE + EIP
tempSsCS = CS

FI;
FI;

FI;
verifyCsLIP = 0
IF task switch was initiated by IRET

IF shadow stacks enabled at current CPL
IF (CPL of new Task = CPL of current Task) OR

(CPL of new Task < 3 AND CPL of current Task < 3) OR
(CPL or new Task < 3 AND CPL of current task = 3)

(* no privilege change or supervisor → supervisor or user → supervisor IRET *)
tempSsCS = shadow_stack_load 8 bytes from SSP+16;
tempSsLIP = shadow_stack_load 8 bytes from SSP+8;
tempSSP = shadow_stack_load 8 bytes from SSP;
SSP = SSP + 24;
verifyCsLIP = 1

FI;
// Clear busy flag on current shadow stack
 IF ( SSP & 0x07 == 0 ) (* SSP must be aligned to 8B *)

THEN
            expected_token_value = (SSP & ~0x07) | BUSY_BIT;  (* busy - bit 0 - must be set*)
            new_token_value          = SSP                                          (* clear the busy bit *)
            shadow_stack_lock_cmpxchg8b(SSP, new_token_value, expected_token_value)
        FI;

SSP = 0
FI;

FI;

9. The TSS state is loaded into the processor. This includes the LDTR register, the PDBR (control register CR3), the 
EFLAGS register, the EIP register, the general-purpose registers, and the segment selectors. A fault during the 
load of this state may corrupt architectural state. (If paging is not enabled, a PDBR value is read from the new 
task's TSS, but it is not loaded into CR3.)

10. If the task switch was initiated with a JMP or IRET instruction, the processor clears the busy (B) flag in the 
current (old) task’s TSS descriptor; if initiated with a CALL instruction, an exception, or an interrupt: the busy 
(B) flag is left set. (See Table 9-2.)

11. If the task switch was initiated with an IRET instruction, the processor clears the NT flag in a temporarily saved 
image of the EFLAGS register; if initiated with a CALL or JMP instruction, an exception, or an interrupt, the NT 
flag is left unchanged in the saved EFLAGS image.

12. If the task switch was initiated with a CALL instruction, an exception, or an interrupt, the processor will set the 
NT flag in the EFLAGS loaded from the new task. If initiated with an IRET instruction or JMP instruction, the NT 
flag will reflect the state of NT in the EFLAGS loaded from the new task (see Table 9-2).

13. If the task switch was initiated with a CALL instruction, JMP instruction, an exception, or an interrupt, the 
processor sets the busy (B) flag in the new task’s TSS descriptor; if initiated with an IRET instruction, the busy 
(B) flag is left set.

14. The descriptors associated with the segment selectors are loaded and qualified. Any errors associated with this 
loading and qualification occur in the context of the new task and may corrupt architectural state.
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15. If CET is enabled, the processor performs following shadow stack actions:
IF shadow stack enabled at current CPL OR indirect branch tracking at current CPL

THEN
IF EFLAGS.VM = 1

THEN #TSS(new-Task-TSS);FI;
FI;
IF shadow stack enabled at current CPL

IF task switch initiated by CALL instruction, JMP instruction, interrupt or exception (* switch stack *)
new_SSP ← Load the 4 byte from offset 104 in the TSS
// Verify new SSP to be legal
IF new_SSP & 0x07 != 0

THEN #TSS(New-Task-TSS); FI;
expected_token_value = SSP;                     (* busy - bit 0 - must be clear *)
new_token_value          = SSP | BUSY_BIT (* set the busy bit - bit 0*)

    IF shadow_stack_lock_cmpxchg8b(SSP, new_token_value, 
                                                                   expected_token_value) != expected_token_value
         THEN #TSS(New-Task-TSS); FI;

SSP = new_SSP
IF pushCsLipSsp = 1 (* call, int, exception from user → user or supv → supv or supv → user *)

Push tempSsCS, tempSsLip, tempSsSSP on shadow stack using 8B pushes1

FI;
FI;

FI;
IF task switch initiated by IRET

IF verifyCsLIP = 1
(* do 64 bit comparisons; CS zero padded to 64 bit; CSBASE+EIP zero padded to 64 bit *)
IF tempSsCS and tempSsLIP do not match CS and CSBASE+EIP

THEN #CP(FAR-RET/IRET); FI;
FI;
IF ShadowStackEnabled(CPL)

THEN
IF (verifyCsLIP == 0) tempSSP = IA32_PL3_SSP;

IF tempSSP & 0x03 != 0 THEN #CP(FAR-RET/IRET) // verify aligned to 4 bytes
IF tempSSP[63:32] != 0 THEN # CP(FAR-RET/IRET)

SSP = tempSSP
FI;

FI;
IF EndbranchEnabled(CPL)

IF task switch initiated by CALL instruction, JMP instruction, interrupt or exception
IF CPL = 3

THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH

1. If any of these pushes leads to an exception or a VM exit, the supervisor shadow-stack token remains busy.
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IA32_U_CET.SUPPRESS = 0
ELSE

IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS = 0

FI;
FI;

FI;

16. Begins executing the new task. (To an exception handler, the first instruction of the new task appears not to 
have been executed.)

NOTES
If all checks and saves have been carried out successfully, the processor commits to the task 
switch. If an unrecoverable error occurs in steps 1 through 8, the processor does not complete the 
task switch and ensures that the processor is returned to its state prior to the execution of the 
instruction that initiated the task switch.

If an unrecoverable error occurs in step 9, architectural state may be corrupted, but an attempt will 
be made to handle the error in the prior execution environment. If an unrecoverable error occurs 
after the commit point (in step 13), the processor completes the task switch (without performing 
additional access and segment availability checks) and generates the appropriate exception prior to 
beginning execution of the new task.

If exceptions occur after the commit point, the exception handler must finish the task switch itself 
before allowing the processor to begin executing the new task. See Chapter 7, “Interrupt 
10—Invalid TSS Exception (#TS),” for more information about the affect of exceptions on a task 
when they occur after the commit point of a task switch.

The state of the currently executing task is always saved when a successful task switch occurs. If the task is 
resumed, execution starts with the instruction pointed to by the saved EIP value, and the registers are restored to 
the values they held when the task was suspended.

When switching tasks, the privilege level of the new task does not inherit its privilege level from the suspended 
task. The new task begins executing at the privilege level specified in the CPL field of the CS register, which is 
loaded from the TSS. Because tasks are isolated by their separate address spaces and TSSs and because privilege 
rules control access to a TSS, software does not need to perform explicit privilege checks on a task switch.

Table 9-1 shows the exception conditions that the processor checks for when switching tasks. It also shows the 
exception that is generated for each check if an error is detected and the segment that the error code references. 
(The order of the checks in the table is the order used in the P6 family processors. The exact order is model specific 
and may be different for other IA-32 processors.) Exception handlers designed to handle these exceptions may be 
subject to recursive calls if they attempt to reload the segment selector that generated the exception. The cause of 
the exception (or the first of multiple causes) should be fixed before reloading the selector.

Table 9-1.  Exception Conditions Checked During a Task Switch 
Condition Checked Exception1 Error Code Reference2

Segment selector for a TSS descriptor references 
the GDT and is within the limits of the table.

#GP

#TS (for IRET)

New Task’s TSS

P bit is set in TSS descriptor. #NP New Task’s TSS

TSS descriptor is not busy (for task switch initiated by a call, interrupt, or 
exception).

#GP (for JMP, CALL, INT) Task’s back-link TSS

TSS descriptor is not busy (for task switch initiated by an IRET instruction). #TS (for IRET) New Task’s TSS

TSS segment limit greater than or equal to 108 (for 32-bit TSS) or 44 (for 16-bit 
TSS).

#TS New Task’s TSS
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The TS (task switched) flag in the control register CR0 is set every time a task switch occurs. System software uses 
the TS flag to coordinate the actions of floating-point unit when generating floating-point exceptions with the rest 
of the processor. The TS flag indicates that the context of the floating-point unit may be different from that of the 
current task. See Section 2.5, “Control Registers,” for a detailed description of the function and use of the TS flag.

TSS segment limit greater than or equal to 108 (for 32-bit TSS) if CR4.CET = 1.3 #TS New Task’s TSS

If shadow stack enabled and SSP not aligned to 8 bytes (for task switch initiated 
by an IRET instruction).3

#TS Current Task’s TSS

Registers are loaded from the values in the TSS.

LDT segment selector of new task is valid 4. #TS New Task’s LDT

If code segment is non-conforming, its DPL should equal its RPL. #TS New Code Segment

If code segment is conforming, its DPL should be less than or equal to its RPL. #TS New Code Segment

SS segment selector is valid 2. #TS New Stack Segment

P bit is set in stack segment descriptor. #SS New Stack Segment

Stack segment DPL should equal CPL. #TS New stack segment

P bit is set in new task's LDT descriptor. #TS New Task’s LDT

CS segment selector is valid 4. #TS New Code Segment

P bit is set in code segment descriptor. #NP New Code Segment

Stack segment DPL should equal its RPL. #TS New Stack Segment

DS, ES, FS, and GS segment selectors are valid 4. #TS New Data Segment

DS, ES, FS, and GS segments are readable. #TS New Data Segment

P bits are set in descriptors of DS, ES, FS, and GS segments. #NP New Data Segment

DS, ES, FS, and GS segment DPL greater than or equal to CPL (unless these are 
conforming segments).

#TS New Data Segment

Shadow Stack Pointer in a task not aligned to 8 bytes (for task switch initiated by 
a call, interrupt, or exception).3

#TS New Task’s TSS

If EFLAGS.VM=1 and shadow stacks are enabled.3 #TS New Task’s TSS

Supervisor Shadow Stack Token verification failures (for task switch initiated by a 
call, interrupt, jump, or exception):3

- Busy bit already set.

- Address in Shadow stack token does not match SSP value from TSS.

#TS New Task’s TSS

If task switch initiated by IRET, CS and LIP stored on old task shadow stack does 
not match CS and LIP of new task.3

#CP FAR-RET/IRET

If task switch initiated by IRET and SSP of new task loaded from shadow stack of 
old task (if new task CPL is < 3) OR the SSP from IA32_PL3_SSP (if new task CPL 
= 3) fails the following checks:3

- Not aligned to 4 bytes.

- Is beyond 4G.

#CP FAR-RET/IRET

NOTES:
1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS exception, and #SS is stack-fault 

exception.
2. The error code contains an index to the segment descriptor referenced in this column.
3. Valid when CET is enabled.
4. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address within the table's segment limit, 

and refers to a compatible type of descriptor (for example, a segment selector in the CS register only is valid when it points to a 
code-segment descriptor).

Table 9-1.  Exception Conditions Checked During a Task Switch  (Contd.)
Condition Checked Exception1 Error Code Reference2
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9.4 TASK LINKING
The previous task link field of the TSS (sometimes called the “backlink”) and the NT flag in the EFLAGS register are 
used to return execution to the previous task. EFLAGS.NT = 1 indicates that the currently executing task is nested 
within the execution of another task. 

When a CALL instruction, an interrupt, or an exception causes a task switch: the processor copies the segment 
selector for the current TSS to the previous task link field of the TSS for the new task; it then sets EFLAGS.NT = 1. 
If software uses an IRET instruction to suspend the new task, the processor checks for EFLAGS.NT = 1; it then 
uses the value in the previous task link field to return to the previous task. See Figures 9-8.

When a JMP instruction causes a task switch, the new task is not nested. The previous task link field is not used and 
EFLAGS.NT = 0. Use a JMP instruction to dispatch a new task when nesting is not desired.

Table 9-2 shows the busy flag (in the TSS segment descriptor), the NT flag, the previous task link field, and TS flag 
(in control register CR0) during a task switch.

The NT flag may be modified by software executing at any privilege level. It is possible for a program to set the NT 
flag and execute an IRET instruction. This might randomly invoke the task specified in the previous link field of the 
current task's TSS. To keep such spurious task switches from succeeding, the operating system should initialize the 
previous task link field in every TSS that it creates to 0.

Figure 9-8.  Nested Tasks

Table 9-2.  Effect of a Task Switch on Busy Flag, NT Flag, Previous Task Link Field, and TS Flag

Flag or Field Effect of JMP instruction Effect of CALL Instruction or 
Interrupt

Effect of IRET
Instruction

Busy (B) flag of new task. Flag is set. Must have been 
clear before.

Flag is set. Must have been 
clear before.

No change. Must have been set.

Busy flag of old task. Flag is cleared. No change. Flag is currently 
set.

Flag is cleared.

NT flag of new task. Set to value from TSS of new 
task.

Flag is set. Set to value from TSS of new 
task.

NT flag of old task. No change. No change. Flag is cleared.

Previous task link field of new 
task.

No change. Loaded with selector 
for old task’s TSS.

No change.

Previous task link field of old 
task.

No change. No change. No change.

TS flag in control register CR0. Flag is set. Flag is set. Flag is set.
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9.4.1 Use of Busy Flag To Prevent Recursive Task Switching
A TSS allows only one context to be saved for a task; therefore, once a task is called (dispatched), a recursive (or 
re-entrant) call to the task would cause the current state of the task to be lost. The busy flag in the TSS segment 
descriptor is provided to prevent re-entrant task switching and a subsequent loss of task state information. The 
processor manages the busy flag as follows:

1. When dispatching a task, the processor sets the busy flag of the new task.

2. If during a task switch, the current task is placed in a nested chain (the task switch is being generated by a 
CALL instruction, an interrupt, or an exception), the busy flag for the current task remains set. 

3. When switching to the new task (initiated by a CALL instruction, interrupt, or exception), the processor 
generates a general-protection exception (#GP) if the busy flag of the new task is already set. If the task switch 
is initiated with an IRET instruction, the exception is not raised because the processor expects the busy flag to 
be set.

4. When a task is terminated by a jump to a new task (initiated with a JMP instruction in the task code) or by an 
IRET instruction in the task code, the processor clears the busy flag, returning the task to the “not busy” state.

The processor prevents recursive task switching by preventing a task from switching to itself or to any task in a 
nested chain of tasks. The chain of nested suspended tasks may grow to any length, due to multiple calls, inter-
rupts, or exceptions. The busy flag prevents a task from being invoked if it is in this chain.

The busy flag may be used in multiprocessor configurations, because the processor follows a LOCK protocol (on the 
bus or in the cache) when it sets or clears the busy flag. This lock keeps two processors from invoking the same 
task at the same time. See Section 10.1.2.1, “Automatic Locking,” for more information about setting the busy flag 
in a multiprocessor applications.

9.4.2 Modifying Task Linkages
In a uniprocessor system, in situations where it is necessary to remove a task from a chain of linked tasks, use the 
following procedure to remove the task:

1. Disable interrupts.

2. Change the previous task link field in the TSS of the pre-empting task (the task that suspended the task to be 
removed). It is assumed that the pre-empting task is the next task (newer task) in the chain from the task to 
be removed. Change the previous task link field to point to the TSS of the next oldest task in the chain or to an 
even older task in the chain.

3. Clear the busy (B) flag in the TSS segment descriptor for the task being removed from the chain. If more than 
one task is being removed from the chain, the busy flag for each task being remove must be cleared.

4. Enable interrupts.

In a multiprocessing system, additional synchronization and serialization operations must be added to this proce-
dure to ensure that the TSS and its segment descriptor are both locked when the previous task link field is changed 
and the busy flag is cleared.

9.5 TASK ADDRESS SPACE
The address space for a task consists of the segments that the task can access. These segments include the code, 
data, stack, and system segments referenced in the TSS and any other segments accessed by the task code. The 
segments are mapped into the processor’s linear address space, which is in turn mapped into the processor’s phys-
ical address space (either directly or through paging).

The LDT segment field in the TSS can be used to give each task its own LDT. Giving a task its own LDT allows the 
task address space to be isolated from other tasks by placing the segment descriptors for all the segments associ-
ated with the task in the task’s LDT.

It also is possible for several tasks to use the same LDT. This is a memory-efficient way to allow specific tasks to 
communicate with or control each other, without dropping the protection barriers for the entire system.
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Because all tasks have access to the GDT, it also is possible to create shared segments accessed through segment 
descriptors in this table.

If paging is enabled, the CR3 register (PDBR) field in the TSS allows each task to have its own set of page tables 
for mapping linear addresses to physical addresses. Or, several tasks can share the same set of page tables.

9.5.1 Mapping Tasks to the Linear and Physical Address Spaces
Tasks can be mapped to the linear address space and physical address space in one of two ways:
• One linear-to-physical address space mapping is shared among all tasks. — When paging is not 

enabled, this is the only choice. Without paging, all linear addresses map to the same physical addresses. When 
paging is enabled, this form of linear-to-physical address space mapping is obtained by using one page 
directory for all tasks. The linear address space may exceed the available physical space if demand-paged 
virtual memory is supported.

• Each task has its own linear address space that is mapped to the physical address space. — This form 
of mapping is accomplished by using a different page directory for each task. Because the PDBR (control 
register CR3) is loaded on task switches, each task may have a different page directory.

The linear address spaces of different tasks may map to completely distinct physical addresses. If the entries of 
different page directories point to different page tables and the page tables point to different pages of physical 
memory, then the tasks do not share physical addresses.

With either method of mapping task linear address spaces, the TSSs for all tasks must lie in a shared area of the 
physical space, which is accessible to all tasks. This mapping is required so that the mapping of TSS addresses does 
not change while the processor is reading and updating the TSSs during a task switch. The linear address space 
mapped by the GDT also should be mapped to a shared area of the physical space; otherwise, the purpose of the 
GDT is defeated. Figure 9-9 shows how the linear address spaces of two tasks can overlap in the physical space by 
sharing page tables. 

Figure 9-9.  Overlapping Linear-to-Physical Mappings
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9.5.2 Task Logical Address Space
To allow the sharing of data among tasks, use the following techniques to create shared logical-to-physical 
address-space mappings for data segments:
• Through the segment descriptors in the GDT — All tasks must have access to the segment descriptors in 

the GDT. If some segment descriptors in the GDT point to segments in the linear-address space that are 
mapped into an area of the physical-address space common to all tasks, then all tasks can share the data and 
code in those segments.

• Through a shared LDT — Two or more tasks can use the same LDT if the LDT fields in their TSSs point to the 
same LDT. If some segment descriptors in a shared LDT point to segments that are mapped to a common area 
of the physical address space, the data and code in those segments can be shared among the tasks that share 
the LDT. This method of sharing is more selective than sharing through the GDT, because the sharing can be 
limited to specific tasks. Other tasks in the system may have different LDTs that do not give them access to the 
shared segments.

• Through segment descriptors in distinct LDTs that are mapped to common addresses in linear 
address space — If this common area of the linear address space is mapped to the same area of the physical 
address space for each task, these segment descriptors permit the tasks to share segments. Such segment 
descriptors are commonly called aliases. This method of sharing is even more selective than those listed above, 
because, other segment descriptors in the LDTs may point to independent linear addresses which are not 
shared.

9.6 16-BIT TASK-STATE SEGMENT (TSS)
The 32-bit IA-32 processors also recognize a 16-bit TSS format like the one used in Intel 286 processors (see 
Figure 9-10). This format is supported for compatibility with software written to run on earlier IA-32 processors. 

The following information is important to know about the 16-bit TSS.
• Do not use a 16-bit TSS to implement a virtual-8086 task.
• The valid segment limit for a 16-bit TSS is 2CH.
• The 16-bit TSS does not contain a field for the base address of the page directory, which is loaded into control 

register CR3. A separate set of page tables for each task is not supported for 16-bit tasks. If a 16-bit task is 
dispatched, the page-table structure for the previous task is used.

• The I/O base address is not included in the 16-bit TSS. None of the functions of the I/O map are supported.
• When task state is saved in a 16-bit TSS, the upper 16 bits of the EFLAGS register and the EIP register are lost.
• When the general-purpose registers are loaded or saved from a 16-bit TSS, the upper 16 bits of the registers 

are modified and not maintained.
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9.7 TASK MANAGEMENT IN 64-BIT MODE
In 64-bit mode, task structure and task state are similar to those in protected mode. However, the task switching 
mechanism available in protected mode is not supported in 64-bit mode. Task management and switching must be 
performed by software. The processor issues a general-protection exception (#GP) if the following is attempted in 
64-bit mode:
• Control transfer to a TSS or a task gate using JMP, CALL, INT n, INT3, INTO, INT1, or interrupt.
• An IRET with EFLAGS.NT (nested task) set to 1.

Although hardware task-switching is not supported in 64-bit mode, a 64-bit task state segment (TSS) must exist. 
Figure 9-11 shows the format of a 64-bit TSS. The TSS holds information important to 64-bit mode and that is not 
directly related to the task-switch mechanism. This information includes:
• RSPn — The full 64-bit canonical forms of the stack pointers (RSP) for privilege levels 0-2.
• ISTn — The full 64-bit canonical forms of the interrupt stack table (IST) pointers.
• I/O map base address — The 16-bit offset to the I/O permission bit map from the 64-bit TSS base.

The operating system must create at least one 64-bit TSS after activating IA-32e mode. It must execute the LTR 
instruction (in 64-bit mode) to load the TR register with a pointer to the 64-bit TSS responsible for both 64-bit-
mode programs and compatibility-mode programs.

Figure 9-10.  16-Bit TSS Format
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Figure 9-11.  64-Bit TSS Format
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CHAPTER 10
MULTIPLE-PROCESSOR MANAGEMENT

The Intel 64 and IA-32 architectures provide mechanisms for managing and improving the performance of multiple 
processors connected to the same system bus. These include:
• Bus locking and/or cache coherency management for performing atomic operations on system memory.
• Serializing instructions.
• An advance programmable interrupt controller (APIC) located on the processor chip (see Chapter 12, 

“Advanced Programmable Interrupt Controller (APIC)”). This feature was introduced by the Pentium processor.
• A second-level cache (level 2, L2). For the Pentium 4, Intel Xeon, and P6 family processors, the L2 cache is 

included in the processor package and is tightly coupled to the processor. For the Pentium and Intel486 
processors, pins are provided to support an external L2 cache.

• A third-level cache (level 3, L3). For Intel Xeon processors, the L3 cache is included in the processor package 
and is tightly coupled to the processor.

• Intel Hyper-Threading Technology. This extension to the Intel 64 and IA-32 architectures enables a single 
processor core to execute two or more threads concurrently (see Section 10.5, “Intel® Hyper-Threading 
Technology and Intel® Multi-Core Technology”).

These mechanisms are particularly useful in symmetric-multiprocessing (SMP) systems. However, they can also be 
used when an Intel 64 or IA-32 processor and a special-purpose processor (such as a communications, graphics, 
or video processor) share the system bus.

These multiprocessing mechanisms have the following characteristics:
• To maintain system memory coherency — When two or more processors are attempting simultaneously to 

access the same address in system memory, some communication mechanism or memory access protocol 
must be available to promote data coherency and, in some instances, to allow one processor to temporarily lock 
a memory location.

• To maintain cache consistency — When one processor accesses data cached on another processor, it must not 
receive incorrect data. If it modifies data, all other processors that access that data must receive the modified 
data.

• To allow predictable ordering of writes to memory — In some circumstances, it is important that memory writes 
be observed externally in precisely the same order as programmed.

• To distribute interrupt handling among a group of processors — When several processors are operating in a 
system in parallel, it is useful to have a centralized mechanism for receiving interrupts and distributing them to 
available processors for servicing.

• To increase system performance by exploiting the multi-threaded and multi-process nature of contemporary 
operating systems and applications.

The caching mechanism and cache consistency of Intel 64 and IA-32 processors are discussed in Chapter 13. The 
APIC architecture is described in Chapter 12. Bus and memory locking, serializing instructions, memory ordering, 
and Intel Hyper-Threading Technology are discussed in the following sections. 

10.1 LOCKED ATOMIC OPERATIONS
The 32-bit IA-32 processors support locked atomic operations on locations in system memory. These operations 
are typically used to manage shared data structures (such as semaphores, segment descriptors, system segments, 
or page tables) in which two or more processors may try simultaneously to modify the same field or flag. The 
processor uses three interdependent mechanisms for carrying out locked atomic operations:
• Guaranteed atomic operations.
• Bus locking, using the LOCK# signal and the LOCK instruction prefix.
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• Cache coherency protocols that ensure that atomic operations can be carried out on cached data structures 
(cache lock); this mechanism is present in the Pentium 4, Intel Xeon, and P6 family processors.

These mechanisms are interdependent in the following ways. Certain basic memory transactions (such as reading 
or writing a byte in system memory) are always guaranteed to be handled atomically. That is, once started, the 
processor guarantees that the operation will be completed before another processor or bus agent is allowed access 
to the memory location. The processor also supports bus locking for performing selected memory operations (such 
as a read-modify-write operation in a shared area of memory) that typically need to be handled atomically, but are 
not automatically handled this way. Because frequently used memory locations are often cached in a processor’s L1 
or L2 caches, atomic operations can often be carried out inside a processor’s caches without asserting the bus lock. 
Here the processor’s cache coherency protocols ensure that other processors that are caching the same memory 
locations are managed properly while atomic operations are performed on cached memory locations.

NOTE
Where there are contested lock accesses, software may need to implement algorithms that ensure 
fair access to resources in order to prevent lock starvation. The hardware provides no resource that 
guarantees fairness to participating agents. It is the responsibility of software to manage the 
fairness of semaphores and exclusive locking functions.

The mechanisms for handling locked atomic operations have evolved with the complexity of IA-32 processors. More 
recent IA-32 processors (such as the Pentium 4, Intel Xeon, and P6 family processors) and Intel 64 provide a more 
refined locking mechanism than earlier processors. These mechanisms are described in the following sections.

10.1.1 Guaranteed Atomic Operations
The Intel486 processor (and newer processors since) guarantees that the following basic memory operations will 
always be carried out atomically:
• Reading or writing a byte.
• Reading or writing a word aligned on a 16-bit boundary.
• Reading or writing a doubleword aligned on a 32-bit boundary.

The Pentium processor (and newer processors since) guarantees that the following additional memory operations 
will always be carried out atomically:
• Reading or writing a quadword aligned on a 64-bit boundary.
• 16-bit accesses to uncached memory locations that fit within a 32-bit data bus.

The P6 family processors (and newer processors since) guarantee that the following additional memory operation 
will always be carried out atomically:
• Unaligned 16-, 32-, and 64-bit accesses to cached memory that fit within a cache line.

Processors that enumerate support for Intel® AVX (by setting the feature flag CPUID.01H:ECX.AVX[bit 28]) guar-
antee that the 16-byte memory operations performed by the following instructions will always be carried out atom-
ically:
• MOVAPD, MOVAPS, and MOVDQA.
• VMOVAPD, VMOVAPS, and VMOVDQA when encoded with VEX.128.
• VMOVAPD, VMOVAPS, VMOVDQA32, and VMOVDQA64 when encoded with EVEX.128 and k0 (masking 

disabled).

(Note that these instructions require the linear addresses of their memory operands to be 16-byte aligned.)

Accesses to cacheable memory that are split across cache lines and page boundaries are not guaranteed to be 
atomic by the Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4, Intel Xeon, P6 family, Pentium, 
and Intel486 processors. The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4, Intel Xeon, and 
P6 family processors provide bus control signals that permit external memory subsystems to make split accesses 
atomic; however, nonaligned data accesses will seriously impact the performance of the processor and should be 
avoided.
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Except as noted above, an x87 instruction or an SSE instruction that accesses data larger than a quadword may be 
implemented using multiple memory accesses. If such an instruction stores to memory, some of the accesses may 
complete (writing to memory) while another causes the operation to fault for architectural reasons (e.g., due an 
page-table entry that is marked “not present”). In this case, the effects of the completed accesses may be visible 
to software even though the overall instruction caused a fault. If TLB invalidation has been delayed (see Section 
5.10.4.4), such page faults may occur even if all accesses are to the same page.

10.1.2 Bus Locking
Intel 64 and IA-32 processors provide a LOCK# signal that is asserted automatically during certain critical memory 
operations to lock the system bus or equivalent link. Assertion of this signal is called a bus lock. While this output 
signal is asserted, requests from other processors or bus agents for control of the bus are blocked. Software can 
specify other occasions when the LOCK semantics are to be followed by prepending the LOCK prefix to an instruc-
tion.

In the case of the Intel386, Intel486, and Pentium processors, explicitly locked instructions will result in the asser-
tion of the LOCK# signal. It is the responsibility of the hardware designer to make the LOCK# signal available in 
system hardware to control memory accesses among processors.

For the P6 and more recent processor families, if the memory area being accessed is cached internally in the 
processor, the LOCK# signal is generally not asserted; instead, locking is only applied to the processor’s caches 
(see Section 10.1.4, “Effects of a LOCK Operation on Internal Processor Caches”). These processors will assert a 
bus lock for a locked access in either of the following situations: (1) the access is to multiple cache lines (a split 
lock); or (2) the access uses a memory type other than WB (a UC lock)1.

10.1.2.1  Automatic Locking
The operations on which the processor automatically follows the LOCK semantics are as follows:
• When executing an XCHG instruction that references memory.
• When switching to a task, the processor tests and sets the busy flag in the type field of the TSS descriptor. To 

ensure that two processors do not switch to the same task simultaneously, the processor follows the LOCK 
semantics while testing and setting this flag.

• When loading a segment descriptor, the processor sets the accessed flag in the segment descriptor if the flag is 
clear. During this operation, the processor follows the LOCK semantics so that the descriptor will not be 
modified by another processor while it is being updated. For this action to be effective, operating-system 
procedures that update descriptors should use the following steps:

— Use a locked operation to modify the access-rights byte to indicate that the segment descriptor is not-
present, and specify a value for the type field that indicates that the descriptor is being updated.

— Update the fields of the segment descriptor. (This operation may require several memory accesses; 
therefore, locked operations cannot be used.)

— Use a locked operation to modify the access-rights byte to indicate that the segment descriptor is valid and 
present.

— The Intel386 processor always updates the accessed flag in the segment descriptor, whether it is clear or 
not. The Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors only update this flag if it is not 
already set.

• The processor uses locked cycles to set the accessed and dirty flag in paging-structure entries.
• After an interrupt request, an interrupt controller may use the data bus to send the interrupt’s vector to the 

processor. The processor follows the LOCK semantics during this time to ensure that no other data appears on 
the data bus while the vector is being transmitted.

1. The term “UC lock” is used because the most common situation regards accesses to UC memory. Despite the name, locked accesses 
to WC, WP, and WT memory also cause bus locks.
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10.1.2.2  Software Controlled Bus Locking
To explicitly force the LOCK semantics, software can use the LOCK prefix with the following instructions when they 
are used to modify a memory location. An invalid-opcode exception (#UD) is generated when the LOCK prefix is 
used with any other instruction or when no write operation is made to memory (that is, when the destination 
operand is in a register).
• The bit test and modify instructions (BTS, BTR, and BTC).
• The exchange instructions (XADD, CMPXCHG, CMPXCHG8B, and CMPXCHG16B). 
• The LOCK prefix is automatically assumed for XCHG instruction.
• The following single-operand arithmetic and logical instructions: INC, DEC, NOT, and NEG.
• The following two-operand arithmetic and logical instructions: ADD, ADC, SUB, SBB, AND, OR, and XOR.

A locked instruction is guaranteed to lock only the area of memory defined by the destination operand, but may be 
interpreted by the system as a lock for a larger memory area.

Software should access semaphores (shared memory used for signalling between multiple processors) using iden-
tical addresses and operand lengths. For example, if one processor accesses a semaphore using a word access, 
other processors should not access the semaphore using a byte access. 

NOTE
Do not implement semaphores using the WC memory type. Do not perform non-temporal stores to 
a cache line containing a location used to implement a semaphore.

The integrity of a bus lock is not affected by the alignment of the memory field. The LOCK semantics are followed 
for as many bus cycles as necessary to update the entire operand. However, it is recommend that locked accesses 
be aligned on their natural boundaries for better system performance:
• Any boundary for an 8-bit access (locked or otherwise).
• 16-bit boundary for locked word accesses.
• 32-bit boundary for locked doubleword accesses.
• 64-bit boundary for locked quadword accesses.

Locked operations are atomic with respect to all other memory operations and all externally visible events. Only 
instruction fetch and page table accesses can pass locked instructions. Locked instructions can be used to synchro-
nize data written by one processor and read by another processor.

For the P6 family processors, locked operations serialize all outstanding load and store operations (that is, wait for 
them to complete). This rule is also true for the Pentium 4 and Intel Xeon processors, with one exception. Load 
operations that reference weakly ordered memory types (such as the WC memory type) may not be serialized.

Locked instructions should not be used to ensure that data written can be fetched as instructions. 

NOTE
The locked instructions for the current versions of the Pentium 4, Intel Xeon, P6 family, Pentium, 
and Intel486 processors allow data written to be fetched as instructions. However, Intel 
recommends that developers who require the use of self-modifying code use a different synchro-
nizing mechanism, described in the following sections.

10.1.2.3  Features to Disable Bus Locks
Because bus locks may adversely affect performance in certain situations, processors may support two features 
that system software can use to disable bus locking. These are called split-lock disable and UC-lock disable.

Support for split-lock disable is enumerated by IA32_CORE_CAPABILITIES[5].

Software enables split-lock disable by setting MSR_MEMORY_CTRL[29]. When this bit is set, a locked access to 
multiple cache lines causes an alignment-check exception (#AC) with a zero error code.1 The locked access does 
not occur.
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A processor enumerates support for UC-lock disable either by setting bit 4 of the IA32_CORE_CAPABILITIES MSR 
(MSR index CFH) or by enumerating CPUID.(EAX=07H, ECX=2):EDX[bit 6] as 1. The latter form of enumeration 
(CPUID) is used beginning with processors based on Sierra Forest microarchitecture; earlier processors may use 
the former form (IA32_CORE_CAPABILITIES).

NOTE
No processor will both set IA32_CORE_CAPABILITIES[4] and enumerate 
CPUID.(EAX=07H, ECX=2):EDX[bit 6] as 1.

If a processor enumerates support for UC-lock disable (in either way), software can enable UC-lock disable by 
setting MSR_MEMORY_CTRL[28]. When this bit is set, a locked access using a memory type other than WB causes 
a fault. The locked access does not occur. The specific fault that occurs depends on how UC-lock disable is enumer-
ated:
• If IA32_CORE_CAPABILITIES[4] is read as 1, the UC lock results in a general-protection exception (#GP) with 

a zero error code.
• If CPUID.(EAX=07H, ECX=2):EDX[bit 6] is enumerated as 1, the UC lock results in an #AC with an error code 

with value 4.

UC-lock disable does not apply to locked accesses to physical addresses specified in a VMCS. Such accesses include 
updates to accessed and dirty flags for EPT and those to posted-interrupt descriptors.

UC-lock disable is not enabled if CR0.CD = 1 or if MSR_PRMRR_BASE_0[2:0] ≠ 6 (WB) when PRMRRs are enabled. 
If either of those conditions hold, the processor ignores the value of MSR_MEMORY_CTRL[28].
Note that the #AC(0) due to split-lock disable or alignment check is higher priority than a #GP(0) or #AC(4) due 
to UC-lock disable. If both features are enabled, a locked access to multiple cache lines causes #AC(0) regardless 
of the memory type(s) being accessed.

While MSR_MEMORY_CTRL is not an architectural MSR, the behavior described above is consistent across 
processor models that enumerate the support in IA32_CORE_CAPABILITIES or CPUID.

In addition to these features that disable bus locks, there are features that allow software to detect when a bus lock 
has occurred. See Section 19.3.1.6 for information about OS bus-lock detection and Section 27.2 for information 
about the VMM bus-lock detection.

10.1.3 Handling Self- and Cross-Modifying Code
The act of a processor writing data into a currently executing code segment with the intent of executing that data 
as code is called self-modifying code. IA-32 processors exhibit model-specific behavior when executing self-
modified code, depending upon how far ahead of the current execution pointer the code has been modified. 

As processor microarchitectures become more complex and start to speculatively execute code ahead of the retire-
ment point (as in P6 and more recent processor families), the rules regarding which code should execute, pre- or 
post-modification, become blurred. To write self-modifying code and ensure that it is compliant with current and 
future versions of the IA-32 architectures, use one of the following coding options:

(* OPTION 1 *)
Store modified code (as data) into code segment; 
Jump to new code or an intermediate location;
Execute new code;

(* OPTION 2 *)
Store modified code (as data) into code segment;
Execute a serializing instruction; (* For example, CPUID instruction *)
Execute new code;

1. Other alignment-check exceptions occur only if CR0.AM = 1, EFLAGS.AC = 1, and CPL = 3. The alignment-check exceptions resulting 
from split-lock disable may occur even if CR0.AM = 0, EFLAGS.AC = 0, or CPL < 3.
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The use of one of these options is not required for programs intended to run on the Pentium or Intel486 processors, 
but are recommended to ensure compatibility with the P6 and more recent processor families.

Self-modifying code will execute at a lower level of performance than non-self-modifying or normal code. The 
degree of the performance deterioration will depend upon the frequency of modification and specific characteristics 
of the code.

The act of one processor writing data into the currently executing code segment of a second processor with the 
intent of having the second processor execute that data as code is called cross-modifying code. As with self-
modifying code, IA-32 processors exhibit model-specific behavior when executing cross-modifying code, 
depending upon how far ahead of the executing processors current execution pointer the code has been modified. 

To write cross-modifying code and ensure that it is compliant with current and future versions of the IA-32 archi-
tecture, the following processor synchronization algorithm must be implemented:

(* Action of Modifying Processor *)
Memory_Flag := 0; (* Set Memory_Flag to value other than 1 *)
Store modified code (as data) into code segment;
Memory_Flag := 1;

(* Action of Executing Processor *)
WHILE (Memory_Flag ≠ 1)

Wait for code to update;
ELIHW;
Execute serializing instruction; (* For example, CPUID instruction *)
Begin executing modified code;

(The use of this option is not required for programs intended to run on the Intel486 processor, but is recommended 
to ensure compatibility with the Pentium 4, Intel Xeon, P6 family, and Pentium processors.)

Like self-modifying code, cross-modifying code will execute at a lower level of performance than non-cross-modi-
fying (normal) code, depending upon the frequency of modification and specific characteristics of the code.

The restrictions on self-modifying code and cross-modifying code also apply to the Intel 64 architecture.

10.1.4 Effects of a LOCK Operation on Internal Processor Caches
For the Intel486 and Pentium processors, the LOCK# signal is always asserted on the bus during a LOCK operation, 
even if the area of memory being locked is cached in the processor.

For the P6 and more recent processor families, if the area of memory being locked during a LOCK operation is 
cached in the processor that is performing the LOCK operation as write-back memory and is completely contained 
in a cache line, the processor may not assert the LOCK# signal on the bus. Instead, it will modify the memory loca-
tion internally and allow it’s cache coherency mechanism to ensure that the operation is carried out atomically. This 
operation is called “cache locking.” The cache coherency mechanism automatically prevents two or more proces-
sors that have cached the same area of memory from simultaneously modifying data in that area.

10.2 MEMORY ORDERING
The term memory ordering refers to the order in which the processor issues reads (loads) and writes (stores) 
through the system bus to system memory. The Intel 64 and IA-32 architectures support several memory-ordering 
models depending on the implementation of the architecture. For example, the Intel386 processor enforces 
program ordering (generally referred to as strong ordering), where reads and writes are issued on the system 
bus in the order they occur in the instruction stream under all circumstances. 

To allow performance optimization of instruction execution, the IA-32 architecture allows departures from strong-
ordering model called processor ordering in Pentium 4, Intel Xeon, and P6 family processors. These processor-
ordering variations (called here the memory-ordering model) allow performance enhancing operations such as 
allowing reads to go ahead of buffered writes. The goal of any of these variations is to increase instruction execu-
tion speeds, while maintaining memory coherency, even in multiple-processor systems.
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Section 10.2.1 and Section 10.2.2 describe the memory-ordering implemented by Intel486, Pentium, Intel Core 2 
Duo, Intel Atom, Intel Core Duo, Pentium 4, Intel Xeon, and P6 family processors. Section 10.2.3 gives examples 
illustrating the behavior of the memory-ordering model on IA-32 and Intel-64 processors. Section 10.2.4 considers 
the special treatment of stores for string operations and Section 10.2.5 discusses how memory-ordering behavior 
may be modified through the use of specific instructions.

10.2.1 Memory Ordering in the Intel® Pentium® and Intel486™ Processors
The Pentium and Intel486 processors follow the processor-ordered memory model; however, they operate as 
strongly-ordered processors under most circumstances. Reads and writes always appear in programmed order at 
the system bus—except for the following situation where processor ordering is exhibited. Read misses are 
permitted to go ahead of buffered writes on the system bus when all the buffered writes are cache hits and, there-
fore, are not directed to the same address being accessed by the read miss. 

In the case of I/O operations, both reads and writes always appear in programmed order.

Software intended to operate correctly in processor-ordered processors (such as the Pentium 4, Intel Xeon, and P6 
family processors) should not depend on the relatively strong ordering of the Pentium or Intel486 processors. 
Instead, it should ensure that accesses to shared variables that are intended to control concurrent execution 
among processors are explicitly required to obey program ordering through the use of appropriate locking or seri-
alizing operations (see Section 10.2.5, “Strengthening or Weakening the Memory-Ordering Model”).

10.2.2 Memory Ordering in P6 and More Recent Processor Families
The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and P6 family processors also use a processor-
ordered memory-ordering model that can be further defined as “write ordered with store-buffer forwarding.” This 
model can be characterized as follows. 

In a single-processor system for memory regions defined as write-back cacheable, the memory-ordering model 
respects the following principles (Note the memory-ordering principles for single-processor and multiple-
processor systems are written from the perspective of software executing on the processor, where the term 
“processor” refers to a logical processor. For example, a physical processor supporting multiple cores and/or Intel 
Hyper-Threading Technology is treated as a multi-processor systems.):
• Reads are not reordered with other reads.
• Writes are not reordered with older reads.
• Writes to memory are not reordered with other writes, with the following exceptions:

— streaming stores (writes) executed with the non-temporal move instructions (MOVNTI, MOVNTQ, 
MOVNTDQ, MOVNTPS, and MOVNTPD); and

— string operations (see Section 10.2.4.1).
• No write to memory may be reordered with an execution of the CLFLUSH instruction; a write may be reordered 

with an execution of the CLFLUSHOPT instruction that flushes a cache line other than the one being written.1 
Executions of the CLFLUSH instruction are not reordered with each other. Executions of CLFLUSHOPT that 
access different cache lines may be reordered with each other. An execution of CLFLUSHOPT may be reordered 
with an execution of CLFLUSH that accesses a different cache line.

• Reads may be reordered with older writes to different locations but not with older writes to the same location. 
• Reads or writes cannot be reordered with I/O instructions, locked instructions, or serializing instructions.
• Reads cannot pass earlier LFENCE and MFENCE instructions.
• Writes and executions of CLFLUSH and CLFLUSHOPT cannot pass earlier LFENCE, SFENCE, and MFENCE 

instructions.
• LFENCE instructions cannot pass earlier reads.
• SFENCE instructions cannot pass earlier writes or executions of CLFLUSH and CLFLUSHOPT.

1. Earlier versions of this manual specified that writes to memory may be reordered with executions of the CLFLUSH instruction. No 
processors implementing the CLFLUSH instruction allow such reordering.
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• MFENCE instructions cannot pass earlier reads, writes, or executions of CLFLUSH and CLFLUSHOPT.

In a multiple-processor system, the following ordering principles apply:
• Individual processors use the same ordering principles as in a single-processor system.
• Writes by a single processor are observed in the same order by all processors.
• Writes from an individual processor are NOT ordered with respect to the writes from other processors.
• Memory ordering obeys causality (memory ordering respects transitive visibility).
• Any two stores are seen in a consistent order by processors other than those performing the stores
• Locked instructions have a total order.

See the example in Figure 10-1. Consider three processors in a system and each processor performs three writes, 
one to each of three defined locations (A, B, and C). Individually, the processors perform the writes in the same 
program order, but because of bus arbitration and other memory access mechanisms, the order that the three 
processors write the individual memory locations can differ each time the respective code sequences are executed 
on the processors. The final values in location A, B, and C would possibly vary on each execution of the write 
sequence.

The processor-ordering model described in this section is virtually identical to that used by the Pentium and 
Intel486 processors. The only enhancements in the Pentium 4, Intel Xeon, and P6 family processors are:
• Added support for speculative reads, while still adhering to the ordering principles above.
• Store-buffer forwarding, when a read passes a write to the same memory location.
• Out of order store from long string store and string move operations (see Section 10.2.4, “Fast-String 

Operation and Out-of-Order Stores,” below).

NOTE
In P6 processor family, store-buffer forwarding to reads of WC memory from streaming stores to 
the same address does not occur due to errata.

Figure 10-1.  Example of Write Ordering in Multiple-Processor Systems

Processor #1 Processor #2 Processor #3
Write A.3
Write B.3
Write C.3

Write A.1
Write B.1
Write A.2
Write A.3
Write C.1
Write B.2
Write C.2
Write B.3
Write C.3

Order of Writes From Individual Processors

Write A.2
Write B.2
Write C.2

Write A.1
Write B.1
Write C.1

Writes from all
processors are
not guaranteed
to occur in a
particular order.

Each processor
is guaranteed to
perform writes in
program order.

Writes are in order
with respect to 
individual processes.

Example of order of actual writes
from all processors to memory
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10.2.3 Examples Illustrating the Memory-Ordering Principles
This section provides a set of examples that illustrate the behavior of the memory-ordering principles introduced in 
Section 10.2.2. They are designed to give software writers an understanding of how memory ordering may affect 
the results of different sequences of instructions.

These examples are limited to accesses to memory regions defined as write-back cacheable (WB). (Section 
10.2.3.1 describes other limitations on the generality of the examples.) The reader should understand that they 
describe only software-visible behavior. A logical processor may reorder two accesses even if one of examples indi-
cates that they may not be reordered. Such an example states only that software cannot detect that such a reor-
dering occurred. Similarly, a logical processor may execute a memory access more than once as long as the 
behavior visible to software is consistent with a single execution of the memory access.

10.2.3.1  Assumptions, Terminology, and Notation
As noted above, the examples in this section are limited to accesses to memory regions defined as write-back 
cacheable (WB). They apply only to ordinary loads stores and to locked read-modify-write instructions. They do not 
necessarily apply to any of the following: out-of-order stores for string instructions (see Section 10.2.4); accesses 
with a non-temporal hint; reads from memory by the processor as part of address translation (e.g., page walks); 
and updates to segmentation and paging structures by the processor (e.g., to update “accessed” bits).

The principles underlying the examples in this section apply to individual memory accesses and to locked read-
modify-write instructions. The Intel-64 memory-ordering model guarantees that, for each of the following 
memory-access instructions, the constituent memory operation appears to execute as a single memory access:
• Instructions that read or write a single byte.
• Instructions that read or write a word (2 bytes) whose address is aligned on a 2 byte boundary.
• Instructions that read or write a doubleword (4 bytes) whose address is aligned on a 4 byte boundary.
• Instructions that read or write a quadword (8 bytes) whose address is aligned on an 8 byte boundary.

Any locked instruction (either the XCHG instruction or another read-modify-write instruction with a LOCK prefix) 
appears to execute as an indivisible and uninterruptible sequence of load(s) followed by store(s) regardless of 
alignment.

Other instructions may be implemented with multiple memory accesses. From a memory-ordering point of view, 
there are no guarantees regarding the relative order in which the constituent memory accesses are made. There is 
also no guarantee that the constituent operations of a store are executed in the same order as the constituent 
operations of a load.

Section 10.2.3.2 through Section 10.2.3.7 give examples using the MOV instruction. The principles that underlie 
these examples apply to load and store accesses in general and to other instructions that load from or store to 
memory. Section 10.2.3.8 and Section 10.2.3.9 give examples using the XCHG instruction. The principles that 
underlie these examples apply to other locked read-modify-write instructions.

This section uses the term “processor” is to refer to a logical processor. The examples are written using Intel-64 
assembly-language syntax and use the following notational conventions:
• Arguments beginning with an “r”, such as r1 or r2 refer to registers (e.g., EAX) visible only to the processor 

being considered.
• Memory locations are denoted with x, y, z.
• Stores are written as mov [ _x], val, which implies that val is being stored into the memory location x.
• Loads are written as mov r, [ _x], which implies that the contents of the memory location x are being loaded 

into the register r.

As noted earlier, the examples refer only to software visible behavior. When the succeeding sections make state-
ment such as “the two stores are reordered,” the implication is only that “the two stores appear to be reordered 
from the point of view of software.”
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10.2.3.2  Neither Loads Nor Stores Are Reordered with Like Operations
The Intel-64 memory-ordering model allows neither loads nor stores to be reordered with the same kind of opera-
tion. That is, it ensures that loads are seen in program order and that stores are seen in program order. This is illus-
trated by the following example:

The disallowed return values could be exhibited only if processor 0’s two stores are reordered (with the two loads 
occurring between them) or if processor 1’s two loads are reordered (with the two stores occurring between them).

If r1 = 1, the store to y occurs before the load from y. Because the Intel-64 memory-ordering model does not allow 
stores to be reordered, the earlier store to x occurs before the load from y. Because the Intel-64 memory-ordering 
model does not allow loads to be reordered, the store to x also occurs before the later load from x. This r2 = 1.

10.2.3.3  Stores Are Not Reordered With Earlier Loads
The Intel-64 memory-ordering model ensures that a store by a processor may not occur before a previous load by 
the same processor. This is illustrated in Example 10-2.

Example 10-1.  Stores Are Not Reordered with Other Stores
Processor 0 Processor 1

mov [ _x], 1 mov r1, [ _y]

mov [ _y], 1 mov r2, [ _x]

Initially x = y = 0

r1 = 1 and r2 = 0 is not allowed
10-10 Vol. 3A



MULTIPLE-PROCESSOR MANAGEMENT
Assume r1 = 1.
• Because r1 = 1, processor 1’s store to x occurs before processor 0’s load from x.
• Because the Intel-64 memory-ordering model prevents each store from being reordered with the earlier load 

by the same processor, processor 1’s load from y occurs before its store to x.
• Similarly, processor 0’s load from x occurs before its store to y.
• Thus, processor 1’s load from y occurs before processor 0’s store to y, implying r2 = 0.

10.2.3.4  Loads May Be Reordered with Earlier Stores to Different Locations
The Intel-64 memory-ordering model allows a load to be reordered with an earlier store to a different location. 
However, loads are not reordered with stores to the same location.

The fact that a load may be reordered with an earlier store to a different location is illustrated by the following 
example:

At each processor, the load and the store are to different locations and hence may be reordered. Any interleaving 
of the operations is thus allowed. One such interleaving has the two loads occurring before the two stores. This 
would result in each load returning value 0.

The fact that a load may not be reordered with an earlier store to the same location is illustrated by the following 
example:

The Intel-64 memory-ordering model does not allow the load to be reordered with the earlier store because the 
accesses are to the same location. Therefore, r1 = 1 must hold.

Example 10-2.  Stores Are Not Reordered with Older Loads
Processor 0 Processor 1

mov r1, [ _x] mov r2, [ _y]

mov [ _y], 1 mov [ _x], 1

Initially x = y = 0

r1 = 1 and r2 = 1 is not allowed

Example 10-3.  Loads May be Reordered with Older Stores
Processor 0 Processor 1

mov [ _x], 1 mov [ _y], 1

mov r1, [ _y] mov r2, [ _x]

Initially x = y = 0

r1 = 0 and r2 = 0 is allowed

Example 10-4.  Loads Are not Reordered with Older Stores to the Same Location
Processor 0

mov [ _x], 1

mov r1, [ _x]

Initially x = 0

r1 = 0 is not allowed
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10.2.3.5  Intra-Processor Forwarding Is Allowed
The memory-ordering model allows concurrent stores by two processors to be seen in different orders by those two 
processors; specifically, each processor may perceive its own store occurring before that of the other. This is illus-
trated by the following example:

The memory-ordering model imposes no constraints on the order in which the two stores appear to execute by the 
two processors. This fact allows processor 0 to see its store before seeing processor 1's, while processor 1 sees its 
store before seeing processor 0's. (Each processor is self consistent.) This allows r2 = 0 and r4 = 0.

In practice, the reordering in this example can arise as a result of store-buffer forwarding. While a store is tempo-
rarily held in a processor's store buffer, it can satisfy the processor's own loads but is not visible to (and cannot 
satisfy) loads by other processors.

10.2.3.6  Stores Are Transitively Visible
The memory-ordering model ensures transitive visibility of stores; stores that are causally related appear to all 
processors to occur in an order consistent with the causality relation. This is illustrated by the following example:

Assume that r1 = 1 and r2 = 1.
• Because r1 = 1, processor 0’s store occurs before processor 1’s load.
• Because the memory-ordering model prevents a store from being reordered with an earlier load (see Section 

10.2.3.3), processor 1’s load occurs before its store. Thus, processor 0’s store causally precedes processor 1’s 
store.

• Because processor 0’s store causally precedes processor 1’s store, the memory-ordering model ensures that 
processor 0’s store appears to occur before processor 1’s store from the point of view of all processors.

• Because r2 = 1, processor 1’s store occurs before processor 2’s load.
• Because the Intel-64 memory-ordering model prevents loads from being reordered (see Section 10.2.3.2), 

processor 2’s load occur in order.
• The above items imply that processor 0’s store to x occurs before processor 2’s load from x. This implies that 

r3 = 1.

Example 10-5.  Intra-Processor Forwarding is Allowed
Processor 0 Processor 1

mov [ _x], 1 mov [ _y], 1

mov r1, [ _x] mov r3, [ _y]

mov r2, [ _y] mov r4, [ _x]

Initially x = y = 0

r2 = 0 and r4 = 0 is allowed

Example 10-6.  Stores Are Transitively Visible
Processor 0 Processor 1 Processor 2

mov [ _x], 1 mov r1, [ _x]

mov [ _y], 1 mov r2, [ _y]

mov r3, [_x]

Initially x = y = 0

r1 = 1, r2 = 1, r3 = 0 is not allowed
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10.2.3.7  Stores Are Seen in a Consistent Order by Other Processors
As noted in Section 10.2.3.5, the memory-ordering model allows stores by two processors to be seen in different 
orders by those two processors. However, any two stores must appear to execute in the same order to all proces-
sors other than those performing the stores. This is illustrated by the following example:

By the principles discussed in Section 10.2.3.2:
• Processor 2’s first and second load cannot be reordered.
• Processor 3’s first and second load cannot be reordered. 
• If r1 = 1 and r2 = 0, processor 0’s store appears to precede processor 1’s store with respect to processor 2. 
• Similarly, r3 = 1 and r4 = 0 imply that processor 1’s store appears to precede processor 0’s store with respect 

to processor 1. 

Because the memory-ordering model ensures that any two stores appear to execute in the same order to all 
processors (other than those performing the stores), this set of return values is not allowed.

10.2.3.8  Locked Instructions Have a Total Order
The memory-ordering model ensures that all processors agree on a single execution order of all locked instruc-
tions, including those that are larger than 8 bytes or are not naturally aligned. This is illustrated by the following 
example:

Processor 2 and processor 3 must agree on the order of the two executions of XCHG. Without loss of generality, 
suppose that processor 0’s XCHG occurs first.
• If r5 = 1, processor 1’s XCHG into y occurs before processor 3’s load from y.
• Because the Intel-64 memory-ordering model prevents loads from being reordered (see Section 10.2.3.2), 

processor 3’s loads occur in order and, therefore, processor 1’s XCHG occurs before processor 3’s load from x.
• Since processor 0’s XCHG into x occurs before processor 1’s XCHG (by assumption), it occurs before 

processor 3’s load from x. Thus, r6 = 1.

A similar argument (referring instead to processor 2’s loads) applies if processor 1’s XCHG occurs before 
processor 0’s XCHG.

10.2.3.9  Loads and Stores Are Not Reordered with Locked Instructions
The memory-ordering model prevents loads and stores from being reordered with locked instructions that execute 
earlier or later. The examples in this section illustrate only cases in which a locked instruction is executed before a 

Example 10-7.  Stores Are Seen in a Consistent Order by Other Processors
Processor 0 Processor 1 Processor 2 Processor 3

mov [ _x], 1 mov [ _y], 1 mov r1, [ _x] mov r3, [_y] 

mov r2, [ _y] mov r4, [_x] 

Initially x = y =0

r1 = 1, r2 = 0, r3 = 1, r4 = 0 is not allowed

Example 10-8.  Locked Instructions Have a Total Order
Processor 0 Processor 1 Processor 2 Processor 3

xchg [ _x], r1 xchg [ _y], r2

mov r3, [ _x] mov r5, [_y]

mov r4, [ _y] mov r6, [_x]

Initially r1 = r2 = 1, x = y = 0

r3 = 1, r4 = 0, r5 = 1, r6 = 0 is not allowed
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load or a store. The reader should note that reordering is prevented also if the locked instruction is executed after 
a load or a store.

The first example illustrates that loads may not be reordered with earlier locked instructions:

As explained in Section 10.2.3.8, there is a total order of the executions of locked instructions. Without loss of 
generality, suppose that processor 0’s XCHG occurs first.

Because the Intel-64 memory-ordering model prevents processor 1’s load from being reordered with its earlier 
XCHG, processor 0’s XCHG occurs before processor 1’s load. This implies r4 = 1.

A similar argument (referring instead to processor 2’s accesses) applies if processor 1’s XCHG occurs before 
processor 0’s XCHG.

The second example illustrates that a store may not be reordered with an earlier locked instruction:

Assume r2 = 1.
• Because r2 = 1, processor 0’s store to y occurs before processor 1’s load from y.
• Because the memory-ordering model prevents a store from being reordered with an earlier locked instruction, 

processor 0’s XCHG into x occurs before its store to y. Thus, processor 0’s XCHG into x occurs before 
processor 1’s load from y.

• Because the memory-ordering model prevents loads from being reordered (see Section 10.2.3.2), 
processor 1’s loads occur in order and, therefore, processor 1’s XCHG into x occurs before processor 1’s load 
from x. Thus, r3 = 1.

10.2.4 Fast-String Operation and Out-of-Order Stores
Section 7.3.9.3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, described an optimi-
zation of repeated string operations called fast-string operation.

As explained in that section, the stores produced by fast-string operation may appear to execute out of order. Soft-
ware dependent upon sequential store ordering should not use string operations for the entire data structure to be 
stored. Data and semaphores should be separated. Order-dependent code should write to a discrete semaphore 
variable after any string operations to allow correctly ordered data to be seen by all processors. Atomicity of load 
and store operations is guaranteed only for native data elements of the string with native data size, and only if they 
are included in a single cache line.

Section 10.2.4.1 and Section 10.2.4.2 provide further explain and examples.

10.2.4.1  Memory-Ordering Model for String Operations on Write-Back (WB) Memory
This section deals with the memory-ordering model for string operations on write-back (WB) memory for the Intel 
64 architecture. 

Example 10-9.  Loads Are not Reordered with Locks
Processor 0 Processor 1

xchg [ _x], r1 xchg [ _y], r3

mov r2, [ _y] mov r4, [ _x]

Initially x = y = 0, r1 = r3 = 1

r2 = 0 and r4 = 0 is not allowed

Example 10-10.  Stores Are not Reordered with Locks
Processor 0 Processor 1

xchg [ _x], r1 mov r2, [ _y]

mov [ _y], 1 mov r3, [ _x]

Initially x = y = 0, r1 = 1

r2 = 1 and r3 = 0 is not allowed
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The memory-ordering model respects the follow principles:

1. Stores within a single string operation may be executed out of order.

2. Stores from separate string operations (for example, stores from consecutive string operations) do not execute 
out of order. All the stores from an earlier string operation will complete before any store from a later string 
operation. 

3. String operations are not reordered with other store operations.

Fast string operations (e.g., string operations initiated with the MOVS/STOS instructions and the REP prefix) may 
be interrupted by exceptions or interrupts. The interrupts are precise but may be delayed - for example, the inter-
ruptions may be taken at cache line boundaries, after every few iterations of the loop, or after operating on every 
few bytes. Different implementations may choose different options, or may even choose not to delay interrupt 
handling, so software should not rely on the delay. When the interrupt/trap handler is reached, the source/destina-
tion registers point to the next string element to be operated on, while the EIP stored in the stack points to the 
string instruction, and the ECX register has the value it held following the last successful iteration. The return from 
that trap/interrupt handler should cause the string instruction to be resumed from the point where it was inter-
rupted.

The string operation memory-ordering principles, (item 2 and 3 above) should be interpreted by taking the incor-
ruptibility of fast string operations into account. For example, if a fast string operation gets interrupted after k iter-
ations, then stores performed by the interrupt handler will become visible after the fast string stores from iteration 
0 to k, and before the fast string stores from the (k+1)th iteration onward. 

Stores within a single string operation may execute out of order (item 1 above) only if fast string operation is 
enabled. Fast string operations are enabled/disabled through the IA32_MISC_ENABLE model specific register. 

10.2.4.2  Examples Illustrating Memory-Ordering Principles for String Operations
The following examples uses the same notation and convention as described in Section 10.2.3.1.

In Example 10-11, processor 0 does one round of (128 iterations) doubleword string store operation via rep:stosd, 
writing the value 1 (value in EAX) into a block of 512 bytes from location _x (kept in ES:EDI) in ascending order. 
Since each operation stores a doubleword (4 bytes), the operation is repeated 128 times (value in ECX). The block 
of memory initially contained 0. Processor 1 is reading two memory locations that are part of the memory block 
being updated by processor 0, i.e, reading locations in the range _x to (_x+511).

It is possible for processor 1 to perceive that the repeated string stores in processor 0 are happening out of order. 
Assume that fast string operations are enabled on processor 0.

In Example 10-12, processor 0 does two separate rounds of rep stosd operation of 128 doubleword stores, writing 
the value 1 (value in EAX) into the first block of 512 bytes from location _x (kept in ES:EDI) in ascending order. It 
then writes 1 into a second block of memory from (_x+512) to (_x+1023). All of the memory locations initially 
contain 0. The block of memory initially contained 0. Processor 1 performs two load operations from the two blocks 
of memory.

Example 10-11.  Stores Within a String Operation May be Reordered
Processor 0 Processor 1

rep:stosd [ _x] mov r1, [ _z]

mov r2, [ _y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_x] to 511[_x]= 0, _x <= _y < _z < _x+512

r1 = 1 and r2 = 0 is allowed
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It is not possible in the above example for processor 1 to perceive any of the stores from the later string operation 
(to the second 512 block) in processor 0 before seeing the stores from the earlier string operation to the first 512 
block. 

The above example assumes that writes to the second block (_x+512 to _x+1023) does not get executed while 
processor 0’s string operation to the first block has been interrupted. If the string operation to the first block by 
processor 0 is interrupted, and a write to the second memory block is executed by the interrupt handler, then that 
change in the second memory block will be visible before the string operation to the first memory block resumes.

In Example 10-13, processor 0 does one round of (128 iterations) doubleword string store operation via rep:stosd, 
writing the value 1 (value in EAX) into a block of 512 bytes from location _x (kept in ES:EDI) in ascending order. It 
then writes to a second memory location outside the memory block of the previous string operation. Processor 1 
performs two read operations, the first read is from an address outside the 512-byte block but to be updated by 
processor 0, the second ready is from inside the block of memory of string operation.

Processor 1 cannot perceive the later store by processor 0 until it sees all the stores from the string operation. 
Example 10-13 assumes that processor 0’s store to [_z] is not executed while the string operation has been inter-
rupted. If the string operation is interrupted and the store to [_z] by processor 0 is executed by the interrupt 
handler, then changes to [_z] will become visible before the string operation resumes. 

Example 10-14 illustrates the visibility principle when a string operation is interrupted. 

Example 10-12.  Stores Across String Operations Are not Reordered
Processor 0 Processor 1

rep:stosd [ _x]

mov r1, [ _z]

mov ecx, $128

mov r2, [ _y]

rep:stosd 512[ _x]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_x] to 1023[_x]= 0, _x <= _y < _x+512 < _z < _x+1024

r1 = 1 and r2 = 0 is not allowed

Example 10-13.  String Operations Are not Reordered with later Stores
Processor 0 Processor 1

rep:stosd [ _x] mov r1, [ _z]

mov [_z], $1 mov r2, [ _y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is not allowed

Example 10-14.  Interrupted String Operation
Processor 0 Processor 1

rep:stosd [ _x] // interrupted before es:edi reach _y mov r1, [ _z]

mov [_z], $1 // interrupt handler mov r2, [ _y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is allowed
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In Example 10-14, processor 0 started a string operation to write to a memory block of 512 bytes starting at 
address _x. Processor 0 got interrupted after k iterations of store operations. The address _y has not yet been 
updated by processor 0 when processor 0 got interrupted. The interrupt handler that took control on processor 0 
writes to the address _z. Processor 1 may see the store to _z from the interrupt handler, before seeing the 
remaining stores to the 512-byte memory block that are executed when the string operation resumes.

Example 10-15 illustrates the ordering of string operations with earlier stores. No store from a string operation can 
be visible before all prior stores are visible.

10.2.5 Strengthening or Weakening the Memory-Ordering Model
The Intel 64 and IA-32 architectures provide several mechanisms for strengthening or weakening the memory-
ordering model to handle special programming situations. These mechanisms include:
• The I/O instructions, locked instructions, the LOCK prefix, and serializing instructions force stronger ordering 

on the processor.
• The SFENCE instruction (introduced to the IA-32 architecture in the Pentium III processor) and the LFENCE and 

MFENCE instructions (introduced in the Pentium 4 processor) provide memory-ordering and serialization 
capabilities for specific types of memory operations.

• The memory type range registers (MTRRs) can be used to strengthen or weaken memory ordering for specific 
area of physical memory (see Section 13.11, “Memory Type Range Registers (MTRRs)”). MTRRs are available 
only in the Pentium 4, Intel Xeon, and P6 family processors. 

• The page attribute table (PAT) can be used to strengthen memory ordering for a specific page or group of pages 
(see Section 13.12, “Page Attribute Table (PAT)”). The PAT is available only in the Pentium 4, Intel Xeon, and 
Pentium III processors. 

These mechanisms can be used as follows:

Memory mapped devices and other I/O devices on the bus are often sensitive to the order of writes to their I/O 
buffers. I/O instructions can be used to (the IN and OUT instructions) impose strong write ordering on such 
accesses as follows. Prior to executing an I/O instruction, the processor waits for all previous instructions in the 
program to complete and for all buffered writes to drain to memory. Only instruction fetch and page tables walks 
can pass I/O instructions. Execution of subsequent instructions do not begin until the processor determines that 
the I/O instruction has been completed.

Synchronization mechanisms in multiple-processor systems may depend upon a strong memory-ordering model. 
Here, a program can use a locked instruction such as the XCHG instruction or the LOCK prefix to ensure that a 
read-modify-write operation on memory is carried out atomically. Locked instructions typically operate like I/O 
instructions in that they wait for all previous memory accesses to complete and for all buffered writes to drain to 
memory (see Section 10.1.2, “Bus Locking”). Unlike I/O operations, locked instructions do not wait for all previous 
instructions to complete execution.

Program synchronization can also be carried out with serializing instructions (see Section 10.3). These instructions 
are typically used at critical procedure or task boundaries to force completion of all previous instructions before a 
jump to a new section of code or a context switch occurs. Like the I/O instructions, the processor waits until all 
previous instructions have been completed and all buffered writes have been drained to memory before executing 
the serializing instruction.

Example 10-15.  String Operations Are not Reordered with Earlier Stores
Processor 0 Processor 1

mov [_z], $1 mov r1, [ _y]

rep:stosd [ _x] mov r2, [ _z]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is not allowed
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The SFENCE, LFENCE, and MFENCE instructions provide a performance-efficient way of ensuring load and store 
memory ordering between routines that produce weakly-ordered results and routines that consume that data. The 
functions of these instructions are as follows:
• SFENCE — Serializes all store (write) operations that occurred prior to the SFENCE instruction in the program 

instruction stream, but does not affect load operations.
• LFENCE — Serializes all load (read) operations that occurred prior to the LFENCE instruction in the program 

instruction stream, but does not affect store operations.1

• MFENCE — Serializes all store and load operations that occurred prior to the MFENCE instruction in the 
program instruction stream.

Note that the SFENCE, LFENCE, and MFENCE instructions provide a more efficient method of controlling memory 
ordering than the CPUID instruction.

The MTRRs were introduced in the P6 family processors to define the cache characteristics for specified areas of 
physical memory. The following are two examples of how memory types set up with MTRRs can be used strengthen 
or weaken memory ordering for the Pentium 4, Intel Xeon, and P6 family processors:
• The strong uncached (UC) memory type forces a strong-ordering model on memory accesses. Here, all reads 

and writes to the UC memory region appear on the bus and out-of-order or speculative accesses are not 
performed. This memory type can be applied to an address range dedicated to memory mapped I/O devices to 
force strong memory ordering.

• For areas of memory where weak ordering is acceptable, the write back (WB) memory type can be chosen. 
Here, reads can be performed speculatively and writes can be buffered and combined. For this type of memory, 
cache locking is performed on atomic (locked) operations that do not split across cache lines, which helps to 
reduce the performance penalty associated with the use of the typical synchronization instructions, such as 
XCHG, that lock the bus during the entire read-modify-write operation. With the WB memory type, the XCHG 
instruction locks the cache instead of the bus if the memory access is contained within a cache line.

The PAT was introduced in the Pentium III processor to enhance the caching characteristics that can be assigned to 
pages or groups of pages. The PAT mechanism typically used to strengthen caching characteristics at the page level 
with respect to the caching characteristics established by the MTRRs. Table 13-7 shows the interaction of the PAT 
with the MTRRs.

Intel recommends that software written to run on Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, Intel 
Xeon, and P6 family processors assume the processor-ordering model or a weaker memory-ordering model. The 
Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, Intel Xeon, and P6 family processors do not implement a 
strong memory-ordering model, except when using the UC memory type. Despite the fact that Pentium 4, Intel 
Xeon, and P6 family processors support processor ordering, Intel does not guarantee that future processors will 
support this model. To make software portable to future processors, it is recommended that operating systems 
provide critical region and resource control constructs and API’s (application program interfaces) based on I/O, 
locking, and/or serializing instructions be used to synchronize access to shared areas of memory in multiple-
processor systems. Also, software should not depend on processor ordering in situations where the system hard-
ware does not support this memory-ordering model.

10.3 SERIALIZING INSTRUCTIONS
The Intel 64 and IA-32 architectures define several serializing instructions. These instructions force the 
processor to complete all modifications to flags, registers, and memory by previous instructions and to drain all 
buffered writes to memory before the next instruction is fetched and executed. For example, when a MOV to control 
register instruction is used to load a new value into control register CR0 to enable protected mode, the processor 
must perform a serializing operation before it enters protected mode. This serializing operation ensures that all 

1. Specifically, LFENCE does not execute until all prior instructions have completed locally, and no later instruction begins execution 
until LFENCE completes. As a result, an instruction that loads from memory and that precedes an LFENCE receives data from mem-
ory prior to completion of the LFENCE. An LFENCE that follows an instruction that stores to memory might complete before the data 
being stored have become globally visible. Instructions following an LFENCE may be fetched from memory before the LFENCE, but 
they will not execute until the LFENCE completes.
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operations that were started while the processor was in real-address mode are completed before the switch to 
protected mode is made.

The concept of serializing instructions was introduced into the IA-32 architecture with the Pentium processor to 
support parallel instruction execution. Serializing instructions have no meaning for the Intel486 and earlier proces-
sors that do not implement parallel instruction execution.

It is important to note that executing of serializing instructions on P6 and more recent processor families constrain 
speculative execution because the results of speculatively executed instructions are discarded. The following 
instructions are serializing instructions:
• Privileged serializing instructions — INVD, INVEPT, INVLPG, INVVPID, LGDT, LIDT, LLDT, LTR, MOV (to 

control register, with the exception of MOV CR81), MOV (to debug register), WBINVD, and WRMSR2.
• Non-privileged serializing instructions — CPUID, IRET, RSM, and SERIALIZE.

When the processor serializes instruction execution, it ensures that all pending memory transactions are 
completed (including writes stored in its store buffer) before it executes the next  instruction. Nothing can pass a 
serializing instruction and a serializing instruction cannot pass any other instruction (read, write, instruction fetch, 
or I/O). For example, CPUID can be executed at any privilege level to serialize instruction execution with no effect 
on program flow, except that the EAX, EBX, ECX, and EDX registers are modified.

The following instructions are memory-ordering instructions, not serializing instructions. These drain the data 
memory subsystem. They do not serialize the instruction execution stream:3

• Non-privileged memory-ordering instructions — SFENCE, LFENCE, and MFENCE.

The SFENCE, LFENCE, and MFENCE instructions provide more granularity in controlling the serialization of memory 
loads and stores (see Section 10.2.5, “Strengthening or Weakening the Memory-Ordering Model”).

The following additional information is worth noting regarding serializing instructions:
• The processor does not write back the contents of modified data in its data cache to external memory when it 

serializes instruction execution. Software can force modified data to be written back by executing the WBINVD 
instruction, which is a serializing instruction. The amount of time or cycles for WBINVD to complete will vary 
due to the size of different cache hierarchies and other factors. As a consequence, the use of the WBINVD 
instruction can have an impact on interrupt/event response time.

• When an instruction is executed that enables or disables paging (that is, changes the PG flag in control register 
CR0), the instruction should be followed by a jump instruction. The target instruction of the jump instruction is 
fetched with the new setting of the PG flag (that is, paging is enabled or disabled), but the jump instruction 
itself is fetched with the previous setting. The Pentium 4, Intel Xeon, and P6 family processors do not require 
the jump operation following the move to register CR0 (because any use of the MOV instruction in a Pentium 4, 
Intel Xeon, or P6 family processor to write to CR0 is completely serializing). However, to maintain backwards 
and forward compatibility with code written to run on other IA-32 processors, it is recommended that the jump 
operation be performed.

• Whenever an instruction is executed to change the contents of CR3 while paging is enabled, the next 
instruction is fetched using the translation tables that correspond to the new value of CR3. Therefore the next 
instruction and the sequentially following instructions should have a mapping based upon the new value of 
CR3. (Global entries in the TLBs are not invalidated, see Section 5.10.4, “Invalidation of TLBs and Paging-
Structure Caches.”)

• The Pentium processor and more recent processor families use branch-prediction techniques to improve 
performance by prefetching the destination of a branch instruction before the branch instruction is executed. 
Consequently, instruction execution is not deterministically serialized when a branch instruction is executed.

1. MOV CR8 is not defined architecturally as a serializing instruction.

2. An execution of WRMSR to any non-serializing MSR is not serializing. Non-serializing MSRs include the following: IA32_SPEC_CTRL 
MSR (MSR index 48H), IA32_PRED_CMD MSR (MSR index 49H), IA32_TSX_CTRL MSR (MSR index 122H), IA32_TSC_DEADLINE MSR 
(MSR index 6E0H), IA32_PKRS MSR (MSR index 6E1H), IA32_HWP_REQUEST MSR (MSR index 774H), or any of the x2APIC MSRs 
(MSR indices 802H to 83FH).

3. LFENCE does provide some guarantees on instruction ordering. It does not execute until all prior instructions have completed locally, 
and no later instruction begins execution until LFENCE completes.
Vol. 3A 10-19



MULTIPLE-PROCESSOR MANAGEMENT
10.4 MULTIPLE-PROCESSOR (MP) INITIALIZATION
The IA-32 architecture (beginning with the P6 family processors) defines a multiple-processor (MP) initialization 
protocol called the Multiprocessor Specification Version 1.4. This specification defines the boot protocol to be used 
by IA-32 processors in multiple-processor systems. (Here, multiple processors is defined as two or more proces-
sors.) The MP initialization protocol has the following important features:
• It supports controlled booting of multiple processors without requiring dedicated system hardware.
• It allows hardware to initiate the booting of a system without the need for a dedicated signal or a predefined 

boot processor.
• It allows all IA-32 processors to be booted in the same manner, including those supporting Intel Hyper-

Threading Technology.
• The MP initialization protocol also applies to MP systems using Intel 64 processors.

The mechanism for carrying out the MP initialization protocol differs depending on the Intel processor generations. 
The following bullets summarizes the evolution of the changes:
• For P6 family or older processors supporting MP operations— The selection of the BSP and APs (see 

Section 10.4.1, “BSP and AP Processors”) is handled through arbitration on the APIC bus, using BIPI and FIPI 
messages. These processor generations have CPUID signatures of (family=06H, extended_model=0, 
model<=0DH), or family <06H. See Section 10.11.1, “Overview of the MP Initialization Process for P6 Family 
Processors,” for a complete discussion of MP initialization for P6 family processors.

• Early generations of IA processors with family 0FH — The selection of the BSP and APs (see Section 
10.4.1, “BSP and AP Processors”) is handled through arbitration on the system bus, using BIPI and FIPI 
messages (see Section 10.4.3, “MP Initialization Protocol Algorithm for MP Systems”). These processor 
generations have CPUID signatures of family=0FH, model=0H, stepping<=09H.

• Later generations of IA processors with family 0FH, and IA processors with system bus — The 
selection of the BSP and APs is handled through a special system bus cycle, without using BIPI and FIPI 
message arbitration (see Section 10.4.3, “MP Initialization Protocol Algorithm for MP Systems”). These 
processor generations have CPUID signatures of family=0FH with (model=0H, stepping>=0AH) or (model >0, 
all steppings); or family=06H, extended_model=0, model>=0EH.

• All other modern IA processor generations supporting MP operations— The selection of the BSP and 
APs in the system is handled by platform-specific arrangement of the combination of hardware, BIOS, and/or 
configuration input options. The basis of the selection mechanism is similar to those of the Later generations of 
family 0FH and other Intel processor using system bus (see Section 10.4.3, “MP Initialization Protocol 
Algorithm for MP Systems”). These processor generations have CPUID signatures of family=06H, extended_-
model>0.

The family, model, and stepping ID for a processor is given in the EAX register when the CPUID instruction is 
executed with a value of 1 in the EAX register.

10.4.1 BSP and AP Processors
The MP initialization protocol defines two classes of processors: the bootstrap processor (BSP) and the application 
processors (APs). Following a power-up or RESET of an MP system, system hardware dynamically selects one of the 
processors on the system bus as the BSP. The remaining processors are designated as APs.

As part of the BSP selection mechanism, the BSP flag is set in the IA32_APIC_BASE MSR (see Figure 12-5) of the 
BSP, indicating that it is the BSP. This flag is cleared for all other processors. 

The BSP executes the BIOS’s boot-strap code to configure the APIC environment, sets up system-wide data struc-
tures, and starts and initializes the APs. When the BSP and APs are initialized, the BSP then begins executing the 
operating-system initialization code.

Following a power-up or reset, the APs complete a minimal self-configuration, then wait for a startup signal (a SIPI 
message) from the BSP processor. Upon receiving a SIPI message, an AP executes the BIOS AP configuration code, 
which ends with the AP being placed in halt state.

For Intel 64 and IA-32 processors supporting Intel Hyper-Threading Technology, the MP initialization protocol treats 
each of the logical processors on the system bus or coherent link domain as a separate processor (with a unique 
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APIC ID). During boot-up, one of the logical processors is selected as the BSP and the remainder of the logical 
processors are designated as APs.

10.4.2 MP Initialization Protocol Requirements and Restrictions
The MP initialization protocol imposes the following requirements and restrictions on the system:
• The MP protocol is executed only after a power-up or RESET. If the MP protocol has completed and a BSP is 

chosen, subsequent INITs (either to a specific processor or system wide) do not cause the MP protocol to be 
repeated. Instead, each logical processor examines its BSP flag (in the IA32_APIC_BASE MSR) to determine 
whether it should execute the BIOS boot-strap code (if it is the BSP) or enter a wait-for-SIPI state (if it is an 
AP).

• All devices in the system that are capable of delivering interrupts to the processors must be inhibited from 
doing so for the duration of the MP initialization protocol. The time during which interrupts must be inhibited 
includes the window between when the BSP issues an INIT-SIPI-SIPI sequence to an AP and when the AP 
responds to the last SIPI in the sequence.

10.4.3 MP Initialization Protocol Algorithm for MP Systems
Following a power-up or RESET of an MP system, the processors in the system execute the MP initialization protocol 
algorithm to initialize each of the logical processors on the system bus or coherent link domain. In the course of 
executing this algorithm, the following boot-up and initialization operations are carried out:

1. Each logical processor is assigned a unique APIC ID, based on system topology. The unique ID is a 32-bit value 
if the processor supports CPUID leaf 0BH, otherwise the unique ID is an 8-bit value. (see Section 10.4.5, 
“Identifying Logical Processors in an MP System”). 

2. Each logical processor is assigned a unique arbitration priority based on its APIC ID.

3. Each logical processor executes its internal BIST simultaneously with the other logical processors in the 
system. 

4. Upon completion of the BIST, the logical processors use a hardware-defined selection mechanism to select the 
BSP and the APs from the available logical processors on the system bus. The BSP selection mechanism differs 
depending on the family, model, and stepping IDs of the processors, as follows: 

— Later generations of IA processors within family 0FH (see Section 10.4), IA processors with system bus 
(family=06H, extended_model=0, model>=0EH), or all other modern Intel processors (family=06H, 
extended_model>0):

• The logical processors begin monitoring the BNR# signal, which is toggling. When the BNR# pin stops 
toggling, each processor attempts to issue a NOP special cycle on the system bus. 

• The logical processor with the highest arbitration priority succeeds in issuing a NOP special cycle and is 
nominated the BSP. This processor sets the BSP flag in its IA32_APIC_BASE MSR, then fetches and 
begins executing BIOS boot-strap code, beginning at the reset vector (physical address FFFF FFF0H).

• The remaining logical processors (that failed in issuing a NOP special cycle) are designated as APs. They 
leave their BSP flags in the clear state and enter a “wait-for-SIPI state.”

— Early generations of IA processors within family 0FH (family=0FH, model=0H, stepping<=09H), P6 family 
or older processors supporting MP operations (family=06H, extended_model=0, model<=0DH; or family 
<06H):

• Each processor broadcasts a BIPI to “all including self.” The first processor that broadcasts a BIPI (and 
thus receives its own BIPI vector), selects itself as the BSP and sets the BSP flag in its IA32_APIC_BASE 
MSR. (See Section 10.11.1, “Overview of the MP Initialization Process for P6 Family Processors,” for a 
description of the BIPI, FIPI, and SIPI messages.)

• The remainder of the processors (which were not selected as the BSP) are designated as APs. They 
leave their BSP flags in the clear state and enter a “wait-for-SIPI state.”

• The newly established BSP broadcasts an FIPI message to “all including self,” which the BSP and APs 
treat as an end of MP initialization signal. Only the processor with its BSP flag set responds to the FIPI 
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message. It responds by fetching and executing the BIOS boot-strap code, beginning at the reset vector 
(physical address FFFF FFF0H).

5. As part of the boot-strap code, the BSP creates an ACPI table and/or an MP table and adds its initial APIC ID to 
these tables as appropriate. 

6. At the end of the boot-strap procedure, the BSP sets a processor counter to 1, then broadcasts a SIPI message 
to all the APs in the system. Here, the SIPI message contains a vector to the BIOS AP initialization code (at 
000VV000H, where VV is the vector contained in the SIPI message).

7. The first action of the AP initialization code is to set up a race (among the APs) to a BIOS initialization 
semaphore. The first AP to the semaphore begins executing the initialization code. (See Section 10.4.4, “MP 
Initialization Example,” for semaphore implementation details.) As part of the AP initialization procedure, the 
AP adds its APIC ID number to the ACPI and/or MP tables as appropriate and increments the processor counter 
by 1. At the completion of the initialization procedure, the AP executes a CLI instruction and halts itself.

8. When each of the APs has gained access to the semaphore and executed the AP initialization code, the BSP 
establishes a count for the number of processors connected to the system bus, completes executing the BIOS 
boot-strap code, and then begins executing operating-system boot-strap and start-up code.

9. While the BSP is executing operating-system boot-strap and start-up code, the APs remain in the halted state. 
In this state they will respond only to INITs, NMIs, and SMIs. They will also respond to snoops and to assertions 
of the STPCLK# pin.

The following section gives an example (with code) of the MP initialization protocol for of multiple processors oper-
ating in an MP configuration.

Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 4, describes how to program the LINT[0:1] pins of the processor’s local APICs after an MP config-
uration has been completed.

10.4.4 MP Initialization Example
The following example illustrates the use of the MP initialization protocol used to initialize processors in an MP 
system after the BSP and APs have been established. The code runs on Intel 64 or IA-32 processors that use a 
protocol. This includes P6 Family processors, Pentium 4 processors, Intel Core Duo, Intel Core 2 Duo and Intel Xeon 
processors.

The following constants and data definitions are used in the accompanying 
code examples. They are based on the addresses of the APIC registers defined in Table 12-1.

ICR_LOW EQU 0FEE00300H
SVR EQU 0FEE000F0H
APIC_ID EQU 0FEE00020H
LVT3 EQU 0FEE00370H
APIC_ENABLED EQU 0100H
BOOT_ID DD ?
COUNT EQU 00H
VACANT EQU 00H

10.4.4.1  Typical BSP Initialization Sequence
After the BSP and APs have been selected (by means of a hardware protocol, see Section 10.4.3, “MP Initialization 
Protocol Algorithm for MP Systems”), the BSP begins executing BIOS boot-strap code (POST) at the normal IA-32 
architecture starting address (FFFF FFF0H). The boot-strap code typically performs the following operations:

1. Initializes memory.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs.

4. Enables the caches.
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5. Executes the CPUID instruction with a value of 0H in the EAX register, then reads the EBX, ECX, and EDX 
registers to determine if the BSP is “GenuineIntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves the values in the EAX, ECX, 
and EDX registers in a system configuration space in RAM for use later.

7. Loads start-up code for the AP to execute into a 4-KByte page in the lower 1 MByte of memory.

8. Switches to protected mode and ensures that the APIC address space is mapped to the strong uncacheable 
(UC) memory type.

9. Determine the BSP’s APIC ID from the local APIC ID register (default is 0), the code snippet below is an 
example that applies to logical processors in a system whose local APIC units operate in xAPIC mode that APIC 
registers are accessed using memory mapped interface:

MOV ESI, APIC_ID; Address of local APIC ID register
MOV EAX, [ESI];
AND EAX, 0FF000000H; Zero out all other bits except APIC ID
MOV BOOT_ID, EAX; Save in memory

Saves the APIC ID in the ACPI and/or MP tables and optionally in the system configuration space in RAM.

10. Converts the base address of the 4-KByte page for the AP’s bootup code into 8-bit vector. The 8-bit vector 
defines the address of a 4-KByte page in the real-address mode address space (1-MByte space). For example, 
a vector of 0BDH specifies a start-up memory address of 000BD000H. 

11. Enables the local APIC by setting bit 8 of the APIC spurious vector register (SVR).

MOV ESI, SVR; Address of SVR
MOV EAX, [ESI];
OR  EAX, APIC_ENABLED; Set bit 8 to enable (0 on reset)
MOV [ESI], EAX;

12. Sets up the LVT error handling entry by establishing an 8-bit vector for the APIC error handler.

MOV ESI, LVT3;
MOV EAX, [ESI];
AND EAX, FFFFFF00H; Clear out previous vector.
OR EAX, 000000xxH; xx is the 8-bit vector the APIC error handler. 
MOV [ESI], EAX;

13. Initializes the Lock Semaphore variable VACANT to 00H. The APs use this semaphore to determine the order in 
which they execute BIOS AP initialization code.

14. Performs the following operation to set up the BSP to detect the presence of APs in the system and the number 
of processors (within a finite duration, minimally 100 milliseconds):

— Sets the value of the COUNT variable to 1.

— In the AP BIOS initialization code, the AP will increment the COUNT variable to indicate its presence. The 
finite duration while waiting for the COUNT to be updated can be accomplished with a timer. When the timer 
expires, the BSP checks the value of the COUNT variable. If the timer expires and the COUNT variable has 
not been incremented, no APs are present or some error has occurred.

15. Broadcasts an INIT-SIPI-SIPI IPI sequence to the APs to wake them up and initialize them. Alternatively, 
following a power-up or RESET, since all APs are already in the “wait-for-SIPI state,” the BSP can broadcast just 
a single SIPI IPI to the APs to wake them up and initialize them. If software knows how many logical processors 
it expects to wake up, it may choose to poll the COUNT variable. If the expected processors show up before the 
100 millisecond timer expires, the timer can be canceled and skip to step 16. 
The left-hand-side of the procedure illustrated in Table 10-1 provides an algorithm when the expected 
processor count is unknown. The right-hand-side of Table 10-1 can be used when the expected processor count 
is known. 
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16. Reads and evaluates the COUNT variable and establishes a processor count.

17. If necessary, reconfigures the APIC and continues with the remaining system diagnostics as appropriate.

10.4.4.2  Typical AP Initialization Sequence
When an AP receives the SIPI, it begins executing BIOS AP initialization code at the vector encoded in the SIPI. The 
AP initialization code typically performs the following operations:

1. Waits on the BIOS initialization Lock Semaphore. When control of the semaphore is attained, initialization 
continues.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs (using the same mapping that was used for the BSP).

4. Enables the cache.

5. Executes the CPUID instruction with a value of 0H in the EAX register, then reads the EBX, ECX, and EDX 
registers to determine if the AP is “GenuineIntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves the values in the EAX, ECX, 
and EDX registers in a system configuration space in RAM for use later.

7. Switches to protected mode and ensures that the APIC address space is mapped to the strong uncacheable 
(UC) memory type.

8. Determines the AP’s APIC ID from the local APIC ID register, and adds it to the MP and ACPI tables and 
optionally to the system configuration space in RAM.

9. Initializes and configures the local APIC by setting bit 8 in the SVR register and setting up the LVT3 (error LVT) 
for error handling (as described in steps 9 and 10 in Section 10.4.4.1, “Typical BSP Initialization Sequence”).

10. Configures the APs SMI execution environment. (Each AP and the BSP must have a different SMBASE address.)

11. Increments the COUNT variable by 1.

12. Releases the semaphore.

13. Executes one of the following:

Table 10-1.  Broadcast INIT-SIPI-SIPI Sequence and Choice of Timeouts 
INIT-SIPI-SIPI when the expected processor count is unknown INIT-SIPI-SIPI when the expected processor count is known

MOV ESI, ICR_LOW; Load address of ICR low dword into ESI.

MOV EAX, 000C4500H; Load ICR encoding for broadcast INIT IPI 

; to all APs into EAX.

MOV [ESI], EAX; Broadcast INIT IPI to all APs

; 10-millisecond delay loop.

MOV EAX, 000C46XXH; Load ICR encoding for broadcast SIPI IP

; to all APs into EAX, where xx is the vector computed in step 10.

MOV [ESI], EAX; Broadcast SIPI IPI to all APs

; 200-microsecond delay loop

MOV [ESI], EAX; Broadcast second SIPI IPI to all APs

;Waits for the timer interrupt until the timer expires

MOV ESI, ICR_LOW; Load address of ICR low dword into ESI.

MOV EAX, 000C4500H; Load ICR encoding for broadcast INIT IPI 

; to all APs into EAX.

MOV [ESI], EAX; Broadcast INIT IPI to all APs

; 10-millisecond delay loop.

MOV EAX, 000C46XXH; Load ICR encoding for broadcast SIPI IP

; to all APs into EAX, where xx is the vector computed in step 10.

MOV [ESI], EAX; Broadcast SIPI IPI to all APs

; 200 microsecond delay loop with check to see if COUNT has

; reached the expected processor count. If COUNT reaches

; expected processor count, cancel timer and go to step 16.

MOV [ESI], EAX; Broadcast second SIPI IPI to all APs

; Wait for the timer interrupt polling COUNT. If COUNT reaches

; expected processor count, cancel timer and go to step 16.

; If timer expires, go to step 16.
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— the CLI and HLT instructions (if MONITOR/MWAIT is not supported), or

— the CLI, MONITOR, and MWAIT sequence to enter a deep C-state.

14. Waits for an INIT IPI.

10.4.5 Identifying Logical Processors in an MP System
After the BIOS has completed the MP initialization protocol, each logical processor can be uniquely identified by its 
local APIC ID. Software can access these APIC IDs in either of the following ways:
• Read APIC ID for a local APIC — Code running on a logical processor can read APIC ID in one of two ways 

depending on the local APIC unit is operating in x2APIC mode or in xAPIC mode:

— If the local APIC unit supports x2APIC and is operating in x2APIC mode, 32-bit APIC ID can be read by 
executing a RDMSR instruction to read the processor’s x2APIC ID register. This method is equivalent to 
executing CPUID leaf 0BH described below.

— If the local APIC unit is operating in xAPIC mode, 8-bit APIC ID can be read by executing a MOV instruction 
to read the processor’s local APIC ID register (see Section 12.4.6, “Local APIC ID”). This is the ID to use for 
directing physical destination mode interrupts to the processor.

• Read ACPI or MP table — As part of the MP initialization protocol, the BIOS creates an ACPI table and an MP 
table. These tables are defined in the Multiprocessor Specification Version 1.4 and provide software with a list 
of the processors in the system and their local APIC IDs. The format of the ACPI table is derived from the ACPI 
specification, which is an industry standard power management and platform configuration specification for MP 
systems.

• Read Initial APIC ID (If the processor does not support CPUID leaf 0BH) — An APIC ID is assigned to a logical 
processor during power up. This is the initial APIC ID reported by CPUID.1:EBX[31:24] and may be different 
from the current value read from the local APIC. The initial APIC ID can be used to determine the topological 
relationship between logical processors for multi-processor systems that do not support CPUID leaf 0BH.
Bits in the 8-bit initial APIC ID can be interpreted using several bit masks. Each bit mask can be used to extract 
an identifier to represent a hierarchical domain of the multi-threading resource topology in an MP system (See 
Section 10.9.1, “Hierarchical Mapping of Shared Resources”). The initial APIC ID may consist of up to four bit-
fields. In a non-clustered MP system, the field consists of up to three bit fields. 

• Read 32-bit APIC ID from CPUID leaf 0BH (If the processor supports CPUID leaf 0BH) — A unique APIC ID 
is assigned to a logical processor during power up. This APIC ID is reported by CPUID.0BH:EDX[31:0] as a 32-
bit value. Use the 32-bit APIC ID and CPUID leaf 0BH to determine the topological relationship between logical 
processors if the processor supports CPUID leaf 0BH.
Bits in the 32-bit x2APIC ID can be extracted into sub-fields using CPUID leaf 0BH parameters. (See Section 
10.9.1, “Hierarchical Mapping of Shared Resources”). 

Figure 10-2 shows two examples of APIC ID bit fields in earlier single-core processors. In single-core Intel Xeon 
processors, the APIC ID assigned to a logical processor during power-up and initialization is 8 bits. Bits 2:1 form a 
2-bit physical package identifier (which can also be thought of as a socket identifier). In systems that configure 
physical processors in clusters, bits 4:3 form a 2-bit cluster ID. Bit 0 is used in the Intel Xeon processor MP to iden-
tify the two logical processors within the package (see Section 10.9.3, “Hierarchical ID of Logical Processors in an 
MP System”). For Intel Xeon processors that do not support Intel Hyper-Threading Technology, bit 0 is always set 
to 0; for Intel Xeon processors supporting Intel Hyper-Threading Technology, bit 0 performs the same function as 
it does for Intel Xeon processor MP. 

For more recent multi-core processors, see Section 10.9.1, “Hierarchical Mapping of Shared Resources,” for a 
complete description of the topological relationships between logical processors and bit field locations within an 
initial APIC ID across Intel 64 and IA-32 processor families.

Note the number of bit fields and the width of bit-fields are dependent on processor and platform hardware capa-
bilities. Software should determine these at runtime. When initial APIC IDs are assigned to logical processors, the 
value of APIC ID assigned to a logical processor will respect the bit-field boundaries corresponding core, physical 
package, etc. Additional examples of the bit fields in the initial APIC ID of multi-threading capable systems are 
shown in Section 10.9.
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For P6 family processors, the APIC ID that is assigned to a processor during power-up and initialization is 4 bits 
(see Figure 10-2). Here, bits 0 and 1 form a 2-bit processor (or socket) identifier and bits 2 and 3 form a 2-bit 
cluster ID. 

10.5 INTEL® HYPER-THREADING TECHNOLOGY AND INTEL® MULTI-CORE 
TECHNOLOGY

Intel Hyper-Threading Technology and Intel multi-core technology are extensions to Intel 64 and IA-32 architec-
tures that enable a single physical processor to execute two or more separate code streams (called threads) 
concurrently. In Intel Hyper-Threading Technology, a single processor core provides two logical processors that 
share execution resources (see Section 10.7, “Intel® Hyper-Threading Technology Architecture”). In Intel multi-
core technology, a physical processor package provides two or more processor cores. Both configurations require 
chipsets and a BIOS that support the technologies.

Software should not rely on processor names to determine whether a processor supports Intel Hyper-Threading 
Technology or Intel multi-core technology. Use the CPUID instruction to determine processor capability (see 
Section 10.6.2, “Initializing Multi-Core Processors”). 

10.6 DETECTING HARDWARE MULTI-THREADING SUPPORT AND TOPOLOGY
Use the CPUID instruction to detect the presence of hardware multi-threading support in a physical processor. 
Hardware multi-threading can support several varieties of multigrade and/or Intel Hyper-Threading Technology. 
CPUID instruction provides several sets of parameter information to aid software enumerating topology informa-
tion. The relevant topology enumeration parameters provided by CPUID include:
• Hardware Multi-Threading feature flag (CPUID.1:EDX[28] = 1) — Indicates when set that the physical 

package is capable of supporting Intel Hyper-Threading Technology and/or multiple cores. 
• Processor topology enumeration parameters for 8-bit APIC ID:

— Addressable IDs for Logical processors in the same Package (CPUID.1:EBX[23:16]) — Indicates 
the maximum number of addressable ID for logical processors in a physical package. Within a physical 
package, there may be addressable IDs that are not occupied by any logical processors. This parameter 
does not represents the hardware capability of the physical processor.1

Figure 10-2.  Interpretation of APIC ID in Early MP Systems
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• Addressable IDs for processor cores in the same Package1 (CPUID.(EAX=4, ECX=02):EAX[31:26] + 
1 = Y) — Indicates the maximum number of addressable IDs attributable to processor cores (Y) in the physical 
package.

• Extended Processor Topology Enumeration parameters for 32-bit APIC ID: Intel 64 processors 
supporting CPUID leaf 0BH will assign unique APIC IDs to each logical processor in the system. CPUID leaf 0BH 
reports the 32-bit APIC ID and provide topology enumeration parameters. See CPUID instruction reference 
pages in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

The CPUID feature flag may indicate support for hardware multi-threading when only one logical processor avail-
able in the package. In this case, the decimal value represented by bits 16 through 23 in the EBX register will have 
a value of 1.

Software should note that the number of logical processors enabled by system software may be less than the value 
of “Addressable IDs for Logical processors”. Similarly, the number of cores enabled by system software may be less 
than the value of “Addressable IDs for processor cores”.

Software can detect the availability of the CPUID extended topology enumeration leaf (0BH) by performing two 
steps:
• Check maximum input value for basic CPUID information by executing CPUID with EAX= 0. If CPUID.0H:EAX is 

greater than or equal or 11 (0BH), then proceed to next step,
• Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero.

If both of the above conditions are true, extended topology enumeration leaf is available. Note the presence of 
CPUID leaf 0BH in a processor does not guarantee support that the local APIC supports x2APIC. If 
CPUID.(EAX=0BH, ECX=0H):EBX returns zero and maximum input value for basic CPUID information is greater 
than 0BH, then CPUID.0BH leaf is not supported on that processor.

10.6.1 Initializing Processors Supporting Intel® Hyper-Threading Technology
The initialization process for an MP system that contains processors supporting Intel Hyper-Threading Technology 
is the same as for conventional MP systems (see Section 10.4, “Multiple-Processor (MP) Initialization”). One logical 
processor in the system is selected as the BSP and other processors (or logical processors) are designated as APs. 
The initialization process is identical to that described in Section 10.4.3, “MP Initialization Protocol Algorithm for MP 
Systems,” and Section 10.4.4, “MP Initialization Example.”

During initialization, each logical processor is assigned an APIC ID that is stored in the local APIC ID register for 
each logical processor. If two or more processors supporting Intel Hyper-Threading Technology are present, each 
logical processor on the system bus is assigned a unique ID (see Section 10.9.3, “Hierarchical ID of Logical Proces-
sors in an MP System”). Once logical processors have APIC IDs, software communicates with them by sending APIC 
IPI messages.

10.6.2 Initializing Multi-Core Processors
The initialization process for an MP system that contains multi-core Intel 64 or IA-32 processors is the same as for 
conventional MP systems (see Section 10.4, “Multiple-Processor (MP) Initialization”). A logical processor in one 
core is selected as the BSP; other logical processors are designated as APs. 

During initialization, each logical processor is assigned an APIC ID. Once logical processors have APIC IDs, soft-
ware may communicate with them by sending APIC IPI messages.

1. Operating system and BIOS may implement features that reduce the number of logical processors available in a platform to applica-
tions at runtime to less than the number of physical packages times the number of hardware-capable logical processors per pack-
age.

1. Software must check CPUID for its support of leaf 4 when implementing support for multi-core. If CPUID leaf 4 is not available at 
runtime, software should handle the situation as if there is only one core per package.

2. Maximum number of cores in the physical package must be queried by executing CPUID with EAX=4 and a valid ECX input value. 
Valid ECX input values start from 0.
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10.6.3 Executing Multiple Threads on an Intel® 64 or IA-32 Processor Supporting Hardware 
Multi-Threading

Upon completing the operating system boot-up procedure, the bootstrap processor (BSP) executes operating 
system code. Other logical processors are placed in the halt state. To execute a code stream (thread) on a halted 
logical processor, the operating system issues an interprocessor interrupt (IPI) addressed to the halted logical 
processor. In response to the IPI, the processor wakes up and begins executing the code identified by the vector 
received as part of the IPI. 

To manage execution of multiple threads on logical processors, an operating system can use conventional 
symmetric multiprocessing (SMP) techniques. For example, the operating-system can use a time-slice or load 
balancing mechanism to periodically interrupt each of the active logical processors. Upon interrupting a logical 
processor, the operating system checks its run queue for a thread waiting to be executed and dispatches the thread 
to the interrupted logical processor.

10.6.4 Handling Interrupts on an IA-32 Processor Supporting Hardware Multi-Threading
Interrupts are handled on processors supporting Intel Hyper-Threading Technology as they are on conventional MP 
systems. External interrupts are received by the I/O APIC, which distributes them as interrupt messages to specific 
logical processors (see Figure 10-3). 

Logical processors can also send IPIs to other logical processors by writing to the ICR register of its local APIC (see 
Section 12.6, “Issuing Interprocessor Interrupts”). This also applies to dual-core processors.

10.7 INTEL® HYPER-THREADING TECHNOLOGY ARCHITECTURE
Figure 10-4 shows a generalized view of an Intel processor supporting Intel Hyper-Threading Technology, using the 
original Intel Xeon processor MP as an example. This implementation of the Intel Hyper-Threading Technology 

 

Figure 10-3.  Local APICs and I/O APIC in MP System Supporting Intel HT Technology
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consists of two logical processors (each represented by a separate architectural state) which share the processor’s 
execution engine and the bus interface. Each logical processor also has its own advanced programmable interrupt 
controller (APIC).

10.7.1 State of the Logical Processors
The following features are part of the architectural state of logical processors within Intel 64 or IA-32 processors 
supporting Intel Hyper-Threading Technology. The features can be subdivided into three groups: 
• Duplicated for each logical processor
• Shared by logical processors in a physical processor
• Shared or duplicated, depending on the implementation

The following features are duplicated for each logical processor:
• General purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP)
• Segment registers (CS, DS, SS, ES, FS, and GS)
• EFLAGS and EIP registers. Note that the CS and EIP/RIP registers for each logical processor point to the 

instruction stream for the thread being executed by the logical processor.
• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data operand pointer, and instruction 

pointer)
• MMX registers (MM0 through MM7)
• XMM registers (XMM0 through XMM7) and the MXCSR register
• Control registers and system table pointer registers (GDTR, LDTR, IDTR, task register)
• Debug registers (DR0, DR1, DR2, DR3, DR6, DR7) and the debug control MSRs
• Machine check global status (IA32_MCG_STATUS) and machine check capability (IA32_MCG_CAP) MSRs
• Thermal clock modulation and ACPI Power management control MSRs
• Time stamp counter MSRs
• Most of the other MSR registers, including the page attribute table (PAT). See the exceptions below.
• Local APIC registers.
• Additional general purpose registers (R8-R15), XMM registers (XMM8-XMM15), control register, IA32_EFER on 

Intel 64 processors.

The following features are shared by logical processors:

Figure 10-4.  IA-32 Processor with Two Logical Processors Supporting Intel HT Technology
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• Memory type range registers (MTRRs)

Whether the following features are shared or duplicated is implementation-specific:
• IA32_MISC_ENABLE MSR (MSR address 1A0H)
• Machine check architecture (MCA) MSRs (except for the IA32_MCG_STATUS and IA32_MCG_CAP MSRs)
• Performance monitoring control and counter MSRs

10.7.2 APIC Functionality
When a processor supporting Intel Hyper-Threading Technology support is initialized, each logical processor is 
assigned a local APIC ID (see Table 12-1). The local APIC ID serves as an ID for the logical processor and is stored 
in the logical processor’s APIC ID register. If two or more processors supporting Intel Hyper-Threading Technology 
are present in a dual processor (DP) or MP system, each logical processor on the system bus is assigned a unique 
local APIC ID (see Section 10.9.3, “Hierarchical ID of Logical Processors in an MP System”).

Software communicates with local processors using the APIC’s interprocessor interrupt (IPI) messaging facility. 
Setup and programming for APICs is identical in processors that support and do not support Intel Hyper-Threading 
Technology. See Chapter 12, “Advanced Programmable Interrupt Controller (APIC),” for a detailed discussion.

10.7.3 Memory Type Range Registers (MTRR)
MTRRs in a processor supporting Intel Hyper-Threading Technology are shared by logical processors. When one 
logical processor updates the setting of the MTRRs, settings are automatically shared with the other logical proces-
sors in the same physical package. 

The architectures require that all MP systems based on Intel 64 and IA-32 processors (this includes logical proces-
sors) must use an identical MTRR memory map. This gives software a consistent view of memory, independent of 
the processor on which it is running. See Section 13.11, “Memory Type Range Registers (MTRRs),” for information 
on setting up MTRRs.

10.7.4 Page Attribute Table (PAT)
Each logical processor has its own PAT MSR (IA32_PAT). However, as described in Section 13.12, “Page Attribute 
Table (PAT),” the PAT MSR settings must be the same for all processors in a system, including the logical proces-
sors.

10.7.5 Machine Check Architecture
In the Intel HT Technology context as implemented by processors based on Intel NetBurst® microarchitecture, all 
of the machine check architecture (MCA) MSRs (except for the IA32_MCG_STATUS and IA32_MCG_CAP MSRs) are 
duplicated for each logical processor. This permits logical processors to initialize, configure, query, and handle 
machine-check exceptions simultaneously within the same physical processor. The design is compatible with 
machine check exception handlers that follow the guidelines given in Chapter 17, “Machine-Check Architecture.”

The IA32_MCG_STATUS MSR is duplicated for each logical processor so that its machine check in progress bit field 
(MCIP) can be used to detect recursion on the part of MCA handlers. In addition, the MSR allows each logical 
processor to determine that a machine-check exception is in progress independent of the actions of another logical 
processor in the same physical package.

Because the logical processors within a physical package are tightly coupled with respect to shared hardware 
resources, both logical processors are notified of machine check errors that occur within a given physical processor. 
If machine-check exceptions are enabled when a fatal error is reported, all the logical processors within a physical 
package are dispatched to the machine-check exception handler. If machine-check exceptions are disabled, the 
logical processors enter the shutdown state and assert the IERR# signal.

When enabling machine-check exceptions, the MCE flag in control register CR4 should be set for each logical 
processor.
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On Intel Atom family processors that support Intel Hyper-Threading Technology, the MCA facilities are shared 
between all logical processors on the same processor core.

10.7.6 Debug Registers and Extensions
Each logical processor has its own set of debug registers (DR0, DR1, DR2, DR3, DR6, DR7) and its own debug 
control MSR. These can be set to control and record debug information for each logical processor independently. 
Each logical processor also has its own last branch records (LBR) stack.

10.7.7 Performance Monitoring Counters
Performance counters and their companion control MSRs are shared between the logical processors within a 
processor core for processors based on Intel NetBurst microarchitecture. As a result, software must manage the 
use of these resources. The performance counter interrupts, events, and precise event monitoring support can be 
set up and allocated on a per thread (per logical processor) basis. 

See Section 21.6.4, “Performance Monitoring and Intel® Hyper-Threading Technology in Processors Based on Intel 
NetBurst® Microarchitecture,” for a discussion of performance monitoring in the Intel Xeon processor MP. 

In Intel Atom processor family that support Intel Hyper-Threading Technology, the performance counters (general-
purpose and fixed-function counters) and their companion control MSRs are duplicated for each logical processor.

10.7.8 IA32_MISC_ENABLE MSR
The IA32_MISC_ENABLE MSR (MSR address 1A0H) is generally shared between the logical processors in a 
processor core supporting Intel Hyper-Threading Technology. However, some bit fields within IA32_MISC_ENABLE 
MSR may be duplicated per logical processor. The partition of shared or duplicated bit fields within IA32_MISC_EN-
ABLE is implementation dependent. Software should program duplicated fields carefully on all logical processors in 
the system to ensure consistent behavior.

10.7.9 Memory Ordering
The logical processors in an Intel 64 or IA-32 processor supporting Intel Hyper-Threading Technology obey the 
same rules for memory ordering as Intel 64 or IA-32 processors without Intel HT Technology (see Section 10.2, 
“Memory Ordering”). Each logical processor uses a processor-ordered memory model that can be further defined 
as “write-ordered with store buffer forwarding.” All mechanisms for strengthening or weakening the memory-
ordering model to handle special programming situations apply to each logical processor.

10.7.10 Serializing Instructions
As a general rule, when a logical processor in a processor supporting Intel Hyper-Threading Technology executes a 
serializing instruction, only that logical processor is affected by the operation. An exception to this rule is the 
execution of the WBINVD, INVD, and WRMSR instructions; and the MOV CR instruction when the state of the CD 
flag in control register CR0 is modified. Here, both logical processors are serialized.

10.7.11 Microcode Update Resources
In an Intel processor supporting Intel Hyper-Threading Technology, the microcode update facilities are shared 
between the logical processors; either logical processor can initiate an update. Each logical processor has its own 
BIOS signature MSR (IA32_BIOS_SIGN_ID at MSR address 8BH). When a logical processor performs an update for 
the physical processor, the IA32_BIOS_SIGN_ID MSRs for resident logical processors are updated with identical 
information. If logical processors initiate an update simultaneously, the processor core provides the necessary 
synchronization needed to ensure that only one update is performed at a time. 
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NOTE
Some processors (prior to the introduction of Intel 64 Architecture and based on Intel NetBurst 
microarchitecture) do not support simultaneous loading of microcode update to the sibling logical 
processors in the same core. All other processors support logical processors initiating an update 
simultaneously. Intel recommends a common approach that the microcode loader use the 
sequential technique described in Section 11.11.6.3.

10.7.12 Self Modifying Code
Intel processors supporting Intel Hyper-Threading Technology support self-modifying code, where data writes 
modify instructions cached or currently in flight. They also support cross-modifying code, where on an MP system 
writes generated by one processor modify instructions cached or currently in flight on another. See Section 10.1.3, 
“Handling Self- and Cross-Modifying Code,” for a description of the requirements for self- and cross-modifying code 
in an IA-32 processor.

10.7.13 Implementation-Specific Intel® HT Technology Facilities
The following non-architectural facilities are implementation-specific in IA-32 processors supporting Intel Hyper-
Threading Technology:
• Caches.
• Translation lookaside buffers (TLBs).
• Thermal monitoring facilities.

The Intel Xeon processor MP implementation is described in the following sections.

10.7.13.1  Processor Caches
For processors supporting Intel Hyper-Threading Technology, the caches are shared. Any cache manipulation 
instruction that is executed on one logical processor has a global effect on the cache hierarchy of the physical 
processor. Note the following:
• WBINVD instruction — The entire cache hierarchy is invalidated after modified data is written back to 

memory. All logical processors are stopped from executing until after the write-back and invalidate operation is 
completed. A special bus cycle is sent to all caching agents. The amount of time or cycles for WBINVD to 
complete will vary due to the size of different cache hierarchies and other factors. As a consequence, the use of 
the WBINVD instruction can have an impact on interrupt/event response time.

• INVD instruction — The entire cache hierarchy is invalidated without writing back modified data to memory. 
All logical processors are stopped from executing until after the invalidate operation is completed. A special bus 
cycle is sent to all caching agents.

• CLFLUSH and CLFLUSHOPT instructions — The specified cache line is invalidated from the cache hierarchy 
after any modified data is written back to memory and a bus cycle is sent to all caching agents, regardless of 
which logical processor caused the cache line to be filled.

• CD flag in control register CR0 — Each logical processor has its own CR0 control register, and thus its own 
CD flag in CR0. The CD flags for the two logical processors are ORed together, such that when any logical 
processor sets its CD flag, the entire cache is nominally disabled. 

10.7.13.2  Processor Translation Lookaside Buffers (TLBs)
In processors supporting Intel Hyper-Threading Technology, data cache TLBs are shared. The instruction cache TLB 
may be duplicated or shared in each logical processor, depending on implementation specifics of different processor 
families.

Entries in the TLBs are tagged with an ID that indicates the logical processor that initiated the translation. This tag 
applies even for translations that are marked global using the page-global feature for memory paging. See Section 
5.10, “Caching Translation Information,” for information about global translations.
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When a logical processor performs a TLB invalidation operation, only the TLB entries that are tagged for that logical 
processor are guaranteed to be flushed. This protocol applies to all TLB invalidation operations, including writes to 
control registers CR3 and CR4 and uses of the INVLPG instruction.

10.7.13.3  Thermal Monitor
In a processor that supports Intel Hyper-Threading Technology, logical processors share the catastrophic shutdown 
detector and the automatic thermal monitoring mechanism (see Section 16.8, “Thermal Monitoring and Protec-
tion”). Sharing results in the following behavior:
• If the processor’s core temperature rises above the preset catastrophic shutdown temperature, the processor 

core halts execution, which causes both logical processors to stop execution.
• When the processor’s core temperature rises above the preset automatic thermal monitor trip temperature, the 

frequency of the processor core is automatically modulated, which effects the execution speed of both logical 
processors.

For software controlled clock modulation, each logical processor has its own IA32_CLOCK_MODULATION MSR, 
allowing clock modulation to be enabled or disabled on a logical processor basis. Typically, if software controlled 
clock modulation is going to be used, the feature must be enabled for all the logical processors within a physical 
processor and the modulation duty cycle must be set to the same value for each logical processor. If the duty cycle 
values differ between the logical processors, the processor clock will be modulated at the highest duty cycle 
selected.

10.7.13.4  External Signal Compatibility
This section describes the constraints on external signals received through the pins of a processor supporting Intel 
Hyper-Threading Technology and how these signals are shared between its logical processors.
• STPCLK# — A single STPCLK# pin is provided on the physical package of the Intel Xeon processor MP. External 

control logic uses this pin for power management within the system. When the STPCLK# signal is asserted, the 
processor core transitions to the stop-grant state, where instruction execution is halted but the processor core 
continues to respond to snoop transactions. Regardless of whether the logical processors are active or halted 
when the STPCLK# signal is asserted, execution is stopped on both logical processors and neither will respond 
to interrupts.

In MP systems, the STPCLK# pins on all physical processors are generally tied together. As a result this signal 
affects all the logical processors within the system simultaneously.

• LINT0 and LINT1 pins — A processor supporting Intel Hyper-Threading Technology has only one set of LINT0 
and LINT1 pins, which are shared between the logical processors. When one of these pins is asserted, both 
logical processors respond unless the pin has been masked in the APIC local vector tables for one or both of the 
logical processors.

Typically in MP systems, the LINT0 and LINT1 pins are not used to deliver interrupts to the logical processors. 
Instead all interrupts are delivered to the local processors through the I/O APIC.

• A20M# pin — On an IA-32 processor, the A20M# pin is typically provided for compatibility with the Intel 286 
processor. Asserting this pin causes bit 20 of the physical address to be masked (forced to zero) for all external 
bus memory accesses. Processors supporting Intel Hyper-Threading Technology provide one A20M# pin, which 
affects the operation of both logical processors within the physical processor. 
The functionality of A20M# is used primarily by older operating systems and not used by modern operating 
systems. On newer Intel 64 processors, A20M# may be absent. 

10.8 MULTI-CORE ARCHITECTURE
This section describes the architecture of Intel 64 and IA-32 processors supporting dual-core and quad-core tech-
nology. The discussion is applicable to the Intel Pentium processor Extreme Edition, Pentium D, Intel Core Duo, 
Intel Core 2 Duo, Dual-core Intel Xeon processor, Intel Core 2 Quad processors, and quad-core Intel Xeon proces-
sors. Features vary across different microarchitectures and are detectable using CPUID.
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In general, each processor core has dedicated microarchitectural resources identical to a single-processor imple-
mentation of the underlying microarchitecture without hardware multi-threading capability. Each logical processor 
in a dual-core processor (whether supporting Intel Hyper-Threading Technology or not) has its own APIC function-
ality, PAT, machine check architecture, debug registers and extensions. Each logical processor handles serialization 
instructions or self-modifying code on its own. Memory order is handled the same way as in Intel Hyper-Threading 
Technology.

The topology of the cache hierarchy (with respect to whether a given cache level is shared by one or more 
processor cores or by all logical processors in the physical package) depends on the processor implementation. 
Software must use the deterministic cache parameter leaf of CPUID instruction to discover the cache-sharing 
topology between the logical processors in a multi-threading environment.

10.8.1 Logical Processor Support
The topological composition of processor cores and logical processors in a multi-core processor can be discovered 
using CPUID. Within each processor core, one or more logical processors may be available. 

System software must follow the requirement MP initialization sequences (see Section 10.4, “Multiple-Processor 
(MP) Initialization”) to recognize and enable logical processors. At runtime, software can enumerate those logical 
processors enabled by system software to identify the topological relationships between these logical processors. 
(See Section 10.9.5, “Identifying Topological Relationships in an MP System”). 

10.8.2 Memory Type Range Registers (MTRR)
MTRR is shared between two logical processors sharing a processor core if the physical processor supports Intel 
Hyper-Threading Technology. MTRR is not shared between logical processors located in different cores or different 
physical packages. 

The Intel 64 and IA-32 architectures require that all logical processors in an MP system use an identical MTRR 
memory map. This gives software a consistent view of memory, independent of the processor on which it is 
running. 

See Section 13.11, “Memory Type Range Registers (MTRRs).”

10.8.3 Performance Monitoring Counters
Performance counters and their companion control MSRs are shared between two logical processors sharing a 
processor core if the processor core supports Intel Hyper-Threading Technology and is based on Intel NetBurst 
microarchitecture. They are not shared between logical processors in different cores or different physical packages. 
As a result, software must manage the use of these resources, based on the topology of performance monitoring 
resources. Performance counter interrupts, events, and precise event monitoring support can be set up and allo-
cated on a per thread (per logical processor) basis. 

See Section 21.6.4, “Performance Monitoring and Intel® Hyper-Threading Technology in Processors Based on Intel 
NetBurst® Microarchitecture.”

10.8.4 IA32_MISC_ENABLE MSR
Some bit fields in IA32_MISC_ENABLE MSR (MSR address 1A0H) may be shared between two logical processors 
sharing a processor core, or may be shared between different cores in a physical processor. See Chapter 2, “Model-
Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

10.8.5 Microcode Update Resources
Microcode update facilities are shared between two logical processors sharing a processor core if the physical 
package supports Intel Hyper-Threading Technology. They are not shared between logical processors in different 
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cores or different physical packages. Either logical processor that has access to the microcode update facility can 
initiate an update. 

Each logical processor has its own BIOS signature MSR (IA32_BIOS_SIGN_ID at MSR address 8BH). When a logical 
processor performs an update for the physical processor, the IA32_BIOS_SIGN_ID MSRs for resident logical 
processors are updated with identical information. 

All microcode update steps during processor initialization should use the same update data on all cores in all phys-
ical packages of the same stepping. Any subsequent microcode update must apply consistent update data to all 
cores in all physical packages of the same stepping. If the processor detects an attempt to load an older microcode 
update when a newer microcode update had previously been loaded, it may reject the older update to stay with the 
newer update.

NOTE
Some processors (prior to the introduction of Intel 64 Architecture and based on Intel NetBurst 
microarchitecture) do not support simultaneous loading of microcode update to the sibling logical 
processors in the same core. All other processors support logical processors initiating an update 
simultaneously. Intel recommends a common approach that the microcode loader use the 
sequential technique described in Section 11.11.6.3.

10.9 PROGRAMMING CONSIDERATIONS FOR HARDWARE MULTI-THREADING 
CAPABLE PROCESSORS

In a multi-threading environment, there may be certain hardware resources that are physically shared at some 
level of the hardware topology. In the multi-processor systems, typically bus and memory sub-systems are physi-
cally shared between multiple sockets. Within a hardware multi-threading capable processors, certain resources 
are provided for each processor core, while other resources may be provided for each logical processors (see 
Section 10.7, “Intel® Hyper-Threading Technology Architecture,” and Section 10.8, “Multi-Core Architecture”). 

From a software programming perspective, control transfer of processor operation is managed at the granularity of 
logical processor (operating systems dispatch a runnable task by allocating an available logical processor on the 
platform). To manage the topology of shared resources in a multi-threading environment, it may be useful for soft-
ware to understand and manage resources that are shared by more than one logical processors.

10.9.1 Hierarchical Mapping of Shared Resources
The APIC_ID value associated with each logical processor in a multi-processor system is unique (see Section 10.6, 
“Detecting Hardware Multi-Threading Support and Topology”). This 8-bit or 32-bit value can be decomposed into 
sub-fields, where each sub-field corresponds a hierarchical domain of the topological mapping of hardware 
resources. 

The decomposition of an APIC_ID may consist of several sub fields representing the topology within a physical 
processor package, the higher-order bits of an APIC ID may also be used by cluster vendors to represent the 
topology of cluster nodes of each coherent multiprocessor systems:
• Cluster — Some multi-threading environments consists of multiple clusters of multi-processor systems. The 

CLUSTER_ID sub-field is usually supported by vendor firmware to distinguish different clusters. For non-
clustered systems, CLUSTER_ID is usually 0 and system topology is reduced.

• Package — A physical processor package mates with a socket. A package may contain one or more software 
visible die. The PACKAGE_ID sub-field distinguishes different physical packages within a cluster.

• Die — A software-visible chip inside a package. The DIE_ID sub-field distinguishes different die within a 
package. If there are no software visible die, the width of this bit field is 0.

• DieGrp — A group of die that share certain resources.
• Tile — A set of cores that share certain resources. The TILE_ID sub-field distinguishes different tiles. If there 

are no software visible tiles, the width of this bit field is 0.
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• Module — A set of cores that share certain resources. The MODULE_ID sub-field distinguishes different 
modules. If there are no software visible modules, the width of this bit field is 0.

• Core — Processor cores may be contained within modules, within tiles, on software-visible die, or appear 
directly at the package domain. The CORE_ID sub-field distinguishes processor cores. For a single-core 
processor, the width of this bit field is 0.

• Logical Processor — A processor core provides one or more logical processors sharing execution resources. 
The LOGICAL_PROCESSOR_ID sub-field distinguishes logical processors in a core. The width of this bit field is 
non-zero if a processor core provides more than one logical processors.

The LOGICAL_PROCESSOR_ID and CORE_ID sub-fields are bit-wise contiguous in the APIC_ID field (see 
Figure 10-5). 

If the processor supports CPUID leaf 0BH and leaf 1FH, the 32-bit APIC ID can represent cluster plus several 
domains of topology within the physical processor package. The exact number of hierarchical domains within a 
physical processor package must be enumerated through CPUID leaf 0BH and leaf 1FH. Common processor fami-
lies may employ a topology similar to that represented by the 8-bit Initial APIC ID. In general, CPUID leaf 0BH and 
leaf 1FH can support a topology enumeration algorithm that decompose a 32-bit APIC ID into more than four sub-
fields (see Figure 10-6). 

NOTE
CPUID leaf 0BH and leaf 1FH can have differences in the number of domain types reported (CPUID 
leaf 1FH defines additional domain types). If the processor supports CPUID leaf 1FH, usage of this 
leaf is preferred over leaf 0BH. CPUID leaf 0BH is available for legacy compatibility going forward.

The width of each sub-field depends on hardware and software configurations. Field widths can be determined at 
runtime using the algorithm discussed below (Example 10-16 through Example 10-21). 

Figure 7-6 depicts the relationships of three of the hierarchical sub-fields in a hypothetical MP system. The value of 
valid APIC_IDs need not be contiguous across package boundary or core boundaries.

Figure 10-5.  Generalized Seven-Domain Interpretation of the APIC ID
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10.9.2 Hierarchical Mapping of CPUID Extended Topology Leaf 
CPUID leaf 0BH and leaf 1FH provide enumeration parameters for software to identify each hierarchy of the 
processor topology in a deterministic manner. Each hierarchical domain of the topology starting from the Logical 
Processor domain is represented numerically by a sub-leaf index within the CPUID 0BH leaf and 1FH leaf. Each 
domain of the topology is mapped to a sub-field in the APIC ID, following the general relationship depicted in 
Figure 10-6. This mechanism allows software to query the exact number of domains within a physical processor 
package and the bit-width of each sub-field of x2APIC ID directly. For example,
• Starting from sub-leaf index 0 and incrementing ECX until CPUID.(EAX=0BH or 1FH, ECX=N):ECX[15:8] 

returns an invalid “domain type” encoding. The number of domains within the physical processor package is 
“N” (excluding PACKAGE). Using Figure 10-6 as an example, CPUID.(EAX=0BH or 1FH, ECX=4):ECX[15:8] will 
report 00H, indicating sub leaf 04H is invalid. This is also depicted by a pseudo code example:

Example 10-16.  Number of Domains Below the Physical Processor Package

Word NumberOfDomainsBelowPackage = 0;
DWord Subleaf = 0;

EAX = 0BH or 1FH; // query each sub leaf of CPUID leaf 0BH or 1FH; CPUID leaf 1FH is preferred over leaf 0BH if available.
ECX = Subleaf;
CPUID;
while(EBX != 0)  // Enumerate until EBX reports 0
{
       if(EAX[4:0] != 0)   // A Shift Value of 0 indicates this domain does not exist.

// (Such as no SMT_ID, which is required entry at sub-leaf 0.)
      {
             NumberOfDomainsBelowPackage++;
     }
     Subleaf++;
     EAX = 0BH or 1FH;
     ECX = Subleaf;
     CPUID;
}
// NumberOfDomainsBelowPackage contains the absolute number of domains that exist below package.
N = Subleaf;   // Sub-leaf supplies the number of entries CPUID will return.

Figure 10-6.  Conceptual Six-Domain Topology and 32-bit APIC ID Composition
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• Sub-leaf index 0 (ECX= 0 as input) provides enumeration parameters to extract the LOGICAL_PROCESSOR_ID 
sub-field of x2APIC ID. If EAX = 0BH or 1FH, and ECX =0 is specified as input when executing CPUID, 
CPUID.(EAX=0BH or 1FH, ECX=0):EAX[4:0] reports a value (a right-shift count) that allow software to extract 
part of x2APIC ID to distinguish the next higher topological entities above the LOGICAL_PROCESSOR_ID 
domain. This value also corresponds to the bit-width of the sub-field of x2APIC ID corresponding the hierar-
chical domain with sub-leaf index 0. 

• For each subsequent higher sub-leaf index m, CPUID.(EAX=0BH or 1FH, ECX=m):EAX[4:0] reports the right-
shift count that will allow software to extract part of x2APIC ID to distinguish higher-domain topological 
entities. This means the right-shift value at of sub-leaf m, corresponds to the least significant (m+1) sub-fields 
of the 32-bit x2APIC ID. 

Example 10-17.  BitWidth Determination of x2APIC ID Sub-fields

For m = 0, m < N, m ++;
{ cumulative_width[m] = CPUID.(EAX=0BH or 1FH, ECX= m): EAX[4:0]; }
BitWidth[0] = cumulative_width[0];
For m = 1, m < N, m ++;

BitWidth[m] = cumulative_width[m] - cumulative_width[m-1];

NOTE
CPUID leaf 1FH is a preferred superset to leaf 0BH. Leaf 1FH defines additional domain types, and 
it must be parsed by an algorithm that can handle the addition of future domain types.

Previously, only the following encoding of hierarchical domain types were defined: 0 (invalid), 1 (logical processor), 
and 2 (core). With the additional hierarchical domain types available (see Section 10.9.1, “Hierarchical Mapping of 
Shared Resources,” and Figure 10-5, “Generalized Seven-Domain Interpretation of the APIC ID” ) software must 
not assume any “domain type” encoding value to be related to any sub-leaf index, except sub-leaf 0.

Example 10-18.  Support Routines for Identifying Package, Die, Core, and Logical Processors from 32-bit x2APIC ID

a. Derive the extraction bitmask for logical processors in a processor core and associated mask offset for different
cores.

//
// This example shows how to enumerate CPU topology domain types (domain types may or may not be known/supported by the 
software)
//
// Below is the list of sample domain types used in the example. 
// Refer to the CPUID Leaf 1FH definition for the actual domain type numbers: “V2 Extended Topology Enumeration Leaf (Initial EAX 
Value = 1FH, ECX ≥ 0)” . 
//
// LOGICAL PROCESSOR
// CORE
// MODULE
// TILE
// DIE
// PACKAGE
//
// The example shows how to identify and derive the extraction bitmask for the domains with identify type 
LOGICAL_PROCESSOR_ID/CORE_ID/DIE_ID/PACKAGE_ID
//

int DeriveLogical_Processor_Mask_Offsets (void)
{
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IF (!HWMTSupported()) return -1;
execute cpuid with EAX = 0BH or 1FH, ECX = 0;
IF (returned domain type encoding in EXC[15:8] does not match LOGICAL_PROCESSOR_ID) return -1;
Mask_Logical_Processor_shift = EAX[4:0];          //# bits shift right of APIC ID to distinguish different cores, note this can be a shift

// of zero if there is only one logical processor per core.
Logical Processor Mask =~( (-1) << Mask_Logical_Processor_shift);        //shift left to derive extraction bitmask for

// LOGICAL_PROCESSOR_ID
return 0;

}

b. Derive the extraction bitmask for processor cores in a physical processor package and associated mask offset for
different packages.

int DeriveCore_Mask_Offsets (void)
{

IF (!HWMTSupported()) return -1;
execute cpuid with EAX = 0BH or 1FH, ECX = 0;
WHILE( ECX[15:8] ) {         //domain type encoding is valid

Mask_last_known_shift = EAX[4:0]
IF (returned domain type encoding in ECX[15:8] matches CORE) {

Mask_Core_shift = EAX[4:0];
}
ELSE IF (returned domain type encoding in ECX[15:8] matches DIE {

Mask_Die_shift = EAX[4:0];
}
//
// Keep enumerating. Check if the next domain is the desired domain and if not, keep enumerating until you reach a known 
// domain or the invalid domain (“0” domain type). If there are more domains between DIE and PACKAGE, the unknown 
// domains will be ignored and treated as an extension of the last known domain (i.e., DIE in this case).
//

ECX++;
execute cpuid with EAX = 0BH or 1FH;

}

COREPlusLogical_Processor_MASK = ~( (-1) << Mask_Core_shift);
DIEPlusCORE_MASK = ~( (-1) << Mask_Die_shift);

 
//
// Treat domains between DIE and physical package as an extension of DIE for software choosing not to implement or recognize 
// these unknown domains.
//

CORE_MASK = COREPlusLogical_Processor_MASK ^ Logical Processor Mask;
DIE_MASK = DIEPlusCORE_MASK ^ COREPlusLogical_Processor_MASK;
PACKAGE_MASK = (-1) << Mask_last_known_shift;

 
return -1;

} 
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10.9.3 Hierarchical ID of Logical Processors in an MP System
For Intel 64 and IA-32 processors, system hardware establishes an 8-bit initial APIC ID (or 32-bit APIC ID if the 
processor supports CPUID leaf 0BH) that is unique for each logical processor following power-up or RESET (see 
Section 10.6.1). Each logical processor on the system is allocated an initial APIC ID. BIOS may implement features 
that tell the OS to support less than the total number of logical processors on the system bus. Those logical proces-
sors that are not available to applications at runtime are halted during the OS boot process. As a result, the number 
valid local APIC_IDs that can be queried by affinitizing-current-thread-context (See Example 10-23) is limited to 
the number of logical processors enabled at runtime by the OS boot process.

Table 10-2 shows an example of the 8-bit APIC IDs that are initially reported for logical processors in a system with 
four Intel Xeon MP processors that support Intel Hyper-Threading Technology (a total of 8 logical processors, each 
physical package has two processor cores and supports Intel Hyper-Threading Technology). Of the two logical 
processors within a Intel Xeon processor MP, logical processor 0 is designated the primary logical processor and 
logical processor 1 as the secondary logical processor.

Table 10-3 shows the initial APIC IDs for a hypothetical situation with a dual processor system. Each physical 
package providing two processor cores, and each processor core also supporting Intel Hyper-Threading Tech-
nology.

Figure 10-7.  Topological Relationships Between Hierarchical IDs in a Hypothetical MP Platform

Table 10-2.  Initial APIC IDs for the Logical Processors in a System that has Four Intel Xeon MP Processors 
Supporting Intel Hyper-Threading Technology1 

Initial APIC ID PACKAGE_ID CORE_ID LOGICAL_PROCESSOR_ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 1H 0H 0H

3H 1H 0H 1H

4H 2H 0H 0H

5H 2H 0H 1H

6H 3H 0H 0H

7H 3H 0H 1H

NOTE:
1. Because information on the number of processor cores in a physical package was not available in early single-core processors sup-

porting Intel Hyper-Threading Technology, the CORE_ID can be treated as 0.
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10.9.3.1  Hierarchical ID of Logical Processors with x2APIC ID
Table 10-4 shows an example of possible x2APIC ID assignments for a dual processor system that support x2APIC. 
Each physical package providing four processor cores, and each processor core also supporting Intel Hyper-
Threading Technology. Note that the x2APIC ID need not be contiguous in the system.

Table 10-3.  Initial APIC IDs for the Logical Processors in a System that has Two Physical Processors Supporting 
Dual-Core and Intel Hyper-Threading Technology 

Initial APIC ID PACKAGE_ID CORE_ID LOGICAL_PROCESSOR_ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 0H 1H 0H

3H 0H 1H 1H

4H 1H 0H 0H

5H 1H 0H 1H

6H 1H 1H 0H

7H 1H 1H 1H

Table 10-4.  Example of Possible x2APIC ID Assignment in a System that has Two Physical Processors Supporting 
x2APIC and Intel Hyper-Threading Technology 

x2APIC ID PACKAGE_ID CORE_ID LOGICAL_PROCESSOR_ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 0H 1H 0H

3H 0H 1H 1H

4H 0H 2H 0H

5H 0H 2H 1H

6H 0H 3H 0H

7H 0H 3H 1H

10H 1H 0H 0H

11H 1H 0H 1H

12H 1H 1H 0H

13H 1H 1H 1H

14H 1H 2H 0H

15H 1H 2H 1H

16H 1H 3H 0H

17H 1H 3H 1H
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10.9.4 Algorithm for Three-Domain Mappings of APIC_ID
Software can gather the initial APIC_IDs for each logical processor supported by the operating system at runtime1 
and extract identifiers corresponding to the three domains of sharing topology (package, core, and logical 
processor). The three-domain algorithms below focus on a non-clustered MP system for simplicity. They do not 
assume APIC IDs are contiguous or that all logical processors on the platform are enabled.

Intel supports multi-threading systems where all physical processors report identical values in CPUID leaf 0BH, 
CPUID.1:EBX[23:16]), CPUID.42:EAX[31:26], and CPUID.43:EAX[25:14]. The algorithms below assume the 
target system has symmetry across physical package boundaries with respect to the number of logical processors 
per package, number of cores per package, and cache topology within a package.

Software can choose to assume three-domain hierarchy if it was developed to understand only three domains. 
However, software implementation needs to ensure it does not break if it runs on systems that have more domains 
in the hierarchy even if it does not recognize them.

The extraction algorithm (for three-domain mappings from an APIC ID) uses the general procedure depicted in 
Example 10-19, and is supplemented by more detailed descriptions on the derivation of topology enumeration 
parameters for extraction bit masks:

1. Detect hardware multi-threading support in the processor.

2. Derive a set of bit masks that can extract the sub ID of each hierarchical domain of the topology. The algorithm 
to derive extraction bit masks for LOGICAL_PROCESSOR_ID/CORE_ID/PACKAGE_ID differs based on APIC ID 
is 32-bit (see step 3 below) or 8-bit (see step 4 below).

3. If the processor supports CPUID leaf 0BH, each APIC ID contains a 32-bit value, the topology enumeration 
parameters needed to derive three-domain extraction bit masks are:

a. Query the right-shift value for the LOGICAL_PROCESSOR_ID domain of the topology using CPUID leaf 0BH 
with ECX =0H as input. The number of bits to shift-right on x2APIC ID (EAX[4:0]) can distinguish different 
higher-domain entities above logical processor in the same physical package. This is also the width of the 
bit mask to extract the LOGICAL_PROCESSOR_ID. The shift value may be 0 and enumerate no logical 
processor bit mask to create. A platform where cores only have one logical processor are not required to 
enumerate a separate bit layout for logical processor, and the lowest bits may only identify the core (where 
core and logical processor are then synonymous).

b. Enumerate until the desired domain is found (i.e., processor cores). Determine if the next domain is the 
expected domain. If the next domain is not known to the software, keep enumerating until the next known 
or the last domain. Software should use the previous domain before this to represent the last previously 
known domain (i.e., processor cores). If the software does not recognize or implement certain hierarchical 
domains, it should assume these unknown domains as an extension of the last known domain.

c. Query CPUID leaf 0BH for the amount of bit shift to distinguish next higher-domain entities (e.g., physical 
processor packages) in the system. This describes an explicit three-domain-topology situation for 
commonly available processors. Consult Example 10-17 to adapt to situations beyond a three-domain 
topology of a physical processor. The width of the extraction bit mask can be used to derive the cumulative 
extraction bitmask to extract the sub IDs of logical processors (including different processor cores) in the 
same physical package. The extraction bit mask to distinguish merely different processor cores can be 
derived by xor’ing the logical processor extraction bit mask from the cumulative extraction bit mask.

d. Query the 32-bit x2APIC ID for the logical processor where the current thread is executing.

e. Derive the extraction bit masks corresponding to LOGICAL_PROCESSOR_ID, CORE_ID, and PACKAGE_ID, 
starting from LOGICAL_PROCESSOR_ID.

f. Apply each extraction bit mask to the 32-bit x2APIC ID to extract sub-field IDs.

1. As noted in Section 10.6 and Section 10.9.3, the number of logical processors supported by the OS at runtime may be less than the 
total number logical processors available in the platform hardware.

2. Maximum number of addressable ID for processor cores in a physical processor is obtained by executing CPUID with EAX=4 and a 
valid ECX index. The ECX index starts at 0.

3. Maximum number addressable ID for processor cores sharing the target cache level is obtained by executing CPUID with EAX = 4 
and the ECX index corresponding to the target cache level.
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4. If the processor does not support CPUID leaf 0BH, each initial APIC ID contains an 8-bit value, the topology 
enumeration parameters needed to derive extraction bit masks are:

a. Query the size of address space for sub IDs that can accommodate logical processors in a physical 
processor package. This size parameters (CPUID.1:EBX[23:16]) can be used to derive the width of an 
extraction bitmask to enumerate the sub IDs of different logical processors in the same physical package.

b. Query the size of address space for sub IDs that can accommodate processor cores in a physical processor 
package. This size parameters can be used to derive the width of an extraction bitmask to enumerate the 
sub IDs of processor cores in the same physical package.

c. Query the 8-bit initial APIC ID for the logical processor where the current thread is executing.

d. Derive the extraction bit masks using respective address sizes corresponding to LOGICAL_PROCESSOR_ID, 
CORE_ID, and PACKAGE_ID, starting from LOGICAL_PROCESSOR_ID.

e. Apply each extraction bit mask to the 8-bit initial APIC ID to extract sub-field IDs.

Example 10-19.  Support Routines for Detecting Hardware Multi-Threading and Identifying the Relationships Between 
Package, Core, and Logical Processors

1. Detect support for Hardware Multi-Threading Support in a processor.

// Returns a non-zero value if CPUID reports the presence of hardware multi-threading 
// support in the physical package where the current logical processor is located. 
// This does not guarantee BIOS or OS will enable all logical processors in the physical 
// package and make them available to applications. 
// Returns zero if hardware multi-threading is not present. 

#define HWMT_BIT 10000000H

unsigned int HWMTSupported(void)
{

 // ensure cpuid instruction is supported
execute cpuid with eax = 0 to get vendor string
execute cpuid with eax = 1 to get feature flag and signature

// Check to see if this a Genuine Intel Processor 

if (vendor string EQ GenuineIntel) {
return (feature_flag_edx & HWMT_BIT); // bit 28

}
return 0;

}

Example 10-20.  Support Routines for Identifying Package, Core, and Logical Processors from 32-bit x2APIC ID

a. Derive the extraction bitmask for logical processors in a processor core and associated mask offset for different
cores.

int DeriveLogical_Processor_Mask_Offsets (void)
{

if (!HWMTSupported()) return -1;
execute cpuid with eax = 11, ECX = 0;
If (returned domain type encoding in ECX[15:8] does not match logical processor) return -1;
Mask_Logical_Processor_shift = EAX[4:0]; // # bits shift right of APIC ID to distinguish different cores, note this can be a shift

// of zero if there is only one logical processor per core.
Logical Processor Mask = ~( (-1) << Mask_Logical_Processor_shift); // shift left to derive extraction bitmask for 

// LOGICAL_PROCESSOR_ID
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return 0;
}

b. Derive the extraction bitmask for processor cores in a physical processor package and associated mask offset for
different packages.

int DeriveCore_Mask_Offsets (void)
{

if (!HWMTSupported()) return -1;
execute cpuid with eax = 11, ECX = 0;

while( ECX[15:8] ) { // domain type encoding is valid
Mask_Core_shift = EAX[4:0];   // needed to distinguish different physical packages 

         ECX ++; 
         execute cpuid with eax = 11; 
     }

COREPlusLogical_Processor_MASK = ~( (-1) << Mask_Core_shift);
// treat domains between core and physical package as a core for software choosing not to implement or recognize 
// these unknown domains
CORE_MASK = COREPlusLogical_Processor_MASK ^ Logical Processor Mask;
PACKAGE_MASK = (-1) << Mask_Core_shift;
return -1;

}

c. Query the x2APIC ID of a logical processor.

APIC_IDs for each logical processor.

unsigned char Getx2APIC_ID (void)
{

unsigned reg_edx = 0;
execute cpuid with eax = 11, ECX = 0
store returned value of edx
return (unsigned) (reg_edx) ;

}

Example 10-21.  Support Routines for Identifying Package, Core, and Logical Processors from 8-bit Initial APIC ID

a. Find the size of address space for logical processors in a physical processor package.

#define NUM_LOGICAL_BITS 00FF0000H 
// Use the mask above and CPUID.1.EBX[23:16] to obtain the max number of addressable IDs
// for logical processors in a physical package, 

//Returns the size of address space of logical processors in a physical processor package;
// Software should not assume the value to be a power of 2.

unsigned char MaxLPIDsPerPackage(void)
{

if (!HWMTSupported()) return 1;
execute cpuid with eax = 1

store returned value of ebx
return (unsigned char) ((reg_ebx & NUM_LOGICAL_BITS) >> 16);

}
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b. Find the size of address space for processor cores in a physical processor package.

// Returns the max number of addressable IDs for processor cores in a physical processor package;
// Software should not assume cpuid reports this value to be a power of 2.

unsigned MaxCoreIDsPerPackage(void)
{

if (!HWMTSupported()) return (unsigned char) 1;
if cpuid supports leaf number 4 
{ // we can retrieve multi-core topology info using leaf 4

execute cpuid with eax = 4, ecx = 0
store returned value of eax
return (unsigned) ((reg_eax >> 26) +1);

}
else // must be a single-core processor
return 1;

}

c. Query the initial APIC ID of a logical processor.

#define INITIAL_APIC_ID_BITS FF000000H // CPUID.1.EBX[31:24] initial APIC ID

// Returns the 8-bit unique initial APIC ID for the processor running the code. 
// Software can use OS services to affinitize the current thread to each logical processor 
// available under the OS to gather the initial APIC_IDs for each logical processor.

unsigned GetInitAPIC_ID (void)
{

unsigned int reg_ebx = 0;
execute cpuid with eax = 1
store returned value of ebx
return (unsigned) ((reg_ebx & INITIAL_APIC_ID_BITS) >> 24;

}

d. Find the width of an extraction bitmask from the maximum count of the bit-field (address size).

// Returns the mask bit width of a bit field from the maximum count that bit field can represent.
// This algorithm does not assume ‘address size’ to have a value equal to power of 2.
// Address size for LOGICAL_PROCESSOR_ID can be calculated from MaxLPIDsPerPackage()/MaxCoreIDsPerPackage()
// Then use the routine below to derive the corresponding width of logical processor extraction bitmask
// Address size for CORE_ID is MaxCoreIDsPerPackage(), 
// Derive the bitwidth for CORE extraction mask similarly

unsigned FindMaskWidth(Unsigned Max_Count)
{unsigned int mask_width, cnt = Max_Count;

__asm {
mov eax, cnt
mov ecx, 0
mov mask_width, ecx
dec eax
bsr cx, ax
jz next
inc cx
mov  mask_width, ecx
next:  
mov eax, mask_width
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}
return mask_width;

}

e. Extract a sub ID from an 8-bit full ID, using address size of the sub ID and shift count.

// The routine below can extract LOGICAL_PROCESSOR_ID, CORE_ID, and PACKAGE_ID respectively from the init APIC_ID
// To extract LOGICAL_PROCESSOR_ID, MaxSubIDvalue is set to the address size of LOGICAL_PROCESSOR_ID, Shift_Count = 0
// To extract CORE_ID, MaxSubIDvalue is the address size of CORE_ID, Shift_Count is width of logical processor extraction bitmask.
// Returns the value of the sub ID, this is not a zero-based value 

Unsigned char GetSubID(unsigned char Full_ID, unsigned char MaxSubIDvalue, unsigned char Shift_Count)
{

MaskWidth = FindMaskWidth(MaxSubIDValue);
MaskBits = ((uchar) (FFH << Shift_Count)) ^ ((uchar) (FFH << Shift_Count + MaskWidth)) ;
SubID = Full_ID & MaskBits;
Return SubID;

}

Software must not assume local APIC_ID values in an MP system are consecutive. Non-consecutive local APIC_IDs 
may be the result of hardware configurations or debug features implemented in the BIOS or OS.

An identifier for each hierarchical domain can be extracted from an 8-bit APIC_ID using the support routines illus-
trated in Example 10-21. The appropriate bit mask and shift value to construct the appropriate bit mask for each 
domain must be determined dynamically at runtime. 

10.9.5 Identifying Topological Relationships in an MP System
To detect the number of physical packages, processor cores, or other topological relationships in a MP system, the 
following procedures are recommended:
• Extract the three-domain identifiers from the APIC ID of each logical processor enabled by system software. 

The sequence is as follows (see the pseudo code shown in Example 10-22 and support routines shown in 
Example 10-19):

• The extraction start from the right-most bit field, corresponding to LOGICAL_PROCESSOR_ID, the 
innermost hierarchy in a three-domain topology (See Figure 10-7). For the right-most bit field, the shift 
value of the working mask is zero. The width of the bit field is determined dynamically using the 
maximum number of logical processor per core, which can be derived from information provided from 
CPUID.

• To extract the next bit-field, the shift value of the working mask is determined from the width of the bit 
mask of the previous step. The width of the bit field is determined dynamically using the maximum 
number of cores per package.

• To extract the remaining bit-field, the shift value of the working mask is determined from the maximum 
number of logical processor per package. So the remaining bits in the APIC ID (excluding those bits 
already extracted in the two previous steps) are extracted as the third identifier. This applies to a non-
clustered MP system, or if there is no need to distinguish between PACKAGE_ID and CLUSTER_ID.

If there is need to distinguish between PACKAGE_ID and CLUSTER_ID, PACKAGE_ID can be extracted 
using an algorithm similar to the extraction of CORE_ID, assuming the number of physical packages in 
each node of a clustered system is symmetric.

• Assemble the three-domain identifiers of LOGICAL_PROCESSOR_ID, CORE_ID, PACKAGE_IDs into arrays for 
each enabled logical processor. This is shown in Example 10-23a.

• To detect the number of physical packages: use PACKAGE_ID to identify those logical processors that reside in 
the same physical package. This is shown in Example 10-23b. This example also depicts a technique to 
construct a mask to represent the logical processors that reside in the same package.
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• To detect the number of processor cores: use CORE_ID to identify those logical processors that reside in the 
same core. This is shown in Example 10-23. This example also depicts a technique to construct a mask to 
represent the logical processors that reside in the same core.

In Example 10-22, the numerical ID value can be obtained from the value extracted with the mask by shifting it 
right by shift count. Algorithms below do not shift the value. The assumption is that the SubID values can be 
compared for equivalence without the need to shift. 

Example 10-22.  Pseudo Code Depicting Three-Domain Extraction Algorithm

For Each local_APIC_ID{
// Calculate Logical Processor Mask, the bit mask pattern to extract LOGICAL_PROCESSOR_ID, 
// Logical Processor Mask is determined using topology enumertaion parameters
// from CPUID leaf 0BH (Example 10-20);
// otherwise, Logical Processor Mask is determined using CPUID leaf 01H and leaf 04H (Example 10-21).
// This algorithm assumes there is symmetry across core boundary, i.e., each core within a
// package has the same number of logical processors
// LOGICAL_PROCESSOR_ID always starts from bit 0, corresponding to the right-most bit-field
LOGICAL_PROCESSOR_ID = APIC_ID & Logical Processor Mask;

// Extract CORE_ID:
// Core Mask is determined in Example 10-20 or Example 10-21
CORE_ID = (APIC_ID & Core Mask);

// Extract PACKAGE_ID:
// Assume single cluster. 
// Shift out the mask width for maximum logical processors per package
// Package Mask is determined in Example 10-20 or Example 10-21
PACKAGE_ID = (APIC_ID & Package Mask) ;

}

Example 10-23.  Compute the Number of Packages, Cores, and Processor Relationships in a MP System

a) Assemble lists of PACKAGE_ID, CORE_ID, and LOGICAL_PROCESSOR_ID of each enabled logical processors

// The BIOS and/or OS may limit the number of logical processors available to applications after system boot. 
// The below algorithm will compute topology for the processors visible to the thread that is computing it.

// Extract the 3-domains of IDs on every processor.
// SystemAffinity is a bitmask of all the processors started by the OS. Use OS specific APIs to obtain it.
// ThreadAffinityMask is used to affinitize the topology enumeration thread to each processor using OS specific APIs.
// Allocate per processor arrays to store the Package_ID, Core_ID, and LOGICAL_PROCESSOR_ID for every started processor.
 

ThreadAffinityMask = 1;
     ProcessorNum = 0;

while (ThreadAffinityMask ≠ 0 && ThreadAffinityMask <= SystemAffinity) {
// Check to make sure we can utilize this processor first.
if (ThreadAffinityMask & SystemAffinity){

Set thread to run on the processor specified in ThreadAffinityMask
Wait if necessary and ensure thread is running on specified processor

APIC_ID = GetAPIC_ID(); // 32 bit ID in Example 10-20 or 8-bit ID in Example 10-21
Extract the Package_ID, Core_ID, and LOGICAL_PROCESSOR_ID as explained in three domain extraction 

algorithm of Example 10-22
PackageID[ProcessorNUM] = PACKAGE_ID;
CoreID[ProcessorNum] = CORE_ID;
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LOGICAL_PROCESSOR_ID[ProcessorNum] = LOGICAL_PROCESSOR_ID;
ProcessorNum++;

}
ThreadAffinityMask <<= 1;

}
NumStartedLPs = ProcessorNum;

b) Using the list of PACKAGE_ID to count the number of physical packages in a MP system and construct, for each package, a multi-bit 
mask corresponding to those logical processors residing in the same package.

// Compute the number of packages by counting the number of processors with unique PACKAGE_IDs in the PackageID array. 
// Compute the mask of processors in each package.

// PackageIDBucket is an array of unique PACKAGE_ID values. Allocate an array of NumStartedLPs count of entries in this array.
// PackageProcessorMask is a corresponding array of the bit mask of processors belonging to the same package, these are 
// processors with the same PACKAGE_ID.
// The algorithm below assumes there is symmetry across package boundary if more than one socket is populated in an MP
//system.
// Bucket Package IDs and compute processor mask for every package.

PackageNum = 1;
PackageIDBucket[0] = PackageID[0];
ProcessorMask = 1;
PackageProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) { 

ProcessorMask << = 1; 
For (i=0; i < PackageNum; i++) {

// we may be comparing bit-fields of logical processors residing in different
// packages, the code below assume package symmetry
If (PackageID[ProcessorNum] = PackageIDBucket[i]) {

PackageProcessorMask[i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration

}
}
if (i =PackageNum) {

//PACKAGE_ID did not match any bucket, start new bucket
PackageIDBucket[i] = PackageID[ProcessorNum];
PackageProcessorMask[i] = ProcessorMask;
PackageNum++;

}
}
// PackageNum has the number of Packages started in OS
// PackageProcessorMask[] array has the processor set of each package

c) Using the list of CORE_ID to count the number of cores in a MP system and construct, for each core, a multi-bit mask corresponding 
to those logical processors residing in the same core. 

Processors in the same core can be determined by bucketing the processors with the same PACKAGE_ID and CORE_ID. Note that code 
below can BIT OR the values of PACKGE and CORE ID because they have not been shifted right.
The algorithm below assumes there is symmetry across package boundary if more than one socket is populated in an MP system.

//Bucketing PACKAGE and CORE IDs and computing processor mask for every core
CoreNum = 1;
CoreIDBucket[0] = PackageID[0] | CoreID[0];
ProcessorMask = 1;
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CoreProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) { 

ProcessorMask << = 1; 
For (i=0; i < CoreNum; i++) {

// we may be comparing bit-fields of logical processors residing in different
// packages, the code below assume package symmetry
If ((PackageID[ProcessorNum] | CoreID[ProcessorNum]) = CoreIDBucket[i]) {

CoreProcessorMask[i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration

}
}
if (i = CoreNum) {

//Did not match any bucket, start new bucket
CoreIDBucket[i] = PackageID[ProcessorNum] | CoreID[ProcessorNum];
CoreProcessorMask[i] = ProcessorMask;
CoreNum++;

}
}
// CoreNum has the number of cores started in the OS
// CoreProcessorMask[] array has the processor set of each core

Other processor relationships such as processor mask of sibling cores can be computed from set operations of the 
PackageProcessorMask[] and CoreProcessorMask[]. 

The algorithm shown above can be adapted to work with earlier generations of single-core IA-32 processors that 
support Intel Hyper-Threading Technology and in situations that the deterministic cache parameter leaf is not 
supported (provided CPUID supports initial APIC ID). A reference code example is available (see Intel® 64 Archi-
tecture Processor Topology Enumeration Technical Paper).

10.10 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS
When a logical processor in an MP system (including multi-core processor or processors supporting Intel Hyper-
Threading Technology) is idle (no work to do) or blocked (on a lock or semaphore), additional management of the 
core execution engine resource can be accomplished by using the HLT (halt), PAUSE, or the MONITOR/MWAIT 
instructions.

10.10.1 HLT Instruction
The HLT instruction stops the execution of the logical processor on which it is executed and places it in a halted 
state until further notice (see the description of the HLT instruction in Chapter 3 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A). When a logical processor is halted, active logical processors 
continue to have full access to the shared resources within the physical package. Here shared resources that were 
being used by the halted logical processor become available to active logical processors, allowing them to execute 
at greater efficiency. When the halted logical processor resumes execution, shared resources are again shared 
among all active logical processors. (See Section 10.10.6.3, “Halt Idle Logical Processors,” for more information 
about using the HLT instruction with processors supporting Intel Hyper-Threading Technology.)

10.10.2 PAUSE Instruction
The PAUSE instruction can improves the performance of processors supporting Intel Hyper-Threading Technology 
when executing “spin-wait loops” and other routines where one thread is accessing a shared lock or semaphore in 
a tight polling loop. When executing a spin-wait loop, the processor can suffer a severe performance penalty when 
exiting the loop because it detects a possible memory order violation and flushes the core processor’s pipeline. The 
PAUSE instruction provides a hint to the processor that the code sequence is a spin-wait loop. The processor uses 
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this hint to avoid the memory order violation and prevent the pipeline flush. In addition, the PAUSE instruction de-
pipelines the spin-wait loop to prevent it from consuming execution resources excessively and consume power 
needlessly. (See Section 10.10.6.1, “Use the PAUSE Instruction in Spin-Wait Loops,” for more information about 
using the PAUSE instruction with IA-32 processors supporting Intel Hyper-Threading Technology.)

10.10.3 Detecting Support MONITOR/MWAIT Instruction
Streaming SIMD Extensions 3 introduced two instructions (MONITOR and MWAIT) to help multithreaded software 
improve thread synchronization. In the initial implementation, MONITOR and MWAIT are available to software at 
ring 0. The instructions are conditionally available at levels greater than 0. Use the following steps to detect the 
availability of MONITOR and MWAIT:
• Use CPUID to query the MONITOR bit (CPUID.1.ECX[3] = 1).
• If CPUID indicates support, execute MONITOR inside a TRY/EXCEPT exception handler and trap for an 

exception. If an exception occurs, MONITOR and MWAIT are not supported at a privilege level greater than 0. 
See Example 10-24.

Example 10-24.  Verifying MONITOR/MWAIT Support

boolean MONITOR_MWAIT_works = TRUE;
try {

_asm {
xor ecx, ecx
xor edx, edx
mov eax, MemArea
monitor 
}

        // Use monitor
} except (UNWIND) {
        // if we get here, MONITOR/MWAIT is not supported

MONITOR_MWAIT_works = FALSE;
}

10.10.4 MONITOR/MWAIT Instruction
Operating systems usually implement idle loops to handle thread synchronization. In a typical idle-loop scenario, 
there could be several “busy loops” and they would use a set of memory locations. An impacted processor waits in 
a loop and poll a memory location to determine if there is available work to execute. The posting of work is typically 
a write to memory (the work-queue of the waiting processor). The time for initiating a work request and getting it 
scheduled is on the order of a few bus cycles. 

From a resource sharing perspective (logical processors sharing execution resources), use of the HLT instruction in 
an OS idle loop is desirable but has implications. Executing the HLT instruction on a idle logical processor puts the 
targeted processor in a non-execution state. This requires another processor (when posting work for the halted 
logical processor) to wake up the halted processor using an inter-processor interrupt. The posting and servicing of 
such an interrupt introduces a delay in the servicing of new work requests. 

In a shared memory configuration, exits from busy loops usually occur because of a state change applicable to a 
specific memory location; such a change tends to be triggered by writes to the memory location by another agent 
(typically a processor). 

MONITOR/MWAIT complement the use of HLT and PAUSE to allow for efficient partitioning and un-partitioning of 
shared resources among logical processors sharing physical resources. MONITOR sets up an effective address 
range that is monitored for write-to-memory activities; MWAIT places the processor in an optimized state (this may 
vary between different implementations) until a write to the monitored address range occurs. 

In the initial implementation of MONITOR and MWAIT, they are available at CPL = 0 only.
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Both instructions rely on the state of the processor’s monitor hardware. The monitor hardware can be either armed 
(by executing the MONITOR instruction) or triggered (due to a variety of events, including a store to the monitored 
memory region). If upon execution of MWAIT, monitor hardware is in a triggered state: MWAIT behaves as a NOP 
and execution continues at the next instruction in the execution stream. The state of monitor hardware is not archi-
tecturally visible except through the behavior of MWAIT.

Multiple events other than a write to the triggering address range can cause a processor that executed MWAIT to 
wake up. These include events that would lead to voluntary or involuntary context switches, such as:
• External interrupts, including NMI, SMI, INIT, BINIT, MCERR, A20M#
• Faults, Aborts (including Machine Check)
• Architectural TLB invalidations including writes to CR0, CR3, CR4, and certain MSR writes; execution of LMSW 

(occurring prior to issuing MWAIT but after setting the monitor)
• Voluntary transitions due to fast system call and far calls (occurring prior to issuing MWAIT but after setting the 

monitor)

Power management related events (such as Thermal Monitor 2 or chipset driven STPCLK# assertion) will not cause 
the monitor event pending flag to be cleared. Faults will not cause the monitor event pending flag to be cleared.

Software should not allow for voluntary context switches in between MONITOR/MWAIT in the instruction flow. Note 
that execution of MWAIT does not re-arm the monitor hardware. This means that MONITOR/MWAIT need to be 
executed in a loop. Also note that exits from the MWAIT state could be due to a condition other than a write to the 
triggering address; software should explicitly check the triggering data location to determine if the write occurred. 
Software should also check the value of the triggering address following the execution of the monitor instruction 
(and prior to the execution of the MWAIT instruction). This check is to identify any writes to the triggering address 
that occurred during the course of MONITOR execution. 

The address range provided to the MONITOR instruction must be of write-back caching type. Only write-back 
memory type stores to the monitored address range will trigger the monitor hardware. If the address range is not 
in memory of write-back type, the address monitor hardware may not be set up properly or the monitor hardware 
may not be armed. Software is also responsible for ensuring that
• Writes that are not intended to cause the exit of a busy loop do not write to a location within the address region 

being monitored by the monitor hardware,
• Writes intended to cause the exit of a busy loop are written to locations within the monitored address region.

Not doing so will lead to more false wakeups (an exit from the MWAIT state not due to a write to the intended data 
location). These have negative performance implications. It might be necessary for software to use padding to 
prevent false wakeups. CPUID provides a mechanism for determining the size data locations for monitoring as well 
as a mechanism for determining the size of a the pad.

10.10.5 Monitor/Mwait Address Range Determination
To use the MONITOR/MWAIT instructions, software should know the length of the region monitored by the 
MONITOR/MWAIT instructions and the size of the coherence line size for cache-snoop traffic in a multiprocessor 
system. This information can be queried using the CPUID monitor leaf function (EAX = 05H). You will need the 
smallest and largest monitor line size:
• To avoid missed wake-ups: make sure that the data structure used to monitor writes fits within the smallest 

monitor line-size. Otherwise, the processor may not wake up after a write intended to trigger an exit from 
MWAIT. 

• To avoid false wake-ups; use the largest monitor line size to pad the data structure used to monitor writes. 
Software must make sure that beyond the data structure, no unrelated data variable exists in the triggering 
area for MWAIT. A pad may be needed to avoid this situation.

These above two values bear no relationship to cache line size in the system and software should not make any 
assumptions to that effect. Within a single-cluster system, the two parameters should default to be the same (the 
size of the monitor triggering area is the same as the system coherence line size).

Based on the monitor line sizes returned by the CPUID, the OS should dynamically allocate structures with appro-
priate padding. If static data structures must be used by an OS, attempt to adapt the data structure and use a 
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dynamically allocated data buffer for thread synchronization. When the latter technique is not possible, consider 
not using MONITOR/MWAIT when using static data structures.

To set up the data structure correctly for MONITOR/MWAIT on multi-clustered systems: interaction between 
processors, chipsets, and the BIOS is required (system coherence line size may depend on the chipset used in the 
system; the size could be different from the processor’s monitor triggering area). The BIOS is responsible to set the 
correct value for system coherence line size using the IA32_MONITOR_FILTER_LINE_SIZE MSR. Depending on the 
relative magnitude of the size of the monitor triggering area versus the value written into the IA32_MONITOR_FIL-
TER_LINE_SIZE MSR, the smaller of the parameters will be reported as the Smallest Monitor Line Size. The larger 
of the parameters will be reported as the Largest Monitor Line Size.

10.10.6 Required Operating System Support
This section describes changes that must be made to an operating system to run on processors supporting Intel 
Hyper-Threading Technology. It also describes optimizations that can help an operating system make more efficient 
use of the logical processors sharing execution resources. The required changes and suggested optimizations are 
representative of the types of modifications that appear in Windows* XP and Linux* kernel 2.4.0 operating systems 
for Intel processors supporting Intel Hyper-Threading Technology. Additional optimizations for processors 
supporting Intel Hyper-Threading Technology are described in the Intel® 64 and IA-32 Architectures Optimization 
Reference Manual.

10.10.6.1  Use the PAUSE Instruction in Spin-Wait Loops
Intel recommends that a PAUSE instruction be placed in all spin-wait loops that run on Intel processors supporting 
Intel Hyper-Threading Technology and multi-core processors. 

Software routines that use spin-wait loops include multiprocessor synchronization primitives (spin-locks, sema-
phores, and mutex variables) and idle loops. Such routines keep the processor core busy executing a load-compare-
branch loop while a thread waits for a resource to become available. Including a PAUSE instruction in such a loop 
greatly improves efficiency (see Section 10.10.2, “PAUSE Instruction”). The following routine gives an example of a 
spin-wait loop that uses a PAUSE instruction:

Spin_Lock:
CMP lockvar, 0 ;Check if lock is free
JE Get_Lock
PAUSE ;Short delay
JMP Spin_Lock

Get_Lock:
MOV EAX, 1
XCHG EAX, lockvar ;Try to get lock
CMP EAX, 0 ;Test if successful
JNE Spin_Lock

Critical_Section:
<critical section code>
MOV lockvar, 0
...

Continue:

The spin-wait loop above uses a “test, test-and-set” technique for determining the availability of the synchroniza-
tion variable. This technique is recommended when writing spin-wait loops.

In IA-32 processor generations earlier than the Pentium 4 processor, the PAUSE instruction is treated as a NOP 
instruction.

10.10.6.2  Potential Usage of MONITOR/MWAIT in C0 Idle Loops
An operating system may implement different handlers for different idle states. A typical OS idle loop on an ACPI-
compatible OS is shown in Example 10-25: 
10-52 Vol. 3A



MULTIPLE-PROCESSOR MANAGEMENT
Example 10-25.  A Typical OS Idle Loop

// WorkQueue is a memory location indicating there is a thread 
// ready to run.  A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The idle loop is entered with interrupts disabled.

WHILE (1) {
IF (WorkQueue) THEN {

// Schedule work at WorkQueue.
} 

ELSE {
// No work to do - wait in appropriate C-state handler depending 
// on Idle time accumulated
IF (IdleTime >= IdleTimeThreshhold) THEN {

// Call appropriate C1, C2, C3 state handler, C1 handler 
// shown below
}

}
}
// C1 handler uses a Halt instruction
VOID C1Handler() 
{ STI

HLT
}

The MONITOR and MWAIT instructions may be considered for use in the C0 idle state loops, if MONITOR and MWAIT are supported. 

Example 10-26.  An OS Idle Loop with MONITOR/MWAIT in the C0 Idle Loop

// WorkQueue is a memory location indicating there is a thread 
// ready to run.  A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The following example assumes that the necessary padding has been 
// added surrounding WorkQueue to eliminate false wakeups
// The idle loop is entered with interrupts disabled.

WHILE (1) {
IF (WorkQueue) THEN {

// Schedule work at WorkQueue.
} 

ELSE {
// No work to do - wait in appropriate C-state handler depending 
// on Idle time accumulated.
IF (IdleTime >= IdleTimeThreshhold) THEN {

// Call appropriate C1, C2, C3 state handler, C1 
// handler shown below
MONITOR WorkQueue // Setup of eax with WorkQueue

// LinearAddress, 
// ECX, EDX = 0

IF (WorkQueue = 0) THEN {
MWAIT
}

}
}
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}
// C1 handler uses a Halt instruction.
VOID C1Handler() 
{ STI

HLT
}

10.10.6.3  Halt Idle Logical Processors
If one of two logical processors is idle or in a spin-wait loop of long duration, explicitly halt that processor by means 
of a HLT instruction. 

In an MP system, operating systems can place idle processors into a loop that continuously checks the run queue 
for runnable software tasks. Logical processors that execute idle loops consume a significant amount of core’s 
execution resources that might otherwise be used by the other logical processors in the physical package. For this 
reason, halting idle logical processors optimizes the performance.1 If all logical processors within a physical 
package are halted, the processor will enter a power-saving state.

10.10.6.4  Potential Usage of MONITOR/MWAIT in C1 Idle Loops
An operating system may also consider replacing HLT with MONITOR/MWAIT in its C1 idle loop. An example is 
shown in Example 10-27: 

Example 10-27.  An OS Idle Loop with MONITOR/MWAIT in the C1 Idle Loop

// WorkQueue is a memory location indicating there is a thread 
// ready to run.  A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The following example assumes that the necessary padding has been 
// added surrounding WorkQueue to eliminate false wakeups
// The idle loop is entered with interrupts disabled.

WHILE (1) {
IF (WorkQueue) THEN {

// Schedule work at WorkQueue
} 

ELSE {
// No work to do - wait in appropriate C-state handler depending 
// on Idle time accumulated
IF (IdleTime >= IdleTimeThreshhold) THEN {
// Call appropriate C1, C2, C3 state handler, C1 
// handler shown below
}

}
}

VOID C1Handler() 

{ MONITOR WorkQueue // Setup of eax with WorkQueue LinearAddress, 
// ECX, EDX = 0

IF (WorkQueue = 0) THEN {
STI

1. Excessive transitions into and out of the HALT state could also incur performance penalties. Operating systems should evaluate the 
performance trade-offs for their operating system.
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MWAIT // EAX, ECX = 0
}

}

10.10.6.5  Guidelines for Scheduling Threads on Logical Processors Sharing Execution Resources
Because the logical processors, the order in which threads are dispatched to logical processors for execution can 
affect the overall efficiency of a system. The following guidelines are recommended for scheduling threads for 
execution.
• Dispatch threads to one logical processor per processor core before dispatching threads to the other logical 

processor sharing execution resources in the same processor core. 
• In an MP system with two or more physical packages, distribute threads out over all the physical processors, 

rather than concentrate them in one or two physical processors.
• Use processor affinity to assign a thread to a specific processor core or package, depending on the cache-

sharing topology. The practice increases the chance that the processor’s caches will contain some of the 
thread’s code and data when it is dispatched for execution after being suspended. 

10.10.6.6  Eliminate Execution-Based Timing Loops
Intel discourages the use of timing loops that depend on a processor’s execution speed to measure time. There are 
several reasons:
• Timing loops cause problems when they are calibrated on a IA-32 processor running at one frequency and then 

executed on a processor running at another frequency. 
• Routines for calibrating execution-based timing loops produce unpredictable results when run on an IA-32 

processor supporting Intel Hyper-Threading Technology. This is due to the sharing of execution resources 
between the logical processors within a physical package. 

To avoid the problems described, timing loop routines must use a timing mechanism for the loop that does not 
depend on the execution speed of the logical processors in the system. The following sources are generally avail-
able:
• A high resolution system timer (for example, an Intel 8254).
• A high resolution timer within the processor (such as, the local APIC timer or the time-stamp counter).

For additional information, see the Intel® 64 and IA-32 Architectures Optimization Reference Manual.

10.10.6.7  Place Locks and Semaphores in Aligned, 128-Byte Blocks of Memory
When software uses locks or semaphores to synchronize processes, threads, or other code sections; Intel recom-
mends that only one lock or semaphore be present within a cache line (or 128 byte sector, if 128-byte sector is 
supported). In processors based on Intel NetBurst microarchitecture (which support 128-byte sector consisting of 
two cache lines), following this recommendation means that each lock or semaphore should be contained in a 128-
byte block of memory that begins on a 128-byte boundary. The practice minimizes the bus traffic required to 
service locks.

10.11 MP INITIALIZATION FOR P6 FAMILY PROCESSORS
This section describes the MP initialization process for systems that use multiple P6 family processors. This process 
uses the MP initialization protocol that was introduced with the Pentium Pro processor (see Section 10.4, “Multiple-
Processor (MP) Initialization”). For P6 family processors, this protocol is typically used to boot 2 or 4 processors 
that reside on single system bus; however, it can support from 2 to 15 processors in a multi-clustered system when 
the APIC buses are tied together. Larger systems are not supported.
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10.11.1 Overview of the MP Initialization Process for P6 Family Processors
During the execution of the MP initialization protocol, one processor is selected as the bootstrap processor (BSP) 
and the remaining processors are designated as application processors (APs), see Section 10.4.1, “BSP and AP 
Processors.” Thereafter, the BSP manages the initialization of itself and the APs. This initialization includes 
executing BIOS initialization code and operating-system initialization code.

The MP protocol imposes the following requirements and restrictions on the system:
• An APIC clock (APICLK) must be provided.
• The MP protocol will be executed only after a power-up or RESET. If the MP protocol has been completed and a 

BSP has been chosen, subsequent INITs (either to a specific processor or system wide) do not cause the MP 
protocol to be repeated. Instead, each processor examines its BSP flag (in the APIC_BASE MSR) to determine 
whether it should execute the BIOS boot-strap code (if it is the BSP) or enter a wait-for-SIPI state (if it is an 
AP).

• All devices in the system that are capable of delivering interrupts to the processors must be inhibited from 
doing so for the duration of the MP initialization protocol. The time during which interrupts must be inhibited 
includes the window between when the BSP issues an INIT-SIPI-SIPI sequence to an AP and when the AP 
responds to the last SIPI in the sequence.

The following special-purpose interprocessor interrupts (IPIs) are used during the boot phase of the MP initializa-
tion protocol. These IPIs are broadcast on the APIC bus.
• Boot IPI (BIPI)—Initiates the arbitration mechanism that selects a BSP from the group of processors on the 

system bus and designates the remainder of the processors as APs. Each processor on the system bus 
broadcasts a BIPI to all the processors following a power-up or RESET. 

• Final Boot IPI (FIPI)—Initiates the BIOS initialization procedure for the BSP. This IPI is broadcast to all the 
processors on the system bus, but only the BSP responds to it. The BSP responds by beginning execution of the 
BIOS initialization code at the reset vector.

• Startup IPI (SIPI)—Initiates the initialization procedure for an AP. The SIPI message contains a vector to the AP 
initialization code in the BIOS.

Table 10-5 describes the various fields of the boot phase IPIs.

For BIPI messages, the lower 4 bits of the vector field contain the APIC ID of the processor issuing the message and 
the upper 4 bits contain the “generation ID” of the message. All P6 family processor will have a generation ID of 4H. 
BIPIs will therefore use vector values ranging from 40H to 4EH (4FH can not be used because FH is not a valid APIC 
ID). 

10.11.2 MP Initialization Protocol Algorithm
Following a power-up or RESET of a system, the P6 family processors in the system execute the MP initialization 
protocol algorithm to initialize each of the processors on the system bus. In the course of executing this algorithm, 
the following boot-up and initialization operations are carried out:

Table 10-5.  Boot Phase IPI Message Format

Type Destination
Field

Destination
Shorthand

Trigger
Mode Level

Destination
Mode

Delivery
Mode

Vector
(Hex)

BIPI Not used All including self Edge Deassert Don’t Care Fixed
(000)

40 to 4E*

FIPI Not used All including self Edge Deassert Don’t Care Fixed
(000)

10

SIPI Used All excluding self Edge Assert Physical StartUp
(110)

00 to FF

NOTE:
* For all P6 family processors.
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1. Each processor on the system bus is assigned a unique APIC ID, based on system topology (see Section 10.4.5, 
“Identifying Logical Processors in an MP System”). This ID is written into the local APIC ID register for each 
processor.

2. Each processor executes its internal BIST simultaneously with the other processors on the system bus. Upon 
completion of the BIST (at T0), each processor broadcasts a BIPI to “all including self” (see Figure 10-8). 

3. APIC arbitration hardware causes all the APICs to respond to the BIPIs one at a time (at T1, T2, T3, and T4). 

4. When the first BIPI is received (at time T1), each APIC compares the four least significant bits of the BIPI’s 
vector field with its APIC ID. If the vector and APIC ID match, the processor selects itself as the BSP by setting 
the BSP flag in its IA32_APIC_BASE MSR. If the vector and APIC ID do not match, the processor selects itself 
as an AP by entering the “wait for SIPI” state. (Note that in Figure 10-8, the BIPI from processor 1 is the first 
BIPI to be handled, so processor 1 becomes the BSP.)

5. The newly established BSP broadcasts an FIPI message to “all including self.” The FIPI is guaranteed to be 
handled only after the completion of the BIPIs that were issued by the non-BSP processors.

6. After the BSP has been established, the outstanding BIPIs are received one at a time (at T2, T3, and T4) and 
ignored by all processors.

7. When the FIPI is finally received (at T5), only the BSP responds to it. It responds by fetching and executing 
BIOS boot-strap code, beginning at the reset vector (physical address FFFF FFF0H).

8. As part of the boot-strap code, the BSP creates an ACPI table and an MP table and adds its initial APIC ID to 
these tables as appropriate. 

9. At the end of the boot-strap procedure, the BSP broadcasts a SIPI message to all the APs in the system. Here, 
the SIPI message contains a vector to the BIOS AP initialization code (at 000V V000H, where VV is the vector 
contained in the SIPI message).

10. All APs respond to the SIPI message by racing to a BIOS initialization semaphore. The first one to the 
semaphore begins executing the initialization code. (See MP init code for semaphore implementation details.) 
As part of the AP initialization procedure, the AP adds its APIC ID number to the ACPI and MP tables as appro-
priate. At the completion of the initialization procedure, the AP executes a CLI instruction (to clear the IF flag in 
the EFLAGS register) and halts itself.

11. When each of the APs has gained access to the semaphore and executed the AP initialization code and all 
written their APIC IDs into the appropriate places in the ACPI and MP tables, the BSP establishes a count for the 
number of processors connected to the system bus, completes executing the BIOS boot-strap code, and then 
begins executing operating-system boot-strap and start-up code.

 

Figure 10-8.  MP System With Multiple Pentium III Processors
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MULTIPLE-PROCESSOR MANAGEMENT
12. While the BSP is executing operating-system boot-strap and start-up code, the APs remain in the halted state. 
In this state they will respond only to INITs, NMIs, and SMIs. They will also respond to snoops and to assertions 
of the STPCLK# pin.

See Section 10.4.4, “MP Initialization Example,” for an annotated example the use of the MP protocol to boot IA-32 
processors in an MP. This code should run on any IA-32 processor that used the MP protocol.

10.11.2.1  Error Detection and Handling During the MP Initialization Protocol
Errors may occur on the APIC bus during the MP initialization phase. These errors may be transient or permanent 
and can be caused by a variety of failure mechanisms (for example, broken traces, soft errors during bus usage, 
etc.). All serial bus related errors will result in an APIC checksum or acceptance error. 

The MP initialization protocol makes the following assumptions regarding errors that occur during initialization:
• If errors are detected on the APIC bus during execution of the MP initialization protocol, the processors that 

detect the errors are shut down. 
• The MP initialization protocol will be executed by processors even if they fail their BIST sequences.
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CHAPTER 11
PROCESSOR MANAGEMENT AND INITIALIZATION

This chapter describes the facilities provided for managing processor wide functions and for initializing the 
processor. The subjects covered include: processor initialization, x87 FPU initialization, processor configuration, 
feature determination, mode switching, the MSRs (in the Pentium, P6 family, Pentium 4, and Intel Xeon proces-
sors), and the MTRRs (in the P6 family, Pentium 4, and Intel Xeon processors).

11.1 INITIALIZATION OVERVIEW
Following power-up or an assertion of the RESET# pin, each processor on the system bus performs a hardware 
initialization of the processor (known as a hardware reset) and an optional built-in self-test (BIST). A hardware 
reset sets each processor’s registers to a known state and places the processor in real-address mode. It also inval-
idates the internal caches, translation lookaside buffers (TLBs) and the branch target buffer (BTB). At this point, 
the action taken depends on the processor family:
• Pentium 4 processors (CPUID DisplayFamily 0FH) — All the processors on the system bus (including a 

single processor in a uniprocessor system) execute the multiple processor (MP) initialization protocol. The 
processor that is selected through this protocol as the bootstrap processor (BSP) then immediately starts 
executing software-initialization code in the current code segment beginning at the offset in the EIP register. 
The application (non-BSP) processors (APs) go into a Wait For Startup IPI (SIPI) state while the BSP is 
executing initialization code. See Section 10.4, “Multiple-Processor (MP) Initialization,” for more details. Note 
that in a uniprocessor system, the single Pentium 4 or Intel Xeon processor automatically becomes the BSP.

• IA-32 and Intel 64 processors (CPUID DisplayFamily 06H) — The action taken is the same as for the 
Pentium 4 processors (as described in the previous paragraph).

• Pentium processors — In either a single- or dual- processor system, a single Pentium processor is always 
pre-designated as the primary processor. Following a reset, the primary processor behaves as follows in both 
single- and dual-processor systems. Using the dual-processor (DP) ready initialization protocol, the primary 
processor immediately starts executing software-initialization code in the current code segment beginning at 
the offset in the EIP register. The secondary processor (if there is one) goes into a halt state.

• Intel486 processor — The primary processor (or single processor in a uniprocessor system) immediately 
starts executing software-initialization code in the current code segment beginning at the offset in the EIP 
register. (The Intel486 does not automatically execute a DP or MP initialization protocol to determine which 
processor is the primary processor.)

The software-initialization code performs all system-specific initialization of the BSP or primary processor and the 
system logic.

At this point, for MP (or DP) systems, the BSP (or primary) processor wakes up each AP (or secondary) processor 
to enable those processors to execute self-configuration code.

When all processors are initialized, configured, and synchronized, the BSP or primary processor begins executing 
an initial operating-system or executive task.

The x87 FPU is also initialized to a known state during hardware reset. x87 FPU software initialization code can then 
be executed to perform operations such as setting the precision of the x87 FPU and the exception masks. No special 
initialization of the x87 FPU is required to switch operating modes. 

Asserting the INIT# pin on the processor invokes a similar response to a hardware reset. The major difference is 
that during an INIT, the internal caches, MSRs, MTRRs, and x87 FPU state are left unchanged (although, the TLBs 
and BTB are invalidated as with a hardware reset). An INIT provides a method for switching from protected to real-
address mode while maintaining the contents of the internal caches.
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PROCESSOR MANAGEMENT AND INITIALIZATION
11.1.1 Processor State After Reset
Following power-up, The state of control register CR0 is 60000010H (see Figure 11-1). This places the processor is 
in real-address mode with paging disabled. 

The state of the flags and other registers following power-up for the Pentium 4, Pentium Pro, and Pentium proces-
sors are shown in Section 24.39, “Initial State of Pentium, Pentium Pro and Pentium 4 Processors,” of the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Table 11-1 shows processor states of IA-32 and Intel 64 processors with CPUID DisplayFamily signature of 06H at 
the following events: power-up, RESET, and INIT. In a few cases, the behavior of some registers behave slightly 
different across warm RESET, the variant cases are marked in Table 11-1 and described in more detail in Table 
11-2.

Figure 11-1.  Contents of CR0 Register after Reset

Table 11-1.  IA-32 and Intel® 64 Processor States Following Power-up, Reset, or INIT 

Register Power up Reset INIT

EFLAGS1 00000002H 00000002H 00000002H

EIP 0000FFF0H 0000FFF0H 0000FFF0H

CR0 60000010H2 60000010H2 60000010H2

CR2, CR3, CR4 00000000H 00000000H 00000000H

CS Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

SS, DS, ES, FS, GS Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

EDX 000n06xxH3 000n06xxH3 000n06xxH3 

EAX 04 04 04

EBX, ECX, ESI, EDI, EBP, ESP 00000000H 00000000H 00000000H

External x87 FPU error reporting: 0
(Not used): 1
No task switch: 0
x87 FPU instructions not trapped: 0
WAIT/FWAIT instructions not trapped: 0
Real-address mode: 0
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Paging disabled: 0

Alignment check disabled: 0

Caching disabled: 1
Not write-through disabled: 1

Write-protect disabled: 0

Reserved Reserved
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ST0 through ST75 +0.0 +0.0 FINIT/FNINIT: Unchanged

x87 FPU Control Word5 0040H 0040H FINIT/FNINIT: 037FH

x87 FPU Status Word5 0000H 0000H FINIT/FNINIT: 0000H

x87 FPU Tag Word5 5555H 5555H FINIT/FNINIT: FFFFH

x87 FPU Data Operand and 
CS Seg. Selectors5

0000H 0000H FINIT/FNINIT: 0000H

x87 FPU Data Operand and 
Inst. Pointers5

00000000H 00000000H FINIT/FNINIT: 00000000H

MM0 through MM75 0000000000000000H 0000000000000000H INIT or FINIT/FNINIT: Unchanged

XMM0 through XMM7 0H 0H Unchanged

MXCSR 1F80H 1F80H Unchanged

GDTR, IDTR Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

LDTR, Task Register Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

DR0, DR1, DR2, DR3 00000000H 00000000H 00000000H

DR6 FFFF0FF0H FFFF0FF0H FFFF0FF0H

DR7 00000400H 00000400H 00000400H

R8-R15 0000000000000000H 0000000000000000H 0000000000000000H

XMM8-XMM15 0H 0H Unchanged

XCR0 1H 1H Unchanged

IA32_XSS 0H 0H Unchanged

YMM_H[255:128] 0H 0H Unchanged

BNDCFGU 0H 0H 0H

BND0-BND3 0H 0H 0H

IA32_BNDCFGS 0H 0H 0H

OPMASK 0H 0H Unchanged

ZMM_H[511:256] 0H 0H Unchanged

ZMMHi16[511:0] 0H 0H Unchanged

PKRU 0H 0H Unchanged

Intel Processor Trace MSRs 0H 0HW Unchanged

Time-Stamp Counter 0H 0HW Unchanged

IA32_TSC_AUX 0H 0H Unchanged

IA32_TSC_ADJUST 0H 0H Unchanged

IA32_TSC_DEADLINE 0H 0H Unchanged

IA32_SYSENTER_CS/ESP/EIP 0H 0H Unchanged

IA32_EFER 0000000000000000H 0000000000000000H 0000000000000000H

IA32_STAR/LSTAR 0H 0H Unchanged

Table 11-1.  IA-32 and Intel® 64 Processor States Following Power-up, Reset, or INIT  (Contd.)

Register Power up Reset INIT
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IA32_FS_BASE/GS_BASE 0H 0H 0H

IA32_PMCx, 
IA32_PERFEVTSELx

0H 0H Unchanged

IA32_PERF_GLOBAL_CTRL Sets bits n-1:0 and clears the 
upper bits.7

Sets bits n-1:0 and clears the 
upper bits.7

Unchanged

IA32_FIXED_CTRx, 
IA32_FIXED_CTR_CTRL

0H 0H Unchanged

Data and Code Cache, TLBs Invalid6 Invalid6 Unchanged

Fixed MTRRs Disabled Disabled Unchanged

Variable MTRRs Disabled Disabled Unchanged

Machine-Check Banks Undefined UndefinedW Unchanged

Last Branch Record Stack 0 0W Unchanged

APIC Enabled Enabled Unchanged

X2APIC Disabled Disabled Unchanged

IA32_DEBUG_INTERFACE 0 0W Unchanged

NOTES: 
1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software should not depend on the states of 

any of these bits.
2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.
3. Where “n” is the Extended Model Value for the respective processor, and “xx” = don’t care.
4. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST cannot be invoked during an INIT.)
5. The state of the x87 FPU and MMX registers is not changed by the execution of an INIT.
6. Internal caches are invalid after power-up and RESET, but left unchanged with an INIT.
7. Where “n” is the number of general-purpose counters available in the processor. See Chapter 21, “Performance Monitoring,” for addi-

tional details.
W: Warm RESET behavior differs from power-on RESET with details listed in Table 11-2.

Table 11-2.  Variance of RESET Values in Selected Intel Architecture Processors

State XREF Value Feature Flag or DisplayFamily_DisplayModel Signatures

Time-Stamp Counter Warm RESET Unmodified across warm 
Reset

06_2DH, 06_3EH

Machine-Check Banks Warm RESET IA32_MCi_Status banks are 
unmodified across warm 
Reset

06_2DH, 06_3EH, 06_3FH, 06_4FH, 06_56H

Last Branch Record Stack Warm RESET LBR stack MSRs are 
unmodified across warm 
Reset

06_1AH, 06_1CH, DisplayFamiy= 06 and DisplayModel >1DH

Intel Processor Trace 
MSRs

Warm RESET Clears 
IA32_RTIT_CTL.TraceEn, 
the rest of MSRs are 
unmodified

If CPUID.(EAX=14H, ECX=0H):EBX[bit 2] = 1

IA32_DEBUG_INTERFACE Warm RESET Unmodified across warm 
Reset

If CPUID.01H:ECX.[11] = 1 

Table 11-1.  IA-32 and Intel® 64 Processor States Following Power-up, Reset, or INIT  (Contd.)

Register Power up Reset INIT
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11.1.2 Processor Built-In Self-Test (BIST)
Hardware may request that the BIST be performed at power-up. The EAX register is cleared (0H) if the processor 
passes the BIST. A nonzero value in the EAX register after the BIST indicates that a processor fault was detected. 
If the BIST is not requested, the contents of the EAX register after a hardware reset is 0H. 

The overhead for performing a BIST varies between processor families. For example, the BIST takes approximately 
30 million processor clock periods to execute on the Pentium 4 processor. This clock count is model-specific; Intel 
reserves the right to change the number of periods for any Intel 64 or IA-32 processor, without notification.

11.1.3 Model and Stepping Information
Following a hardware reset, the EDX register contains component identification and revision information (see 
Figure 11-2). For example, the model, family, and processor type returned for the first processor in the Intel 
Pentium 4 family is as follows: model (0000B), family (1111B), and processor type (00B). 

The stepping ID field contains a unique identifier for the processor’s stepping ID or revision level. The extended 
family and extended model fields were added to the IA-32 architecture in the Pentium 4 processors.

11.1.4 First Instruction Executed
The first instruction that is fetched and executed following a hardware reset is located at physical address 
FFFFFFF0H. This address is 16 bytes below the processor’s uppermost physical address. The EPROM containing the 
software-initialization code must be located at this address. 

The address FFFFFFF0H is beyond the 1-MByte addressable range of the processor while in real-address mode. The 
processor is initialized to this starting address as follows. The CS register has two parts: the visible segment 
selector part and the hidden base address part. In real-address mode, the base address is normally formed by 
shifting the 16-bit segment selector value 4 bits to the left to produce a 20-bit base address. However, during a 
hardware reset, the segment selector in the CS register is loaded with F000H and the base address is loaded with 
FFFF0000H. The starting address is thus formed by adding the base address to the value in the EIP register (that 
is, FFFF0000 + FFF0H = FFFFFFF0H).

The first time the CS register is loaded with a new value after a hardware reset, the processor will follow the normal 
rule for address translation in real-address mode (that is, [CS base address = CS segment selector * 16]). To 
ensure that the base address in the CS register remains unchanged until the EPROM based software-initialization 
code is completed, the code must not contain a far jump or far call or allow an interrupt to occur (which would 
cause the CS selector value to be changed).

11.2 X87 FPU INITIALIZATION
Software-initialization code can determine the whether the processor contains an x87 FPU by using the CPUID 
instruction. The code must then initialize the x87 FPU and set flags in control register CR0 to reflect the state of the 
x87 FPU environment.

Figure 11-2.  Version Information in the EDX Register after Reset
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A hardware reset places the x87 FPU in the state shown in Table 11-1. This state is different from the state the x87 
FPU is placed in following the execution of an FINIT or FNINIT instruction (also shown in Table 11-1). If the x87 FPU 
is to be used, the software-initialization code should execute an FINIT/FNINIT instruction following a hardware 
reset. These instructions, tag all data registers as empty, clear all the exception masks, set the TOP-of-stack value 
to 0, and select the default rounding and precision controls setting (round to nearest and 64-bit precision).

If the processor is reset by asserting the INIT# pin, the x87 FPU state is not changed.

11.2.1 Configuring the x87 FPU Environment
Initialization code must load the appropriate values into the MP, EM, and NE flags of control register CR0. These bits 
are cleared on hardware reset of the processor. Figure 11-3 shows the suggested settings for these flags, 
depending on the IA-32 processor being initialized. Initialization code can test for the type of processor present 
before setting or clearing these flags.

The EM flag determines whether floating-point instructions are executed by the x87 FPU (EM is cleared) or a 
device-not-available exception (#NM) is generated for all floating-point instructions so that an exception handler 
can emulate the floating-point operation (EM = 1). Ordinarily, the EM flag is cleared when an x87 FPU or math 
coprocessor is present and set if they are not present. If the EM flag is set and no x87 FPU, math coprocessor, or 
floating-point emulator is present, the processor will hang when a floating-point instruction is executed.

The MP flag determines whether WAIT/FWAIT instructions react to the setting of the TS flag. If the MP flag is clear, 
WAIT/FWAIT instructions ignore the setting of the TS flag; if the MP flag is set, they will generate a device-not-
available exception (#NM) if the TS flag is set. Generally, the MP flag should be set for processors with an inte-
grated x87 FPU and clear for processors without an integrated x87 FPU and without a math coprocessor present. 
However, an operating system can choose to save the floating-point context at every context switch, in which case 
there would be no need to set the MP bit. 

Table 2-2 shows the actions taken for floating-point and WAIT/FWAIT instructions based on the settings of the EM, 
MP, and TS flags.

The NE flag determines whether unmasked floating-point exceptions are handled by generating a floating-point 
error exception internally (NE is set, native mode) or through an external interrupt (NE is cleared). In systems 
where an external interrupt controller is used to invoke numeric exception handlers (such as MS-DOS-based 
systems), the NE bit should be cleared.

11.2.2 Setting the Processor for x87 FPU Software Emulation
Setting the EM flag causes the processor to generate a device-not-available exception (#NM) and trap to a software 
exception handler whenever it encounters a floating-point instruction. (Table 11-3 shows when it is appropriate to 
use this flag.) Setting this flag has two functions:
• It allows x87 FPU code to run on an IA-32 processor that has neither an integrated x87 FPU nor is connected to 

an external math coprocessor, by using a floating-point emulator. 
• It allows floating-point code to be executed using a special or nonstandard floating-point emulator, selected for 

a particular application, regardless of whether an x87 FPU or math coprocessor is present. 

Table 11-3.  Recommended Settings of EM and MP Flags on IA-32 Processors

EM MP NE IA-32 processor

1 0 1 Intel486™ SX, Intel386™ DX, and Intel386™ SX processors only, without the presence of a math 
coprocessor.

0 1 1 or 0* Pentium 4, Intel Xeon, P6 family, Pentium, Intel486™ DX, and Intel 487 SX processors, and 
Intel386 DX and Intel386 SX processors when a companion math coprocessor is present.

0 1 1 or 0* More recent Intel 64 or IA-32 processors

NOTE:
* The setting of the NE flag depends on the operating system being used.
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To emulate floating-point instructions, the EM, MP, and NE flag in control register CR0 should be set as shown in 
Table 11-4.

Regardless of the value of the EM bit, the Intel486 SX processor generates a device-not-available exception (#NM) 
upon encountering any floating-point instruction.

11.3 CACHE ENABLING
IA-32 processors (beginning with the Intel486 processor) and Intel 64 processors contain internal instruction and 
data caches. These caches are enabled by clearing the CD and NW flags in control register CR0. (They are set 
during a hardware reset.) Because all internal cache lines are invalid following reset initialization, it is not neces-
sary to invalidate the cache before enabling caching. Any external caches may require initialization and invalidation 
using a system-specific initialization and invalidation code sequence.

Depending on the hardware and operating system or executive requirements, additional configuration of the 
processor’s caching facilities will probably be required. Beginning with the Intel486 processor, page-level caching 
can be controlled with the PCD and PWT flags in page-directory and page-table entries. Beginning with the P6 
family processors, the memory type range registers (MTRRs) control the caching characteristics of the regions of 
physical memory. (For the Intel486 and Pentium processors, external hardware can be used to control the caching 
characteristics of regions of physical memory.) See Chapter 13, “Memory Cache Control,” for detailed information 
on configuration of the caching facilities in the Pentium 4, Intel Xeon, and P6 family processors and system 
memory.

11.4 MODEL-SPECIFIC REGISTERS (MSRS)
Most IA-32 processors (starting from Pentium processors) and Intel 64 processors contain a model-specific regis-
ters (MSRs). A given MSR may not be supported across all families and models for Intel 64 and IA-32 processors. 
Some MSRs are designated as architectural to simplify software programming; a feature introduced by an architec-
tural MSR is expected to be supported in future processors. Non-architectural MSRs are not guaranteed to be 
supported or to have the same functions on future processors.   

MSRs that provide control for a number of hardware and software-related features, include:
• Performance-monitoring counters (see Chapter 21, “Performance Monitoring”).
• Debug extensions (see Chapter 19, “Debug, Branch Profile, TSC, and Intel® Resource Director Technology 

(Intel® RDT) Features”).
• Machine-check exception capability and its accompanying machine-check architecture (see Chapter 17, 

“Machine-Check Architecture”).
• MTRRs (see Section 13.11, “Memory Type Range Registers (MTRRs)”).
• Thermal and power management.
• Instruction-specific support (for example: SYSENTER, SYSEXIT, SWAPGS, etc.).
• Processor feature/mode support (for example: IA32_EFER, IA32_FEATURE_CONTROL).

The MSRs can be read and written to using the RDMSR and WRMSR instructions, respectively.

When performing software initialization of an IA-32 or Intel 64 processor, many of the MSRs will need to be initial-
ized to set up things like performance-monitoring events, run-time machine checks, and memory types for phys-
ical memory.

Table 11-4.  Software Emulation Settings of EM, MP, and NE Flags

CR0 Bit Value

EM 1

MP 0

NE 1
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Lists of available performance-monitoring events can be found at: https://perfmon-events.intel.com/, and lists of 
available MSRs are given in Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 4. The references earlier in this section show where the functions of the 
various groups of MSRs are described in this manual.

11.5 MEMORY TYPE RANGE REGISTERS (MTRRS)
Memory type range registers (MTRRs) were introduced into the IA-32 architecture with the Pentium Pro processor. 
They allow the type of caching (or no caching) to be specified in system memory for selected physical address 
ranges. They allow memory accesses to be optimized for various types of memory such as RAM, ROM, frame buffer 
memory, and memory-mapped I/O devices.

In general, initializing the MTRRs is normally handled by the software initialization code or BIOS and is not an oper-
ating system or executive function. At the very least, all the MTRRs must be cleared to 0, which selects the 
uncached (UC) memory type. See Section 13.11, “Memory Type Range Registers (MTRRs),” for detailed informa-
tion on the MTRRs.

11.6 INITIALIZING SSE/SSE2/SSE3/SSSE3 EXTENSIONS
For processors that contain SSE/SSE2/SSE3/SSSE3 extensions, steps must be taken when initializing the 
processor to allow execution of these instructions.

1. Check the CPUID feature flags for the presence of the SSE/SSE2/SSE3/SSSE3 extensions (respectively: EDX 
bits 25 and 26, ECX bit 0 and 9) and support for the FXSAVE and FXRSTOR instructions (EDX bit 24). Also check 
for support for the CLFLUSH instruction (EDX bit 19). The CPUID feature flags are loaded in the EDX and ECX 
registers when the CPUID instruction is executed with a 1 in the EAX register.

2. Set the OSFXSR flag (bit 9 in control register CR4) to indicate that the operating system supports saving and 
restoring the SSE/SSE2/SSE3/SSSE3 execution environment (XMM and MXCSR registers) with the FXSAVE and 
FXRSTOR instructions, respectively. See Section 2.5, “Control Registers,” for a description of the OSFXSR flag.

3. Set the OSXMMEXCPT flag (bit 10 in control register CR4) to indicate that the operating system supports the 
handling of SSE/SSE2/SSE3 SIMD floating-point exceptions (#XM). See Section 2.5, “Control Registers,” for a 
description of the OSXMMEXCPT flag.

4. Set the mask bits and flags in the MXCSR register according to the mode of operation desired for 
SSE/SSE2/SSE3 SIMD floating-point instructions. See “MXCSR Control and Status Register” in Chapter 10, 
“Programming with Intel® Streaming SIMD Extensions (Intel® SSE),” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for a detailed description of the bits and flags in the MXCSR register.

11.7 SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE OPERATION
Following a hardware reset (either through a power-up or the assertion of the RESET# pin) the processor is placed 
in real-address mode and begins executing software initialization code from physical address FFFFFFF0H. Software 
initialization code must first set up the necessary data structures for handling basic system functions, such as a 
real-mode IDT for handling interrupts and exceptions. If the processor is to remain in real-address mode, software 
must then load additional operating-system or executive code modules and data structures to allow reliable execu-
tion of application programs in real-address mode.

If the processor is going to operate in protected mode, software must load the necessary data structures to operate 
in protected mode and then switch to protected mode. The protected-mode data structures that must be loaded 
are described in Section 11.8, “Software Initialization for Protected-Mode Operation.”

11.7.1 Real-Address Mode IDT
In real-address mode, the only system data structure that must be loaded into memory is the IDT (also called the 
“interrupt vector table”). By default, the address of the base of the IDT is physical address 0H. This address can be 
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changed by using the LIDT instruction to change the base address value in the IDTR. Software initialization code 
needs to load interrupt- and exception-handler pointers into the IDT before interrupts can be enabled. 

The actual interrupt- and exception-handler code can be contained either in EPROM or RAM; however, the code 
must be located within the 1-MByte addressable range of the processor in real-address mode. If the handler code 
is to be stored in RAM, it must be loaded along with the IDT.

11.7.2 NMI Interrupt Handling
The NMI interrupt is always enabled (except when multiple NMIs are nested). If the IDT and the NMI interrupt 
handler need to be loaded into RAM, there will be a period of time following hardware reset when an NMI interrupt 
cannot be handled. During this time, hardware must provide a mechanism to prevent an NMI interrupt from halting 
code execution until the IDT and the necessary NMI handler software is loaded. Here are two examples of how 
NMIs can be handled during the initial states of processor initialization:
• A simple IDT and NMI interrupt handler can be provided in EPROM. This allows an NMI interrupt to be handled 

immediately after reset initialization.
• The system hardware can provide a mechanism to enable and disable NMIs by passing the NMI# signal through 

an AND gate controlled by a flag in an I/O port. Hardware can clear the flag when the processor is reset, and 
software can set the flag when it is ready to handle NMI interrupts.

11.8 SOFTWARE INITIALIZATION FOR PROTECTED-MODE OPERATION
The processor is placed in real-address mode following a hardware reset. At this point in the initialization process, 
some basic data structures and code modules must be loaded into physical memory to support further initialization 
of the processor, as described in Section 11.7, “Software Initialization for Real-Address Mode Operation.” Before 
the processor can be switched to protected mode, the software initialization code must load a minimum number of 
protected mode data structures and code modules into memory to support reliable operation of the processor in 
protected mode. These data structures include the following:
• A IDT.
• A GDT.
• A TSS.
• (Optional) An LDT.
• If paging is to be used, at least one page directory and one page table.
• A code segment that contains the code to be executed when the processor switches to protected mode.
• One or more code modules that contain the necessary interrupt and exception handlers.

Software initialization code must also initialize the following system registers before the processor can be switched 
to protected mode:
• The GDTR.
• (Optional.) The IDTR. This register can also be initialized immediately after switching to protected mode, prior 

to enabling interrupts.
• Control registers CR1 through CR4.
• (Pentium 4, Intel Xeon, and P6 family processors only.) The memory type range registers (MTRRs).

With these data structures, code modules, and system registers initialized, the processor can be switched to 
protected mode by loading control register CR0 with a value that sets the PE flag (bit 0).

11.8.1 Protected-Mode System Data Structures
The contents of the protected-mode system data structures loaded into memory during software initialization, 
depend largely on the type of memory management the protected-mode operating-system or executive is going to 
support: flat, flat with paging, segmented, or segmented with paging.
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To implement a flat memory model without paging, software initialization code must at a minimum load a GDT with 
one code and one data-segment descriptor. A null descriptor in the first GDT entry is also required. The stack can 
be placed in a normal read/write data segment, so no dedicated descriptor for the stack is required. A flat memory 
model with paging also requires a page directory and at least one page table (unless all pages are 4 MBytes in 
which case only a page directory is required). See Section 11.8.3, “Initializing Paging.”

Before the GDT can be used, the base address and limit for the GDT must be loaded into the GDTR register using 
an LGDT instruction.

A multi-segmented model may require additional segments for the operating system, as well as segments and LDTs 
for each application program. LDTs require segment descriptors in the GDT. Some operating systems allocate new 
segments and LDTs as they are needed. This provides maximum flexibility for handling a dynamic programming 
environment. However, many operating systems use a single LDT for all tasks, allocating GDT entries in advance. 
An embedded system, such as a process controller, might pre-allocate a fixed number of segments and LDTs for a 
fixed number of application programs. This would be a simple and efficient way to structure the software environ-
ment of a real-time system.

11.8.2 Initializing Protected-Mode Exceptions and Interrupts
Software initialization code must at a minimum load a protected-mode IDT with gate descriptor for each exception 
vector that the processor can generate. If interrupt or trap gates are used, the gate descriptors can all point to the 
same code segment, which contains the necessary exception handlers. If task gates are used, one TSS and accom-
panying code, data, and task segments are required for each exception handler called with a task gate.

If hardware allows interrupts to be generated, gate descriptors must be provided in the IDT for one or more inter-
rupt handlers.

Before the IDT can be used, the base address and limit for the IDT must be loaded into the IDTR register using an 
LIDT instruction. This operation is typically carried out immediately after switching to protected mode.

11.8.3 Initializing Paging
Paging is controlled by the PG flag in control register CR0. When this flag is clear (its state following a hardware 
reset), the paging mechanism is turned off; when it is set, paging is enabled. Before setting the PG flag, the 
following data structures and registers must be initialized:
• Software must load at least one page directory and one page table into physical memory. The page table can 

be eliminated if the page directory contains a directory entry pointing to itself (here, the page directory and 
page table reside in the same page), or if only 4-MByte pages are used.

• Control register CR3 (also called the PDBR register) is loaded with the physical base address of the page 
directory.

• (Optional) Software may provide one set of code and data descriptors in the GDT or in an LDT for supervisor 
mode and another set for user mode.

With this paging initialization complete, paging is enabled and the processor is switched to protected mode at the 
same time by loading control register CR0 with an image in which the PG and PE flags are set. (Paging cannot be 
enabled before the processor is switched to protected mode.)

11.8.4 Initializing Multitasking
If the multitasking mechanism is not going to be used and changes between privilege levels are not allowed, it is 
not necessary load a TSS into memory or to initialize the task register.

If the multitasking mechanism is going to be used and/or changes between privilege levels are allowed, software 
initialization code must load at least one TSS and an accompanying TSS descriptor. (A TSS is required to change 
privilege levels because pointers to the privileged-level 0, 1, and 2 stack segments and the stack pointers for these 
stacks are obtained from the TSS.) TSS descriptors must not be marked as busy when they are created; they 
should be marked busy by the processor only as a side-effect of performing a task switch. As with descriptors for 
LDTs, TSS descriptors reside in the GDT.
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After the processor has switched to protected mode, the LTR instruction can be used to load a segment selector for 
a TSS descriptor into the task register. This instruction marks the TSS descriptor as busy, but does not perform a 
task switch. The processor can, however, use the TSS to locate pointers to privilege-level 0, 1, and 2 stacks. The 
segment selector for the TSS must be loaded before software performs its first task switch in protected mode, 
because a task switch copies the current task state into the TSS.

After the LTR instruction has been executed, further operations on the task register are performed by task 
switching. As with other segments and LDTs, TSSs and TSS descriptors can be either pre-allocated or allocated as 
needed.

11.8.5 Initializing IA-32e Mode
On Intel 64 processors, the IA32_EFER MSR is cleared on system reset. The operating system must be in protected 
mode with paging enabled before attempting to initialize IA-32e mode. IA-32e mode operation also requires phys-
ical-address extensions with four or five levels of enhanced paging structures (see Section 5.5, “4-Level Paging and 
5-Level Paging”).

Operating systems should follow this sequence to initialize IA-32e mode:

1. Starting from protected mode, disable paging by setting CR0.PG = 0. Use the MOV CR0 instruction to disable 
paging (the instruction must be located in an identity-mapped page).

2. Enable physical-address extensions (PAE) by setting CR4.PAE = 1. Failure to enable PAE will result in a #GP 
fault when an attempt is made to initialize IA-32e mode.

3. Load CR3 with the physical base address of the Level 4 page map table (PML4) or Level 5 page map table 
(PML5).

4. Enable IA-32e mode by setting IA32_EFER.LME = 1.

5. Enable paging by setting CR0.PG = 1. This causes the processor to set the IA32_EFER.LMA bit to 1. The MOV 
CR0 instruction that enables paging and the following instructions must be located in an identity-mapped page 
(until such time that a branch to non-identity mapped pages can be effected).

64-bit mode paging structures must be located in the first 4 GBytes of physical-address space prior to activating 
IA-32e mode. This is necessary because the MOV CR3 instruction used to initialize the page-directory base must be 
executed in legacy mode prior to activating IA-32e mode (setting CR0.PG = 1 to enable paging). Because MOV CR3 
is executed in protected mode, only the lower 32 bits of the register are written, limiting the table location to the 
low 4 GBytes of memory. Software can relocate the page tables anywhere in physical memory after IA-32e mode 
is activated.

The processor performs 64-bit mode consistency checks whenever software attempts to modify any of the enable 
bits directly involved in activating IA-32e mode (IA32_EFER.LME, CR0.PG, and CR4.PAE). It will generate a general 
protection fault (#GP) if consistency checks fail. 64-bit mode consistency checks ensure that the processor does 
not enter an undefined mode or state with unpredictable behavior.

64-bit mode consistency checks fail in the following circumstances:
• An attempt is made to enable or disable IA-32e mode while paging is enabled.
• IA-32e mode is enabled and an attempt is made to enable paging prior to enabling physical-address extensions 

(PAE).
• IA-32e mode is active and an attempt is made to disable physical-address extensions (PAE).
• If the current CS has the L-bit set on an attempt to activate IA-32e mode.
• If the TR contains a 16-bit TSS on an attempt to activate IA-32e mode.

11.8.5.1  IA-32e Mode System Data Structures
After activating IA-32e mode, the system-descriptor-table registers (GDTR, LDTR, IDTR, TR) continue to reference 
legacy protected-mode descriptor tables. Tables referenced by the descriptors all reside in the lower 4 GBytes of 
linear-address space. After activating IA-32e mode, 64-bit operating-systems should use the LGDT, LLDT, LIDT, 
and LTR instructions to load the system-descriptor-table registers with references to 64-bit descriptor tables.
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11.8.5.2  IA-32e Mode Interrupts and Exceptions
Software must not allow exceptions or interrupts to occur between the time IA-32e mode is activated and the 
update of the interrupt-descriptor-table register (IDTR) that establishes references to a 64-bit interrupt-descriptor 
table (IDT). This is because the IDT remains in legacy form immediately after IA-32e mode is activated.

If an interrupt or exception occurs prior to updating the IDTR, a legacy 32-bit interrupt gate will be referenced and 
interpreted as a 64-bit interrupt gate with unpredictable results. External interrupts can be disabled by using the 
CLI instruction.

Non-maskable interrupts (NMI) must be disabled using external hardware.

11.8.5.3  64-bit Mode and Compatibility Mode Operation
IA-32e mode uses two code segment-descriptor bits (CS.L and CS.D, see Figure 3-8) to control the operating modes 
after IA-32e mode is initialized. If CS.L = 1 and CS.D = 0, the processor is running in 64-bit mode. With this 
encoding, the default operand size is 32 bits and default address size is 64 bits. Using instruction prefixes, operand 
size can be changed to 64 bits or 16 bits; address size can be changed to 32 bits. 

When IA-32e mode is active and CS.L = 0, the processor operates in compatibility mode. In this mode, CS.D 
controls default operand and address sizes exactly as it does in the IA-32 architecture. Setting CS.D = 1 specifies 
default operand and address size as 32 bits. Clearing CS.D to 0 specifies default operand and address size as 16 
bits (the CS.L = 1, CS.D = 1 bit combination is reserved).

Compatibility mode execution is selected on a code-segment basis. This mode allows legacy applications to coexist 
with 64-bit applications running in 64-bit mode. An operating system running in IA-32e mode can execute existing 
16-bit and 32-bit applications by clearing their code-segment descriptor’s CS.L bit to 0.

In compatibility mode, the following system-level mechanisms continue to operate using the IA-32e-mode archi-
tectural semantics:
• Linear-to-physical address translation uses the 64-bit mode extended page-translation mechanism.
• Interrupts and exceptions are handled using the 64-bit mode mechanisms.
• System calls (calls through call gates and SYSENTER/SYSEXIT) are handled using the IA-32e mode 

mechanisms.

11.8.5.4  Switching Out of IA-32e Mode Operation
To return from IA-32e mode to paged-protected mode operation operating systems must use the following 
sequence:

1. Switch to compatibility mode.

2. Deactivate IA-32e mode by clearing CR0.PG = 0. This causes the processor to set IA32_EFER.LMA = 0. The 
MOV CR0 instruction used to disable paging and subsequent instructions must be located in an identity-mapped 
page.

3. Load CR3 with the physical base address of the legacy page-table-directory base address.

4. Disable IA-32e mode by setting IA32_EFER.LME = 0.

5. Enable legacy paged-protected mode by setting CR0.PG = 1

6. A branch instruction must follow the MOV CR0 that enables paging. Both the MOV CR0 and the branch 
instruction must be located in an identity-mapped page.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved across transitions from 64-bit 
mode into compatibility mode then back into 64-bit mode. However, values of R8-R15 and XMM8-XMM15 are unde-
fined after transitions from 64-bit mode through compatibility mode to legacy or real mode and then back through 
compatibility mode to 64-bit mode.
11-12 Vol. 3A



PROCESSOR MANAGEMENT AND INITIALIZATION
11.9 MODE SWITCHING
To use the processor in protected mode after hardware or software reset, a mode switch must be performed from 
real-address mode. Once in protected mode, software generally does not need to return to real-address mode. To 
run software written to run in real-address mode (8086 mode), it is generally more convenient to run the software 
in virtual-8086 mode, than to switch back to real-address mode.

11.9.1 Switching to Protected Mode
Before switching to protected mode from real mode, a minimum set of system data structures and code modules 
must be loaded into memory, as described in Section 11.8, “Software Initialization for Protected-Mode Operation.” 
Once these tables are created, software initialization code can switch into protected mode.

Protected mode is entered by executing a MOV CR0 instruction that sets the PE flag in the CR0 register. (In the 
same instruction, the PG flag in register CR0 can be set to enable paging.) Execution in protected mode begins with 
a CPL of 0.

Intel 64 and IA-32 processors have slightly different requirements for switching to protected mode. To ensure 
upwards and downwards code compatibility with Intel 64 and IA-32 processors, we recommend that you follow 
these steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI interrupts can be disabled 
with external circuitry. (Software must guarantee that no exceptions or interrupts are generated during the 
mode switching operation.)

2. Execute the LGDT instruction to load the GDTR register with the base address of the GDT.

3. Execute a MOV CR0 instruction that sets the PE flag (and optionally the PG flag) in control register CR0.

4. Immediately following the MOV CR0 instruction, execute a far JMP or far CALL instruction. (This operation is 
typically a far jump or call to the next instruction in the instruction stream.)

5. The JMP or CALL instruction immediately after the MOV CR0 instruction changes the flow of execution and 
serializes the processor.

6. If paging is enabled, the code for the MOV CR0 instruction and the JMP or CALL instruction must come from a 
page that is identity mapped (that is, the linear address before the jump is the same as the physical address 
after paging and protected mode is enabled). The target instruction for the JMP or CALL instruction does not 
need to be identity mapped.

7. If a local descriptor table is going to be used, execute the LLDT instruction to load the segment selector for the 
LDT in the LDTR register.

8. Execute the LTR instruction to load the task register with a segment selector to the initial protected-mode task 
or to a writable area of memory that can be used to store TSS information on a task switch.

9. After entering protected mode, the segment registers continue to hold the contents they had in real-address 
mode. The JMP or CALL instruction in step 4 resets the CS register. Perform one of the following operations to 
update the contents of the remaining segment registers.

— Reload segment registers DS, SS, ES, FS, and GS. If the ES, FS, and/or GS registers are not going to be 
used, load them with a null selector.

— Perform a JMP or CALL instruction to a new task, which automatically resets the values of the segment 
registers and branches to a new code segment.

10. Execute the LIDT instruction to load the IDTR register with the address and limit of the protected-mode IDT.

11. Execute the STI instruction to enable maskable hardware interrupts and perform the necessary hardware 
operation to enable NMI interrupts.

Random failures can occur if other instructions exist between steps 3 and 4 above. Failures will be readily seen in 
some situations, such as when instructions that reference memory are inserted between steps 3 and 4 while in 
system management mode.
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11.9.2 Switching Back to Real-Address Mode
The processor switches from protected mode back to real-address mode if software clears the PE bit in the CR0 
register with a MOV CR0 instruction. A procedure that re-enters real-address mode should perform the following 
steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI interrupts can be disabled 
with external circuitry.

2. If paging is enabled, perform the following operations:

— Transfer program control to linear addresses that are identity mapped to physical addresses (that is, linear 
addresses equal physical addresses).

— Ensure that the GDT and IDT are in identity mapped pages.

— Clear the PG bit in the CR0 register.

— Move 0H into the CR3 register to flush the TLB.

3. Transfer program control to a readable segment that has a limit of 64 KBytes (FFFFH). This operation loads the 
CS register with the segment limit required in real-address mode.

4. Load segment registers SS, DS, ES, FS, and GS with a selector for a descriptor containing the following values, 
which are appropriate for real-address mode:

— Limit = 64 KBytes (0FFFFH)

— Byte granular (G = 0)

— Expand up (E = 0)

— Writable (W = 1)

— Present (P = 1)

— Base = any value
The segment registers must be loaded with non-null segment selectors or the segment registers will be 
unusable in real-address mode. Note that if the segment registers are not reloaded, execution continues using 
the descriptor attributes loaded during protected mode.

5. Execute an LIDT instruction to point to a real-address mode interrupt table that is within the 1-MByte real-
address mode address range.

6. Clear the PE flag in the CR0 register to switch to real-address mode.

7. Execute a far JMP instruction to jump to a real-address mode program. This operation flushes the instruction 
queue and loads the appropriate base-address value in the CS register.

8. Load the SS, DS, ES, FS, and GS registers as needed by the real-address mode code. If any of the registers are 
not going to be used in real-address mode, write 0s to them.

9. Execute the STI instruction to enable maskable hardware interrupts and perform the necessary hardware 
operation to enable NMI interrupts.

NOTE
All the code that is executed in steps 1 through 9 must be in a single page and the linear addresses 
in that page must be identity mapped to physical addresses.

11.10 INITIALIZATION AND MODE SWITCHING EXAMPLE
This section provides an initialization and mode switching example that can be incorporated into an application. 
This code was originally written to initialize the Intel386 processor, but it will execute successfully on the Pentium 
4, Intel Xeon, P6 family, Pentium, and Intel486 processors. The code in this example is intended to reside in EPROM 
and to run following a hardware reset of the processor. The function of the code is to do the following:
• Establish a basic real-address mode operating environment.
11-14 Vol. 3A



PROCESSOR MANAGEMENT AND INITIALIZATION
• Load the necessary protected-mode system data structures into RAM.
• Load the system registers with the necessary pointers to the data structures and the appropriate flag settings 

for protected-mode operation.
• Switch the processor to protected mode.

Figure 11-3 shows the physical memory layout for the processor following a hardware reset and the starting point 
of this example. The EPROM that contains the initialization code resides at the upper end of the processor’s physical 
memory address range, starting at address FFFFFFFFH and going down from there. The address of the first instruc-
tion to be executed is at FFFFFFF0H, the default starting address for the processor following a hardware reset.

The main steps carried out in this example are summarized in Table 11-5. The source listing for the example (with 
the filename STARTUP.ASM) is given in Example 11-1. The line numbers given in Table 11-5 refer to the source 
listing.

The following are some additional notes concerning this example:
• When the processor is switched into protected mode, the original code segment base-address value of 

FFFF0000H (located in the hidden part of the CS register) is retained and execution continues from the current 
offset in the EIP register. The processor will thus continue to execute code in the EPROM until a far jump or call 
is made to a new code segment, at which time, the base address in the CS register will be changed.

• Maskable hardware interrupts are disabled after a hardware reset and should remain disabled until the 
necessary interrupt handlers have been installed. The NMI interrupt is not disabled following a reset. The NMI# 
pin must thus be inhibited from being asserted until an NMI handler has been loaded and made available to the 
processor.

• The use of a temporary GDT allows simple transfer of tables from the EPROM to anywhere in the RAM area. A 
GDT entry is constructed with its base pointing to address 0 and a limit of 4 GBytes. When the DS and ES 
registers are loaded with this descriptor, the temporary GDT is no longer needed and can be replaced by the 
application GDT.

• This code loads one TSS and no LDTs. If more TSSs exist in the application, they must be loaded into RAM. If 
there are LDTs they may be loaded as well.

Figure 11-3.  Processor State After Reset

0

FFFF FFFFH
After Reset

[CS.BASE+EIP] FFFF FFF0H

EIP = 0000 FFF0H

[SP, DS, SS, ES]

FFFF 0000H

64K EPROM

CS.BASE = FFFF 0000H
DS.BASE = 0H
ES.BASE = 0H
SS.BASE = 0H
ESP = 0H
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11.10.1 Assembler Usage
In this example, the Intel assembler ASM386 and build tools BLD386 are used to assemble and build the initializa-
tion code module. The following assumptions are used when using the Intel ASM386 and BLD386 tools.
• The ASM386 will generate the right operand size opcodes according to the code-segment attribute. The 

attribute is assigned either by the ASM386 invocation controls or in the code-segment definition.
• If a code segment that is going to run in real-address mode is defined, it must be set to a USE 16 attribute. If 

a 32-bit operand is used in an instruction in this code segment (for example, MOV EAX, EBX), the assembler 
automatically generates an operand prefix for the instruction that forces the processor to execute a 32-bit 
operation, even though its default code-segment attribute is 16-bit.

• Intel's ASM386 assembler allows specific use of the 16- or 32-bit instructions, for example, LGDTW, LGDTD, 
IRETD. If the generic instruction LGDT is used, the default- segment attribute will be used to generate the right 
opcode.

11.10.2 STARTUP.ASM Listing
Example 11-1 provides high-level sample code designed to move the processor into protected mode. This listing 
does not include any opcode and offset information.

Table 11-5.  Main Initialization Steps in STARTUP.ASM Source Listing

STARTUP.ASM Line 
Numbers

Description

From To

157 157 Jump (short) to the entry code in the EPROM

162 169 Construct a temporary GDT in RAM with one entry:
0 - null
1 - R/W data segment, base = 0, limit = 4 GBytes

171 172 Load the GDTR to point to the temporary GDT

174 177 Load CR0 with PE flag set to switch to protected mode

179 181 Jump near to clear real mode instruction queue

184 186 Load DS, ES registers with GDT[1] descriptor, so both point to the entire physical memory space

188 195 Perform specific board initialization that is imposed by the new protected mode

196 218 Copy the application's GDT from ROM into RAM

220 238 Copy the application's IDT from ROM into RAM

241 243 Load application's GDTR

244 245 Load application's IDTR

247 261 Copy the application's TSS from ROM into RAM

263 267 Update TSS descriptor and other aliases in GDT (GDT alias or IDT alias) 

277 277 Load the task register (without task switch) using LTR instruction

282 286 Load SS, ESP with the value found in the application's TSS

287 287 Push EFLAGS value found in the application's TSS

288 288 Push CS value found in the application's TSS

289 289 Push EIP value found in the application's TSS

290 293 Load DS, ES with the value found in the application's TSS

296 296 Perform IRET; pop the above values and enter the application code
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Example 11-1.  STARTUP.ASM

MS-DOS* 5.0(045-N) 386(TM) MACRO ASSEMBLER STARTUP  09:44:51 08/19/92 PAGE 1

MS-DOS 5.0(045-N) 386(TM) MACRO ASSEMBLER V4.0, ASSEMBLY OF MODULE STARTUP
OBJECT MODULE PLACED IN startup.obj
ASSEMBLER INVOKED BY: f:\386tools\ASM386.EXE startup.a58 pw (132 )

LINE     SOURCE

   1      NAME    STARTUP
   2  
   3  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
   4  ;
   5  ;   ASSUMPTIONS:
   6  ;
   7  ;     1.  The bottom 64K of memory is ram, and can be used for
   8  ;         scratch space by this module.
   9  ;
  10  ;     2.  The system has sufficient free usable ram to copy the
  11  ;         initial GDT, IDT, and TSS
  12  ;
  13  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  14  
  15  ; configuration data - must match with build definition
  16  
  17  CS_BASE       EQU     0FFFF0000H
  18  
  19   ; CS_BASE is the linear address of the segment STARTUP_CODE
  20   ; - this is specified in the build language file
  21  
  22  RAM_START     EQU     400H
  23  
  24  ; RAM_START  is the start of free, usable ram in the linear
  25  ; memory  space.   The GDT,  IDT, and  initial TSS  will be
  26  ; copied above this space, and a small data segment will be
  27  ; discarded at  this linear  address.   The 32-bit  word at
  28  ; RAM_START will contain  the linear  address of  the first
  29  ; free byte above the copied tables - this may be useful if
  30  ; a memory manager is used.
  31  
  32  TSS_INDEX    EQU     10
  33  
  34  ; TSS_INDEX is the  index of the  TSS of the  first task to
  35  ; run after startup
  36  
  37  
  38   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  39  
  40  ; ------------------------- STRUCTURES and EQU ---------------
  41  ; structures for system data
  42  
  43  ; TSS structure
  44  TASK_STATE  STRUC
  45      link DW ?
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  46      link_h DW ?
  47      ESP0 DD ?
  48      SS0 DW ?
  49      SS0_h DW ?
  50      ESP1 DD ?
  51      SS1 DW ?
  52      SS1_h DW ?
  53      ESP2 DD ?
  54      SS2 DW ?
  55      SS2_h DW ?
  56      CR3_reg DD ?
  57      EIP_reg DD ?
  58      EFLAGS_regDD ?
  59      EAX_reg DD ?
  60      ECX_reg DD ?
  61      EDX_reg DD ?
  62      EBX_reg DD ?
  63      ESP_reg DD ?
  64      EBP_reg DD ?
  65      ESI_reg DD ?
  66      EDI_reg DD ?
  67      ES_reg DW ?
  68      ES_h DW ?
  69      CS_reg DW ?
  70      CS_h DW ?
  71      SS_reg DW ?
  72      SS_h   DW ?
  73      DS_reg DW ?
  74      DS_h DW ?
  75      FS_reg DW ?
  76      FS_h DW ?
  77      GS_reg DW ?
  78      GS_h DW ?
  79      LDT_reg DW ?
  80      LDT_h DW ?
  81      TRAP_reg DW ?
  82      IO_map_baseDW ?
  83  TASK_STATE  ENDS
  84  
  85  ; basic structure of a descriptor
  86  DESC    STRUC
  87      lim_0_15 DW ?
  88      bas_0_15 DW ?
  89      bas_16_23DB ?
  90      access DB ?
  91      gran DB ?
  92      bas_24_31DB ?
  93  DESC    ENDS
  94  
  95  ; structure for use with LGDT and LIDT instructions
  96  TABLE_REG   STRUC
  97      table_limDW ?
  98      table_linearDD ?
  99  TABLE_REG   ENDS
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 100  
 101  ; offset of GDT and IDT descriptors in builder generated GDT
 102  GDT_DESC_OFF    EQU 1*SIZE(DESC)
 103  IDT_DESC_OFF    EQU 2*SIZE(DESC)
 104  
 105  ; equates for building temporary GDT in RAM
 106  LINEAR_SEL          EQU     1*SIZE (DESC)
 107  LINEAR_PROTO_LO     EQU     00000FFFFH  ; LINEAR_ALIAS
 108  LINEAR_PROTO_HI     EQU     000CF9200H
 109  
 110  ; Protection Enable Bit in CR0
 111  PE_BIT  EQU 1B
 112  
 113  ; ------------------------------------------------------------
 114  
 115  ; ------------------------- DATA SEGMENT----------------------
 116  
 117  ; Initially, this  data segment starts at linear 0, according
 118  ; to the processor’s power-up state.
 119  
 120  STARTUP_DATA    SEGMENT RW
 121  
 122  free_mem_linear_base    LABEL   DWORD
 123  TEMP_GDT                LABEL   BYTE  ; must be first in segment
 124  TEMP_GDT_NULL_DESC   DESC    <>
 125  TEMP_GDT_LINEAR_DESC DESC    <>
 126  
 127  ; scratch areas for LGDT and LIDT instructions
 128  TEMP_GDT_SCRATCH TABLE_REG   <>
 129  APP_GDT_RAM     TABLE_REG    <>
 130  APP_IDT_RAM     TABLE_REG    <>
 131          ; align end_data
 132  fill    DW      ?
 133   
 134  ; last thing in this segment - should be on a dword boundary
 135  end_data    LABEL   BYTE
 136  
 137  STARTUP_DATA    ENDS
 138  ; ------------------------------------------------------------
 139  
 140  
 141  ; ------------------------- CODE SEGMENT----------------------
 142  STARTUP_CODE SEGMENT ER PUBLIC USE16
 143  
 144  ; filled in by builder
 145      PUBLIC  GDT_EPROM
 146  GDT_EPROM   TABLE_REG   <>
 147  
 148  ; filled in by builder
 149      PUBLIC  IDT_EPROM
 150  IDT_EPROM   TABLE_REG   <>
 151  
 152  ; entry point into startup code - the bootstrap will vector
 153  ; here  with a  near JMP  generated by  the builder.   This
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 154  ; label must be in the top 64K of linear memory.
 155  
 156      PUBLIC  STARTUP
 157  STARTUP:
 158  
 159  ; DS,ES address the bottom 64K of flat linear memory
 160      ASSUME  DS:STARTUP_DATA, ES:STARTUP_DATA
 161  ; See Figure 11-4
 162  ; load GDTR with temporary GDT
 163          LEA     EBX,TEMP_GDT  ; build the TEMP_GDT in low ram,
 164          MOV     DWORD PTR [EBX],0   ; where we can address
 165          MOV     DWORD PTR [EBX]+4,0
 166          MOV     DWORD PTR [EBX]+8, LINEAR_PROTO_LO
 167          MOV     DWORD PTR [EBX]+12, LINEAR_PROTO_HI
 168          MOV     TEMP_GDT_scratch.table_linear,EBX
 169          MOV     TEMP_GDT_scratch.table_lim,15
 170  
 171 DB 66H; execute a 32 bit LGDT
 172          LGDT    TEMP_GDT_scratch
 173  
 174  ; enter protected mode
 175          MOV     EBX,CR0
 176          OR      EBX,PE_BIT
 177          MOV     CR0,EBX
 178  

 179   ; clear prefetch queue
 180          JMP     CLEAR_LABEL
 181  CLEAR_LABEL:
 182  
 183   ; make DS and ES address 4G of linear memory
 184          MOV     CX,LINEAR_SEL
 185          MOV     DS,CX
 186          MOV     ES,CX
 187  
 188    ; do board specific initialization 
 189    ;
 190                  ; 
 191                  ; ......
 192                  ; 
 193  
 194  
 195          ; See Figure 11-5
 196          ; copy EPROM GDT to ram at:
 197          ;                RAM_START + size (STARTUP_DATA)
 198          MOV     EAX,RAM_START
 199          ADD     EAX,OFFSET (end_data)   
 200          MOV     EBX,RAM_START
 201          MOV     ECX, CS_BASE
 202          ADD     ECX, OFFSET (GDT_EPROM) 
 203          MOV     ESI, [ECX].table_linear
 204          MOV     EDI,EAX
 205          MOVZX   ECX, [ECX].table_lim
 206          MOV     APP_GDT_ram[EBX].table_lim,CX
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 207          INC     ECX
 208          MOV     EDX,EAX
 209          MOV     APP_GDT_ram[EBX].table_linear,EAX
 210          ADD     EAX,ECX
 211      REP MOVS    BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]
 212  
 213          ; fixup GDT base in descriptor
 214          MOV     ECX,EDX
 215          MOV     [EDX].bas_0_15+GDT_DESC_OFF,CX
 216          ROR     ECX,16
 217          MOV     [EDX].bas_16_23+GDT_DESC_OFF,CL
 218          MOV     [EDX].bas_24_31+GDT_DESC_OFF,CH
 219  
 220          ; copy EPROM IDT to ram at:
 221          ; RAM_START+size(STARTUP_DATA)+SIZE (EPROM GDT)
 222          MOV     ECX, CS_BASE
 223          ADD     ECX, OFFSET (IDT_EPROM)     
 224          MOV     ESI, [ECX].table_linear
 225          MOV     EDI,EAX
 226          MOVZX   ECX, [ECX].table_lim
 227          MOV     APP_IDT_ram[EBX].table_lim,CX
 228          INC     ECX
 229          MOV     APP_IDT_ram[EBX].table_linear,EAX
 230          MOV     EBX,EAX
 231          ADD     EAX,ECX
 232      REP MOVS    BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]
 233  
 234                  ; fixup IDT pointer in GDT
 235          MOV     [EDX].bas_0_15+IDT_DESC_OFF,BX
 236          ROR     EBX,16
 237          MOV     [EDX].bas_16_23+IDT_DESC_OFF,BL
 238          MOV     [EDX].bas_24_31+IDT_DESC_OFF,BH
 239  
 240                  ; load GDTR and IDTR
 241          MOV     EBX,RAM_START
 242                  DB      66H         ; execute a 32 bit LGDT
 243          LGDT    APP_GDT_ram[EBX]    
 244                  DB      66H         ; execute a 32 bit LIDT
 245          LIDT    APP_IDT_ram[EBX]    
 246  
 247                  ; move the TSS
 248          MOV     EDI,EAX
 249          MOV     EBX,TSS_INDEX*SIZE(DESC)
 250          MOV     ECX,GDT_DESC_OFF ;build linear address for TSS
 251          MOV     GS,CX
 252          MOV     DH,GS:[EBX].bas_24_31
 253          MOV     DL,GS:[EBX].bas_16_23
 254          ROL     EDX,16
 255          MOV     DX,GS:[EBX].bas_0_15
 256          MOV     ESI,EDX
 257          LSL     ECX,EBX
 258          INC     ECX
 259          MOV     EDX,EAX
 260          ADD     EAX,ECX
Vol. 3A 11-21



PROCESSOR MANAGEMENT AND INITIALIZATION
 261      REP MOVS    BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]
 262
 263                  ; fixup TSS pointer
 264          MOV     GS:[EBX].bas_0_15,DX
 265          ROL     EDX,16
 266          MOV     GS:[EBX].bas_24_31,DH
 267          MOV     GS:[EBX].bas_16_23,DL
 268          ROL     EDX,16
 269      ;save start of free ram at linear location RAMSTART
 270          MOV     free_mem_linear_base+RAM_START,EAX
 271
 272      ;assume no  LDT used in  the initial task  - if necessary,
 273      ;code  to move the LDT could be added, and should resemble
 274      ;that used to move the TSS
 275
 276      ; load task register
 277          LTR     BX   ; No task switch, only descriptor loading
 278      ; See Figure 11-6
 279      ; load minimal set of registers necessary to simulate task
 280      ; switch
 281  
 282
 283          MOV     AX,[EDX].SS_reg     ; start loading registers
 284          MOV     EDI,[EDX].ESP_reg
 285          MOV     SS,AX
 286          MOV     ESP,EDI             ; stack now valid
 287          PUSH    DWORD PTR [EDX].EFLAGS_reg
 288          PUSH    DWORD PTR [EDX].CS_reg
 289          PUSH    DWORD PTR [EDX].EIP_reg
 290          MOV     AX,[EDX].DS_reg
 291          MOV     BX,[EDX].ES_reg
 292          MOV     DS,AX     ; DS and ES no longer linear memory
 293          MOV     ES,BX
294

 295          ; simulate far jump to initial task
 296          IRETD
 297
 298  STARTUP_CODE  ENDS
*** WARNING #377 IN 298, (PASS 2) SEGMENT CONTAINS PRIVILEGED INSTRUCTION(S)
 299
 300  END STARTUP, DS:STARTUP_DATA, SS:STARTUP_DATA
 301
 302

ASSEMBLY COMPLETE,   1 WARNING,   NO ERRORS.
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Figure 11-4.  Constructing Temporary GDT and Switching to Protected Mode (Lines 162-172 of List File)
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Figure 11-5.  Moving the GDT, IDT, and TSS from ROM to RAM (Lines 196-261 of List File)
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11.10.3 MAIN.ASM Source Code
The file MAIN.ASM shown in Example 11-2 defines the data and stack segments for this application and can be 
substituted with the main module task written in a high-level language that is invoked by the IRET instruction 
executed by STARTUP.ASM. 

Example 11-2.  MAIN.ASM

NAME    main_module
data    SEGMENT RW

dw 1000 dup(?)
DATA    ENDS
stack stackseg 800
CODE SEGMENT ER  use32 PUBLIC
main_start:

nop
nop
nop

CODE  ENDS
END main_start, ds:data, ss:stack

11.10.4 Supporting Files
The batch file shown in Example 11-3 can be used to assemble the source code files STARTUP.ASM and MAIN.ASM 
and build the final application.

Figure 11-6.  Task Switching (Lines 282-296 of List File)
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Example 11-3.  Batch File to Assemble and Build the Application

ASM386 STARTUP.ASM
ASM386 MAIN.ASM
BLD386 STARTUP.OBJ, MAIN.OBJ buildfile(EPROM.BLD) bootstrap(STARTUP) Bootload

BLD386 performs several operations in this example:
It allocates physical memory location to segments and tables.
It generates tables using the build file and the input files.
It links object files and resolves references.
It generates a boot-loadable file to be programmed into the EPROM.

Example 11-4 shows the build file used as an input to BLD386 to perform the above functions.

Example 11-4.  Build File

INIT_BLD_EXAMPLE;

SEGMENT
        *SEGMENTS(DPL = 0)
    ,   startup.startup_code(BASE = 0FFFF0000H)
    ;

TASK
        BOOT_TASK(OBJECT = startup, INITIAL,DPL = 0, 

NOT INTENABLED)
,       PROTECTED_MODE_TASK(OBJECT = main_module,DPL = 0, 

NOT INTENABLED)
    ;

TABLE
    GDT (
        LOCATION = GDT_EPROM
    ,   ENTRY = (
            10:   PROTECTED_MODE_TASK
    , startup.startup_code
    ,       startup.startup_data
    ,       main_module.data
    ,       main_module.code
    ,       main_module.stack

          )
        ),

    IDT (
        LOCATION = IDT_EPROM
        );

MEMORY
    (
        RESERVE = (0..3FFFH 

-- Area for the GDT, IDT, TSS copied from ROM
    ,              60000H..0FFFEFFFFH)
    ,   RANGE = (ROM_AREA = ROM (0FFFF0000H..0FFFFFFFFH)) 

-- Eprom size 64K
    ,   RANGE = (RAM_AREA = RAM (4000H..05FFFFH))
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    );

END
Table 11-6 shows the relationship of each build item with an ASM source file.

11.11 MICROCODE UPDATE FACILITIES
The P6 family and later processors have the capability to correct errata by loading an Intel-supplied data block into 
the processor. The data block is called a microcode update. This section describes the mechanisms the BIOS needs 
to provide in order to use this feature during system initialization. It also describes a specification that permits the 
incorporation of future updates into a system BIOS.

Intel considers the release of a microcode update for a silicon revision to be the equivalent of a processor stepping 
and completes a full-stepping level validation for releases of microcode updates.

A microcode update is used to correct errata in the processor. The BIOS, which has an update loader, is responsible 
for loading the update on processors during system initialization (Figure 11-7). There are two steps to this process: 
the first is to incorporate the necessary update data blocks into the BIOS; the second is to load update data blocks 
into the processor.

Table 11-6.  Relationship Between BLD Item and ASM Source File 

Item ASM386 and Startup.A58 BLD386 Controls 
and BLD file

Effect

Bootstrap public startup
startup:

bootstrap
start(startup)

Near jump at 0FFFFFFF0H to 
start.

GDT location public GDT_EPROM
GDT_EPROM TABLE_REG  <>

TABLE
GDT(location = GDT_EPROM)

The location of the GDT will be 
programmed into the 
GDT_EPROM location.

IDT location public IDT_EPROM
IDT_EPROM TABLE_REG  <>

TABLE
IDT(location = IDT_EPROM

The location of the IDT will be 
programmed into the 
IDT_EPROM location.

RAM start RAM_START equ 400H memory (reserve = (0..3FFFH)) RAM_START is used as the ram 
destination for moving the 
tables. It must be excluded from 
the application's segment area.

Location of the 
application TSS in 
the GDT

TSS_INDEX EQU 10 TABLE GDT(
ENTRY = (10: PROTECTED_MODE_
TASK))

Put the descriptor of the 
application TSS in GDT entry 10.

EPROM size and 
location

size and location of the initialization 
code

SEGMENT startup.code (base = 
0FFFF0000H) ...memory (RANGE(
ROM_AREA = ROM(x..y)) 

Initialization code size must be 
less than 64K and resides at 
upper most 64K of the 4-GByte 
memory space.
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11.11.1 Microcode Update
A microcode update consists of an Intel-supplied binary that contains a descriptive header and data. No executable 
code resides within the update. Each microcode update is tailored for a specific list of processor signatures. A 
mismatch of the processor’s signature with the signature contained in the update will result in a failure to load. A 
processor signature includes the extended family, extended model, type, family, model, and stepping of the 
processor (starting with processor family 0fH, model 03H, a given microcode update may be associated with one of 
multiple processor signatures; see Section 11.11.2 for details).

Microcode updates are composed of a multi-byte header, followed by encrypted data and then by an optional 
extended signature table. Table 11-7 provides a definition of the fields; Table 11-8 shows the format of an update. 

The header is 48 bytes. The first 4 bytes of the header contain the header version. The update header and its 
reserved fields are interpreted by software based upon the header version. An encoding scheme guards against 
tampering and provides a means for determining the authenticity of any given update. For microcode updates with 
a data size field equal to 00000000H, the size of the microcode update is 2048 bytes. The first 48 bytes contain the 
microcode update header. The remaining 2000 bytes contain encrypted data. 

For microcode updates with a data size not equal to 00000000H, the total size field specifies the size of the micro-
code update. The first 48 bytes contain the microcode update header. The second part of the microcode update is 
the encrypted data. The data size field of the microcode update header specifies the encrypted data size, its value 
must be a multiple of the size of DWORD. The total size field of the microcode update header specifies the 
encrypted data size plus the header size; its value must be in multiples of 1024 bytes (1 KBytes). The optional 
extended signature table if implemented follows the encrypted data, and its size is calculated by (Total Size – (Data 
Size + 48)). 

NOTE
The optional extended signature table is supported starting with processor family 0FH, model 03H.

Figure 11-7.  Applying Microcode Updates

Table 11-7.  Microcode Update Field Definitions

Field Name Offset (bytes) Length 
(bytes)

Description

Header Version 0 4 Version number of the update header.

Update Revision 4 4 Unique version number for the update, the basis for the update 
signature provided by the processor to indicate the current update 
functioning within the processor. Used by the BIOS to authenticate 
the update and verify that the processor loads successfully. The 
value in this field cannot be used for processor stepping identification 
alone. This is a signed 32-bit number.

Date 8 4 Date of the update creation in binary format: mmddyyyy (e.g., 
07/18/98 is 07181998H).

CPU

BIOS

Update
BlocksNew Update

Update
Loader
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Processor Signature 12 4 Extended family, extended model, type, family, model, and stepping 
of processor that requires this particular update revision (e.g., 
00000650H). Each microcode update is designed specifically for a 
given extended family, extended model, type, family, model, and 
stepping of the processor. 

Software should use the processor signature field in conjunction with 
the CPUID instruction to determine whether or not an update is 
appropriate to load on a processor. The information encoded within 
this field exactly corresponds to the bit representations returned by 
the CPUID instruction.

Checksum 16 4 Checksum of Update Data and Header. Used to verify the integrity of 
the update header and data. Checksum is correct when the 
summation of all the DWORDs (including the extended Processor 
Signature Table) that comprise the microcode update result in 
00000000H.

Loader Revision 20 4 Version number of the loader program needed to correctly load this 
update. The initial version is 00000001H.

Processor Flags 24 4 Platform type information is encoded in the lower 8 bits of this 4-
byte field. Each bit represents a particular platform type for a given 
CPUID. Software should use the processor flags field in conjunction 
with the platform Id bits in MSR (17H) to determine whether or not 
an update is appropriate to load on a processor. Multiple bits may be 
set representing support for multiple platform IDs.

Data Size 28 4 Specifies the size of the encrypted data in bytes, and must be a 
multiple of DWORDs. If this value is 00000000H, then the microcode 
update encrypted data is 2000 bytes (or 500 DWORDs).

Total Size 32 4 Specifies the total size of the microcode update in bytes. It is the 
summation of the header size, the encrypted data size and the size of 
the optional extended signature table. This value is always a multiple 
of 1024.

Reserved 36 12 Reserved fields for future expansion.

Update Data 48 Data Size or 
2000

Update data.

Extended Signature 
Count

Data Size + 48 4 Specifies the number of extended signature structures (Processor 
Signature[n], processor flags[n] and checksum[n]) that exist in this 
microcode update.

Extended Checksum Data Size + 52 4 Checksum of update extended processor signature table. Used to 
verify the integrity of the extended processor signature table. 
Checksum is correct when the summation of the DWORDs that 
comprise the extended processor signature table results in 
00000000H.

Reserved Data Size + 56 12 Reserved fields.

Table 11-7.  Microcode Update Field Definitions (Contd.)

Field Name Offset (bytes) Length 
(bytes)

Description
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Processor Signature[n] Data Size + 68 + 
(n * 12)

4 Extended family, extended model, type, family, model, and stepping 
of processor that requires this particular update revision (e.g., 
00000650H). Each microcode update is designed specifically for a 
given extended family, extended model, type, family, model, and 
stepping of the processor. 

Software should use the processor signature field in conjunction with 
the CPUID instruction to determine whether or not an update is 
appropriate to load on a processor. The information encoded within 
this field exactly corresponds to the bit representations returned by 
the CPUID instruction.

Processor Flags[n] Data Size + 72 + 
(n * 12)

4 Platform type information is encoded in the lower 8 bits of this 4-
byte field. Each bit represents a particular platform type for a given 
CPUID. Software should use the processor flags field in conjunction 
with the platform Id bits in MSR (17H) to determine whether or not 
an update is appropriate to load on a processor. Multiple bits may be 
set representing support for multiple platform IDs.

Checksum[n] Data Size + 76 + 
(n * 12)

4 Used by utility software to decompose a microcode update into 
multiple microcode updates where each of the new updates is 
constructed without the optional Extended Processor Signature 
Table.

To calculate the Checksum, substitute the Primary Processor 
Signature entry and the Processor Flags entry with the 
corresponding Extended Patch entry. Delete the Extended Processor 
Signature Table entries. The Checksum is correct when the 
summation of all DWORDs that comprise the created Extended 
Processor Patch results in 00000000H.

Table 11-8.  Microcode Update Format
31 24 16 8 0 Bytes

Header Version 0

Update Revision 4

Month: 8 Day: 8 Year: 16 8

Processor Signature (CPUID) 12

R
es: 4

Extended

Fam
ily: 8

Extended 
M

ode: 4

R
eserved: 2

Type: 2

Fam
ily: 4

M
odel: 4

Stepping: 4

Checksum 16

Loader Revision 20

Processor Flags 24

Reserved (24 bits)

P7 P6 P5 P4 P3 P2 P1 P0

Data Size 28

Total Size 32

Reserved (12 Bytes) 36

Table 11-7.  Microcode Update Field Definitions (Contd.)

Field Name Offset (bytes) Length 
(bytes)

Description
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11.11.2 Optional Extended Signature Table
The extended signature table is a structure that may be appended to the end of the encrypted data when the 
encrypted data only supports a single processor signature (optional case). The extended signature table will always 
be present when the encrypted data supports multiple processor steppings and/or models (required case). 

The extended signature table consists of a 20-byte extended signature header structure, which contains the 
extended signature count, the extended processor signature table checksum, and 12 reserved bytes (Table 11-9). 
Following the extended signature header structure, the extended signature table contains 0-to-n extended 
processor signature structures.

Each processor signature structure consist of the processor signature, processor flags, and a checksum 
(Table 11-10). 

The extended signature count in the extended signature header structure indicates the number of processor signa-
ture structures that exist in the extended signature table.  

The extended processor signature table checksum is a checksum of all DWORDs that comprise the extended signa-
ture table. That includes the extended signature count, extended processor signature table checksum, 12 reserved 
bytes and the n processor signature structures. A valid extended signature table exists when the result of a 
DWORD checksum is 00000000H.

Update Data (Data Size bytes, or 2000 Bytes if Data Size = 00000000H) 48

Extended Signature Count ‘n’ Data Size + 
48

Extended Processor Signature Table Checksum Data Size + 
52

Reserved (12 Bytes) Data Size + 
56

Processor Signature[n] Data Size + 
68 + 
(n * 12)

Processor Flags[n] Data Size + 
72 + 
(n * 12)

Checksum[n] Data Size + 
76 + 
(n * 12)

Table 11-9.  Extended Processor Signature Table Header Structure

Extended Signature Count ‘n’ Data Size + 48
Extended Processor Signature Table Checksum Data Size + 52
Reserved (12 Bytes) Data Size + 56

Table 11-10.  Processor Signature Structure 

Processor Signature[n] Data Size + 68 + (n * 12)
Processor Flags[n] Data Size + 72 + (n * 12)
Checksum[n] Data Size + 76 + (n * 12)

Table 11-8.  Microcode Update Format (Contd.)
31 24 16 8 0 Bytes
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11.11.3 Processor Identification
Each microcode update is designed to for a specific processor or set of processors. To determine the correct micro-
code update to load, software must ensure that one of the processor signatures embedded in the microcode update 
matches the 32-bit processor signature returned by the CPUID instruction when executed by the target processor 
with EAX = 1.  Attempting to load a microcode update that does not match a processor signature embedded in the 
microcode update with the processor signature returned by CPUID will cause the BIOS to reject the update.

Example 11-5 shows how to check for a valid processor signature match between the processor and microcode 
update.

Example 11-5.  Pseudo Code to Validate the Processor Signature

ProcessorSignature ← CPUID(1):EAX

If (Update.HeaderVersion = 00000001h)
{

// first check the ProcessorSignature field
If (ProcessorSignature = Update.ProcessorSignature)

Success

// if extended signature is present
Else If (Update.TotalSize > (Update.DataSize + 48))
{

//
// Assume the Data Size has been used to calculate the 
// location of Update.ProcessorSignature[0].
//

For (N ← 0; ((N < Update.ExtendedSignatureCount) AND 
 (ProcessorSignature ≠ Update.ProcessorSignature[N])); N++);

// if the loops ended when the iteration count is
// less than the number of processor signatures in
// the table, we have a match

If (N < Update.ExtendedSignatureCount)
Success

Else
Fail

}
Else

Fail
Else

Fail 

11.11.4 Platform Identification
In addition to verifying the processor signature, the intended processor platform type must be determined to prop-
erly target the microcode update. The intended processor platform type is determined by reading the 
IA32_PLATFORM_ID register, (MSR 17H).  This 64-bit register must be read using the RDMSR instruction. 

The three platform ID bits, when read as a binary coded decimal (BCD) number, indicate the bit position in the 
microcode update header’s processor flags field associated with the installed processor.  The processor flags in the 
48-byte header and the processor flags field associated with the extended processor signature structures may have 
multiple bits set. Each set bit represents a different platform ID that the update supports.

Register Name: IA32_PLATFORM_ID
MSR Address: 017H
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Access: Read Only

IA32_PLATFORM_ID is a 64-bit register accessed only when referenced as a Qword through a RDMSR instruction.

To validate the platform information, software may implement an algorithm similar to the algorithms in 
Example 11-6.

Example 11-6.  Pseudo Code Example of Processor Flags Test

Flag ← 1 << IA32_PLATFORM_ID[52:50]

If (Update.HeaderVersion = 00000001h)
{

If (Update.ProcessorFlags & Flag)
{

Load Update
}
Else
{

//
// Assume the Data Size has been used to calculate the 
// location of Update.ProcessorSignature[N] and a match
// on Update.ProcessorSignature[N] has already succeeded
//

If (Update.ProcessorFlags[n] & Flag)
{

Load Update
}

}
}

11.11.5 Microcode Update Checksum
Each microcode update contains a DWORD checksum located in the update header. It is software’s responsibility to 
ensure that a microcode update is not corrupt. To check for a corrupt microcode update, software must perform a 

Table 11-11.  Processor Flags

Bit Descriptions
63:53 Reserved
52:50 Platform Id Bits (RO). The field gives information concerning the intended platform for the processor. See also Table 

11-8.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

49:0 Reserved
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unsigned DWORD (32-bit) checksum of the microcode update. Even though some fields are signed, the checksum 
procedure treats all DWORDs as unsigned. Microcode updates with a header version equal to 00000001H must sum 
all DWORDs that comprise the microcode update. A valid checksum check will yield a value of 00000000H. Any 
other value indicates the microcode update is corrupt and should not be loaded.

The checksum algorithm shown by the pseudo code in Example 11-7 treats the microcode update as an array of 
unsigned DWORDs. If the data size DWORD field at byte offset 32 equals 00000000H, the size of the encrypted 
data is 2000 bytes, resulting in 500 DWORDs. Otherwise the microcode update size in DWORDs = (Total Size / 4), 
where the total size is a multiple of 1024 bytes (1 KBytes).

Example 11-7.  Pseudo Code Example of Checksum Test

N ← 512

If (Update.DataSize ≠ 00000000H)
N ← Update.TotalSize / 4

ChkSum ← 0
For (I ← 0; I < N; I++)
{

ChkSum ← ChkSum + MicrocodeUpdate[I]
}

If (ChkSum = 00000000H)
Success

Else
Fail

11.11.6 Microcode Update Loader
This section describes an update loader used to load an update into a P6 family or later processors. It also discusses 
the requirements placed on the BIOS to ensure proper loading. The update loader described contains the minimal 
instructions needed to load an update. The specific instruction sequence that is required to load an update is 
dependent upon the loader revision field contained within the update header. This revision is expected to change 
infrequently (potentially, only when new processor models are introduced).

Example 11-8 below represents the update loader with a loader revision of 00000001H. Note that the microcode 
update must be aligned on a 16-byte boundary and the size of the microcode update must be 1-KByte granular.

Example 11-8.  Assembly Code Example of Simple Microcode Update Loader

mov ecx,79h ; MSR to write in ECX
xor eax,eax ; clear EAX
xor ebx,ebx ; clear EBX
mov ax,cs ; Segment of microcode update
shl eax,4
mov bx,offset Update ; Offset of microcode update
add eax,ebx ; Linear Address of Update in EAX
add eax,48d ; Offset of the Update Data within the Update
xor edx,edx ; Zero in EDX
WRMSR ; microcode update trigger

The loader shown in Example 11-8 assumes that update is the address of a microcode update (header and data) 
embedded within the code segment of the BIOS. It also assumes that the processor is operating in real mode. The 
data may reside anywhere in memory, aligned on a 16-byte boundary, that is accessible by the processor within its 
current operating mode.

Before the BIOS executes the microcode update trigger (WRMSR) instruction, the following must be true:
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• In 64-bit mode, EAX contains the lower 32-bits of the microcode update linear address. In protected mode, EAX 
contains the full 32-bit linear address of the microcode update.

• In 64-bit mode, EDX contains the upper 32-bits of the microcode update linear address. In protected mode, 
EDX equals zero.

• ECX contains 79H (address of IA32_BIOS_UPDT_TRIG).

Other requirements are:
• The addresses for the microcode update data must be in canonical form.
• If paging is enabled, the microcode update data must map that data as present.
• The microcode update data must start at a 16-byte aligned linear address.

11.11.6.1  Hard Resets in Update Loading
The effects of a loaded update are cleared from the processor upon a hard reset. Therefore, each time a hard reset 
is asserted during the BIOS POST, the update must be reloaded on all processors that observed the reset. The 
effects of a loaded update are, however, maintained across a processor INIT. There are no side effects caused by 
loading an update into a processor multiple times.

11.11.6.2  Update in a Multiprocessor System
A multiprocessor (MP) system requires loading each processor with update data appropriate for its CPUID and plat-
form ID bits. The BIOS is responsible for ensuring that this requirement is met and that the loader is located in a 
module executed by all processors in the system. If a system design permits multiple steppings of Pentium 4, Intel 
Xeon, and P6 family processors to exist concurrently; then the BIOS must verify individual processors against the 
update header information to ensure appropriate loading. Given these considerations, it is most practical to load 
the update during MP initialization.

11.11.6.3  Update in a System Supporting Intel Hyper-Threading Technology 
Intel Hyper-Threading Technology has implications on the loading of the microcode update. The update must be 
loaded for each core in a physical processor. Thus, for a processor supporting Intel Hyper-Threading Technology, 
only one logical processor per core is required to load the microcode update. Each individual logical processor can 
independently load the update. However, MP initialization must provide some mechanism (e.g., a software sema-
phore) to force serialization of microcode update loads and to prevent simultaneous load attempts to the same 
core.

11.11.6.4  Update in a System Supporting Dual-Core Technology 
Dual-core technology has implications on the loading of the microcode update. The microcode update facility is not 
shared between processor cores in the same physical package. The update must be loaded for each core in a phys-
ical processor. 

If processor core supports Intel Hyper-Threading Technology, the guideline described in Section 11.11.6.3 also 
applies.

11.11.6.5  Update Loader Enhancements
The update loader presented in Section 11.11.6, “Microcode Update Loader,” is a minimal implementation that can 
be enhanced to provide additional functionality. Potential enhancements are described below:
• BIOS can incorporate multiple updates to support multiple steppings of the Pentium 4, Intel Xeon, and P6 

family processors. This feature provides for operating in a mixed stepping environment on an MP system and 
enables a user to upgrade to a later version of the processor. In this case, modify the loader to check the CPUID 
and platform ID bits of the processor that it is running on against the available headers before loading a 
particular update. The number of updates is only limited by available BIOS space.
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• A loader can load the update and test the processor to determine if the update was loaded correctly. See 
Section 11.11.7, “Update Signature and Verification.”

• A loader can verify the integrity of the update data by performing a checksum on the double words of the 
update summing to zero. See Section 11.11.5, “Microcode Update Checksum.”

• A loader can provide power-on messages indicating successful loading of an update.

11.11.7 Update Signature and Verification
The P6 family and later processors provide capabilities to verify the authenticity of a particular update and to iden-
tify the current update revision. This section describes the model-specific extensions of processors that support 
this feature. The update verification method below assumes that the BIOS will only verify an update that is more 
recent than the revision currently loaded in the processor.

CPUID returns a value in a model specific register in addition to its usual register return values. The semantics of 
CPUID cause it to deposit an update ID value in the 64-bit model-specific register at address 08BH 
(IA32_BIOS_SIGN_ID). If no update is present in the processor, the value in the MSR remains unmodified. The 
BIOS must pre-load a zero into the MSR before executing CPUID. If a read of the MSR at 8BH still returns zero after 
executing CPUID, this indicates that no update is present.

The update ID value returned in the EDX register after RDMSR executes indicates the revision of the update loaded 
in the processor. This value, in combination with the CPUID value returned in the EAX register, uniquely identifies a 
particular update. The signature ID can be directly compared with the update revision field in a microcode update 
header for verification of a correct load. No consecutive updates released for a given stepping of a processor may 
share the same signature. The processor signature returned by CPUID differentiates updates for different step-
pings.

11.11.7.1  Determining the Signature
An update that is successfully loaded into the processor provides a signature that matches the update revision of 
the currently functioning revision. This signature is available any time after the actual update has been loaded. 
Requesting the signature does not have a negative impact upon a loaded update.  

The procedure for determining this signature shown in Example 11-9.

Example 11-9.  Assembly Code to Retrieve the Update Revision

MOV ECX, 08BH ;IA32_BIOS_SIGN_ID
XOR EAX, EAX ;clear EAX
XOR EDX, EDX ;clear EDX
WRMSR ;Load 0 to MSR at 8BH
MOV EAX, 1
cpuid
MOV ECX, 08BH ;IA32_BIOS_SIGN_ID
rdmsr ;Read Model Specific Register

If there is an update active in the processor, its revision is returned in the EDX register after the RDMSR instruction 
executes.

IA32_BIOS_SIGN_ID Microcode Update Signature Register 
MSR Address: 08BH Accessed as a Qword
Default Value: XXXX XXXX XXXX XXXXh
Access: Read/Write

The IA32_BIOS_SIGN_ID register is used to report the microcode update signature when CPUID executes. The 
signature is returned in the upper DWORD (Table 11-12).
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11.11.7.2  Authenticating the Update
An update may be authenticated by the BIOS using the signature primitive, described above, and the algorithm in 
Example 11-10.

Example 11-10.  Pseudo Code to Authenticate the Update

Z ← Obtain Update Revision from the Update Header to be authenticated;
X ← Obtain Current Update Signature from MSR 8BH;

If (Z > X)
{

Load Update that is to be authenticated;
Y ← Obtain New Signature from MSR 8BH;

If (Z = Y)
Success

Else
Fail

}
Else

Fail

Example 11-10 requires that the BIOS only authenticate updates that contain a numerically larger revision than 
the currently loaded revision, where Current Signature (X) < New Update Revision (Z). A processor with no loaded 
update is considered to have a revision equal to zero.

This authentication procedure relies upon the decoding provided by the processor to verify an update from a poten-
tially hostile source.  As an example, this mechanism in conjunction with other safeguards provides security for 
dynamically incorporating field updates into the BIOS.

11.11.8 Optional Processor Microcode Update Specifications
This section an interface that an OEM-BIOS may provide to its client system software to manage processor micro-
code updates. System software may choose to build its own facility to manage microcode updates (e.g., similar to 
the facility described in Section 9.11.6) or rely on a facility provided by the BIOS to perform microcode updates.

Sections 11.11.8.1-11.11.8.9 describes an extension (Function 0D042H) to the real mode INT 15H service. INT 
15H 0D042H function is one of several alternatives that a BIOS may choose to implement microcode update facility 
and offer to its client application (e.g., an OS). Other alternative microcode update facility that BIOS can choose 
are dependent on platform-specific capabilities, including the Capsule Update mechanism from the UEFI specifica-
tion (www.uefi.org). In this discussion, the application is referred to as the calling program or caller.

The real mode INT15 call specification described here is an Intel extension to an OEM BIOS. This extension allows 
an application to read and modify the contents of the microcode update data in NVRAM. The update loader, which 
is part of the system BIOS, cannot be updated by the interface. All of the functions defined in the specification must 
be implemented for a system to be considered compliant with the specification. The INT15 functions are accessible 
only from real mode.

Table 11-12.  Microcode Update Signature 
Bit Description

63:32 Microcode update signature. This field contains the signature of the currently loaded microcode update when read following 
the execution of the CPUID instruction, function 1. It is required that this register field be pre-loaded with zero prior to 
executing the CPUID, function 1. If the field remains equal to zero, then there is no microcode update loaded. Another non-
zero value will be the signature.

31:0 Reserved.
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11.11.8.1  Responsibilities of the BIOS
If a BIOS passes the presence test (INT 15H, AX = 0D042H, BL = 0H), it must implement all of the sub-functions 
defined in the INT 15H, AX = 0D042H specification. There are no optional functions. BIOS must load the appropriate 
update for each processor during system initialization.

A Header Version of an update block containing the value 0FFFFFFFFH indicates that the update block is unused and 
available for storing a new update.

The BIOS is responsible for providing a region of non-volatile storage (NVRAM) for each potential processor step-
ping within a system. This storage unit consists of one or more update blocks. An update block is a contiguous 
2048-byte block of memory. The BIOS for a single processor system need only provide update blocks to store one 
microcode update. If the BIOS for a multiple processor system is intended to support mixed processor steppings, 
then the BIOS needs to provide enough update blocks to store each unique microcode update or for each processor 
socket on the OEM’s system board. 

The BIOS is responsible for managing the NVRAM update blocks. This includes garbage collection, such as 
removing microcode updates that exist in NVRAM for which a corresponding processor does not exist in the system. 
This specification only provides the mechanism for ensuring security, the uniqueness of an entry, and that stale 
entries are not loaded. The actual update block management is implementation specific on a per-BIOS basis. 

As an example, the BIOS may use update blocks sequentially in ascending order with CPU signatures sorted versus 
the first available block. In addition, garbage collection may be implemented as a setup option to clear all NVRAM 
slots or as BIOS code that searches and eliminates unused entries during boot.

NOTES
For IA-32 processors starting with family 0FH and model 03H and Intel 64 processors, the 
microcode update may be as large as 16 KBytes. Thus, BIOS must allocate 8 update blocks for each 
microcode update. In a MP system, a common microcode update may be sufficient for each socket 
in the system. 
For IA-32 processors earlier than family 0FH and model 03H, the microcode update is 2 KBytes. An 
MP-capable BIOS that supports multiple steppings must allocate a block for each socket in the 
system.
A single-processor BIOS that supports variable-sized microcode update and fixed-sized microcode 
update must allocate one 16-KByte region and a second region of at least 2 KBytes.

The following algorithm (Example 11-11) describes the steps performed during BIOS initialization used to load the 
updates into the processor(s). The algorithm assumes:
• The BIOS ensures that no update contained within NVRAM has a header version or loader version that does not 

match one currently supported by the BIOS.
• The update contains a correct checksum.
• The BIOS ensures that (at most) one update exists for each processor stepping.
• Older update revisions are not allowed to overwrite more recent ones.

These requirements are checked by the BIOS during the execution of the write update function of this interface. 
The BIOS sequentially scans through all of the update blocks in NVRAM starting with index 0. The BIOS scans until 
it finds an update where the processor fields in the header match the processor signature (extended family, 
extended model, type, family, model, and stepping) as well as the platform bits of the current processor.

Example 11-11.  Pseudo Code, Checks Required Prior to Loading an Update

For each processor in the system
{

Determine the Processor Signature via CPUID function 1;
Determine the Platform Bits ← 1 << IA32_PLATFORM_ID[52:50];

For (I ← UpdateBlock 0, I < NumOfBlocks; I++)
{

If (Update.Header_Version = 00000001H)
{
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If ((Update.ProcessorSignature = Processor Signature) &&
 (Update.ProcessorFlags & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update was correctly loaded into the processor 
Go on to next processor

Break;
}
Else If (Update.TotalSize > (Update.DataSize + 48))
{

N ← 0
While (N < Update.ExtendedSignatureCount)
{

If ((Update.ProcessorSignature[N] = 
 Processor Signature) &&
 (Update.ProcessorFlags[N] & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update correctly loaded into the processor
Go on to next processor

Break;
}
N ← N + 1

}
I ← I + (Update.TotalSize / 2048)
If ((Update.TotalSize MOD 2048) = 0)

I ← I + 1
}

}
}

}

NOTES
The platform Id bits in IA32_PLATFORM_ID are encoded as a three-bit binary coded decimal field. 
The platform bits in the microcode update header are individually bit encoded. The algorithm must 
do a translation from one format to the other prior to doing a check.

When performing the INT 15H, 0D042H functions, the BIOS must assume that the caller has no knowledge of plat-
form specific requirements. It is the responsibility of BIOS calls to manage all chipset and platform specific prereq-
uisites for managing the NVRAM device. When writing the update data using the Write Update sub-function, the 
BIOS must maintain implementation specific data requirements (such as the update of NVRAM checksum). The 
BIOS should also attempt to verify the success of write operations on the storage device used to record the update.

11.11.8.2  Responsibilities of the Calling Program
This section of the document lists the responsibilities of a calling program using the interface specifications to load 
microcode update(s) into BIOS NVRAM.
• The calling program should call the INT 15H, 0D042H functions from a pure real mode program and should be 

executing on a system that is running in pure real mode. 
• The caller should issue the presence test function (sub function 0) and verify the signature and return codes of 

that function. 
• It is important that the calling program provides the required scratch RAM buffers for the BIOS and the proper 

stack size as specified in the interface definition.
• The calling program should read any update data that already exists in the BIOS in order to make decisions 

about the appropriateness of loading the update. The BIOS must refuse to overwrite a newer update with an 
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older version. The update header contains information about version and processor specifics for the calling 
program to make an intelligent decision about loading.

• There can be no ambiguous updates. The BIOS must refuse to allow multiple updates for the same CPU to exist 
at the same time; it also must refuse to load updates for processors that don’t exist on the system.

• The calling application should implement a verify function that is run after the update write function success-
fully completes. This function reads back the update and verifies that the BIOS returned an image identical to 
the one that was written. 

Example 11-12 represents a calling program.

Example 11-12.  INT 15 DO42 Calling Program Pseudo-code

//
// We must be in real mode
//
If the system is not in Real mode exit
//
// Detect presence of Genuine Intel processor(s) that can be updated 
// using(CPUID)
//
If no Intel processors exist that can be updated exit
//
// Detect the presence of the Intel microcode update extensions
//
If the BIOS fails the PresenceTestexit
//
// If the APIC is enabled, see if any other processors are out there
//
Read IA32_APICBASE
If APIC enabled
{

Send Broadcast Message to all processors except self via APIC
Have all processors execute CPUID, record the Processor Signature 
(i.e.,Extended Family, Extended Model, Type, Family, Model, Stepping)
Have all processors read IA32_PLATFORM_ID[52:50], record Platform
 Id Bits

If current processor cannot be updated
exit

}
//
// Determine the number of unique update blocks needed for this system
//
NumBlocks = 0
For each processor
{

If ((this is a unique processor stepping) AND
(we have a unique update in the database for this processor))

{
Checksum the update from the database;
If Checksum fails

exit
NumBlocks ← NumBlocks + size of microcode update / 2048

}
}

//
// Do we have enough update slots for all CPUs?
//
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If there are more blocks required to support the unique processor steppings than update blocks 
provided by the BIOS exit
//
// Do we need any update blocks at all?  If not, we are done
//
If (NumBlocks = 0)

exit
//
// Record updates for processors in NVRAM.
//
For (I=0; I<NumBlocks; I++)
{

//
// Load each Update
//
Issue the WriteUpdate function

If (STORAGE_FULL) returned
{

Display Error -- BIOS is not managing NVRAM appropriately
exit

}

If (INVALID_REVISION) returned
{

Display Message: More recent update already loaded in NVRAM for
 this stepping
continue

}

If any other error returned
{

Display Diagnostic
exit

}

//
// Verify the update was loaded correctly
//
Issue the ReadUpdate function

If an error occurred
{

Display Diagnostic
exit

}
//
// Compare the Update read to that written
//
If (Update read ≠ Update written)
{

Display Diagnostic
exit

}

I ← I + (size of microcode update / 2048)
}
//
// Enable Update Loading, and inform user
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//
Issue the Update Control function with Task = Enable.

11.11.8.3  Microcode Update Functions
Table 11-13 defines the processor microcode update functions that implementations of INT 15H 0D042H must 
support.

11.11.8.4  INT 15H-based Interface
If an OEM-BIOS is implementing INT 15H 0D042H interface and offer to its client, the BIOS should allow additional 
microcode updates to be added to system flash.

The program that calls this interface is responsible for providing three 64-kilobyte RAM areas for BIOS use during 
calls to the read and write functions. These RAM scratch pads can be used by the BIOS for any purpose, but only 
for the duration of the function call. The calling routine places real mode segments pointing to the RAM blocks in 
the CX, DX, and SI registers. Calls to functions in this interface must be made with a minimum of 32 kilobytes of 
stack available to the BIOS.

In general, each function returns with CF cleared and AH contains the returned status. The general return codes 
and other constant definitions are listed in Section 11.11.8.9, “Return Codes.”

The OEM error field (AL) is provided for the OEM to return additional error information specific to the platform. If 
the BIOS provides no additional information about the error, OEM error must be set to SUCCESS. The OEM error 
field is undefined if AH contains either SUCCESS (00H) or NOT_IMPLEMENTED (86H). In all other cases, it must be 
set with either SUCCESS or a value meaningful to the OEM.

The following sections describe functions provided by the INT15H-based interface.

11.11.8.5  Function 00H—Presence Test
This function verifies that the BIOS has implemented required microcode update functions. Table 11-14 lists the 
parameters and return codes for the function.

Table 11-13.  Microcode Update Functions 
Microcode Update Function Function 

Number
Description Required/Optional

Presence test 00H Returns information about the supported functions. Required

Write update data 01H Writes one of the update data areas (slots). Required

Update control 02H Globally controls the loading of updates. Required

Read update data 03H Reads one of the update data areas (slots). Required

Table 11-14.  Parameters for the Presence Test 

Input

AX Function Code 0D042H

BL Sub-function 00H - Presence test

Output

CF Carry Flag Carry Set - Failure - AH contains status

Carry Clear - All return values valid

AH Return Code  

AL OEM Error Additional OEM information.

EBX Signature Part 1 'INTE' - Part one of the signature 

ECX Signature Part 2 'LPEP'- Part two of the signature

EDX Loader Version Version number of the microcode update loader
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In order to assure that the BIOS function is present, the caller must verify the carry flag, the return code, and the 
64-bit signature. The update count reflects the number of 2048-byte blocks available for storage within one non-
volatile RAM.

The loader version number refers to the revision of the update loader program that is included in the system BIOS 
image.

11.11.8.6  Function 01H—Write Microcode Update Data
This function integrates a new microcode update into the BIOS storage device. Table 11-15 lists the parameters 
and return codes for the function.

SI Update Count Number of 2048 update blocks in NVRAM the BIOS allocated to storing 
microcode updates 

Return Codes (see Table 11-19 for code definitions

SUCCESS The function completed successfully.

NOT_IMPLEMENTED The function is not implemented. 

Table 11-15.  Parameters for the Write Update Data Function

Input

AX Function Code 0D042H

BL Sub-function 01H - Write update

ES:DI Update Address Real Mode pointer to the Intel Update structure. This buffer is 2048 bytes in 
length if the processor supports only fixed-size microcode update or...

Real Mode pointer to the Intel Update structure. This buffer is 64 KBytes in 
length if the processor supports a variable-size microcode update.

CX Scratch Pad1 Real mode segment address of 64 KBytes of RAM block

DX Scratch Pad2 Real mode segment address of 64 KBytes of RAM block

SI Scratch Pad3 Real mode segment address of 64 KBytes of RAM block

SS:SP Stack pointer 32 KBytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH Contains status

Carry Clear - All return values valid

AH Return Code Status of the call

AL OEM Error Additional OEM information

Return Codes (see Table 11-19 for code definitions

SUCCESS The function completed successfully.

NOT_IMPLEMENTED The function is not implemented. 

WRITE_FAILURE A failure occurred because of the inability to write the storage device.

ERASE_FAILURE A failure occurred because of the inability to erase the storage device.

READ_FAILURE A failure occurred because of the inability to read the storage device.

Table 11-14.  Parameters for the Presence Test  (Contd.)

Input
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Description

The BIOS is responsible for selecting an appropriate update block in the non-volatile storage for storing the new 
update. This BIOS is also responsible for ensuring the integrity of the information provided by the caller, including 
authenticating the proposed update before incorporating it into storage.

Before writing the update block into NVRAM, the BIOS should ensure that the update structure meets the following 
criteria in the following order:

1. The update header version should be equal to an update header version recognized by the BIOS.

2. The update loader version in the update header should be equal to the update loader version contained within 
the BIOS image.

3. The update block must checksum. This checksum is computed as a 32-bit summation of all double words in the 
structure, including the header, data, and processor signature table.

The BIOS selects update block(s) in non-volatile storage for storing the candidate update. The BIOS can select any 
available update block as long as it guarantees that only a single update exists for any given processor stepping in 
non-volatile storage. If the update block selected already contains an update, the following additional criteria apply 
to overwrite it:
• The processor signature in the proposed update must be equal to the processor signature in the header of the 

current update in NVRAM (Processor Signature + platform ID bits).
• The update revision in the proposed update should be greater than the update revision in the header of the 

current update in NVRAM.

If no unused update blocks are available and the above criteria are not met, the BIOS can overwrite update 
block(s) for a processor stepping that is no longer present in the system. This can be done by scanning the update 
blocks and comparing the processor steppings, identified in the MP Specification table, to the processor steppings 
that currently exist in the system.

Finally, before storing the proposed update in NVRAM, the BIOS must verify the authenticity of the update via the 
mechanism described in Section 11.11.6, “Microcode Update Loader.” This includes loading the update into the 
current processor, executing the CPUID instruction, reading MSR 08Bh, and comparing a calculated value with the 
update revision in the proposed update header for equality.

When performing the write update function, the BIOS must record the entire update, including the header, the 
update data, and the extended processor signature table (if applicable). When writing an update, the original 
contents may be overwritten, assuming the above criteria have been met. It is the responsibility of the BIOS to 
ensure that more recent updates are not overwritten through the use of this BIOS call, and that only a single 
update exists within the NVRAM for any processor stepping and platform ID.

Figure 11-8 and Figure 11-9 show the process the BIOS follows to choose an update block and ensure the integrity 
of the data when it stores the new microcode update. 

STORAGE_FULL The BIOS non-volatile storage area is unable to accommodate the update 
because all available update blocks are filled with updates that are needed for 
processors in the system.

CPU_NOT_PRESENT The processor stepping does not currently exist in the system.

INVALID_HEADER The update header contains a header or loader version that is not recognized by 
the BIOS.

INVALID_HEADER_CS The update does not checksum correctly.

SECURITY_FAILURE The processor rejected the update.

INVALID_REVISION The same or more recent revision of the update exists in the storage device. 

Table 11-15.  Parameters for the Write Update Data Function (Contd.)

Input
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Figure 11-8.  Microcode Update Write Operation Flow [1]
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11.11.8.7  Function 02H—Microcode Update Control
This function enables loading of binary updates into the processor. Table 11-16 lists the parameters and return 
codes for the function.

Figure 11-9.  Microcode Update Write Operation Flow [2]
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This control is provided on a global basis for all updates and processors. The caller can determine the current status 
of update loading (enabled or disabled) without changing the state. The function does not allow the caller to disable 
loading of binary updates, as this poses a security risk.

The caller specifies the requested operation by placing one of the values from Table 11-17 in the BH register. After 
successfully completing this function, the BL register contains either the enable or the disable designator. Note that 
if the function fails, the update status return value is undefined.

The READ_FAILURE error code returned by this function has meaning only if the control function is implemented in 
the BIOS NVRAM. The state of this feature (enabled/disabled) can also be implemented using CMOS RAM bits 
where READ failure errors cannot occur. 

11.11.8.8  Function 03H—Read Microcode Update Data
This function reads a currently installed microcode update from the BIOS storage into a caller-provided RAM buffer. 
Table 11-18 lists the parameters and return codes. 

Table 11-16.  Parameters for the Control Update Sub-function

Input

AX Function Code 0D042H

BL Sub-function 02H - Control update

BH Task See the description below.

CX Scratch Pad1 Real mode segment of 64 KBytes of RAM block

DX Scratch Pad2 Real mode segment of 64 KBytes of RAM block

SI Scratch Pad3 Real mode segment of 64 KBytes of RAM block

SS:SP Stack pointer 32 kilobytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH contains status

Carry Clear - All return values valid.

AH Return Code Status of the call

AL OEM Error Additional OEM Information. 

BL Update Status Either enable or disable indicator

Return Codes (see Table 11-19 for code definitions)

SUCCESS Function completed successfully.

READ_FAILURE A failure occurred because of the inability to read the storage device. 

Table 11-17.  Mnemonic Values
Mnemonic Value Meaning

Enable 1 Enable the Update loading at initialization time.

Query 2 Determine the current state of the update control without changing its status.

Table 11-18.  Parameters for the Read Microcode Update Data Function
Input

AX Function Code 0D042H

BL Sub-function 03H - Read Update

ES:DI Buffer Address Real Mode pointer to the Intel Update structure that 
will be written with the binary data
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The read function enables the caller to read any microcode update data that already exists in a BIOS and make 
decisions about the addition of new updates.  As a result of a successful call, the BIOS copies the microcode update 
into the location pointed to by ES:DI, with the contents of all Update block(s) that are used to store the specified 
microcode update.

If the specified block is not a header block, but does contain valid data from a microcode update that spans multiple 
update blocks, then the BIOS must return Failure with the NOT_EMPTY error code in AH.

An update block is considered unused and available for storing a new update if its Header Version contains the 
value 0FFFFFFFFH after return from this function call.  The actual implementation of NVRAM storage management 
is not specified here and is BIOS dependent.  As an example, the actual data value used to represent an empty 
block by the BIOS may be zero, rather than 0FFFFFFFFH. The BIOS is responsible for translating this information 
into the header provided by this function.

11.11.8.9  Return Codes
After the call has been made, the return codes listed in Table 11-19 are available in the AH register.

ECX Scratch Pad1 Real Mode Segment address of 64 KBytes of RAM 
Block (lower 16 bits)

ECX Scratch Pad2 Real Mode Segment address of 64 KBytes of RAM 
Block (upper 16 bits)

DX Scratch Pad3 Real Mode Segment address of 64 KBytes of RAM 
Block

SS:SP Stack pointer 32 KBytes of Stack Minimum

SI Update Number This is the index number of the update block to be 
read. This value is zero based and must be less than 
the update count returned from the presence test 
function.

Output

CF Carry Flag Carry Set     - Failure - AH contains Status

Carry Clear - All return values are 
valid.

AH Return Code Status of the Call

AL OEM Error Additional OEM Information

Return Codes (see Table 11-19 for code definitions)

SUCCESS The function completed successfully.

READ_FAILURE There was a failure because of the inability to read the 
storage device.

UPDATE_NUM_INVALID Update number exceeds the maximum number of 
update blocks implemented by the BIOS.

NOT_EMPTY The specified update block is a subsequent block in use 
to store a valid microcode update that spans multiple 
blocks. 

The specified block is not a header block and is not 
empty. 

Table 11-18.  Parameters for the Read Microcode Update Data Function (Contd.)
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Table 11-19.  Return Code Definitions

Return Code Value Description

SUCCESS 00H The function completed successfully.

NOT_IMPLEMENTED 86H The function is not implemented.

ERASE_FAILURE 90H A failure because of the inability to erase the storage device.

WRITE_FAILURE 91H A failure because of the inability to write the storage device.

READ_FAILURE 92H A failure because of the inability to read the storage device.

STORAGE_FULL 93H The BIOS non-volatile storage area is unable to accommodate the update 
because all available update blocks are filled with updates that are needed 
for processors in the system.

CPU_NOT_PRESENT 94H The processor stepping does not currently exist in the system.

INVALID_HEADER 95H The update header contains a header or loader version that is not 
recognized by the BIOS.

INVALID_HEADER_CS 96H The update does not checksum correctly.

SECURITY_FAILURE 97H The update was rejected by the processor.

INVALID_REVISION 98H The same or more recent revision of the update exists in the storage device.

UPDATE_NUM_INVALID 99H The update number exceeds the maximum number of update blocks 
implemented by the BIOS.

NOT_EMPTY 9AH The specified update block is a subsequent block in use to store a valid 
microcode update that spans multiple blocks. 

The specified block is not a header block and is not empty.
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CHAPTER 12
ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in the following sections as the local APIC, 
was introduced into the IA-32 processors with the Pentium processor (see Section 24.27, “Advanced Program-
mable Interrupt Controller (APIC)”) and is included in the P6 family, Pentium 4, Intel Xeon processors, and other 
more recent Intel 64 and IA-32 processor families (see Section 12.4.2, “Presence of the Local APIC”). The local 
APIC performs two primary functions for the processor:
• It receives interrupts from the processor’s interrupt pins, from internal sources and from an external I/O APIC 

(or other external interrupt controller). It sends these to the processor core for handling.
• In multiple processor (MP) systems, it sends and receives interprocessor interrupt (IPI) messages to and from 

other logical processors on the system bus. IPI messages can be used to distribute interrupts among the 
processors in the system or to execute system wide functions (such as, booting up processors or distributing 
work among a group of processors).

The external I/O APIC is part of Intel’s system chipset. Its primary function is to receive external interrupt events 
from the system and its associated I/O devices and relay them to the local APIC as interrupt messages. In MP 
systems, the I/O APIC also provides a mechanism for distributing external interrupts to the local APICs of selected 
processors or groups of processors on the system bus. 

This chapter provides a description of the local APIC and its programming interface. It also provides an overview of 
the interface between the local APIC and the I/O APIC. Contact Intel for detailed information about the I/O APIC.

When a local APIC has sent an interrupt to its processor core for handling, the processor uses the interrupt and 
exception handling mechanism described in Chapter 7, “Interrupt and Exception Handling.” See Section 7.1, “Inter-
rupt and Exception Overview,” for an introduction to interrupt and exception handling.

12.1 LOCAL AND I/O APIC OVERVIEW
Each local APIC consists of a set of APIC registers (see Table 12-1) and associated hardware that control the 
delivery of interrupts to the processor core and the generation of IPI messages. The APIC registers are memory 
mapped and can be read and written to using the MOV instruction.

Local APICs can receive interrupts from the following sources:
• Locally connected I/O devices — These interrupts originate as an edge or level asserted by an I/O device 

that is connected directly to the processor’s local interrupt pins (LINT0 and LINT1). The I/O devices may also 
be connected to an 8259-type interrupt controller that is in turn connected to the processor through one of the 
local interrupt pins.

• Externally connected I/O devices — These interrupts originate as an edge or level asserted by an I/O 
device that is connected to the interrupt input pins of an I/O APIC. Interrupts are sent as I/O interrupt 
messages from the I/O APIC to one or more of the processors in the system.

• Inter-processor interrupts (IPIs) — An Intel 64 or IA-32 processor can use the IPI mechanism to interrupt 
another processor or group of processors on the system bus. IPIs are used for software self-interrupts, 
interrupt forwarding, or preemptive scheduling.

• APIC timer generated interrupts — The local APIC timer can be programmed to send a local interrupt to its 
associated processor when a programmed count is reached (see Section 12.5.4, “APIC Timer”).

• Performance monitoring counter interrupts — P6 family, Pentium 4, and Intel Xeon processors provide the 
ability to send an interrupt to its associated processor when a performance-monitoring counter overflows (see 
Section 21.6.3.5.8, “Generating an Interrupt on Overflow”).

• Thermal Sensor interrupts — Pentium 4 and Intel Xeon processors provide the ability to send an interrupt to 
themselves when the internal thermal sensor has been tripped (see Section 16.8.2, “Thermal Monitor”).

• APIC internal error interrupts — When an error condition is recognized within the local APIC (such as an 
attempt to access an unimplemented register), the APIC can be programmed to send an interrupt to its 
associated processor (see Section 12.5.3, “Error Handling”).
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Of these interrupt sources: the processor’s LINT0 and LINT1 pins, the APIC timer, the performance-monitoring 
counters, the thermal sensor, and the internal APIC error detector are referred to as local interrupt sources. 
Upon receiving a signal from a local interrupt source, the local APIC delivers the interrupt to the processor core 
using an interrupt delivery protocol that has been set up through a group of APIC registers called the local vector 
table or LVT (see Section 12.5.1, “Local Vector Table”). A separate entry is provided in the local vector table for 
each local interrupt source, which allows a specific interrupt delivery protocol to be set up for each source. For 
example, if the LINT1 pin is going to be used as an NMI pin, the LINT1 entry in the local vector table can be set up 
to deliver an interrupt with vector number 2 (NMI interrupt) to the processor core.

The local APIC handles interrupts from the other two interrupt sources (externally connected I/O devices and IPIs) 
through its IPI message handling facilities. 

A processor can generate IPIs by programming the interrupt command register (ICR) in its local APIC (see Section 
12.6.1, “Interrupt Command Register (ICR)”). The act of writing to the ICR causes an IPI message to be generated 
and issued on the system bus (for Pentium 4 and Intel Xeon processors) or on the APIC bus (for Pentium and P6 
family processors). See Section 12.2, “System Bus Vs. APIC Bus.”

IPIs can be sent to other processors in the system or to the originating processor (self-interrupts). When the target 
processor receives an IPI message, its local APIC handles the message automatically (using information included 
in the message such as vector number and trigger mode). See Section 12.6, “Issuing Interprocessor Interrupts,” 
for a detailed explanation of the local APIC’s IPI message delivery and acceptance mechanism.

The local APIC can also receive interrupts from externally connected devices through the I/O APIC (see 
Figure 12-1). The I/O APIC is responsible for receiving interrupts generated by system hardware and I/O devices 
and forwarding them to the local APIC as interrupt messages.

Individual pins on the I/O APIC can be programmed to generate a specific interrupt vector when asserted. The I/O 
APIC also has a “virtual wire mode” that allows it to communicate with a standard 8259A-style external interrupt 
controller. Note that the local APIC can be disabled (see Section 12.4.3, “Enabling or Disabling the Local APIC”). 
This allows an associated processor core to receive interrupts directly from an 8259A interrupt controller.

Both the local APIC and the I/O APIC are designed to operate in MP systems (see Figures 12-2 and 12-3). Each local 
APIC handles interrupts from the I/O APIC, IPIs from processors on the system bus, and self-generated interrupts. 
Interrupts can also be delivered to the individual processors through the local interrupt pins; however, this mecha-
nism is commonly not used in MP systems.

 

Figure 12-1.  Relationship of Local APIC and I/O APIC In Single-Processor Systems
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The IPI mechanism is typically used in MP systems to send fixed interrupts (interrupts for a specific vector number) 
and special-purpose interrupts to processors on the system bus. For example, a local APIC can use an IPI to 
forward a fixed interrupt to another processor for servicing. Special-purpose IPIs (including NMI, INIT, SMI, and 
SIPI IPIs) allow one or more processors on the system bus to perform system-wide boot-up and control functions.

The following sections focus on the local APIC and its implementation in the Pentium 4, Intel Xeon, and P6 family 
processors. In these sections, the terms “local APIC” and “I/O APIC” refer to local and I/O APICs used with the P6 
family processors and to local and I/O xAPICs used with the Pentium 4 and Intel Xeon processors (see Section 
12.3, “The Intel® 82489DX External APIC, the APIC, the xAPIC, and the X2APIC”). 

12.2 SYSTEM BUS VS. APIC BUS
For the P6 family and Pentium processors, the I/O APIC and local APICs communicate through the 3-wire inter-
APIC bus (see Figure 12-3). Local APICs also use the APIC bus to send and receive IPIs. The APIC bus and its 
messages are invisible to software and are not classed as architectural.

 

Figure 12-2.  Local APICs and I/O APIC When Intel Xeon Processors Are Used in Multiple-Processor Systems

 

Figure 12-3.  Local APICs and I/O APIC When P6 Family Processors Are Used in Multiple-Processor Systems
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Beginning with the Pentium 4 and Intel Xeon processors, the I/O APIC and local APICs (using the xAPIC architec-
ture) communicate through the system bus (see Figure 12-2). The I/O APIC sends interrupt requests to the 
processors on the system bus through bridge hardware that is part of the Intel chipset. The bridge hardware gener-
ates the interrupt messages that go to the local APICs. IPIs between local APICs are transmitted directly on the 
system bus.

12.3 THE INTEL® 82489DX EXTERNAL APIC, THE APIC, THE XAPIC, AND THE 
X2APIC

The local APIC in the P6 family and Pentium processors is an architectural subset of the Intel® 82489DX external 
APIC. See Section 24.27.1, “Software Visible Differences Between the Local APIC and the 82489DX.”
The APIC architecture used in the Pentium 4 and Intel Xeon processors (called the xAPIC architecture) is an exten-
sion of the APIC architecture found in the P6 family processors. The primary difference between the APIC and 
xAPIC architectures is that with the xAPIC architecture, the local APICs and the I/O APIC communicate through the 
system bus. With the APIC architecture, they communication through the APIC bus (see Section 12.2, “System Bus 
Vs. APIC Bus”). Also, some APIC architectural features have been extended and/or modified in the xAPIC architec-
ture. These extensions and modifications are described in Section 12.4 through Section 12.10.

The basic operating mode of the xAPIC is xAPIC mode. The x2APIC architecture is an extension of the xAPIC 
architecture, primarily to increase processor addressability. The x2APIC architecture provides backward compati-
bility to the xAPIC architecture and forward extendability for future Intel platform innovations. These extensions 
and modifications are supported by a new mode of execution (x2APIC mode) are detailed in Section 12.12.

12.4 LOCAL APIC
The following sections describe the architecture of the local APIC and how to detect it, identify it, and determine its 
status. Descriptions of how to program the local APIC are given in Section 12.5.1, “Local Vector Table,” and Section 
12.6.1, “Interrupt Command Register (ICR).”

12.4.1 The Local APIC Block Diagram
Figure 12-4 gives a functional block diagram for the local APIC. Software interacts with the local APIC by reading 
and writing its registers. APIC registers are memory-mapped to a 4-KByte region of the processor’s physical 
address space with an initial starting address of FEE00000H. For correct APIC operation, this address space must 
be mapped to an area of memory that has been designated as strong uncacheable (UC). See Section 13.3, 
“Methods of Caching Available.”

In MP system configurations, the APIC registers for Intel 64 or IA-32 processors on the system bus are initially 
mapped to the same 4-KByte region of the physical address space. Software has the option of changing initial 
mapping to a different 4-KByte region for all the local APICs or of mapping the APIC registers for each local APIC to 
its own 4-KByte region. Section 12.4.5, “Relocating the Local APIC Registers,” describes how to relocate the base 
address for APIC registers.

On processors supporting x2APIC architecture (indicated by CPUID.01H:ECX[21] = 1), the local APIC supports 
operation both in xAPIC mode and (if enabled by software) in x2APIC mode. x2APIC mode provides extended 
processor addressability (see Section 12.12).

NOTE
For P6 family, Pentium 4, and Intel Xeon processors, the APIC handles all memory accesses to 
addresses within the 4-KByte APIC register space internally and no external bus cycles are 
produced. For the Pentium processors with an on-chip APIC, bus cycles are produced for accesses 
to the APIC register space. Thus, for software intended to run on Pentium processors, system 
software should explicitly not map the APIC register space to regular system memory. Doing so can 
result in an invalid opcode exception (#UD) being generated or unpredictable execution.
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Table 12-1 shows how the APIC registers are mapped into the 4-KByte APIC register space. Registers are 32 bits, 
64 bits, or 256 bits in width; all are aligned on 128-bit boundaries. All 32-bit registers should be accessed using 
128-bit aligned 32-bit loads or stores. Some processors may support loads and stores of less than 32 bits to some 
of the APIC registers. This is model specific behavior and is not guaranteed to work on all processors. Any 
FP/MMX/SSE access to an APIC register, or any access that touches bytes 4 through 15 of an APIC register may 
cause undefined behavior and must not be executed. This undefined behavior could include hangs, incorrect results 
or unexpected exceptions, including machine checks, and may vary between implementations. Wider registers 
(64-bit or 256-bit) must be accessed using multiple 32-bit loads or stores, with all accesses being 128-bit aligned. 

The local APIC registers listed in Table 12-1 are not MSRs. The only MSR associated with the programming of the 
local APIC is the IA32_APIC_BASE MSR (see Section 12.4.3, “Enabling or Disabling the Local APIC”).

NOTE
In processors based on Nehalem1 microarchitecture, the Local APIC ID Register is no longer 
Read/Write; it is Read Only.

Figure 12-4.  Local APIC Structure
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1. See Table 2-1, “CPUID Signature Values of DisplayFamily_DisplayModel,” on page 1, and Section 2.8, “MSRs In Processors Based on 
Nehalem Microarchitecture,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, to determine which 
processors are based on Nehalem microarchitecture.

Table 12-1. Local APIC Register Address Map 

Address Register Name Software Read/Write

FEE0 0000H Reserved

FEE0 0010H Reserved

FEE0 0020H Local APIC ID Register Read/Write.

FEE0 0030H Local APIC Version Register Read Only.

FEE0 0040H Reserved

FEE0 0050H Reserved

FEE0 0060H Reserved

FEE0 0070H Reserved

FEE0 0080H Task Priority Register (TPR) Read/Write.

FEE0 0090H Arbitration Priority Register1 (APR) Read Only.

FEE0 00A0H Processor Priority Register (PPR) Read Only.

FEE0 00B0H EOI Register Write Only.

FEE0 00C0H Remote Read Register1 (RRD) Read Only

FEE0 00D0H Logical Destination Register Read/Write.

FEE0 00E0H Destination Format Register Read/Write (see Section 
12.6.2.2).

FEE0 00F0H Spurious Interrupt Vector Register Read/Write (see Section 12.9.

FEE0 0100H In-Service Register (ISR); bits 31:0 Read Only.

FEE0 0110H In-Service Register (ISR); bits 63:32 Read Only.

FEE0 0120H In-Service Register (ISR); bits 95:64 Read Only.

FEE0 0130H In-Service Register (ISR); bits 127:96 Read Only.

FEE0 0140H In-Service Register (ISR); bits 159:128 Read Only.

FEE0 0150H In-Service Register (ISR); bits 191:160 Read Only.

FEE0 0160H In-Service Register (ISR); bits 223:192 Read Only.

FEE0 0170H In-Service Register (ISR); bits 255:224 Read Only.

FEE0 0180H Trigger Mode Register (TMR); bits 31:0 Read Only.

FEE0 0190H Trigger Mode Register (TMR); bits 63:32 Read Only.

FEE0 01A0H Trigger Mode Register (TMR); bits 95:64 Read Only.

FEE0 01B0H Trigger Mode Register (TMR); bits 127:96 Read Only.

FEE0 01C0H Trigger Mode Register (TMR); bits 159:128  Read Only.

FEE0 01D0H Trigger Mode Register (TMR); bits 191:160 Read Only.

FEE0 01E0H Trigger Mode Register (TMR); bits 223:192 Read Only.

FEE0 01F0H Trigger Mode Register (TMR); bits 255:224 Read Only.

FEE0 0200H Interrupt Request Register (IRR); bits 31:0 Read Only.

FEE0 0210H Interrupt Request Register (IRR); bits 63:32 Read Only.

FEE0 0220H Interrupt Request Register (IRR); bits 95:64 Read Only.
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12.4.2 Presence of the Local APIC
Beginning with the P6 family processors, the presence or absence of an on-chip local APIC can be detected using 
the CPUID instruction. When the CPUID instruction is executed with a source operand of 1 in the EAX register, bit 9 
of the CPUID feature flags returned in the EDX register indicates the presence (set) or absence (clear) of a local 
APIC.

12.4.3 Enabling or Disabling the Local APIC
The local APIC can be enabled or disabled in either of two ways:

1. Using the APIC global enable/disable flag in the IA32_APIC_BASE MSR (MSR address 1BH; see Figure 12-5):

FEE0 0230H Interrupt Request Register (IRR); bits 127:96 Read Only.

FEE0 0240H Interrupt Request Register (IRR); bits 159:128 Read Only.

FEE0 0250H Interrupt Request Register (IRR); bits 191:160 Read Only.

FEE0 0260H Interrupt Request Register (IRR); bits 223:192 Read Only.

FEE0 0270H Interrupt Request Register (IRR); bits 255:224 Read Only.

FEE0 0280H Error Status Register Write/Read; see Section 
12.5.3.

FEE0 0290H through
FEE0 02E0H

Reserved

FEE0 02F0H LVT Corrected Machine Check Interrupt (CMCI) Register Read/Write.

FEE0 0300H Interrupt Command Register (ICR); bits 0-31 Read/Write.

FEE0 0310H Interrupt Command Register (ICR); bits 32-63 Read/Write.

FEE0 0320H LVT Timer Register Read/Write.

FEE0 0330H LVT Thermal Sensor Register2 Read/Write.

FEE0 0340H LVT Performance Monitoring Counters Register3 Read/Write.

FEE0 0350H LVT LINT0 Register Read/Write.

FEE0 0360H LVT LINT1 Register Read/Write.

FEE0 0370H LVT Error Register Read/Write.

FEE0 0380H Initial Count Register (for Timer) Read/Write.

FEE0 0390H Current Count Register (for Timer) Read Only.

FEE0 03A0H through 
FEE0 03D0H

Reserved

FEE0 03E0H Divide Configuration Register (for Timer) Read/Write.

FEE0 03F0H Reserved

NOTES:
1. Not supported in the Pentium 4 and Intel Xeon processors. The Illegal Register Access bit (7) of the ESR will not be set when writ-

ing to these registers.
2. Introduced in the Pentium 4 and Intel Xeon processors. This APIC register and its associated function are implementation depen-

dent and may not be present in future IA-32 or Intel 64 processors.
3. Introduced in the Pentium Pro processor. This APIC register and its associated function are implementation dependent and may not 

be present in future IA-32 or Intel 64 processors.

Table 12-1. Local APIC Register Address Map  (Contd.)

Address Register Name Software Read/Write
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— When IA32_APIC_BASE[11] is 0, the processor is functionally equivalent to an IA-32 processor without an 
on-chip APIC. The CPUID feature flag for the APIC (see Section 12.4.2, “Presence of the Local APIC”) is also 
set to 0.

— When IA32_APIC_BASE[11] is set to 0, processor APICs based on the 3-wire APIC bus cannot be generally 
re-enabled until a system hardware reset. The 3-wire bus loses track of arbitration that would be necessary 
for complete re-enabling. Certain APIC functionality can be enabled (for example: performance and 
thermal monitoring interrupt generation).

— For processors that use Front Side Bus (FSB) delivery of interrupts, software may disable or enable the 
APIC by setting and resetting IA32_APIC_BASE[11]. A hardware reset is not required to re-start APIC 
functionality, if software guarantees no interrupt will be sent to the APIC as IA32_APIC_BASE[11] is 
cleared.

— When IA32_APIC_BASE[11] is set to 0, prior initialization to the APIC may be lost and the APIC may return 
to the state described in Section 12.4.7.1, “Local APIC State After Power-Up or Reset.”

2. Using the APIC software enable/disable flag in the spurious-interrupt vector register (see Figure 12-23):

— If IA32_APIC_BASE[11] is 1, software can temporarily disable a local APIC at any time by clearing the APIC 
software enable/disable flag in the spurious-interrupt vector register (see Figure 12-23). The state of the 
local APIC when in this software-disabled state is described in Section 12.4.7.2, “Local APIC State After It 
Has Been Software Disabled.” 

— When the local APIC is in the software-disabled state, it can be re-enabled at any time by setting the APIC 
software enable/disable flag to 1.

For the Pentium processor, the APICEN pin (which is shared with the PICD1 pin) is used during power-up or reset 
to disable the local APIC.

Note that each entry in the LVT has a mask bit that can be used to inhibit interrupts from being delivered to the 
processor from selected local interrupt sources (the LINT0 and LINT1 pins, the APIC timer, the performance-moni-
toring counters, Intel® Processor Trace, the thermal sensor, and/or the internal APIC error detector).

12.4.4 Local APIC Status and Location
The status and location of the local APIC are contained in the IA32_APIC_BASE MSR (see Figure 12-5). MSR bit 
functions are described below:
• BSP flag, bit 8 ⎯ Indicates if the processor is the bootstrap processor (BSP). See Section 10.4, “Multiple-

Processor (MP) Initialization.” Following a power-up or reset, this flag is set to 1 for the processor selected as 
the BSP and set to 0 for the remaining processors (APs).

• APIC Global Enable flag, bit 11 ⎯ Enables or disables the local APIC (see Section 12.4.3, “Enabling or 
Disabling the Local APIC”). This flag is available in the Pentium 4, Intel Xeon, and P6 family processors. It is not 
guaranteed to be available or available at the same location in future Intel 64 or IA-32 processors.

• APIC Base field, bits 12 through 35 ⎯ Specifies the base address of the APIC registers. This 24-bit value is 
extended by 12 bits at the low end to form the base address. This automatically aligns the address on a 4-KByte 
boundary. Following a power-up or reset, the field is set to FEE0 0000H.

• Bits 0 through 7, bits 9 and 10, and bits MAXPHYADDR1 through 63 in the IA32_APIC_BASE MSR are reserved.

1. The MAXPHYADDR is 36 bits for processors that do not support CPUID leaf 80000008H, or indicated by 
CPUID.80000008H:EAX[bits 7:0] for processors that support CPUID leaf 80000008H.
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12.4.5 Relocating the Local APIC Registers
The Pentium 4, Intel Xeon, and P6 family processors permit the starting address of the APIC registers to be relo-
cated from FEE00000H to another physical address by modifying the value in the base address field of the 
IA32_APIC_BASE MSR. This extension of the APIC architecture is provided to help resolve conflicts with memory 
maps of existing systems and to allow individual processors in an MP system to map their APIC registers to 
different locations in physical memory.

12.4.6 Local APIC ID
At power up, system hardware assigns a unique APIC ID to each local APIC on the system bus (for Pentium 4 and 
Intel Xeon processors) or on the APIC bus (for P6 family and Pentium processors). The hardware assigned APIC ID 
is based on system topology and includes encoding for socket position and cluster information (see Figure 10-2 
and Section 10.9.1, “Hierarchical Mapping of Shared Resources”).

In MP systems, the local APIC ID is also used as a processor ID by the BIOS and the operating system. Some 
processors permit software to modify the APIC ID. However, the ability of software to modify the APIC ID is 
processor model specific. Because of this, operating system software should avoid writing to the local APIC ID 
register. The value returned by bits 31-24 of the EBX register (when the CPUID instruction is executed with a 
source operand value of 1 in the EAX register) is always the Initial APIC ID (determined by the platform initializa-
tion). This is true even if software has changed the value in the Local APIC ID register.

The processor receives the hardware assigned APIC ID (or Initial APIC ID) by sampling pins A11# and A12# and 
pins BR0# through BR3# (for the Pentium 4, Intel Xeon, and P6 family processors) and pins BE0# through BE3# 
(for the Pentium processor). The APIC ID latched from these pins is stored in the APIC ID field of the local APIC ID 
register (see Figure 12-6), and is used as the Initial APIC ID for the processor. 

Figure 12-5.  IA32_APIC_BASE MSR (APIC_BASE_MSR in P6 Family)

Figure 12-6.  Local APIC ID Register

BSP—Processor is BSP
APIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

MAXPHYADDR

APIC BaseReserved

31 27 24 0

ReservedAPIC ID
Address: 0FEE0 0020H
Value after reset: 0000 0000H

P6 family and Pentium processors 

Pentium 4 processors, Xeon processors, and later processors
31 24 0

ReservedAPIC ID

MSR Address: 802H
31     0

x2APIC ID

x2APIC Mode

xAPIC Mode
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For the P6 family and Pentium processors, the local APIC ID field in the local APIC ID register is 4 bits. Encodings 
0H through EH can be used to uniquely identify 15 different processors connected to the APIC bus. For the Pentium 
4 and Intel Xeon processors, the xAPIC specification extends the local APIC ID field to 8 bits. These can be used to 
identify up to 255 processors in the system.

12.4.7 Local APIC State
The following sections describe the state of the local APIC and its registers following a power-up or reset, after the 
local APIC has been software disabled, following an INIT reset, and following an INIT-deassert message.

x2APIC will introduce 32-bit ID; see Section 12.12.

12.4.7.1  Local APIC State After Power-Up or Reset
Following a power-up or reset of the processor, the state of local APIC and its registers are as follows:
• The following registers are reset to all 0s. 

• IRR, ISR, TMR, ICR, LDR, and TPR.

• Timer initial count and timer current count registers.

• Divide configuration register.
• The DFR register is reset to all 1s.
• The LVT register is reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The local APIC ID register is set to a unique APIC ID. (Pentium and P6 family processors only). The Arb ID 

register is set to the value in the APIC ID register.
• The spurious-interrupt vector register is initialized to 000000FFH. By setting bit 8 to 0, software disables the 

local APIC.
• If the processor is the only processor in the system or it is the BSP in an MP system (see Section 10.4.1, “BSP 

and AP Processors”); the local APIC will respond normally to INIT and NMI messages, to INIT# signals and to 
STPCLK# signals. If the processor is in an MP system and has been designated as an AP; the local APIC will 
respond the same as for the BSP. In addition, it will respond to SIPI messages. For P6 family processors only, 
an AP will not respond to a STPCLK# signal.

12.4.7.2  Local APIC State After It Has Been Software Disabled 
When the APIC software enable/disable flag in the spurious interrupt vector register has been explicitly cleared (as 
opposed to being cleared during a power up or reset), the local APIC is temporarily disabled (see Section 12.4.3, 
“Enabling or Disabling the Local APIC”). The operation and response of a local APIC while in this software-disabled 
state is as follows:
• The local APIC will respond normally to INIT, NMI, SMI, and SIPI messages.
• Pending interrupts in the IRR and ISR registers are held and require masking or handling by the CPU.
• The local APIC can still issue IPIs. It is software’s responsibility to avoid issuing IPIs through the IPI mechanism 

and the ICR register if sending interrupts through this mechanism is not desired.
• The reception of any interrupt or transmission of any IPIs that are in progress when the local APIC is disabled 

are completed before the local APIC enters the software-disabled state.
• The mask bits for all the LVT entries are set. Attempts to reset these bits will be ignored.
• (For Pentium and P6 family processors) The local APIC continues to listen to all bus messages in order to keep 

its arbitration ID synchronized with the rest of the system.

12.4.7.3  Local APIC State After an INIT Reset (“Wait-for-SIPI” State)
An INIT reset of the processor can be initiated in either of two ways:
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• By asserting the processor’s INIT# pin.
• By sending the processor an INIT IPI (an IPI with the delivery mode set to INIT).

Upon receiving an INIT through either of these mechanisms, the processor responds by beginning the initialization 
process of the processor core and the local APIC. The state of the local APIC following an INIT reset is the same as 
it is after a power-up or hardware reset, except that the APIC ID and arbitration ID registers are not affected. This 
state is also referred to at the “wait-for-SIPI” state (see also: Section 10.4.2, “MP Initialization Protocol Require-
ments and Restrictions”).

12.4.7.4  Local APIC State After It Receives an INIT-Deassert IPI
Only the Pentium and P6 family processors support the INIT-deassert IPI. An INIT-deassert IPI has no affect on the 
state of the APIC, other than to reload the arbitration ID register with the value in the APIC ID register. 

12.4.8 Local APIC Version Register
The local APIC contains a hardwired version register. Software can use this register to identify the APIC version 
(see Figure 12-7). In addition, the register specifies the number of entries in the local vector table (LVT) for a 
specific implementation. 

The fields in the local APIC version register are as follows:
Version The version numbers of the local APIC:

0XH 82489DX discrete APIC.

10H - 15H Integrated APIC.

Other values reserved.
Max LVT Entry Shows the number of LVT entries minus 1. For the Pentium 4 and Intel Xeon processors (which 

have 6 LVT entries), the value returned in the Max LVT field is 5; for the P6 family processors 
(which have 5 LVT entries), the value returned is 4; for the Pentium processor (which has 4 LVT 
entries), the value returned is 3. For processors based on the Nehalem microarchitecture 
(which has 7 LVT entries) and onward, the value returned is 6.

Suppress EOI-broadcasts
Indicates whether software can inhibit the broadcast of EOI message by setting bit 12 of the 
Spurious Interrupt Vector Register; see Section 12.8.5 and Section 12.9.

Figure 12-7.  Local APIC Version Register

31 0

Reserved

7823 15

Support for EOI-broadcast suppression

16

Reserved

25 24

VersionMax LVT Entry

Value after reset: 0BNN 00VVH
V = Version, N = # of LVT entries minus 1,

Address: FEE0 0030H
B = 1 if EOI-broadcast suppression supported
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12.5 HANDLING LOCAL INTERRUPTS
The following sections describe facilities that are provided in the local APIC for handling local interrupts. These 
include: the processor’s LINT0 and LINT1 pins, the APIC timer, the performance-monitoring counters, Intel 
Processor Trace, the thermal sensor, and the internal APIC error detector. Local interrupt handling facilities include: 
the LVT, the error status register (ESR), the divide configuration register (DCR), and the initial count and current 
count registers.

12.5.1 Local Vector Table
The local vector table (LVT) allows software to specify the manner in which the local interrupts are delivered to the 
processor core. It consists of the following 32-bit APIC registers (see Figure 12-8), one for each local interrupt:
• LVT CMCI Register (FEE0 02F0H) — Specifies interrupt delivery when an overflow condition of corrected 

machine check error count reaching a threshold value occurred in a machine check bank supporting CMCI (see 
Section 17.5.1, “CMCI Local APIC Interface”).

• LVT Timer Register (FEE0 0320H) — Specifies interrupt delivery when the APIC timer signals an interrupt 
(see Section 12.5.4, “APIC Timer”).

• LVT Thermal Monitor Register (FEE0 0330H) — Specifies interrupt delivery when the thermal sensor 
generates an interrupt (see Section 16.8.2, “Thermal Monitor”). This LVT entry is implementation specific, not 
architectural. If implemented, it will always be at base address FEE0 0330H.

• LVT Performance Counter Register (FEE0 0340H) — Specifies interrupt delivery when a performance 
counter generates an interrupt on overflow (see Section 21.6.3.5.8, “Generating an Interrupt on Overflow”) or 
when Intel PT signals a ToPA PMI (see Section 34.2.7.2). This LVT entry is implementation specific, not archi-
tectural. If implemented, it is not guaranteed to be at base address FEE0 0340H.

• LVT LINT0 Register (FEE0 0350H) — Specifies interrupt delivery when an interrupt is signaled at the LINT0 
pin.

• LVT LINT1 Register (FEE0 0360H) — Specifies interrupt delivery when an interrupt is signaled at the LINT1 
pin.

• LVT Error Register (FEE0 0370H) — Specifies interrupt delivery when the APIC detects an internal error 
(see Section 12.5.3, “Error Handling”).

The LVT performance counter register and its associated interrupt were introduced in the P6 processors and are 
also present in the Pentium 4 and Intel Xeon processors. The LVT thermal monitor register and its associated inter-
rupt were introduced in the Pentium 4 and Intel Xeon processors. The LVT CMCI register and its associated inter-
rupt were introduced in the Intel Xeon 5500 processors.
As shown in Figure 12-8, some of these fields and flags are not available (and reserved) for some entries.
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The setup information that can be specified in the registers of the LVT table is as follows:
Vector Interrupt vector number.
Delivery Mode Specifies the type of interrupt to be sent to the processor. Some delivery modes will only 

operate as intended when used in conjunction with a specific trigger mode. The allowable 
delivery modes are as follows:

000 (Fixed) Delivers the interrupt specified in the vector field.

010 (SMI) Delivers an SMI interrupt to the processor core through the processor’s lo-
cal SMI signal path. When using this delivery mode, the vector field should 
be set to 00H for future compatibility.

Figure 12-8.  Local Vector Table (LVT)

31 07

Vector

Timer Mode
00: One-shot
01: Periodic

1215161718

Delivery Mode
000: Fixed

100: NMI

Mask†
0: Not Masked
1: Masked

Address: FEE0 0350H

Value After Reset: 0001 0000H

Reserved
12131516

Vector

31 07810

Address: FEE0 0360H
Address: FEE0 0370H

Vector

Vector

Error

LINT1

LINT0

Value after Reset: 0001 0000H
Address: FEE0 0320H

111: ExtlNT

All other combinations
are reserved

Interrupt Input
Pin Polarity

Trigger Mode
0: Edge
1: Level

Remote
IRR

Delivery Status
0: Idle
1: Send Pending

Timer

13 11 8

11

14

17

Address: FEE0 0340H

Performance
Vector

Thermal
Vector

Mon. Counters

Sensor

Address: FEE0 0330H
† (Pentium 4 and Intel Xeon processors.) When a 

performance monitoring counters interrupt is generated, 
the mask bit for its associated LVT entry is set.

010: SMI

101: INIT

19

10: TSC-Deadline

VectorCMCI

Address: FEE0 02F0H
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100 (NMI) Delivers an NMI interrupt to the processor. The vector information is ig-
nored. 

101 (INIT) Delivers an INIT request to the processor core, which causes the processor 
to perform an INIT. When using this delivery mode, the vector field should 
be set to 00H for future compatibility. Not supported for the LVT CMCI reg-
ister, the LVT thermal monitor register, or the LVT performance counter 
register.

110 Reserved; not supported for any LVT register.

111 (ExtINT) Causes the processor to respond to the interrupt as if the interrupt origi-
nated in an externally connected (8259A-compatible) interrupt controller. 
A special INTA bus cycle corresponding to ExtINT, is routed to the external 
controller. The external controller is expected to supply the vector informa-
tion. The APIC architecture supports only one ExtINT source in a system, 
usually contained in the compatibility bridge. Only one processor in the 
system should have an LVT entry configured to use the ExtINT delivery 
mode. Not supported for the LVT CMCI register, the LVT thermal monitor 
register, or the LVT performance counter register.

Delivery Status (Read Only)
Indicates the interrupt delivery status, as follows:

0 (Idle) There is currently no activity for this interrupt source, or the previous in-
terrupt from this source was delivered to the processor core and accepted.

1 (Send Pending)
Indicates that an interrupt from this source has been delivered to the pro-
cessor core but has not yet been accepted (see Section 12.5.5, “Local In-
terrupt Acceptance”).

Interrupt Input Pin Polarity
Specifies the polarity of the corresponding interrupt pin: (0) active high or (1) active low. 

Remote IRR Flag (Read Only)
For fixed mode, level-triggered interrupts; this flag is set when the local APIC accepts the 
interrupt for servicing and is reset when an EOI command is received from the processor. The 
meaning of this flag is undefined for edge-triggered interrupts and other delivery modes. 

Trigger Mode Selects the trigger mode for the local LINT0 and LINT1 pins: (0) edge sensitive and (1) level 
sensitive. This flag is only used when the delivery mode is Fixed. When the delivery mode is 
NMI, SMI, or INIT, the trigger mode is always edge sensitive. When the delivery mode is 
ExtINT, the trigger mode is always level sensitive. The timer and error interrupts are always 
treated as edge sensitive. 
If the local APIC is not used in conjunction with an I/O APIC and fixed delivery mode is 
selected; the Pentium 4, Intel Xeon, and P6 family processors will always use level-sensitive 
triggering, regardless if edge-sensitive triggering is selected.
Software should always set the trigger mode in the LVT LINT1 register to 0 (edge sensitive). 
Level-sensitive interrupts are not supported for LINT1.

Mask Interrupt mask: (0) enables reception of the interrupt and (1) inhibits reception of the inter-
rupt. When the local APIC handles a performance-monitoring counters interrupt, it automati-
cally sets the mask flag in the LVT performance counter register. This flag is set to 1 on reset. 
It can be cleared only by software.

Timer Mode Bits 18:17 selects the timer mode (see Section 12.5.4): 
(00b) one-shot mode using a count-down value,
(01b) periodic mode reloading a count-down value,
(10b) TSC-Deadline mode using absolute target value in IA32_TSC_DEADLINE MSR (see 
Section 12.5.4.1),
(11b) is reserved.
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12.5.2 Valid Interrupt Vectors
The Intel 64 and IA-32 architectures define 256 vector numbers, ranging from 0 through 255 (see Section 7.2, 
“Exception and Interrupt Vectors”). Local and I/O APICs support 240 of these vectors (in the range of 16 to 255) 
as valid interrupts.

When an interrupt vector in the range of 0 to 15 is sent or received through the local APIC, the APIC indicates an 
illegal vector in its Error Status Register (see Section 12.5.3, “Error Handling”). The Intel 64 and IA-32 architec-
tures reserve vectors 16 through 31 for predefined interrupts, exceptions, and Intel-reserved encodings (see Table 
7-1). However, the local APIC does not treat vectors in this range as illegal.

When an illegal vector value (0 to 15) is written to an LVT entry and the delivery mode is Fixed (bits 8-11 equal 0), 
the APIC may signal an illegal vector error, without regard to whether the mask bit is set or whether an interrupt is 
actually seen on the input.

12.5.3 Error Handling
The local APIC records errors detected during interrupt handling in the error status register (ESR). The format of 
the ESR is given in Figure 12-9; it contains the following flags:

• Bit 0: Send Checksum Error.
Set when the local APIC detects a checksum error for a message that it sent on the APIC bus. Used only on P6 
family and Pentium processors.

• Bit 1: Receive Checksum Error.
Set when the local APIC detects a checksum error for a message that it received on the APIC bus. Used only on 
P6 family and Pentium processors.

• Bit 2: Send Accept Error.
Set when the local APIC detects that a message it sent was not accepted by any APIC on the APIC bus. Used 
only on P6 family and Pentium processors.

• Bit 3: Receive Accept Error.
Set when the local APIC detects that the message it received was not accepted by any APIC on the APIC bus, 
including itself. Used only on P6 family and Pentium processors.

Figure 12-9.  Error Status Register (ESR)

Address: FEE0 0280H
Value after reset: 0H

31 0

Reserved
78 123456

Illegal Register Address1

Received Illegal Vector
Send Illegal Vector
Redirectable IPI2
Receive Accept Error3
Send Accept Error3
Receive Checksum Error3
Send Checksum Error3

2. Used only by some Intel Core and Intel Xeon processors;
reserved on other processors.

1. Used only by Intel Core, Pentium 4, Intel Xeon, and P6 family
processors; reserved on the Pentium processor.

NOTES:

3. Used only by the P6 family and Pentium processors;
reserved on Intel Core, Pentium 4 and Intel Xeon processors.
Vol. 3A 12-15



ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
• Bit 4: Redirectable IPI.
Set when the local APIC detects an attempt to send an IPI with the lowest-priority delivery mode and the local 
APIC does not support the sending of such IPIs. This bit is used on some Intel Core and Intel Xeon processors. 
As noted in Section 12.6.2, the ability of a processor to send a lowest-priority IPI is model-specific and should 
be avoided.

• Bit 5: Send Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in the message that it is sending. 
This occurs as the result of a write to the ICR (in both xAPIC and x2APIC modes) or to SELF IPI register (x2APIC 
mode only) with an illegal vector.
If the local APIC does not support the sending of lowest-priority IPIs and software writes the ICR to send a 
lowest-priority IPI with an illegal vector, the local APIC sets only the “redirectable IPI” error bit. The interrupt is 
not processed and hence the “Send Illegal Vector” bit is not set in the ESR.

• Bit 6: Receive Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in an interrupt message it receives 
or in an interrupt generated locally from the local vector table or via a self IPI. Such interrupts are not delivered 
to the processor; the local APIC will never set an IRR bit in the range 0 to 15.

• Bit 7: Illegal Register Address
Set when the local APIC is in xAPIC mode and software attempts to access a register that is reserved in the 
processor's local-APIC register-address space; see Table 10-1. (The local-APIC register-address space 
comprises the 4 KBytes at the physical address specified in the IA32_APIC_BASE MSR.) Used only on Intel 
Core, Intel Atom, Pentium 4, Intel Xeon, and P6 family processors.
In x2APIC mode, software accesses the APIC registers using the RDMSR and WRMSR instructions. Use of one 
of these instructions to access a reserved register cause a general-protection exception (see Section 
10.12.1.3). They do not set the “Illegal Register Access” bit in the ESR.

The ESR is a write/read register. Before attempt to read from the ESR, software should first write to it. (The value 
written does not affect the values read subsequently; only zero may be written in x2APIC mode.) This write clears 
any previously logged errors and updates the ESR with any errors detected since the last write to the ESR. This 
write also rearms the APIC error interrupt triggering mechanism.

The LVT Error Register (see Section 12.5.1) allows specification of the vector of the interrupt to be delivered to the 
processor core when APIC error is detected. The register also provides a means of masking an APIC-error interrupt. 
This masking only prevents delivery of APIC-error interrupts; the APIC continues to record errors in the ESR.

12.5.4 APIC Timer
The local APIC unit contains a 32-bit programmable timer that is available to software to time events or operations. 
This timer is set up by programming four registers: the divide configuration register (see Figure 12-10), the initial-
count and current-count registers (see Figure 12-11), and the LVT timer register (see Figure 12-8). 

If CPUID.06H:EAX.ARAT[bit 2] = 1, the processor’s APIC timer runs at a constant rate regardless of P-state transi-
tions and it continues to run at the same rate in deep C-states.

If CPUID.06H:EAX.ARAT[bit 2] = 0 or if CPUID 06H is not supported, the APIC timer may temporarily stop while the 
processor is in deep C-states or during transitions caused by Enhanced Intel SpeedStep® Technology.

The APIC timer frequency will be the processor’s bus clock or core crystal clock frequency (when TSC/core crystal 
clock ratio is enumerated in CPUID leaf 0x15) divided by the value specified in the divide configuration register.

The timer can be configured through the timer LVT entry for one-shot or periodic operation. In one-shot mode, the 
timer is started by programming its initial-count register. The initial count value is then copied into the current-
count register and count-down begins. After the timer reaches zero, a timer interrupt is generated and the timer 
remains at its 0 value until reprogrammed. 

In periodic mode, the timer is started by writing to the initial-count register (as in one-shot mode), and the value 
written is copied into the current-count register, which counts down. The current-count register is automatically 
reloaded from the initial-count register when the count reaches 0 and a timer interrupt is generated, and the count-
down is repeated. If during the count-down process the initial-count register is set, counting will restart, using the 
new initial-count value. The initial-count register is a read-write register; the current-count register is read only.
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A write of 0 to the initial-count register effectively stops the local APIC timer, in both one-shot and periodic mode.

The LVT timer register determines the vector number that is delivered to the processor with the timer interrupt that 
is generated when the timer count reaches zero. The mask flag in the LVT timer register can be used to mask the 
timer interrupt.

NOTE
Changing the mode of the APIC timer (from one-shot to periodic or vice versa) by writing to the 
timer LVT entry does not start the timer. To start the timer, it is necessary to write to the initial-
count register as described above.

12.5.4.1  TSC-Deadline Mode
The mode of operation of the local-APIC timer is determined by the LVT Timer Register. Specifically:
• If CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, the mode is determined by bit 17 of the register.
• If CPUID.01H:ECX.TSC_Deadline[bit 24] = 1, the mode is determined by bits 18:17. See Figure 12-8. (If 

CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, bit 18 of the register is reserved.) 

The supported timer modes are given in Table 12-2. The three modes of the local APIC timer are mutually exclu-
sive.

Figure 12-10.  Divide Configuration Register

 

Figure 12-11.  Initial Count and Current Count Registers

Table 12-2. Local APIC Timer Modes

LVT Bits [18:17] Timer Mode

00b One-shot mode, program count-down value in an initial-count register. See Section 12.5.4

01b Periodic mode, program interval value in an initial-count register. See Section 12.5.4

10b TSC-Deadline mode, program target value in IA32_TSC_DEADLINE MSR.

11b Reserved

Address: FEE0 03E0H
Value after reset: 0H

0

Divide Value (bits 0, 1, and 3)
000: Divide by 2
001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

31 0

Reserved
1234

31 0

Initial Count

Address: Initial Count

Value after reset: 0H

Current Count

Current Count FEE0 0390H
FEE0 0380H
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TSC-deadline mode allows software to use the local APIC timer to signal an interrupt at an absolute time. In TSC-
deadline mode, writes to the initial-count register are ignored; and current-count register always reads 0. Instead, 
timer behavior is controlled using the IA32_TSC_DEADLINE MSR.

The IA32_TSC_DEADLINE MSR (MSR address 6E0H) is a per-logical processor MSR that specifies the time at which 
a timer interrupt should occur. Writing a non-zero 64-bit value into IA32_TSC_DEADLINE arms the timer. An inter-
rupt is generated when the logical processor’s time-stamp counter equals or exceeds the target value in the 
IA32_TSC_DEADLINE MSR.1 When the timer generates an interrupt, it disarms itself and clears the 
IA32_TSC_DEADLINE MSR. Thus, each write to the IA32_TSC_DEADLINE MSR generates at most one timer inter-
rupt.

In TSC-deadline mode, writing 0 to the IA32_TSC_DEADLINE MSR disarms the local-APIC timer. Transitioning 
between TSC-deadline mode and other timer modes also disarms the timer.

The hardware reset value of the IA32_TSC_DEADLINE MSR is 0. In other timer modes (LVT bit 18 = 0), the 
IA32_TSC_DEADLINE MSR reads zero and writes are ignored.

Software can configure the TSC-deadline timer to deliver a single interrupt using the following algorithm:

1. Detect support for TSC-deadline mode by verifying CPUID.1:ECX.24 = 1.

2. Select the TSC-deadline mode by programming bits 18:17 of the LVT Timer register with 10b.

3. Program the IA32_TSC_DEADLINE MSR with the target TSC value at which the timer interrupt is desired. This 
causes the processor to arm the timer.

4. The processor generates a timer interrupt when the value of time-stamp counter is greater than or equal to that 
of IA32_TSC_DEADLINE. It then disarms the timer and clear the IA32_TSC_DEADLINE MSR. (Both the time-
stamp counter and the IA32_TSC_DEADLINE MSR are 64-bit unsigned integers.)

5. Software can re-arm the timer by repeating step 3.

The following are usage guidelines for TSC-deadline mode:
• Writes to the IA32_TSC_DEADLINE MSR are not serialized. Therefore, system software should not use WRMSR 

to the IA32_TSC_DEADLINE MSR as a serializing instruction. Read and write accesses to the 
IA32_TSC_DEADLINE and other MSR registers will occur in program order. 

• Software can disarm the timer at any time by writing 0 to the IA32_TSC_DEADLINE MSR. 
• If timer is armed, software can change the deadline (forward or backward) by writing a new value to the 

IA32_TSC_DEADLINE MSR.
• If software disarms the timer or postpones the deadline, race conditions may result in delivery of a timer 

interrupt associated with the original deadline. If the deadline has been postponed, software can identify such 
interrupts by reading the time-stamp counter and comparing its value to the new deadline.1

• In xAPIC mode (in which the local-APIC registers are memory-mapped), software must order the memory-
mapped write to the LVT entry that enables TSC-deadline mode and any subsequent WRMSR to the 
IA32_TSC_DEADLINE MSR. Software can assure proper ordering by executing the MFENCE instruction after the 
memory-mapped write and before any WRMSR. (In x2APIC mode, the WRMSR instruction is used to write to 
the LVT entry. The processor ensures the ordering of this write and any subsequent WRMSR to the deadline; no 
fencing is required.)

12.5.5 Local Interrupt Acceptance
When a local interrupt is sent to the processor core, it is subject to the acceptance criteria specified in the interrupt 
acceptance flow chart in Figure 12-17. If the interrupt is accepted, it is logged into the IRR register and handled by 
the processor according to its priority (see Section 12.8.4, “Interrupt Acceptance for Fixed Interrupts”). If the 
interrupt is not accepted, it is sent back to the local APIC and retried.

1. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using either RDMSR, RDTSC, or RDTSCP) may 
not return the actual value of the time-stamp counter; see Chapter 27 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3C. It is the responsibility of software operating in VMX root operation to coordinate the virtualization of the 
time-stamp counter and the IA32_TSC_DEADLINE MSR.
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12.6 ISSUING INTERPROCESSOR INTERRUPTS
The following sections describe the local APIC facilities that are provided for issuing interprocessor interrupts (IPIs) 
from software. The primary local APIC facility for issuing IPIs is the interrupt command register (ICR). The ICR can 
be used for the following functions:
• To send an interrupt to another processor.
• To allow a processor to forward an interrupt that it received but did not service to another processor for 

servicing.
• To direct the processor to interrupt itself (perform a self interrupt).
• To deliver special IPIs, such as the start-up IPI (SIPI) message, to other processors. 

Interrupts generated with this facility are delivered to the other processors in the system through the system bus 
(for Pentium 4 and Intel Xeon processors) or the APIC bus (for P6 family and Pentium processors). The ability for a 
processor to send a lowest priority IPI is model specific and should be avoided by BIOS and operating system soft-
ware.

12.6.1 Interrupt Command Register (ICR)
The interrupt command register (ICR) is a 64-bit1 local APIC register (see Figure 12-12) that allows software 
running on the processor to specify and send interprocessor interrupts (IPIs) to other processors in the system. 

1. In XAPIC mode the ICR is addressed as two 32-bit registers, ICR_LOW (FFE0 0300H) and ICR_HIGH (FFE0 0310H). In x2APIC mode, 
the ICR uses MSR 830H.

Figure 12-12.  Interrupt Command Register (ICR)
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000: Fixed
001: Lowest Priority1
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Address: FEE0 0300H (0 - 31)
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Reserved
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FEE0 0310H (32 - 63)

 NOTE:
1. The ability of a processor to send Lowest Priority IPI is model specific.
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To send an IPI, software must set up the ICR to indicate the type of IPI message to be sent and the destination 
processor or processors. (All fields of the ICR are read-write by software with the exception of the delivery status 
field, which is read-only.) The act of writing to the low doubleword of the ICR causes the IPI to be sent.

The ICR consists of the following fields. 
Vector The vector number of the interrupt being sent.
Delivery Mode Specifies the type of IPI to be sent. This field is also know as the IPI message type field.

000 (Fixed) Delivers the interrupt specified in the vector field to the target processor or 
processors.

001 (Lowest Priority)
Same as fixed mode, except that the interrupt is delivered to the processor 
executing at the lowest priority among the set of processors specified in 
the destination field. The ability for a processor to send a lowest priority 
IPI is model specific and should be avoided by BIOS and operating system 
software.

010 (SMI) Delivers an SMI interrupt to the target processor or processors. The vector 
field must be programmed to 00H for future compatibility.

011 (Reserved)

100 (NMI) Delivers an NMI interrupt to the target processor or processors. The vector 
information is ignored. 

101 (INIT) Delivers an INIT request to the target processor or processors, which 
causes them to perform an INIT. As a result of this IPI message, all the tar-
get processors perform an INIT. The vector field must be programmed to 
00H for future compatibility.

101 (INIT Level De-assert)
(Not supported in the Pentium 4 and Intel Xeon processors.) Sends a syn-
chronization message to all the local APICs in the system to set their arbi-
tration IDs (stored in their Arb ID registers) to the values of their APIC IDs 
(see Section 12.7, “System and APIC Bus Arbitration”). For this delivery 
mode, the level flag must be set to 0 and trigger mode flag to 1. This IPI is 
sent to all processors, regardless of the value in the destination field or the 
destination shorthand field; however, software should specify the “all in-
cluding self” shorthand. 

110 (Start-Up)
Sends a special “start-up” IPI (called a SIPI) to the target processor or 
processors. The vector typically points to a start-up routine that is part of 
the BIOS boot-strap code (see Section 10.4, “Multiple-Processor (MP) Ini-
tialization”). IPIs sent with this delivery mode are not automatically retried 
if the source APIC is unable to deliver it. It is up to the software to deter-
mine if the SIPI was not successfully delivered and to reissue the SIPI if 
necessary.

Destination Mode Selects either physical (0) or logical (1) destination mode (see Section 12.6.2, “Determining 
IPI Destination”).

Delivery Status (Read Only)
Indicates the IPI delivery status, as follows:

0 (Idle) Indicates that this local APIC has completed sending any previous IPIs.

1 (Send Pending)
Indicates that this local APIC has not completed sending the last IPI.

Level For the INIT level de-assert delivery mode this flag must be set to 0; for all other delivery 
modes it must be set to 1. (This flag has no meaning in Pentium 4 and Intel Xeon processors, 
and will always be issued as a 1.)
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Trigger Mode Selects the trigger mode when using the INIT level de-assert delivery mode: edge (0) or level 
(1). It is ignored for all other delivery modes. (This flag has no meaning in Pentium 4 and Intel 
Xeon processors, and will always be issued as a 0.) 

Destination Shorthand
Indicates whether a shorthand notation is used to specify the destination of the interrupt and, 
if so, which shorthand is used. Destination shorthands are used in place of the 8-bit destina-
tion field, and can be sent by software using a single write to the low doubleword of the ICR. 
Shorthands are defined for the following cases: software self interrupt, IPIs to all processors 
in the system including the sender, IPIs to all processors in the system excluding the sender.

00: (No Shorthand)
The destination is specified in the destination field.

01: (Self) The issuing APIC is the one and only destination of the IPI. This destination 
shorthand allows software to interrupt the processor on which it is execut-
ing. An APIC implementation is free to deliver the self-interrupt message 
internally or to issue the message to the bus and “snoop” it as with any 
other IPI message.

10: (All Including Self)
The IPI is sent to all processors in the system including the processor send-
ing the IPI. The APIC will broadcast an IPI message with the destination 
field set to FH for Pentium and P6 family processors and to FFH for Pentium 
4 and Intel Xeon processors.

11: (All Excluding Self)
The IPI is sent to all processors in a system with the exception of the pro-
cessor sending the IPI. The APIC broadcasts a message with the physical 
destination mode and destination field set to FH for Pentium and P6 family 
processors and to FFH for Pentium 4 and Intel Xeon processors. Support 
for this destination shorthand in conjunction with the lowest-priority deliv-
ery mode is model specific. For Pentium 4 and Intel Xeon processors, when 
this shorthand is used together with lowest priority delivery mode, the IPI 
may be redirected back to the issuing processor.

Destination Specifies the target processor or processors. This field is only used when the destination 
shorthand field is set to 00B. If the destination mode is set to physical, then bits 56 through 59 
contain the APIC ID of the target processor for Pentium and P6 family processors and bits 56 
through 63 contain the APIC ID of the target processor the for Pentium 4 and Intel Xeon 
processors. If the destination mode is set to logical, the interpretation of the 8-bit destination 
field depends on the settings of the DFR and LDR registers of the local APICs in all the proces-
sors in the system (see Section 12.6.2, “Determining IPI Destination”).

Not all combinations of options for the ICR are valid. Table 12-3 shows the valid combinations for the fields in the 
ICR for the Pentium 4 and Intel Xeon processors; Table 12-4 shows the valid combinations for the fields in the ICR 
for the P6 family processors. Also note that the lower half of the ICR may not be preserved over transitions to the 
deepest C-States.

ICR operation in x2APIC mode is discussed in Section 12.12.9.

Table 12-3. Valid Combinations for Pentium 4 and Intel Xeon Processors Local xAPIC Interrupt Command Register

Destination Shorthand Valid/Invalid Trigger Mode Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Invalid2 Level All Modes Physical or Logical

Self Valid Edge Fixed X3

Self Invalid2 Level Fixed X

Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up X

All Including Self Valid Edge Fixed X

All Including Self Invalid2 Level Fixed X
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Table 12-4. Valid Combinations for the P6 Family Processor Local APIC Interrupt Command Register

12.6.2 Determining IPI Destination
The destination of an IPI1 can be one, all, or a subset (group) of the processors on the system bus. The sender of 
the IPI specifies the destination of an IPI with the following APIC registers and fields within the registers:
• ICR Register — The following fields in the ICR register are used to specify the destination of an IPI.

All Including Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up X

All Excluding Self Valid Edge Fixed, Lowest Priority1, 4, NMI, INIT, SMI, Start-Up X

All Excluding Self Invalid2 Level FIxed, Lowest Priority4, NMI, INIT, SMI, Start-Up X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. For these interrupts, if the trigger mode bit is 1 (Level), the local xAPIC will override the bit setting and issue the interrupt as an edge 

triggered interrupt.
3. X means the setting is ignored.
4. When using the “lowest priority” delivery mode and the “all excluding self” destination, the IPI can be redirected back to the issuing 

APIC, which is essentially the same as the “all including self” destination mode.

Destination Shorthand Valid/Invalid Trigger Mode Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.

Physical or Logical

No Shorthand Valid2

2. Treated as edge triggered if level bit is set to 1, otherwise ignored.

Level Fixed, Lowest Priority1, NMI Physical or Logical

No Shorthand Valid3

3. Treated as edge triggered when Level bit is set to 1; treated as “INIT Level Deassert” message when level bit is set to 0 (deassert). 
Only INIT level deassert messages are allowed to have the level bit set to 0. For all other messages the level bit must be set to 1.

Level INIT Physical or Logical

Self Valid Edge Fixed X4

4. X means the setting is ignored.

Self Valid2 Level Fixed X

Self Invalid5

5. The behavior of the APIC is undefined.

X Lowest Priority, NMI, INIT, SMI, Start-Up X

All including Self Valid Edge Fixed X

All including Self Valid2 Level Fixed X

All including Self Invalid5 X Lowest Priority, NMI, INIT, SMI, Start-Up X

All excluding Self Valid Edge All Modes1 X

All excluding Self Valid2 Level Fixed, Lowest Priority1, NMI X

All excluding Self Invalid5 Level SMI, Start-Up X

All excluding Self Valid3 Level INIT X

X Invalid5 Level SMI, Start-Up X

1. Determination of IPI destinations in x2APIC mode is discussed in Section 10.12.10.

Table 12-3. Valid Combinations for Pentium 4 and Intel Xeon Processors Local xAPIC Interrupt Command Register

Destination Shorthand Valid/Invalid Trigger Mode Delivery Mode Destination Mode
12-22 Vol. 3A



ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
— Destination Mode — Selects one of two destination modes (physical or logical).

— Destination Field — In physical destination mode, used to specify the APIC ID of the destination 
processor; in logical destination mode, used to specify a message destination address (MDA) that can be 
used to select specific processors in clusters.

— Destination Shorthand — A quick method of specifying all processors, all excluding self, or self as the 
destination.

— Delivery mode, Lowest Priority — Architecturally specifies that a lowest-priority arbitration mechanism 
be used to select a destination processor from a specified group of processors. The ability of a processor to 
send a lowest priority IPI is model specific and should be avoided by BIOS and operating system software.

• Local destination register (LDR) — Used in conjunction with the logical destination mode and MDAs to 
select the destination processors.

• Destination format register (DFR) — Used in conjunction with the logical destination mode and MDAs to 
select the destination processors.

How the ICR, LDR, and DFR are used to select an IPI destination depends on the destination mode used: physical, 
logical, broadcast/self, or lowest-priority delivery mode. These destination modes are described in the following 
sections.

12.6.2.1  Physical Destination Mode
In physical destination mode, the destination processor is specified by its local APIC ID (see Section 12.4.6, “Local 
APIC ID”). For Pentium 4 and Intel Xeon processors, either a single destination (local APIC IDs 00H through FEH) 
or a broadcast to all APICs (the APIC ID is FFH) may be specified in physical destination mode. 

A broadcast IPI (bits 28-31 of the MDA are 1's) or I/O subsystem initiated interrupt with lowest priority delivery 
mode is not supported in physical destination mode and must not be configured by software. Also, for any non-
broadcast IPI or I/O subsystem initiated interrupt with lowest priority delivery mode, software must ensure that 
APICs defined in the interrupt address are present and enabled to receive interrupts. 

For the P6 family and Pentium processors, a single destination is specified in physical destination mode with a local 
APIC ID of 0H through 0EH, allowing up to 15 local APICs to be addressed on the APIC bus. A broadcast to all local 
APICs is specified with 0FH.

NOTE
The number of local APICs that can be addressed on the system bus may be restricted by 
hardware.

12.6.2.2  Logical Destination Mode
In logical destination mode, IPI destination is specified using an 8-bit message destination address (MDA), which 
is entered in the destination field of the ICR. Upon receiving an IPI message that was sent using logical destination 
mode, a local APIC compares the MDA in the message with the values in its LDR and DFR to determine if it should 
accept and handle the IPI. For both configurations of logical destination mode, when combined with lowest priority 
delivery mode, software is responsible for ensuring that all of the local APICs included in or addressed by the IPI or 
I/O subsystem interrupt are present and enabled to receive the interrupt.

Figure 12-13 shows the layout of the logical destination register (LDR). The 8-bit logical APIC ID field in this 
register is used to create an identifier that can be compared with the MDA.

NOTE
The logical APIC ID should not be confused with the local APIC ID that is contained in the local APIC 
ID register.
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Figure 12-14 shows the layout of the destination format register (DFR). The 4-bit model field in this register selects 
one of two models (flat or cluster) that can be used to interpret the MDA when using logical destination mode.

The interpretation of MDA for the two models is described in the following paragraphs.

1. Flat Model — This model is selected by programming DFR bits 28 through 31 to 1111. Here, a unique logical 
APIC ID can be established for up to 8 local APICs by setting a different bit in the logical APIC ID field of the LDR 
for each local APIC. A group of local APICs can then be selected by setting one or more bits in the MDA. 
Each local APIC performs a bit-wise AND of the MDA and its logical APIC ID. If a true condition (non-zero) is 
detected, the local APIC accepts the IPI message. A broadcast to all APICs is achieved by setting the MDA to 1s.

2. Cluster Model — This model is selected by programming DFR bits 28 through 31 to 0000. This model supports 
two basic destination schemes: flat cluster and hierarchical cluster.
The flat cluster destination model is only supported for P6 family and Pentium processors. Using this model, all 
APICs are assumed to be connected through the APIC bus. Bits 60 through 63 of the MDA contains the encoded 
address of the destination cluster and bits 56 through 59 identify up to four local APICs within the cluster (each 
bit is assigned to one local APIC in the cluster, as in the flat connection model). To identify one or more local 
APICs, bits 60 through 63 of the MDA are compared with bits 28 through 31 of the LDR to determine if a local 
APIC is part of the cluster. Bits 56 through 59 of the MDA are compared with Bits 24 through 27 of the LDR to 
identify a local APICs within the cluster. 
Sets of processors within a cluster can be specified by writing the target cluster address in bits 60 through 63 
of the MDA and setting selected bits in bits 56 through 59 of the MDA, corresponding to the chosen members 
of the cluster. In this mode, 15 clusters (with cluster addresses of 0 through 14) each having 4 local APICs can 
be specified in the message. For the P6 and Pentium processor’s local APICs, however, the APIC arbitration ID 
supports only 15 APIC agents. Therefore, the total number of processors and their local APICs supported in 
this mode is limited to 15. Broadcast to all local APICs is achieved by setting all destination bits to one. This 
guarantees a match on all clusters and selects all APICs in each cluster. A broadcast IPI or I/O subsystem 
broadcast interrupt with lowest priority delivery mode is not supported in cluster mode and must not be 
configured by software.
The hierarchical cluster destination model can be used with Pentium 4, Intel Xeon, P6 family, or Pentium 
processors. With this model, a hierarchical network can be created by connecting different flat clusters via 
independent system or APIC buses. This scheme requires a cluster manager within each cluster, which is 
responsible for handling message passing between system or APIC buses. One cluster contains up to 4 agents. 
Thus 15 cluster managers, each with 4 agents, can form a network of up to 60 APIC agents. Note that hierar-

Figure 12-13.  Logical Destination Register (LDR)

Figure 12-14.  Destination Format Register (DFR)
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Address: 0FEE0 00D0H
Value after reset: 0000 0000H

31 0

Model

28

Reserved (All 1s)

Address: 0FEE0 00E0H
Value after reset: FFFF FFFFH

Flat model: 1111B
Cluster model: 0000B
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chical APIC networks requires a special cluster manager device, which is not part of the local or the I/O APIC 
units.

NOTES
All processors that have their APIC software enabled (using the spurious vector enable/disable bit) 
must have their DFRs (Destination Format Registers) programmed identically.
The default mode for DFR is flat mode. If you are using cluster mode, DFRs must be programmed 
before the APIC is software enabled. Since some chipsets do not accurately track a system view of 
the logical mode, program DFRs as soon as possible after starting the processor.

12.6.2.3  Broadcast/Self Delivery Mode
The destination shorthand field of the ICR allows the delivery mode to be by-passed in favor of broadcasting the IPI 
to all the processors on the system bus and/or back to itself (see Section 12.6.1, “Interrupt Command Register 
(ICR)”). Three destination shorthands are supported: self, all excluding self, and all including self. The destination 
mode is ignored when a destination shorthand is used.

12.6.2.4  Lowest Priority Delivery Mode
With lowest priority delivery mode, the ICR is programmed to send an IPI to several processors on the system bus, 
using the logical or shorthand destination mechanism for selecting the processor. The selected processors then 
arbitrate with one another over the system bus or the APIC bus, with the lowest-priority processor accepting the 
IPI. 

For systems based on the Intel Xeon processor, the chipset bus controller accepts messages from the I/O APIC 
agents in the system and directs interrupts to the processors on the system bus. When using the lowest priority 
delivery mode, the chipset chooses a target processor to receive the interrupt out of the set of possible targets. The 
Pentium 4 processor provides a special bus cycle on the system bus that informs the chipset of the current task 
priority for each logical processor in the system. The chipset saves this information and uses it to choose the lowest 
priority processor when an interrupt is received.

For systems based on P6 family processors, the processor priority used in lowest-priority arbitration is contained in 
the arbitration priority register (APR) in each local APIC. Figure 12-15 shows the layout of the APR. 

The APR value is computed as follows:

IF (TPR[7:4] ≥ IRRV[7:4]) AND (TPR[7:4] > ISRV[7:4]) 
THEN 

APR[7:0] ← TPR[7:0]
ELSE 

APR[7:4] ← max(TPR[7:4] AND ISRV[7:4], IRRV[7:4])
APR[3:0] ← 0.

Here, the TPR value is the task priority value in the TPR (see Figure 12-18), the IRRV value is the vector number 
for the highest priority bit that is set in the IRR (see Figure 12-20) or 00H (if no IRR bit is set), and the ISRV value 
is the vector number for the highest priority bit that is set in the ISR (see Figure 12-20). Following arbitration 

 

Figure 12-15.  Arbitration Priority Register (APR)
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among the destination processors, the processor with the lowest value in its APR handles the IPI and the other 
processors ignore it.

(P6 family and Pentium processors.) For these processors, if a focus processor exists, it may accept the interrupt, 
regardless of its priority. A processor is said to be the focus of an interrupt if it is currently servicing that interrupt 
or if it has a pending request for that interrupt. For Intel Xeon processors, the concept of a focus processor is not 
supported.

In operating systems that use the lowest priority delivery mode but do not update the TPR, the TPR information 
saved in the chipset will potentially cause the interrupt to be always delivered to the same processor from the 
logical set. This behavior is functionally backward compatible with the P6 family processor but may result in unex-
pected performance implications.

12.6.3 IPI Delivery and Acceptance
When the low double-word of the ICR is written to, the local APIC creates an IPI message from the information 
contained in the ICR and sends the message out on the system bus (Pentium 4 and Intel Xeon processors) or the 
APIC bus (P6 family and Pentium processors). The manner in which these IPIs are handled after being issued is 
described in Section 12.8, “Handling Interrupts.”

12.7 SYSTEM AND APIC BUS ARBITRATION
When several local APICs and the I/O APIC are sending IPI and interrupt messages on the system bus (or APIC 
bus), the order in which the messages are sent and handled is determined through bus arbitration. 

For the Pentium 4 and Intel Xeon processors, the local and I/O APICs use the arbitration mechanism defined for the 
system bus to determine the order in which IPIs are handled. This mechanism is non-architectural and cannot be 
controlled by software.

For the P6 family and Pentium processors, the local and I/O APICs use an APIC-based arbitration mechanism to 
determine the order in which IPIs are handled. Here, each local APIC is given an arbitration priority of from 0 to 15, 
which the I/O APIC uses during arbitration to determine which local APIC should be given access to the APIC bus. 
The local APIC with the highest arbitration priority always wins bus access. Upon completion of an arbitration 
round, the winning local APIC lowers its arbitration priority to 0 and the losing local APICs each raise theirs by 1.

The current arbitration priority for a local APIC is stored in a 4-bit, software-transparent arbitration ID (Arb ID) 
register. During reset, this register is initialized to the APIC ID number (stored in the local APIC ID register). The 
INIT level-deassert IPI, which is issued with and ICR command, can be used to resynchronize the arbitration prior-
ities of the local APICs by resetting Arb ID register of each agent to its current APIC ID value. (The Pentium 4 and 
Intel Xeon processors do not implement the Arb ID register.)

Section 12.10, “APIC Bus Message Passing Mechanism and Protocol (P6 Family, Pentium Processors),” describes the 
APIC bus arbitration protocols and bus message formats, while Section 12.6.1, “Interrupt Command Register 
(ICR),” describes the INIT level de-assert IPI message. 

Note that except for the SIPI IPI (see Section 12.6.1, “Interrupt Command Register (ICR)”), all bus messages that 
fail to be delivered to their specified destination or destinations are automatically retried. Software should avoid 
situations in which IPIs are sent to disabled or nonexistent local APICs, causing the messages to be resent repeat-
edly. Additionally, interrupt sources that target the APIC should be masked or changed to no longer target the APIC.

12.8 HANDLING INTERRUPTS
When a local APIC receives an interrupt from a local source, an interrupt message from an I/O APIC, or an IPI, the 
manner in which it handles the message depends on processor implementation, as described in the following 
sections.
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12.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon Processors
With the Pentium 4 and Intel Xeon processors, the local APIC handles the local interrupts, interrupt messages, and 
IPIs it receives as follows: 

1. It determines if it is the specified destination or not (see Figure 12-16). If it is the specified destination, it 
accepts the message; if it is not, it discards the message.

2. If the local APIC determines that it is the designated destination for the interrupt and if the interrupt request is 
an NMI, SMI, INIT, ExtINT, or SIPI, the interrupt is sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt but the interrupt request is 
not one of the interrupts given in step 2, the local APIC sets the appropriate bit in the IRR. 

4. When interrupts are pending in the IRR register, the local APIC dispatches them to the processor one at a time, 
based on their priority and the current processor priority in the PPR (see Section 12.8.3.1, “Task and Processor 
Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the completion of the handler 
routine is indicated with an instruction in the instruction handler code that writes to the end-of-interrupt (EOI) 
register in the local APIC (see Section 12.8.5, “Signaling Interrupt Servicing Completion”). The act of writing to 
the EOI register causes the local APIC to delete the interrupt from its ISR queue and (for level-triggered 
interrupts) send a message on the bus indicating that the interrupt handling has been completed. (A write to 
the EOI register must not be included in the handler routine for an NMI, SMI, INIT, ExtINT, or SIPI.)

12.8.2 Interrupt Handling with the P6 Family and Pentium Processors
With the P6 family and Pentium processors, the local APIC handles the local interrupts, interrupt messages, and 
IPIs it receives as follows (see Figure 12-17).

1. (IPIs only) The local APIC examines the IPI message to determines if it is the specified destination for the IPI 
as described in Section 12.6.2, “Determining IPI Destination.” If it is the specified destination, it continues its 
acceptance procedure; if it is not the destination, it discards the IPI message. When the message specifies 
lowest-priority delivery mode, the local APIC will arbitrate with the other processors that were designated as 
recipients of the IPI message (see Section 12.6.2.4, “Lowest Priority Delivery Mode”).

2. If the local APIC determines that it is the designated destination for the interrupt and if the interrupt request is 
an NMI, SMI, INIT, ExtINT, or INIT-deassert interrupt, or one of the MP protocol IPI messages (BIPI, FIPI, and 
SIPI), the interrupt is sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt but the interrupt request is 
not one of the interrupts given in step 2, the local APIC looks for an open slot in one of its two pending interrupt 
queues contained in the IRR and ISR registers (see Figure 12-20). If a slot is available (see Section 12.8.4, 
“Interrupt Acceptance for Fixed Interrupts”), places the interrupt in the slot. If a slot is not available, it rejects 
the interrupt request and sends it back to the sender with a retry message.

4. When interrupts are pending in the IRR register, the local APIC dispatches them to the processor one at a time, 
based on their priority and the current processor priority in the PPR (see Section 12.8.3.1, “Task and Processor 
Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the completion of the handler 
routine is indicated with an instruction in the instruction handler code that writes to the end-of-interrupt (EOI) 

Figure 12-16.  Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and Intel Xeon Processors)
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register in the local APIC (see Section 12.8.5, “Signaling Interrupt Servicing Completion”). The act of writing to 
the EOI register causes the local APIC to delete the interrupt from its queue and (for level-triggered interrupts) 
send a message on the bus indicating that the interrupt handling has been completed. (A write to the EOI 
register must not be included in the handler routine for an NMI, SMI, INIT, ExtINT, or SIPI.)

The following sections describe the acceptance of interrupts and their handling by the local APIC and processor in 
greater detail. 

12.8.3 Interrupt, Task, and Processor Priority
Each interrupt delivered to the processor through the local APIC has a priority based on its vector number. The local 
APIC uses this priority to determine when to service the interrupt relative to the other activities of the processor, 
including the servicing of other interrupts. 

Each interrupt vector is an 8-bit value. The interrupt-priority class is the value of bits 7:4 of the interrupt vector. 
The lowest interrupt-priority class is 1 and the highest is 15; interrupts with vectors in the range 0–15 (with inter-
rupt-priority class 0) are illegal and are never delivered. Because vectors 0–31 are reserved for dedicated uses by 
the Intel 64 and IA-32 architectures, software should configure interrupt vectors to use interrupt-priority classes in 
the range 2–15.

Each interrupt-priority class encompasses 16 vectors. The relative priority of interrupts within an interrupt-priority 
class is determined by the value of bits 3:0 of the vector number. The higher the value of those bits, the higher the 

Figure 12-17.  Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and Pentium Processors)
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priority within that interrupt-priority class. Thus, each interrupt vector comprises two parts, with the high 4 bits 
indicating its interrupt-priority class and the low 4 bits indicating its ranking within the interrupt-priority class.

12.8.3.1  Task and Processor Priorities
The local APIC also defines a task priority and a processor priority that determine the order in which interrupts 
are handled. The task-priority class is the value of bits 7:4 of the task-priority register (TPR), which can be 
written by software (TPR is a read/write register); see Figure 12-18. 

NOTE
In this discussion, the term “task” refers to a software defined task, process, thread, program, or 
routine that is dispatched to run on the processor by the operating system. It does not refer to an 
IA-32 architecture defined task as described in Chapter 9, “Task Management.”

The task priority allows software to set a priority threshold for interrupting the processor. This mechanism enables 
the operating system to temporarily block low priority interrupts from disturbing high-priority work that the 
processor is doing. The ability to block such interrupts using task priority results from the way that the TPR controls 
the value of the processor-priority register (PPR).1

The processor-priority class is a value in the range 0–15 that is maintained in bits 7:4 of the processor-priority 
register (PPR); see Figure 12-19. The PPR is a read-only register. The processor-priority class represents the 
current priority at which the processor is executing.

The value of the PPR is based on the value of TPR and the value ISRV; ISRV is the vector number of the highest 
priority bit that is set in the ISR or 00H if no bit is set in the ISR. (See Section 12.8.4 for more details on the ISR.) 
The value of PPR is determined as follows:
• PPR[7:4] (the processor-priority class) the maximum of TPR[7:4] (the task- priority class) and ISRV[7:4] (the 

priority of the highest priority interrupt in service).
• PPR[3:0] (the processor-priority sub-class) is determined as follows:

— If TPR[7:4] > ISRV[7:4], PPR[3:0] is TPR[3:0] (the task-priority sub-class).

— If TPR[7:4] < ISRV[7:4], PPR[3:0] is 0.

— If TPR[7:4] = ISRV[7:4], PPR[3:0] may be either TPR[3:0] or 0. The actual behavior is model-specific.

 

Figure 12-18.  Task-Priority Register (TPR)

1. The TPR also determines the arbitration priority of the local processor; see Section 12.6.2.4, “Lowest Priority Delivery Mode.”

 

Figure 12-19.  Processor-Priority Register (PPR)
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The processor-priority class determines the priority threshold for interrupting the processor. The processor will 
deliver only those interrupts that have an interrupt-priority class higher than the processor-priority class in the 
PPR. If the processor-priority class is 0, the PPR does not inhibit the delivery any interrupt; if it is 15, the processor 
inhibits the delivery of all interrupts. (The processor-priority mechanism does not affect the delivery of interrupts 
with the NMI, SMI, INIT, ExtINT, INIT-deassert, and start-up delivery modes.)

The processor does not use the processor-priority sub-class to determine which interrupts to deliver and which to 
inhibit. (The processor uses the processor-priority sub-class only to satisfy reads of the PPR.)

12.8.4 Interrupt Acceptance for Fixed Interrupts
The local APIC queues the fixed interrupts that it accepts in one of two interrupt pending registers: the interrupt 
request register (IRR) or in-service register (ISR). These two 256-bit read-only registers are shown in 
Figure 12-20. The 256 bits in these registers represent the 256 possible vectors; vectors 0 through 15 are reserved 
by the APIC (see also: Section 12.5.2, “Valid Interrupt Vectors”).

NOTE
All interrupts with an NMI, SMI, INIT, ExtINT, start-up, or INIT-deassert delivery mode bypass the 
IRR and ISR registers and are sent directly to the processor core for servicing.

The IRR contains the active interrupt requests that have been accepted, but not yet dispatched to the processor for 
servicing. When the local APIC accepts an interrupt, it sets the bit in the IRR that corresponds the vector of the 
accepted interrupt. When the processor core is ready to handle the next interrupt, the local APIC clears the highest 
priority IRR bit that is set and sets the corresponding ISR bit. The vector for the highest priority bit set in the ISR is 
then dispatched to the processor core for servicing. 

While the processor is servicing the highest priority interrupt, the local APIC can send additional fixed interrupts by 
setting bits in the IRR. When the interrupt service routine issues a write to the EOI register (see Section 12.8.5, 
“Signaling Interrupt Servicing Completion”), the local APIC responds by clearing the highest priority ISR bit that is 
set. It then repeats the process of clearing the highest priority bit in the IRR and setting the corresponding bit in 
the ISR. The processor core then begins executing the service routing for the highest priority bit set in the ISR.

If more than one interrupt is generated with the same vector number, the local APIC can set the bit for the vector 
both in the IRR and the ISR. This means that for the Pentium 4 and Intel Xeon processors, the IRR and ISR can 
queue two interrupts for each interrupt vector: one in the IRR and one in the ISR. Any additional interrupts issued 
for the same interrupt vector are collapsed into the single bit in the IRR.

For the P6 family and Pentium processors, the IRR and ISR registers can queue no more than two interrupts per 
interrupt vector and will reject other interrupts that are received within the same vector. 

If the local APIC receives an interrupt with an interrupt-priority class higher than that of the interrupt currently in 
service, and interrupts are enabled in the processor core, the local APIC dispatches the higher priority interrupt to 
the processor immediately (without waiting for a write to the EOI register). The currently executing interrupt 
handler is then interrupted so the higher-priority interrupt can be handled. When the handling of the higher-priority 
interrupt has been completed, the servicing of the interrupted interrupt is resumed.

 

Figure 12-20.  IRR, ISR, and TMR Registers
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The trigger mode register (TMR) indicates the trigger mode of the interrupt (see Figure 12-20). Upon acceptance 
of an interrupt into the IRR, the corresponding TMR bit is cleared for edge-triggered interrupts and set for level-
triggered interrupts. If a TMR bit is set when an EOI cycle for its corresponding interrupt vector is generated, an 
EOI message is sent to all I/O APICs.

12.8.5 Signaling Interrupt Servicing Completion
For all interrupts except those delivered with the NMI, SMI, INIT, ExtINT, the start-up, or INIT-Deassert delivery 
mode, the interrupt handler must include a write to the end-of-interrupt (EOI) register (see Figure 12-21). This 
write must occur at the end of the handler routine, sometime before the IRET instruction. This action indicates that 
the servicing of the current interrupt is complete and the local APIC can issue the next interrupt from the ISR. 

Upon receiving an EOI, the APIC clears the highest priority bit in the ISR and dispatches the next highest priority 
interrupt to the processor. If the terminated interrupt was a level-triggered interrupt, the local APIC also sends an 
end-of-interrupt message to all I/O APICs. 
System software may prefer to direct EOIs to specific I/O APICs rather than having the local APIC send end-of-
interrupt messages to all I/O APICs.

Software can inhibit the broadcast of EOI message by setting bit 12 of the Spurious Interrupt Vector Register (see 
Section 12.9). If this bit is set, a broadcast EOI is not generated on an EOI cycle even if the associated TMR bit indi-
cates that the current interrupt was level-triggered. The default value for the bit is 0, indicating that EOI broadcasts 
are performed.

Bit 12 of the Spurious Interrupt Vector Register is reserved to 0 if the processor does not support suppression of 
EOI broadcasts. Support for EOI-broadcast suppression is reported in bit 24 in the Local APIC Version Register (see 
Section 12.4.8); the feature is supported if that bit is set to 1. When supported, the feature is available in both 
xAPIC mode and x2APIC mode.

System software desiring to perform directed EOIs for level-triggered interrupts should set bit 12 of the Spurious 
Interrupt Vector Register and follow each the EOI to the local xAPIC for a level triggered interrupt with a directed 
EOI to the I/O APIC generating the interrupt (this is done by writing to the I/O APIC’s EOI register). System soft-
ware performing directed EOIs must retain a mapping associating level-triggered interrupts with the I/O APICs in 
the system.

12.8.6 Task Priority in IA-32e Mode
In IA-32e mode, operating systems can manage the 16 interrupt-priority classes (see Section 12.8.3, “Interrupt, 
Task, and Processor Priority”) explicitly using the task priority register (TPR). Operating systems can use the TPR 
to temporarily block specific (low-priority) interrupts from interrupting a high-priority task. This is done by loading 
TPR with a value in which the task-priority class corresponds to the highest interrupt-priority class that is to be 
blocked. For example: 
• Loading the TPR with a task-priority class of 8 (01000B) blocks all interrupts with an interrupt-priority class of 

8 or less while allowing all interrupts with an interrupt-priority class of 9 or more to be recognized.
• Loading the TPR with a task-priority class of 0 enables all external interrupts. 
• Loading the TPR with a task-priority class of 0FH (01111B) disables all external interrupts. 

The TPR (shown in Figure 12-18) is cleared to 0 on reset. In 64-bit mode, software can read and write the TPR 
using an alternate interface, MOV CR8 instruction. The new task-priority class is established when the MOV CR8 

Figure 12-21.  EOI Register

31 0

Address: 0FEE0 00B0H
Value after reset: 0H
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instruction completes execution. Software does not need to force serialization after loading the TPR using MOV 
CR8. 

Use of the MOV CRn instruction requires a privilege level of 0. Programs running at privilege level greater than 0 
cannot read or write the TPR. An attempt to do so causes a general-protection exception. The TPR is abstracted 
from the interrupt controller (IC), which prioritizes and manages external interrupt delivery to the processor. The 
IC can be an external device, such as an APIC or 8259. Typically, the IC provides a priority mechanism similar or 
identical to the TPR. The IC, however, is considered implementation-dependent with the under-lying priority mech-
anisms subject to change. CR8, by contrast, is part of the Intel 64 architecture. Software can depend on this defi-
nition remaining unchanged. 

Figure 12-22 shows the layout of CR8; only the low four bits are used. The remaining 60 bits are reserved and must 
be written with zeros. Failure to do this causes a general-protection exception.

12.8.6.1  Interaction of Task Priorities between CR8 and APIC
The first implementation of Intel 64 architecture includes a local advanced programmable interrupt controller 
(APIC) that is similar to the APIC used with previous IA-32 processors. Some aspects of the local APIC affect the 
operation of the architecturally defined task priority register and the programming interface using CR8.

Notable CR8 and APIC interactions are:
• The processor powers up with the local APIC enabled.
• The APIC must be enabled for CR8 to function as the TPR. Writes to CR8 are reflected into the APIC Task Priority 

Register.
• APIC.TPR[bits 7:4] = CR8[bits 3:0], APIC.TPR[bits 3:0] = 0. A read of CR8 returns a 64-bit value which is the 

value of TPR[bits 7:4], zero extended to 64 bits.

There are no ordering mechanisms between direct updates of the APIC.TPR and CR8. Operating software should 
implement either direct APIC TPR updates or CR8 style TPR updates but not mix them. Software can use a serial-
izing instruction (for example, CPUID) to serialize updates between MOV CR8 and stores to the APIC.

12.9 SPURIOUS INTERRUPT
A special situation may occur when a processor raises its task priority to be greater than or equal to the level of the 
interrupt for which the processor INTR signal is currently being asserted. If at the time the INTA cycle is issued, the 
interrupt that was to be dispensed has become masked (programmed by software), the local APIC will deliver a 
spurious-interrupt vector. Dispensing the spurious-interrupt vector does not affect the ISR, so the handler for this 
vector should return without an EOI.

The vector number for the spurious-interrupt vector is specified in the spurious-interrupt vector register (see 
Figure 12-23). The functions of the fields in this register are as follows:
Spurious Vector Determines the vector number to be delivered to the processor when the local APIC generates 

a spurious vector. 
(Pentium 4 and Intel Xeon processors.) Bits 0 through 7 of the this field are programmable by 
software. 
(P6 family and Pentium processors). Bits 4 through 7 of the this field are programmable by 
software, and bits 0 through 3 are hardwired to logical ones. Software writes to bits 0 through 
3 have no effect.

Figure 12-22.  CR8 Register
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APIC Software Enable/Disable
Allows software to temporarily enable (1) or disable (0) the local APIC (see Section 12.4.3, 
“Enabling or Disabling the Local APIC”).

Focus Processor Checking
Determines if focus processor checking is enabled (0) or disabled (1) when using the lowest-
priority delivery mode. In Pentium 4 and Intel Xeon processors, this bit is reserved and should 
be cleared to 0.

Suppress EOI Broadcasts
Determines whether an EOI for a level-triggered interrupt causes EOI messages to be broad-
cast to the I/O APICs (0) or not (1). See Section 12.8.5. The default value for this bit is 0, indi-
cating that EOI broadcasts are performed. This bit is reserved to 0 if the processor does not 
support EOI-broadcast suppression.

NOTE
Do not program an LVT or IOAPIC RTE with a spurious vector even if you set the mask bit. A 
spurious vector ISR does not do an EOI. If for some reason an interrupt is generated by an LVT or 
RTE entry, the bit in the in-service register will be left set for the spurious vector. This will mask all 
interrupts at the same or lower priority

12.10 APIC BUS MESSAGE PASSING MECHANISM AND PROTOCOL (P6 FAMILY, 
PENTIUM PROCESSORS)

The Pentium 4 and Intel Xeon processors pass messages among the local and I/O APICs on the system bus, using 
the system bus message passing mechanism and protocol.

The P6 family and Pentium processors, pass messages among the local and I/O APICs on the serial APIC bus, as 
follows. Because only one message can be sent at a time on the APIC bus, the I/O APIC and local APICs employ a 
“rotating priority” arbitration protocol to gain permission to send a message on the APIC bus. One or more APICs 
may start sending their messages simultaneously. At the beginning of every message, each APIC presents the type 
of the message it is sending and its current arbitration priority on the APIC bus. This information is used for arbi-
tration. After each arbitration cycle (within an arbitration round), only the potential winners keep driving the bus. 

Figure 12-23.  Spurious-Interrupt Vector Register (SVR)
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By the time all arbitration cycles are completed, there will be only one APIC left driving the bus. Once a winner is 
selected, it is granted exclusive use of the bus, and will continue driving the bus to send its actual message.

After each successfully transmitted message, all APICs increase their arbitration priority by 1. The previous winner 
(that is, the one that has just successfully transmitted its message) assumes a priority of 0 (lowest). An agent 
whose arbitration priority was 15 (highest) during arbitration, but did not send a message, adopts the previous 
winner’s arbitration priority, incremented by 1. 

Note that the arbitration protocol described above is slightly different if one of the APICs issues a special End-Of-
Interrupt (EOI). This high-priority message is granted the bus regardless of its sender’s arbitration priority, unless 
more than one APIC issues an EOI message simultaneously. In the latter case, the APICs sending the EOI 
messages arbitrate using their arbitration priorities.

If the APICs are set up to use “lowest priority” arbitration (see Section 12.6.2.4, “Lowest Priority Delivery Mode”) 
and multiple APICs are currently executing at the lowest priority (the value in the APR register), the arbitration 
priorities (unique values in the Arb ID register) are used to break ties. All 8 bits of the APR are used for the lowest 
priority arbitration.

12.10.1 Bus Message Formats
See Section 12.13, “APIC Bus Message Formats,” for a description of bus message formats used to transmit 
messages on the serial APIC bus.

12.11 MESSAGE SIGNALLED INTERRUPTS
The PCI Local Bus Specification, Rev 2.2 (www.pcisig.com) introduces the concept of message signalled interrupts. 
As the specification indicates:

“Message signalled interrupts (MSI) is an optional feature that enables PCI devices to request 
service by writing a system-specified message to a system-specified address (PCI DWORD memory 
write transaction). The transaction address specifies the message destination while the transaction 
data specifies the message. System software is expected to initialize the message destination and 
message during device configuration, allocating one or more non-shared messages to each MSI 
capable function.” 

The capabilities mechanism provided by the PCI Local Bus Specification is used to identify and configure MSI 
capable PCI devices. Among other fields, this structure contains a Message Data Register and a Message Address 
Register. To request service, the PCI device function writes the contents of the Message Data Register to the 
address contained in the Message Address Register (and the Message Upper Address register for 64-bit message 
addresses). 

Section 12.11.1 and Section 12.11.2 provide layout details for the Message Address Register and the Message Data 
Register. The operation issued by the device is a PCI write command to the Message Address Register with the 
Message Data Register contents. The operation follows semantic rules as defined for PCI write operations and is a 
DWORD operation.

12.11.1 Message Address Register Format
The format of the Message Address Register (lower 32-bits) is shown in Figure 12-24.

Figure 12-24.  Layout of the MSI Message Address Register
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Fields in the Message Address Register are as follows:

1. Bits 31-20 — These bits contain a fixed value for interrupt messages (0FEEH). This value locates interrupts at 
the 1-MByte area with a base address of 4G – 18M. All accesses to this region are directed as interrupt 
messages. Care must to be taken to ensure that no other device claims the region as I/O space.

2. Destination ID — This field contains an 8-bit destination ID. It identifies the message’s target processor(s). 
The destination ID corresponds to bits 63:56 of the I/O APIC Redirection Table Entry if the IOAPIC is used to 
dispatch the interrupt to the processor(s).

3. Redirection hint indication (RH) — When this bit is set, the message is directed to the processor with the 
lowest interrupt priority among processors that can receive the interrupt. 

• When RH is 0, the interrupt is directed to the processor listed in the Destination ID field. 

• When RH is 1 and the physical destination mode is used, the Destination ID field must not be set to FFH; 
it must point to a processor that is present and enabled to receive the interrupt.

• When RH is 1 and the logical destination mode is active in a system using a flat addressing model, the 
Destination ID field must be set so that bits set to 1 identify processors that are present and enabled to 
receive the interrupt.

• If RH is set to 1 and the logical destination mode is active in a system using cluster addressing model, 
then Destination ID field must not be set to FFH; the processors identified with this field must be 
present and enabled to receive the interrupt.

4. Destination mode (DM) — This bit indicates whether the Destination ID field should be interpreted as logical 
or physical APIC ID for delivery of the lowest priority interrupt. 

• If RH is 1 and DM is 0, the Destination ID field is in physical destination mode and only the processor in 
the system that has the matching APIC ID is considered for delivery of that interrupt (this means no re-
direction). 

• If RH is 1 and DM is 1, the Destination ID Field is interpreted as in logical destination mode and the 
redirection is limited to only those processors that are part of the logical group of processors based on 
the processor’s logical APIC ID and the Destination ID field in the message. The logical group of 
processors consists of those identified by matching the 8-bit Destination ID with the logical destination 
identified by the Destination Format Register and the Logical Destination Register in each local APIC. 
The details are similar to those described in Section 12.6.2, “Determining IPI Destination.” 

• If RH is 0, then the DM bit is ignored and the message is sent ahead independent of whether the 
physical or logical destination mode is used.

12.11.2 Message Data Register Format
The layout of the Message Data Register is shown in Figure 12-25.

Reserved fields are not assumed to be any value. Software must preserve their contents on writes. Other fields in 
the Message Data Register are described below.

1. Vector — This 8-bit field contains the interrupt vector associated with the message. Values range from 010H 
to 0FEH. Software must guarantee that the field is not programmed with vector 00H to 0FH.

2. Delivery Mode — This 3-bit field specifies how the interrupt receipt is handled. Delivery Modes operate only in 
conjunction with specified Trigger Modes. Correct Trigger Modes must be guaranteed by software. Restrictions 
are indicated below:

a. 000B (Fixed Mode) — Deliver the signal to all the agents listed in the destination. The Trigger Mode for
fixed delivery mode can be edge or level.

b. 001B (Lowest Priority) — Deliver the signal to the agent that is executing at the lowest priority of all 
agents listed in the destination field. The trigger mode can be edge or level.

c. 010B (System Management Interrupt or SMI) — The delivery mode is edge only. For systems that rely 
on SMI semantics, the vector field is ignored but must be programmed to all zeroes for future compatibility. 
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d. 100B (NMI) — Deliver the signal to all the agents listed in the destination field. The vector information is 
ignored. NMI is an edge triggered interrupt regardless of the Trigger Mode Setting.

e. 101B (INIT) — Deliver this signal to all the agents listed in the destination field. The vector information is 
ignored. INIT is an edge triggered interrupt regardless of the Trigger Mode Setting.

f. 111B (ExtINT) — Deliver the signal to the INTR signal of all agents in the destination field (as an interrupt 
that originated from an 8259A compatible interrupt controller). The vector is supplied by the INTA cycle 
issued by the activation of the ExtINT. ExtINT is an edge triggered interrupt.

3. Level — Edge triggered interrupt messages are always interpreted as assert messages. For edge triggered 
interrupts this field is not used. For level triggered interrupts, this bit reflects the state of the interrupt input.

4. Trigger Mode — This field indicates the signal type that will trigger a message. 

a. 0 — Indicates edge sensitive.

b. 1 — Indicates level sensitive.

12.12 EXTENDED XAPIC (X2APIC)
The x2APIC architecture extends the xAPIC architecture (described in Section 12.4) in a backward compatible 
manner and provides forward extendability for future Intel platform innovations. Specifically, the x2APIC architec-
ture does the following.
• Retains all key elements of compatibility to the xAPIC architecture.

— Delivery modes.

— Interrupt and processor priorities.

— Interrupt sources.

— Interrupt destination types.
• Provides extensions to scale processor addressability for both the logical and physical destination modes.

Figure 12-25.  Layout of the MSI Message Data Register

Reserved

Reserved Reserved Vector

Delivery Mode

001 - Lowest Priority
010 - SMI
011 - Reserved

101 - INIT
110 - Reserved
111 - ExtINT

Trigger Mode
0 - Edge
1 - Level

Level for Trigger Mode = 0
X - Don’t care

Level for Trigger Mode = 1
0 - Deassert
1 - Assert

000 - Fixed

100 - NMI
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• Adds new features to enhance performance of interrupt delivery.
• Reduces complexity of logical destination mode interrupt delivery on link based platform architectures.
• Uses MSR programming interface to access APIC registers in x2APIC mode instead of memory-mapped 

interfaces. Memory-mapped interface is supported when operating in xAPIC mode.

12.12.1 Detecting and Enabling x2APIC Mode
Processor support for x2APIC mode can be detected by executing CPUID with EAX=1 and then checking ECX, bit 
21 ECX. If CPUID.(EAX=1):ECX.21 is set , the processor supports the x2APIC capability and can be placed into the 
x2APIC mode. 

System software can place the local APIC in the x2APIC mode by setting the x2APIC mode enable bit (bit 10) in the 
IA32_APIC_BASE MSR at MSR address 01BH. The layout for the IA32_APIC_BASE MSR is shown in Figure 12-26.

Table 12-5, “x2APIC operating mode configurations” describe the possible combinations of the enable bit (EN - bit 
11) and the extended mode bit (EXTD - bit 10) in the IA32_APIC_BASE MSR.

Once the local APIC has been switched to x2APIC mode (EN = 1, EXTD = 1), switching back to xAPIC mode would 
require system software to disable the local APIC unit. Specifically, attempting to write a value to the 
IA32_APIC_BASE MSR that has (EN= 1, EXTD = 0) when the local APIC is enabled and in x2APIC mode causes a 
general-protection exception. Once bit 10 in IA32_APIC_BASE MSR is set, the only way to leave x2APIC mode 
using IA32_APIC_BASE would require a WRMSR to set both bit 11 and bit 10 to zero. Section 12.12.5, “x2APIC 
State Transitions,” provides a detailed state diagram for the state transitions allowed for the local APIC.

12.12.1.1  Instructions to Access APIC Registers
In x2APIC mode, system software uses RDMSR and WRMSR to access the APIC registers. The MSR addresses for 
accessing the x2APIC registers are architecturally defined and specified in Section 12.12.1.2, “x2APIC Register 
Address Space.” Executing the RDMSR instruction with the APIC register address specified in ECX returns the 
content of bits 0 through 31 of the APIC registers in EAX. Bits 32 through 63 are returned in register EDX - these 
bits are reserved if the APIC register being read is a 32-bit register. Similarly executing the WRMSR instruction with 
the APIC register address in ECX, writes bits 0 to 31 of register EAX to bits 0 to 31 of the specified APIC register. If 
the register is a 64-bit register then bits 0 to 31 of register EDX are written to bits 32 to 63 of the APIC register. The 

Figure 12-26.  IA32_APIC_BASE MSR Supporting x2APIC

Table 12-5. x2APIC Operating Mode Configurations 

xAPIC global enable 
(IA32_APIC_BASE[11])

x2APIC enable 
(IA32_APIC_BASE[10]) Description

0 0 local APIC is disabled

0 1 Invalid

1 0 local APIC is enabled in xAPIC mode

1 1 local APIC is enabled in x2APIC mode

BSP—Processor is BSP

EN—xAPIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

36 35

APIC BaseReserved

EXTD—Enable x2APIC mode
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Interrupt Command Register is the only APIC register that is implemented as a 64-bit MSR. The semantics of 
handling reserved bits are defined in Section 12.12.1.3, “Reserved Bit Checking.”

12.12.1.2  x2APIC Register Address Space
The MSR address range 800H through 8FFH is architecturally reserved and dedicated for accessing APIC registers 
in x2APIC mode. Table 12-6 lists the APIC registers that are available in x2APIC mode. When appropriate, the table 
also gives the offset at which each register is available on the page referenced by IA32_APIC_BASE[35:12] in 
xAPIC mode. 
There is a one-to-one mapping between the x2APIC MSRs and the legacy xAPIC register offsets with the following 
exceptions:
• The Destination Format Register (DFR): The DFR, supported at offset 0E0H in xAPIC mode, is not supported in 

x2APIC mode. There is no MSR with address 80EH.
• The Interrupt Command Register (ICR): The two 32-bit registers in xAPIC mode (at offsets 300H and 310H) are 

merged into a single 64-bit MSR in x2APIC mode (with MSR address 830H). There is no MSR with address 
831H.

• The SELF IPI register. This register is available only in x2APIC mode at address 83FH. In xAPIC mode, there is 
no register defined at offset 3F0H.

MSR addresses in the range 800H–8FFH that are not listed in Table 12-6 (including 80EH and 831H) are reserved. 
Executions of RDMSR and WRMSR that attempt to access such addresses cause general-protection exceptions.
The MSR address space is compressed to allow for future growth. Every 32 bit register on a 128-bit boundary in the 
legacy MMIO space is mapped to a single MSR in the local x2APIC MSR address space. The upper 32-bits of all 
x2APIC MSRs (except for the ICR) are reserved. 

Table 12-6. Local APIC Register Address Map Supported by x2APIC

MSR Address 
(x2APIC mode)

MMIO Offset 
(xAPIC mode) Register Name

MSR R/W 
Semantics Comments

 802H 020H Local APIC ID register Read-only1 See Section 12.12.5.1 for initial 
values.

803H 030H Local APIC Version register Read-only Same version used in xAPIC mode 
and x2APIC mode.

808H 080H Task Priority Register (TPR) Read/write Bits 31:8 are reserved.2

80AH 0A0H Processor Priority Register 
(PPR)

Read-only

80BH 0B0H EOI register Write-only3 WRMSR of a non-zero value causes 
#GP(0).

80DH 0D0H Logical Destination Register 
(LDR)

Read-only Read/write in xAPIC mode.

80FH 0F0H Spurious Interrupt Vector 
Register (SVR)

Read/write See Section 12.9 for reserved bits.

810H 100H In-Service Register (ISR); bits 
31:0

Read-only

811H 110H ISR bits 63:32 Read-only

812H 120H ISR bits 95:64 Read-only

813H 130H ISR bits 127:96 Read-only

814H 140H ISR bits 159:128 Read-only

815H 150H ISR bits 191:160 Read-only

816H 160H ISR bits 223:192 Read-only
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817H 170H ISR bits 255:224 Read-only

818H 180H Trigger Mode Register (TMR); 
bits 31:0 

Read-only

819H 190H TMR bits 63:32 Read-only

81AH 1A0H TMR bits 95:64 Read-only

81BH 1B0H TMR bits 127:96 Read-only

81CH 1C0H TMR bits 159:128 Read-only

81DH 1D0H TMR bits 191:160 Read-only

81EH 1E0H TMR bits 223:192 Read-only

81FH 1F0H TMR bits 255:224 Read-only

820H 200H Interrupt Request Register 
(IRR); bits 31:0

Read-only

821H 210H IRR bits 63:32 Read-only

822H 220H IRR bits 95:64 Read-only

823H 230H IRR bits 127:96 Read-only

824H 240H IRR bits 159:128 Read-only

825H 250H IRR bits 191:160 Read-only

826H 260H IRR bits 223:192 Read-only

827H 270H IRR bits 255:224 Read-only

828H 280H Error Status Register (ESR) Read/write WRMSR of a non-zero value causes 
#GP(0). See Section 12.5.3.

82FH 2F0H LVT CMCI register Read/write See Figure 12-8 for reserved bits.

830H4 300H and 310H Interrupt Command Register 
(ICR)

Read/write See Figure 12-28 for reserved bits

832H 320H LVT Timer register Read/write See Figure 12-8 for reserved bits.

833H 330H LVT Thermal Sensor register Read/write See Figure 12-8 for reserved bits.

834H 340H LVT Performance Monitoring 
register

Read/write See Figure 12-8 for reserved bits.

835H 350H LVT LINT0 register Read/write See Figure 12-8 for reserved bits.

836H 360H LVT LINT1 register Read/write See Figure 12-8 for reserved bits.

837H 370H LVT Error register Read/write See Figure 12-8 for reserved bits.

838H 380H Initial Count register (for 
Timer)

Read/write

839H 390H Current Count register (for 
Timer)

Read-only

83EH 3E0H Divide Configuration Register 
(DCR; for Timer)

Read/write See Figure 12-10 for reserved bits.

83FH Not available SELF IPI5 Write-only Available only in x2APIC mode.

NOTES:
1. WRMSR causes #GP(0) for read-only registers.

Table 12-6. Local APIC Register Address Map Supported by x2APIC (Contd.)

MSR Address 
(x2APIC mode)

MMIO Offset 
(xAPIC mode)

Register Name
MSR R/W 
Semantics

Comments
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12.12.1.3  Reserved Bit Checking
Section 12.12.1.2 and Table 12-6 specifies the reserved bit definitions for the APIC registers in x2APIC mode. Non-
zero writes (by WRMSR instruction) to reserved bits to these registers will raise a general protection fault exception 
while reads return zeros (RsvdZ semantics).
In x2APIC mode, the local APIC ID register is increased to 32 bits wide. This enables 232–1 processors to be 
addressable in physical destination mode. This 32-bit value is referred to as “x2APIC ID”. A processor implementa-
tion may choose to support less than 32 bits in its hardware. System software should be agnostic to the actual 
number of bits that are implemented. All non-implemented bits will return zeros on reads by software. 
The APIC ID value of FFFF_FFFFH and the highest value corresponding to the implemented bit-width of the local 
APIC ID register in the system are reserved and cannot be assigned to any logical processor. 

In x2APIC mode, the local APIC ID register is a read-only register to system software and will be initialized by hard-
ware. It is accessed via the RDMSR instruction reading the MSR at address 0802H. 
Each logical processor in the system (including clusters with a communication fabric) must be configured with an 
unique x2APIC ID to avoid collisions of x2APIC IDs. On DP and high-end MP processors targeted to specific market 
segments and depending on the system configuration, it is possible that logical processors in different and “un-
connected” clusters power up initialized with overlapping x2APIC IDs. In these configurations, a model-specific 
means may be provided in those product segments to enable BIOS and/or platform firmware to re-configure the 
x2APIC IDs in some clusters to provide for unique and non-overlapping system wide IDs before configuring the 
disconnected components into a single system. 

12.12.2 x2APIC Register Availability
The local APIC registers can be accessed via the MSR interface only when the local APIC has been switched to the 
x2APIC mode as described in Section 12.12.1. Accessing any APIC register in the MSR address range 0800H 
through 08FFH via RDMSR or WRMSR when the local APIC is not in x2APIC mode causes a general-protection 
exception. In x2APIC mode, the memory mapped interface is not available and any access to the MMIO interface 
will behave similar to that of a legacy xAPIC in globally disabled state. Table 12-7 provides the interactions between 
the legacy & extended modes and the legacy and register interfaces.

12.12.3 MSR Access in x2APIC Mode
To allow for efficient access to the APIC registers in x2APIC mode, the serializing semantics of WRMSR are relaxed 
when writing to the APIC registers. Thus, system software should not use “WRMSR to APIC registers in x2APIC 
mode” as a serializing instruction. Read and write accesses to the APIC registers will occur in program order. A 
WRMSR to an APIC register may complete before all preceding stores are globally visible; software can prevent this 
by inserting a serializing instruction or the sequence MFENCE;LFENCE before the WRMSR.

The RDMSR instruction is not serializing and this behavior is unchanged when reading APIC registers in x2APIC 
mode. System software accessing the APIC registers using the RDMSR instruction should not expect a serializing 
behavior. (Note: The MMIO-based xAPIC interface is mapped by system software as an un-cached region. Conse-
quently, read/writes to the xAPIC-MMIO interface have serializing semantics in the xAPIC mode.)

2. WRMSR causes #GP(0) for attempts to set a reserved bit to 1 in a read/write register (including bits 63:32 of each register).
3. RDMSR causes #GP(0) for write-only registers.
4. MSR 831H is reserved; read/write operations cause general-protection exceptions. The contents of the APIC register at MMIO offset 

310H are accessible in x2APIC mode through the MSR at address 830H.
5. SELF IPI register is supported only in x2APIC mode.

Table 12-7. MSR/MMIO Interface of a Local x2APIC in Different Modes of Operation

MMIO Interface MSR Interface

xAPIC mode Available General-protection exception

x2APIC mode Behavior identical to xAPIC in globally disabled state Available
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12.12.4 VM-Exit Controls for MSRs and x2APIC Registers
The VMX architecture allows a VMM to specify lists of MSRs to be loaded or stored on VMX transitions using the 
VMX-transition MSR areas (see VM-exit MSR-store address field, VM-exit MSR-load address field, and VM-entry 
MSR-load address field in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).
The X2APIC MSRs cannot to be loaded and stored on VMX transitions. A VMX transition fails if the VMM has speci-
fied that the transition should access any MSRs in the address range from 0000_0800H to 0000_08FFH (the range 
used for accessing the X2APIC registers). Specifically, processing of an 128-bit entry in any of the VMX-transition 
MSR areas fails if bits 31:0 of that entry (represented as ENTRY_LOW_DW) satisfies the expression: 
“ENTRY_LOW_DW & FFFFF800H = 00000800H”. Such a failure causes an associated VM entry to fail (by reloading 
host state) and causes an associated VM exit to lead to VMX abort.

12.12.5 x2APIC State Transitions
This section provides a detailed description of the x2APIC states of a local x2APIC unit, transitions between these 
states as well as interactions of these states with INIT and reset. 

12.12.5.1  x2APIC States
The valid states for a local x2APIC unit are listed in Table 12-5.
• APIC disabled: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=0.
• xAPIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=0.
• x2APIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=1.
• Invalid: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=1.
The state corresponding to EXTD=1 and EN=0 is not valid and it is not possible to get into this state. An execution 
of WRMSR to the IA32_APIC_BASE_MSR that attempts a transition from a valid state to this invalid state causes a 
general-protection exception. Figure 12-27 shows the comprehensive state transition diagram for a local x2APIC 
unit. 
On coming out of reset, the local APIC unit is enabled and is in the xAPIC mode: IA32_APIC_BASE[EN]=1 and 
IA32_APIC_BASE[EXTD]=0. The APIC registers are initialized as follows.
• The local APIC ID is initialized by hardware with a 32 bit ID (x2APIC ID). The lowest 8 bits of the x2APIC ID are 

the legacy local xAPIC ID, and are stored in the upper 8 bits of the APIC register for access in xAPIC mode.
• The following APIC registers are reset to all zeros for those fields that are defined in the xAPIC mode.

— IRR, ISR, TMR, ICR, LDR, TPR, Divide Configuration Register (See Section 12.4 through Section 12.6 for 
details of individual APIC registers).

— Timer initial count and timer current count registers.
• The LVT registers are reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The Spurious Interrupt Vector Register is initialized to 000000FFH. 
• The DFR (available only in xAPIC mode) is reset to all 1s. 
• SELF IPI register is reset to zero.
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x2APIC After Reset
The valid transitions from the xAPIC mode state are:
• to the x2APIC mode by setting EXT to 1 (resulting EN=1, EXTD= 1). The physical x2APIC ID (see Figure 12-6) 

is preserved across this transition and the logical x2APIC ID (see Figure 12-29) is initialized by hardware during 
this transition as documented in Section 12.12.10.2. The state of the extended fields in other APIC registers, 
which was not initialized at reset, is not architecturally defined across this transition and system software 
should explicitly initialize those programmable APIC registers. 

• to the disabled state by setting EN to 0 (resulting EN=0, EXTD= 0).
The result of an INIT in the xAPIC state places the APIC in the state with EN= 1, EXTD= 0. The state of the local 
APIC ID register is preserved (the 8-bit xAPIC ID is in the upper 8 bits of the APIC ID register). All the other APIC 
registers are initialized as a result of INIT. 
A reset in this state places the APIC in the state with EN= 1, EXTD= 0. The state of the local APIC ID register is 
initialized as described in Section 12.12.5.1. All the other APIC registers are initialized described in Section 
12.12.5.1. 

x2APIC Transitions From x2APIC Mode
From the x2APIC mode, the only valid x2APIC transition using IA32_APIC_BASE is to the state where the x2APIC 
is disabled by setting EN to 0 and EXTD to 0. The x2APIC ID (32 bits) and the legacy local xAPIC ID (8 bits) are 
preserved across this transition. A transition from the x2APIC mode to xAPIC mode is not valid, and the corre-
sponding WRMSR to the IA32_APIC_BASE MSR causes a general-protection exception. 
A reset in this state places the x2APIC in xAPIC mode. All APIC registers (including the local APIC ID register) are 
initialized as described in Section 12.12.5.1. 
An INIT in this state keeps the x2APIC in the x2APIC mode. The state of the local APIC ID register is preserved (all 
32 bits). However, all the other APIC registers are initialized as a result of the INIT transition.

Figure 12-27.  Local x2APIC State Transitions with IA32_APIC_BASE, INIT, and Reset
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x2APIC Transitions From Disabled Mode
From the disabled state, the only valid x2APIC transition using IA32_APIC_BASE is to the xAPIC mode (EN= 1, 
EXTD = 0). Thus the only means to transition from x2APIC mode to xAPIC mode is a two-step process: 
• first transition from x2APIC mode to local APIC disabled mode (EN= 0, EXTD = 0),
• followed by another transition from disabled mode to xAPIC mode (EN= 1, EXTD= 0).
Consequently, all the APIC register states in the x2APIC, except for the x2APIC ID (32 bits), are not preserved 
across mode transitions. 
A reset in the disabled state places the x2APIC in the xAPIC mode. All APIC registers (including the local APIC ID 
register) are initialized as described in Section 12.12.5.1. 
An INIT in the disabled state keeps the x2APIC in the disabled state.

State Changes From xAPIC Mode to x2APIC Mode
After APIC register states have been initialized by software in xAPIC mode, a transition from xAPIC mode to x2APIC 
mode does not affect most of the APIC register states, except the following:
• The Logical Destination Register is not preserved.
• Any APIC ID value written to the memory-mapped local APIC ID register is not preserved.
• The high half of the Interrupt Command Register is not preserved. 

12.12.6 Routing of Device Interrupts in x2APIC Mode
The x2APIC architecture is intended to work with all existing IOxAPIC units as well as all PCI and PCI Express 
(PCIe) devices that support the capability for message-signaled interrupts (MSI). Support for x2APIC modifies only 
the following:
• the local APIC units;
• the interconnects joining IOxAPIC units to the local APIC units; and
• the interconnects joining MSI-capable PCI and PCIe devices to the local APIC units.

No modifications are required to MSI-capable PCI and PCIe devices. Similarly, no modifications are required to 
IOxAPIC units. This is made possible through use of the interrupt-remapping architecture specified in the Intel® 
Virtualization Technology for Directed I/O Specification, Revision 1.3 and/or later versions, for the routing of inter-
rupts from MSI-capable devices to local APIC units operating in x2APIC mode.

12.12.7 Initialization by System Software
Routing of device interrupts to local APIC units operating in x2APIC mode requires use of the interrupt-remapping 
architecture specified in the Intel® Virtualization Technology for Directed I/O Specification (Revision 1.3 and/or 
later versions). Because of this, BIOS must enumerate support for and software must enable this interrupt remap-
ping with Extended Interrupt Mode Enabled before it enabling x2APIC mode in the local APIC units.

The ACPI interfaces for the x2APIC are described in Section 5.2, “ACPI System Description Tables,” of the Advanced 
Configuration and Power Interface Specification, Revision 4.0a (http://www.acpi.info/spec.htm). The default 
behavior for BIOS is to pass the control to the operating system with the local x2APICs in xAPIC mode if all APIC 
IDs reported by CPUID.0BH:EDX are less than 255, and in x2APIC mode if there are any logical processor reporting 
an APIC ID of 255 or greater.

12.12.8 CPUID Extensions And Topology Enumeration
For Intel 64 and IA-32 processors that support x2APIC, a value of 1 reported by CPUID.01H:ECX[21] indicates that 
the processor supports x2APIC and the extended topology enumeration leaf (CPUID.0BH). 
Vol. 3A 12-43



ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
The extended topology enumeration leaf can be accessed by executing CPUID with EAX = 0BH. Processors that do 
not support x2APIC may support CPUID leaf 0BH. Software can detect the availability of the extended topology 
enumeration leaf (0BH) by performing two steps:
• Check maximum input value for basic CPUID information by executing CPUID with EAX= 0. If CPUID.0H:EAX is 

greater than or equal or 11 (0BH), then proceed to next step
• Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero. 
If both of the above conditions are true, extended topology enumeration leaf is available. If available, the extended 
topology enumeration leaf is the preferred mechanism for enumerating topology. The presence of CPUID leaf 0BH 
in a processor does not guarantee support for x2APIC. If CPUID.EAX=0BH, ECX=0H:EBX returns zero and 
maximum input value for basic CPUID information is greater than 0BH, then CPUID.0BH leaf is not supported on 
that processor.
The extended topology enumeration leaf is intended to assist software with enumerating processor topology on 
systems that requires 32-bit x2APIC IDs to address individual logical processors. Details of CPUID leaf 0BH can be 
found in the reference pages of CPUID in Chapter 3 of Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.
Processor topology enumeration algorithm for processors supporting the extended topology enumeration leaf of 
CPUID and processors that do not support CPUID leaf 0BH are treated in Section 10.9.4, “Algorithm for Three-
Domain Mappings of APIC_ID.”

12.12.8.1  Consistency of APIC IDs and CPUID
The consistency of physical x2APIC ID in MSR 802H in x2APIC mode and the 32-bit value returned in 
CPUID.0BH:EDX is facilitated by processor hardware. 
CPUID.0BH:EDX will report the full 32 bit ID, in xAPIC and x2APIC mode. This allows BIOS to determine if a system 
has processors with IDs exceeding the 8-bit initial APIC ID limit (CPUID.01H:EBX[31:24]). Initial APIC ID 
(CPUID.01H:EBX[31:24]) is always equal to CPUID.0BH:EDX[7:0]. 
If the values of CPUID.0BH:EDX reported by all logical processors in a system are less than 255, BIOS can transfer 
control to OS in xAPIC mode.
If the values of CPUID.0BH:EDX reported by some logical processors in a system are greater than or equal to 255, 
BIOS must support two options to hand off to OS.
• If BIOS enables logical processors with x2APIC IDs greater than 255, then it should enable x2APIC in the Boot 

Strap Processor (BSP) and all Application Processors (AP) before passing control to the OS. Applications 
requiring processor topology information must use OS provided services based on x2APIC IDs or CPUID.0BH 
leaf.

• If a BIOS transfers control to OS in xAPIC mode, then the BIOS must ensure that only logical processors with 
CPUID.0BH.EDX value less than 255 are enabled. BIOS initialization on all logical processors with 
CPUID.0B.EDX values greater than or equal to 255 must (a) disable APIC and execute CLI in each logical 
processor, and (b) leave these logical processor in the lowest power state so that these processors do not 
respond to INIT IPI during OS boot. The BSP and all the enabled logical processor operate in xAPIC mode after 
BIOS passed control to OS. Application requiring processor topology information can use OS provided legacy 
services based on 8-bit initial APIC IDs or legacy topology information from CPUID.01H and CPUID 04H leaves. 
Even if the BIOS passes control in xAPIC mode, an OS can switch the processors to x2APIC mode later. BIOS 
SMM handler should always read the APIC_BASE_MSR, determine the APIC mode and use the corresponding 
access method.

12.12.9 ICR Operation in x2APIC Mode
In x2APIC mode, the layout of the Interrupt Command Register is shown in Figure 12-28. The lower 32 bits of ICR 
in x2APIC mode is identical to the lower half of the ICR in xAPIC mode, except the Delivery Status bit is removed 
since it is not needed in x2APIC mode. The destination ID field is expanded to 32 bits in x2APIC mode. 
To send an IPI using the ICR, software must set up the ICR to indicate the type of IPI message to be sent and the 
destination processor or processors. Self IPIs can also be sent using the SELF IPI register (see Section 12.12.11). 
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A single MSR write to the Interrupt Command Register is required for dispatching an interrupt in x2APIC mode. 
With the removal of the Delivery Status bit, system software no longer has a reason to read the ICR. It remains 
readable only to aid in debugging; however, software should not assume the value returned by reading the ICR is 
the last written value.
A destination ID value of FFFF_FFFFH is used for broadcast of interrupts in both logical destination and physical 
destination modes.

12.12.10 Determining IPI Destination in x2APIC Mode

12.12.10.1  Logical Destination Mode in x2APIC Mode
In x2APIC mode, the Logical Destination Register (LDR) is increased to 32 bits wide. It is a read-only register to 
system software. This 32-bit value is referred to as “logical x2APIC ID”. System software accesses this register via 
the RDMSR instruction reading the MSR at address 80DH. Figure 12-29 provides the layout of the Logical Destina-
tion Register in x2APIC mode. 

Figure 12-28.  Interrupt Command Register (ICR) in x2APIC Mode
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In the xAPIC mode, the Destination Format Register (DFR) through the MMIO interface determines the choice of a 
flat logical mode or a clustered logical mode. Flat logical mode is not supported in the x2APIC mode. Hence the 
Destination Format Register (DFR) is eliminated in x2APIC mode. 
The 32-bit logical x2APIC ID field of LDR is partitioned into two sub-fields:
• Cluster ID (LDR[31:16]): is the address of the destination cluster
• Logical ID (LDR[15:0]): defines a logical ID of the individual local x2APIC within the cluster specified by 

LDR[31:16]. 
This layout enables 2^16-1 clusters each with up to 16 unique logical IDs - effectively providing an addressability 
of ((2^20) - 16) processors in logical destination mode. 
It is likely that processor implementations may choose to support less than 16 bits of the cluster ID or less than 16-
bits of the Logical ID in the Logical Destination Register. However system software should be agnostic to the 
number of bits implemented in the cluster ID and logical ID sub-fields. The x2APIC hardware initialization will 
ensure that the appropriately initialized logical x2APIC IDs are available to system software and reads of non-
implemented bits return zero. This is a read-only register that software must read to determine the logical x2APIC 
ID of the processor. Specifically, software can apply a 16-bit mask to the lowest 16 bits of the logical x2APIC ID to 
identify the logical address of a processor within a cluster without needing to know the number of implemented bits 
in cluster ID and Logical ID sub-fields. Similarly, software can create a message destination address for cluster 
model, by bit-Oring the Logical X2APIC ID (31:0) of processors that have matching Cluster ID(31:16).
To enable cluster ID assignment in a fashion that matches the system topology characteristics and to enable effi-
cient routing of logical mode lowest priority device interrupts in link based platform interconnects, the LDR are 
initialized by hardware based on the value of x2APIC ID upon x2APIC state transitions. Details of this initialization 
are provided in Section 12.12.10.2. 

12.12.10.2  Deriving Logical x2APIC ID from the Local x2APIC ID
In x2APIC mode, the 32-bit logical x2APIC ID, which can be read from LDR, is derived from the 32-bit local x2APIC 
ID. Specifically, the 16-bit logical ID sub-field is derived by shifting 1 by the lowest 4 bits of the x2APIC ID, i.e., 
Logical ID = 1 « x2APIC ID[3:0]. The remaining bits of the x2APIC ID then form the cluster ID portion of the logical 
x2APIC ID: 

Logical x2APIC ID = [(x2APIC ID[19:4] « 16) | (1 « x2APIC ID[3:0])]

The use of the lowest 4 bits in the x2APIC ID implies that at least 16 APIC IDs are reserved for logical processors 
within a socket in multi-socket configurations. If more than 16 APIC IDS are reserved for logical processors in a 
socket/package then multiple cluster IDs can exist within the package. 
The LDR initialization occurs whenever the x2APIC mode is enabled (see Section 12.12.5).

Figure 12-29.  Logical Destination Register in x2APIC Mode

MSR Address: 80DH

31     0

Logical x2APIC ID
12-46 Vol. 3A



ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
12.12.11 SELF IPI Register
SELF IPIs are used extensively by some system software. The x2APIC architecture introduces a new register inter-
face. This new register is dedicated to the purpose of sending self-IPIs with the intent of enabling a highly opti-
mized path for sending self-IPIs. 

Figure 12-30 provides the layout of the SELF IPI register. System software only specifies the vector associated with 
the interrupt to be sent. The semantics of sending a self-IPI via the SELF IPI register are identical to sending a self 
targeted edge triggered fixed interrupt with the specified vector. Specifically the semantics are identical to the 
following settings for an inter-processor interrupt sent via the ICR - Destination Shorthand (ICR[19:18] = 01 
(Self)), Trigger Mode (ICR[15] = 0 (Edge)), Delivery Mode (ICR[10:8] = 000 (Fixed)), Vector (ICR[7:0] = Vector).

The SELF IPI register is a write-only register. A RDMSR instruction with address of the SELF IPI register causes a 
general-protection exception. 
The handling and prioritization of a self-IPI sent via the SELF IPI register is architecturally identical to that for an 
IPI sent via the ICR from a legacy xAPIC unit. Specifically the state of the interrupt would be tracked via the Inter-
rupt Request Register (IRR) and In Service Register (ISR) and Trigger Mode Register (TMR) as if it were received 
from the system bus. Also sending the IPI via the Self Interrupt Register ensures that interrupt is delivered to the 
processor core. Specifically completion of the WRMSR instruction to the SELF IPI register implies that the interrupt 
has been logged into the IRR. As expected for edge triggered interrupts, depending on the processor priority and 
readiness to accept interrupts, it is possible that interrupts sent via the SELF IPI register or via the ICR with iden-
tical vectors can be combined.

12.13 APIC BUS MESSAGE FORMATS
This section describes the message formats used when transmitting messages on the serial APIC bus. The informa-
tion described here pertains only to the Pentium and P6 family processors.

12.13.1 Bus Message Formats
The local and I/O APICs transmit three types of messages on the serial APIC bus: EOI message, short message, 
and non-focused lowest priority message. The purpose of each type of message and its format are described 
below.

12.13.2 EOI Message
Local APICs send 14-cycle EOI messages to the I/O APIC to indicate that a level triggered interrupt has been 
accepted by the processor. This interrupt, in turn, is a result of software writing into the EOI register of the local 
APIC. Table 12-8 shows the cycles in an EOI message.

Figure 12-30.  SELF IPI register

Table 12-8. EOI Message (14 Cycles)

Cycle Bit1 Bit0

1 1 1 11 = EOI

2 ArbID3 0 Arbitration ID bits 3 through 0

MSR Address: 083FH

31 8 7 0

Reserved Vector
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The checksum is computed for cycles 6 through 9. It is a cumulative sum of the 2-bit (Bit1:Bit0) logical data values. 
The carry out of all but the last addition is added to the sum. If any APIC computes a different checksum than the 
one appearing on the bus in cycle 10, it signals an error, driving 11 on the APIC bus during cycle 12. In this case, 
the APICs disregard the message. The sending APIC will receive an appropriate error indication (see Section 
12.5.3, “Error Handling”) and resend the message. The status cycles are defined in Table 12-11.

12.13.2.1  Short Message
Short messages (21-cycles) are used for sending fixed, NMI, SMI, INIT, start-up, ExtINT, and lowest-priority-with-
focus interrupts. Table 12-9 shows the cycles in a short message.

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 V7 V6 Interrupt vector V7 - V0

7 V5 V4

8 V3 V2

9 V1 V0

10 C C Checksum for cycles 6 - 9

11 0 0

12 A A Status Cycle 0

13 A1 A1 Status Cycle 1

14 0 0 Idle

Table 12-9. Short Message (21 Cycles)

Cycle Bit1 Bit0

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination Mode 

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

Table 12-8. EOI Message (14 Cycles) (Contd.)

Cycle Bit1 Bit0
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If the physical delivery mode is being used, then cycles 15 and 16 represent the APIC ID and cycles 13 and 14 are 
considered don't care by the receiver. If the logical delivery mode is being used, then cycles 13 through 16 are the 
8-bit logical destination field. 

For shorthands of “all-incl-self” and “all-excl-self,” the physical delivery mode and an arbitration priority of 15 
(D0:D3 = 1111) are used. The agent sending the message is the only one required to distinguish between the two 
cases. It does so using internal information.

When using lowest priority delivery with an existing focus processor, the focus processor identifies itself by driving 
10 during cycle 19 and accepts the interrupt. This is an indication to other APICs to terminate arbitration. If the 
focus processor has not been found, the short message is extended on-the-fly to the non-focused lowest-priority 
message. Note that except for the EOI message, messages generating a checksum or an acceptance error (see 
Section 12.5.3, “Error Handling”) terminate after cycle 21.

12.13.2.2  Non-focused Lowest Priority Message
These 34-cycle messages (see Table 12-10) are used in the lowest priority delivery mode when a focus processor 
is not present. Cycles 1 through 20 are same as for the short message. If during the status cycle (cycle 19) the 
state of the (A:A) flags is 10B, a focus processor has been identified, and the short message format is used (see 
Table 12-9). If the (A:A) flags are set to 00B, lowest priority arbitration is started and the 34-cycles of the non-
focused lowest priority message are competed. For other combinations of status flags, refer to Section 12.13.2.3, 
“APIC Bus Status Cycles.”

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 0 0 Idle

Table 12-10. Non-Focused Lowest Priority Message (34 Cycles)

Cycle Bit0 Bit1

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination mode 

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

Table 12-9. Short Message (21 Cycles) (Contd.)

Cycle Bit1 Bit0
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Cycles 21 through 28 are used to arbitrate for the lowest priority processor. The processors participating in the arbi-
tration drive their inverted processor priority on the bus. Only the local APICs having free interrupt slots participate 
in the lowest priority arbitration. If no such APIC exists, the message will be rejected, requiring it to be tried at a 
later time.

Cycles 29 through 32 are also used for arbitration in case two or more processors have the same lowest priority. In 
the lowest priority delivery mode, all combinations of errors in cycle 33 (A2 A2) will set the “accept error” bit in the 
error status register (see Figure 12-9). Arbitration priority update is performed in cycle 20, and is not affected by 
errors detected in cycle 33. Only the local APIC that wins in the lowest priority arbitration, drives cycle 33. An error 
in cycle 33 will force the sender to resend the message.

12.13.2.3  APIC Bus Status Cycles
Certain cycles within an APIC bus message are status cycles. During these cycles the status flags (A:A) and 
(A1:A1) are examined. Table 12-11 shows how these status flags are interpreted, depending on the current 
delivery mode and existence of a focus processor.

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 P7 0 P7 - P0 = Inverted Processor Priority

22 P6 0

23 P5 0

24 P4 0

25 P3 0

26 P2 0

27 P1 0

28 P0 0

29 ArbID3 0 Arbitration ID 3 -0 

30 ArbID2 0

31 ArbID1 0

32 ArbID0 0

33 A2 A2 Status Cycle

34 0 0 Idle

Table 12-10. Non-Focused Lowest Priority Message (34 Cycles) (Contd.)

Cycle Bit0 Bit1
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Table 12-11. APIC Bus Status Cycles Interpretation
Delivery
Mode

A Status A1 Status A2 Status Update ArbID 
and Cycle#

Message 
Length

Retry

EOI 00: CS_OK 10: Accept XX: Yes, 13 14 Cycle No

00: CS_OK 11: Retry XX: Yes, 13 14 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 14 Cycle Yes

11: CS_Error XX: XX: No 14 Cycle Yes

10: Error XX: XX: No 14 Cycle Yes

01: Error XX: XX: No 14 Cycle Yes

Fixed 00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

NMI, SMI, INIT, 
ExtINT,
Start-Up

00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

Lowest 00: CS_OK, NoFocus 11: Do Lowest 10: Accept Yes, 20 34 Cycle No

00: CS_OK, NoFocus 11: Do Lowest 11: Error Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 11: Do Lowest 0X: Error Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 10: End and Retry XX: Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 0X: Error XX: No 34 Cycle Yes

10: CS_OK, Focus XX: XX: Yes, 20 34 Cycle No

11: CS_Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes
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CHAPTER 13
MEMORY CACHE CONTROL

This chapter describes the memory cache and cache control mechanisms, the TLBs, and the store buffer in Intel 64 
and IA-32 processors. It also describes the memory type range registers (MTRRs) introduced in the P6 family 
processors and how they are used to control caching of physical memory locations.

13.1 INTERNAL CACHES, TLBS, AND BUFFERS
The Intel 64 and IA-32 architectures support cache, translation look aside buffers (TLBs), and a store buffer for 
temporary on-chip (and external) storage of instructions and data. (Figure 13-1 shows the arrangement of caches, 
TLBs, and the store buffer for the Pentium 4 and Intel Xeon processors.) Table 13-1 shows the characteristics of 
these caches and buffers for the Pentium 4, Intel Xeon, P6 family, and Pentium processors. The sizes and char-
acteristics of these units are machine specific and may change in future versions of the processor. The 
CPUID instruction returns the sizes and characteristics of the caches and buffers for the processor on which the 
instruction is executed. See “CPUID—CPU Identification” in Chapter 3, “Instruction Set Reference, A-L,” of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

Figure 13-1.  Cache Structure of the Pentium 4 and Intel Xeon Processors
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Store Buffer
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Figure 13-2 shows the cache arrangement of Intel Core i7 processor.

Figure 13-2.  Cache Structure of the Intel Core i7 Processors

Table 13-1.  Characteristics of the Caches, TLBs, Store Buffer, and 
Write Combining Buffer in Intel 64 and IA-32 Processors

Cache or Buffer Characteristics

Trace Cache1 • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst® microarchitecture): 12 Kμops, 8-way set 
associative.

• Intel Core i7, Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M processor: not 
implemented.

• P6 family and Pentium processors: not implemented.

L1 Instruction Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): not implemented.
• Intel Core i7 processor: 32-KByte, 4-way set associative.
• Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M processor: 32-KByte, 8-way set 

associative.
• P6 family and Pentium processors: 8- or 16-KByte, 4-way set associative, 32-byte cache line size; 2-way set 

associative for earlier Pentium processors.

L1 Data Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 8-KByte, 4-way set 
associative, 64-byte cache line size.

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 16-KByte, 8-way set 
associative, 64-byte cache line size.

• Intel Atom processors: 24-KByte, 6-way set associative, 64-byte cache line size.
• Intel Core i7, Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, Pentium M and Intel Xeon processors: 32-

KByte, 8-way set associative, 64-byte cache line size.
• P6 family processors: 16-KByte, 4-way set associative, 32-byte cache line size; 8-KBytes, 2-way set 

associative for earlier P6 family processors.
• Pentium processors: 16-KByte, 4-way set associative, 32-byte cache line size; 8-KByte, 2-way set 

associative for earlier Pentium processors.

Instruction Decoder and front end

Out-of-Order Engine

Chipset
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L2 Unified Cache • Intel Core 2 Duo and Intel Xeon processors: up to 4-MByte (or 4MBx2 in quadcore processors), 16-way set 
associative, 64-byte cache line size.

• Intel Core 2 Duo and Intel Xeon processors: up to 6-MByte (or 6MBx2 in quadcore processors), 24-way set 
associative, 64-byte cache line size.

• Intel Core i7, i5, i3 processors: 256KBbyte, 8-way set associative, 64-byte cache line size.
• Intel Atom processors: 512-KByte, 8-way set associative, 64-byte cache line size.
• Intel Core Duo, Intel Core Solo processors: 2-MByte, 8-way set associative, 64-byte cache line size 
• Pentium 4 and Intel Xeon processors: 256, 512, 1024, or 2048-KByte, 8-way set associative, 64-byte cache 

line size, 128-byte sector size.
• Pentium M processor: 1 or 2-MByte, 8-way set associative, 64-byte cache line size.
• P6 family processors: 128-KByte, 256-KByte, 512-KByte, 1-MByte, or 2-MByte, 4-way set associative, 

32-byte cache line size.
• Pentium processor (external optional): System specific, typically 256- or 512-KByte, 4-way set associative, 

32-byte cache line size.

L3 Unified Cache • Intel Xeon processors: 512-KByte, 1-MByte, 2-MByte, or 4-MByte, 8-way set associative, 64-byte cache line 
size, 128-byte sector size.

• Intel Core i7 processor, Intel Xeon processor 5500: Up to 8MByte, 16-way set associative, 64-byte cache 
line size.

• Intel Xeon processor 5600: Up to 12MByte, 64-byte cache line size.
• Intel Xeon processor 7500: Up to 24MByte, 64-byte cache line size.

Instruction TLB
(4-KByte Pages)

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 128 entries, 4-way set 
associative.

• Intel Atom processors: 32-entries, fully associative.
• Intel Core i7, i5, i3 processors: 64-entries per thread (128-entries per core), 4-way set associative.
• Intel Core 2 Duo, Intel Core Duo, Intel Core Solo processors, Pentium M processor: 128 entries, 4-way set 

associative.
• P6 family processors: 32 entries, 4-way set associative.
• Pentium processor: 32 entries, 4-way set associative; fully set associative for Pentium processors with MMX 

technology.

Data TLB (4-KByte 
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 64-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 256 entries, 4 ways.
• Intel Atom processors: 16-entry-per-thread micro-TLB, fully associative; 64-entry DTLB, 4-way set 

associative; 16-entry PDE cache, fully associative.
• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 64 entry, fully set 

associative, shared with large page DTLB.
• Intel Core Duo, Intel Core Solo processors, Pentium M processor: 128 entries, 4-way set associative.
• Pentium and P6 family processors: 64 entries, 4-way set associative; fully set, associative for Pentium 

processors with MMX technology.

Instruction TLB 
(Large Pages)

• Intel Core i7, i5, i3 processors: 7-entries per thread, fully associative.
• Intel Core 2 Duo processors: 4 entries, 4 ways.
• Pentium 4 and Intel Xeon processors: large pages are fragmented.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 2 entries, fully associative.
• P6 family processors: 2 entries, fully associative.
• Pentium processor: Uses same TLB as used for 4-KByte pages.

Data TLB (Large 
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 32-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 32 entries, 4 ways.
• Intel Atom processors: 8 entries, 4-way set associative.
• Pentium 4 and Intel Xeon processors: 64 entries, fully set associative; shared with small page data TLBs.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 8 entries, fully associative.
• P6 family processors: 8 entries, 4-way set associative.
• Pentium processor: 8 entries, 4-way set associative; uses same TLB as used for 4-KByte pages in Pentium 

processors with MMX technology.

Second-level Unified 
TLB (4-KByte 
Pages)

• Intel Core i7, i5, i3 processor, STLB: 512-entries, 4-way set associative.

Table 13-1.  Characteristics of the Caches, TLBs, Store Buffer, and 
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
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Intel 64 and IA-32 processors may implement four types of caches: the trace cache, the level 1 (L1) cache, the 
level 2 (L2) cache, and the level 3 (L3) cache. See Figure 13-1. Cache availability is described below:
• Intel Core i7, i5, i3 processor family and Intel Xeon processor family based on Nehalem microarchi-

tecture and Westmere microarchitecture — The L1 cache is divided into two sections: one section is 
dedicated to caching instructions (pre-decoded instructions) and the other caches data. The L2 cache is a 
unified data and instruction cache. Each processor core has its own L1 and L2. The L3 cache is an inclusive, 
unified data and instruction cache, shared by all processor cores inside a physical package. No trace cache is 
implemented.

• Intel® Core™ 2 processor family and Intel® Xeon® processor family based on Intel® Core™ micro-
architecture — The L1 cache is divided into two sections: one section is dedicated to caching instructions (pre-
decoded instructions) and the other caches data. The L2 cache is a unified data and instruction cache located 
on the processor chip; it is shared between two processor cores in a dual-core processor implementation. 
Quad-core processors have two L2, each shared by two processor cores. No trace cache is implemented.

• Intel Atom® processor — The L1 cache is divided into two sections: one section is dedicated to caching 
instructions (pre-decoded instructions) and the other caches data. The L2 cache is a unified data and 
instruction cache is located on the processor chip. No trace cache is implemented.

• Intel® Core™ Solo and Intel® Core™ Duo processors — The L1 cache is divided into two sections: one 
section is dedicated to caching instructions (pre-decoded instructions) and the other caches data. The L2 cache 
is a unified data and instruction cache located on the processor chip. It is shared between two processor cores 
in a dual-core processor implementation. No trace cache is implemented.

• Pentium® 4 and Intel® Xeon® processors Based on Intel NetBurst® microarchitecture — The trace 
cache caches decoded instructions (μops) from the instruction decoder and the L1 cache contains data. The L2 
and L3 caches are unified data and instruction caches located on the processor chip. Dualcore processors have 
two L2, one in each processor core. Note that the L3 cache is only implemented on some Intel Xeon processors.

• P6 family processors — The L1 cache is divided into two sections: one dedicated to caching instructions (pre-
decoded instructions) and the other to caching data. The L2 cache is a unified data and instruction cache 
located on the processor chip. P6 family processors do not implement a trace cache.

• Pentium® processors — The L1 cache has the same structure as on P6 family processors. There is no trace 
cache. The L2 cache is a unified data and instruction cache external to the processor chip on earlier Pentium 
processors and implemented on the processor chip in later Pentium processors. For Pentium processors where 
the L2 cache is external to the processor, access to the cache is through the system bus.

For Intel Core i7 processors and processors based on Intel Core, Intel Atom, and Intel NetBurst microarchitectures, 
Intel Core Duo, Intel Core Solo and Pentium M processors, the cache lines for the L1 and L2 caches (and L3 caches 
if supported) are 64 bytes wide. The processor always reads a cache line from system memory beginning on a 64-
byte boundary. (A 64-byte aligned cache line begins at an address with its 6 least-significant bits clear.) A cache 

Store Buffer • Intel Core i7, i5, i3 processors: 32entries.
• Intel Core 2 Duo processors: 20 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 24 entries.
• Pentium M processor: 16 entries.
• P6 family processors: 12 entries.
• Pentium processor: 2 buffers, 1 entry each (Pentium processors with MMX technology have 4 buffers for 4 

entries).

Write Combining 
(WC) Buffer

• Intel Core 2 Duo processors: 8 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 6 or 8 entries.
• Intel Core Duo, Intel Core Solo, Pentium M processors: 6 entries.
• P6 family processors: 4 entries.

NOTES:
1 Introduced to the IA-32 architecture in the Pentium 4 and Intel Xeon processors.

Table 13-1.  Characteristics of the Caches, TLBs, Store Buffer, and 
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
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line can be filled from memory with a 8-transfer burst transaction. The caches do not support partially-filled cache 
lines, so caching even a single doubleword requires caching an entire line.

The L1 and L2 cache lines in the P6 family and Pentium processors are 32 bytes wide, with cache line reads from 
system memory beginning on a 32-byte boundary (5 least-significant bits of a memory address clear.) A cache line 
can be filled from memory with a 4-transfer burst transaction. Partially-filled cache lines are not supported.

The trace cache in processors based on Intel NetBurst microarchitecture is available in all execution modes: 
protected mode, system management mode (SMM), and real-address mode. The L1,L2, and L3 caches are also 
available in all execution modes; however, use of them must be handled carefully in SMM (see Section 33.4.2, 
“SMRAM Caching”).

The TLBs store the most recently used page-directory and page-table entries. They speed up memory accesses 
when paging is enabled by reducing the number of memory accesses that are required to read the page tables 
stored in system memory. The TLBs are divided into four groups: instruction TLBs for 4-KByte pages, data TLBs for 
4-KByte pages; instruction TLBs for large pages (2-MByte, 4-MByte or 1-GByte pages), and data TLBs for large 
pages. The TLBs are normally active only in protected mode with paging enabled. When paging is disabled or the 
processor is in real-address mode, the TLBs maintain their contents until explicitly or implicitly flushed (see Section 
13.9, “Invalidating the Translation Lookaside Buffers (TLBs)”).

Processors based on Intel Core microarchitectures implement one level of instruction TLB and two levels of data 
TLB. Intel Core i7 processor provides a second-level unified TLB. 

The store buffer is associated with the processors instruction execution units. It allows writes to system memory 
and/or the internal caches to be saved and in some cases combined to optimize the processor’s bus accesses. The 
store buffer is always enabled in all execution modes.

The processor’s caches are for the most part transparent to software. When enabled, instructions and data flow 
through these caches without the need for explicit software control. However, knowledge of the behavior of these 
caches may be useful in optimizing software performance. For example, knowledge of cache dimensions and 
replacement algorithms gives an indication of how large of a data structure can be operated on at once without 
causing cache thrashing.

In multiprocessor systems, maintenance of cache consistency may, in rare circumstances, require intervention by 
system software. For these rare cases, the processor provides privileged cache control instructions for use in 
flushing caches and forcing memory ordering.

There are several instructions that software can use to improve the performance of the L1, L2, and L3 caches, 
including the PREFETCHh, CLFLUSH, and CLFLUSHOPT instructions and the non-temporal move instructions 
(MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD). The use of these instructions are discussed in Section 
13.5.5, “Cache Management Instructions.”

13.2 CACHING TERMINOLOGY
IA-32 processors (beginning with the Pentium processor) and Intel 64 processors use the MESI (modified, exclu-
sive, shared, invalid) cache protocol to maintain consistency with internal caches and caches in other processors 
(see Section 13.4, “Cache Control Protocol”).

When the processor recognizes that an operand being read from memory is cacheable, the processor reads an 
entire cache line into the appropriate cache (L1, L2, L3, or all). This operation is called a cache line fill. If the 
memory location containing that operand is still cached the next time the processor attempts to access the 
operand, the processor can read the operand from the cache instead of going back to memory. This operation is 
called a cache hit. 

When the processor attempts to write an operand to a cacheable area of memory, it first checks if a cache line for 
that memory location exists in the cache. If a valid cache line does exist, the processor (depending on the write 
policy currently in force) can write the operand into the cache instead of writing it out to system memory. This 
operation is called a write hit. If a write misses the cache (that is, a valid cache line is not present for area of 
memory being written to), the processor performs a cache line fill, write allocation. Then it writes the operand into 
the cache line and (depending on the write policy currently in force) can also write it out to memory. If the operand 
is to be written out to memory, it is written first into the store buffer, and then written from the store buffer to 
memory when the system bus is available. (Note that for the Pentium processor, write misses do not result in a 
cache line fill; they always result in a write to memory. For this processor, only read misses result in cache line fills.)
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When operating in an MP system, IA-32 processors (beginning with the Intel486 processor) and Intel 64 processors 
have the ability to snoop other processor’s accesses to system memory and to their internal caches. They use this 
snooping ability to keep their internal caches consistent both with system memory and with the caches in other 
processors on the bus. For example, in the Pentium and P6 family processors, if through snooping one processor 
detects that another processor intends to write to a memory location that it currently has cached in shared state, 
the snooping processor will invalidate its cache line forcing it to perform a cache line fill the next time it accesses 
the same memory location. 

Beginning with the P6 family processors, if a processor detects (through snooping) that another processor is trying 
to access a memory location that it has modified in its cache, but has not yet written back to system memory, the 
snooping processor will signal the other processor (by means of the HITM# signal) that the cache line is held in 
modified state and will perform an implicit write-back of the modified data. The implicit write-back is transferred 
directly to the initial requesting processor and snooped by the memory controller to assure that system memory 
has been updated. Here, the processor with the valid data may pass the data to the other processors without actu-
ally writing it to system memory; however, it is the responsibility of the memory controller to snoop this operation 
and update memory.

13.3 METHODS OF CACHING AVAILABLE
The processor allows any area of system memory to be cached in the L1, L2, and L3 caches. In individual pages or 
regions of system memory, it allows the type of caching (also called memory type) to be specified (see Section 
13.5). Memory types currently defined for the Intel 64 and IA-32 architectures are (see Table 13-2):
• Strong Uncacheable (UC) —System memory locations are not cached. All reads and writes appear on the 

system bus and are executed in program order without reordering. No speculative memory accesses, page-
table walks, or prefetches of speculated branch targets are made. This type of cache-control is useful for 
memory-mapped I/O devices. When used with normal RAM, it greatly reduces processor performance.

NOTE
The behavior of x87 and SIMD instructions referencing memory is implementation dependent. In 
some implementations, accesses to UC memory may occur more than once. To ensure predictable 
behavior, use loads and stores of general purpose registers to access UC memory that may have 
read or write side effects.

• Uncacheable (UC-) — Has same characteristics as the strong uncacheable (UC) memory type, except that 
this memory type can be overridden by programming the MTRRs for the WC memory type. This memory type 
is available in processor families starting from the Pentium III processors and can only be selected through the 
PAT.

Table 13-2.  Memory Types and Their Properties

Memory Type and 
Mnemonic

Cacheable Writeback 
Cacheable

Allows
Speculative 
Reads

Memory Ordering Model

Strong Uncacheable 
(UC)

No No No Strong Ordering

Uncacheable (UC-) No No No Strong Ordering. Can only be selected through the PAT. Can be 
overridden by WC in MTRRs.

Write Combining (WC) No No Yes Weak Ordering. Available by programming MTRRs or by selecting it 
through the PAT.

Write Through (WT) Yes No Yes Speculative Processor Ordering.

Write Back (WB) Yes Yes Yes Speculative Processor Ordering.

Write Protected (WP) Yes for 
reads; no for 
writes

No Yes Speculative Processor Ordering. Available by programming MTRRs.
13-6 Vol. 3A



MEMORY CACHE CONTROL
• Write Combining (WC) — System memory locations are not cached (as with uncacheable memory) and 
coherency is not enforced by the processor’s bus coherency protocol. Speculative reads are allowed. Writes 
may be delayed and combined in the write combining buffer (WC buffer) to reduce memory accesses. If the WC 
buffer is partially filled, the writes may be delayed until the next occurrence of a serializing event; such as an 
SFENCE or MFENCE instruction, CPUID or other serializing instruction, a read or write to uncached memory, an 
interrupt occurrence, or an execution of a LOCK instruction (including one with an XACQUIRE or XRELEASE 
prefix). In addition, an execution of the XEND instruction (to end a transactional region) evicts any writes that 
were buffered before the corresponding execution of the XBEGIN instruction (to begin the transactional region) 
before evicting any writes that were performed inside the transactional region.
This type of cache-control is appropriate for video frame buffers, where the order of writes is unimportant as 
long as the writes update memory so they can be seen on the graphics display. See Section 13.3.1, “Buffering 
of Write Combining Memory Locations,” for more information about caching the WC memory type. This memory 
type is available in the Pentium Pro and Pentium II processors by programming the MTRRs; or in processor 
families starting from the Pentium III processors by programming the MTRRs or by selecting it through the PAT.

• Write-through (WT) — Writes and reads to and from system memory are cached. Reads come from cache 
lines on cache hits; read misses cause cache fills. Speculative reads are allowed. All writes are written to a 
cache line (when possible) and through to system memory. When writing through to memory, invalid cache 
lines are never filled, and valid cache lines are either filled or invalidated. Write combining is allowed. This type 
of cache-control is appropriate for frame buffers or when there are devices on the system bus that access 
system memory, but do not perform snooping of memory accesses. It enforces coherency between caches in 
the processors and system memory.

• Write-back (WB) — Writes and reads to and from system memory are cached. Reads come from cache lines 
on cache hits; read misses cause cache fills. Speculative reads are allowed. Write misses cause cache line fills 
(in processor families starting with the P6 family processors), and writes are performed entirely in the cache, 
when possible. Write combining is allowed. The write-back memory type reduces bus traffic by eliminating 
many unnecessary writes to system memory. Writes to a cache line are not immediately forwarded to system 
memory; instead, they are accumulated in the cache. The modified cache lines are written to system memory 
later, when a write-back operation is performed. Write-back operations are triggered when cache lines need to 
be deallocated, such as when new cache lines are being allocated in a cache that is already full. They also are 
triggered by the mechanisms used to maintain cache consistency. This type of cache-control provides the best 
performance, but it requires that all devices that access system memory on the system bus be able to snoop 
memory accesses to ensure system memory and cache coherency.

• Write protected (WP) — Reads come from cache lines when possible, and read misses cause cache fills. 
Writes are propagated to the system bus and cause corresponding cache lines on all processors on the bus to 
be invalidated. Speculative reads are allowed. This memory type is available in processor families starting from 
the P6 family processors by programming the MTRRs (see Table 13-6).

Table 13-3 shows which of these caching methods are available in the Pentium, P6 Family, Pentium 4, and Intel 
Xeon processors.

Table 13-3.  Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4, 
Intel Xeon, P6 Family, and Pentium Processors

Memory Type Intel Core 2 Duo, Intel Atom, Intel Core Duo, 
Pentium M, Pentium 4 and Intel Xeon Processors

P6 Family 
Processors

Pentium 
Processor

Strong Uncacheable (UC) Yes Yes Yes

Uncacheable (UC-) Yes Yes* No

Write Combining (WC) Yes Yes No

Write Through (WT) Yes Yes Yes

Write Back (WB) Yes Yes Yes

Write Protected (WP) Yes Yes No

NOTE:
* Introduced in the Pentium III processor; not available in the Pentium Pro or Pentium II processors
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13.3.1 Buffering of Write Combining Memory Locations
Writes to the WC memory type are not cached in the typical sense of the word cached. They are retained in an 
internal write combining buffer (WC buffer) that is separate from the internal L1, L2, and L3 caches and the store 
buffer. The WC buffer is not snooped and thus does not provide data coherency. Buffering of writes to WC memory 
is done to allow software a small window of time to supply more modified data to the WC buffer while remaining as 
non-intrusive to software as possible. The buffering of writes to WC memory also causes data to be collapsed; that 
is, multiple writes to the same memory location will leave the last data written in the location and the other writes 
will be lost.

The size and structure of the WC buffer is not architecturally defined. For the Intel Core 2 Duo, Intel Atom, Intel 
Core Duo, Pentium M, Pentium 4 and Intel Xeon processors; the WC buffer is made up of several 64-byte WC 
buffers. For the P6 family processors, the WC buffer is made up of several 32-byte WC buffers. 

When software begins writing to WC memory, the processor begins filling the WC buffers one at a time. When one 
or more WC buffers has been filled, the processor has the option of evicting the buffers to system memory. The 
protocol for evicting the WC buffers is implementation dependent and should not be relied on by software for 
system memory coherency. When using the WC memory type, software must be sensitive to the fact that the 
writing of data to system memory is being delayed and must deliberately empty the WC buffers when system 
memory coherency is required.

Once the processor has started to evict data from the WC buffer into system memory, it will make a bus-transaction 
style decision based on how much of the buffer contains valid data. If the buffer is full (for example, all bytes are 
valid), the processor will execute a burst-write transaction on the bus. This results in all 32 bytes (P6 family proces-
sors) or 64 bytes (Pentium 4 and more recent processor) being transmitted on the data bus in a single burst trans-
action. If one or more of the WC buffer’s bytes are invalid (for example, have not been written by software), the 
processor will transmit the data to memory using “partial write” transactions (one chunk at a time, where a “chunk” 
is 8 bytes). 

This will result in a maximum of 4 partial write transactions (for P6 family processors) or 8 partial write transactions 
(for the Pentium 4 and more recent processors) for one WC buffer of data sent to memory. 

The WC memory type is weakly ordered by definition. Once the eviction of a WC buffer has started, the data is 
subject to the weak ordering semantics of its definition. Ordering is not maintained between the successive alloca-
tion/deallocation of WC buffers (for example, writes to WC buffer 1 followed by writes to WC buffer 2 may appear 
as buffer 2 followed by buffer 1 on the system bus). When a WC buffer is evicted to memory as partial writes there 
is no guaranteed ordering between successive partial writes (for example, a partial write for chunk 2 may appear 
on the bus before the partial write for chunk 1 or vice versa). 

The only elements of WC propagation to the system bus that are guaranteed are those provided by transaction 
atomicity. For example, with a P6 family processor, a completely full WC buffer will always be propagated as a 
single 32-bit burst transaction using any chunk order. In a WC buffer eviction where data will be evicted as partials, 
all data contained in the same chunk (0 mod 8 aligned) will be propagated simultaneously. Likewise, for more 
recent processors starting with those based on Intel NetBurst microarchitectures, a full WC buffer will always be 
propagated as a single burst transactions, using any chunk order within a transaction. For partial buffer propaga-
tions, all data contained in the same chunk will be propagated simultaneously.

13.3.2 Choosing a Memory Type
The simplest system memory model does not use memory-mapped I/O with read or write side effects, does not 
include a frame buffer, and uses the write-back memory type for all memory. An I/O agent can perform direct 
memory access (DMA) to write-back memory and the cache protocol maintains cache coherency.

A system can use strong uncacheable memory for other memory-mapped I/O, and should always use strong unca-
cheable memory for memory-mapped I/O with read side effects.

Dual-ported memory can be considered a write side effect, making relatively prompt writes desirable, because 
those writes cannot be observed at the other port until they reach the memory agent. A system can use strong 
uncacheable, uncacheable, write-through, or write-combining memory for frame buffers or dual-ported memory 
that contains pixel values displayed on a screen. Frame buffer memory is typically large (a few megabytes) and is 
usually written more than it is read by the processor. Using strong uncacheable memory for a frame buffer gener-
ates very large amounts of bus traffic, because operations on the entire buffer are implemented using partial writes 
rather than line writes. Using write-through memory for a frame buffer can displace almost all other useful cached 
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lines in the processor's L2 and L3 caches and L1 data cache. Therefore, systems should use write-combining 
memory for frame buffers whenever possible.

Software can use page-level cache control, to assign appropriate effective memory types when software will not 
access data structures in ways that benefit from write-back caching. For example, software may read a large data 
structure once and not access the structure again until the structure is rewritten by another agent. Such a large 
data structure should be marked as uncacheable, or reading it will evict cached lines that the processor will be 
referencing again. 

A similar example would be a write-only data structure that is written to (to export the data to another agent), but 
never read by software. Such a structure can be marked as uncacheable, because software never reads the values 
that it writes (though as uncacheable memory, it will be written using partial writes, while as write-back memory, 
it will be written using line writes, which may not occur until the other agent reads the structure and triggers 
implicit write-backs).

On the Pentium III, Pentium 4, and more recent processors, new instructions are provided that give software 
greater control over the caching, prefetching, and the write-back characteristics of data. These instructions allow 
software to use weakly ordered or processor ordered memory types to improve processor performance, but when 
necessary to force strong ordering on memory reads and/or writes. They also allow software greater control over 
the caching of data. For a description of these instructions and their intended use, see Section 13.5.5, “Cache 
Management Instructions.”

13.3.3 Code Fetches in Uncacheable Memory
Programs may execute code from uncacheable (UC) memory, but the implications are different from accessing 
data in UC memory. When doing code fetches, the processor never transitions from cacheable code to UC code 
speculatively. It also never speculatively fetches branch targets that result in UC code.

The processor may fetch the same UC cache line multiple times in order to decode an instruction once. It may 
decode consecutive UC instructions in a cache line without fetching between each instruction. It may also fetch 
additional cachelines from the same or a consecutive 4-KByte page in order to decode one non-speculative UC 
instruction (this can be true even when the instruction is contained fully in one line). 

Because of the above and because cache line sizes may change in future processors, software should avoid placing 
memory-mapped I/O with read side effects in the same page or in a subsequent page used to execute UC code.

13.4 CACHE CONTROL PROTOCOL
The following section describes the cache control protocol currently defined for the Intel 64 and IA-32 architec-
tures. 

In the L1 data cache and in the L2/L3 unified caches, the MESI (modified, exclusive, shared, invalid) cache protocol 
maintains consistency with caches of other processors. The L1 data cache and the L2/L3 unified caches have two 
MESI status flags per cache line. Each line can be marked as being in one of the states defined in Table 13-4. In 
general, the operation of the MESI protocol is transparent to programs.

Table 13-4.  MESI Cache Line States

Cache Line State M (Modified) E (Exclusive) S (Shared) I (Invalid)

This cache line is valid? Yes Yes Yes No

The memory copy is… Out of date Valid Valid —

Copies exist in caches of other 
processors?

No No Maybe Maybe

A write to this line … Does not go to the 
system bus.

Does not go to the 
system bus.

Causes the processor to 
gain exclusive ownership 
of the line.

Goes directly to the 
system bus.
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The L1 instruction cache in P6 family processors implements only the “SI” part of the MESI protocol, because the 
instruction cache is not writable. The instruction cache monitors changes in the data cache to maintain consistency 
between the caches when instructions are modified. See Section 13.6, “Self-Modifying Code,” for more information 
on the implications of caching instructions.

13.5 CACHE CONTROL
The Intel 64 and IA-32 architectures provide a variety of mechanisms for controlling the caching of data and 
instructions and for controlling the ordering of reads and writes between the processor, the caches, and memory. 
These mechanisms can be divided into two groups:
• Cache control registers and bits — The Intel 64 and IA-32 architectures define several dedicated registers 

and various bits within control registers and page- and directory-table entries that control the caching system 
memory locations in the L1, L2, and L3 caches. These mechanisms control the caching of virtual memory pages 
and of regions of physical memory.

• Cache control and memory ordering instructions — The Intel 64 and IA-32 architectures provide several 
instructions that control the caching of data, the ordering of memory reads and writes, and the prefetching of 
data. These instructions allow software to control the caching of specific data structures, to control memory 
coherency for specific locations in memory, and to force strong memory ordering at specific locations in a 
program.

The following sections describe these two groups of cache control mechanisms.

13.5.1 Cache Control Registers and Bits
Figure 13-3 depicts cache-control mechanisms in IA-32 processors. Other than for the matter of memory address 
space, these work the same in Intel 64 processors.

The Intel 64 and IA-32 architectures provide the following cache-control registers and bits for use in enabling or 
restricting caching to various pages or regions in memory:
• CD flag, bit 30 of control register CR0 — Controls caching of system memory locations (see Section 2.5, 

“Control Registers”). If the CD flag is clear, caching is enabled for the whole of system memory, but may be 
restricted for individual pages or regions of memory by other cache-control mechanisms. When the CD flag is 
set, caching is restricted in the processor’s caches (cache hierarchy) for the P6 and more recent processor 
families and prevented for the Pentium processor (see note below). With the CD flag set, however, the caches 
will still respond to snoop traffic. Caches should be explicitly flushed to ensure memory coherency. For highest 
processor performance, both the CD and the NW flags in control register CR0 should be cleared. Table 13-5 
shows the interaction of the CD and NW flags.
The effect of setting the CD flag is somewhat different for processor families starting with P6 family than the 
Pentium processor (see Table 13-5). To ensure memory coherency after the CD flag is set, the caches should 
be explicitly flushed (see Section 13.5.3, “Preventing Caching”). Setting the CD flag for the P6 and more 
recent processor families modifies cache line fill and update behavior. Also, setting the CD flag on these 
processors do not force strict ordering of memory accesses unless the MTRRs are disabled and/or all memory 
is referenced as uncached (see Section 10.2.5, “Strengthening or Weakening the Memory-Ordering Model”).
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Figure 13-3.  Cache-Control Registers and Bits Available in Intel 64 and IA-32 Processors
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Table 13-5.  Cache Operating Modes 

CD NW Caching and Read/Write Policy L1 L2/L31

0 0 Normal Cache Mode. Highest performance cache operation.

• Read hits access the cache; read misses may cause replacement.
• Write hits update the cache.
• Only writes to shared lines and write misses update system memory.

Yes
Yes
Yes

Yes
Yes
Yes

• Write misses cause cache line fills.
• Write hits can change shared lines to modified under control of the MTRRs and with associated 

read invalidation cycle.
• (Pentium processor only.) Write misses do not cause cache line fills.

Yes
Yes

Yes

Yes

• (Pentium processor only.) Write hits can change shared lines to exclusive under control of WB/WT#.
• Invalidation is allowed.
• External snoop traffic is supported.

Yes

Yes
Yes

Yes
Yes

0 1 Invalid setting.

Generates a general-protection exception (#GP) with an error code of 0. NA NA

1 0 No-fill Cache Mode. Memory coherency is maintained.3

• (Pentium 4 and later processor families.) State of processor after a power up or reset.
• Read hits access the cache; read misses do not cause replacement (see Pentium 4 and Intel Xeon 

processors reference below).
• Write hits update the cache. 
• Only writes to shared lines and write misses update system memory.

Yes

Yes

Yes
Yes

Yes

Yes

Yes
Yes

• Write misses access memory.
• Write hits can change shared lines to exclusive under control of the MTRRs and with associated 

read invalidation cycle.
• (Pentium processor only.) Write hits can change shared lines to exclusive under control of the 

WB/WT#.

Yes
Yes

Yes

Yes
Yes

• (P6 and later processor families only.) Strict memory ordering is not enforced unless the MTRRs are 
disabled and/or all memory is referenced as uncached (see Section 7.2.4., “Strengthening or 
Weakening the Memory Ordering Model”).

• Invalidation is allowed.
• External snoop traffic is supported.

Yes

Yes
Yes

Yes

Yes
Yes

1 1 Memory coherency is not maintained.2, 3

• (P6 family and Pentium processors.) State of the processor after a power up or reset.
• Read hits access the cache; read misses do not cause replacement.
• Write hits update the cache and change exclusive lines to modified.

Yes

Yes

Yes

Yes

Yes

Yes

• Shared lines remain shared after write hit.
• Write misses access memory.
• Invalidation is inhibited when snooping; but is allowed with INVD and WBINVD instructions.
• External snoop traffic is supported.

Yes
Yes
Yes

No

Yes
Yes
Yes

Yes

NOTES:
1. The L2/L3 column in this table is definitive for the Pentium 4, Intel Xeon, and P6 family processors. It is intended to represent what 

could be implemented in a system based on a Pentium processor with an external, platform specific, write-back L2 cache.
2. The Pentium 4 and more recent processor families do not support this mode; setting the CD and NW bits to 1 selects the no-fill 

cache mode.
3. Not supported In Intel Atom processors. If CD = 1 in an Intel Atom processor, caching is disabled.
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• NW flag, bit 29 of control register CR0 — Controls the write policy for system memory locations (see 
Section 2.5, “Control Registers”). If the NW and CD flags are clear, write-back is enabled for the whole of 
system memory, but may be restricted for individual pages or regions of memory by other cache-control 
mechanisms. Table 13-5 shows how the other combinations of CD and NW flags affects caching.

NOTES
For the Pentium 4 and Intel Xeon processors, the NW flag is a don’t care flag; that is, when the CD 
flag is set, the processor uses the no-fill cache mode, regardless of the setting of the NW flag.
For Intel Atom processors, the NW flag is a don’t care flag; that is, when the CD flag is set, the 
processor disables caching, regardless of the setting of the NW flag.
For the Pentium processor, when the L1 cache is disabled (the CD and NW flags in control register 
CR0 are set), external snoops are accepted in DP (dual-processor) systems and inhibited in unipro-
cessor systems. 
When snoops are inhibited, address parity is not checked and APCHK# is not asserted for a corrupt 
address; however, when snoops are accepted, address parity is checked and APCHK# is asserted 
for corrupt addresses.

• PCD and PWT flags in paging-structure entries — Control the memory type used to access paging 
structures and pages (see Section 5.9, “Paging and Memory Typing”).

• PCD and PWT flags in control register CR3 — Control the memory type used to access the first paging 
structure of the current paging-structure hierarchy (see Section 5.9, “Paging and Memory Typing”).

• G (global) flag in the page-directory and page-table entries (introduced to the IA-32 architecture in 
the P6 family processors) — Controls the flushing of TLB entries for individual pages. See Section 5.10, 
“Caching Translation Information,” for more information about this flag.

• PGE (page global enable) flag in control register CR4 — Enables the establishment of global pages with 
the G flag. See Section 5.10, “Caching Translation Information,” for more information about this flag.

• Memory type range registers (MTRRs) (introduced in P6 family processors) — Control the type of 
caching used in specific regions of physical memory. Any of the caching types described in Section 13.3, 
“Methods of Caching Available,” can be selected. See Section 13.11, “Memory Type Range Registers (MTRRs),” 
for a detailed description of the MTRRs.

• Page Attribute Table (PAT) MSR (introduced in the Pentium III processor) — Extends the memory 
typing capabilities of the processor to permit memory types to be assigned on a page-by-page basis (see 
Section 13.12, “Page Attribute Table (PAT)”).

• Third-Level Cache Disable flag, bit 6 of the IA32_MISC_ENABLE MSR (Available only in processors 
based on Intel NetBurst microarchitecture) — Allows the L3 cache to be disabled and enabled, indepen-
dently of the L1 and L2 caches. 

• KEN# and WB/WT# pins (Pentium processor) — Allow external hardware to control the caching method 
used for specific areas of memory. They perform similar (but not identical) functions to the MTRRs in the P6 
family processors.

• PCD and PWT pins (Pentium processor) — These pins (which are associated with the PCD and PWT flags in 
control register CR3 and in the page-directory and page-table entries) permit caching in an external L2 cache 
to be controlled on a page-by-page basis, consistent with the control exercised on the L1 cache of these 
processors. The P6 and more recent processor families do not provide these pins because the L2 cache in 
internal to the chip package.

13.5.2 Precedence of Cache Controls
The cache control flags and MTRRs operate hierarchically for restricting caching. That is, if the CD flag is set, 
caching is prevented globally (see Table 13-5). If the CD flag is clear, the page-level cache control flags and/or the 
MTRRs can be used to restrict caching. If there is an overlap of page-level and MTRR caching controls, the mecha-
nism that prevents caching has precedence. For example, if an MTRR makes a region of system memory uncache-
able, a page-level caching control cannot be used to enable caching for a page in that region. The converse is also 
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true; that is, if a page-level caching control designates a page as uncacheable, an MTRR cannot be used to make 
the page cacheable.

In cases where there is a overlap in the assignment of the write-back and write-through caching policies to a page 
and a region of memory, the write-through policy takes precedence. The write-combining policy (which can only be 
assigned through an MTRR or the PAT) takes precedence over either write-through or write-back.

The selection of memory types at the page level varies depending on whether PAT is being used to select memory 
types for pages, as described in the following sections.

On processors based on Intel NetBurst microarchitecture, the third-level cache can be disabled by bit 6 of the 
IA32_MISC_ENABLE MSR. Using IA32_MISC_ENABLE[bit 6] takes precedence over the CD flag, MTRRs, and PAT 
for the L3 cache in those processors. That is, when the third-level cache disable flag is set (cache disabled), the 
other cache controls have no affect on the L3 cache; when the flag is clear (enabled), the cache controls have the 
same affect on the L3 cache as they have on the L1 and L2 caches.

IA32_MISC_ENABLE[bit 6] is not supported in Intel Core i7 processors, nor processors based on Intel Core, and 
Intel Atom microarchitectures.

13.5.2.1  Selecting Memory Types for Pentium Pro and Pentium II Processors
The Pentium Pro and Pentium II processors do not support the PAT. Here, the effective memory type for a page is 
selected with the MTRRs and the PCD and PWT bits in the page-table or page-directory entry for the page. Table 
13-6 describes the mapping of MTRR memory types and page-level caching attributes to effective memory types, 
when normal caching is in effect (the CD and NW flags in control register CR0 are clear). Combinations that appear 
in gray are implementation-defined for the Pentium Pro and Pentium II processors. System designers are encour-
aged to avoid these implementation-defined combinations.

When normal caching is in effect, the effective memory type shown in Table 13-6 is determined using the following 
rules:

1. If the PCD and PWT attributes for the page are both 0, then the effective memory type is identical to the
MTRR-defined memory type.

Table 13-6.  Effective Page-Level Memory Type for Pentium Pro and Pentium II Processors 

MTRR Memory Type1 PCD Value PWT Value Effective Memory Type

UC X X UC

WC 0 0 WC

0 1 WC

1 0 WC

1 1 UC

WT 0 X WT

1 X UC

WP 0 0 WP

0 1 WP

1 0 WC

1 1 UC

WB 0 0 WB

0 1 WT

1 X UC

NOTE:

1. These effective memory types also apply to the Pentium 4, Intel Xeon, and Pentium III processors when the PAT bit is not used 
(set to 0) in page-table and page-directory entries.
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2. If the PCD flag is set, then the effective memory type is UC.

3. If the PCD flag is clear and the PWT flag is set, the effective memory type is WT for the WB memory type and 
the MTRR-defined memory type for all other memory types. 

4. Setting the PCD and PWT flags to opposite values is considered model-specific for the WP and WC memory 
types and architecturally-defined for the WB, WT, and UC memory types.

13.5.2.2  Selecting Memory Types for Pentium III and More Recent Processor Families
The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M, Pentium 4, Intel Xeon, and Pentium 
III processors use the PAT to select effective page-level memory types. Here, a memory type for a page is selected 
by the MTRRs and the value in a PAT entry that is selected with the PAT, PCD, and PWT bits in a page-table or page-
directory entry (see Section 13.12.3, “Selecting a Memory Type from the PAT”). Table 13-7 describes the mapping 
of MTRR memory types and PAT entry types to effective memory types, when normal caching is in effect (the CD 
and NW flags in control register CR0 are clear).

Table 13-7.  Effective Page-Level Memory Types for Pentium III and More Recent Processor Families 
MTRR Memory Type PAT Entry Value Effective Memory Type

UC UC UC1

UC- UC1

WC WC

WT UC1

WB UC1

WP UC1

WC UC UC2

UC- WC

WC WC

WT UC2,3

WB WC

WP UC2,3

WT UC UC2

UC- UC2

WC WC

WT WT

WB WT

WP WP3

WB UC UC2

UC- UC2

WC WC

WT WT

WB WB

WP WP
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13.5.2.3  Writing Values Across Pages with Different Memory Types
If two adjoining pages in memory have different memory types, and a word or longer operand is written to a 
memory location that crosses the page boundary between those two pages, the operand might be written to 
memory twice. This action does not present a problem for writes to actual memory; however, if a device is mapped 
to the memory space assigned to the pages, the device might malfunction.

13.5.3 Preventing Caching
To disable the L1, L2, and L3 caches after they have been enabled and have received cache fills, perform the 
following steps:

1. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the NW flag to 0.

2. Flush all caches using the WBINVD instruction.

3. Disable the MTRRs and set the default memory type to uncached or set all MTRRs for the uncached memory 
type (see the discussion of the discussion of the TYPE field and the E flag in Section 13.11.2.1, “IA32_MTR-
R_DEF_TYPE MSR”).

The caches must be flushed (step 2) after the CD flag is set to ensure system memory coherency. If the caches are 
not flushed, cache hits on reads will still occur and data will be read from valid cache lines.

The intent of the three separate steps listed above address three distinct requirements: (i) discontinue new data 
replacing existing data in the cache (ii) ensure data already in the cache are evicted to memory, (iii) ensure subse-
quent memory references observe UC memory type semantics. Different processor implementation of caching 
control hardware may allow some variation of software implementation of these three requirements. See note 
below.

NOTES
Setting the CD flag in control register CR0 modifies the processor’s caching behavior as indicated in 
Table 13-5, but setting the CD flag alone may not be sufficient across all processor families to force 
the effective memory type for all physical memory to be UC nor does it force strict memory 
ordering, due to hardware implementation variations across different processor families. To force 
the UC memory type and strict memory ordering on all of physical memory, it is sufficient to either 
program the MTRRs for all physical memory to be UC memory type or disable all MTRRs.
For the Pentium 4 and Intel Xeon processors, after the sequence of steps given above has been 
executed, the cache lines containing the code between the end of the WBINVD instruction and 
before the MTRRS have actually been disabled may be retained in the cache hierarchy. Here, to 

WP UC UC2

UC- WC3

WC WC

WT WT3

WB WP

WP WP

NOTES: 
1. The UC attribute comes from the MTRRs and the processors are not required to snoop their caches since the data could never have 

been cached. This attribute is preferred for performance reasons.
2. The UC attribute came from the page-table or page-directory entry and processors are required to check their caches because the 

data may be cached due to page aliasing, which is not recommended.
3. These combinations were specified as “undefined” in previous editions of the Intel® 64 and IA-32 Architectures Software Devel-

oper’s Manual. However, all processors that support both the PAT and the MTRRs determine the effective page-level memory 
types for these combinations as given.

Table 13-7.  Effective Page-Level Memory Types for Pentium III and More Recent Processor Families  (Contd.)
MTRR Memory Type PAT Entry Value Effective Memory Type
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remove code from the cache completely, a second WBINVD instruction must be executed after the 
MTRRs have been disabled.
For Intel Atom processors, setting the CD flag forces all physical memory to observe UC semantics 
(without requiring memory type of physical memory to be set explicitly). Consequently, software 
does not need to issue a second WBINVD as some other processor generations might require. 

13.5.4 Disabling and Enabling the L3 Cache
On processors based on Intel NetBurst microarchitecture, the third-level cache can be disabled by bit 6 of the 
IA32_MISC_ENABLE MSR. The third-level cache disable flag (bit 6 of the IA32_MISC_ENABLE MSR) allows the L3 
cache to be disabled and enabled, independently of the L1 and L2 caches. Prior to using this control to disable or 
enable the L3 cache, software should disable and flush all the processor caches, as described earlier in Section 
13.5.3, “Preventing Caching,” to prevent of loss of information stored in the L3 cache. After the L3 cache has been 
disabled or enabled, caching for the whole processor can be restored.

Newer Intel 64 processor with L3 do not support IA32_MISC_ENABLE[bit 6], the procedure described in Section 
13.5.3, “Preventing Caching,” apply to the entire cache hierarchy.

13.5.5 Cache Management Instructions
The Intel 64 and IA-32 architectures provide several instructions for managing the L1, L2, and L3 caches. The INVD 
and WBINVD instructions are privileged instructions and operate on the L1, L2, and L3 caches as a whole. The 
PREFETCHh, CLFLUSH, and CLFLUSHOPT instructions and the non-temporal move instructions (MOVNTI, MOVNTQ, 
MOVNTDQ, MOVNTPS, and MOVNTPD) offer more granular control over caching, and are available to all privileged 
levels.

The INVD and WBINVD instructions are used to invalidate the contents of the L1, L2, and L3 caches. The INVD 
instruction invalidates all internal cache entries, then generates a special-function bus cycle that indicates that 
external caches also should be invalidated. The INVD instruction should be used with care. It does not force a 
write-back of modified cache lines; therefore, data stored in the caches and not written back to system memory 
will be lost. Unless there is a specific requirement or benefit to invalidating the caches without writing back the 
modified lines (such as, during testing or fault recovery where cache coherency with main memory is not a 
concern), software should use the WBINVD instruction. 

The WBINVD instruction first writes back any modified lines in all the internal caches, then invalidates the contents 
of the L1, L2, and L3 caches. It ensures that cache coherency with main memory is maintained regardless of the 
write policy in effect (that is, write-through or write-back). Following this operation, the WBINVD instruction gener-
ates one (P6 family processors) or two (Pentium and Intel486 processors) special-function bus cycles to indicate to 
external cache controllers that write-back of modified data followed by invalidation of external caches should occur. 
The amount of time or cycles for WBINVD to complete will vary due to the size of different cache hierarchies and 
other factors. As a consequence, the use of the WBINVD instruction can have an impact on interrupt/event 
response time.

The PREFETCHh instructions allow a program to suggest to the processor that a cache line from a specified location 
in system memory be prefetched into the cache hierarchy (see Section 13.8, “Explicit Caching”).

The CLFLUSH and CLFLUSHOPT instructions allow selected cache lines to be flushed from memory. These instruc-
tions give a program the ability to explicitly free up cache space, when it is known that cached section of system 
memory will not be accessed in the near future.

The non-temporal move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD) allow data to be 
moved from the processor’s registers directly into system memory without being also written into the L1, L2, 
and/or L3 caches. These instructions can be used to prevent cache pollution when operating on data that is going 
to be modified only once before being stored back into system memory. These instructions operate on data in the 
general-purpose, MMX, and XMM registers.
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13.5.6 L1 Data Cache Context Mode
L1 data cache context mode is a feature of processors based on the Intel NetBurst microarchitecture that support 
Intel Hyper-Threading Technology. When CPUID.1:ECX[bit 10] = 1, the processor supports setting L1 data cache 
context mode using the L1 data cache context mode flag ( IA32_MISC_ENABLE[bit 24] ). Selectable modes are 
adaptive mode (default) and shared mode.

The BIOS is responsible for configuring the L1 data cache context mode.

13.5.6.1  Adaptive Mode
Adaptive mode facilitates L1 data cache sharing between logical processors. When running in adaptive mode, the 
L1 data cache is shared across logical processors in the same core if:
• CR3 control registers for logical processors sharing the cache are identical.
• The same paging mode is used by logical processors sharing the cache.

In this situation, the entire L1 data cache is available to each logical processor (instead of being competitively 
shared).

If CR3 values are different for the logical processors sharing an L1 data cache or the logical processors use different 
paging modes, processors compete for cache resources. This reduces the effective size of the cache for each logical 
processor. Aliasing of the cache is not allowed (which prevents data thrashing).

13.5.6.2  Shared Mode
In shared mode, the L1 data cache is competitively shared between logical processors. This is true even if the 
logical processors use identical CR3 registers and paging modes.

In shared mode, linear addresses in the L1 data cache can be aliased, meaning that one linear address in the cache 
can point to different physical locations. The mechanism for resolving aliasing can lead to thrashing. For this 
reason, IA32_MISC_ENABLE[bit 24] = 0 is the preferred configuration for processors based on the Intel NetBurst 
microarchitecture that support Intel Hyper-Threading Technology.

13.6 SELF-MODIFYING CODE
A write to a memory location in a code segment that is currently cached in the processor causes the associated 
cache line (or lines) to be invalidated. This check is based on the physical address of the instruction. In addition, 
the P6 family and Pentium processors check whether a write to a code segment may modify an instruction that has 
been prefetched for execution. If the write affects a prefetched instruction, the prefetch queue is invalidated. This 
latter check is based on the linear address of the instruction. For the Pentium 4 and Intel Xeon processors, a write 
or a snoop of an instruction in a code segment, where the target instruction is already decoded and resident in the 
trace cache, invalidates the entire trace cache. The latter behavior means that programs that self-modify code can 
cause severe degradation of performance when run on the Pentium 4 and Intel Xeon processors.

In practice, the check on linear addresses should not create compatibility problems among IA-32 processors. Appli-
cations that include self-modifying code use the same linear address for modifying and fetching the instruction. 
Systems software, such as a debugger, that might possibly modify an instruction using a different linear address 
than that used to fetch the instruction, will execute a serializing operation, such as a CPUID instruction, before the 
modified instruction is executed, which will automatically resynchronize the instruction cache and prefetch queue. 
(See Section 10.1.3, “Handling Self- and Cross-Modifying Code,” for more information about the use of self-modi-
fying code.)

For Intel486 processors, a write to an instruction in the cache will modify it in both the cache and memory, but if 
the instruction was prefetched before the write, the old version of the instruction could be the one executed. To 
prevent the old instruction from being executed, flush the instruction prefetch unit by coding a jump instruction 
immediately after any write that modifies an instruction.
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13.7 IMPLICIT CACHING (PENTIUM 4, INTEL® XEON®, AND P6 FAMILY 
PROCESSORS)

Implicit caching occurs when a memory element is made potentially cacheable, although the element may never 
have been accessed in the normal von Neumann sequence. Implicit caching occurs on the P6 and more recent 
processor families due to aggressive prefetching, branch prediction, and TLB miss handling. Implicit caching is an 
extension of the behavior of existing Intel386, Intel486, and Pentium processor systems, since software running 
on these processor families also has not been able to deterministically predict the behavior of instruction prefetch.

To avoid problems related to implicit caching, the operating system must explicitly invalidate the cache when 
changes are made to cacheable data that the cache coherency mechanism does not automatically handle. This 
includes writes to dual-ported or physically aliased memory boards that are not detected by the snooping mecha-
nisms of the processor, and changes to page- table entries in memory.

The code in Example 13-1 shows the effect of implicit caching on page-table entries. The linear address F000H 
points to physical location B000H (the page-table entry for F000H contains the value B000H), and the page-table 
entry for linear address F000 is PTE_F000.

Example 13-1.  Effect of Implicit Caching on Page-Table Entries

mov EAX, CR3; Invalidate the TLB
mov CR3, EAX; by copying CR3 to itself
mov PTE_F000, A000H; Change F000H to point to A000H
mov EBX, [F000H];

Because of speculative execution in the P6 and more recent processor families, the last MOV instruction performed 
would place the value at physical location B000H into EBX, rather than the value at the new physical address 
A000H. This situation is remedied by placing a TLB invalidation between the load and the store.

13.8 EXPLICIT CACHING
The Pentium III processor introduced four new instructions, the PREFETCHh instructions, that provide software with 
explicit control over the caching of data. These instructions provide “hints” to the processor that the data requested 
by a PREFETCHh instruction should be read into cache hierarchy now or as soon as possible, in anticipation of its 
use. The instructions provide different variations of the hint that allow selection of the cache level into which data 
will be read.

The PREFETCHh instructions can help reduce the long latency typically associated with reading data from memory 
and thus help prevent processor “stalls.” However, these instructions should be used judiciously. Overuse can lead 
to resource conflicts and hence reduce the performance of an application. Also, these instructions should only be 
used to prefetch data from memory; they should not be used to prefetch instructions. For more detailed informa-
tion on the proper use of the prefetch instruction, refer to Chapter 7, “Optimizing Cache Usage,” in the Intel® 64 
and IA-32 Architectures Optimization Reference Manual.

13.9 INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS (TLBS)
The processor updates its address translation caches (TLBs) transparently to software. Several mechanisms are 
available, however, that allow software and hardware to invalidate the TLBs either explicitly or as a side effect of 
another operation. Most details are given in Section 5.10.4, “Invalidation of TLBs and Paging-Structure Caches.” In 
addition, the following operations invalidate all TLB entries, irrespective of the setting of the G flag:
• Asserting or de-asserting the FLUSH# pin.
• (Pentium 4, Intel Xeon, and later processors only.) Writing to an MTRR (with a WRMSR instruction).
• Writing to control register CR0 to modify the PG or PE flag.
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• (Pentium 4, Intel Xeon, and later processors only.) Writing to control register CR4 to modify the PSE, PGE, or 
PAE flag.

• Writing to control register CR4 to change the PCIDE flag from 1 to 0.

See Section 5.10, “Caching Translation Information,” for additional information about the TLBs.

13.10 STORE BUFFER
Intel 64 and IA-32 processors temporarily store each write (store) to memory in a store buffer. The store buffer 
improves processor performance by allowing the processor to continue executing instructions without having to 
wait until a write to memory and/or to a cache is complete. It also allows writes to be delayed for more efficient use 
of memory-access bus cycles.

In general, the existence of the store buffer is transparent to software, even in systems that use multiple proces-
sors. The processor ensures that write operations are always carried out in program order. It also ensures that the 
contents of the store buffer are always drained to memory in the following situations:
• When an exception or interrupt is generated.
• (P6 and more recent processor families only) When a serializing instruction is executed.
• When an I/O instruction is executed.
• When a LOCK operation is performed.
• (P6 and more recent processor families only) When a BINIT operation is performed.
• (Pentium III, and more recent processor families only) When using an SFENCE instruction to order stores.
• (Pentium 4 and more recent processor families only) When using an MFENCE instruction to order stores.

The discussion of write ordering in Section 10.2, “Memory Ordering,” gives a detailed description of the operation 
of the store buffer.

13.11 MEMORY TYPE RANGE REGISTERS (MTRRS)
The following section pertains only to the P6 and more recent processor families.

The memory type range registers (MTRRs) provide a mechanism for associating the memory types (see Section 
13.3, “Methods of Caching Available”) with physical-address ranges in system memory. They allow the processor to 
optimize operations for different types of memory such as RAM, ROM, frame-buffer memory, and memory-mapped 
I/O devices. They also simplify system hardware design by eliminating the memory control pins used for this func-
tion on earlier IA-32 processors and the external logic needed to drive them.

The MTRR mechanism allows multiple ranges to be defined in physical memory, and it defines a set of model-
specific registers (MSRs) for specifying the type of memory that is contained in each range. Table 13-8 shows the 
memory types that can be specified and their properties; Figure 13-4 shows the mapping of physical memory with 
MTRRs. See Section 13.3, “Methods of Caching Available,” for a more detailed description of each memory type.

Following a hardware reset, the P6 and more recent processor families disable all the fixed and variable MTRRs, 
which in effect makes all of physical memory uncacheable. Initialization software should then set the MTRRs to a 
specific, system-defined memory map. Typically, the BIOS (basic input/output system) software configures the 
MTRRs. The operating system or executive is then free to modify the memory map using the normal page-level 
cacheability attributes.

In a multiprocessor system using a processor in the P6 family or a more recent family, each processor MUST use 
the identical MTRR memory map so that software will have a consistent view of memory.

NOTE
In multiple processor systems, the operating system must maintain MTRR consistency between all 
the processors in the system (that is, all processors must use the same MTRR values). The P6 and 
more recent processor families provide no hardware support for maintaining this consistency.
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13.11.1 MTRR Feature Identification
The availability of the MTRR feature is model-specific. Software can determine if MTRRs are supported on a 
processor by executing the CPUID instruction and reading the state of the MTRR flag (bit 12) in the feature infor-
mation register (EDX).

If the MTRR flag is set (indicating that the processor implements MTRRs), additional information about MTRRs can 
be obtained from the 64-bit IA32_MTRRCAP MSR (named MTRRcap MSR for the P6 family processors). The 
IA32_MTRRCAP MSR is a read-only MSR that can be read with the RDMSR instruction. Figure 13-5 shows the 
contents of the IA32_MTRRCAP MSR. The functions of the flags and field in this register are as follows:

Table 13-8.  Memory Types That Can Be Encoded in MTRRs 

Memory Type and Mnemonic Encoding in MTRR

Uncacheable (UC) 00H

Write Combining (WC) 01H

Reserved* 02H

Reserved* 03H

Write-through (WT) 04H

Write-protected (WP) 05H

Writeback (WB) 06H

Reserved* 7H through FFH

NOTE:

* Use of these encodings results in a general-protection exception (#GP).

Figure 13-4.  Mapping Physical Memory With MTRRs
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• VCNT (variable range registers count) field, bits 0 through 7 — Indicates the number of variable ranges 
implemented on the processor.

• FIX (fixed range registers supported) flag, bit 8 — Fixed range MTRRs (IA32_MTRR_FIX64K_00000 
through IA32_MTRR_FIX4K_0F8000) are supported when set; no fixed range registers are supported when 
clear.

• WC (write combining) flag, bit 10 — The write-combining (WC) memory type is supported when set; the 
WC type is not supported when clear.

• SMRR (System-Management Range Register) flag, bit 11 — The system-management range register 
(SMRR) interface is supported when bit 11 is set; the SMRR interface is not supported when clear.

Bit 9 and bits 12 through 63 in the IA32_MTRRCAP MSR are reserved. If software attempts to write to the 
IA32_MTRRCAP MSR, a general-protection exception (#GP) is generated. 

Software must read IA32_MTRRCAP VCNT field to determine the number of variable MTRRs and query other 
feature bits in IA32_MTRRCAP to determine additional capabilities that are supported in a processor. For example, 
some processors may report a value of ‘8’ in the VCNT field, other processors may report VCNT with different 
values. 

13.11.2 Setting Memory Ranges with MTRRs
The memory ranges and the types of memory specified in each range are set by three groups of registers: the 
IA32_MTRR_DEF_TYPE MSR, the fixed-range MTRRs, and the variable range MTRRs. These registers can be read 
and written to using the RDMSR and WRMSR instructions, respectively. The IA32_MTRRCAP MSR indicates the 
availability of these registers on the processor (see Section 13.11.1, “MTRR Feature Identification”).

13.11.2.1  IA32_MTRR_DEF_TYPE MSR
The IA32_MTRR_DEF_TYPE MSR (named MTRRdefType MSR for the P6 family processors) sets the default proper-
ties of the regions of physical memory that are not encompassed by MTRRs. The functions of the flags and field in 
this register are as follows:
• Type field, bits 0 through 7 — Indicates the default memory type used for those physical memory address 

ranges that do not have a memory type specified for them by an MTRR (see Table 13-8 for the encoding of this 
field). The legal values for this field are 0, 1, 4, 5, and 6. All other values result in a general-protection 
exception (#GP) being generated. 
Intel recommends the use of the UC (uncached) memory type for all physical memory addresses where 
memory does not exist. To assign the UC type to nonexistent memory locations, it can either be specified as the 
default type in the Type field or be explicitly assigned with the fixed and variable MTRRs.

Figure 13-5.  IA32_MTRRCAP Register

VCNT — Number of variable range registers
FIX — Fixed range registers supported
WC — Write-combining memory type supported
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• FE (fixed MTRRs enabled) flag, bit 10 — Fixed-range MTRRs are enabled when set; fixed-range MTRRs are 
disabled when clear. When the fixed-range MTRRs are enabled, they take priority over the variable-range 
MTRRs when overlaps in ranges occur. If the fixed-range MTRRs are disabled, the variable-range MTRRs can 
still be used and can map the range ordinarily covered by the fixed-range MTRRs.

• E (MTRRs enabled) flag, bit 11 — MTRRs are enabled when set; all MTRRs are disabled when clear, and the 
UC memory type is applied to all of physical memory. When this flag is set, the FE flag can disable the fixed-
range MTRRs; when the flag is clear, the FE flag has no affect. When the E flag is set, the type specified in the 
default memory type field is used for areas of memory not already mapped by either a fixed or variable MTRR.

Bits 8 and 9, and bits 12 through 63, in the IA32_MTRR_DEF_TYPE MSR are reserved; the processor generates a 
general-protection exception (#GP) if software attempts to write nonzero values to them.

13.11.2.2  Fixed Range MTRRs
The fixed memory ranges are mapped with 11 fixed-range registers of 64 bits each. Each of these registers is 
divided into 8-bit fields that are used to specify the memory type for each of the sub-ranges the register controls:
• Register IA32_MTRR_FIX64K_00000 — Maps the 512-KByte address range from 0H to 7FFFFH. This range 

is divided into eight 64-KByte sub-ranges.
• Registers IA32_MTRR_FIX16K_80000 and IA32_MTRR_FIX16K_A0000 — Maps the two 128-KByte 

address ranges from 80000H to BFFFFH. This range is divided into sixteen 16-KByte sub-ranges, 8 ranges per 
register.

• Registers IA32_MTRR_FIX4K_C0000 through IA32_MTRR_FIX4K_F8000 — Maps eight 32-KByte 
address ranges from C0000H to FFFFFH. This range is divided into sixty-four 4-KByte sub-ranges, 8 ranges per 
register.

Table 13-9 shows the relationship between the fixed physical-address ranges and the corresponding fields of the 
fixed-range MTRRs; Table 13-8 shows memory type encoding for MTRRs.

For the P6 family processors, the prefix for the fixed range MTRRs is MTRRfix.

13.11.2.3  Variable Range MTRRs
The Pentium 4, Intel Xeon, and P6 family processors permit software to specify the memory type for m variable-
size address ranges, using a pair of MTRRs for each range. The number m of ranges supported is given in bits 7:0 
of the IA32_MTRRCAP MSR (see Figure 13-5 in Section 13.11.1).

The first entry in each pair (IA32_MTRR_PHYSBASEn) defines the base address and memory type for the range; 
the second entry (IA32_MTRR_PHYSMASKn) contains a mask used to determine the address range. The “n” suffix 
is in the range 0 through m–1 and identifies a specific register pair.

For P6 family processors, the prefixes for these variable range MTRRs are MTRRphysBase and MTRRphysMask.

Figure 13-6.  IA32_MTRR_DEF_TYPE MSR

Type — Default memory type
FE — Fixed-range MTRRs enable/disable
E — MTRR enable/disable

63 0

Reserved F
E

71011

Type

8912

E

Reserved
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Figure 13-7 shows flags and fields in these registers. The functions of these flags and fields are:
• Type field, bits 0 through 7 — Specifies the memory type for the range (see Table 13-8 for the encoding of 

this field).
• PhysBase field, bits 12 through (MAXPHYADDR-1) — Specifies the base address of the address range. 

This 24-bit value, in the case where MAXPHYADDR is 36 bits, is extended by 12 bits at the low end to form the 
base address (this automatically aligns the address on a 4-KByte boundary).

• PhysMask field, bits 12 through (MAXPHYADDR-1) — Specifies a mask (24 bits if the maximum physical 
address size is 36 bits, 28 bits if the maximum physical address size is 40 bits). The mask determines the range 
of the region being mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For more information: see Section 
13.11.3, “Example Base and Mask Calculations.”

— The width of the PhysMask field depends on the maximum physical address size supported by the 
processor. 

CPUID.80000008H reports the maximum physical address size supported by the processor. If 
CPUID.80000008H is not available, software may assume that the processor supports a 36-bit physical 
address size (then PhysMask is 24 bits wide and the upper 28 bits of IA32_MTRR_PHYSMASKn are 
reserved). See the Note below.

• V (valid) flag, bit 11 — Enables the register pair when set; disables register pair when clear.

Table 13-9.  Address Mapping for Fixed-Range MTRRs
Address Range (hexadecimal) MTRR

63   56 55    48 47    40 39    32 31     24 23     16 15     8 7      0

70000-
7FFFF

60000-
6FFFF

50000-
5FFFF

40000-
4FFFF

30000-
3FFFF

20000-
2FFFF

10000-
1FFFF

00000-
0FFFF

IA32_MTRR_
FIX64K_00000

9C000
9FFFF

98000-
9BFFF

94000-
97FFF

90000-
93FFF

8C000-
8FFFF

88000-
8BFFF

84000-
87FFF

80000-
83FFF

IA32_MTRR_
FIX16K_80000

BC000
BFFFF

B8000-
BBFFF

B4000-
B7FFF

B0000-
B3FFF

AC000-
AFFFF

A8000-
ABFFF

A4000-
A7FFF

A0000-
A3FFF

IA32_MTRR_
FIX16K_A0000

C7000
C7FFF

C6000-
C6FFF

C5000-
C5FFF

C4000-
C4FFF

C3000-
C3FFF

C2000-
C2FFF

C1000-
C1FFF

C0000-
C0FFF

IA32_MTRR_
FIX4K_C0000

CF000
CFFFF

CE000-
CEFFF

CD000-
CDFFF

CC000-
CCFFF

CB000-
CBFFF

CA000-
CAFFF

C9000-
C9FFF

C8000-
C8FFF

IA32_MTRR_
FIX4K_C8000

D7000
D7FFF

D6000-
D6FFF

D5000-
D5FFF

D4000-
D4FFF

D3000-
D3FFF

D2000-
D2FFF

D1000-
D1FFF

D0000-
D0FFF

IA32_MTRR_
FIX4K_D0000

DF000
DFFFF

DE000-
DEFFF

DD000-
DDFFF

DC000-
DCFFF

DB000-
DBFFF

DA000-
DAFFF

D9000-
D9FFF

D8000-
D8FFF

IA32_MTRR_
FIX4K_D8000

E7000
E7FFF

E6000-
E6FFF

E5000-
E5FFF

E4000-
E4FFF

E3000-
E3FFF

E2000-
E2FFF

E1000-
E1FFF

E0000-
E0FFF

IA32_MTRR_
FIX4K_E0000

EF000
EFFFF

EE000-
EEFFF

ED000-
EDFFF

EC000-
ECFFF

EB000-
EBFFF

EA000-
EAFFF

E9000-
E9FFF

E8000-
E8FFF

IA32_MTRR_
FIX4K_E8000

F7000
F7FFF

F6000-
F6FFF

F5000-
F5FFF

F4000-
F4FFF

F3000-
F3FFF

F2000-
F2FFF

F1000-
F1FFF

F0000-
F0FFF

IA32_MTRR_
FIX4K_F0000

FF000
FFFFF

FE000-
FEFFF

FD000-
FDFFF

FC000-
FCFFF

FB000-
FBFFF

FA000-
FAFFF

F9000-
F9FFF

F8000-
F8FFF

IA32_MTRR_
FIX4K_F8000
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All other bits in the IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn registers are reserved; the processor 
generates a general-protection exception (#GP) if software attempts to write to them.

Some mask values can result in ranges that are not continuous. In such ranges, the area not mapped by the mask 
value is set to the default memory type, unless some other MTRR specifies a type for that range. Intel does not 
encourage the use of “discontinuous” ranges.

NOTE
It is possible for software to parse the memory descriptions that BIOS provides by using the 
ACPI/INT15 e820 interface mechanism. This information then can be used to determine how 
MTRRs are initialized (for example: allowing the BIOS to define valid memory ranges and the 
maximum memory range supported by the platform, including the processor).

See Section 13.11.4.1, “MTRR Precedences,” for information on overlapping variable MTRR ranges.

13.11.2.4  System-Management Range Register Interface 
If IA32_MTRRCAP[bit 11] is set, the processor supports the SMRR interface to restrict access to a specified 
memory address range used by system-management mode (SMM) software (see Section 33.4.2.1). If the SMRR 
interface is supported, SMM software is strongly encouraged to use it to protect the SMI code and data stored by 
SMI handler in the SMRAM region.

The system-management range registers consist of a pair of MSRs (see Figure 13-8). The IA32_SMRR_PHYSBASE 
MSR defines the base address for the SMRAM memory range and the memory type used to access it in SMM. The 
IA32_SMRR_PHYSMASK MSR contains a valid bit and a mask that determines the SMRAM address range protected 
by the SMRR interface. These MSRs may be written only in SMM; an attempt to write them outside of SMM causes 
a general-protection exception.1

Figure 13-8 shows flags and fields in these registers. The functions of these flags and fields are the following:

Figure 13-7.  IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn Variable-Range Register Pair

1. For some processor models, these MSRs can be accessed by RDMSR and WRMSR only if the SMRR interface has been enabled using 
a model-specific bit in the IA32_FEATURE_CONTROL MSR.

V — Valid
PhysMask — Sets range mask

IA32_MTRR_PHYSMASKn Register
63 0

Reserved

101112

V Reserved

MAXPHYADDR

PhysMask

Type — Memory type for range
PhysBase — Base address of range

IA32_MTRR_PHYSBASEn Register
63 0

Reserved

1112

Type

MAXPHYADDR

PhysBase

78

Reserved

MAXPHYADDR: The bit position indicated by MAXPHYADDR depends on the maximum
physical address range supported by the processor. It is reported by CPUID leaf
function 80000008H. If CPUID does not support leaf 80000008H, the processor
supports 36-bit physical address size, then bit PhysMask consists of bits 35:12, and
bits 63:36 are reserved.
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• Type field, bits 0 through 7 — Specifies the memory type for the range (see Table 13-8 for the encoding of 
this field).

• PhysBase field, bits 12 through 31 — Specifies the base address of the address range. The address must be 
less than 4 GBytes and is automatically aligned on a 4-KByte boundary.

• PhysMask field, bits 12 through 31 — Specifies a mask that determines the range of the region being 
mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For more information: see Section 
13.11.3, “Example Base and Mask Calculations.”

• V (valid) flag, bit 11 — Enables the register pair when set; disables register pair when clear.

Before attempting to access these SMRR registers, software must test bit 11 in the IA32_MTRRCAP register. If 
SMRR is not supported, reads from or writes to registers cause general-protection exceptions.

When the valid flag in the IA32_SMRR_PHYSMASK MSR is 1, accesses to the specified address range are treated as 
follows:
• If the logical processor is in SMM, accesses uses the memory type in the IA32_SMRR_PHYSBASE MSR.
• If the logical processor is not in SMM, write accesses are ignored and read accesses return a fixed value for each 

byte. The uncacheable memory type (UC) is used in this case.

The above items apply even if the address range specified overlaps with a range specified by the MTRRs.

13.11.3 Example Base and Mask Calculations
The examples in this section apply to processors that support a maximum physical address size of 36 bits. The base 
and mask values entered in variable-range MTRR pairs are 24-bit values that the processor extends to 36-bits. 

For example, to enter a base address of 2 MBytes (200000H) in the IA32_MTRR_PHYSBASE3 register, the 12 least-
significant bits are truncated and the value 000200H is entered in the PhysBase field. The same operation must be 
performed on mask values. For example, to map the address range from 200000H to 3FFFFFH (2 MBytes to 4 
MBytes), a mask value of FFFE00000H is required. Again, the 12 least-significant bits of this mask value are trun-
cated, so that the value entered in the PhysMask field of IA32_MTRR_PHYSMASK3 is FFFE00H. This mask is chosen 
so that when any address in the 200000H to 3FFFFFH range is AND’d with the mask value, it will return the same 
value as when the base address is AND’d with the mask value (which is 200000H).

Figure 13-8.  IA32_SMRR_PHYSBASE and IA32_SMRR_PHYSMASK SMRR Pair

V — Valid
PhysMask — Sets range mask

IA32_SMRR_PHYSMASK Register
63 0

Reserved

101112

V Reserved

31

PhysMask

Type — Memory type for range
PhysBase — Base address of range

IA32_SMRR_PHYSBASE Register
63 0

Reserved

1112

Type

31

PhysBase

78

Reserved
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To map the address range from 400000H to 7FFFFFH (4 MBytes to 8 MBytes), a base value of 000400H is entered 
in the PhysBase field and a mask value of FFFC00H is entered in the PhysMask field.

Example 13-2.  Setting-Up Memory for a System

Here is an example of setting up the MTRRs for an system. Assume that the system has the following characteris-
tics:
• 96 MBytes of system memory is mapped as write-back memory (WB) for highest system performance.
• A custom 4-MByte I/O card is mapped to uncached memory (UC) at a base address of 64 MBytes. This 

restriction forces the 96 MBytes of system memory to be addressed from 0 to 64 MBytes and from 68 MBytes 
to 100 MBytes, leaving a 4-MByte hole for the I/O card. 

• An 8-MByte graphics card is mapped to write-combining memory (WC) beginning at address A0000000H. 
• The BIOS area from 15 MBytes to 16 MBytes is mapped to UC memory.

The following settings for the MTRRs will yield the proper mapping of the physical address space for this system 
configuration.

IA32_MTRR_PHYSBASE0 =  0000 0000 0000 0006H
IA32_MTRR_PHYSMASK0 =  0000 000F FC00 0800H  
Caches 0-64 MByte as WB cache type.

IA32_MTRR_PHYSBASE1 =  0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 =  0000 000F FE00 0800H  
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 =  0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 =  0000 000F FFC0 0800H  
Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 =  0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 =  0000 000F FFC0 0800H  
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 =  0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 =  0000 000F FFF0 0800H  
Caches 15-16 MByte as UC cache type.

IA32_MTRR_PHYSBASE5 =  0000 0000 A000 0001H
IA32_MTRR_PHYSMASK5 =  0000 000F FF80 0800H  
Caches A0000000-A0800000 as WC type.

This MTRR setup uses the ability to overlap any two memory ranges (as long as the ranges are mapped to WB and 
UC memory types) to minimize the number of MTRR registers that are required to configure the memory environ-
ment. This setup also fulfills the requirement that two register pairs are left for operating system usage.

13.11.3.1  Base and Mask Calculations for Greater-Than 36-bit Physical Address Support
For Intel 64 and IA-32 processors that support greater than 36 bits of physical address size, software should query 
CPUID.80000008H to determine the maximum physical address. See the example.

Example 13-3.  Setting-Up Memory for a System with a 40-Bit Address Size

If a processor supports 40-bits of physical address size, then the PhysMask field (in IA32_MTRR_PHYSMASKn 
registers) is 28 bits instead of 24 bits. For this situation, Example 13-2 should be modified as follows:

IA32_MTRR_PHYSBASE0 =  0000 0000 0000 0006H
IA32_MTRR_PHYSMASK0 =  0000 00FF FC00 0800H  
Caches 0-64 MByte as WB cache type.
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IA32_MTRR_PHYSBASE1 =  0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 =  0000 00FF FE00 0800H  
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 =  0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 =  0000 00FF FFC0 0800H  
Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 =  0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 =  0000 00FF FFC0 0800H  
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 =  0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 =  0000 00FF FFF0 0800H  
Caches 15-16 MByte as UC cache type.

IA32_MTRR_PHYSBASE5 =  0000 0000 A000 0001H
IA32_MTRR_PHYSMASK5 =  0000 00FF FF80 0800H  
Caches A0000000-A0800000 as WC type.

13.11.4 Range Size and Alignment Requirement
A range that is to be mapped to a variable-range MTRR must meet the following “power of 2” size and alignment 
rules:

1. The minimum range size is 4 KBytes and the base address of the range must be on at least a 4-KByte
boundary.

2. For ranges greater than 4 KBytes, each range must be of length 2n and its base address must be aligned on a 
2n boundary, where n is a value equal to or greater than 12. The base-address alignment value cannot be less 
than its length. For example, an 8-KByte range cannot be aligned on a 4-KByte boundary. It must be aligned on 
at least an 8-KByte boundary.

13.11.4.1  MTRR Precedences
If the MTRRs are not enabled (by setting the E flag in the IA32_MTRR_DEF_TYPE MSR), then all memory accesses 
are of the UC memory type. If the MTRRs are enabled, then the memory type used for a memory access is deter-
mined as follows:

1. If the physical address falls within the first 1 MByte of physical memory and fixed MTRRs are enabled, the
processor uses the memory type stored for the appropriate fixed-range MTRR.

2. Otherwise, the processor attempts to match the physical address with a memory type set by the variable-range 
MTRRs:

— If one variable memory range matches, the processor uses the memory type stored in the 
IA32_MTRR_PHYSBASEn register for that range.

— If two or more variable memory ranges match and the memory types are identical, then that memory type 
is used.

— If two or more variable memory ranges match and one of the memory types is UC, the UC memory type 
used.

— If two or more variable memory ranges match and the memory types are WT and WB, the WT memory type 
is used.

— For overlaps not defined by the above rules, processor behavior is undefined.

3. If no fixed or variable memory range matches, the processor uses the default memory type.
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13.11.5 MTRR Initialization
On a hardware reset, the P6 and more recent processors clear the valid flags in variable-range MTRRs and clear the 
E flag in the IA32_MTRR_DEF_TYPE MSR to disable all MTRRs. All other bits in the MTRRs are undefined. 

Prior to initializing the MTRRs, software (normally the system BIOS) must initialize all fixed-range and variable-
range MTRR register fields to 0. Software can then initialize the MTRRs according to known types of memory, 
including memory on devices that it auto-configures. Initialization is expected to occur prior to booting the oper-
ating system.

See Section 13.11.8, “MTRR Considerations in MP Systems,” for information on initializing MTRRs in MP (multiple-
processor) systems.

13.11.6 Remapping Memory Types
A system designer may re-map memory types to tune performance or because a future processor may not imple-
ment all memory types supported by the Pentium 4, Intel Xeon, and P6 family processors. The following rules 
support coherent memory-type re-mappings:

1. A memory type should not be mapped into another memory type that has a weaker memory ordering model.
For example, the uncacheable type cannot be mapped into any other type, and the write-back, write-through,
and write-protected types cannot be mapped into the weakly ordered write-combining type.

2. A memory type that does not delay writes should not be mapped into a memory type that does delay writes, 
because applications of such a memory type may rely on its write-through behavior. Accordingly, the write-
back type cannot be mapped into the write-through type.

3. A memory type that views write data as not necessarily stored and read back by a subsequent read, such as 
the write-protected type, can only be mapped to another type with the same behavior (and there are no others 
for the Pentium 4, Intel Xeon, and P6 family processors) or to the uncacheable type.

In many specific cases, a system designer can have additional information about how a memory type is used, 
allowing additional mappings. For example, write-through memory with no associated write side effects can be 
mapped into write-back memory.

13.11.7 MTRR Maintenance Programming Interface
The operating system maintains the MTRRs after booting and sets up or changes the memory types for memory-
mapped devices. The operating system should provide a driver and application programming interface (API) to 
access and set the MTRRs. The function calls MemTypeGet() and MemTypeSet() define this interface.

13.11.7.1  MemTypeGet() Function
The MemTypeGet() function returns the memory type of the physical memory range specified by the parameters 
base and size. The base address is the starting physical address and the size is the number of bytes for the memory 
range. The function automatically aligns the base address and size to 4-KByte boundaries. Pseudocode for the 
MemTypeGet() function is given in Example 13-4.
Vol. 3A 13-29



MEMORY CACHE CONTROL
Example 13-4.  MemTypeGet() Pseudocode

#define MIXED_TYPES -1     /* 0 < MIXED_TYPES || MIXED_TYPES > 256 */

IF CPU_FEATURES.MTRR /* processor supports MTRRs */
THEN

Align BASE and SIZE to 4-KByte boundary;
IF (BASE + SIZE) wrap physical-address space 

THEN return INVALID;
FI;
IF MTRRdefType.E = 0

THEN return UC;
FI;
FirstType := Get4KMemType (BASE);
/* Obtains memory type for first 4-KByte range. */
/* See Get4KMemType (4KByteRange) in Example 13-5. */
FOR each additional 4-KByte range specified in SIZE

NextType := Get4KMemType (4KByteRange);
IF NextType != FirstType

THEN return Mixed_Types;
FI;

ROF;
return FirstType;

ELSE return UNSUPPORTED;
FI;

If the processor does not support MTRRs, the function returns UNSUPPORTED. If the MTRRs are not enabled, then 
the UC memory type is returned. If more than one memory type corresponds to the specified range, a status of 
MIXED_TYPES is returned. Otherwise, the memory type defined for the range (UC, WC, WT, WB, or WP) is 
returned.

The pseudocode for the Get4KMemType() function in Example 13-5 obtains the memory type for a single 4-KByte 
range at a given physical address. The sample code determines whether an PHY_ADDRESS falls within a fixed 
range by comparing the address with the known fixed ranges: 0 to 7FFFFH (64-KByte regions), 80000H to BFFFFH 
(16-KByte regions), and C0000H to FFFFFH (4-KByte regions). If an address falls within one of these ranges, the 
appropriate bits within one of its MTRRs determine the memory type.

Example 13-5.  Get4KMemType() Pseudocode

IF IA32_MTRRCAP.FIX AND MTRRdefType.FE /* fixed registers enabled */
THEN IF PHY_ADDRESS is within a fixed range

return IA32_MTRR_FIX.Type;
FI;
FOR each variable-range MTRR in IA32_MTRRCAP.VCNT

IF IA32_MTRR_PHYSMASK.V = 0
THEN continue;

FI;
IF (PHY_ADDRESS AND IA32_MTRR_PHYSMASK.Mask) =

(IA32_MTRR_PHYSBASE.Base 
AND IA32_MTRR_PHYSMASK.Mask)

THEN
return IA32_MTRR_PHYSBASE.Type;

FI;
ROF;
return MTRRdefType.Type;
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13.11.7.2  MemTypeSet() Function
The MemTypeSet() function in Example 13-6 sets a MTRR for the physical memory range specified by the parame-
ters base and size to the type specified by type. The base address and size are multiples of 4 KBytes and the size 
is not 0.

Example 13-6.  MemTypeSet Pseudocode

IF CPU_FEATURES.MTRR (* processor supports MTRRs *)
THEN

IF BASE and SIZE are not 4-KByte aligned or size is 0
THEN return INVALID; 

FI;
IF (BASE + SIZE) wrap 4-GByte address space

THEN return INVALID; 
FI;
IF TYPE is invalid for Pentium 4, Intel Xeon, and P6 family
processors

THEN return UNSUPPORTED; 
FI;
IF TYPE is WC and not supported

THEN return UNSUPPORTED; 
FI;
IF IA32_MTRRCAP.FIX is set AND range can be mapped using a
fixed-range MTRR

THEN
pre_mtrr_change();
update affected MTRR;
post_mtrr_change();

FI;

ELSE (* try to map using a variable MTRR pair *)
IF IA32_MTRRCAP.VCNT = 0

THEN return UNSUPPORTED; 
FI;
IF conflicts with current variable ranges 

THEN return RANGE_OVERLAP;
FI;
IF no MTRRs available

THEN return VAR_NOT_AVAILABLE; 
FI;
IF BASE and SIZE do not meet the power of 2 requirements for
variable MTRRs

THEN return INVALID_VAR_REQUEST; 
FI;
pre_mtrr_change();
Update affected MTRRs;
post_mtrr_change();

FI;

pre_mtrr_change()
BEGIN

disable interrupts;
Save current value of CR4;
disable and flush caches;
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flush TLBs;
disable MTRRs;
IF multiprocessing

THEN maintain consistency through IPIs;
FI;

END
post_mtrr_change()

BEGIN
flush caches and TLBs;
enable MTRRs;
enable caches;
restore value of CR4;
enable interrupts;

END

The physical address to variable range mapping algorithm in the MemTypeSet function detects conflicts with 
current variable range registers by cycling through them and determining whether the physical address in question 
matches any of the current ranges. During this scan, the algorithm can detect whether any current variable ranges 
overlap and can be concatenated into a single range.

The pre_mtrr_change() function disables interrupts prior to changing the MTRRs, to avoid executing code with a 
partially valid MTRR setup. The algorithm disables caching by setting the CD flag and clearing the NW flag in control 
register CR0. The caches are invalidated using the WBINVD instruction. The algorithm flushes all TLB entries either 
by clearing the page-global enable (PGE) flag in control register CR4 (if PGE was already set) or by updating control 
register CR3 (if PGE was already clear). Finally, it disables MTRRs by clearing the E flag in the 
IA32_MTRR_DEF_TYPE MSR.

After the memory type is updated, the post_mtrr_change() function re-enables the MTRRs and again invalidates 
the caches and TLBs. This second invalidation is required because of the processor's aggressive prefetch of both 
instructions and data. The algorithm restores interrupts and re-enables caching by setting the CD flag.

An operating system can batch multiple MTRR updates so that only a single pair of cache invalidations occur.

13.11.8 MTRR Considerations in MP Systems
In MP (multiple-processor) systems, the operating systems must maintain MTRR consistency between all the 
processors in the system. The Pentium 4, Intel Xeon, and P6 family processors provide no hardware support to 
maintain this consistency. In general, all processors must have the same MTRR values.

This requirement implies that when the operating system initializes an MP system, it must load the MTRRs of the 
boot processor while the E flag in register MTRRdefType is 0. The operating system then directs other processors to 
load their MTRRs with the same memory map. After all the processors have loaded their MTRRs, the operating 
system signals them to enable their MTRRs. Barrier synchronization is used to prevent further memory accesses 
until all processors indicate that the MTRRs are enabled. This synchronization is likely to be a shoot-down style 
algorithm, with shared variables and interprocessor interrupts.

Any change to the value of the MTRRs in an MP system requires the operating system to repeat the loading and 
enabling process to maintain consistency, using the following procedure:

1. Broadcast to all processors to execute the following code sequence.

2. Disable interrupts.

3. Wait for all processors to reach this point.

4. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the NW flag to 0.)

5. Flush all caches using the WBINVD instructions. On a processor that supports self-snooping (enumerating 
CPUID.01H:EDX.SS[bit 27] as 1), this step may be unnecessary. However, if there are changes for which self-
snooping behavior would be problematic (e.g., changing the memory type of a cache line from WB to UC for 
memory-mapped I/O), execution of WBINVD would still be required.
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6. If either the PGE or PCIDE flag is set in control register CR4, flush all TLBs by clearing one or both of these flags.

7. If the PGE and PCIDE flags are both clear in control register CR4, flush all TLBs by executing a MOV from control 
register CR3 to another register and then a MOV from that register back to CR3.

8. Disable all range registers (by clearing the E flag in register MTRRdefType). If only variable ranges are being 
modified, software may clear the valid bits for the affected register pairs instead.

9. Update the MTRRs.

10. Enable all range registers (by setting the E flag in register MTRRdefType). If only variable-range registers were 
modified and their individual valid bits were cleared, then set the valid bits for the affected ranges instead.

11. Flush all caches and all TLBs a second time. (The TLB flush is required for Pentium 4, Intel Xeon, and P6 family 
processors. Executing the WBINVD instruction is not needed when using Pentium 4, Intel Xeon, and P6 family 
processors, but it may be needed in future systems.)

12. Enter the normal cache mode to re-enable caching. (Set the CD and NW flags in control register CR0 to 0.)

13. Restore the values of the PGE and/or PCIDE flags in control register CR4, if cleared in Step 6 (above).

14. Wait for all processors to reach this point.

15. Enable interrupts.

13.11.9 Large Page Size Considerations
The MTRRs provide memory typing for a limited number of regions that have a 4 KByte granularity (the same gran-
ularity as 4-KByte pages). The memory type for a given page is cached in the processor’s TLBs. When using large 
pages (2 MBytes, 4 MBytes, or 1 GBytes), a single page-table entry covers multiple 4-KByte granules, each with a 
single memory type. Because the memory type for a large page is cached in the TLB, the processor can behave in 
an undefined manner if a large page is mapped to a region of memory that MTRRs have mapped with multiple 
memory types. 

Undefined behavior can be avoided by ensuring that all MTRR memory-type ranges within a large page are of the 
same type. If a large page maps to a region of memory containing different MTRR-defined memory types, the PCD 
and PWT flags in the page-table entry should be set for the most conservative memory type for that range. For 
example, a large page used for memory mapped I/O and regular memory is mapped as UC memory. Alternatively, 
the operating system can map the region using multiple 4-KByte pages each with its own memory type. 

The requirement that all 4-KByte ranges in a large page are of the same memory type implies that large pages with 
different memory types may suffer a performance penalty, since they must be marked with the lowest common 
denominator memory type. The same consideration apply to 1 GByte pages, each of which may consist of multiple 
2-Mbyte ranges. 

The Pentium 4, Intel Xeon, and P6 family processors provide special support for the physical memory range from 0 
to 4 MBytes, which is potentially mapped by both the fixed and variable MTRRs. This support is invoked when a 
Pentium 4, Intel Xeon, or P6 family processor detects a large page overlapping the first 1 MByte of this memory 
range with a memory type that conflicts with the fixed MTRRs. Here, the processor maps the memory range as 
multiple 4-KByte pages within the TLB. This operation ensures correct behavior at the cost of performance. To 
avoid this performance penalty, operating-system software should reserve the large page option for regions of 
memory at addresses greater than or equal to 4 MBytes.

13.12 PAGE ATTRIBUTE TABLE (PAT)
The Page Attribute Table (PAT) extends the IA-32 architecture’s page-table format to allow memory types to be 
assigned to regions of physical memory based on linear address mappings. The PAT is a companion feature to the 
MTRRs; that is, the MTRRs allow mapping of memory types to regions of the physical address space, where the PAT 
allows mapping of memory types to pages within the linear address space. The MTRRs are useful for statically 
describing memory types for physical ranges, and are typically set up by the system BIOS. The PAT extends the 
functions of the PCD and PWT bits in page tables to allow all five of the memory types that can be assigned with the 
MTRRs (plus one additional memory type) to also be assigned dynamically to pages of the linear address space.
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The PAT was introduced to IA-32 architecture on the Pentium III processor. It is also available in the Pentium 4 and 
Intel Xeon processors.

13.12.1 Detecting Support for the PAT Feature
An operating system or executive can detect the availability of the PAT by executing the CPUID instruction with a 
value of 1 in the EAX register. Support for the PAT is indicated by the PAT flag (bit 16 of the values returned to EDX 
register). If the PAT is supported, the operating system or executive can use the IA32_PAT MSR to program the PAT. 
When memory types have been assigned to entries in the PAT, software can then use of the PAT-index bit (PAT) in 
the page-table and page-directory entries along with the PCD and PWT bits to assign memory types from the PAT 
to individual pages.

Note that there is no separate flag or control bit in any of the control registers that enables the PAT. The PAT is 
always enabled on all processors that support it, and the table lookup always occurs whenever paging is enabled, 
in all paging modes.

13.12.2 IA32_PAT MSR
The IA32_PAT MSR is located at MSR address 277H (see Chapter 2, “Model-Specific Registers (MSRs)‚” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4). Figure 13-9. shows the format of the 
64-bit IA32_PAT MSR.

The IA32_PAT MSR contains eight page attribute fields: PA0 through PA7. The three low-order bits of each field are 
used to specify a memory type. The five high-order bits of each field are reserved, and must be set to all 0s. Each 
of the eight page attribute fields can contain any of the memory type encodings specified in Table 13-10.

Note that for the P6 family processors, the IA32_PAT MSR is named the PAT MSR.

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0
Reserved PA3 Reserved PA2 Reserved PA1 Reserved PA0

63 59 58 56 55 51 50 48 47 43 42 40 39 35 34 32
Reserved PA7 Reserved PA6 Reserved PA5 Reserved PA4

Figure 13-9.  IA32_PAT MSR

Table 13-10.  Memory Types That Can Be Encoded With PAT

Encoding Mnemonic

00H Uncacheable (UC)

01H Write Combining (WC)

02H Reserved*

03H Reserved*

04H Write Through (WT)

05H Write Protected (WP)

06H Write Back (WB)

07H Uncached (UC-)

08H - FFH Reserved*

NOTE:
* Using these encodings will result in a general-protection exception (#GP).
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13.12.3 Selecting a Memory Type from the PAT
To select a memory type for a page from the PAT, a 3-bit index made up of the PAT, PCD, and PWT bits must be 
encoded in the page-table or page-directory entry for the page. Table 13-11 shows the possible encodings of the 
PAT, PCD, and PWT bits and the PAT entry selected with each encoding. The PAT bit is bit 7 in page-table entries that 
point to 4-KByte pages and bit 12 in paging-structure entries that point to larger pages. The PCD and PWT bits are 
bits 4 and 3, respectively, in paging-structure entries that point to pages of any size.

The PAT entry selected for a page is used in conjunction with the MTRR setting for the region of physical memory 
in which the page is mapped to determine the effective memory type for the page, as shown in Table 13-7.

13.12.4 Programming the PAT
Table 13-12 shows the default setting for each PAT entry following a power up or reset of the processor. The setting 
remain unchanged following a soft reset (INIT reset). 

The values in all the entries of the PAT can be changed by writing to the IA32_PAT MSR using the WRMSR instruc-
tion. The IA32_PAT MSR is read and write accessible (use of the RDMSR and WRMSR instructions, respectively) to 
software operating at a CPL of 0. Table 13-10 shows the allowable encoding of the entries in the PAT. Attempting to 
write an undefined memory type encoding into the PAT causes a general-protection (#GP) exception to be gener-
ated.

The operating system (OS) is responsible for ensuring that changes to a PAT entry occur in a manner that main-
tains the consistency of the processor caches and translation lookaside buffers (TLB). It requires the OS to invali-
date all affected TLB entries (including global entries) and all entries in all paging-structure caches. It may also 
require flushing of the processor caches in certain situations. This can be accomplished in various ways, including 
the sequence below or by following the procedure specified in Section 13.11.8, “MTRR Considerations in MP 
Systems.” (See Section 5.10.4, “Invalidation of TLBs and Paging-Structure Caches” for additional background 
information.) Also note that in a multi-processor environment, it is the software's responsibility to resolve differ-
ences in conflicting memory types across logical processors that may arise from changes to the PAT (e.g., if two 

Table 13-11.  Selection of PAT Entries with PAT, PCD, and PWT Flags
PAT PCD PWT PAT Entry

0 0 0 PAT0

0 0 1 PAT1

0 1 0 PAT2

0 1 1 PAT3

1 0 0 PAT4

1 0 1 PAT5

1 1 0 PAT6

1 1 1 PAT7

Table 13-12.  Memory Type Setting of PAT Entries Following a Power-up or Reset 

PAT Entry Memory Type Following Power-up or Reset

PAT0 WB

PAT1 WT

PAT2 UC-

PAT3 UC

PAT4 WB

PAT5 WT

PAT6 UC-

PAT7 UC
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logical processors map a linear address to the same physical address but have PATs that specify a different memory 
type for that physical address).

Example of a sequence to invalidate the processor TLBs and caches (if necessary):

1. If the PCIDE or PGE flag is set in CR4, flush TLBs by clearing one of those flags (then restore the flag via a 
subsequent CR4 write).
Otherwise, flush TLBs by executing a MOV from control register CR3 to another register and then a MOV from 
that register back to CR3.

2. In the case that there are changes to memory-type mappings for which cache self-snooping behavior would be 
problematic given the existing mappings (e.g., changing a cache line's memory type from WB to UC to be used 
for memory-mapped I/O), then cache flushing is also required. This can be done by executing CLFLUSH 
operations for all affected cache lines or by executing the WBINVD instruction (recommended only if there are 
a large number of affected mappings or if it is unknown which mappings are affected).

The PAT allows any memory type to be specified in the page tables, and therefore it is possible to have a single 
physical page mapped to two or more different linear addresses, each with different memory types. Intel does not 
support this practice because it may lead to undefined operations that can result in a system failure. In particular, 
a WC page must never be aliased to a cacheable page because WC writes may not check the processor caches.

When remapping a page that was previously mapped as a cacheable memory type to a WC page, an operating 
system can avoid this type of aliasing by doing the following:

1. Remove the previous mapping to a cacheable memory type in the page tables; that is, make them not
present.

2. Flush the TLBs of processors that may have used the mapping, even speculatively.

3. Create a new mapping to the same physical address with a new memory type, for instance, WC.

4. Flush the caches on all processors that may have used the mapping previously. Note on processors that support 
self-snooping, CPUID feature flag bit 27, this step is unnecessary.

Operating systems that use a page directory as a page table (to map large pages) and enable page size extensions 
must carefully scrutinize the use of the PAT index bit for the 4-KByte page-table entries. The PAT index bit for a 
page-table entry (bit 7) corresponds to the page size bit in a page-directory entry. Therefore, the operating system 
can only use PAT entries PA0 through PA3 when setting the caching type for a page table that is also used as a page 
directory. If the operating system attempts to use PAT entries PA4 through PA7 when using this memory as a page 
table, it effectively sets the PS bit for the access to this memory as a page directory.

For compatibility with earlier IA-32 processors that do not support the PAT, care should be taken in selecting the 
encodings for entries in the PAT (see Section 13.12.5, “PAT Compatibility with Earlier IA-32 Processors”).

13.12.5 PAT Compatibility with Earlier IA-32 Processors
For IA-32 processors that support the PAT, the IA32_PAT MSR is always active. That is, the PCD and PWT bits in 
page-table entries and in page-directory entries (that point to pages) are always select a memory type for a page 
indirectly by selecting an entry in the PAT. They never select the memory type for a page directly as they do in 
earlier IA-32 processors that do not implement the PAT (see Table 13-6).

To allow compatibility for code written to run on earlier IA-32 processor that do not support the PAT, the PAT mech-
anism has been designed to allow backward compatibility to earlier processors. This compatibility is provided 
through the ordering of the PAT, PCD, and PWT bits in the 3-bit PAT entry index. For processors that do not imple-
ment the PAT, the PAT index bit (bit 7 in the page-table entries and bit 12 in the page-directory entries) is reserved 
and set to 0. With the PAT bit reserved, only the first four entries of the PAT can be selected with the PCD and PWT 
bits. At power-up or reset (see Table 13-12), these first four entries are encoded to select the same memory types 
as the PCD and PWT bits would normally select directly in an IA-32 processor that does not implement the PAT. So, 
if encodings of the first four entries in the PAT are left unchanged following a power-up or reset, code written to run 
on earlier IA-32 processors that do not implement the PAT will run correctly on IA-32 processors that do implement 
the PAT.
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CHAPTER 14
INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING

This chapter describes those features of the Intel® MMX™ technology that must be considered when designing or 
enhancing an operating system to support MMX technology. It covers MMX instruction set emulation, the MMX 
state, aliasing of MMX registers, saving MMX state, task and context switching considerations, exception handling, 
and debugging.

14.1 EMULATION OF THE MMX INSTRUCTION SET
The IA-32 or Intel 64 architecture does not support emulation of the MMX instructions, as it does for x87 FPU 
instructions. The EM flag in control register CR0 (provided to invoke emulation of x87 FPU instructions) cannot be 
used for MMX instruction emulation. If an MMX instruction is executed when the EM flag is set, an invalid opcode 
exception (UD#) is generated. Table 14-1 shows the interaction of the EM, MP, and TS flags in control register CR0 
when executing MMX instructions.

14.2 THE MMX STATE AND MMX REGISTER ALIASING
The MMX state consists of eight 64-bit registers (MM0 through MM7). These registers are aliased to the low 64-bits 
(bits 0 through 63) of floating-point registers R0 through R7 (see Figure 14-1). Note that the MMX registers are 
mapped to the physical locations of the floating-point registers (R0 through R7), not to the relative locations of the 
registers in the floating-point register stack (ST0 through ST7). As a result, the MMX register mapping is fixed and 
is not affected by value in the Top Of Stack (TOS) field in the floating-point status word (bits 11 through 13).

Table 14-1.  Action Taken By MMX Instructions for Different Combinations of EM, MP, and TS

CR0 Flags

EM MP* TS Action

0 1 0 Execute.

0 1 1 #NM exception.

1 1 0 #UD exception.

1 1 1 #UD exception.

NOTE:
* For processors that support the MMX instructions, the MP flag should be set.
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When a value is written into an MMX register using an MMX instruction, the value also appears in the corresponding 
floating-point register in bits 0 through 63. Likewise, when a floating-point value written into a floating-point 
register by a x87 FPU, the low 64 bits of that value also appears in a the corresponding MMX register.

The execution of MMX instructions have several side effects on the x87 FPU state contained in the floating-point 
registers, the x87 FPU tag word, and the x87 FPU status word. These side effects are as follows:
• When an MMX instruction writes a value into an MMX register, at the same time, bits 64 through 79 of the corre-

sponding floating-point register are set to all 1s.
• When an MMX instruction (other than the EMMS instruction) is executed, each of the tag fields in the x87 FPU 

tag word is set to 00B (valid). (See also Section 14.2.1, “Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR 
Instructions on the x87 FPU Tag Word.”)

• When the EMMS instruction is executed, each tag field in the x87 FPU tag word is set to 11B (empty).
• Each time an MMX instruction is executed, the TOS value is set to 000B.

Execution of MMX instructions does not affect the other bits in the x87 FPU status word (bits 0 through 10 and bits 
14 and 15) or the contents of the other x87 FPU registers that comprise the x87 FPU state (the x87 FPU control 
word, instruction pointer, data pointer, or opcode registers). 

Table 14-2 summarizes the effects of the MMX instructions on the x87 FPU state.

Figure 14-1.  Mapping of MMX Registers to Floating-Point Registers
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14.2.1 Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR Instructions on the x87 FPU Tag 
Word

Table 14-3 summarizes the effect of MMX and x87 FPU instructions and the FXSAVE and FXRSTOR instructions on 
the tags in the x87 FPU tag word and the corresponding tags in an image of the tag word stored in memory.

The values in the fields of the x87 FPU tag word do not affect the contents of the MMX registers or the execution of 
MMX instructions. However, the MMX instructions do modify the contents of the x87 FPU tag word, as is described 
in Section 14.2, “The MMX State and MMX Register Aliasing.” These modifications may affect the operation of the 
x87 FPU when executing x87 FPU instructions, if the x87 FPU state is not initialized or restored prior to beginning 
x87 FPU instruction execution.

Note that the FSAVE, FXSAVE, and FSTENV instructions (which save x87 FPU state information) read the x87 FPU 
tag register and contents of each of the floating-point registers, determine the actual tag values for each register 
(empty, nonzero, zero, or special), and store the updated tag word in memory. After executing these instructions, 
all the tags in the x87 FPU tag word are set to empty (11B). Likewise, the EMMS instruction clears MMX state from 
the MMX/floating-point registers by setting all the tags in the x87 FPU tag word to 11B.

14.3 SAVING AND RESTORING THE MMX STATE AND REGISTERS
Because the MMX registers are aliased to the x87 FPU data registers, the MMX state can be saved to memory and 
restored from memory as follows:

Table 14-2.  Effects of MMX Instructions on x87 FPU State

MMX Instruction 
Type

x87 FPU Tag 
Word

TOS Field of x87 
FPU Status Word

Other x87 FPU 
Registers

Bits 64 Through 79 
of x87 FPU Data 
Registers

Bits 0 Through 63 
of x87 FPU Data 
Registers

Read from MMX 
register

All tags set to 00B 
(Valid)

000B Unchanged Unchanged Unchanged

Write to MMX 
register

All tags set to 00B 
(Valid)

000B Unchanged Set to all 1s Overwritten with 
MMX data

EMMS All fields set to 
11B (Empty)

000B Unchanged Unchanged Unchanged

Table 14-3.  Effect of the MMX, x87 FPU, and FXSAVE/FXRSTOR Instructions on the x87 FPU Tag Word

Instruction
Type

Instruction x87 FPU Tag Word Image of x87 FPU Tag Word Stored in 
Memory

MMX All (except EMMS) All tags are set to 00B (valid). Not affected.

MMX EMMS All tags are set to 11B (empty). Not affected.

x87 FPU All (except FSAVE, 
FSTENV, FRSTOR, 
FLDENV)

Tag for modified floating-point register is 
set to 00B or 11B.

Not affected.

x87 FPU and 
FXSAVE

FSAVE, FSTENV, FXSAVE Tags and register values are read and 
interpreted; then all tags are set to 11B.

Tags are set according to the actual 
values in the floating-point registers; 
that is, empty registers are marked 11B 
and valid registers are marked 00B 
(nonzero), 01B (zero), or 10B (special).

x87 FPU and 
FXRSTOR

FRSTOR, FLDENV, 
FXRSTOR

All tags marked 11B in memory are set 
to 11B; all other tags are set according 
to the value in the corresponding 
floating-point register: 00B (nonzero), 
01B (zero), or 10B (special).

Tags are read and interpreted, but not 
modified.
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• Execute an FSAVE, FNSAVE, or FXSAVE instruction to save the MMX state to memory. (The FXSAVE instruction 
also saves the state of the XMM and MXCSR registers.)

• Execute an FRSTOR or FXRSTOR instruction to restore the MMX state from memory. (The FXRSTOR instruction 
also restores the state of the XMM and MXCSR registers.)

The save and restore methods described above are required for operating systems (see Section 14.4, “Saving MMX 
State on Task or Context Switches”). Applications can in some cases save and restore only the MMX registers in the 
following way:
• Execute eight MOVQ instructions to save the contents of the MMX0 through MMX7 registers to memory. An 

EMMS instruction may then (optionally) be executed to clear the MMX state in the x87 FPU.
• Execute eight MOVQ instructions to read the saved contents of MMX registers from memory into the MMX0 

through MMX7 registers.

NOTE
The IA-32 architecture does not support scanning the x87 FPU tag word and then only saving valid 
entries.

14.4 SAVING MMX STATE ON TASK OR CONTEXT SWITCHES
When switching from one task or context to another, it is often necessary to save the MMX state. As a general rule, 
if the existing task switching code for an operating system includes facilities for saving the state of the x87 FPU, 
these facilities can also be relied upon to save the MMX state, without rewriting the task switch code. This reliance 
is possible because the MMX state is aliased to the x87 FPU state (see Section 14.2, “The MMX State and MMX 
Register Aliasing”).

With the introduction of the FXSAVE and FXRSTOR instructions and of SSE/SSE2/SSE3/SSSE3 extensions, it is 
possible (and more efficient) to create state saving facilities in the operating system or executive that save the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3 state in one operation. Section 15.4, “Designing OS Facilities for Saving x87 
FPU, SSE, AND EXTENDED States on Task or Context Switches,” describes how to design such facilities. The tech-
niques describes in this section can be adapted to saving only the MMX and x87 FPU state if needed.

14.5 EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING MMX INSTRUCTIONS
MMX instructions do not generate x87 FPU floating-point exceptions, nor do they affect the processor’s status flags 
in the EFLAGS register or the x87 FPU status word. The following exceptions can be generated during the execution 
of an MMX instruction:
• Exceptions during memory accesses:

— Stack-segment fault (#SS).

— General protection (#GP).

— Page fault (#PF).

— Alignment check (#AC), if alignment checking is enabled.
• System exceptions:

— Invalid Opcode (#UD), if the EM flag in control register CR0 is set when an MMX instruction is executed (see 
Section 14.1, “Emulation of the MMX Instruction Set”).

— Device not available (#NM), if an MMX instruction is executed when the TS flag in control register CR0 is 
set. (See Section 15.4.1, “Using the TS Flag to Control the Saving of the x87 FPU and SSE State.”)

• Floating-point error (#MF). (See Section 14.5.1, “Effect of MMX Instructions on Pending x87 Floating-Point 
Exceptions.”)

• Other exceptions can occur indirectly due to the faulty execution of the exception handlers for the above 
exceptions.
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14.5.1 Effect of MMX Instructions on Pending x87 Floating-Point Exceptions
If an x87 FPU floating-point exception is pending and the processor encounters an MMX instruction, the processor 
generates a x87 FPU floating-point error (#MF) prior to executing the MMX instruction, to allow the pending excep-
tion to be handled by the x87 FPU floating-point error exception handler. While this exception handler is executing, 
the x87 FPU state is maintained and is visible to the handler. Upon returning from the exception handler, the MMX 
instruction is executed, which will alter the x87 FPU state, as described in Section 14.2, “The MMX State and MMX 
Register Aliasing.” 

14.6 DEBUGGING MMX CODE
The debug facilities operate in the same manner when executing MMX instructions as when executing other IA-32 
or Intel 64 architecture instructions.

To correctly interpret the contents of the MMX or x87 FPU registers from the FSAVE/FNSAVE or FXSAVE image in 
memory, a debugger needs to take account of the relationship between the x87 FPU register’s logical locations 
relative to TOS and the MMX register’s physical locations.

In the x87 FPU context, STn refers to an x87 FPU register at location n relative to the TOS. However, the tags in the 
x87 FPU tag word are associated with the physical locations of the x87 FPU registers (R0 through R7). The MMX 
registers always refer to the physical locations of the registers (with MM0 through MM7 being mapped to R0 
through R7). Figure 14-2 shows this relationship. Here, the inner circle refers to the physical location of the x87 
FPU and MMX registers. The outer circle refers to the x87 FPU register’s relative location to the current TOS.

When the TOS equals 0 (case A in Figure 14-2), ST0 points to the physical location R0 on the floating-point stack. 
MM0 maps to ST0, MM1 maps to ST1, and so on.

When the TOS equals 2 (case B in Figure 14-2), ST0 points to the physical location R2. MM0 maps to ST6, MM1 
maps to ST7, MM2 maps to ST0, and so on.

Figure 14-2.  Mapping of MMX Registers to x87 FPU Data Register Stack

MM0

MM1

MM2

MM3

MM4

MM5

MM6

MM7

ST1

ST2

ST7

ST0 ST6

ST7

ST1

TOSTOS

x87 FPU “push” x87 FPU “pop” x87 FPU “push”

x87 FPU “pop”

Case A: TOS=0 Case B: TOS=2

MM0

MM1

MM2

MM3

MM4

MM5

MM6

MM7

ST0

Outer circle = x87 FPU data register’s logical location relative to TOS
Inner circle = x87 FPU tags = MMX register’s location = FP register’s physical location

(R0)

(R2)(R2)

(R0)
Vol. 3A 14-5



INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
14-6 Vol. 3A



CHAPTER 15
SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND

PROCESSOR EXTENDED STATES

This chapter describes system programming features for instruction set extensions operating on the processor 
state extension known as the SSE state (XMM registers, MXCSR) and for other processor extended states. Instruc-
tion set extensions operating on the SSE state include the streaming SIMD extensions (SSE), streaming SIMD 
extensions 2 (SSE2), streaming SIMD extensions 3 (SSE3), Supplemental SSE3 (SSSE3), and SSE4. Collectively, 
these are called SSE extensions1 and the corresponding instructions are called SSE instructions. 
FXSAVE/FXRSTOR instructions can be used save/restore SSE state along with FP state. See Section 10.5 in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for information about FXSAVE and 
FXRSTOR.

Sections 15.1 through 15.4 cover system programming requirements to enable the SSE extensions, providing 
operating system or executive support for the SSE extensions, SIMD floating-point exceptions, exception handling, 
and task (context) switching. These sections primarily discuss use of FXSAVE/FXRSTOR to save/restore SSE state.

XSAVE feature set refers to extensions to the Intel architecture that will allow system executives to implement 
support for multiple processor extended states along with FP/SSE states that may be introduced over time without 
requiring the system executive to be modified each time a new processor state extension is introduced. XSAVE 
feature set provide mechanisms to enumerate the supported extended states, enable some or all of them for soft-
ware use, instructions to save/restore the states and enumerate the layout of the states when saved to memory. 
XSAVE/XRSTOR instructions are part of the XSAVE feature set. These instructions are introduced after the intro-
duction of FP/SSE states but can be used to manage legacy FP/SSE state along with processor extended states. See 
Chapter 13 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for information about 
XSAVE feature set.

System programming for managing processor extended states is described in sections 15.5 through 15.6. XSAVE 
feature set is designed to be compatible with FXSAVE/FXRSTOR and hence much of the material through sections 
15.1 to 15.4 related to SSE state also applies to XSAVE feature set with the exception of enumeration and 
saving/restoring state.

XSAVE Compaction is an XSAVE feature that allows operating systems to allocate space for only the states saved 
to conserve memory usage. A new instruction called XSAVEC is introduced to save extended states in compacted 
format and XRSTOR instruction is enhanced to comprehend compacted format. System programming for managing 
processor extended states in compacted format is also described in section 15.5.

Supervisor state is an extended state that can only be accessed in ring 0. XSAVE feature set has been enhanced 
to manage supervisor states. Two new ring 0 instructions, XSAVES/XRSTORS, are introduced to save/restore 
supervisor states along with other XSAVE managed states. They are privileged instruction and only operate in 
compacted format. System programming for managing supervisor states in described in section 15.7.

Each XSAVE managed features may have additional feature specific system programming requirements such as 
exception handlers etc. Feature specific system programming requirements for XSAVE managed features are 
described in Section 15.8.

15.1 PROVIDING OPERATING SYSTEM SUPPORT FOR SSE EXTENSIONS
To use SSE extensions, the operating system or executive must provide support for initializing the processor to use 
these extensions, for handling SIMD floating-point exceptions, and for using FXSAVE and FXRSTOR (Section 10.5 
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1) to manage context. XSAVE 
feature set can also be used to manage SSE state along with other processor extended states as described in 15.5. 
This section primarily focuses on using FXSAVE/FXRSTOR to manage SSE state. Because SSE extensions share the 
same state, experience the same sets of non-numerical and numerical exception behavior, these guidelines that 

1. The collection also includes PCLMULQDQ and AES instructions operating on XMM state.
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apply to SSE also apply to other sets of SIMD extensions that operate on the same processor state and subject to 
the same sets of non-numerical and numerical exception behavior. 

Chapter 11, “Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2)‚” and Chapter 12, “Program-
ming with Intel® SSE3, SSSE3, Intel® SSE4, and Intel® AES-NI,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, provide details on the Intel SSE instruction set.

15.1.1 Adding Support to an Operating System for SSE Extensions
The following guidelines describe functions that an operating system or executive must perform to support SSE 
extensions:

1. Check that the processor supports the SSE extensions.

2. Check that the processor supports the FXSAVE and FXRSTOR instructions or the XSAVE feature set.

3. Provide an initialization for the SSE states.

4. Provide support for the FXSAVE and FXRSTOR instructions or the XSAVE feature set.

5. Provide support (if necessary) in non-numeric exception handlers for exceptions generated by the SSE instruc-
tions.

6. Provide an exception handler for the SIMD floating-point exception (#XM).

The following sections describe how to implement each of these guidelines.

15.1.2 Checking for CPU Support
If the processor attempts to execute an unsupported SSE instruction, the processor generates an invalid-opcode 
exception (#UD). Before an operating system or executive attempts to use SSE extensions, it should check that 
support is present by confirming the following bit values returned by the CPUID instruction:
• CPUID.1:EDX.SSE[bit 25] = 1
• CPUID.1:EDX.SSE2[bit 26] = 1
• CPUID.1:ECX.SSE3[bit 0] = 1
• CPUID.1:ECX.SSSE3[bit 9] = 1
• CPUID.1:ECX.SSE4_1[bit 19] = 1
• CPUID.1:ECX.SSE4_2[bit 20] = 1

(To use POPCNT instruction, software must check CPUID.1:ECX.POPCNT[bit 23] = 1.)

Separate checks must be made to ensure that the processor supports either FXSAVE and FXRSTOR or the XSAVE 
feature set. See Section 10.5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, and 
Chapter 13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, respectively.

15.1.3 Initialization of the SSE Extensions
The operating system or executive should carry out the following steps to set up SSE extensions for use by appli-
cation programs:

1. Set CR4.OSFXSR[bit 9] = 1. Setting this flag implies that the operating system provides facilities for saving 
and restoring SSE state using FXSAVE and FXRSTOR instructions. These instructions may be used to save the 
SSE state during task switches and when invoking the SIMD floating-point exception (#XM) handler (see 
Section 15.1.5, “Providing a Handler for the SIMD Floating-Point Exception (#XM)”). 
If the processor does not support the FXSAVE and FXRSTOR instructions, attempting to set the OSFXSR flag 
causes a general-protection exception (#GP) to be generated.
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2. Set CR4.OSXMMEXCPT[bit 10] = 1. Setting this flag implies that the operating system provides a SIMD 
floating-point exception (#XM) handler (see Section 15.1.5, “Providing a Handler for the SIMD Floating-Point 
Exception (#XM)”). 

NOTE
The OSFXSR and OSXMMEXCPT bits in control register CR4 must be set by the operating system. 
The processor has no other way of detecting operating-system support for the FXSAVE and 
FXRSTOR instructions or for handling SIMD floating-point exceptions.

3. Clear CR0.EM[bit 2] = 0. This action disables emulation of the x87 FPU, which is required when executing SSE 
instructions (see Section 2.5, “Control Registers”).

4. Set CR0.MP[bit 1] = 1. This setting is required for Intel 64 and IA-32 processors that support the SSE 
extensions (see Section 11.2.1, “Configuring the x87 FPU Environment”).

Table 15-1 and Table 15-2 show the actions of the processor when an SSE instruction is executed, depending on 
the following: 
• OSFXSR and OSXMMEXCPT flags in control register CR4
• SSE/SSE2/SSE3/SSSE3/SSE4 feature flags returned by CPUID
• EM, MP, and TS flags in control register CR0

Table 15-1.  Action Taken for Combinations of OSFXSR, OSXMMEXCPT, SSE, SSE2, SSE3, EM, MP, and TS1

NOTES:
1. For execution of any SSE instruction except the PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, and CLFLUSH instructions.

CR4 CPUID CR0 Flags

OSFXSR OSXMMEXCPT SSE, SSE2, 
SSE32,

SSE4_13

2. Exception conditions due to CR4.OSFXSR or CR4.OSXMMEXCPT do not apply to FISTTP.
3. Only applies to DPPS, DPPD, ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD.

EM MP4

4. For processors that support the MMX instructions, the MP flag should be set.

TS Action

0 X5

5. X = Don’t care.

X X 1 X #UD exception.

1 X 0 X 1 X #UD exception.

1 X 1 1 1 X #UD exception.

1 0 1 0 1 0 Execute instruction; #UD exception if unmasked 
SIMD floating-point exception is detected.

1 1 1 0 1 0 Execute instruction; #XM exception if unmasked 
SIMD floating-point exception is detected.

1 X 1 0 1 1 #NM exception.
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The SIMD floating-point exception mask bits (bits 7 through 12), the flush-to-zero flag (bit 15), the denormals-are-
zero flag (bit 6), and the rounding control field (bits 13 and 14) in the MXCSR register should be left in their default 
values of 0. This permits the application to determine how these features are to be used.

15.1.4 Providing Non-Numeric Exception Handlers for Exceptions Generated by the SSE 
Instructions

SSE instructions can generate the same type of memory-access exceptions (such as page faults and limit viola-
tions) and other non-numeric exceptions as other Intel 64 and IA-32 architecture instructions generate. 

Ordinarily, existing exception handlers can handle these and other non-numeric exceptions without code modifica-
tion. However, depending on the mechanisms used in existing exception handlers, some modifications might need 
to be made.

The SSE extensions can generate the non-numeric exceptions listed below:
• Memory Access Exceptions:

— Stack-segment fault (#SS).

— General protection exception (#GP). Executing most SSE instructions with an unaligned 128-bit memory 
reference generates a general-protection exception. (The MOVUPS and MOVUPD instructions allow 
unaligned a loads or stores of 128-bit memory locations, without generating a general-protection 
exception.) A 128-bit reference within the stack segment that is not aligned to a 16-byte boundary will also 
generate a general-protection exception, instead a stack-segment fault exception (#SS).

— Page fault (#PF).

— Alignment check (#AC). When enabled, this type of alignment check operates on operands that are less 
than 128-bits in size: 16-bit, 32-bit, and 64-bit. To enable the generation of alignment check exceptions, do 
the following:

• Set the AM flag (bit 18 of control register CR0)

• Set the AC flag (bit 18 of the EFLAGS register)

• CPL must be 3

If alignment check exceptions are enabled, 16-bit, 32-bit, and 64-bit misalignment will be detected for the 
MOVUPD and MOVUPS instructions; detection of 128-bit misalignment is not guaranteed and may vary 
with implementation.

Table 15-2.  Action Taken for Combinations of OSFXSR, SSSE3, SSE4, EM, and TS

CR4 CPUID CR0 Flags

OSFXSR SSSE3
SSE4_11

SSE4_22

NOTES:
1. Applies to SSE4_1 instructions except DPPS, DPPD, ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD.
2. Applies to SSE4_2 instructions except CRC32 and POPCNT.

EM TS Action

0 X3

3. X = Don’t care.

X X #UD exception.

1 0 X X #UD exception.

1 1 1 X #UD exception.

1 1 0 1 #NM exception.
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• System Exceptions:

— Invalid-opcode exception (#UD). This exception is generated when executing SSE instructions under the 
following conditions:

• SSE/SSE2/SSE3/SSSE3/SSE4_1/SSE4_2 feature flags returned by CPUID are set to 0. This condition 
does not affect the CLFLUSH instruction, nor POPCNT.

• The CLFSH feature flag returned by the CPUID instruction is set to 0. This exception condition only 
pertains to the execution of the CLFLUSH instruction. 

• The POPCNT feature flag returned by the CPUID instruction is set to 0. This exception condition only 
pertains to the execution of the POPCNT instruction. 

• The EM flag (bit 2) in control register CR0 is set to 1, regardless of the value of TS flag (bit 3) of CR0. 
This condition does not affect the PAUSE, PREFETCHh, MOVNTI, SFENCE, LFENCE, MFENCE, CLFLUSH, 
CRC32, and POPCNT instructions.

• The OSFXSR flag (bit 9) in control register CR4 is set to 0. This condition does not affect the PSHUFW, 
MOVNTQ, MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, CLFLUSH, CRC32, and POPCNT 
instructions.

• Executing an instruction that causes a SIMD floating-point exception when the OSXMMEXCPT flag (bit 
10) in control register CR4 is set to 0. See Section 15.4.1, “Using the TS Flag to Control the Saving of 
the x87 FPU and SSE State.”

— Device not available (#NM). This exception is generated by executing a SSE instruction when the TS flag 
(bit 3) of CR0 is set to 1.

Other exceptions can occur during delivery of the above exceptions.

15.1.5 Providing a Handler for the SIMD Floating-Point Exception (#XM)
SSE instructions do not generate numeric exceptions on packed integer operations. They can generate the 
following numeric (SIMD floating-point) exceptions on packed and scalar single precision and double precision 
floating-point operations. 
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

These SIMD floating-point exceptions (with the exception of the denormal operand exception) are defined in the 
IEEE Standard 754 for Floating-Point Arithmetic and represent the same conditions that cause x87 FPU floating-
point error exceptions (#MF) to be generated for x87 FPU instructions.

Each of these exceptions can be masked, in which case the processor returns a reasonable result to the destination 
operand without invoking an exception handler. However, if any of these exceptions are left unmasked, detection 
of the exception condition results in a SIMD floating-point exception (#XM) being generated. See Chapter 7, 
“Interrupt 19—SIMD Floating-Point Exception (#XM).”

To handle unmasked SIMD floating-point exceptions, the operating system or executive must provide an exception 
handler. The section titled “SSE and SSE2 SIMD Floating-Point Exceptions” in Chapter 11, “Programming with 
Intel® Streaming SIMD Extensions 2 (Intel® SSE2),” of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, describes the SIMD floating-point exception classes and gives suggestions for writing an 
exception handler to handle them.

To indicate that the operating system provides a handler for SIMD floating-point exceptions (#XM), the OSXM-
MEXCPT flag (bit 10) must be set in control register CR4.
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15.1.5.1  Numeric Error flag and IGNNE#
SSE extensions ignore the NE flag in control register CR0 (that is, they treat it as if it were always set) and the 
IGNNE# pin. When an unmasked SIMD floating-point exception is detected, it is always reported by generating a 
SIMD floating-point exception (#XM).

15.2 EMULATION OF SSE EXTENSIONS 
The Intel 64 and IA-32 architectures do not support emulation of the SSE instructions, as they do for x87 FPU 
instructions.

The EM flag in control register CR0 (provided to invoke emulation of x87 FPU instructions) cannot be used to invoke 
emulation of SSE instructions. If an SSE instruction is executed when CR0.EM = 1, an invalid opcode exception 
(#UD) is generated. See Table 15-1.

15.3 SAVING AND RESTORING SSE STATE
The SSE state consists of the state of the XMM and MXCSR registers. Intel recommends the following method for 
saving and restoring this state:
• Execute the FXSAVE instruction to save the state of the XMM and MXCSR registers to memory.
• Execute the FXRSTOR instruction to restore the state of the XMM and MXCSR registers from the image saved in 

memory earlier.

This save and restore method is required for all operating systems. XSAVE feature set can also be used to 
save/restore SSE state. See Section 15.5, “The XSAVE Feature Set and Processor Extended State Management,” 
for using the XSAVE feature set to save/restore SSE state.

In some cases, applications may choose to save only the XMM and MXCSR registers in the following manner:
• Execute MOVDQ instructions to save the contents of the XMM registers to memory. 
• Execute a STMXCSR instruction to save the state of the MXCSR register to memory.

Such applications must restore the XMM and MXCSR registers as follows:
• Execute MOVDQ instructions to load the saved contents of the XMM registers from memory into the XMM 

registers.
• Execute a LDMXCSR instruction to restore the state of the MXCSR register from memory.

15.4 DESIGNING OS FACILITIES FOR SAVING X87 FPU, SSE, AND EXTENDED 
STATES ON TASK OR CONTEXT SWITCHES

The x87 FPU and SSE state consist of the state of the x87 FPU, XMM, and MXCSR registers. The FXSAVE and 
FXRSTOR instructions provide a fast method for saving and restoring this state. The XSAVE feature set can also be 
used to save FP and SSE state along with other extended states (see Section 15.5).

Older operating systems may use FSAVE/FNSAVE and FRSTOR to save the x87 FPU state. These facilities can be 
extended to save and restore SSE state by substituting FXSAVE and FXRSTOR or the XSAVE feature set in place of 
FSAVE/FNSAVE and FRSTOR.

If task or context switching facilities are written from scratch, any of several approaches may be taken for using the 
FXSAVE and FXRSTOR instructions or the XSAVE feature set to save and restore x87 FPU and SSE state:
• The operating system can require applications that are intended to be run as tasks take responsibility for saving 

the states prior to a task suspension during a task switch and for restoring the states when the task is resumed. 
This approach is appropriate for cooperative multitasking operating systems, where the application has control 
over (or is able to determine) when a task switch is about to occur and can save state prior to the task switch.
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• The operating system can take the responsibility for saving the states as part of the task switch process and 
restoring the state of the registers when a suspended task is resumed. This approach is appropriate for 
preemptive multitasking operating systems, where the application cannot know when it is going to be 
preempted and cannot prepare in advance for task switching. 

• The operating system can take the responsibility for saving the states as part of the task switch process, but 
delay the restoring of the states until an instruction operating on the states is actually executed by the new 
task. See Section 15.4.1, “Using the TS Flag to Control the Saving of the x87 FPU and SSE State,” for more 
information. This approach is called lazy restore.
The use of lazy restore mechanism in context switches is not recommended when XSAVE feature set is used to 
save/restore states for the following reasons.

— With XSAVE feature set, Intel processors have optimizations in place to avoid saving the state components 
that are in their initial configurations or when they have not been modified since they were restored last. 
These optimizations eliminate the need for lazy restore. See section 13.5.4 in Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1. 

— Intel processors have power optimizations when state components are in their initial configurations. Use of 
lazy restore retains the non-initial configuration of the last thread and is not power efficient.

— Not all extended states support lazy restore mechanisms. As such, when one or more such states are 
enabled it becomes very inefficient to use lazy restore as it results in two separate state restore, one in 
context switch for the states that does not support lazy restore and one in the #NM handler for states that 
support lazy restore.

15.4.1 Using the TS Flag to Control the Saving of the x87 FPU and SSE State
The TS flag in control register CR0 is provided to allow the operating system to delay saving/restoring the x87 FPU 
and SSE state until an instruction that actually accesses this state is encountered in a new task. When the TS flag 
is set, the processor monitors the instruction stream for x87 FPU, MMX, SSE instructions. When the processor 
detects one of these instructions, it raises a device-not-available exception (#NM) prior to executing the instruc-
tion. The #NM exception handler can then be used to save the x87 FPU and SSE state for the previous task (using 
an FXSAVE, XSAVE, or XSAVEOPT instruction) and load the x87 FPU and SSE state for the current task (using an 
FXRSTOR or XRSOTR instruction). If the task never encounters an x87 FPU, MMX, or SSE instruction, the device-
not-available exception will not be raised and a task state will not be saved/restored unnecessarily.

NOTE
The CRC32 and POPCNT instructions do not operate on the x87 FPU or SSE state. They operate on 
the general-purpose registers and are not involved with the techniques described above.

The TS flag can be set either explicitly (by executing a MOV instruction to control register CR0) or implicitly (using 
the IA-32 architecture’s native task switching mechanism). When the native task switching mechanism is used, the 
processor automatically sets the TS flag on a task switch. After the device-not-available handler has saved the x87 
FPU and SSE state, it should execute the CLTS instruction to clear the TS flag.

15.5 THE XSAVE FEATURE SET AND PROCESSOR EXTENDED STATE 
MANAGEMENT 

The architecture of XSAVE feature set is described in Chapter 13 of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1. The XSAVE feature set includes the following:
• An extensible data layout for existing and future processor state extensions. The layout of the XSAVE area 

extends from the 512-byte FXSAVE/FXRSTOR layout to provide compatibility and migration path from 
managing the legacy FXSAVE/FXRSTOR area. The XSAVE area is described in more detail in Section 13.4 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

• CPUID enhancements for feature enumeration. See Section 13.2 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1.
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• Control register enhancement and dedicated register for enabling each processor extended state. See Section 
13.3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

• Instructions to save state to and restore state from the XSAVE area. See Section 13.7 through Section 13.9 of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

Operating systems can utilize XSAVE feature set to manage both FP/SSE state and processor extended states. 
CPUID leaf 0DH enumerates XSAVE feature set related information. The following guidelines provide the steps an 
operating system needs to take to support legacy FP/SSE states and processor extended states.

1. Check that the processor supports the XSAVE feature set

2. Determine the set of XSAVE managed features that the operating system intends to enable and calculate the 
size of the buffer needed to save/restore the states during context switch and other flows

3. Enable use of XSAVE feature set and XSAVE managed features

4. Provide an initialization for the XSAVE managed feature state components

5. Provide (if necessary) required exception handlers for exceptions generated each of the XSAVE managed 
features.

15.5.1 Checking the Support for XSAVE Feature Set
Support for XSAVE Feature set is enumerated in CPUID.1.ECX.XSAVE[bit 26]. Enumeration of this bit indicates that 
the processor supports XSAVE/XRSTOR instructions to manage state and XSETBV/XGETBV on XCR0 to enable and 
get enabled states. An operating system needs to enable XSAVE feature set as described later.
Additionally, CPUID.(EAX=0DH, ECX=1).EAX enumerates additional XSAVE sub features such as optimized save, 
compaction, and supervisor state support. The following table summarizes XSAVE sub features. Once an operating 
system enables XSAVE feature set, all the sub-features enumerated are also available. There is no need to enable 
each additional sub feature.

15.5.2 Determining the XSAVE Managed Feature States And The Required Buffer Size 
Each XSAVE managed feature has one or more state components associated with it. An operating system policy 
needs to determine the XSAVE managed features to support and determine the corresponding state components to 
enable. When determining the XSAVE managed features to support, operating system needs to take into account 
the dependencies between them (e.g., AVX feature depends on SSE feature). Similarly, when a XSAVE managed 
feature has more than one state component, all of them need to be enabled. Each logical processor enumerates 
supported XSAVE state components in CPUID.(EAX=0DH, ECX=0).EDX:EAX. An operating system may enable all 
or a subset of the state components enumerated by the processor based on the OS policy.
The size of the memory buffer needed to save enabled XSAVE state components depends on whether the OS opts-
in to use compacted format or not. Section 13.4.3 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, describes the layout of the extended region of the XSAVE area.

Table 15-3.   CPUID.(EAX=0DH, ECX=1) EAX Bit Assignment

EAX Bit Position Meaning

0 If set, indicates availability of the XSAVEOPT instruction.

1 If set, indicates availability of the XSAVEC instruction and the corresponding compaction enhancements 
to the legacy XRSTOR instruction.

2 If set, indicates support for execution of XGETBV with ECX=1. This execution returns the state-compo-
nent bitmap XINUSE. If XINUSE[i] = 0, state component i is in its initial configuration. Execution of 
XSETBV with ECX=1 causes a #GP.

3 If set, indicates support for XSAVES/XRSTORS and IA32_XSS MSR

31:4 Reserved
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15.5.3 Enable the Use Of XSAVE Feature Set And XSAVE State Components
Operating systems need to enable the use of XSAVE feature set by writing to CR4.OSXSAVE[bit 18] to enable 
XSETBV/XGETBV instructions to access XCR0 and to support processor extended state management using 
XSAVE/XRSTOR. When the XSAVE feature set is enabled, all enumerated XSAVE sub features such as optimized 
save, compaction, and supervisor state support are also enabled. Operating systems also need to enable the 
XSAVE state components in XCR0 using the XSETBV instruction.
XSAVE state components can subsequently be disabled in XCR0. However, disabling state components of AVX or 
AVX-512 that are not in initial configuration may incur power and performance penalty on SSE and AVX instructions 
respectively. If AVX state is disabled when it is not in its initial configuration, subsequent SSE instructions may 
incur a penalty. If AVX-512 state is disabled when it is not in its initial configuration, subsequent SSE and AVX 
instructions may incur a penalty. It is recommended that the operating systems and VMM set AVX or AVX-512 state 
components to their initial configuration before disabling them. This can be achieved by one of the two methods 
below.
• Using XRSTOR: Operating system or VMM can set the state of AVX or AVX-512 state components using XRSTOR 

instruction before disabling them in XCR0.
• Using VZEROUPPER: Operating system or VMM can set AVX and AVX-512 state components to their initial 

configuration using VZEROUPPER instruction before disabling them in XCR0. Note that this will set both AVX 
and AVX-512 state components to their initial configuration. If the intent is to only disable AVX-512 state, 
Operating system or VMM will need to save AVX state before executing VZEROUPPER and restore it afterwards.

15.5.4 Provide an Initialization for the XSAVE State Components
The XSAVE header of a newly allocated XSAVE area should be initialized to all zeroes before saving context. An 
operating system may choose to establish beginning state-component values for a task by executing XRSTOR from 
an XSAVE area that the OS has configured. If it is desired to begin state component i in its initial configuration, the 
OS should clear bit i in the XSTATE_BV field in the XSAVE header; otherwise, it should set that bit and place the 
desired beginning value in the appropriate location in the XSAVE area.
When a buffer is allocated for compacted size, software must ensure that the XCOMP_BV field is setup correctly 
before restoring from the buffer. Bit 63 of the XCOMP_BV field indicates that the save area is in the compacted 
format and the remaining bits indicate the states that have space allocated in the save area. If the buffer is first 
used to save the state in compacted format, then the save instructions will setup the XCOMP_BV field appropri-
ately. If the buffer is first used to restore the state, then software must set up the XCOMP_BV field.

15.5.5 Providing the Required Exception Handlers
Instructions part of each XSAVE managed features may generate exceptions and operating system may need to 
enable such exceptions and provide handlers for them. Section 15.8 describes feature specific OS requirements for 
each XSAVE managed features.

15.6 INTEROPERABILITY OF THE XSAVE FEATURE SET AND FXSAVE/FXRSTOR
The FXSAVE instruction writes x87 FPU and SSE state information to a 512-byte FXSAVE save area. FXRSTOR 
restores the processor’s x87 FPU and SSE states from an FXSAVE area. The XSAVE features set supports x87 FPU 
and SSE states using the same layout as the FXSAVE area to provide interoperability of FXSAVE versus XSAVE, and 
FXRSTOR versus XRSTOR. The XSAVE feature set allows system software to manage SSE state independent of x87 
FPU states. Thus system software that had been using FXSAVE and FXRSTOR to manage x87 FPU and SSE states 
can transition to using the XSAVE feature set to manage x87 FPU, SSE, and other processor extended states in a 
systematic and forward-looking manner. See Section 10.5 and Chapter 13 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for more details.

System software can implement forward-looking processor extended state management using the XSAVE feature 
set. In this case, system software must specify the bit vector mask in EDX:EAX appropriately when executing 
XSAVE/XRSTOR instructions. 
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For instance, the OS can supply instructions in the XSAVE feature set with a bit vector in EDX:EAX with the two 
least significant bits (corresponding to x87 FPU and SSE state) equal to 0. Then, the XSAVE instruction will not 
write the processor’s x87 FPU and SSE state into memory. Similarly, the XRSTOR instruction executed with a value 
in EDX:EAX with the least two significant bit equal to 0 will not restore nor initialize the processor’s x87 FPU and 
SSE state.

The processor’s action as a result of executing XRSTOR is given in Section 13.8 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1. The instruction may be used to initialize x87 FPU or XMM regis-
ters. When the MXCSR register is updated from memory, reserved bit checking is enforced. The saving/restoring of 
MXCSR is bound to the SSE state, independent of the x87 FPU state. The action of XSAVE is given in Section 13.7 
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

15.7 THE XSAVE FEATURE SET AND PROCESSOR SUPERVISOR STATE 
MANAGEMENT 

Supervisor state is a processor state that is only accessible in ring 0. An extension to the XSAVE feature set, 
enumerated by CPUID.(EAX=0DH, ECX=1).EAX[bit 3] allows the management of the supervisor states using the 
XSAVE feature set. See Chapter 13 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
for the details of the supervisor state XSAVE feature set extension. The supervisor state extension includes the 
following:
• CPUID enhancements to enumerate the set of supervisor states and their sizes that can be managed by the 

XSAVE feature set. 
• The IA32_XSS MSR to enable the XSAVE feature set to manage one or more enumerated supervisor states. 
• A pair of privileged save/restore instructions, XSAVES and XRSTORS, to save/restore supervisor states along 

with other XSAVE managed feature states.

The guidelines to enable the XSAVE feature set to manage supervisor state are very similar to the steps outlined in 
Section 13.6 with the differences noted below. The set of supervisor states that can be managed by the XSAVE 
feature set is enumerated in (EAX=0DH, ECX=1).EDX:ECX. XSAVE managed supervisor states are enabled in the 
IA32_XSS MSR instead of the XCR0 control register. There are semantic differences between user states enabled in 
XCR0 and supervisor state enabled in the IA32_XSS MSR. A supervisor state enabled in the IA32_XSS MSR:
• May be accessed via other mechanisms such as RDMSR/WRMSR even when they are not enabled in the 

IA32_XSS MSR. Enabling a supervisor state in the IA32_XSS MSR merely indicates that the state can be 
saved/restored using XSAVES/XRSTORS instructions. 

• May have side effects when saving/restoring the state such as disabling/enabling the feature associated with 
the state. This behavior is feature specific and will be documented along with the feature description. 

• May generate faults when saving/restoring the state. XSAVES/XRSTORS will follow the faulting behavior of 
RDMSR/WRMSR respectively if the corresponding state is also accessible using RDMSR/WRMSR. 

• XRSTORS may fault when restoring the state for supervisor features that are already enabled via feature 
specific mechanisms. This behavior is feature specific and will be documented along with the feature 
description.

When a supervisor state is disabled via a feature specific mechanism, the state does not automatically get marked 
as INIT. Hence XSAVES/XRSTORS will continue to save/restore the state subject to available optimizations. If the 
software does not intend to preserve the state when it disables the feature, it should initialize it to hardware INIT 
value with the XRSTORS instruction so that XSAVES/XRSTORS perform optimally for that state.

15.8 SYSTEM PROGRAMMING FOR XSAVE MANAGED FEATURES
This section describes system programming requirement for each XSAVE managed features that are feature 
specific, such as exception handling.
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15.8.1 Intel® Advanced Vector Extensions (Intel® AVX)
Intel AVX instructions comprises of 256-bit and 128-bit instructions that operates on 256-bit YMM registers. The 
XSAVE feature set allows software to save and restore the state of these registers. See Chapter 13 of the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1.

For processors that support YMM states, the YMM state exists in all operating modes. However, the available 
instruction interfaces to access YMM states may vary in different modes. 
Operating systems must use the XSAVE feature set for YMM state management. The XSAVE feature set also 
provides flexible and efficient interface to manage XMM/MXCSR states and x87 FPU states in conjunction with 
newer processor extended states like YMM states. Operating systems may need to be aware of the following when 
supporting AVX.
• Saving/Restoring AVX state in non-compacted format without SSE state will also save/restore MXCSR even 

though MXCSR is not part of AVX state. This does not happen when compacted format is used. 
• Few AVX instructions such as VZEROUPPER/VZEROALL may operate on future expansion of YMM registers.

An operating system must enable its YMM state management to support AVX and any 256-bit extensions that 
operate on YMM registers. Otherwise, an attempt to execute an instruction in AVX extensions (including an 
enhanced 128-bit SIMD instructions using VEX encoding) will cause a #UD exception. 

AVX instructions may generate SIMD floating-point exceptions. An OS must enable SIMD floating-point exception 
support by setting CR4.OSXMMEXCPT[bit 10]=1.

15.8.2 Intel® Advanced Vector Extensions 512 (Intel® AVX-512)
Intel AVX-512 instructions are encoded using EVEX prefix. The EVEX encoding scheme can support 512-bit, 256-
bit and 128-bit instructions that operate on opmask, ZMM, YMM, and XMM registers.
For processors that support the Intel AVX-512 family of instructions, the extended processor states (ZMM and 
opmask registers) exist in all operating modes. However, the access to these states may vary in different modes. 
The processor's support for instruction extensions that employ EVEX prefix encoding is independent of the 
processor's support for using XSAVE feature set on those states.
Instructions requiring EVEX prefix encoding are generally supported in 64-bit, 32-bit modes, and 16-bit protected 
mode. They are not supported in Real mode, Virtual-8086 mode or entering into SMM mode. Note that bits MAXVL-
1:256 (511:256) of ZMM register state are maintained across transitions into and out of these modes. Because the 
XSAVE feature set instruction can operate in all operating modes, it is possible that the processor's ZMM register 
state can be modified by software in any operating mode by executing XRSTOR.
Operating systems must use the XSAVE/XRSTOR/XSAVEOPT instructions for ZMM and opmask state management. 
An OS must enable its ZMM and opmask state management to support Intel AVX-512 Foundation instructions. 
Otherwise, an attempt to execute an instruction in Intel AVX-512 Foundation instructions (including a scalar 128-
bit SIMD instructions using EVEX encoding) will cause a #UD exception. An operating system, which enables the 
AVX-512 state to support Intel AVX-512 Foundation instructions, is also sufficient to support the rest of the Intel 
AVX-512 family of instructions. Note that even though ZMM8-ZMM31 are not accessible in 32 bit mode, a 32 bit OS 
is still required to allocate memory for the entire ZMM state.
Intel AVX-512 Foundation instructions may generate SIMD floating-point exceptions. An OS must enable SIMD 
floating-point exception support by setting CR4.OSXMMEXCPT[bit 10]=1.
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CHAPTER 16
POWER AND THERMAL MANAGEMENT

This chapter describes facilities of Intel 64 and IA-32 architecture used for power management and thermal moni-
toring.

16.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY
Enhanced Intel SpeedStep® Technology was introduced in the Pentium M processor. The technology enables the 
management of processor power consumption via performance state transitions. These states are defined as 
discrete operating points associated with different voltages and frequencies. 

Enhanced Intel SpeedStep Technology differs from previous generations of Intel SpeedStep® Technology in two 
ways:
• Centralization of the control mechanism and software interface in the processor by using model-specific 

registers.
• Reduced hardware overhead; this permits more frequent performance state transitions.

Previous generations of the Intel SpeedStep Technology require processors to be a deep sleep state, holding off bus 
master transfers for the duration of a performance state transition. Performance state transitions under the 
Enhanced Intel SpeedStep Technology are discrete transitions to a new target frequency.

Support is indicated by CPUID, using ECX feature bit 07. Enhanced Intel SpeedStep Technology is enabled by 
setting IA32_MISC_ENABLE MSR, bit 16. On reset, bit 16 of IA32_MISC_ENABLE MSR is cleared. 

16.1.1 Software Interface For Initiating Performance State Transitions
State transitions are initiated by writing a 16-bit value to the IA32_PERF_CTL register, see Figure 16-2. If a transi-
tion is already in progress, transition to a new value will subsequently take effect. 

Reads of IA32_PERF_CTL determine the last targeted operating point. The current operating point can be read from 
IA32_PERF_STATUS. IA32_PERF_STATUS is updated dynamically.

The 16-bit encoding that defines valid operating points is model-specific. Applications and performance tools are 
not expected to use either IA32_PERF_CTL or IA32_PERF_STATUS and should treat both as reserved. Performance 
monitoring tools can access model-specific events and report the occurrences of state transitions.

16.2 P-STATE HARDWARE COORDINATION
The Advanced Configuration and Power Interface (ACPI) defines performance states (P-states) that are used to 
facilitate system software’s ability to manage processor power consumption. Different P-states correspond to 
different performance levels that are applied while the processor is actively executing instructions. Enhanced Intel 
SpeedStep Technology supports P-states by providing software interfaces that control the operating frequency and 
voltage of a processor. 

With multiple processor cores residing in the same physical package, hardware dependencies may exist for a 
subset of logical processors on a platform. These dependencies may impose requirements that impact the coordi-
nation of P-state transitions. As a result, multi-core processors may require an OS to provide additional software 
support for coordinating P-state transitions for those subsets of logical processors.

ACPI firmware can choose to expose P-states as dependent and hardware-coordinated to OS power management 
(OSPM) policy. To support OSPMs, multi-core processors must have additional built-in support for P-state hardware 
coordination and feedback.

Intel 64 and IA-32 processors with dependent P-states amongst a subset of logical processors permit hardware 
coordination of P-states and provide a hardware-coordination feedback mechanism using IA32_MPERF MSR and 
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IA32_APERF MSR. See Figure 16-1 for an overview of the two 64-bit MSRs and the bullets below for a detailed 
description.

• Use CPUID to check the P-State hardware coordination feedback capability bit. CPUID.06H:ECX[bit 0] = 1 
indicates IA32_MPERF MSR and IA32_APERF MSR are present.

• The IA32_MPERF MSR (E7H) increments in proportion to a fixed frequency, which is configured when the 
processor is booted.

• The IA32_APERF MSR (E8H) increments in proportion to actual performance, while accounting for hardware 
coordination of P-state and TM1/TM2; or software initiated throttling.

• The MSRs are per logical processor; they measure performance only when the targeted processor is in the C0 
state.

• Only the IA32_APERF/IA32_MPERF ratio is architecturally defined; software should not attach meaning to the 
content of the individual bits of the IA32_APERF or IA32_MPERF MSRs.

• When either MSR overflows, both MSRs are reset to zero and continue to increment.
• Both MSRs are full 64-bits counters. Each MSR can be written to independently. However, software should 

follow the guidelines illustrated in Example 16-1.

If P-states are exposed by the BIOS as hardware coordinated, software is expected to confirm processor support 
for P-state hardware coordination feedback and use the feedback mechanism to make P-state decisions. The OSPM 
is expected to either save away the current MSR values (for determination of the delta of the counter ratio at a later 
time) or reset both MSRs (execute WRMSR with 0 to these MSRs individually) at the start of the time window used 
for making the P-state decision. When not resetting the values, overflow of the MSRs can be detected by checking 
whether the new values read are less than the previously saved values. 

Example 16-1 demonstrates steps for using the hardware feedback mechanism provided by IA32_APERF MSR and 
IA32_MPERF MSR to determine a target P-state.

Example 16-1.  Determine Target P-state From Hardware Coordinated Feedback

DWORD PercentBusy; // Percentage of processor time not idle.
// Measure “PercentBusy“ during previous sampling window.
// Typically, “PercentBusy“ is measure over a time scale suitable for 
// power management decisions
// 
// RDMSR of MCNT and ACNT should be performed without delay.
// Software needs to exercise care to avoid delays between 
// the two RDMSRs (for example, interrupts).
MCNT = RDMSR(IA32_MPERF);
ACNT = RDMSR(IA32_APERF);

// PercentPerformance indicates the percentage of the processor
// that is in use. The calculation is based on the PercentBusy, 
// that is the percentage of processor time not idle and the P-state
// hardware coordinated feedback using the ACNT/MCNT ratio.
// Note that both values need to be calculated over the same 

Figure 16-1.  IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination
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// time window. 
PercentPerformance = PercentBusy * (ACNT/MCNT);

// This example does not cover the additional logic or algorithms 
// necessary to coordinate multiple logical processors to a target P-state.

TargetPstate = FindPstate(PercentPerformance);

if (TargetPstate ≠ currentPstate) {
SetPState(TargetPstate);

} 
// WRMSR of MCNT and ACNT should be performed without delay.
// Software needs to exercise care to avoid delays between the two WRMSRs (for example, interrupts).

  WRMSR(IA32_MPERF, 0);
  WRMSR(IA32_APERF, 0);

16.3 SYSTEM SOFTWARE CONSIDERATIONS AND OPPORTUNISTIC PROCESSOR 
PERFORMANCE OPERATION

An Intel 64 processor may support a form of processor operation that takes advantage of design headroom to 
opportunistically increase performance. The Intel® Turbo Boost Technology can convert thermal headroom into 
higher performance across multi-threaded and single-threaded workloads. The Intel® Dynamic Acceleration Tech-
nology feature can convert thermal headroom into higher performance if only one thread is active.

16.3.1 Intel® Dynamic Acceleration Technology
The Intel Core 2 Duo processor T7700 introduces Intel Dynamic Acceleration Technology. Intel Dynamic Accelera-
tion Technology takes advantage of thermal design headroom and opportunistically allows a single core to operate 
at a higher performance level when the operating system requests increased performance. 

16.3.2 System Software Interfaces for Opportunistic Processor Performance Operation
Opportunistic processor performance operation, applicable to Intel Dynamic Acceleration Technology and Intel® 
Turbo Boost Technology, has the following characteristics:
• A transition from a normal state of operation (e.g., Intel Dynamic Acceleration Technology/Turbo mode 

disengaged) to a target state is not guaranteed, but may occur opportunistically after the corresponding enable 
mechanism is activated, the headroom is available and certain criteria are met.

• The opportunistic processor performance operation is generally transparent to most application software.
• System software (BIOS and Operating system) must be aware of hardware support for opportunistic processor 

performance operation and may need to temporarily disengage opportunistic processor performance operation 
when it requires more predictable processor operation. 

• When opportunistic processor performance operation is engaged, the OS should use hardware coordination 
feedback mechanisms to prevent un-intended policy effects if it is activated during inappropriate situations.

16.3.2.1  Discover Hardware Support and Enabling of Opportunistic Processor Performance Operation
If an Intel 64 processor has hardware support for opportunistic processor performance operation, the power-on 
default state of IA32_MISC_ENABLE[38] indicates the presence of such hardware support. For Intel 64 processors 
that support opportunistic processor performance operation, the default value is 1, indicating its presence. For 
processors that do not support opportunistic processor performance operation, the default value is 0. The power-
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on default value of IA32_MISC_ENABLE[38] allows BIOS to detect the presence of hardware support of opportu-
nistic processor performance operation. 

IA32_MISC_ENABLE[38] is shared across all logical processors in a physical package. It is written by BIOS during 
platform initiation to enable/disable opportunistic processor performance operation in conjunction of OS power 
management capabilities, see Section 16.3.2.2. BIOS can set IA32_MISC_ENABLE[38] with 1 to disable opportu-
nistic processor performance operation; it must clear the default value of IA32_MISC_ENABLE[38] to 0 to enable 
opportunistic processor performance operation. OS and applications must use CPUID Leaf 06H if it needs to detect 
processors that have opportunistic processor performance operation enabled.

When CPUID is executed with EAX = 06H on input, bit 1 of EAX in Leaf 06H (i.e., CPUID.06H:EAX[bit 1]) indicates 
opportunistic processor performance operation, such as Intel Dynamic Acceleration Technology, has been enabled 
by BIOS. 

Opportunistic processor performance operation can be disabled by setting bit 38 of IA32_MISC_ENABLE. This 
mechanism is intended for BIOS only. If IA32_MISC_ENABLE[38] is set, CPUID.06H:EAX[bit 1] will return 0. 

16.3.2.2  OS Control of Opportunistic Processor Performance Operation
There may be phases of software execution in which system software cannot tolerate the non-deterministic aspects 
of opportunistic processor performance operation. For example, when calibrating a real-time workload to make a 
CPU reservation request to the OS, it may be undesirable to allow the possibility of the processor delivering 
increased performance that cannot be sustained after the calibration phase. 

System software can temporarily disengage opportunistic processor performance operation by setting bit 32 of the 
IA32_PERF_CTL MSR (0199H), using a read-modify-write sequence on the MSR. The opportunistic processor 
performance operation can be re-engaged by clearing bit 32 in IA32_PERF_CTL MSR, using a read-modify-write 
sequence. The DISENGAGE bit in IA32_PERF_CTL is not reflected in bit 32 of the IA32_PERF_STATUS MSR 
(0198H), and it is not shared between logical processors in a physical package. In order for OS to engage Intel 
Dynamic Acceleration Technology/Turbo mode, the BIOS must:
• Enable opportunistic processor performance operation, as described in Section 16.3.2.1.
• Expose the operating points associated with Intel Dynamic Acceleration Technology/Turbo mode to the OS.

16.3.2.3  Required Changes to OS Power Management P-State Policy
Intel Dynamic Acceleration Technology and Intel Turbo Boost Technology can provide opportunistic performance 
greater than the performance level corresponding to the Processor Base frequency of the processor (see CPUID’s 
processor frequency information). System software can use a pair of MSRs to observe performance feedback. Soft-
ware must query for the presence of IA32_APERF and IA32_MPERF (see Section 16.2). The ratio between 
IA32_APERF and IA32_MPERF is architecturally defined and a value greater than unity indicates performance 
increase occurred during the observation period due to Intel Dynamic Acceleration Technology. Without incorpo-
rating such performance feedback, the target P-state evaluation algorithm can result in a non-optimal P-state 
target. 

Figure 16-2.  IA32_PERF_CTL Register
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There are other scenarios under which OS power management may want to disable Intel Dynamic Acceleration 
Technology, some of these are listed below:
• When engaging ACPI defined passive thermal management, it may be more effective to disable Intel Dynamic 

Acceleration Technology for the duration of passive thermal management.
• When the user has indicated a policy preference of power savings over performance, OS power management 

may want to disable Intel Dynamic Acceleration Technology while that policy is in effect.

16.3.3 Intel® Turbo Boost Technology
Intel Turbo Boost Technology is supported in Intel Core i7 processors and Intel Xeon processors based on Nehalem 
microarchitecture. It uses the same principle of leveraging thermal headroom to dynamically increase processor 
performance for single-threaded and multi-threaded/multi-tasking environment. The programming interface 
described in Section 16.3.2 also applies to Intel Turbo Boost Technology.

16.3.4 Performance and Energy Bias Hint Support
Intel 64 processors may support additional software hint to guide the hardware heuristic of power management 
features to favor increasing dynamic performance or conserve energy consumption. 

Software can detect the processor's capability to support the performance-energy bias preference hint by exam-
ining bit 3 of ECX in CPUID Leaf 06H. The processor supports this capability if CPUID.06H:ECX.SETBH[bit 3] is set 
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).

Software can program the lowest four bits of IA32_ENERGY_PERF_BIAS MSR with a value from 0-15. The values 
represent a sliding scale, where a value of 0 (the default reset value) corresponds to a hint preference for highest 
performance and a value of 15 corresponds to the maximum energy savings. A value of 7 roughly translates into a 
hint to balance performance with energy consumption.

The layout of IA32_ENERGY_PERF_BIAS is shown in Figure 16-3. The scope of IA32_ENERGY_PERF_BIAS is per 
logical processor, which means that each of the logical processors in the package can be programmed with a 
different value. This may be especially important in virtualization scenarios, where the performance / energy 
requirements of one logical processor may differ from the other. Conflicting “hints” from various logical processors 
at higher hierarchy level will be resolved in favor of performance over energy savings. 

Software can use whatever criteria it sees fit to program the MSR with an appropriate value. However, the value 
only serves as a hint to the hardware and the actual impact on performance and energy savings is model specific.

16.4 HARDWARE-CONTROLLED PERFORMANCE STATES (HWP)
Intel processors may contain support for Hardware-Controlled Performance States (HWP), which autonomously 
selects performance states while utilizing OS supplied performance guidance hints. The Enhanced Intel Speed-
Step® Technology provides a means for the OS to control and monitor discrete frequency-based operating points 
via the IA32_PERF_CTL and IA32_PERF_STATUS MSRs. 

Figure 16-3.  IA32_ENERGY_PERF_BIAS Register
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In contrast, HWP is an implementation of the ACPI-defined Collaborative Processor Performance Control (CPPC), 
which specifies that the platform enumerates a continuous, abstract unit-less, performance value scale that is not 
tied to a specific performance state / frequency by definition. While the enumerated scale is roughly linear in terms 
of a delivered integer workload performance result, the OS is required to characterize the performance value range 
to comprehend the delivered performance for an applied workload. 

When HWP is enabled, the processor autonomously selects performance states as deemed appropriate for the 
applied workload and with consideration of constraining hints that are programmed by the OS. These OS-provided 
hints include minimum and maximum performance limits, preference towards energy efficiency or performance, 
and the specification of a relevant workload history observation time window. The means for the OS to override 
HWP's autonomous selection of performance state with a specific desired performance target is also provided, 
however, the effective frequency delivered is subject to the result of energy efficiency and performance optimiza-
tions.

16.4.1 HWP Programming Interfaces 
The programming interfaces provided by HWP include the following:
• The CPUID instruction allows software to discover the presence of HWP support in an Intel processor. Specifi-

cally, execute CPUID instruction with EAX=06H as input will return 5 bit flags covering the following aspects in 
bits 7 through 11 of CPUID.06H:EAX:

— Availability of HWP baseline resource and capability, CPUID.06H:EAX[bit 7]: If this bit is set, HWP provides 
several new architectural MSRs: IA32_PM_ENABLE, IA32_HWP_CAPABILITIES, IA32_HWP_REQUEST, 
IA32_HWP_STATUS. 

— Availability of HWP Notification upon dynamic Guaranteed Performance change, CPUID.06H:EAX[bit 8]: If 
this bit is set, HWP provides IA32_HWP_INTERRUPT MSR to enable interrupt generation due to dynamic 
Performance changes and excursions.

— Availability of HWP Activity window control, CPUID.06H:EAX[bit 9]: If this bit is set, HWP allows software to 
program activity window in the IA32_HWP_REQUEST MSR.

— Availability of HWP energy/performance preference control, CPUID.06H:EAX[bit 10]: If this bit is set, HWP 
allows software to set an energy/performance preference hint in the IA32_HWP_REQUEST MSR.

— Availability of HWP package level control, CPUID.06H:EAX[bit 11]:If this bit is set, HWP provides the 
IA32_HWP_REQUEST_PKG MSR to convey OS Power Management’s control hints for all logical processors 
in the physical package.

Table 16-1.  Architectural and Non-Architectural MSRs Related to HWP

Address Architectural Register Name Description

770H Y IA32_PM_ENABLE Enable/Disable HWP.

771H Y IA32_HWP_CAPABILITIES Enumerates the HWP performance range (static and dynamic). 

772H Y IA32_HWP_REQUEST_PKG Conveys OSPM's control hints (Min, Max, Activity Window, Energy 
Performance Preference, Desired) for all logical processor in the 
physical package.

773H Y IA32_HWP_INTERRUPT Controls HWP native interrupt generation (Guaranteed Performance 
changes, excursions).

774H Y IA32_HWP_REQUEST Conveys OSPM's control hints (Min, Max, Activity Window, Energy 
Performance Preference, Desired) for a single logical processor.

775H Y IA32_HWP_PECI_REQUEST_INFO Conveys embedded system controller requests to override some of 
the OS HWP Request settings via the PECI mechanism.

777H Y IA32_HWP_STATUS Status bits indicating changes to Guaranteed Performance and 
excursions to Minimum Performance. 

19CH Y IA32_THERM_STATUS[bits 15:12] Conveys reasons for performance excursions.

64EH N MSR_PPERF Productive Performance Count.
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• Additionally, HWP may provide a non-architectural MSR, MSR_PPERF, which provides a quantitative metric to 
software of hardware’s view of workload scalability. This hardware’s view of workload scalability is implemen-
tation specific.

16.4.2 Enabling HWP 
The layout of the IA32_PM_ENABLE MSR is shown in Figure 16-4. The bit fields are described below: 

• HWP_ENABLE (bit 0, R/W1Once) — Software sets this bit to enable HWP with autonomous selection of 
processor P-States. When set, the processor will disregard input from the legacy performance control interface 
(IA32_PERF_CTL). Note that this bit can only be enabled once from the default value. Once set, writes to the 
HWP_ENABLE bit are ignored. Only RESET will clear this bit. Default = zero (0). 

• Bits 63:1 are reserved and must be zero.

After software queries CPUID and verifies the processor’s support of HWP, system software can write 1 to 
IA32_PM_ENABLE.HWP_ENABLE (bit 0) to enable hardware controlled performance states. The default value of 
IA32_PM_ENABLE MSR at power-on is 0, i.e., HWP is disabled.

Additional MSRs associated with HWP may only be accessed after HWP is enabled, with the exception of 
IA32_HWP_INTERRUPT and MSR_PPERF. Accessing the IA32_HWP_INTERRUPT MSR requires only HWP is present 
as enumerated by CPUID but does not require enabling HWP.

IA32_PM_ENABLE is a package level MSR, i.e., writing to it from any logical processor within a package affects all 
logical processors within that package.

16.4.3 HWP Performance Range and Dynamic Capabilities
The OS reads the IA32_HWP_CAPABILITIES MSR to comprehend the limits of the HWP-managed performance 
range as well as the dynamic capability, which may change during processor operation. The enumerated perfor-
mance range values reported by IA32_HWP_CAPABILITIES directly map to initial frequency targets (prior to work-
load-specific frequency optimizations of HWP). However the mapping is processor family specific.

The layout of the IA32_HWP_CAPABILITIES MSR is shown in Figure 16-5. The bit fields are described below this 
figure. 

Figure 16-4.  IA32_PM_ENABLE MSR
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• Highest_Performance (bits 7:0, RO) — Value for the maximum non-guaranteed performance level.
• Guaranteed_Performance (bits 15:8, RO) — Current value for the guaranteed performance level. This 

value can change dynamically as a result of internal or external constraints, e.g., thermal or power limits.
• Most_Efficient_Performance (bits 23:16, RO) — Current value of the most efficient performance level. 

This value can change dynamically as a result of workload characteristics.
• Lowest_Performance (bits 31:24, RO) — Value for the lowest performance level that software can program 

to IA32_HWP_REQUEST.
• Bits 63:32 are reserved and must be zero.

The value returned in the Guaranteed_Performance field is hardware's best-effort approximation of the avail-
able performance given current operating constraints. Changes to the Guaranteed_Performance value will 
primarily occur due to a shift in operational mode. This includes a power or other limit applied by an external agent, 
e.g., RAPL (see Figure 16.10.1), or the setting of a Configurable TDP level (see model-specific controls related to 
Programmable TDP Limit in Chapter 2, “Model-Specific Registers (MSRs),” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 4.). Notification of a change to the Guaranteed_Performance occurs via 
interrupt (if configured) and the IA32_HWP_Status MSR. Changes to Guaranteed_Performance are indicated when 
a macroscopically meaningful change in performance occurs i.e., sustained for greater than one second. Conse-
quently, notification of a change in Guaranteed Performance will typically occur no more frequently than once per 
second. Rapid changes in platform configuration, e.g., docking/undocking, with corresponding changes to a Config-
urable TDP level could potentially cause more frequent notifications.

The value returned by the Most_Efficient_Performance field provides the OS with an indication of the practical 
lower limit for the IA32_HWP_REQUEST. The processor may not honor IA32_HWP_REQUEST.Maximum Perfor-
mance settings below this value.

16.4.4 Managing HWP

16.4.4.1  IA32_HWP_REQUEST MSR (Address: 774H Logical Processor Scope)
Typically, the operating system controls HWP operation for each logical processor via the writing of control hints / 
constraints to the IA32_HWP_REQUEST MSR. The layout of the IA32_HWP_REQUEST MSR is shown in Figure 16-6. 
The bit fields are described below Figure 16-6.

Operating systems can control HWP by writing both IA32_HWP_REQUEST and IA32_HWP_REQUEST_PKG MSRs 
(see Section 16.4.4.2). Five valid bits within the IA32_HWP_REQUEST MSR let the operating system flexibly select 
which of its five hint / constraint fields should be derived by the processor from the IA32_HWP_REQUEST MSR and 
which should be derived from the IA32_HWP_REQUEST_PKG MSR. These five valid bits are supported if 
CPUID.06H:EAX[bit17] is set. 

Figure 16-5.  IA32_HWP_CAPABILITIES Register 
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When the IA32_HWP_REQUEST MSR Package Control bit is set, any valid bit that is NOT set indicates to the 
processor to use the respective field value from the IA32_HWP_REQUEST_PKG MSR. Otherwise, the values are 
derived from the IA32_HWP_REQUEST MSR. The valid bits are ignored when the IA32_HWP_REQUEST MSR 
Package Control bit is zero.

• Minimum_Performance (bits 7:0, RW) — Conveys a hint to the HWP hardware. The OS programs the 
minimum performance hint to achieve the required quality of service (QOS) or to meet a service level 
agreement (SLA) as needed. Note that an excursion below the level specified is possible due to hardware 
constraints. The default value of this field is IA32_HWP_CAPABILITIES.Lowest_Performance.

• Maximum_Performance (bits 15:8, RW) — Conveys a hint to the HWP hardware. The OS programs this 
field to limit the maximum performance that is expected to be supplied by the HWP hardware. Excursions 
above the limit requested by OS are possible due to hardware coordination between the processor cores and 
other components in the package. The default value of this field is 
IA32_HWP_CAPABILITIES.Highest_Performance.

• Desired_Performance (bits 23:16, RW) — Conveys a hint to the HWP hardware. When set to zero, 
hardware autonomous selection determines the performance target. When set to a non-zero value (between 
the range of Lowest_Performance and Highest_Performance of IA32_HWP_CAPABILITIES) conveys an explicit 
performance request hint to the hardware; effectively disabling HW Autonomous selection. The Desired_Per-
formance input is non-constraining in terms of Performance and Energy Efficiency optimizations, which are 
independently controlled. The default value of this field is 0.

• Energy_Performance_Preference (bits 31:24, RW) — Conveys a hint to the HWP hardware. The OS may 
write a range of values from 0 (performance preference) to 0FFH (energy efficiency preference) to influence 
the rate of performance increase /decrease and the result of the hardware's energy efficiency and performance 
optimizations. The default value of this field is 80H. Note: If CPUID.06H:EAX[bit 10] indicates that this field is 
not supported, HWP uses the value of the IA32_ENERGY_PERF_BIAS MSR to determine the energy efficiency / 
performance preference.

• Activity_Window (bits 41:32, RW) — Conveys a hint to the HWP hardware specifying a moving workload 
history observation window for performance/frequency optimizations. If 0, the hardware will determine the 
appropriate window size. When writing a non-zero value to this field, this field is encoded in the format of bits 
38:32 as a 7-bit mantissa and bits 41:39 as a 3-bit exponent value in powers of 10. The resultant value is in 
microseconds. Thus, the minimal/maximum activity window size is 1 microsecond/1270 seconds. Combined 
with the Energy_Performance_Preference input, Activity_Window influences the rate of performance increase 

Figure 16-6.  IA32_HWP_REQUEST Register 

063 62 61 60 59 8 716 1524 2332 3143 42 41

Reserved

Energy_Performance_Preference

Activity_Window

Desired_Performance

Maximum_Performance

Minimum_Performance

Activity_Window Valid
EPP Valid
Desired Valid
Maximum Valid
Minimum Valid

Package_Control
Vol. 3B 16-9



POWER AND THERMAL MANAGEMENT
/ decrease. This non-zero hint only has meaning when Desired_Performance = 0. The default value of this field 
is 0.

• Package_Control (bit 42, RW) — When set, causes this logical processor's IA32_HWP_REQUEST control 
inputs to be derived from the IA32_HWP_REQUEST_PKG MSR.

• Bits 58:43 are reserved and must be zero.
• Activity_Window Valid (bit 59, RW) — When set, indicates to the processor to derive the Activity Window 

field value from the IA32_HWP_REQUEST MSR even if the package control bit is set. Otherwise, derive it from 
the IA32_HWP_REQUEST_PKG MSR. The default value of this field is 0.

• EPP Valid (bit 60, RW) — When set, indicates to the processor to derive the EPP field value from the 
IA32_HWP_REQUEST MSR even if the package control bit is set. Otherwise, derive it from the 
IA32_HWP_REQUEST_PKG MSR. The default value of this field is 0.

• Desired Valid (bit 61, RW) — When set, indicates to the processor to derive the Desired Performance field 
value from the IA32_HWP_REQUEST MSR even if the package control bit is set. Otherwise, derive it from the 
IA32_HWP_REQUEST_PKG MSR. The default value of this field is 0.

• Maximum Valid (bit 62, RW) — When set, indicates to the processor to derive the Maximum Performance 
field value from the IA32_HWP_REQUEST MSR even if the package control bit is set. Otherwise, derive it from 
the IA32_HWP_REQUEST_PKG MSR. The default value of this field is 0.

• Minimum Valid (bit 63, RW) — When set, indicates to the processor to derive the Minimum Performance field 
value from the IA32_HWP_REQUEST MSR even if the package control bit is set. Otherwise, derive it from the 
IA32_HWP_REQUEST_PKG MSR. The default value of this field is 0.

The HWP hardware clips and resolves the field values as necessary to the valid range. Reads return the last value 
written not the clipped values.

Processors may support a subset of IA32_HWP_REQUEST fields as indicated by CPUID. Reads of non-supported 
fields will return 0. Writes to non-supported fields are ignored.

The OS may override HWP's autonomous selection of performance state with a specific performance target by 
setting the Desired_Performance field to a non-zero value, however, the effective frequency delivered is subject to 
the result of energy efficiency and performance optimizations, which are influenced by the Energy Performance 
Preference field.

Software may disable all hardware optimizations by setting Minimum_Performance = Maximum_Performance 
(subject to package coordination).

Note: The processor may run below the Minimum_Performance level due to hardware constraints including: power, 
thermal, and package coordination constraints. The processor may also run below the Minimum_Performance level 
for short durations (few milliseconds) following C-state exit, and when Hardware Duty Cycling (see Section 16.5) is 
enabled.

When the IA32_HWP_REQUEST MSR is set to fast access mode, writes of this MSR are posted, i.e., the WRMSR 
instruction retires before the data reaches its destination within the processor. It may retire even before all 
preceding IA stores are globally visible, i.e., it is not an architecturally serializing instruction anymore (no store 
fence). A new CPUID bit indicates this new characteristic of the IA32_HWP_REQUEST MSR (see Section 16.4.8 for 
additional details).
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16.4.4.2  IA32_HWP_REQUEST_PKG MSR (Address: 772H Package Scope)

The structure of the IA32_HWP_REQUEST_PKG MSR (package-level) is identical to the IA32_HWP_REQUEST MSR 
with the exception of the the Package Control bit field and the five valid bit fields, which do not exist in the 
IA32_HWP_REQUEST_PKG MSR. Field values written to this MSR apply to all logical processors within the physical 
package with the exception of logical processors whose IA32_HWP_REQUEST.Package Control field is clear (zero). 
Single P-state Control mode is only supported when IA32_HWP_REQUEST_PKG is not supported. 

16.4.4.3  IA32_HWP_PECI_REQUEST_INFO MSR (Address 775H Package Scope)
When an embedded system controller is integrated in the platform, it can override some of the OS HWP Request 
settings via the PECI mechanism. PECI initiated settings take precedence over the relevant fields in the 
IA32_HWP_REQUEST MSR and in the IA32_HWP_REQUEST_PKG MSR, irrespective of the Package Control bit or 
the Valid Bit values described above. PECI can independently control each of: Minimum Performance, Maximum 
Performance, and EPP fields. This MSR contains both the PECI induced values and the control bits that indicate 
whether the embedded controller actually set the processor to use the respective value.

PECI override is supported if CPUID.06H:EAX[bit 16] is set.

Figure 16-7.  IA32_HWP_REQUEST_PKG Register 

Figure 16-8.  IA32_HWP_PECI_REQUEST_INFO MSR
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The layout of the IA32_HWP_PECI_REQUEST_INFO MSR is shown in Figure 16-8. This MSR is writable by the 
embedded controller but is read-only by software executing on the CPU. This MSR has Package scope. The bit fields 
are described below: 
• Minimum_Performance (bits 7:0, RO) — Used by the OS to read the latest value of PECI minimum 

performance input.
• Maximum_Performance (bits 15:8, RO) — Used by the OS to read the latest value of PECI maximum 

performance input.
• Bits 23:16 are reserved and must be zero.
• Energy_Performance_Preference (bits 31:24, RO) — Used by the OS to read the latest value of PECI 

energy performance preference input.
• Bits 59:32 are reserved and must be zero.
• EPP_PECI_Override (bit 60, RO) — Indicates whether PECI if currently overriding the Energy Performance 

Preference input. If set(1), PECI is overriding the Energy Performance Preference input. If clear(0), OS has 
control over Energy Performance Preference input.

• Bit 61 is reserved and must be zero.
• Max_PECI_Override (bit 62, RO) — Indicates whether PECI if currently overriding the Maximum 

Performance input. If set(1), PECI is overriding the Maximum Performance input. If clear(0), OS has control 
over Maximum Performance input.

• Min_PECI_Override (bit 63, RO) — Indicates whether PECI if currently overriding the Minimum Performance 
input. If set(1), PECI is overriding the Minimum Performance input. If clear(0), OS has control over Minimum 
Performance input.

HWP Request Field Hierarchical Resolution

HWP Request field resolution is fed by three MSRs: IA32_HWP_REQUEST, IA32_HWP_REQUEST_PKG, and 
IA32_HWP_PECI_REQUEST_INFO. The flow that the processor goes through to resolve which field value is chosen 
is shown below.

For each of the two HWP Request fields; Desired and Activity Window:
If IA32_HWP_REQUEST.PACKAGE_CONTROL = 1 and IA32_HWP_REQUEST.<field> valid bit = 0

Resolved Field Value = IA32_HWP_REQUEST_PKG.<field>
Else

Resolved Field Value = IA32_HWP_REQUEST.<field>
For each of the three HWP Request fields; Min, Max, and EPP:

If IA32_HWP_PECI_REQUEST_INFO.<field> PECI Override bit = 1
Resolved Field Value = IA32_HWP_PECI_REQUEST_INFO.<field>

Else if IA32_HWP_REQUEST.PACKAGE_CONTROL = 1 and IA32_HWP_REQUEST.<field> valid bit = 0
Resolved Field Value = IA32_HWP_REQUEST_PKG.<field>

Else
Resolved Field Value = IA32_HWP_REQUEST.<field>

16.4.4.4  IA32_HWP_CTL MSR (Address: 776H Logical Processor Scope)
IA32_HWP_CTL[0] controls the behavior of IA32_HWP_REQUEST Package Control [bit 42]. This control bit allows 
the IA32_HWP_REQUEST MSR to stay in INIT mode most of the time (Control Bit is equal to its RESET value of 0) 
thus avoiding actual saving/restoring of the MSR contents when the OS adds it to the register set saved and 
restored by XSAVES/XRSTORS.
• When IA32_HWP_CTL[0] = 0:

— If IA32_HWP_REQUEST[42] = 0, the processor ignores all fields of the IA32_HWP_REQUEST_PKG MSR and 
selects all HWP values (Min, Max, EPP, Desired, Activity Window) from the IA32_HWP_REQUEST MSR.

— If IA32_HWP_REQUEST[42] = 1, the processor selects the HWP values (Min, Max, EPP, Desired, Activity 
Window) either from the IA32_HWP_REQUEST MSR or from the IA32_HWP_REQUEST_PKG MSR according 
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to the values contained in the IA32_HWP_REQUEST MSR bit fields [bits 63:59]. See Section 16.4.4.1 for 
additional details.

• When IA32_HWP_CTL[0] = 1, the behavior is reversed:

— If IA32_HWP_REQUEST[42] = 1, the processor ignores all fields of the IA32_HWP_REQUEST_PKG MSR and 
selects all HWP values (Min, Max, EPP, Desired, Activity Window) from the IA32_HWP_REQUEST MSR.

— If IA32_HWP_REQUEST[42] = 0, the processor selects the HWP values (Min, Max, EPP, Desired, Activity 
Window) either from the IA32_HWP_REQUEST MSR or from the IA32_HWP_REQUEST_PKG MSR according 
to the values contained in the IA32_HWP_REQUEST MSR bit fields [bits 63:59]. See Section 16.4.4.1 for 
additional details.

Section 16-2 summarizes the IA32_HWP_CTL MSR bit 0 control behavior.

This MSR is supported if CPUID.06H:EAX[bit 22] is set.

If the IA32_PM_ENABLE[HWP_ENABLE] (bit 0) is not set, access to this MSR will generate a #GP fault.

16.4.5 HWP Feedback
The processor provides several types of feedback to the OS during HWP operation. 

The IA32_MPERF MSR and IA32_APERF MSR mechanism (see Section 16.2) allows the OS to calculate the resultant 
effective frequency delivered over a time period. Energy efficiency and performance optimizations directly impact 
the resultant effective frequency delivered.

The layout of the IA32_HWP_STATUS MSR is shown in Figure 16-9. It provides feedback regarding changes to 
IA32_HWP_CAPABILITIES.Guaranteed_Performance, IA32_HWP_CAPABILITIES.Highest_Performance, excur-
sions to IA32_HWP_CAPABILITIES.Minimum_Performance, and PECI_Override entry/exit events. The bit fields are 
described below: 
• Guaranteed_Performance_Change (bit 0, RWC0) — If set (1), a change to Guaranteed_Performance has 

occurred. Software should query IA32_HWP_CAPABILITIES.Guaranteed_Performance value to ascertain the 
new Guaranteed Performance value and to assess whether to re-adjust HWP hints via IA32_HWP_REQUEST. 
Software must clear this bit by writing a zero (0).

• Bit 1 is reserved and must be zero.
• Excursion_To_Minimum (bit 2, RWC0) — If set (1), an excursion to Minimum_Performance of 

IA32_HWP_REQUEST has occurred. Software must clear this bit by writing a zero (0).
• Highest_Change (bit 3, RWC0) — If set (1), a change to Highest Performance has occurred. Software 

should query IA32_HWP_CAPABILITIES to ascertain the new Highest Performance value. Software must clear 
this bit by writing a zero (0). Interrupts upon Highest Performance change are supported if 
CPUID.06H:EAX[bit 15] is set.

• PECI_Override_Entry (bit 4, RWC0) — If set (1), an embedded/management controller has started a PECI 
override of one or more OS control hints (Min, Max, EPP) specified in IA32_HWP_REQUEST or 
IA32_HWP_REQUEST_PKG. Software may query IA32_HWP_PECI_REQUEST_INFO MSR to ascertain which 
fields are now overridden via the PECI mechanism and what their values are (see Section 16.4.4.3 for 

Table 16-2.  IA32_HWP_CTL MSR Bit 0 Behavior

Field Description

Thread request 
PKG CTL 
meaning

Defines which HWP Request MSR is used, whether thread level or package level. When the package MSR is used, the 
thread MSR valid bits define which thread MSR fields override the package (default 0).

IA32_HWP_CTL[PKG_CTL_PLR] IA32_HWP_REQUEST[PKG_CTL] HWP Request MSR Used

0 0 IA32_HWP_REQUEST MSR

0 1 IA32_HWP_REQUEST_PKG MSR

1 0 IA32_HWP_REQUEST_PKG MSR

1 1 IA32_HWP_REQUEST MSR
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additional details). Software must clear this bit by writing a zero (0). Interrupts upon PECI override entry are 
supported if CPUID.06H:EAX[bit 16] is set.

• PECI_Override_Exit (bit 5, RWC0) — If set (1), an embedded/management controller has stopped 
overriding one or more OS control hints (Min, Max, EPP) specified in IA32_HWP_REQUEST or 
IA32_HWP_REQUEST_PKG. Software may query IA32_HWP_PECI_REQUEST_INFO MSR to ascertain which 
fields are still overridden via the PECI mechanism and which fields are now back under software control (see 
Section 16.4.4.3 for additional details). Software must clear this bit by writing a zero (0). Interrupts upon PECI 
override exit are supported if CPUID.06H:EAX[bit 16] is set.

• Bits 63:6 are reserved and must be zero.

The status bits of IA32_HWP_STATUS must be cleared (0) by software so that a new status condition change will 
cause the hardware to set the bit again and issue the notification. Status bits are not set for “normal” excursions, 
e.g., running below Minimum Performance for short durations during C-state exit. Changes to 
Guaranteed_Performance, Highest_Performance, excursions to Minimum_Performance, or PECI_Override 
entry/exit will occur no more than once per second.

The OS can determine the specific reasons for a Guaranteed_Performance change or an excursion to 
Minimum_Performance in IA32_HWP_REQUEST by examining the associated status and log bits reported in the 
IA32_THERM_STATUS MSR. The layout of the IA32_HWP_STATUS MSR that HWP uses to support software query of 
HWP feedback is shown in Figure 16-10. The bit fields of IA32_THERM_STATUS associated with HWP feedback are 
described below (Bit fields of IA32_THERM_STATUS unrelated to HWP can be found in Section 16.8.5.2).

Figure 16-9.  IA32_HWP_STATUS MSR
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• Bits 11:0, See Section 16.8.5.2.
• Current Limit Status (bit 12, RO) — If set (1), indicates an electrical current limit (e.g., Electrical Design 

Point/IccMax) is being exceeded and is adversely impacting energy efficiency optimizations.
• Current Limit Log (bit 13, RWC0) — If set (1), an electrical current limit has been exceeded that has 

adversely impacted energy efficiency optimizations since the last clearing of this bit or a reset. This bit is sticky, 
software may clear this bit by writing a zero (0).

• Cross-domain Limit Status (bit 14, RO) — If set (1), indicates another hardware domain (e.g., processor 
graphics) is currently limiting energy efficiency optimizations in the processor core domain.

• Cross-domain Limit Log (bit 15, RWC0) — If set (1), indicates another hardware domain (e.g., processor 
graphics) has limited energy efficiency optimizations in the processor core domain since the last clearing of this 
bit or a reset. This bit is sticky, software may clear this bit by writing a zero (0).

• Bits 63:16, See Section 16.8.5.2.

16.4.5.1  Non-Architectural HWP Feedback
The Productive Performance (MSR_PPERF) MSR (non-architectural) provides hardware's view of workload scal-
ability, which is a rough assessment of the relationship between frequency and workload performance, to software. 
The layout of the MSR_PPERF is shown in Figure 16-11. 

• PCNT (bits 63:0, RO) — Similar to IA32_APERF but only counts cycles perceived by hardware as contributing 
to instruction execution (e.g., unhalted and unstalled cycles). This counter increments at the same rate as 
IA32_APERF, where the ratio of (ΔPCNT/ΔACNT) is an indicator of workload scalability (0% to 100%). Note that 
values in this register are valid even when HWP is not enabled. 

Figure 16-10.  IA32_THERM_STATUS Register With HWP Feedback

Figure 16-11.  MSR_PPERF MSR
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16.4.6 HWP Notifications
Processors may support interrupt-based notification of changes to HWP status as indicated by CPUID. If supported, 
the IA32_HWP_INTERRUPT MSR is used to enable interrupt-based notifications. Notification events, when enabled, 
are delivered using the existing thermal LVT entry. The layout of the IA32_HWP_INTERRUPT is shown in 
Figure 16-12. The bit fields are described below:

• EN_Guaranteed_Performance_Change (bit 0, RW) — When set (1), an HWP Interrupt will be generated 
whenever a change to the IA32_HWP_CAPABILITIES.Guaranteed_Performance occurs. The default value is 0 
(Interrupt generation is disabled). 

• EN_Excursion_Minimum (bit 1, RW) — When set (1), an HWP Interrupt will be generated whenever the 
HWP hardware is unable to meet the IA32_HWP_REQUEST.Minimum_Performance setting. The default value is 
0 (Interrupt generation is disabled). 

• EN_Highest_Change (bit 2, RW) — When set (1), an HWP Interrupt will be generated whenever a change to 
the IA32_HWP_CAPABILITIES.Highest_Performance occurs. The default value is 0 (interrupt generation is 
disabled). Interrupts upon Highest Performance change are supported if CPUID.06H:EAX[bit 15] is set.

• EN_PECI_OVERRIDE (bit 3, RW) — When set (1), an HWP Interrupt will be generated whenever PECI starts 
or stops overriding any of the three HWP fields described in Section 16.4.4.3. The default value is 0 (interrupt 
generation is disabled). See Section 16.4.5 and Section 16.4.4.3 for details on how the OS learns what is the 
current set of HWP fields that are overridden by PECI. Interrupts upon PECI override change are supported if 
CPUID.06H:EAX[bit 16] is set.

• Bits 63:4 are reserved and must be zero.

16.4.7 Idle Logical Processor Impact on Core Frequency
Intel processors use one of two schemes for setting core frequency:

1. All cores share same frequency.

2. Each physical core is set to a frequency of its own.

In both cases the two logical processors that share a single physical core are set to the same frequency, so the 
processor accounts for the IA32_HWP_REQUEST MSR fields of both logical processors when defining the core 
frequency or the whole package frequency.

When CPUID.06H:EAX[bit 20] is set and only one logical processor of the two is active, while the other is idle (in 
any C1 sub-state or in a deeper sleep state), only the active logical processor's IA32_HWP_REQUEST MSR 
fields are considered, i.e., the HWP Request fields of a logical processor in the C1E sub-state or in a deeper sleep 
state are ignored. 

Note: when a logical processor is in C1 state its HWP Request fields are accounted for.

Figure 16-12.  IA32_HWP_INTERRUPT MSR
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16.4.8 Fast Write of Uncore MSR (Model Specific Feature)
There are a few logical processor scope MSRs whose values need to be observed outside the logical processor. The 
WRMSR instruction takes over 1000 cycles to complete (retire) for those MSRs. This overhead forces operating 
systems to avoid writing them too often whereas in many cases it is preferable that the OS writes them quite 
frequently for optimal power/performance operation of the processor. 

The model specific “Fast Write MSR” feature reduces this overhead by an order of magnitude to a level of 100 cycles 
for a selected subset of MSRs. 

Note: Writes to Fast Write MSRs are posted, i.e., when the WRMSR instruction completes, the data may still be “in 
transit” within the processor. Software can check the status by querying the processor to ensure data is already 
visible outside the logical processor (see Section 16.4.8.3 for additional details). Once the data is visible outside 
the logical processor, software is ensured that later writes by the same logical processor to the same MSR will be 
visible later (will not bypass the earlier writes). 

MSRs that are selected for Fast Write are specified in a special capability MSR (see Section 16.4.8.1). Architectural 
MSRs that existed prior to the introduction of this feature and are selected for Fast Write, thus turning from slow to 
fast write MSRs, will be noted as such via a new CPUID bit. New MSRs that are fast upon introduction will be docu-
mented as such without an additional CPUID bit.

Three model specific MSRs are associated with the feature itself. They enable enumerating, controlling, and moni-
toring it. All three are logical processor scope.

16.4.8.1  FAST_UNCORE_MSRS_CAPABILITY (Address: 65FH, Logical Processor Scope)
Operating systems or BIOS can read the FAST_UNCORE_MSRS_CAPABILITY MSR to enumerate those MSRs that 
are Fast Write MSRs.

• FAST_IA32_HWP_REQUEST MSR (bit 0, RO) — When set (1), indicates that the IA32_HWP_REQUEST MSR 
is supported as a Fast Write MSR. A value of 0 indicates the IA32_HWP_REQUEST MSR is not supported as a 
Fast Write MSR.

• Bits 63:1 are reserved and must be zero.

16.4.8.2  FAST_UNCORE_MSRS_CTL (Address: 657H, Logical Processor Scope)
Operating Systems or BIOS can use the FAST_UNCORE_MSRS_CTL MSR to opt-in or opt-out for fast write of 
specific MSRs that are enabled for Fast Write by the processor. 

Note: Not all MSRs that are selected for this feature will necessarily have this opt-in/opt-out option. They may be 
supported in fast write mode only.

Figure 16-13.  FAST_UNCORE_MSRS_CAPABILITY MSR

1  063

Reserved

FAST_IA32_HWP_REQUEST MSR
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• FAST_IA32_HWP_REQUEST_MSR_ENABLE (bit 0, R/W) — When set (1), enables the fast access mode, 
low latency, posted IA32_HWP_REQUEST MSR feature and sets the related CPUID.06H:EAX[18] bit. The 
default value is 0. Note that this bit can only be enabled once from the default value. Once set, writes to this bit 
are ignored. Only CPU RESET will clear this bit.

• Bits 63:1 are reserved and must be zero.

16.4.8.3  FAST_UNCORE_MSRS_STATUS (Address: 65EH, Logical Processor Scope)
Software that executes the WRMSR instruction of a Fast Write MSR can check whether the data is already visible 
outside the logical processor by reading the FAST_UNCORE_MSRS_STATUS MSR. For each Fast Write MSR there is 
a status bit that indicates whether the data is already visible outside the logical processor or is still in “transit”.

• FAST_IA32_HWP_REQUEST_WRITE_STATUS (bit 0, R/O) — Indicates whether the CPU is still in the 
middle of writing IA32_HWP_REQUEST MSR, even after the WRMSR instruction has retired. A value of 1 
indicates the last write of IA32_HWP_REQUEST is still ongoing. A value of 0 indicates the last write of 
IA32_HWP_REQUEST is visible outside the logical processor.

• Bits 63:1 are reserved and must be zero.

16.4.9 Fast_IA32_HWP_REQUEST CPUID
IA32_HWP_REQUEST is an architectural MSR that exists in processors whose CPUID.06H:EAX[bit 7] is set (HWP 
BASE is enabled). This MSR has logical processor scope, but after its contents are written the contents become 
visible outside the logical processor. When the FAST_IA32_HWP_REQUEST bit is set (CPUID.06H:EAX[bit 18]), 
writes to the IA32_HWP_REQUEST MSR are visible outside the logical processor via the “Fast Write” feature 
described in Section 16.4.8.

16.4.10 Recommendations for OS use of HWP Controls

Common Cases of Using HWP

The default HWP control field values are expected to be suitable for many applications. The OS can enable autono-
mous HWP for these common cases by

Figure 16-14.  FAST_UNCORE_MSRS_CTL MSR

Figure 16-15.  FAST_UNCORE_MSRS_STATUS MSR

1  063

Reserved

FAST_IA32_HWP_REQUEST_MSR_ENABLE

1  063

Reserved

FAST_IA32_HWP_REQUEST_WRITE_STATUS
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• Setting IA32_HWP_REQUEST.Desired Performance = 0 (hardware autonomous selection determines the 
performance target). Set IA32_HWP_REQUEST.Activity Window = 0 (enable HW dynamic selection of window 
size).

To maximize HWP benefit for the common cases, the OS should set 
• IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_CAPABILITIES.Lowest_Performance and 
• IA32_HWP_REQUEST.Maximum_Performance = IA32_HWP_CAPABILITIES.Highest_Performance. 

Setting IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_REQUEST.Maximum_Performance is function-
ally equivalent to using of the IA32_PERF_CTL interface and is therefore not recommended (bypassing HWP).

Calibrating HWP for Application-Specific HWP Optimization

In some applications, the OS may have Quality of Service requirements that may not be met by the default values. 
The OS can characterize HWP by: 
• keeping IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_REQUEST.Maximum_Performance to 

prevent non-linearity in the characterization process,
• utilizing the range values enumerated from the IA32_HWP_CAPABILITIES MSR to program IA32_HWP_RE-

QUEST while executing workloads of interest and observing the power and performance result.

The power and performance result of characterization is also influenced by the IA32_HWP_REQUEST.Energy 
Performance Preference field, which must also be characterized. 

Characterization can be used to set IA32_HWP_REQUEST.Minimum_Performance to achieve the required QOS in 
terms of performance. If IA32_HWP_REQUEST.Minimum_Performance is set higher than IA32_HWP_CAPABILI-
TIES.Guaranteed Performance then notification of excursions to Minimum Performance may be continuous.

If autonomous selection does not deliver the required workload performance, the OS should assess the current 
delivered effective frequency and for the duration of the specific performance requirement set IA32_HWP_RE-
QUEST.Desired_Performance ≠ 0 and adjust IA32_HWP_REQUEST.Energy_Performance_Preference as necessary 
to achieve the required workload performance. The MSR_PPERF.PCNT value can be used to better comprehend the 
potential performance result from adjustments to IA32_HWP_REQUEST.Desired_Performance. The OS should set 
IA32_HWP_REQUEST.Desired_Performance = 0 to re-enable autonomous selection. 

Tuning for Maximum Performance or Lowest Power Consumption

Maximum performance will be delivered by setting IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_RE-
QUEST.Maximum_Performance = IA32_HWP_CAPABILITIES.Highest_Performance and setting IA32_HWP_RE-
QUEST.Energy_Performance_Preference = 0 (performance preference).

Lowest power will be achieved by setting IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_RE-
QUEST.Maximum_Performance = IA32_HWP_CAPABILITIES.Lowest_Performance and setting IA32_HWP_RE-
QUEST.Energy_Performance_Preference = 0FFH (energy efficiency preference).

Mixing Logical Processor and Package Level HWP Field Settings

Using the IA32_HWP_REQUEST Package_Control bit and the five valid bits in that MSR, the OS can mix and match 
between selecting the Logical Processor scope fields and the Package level fields. For example, the OS can set all 
logical cores' IA32_HWP_REQUEST.Package_Control bit to ‘1’, and for those logical processors if it prefers a 
different EPP value than the one set in the IA32_HWP_REQUEST_PKG MSR, the OS can set the desired EPP value 
and the EPP valid bit. This overrides the package EPP value for only a subset of the logical processors in the 
package.

Additional Guidelines

Set IA32_HWP_REQUEST.Energy_Performance_Preference as appropriate for the platform's current mode of oper-
ation. For example, a mobile platforms' setting may be towards performance preference when on AC power and 
more towards energy efficiency when on DC power.

The use of the Running Average Power Limit (RAPL) processor capability (see section 14.7.1) is highly recom-
mended when HWP is enabled. Use of IA32_HWP_Request.Maximum_Performance for thermal control is subject to 
limitations and can adversely impact the performance of other processor components, e.g., graphics
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If default values deliver undesirable performance latency in response to events, the OS should set IA32_HWP_RE-
QUEST. Activity_Window to a low (non-zero) value and IA32_HWP_REQUEST.Energy_Performance_Preference 
towards performance (0) for the event duration.

Similarly, for “real-time” threads, set IA32_HWP_REQUEST.Energy_Performance_Preference towards performance 
(0) and IA32_HWP_REQUEST. Activity_Window to a low value, e.g., 01H, for the duration of their execution.

When executing low priority work that may otherwise cause the hardware to deliver high performance, set 
IA32_HWP_REQUEST. Activity_Window to a longer value and reduce the IA32_HWP_Request.Maximum_Perfor-
mance value as appropriate to control energy efficiency. Adjustments to IA32_HWP_REQUEST.Energy_Perfor-
mance_Preference may also be necessary.

16.5 HARDWARE DUTY CYCLING (HDC)
Intel processors may contain support for Hardware Duty Cycling (HDC), which enables the processor to autono-
mously force its components inside the physical package into idle state. For example, the processor may selectively 
force only the processor cores into an idle state. 

HDC is disabled by default on processors that support it. System software can dynamically enable or disable HDC 
to force one or more components into an idle state or wake up those components previously forced into an idle 
state. Forced Idling (and waking up) of multiple components in a physical package can be done with one WRMSR to 
a packaged-scope MSR from any logical processor within the same package. 

HDC does not delay events such as timer expiration, but it may affect the latency of short (less than 1 msec) soft-
ware threads, e.g., if a thread is forced to idle state just before completion and entering a “natural idle”.

HDC forced idle operation can be thought of as operating at a lower effective frequency. The effective average 
frequency computed by software will include the impact of HDC forced idle. 

The primary use of HDC is enable system software to manage low active workloads to increase the package level 
C6 residency. Additionally, HDC can lower the effective average frequency in case or power or thermal limitation. 

When HDC forces a logical processor, a processor core or a physical package to enter an idle state, its C-State is set 
to C3 or deeper. The deep “C-states” referred to in this section are processor-specific C-states.

16.5.1 Hardware Duty Cycling Programming Interfaces 
The programming interfaces provided by HDC include the following:
• The CPUID instruction allows software to discover the presence of HDC support in an Intel processor. Specifi-

cally, execute the CPUID instruction with EAX=06H as input, bit 13 of EAX indicates the processor’s support of 
the following aspects of HDC.

— Availability of HDC baseline resource, CPUID.06H:EAX[bit 13]: If this bit is set, HDC provides the following 
architectural MSRs: IA32_PKG_HDC_CTL, IA32_PM_CTL1, and the IA32_THREAD_STALL MSRs.

• Additionally, HDC may provide several non-architectural MSR. 
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16.5.2 Package level Enabling HDC
The layout of the IA32_PKG_HDC_CTL MSR is shown in Figure 16-16. IA32_PKG_HDC_CTL is a writable MSR from 
any logical processor in a package. The bit fields are described below: 

• HDC_PKG_Enable (bit 0, R/W) — Software sets this bit to enable HDC operation by allowing the processor 
to force to idle all “HDC-allowed” (see Figure 16.5.3) logical processors in the package. Clearing this bit 
disables HDC operation in the package by waking up all the processor cores that were forced into idle by a 
previous ‘0’-to-’1’ transition in IA32_PKG_HDC_CTL.HDC_PKG_Enable. This bit is writable only if 
CPUID.06H:EAX[bit 13] = 1. Default = zero (0). 

• Bits 63:1 are reserved and must be zero.

After processor support is determined via CPUID, system software can enable HDC operation by setting IA32_PK-
G_HDC_CTL.HDC_PKG_Enable to 1. At reset, IA32_PKG_HDC_CTL.HDC_PKG_Enable is cleared to 0. A '0'-to-'1' 
transition in HDC_PKG_Enable allows the processor to force to idle all HDC-allowed (indicated by the non-zero 
state of IA32_PM_CTL1[bit 0]) logical processors in the package. A ‘1’-to-’0’ transition wakes up those HDC force-
idled logical processors. 

Software can enable or disable HDC using this package level control multiple times from any logical processor in 
the package. Note the latency of writing a value to the package-visible IA32_PKG_HDC_CTL.HDC_PKG_Enable is 
longer than the latency of a WRMSR operation to a Logical Processor MSR (as opposed to package level MSR) such 
as: IA32_PM_CTL1 (described in Section 16.5.3). Propagation of the change in IA32_PKG_HDC_CTL.HDC_PK-
G_Enable and reaching all HDC idled logical processor to be woken up may take on the order of core C6 exit 
latency.

Table 16-3.  Architectural and non-Architecture MSRs Related to HDC

Address Architec
tural

Register Name Description

DB0H Y IA32_PKG_HDC_CTL Package Enable/Disable HDC.

DB1H Y IA32_PM_CTL1 Per-logical-processor select control to allow/block HDC forced idling. 

DB2H Y IA32_THREAD_STALL Accumulate stalled cycles on this logical processor due to HDC forced idling.

653H N MSR_CORE_HDC_RESIDENCY Core level stalled cycle counter due to HDC forced idling on one or more 
logical processor.

655H N MSR_PKG_HDC_SHALLOW_RE
SIDENCY

Accumulate the cycles the package was in C21 state and at least one logical 
processor was in forced idle

656H N MSR_PKG_HDC_DEEP_RESIDE
NCY

Accumulate the cycles the package was in the software specified Cx1 state 
and at least one logical processor was in forced idle. Cx is specified in 
MSR_PKG_HDC_CONFIG_CTL.

652H N MSR_PKG_HDC_CONFIG_CTL HDC configuration controls

NOTES:
1. The package “C-states” referred to in this section are processor-specific C-states.

Figure 16-16.  IA32_PKG_HDC_CTL MSR

63 0

Reserved

1

HDC_PKG_EnableReserved
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16.5.3 Logical-Processor Level HDC Control
The layout of the IA32_PM_CTL1 MSR is shown in Figure 16-17. Each logical processor in a package has its own 
IA32_PM_CTL1 MSR. The bit fields are described below: 

• HDC_Allow_Block (bit 0, R/W) — Software sets this bit to allow this logical processors to honor the 
package-level IA32_PKG_HDC_CTL.HDC_PKG_Enable control. Clearing this bit prevents this logical processor 
from using the HDC. This bit is writable only if CPUID.06H:EAX[bit 13] = 1. Default = one (1). 

• Bits 63:1 are reserved and must be zero.

Fine-grain OS control of HDC operation at the granularity of per-logical-processor is provided by IA32_PM_CTL1. At 
RESET, all logical processors are allowed to participate in HDC operation such that OS can manage HDC using the 
package-level IA32_PKG_HDC_CTL.

Writes to IA32_PM_CTL1 complete with the latency that is typical to WRMSR to a Logical Processor level MSR. 
When the OS chooses to manage HDC operation at per-logical-processor granularity, it can write to IA32_PM_CTL1 
on one or more logical processors as desired. Each write to IA32_PM_CTL1 must be done by code that executes on 
the logical processor targeted to be allowed into or blocked from HDC operation. 

Blocking one logical processor for HDC operation may have package level impact. For example, the processor may 
decide to stop duty cycling of all other Logical Processors as well. 

The propagation of IA32_PKG_HDC_CTL.HDC_PKG_Enable in a package takes longer than a WRMSR to IA32_P-
M_CTL1. The last completed write to IA32_PM_CTL1 on a logical processor will be honored when a ‘0’-to-’1’ transi-
tion of IA32_PKG_HDC_CTL.HDC_PKG_Enable arrives to a logical processor.

16.5.4 HDC Residency Counters
There is a collection of counters available for software to track various residency metrics related to HDC operation. 
In general, HDC residency time is defined as the time in HDC forced idle state at the granularity of per-logical-
processor, per-core, or package. At the granularity of per-core/package-level HDC residency, at least one of the 
logical processor in a core/package must be in the HDC forced idle state.

16.5.4.1  IA32_THREAD_STALL
Software can track per-logical-processor HDC residency using the architectural MSR IA32_THREAD_STALL.The 
layout of the IA32_THREAD_STALL MSR is shown in Figure 16-18. Each logical processor in a package has its own 
IA32_THREAD_STALL MSR. The bit fields are described below: 

Figure 16-17.  IA32_PM_CTL1 MSR

Figure 16-18.  IA32_THREAD_STALL MSR

63 0

Reserved

1

HDC_Allow_Block
Reserved

63 0

Stall_cycle_cnt
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• Stall_Cycle_Cnt (bits 63:0, R/O) — Stores accumulated HDC forced-idle cycle count of this processor core 
since last RESET. This counter increments at the same rate of the TSC. The count is updated only after the 
logical processor exits from the forced idled C-state. At each update, the number of cycles that the logical 
processor was stalled due to forced-idle will be added to the counter. This counter is available only if 
CPUID.06H:EAX[bit 13] = 1. Default = zero (0). 

A value of zero in IA32_THREAD_STALL indicates either HDC is not supported or the logical processor never 
serviced any forced HDC idle. A non-zero value in IA32_THREAD_STALL indicates the HDC forced-idle residency 
times of the logical processor. It also indicates the forced-idle cycles due to HDC that could appear as C0 time to 
traditional OS accounting mechanisms (e.g., time-stamping OS idle/exit events).

Software can read IA32_THREAD_STALL irrespective of the state of IA32_PKG_HDC_CTL and IA32_PM_CTL1, as 
long as CPUID.06H:EAX[bit 13] = 1.

16.5.4.2  Non-Architectural HDC Residency Counters
Processors that support HDC operation may provide the following model-specific HDC residency counters.

MSR_CORE_HDC_RESIDENCY

Software can track per-core HDC residency using the counter MSR_CORE_HDC_RESIDENCY. This counter incre-
ments when the core is in C3 state or deeper (all logical processors in this core are idle due to either HDC or other 
mechanisms) and at least one of the logical processors is in HDC forced idle state. The layout of the MSR_CORE_H-
DC_RESIDENCY is shown in Figure 16-19. Each processor core in a package has its own MSR_CORE_HDC_RESI-
DENCY MSR. The bit fields are described below: 

• Core_Cx_Duty_Cycle_Cnt (bits 63:0, R/O) — Stores accumulated HDC forced-idle cycle count of this 
processor core since last RESET. This counter increments at the same rate of the TSC. The count is updated 
only after core C-state exit from a forced idled C-state. At each update, the increment counts cycles when the 
core is in a Cx state (all its logical processor are idle) and at least one logical processor in this core was forced 
into idle state due to HDC. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR will cause a #GP fault. 
Default = zero (0). 

A value of zero in MSR_CORE_HDC_RESIDENCY indicates either HDC is not supported or this processor core never 
serviced any forced HDC idle. 

MSR_PKG_HDC_SHALLOW_RESIDENCY

The counter MSR_PKG_HDC_SHALLOW_RESIDENCY allows software to track HDC residency time when the 
package is in C2 state, all processor cores in the package are not active and at least one logical processor was 
forced into idle state due to HDC. The layout of the MSR_PKG_HDC_SHALLOW_RESIDENCY is shown in 
Figure 16-20. There is one MSR_PKG_HDC_SHALLOW_RESIDENCY per package. The bit fields are described 
below: 

Figure 16-19.  MSR_CORE_HDC_RESIDENCY MSR

Figure 16-20.  MSR_PKG_HDC_SHALLOW_RESIDENCY MSR

63 0

Core_Cx_duty_cycle_cnt

63 0

Pkg_Duty_cycle_cnt
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• Pkg_Duty_Cycle_Cnt (bits 63:0, R/O) — Stores accumulated HDC forced-idle cycle count of this processor 
core since last RESET. This counter increments at the same rate of the TSC. Package shallow residency may be 
implementation specific. In the initial implementation, the threshold is package C2-state. The count is updated 
only after package C2-state exit from a forced idled C-state. At each update, the increment counts cycles when 
the package is in C2 state and at least one processor core in this package was forced into idle state due to HDC. 
If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR may cause a #GP fault. Default = zero (0). 

A value of zero in MSR_PKG_HDC_SHALLOW_RESIDENCY indicates either HDC is not supported or this processor 
package never serviced any forced HDC idle. 

MSR_PKG_HDC_DEEP_RESIDENCY

The counter MSR_PKG_HDC_DEEP_RESIDENCY allows software to track HDC residency time when the package is 
in a software-specified package Cx state, all processor cores in the package are not active and at least one logical 
processor was forced into idle state due to HDC. Selection of a specific package Cx state can be configured using 
MSR_PKG_HDC_CONFIG. The layout of the MSR_PKG_HDC_DEEP_RESIDENCY is shown in Figure 16-21. There is 
one MSR_PKG_HDC_DEEP_RESIDENCY per package. The bit fields are described below: 

• Pkg_Cx_Duty_Cycle_Cnt (bits 63:0, R/O) — Stores accumulated HDC forced-idle cycle count of this 
processor core since last RESET. This counter increments at the same rate of the TSC. The count is updated only 
after package C-state exit from a forced idle state. At each update, the increment counts cycles when the 
package is in the software-configured Cx state and at least one processor core in this package was forced into 
idle state due to HDC. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR may cause a #GP fault. 
Default = zero (0). 

A value of zero in MSR_PKG_HDC_SHALLOW_RESIDENCY indicates either HDC is not supported or this processor 
package never serviced any forced HDC idle. 

MSR_PKG_HDC_CONFIG

MSR_PKG_HDC_CONFIG allows software to configure the package Cx state that the counter MSR_PKG_HD-
C_DEEP_RESIDENCY monitors. The layout of the MSR_PKG_HDC_CONFIG is shown in Figure 16-22. There is one 
MSR_PKG_HDC_CONFIG per package. The bit fields are described below: 

• Pkg_Cx_Monitor (bits 2:0, R/W) — Selects which package C-state the MSR_HDC_DEEP_RESIDENCY 
counter will monitor. The encoding of the HDC_Cx_Monitor field are: 0: no-counting; 1: count package C2 only, 
2: count package C3 and deeper; 3: count package C6 and deeper; 4: count package C7 and deeper; other 
encodings are reserved. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR may cause a #GP fault. 
Default = zero (0). 

• Bits 63:3 are reserved and must be zero.

Figure 16-21.  MSR_PKG_HDC_DEEP_RESIDENCY MSR

Figure 16-22.  MSR_PKG_HDC_CONFIG MSR

63 0

Pkg_Cx_duty_cycle_cnt

63 0

Reserved

2

HDC_Cx_Monitor
Reserved
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16.5.5 MPERF and APERF Counters Under HDC
HDC operation can be thought of as an average effective frequency drop due to all or some of the Logical Proces-
sors enter an idle state period. 

By default, the IA32_MPERF counter counts during forced idle periods as if the logical processor was active. The 
IA32_APERF counter does not count during forced idle state. This counting convention allows the OS to compute 
the average effective frequency of the Logical Processor between the last MWAIT exit and the next MWAIT entry 
(OS visible C0) by ΔACNT/ΔMCNT * TSC Frequency.

16.6 HARDWARE FEEDBACK INTERFACE AND INTEL® THREAD DIRECTOR
Intel processors that enumerate CPUID.06H.0H:EAX.HW_FEEDBACK[bit 19] as 1 support Hardware Feedback 
Interface (HFI). Hardware provides guidance to the Operating System (OS) scheduler to perform optimal workload 
scheduling through a hardware feedback interface structure in memory. Details on this table structure are 
described in Section 16.6.1.

Intel processors that enumerate CPUID.06H.0H:EAX[bit 23] as 1 support Intel® Thread Director. Hardware 
provides guidance to the Operating System (OS) scheduler to perform optimal workload scheduling through a 
memory resident table and software thread specific index (Class ID) that points into that table and selects which 
data to use for that software thread. Details on this table structure are described in Section 16.6.2.

16.6.1 Hardware Feedback Interface Table Structure
This structure has a global header that is 16 bytes in size. Following this global header, there is one 8 byte entry 
per logical processor in the socket. The structure is designed as follows.

Figure 16-23.  Example of Effective Frequency Reduction and Forced Idle Period of HDC

Table 16-4.  Hardware Feedback Interface Structure

Byte Offset Size (Bytes) Description

0 16 Global Header

16 8 Per Logical Processor Entry

24 8 Per Logical Processor Entry

... ... ...

16 + n*8 8 Per Logical Processor Entry

1600 MHz: 25% Utilization /75% Forced Idle

Effective Frequency @ 100% Utilization: 400 MHz
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The global header is structured as shown in Table 16-5.

The per logical processor scheduler feedback entry is structured as follows. The operating system can determine 
the index of the logical processor feedback entry for a logical processor using CPUID.06H.0H:EDX[31:16] by 
executing CPUID on that logical processor.

Table 16-5.  Hardware Feedback Interface Global Header Structure

Byte Offset Size (Bytes) Field Name Description

0 8 Timestamp Timestamp of when the table was last updated by hardware. This is a 
timestamp in crystal clock units.
Initialized by the OS to 0.

8 1 Performance 
Capability Flags

If bit 0 is set to 1, indicates the performance capability field for one or more 
logical processors was updated in the table and/or another bit in this field is 
updated.
If bit 1 is set to 1, indicates a force idle/inject idle request to the OS for one 
or more logical processors.
Initialized by the OS to 0.

9 1 Energy Efficiency 
Capability Changed

If bit 0 is set to 1, indicates the energy efficiency capability field for one or 
more logical processors was updated in the table and/or another bit in this 
field is updated.
If bit 1 is set to 1, indicates a force idle/inject idle request to the OS for one 
or more logical processors.
Initialized by the OS to 0.

10 6 Reserved Initialized by the OS to 0.

Table 16-6.  Hardware Feedback Interface Logical Processor Entry Structure

Byte Offset Size (Bytes) Field Name Description

0 1 Performance 
Capability

Performance capability is an 8-bit value (0 ... 255) specifying the relative 
performance level of a logical processor. Higher values indicate higher perfor-
mance; the lowest performance level of 0 indicates a recommendation to the OS to 
not schedule any software threads on it for performance reasons. The OS 
scheduler is expected to initialize the Hardware Feedback Interface Structure to 0 
prior to enabling Hardware Feedback.
CPUID.06H.0H:EDX[0] enumerates support for Performance capability reporting.

1 1 Energy 
Efficiency 
Capability

Energy Efficiency capability is an 8-bit value (0 ... 255) specifying the relative 
energy efficiency level of a logical processor. Higher values indicate higher energy 
efficiency; the lowest energy efficiency capability of 0 indicates a recommendation 
to the OS to not schedule any software threads on it for efficiency reasons. An 
Energy Efficiency capability of 255 indicates which logical processors have the 
highest relative energy efficiency capability. In addition, the value 255 is an 
explicit recommendation for the OS to consolidate work on those logical 
processors for energy efficiency reasons. The OS scheduler is expected to initialize 
the Hardware Feedback Interface Structure to 0 prior to enabling Hardware 
Feedback.
CPUID.06H.0H:EDX[1] enumerates support for Energy Efficiency capability 
reporting.

2 6 Reserved The OS scheduler is expected to initialize the Hardware Feedback Interface 
Structure to 0 prior to enabling Hardware Feedback.
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16.6.2 Intel® Thread Director Table Structure
This structure has a global header that is at least 16 bytes in size. Its size depends on the number of classes and 
capabilities enumerated by the CPUID instruction (see notes below Table 16-7). Following this global header there 
are multiple Logical Processor related entries. The structure is designed as follows.

The global header is structured as shown in Table 16-8.

Table 16-7.  Intel® Thread Director Table Structure

Byte Offset1,2,3

NOTES:
1. Byte offset of Capabilitycp of Classcl change indication: 8 + CP * cl + cp.
2. Byte offset of LP Entryi : 8 + (i+1) * (CP * CL + R8).
3. Byte offset of capabilitycp of classcl of LP Entryi: 8 + (i+1) * (CP * CL + R8) + CP * cl + cp.

Size (Bytes) Description

0 8 + CP4*CL4 + R85

4. Both upper case CL and CP denote total number of classes and capabilities defined for the processor. Lower case cl and cp denote 
one instance of a class or capability. cl and cp are counted starting at zero. See “CPUID—CPU Identification” in Chapter 3 of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 2A for the number of classes (CL) and the number of supported 
capabilities (CP). CP (# of capabilities): number of enumerated bits in CPUID.06H.0H:EDX[7:0] and CL (# of classes): 
CPUID.06H.0H:ECX[15:8].

5. R8 is the number of bytes necessary to round up the Capability Change Indication array and the Logical Processor Entry to whole 
multiple of 8 bytes.

Global Header

8 + CP*CL + R8 CL*CP + R8 Per Logical Processor Entry0
6

6. Table size: 8 + (N+1)* (CP * CL + R8).

8 + 2*(CP*CL + R8) CL*CP + R8 Per Logical Processor Entry1

... ... ...

8 + (N7 -1)*(CP*CL + R8)

7. N is the number of Logical Processor Entries in the table. It is not greater than the number of Logical Processors on the socket, but 
may be lower.

8. The Operating System can determine the index for the Logical Processor Entry within the Intel Thread Director table using 
CPUID.06H.0H:EDX[31:16] by executing the CPUID instruction on that Logical Processor.

9. The Operating System should allocate space to accommodate for one such structure per socket in the system.
10. The Intel Thread Director table structure extends the Hardware Feedback Interface table structure without breaking backward 

compatibility. The Hardware Feedback Interface can be viewed as having two capabilities and a single class.

CL*CP +R8 Logical Processor EntryN-1
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Table 16-8.  Intel® Thread Director Global Header Structure 

Byte Offset
Size 
(Bytes)

Description

0 8 Time-stamp of when the table was last updated by hardware. This is a time-stamp in crystal clock units. 
Initialized by the OS to 0.

8 1 Class 0 Performance 
Capability Flags

If bit 0 is set to 1, indicates the performance capability field for one or 
more logical processors was updated in the table and/or another bit in 
this field is updated. 
If bit 1 is set to 1, indicates a force idle/inject idle request to the OS for 
one or more logical processors.
Initialized by the OS to 0.

8 + 1 1 Class 0 Energy Efficiency 
Capability Flags

If bit 0 is set to 1, indicates the energy efficiency capability field for 
one or more logical processors was updated in the table and/or 
another bit in this field is updated. 
If bit 1 is set to 1, indicates a force idle/inject idle request to the OS for 
one or more logical processors.
Initialized by the OS to 0.

...

8 + CP - 1 1 Class 0 change indication for 
Capability #(CP-1) if exists

Unavailable for capabilities that are not enumerated.

8 + CP 1 Class 1 Performance 
Capability Flags

If bit 0 is set to 1, indicates the performance capability field for one or 
more logical processors was updated in the table and/or another bit in 
this field is updated. 
If bit 1 is set to 1, indicates a force idle/inject idle request to the OS for 
one or more logical processors.
Initialized by the OS to 0.

8 + CP + 1 1 Class 1 Energy Efficiency 
Capability Flags

If bit 0 is set to 1, indicates the energy efficiency capability field for 
one or more logical processors was updated in the table and/or 
another bit in this field is updated.
If bit 1 is set to 1, indicates a force idle/inject idle request to the OS for 
one or more logical processors.
Initialized by the OS to 0.

...

8 + 2*CP - 1 1 Class 1 change indication for 
Capability #(CP-1) if exists

Unavailable for capabilities that are not enumerated.

... Change indication for Capabilities of additional Classes if exist.

8 + (CL-1)*CP 1 Class #(CL-1) Performance 
Capability Flags

If bit 0 is set to 1, indicates the performance capability field for one or 
more logical processors was updated in the table and/or another bit in 
this field is updated. 
If bit 1 is set to 1, indicates a force idle/inject idle request to the OS for 
one or more logical processors.
Initialized by the OS to 0.

8 + (CL-1)*CP + 1 1 Class #(CL-1) Energy 
Efficiency Capability Flags

If bit 0 is set to 1, indicates the energy efficiency capability field for 
one or more logical processors was updated in the table and/or 
another bit in this field is updated. 
If bit 1 is set to 1, indicates a force idle/inject idle request to the OS for 
one or more logical processors.
Initialized by the OS to 0.
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The logical processor capability entry in the Intel Thread Director table is structured as follows. 

...

8 + CL*CP - 1 1 Class #(CL-1) change 
indication for Capability #(CP-
1) if exists

Unavailable for capabilities that are not enumerated.

8 + CL*CP R8 Padding Padding to nearest multiple of 8 bytes. Initialized by the OS to 0 prior 
to enabling Intel Thread Director.

Table 16-9.  Intel® Thread Director Logical Processor Entry Structure 

Byte Offset Size (Bytes) Field Name Description

0 1 Performance 
Capability

Class 0 Performance capability is an 8-bit value (0 ... 255) specifying the relative 
performance level of a single logical processor. Higher values indicate higher 
performance; the lowest performance level of 0 indicates a recommendation to 
the OS to not schedule any software threads on it for performance reasons. 
Initialized by the OS to 0.

1 1 Energy 
Efficiency 
Capability

Class 0 Energy Efficiency capability is an 8-bit value (0 ... 255) specifying the 
relative energy efficiency level of a logical processor. Higher values indicate higher 
energy efficiency; the lowest energy efficiency capability of 0 indicates a recom-
mendation to the OS to not schedule any software threads on it for efficiency 
reasons. An Energy Efficiency capability of 255 indicates which logical processors 
have the highest relative energy efficiency capability. In addition, the value 255 is 
an explicit recommendation for the OS to consolidate work on those logical 
processors for energy efficiency reasons. 
Initialized by the OS to 0.

...

CP - 1 1 Capability 
#(CP-1)

Class 0 Capability #(CP-1) if exists. If the capability does not exist (is not 
enumerated in the CPUID), the entry is unavailable (no space is reserved for future 
use here).

CP R8 Padding Padding to nearest multiple of 8 bytes. Initialized by the OS to 0 prior to enabling 
Intel Thread Director.

CP + R8 1 Performance 
Capability

Class 1 Performance capability is an 8-bit value (0 ... 255) specifying the relative 
performance level of a single logical processor. Higher values indicate higher 
performance; the lowest performance level of 0 indicates a recommendation to 
the OS to not schedule any software threads on it for performance reasons.
Initialized by the OS to 0.

CP + 1 1 Energy 
Efficiency 
Capability

Class 1 Energy Efficiency capability is an 8-bit value (0 ... 255) specifying the 
relative energy efficiency level of a logical processor. Higher values indicate higher 
energy efficiency; the lowest energy efficiency capability of 0 indicates a recom-
mendation to the OS to not schedule any software threads on it for efficiency 
reasons. An Energy Efficiency capability of 255 indicates which logical processors 
have the highest relative energy efficiency capability. In addition, the value 255 is 
an explicit recommendation for the OS to consolidate work on those logical 
processors for energy efficiency reasons. 
Initialized by the OS to 0.

...

2*CP - 1 1 Capability 
#(CP-1)

Class 1 Capability #(CP-1) if exists. If the capability does not exist (is not 
enumerated in the CPUID), the entry is unavailable (no space is reserved for future 
use here).

Table 16-8.  Intel® Thread Director Global Header Structure  (Contd.)

Byte Offset
Size 
(Bytes)

Description
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16.6.3 Intel® Thread Director Usage Model
When the OS Scheduler needs to decide which one of multiple free logical processors to assign to a software 
thread that is ready to execute, it can choose one of the following options:

1. The free logical processor with the highest performance value of that software thread class, if the system is 
scheduling for performance.

2. The free logical processor with the highest energy efficiency value of that software thread class, if the system 
is scheduling for energy efficiency.

When the OS Scheduler needs to decide which of two logical processors (i,j) to assign to which of two software 
threads whose Class IDs are k1 and k2, it can compute the two performance ratios: Perf Ratio1 = Perfik1 / Perfjk1 
and Perf Ratio2 = Perfik2 / Perfjk2, or two energy efficiency ratios: Energy Eff. Ratio1 = Energy Effik1 / Energy Effjk1 
and Energy Eff. Ratio2 = Energy Effik2 / Energy Effjk2 between the two logical processors for each of the two classes, 
depending on whether the OS is scheduling for performance or for energy efficiency.
For example, assume that the system is scheduling for performance and that Perf Ratio1 > Perf Ratio2. The OS 
Scheduler will assign the software thread whose Class ID is k1 to logical processor i, and the one whose Class ID is 
k2 to logical processor j.

When the two software threads in question belong to the same Class ID, the OS Scheduler can schedule to higher 
performance logical processors within that class when scheduling for performance and to higher energy efficiency 
logical processors within that class when scheduling for energy efficiency.
The highest to lowest ordering may be different between classes across cores and between the performance 
column and the energy efficiency column of the same class across cores.

2*CP R8 Padding Padding to nearest multiple of 8 bytes. Initialized by the OS to 0 prior to enabling 
Intel Thread Director.

...

(CL-1)*CP 1 Performance 
Capability

Class #(CL-1) Performance capability is an 8-bit value (0 ... 255) specifying the 
relative performance level of a single logical processor. Higher values indicate 
higher performance; the lowest performance level of 0 indicates a recommen-
dation to the OS to not schedule any software threads on it for performance 
reasons. 
Initialized by the OS to 0.

(CL-1)*CP + 1 1 Energy 
Efficiency 
Capability

Class #(CL-1) Energy Efficiency capability is an 8-bit value (0 ... 255) specifying the 
relative energy efficiency level of a logical processor. Higher values indicate higher 
energy efficiency; the lowest energy efficiency capability of 0 indicates a recom-
mendation to the OS to not schedule any software threads on it for efficiency 
reasons. An Energy Efficiency capability of 255 indicates which logical processors 
have the highest relative energy efficiency capability. In addition, the value 255 is 
an explicit recommendation for the OS to consolidate work on those logical 
processors for energy efficiency reasons.
Initialized by the OS to 0.

...

CL*CP - 1 1 Capability 
#(CP-1)

Class #(CL-1) Capability #(CP-1) if exists. If the capability does not exist (is not 
enumerated in the CPUID), the entry is unavailable (no space is reserved for future 
use here).

CL*CP R8 Padding Padding to nearest multiple of 8 bytes. Initialized by the OS to 0 prior to enabling 
Intel Thread Director.

Table 16-9.  Intel® Thread Director Logical Processor Entry Structure  (Contd.)

Byte Offset Size (Bytes) Field Name Description
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16.6.4 Hardware Feedback Interface Pointer
The physical address of the HFI/Intel Thread Director structure is programmed by the OS into a package scoped 
MSR named IA32_HW_FEEDBACK_PTR. The MSR is structured as follows:
• Bits 63:MAXPHYADDR1 – Reserved. 
• Bits MAXPHYADDR-1:12 – ADDR. This is the physical address of the page frame of the first page of this 

structure.
• Bits 11:1 – Reserved. 
• Bit 0 – Valid. When set to 1, indicates a valid pointer is programmed into the ADDR field of the MSR.
The address of this MSR is 17D0H. This MSR is cleared on processor reset to its default value of 0. It retains its 
value upon INIT.

CPUID.06H.0H:EDX[11:8] enumerates the size of memory that must be allocated by the OS for this structure. 

16.6.5 Hardware Feedback Interface Configuration
The operating system enables HFI/Intel Thread Director using a package scoped MSR named IA32_HW_FEED-
BACK_CONFIG (address 17D1H). This MSR is cleared on processor reset to its default value of 0. It retains its value 
upon INIT.
The MSR is structured as follows:
• Bits 63:2 – Reserved. 
• Bit 1 – Enable Intel Thread Director (or multi-class support). Both bits 0 and 1 must be set for Intel Thread 

Director to be enabled. The extra class columns in the Intel Thread Director table are updated by hardware 
immediately following setting those two bits, as well as during run time as necessary.

• Bit 0 – Enable. When set to 1, enables HFI.
Before enabling HFI, the OS must set a valid hardware feedback interface structure using IA32_HW_FEED-
BACK_PTR.
When the OS sets bit 0 only, the hardware populates class 0 capabilities only in the HFI structure. When bit 1 is set 
after or together with bit 0, the Intel Thread Director multi-class structure is populated. 
When either the HFI structure or the Intel Thread Director structure are ready to use by the OS, the hardware sets 
IA32_PACKAGE_THERM_STATUS[bit 26]. An interrupt is generated by the hardware if IA32_PACKAGE_THERM_IN-
TERRUPT[bit 25] is set. 
When the OS clears bit 1 but leaves bit 0 set, Intel Thread Director is disabled, but HFI is kept operational. 
IA32_PACKAGE_THERM_STATUS[bit 26] is NOT set in this case.
Clearing bit 0 disables both HFI and Intel Thread Director, independent of the bit 1 state. Setting bit 1 to '1' while 
keeping bit 0 at '0' is an invalid combination which is quietly ignored.
When the OS clears bit 0, hardware sets the IA32_PACKAGE_THERM_STATUS[bit 26] to 1 to acknowledge 
disabling of the interface. The OS should wait for this bit to be set to 1 to reclaim the memory of the Intel Thread 
Director structure, as by setting IA32_PACKAGE_THERM_STATUS[bit 26] hardware guarantees not to write into 
the Intel Thread Director structure anymore. 
The OS may clear bit 0 only after receiving an indication from the hardware that the structure initialization is 
complete via the same IA32_PACKAGE_THERM_STATUS[bit 26], following enabling of HFI/Intel Thread Director, 
thus avoiding a race condition between OS and hardware. 
Bit 1 is valid only if CPUID.06H:EAX[bit 23] is set. When setting this bit while support is not enumerated, the hard-
ware generates #GP.
Table 16-10 summarizes the control options described above.
See Section 16.6.9 for details on scenarios where IA32_HW_FEEDBACK_CONFIG bits are implicitly reset by the 
hardware.

1. MAXPHYADDR is reported in CPUID.80000008H:EAX[7:0].
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16.6.6 Hardware Feedback Interface Notifications
The IA32_PACKAGE_THERM_STATUS MSR is extended with a new bit, hardware feedback interface structure 
change status (bit 26, R/WC0), to indicate that the hardware has updated the HFI/Intel Thread Director structure. 
This is a sticky bit and once set, indicates that the OS should read the structure to determine the change and adjust 
its scheduling decisions. Once set, the hardware will not generate any further updates to this structure until the OS 
clears this bit by writing 0.
The OS can enable interrupt-based notifications when the structure is updated by hardware through a new enable 
bit, hardware feedback interrupt enable (bit 25, R/W), in the IA32_PACKAGE_THERM_INTERRUPT MSR. When this 
bit is set to 1, it enables the generation of an interrupt when the HFI/Intel Thread Director structure is updated by 
hardware. When the enable bit transitions from 0 to 1, hardware will generate an initial notify, with the IA32_PACK-
AGE_THERM_STATUS bit 26 set to 1, to indicate that the OS should read the current HFI/Intel Thread Director 
structure.

Table 16-10.   IA32_HW_FEEDBACK_CONFIG Control Options 

Pre-Bit 1 Pre-Bit 0 Post-Bit 1 Post-Bit 0 Action IA32_PACKAGE_THERM_STATUS [bit 26] and 
Interrupt

0 0 0 0 Reset value. Both Hardware Feedback Interface and Intel 
Thread Director are disabled, no status bit set, no 
interrupt is generated.

0 0 0 1 Enable HFI structure. Set the status bit and generate interrupt if 
enabled.

0 0 1 0 Invalid option; quietly 
ignored by the hardware.

No action (no update in the table).

0 0 1 1 Enable HFI and Intel 
Thread Director.

Set the status bit and generate interrupt if 
enabled.

0 1 0 0 Disable HFI support. Set the status bit and generate interrupt if 
enabled.

0 1 1 0 Disable HFI and Intel 
Thread Director.

Set the status bit and generate interrupt if 
enabled.

0 1 1 1 Enable Intel Thread 
Director.

Set the status bit and generate interrupt if 
enabled.

1 0 0 0 No action; keeps HFI and 
Intel Thread Director 
disabled.

No action (no update in the table).

1 0 0 1 Enable HFI. Set the status bit and generate interrupt if 
enabled.

1 0 1 1 Enable HFI and Intel 
Thread Director.

Set the status bit and generate interrupt if 
enabled.

1 1 0 0 Disable HFI and Intel 
Thread Director.

Set the status bit and generate interrupt if 
enabled.

1 1 0 1 Disable Intel Thread 
Director; keep HFI 
enabled.

No action (no update in the table).

1 1 1 0 Disable HFI and Intel 
Thread Director.

Set the status bit and generate interrupt if 
enabled.
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16.6.7 Hardware Feedback Interface and Intel® Thread Director Structure Dynamic Update
The HFI/Intel Thread Director structure can be updated dynamically during run time. Changes to the structure may 
occur to one or more of its cells. Such changes may occur for one or more logical processors. The hardware sets a 
non-zero value in the “capability change” field of the HFI/Intel Thread Director structure as an indication for the OS 
to read that capability for all logical processors. A thermal interrupt is delivered to indicate to the OS that the struc-
ture has just changed. Section 16.6.6 contains more details on this notification mechanism. The hardware clears 
all “capability change” fields after the OS resets IA32_PACKAGE_THERM_STATUS[bit 26].
Zeroing a performance or energy efficiency cell hints to the OS that it is beneficial not to schedule software threads 
of that class on the associated logical processor for performance or energy efficiency reasons, respectively. If SMT 
is supported, it may be the case that the hardware zeroes one of the core's logical processors only. Zeroing the 
performance and energy efficiency cells of all classes for a logical processor implies that the hardware provides a 
hint to the OS to completely avoid scheduling work on that logical processor. 
Zeroing a performance and energy efficiency cell hint of a logical processor across all classes along with Capability 
Flag bit 1 set to 1 across all capabilities and classes, indicates to the OS to force idle logical processor(s), and if 
affinitized activity occurs on those logical processor(s), the OS should inject idle periods such that overall utilization 
of those idled cores has a minimal-to-no impact to power. Capability Flag bit 1 will be set to 1 while this hint 
persists.
When EE=255 is set on one or more logical processors, it represents a request that the OS attempt to consolidate 
work to those logical processors with EE=255. These requests are made when the SOC has knowledge that consol-
idating the work to a subset of cores will result in significantly better platform energy efficiency. Examples of 
consolidating work would include, but not limited to, delaying less important work as needed to provide compute 
bandwidth for more important work, and routing interrupts to the logical processors with EE=255. When the cumu-
lative workload requires performance greater than that which is available on the subset of cores with EE=255, it is 
expected that the OS will scale the work out to additional logical processors.
A few example reasons for runtime changes in the HGS/Intel Thread Director Table:
• Over clocking run time update that changes the capability values.
• Change in run time physical constraints.
• Run time performance or energy efficiency optimization.
• Change in core frequency, voltage, or power budget.

16.6.8 Logical Processor Scope Intel® Thread Director Configuration

The operating system enables Intel Thread Director at the logical processor scope using a logical processor scope 
MSR named IA32_HW_FEEDBACK_THREAD_CONFIG (address 17D4H).
The MSR is read/write and is structured as follows:
• Bits 63:1 – Reserved. 
• Bit 0 – Enables Intel Thread Director. When set to 1, logical processor scope Intel Thread Director is enabled. 

Default is 0 (disabled).

Bit 0 of the logical processor scope configuration MSR can be cleared or set regardless of the state of the 
HFI/Intel Thread Director package configuration MSR state. Even when bit 0 of all logical processor configuration 
MSRs is clear, the processor can still update the Intel Thread Director structure if it is still enabled in the 
IA32_HW_FEEDBACK_CONFIG package scope MSR. When the operating system clears 
IA32_HW_FEEDBACK_THREAD_CONFIG[bit 0], hardware clears the history accumulated on that logical processor 
which otherwise drives assigning the Class ID to the software thread that executes on that logical processor. As 
long as IA32_HW_FEEDBACK_THREAD_CONFIG[bit 0] is set, the Class ID is available for the operating system to 
read, independent of the state of the package scope IA32_HW_FEEDBACK_CONFIG[1:0] bits.

See Section 16.6.9 for details on scenarios where IA32_HW_FEEDBACK_CONFIG bits are implicitly reset by the 
hardware.
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16.6.9 Implicit Reset of Package and Logical Processor Scope Configuration MSRs
HFI/Intel Thread Director enable bits are reset by hardware in the following scenarios:

1. When GETSEC[SENTER] is executed:

a. The processor implicitly resets the HFI/Intel Thread Director enable bits in the 
IA32_HW_FEEDBACK_CONFIG MSR on all sockets (packages) in the system.

b. The processor implicitly resets the Intel Thread Director enable bit in the 
IA32_HW_FEEDBACK_THREAD_CONFIG MSR on all logical processors in the system across all sockets.

c. The processor implicitly clears the HFI/Intel Thread Director table structure pointer in the 
IA32_HW_FEEDBACK_PTR package MSR across all sockets.

2. When GETSEC[ENTERACCS] is executed:

a. The processor implicitly resets the HFI/Intel Thread Director enable bits in the 
IA32_HW_FEEDBACK_CONFIG MSR on the socket where the GETSEC[ENTERACCS] instruction was 
executed.

b. The processor implicitly resets the Intel Thread Director enable bit in the 
IA32_HW_FEEDBACK_THREAD_CONFIG MSR on all logical processors on the socket where the 
GETSEC[ENTERACCS] instruction was executed. 

c. The processor implicitly clears the HFI/Intel Thread Director table structure pointer in the 
IA32_HW_FEEDBACK_PTR package MSR on the socket where the GETSEC[ENTERACCS] instruction was 
executed.

3. When an INIT or a wait-for-SIPI state are processed by a logical processor:

a. The processor implicitly resets the Intel Thread Director enable bit in the 
IA32_HW_FEEDBACK_THREAD_CONFIG MSR on that logical processor, whether the signal was in the 
context of GETSEC[ENTERACCS] or not. 

If the OS requires HFI/Intel Thread Director to be active after exiting the measured environment or when 
processing a SIPI event, it should re-enable HFI/Intel Thread Director.

16.6.10 Logical Processor Scope Intel® Thread Director Run Time Characteristics
The processor provides the operating system with run time feedback about the execution characteristics of the 
software thread executing on logical processors whose IA32_HW_FEEDBACK_THREAD_CONFIG[bit 0] is set. 
The run time feedback is communicated via a read-only MSR named IA32_THREAD_FEEDBACK_CHAR. This is a 
logical processor scope MSR whose address is 17D2H. This MSR is structured as follows: 
• Bit 63 – Valid bit. When set to 1 the OS Scheduler can use the Class ID (in bits 7:0) for its scheduling decisions. 

If this bit is 0, the Class ID field should be ignored. It is recommended that the OS uses the last known Class ID 
of the software thread for its scheduling decisions. 

• Bits 62:8 – Reserved.
• Bits 7:0 – Application Class ID, pointing into the Intel Thread Director structure described in Table 16-8.

This MSR is valid only if CPUID.06H:EAX[bit 23] is set. 
The valid bit is cleared by the hardware in the following cases:
• The hardware does not have enough information to provide the operating system with a reliable Class ID.
• The operating system cleared the logical processor’s IA32_HW_FEEDBACK_THREAD_CONFIG[bit 0] bit.

The HRESET instruction is executed while configured to reset the Intel Thread Director history.

16.6.11 Logical Processor Scope History
The operating system can reset the Intel Thread Director related history accumulated on the current logical pro-
cessor it is executing on by issuing the HRESET instruction. See “CPUID—CPU Identification” in Chapter 3 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for enumeration of the HRESET 
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instruction. See also the “HRESET—History Reset” instruction description in Chapter 3 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A.

16.6.11.1  Enabling Intel® Thread Director History Reset
The IA32_HRESET_ENABLE MSR is a read/write MSR and is structured as follows:
• Bits 63:32 – Reserved.
• Bits 31:1 – Reserved for other capabilities that can be reset by the HRESET instruction.
• Bit 0 – Enable reset of the Intel Thread Director history.
The operating system should set IA32_HRESET_ENABLE[bit 0] to enable Intel Thread Director history reset via 
the HRESET instruction. 

16.6.11.2  Implicit Intel® Thread Director History Reset
The Intel Thread Director history is implicitly reset in the following scenarios:
1. When the processor enters or exits SMM mode and IA32_DEBUGCTL MSR.FREEZE_WHILE_SMM (bit 14) is set, 

the Intel Thread Director history is implicitly reset by the processor.

2. When GETSEC[SENTER] is executed, the processor resets the Intel Thread Director history on all logical 
processors in the system, including logical processors on other sockets (other than the one GETSEC[SENTER] 
is executed).

3. When GETSEC[ENTERACCS] is executed, the processor resets the Intel Thread Director history on the logical 
processor it is executed on.

4. When an INIT or a wait-for-SIPI state are processed by a logical processor, the Intel Thread Director history is 
reset whether the signal was a result of GETSEC[ENTERACCS] or not.

If the operating system requires HFI/Intel Thread Director to be active after exiting the measured environment or 
when processing a SIPI event, it should re-enable HFI/Intel Thread Director.

16.7 MWAIT EXTENSIONS FOR ADVANCED POWER MANAGEMENT
IA-32 processors may support a number of C-states1 that reduce power consumption for inactive states. Intel Core 
Solo and Intel Core Duo processors support both deeper C-state and MWAIT extensions that can be used by OS to 
implement power management policy.

Software should use CPUID to discover if a target processor supports the enumeration of MWAIT extensions. If 
CPUID.05H:ECX[bit 0] = 1, the target processor supports MWAIT extensions and their enumeration (see Chapter 
4, “Instruction Set Reference, M-U,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2B).

If CPUID.05H:ECX[bit 1] = 1, the target processor supports using interrupts as break-events for MWAIT, even 
when interrupts are disabled. Use this feature to measure C-state residency as follows:
• Software can write to bit 0 in the MWAIT Extensions register (ECX) when issuing an MWAIT to enter into a 

processor-specific C-state or sub C-state.
• When a processor comes out of an inactive C-state or sub C-state, software can read a timestamp before an 

interrupt service routine (ISR) is potentially executed. 

CPUID.05H:EDX allows software to enumerate processor-specific C-states and sub C-states available for use with 
MWAIT extensions. IA-32 processors may support more than one C-state of a given C-state type. These are called 
sub C-states. Numerically higher C-state have higher power savings and latency (upon entering and exiting) than 
lower-numbered C-state. 

1. The processor-specific C-states defined in MWAIT extensions can map to ACPI defined C-state types (C0, C1, C2, C3). The mapping 
relationship depends on the definition of a C-state by processor implementation and is exposed to OSPM by the BIOS using the ACPI 
defined _CST table.
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At CPL = 0, system software can specify desired C-state and sub C-state by using the MWAIT hints register (EAX). 
Processors will not go to C-state and sub C-state deeper than what is specified by the hint register. If CPL > 0 and 
if MONITOR/MWAIT is supported at CPL > 0, the processor will only enter C1-state (regardless of the C-state 
request in the hints register). 

Executing MWAIT generates an exception on processors operating at a privilege level where MONITOR/MWAIT are 
not supported.

NOTE
If MWAIT is used to enter a C-state (including sub C-state) that is numerically higher than C1, a 
store to the address range armed by MONITOR instruction will cause the processor to exit MWAIT if 
the store was originated by other processor agents. A store from non-processor agent may not 
cause the processor to exit MWAIT. 

16.8 THERMAL MONITORING AND PROTECTION
The IA-32 architecture provides the following mechanisms for monitoring temperature and controlling thermal 
power:

1. The catastrophic shutdown detector forces processor execution to stop if the processor’s core temperature 
rises above a preset limit.

2. Automatic and adaptive thermal monitoring mechanisms force the processor to reduce it’s power 
consumption in order to operate within predetermined temperature limits.

3. The software controlled clock modulation mechanism permits operating systems to implement power 
management policies that reduce power consumption; this is in addition to the reduction offered by automatic 
thermal monitoring mechanisms.

4. On-die digital thermal sensor and interrupt mechanisms permit the OS to manage thermal conditions 
natively without relying on BIOS or other system board components.

The first mechanism is not visible to software. The other three mechanisms are visible to software using processor 
feature information returned by executing CPUID with EAX = 1.

The second mechanism includes: 
• Automatic thermal monitoring provides two modes of operation. One mode modulates the clock duty cycle; 

the second mode changes the processor’s frequency. Both modes are used to control the core temperature of 
the processor.

• Adaptive thermal monitoring can provide flexible thermal management on processors made of multiple 
cores.

The third mechanism modulates the clock duty cycle of the processor. As shown in Figure 16-24, the phrase ‘duty 
cycle’ does not refer to the actual duty cycle of the clock signal. Instead it refers to the time period during which the 
clock signal is allowed to drive the processor chip. By using the stop clock mechanism to control how often the 
processor is clocked, processor power consumption can be modulated. 

Figure 16-24.  Processor Modulation Through Stop-Clock Mechanism
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For previous automatic thermal monitoring mechanisms, software controlled mechanisms that changed processor 
operating parameters to impact changes in thermal conditions. Software did not have native access to the native 
thermal condition of the processor; nor could software alter the trigger condition that initiated software program 
control. 

The fourth mechanism (listed above) provides access to an on-die digital thermal sensor using a model-specific 
register and uses an interrupt mechanism to alert software to initiate digital thermal monitoring. 

16.8.1 Catastrophic Shutdown Detector
P6 family processors introduced a thermal sensor that acts as a catastrophic shutdown detector. This catastrophic 
shutdown detector was also implemented in Pentium 4, Intel Xeon and Pentium M processors. It is always enabled. 
When processor core temperature reaches a factory preset level, the sensor trips and processor execution is halted 
until after the next reset cycle.

16.8.2 Thermal Monitor
Pentium 4, Intel Xeon and Pentium M processors introduced a second temperature sensor that is factory-calibrated 
to trip when the processor’s core temperature crosses a level corresponding to the recommended thermal design 
envelop. The trip-temperature of the second sensor is calibrated below the temperature assigned to the cata-
strophic shutdown detector. 

16.8.2.1  Thermal Monitor 1
The Pentium 4 processor uses the second temperature sensor in conjunction with a mechanism called Thermal 
Monitor 1 (TM1) to control the core temperature of the processor. TM1 controls the processor’s temperature by 
modulating the duty cycle of the processor clock. Modulation of duty cycles is processor model specific. Note that 
the processors STPCLK# pin is not used here; the stop-clock circuitry is controlled internally.

Support for TM1 is indicated by CPUID.01H:EDX.TM[bit 29] = 1.

TM1 is enabled by setting the thermal-monitor enable flag (bit 3) in IA32_MISC_ENABLE; see Chapter 2, “Model-
Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4. 
Following a power-up or reset, the flag is cleared, disabling TM1. BIOS is required to enable only one automatic 
thermal monitoring modes. Operating systems and applications must not disable the operation of these mecha-
nisms.

16.8.2.2  Thermal Monitor 2
An additional automatic thermal protection mechanism, called Thermal Monitor 2 (TM2), was introduced in the 
Intel Pentium M processor and also incorporated in newer models of the Pentium 4 processor family. Intel Core Duo 
and Solo processors, and Intel Core 2 Duo processor family all support TM1 and TM2. TM2 controls the core 
temperature of the processor by reducing the operating frequency and voltage of the processor and offers a higher 
performance level for a given level of power reduction than TM1.

TM2 is triggered by the same temperature sensor as TM1. The mechanism to enable TM2 may be implemented 
differently across various IA-32 processor families with different CPUID signatures in the family encoding value, 
but will be uniform within an IA-32 processor family. 

Support for TM2 is indicated by CPUID.01H:ECX.TM2[bit 8] = 1.

16.8.2.3  Two Methods for Enabling TM2
On processors with CPUID family/model/stepping signature encoded as 0x69n or 0x6Dn (early Pentium M proces-
sors), TM2 is enabled if the TM_SELECT flag (bit 16) of the MSR_THERM2_CTL register is set to 1 (Figure 16-25) 
and bit 3 of the IA32_MISC_ENABLE register is set to 1. 
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Following a power-up or reset, the TM_SELECT flag may be cleared. BIOS is required to enable either TM1 or TM2. 
Operating systems and applications must not disable mechanisms that enable TM1 or TM2. If bit 3 of the IA32_-
MISC_ENABLE register is set and TM_SELECT flag of the MSR_THERM2_CTL register is cleared, TM1 is enabled.

On processors introduced after the Pentium 4 processor (this includes most Pentium M processors), the method 
used to enable TM2 is different. TM2 is enable by setting bit 13 of IA32_MISC_ENABLE register to 1. This applies to 
Intel Core Duo, Core Solo, and Intel Core 2 processor family.

The target operating frequency and voltage for the TM2 transition after TM2 is triggered is specified by the value 
written to MSR_THERM2_CTL, bits 15:0 (Figure 16-26). Following a power-up or reset, BIOS is required to enable 
at least one of these two thermal monitoring mechanisms. If both TM1 and TM2 are supported, BIOS may choose 
to enable TM2 instead of TM1. Operating systems and applications must not disable the mechanisms that enable 
TM1or TM2; and they must not alter the value in bits 15:0 of the MSR_THERM2_CTL register.

16.8.2.4  Performance State Transitions and Thermal Monitoring
If the thermal control circuitry (TCC) for thermal monitor (TM1/TM2) is active, writes to the IA32_PERF_CTL will 
effect a new target operating point as follows:
• If TM1 is enabled and the TCC is engaged, the performance state transition can commence before the TCC is 

disengaged. 
• If TM2 is enabled and the TCC is engaged, the performance state transition specified by a write to the 

IA32_PERF_CTL will commence after the TCC has disengaged. 

16.8.2.5  Thermal Status Information
The status of the temperature sensor that triggers the thermal monitor (TM1/TM2) is indicated through the thermal 
status flag and thermal status log flag in the IA32_THERM_STATUS MSR (see Figure 16-27). 

The functions of these flags are:
• Thermal Status flag, bit 0 — When set, indicates that the processor core temperature is currently at the trip 

temperature of the thermal monitor and that the processor power consumption is being reduced via either TM1 
or TM2, depending on which is enabled. When clear, the flag indicates that the core temperature is below the 
thermal monitor trip temperature. This flag is read only. 

Figure 16-25.  MSR_THERM2_CTL Register On Processors with CPUID Family/Model/Stepping Signature Encoded 
as 0x69n or 0x6Dn

Figure 16-26.  MSR_THERM2_CTL Register for Supporting TM2
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• Thermal Status Log flag, bit 1 — When set, indicates that the thermal sensor has tripped since the last 
power-up or reset or since the last time that software cleared this flag. This flag is a sticky bit; once set it 
remains set until cleared by software or until a power-up or reset of the processor. The default state is clear.

After the second temperature sensor has been tripped, the thermal monitor (TM1/TM2) will remain engaged for a 
minimum time period (on the order of 1 ms). The thermal monitor will remain engaged until the processor core 
temperature drops below the preset trip temperature of the temperature sensor, taking hysteresis into account.

While the processor is in a stop-clock state, interrupts will be blocked from interrupting the processor. This holding 
off of interrupts increases the interrupt latency, but does not cause interrupts to be lost. Outstanding interrupts 
remain pending until clock modulation is complete. 

The thermal monitor can be programmed to generate an interrupt to the processor when the thermal sensor is 
tripped; this is called a thermal interrupt. The delivery mode, mask, and vector for this interrupt can be 
programmed through the thermal entry in the local APIC’s LVT (see Section 12.5.1, “Local Vector Table”). The low-
temperature interrupt enable and high-temperature interrupt enable flags in the IA32_THERM_INTERRUPT MSR 
(see Figure 16-28) control when the interrupt is generated; that is, on a transition from a temperature below the 
trip point to above and/or vice-versa.

• High-Temperature Interrupt Enable flag, bit 0 — Enables an interrupt to be generated on the transition 
from a low-temperature to a high-temperature when set; disables the interrupt when clear.(R/W).

• Low-Temperature Interrupt Enable flag, bit 1 — Enables an interrupt to be generated on the transition 
from a high-temperature to a low-temperature when set; disables the interrupt when clear.

The thermal interrupt can be masked by the thermal LVT entry. After a power-up or reset, the low-temperature 
interrupt enable and high-temperature interrupt enable flags in the IA32_THERM_INTERRUPT MSR are cleared 
(interrupts are disabled) and the thermal LVT entry is set to mask interrupts. This interrupt should be handled 
either by the operating system or system management mode (SMM) code.

Note that the operation of the thermal monitoring mechanism has no effect upon the clock rate of the processor's 
internal high-resolution timer (time stamp counter). 

16.8.2.6  Adaptive Thermal Monitor 
The Intel Core 2 Duo processor family supports enhanced thermal management mechanism, referred to as Adap-
tive Thermal Monitor (Adaptive TM). 

Unlike TM2, Adaptive TM is not limited to one TM2 transition target. During a thermal trip event, Adaptive TM (if 
enabled) selects an optimal target operating point based on whether or not the current operating point has effec-
tively cooled the processor.

Figure 16-27.  IA32_THERM_STATUS MSR

Figure 16-28.  IA32_THERM_INTERRUPT MSR
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Similar to TM2, Adaptive TM is enable by BIOS. The BIOS is required to test the TM1 and TM2 feature flags and 
enable all available thermal control mechanisms (including Adaptive TM) at platform initiation. 

Adaptive TM is available only to a subset of processors that support TM2.

In each chip-multiprocessing (CMP) silicon die, each core has a unique thermal sensor that triggers independently. 
These thermal sensor can trigger TM1 or TM2 transitions in the same manner as described in Section 16.8.2.1 and 
Section 16.8.2.2. The trip point of the thermal sensor is not programmable by software since it is set during the 
fabrication of the processor. 

Each thermal sensor in a processor core may be triggered independently to engage thermal management features. 
In Adaptive TM, both cores will transition to a lower frequency and/or lower voltage level if one sensor is triggered.

Triggering of this sensor is visible to software via the thermal interrupt LVT entry in the local APIC of a given core. 

16.8.3 Software Controlled Clock Modulation
Pentium 4, Intel Xeon and Pentium M processors also support software-controlled clock modulation. This provides 
a means for operating systems to implement a power management policy to reduce the power consumption of the 
processor. Here, the stop-clock duty cycle is controlled by software through the IA32_CLOCK_MODULATION MSR 
(see Figure 16-29). 

The IA32_CLOCK_MODULATION MSR contains the following flag and field used to enable software-controlled clock 
modulation and to select the clock modulation duty cycle:
• On-Demand Clock Modulation Enable, bit 4 — Enables on-demand software controlled clock modulation 

when set; disables software-controlled clock modulation when clear.
• On-Demand Clock Modulation Duty Cycle, bits 1 through 3 — Selects the on-demand clock modulation 

duty cycle (see Table 16-11). This field is only active when the on-demand clock modulation enable flag is set.

Note that the on-demand clock modulation mechanism (like the thermal monitor) controls the processor’s stop-
clock circuitry internally to modulate the clock signal. The STPCLK# pin is not used in this mechanism.

Figure 16-29.  IA32_CLOCK_MODULATION MSR

Table 16-11.  On-Demand Clock Modulation Duty Cycle Field Encoding
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The on-demand clock modulation mechanism can be used to control processor power consumption. Power 
management software can write to the IA32_CLOCK_MODULATION MSR to enable clock modulation and to select 
a modulation duty cycle. If on-demand clock modulation and TM1 are both enabled and the thermal status of the 
processor is hot (bit 0 of the IA32_THERM_STATUS MSR is set), clock modulation at the duty cycle specified by TM1 
takes precedence, regardless of the setting of the on-demand clock modulation duty cycle.

For Hyper-Threading Technology enabled processors, the IA32_CLOCK_MODULATION register is duplicated for 
each logical processor. In order for the On-demand clock modulation feature to work properly, the feature must be 
enabled on all the logical processors within a physical processor. If the programmed duty cycle is not identical for 
all the logical processors, the processor core clock will modulate to the highest duty cycle programmed for proces-
sors with any of the following CPUID DisplayFamily_DisplayModel signatures (see CPUID instruction in Chapter3, 
“Instruction Set Reference, A-L” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A): 06_1A, 06_1C, 06_1E, 06_1F, 06_25, 06_26, 06_27, 06_2C, 06_2E, 06_2F, 06_35, 06_36, and 0F_xx. For all 
other processors, if the programmed duty cycle is not identical for all logical processors in the same core, the 
processor core will modulate at the lowest programmed duty cycle. 

For multiple processor cores in a physical package, each processor core can modulate to a programmed duty cycle 
independently.

For the P6 family processors, on-demand clock modulation was implemented through the chipset, which controlled 
clock modulation through the processor’s STPCLK# pin.

16.8.3.1  Extension of Software Controlled Clock Modulation
Extension of the software controlled clock modulation facility supports on-demand clock modulation duty cycle with 
4-bit dynamic range (increased from 3-bit range). Granularity of clock modulation duty cycle is increased to 6.25% 
(compared to 12.5%).

Four bit dynamic range control is provided by using bit 0 in conjunction with bits 3:1 of the 
IA32_CLOCK_MODULATION MSR (see Figure 16-30).

Extension to software controlled clock modulation is supported only if CPUID.06H:EAX[bit 5] = 1. If 
CPUID.06H:EAX[bit 5] = 0, then bit 0 of IA32_CLOCK_MODULATION is reserved.

16.8.4 Detection of Thermal Monitor and Software Controlled Clock Modulation Facilities
The ACPI flag (bit 22) of the CPUID feature flags indicates the presence of the IA32_THERM_STATUS, 
IA32_THERM_INTERRUPT, IA32_CLOCK_MODULATION MSRs, and the xAPIC thermal LVT entry. 

The TM1 flag (bit 29) of the CPUID feature flags indicates the presence of the automatic thermal monitoring facili-
ties that modulate clock duty cycles.

16.8.4.1  Detection of Software Controlled Clock Modulation Extension
Processor’s support of software controlled clock modulation extension is indicated by CPUID.06H:EAX[bit 5] = 1. 

Figure 16-30.  IA32_CLOCK_MODULATION MSR with Clock Modulation Extension
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16.8.5 On Die Digital Thermal Sensors
On die digital thermal sensor can be read using an MSR (no I/O interface). In Intel Core Duo processors, each core 
has a unique digital sensor whose temperature is accessible using an MSR. The digital thermal sensor is the 
preferred method for reading the die temperature because (a) it is located closer to the hottest portions of the die, 
(b) it enables software to accurately track the die temperature and the potential activation of thermal throttling.

16.8.5.1  Digital Thermal Sensor Enumeration
The processor supports a digital thermal sensor if CPUID.06H:EAX[bit 0] = 1. If the processor supports digital 
thermal sensor, EBX[bits 3:0] determine the number of thermal thresholds that are available for use. 

Software sets thermal thresholds by using the IA32_THERM_INTERRUPT MSR. Software reads output of the digital 
thermal sensor using the IA32_THERM_STATUS MSR.

16.8.5.2  Reading the Digital Sensor
Unlike traditional analog thermal devices, the output of the digital thermal sensor is a temperature relative to the 
maximum supported operating temperature of the processor.

Temperature measurements returned by digital thermal sensors are always at or below TCC activation tempera-
ture. Critical temperature conditions are detected using the “Critical Temperature Status” bit. When this bit is set, 
the processor is operating at a critical temperature and immediate shutdown of the system should occur. Once the 
“Critical Temperature Status” bit is set, reliable operation is not guaranteed. 

See Figure 16-31 for the layout of IA32_THERM_STATUS MSR. Bit fields include:
• Thermal Status (bit 0, RO) — This bit indicates whether the digital thermal sensor high-temperature output 

signal (PROCHOT#) is currently active. Bit 0 = 1 indicates the feature is active. This bit may not be written by 
software; it reflects the state of the digital thermal sensor.

• Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that indicates the history of the thermal sensor 
high temperature output signal (PROCHOT#). Bit 1 = 1 if PROCHOT# has been asserted since a previous 
RESET or the last time software cleared the bit. Software may clear this bit by writing a zero.

• PROCHOT# or FORCEPR# Event (bit 2, RO) — Indicates whether PROCHOT# or FORCEPR# is being 
asserted by another agent on the platform. 

Figure 16-31.  IA32_THERM_STATUS Register 
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• PROCHOT# or FORCEPR# Log (bit 3, R/WC0) — Sticky bit that indicates whether PROCHOT# or 
FORCEPR# has been asserted by another agent on the platform since the last clearing of this bit or a reset. If 
bit 3 = 1, PROCHOT# or FORCEPR# has been externally asserted. Software may clear this bit by writing a zero. 
External PROCHOT# assertions are only acknowledged if the Bidirectional Prochot feature is enabled.

• Critical Temperature Status (bit 4, RO) — Indicates whether the critical temperature detector output signal 
is currently active. If bit 4 = 1, the critical temperature detector output signal is currently active.

• Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates whether the critical temperature 
detector output signal has been asserted since the last clearing of this bit or reset. If bit 5 = 1, the output 
signal has been asserted. Software may clear this bit by writing a zero.

• Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the actual temperature is currently higher 
than or equal to the value set in Thermal Threshold #1. If bit 6 = 0, the actual temperature is lower. If 
bit 6 = 1, the actual temperature is greater than or equal to TT#1. Quantitative information of actual 
temperature can be inferred from Digital Readout, bits 22:16.

• Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that indicates whether the Thermal Threshold #1 
has been reached since the last clearing of this bit or a reset. If bit 7 = 1, the Threshold #1 has been reached. 
Software may clear this bit by writing a zero.

• Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual temperature is currently higher than 
or equal to the value set in Thermal Threshold #2. If bit 8 = 0, the actual temperature is lower. If bit 8 = 1, the 
actual temperature is greater than or equal to TT#2. Quantitative information of actual temperature can be 
inferred from Digital Readout, bits 22:16.

• Thermal Threshold #2 Log (bit 9, R/WC0) — Sticky bit that indicates whether the Thermal Threshold #2 
has been reached since the last clearing of this bit or a reset. If bit 9 = 1, the Thermal Threshold #2 has been 
reached. Software may clear this bit by writing a zero.

• Power Limitation Status (bit 10, RO) — Indicates whether the processor is currently operating below OS-
requested P-state (specified in IA32_PERF_CTL) or OS-requested clock modulation duty cycle (specified in 
IA32_CLOCK_MODULATION). This field is supported only if CPUID.06H:EAX[bit 4] = 1. Package level power 
limit notification can be delivered independently to IA32_PACKAGE_THERM_STATUS MSR.

• Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates the processor went below OS-
requested P-state or OS-requested clock modulation duty cycle since the last clearing of this or RESET. This 
field is supported only if CPUID.06H:EAX[bit 4] = 1. Package level power limit notification is indicated 
independently in IA32_PACKAGE_THERM_STATUS MSR.

• Digital Readout (bits 22:16, RO) — Digital temperature reading in 1 degree Celsius relative to the TCC 
activation temperature. 
0: TCC Activation temperature, 
1: (TCC Activation - 1) , etc. See the processor’s data sheet for details regarding TCC activation.
A lower reading in the Digital Readout field (bits 22:16) indicates a higher actual temperature.

• Resolution in Degrees Celsius (bits 30:27, RO) — Specifies the resolution (or tolerance) of the digital 
thermal sensor. The value is in degrees Celsius. It is recommended that new threshold values be offset from the 
current temperature by at least the resolution + 1 in order to avoid hysteresis of interrupt generation.

• Reading Valid (bit 31, RO) — Indicates if the digital readout in bits 22:16 is valid. The readout is valid if 
bit 31 = 1.

Changes to temperature can be detected using two thresholds (see Figure 16-32); one is set above and the other 
below the current temperature. These thresholds have the capability of generating interrupts using the core's local 
APIC which software must then service. Note that the local APIC entries used by these thresholds are also used by 
the Intel® Thermal Monitor; it is up to software to determine the source of a specific interrupt.
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See Figure 16-32 for the layout of IA32_THERM_INTERRUPT MSR. Bit fields include:
• High-Temperature Interrupt Enable (bit 0, R/W) — This bit allows the BIOS to enable the generation of 

an interrupt on the transition from low-temperature to a high-temperature threshold. Bit 0 = 0 (default) 
disables interrupts; bit 0 = 1 enables interrupts.

• Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the BIOS to enable the generation of an 
interrupt on the transition from high-temperature to a low-temperature (TCC de-activation). Bit 1 = 0 (default) 
disables interrupts; bit 1 = 1 enables interrupts.

• PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS or OS to enable the generation of an 
interrupt when PROCHOT# has been asserted by another agent on the platform and the Bidirectional Prochot 
feature is enabled. Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the interrupt.

• FORCEPR# Interrupt Enable (bit 3, R/W) — This bit allows the BIOS or OS to enable the generation of an 
interrupt when FORCEPR# has been asserted by another agent on the platform. Bit 3 = 0 disables the 
interrupt; bit 3 = 1 enables the interrupt.

• Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the generation of an interrupt when the 
Critical Temperature Detector has detected a critical thermal condition. The recommended response to this 
condition is a system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 enables the interrupt.

• Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, encoded relative to the TCC Activation 
temperature (using the same format as the Digital Readout). This threshold is compared against the Digital 
Readout and is used to generate the Thermal Threshold #1 Status and Log bits as well as the Threshold #1 
thermal interrupt delivery.

• Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the generation of an interrupt when the actual 
temperature crosses the Threshold #1 setting in any direction. Bit 15 = 1 enables the interrupt; bit 15 = 0 
disables the interrupt.

• Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, encoded relative to the TCC Activation 
temperature (using the same format as the Digital Readout). This threshold is compared against the Digital 
Readout and is used to generate the Thermal Threshold #2 Status and Log bits as well as the Threshold #2 
thermal interrupt delivery.

• Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the generation of an interrupt when the actual 
temperature crosses the Threshold #2 setting in any direction. Bit 23 = 1enables the interrupt; bit 23 = 0 
disables the interrupt.

• Power Limit Notification Enable (bit 24, R/W) — Enables the generation of power notification events when 
the processor went below OS-requested P-state or OS-requested clock modulation duty cycle. This field is 
supported only if CPUID.06H:EAX[bit 4] = 1. Package level power limit notification can be enabled 
independently by IA32_PACKAGE_THERM_INTERRUPT MSR.

Figure 16-32.  IA32_THERM_INTERRUPT Register 
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16.8.6 Power Limit Notification
Platform firmware may be capable of specifying a power limit to restrict power delivered to a platform component, 
such as a physical processor package. This constraint imposed by platform firmware may occasionally cause the 
processor to operate below OS-requested P or T-state. A power limit notification event can be delivered using the 
existing thermal LVT entry in the local APIC. 

Software can enumerate the presence of the processor’s support for power limit notification by verifying 
CPUID.06H:EAX[bit 4] = 1.

If CPUID.06H:EAX[bit 4] = 1, then IA32_THERM_INTERRUPT and IA32_THERM_STATUS provides the following 
facility to manage power limit notification:
• Bits 10 and 11 in IA32_THERM_STATUS informs software of the occurrence of processor operating below OS-

requested P-state or clock modulation duty cycle setting (see Figure 16-31).
• Bit 24 in IA32_THERM_INTERRUPT enables the local APIC to deliver a thermal event when the processor went 

below OS-requested P-state or clock modulation duty cycle setting (see Figure 16-32).

16.9 PACKAGE LEVEL THERMAL MANAGEMENT
The thermal management facilities like IA32_THERM_INTERRUPT and IA32_THERM_STATUS are often imple-
mented with a processor core granularity. To facilitate software manage thermal events from a package level gran-
ularity, two architectural MSR is provided for package level thermal management. The 
IA32_PACKAGE_THERM_STATUS and IA32_PACKAGE_THERM_INTERRUPT MSRs use similar interfaces as 
IA32_THERM_STATUS and IA32_THERM_INTERRUPT, but are shared in each physical processor package.

Software can enumerate the presence of the processor’s support for package level thermal management facility 
(IA32_PACKAGE_THERM_STATUS and IA32_PACKAGE_THERM_INTERRUPT) by verifying CPUID.06H:EAX[bit 6] = 
1.

The layout of IA32_PACKAGE_THERM_STATUS MSR is shown in Figure 16-33.

• Package Thermal Status (bit 0, RO) — This bit indicates whether the digital thermal sensor high-
temperature output signal (PROCHOT#) for the package is currently active. Bit 0 = 1 indicates the feature is 
active. This bit may not be written by software; it reflects the state of the digital thermal sensor.

Figure 16-33.  IA32_PACKAGE_THERM_STATUS Register 
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• Package Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that indicates the history of the thermal 
sensor high temperature output signal (PROCHOT#) of the package. Bit 1 = 1 if package PROCHOT# has been 
asserted since a previous RESET or the last time software cleared the bit. Software may clear this bit by writing 
a zero.

• Package PROCHOT# Event (bit 2, RO) — Indicates whether package PROCHOT# is being asserted by 
another agent on the platform. 

• Package PROCHOT# Log (bit 3, R/WC0) — Sticky bit that indicates whether package PROCHOT# has been 
asserted by another agent on the platform since the last clearing of this bit or a reset. If bit 3 = 1, package 
PROCHOT# has been externally asserted. Software may clear this bit by writing a zero. 

• Package Critical Temperature Status (bit 4, RO) — Indicates whether the package critical temperature 
detector output signal is currently active. If bit 4 = 1, the package critical temperature detector output signal 
is currently active.

• Package Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates whether the package critical 
temperature detector output signal has been asserted since the last clearing of this bit or reset. If bit 5 = 1, the 
output signal has been asserted. Software may clear this bit by writing a zero.

• Package Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the actual package temperature is 
currently higher than or equal to the value set in Package Thermal Threshold #1. If bit 6 = 0, the actual 
temperature is lower. If bit 6 = 1, the actual temperature is greater than or equal to PTT#1. Quantitative 
information of actual package temperature can be inferred from Package Digital Readout, bits 22:16.

• Package Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that indicates whether the Package 
Thermal Threshold #1 has been reached since the last clearing of this bit or a reset. If bit 7 = 1, the Package 
Threshold #1 has been reached. Software may clear this bit by writing a zero.

• Package Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual package temperature is 
currently higher than or equal to the value set in Package Thermal Threshold #2. If bit 8 = 0, the actual 
temperature is lower. If bit 8 = 1, the actual temperature is greater than or equal to PTT#2. Quantitative 
information of actual temperature can be inferred from Package Digital Readout, bits 22:16.

• Package Thermal Threshold #2 Log (bit 9, R/WC0) — Sticky bit that indicates whether the Package 
Thermal Threshold #2 has been reached since the last clearing of this bit or a reset. If bit 9 = 1, the Package 
Thermal Threshold #2 has been reached. Software may clear this bit by writing a zero.

• Package Power Limitation Status (bit 10, RO) — Indicates package power limit is forcing one ore more 
processors to operate below OS-requested P-state. Note that package power limit violation may be caused by 
processor cores or by devices residing in the uncore. Software can examine IA32_THERM_STATUS to determine 
if the cause originates from a processor core (see Figure 16-31).

• Package Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates any processor in the package 
went below OS-requested P-state or OS-requested clock modulation duty cycle since the last clearing of this or 
RESET. 

• Package Digital Readout (bits 22:16, RO) — Package digital temperature reading in 1 degree Celsius 
relative to the package TCC activation temperature. 
0: Package TCC Activation temperature, 
1: (PTCC Activation - 1) , etc. See the processor’s data sheet for details regarding PTCC activation.
A lower reading in the Package Digital Readout field (bits 22:16) indicates a higher actual temperature.

The layout of IA32_PACKAGE_THERM_INTERRUPT MSR is shown in Figure 16-34.
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• Package High-Temperature Interrupt Enable (bit 0, R/W) — This bit allows the BIOS to enable the 
generation of an interrupt on the transition from low-temperature to a package high-temperature threshold. 
Bit 0 = 0 (default) disables interrupts; bit 0 = 1 enables interrupts.

• Package Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the BIOS to enable the 
generation of an interrupt on the transition from high-temperature to a low-temperature (TCC de-activation). 
Bit 1 = 0 (default) disables interrupts; bit 1 = 1 enables interrupts.

• Package PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS or OS to enable the 
generation of an interrupt when Package PROCHOT# has been asserted by another agent on the platform and 
the Bidirectional Prochot feature is enabled. Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the interrupt.

• Package Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the generation of an interrupt 
when the Package Critical Temperature Detector has detected a critical thermal condition. The recommended 
response to this condition is a system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 enables the 
interrupt.

• Package Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, encoded relative to the 
Package TCC Activation temperature (using the same format as the Digital Readout). This threshold is 
compared against the Package Digital Readout and is used to generate the Package Thermal Threshold #1 
Status and Log bits as well as the Package Threshold #1 thermal interrupt delivery.

• Package Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the generation of an interrupt when the 
actual temperature crosses the Package Threshold #1 setting in any direction. Bit 15 = 1 enables the interrupt; 
bit 15 = 0 disables the interrupt.

• Package Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, encoded relative to the PTCC 
Activation temperature (using the same format as the Package Digital Readout). This threshold is compared 
against the Package Digital Readout and is used to generate the Package Thermal Threshold #2 Status and Log 
bits as well as the Package Threshold #2 thermal interrupt delivery.

• Package Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the generation of an interrupt when the 
actual temperature crosses the Package Threshold #2 setting in any direction. Bit 23 = 1 enables the interrupt; 
bit 23 = 0 disables the interrupt.

• Package Power Limit Notification Enable (bit 24, R/W) — Enables the generation of package power 
notification events.

16.9.1 Support for Passive and Active cooling
Passive and active cooling may be controlled by the OS power management agent through ACPI control methods. 
On platforms providing package level thermal management facility described in the previous section, it is recom-
mended that active cooling (FAN control) should be driven by measuring the package temperature using the 
IA32_PACKAGE_THERM_INTERRUPT MSR. 

Figure 16-34.  IA32_PACKAGE_THERM_INTERRUPT Register 
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Passive cooling (frequency throttling) should be driven by measuring (a) the core and package temperatures, or 
(b) only the package temperature. If measured package temperature led the power management agent to choose 
which core to execute passive cooling, then all cores need to execute passive cooling. Core temperature is 
measured using the IA32_THERMAL_STATUS and IA32_THERMAL_INTERRUPT MSRs. The exact implementation 
details depend on the platform firmware and possible solutions include defining two different thermal zones (one 
for core temperature and passive cooling and the other for package temperature and active cooling).

16.10 PLATFORM SPECIFIC POWER MANAGEMENT SUPPORT
This section covers power management interfaces that are not architectural but addresses the power management 
needs of several platform specific components. Specifically, RAPL (Running Average Power Limit) interfaces provide 
mechanisms to enforce power consumption limit. Power limiting usages have specific usages in client and server 
platforms. 

For client platform power limit control and for server platforms used in a data center, the following power and 
thermal related usages are desirable:
• Platform Thermal Management: Robust mechanisms to manage component, platform, and group-level 

thermals, either proactively or reactively (e.g., in response to a platform-level thermal trip point).
• Platform Power Limiting: More deterministic control over the system's power consumption, for example to meet 

battery life targets on rack-level or container-level power consumption goals within a datacenter. 
• Power/Performance Budgeting: Efficient means to control the power consumed (and therefore the sustained 

performance delivered) within and across platforms.

The server and client usage models are addressed by RAPL interfaces, which expose multiple domains of power 
rationing within each processor socket. Generally, these RAPL domains may be viewed to include hierarchically:
• Package domain is the processor die. 
• Memory domain includes the directly-attached DRAM; an additional power plane may constitute a separate 

domain. 

In order to manage the power consumed across multiple sockets via RAPL, individual limits must be programmed 
for each processor complex. Programming specific RAPL domain across multiple sockets is not supported.

16.10.1 RAPL Interfaces
RAPL interfaces consist of non-architectural MSRs. Each RAPL domain supports the following set of capabilities, 
some of which are optional as stated below.
• Power limit - MSR interfaces to specify power limit, time window; lock bit, clamp bit etc.
• Energy Status - Power metering interface providing energy consumption information.
• Perf Status (Optional) - Interface providing information on the performance effects (regression) due to power 

limits. It is defined as a duration metric that measures the power limit effect in the respective domain. The 
meaning of duration is domain specific.

• Power Info (Optional) - Interface providing information on the range of parameters for a given domain, 
minimum power, maximum power etc.

• Policy (Optional) - 4-bit priority information that is a hint to hardware for dividing budget between sub-domains 
in a parent domain.

Each of the above capabilities requires specific units in order to describe them. Power is expressed in Watts, Time 
is expressed in Seconds, and Energy is expressed in Joules. Scaling factors are supplied to each unit to make the 
information presented meaningful in a finite number of bits. Units for power, energy, and time are exposed in the 
read-only MSR_RAPL_POWER_UNIT MSR. 
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MSR_RAPL_POWER_UNIT (Figure 16-35) provides the following information across all RAPL domains:
• Power Units (bits 3:0): Power related information (in Watts) is based on the multiplier, 1/ 2^PU; where PU is 

an unsigned integer represented by bits 3:0. Default value is 0011b, indicating power unit is in 1/8 Watts 
increment.

• Energy Status Units (bits 12:8): Energy related information (in Joules) is based on the multiplier, 1/2^ESU; 
where ESU is an unsigned integer represented by bits 12:8. Default value is 10000b, indicating energy status 
unit is in 15.3 micro-Joules increment.

• Time Units (bits 19:16): Time related information (in Seconds) is based on the multiplier, 1/ 2^TU; where TU 
is an unsigned integer represented by bits 19:16. Default value is 1010b, indicating time unit is in 976 micro-
seconds increment.

16.10.2 RAPL Domains and Platform Specificity
The specific RAPL domains available in a platform vary across product segments. Platforms targeting the client 
segment support the following RAPL domain hierarchy:
• Package
• Two power planes: PP0 and PP1 (PP1 may reflect to uncore devices)

Platforms targeting the server segment support the following RAPL domain hierarchy:
• Package
• Power plane: PP0
• DRAM

Each level of the RAPL hierarchy provides a respective set of RAPL interface MSRs. Table 16-12 lists the RAPL MSR 
interfaces available for each RAPL domain. The power limit MSR of each RAPL domain is located at offset 0 relative 
to an MSR base address which is non-architectural; see Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 4. The energy status MSR of each domain is 
located at offset 1 relative to the MSR base address of respective domain.

Figure 16-35.  MSR_RAPL_POWER_UNIT Register 
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The presence of the optional MSR interfaces (the three right-most columns of Table 16-12) may be model-specific. 
See Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 4, for details.

16.10.3 Package RAPL Domain
The MSR interfaces defined for the package RAPL domain are:
• MSR_PKG_POWER_LIMIT allows software to set power limits for the package and measurement attributes 

associated with each limit,
• MSR_PKG_ENERGY_STATUS reports measured actual energy usage,
• MSR_PKG_POWER_INFO reports the package power range information for RAPL usage.

MSR_PKG_PERF_STATUS can report the performance impact of power limiting, but its availability may be model-
specific.

MSR_PKG_POWER_LIMIT allows a software agent to define power limitation for the package domain. Power limita-
tion is defined in terms of average power usage (Watts) over a time window specified in MSR_PKG_POWER_LIMIT. 
Two power limits can be specified, corresponding to time windows of different sizes. Each power limit provides inde-
pendent clamping control that would permit the processor cores to go below OS-requested state to meet the power 
limits. A lock mechanism allow the software agent to enforce power limit settings. Once the lock bit is set, the 
power limit settings are static and un-modifiable until next RESET. 

The bit fields of MSR_PKG_POWER_LIMIT (Figure 16-36) are:
• Package Power Limit #1(bits 14:0): Sets the average power usage limit of the package domain corre-

sponding to time window # 1. The unit of this field is specified by the “Power Units” field of 
MSR_RAPL_POWER_UNIT.

Table 16-12.  RAPL MSR Interfaces and RAPL Domains

Domain
 Power Limit

(Offset 0)
 Energy Status 

(Offset 1)
 Policy

(Offset 2)
 Perf Status
(Offset 3)

 Power Info
(Offset 4)

PKG MSR_PKG_POWER_
LIMIT

MSR_PKG_ENERGY_
STATUS

RESERVED MSR_PKG_PERF_STATUS MSR_PKG_POWER_INFO

DRAM MSR_DRAM_POWER
_LIMIT

MSR_DRAM_ENERGY
_STATUS

RESERVED MSR_DRAM_PERF_STATUS MSR_DRAM_POWER_INFO

PP0 MSR_PP0_POWER_
LIMIT

MSR_PP0_ENERGY_
STATUS

MSR_PP0_POLICY MSR_PP0_PERF_STATUS RESERVED

PP1 MSR_PP1_POWER_
LIMIT

MSR_PP1_ENERGY_
STATUS

MSR_PP1_POLICY RESERVED RESERVED

Figure 16-36.  MSR_PKG_POWER_LIMIT Register
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• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.
• Package Clamping Limitation #1 (bit 16): Allow going below OS-requested P/T state setting during time 

window specified by bits 23:17.
• Time Window for Power Limit #1 (bits 23:17): Indicates the time window for power limit #1 

Time limit = 2^Y * (1.0 + Z/4.0) * Time_Unit 
Here “Y” is the unsigned integer value represented. by bits 21:17, “Z” is an unsigned integer represented by 
bits 23:22. “Time_Unit” is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Package Power Limit #2(bits 46:32): Sets the average power usage limit of the package domain corre-
sponding to time window # 2. The unit of this field is specified by the “Power Units” field of 
MSR_RAPL_POWER_UNIT.

• Enable Power Limit #2(bit 47): 0 = disabled; 1 = enabled.
• Package Clamping Limitation #2 (bit 48): Allow going below OS-requested P/T state setting during time 

window specified by bits 23:17.
• Time Window for Power Limit #2 (bits 55:49): Indicates the time window for power limit #2 

Time limit = 2^Y * (1.0 + Z/4.0) * Time_Unit 
Here “Y” is the unsigned integer value represented. by bits 53:49, “Z” is an unsigned integer represented by 
bits 55:54. “Time_Unit” is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT. This field may have 
a hard-coded value in hardware and ignores values written by software.

• Lock (bit 63): If set, all write attempts to this MSR are ignored until next RESET.

MSR_PKG_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for the package domain. This 
MSR is updated every ~1msec. It has a wraparound time of around 60 secs when power consumption is high, and 
may be longer otherwise.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents the total amount of energy 
consumed since that last time this register is cleared. The unit of this field is specified by the “Energy Status 
Units” field of MSR_RAPL_POWER_UNIT. 

MSR_PKG_POWER_INFO is a read-only MSR. It reports the package power range information for RAPL usage. This 
MSR provides maximum/minimum values (derived from electrical specification), thermal specification power of the 
package domain. It also provides the largest possible time window for software to program the RAPL interface.

• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent of thermal specification power 
of the package domain. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

Figure 16-37.  MSR_PKG_ENERGY_STATUS MSR

Figure 16-38.  MSR_PKG_POWER_INFO Register
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• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of minimum power derived from 
electrical spec of the package domain. The unit of this field is specified by the “Power Units” field of 
MSR_RAPL_POWER_UNIT. 

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of maximum power derived from 
the electrical spec of the package domain. The unit of this field is specified by the “Power Units” field of 
MSR_RAPL_POWER_UNIT. 

• Maximum Time Window (bits 53:48): The unsigned integer value is the equivalent of largest acceptable 
value to program the time window of MSR_PKG_POWER_LIMIT. The unit of this field is specified by the “Time 
Units” field of MSR_RAPL_POWER_UNIT. 

MSR_PKG_PERF_STATUS is a read-only MSR. It reports the total time for which the package was throttled due to 
the RAPL power limits. Throttling in this context is defined as going below the OS-requested P-state or T-state. It 
has a wrap-around time of many hours. The availability of this MSR is platform specific; see Chapter 2, “Model-
Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

• Accumulated Package Throttled Time (bits 31:0): The unsigned integer value represents the cumulative 
time (since the last time this register is cleared) that the package has throttled. The unit of this field is specified 
by the “Time Units” field of MSR_RAPL_POWER_UNIT. 

16.10.4 PP0/PP1 RAPL Domains
The MSR interfaces defined for the PP0 and PP1 domains are identical in layout. Generally, PP0 refers to the 
processor cores. The availability of PP1 RAPL domain interface is platform-specific. For a client platform, the PP1 
domain refers to the power plane of a specific device in the uncore. For server platforms, the PP1 domain is not 
supported, but its PP0 domain supports the MSR_PP0_PERF_STATUS interface.
• MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allow software to set power limits for the respective power 

plane domain.
• MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS report actual energy usage on a power plane.
• MSR_PP0_POLICY/MSR_PP1_POLICY allow software to adjust balance for respective power plane.

MSR_PP0_PERF_STATUS can report the performance impact of power limiting, but it is not available in client plat-
forms.

Figure 16-39.  MSR_PKG_PERF_STATUS MSR

Figure 16-40.  MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT Register
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MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allow a software agent to define power limitation for the 
respective power plane domain. A lock mechanism in each power plane domain allows the software agent to 
enforce power limit settings independently. Once a lock bit is set, the power limit settings in that power plane are 
static and un-modifiable until next RESET. 

The bit fields of MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT (Figure 16-40) are:
• Power Limit (bits 14:0): Sets the average power usage limit of the respective power plane domain. The unit 

of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.
• Enable Power Limit (bit 15): 0 = disabled; 1 = enabled.
• Clamping Limitation (bit 16): Allow going below OS-requested P/T state setting during time window specified 

by bits 23:17.
• Time Window for Power Limit (bits 23:17): Indicates the length of time window over which the power limit 

#1 will be used by the processor. The numeric value encoded by bits 23:17 is represented by the product of 
2^Y *F; where F is a single-digit decimal floating-point value between 1.0 and 1.3 with the fraction digit 
represented by bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this field is specified 
by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Lock (bit 31): If set, all write attempts to the MSR and corresponding policy 
MSR_PP0_POLICY/MSR_PP1_POLICY are ignored until next RESET.

MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS are read-only MSRs. They report the actual energy use 
for the respective power plane domains. These MSRs are updated every ~1msec. 

• Total Energy Consumed (bits 31:0): The unsigned integer value represents the total amount of energy 
consumed since the last time this register was cleared. The unit of this field is specified by the “Energy Status 
Units” field of MSR_RAPL_POWER_UNIT. 

MSR_PP0_POLICY/MSR_PP1_POLICY provide balance power policy control for each power plane by providing 
inputs to the power budgeting management algorithm. On platforms that support PP0 (IA cores) and PP1 (uncore 
graphic device), the default values give priority to the non-IA power plane. These MSRs enable the PCU to balance 
power consumption between the IA cores and uncore graphic device. 

• Priority Level (bits 4:0): Priority level input to the PCU for respective power plane. PP0 covers the IA 
processor cores, PP1 covers the uncore graphic device. The value 31 is considered highest priority.

MSR_PP0_PERF_STATUS is a read-only MSR. It reports the total time for which the PP0 domain was throttled due 
to the power limits. This MSR is supported only in server platform. Throttling in this context is defined as going 
below the OS-requested P-state or T-state. 

Figure 16-41.  MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS MSR

Figure 16-42.  MSR_PP0_POLICY/MSR_PP1_POLICY Register
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• Accumulated PP0 Throttled Time (bits 31:0): The unsigned integer value represents the cumulative time 
(since the last time this register is cleared) that the PP0 domain has throttled. The unit of this field is specified 
by the “Time Units” field of MSR_RAPL_POWER_UNIT. 

16.10.5 DRAM RAPL Domain
The MSR interfaces defined for the DRAM domains are supported only in the server platform. The MSR interfaces 
are:
• MSR_DRAM_POWER_LIMIT allows software to set power limits for the DRAM domain and measurement 

attributes associated with each limit.
• MSR_DRAM_ENERGY_STATUS reports measured actual energy usage.
• MSR_DRAM_POWER_INFO reports the DRAM domain power range information for RAPL usage.
• MSR_DRAM_PERF_STATUS can report the performance impact of power limiting.

MSR_DRAM_POWER_LIMIT allows a software agent to define power limitation for the DRAM domain. Power limita-
tion is defined in terms of average power usage (Watts) over a time window specified in MSR_DRAM_POW-
ER_LIMIT. A power limit can be specified along with a time window. A lock mechanism allow the software agent to 
enforce power limit settings. Once the lock bit is set, the power limit settings are static and un-modifiable until next 
RESET. 

The bit fields of MSR_DRAM_POWER_LIMIT (Figure 16-44) are:
• DRAM Power Limit #1(bits 14:0): Sets the average power usage limit of the DRAM domain corresponding to 

time window # 1. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.
• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.
• Time Window for Power Limit (bits 23:17): Indicates the length of time window over which the power limit 

will be used by the processor. The numeric value encoded by bits 23:17 is represented by the product of 2^Y 
*F; where F is a single-digit decimal floating-point value between 1.0 and 1.3 with the fraction digit represented 
by bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this field is specified by the “Time 
Units” field of MSR_RAPL_POWER_UNIT.

• Lock (bit 31): If set, all write attempts to this MSR are ignored until next RESET.

Figure 16-43.  MSR_PP0_PERF_STATUS MSR

Figure 16-44.  MSR_DRAM_POWER_LIMIT Register
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MSR_DRAM_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for the DRAM domain. This MSR 
is updated every ~1msec. 

• Total Energy Consumed (bits 31:0): The unsigned integer value represents the total amount of energy 
consumed since that last time this register is cleared. The unit of this field is specified by the “Energy Status 
Units” field of MSR_RAPL_POWER_UNIT. 

MSR_DRAM_POWER_INFO is a read-only MSR. It reports the DRAM power range information for RAPL usage. This 
MSR provides maximum/minimum values (derived from electrical specification), thermal specification power of the 
DRAM domain. It also provides the largest possible time window for software to program the RAPL interface.

• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent of thermal specification power 
of the DRAM domain. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of minimum power derived from 
electrical spec of the DRAM domain. The unit of this field is specified by the “Power Units” field of 
MSR_RAPL_POWER_UNIT. 

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of maximum power derived from 
the electrical spec of the DRAM domain. The unit of this field is specified by the “Power Units” field of 
MSR_RAPL_POWER_UNIT. 

• Maximum Time Window (bits 53:48): The unsigned integer value is the equivalent of largest acceptable 
value to program the time window of MSR_DRAM_POWER_LIMIT. The unit of this field is specified by the “Time 
Units” field of MSR_RAPL_POWER_UNIT. 

MSR_DRAM_PERF_STATUS is a read-only MSR. It reports the total time for which the package was throttled due to 
the RAPL power limits. Throttling in this context is defined as going below the OS-requested P-state or T-state. It 
has a wrap-around time of many hours. The availability of this MSR is platform specific; see Chapter 2, “Model-
Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

Figure 16-45.  MSR_DRAM_ENERGY_STATUS MSR

Figure 16-46.  MSR_DRAM_POWER_INFO Register

Figure 16-47.  MSR_DRAM_PERF_STATUS MSR
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• Accumulated Package Throttled Time (bits 31:0): The unsigned integer value represents the cumulative 
time (since the last time this register is cleared) that the DRAM domain has throttled. The unit of this field is 
specified by the “Time Units” field of MSR_RAPL_POWER_UNIT. 
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CHAPTER 17
MACHINE-CHECK ARCHITECTURE

This chapter describes the machine-check architecture and machine-check exception mechanism found in the 
Pentium 4, Intel Xeon, Intel Atom, and P6 family processors. See Chapter 7, “Interrupt 18—Machine-Check Excep-
tion (#MC),” for more information on machine-check exceptions. A brief description of the Pentium processor’s 
machine check capability is also given.
Additionally, a signaling mechanism for software to respond to hardware corrected machine check error is covered.

17.1 MACHINE-CHECK ARCHITECTURE
The Pentium 4, Intel Xeon, Intel Atom, and P6 family processors implement a machine-check architecture that 
provides a mechanism for detecting and reporting hardware (machine) errors, such as: system bus errors, ECC 
errors, parity errors, cache errors, and TLB errors. It consists of a set of model-specific registers (MSRs) that are 
used to set up machine checking and additional banks of MSRs used for recording errors that are detected. 
The processor signals the detection of an uncorrected machine-check error by generating a machine-check excep-
tion (#MC), which is an abort class exception. The implementation of the machine-check architecture does not 
ordinarily permit the processor to be restarted reliably after generating a machine-check exception. However, the 
machine-check-exception handler can collect information about the machine-check error from the machine-check 
MSRs.
Starting with 45 nm Intel 64 processor on which CPUID reports DisplayFamily_DisplayModel as 06H_1AH; see the 
CPUID instruction in Chapter 3, “Instruction Set Reference, A-L,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A. The processor can report information on corrected machine-check errors and 
deliver a programmable interrupt for software to respond to MC errors, referred to as corrected machine-check 
error interrupt (CMCI). See Section 17.5 for details. 
Intel 64 processors supporting machine-check architecture and CMCI may also support an additional enhance-
ment, namely, support for software recovery from certain uncorrected recoverable machine check errors. See 
Section 17.6 for details. 

17.2 COMPATIBILITY WITH PENTIUM PROCESSOR
The Pentium 4, Intel Xeon, Intel Atom, and P6 family processors support and extend the machine-check exception 
mechanism introduced in the Pentium processor. The Pentium processor reports the following machine-check 
errors:
• Data parity errors during read cycles.
• Unsuccessful completion of a bus cycle.
The above errors are reported using the P5_MC_TYPE and P5_MC_ADDR MSRs (implementation specific for the 
Pentium processor). Use the RDMSR instruction to read these MSRs. See Chapter 2, “Model-Specific Registers 
(MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, for the addresses.
The machine-check error reporting mechanism that Pentium processors use is similar to that used in Pentium 4, 
Intel Xeon, Intel Atom, and P6 family processors. When an error is detected, it is recorded in P5_MC_TYPE and 
P5_MC_ADDR; the processor then generates a machine-check exception (#MC).
See Section 17.3.3, “Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check Architecture,” 
and Section 17.10.2, “Pentium Processor Machine-Check Exception Handling,” for information on compatibility 
between machine-check code written to run on the Pentium processors and code written to run on P6 family 
processors.
Vol. 3B 17-1



MACHINE-CHECK ARCHITECTURE
17.3 MACHINE-CHECK MSRS
Machine check MSRs in the Pentium 4, Intel Atom, Intel Xeon, and P6 family processors consist of a set of global 
control and status registers and several error-reporting register banks. See Figure 17-1.

Each error-reporting bank is associated with a specific hardware unit (or group of hardware units) in the processor. 
Use RDMSR and WRMSR to read and to write these registers. 

17.3.1 Machine-Check Global Control MSRs
The machine-check global control MSRs include the IA32_MCG_CAP, IA32_MCG_STATUS, and optionally IA32_MC-
G_CTL and IA32_MCG_EXT_CTL. See Chapter 2, “Model-Specific Registers (MSRs),” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 4, for the addresses of these registers. 

17.3.1.1  IA32_MCG_CAP MSR
The IA32_MCG_CAP MSR is a read-only register that provides information about the machine-check architecture of 
the processor. Figure 17-2 shows the layout of the register.

Figure 17-1.  Machine-Check MSRs
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MACHINE-CHECK ARCHITECTURE
Where:
• Count field, bits 7:0 — Indicates the number of hardware unit error-reporting banks available in a particular 

processor implementation.
• MCG_CTL_P (control MSR present) flag, bit 8 — Indicates that the processor implements the IA32_MC-

G_CTL MSR when set; this register is absent when clear.
• MCG_EXT_P (extended MSRs present) flag, bit 9 — Indicates that the processor implements the extended 

machine-check state registers found starting at MSR address 180H; these registers are absent when clear.
• MCG_CMCI_P (Corrected MC error counting/signaling extension present) flag, bit 10 — Indicates 

(when set) that extended state and associated MSRs necessary to support the reporting of an interrupt on a 
corrected MC error event and/or count threshold of corrected MC errors, is present. When this bit is set, it does 
not imply this feature is supported across all banks. Software should check the availability of the necessary 
logic on a bank by bank basis when using this signaling capability (i.e., bit 30 settable in individual IA32_M-
Ci_CTL2 register). 

• MCG_TES_P (threshold-based error status present) flag, bit 11 — Indicates (when set) that bits 56:53 
of the IA32_MCi_STATUS MSR are part of the architectural space. Bits 56:55 are reserved, and bits 54:53 are 
used to report threshold-based error status. Note that when MCG_TES_P is not set, bits 56:53 of the IA32_M-
Ci_STATUS MSR are model-specific.

• MCG_EXT_CNT, bits 23:16 — Indicates the number of extended machine-check state registers present. This 
field is meaningful only when the MCG_EXT_P flag is set.

• MCG_SER_P (software error recovery support present) flag, bit 24 — Indicates (when set) that the 
processor supports software error recovery (see Section 17.6), and IA32_MCi_STATUS MSR bits 56:55 are 
used to report the signaling of uncorrected recoverable errors and whether software must take recovery 
actions for uncorrected errors. Note that when MCG_TES_P is not set, bits 56:53 of the IA32_MCi_STATUS MSR 
are model-specific. If MCG_TES_P is set but MCG_SER_P is not set, bits 56:55 are reserved.

• MCG_EMC_P (Enhanced Machine Check Capability) flag, bit 25 — Indicates (when set) that the 
processor supports enhanced machine check capabilities for firmware first signaling.

• MCG_ELOG_P (extended error logging) flag, bit 26 — Indicates (when set) that the processor allows 
platform firmware to be invoked when an error is detected so that it may provide additional platform specific 
information in an ACPI format “Generic Error Data Entry” that augments the data included in machine check 
bank registers.
For additional information about extended error logging interface, see 
https://cdrdv2.intel.com/v1/dl/getContent/671064.

• MCG_LMCE_P (local machine check exception) flag, bit 27 — Indicates (when set) that the following 
interfaces are present:

Figure 17-2.  IA32_MCG_CAP Register
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MACHINE-CHECK ARCHITECTURE
— an extended state LMCE_S (located in bit 3 of IA32_MCG_STATUS), and

— the IA32_MCG_EXT_CTL MSR, necessary to support Local Machine Check Exception (LMCE). 
A non-zero MCG_LMCE_P indicates that, when LMCE is enabled as described in Section 17.3.1.5, some machine 
check errors may be delivered to only a single logical processor.

The effect of writing to the IA32_MCG_CAP MSR is undefined. 

17.3.1.2  IA32_MCG_STATUS MSR
The IA32_MCG_STATUS MSR describes the current state of the processor after a machine-check exception has 
occurred (see Figure 17-3).

Where:
• RIPV (restart IP valid) flag, bit 0 — Indicates (when set) that program execution can be restarted reliably 

at the instruction pointed to by the instruction pointer pushed on the stack when the machine-check exception 
is generated. When clear, the program cannot be reliably restarted at the pushed instruction pointer.

• EIPV (error IP valid) flag, bit 1 — Indicates (when set) that the instruction pointed to by the instruction 
pointer pushed onto the stack when the machine-check exception is generated is directly associated with the 
error. When this flag is cleared, the instruction pointed to may not be associated with the error.

• MCIP (machine check in progress) flag, bit 2 — Indicates (when set) that a machine-check exception was 
generated. Software can set or clear this flag. The occurrence of a second Machine-Check Event while MCIP is 
set will cause the processor to enter a shutdown state. For information on processor behavior in the shutdown 
state, please refer to the description in Chapter 7, “Interrupt and Exception Handling”: “Interrupt 8—Double 
Fault Exception (#DF)”.

• LMCE_S (local machine check exception signaled), bit 3 — Indicates (when set) that a local machine-
check exception was generated. This indicates that the current machine-check event was delivered to only this 
logical processor.

Bits 63:04 in the IA32_MCG_STATUS MSR are reserved. An attempt to write to the IA32_MCG_STATUS MSR’s 
reserved bits with any value other than 0 results in #GP.

17.3.1.3  IA32_MCG_CTL MSR
The IA32_MCG_CTL MSR is present if the capability flag MCG_CTL_P is set in the IA32_MCG_CAP MSR. 
IA32_MCG_CTL controls the reporting of machine-check exceptions. If present, writing 1s to this register enables 
machine-check features and writing all 0s disables machine-check features. All other values are undefined and/or 
implementation specific.

17.3.1.4  IA32_MCG_EXT_CTL MSR
The IA32_MCG_EXT_CTL MSR is present if the capability flag MCG_LMCE_P is set in the IA32_MCG_CAP MSR.

Figure 17-3.  IA32_MCG_STATUS Register
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MACHINE-CHECK ARCHITECTURE
IA32_MCG_EXT_CTL.LMCE_EN (bit 0) allows the processor to signal some MCEs to only a single logical processor 
in the system.
If MCG_LMCE_P is not set in IA32_MCG_CAP, or platform software has not enabled LMCE by setting IA32_FEA-
TURE_CONTROL.LMCE_ENABLED (bit 20), any attempt to write or read IA32_MCG_EXT_CTL will result in #GP. 
The IA32_MCG_EXT_CTL MSR is cleared on RESET.
Figure 17-4 shows the layout of the IA32_MCG_EXT_CTL register

where
• LMCE_EN (local machine check exception enable) flag, bit 0 - System software sets this to allow 

hardware to signal some MCEs to only a single logical processor. System software can set LMCE_EN only if the 
platform software has configured IA32_FEATURE_CONTROL as described in Section 17.3.1.5. 

17.3.1.5  Enabling Local Machine Check
The intended usage of LMCE requires proper configuration by both platform software and system software. Plat-
form software can turn LMCE on by setting bit 20 (LMCE_ENABLED) in IA32_FEATURE_CONTROL MSR (MSR 
address 3AH). 
System software must ensure that both IA32_FEATURE_CONTROL.Lock (bit 0)and IA32_FEATURE_CON-
TROL.LMCE_ENABLED (bit 20) are set before attempting to set IA32_MCG_EXT_CTL.LMCE_EN (bit 0). When 
system software has enabled LMCE, then hardware will determine if a particular error can be delivered only to a 
single logical processor. Software should make no assumptions about the type of error that hardware can choose 
to deliver as LMCE. The severity and override rules stay the same as described in Table 17-8 to determine the 
recovery actions. 

17.3.2 Error-Reporting Register Banks
Each error-reporting register bank can contain the IA32_MCi_CTL, IA32_MCi_STATUS, IA32_MCi_ADDR, and 
IA32_MCi_MISC MSRs. The number of reporting banks is indicated by bits [7:0] of IA32_MCG_CAP MSR (address 
0179H). The first error-reporting register (IA32_MC0_CTL) always starts at address 400H. 
See Chapter 2, “Model-Specific Registers (MSRs),” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 4, for addresses of the error-reporting registers in the Pentium 4, Intel Atom, and Intel Xeon 
processors; and for addresses of the error-reporting registers P6 family processors. 

17.3.2.1  IA32_MCi_CTL MSRs
The IA32_MCi_CTL MSR controls signaling of #MC for errors produced by a particular hardware unit (or group of 
hardware units). Each of the 64 flags (EEj) represents a potential error. Setting an EEj flag enables signaling #MC 
of the associated error and clearing it disables signaling of the error. Error logging happens regardless of the setting 
of these bits. The processor drops writes to bits that are not implemented. Figure 17-5 shows the bit fields of 
IA32_MCi_CTL.

Figure 17-4.  IA32_MCG_EXT_CTL Register
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NOTE
For P6 family processors, processors based on Intel Core microarchitecture (excluding those on 
which CPUID reports DisplayFamily_DisplayModel as 06H_1AH and onward): the operating system 
or executive software must not modify the contents of the IA32_MC0_CTL MSR. This MSR is 
internally aliased to the EBL_CR_POWERON MSR and controls platform-specific error handling 
features. System specific firmware (the BIOS) is responsible for the appropriate initialization of the 
IA32_MC0_CTL MSR. P6 family processors only allow the writing of all 1s or all 0s to the IA32_M-
Ci_CTL MSR.

17.3.2.2  IA32_MCi_STATUS MSRS
Each IA32_MCi_STATUS MSR contains information related to a machine-check error if its VAL (valid) flag is set (see 
Figure 17-6). Software is responsible for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them; writing 
1s to them causes a general-protection exception.

NOTE
Figure 17-6 depicts the IA32_MCi_STATUS MSR when IA32_MCG_CAP[24] = 1, IA32_MC-
G_CAP[11] = 1 and IA32_MCG_CAP[10] = 1. When IA32_MCG_CAP[24] = 0 and IA32_MC-
G_CAP[11] = 1, bits 56:55 is reserved and bits 54:53 for threshold-based error reporting. When 
IA32_MCG_CAP[11] = 0, bits 56:53 are part of the “Other Information” field. The use of bits 54:53 
for threshold-based error reporting began with Intel Core Duo processors, and is currently used for 
cache memory. See Section 17.4, “Enhanced Cache Error reporting,” for more information. When 
IA32_MCG_CAP[10] = 0, bits 52:38 are part of the “Other Information” field. The use of bits 52:38 
for corrected MC error count is introduced with Intel 64 processor on which CPUID reports Display-
Family_DisplayModel as 06H_1AH. 

Where:
• MCA (machine-check architecture) error code field, bits 15:0 — Specifies the machine-check archi-

tecture-defined error code for the machine-check error condition detected. The machine-check architecture-
defined error codes are guaranteed to be the same for all IA-32 processors that implement the machine-check 
architecture. See Section 17.9, “Interpreting the MCA Error Codes,” and Chapter 18, “Interpreting Machine 
Check Error Codes‚” for information on machine-check error codes. 

• Model-specific error code field, bits 31:16 — Specifies the model-specific error code that uniquely 
identifies the machine-check error condition detected. The model-specific error codes may differ among IA-32 
processors for the same machine-check error condition. See Chapter 18, “Interpreting Machine Check Error 
Codes‚” for information on model-specific error codes.

• Reserved, Error Status, and Other Information fields, bits 56:32 — 

• If IA32_MCG_CAP.MCG_EMC_P[bit 25] is 0, bits 37:32 contain “Other Information” that is implemen-
tation-specific and is not part of the machine-check architecture.

• If IA32_MCG_CAP.MCG_EMC_P is 1, “Other Information” is in bits 36:32. If bit 37 is 0, system firmware 
has not changed the contents of IA32_MCi_STATUS. If bit 37 is 1, system firmware may have edited the 
contents of IA32_MCi_STATUS. 

• If IA32_MCG_CAP.MCG_CMCI_P[bit 10] is 0, bits 52:38 also contain “Other Information” (in the same 
sense as bits 37:32).

Figure 17-5.  IA32_MCi_CTL Register
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• If IA32_MCG_CAP[10] is 1, bits 52:38 are architectural (not model-specific). In this case, bits 52:38 
reports the value of a 15 bit counter that increments each time a corrected error is observed by the MCA 
recording bank. This count value will continue to increment until cleared by software. The most 
significant bit, 52, is a sticky count overflow bit. 

• If IA32_MCG_CAP[11] is 0, bits 56:53 also contain “Other Information” (in the same sense).

• If IA32_MCG_CAP[11] is 1, bits 56:53 are architectural (not model-specific). In this case, bits 56:53 
have the following functionality:

• If IA32_MCG_CAP[24] is 0, bits 56:55 are reserved.

• If IA32_MCG_CAP[24] is 1, bits 56:55 are defined as follows: 

• S (Signaling) flag, bit 56 - Signals the reporting of UCR errors in this MC bank. See Section 17.6.2 
for additional details. 

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code specific recovery 
action must be performed by system software at the time this error was signaled. See Section 
17.6.2 for additional details.

• If the UC bit (Figure 17-6) is 1, bits 54:53 are undefined. 

• If the UC bit (Figure 17-6) is 0, bits 54:53 indicate the status of the hardware structure that 
reported the threshold-based error. See Table 17-1.

Figure 17-6.  IA32_MCi_STATUS Register

Table 17-1.  Bits 54:53 in IA32_MCi_STATUS MSRs when IA32_MCG_CAP[11] = 1 and UC = 0
Bits 54:53 Meaning

00 No tracking - No hardware status tracking is provided for the structure reporting this event. 

01 Green - Status tracking is provided for the structure posting the event; the current status is green (below threshold). 
For more information, see Section 17.4, “Enhanced Cache Error reporting.”

10 Yellow - Status tracking is provided for the structure posting the event; the current status is yellow (above threshold). 
For more information, see Section 17.4, “Enhanced Cache Error reporting.”

11 Reserved
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** When IA32_MCG_CAP[11] (MCG_TES_P) is not set, these bits are model-specific 
 (part of “Other Information”).
*** When IA32_MCG_CAP[11] or IA32_MCG_CAP[24] are not set, these bits are reserved, or
 model-specific (part of “Other Information”).

36

* When IA32_MCG_CAP[25] (MCG_EMC_P) is set, bit 37 is not part of “Other Information”.

Firmware updated error status indicator (37)*
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• PCC (processor context corrupt) flag, bit 57 — Indicates (when set) that the state of the processor might 
have been corrupted by the error condition detected and that reliable restarting of the processor may not be 
possible. When clear, this flag indicates that the error did not affect the processor’s state, and software may be 
able to restart. When system software supports recovery, consult Section 17.10.4, “Machine-Check Software 
Handler Guidelines for Error Recovery,” for additional rules that apply.

• ADDRV (IA32_MCi_ADDR register valid) flag, bit 58 — Indicates (when set) that the IA32_MCi_ADDR 
register contains the address where the error occurred (see Section 17.3.2.3, “IA32_MCi_ADDR MSRs”). When 
clear, this flag indicates that the IA32_MCi_ADDR register is either not implemented or does not contain the 
address where the error occurred. Do not read these registers if they are not implemented in the processor.

• MISCV (IA32_MCi_MISC register valid) flag, bit 59 — Indicates (when set) that the IA32_MCi_MISC 
register contains additional information regarding the error. When clear, this flag indicates that the IA32_M-
Ci_MISC register is either not implemented or does not contain additional information regarding the error. Do 
not read these registers if they are not implemented in the processor.

• EN (error enabled) flag, bit 60 — Indicates (when set) that the error was enabled by the associated EEj bit 
of the IA32_MCi_CTL register.

• UC (error uncorrected) flag, bit 61 — Indicates (when set) that the processor did not or was not able to 
correct the error condition. When clear, this flag indicates that the processor was able to correct the error 
condition.

• OVER (machine check overflow) flag, bit 62 — Indicates (when set) that a machine-check error occurred 
while the results of a previous error were still in the error-reporting register bank (that is, the VAL bit was 
already set in the IA32_MCi_STATUS register). The processor sets the OVER flag and software is responsible for 
clearing it. In general, enabled errors are written over disabled errors, and uncorrected errors are written over 
corrected errors. Uncorrected errors are not written over previous valid uncorrected errors. When 
MCG_CMCI_P is set, corrected errors may not set the OVER flag. Software can rely on corrected error count in 
IA32_MCi_Status[52:38] to determine if any additional corrected errors may have occurred. For more infor-
mation, see Section 17.3.2.2.1, “Overwrite Rules for Machine Check Overflow.”

• VAL (IA32_MCi_STATUS register valid) flag, bit 63 — Indicates (when set) that the information within the 
IA32_MCi_STATUS register is valid. When this flag is set, the processor follows the rules given for the OVER flag 
in the IA32_MCi_STATUS register when overwriting previously valid entries. The processor sets the VAL flag 
and software is responsible for clearing it.

17.3.2.2.1  Overwrite Rules for Machine Check Overflow

Table 17-2 shows the overwrite rules for how to treat a second event if the MC bank already contains a valid log 
from an earlier event – that is, what to do if the valid bit for an MC bank already is set to 1. When more than one 
structure posts events in a given bank, these rules specify whether a new event will overwrite a previous posting or 
not. These rules define a priority for uncorrected (highest priority), yellow, and green/unmonitored (lowest 
priority) status.
In Table 17-2, the values in the two left-most columns are IA32_MCi_STATUS[54:53]. 

If a second event overwrites a previously posted event, the information (as guarded by individual valid bits) in the 
MCi bank is entirely from the second event. Similarly, if a first event is retained, all of the information previously 
posted for that event is retained. In general, when the logged error or the recent error is a corrected error, the 
OVER bit (MCi_Status[62]) may be set to indicate an overflow. When MCG_CMCI_P is set in IA32_MCG_CAP, 
system software should consult IA32_MCi_STATUS[52:38] to determine if additional corrected errors may have 

Table 17-2.  Overwrite Rules for Enabled Errors
First Event Second Event UC bit Color MCA Info

00/green 00/green 0 00/green either

00/green yellow 0 yellow second error

yellow 00/green 0 yellow first error 

yellow yellow 0 yellow either

00/green/yellow UC 1 undefined second

UC 00/green/yellow 1 undefined first 
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occurred. Software may re-read IA32_MCi_STATUS, IA32_MCi_ADDR, and IA32_MCi_MISC appropriately to 
ensure data collected represent the last error logged.
After software polls a posting and clears the register, the valid bit is no longer set and therefore the meaning of the 
rest of the bits, including the yellow/green/00 status field in bits 54:53, is undefined. The yellow/green indication 
will only be posted for events associated with monitored structures – otherwise the unmonitored (00) code will be 
posted in IA32_MCi_STATUS[54:53].

17.3.2.3  IA32_MCi_ADDR MSRs
The IA32_MCi_ADDR MSR contains the address of the code or data memory location that produced the machine-
check error if the ADDRV flag in the IA32_MCi_STATUS register is set (see Section 17-7, “IA32_MCi_ADDR MSR”). 
The IA32_MCi_ADDR register is either not implemented or contains no address if the ADDRV flag in the IA32_M-
Ci_STATUS register is clear. When not implemented in the processor, all reads and writes to this MSR will cause a 
general protection exception. 
The address returned is an offset into a segment, linear address, or physical address. This depends on the error 
encountered. When these registers are implemented, these registers can be cleared by explicitly writing 0s to 
these registers. Writing 1s to these registers will cause a general-protection exception. See Figure 17-7.

17.3.2.4  IA32_MCi_MISC MSRs
The IA32_MCi_MISC MSR contains additional information describing the machine-check error if the MISCV flag in 
the IA32_MCi_STATUS register is set. The IA32_MCi_MISC_MSR is either not implemented or does not contain 
additional information if the MISCV flag in the IA32_MCi_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR will cause a general protection exception. 
When implemented in a processor, these registers can be cleared by explicitly writing all 0s to them; writing 1s to 
them causes a general-protection exception to be generated. This register is not implemented in any of the error-
reporting register banks for the P6 or Intel Atom family processors. 
If both MISCV and IA32_MCG_CAP[24] are set, the IA32_MCi_MISC_MSR is defined according to Figure 17-8 to 
support software recovery of uncorrected errors (see Section 17.6).

Figure 17-7.  IA32_MCi_ADDR MSR
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• Recoverable Address LSB (bits 5:0): The lowest valid recoverable address bit. Indicates the position of the least 
significant bit (LSB) of the recoverable error address. For example, if the processor logs bits [43:9] of the 
address, the LSB sub-field in IA32_MCi_MISC is 01001b (9 decimal). For this example, bits [8:0] of the 
recoverable error address in IA32_MCi_ADDR should be ignored. 

• Address Mode (bits 8:6): Address mode for the address logged in IA32_MCi_ADDR. The supported address 
modes are given in Table 17-3.

• Model Specific Information (bits 63:9): Not architecturally defined.

17.3.2.4.2  IOMCA
Logging and Signaling of errors from PCI Express domain is governed by PCI Express Advanced Error Reporting 
(AER) architecture. PCI Express architecture divides errors in two categories: Uncorrectable errors and Correctable 
errors. Uncorrectable errors can further be classified as Fatal or Non-Fatal. Uncorrected IO errors are signaled to 
the system software either as AER Message Signaled Interrupt (MSI) or via platform specific mechanisms such as 
NMI. Generally, the signaling mechanism is controlled by BIOS and/or platform firmware. Certain processors 
support an error handling mode, called IOMCA mode, where Uncorrected PCI Express errors are signaled in the 
form of machine check exception and logged in machine check banks. 
When a processor is in this mode, Uncorrected PCI Express errors are logged in the MCACOD field of the IA32_M-
Ci_STATUS register as Generic I/O error. The corresponding MCA error code is defined in Table 15-8. IA32_M-
Ci_Status [15:0] Simple Error Code Encoding. Machine check logging complements and does not replace AER 
logging that occurs inside the PCI Express hierarchy. The PCI Express Root Complex and Endpoints continue to log 
the error in accordance with PCI Express AER mechanism. In IOMCA mode, MCi_MISC register in the bank that 
logged IOMCA can optionally contain information that link the Machine Check logs with the AER logs or proprietary 
logs. In such a scenario, the machine check handler can utilize the contents of MCi_MISC to locate the next level of 
error logs corresponding to the same error. Specifically, if MCi_Status.MISCV is 1 and MCACOD is 0x0E0B, MCi_-
MISC contains the PCI Express address of the Root Complex device containing the AER Logs. Software can consult 
the header type and class code registers in the Root Complex device's PCIe Configuration space to determine what 
type of device it is. This Root Complex device can either be a PCI Express Root Port, PCI Express Root Complex 
Event Collector or a proprietary device. 

Figure 17-8.  UCR Support in IA32_MCi_MISC Register

Table 17-3.  Address Mode in IA32_MCi_MISC[8:6] 
IA32_MCi_MISC[8:6] Encoding Definition

000 Segment Offset

001 Linear Address

010 Physical Address

011 Memory Address

100 to 110 Reserved

111 Generic

Address Mode

63 0

Model Specific Information

6 5

Recoverable Address LSB

89
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Errors that originate from PCI Express or Legacy Endpoints are logged in the corresponding Root Port in addition to 
the generating device. If MISCV=1 and MCi_MISC contains the address of the Root Port or a Root Complex Event 
collector, software can parse the AER logs to learn more about the error. 
If MISCV=1 and MCi_MISC points to a device that is neither a Root Complex Event Collector not a Root Port, soft-
ware must consult the Vendor ID/Device ID and use device specific knowledge to locate and interpret the error log 
registers. In some cases, the Root Complex device configuration space may not be accessible to the software and 
both the Vendor and Device ID read as 0xFFFF.
• The format of MCi_MISC for IOMCA errors is shown in Table 17-4.

Refer to PCI Express Specification 3.0 for definition of PCI Express Requestor ID and AER architecture. Refer to PCI 
Firmware Specification 3.0 for an explanation of PCI Ex-press Segment number and how software can access 
configuration space of a PCI Ex-press device given the segment number and Requestor ID.

17.3.2.5  IA32_MCi_CTL2 MSRs
The IA32_MCi_CTL2 MSR provides the programming interface to use corrected MC error signaling capability that is 
indicated by IA32_MCG_CAP[10] = 1. Software must check for the presence of IA32_MCi_CTL2 on a per-bank 
basis. 
When IA32_MCG_CAP[10] = 1, the IA32_MCi_CTL2 MSR for each bank exists, i.e., reads and writes to these MSR 
are supported. However, signaling interface for corrected MC errors may not be supported in all banks. 
The layout of IA32_MCi_CTL2 is shown in Figure 17-9.

• Corrected error count threshold, bits 14:0 — Software must initialize this field. The value is compared with 
the corrected error count field in IA32_MCi_STATUS, bits 38 through 52. An overflow event is signaled to the 
CMCI LVT entry (see Table 12-1) in the APIC when the count value equals the threshold value. The new LVT 
entry in the APIC is at 02F0H offset from the APIC_BASE. If CMCI interface is not supported for a particular 
bank (but IA32_MCG_CAP[10] = 1), this field will always read 0.

• CMCI_EN (Corrected error interrupt enable/disable/indicator), bits 30 — Software sets this bit to 
enable the generation of corrected machine-check error interrupt (CMCI). If CMCI interface is not supported for 
a particular bank (but IA32_MCG_CAP[10] = 1), this bit is writeable but will always return 0 for that bank. This 
bit also indicates CMCI is supported or not supported in the corresponding bank. See Section 17.5 for details of 
software detection of CMCI facility.

Table 17-4.  Address Mode in IA32_MCi_MISC[8:6] 
63:40 39:32 31:16 15:9 8:6 5:0

RSVD PCI Express Segment 
number

PCI Express 
Requestor ID

RSVD ADDR MODE1

NOTES:
1. Not Applicable if ADDRV=0.

RECOV ADDR LSB1

Figure 17-9.  IA32_MCi_CTL2 Register

CMCI_EN—Enable/disable CMCI

63 15

Reserved

29

Corrected error count threshold

01431 30

Reserved
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Some microarchitectural sub-systems that are the source of corrected MC errors may be shared by more than one 
logical processors. Consequently, the facilities for reporting MC errors and controlling mechanisms may be shared 
by more than one logical processors. For example, the IA32_MCi_CTL2 MSR is shared between logical processors 
sharing a processor core. Software is responsible to program IA32_MCi_CTL2 MSR in a consistent manner with 
CMCI delivery and usage. 
After processor reset, IA32_MCi_CTL2 MSRs are zeroed.

17.3.2.6  IA32_MCG Extended Machine Check State MSRs
The Pentium 4 and Intel Xeon processors implement a variable number of extended machine-check state MSRs. 
The MCG_EXT_P flag in the IA32_MCG_CAP MSR indicates the presence of these extended registers, and the 
MCG_EXT_CNT field indicates the number of these registers actually implemented. See Section 17.3.1.1, 
“IA32_MCG_CAP MSR.” Also see Table 17-5.

In processors with support for Intel 64 architecture, 64-bit machine check state MSRs are aliased to the legacy 
MSRs. In addition, there may be registers beyond IA32_MCG_MISC. These may include up to five reserved MSRs 
(IA32_MCG_RESERVED[1:5]) and save-state MSRs for registers introduced in 64-bit mode. See Table 17-6. 

Table 17-5.  Extended Machine Check State MSRs in Processors Without Support for Intel® 64 Architecture
MSR Address Description

IA32_MCG_EAX 180H Contains state of the EAX register at the time of the machine-check error.

IA32_MCG_EBX 181H Contains state of the EBX register at the time of the machine-check error.

IA32_MCG_ECX 182H Contains state of the ECX register at the time of the machine-check error.

IA32_MCG_EDX 183H Contains state of the EDX register at the time of the machine-check error.

IA32_MCG_ESI 184H Contains state of the ESI register at the time of the machine-check error.

IA32_MCG_EDI 185H Contains state of the EDI register at the time of the machine-check error.

IA32_MCG_EBP 186H Contains state of the EBP register at the time of the machine-check error.

IA32_MCG_ESP 187H Contains state of the ESP register at the time of the machine-check error.

IA32_MCG_EFLAGS 188H Contains state of the EFLAGS register at the time of the machine-check error.

IA32_MCG_EIP 189H Contains state of the EIP register at the time of the machine-check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred during DS normal 
operation.

Table 17-6.  Extended Machine Check State MSRs In Processors With Support for Intel® 64 Architecture
MSR Address Description

IA32_MCG_RAX 180H Contains state of the RAX register at the time of the machine-check error.

IA32_MCG_RBX 181H Contains state of the RBX register at the time of the machine-check error.

IA32_MCG_RCX 182H Contains state of the RCX register at the time of the machine-check error.

IA32_MCG_RDX 183H Contains state of the RDX register at the time of the machine-check error.

IA32_MCG_RSI 184H Contains state of the RSI register at the time of the machine-check error.

IA32_MCG_RDI 185H Contains state of the RDI register at the time of the machine-check error.

IA32_MCG_RBP 186H Contains state of the RBP register at the time of the machine-check error.

IA32_MCG_RSP 187H Contains state of the RSP register at the time of the machine-check error.

IA32_MCG_RFLAGS 188H Contains state of the RFLAGS register at the time of the machine-check error.

IA32_MCG_RIP 189H Contains state of the RIP register at the time of the machine-check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred during DS normal 
operation.
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When a machine-check error is detected on a Pentium 4 or Intel Xeon processor, the processor saves the state of 
the general-purpose registers, the R/EFLAGS register, and the R/EIP in these extended machine-check state MSRs. 
This information can be used by a debugger to analyze the error.
These registers are read/write to zero registers. This means software can read them; but if software writes to 
them, only all zeros is allowed. If software attempts to write a non-zero value into one of these registers, a general-
protection (#GP) exception is generated. These registers are cleared on a hardware reset (power-up or RESET), 
but maintain their contents following a soft reset (INIT reset).

17.3.3 Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check 
Architecture

The Pentium processor reports machine-check errors using two registers: P5_MC_TYPE and P5_MC_ADDR. The 
Pentium 4, Intel Xeon, Intel Atom, and P6 family processors map these registers to the IA32_MCi_STATUS and 
IA32_MCi_ADDR in the error-reporting register bank. This bank reports on the same type of external bus errors 
reported in P5_MC_TYPE and P5_MC_ADDR. 
The information in these registers can then be accessed in two ways:
• By reading the IA32_MCi_STATUS and IA32_MCi_ADDR registers as part of a general machine-check exception 

handler written for Pentium 4, Intel Atom and P6 family processors.
• By reading the P5_MC_TYPE and P5_MC_ADDR registers using the RDMSR instruction.
The second capability permits a machine-check exception handler written to run on a Pentium processor to be run 
on a Pentium 4, Intel Xeon, Intel Atom, or P6 family processor. There is a limitation in that information returned by 
the Pentium 4, Intel Xeon, Intel Atom, and P6 family processors is encoded differently than information returned 
by the Pentium processor. To run a Pentium processor machine-check exception handler on a Pentium 4, Intel 
Xeon, Intel Atom, or P6 family processor; the handler must be written to interpret P5_MC_TYPE encodings 
correctly.

17.4 ENHANCED CACHE ERROR REPORTING
Starting with Intel Core Duo processors, cache error reporting was enhanced. In earlier Intel processors, cache 
status was based on the number of correction events that occurred in a cache. In the new paradigm, called 
“threshold-based error status”, cache status is based on the number of lines (ECC blocks) in a cache that incur 
repeated corrections. The threshold is chosen by Intel, based on various factors. If a processor supports threshold-
based error status, it sets IA32_MCG_CAP[11] (MCG_TES_P) to 1; if not, to 0. 
A processor that supports enhanced cache error reporting contains hardware that tracks the operating status of 
certain caches and provides an indicator of their “health”. The hardware reports a “green” status when the number 
of lines that incur repeated corrections is at or below a pre-defined threshold, and a “yellow” status when the 

IA32_MCG_
RSERVED[1:5]

18BH-
18FH

These registers, if present, are reserved.

IA32_MCG_R8 190H Contains state of the R8 register at the time of the machine-check error.

IA32_MCG_R9 191H Contains state of the R9 register at the time of the machine-check error.

IA32_MCG_R10 192H Contains state of the R10 register at the time of the machine-check error.

IA32_MCG_R11 193H Contains state of the R11 register at the time of the machine-check error.

IA32_MCG_R12 194H Contains state of the R12 register at the time of the machine-check error.

IA32_MCG_R13 195H Contains state of the R13 register at the time of the machine-check error.

IA32_MCG_R14 196H Contains state of the R14 register at the time of the machine-check error.

IA32_MCG_R15 197H Contains state of the R15 register at the time of the machine-check error.

Table 17-6.  Extended Machine Check State MSRs In Processors With Support for Intel® 64 Architecture (Contd.)
MSR Address Description
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number of affected lines exceeds the threshold. Yellow status means that the cache reporting the event is operating 
correctly, but you should schedule the system for servicing within a few weeks.
Intel recommends that you rely on this mechanism for structures supported by threshold-base error reporting. 
The CPU/system/platform response to a yellow event should be less severe than its response to an uncorrected 
error. An uncorrected error means that a serious error has actually occurred, whereas the yellow condition is a 
warning that the number of affected lines has exceeded the threshold but is not, in itself, a serious event: the error 
was corrected and system state was not compromised. 
The green/yellow status indicator is not a foolproof early warning for an uncorrected error resulting from the failure 
of two bits in the same ECC block. Such a failure can occur and cause an uncorrected error before the yellow 
threshold is reached. However, the chance of an uncorrected error increases as the number of affected lines 
increases. 

17.5 CORRECTED MACHINE CHECK ERROR INTERRUPT
Corrected machine-check error interrupt (CMCI) is an architectural enhancement to the machine-check architec-
ture. It provides capabilities beyond those of threshold-based error reporting (Section 17.4). With threshold-based 
error reporting, software is limited to use periodic polling to query the status of hardware corrected MC errors. 
CMCI provides a signaling mechanism to deliver a local interrupt based on threshold values that software can 
program using the IA32_MCi_CTL2 MSRs. 
CMCI is disabled by default. System software is required to enable CMCI for each IA32_MCi bank that support the 
reporting of hardware corrected errors if IA32_MCG_CAP[10] = 1.
System software use IA32_MCi_CTL2 MSR to enable/disable the CMCI capability for each bank and program 
threshold values into IA32_MCi_CTL2 MSR. CMCI is not affected by the CR4.MCE bit, and it is not affected by the 
IA32_MCi_CTL MSRs.
To detect the existence of thresholding for a given bank, software writes only bits 14:0 with the threshold value. If 
the bits persist, then thresholding is available (and CMCI is available). If the bits are all 0's, then no thresholding 
exists. To detect that CMCI signaling exists, software writes a 1 to bit 30 of the MCi_CTL2 register. Upon subsequent 
read, if bit 30 = 0, no CMCI is available for this bank and no corrected or UCNA errors will be reported on this bank. 
If bit 30 = 1, then CMCI is available and enabled.

17.5.1 CMCI Local APIC Interface
The operation of CMCI is depicted in Figure 17-10. 

CMCI interrupt delivery is configured by writing to the LVT CMCI register entry in the local APIC register space at 
default address of APIC_BASE + 2F0H. A CMCI interrupt can be delivered to more than one logical processors if 
multiple logical processors are affected by the associated MC errors. For example, if a corrected bit error in a cache 
shared by two logical processors caused a CMCI, the interrupt will be delivered to both logical processors sharing 

Figure 17-10.  CMCI Behavior

Error threshold

63 0

MCi_CTL2

3031

Error count

53 0

Software write 1 to enable

Count overflow threshold -> CMCI LVT in local APIC

29 14

37

MCi_STATUS

3852

?=
APIC_BASE + 2F0H
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that microarchitectural sub-system. Similarly, package level errors may cause CMCI to be delivered to all logical 
processors within the package. However, system level errors will not be handled by CMCI.
See Section 12.5.1, “Local Vector Table,” for details regarding the LVT CMCI register.

17.5.2 System Software Recommendation for Managing CMCI and Machine Check Resources
System software must enable and manage CMCI, set up interrupt handlers to service CMCI interrupts delivered to 
affected logical processors, program CMCI LVT entry, and query machine check banks that are shared by more 
than one logical processors. 
This section describes techniques system software can implement to manage CMCI initialization, service CMCI 
interrupts in a efficient manner to minimize contentions to access shared MSR resources.

17.5.2.1  CMCI Initialization
Although a CMCI interrupt may be delivered to more than one logical processors depending on the nature of the 
corrected MC error, only one instance of the interrupt service routine needs to perform the necessary service and 
make queries to the machine-check banks. The following steps describes a technique that limits the amount of 
work the system has to do in response to a CMCI.
• To provide maximum flexibility, system software should define per-thread data structure for each logical 

processor to allow equal-opportunity and efficient response to interrupt delivery. Specifically, the per-thread 
data structure should include a set of per-bank fields to track which machine check bank it needs to access in 
response to a delivered CMCI interrupt. The number of banks that needs to be tracked is determined by 
IA32_MCG_CAP[7:0].

• Initialization of per-thread data structure. The initialization of per-thread data structure must be done serially 
on each logical processor in the system. The sequencing order to start the per-thread initialization between 
different logical processor is arbitrary. But it must observe the following specific detail to satisfy the shared 
nature of specific MSR resources:

a. Each thread initializes its data structure to indicate that it does not own any MC bank registers.

b. Each thread examines IA32_MCi_CTL2[30] indicator for each bank to determine if another thread has 
already claimed ownership of that bank.

• If IA32_MCi_CTL2[30] had been set by another thread. This thread can not own bank i and should 
proceed to step b. and examine the next machine check bank until all of the machine check banks are 
exhausted. 

• If IA32_MCi_CTL2[30] = 0, proceed to step c.

c. Check whether writing a 1 into IA32_MCi_CTL2[30] can return with 1 on a subsequent read to determine 
this bank can support CMCI. 

• If IA32_MCi_CTL2[30] = 0, this bank does not support CMCI. This thread can not own bank i and should 
proceed to step b. and examine the next machine check bank until all of the machine check banks are 
exhausted.

• If IA32_MCi_CTL2[30] = 1, modify the per-thread data structure to indicate this thread claims 
ownership to the MC bank; proceed to initialize the error threshold count (bits 15:0) of that bank as 
described in Chapter 17, “CMCI Threshold Management”. Then proceed to step b. and examine the next 
machine check bank until all of the machine check banks are exhausted.

• After the thread has examined all of the machine check banks, it sees if it owns any MC banks to service CMCI. 
If any bank has been claimed by this thread:

— Ensure that the CMCI interrupt handler has been set up as described in Chapter 17, “CMCI Interrupt 
Handler”.

— Initialize the CMCI LVT entry, as described in Section 17.5.1, “CMCI Local APIC Interface.”

— Log and clear all of IA32_MCi_Status registers for the banks that this thread owns. This will allow new 
errors to be logged.
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17.5.2.2  CMCI Threshold Management
The Corrected MC error threshold field, IA32_MCi_CTL2[14:0], is architecturally defined. Specifically, all these bits 
are writable by software, but different processor implementations may choose to implement less than 15 bits as 
threshold for the overflow comparison with IA32_MCi_STATUS[52:38]. The following describes techniques that 
software can manage CMCI threshold to be compatible with changes in implementation characteristics:
• Software can set the initial threshold value to 1 by writing 1 to IA32_MCi_CTL2[14:0]. This will cause overflow 

condition on every corrected MC error and generates a CMCI interrupt.
• To increase the threshold and reduce the frequency of CMCI servicing:

a. Find the maximum threshold value a given processor implementation supports. The steps are:

• Write 7FFFH to IA32_MCi_CTL2[14:0],

• Read back IA32_MCi_CTL2[14:0]; these 15 bits (14:0) contain the maximum threshold supported by 
the processor.

b. Increase the threshold to a value below the maximum value discovered using step a.

17.5.2.3  CMCI Interrupt Handler
The following describes techniques system software may consider to implement a CMCI service routine:
• The service routine examines its private per-thread data structure to check which set of MC banks it has 

ownership. If the thread does not have ownership of a given MC bank, proceed to the next MC bank. Ownership 
is determined at initialization time which is described in Section 17.5.2.1.

If the thread had claimed ownership to an MC bank, this technique will allow each logical processors to handle 
corrected MC errors independently and requires no synchronization to access shared MSR resources. Consult 
Example 17-5 for guidelines on logging when processing CMCI.

17.6 RECOVERY OF UNCORRECTED RECOVERABLE (UCR) ERRORS 
Recovery of uncorrected recoverable machine check errors is an enhancement in machine-check architecture. The 
first processor that supports this feature is 45 nm Intel 64 processor on which CPUID reports DisplayFamily_Dis-
playModel as 06H_2EH; see the CPUID instruction in Chapter 3, “Instruction Set Reference, A-L‚” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 2A. This allows system software to perform recovery 
action on a certain class of uncorrected errors and continue execution.

17.6.1 Detection of Software Error Recovery Support
Software must use bit 24 of IA32_MCG_CAP (MCG_SER_P) to detect the presence of software error recovery 
support (see Figure 17-2). When IA32_MCG_CAP[24] is set, this indicates that the processor supports software 
error recovery. When this bit is clear, this indicates that there is no support for error recovery from the processor 
and the primary responsibility of the machine check handler is logging the machine check error information and 
shutting down the system. 
The new class of architectural MCA errors from which system software can attempt recovery is called Uncorrected 
Recoverable (UCR) Errors. UCR errors are uncorrected errors that have been detected and signaled but have not 
corrupted the processor context. For certain UCR errors, this means that once system software has performed a 
certain recovery action, it is possible to continue execution on this processor. UCR error reporting provides an error 
containment mechanism for data poisoning. The machine check handler will use the error log information from the 
error reporting registers to analyze and implement specific error recovery actions for UCR errors. 

17.6.2 UCR Error Reporting and Logging
IA32_MCi_STATUS MSR is used for reporting UCR errors and existing corrected or uncorrected errors. The defini-
tions of IA32_MCi_STATUS, including bit fields to identify UCR errors, is shown in Figure 17-6. UCR errors can be 
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signaled through either the corrected machine check interrupt (CMCI) or machine check exception (MCE) path 
depending on the type of the UCR error. 
When IA32_MCG_CAP[24] is set, a UCR error is indicated by the following bit settings in the IA32_MCi_STATUS 
register: 
• Valid (bit 63) = 1
• UC (bit 61) = 1
• PCC (bit 57) = 0
Additional information from the IA32_MCi_MISC and the IA32_MCi_ADDR registers for the UCR error are available 
when the ADDRV and the MISCV flags in the IA32_MCi_STATUS register are set (see Section 17.3.2.4). The MCA 
error code field of the IA32_MCi_STATUS register indicates the type of UCR error. System software can interpret 
the MCA error code field to analyze and identify the necessary recovery action for the given UCR error.
In addition, the IA32_MCi_STATUS register bit fields, bits 56:55, are defined (see Figure 17-6) to provide addi-
tional information to help system software to properly identify the necessary recovery action for the UCR error:
• S (Signaling) flag, bit 56 - Indicates (when set) that a machine check exception was generated for the UCR 

error reported in this MC bank and system software needs to check the AR flag and the MCA error code fields in 
the IA32_MCi_STATUS register to identify the necessary recovery action for this error. When the S flag in the 
IA32_MCi_STATUS register is clear, this UCR error was not signaled via a machine check exception and instead 
was reported as a corrected machine check (CMC). System software is not required to take any recovery action 
when the S flag in the IA32_MCi_STATUS register is clear. 

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code specific recovery action must be 
performed by system software at the time this error was signaled. This recovery action must be completed 
successfully before any additional work is scheduled for this processor. When the RIPV flag in the IA32_MC-
G_STATUS is clear, an alternative execution stream needs to be provided; when the MCA error code specific 
recovery specific recovery action cannot be successfully completed, system software must shut down the 
system. When the AR flag in the IA32_MCi_STATUS register is clear, system software may still take MCA error 
code specific recovery action but this is optional; system software can safely resume program execution at the 
instruction pointer saved on the stack from the machine check exception when the RIPV flag in the IA32_MC-
G_STATUS register is set. 

Both the S and the AR flags in the IA32_MCi_STATUS register are defined to be sticky bits, which mean that once 
set, the processor does not clear them. Only software and good power-on reset can clear the S and the AR-flags. 
Both the S and the AR flags are only set when the processor reports the UCR errors (MCG_CAP[24] is set).

17.6.3 UCR Error Classification
With the S and AR flag encoding in the IA32_MCi_STATUS register, UCR errors can be classified as:
• Uncorrected no action required (UCNA) - is a UCR error that is not signaled via a machine check exception and, 

instead, is reported to system software as a corrected machine check error. UCNA errors indicate that some 
data in the system is corrupted, but the data has not been consumed and the processor state is valid and you 
may continue execution on this processor. UCNA errors require no action from system software to continue 
execution. A UCNA error is indicated with UC=1, PCC=0, S=0 and AR=0 in the IA32_MCi_STATUS register.

• Software recoverable action optional (SRAO) - a UCR error is signaled either via a machine check exception or 
CMCI. System software recovery action is optional and not required to continue execution from this machine 
check exception. SRAO errors indicate that some data in the system is corrupt, but the data has not been 
consumed and the processor state is valid. SRAO errors provide the additional error information for system 
software to perform a recovery action. An SRAO error when signaled as a machine check is indicated with 
UC=1, PCC=0, S=1, EN=1 and AR=0 in the IA32_MCi_STATUS register. In cases when SRAO is signaled via 
CMCI the error signature is indicated via UC=1, PCC=0, S=0. Recovery actions for SRAO errors are MCA error 
code specific. The MISCV and the ADDRV flags in the IA32_MCi_STATUS register are set when the additional 
error information is available from the IA32_MCi_MISC and the IA32_MCi_ADDR registers. System software 
needs to inspect the MCA error code fields in the IA32_MCi_STATUS register to identify the specific recovery 
action for a given SRAO error. If MISCV and ADDRV are not set, it is recommended that no system software 
error recovery be performed however, system software can resume execution.

• Software recoverable action required (SRAR) - a UCR error that requires system software to take a recovery 
action on this processor before scheduling another stream of execution on this processor. SRAR errors indicate 
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that the error was detected and raised at the point of the consumption in the execution flow. An SRAR error is 
indicated with UC=1, PCC=0, S=1, EN=1 and AR=1 in the IA32_MCi_STATUS register. Recovery actions are 
MCA error code specific. The MISCV and the ADDRV flags in the IA32_MCi_STATUS register are set when the 
additional error information is available from the IA32_MCi_MISC and the IA32_MCi_ADDR registers. System 
software needs to inspect the MCA error code fields in the IA32_MCi_STATUS register to identify the specific 
recovery action for a given SRAR error. If MISCV and ADDRV are not set, it is recommended that system 
software shutdown the system.

Table 17-7 summarizes UCR, corrected, and uncorrected errors. 

17.6.4 UCR Error Overwrite Rules
In general, the overwrite rules are as follows:
• UCR errors will overwrite corrected errors. 
• Uncorrected (PCC=1) errors overwrite UCR (PCC=0) errors.   
• UCR errors are not written over previous UCR errors. 
• Corrected errors do not write over previous UCR errors. 
Regardless of whether the 1st error is retained or the 2nd error is overwritten over the 1st error, the OVER flag in 
the IA32_MCi_STATUS register will be set to indicate an overflow condition. As the S flag and AR flag in the 
IA32_MCi_STATUS register are defined to be sticky flags, a second event cannot clear these 2 flags once set, 
however the MC bank information may be filled in for the 2nd error. The table below shows the overwrite rules and 
how to treat a second error if the first event is already logged in a MC bank along with the resulting bit setting of 
the UC, PCC, and AR flags in the IA32_MCi_STATUS register. As UCNA and SRA0 errors do not require recovery 
action from system software to continue program execution, a system reset by system software is not required 
unless the AR flag or PCC flag is set for the UCR overflow case (OVER=1, VAL=1, UC=1, PCC=0). 
Table 17-8 lists overwrite rules for uncorrected errors, corrected errors, and uncorrected recoverable errors. 

Table 17-7.  MC Error Classifications
Type of Error1

NOTES:
1. SRAR, SRAO and UCNA errors are supported by the processor only when IA32_MCG_CAP[24] (MCG_SER_P) is set. 

UC EN PCC S AR Signaling Software Action Example

Uncorrected Error (UC) 1 1 1 x x MCE If EN=1, reset the system, else log 
and OK to keep the system running.

SRAR 1 1 0 1 1 MCE For known MCACOD, take specific 
recovery action;

For unknown MCACOD, must 
bugcheck.

If OVER=1, reset system, else take 
specific recovery action.

Cache to processor load 
error.

SRAO 1 x2

2. EN=1, S=1 when signaled via MCE. EN=x, S=0 when signaled via CMC.

0 x2 0 MCE/CMC For known MCACOD, take specific 
recovery action;

For unknown MCACOD, OK to keep 
the system running.

Patrol scrub and explicit 
writeback poison errors.

UCNA 1 x 0 0 0 CMC Log the error and Ok to keep the 
system running.

Poison detection error.

Corrected Error (CE) 0 x x x x CMC Log the error and no corrective 
action required.

ECC in caches and 
memory.

Table 17-8.  Overwrite Rules for UC, CE, and UCR Errors
First Event Second Event UC PCC S AR MCA Bank Reset System

CE UCR 1 0 0 if UCNA, else 1 1 if SRAR, else 0 second yes, if AR=1

UCR CE 1 0 0 if UCNA, else 1 1 if SRAR, else 0 first  yes, if AR=1
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17.7 MACHINE-CHECK AVAILABILITY
The machine-check architecture and machine-check exception (#MC) are model-specific features. Software can 
execute the CPUID instruction to determine whether a processor implements these features. Following the execu-
tion of the CPUID instruction, the settings of the MCA flag (bit 14) and MCE flag (bit 7) in EDX indicate whether the 
processor implements the machine-check architecture and machine-check exception.

17.8 MACHINE-CHECK INITIALIZATION
To use the processors machine-check architecture, software must initialize the processor to activate the machine-
check exception and the error-reporting mechanism. 
Example 17-1 gives pseudocode for performing this initialization. This pseudocode checks for the existence of the 
machine-check architecture and exception; it then enables machine-check exception and the error-reporting 
register banks. The pseudocode shown is compatible with the Pentium 4, Intel Xeon, Intel Atom, P6 family, and 
Pentium processors. 
Following power up or power cycling, IA32_MCi_STATUS registers are not guaranteed to have valid data until after 
they are initially cleared to zero by software (as shown in the initialization pseudocode in Example 17-1). 

Example 17-1.  Machine-Check Initialization Pseudocode

Check CPUID Feature Flags for MCE and MCA support
IF CPU supports MCE
THEN

IF CPU supports MCA
THEN

IF (IA32_MCG_CAP.MCG_CTL_P = 1)
(* IA32_MCG_CTL register is present *)
THEN

IA32_MCG_CTL ← FFFFFFFFFFFFFFFFH;
(* enables all MCA features *)

FI

IF (IA32_MCG_CAP.MCG_LMCE_P = 1 and IA32_FEATURE_CONTROL.LOCK = 1 and IA32_FEATURE_CONTROL.LMCE_ENABLED = 1)
(* IA32_MCG_EXT_CTL register is present and platform has enabled LMCE to permit system software to use LMCE *)
THEN

IA32_MCG_EXT_CTL ← IA32_MCG_EXT_CTL | 01H;
(* System software enables LMCE capability for hardware to signal MCE to a single logical processor*)

FI

UCNA UCNA 1 0 0 0 first no

UCNA SRAO 1 0 1 0 first no

UCNA SRAR 1 0 1 1 first yes

SRAO UCNA 1 0 1 0 first no

SRAO SRAO 1 0 1 0 first no

SRAO SRAR 1 0 1 1 first yes

SRAR UCNA 1 0 1 1 first yes

SRAR SRAO 1 0 1 1 first yes

SRAR SRAR 1 0 1 1 first yes

UCR UC 1 1 undefined undefined second yes

UC UCR 1 1 undefined undefined first yes 

Table 17-8.  Overwrite Rules for UC, CE, and UCR Errors
First Event Second Event UC PCC S AR MCA Bank Reset System
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(* Determine number of error-reporting banks supported *)
COUNT← IA32_MCG_CAP.Count;
MAX_BANK_NUMBER ← COUNT - 1;

IF (Processor Family is 6H and Processor EXTMODEL:MODEL is less than 1AH)
THEN

(* Enable logging of all errors except for MC0_CTL register *)
FOR error-reporting banks (1 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

ELSE
(* Enable logging of all errors including MC0_CTL register *)
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

FI

(* BIOS clears all errors only on power-on reset *)
IF (BIOS detects Power-on reset)
THEN 

FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_STATUS ← 0;
OD

ELSE
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

(Optional for BIOS and OS) Log valid errors
(OS only) IA32_MCi_STATUS ← 0;

OD

FI
FI

Setup the Machine Check Exception (#MC) handler for vector 18 in IDT

Set the MCE bit (bit 6) in CR4 register to enable Machine-Check Exceptions
FI

17.9 INTERPRETING THE MCA ERROR CODES
When the processor detects a machine-check error condition, it writes a 16-bit error code to the MCA error code 
field of one of the IA32_MCi_STATUS registers and sets the VAL (valid) flag in that register. The processor may also 
write a 16-bit model-specific error code in the IA32_MCi_STATUS register depending on the implementation of the 
machine-check architecture of the processor.
The MCA error codes are architecturally defined for Intel 64 and IA-32 processors. To determine the cause of a 
machine-check exception, the machine-check exception handler must read the VAL flag for each IA32_M-
Ci_STATUS register. If the flag is set, the machine check-exception handler must then read the MCA error code field 
of the register. It is the encoding of the MCA error code field [15:0] that determines the type of error being reported 
and not the register bank reporting it.
There are two types of MCA error codes: simple error codes and compound error codes. 

17.9.1 Simple Error Codes
Table 17-9 shows the simple error codes. These unique codes indicate global error information.
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17.9.2 Compound Error Codes
Compound error codes describe errors related to the TLBs, memory, caches, bus and interconnect logic, and 
internal timer. A set of sub-fields is common to all of compound errors. These sub-fields describe the type of 
access, level in the cache hierarchy, and type of request. Table 17-10 shows the general form of the compound 
error codes. 

The “Interpretation” column in the table indicates the name of a compound error. The name is constructed by 
substituting mnemonics for the sub-field names given within curly braces. For example, the error code 
ICACHEL1_RD_ERR is constructed from the form: 

{TT}CACHE{LL}_{RRRR}_ERR,
where {TT} is replaced by I, {LL} is replaced by L1, and {RRRR} is replaced by RD.

For more information on the “Form” and “Interpretation” columns, see Section 17.9.2.1, “Correction Report 
Filtering (F) Bit,” through Section 17.9.2.5, “Bus and Interconnect Errors.”

17.9.2.1  Correction Report Filtering (F) Bit 
Starting with Intel Core Duo processors, bit 12 in the “Form” column in Table 17-10 is used to indicate that a partic-
ular posting to a log may be the last posting for corrections in that line/entry, at least for some time:

Table 17-9.  IA32_MCi_Status [15:0] Simple Error Code Encoding 
Error Code Binary Encoding Meaning

No Error 0000 0000 0000 0000 No error has been reported to this bank of error-reporting 
registers.

Unclassified 0000 0000 0000 0001 This error has not been classified into the MCA error classes.

Microcode ROM Parity Error 0000 0000 0000 0010 Parity error in internal microcode ROM

External Error 0000 0000 0000 0011 The BINIT# from another processor caused this processor to 
enter machine check.1

FRC Error 0000 0000 0000 0100 FRC (functional redundancy check) main/secondary error.

Internal Parity Error 0000 0000 0000 0101 Internal parity error.

SMM Handler Code Access 
Violation

0000 0000 0000 0110 An attempt was made by the SMM Handler to execute 
outside the ranges specified by SMRR.

Internal Timer Error 0000 0100 0000 0000 Internal timer error.

I/O Error 0000 1110 0000 1011 generic I/O error.

Internal Unclassified 0000 01xx xxxx xxxx Internal unclassified errors. 2

NOTES:
1. BINIT# assertion will cause a machine check exception if the processor (or any processor on the same external bus) has BINIT# 

observation enabled during power-on configuration (hardware strapping) and if machine check exceptions are enabled (by setting 
CR4.MCE = 1).

2. At least one X must equal one. Internal unclassified errors have not been classified. 

Table 17-10.  IA32_MCi_Status [15:0] Compound Error Code Encoding 
Type Form Interpretation

Generic Cache Hierarchy 000F 0000 0000 11LL Generic cache hierarchy error

TLB Errors 000F 0000 0001 TTLL {TT}TLB{LL}_ERR

Memory Controller Errors 000F 0000 1MMM CCCC {MMM}_CHANNEL{CCCC}_ERR

Cache Hierarchy Errors 000F 0001 RRRR TTLL {TT}CACHE{LL}_{RRRR}_ERR

Extended Memory Errors 000F 0010 1MMM CCCC {MMM}_CHANNEL{CCCC}_ERR

Bus and Interconnect Errors 000F 1PPT RRRR IILL BUS{LL}_{PP}_{RRRR}_{II}_{T}_ERR
Vol. 3B 17-21



MACHINE-CHECK ARCHITECTURE
• 0 in bit 12 indicates “normal” filtering (original P6/Pentium4/Atom/Xeon processor meaning).
• 1 in bit 12 indicates “corrected” filtering (filtering is activated for the line/entry in the posting). Filtering means 

that some or all of the subsequent corrections to this entry (in this structure) will not be posted. The enhanced 
error reporting introduced with the Intel Core Duo processors is based on tracking the lines affected by 
repeated corrections (see Section 17.4, “Enhanced Cache Error reporting”). This capability is indicated by 
IA32_MCG_CAP[11]. Only the first few correction events for a line are posted; subsequent redundant 
correction events to the same line are not posted. Uncorrected events are always posted. 

The behavior of error filtering after crossing the yellow threshold is model-specific. Filtering has meaning only for 
corrected errors (UC=0 in IA32_MCi_STATUS MSR). System software must ignore filtering bit (12) for uncorrected 
errors.

17.9.2.2  Transaction Type (TT) Sub-Field
The 2-bit TT sub-field (Table 17-11) indicates the type of transaction (data, instruction, or generic). The sub-field 
applies to the TLB, cache, and interconnect error conditions. Note that interconnect error conditions are primarily 
associated with P6 family and Pentium processors, which utilize an external APIC bus separate from the system 
bus. The generic type is reported when the processor cannot determine the transaction type.

17.9.2.3  Level (LL) Sub-Field
The 2-bit LL sub-field (see Table 17-12) indicates the level in the memory hierarchy where the error occurred (level 
0, level 1, level 2, or generic). The LL sub-field also applies to the TLB, cache, and interconnect error conditions. 
The Pentium 4, Intel Xeon, Intel Atom, and P6 family processors support two levels in the cache hierarchy and one 
level in the TLBs. Again, the generic type is reported when the processor cannot determine the hierarchy level.

17.9.2.4  Request (RRRR) Sub-Field
The 4-bit RRRR sub-field (see Table 17-13) indicates the type of action associated with the error. Actions include 
read and write operations, prefetches, cache evictions, and snoops. Generic error is returned when the type of 
error cannot be determined. Generic read and generic write are returned when the processor cannot determine the 
type of instruction or data request that caused the error. Eviction and snoop requests apply only to the caches. All 
of the other requests apply to TLBs, caches, and interconnects.

Table 17-11.  Encoding for TT (Transaction Type) Sub-Field
Transaction Type Mnemonic Binary Encoding

Instruction I 00

Data D 01

Generic G 10

Table 17-12.  Level Encoding for LL (Memory Hierarchy Level) Sub-Field 
Hierarchy Level Mnemonic Binary Encoding

Level 0 L0 00

Level 1 L1 01

Level 2 L2 10

Generic LG 11
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17.9.2.5  Bus and Interconnect Errors
The bus and interconnect errors are defined with the 2-bit PP (participation), 1-bit T (time-out), and 2-bit II 
(memory or I/O) sub-fields, in addition to the LL and RRRR sub-fields (see Table 17-14). The bus error conditions 
are implementation dependent and related to the type of bus implemented by the processor. Likewise, the inter-
connect error conditions are predicated on a specific implementation-dependent interconnect model that describes 
the connections between the different levels of the storage hierarchy. The type of bus is implementation depen-
dent, and as such is not specified in this document. A bus or interconnect transaction consists of a request involving 
an address and a response.

Table 17-13.  Encoding of Request (RRRR) Sub-Field 
Request Type Mnemonic Binary Encoding

Generic Error ERR 0000

Generic Read RD 0001

Generic Write WR 0010

Data Read DRD 0011

Data Write DWR 0100

Instruction Fetch IRD 0101

Prefetch PREFETCH 0110

Eviction EVICT 0111

Snoop SNOOP 1000

Page Walk PW 1001

EPT Page Walk EPW 1010

Table 17-14.  Encodings of PP, T, and II Sub-Fields 
Sub-Field Transaction Mnemonic Binary Encoding

PP (Participation) Local processor* originated request SRC 00

Local processor* responded to request RES 01

Local processor* observed error as third party OBS 10

Generic 11

T (Time-out) Request timed out TIMEOUT 1

Request did not time out NOTIMEOUT 0

II (Memory or I/O) Memory Access M 00

Reserved 01

I/O IO 10

Other transaction 11

NOTE:
* Local processor differentiates the processor reporting the error from other system components (including the APIC, other proces-

sors, etc.).
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17.9.2.6  Memory Controller and Extended Memory Errors
The memory controller errors are defined with the 3-bit MMM (memory transaction type), and 4-bit CCCC (channel) 
sub-fields. The encodings for MMM and CCCC are defined in Table 17-15. Extended Memory errors use the same 
encodings and are used to report errors in memory used as a cache.

Note that the CCCC channel number may be enumerated from zero separately by each memory controller on a 
system. On a multi-socket system, or a system with multiple memory controllers per socket, it is necessary to also 
consider which machine check bank logged the error. See Chapter 18 for details on specific implementations.

17.9.3 Architecturally Defined UCR Errors 
Software recoverable compound error code are defined in this section.

17.9.3.1  Architecturally Defined SRAO Errors
The following two SRAO errors are architecturally defined. 
• UCR Errors detected by memory controller scrubbing; and
• UCR Errors detected during L3 cache (L3) explicit writebacks.
The MCA error code encodings for these two architecturally-defined UCR errors corresponds to sub-classes of 
compound MCA error codes (see Table 17-10). Their values and compound encoding format are given in Table 
17-16. 

Table 17-15.  Encodings of MMM and CCCC Sub-Fields 
Sub-Field Transaction Mnemonic Binary Encoding

MMM Generic undefined request GEN 000

Memory read error RD 001

Memory write error WR 010

Address/Command Error AC 011

Memory Scrubbing Error MS 100

Reserved 101-111

CCCC Channel number CHN 0000-1110

Channel not specified 1111

Table 17-16.  MCA Compound Error Code Encoding for SRAO Errors
Type MCACOD Value MCA Error Code Encoding1

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error must be ignored. 

Memory Scrubbing C0H - CFH 0000_0000_1100_CCCC

000F 0000 1MMM CCCC (Memory Controller Error), where

Memory subfield MMM = 100B (memory scrubbing)

Channel subfield CCCC = channel # or generic

L3 Explicit Writeback 17AH 0000_0001_0111_1010

000F 0001 RRRR TTLL (Cache Hierarchy Error) where

Request subfields RRRR = 0111B (Eviction)

Transaction Type subfields TT = 10B (Generic)

Level subfields LL = 10B 
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Table 17-17 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally defined SRAO errors. 

For both the memory scrubbing and L3 explicit writeback errors, the ADDRV and MISCV flags in the IA32_M-
Ci_STATUS register are set to indicate that the offending physical address information is available from the 
IA32_MCi_MISC and the IA32_MCi_ADDR registers. For the memory scrubbing and L3 explicit writeback errors, 
the address mode in the IA32_MCi_MISC register should be set as physical address mode (010b) and the address 
LSB information in the IA32_MCi_MISC register should indicate the lowest valid address bit in the address informa-
tion provided from the IA32_MCi_ADDR register. 
MCE signal is broadcast to all logical processors as outlined in Section 17.10.4.1. If LMCE is supported and enabled, 
some errors (not limited to UCR errors) may be delivered to only a single logical processor. System software should 
consult IA32_MCG_STATUS.LMCE_S to determine if the MCE signaled is only to this logical processor. 
IA32_MCi_STATUS banks can be shared by logical processors within a core or within the same package. So several 
logical processors may find an SRAO error in the shared IA32_MCi_STATUS bank but other processors do not find 
it in any of the IA32_MCi_STATUS banks. Table 17-18 shows the RIPV and EIPV flag indication in the IA32_MC-
G_STATUS register for the memory scrubbing and L3 explicit writeback errors on both the reporting and non-
reporting logical processors. 

17.9.3.2  Architecturally Defined SRAR Errors
The following six SRAR errors are architecturally defined: 
• UCR Errors detected on data load;
• UCR Errors detected on data page walk;
• UCR Errors detected on data page walk on EPT;
• UCR Errors detected on instruction fetch;
• UCR Errors detected on instruction fetch page walk; and
• UCR Errors detected on instruction fetch page walk on EPT.
The MCA error code encodings for these six architecturally-defined UCR errors corresponds to sub-classes of 
compound MCA error codes (see Table 17-10). Their values and compound encoding format are given in Table 
17-19. 

Table 17-17.  IA32_MCi_STATUS Values for SRAO Errors
SRAO Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Memory Scrubbing 1 0 1 x1

NOTES:
1. When signaled as MCE, EN=1 and S=1. If error was signaled via CMC, then EN=x, and S=0.

1 1 0 x1 0 C0H-CFH

L3 Explicit Writeback 1 0 1 x1 1 1 0 x1 0 17AH

Table 17-18.  IA32_MCG_STATUS Flag Indication for SRAO Errors
SRAO Type Reporting Logical Processors Non-reporting Logical Processors

RIPV EIPV RIPV EIPV

Memory Scrubbing 1 0 1 0

L3 Explicit Writeback 1 0 1 0
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Table 17-20 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally defined SRAR errors. 

For all defined SRAR errors, the ADDRV and MISCV flags in the IA32_MCi_STATUS register are set to indicate that 
the offending physical address information is available from the IA32_MCi_MISC and the IA32_MCi_ADDR regis-
ters. For the data load and instruction fetch errors, the address mode in the IA32_MCi_MISC register should be set 
as physical address mode (010b) and the address LSB information in the IA32_MCi_MISC register should indicate 
the lowest valid address bit in the address information provided from the IA32_MCi_ADDR register. 
MCE signal is broadcast to all logical processors on the system on which the UCR errors are supported, except when 
the processor supports LMCE and LMCE is enabled by system software (see Section 17.3.1.5). The IA32_MC-
G_STATUS MSR allows system software to distinguish the affected logical processor of an SRAR error amongst 
logical processors that observed SRAR via MCi_STATUS bank.
Table 17-21 shows the RIPV and EIPV flag indication in the IA32_MCG_STATUS register for the data load and 
instruction fetch errors on both the reporting and non-reporting logical processors. The recoverable SRAR error 
reported by a processor may be continuable, where the system software can interpret the context of continuable 
as follows: the error was isolated, contained. If software can rectify the error condition in the current instruction 
stream, the execution context on that logical processor can be continued without loss of information.

Table 17-19.  MCA Compound Error Code Encoding for SRAR Errors
Type MCACOD Value MCA Error Code Encoding1

Data Load 134H 0000_0001_0011_0100: 000F 0001 RRRR TTLL (Cache Hierarchy Error), where 

Request subfield RRRR = 0011B (Data Load), 

Transaction Type subfield TT= 01B (Data),

and Level subfield LL = 00B (Level 0).

Data Page Walk 194H 0000_0001_1001_0100: 000F 0001 RRRR TTLL (Cache Hierarchy Error), where 

Request subfield RRRR = 1001B (Page Walk), 

Transaction Type subfield TT= 01B (Data), 

and Level subfield LL = 00B (Level 0).

Data Page Walk on 
EPT

1A4H 0000_0001_1010_0100: 000F 0001 RRRR TTLL (Cache Hierarchy Error), where 

Request subfield RRRR = 1010B (EPT Page Walk),

Transaction Type subfield TT= 01B (Data),

and Level subfield LL = 00B (Level 0).

Instruction Fetch 150H 0000_0001_0101_0000: 000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0101B (Instruction Fetch), 

Transaction Type subfield TT= 00B (Instruction),

and Level subfield LL = 00B (Level 0).

Instruction Fetch Page 
Walk

190H 0000_0001_1001_0000: 000F 0001 RRRR TTLL (Cache Hierarchy Error), where 

Request subfield RRRR = 1001B (Page Walk),

Transaction Type subfield TT= 00B (Instruction),

and Level subfield LL = 00B (Level 0).

Instruction Fetch Page 
Walk on EPT

1A0H 0000_0001_1010_0000: 000F 0001 RRRR TTLL (Cache Hierarchy Error), where 

Request subfield RRRR = 1010B (EPT Page Walk),

Transaction Type subfield TT= 00B (Instruction),

and Level subfield LL = 00B (Level 0).

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error must be ignored.

Table 17-20.  IA32_MCi_STATUS Values for All Defined SRAR Errors
SRAR Error Valid OVER UC EN MISCV ADDRV PCC S AR

All defined SRAR errors defined in Table 17-19 1 0 1 1 1 1 0 1 1
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SRAR Error And Affected Logical Processors

The affected logical processor is the one that has detected and raised an SRAR error at the point of the consump-
tion in the execution flow. The affected logical processor should find the Data Load or the Instruction Fetch error 
information in the IA32_MCi_STATUS register that is reporting the SRAR error. 
Table 17-21 list the actionable scenarios that system software can respond to an SRAR error on an affected logical 
processor according to RIPV and EIPV values:
• Recoverable-continuable SRAR Error (RIPV=1, EIPV=1):

For recoverable-continuable SRAR errors, the affected logical processor should find that both the IA32_MC-
G_STATUS.RIPV and the IA32_MCG_STATUS.EIPV flags are set, indicating that system software may be able to 
restart execution from the interrupted context if it is able to rectify the error condition. If system software 
cannot rectify the error condition then it must treat the error as a recoverable error where restarting execution 
with the interrupted context is not possible. Restarting without rectifying the error condition will result in most 
cases with another SRAR error on the same instruction.

• Recoverable-not-continuable SRAR Error (RIPV=0, EIPV=x):
For recoverable-not-continuable errors, the affected logical processor should find that either

— IA32_MCG_STATUS.RIPV= 0, IA32_MCG_STATUS.EIPV=1, or 

— IA32_MCG_STATUS.RIPV= 0, IA32_MCG_STATUS.EIPV=0.
In either case, this indicates that the error is detected at the instruction pointer saved on the stack for this 
machine check exception and restarting execution with the interrupted context is not possible. System 
software may take the following recovery actions for the affected logical processor: 

• The current executing thread cannot be continued. System software must terminate the interrupted 
stream of execution and provide a new stream of execution on return from the machine check handler 
for the affected logical processor.

SRAR Error And Non-Affected Logical Processors

The logical processors that observed but not affected by an SRAR error should find that the RIPV flag in the 
IA32_MCG_STATUS register is set and the EIPV flag in the IA32_MCG_STATUS register is cleared, indicating that it 
is safe to restart the execution at the instruction saved on the stack for the machine check exception on these 
processors after the recovery action is successfully taken by system software. 

17.9.4 Multiple MCA Errors 
When multiple MCA errors are detected within a certain detection window, the processor may aggregate the 
reporting of these errors together as a single event, i.e., a single machine exception condition. If this occurs, 
system software may find multiple MCA errors logged in different MC banks on one logical processor or find 
multiple MCA errors logged across different processors for a single machine check broadcast event. In order to 
handle multiple UCR errors reported from a single machine check event and possibly recover from multiple errors, 
system software may consider the following: 
• Whether it can recover from multiple errors is determined by the most severe error reported on the system. If 

the most severe error is found to be an unrecoverable error (VAL=1, UC=1, PCC=1 and EN=1) after system 
software examines the MC banks of all processors to which the MCA signal is broadcast, recovery from the 
multiple errors is not possible and system software needs to reset the system. 

Table 17-21.  IA32_MCG_STATUS Flag Indication for SRAR Errors
SRAR Type Affected Logical Processor Non-Affected Logical Processors

RIPV EIPV Continuable RIPV EIPV Continuable

Recoverable-continuable 1 1 Yes1

NOTES:
1. See the definition of the context of “continuable” above and additional details below.

1 0 Yes
Recoverable-not-continuable 0 x No
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• When multiple recoverable errors are reported and no other fatal condition (e.g., overflowed condition for SRAR 
error) is found for the reported recoverable errors, it is possible for system software to recover from the 
multiple recoverable errors by taking necessary recovery action for each individual recoverable error. However, 
system software can no longer expect one to one relationship with the error information recorded in the 
IA32_MCi_STATUS register and the states of the RIPV and EIPV flags in the IA32_MCG_STATUS register as the 
states of the RIPV and the EIPV flags in the IA32_MCG_STATUS register may indicate the information for the 
most severe error recorded on the processor. System software is required to use the RIPV flag indication in the 
IA32_MCG_STATUS register to make a final decision of recoverability of the errors and find the restart-ability 
requirement after examining each IA32_MCi_STATUS register error information in the MC banks. 
In certain cases where system software observes more than one SRAR error logged for a single logical 
processor, it can no longer rely on affected threads as specified in Table 15-20 above. System software is 
recommended to reset the system if this condition is observed. 

17.9.5 Machine-Check Error Codes Interpretation
Chapter 18, “Interpreting Machine Check Error Codes,” provides information on interpreting the MCA error code, 
model-specific error code, and other information error code fields. For P6 family processors, information has been 
included on decoding external bus errors. For Pentium 4 and Intel Xeon processors; information is included on 
external bus, internal timer and cache hierarchy errors.

17.10 GUIDELINES FOR WRITING MACHINE-CHECK SOFTWARE
The machine-check architecture and error logging can be used in three different ways:
• To detect machine errors during normal instruction execution, using the machine-check exception (#MC).
• To periodically check and log machine errors.
• To examine recoverable UCR errors, determine software recoverability and perform recovery actions via a 

machine-check exception handler or a corrected machine-check interrupt handler.
To use the machine-check exception, the operating system or executive software must provide a machine-check 
exception handler. This handler may need to be designed specifically for each family of processors.
A special program or utility is required to log machine errors.
Guidelines for writing a machine-check exception handler or a machine-error logging utility are given in the 
following sections.

17.10.1 Machine-Check Exception Handler
The machine-check exception (#MC) corresponds to vector 18. To service machine-check exceptions, a trap gate 
must be added to the IDT. The pointer in the trap gate must point to a machine-check exception handler. Two 
approaches can be taken to designing the exception handler:

1. The handler can merely log all the machine status and error information, then call a debugger or shut down the 
system.

2. The handler can analyze the reported error information and, in some cases, attempt to correct the error and 
restart the processor.

For Pentium 4, Intel Xeon, Intel Atom, P6 family, and Pentium processors; virtually all machine-check conditions 
cannot be corrected (they result in abort-type exceptions). The logging of status and error information is therefore 
a baseline implementation requirement.
When IA32_MCG_CAP[24] is clear, consider the following when writing a machine-check exception handler:
• To determine the nature of the error, the handler must read each of the error-reporting register banks. The 

count field in the IA32_MCG_CAP register gives number of register banks. The first register of register bank 0 
is at address 400H.
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• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register 
is valid. If this flag is clear, the registers in that bank do not contain valid error information and do not need to 
be checked.

• To write a portable exception handler, only the MCA error code field in the IA32_MCi_STATUS register should be 
checked. See Section 17.9, “Interpreting the MCA Error Codes,” for information that can be used to write an 
algorithm to interpret this field.

• Correctable errors are corrected automatically by the processor. The UC flag in each IA32_MCi_STATUS reg-
ister indicates whether the processor automatically corrected an error.

• The RIPV, PCC, and OVER flags in each IA32_MCi_STATUS register indicate whether recovery from the error is 
possible. If PCC or OVER are set, recovery is not possible. If RIPV is not set, program execution can not be 
restarted reliably. When recovery is not possible, the handler typically records the error information and signals 
an abort to the operating system.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether the program can be restarted at the 
instruction indicated by the instruction pointer (the address of the instruction pushed on the stack when the 
exception was generated). If this flag is clear, the processor may still be able to be restarted (for debugging 
purposes) but not without loss of program continuity.

• For unrecoverable errors, the EIPV flag in the IA32_MCG_STATUS register indicates whether the instruction 
indicated by the instruction pointer pushed on the stack (when the exception was generated) is related to the 
error. If the flag is clear, the pushed instruction may not be related to the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-check exception was generated. 
Before returning from the machine-check exception handler, software should clear this flag so that it can be 
used reliably by an error logging utility. The MCIP flag also detects recursion. The machine-check architecture 
does not support recursion. When the processor detects machine-check recursion, it enters the shutdown 
state.

Example 17-2 gives typical steps carried out by a machine-check exception handler.

Example 17-2.  Machine-Check Exception Handler Pseudocode

IF CPU supports MCE
THEN

IF CPU supports MCA
THEN

call errorlogging routine; (* returns restartability *)
FI;

ELSE (* Pentium(R) processor compatible *)
READ P5_MC_ADDR
READ P5_MC_TYPE;
report RESTARTABILITY to console;

FI;
IF error is not restartable

THEN
report RESTARTABILITY to console;
abort system;

FI;
CLEAR MCIP flag in IA32_MCG_STATUS;

17.10.2 Pentium Processor Machine-Check Exception Handling
Machine-check exception handler on P6 family, Intel Atom and later processor families, should follow the guidelines 
described in Section 17.10.1 and Example 17-2 that check the processor’s support of MCA.

NOTE
On processors that support MCA (CPUID.1.EDX.MCA = 1) reading the P5_MC_TYPE and 
P5_MC_ADDR registers may produce invalid data.

When machine-check exceptions are enabled for the Pentium processor (MCE flag is set in control register CR4), 
the machine-check exception handler uses the RDMSR instruction to read the error type from the P5_MC_TYPE 
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register and the machine check address from the P5_MC_ADDR register. The handler then normally reports these 
register values to the system console before aborting execution (see Example 17-2).

17.10.3 Logging Correctable Machine-Check Errors
The error handling routine for servicing the machine-check exceptions is responsible for logging uncorrected 
errors.
If a machine-check error is correctable, the processor does not generate a machine-check exception for it. To 
detect correctable machine-check errors, a utility program must be written that reads each of the machine-check 
error-reporting register banks and logs the results in an accounting file or data structure. This utility can be imple-
mented in either of the following ways.
• A system daemon that polls the register banks on an infrequent basis, such as hourly or daily.
• A user-initiated application that polls the register banks and records the exceptions. Here, the actual polling 

service is provided by an operating-system driver or through the system call interface.
• An interrupt service routine servicing CMCI can read the MC banks and log the error. Please refer to Section 

17.10.4.2 for guidelines on logging correctable machine checks.
Example 17-3 gives pseudocode for an error logging utility.

Example 17-3.  Machine-Check Error Logging Pseudocode

Assume that execution is restartable;
IF the processor supports MCA

THEN
FOR each bank of machine-check registers 

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF ADDRV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_ADDR; 
FI;
IF MISCV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_MISC;
FI;
IF MCIP flag in IA32_MCG_STATUS = 1

(* Machine-check exception is in progress *) 
AND PCC flag in IA32_MCi_STATUS = 1
OR RIPV flag in IA32_MCG_STATUS = 0
(* execution is not restartable *)

THEN 
RESTARTABILITY = FALSE;
return RESTARTABILITY to calling procedure;

FI;
Save time-stamp counter and processor ID;
Set IA32_MCi_STATUS to all 0s;
Execute serializing instruction (i.e., CPUID);

FI;
OD;

FI;

If the processor supports the machine-check architecture, the utility reads through the banks of error-reporting 
registers looking for valid register entries. It then saves the values of the IA32_MCi_STATUS, IA32_MCi_ADDR, 
IA32_MCi_MISC, and IA32_MCG_STATUS registers for each bank that is valid. The routine minimizes processing 
time by recording the raw data into a system data structure or file, reducing the overhead associated with polling. 
User utilities analyze the collected data in an off-line environment.
When the MCIP flag is set in the IA32_MCG_STATUS register, a machine-check exception is in progress and the 
machine-check exception handler has called the exception logging routine. 
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Once the logging process has been completed the exception-handling routine must determine whether execution 
can be restarted, which is usually possible when damage has not occurred (The PCC flag is clear, in the IA32_M-
Ci_STATUS register) and when the processor can guarantee that execution is restartable (the RIPV flag is set in the 
IA32_MCG_STATUS register). If execution cannot be restarted, the system is not recoverable and the exception-
handling routine should signal the console appropriately before returning the error status to the Operating System 
kernel for subsequent shutdown.
The machine-check architecture allows buffering of exceptions from a given error-reporting bank although the 
Pentium 4, Intel Xeon, Intel Atom, and P6 family processors do not implement this feature. The error logging 
routine should provide compatibility with future processors by reading each hardware error-reporting bank's 
IA32_MCi_STATUS register and then writing 0s to clear the OVER and VAL flags in this register. The error logging 
utility should re-read the IA32_MCi_STATUS register for the bank ensuring that the valid bit is clear. The processor 
will write the next error into the register bank and set the VAL flags. 
Additional information that should be stored by the exception-logging routine includes the processor’s time-stamp 
counter value, which provides a mechanism to indicate the frequency of exceptions. A multiprocessing operating 
system stores the identity of the processor node incurring the exception using a unique identifier, such as the 
processor’s APIC ID (see Section 12.8, “Handling Interrupts”). 
The basic algorithm given in Example 17-3 can be modified to provide more robust recovery techniques. For 
example, software has the flexibility to attempt recovery using information unavailable to the hardware. Specifi-
cally, the machine-check exception handler can, after logging carefully analyze the error-reporting registers when 
the error-logging routine reports an error that does not allow execution to be restarted. These recovery techniques 
can use external bus related model-specific information provided with the error report to localize the source of the 
error within the system and determine the appropriate recovery strategy. 

17.10.4 Machine-Check Software Handler Guidelines for Error Recovery

17.10.4.1  Machine-Check Exception Handler for Error Recovery
When writing a machine-check exception (MCE) handler to support software recovery from Uncorrected Recover-
able (UCR) errors, consider the following: 
• When IA32_MCG_CAP [24] is zero, there are no recoverable errors supported and all machine-check are fatal 

exceptions. The logging of status and error information is therefore a baseline implementation requirement. 
• When IA32_MCG_CAP [24] is 1, certain uncorrected errors called uncorrected recoverable (UCR) errors may be 

software recoverable. The handler can analyze the reported error information, and in some cases attempt to 
recover from the uncorrected error and continue execution.

• For processors on which CPUID reports DisplayFamily_DisplayModel as 06H_0EH and onward, an MCA signal is 
broadcast to all logical processors in the system; see the CPUID instruction in Chapter 3, “Instruction Set 
Reference, A-L‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A. Due to the 
potentially shared machine check MSR resources among the logical processors on the same package/core, the 
MCE handler may be required to synchronize with the other processors that received a machine check error and 
serialize access to the machine check registers when analyzing, logging, and clearing the information in the 
machine check registers.

— On processors that indicate ability for local machine-check exception (MCG_LMCE_P), hardware can choose 
to report the error to only a single logical processor if system software has enabled LMCE by setting 
IA32_MCG_EXT_CTL[LMCE_EN] = 1 as outlined in Section 17.3.1.5.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register 
is valid. If this flag is clear, the registers in that bank do not contain valid error information and should not be 
checked.

• The MCE handler is primarily responsible for processing uncorrected errors. The UC flag in each IA32_M-
Ci_Status register indicates whether the reported error was corrected (UC=0) or uncorrected (UC=1). The MCE 
handler can optionally log and clear the corrected errors in the MC banks if it can implement software algorithm 
to avoid the undesired race conditions with the CMCI or CMC polling handler.

• For uncorrectable errors, the EIPV flag in the IA32_MCG_STATUS register indicates (when set) that the 
instruction pointed to by the instruction pointer pushed onto the stack when the machine-check exception is 
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generated is directly associated with the error. When this flag is cleared, the instruction pointed to may not be 
associated with the error. 

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-check exception was generated. 
When a machine check exception is generated, it is expected that the MCIP flag in the IA32_MCG_STATUS 
register is set to 1. If it is not set, this machine check was generated by either an INT 18 instruction or some 
piece of hardware signaling an interrupt with vector 18. 

When IA32_MCG_CAP [24] is 1, the following rules can apply when writing a machine check exception (MCE) 
handler to support software recovery: 
• The PCC flag in each IA32_MCi_STATUS register indicates whether recovery from the error is possible for 

uncorrected errors (UC=1). If the PCC flag is set for enabled uncorrected errors (UC=1 and EN=1), recovery is 
not possible. When recovery is not possible, the MCE handler typically records the error information and signals 
the operating system to reset the system. 

• The RIPV flag in the IA32_MCG_STATUS register indicates whether restarting the program execution from the 
instruction pointer saved on the stack for the machine check exception is possible. When the RIPV is set, 
program execution can be restarted reliably when recovery is possible. If the RIPV flag is not set, program 
execution cannot be restarted reliably. In this case the recovery algorithm may involve terminating the current 
program execution and resuming an alternate thread of execution upon return from the machine check handler 
when recovery is possible. When recovery is not possible, the MCE handler signals the operating system to 
reset the system. 

• When the EN flag is zero but the VAL and UC flags are one in the IA32_MCi_STATUS register, the reported 
uncorrected error in this bank is not enabled. As uncorrected errors with the EN flag = 0 are not the source of 
machine check exceptions, the MCE handler should log and clear non-enabled errors when the S bit is set and 
should continue searching for enabled errors from the other IA32_MCi_STATUS registers. Note that when 
IA32_MCG_CAP [24] is 0, any uncorrected error condition (VAL =1 and UC=1) including the one with the EN 
flag cleared are fatal and the handler must signal the operating system to reset the system. For the errors that 
do not generate machine check exceptions, the EN flag has no meaning.

• When the VAL flag is one, the UC flag is one, the EN flag is one and the PCC flag is zero in the IA32_MCi_STATUS 
register, the error in this bank is an uncorrected recoverable (UCR) error. The MCE handler needs to examine 
the S flag and the AR flag to find the type of the UCR error for software recovery and determine if software error 
recovery is possible. 

• When both the S and the AR flags are clear in the IA32_MCi_STATUS register for the UCR error (VAL=1, UC=1, 
EN=x and PCC=0), the error in this bank is an uncorrected no-action required error (UCNA). UCNA errors are 
uncorrected but do not require any OS recovery action to continue execution. These errors indicate that some 
data in the system is corrupt, but that data has not been consumed and may not be consumed.   If that data is 
consumed a non-UCNA machine check exception will be generated. UCNA errors are signaled in the same way 
as corrected machine check errors and the CMCI and CMC polling handler is primarily responsible for handling 
UCNA errors. Like corrected errors, the MCA handler can optionally log and clear UCNA errors as long as it can 
avoid the undesired race condition with the CMCI or CMC polling handler. As UCNA errors are not the source of 
machine check exceptions, the MCA handler should continue searching for uncorrected or software recoverable 
errors in all other MC banks. 

• When the S flag in the IA32_MCi_STATUS register is set for the UCR error ((VAL=1, UC=1, EN=1 and PCC=0), 
the error in this bank is software recoverable and it was signaled through a machine-check exception.  The AR 
flag in the IA32_MCi_STATUS register further clarifies the type of the software recoverable errors. 

• When the AR flag in the IA32_MCi_STATUS register is clear for the software recoverable error (VAL=1, UC=1, 
EN=1, PCC=0 and S=1), the error in this bank is a software recoverable action optional (SRAO) error. The MCE 
handler and the operating system can analyze the IA32_MCi_STATUS [15:0] to implement MCA error code 
specific optional recovery action, but this recovery action is optional. System software can resume the program 
execution from the instruction pointer saved on the stack for the machine check exception when the RIPV flag 
in the IA32_MCG_STATUS register is set. 

• Even if the OVER flag in the IA32_MCi_STATUS register is set for the SRAO error (VAL=1, UC=1, EN=1, PCC=0, 
S=1 and AR=0), the MCE handler can take recovery action for the SRAO error logged in the IA32_MCi_STATUS 
register. Since the recovery action for SRAO errors is optional, restarting the program execution from the 
instruction pointer saved on the stack for the machine check exception is still possible for the overflowed SRAO 
error if the RIPV flag in the IA32_MCG_STATUS is set. 
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• When the AR flag in the IA32_MCi_STATUS register is set for the software recoverable error (VAL=1, UC=1, 
EN=1, PCC=0 and S=1), the error in this bank is a software recoverable action required (SRAR) error. The MCE 
handler and the operating system must take recovery action in order to continue execution after the machine-
check exception. The MCA handler and the operating system need to analyze the IA32_MCi_STATUS [15:0] to 
determine the MCA error code specific recovery action. If no recovery action can be performed, the operating 
system must reset the system. 

• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAR error (VAL=1, UC=1, EN=1, PCC=0, 
S=1 and AR=1), the MCE handler cannot take recovery action as the information of the SRAR error in the 
IA32_MCi_STATUS register was potentially lost due to the overflow condition. Since the recovery action for 
SRAR errors must be taken, the MCE handler must signal the operating system to reset the system. 

• When the MCE handler cannot find any uncorrected (VAL=1, UC=1 and EN=1) or any software recoverable 
errors (VAL=1, UC=1, EN=1, PCC=0 and S=1) in any of the IA32_MCi banks of the processors, this is an 
unexpected condition for the MCE handler and the handler should signal the operating system to reset the 
system. 

• Before returning from the machine-check exception handler, software must clear the MCIP flag in the IA32_MC-
G_STATUS register. The MCIP flag is used to detect recursion. The machine-check architecture does not 
support recursion. When the processor receives a machine check when MCIP is set, it automatically enters the 
shutdown state.

Example 17-4 gives pseudocode for an MC exception handler that supports recovery of UCR.

Example 17-4.  Machine-Check Error Handler Pseudocode Supporting UCR

MACHINE CHECK HANDLER:  (* Called from INT 18 handler *)
NOERROR = TRUE;
ProcessorCount = 0;
IF CPU supports MCA

THEN
RESTARTABILITY = TRUE;
IF (Processor Family = 6 AND DisplayModel ≥ 0EH) OR (Processor Family > 6) 

THEN
IF ( MCG_LMCE = 1)

MCA_BROADCAST = FALSE;
ELSE

MCA_BROADCAST = TRUE;
FI;
Acquire SpinLock; 
ProcessorCount++;  (* Allowing one logical processor at a time to examine machine check registers *)
CALL MCA ERROR PROCESSING; (* returns RESTARTABILITY and NOERROR *)

ELSE 
MCA_BROADCAST = FALSE;
(* Implement a rendezvous mechanism with the other processors if necessary *)
CALL MCA ERROR PROCESSING;

FI;
ELSE (* Pentium(R) processor compatible *)

READ P5_MC_ADDR
READ P5_MC_TYPE;
RESTARTABILITY = FALSE;

FI;

IF NOERROR = TRUE
    THEN

IF NOT (MCG_RIPV = 1 AND MCG_EIPV = 0) 
THEN 

RESTARTABILITY = FALSE;
FI

FI;

IF RESTARTABILITY = FALSE
THEN 

Report RESTARTABILITY to console;
Reset system; 
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FI;

IF MCA_BROADCAST = TRUE
THEN

IF ProcessorCount = MAX_PROCESSORS
    AND NOERROR = TRUE

THEN
Report RESTARTABILITY to console;
Reset system;

FI;
Release SpinLock; 
Wait till ProcessorCount = MAX_PROCESSRS on system; 
(* implement a timeout and abort function if necessary *)

FI;
CLEAR IA32_MCG_STATUS;
RESUME Execution;
(* End of MACHINE CHECK HANDLER*)

MCA ERROR PROCESSING:    (* MCA Error Processing Routine called from MCA Handler *)
IF MCIP flag in IA32_MCG_STATUS = 0

THEN (* MCIP=0 upon MCA is unexpected *)
RESTARTABILITY = FALSE;

FI;
FOR each bank of machine-check registers 

DO
CLEAR_MC_BANK = FALSE;
READ IA32_MCi_STATUS;
IF VAL Flag in IA32_MCi_STATUS = 1

THEN
IF UC Flag in IA32_MCi_STATUS = 1

THEN 
IF Bit 24 in IA32_MCG_CAP = 0

THEN (* the processor does not support software error recovery *)
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* the processor supports software error recovery *)
IF EN Flag in IA32_MCi_STATUS = 0 AND OVER Flag in IA32_MCi_STATUS=0

THEN (* It is a spurious MCA Log. Log and clear the register *)
CLEAR_MC_BANK = TRUE;
GOTO LOG MCA REGISTER;

FI;
IF PCC = 1 and EN = 1 in IA32_MCi_STATUS

THEN (* processor context might have been corrupted *)
RESTARTABILITY = FALSE; 

ELSE (* It is a uncorrected recoverable (UCR) error *)
IF S Flag in IA32_MCi_STATUS = 0

THEN 
IF AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required (UCNA) error *)
GOTO CONTINUE; (* let CMCI and CMC polling handler to process *)

ELSE
RESTARTABILITY = FALSE; (* S=0, AR=1 is illegal *)

FI
FI; 
IF RESTARTABILITY = FALSE

THEN (* no need to take recovery action if RESTARTABILITY is already false *)
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* S in IA32_MCi_STATUS = 1 *) 
IF AR Flag in IA32_MCi_STATUS = 1

THEN (* It is a software recoverable and action required (SRAR) error *)
IF OVER Flag in IA32_MCi_STATUS = 1
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THEN
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI
IF MCACOD Value in IA32_MCi_STATUS is recognized
    AND Current Processor is an Affected Processor 

THEN
Implement MCACOD specific recovery action;
CLEAR_MC_BANK = TRUE; 

ELSE 
RESTARTABILITY = FALSE;

FI;
ELSE (* It is a software recoverable and action optional (SRAO) error *)

IF OVER Flag in IA32_MCi_STATUS = 0 AND
 MCACOD in IA32_MCi_STATUS is recognized

THEN
Implement MCACOD specific recovery action;

FI;
CLEAR_MC_BANK = TRUE;

FI; AR 
FI; PCC
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

ELSE  (* It is a corrected error; continue to the next IA32_MCi_STATUS *) 
GOTO CONTINUE;

FI; UC
FI; VAL 

LOG MCA REGISTER:
SAVE IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS 

THEN
SAVE IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_ADDR;

FI;
IF CLEAR_MC_BANK = TRUE

THEN
SET all 0 to IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS 

THEN
SET all 0 to IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SET all 0 to IA32_MCi_ADDR;

FI;
FI;
CONTINUE:

OD;
( *END FOR *)
RETURN;
(* End of MCA ERROR PROCESSING*)

17.10.4.2  Corrected Machine-Check Handler for Error Recovery
When writing a corrected machine check handler, which is invoked as a result of CMCI or called from an OS CMC 
Polling dispatcher, consider the following: 
• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register 

is valid. If this flag is clear, the registers in that bank does not contain valid error information and does not need 
to be checked.
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• The CMCI or CMC polling handler is responsible for logging and clearing corrected errors. The UC flag in each 
IA32_MCi_Status register indicates whether the reported error was corrected (UC=0) or not (UC=1). 

• When IA32_MCG_CAP [24] is one, the CMC handler is also responsible for logging and clearing uncorrected no-
action required (UCNA) errors. When the UC flag is one but the PCC, S, and AR flags are zero in the IA32_M-
Ci_STATUS register, the reported error in this bank is an uncorrected no-action required (UCNA) error. In cases 
when SRAO error are signaled as UCNA error via CMCI, software can perform recovery for those errors 
identified in Table 17-16.

• In addition to corrected errors and UCNA errors, the CMC handler optionally logs uncorrected (UC=1 and 
PCC=1), software recoverable machine check errors (UC=1, PCC=0 and S=1), but should avoid clearing those 
errors from the MC banks. Clearing these errors may result in accidentally removing these errors before these 
errors are actually handled and processed by the MCE handler for attempted software error recovery.

Example 17-5 gives pseudocode for a CMCI handler with UCR support.

Example 17-5.  Corrected Error Handler Pseudocode with UCR Support

Corrected Error HANDLER:  (* Called from CMCI handler or OS CMC Polling Dispatcher*)
IF CPU supports MCA

THEN
FOR each bank of machine-check registers 

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF UC Flag in IA32_MCi_STATUS = 0 (* It is a corrected error *)

THEN 
GOTO LOG CMC ERROR;

ELSE 
IF Bit 24 in IA32_MCG_CAP = 0

THEN
GOTO CONTINUE;

FI;
IF S Flag in IA32_MCi_STATUS = 0 AND AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required error *)
GOTO LOG CMC ERROR

FI
IF EN Flag in IA32_MCi_STATUS = 0

THEN (* It is a spurious MCA error *)
GOTO LOG CMC ERROR

FI;
FI;

FI;
GOTO CONTINUE;

LOG CMC ERROR: 
SAVE IA32_MCi_STATUS;
If MISCV Flag in IA32_MCi_STATUS 

THEN
SAVE IA32_MCi_MISC;
SET all 0 to IA32_MCi_MISC;

FI;
IF ADDRV Flag in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_ADDR;
SET all 0 to IA32_MCi_ADDR

FI;
SET all 0 to IA32_MCi_STATUS;
CONTINUE:

OD;
( *END FOR *)

FI;
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CHAPTER 18
INTERPRETING MACHINE CHECK ERROR CODES

Encoding of the model-specific and other information fields is different across processor families. The differences 
are documented in the following sections.

18.1 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 06H, 
MACHINE ERROR CODES FOR MACHINE CHECK

This section provides information for interpreting additional model-specific fields for external bus errors relating to 
processor family 06H. The references to processor family 06H refers to only IA-32 processors with CPUID signa-
tures listed in Table 18-1.

These errors are reported in the IA32_MCi_STATUS MSRs. They are reported architecturally as compound errors 
with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter 17 for information on the 
interpretation of compound error codes. Incremental decoding information is listed in Table 18-2.

Table 18-1.   CPUID DisplayFamily_DisplayModel Signatures for Processor Family 06H
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_0EH Intel® Core™ Duo processor, Intel® Core™ Solo processor

06_0DH Intel Pentium M processor

06_09H Intel Pentium M processor

06_7H, 06_08H, 06_0AH, 06_0BH Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor 

06_01H Intel Pentium Pro Processor 

Table 18-2.  Incremental Decoding Information: Processor Family 06H Machine Error Codes for Machine Check 
Type Bit No. Bit Function Bit Description

MCA Error 
Codes1 

15:0

Model Specific 
Errors

18:16 Reserved Reserved

24:19 Bus Queue Request 
Type

000000: BQ_DCU_READ_TYPE error.

000010: BQ_IFU_DEMAND_TYPE error.

000011: BQ_IFU_DEMAND_NC_TYPE error.

000100: BQ_DCU_RFO_TYPE error.

000101: BQ_DCU_RFO_LOCK_TYPE error.

000110: BQ_DCU_ITOM_TYPE error.

001000: BQ_DCU_WB_TYPE error.

001010: BQ_DCU_WCEVICT_TYPE error.

001011: BQ_DCU_WCLINE_TYPE error.

001100: BQ_DCU_BTM_TYPE error.
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INTERPRETING MACHINE CHECK ERROR CODES
001101: BQ_DCU_INTACK_TYPE error.

001110: BQ_DCU_INVALL2_TYPE error.

001111: BQ_DCU_FLUSHL2_TYPE error.

010000: BQ_DCU_PART_RD_TYPE error.

010010: BQ_DCU_PART_WR_TYPE error.

010100: BQ_DCU_SPEC_CYC_TYPE error.

011000: BQ_DCU_IO_RD_TYPE error.

011001: BQ_DCU_IO_WR_TYPE error.

011100: BQ_DCU_LOCK_RD_TYPE error.

011110: BQ_DCU_SPLOCK_RD_TYPE error.

011101: BQ_DCU_LOCK_WR_TYPE error.

27:25 Bus Queue Error Type 000: BQ_ERR_HARD_TYPE error.

001: BQ_ERR_DOUBLE_TYPE error.

010: BQ_ERR_AERR2_TYPE error.

100: BQ_ERR_SINGLE_TYPE error.

101: BQ_ERR_AERR1_TYPE error.

28 FRC Error 1 if FRC error active.

29 BERR 1 if BERR is driven.

30 Internal BINIT 1 if BINIT driven for this processor.

31 Reserved Reserved

Other 
Information

34:32 Reserved Reserved

35 External BINIT 1 if BINIT is received from external bus.

36 Response Parity Error This bit is asserted in IA32_MCi_STATUS if this component has received a parity 
error on the RS[2:0]# pins for a response transaction. The RS signals are checked 
by the RSP# external pin.

37 Bus BINIT This bit is asserted in IA32_MCi_STATUS if this component has received a hard 
error response on a split transaction one access that has needed to be split across 
the 64-bit external bus interface into two accesses).

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this component has experienced a ROB 
time-out, which indicates that no micro-instruction has been retired for a 
predetermined period of time.

A ROB time-out occurs when the 15-bit ROB time-out counter carries a 1 out of its 
high order bit. 2 The timer is cleared when a micro-instruction retires, an exception 
is detected by the core processor, RESET is asserted, or when a ROB BINIT occurs.

The ROB time-out counter is prescaled by the 8-bit PIC timer which is a divide by 
128 of the bus clock (the bus clock is 1:2, 1:3, 1:4 of the core clock3). When a carry 
out of the 8-bit PIC timer occurs, the ROB counter counts up by one. While this bit is 
asserted, it cannot be overwritten by another error.

41:39 Reserved Reserved

42 Hard Error This bit is asserted in IA32_MCi_STATUS if this component has initiated a bus 
transactions which has received a hard error response. While this bit is asserted, it 
cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this component has experienced a 
failure that causes the IERR pin to be asserted. While this bit is asserted, it cannot 
be overwritten.

Table 18-2.  Incremental Decoding Information: Processor Family 06H Machine Error Codes for Machine Check  
Type Bit No. Bit Function Bit Description
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INTERPRETING MACHINE CHECK ERROR CODES
18.2 INCREMENTAL DECODING INFORMATION: INTEL® CORE™ 2 PROCESSOR 
FAMILY, MACHINE ERROR CODES FOR MACHINE CHECK

Table 18-4 provides information for interpreting additional model-specific fields for external bus errors relating to 
processors based on Intel® Core™ microarchitecture, which implements the P4 bus specification. Table 18-3 lists 
the CPUID signatures for Intel 64 processors that are covered by Table 18-4. These errors are reported in the 
IA32_MCi_STATUS MSRs. They are reported architecturally as compound errors with a general form of 
0000 1PPT RRRR IILL in the MCA error code field. See Chapter 17 for information on the interpretation of 
compound error codes.

44 AERR This bit is asserted in IA32_MCi_STATUS if this component has initiated 2 failing 
bus transactions which have failed due to Address Parity Errors AERR asserted). 
While this bit is asserted, it cannot be overwritten.

45 UECC The Uncorrectable ECC error bit is asserted in IA32_MCi_STATUS for uncorrected 
ECC errors. While this bit is asserted, the ECC syndrome field will not be 
overwritten.

46 CECC The correctable ECC error bit is asserted in IA32_MCi_STATUS for corrected ECC 
errors.

54:47 ECC Syndrome The ECC syndrome field in IA32_MCi_STATUS contains the 8-bit ECC syndrome only 
if the error was a correctable/uncorrectable ECC error and there wasn't a previous 
valid ECC error syndrome logged in IA32_MCi_STATUS. 

A previous valid ECC error in IA32_MCi_STATUS is indicated by 
IA32_MCi_STATUS.bit45 uncorrectable error occurred) being asserted. After 
processing an ECC error, machine check handling software should clear 
IA32_MCi_STATUS.bit45 so that future ECC error syndromes can be logged.

56:55 Reserved Reserved

Status Register 
Validity 
Indicators1 

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.
2. For processors with a CPUID signature of 06_0EH, a ROB time-out occurs when the 23-bit ROB time-out counter carries a 1 out of its 

high order bit.
3. For processors with a CPUID signature of 6_06_60H and later, the PIC timer will count crystal clock cycles.

Table 18-3.   CPUID DisplayFamily_DisplayModel Signatures for Processors Based on Intel® Core™ Microarchitecture
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_1DH Intel® Xeon® Processor 7400 series

06_17H Intel® Xeon® Processor 5200, 5400 series, Intel® Core™ 2 Quad processor Q9650

06_0FH Intel® Xeon® Processor 3000, 3200, 5100, 5300, 7300 series, Intel® Core™ 2 Quad, Intel® Core™ 2 
Extreme, Intel® Core™ 2 Duo processors, Intel Pentium dual-core processors

Table 18-2.  Incremental Decoding Information: Processor Family 06H Machine Error Codes for Machine Check  
Type Bit No. Bit Function Bit Description
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INTERPRETING MACHINE CHECK ERROR CODES
Table 18-4.  Incremental Bus Error Codes of Machine Check for Processors 
Based on Intel® Core™ Microarchitecture

Type Bit No. Bit Function Bit Description

MCA Error 
Codes1 

15:0

Model Specific 
Errors

18:16 Reserved Reserved

24:19 Bus Queue Request 
Type

‘000001: BQ_PREF_READ_TYPE error.

000000: BQ_DCU_READ_TYPE error.

000010: BQ_IFU_DEMAND_TYPE error

000011: BQ_IFU_DEMAND_NC_TYPE error.

000100: BQ_DCU_RFO_TYPE error.

000101: BQ_DCU_RFO_LOCK_TYPE error.

000110: BQ_DCU_ITOM_TYPE error.

001000: BQ_DCU_WB_TYPE error.

001010: BQ_DCU_WCEVICT_TYPE error.

001011: BQ_DCU_WCLINE_TYPE error.

001100: BQ_DCU_BTM_TYPE error.

001101: BQ_DCU_INTACK_TYPE error.

001110: BQ_DCU_INVALL2_TYPE error.

001111: BQ_DCU_FLUSHL2_TYPE error.

010000: BQ_DCU_PART_RD_TYPE error.

010010: BQ_DCU_PART_WR_TYPE error.

010100: BQ_DCU_SPEC_CYC_TYPE error.

011000: BQ_DCU_IO_RD_TYPE error.

011001: BQ_DCU_IO_WR_TYPE error.

011100: BQ_DCU_LOCK_RD_TYPE error.

011110: BQ_DCU_SPLOCK_RD_TYPE error.

011101: BQ_DCU_LOCK_WR_TYPE error.

100100: BQ_L2_WI_RFO_TYPE error.

100110: BQ_L2_WI_ITOM_TYPE error.

27:25 Bus Queue Error Type ‘001: Address Parity Error.

‘010: Response Hard Error.

‘011: Response Parity Error.

28 MCE Driven 1 if MCE is driven.

29 MCE Observed 1 if MCE is observed.

30 Internal BINIT 1 if BINIT driven for this processor.

31 BINIT Observed 1 if BINIT is observed for this processor.

Other 
Information

33:32 Reserved Reserved

34 PIC and FSB Data 
Parity

Data Parity detected on either PIC or FSB access.

35 Reserved Reserved

36 Response Parity Error This bit is asserted in IA32_MCi_STATUS if this component has received a parity 
error on the RS[2:0]# pins for a response transaction. The RS signals are checked 
by the RSP# external pin.
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INTERPRETING MACHINE CHECK ERROR CODES
18.2.1  Model-Specific Machine Check Error Codes for Intel® Xeon® Processor 7400 Series
The Intel® Xeon® processor 7400 series has machine check register banks that generally follow the description of 
Chapter 17 and Section 18.2. Additional error codes specific to the Intel Xeon processor 7400 series are described 
in this section.

MC4_STATUS[63:0] is the main error logging for the processor’s L3 and front side bus errors for the Intel Xeon 
processor 7400 series. It supports the L3 Errors, Bus and Interconnect Errors Compound Error Codes in the MCA 
Error Code Field.

37 FSB Address Parity Address parity error detected:

1: Address parity error detected.
0: No address parity error.

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this component has experienced a ROB 
time-out, which indicates that no micro-instruction has been retired for a 
predetermined period of time.

A ROB time-out occurs when the 23-bit ROB time-out counter carries a 1 out of its 
high order bit. The timer is cleared when a micro-instruction retires, an exception is 
detected by the core processor, RESET is asserted, or when a ROB BINIT occurs.

The ROB time-out counter is prescaled by the 8-bit PIC timer which is a divide by 
128 of the bus clock the bus clock is 1:2, 1:3, 1:4 of the core clock). When a carry 
out of the 8-bit PIC timer occurs, the ROB counter counts up by one. While this bit is 
asserted, it cannot be overwritten by another error.

41:39 Reserved Reserved

42 Hard Error This bit is asserted in IA32_MCi_STATUS if this component has initiated a bus 
transactions which has received a hard error response. While this bit is asserted, it 
cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this component has experienced a 
failure that causes the IERR pin to be asserted. While this bit is asserted, it cannot 
be overwritten.

44 Reserved Reserved

45 Reserved Reserved

46 Reserved Reserved

54:47 Reserved Reserved

56:55 Reserved Reserved.

Status Register 
Validity 
Indicators1 

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

Table 18-4.  Incremental Bus Error Codes of Machine Check for Processors 
Based on Intel® Core™ Microarchitecture (Contd.)

Type Bit No. Bit Function Bit Description
Vol. 3B 18-5



INTERPRETING MACHINE CHECK ERROR CODES
18.2.1.1  Processor Machine Check Status Register, Incremental MCA Error Code Definition

The Intel Xeon processor 7400 series uses compound MCA Error Codes for logging its Bus internal machine check 
errors, L3 Errors, and Bus/Interconnect Errors. It defines incremental Machine Check error types 
(IA32_MC6_STATUS[15:0]) beyond those defined in Chapter 17. Table 18-5 lists these incremental MCA error 
code types that apply to IA32_MC6_STATUS. Error code details are specified in MC6_STATUS [31:16] (see 
Section 18.2.2), the “Model Specific Error Code” field. The information in the “Other_Info” field 
(MC4_STATUS[56:32]) is common to the three processor error types. It contains a correctable event count and 
specifies the MC6_MISC register format.

The Bold faced binary encodings are the only encodings used by the processor for MC4_STATUS[15:0].

18.2.2  Intel® Xeon® Processor 7400 Model Specific Error Code Field

18.2.2.1  Processor Model Specific Error Code Field, Type B: Bus and Interconnect Error Codes
The Model Specific Error Code field in MC6_STATUS (bits 31:16) is defined in Table 18-6.

Table 18-5.  Incremental MCA Error Code Types for Intel® Xeon® Processor 7400 
Processor MCA_Error_Code (MC6_STATUS[15:0])

Type Error Code Binary Encoding Meaning

C Internal Error 0000 0100 0000 0000 Internal Error Type Code.

B Bus and 
Interconnect 
Error

0000 100x 0000 1111 Not used but this encoding is reserved for compatibility with other MCA 
implementations.

0000 101x 0000 1111 Not used but this encoding is reserved for compatibility with other MCA 
implementations.

0000 110x 0000 1111 Not used but this encoding is reserved for compatibility with other MCA 
implementations.

0000 1110 0000 1111 Bus and Interconnection Error Type Code.

0000 1111 0000 1111 Not used but this encoding is reserved for compatibility with other MCA 
implementations.

Table 18-6.  Type B: Bus and Interconnect Error Codes
Bit Number Sub-Field Name Description

16 FSB Request Parity Parity error detected during FSB request phase.

19:17 Reserved Reserved

20 FSB Hard Fail Response “Hard Failure“ response received for a local transaction.

21 FSB Response Parity Parity error on FSB response field detected.

22 FSB Data Parity FSB data parity error on inbound data detected.

31:23 Reserved Reserved
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INTERPRETING MACHINE CHECK ERROR CODES
18.2.2.2  Processor Model Specific Error Code Field, Type C: Cache Bus Controller Error Codes

18.3 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR 
3400, 3500, 5500 SERIES, MACHINE ERROR CODES FOR MACHINE CHECK

Table 18-8 through Table 18-12 provide information for interpreting additional model-specific fields for memory 
controller errors relating to the Intel® Xeon® processor 3400, 3500, 5500 series with CPUID DisplayFamily_Dis-
playSignature 06_1AH, which supports Intel® QuickPath Interconnect links. Incremental MC error codes related to 
the Intel QPI links are reported in the register banks IA32_MC0 and IA32_MC1, incremental error codes for internal 
machine check are reported in the register bank IA32_MC7, and incremental error codes for the memory controller 
unit are reported in the register bank IA32_MC8.

Table 18-7.  Type C: Cache Bus Controller Error Codes
MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001 0001H Inclusion Error from Core 0.

0000_0000_0000_0010 0002H Inclusion Error from Core 1.

0000_0000_0000_0011 0003H Write Exclusive Error from Core 0.

0000_0000_0000_0100 0004H Write Exclusive Error from Core 1.

0000_0000_0000_0101 0005H Inclusion Error from FSB.

0000_0000_0000_0110 0006H SNP Stall Error from FSB.

0000_0000_0000_0111 0007H Write Stall Error from FSB.

0000_0000_0000_1000 0008H FSB Arb Timeout Error.

0000_0000_0000_1010 000AH Inclusion Error from Core 2.

0000_0000_0000_1011 000BH Write Exclusive Error from Core 2.

0000_0010_0000_0000 0200H Internal Timeout Error.

0000_0011_0000_0000 0300H Internal Timeout Error.

0000_0100_0000_0000 0400H Intel® Cache Safe Technology Queue Full Error or Disabled-ways-in-a-set overflow.

0000_0101_0000_0000 0500H Quiet cycle Timeout Error (correctable).

1100_0000_0000_0010 C002H Correctable ECC event on outgoing Core 0 data.

1100_0000_0000_0100 C004H Correctable ECC event on outgoing Core 1 data.

1100_0000_0000_1000 C008H Correctable ECC event on outgoing Core 2 data.

1110_0000_0000_0010 E002H Uncorrectable ECC error on outgoing Core 0 data.

1110_0000_0000_0100 E004H Uncorrectable ECC error on outgoing Core 1 data.

1110_0000_0000_1000 E008H Uncorrectable ECC error on outgoing Core 2 data.

 — All other encodings — Reserved
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INTERPRETING MACHINE CHECK ERROR CODES
18.3.1  Intel® QPI Machine Check Errors

Table 18-8.  Intel® QPI Machine Check Error Codes for IA32_MC0_STATUS and IA32_MC1_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

15:0 MCACOD Bus error format: 1PPTRRRRIILL

Model Specific Errors 16 Header Parity If 1, QPI Header had bad parity.

17 Data Parity If 1, QPI Data packet had bad parity.

18 Retries Exceeded If 1, the number of QPI retries was exceeded.

19 Received Poison if 1, received a data packet that was marked as poisoned by the sender.

21:20 Reserved Reserved

22 Unsupported Message If 1, QPI received a message encoding it does not support.

23 Unsupported Credit If 1, QPI credit type is not supported.

24 Receive Flit Overrun If 1, sender sent too many QPI flits to the receiver.

25 Received Failed Response If 1, indicates that sender sent a failed response to receiver.

26 Receiver Clock Jitter If 1, clock jitter detected in the internal QPI clocking.

56:27 Reserved Reserved

Status Register 
Validity Indicators1 

63:57

Table 18-9.  Intel® QPI Machine Check Error Codes for IA32_MC0_MISC and IA32_MC1_MISC
Type Bit No. Bit Function Bit Description

Model Specific 
Errors1

NOTES:
1. Which of these fields are valid depends on the error type.

7:0 QPI Opcode Message class and opcode from the packet with the error.

13:8 RTID QPI Request Transaction ID.

15:14 Reserved Reserved

18:16 RHNID QPI Requestor/Home Node ID.

23:19 Reserved Reserved

24 IIB QPI Interleave/Head Indication Bit.
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INTERPRETING MACHINE CHECK ERROR CODES
18.3.2  Internal Machine Check Errors

18.3.3  Memory Controller Errors

Table 18-10.  Machine Check Error Codes for IA32_MC7_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

15:0 MCACOD

Model Specific Errors 23:16 Reserved Reserved

31:24 Reserved, except for the 
following

00H: No error.

03H: Reset firmware did not complete.

08H: Received an invalid CMPD.

0AH: Invalid Power Management Request.

0DH: Invalid S-state transition.

11H: VID controller does not match POC controller selected.

1AH: MSID from POC does not match CPU MSID.

56:32 Reserved Reserved

Status Register 
Validity Indicators1 

63:57

Table 18-11.  Incremental Memory Controller Error Codes of Machine Check for IA32_MC8_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

15:0 MCACOD Memory error format: 1MMMCCCC

Model Specific Errors 16 Read ECC Error If 1, ECC occurred on a read.

17 RAS ECC Error If 1, ECC occurred on a scrub.

18 Write Parity Error If 1, bad parity on a write.

19 Redundancy Loss if 1, error in half of redundant memory.

20 Reserved Reserved

21 Memory Range Error If 1, memory access out of range.

22 RTID Out of Range If 1, Internal ID invalid.

23 Address Parity Error If 1, bad address parity.

24 Byte Enable Parity 
Error

If 1, bad enable parity.

Other Information 37:25 Reserved Reserved

52:38 CORE_ERR_CNT Corrected error count.

56:53 Reserved Reserved

Status Register Validity 
Indicators1 

63:57
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INTERPRETING MACHINE CHECK ERROR CODES
18.4 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5 
FAMILY, MACHINE ERROR CODES FOR MACHINE CHECK

Table 18-13 through Table 18-15 provide information for interpreting additional model-specific fields for memory 
controller errors relating to the Intel® Xeon® processor E5 Family with CPUID DisplayFamily_DisplaySignature 
06_2DH, which supports Intel QuickPath Interconnect links. Incremental MC error codes related to the Intel QPI 
links are reported in the register banks IA32_MC6 and IA32_MC7, incremental error codes for internal machine 
check error from PCU controller are reported in the register bank IA32_MC4, and incremental error codes for the 
memory controller unit are reported in the register banks IA32_MC8—IA32_MC11.

18.4.1  Internal Machine Check Errors

Table 18-12.  Incremental Memory Controller Error Codes of Machine Check for IA32_MC8_MISC
Type Bit No. Bit Function Bit Description

Model Specific 
Errors1

NOTES:
1. Which of these fields are valid depends on the error type.

7:0 RTID Transaction Tracker ID.

15:8 Reserved Reserved

17:16 DIMM DIMM ID which received the error.

19:18 Channel Channel ID which received the error.

31:20 Reserved Reserved

63:32 Syndrome ECC Syndrome.

Table 18-13.  Machine Check Error Codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1 15:0 MCACOD

Model Specific Errors 19:16 Reserved, except for the 
following

0000b: No Error

0001b: Non_IMem_Sel

0010b: I_Parity_Error

0011b: Bad_OpCode

0100b: I_Stack_Underflow

0101b: I_Stack_Overflow

0110b: D_Stack_Underflow

0111b: D_Stack_Overflow

1000b: Non-DMem_Sel

1001b: D_Parity_Error
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INTERPRETING MACHINE CHECK ERROR CODES
18.4.2  Intel® QPI Machine Check Errors

18.4.3  Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the IA32_MC8_STATUS−
IA32_MC11_STATUS MSRs. The supported error codes follow the architectural MCACOD definition type 
1MMMCCCC; see Chapter 17, “Machine-Check Architecture.” MSR_ERROR_CONTROL.[bit 1] can enable additional 
information logging of the IMC. The additional error information logged by the IMC is stored in the IA32_M-
Ci_STATUS and IA32_MCi_MISC, where i = 8, 11.

23:20 Reserved Reserved

31:24 Reserved, except for the 
following

00H: No Error

0DH: MC_IMC_FORCE_SR_S3_TIMEOUT

0EH: MC_CPD_UNCPD_ST_TIMEOUT

0FH: MC_PKGS_SAFE_WP_TIMEOUT

43H: MC_PECI_MAILBOX_QUIESCE_TIMEOUT

5CH: MC_MORE_THAN_ONE_LT_AGENT

60H: MC_INVALID_PKGS_REQ_PCH

61H: MC_INVALID_PKGS_REQ_QPI

62H: MC_INVALID_PKGS_RES_QPI

63H: MC_INVALID_PKGC_RES_PCH

64H: MC_INVALID_PKG_STATE_CONFIG

70H: MC_WATCHDG_TIMEOUT_PKGC_SECONDARY

71H: MC_WATCHDG_TIMEOUT_PKGC_MAIN

72H: MC_WATCHDG_TIMEOUT_PKGS_MAIN

7AH: MC_HA_FAILSTS_CHANGE_DETECTED

81H: MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56:32 Reserved Reserved

Status Register 
Validity Indicators1 

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

Table 18-14.  Intel® QPI MC Error Codes for IA32_MC6_STATUS and IA32_MC7_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

15:0 MCACOD Bus error format: 1PPTRRRRIILL

Model Specific Errors 56:16 Reserved Reserved

Status Register 
Validity Indicators1 

63:57

Table 18-13.  Machine Check Error Codes for IA32_MC4_STATUS (Contd.)
Type Bit No. Bit Function Bit Description
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INTERPRETING MACHINE CHECK ERROR CODES
Table 18-15.  Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 8, 11)
Type Bit No. Bit Function Bit Description

MCA Error Codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

15:0 MCACOD Bus error format: 1PPTRRRRIILL

Model Specific Errors 31:16 Reserved, except for the 
following

001H: Address parity error.
002H: HA Wrt buffer Data parity error.
004H: HA Wrt byte enable parity error.
008H: Corrected patrol scrub error.
010H: Uncorrected patrol scrub error.
020H: Corrected spare error.
040H: Uncorrected spare error.

36:32 Other Info When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first device 
error when corrected error is detected during normal read.

37 Reserved Reserved

56:38 See Chapter 17, “Machine-Check Architecture.”

Status Register 
Validity Indicators1 

63:57

Table 18-16.  Intel IMC MC Error Codes for IA32_MCi_MISC (i= 8, 11) 
Type Bit No. Bit Function Bit Description

MCA Addr Info1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

8:0 See Chapter 17, “Machine-Check Architecture.”

Model Specific Errors 13:9 • When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second 
device error when corrected error is detected during normal read.

• Otherwise, contains parity error if MCi_Status indicates HA_WB_Data 
or HA_W_BE parity error.

29:14 ErrMask_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device 
error bit mask.

45:30 ErrMask_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-
device error bit mask.

50:46 FailRank_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device 
error failing rank.

55:51 FailRank_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-
device error failing rank.

58:56 Reserved Reserved

61:59 Reserved Reserved

62 Valid_1stErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid 
data from the first correctable error in a memory device.

63 Valid_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid 
data due to a second correctable error in a memory device. Use this 
information only after there is valid first error information indicated by bit 
62.
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INTERPRETING MACHINE CHECK ERROR CODES
18.5 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5 
V2 AND INTEL® XEON® PROCESSOR E7 V2 FAMILIES, MACHINE ERROR 
CODES FOR MACHINE CHECK

The Intel® Xeon® processor E5 v2 family and the Intel® Xeon® processor E7 v2 family are based on the Ivy 
Bridge-EP microarchitecture and can be identified with CPUID DisplayFamily_DisplaySignature 06_3EH. Incre-
mental error codes for internal machine check error from the PCU controller is reported in the register bank 
IA32_MC4; Table 18-17 lists model-specific fields to interpret error codes applicable to IA32_MC4_STATUS. Incre-
mental MC error codes related to the Intel QPI links are reported in the register bank IA32_MC5. Information listed 
in Table 18-14 for QPI MC error codes apply to IA32_MC5_STATUS. Incremental error codes for the memory 
controller unit are reported in the register banks IA32_MC9−IA32_MC16. Table 18-18 lists model-specific error 
codes that apply to IA32_MCi_STATUS, where i = 9-16.

18.5.1  Internal Machine Check Errors

Table 18-17.  Machine Check Error Codes for IA32_MC4_STATUS 
Type Bit No. Bit Function Bit Description

MCA Error Codes1 15:0 MCACOD

Model Specific Errors 19:16 Reserved, except for the 
following

0000b: No Error

0001b: Non_IMem_Sel

0010b: I_Parity_Error

0011b: Bad_OpCode

0100b: I_Stack_Underflow

0101b: I_Stack_Overflow

0110b: D_Stack_Underflow

0111b: D_Stack_Overflow

1000b: Non-DMem_Sel

1001b: D_Parity_Error

23:20 Reserved Reserved

31:24 Reserved, except for the 
following

00H: No Error

0DH: MC_IMC_FORCE_SR_S3_TIMEOUT

0EH: MC_CPD_UNCPD_ST_TIMEOUT

0FH: MC_PKGS_SAFE_WP_TIMEOUT

43H: MC_PECI_MAILBOX_QUIESCE_TIMEOUT

44H: MC_CRITICAL_VR_FAILED

45H: MC_ICC_MAX-NOTSUPPORTED

5CH: MC_MORE_THAN_ONE_LT_AGENT

60H: MC_INVALID_PKGS_REQ_PCH

61H: MC_INVALID_PKGS_REQ_QPI

62H: MC_INVALID_PKGS_RES_QPI

63H: MC_INVALID_PKGC_RES_PCH

64H: MC_INVALID_PKG_STATE_CONFIG

70H: MC_WATCHDG_TIMEOUT_PKGC_SECONDARY

71H: MC_WATCHDG_TIMEOUT_PKGC_MAIN

72H: MC_WATCHDG_TIMEOUT_PKGS_MAIN
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18.5.2  Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the IA32_MC9_STATUS−
IA32_MC16_STATUS MSRs. The supported error codes follow the architectural MCACOD definition type 
1MMMCCCC; see Chapter 17, “Machine-Check Architecture.”

MSR_ERROR_CONTROL.[bit 1] can enable additional information logging of the IMC. The additional error informa-
tion logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC, where i = 9—16.

IA32_MCi_STATUS (i=9—12) logs errors from the first memory controller. The second memory controller logs 
errors into IA32_MCi_STATUS (i=13—16).

7AH: MC_HA_FAILSTS_CHANGE_DETECTED

7BH: MC_PCIE_R2PCIE-RW_BLOCK_ACK_TIMEOUT

81H: MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56:32 Reserved Reserved

Status Register 
Validity Indicators1 

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

Table 18-18.  Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9—16)
Type Bit No. Bit Function Bit Description

MCA Error Codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

15:0 MCACOD Memory Controller error format: 000F 0000 1MMM CCCC

Model Specific Errors 31:16 Reserved, except for the 
following

001H: Address parity error.

002H: HA Wrt buffer data parity error.

004H: HA Wrt byte enable parity error.

008H: Corrected patrol scrub error.

010H: Uncorrected patrol scrub error.

020H: Corrected spare error.

040H: Uncorrected spare error.

080H: Corrected memory read error. (Only applicable with iMC’s 
“Additional Error logging” Mode-1 enabled.) 

100H - iMC, WDB, parity errors

36:32 Other Info When MSR_ERROR_CONTROL.[1] is set, logs an encoded value from the 
first error device.

37 Reserved Reserved

56:38 See Chapter 17, “Machine-Check Architecture.”

Status Register 
Validity Indicators1 

63:57

Table 18-17.  Machine Check Error Codes for IA32_MC4_STATUS  (Contd.)
Type Bit No. Bit Function Bit Description
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18.5.3  Home Agent Machine Check Errors
Memory errors from the first memory controller may be logged in the IA32_MC7_{STATUS,ADDR,MISC} registers, 
while the second memory controller logs errors to the IA32_MC8_{STATUS,ADDR,MISC} registers.

18.6 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5 
V3 FAMILY, MACHINE ERROR CODES FOR MACHINE CHECK

The Intel® Xeon® processor E5 v3 family is based on the Haswell-E microarchitecture and can be identified with 
CPUID DisplayFamily_DisplaySignature 06_3FH. Incremental error codes for internal machine check errors from 
the PCU controller are reported in the register bank IA32_MC4. Table 18-20 lists model-specific fields to interpret 
error codes applicable to IA32_MC4_STATUS. Incremental MC error codes related to the Intel QPI links are 
reported in the register banks IA32_MC5, IA32_MC20, and IA32_MC21. Table 18-21 contains information for QPI 
MC error codes. Incremental error codes for the memory controller unit are reported in the register banks 
IA32_MC9−IA32_MC16. Table 18-22 lists model-specific error codes that apply to IA32_MCi_STATUS, where i = 
9—16.

Table 18-19.  Intel IMC MC Error Codes for IA32_MCi_MISC (i= 9—16)
Type Bit No. Bit Function Bit Description

MCA Addr Info1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

8:0 See Chapter 17, “Machine-Check Architecture.”

Model Specific Errors 13:9 If the error logged is a MCWrDataPar error or a MCWrBEPar error, this field 
is the WDB ID that has the parity error; OR if the second error logged is a 
correctable read error, MC logs the second error device in this field.

29:14 ErrMask_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device 
error bit mask.

45:30 ErrMask_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-
device error bit mask.

50:46 FailRank_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device 
error failing rank.

55:51 FailRank_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-
device error failing rank.

61:56 Reserved

62 Valid_1stErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid 
data from a correctable error from memory read associated with first 
error device.

63 Valid_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid 
data due to a second correctable error in a memory device. Use this 
information only after there is valid first error info indicated by bit 62.
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18.6.1  Internal Machine Check Errors

Table 18-20.  Machine Check Error Codes for IA32_MC4_STATUS 
Type Bit No. Bit Function Bit Description

MCA Error Codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

15:0 MCACOD

MCACOD2

2. The internal error codes may be model-specific.

15:0 Internal Errors 0402H: PCU internal errors.

0403H: PCU internal errors.

0406H: Intel TXT errors

0407H: Other UBOX internal errors.

An IERR caused by a core 3-strike the IA32_MC3_STATUS (MLC) is copied 
to the IA32_MC4_STATUS. After a 3-strike, the core MCA banks will be 
unavailable. 

Model Specific Errors 19:16 Reserved, except for the 
following

0000b: No error.

00xxb: PCU internal error.

23:20 Reserved Reserved

31:24 Reserved, except for the 
following

00H: No Error

09H: MC_MESSAGE_CHANNEL_TIMEOUT

13H: MC_DMI_TRAINING_TIMEOUT

15H: MC_DMI_CPU_RESET_ACK_TIMEOUT

1EH: MC_VR_ICC_MAX_LT_FUSED_ICC_MAX

25H: MC_SVID_COMMAND_TIMEOUT

29H: MC_VR_VOUT_MAC_LT_FUSED_SVID

2BH: MC_PKGC_WATCHDOG_HANG_CBZ_DOWN

2CH: MC_PKGC_WATCHDOG_HANG_CBZ_UP

44H: MC_CRITICAL_VR_FAILED

46H: MC_VID_RAMP_DOWN_FAILED

49H: MC_SVID_WRITE_REG_VOUT_MAX_FAILED

4BH: MC_BOOT_VID_TIMEOUT; timeout setting boot VID for DRAM 0.

4FH: MC_SVID_COMMAND_ERROR

52H: MC_FIVR_CATAS_OVERVOL_FAULT

53H: MC_FIVR_CATAS_OVERCUR_FAULT

57H: MC_SVID_PKGC_REQUEST_FAILED

58H: MC_SVID_IMON_REQUEST_FAILED

59H: MC_SVID_ALERT_REQUEST_FAILED

62H: MC_INVALID_PKGS_RSP_QPI

64H: MC_INVALID_PKG_STATE_CONFIG

67H: MC_HA_IMC_RW_BLOCK_ACK_TIMEOUT

6AH: MC_MSGCH_PMREQ_CMP_TIMEOUT

72H: MC_WATCHDG_TIMEOUT_PKGS_MASTER

81H: MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56:32 Reserved Reserved

Status Register 
Validity Indicators1 

63:57
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18.6.2  Intel® QPI Machine Check Errors
MC error codes associated with the Intel QPI agents are reported in the IA32_MC5_STATUS, IA32_MC20_STATUS, 
and IA32_MC21_STATUS MSRs. The supported error codes follow the architectural MCACOD definition type 
1PPTRRRRIILL; see Chapter 17, “Machine-Check Architecture.”

Table 18-21 lists model-specific fields to interpret error codes applicable to IA32_MC5_STATUS, 
IA32_MC20_STATUS, and IA32_MC21_STATUS.

18.6.3  Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the 
IA32_MC9_STATUS—IA32_MC16_STATUS MSRs. The supported error codes follow the architectural MCACOD defi-
nition type 1MMMCCCC; see Chapter 17, “Machine-Check Architecture.” 

MSR_ERROR_CONTROL.[bit 1] can enable additional information logging of the IMC. The additional error informa-
tion logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC, where i = 9—16.

IA32_MCi_STATUS (i=9—12) logs errors from the first memory controller. The second memory controller logs 
errors into IA32_MCi_STATUS (i=13—16).

Table 18-21.  Intel® QPI MC Error Codes for IA32_MCi_STATUS (i = 5, 20, 21)
Type Bit No. Bit Function Bit Description

MCA Error Codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

15:0 MCACOD Bus error format: 1PPTRRRRIILL

Model Specific Errors 31:16 MSCOD 02H: Intel QPI physical layer detected drift buffer alarm.

03H: Intel QPI physical layer detected latency buffer rollover.

10H: Intel QPI link layer detected control error from R3QPI.

11H: Rx entered LLR abort state on CRC error.

12H: Unsupported or undefined packet.

13H: Intel QPI link layer control error.

15H: RBT used un-initialized value.

20H: Intel QPI physical layer detected a QPI in-band reset but aborted 
initialization.

21H: Link failover data self-healing.

22H: Phy detected in-band reset (no width change).

23H: Link failover clock failover.

30H: Rx detected CRC error; successful LLR after Phy re-init.

31H: Rx detected CRC error; successful LLR without Phy re-init.

All other values are reserved.

37:32 Reserved Reserved

52:38 Corrected Error Cnt

56:53 Reserved Reserved

Status Register 
Validity Indicators1 

63:57
Vol. 3B 18-17



INTERPRETING MACHINE CHECK ERROR CODES
Table 18-22.  Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9—16) 
Type Bit No. Bit Function Bit Description

MCA Error Codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

15:0 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC

Model Specific Errors 31:16 Reserved, except for 
the following

0001H: DDR3 address parity error.

0002H: Uncorrected HA write data error.

0004H: Uncorrected HA data byte enable error.

0008H: Corrected patrol scrub error.

0010H: Uncorrected patrol scrub error.

0020H: Corrected spare error.

0040H: Uncorrected spare error.

0080H: Corrected memory read error. (Only applicable with iMC’s “Additional 
Error logging” Mode-1 enabled.) 

0100H: iMC, write data buffer parity errors.

0200H: DDR4 command address parity error.

36:32 Other Info When MSR_ERROR_CONTROL.[1] is set, logs an encoded value from the first 
error device.

37 Reserved Reserved

56:38 See Chapter 17, “Machine-Check Architecture.”

Status Register 
Validity Indicators1 

63:57

Table 18-23.  Intel IMC MC Error Codes for IA32_MCi_MISC (i= 9—16)
Type Bit No. Bit Function Bit Description

MCA Addr Info1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

8:0 See Chapter 17, “Machine-Check Architecture.”

Model Specific Errors 13:9 If the error logged is an MCWrDataPar error or an MCWrBEPar error, this field 
is the WDB ID that has the parity error; OR if the second error logged is a 
correctable read error, MC logs the second error device in this field.

29:14 ErrMask_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device 
error bit mask.

45:30 ErrMask_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device 
error bit mask.

50:46 FailRank_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device 
error failing rank.

55:51 FailRank_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device 
error failing rank.

61:56 Reserved Reserved

62 Valid_1stErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid 
data from a correctable error from a memory read associated with first error 
device.

63 Valid_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid 
data due to a second correctable error in a memory device. Use this 
information only after there is valid first error information indicated by bit 62.
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18.6.4  Home Agent Machine Check Errors
Memory errors from the first memory controller may be logged in the IA32_MC7_{STATUS,ADDR,MISC} registers, 
while the second memory controller logs errors in the IA32_MC8_{STATUS,ADDR,MISC} registers.

18.7 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR D 
FAMILY, MACHINE ERROR CODES FOR MACHINE CHECK

The Intel® Xeon® processor D family is based on the Broadwell microarchitecture and can be identified with CPUID 
DisplayFamily_DisplaySignature 06_56H. Incremental error codes for internal machine check error from the PCU 
controller are reported in the register bank IA32_MC4. Table 18-24 lists model-specific fields to interpret error 
codes applicable to IA32_MC4_STATUS. Incremental error codes for the memory controller unit are reported in the 
register banks IA32_MC9−IA32_MC10. Table 18-18 lists model-specific error codes that apply to IA32_M-
Ci_STATUS, where i = 9—10.

18.7.1  Internal Machine Check Errors

Table 18-24.  Machine Check Error Codes for IA32_MC4_STATUS 
Type Bit No. Bit Function Bit Description

MCA Error Codes1 15:0 MCACOD

MCACOD2 15:0 Internal Errors 0402H: PCU internal errors.

0403H: Internal errors.

0406H: Intel TXT errors.

0407H: Other UBOX internal errors.

On an IERR caused by a core 3-strike, the IA32_MC3_STATUS (MLC) is 
copied to the IA32_MC4_STATUS. After a 3-strike, the core MCA banks will 
be unavailable. 

Model Specific Errors 19:16 Reserved, except for the 
following

0000b: No error.

00x1b: PCU internal error.

001xb: PCU internal error.

23:20 Reserved, except for the 
following

x1xxb: UBOX error.

31:24 Reserved, except for the 
following

00H: No Error

09H: MC_MESSAGE_CHANNEL_TIMEOUT

13H: MC_DMI_TRAINING_TIMEOUT

15H: MC_DMI_CPU_RESET_ACK_TIMEOUT

1EH: MC_VR_ICC_MAX_LT_FUSED_ICC_MAX

25H: MC_SVID_COMMAND_TIMEOUT

26H: MCA_PKGC_DIRECT_WAKE_RING_TIMEOUT

29H: MC_VR_VOUT_MAC_LT_FUSED_SVID

2BH: MC_PKGC_WATCHDOG_HANG_CBZ_DOWN

2CH: MC_PKGC_WATCHDOG_HANG_CBZ_UP

44H: MC_CRITICAL_VR_FAILED

46H: MC_VID_RAMP_DOWN_FAILED

49H: MC_SVID_WRITE_REG_VOUT_MAX_FAILED
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18.7.2  Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the 
IA32_MC9_STATUS—IA32_MC10_STATUS MSRs. The supported error codes follow the architectural MCACOD defi-
nition type 1MMMCCCC; see Chapter 17, “Machine-Check Architecture.” 

MSR_ERROR_CONTROL.[bit 1] can enable additional information logging of the IMC. The additional error informa-
tion logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC, where i = 9—10.

4BH: MC_PP1_BOOT_VID_TIMEOUT. Timeout setting boot VID for DRAM 0.

4FH: MC_SVID_COMMAND_ERROR.

52H: MC_FIVR_CATAS_OVERVOL_FAULT.

53H: MC_FIVR_CATAS_OVERCUR_FAULT.

57H: MC_SVID_PKGC_REQUEST_FAILED

58H: MC_SVID_IMON_REQUEST_FAILED

59H: MC_SVID_ALERT_REQUEST_FAILED

62H: MC_INVALID_PKGS_RSP_QPI

64H: MC_INVALID_PKG_STATE_CONFIG

67H: MC_HA_IMC_RW_BLOCK_ACK_TIMEOUT

6AH: MC_MSGCH_PMREQ_CMP_TIMEOUT

72H: MC_WATCHDG_TIMEOUT_PKGS_MASTER

81H: MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56:32 Reserved Reserved

Status Register 
Validity Indicators1 

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.
2. The internal error codes may be model-specific.

Table 18-25.  Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9—10)
Type Bit No. Bit Function Bit Description

MCA Error Codes1 15:0 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC

Model Specific Errors 31:16 Reserved, except for the 
following

0001H: DDR3 address parity error.

0002H: Uncorrected HA write data error.

0004H: Uncorrected HA data byte enable error.

0008H: Corrected patrol scrub error.

0010H: Uncorrected patrol scrub error.

0100H: iMC, write data buffer parity errors.

0200H: DDR4 command address parity error.

36:32 Other Info Reserved

37 Reserved Reserved

56:38 See Chapter 17, “Machine-Check Architecture.”

Status Register 
Validity Indicators1 

63:57

Table 18-24.  Machine Check Error Codes for IA32_MC4_STATUS  (Contd.)
Type Bit No. Bit Function Bit Description
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18.8 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5 
V4 FAMILY, MACHINE ERROR CODES FOR MACHINE CHECK

The Intel® Xeon® processor E5 v4 family is based on the Broadwell microarchitecture and can be identified with 
CPUID DisplayFamily_DisplaySignature 06_4FH. Incremental error codes for internal machine check errors from 
the PCU controller are reported in the register bank IA32_MC4. Table 18-20 in Section 18.6.1 lists model-specific 
fields to interpret error codes applicable to IA32_MC4_STATUS. 

Incremental MC error codes related to the Intel QPI links are reported in the register banks IA32_MC5, 
IA32_MC20, and IA32_MC21. Information listed in Table 18-21 of Section 18.6.1 covers QPI MC error codes. 

18.8.1  Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the 
IA32_MC9_STATUS—IA32_MC16_STATUS MSRs. The supported error codes follow the architectural MCACOD defi-
nition type 1MMMCCCC; see Chapter 17, “Machine-Check Architecture.”

Table 18-26 lists model-specific error codes that apply to IA32_MCi_STATUS, where i = 9—16.

IA32_MCi_STATUS (i=9—12) logs errors from the first memory controller. The second memory controller logs 
errors into IA32_MCi_STATUS (i=13—16).

18.8.2  Home Agent Machine Check Errors
MC error codes associated with mirrored memory corrections are reported in the IA32_MC7_MISC and 
IA32_MC8_MISC MSRs. Table 18-27 lists model-specific error codes that apply to IA32_MCi_MISC, where i = 7, 8.

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

Table 18-26.  Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9—16)
Type Bit No. Bit Function Bit Description

MCA Error Codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

15:0 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC

Model Specific Errors 31:16 Reserved, except for the 
following

0001H: DDR3 address parity error.

0002H: Uncorrected HA write data error.

0004H: Uncorrected HA data byte enable error.

0008H: Corrected patrol scrub error.

0010H: Uncorrected patrol scrub error.

0020H: Corrected spare error.

0040H: Uncorrected spare error.

0100H: iMC, write data buffer parity errors.

0200H: DDR4 command address parity error.

36:32 Other Info Reserved

37 Reserved Reserved

56:38 See Chapter 17, “Machine-Check Architecture.”

Status Register 
Validity Indicators1 

63:57
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Memory errors from the first memory controller may be logged in the IA32_MC7_{STATUS,ADDR,MISC} registers, 
while the second memory controller logs errors in the IA32_MC8_{STATUS,ADDR,MISC} registers.

18.9 INCREMENTAL DECODING INFORMATION: INTEL® XEON® SCALABLE 
PROCESSOR FAMILY, MACHINE ERROR CODES FOR MACHINE CHECK

In the Intel® Xeon® Scalable Processor Family with CPUID DisplayFamily_DisplaySignature 06_55H, incremental 
error codes for internal machine check errors from the PCU controller are reported in the register bank IA32_MC4. 
Table 18-28 in Section 18.9.1 lists model-specific fields to interpret error codes applicable to IA32_MC4_STATUS. 

18.9.1  Internal Machine Check Errors

Table 18-27.  Intel HA MC Error Codes for IA32_MCi_MISC (i= 7, 8)
Bit No. Bit Function Bit Description

5:0 LSB See Figure 17-8.

8:6 Address Mode See Table 17-3.

40:9 Reserved Reserved

41 Failover Error occurred at a pair of mirrored memory channels. Error was corrected by mirroring with 
channel failover.

42 Mirrorcorr Error was corrected by mirroring and primary channel scrubbed successfully.

63:43 Reserved Reserved

Table 18-28.  Machine Check Error Codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1 15:0 MCACOD

MCACOD2 15:0 Internal Errors 0402H: PCU internal errors.

0403H: PCU internal errors.

0406H: Intel TXT errors.

0407H: Other UBOX internal errors.

On an IERR caused by a core 3-strike, the IA32_MC3_STATUS (MLC) is 
copied to the IA32_MC4_STATUS. After a 3-strike, the core MCA banks will 
be unavailable. 

Model Specific Errors 19:16 Reserved, except for the 
following

0000b: No error.

00xxb: PCU internal error.
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23:20 Reserved Reserved

31:24 Reserved, except for the 
following

00H: No Error

0DH: MCA_DMI_TRAINING_TIMEOUT 

0FH: MCA_DMI_CPU_RESET_ACK_TIMEOUT

10H: MCA_MORE_THAN_ONE_LT_AGENT

1EH: MCA_BIOS_RST_CPL_INVALID_SEQ

1FH: MCA_BIOS_INVALID_PKG_STATE_CONFIG

25H: MCA_MESSAGE_CHANNEL_TIMEOUT

27H: MCA_MSGCH_PMREQ_CMP_TIMEOUT

30H: MCA_PKGC_DIRECT_WAKE_RING_TIMEOUT

31H: MCA_PKGC_INVALID_RSP_PCH

33H: MCA_PKGC_WATCHDOG_HANG_CBZ_DOWN

34H: MCA_PKGC_WATCHDOG_HANG_CBZ_UP

38H: MCA_PKGC_WATCHDOG_HANG_C3_UP_SF

40H: MCA_SVID_VCCIN_VR_ICC_MAX_FAILURE

41H: MCA_SVID_COMMAND_TIMEOUT

42H: MCA_SVID_VCCIN_VR_VOUT_MAX_FAILURE

43H: MCA_SVID_CPU_VR_CAPABILITY_ERROR

44H: MCA_SVID_CRITICAL_VR_FAILED

45H: MCA_SVID_SA_ITD_ERROR

46H: MCA_SVID_READ_REG_FAILED

47H: MCA_SVID_WRITE_REG_FAILED

48H: MCA_SVID_PKGC_INIT_FAILED

49H: MCA_SVID_PKGC_CONFIG_FAILED

4AH: MCA_SVID_PKGC_REQUEST_FAILED

4BH: MCA_SVID_IMON_REQUEST_FAILED

4CH: MCA_SVID_ALERT_REQUEST_FAILED

4DH: MCA_SVID_MCP_VP_ABSENT_OR_RAMP_ERROR

4EH: MCA_SVID_UNEXPECTED_MCP_VP_DETECTED

51H: MCA_FIVR_CATAS_OVERVOL_FAULT

52H: MCA_FIVR_CATAS_OVERCUR_FAULT

58H: MCA_WATCHDG_TIMEOUT_PKGC_SECONDARY

59H: MCA_WATCHDG_TIMEOUT_PKGC_MAIN

5AH: MCA_WATCHDG_TIMEOUT_PKGS_MAIN

61H: MCA_PKGS_CPD_UNPCD_TIMEOUT

63H: MCA_PKGS_INVALID_REQ_PCH

64H: MCA_PKGS_INVALID_REQ_INTERNAL

65H: MCA_PKGS_INVALID_RSP_INTERNAL

6BH: MCA_PKGS_SMBUS_VPP_PAUSE_TIMEOUT

81H: MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

52:32 Reserved Reserved

54:53 CORR_ERR_STATUS Reserved

Table 18-28.  Machine Check Error Codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description
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18.9.2  Interconnect Machine Check Errors
MC error codes associated with the link interconnect agents are reported in the IA32_MC5_STATUS, 
IA32_MC12_STATUS, and IA32_MC19_STATUS MSRs. The supported error codes follow the architectural MCACOD 
definition type 1PPTRRRRIILL; see Chapter 17, “Machine-Check Architecture.”

Table 18-29 lists model-specific fields to interpret error codes applicable to IA32_MCi_STATUS, i= 5, 12, 19.

56:55 Reserved Reserved

Status Register 
Validity Indicators1 

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.
2. The internal error codes may be model-specific.

Table 18-29.  Interconnect MC Error Codes for IA32_MCi_STATUS (i = 5, 12, 19)
Type Bit No. Bit Function Bit Description

MCA Error Codes1 15:0 MCACOD Bus error format: 1PPTRRRRIILL

The two supported compound error codes:

• 0x0C0F: Unsupported/Undefined Packet.
• 0x0E0F: For all other corrected and uncorrected errors.

Model Specific Errors 21:16 MSCOD The encoding of Uncorrectable (UC) errors are:

00H: UC Phy Initialization Failure.

01H: UC Phy detected drift buffer alarm.

02H: UC Phy detected latency buffer rollover.

10H: UC link layer Rx detected CRC error: unsuccessful LLR entered abort 
state.

11H: UC LL Rx unsupported or undefined packet.

12H: UC LL or Phy control error.

13H: UC LL Rx parameter exchange exception.

1FH: UC LL detected control error from the link-mesh interface.

The encoding of correctable (COR) errors are:

20H: COR Phy initialization abort.

21H: COR Phy reset.

22H: COR Phy lane failure, recovery in x8 width.

23H: COR Phy L0c error corrected without Phy reset.

24H: COR Phy L0c error triggering Phy reset.

25H: COR Phy L0p exit error corrected with Phy reset.

30H: COR LL Rx detected CRC error; successful LLR without Phy re-init.

31H: COR LL Rx detected CRC error; successful LLR with Phy re-init.

All other values are reserved.

Table 18-28.  Machine Check Error Codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description
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18.9.3  Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the 
IA32_MC13_STATUS—IA32_MC18_STATUS MSRs. The supported error codes follow the architectural MCACOD 
definition type 1MMMCCCC; see Chapter 17, “Machine-Check Architecture.” 

IA32_MCi_STATUS (i=13,14,17) logs errors from the first memory controller. The second memory controller logs 
errors into IA32_MCi_STATUS (i=15,16,18).

31:22 MSCOD_SPARE The definition below applies to MSCOD 12h (UC LL or Phy Control Errors)

[Bit 22] : Phy Control Error.

[Bit 23] : Unexpected Retry.Ack flit.

[Bit 24] : Unexpected Retry.Req flit.

[Bit 25] : RF parity error.

[Bit 26] : Routeback Table error.

[Bit 27] : Unexpected Tx Protocol flit (EOP, Header or Data).

[Bit 28] : Rx Header-or-Credit BGF credit overflow/underflow.

[Bit 29] : Link Layer Reset still in progress when Phy enters L0 (Phy 
training should not be enabled until after LL reset is complete as indicated 
by KTILCL.LinkLayerReset going back to 0).

[Bit 30] : Link Layer reset initiated while protocol traffic not idle.

[Bit 31] : Link Layer Tx Parity Error.

37:32 Reserved Reserved

52:38 Corrected Error Cnt

56:53 Reserved Reserved

Status Register 
Validity Indicators1 

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

Table 18-29.  Interconnect MC Error Codes for IA32_MCi_STATUS (i = 5, 12, 19)
Type Bit No. Bit Function Bit Description
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18.9.4  M2M Machine Check Errors
MC error codes associated with M2M are reported in the IA32_MC7_STATUS and IA32_MC8_STATUS MSRs. The 
supported error codes follow the architectural MCACOD definition type 1MMMCCCC; see Chapter 17, “Machine-
Check Architecture.” 

Table 18-30.  Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13—18)
Type Bit No. Bit Function Bit Description

MCA Error Codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

15:0 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC

Model Specific Errors 31:16 Reserved, except for the 
following

0001H: Address parity error.

0002H: HA write data parity error.

0004H: HA write byte enable parity error.

0008H: Corrected patrol scrub error.

0010H: Uncorrected patrol scrub error.

0020H: Corrected spare error.

0040H: Uncorrected spare error.

0080H: Any HA read error.

0100H: WDB read parity error.

0200H: DDR4 command address parity error.

0400H: Uncorrected address parity error.

0800H: Unrecognized request type.

0801H: Read response to an invalid scoreboard entry.

0802H: Unexpected read response.

0803H: DDR4 completion to an invalid scoreboard entry.

0804H: Completion to an invalid scoreboard entry.

0805H: Completion FIFO overflow.

0806H: Correctable parity error.

0807H: Uncorrectable error.

0808H: Interrupt received while outstanding interrupt was not ACKed.

0809H: ERID FIFO overflow.

080AH: Error on Write credits.

080BH: Error on Read credits.

080CH: Scheduler error.

080DH: Error event.

36:32 Other Info MC logs the first error device. This is an encoded 5-bit value of the device.

37 Reserved Reserved

56:38 See Chapter 17, “Machine-Check Architecture.”

Status Register 
Validity Indicators1 

63:57
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18.9.5  Home Agent Machine Check Errors
MC error codes associated with mirrored memory corrections are reported in the IA32_MC7_MISC and 
IA32_MC8_MISC MSRs. Table 18-32 lists model-specific error codes that apply to IA32_MCi_MISC, where i = 7, 8. 

Memory errors from the first memory controller may be logged in the IA32_MC7_{STATUS,ADDR,MISC} registers, 
while the second memory controller logs errors in the IA32_MC8_{STATUS,ADDR,MISC} registers.

Table 18-31.  M2M MC Error Codes for IA32_MCi_STATUS (i= 7, 8)
Type Bit No. Bit Function Bit Description

MCA Error Codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

15:0 MCACOD Compound error format: 0000 0000 1MMM CCCC

Model Specific Errors 16 MscodDataRdErr Logged an MC read data error.

17 Reserved Reserved

18 MscodPtlWrErr Logged an MC partial write data error.

19 MscodFullWrErr Logged a full write data error.

20 MscodBgfErr Logged an M2M clock-domain-crossing buffer (BGF) error.

21 MscodTimeOut Logged an M2M time out.

22 MscodParErr Logged an M2M tracker parity error.

23 MscodBucket1Err Logged a fatal Bucket1 error.

31:24 Reserved Reserved

36:32 Other Info MC logs the first error device. This is an encoded 5-bit value of the device.

37 Reserved Reserved

56:38 See Chapter 17, “Machine-Check Architecture.”

Status Register 
Validity Indicators1 

63:57

Table 18-32.  Intel HA MC Error Codes for IA32_MCi_MISC (i= 7, 8)
Bit No. Bit Function Bit Description

5:0 LSB See Figure 17-8.

8:6 Address Mode See Table 17-3.

40:9 Reserved Reserved

61:41 Reserved Reserved

62 Mirrorcorr Error was corrected by mirroring and primary channel scrubbed successfully.

63 Failover Error occurred at a pair of mirrored memory channels. Error was corrected by mirroring with 
channel failover.
Vol. 3B 18-27



INTERPRETING MACHINE CHECK ERROR CODES
18.10 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID 
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_5FH, MACHINE ERROR 
CODES FOR MACHINE CHECK

In Intel Atom® processors based on Goldmont Microarchitecture with CPUID DisplayFamily_DisplaySignature 
06_5FH (Denverton), incremental error codes for the memory controller unit are reported in the register banks 
IA32_MC7 and IA32_MC8. Table 18-33 in Section 18.10.1 lists model-specific fields to interpret error codes appli-
cable to IA32_MCi_STATUS, where i = 7, 8.

18.10.1  Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the IA32_MC7_STATUS and 
IA32_MC8_STATUS MSRs. The supported error codes follow the architectural MCACOD definition type 
1MMMCCCC; see Chapter 17, “Machine-Check Architecture.”

18.11 INCREMENTAL DECODING INFORMATION: 3RD GENERATION INTEL® XEON® 
SCALABLE PROCESSOR FAMILY, MACHINE ERROR CODES FOR MACHINE 
CHECK

In the 3rd generation Intel® Xeon® Scalable Processor Family with CPUID DisplayFamily_DisplaySignatures of 
06_6AH and 06_6CH, incremental error codes for internal machine check errors from the PCU controller are 
reported in the register bank IA32_MC4. Table 18-34 in Section 18.11.1 lists model-specific fields to interpret error 
codes applicable to IA32_MC4_STATUS. 

Table 18-33.  Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 7, 8)
Type Bit No. Bit Function Bit Description

MCA Error Codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

15:0 MCACOD

Model Specific Errors 31:16 Reserved, except for the 
following

01H: Cmd/Addr parity.

02H: Corrected Demand/Patrol Scrub error.

04H: Uncorrected patrol scrub error.

08H: Uncorrected demand read error.

10H: WDB read ECC.

36:32 Other Info

37 Reserved Reserved

56:38 See Chapter 17, “Machine-Check Architecture.”

Status Register 
Validity Indicators1 

63:57
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18.11.1  Internal Machine Check Errors

Table 18-34.  Machine Check Error Codes for IA32_MC4_STATUS 
Type Bit No. Bit Function Bit Description

Machine Check Error 
Codes1 

15:0 MCCOD

MCCOD 15:0 Internal Errors The value of this field will be 0402H for the PCU and 0406H for internal 
firmware errors.

This applies for any logged error. 

Model Specific Errors 19:16 Reserved, except for the 
following

Model specific error code bits 19:16.

This logs the type of HW UC (PCU/VCU) error that has occurred. There are 
7 errors defined.

01H: Instruction address out of valid space.

02H: Double bit RAM error on Instruction Fetch.

03H: Invalid OpCode seen.

04H: Stack Underflow.

05H: Stack Overflow.

06H: Data address out of valid space.

07H: Double bit RAM error on Data Fetch.

23:20 Reserved, except for the 
following

Model specific error code bits 23:20.

This logs the type of HW FSM error that has occurred. There are 3 errors 
defined.

04H: Clock/power IP response timeout.

05H: SMBus controller raised SMI.

09H: PM controller received invalid transaction.

31:24 Reserved, except for the 
following

0DH: MCA_LLC_BIST_ACTIVE_TIMEOUT

0EH: MCA_DMI_TRAINING_TIMEOUT

0FH: MCA_DMI_STRAP_SET_ARRIVAL_TIMEOUT

10H: MCA_DMI_CPU_RESET_ACK_TIMEOUT 

11H: MCA_MORE_THAN_ONE_LT_AGENT

14H: MCA_INCOMPATIBLE_PCH_TYPE 

1EH: MCA_BIOS_RST_CPL_INVALID_SEQ

1FH: MCA_BIOS_INVALID_PKG_STATE_CONFIG

2DH: MCA_PCU_PMAX_CALIB_ERROR

2EH: MCA_TSC100_SYNC_TIMEOUT

3AH: MCA_GPSB_TIMEOUT

3BH: MCA_PMSB_TIMEOUT

3EH: MCA_IOSFSB_PMREQ_CMP_TIMEOUT

40H: MCA_SVID_VCCIN_VR_ICC_MAX_FAILURE

42H: MCA_SVID_VCCIN_VR_VOUT_FAILURE

43H: MCA_SVID_CPU_VR_CAPABILITY_ERROR

44H: MCA_SVID_CRITICAL_VR_FAILED

45H: MCA_SVID_SA_ITD_ERROR

46H: MCA_SVID_READ_REG_FAILED

47H: MCA_SVID_WRITE_REG_FAILED

4AH: MCA_SVID_PKGC_REQUEST_FAILED
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4BH: MCA_SVID_IMON_REQUEST_FAILED

4CH: MCA_SVID_ALERT_REQUEST_FAILED

4DH: MCA_SVID_MCP_VR_RAMP_ERROR

56H: MCA_FIVR_PD_HARDERR

58H: MCA_WATCHDOG_TIMEOUT_PKGC_SECONDARY 

59H: MCA_WATCHDOG_TIMEOUT_PKGC_MAIN

5AH: MCA_WATCHDOG_TIMEOUT_PKGS_MAIN

5BH: MCA_WATCHDOG_TIMEOUT_MSG_CH_FSM 

5CH: MCA_WATCHDOG_TIMEOUT_BULK_CR_FSM

5DH: MCA_WATCHDOG_TIMEOUT_IOSFSB_FSM

60H: MCA_PKGS_SAFE_WP_TIMEOUT

61H: MCA_PKGS_CPD_UNCPD_TIMEOUT

62H: MCA_PKGS_INVALID_REQ_PCH

63H: MCA_PKGS_INVALID_REQ_INTERNAL

64H: MCA_PKGS_INVALID_RSP_INTERNAL

65H-7AH: MCA_PKGS_RESET_PREP_TIMEOUT

7BH: MCA_PKGS_SMBUS_VPP_PAUSE_TIMEOUT

7CH: MCA_PKGS_SMBUS_MCP_PAUSE_TIMEOUT

7DH: MCA_PKGS_SMBUS_SPD_PAUSE_TIMEOUT

80H: MCA_PKGC_DISP_BUSY_TIMEOUT

81H: MCA_PKGC_INVALID_RSP_PCH

83H: MCA_PKGC_WATCHDOG_HANG_CBZ_DOWN

84H: MCA_PKGC_WATCHDOG_HANG_CBZ_UP

87H: MCA_PKGC_WATCHDOG_HANG_C2_BLKMASTER

88H: MCA_PKGC_WATCHDOG_HANG_C2_PSLIMIT

89H: MCA_PKGC_WATCHDOG_HANG_SETDISP

8BH: MCA_PKGC_ALLOW_L1_ERROR

90H: MCA_RECOVERABLE_DIE_THERMAL_TOO_HOT

A0H: MCA_ADR_SIGNAL_TIMEOUT

A1H: MCA_BCLK_FREQ_OC_ABOVE_THRESHOLD

B0H: MCA_DISPATCHER_RUN_BUSY_TIMEOUT

37:32 ENH_MCA_AVAIL0 Available when Enhanced MCA is in use.

52:38 CORR_ERR_COUNT Correctable error count.

54:53 CORRERRORSTATUSIND These bits are used to indicate when the number of corrected errors has 
exceeded the safe threshold to the point where an uncorrected error has 
become more likely to happen.

Table 3 shows the encoding of these bits.

56:55 ENH_MCA_AVAIL1 Available when Enhanced MCA is in use.

Status Register 
Validity Indicators1 

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

Table 18-34.  Machine Check Error Codes for IA32_MC4_STATUS  (Contd.)
Type Bit No. Bit Function Bit Description
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18.11.2  Interconnect Machine Check Errors
MC error codes associated with the link interconnect agents are reported in the IA32_MC5_STATUS, 
IA32_MC7_STATUS, and IA32_MC8_STATUS MSRs. The supported error codes follow the architectural MCACOD 
definition type 1PPTRRRRIILL; see Chapter 17, “Machine-Check Architecture.”

NOTE
The interconnect machine check errors in this section apply only to the 3rd generation Intel Xeon 
Scalable Processor Family with a CPUID DisplayFamily_DisplaySignature of 06_6AH. These do not 
apply to the 3rd generation Intel Xeon Scalable Processor Family with a CPUID 
DisplayFamily_DisplaySignature of 06_6CH.

Table 18-35 lists model-specific fields to interpret error codes applicable to IA32_MCi_STATUS, where i= 5, 7, 8.

Table 18-35.  Interconnect MC Error Codes for IA32_MCi_STATUS (i = 5, 7, 8) 
Type Bit No. Bit Function Bit Description

MCA Error Codes1 15:0 MCACOD Bus error format: 1PPTRRRRIILL

The two supported compound error codes:

• 0x0C0F: Unsupported/Undefined Packet.
• 0x0E0F: For all other corrected and uncorrected errors.

Model Specific Errors 21:16 MSCOD The encoding of Uncorrectable (UC) errors are:

00H: Phy Initialization Failure (NumInit).

01H: Phy Detected Drift Buffer Alarm.

02H: Phy Detected Latency Buffer Rollover.

10H: LL Rx detected CRC error: unsuccessful LLR (entered Abort state).

11H: LL Rx Unsupported/Undefined packet.

12H: LL or Phy Control Error.

13H: LL Rx Parameter Exception.

1FH: LL Detected Control Error.

The encoding of correctable (COR) errors are:

20H: Phy Initialization Abort.

21H: Phy Inband Reset.

22H: Phy Lane failure, recovery in x8 width.

23H: Phy L0c error corrected without Phy reset.

24H: Phy L0c error triggering Phy reset.

25H: Phy L0p exit error corrected with reset.

30H: LL Rx detected CRC error: successful LLR without Phy Re-init.

31H: LL Rx detected CRC error: successful LLR with Phy Re-init.

32H: Tx received LLR.

All other values are reserved.
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18.11.3  Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers for the 3rd generation Intel® Xeon® Scalable 
Processor Family based on Ice Lake microarchitecture are defined in Table 18-37.

The MSRs reporting MC error codes differ depending on the CPUID DisplayFamily_DisplaySignature of the 
processor. See Table 18-36 for details.

31:22 MSCOD_SPARE The definition below applies to MSCOD 12h (UC LL or Phy Control Errors).

[Bit 22] : Phy Control Error.

[Bit 23] : Unexpected Retry.Ack flit.

[Bit 24] : Unexpected Retry.Req flit.

[Bit 25] : RF parity error.

[Bit 26] : Routeback Table error.

[Bit 27] : Unexpected Tx Protocol flit (EOP, Header or Data).

[Bit 28] : Rx Header-or-Credit BGF credit overflow/underflow.

[Bit 29] : Link Layer Reset still in progress when Phy enters L0 (Phy 
training should not be enabled until after LL reset is complete as indicated 
by KTILCL.LinkLayerReset going back to 0).

[Bit 30] : Link Layer reset initiated while protocol traffic not idle.

[Bit 31] : Link Layer Tx Parity Error.

37:32 OTHER_INFO Other Info.

56:38 Corrected Error Cnt See Chapter 17, “Machine-Check Architecture.”

Status Register 
Validity Indicators1 

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

Table 18-36.  MSRs Reporting MC Error Codes by CPUID DisplayFamily_DisplaySignature
Processor CPUID 

DisplayFamily_DisplaySignature 
MSRs Reporting MC Error Codes

3rd generation Intel® Xeon® Scalable Processor 
Family based on Ice Lake microarchitecture

06_6AH IA32_MC13_STATUS−IA32_MC14_STATUS

IA32_MC17_STATUS−IA32_MC18_STATUS

IA32_MC21_STATUS−IA32_MC22_STATUS

IA32_MC25_STATUS−IA32_MC26_STATUS

3rd generation Intel® Xeon® Scalable Processor 
Family based on Ice Lake microarchitecture

06_6CH IA32_MC13_STATUS−IA32_MC14_STATUS

IA32_MC17_STATUS−IA32_MC18_STATUS

Table 18-35.  Interconnect MC Error Codes for IA32_MCi_STATUS (i = 5, 7, 8)  (Contd.)
Type Bit No. Bit Function Bit Description
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The supported error codes follow the architectural MCACOD definition type 1MMMCCCC; see Chapter 17, 
“Machine-Check Architecture.” 

Table 18-37.  Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13—14, 17—18, 21—22, 25—26) 
Type Bit No. Bit Function Bit Description

MCA Error Codes1 15:0 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC

Model Specific Errors 27:16 Error Codes 0000H: Uncorrectable spare error.

0001H: End to End address parity error.

0002H: Write data parity error.

0003H: End to End uncorrectable/correctable write data ECC error.

0004H: Write byte enable parity error.

0007H: Transaction ID parity error.

0008H: Correctable patrol scrub error.

0010H: Uncorrectable patrol scrub error.

0020H: Correctable spare error.

0080H: Transient or correctable error for demand or underfill reads or 
read 2LM metadata error.

00A0H: Uncorrectable error for demand or underfill reads.

0100H: WDB read parity error.

0108H: DDR/DDRT link failure.

0111H: PCLS address CSR parity error.

0112H: PCLS illegal ADDDC configuration error.

0200H: DDR4 command / address parity error.

0400H: RPQ scheduler address parity error.

0800H: 2LM unrecognized request type.

0801H: 2LM read response to an invalid scoreboard entry.

0802H: 2LM unexpected read response.

0803H: 2LM DDR4 completion to an invalid scoreboard entry.

0804H: 2LM DDRT completion to an invalid scoreboard entry.

0805H: 2LM completion FIFO overflow.

0806H: DDRT link parity error.

0807H: DDRT RID uncorrectable error.

0809H: DDRT RID FIFO overflow.

080AH: DDRT error on FNV write credits.

080BH: DDRT error on FNV read credits.

080CH: DDRT scheduler error.

080DH: DDRT FNV error.

080EH: DDRT FNV thermal error.

080FH: DDRT unexpected data packet during CMI idle.

0810H: DDRT RPQ request parity error.

0811H: DDRT WPQ request parity error.

0812H: 2LM NmFillWr CAM multiple hit error.

0813H: CMI credit oversubscription error.

0814H: CMI total credit count error.

0815H: CMI reserved credit pool error.

0816H: DDRT link ECC error.
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0817H: WDB FIFO overflow or underflow errors.

0818H: CMI request FIFO overflow error.

0819H: CMI request FIFO underflow error.

081AH: CMI response FIFO overflow error.

081BH: CMI response FIFO underflow error.

081CH: CMI miscellaneous credit errors.

081DH: CMI MC arbiter errors.

081EH: DDRT write completion FIFO overflow error.

081FH: DDRT write completion FIFO underflow error.

0820H: CMI read completion FIFO overflow error.

0821H: CMI read completion FIFO underflow error.

0822H: TME key RF parity error.

0823H: TME miscellaneous CMI errors.

0824H: TME CMI overflow error.

0825H: TME CMI underflow error.

0826H: Intel® SGX TEM secure bit mismatch detected on demand read.

0827H: TME detected underfill read completion data parity error.

0828H: 2LM Scoreboard Overflow Error.

1008H: Correctable patrol scrub error (mirror secondary example).

28 Mirror secondary error. Mirror secondary error.

31:29 Reserved Reserved

37:32 Other Info Other Info.

56:38 See Chapter 17, “Machine-Check Architecture.”

Status Register 
Validity Indicators1 

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

Table 18-37.  Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13—14, 17—18, 21—22, 25—26)  (Contd.)
Type Bit No. Bit Function Bit Description
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Additional information is reported in the IA32_MC13_MISC−IA32_MC14_MISC, IA32_MC17_MISC− 
IA32_MC18_MISC, IA32_MC21_MISC−IA32_MC22_MISC, and IA32_MC25_MISC−IA32_MC26_MISC MSRs. Table 
18-38 lists the information reported in IA32_MCi_MISC, where i = 13−14, 17−18, 21−22, and 25−26.

Table 18-38.  Additional Information Reported in IA32_MCi_MISC (i= 13—14, 17—18, 21—22, 25—26)
Bit No. Bit Function Bit Description

5:0 LSB See Figure 17-8.

8:6 Address Mode See Table 17-3.

18:9 Column Component of sub-DIMM address.

Bits 18-17: Reserved.

Bit 16: Column 9.

Bit 15: Column 8.

Bit 14: Column 7.

Bit 13: Column 6.

Bit 12: Column 5.

Bit 11: Column 4.

Bit 10: Column 3.

Bit 9: Reserved.

39:19 Row Component of sub-DIMM address.

45:40 Bank Component of sub-DIMM address.

Bit 45: Reserved.

Bit 44: Bank group 2.

Bit 43: Bank address 1.

Bit 42: Bank address 0.

Bit 41: Bank group 1.

Bit 40: Bank group 0.

51:46 Failed Device Failing device for correctable error (not valid for uncorrectable or transient errors).

55:52 CBit CBit

58:56 Chip Select Chip Select

62:59 ECC Mode 0000b: SDDC 2LM.

0001b: SDDC 1LM.

0010b: SDDC + 1 2LM.

0011b: SDDC + 1 1LM.

0100b: ADDDC 2LM.

0101b: ADDDC 1LM.

0110b: ADDDC + 1 2LM.

0111b: ADDDC + 1 1LM.

1000b: Read from DDRT.

1001b: x8 SDDC.

1010b: x8 SDDC + 1.

1011b: Not a valid ECC mode.

Other values: Reserved.

63 Transient 0b:

1b: Error was transient.
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18.11.4  M2M Machine Check Errors
MC error codes associated with M2M for the 3rd generation Intel Xeon Scalable Processor Family with a CPUID 
DisplayFamily_DisplaySignature of 06_6AH are reported in the IA32_MC12_STATUS, IA32_MC16_STATUS, 
IA32_MC20_STATUS, and IA32_MC24_STATUS MSRs. 

MC error codes associated with M2M for the 3rd generation Intel Xeon Scalable Processor Family with a CPUID 
DisplayFamily_DisplaySignature of 06_6CH are reported in the IA32_MC12_STATUS and IA32_MC16_STATUS 
MSRs. 

The supported error codes follow the architectural MCACOD definition type 1MMMCCCC; see Chapter 17, 
“Machine-Check Architecture.”

MC error codes associated with mirrored memory corrections are reported in the IA32_MC12_MISC, 
IA32_MC16_MISC, IA32_MC20_MISC, and IA32_MC24_MISC MSRs. The model-specific error codes listed in Table 
18-32 also apply to IA32_MCi_MISC, where i = 12, 16, 20, 24.

18.12 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID 
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_86H, MACHINE ERROR 
CODES FOR MACHINE CHECK

In Intel Atom® processors based on Tremont microarchitecture with CPUID DisplayFamily_DisplaySignature 
06_86H, incremental error codes for internal machine check errors from the PCU controller are reported in the 
register bank IA32_MC4. Table 18-34 in Section 18.11.1 lists model-specific fields to interpret error codes appli-
cable to IA32_MC4_STATUS. 

18.12.1  Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC13_STATUS−
IA32_MC15_STATUS. The supported error codes follow the architectural MCACOD definition type 1MMMCCCC; see 
Chapter 17, “Machine-Check Architecture.”

The IA32_MCi_STATUS MSR (where i = 13, 14, 15) contains information related to a machine check error if its 
VAL(valid) flag is set. Bit definitions are the same as those found in Table 18-37 “Intel IMC MC Error Codes for 
IA32_MCi_STATUS (i= 13—14, 17—18, 21—22, 25—26).”

The IA32_MCi_MISC MSR (where i = 13, 14, 15) contains information related memory corrections. Bit definitions 
are the same as those found in Table 18-38 “Additional Information Reported in IA32_MCi_MISC (i= 13—14, 
17—18, 21—22, 25—26).”

Table 18-39.  M2M MC Error Codes for IA32_MCi_STATUS (i= 12, 16, 20, 24)
Type Bit No. Bit Function Bit Description

MCA Error Codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

15:0 MCACOD Compound error format: 0000 0000 1MMM CCCC

Model Specific Errors 23:16 MSCOD Logged an MC error.

25:24 MscodDDRType Logged a DDR/DDRT specific error.

26 MscodFailoverWhileResetPrep Logged a failover specific error while preparing to reset.

31:27 Reserved Reserved

37:32 Other Info Other information.

56:38 See Chapter 17, “Machine-Check Architecture.”

Status Register 
Validity Indicators1 

63:57
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18.12.2  M2M Machine Check Errors
MC error codes associated with M2M are reported in the IA32_MC12_STATUS MSR. The supported error codes 
follow the architectural MCACOD definition type 1MMMCCCC; see Chapter 17, “Machine-Check Architecture.”

Bit definitions are the same as those found in Table 18-39 “M2M MC Error Codes for IA32_MCi_STATUS (i= 12, 16, 
20, 24).”

18.13 INCREMENTAL DECODING INFORMATION: 4TH GENERATION INTEL® XEON® 
SCALABLE PROCESSOR FAMILY, MACHINE ERROR CODES FOR MACHINE 
CHECK

In the 4th generation Intel® Xeon® Scalable Processor Family with CPUID DisplayFamily_DisplaySignature of 
06_8FH, incremental error codes for internal machine check errors from the PCU controller are reported in the 
register bank IA32_MC4. Table 18-40 in Section 18.13.1 lists model-specific fields to interpret error codes appli-
cable to IA32_MC4_STATUS. 

18.13.1  Internal Machine Check Errors

Table 18-40.  Machine Check Error Codes for IA32_MC4_STATUS 
Type Bit No. Bit Function Bit Description

MCACOD1 15:0 Internal Errors The value of this field will be 0402H for the PCU and 0406H for internal 
firmware errors.

This applies for any logged error. 

Model Specific Errors 19:16 Reserved, except for the 
following

Model specific error code bits 19:16.

If MACOD = 40CH, MSCOD encoding should be interpreted as:

01H: MCE when CR4.MCE is clear.

02H: MCE when MCIP bit is set.

03H: MCE under WPS.

04H: Unrecoverable error during security flow execution.

05H: Software triple fault shutdown.

06H: VMX-exit-consistency-check failures.

07H: RSM-consistency-check failures.

08H: Invalid conditions on protected mode SMM entry.

09H: Unrecoverable error during security flow execution.

For all other MACOD values, MSCOD logs the type of hardware UC 
(PCU/VCU) error that has occurred. There are seven errors defined:

01H: Instruction address out of valid space.

02H: Double bit RAM error on Instruction Fetch.

03H: Invalid OpCode seen.

04H: Stack Underflow.

05H: Stack Overflow.

06H: Data address out of valid space.

07H: Double bit RAM error on Data Fetch.
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23:20 Reserved, except for the 
following

Model specific error code bits 23:20.

This logs the type of HW FSM error that has occurred. There are 3 errors 
defined:

04H: Clock/power IP response timeout.

05H: SMBus controller raised SMI.

09H: PM controller received invalid transaction.

31:24 Reserved, except for the 
following

0DH: MCA_LLC_BIST_ACTIVE_TIMEOUT

0EH: MCA_DMI_TRAINING_TIMEOUT

0FH: MCA_DMI_STRAP_SET_ARRIVAL_TIMEOUT

10H: MCA_DMI_CPU_RESET_ACK_TIMEOUT 

11H: MCA_MORE_THAN_ONE_LT_AGENT

14H: MCA_INCOMPATIBLE_PCH_TYPE 

1EH: MCA_BIOS_RST_CPL_INVALID_SEQ

1FH: MCA_BIOS_INVALID_PKG_STATE_CONFIG

2DH: MCA_PCU_PMAX_CALIB_ERROR

2EH: MCA_TSC100_SYNC_TIMEOUT

3AH: MCA_GPSB_TIMEOUT

3BH: MCA_PMSB_TIMEOUT

3EH: MCA_IOSFSB_PMREQ_CMP_TIMEOUT

40H: MCA_SVID_VCCIN_VR_ICC_MAX_FAILURE

42H: MCA_SVID_VCCIN_VR_VOUT_FAILURE

43H: MCA_SVID_CPU_VR_CAPABILITY_ERROR

44H: MCA_SVID_CRITICAL_VR_FAILED

45H: MCA_SVID_SA_ITD_ERROR

46H: MCA_SVID_READ_REG_FAILED

47H: MCA_SVID_WRITE_REG_FAILED

4AH: MCA_SVID_PKGC_REQUEST_FAILED

4BH: MCA_SVID_IMON_REQUEST_FAILED

4CH: MCA_SVID_ALERT_REQUEST_FAILED

4DH: MCA_SVID_MCP_VR_RAMP_ERROR

56H: MCA_FIVR_PD_HARDERR

58H: MCA_WATCHDOG_TIMEOUT_PKGC_SECONDARY 

59H: MCA_WATCHDOG_TIMEOUT_PKGC_MAIN

5AH: MCA_WATCHDOG_TIMEOUT_PKGS_MAIN

5BH: MCA_WATCHDOG_TIMEOUT_MSG_CH_FSM 

5CH: MCA_WATCHDOG_TIMEOUT_BULK_CR_FSM

5DH: MCA_WATCHDOG_TIMEOUT_IOSFSB_FSM

60H: MCA_PKGS_SAFE_WP_TIMEOUT

61H: MCA_PKGS_CPD_UNCPD_TIMEOUT

62H: MCA_PKGS_INVALID_REQ_PCH

63H: MCA_PKGS_INVALID_REQ_INTERNAL

64H: MCA_PKGS_INVALID_RSP_INTERNAL

65H-7AH: MCA_PKGS_RESET_PREP_TIMEOUT

7BH: MCA_PKGS_SMBUS_VPP_PAUSE_TIMEOUT

Table 18-40.  Machine Check Error Codes for IA32_MC4_STATUS  (Contd.)
Type Bit No. Bit Function Bit Description
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18.13.2  Interconnect Machine Check Errors
MC error codes associated with the link interconnect agents are reported in the IA32_MC5_STATUS MSR. The 
supported error codes follow the architectural MCACOD definition type 1PPTRRRRIILL; see Chapter 17, 
“Machine-Check Architecture.”

Table 18-41 lists model-specific fields to interpret error codes applicable to IA32_MC5_STATUS.

7CH: MCA_PKGS_SMBUS_MCP_PAUSE_TIMEOUT

7DH: MCA_PKGS_SMBUS_SPD_PAUSE_TIMEOUT

80H: MCA_PKGC_DISP_BUSY_TIMEOUT

81H: MCA_PKGC_INVALID_RSP_PCH

83H: MCA_PKGC_WATCHDOG_HANG_CBZ_DOWN

84H: MCA_PKGC_WATCHDOG_HANG_CBZ_UP

87H: MCA_PKGC_WATCHDOG_HANG_C2_BLKMASTER

88H: MCA_PKGC_WATCHDOG_HANG_C2_PSLIMIT

89H: MCA_PKGC_WATCHDOG_HANG_SETDISP

8BH: MCA_PKGC_ALLOW_L1_ERROR

90H: MCA_RECOVERABLE_DIE_THERMAL_TOO_HOT

A0H: MCA_ADR_SIGNAL_TIMEOUT

A1H: MCA_BCLK_FREQ_OC_ABOVE_THRESHOLD

B0H: MCA_DISPATCHER_RUN_BUSY_TIMEOUT

C0H: MCA_DISPATCHER_RUN_BUSY_TIMEOUT

37:32 ENH_MCA_AVAIL0 Available when Enhanced MCA is in use.

52:38 CORR_ERR_COUNT Correctable error count.

54:53 CORRERRORSTATUSIND These bits are used to indicate when the number of corrected errors has 
exceeded the safe threshold to the point where an uncorrected error has 
become more likely to happen.

Table 3 shows the encoding of these bits.

56:55 ENH_MCA_AVAIL1 Available when Enhanced MCA is in use.

Status Register 
Validity Indicators1 

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

Table 18-40.  Machine Check Error Codes for IA32_MC4_STATUS  (Contd.)
Type Bit No. Bit Function Bit Description
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Table 18-41.  Interconnect MC Error Codes for IA32_MC5_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

15:0 MCACOD Bus error format: 1PPTRRRRIILL

The two supported compound error codes:

• 0x0C0F: Unsupported/Undefined Packet.
• 0x0E0F: For all other corrected and uncorrected errors.

Model Specific Errors 21:16 MSCOD The encoding of Uncorrectable (UC) errors are:

00H: UC Phy Initialization Failure.

01H: UC Phy Detected Drift Buffer Alarm.

02H: UC Phy Detected Latency Buffer Rollover.

10H: UC LL Rx detected CRC error: unsuccessful LLR (entered Abort state).

11H: UC LL Rx Unsupported/Undefined packet.

12H: UC LL or Phy Control Error.

13H: UC LL Rx Parameter Exception.

15H: UC LL Rx SGX MAC Error.

1FH: UC LL Detected Control Error.

The encoding of correctable (COR) errors are:

20H: COR Phy Initialization Abort.

21H: COR Phy Inband Reset.

22H: COR Phy Lane failure, recovery in x8 width.

23H: COR Phy L0c error corrected without Phy reset.

24H: COR Phy L0c error triggering Phy reset.

25H: COR Phy L0p exit error corrected with reset.

30H: COR LL Rx detected CRC error: successful LLR without Phy Re-init.

31H: COR LL Rx detected CRC error: successful LLR with Phy Re-init.

All other values are reserved.

31:22 MSCOD_SPARE The definition below applies to MSCOD 12H (UC LL or Phy Control Errors).

[Bit 22]: Phy Control Error.

[Bit 23]: Unexpected Retry.Ack flit.

[Bit 24]: Unexpected Retry.Req flit.

[Bit 25]: RF parity error.

[Bit 26]: Routeback Table error.

[Bit 27]: Unexpected Tx Protocol flit (EOP, Header, or Data).

[Bit 28]: Rx Header-or-Credit BGF credit overflow/underflow.

[Bit 29]: Link Layer Reset still in progress when Phy enters L0 (Phy 
training should not be enabled until after LL reset is complete as indicated 
by KTILCL.LinkLayerReset going back to 0).

[Bit 30]: Link Layer reset initiated while protocol traffic not idle.

[Bit 31]: Link Layer Tx Parity Error.

37:32 OTHER_INFO Other Info.

56:38 Corrected Error Cnt See Chapter 17, “Machine-Check Architecture.”

Status Register 
Validity Indicators1 

63:57
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18.13.3  Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers for the 4th generation Intel® Xeon® Scalable 
Processor Family based on Sapphire Rapids microarchitecture are reported in the IA32_MC13_STATUS−
IA32_MC20_STATUS MSRs.

The supported error codes follow the architectural MCACOD definition type 1MMMCCCC; see Chapter 17, 
“Machine-Check Architecture.”

Table 18-42.  Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13—20)
Type Bit No. Bit Function Bit Description

MCA Error Codes1 15:0 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC

Model Specific Errors 31:16 Reserved, except for the 
following

0001H: Address parity error.

0002H: Data parity error.

0003H: Data ECC error.

0004H: Data byte enable parity error.

0007H: Transaction ID parity error.

0008H: Corrected patrol scrub error.

0010H: Uncorrected patrol scrub error.

0020H: Corrected spare error.

0040H: Uncorrected spare error.

0080H: Corrected read error.

00A0H: Uncorrected read error.

00C0H: Uncorrected metadata.

0100H: WDB read parity error.

0108H: DDR link failure.

0200H: DDR5 command / address parity error.

0400H: RPQ0 parity (primary) error.

0800H: DDR-T bad request.

0801H: DDR Data response to an invalid entry.

0802H: DDR data response to an entry not expecting data.

0803H: DDR5 completion to an invalid entry.

0804H: DDR-T completion to an invalid entry.

0805H: DDR data/completion FIFO overflow.

0806H: DDR-T ERID correctable parity error.

0807H: DDR-T ERID uncorrectable error.

0808H: DDR-T interrupt received while outstanding interrupt was not 
ACKed.

0809H: ERID FIFO overflow.

080AH: DDR-T error on FNV write credits.

080BH: DDR-T error on FNV read credits.

080CH: DDR-T scheduler error.

080DH: DDR-T FNV error event.

080EH: DDR-T FNV thermal event.

080FH: CMI packet while idle.

0810H: DDR_T_RPQ_REQ_PARITY_ERR.

0811H: DDR_T_WPQ_REQ_PARITY_ERR.

0812H: 2LM_NMFILLWR_CAM_ERR.
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Additional information is reported in the IA32_MC13_MISC−IA32_MC20_MISC MSRs. Table 18-43 lists the infor-
mation reported in IA32_MCi_MISC, where i = 13−20.

0813H: CMI_CREDIT_OVERSUB_ERR.

0814H: CMI_CREDIT_TOTAL_ERR.

0815H: CMI_CREDIT_RSVD_POOL_ERR.

0816H: DDR_T_RD_ERROR.

0817H: WDB_FIFO_ERR.

0818H: CMI_REQ_FIFO_OVERFLOW.

0819H: CMI_REQ_FIFO_UNDERFLOW.

081AH: CMI_RSP_FIFO_OVERFLOW.

081BH: CMI_RSP_FIFO_UNDERFLOW.

081CH: CMI_MISC_MC_CRDT_ERRORS.

081DH: CMI_MISC_MC_ARB_ERRORS.

081EH: DDR_T_WR_CMPL_FIFO_OVERFLOW.

081FH: DDR_T_WR_CMPL_FIFO_UNDERFLOW.

0820H: CMI_RD_CPL_FIFO_OVERFLOW.

0821H: CMI_RD_CPL_FIFO_UNDERFLOW.

0822H: TME_KEY_PAR_ERR.

0823H: TME_CMI_MISC_ERR.

0824H: TME_CMI_OVFL_ERR.

0825H: TME_CMI_UFL_ERR.

0826H: TME_TEM_SECURE_ERR.

0827H: TME_UFILL_PAR_ERR.

0829H: INTERNAL_ERR.

082AH: TME_INTEGRITY_ERR.

082BH: TME_TDX_ERR

082CH: TME_UFILL_TEM_SECURE_ERR.

082DH: TME_KEY_POISON_ERR.

082EH: TME_SECURITY_ENGINE_ERR.

1008H: CORR_PATSCRUB_MIRR2ND_ERR.

1010H: UC_PATSCRUB_MIRR2ND_ERR.

1020H: COR_SPARE_MIRR2ND_ERR.

1040H: UC_SPARE_MIRR2ND_ERR.
1080H: HA_RD_MIRR2ND_ERR.
10A0H: HA_UNCORR_RD_MIRR2ND_ERR.

37:32 Other Info Other Info.

56:38 See Chapter 17, “Machine-Check Architecture.”

Status Register 
Validity Indicators1 

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

Table 18-42.  Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13—20)
Type Bit No. Bit Function Bit Description
18-42 Vol. 3B



INTERPRETING MACHINE CHECK ERROR CODES
18.13.4  M2M Machine Check Errors
MC error codes associated with M2M for the 4th generation Intel Xeon Scalable Processor Family with a CPUID 
DisplayFamily_DisplaySignature of 06_8FH are reported in the IA32_MC12_STATUS MSR. 

The supported error codes follow the architectural MCACOD definition type 1MMMCCCC; see Chapter 17, 
“Machine-Check Architecture.”

Table 18-43.  Additional Information Reported in IA32_MCi_MISC (i= 13—20)
Bit No. Bit Function Bit Description

5:0 LSB See Figure 17-8.

8:6 Address Mode See Table 17-3.

18:9 Column Column address for the last retry. To get the real column address from this field, shift the 
value left by 2.

36:19 Row Component of sub-DIMM address.

42:37 Bank ID Component of sub-DIMM address.

Bit 42: Reserved.

Bit 41: Bank group 2.

Bit 40: Bank address 1.

Bit 39: Bank address 0.

Bit 38: Bank group 1.

Bit 37: Bank group 0.

48:43 Failed Device Failing device for correctable error (not valid for uncorrectable or transient errors).

50:49 Reserved Reserved

55:51 Failed Device Number In HBM mode, holds the failed device number for upper 32 bytes.

55:52 CBit In DDR mode, bits 54-52: sub_rank[2:0]; bit 55: reserved.

58:56 Chip Select Chip Select

62:59 ECC Mode 0000b: SDDC 2LM.

0001b: SDDC 1LM.

0010b: SDDC + 1 2LM.

0011b: SDDC + 1 1LM.

0100b: ADDDC 2LM.

0101b: ADDDC 1LM.

0110b: ADDDC + 1 2LM.

0111b: ADDDC + 1 1LM.

1000b: Read from DDRT.

1011b: Not a valid ECC mode.

For HBM mode:

0001b: 64B read.

1001b: 32B read.

Other values: Reserved.

63 Transient Indicates if the error was a transient error. A transient error is only indicated for demand 
reads, underfill reads, and patrol. If there was a WDBParity Error, this field indicates the WDB 
ID bit 6.
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18.13.5  High Bandwidth Memory Machine Check Errors
MC error codes associated with high bandwidth memory for the 4th generation Intel Xeon Scalable Processor 
Family are reported in the IA32_MC29_STATUS−IA32_MC31_STATUS MSRs.

18.14 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 0FH, 
MACHINE ERROR CODES FOR MACHINE CHECK

Table 18-45 provides information for interpreting additional family 0FH model-specific fields for external bus errors. 
These errors are reported in the IA32_MCi_STATUS MSRs. They are reported architecturally as compound errors 
with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter 17 for information on the 
interpretation of compound error codes.

Table 18-44.  M2M MC Error Codes for IA32_MC12_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

15:0 MCACOD Compound error format: 0000 0000 1MMM CCCC

Model Specific Errors 23:16 MscodDataRdErr 00H: No error (default).

01H: Read ECC error (MemSpecRd; MemRd; MemRdData; MemRdXto*; 
MemInv; MemInvXto*; MemInvItoX).

02H: Bucket1 error.

03H: RdTrkr Parity error.

05H: Prefetch channel mismatch.

07H: Read completion parity error.

08H: Response parity error.

09H: Timeout error.

0AH: CMI reserved credit pool error.

0BH: CMI total credit count error.

0CH: CMI credit oversubscription error.

25:24 MscodDDRType 00: Not logged, whether error on DDR4 or DDRT.

01: HBM errors.

31:26 Reserved Reserved

37:32 Other Info Other Info.

56:38 See Chapter 17, “Machine-Check Architecture.”

Status Register 
Validity Indicators1 
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Table 18-10 provides information on interpreting additional family 0FH model specific fields for cache hierarchy 
errors. These errors are reported in one of the IA32_MCi_STATUS MSRs. These errors are reported, architecturally, 
as compound errors with a general form of 0000 0001 RRRR TTLL in the MCA error code field. See Chapter 17 for 
how to interpret the compound error code. 

18.14.1  Model-Specific Machine Check Error Codes for the Intel® Xeon® Processor MP 7100 
Series

The Intel Xeon processor MP 7100 series has five register banks which contain information related to Machine 
Check Errors. MCi_STATUS[63:0] refers to all five register banks. MC0_STATUS[63:0] through MC3_STATUS[63:0] 
is the same as previous generations of Intel Xeon processors within Family 0FH. MC4_STATUS[63:0] is the main 
error logging for the processor’s L3 and front side bus errors. It supports the L3 Errors, Bus and Interconnect Errors 
Compound Error Codes in the MCA Error Code Field.

Table 18-45.  Incremental Decoding Information: Processor Family 0FH, Machine Error Codes for Machine Check 
Type Bit No. Bit Function Bit Description

MCA Error 
Codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.

15:0

Model-Specific 
Error Codes

16 FSB Address Parity Address parity error detected:

1: Address parity error detected.

0: No address parity error.

17 Response Hard Fail Hardware failure detected on response.

18 Response Parity Parity error detected on response.

19 PIC and FSB Data Parity Data Parity detected on either PIC or FSB access.

20 Processor Signature = 
00000F04H: 

Invalid PIC Request

Processor Signature = 00000F04H:

Indicates error due to an invalid PIC request access was made to PIC space 
with WB memory):

1: Invalid PIC request error.

0: No Invalid PIC request error.

All other processors:

Reserved

Reserved

21 Pad State Machine The state machine that tracks P and N data-strobe relative timing has 
become unsynchronized or a glitch has been detected.

22 Pad Strobe Glitch Data strobe glitch.

23 Pad Address Glitch Address strobe glitch.

Other 
Information

56:24 Reserved Reserved

Status 

Register 
Validity 
Indicators1 

63:57
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18.14.1.1  Processor Machine Check Status Register MCA Error Code Definition

The Intel Xeon processor MP 7100 series uses compound MCA Error Codes for logging its CBC internal machine 
check errors, L3 Errors, and Bus/Interconnect Errors. It defines additional Machine Check error types 
(IA32_MC4_STATUS[15:0]) beyond those defined in Chapter 17. Table 18-47 lists these model-specific MCA error 
codes. Error code details are specified in MC4_STATUS [31:16]; see Section 18.14.3, the “Model Specific Error 
Code” field. The information in the “Other_Info” field (MC4_STATUS[56:32]) is common to the three processor 
error types and contains a correctable event count and specifies the MC4_MISC register format.

Table 18-46.  MCi_STATUS Register Bit Definition 
Bit Field Name Bits Description

MCA_Error_Code 15:0 This field specifies the machine check architecture defined error code for the machine check error 
condition detected. The machine check architecture defined error codes are guaranteed to be the same 
for all Intel Architecture processors that implement the machine check architecture. See tables below. 

Model_Specific_E
rror_Code

31:16 This field specifies the model specific error code that uniquely identifies the machine check error 
condition detected. The model specific error codes may differ among Intel Architecture processors for 
the same Machine Check Error condition. See tables below.

Other_Info 56:32 The functions of the bits in this field are implementation specific and are not part of the machine check 
architecture. Software that is intended to be portable among Intel Architecture processors should not 
rely on the values in this field.

PCC 57 The Processor Context Corrupt flag indicates that the state of the processor might have been corrupted 
by the error condition detected and that reliable restarting of the processor may not be possible. When 
clear, this flag indicates that the error did not affect the processor's state. This bit will always be set for 
MC errors, which are not corrected.

ADDRV 58 The MC_ADDR register valid flag indicates that the MC_ADDR register contains the address where the 
error occurred. When clear, this flag indicates that the MC_ADDR register does not contain the address 
where the error occurred. The MC_ADDR register should not be read if the ADDRV bit is clear.

MISCV 59 The MC_MISC register valid flag indicates that the MC_MISC register contains additional 
information regarding the error. When clear, this flag indicates that the MC_MISC register does not 
contain additional information regarding the error. MC_MISC should not be read if the MISCV bit is not 
set.  

EN 60 The error enabled flag indicates that reporting of the machine check exception for this error was 
enabled by the associated flag bit of the MC_CTL register. Note that correctable errors do not have 
associated enable bits in the MC_CTL register so the EN bit should be clear when a correctable error is 
logged.

UC 61 The error uncorrected flag indicates that the processor did not correct the error condition. When clear, 
this flag indicates that the processor was able to correct the event condition.

OVER 62 The machine check overflow flag indicates that a machine check error occurred while the results of a 
previous error were still in the register bank (i.e., the VAL bit was already set in the 
MC_STATUS register). The processor sets the OVER flag and software is responsible for clearing it.  
Enabled errors are written over disabled errors, and uncorrected errors are written over corrected 
events. Uncorrected errors are not written over previous valid uncorrected errors. 

VAL 63 The MC_STATUS register valid flag indicates that the information within the MC_STATUS register is valid. 
When this flag is set, the processor follows the rules given for the OVER flag in the MC_STATUS register 
when overwriting previously valid entries. The processor sets the VAL flag and software is responsible 
for clearing it.
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The bold faced binary encodings are the only encodings used by the processor for MC4_STATUS[15:0].

18.14.2  Other_Info Field (All MCA Error Types)

The MC4_STATUS[56:32] field is common to the processor's three MCA error types (A, B, and C).

Table 18-47.  Incremental MCA Error Code for Intel® Xeon® Processor MP 7100 
Processor MCA_Error_Code (MC4_STATUS[15:0])

Type Error Code Binary Encoding Meaning

C Internal Error 0000 0100 0000 0000 Internal Error Type Code.

A L3 Tag Error 0000 0001 0000 1011 L3 Tag Error Type Code.

B Bus and 
Interconnect Error

0000 100x 0000 1111 Not used, but this encoding is reserved for compatibility with other MCA 
implementations.

0000 101x 0000 1111 Not used, but this encoding is reserved for compatibility with other MCA 
implementations.

0000 110x 0000 1111 Not used, but this encoding is reserved for compatibility with other MCA 
implementations.

0000 1110 0000 1111 Bus and Interconnection Error Type Code.

0000 1111 0000 1111 Not used, but this encoding is reserved for compatibility with other MCA 
implementations.

Table 18-48.  Other Information Field Bit Definition 
Bit Field Name Bits Description

39:32 8-bit Correctable 
Event Count

This field holds a count of the number of correctable events since cold reset. This is a saturating 
counter; the counter begins at 1 (with the first error) and saturates at a count of 255.

41:40 MC4_MISC 
Format Type

The value in this field specifies the format of information in the MC4_MISC register. Currently, 
only two values are defined. Valid only when MISCV is asserted.

43:42 Reserved Reserved

51:44 ECC Syndrome ECC syndrome value for a correctable ECC event when the “Valid ECC syndrome” bit is asserted.

52 Valid ECC 
Syndrome

Set when a correctable ECC event supplies the ECC syndrome.

54:53 Threshold-Based 
Error Status

00: No tracking. No hardware status tracking is provided for the structure reporting this event.

01: Green. Status tracking is provided for the structure posting the event; the current status is 
green (below threshold).

10: Yellow. Status tracking is provided for the structure posting the event; the current status is 
yellow (above threshold).

11: Reserved for future use.

Valid only if the Valid bit (bit 63) is set.

Undefined if the UC bit (bit 61) is set.

56:55 Reserved Reserved
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18.14.3  Processor Model Specific Error Code Field

18.14.3.1  MCA Error Type A: L3 Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16).

18.14.3.2  Processor Model Specific Error Code Field Type B: Bus and Interconnect Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16).

Table 18-49.  Type A: L3 Error Codes
Bit Num Sub-Field 

Name
Description Legal Value(s)

18:16 L3 Error 
Code

Describes the L3 
error 
encountered

000: No error.

001: More than one way reporting a correctable event.

010: More than one way reporting an uncorrectable error.

011: More than one way reporting a tag hit.

100: No error.

101: One way reporting a correctable event.

110: One way reporting an uncorrectable error.

111: One or more ways reporting a correctable event while one or more ways are 
reporting an uncorrectable error.

20:19 --- Reserved 00 

31:21 --- Fixed pattern 0010_0000_000

Table 18-50.  Type B: Bus and Interconnect Error Codes
Bit Num Sub-Field Name Description

16 FSB Request Parity Parity error detected during FSB request phase.

17 Core0 Addr Parity Parity error detected on Core 0 request’s address field.

18 Core1 Addr Parity Parity error detected on Core 1 request’s address field.

19 Reserved Reserved

20 FSB Response Parity Parity error on FSB response field detected.

21 FSB Data Parity FSB data parity error on inbound data detected.

22 Core0 Data Parity Data parity error on data received from Core 0 detected.

23 Core1 Data Parity Data parity error on data received from Core 1 detected.

24 IDS Parity Detected an Enhanced Defer parity error (phase A or phase B).

25 FSB Inbound Data ECC Data ECC event to error on inbound data (correctable or uncorrectable).

26 FSB Data Glitch Pad logic detected a data strobe ‘glitch’ (or sequencing error).

27 FSB Address Glitch Pad logic detected a request strobe ‘glitch’ (or sequencing error).

31:28 Reserved Reserved
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Exactly one of the bits defined in the preceding table will be set for a Bus and Interconnect Error. The Data ECC can 
be correctable or uncorrectable; the MC4_STATUS.UC bit distinguishes between correctable and uncorrectable 
cases with the Other_Info field possibly providing the ECC Syndrome for correctable errors. All other errors for this 
processor MCA Error Type are uncorrectable.

18.14.3.3  Processor Model Specific Error Code Field Type C: Cache Bus Controller Error

All errors, except for the correctable ECC types, in this table are uncorrectable. The correctable ECC events may 
supply the ECC syndrome in the Other_Info field of the MC4_STATUS MSR.

Table 18-51.  Type C: Cache Bus Controller Error Codes 
MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001 0001H Inclusion Error from Core 0.

0000_0000_0000_0010 0002H Inclusion Error from Core 1.

0000_0000_0000_0011 0003H Write Exclusive Error from Core 0.

0000_0000_0000_0100 0004H Write Exclusive Error from Core 1.

0000_0000_0000_0101 0005H Inclusion Error from FSB.

0000_0000_0000_0110 0006H SNP Stall Error from FSB.

0000_0000_0000_0111 0007H Write Stall Error from FSB.

0000_0000_0000_1000 0008H FSB Arb Timeout Error.

0000_0000_0000_1001 0009H CBC OOD Queue Underflow/overflow.

0000_0001_0000_0000 0100H Enhanced Intel SpeedStep Technology TM1-TM2 Error.

0000_0010_0000_0000 0200H Internal Timeout Error.

0000_0011_0000_0000 0300H Internal Timeout Error.

0000_0100_0000_0000 0400H Intel® Cache Safe Technology Queue Full Error or Disabled-ways-in-a-set overflow.

1100_0000_0000_0001 C001H Correctable ECC event on outgoing FSB data.

1100_0000_0000_0010 C002H Correctable ECC event on outgoing Core 0 data.

1100_0000_0000_0100 C004H Correctable ECC event on outgoing Core 1 data.

1110_0000_0000_0001 E001H Uncorrectable ECC error on outgoing FSB data.

1110_0000_0000_0010 E002H Uncorrectable ECC error on outgoing Core 0 data.

1110_0000_0000_0100 E004H Uncorrectable ECC error on outgoing Core 1 data.

 — All other encodings — Reserved
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Table 18-52.  Decoding Family 0FH Machine Check Codes for Cache Hierarchy Errors
Type Bit No. Bit Function Bit Description

MCA error 
codes1

15:0

Model 
Specific Error 
Codes

17:16 Tag Error Code Contains the tag error code for this machine check error:

00: No error detected.

01: Parity error on tag miss with a clean line.

10: Parity error/multiple tag match on tag hit.

11: Parity error/multiple tag match on tag miss.

19:18 Data Error Code Contains the data error code for this machine check error:

00: No error detected.

01: Single bit error.

10: Double bit error on a clean line.

11: Double bit error on a modified line.

20 L3 Error This bit is set if the machine check error originated in the L3 (it can be ignored for 
invalid PIC request errors):

1: L3 error.

0: L2 error.

21 Invalid PIC Request Indicates error due to invalid PIC request access was made to PIC space with WB 
memory:

1: Invalid PIC request error.

0: No invalid PIC request error.

31:22 Reserved Reserved

Other 
Information

39:32 8-bit Error Count Holds a count of the number of errors since reset. The counter begins at 0 for the first 
error and saturates at a count of 255.

56:40 Reserved Reserved

Status 
Register 
Validity 
Indicators1

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 17, “Machine-Check Architecture,” for more information.
18-50 Vol. 3B



CHAPTER 19
DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR

TECHNOLOGY (INTEL® RDT) FEATURES

NOTE
This chapter makes numerous references to last-branch recording (LBR) facilities. Unless noted 
otherwise, all such references in this chapter are to an earlier non-architectural form of the feature. 
Chapter 20 defines an architectural form of last-branch recording that is supported on newer 
processors.

Intel 64 and IA-32 architectures provide debug facilities for use in debugging code and monitoring performance. 
These facilities are valuable for debugging application software, system software, and multitasking operating 
systems. Debug support is accessed using debug registers (DR0 through DR7) and model-specific registers 
(MSRs): 
• Debug registers hold the addresses of memory and I/O locations called breakpoints. Breakpoints are user-

selected locations in a program, a data-storage area in memory, or specific I/O ports. They are set where a 
programmer or system designer wishes to halt execution of a program and examine the state of the processor 
by invoking debugger software. A debug exception (#DB) is generated when a memory or I/O access is made 
to a breakpoint address. 

• MSRs monitor branches, interrupts, and exceptions; they record addresses of the last branch, interrupt or 
exception taken and the last branch taken before an interrupt or exception.

• Time stamp counter is described in Section 19.17, “Time-Stamp Counter.”
• Features that allow monitoring of shared platform resources such as the L3 cache are described in Section 

19.18, “Intel® Resource Director Technology (Intel® RDT) Monitoring Features.”
• Features that enable control over shared platform resources are described in Section 19.19, “Intel® Resource 

Director Technology (Intel® RDT) Allocation Features.”
• Features that enable control over shared platform resources for non-CPU agents are described in Section 

19.20, “Intel® Resource Director Technology (Intel® RDT) for Non-CPU Agents.”1

19.1 OVERVIEW OF DEBUG SUPPORT FACILITIES
The following processor facilities support debugging and performance monitoring:
• Debug exception (#DB) — Transfers program control to a debug procedure or task when a debug event 

occurs.
• Breakpoint exception (#BP) — See breakpoint instruction (INT3) below.
• Breakpoint-address registers (DR0 through DR3) — Specifies the addresses of up to 4 breakpoints.
• Debug status register (DR6) — Reports the conditions that were in effect when a debug or breakpoint 

exception was generated.
• Debug control register (DR7) — Specifies the forms of memory or I/O access that cause breakpoints to be 

generated.
• T (trap) flag, TSS — Generates a debug exception (#DB) when an attempt is made to switch to a task with 

the T flag set in its TSS.
• RF (resume) flag, EFLAGS register — Suppresses multiple exceptions to the same instruction.
• TF (trap) flag, EFLAGS register — Generates a debug exception (#DB) after every execution of an 

instruction.

1. Additional information about Intel® RDT can be found in the document titled “Intel® Resource Director Technology Architecture Spec-
ification,” available here: https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html.
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• Breakpoint instruction (INT3) — Generates a breakpoint exception (#BP) that transfers program control to 
the debugger procedure or task. This instruction is an alternative way to set instruction breakpoints. It is 
especially useful when more than four breakpoints are desired, or when breakpoints are being placed in the 
source code.

• Last branch recording facilities — Store branch records in the last branch record (LBR) stack MSRs for the 
most recent taken branches, interrupts, and/or exceptions in MSRs. A branch record consist of a branch-from 
and a branch-to instruction address. Send branch records out on the system bus as branch trace messages 
(BTMs).

These facilities allow a debugger to be called as a separate task or as a procedure in the context of the current 
program or task. The following conditions can be used to invoke the debugger:
• Task switch to a specific task.
• Execution of the breakpoint instruction.
• Execution of any instruction.
• Execution of an instruction at a specified address.
• Read or write to a specified memory address/range.
• Write to a specified memory address/range.
• Input from a specified I/O address/range.
• Output to a specified I/O address/range.
• Attempt to change the contents of a debug register.

19.2 DEBUG REGISTERS
Eight debug registers (see Figure 19-1 for 32-bit operation and Figure 19-2 for 64-bit operation) control the debug 
operation of the processor. These registers can be written to and read using the move to/from debug register form 
of the MOV instruction. A debug register may be the source or destination operand for one of these instructions. 
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Debug registers are privileged resources; a MOV instruction that accesses these registers can only be executed in 
real-address mode, in SMM or in protected mode at a CPL of 0. An attempt to read or write the debug registers 
from any other privilege level generates a general-protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4 breakpoints, numbered 0 though 
3. For each breakpoint, the following information can be specified:
• The linear address where the breakpoint is to occur.
• The length of the breakpoint location: 1, 2, 4, or 8 bytes (refer to the notes in Section 19.2.4).
• The operation that must be performed at the address for a debug exception to be generated.
• Whether the breakpoint is enabled.
• Whether the breakpoint condition was present when the debug exception was generated.

The following paragraphs describe the functions of flags and fields in the debug registers.

Figure 19-1.  Debug Registers
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19.2.1 Debug Address Registers (DR0-DR3)
Each of the debug-address registers (DR0 through DR3) holds the 32-bit linear address of a breakpoint (see 
Figure 19-1). Breakpoint comparisons are made before physical address translation occurs. The contents of debug 
register DR7 further specifies breakpoint conditions. 

19.2.2 Debug Registers DR4 and DR5
Debug registers DR4 and DR5 are reserved when debug extensions are enabled (when the DE flag in control 
register CR4 is set) and attempts to reference the DR4 and DR5 registers cause invalid-opcode exceptions (#UD). 
When debug extensions are not enabled (when the DE flag is clear), these registers are aliased to debug registers 
DR6 and DR7.

19.2.3 Debug Status Register (DR6)
The debug status register (DR6) reports debug conditions that were sampled at the time the last debug exception 
was generated (see Figure 19-1). Updates to this register only occur when an exception is generated. The flags in 
this register show the following information:
• B0 through B3 (breakpoint condition detected) flags (bits 0 through 3) — Indicates (when set) that its 

associated breakpoint condition was met when a debug exception was generated. These flags are set if the 
condition described for each breakpoint by the LENn, and R/Wn flags in debug control register DR7 is true. They 
may or may not be set if the breakpoint is not enabled by the Ln or the Gn flags in register DR7. Therefore on 
a #DB, a debug handler should check only those B0-B3 bits which correspond to an enabled breakpoint.

• BLD (bus-lock detected) flag (bit 11) — Indicates (when clear) that the debug exception was triggered by 
the assertion of a bus lock when CPL > 0 and OS bus-lock detection was enabled (see Section 19.3.1.6). Other 
debug exceptions do not modify this bit. To avoid confusion in identifying debug exceptions, software debug-
exception handlers should set bit 11 to 1 before returning. (Software that never enables OS bus-lock detection 
need not do this as DR6[11] = 1 following reset.) This bit is always 1 if the processor does not support OS bus-
lock detection.

• BD (debug register access detected) flag (bit 13) — Indicates that the next instruction in the instruction 
stream accesses one of the debug registers (DR0 through DR7). This flag is enabled when the GD (general 
detect) flag in debug control register DR7 is set. See Section 19.2.4, “Debug Control Register (DR7),” for 
further explanation of the purpose of this flag. 

• BS (single step) flag (bit 14) — Indicates (when set) that the debug exception was triggered by the single-
step execution mode (enabled with the TF flag in the EFLAGS register). The single-step mode is the highest-
priority debug exception. When the BS flag is set, any of the other debug status bits also may be set.

• BT (task switch) flag (bit 15) — Indicates (when set) that the debug exception resulted from a task switch 
where the T flag (debug trap flag) in the TSS of the target task was set. See Section 9.2.1, “Task-State 
Segment (TSS),” for the format of a TSS. There is no flag in debug control register DR7 to enable or disable this 
exception; the T flag of the TSS is the only enabling flag.

• RTM (restricted transactional memory) flag (bit 16) — Indicates (when clear) that a debug exception 
(#DB) or breakpoint exception (#BP) occurred inside an RTM region while advanced debugging of RTM trans-
actional regions was enabled (see Section 19.3.3). This bit is set for any other debug exception (including all 
those that occur when advanced debugging of RTM transactional regions is not enabled). This bit is always 1 if 
the processor does not support RTM.

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6 register are never cleared by the 
processor. To avoid confusion in identifying debug exceptions, debug handlers should clear the register (except 
bit 16, which they should set) before returning to the interrupted task.

19.2.4 Debug Control Register (DR7)
The debug control register (DR7) enables or disables breakpoints and sets breakpoint conditions (see Figure 19-1). 
The flags and fields in this register control the following things:
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• L0 through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6) — Enables (when set) the breakpoint 
condition for the associated breakpoint for the current task. When a breakpoint condition is detected and its 
associated Ln flag is set, a debug exception is generated. The processor automatically clears these flags on 
every task switch to avoid unwanted breakpoint conditions in the new task.

• G0 through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) — Enables (when set) the 
breakpoint condition for the associated breakpoint for all tasks. When a breakpoint condition is detected and its 
associated Gn flag is set, a debug exception is generated. The processor does not clear these flags on a task 
switch, allowing a breakpoint to be enabled for all tasks.

• LE and GE (local and global exact breakpoint enable) flags (bits 8, 9) — This feature is not supported in 
the P6 family processors, later IA-32 processors, and Intel 64 processors. When set, these flags cause the 
processor to detect the exact instruction that caused a data breakpoint condition. For backward and forward 
compatibility with other Intel processors, we recommend that the LE and GE flags be set to 1 if exact 
breakpoints are required.

• RTM (restricted transactional memory) flag (bit 11) — Enables (when set) advanced debugging of RTM 
transactional regions (see Section 19.3.3). This advanced debugging is enabled only if IA32_DEBUGCTL.RTM is 
also set.

• GD (general detect enable) flag (bit 13) — Enables (when set) debug-register protection, which causes a 
debug exception to be generated prior to any MOV instruction that accesses a debug register. When such a 
condition is detected, the BD flag in debug status register DR6 is set prior to generating the exception. This 
condition is provided to support in-circuit emulators. 
When the emulator needs to access the debug registers, emulator software can set the GD flag to prevent 
interference from the program currently executing on the processor.
The processor clears the GD flag upon entering to the debug exception handler, to allow the handler access to 
the debug registers.

• R/W0 through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, and 29) — Specifies the 
breakpoint condition for the corresponding breakpoint. The DE (debug extensions) flag in control register CR4 
determines how the bits in the R/Wn fields are interpreted. When the DE flag is set, the processor interprets 
bits as follows:

00 — Break on instruction execution only. 
01 — Break on data writes only.
10 — Break on I/O reads or writes.
11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for the Intel386™ and Intel486™ 
processors, which is as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Undefined.
11 — Break on data reads or writes but not instruction fetches.

• LEN0 through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and 31) — Specify the size of the 
memory location at the address specified in the corresponding breakpoint address register (DR0 through DR3). 
These fields are interpreted as follows:

00 — 1-byte length.
01 — 2-byte length.
10 — Undefined (or 8 byte length, see note below).
11 — 4-byte length.

If the corresponding RWn field in register DR7 is 00 (instruction execution), then the LENn field should also be 00. 
The effect of using other lengths is undefined. See Section 19.2.5, “Breakpoint Field Recognition,” below.
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NOTES
For Pentium® 4 and Intel® Xeon® processors with a CPUID signature corresponding to family 15 
(model 3, 4, and 6), break point conditions permit specifying 8-byte length on data read/write with 
an of encoding 10B in the LENn field. 
Encoding 10B is also supported in processors based on Intel Core microarchitecture or enhanced 
Intel Core microarchitecture, the respective CPUID signatures corresponding to family 6, model 15, 
and family 6, DisplayModel value 23 (see the CPUID instruction in Chapter 3, “Instruction Set 
Reference, A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A). The Encoding 10B is supported in processors based on Intel Atom® microarchitecture, with 
CPUID signature of family 6, DisplayModel value 1CH. The encoding 10B is undefined for other 
processors.

19.2.5 Breakpoint Field Recognition
Breakpoint address registers (debug registers DR0 through DR3) and the LENn fields for each breakpoint define a 
range of sequential byte addresses for a data or I/O breakpoint. The LENn fields permit specification of a 1-, 2-, 4- 
or 8-byte range, beginning at the linear address specified in the corresponding debug register (DRn). Two-byte 
ranges must be aligned on word boundaries; 4-byte ranges must be aligned on doubleword boundaries, 8-byte 
ranges must be aligned on quadword boundaries. I/O addresses are zero-extended (from 16 to 32 bits, for compar-
ison with the breakpoint address in the selected debug register). These requirements are enforced by the 
processor; it uses LENn field bits to mask the lower address bits in the debug registers. Unaligned data or I/O 
breakpoint addresses do not yield valid results.

A data breakpoint for reading or writing data is triggered if any of the bytes participating in an access is within the 
range defined by a breakpoint address register and its LENn field. Table 19-1 provides an example setup of debug 
registers and data accesses that would subsequently trap or not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two breakpoints, where each breakpoint is 
byte-aligned and the two breakpoints together cover the operand. The breakpoints generate exceptions only for 
the operand, not for neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the LENn field is set to 00). Instruction 
breakpoints for other operand sizes are undefined. The processor recognizes an instruction breakpoint address only 
when it points to the first byte of an instruction. If the instruction has prefixes, the breakpoint address must point 
to the first prefix.

Table 19-1.  Breakpoint Examples

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn

DR0
DR1
DR2
DR3

R/W0 = 11 (Read/Write)
R/W1 = 01 (Write)
R/W2 = 11 (Read/Write)
R/W3 = 01 (Write)

A0001H
A0002H
B0002H
C0000H

LEN0 = 00 (1 byte)
LEN1 = 00 (1 byte)
LEN2 = 01) (2 bytes)
LEN3 = 11 (4 bytes)

Data Accesses

Operation Address Access Length 
(In Bytes)

Data operations that trap
- Read or write
- Read or write
- Write
- Write
- Read or write
- Read or write
- Read or write
- Write
- Write
- Write

A0001H
A0001H
A0002H
A0002H
B0001H
B0002H
B0002H
C0000H
C0001H
C0003H

1
2
1
2
4
1
2
4
2
1
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19.2.6 Debug Registers and Intel® 64 Processors
For Intel 64 architecture processors, debug registers DR0–DR7 are 64 bits. In 16-bit or 32-bit modes (protected 
mode and compatibility mode), writes to a debug register fill the upper 32 bits with zeros. Reads from a debug 
register return the lower 32 bits. In 64-bit mode, MOV DRn instructions read or write all 64 bits. Operand-size 
prefixes are ignored. 

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved and must be written with zeros. Writing 1 to any of 
the upper 32 bits results in a #GP(0) exception (see Figure 19-2). All 64 bits of DR0–DR3 are writable by software. 
However, MOV DRn instructions do not check that addresses written to DR0–DR3 are in the linear-address limits of 
the processor implementation (address matching is supported only on valid addresses generated by the processor 
implementation). Breakpoint conditions for 8-byte memory read/writes are supported in all modes.

19.3 DEBUG EXCEPTIONS
The Intel 64 and IA-32 architectures dedicate two interrupt vectors to handling debug exceptions: vector 1 (debug 
exception, #DB) and vector 3 (breakpoint exception, #BP). The following sections describe how these exceptions 
are generated and typical exception handler operations.

19.3.1 Debug Exception (#DB)—Interrupt Vector 1
The debug-exception handler is usually a debugger program or part of a larger software system. The processor 
generates a debug exception for any of several conditions. The debugger checks flags in the DR6 and DR7 registers 
to determine which condition caused the exception and which other conditions might apply. Table 19-2 shows the 
states of these flags following the generation of each kind of breakpoint condition.

Instruction-breakpoint and general-detect condition (see Section 19.3.1.3, “General-Detect Exception Condition”) 
result in faults; other debug-exception conditions result in traps. The debug exception may report one or both at 
one time. The following sections describe each class of debug exception.

The INT1 instruction generates a debug exception as a trap. Hardware vendors may use the INT1 instruction for 
hardware debug. For that reason, Intel recommends software vendors instead use the INT3 instruction for soft-
ware breakpoints.

See also: Chapter 7, “Interrupt 1—Debug Exception (#DB),” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.

Data operations that do not trap
- Read or write
- Read
- Read or write
- Read or write
- Read
- Read or write

A0000H
A0002H
A0003H
B0000H
C0000H
C0004H

1
1
4
2
2
4

Table 19-1.  Breakpoint Examples (Contd.)

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn
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Figure 19-2.  DR6/DR7 Layout on Processors Supporting Intel® 64 Architecture
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19.3.1.1  Instruction-Breakpoint Exception Condition
The processor reports an instruction breakpoint when it attempts to execute an instruction at an address specified 
in a breakpoint-address register (DR0 through DR3) that has been set up to detect instruction execution (R/W flag 
is set to 0). Upon reporting the instruction breakpoint, the processor generates a fault-class, debug exception 
(#DB) before it executes the target instruction for the breakpoint. 

Instruction breakpoints are the highest priority debug exceptions. They are serviced before any other exceptions 
detected during the decoding or execution of an instruction. However, if an instruction breakpoint is placed on an 
instruction located immediately after a POP SS/MOV SS instruction, the breakpoint will be suppressed as if 
EFLAGS.RF were 1 (see the next paragraph and Section 7.8.3, “Masking Exceptions and Interrupts When 
Switching Stacks,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

Because the debug exception for an instruction breakpoint is generated before the instruction is executed, if the 
instruction breakpoint is not removed by the exception handler; the processor will detect the instruction breakpoint 
again when the instruction is restarted and generate another debug exception. To prevent looping on an instruction 
breakpoint, the Intel 64 and IA-32 architectures provide the RF flag (resume flag) in the EFLAGS register (see 
Section 2.3, “System Flags and Fields in the EFLAGS Register,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A). When the RF flag is set, the processor ignores instruction breakpoints.

All Intel 64 and IA-32 processors manage the RF flag as follows. The RF Flag is cleared at the start of the instruction 
after the check for instruction breakpoints, CS limit violations, and FP exceptions. Task Switches and IRETD/IRETQ 
instructions transfer the RF image from the TSS/stack to the EFLAGS register.

When calling an event handler, Intel 64 and IA-32 processors establish the value of the RF flag in the EFLAGS image 
pushed on the stack:
• For any fault-class exception except a debug exception generated in response to an instruction breakpoint, the 

value pushed for RF is 1.
• For any interrupt arriving after any iteration of a repeated string instruction but the last iteration, the value 

pushed for RF is 1.
• For any trap-class exception generated by any iteration of a repeated string instruction but the last iteration, 

the value pushed for RF is 1.
• For other cases, the value pushed for RF is the value that was in EFLAG.RF at the time the event handler was 

called. This includes:

— Debug exceptions generated in response to instruction breakpoints

— Hardware-generated interrupts arriving between instructions (including those arriving after the last 
iteration of a repeated string instruction)

Table 19-2.  Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags Tested DR7 Flags Tested Exception Class

Single-step trap BS = 1 Trap

Instruction breakpoint, at addresses defined by DRn and 
LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 0 Fault

Data write breakpoint, at addresses defined by DRn and 
LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 1 Trap

I/O read or write breakpoint, at addresses defined by DRn 
and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 2 Trap

Data read or write (but not instruction fetches), at 
addresses defined by DRn and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 3 Trap

General detect fault, resulting from an attempt to modify 
debug registers (usually in conjunction with in-circuit 
emulation)

BD = 1 None Fault

Task switch BT = 1 None Trap

INT1 instruction None None Trap
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— Trap-class exceptions generated after an instruction completes (including those generated after the last 
iteration of a repeated string instruction)

— Software-generated interrupts (RF is pushed as 0, since it was cleared at the start of the software interrupt)

As noted above, the processor does not set the RF flag prior to calling the debug exception handler for debug 
exceptions resulting from instruction breakpoints. The debug exception handler can prevent recurrence of the 
instruction breakpoint by setting the RF flag in the EFLAGS image on the stack. If the RF flag in the EFLAGS image 
is set when the processor returns from the exception handler, it is copied into the RF flag in the EFLAGS register by 
IRETD/IRETQ or a task switch that causes the return. The processor then ignores instruction breakpoints for the 
duration of the next instruction. (Note that the POPF, POPFD, and IRET instructions do not transfer the RF image 
into the EFLAGS register.) Setting the RF flag does not prevent other types of debug-exception conditions (such as, 
I/O or data breakpoints) from being detected, nor does it prevent non-debug exceptions from being generated.

For the Pentium processor, when an instruction breakpoint coincides with another fault-type exception (such as a 
page fault), the processor may generate one spurious debug exception after the second exception has been 
handled, even though the debug exception handler set the RF flag in the EFLAGS image. To prevent a spurious 
exception with Pentium processors, all fault-class exception handlers should set the RF flag in the EFLAGS image.

19.3.1.2  Data Memory and I/O Breakpoint Exception Conditions
Data memory and I/O breakpoints are reported when the processor attempts to access a memory or I/O address 
specified in a breakpoint-address register (DR0 through DR3) that has been set up to detect data or I/O accesses 
(R/W flag is set to 1, 2, or 3). The processor generates the exception after it executes the instruction that made the 
access, so these breakpoint condition causes a trap-class exception to be generated. 

Because data breakpoints are traps, an instruction that writes memory overwrites the original data before the 
debug exception generated by a data breakpoint is generated. If a debugger needs to save the contents of a write 
breakpoint location, it should save the original contents before setting the breakpoint. The handler can report the 
saved value after the breakpoint is triggered. The address in the debug registers can be used to locate the new 
value stored by the instruction that triggered the breakpoint.

If a data breakpoint is detected during an iteration of a string instruction executed with fast-string operation (see 
Section 7.3.9.3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1), delivery of the 
resulting debug exception may be delayed until completion of the corresponding group of iterations.

Intel486 and later processors ignore the GE and LE flags in DR7. In Intel386 processors, exact data breakpoint 
matching does not occur unless it is enabled by setting the LE and/or the GE flags. 

For repeated INS and OUTS instructions that generate an I/O-breakpoint debug exception, the processor generates 
the exception after the completion of the first iteration. Repeated INS and OUTS instructions generate a data-
breakpoint debug exception after the iteration in which the memory address breakpoint location is accessed.

If an execution of the MOV or POP instruction loads the SS register and encounters a data breakpoint, the resulting 
debug exception is delivered after completion of the next instruction (the one after the MOV or POP).

Any pending data or I/O breakpoints are lost upon delivery of an exception. For example, if a machine-check 
exception (#MC) occurs following an instruction that encounters a data breakpoint (but before the resulting debug 
exception is delivered), the data breakpoint is lost. If a MOV or POP instruction that loads the SS register encoun-
ters a data breakpoint, the data breakpoint is lost if the next instruction causes a fault.

Delivery of events due to INT n, INT3, or INTO does not cause a loss of data breakpoints. If a MOV or POP instruc-
tion that loads the SS register encounters a data breakpoint, and the next instruction is software interrupt (INT n, 
INT3, or INTO), a debug exception (#DB) resulting from a data breakpoint will be delivered after the transition to 
the software-interrupt handler. The #DB handler should account for the fact that the #DB may have been delivered 
after a invocation of a software-interrupt handler, and in particular that the CPL may have changed between recog-
nition of the data breakpoint and delivery of the #DB.

19.3.1.3  General-Detect Exception Condition
When the GD flag in DR7 is set, the general-detect debug exception occurs when a program attempts to access any 
of the debug registers (DR0 through DR7) at the same time they are being used by another application, such as an 
emulator or debugger. This protection feature guarantees full control over the debug registers when required. The 
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debug exception handler can detect this condition by checking the state of the BD flag in the DR6 register. The 
processor generates the exception before it executes the MOV instruction that accesses a debug register, which 
causes a fault-class exception to be generated. 

19.3.1.4  Single-Step Exception Condition
The processor generates a single-step debug exception if (while an instruction is being executed) it detects that the 
TF flag in the EFLAGS register is set. The exception is a trap-class exception, because the exception is generated 
after the instruction is executed. The processor will not generate this exception after the instruction that sets the 
TF flag. For example, if the POPF instruction is used to set the TF flag, a single-step trap does not occur until after 
the instruction that follows the POPF instruction.

The processor clears the TF flag before calling the exception handler. If the TF flag was set in a TSS at the time of 
a task switch, the exception occurs after the first instruction is executed in the new task.

The TF flag normally is not cleared by privilege changes inside a task. The INT n, INT3, and INTO instructions, 
however, do clear this flag. Therefore, software debuggers that single-step code must recognize and emulate INT n 
or INTO instructions rather than executing them directly. To maintain protection, the operating system should 
check the CPL after any single-step trap to see if single stepping should continue at the current privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single stepping stops. When both an 
external interrupt and a single-step interrupt occur together, the single-step interrupt is processed first. This oper-
ation clears the TF flag. After saving the return address or switching tasks, the external interrupt input is examined 
before the first instruction of the single-step handler executes. If the external interrupt is still pending, then it is 
serviced. The external interrupt handler does not run in single-step mode. To single step an interrupt handler, 
single step an INT n instruction that calls the interrupt handler.

If an occurrence of the MOV or POP instruction loads the SS register executes with EFLAGS.TF = 1, no single-step 
debug exception occurs following the MOV or POP instruction.

19.3.1.5  Task-Switch Exception Condition
The processor generates a debug exception after a task switch if the T flag of the new task's TSS is set. This excep-
tion is generated after program control has passed to the new task, and prior to the execution of the first instruc-
tion of that task. The exception handler can detect this condition by examining the BT flag of the DR6 register.

If entry 1 (#DB) in the IDT is a task gate, the T bit of the corresponding TSS should not be set. Failure to observe 
this rule will put the processor in a loop.

19.3.1.6  OS Bus-Lock Detection
OS bus-lock detection is a feature that causes the processor to generate a debug exception (called a bus-lock 
detection debug exception) if it detects that a bus lock has been asserted (see Section 10.1.2). Such an excep-
tion is a trap-class exception, because it is generated after execution of an instruction that asserts a bus lock. The 
exception thus does not prevent assertion of the bus lock. Delivery of a bus-lock detection debug exception clears 
DR6.BLD.

Software can enable OS bus-lock detection by setting IA32_DEBUGCTL.BLD[bit 2]. Bus-lock detection debug 
exceptions occur only if CPL > 0.

19.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3
The breakpoint exception (interrupt 3) is caused by execution of an INT3 instruction. See Chapter 7, 
“Interrupt 3—Breakpoint Exception (#BP).” Debuggers use breakpoint exceptions in the same way that they use 
the breakpoint registers; that is, as a mechanism for suspending program execution to examine registers and 
memory locations. With earlier IA-32 processors, breakpoint exceptions are used extensively for setting instruction 
breakpoints.

With the Intel386 and later IA-32 processors, it is more convenient to set breakpoints with the breakpoint-address 
registers (DR0 through DR3). However, the breakpoint exception still is useful for breakpointing debuggers, 
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because a breakpoint exception can call a separate exception handler. The breakpoint exception is also useful when 
it is necessary to set more breakpoints than there are debug registers or when breakpoints are being placed in the 
source code of a program under development.

19.3.3 Debug Exceptions, Breakpoint Exceptions, and Restricted Transactional Memory 
(RTM)

Chapter 16, “Programming with Intel® AVX10,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, describes Restricted Transactional Memory (RTM). This is an instruction-set interface that allows soft-
ware to identify transactional regions (or critical sections) using the XBEGIN and XEND instructions.

Execution of an RTM transactional region begins with an XBEGIN instruction. If execution of the region successfully 
reaches an XEND instruction, the processor ensures that all memory operations performed within the region 
appear to have occurred instantaneously when viewed from other logical processors. Execution of an RTM transac-
tion region does not succeed if the processor cannot commit the updates atomically. When this happens, the 
processor rolls back the execution, a process referred to as a transactional abort. In this case, the processor 
discards all updates performed in the region, restores architectural state to appear as if the execution had not 
occurred, and resumes execution at a fallback instruction address that was specified with the XBEGIN instruction.

If debug exception (#DB) or breakpoint exception (#BP) occurs within an RTM transaction region, a transactional 
abort occurs, the processor sets EAX[4], and no exception is delivered.

Software can enable advanced debugging of RTM transactional regions by setting DR7.RTM[bit 11] and 
IA32_DEBUGCTL.RTM[bit 15]. If these bits are both set, the transactional abort caused by a #DB or #BP within an 
RTM transaction region does not resume execution at the fallback instruction address specified with the XBEGIN 
instruction that begin the region. Instead, execution is resumed at that XBEGIN instruction, and a #DB is delivered. 
(A #DB is delivered even if the transactional abort was caused by a #BP.) Such a #DB will clear DR6.RTM[bit 16] 
(all other debug exceptions set DR6[16]).

19.4 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING OVERVIEW
P6 family processors introduced the ability to set breakpoints on taken branches, interrupts, and exceptions, and 
to single-step from one branch to the next. This capability has been modified and extended in the Pentium 4, Intel 
Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7 and Intel Atom® 
processors to allow logging of branch trace messages in a branch trace store (BTS) buffer in memory. 

See the following sections for processor specific implementation of last branch, interrupt, and exception recording:

— Section 19.5, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ 2 Duo and Intel Atom® 
Processors).”

— Section 19.6, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on 
Goldmont Microarchitecture.”

— Section 19.9, “Last Branch, Interrupt, and Exception Recording for Processors based on Nehalem Microar-
chitecture.”

— Section 19.10, “Last Branch, Interrupt, and Exception Recording for Processors based on Sandy Bridge 
Microarchitecture.”

— Section 19.11, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on 
Haswell Microarchitecture.”

— Section 19.12, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on 
Skylake Microarchitecture.”

— Section 19.14, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ Solo and Intel® Core™ 

Duo Processors).”

— Section 19.15, “Last Branch, Interrupt, and Exception Recording (Pentium M Processors).”

— Section 19.16, “Last Branch, Interrupt, and Exception Recording (P6 Family Processors).”
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The following subsections of Section 19.4 describe common features of profiling branches. These features are 
generally enabled using the IA32_DEBUGCTL MSR (older processor may have implemented a subset or model-
specific features, see definitions of MSR_DEBUGCTLA, MSR_DEBUGCTLB, MSR_DEBUGCTL).

19.4.1 IA32_DEBUGCTL MSR
The IA32_DEBUGCTL MSR provides bit field controls to enable debug trace interrupts, debug trace stores, trace 
messages enable, single stepping on branches, last branch record recording, and to control freezing of LBR stack 
or performance counters on a PMI request. IA32_DEBUGCTL MSR is located at register address 01D9H. 

See Figure 19-3 for the MSR layout and the bullets below for a description of the flags:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace of 

the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug exception 
being generated) in the last branch record (LBR) stack. For more information, see the Section 19.5.1, “LBR 
Stack” (Intel® Core™2 Duo and Intel Atom® processor family) and Section 19.9.1, “LBR Stack” (processors 
based on Nehalem microarchitecture).

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS 
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism 
allows single-stepping the processor on taken branches. See Section 19.4.3, “Single-Stepping on Branches,” 
for more information about the BTF flag.

• BLD (bus-lock detection) flag (bit 2) — If this bit is set, OS bus-lock detection is enabled when CPL > 0. 
See Section 19.3.1.6.

• TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the 
processor detects a taken branch, interrupt, or exception; it sends the branch record out on the system bus as 
a branch trace message (BTM). See Section 19.4.4, “Branch Trace Messages,” for more information about the 
TR flag.

• BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 19.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bit 8) — When set, the BTS facilities generate an interrupt when the 
BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 19.4.5, “Branch 
Trace Store (BTS),” for a description of this mechanism.

Figure 19-3.  IA32_DEBUGCTL MSR for Processors Based on Intel® Core™ Microarchitecture

RTM
FREEZE_WHILE_SMM
FREEZE_PERFMON_ON_PMI
FREEZE_LBRS_ON_PMI
BTS_OFF_USR — BTS off in user code
BTS_OFF_OS — BTS off in OS
BTINT — Branch trace interrupt
BTS — Branch trace store
TR — Trace messages enable
Reserved

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

0123456789101112141531

Reserved

BLD — Bus-lock detection

Reserved
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• BTS_OFF_OS (branch trace off in privileged code) flag (bit 9) — When set, BTS or BTM is skipped if CPL 
is 0. See Section 19.13.2.

• BTS_OFF_USR (branch trace off in user code) flag (bit 10) — When set, BTS or BTM is skipped if CPL is 
greater than 0. See Section 19.13.2.

• FREEZE_LBRS_ON_PMI flag (bit 11) — When set, the LBR stack is frozen on a hardware PMI request (e.g., 
when a counter overflows and is configured to trigger PMI). See Section 19.4.7 for details.

• FREEZE_PERFMON_ON_PMI flag (bit 12) — When set, the performance counters (IA32_PMCx and IA32_-
FIXED_CTRx) are frozen on a PMI request. See Section 19.4.7 for details. 

• FREEZE_WHILE_SMM (bit 14) — If this bit is set, upon the delivery of an SMI, the processor will clear all the 
enable bits of IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and disable LBR, BTF, 
TR, and BTS fields of IA32_DEBUGCTL before transferring control to the SMI handler. If Intel Thread Director 
support was enabled before transferring control to the SMI handler, then the processor will also reset the Intel 
Thread Director history (see Section 16.6.11 for more details about Intel Thread Director enable, reset, and 
history reset operations).
Subsequently, the enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of IA32_DEBUGCTL 
prior to SMI delivery will be restored, after the SMI handler issues RSM to complete its service. If Intel Thread 
Director support is enabled when RSM is executed, then the processor resets the Intel Thread Director history.
Note that system software must check if the processor supports the IA32_DEBUGCTL.FREEZE_WHILE_SMM 
control bit. IA32_DEBUGCTL.FREEZE_WHILE_SMM is supported if IA32_PERF_CAPABIL-
ITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 21.8 for details of detecting the presence of 
IA32_PERF_CAPABILITIES MSR.

• RTM (bit 15) — If this bit is set, advanced debugging of RTM transactional regions is enabled if DR7.RTM is 
also set. See Section 19.3.3.

19.4.2 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag (bit 0) in the IA32_DEBUGCTL MSR is set, the processor automatically begins recording branch 
records for taken branches, interrupts, and exceptions (except for debug exceptions) in the LBR stack MSRs.

When the processor generates a debug exception (#DB), it automatically clears the LBR flag before executing the 
exception handler. This action does not clear previously stored LBR stack MSRs.

A debugger can use the linear addresses in the LBR stack to re-set breakpoints in the breakpoint address registers 
(DR0 through DR3). This allows a backward trace from the manifestation of a particular bug toward its source.

On some processors, if the LBR flag is cleared and TR flag in the IA32_DEBUGCTL MSR remains set, the processor 
will continue to update LBR stack MSRs. This is because those processors use the entries in the LBR stack in the 
process of generating BTM/BTS records. A #DB does not automatically clear the TR flag.

19.4.3 Single-Stepping on Branches
When software sets both the BTF flag (bit 1) in the IA32_DEBUGCTL MSR and the TF flag in the EFLAGS register, 
the processor generates a single-step debug exception only after instructions that cause a branch.1 This mecha-
nism allows a debugger to single-step on control transfers caused by branches. This “branch single stepping” helps 
isolate a bug to a particular block of code before instruction single-stepping further narrows the search. The 
processor clears the BTF flag when it generates a debug exception. The debugger must set the BTF flag before 
resuming program execution to continue single-stepping on branches.

1. Executions of CALL, IRET, and JMP that cause task switches never cause single-step debug exceptions (regardless of the value of the 
BTF flag). A debugger desiring debug exceptions on switches to a task should set the T flag (debug trap flag) in the TSS of that task. 
See Section 9.2.1, “Task-State Segment (TSS).”
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19.4.4 Branch Trace Messages
Setting the TR flag (bit 6) in the IA32_DEBUGCTL MSR enables branch trace messages (BTMs). Thereafter, when 
the processor detects a branch, exception, or interrupt, it sends a branch record out on the system bus as a BTM. 
A debugging device that is monitoring the system bus can read these messages and synchronize operations with 
taken branch, interrupt, and exception events. 

When interrupts or exceptions occur in conjunction with a taken branch, additional BTMs are sent out on the bus, 
as described in Section 19.4.2, “Monitoring Branches, Exceptions, and Interrupts.”

For the P6 processor family, Pentium M processor family, and processors based on Intel Core microarchitecture, TR 
and LBR bits can not be set at the same time due to hardware limitation. The content of LBR stack is undefined 
when TR is set. 

For processors with Intel NetBurst microarchitecture, Intel Atom processors, and Intel Core and related Intel Xeon 
processors both starting with the Nehalem microarchitecture, the processor can collect branch records in the LBR 
stack and at the same time send/store BTMs when both the TR and LBR flags are set in the IA32_DEBUGCTL MSR 
(or the equivalent MSR_DEBUGCTLA, MSR_DEBUGCTLB).

The following exception applies:
• BTM may not be observable on Intel Atom processor families that do not provide an externally visible system 

bus (i.e., processors based on the Silvermont microarchitecture or later).

19.4.4.1  Branch Trace Message Visibility
Branch trace message (BTM) visibility is implementation specific and limited to systems with a front side bus (FSB). 
BTMs may not be visible to newer system link interfaces or a system bus that deviates from a traditional FSB.

19.4.5 Branch Trace Store (BTS)
A trace of taken branches, interrupts, and exceptions is useful for debugging code by providing a method of deter-
mining the decision path taken to reach a particular code location. The LBR flag (bit 0) of IA32_DEBUGCTL provides 
a mechanism for capturing records of taken branches, interrupts, and exceptions and saving them in the last 
branch record (LBR) stack MSRs, setting the TR flag for sending them out onto the system bus as BTMs. The branch 
trace store (BTS) mechanism provides the additional capability of saving the branch records in a memory-resident 
BTS buffer, which is part of the DS save area. The BTS buffer can be configured to be circular so that the most 
recent branch records are always available or it can be configured to generate an interrupt when the buffer is 
nearly full so that all the branch records can be saved. The BTINT flag (bit 8) can be used to enable the generation 
of interrupt when the BTS buffer is full. See Section 19.4.9.2, “Setting Up the DS Save Area,” for additional details.

Setting this flag (BTS) alone can greatly reduce the performance of the processor. CPL-qualified branch trace 
storing mechanism can help mitigate the performance impact of sending/logging branch trace messages.

19.4.6 CPL-Qualified Branch Trace Mechanism
CPL-qualified branch trace mechanism is available to a subset of Intel 64 and IA-32 processors that support the 
branch trace storing mechanism. The processor supports the CPL-qualified branch trace mechanism if 
CPUID.01H:ECX[bit 4] = 1.

The CPL-qualified branch trace mechanism is described in Section 19.4.9.4. System software can selectively 
specify CPL qualification to not send/store Branch Trace Messages associated with a specified privilege level. Two 
bit fields, BTS_OFF_USR (bit 10) and BTS_OFF_OS (bit 9), are provided in the debug control register to specify the 
CPL of BTMs that will not be logged in the BTS buffer or sent on the bus.

19.4.7 Freezing LBR and Performance Counters on PMI 
Many issues may generate a performance monitoring interrupt (PMI); a PMI service handler will need to determine 
cause to handle the situation. Two capabilities that allow a PMI service routine to improve branch tracing and 
performance monitoring are available for processors supporting architectural performance monitoring version 2 or 
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greater (i.e., CPUID.0AH:EAX[7:0] > 1). These capabilities provides the following interface in IA32_DEBUGCTL to 
reduce runtime overhead of PMI servicing, profiler-contributed skew effects on analysis or counter metrics:
• Freezing LBRs on PMI (bit 11)— Allows the PMI service routine to ensure the content in the LBR stack are 

associated with the target workload and not polluted by the branch flows of handling the PMI. Depending on the 
version ID enumerated by CPUID.0AH:EAX.ArchPerfMonVerID[bits 7:0], two flavors are supported:

— Legacy Freeze_LBR_on_PMI is supported for ArchPerfMonVerID <= 3 and ArchPerfMonVerID >1. If 
IA32_DEBUGCTL.Freeze_LBR_On_PMI = 1, the LBR is frozen on the overflowed condition of the buffer 
area, the processor clears the LBR bit (bit 0) in IA32_DEBUGCTL. Software must then re-enable IA32_DE-
BUGCTL.LBR to resume recording branches. When using this feature, software should be careful about 
writes to IA32_DEBUGCTL to avoid re-enabling LBRs by accident if they were just disabled.

— Streamlined Freeze_LBR_on_PMI is supported for ArchPerfMonVerID >= 4. If IA32_DEBUGCTL.Freeze_L-
BR_On_PMI = 1, the processor behaves as follows:

• sets IA32_PERF_GLOBAL_STATUS.LBR_Frz =1 to disable recording, but does not change the LBR bit 
(bit 0) in IA32_DEBUGCTL. The LBRs are frozen on the overflowed condition of the buffer area.

• Freezing PMCs on PMI (bit 12) — Allows the PMI service routine to ensure the content in the performance 
counters are associated with the target workload and not polluted by the PMI and activities within the PMI 
service routine. Depending on the version ID enumerated by CPUID.0AH:EAX.ArchPerfMonVerID[bits 7:0], two 
flavors are supported:

— Legacy Freeze_Perfmon_on_PMI is supported for ArchPerfMonVerID <= 3 and ArchPerfMonVerID >1. If 
IA32_DEBUGCTL.Freeze_Perfmon_On_PMI = 1, the performance counters are frozen on the counter 
overflowed condition when the processor clears the IA32_PERF_GLOBAL_CTRL MSR (see Figure 21-3). The 
PMCs affected include both general-purpose counters and fixed-function counters (see Section 21.6.2.1, 
“Fixed-function Performance Counters”). Software must re-enable counts by writing 1s to the corre-
sponding enable bits in IA32_PERF_GLOBAL_CTRL before leaving a PMI service routine to continue counter 
operation.

— Streamlined Freeze_Perfmon_on_PMI is supported for ArchPerfMonVerID >= 4. The processor behaves as 
follows:

• sets IA32_PERF_GLOBAL_STATUS.CTR_Frz =1 to disable counting on a counter overflow condition, but 
does not change the IA32_PERF_GLOBAL_CTRL MSR. 

Freezing LBRs and PMCs on PMIs (both legacy and streamlined operation) occur when one of the following applies:
• A performance counter had an overflow and was programmed to signal a PMI in case of an overflow.

— For the general-purpose counters; enabling PMI is done by setting bit 20 of the IA32_PERFEVTSELx 
register.

— For the fixed-function counters; enabling PMI is done by setting the 3rd bit in the corresponding 4-bit 
control field of the MSR_PERF_FIXED_CTR_CTRL register (see Figure 21-1) or IA32_FIXED_CTR_CTRL MSR 
(see Figure 21-2).

• The PEBS buffer is almost full and reaches the interrupt threshold.
• The BTS buffer is almost full and reaches the interrupt threshold.

Table 19-3 compares the interaction of the processor with the PMI handler using the legacy versus streamlined 
Freeza_Perfmon_On_PMI interface.
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19.4.8 LBR Stack 
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across Intel 64 and IA-32 
processor families. However, the number of MSRs in the LBR stack and the valid range of TOS pointer value can 
vary between different processor families. Table 19-4 lists the LBR stack size and TOS pointer range for several 
processor families according to the CPUID signatures of DisplayFamily_DisplayModel encoding (see the CPUID 
instruction in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). 

Table 19-3.   Legacy and Streamlined Operation with Freeze_Perfmon_On_PMI = 1, Counter Overflowed 
Legacy Freeze_Perfmon_On_PMI Streamlined Freeze_Perfmon_On_PMI Comment

Processor freezes the counters on 
overflow

Processor freezes the counters on overflow Unchanged

Processor clears 
IA32_PERF_GLOBAL_CTRL

Processor set IA32_PERF_GLOBAL_STATUS.CTR_FTZ

Handler reads 
IA32_PERF_GLOBAL_STATUS (0x38E) to 
examine which counter(s) overflowed

mask = RDMSR(0x38E) Similar

Handler services the PMI Handler services the PMI Unchanged

Handler writes 1s to 
IA32_PERF_GLOBAL_OVF_CTL (0x390) 

Handler writes mask into 
IA32_PERF_GLOBAL_OVF_RESET (0x390) 

Processor clears 
IA32_PERF_GLOBAL_STATUS

Processor clears IA32_PERF_GLOBAL_STATUS Unchanged

Handler re-enables 
IA32_PERF_GLOBAL_CTRL

None Reduced software overhead

Table 19-4.   LBR Stack Size and TOS Pointer Range 
DisplayFamily_DisplayModel Size of LBR Stack Component of an LBR Entry Range of TOS Pointer

06_5CH, 06_5FH 32 FROM_IP, TO_IP 0 to 31

06_4EH, 06_5EH, 06_8EH, 06_9EH, 06_55H, 
06_66H, 06_7AH, 06_67H, 06_6AH, 06_6CH, 
06_7DH, 06_7EH, 06_8CH, 06_8DH, 06_6AH, 
06_A5H, 06_A6H, 06_A7H, 06_A8H, 06_86H, 
06_8AH, 06_96H, 06_9CH

32 FROM_IP, TO_IP, LBR_INFO1

NOTES:
1. See Section 19.12.

0 to 31

06_3DH, 06_47H, 06_4FH, 06_56H, 06_3CH, 
06_45H, 06_46H, 06_3FH, 06_2AH, 06_2DH, 
06_3AH, 06_3EH, 06_1AH, 06_1EH, 06_1FH, 
06_2EH, 06_25H, 06_2CH, 06_2FH

16 FROM_IP, TO_IP 0 to 15

06_17H, 06_1DH, 06_0FH 4 FROM_IP, TO_IP 0 to 3

06_37H, 06_4AH, 06_4CH, 06_4DH, 06_5AH, 
06_5DH, 06_1CH, 06_26H, 06_27H, 06_35H, 
06_36H

8 FROM_IP, TO_IP 0 to 7
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The last branch recording mechanism tracks not only branch instructions (e.g., JMP, Jcc, LOOP, and CALL instruc-
tions), but also other operations that cause a change in the instruction pointer (e.g., external interrupts, traps, and 
faults). The branch recording mechanisms generally employs a set of MSRs, referred to as last branch record (LBR) 
stack. The size and exact locations of the LBR stack are generally model-specific (see Chapter 2, “Model-Specific 
Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, for model-
specific MSR addresses). 
• Last Branch Record (LBR) Stack — The LBR consists of N pairs of MSRs (N is listed in the LBR stack size 

column of Table 19-4) that store source and destination address of recent branches (see Figure 19-3): 

— MSR_LASTBRANCH_0_FROM_IP (address is model specific) through the next consecutive (N-1) MSR 
address store source addresses.

— MSR_LASTBRANCH_0_TO_IP (address is model specific) through the next consecutive (N-1) MSR address 
store destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant M bits of the TOS Pointer MSR 
(MSR_LASTBRANCH_TOS, address is model specific) contains an M-bit pointer to the MSR in the LBR stack that 
contains the most recent branch, interrupt, or exception recorded. The valid range of the M-bit POS pointer is 
given in Table 19-4.

19.4.8.1  LBR Stack and Intel® 64 Processors 
LBR MSRs are 64-bits. In 64-bit mode, last branch records store the full address. Outside of 64-bit mode, the upper 
32-bits of branch addresses will be stored as 0. 

Software should query an architectural MSR IA32_PERF_CAPABILITIES[5:0] about the format of the address that 
is stored in the LBR stack. Four formats are defined by the following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of respective source/destination,

— 000001B (64-bit LIP record format) — Stores 64-bit linear address of respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective address) of respective 
source/destination.

— 000011B (64-bit EIP record format) and Flags — Stores 64-bit offset (effective address) of respective 
source/destination. Misprediction info is reported in the upper bit of 'FROM' registers in the LBR stack. See 
LBR stack details below for flag support and definition.

— 000100B (64-bit EIP record format), Flags, and TSX — Stores 64-bit offset (effective address) of 
respective source/destination. Misprediction and TSX info are reported in the upper bits of ‘FROM’ registers 
in the LBR stack. 

— 000101B (64-bit EIP record format), Flags, TSX, and LBR_INFO — Stores 64-bit offset (effective 
address) of respective source/destination. Misprediction, TSX, and elapsed cycles since the last LBR update 
are reported in the LBR_INFO MSR stack. 

— 000110B (64-bit LIP record format), Flags, and Cycles — Stores 64-bit linear address (CS.Base + 
effective address) of respective source/destination. Misprediction info is reported in the upper bits of 

Figure 19-4.  64-bit Address Layout of LBR MSR 

63

Source Address

0

063

Destination Address

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_(N-1)_FROM_IP

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_(N-1)_TO_IP
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'FROM' registers in the LBR stack. Elapsed cycles since the last LBR update are reported in the upper 16 bits 
of the 'TO' registers in the LBR stack (see Section 19.6). 

— 000111B (64-bit LIP record format), Flags, and LBR_INFO — Stores 64-bit linear address (CS.Base 
+ effective address) of respective source/destination. Misprediction, and elapsed cycles since the last LBR 
update are reported in the LBR_INFO MSR stack.

Processor’s support for the architectural MSR IA32_PERF_CAPABILITIES is provided by CPUID.01H:ECX[PERF_CA-
PAB_MSR] (bit 15).

19.4.8.2  LBR Stack and IA-32 Processors 
The LBR MSRs in IA-32 processors introduced prior to Intel 64 architecture store the 32-bit “To Linear Address” and 
“From Linear Address” using the high and low half of each 64-bit MSR. 

19.4.8.3  Last Exception Records and Intel 64 Architecture
Intel 64 and IA-32 processors also provide MSRs that store the branch record for the last branch taken prior to an 
exception or an interrupt. The location of the last exception record (LER) MSRs are model specific. The MSRs that 
store last exception records are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the address is 
recorded. If IA-32e mode is enabled, the processor writes 64-bit values into the MSR. In 64-bit mode, last excep-
tion records store 64-bit addresses; in compatibility mode, the upper 32-bits of last exception records are cleared.

19.4.9 BTS and DS Save Area
The Debug store (DS) feature flag (bit 21), returned by CPUID.1:EDX[21] indicates that the processor provides 
the debug store (DS) mechanism. The DS mechanism allows: 
• BTMs to be stored in a memory-resident BTS buffer. See Section 19.4.5, “Branch Trace Store (BTS).” 
• Processor event-based sampling (PEBS) also uses the DS save area provided by debug store mechanism. The 

capability of PEBS varies across different microarchitectures. See Section 21.6.2.4, “Processor Event Based 
Sampling (PEBS),” and the relevant PEBS sub-sections across the core PMU sections in Chapter 21, “Perfor-
mance Monitoring.” 

When CPUID.1:EDX[21] is set:
• The BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags in the IA32_MISC_ENABLE MSR indicate (when clear) 

the availability of the BTS and PEBS facilities, including the ability to set the BTS and BTINT bits in the 
appropriate DEBUGCTL MSR.

• The IA32_DS_AREA MSR exists and points to the DS save area. 

The debug store (DS) save area is a software-designated area of memory that is used to collect the following two 
types of information:
• Branch records — When the BTS flag in the IA32_DEBUGCTL MSR is set, a branch record is stored in the BTS 

buffer in the DS save area whenever a taken branch, interrupt, or exception is detected. 
• PEBS records — When a performance counter is configured for PEBS, a PEBS record is stored in the PEBS 

buffer in the DS save area after the counter overflow occurs. This record contains the architectural state of the 
processor (state of the 8 general purpose registers, EIP register, and EFLAGS register) at the next occurrence 
of the PEBS event that caused the counter to overflow. When the state information has been logged, the 
counter is automatically reset to a specified value, and event counting begins again. The content layout of a 
PEBS record varies across different implementations that support PEBS. See Section 21.6.2.4.2 for details of 
enumerating PEBS record format.
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NOTES

Prior to processors based on the Goldmont microarchitecture, PEBS facility only supports a subset 
of implementation-specific precise events. See Section 21.5.3.1 for a PEBS enhancement that can 
generate records for both precise and non-precise events.

The DS save area and recording mechanism are disabled on INIT, processor Reset or transition to 
system-management mode (SMM) or IA-32e mode. It is similarly disabled on the generation of a 
machine-check exception on 45nm and 32nm Intel Atom processors and on processors with 
Netburst or Intel Core microarchitecture.

The BTS and PEBS facilities may not be available on all processors. The availability of these facilities 
is indicated by the BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags, respectively, in the IA32_-
MISC_ENABLE MSR (see Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 4).

The DS save area is divided into three parts: buffer management area, branch trace store (BTS) buffer, and PEBS 
buffer (see Figure 19-5). The buffer management area is used to define the location and size of the BTS and PEBS 
buffers. The processor then uses the buffer management area to keep track of the branch and/or PEBS records in 
their respective buffers and to record the performance counter reset value. The linear address of the first byte of 
the DS buffer management area is specified with the IA32_DS_AREA MSR.

The fields in the buffer management area are as follows: 
• BTS buffer base — Linear address of the first byte of the BTS buffer. This address should point to a natural 

doubleword boundary.
• BTS index — Linear address of the first byte of the next BTS record to be written to. Initially, this address 

should be the same as the address in the BTS buffer base field.
• BTS absolute maximum — Linear address of the next byte past the end of the BTS buffer. This address should 

be a multiple of the BTS record size (12 bytes) plus 1.
• BTS interrupt threshold — Linear address of the BTS record on which an interrupt is to be generated. This 

address must point to an offset from the BTS buffer base that is a multiple of the BTS record size. Also, it must 
be several records short of the BTS absolute maximum address to allow a pending interrupt to be handled prior 
to processor writing the BTS absolute maximum record.

• PEBS buffer base — Linear address of the first byte of the PEBS buffer. This address should point to a natural 
doubleword boundary.

• PEBS index — Linear address of the first byte of the next PEBS record to be written to. Initially, this address 
should be the same as the address in the PEBS buffer base field.

• PEBS absolute maximum — Linear address of the next byte past the end of the PEBS buffer. This address 
should be a multiple of the PEBS record size (40 bytes) plus 1.

• PEBS interrupt threshold — Linear address of the PEBS record on which an interrupt is to be generated. This 
address must point to an offset from the PEBS buffer base that is a multiple of the PEBS record size. Also, it 
must be several records short of the PEBS absolute maximum address to allow a pending interrupt to be 
handled prior to processor writing the PEBS absolute maximum record.

• PEBS counter reset value — A 64-bit value that the counter is to be set to when a PEBS record is written. Bits 
beyond the size of the counter are ignored. This value allows state information to be collected regularly every 
time the specified number of events occur. 
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Figure 19-6 shows the structure of a 12-byte branch record in the BTS buffer. The fields in each record are as 
follows:
• Last branch from — Linear address of the instruction from which the branch, interrupt, or exception was 

taken.
• Last branch to — Linear address of the branch target or the first instruction in the interrupt or exception 

service routine.
• Branch predicted — Bit 4 of field indicates whether the branch that was taken was predicted (set) or not 

predicted (clear).

Figure 19-5.  DS Save Area Example1

NOTES:
1. This example represents the format for a system that supports PEBS on only one counter.
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Figure 19-7 shows the structure of the 40-byte PEBS records. Nominally the register values are those at the begin-
ning of the instruction that caused the event. However, there are cases where the registers may be logged in a 
partially modified state. The linear IP field shows the value in the EIP register translated from an offset into the 
current code segment to a linear address.

19.4.9.1  64 Bit Format of the DS Save Area
When DTES64 = 1 (CPUID.1.ECX[2] = 1), the structure of the DS save area is shown in Figure 19-8. 

When DTES64 = 0 (CPUID.1.ECX[2] = 0) and IA-32e mode is active, the structure of the DS save area is shown in 
Figure 19-8. If IA-32e mode is not active the structure of the DS save area is as shown in Figure 19-5.

Figure 19-6.  32-bit Branch Trace Record Format

Figure 19-7.  PEBS Record Format
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The IA32_DS_AREA MSR holds the 64-bit linear address of the first byte of the DS buffer management area. The 
structure of a branch trace record is similar to that shown in Figure 19-6, but each field is 8 bytes in length. This 
makes each BTS record 24 bytes (see Figure 19-9). The structure of a PEBS record is similar to that shown in 
Figure 19-7, but each field is 8 bytes in length and architectural states include register R8 through R15. This makes 
the size of a PEBS record in 64-bit mode 144 bytes (see Figure 19-10).

Figure 19-8.  IA-32e Mode DS Save Area Example1 

NOTES:
1. This example represents the format for a system that supports PEBS on only one counter.

Figure 19-9.  64-bit Branch Trace Record Format
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Fields in the buffer management area of a DS save area are described in Section 19.4.9. 

The format of a branch trace record and a PEBS record are the same as the 64-bit record formats shown in Figures 
19-9 and Figures 19-10, with the exception that the branch predicted bit is not supported by Intel Core microarchi-
tecture or Intel Atom microarchitecture. The 64-bit record formats for BTS and PEBS apply to DS save area for all 
operating modes. 

The procedures used to program IA32_DEBUGCTL MSR to set up a BTS buffer or a CPL-qualified BTS are described 
in Section 19.4.9.3 and Section 19.4.9.4.

Required elements for writing a DS interrupt service routine are largely the same on processors that support using 
DS Save area for BTS or PEBS records. However, on processors based on Intel NetBurst® microarchitecture, re-
enabling counting requires writing to CCCRs. But a DS interrupt service routine on processors supporting architec-
tural performance monitoring should:
• Re-enable the enable bits in IA32_PERF_GLOBAL_CTRL MSR if it is servicing an overflow PMI due to PEBS.
• Clear overflow indications by writing to IA32_PERF_GLOBAL_OVF_CTRL when a counting configuration is 

changed. This includes bit 62 (ClrOvfBuffer) and the overflow indication of counters used in either PEBS or 
general-purpose counting (specifically: bits 0 or 1; see Figures 21-3).

19.4.9.2  Setting Up the DS Save Area
To save branch records with the BTS buffer, the DS save area must first be set up in memory as described in the 
following procedure (See Section 21.6.2.4.1, “Setting up the PEBS Buffer,” for instructions for setting up a PEBS 
buffer, respectively, in the DS save area):

1. Create the DS buffer management information area in memory (see Section 19.4.9, “BTS and DS Save Area,” 
and Section 19.4.9.1, “64 Bit Format of the DS Save Area”). Also see the additional notes in this section.

2. Write the base linear address of the DS buffer management area into the IA32_DS_AREA MSR. 

3. Set up the performance counter entry in the xAPIC LVT for fixed delivery and edge sensitive. See Section 
12.5.1, “Local Vector Table.”

4. Establish an interrupt handler in the IDT for the vector associated with the performance counter entry in the 
xAPIC LVT.

Figure 19-10.  64-bit PEBS Record Format
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5. Write an interrupt service routine to handle the interrupt. See Section 19.4.9.5, “Writing the DS Interrupt 
Service Routine.”

The following restrictions should be applied to the DS save area.
• The recording of branch records in the BTS buffer (or PEBS records in the PEBS buffer) may not operate 

properly if accesses to the linear addresses in any of the three DS save area sections cause page faults, VM 
exits, or the setting of accessed or dirty flags in the paging structures (ordinary or EPT). For that reason, 
system software should establish paging structures (both ordinary and EPT) to prevent such occurrences. 
Implications of this may be that an operating system should allocate this memory from a non-paged pool and 
that system software cannot do “lazy” page-table entry propagation for these pages. Some newer processor 
generations support “lazy” EPT page-table entry propagation for PEBS; see Section 21.3.9.1 and Section 
21.9.5 for more information. A virtual-machine monitor may choose to allow use of PEBS by guest software 
only if EPT maps all guest-physical memory as present and read/write.

• The DS save area can be larger than a page, but the pages must be mapped to contiguous linear addresses. 
The buffer may share a page, so it need not be aligned on a 4-KByte boundary. For performance reasons, the 
base of the buffer must be aligned on a doubleword boundary and should be aligned on a cache line boundary. 

• It is recommended that the buffer size for the BTS buffer and the PEBS buffer be an integer multiple of the 
corresponding record sizes.

• The precise event records buffer should be large enough to hold the number of precise event records that can 
occur while waiting for the interrupt to be serviced.

• The DS save area should be in kernel space. It must not be on the same page as code, to avoid triggering self-
modifying code actions.

• There are no memory type restrictions on the buffers, although it is recommended that the buffers be 
designated as WB memory type for performance considerations.

• Either the system must be prevented from entering A20M mode while DS save area is active, or bit 20 of all 
addresses within buffer bounds must be 0.

• Pages that contain buffers must be mapped to the same physical addresses for all processes, such that any 
change to control register CR3 will not change the DS addresses. 

• The DS save area is expected to used only on systems with an enabled APIC. The LVT Performance Counter 
entry in the APCI must be initialized to use an interrupt gate instead of the trap gate.

19.4.9.3  Setting Up the BTS Buffer
Three flags in the MSR_DEBUGCTLA MSR (see Table 19-5), IA32_DEBUGCTL (see Figure 19-3), or MSR_DE-
BUGCTLB (see Figure 19-16) control the generation of branch records and storing of them in the BTS buffer; these 
are TR, BTS, and BTINT. The TR flag enables the generation of BTMs. The BTS flag determines whether the BTMs 
are sent out on the system bus (clear) or stored in the BTS buffer (set). BTMs cannot be simultaneously sent to the 
system bus and logged in the BTS buffer. The BTINT flag enables the generation of an interrupt when the BTS buffer 
is full. When this flag is clear, the BTS buffer is a circular buffer.

The following procedure describes how to set up a DS Save area to collect branch records in the BTS buffer:

1. Place values in the BTS buffer base, BTS index, BTS absolute maximum, and BTS interrupt threshold fields of 
the DS buffer management area to set up the BTS buffer in memory.

2. Set the TR and BTS flags in the IA32_DEBUGCTL for Intel Core Solo and Intel Core Duo processors or later 
processors (or MSR_DEBUGCTLA MSR for processors based on Intel NetBurst Microarchitecture; or MSR_DE-
BUGCTLB for Pentium M processors).

Table 19-5.   IA32_DEBUGCTL Flag Encodings 
TR BTS BTINT Description

0 X X Branch trace messages (BTMs) off

1 0 X Generate BTMs

1 1 0 Store BTMs in the BTS buffer, used here as a circular buffer

1 1 1 Store BTMs in the BTS buffer, and generate an interrupt when the buffer is nearly full
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3. Clear the BTINT flag in the corresponding IA32_DEBUGCTL (or MSR_DEBUGCTLA MSR; or MSR_DEBUGCTLB) 
if a circular BTS buffer is desired.

NOTES
If the buffer size is set to less than the minimum allowable value (i.e., BTS absolute maximum < 1 
+ size of BTS record), the results of BTS is undefined.
In order to prevent generating an interrupt, when working with circular BTS buffer, SW need to set 
BTS interrupt threshold to a value greater than BTS absolute maximum (fields of the DS buffer 
management area). It's not enough to clear the BTINT flag itself only. 

19.4.9.4  Setting Up CPL-Qualified BTS 
If the processor supports CPL-qualified last branch recording mechanism, the generation of branch records and 
storing of them in the BTS buffer are determined by: TR, BTS, BTS_OFF_OS, BTS_OFF_USR, and BTINT. The 
encoding of these five bits are shown in Table 19-6.

19.4.9.5  Writing the DS Interrupt Service Routine
The BTS, non-precise event-based sampling, and PEBS facilities share the same interrupt vector and interrupt 
service routine (called the debug store interrupt service routine or DS ISR). To handle BTS, non-precise event-
based sampling, and PEBS interrupts: separate handler routines must be included in the DS ISR. Use the following 
guidelines when writing a DS ISR to handle BTS, non-precise event-based sampling, and/or PEBS interrupts.
• The DS interrupt service routine (ISR) must be part of a kernel driver and operate at a current privilege level of 

0 to secure the buffer storage area.
• Because the BTS, non-precise event-based sampling, and PEBS facilities share the same interrupt vector, the 

DS ISR must check for all the possible causes of interrupts from these facilities and pass control on to the 
appropriate handler. 

BTS and PEBS buffer overflow would be the sources of the interrupt if the buffer index matches/exceeds the 
interrupt threshold specified. Detection of non-precise event-based sampling as the source of the interrupt is 
accomplished by checking for counter overflow.

• There must be separate save areas, buffers, and state for each processor in an MP system.
• Upon entering the ISR, branch trace messages and PEBS should be disabled to prevent race conditions during 

access to the DS save area. This is done by clearing TR flag in the IA32_DEBUGCTL (or MSR_DEBUGCTLA MSR) 
and by clearing the precise event enable flag in the MSR_PEBS_ENABLE MSR. These settings should be 
restored to their original values when exiting the ISR. 

Table 19-6.  CPL-Qualified Branch Trace Store Encodings 
TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description

0 X X X X Branch trace messages (BTMs) off

1 0 X X X Generates BTMs but do not store BTMs

1 1 0 0 0 Store all BTMs in the BTS buffer, used here as a circular buffer

1 1 1 0 0 Store BTMs with CPL > 0 in the BTS buffer

1 1 0 1 0 Store BTMs with CPL = 0 in the BTS buffer

1 1 1 1 X Generate BTMs but do not store BTMs

1 1 0 0 1 Store all BTMs in the BTS buffer; generate an interrupt when the 
buffer is nearly full

1 1 1 0 1 Store BTMs with CPL > 0 in the BTS buffer; generate an interrupt 
when the buffer is nearly full

1 1 0 1 1 Store BTMs with CPL = 0 in the BTS buffer; generate an interrupt 
when the buffer is nearly full
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• The processor will not disable the DS save area when the buffer is full and the circular mode has not been 
selected. The current DS setting must be retained and restored by the ISR on exit.

• After reading the data in the appropriate buffer, up to but not including the current index into the buffer, the ISR 
must reset the buffer index to the beginning of the buffer. Otherwise, everything up to the index will look like 
new entries upon the next invocation of the ISR.

• The ISR must clear the mask bit in the performance counter LVT entry.
• The ISR must re-enable the counters to count via IA32_PERF_GLOBAL_CTRL/IA32_PERF_GLOBAL_OVF_CTRL 

if it is servicing an overflow PMI due to PEBS (or via CCCR's ENABLE bit on processor based on Intel NetBurst 
microarchitecture).

• The Pentium 4 Processor and Intel Xeon Processor mask PMIs upon receiving an interrupt. Clear this condition 
before leaving the interrupt handler.

19.5 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™ 2 
DUO AND INTEL ATOM® PROCESSORS)

The Intel Core 2 Duo processor family and Intel Xeon processors based on Intel Core microarchitecture or 
enhanced Intel Core microarchitecture provide last branch interrupt and exception recording. The facilities 
described in this section also apply to 45 nm and 32 nm Intel Atom processors. These capabilities are similar to 
those found in Pentium 4 processors, including support for the following facilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR provide bit fields for software to 

configure mechanisms related to debug trace, branch recording, branch trace store, and performance counter 
operations. See Section 19.4.1 for a description of the flags. See Figure 19-3 for the MSR layout.

• Last branch record (LBR) stack — There are a collection of MSR pairs that store the source and destination 
addresses related to recently executed branches. See Section 19.5.1. 

• Monitoring and single-stepping of branches, exceptions, and interrupts

— See Section 19.4.2 and Section 19.4.3. In addition, the ability to freeze the LBR stack on a PMI request is 
available.

— 45 nm and 32 nm Intel Atom processors clear the TR flag when the FREEZE_LBRS_ON_PMI flag is set.
• Branch trace messages — See Section 19.4.4. 
• Last exception records — See Section 19.13.3. 
• Branch trace store and CPL-qualified BTS — See Section 19.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 19.4.7 for legacy Freeze_LBRs_On_PMI operation. 
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 19.4.7 for legacy Freeze_Perfmon_On_PMI 

operation. 
• FREEZE_WHILE_SMM (bit 14) — FREEZE_WHILE_SMM is supported if IA32_PERF_CAPABIL-

ITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 19.4.1.

19.5.1 LBR Stack 
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across Intel Core 2, Intel Atom 
processor families, and Intel processors based on Intel NetBurst microarchitecture. 

Four pairs of MSRs are supported in the LBR stack for Intel Core 2 processors families and Intel processors based 
on Intel NetBurst microarchitecture:
• Last Branch Record (LBR) Stack 

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through MSR_LASTBRANCH_3_FROM_IP (address 43H) 
store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through MSR_LASTBRANCH_3_TO_IP (address 63H) store 
destination addresses
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• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 2 bits of the TOS Pointer MSR 
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the most 
recent branch, interrupt, or exception recorded.

Eight pairs of MSRs are supported in the LBR stack for 45 nm and 32 nm Intel Atom processors:
• Last Branch Record (LBR) Stack 

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through MSR_LASTBRANCH_7_FROM_IP (address 47H) 
store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through MSR_LASTBRANCH_7_TO_IP (address 67H) store 
destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3 bits of the TOS Pointer MSR 
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the most 
recent branch, interrupt, or exception recorded.

The address format written in the FROM_IP/TO_IP MSRS may differ between processors. Software should query 
IA32_PERF_CAPABILITIES[5:0] and consult Section 19.4.8.1. The behavior of the MSR_LER_TO_LIP and the 
MSR_LER_FROM_LIP MSRs corresponds to that of the LastExceptionToIP and LastExceptionFromIP MSRs found in 
P6 family processors. 

19.5.2 LBR Stack in Intel Atom® Processors based on the Silvermont Microarchitecture
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported in Intel Atom processors based on 
the Silvermont and Airmont microarchitectures. Eight pairs of MSRs are supported in the LBR stack. 

LBR filtering is supported. Filtering of LBRs based on a combination of CPL and branch type conditions is supported. 
When LBR filtering is enabled, the LBR stack only captures the subset of branches that are specified by MSR_L-
BR_SELECT. The layout of MSR_LBR_SELECT is described in Table 19-11.

19.6 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING 
FOR PROCESSORS BASED ON GOLDMONT MICROARCHITECTURE

Processors based on the Goldmont microarchitecture extend the capabilities described in Section 19.5.2 with the 
following enhancements:
• Supports new LBR format encoding 00110b in IA32_PERF_CAPABILITIES[5:0]. 
• Size of LBR stack increased to 32. Each entry includes MSR_LASTBRANCH_x_FROM_IP (address 0x680..0x69f) 

and MSR_LASTBRANCH_x_TO_IP (address 0x6c0..0x6df). 

• LBR call stack filtering supported. The layout of MSR_LBR_SELECT is described in Table 19-13.

• Elapsed cycle information is added to MSR_LASTBRANCH_x_TO_IP. Format is shown in Table 19-7.

• Misprediction info is reported in the upper bits of MSR_LASTBRANCH_x_FROM_IP. MISPRED bit format is 
shown in Table 19-8.

• Streamlined Freeze_LBRs_On_PMI operation; see Section 19.12.2.

• LBR MSRs may be cleared when MWAIT is used to request a C-state that is numerically higher than C1; see 
Section 19.12.3.

Table 19-7.   MSR_LASTBRANCH_x_TO_IP for the Goldmont Microarchitecture
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch to“ address. See Section 19.4.8.1 for address format.

Cycle Count 
(Saturating)

63:48 R/W Elapsed core clocks since last update to the LBR stack.
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19.7 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING 
FOR PROCESSORS BASED ON GOLDMONT PLUS MICROARCHITECTURE

Next generation Intel Atom processors are based on the Goldmont Plus microarchitecture. Processors based on the 
Goldmont Plus microarchitecture extend the capabilities described in Section 19.6 with the following changes:

• Enumeration of new LBR format: encoding 00111b in IA32_PERF_CAPABILITIES[5:0] is supported, see 
Section 19.4.8.1.

• Each LBR stack entry consists of three MSRs:
— MSR_LASTBRANCH_x_FROM_IP, the layout is simplified, see Table 19-9.

— MSR_LASTBRANCH_x_TO_IP, the layout is the same as Table 19-9.

— MSR_LBR_INFO_x, stores branch prediction flag, TSX info, and elapsed cycle data. Layout is the same as 
Table 19-16.

19.8 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR INTEL® 
XEON PHI™ PROCESSOR 7200/5200/3200

The last branch record stack and top-of-stack (TOS) pointer MSRs are supported in the Intel® Xeon Phi™ processor 
7200/5200/3200 series based on the Knights Landing microarchitecture. Eight pairs of MSRs are supported in the 
LBR stack, per thread:
• Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_0_FROM_IP (address 680H) through MSR_LASTBRANCH_7_FROM_IP (address 687H) 
store source addresses.

— MSR_LASTBRANCH_0_TO_IP (address 6C0H) through MSR_LASTBRANCH_7_TO_IP (address 6C7H) store 
destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3 bits of the TOS Pointer MSR 
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the 
most recent branch, interrupt, or exception recorded.

LBR filtering is supported. Filtering of LBRs based on a combination of CPL and branch type conditions is supported. 
When LBR filtering is enabled, the LBR stack only captures the subset of branches that are specified by MSR_L-
BR_SELECT. The layout of MSR_LBR_SELECT is described in Table 19-11.

The address format written in the FROM_IP/TO_IP MSRS may differ between processors. Software should query 
IA32_PERF_CAPABILITIES[5:0] and consult Section 19.4.8.1.The behavior of the MSR_LER_TO_LIP and the 
MSR_LER_FROM_LIP MSRs corresponds to that of the LastExceptionToIP and LastExceptionFromIP MSRs found in 
the P6 family processors.

19.9 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR 
PROCESSORS BASED ON NEHALEM MICROARCHITECTURE

The processors based on Nehalem microarchitecture and Westmere microarchitecture support last branch inter-
rupt and exception recording. These capabilities are similar to those found in Intel Core 2 processors and add addi-
tional capabilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR provides bit fields for software to 

configure mechanisms related to debug trace, branch recording, branch trace store, and performance counter 
operations. See Section 19.4.1 for a description of the flags. See Figure 19-11 for the MSR layout. 

• Last branch record (LBR) stack — There are 16 MSR pairs that store the source and destination addresses 
related to recently executed branches. See Section 19.9.1.

• Monitoring and single-stepping of branches, exceptions, and interrupts — See Section 19.4.2 and 
Section 19.4.3. In addition, the ability to freeze the LBR stack on a PMI request is available.
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• Branch trace messages — The IA32_DEBUGCTL MSR provides bit fields for software to enable each logical 
processor to generate branch trace messages. See Section 19.4.4. However, not all BTM messages are 
observable using the Intel® QPI link.

• Last exception records — See Section 19.13.3. 
• Branch trace store and CPL-qualified BTS — See Section 19.4.6 and Section 19.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 19.4.7 for legacy Freeze_LBRs_On_PMI operation. 
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 19.4.7 for legacy Freeze_Perfmon_On_PMI 

operation. 
• UNCORE_PMI_EN (bit 13) — When set. this logical processor is enabled to receive an counter overflow 

interrupt form the uncore.
• FREEZE_WHILE_SMM (bit 14) — FREEZE_WHILE_SMM is supported if IA32_PERF_CAPABIL-

ITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 19.4.1.

Processors based on Nehalem microarchitecture provide additional capabilities:
• Independent control of uncore PMI — The IA32_DEBUGCTL MSR provides a bit field (see Figure 19-11) for 

software to enable each logical processor to receive an uncore counter overflow interrupt.
• LBR filtering — Processors based on Nehalem microarchitecture support filtering of LBR based on combination 

of CPL and branch type conditions. When LBR filtering is enabled, the LBR stack only captures the subset of 
branches that are specified by MSR_LBR_SELECT.

19.9.1 LBR Stack
Processors based on Nehalem microarchitecture provide 16 pairs of MSR to record last branch record information. 
The layout of each MSR pair is shown in Table 19-8 and Table 19-9.

Figure 19-11.  IA32_DEBUGCTL MSR for Processors Based on Nehalem Microarchitecture

Table 19-8.   MSR_LASTBRANCH_x_FROM_IP 
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch from” address. See Section 19.4.8.1 for address format.

SIGN_EXt 62:48 R/W Signed extension of bit 47 of this register.

MISPRED 63 R/W When set, indicates either the target of the branch was mispredicted and/or the 
direction (taken/non-taken) was mispredicted; otherwise, the target branch was 
predicted.

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1  0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

111214

FREEZE_WHILE_SMM
UNCORE_PMI_EN

13
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Processors based on Nehalem microarchitecture have an LBR MSR Stack as shown in Table 19-10.

Table 19-10.  LBR Stack Size and TOS Pointer Range

19.9.2 Filtering of Last Branch Records
MSR_LBR_SELECT is cleared to zero at RESET, and LBR filtering is disabled, i.e., all branches will be captured. 
MSR_LBR_SELECT provides bit fields to specify the conditions of subsets of branches that will not be captured in 
the LBR. The layout of MSR_LBR_SELECT is shown in Table 19-11.

19.10 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR 
PROCESSORS BASED ON SANDY BRIDGE MICROARCHITECTURE

Generally, all of the last branch record, interrupt, and exception recording facility described in Section 19.9, “Last 
Branch, Interrupt, and Exception Recording for Processors based on Nehalem Microarchitecture,” apply to proces-
sors based on Sandy Bridge microarchitecture. For processors based on Ivy Bridge microarchitecture, the same 
holds true. 

One difference of note is that MSR_LBR_SELECT is shared between two logical processors in the same core. In 
Sandy Bridge microarchitecture, each logical processor has its own MSR_LBR_SELECT. The filtering semantics for 
“Near_ind_jmp” and “Near_rel_jmp” has been enhanced, see Table 19-12.

Table 19-9.   MSR_LASTBRANCH_x_TO_IP 
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch to” address. See Section 19.4.8.1 for address format

SIGN_EXt 63:48 R/W Signed extension of bit 47 of this register.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_1AH 16 0 to 15

Table 19-11.   MSR_LBR_SELECT for Nehalem Microarchitecture
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches ending in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches ending in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps 

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero
Vol. 3B 19-31



DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
19.11 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING 
FOR PROCESSORS BASED ON HASWELL MICROARCHITECTURE

Generally, all of the last branch record, interrupt, and exception recording facility described in Section 19.10, “Last 
Branch, Interrupt, and Exception Recording for Processors based on Sandy Bridge Microarchitecture,” apply to next 
generation processors based on Haswell microarchitecture. 

The LBR facility also supports an alternate capability to profile call stack profiles. Configuring the LBR facility to 
conduct call stack profiling is by writing 1 to the MSR_LBR_SELECT.EN_CALLSTACK[bit 9]; see Table 19-13. If 
MSR_LBR_SELECT.EN_CALLSTACK is clear, the LBR facility will capture branches normally as described in Section 
19.10.

The call stack profiling capability is an enhancement of the LBR facility. The LBR stack is a ring buffer typically used 
to profile control flow transitions resulting from branches. However, the finite depth of the LBR stack often become 
less effective when profiling certain high-level languages (e.g., C++), where a transition of the execution flow is 
accompanied by a large number of leaf function calls, each of which returns an individual parameter to form the list 

Table 19-12.   MSR_LBR_SELECT for Sandy Bridge Microarchitecture
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches ending in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches ending in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero

Table 19-13.   MSR_LBR_SELECT for Haswell Microarchitecture
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches ending in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches ending in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

EN_CALLSTACK1

NOTES:
1. Must set valid combination of bits 0-8 in conjunction with bit 9 (as described below), otherwise the contents of the LBR MSRs are 

undefined.

9 Enable LBR stack to use LIFO filtering to capture Call stack profile

Reserved 63:10 Must be zero
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of parameters for the main execution function call. A long list of such parameters returned by the leaf functions 
would serve to flush the data captured in the LBR stack, often losing the main execution context. 

When the call stack feature is enabled, the LBR stack will capture unfiltered call data normally, but as return 
instructions are executed the last captured branch record is flushed from the on-chip registers in a last-in first-out 
(LIFO) manner. Thus, branch information relative to leaf functions will not be captured, while preserving the call 
stack information of the main line execution path.

The configuration of the call stack facility is summarized below:
• Set IA32_DEBUGCTL.LBR (bit 0) to enable the LBR stack to capture branch records. The source and target 

addresses of the call branches will be captured in the 16 pairs of From/To LBR MSRs that form the LBR stack.
• Program the Top of Stack (TOS) MSR that points to the last valid from/to pair. This register is incremented by 

1, modulo 16, before recording the next pair of addresses.
• Program the branch filtering bits of MSR_LBR_SELECT (bits 0:8) as desired.
• Program the MSR_LBR_SELECT to enable LIFO filtering of return instructions with:

— The following bits in MSR_LBR_SELECT must be set to ‘1’: JCC, NEAR_IND_JMP, NEAR_REL_JMP, 
FAR_BRANCH, EN_CALLSTACK;

— The following bits in MSR_LBR_SELECT must be cleared: NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET;

— At most one of CPL_EQ_0, CPL_NEQ_0 is set.

Note that when call stack profiling is enabled, “zero length calls” are excluded from writing into the LBRs. (A “zero 
length call” uses the attribute of the call instruction to push the immediate instruction pointer on to the stack and 
then pops off that address into a register. This is accomplished without any matching return on the call.)

19.11.1 LBR Stack Enhancement
Processors based on Haswell microarchitecture provide 16 pairs of MSR to record last branch record information. 
The layout of each MSR pair is enumerated by IA32_PERF_CAPABILITIES[5:0] = 04H, and is shown in Table 19-14 
and Table 19-9.

19.12 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING 
FOR PROCESSORS BASED ON SKYLAKE MICROARCHITECTURE

Processors based on the Skylake microarchitecture provide a number of enhancement with storing last branch 
records:
• enumeration of new LBR format: encoding 00101b in IA32_PERF_CAPABILITIES[5:0] is supported, see Section 

19.4.8.1. 
• Each LBR stack entry consists of a triplets of MSRs: 

Table 19-14.   MSR_LASTBRANCH_x_FROM_IP with TSX Information
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch from” address. See Section 19.4.8.1 for address format.

SIGN_EXT 60:48 R/W Signed extension of bit 47 of this register.

TSX_ABORT 61 R/W When set, indicates a TSX Abort entry
LBR_FROM: EIP at the time of the TSX Abort
LBR_TO: EIP of the start of HLE region, or EIP of the RTM Abort Handler

IN_TSX 62 R/W When set, indicates the entry occurred in a TSX region

MISPRED 63 R/W When set, indicates either the target of the branch was mispredicted and/or the 
direction (taken/non-taken) was mispredicted; otherwise, the target branch was 
predicted.
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— MSR_LASTBRANCH_x_FROM_IP, the layout is simplified, see Table 19-9.

— MSR_LASTBRANCH_x_TO_IP, the layout is the same as Table 19-9.

— MSR_LBR_INFO_x, stores branch prediction flag, TSX info, and elapsed cycle data.
• Size of LBR stack increased to 32. 

Processors based on the Skylake microarchitecture support the same LBR filtering capabilities as described in 
Table 19-13.

Table 19-15.  LBR Stack Size and TOS Pointer Range

19.12.1 MSR_LBR_INFO_x MSR
The layout of each MSR_LBR_INFO_x MSR is shown in Table 19-16.

19.12.2 Streamlined Freeze_LBRs_On_PMI Operation
The FREEZE_LBRS_ON_PMI feature causes the LBRs to be frozen on a hardware request for a PMI. This prevents 
the LBRs from being overwritten by new branches, allowing the PMI handler to examine the control flow that 
preceded the PMI generation. Architectural performance monitoring version 4 and above supports a streamlined 
FREEZE_LBRs_ON_PMI operation for PMI service routine that replaces the legacy FREEZE_LBRs_ON_PMI operation 
(see Section 19.4.7).

While the legacy FREEZE_LBRS_ON_PMI clear the LBR bit in the IA32_DEBUGCTL MSR on a PMI request, the 
streamlined FREEZE_LBRS_ON_PMI will set the LBR_FRZ bit in IA32_PERF_GLOBAL_STATUS. Branches will not 
cause the LBRs to be updated when LBR_FRZ is set. Software can clear LBR_FRZ at the same time as it clears over-
flow bits by setting the LBR_FRZ bit as well as the needed overflow bit when writing to IA32_PERF_GLOBAL_STA-
TUS_RESET MSR.

This streamlined behavior avoids race conditions between software and processor writes to IA32_DEBUGCTL that 
are possible with FREEZE_LBRS_ON_PMI clearing of the LBR enable.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_4EH, 06_5EH 32 0 to 31

Table 19-16.   MSR_LBR_INFO_x 
Bit Field Bit Offset Access Description

Cycle Count 
(saturating)

15:0 R/W Elapsed core clocks since last update to the LBR stack.

Reserved 60:16 R/W Reserved

TSX_ABORT 61 R/W When set, indicates a TSX Abort entry
LBR_FROM: EIP at the time of the TSX Abort
LBR_TO: EIP of the start of HLE region    OR
                EIP of the RTM Abort Handler

IN_TSX 62 R/W When set, indicates the entry occurred in a TSX region.

MISPRED 63 R/W When set, indicates either the target of the branch was mispredicted and/or the 
direction (taken/non-taken) was mispredicted; otherwise, the target branch was 
predicted.
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19.12.3 LBR Behavior and Deep C-State
When MWAIT is used to request a C-state that is numerically higher than C1, then LBR state may be initialized to 
zero depending on optimized “waiting” state that is selected by the processor The affected LBR states include the 
FROM, TO, INFO, LAST_BRANCH, LER, and LBR_TOS registers. The LBR enable bit and LBR_FROZEN bit are not 
affected. The LBR-time of the first LBR record inserted after an exit from such a C-state request will be zero. 

19.13 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PROCESSORS 
BASED ON INTEL NETBURST® MICROARCHITECTURE)

Pentium 4 and Intel Xeon processors based on Intel NetBurst microarchitecture provide the following methods for 
recording taken branches, interrupts, and exceptions:
• Store branch records in the last branch record (LBR) stack MSRs for the most recent taken branches, 

interrupts, and/or exceptions in MSRs. A branch record consist of a branch-from and a branch-to instruction 
address. 

• Send the branch records out on the system bus as branch trace messages (BTMs).
• Log BTMs in a memory-resident branch trace store (BTS) buffer.

To support these functions, the processor provides the following MSRs and related facilities:
• MSR_DEBUGCTLA MSR — Enables last branch, interrupt, and exception recording; single-stepping on taken 

branches; branch trace messages (BTMs); and branch trace store (BTS). This register is named DebugCtlMSR 
in the P6 family processors.

• Debug store (DS) feature flag (CPUID.1:EDX.DS[bit 21]) — Indicates that the processor provides the 
debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident BTS buffer.

• CPL-qualified debug store (DS) feature flag (CPUID.1:ECX.DS-CPL[bit 4]) — Indicates that the 
processor provides a CPL-qualified debug store (DS) mechanism, which allows software to selectively skip 
sending and storing BTMs, according to specified current privilege level settings, into a memory-resident BTS 
buffer.

• IA32_MISC_ENABLE MSR — Indicates that the processor provides the BTS facilities.
• Last branch record (LBR) stack — The LBR stack is a circular stack that consists of four MSRs (MSR_LAST-

BRANCH_0 through MSR_LASTBRANCH_3) for the Pentium 4 and Intel Xeon processor family [CPUID family 
0FH, models 0H-02H]. The LBR stack consists of 16 MSR pairs (MSR_LASTBRANCH_0_FROM_IP through 
MSR_LASTBRANCH_15_FROM_IP and MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_15_TO_IP) 
for the Pentium 4 and Intel Xeon processor family [CPUID family 0FH, model 03H].

• Last branch record top-of-stack (TOS) pointer — The TOS Pointer MSR contains a 2-bit pointer (0-3) to 
the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded for the 
Pentium 4 and Intel Xeon processor family [CPUID family 0FH, models 0H-02H]. This pointer becomes a 4-bit 
pointer (0-15) for the Pentium 4 and Intel Xeon processor family [CPUID family 0FH, model 03H]. See also: 
Table 19-17, Figure 19-12, and Section 19.13.2, “LBR Stack for Processors Based on Intel NetBurst® Microar-
chitecture.”

• Last exception record — See Section 19.13.3, “Last Exception Records.”

19.13.1 MSR_DEBUGCTLA MSR 
The MSR_DEBUGCTLA MSR enables and disables the various last branch recording mechanisms described in the 
previous section. This register can be written to using the WRMSR instruction, when operating at privilege level 0 
or when in real-address mode. A protected-mode operating system procedure is required to provide user access to 
this register. Figure 19-12 shows the flags in the MSR_DEBUGCTLA MSR. The functions of these flags are as 
follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace of 

the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug exception 
being generated) in the last branch record (LBR) stack. Each branch, interrupt, or exception is recorded as a 
64-bit branch record. The processor clears this flag whenever a debug exception is generated (for example, 
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when an instruction or data breakpoint or a single-step trap occurs). See Section 19.13.2, “LBR Stack for 
Processors Based on Intel NetBurst® Microarchitecture.”

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS 
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism 
allows single-stepping the processor on taken branches. See Section 19.4.3, “Single-Stepping on Branches.”

• TR (trace message enable) flag (bit 2) — When set, branch trace messages are enabled. Thereafter, when 
the processor detects a taken branch, interrupt, or exception, it sends the branch record out on the system bus 
as a branch trace message (BTM). See Section 19.4.4, “Branch Trace Messages.”

• BTS (branch trace store) flag (bit 3) — When set, enables the BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 19.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bits 4) — When set, the BTS facilities generate an interrupt when the 
BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 19.4.5, “Branch 
Trace Store (BTS).”

• BTS_OFF_OS (disable ring 0 branch trace store) flag (bit 5) — When set, enables the BTS facilities to 
skip sending/logging CPL_0 BTMs to the memory-resident BTS buffer. See Section 19.13.2, “LBR Stack for 
Processors Based on Intel NetBurst® Microarchitecture.”

• BTS_OFF_USR (disable ring 0 branch trace store) flag (bit 6) — When set, enables the BTS facilities to 
skip sending/logging non-CPL_0 BTMs to the memory-resident BTS buffer. See Section 19.13.2, “LBR Stack for 
Processors Based on Intel NetBurst® Microarchitecture.”

NOTE
The initial implementation of BTS_OFF_USR and BTS_OFF_OS in MSR_DEBUGCTLA is shown in 
Figure 19-12. The BTS_OFF_USR and BTS_OFF_OS fields may be implemented on other model-
specific debug control register at different locations.

See Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 4, for a detailed description of each of the last branch recording MSRs.

19.13.2 LBR Stack for Processors Based on Intel NetBurst® Microarchitecture
The LBR stack is made up of LBR MSRs that are treated by the processor as a circular stack. The TOS pointer 
(MSR_LASTBRANCH_TOS MSR) points to the LBR MSR (or LBR MSR pair) that contains the most recent (last) 
branch record placed on the stack. Prior to placing a new branch record on the stack, the TOS is incremented by 1. 
When the TOS pointer reaches it maximum value, it wraps around to 0. See Table 19-17 and Figure 19-12.

Figure 19-12.  MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors
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Table 19-17.  LBR MSR Stack Size and TOS Pointer Range for the Pentium® 4 and the Intel® Xeon® Processor Family

The registers in the LBR MSR stack and the MSR_LASTBRANCH_TOS MSR are read-only and can be read using the 
RDMSR instruction.

Figure 19-13 shows the layout of a branch record in an LBR MSR (or MSR pair). Each branch record consists of two 
linear addresses, which represent the “from” and “to” instruction pointers for a branch, interrupt, or exception. The 
contents of the from and to addresses differ, depending on the source of the branch:
• Taken branch — If the record is for a taken branch, the “from” address is the address of the branch instruction 

and the “to” address is the target instruction of the branch. 
• Interrupt — If the record is for an interrupt, the “from” address the return instruction pointer (RIP) saved for 

the interrupt and the “to” address is the address of the first instruction in the interrupt handler routine. The RIP 
is the linear address of the next instruction to be executed upon returning from the interrupt handler.

• Exception — If the record is for an exception, the “from” address is the linear address of the instruction that 
caused the exception to be generated and the “to” address is the address of the first instruction in the 
exception handler routine.

Additional information is saved if an exception or interrupt occurs in conjunction with a branch instruction. If a 
branch instruction generates a trap type exception, two branch records are stored in the LBR stack: a branch 
record for the branch instruction followed by a branch record for the exception.

If a branch instruction is immediately followed by an interrupt, a branch record is stored in the LBR stack for the 
branch instruction followed by a record for the interrupt. 

19.13.3 Last Exception Records
The Pentium 4, Intel Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7 
and Intel Atom® processors provide two MSRs (the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that 
duplicate the functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in the P6 family processors. 

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

Family 0FH, Models 0H-02H; MSRs at locations 1DBH-1DEH. 4 0 to 3

Family 0FH, Models; MSRs at locations 680H-68FH. 16 0 to 15

Family 0FH, Model 03H; MSRs at locations 6C0H-6CFH. 16 0 to 15

Figure 19-13.  LBR MSR Branch Record Layout for the Pentium 4 and Intel® Xeon® Processor Family
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The MSR_LER_TO_LIP and MSR_LER_FROM_LIP MSRs contain a branch record for the last branch that the 
processor took prior to an exception or interrupt being generated.

19.14 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™ 
SOLO AND INTEL® CORE™ DUO PROCESSORS)

Intel Core Solo and Intel Core Duo processors provide last branch interrupt and exception recording. This capability 
is almost identical to that found in Pentium 4 and Intel Xeon processors. There are differences in the stack and in 
some MSR names and locations. 

Note the following:
• IA32_DEBUGCTL MSR — Enables debug trace interrupt, debug trace store, trace messages enable, 

performance monitoring breakpoint flags, single stepping on branches, and last branch. IA32_DEBUGCTL MSR 
is located at register address 01D9H. 
See Figure 19-14 for the layout and the entries below for a description of the flags:

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace 
of the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug 
exception being generated) in the last branch record (LBR) stack. For more information, see the “Last 
Branch Record (LBR) Stack” below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS 
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism 
allows single-stepping the processor on taken branches. See Section 19.4.3, “Single-Stepping on 
Branches,” for more information about the BTF flag.

— TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the 
processor detects a taken branch, interrupt, or exception; it sends the branch record out on the system bus 
as a branch trace message (BTM). See Section 19.4.4, “Branch Trace Messages,” for more information 
about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS facilities to log BTMs to a 
memory-resident BTS buffer that is part of the DS save area. See Section 19.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities generate an interrupt when 
the BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 19.4.5, 
“Branch Trace Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — Indicates that the 
processor provides the debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident 
BTS buffer. See Section 19.4.5, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs (MSR_LASTBRANCH_0 through 
MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ address, bits 63-32 hold the ‘to’ address (MSR addresses start 
at 40H). See Figure 19-15.

Figure 19-14.  IA32_DEBUGCTL MSR for Intel® Core™ Solo and Intel® Core™ Duo Processors
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• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 3-bit pointer (bits 2-
0) to the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded. For Intel 
Core Solo and Intel Core Duo processors, this MSR is located at register address 01C9H.

For compatibility, the Intel Core Solo and Intel Core Duo processors provide two 32-bit MSRs (the 
MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate functions of the LastExceptionToIP and Last-
ExceptionFromIP MSRs found in P6 family processors.

For details, see Section 19.12, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based 
on Skylake Microarchitecture,” and Section 2.20, “MSRs In Intel® Core™ Solo and Intel® Core™ Duo Processors,” 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

19.15 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PENTIUM M 
PROCESSORS)

Like the Pentium 4 and Intel Xeon processor family, Pentium M processors provide last branch interrupt and excep-
tion recording. The capability operates almost identically to that found in Pentium 4 and Intel Xeon processors. 
There are differences in the shape of the stack and in some MSR names and locations. Note the following:
• MSR_DEBUGCTLB MSR — Enables debug trace interrupt, debug trace store, trace messages enable, 

performance monitoring breakpoint flags, single stepping on branches, and last branch. For Pentium M 
processors, this MSR is located at register address 01D9H. See Figure 19-16 and the entries below for a 
description of the flags.

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace 
of the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug 
exception being generated) in the last branch record (LBR) stack. For more information, see the “Last 
Branch Record (LBR) Stack” bullet below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS 
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism 
allows single-stepping the processor on taken branches. See Section 19.4.3, “Single-Stepping on 
Branches,” for more information about the BTF flag.

— PBi (performance monitoring/breakpoint pins) flags (bits 5-2) — When these flags are set, the 
performance monitoring/breakpoint pins on the processor (BP0#, BP1#, BP2#, and BP3#) report 
breakpoint matches in the corresponding breakpoint-address registers (DR0 through DR3). The processor 
asserts then deasserts the corresponding BPi# pin when a breakpoint match occurs. When a PBi flag is 
clear, the performance monitoring/breakpoint pins report performance events. Processor execution is not 
affected by reporting performance events.

— TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the 
processor detects a taken branch, interrupt, or exception, it sends the branch record out on the system bus 
as a branch trace message (BTM). See Section 19.4.4, “Branch Trace Messages,” for more information 
about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, enables the BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 19.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities generate an interrupt when 
the BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 19.4.5, 
“Branch Trace Store (BTS),” for a description of this mechanism.

Figure 19-15.  LBR Branch Record Layout for the Intel® Core™ Solo and Intel® Core™ Duo Processor
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• Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — Indicates that the 
processor provides the debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident 
BTS buffer. See Section 19.4.5, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs (MSR_LASTBRANCH_0 through 
MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ address, bits 63-32 hold the ‘to’ address. For Pentium M 
Processors, these pairs are located at register addresses 040H-047H. See Figure 19-17.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 3-bit pointer (bits 2-0) 
to the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded. For Pentium 
M Processors, this MSR is located at register address 01C9H.

For more detail on these capabilities, see Section 19.13.3, “Last Exception Records,” and Section 2.21, “MSRs In 
the Pentium M Processor,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

19.16 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (P6 FAMILY 
PROCESSORS)

The P6 family processors provide five MSRs for recording the last branch, interrupt, or exception taken by the 
processor: DEBUGCTLMSR, LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP. 
These registers can be used to collect last branch records, to set breakpoints on branches, interrupts, and excep-
tions, and to single-step from one branch to the next.

See Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 4, for a detailed description of each of the last branch recording MSRs.

19.16.1 DEBUGCTLMSR Register
The version of the DEBUGCTLMSR register found in the P6 family processors enables last branch, interrupt, and 
exception recording; taken branch breakpoints; the breakpoint reporting pins; and trace messages. This register 
can be written to using the WRMSR instruction, when operating at privilege level 0 or when in real-address mode. 

Figure 19-16.  MSR_DEBUGCTLB MSR for Pentium M Processors

Figure 19-17.  LBR Branch Record Layout for the Pentium M Processor
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A protected-mode operating system procedure is required to provide user access to this register. Figure 19-18 
shows the flags in the DEBUGCTLMSR register for the P6 family processors. The functions of these flags are as 
follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records the source and 

target addresses (in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP 
MSRs) for the last branch and the last exception or interrupt taken by the processor prior to a debug exception 
being generated. The processor clears this flag whenever a debug exception, such as an instruction or data 
breakpoint or single-step trap occurs.

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS 
register as a “single-step on branches” flag. See Section 19.4.3, “Single-Stepping on Branches.”

• PBi (performance monitoring/breakpoint pins) flags (bits 2 through 5) — When these flags are set, 
the performance monitoring/breakpoint pins on the processor (BP0#, BP1#, BP2#, and BP3#) report 
breakpoint matches in the corresponding breakpoint-address registers (DR0 through DR3). The processor 
asserts then deasserts the corresponding BPi# pin when a breakpoint match occurs. When a PBi flag is clear, 
the performance monitoring/breakpoint pins report performance events. Processor execution is not affected by 
reporting performance events.

• TR (trace message enable) flag (bit 6) — When set, trace messages are enabled as described in Section 
19.4.4, “Branch Trace Messages.” Setting this flag greatly reduces the performance of the processor. When 
trace messages are enabled, the values stored in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, 
and LastExceptionFromIP MSRs are undefined.

19.16.2 Last Branch and Last Exception MSRs
The LastBranchToIP and LastBranchFromIP MSRs are 32-bit registers for recording the instruction pointers for the 
last branch, interrupt, or exception that the processor took prior to a debug exception being generated. When a 
branch occurs, the processor loads the address of the branch instruction into the LastBranchFromIP MSR and loads 
the target address for the branch into the LastBranchToIP MSR. 

When an interrupt or exception occurs (other than a debug exception), the address of the instruction that was 
interrupted by the exception or interrupt is loaded into the LastBranchFromIP MSR and the address of the excep-
tion or interrupt handler that is called is loaded into the LastBranchToIP MSR.

The LastExceptionToIP and LastExceptionFromIP MSRs (also 32-bit registers) record the instruction pointers for 
the last branch that the processor took prior to an exception or interrupt being generated. When an exception or 
interrupt occurs, the contents of the LastBranchToIP and LastBranchFromIP MSRs are copied into these registers 
before the to and from addresses of the exception or interrupt are recorded in the LastBranchToIP and LastBranch-
FromIP MSRs.

These registers can be read using the RDMSR instruction.

Note that the values stored in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP 
MSRs are offsets into the current code segment, as opposed to linear addresses, which are saved in last branch 
records for the Pentium 4 and Intel Xeon processors.

Figure 19-18.  DEBUGCTLMSR Register (P6 Family Processors)
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19.16.3 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag in the DEBUGCTLMSR register is set, the processor automatically begins recording branches that 
it takes, exceptions that are generated (except for debug exceptions), and interrupts that are serviced. Each time 
a branch, exception, or interrupt occurs, the processor records the to and from instruction pointers in the Last-
BranchToIP and LastBranchFromIP MSRs. In addition, for interrupts and exceptions, the processor copies the 
contents of the LastBranchToIP and LastBranchFromIP MSRs into the LastExceptionToIP and LastExceptionFromIP 
MSRs prior to recording the to and from addresses of the interrupt or exception.

When the processor generates a debug exception (#DB), it automatically clears the LBR flag before executing the 
exception handler, but does not touch the last branch and last exception MSRs. The addresses for the last branch, 
interrupt, or exception taken are thus retained in the LastBranchToIP and LastBranchFromIP MSRs and the 
addresses of the last branch prior to an interrupt or exception are retained in the LastExceptionToIP, and LastEx-
ceptionFromIP MSRs.

The debugger can use the last branch, interrupt, and/or exception addresses in combination with code-segment 
selectors retrieved from the stack to reset breakpoints in the breakpoint-address registers (DR0 through DR3), 
allowing a backward trace from the manifestation of a particular bug toward its source. Because the instruction 
pointers recorded in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP MSRs are 
offsets into a code segment, software must determine the segment base address of the code segment associated 
with the control transfer to calculate the linear address to be placed in the breakpoint-address registers. The 
segment base address can be determined by reading the segment selector for the code segment from the stack 
and using it to locate the segment descriptor for the segment in the GDT or LDT. The segment base address can 
then be read from the segment descriptor.

Before resuming program execution from a debug-exception handler, the handler must set the LBR flag again to re-
enable last branch and last exception/interrupt recording.

19.17 TIME-STAMP COUNTER
The Intel 64 and IA-32 architectures (beginning with the Pentium processor) define a time-stamp counter mecha-
nism that can be used to monitor and identify the relative time occurrence of processor events. The counter’s archi-
tecture includes the following components:
• TSC flag — A feature bit that indicates the availability of the time-stamp counter. The counter is available in an 

if the function CPUID.1:EDX.TSC[bit 4] = 1.
• IA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and Pentium processors) — The MSR used 

as the counter.
• RDTSC instruction — An instruction used to read the time-stamp counter.
• TSD flag — A control register flag is used to enable or disable the time-stamp counter (enabled if 

CR4.TSD[bit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M, Pentium 4, Intel Xeon, Intel Core 
Solo and Intel Core Duo processors and later processors) is a 64-bit counter that is set to 0 following a RESET of 
the processor. Following a RESET, the counter increments even when the processor is halted by the HLT instruction 
or the external STPCLK# pin. Note that the assertion of the external DPSLP# pin may cause the time-stamp 
counter to stop.

Processor families increment the time-stamp counter differently:
• For Pentium M processors (family [06H], models [09H, 0DH]); for Pentium 4 processors, Intel Xeon processors 

(family [0FH], models [00H, 01H, or 02H]); and for P6 family processors: the time-stamp counter increments 
with every internal processor clock cycle. 
The internal processor clock cycle is determined by the current core-clock to bus-clock ratio. Intel® 
SpeedStep® technology transitions may also impact the processor clock.

• For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and higher]); for Intel Core Solo 
and Intel Core Duo processors (family [06H], model [0EH]); for the Intel Xeon processor 5100 series and Intel 
Core 2 Duo processors (family [06H], model [0FH]); for Intel Core 2 and Intel Xeon processors (family [06H], 
DisplayModel [17H]); for Intel Atom processors (family [06H], DisplayModel [1CH]): the time-stamp counter 
increments at a constant rate. That rate may be set by the maximum core-clock to bus-clock ratio of the 
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processor or may be set by the maximum resolved frequency at which the processor is booted. The maximum 
resolved frequency may differ from the processor base frequency, see Section 21.7.2 for more detail. On 
certain processors, the TSC frequency may not be the same as the frequency in the brand string.
The specific processor configuration determines the behavior. Constant TSC behavior ensures that the duration 
of each clock tick is uniform and supports the use of the TSC as a wall clock timer even if the processor core 
changes frequency. This is the architectural behavior moving forward.

NOTE
To determine average processor clock frequency, Intel recommends the use of performance 
monitoring logic to count processor core clocks over the period of time for which the average is 
required. See Section 21.6.4.5, “Counting Clocks on systems with Intel® Hyper-Threading 
Technology in Processors Based on Intel NetBurst® Microarchitecture,” and https://perfmon-
events.intel.com/ for more information.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a monotonically increasing 
unique value whenever executed, except for a 64-bit counter wraparound. Intel guarantees that the time-stamp 
counter will not wraparound within 10 years after being reset. The period for counter wrap is longer for Pentium 4, 
Intel Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures running at any privilege level and in 
virtual-8086 mode. The TSD flag allows use of this instruction to be restricted to programs and procedures running 
at privilege level 0. A secure operating system would set the TSD flag during system initialization to disable user 
access to the time-stamp counter. An operating system that disables user access to the time-stamp counter should 
emulate the instruction through a user-accessible programming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not necessarily wait until all 
previous instructions have been executed before reading the counter. Similarly, subsequent instructions may begin 
execution before the RDTSC instruction operation is performed.

The RDMSR and WRMSR instructions read and write the time-stamp counter, treating the time-stamp counter as 
an ordinary MSR (address 10H). In the Pentium 4, Intel Xeon, and P6 family processors, all 64-bits of the time-
stamp counter are read using RDMSR (just as with RDTSC). When WRMSR is used to write the time-stamp counter 
on processors before family [0FH], models [03H, 04H]: only the low-order 32-bits of the time-stamp counter can 
be written (the high-order 32 bits are cleared to 0). For family [0FH], models [03H, 04H, 06H]; for family [06H]], 
model [0EH, 0FH]; for family [06H]], DisplayModel [17H, 1AH, 1CH, 1DH]: all 64 bits are writable.

19.17.1 Invariant TSC
The time stamp counter in newer processors may support an enhancement, referred to as invariant TSC. 
Processor’s support for invariant TSC is indicated by CPUID.80000007H:EDX[8]. 

The invariant TSC will run at a constant rate in all ACPI P-, C-. and T-states. This is the architectural behavior 
moving forward. On processors with invariant TSC support, the OS may use the TSC for wall clock timer services 
(instead of ACPI or HPET timers). TSC reads are much more efficient and do not incur the overhead associated with 
a ring transition or access to a platform resource.

19.17.2 IA32_TSC_AUX Register and RDTSCP Support
Processors based on Nehalem microarchitecture provide an auxiliary TSC register, IA32_TSC_AUX that is designed 
to be used in conjunction with IA32_TSC. IA32_TSC_AUX provides a 32-bit field that is initialized by privileged 
software with a signature value (for example, a logical processor ID). 

The primary usage of IA32_TSC_AUX in conjunction with IA32_TSC is to allow software to read the 64-bit time 
stamp in IA32_TSC and signature value in IA32_TSC_AUX with the instruction RDTSCP in an atomic operation. 
RDTSCP returns the 64-bit time stamp in EDX:EAX and the 32-bit TSC_AUX signature value in ECX. The atomicity 
of RDTSCP ensures that no context switch can occur between the reads of the TSC and TSC_AUX values.

Support for RDTSCP is indicated by CPUID.80000001H:EDX[27]. As with RDTSC instruction, non-ring 0 access is 
controlled by CR4.TSD (Time Stamp Disable flag).
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User mode software can use RDTSCP to detect if CPU migration has occurred between successive reads of the TSC. 
It can also be used to adjust for per-CPU differences in TSC values in a NUMA system.

19.17.3 Time-Stamp Counter Adjustment
Software can modify the value of the time-stamp counter (TSC) of a logical processor by using the WRMSR instruc-
tion to write to the IA32_TIME_STAMP_COUNTER MSR (address 10H). Because such a write applies only to that 
logical processor, software seeking to synchronize the TSC values of multiple logical processors must perform these 
writes on each logical processor. It may be difficult for software to do this in a way that ensures that all logical 
processors will have the same value for the TSC at a given point in time.

The synchronization of TSC adjustment can be simplified by using the 64-bit IA32_TSC_ADJUST MSR (address 
3BH). Like the IA32_TIME_STAMP_COUNTER MSR, the IA32_TSC_ADJUST MSR is maintained separately for each 
logical processor. A logical processor maintains and uses the IA32_TSC_ADJUST MSR as follows:
• On RESET, the value of the IA32_TSC_ADJUST MSR is 0.
• If an execution of WRMSR to the IA32_TIME_STAMP_COUNTER MSR adds (or subtracts) value X from the TSC, 

the logical processor also adds (or subtracts) value X from the IA32_TSC_ADJUST MSR.
• If an execution of WRMSR to the IA32_TSC_ADJUST MSR adds (or subtracts) value X from that MSR, the logical 

processor also adds (or subtracts) value X from the TSC.

Unlike the TSC, the value of the IA32_TSC_ADJUST MSR changes only in response to WRMSR (either to the MSR 
itself, or to the IA32_TIME_STAMP_COUNTER MSR). Its value does not otherwise change as time elapses. Software 
seeking to adjust the TSC can do so by using WRMSR to write the same value to the IA32_TSC_ADJUST MSR on 
each logical processor.

Processor support for the IA32_TSC_ADJUST MSR is indicated by CPUID.(EAX=07H, ECX=0H):EBX.TSC_ADJUST 
(bit 1).

19.17.4 Invariant Time-Keeping
The invariant TSC is based on the invariant timekeeping hardware (called Always Running Timer or ART), that runs 
at the core crystal clock frequency. The ratio defined by CPUID leaf 15H expresses the frequency relationship 
between the ART hardware and TSC.

If CPUID.15H:EBX[31:0] != 0 and CPUID.80000007H:EDX[InvariantTSC] = 1, the following linearity relationship 
holds between TSC and the ART hardware:

TSC_Value = (ART_Value * CPUID.15H:EBX[31:0] )/ CPUID.15H:EAX[31:0] + K

Where 'K' is an offset that can be adjusted by a privileged agent1.

When ART hardware is reset, both invariant TSC and K are also reset.

19.18 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) MONITORING 
FEATURES

The Intel Resource Director Technology (Intel RDT) feature set provides a set of monitoring capabilities including 
Cache Monitoring Technology (CMT) and Memory Bandwidth Monitoring (MBM). The Intel® Xeon® processor E5 v3 
family introduced resource monitoring capability in each logical processor to measure specific platform shared 
resource metrics, for example, L3 cache occupancy. The programming interface for these monitoring features is 
described in this section. Two features within the monitoring feature set provided are described - Cache Monitoring 
Technology (CMT) and Memory Bandwidth Monitoring.

1. IA32_TSC_ADJUST MSR and the TSC-offset field in the VM execution controls of VMCS are some of the common interfaces that priv-
ileged software can use to manage the time stamp counter for keeping time
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Cache Monitoring Technology (CMT) allows an Operating System, Hypervisor or similar system management agent 
to determine the usage of cache by applications running on the platform. The initial implementation is directed at 
L3 cache monitoring (currently the last level cache in most server platforms).   

Memory Bandwidth Monitoring (MBM), introduced in the Intel® Xeon® processor E5 v4 family, builds on the CMT 
infrastructure to allow monitoring of bandwidth from one level of the cache hierarchy to the next - in this case 
focusing on the L3 cache, which is typically backed directly by system memory. As a result of this implementation, 
memory bandwidth can be monitored.

The monitoring mechanisms described provide the following key shared infrastructure features:
• A mechanism to enumerate the presence of the monitoring capabilities within the platform (via a CPUID feature 

bit).
• A framework to enumerate the details of each sub-feature (including CMT and MBM, as discussed later, via 

CPUID leaves and sub-leaves). 
• A mechanism for the OS or Hypervisor to indicate a software-defined ID for each of the software threads (appli-

cations, virtual machines, etc.) that are scheduled to run on a logical processor. These identifiers are known as 
Resource Monitoring IDs (RMIDs). 

• Mechanisms in hardware to monitor cache occupancy and bandwidth statistics as applicable to a given product 
generation on a per software-id basis. 

• Mechanisms for the OS or Hypervisor to read back the collected metrics such as L3 occupancy or Memory 
Bandwidth for a given software ID at any point during runtime.

19.18.1 Overview of Cache Monitoring Technology and Memory Bandwidth Monitoring
The shared resource monitoring features described in this chapter provide a layer of abstraction between applica-
tions and logical processors through the use of Resource Monitoring IDs (RMIDs). Each logical processor in the 
system can be assigned an RMID independently, or multiple logical processors can be assigned to the same RMID 
value (e.g., to track an application with multiple threads). For each logical processor, only one RMID value is active 
at a time. This is enforced by the IA32_PQR_ASSOC MSR, which specifies the active RMID of a logical processor. 
Writing to this MSR by software changes the active RMID of the logical processor from an old value to a new value.

The underlying platform shared resource monitoring hardware tracks cache metrics such as cache utilization and 
misses as a result of memory accesses according to the RMIDs and reports monitored data via a counter register 
(IA32_QM_CTR). The specific event types supported vary by generation and can be enumerated via CPUID. To read 
back monitored data, software configures an event selection MSR (IA32_QM_EVTSEL) to specify which metric is to 
be reported and the specific RMID for which the data should be returned. 

Processor support of the monitoring framework and sub-features such as CMT is reported via the CPUID instruc-
tion. The resource type available to the monitoring framework is enumerated via a new leaf function in CPUID. 
Reading and writing to the monitoring MSRs requires the RDMSR and WRMSR instructions.

The Cache Monitoring Technology feature set provides the following unique mechanisms:
• A mechanism to enumerate the presence and details of the CMT feature as applicable to a given level of the 

cache hierarchy, independent of other monitoring features. 
• CMT-specific event codes to read occupancy for a given level of the cache hierarchy.

The Memory Bandwidth Monitoring feature provides the following unique mechanisms:
• A mechanism to enumerate the presence and details of the MBM feature as applicable to a given level of the 

cache hierarchy, independent of other monitoring features.
• MBM-specific event codes to read bandwidth out to the next level of the hierarchy and various sub-event codes 

to read more specific metrics as discussed later (e.g., total bandwidth vs. bandwidth only from local memory 
controllers on the same package).

19.18.2 Enabling Monitoring: Usage Flow
Figure 19-19 illustrates the key steps for OS/VMM to detect support of shared resource monitoring features such 
as CMT and enable resource monitoring for available resource types and monitoring events.
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19.18.3 Enumeration and Detecting Support of Cache Monitoring Technology and Memory 
Bandwidth Monitoring

Software can query processor support of shared resource monitoring features capabilities by executing CPUID 
instruction with EAX = 07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] reports 1, the 
processor provides the following programming interfaces for shared resource monitoring, including Cache Moni-
toring Technology:
• CPUID leaf function 0FH (Shared Resource Monitoring Enumeration leaf) provides information on available 

resource types (see Section 19.18.4), and monitoring capabilities for each resource type (see Section 19.18.5). 
Note CMT and MBM capabilities are enumerated as separate event vectors using shared enumeration infra-
structure under a given resource type.

• IA32_PQR_ASSOC.RMID: The per-logical-processor MSR, IA32_PQR_ASSOC, that OS/VMM can use to assign 
an RMID to each logical processor, see Section 19.18.6.

• IA32_QM_EVTSEL: This MSR specifies an Event ID (EvtID) and an RMID which the platform uses to look up and 
provide monitoring data in the monitoring counter, IA32_QM_CTR, see Section 19.18.7. 

• IA32_QM_CTR: This MSR reports monitored resource data when available along with bits to allow software to 
check for error conditions and verify data validity. 

Software must follow the following sequence of enumeration to discover Cache Monitoring Technology capabilities:

1. Execute CPUID with EAX=0 to discover the “cpuid_maxLeaf” supported in the processor;

2. If cpuid_maxLeaf >= 7, then execute CPUID with EAX=7, ECX= 0 to verify CPUID.(EAX=07H, 
ECX=0):EBX.PQM[bit 12] is set;

3. If CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1, then execute CPUID with EAX=0FH, ECX= 0 to query 
available resource types that support monitoring;

4. If CPUID.(EAX=0FH, ECX=0):EDX.L3[bit 1] = 1, then execute CPUID with EAX=0FH, ECX= 1 to query the 
specific capabilities of L3 Cache Monitoring Technology (CMT) and Memory Bandwidth Monitoring.

5. If CPUID.(EAX=0FH, ECX=0):EDX reports additional resource types supporting monitoring, then execute 
CPUID with EAX=0FH, ECX set to a corresponding resource type ID (ResID) as enumerated by the bit position 
of CPUID.(EAX=0FH, ECX=0):EDX.

19.18.4 Monitoring Resource Type and Capability Enumeration
CPUID leaf function 0FH (Shared Resource Monitoring Enumeration leaf) provides one sub-leaf (sub-function 0) 
that reports shared enumeration infrastructure, and one or more sub-functions that report feature-specific 
enumeration data:
• Monitoring leaf sub-function 0 enumerates available resources that support monitoring, i.e., executing CPUID 

with EAX=0FH and ECX=0H. In the initial implementation, L3 cache is the only resource type available. Each 

Figure 19-19.  Platform Shared Resource Monitoring Usage Flow
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supported resource type is represented by a bit in CPUID.(EAX=0FH, ECX=0):EDX[31:1]. The bit position 
corresponds to the sub-leaf index (ResID) that software must use to query details of the monitoring capability 
of that resource type (see Figure 19-21 and Figure 19-22). Reserved bits of CPUID.(EAX=0FH, 
ECX=0):EDX[31:2] correspond to unsupported sub-leaves of the CPUID.0FH leaf. Additionally, 
CPUID.(EAX=0FH, ECX=0H):EBX reports the highest RMID value of any resource type that supports 
monitoring in the processor.

19.18.5 Feature-Specific Enumeration
Each additional sub-leaf of CPUID.(EAX=0FH, ECX=ResID) enumerates the specific details for software to program 
monitoring MSRs using the resource type associated with the given ResID. 

Note that in future Monitoring implementations the meanings of the returned registers may vary in other sub-
leaves that are not yet defined. The registers will be specified and defined on a per-ResID basis.

CPUID.(EAX=0FH, ECX=1H).EAX[7:0]: Encode counter width as offset from 24b. See Section 19.18.5.2 for details. 
Bits 31:11 of EAX are reserved.

Figure 19-20.  CPUID.(EAX=0FH, ECX=0H) Monitoring Resource Type Enumeration

Figure 19-21.  L3 Cache Monitoring Capability Enumeration Data (CPUID.(EAX=0FH, ECX=1H) )
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CPUID.(EAX=0FH, ECX=1H).EAX[bit 8]: If 1, indicates the presence of an overflow bit in the IA32_QM_CTR MSR. 
See Section 19.18.5.2 for details. Bits 31:11 of EAX are reserved.

CPUID.(EAX=0FH, ECX=1H).EAX[bit 9]: If 1, indicates the presence of non-CPU agent Intel RDT CMT support. See 
Section 19.20 for details. Bits 31:11 of EAX are reserved.

CPUID.(EAX=0FH, ECX=1H).EAX[bit 10]:If 1, indicates the presence of non-CPU agent Intel RDT MBM support. 
See Section 19.20 for details. Bits 31:11 of EAX are reserved.

For each supported Cache Monitoring resource type, hardware supports only a finite number of RMIDs. 
CPUID.(EAX=0FH, ECX=1H).ECX enumerates the highest RMID value that can be monitored with this resource 
type, see Figure 19-21. 

CPUID.(EAX=0FH, ECX=1H).EDX specifies a bit vector that is used to look up the EventID (See Figure 19-22 and 
Table 19-18) that software must program with IA32_QM_EVTSEL in order to retrieve event data. After software 
configures IA32_QMEVTSEL with the desired RMID and EventID, it can read the resulting data from IA32_QM_CTR. 
The raw numerical value reported from IA32_QM_CTR can be converted to the final value (occupancy in bytes or 
bandwidth in bytes per sampled time period) by multiplying the counter value by the value from CPUID.(EAX=0FH, 
ECX=1H).EBX, see Figure 19-21. 

19.18.5.1  Cache Monitoring Technology
On processors for which Cache Monitoring Technology supports the L3 cache occupancy event, CPUID.(EAX=0FH, 
ECX=1H).EDX returns with bit 0 set. The corresponding event ID is shown in Table 19-18. The L3 occupancy data 
accumulated in the IA32_QM_CTR MSR can be converted to total occupancy (in bytes) by multiplying with 
CPUID.(EAX=0FH, ECX=1H).EBX.

Event codes for Cache Monitoring Technology are discussed in the next section.

19.18.5.2  Memory Bandwidth Monitoring
On processors that monitoring supports Memory Bandwidth Monitoring using ResID=1 (L3), two additional bits are 
defined in the vector at CPUID.(EAX=0FH, ECX=1H).EDX:
• CPUID.(EAX=0FH, ECX=1H).EDX[bit 1]: indicates the L3 total external bandwidth monitoring event is 

supported if set. This event monitors the L3 total external bandwidth to the next level of the cache hierarchy, 
including all demand and prefetch misses from the L3 to the next hierarchy of the memory system. In most 
platforms, this represents memory bandwidth.

• CPUID.(EAX=0FH, ECX=1H).EDX[bit 2]: indicates L3 local memory bandwidth monitoring event is supported if 
set. This event monitors the L3 external bandwidth satisfied by the local memory. In most platforms that 
support this event, L3 requests are likely serviced by a memory system with non-uniform memory architecture. 
This allows bandwidth to off-package memory resources to be tracked by subtracting local from total bandwidth 
(for instance, bandwidth over QPI to a memory controller on another physical processor could be tracked by 
subtraction). Note that it is not possible to read the local and total bandwidth atomically; multiple operations 
are needed. Because of this, it is possible for the counters to change in between the two reads.

The corresponding Event ID is shown in Table 19-18. The L3 bandwidth data accumulated in IA32_QM_CTR can be 
converted to total bandwidth (in bytes) using CPUID.(EAX=0FH, ECX=1H).EBX.

Figure 19-22.  L3 Cache Monitoring Capability Enumeration Event Type Bit Vector (CPUID.(EAX=0FH, ECX=1H) )
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Table 19-18.  Monitoring Supported Event IDs

A field is added to CPUID to enumerate the MBM counter width in platforms that support the extensible MBM 
counter width feature.
• CPUID.(EAX=0FH, ECX=1H).EAX[7:0]: Encode counter width as offset from 24b in bits[7:0]. In EAX bits 7:0, 

the counter width is encoded as an offset from 24b. A value of zero in this field means 24-bit counters are 
supported. A value of 8 indicates that 32-bit counters are supported, as in the 3rd generation Intel Xeon 
Scalable Processor Family. With this enumerable counter width, the requirement that software polls at 1Hz is 
removed. Software may poll at a varying rate with a reduced risk of rollover. Under typical conditions, rollover 
will likely require hundreds of seconds (though this value is not explicitly specified and may vary and decrease 
in future processor generations as memory bandwidths increase). Suppose software seeks to ensure that 
rollover does not occur more than once between samples. In that case, sampling at 1Hz while consuming the 
enumerated counter widths' worth of data will provide this guarantee for a specific platform and counter width 
under all conditions.

• CPUID.(EAX=0FH, ECX=1H).EAX[8]: Enumeration of the presence of an overflow bit in the IA32_QM_CTR MSR 
via EAX bit[8]. Software that uses the MBM event retrieval MSR interface should be updated to comprehend 
this new format, which enables up to 62-bit MBM counters to be provided by future platforms. Higher-level 
software that consumes the resulting bandwidth values is not expected to be affected. An overflow bit is 
defined in the IA32_QM_CTR MSR, bit 61, if CPUID.(EAX=0FH, ECX=1H).EAX[bit 8] is set. This rollover bit will 
be set on overflow of the MBM counters and reset upon read. Current processors do not support this capability.

19.18.6 Monitoring Resource RMID Association
After Monitoring and sub-features have been enumerated, software can begin using the monitoring features. The 
first step is to associate a given software thread (or multiple threads as part of an application, VM, group of appli-
cations or other abstraction) with an RMID. 

Note that the process of associating an RMID with a given software thread is the same for all shared resource moni-
toring features (CMT, MBM), and a given RMID number has the same meaning from the viewpoint of any logical 
processors in a package. Stated another way, a thread may be associated in a 1:1 mapping with an RMID, and that 
RMID may allow cache occupancy, memory bandwidth information or other monitoring data to be read back later 
with monitoring event codes (retrieving data is discussed in a previous section). 

The association of an application thread with an RMID requires an OS to program the per-logical-processor MSR 
IA32_PQR_ASSOC at context swap time (updates may also be made at any other arbitrary points during program 
execution such as application phase changes). The IA32_PQR_ASSOC MSR specifies the active RMID that moni-
toring hardware will use to tag internal operations, such as L3 cache requests. The layout of the MSR is shown in 
Figure 19-23. Software specifies the active RMID to monitor in the IA32_PQR_ASSOC.RMID field. The width of the 
RMID field can vary from one implementation to another, and is derived from Ceil (LOG2 ( 1 + CPUID.(EAX=0FH, 
ECX=0):EBX[31:0])). The value of IA32_PQR_ASSOC after power-on is 0.

Event Type Event ID Context

L3 Cache Occupancy 01H Cache Monitoring Technology

L3 Total External Bandwidth 02H MBM

L3 Local External Bandwidth 03H MBM

Reserved All other event codes N/A

Figure 19-23.  IA32_PQR_ASSOC MSR
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In the initial implementation, the width of the RMID field is up to 10 bits wide, zero-referenced and fully encoded. 
However, software must use CPUID to query the maximum RMID supported by the processor. If a value larger than 
the maximum RMID is written to IA32_PQR_ASSOC.RMID, a #GP(0) fault will be generated.

RMIDs have a global scope within the physical package- if an RMID is assigned to one logical processor then the 
same RMID can be used to read multiple thread attributes later (for example, L3 cache occupancy or external 
bandwidth from the L3 to the next level of the cache hierarchy). In a multiple LLC platform the RMIDs are to be 
reassigned by the OS or VMM scheduler when an application is migrated across LLCs. 

Note that in a situation where Monitoring supports multiple resource types, some upper range of RMIDs (e.g., RMID 
31) may only be supported by one resource type but not by another resource type. 

19.18.7 Monitoring Resource Selection and Reporting Infrastructure
The reporting mechanism for Cache Monitoring Technology and other related features is architecturally exposed as 
an MSR pair that can be programmed and read to measure various metrics such as the L3 cache occupancy (CMT) 
and bandwidths (MBM) depending on the level of Monitoring support provided by the platform. Data is reported 
back on a per-RMID basis. These events do not trigger based on event counts or trigger APIC interrupts (e.g., no 
Performance Monitoring Interrupt occurs based on counts). Rather, they are used to sample counts explicitly. 

The MSR pair for the shared resource monitoring features (CMT, MBM) is separate from and not shared with archi-
tectural Perfmon counters, meaning software can use these monitoring features simultaneously with the Perfmon 
counters. 

Access to the aggregated monitoring information is accomplished through the following programmable monitoring 
MSRs:
• IA32_QM_EVTSEL: This MSR provides a role similar to the event select MSRs for programmable performance 

monitoring described in Chapter 18. The simplified layout of the MSR is shown in Figure 19-24. 
IA32_QM_EVTSEL.EvtID (bits 7:0) specifies an event code of a supported resource type for hardware to report 
monitored data associated with IA32_QM_EVTSEL.RMID (bits 41:32). Software can configure 
IA32_QM_EVTSEL.RMID with any RMID that is active within the physical processor. The width of 
IA32_QM_EVTSEL.RMID matches that of IA32_PQR_ASSOC.RMID. Supported event codes for the 
IA32_QM_EVTSEL register are shown in Table 19-18. Note that valid event codes may not necessarily map 
directly to the bit position used to enumerate support for the resource via CPUID. 
Software can program an RMID / Event ID pair into the IA32_QM_EVTSEL MSR bit field to select an RMID to 
read a particular counter for a given resource. The currently supported list of Monitoring Event IDs is discussed 
in Section 19.18.5, which covers feature-specific details.
Thread access to the IA32_QM_EVTSEL and IA32_QM_CTR MSR pair should be serialized (that is, treated as a 
critical section under lock) to avoid situations where one thread changes the RMID/EvtID just before another 
thread reads monitoring data from IA32_QM_CTR.

• IA32_QM_CTR: This MSR reports monitored data when available. It contains three bit fields. If software 
configures an unsupported RMID or event type in IA32_QM_EVTSEL, then IA32_QM_CTR.Error (bit 63) will be 
set, indicating there is no valid data to report. If IA32_QM_CTR.Unavailable (bit 62) is set, it indicates 
monitored data for the RMID is not available, and IA32_QM_CTR.data (bits 61:0) should be ignored. Therefore, 
IA32_QM_CTR.data (bits 61:0) is valid only if bits 63 and 62 are both clear. The IA32_QM_CTR.Overflow (bit 
61) is present if CPUID.(EAX = 0FH, ECX=1):EAX[bit 8] is set. This bit is set on overflow of the MBM counters 
and will reset upon read. For Cache Monitoring Technology, software can convert IA32_QM_CTR.data into cache 
occupancy or bandwidth metrics expressed in bytes by multiplying with the conversion factor from 
CPUID.(EAX=0FH, ECX=1H).EBX.
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19.18.8 Monitoring Programming Considerations
Figure 19-25 illustrates how system software can program IA32_QOSEVTSEL and IA32_QM_CTR to perform 
resource monitoring.

Though the field provided in IA32_QM_CTR allows for up to 62 bits of data to be returned, often a subset of bits are 
used. With Cache Monitoring Technology for instance, the number of bits used is the base-two logarithm of the 
total cache size divided by the Upscaling Factor from CPUID.

In Memory Bandwidth Monitoring, the initial counter size is 24 bits, and retrieving the value at 1Hz or faster is suffi-
cient to ensure at most one rollover per sampling period. Any changes to counter width are enumerated to soft-
ware; see Section 19.18.5.2 for details.

19.18.8.1  Monitoring Dynamic Configuration 
Both the IA32_QM_EVTSEL and IA32_PQR_ASSOC registers are accessible and modifiable at any time during 
execution using RDMSR/WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated 
if any of the following conditions occur:
• A reserved bit is modified,

Figure 19-24.  IA32_QM_EVTSEL and IA32_QM_CTR MSRs

Figure 19-25.  Software Usage of Cache Monitoring Resources
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• An RMID exceeding the maximum RMID is used.

19.18.8.2  Monitoring Operation With Power Saving Features
Some advanced power management features such as deep package C-states may shrink the L3 cache and cause 
CMT occupancy count to be reduced. MBM bandwidth counts may increase due to flushing cached data out of L3.

19.18.8.3  Monitoring Operation with Other Operating Modes
The states in IA32_PQR_ASSOC and monitoring counter are unmodified across an SMI delivery. Thus, the execu-
tion of SMM handler code and SMM handler’s data can manifest as spurious contribution in the monitored data. 

It is possible for an SMM handler to minimize the impact on of spurious contribution in the QOS monitoring counters 
by reserving a dedicated RMID for monitoring the SMM handler. Such an SMM handler can save the previously 
configured QOS Monitoring state immediately upon entering SMM, and restoring the QOS monitoring state back to 
the prev-SMM RMID upon exit.

19.18.8.4  Monitoring Operation with RAS Features
In general, the Reliability, Availability, and Serviceability (RAS) features present in Intel Platforms are not expected 
to significantly affect shared resource monitoring counts. In cases where software RAS features cause memory 
copies or cache accesses, these may be tracked and may influence the shared resource monitoring counter values.

19.19 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) ALLOCATION 
FEATURES

The Intel Resource Director Technology (Intel RDT) feature set provides a set of allocation (resource control) capa-
bilities including Cache Allocation Technology (CAT) and Code and Data Prioritization (CDP). The Intel Xeon 
processor E5 v4 family (and a subset of communication-focused processors in the Intel Xeon E5 v3 family) intro-
duce capabilities to configure and make use of the Cache Allocation Technology (CAT) mechanisms on the L3 cache. 
Certain Intel Atom processors also provide support for control over the L2 cache, with capabilities as described 
below. The programming interface for Cache Allocation Technology and for the more general allocation capabilities 
are described in the rest of this chapter. The CAT and CDP capabilities, where architecturally supported, may be 
detected and enumerated in software using the CPUID instruction, as described in this chapter.

The Intel Xeon Scalable Processor Family introduces the Memory Bandwidth Allocation (MBA) feature which 
provides indirect control over the memory bandwidth available to CPU cores, and is discussed later in this chapter.

19.19.1 Introduction to Cache Allocation Technology (CAT)
Cache Allocation Technology enables an Operating System (OS), Hypervisor /Virtual Machine Manager (VMM) or 
similar system service management agent to specify the amount of cache space into which an application can fill 
(as a hint to hardware - certain features such as power management may override CAT settings). Specialized user-
level implementations with minimal OS support are also possible, though not necessarily recommended (see notes 
below for OS/Hypervisor with respect to ring 3 software and virtual guests). Depending on the processor family, L2 
or L3 cache allocation capability may be provided, and the technology is designed to scale across multiple cache 
levels and technology generations.

Software can determine which levels are supported in a given platform programmatically using CPUID as described 
in the following sections.

The CAT mechanisms defined in this document provide the following key features:
• A mechanism to enumerate platform Cache Allocation Technology capabilities and available resource types that 

provides CAT control capabilities. For implementations that support Cache Allocation Technology, CPUID 
provides enumeration support to query which levels of the cache hierarchy are supported and specific CAT 
capabilities, such as the max allocation bitmask size.
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• A mechanism for the OS or Hypervisor to configure the amount of a resource available to a particular Class of 
Service via a list of allocation bitmasks.

• Mechanisms for the OS or Hypervisor to signal the Class of Service to which an application belongs.
• Hardware mechanisms to guide the LLC fill policy when an application has been designated to belong to a 

specific Class of Service.

Note that for many usages, an OS or Hypervisor may not want to expose Cache Allocation Technology mechanisms 
to Ring3 software or virtualized guests.

The Cache Allocation Technology feature enables more cache resources (i.e., cache space) to be made available for 
high priority applications based on guidance from the execution environment as shown in Figure 19-26. The archi-
tecture also allows dynamic resource reassignment during runtime to further optimize the performance of the high 
priority application with minimal degradation to the low priority app. Additionally, resources can be rebalanced for 
system throughput benefit across uses cases of OSes, VMMs, containers, and other scenarios by managing the 
CPUID and MSR interfaces. This section describes the hardware and software support required in the platform 
including what is required of the execution environment (i.e., OS/VMM) to support such resource control. Note that 
in Figure 19-26 the L3 Cache is shown as an example resource.

19.19.2 Cache Allocation Technology Architecture
The fundamental goal of Cache Allocation Technology is to enable resource allocation based on application priority 
or Class of Service (CLOS). The processor exposes a set of Classes of Service into which applications (or individual 
threads) can be assigned. Cache allocation for the respective applications or threads is then restricted based on the 
class with which they are associated. Each Class of Service can be configured using capacity bitmasks (CBMs) 
which represent capacity and indicate the degree of overlap and isolation between classes. For each logical 
processor there is a register exposed (referred to here as the IA32_PQR_ASSOC MSR or PQR) to allow the OS/VMM 
to specify a CLOS when an application, thread or VM is scheduled. 

The usage of Classes of Service (CLOS) are consistent across resources and a CLOS may have multiple resource 
control attributes attached, which reduces software overhead at context swap time. Rather than adding new types 
of CLOS tags per resource for instance, the CLOS management overhead is constant. Cache allocation for the indi-
cated application/thread/container/VM is then controlled automatically by the hardware based on the class and the 
bitmask associated with that class. Bitmasks are configured via the IA32_resourceType_MASK_n MSRs, where 
resourceType indicates a resource type (e.g., “L3” for the L3 cache) and “n” indicates a CLOS number. 

The basic ingredients of Cache Allocation Technology are as follows:
• An architecturally exposed mechanism using CPUID to indicate whether CAT is supported, and what resource 

types are available which can be controlled.
• For each available resourceType, CPUID also enumerates the total number of Classes of Services and the length 

of the capacity bitmasks that can be used to enforce cache allocation to applications on the platform.
• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to configure the behavior 

of different classes of service using the bitmasks available.

Figure 19-26.  Cache Allocation Technology Enables Allocation of More Resources to High Priority Applications
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• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to assign a CLOS to an 
executing software thread (i.e., associating the active CR3 of a logical processor with the CLOS in 
IA32_PQR_ASSOC). 

• Implementation-dependent mechanisms to indicate which CLOS is associated with a memory access and to 
enforce the cache allocation on a per CLOS basis.

A capacity bitmask (CBM) provides a hint to the hardware indicating the cache space an application should be 
limited to as well as providing an indication of overlap and isolation in the CAT-capable cache from other applica-
tions contending for the cache. The bit length of the capacity mask available generally depends on the configuration 
of the cache and is specified in the enumeration process for CAT in CPUID (this may vary between models in a 
processor family as well). Similarly, other parameters such as the number of supported CLOS may vary for each 
resource type, and these details can be enumerated via CPUID. 

Sample cache capacity bitmasks for a bit length of 8 are shown in Figure 19-27. Note that all (and only) contiguous 
'1' combinations are allowed (e.g., FFFFH, 0FF0H, 003CH, etc.), unless otherwise non-contiguous capacity bitmask 
support is specified in CPUID enumeration for the resource type. Attempts to program a value without contiguous 
'1's (including zero) will result in a general protection fault (#GP(0)). It is generally expected that in way-based 
implementations, one capacity mask bit corresponds to some number of ways in cache, but the specific mapping is 
implementation-dependent. In all cases, a mask bit set to '1' specifies that a particular Class of Service can allocate 
into the cache subset represented by that bit. A value of '0' in a mask bit specifies that a Class of Service cannot 
allocate into the given cache subset. In general, allocating more cache to a given application is usually beneficial to 
its performance. 

Figure 19-27 also shows three examples of sets of Cache Capacity Bitmasks. For simplicity these are represented 
as 8-bit vectors, though this may vary depending on the implementation and how the mask is mapped to the avail-
able cache capacity. The first example shows the default case where all 4 Classes of Service (the total number of 
CLOS are implementation-dependent) have full access to the cache. The second case shows an overlapped case, 

Figure 19-27.  Examples of Cache Capacity Bitmasks
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which would allow some lower-priority threads to share cache space with the highest priority threads. The third 
case shows various non-overlapped partitioning schemes. As a matter of software policy for extensibility, CLOS0 
should typically be considered and configured as the highest priority CLOS, followed by CLOS1, and so on, though 
there is no hardware restriction enforcing this mapping. When the system boots all threads are initialized to 
CLOS0, which has full access to the cache by default.

Though the representation of the CBMs looks similar to a way-based mapping they are independent of any specific 
enforcement implementation (e.g., way partitioning.) Rather, this is a convenient manner to represent capacity, 
overlap, and isolation of cache space. For example, executing a POPCNT instruction (population count of set bits) 
on the capacity bitmask can provide the fraction of cache space that a class of service can allocate into. In addition 
to the fraction, the exact location of the bits also shows whether the class of service overlaps with other classes of 
service or is entirely isolated in terms of cache space used. 

Figure 19-28 shows how the Cache Capacity Bitmasks and the per-logical-processor Class of Service are logically 
used to enable Cache Allocation Technology. All (and only) contiguous 1's in the CBM are permitted, unless other-
wise non-contiguous capacity bitmask support is specified in CPUID enumeration for the resource type. The length 
of a CBM may vary from resource to resource or between processor generations and can be enumerated using 
CPUID. From the available mask set and based on the goals of the OS/VMM (shared or isolated cache, etc.) 
bitmasks are selected and associated with different classes of service. For the available Classes of Service the asso-
ciated CBMs can be programmed via the global set of CAT configuration registers (in the case of L3 CAT, via the 
IA32_L3_MASK_n MSRs, where “n” is the Class of Service, starting from zero). In all architectural implementations 
supporting CPUID it is possible to change the CBMs dynamically, during program execution, unless stated other-
wise by Intel. 

The currently running application's Class of Service is communicated to the hardware through the per-logical-
processor PQR MSR (IA32_PQR_ASSOC MSR). When the OS schedules an application thread on a logical processor, 
the application thread is associated with a specific CLOS (i.e., the corresponding CLOS in the PQR) and all requests 
to the CAT-capable resource from that logical processor are tagged with that CLOS (in other words, the application 
thread is configured to belong to a specific CLOS). The cache subsystem uses this tagged request information to 
enforce QoS. The capacity bitmask may be mapped into a way bitmask (or a similar enforcement entity based on 
the implementation) at the cache before it is applied to the allocation policy. For example, the capacity bitmask can 

Figure 19-28.  Class of Service and Cache Capacity Bitmasks
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be an 8-bit mask and the enforcement may be accomplished using a 16-way bitmask for a cache enforcement 
implementation based on way partitioning.

The following sections describe extensions of CAT such as Code and Data Prioritization (CDP), followed by details 
on specific features such as L3 CAT, L3 CDP, L2 CAT, and L2 CDP. Depending on the specific processor a mix of 
features may be supported, and CPUID provides enumeration capabilities to enable software to dynamically detect 
the set of supported features. 

19.19.3 Code and Data Prioritization (CDP) Technology
Code and Data Prioritization Technology is an extension of CAT. CDP enables isolation and separate prioritization of 
code and data fetches to the L2 or L3 cache in a software configurable manner, depending on hardware support, 
which can enable workload prioritization and tuning of cache capacity to the characteristics of the workload. CDP 
extends Cache Allocation Technology (CAT) by providing separate code and data masks per Class of Service 
(CLOS). Support for the L2 CDP feature and the L3 CDP features are separately enumerated (via CPUID) and sepa-
rately controlled (via remapping the L2 CAT MSRs or L3 CAT MSRs respectively). Section 19.19.6.3 and Section 
19.19.7 provide details on enumerating, controlling, and enabling L3 and L2 CDP respectively, while this section 
provides a general overview.

The L3 CDP feature was first introduced on the Intel Xeon E5 v4 family of server processors, as an extension to L3 
CAT. The L2 CDP feature is first introduced on future Intel Atom family processors, as an extension to L2 CAT.

By default, CDP is disabled on the processor. If the CAT MSRs are used without enabling CDP, the processor oper-
ates in a traditional CAT-only mode. When CDP is enabled:
• The CAT mask MSRs are re-mapped into interleaved pairs of mask MSRs for data or code fetches (see 

Figure 19-29).
• The range of CLOS for CAT is re-indexed, with the lower-half of the CLOS range available for CDP. 

Using the CDP feature, virtual isolation between code and data can be configured on the L2 or L3 cache if desired, 
similar to how some processor cache levels provide separate L1 data and L1 instruction caches. 

Like the CAT feature, CDP may be dynamically configured by privileged software at any point during normal system 
operation, including dynamically enabling or disabling the feature provided that certain software configuration 
requirements are met (see Section 19.19.5). 

An example of the operating mode of CDP is shown in Figure 19-29. Shown at the top are traditional CAT usage 
models where capacity masks map 1:1 with a CLOS number to enable control over the cache space which a given 
CLOS (and thus applications, threads or VMs) may occupy. Shown at the bottom are example mask configurations 
where CDP is enabled, and each CLOS number maps 1:2 to two masks, one for code and one for data. This enables 
code and data to be either overlapped or isolated to varying degrees either globally or on a per-CLOS basis, 
depending on application and system needs.
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When CDP is enabled, the existing mask space for CAT-only operation is split. As an example if the system supports 
16 CAT-only CLOS, when CDP is enabled the same MSR interfaces are used, however half of the masks correspond 
to code, half correspond to data, and the effective number of CLOS is reduced by half. Code/Data masks are 
defined per-CLOS and interleaved in the MSR space as described in subsequent sections.

In cases where CPUID exposes a non-even number of supported Classes of Service for the CAT or CDP features, 
software using CDP should use the lower matched pairs of code/data masks, and any upper unpaired masks should 
not be used. As an example, if CPUID exposes 5 CLOS, when CDP is enabled then two code/data pairs are available 
(masks 0/1 for CLOS[0] data/code and masks 2/3 for CLOS[1] data/code), however the upper un-paired mask 
should not be used (mask 4 in this case) or undefined behavior may result.

19.19.4 Enabling Cache Allocation Technology Usage Flow
Figure 19-30 illustrates the key steps for OS/VMM to detect support of Cache Allocation Technology and enable 
priority-based resource allocation for a CAT-capable resource.

Figure 19-29.  Code and Data Capacity Bitmasks of CDP

Figure 19-30.  Cache Allocation Technology Usage Flow
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Enumeration and configuration of L2 CAT is similar to L3 CAT, however CPUID details and MSR addresses differ. 
Common CLOS are used across the features.

19.19.4.1  Enumeration and Detection Support of Cache Allocation Technology
Software can query processor support of CAT capabilities by executing CPUID instruction with EAX = 07H, ECX = 
0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQE[bit 15] reports 1, the processor supports software control over 
shared processor resources. Software must use CPUID leaf 10H to enumerate additional details of available 
resource types, classes of services and capability bitmasks. The programming interfaces provided by Cache Alloca-
tion Technology include:
• CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) and its sub-functions provide 

information on available resource types, and CAT capability for each resource type (see Section 19.19.4.2).
• IA32_L3_MASK_n: A range of MSRs is provided for each resource type, each MSR within that range specifying 

a software-configured capacity bitmask for each class of service. For L3 with Cache Allocation support, the CBM 
is specified using one of the IA32_L3_QOS_MASK_n MSR, where 'n' corresponds to a number within the 
supported range of CLOS, i.e., the range between 0 and CPUID.(EAX=10H, ECX=ResID):EDX[15:0], inclusive. 
See Section 19.19.4.3 for details.

• IA32_L2_MASK_n: A range of MSRs is provided for L2 Cache Allocation Technology, enabling software control 
over the amount of L2 cache available for each CLOS. Similar to L3 CAT, a CBM is specified for each CLOS using 
the set of registers, IA32_L2_QOS_MASK_n MSR, where 'n' ranges from zero to the maximum CLOS number 
reported for L2 CAT in CPUID. See Section 19.19.4.3 for details.
The L2 mask MSRs are scoped at the same level as the L2 cache (similarly, the L3 mask MSRs are scoped at the 
same level as the L3 cache). Software may determine which logical processors share an MSR (for instance local 
to a core, or shared across multiple cores) by performing a write to one of these MSRs and noting which logical 
threads observe the change. Example flows for a similar method to determine register scope are described in 
Section 17.5.2, “System Software Recommendation for Managing CMCI and Machine Check Resources.” 
Software may also use CPUID leaf 4 to determine the maximum number of logical processor IDs that may share 
a given level of the cache.

• IA32_PQR_ASSOC.CLOS: The IA32_PQR_ASSOC MSR provides a CLOS field that OS/VMM can use to assign a 
logical processor to an available CLOS. The set of CLOS are common across all allocation features, meaning that 
multiple features may be supported in the same processor without additional software CLOS management 
overhead at context swap time. See Section 19.19.4.4 for details. 

19.19.4.2  Cache Allocation Technology: Resource Type and Capability Enumeration
CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) provides two or more sub-functions:
• CAT Enumeration leaf sub-function 0 enumerates available resource types that support allocation control, i.e., 

by executing CPUID with EAX=10H and ECX=0H. Each supported resource type is represented by a bit field in 
CPUID.(EAX=10H, ECX=0):EBX[31:1]. The bit position of each set bit corresponds to a Resource ID (ResID), 
for instance ResID=1 is used to indicate L3 CAT support, and ResID=2 indicates L2 CAT support. The ResID is 
also the sub-leaf index that software must use to query details of the CAT capability of that resource type (see 
Figure 19-31). 

Figure 19-31.  CPUID.(EAX=10H, ECX=0H) Available Resource Type Identification
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— For ECX>0, EAX[4:0] reports the length of the capacity bitmask (ECX=1 or 2 for L3 CAT or L2 CAT respec-
tively). Add one to the return value to get the result, e.g., a value of 15 corresponds to the capacity bitmask 
having length of 16 bits. Bits 31:5 of EAX are reserved.

• Sub-functions of CPUID.EAX=10H with a non-zero ECX input matching a supported ResID enumerate the 
specific enforcement details of the corresponding ResID. The capabilities enumerated include the length of the 
capacity bitmasks and the number of Classes of Service for a given ResID. Software should query the capability 
of each available ResID that supports CAT from a sub-leaf of leaf 10H using the sub-leaf index reported by the 
corresponding non-zero bit in CPUID.(EAX=10H, ECX=0):EBX[31:1] in order to obtain additional feature 
details. 

• CAT capability for L3 is enumerated by CPUID.(EAX=10H, ECX=1H), see Figure 19-32. The specific CAT 
capabilities reported by CPUID.(EAX=10H, ECX=1) are:

— CPUID.(EAX=10H, ECX=ResID=1):EAX[4:0] reports the length of the capacity bitmask. Add one to the 
return value to get the result, e.g., a value of 15 corresponds to the capability bitmask having length of 16 
bits. Bits 31:5 of EAX are reserved.

— CPUID.(EAX=10H, ECX=1):EBX[31:0] reports a bit mask. Each set bit within the length of the CBM 
indicates the corresponding unit of the L3 allocation may be used by other entities in the platform (e.g., an 
integrated graphics engine or hardware units outside the processor core and have direct access to L3). Each 
cleared bit within the length of the CBM indicates the corresponding allocation unit can be configured to 
implement a priority-based allocation scheme chosen by an OS/VMM without interference with other 
hardware agents in the system. Bits outside the length of the CBM are reserved.

— CPUID.(EAX=10H, ECX=1):ECX[bit 1]: If 1, indicates L3 CAT for non-CPU agents is supported. Bits 0 and 
31:4 of ECX are reserved. See section 18.20 for details.

Figure 19-32.  L3 Cache Allocation Technology and CDP Enumeration 
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— CPUID.(EAX=10H, ECX=1):ECX.CDP[bit 2]: If 1, indicates L3 Code and Data Prioritization Technology is 
supported (see Section 19.19.5). Bits 0 and 31:4 of ECX are reserved.

— CPUID.(EAX=10H, ECX=1):ECX[bit 3]: If 1, indicates non-contiguous capacity bitmask is supported. The 
bits that are set in the various IA32_L3_MASK_n registers do not have to be contiguous. Bits 0 and 31:4 of 
ECX are reserved.

— CPUID.(EAX=10H, ECX=1):EDX[15:0] reports the maximum CLOS supported for the resource (CLOS are 
zero-referenced, meaning a reported value of '15' would indicate 16 total supported CLOS). Bits 31:16 are 
reserved.

• CAT capability for L2 is enumerated by CPUID.(EAX=10H, ECX=2H), see Figure 19-33. The specific CAT 
capabilities reported by CPUID.(EAX=10H, ECX=2) are:

— CPUID.(EAX=10H, ECX=ResID=2):EAX[4:0] reports the length of the capacity bitmask. Add one to the 
return value to get the result, e.g., a value of 15 corresponds to the capability bitmask having length of 16 
bits. Bits 31:5 of EAX are reserved.

— CPUID.(EAX=10H, ECX=2):EBX[31:0] reports a bit mask. Each set bit within the length of the CBM 
indicates the corresponding unit of the L2 allocation may be used by other entities in the platform. Each 
cleared bit within the length of the CBM indicates the corresponding allocation unit can be configured to 
implement a priority-based allocation scheme chosen by an OS/VMM without interference with other 
hardware agents in the system. Bits outside the length of the CBM are reserved.

— CPUID.(EAX=10H, ECX=2):ECX.CDP[bit 2]: If 1, indicates L2 Code and Data Prioritization Technology is 
supported (see Section 17.19.6). Bits 1:0 and 31:4 of ECX are reserved.

— CPUID.(EAX=10H, ECX=2):ECX[bit 3]: If 1, indicates non-contiguous capacity bitmask is supported. The 
bits which are set in the various IA32_L2_MASK_n registers do not have to be contiguous. Bits 1:0 and 31:4 
of ECX are reserved.

Figure 19-33.  L2 Cache Allocation Technology 
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EAX Reserved

31                                                                                                                                                                 3    2    1     0                   

ECX Reserved

Non-Contiguous Capacity Bitmask
CDP
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— CPUID.(EAX=10H, ECX=2):EDX[15:0] reports the maximum CLOS supported for the resource (CLOS are 
zero-referenced, meaning a reported value of '15' would indicate 16 total supported CLOS). Bits 31:16 are 
reserved.

A note on migration of Classes of Service (CLOS): Software should minimize migrations of CLOS across logical 
processors (across threads or cores), as a reduction in the performance of the Cache Allocation Technology feature 
may result if CLOS are migrated frequently. This is aligned with the industry-standard practice of minimizing 
unnecessary thread migrations across processor cores in order to avoid excessive time spent warming up 
processor caches after a migration. In general, for best performance, minimize thread migration and CLOS migra-
tion across processor logical threads and processor cores.

19.19.4.3  Cache Allocation Technology: Cache Mask Configuration
After determining the length of the capacity bitmasks (CBM) and number of CLOS supported using CPUID (see 
Section 19.19.4.2), each CLOS needs to be programmed with a CBM to dictate its available cache via a write to the 
corresponding IA32_resourceType_MASK_n register, where 'n' corresponds to a number within the supported 
range of CLOS, i.e., the range between 0 and CPUID.(EAX=10H, ECX=ResID):EDX[15:0], inclusive, and 'resource-
Type' corresponds to a specific resource as enumerated by the set bits of CPUID.(EAX=10H, ECX=0):EBX[31:1], 
for instance, ‘L2’ or ‘L3’ cache. 

A hierarchy of MSRs is reserved for Cache Allocation Technology registers of the form IA32_resource-
Type_MASK_n: 
• From 0C90H through 0D8FH (inclusive), providing support for multiple sub-ranges to support varying resource 

types. The first supported resource type is 'L3', corresponding to the L3 cache in a platform. The MSRs range 
from 0C90H through 0D0FH (inclusive), enables support for up to 128 L3 CAT Classes of Service. 

• Within the same CAT range hierarchy, another set of registers is defined for resourceType 'L2', corresponding 
to the L2 cache in a platform, and MSRs IA32_L2_MASK_n are defined for n=[0,63] at addresses 0D10H 
through 0D4FH (inclusive). 

Figure 19-34 and Figure 19-35 provide an overview of the relevant registers. 

Figure 19-34.  IA32_PQR_ASSOC, IA32_L3_MASK_n MSRs

Figure 19-35.  IA32_L2_MASK_n MSRs

01063

RMID

9

Reserved IA32_PQR_ASSOC

IA32_L3_MASK_n

03163

Reserved IA32_L3_MASK_0

32

Bit_Mask

31

CLOS

....
03163

Reserved

32

Bit_Mask

IA32_L2_MASK_n

03163

Reserved IA32_L2_MASK_0

32

Bit_Mask

....
03163

Reserved

32

Bit_Mask
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All CAT configuration registers can be accessed using the standard RDMSR / WRMSR instructions. 

Note that once L3 or L2 CAT masks are configured, threads can be grouped into Classes of Service (CLOS) using 
the IA32_PQR_ASSOC MSR as described in Section 19.19.4.4, “Class of Service to Cache Mask Association: 
Common Across Allocation Features.”

19.19.4.4  Class of Service to Cache Mask Association: Common Across Allocation Features
After configuring the available classes of service with the preferred set of capacity bitmasks, the OS/VMM can set 
the IA32_PQR_ASSOC.CLOS of a logical processor to the class of service with the desired CBM when a thread 
context switch occurs. This allows the OS/VMM to indicate which class of service an executing thread/VM belongs 
within. Each logical processor contains an instance of the IA32_PQR_ASSOC register at MSR location 0C8FH, and 
Figure 19-34 shows the bit field layout for this register. Bits[63:32] contain the CLOS field for each logical 
processor. 

Note that placing the RMID field within the same PQR register enables both RMID and CLOS to be swapped at 
context swap time for simultaneous use of monitoring and allocation features with a single register write for effi-
ciency. 

When CDP is enabled, Specifying a CLOS value in IA32_PQR_ASSOC.CLOS greater than MAX_CLOS_CDP =
(CPUID.(EAX=10H, ECX=1):EDX[15:0] >> 1) will cause undefined performance impact to code and data fetches. 
In all cases, code and data masks for L2 and L3 CDP should be programmed with at least one bit set.

Note that if the IA32_PQR_ASSOC.CLOS is never written then the CAT capability defaults to using CLOS 0, which in 
turn is set to the default mask in IA32_L3_MASK_0 - which is all “1”s (on reset). This essentially disables the 
enforcement feature by default or for legacy operating systems and software.

See Section 19.19.7, “Introduction to Memory Bandwidth Allocation,” for important CLOS programming consider-
ations including maximum values when using CAT and CDP.

19.19.5 Code and Data Prioritization (CDP): Enumerating and Enabling L3 CDP Technology 
L3 CDP is an extension of L3 CAT. The presence of the L3 CDP feature is enumerated via CPUID.(EAX=10H, 
ECX=1):ECX.CDP[bit 2] (see Figure 19-32). Most of the CPUID.(EAX=10H, ECX=1) sub-leaf data that applies to 
CAT also apply to CDP. However, CPUID.(EAX=10H, ECX=1):EDX.CLOS_MAX_CAT specifies the maximum CLOS 
applicable to CAT-only operation. For CDP operations, CLOS_MAX_CDP is equal to 
(CPUID.(EAX=10H, ECX=1):EDX.CLOS_MAX_CAT >>1). 

If CPUID.(EAX=10H, ECX=1):ECX.CDP[bit 2] =1, the processor supports CDP and provides a new MSR 
IA32_L3_QOS_CFG at address 0C81H. The layout of IA32_L3_QOS_CFG is shown in Figure 19-36. The bit field 
definition of IA32_L3_QOS_CFG are:
• Bit 0: L3 CDP Enable. If set, enables CDP, maps CAT mask MSRs into pairs of Data Mask and Code Mask MSRs. 

The maximum allowed value to write into IA32_PQR_ASSOC.CLOS is CLOS_MAX_CDP.
• Bits 63:1: Reserved. Attempts to write to reserved bits result in a #GP(0).

IA32_L3_QOS_CFG default values are all 0s at RESET, the mask MSRs are all 1s. Hence, all logical processors are 
initialized in CLOS0 allocated with the entire L3 with CDP disabled, until software programs CAT and CDP. The scope 
of the IA32_L3_QOS_CFG MSR is defined to be the same scope as the L3 cache (e.g., typically per processor 
socket). Refer to Section 19.19.7 for software considerations while enabling or disabling L3 CDP.

Figure 19-36.  Layout of IA32_L3_QOS_CFG

0263 1

Reserved

IA32_L3_QOS_CFG
3

L3 CDP Enable
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19.19.5.1  Mapping Between L3 CDP Masks and CAT Masks
When CDP is enabled, the existing CAT mask MSR space is re-mapped to provide a code mask and a data mask per 
CLOS. The re-mapping is shown in Table 19-19.

Table 19-19.  Re-indexing of CLOS Numbers and Mapping to CAT/CDP Mask MSRs

One can derive the MSR address for the data mask or code mask for a given CLOS number ‘n’ by:
• data_mask_address (n) = base + (n <<1), where base is the address of IA32_L3_QOS_MASK_0.
• code_mask_address (n) = base + (n <<1) +1.

When CDP is enabled, each CLOS is mapped 1:2 with mask MSRs, with one mask enabling programmatic control 
over data fill location and one mask enabling control over code placement. A variety of overlapped and isolated 
mask configurations are possible (see the example in Figure 19-29). 

Mask MSR field definitions remain the same. Capacity masks must be formed of contiguous set bits, unless other-
wise non-contiguous capacity bitmask support is specified in CPUID enumeration for the resource type with a 
length of 1 bit or longer and should not exceed the maximum mask length specified in CPUID. As examples, valid 
masks on a cache with max bitmask length of 16b (from CPUID) include 0xFFFF, 0xFF00, 0x00FF, 0x00F0, 0x0001, 
0x0003, and so on. Maximum valid mask lengths are unchanged whether CDP is enabled or disabled, and writes of 
invalid mask values may lead to undefined behavior. Writes to reserved bits will generate #GP(0). 

19.19.6 Code and Data Prioritization (CDP): Enumerating and Enabling L2 CDP Technology
L2 CDP is an extension of the L2 CAT feature. The presence of the L2 CDP feature is enumerated via 
CPUID.(EAX=10H, ECX=2):ECX.CDP[bit 2] (see Figure 17-33). Most of the CPUID.(EAX=10H, ECX=2) sub-leaf 
data that applies to CAT also apply to CDP. However, CPUID.(EAX=10H, ECX=2):EDX.CLOS_MAX_CAT specifies the 
maximum CLOS applicable to CAT-only operation. For CDP operations, CLOS_MAX_CDP is equal to 
(CPUID.(EAX=10H, ECX=2):EDX.CLOS_MAX_CAT >>1). 

If CPUID.(EAX=10H, ECX=2):ECX.CDP[bit 2] =1, the processor supports L2 CDP and provides a new MSR 
IA32_L2_QOS_CFG at address 0C82H. The layout of IA32_L2_QOS_CFG is shown in Figure 19-37. The bit field 
definition of IA32_L2_QOS_CFG are:
• Bit 0: L2 CDP Enable. If set, enables CDP, maps CAT mask MSRs into pairs of Data Mask and Code Mask MSRs. 

The maximum allowed value to write into IA32_PQR_ASSOC.CLOS is CLOS_MAX_CDP.
• Bits 63:1: Reserved. Attempts to write to reserved bits result in a #GP(0).

Mask MSR CAT-only Operation CDP Operation

IA32_L3_QOS_Mask_0 CLOS0 CLOS0.Data
IA32_L3_QOS_Mask_1 CLOS1 CLOS0.Code
IA32_L3_QOS_Mask_2 CLOS2 CLOS1.Data
IA32_L3_QOS_Mask_3 CLOS3 CLOS1.Code
IA32_L3_QOS_Mask_4 CLOS4 CLOS2.Data
IA32_L3_QOS_Mask_5 CLOS5 CLOS2.Code
.... .... ....

IA32_L3_QOS_Mask_’2n’ CLOS’2n’ CLOS’n’.Data
IA32_L3_QOS_Mask_’2n+1’ CLOS’2n+1’ CLOS’n’.Code
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IA32_L2_QOS_CFG default values are all 0s at RESET, and the mask MSRs are all 1s. Hence all logical processors 
are initialized in CLOS0 allocated with the entire L2 available and with CDP disabled, until software programs CAT 
and CDP. The IA32_L2_QOS_CFG MSR is defined at the same scope as the L2 cache, typically at the module level 
for Intel Atom processors for instance. In processors with multiple modules present it is recommended to program 
the IA32_L2_QOS_CFG MSR consistently across all modules for simplicity.

19.19.6.1  Mapping Between L2 CDP Masks and L2 CAT Masks
When CDP is enabled, the existing CAT mask MSR space is re-mapped to provide a code mask and a data mask per 
CLOS. This remapping is the same as the remapping shown in Table 19-19 for L3 CDP, but for the L2 MSR block 
(IA32_L2_QOS_MASK_n) instead of the L3 MSR block (IA32_L3_QOS_MASK_n). The same code / data mask 
mapping algorithm applies to remapping the MSR block between code and data masks. 

As with L3 CDP, when L2 CDP is enabled, each CLOS is mapped 1:2 with mask MSRs, with one mask enabling 
programmatic control over data fill location and one mask enabling control over code placement. A variety of over-
lapped and isolated mask configurations are possible (see the example in Figure 19-29). 

Mask MSR field definitions for L2 CDP remain the same as for L2 CAT. Capacity masks must be formed of contiguous 
set bits, unless otherwise non-contiguous capacity bitmask support is specified in CPUID enumeration for the 
resource type with a length of 1 bit or longer and should not exceed the maximum mask length specified in CPUID. 
As examples, valid masks on a cache with max bitmask length of 16b (from CPUID) include 0xFFFF, 0xFF00, 
0x00FF, 0x00F0, 0x0001, 0x0003, and so on. Maximum valid mask lengths are unchanged whether CDP is enabled 
or disabled, and writes of invalid mask values may lead to undefined behavior. Writes to reserved bits will generate 
#GP(0).

19.19.6.2  Common L2 and L3 CDP Programming Considerations
Before enabling or disabling L2 or L3 CDP, software should write all 1's to all of the corresponding CAT/CDP masks 
to ensure proper behavior (e.g., the IA32_L3_QOS_Mask_n set of MSRs for the L3 CAT feature). When enabling 
CDP, software should also ensure that only CLOS number which are valid in CDP operation is used, otherwise unde-
fined behavior may result. For instance in a case with 16 CAT CLOS, since CLOS are reduced by half when CDP is 
enabled, software should ensure that only CLOS 0-7 are in use before enabling CDP (along with writing 1's to all 
mask bits before enabling or disabling CDP). 

Software should also account for the fact that mask interpretations change when CDP is enabled or disabled, 
meaning for instance that a CAT mask for a given CLOS may become a code mask for a different Class of Service 
when CDP is enabled. In order to simplify this behavior and prevent unintended remapping software should 
consider resetting all threads to CLOS[0] before enabling or disabling CDP.

19.19.6.3  Cache Allocation Technology Dynamic Configuration 
All Intel Resource Director Technology (Intel RDT) interfaces including the IA32_PQR_ASSOC MSR, CAT/CDP 
masks, MBA delay values, and CQM/MBM registers are accessible and modifiable at any time during execution 
using RDMSR/WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated if any of the 
following conditions occur:
• A reserved bit is modified,

Figure 19-37.  Layout of IA32_L2_QOS_CFG
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• Accessing a QOS mask register outside the supported CLOS (the max CLOS number is specified in 
CPUID.(EAX=10H, ECX=ResID):EDX[15:0]), or

• Writing a CLOS greater than the supported maximum (specified as the maximum value of CPUID.(EAX=10H, 
ECX=ResID):EDX[15:0] for all valid ResID values) is written to the IA32_PQR_ASSOC.CLOS field.

When CDP is enabled, specifying a CLOS value in IA32_PQR_ASSOC.CLOS outside of the lower half of the CLOS 
space will cause undefined performance impact to code and data fetches due to MSR space re-indexing into 
code/data masks when CDP is enabled.

When reading the IA32_PQR_ASSOC register the currently programmed CLOS on the core will be returned. 

When reading an IA32_resourceType_MASK_n register the current capacity bit mask for CLOS 'n' will be returned.

As noted previously, software should minimize migrations of CLOS across logical processors (across threads or 
cores), as a reduction in the accuracy of the Cache Allocation feature may result if CLOS are migrated frequently. 
This is aligned with the industry standard practice of minimizing unnecessary thread migrations across processor 
cores in order to avoid excessive time spent warming up processor caches after a migration. In general, for best 
performance, minimize thread migration and CLOS migration across processor logical threads and processor cores.

19.19.6.4  Cache Allocation Technology Operation With Power Saving Features
Note that the Cache Allocation Technology feature cannot be used to enforce cache coherency, and that some 
advanced power management features such as C-states which may shrink or power off various caches within the 
system may interfere with CAT hints - in such cases the CAT bitmasks are ignored and the other features take 
precedence. If the highest possible level of CAT differentiation or determinism is required, disable any power-
saving features which shrink the caches or power off caches. The details of the power management interfaces are 
typically implementation-specific, but can be found at Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3C. 

If software requires differentiation between threads but not absolute determinism then in many cases it is possible 
to leave power-saving cache shrink features enabled, which can provide substantial power savings and increase 
battery life in mobile platforms. In such cases when the caches are powered off (e.g., package C-states) the entire 
cache of a portion thereof may be powered off. Upon resuming an active state any new incoming data to the cache 
will be filled subject to the cache capacity bitmasks. Any data in the cache prior to the cache shrink or power off 
may have been flushed to memory during the process of entering the idle state, however, and is not guaranteed to 
remain in the cache. If differentiation between threads is the goal of system software then this model allows 
substantial power savings while continuing to deliver performance differentiation. If system software needs 
optimal determinism then power saving modes which flush portions of the caches and power them off should be 
disabled.

NOTE
IA32_PQR_ASSOC is saved and restored across C6 entry/exit. Similarly, the mask register contents 
are saved across package C-state entry/exit and are not lost.

19.19.6.5  Cache Allocation Technology Operation with Other Operating Modes
The states in IA32_PQR_ASSOC and mask registers are unmodified across an SMI delivery. Thus, the execution of 
SMM handler code can interact with the Cache Allocation Technology resource and manifest some degree of non-
determinism to the non-SMM software stack. An SMM handler may also perform certain system-level or power 
management practices that affect CAT operation. 

It is possible for an SMM handler to minimize the impact on data determinism in the cache by reserving a CLOS with 
a dedicated partition in the cache. Such an SMM handler can switch to the dedicated CLOS immediately upon 
entering SMM, and switching back to the previously running CLOS upon exit.

19.19.6.6  Associating Threads with CAT/CDP Classes of Service 
Threads are associated with Classes of Service (CLOS) via the per-logical-processor IA32_PQR_ASSOC MSR. The 
same CLOS concept applies to both CAT and CDP (for instance, CLOS[5] means the same thing whether CAT or CDP 
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is in use, and the CLOS has associated resource usage constraint attributes including cache capacity masks). The 
mapping of CLOS to mask MSRs does change when CDP is enabled, according to the following guidelines:
• In CAT-only Mode - one set of bitmasks in one mask MSR control both code and data.

— Each CLOS number map 1:1 with a capacity mask on the applicable resource (e.g., L3 cache).
• When CDP is enabled:

— Two mask sets exist for each CLOS number, one for code, one for data. 

— Masks for code/data are interleaved in the MSR address space (see Table 19-19).

19.19.7 Introduction to Memory Bandwidth Allocation
The Memory Bandwidth Allocation (MBA) feature provides indirect and approximate control over memory band-
width available per-core. It was introduced in the Intel Xeon Scalable Processor Family. This feature provides a 
method to control applications that may be over-utilizing bandwidth relative to their priority in environments such 
as the data-center. 

The MBA feature uses existing constructs from the Intel RDT feature set, including Classes of Service (CLOS). A 
given CLOS used for L3 CAT, for instance, means the same thing as a CLOS used for MBA. Infrastructure, such as 
the MSR used to associate a thread with a CLOS (the IA32_PQR_ASSOC_MSR) and some elements of the CPUID 
enumeration (such as CPUID leaf 10H), are shared. Certain generations include advanced hardware controllers for 
efficiency. For more information, refer to the “Intel® Resource Director Technology Architecture Specification.”

The following sections describe CPU interfaces to Memory Bandwidth Allocation, such as CPUID enumeration and 
configuration interfaces (MSRs).

19.19.7.1  Memory Bandwidth Allocation Enumeration
Similar to other Intel RDT features, enumeration of the presence and details of the MBA feature is provided via a 
sub-leaf of the CPUID instruction. 

Key components of the enumeration are as follows.
• Support for the MBA feature on the processor, and if MBA is supported, the following details: 

— Number of supported Classes of Service (CLOS) for the processor. 

— The maximum MBA delay value supported (which also implicitly provides a definition of the granularity).

— An indication of whether the delay values which can be programmed are linearly spaced or not.

The presence of any of the Intel RDT features which enable control over shared platform resources is enumerated 
by executing CPUID instruction with EAX = 07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQE[bit 15] 
reports 1, the processor supports software control over shared processor resources. Software may then use CPUID 
leaf 10H to enumerate additional details on the specific controls provided. 

Through CPUID leaf 10H software may determine whether MBA is supported on the platform. Specifically, as shown 
in Figure 19-31, bit 3 of the EBX register indicates whether MBA is supported on the processor, and the bit position 
(3) constitutes a Resource ID (ResID) which allows enumeration of MBA details. For instance, if bit 3 is supported 
this implies the presence of CPUID.10H.[ResID=3] as shown in Figure 19-38 which provides the following details. 
• CPUID.(EAX=10H, ECX=ResID=3):EAX[11:0] reports the maximum MBA throttling value supported, minus 

one. For instance, a value of 89 indicates that a maximum throttling value of 90 is supported. Additionally, in 
cases where a linear interface (see below) is supported then one hundred minus the maximum throttling value 
indicates the granularity, 10% in this example. 

• CPUID.(EAX=10H, ECX=ResID=3):EBX is reserved.
• CPUID.(EAX=10H, ECX=ResID=3):ECX[2] reports whether the response of the delay values is linear (see 

text). 
• CPUID.(EAX=10H, ECX=ResID=3):EDX[15:0] reports the number of Classes of Service (CLOS) supported for 

the feature (minus one). For instance, a reported value of 15 implies a maximum of 16 supported MBA CLOS. 
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The number of CLOS supported for the MBA feature may or may not align with other resources such as L3 CAT. In 
cases where the Intel RDT features support different numbers of CLOS the lowest numerical CLOS support the 
common set of features, while higher CLOS may support a subset. For instance, if L3 CAT supports 8 CLOS while 
MBA supports 4 CLOS, all 8 CLOS would have L3 CAT masks available for cache control, but the upper 4 CLOS 
would not offer MBA support. In this case the upper 4 CLOS would not be subject to any throttling control. Software 
can manage supported resources / CLOS in order to either have consistent capabilities across CLOS by using the 
common subset or enable more flexibility by selectively applying resource control where needed based on careful 
CLOS and thread mapping. In all cases, CLOS[0] supports all Intel RDT resource control features present on the 
platform.

Discussion on the interpretation and usage of the MBA delay values is provided in Section 19.19.7.2 on MBA config-
uration.

19.19.7.2  Memory Bandwidth Allocation Configuration
The configuration of MBA takes consists of two processes once enumeration is complete.
• Association of threads to Classes of Service (CLOS) - accomplished in a common fashion across Intel RDT 

features as described in Section 19.19.7.1 via the IA32_PQR_ASSOC MSR. As with features such as L3 CAT, 
software may update the CLOS field of the PQR MSR at context swap time in order to maintain the proper 
association of software threads to Classes of Service on the hardware. While logical processors may each be 
associated with independent CLOS, see Section 19.19.7.3 for important usage model considerations (initial 
versions of the MBA feature select the maximum delay value across threads). 

• Configuration of the per-CLOS delay values, accomplished via the IA32_L2_QoS_Ext_BW_Thrtl_n MSR set 
shown in Table 19-20. 

The MBA delay values which may be programmed range from zero (implying zero delay, and full bandwidth avail-
able) to the maximum (MBA_MAX) specified in CPUID as discussed in Section 19.19.7.1. The throttling values are 
approximate and do not sum to 100% across CLOS, rather they should be viewed as a maximum bandwidth “cap” 
per-CLOS.

Figure 19-38.  CPUID.(EAX=10H, ECX=3H) MBA Feature Details Identification

 CPUID.(EAX=10H, ECX=ResID=3) Output:

CLOS_MAXReservedEDX

31                                                                                     16    15                                                                                     0                   

ReservedEBX

31                                                                                                                                                                                      0                   

31                                                                                                                                                                       2    1     0                   

ECX Reserved

MBA_Lin_Rsp

MBA_MAX-1

31                                                                                                                      11                                                          0                   

EAX Reserved
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Software may select an MBA delay value then write the value into one or more of the IA32_L2_QoS_Ext_B-
W_Thrtl_n MSRs to update the delay values applied for a specific CLOS. As shown in Table 19-20 the base address 
of the MSRs is at D50H, and the range corresponds to the maximum supported CLOS from CPUID.(EAX=10H, 
ECX=ResID=1):EDX[15:0] as described in Section 19.19.7.1. For instance, if 16 CLOS are supported then the valid 
MSR range will extend from D50H through D5F inclusive.

Table 19-20.  MBA Delay Value MSRs

The definition for the MBA delay value MSRs is provided in Figure 17.39. The lower 16 bits are used for MBA delay 
values, and values from zero to the maximum from the CPUID MBA_MAX-1 value are supported. Values outside this 
range will generate #GP(0).

If linear input throttling values are indicated by CPUID.(EAX=10H, ECX=ResID=3):ECX[bit 2] then values from 
zero through the MBA_MAX field from CPUID.(EAX=10H, ECX=ResID=3):EAX[11:0] are supported as inputs. In 
the linear mode the input precision is defined as 100-(MBA_MAX). For instance, if the MBA_MAX value is 90, the 
input precision is 10%. Values not an even multiple of the precision (e.g., 12%) will be rounded down (e.g., to 10% 
delay applied). 
• If linear values are not supported (CPUID.(EAX=10H, ECX=ResID=3):ECX[bit 2] = 0) then input delay values 

are powers-of-two from zero to the MBA_MAX value from CPUID. In this case any values not a power of two will 
be rounded down the next nearest power of two.

Note that the throttling values provided to software are calibrated through specific traffic patterns, however as 
workload characteristics may vary the response precision and linearity of the delay values will vary across products 
and should be treated as approximate values only.

19.19.7.3  Memory Bandwidth Allocation Usage Considerations
Different versions of Memory Bandwidth Allocation have various usage considerations and improving efficiency 
over time. See the “Intel® Resource Director Technology Architecture Specification” for additional details.

Delay Value MSR Address

IA32_L2_QoS_Ext_BW_Thrtl_0 D50H
IA32_L2_QoS_Ext_BW_Thrtl_1 D51H
IA32_L2_QoS_Ext_BW_Thrtl_2 D52H
.... ....

IA32_L2_QoS_Ext_BW_Thrtl_'CLOS_MAX' D50H + CLOS_MAX from CPUID.10H.3

Figure 19-39.  IA32_L2_QoS_Ext_BW_Thrtl_n MSR Definition

16    15                                                                     063

Base MSR Address = 0xD50

IA32_L2_QOS_Ext_BW_Thrtl_n MSR
Reserved MBA Delay Value
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19.20 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FOR NON-CPU 
AGENTS

This section describes Intel RDT features for non-CPU agents. CPU agents are threads running on IA cores. Non-
CPU agents include PCIe and CXL devices and integrated accelerators, thus broadly encompassing the set of agents 
that read from and write to either caches or memory, excluding IA cores. The non-CPU agent Intel RDT features 
enable monitoring of I/O device shared cache and memory bandwidth and cache allocation control. This provides 
features for I/O devices equivalent to the CPU agent Intel RDT capabilities CMT, MBM, and CAT (discussed in 
Section 19.18 and Section 19.19). Refer to the “Intel® Resource Director Technology Architecture Specification” 
regarding design goals, use cases, software architecture, ACPI enumeration, and MMIO register interfaces.

“Non-CPU agent Intel RDT” refers to capabilities that monitor and control non-CPU agents' resource utilization, 
including PCIe and CXL devices and integrated accelerators. Non-CPU agent Intel RDT may be called I/O RDT in 
some literature. In this document, the term “non-CPU agent Intel RDT” is used.

19.20.1 Non-CPU Agent Intel® RDT Features Enumeration Details
CPU agent Intel RDT features use the CPUID instruction to enumerate supported features and the level of support. 
Architectural Model-Specific Registers (MSRs) are interfaces to the monitoring and allocation features, as described 
in Sections 18.18 and 18.19.

Non-CPU agent Intel RDT builds on CPU agent Intel RDT by extending CPUID to indicate the presence and integra-
tion of non-CPU agent Intel RDT and by providing rich enumeration information in vendor-specific extensions to the 
Advanced Configuration and Power Interface (ACPI), in particular in the I/O RDT (IRDT) table. The ACPI extensions 
detailed in the “Intel® Resource Director Technology Architecture Specification” provide mechanisms to compre-
hend the structure of devices attached behind I/O blocks to particular links and what forms of tagging are 
supported on a per-link basis.

It is recommended that software parse CPUID and ACPI to obtain a detailed understanding of platform support and 
capabilities before attempting to use non-CPU agent Intel RDT.

19.20.1.1   CPUID-Based Enumeration for Non-CPU Agent Intel® RDT Feature
CPUID-based enumeration provides a method by which all architectural Intel RDT features may be enumerated. 

For CPU agent Intel RDT, monitoring details are enumerated in a CPUID sub-leaf denoted as CPUID.(EAX=0FH, 
ECX=ResID), where ResID corresponds to a resource ID bit index from the CPUID.(EAX=0FH, ECX=0) sub-leaf. 
Similarly, Intel RDT allocation features are described in CPUID.(EAX=10H, ECX=ResID). (Note that the ResID bit 
positions are not guaranteed to be symmetric or have the same encodings.)

No CPUID leaves or sub-leaves are created for non-CPU agent Intel RDT. Rather, non-CPU agent Intel RDT extends 
the existing Intel RDT CPUID sub-leaves with a bit per resource type, indicating whether non-CPU agent Intel RDT 
monitoring or control is present. CPUID.(EAX=0FH, ECX=ResID=1):EAX[bits 9, 10] represents the presence of 
CMT and MBM features for non-CPU agents. CPUID.(EAX=10H, ECX=ResID=1):ECX[bit 1] represents the presence 
of the CAT feature for non-CPU agents.

Specifically, for non-CPU Agent Intel RDT Monitoring (see Figure 19-21):
• Bits are added in the CPU Agent Intel RDT CMT/MBM leaf: CPUID.(EAX=0FH, ECX=ResID=1):EAX[bits 9, 10].

— EAX[bit 9]: If set, indicates the presence of non-CPU Agent Cache Occupancy Monitoring (the equivalent of 
CPU Agent Intel RDT's CMT feature).

— EAX[bit 10]: If set, indicates the presence of non-CPU Agent memory L3 external BW monitoring (the 
equivalent of CPU Agent Intel RDT's MBM feature).

For non-CPU Agent Intel RDT Allocation (see Figure 19-32): 
• New bit in L3 CAT leaf: CPUID.(EAX=10H, ECX=ResID=1):ECX[bit 1].

— ECX[bit 1]: If set, indicates the presence of non-CPU Agent Cache Allocation Technology (the equivalent of 
CPU Agent Intel RDT's L3 CAT feature). 

• As before, ECX[bit 2] indicates that L3 CDP is supported if set. 
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Note that no equivalent bits are defined in CPUID.(EAX=10H, ECX=ResID=2) as there is no ability for devices to fill 
into core L2 caches. 

If any of these non-CPU agent Intel RDT enumeration bits are set, indicating that a monitoring feature or allocation 
feature is present, it also indicates the presence of the IA32_L3_IO_RDT_CFG architectural MSR. This MSR may be 
used to enable the non-CPU agent Intel RDT features. See Section 19.20.2 for MSR details.

The presence of Intel RDT is a prerequisite for using the equivalent non-CPU agent Intel RDT feature. If a particular 
CPU agent Intel RDT feature is absent, any attempt to use non-CPU agent Intel RDT equivalents will result in 
general protection faults in the MSR interface. Attempts to enable unsupported features in the I/O complex will 
result in writes to the corresponding MMIO enable or configuration interfaces being ignored. 

Software may use the existing CPUID leaves to gather the maximum number of RMID and CLOS tags for each 
resource level (e.g., L3 cache), and non-CPU agent Intel RDT is also subject to these limits. 

Some platforms may support a mix of features, for instance, supporting L3 CAT architectural controls and the non-
CPU agent Intel RDT equivalent, but no CMT/MBM monitoring or non-CPU agent monitoring equivalent, and these 
capabilities should be enumerated on a per-platform basis. 

19.20.1.2   ACPI Enumeration
When support for non-CPU agent Intel RDT features is detected using CPUID, ACPI may be consulted for further 
details on the level of feature support, device structures behind various I/O ports, and the specific MMIO interfaces 
used to control a given device. 

Non-CPU agent Intel RDT enumeration is via the “IRDT” ACPI table. For more information, refer to the “Intel® 
Resource Director Technology Architecture Specification.”

19.20.2 Non-CPU Agent Intel® RDT Feature Enable MSR
Before configuring non-CPU agent Intel RDT through MMIO, the feature should be enabled using the non-CPU 
agent Intel RDT Feature Enable MSR, IA32_L3_IO_RDT_CFG (MSR address 0C83H). As described in Section 
19.20.1.1, the presence of one or more CPUID bits indicating support for one or more non-CPU agent Intel RDT 
features also indicates the presence of this MSR. This MSR may be used to enable the non-CPU agent Intel RDT 
features. 

Two bits are defined in this MSR. Bit 0, when set, enables non-CPU agent RDT resource allocation features. Bit 1, 
when set, enables non-CPU agent Intel RDT monitoring features.

The L3 Non-CPU agent Intel RDT Monitoring Enable bit is supported if CPUID indicates that one or more non-CPU 
agent Intel RDT resource monitoring features are present. 

The L3 Non-CPU agent Intel RDT Allocation Enable bit is supported if CPUID indicates that one or more non-CPU 
agent Intel RDT resource allocation features are present. 

The default value is 0x0, so both classes of features are disabled by default. All bits not defined are reserved. 
Writing a non-zero value to any reserved bit will generate a General Protection Fault (#GP(0)).

This MSR is scoped at the L3 cache level and is cleared on system reset. It is expected that the software will 
configure this MSR consistently across all L3 caches that may be present on that package. 

The definition of the IA32_L3_IO_RDT_CFG MSR is shown in Figure 19-40. 
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Figure 19-40.  Layout of the IA32_L3_IO_RDT_CFG MSR for Enabling Non-CPU Agent Intel® RDT

Reserved Reserved

  63                                                                                                                                                                                                                                      2     1        0

M A

IRAE = L3 Non-CPU Agent Intel® RDT Allocation Enable

IRME = L3 Non-CPU Agent Intel® RDT Monitoring Enable
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CHAPTER 20
LAST BRANCH RECORDS

NOTE
This chapter defines a last-branch recording (LBR) facility that is architectural and part of the Intel 
64 architecture. This facility is an enhancement of but distinct from earlier LBR facilities that were 
not architectural. Those earlier facilities are documented in Chapter 19.

Support of the architectural LBR feature in a logical processor is reported in CPUID.(EAX=07H, 
ECX=0H):EDX[19]=1. When the architectural LBR feature is supported, capability details like the number of LBR 
records that are available is indicated in CPUID.1CH:EAX[7:0]. The number of LBR records available varies across 
processor generations, so software should only access the available LBR records indicated by 
CPUID.1CH:EAX[7:0].

Last Branch Records (LBRs) enable recording of software path history by logging taken branches and other control 
flow transfers within processor registers. Each LBR record or entry is comprised of three MSRs:
• IA32_LBR_x_FROM_IP − Holds the source IP of the operation.
• IA32_LBR_x_TO_IP − Holds the destination IP of the operation.
• IA32_LBR_x_INFO − Holds metadata for the operation, including mispredict, TSX, and elapsed cycle time infor-

mation.
LBR records are stored in age order. The most recent LBR entry is stored in IA32_LBR_0_*, the next youngest in 
IA32_LBR_1_*, and so on. When an operation to be recorded completes (retires) with LBRs enabled 
(IA32_LBR_CTL.LBREn=1), older LBR entries are shifted in the LBR array by one entry, then a record of the new 
operation is written into entry 0. See Section 20.1.1 for the list of recorded operations.
The number of LBR entries available for recording operations is dictated by the value in IA32_LBR_DEPTH.DEPTH. 
By default, the DEPTH value matches the maximum number of LBRs supported by the processor, but software may 
opt to use fewer in order to achieve reduced context switch latency. 
In addition to the LBRs, there is a single Last Event Record (LER). It records the last taken branch preceding the 
last exception, hardware interrupt, or software interrupt. Like LBRs, the LER is comprised of three MSRs 
(IA32_LER_FROM_IP, IA32_LER_TO_IP, IA32_LER_INFO), and is subject to the same dependencies on enabling 
and filtering.
Which operations are recorded in LBRs depends upon a series of factors:
• Branch Type Filtering − Software must opt in to the types of branches to be logged; see Section 20.1.2.3.
• Current Privilege Level (CPL) − LBRs can be filtered based on CPL; see Section 20.1.2.5.
• LBR Freeze − LBR and LER recording can be suspended by setting IA32_PERF_GLOBAL_STATUS.LBR_FRZ to 1. 

See Section 19.4.7 for details on LBR_FRZ.
On some implementations, recording LBRs may require constraining the number of operations that can complete in 
a cycle. As a result, on these implementations, enabling LBRs may have some performance overhead.

20.1 BEHAVIOR

20.1.1 Logged Operations
LBRs can log most control flow transfer operations.
The source IP recorded for a branch instruction is the IP of that instruction. For events that take place between 
instructions, the source IP recorded is the IP of the next sequential instruction.
The destination IP recorded is always the target of the branch or event, the next instruction that will execute.
The full list of operations and the respective IPs recorded is shown in Table 20-1.
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20.1.2 Configuration

20.1.2.1  Enabling and Disabling
LBRs are enabled by setting IA32_LBR_CTL.LBREn to 1.
Some operations, such as entry to a secure mode like SMM or Intel SGX, can cause LBRs to be temporarily 
disabled. Other operations, such as debug exceptions or some SMX operations, disable LBRs and require software 
to re-enable them. Details on these interactions can be found in Section 20.1.4.

20.1.2.2  LBR Depth
The number of LBRs used by the processor can be constrained by modifying the IA32_LBR_DEPTH.DEPTH value. 
DEPTH defaults to the maximum number of LBRs supported by the processor. Allowed DEPTH values can be found 
in CPUID.1CH:EAX[7:0].
Reducing the LBR depth can result in improved performance, by reducing the number of LBRs that need to be read 
and/or context switched.
On a software write to IA32_LBR_DEPTH, all LBR entries are reset to 0. LERs are not impacted.
A RDMSR or WRMSR to any IA32_LBR_x_* MSRs, such that x ≥ DEPTH, will generate a #GP exception. Note that 
the XSAVES and XRSTORS instructions access only the LBRs associated with entries 0 to DEPTH-1.
By clearing the LBR entries on writes to IA32_LBR_DEPTH, and forbidding any software writes to LBRs ≥ DEPTH, it 
is thereby guaranteed that any LBR entries equal to or above DEPTH will have value 0.

20.1.2.3  Branch Type Enabling and Filtering
Software must opt in to the types of branches that are desired to be recorded. These elections are made in 
IA32_LBR_CTL; see Section 20.2. Branch type options are listed in Table 20-2; only those enabled will be recorded.

Table 20-1.  LBR IP Values for Various Operations 

Operation FROM_IP TO_IP

Taken Branch1, Exception, INT3, INTn, 
INTO, TSX Abort

Current IP Target IP

Interrupt Next IP Target IP

INIT (BSP) Next IP Reset Vector

INIT (AP) + SIPI Next IP SIPI Vector

EENTER/ERESUME + EEXIT/AEX Current IP Target or Trampoline IP

RSM2 Target IP Target IP

#DB, #SMI, VM exit, VM entry None None

NOTES:
1. Direct CALLs with displacement zero, for which the target is typically the next sequential IP, are not treated as

taken branches by LBRs.
2. RSM is only recorded in LBRs when IA32_DEBUGCTL.FREEZE_WHILE_SMM is set to 0.
20-2 Vol. 3B



LAST BRANCH RECORDS
These encodings match those in IA32_LBR_x_INFO.BR_TYPE.
Control flow transfers that are not recorded include #DB, VM exit, VM entry, and #SMI.

20.1.2.4  Call-Stack Mode
The LBR array is, by default, treated as a ring buffer that captures control flow transitions. However, the finite 
depth of the LBR array can be limiting when profiling certain high-level languages (e.g., C++), where a transition 
of the execution flow is accompanied by a large number of leaf function calls. These calls to leaf functions, and their 
returns, are likely to displace the main execution context from the LBRs.
When call-stack mode is enabled, the LBR array can capture unfiltered call data normally, but as return instructions 
are executed the last captured branch (call) record is flushed from the LBRs in a last-in first-out (LIFO) manner. 
Thus, branch information pertaining to completed leaf functions will not be retained, while preserving the call stack 
information of the main line execution path.
Call-stack mode is enabled by setting IA32_LBR_CTL.CALL_STACK to 1. When enabled, near RET instructions 
receive special treatment. Rather than adding a new record in LBR_0, a near RET will instead “pop” the CALL entry 
at LBR_0 by shifting entries LBR_1..LBR_[DEPTH-1] up to LBR_0..LBR_[DEPTH-2], and clearing LBR_[DEPTH-1] to 
0. Thus, LBR processing software can consume only valid call-stack entries by reading until finding an entry that is 
all zeros.
Call-stack mode should be used with branch type enabling configured to capture only CALLs (NEAR_REL_CALL and 
NEAR_IND_CALL) and RETs (NEAR_RET). When configured in this manner, the LBR array emulates a call stack, 
where CALLs are “pushed” and RETs “pop” them off the stack. If other branch types (JCC, NEAR_*_JMP, or 
OTHER_BRANCH) are enabled for recording with call-stack mode, LBR behavior may be undefined.
It is recommended that call-stack mode be used along with CPL filtering, by setting at most one of the OS and USR 
bits in the IA32_LBR_CTL MSR. Call-stack mode does not emulate the stack switch that can occur on CPL transi-
tions, and hence monitoring all CPLs may result in a corrupted LBR call stack.

Call-Stack Mode and LBR Freeze

When IA32_DEBUGCTL.FREEZE_LBRS_ON_PMI=1, IA32_PERF_GLOBAL_STATUS.LBR_FRZ will be set to 1 when a 
PMI is pended. That will cause LBRs and LERs to cease recording branches until LBR_FRZ is cleared. Because there 
may be some “skid”, or instructions retiring, in between the PMI being pended and the PMI being taken, it is 
possible that some branches may be missing from the LBRs. In the case of call-stack mode, if a CALL or RET is 
missed, that can lead to confusing results where CALL entries fail to get “popped” off the stack, and RETs “pop” the 
wrong CALLs.
An alternative is to utilize CPL filtering to limit LBR recording to less privileged modes only (CPL>3) instead of using 
the FREEZE_LBRS_ON_PMI=1 feature. This will record branches in the “skid”, but avoid recording any branches in 
the privilege level 0 handler.

Table 20-2.  Branch Type Filtering Details 

Branch Type Operations Recorded

COND Jcc, J*CXZ, and LOOP*

NEAR_IND_JMP JMP r/m*

NEAR_REL_JMP JMP rel*

NEAR_IND_CALL CALL r/m*

NEAR_REL_CALL CALL rel* (excluding CALLs to the next sequential IP)

NEAR_RET RET (0C3H)

OTHER_BRANCH JMP/CALL ptr*, JMP/CALL m*, RET (0C8H), SYS*, interrupts, exceptions (other than debug 
exceptions), IRET, INT3, INTn, INTO, TSX Abort, EENTER, ERESUME, EEXIT, AEX, INIT, SIPI, RSM
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20.1.2.5  CPL Filtering
Software must opt in to which CPL(s) will have branches recorded. If IA32_LBR_CTL.OS=1, then branches in 
CPL=0 can be recorded. If IA32_LBR_CTL.USR=1, then branches in CPL>0 can be recorded. For operations which 
change the CPL, the operation is recorded in LBRs only if the CPL at the end of the operation is enabled for LBR 
recording. In cases where the CPL transitions from a value that is filtered out to a value that is enabled for LBR 
recording, the FROM_IP address for the recorded CPL transition branch or event will be 0FFFFFFFFFFFFFFFFH.

20.1.3 Record Data

20.1.3.1  IP Fields
The source and destination IP values in IA32_LBR_x_[FROM|TO]_IP and IA32_LER_x_[FROM|TO]_IP may hold 
effective IPs or linear IPs (LIPs), depending on the processor generation. The effective IP is the offset from the CS 
base address, while LIP includes the CS base address. Which IP type is used is indicated in CPUID.1CH:EAX[bit 31].
The value read from this field will always be canonical. Note that this includes the case where a canonical violation 
(#GP) results from executing sequential code that runs precisely to the end of the lower canonical address space 
(where IP[63:MAXLINADDR-1] is 0, but IP[MAXLINADDR-2:0] is all ones). In this case, the FROM_IP will hold the 
lowest canonical address in the upper canonical space, such that IP[63:MAXLINADDR-1] is all ones, and IP[MAXLI-
NADDR-2:0] is 0.
In some cases, due to CPL filtering, the FROM_IP of the recorded operation may be filtered out. In this case 
0FFFFFFFFFFFFFFFFH will be recorded. See Section 20.1.2.5 for details.
Writes of these fields will be forced canonical, such that the processor ignores the value written to the upper bits 
(IP[63:MAXLINADDR-1]).

20.1.3.2  Branch Types
The IA32_LBR_x_INFO.BR_TYPE and IA32_LER_INFO.BR_TYPE fields encode the branch types as shown in Table 
20-3.

For a list of branch operations that fall into the categories above, see Table 20-2. In future generations, BR_TYPE 
bits 2:0 may be used to distinguish between differing types of OTHER_BRANCH.

20.1.3.3  Cycle Time
Each time an operation is recorded in an LBR, the value of the LBR cycle timer is recorded in 
IA32_LBR_x_INFO.CYC_CNT. The LBR cycle timer is a saturating counter that counts at the processor clock rate. 
Each time an operation is recorded in an LBR, the counter is reset but continues counting.

Table 20-3.  IA32_LBR_x_INFO and IA32_LER_INFO Branch Type Encodings

Encoding Branch Type

0000B COND

0001B NEAR_IND_JMP

0010B NEAR_REL_JMP

0011B NEAR_IND_CALL

0100B NEAR_REL_CALL

0101B NEAR_RET

011xB Reserved

1xxxB OTHER_BRANCH
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There is an LBR cycle counter valid bit, IA32_LBR_x_INFO.CYC_CNT_VALID. When set, the CYC_CNT field holds a 
valid value, the number of elapsed cycles since the last operation recorded in an LBR (up to 0FFFFH).
Some implementations may opt to reduce the granularity of the CYC_CNT field for larger values. The implication of 
this is that the least significant bits may be forced to 1 in cases where the count has reached some minimum 
threshold. It is guaranteed that this reduced granularity will never result in an inaccuracy of more than 10%.

20.1.3.4  Mispredict Information
IA32_LBR_x_INFO.MISPRED provides an indication of whether the recorded branch was predicted incorrectly by 
the processor. The bit is set if either the taken/not-taken direction of a conditional branch was mispredicted, or if 
the target of an indirect branch was mispredicted.

20.1.3.5  Intel® TSX Information
IA32_LBR_x_INFO.IN_TSX indicates whether the operation recorded retired during a TSX transaction. 
IA32_LBR_x_INFO.TSX_ABORT indicates that the operation is a TSX Abort.

20.1.3.6  LBR Event Logging
LBR Event Logging provides a means to log PMU event data in LBRs. This event data can be used to provide some 
causality information for the Cycle Time metadata currently recorded in the LBRs' IA32_LBR_x_INFO.CYC_CNT 
field (also known as Timed LBR).
When a programmable counter is enabled for a precise event and LBR is enabled, setting EN_LBR_LOG (bit 35) in 
the associated IA32_PERFEVTSELx MSR enables occurrences of the chosen event to be additionally logged in a new 
IA32_LBR_INFO.PMCx_CNT field. This two-bit field represents the number of occurrences of the event since retire-
ment of the operation that last recorded an LBR entry, saturating at a value of 3. For example, this field is called 
PMC0_CNT at bits 33:32 of the IA32_LBR_x_INFO MSR for general-purpose counter 0. The same bits in the 
IA32_LER_x_INFO MSRs continue to be reserved.
If the event chosen in the IA32_PERFEVTSELx is MSR not precise, no counts will be logged in LBRs. The events that 
are precise on a given platform can be found in the online event list: https://perfmon-events.intel.com/.
When using LBR Event Logging, software should keep consistent CPL filtering settings between LBR and PerfMon. 
Keeping the OS/USR bits in the IA32_LBR_CTL MSR and in the IA32_PERFEVTSELx MSR consistent ensures that 
only events that occur in one or more chosen modes are logged. Similarly, software should keep 
FREEZE_LBRS_ON_PMI and FREEZE_PERFMON_ON_PMI in the IA32_DEBUGCTL MSR consistent. Other counter 
filtering in the IA32_PERFEVTSELx MSRs (e.g., INV, CMASK, EDGE, and IN_TX) should be cleared; otherwise the 
behavior and PMCx_CNT values are undefined. 

Per-counter support for LBR Event Logging is indicated by the “Event Logging Supported” bitmap in 
CPUID.(EAX=01CH, ECX=0H).ECX[19:16].

20.1.4 Interaction with Other Processor Features

20.1.4.1  SMM
IA32_LBR_CTL.LBREn is saved and cleared on #SMI, and restored on RSM. As a result of disabling LBRs, the #SMI 
is not recorded. RSM is recorded only if IA32_DEBUGCTL.FREEZE_WHILE_SMM is set to 0, and the FROM_IP will be 
set to the same value as the TO_IP.

20.1.4.2  SMM Transfer Monitor (STM)
LBREn is not cleared on #SMI when it causes SMM VM exit. Instead, the STM should use the VMCS controls 
described in Section 20.1.4.3 to disable LBRs while in SMM, and to restore them on VM entries that exit SMM.
On VMCALL to configure STM, IA32_LBR_CTL is cleared.
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20.1.4.3  VMX
By default, LBR operation persists across VMX transitions. However, VMCS fields have been added to enable 
constraining LBR usage to within non-root operation only. See details in Table 20-4.

To enable “guest-only” LBR use, a VMM should set both the “Load Guest IA32_LBR_CTL” entry control and the 
“Clear IA32_LBR_CTL” exit control. For “system-wide” LBR use, where LBRs remain enabled across host and 
guest(s), a VMM should keep both new VMCS controls clear.
VM entry checks that, if the “Load Guest IA32_LBR_CTL” entry control is 1, bits reserved in the IA32_LBR_CTL MSR 
must be 0 in the field for that register.

For additional information relating to VMX transitions, see Chapter 26, Chapter 28, and Chapter 29 in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3C.

20.1.4.4  Intel® SGX
On entry to an enclave, via EENTER or ERESUME, logging of LBR entries is suspended. On enclave exit, via EEXIT 
or AEX, logging resumes. The cycle counter will continue to run during enclave execution.
An exception to the above is made for opt-in debug enclaves. For such enclaves, LBR logging is not impacted.

20.1.4.5  Debug Exceptions
When a branch happens because of a #DB exception, IA32_LBR_CTL.LBREn is cleared. As a result, the operation is 
not recorded.

20.1.4.6  SMX
On GETSEC leaves SENTER or ENTERACCS, IA32_LBR_CTL is cleared. As a result, the operation is not recorded.

20.1.4.7  MWAIT
On an MWAIT that requests a C-state deeper than C1, IA32_LBR_x_* MSRs may be cleared to 0. IA32_LBR_CTL, 
IA32_LBR_DEPTH, and IA32_LER_* MSRs will be preserved.
For an MWAIT that enters a C-state equal to or less deep than C1, and all C-states that enter as a result of Hard-
ware Duty Cycling (HDC), all LBR MSRs are preserved.

20.1.4.8  Processor Event-Based Sampling (PEBS)
PEBS records can be configured to include LBRs, by setting PEBS_DATA_CFG.LBREn[3]=1. The number of LBRs to 
include in the record is also configurable, via PEBS_DATA_CFG.NUM_LBRS[28:24]. For details on PEBS, see Section 
21.9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.
If NUM_LBRS is set to a value greater than LBR_DEPTH, then only LBR_DEPTH entries will be written into the PEBS 
record. Further, the Record Size field will be decreased to match the actual size of the record to be written, and the 

Table 20-4.  LBR VMCS Fields

Name Type Bit Position Behavior

Guest IA32_LBR_CTL Guest State Field NA The guest value of IA32_LBR_CTL is written to this field on all 
VM exits.

Load Guest IA32_LBR_CTL Entry Control 21 When set, VM entry will write the value from the “Guest 
IA32_LBR_CTL” guest state field to IA32_LBR_CTL.

Clear IA32_LBR_CTL Exit Control 26 When set, VM exit will clear IA32_LBR_CTL after the value has 
been saved to the “Guest IA32_LBR_CTL” guest state field.
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Record Format field will replace the value of NUM_LBRS with the value of LBR_DEPTH. These adjustments ensure 
that software is able to properly interpret the PEBS record.

20.2 MSRS
The MSRs that represent the LBR entries (IA32_LBR_x_[TO|FROM|INFO]) and the LER entry 
(IA32_LER_[TO|FROM|INFO]) do not fault on writes. Any address field written will force sign-extension based on 
the maximum linear address width supported by the processor, and any non-zero value written to undefined bits 
may be ignored such that subsequent reads return 0.
On a warm reset, all LBR MSRs, including IA32_LBR_DEPTH, have their values preserved. However, IA32_L-
BR_CTL.LBREn is cleared to 0, disabling LBRs. If a warm reset is triggered while the processor is in the C6 idle 
state, also known as warm init, all LBR MSRs will be reset to their initial values.

See Table 2-2 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, for details on LBR 
MSRs.

20.3 FAST LBR READ ACCESS
XSAVES provides a faster means than RDMSR for software to read all LBRs. When using XSAVES for reading LBRs 
rather than for context switch, software should take care to ensure that XSAVES does not write LBR state to an 
area of memory that has been or will be used by XRSTORS. This could corrupt INIT tracking.

20.4 OTHER IMPACTS

20.4.1 Branch Trace Store on Intel Atom® Processors
Branch Trace Store (BTS) on Intel Atom processors that support the architectural form of the LBR feature has 
dependencies on the LBR configuration. BTS will store out the LBR_0 (TOS) record each time a taken branch or 
event retires. If any filtering of LBRs is employed, or if LBRs are disabled, some duplicate entries may be stored by 
BTS. Like LBRs and LERs, BTS is suspended when IA32_PERF_GLOBAL_STATUS.LBR_FRZ is set to 1.
BTS will change to cease issuing branch records for direct near CALLs with displacement zero to align with LBR 
behavior.

20.4.2 IA32_DEBUGCTL
On processors that do not support model-specific LBRs, IA32_DEBUGCTL[bit 0] has no meaning. It can be written 
to 0 or 1, but reads will always return 0.

20.4.3 IA32_PERF_CAPABILITIES
On processors that do not support model-specific LBRs, IA32_PERF_CAPABILITIES.LBR_FMT will have the value 
03FH.
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CHAPTER 21
PERFORMANCE MONITORING

Intel 64 and IA-32 architectures provide facilities for monitoring performance via a PMU (Performance Monitoring 
Unit).

NOTE
Performance monitoring events can be found here: https://perfmon-events.intel.com/.
Additionally, performance monitoring event files for Intel processors are hosted by the Intel Open 
Source Technology Center. These files can be downloaded here: 
https://download.01.org/perfmon/. 

21.1 PERFORMANCE MONITORING OVERVIEW
Performance monitoring was introduced in the Pentium processor with a set of model-specific performance-moni-
toring counter MSRs. These counters permit selection of processor performance parameters to be monitored and 
measured. The information obtained from these counters can be used for tuning system and compiler perfor-
mance. 

In Intel P6 family of processors, the performance monitoring mechanism was enhanced to permit a wider selection 
of events to be monitored and to allow greater control events to be monitored. Next, Intel processors based on 
Intel NetBurst microarchitecture introduced a distributed style of performance monitoring mechanism and perfor-
mance events.

The performance monitoring mechanisms and performance events defined for the Pentium, P6 family, and Intel 
processors based on Intel NetBurst microarchitecture are not architectural. They are all model specific (not 
compatible among processor families). Intel Core Solo and Intel Core Duo processors support a set of architectural 
performance events and a set of non-architectural performance events. Newer Intel processor generations support 
enhanced architectural performance events and non-architectural performance events.

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of performance monitoring capa-
bilities. The first class supports events for monitoring performance using counting or interrupt-based event 
sampling usage. These events are non-architectural and vary from one processor model to another. They are 
similar to those available in Pentium M processors. These non-architectural performance monitoring events are 
specific to the microarchitecture and may change with enhancements. They are discussed in Section 21.6.3, 
“Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture).” Non-architectural events for a 
given microarchitecture cannot be enumerated using CPUID; and they can be found at: 
https://perfmon-events.intel.com/ or at https://github.com/intel/perfmon/.

The second class of performance monitoring capabilities is referred to as architectural performance monitoring. 
This class supports the same counting and Interrupt-based event sampling usages, with a smaller set of available 
events. The visible behavior of architectural performance events is consistent across processor implementations. 
Availability of architectural performance monitoring capabilities is enumerated using the CPUID.0AH. These events 
are discussed in Section 21.2.

See also:

— Section 21.2, “Architectural Performance Monitoring.”

— Section 21.3, “Performance Monitoring (Intel® Core™ Processors and Intel® Xeon® Processors).”

• Section 21.3.1, “Performance Monitoring for Processors Based on Nehalem Microarchitecture.”

• Section 21.3.2, “Performance Monitoring for Processors Based on Westmere Microarchitecture.”

• Section 21.3.3, “Intel® Xeon® Processor E7 Family Performance Monitoring Facility.”

• Section 21.3.4, “Performance Monitoring for Processors Based on Sandy Bridge Microarchitecture.”

• Section 21.3.5, “3rd Generation Intel® Core™ Processor Performance Monitoring Facility.”
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PERFORMANCE MONITORING
• Section 21.3.6, “4th Generation Intel® Core™ Processor Performance Monitoring Facility.”

• Section 21.3.7, “5th Generation Intel® Core™ Processor and Intel® Core™ M Processor Performance 
Monitoring Facility.”

• Section 21.3.8, “6th Generation, 7th Generation and 8th Generation Intel® Core™ Processor 
Performance Monitoring Facility.”

• Section 21.3.9, “10th Generation Intel® Core™ Processor Performance Monitoring Facility.”

• Section 21.3.10, “12th and 13th Generation Intel® Core™ Processors, and 4th and 5th Generation 
Intel® Xeon® Scalable Processor Family Performance Monitoring Facility.”

• Section 21.3.11, “Intel® Series 2 Core™ Ultra Processor Performance Monitoring Facility.”

— Section 21.4, “Performance monitoring (Intel® Xeon™ Phi Processors).”

• Section 21.4.1, “Intel® Xeon Phi™ Processor 7200/5200/3200 Performance Monitoring.”

— Section 21.5, “Performance Monitoring (Intel Atom® Processors).”

• Section 21.5.1, “Performance Monitoring (45 nm and 32 nm Intel Atom® Processors).”

• Section 21.5.2, “Performance Monitoring for Silvermont Microarchitecture.”

• Section 21.5.3, “Performance Monitoring for Goldmont Microarchitecture.”

• Section 21.5.4, “Performance Monitoring for Goldmont Plus Microarchitecture.”

• Section 21.5.5, “Performance Monitoring for Tremont Microarchitecture.”

— Section 21.6, “Performance Monitoring (Legacy Intel Processors).”

• Section 21.6.1, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors).”

• Section 21.6.2, “Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture).”

• Section 21.6.3, “Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture).”

• Section 21.6.4, “Performance Monitoring and Intel® Hyper-Threading Technology in Processors Based 
on Intel NetBurst® Microarchitecture.”

• Section 21.6.4.5, “Counting Clocks on systems with Intel® Hyper-Threading Technology in Processors 
Based on Intel NetBurst® Microarchitecture.”

• Section 21.6.5, “Performance Monitoring and Dual-Core Technology.”

• Section 21.6.6, “Performance Monitoring on 64-bit Intel® Xeon® Processor MP with Up to 8-MByte L3 
Cache.”

• Section 21.6.7, “Performance Monitoring on L3 and Caching Bus Controller Sub-Systems.”

• Section 21.6.8, “Performance Monitoring (P6 Family Processor).”

• Section 21.6.9, “Performance Monitoring (Pentium Processors).”

— Section 21.7, “Counting Clocks.”

— Section 21.8, “IA32_PERF_CAPABILITIES MSR Enumeration.”

— Section 21.9, “PEBS Facility.”

21.2 ARCHITECTURAL PERFORMANCE MONITORING
Performance monitoring events are architectural when they behave consistently across microarchitectures. Intel 
Core Solo and Intel Core Duo processors introduced architectural performance monitoring. The feature provides a 
mechanism for software to enumerate performance events and provides configuration and counting facilities for 
events.

Architectural performance monitoring does allow for enhancement across processor implementations. The 
CPUID.0AH leaf provides version ID for each enhancement. Intel Core Solo and Intel Core Duo processors support 
base level functionality identified by version ID of 1. Processors based on Intel Core microarchitecture support, at 
a minimum, the base level functionality of architectural performance monitoring. Intel Core 2 Duo processor T 
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7700 and newer processors based on Intel Core microarchitecture support both the base level functionality and 
enhanced architectural performance monitoring identified by version ID of 2.

45 nm and 32 nm Intel Atom processors and Intel Atom processors based on the Silvermont microarchitecture 
support the functionality provided by versionID 1, 2, and 3; CPUID.0AH:EAX[7:0] reports versionID = 3 to indicate 
the aggregate of architectural performance monitoring capabilities. Intel Atom processors based on the Airmont 
microarchitecture support the same performance monitoring capabilities as those based on the Silvermont 
microarchitecture. Intel Atom processors based on the Goldmont and Goldmont Plus microarchitectures support 
versionID 4. Intel Atom processors starting with processors based on the Tremont microarchitecture support 
versionID 5.

Intel Core processors and related Intel Xeon processor families based on the Nehalem through Broadwell microar-
chitectures support version ID 3. Intel processors based on the Skylake through Coffee Lake microarchitectures 
support versionID 4. Intel processors starting with processors based on the Ice Lake microarchitecture support 
versionID 5.

21.2.1 Architectural Performance Monitoring Version 1
Configuring an architectural performance monitoring event involves programming performance event select regis-
ters. There are a finite number of performance event select MSRs (IA32_PERFEVTSELx MSRs). The result of a 
performance monitoring event is reported in a performance monitoring counter (IA32_PMCx MSR). Performance 
monitoring counters are paired with performance monitoring select registers.

Performance monitoring select registers and counters are architectural in the following respects:
• The bit field layout of IA32_PERFEVTSELx is consistent across microarchitectures. A non-zero write of a field 

that is introduced after the initial implementation of architectural performance monitoring (Version 1) results in 
#GP if that field is not supported.

• Addresses of IA32_PERFEVTSELx MSRs remain the same across microarchitectures.
• Addresses of IA32_PMC MSRs remain the same across microarchitectures.
• Each logical processor has its own set of IA32_PERFEVTSELx and IA32_PMCx MSRs. Configuration facilities and 

counters are not shared between logical processors sharing a processor core.

Architectural performance monitoring provides a CPUID mechanism for enumerating the following information:
• Number of performance monitoring counters available to software in a logical processor (each 

IA32_PERFEVTSELx MSR is paired to the corresponding IA32_PMCx MSR).
• Number of bits supported in each IA32_PMCx.
• Number of architectural performance monitoring events supported in a logical processor.

Software can use CPUID to discover architectural performance monitoring availability (CPUID.0AH). The architec-
tural performance monitoring leaf provides an identifier corresponding to the version number of architectural 
performance monitoring available in the processor.

The version identifier is retrieved by querying CPUID.0AH:EAX[bits 7:0] (see Chapter 3, “Instruction Set Refer-
ence, A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). If the version iden-
tifier is greater than zero, architectural performance monitoring capability is supported. Software queries the 
CPUID.0AH for the version identifier first; it then analyzes the value returned in CPUID.0AH.EAX, CPUID.0AH.EBX 
to determine the facilities available.

In the initial implementation of architectural performance monitoring; software can determine how many 
IA32_PERFEVTSELx/ IA32_PMCx MSR pairs are supported per core, the bit-width of PMC, and the number of archi-
tectural performance monitoring events available.

Architectural performance monitoring facilities include a set of performance monitoring counters and performance 
event select registers. These MSRs have the following properties:
• IA32_PMCx MSRs start at address 0C1H and occupy a contiguous block of MSR address space; the number of 

MSRs per logical processor is reported using CPUID.0AH:EAX[15:8]. Note that this may vary from the number 
of physical counters present on the hardware, because an agent running at a higher privilege level (e.g., a 
VMM) may not expose all counters.
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• IA32_PERFEVTSELx MSRs start at address 186H and occupy a contiguous block of MSR address space. Each 
performance event select register is paired with a corresponding performance counter in the 0C1H address 
block. Note the number of IA32_PERFEVTSELx MSRs may vary from the number of physical counters present 
on the hardware, because an agent running at a higher privilege level (e.g., a VMM) may not expose all 
counters.

• The bit width of an IA32_PMCx MSR is reported using the CPUID.0AH:EAX[23:16]. This the number of valid bits 
for read operation. On write operations, the lower-order 32 bits of the MSR may be written with any value, and 
the high-order bits are sign-extended from the value of bit 31. 

• Bit field layout of IA32_PERFEVTSELx MSRs is defined architecturally.

See Figure 21-1 for the bit field layout of IA32_PERFEVTSELx MSRs. The bit fields are:
• Event select field (bits 0 through 7) — Selects the event logic unit used to detect microarchitectural 

conditions (see Table 21-3, for a list of architectural events and their 8-bit codes). The set of values for this field 
is defined architecturally; each value corresponds to an event logic unit for use with an architectural 
performance event. The number of architectural events is queried using CPUID.0AH:EAX. A processor may 
support only a subset of pre-defined values.

• Unit mask (UMASK) field (bits 8 through 15) — These bits qualify the condition that the selected event 
logic unit detects. Valid UMASK values for each event logic unit are specific to the unit. For each architectural 
performance event, its corresponding UMASK value defines a specific microarchitectural condition. 
A pre-defined microarchitectural condition associated with an architectural event may not be applicable to a 
given processor. The processor then reports only a subset of pre-defined architectural events. Pre-defined 
architectural events are listed in Table 21-3; support for pre-defined architectural events is enumerated using 
CPUID.0AH:EBX. 

• USR (user mode) flag (bit 16) — Specifies that the selected microarchitectural condition is counted when 
the logical processor is operating at privilege levels 1, 2 or 3. This flag can be used with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that the selected microarchitectural condition is 
counted when the logical processor is operating at privilege level 0. This flag can be used with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of the selected microarchitectural 
condition. The logical processor counts the number of deasserted to asserted transitions for any condition that 
can be expressed by the other fields. The mechanism does not permit back-to-back assertions to be distin-
guished. 
This mechanism allows software to measure not only the fraction of time spent in a particular state, but also the 
average length of time spent in such a state (for example, the time spent waiting for an interrupt to be 
serviced).

• PC (pin control) flag (bit 19) — Beginning with Sandy Bridge microarchitecture, this bit is reserved (not 
writeable). On processors based on previous microarchitectures, the logical processor toggles the PMi pins and 
increments the counter when performance-monitoring events occur; when clear, the processor toggles the PMi 
pins when the counter overflows. The toggling of a pin is defined as assertion of the pin for a single bus clock 
followed by deassertion.

Figure 21-1.  Layout of IA32_PERFEVTSELx MSRs
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• INT (APIC interrupt enable) flag (bit 20) — When set, the logical processor generates an exception 
through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — When set, performance counting is enabled in the corresponding 
performance-monitoring counter; when clear, the corresponding counter is disabled. The event logic unit for a 
UMASK must be disabled by setting IA32_PERFEVTSELx[bit 22] = 0, before writing to IA32_PMCx.

• INV (invert) flag (bit 23) — When set, inverts the counter-mask (CMASK) comparison, so that both greater 
than or equal to and less than comparisons can be made (0: greater than or equal; 1: less than). Note if 
counter-mask is programmed to zero, INV flag is ignored.

• Counter mask (CMASK) field (bits 24 through 31) — When this field is not zero, a logical processor 
compares this mask to the events count of the detected microarchitectural condition during a single cycle. If 
the event count is greater than or equal to this mask, the counter is incremented by one. Otherwise the counter 
is not incremented. 
This mask is intended for software to characterize microarchitectural conditions that can count multiple 
occurrences per cycle (for example, two or more instructions retired per clock; or bus queue occupations). If 
the counter-mask field is 0, then the counter is incremented each cycle by the event count associated with 
multiple occurrences.

NOTE
A non-zero write of a field that is introduced in a later architectural performance monitoring version 
results in a general-protection (#GP) exception if that field is not supported by prior versions.

21.2.2 Architectural Performance Monitoring Version 2
The enhanced features provided by architectural performance monitoring version 2 include the following:
• Fixed-function performance counter register and associated control register — Three of the architec-

tural performance events are counted using three fixed-function MSRs (IA32_FIXED_CTR0 through IA32_-
FIXED_CTR2). Each of the fixed-function PMC can count only one architectural performance event. 
Configuring the fixed-function PMCs is done by writing to bit fields in the MSR (IA32_FIXED_CTR_CTRL) located 
at address 38DH. Unlike configuring performance events for general-purpose PMCs (IA32_PMCx) via UMASK 
field in (IA32_PERFEVTSELx), configuring, programming IA32_FIXED_CTR_CTRL for fixed-function PMCs do 
not require any UMASK.

• Simplified event programming — Most frequent operation in programming performance events are 
enabling/disabling event counting and checking the status of counter overflows. Architectural performance 
event version 2 provides three architectural MSRs:

— IA32_PERF_GLOBAL_CTRL allows software to enable/disable event counting of all or any combination of 
fixed-function PMCs (IA32_FIXED_CTRx) or any general-purpose PMCs via a single WRMSR.

— IA32_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of 
fixed-function PMCs or general-purpose PMCs via a single RDMSR.

— IA32_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination of 
fixed-function PMCs or general-purpose PMCs via a single WRMSR.

• PMI Overhead Mitigation — Architectural performance monitoring version 2 introduces two bit field interface 
in IA32_DEBUGCTL for PMI service routine to accumulate performance monitoring data and LBR records with 
reduced perturbation from servicing the PMI. The two bit fields are:

— IA32_DEBUGCTL.Freeze_LBR_On_PMI(bit 11). In architectural performance monitoring version 2, only the 
legacy semantic behavior is supported. See Section 19.4.7 for details of the legacy Freeze LBRs on PMI 
control.

— IA32_DEBUGCTL.Freeze_PerfMon_On_PMI(bit 12). In architectural performance monitoring version 2, 
only the legacy semantic behavior is supported. See Section 19.4.7 for details of the legacy Freeze LBRs on 
PMI control.

The facilities provided by architectural performance monitoring version 2 can be queried from CPUID leaf 0AH by 
examining the content of register EDX:
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• Bits 0 through 4 of CPUID.0AH.EDX indicates the number of fixed-function performance counters available per 
core,

• Bits 5 through 12 of CPUID.0AH.EDX indicates the bit-width of fixed-function performance counters. Bits 
beyond the width of the fixed-function counter are reserved and must be written as zeros.

NOTE
Early generation of processors based on Intel Core microarchitecture may report in 
CPUID.0AH:EDX of support for version 2 but indicating incorrect information of version 2 facilities.

The IA32_FIXED_CTR_CTRL MSR include multiple sets of 4-bit field, each 4 bit field controls the operation of a 
fixed-function performance counter. Figure 21-2 shows the layout of 4-bit controls for each fixed-function PMC. 
Two sub-fields are currently defined within each control. The definitions of the bit fields are:

• Enable field (lowest 2 bits within each 4-bit control) — When bit 0 is set, performance counting is 
enabled in the corresponding fixed-function performance counter to increment while the target condition 
associated with the architecture performance event occurred at ring 0. When bit 1 is set, performance counting 
is enabled in the corresponding fixed-function performance counter to increment while the target condition 
associated with the architecture performance event occurred at ring greater than 0. Writing 0 to both bits stops 
the performance counter. Writing a value of 11B enables the counter to increment irrespective of privilege 
levels.

• PMI field (the fourth bit within each 4-bit control) — When set, the logical processor generates an 
exception through its local APIC on overflow condition of the respective fixed-function counter.

IA32_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting of each performance counter. 
Figure 21-3 shows the layout of IA32_PERF_GLOBAL_CTRL. Each enable bit in IA32_PERF_GLOBAL_CTRL is 
AND’ed with the enable bits for all privilege levels in the respective IA32_PERFEVTSELx or IA32_PERF_FIXED_C-
TR_CTRL MSRs to start/stop the counting of respective counters. Counting is enabled if the AND’ed results is true; 
counting is disabled when the result is false.

Figure 21-2.  Layout of IA32_FIXED_CTR_CTRL MSR
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The behavior of the fixed function performance counters supported by architectural performance version 2 is 
expected to be consistent on all processors that support those counters, and is defined as follows.

Figure 21-3.  Layout of IA32_PERF_GLOBAL_CTRL MSR

Table 21-1.  Association of Fixed-Function Performance Counters with Architectural Performance Events

Fixed-Function 
Performance Counter

Address Event Mask Mnemonic Description

IA32_FIXED_CTR0 309H INST_RETIRED.ANY This event counts the number of instructions that retire 
execution. For instructions that consist of multiple uops, 
this event counts the retirement of the last uop of the 
instruction. The counter continues counting during 
hardware interrupts, traps, and in-side interrupt handlers.

IA32_FIXED_CTR1 30AH CPU_CLK_UNHALTED.THREAD

CPU_CLK_UNHALTED.CORE

The CPU_CLK_UNHALTED.THREAD event counts the 
number of core cycles while the logical processor is not in a 
halt state.

If there is only one logical processor in a processor core, 
CPU_CLK_UNHALTED.CORE counts the unhalted cycles of 
the processor core.

The core frequency may change from time to time due to 
transitions associated with Enhanced Intel SpeedStep 
Technology or TM2. For this reason this event may have a 
changing ratio with regards to time.

IA32_FIXED_CTR2 30BH CPU_CLK_UNHALTED.REF_TSC This event counts the number of reference cycles at the 
TSC rate when the core is not in a halt state and not in a TM 
stop-clock state. The core enters the halt state when it is 
running the HLT instruction or the MWAIT instruction. This 
event is not affected by core frequency changes (e.g., P 
states) but counts at the same frequency as the time stamp 
counter. This event can approximate elapsed time while the 
core was not in a halt state and not in a TM stopclock state.

IA32_FIXED_CTR3 30CH TOPDOWN.SLOTS This event counts the number of available slots for an 
unhalted logical processor. The event increments by 
machine-width of the narrowest pipeline as employed by 
the Top-down Microarchitecture Analysis method. The 
count is distributed among unhalted logical processors 
(hyper-threads) who share the same physical core. 

Software can use this event as the denominator for the 
top-level metrics of the Top-down Microarchitecture 
Analysis method.

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC1 enable

2 1 0

IA32_PMC0 enable

3132333435

Reserved

63
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IA32_PERF_GLOBAL_STATUS MSR provides single-bit status for software to query the overflow condition of each 
performance counter. IA32_PERF_GLOBAL_STATUS[bit 62] indicates overflow conditions of the DS area data 
buffer. IA32_PERF_GLOBAL_STATUS[bit 63] provides a CondChgd bit to indicate changes to the state of perfor-
mance monitoring hardware. Figure 21-4 shows the layout of IA32_PERF_GLOBAL_STATUS. A value of 1 in bits 0, 
1, 32 through 34 indicates a counter overflow condition has occurred in the associated counter.

When a performance counter is configured for PEBS, overflow condition in the counter generates a performance-
monitoring interrupt signaling a PEBS event. On a PEBS event, the processor stores data records into the buffer 
area (see Section 18.15.5), clears the counter overflow status., and sets the “OvfBuffer” bit in IA32_PERF_-
GLOBAL_STATUS. 

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of any general-purpose or fixed-
function counters via a single WRMSR. Software should clear overflow indications when
• Setting up new values in the event select and/or UMASK field for counting or interrupt-based event sampling.
• Reloading counter values to continue collecting next sample.

IA32_FIXED_CTR41 30DH TOPDOWN_BAD_SPECULATION This event counts Topdown slots that were not consumed 
by the backend due to a pipeline flush, such as a 
mispredicted branch or a machine clear. It provides a value 
equivalent to a general-purpose counter configured with 
UMask=00H and EventSelect=73H.

IA32_FIXED_CTR51 30EH TOPDOWN_FE_BOUND This event counts Topdown slots where uops were not 
provided to the backend due to frontend limitations, such as 
instruction cache/TLB miss delays or decoder limitations. It 
provides a value equivalent to a general purpose counter 
configured with UMask=01H and EventSelect=9CH.

IA32_FIXED_CTR61 30FH TOPDOWN_RETIRING This event counts Topdown slots that were committed 
(retired) by the backend. It provides a value equivalent to a 
general purpose counter configured with UMask=02H and 
EventSelect=C2H.

NOTES:
1. If this counter is supported, it will be accessible in the following MSRs: IA32_PERF_GLOBAL_STATUS (38EH), 

IA32_PERF_GLOBAL_CTRL (38FH), IA32_PERF_GLOBAL_STATUS_RESET (390H), and 
IA32_PERF_GLOBAL_STATUS_SET (391H).

Figure 21-4.  Layout of IA32_PERF_GLOBAL_STATUS MSR

Table 21-1.  Association of Fixed-Function Performance Counters with Architectural Performance Events

Fixed-Function 
Performance Counter

Address Event Mask Mnemonic Description

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

2 1 0

IA32_PMC0 Overflow

3132333435

Reserved

63
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• Disabling event counting or interrupt-based event sampling.

The layout of IA32_PERF_GLOBAL_OVF_CTL is shown in Figure 21-5.

21.2.3 Architectural Performance Monitoring Version 3 
Processors supporting architectural performance monitoring version 3 also supports version 1 and 2, as well as 
capability enumerated by CPUID leaf 0AH. Specifically, version 3 provides the following enhancement in perfor-
mance monitoring facilities if a processor core comprising of more than one logical processor, i.e., a processor core 
supporting Intel Hyper-Threading Technology or simultaneous multi-threading capability:
• AnyThread counting for processor core supporting two or more logical processors. The interface that supports 

AnyThread counting include:

— Each IA32_PERFEVTSELx MSR (starting at MSR address 186H) support the bit field layout defined in Figure 
21-6.

Bit 21 (AnyThread) of IA32_PERFEVTSELx is supported in architectural performance monitoring version 3 for 
processor core comprising of two or more logical processors. When set to 1, it enables counting the associated 
event conditions (including matching the thread’s CPL with the OS/USR setting of IA32_PERFEVTSELx) 
occurring across all logical processors sharing a processor core. When bit 21 is 0, the counter only increments 
the associated event conditions (including matching the thread’s CPL with the OS/USR setting of IA32_PERFE-
VTSELx) occurring in the logical processor which programmed the IA32_PERFEVTSELx MSR.

— Each fixed-function performance counter IA32_FIXED_CTRx (starting at MSR address 309H) is configured 
by a 4-bit control block in the IA32_PERF_FIXED_CTR_CTRL MSR. The control block also allows thread-
specificity configuration using an AnyThread bit for fixed-function counters 0, 1, and 2. The layout of 
IA32_PERF_FIXED_CTR_CTRL MSR is shown. 

Figure 21-5.  Layout of IA32_PERF_GLOBAL_OVF_CTRL MSR

Figure 21-6.  Layout of IA32_PERFEVTSELx MSRs Supporting Architectural Performance Monitoring Version 3
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Each control block for a fixed-function performance counter provides an AnyThread (bit position 2 + 4*N, N= 
0, 1, etc.) bit. When set to 1, it enables counting the associated event conditions (including matching the 
thread’s CPL with the ENABLE setting of the corresponding control block of IA32_PERF_FIXED_CTR_CTRL) 
occurring across all logical processors sharing a processor core. When an AnyThread bit is 0 in 
IA32_PERF_FIXED_CTR_CTRL, the corresponding fixed-function counter only increments the associated event 
conditions occurring in the logical processor which programmed the IA32_PERF_FIXED_CTR_CTRL MSR.

• The IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, IA32_PERF_GLOBAL_OVF_CTRL MSRs provide 
single-bit controls/status for each general-purpose and fixed-function performance counter. Figure 21-8 and 
Figure 21-9 show the layout of these MSRs for N general-purpose performance counters (where N is reported 
by CPUID.0AH:EAX[15:8]) and three fixed-function counters.

NOTE
The number of general-purpose performance monitoring counters (i.e., N in Figure 21-9) can vary 
across processor generations within a processor family, across processor families, or could be 
different depending on the configuration chosen at boot time in the BIOS regarding Intel Hyper 
Threading Technology, (e.g., N=2 for 45 nm Intel Atom processors; N =4 for processors based on 
the Nehalem microarchitecture; for processors based on the Sandy Bridge microarchitecture, N = 
4 if Intel Hyper Threading Technology is active and N=8 if not active). In addition, the number of 
counters may vary from the number of physical counters present on the hardware, because an 
agent running at a higher privilege level (e.g., a VMM) may not expose all counters.

Figure 21-7.  IA32_FIXED_CTR_CTRL MSR Supporting Architectural Performance Monitoring Version 3

Figure 21-8.  Layout of Global Performance Monitoring Control MSR
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21.2.3.1  AnyThread Counting and Software Evolution
The motivation for characterizing software workload over multiple software threads running on multiple logical 
processors of the same processor core originates from a time earlier than the introduction of the AnyThread inter-
face in IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL. While AnyThread counting provides some benefits in 
simple software environments of an earlier era, the evolution contemporary software environments introduce 
certain concepts and pre-requisites that AnyThread counting does not comply with. 

One example is the proliferation of software environments that support multiple virtual machines (VM) under VMX 
(see Chapter 25, “Introduction to Virtual Machine Extensions”) where each VM represents a domain separated 
from one another.

A Virtual Machine Monitor (VMM) that manages the VMs may allow an individual VM to employ performance moni-
toring facilities to profiles the performance characteristics of a workload. The use of the Anythread interface in 
IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL is discouraged with software environments supporting virtualiza-
tion or requiring domain separation. 

Specifically, Intel recommends VMM:
• Configure the MSR bitmap to cause VM-exits for WRMSR to IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL in 

VMX non-Root operation (see Chapter 26 for additional information), 
• Clear the AnyThread bit of IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL in the MSR-load lists for VM exits 

and VM entries (see Chapter 26, Chapter 28, and Chapter 29).

Even when operating in simpler legacy software environments which might not emphasize the pre-requisites of a 
virtualized software environment, the use of the AnyThread interface should be moderated and follow any event-
specific guidance where explicitly noted.

Figure 21-9.  Global Performance Monitoring Overflow Status and Control MSRs
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21.2.4 Architectural Performance Monitoring Version 4 
Processors supporting architectural performance monitoring version 4 also supports version 1, 2, and 3, as well as 
capability enumerated by CPUID leaf 0AH. Version 4 introduced a streamlined PMI overhead mitigation interface 
that replaces the legacy semantic behavior but retains the same control interface in IA32_DEBUGCTL.Freeze_L-
BRs_On_PMI and Freeze_PerfMon_On_PMI. Specifically version 4 provides the following enhancements:
• New indicators (LBR_FRZ, CTR_FRZ) in IA32_PERF_GLOBAL_STATUS, see Section 21.2.4.1.
• Streamlined Freeze/PMI Overhead management interfaces to use IA32_DEBUGCTL.Freeze_LBRs_On_PMI and 

IA32_DEBUGCTL.Freeze_PerfMon_On_PMI: see Section 21.2.4.1. Legacy semantics of Freeze_LBRs_On_PMI 
and Freeze_PerfMon_On_PMI (applicable to version 2 and 3) are not supported with version 4 or higher.

• Fine-grain separation of control interface to manage overflow/status of IA32_PERF_GLOBAL_STATUS and read-
only performance counter enabling interface in IA32_PERF_GLOBAL_STATUS: see Section 21.2.4.2.

• Performance monitoring resource in-use MSR to facilitate cooperative sharing protocol between perfmon-
managing privilege agents.

21.2.4.1  Enhancement in IA32_PERF_GLOBAL_STATUS 
The IA32_PERF_GLOBAL_STATUS MSR provides the following indicators with architectural performance monitoring 
version 4:
• IA32_PERF_GLOBAL_STATUS.LBR_FRZ[bit 58]: This bit is set due to the following conditions:

— IA32_DEBUGCTL.FREEZE_LBR_ON_PMI has been set by the profiling agent, and

— A performance counter, configured to generate PMI, has overflowed to signal a PMI. Consequently the LBR 
stack is frozen.

Effectively, the IA32_PERF_GLOBAL_STATUS.LBR_FRZ bit also serves as a control to enable capturing data in 
the LBR stack. To enable capturing LBR records, the following expression must hold with architectural perfmon 
version 4 or higher:

— (IA32_DEBUGCTL.LBR & (!IA32_PERF_GLOBAL_STATUS.LBR_FRZ) ) =1
• IA32_PERF_GLOBAL_STATUS.CTR_FRZ[bit 59]: This bit is set due to the following conditions:

— IA32_DEBUGCTL.FREEZE_PERFMON_ON_PMI has been set by the profiling agent, and

— A performance counter, configured to generate PMI, has overflowed to signal a PMI. Consequently, all the 
performance counters are frozen.

Effectively, the IA32_PERF_GLOBAL_STATUS.CTR_FRZ bit also serve as an read-only control to enable 
programmable performance counters and fixed counters in the core PMU. To enable counting with the 
performance counters, the following expression must hold with architectural perfmon version 4 or higher:

• (IA32_PERFEVTSELn.EN & IA32_PERF_GLOBAL_CTRL.PMCn & (!IA32_PERF_-
GLOBAL_STATUS.CTR_FRZ) ) = 1 for programmable counter ‘n’, or 

• (IA32_PERF_FIXED_CRTL.ENi & IA32_PERF_GLOBAL_CTRL.FCi & (!IA32_PERF_-
GLOBAL_STATUS.CTR_FRZ) ) = 1 for fixed counter ‘i’

The read-only enable interface IA32_PERF_GLOBAL_STATUS.CTR_FRZ provides a more efficient flow for a PMI 
handler to use IA32_DEBUGCTL.Freeze_Perfmon_On_PMI to filter out data that may distort target workload anal-
ysis, see Table 19-3. It should be noted the IA32_PERF_GLOBAL_CTRL register continue to serve as the primary 
interface to control all performance counters of the logical processor. 

For example, when the Freeze-On-PMI mode is not being used, a PMI handler would be setting IA32_PERF_-
GLOBAL_CTRL as the very last step to commence the overall operation after configuring the individual counter 
registers, controls, and PEBS facility. This does not only assure atomic monitoring but also avoids unnecessary 
complications (e.g., race conditions) when software attempts to change the core PMU configuration while some 
counters are kept enabled.

Additionally, IA32_PERF_GLOBAL_STATUS.TraceToPAPMI[bit 55]: On processors that support Intel Processor Trace 
and configured to store trace output packets to physical memory using the ToPA scheme, bit 55 is set when a PMI 
occurred due to a ToPA entry memory buffer was completely filled. 
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IA32_PERF_GLOBAL_STATUS also provides an indicator to distinguish interaction of performance monitoring oper-
ations with other side-band activities, which apply Intel SGX on processors that support it (for additional informa-
tion about Intel SGX, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3D):
• IA32_PERF_GLOBAL_STATUS.ASCI[bit 60]: This bit is set when data accumulated in any of the configured 

performance counters (i.e., IA32_PMCx or IA32_FIXED_CTRx) may include contributions from direct or indirect 
operation of Intel SGX to protect an enclave (since the last time IA32_PERF_GLOBAL_STATUS.ASCI was 
cleared). 

Note, a processor’s support for IA32_PERF_GLOBAL_STATUS.TraceToPAPMI[bit 55] is enumerated as a result of 
CPUID enumerated capability of Intel Processor Trace and the use of the ToPA buffer scheme. Support of 
IA32_PERF_GLOBAL_STATUS.ASCI[bit 60] is enumerated by the CPUID enumeration of Intel SGX.

21.2.4.2  IA32_PERF_GLOBAL_STATUS_RESET and IA32_PERF_GLOBAL_STATUS_SET MSRS
With architectural performance monitoring version 3 and lower, clearing of the set bits in IA32_PERF_-
GLOBAL_STATUS MSR by software is done via IA32_PERF_GLOBAL_OVF_CTRL MSR. Starting with architectural 
performance monitoring version 4, software can manage the overflow and other indicators in IA32_PERF_-
GLOBAL_STATUS using separate interfaces to set or clear individual bits. 

The address and the architecturally-defined bits of IA32_PERF_GLOBAL_OVF_CTRL is inherited by IA32_PERF_-
GLOBAL_STATUS_RESET (see Figure 21-11). Further, IA32_PERF_GLOBAL_STATUS_RESET provides additional bit 
fields to clear the new indicators in IA32_PERF_GLOBAL_STATUS described in Section 21.2.4.1.

Figure 21-10.  IA32_PERF_GLOBAL_STATUS MSR and Architectural Perfmon Version 4

Figure 21-11.  IA32_PERF_GLOBAL_STATUS_RESET MSR and Architectural Perfmon Version 4
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The IA32_PERF_GLOBAL_STATUS_SET MSR is introduced with architectural performance monitoring version 4. It 
allows software to set individual bits in IA32_PERF_GLOBAL_STATUS. The IA32_PERF_GLOBAL_STATUS_SET 
interface can be used by a VMM to virtualize the state of IA32_PERF_GLOBAL_STATUS across VMs.

21.2.4.3  IA32_PERF_GLOBAL_INUSE MSR
In a contemporary software environment, multiple privileged service agents may wish to employ the processor’s 
performance monitoring facilities. The IA32_MISC_ENABLE.PERFMON_AVAILABLE[bit 7] interface could not serve 
the need of multiple agent adequately. A white paper, “Performance Monitoring Unit Sharing Guideline”1, proposed 
a cooperative sharing protocol that is voluntary for participating software agents. 

Architectural performance monitoring version 4 introduces a new MSR, IA32_PERF_GLOBAL_INUSE, that simplifies 
the task of multiple cooperating agents to implement the sharing protocol.

The layout of IA32_PERF_GLOBAL_INUSE is shown in Figure 21-13.

The IA32_PERF_GLOBAL_INUSE MSR provides an “InUse” bit for each programmable performance counter and 
fixed counter in the processor. Additionally, it includes an indicator if the PMI mechanism has been configured by a 
profiling agent.
• IA32_PERF_GLOBAL_INUSE.PERFEVTSEL0_InUse[bit 0]: This bit reflects the logical state of 

(IA32_PERFEVTSEL0[7:0] != 0).

Figure 21-12.  IA32_PERF_GLOBAL_STATUS_SET MSR and Architectural Perfmon Version 4

1. Available at http://www.intel.com/sdm

Figure 21-13.  IA32_PERF_GLOBAL_INUSE MSR and Architectural Perfmon Version 4
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• IA32_PERF_GLOBAL_INUSE.PERFEVTSEL1_InUse[bit 1]: This bit reflects the logical state of 
(IA32_PERFEVTSEL1[7:0] != 0).

• IA32_PERF_GLOBAL_INUSE.PERFEVTSEL2_InUse[bit 2]: This bit reflects the logical state of 
(IA32_PERFEVTSEL2[7:0] != 0).

• IA32_PERF_GLOBAL_INUSE.PERFEVTSELn_InUse[bit n]: This bit reflects the logical state of 
(IA32_PERFEVTSELn[7:0] != 0), n < CPUID.0AH:EAX[15:8].

• IA32_PERF_GLOBAL_INUSE.FC0_InUse[bit 32]: This bit reflects the logical state of 
(IA32_FIXED_CTR_CTRL[1:0] != 0).

• IA32_PERF_GLOBAL_INUSE.FC1_InUse[bit 33]: This bit reflects the logical state of 
(IA32_FIXED_CTR_CTRL[5:4] != 0).

• IA32_PERF_GLOBAL_INUSE.FC2_InUse[bit 34]: This bit reflects the logical state of 
(IA32_FIXED_CTR_CTRL[9:8] != 0).

• IA32_PERF_GLOBAL_INUSE.PMI_InUse[bit 63]: This bit is set if any one of the following bit is set:

— IA32_PERFEVTSELn.INT[bit 20], n < CPUID.0AH:EAX[15:8].

— IA32_FIXED_CTR_CTRL.ENi_PMI, i = 0, 1, 2.

— Any IA32_PEBS_ENABLES bit which enables PEBS for a general-purpose or fixed-function performance 
counter.

21.2.5 Architectural Performance Monitoring Version 5 
Processors supporting architectural performance monitoring version 5 also support versions 1, 2, 3, and 4, as well 
as capability enumerated by CPUID leaf 0AH. Specifically, version 5 provides the following enhancements:
• Deprecation of AnyThread mode, see Section 21.2.5.1.
• Individual enumeration of Fixed counters in CPUID.0AH, see Section 21.2.5.2.
• Domain separation, see Section 21.2.5.3.

21.2.5.1  AnyThread Mode Deprecation
With Architectural Performance Monitoring Version 5, a processor that supports AnyThread mode deprecation is 
enumerated by CPUID.0AH.EDX[15]. If set, software will not have to follow guidelines in Section 21.2.3.1.

21.2.5.2  Fixed Counter Enumeration
With Architectural Performance Monitoring Version 5, register CPUID.0AH.ECX indicates Fixed Counter enumera-
tion. It is a bit mask which enumerates the supported Fixed Counters in a processor. If bit 'i' is set, it implies that 
Fixed Counter 'i' is supported. Software is recommended to use the following logic to check if a Fixed Counter is 
supported on a given processor: 

FxCtr[i]_is_supported := ECX[i] || (EDX[4:0] > i);

21.2.5.3  Domain Separation
When the INV flag in IA32_PERFEVTSELx is used, a counter stops counting when the logical processor exits the C0 
ACPI C-state.

21.2.6 Architectural Performance Monitoring Version 6
Processors supporting architectural performance monitoring version 6 also support versions 1, 2, 3, 4, and 5, as 
well as the capabilities enumerated by CPUID leaves 0AH and 23H. Specifically, version 6 provides the following 
enhancements: 
• PerfMon MSRs Aliasing, see Section 21.2.6.1. 
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• UnitMask2, see Section 21.2.6.2. 
• Equal flag, see Section 21.2.6.3. 

21.2.6.1  Performance Monitoring MSR Aliasing
Architectural performance monitoring version 6 includes a new range for the counters' MSRs in the 19xxH address 
range1. The new MSR range allows for scaling the number of general-purpose and fixed-function counters beyond 
the quantities in current products. Additionally, it banks registers of the same counter closer to each other.
All legacy and new counters, i.e., those enumerated in CPUID.(EAX = 23H, ECX = 01H), will be supported in this 
new address range. Moving forward, newer counters may be supported in the new address range, but not in the 
legacy one.

An IA32_PMC_GPn_CTR MSR can be used to access the counter value for a GP (general-purpose) counter ‘n.’ On 
processors that support CPUID leaf 23H, a general-purpose (GP) counter ‘n’ that is enumerated in both CPUID leaf 
23H and leaf 0AH can be accessed through either IA32_PMC_GPn_CTR or the legacy MSR addresses (IA32_PMCn, 
IA32_A_PMCn). In contrast, a counter ‘n’ that is only enumerated in CPUID leaf 23H can only be accessed through 
IA32_PMC_GPn_CTR. This guideline also applies to the other MSR aliases described in this section (i.e., 
IA32_PMC_GPn_CFG_A and IA32_PERFEVTSELn, IA32_PMC_FXm_CTR and IA32_FIXED_CTRm). The 
IA32_PMC_GPn_CTR MSR address2 for counter ‘n’ is 1900H + 4 * n, and this MSR has full-width write support. 
The IA32_PMC_GPn_CFG_A MSR can be used to access the performance event select register for a GP counter ‘n’ 
and is at address3 1901H + 4 * n. The reload configuration MSRs for GP counter ‘n,’ IA32_PMC_GPn_CFG_B, is at 
MSR address 1902H + 4 * n. There is no legacy MSR alias to this reload configuration register. Thus, the register 
only exists when enumerated in CPUID leaf 23H. Similarly, no legacy MSR alias exists for the event-select extended 
registers, IA32_PMC_GPn_CFG_C, which are at MSR address 1903H + 4 * n for GP counter ‘n.’ 
An IA32_PMC_FXm_CTR MSR can be used to access the counter value for a fixed-function counter ‘m’ if that 
counter is enumerated in CPUID leaf 23H. The IA32_PMC_FXm_CTR MSR address for fixed-function counter ‘m’ is 
1980H + 4 * m. There is no alias for the fixed-function counters' reload configuration or event select extended 
registers (IA32_PMC_FXm_CFG_B at MSR addresses 1982H + 4 * m and IA32_PMC_FXm_CFG_C at MSR address 
1983H + 4 * m, respectively).
The available general-purpose and fixed-function counters are reported by CPUID.(EAX = 23H, ECX = 01H):EAX 
and CPUID.(EAX = 23H, ECX = 01H):EBX, respectively. Note that not all counters enumerated in CPUID leaf 23H 
may have corresponding IA32_PMC_GPn_CFG_B, IA32_PMC_GPn_CFG_C, IA32_PMC_FXm_CFG_B, or 
IA32_PMC_FXm_CFG_C MSRs. The enumeration and usage of these MSRs are described in Section 21.9.11, “Auto 
Counter Reload.” The enumeration in CPUID leaf 23H is true-view, and thus, the enumeration may only be set on 
(and the MSRs/counters they enumerate only supported on) a subset of the logical processors of the system.

The architectural performance monitoring version 6 enhanced layout of the IA32_PERFEVTSELx MSR is shown in 
Figure 21-14.

1. This feature is also available in a subset of processors with a CPUID signature value of DisplayFamily_DisplayModel 06_C5H or 
06_C6H (though they report IA32_PERF_CAPABILITIES.PEBS_FMT as 5).

Table 21-2.  New Performance Monitoring MSR Naming Details

Register General Counter n Fixed Counter m

Counter IA32_PMC_GPn_CTR IA32_PMC_FXm_CTR

Event-Select IA32_PMC_GPn_CFG_A N/A

Reload Config IA32_PMC_GPn_CFG_B IA32_PMC_FXm_CFG_B

Event-Select Extended IA32_PMC_GPn_CFG_C IA32_PMC_FXm_CFG_C

2. As an example, the IA32_PMC_GP1_CTR MSR has MSR address 1904H. Note that the legacy full-width MSR addresses for the 
counters, IA32_A_PMCn MSRs, remains at MSR address 4C1H + n.

3. As an example, the IA32_PMC_GP1_CFG_A MSR has MSR address 1905H. Note that the legacy MSR address for the event select 
registers, IA32_PERFEVTSELn MSRs, remain at MSR address 186H + n.
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NOTES
The EQ bit and UMASK2 field are added in Architectural Performance Monitoring Version 6.
The IN_TX and IN_TXCP bits are available only on processors supporting Intel TSX. 

The architectural performance monitoring version 6 enhanced layout of the IA32_FIXED_CTR_CTRL MSR is shown 
in Figure 21-15.

Figure 21-14.  IA32_PMC_GPx_CFG_A MSR (also known as IA32_PERFEVTSELx) 
Supporting Architectural Performance Monitoring Version 6

Figure 21-15.  IA32_FIXED_CTR_CTRL MSR Supporting Architectural Performance Monitoring Version 6
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21.2.6.2  Unit Mask 2
Architectural performance monitoring version 6 introduces a new Unit Mask 2 (UMASK2) field in the 
IA32_PERFEVTSELx MSRs. It is supported if enumerated by CPUID.(EAX=23H, ECX=0H):EBX[bit 0].
• UMASK2 field (bits 40 through 47): These bits qualify the condition that the selected event logic unit detects. 

Valid UMASK2 values for each event logic unit are specific to the unit. The new UMASK2 field may also be used 
in conjunction with UMASK. 

21.2.6.3  Equal Flag
Architectural performance monitoring version 6 introduces a new Equal (EQ) flag in the IA32_PERFEVTSELx MSRs. 
It is supported if enumerated by CPUID.(EAX=23H, ECX=0H):EBX[bit 1].
• EQ flag (bit 36): When the EQ flag is set and the INV flag is clear, the comparison evaluates to true if the 

selected performance monitoring event (the event) is equal to the specified Counter Mask value (CMask). When 
the EQ flag is set and the INV flag is set, the comparison evaluates to true if the event is less than the CMask 
value and the event is not zero. Note that if the CMask is zero, the EQ flag is ignored.

21.2.7 Pre-defined Architectural Performance Events
Table 21-3 lists architecturally defined events.

A processor that supports architectural performance monitoring may not support all the predefined architectural 
performance events (Table 21-3). The number of architectural events is reported through CPUID.0AH:EAX[31:24], 
while non-zero bits in CPUID.0AH:EBX indicate any architectural events that are not available. 

The behavior of each architectural performance event is expected to be consistent on all processors that support 
that event. Minor variations between microarchitectures are noted below:
• UnHalted Core Cycles — Event select 3CH, Umask 00H 

This event counts core clock cycles when the clock signal on a specific core is running (not halted). The counter 
does not advance in the following conditions: 

Table 21-3.  UMask and Event Select Encodings for Pre-Defined Architectural Performance Events

Bit Position 
CPUID.AH.EBX and 
CPUID.23H.03H.EAX

Event Name UMask Event Select

0 UnHalted Core Cycles 00H 3CH

1 Instruction Retired 00H C0H

2 UnHalted Reference Cycles1

NOTES:
1. Implementations prior to the 12th generation Intel® Core™ processor P-cores count at core crystal clock, TSC, or bus clock frequency.

01H 3CH

3 LLC Reference 4FH 2EH

4 LLC Misses 41H 2EH

5 Branch Instruction Retired 00H C4H

6 Branch Misses Retired 00H C5H

7 Topdown Slots 01H A4H

8 Topdown Backend Bound 02H A4H

9 Topdown Bad Speculation 00H 73H

10 Topdown Frontend Bound 01H 9CH

11 Topdown Retiring 02H C2H

12 LBR Inserts 01H E4H
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— An ACPI C-state other than C0 for normal operation.

— HLT.

— STPCLK# pin asserted.

— Being throttled by TM1.

— During the frequency switching phase of a performance state transition (see Chapter 16, “Power and 
Thermal Management”).

The performance counter for this event counts across performance state transitions using different core clock 
frequencies.

• Instructions Retired — Event select C0H, Umask 00H 
This event counts the number of instructions at retirement. For instructions that consist of multiple micro-ops, 
this event counts the retirement of the last micro-op of the instruction. An instruction with a REP prefix counts 
as one instruction (not per iteration). Faults before the retirement of the last micro-op of a multi-ops instruction 
are not counted.
This event does not increment under VM-exit conditions. Counters continue counting during hardware 
interrupts, traps, and inside interrupt handlers. 

• UnHalted Reference Cycles — Event select 3CH, Umask 01H 
This event counts reference clock cycles at a fixed frequency while the clock signal on the core is running. The 
event counts at a fixed frequency, irrespective of core frequency changes due to performance state transitions. 
Processors may implement this behavior differently. Current implementations use the core crystal clock, TSC or 
the bus clock. Because the rate may differ between implementations, software should calibrate it to a time 
source with known frequency.

• Last Level Cache References — Event select 2EH, Umask 4FH 
This event counts requests originating from the core that reference a cache line in the last level on-die cache. 
The event count includes speculation and cache line fills due to the first-level cache hardware prefetcher, but 
may exclude cache line fills due to other hardware-prefetchers. 
Because cache hierarchy, cache sizes and other implementation-specific characteristics; value comparison to 
estimate performance differences is not recommended. 

• Last Level Cache Misses — Event select 2EH, Umask 41H
This event counts each cache miss condition for references to the last level on-die cache. The event count may 
include speculation and cache line fills due to the first-level cache hardware prefetcher, but may exclude cache 
line fills due to other hardware-prefetchers. 
Because cache hierarchy, cache sizes and other implementation-specific characteristics; value comparison to 
estimate performance differences is not recommended. 

• Branch Instructions Retired — Event select C4H, Umask 00H
This event counts branch instructions at retirement. It counts the retirement of the last micro-op of a branch 
instruction. 

• All Branch Mispredict Retired — Event select C5H, Umask 00H
This event counts mispredicted branch instructions at retirement. It counts the retirement of the last micro-op 
of a branch instruction in the architectural path of execution and experienced misprediction in the branch 
prediction hardware. 
Branch prediction hardware is implementation-specific across microarchitectures; value comparison to 
estimate performance differences is not recommended. 

• Topdown Slots — Event select A4H, Umask 01H
This event counts the total number of available slots for an unhalted logical processor.
The event increments by machine-width of the narrowest pipeline as employed by the Top-down Microarchi-
tecture Analysis method. The count is distributed among unhalted logical processors (hyper-threads) who 
share the same physical core, in processors that support Intel Hyper-Threading Technology.
Software can use this event as the denominator for the top-level metrics of the Top-down Microarchitecture 
Analysis method.
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NOTE
Programming decisions or software precisians on functionality should not be based on the event 
values or dependent on the existence of performance monitoring events.

• Topdown Backend Bound — Event select A4H, Umask 02H
This event counts a subset of the Topdown Slots event that was not consumed by the backend pipeline due to 
lack of backend resources, as a result of memory subsystem delays, execution unit limitations, or other 
conditions.
The count may be distributed among unhalted logical processors that share the same physical core, in 
processors that support Intel® Hyper-Threading Technology.
Software can use this event as the numerator for the Backend Bound metric (or top-level category) of the 
Topdown Microarchitecture Analysis method. 
Software can also derive the Backend Bound Slots using the formula: Backend Bound Slots = (Total Slots - 
Bad Speculation Slots - Frontend Bound Slots - Retiring Slots). 

• Topdown Bad Speculation — Event select 73H, Umask 00H
This event counts a subset of the Topdown Slots event that was wasted due to incorrect speculation as a result 
of incorrect control-flow or data speculation. Common examples include branch mispredictions and memory 
ordering clears.
The count may be distributed among impacted logical processors that share the same physical core, for some 
processors that support Intel Hyper-Threading Technology.
Software can use this event as the numerator for the Bad Speculation metric (or top-level category) of the 
Topdown Microarchitecture Analysis method.
Software can also derive the Bad Speculation Slots using the formula: Bad Speculation Slots = (Total Slots - 
Backend Bound Slots - Frontend Bound Slots - Retiring Slots).

• Topdown Frontend Bound — Event select 9CH, Umask 01H
This event counts a subset of the Topdown Slots event that had no operation delivered to the backend pipeline 
due to instruction fetch limitations when the backend could have accepted more operations. Common examples 
include instruction cache misses and x86 instruction decode limitations.
The count may be distributed among unhalted logical processors that share the same physical core, in 
processors that support Intel Hyper-Threading Technology.
Software can use this event as the numerator for the Frontend Bound metric (or top-level category) of the 
Topdown Microarchitecture Analysis method.

• Topdown Retiring — Event select C2H, Umask 02H
This event counts a subset of the Topdown Slots event that is utilized by operations that eventually get retired 
(committed) by the processor pipeline. Usually, this event positively correlates with higher performance as 
measured by the instructions-per-cycle metric.
Software can use this event as the numerator for the Retiring metric (or top-level category) of the Topdown 
Microarchitecture Analysis method.

• LBR Inserts — Event select E4H, Umask 01H
This event counts when an LBR (Last Branch Record) entry is inserted or removed. Inserted means an actual 
LBR buffer update has occurred, considering LBR configuration and filtering. An LBR entry is removed when a 
RET instruction is retired in LBR Call-stack mode.
Software may use this event in usages like profile-guided optimization (PGO) for profiling collections across 
Intel processors and in virtualized environments.

21.2.8 Full-Width Writes to Performance Counter Registers
The general-purpose performance counter registers IA32_PMCx are writable via WRMSR instruction. However, the 
value written into IA32_PMCx by WRMSR is the signed extended 64-bit value of the EAX[31:0] input of WRMSR.
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A processor that supports full-width writes to the general-purpose performance counters enumerated by 
CPUID.0AH:EAX[15:8] will set IA32_PERF_CAPABILITIES[13] to enumerate its full-width-write capability See 
Figure 21-67. 

If IA32_PERF_CAPABILITIES.FW_WRITE[bit 13] =1, each IA32_PMCi is accompanied by a corresponding alias 
address starting at 4C1H for IA32_A_PMC0. 

The bit width of the performance monitoring counters is specified in CPUID.0AH:EAX[23:16].

If IA32_A_PMCi is present, the 64-bit input value (EDX:EAX) of WRMSR to IA32_A_PMCi will cause IA32_PMCi to 
be updated by:

COUNTERWIDTH = CPUID.0AH:EAX[23:16] bit width of the performance monitoring counter
IA32_PMCi[COUNTERWIDTH-1:32] := EDX[COUNTERWIDTH-33:0]);    
IA32_PMCi[31:0] := EAX[31:0];
EDX[63:COUNTERWIDTH] are reserved

21.2.9 Scalable Enumeration Architecture
An Architectural Performance Monitoring Extended (ArchPerfmonExt) leaf 23H is added to the CPUID instruction for 
enhanced enumeration of PMU architectural features. Additionally, the IA32_PERF_CAPABILITIES MSR enhances 
enumeration for PMU non-architectural features.

NOTE
CPUID leaf 0AH continues to report useful attributes, such as architectural performance monitoring 
version ID and counter width (# bits).

CPUID leaf 23H enhances previous enumeration of PMU capabilities: 
• Employs CPUID sub-leafing to accommodate future PMU extensions.
• Exposes true-view resources per logical processor.
• Introduces a bitmap (true-view) enumeration of general-purpose counters availability.
• A bitmap (true-view) enumeration of fixed-function counters availability.
• A bitmap (true-view) enumeration of architectural performance monitoring events.
Processors that support this enhancement set CPUID.(EAX=07H, ECX=01H):EAX.ArchPerfmonExt[bit 8]. 

21.2.9.1  CPUID Sub-Leafing
CPUID leaf 23H contains additional architectural PMU capabilities. This leaf supports sub-leafing, providing each 
distinct PMU feature with an individual sub-leaf for enumerating its details.
The availability of sub-leaves is enumerated via CPUID.(EAX=23H, ECX=0H):EAX. For each bit n set in this field, 
sub-leaf n under CPUID leaf 23H is supported.

21.2.9.2  Reporting Per Logical Processor
CPUID leaf 23H provides a true-view of per logical processor PMU capabilities. This leaf reports the actual support 
of the individual logical processor that the CPUID instruction was executed on; this applies to all sub-leaves.
Software must not make assumptions that CPUID leaf 23H would report any value the same on another logical 
processor. It is required to read CPUID leaf 23H on every logical processor and program that logical processor only 
according to the values returned by the CPUID leaf 23H directly executed upon it. It is a requirement of software 
to compare and determine common features between logical processors if required by iterating over each logical 
processor’s CPUID leaf 23H.
Conversely, CPUID leaf 0AH provides a maximum common set of capabilities across logical processors when a 
feature is not supported by all logical processors.
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NOTE
Locating a PMU feature under CPUID leaf 23H alerts software that the feature may not be supported 
uniformly across all logical processors.

21.2.9.3  General-Purpose Counters Bitmap
CPUID.(EAX=23H, ECX=01H):EAX reports a bitmap for available general-purpose counters. (CPUID leaf 0AH 
reports only the total number of general-purpose counters.) 
This capability enables a virtual-machine monitor to reserve lower-index counters for its own use, while exposing 
higher-index counters to guest software. This is especially important should the general-purpose counters not be 
fully homogeneous.
Software should utilize the new bitmap reporting, including for detecting the number of available general-purpose 
counters. To facilitate this transition, the number of general-purpose counters in CPUID leaf 0AH will not go beyond 
eight, even if the processor has support for more than eight general-purpose counters.
Note that general-purpose counters that are exclusively enumerated in CPUID.(EAX=23H, ECX=01H):EAX may not 
support the legacy MSR address range; see Section 21.2.6.1, “Performance Monitoring MSR Aliasing,” for details.

21.2.9.4  Fixed-Function Counters True-View Bitmap
CPUID.(EAX=23H, ECX=01H):EBX reports a bitmap for available fixed-function counters. (CPUID leaf 0AH reports 
the common number of contiguous fixed-function counters in addition to a common bitmap of fixed-function 
counters availability.)
This capability enables privileged software to expose per logical processor enumeration of fixed-function counters. 
This is especially important should the fixed-function counters not be available on all logical processors.
Note that programmable counters that are exclusively enumerated in CPUID.(EAX=23H, ECX=01H):EAX may not 
support the legacy MSR address range; see Section 21.2.6.1, “Performance Monitoring MSR Aliasing,” for details.

21.2.9.5  Architectural Performance Monitoring Events Bitmap 
CPUID.(EAX=23H, ECX=03H):EAX provides a true-view of per logical processor available architectural perfor-
mance monitoring events. For each bit n set in this field, the processor supports Architectural Performance Moni-
toring Event of index n (positive polarity).   
Conversely, CPUID.0AH:EBX provides a maximum common set of architectural performance monitoring events 
supported by all logical processors, where if bit n is set, it denotes the processor does not necessarily support 
Architectural Performance Monitoring Event of index n on all logical processors (negative polarity).

21.2.9.6  TMA Slots Per Cycle
CPUID.(EAX=23H, ECX=0H):ECX[7:0] reports the number of TMA slots per cycle in a true-view per logical-
processor fashion.
This number can be multiplied by the number of cycles (from CPU_CLK_UNHALTED.THREAD / 
CPU_CLK_UNHALTED.CORE or IA32_FIXED_CTR1) to determine the total number of TMA slots. 

Because of microarchitectural reasons, some logical processors may be reporting TMA slots per cycle as 0. In such 
situations, software can use other methods, like programmable events or fixed counters, to understand the perfor-
mance issues.
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21.3 PERFORMANCE MONITORING (INTEL® CORE™ PROCESSORS AND INTEL® 
XEON® PROCESSORS)

21.3.1 Performance Monitoring for Processors Based on Nehalem Microarchitecture
Intel Core i7 processor family1 supports architectural performance monitoring capability with version ID 3 (see 
Section 21.2.3) and a host of non-architectural monitoring capabilities. The Intel Core i7 processor family is based 
on Nehalem microarchitecture, and provides four general-purpose performance counters (IA32_PMC0, 
IA32_PMC1, IA32_PMC2, IA32_PMC3) and three fixed-function performance counters (IA32_FIXED_CTR0, IA32_-
FIXED_CTR1, IA32_FIXED_CTR2) in the processor core. 

Non-architectural performance monitoring in Intel Core i7 processor family uses the IA32_PERFEVTSELx MSR to 
configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events can be found at: 
https://perfmon-events.intel.com/. Non-architectural performance monitoring events fall into two broad catego-
ries:
• Performance monitoring events in the processor core: These include many events that are similar to 

performance monitoring events available to processor based on Intel Core microarchitecture. Additionally, 
there are several enhancements in the performance monitoring capability for detecting microarchitectural 
conditions in the processor core or in the interaction of the processor core to the off-core sub-systems in the 
physical processor package. The off-core sub-systems in the physical processor package is loosely referred to 
as “uncore“.

• Performance monitoring events in the uncore: The uncore sub-system is shared by more than one processor 
cores in the physical processor package. It provides additional performance monitoring facility outside of 
IA32_PMCx and performance monitoring events that are specific to the uncore sub-system.

Architectural and non-architectural performance monitoring events in Intel Core i7 processor family support thread 
qualification using bit 21 of IA32_PERFEVTSELx MSR. 

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 21-6 and described in Section  and Section 
21.2.3. 

1. Intel Xeon processor 5500 series and 3400 series are also based on Nehalem microarchitecture; the performance monitoring facili-
ties described in this section generally also apply.

Figure 21-16.  IA32_PERF_GLOBAL_STATUS MSR 

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O), if CCNT>7
OVF_PC6 (R/O), if CCNT>6
OVF_PC5 (R/O), if CCNT>5
OVF_PC4 (R/O), if CCNT>4
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

RESET Value — 00000000_00000000H

OVF_FC2 (R/O)
OVF_FC1 (R/O)

353433

OVF_FC0 (R/O)

CCNT: CPUID.AH:EAX[15:8]
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21.3.1.1  Enhancements of Performance Monitoring in the Processor Core
The notable enhancements in the monitoring of performance events in the processor core include:
• Four general purpose performance counters, IA32_PMCx, associated counter configuration MSRs, IA32_PERFE-

VTSELx, and global counter control MSR supporting simplified control of four counters. Each of the four 
performance counter can support processor event based sampling (PEBS) and thread-qualification of architec-
tural and non-architectural performance events. Width of IA32_PMCx supported by hardware has been 
increased. The width of counter reported by CPUID.0AH:EAX[23:16] is 48 bits. The PEBS facility in Nehalem 
microarchitecture has been enhanced to include new data format to capture additional information, such as 
load latency.

• Load latency sampling facility. Average latency of memory load operation can be sampled using load-latency 
facility in processors based on Nehalem microarchitecture. This field measures the load latency from load's first 
dispatch of till final data writeback from the memory subsystem. The latency is reported for retired demand 
load operations and in core cycles (it accounts for re-dispatches). This facility is used in conjunction with the 
PEBS facility.

• Off-core response counting facility. This facility in the processor core allows software to count certain 
transaction responses between the processor core to sub-systems outside the processor core (uncore). 
Counting off-core response requires additional event qualification configuration facility in conjunction with 
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in conjunction with specific event codes 
that must be specified with IA32_PERFEVTSELx.

NOTE
The number of counters available to software may vary from the number of physical counters 
present on the hardware, because an agent running at a higher privilege level (e.g., a VMM) may 
not expose all counters. CPUID.0AH:EAX[15:8] reports the MSRs available to software; see Section 
21.2.1.

21.3.1.1.1  Processor Event Based Sampling (PEBS)

All general-purpose performance counters, IA32_PMCx, can be used for PEBS if the performance event supports 
PEBS. Software uses IA32_MISC_ENABLE[7] and IA32_MISC_ENABLE[12] to detect whether the performance 
monitoring facility and PEBS functionality are supported in the processor. The MSR IA32_PEBS_ENABLE provides 4 
bits that software must use to enable which IA32_PMCx overflow condition will cause the PEBS record to be 
captured. 

Additionally, the PEBS record is expanded to allow latency information to be captured. The MSR IA32_PEBS_EN-
ABLE provides 4 additional bits that software must use to enable latency data recording in the PEBS record upon 
the respective IA32_PMCx overflow condition. The layout of IA32_PEBS_ENABLE for processors based on Nehalem 
microarchitecture is shown in Figure 21-17.

When a counter is enabled to capture machine state (PEBS_EN_PMCx = 1), the processor will write machine state 
information to a memory buffer specified by software as detailed below. When the counter IA32_PMCx overflows 
from maximum count to zero, the PEBS hardware is armed. 
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Upon occurrence of the next PEBS event, the PEBS hardware triggers an assist and causes a PEBS record to be 
written. The format of the PEBS record is indicated by the bit field IA32_PERF_CAPABILITIES[11:8] (see 
Figure 21-67).

The behavior of PEBS assists is reported by IA32_PERF_CAPABILITIES[6] (see Figure 21-67). The return instruc-
tion pointer (RIP) reported in the PEBS record will point to the instruction after (+1) the instruction that causes the 
PEBS assist. The machine state reported in the PEBS record is the machine state after the instruction that causes 
the PEBS assist is retired. For instance, if the instructions:

mov eax, [eax] ; causes PEBS assist

nop

are executed, the PEBS record will report the address of the nop, and the value of EAX in the PEBS record will show 
the value read from memory, not the target address of the read operation.

The PEBS record format is shown in Table 21-4, and each field in the PEBS record is 64 bits long. The PEBS record 
format, along with debug/store area storage format, does not change regardless of IA-32e mode is active or not. 
CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-independent. 
When set, it uses 64-bit DS storage format.

Figure 21-17.  Layout of IA32_PEBS_ENABLE MSR 

Table 21-4.  PEBS Record Format for Intel Core i7 Processor Family 

Byte Offset Field Byte Offset Field

00H R/EFLAGS 58H R9

08H R/EIP 60H R10

10H R/EAX 68H R11

18H R/EBX 70H R12

20H R/ECX 78H R13

28H R/EDX 80H R14

30H R/ESI 88H R15

38H R/EDI 90H IA32_PERF_GLOBAL_STATUS

40H R/EBP 98H Data Linear Address

48H R/ESP A0H Data Source Encoding

50H R8 A8H Latency value (core cycles)

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 00000000_00000000H
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In IA-32e mode, the full 64-bit value is written to the register. If the processor is not operating in IA-32e mode, 32-
bit value is written to registers with bits 63:32 zeroed. Registers not defined when the processor is not in IA-32e 
mode are written to zero. 

Bytes AFH:90H are enhancement to the PEBS record format. Support for this enhanced PEBS record format is indi-
cated by IA32_PERF_CAPABILITIES[11:8] encoding of 0001B.

The value written to bytes 97H:90H is the state of the IA32_PERF_GLOBAL_STATUS register before the PEBS assist 
occurred. This value is written so software can determine which counters overflowed when this PEBS record was 
written. Note that this field indicates the overflow status for all counters, regardless of whether they were 
programmed for PEBS or not.

Programming PEBS Facility

Only a subset of non-architectural performance events in the processor support PEBS. The subset of precise events 
are listed in Table 21-88. In addition to using IA32_PERFEVTSELx to specify event unit/mask settings and setting 
the EN_PMCx bit in the IA32_PEBS_ENABLE register for the respective counter, the software must also initialize the 
DS_BUFFER_MANAGEMENT_AREA data structure in memory to support capturing PEBS records for precise events.

The recording of PEBS records may not operate properly if accesses to the linear addresses in the DS buffer 
management area or in the PEBS buffer (see below) cause page faults, VM exits, or the setting of accessed or dirty 
flags in the paging structures (ordinary or EPT). For that reason, system software should establish paging struc-
tures (both ordinary and EPT) to prevent such occurrences. Implications of this may be that an operating system 
should allocate this memory from a non-paged pool and that system software cannot do “lazy” page-table entry 
propagation for these pages. A virtual-machine monitor may choose to allow use of PEBS by guest software only if 
EPT maps all guest-physical memory as present and read/write.

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: AnyThread, 
Edge, Invert, CMask.

The beginning linear address of the DS_BUFFER_MANAGEMENT_AREA data structure must be programmed into 
the IA32_DS_AREA register. The layout of the DS_BUFFER_MANAGEMENT_AREA is shown in Figure 21-18.
• PEBS Buffer Base: This field is programmed with the linear address of the first byte of the PEBS buffer 

allocated by software. The processor reads this field to determine the base address of the PEBS buffer.
• PEBS Index: This field is initially programmed with the same value as the PEBS Buffer Base field, or the 

beginning linear address of the PEBS buffer. The processor reads this field to determine the location of the next 
PEBS record to write to. After a PEBS record has been written, the processor also updates this field with the 
address of the next PEBS record to be written. The figure above illustrates the state of PEBS Index after the first 
PEBS record is written.

• PEBS Absolute Maximum: This field represents the absolute address of the maximum length of the allocated 
PEBS buffer plus the starting address of the PEBS buffer. The processor will not write any PEBS record beyond 
the end of PEBS buffer, when PEBS Index equals PEBS Absolute Maximum. No signaling is generated when 
PEBS buffer is full. Software must reset the PEBS Index field to the beginning of the PEBS buffer address to 
continue capturing PEBS records.
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• PEBS Interrupt Threshold: This field specifies the threshold value to trigger a performance interrupt and 
notify software that the PEBS buffer is nearly full. This field is programmed with the linear address of the first 
byte of the PEBS record within the PEBS buffer that represents the threshold record. After the processor writes 
a PEBS record and updates PEBS Index, if the PEBS Index reaches the threshold value of this field, the 
processor will generate a performance interrupt. This is the same interrupt that is generated by a performance 
counter overflow, as programmed in the Performance Monitoring Counters vector in the Local Vector Table of 
the Local APIC. When a performance interrupt due to PEBS buffer full is generated, the IA32_PERF_-
GLOBAL_STATUS.PEBS_Ovf bit will be set.

• PEBS CounterX Reset: This field allows software to set up PEBS counter overflow condition to occur at a rate 
useful for profiling workload, thereby generating multiple PEBS records to facilitate characterizing the profile 
the execution of test code. After each PEBS record is written, the processor checks each counter to see if it 
overflowed and was enabled for PEBS (the corresponding bit in IA32_PEBS_ENABLED was set). If these 
conditions are met, then the reset value for each overflowed counter is loaded from the DS Buffer Management 
Area. For example, if counter IA32_PMC0 caused a PEBS record to be written, then the value of “PEBS Counter 
0 Reset” would be written to counter IA32_PMC0. If a counter is not enabled for PEBS, its value will not be 
modified by the PEBS assist.

Performance Counter Prioritization

Performance monitoring interrupts are triggered by a counter transitioning from maximum count to zero 
(assuming IA32_PerfEvtSelX.INT is set). This same transition will cause PEBS hardware to arm, but not trigger. 
PEBS hardware triggers upon detection of the first PEBS event after the PEBS hardware has been armed (a 0 to 1 
transition of the counter). At this point, a PEBS assist will be undertaken by the processor.

Figure 21-18.  PEBS Programming Environment
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Performance counters (fixed and general-purpose) are prioritized in index order. That is, counter IA32_PMC0 takes 
precedence over all other counters. Counter IA32_PMC1 takes precedence over counters IA32_PMC2 and 
IA32_PMC3, and so on. This means that if simultaneous overflows or PEBS assists occur, the appropriate action will 
be taken for the highest priority performance counter. For example, if IA32_PMC1 cause an overflow interrupt and 
IA32_PMC2 causes an PEBS assist simultaneously, then the overflow interrupt will be serviced first. 

The PEBS threshold interrupt is triggered by the PEBS assist, and is by definition prioritized lower than the PEBS 
assist. Hardware will not generate separate interrupts for each counter that simultaneously overflows. General-
purpose performance counters are prioritized over fixed counters.

If a counter is programmed with a precise (PEBS-enabled) event and programmed to generate a counter overflow 
interrupt, the PEBS assist is serviced before the counter overflow interrupt is serviced. If in addition the PEBS inter-
rupt threshold is met, the

threshold interrupt is generated after the PEBS assist completes, followed by the counter overflow interrupt (two 
separate interrupts are generated).

Uncore counters may be programmed to interrupt one or more processor cores (see Section 21.3.1.2). It is 
possible for interrupts posted from the uncore facility to occur coincident with counter overflow interrupts from the 
processor core. Software must check core and uncore status registers to determine the exact origin of counter 
overflow interrupts.

21.3.1.1.2  Load Latency Performance Monitoring Facility

The load latency facility provides software a means to characterize the average load latency to different levels of 
cache/memory hierarchy. This facility requires processor supporting enhanced PEBS record format in the PEBS 
buffer, see Table 21-4. This field measures the load latency from load's first dispatch of till final data writeback from 
the memory subsystem. The latency is reported for retired demand load operations and in core cycles (it accounts 
for re-dispatches).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit MEM_INST_RETIRED, and the 

LATENCY_ABOVE_THRESHOLD event mask must be specified (IA32_PerfEvtSelX[15:0] = 100H). The corre-
sponding counter IA32_PMCx will accumulate event counts for architecturally visible loads which exceed the 
programmed latency threshold specified separately in a MSR. Stores are ignored when this event is 
programmed. The CMASK or INV fields of the IA32_PerfEvtSelX register used for counting load latency must be 
0. Writing other values will result in undefined behavior. 

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired latency threshold in core clock 
cycles. Loads with latencies greater than this value are eligible for counting and latency data reporting. The 
minimum value that may be programmed in this register is 3 (the minimum detectable load latency is 4 core 
clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corresponding IA32_PMCx counter 
register. This means that both the PEBS_EN_CTRX and LL_EN_CTRX bits must be set for the counter(s) of 
interest. For example, to enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register must be 
programmed with the 64-bit value 00000001_00000001H.

When the load-latency facility is enabled, load operations are randomly selected by hardware and tagged to carry 
information related to data source locality and latency. Latency and data source information of tagged loads are 
updated internally. 

When a PEBS assist occurs, the last update of latency and data source information are captured by the assist and 
written as part of the PEBS record. The PEBS sample after value (SAV), specified in PEBS CounterX Reset, operates 
orthogonally to the tagging mechanism. Loads are randomly tagged to collect latency data. The SAV controls the 
number of tagged loads with latency information that will be written into the PEBS record field by the PEBS assists. 
The load latency data written to the PEBS record will be for the last tagged load operation which retired just before 
the PEBS assist was invoked.

The load-latency information written into a PEBS record (see Table 21-4, bytes AFH:98H) consists of:
• Data Linear Address: This is the linear address of the target of the load operation.
• Latency Value: This is the elapsed cycles of the tagged load operation between dispatch to GO, measured in 

processor core clock domain.
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• Data Source: The encoded value indicates the origin of the data obtained by the load instruction. The 
encoding is shown in Table 21-5. In the descriptions, local memory refers to system memory physically 
attached to a processor package, and remote memory refers to system memory physically attached to another 
processor package. 

The layout of MSR_PEBS_LD_LAT_THRESHOLD is shown in Figure 21-19.

Bits 15:0 specifies the threshold load latency in core clock cycles. Performance events with latencies greater than 
this value are counted in IA32_PMCx and their latency information is reported in the PEBS record. Otherwise, they 
are ignored. The minimum value that may be programmed in this field is 3.

Table 21-5.  Data Source Encoding for Load Latency Record

Encoding Description

00H Unknown L3 cache miss.

01H Minimal latency core cache hit. This request was satisfied by the L1 data cache.

02H Pending core cache HIT. Outstanding core cache miss to same cache-line address was already underway.

03H This data request was satisfied by the L2.

04H L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no coherency actions required (snooping).

05H L3 HIT. Local or Remote home requests that hit the L3 cache and were serviced by another processor core with a 
cross core snoop where no modified copies were found. (clean).

06H L3 HIT. Local or Remote home requests that hit the L3 cache and were serviced by another processor core with a 
cross core snoop where no modified copies were found. 

07H1

NOTES:
1. Bit 7 is supported only for processors with a CPUID DisplayFamily_DisplayModel signature of 06_2A, and 06_2E; otherwise it is 

reserved.

Reserved/LLC Snoop HitM. Local or Remote home requests that hit the last level cache and were serviced by another 
core with a cross core snoop where modified copies were found. 

08H Reserved/L3 MISS. Local homed requests that missed the L3 cache and were serviced by forwarded data following a 
cross package snoop where no modified copies were found. (Remote home requests are not counted).

09H Reserved

0AH L3 MISS. Local home requests that missed the L3 cache and were serviced by local DRAM (go to shared state).

0BH L3 MISS. Remote home requests that missed the L3 cache and were serviced by remote DRAM (go to shared state).

0CH L3 MISS. Local home requests that missed the L3 cache and were serviced by local DRAM (go to exclusive state).

0DH L3 MISS. Remote home requests that missed the L3 cache and were serviced by remote DRAM (go to exclusive state).

0EH I/O, Request of input/output operation.

0FH The request was to uncacheable memory.

Figure 21-19.  Layout of MSR_PEBS_LD_LAT MSR 

1615 0

Reserved

63

THRHLD - Load latency threshold

RESET Value — 00000000_00000000H
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21.3.1.1.3  Off-core Response Performance Monitoring in the Processor Core

Programming a performance event using the off-core response facility can choose any of the four IA32_PERFEVT-
SELx MSR with specific event codes and predefine mask bit value. Each event code for off-core response monitoring 
requires programming an associated configuration MSR, MSR_OFFCORE_RSP_0. There is only one off-core 
response configuration MSR. Table 21-6 lists the event code, mask value and additional off-core configuration MSR 
that must be programmed to count off-core response events using IA32_PMCx. 

The layout of MSR_OFFCORE_RSP_0 is shown in Figure 21-20. Bits 7:0 specifies the request type of a transaction 
request to the uncore. Bits 15:8 specifies the response of the uncore subsystem.

Table 21-6.  Off-Core Response Event Encoding

Event code in 
IA32_PERFEVTSELx

Mask Value in 
IA32_PERFEVTSELx Required Off-core Response MSR

B7H 01H MSR_OFFCORE_RSP_0 (address 1A6H)

Figure 21-20.  Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to Configure Off-core Response Events

Table 21-7.  MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand and DCU prefetch data reads of full and partial cachelines as well as 
demand data page table entry cacheline reads. Does not count L2 data read prefetches or instruction 
fetches.

DMND_RFO 1 Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated by a 
write to data cacheline. Does not count L2 RFO.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

WB 3 Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 Counts the number of code reads generated by L2 prefetchers.

RESPONSE TYPE — NON_DRAM (R/W)
RESPONSE TYPE — LOCAL_DRAM (R/W)
RESPONSE TYPE — REMOTE_DRAM (R/W)
RESPONSE TYPE — REMOTE_CACHE_FWD (R/W)

8 7 0

RESPONSE TYPE — RESERVED

11 312 1

Reserved

63 249 5610131415

RESPONSE TYPE — OTHER_CORE_HITM (R/W)
RESPONSE TYPE — OTHER_CORE_HIT_SNP (R/W)
RESPONSE TYPE — UNCORE_HIT (R/W)
REQUEST TYPE — OTHER (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H
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21.3.1.2  Performance Monitoring Facility in the Uncore
The “uncore” in Nehalem microarchitecture refers to subsystems in the physical processor package that are shared 
by multiple processor cores. Some of the sub-systems in the uncore include the L3 cache, Intel QuickPath Inter-
connect link logic, and integrated memory controller. The performance monitoring facilities inside the uncore oper-
ates in the same clock domain as the uncore (U-clock domain), which is usually different from the processor core 
clock domain. The uncore performance monitoring facilities described in this section apply to Intel Xeon processor 
5500 series and processors with the following CPUID signatures: 06_1AH, 06_1EH, 06_1FH (see Chapter 2, 
“Model-Specific Registers (MSRs),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
4). An overview of the uncore performance monitoring facilities is described separately. 

The performance monitoring facilities available in the U-clock domain consist of:
• Eight General-purpose counters (MSR_UNCORE_PerfCntr0 through MSR_UNCORE_PerfCntr7). The counters 

are 48 bits wide. Each counter is associated with a configuration MSR, MSR_UNCORE_PerfEvtSelx, to specify 
event code, event mask and other event qualification fields. A set of global uncore performance counter 
enabling/overflow/status control MSRs are also provided for software.

• Performance monitoring in the uncore provides an address/opcode match MSR that provides event qualification 
control based on address value or QPI command opcode.

• One fixed-function counter, MSR_UNCORE_FixedCntr0. The fixed-function uncore counter increments at the 
rate of the U-clock when enabled.
The frequency of the uncore clock domain can be determined from the uncore clock ratio which is available in 
the PCI configuration space register at offset C0H under device number 0 and Function 0. 

21.3.1.2.1  Uncore Performance Monitoring Management Facility

MSR_UNCORE_PERF_GLOBAL_CTRL provides bit fields to enable/disable general-purpose and fixed-function 
counters in the uncore. Figure 21-21 shows the layout of MSR_UNCORE_PERF_GLOBAL_CTRL for an uncore that is 
shared by four processor cores in a physical package. 
• EN_PCn (bit n, n = 0, 7): When set, enables counting for the general-purpose uncore counter MSR_UN-

CORE_PerfCntr n.
• EN_FC0 (bit 32): When set, enables counting for the fixed-function uncore counter MSR_UNCORE_FixedCntr0.
• EN_PMI_COREn (bit n, n = 0, 3 if four cores are present): When set, processor core n is programmed to receive 

an interrupt signal from any interrupt enabled uncore counter. PMI delivery due to an uncore counter overflow 
is enabled by setting IA32_DEBUGCTL.Offcore_PMI_EN to 1.

OTHER 7 Counts one of the following transaction types, including L3 invalidate, I/O, full or partial writes, WC or 
non-temporal stores, CLFLUSH, Fences, lock, unlock, split lock.

UNCORE_HIT 8 L3 Hit: local or remote home requests that hit L3 cache in the uncore with no coherency actions 
required (snooping).

OTHER_CORE_HI
T_SNP

9 L3 Hit: local or remote home requests that hit L3 cache in the uncore and was serviced by another 
core with a cross core snoop where no modified copies were found (clean).

OTHER_CORE_HI
TM

10 L3 Hit: local or remote home requests that hit L3 cache in the uncore and was serviced by another 
core with a cross core snoop where modified copies were found (HITM).

Reserved 11 Reserved

REMOTE_CACHE_
FWD

12 L3 Miss: local homed requests that missed the L3 cache and was serviced by forwarded data following 
a cross package snoop where no modified copies found. (Remote home requests are not counted)

REMOTE_DRAM 13 L3 Miss: remote home requests that missed the L3 cache and were serviced by remote DRAM.

LOCAL_DRAM 14 L3 Miss: local home requests that missed the L3 cache and were serviced by local DRAM.

NON_DRAM 15 Non-DRAM requests that were serviced by IOH.

Table 21-7.  MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition (Contd.)

Bit Name Offset Description
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• PMI_FRZ (bit 63): When set, all U-clock uncore counters are disabled when any one of them signals a 
performance interrupt. Software must explicitly re-enable the counter by setting the enable bits in MSR_UN-
CORE_PERF_GLOBAL_CTRL upon exit from the ISR.

MSR_UNCORE_PERF_GLOBAL_STATUS provides overflow status of the U-clock performance counters in the 
uncore. This is a read-only register. If an overflow status bit is set the corresponding counter has overflowed. The 
register provides a condition change bit (bit 63) which can be quickly checked by software to determine if a signif-
icant change has occurred since the last time the condition change status was cleared. Figure 21-22 shows the 
layout of MSR_UNCORE_PERF_GLOBAL_STATUS.
• OVF_PCn (bit n, n = 0, 7): When set, indicates general-purpose uncore counter MSR_UNCORE_PerfCntr n has 

overflowed.
• OVF_FC0 (bit 32): When set, indicates the fixed-function uncore counter MSR_UNCORE_FixedCntr0 has 

overflowed.
• OVF_PMI (bit 61): When set indicates that an uncore counter overflowed and generated an interrupt request. 
• CHG (bit 63): When set indicates that at least one status bit in MSR_UNCORE_PERF_GLOBAL_STATUS register 

has changed state.

MSR_UNCORE_PERF_GLOBAL_OVF_CTRL allows software to clear the status bits in the UNCORE_PERF_-
GLOBAL_STATUS register. This is a write-only register, and individual status bits in the global status register are 
cleared by writing a binary one to the corresponding bit in this register. Writing zero to any bit position in this 
register has no effect on the uncore PMU hardware. 

Figure 21-21.  Layout of MSR_UNCORE_PERF_GLOBAL_CTRL MSR 

PMI_FRZ (R/W)
EN_PMI_CORE3 (R/W)
EN_PMI_CORE2 (R/W)
EN_PMI_CORE1 (R/W)

8 7 0

EN_PMI_CORE0 (R/W)

32 348 1

Reserved

63 2431 5662 495051

EN_PC7 (R/W)
EN_PC6 (R/W)
EN_PC5 (R/W)
EN_PC4 (R/W)
EN_PC3 (R/W)
EN_PC2 (R/W)
EN_PC1 (R/W)
EN_PC0 (R/W)

EN_FC0 (R/W)

RESET Value — 00000000_00000000H
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Figure 21-23 shows the layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL.

• CLR_OVF_PCn (bit n, n = 0, 7): Set this bit to clear the overflow status for general-purpose uncore counter 
MSR_UNCORE_PerfCntr n. Writing a value other than 1 is ignored.

• CLR_OVF_FC0 (bit 32): Set this bit to clear the overflow status for the fixed-function uncore counter MSR_UN-
CORE_FixedCntr0. Writing a value other than 1 is ignored.

• CLR_OVF_PMI (bit 61): Set this bit to clear the OVF_PMI flag in MSR_UNCORE_PERF_GLOBAL_STATUS. Writing 
a value other than 1 is ignored.

• CLR_CHG (bit 63): Set this bit to clear the CHG flag in MSR_UNCORE_PERF_GLOBAL_STATUS register. Writing 
a value other than 1 is ignored.

21.3.1.2.2  Uncore Performance Event Configuration Facility

MSR_UNCORE_PerfEvtSel0 through MSR_UNCORE_PerfEvtSel7 are used to select performance event and 
configure the counting behavior of the respective uncore performance counter. Each uncore PerfEvtSel MSR is 
paired with an uncore performance counter. Each uncore counter must be locally configured using the corre-

Figure 21-22.  Layout of MSR_UNCORE_PERF_GLOBAL_STATUS MSR 

Figure 21-23.  Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL MSR 

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O)
OVF_PC6 (R/O)
OVF_PC5 (R/O)
OVF_PC4 (R/O)
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

OVF_FC0 (R/O)

RESET Value — 00000000_00000000H

CLR_CHG (WO1)
CLR_OVF_PMI (WO1)

8 7 032 3 1

Reserved

63 2431 5662 6061

CLR_OVF_PC7 (WO1)
CLR_OVF_PC6 (WO1)
CLR_OVF_PC5 (WO1)
CLR_OVF_PC4 (WO1)
CLR_OVF_PC3 (WO1)
CLR_OVF_PC2 (WO1)
CLR_OVF_PC1 (WO1)
CLR_OVF_PC0 (WO1)

CLR_OVF_FC0 (WO1)

RESET Value — 00000000_00000000H
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sponding MSR_UNCORE_PerfEvtSelx and counting must be enabled using the respective EN_PCx bit in MSR_UN-
CORE_PERF_GLOBAL_CTRL. Figure 21-24 shows the layout of MSR_UNCORE_PERFEVTSELx.

• Event Select (bits 7:0): Selects the event logic unit used to detect uncore events.
• Unit Mask (bits 15:8) : Condition qualifiers for the event selection logic specified in the Event Select field.
• OCC_CTR_RST (bit17): When set causes the queue occupancy counter associated with this event to be cleared 

(zeroed). Writing a zero to this bit will be ignored. It will always read as a zero. 
• Edge Detect (bit 18): When set causes the counter to increment when a deasserted to asserted transition 

occurs for the conditions that can be expressed by any of the fields in this register.
• PMI (bit 20): When set, the uncore will generate an interrupt request when this counter overflowed. This 

request will be routed to the logical processors as enabled in the PMI enable bits (EN_PMI_COREx) in the 
register MSR_UNCORE_PERF_GLOBAL_CTRL.

• EN (bit 22): When clear, this counter is locally disabled. When set, this counter is locally enabled and counting 
starts when the corresponding EN_PCx bit in MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• INV (bit 23): When clear, the Counter Mask field is interpreted as greater than or equal to. When set, the 
Counter Mask field is interpreted as less than.

• Counter Mask (bits 31:24): When this field is clear, it has no effect on counting. When set to a value other than 
zero, the logical processor compares this field to the event counts on each core clock cycle. If INV is clear and 
the event counts are greater than or equal to this field, the counter is incremented by one. If INV is set and the 
event counts are less than this field, the counter is incremented by one. Otherwise the counter is not incre-
mented.

Figure 21-25 shows the layout of MSR_UNCORE_FIXED_CTR_CTRL.

• EN (bit 0): When clear, the uncore fixed-function counter is locally disabled. When set, it is locally enabled and 
counting starts when the EN_FC0 bit in MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• PMI (bit 2): When set, the uncore will generate an interrupt request when the uncore fixed-function counter 
overflowed. This request will be routed to the logical processors as enabled in the PMI enable bits 
(EN_PMI_COREx) in the register MSR_UNCORE_PERF_GLOBAL_CTRL.

Figure 21-24.  Layout of MSR_UNCORE_PERFEVTSELx MSRs 

Figure 21-25.  Layout of MSR_UNCORE_FIXED_CTR_CTRL MSR 

31

INV—Invert counter mask
EN—Enable counters

E—Edge detect
OCC_CTR_RST—Rest Queue Occ

8 7 0

Event SelectCounter Mask 

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

PMI—Enable PMI on overflow
RESET Value — 00000000_00000000H

8 7 03 1

Reserved

63 2456

PMI - Generate PMI on overflow
EN - Enable

RESET Value — 00000000_00000000H
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Both the general-purpose counters (MSR_UNCORE_PerfCntr) and the fixed-function counter (MSR_UNCORE_-
FixedCntr0) are 48 bits wide. They support both counting and interrupt based sampling usages. The event logic 
unit can filter event counts to specific regions of code or transaction types incoming to the home node logic.

21.3.1.2.3  Uncore Address/Opcode Match MSR

The Event Select field [7:0] of MSR_UNCORE_PERFEVTSELx is used to select different uncore event logic unit. 
When the event “ADDR_OPCODE_MATCH” is selected in the Event Select field, software can filter uncore perfor-
mance events according to transaction address and certain transaction responses. The address filter and transac-
tion response filtering requires the use of MSR_UNCORE_ADDR_OPCODE_MATCH register. The layout is shown in 
Figure 21-26. 

• Addr (bits 39:3): The physical address to match if “MatchSel” field is set to select address match. The uncore 
performance counter will increment if the lowest 40-bit incoming physical address (excluding bits 2:0) for a 
transaction request matches bits 39:3.

• Opcode (bits 47:40) : Bits 47:40 allow software to filter uncore transactions based on QPI link message 
class/packed header opcode. These bits are consists two sub-fields:

— Bits 43:40 specify the QPI packet header opcode.

— Bits 47:44 specify the QPI message classes.
Table 21-8 lists the encodings supported in the opcode field.

Figure 21-26.  Layout of MSR_UNCORE_ADDR_OPCODE_MATCH MSR 

Table 21-8.  Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH 

Opcode [43:40] QPI Message Class

Home Request

[47:44] = 0000B

Snoop Response

[47:44] = 0001B

Data Response

[47:44] = 1110B

1

DMND_IFETCH 2 2

WB 3 3

PF_DATA_RD 4 4

PF_RFO 5 5

PF_IFETCH 6 6

OTHER 7 7

NON_DRAM 15 15

60

MatchSel—Select addr/Opcode
Opcode—Opcode and Message

3 2 040 394748

Reserved

ADDR

63

ADDR—Bits 39:4 of physical address
RESET Value — 00000000_00000000H

Opcode
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• MatchSel (bits 63:61): Software specifies the match criteria according to the following encoding:

— 000B: Disable addr_opcode match hardware.

— 100B: Count if only the address field matches.

— 010B: Count if only the opcode field matches.

— 110B: Count if either opcode field matches or the address field matches.

— 001B: Count only if both opcode and address field match.

— Other encoding are reserved.

21.3.1.3  Intel® Xeon® Processor 7500 Series Performance Monitoring Facility
The performance monitoring facility in the processor core of Intel® Xeon® processor 7500 series are the same as 
those supported in Intel Xeon processor 5500 series. The uncore subsystem in Intel Xeon processor 7500 series are 
significantly different The uncore performance monitoring facility consist of many distributed units associated with 
individual logic control units (referred to as boxes) within the uncore subsystem. A high level block diagram of the 
various box units of the uncore is shown in Figure 21-27.

Uncore PMUs are programmed via MSR interfaces. Each of the distributed uncore PMU units have several general-
purpose counters. Each counter requires an associated event select MSR, and may require additional MSRs to 
configure sub-event conditions. The uncore PMU MSRs associated with each box can be categorized based on its 
functional scope: per-counter, per-box, or global across the uncore. The number counters available in each box 
type are different. Each box generally provides a set of MSRs to enable/disable, check status/overflow of multiple 
counters within each box. 

Table 21-9 summarizes the number MSRs for uncore PMU for each box.

Figure 21-27.  Distributed Units of the Uncore of Intel® Xeon® Processor 7500 Series

PBox

L3 Cache

PBoxPBox PBox UBoxWBox

RBox BBoxBBoxMBox MBox PBoxPBox

SBox SBox

CBox CBoxCBoxCBox CBoxCBox CBoxCBox

4 Intel QPI Links

SMI Channels

SMI Channels
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The W-Box provides 4 general-purpose counters, each requiring an event select configuration MSR, similar to the 
general-purpose counters in other boxes. There is also a fixed-function counter that increments clockticks in the 
uncore clock domain. 

For C,S,B,M,R, and W boxes, each box provides an MSR to enable/disable counting, configuring PMI of multiple 
counters within the same box, this is somewhat similar the “global control“ programming interface, IA32_PERF_-
GLOBAL_CTRL, offered in the core PMU. Similarly status information and counter overflow control for multiple 
counters within the same box are also provided in C,S,B,M,R, and W boxes.

In the U-Box, MSR_U_PMON_GLOBAL_CTL provides overall uncore PMU enable/disable and PMI configuration 
control. The scope of status information in the U-box is at per-box granularity, in contrast to the per-box status 
information MSR (in the C,S,B,M,R, and W boxes) providing status information of individual counter overflow. The 
difference in scope also apply to the overflow control MSR in the U-Box versus those in the other Boxes.

The individual MSRs that provide uncore PMU interfaces are listed in Chapter 2, “Model-Specific Registers (MSRs),” 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, Table 2-17 under the general 
naming style of MSR_%box#%_PMON_%scope_function%, where %box#% designates the type of box and zero-
based index if there are more the one box of the same type, %scope_function% follows the examples below:
• Multi-counter enabling MSRs: MSR_U_PMON_GLOBAL_CTL, MSR_S0_PMON_BOX_CTL, MSR_C7_PMON_-

BOX_CTL, etc.
• Multi-counter status MSRs: MSR_U_PMON_GLOBAL_STATUS, MSR_S0_PMON_BOX_STATUS, MSR_C7_P-

MON_BOX_STATUS, etc.
• Multi-counter overflow control MSRs: MSR_U_PMON_GLOBAL_OVF_CTL, MSR_S0_PMON_BOX_OVF_CTL, 

MSR_C7_PMON_BOX_OVF_CTL, etc.
• Performance counters MSRs: the scope is implicitly per counter, e.g., MSR_U_PMON_CTR, MSR_S0_P-

MON_CTR0, MSR_C7_PMON_CTR5, etc.
• Event select MSRs: the scope is implicitly per counter, e.g., MSR_U_PMON_EVNT_SEL, MSR_S0_P-

MON_EVNT_SEL0, MSR_C7_PMON_EVNT_SEL5, etc.
• Sub-control MSRs: the scope is implicitly per-box granularity, e.g., MSR_M0_PMON_TIMESTAMP, MSR_R0_P-

MON_IPERF0_P1, MSR_S1_PMON_MATCH.

Details of uncore PMU MSR bit field definitions can be found in a separate document “Intel Xeon Processor 7500 
Series Uncore Performance Monitoring Guide“.

21.3.2 Performance Monitoring for Processors Based on Westmere Microarchitecture
All of the performance monitoring programming interfaces (architectural and non-architectural core PMU facilities, 
and uncore PMU) described in Section 21.6.3 also apply to processors based on Westmere microarchitecture. 

Table 21-6 describes a non-architectural performance monitoring event (event code 0B7H) and associated 
MSR_OFFCORE_RSP_0 (address 1A6H) in the core PMU. This event and a second functionally equivalent offcore 

Table 21-9.  Uncore PMU MSR Summary

Box # of Boxes Counters per Box
Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs

C-Box 8 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 ( 2 port, 8 per port) 48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None
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response event using event code 0BBH and MSR_OFFCORE_RSP_1 (address 1A7H) are supported in processors 
based on Westmere microarchitecture. The event code and event mask definitions of non-architectural perfor-
mance monitoring events can be found at: https://perfmon-events.intel.com/. 

The load latency facility is the same as described in Section 21.3.1.1.2, but added enhancement to provide more 
information in the data source encoding field of each load latency record. The additional information relates to 
STLB_MISS and LOCK, see Table 21-14.

21.3.3 Intel® Xeon® Processor E7 Family Performance Monitoring Facility
The performance monitoring facility in the processor core of the Intel® Xeon® processor E7 family is the same as 
those supported in the Intel Xeon processor 5600 series1. The uncore subsystem in the Intel Xeon processor E7 
family is similar to those of the Intel Xeon processor 7500 series. The high level construction of the uncore sub-
system is similar to that shown in Figure 21-27, with the additional capability that up to 10 C-Box units are 
supported. 

Table 21-10 summarizes the number MSRs for uncore PMU for each box.

Details of the uncore performance monitoring facility of Intel Xeon Processor E7 family is available in the “Intel® 
Xeon® Processor E7 Uncore Performance Monitoring Programming Reference Manual”.

21.3.4 Performance Monitoring for Processors Based on Sandy Bridge Microarchitecture
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series, and Intel® Xeon® processor 
E3-1200 family are based on Sandy Bridge microarchitecture; this section describes the performance monitoring 
facilities provided in the processor core. The core PMU supports architectural performance monitoring capability 
with version ID 3 (see Section 21.2.3) and a host of non-architectural monitoring capabilities. 

Architectural performance monitoring version 3 capabilities are described in Section 21.2.3. 

The core PMU’s capability is similar to those described in Section 21.3.1.1 and Section 21.6.3, with some differ-
ences and enhancements relative to Westmere microarchitecture summarized in Table 21-11.

1. Exceptions are indicated for event code 0FH in the event list for this processor (https://perfmon-events.intel.com/); and valid 
bits of data source encoding field of each load latency record is limited to bits 5:4 of Table 21-14.

Table 21-10.  Uncore PMU MSR Summary for Intel® Xeon® Processor E7 Family

Box # of Boxes Counters per Box
Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs

C-Box 10 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 ( 2 port, 8 per port) 48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None
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21.3.4.1  Global Counter Control Facilities in Sandy Bridge Microarchitecture
The number of general-purpose performance counters visible to a logical processor can vary across Processors 
based on Sandy Bridge microarchitecture. Software must use CPUID to determine the number performance 
counters/event select registers (See Section ). 

Table 21-11.  Core PMU Comparison

Box Sandy Bridge Microarchitecture Westmere Microarchitecture Comment

# of Fixed counters per 
thread

3 3 Use CPUID to determine # of 
counters. See Section 21.2.1.

# of general-purpose 
counters per core

8 8 Use CPUID to determine # of 
counters. See Section 21.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W:32 See Section 21.2.2.

# of programmable counters 
per thread

4 or (8 if a core not shared by two 
threads)

4 Use CPUID to determine # of 
counters. See Section 21.2.1.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with 
legacy semantics.

• Freeze_LBR_on_PMI with legacy 
semantics for branch profiling.

• Freeze_while_SMM.

• Freeze_Perfmon_on_PMI 
with legacy semantics.

• Freeze_LBR_on_PMI with 
legacy semantics for branch 
profiling.

• Freeze_while_SMM.

See Section 19.4.7.

Processor Event Based 
Sampling (PEBS) Events

See Table 21-13. See Table 21-88. IA32_PMC4-IA32_PMC7 do 
not support PEBS.

PEBS-Load Latency See Section 21.3.4.4.2;

• Data source encoding
• STLB miss encoding
• Lock transaction encoding

Data source encoding 

PEBS-Precise Store Section 21.3.4.4.3 No

PEBS-PDIR Yes (using precise 
INST_RETIRED.ALL).

No

Off-core Response Event MSR 1A6H and 1A7H, extended 
request and response types.

MSR 1A6H and 1A7H, limited 
response types.

Nehalem supports 1A6H 
only.

Figure 21-28.  IA32_PERF_GLOBAL_CTRL MSR in Sandy Bridge Microarchitecture

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC7_EN (if PMC7 present)

2 1 0

PMC6_EN (if PMC6 present)

3132333435

Reserved

63

PMC5_EN (if PMC5 present)
PMC4_EN (if PMC4 present)
PMC3_EN
PMC2_EN
PMC1_EN

Valid if CPUID.0AH:EAX[15:8] = 8, else reserved.

PMC0_EN

8 7 6 5 4 3
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Figure 21-46 depicts the layout of IA32_PERF_GLOBAL_CTRL MSR. The enable bits (PMC4_EN, PMC5_EN, 
PMC6_EN, PMC7_EN) corresponding to IA32_PMC4-IA32_PMC7 are valid only if CPUID.0AH:EAX[15:8] reports a 
value of ‘8’. If CPUID.0AH:EAX[15:8] = 4, attempts to set the invalid bits will cause #GP. 

Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in the respective 
IA32_PERFEVTSELx or IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective counters. 
Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.
IA32_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of 
each performance counter. IA32_PERF_GLOBAL_STATUS[bit 62] indicates overflow conditions of the DS area data 
buffer (see Figure 21-29). A value of 1 in each bit of the PMCx_OVF field indicates an overflow condition has 
occurred in the associated counter. 

When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the 
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor will 
perform bounds checks based on the parameters defined in the DS Save Area (see Section 19.4.9). Upon 
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter 
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event 
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 21-30). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or interrupt based sampling.
• Reloading counter values to continue sampling.
• Disabling event counting or interrupt based sampling.

Figure 21-29.  IA32_PERF_GLOBAL_STATUS MSR in Sandy Bridge Microarchitecture

62

FIXED_CTR2 Overflow (RO)
FIXED_CTR1 Overflow (RO)
FIXED_CTR0 Overflow (RO)
PMC7_OVF (RO, If PMC7 present)

2 1 0

PMC6_OVF (RO, If PMC6 present)

3132333435

Reserved

63

CondChgd
Ovf_DSBuffer

8 7 6 5 4 3

PMC5_OVF (RO, If PMC5 present)
PMC4_OVF (RO, If PMC4 present)
PMC3_OVF (RO)
PMC2_OVF (RO)
PMC1_OVF (RO)
PMC0_OVF (RO)

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

Ovf_UncorePMU

61
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21.3.4.2  Counter Coalescence
In processors based on Sandy Bridge microarchitecture, each processor core implements eight general-purpose 
counters. CPUID.0AH:EAX[15:8] will report the number of counters visible to software. 

If a processor core is shared by two logical processors, each logical processors can access up to four counters 
(IA32_PMC0-IA32_PMC3). This is the same as in the prior generation for processors based on Nehalem microarchi-
tecture.

If a processor core is not shared by two logical processors, up to eight general-purpose counters are visible. If 
CPUID.0AH:EAX[15:8] reports 8 counters, then IA32_PMC4-IA32_PMC7 would occupy MSR addresses 0C5H 
through 0C8H. Each counter is accompanied by an event select MSR (IA32_PERFEVTSEL4-IA32_PERFEVTSEL7).

If CPUID.0AH:EAX[15:8] report 4, access to IA32_PMC4-IA32_PMC7, IA32_PMC4-IA32_PMC7 will cause #GP. 
Writing 1’s to bit position 7:4 of IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, or IA32_PERF_-
GLOBAL_OVF_CTL will also cause #GP.

21.3.4.3  Full Width Writes to Performance Counters
Processors based on Sandy Bridge microarchitecture support full-width writes to the general-purpose counters, 
IA32_PMCx. Support of full-width writes are enumerated by IA32_PERF_CAPABILITIES.FW_WRITES[13] (see 
Section 21.2.4).

The default behavior of IA32_PMCx is unchanged, i.e., WRMSR to IA32_PMCx results in a sign-extended 32-bit 
value of the input EAX written into IA32_PMCx. Full-width writes must issue WRMSR to a dedicated alias MSR 
address for each IA32_PMCx.

Software must check the presence of full-width write capability and the presence of the alias address 
IA32_A_PMCx by testing IA32_PERF_CAPABILITIES[13].

21.3.4.4  PEBS Support in Sandy Bridge Microarchitecture
Processors based on Sandy Bridge microarchitecture support PEBS, similar to those offered in prior generation, 
with several enhanced features. The key components and differences of PEBS facility relative to Westmere microar-
chitecture is summarized in Table 21-12.

Figure 21-30.  IA32_PERF_GLOBAL_OVF_CTRL MSR in Sandy Bridge Microarchitecture

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfDSBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

ClrOvfUncore
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Only IA32_PMC0 through IA32_PMC3 support PEBS. 

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: AnyThread, 
Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or IA32_PMCx 
is changed for a PEBS-enabled counter while an event is being counted. To avoid this, changes to 
the programming or value of a PEBS-enabled counter should be performed when the counter is 
disabled.

In IA32_PEBS_ENABLE MSR, bit 63 is defined as PS_ENABLE: When set, this enables IA32_PMC3 to capture 
precise store information. Only IA32_PMC3 supports the precise store facility. In typical usage of PEBS, the bit 
fields in IA32_PEBS_ENABLE are written to when the agent software starts PEBS operation; the enabled bit fields 
should be modified only when re-programming another PEBS event or cleared when the agent uses the perfor-
mance counters for non-PEBS operations. 

Table 21-12.  PEBS Facility Comparison

Box Sandy Bridge Microarchitecture Westmere Microarchitecture Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7.

PEBS Buffer Programming  Section 21.3.1.1.1 Section 21.3.1.1.1 Unchanged

IA32_PEBS_ENABLE 
Layout

 Figure 21-31 Figure 21-17

PEBS record layout Physical Layout same as 
Table 21-4.

Table 21-4 Enhanced fields at offsets 
98H, A0H, A8H.

PEBS Events See Table 21-13. See Table 21-88. IA32_PMC4-IA32_PMC7 do 
not support PEBS.

PEBS-Load Latency See Table 21-14. Table 21-5

PEBS-Precise Store Yes; see Section 21.3.4.4.3. No IA32_PMC3 only

PEBS-PDIR Yes No IA32_PMC1 only

PEBS skid from EventingIP 1 (or 2 if micro+macro fusion) 1

SAMPLING Restriction Small SAV(CountDown) value incur higher overhead than prior 
generation.
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21.3.4.4.1  PEBS Record Format

The layout of PEBS records physically identical to those shown in Table 21-4, but the fields at offsets 98H, A0H, and 
A8H have been enhanced to support additional PEBS capabilities.
• Load/Store Data Linear Address (Offset 98H): This field will contain the linear address of the source of the load, 

or linear address of the destination of the store.
• Data Source /Store Status (Offset A0H): When load latency is enabled, this field will contain three piece of 

information (including an encoded value indicating the source which satisfied the load operation). The source 
field encodings are detailed in Table 21-5. When precise store is enabled, this field will contain information 
indicating the status of the store, as detailed in Table 19.

• Latency Value/0 (Offset A8H): When load latency is enabled, this field contains the latency in cycles to service 
the load. This field is not meaningful when precise store is enabled and will be written to zero in that case. Upon 
writing the PEBS record, microcode clears the overflow status bits in the IA32_PERF_GLOBAL_STATUS corre-
sponding to those counters that both overflowed and were enabled in the IA32_PEBS_ENABLE register. The 
status bits of other counters remain unaffected.

The number PEBS events has expanded. The list of PEBS events supported in Sandy Bridge microarchitecture is 
shown in Table 21-13.

Figure 21-31.  Layout of IA32_PEBS_ENABLE MSR 

Table 21-13.  PEBS Performance Events for Sandy Bridge Microarchitecture
Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST 01H1

UOPS_RETIRED C2H All 01H

Retire_Slots 02H

BR_INST_RETIRED C4H Conditional 01H

Near_Call 02H

All_branches 04H

Near_Return 08H

Near_Taken 20H

BR_MISP_RETIRED C5H Conditional 01H

Near_Call 02H

All_branches 04H

Not_Taken 10H

Taken 20H

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 00000000_00000000H

62

PS_EN (R/W)
Vol. 3B 21-43



PERFORMANCE MONITORING
21.3.4.4.2  Load Latency Performance Monitoring Facility

The load latency facility in Sandy Bridge microarchitecture is similar to that in prior microarchitectures. It provides 
software a means to characterize the average load latency to different levels of cache/memory hierarchy. This 
facility requires processor supporting enhanced PEBS record format in the PEBS buffer, see Table 21-4 and Section 
21.3.4.4.1. This field measures the load latency from load's first dispatch of till final data writeback from the 
memory subsystem. The latency is reported for retired demand load operations and in core cycles (it accounts for 
re-dispatches).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit MEM_TRANS_RETIRED, and the 

LATENCY_ABOVE_THRESHOLD event mask must be specified (IA32_PerfEvtSelX[15:0] = 1CDH). The corre-
sponding counter IA32_PMCx will accumulate event counts for architecturally visible loads which exceed the 
programmed latency threshold specified separately in a MSR. Stores are ignored when this event is 
programmed. The CMASK or INV fields of the IA32_PerfEvtSelX register used for counting load latency must be 
0. Writing other values will result in undefined behavior. 

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired latency threshold in core clock 
cycles. Loads with latencies greater than this value are eligible for counting and latency data reporting. The 
minimum value that may be programmed in this register is 3 (the minimum detectable load latency is 4 core 
clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corresponding IA32_PMCx counter 
register. This means that both the PEBS_EN_CTRX and LL_EN_CTRX bits must be set for the counter(s) of 
interest. For example, to enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register must be 
programmed with the 64-bit value 00000001.00000001H.

• When Load latency event is enabled, no other PEBS event can be configured with other counters.

When the load-latency facility is enabled, load operations are randomly selected by hardware and tagged to carry 
information related to data source locality and latency. Latency and data source information of tagged loads are 
updated internally. The MEM_TRANS_RETIRED event for load latency counts only tagged retired loads. If a load is 
cancelled it will not be counted and the internal state of the load latency facility will not be updated. In this case the 
hardware will tag the next available load.

MEM_UOPS_RETIRED D0H STLB_MISS_LOADS 11H

STLB_MISS_STORE 12H

LOCK_LOADS 21H

SPLIT_LOADS 41H

SPLIT_STORES 42H

ALL_LOADS 81H

ALL_STORES 82H

MEM_LOAD_UOPS_RETIRED D1H L1_Hit 01H

L2_Hit 02H

L3_Hit 04H

Hit_LFB 40H

MEM_LOAD_UOPS_LLC_HIT_RETIRED D2H XSNP_Miss 01H

XSNP_Hit 02H

XSNP_Hitm 04H

XSNP_None 08H

NOTES:
1. Only available on IA32_PMC1.

Table 21-13.  PEBS Performance Events for Sandy Bridge Microarchitecture (Contd.)
Event Name Event Select Sub-event UMask
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When a PEBS assist occurs, the last update of latency and data source information are captured by the assist and 
written as part of the PEBS record. The PEBS sample after value (SAV), specified in PEBS CounterX Reset, operates 
orthogonally to the tagging mechanism. Loads are randomly tagged to collect latency data. The SAV controls the 
number of tagged loads with latency information that will be written into the PEBS record field by the PEBS assists. 
The load latency data written to the PEBS record will be for the last tagged load operation which retired just before 
the PEBS assist was invoked.

The physical layout of the PEBS records is the same as shown in Table 21-4. The specificity of Data Source entry at 
offset A0H has been enhanced to report three pieces of information. 

The layout of MSR_PEBS_LD_LAT_THRESHOLD is the same as shown in Figure 21-19.

21.3.4.4.3  Precise Store Facility

Processors based on Sandy Bridge microarchitecture offer a precise store capability that complements the load 
latency facility. It provides a means to profile store memory references in the system.

Precise stores leverage the PEBS facility and provide additional information about sampled stores. Having precise 
memory reference events with linear address information for both loads and stores can help programmers improve 
data structure layout, eliminate remote node references, and identify cache-line conflicts in NUMA systems.

Only IA32_PMC3 can be used to capture precise store information. After enabling this facility, counter overflows 
will initiate the generation of PEBS records as previously described in PEBS. Upon counter overflow hardware 
captures the linear address and other status information of the next store that retires. This information is then 
written to the PEBS record.

To enable the precise store facility, software must complete the following steps. Please note that the precise store 
facility relies on the PEBS facility, so the PEBS configuration requirements must be completed before attempting to 
capture precise store information.
• Complete the PEBS configuration steps.
• Program the MEM_TRANS_RETIRED.PRECISE_STORE event in IA32_PERFEVTSEL3. Only counter 3 

(IA32_PMC3) supports collection of precise store information. 
• Set IA32_PEBS_ENABLE[3] and IA32_PEBS_ENABLE[63]. This enables IA32_PMC3 as a PEBS counter and 

enables the precise store facility, respectively.

The precise store information written into a PEBS record affects entries at offsets 98H, A0H, and A8H of Table 21-4. 
The specificity of Data Source entry at offset A0H has been enhanced to report three piece of information. 

Table 21-14.  Layout of Data Source Field of Load Latency Record

Field Position Description

Source 3:0 See Table 21-5

STLB_MISS 4 0: The load did not miss the STLB (hit the DTLB or STLB).

1: The load missed the STLB.

Lock 5 0: The load was not part of a locked transaction.

1: The load was part of a locked transaction.

Reserved 63:6 Reserved
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21.3.4.4.4  Precise Distribution of Instructions Retired (PDIR) 

Upon triggering a PEBS assist, there will be a finite delay between the time the counter overflows and when the 
microcode starts to carry out its data collection obligations. INST_RETIRED is a very common event that is used to 
sample where performance bottleneck happened and to help identify its location in instruction address space. Even 
if the delay is constant in core clock space, it invariably manifest as variable “skids” in instruction address space. 
This creates a challenge for programmers to profile a workload and pinpoint the location of bottlenecks.

The core PMU in processors based on Sandy Bridge microarchitecture include a facility referred to as precise distri-
bution of Instruction Retired (PDIR). 

The PDIR facility mitigates the “skid” problem by providing an early indication of when the INST_RETIRED counter 
is about to overflow, allowing the machine to more precisely trap on the instruction that actually caused the counter 
overflow. On processors based on Sandy Bridge microarchitecture, skid is significantly reduced and can be as little 
as one instruction. On future implementations, PDIR may eliminate skid.

PDIR applies only to the INST_RETIRED.ALL precise event, and processors based on Sandy Bridge microarchitec-
ture must use IA32_PMC1 with PerfEvtSel1 property configured and bit 1 in the IA32_PEBS_ENABLE set to 1. 
INST_RETIRED.ALL is a non-architectural performance event, it is not supported in prior generation microarchitec-
tures. Additionally, on processors with CPUID DisplayFamily_DisplayModel signatures of 06_2A and 06_2D, the tool 
that programs PDIR should quiesce the rest of the programmable counters in the core when PDIR is active. 

21.3.4.5  Off-core Response Performance Monitoring 
The core PMU in processors based on Sandy Bridge microarchitecture provides off-core response facility similar to 
prior generation. Off-core response can be programmed only with a specific pair of event select and counter MSR, 
and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the off-core 
transaction. Two event codes are dedicated for off-core response event programming. Each event code for off-core 
response monitoring requires programming an associated configuration MSR, MSR_OFFCORE_RSP_x. Table 21-16 
lists the event code, mask value and additional off-core configuration MSR that must be programmed to count off-
core response events using IA32_PMCx. 

The layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 are shown in Figure 21-32 and Figure 21-33. Bits 
15:0 specifies the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information, 
bits 37:31 specifies snoop response information.

Table 21-15.  Layout of Precise Store Information In PEBS Record

Field Offset Description

Store Data 
Linear Address

98H The linear address of the destination of the store.

Store Status A0H L1D Hit (Bit 0): The store hit the data cache closest to the core (lowest latency cache) if this bit is set, 
otherwise the store missed the data cache.

STLB Miss (bit 4): The store missed the STLB if set, otherwise the store hit the STLB

Locked Access (bit 5): The store was part of a locked access if set, otherwise the store was not part of a 
locked access.

Reserved A8H Reserved

Table 21-16.  Off-Core Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-3 B7H 01H MSR_OFFCORE_RSP_0 (address 1A6H)

PMC0-3 BBH 01H MSR_OFFCORE_RSP_1 (address 1A7H)
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Figure 21-32.  Request_Type Fields for MSR_OFFCORE_RSP_x 

Table 21-17.  MSR_OFFCORE_RSP_x Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand data reads of full and partial cachelines as well as demand data page 
table entry cacheline reads. Does not count L2 data read prefetches or instruction fetches.

DMND_RFO 1 Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated by a 
write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

WB 3 Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 Counts the number of code reads generated by L2 prefetchers.

PF_LLC_DATA_RD 7 L2 prefetcher to L3 for loads.

PF_LLC_RFO 8 RFO requests generated by L2 prefetcher 

PF_LLC_IFETCH 9 L2 prefetcher to L3 for instruction fetches.

BUS_LOCKS 10 Bus lock and split lock requests

STRM_ST 11 Streaming store requests

OTHER 15 Any other request that crosses IDI, including I/O.

RESPONSE TYPE — Other (R/W)
RESERVED 

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — PF_LLC_IFETCH (R/W)
REQUEST TYPE — PF_LLC_RFO (R/W)
REQUEST TYPE — PF_LLC_DATA_RD (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H

37

See Figure 18-30
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To properly program this extra register, software must set at least one request type bit and a valid response type 
pattern. Otherwise, the event count reported will be zero. It is permissible and useful to set multiple request and 
response type bits in order to obtain various classes of off-core response events. Although MSR_OFFCORE_RSP_x 
allow an agent software to program numerous combinations that meet the above guideline, not all combinations 
produce meaningful data.

To specify a complete offcore response filter, software must properly program bits in the request and response type 
fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response type 
must be a non-zero value of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY“ bit is set, the supplier and snoop info bits are ignored.

Figure 21-33.  Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSP_x 

Table 21-18.  MSR_OFFCORE_RSP_x Response Supplier Info Field Definition

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier 
Info

NO_SUPP 17 No Supplier Information available.

LLC_HITM 18 M-state initial lookup stat in L3.

LLC_HITE 19 E-state

LLC_HITS 20 S-state

LLC_HITF 21 F-state

LOCAL 22 Local DRAM Controller.

Reserved 30:23 Reserved

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

16

RSPNS_SNOOP — HIT_FWD

33 1934 17

Reserved

63 182031 212232353637

RSPNS_SNOOP — HIT_NO_FWD (R/W)
RSPNS_SNOOP — SNP_MISS (R/W)
RSPNS_SNOOP — SNP_NOT_NEEDED (R/W)
RSPNS_SNOOP — SNPl_NONE (R/W)
RSPNS_SUPPLIER — RESERVED

RSPNS_SUPPLIER — LLC_HITF (R/W)
RSPNS_SUPPLIER — LLC_HITS (R/W)
RSPNS_SUPPLIER — LLC_HITE (R/W)
RSPNS_SUPPLIER — LLC_HITM (R/W)
RSPNS_SUPPLIER — No_SUPP (R/W)
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 00000000_00000000H

RSPNS_SUPPLIER — Local
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21.3.4.6  Uncore Performance Monitoring Facilities in the Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, 
and Intel® Core™ i3-2xxx Processor Series

The uncore sub-system in Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series 
provides a unified L3 that can support up to four processor cores. The L3 cache consists multiple slices, each slice 
interface with a processor via a coherence engine, referred to as a C-Box. Each C-Box provides dedicated facility of 
MSRs to select uncore performance monitoring events and each C-Box event select MSR is paired with a counter 
register, similar in style as those described in Section 21.3.1.2.2. The ARB unit in the uncore also provides its local 
performance counters and event select MSRs. The layout of the event select MSRs in the C-Boxes and the ARB unit 
are shown in Figure 21-34.

Table 21-19.  MSR_OFFCORE_RSP_x Snoop Info Field Definition

Subtype Bit Name Offset Description

Snoop 
Info

SNP_NONE 31 No details on snoop-related information.

SNP_NOT_NEEDED 32 No snoop was needed to satisfy the request.

SNP_MISS 33 A snoop was needed and it missed all snooped caches:

-For LLC Hit, ReslHitl was returned by all cores

-For LLC Miss, Rspl was returned by all sockets and data was returned from DRAM.

SNP_NO_FWD 34 A snoop was needed and it hits in at least one snooped cache. Hit denotes a cache-line was 
valid before snoop effect. This includes:

-Snoop Hit w/ Invalidation (LLC Hit, RFO)

-Snoop Hit, Left Shared (LLC Hit/Miss, IFetch/Data_RD)

-Snoop Hit w/ Invalidation and No Forward (LLC Miss, RFO Hit S)

In the LLC Miss case, data is returned from DRAM.

SNP_FWD 35 A snoop was needed and data was forwarded from a remote socket. This includes:

-Snoop Forward Clean, Left Shared (LLC Hit/Miss, IFetch/Data_RD/RFT).

HITM 36 A snoop was needed and it HitM-ed in local or remote cache. HitM denotes a cache-line was 
in modified state before effect as a results of snoop. This includes:

-Snoop HitM w/ WB (LLC miss, IFetch/Data_RD)

-Snoop Forward Modified w/ Invalidation (LLC Hit/Miss, RFO)

-Snoop MtoS (LLC Hit, IFetch/Data_RD).

NON_DRAM 37 Target was non-DRAM system address. This includes MMIO transactions.

Figure 21-34.  Layout of Uncore PERFEVTSEL MSR for a C-Box Unit or the ARB Unit

28

INV—Invert counter mask
EN—Enable counter

E—Edge detect

8 7 0

Event SelectCounter Mask 

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

OVF_EN—Overflow forwarding

RESET Value — 00000000_00000000H
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The bit fields of the uncore event select MSRs for a C-box unit or the ARB unit are summarized below:
• Event_Select (bits 7:0) and UMASK (bits 15:8): Specifies the microarchitectural condition to count in a local 

uncore PMU counter, see the event list at: https://perfmon-events.intel.com/.
• E (bit 18): Enables edge detection filtering, if 1.
• OVF_EN (bit 20): Enables the overflow indicator from the uncore counter forwarded to MSR_UNC_PERF_-

GLOBAL_CTRL, if 1.
• EN (bit 22): Enables the local counter associated with this event select MSR.
• INV (bit 23): Event count increments with non-negative value if 0, with negated value if 1. 
• CMASK (bits 28:24): Specifies a positive threshold value to filter raw event count input.

At the uncore domain level, there is a master set of control MSRs that centrally manages all the performance moni-
toring facility of uncore units. Figure 21-35 shows the layout of the uncore domain global control. 

When an uncore counter overflows, a PMI can be routed to a processor core. Bits 3:0 of MSR_UNC_PERF_-
GLOBAL_CTRL can be used to select which processor core to handle the uncore PMI. Software must then write to 
bit 13 of IA32_DEBUGCTL (at address 1D9H) to enable this capability.
• PMI_SEL_Core#: Enables the forwarding of an uncore PMI request to a processor core, if 1. If bit 30 (WakePMI) 

is ‘1’, a wake request is sent to the respective processor core prior to sending the PMI.
• EN: Enables the fixed uncore counter, the ARB counters, and the CBO counters in the uncore PMU, if 1. This bit 

is cleared if bit 31 (FREEZE) is set and any enabled uncore counters overflow.
• WakePMI: Controls sending a wake request to any halted processor core before issuing the uncore PMI request. 

If a processor core was halted and not sent a wake request, the uncore PMI will not be serviced by the 
processor core.

• FREEZE: Provides the capability to freeze all uncore counters when an overflow condition occurs in a unit 
counter. When this bit is set, and a counter overflow occurs, the uncore PMU logic will clear the global enable bit 
(bit 29).

Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore domain. Table 21-20 summa-
rizes the number MSRs for uncore PMU for each box.

Figure 21-35.  Layout of MSR_UNC_PERF_GLOBAL_CTRL MSR for Uncore

Table 21-20.  Uncore PMU MSR Summary

Box # of Boxes
Counters per 
Box

Counter 
Width

General 
Purpose

Global 
Enable Comment

C-Box SKU specific 2 44 Yes Per-box Up to 4, seeTable 2-21 
MSR_UNC_CBO_CONFIG

ARB 1 2 44 Yes Uncore

FREEZE—Freeze counters

EN—Enable all uncore counters

02829303132

Reserved

63

WakePMI—Wake cores on PMI

RESET Value — 00000000_00000000H

4 3 2 1

PMI_Sel_Core3 — Uncore PMI to core 3
PMI_Sel_Core2 — Uncore PMI to core 2
PMI_Sel_Core1 — Uncore PMI to core 1
PMI_Sel_Core0 — Uncore PMI to core 0
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21.3.4.6.1  Uncore Performance Monitoring Events

There are certain restrictions on the uncore performance counters in each C-Box. Specifically,
• Occupancy events are supported only with counter 0 but not counter 1.
• Other uncore C-Box events can be programmed with either counter 0 or 1.

The C-Box uncore performance events can collect performance characteristics of transactions initiated by 
processor core. In that respect, they are similar to various sub-events in the OFFCORE_RESPONSE family of perfor-
mance events in the core PMU. Information such as data supplier locality (LLC HIT/MISS) and snoop responses can 
be collected via OFFCORE_RESPONSE and qualified on a per-thread basis. 

On the other hand, uncore performance event logic cannot associate its counts with the same level of per-thread 
qualification attributes as the core PMU events can. Therefore, whenever similar event programming capabilities 
are available from both core PMU and uncore PMU, the recommendation is that utilizing the core PMU events may 
be less affected by artifacts, complex interactions and other factors.

21.3.4.7  Intel® Xeon® Processor E5 Family Performance Monitoring Facility
The Intel® Xeon® Processor E5 Family (and Intel® Core™ i7-3930K Processor) are based on Sandy Bridge-E 
microarchitecture. While the processor cores share the same microarchitecture as those of the Intel® Xeon® 
Processor E3 Family and 2nd generation Intel Core i7-2xxx, Intel Core i5-2xxx, Intel Core i3-2xxx processor series, 
the uncore subsystems are different. An overview of the uncore performance monitoring facilities of the Intel Xeon 
processor E5 family (and Intel Core i7-3930K processor) is described in Section 21.3.4.8.

Thus, the performance monitoring facilities in the processor core generally are the same as those described in 
Section 21.6.3 through Section 21.3.4.5. However, the MSR_OFFCORE_RSP_0/MSR_OFFCORE_RSP_1 Response 
Supplier Info field shown in Table 21-18 applies to Intel Core Processors with CPUID signature of DisplayFami-
ly_DisplayModel encoding of 06_2AH; Intel Xeon processor with CPUID signature of DisplayFamily_DisplayModel 
encoding of 06_2DH supports an additional field for remote DRAM controller shown in Table 21-21. Additionally, 
there are some small differences in the non-architectural performance monitoring events (see event list available 
at: https://perfmon-events.intel.com/).

Fixed 
Counter

N.A. N.A. 48 No Uncore

Table 21-21.  MSR_OFFCORE_RSP_x Supplier Info Field Definitions

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier Info NO_SUPP 17 No Supplier Information available.

LLC_HITM 18 M-state initial lookup stat in L3.

LLC_HITE 19 E-state

LLC_HITS 20 S-state

LLC_HITF 21 F-state

LOCAL 22 Local DRAM Controller.

Remote 30:23 Remote DRAM Controller (either all 0s or all 1s).

Table 21-20.  Uncore PMU MSR Summary (Contd.)

Box # of Boxes
Counters per 
Box

Counter 
Width

General 
Purpose

Global 
Enable Comment
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21.3.4.8  Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility
The uncore subsystem in the Intel Xeon processor E5-2600 product family has some similarities with those of the 
Intel Xeon processor E7 family. Within the uncore subsystem, localized performance counter sets are provided at 
logic control unit scope. For example, each Cbox caching agent has a set of local performance counters, and the 
power controller unit (PCU) has its own local performance counters. Up to 8 C-Box units are supported in the 
uncore sub-system. 

Table 21-22 summarizes the uncore PMU facilities providing MSR interfaces.

Details of the uncore performance monitoring facility of Intel Xeon Processor E5 family is available in “Intel® 
Xeon® Processor E5 Uncore Performance Monitoring Programming Reference Manual”. The MSR-based uncore PMU 
interfaces are listed in Table 2-24.

21.3.5 3rd Generation Intel® Core™ Processor Performance Monitoring Facility
The 3rd generation Intel® Core™ processor family and Intel® Xeon® processor E3-1200v2 product family are 
based on the Ivy Bridge microarchitecture. The performance monitoring facilities in the processor core generally 
are the same as those described in Section 21.6.3 through Section 21.3.4.5. The non-architectural performance 
monitoring events supported by the processor core can be found at: https://perfmon-events.intel.com/.

21.3.5.1  Intel® Xeon® Processor E5 v2 and E7 v2 Family Uncore Performance Monitoring Facility
The uncore subsystem in the Intel Xeon processor E5 v2 and Intel Xeon Processor E7 v2 product families are based 
on the Ivy Bridge-E microarchitecture. There are some similarities with those of the Intel Xeon processor E5 family 
based on the Sandy Bridge microarchitecture. Within the uncore subsystem, localized performance counter sets 
are provided at logic control unit scope. 

Details of the uncore performance monitoring facility of Intel Xeon Processor E5 v2 and Intel Xeon Processor E7 v2 
families are available in the “Intel® Xeon® Processor E5 v2 and E7 v2 Uncore Performance Monitoring Program-
ming Reference Manual”. The MSR-based uncore PMU interfaces are listed in Table 2-28.

21.3.6 4th Generation Intel® Core™ Processor Performance Monitoring Facility
The 4th generation Intel® Core™ processor and Intel® Xeon® processor E3-1200 v3 product family are based on 
the Haswell microarchitecture. The core PMU supports architectural performance monitoring capability with version 
ID 3 (see Section 21.2.3) and a host of non-architectural monitoring capabilities. 

Architectural performance monitoring version 3 capabilities are described in Section 21.2.3. 

The core PMU’s capability is similar to those described in Section 21.6.3 through Section 21.3.4.5, with some differ-
ences and enhancements summarized in Table 21-23. Additionally, the core PMU provides some enhancement to 
support performance monitoring when the target workload contains instruction streams using Intel® Transactional 
Synchronization Extensions (TSX), see Section 21.3.6.5. For details of Intel TSX, see Chapter 16, “Programming with 
Intel® AVX10‚” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

Table 21-22.  Uncore PMU MSR Summary for Intel® Xeon® Processor E5 Family

Box # of Boxes Counters per Box
Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs

C-Box 8 4 44 Yes per-box None

PCU 1 4 48 Yes per-box Match/Mask

U-Box 1 2 44 Yes uncore None
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21.3.6.1  Processor Event Based Sampling (PEBS) Facility 
The PEBS facility in the 4th Generation Intel Core processor is similar to those in processors based on Sandy Bridge 
microarchitecture, with several enhanced features. The key components and differences of PEBS facility relative to 
Sandy Bridge microarchitecture is summarized in Table 21-24.

Table 21-23.  Core PMU Comparison

Box Haswell Microarchitecture Sandy Bridge Microarchitecture Comment

# of Fixed counters per thread 3 3 Use CPUID to determine # 
of counters. See Section 
21.2.1.

# of general-purpose counters 
per core

8 8 Use CPUID to determine # 
of counters. See Section 
21.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 See Section 21.2.2.

# of programmable counters 
per thread

4 or (8 if a core not shared by two 
threads)

4 or (8 if a core not shared by two 
threads)

Use CPUID to determine # 
of counters. See Section 
21.2.1.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with 
legacy semantics.

• Freeze_LBR_on_PMI with 
legacy semantics for branch 
profiling.

• Freeze_while_SMM. 

• Freeze_Perfmon_on_PMI with 
legacy semantics.

• Freeze_LBR_on_PMI with 
legacy semantics for branch 
profiling.

• Freeze_while_SMM.

See Section 19.4.7.

Processor Event Based 
Sampling (PEBS) Events

See Table 21-13 and Section 
21.3.6.5.1.

See Table 21-13. IA32_PMC4-IA32_PMC7 
do not support PEBS.

PEBS-Load Latency See Section 21.3.4.4.2. See Section 21.3.4.4.2.

PEBS-Precise Store No, replaced by Data Address 
profiling.

Section 21.3.4.4.3

PEBS-PDIR Yes (using precise 
INST_RETIRED.ALL)

Yes (using precise 
INST_RETIRED.ALL)

PEBS-EventingIP Yes No

Data Address Profiling Yes No

LBR Profiling Yes Yes

Call Stack Profiling Yes, see Section 19.11. No Use LBR facility.

Off-core Response Event MSR 1A6H and 1A7H; extended 
request and response types.

MSR 1A6H and 1A7H; extended 
request and response types.

Intel TSX support for Perfmon See Section 21.3.6.5. No

Table 21-24.  PEBS Facility Comparison

Box Haswell Microarchitecture Sandy Bridge Microarchitecture Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7 

PEBS Buffer Programming  Section 21.3.1.1.1 Section 21.3.1.1.1 Unchanged

IA32_PEBS_ENABLE Layout  Figure 21-17 Figure 21-31

PEBS record layout Table 21-25; enhanced fields 
at offsets 98H, A0H, A8H, B0H.

Table 21-4; enhanced fields at 
offsets 98H, A0H, A8H.
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Only IA32_PMC0 through IA32_PMC3 support PEBS. 

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: AnyThread, 
Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or IA32_PMCx 
is changed for a PEBS-enabled counter while an event is being counted. To avoid this, changes to 
the programming or value of a PEBS-enabled counter should be performed when the counter is 
disabled.

21.3.6.2  PEBS Data Format
The PEBS record format for the 4th Generation Intel Core processor is shown in Table 21-25. The PEBS record 
format, along with debug/store area storage format, does not change regardless of whether IA-32e mode is active 
or not. CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-inde-
pendent. When set, it uses 64-bit DS storage format.

Precise Events See Table 21-13. See Table 21-13. IA32_PMC4-IA32_PMC7 do 
not support PEBS.

PEBS-Load Latency See Table 21-14. Table 21-14

PEBS-Precise Store No, replaced by data address 
profiling.

Yes; see Section 21.3.4.4.3.

PEBS-PDIR Yes Yes IA32_PMC1 only.

PEBS skid from EventingIP 1 (or 2 if micro+macro fusion) 1

SAMPLING Restriction Small SAV(CountDown) value incur higher overhead than prior 
generation.

Table 21-25.  PEBS Record Format for 4th Generation Intel Core Processor Family

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H Data Linear Address

40H R/EBP A0H Data Source Encoding

48H R/ESP A8H Latency value (core cycles)

50H R8 B0H EventingIP

58H R9 B8H TX Abort Information (Section 
21.3.6.5.1)

Table 21-24.  PEBS Facility Comparison

Box Haswell Microarchitecture Sandy Bridge Microarchitecture Comment
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The layout of PEBS records are almost identical to those shown in Table 21-4. Offset B0H is a new field that records 
the eventing IP address of the retired instruction that triggered the PEBS assist.

The PEBS records at offsets 98H, A0H, and ABH record data gathered from three of the PEBS capabilities in prior 
processor generations: load latency facility (Section 21.3.4.4.2), PDIR (Section 21.3.4.4.4), and the equivalent 
capability of precise store in prior generation (see Section 21.3.6.3).

In the core PMU of the 4th generation Intel Core processor, load latency facility and PDIR capabilities are 
unchanged. However, precise store is replaced by an enhanced capability, data address profiling, that is not 
restricted to store address. Data address profiling also records information in PEBS records at offsets 98H, A0H, 
and ABH.

21.3.6.3  PEBS Data Address Profiling
The Data Linear Address facility is also abbreviated as DataLA. The facility is a replacement or extension of the 
precise store facility in previous processor generations. The DataLA facility complements the load latency facility by 
providing a means to profile load and store memory references in the system, leverages the PEBS facility, and 
provides additional information about sampled loads and stores. Having precise memory reference events with 
linear address information for both loads and stores provides information to improve data structure layout, elimi-
nate remote node references, and identify cache-line conflicts in NUMA systems.

The DataLA facility in the 4th generation processor supports the following events configured to use PEBS:

DataLA can use any one of the IA32_PMC0-IA32_PMC3 counters. Counter overflows will initiate the generation of 
PEBS records. Upon counter overflow, hardware captures the linear address and possible other status information 
of the retiring memory uop. This information is then written to the PEBS record that is subsequently generated.

To enable the DataLA facility, software must complete the following steps. Please note that the DataLA facility relies 
on the PEBS facility, so the PEBS configuration requirements must be completed before attempting to capture 
DataLA information.
• Complete the PEBS configuration steps.
• Program an event listed in Table 21-26 using any one of IA32_PERFEVTSEL0-IA32_PERFEVTSEL3. 
• Set the corresponding IA32_PEBS_ENABLE.PEBS_EN_CTRx bit. This enables the corresponding IA32_PMCx as 

a PEBS counter and enables the DataLA facility.

When the DataLA facility is enabled, the relevant information written into a PEBS record affects entries at offsets 
98H, A0H, and A8H, as shown in Table 21-27. 

Table 21-26.  Precise Events That Supports Data Linear Address Profiling
Event Name Event Name

MEM_UOPS_RETIRED.STLB_MISS_LOADS MEM_UOPS_RETIRED.STLB_MISS_STORES

MEM_UOPS_RETIRED.LOCK_LOADS MEM_UOPS_RETIRED.SPLIT_STORES

MEM_UOPS_RETIRED.SPLIT_LOADS MEM_UOPS_RETIRED.ALL_STORES

MEM_UOPS_RETIRED.ALL_LOADS MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM

MEM_LOAD_UOPS_RETIRED.L1_HIT MEM_LOAD_UOPS_RETIRED.L2_HIT

MEM_LOAD_UOPS_RETIRED.L3_HIT MEM_LOAD_UOPS_RETIRED.L1_MISS

MEM_LOAD_UOPS_RETIRED.L2_MISS MEM_LOAD_UOPS_RETIRED.L3_MISS

MEM_LOAD_UOPS_RETIRED.HIT_LFB MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS

MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM

UOPS_RETIRED.ALL (if load or store is tagged) MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_NONE
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21.3.6.3.1  EventingIP Record

The PEBS record layout for processors based on Haswell microarchitecture adds a new field at offset 0B0H. This is 
the eventingIP field that records the IP address of the retired instruction that triggered the PEBS assist. The 
EIP/RIP field at offset 08H records the IP address of the next instruction to be executed following the PEBS assist.

21.3.6.4  Off-core Response Performance Monitoring 
The core PMU facility to collect off-core response events are similar to those described in Section 21.3.4.5. The 
event codes are listed in Table 21-16. Each event code for off-core response monitoring requires programming an 
associated configuration MSR, MSR_OFFCORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according 
to:
• Transaction request type encoding (bits 15:0): see Table 21-28.
• Supplier information (bits 30:16): see Table 21-29.
• Snoop response information (bits 37:31): see Table 21-19.

Table 21-27.  Layout of Data Linear Address Information In PEBS Record

Field Offset Description

Data Linear 
Address

98H The linear address of the load or the destination of the store.

Store Status A0H • DCU Hit (Bit 0): The store hit the data cache closest to the core (L1 cache) if this bit is set, otherwise 
the store missed the data cache. This information is valid only for the following store events: 
UOPS_RETIRED.ALL (if store is tagged),
MEM_UOPS_RETIRED.STLB_MISS_STORES,
MEM_UOPS_RETIRED.SPLIT_STORES, MEM_UOPS_RETIRED.ALL_STORES

• Other bits are zero, The STLB_MISS, LOCK bit information can be obtained by programming the 
corresponding store event in Table 21-26.

Reserved A8H Always zero.

Table 21-28.  MSR_OFFCORE_RSP_x Request_Type Definition (Haswell Microarchitecture)

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand data reads and page table entry cacheline reads. Does not count L2 data 
read prefetches or instruction fetches.

DMND_RFO 1 Counts demand read (RFO) and software prefetches (PREFETCHW) for exclusive ownership in 
anticipation of a write.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

COREWB 3 Counts the number of modified cachelines written back.

PF_DATA_RD 4 Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 Counts the number of code reads generated by L2 prefetchers.

PF_L3_DATA_RD 7 Counts the number of data cacheline reads generated by L3 prefetchers.

PF_L3_RFO 8 Counts the number of RFO requests generated by L3 prefetchers.

PF_L3_CODE_RD 9 Counts the number of code reads generated by L3 prefetchers.

SPLIT_LOCK_UC_
LOCK

10 Counts the number of lock requests that split across two cachelines or are to UC memory.

STRM_ST 11 Counts the number of streaming store requests electronically.

Reserved 14:12 Reserved
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The supplier information field listed in Table 21-29. The fields vary across products (according to CPUID signatures) 
and is noted in the description.

21.3.6.4.1  Off-core Response Performance Monitoring in Intel Xeon Processors E5 v3 Series

Table 21-29 lists the supplier information field that apply to Intel Xeon processor E5 v3 series (CPUID signature 
06_3FH).

OTHER 15 Any other request that crosses IDI, including I/O.

Table 21-29.  MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signatures: 06_3CH, 06_46H)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier 
Info

NO_SUPP 17 No Supplier Information available.

L3_HITM 18 M-state initial lookup stat in L3.

L3_HITE 19 E-state

L3_HITS 20 S-state

Reserved 21 Reserved

LOCAL 22 Local DRAM Controller.

Reserved 30:23 Reserved

Table 21-30.  MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature: 06_45H)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier 
Info

NO_SUPP 17 No Supplier Information available.

L3_HITM 18 M-state initial lookup stat in L3.

L3_HITE 19 E-state

L3_HITS 20 S-state

Reserved 21 Reserved

L4_HIT_LOCAL_L4 22 L4 Cache

L4_HIT_REMOTE_HOP0_L4 23 L4 Cache

L4_HIT_REMOTE_HOP1_L4 24 L4 Cache

L4_HIT_REMOTE_HOP2P_L4 25 L4 Cache

Reserved 30:26 Reserved

Table 21-28.  MSR_OFFCORE_RSP_x Request_Type Definition (Haswell Microarchitecture) (Contd.)

Bit Name Offset Description
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21.3.6.5  Performance Monitoring and Intel® TSX
Chapter 16 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the details 
of Intel® Transactional Synchronization Extensions (Intel® TSX). This section describes performance monitoring 
support for Intel TSX. 

If a processor supports Intel TSX, the core PMU enhances its IA32_PERFEVTSELx MSR with two additional bit fields 
for event filtering. Support for Intel TSX is indicated by either (a) CPUID.(EAX=7, ECX=0):RTM[bit 11]=1, or (b) if 
CPUID.07H.EBX.HLE [bit 4] = 1. The TSX-enhanced layout of IA32_PERFEVTSELx is shown in Figure 21-36. The 
two additional bit fields are:
• IN_TX (bit 32): When set, the counter will only include counts that occurred inside a transactional region, 

regardless of whether that region was aborted or committed. This bit may only be set if the processor supports 
HLE or RTM.

• IN_TXCP (bit 33): When set, the counter will not include counts that occurred inside of an aborted transac-
tional region. This bit may only be set if the processor supports HLE or RTM. This bit may only be set for 
IA32_PERFEVTSEL2. 

When the IA32_PERFEVTSELx MSR is programmed with both IN_TX=0 and IN_TXCP=0 on a processor that 
supports Intel TSX, the result in a counter may include detectable conditions associated with a transaction code 
region for its aborted execution (if any) and completed execution. 

In the initial implementation, software may need to take pre-caution when using the IN_TXCP bit. See Table 2-29.

Table 21-31.  MSR_OFFCORE_RSP_x Supplier Info Field Definition

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier 
Info

NO_SUPP 17 No Supplier Information available.

L3_HITM 18 M-state initial lookup stat in L3.

L3_HITE 19 E-state

L3_HITS 20 S-state

L3_HITF 21 F-state

LOCAL 22 Local DRAM Controller.

Reserved 26:23 Reserved

L3_MISS_REMOTE_HOP0 27 Hop 0 Remote supplier.

L3_MISS_REMOTE_HOP1 28 Hop 1 Remote supplier.

L3_MISS_REMOTE_HOP2P 29 Hop 2 or more Remote supplier.

Reserved 30 Reserved
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A common usage of setting IN_TXCP=1 is to capture the number of events that were discarded due to a transac-
tional abort. With IA32_PMC2 configured to count in such a manner, then when a transactional region aborts, the 
value for that counter is restored to the value it had prior to the aborted transactional region. As a result, any 
updates performed to the counter during the aborted transactional region are discarded.

On the other hand, setting IN_TX=1 can be used to drill down on the performance characteristics of transactional 
code regions. When a PMCx is configured with the corresponding IA32_PERFEVTSELx.IN_TX=1, only eventing 
conditions that occur inside transactional code regions are propagated to the event logic and reflected in the 
counter result. Eventing conditions specified by IA32_PERFEVTSELx but occurring outside a transactional region 
are discarded. 

Additionally, a number of performance events are solely focused on characterizing the execution of Intel TSX trans-
actional code, they can be found at: https://perfmon-events.intel.com/.

21.3.6.5.1  Intel® TSX and PEBS Support

If a PEBS event would have occurred inside a transactional region, then the transactional region first aborts, and 
then the PEBS event is processed.

Two of the TSX performance monitoring events also support using the PEBS facility to capture additional informa-
tion. They are:
• HLE_RETIRED.ABORTED (encoding C8H mask 04H),
• RTM_RETIRED.ABORTED (encoding C9H mask 04H).

A transactional abort (HLE_RETIRED.ABORTED,RTM_RETIRED.ABORTED) can also be programmed to cause PEBS 
events. In this scenario, a PEBS event is processed following the abort.

Pending a PEBS record inside of a transactional region will cause a transactional abort. If a PEBS record was pended 
at the time of the abort or on an overflow of the TSX PEBS events listed above, only the following PEBS entries will 
be valid (enumerated by PEBS entry offset B8H bits[33:32] to indicate an HLE abort or an RTM abort):
• Offset B0H: EventingIP, 
• Offset B8H: TX Abort Information

These fields are set for all PEBS events.
• Offset 08H (RIP/EIP) corresponds to the instruction following the outermost XACQUIRE in HLE or the first 

instruction of the fallback handler of the outermost XBEGIN instruction in RTM. This is useful to identify the 
aborted transactional region.

In the case of HLE, an aborted transaction will restart execution deterministically at the start of the HLE region. In 
the case of RTM, an aborted transaction will transfer execution to the RTM fallback handler.

The layout of the TX Abort Information field is given in Table 21-32.

Figure 21-36.  Layout of IA32_PERFEVTSELx MSRs Supporting Intel TSX
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IN_TX—In Trans. Rgn
IN_TXCP—In Tx exclude abort (PERFEVTSEL2 Only)
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21.3.6.6  Uncore Performance Monitoring Facilities in the 4th Generation Intel® Core™ Processors
The uncore sub-system in the 4th Generation Intel® Core™ processors provides its own performance monitoring 
facility. The uncore PMU facility provides dedicated MSRs to select uncore performance monitoring events in a 
similar manner as those described in Section 21.3.4.6. 

The ARB unit and each C-Box provide local pairs of event select MSR and counter register. The layout of the event 
select MSRs in the C-Boxes are identical as shown in Figure 21-34.

At the uncore domain level, there is a master set of control MSRs that centrally manages all the performance moni-
toring facility of uncore units. Figure 21-35 shows the layout of the uncore domain global control. 

Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore domain. Table 21-20 summa-
rizes the number MSRs for uncore PMU for each box.

The uncore performance events for the C-Box and ARB units can be found at: https://perfmon-events.intel.com/.

21.3.6.7  Intel® Xeon® Processor E5 v3 Family Uncore Performance Monitoring Facility
Details of the uncore performance monitoring facility of Intel Xeon Processor E5 v3 families are available in “Intel® 
Xeon® Processor E5 v3 Uncore Performance Monitoring Programming Reference Manual”. The MSR-based uncore 
PMU interfaces are listed in Table 2-33.

Table 21-32.  TX Abort Information Field Definition

Bit Name Offset Description

Cycles_Last_TX 31:0 The number of cycles in the last TSX region, regardless of whether that region had aborted or 
committed. 

HLE_Abort 32 If set, the abort information corresponds to an aborted HLE execution

RTM_Abort 33 If set, the abort information corresponds to an aborted RTM execution

Instruction_Abort 34 If set, the abort was associated with the instruction corresponding to the eventing IP (offset 
0B0H) within the transactional region.

Non_Instruction_Abort 35 If set, the instruction corresponding to the eventing IP may not necessarily be related to the 
transactional abort.

Retry 36 If set, retrying the transactional execution may have succeeded. 

Data_Conflict 37 If set, another logical processor conflicted with a memory address that was part of the 
transactional region that aborted. 

Capacity Writes 38 If set, the transactional region aborted due to exceeding resources for transactional writes.

Capacity Reads 39 If set, the transactional region aborted due to exceeding resources for transactional reads.

In_Suspend 40 Transaction was aborted while in a suspend region. This is an Intel Xeon processor only feature, 
available beginning with 4th generation Intel Xeon Scalable Processor Family; otherwise 
reserved.

Reserved 63:41 Reserved

Table 21-33.  Uncore PMU MSR Summary

Box # of Boxes
Counters per 
Box

Counter 
Width

General 
Purpose

Global 
Enable Comment

C-Box SKU specific 2 44 Yes Per-box Up to 4, seeTable 2-21 
MSR_UNC_CBO_CONFIG

ARB 1 2 44 Yes Uncore

Fixed Counter N.A. N.A. 48 No Uncore
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21.3.7 5th Generation Intel® Core™ Processor and Intel® Core™ M Processor Performance 
Monitoring Facility

The 5th Generation Intel® Core™ processor and the Intel® Core™ M processor families are based on the Broadwell 
microarchitecture. The core PMU supports architectural performance monitoring capability with version ID 3 (see 
Section 21.2.3) and a host of non-architectural monitoring capabilities. 

Architectural performance monitoring version 3 capabilities are described in Section 21.2.3. 

The core PMU has the same capability as those described in Section 21.3.6. IA32_PERF_GLOBAL_STATUS provide 
a bit indicator (bit 55) for PMI handler to distinguish PMI due to output buffer overflow condition due to accumu-
lating packet data from Intel Processor Trace. 

Details of Intel Processor Trace is described in Chapter 34, “Intel® Processor Trace.” The 
IA32_PERF_GLOBAL_OVF_CTRL MSR provides a corresponding reset control bit. 

Figure 21-37.  IA32_PERF_GLOBAL_STATUS MSR in Broadwell Microarchitecture 

Figure 21-38.  IA32_PERF_GLOBAL_OVF_CTRL MSR in Broadwell microarchitecture 
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The specifics of non-architectural performance events can be found at: https://perfmon-events.intel.com/.

21.3.8 6th Generation, 7th Generation and 8th Generation Intel® Core™ Processor 
Performance Monitoring Facility

The 6th generation Intel® Core™ processor is based on the Skylake microarchitecture. The 7th generation Intel® 
Core™ processor is based on the Kaby Lake microarchitecture. The 8th generation Intel® Core™ processors, 9th 
generation Intel® Core™ processors, and Intel® Xeon® E processors are based on the Coffee Lake microarchitec-
ture. For these microarchitectures, the core PMU supports architectural performance monitoring capability with 
version ID 4 (see Section 21.2.4) and a host of non-architectural monitoring capabilities. 

Architectural performance monitoring version 4 capabilities are described in Section 21.2.4. 

The core PMU’s capability is similar to those described in Section 21.6.3 through Section 21.3.4.5, with some differ-
ences and enhancements summarized in Table 21-34. Additionally, the core PMU provides some enhancement to 
support performance monitoring when the target workload contains instruction streams using Intel® Transactional 
Synchronization Extensions (TSX), see Section 21.3.6.5. For details of Intel TSX, see Chapter 16, “Programming 
with Intel® AVX10‚” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

Performance monitoring result may be affected by side-band activity on processors that support Intel SGX, details 
are described in Chapter 41, “Enclave Code Debug and Profiling.”

Table 21-34.  Core PMU Comparison

Box Skylake, Kaby Lake and Coffee Lake 
Microarchitectures

Haswell and Broadwell 
Microarchitectures

Comment

# of Fixed counters per thread 3 3 Use CPUID to 
determine # of 
counters. See 
Section 21.2.1.

# of general-purpose counters 
per core

8 8 Use CPUID to 
determine # of 
counters. See 
Section 21.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 See Section 21.2.2.

# of programmable counters 
per thread

4 or (8 if a core not shared by two 
threads)

4 or (8 if a core not shared by two 
threads)

Use CPUID to 
determine # of 
counters. See 
Section 21.2.1.

Architectural Perfmon version 4 3 See Section 21.2.4

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with 
streamlined semantics.

• Freeze_LBR_on_PMI with 
streamlined semantics.

• Freeze_while_SMM.

• Freeze_Perfmon_on_PMI with 
legacy semantics.

• Freeze_LBR_on_PMI with 
legacy semantics for branch 
profiling.

• Freeze_while_SMM.

See Section 19.4.7.

Legacy semantics 
not supported with 
version 4 or higher.

Counter and Buffer Overflow 
Status Management

• Query via 
IA32_PERF_GLOBAL_STATUS

• Reset via 
IA32_PERF_GLOBAL_STATUS_RESET

• Set via 
IA32_PERF_GLOBAL_STATUS_SET

• Query via 
IA32_PERF_GLOBAL_STATUS

• Reset via 
IA32_PERF_GLOBAL_OVF_CTRL

See Section 21.2.4.

IA32_PERF_GLOBAL_STATUS 
Indicators of 
Overflow/Overhead/Interferen
ce

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow
• CTR_Frz, LBR_Frz, ASCI

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow 

(applicable to Broadwell 
microarchitecture)

See Section 21.2.4.
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21.3.8.1  Processor Event Based Sampling (PEBS) Facility 
The PEBS facility in the 6th generation, 7th generation and 8th generation Intel Core processors provides a number 
enhancement relative to PEBS in processors based on Haswell/Broadwell microarchitectures. The key components 
and differences of PEBS facility relative to Haswell/Broadwell microarchitecture is summarized in Table 21-35.

Enable control in 
IA32_PERF_GLOBAL_STATUS 

• CTR_Frz
• LBR_Frz

NA See Section 
21.2.4.1.

Perfmon Counter In-Use 
Indicator

Query IA32_PERF_GLOBAL_INUSE NA See Section 
21.2.4.3.

Precise Events See Table 21-37. See Table 21-13. IA32_PMC4-PMC7 
do not support 
PEBS.

PEBS for front end events See Section 21.3.8.2. No

LBR Record Format Encoding 000101b 000100b Section 19.4.8.1

LBR Size 32 entries 16 entries

LBR Entry From_IP/To_IP/LBR_Info triplet From_IP/To_IP pair Section 19.12

LBR Timing Yes No Section 19.12.1

Call Stack Profiling Yes, see Section 19.11 Yes, see Section 19.11 Use LBR facility.

Off-core Response Event MSR 1A6H and 1A7H; Extended request 
and response types.

MSR 1A6H and 1A7H; Extended 
request and response types.

Intel TSX support for Perfmon See Section 21.3.6.5. See Section 21.3.6.5.

Table 21-35.  PEBS Facility Comparison 

Box Skylake, Kaby Lake and 
Coffee Lake 

Microarchitectures

Haswell and Broadwell 
Microarchitectures

Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7.

PEBS Buffer Programming Section 21.3.1.1.1  Section 21.3.1.1.1 Unchanged

IA32_PEBS_ENABLE Layout Figure 21-17  Figure 21-17

PEBS-EventingIP Yes Yes

PEBS record format encoding 0011b 0010b

PEBS record layout Table 21-36; enhanced fields 
at offsets 98H- B8H; and TSC 
record field at C0H.

Table 21-25; enhanced fields at 
offsets 98H, A0H, A8H, B0H.

Multi-counter PEBS 
resolution

PEBS record 90H resolves the 
eventing counter overflow.

PEBS record 90H reflects 
IA32_PERF_GLOBAL_STATUS.

Precise Events See Table 21-37. See Table 21-13. IA32_PMC4-IA32_PMC7 do not 
support PEBS.

PEBS-PDIR Yes Yes IA32_PMC1 only.

PEBS-Load Latency See Section 21.3.4.4.2. See Section 21.3.4.4.2.

Data Address Profiling Yes Yes

Table 21-34.  Core PMU Comparison (Contd.)

Box Skylake, Kaby Lake and Coffee Lake 
Microarchitectures

Haswell and Broadwell 
Microarchitectures

Comment
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Only IA32_PMC0 through IA32_PMC3 support PEBS. 

NOTES
Precise events are only valid when the following fields of IA32_PERFEVTSELx are all zero: 
AnyThread, Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or IA32_PMCx 
is changed for a PEBS-enabled counter while an event is being counted. To avoid this, changes to 
the programming or value of a PEBS-enabled counter should be performed when the counter is 
disabled.

21.3.8.1.1  PEBS Data Format

The PEBS record format for the 6th generation, 7th generation and 8th generation Intel Core processors is 
reporting with encoding 0011b in IA32_PERF_CAPABILITIES[11:8]. The lay out is shown in Table 21-36. The PEBS 
record format, along with debug/store area storage format, does not change regardless of whether IA-32e mode is 
active or not. CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-
independent. When set, it uses 64-bit DS storage format.

The layout of PEBS records are largely identical to those shown in Table 21-25. 

The PEBS records at offsets 98H, A0H, and ABH record data gathered from three of the PEBS capabilities in prior 
processor generations: load latency facility (Section 21.3.4.4.2), PDIR (Section 21.3.4.4.4), and data address 
profiling (Section 21.3.6.3).

FrontEnd event support FrontEnd_Retried event and 
MSR_PEBS_FRONTEND.

No IA32_PMC0-PMC3 only.

Table 21-36.  PEBS Record Format for the 6th Generation, 7th Generation, and 8th Generation Intel Core Processor 
Families

Byte Offset Field Byte Offset Field

00H R/EFLAGS 68H R11

08H R/EIP 70H R12

10H R/EAX 78H R13

18H R/EBX 80H R14

20H R/ECX 88H R15

28H R/EDX 90H Applicable Counter

30H R/ESI 98H Data Linear Address

38H R/EDI A0H Data Source Encoding

40H R/EBP A8H Latency value (core cycles)

48H R/ESP B0H EventingIP

50H R8 B8H TX Abort Information (Section 21.3.6.5.1)

58H R9 C0H TSC

60H R10

Table 21-35.  PEBS Facility Comparison  (Contd.)

Box Skylake, Kaby Lake and 
Coffee Lake 

Microarchitectures

Haswell and Broadwell 
Microarchitectures

Comment
21-64 Vol. 3B



PERFORMANCE MONITORING
In the core PMU of the 6th generation, 7th generation and 8th generation Intel Core processors, load latency 
facility and PDIR capabilities and data address profiling are unchanged relative to the 4th generation and 5th 
generation Intel Core processors. Similarly, precise store is replaced by data address profiling.

With format 0010b, a snapshot of the IA32_PERF_GLOBAL_STATUS may be useful to resolve the situations when 
more than one of IA32_PMICx have been configured to collect PEBS data and two consecutive overflows of the 
PEBS-enabled counters are sufficiently far apart in time. It is also possible for the image at 90H to indicate multiple 
PEBS-enabled counters have overflowed. In the latter scenario, software cannot to correlate the PEBS record entry 
to the multiple overflowed bits.

With PEBS record format encoding 0011b, offset 90H reports the “applicable counter” field, which is a multi-
counter PEBS resolution index allowing software to correlate the PEBS record entry with the eventing PEBS over-
flow when multiple counters are configured to record PEBS records. Additionally, offset C0H captures a snapshot of 
the TSC that provides a time line annotation for each PEBS record entry.

21.3.8.1.2  PEBS Events

The list of precise events supported for PEBS in the Skylake, Kaby Lake and Coffee Lake microarchitectures is 
shown in Table 21-37.

Table 21-37.   Precise Events for the Skylake, Kaby Lake, and Coffee Lake Microarchitectures
Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST1 01H

ALL_CYCLES2 01H

OTHER_ASSISTS C1H ANY 3FH

BR_INST_RETIRED C4H CONDITIONAL 01H

NEAR_CALL 02H

ALL_BRANCHES 04H

NEAR_RETURN 08H

NEAR_TAKEN 20H

FAR_BRACHES 40H

BR_MISP_RETIRED C5H CONDITIONAL 01H

ALL_BRANCHES 04H

NEAR_TAKEN 20H

FRONTEND_RETIRED C6H <Programmable3> 01H

HLE_RETIRED C8H ABORTED 04H

RTM_RETIRED C9H ABORTED 04H

MEM_INST_RETIRED2 D0H LOCK_LOADS 21H

SPLIT_LOADS 41H

SPLIT_STORES 42H

ALL_LOADS 81H

ALL_STORES 82H

MEM_LOAD_RETIRED4 D1H L1_HIT 01H

L2_HIT 02H

L3_HIT 04H

L1_MISS 08H

L2_MISS 10H

L3_MISS 20H

HIT_LFB 40H
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21.3.8.1.3  Data Address Profiling

The PEBS Data address profiling on the 6th generation, 7th generation and 8th generation Intel Core processors is 
largely unchanged from the prior generation. When the DataLA facility is enabled, the relevant information written 
into a PEBS record affects entries at offsets 98H, A0H, and A8H, as shown in Table 21-27. 

21.3.8.2  Frontend Retired Facility
The Skylake Core PMU has been extended to cover common microarchitectural conditions related to the front end 
pipeline in addition to providing a generic latency mechanism that can locate fetch bubbles without necessarily 
attributing them to a particular condition. The facility counts the events if the associated instruction reaches retire-
ment (architecturally committed). Additionally, the user may opt to enable the PEBS facility to obtain precise infor-
mation on the context of the event, e.g., EventingIP.

The supported frontend microarchitectural conditions require the following interfaces:
• The IA32_PERFEVTSELx MSR must select the FRONTEND_RETIRED event, EventSelect = C6H and UMASK = 

01H.
• This event employs a new MSR, MSR_PEBS_FRONTEND, to specify the supported frontend event details, see 

Table 21-39.
• If precise information is desired, program the PEBS_EN_PMCx field of IA32_PEBS_ENABLE MSR as required.

Note the AnyThread field of IA32_PERFEVTSELx is ignored by the processor for the “FRONTEND_RETIRED” event.

The sub-event encodings supported by MSR_PEBS_FRONTEND.EVTSEL is given in Table 21-39. 

MEM_LOAD_L3_HIT_RETIRED2 D2H XSNP_MISS 01H

XSNP_HIT 02H

XSNP_HITM 04H

XSNP_NONE 08H

NOTES:
1. Only available on IA32_PMC1.
2. INST_RETIRED.ALL_CYCLES is configured with additional parameters of cmask = 10 and INV = 1
3. Subevents are specified using MSR_PEBS_FRONTEND, see Section 21.3.8.3
4. Instruction with at least one load uop experiencing the condition specified in the UMask.

Table 21-38.  Layout of Data Linear Address Information In PEBS Record

Field Offset Description

Data Linear 
Address

98H The linear address of the load or the destination of the store.

Store Status A0H • DCU Hit (Bit 0): The store hit the data cache closest to the core (L1 cache) if this bit is set, otherwise 
the store missed the data cache. This information is valid only for the following store events: 
UOPS_RETIRED.ALL (if store is tagged),
MEM_INST_RETIRED.STLB_MISS_STORES,
MEM_INST_RETIRED.ALL_STORES,
MEM_INST_RETIRED.SPLIT_STORES.

• Other bits are zero.

Reserved A8H Always zero.

Table 21-37.   Precise Events for the Skylake, Kaby Lake, and Coffee Lake Microarchitectures (Contd.)
Event Name Event Select Sub-event UMask
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The layout of MSR_PEBS_FRONTEND is given in Table 21-40.

The FRONTEND_RETIRED event is designed to help software developers identify exact instructions that caused 
front-end issues. There are some instances in which the event will, by design, the under-counting scenarios include 
the following: 
• The event counts only retired (non-speculative) front-end events, i.e., events from just true program execution 

path are counted.
• The event will count once per cacheline (at most). If a cacheline contains multiple instructions which caused 

front-end misses, the count will be only 1 for that line. 
• If the multibyte sequence of an instruction spans across two cachelines and causes a miss it will be recorded 

once. If there were additional misses in the second cacheline, they will not be counted separately. 
• If a multi-uop instruction exceeds the allocation width of one cycle, the bubbles associated with these uops will 

be counted once per that instruction. 
• If 2 instructions are fused (macro-fusion), and either of them or both cause front-end misses, it will be counted 

once for the fused instruction.
• If a front-end (miss) event occurs outside instruction boundary (e.g., due to processor handling of architectural 

event), it may be reported for the next instruction to retire.

Table 21-39.  FrontEnd_Retired Sub-Event Encodings Supported by MSR_PEBS_FRONTEND.EVTSEL

Sub-Event Name EVTSEL Description

ANY_DSB_MISS 1H Retired Instructions which experienced any decode stream buffer (DSB) miss.

DSB_MISS 11H Retired Instructions which experienced a DSB miss that caused a fetch starvation cycle.

L1I_MISS 12H The fetch of retired Instructions which experienced Instruction L1 Cache true miss1. Additional 
requests to the same cache line as an in-flight L1I cache miss will not be counted.

NOTES:
1. A true miss is the first miss for a cacheline/page (excluding secondary misses that fall into same cacheline/page).

L2_MISS 13H The fetch of retired Instructions which experienced L2 Cache true miss. Additional requests to the 
same cache line as an in-flight MLC cache miss will not be counted.

ITLB_MISS 14H The fetch of retired Instructions which experienced ITLB true miss. Additional requests to the same 
cache line as an in-flight ITLB miss will not be counted.

STLB_MISS 15H The fetch of retired Instructions which experienced STLB true miss. Additional requests to the 
same cache line as an in-flight STLB miss will not be counted.

IDQ_READ_BUBBLES 6H An IDQ read bubble is defined as any one of the 4 allocation slots of IDQ that is not filled by the 
front-end on any cycle where there is no back end stall. Using the threshold and latency fields in 
MSR_PEBS_FRONTEND allows counting of IDQ read bubbles of various magnitude and duration. 

Latency controls the number of cycles and Threshold controls the number of allocation slots that 
contain bubbles.

The event counts if and only if a sequence of at least FE_LATENCY consecutive cycles contain at 
least FE_TRESHOLD number of bubbles each.

Table 21-40.  MSR_PEBS_FRONTEND Layout

Bit Name Offset Description

EVTSEL 7:0 Encodes the sub-event within FrontEnd_Retired that can use PEBS facility, see Table 21-39.

IDQ_Bubble_Length 19:8 Specifies the threshold of continuously elapsed cycles for the specified width of bubbles when 
counting IDQ_READ_BUBBLES event.

IDQ_Bubble_Width 22:20 Specifies the threshold of simultaneous bubbles when counting IDQ_READ_BUBBLES event.

Reserved 63:23 Reserved
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21.3.8.3  Off-core Response Performance Monitoring 
The core PMU facility to collect off-core response events are similar to those described in Section 21.3.4.5. Each 
event code for off-core response monitoring requires programming an associated configuration MSR, MSR_OFF-
CORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according to:
• Transaction request type encoding (bits 15:0): see Table 21-41.
• Supplier information (bits 29:16): see Table 21-42.
• Snoop response information (bits 37:30): see Table 21-43.

Table 21-42 lists the supplier information field that applies to 6th generation, 7th generation and 8th generation 
Intel Core processors. (6th generation Intel Core processor CPUID signatures: 06_4EH and 06_5EH; 7th genera-
tion and 8th generation Intel Core processor CPUID signatures: 06_8EH and 06_9EH).

Table 21-43 lists the snoop information field that apply to processors with CPUID signatures 06_4EH, 06_5EH, 
06_8EH, 06_9E, and 06_55H.

Table 21-41.  MSR_OFFCORE_RSP_x Request_Type Definition 
(Skylake, Kaby Lake, and Coffee Lake Microarchitectures)

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand data reads and page table entry cacheline reads. Does not count hw or 
sw prefetches.

DMND_RFO 1 Counts the number of demand reads for ownership (RFO) requests generated by a write to data 
cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

Reserved 14:3 Reserved

OTHER 15 Counts miscellaneous requests, such as I/O and uncacheable accesses.

Table 21-42.  MSR_OFFCORE_RSP_x Supplier Info Field Definition 
(CPUID Signatures: 06_4EH, 06_5EH, 06_8EH, 06_9EH)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier 
Info

NO_SUPP 17 No Supplier Information available.

L3_HITM 18 M-state initial lookup stat in L3.

L3_HITE 19 E-state

L3_HITS 20 S-state

Reserved 21 Reserved

L4_HIT 22 L4 Cache (if L4 is present in the processor).

Reserved 25:23 Reserved

DRAM 26 Local Node

Reserved 29:27 Reserved

SPL_HIT 30 L4 cache super line hit (if L4 is present in the processor).
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21.3.8.3.1  Off-core Response Performance Monitoring for the Intel® Xeon® Scalable Processor Family

The following tables list the requestor and supplier information fields that apply to the Intel® Xeon® Scalable 
Processor Family. 
• Transaction request type encoding (bits 15:0): see Table 21-44.
• Supplier information (bits 29:16): see Table 21-45.
• Supplier information (bits 29:16) with support for Intel® Optane™ DC Persistent Memory support: see 

Table 21-46.
• Snoop response information has not been changed and is the same as in (bits 37:30): see Table 21-43.

Table 21-43.  MSR_OFFCORE_RSP_x Snoop Info Field Definition 
(CPUID Signatures: 06_4EH, 06_5EH, 06_8EH, 06_9E, 06_55H)

Subtype Bit Name Offset Description

Snoop Info SPL_HIT 30 L4 cache super line hit (if L4 is present in the processor).

SNOOP_NONE 31 No details on snoop-related information.

SNOOP_NOT_NEEDED 32 No snoop was needed to satisfy the request.

SNOOP_MISS 33 A snoop was needed and it missed all snooped caches:

-For LLC Hit, ReslHitl was returned by all cores.

-For LLC Miss, Rspl was returned by all sockets and data was returned from 
DRAM.

SNOOP_HIT_NO_FWD 34 A snoop was needed and it hits in at least one snooped cache. Hit denotes a 
cache-line was valid before snoop effect. This includes:

-Snoop Hit w/ Invalidation (LLC Hit, RFO).

-Snoop Hit, Left Shared (LLC Hit/Miss, IFetch/Data_RD).

-Snoop Hit w/ Invalidation and No Forward (LLC Miss, RFO Hit S).

In the LLC Miss case, data is returned from DRAM.

SNOOP_HIT_WITH_FWD 35 A snoop was needed and data was forwarded from a remote socket. This 
includes:

-Snoop Forward Clean, Left Shared (LLC Hit/Miss, IFetch/Data_RD/RFT).

SNOOP_HITM 36 A snoop was needed and it HitM-ed in local or remote cache. HitM denotes a 
cache-line was in modified state before effect as a results of snoop. This 
includes:

-Snoop HitM w/ WB (LLC miss, IFetch/Data_RD).

-Snoop Forward Modified w/ Invalidation (LLC Hit/Miss, RFO).

-Snoop MtoS (LLC Hit, IFetch/Data_RD).

SNOOP_NON_DRAM 37 Target was non-DRAM system address. This includes MMIO transactions.
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Table 21-45 lists the supplier information field that applies to the Intel Xeon Scalable Processor Family (CPUID 
signature: 06_55H).

Table 21-46 lists the supplier information field that applies to the Intel Xeon Scalable Processor Family (CPUID 
signature: 06_55H, Steppings 0x5H - 0xFH).

Table 21-44.  MSR_OFFCORE_RSP_x Request_Type Definition (Intel® Xeon® Scalable Processor Family)

Bit Name Offset Description

DEMAND_DATA_RD 0 Counts the number of demand data reads and page table entry cacheline reads. Does not count 
hw or sw prefetches.

DEMAND_RFO 1 Counts the number of demand reads for ownership (RFO) requests generated by a write to data 
cacheline. Does not count L2 RFO prefetches.

DEMAND_CODE_RD 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline 
prefetches.

Reserved 3 Reserved.

PF_L2_DATA_RD 4 Counts the number of prefetch data reads into L2.

PF_L2_RFO 5 Counts the number of RFO Requests generated by the MLC prefetches to L2.

Reserved 6 Reserved.

PF_L3_DATA_RD 7 Counts the number of MLC data read prefetches into L3.

PF_L3_RFO 8 Counts the number of RFO requests generated by MLC prefetches to L3.

Reserved 9 Reserved.

PF_L1D_AND_SW 10 Counts data cacheline reads generated by hardware L1 data cache prefetcher or software 
prefetch requests.

Reserved 14:11 Reserved.

OTHER 15 Counts miscellaneous requests, such as I/O and un-cacheable accesses.

Table 21-45.  MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature: 06_55H)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier 
Info

SUPPLIER_NONE 17 No Supplier Information available.

L3_HIT_M 18 M-state initial lookup stat in L3.

L3_HIT_E 19 E-state

L3_HIT_S 20 S-state

L3_HIT_F 21 F-state

Reserved 25:22 Reserved

L3_MISS_LOCAL_DRAM 26 L3 Miss: local home requests that missed the L3 cache and were 
serviced by local DRAM.

L3_MISS_REMOTE_HOP0_DRAM 27 Hop 0 Remote supplier.

L3_MISS_REMOTE_HOP1_DRAM 28 Hop 1 Remote supplier.

L3_MISS_REMOTE_HOP2P_DRAM 29 Hop 2 or more Remote supplier.

Reserved 30 Reserved
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21.3.8.4  Uncore Performance Monitoring Facilities on Intel® Core™ Processors Based on Cannon Lake 
Microarchitecture

Cannon Lake microarchitecture introduces LLC support of up to six processor cores. To support six processor cores 
and eight LLC slices, existing MSRs have been rearranged and new CBo MSRs have been added. Uncore perfor-
mance monitoring software drivers from prior generations of Intel Core processors will need to update the MSR 
addresses. The new MSRs and updated MSR addresses have been added to the Uncore PMU listing in Section 
2.17.2, “MSRs Specific to 8th Generation Intel® Core™ i3 Processors,” in Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 4.

21.3.9 10th Generation Intel® Core™ Processor Performance Monitoring Facility
Some 10th generation Intel® Core™ processors and some 3rd generation Intel® Xeon® Scalable Processor Family 
are based on Ice Lake microarchitecture. Some 11th generation Intel® Core™ processors are based on the Tiger 
Lake microarchitecture, and some are based on the Rocket Lake microarchitecture. For these processors, the core 
PMU supports architectural performance monitoring capability with version Id 5 (see Section 21.2.5) and a host of 
non-architectural monitoring capabilities.

The core PMU's capability is similar to those described in Section 21.3.1 through Section 21.3.8, with some differ-
ences and enhancements summarized in Table 21-47.

Table 21-46.  MSR_OFFCORE_RSP_x Supplier Info Field Definition 
(CPUID Signature: 06_55H, Steppings 0x5H - 0xFH)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier 
Info

SUPPLIER_NONE 17 No Supplier Information available.

L3_HIT_M 18 M-state initial lookup stat in L3.

L3_HIT_E 19 E-state

L3_HIT_S 20 S-state

L3_HIT_F 21 F-state

LOCAL_PMM 22 Local home requests that were serviced by local PMM.

REMOTE_HOP0_PMM 23 Hop 0 Remote supplier.

REMOTE_HOP1_PMM 24 Hop 1 Remote supplier.

REMOTE_HOP2P_PMM 25 Hop 2 or more Remote supplier.

L3_MISS_LOCAL_DRAM 26 L3 Miss: Local home requests that missed the L3 cache and were 
serviced by local DRAM.

L3_MISS_REMOTE_HOP0_DRAM 27 Hop 0 Remote supplier.

L3_MISS_REMOTE_HOP1_DRAM 28 Hop 1 Remote supplier.

L3_MISS_REMOTE_HOP2P_DRAM 29 Hop 2 or more Remote supplier.

Reserved 30 Reserved
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21.3.9.1  Processor Event Based Sampling (PEBS) Facility
The PEBS facility in the 10th generation Intel Core processors provides a number of enhancements relative to PEBS 
in processors based on the Skylake, Kaby Lake, and Coffee Lake microarchitectures. Enhancement of the PEBS 
facility with Extended PEBS and Adaptive PEBS features is described in detail in Section 21.9. 

The 3rd generation Intel Xeon Scalable Family of processors based on the Ice Lake microarchitecture introduce 
EPT-friendly PEBS. This allows EPT violations and other VM Exits to be taken on PEBS accesses to the DS Area. See 
Section 21.9.5 for details.

21.3.9.2  Off-core Response Performance Monitoring
The core PMU facility to collect off-core response events are similar to those described in Section 21.3.4.5. Each 
event code for off-core response monitoring requires programming an associated configuration MSR, MSR_OFF-
CORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according to:
• Transaction request type encoding (bits 15:0): see Table 18-[N1].
• Response type encoding (bits 16-37) of

— Supplier information: see Table [18-N2].

— Snoop response information: see Table [18-N3].
• All transactions are tracked at cacheline granularity except some in request type OTHER.

Table 21-47.  Core PMU Summary of the Ice Lake Microarchitecture

Box Ice Lake Microarchitecture Skylake, Kaby Lake and Coffee 
Lake Microarchitectures

Comment

Architectural Perfmon 
version

5 4 See Section 21.2.5.

Number of programmable 
counters per thread

8 4 Use CPUID to determine number 
of counters. See Section 21.2.1.

PEBS: Basic functionality Yes Yes See Section 21.3.9.1.

PEBS record format encoding 0100b 0011b See Section 21.6.2.4.2.

Extended PEBS PEBS is extended to all Fixed 
and General Purpose counters 
and to all performance 
monitoring events. 

No See Section 21.9.1.

Adaptive PEBS Yes No See Section 21.9.2.

Performance Metrics Yes (4) No See Section 21.3.9.3.

PEBS-PDIR IA32_FIXED0 only 
(Corresponding counter control 
MSRs must be enabled.)

IA32_PMC1 only.

Table 21-48.  MSR_OFFCORE_RSP_x Request_Type Definition 
(Processors Based on Ice Lake Microarchitecture)

Bit Name Offset Description

DEMAND_DATA_RD 0 Counts demand data and page table entry reads.

DEMAND_RFO 1 Counts demand read (RFO) and software prefetches (PREFETCHW) for exclusive ownership 
in anticipation of a write.

DEMAND_CODE_RD 2 Counts demand instruction fetches and instruction prefetches targeting the L1 instruction 
cache.

Reserved 3 Reserved
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Ice Lake microarchitecture has added a new category of Response subtype, called a Combined Response Info. To 
count a feature in this type, all the bits specified must be set to 1.

A valid response type must be a non-zero value of the following expression:

Any | ['OR' of Combined Response Info Bits | [('OR' of Supplier Info Bits) & ('OR' of Snoop Info Bits)]]

If "ANY" bit[16] is set, other response type bits [17-39] are ignored.

Table 21-49 lists the supplier information field that applies to processors based on Ice Lake microarchitecture.

Table 21-50 lists the snoop information field that applies to processors based on Ice Lake microarchitecture.

HWPF_L2_DATA_RD 4 Counts hardware generated data read prefetches targeting the L2 cache.

HWPF_L2_RFO 5 Counts hardware generated prefetches for exclusive ownership (RFO) targeting the L2 
cache.

Reserved 6 Reserved

HWPF_L3 9:7 and 131 Counts hardware generated prefetches of any type targeting the L3 cache.

HWPF_L1D_AND_SWPF 10 Counts hardware generated data read prefetches targeting the L1 data cache and the 
following software prefetches (PREFETCHNTA, PREFETCHT0/1/2).

STREAMING_WR 11 Counts streaming stores.

Reserved 12 Reserved

Reserved 14 Reserved

OTHER 15 Counts miscellaneous requests, such as I/O and un-cacheable accesses.

NOTES:
1. All bits need to be set to 1 to count this type.

Table 21-49.  MSR_OFFCORE_RSP_x Supplier Info Field Definition
(Processors Based on Ice Lake Microarchitecture)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Combined 
Response 
Info

DRAM 26, 31, 321

NOTES:
1. All bits need to be set to 1 to count this type.

Requests that are satisfied by DRAM.

NON_DRAM 26, 371 Requests that are satisfied by a NON_DRAM system component. This includes 
MMIO transactions.

L3_MISS 22, 23, 24, 25, 26, 27, 
28, 29, 30, 31, 32, 33, 
34, 35, 36, 371

Requests that were not supplied by the L3 Cache. The event includes some 
currently reserved bits in anticipation of future memory designs.

Supplier 
Info

L3_HIT 18,19, 201 Requests that hit in L3 cache. Depending on the snoop response the L3 cache 
may have retrieved the cacheline from another core's cache.

Reserved 17, 21:25, 27:29 Reserved.

Table 21-48.  MSR_OFFCORE_RSP_x Request_Type Definition 
(Processors Based on Ice Lake Microarchitecture)

Bit Name Offset Description
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21.3.9.3  Performance Metrics
The Ice Lake core PMU provides built-in support for Top-down Microarchitecture Analysis (TMA) method level 1 
metrics. These metrics are always available to cross-validate performance observations, freeing general purpose 
counters to count other events in high counter utilization scenarios. For more details about the method, refer to 
Top-Down Analysis Method chapter (Appendix B.1) of the Intel® 64 and IA-32 Architectures Optimization Refer-
ence Manual.

A new MSR called MSR_PERF_METRICS reports the metrics directly. Software can check (and/or expose to its 
guests) the availability of the PERF_METRICS feature using IA32_PERF_CAPABILITIES.PERF_METRICS_AVAILABLE 
(bit 15). For additional details on this MSR, refer to Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 4.

This register exposes the four TMA Level 1 metrics. The lower 32 bits are divided into four 8-bit fields, as shown by 
the above figure, each of which is an integer fraction of 255.

Table 21-50.  MSR_OFFCORE_RSP_x Snoop Info Field Definition
(Processors Based on Ice Lake Microarchitecture)

Subtype Bit Name Offset Description

Snoop 
Info

Reserved 30 Reserved.

SNOOP_NOT_NEEDED 32 No snoop was needed to satisfy the request.

SNOOP_MISS 33 A snoop was sent and none of the snooped caches contained the cacheline.

SNOOP_HIT_NO_FWD 34 A snoop was sent and hit in at least one snooped cache. The unmodified 
cacheline was not forwarded back, because the L3 already has a valid copy.

Reserved 35 Reserved.

SNOOP_HITM 36 A snoop was sent and the cacheline was found modified in another core's 
caches. The modified cacheline was forwarded to the requesting core.

Figure 21-39.  MSR_PERF_METRICS Definition

63 55 47 39

31 23 15 7 0

Backend Bound Frontend Bound Bad Speculation Retiring

Reserved
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To support built-in performance metrics, new bits have been added to the following MSRs:
• IA32_PERF_GLOBAL_CTRL. EN_PERF_METRICS[48]: If this bit is set and fixed-function performance-

monitoring counter 3 is enabled, built-in performance metrics are enabled.
• IA32_PERF_GLOBAL_STATUS_SET. SET_OVF_PERF_METRICS[48]: If this bit is set, it will set the status bit in 

the IA32_PERF_GLOBAL_STATUS register for PERF_METRICS.
• IA32_PERF_GLOBAL_STATUS_RESET. RESET_OVF_PERF_METRICS[48]: If this bit is set, it will clear the status 

bit in the IA32_PERF_GLOBAL_STATUS register for PERF_METRICS.
• IA32_PERF_GLOBAL_STATUS. OVF_PERF_METRICS[48]: If this bit is set, it indicates that a PERF_METRICS-

related resource has overflowed and a PMI is triggered1. If this bit is clear, no such overflow has occurred.

NOTE
Software has to synchronize, e.g., re-start, fixed-function performance-monitoring counter 3 as 
well as PERF_METRICS when either bit 35 or 48 in IA32_PERF_GLOBAL_STATUS is set. Otherwise, 
PERF_METRICS may return undefined values.

The values in MSR_PERF_METRICS are derived from fixed-function performance-monitoring counter 3. Software 
should start both registers, PERF_METRICS and fixed-function performance-monitoring counter 3, from zero. Addi-
tionally, software is recommended to periodically clear both registers in order to maintain accurate measurements 
for certain scenarios that involve sampling metrics at high rates. 

In order to save/restore PERF_METRICS, software should follow these guidelines:
• PERF_METRICS and fixed-function performance-monitoring counter 3 should be saved and restored together.
• To ensure that PERF_METRICS and fixed-function performance-monitoring counter 3 remain synchronized, 

both should be disabled during both save and restore. Software should enable/disable them atomically, with a 
single write to IA32_PERF_GLOBAL_CTRL to set/clear both EN_PERF_METRICS[bit 48] and 
EN_FIXED_CTR3[bit 35].

• On state restore, fixed-function performance-monitoring counter 3 must be restored before PERF_METRICS, 
otherwise undefined results may be observed.

21.3.10 12th and 13th Generation Intel® Core™ Processors, and 4th and 5th Generation Intel® 
Xeon® Scalable Processor Family Performance Monitoring Facility

The 12th generation Intel® Core™ processor supports Alder Lake performance hybrid architecture. These proces-
sors offer a unique combination of Performance and Efficient-cores (P-core and E-core). The P-core is based on 
Golden Cove microarchitecture and the E-core is based on Gracemont microarchitecture. The 13th generation 
Intel® Core™ processor supports Raptor Lake performance hybrid architecture, utilizing both Raptor Cove cores 
and enhanced Gracemont cores. The 4th generation Intel® Xeon® Scalable Processor Family is based on Sapphire 
Rapids microarchitecture utilizing Golden Cove cores. The 5th generation Intel® Xeon® Scalable Processor Family 
is based on Sapphire Rapids microarchitecture utilizing Raptor Cove cores. These processors all report architectural 
performance monitoring version ID = 5 and support non-architectural monitoring capabilities described in this 
section. 

21.3.10.1  P-core Performance Monitoring Unit
The P-core PMU's capability is similar to those described in Section 21.3.1 through Section 21.3.9, with some 
differences and enhancements summarized in Table 21-51.

1. An overflow of fixed-function performance-monitoring counter 3 should normally happen first if software follows Intel’s recommen-
dations.
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21.3.10.1.1  P-core Perf Metrics Extensions

For 12th generation Intel Core processor P-cores, the core PMU supports the built-in metrics that were introduced 
in the Ice Lake microarchitecture PMU. This core PMU extends the PERF_METRICS MSR to feature TMA method level 
2 metrics, as shown in Figure 21-40.

Table 21-51.  Core PMU Summary of the Golden Cove Microarchitecture 

Box Golden Cove 
Microarchitecture

Ice Lake Microarchitecture Comment

Architectural Perfmon 
version

5 5 See Section 21.2.5.

Event-Counter Restrictions Simplified identification Counters 4-7 support a subset of 
events. See Section 21.3.10.1.2.

Performance Metrics Yes (12) Yes (4) See Section 21.3.9.3.

PEBS: Baseline, record 
format

Yes

0100b

Yes

0100b

See Section 21.3.9.

PEBS: EPT-friendly Yes No; debuts in Ice Lake server 
microarchitecture

See Section 21.6.2.4.2.

PEBS: Precise Distribution IA32_FIXED0 instruction-
granularity

PDist on IA32_PMC0

IA32_FIXED0 cycle-granularity

No PDist

See Section 21.9.6.

PEBS: Load Latency Instruction latency

Cache latency

Access info fields (5)

Instruction latency

Access info fields (3)

See Section 21.9.7.

PEBS: Store Latency Cache latency

Access info fields (3)

None See Section 21.9.8.

PEBS: Intel TSX support Abort info fields (9) Abort info fields (8) See Section 21.3.6.5.1.

(Intel Xeon processor only 
feature.)

Figure 21-40.  PERF_METRICS MSR Definition for 12th Generation Intel® Core™ Processor P-core

31 23 15 7 0

Backend Bound Frontend Bound Bad Speculation Retiring

Memory Bound Fetch Latency Branch Mispredicts Heavy Operations

63 55 47 39 32
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The lower half of the register is the TMA level 1 metrics (legacy). The upper half is also divided into four 8-bit fields, 
each of which is an integer fraction of 255. Additionally, each of the new level 2 metrics in the upper half is a subset 
of the corresponding level 1 metric in the lower half (that is, its parent node per the TMA hierarchy). This enables 
software to deduce the other four level 2 metrics by subtracting corresponding metrics as shown in Figure 21-41.

The PERF_METRICS MSR and fixed-function performance-monitoring counter 3 of the core PMU feature 12 metrics 
in total that cover all level 1 and level 2 nodes of the TMA hierarchy.

21.3.10.1.2  P-core Counter Restrictions Simplification

The 12th generation Intel Core processor P-core allows identification of performance monitoring events with 
counter restrictions based on event encodings. The general rule is: Event Codes < 0x90 are restricted to general-
purpose performance-monitoring counters 0-3. Event Codes ≥ 0x90 are likely to have no restrictions. Table 21-52 
lists the exceptions to this rule.

21.3.10.1.3  P-core Off-core Response Facility

For the 12th generation Intel Core processor P-core, the Off-core Response (OCR) Facility is similar to that 
described in Section 21.3.9.2.

The following enhancements are introduced for the Request_Type of MSR_OFFCORE_RSP_x:
• WB (bits 3 and 12): Count writeback (modified or non-modified) transactions by core caches.
• HWPF_L1D (bit 10): Counts hardware generated data read prefetches targeting the L1 data cache (only).
• SWPF_READ (bit 14): Counts software generated data read prefetches by the PREFETCHNTA and 

PREFETCHT0/1/2 instructions.

Figure 21-41.  Deducing Implied Level 2 Metrics in the Core PMU for12th Generation Intel® Core™ Processor P-core

Table 21-52.  Special Performance Monitoring Events with Counter Restrictions

Event Encoding1

NOTES:
1. Linux perf rUUEE syntax, where UU is the Unit Mask field and EE is the Event Select (also known as Event

Code) field in the IA32_PERFEVTSELx MSRs.

Event Name Counter Restriction

xx3C CPU_CLK_UNHALTED.*
0-7 (No restriction for all architectural events.)

xx2E LONGEST_LAT_CACHE.*

xxDx MEM_*_RETIRED.* 0-3

01A3, 02A3, 08A3 Some CYCLE_ACTIVITY sub-events 0-3

02CD MEM_TRANS_RETIRED.STORE_SAMPLE 0

04A4 TOPDOWN.BAD_SPEC_SLOTS
0

08A4 TOPDOWN.BR_MISPREDICT_SLOTS

xxCE AMX_OPS_RETIRED 0

Light_Operations = Retiring - Heavy_Operations
Machine_Clears = Bad_Speculation - Branch_Mispredicts
Fetch_Bandwidth = Frontend_Bound - Fetch_Latency
Core_Bound = Backend_Bound - Memory_Bound
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21.3.10.2  E-core Performance Monitoring Unit
The core PMU capabilities on the 12th generation Intel Core processor E-core are summarized in Table 21-53 below.

21.3.10.2.1  E-core PEBS Load Latency

The 12th generation Intel Core processor E-core includes PEBS Load Latency support similar to that described in 
Section 21.9.7.

When a programmable counter is configured to count MEM_UOPS_RETIRED.LOAD_LATENCY_ABOVE_THRESHOLD 
(IA32_PERFEVTSELx[15:0] = 0xD005, with CMASK=0 and INV=0), selected load operations whose latency 
exceeds the threshold provided in MSR_PEBS_LD_LAT_THRESHOLD (MSR 03F6H) will be counted. If a PEBS record 
is generated on overflow of this counter, the Memory Access Latency and Memory Auxiliary Info data is reported in 
the Memory Access Info group (Section 21.9.2.2.2). The formats of these fields are shown in Table 21-54 and Table 
21-98.

Table 21-53.  Core PMU Summary of the Gracemont Microarchitecture 

Box Gracemont 
Microarchitecture

Tremont Microarchitecture Comment

Number of fixed-function 
performance-monitoring 
counters per core

3 3 Use CPUID to enumerate number of 
counters. See Section 21.2.1.

Number of general-purpose 
counters per core

6 4 Use CPUID to enumerate number of 
counters. See Section 21.2.1.

Architectural Performance 
Monitoring version ID

5 5 See Section 21.2.5.

PEBS record format encoding 0100b 0100b See Section 21.5.5.

EPT-friendly PEBS support Yes No See Section 21.9.5.

Extended PEBS Yes Yes See Section 21.9.1.

Adaptive PEBS Yes Yes See Section 21.9.2.

Precise distribution (PDist) PEBS IA32_PMC0 and 
IA32_FIXED_CTR0

IA32_PMC0 and 
IA32_FIXED_CTR0

PDist eliminates skid, see Section 
21.9.3, Section 21.9.4, and Section 
21.9.6.

PEBS Latency Load and Store Latency No See Section 21.3.10.2.1, Section 
21.3.10.2.2, Section 21.9.7, and 
Section 21.9.8.

PEBS Output DS Save Area or Intel® 
Processor Trace

DS Save Area or Intel® 
Processor Trace

See Section 21.5.5.2.1.

Offcore Response MSR 01A6H and 01A7H, 
each core has its own 
register, extended request 
and response types.

MSR 1A6H and 1A7H, each 
core has its own register, 
extended request and 
response types.

See Section 21.5.5.4.

Table 21-54.  E-core PEBS Memory Access Info Encoding 

Bit(s) Field Description

3:0 Data Source The source of the data; see Table 21-55.

4 Lock 0: The operation was not part of a locked transaction.

1: The operation was part of a locked transaction.

5 STLB_MISS 0: The load did not miss the STLB (hit the DTLB or STLB).

1: The load missed the STLB.
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For details on E-core PEBS memory access latency encoding, see the Access Latency Field in Table 21-98.

21.3.10.2.2  E-core PEBS Store Latency

The 12th generation Intel Core processor E-core includes PEBS Store Latency support. When a programmable 
counter is configured to count MEM_UOPS_RETIRED.STORE_LATENCY (IA32_PERFEVTSELx[15:0] = 0xD006, with 
CMASK=0 and INV=0), all store operations will be counted. If a PEBS record is generated on overflow of this 
counter, the Memory Access Latency and Memory Auxiliary Info data is reported in the Memory Access Info group 
(Section 18.9.2.2.2). The formats of these fields are shown in Table 21-54 and Table 21-98.

21.3.10.2.3  E-core Precise Distribution (PDist) Support

The 12th generation Intel Core processor E-core supports PEBS with Precise Distribution (PDist) on IA32_PMC0 
and IA32_FIXED_CTR0. All precise events support PDist save for UOPS_RETIRED. See Section 21.9.6 for additional 
details on PDist.

21.3.10.2.4  E-core Enhanced Off-core Response

Event number 0B7H support off-core response monitoring using an associated configuration MSR, MSR_OFF-
CORE_RSP0 (address 1A6H) in conjunction with UMASK value 01H or MSR_OFFCORE_RSP1 (address 1A7H) in 

6 ST_FWD_BLK 0: Load did not get a store forward block.

1: Load got a store forward block.

63:7 Reserved Reserved

Table 21-55.  E-core PEBS Data Source Encodings

Encoding Description

00H Unknown Data Source (the processor could not retrieve the origin of this request) and MMIO. Memory mapped I/O hit.

01H L1 HIT. This request was satisfied by the L1 data cache. (Minimal latency core cache hit.)

02H FB HIT. Outstanding core cache miss to same cache-line address was already underway. (Pending core cache hit.)

03H L2 HIT. This request was satisfied by the L2 cache.

04H L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no coherency actions required (snooping).

05H L3 HITE. Local or Remote home requests that hit the L3 cache and were serviced by another processor core with a 
cross core snoop where no modified copies were found (clean).

06H L3 HITM. Local or Remote home requests that hit the L3 cache and were serviced by another processor core with a 
cross core snoop where a modified copy was found.

07H Reserved.

08H L3 HITF. Local or Remote home requests that hit the L3 cache and were serviced by another processor core with a 
cross core snoop where a shared or forwarding copy was found.

09H Reserved.

0AH L3 MISS. Local home requests that missed the L3 cache and were serviced by local DRAM (go to shared state).

0BH Reserved.

0CH Reserved.

0DH Reserved.

0EH I/O. Request of input/output operation.

0FH The request was to uncacheable memory.

Table 21-54.  E-core PEBS Memory Access Info Encoding  (Contd.)

Bit(s) Field Description
Vol. 3B 21-79



PERFORMANCE MONITORING
conjunction with UMASK value 02H. There are unique pairs of MSR_OFFCORE_RSPx registers per core. The layout 
of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are organized as follows:
• Bits 15:0 and bits 49:44 specify the request type of a transaction request to the uncore. This is described in 

Table 21-56.
• Bits 30:16 specify Response Type information or an L2 Hit, and is described in Table 21-79.
• If L2 misses, then bits 37:31 can be used to specify snoop response information and is described in Table 

21-80.
• For outstanding requests, bit 38 can enable measurement of average latency of specific type of offcore 

transaction requests using two programmable counter simultaneously; see Section 21.5.2.3 for details.

21.3.10.3  Unhalted Reference Cycles
The Unhalted Reference Cycles architectural performance monitoring event is enhanced to count at TSC-rate in the 
12th generation Intel Core processor P-core when used on a general-purpose PMC. This enhancement makes it 
consistent with the fixed-function counter 2 and the E-core. As a result, this event is kept enumerated in CPUID leaf 
0AH.EBX (unlike prior hybrid parts).

Table 21-56.  MSR_OFFCORE_RSPx Request Type Definition 

Bit Name Offset Description

DEMAND_DATA_RD 0 Counts demand data reads.

DEMAND_RFO 1 Counts all demand reads for ownership (RFO) requests and software based prefteches for 
exclusive ownership (prefetchw).

DEMAND_CODE_RD 2 Counts demand instruction fetches and L1 instruction cache prefetches.

COREWB_M 3 Counts modified write backs from L1 and L2.

HWPF_L2_DATA_RD 4 Counts prefetch (that bring data to L2) data reads.

HWPF_L2_RFO 5 Counts all prefetch (that bring data to L2) RFOs.

HWPF_L2_CODE_RD 6 Counts all prefetch (that bring data to MLC only) code reads.

HWPF_L3_DATA_RD 7 Counts L3 cache hardware prefetch data reads (written to the L3 cache only).

HWPF_L3_RFO 8 Counts L3 cache hardware prefetch RFOs (written to the L3 cache only) .

HWPF_L3_CODE_RD 9 Counts L3 cache hardware prefetch code reads (written to the L3 cache only).

HWPF_L1D_AND_SWPF 10 Counts L1 data cache hardware prefetch requests, read for ownership prefetch requests 
and software prefetch requests (except prefetchw).

STREAMING_WR 11 Counts all streaming stores.

COREWB_NONM 12 Counts non-modified write backs from L2.

RSVD 14:13 Reserved.

OTHER 15 Counts miscellaneous requests, such as I/O accesses that have any response type.

UC_RD 44 Counts uncached memory reads (PRd, UCRdF).

UC_WR 45 Counts uncached memory writes (WiL).

PARTIAL_STREAMING_WR 46 Counts partial (less than 64 byte) streaming stores (WCiL).

FULL_STREAMING_WR 47 Counts full, 64 byte streaming stores (WCiLF).

L1WB_M 48 Counts modified WriteBacks from L1 that miss the L2.

L2WB_M 49 Counts modified WriteBacks from L2.
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21.3.11 Intel® Series 2 Core™ Ultra Processor Performance Monitoring Facility
The Intel® Series 2 Core™ Ultra processor supports Lunar Lake performance hybrid architecture. This processor 
offers a combination of Performance and Efficient-cores (P-core and E-core). The P-core is based on Lion Cove 
microarchitecture and the E-core is based on Skymont microarchitecture. This processor reports architectural 
performance monitoring version ID = 6 and supports non-architectural monitoring capabilities described in this 
section. 

Architectural performance monitoring version 6 capabilities are described in Section 21.2.6. 

21.3.11.1  P-core Performance Monitoring Unit
The core PMU capabilities on the Intel Series 2 Core Ultra processor P-core are similar to those described in Section 
21.3.1 through Section 21.3.10, with some differences and enhancements summarized in Table 21-57.

21.3.11.1.1  P-core Homogeneous General Counters

The Lion Cove PMU enhances general-counters to support most of the performance monitoring events. The 
remaining events that do have counter restrictions are summarized in next Table 21-58.

Table 21-57.  Core PMU Summary of the Lion Cove Microarchitecture 

Box Lion Cove 
Microarchitecture

Golden Cove and Redwood 
Cove Microarchitectures

Comment

Architectural Performance 
Monitoring version ID

6 5 See Section 21.2.6.

Number of general-purpose 
counters per core

10 8 Use CPUID to enumerate number of 
counters. See Section 21.2.1 and 
Section 21.2.9.

Number of architectural 
performance-monitoring events

12 8 (Golden Cove)

11 (Redwood Cove)

See Section 21.2.7.

Event-Counter Restrictions Mostly homogeneous 
general counters.

Simplified identification of 
events supported on 
counters 4-7.

Few counter restrictions may apply; 
see Section 21.3.1.1.1.

Performance Metrics 12 metrics

Metrics clear mode or read-
only.

12 metrics

Read-only.

See the RDPMC instruction in the 
Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, 
Volume 2B.

PEBS: Baseline Yes Yes See Section 21.8.

PEBS record format encoding 0110b 0101b See Section 21.9.2.2.

PEBS: Precise Distribution IA32_FIXED0 instruction- 
granularity.

PDist on IA32_PMC0 and 
IA32_PMC1.

IA32_FIXED0 instruction- 
granularity.

PDist on IA32_PMC0.

See Section 21.9.6.

PEBS: Data Source field 5-bits 4-bits See Section 21.9.7.

LBR: Event Logging Yes No See Section 20.1.3.6.

Intel PT: TNT Disable Yes No See Chapter 34 of the Intel® 64 
and IA-32 Architectures Software 
Developer’s Manual, Volume 3C.
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21.3.11.2  E-core Performance Monitoring Unit
Skymont microarchitecture performance monitoring capabilities are similar to Crestmont microarchitecture capa-
bilities, with the following extensions:
• Support for fixed counters 4, 5, and 6 (see Section 21.2.9.4)
• Architecturally defined events: TMA L1 and LBR Inserts (see Section 21.2.9.6 and Section 20.1.3.6)
• PEBS Counter Snapshotting (see Section 21.9.10)
• Auto Counter Reload (see Section 21.9.11)

The core PMU capabilities on the Intel Series 2 Core Ultra processor E-core are summarized in Table 21-59.

21.4 PERFORMANCE MONITORING (INTEL® XEON™ PHI PROCESSORS)

NOTE
This section also applies to the Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series based on 
Knights Mill microarchitecture.

Table 21-58.   Performance Monitoring Events with Counter Restrictions in Lion Cove PMU 

Event Encoding1

NOTES:
1. Linux perf rUUEE syntax, where UU is the Unit Mask field and EE is the Event Select (also known as Event Code) field in the 

IA32_PERFEVTSELx MSRs.

Event Name Counter Restriction

xx20 OFFCORE_REQUESTS_OUTSTANDING.* 0-3

0148 L1D_PENDING.* 2

0175 INST_DECODED.DECODERS 2

08A3, 0CA3 CYCLE_ACTIVITY.*_L1D_MISS 2

04A4, 08A4, 10A4 TOPDOWN.BAD_SPEC_SLOTS, TOPDOWN.BR_MISPREDICT_SLOTS, 
TOPDOWN.MEMORY_BOUND_SLOTS

0

01B1 UOPS_EXECUTED.* 3

xxDx MEM_INST_RETIRED.*, MEM_LOAD*_RETIRED.* 0-3

02CD MEM_TRANS_RETIRED.STORE_SAMPLE 0-1

Table 21-59.  Core PMU Summary of the Skymont Microarchitecture 

Box Skymont Microarchitecture Crestmont 
Microarchitecture

Comment

Architectural Performance 
Monitoring version ID

6 5 See Section 21.2.6.

Number of fixed-function 
performance-monitoring 
counters per core

6 (0, 1, 2, 4, 5, 6) 3 (0, 1, 2) Use CPUID to enumerate number of 
counters. See Section 21.2.1 and 
Section 21.2.9.4.

Number of general-purpose 
counters per core

8 8 Use CPUID to enumerate number of 
counters. See Section 21.2.1.

PEBS record format encoding 0110b 0101b See Section 21.3.10.

Auto Counter Reload (ACR) Yes No See Section 21.9.11.
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21.4.1 Intel® Xeon Phi™ Processor 7200/5200/3200 Performance Monitoring 
The Intel® Xeon Phi™ processor 7200/5200/3200 series are based on the Knights Landing microarchitecture. The 
performance monitoring capabilities are distributed between its tiles (pair of processor cores) and untile 
(connecting many tiles in a physical processor package). Functional details of the tiles and untile of the Knights 
Landing microarchitecture can be found in Chapter 16 of Intel® 64 and IA-32 Architectures Optimization Reference 
Manual.

A complete description of the tile and untile PMU programming interfaces for Intel Xeon Phi processors based on 
the Knights Landing microarchitecture can be found in the Technical Document section at 
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html.

A tile contains a pair of cores attached to a shared L2 cache and is similar to those found in Intel Atom® processors 
based on the Silvermont microarchitecture. The processor provides several new capabilities on top of the Silver-
mont performance monitoring facilities.

The processor supports architectural performance monitoring capability with version ID 3 (see Section 21.2.3) and 
a host of non-architectural performance monitoring capabilities. The processor provides two general-purpose 
performance counters (IA32_PMC0, IA32_PMC1) and three fixed-function performance counters (IA32_-
FIXED_CTR0, IA32_FIXED_CTR1, IA32_FIXED_CTR2).

Non-architectural performance monitoring in the processor also uses the IA32_PERFEVTSELx MSR to configure a 
set of non-architecture performance monitoring events to be counted by the corresponding general-purpose 
performance counter.

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 21-6 and described in Section  and Section 
21.2.3. The processor supports AnyThread counting in three architectural performance monitoring events.

21.4.1.1  Enhancements of Performance Monitoring in the Intel® Xeon Phi™ Processor Tile
The Intel® Xeon Phi™ processor tile includes the following enhancements to the Silvermont microarchitecture.
• AnyThread support. This facility is limited to following three architectural events: Instructions Retired, 

Unhalted Core Cycles, Unhalted Reference Cycles using IA32_FIXED_CTR0-2 and Unhalted Core Cycles, 
Unhalted Reference Cycles using IA32_PERFEVTSELx.

• PEBS-DLA (Processor Event-Based Sampling-Data Linear Address) fields. The processor provides memory 
address in addition to the Silvermont PEBS record support on select events. The PEBS recording format as 
reported by IA32_PERF_CAPABILITIES [11:8] is 2.

• Off-core response counting facility. This facility in the processor core allows software to count certain 
transaction responses between the processor tile to subsystems outside the tile (untile). Counting off-core 
response requires additional event qualification configuration facility in conjunction with IA32_PERFEVTSELx. 
Two off-core response MSRs are provided to use in conjunction with specific event codes that must be specified 
with IA32_PERFEVTSELx. Two cores do not share the off-core response MSRs. Knights Landing expands off-
core response capability to match the processor untile changes.

• Average request latency measurement. The off-core response counting facility can be combined to use two 
performance counters to count the occurrences and weighted cycles of transaction requests. This facility is 
updated to match the processor untile changes.

21.4.1.1.1  Processor Event-Based Sampling

The processor supports processor event based sampling (PEBS). PEBS is supported using IA32_PMC0 (see also 
Section 19.4.9, “BTS and DS Save Area”).

PEBS uses a debug store mechanism to store a set of architectural state information for the processor. The infor-
mation provides architectural state of the instruction executed after the instruction that caused the event (See 
Section 21.6.2.4).

The list of PEBS events supported in the processor is shown in the following table.
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The PEBS record format 2 supported by processors based on the Knights Landing microarchitecture is shown in 
Table 21-61, and each field in the PEBS record is 64 bits long. 

Table 21-60.  PEBS Performance Events for Knights Landing Microarchitecture
Event Name Event Select Sub-event UMask Data Linear

Address Support

BR_INST_RETIRED C4H ALL_BRANCHES 00H No

JCC 7EH No

TAKEN_JCC FEH No

CALL F9H No

REL_CALL FDH No

IND_CALL FBH No

NON_RETURN_IND EBH No

FAR_BRANCH BFH No

RETURN F7H No

BR_MISP_RETIRED C5H ALL_BRANCHES 00H No

JCC 7EH No

TAKEN_JCC FEH No

IND_CALL FBH No

NON_RETURN_IND EBH No

RETURN F7H No

MEM_UOPS_RETIRED 04H L2_HIT_LOADS 02H Yes

L2_MISS_LOADS 04H Yes

DLTB_MISS_LOADS 08H Yes

RECYCLEQ 03H LD_BLOCK_ST_FORWARD 01H Yes

LD_SPLITS 08H Yes

Table 21-61.  PEBS Record Format for Knights Landing Microarchitecture 

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H PSDLA

40H R/EBP A0H Reserved

48H R/ESP A8H Reserved

50H R8 B0H EventingRIP

58H R9 B8H Reserved
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21.4.1.1.2  Offcore Response Event

Event number 0B7H support offcore response monitoring using an associated configuration MSR, MSR_OFF-
CORE_RSP0 (address 1A6H) in conjunction with UMASK value 01H or MSR_OFFCORE_RSP1 (address 1A7H) in 
conjunction with UMASK value 02H. Table 21-62 lists the event code, mask value and additional off-core configu-
ration MSR that must be programmed to count off-core response events using IA32_PMCx. 

Some of the MSR_OFFCORE_RESP [0,1] register bits are not valid in this processor and their use is reserved. The 
layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 registers are defined in Table 21-63. Bits 15:0 specifies 
the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information, bits 37:31 spec-
ifies snoop response information. 

Additionally, MSR_OFFCORE_RSP0 provides bit 38 to enable measurement of average latency of specific type of 
offcore transaction requests using two programmable counter simultaneously, see Section 21.5.2.3 for details. 

Table 21-62.  OffCore Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-1 B7H 01H MSR_OFFCORE_RSP0 (address 1A6H)

PMC0-1 B7H 02H MSR_OFFCORE_RSP1 (address 1A7H)

Table 21-63.  Bit fields of the MSR_OFFCORE_RESP [0, 1] Registers

Main Sub-field Bit Name Description

Request Type 0 DEMAND_DATA_RD Demand cacheable data and L1 prefetch data reads.

1 DEMAND_RFO Demand cacheable data writes.

2 DEMAND_CODE_RD Demand code reads and prefetch code reads.

3 Reserved Reserved.

4 Reserved Reserved.

5 PF_L2_RFO L2 data RFO prefetches (includes PREFETCHW instruction).

6 PF_L2_CODE_RD L2 code HW prefetches.

7 PARTIAL_READS Partial reads (UC or WC).

8 PARTIAL_WRITES Partial writes (UC or WT or WP). Valid only for 
OFFCORE_RESP_1 event. Should only be used on PMC1. 
This bit is reserved for OFFCORE_RESP_0 event.

9 UC_CODE_READS UC code reads.

10 BUS_LOCKS Bus locks and split lock requests.

11 FULL_STREAMING_STO
RES

Full streaming stores (WC). Valid only for OFFCORE_RESP_1 
event. Should only be used on PMC1. This bit is reserved for 
OFFCORE_RESP_0 event.

12 SW_PREFETCH Software prefetches.

13 PF_L1_DATA_RD L1 data HW prefetches.

14 PARTIAL_STREAMING_
STORES

Partial streaming stores (WC). Valid only for 
OFFCORE_RESP_1 event. Should only be used on PMC1. 
This bit is reserved for OFFCORE_RESP_0 event.

15 ANY_REQUEST Account for any requests.

Response Type Any 16 ANY_RESPONSE Account for any response.

Data Supply from 
Untile

17 NO_SUPP No Supplier Details.

18 Reserved Reserved.
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21.4.1.1.3  Average Offcore Request Latency Measurement

Measurement of average latency of offcore transaction requests can be enabled using MSR_OFFCORE_RSP0.[bit 
38] with the choice of request type specified in MSR_OFFCORE_RSP0.[bit 15:0].

Refer to Section 21.5.2.3, “Average Offcore Request Latency Measurement,” for typical usage. Note that 
MSR_OFFCORE_RESPx registers are not shared between cores in Knights Landing. This allows one core to measure 
average latency while other core is measuring different offcore response events.

19 L2_HIT_OTHER_TILE_N
EAR

Other tile L2 hit E Near.

20 Reserved Reserved.

21 MCDRAM_NEAR MCDRAM Local.

22 MCDRAM_FAR_OR_L2_
HIT_OTHER_TILE_FAR

MCDRAM Far or Other tile L2 hit far.

23 DRAM_NEAR DRAM Local.

24 DRAM_FAR DRAM Far.

Data Supply from 
within same tile

25 L2_HITM_THIS_TILE M-state.

26 L2_HITE_THIS_TILE E-state.

27 L2_HITS_THIS_TILE S-state.

28 L2_HITF_THIS_TILE F-state.

29 Reserved Reserved.

30 Reserved Reserved.

Snoop Info; Only 
Valid in case of 
Data Supply from 
Untile

31 SNOOP_NONE None of the cores were snooped.

32 NO_SNOOP_NEEDED No snoop was needed to satisfy the request.

33 Reserved Reserved.

34 Reserved Reserved.

35 HIT_OTHER_TILE_FWD Snoop request hit in the other tile with data forwarded.

36 HITM_OTHER_TILE A snoop was needed and it HitM-ed in other core's L1 cache. 
HitM denotes a cache-line was in modified state before 
effect as a result of snoop.

37 NON_DRAM Target was non-DRAM system address. This includes MMIO 
transactions.

Outstanding 
requests

Weighted cycles 38 OUTSTANDING (Valid 
only for 
MSR_OFFCORE_RESP0. 
Should only be used on 
PMC0. This bit is 
reserved for 
MSR_OFFCORE_RESP1).

If set, counts total number of weighted cycles of any 
outstanding offcore requests with data response. Valid only 
for OFFCORE_RESP_0 event. Should only be used on PMC0. 
This bit is reserved for OFFCORE_RESP_1 event.

Table 21-63.  Bit fields of the MSR_OFFCORE_RESP [0, 1] Registers (Contd.)

Main Sub-field Bit Name Description
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21.5 PERFORMANCE MONITORING (INTEL ATOM® PROCESSORS)

21.5.1 Performance Monitoring (45 nm and 32 nm Intel Atom® Processors)
45 nm and 32 nm Intel Atom processors report architectural performance monitoring versionID = 3 (supporting 
the aggregate capabilities of versionID 1, 2, and 3; see Section 21.2.3) and a host of non-architectural monitoring 
capabilities. These 45 nm and 32 nm Intel Atom processors provide two general-purpose performance counters 
(IA32_PMC0, IA32_PMC1) and three fixed-function performance counters (IA32_FIXED_CTR0, IA32_-
FIXED_CTR1, IA32_FIXED_CTR2). 

NOTE
The number of counters available to software may vary from the number of physical counters 
present on the hardware, because an agent running at a higher privilege level (e.g., a VMM) may 
not expose all counters. CPUID.0AH:EAX[15:8] reports the MSRs available to software; see Section 
21.2.1.

Non-architectural performance monitoring in Intel Atom processor family uses the IA32_PERFEVTSELx MSR to 
configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events can be found at: 
https://perfmon-events.intel.com/.

Architectural and non-architectural performance monitoring events in 45 nm and 32 nm Intel Atom processors 
support thread qualification using bit 21 (AnyThread) of IA32_PERFEVTSELx MSR, i.e., if IA32_PERFEVT-
SELx.AnyThread =1, event counts include monitored conditions due to either logical processors in the same 
processor core. 

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 21-6 and described in Section  and Section 
21.2.3. 

Valid event mask (Umask) bits can be found at: https://perfmon-events.intel.com/. The UMASK field may contain 
sub-fields that provide the same qualifying actions like those listed in Table 21-81, Table 21-82, Table 21-83, and 
Table 21-84. One or more of these sub-fields may apply to specific events on an event-by-event basis. Precise 
Event Based Monitoring is supported using IA32_PMC0 (see also Section 19.4.9, “BTS and DS Save Area”).

21.5.2 Performance Monitoring for Silvermont Microarchitecture
Intel processors based on the Silvermont microarchitecture report architectural performance monitoring versionID 
= 3 (see Section 21.2.3) and a host of non-architectural monitoring capabilities. Intel processors based on the 
Silvermont microarchitecture provide two general-purpose performance counters (IA32_PMC0, IA32_PMC1) and 
three fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1, IA32_FIXED_CTR2). Intel 
Atom processors based on the Airmont microarchitecture support the same performance monitoring capabilities as 
those based on the Silvermont microarchitecture.

Non-architectural performance monitoring in the Silvermont microarchitecture uses the IA32_PERFEVTSELx MSR 
to configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events can be found at: 
https://perfmon-events.intel.com/.

The bit fields (except bit 21) within each IA32_PERFEVTSELx MSR are defined in Figure 21-6 and described in 
Section  and Section 21.2.3. Architectural and non-architectural performance monitoring events in the Silvermont 
microarchitecture ignore the AnyThread qualification regardless of its setting in IA32_PERFEVTSELx MSR. 

21.5.2.1  Enhancements of Performance Monitoring in the Processor Core
The notable enhancements in the monitoring of performance events in the processor core include:
• The width of counter reported by CPUID.0AH:EAX[23:16] is 40 bits. 
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• Off-core response counting facility. This facility in the processor core allows software to count certain 
transaction responses between the processor core to sub-systems outside the processor core (uncore). 
Counting off-core response requires additional event qualification configuration facility in conjunction with 
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in conjunction with specific event codes 
that must be specified with IA32_PERFEVTSELx.

• Average request latency measurement. The off-core response counting facility can be combined to use two 
performance counters to count the occurrences and weighted cycles of transaction requests.

21.5.2.1.1  Processor Event Based Sampling (PEBS)

In the Silvermont microarchitecture, the PEBS facility can be used with precise events. PEBS is supported using 
IA32_PMC0 (see also Section 19.4.9). 

PEBS uses a debug store mechanism to store a set of architectural state information for the processor. The infor-
mation provides architectural state of the instruction executed after the instruction that caused the event (See 
Section 21.6.2.4). 

The list of precise events supported in the Silvermont microarchitecture is shown in Table 21-64.

PEBS Record Format The PEBS record format supported by processors based on the Intel Silvermont microarchitec-
ture is shown in Table 21-65, and each field in the PEBS record is 64 bits long. 

Table 21-64.  PEBS Performance Events for the Silvermont Microarchitecture
Event Name Event Select Sub-event UMask

BR_INST_RETIRED C4H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

CALL F9H

REL_CALL FDH

IND_CALL FBH

NON_RETURN_IND EBH

FAR_BRANCH BFH

RETURN F7H

BR_MISP_RETIRED C5H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

IND_CALL FBH

NON_RETURN_IND EBH

RETURN F7H

MEM_UOPS_RETIRED 04H L2_HIT_LOADS 02H

L2_MISS_LOADS 04H

DLTB_MISS_LOADS 08H

HITM 20H

REHABQ 03H LD_BLOCK_ST_FORWARD 01H

LD_SPLITS 08H
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21.5.2.2  Offcore Response Event
Event number 0B7H support offcore response monitoring using an associated configuration MSR, MSR_OFF-
CORE_RSP0 (address 1A6H) in conjunction with UMASK value 01H or MSR_OFFCORE_RSP1 (address 1A7H) in 
conjunction with UMASK value 02H. Table 21-66 lists the event code, mask value and additional off-core configu-
ration MSR that must be programmed to count off-core response events using IA32_PMCx. 

In the Silvermont microarchitecture, each MSR_OFFCORE_RSPx is shared by two processor cores.

The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are shown in Figure 21-42 and Figure 21-43. Bits 
15:0 specifies the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information, 
bits 37:31 specifies snoop response information. 

Additionally, MSR_OFFCORE_RSP0 provides bit 38 to enable measurement of average latency of specific type of 
offcore transaction requests using two programmable counter simultaneously, see Section 21.5.2.3 for details. 

Table 21-65.  PEBS Record Format for the Silvermont Microarchitecture

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H Reserved

40H R/EBP A0H Reserved

48H R/ESP A8H Reserved

50H R8 B0H EventingRIP

58H R9 B8H Reserved

Table 21-66.  OffCore Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-1 B7H 01H MSR_OFFCORE_RSP0 (address 1A6H)

PMC0-1 B7H 02H MSR_OFFCORE_RSP1 (address 1A7H)
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Figure 21-42.  Request_Type Fields for MSR_OFFCORE_RSPx 

Table 21-67.  MSR_OFFCORE_RSPx Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand and DCU prefetch data reads of full and partial cachelines as well as 
demand data page table entry cacheline reads. Does not count L2 data read prefetches or 
instruction fetches.

DMND_RFO 1 Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated by 
a write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

WB 3 Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 Counts the number of code reads generated by L2 prefetchers.

PARTIAL_READ 7 Counts the number of demand reads of partial cache lines (including UC and WC).

PARTIAL_WRITE 8 Counts the number of demand RFO requests to write to partial cache lines (includes UC, WT, and 
WP).

UC_IFETCH 9 Counts the number of UC instruction fetches.

BUS_LOCKS 10 Bus lock and split lock requests.

STRM_ST 11 Streaming store requests.

SW_PREFETCH 12 Counts software prefetch requests.

PF_DATA_RD 13 Counts DCU hardware prefetcher data read requests.

PARTIAL_STRM_ST 14 Streaming store requests.

ANY 15 Any request that crosses IDI, including I/O.

REQUEST TYPE — Any (R/W)
REQUEST TYPE — PARTIAL_STRM_ST (R/W) 

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — UC_IFETCH (R/W)
REQUEST TYPE — PARTIAL_WRITE (R/W)
REQUEST TYPE — PARTIAL_READ (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H

37

See Figure 18-30

REQUEST TYPE — PF_DATA_RD (R/W) 
REQUEST TYPE  — SW_PREFETCH (R/W)
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To properly program this extra register, software must set at least one request type bit (Table 21-67) and a valid 
response type pattern (Table 21-68, Table 21-69). Otherwise, the event count reported will be zero. It is permis-
sible and useful to set multiple request and response type bits in order to obtain various classes of off-core 
response events. Although MSR_OFFCORE_RSPx allow an agent software to program numerous combinations that 
meet the above guideline, not all combinations produce meaningful data.

To specify a complete offcore response filter, software must properly program bits in the request and response type 
fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response type 
must be a non-zero value of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY” bit is set, the supplier and snoop info bits are ignored.

Figure 21-43.  Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSPx 

Table 21-68.  MSR_OFFCORE_RSP_x Response Supplier Info Field Definition

Subtype Bit Name Offset Description

Common ANY_RESPONSE 16 Catch all value for any response types.

Supplier Info Reserved 17 Reserved

L2_HIT 18 Cache reference hit L2 in either M/E/S states.

Reserved 30:19 Reserved

Table 21-69.  MSR_OFFCORE_RSPx Snoop Info Field Definition

Subtype Bit Name Offset Description

Snoop 
Info

SNP_NONE 31 No details on snoop-related information.

Reserved 32 Reserved

SNOOP_MISS 33 Counts the number of snoop misses when L2 misses.

SNOOP_HIT 34 Counts the number of snoops hit in the other module where no modified copies were 
found.

Reserved 35 Reserved

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

16

RESERVED

33 1934 17

Reserved

63 182031 212232353637

RSPNS_SNOOP — SNOOP_HIT (R/W)
RSPNS_SNOOP — SNOOP_MISS (R/W)
RESERVED
RSPNS_SNOOP — SNOOP_NONE (R/W)
RESERVED
RSPNS_SUPPLIER — L2_HIT (R/W)
RESERVED
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 00000000_00000000H

38

AVG LATENCY — ENABLE AVG LATENCY(R/W)
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21.5.2.3  Average Offcore Request Latency Measurement
Average latency for offcore transactions can be determined by using both MSR_OFFCORE_RSP registers. Using two 
performance monitoring counters, program the two OFFCORE_RESPONSE event encodings into the corresponding 
IA32_PERFEVTSELx MSRs. Count the weighted cycles via MSR_OFFCORE_RSP0 by programming a request type in 
MSR_OFFCORE_RSP0.[15:0] and setting MSR_OFFCORE_RSP0.OUTSTANDING[38] to 1, white setting the 
remaining bits to 0. Count the number of requests via MSR_OFFCORE_RSP1 by programming the same request 
type from MSR_OFFCORE_RSP0 into MSR_OFFCORE_RSP1[bit 15:0], and setting MSR_OFFCORE_RSP1.ANY_RE-
SPONSE[16] = 1, while setting the remaining bits to 0. The average latency can be obtained by dividing the value 
of the IA32_PMCx register that counted weight cycles by the register that counted requests.

21.5.3 Performance Monitoring for Goldmont Microarchitecture
Intel Atom processors based on the Goldmont microarchitecture report architectural performance monitoring 
versionID = 4 (see Section 21.2.4) and support non-architectural monitoring capabilities described in this section.

Architectural performance monitoring version 4 capabilities are described in Section 21.2.4.

The bit fields (except bit 21) within each IA32_PERFEVTSELx MSR are defined in Figure 21-6 and described in 
Section  and Section 21.2.3. The Goldmont microarchitecture does not support Hyper-Threading and thus architec-
tural and non-architectural performance monitoring events ignore the AnyThread qualification regardless of its 
setting in the IA32_PERFEVTSELx MSR. However, Goldmont does not set the AnyThread deprecation bit 
(CPUID.0AH:EDX[15]).

The core PMU’s capability is similar to that of the Silvermont microarchitecture described in Section 21.5.2, with 
some differences and enhancements summarized in Table 21-70.

HITM 36 Counts the number of snoops hit in the other module where modified copies were 
found in other core's L1 cache.

NON_DRAM 37 Target was non-DRAM system address. This includes MMIO transactions.

AVG_LATENCY 38 Enable average latency measurement by counting weighted cycles of outstanding 
offcore requests of the request type specified in bits 15:0 and any response (bits 37:16 
cleared to 0). 

This bit is available in MSR_OFFCORE_RESP0. The weighted cycles is accumulated in the 
specified programmable counter IA32_PMCx and the occurrence of specified requests 
are counted in the other programmable counter.

Table 21-70.  Core PMU Comparison Between the Goldmont and Silvermont Microarchitectures

Box Goldmont Microarchitecture Silvermont Microarchitecture Comment

# of Fixed counters per core 3 3 Use CPUID to determine # 
of counters. See Section 
21.2.1.

# of general-purpose 
counters per core

4 2 Use CPUID to determine # 
of counters. See Section 
21.2.1.

Counter width (R,W) R:48, W: 32/48 R:40, W:32 See Section 21.2.2.

Architectural Performance 
Monitoring version ID

4 3 Use CPUID to determine # 
of counters. See Section 
21.2.1.

Table 21-69.  MSR_OFFCORE_RSPx Snoop Info Field Definition (Contd.)

Subtype Bit Name Offset Description
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21.5.3.1  Processor Event Based Sampling (PEBS)
Processor event based sampling (PEBS) on the Goldmont microarchitecture is enhanced over prior generations 
with respect to sampling support of precise events and non-precise events. In the Goldmont microarchitecture, 
PEBS is supported using IA32_PMC0 for all events (see Section 19.4.9). 

PEBS uses a debug store mechanism to store a set of architectural state information for the processor at the time 
the sample was generated. 

Precise events work the same way on Goldmont microarchitecture as on the Silvermont microarchitecture. The 
record will be generated after an instruction that causes the event when the counter is already overflowed and will 
capture the architectural state at this point (see Section 21.6.2.4 and Section 19.4.9). The eventingIP in the record 
will indicate the instruction that caused the event. The list of precise events supported in the Goldmont microarchi-
tecture is shown in Table 21-71.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with 
streamlined semantics.

• Freeze_LBR_on_PMI with 
streamlined semantics for 
branch profiling.

• Freeze_Perfmon_on_PMI with 
legacy semantics.

• Freeze_LBR_on_PMI with legacy 
semantics for branch profiling.

See Section 19.4.7.

Legacy semantics not 
supported with version 4 
or higher.

Counter and Buffer 
Overflow Status 
Management

• Query via 
IA32_PERF_GLOBAL_STATUS

• Reset via 
IA32_PERF_GLOBAL_STATUS_R
ESET

• Set via 
IA32_PERF_GLOBAL_STATUS_S
ET

• Query via 
IA32_PERF_GLOBAL_STATUS

• Reset via 
IA32_PERF_GLOBAL_OVF_CTRL

See Section 21.2.4.

IA32_PERF_GLOBAL_STATU
S Indicators of 
Overflow/Overhead/Interfer
ence

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow
• CTR_Frz, LBR_Frz

• Individual counter overflow
• PEBS buffer overflow

See Section 21.2.4.

Enable control in 
IA32_PERF_GLOBAL_STATU
S 

• CTR_Frz, 
• LBR_Frz

No See Section 21.2.4.1.

Perfmon Counter In-Use 
Indicator

Query IA32_PERF_GLOBAL_INUSE No See Section 21.2.4.3.

Processor Event Based 
Sampling (PEBS) Events

General-Purpose Counter 0 only. 
Supports all events (precise and 
non-precise). Precise events are 
listed in Table 21-71.

See Section 21.5.2.1.1. General-
Purpose Counter 0 only. Only 
supports precise events (see 
Table 21-64).

IA32_PMC0 only.

PEBS record format 
encoding

0011b 0010b

Reduce skid PEBS IA32_PMC0 only No

Data Address Profiling Yes No

PEBS record layout Table 21-72; enhanced fields at 
offsets 90H- 98H; and TSC record 
field at C0H.

Table 21-65.

PEBS EventingIP Yes Yes

Off-core Response Event MSR 1A6H and 1A7H, each core 
has its own register.

MSR 1A6H and 1A7H, shared by a 
pair of cores.

Nehalem supports 1A6H 
only.

Table 21-70.  Core PMU Comparison Between the Goldmont and Silvermont Microarchitectures

Box Goldmont Microarchitecture Silvermont Microarchitecture Comment
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In the Goldmont microarchitecture, the PEBS facility also supports the use of non-precise events to record 
processor state information into PEBS records with the same format as with precise events.

However, a non-precise event may not be attributable to a particular retired instruction or the time of instruction 
execution. When the counter overflows, a PEBS record will be generated at the next opportunity. Consider the 
event ICACHE.HIT. When the counter overflows, the processor is fetching future instructions. The PEBS record will 
be generated at the next opportunity and capture the state at the processor's current retirement point. It is likely 
that the instruction fetch that caused the event to increment was beyond that current retirement point. Other 
examples of non-precise events are CPU_CLK_UNHALTED.CORE_P and HARDWARE_INTERRUPTS.RECEIVED. 
CPU_CLK_UNHALTED.CORE_P will increment each cycle that the processor is awake. When the counter over-flows, 
there may be many instructions in various stages of execution. Additionally, zero, one or multiple instructions may 
be retired the cycle that the counter overflows. HARDWARE_INTERRUPTS.RECEIVED increments independent of 
any instructions being executed. For all non-precise events, the PEBS record will be generated at the next opportu-
nity, after the counter has overflowed. The PEBS facility thus allows for identification of the instructions which were 
executing when the event overflowed.

After generating a record for a non-precise event, the PEBS facility reloads the counter and resumes execution, just 
as is done for precise events. Unlike interrupt-based sampling, which requires an interrupt service routine to collect 
the sample and reload the counter, the PEBS facility can collect samples even when interrupts are masked and 
without using NMI. Since a PEBS record is generated immediately when a counter for a non-precise event is 
enabled, it may also be generated after an overflow is set by an MSR write to IA32_PERF_GLOBAL_STATUS_SET.

Table 21-71.  Precise Events Supported by the Goldmont Microarchitecture
Event Name Event Select Sub-event UMask

LD_BLOCKS 03H DATA_UNKNOWN 01H

STORE_FORWARD 02H

4K_ALIAS 04H

UTLB_MISS 08H

ALL_BLOCK 10H

MISALIGN_MEM_REF 13H LOAD_PAGE_SPLIT 02H

STORE_PAGE_SPLIT 04H

INST_RETIRED C0H ANY 00H

UOPS_RETITRED C2H ANY 00H

LD_SPLITSMS 01H

BR_INST_RETIRED C4H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

CALL F9H

REL_CALL FDH

IND_CALL FBH

NON_RETURN_IND EBH

FAR_BRANCH BFH

RETURN F7H

BR_MISP_RETIRED C5H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

IND_CALL FBH

NON_RETURN_IND EBH

RETURN F7H
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The PEBS record format supported by processors based on the Goldmont microarchitecture is shown in 
Table 21-72, and each field in the PEBS record is 64 bits long. 

On Goldmont microarchitecture, all 64 bits of architectural registers are written into the PEBS record regardless of 
processor mode.

With PEBS record format encoding 0011b, offset 90H reports the “Applicable Counter” field, which indicates which 
counters actually requested generating a PEBS record. This allows software to correlate the PEBS record entry 
properly with the instruction that caused the event even when multiple counters are configured to record PEBS 
records and multiple bits are set in the field. Additionally, offset C0H captures a snapshot of the TSC that provides 
a time line annotation for each PEBS record entry.

MEM_UOPS_RETIRED D0H ALL_LOADS 81H

ALL_STORES 82H

ALL 83H

DLTB_MISS_LOADS 11H

DLTB_MISS_STORES 12H

DLTB_MISS 13H

MEM_LOAD_UOPS_RETIRED D1H L1_HIT 01H

L2_HIT 02H

L1_MISS 08H

L2_MISS 10H

HITM 20H

WCB_HIT 40H

DRAM_HIT 80H

Table 21-72.  PEBS Record Format for the Goldmont Microarchitecture

Byte Offset Field Byte Offset Field

00H R/EFLAGS 68H R11

08H R/EIP 70H R12

10H R/EAX 78H R13

18H R/EBX 80H R14

20H R/ECX 88H R15

28H R/EDX 90H Applicable Counters

30H R/ESI 98H Data Linear Address

38H R/EDI A0H Reserved

40H R/EBP A8H Reserved

48H R/ESP B0H EventingRIP

50H R8 B8H Reserved

58H R9 C0H TSC

60H R10

Table 21-71.  Precise Events Supported by the Goldmont Microarchitecture (Contd.)
Event Name Event Select Sub-event UMask
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21.5.3.1.1  PEBS Data Linear Address Profiling

Goldmont supports the Data Linear Address field introduced in Haswell. It does not support the Data Source 
Encoding or Latency Value fields that are also part of Data Address Profiling; those fields are present in the record 
but are reserved. 

For Goldmont microarchitecture, the Data Linear Address field will record the linear address of memory accesses in 
the previous instruction (e.g., the one that triggered a precise event that caused the PEBS record to be generated). 
Goldmont microarchitecture may record a Data Linear Address for the instruction that caused the event even for 
events not related to memory accesses. This may differ from other microarchitectures.

21.5.3.1.2  Reduced Skid PEBS

Processors based on Goldmont Plus microarchitecture support the Reduced Skid PEBS feature described in Section 
21.9.4 on the IA32_PMC0 counter. Although Extended PEBS adds support for generating PEBS records for precise 
events on additional general-purpose and fixed-function performance counters, those counters do not support the 
Reduced Skid PEBS feature.

21.5.3.1.3  Enhancements to IA32_PERF_GLOBAL_STATUS.OvfDSBuffer[62] 

In addition to IA32_PERF_GLOBAL_STATUS.OvfDSBuffer[62] being set when PEBS_Index reaches the PEBS_Inter-
rupt_Theshold, the bit is also set when PEBS_Index is out of bounds. That is, the bit will be set when PEBS_Index 
< PEBS_Buffer_Base or PEBS_Index > PEBS_Absolute_Maximum. Note that when an out of bound condition is 
encountered, the overflow bits in IA32_PERF_GLOBAL_STATUS will be cleared according to Applicable Counters, 
however the IA32_PMCx values will not be reloaded with the Reset values stored in the DS_AREA.

21.5.3.2  Offcore Response Event
Event number 0B7H support offcore response monitoring using an associated configuration MSR, MSR_OFF-
CORE_RSP0 (address 1A6H) in conjunction with UMASK value 01H or MSR_OFFCORE_RSP1 (address 1A7H) in 
conjunction with UMASK value 02H. Table 21-66 lists the event code, mask value and additional off-core configura-
tion MSR that must be programmed to count off-core response events using IA32_PMCx. 

The Goldmont microarchitecture provides unique pairs of MSR_OFFCORE_RSPx registers per core.

The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are organized as follows:
• Bits 15:0 specifies the request type of a transaction request to the uncore. This is described in Table 21-73.
• Bits 30:16 specifies common supplier information or an L2 Hit, and is described in Table 21-68. 
• If L2 misses, then Bits 37:31 can be used to specify snoop response information and is described in 

Table 21-74. 
• For outstanding requests, bit 38 can enable measurement of average latency of specific type of offcore 

transaction requests using two programmable counter simultaneously; see Section 21.5.2.3 for details. 

Table 21-73.  MSR_OFFCORE_RSPx Request_Type Field Definition

Bit Name Offset Description

DEMAND_DATA_RD 0 Counts cacheline read requests due to demand reads (excludes prefetches).

DEMAND_RFO 1 Counts cacheline read for ownership (RFO) requests due to demand writes (excludes 
prefetches).

DEMAND_CODE_RD 2 Counts demand instruction cacheline and I-side prefetch requests that miss the 
instruction cache.

COREWB 3 Counts writeback transactions caused by L1 or L2 cache evictions.

PF_L2_DATA_RD 4 Counts data cacheline reads generated by hardware L2 cache prefetcher.

PF_L2_RFO 5 Counts reads for ownership (RFO) requests generated by L2 prefetcher.

Reserved 6 Reserved.
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To properly program this extra register, software must set at least one request type bit (Table 21-67) and a valid 
response type pattern (either Table 21-68 or Table 21-74). Otherwise, the event count reported will be zero. It is 
permissible and useful to set multiple request and response type bits in order to obtain various classes of off-core 
response events. Although MSR_OFFCORE_RSPx allow an agent software to program numerous combinations that 
meet the above guideline, not all combinations produce meaningful data.

To specify a complete offcore response filter, software must properly program bits in the request and response type 
fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response type 
must be a non-zero value of the following expression:

Any_Response Bit | L2 Hit | ‘OR’ of Snoop Info Bits | Outstanding Bit

21.5.3.3  Average Offcore Request Latency Measurement
In Goldmont microarchitecture, measurement of average latency of offcore transaction requests is the same as 
described in Section 21.5.2.3.

PARTIAL_READS 7 Counts demand data partial reads, including data in uncacheable (UC) or uncacheable 
(WC) write combining memory types.

PARTIAL_WRITES 8 Counts partial writes, including uncacheable (UC), write through (WT) and write 
protected (WP) memory type writes.

UC_CODE_READS 9 Counts code reads in uncacheable (UC) memory region.

BUS_LOCKS 10 Counts bus lock and split lock requests.

FULL_STREAMING_STORES 11 Counts full cacheline writes due to streaming stores.

SW_PREFETCH 12 Counts cacheline requests due to software prefetch instructions.

PF_L1_DATA_RD 13 Counts data cacheline reads generated by hardware L1 data cache prefetcher.

PARTIAL_STREAMING_STORES 14 Counts partial cacheline writes due to streaming stores.

ANY_REQUEST 15 Counts requests to the uncore subsystem.

Table 21-74.  MSR_OFFCORE_RSPx For L2 Miss and Outstanding Requests

Subtype Bit Name Offset Description

L2_MISS 
(Snoop Info)

Reserved 32:31 Reserved

L2_MISS.SNOOP_MISS_O
R_NO_SNOOP_NEEDED

33 A true miss to this module, for which a snoop request missed the other module or 
no snoop was performed/needed. 

L2_MISS.HIT_OTHER_CO
RE_NO_FWD

34 A snoop hit in the other processor module, but no data forwarding is required.

Reserved 35 Reserved

L2_MISS.HITM_OTHER_C
ORE

36 Counts the number of snoops hit in the other module or other core's L1 where 
modified copies were found.

L2_MISS.NON_DRAM 37 Target was a non-DRAM system address. This includes MMIO transactions.

Outstanding 
requests1

NOTES:
1. See Section 21.5.2.3, “Average Offcore Request Latency Measurement,” for details on how to use this bit to extract average latency.

OUTSTANDING 38 Counts weighted cycles of outstanding offcore requests of the request type 
specified in bits 15:0, from the time the XQ receives the request and any 
response is received. Bits 37:16 must be set to 0. This bit is only available in 
MSR_OFFCORE_RESP0.

Table 21-73.  MSR_OFFCORE_RSPx Request_Type Field Definition (Contd.)

Bit Name Offset Description
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21.5.4 Performance Monitoring for Goldmont Plus Microarchitecture
Intel Atom processors based on the Goldmont Plus microarchitecture report architectural performance monitoring 
versionID = 4 and support non-architectural monitoring capabilities described in this section.

Architectural performance monitoring version 4 capabilities are described in Section 21.2.4.

Goldmont Plus performance monitoring capabilities are similar to Goldmont capabilities. The differences are in 
specific events and in which counters support PEBS. Goldmont Plus introduces the ability for fixed performance 
monitoring counters to generate PEBS records. 

Goldmont Plus will set the AnyThread deprecation CPUID bit (CPUID.0AH:EDX[15]) to indicate that the Any-Thread 
bits in IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL have no effect. 

The core PMU's capability is similar to that of the Goldmont microarchitecture described in Section 21.6.3, with 
some differences and enhancements summarized in Table 21-75.

21.5.4.1  Extended PEBS
The PEBS facility in Goldmont Plus microarchitecture provides a number of enhancements relative to PEBS in 
processors from previous generations. Enhancement of PEBS facility with the Extended PEBS feature are de-
scribed in detail in section 18.9.

21.5.5 Performance Monitoring for Tremont Microarchitecture
Intel Atom processors based on the Tremont microarchitecture report architectural performance monitoring 
versionID = 5 and support non-architectural monitoring capabilities described in this section. 

Architectural performance monitoring version 5 capabilities are described in Section 21.2.5.

Tremont performance monitoring capabilities are similar to Goldmont Plus capabilities, with the following exten-
sions:
• Support for Adaptive PEBS.
• Support for PEBS output to Intel® Processor Trace.
• Precise Distribution support on Fixed Counter0.
• Compatibility enhancements to off-core response MSRs, MSR_OFFCORE_RSPx.

Table 21-75.  Core PMU Comparison Between the Goldmont Plus and Goldmont Microarchitectures

Box Goldmont Plus Microarchitecture Goldmont Microarchitecture Comment

# of Fixed counters per core 3 3 Use CPUID to determine # 
of counters. See Section 
21.2.1.

# of general-purpose 
counters per core

4 4 Use CPUID to determine # 
of counters. See Section 
21.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 No change.

Architectural Performance 
Monitoring version ID

4 4 No change.

Processor Event Based 
Sampling (PEBS) Events

All General-Purpose and Fixed 
counters. Each General-Purpose 
counter supports all events (precise 
and non-precise).

General-Purpose Counter 0 only. 
Supports all events (precise and 
non-precise). Precise events are 
listed in Table 21-71.

Goldmont Plus supports 
PEBS on all counters.

PEBS record format 
encoding

0011b 0011b No change.
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The differences and enhancements between Tremont microarchitecture and Goldmont Plus microarchitecture are 
summarized in Table 21-76.

21.5.5.1  Adaptive PEBS
The PEBS record format and configuration interface has changed versus Goldmont Plus, as the Tremont microar-
chitecture includes support for the configurable Adaptive PEBS records; see Section 21.9.2.

21.5.5.2  PEBS output to Intel® Processor Trace
Intel Atom processors based on the Tremont microarchitecture introduce the following Precise Event-Based 
Sampling (PEBS) extensions:
• A mechanism to direct PEBS output into the Intel® Processor Trace (Intel® PT) output stream. In this scenario, 

the PEBS record is written in packetized form, in order to co-exist with other Intel PT trace data. 
• New Performance Monitoring counter reload MSRs, which are used by PEBS in place of the counter reload 

values stored in the DS Management area when PEBS output is directed into the Intel PT output stream.

Processors that indicate support for Intel PT by setting CPUID.07H.0.EBX[25]=1, and set the new IA32_PERF_CA-
PABILITIES.PEBS_OUTPUT_PT_AVAIL[16] bit, support these extensions.

21.5.5.2.1  PEBS Configuration

PEBS output to Intel Processor Trace includes support for two new fields in IA32_PEBS_ENABLE.

Table 21-76.  Core PMU Comparison Between the Tremont and Goldmont Plus Microarchitectures

Box Tremont Microarchitecture Goldmont Plus Microarchitecture Comment

# of fixed counters per core 3 3 Use CPUID to determine # 
of counters. See Section 
21.2.1.

# of general-purpose 
counters per core

4 4 Use CPUID to determine # 
of counters. See Section 
21.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 No change. See Section 
21.2.2.

Architectural Performance 
Monitoring version ID

5 4 

PEBS record format 
encoding

0100b 0011b See Section 21.6.2.4.2.

Reduce skid PEBS IA32_PMC0 and IA32_FIXED_CTR0 IA32_PMC0 only

Extended PEBS Yes Yes See Section 21.5.4.1.

Adaptive PEBS Yes No See Section 21.9.2.

PEBS output DS Save Area or Intel® Processor 
Trace

DS Save Area only See Section 21.5.5.2.1.

PEBS record layout See Section 21.9.2.3 for output to 
DS, Section 21.5.5.2.2 for output to 
Intel PT.

Table 21-72; enhanced fields at 
offsets 90H- 98H; and TSC record 
field at C0H.

Off-core Response Event MSR 1A6H and 1A7H, each core 
has its own register, extended 
request and response types.

MSR 1A6H and 1A7H, each core has 
its own register.
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When PEBS_OUTPUT is set to 01B, the DS Management Area is not used and need not be configured. Instead, the 
output mechanism is configured through IA32_RTIT_CTL and other Intel PT MSRs, while counter reload values are 
configured in the MSR_RELOAD_PMCx MSRs. Details on configuring Intel PT can be found in Section 34.2.7.

21.5.5.2.2  PEBS Record Format in Intel® Processor Trace

The format of the PEBS record changes when output to Intel PT, as the PEBS state is packetized. Each PEBS 
grouping is emitted as a Block Begin (BBP) and following Block Item (BIP) packets. A PEBS grouping ends when 
either a new PEBS grouping begins (indicated by a BBP packet) or a Block End (BEP) packet is encountered. See 
Section 34.4.1.1 for details of these Intel PT packets.

Because the packet headers describe the state held in the packet payload, PEBS state ordering is not fixed. PEBS 
state groupings may be emitted in any order, and the PEBS state elements within those groupings may be emitted 
in any order. Further, there is no packet that provides indication of “Record Format” or “Record Size”.

If Intel PT tracing is not enabled (IA32_RTIT_STATUS.TriggerEn=0), any PEBS records triggered will be dropped. 
PEBS packets do not depend on ContextEn or FilterEn in IA32_RTIT_STATUS, any filtering of PEBS must be enabled 
from within the PerfMon configuration. Counter reload will occur in all scenarios where PEBS is triggered, regardless 
of TriggerEn.

Table 21-77.  New Fields in IA32_PEBS_ENABLE

Field Description

PMI_AFTER_EACH_RECORD[60] Pend a PerfMon Interrupt (PMI) after each PEBS event.

PEBS_OUTPUT[62:61] Specifies PEBS output destination. Encodings:

00B: DS Save Area. Matches legacy PEBS behavior, output location defined by IA32_DS_AREA.

01B: Intel PT trace output.

10B: Reserved.

11B: Reserved.

Figure 21-44.  IA32_PEBS_ENABLE MSR with PEBS Output to Intel® Processor Trace

 m                             1   063  62 61 60

PEBS_EN_FIXED0 (R/W)

PEBS_EN_PMC1 (R/W)

PEBS_EN_PMC0 (R/W)

PEBS_EN_FIXED1 (R/W)

n                         32  31

Reserved RESET Value – 00000000 _00000000 H 

PMI_AFTER_EACH_RECORD (R/W)

PEBS_OUTPUT (R/W)

●  ●  ● ●  ●  ●

PEBS_EN_PMCm (R/W)

PEBS_EN_FIXEDn (R/W)
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The PEBS threshold mechanism for generating PerfMon Interrupts (PMIs) is not available in this mode. However, 
there exist other means to generate PMIs based on PEBS output. When the Intel PT ToPA output mechanism is 
chosen, a PMI can optionally be pended when a ToPA region is filled; see Section 34.2.7.2 for details. Further, soft-
ware can opt to generate a PMI on each PEBS record by setting the new IA32_PEBS_EN-
ABLE.PMI_AFTER_EACH_RECORD[60] bit.

The IA32_PERF_GLOBAL_STATUS.OvfDSBuffer bit will not be set in this mode.

21.5.5.2.3  PEBS Counter Reload

When PEBS output is directed into Intel PT (IA32_PEBS_ENABLE.PEBS_OUTPUT = 01B), new MSR_RELOAD_PMCx 
MSRs are used by the PEBS routine to reload PerfMon counters. The value from the associated reload MSR will be 
loaded to the appropriate counter on each PEBS event.

21.5.5.3  Precise Distribution Support on Fixed Counter 0
The Tremont microarchitecture supports the PDIR (Precise Distribution of Retired Instructions) facility, as described 
in Section 21.3.4.4.4, on Fixed Counter 0. Fixed Counter 0 counts the INST_RETIRED.ALL event. PEBS skid for 
Fixed Counter 0 will be precisely one instruction.

This is in addition to the reduced skid PEBS behavior on IA32_PMC0; see Section 21.5.3.1.2.

21.5.5.4  Compatibility Enhancements to Offcore Response MSRs
The Off-core Response facility is similar to that described in Section 21.5.3.2.

The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are organized as shown below. RequestType bits are 
defined in Table 21-78, ResponseType bits in Table 21-79, and SnoopInfo bits in Table 21-80.

Table 21-78.  MSR_OFFCORE_RSPx Request Type Definition 

Bit Name Offset Description

DEMAND_DATA_RD 0 Counts demand data reads.

DEMAND_RFO 1 Counts all demand reads for ownership (RFO) requests and software based 
prefetches for exclusive ownership (prefetchw).

DEMAND_CODE_RD 2 Counts demand instruction fetches and L1 instruction cache prefetches.

COREWB_M 3 Counts modified write backs from L1 and L2.

HWPF_L2_DATA_RD 4 Counts prefetch (that bring data to L2) data reads.

HWPF_L2_RFO 5 Counts all prefetch (that bring data to L2) RFOs.

HWPF_L2_CODE_RD 6 Counts all prefetch (that bring data to L2 only) code reads.

Reserved 9:7 Reserved.

HWPF_L1D_AND_SWPF 10 Counts L1 data cache hardware prefetch requests, read for ownership prefetch 
requests and software prefetch requests (except prefetchw).

STREAMING_WR 11 Counts all streaming stores.

COREWB_NONM 12 Counts non-modified write backs from L2.

Reserved 14:13 Reserved.

OTHER 15 Counts miscellaneous requests, such as I/O accesses that have any response type.

UC_RD 44 Counts uncached memory reads (PRd, UCRdF).

UC_WR 45 Counts uncached memory writes (WiL).

PARTIAL_STREAMING_WR 46 Counts partial (less than 64 byte) streaming stores (WCiL).

FULL_STREAMING_WR 47 Counts full, 64 byte streaming stores (WCiLF).
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L1WB_M 48 Counts modified WriteBacks from L1 that miss the L2.

L2WB_M 49 Counts modified WriteBacks from L2.

Table 21-79.  MSR_OFFCORE_RSPx Response Type Definition

Bit Name Offset Description

ANY_RESPONSE 16 Catch all value for any response types.

L3_HIT_M 18 LLC/L3 Hit - M-state.

L3_HIT_E 19 LLC/L3 Hit - E-state.

L3_HIT_S 20 LLC/L3 Hit - S-state.

L3_HIT_F 21 LLC/L3 Hit - I-state.

LOCAL_DRAM 26 LLC/L3 Miss, DRAM Hit.

OUTSTANDING 63 Average latency of outstanding requests with the other counter counting number 
of occurrences; can also can be used to count occupancy.

Table 21-80.  MSR_OFFCORE_RSPx Snoop Info Definition

Bit Name Offset Description

SNOOP_NONE 31 None of the cores were snooped.

• LLC miss and Dram data returned directly to the core.

SNOOP_NOT_NEEDED 32 No snoop needed to satisfy the request.

• LLC hit and CV bit(s) (core valid) was not set.
• LLC miss and Dram data returned directly to the core.

SNOOP_MISS 33 A snoop was sent but missed.

• LLC hit and CV bit(s) was set but snoop missed (silent data drop in core), data 
returned from LLC.

• LLC miss and Dram data returned directly to the core.

SNOOP_HIT_NO_FWD 34 A snoop was sent but no data forward.

• LLC hit and CV bit(s) was set but no data forward from the core, data returned 
from LLC.

• LLC miss and Dram data returned directly to the core.

SNOOP_HIT_WITH_FWD 35 A snoop was sent and non-modified data was forward.

• LLC hit and CV bit(s) was set, non-modified data was forward from core.

SNOOP_HITM 36 A snoop was sent and modified data was forward.

• LLC hit E or M and the CV bit(s) was set, modified data was forward from core.

NON_DRAM_BIT 37 Target was non-DRAM system address, MMIO access.

• LLC miss and Non-Dram data returned.

Table 21-78.  MSR_OFFCORE_RSPx Request Type Definition  (Contd.)

Bit Name Offset Description
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The Off-core Response capability behaves as follows:
• To specify a complete offcore response filter, software must properly program at least one RequestType and one 

ResponseType. A valid request type must have at least one bit set in the non-reserved bits of 15:0 or 49:44. A 
valid response type must be a non-zero value of one the following expressions:

• Read requests: 

Any_Response Bit | (‘OR’ of Supplier Info Bits) ‘AND’ ( ‘OR’ of Snoop Info Bits) | Outstanding Bit

• Write requests: 

Any_Response Bit | (‘OR’ of Supplier Info Bits) | Outstanding Bit
• When the ANY_RESPONSE bit in the ResponseType is set, all other response type bits will be ignored.
• True Demand Cacheable Loads include neither L1 Prefetches nor Software Prefetches.
• Bits 15:0 and Bits 49:44 specifies the request type of a transaction request to the uncore. This is described in 

Table 21-78.
• Bits 30:16 specifies common supplier information.
• “Outstanding Requests” (bit 63) is only available on MSR_OFFCORE_RSP0; a #GP fault will occur if software 

attempts to write a 1 to this bit in MSR_OFFCORE_RSP1. It is mutually exclusive with any ResponseType. 
Software must guarantee that all other ResponseType bits are set to 0 when the “Outstanding Requests” bit is 
set.

• “Outstanding Requests” bit 63 can enable measurement of the average latency of a specific type of off-core 
transaction; two programmable counters must be used simultaneously and the RequestType programming for 
MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 must be the same when using this Average Latency feature. 
See Section 21.5.2.3 for further details.

21.6 PERFORMANCE MONITORING (LEGACY INTEL PROCESSORS)

21.6.1 Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)
In Intel Core Solo and Intel Core Duo processors, non-architectural performance monitoring events are 
programmed using the same facilities (see Figure 21-1) used for architectural performance events.

Non-architectural performance events use event select values that are model-specific. Event mask (Umask) values 
are also specific to event logic units. Some microarchitectural conditions detectable by a Umask value may have 
specificity related to processor topology (see Section 10.6, “Detecting Hardware Multi-Threading Support and 
Topology,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). As a result, the unit 
mask field (for example, IA32_PERFEVTSELx[bits 15:8]) may contain sub-fields that specify topology information 
of processor cores.

The sub-field layout within the Umask field may support two-bit encoding that qualifies the relationship between a 
microarchitectural condition and the originating core. This data is shown in Table 21-81. The two-bit encoding for 
core-specificity is only supported for a subset of Umask values (see: https://perfmon-events.intel.com/) and for 
Intel Core Duo processors. Such events are referred to as core-specific events.

Table 21-81.  Core Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 15:14 Encoding Description

11B All cores

10B Reserved

01B This core

00B Reserved
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Some microarchitectural conditions allow detection specificity only at the boundary of physical processors. Some 
bus events belong to this category, providing specificity between the originating physical processor (a bus agent) 
versus other agents on the bus. Sub-field encoding for agent specificity is shown in Table 21-82.

Some microarchitectural conditions are detectable only from the originating core. In such cases, unit mask does 
not support core-specificity or agent-specificity encodings. These are referred to as core-only conditions.

Some microarchitectural conditions allow detection specificity that includes or excludes the action of hardware 
prefetches. A two-bit encoding may be supported to qualify hardware prefetch actions. Typically, this applies only 
to some L2 or bus events. The sub-field encoding for hardware prefetch qualification is shown in Table 21-83.

Some performance events may (a) support none of the three event-specific qualification encodings (b) may 
support core-specificity and agent specificity simultaneously (c) or may support core-specificity and hardware 
prefetch qualification simultaneously. Agent-specificity and hardware prefetch qualification are mutually exclusive.

In addition, some L2 events permit qualifications that distinguish cache coherent states. The sub-field definition for 
cache coherency state qualification is shown in Table 21-84. If no bits in the MESI qualification sub-field are set for 
an event that requires setting MESI qualification bits, the event count will not increment.

21.6.2 Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)
In addition to architectural performance monitoring, processors based on the Intel Core microarchitecture support 
non-architectural performance monitoring events.

Architectural performance events can be collected using general-purpose performance counters. Non-architectural 
performance events can be collected using general-purpose performance counters (coupled with two IA32_PERFE-
VTSELx MSRs for detailed event configurations), or fixed-function performance counters (see Section 21.6.2.1). 
IA32_PERFEVTSELx MSRs are architectural; their layout is shown in Figure 21-1. Starting with Intel Core 2 

Table 21-82.  Agent Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13 Encoding Description

0 This agent

1 Include all agents

Table 21-83.  HW Prefetch Qualification Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13:12 Encoding Description

11B All inclusive

10B Reserved

01B Hardware prefetch only 

00B Exclude hardware prefetch

Table 21-84.  MESI Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 Counts modified state

Bit 10 Counts exclusive state

Bit 9 Counts shared state

Bit 8 Counts Invalid state
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processor T 7700, fixed-function performance counters and associated counter control and status MSR becomes 
part of architectural performance monitoring version 2 facilities (see also Section 21.2.2). 

Non-architectural performance events in processors based on Intel Core microarchitecture use event select values 
that are model-specific. Valid event mask (Umask) bits can be found at: https://perfmon-events.intel.com/. The 
UMASK field may contain sub-fields identical to those listed in Table 21-81, Table 21-82, Table 21-83, and 
Table 21-84. One or more of these sub-fields may apply to specific events on an event-by-event basis. 

In addition, the UMASK filed may also contain a sub-field that allows detection specificity related to snoop 
responses. Bits of the snoop response qualification sub-field are defined in Table 21-85.

There are also non-architectural events that support qualification of different types of snoop operation. The corre-
sponding bit field for snoop type qualification are listed in Table 21-86.

No more than one sub-field of MESI, snoop response, and snoop type qualification sub-fields can be supported in a 
performance event.

NOTE
Software must write known values to the performance counters prior to enabling the counters. The 
content of general-purpose counters and fixed-function counters are undefined after INIT or 
RESET.

21.6.2.1  Fixed-function Performance Counters
Processors based on Intel Core microarchitecture provide three fixed-function performance counters. Bits beyond 
the width of the fixed counter are reserved and must be written as zeros. Model-specific fixed-function perfor-
mance counters on processors that support Architectural Perfmon version 1 are 40 bits wide.

Each of the fixed-function counter is dedicated to count a pre-defined performance monitoring events. See Table 
21-1 for details of the PMC addresses and what these events count.

Programming the fixed-function performance counters does not involve any of the IA32_PERFEVTSELx MSRs, and 
does not require specifying any event masks. Instead, the MSR IA32_FIXED_CTR_CTRL provides multiple sets of 
4-bit fields; each 4-bit field controls the operation of a fixed-function performance counter (PMC). See Figures 
21-45. Two sub-fields are defined for each control. See Figure 21-45; bit fields are:
• Enable field (low 2 bits in each 4-bit control) — When bit 0 is set, performance counting is enabled in the 

corresponding fixed-function performance counter to increment when the target condition associated with the 
architecture performance event occurs at ring 0. 

Table 21-85.  Bus Snoop Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 HITM response

Bit 10 Reserved 

Bit 9 HIT response

Bit 8 CLEAN response

Table 21-86.  Snoop Type Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 9:8 Description

Bit 9 CMP2I snoops

Bit 8 CMP2S snoops
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When bit 1 is set, performance counting is enabled in the corresponding fixed-function performance counter to 
increment when the target condition associated with the architecture performance event occurs at ring greater 
than 0. 
Writing 0 to both bits stops the performance counter. Writing 11B causes the counter to increment irrespective 
of privilege levels.

• PMI field (fourth bit in each 4-bit control) — When set, the logical processor generates an exception 
through its local APIC on overflow condition of the respective fixed-function counter.

21.6.2.2  Global Counter Control Facilities
Processors based on Intel Core microarchitecture provides simplified performance counter control that simplifies 
the most frequent operations in programming performance events, i.e., enabling/disabling event counting and 
checking the status of counter overflows. This is done by the following three MSRs:
• MSR_PERF_GLOBAL_CTRL enables/disables event counting for all or any combination of fixed-function PMCs 

(IA32_FIXED_CTRx) or general-purpose PMCs via a single WRMSR.
• MSR_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of 

fixed-function PMCs (IA32_FIXED_CTRx) or general-purpose PMCs via a single RDMSR.
• MSR_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination of 

fixed-function PMCs (IA32_FIXED_CTRx) or general-purpose PMCs via a single WRMSR.

MSR_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting in each performance counter (see 
Figure 21-46). Each enable bit in MSR_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in 
the respective IA32_PERFEVTSELx or IA32_FIXED_CTR_CTRL MSRs to start/stop the counting of respective 
counters. Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.

Figure 21-45.  Layout of IA32_FIXED_CTR_CTRL MSR
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Cntr2 — Controls for IA32_FIXED_CTR2

Cntr1 — Controls for IA32_FIXED_CTR1

PMI — Enable PMI on overflow

Cntr0 — Controls for IA32_FIXED_CTR0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

Reserved
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MSR_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of 
each performance counter. MSR_PERF_GLOBAL_STATUS[bit 62] indicates overflow conditions of the DS area data 
buffer. MSR_PERF_GLOBAL_STATUS[bit 63] provides a CondChgd bit to indicate changes to the state of perfor-
mance monitoring hardware (see Figure 21-47). A value of 1 in bits 34:32, 1, 0 indicates an overflow condition has 
occurred in the associated counter. 

When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the 
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor will 
perform bounds checks based on the parameters defined in the DS Save Area (see Section 19.4.9). Upon 
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter 
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event 
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

MSR_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 21-48). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or interrupt-based event sampling.
• Reloading counter values to continue collecting next sample.
• Disabling event counting or interrupt-based event sampling.

Figure 21-46.  Layout of MSR_PERF_GLOBAL_CTRL MSR

Figure 21-47.  Layout of MSR_PERF_GLOBAL_STATUS MSR

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC1 enable

2 1 0

PMC0 enable

3132333435

Reserved

63

62

FIXED_CTR2 Overflow
FIXED_CTR1 Overflow
FIXED_CTR0 Overflow
PMC1 Overflow

2 1 0

PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer
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21.6.2.3  At-Retirement Events
Many non-architectural performance events are impacted by the speculative nature of out-of-order execution. A 
subset of non-architectural performance events on processors based on Intel Core microarchitecture are enhanced 
with a tagging mechanism (similar to that found in Intel NetBurst® microarchitecture) that exclude contributions 
that arise from speculative execution. The at-retirement events available in processors based on Intel Core 
microarchitecture does not require special MSR programming control (see Section 21.6.3.6, “At-Retirement 
Counting”), but is limited to IA32_PMC0. See Table 21-87 for a list of events available to processors based on Intel 
Core microarchitecture.

21.6.2.4  Processor Event Based Sampling (PEBS)
Processors based on Intel Core microarchitecture also support processor event based sampling (PEBS). This 
feature was introduced by processors based on Intel NetBurst microarchitecture.

PEBS uses a debug store mechanism and a performance monitoring interrupt to store a set of architectural state 
information for the processor. The information provides architectural state of the instruction executed after the 
instruction that caused the event (See Section 21.6.2.4.2 and Section 19.4.9). 

In cases where the same instruction causes BTS and PEBS to be activated, PEBS is processed before BTS are 
processed. The PMI request is held until the processor completes processing of PEBS and BTS.

For processors based on Intel Core microarchitecture, precise events that can be used with PEBS are listed in 
Table 21-88. The procedure for detecting availability of PEBS is the same as described in Section 21.6.3.8.1.

Figure 21-48.  Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR

Table 21-87.  At-Retirement Performance Events for Intel Core Microarchitecture

Event Name UMask Event Select

ITLB_MISS_RETIRED 00H C9H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC1 ClrOverflow

2 1 0

PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer
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21.6.2.4.1  Setting up the PEBS Buffer

For processors based on Intel Core microarchitecture, PEBS is available using IA32_PMC0 only. Use the following 
procedure to set up the processor and IA32_PMC0 counter for PEBS: 

1. Set up the precise event buffering facilities. Place values in the precise event buffer base, precise event index, 
precise event absolute maximum, precise event interrupt threshold, and precise event counter reset fields of 
the DS buffer management area. In processors based on Intel Core microarchitecture, PEBS records consist of 
64-bit address entries. See Figure 19-8 to set up the precise event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS on PMC0 flag (bit 0) in IA32_PEBS_ENABLE MSR.

3. Set up the IA32_PMC0 performance counter and IA32_PERFEVTSEL0 for an event listed in Table 21-88.

21.6.2.4.2  PEBS Record Format

The PEBS record format may be extended across different processor implementations. The IA32_PERF_CAPABI-
LITES MSR defines a mechanism for software to handle the evolution of PEBS record format in processors that 
support architectural performance monitoring with version ID equals 2 or higher. The bit fields of IA32_PERF_CA-
PABILITES are defined in Table 2-2 of Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 4. The relevant bit fields that governs PEBS are:
• PEBSTrap [bit 6]: When set, PEBS recording is trap-like. After the PEBS-enabled counter has overflowed, PEBS 

record is recorded for the next PEBS-able event at the completion of the sampled instruction causing the PEBS 
event. When clear, PEBS recording is fault-like. The PEBS record is recorded before the sampled instruction 
causing the PEBS event.

• PEBSSaveArchRegs [bit 7]: When set, PEBS will save architectural register and state information according to 
the encoded value of the PEBSRecordFormat field. When clear, only the return instruction pointer and flags are 
recorded. On processors based on Intel Core microarchitecture, this bit is always 1.

• PEBSRecordFormat [bits 11:8]: Valid encodings are:

— 0000B: Only general-purpose registers, instruction pointer and RFLAGS registers are saved in each PEBS 
record (See Section 21.6.3.8). 

— 0001B: PEBS record includes additional information of IA32_PERF_GLOBAL_STATUS and load latency data. 
(See Section 21.3.1.1.1). 

— 0010B: PEBS record includes additional information of IA32_PERF_GLOBAL_STATUS, load latency data, 
and TSX tuning information. (See Section 21.3.6.2). 

— 0011B: PEBS record includes additional information of load latency data, TSX tuning information, TSC data, 
and the applicable counter field replaces IA32_PERF_GLOBAL_STATUS at offset 90H. (See Section 
21.3.8.1.1). 

— 0100B: PEBS record contents are defined by elections in MSR_PEBS_DATA_CFG. (See Section 21.9.2.3). 
The PEBS Configuration Buffer is defined as shown in Figure 21-66 with Counter Reset fields allocation for 
8 general-purpose counters followed by 4 fixed-function counters.

Table 21-88.  PEBS Performance Events for Intel Core Microarchitecture
Event Name UMask Event Select

INSTR_RETIRED.ANY_P 00H C0H

X87_OPS_RETIRED.ANY FEH C1H

BR_INST_RETIRED.MISPRED 00H C5H

SIMD_INST_RETIRED.ANY 1FH C7H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH
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— 0101B: PEBS record contents are defined by elections in MSR_PEBS_DATA_CFG. (See Section 21.9.2.3). 
The PEBS Configuration Buffer is defined as shown in Figure 21-66 with Counter Reset fields allocation for 
32 general-purpose counters followed by 16 fixed-function counters.

— 0110B: PEBS record contents are defined by elections in MSR_PEBS_DATA_CFG (see Figure 21-73 in 
Section 21.9.2.3) that is compatible with the previous MSR_PEBS_DATA_CFG (see Figure 21-72 in Section 
21.9.2.3). The PEBS Config Buffer is defined as shown in Figure 21-72 with a Counter Reset fields allocation 
for 32 general-purpose counters followed by 16 fixed-function counters.

21.6.2.4.3  Writing a PEBS Interrupt Service Routine

The PEBS facilities share the same interrupt vector and interrupt service routine (called the DS ISR) with the Inter-
rupt-based event sampling and BTS facilities. To handle PEBS interrupts, PEBS handler code must be included in 
the DS ISR. See Section 19.4.9.1, “64 Bit Format of the DS Save Area,” for guidelines when writing the DS ISR.

The service routine can query MSR_PERF_GLOBAL_STATUS to determine which counter(s) caused of overflow 
condition. The service routine should clear overflow indicator by writing to MSR_PERF_GLOBAL_OVF_CTL. 

A comparison of the sequence of requirements to program PEBS for processors based on Intel Core and Intel 
NetBurst microarchitectures is listed in Table 21-89.

Table 21-89.  Requirements to Program PEBS

For Processors based on Intel Core 
microarchitecture

For Processors based on Intel NetBurst 
microarchitecture

Verify PEBS support of 
processor/OS. 

• IA32_MISC_ENABLE.EMON_AVAILABE (bit 7) is set.
• IA32_MISC_ENABLE.PEBS_UNAVAILABE (bit 12) is clear.

Ensure counters are in disabled. On initial set up or changing event configurations, 
write MSR_PERF_GLOBAL_CTRL MSR (38FH) with 0. 

On subsequent entries:

• Clear all counters if “Counter Freeze on PMI“ is not 
enabled.

• If IA32_DebugCTL.Freeze is enabled, counters are 
automatically disabled.

Counters MUST be stopped before writing.1

Optional

Disable PEBS. Clear ENABLE PMC0 bit in IA32_PEBS_ENABLE MSR 
(3F1H).

Optional

Check overflow conditions. Check MSR_PERF_GLOBAL_STATUS MSR (38EH) 
handle any overflow conditions.

Check OVF flag of each CCCR for overflow 
condition

Clear overflow status. Clear MSR_PERF_GLOBAL_STATUS MSR (38EH) 
using IA32_PERF_GLOBAL_OVF_CTRL MSR (390H).

Clear OVF flag of each CCCR.

Write “sample-after“ values. Configure the counter(s) with the sample after value.

Configure specific counter 
configuration MSR.

• Set local enable bit 22 - 1.
• Do NOT set local counter PMI/INT bit, bit 20 - 0.
• Event programmed must be PEBS capable. 

• Set appropriate OVF_PMI bits - 1.
• Only CCCR for MSR_IQ_COUNTER4 

support PEBS.

Allocate buffer for PEBS states. Allocate a buffer in memory for the precise information.

Program the IA32_DS_AREA MSR. Program the IA32_DS_AREA MSR.

Configure the PEBS buffer 
management records.

Configure the PEBS buffer management records in the DS buffer management area.

Configure/Enable PEBS. Set Enable PMC0 bit in IA32_PEBS_ENABLE MSR 
(3F1H).

Configure MSR_PEBS_ENABLE, 
MSR_PEBS_MATRIX_VERT, and 
MSR_PEBS_MATRIX_HORZ as needed.

Enable counters. Set Enable bits in MSR_PERF_GLOBAL_CTRL MSR 
(38FH).

Set each CCCR enable bit 12 - 1.
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21.6.2.4.4  Re-configuring PEBS Facilities

When software needs to reconfigure PEBS facilities, it should allow a quiescent period between stopping the prior 
event counting and setting up a new PEBS event. The quiescent period is to allow any latent residual PEBS records 
to complete its capture at their previously specified buffer address (provided by IA32_DS_AREA).

21.6.3 Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)
The performance monitoring mechanism provided in processors based on Intel NetBurst microarchitecture is 
different from that provided in the P6 family and Pentium processors. While the general concept of selecting, 
filtering, counting, and reading performance events through the WRMSR, RDMSR, and RDPMC instructions is 
unchanged, the setup mechanism and MSR layouts are incompatible with the P6 family and Pentium processor 
mechanisms. Also, the RDPMC instruction has been extended to support faster reading of counters and to read all 
performance counters available in processors based on Intel NetBurst microarchitecture.

The event monitoring mechanism consists of the following facilities:
• The IA32_MISC_ENABLE MSR, which indicates the availability in an Intel 64 or IA-32 processor of the 

performance monitoring and processor event-based sampling (PEBS) facilities.
• Event selection control (ESCR) MSRs for selecting events to be monitored with specific performance counters. 

The number available differs by family and model (43 to 45).
• 18 performance counter MSRs for counting events.
• 18 counter configuration control (CCCR) MSRs, with one CCCR associated with each performance counter. 

CCCRs sets up an associated performance counter for a specific method of counting.
• A debug store (DS) save area in memory for storing PEBS records.
• The IA32_DS_AREA MSR, which establishes the location of the DS save area.
• The debug store (DS) feature flag (bit 21) returned by the CPUID instruction, which indicates the availability of 

the DS mechanism.
• The MSR_PEBS_ENABLE MSR, which enables the PEBS facilities and replay tagging used in at-retirement event 

counting.
• A set of predefined events and event metrics that simplify the setting up of the performance counters to count 

specific events.

Table 21-90 lists the performance counters and their associated CCCRs, along with the ESCRs that select events to 
be counted for each performance counter. Predefined event metrics and events can be found at: https://perfmon-
events.intel.com/.

NOTES:
1. Counters read while enabled are not guaranteed to be precise with event counts that occur in timing proximity to the RDMSR.

Table 21-90.  Performance Counter MSRs and Associated CCCR and ESCR MSRs 
(Processors Based on Intel NetBurst Microarchitecture)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr

MSR_BPU_COUNTER0 0 300H MSR_BPU_CCCR0 360H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H
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MSR_BPU_COUNTER1 1 301H MSR_BPU_CCCR1 361H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER2 2 302H MSR_BPU_CCCR2 362H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_BPU_COUNTER3 3 303H MSR_BPU_CCCR3 363H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_MS_COUNTER0 4 304H MSR_MS_CCCR0 364H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER1 5 305H MSR_MS_CCCR1 365H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER2 6 306H MSR_MS_CCCR2 366H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_MS_COUNTER3 7 307H MSR_MS_CCCR3 367H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_FLAME_COUNTER0 8 308H MSR_FLAME_CCCR0 368H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_COUNTER1 9 309H MSR_FLAME_CCCR1 369H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_COUNTER2 10 30AH MSR_FLAME_CCCR2 36AH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_FLAME_COUNTER3 11 30BH MSR_FLAME_CCCR3 36BH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

Table 21-90.  Performance Counter MSRs and Associated CCCR and ESCR MSRs 
(Processors Based on Intel NetBurst Microarchitecture) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
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The types of events that can be counted with these performance monitoring facilities are divided into two classes: 
non-retirement events and at-retirement events.
• Non-retirement events are events that occur any time during instruction execution (such as bus transactions or 

cache transactions).
• At-retirement events are events that are counted at the retirement stage of instruction execution, which allows 

finer granularity in counting events and capturing machine state. 
The at-retirement counting mechanism includes facilities for tagging μops that have encountered a particular 
performance event during instruction execution. Tagging allows events to be sorted between those that 
occurred on an execution path that resulted in architectural state being committed at retirement as well as 
events that occurred on an execution path where the results were eventually cancelled and never committed to 
architectural state (such as, the execution of a mispredicted branch).

MSR_IQ_COUNTER0 12 30CH MSR_IQ_CCCR0 36CH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER1 13 30DH MSR_IQ_CCCR1 36DH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER2 14 30EH MSR_IQ_CCCR2 36EH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

MSR_IQ_COUNTER3 15 30FH MSR_IQ_CCCR3 36FH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
 0

2
1

3B9H
3CDH
3E1H
3BBH

3BDH
3CBH

MSR_IQ_COUNTER4 16 310H MSR_IQ_CCCR4 370H MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER5 17 311H MSR_IQ_CCCR5 371H MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

NOTES:
1. MSR_IQ_ESCR0 and MSR_IQ_ESCR1 are available only on early processor builds (family 0FH, models 01H-02H). These MSRs are not 

available on later versions.

Table 21-90.  Performance Counter MSRs and Associated CCCR and ESCR MSRs 
(Processors Based on Intel NetBurst Microarchitecture) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
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The Pentium 4 and Intel Xeon processor performance monitoring facilities support the three usage models 
described below. The first two models can be used to count both non-retirement and at-retirement events; the 
third model is used to count a subset of at-retirement events:
• Event counting — A performance counter is configured to count one or more types of events. While the 

counter is counting, software reads the counter at selected intervals to determine the number of events that 
have been counted between the intervals.

• Interrupt-based event sampling — A performance counter is configured to count one or more types of 
events and to generate an interrupt when it overflows. To trigger an overflow, the counter is preset to a 
modulus value that will cause the counter to overflow after a specific number of events have been counted. 
When the counter overflows, the processor generates a performance monitoring interrupt (PMI). The interrupt 
service routine for the PMI then records the return instruction pointer (RIP), resets the modulus, and restarts 
the counter. Code performance can be analyzed by examining the distribution of RIPs with a tool like the 
VTune™ Performance Analyzer.

• Processor event-based sampling (PEBS) — In PEBS, the processor writes a record of the architectural 
state of the processor to a memory buffer after the counter overflows. The records of architectural state 
provide additional information for use in performance tuning. Processor-based event sampling can be used to 
count only a subset of at-retirement events. PEBS captures more precise processor state information compared 
to interrupt based event sampling, because the latter need to use the interrupt service routine to re-construct 
the architectural states of processor. 

The following sections describe the MSRs and data structures used for performance monitoring in the Pentium 4 
and Intel Xeon processors.

21.6.3.1  ESCR MSRs
The 45 ESCR MSRs (see Table 21-90) allow software to select specific events to be countered. Each ESCR is usually 
associated with a pair of performance counters (see Table 21-90) and each performance counter has several ESCRs 
associated with it (allowing the events counted to be selected from a variety of events).

Figure 21-49 shows the layout of an ESCR MSR. The functions of the flags and fields are:
• USR flag, bit 2 — When set, events are counted when the processor is operating at a current privilege level 

(CPL) of 1, 2, or 3. These privilege levels are generally used by application code and unprotected operating 
system code.

• OS flag, bit 3 — When set, events are counted when the processor is operating at CPL of 0. This privilege level 
is generally reserved for protected operating system code. (When both the OS and USR flags are set, events 
are counted at all privilege levels.)

• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement event counting; when clear, 
disables tagging. See Section 21.6.3.6, “At-Retirement Counting.”

Figure 21-49.  Event Selection Control Register (ESCR) for Pentium 4 
and Intel® Xeon® Processors without Intel HT Technology Support
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• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop to assist in at-retirement 
event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the event class selected with the 
event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be counted. The events within this 
class that are counted are selected with the event mask field.

When setting up an ESCR, the event select field is used to select a specific class of events to count, such as retired 
branches. The event mask field is then used to select one or more of the specific events within the class to be 
counted. For example, when counting retired branches, four different events can be counted: branch not taken 
predicted, branch not taken mispredicted, branch taken predicted, and branch taken mispredicted. The OS and 
USR flags allow counts to be enabled for events that occur when operating system code and/or application code are 
being executed. If neither the OS nor USR flag is set, no events will be counted.

The ESCRs are initialized to all 0s on reset. The flags and fields of an ESCR are configured by writing to the ESCR 
using the WRMSR instruction. Table 21-90 gives the addresses of the ESCR MSRs. 

Writing to an ESCR MSR does not enable counting with its associated performance counter; it only selects the event 
or events to be counted. The CCCR for the selected performance counter must also be configured. Configuration of 
the CCCR includes selecting the ESCR and enabling the counter.

21.6.3.2  Performance Counters
The performance counters in conjunction with the counter configuration control registers (CCCRs) are used for 
filtering and counting the events selected by the ESCRs. Processors based on Intel NetBurst microarchitecture 
provide 18 performance counters organized into 9 pairs. A pair of performance counters is associated with a partic-
ular subset of events and ESCR’s (see Table 21-90). The counter pairs are partitioned into four groups:
• The BPU group, includes two performance counter pairs:

— MSR_BPU_COUNTER0 and MSR_BPU_COUNTER1.

— MSR_BPU_COUNTER2 and MSR_BPU_COUNTER3.
• The MS group, includes two performance counter pairs:

— MSR_MS_COUNTER0 and MSR_MS_COUNTER1.

— MSR_MS_COUNTER2 and MSR_MS_COUNTER3.
• The FLAME group, includes two performance counter pairs:

— MSR_FLAME_COUNTER0 and MSR_FLAME_COUNTER1.

— MSR_FLAME_COUNTER2 and MSR_FLAME_COUNTER3.
• The IQ group, includes three performance counter pairs:

— MSR_IQ_COUNTER0 and MSR_IQ_COUNTER1.

— MSR_IQ_COUNTER2 and MSR_IQ_COUNTER3.

— MSR_IQ_COUNTER4 and MSR_IQ_COUNTER5.

The MSR_IQ_COUNTER4 counter in the IQ group provides support for the PEBS. 

Alternate counters in each group can be cascaded: the first counter in one pair can start the first counter in the 
second pair and vice versa. A similar cascading is possible for the second counters in each pair. For example, within 
the BPU group of counters, MSR_BPU_COUNTER0 can start MSR_BPU_COUNTER2 and vice versa, and MSR_B-
PU_COUNTER1 can start MSR_BPU_COUNTER3 and vice versa (see Section 21.6.3.5.6, “Cascading Counters”). 
The cascade flag in the CCCR register for the performance counter enables the cascading of counters.

Each performance counter is 40-bits wide (see Figure 21-50). The RDPMC instruction is intended to allow reading 
of either the full counter-width (40-bits) or, if ECX[31] is set to 1, the low 32-bits of the counter. Reading the low 
32-bits is faster than reading the full counter width and is appropriate in situations where the count is small enough 
to be contained in 32 bits. In such cases, counter bits 31:0 are written to EAX, while 0 is written to EDX.
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The RDPMC instruction can be used by programs or procedures running at any privilege level and in virtual-8086 
mode to read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this instruction to be 
restricted to only programs and procedures running at privilege level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not necessarily wait until 
all previous instructions have been executed before reading the counter. Similarly, subsequent instructions may 
begin execution before the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the performance counters, using 
the RDMSR and WRMSR instructions. A secure operating system would clear the PCE flag during system initializa-
tion to disable direct user access to the performance-monitoring counters, but provide a user-accessible program-
ming interface that emulates the RDPMC instruction.

Some uses of the performance counters require the counters to be preset before counting begins (that is, before 
the counter is enabled). This can be accomplished by writing to the counter using the WRMSR instruction. To set a 
counter to a specified number of counts before overflow, enter a 2s complement negative integer in the counter. 
The counter will then count from the preset value up to -1 and overflow. Writing to a performance counter in a 
Pentium 4 or Intel Xeon processor with the WRMSR instruction causes all 40 bits of the counter to be written.

21.6.3.3  CCCR MSRs
Each of the 18 performance counters has one CCCR MSR associated with it (see Table 21-90). The CCCRs control 
the filtering and counting of events as well as interrupt generation. Figure 21-51 shows the layout of an CCCR MSR. 
The functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is disabled. This flag is cleared on 

reset.
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to select events to be counted with 

the counter associated with the CCCR.
• Compare flag, bit 18 — When set, enables filtering of the event count; when clear, disables filtering. The 

filtering method is selected with the threshold, complement, and edge flags.
• Complement flag, bit 19 — Selects how the incoming event count is compared with the threshold value. 

When set, event counts that are less than or equal to the threshold value result in a single count being delivered 
to the performance counter; when clear, counts greater than the threshold value result in a count being 
delivered to the performance counter (see Section 21.6.3.5.2, “Filtering Events”). The complement flag is not 
active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used for comparisons. The 
processor examines this field only when the compare flag is set, and uses the complement flag setting to 
determine the type of threshold comparison to be made. The useful range of values that can be entered in this 
field depend on the type of event being counted (see Section 21.6.3.5.2, “Filtering Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge detection of the threshold comparison 
output for filtering event counts; when clear, rising edge detection is disabled. This flag is active only when the 
compare flag is set.

Figure 21-50.  Performance Counter (Pentium 4 and Intel® Xeon® Processors)
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• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every counter increment; when clear, 
overflow only occurs when the counter actually overflows.

• OVF_PMI flag, bit 26 — When set, causes a performance monitor interrupt (PMI) to be generated when the 
counter overflows occurs; when clear, disables PMI generation. Note that the PMI is generated on the next 
event count after the counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter pair when its alternate 
counter in the other the counter pair in the same counter group overflows (see Section 21.6.3.2, “Performance 
Counters,” for further details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag is a sticky flag that must be 
explicitly cleared by software.

The CCCRs are initialized to all 0s on reset. 

The events that an enabled performance counter actually counts are selected and filtered by the following flags and 
fields in the ESCR and CCCR registers and in the qualification order given:

1. The event select and event mask fields in the ESCR select a class of events to be counted and one or more 
event types within the class, respectively.

2. The OS and USR flags in the ESCR selected the privilege levels at which events will be counted.

3. The ESCR select field of the CCCR selects the ESCR. Since each counter has several ESCRs associated with it, 
one ESCR must be chosen to select the classes of events that may be counted.

4. The compare and complement flags and the threshold field of the CCCR select an optional threshold to be used 
in qualifying an event count.

5. The edge flag in the CCCR allows events to be counted only on rising-edge transitions.

The qualification order in the above list implies that the filtered output of one “stage” forms the input for the next. 
For instance, events filtered using the privilege level flags can be further qualified by the compare and complement 
flags and the threshold field, and an event that matched the threshold criteria, can be further qualified by edge 
detection.

The uses of the flags and fields in the CCCRs are discussed in greater detail in Section 21.6.3.5, “Programming the 
Performance Counters for Non-Retirement Events.”

Figure 21-51.  Counter Configuration Control Register (CCCR)
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21.6.3.4  Debug Store (DS) Mechanism
The debug store (DS) mechanism was introduced with processors based on Intel NetBurst microarchitecture to 
allow various types of information to be collected in memory-resident buffers for use in debugging and tuning 
programs. The DS mechanism can be used to collect two types of information: branch records and processor event-
based sampling (PEBS) records. The availability of the DS mechanism in a processor is indicated with the DS 
feature flag (bit 21) returned by the CPUID instruction. 

See Section 19.4.5, “Branch Trace Store (BTS),” and Section 21.6.3.8, “Processor Event-Based Sampling (PEBS),” 
for a description of these facilities. Records collected with the DS mechanism are saved in the DS save area. See 
Section 19.4.9, “BTS and DS Save Area.”

21.6.3.5  Programming the Performance Counters for Non-Retirement Events
The basic steps to program a performance counter and to count events include the following:

1. Select the event or events to be counted.

2. For each event, select an ESCR that supports the event.

3. Match the CCCR Select value and ESCR name to a value listed in Table 21-90; select a CCCR and performance 
counter.

4. Set up an ESCR for the specific event or events to be counted and the privilege levels at which they are to be 
counted.

5. Set up the CCCR for the performance counter by selecting the ESCR and the desired event filters.

6. Set up the CCCR for optional cascading of event counts, so that when the selected counter overflows its 
alternate counter starts.

7. Set up the CCCR to generate an optional performance monitor interrupt (PMI) when the counter overflows. If 
PMI generation is enabled, the local APIC must be set up to deliver the interrupt to the processor and a handler 
for the interrupt must be in place.

8. Enable the counter to begin counting.

21.6.3.5.1  Selecting Events to Count

There is a set of at-retirement events for processors based on Intel NetBurst microarchitecture. For each event, 
setup information is provided. Table 21-91 gives an example of one of the events.

Table 21-91.  Event Example 
Event Name Event Parameters  Parameter Value Description

branch_retired Counts the retirement of a branch. Specify one or more mask bits to select 
any combination of branch taken, not-taken, predicted, and mispredicted. 

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 15-3 for the addresses of the ESCR MSRs.

Counter numbers per 
ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated with each ESCR are provided. The 
performance counters and corresponding CCCRs can be obtained from 
Table 15-3.

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit 0: MMNP

     1: MMNM

     2: MMTP

     3: MMTM

ESCR[24:9]

Branch Not-taken Predicted

Branch Not-taken Mispredicted

Branch Taken Predicted

Branch Taken Mispredicted

CCCR Select 05H CCCR[15:13]
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Event Parameters are described below.
• ESCR restrictions — Lists the ESCRs that can be used to program the event. Typically only one ESCR is 

needed to count an event. 
• Counter numbers per ESCR — Lists which performance counters are associated with each ESCR. Table 21-90 

gives the name of the counter and CCCR for each counter number. Typically only one counter is needed to count 
the event.

• ESCR event select — Gives the value to be placed in the event select field of the ESCR to select the event.
• ESCR event mask — Gives the value to be placed in the Event Mask field of the ESCR to select sub-events to 

be counted. The parameter value column defines the documented bits with relative bit position offset starting 
from 0, where the absolute bit position of relative offset 0 is bit 9 of the ESCR. All undocumented bits are 
reserved and should be set to 0.

• CCCR select — Gives the value to be placed in the ESCR select field of the CCCR associated with the counter 
to select the ESCR to be used to define the event. This value is not the address of the ESCR; it is the number of 
the ESCR from the Number column in Table 21-90.

• Event specific notes — Gives additional information about the event, such as the name of the same or a 
similar event defined for the P6 family processors.

• Can support PEBS — Indicates if PEBS is supported for the event (only supplied for at-retirement events).
• Requires additional MSR for tagging — Indicates which if any additional MSRs must be programmed to 

count the events (only supplied for the at-retirement events).

NOTE
The performance-monitoring events found at https://perfmon-events.intel.com/ are intended to 
be used as guides for performance tuning. The counter values reported are not guaranteed to be 
absolutely accurate and should be used as a relative guide for tuning. Known discrepancies are 
documented where applicable.

The following procedure shows how to set up a performance counter for basic counting; that is, the counter is set 
up to count a specified event indefinitely, wrapping around whenever it reaches its maximum count. This procedure 
is continued through the following four sections.

An event to be counted can be selected as follows:

1. Select the event to be counted.

2. Select the ESCR to be used to select events to be counted from the ESCRs field.

3. Select the number of the counter to be used to count the event from the Counter Numbers Per ESCR field.

4. Determine the name of the counter and the CCCR associated with the counter, and determine the MSR 
addresses of the counter, CCCR, and ESCR from Table 21-90.

5. Use the WRMSR instruction to write the ESCR Event Select and ESCR Event Mask values into the appropriate 
fields in the ESCR. At the same time set or clear the USR and OS flags in the ESCR as desired.

6. Use the WRMSR instruction to write the CCCR Select value into the appropriate field in the CCCR.

Event Specific Notes P6: EMON_BR_INST_RETIRED

Can Support PEBS No

Requires Additional 
MSRs for Tagging

No

Table 21-91.  Event Example  (Contd.)
Event Name Event Parameters  Parameter Value Description
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NOTE
Typically all the fields and flags of the CCCR will be written with one WRMSR instruction; however, 
in this procedure, several WRMSR writes are used to more clearly demonstrate the uses of the 
various CCCR fields and flags.

This setup procedure is continued in the next section, Section 21.6.3.5.2, “Filtering Events.”

21.6.3.5.2  Filtering Events

Each counter receives up to 4 input lines from the processor hardware from which it is counting events. The counter 
treats these inputs as binary inputs (input 0 has a value of 1, input 1 has a value of 2, input 3 has a value of 4, and 
input 3 has a value of 8). When a counter is enabled, it adds this binary input value to the counter value on each 
clock cycle. For each clock cycle, the value added to the counter can then range from 0 (no event) to 15. 

For many events, only the 0 input line is active, so the counter is merely counting the clock cycles during which the 
0 input is asserted. However, for some events two or more input lines are used. Here, the counters threshold 
setting can be used to filter events. The compare, complement, threshold, and edge fields control the filtering of 
counter increments by input value.

If the compare flag is set, then a “greater than” or a “less than or equal to” comparison of the input value vs. a 
threshold value can be made. The complement flag selects “less than or equal to” (flag set) or “greater than” (flag 
clear). The threshold field selects a threshold value of from 0 to 15. For example, if the complement flag is cleared 
and the threshold field is set to 6, than any input value of 7 or greater on the 4 inputs to the counter will cause the 
counter to be incremented by 1, and any value less than 7 will cause an increment of 0 (or no increment) of the 
counter. Conversely, if the complement flag is set, any value from 0 to 6 will increment the counter and any value 
from 7 to 15 will not increment the counter. Note that when a threshold condition has been satisfied, the input to 
the counter is always 1, not the input value that is presented to the threshold filter. 

The edge flag provides further filtering of the counter inputs when a threshold comparison is being made. The edge 
flag is only active when the compare flag is set. When the edge flag is set, the resulting output from the threshold 
filter (a value of 0 or 1) is used as an input to the edge filter. Each clock cycle, the edge filter examines the last and 
current input values and sends a count to the counter only when it detects a “rising edge” event; that is, a false-to-
true transition. Figure 21-52 illustrates rising edge filtering.

The following procedure shows how to configure a CCCR to filter events using the threshold filter and the edge filter. 
This procedure is a continuation of the setup procedure introduced in Section 21.6.3.5.1, “Selecting Events to 
Count.”

7. (Optional) To set up the counter for threshold filtering, use the WRMSR instruction to write values in the CCCR 
compare and complement flags and the threshold field:

— Set the compare flag.

— Set or clear the complement flag for less than or equal to or greater than comparisons, respectively.

— Enter a value from 0 to 15 in the threshold field.

8. (Optional) Select rising edge filtering by setting the CCCR edge flag.

This setup procedure is continued in the next section, Section 21.6.3.5.3, “Starting Event Counting.”

Figure 21-52.  Effects of Edge Filtering
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21.6.3.5.3  Starting Event Counting

Event counting by a performance counter can be initiated in either of two ways. The typical way is to set the enable 
flag in the counter’s CCCR. Following the instruction to set the enable flag, event counting begins and continues 
until it is stopped (see Section 21.6.3.5.5, “Halting Event Counting”). 

The following procedural step shows how to start event counting. This step is a continuation of the setup procedure 
introduced in Section 21.6.3.5.2, “Filtering Events.”

9. To start event counting, use the WRMSR instruction to set the CCCR enable flag for the performance counter.

This setup procedure is continued in the next section, Section 21.6.3.5.4, “Reading a Performance Counter’s 
Count.”

The second way that a counter can be started by using the cascade feature. Here, the overflow of one counter auto-
matically starts its alternate counter (see Section 21.6.3.5.6, “Cascading Counters”).

21.6.3.5.4  Reading a Performance Counter’s Count

Performance counters can be read using either the RDPMC or RDMSR instructions. The enhanced functions of the 
RDPMC instruction (including fast read) are described in Section 21.6.3.2, “Performance Counters.” These instruc-
tions can be used to read a performance counter while it is counting or when it is stopped.

The following procedural step shows how to read the event counter. This step is a continuation of the setup proce-
dure introduced in Section 21.6.3.5.3, “Starting Event Counting.”

10. To read a performance counters current event count, execute the RDPMC instruction with the counter number 
obtained from Table 21-90 used as an operand.

This setup procedure is continued in the next section, Section 21.6.3.5.5, “Halting Event Counting.”

21.6.3.5.5  Halting Event Counting

After a performance counter has been started (enabled), it continues counting indefinitely. If the counter overflows 
(goes one count past its maximum count), it wraps around and continues counting. When the counter wraps 
around, it sets its OVF flag to indicate that the counter has overflowed. The OVF flag is a sticky flag that indicates 
that the counter has overflowed at least once since the OVF bit was last cleared. 

To halt counting, the CCCR enable flag for the counter must be cleared.

The following procedural step shows how to stop event counting. This step is a continuation of the setup procedure 
introduced in Section 21.6.3.5.4, “Reading a Performance Counter’s Count.”

11. To stop event counting, execute a WRMSR instruction to clear the CCCR enable flag for the performance 
counter.

To halt a cascaded counter (a counter that was started when its alternate counter overflowed), either clear the 
Cascade flag in the cascaded counter’s CCCR MSR or clear the OVF flag in the alternate counter’s CCCR MSR.

21.6.3.5.6  Cascading Counters

As described in Section 21.6.3.2, “Performance Counters,” eighteen performance counters are implemented in 
pairs. Nine pairs of counters and associated CCCRs are further organized as four blocks: BPU, MS, FLAME, and IQ 
(see Table 21-90). The first three blocks contain two pairs each. The IQ block contains three pairs of counters (12 
through 17) with associated CCCRs (MSR_IQ_CCCR0 through MSR_IQ_CCCR5).

The first 8 counter pairs (0 through 15) can be programmed using ESCRs to detect performance monitoring events. 
Pairs of ESCRs in each of the four blocks allow many different types of events to be counted. The cascade flag in 
the CCCR MSR allows nested monitoring of events to be performed by cascading one counter to a second counter 
located in another pair in the same block (see Figure 21-51 for the location of the flag).

Counters 0 and 1 form the first pair in the BPU block. Either counter 0 or 1 can be programmed to detect an event 
via MSR_MO B_ESCR0. Counters 0 and 2 can be cascaded in any order, as can counters 1 and 3. It’s possible to set 
up 4 counters in the same block to cascade on two pairs of independent events. The pairing described also applies 
to subsequent blocks. Since the IQ PUB has two extra counters, cascading operates somewhat differently if 16 and 
17 are involved. In the IQ block, counter 16 can only be cascaded from counter 14 (not from 12); counter 14 
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cannot be cascaded from counter 16 using the CCCR cascade bit mechanism. Similar restrictions apply to counter 
17.

Example 21-1.  Counting Events

Assume a scenario where counter X is set up to count 200 occurrences of event A; then counter Y is set up to count 
400 occurrences of event B. Each counter is set up to count a specific event and overflow to the next counter. In the 
above example, counter X is preset for a count of -200 and counter Y for a count of -400; this setup causes the 
counters to overflow on the 200th and 400th counts respectively.

Continuing this scenario, counter X is set up to count indefinitely and wraparound on overflow. This is described in 
the basic performance counter setup procedure that begins in Section 21.6.3.5.1, “Selecting Events to Count.” 
Counter Y is set up with the cascade flag in its associated CCCR MSR set to 1 and its enable flag set to 0.

To begin the nested counting, the enable bit for the counter X is set. Once enabled, counter X counts until it over-
flows. At this point, counter Y is automatically enabled and begins counting. Thus counter X overflows after 200 
occurrences of event A. Counter Y then starts, counting 400 occurrences of event B before overflowing. When 
performance counters are cascaded, the counter Y would typically be set up to generate an interrupt on overflow. 
This is described in Section 21.6.3.5.8, “Generating an Interrupt on Overflow.” 

The cascading counters mechanism can be used to count a single event. The counting begins on one counter then 
continues on the second counter after the first counter overflows. This technique doubles the number of event 
counts that can be recorded, since the contents of the two counters can be added together.

21.6.3.5.7  EXTENDED CASCADING 

Extended cascading is a model-specific feature in the Intel NetBurst microarchitecture with CPUID DisplayFami-
ly_DisplayModel 0F_02, 0F_03, 0F_04, 0F_06. This feature uses bit 11 in CCCRs associated with the IQ block. See 
Table 21-92. 

The extended cascading feature can be adapted to the Interrupt based sampling usage model for performance 
monitoring. However, it is known that performance counters do not generate PMI in cascade mode or extended 
cascade mode due to an erratum. This erratum applies to processors with CPUID DisplayFamily_DisplayModel 
signature of 0F_02. For processors with CPUID DisplayFamily_DisplayModel signature of 0F_00 and 0F_01, the 
erratum applies to processors with stepping encoding greater than 09H. 

Counters 16 and 17 in the IQ block are frequently used in processor event-based sampling or at-retirement 
counting of events indicating a stalled condition in the pipeline. Neither counter 16 or 17 can initiate the cascading 
of counter pairs using the cascade bit in a CCCR.

Extended cascading permits performance monitoring tools to use counters 16 and 17 to initiate cascading of two 
counters in the IQ block. Extended cascading from counter 16 and 17 is conceptually similar to cascading other 
counters, but instead of using CASCADE bit of a CCCR, one of the four CASCNTxINTOy bits is used. 

Example 21-2.  Scenario for Extended Cascading

A usage scenario for extended cascading is to sample instructions retired on logical processor 1 after the first 4096 
instructions retired on logical processor 0. A procedure to program extended cascading in this scenario is outlined 
below:

Table 21-92.  CCR Names and Bit Positions 

CCCR Name:Bit Position Bit Name Description

MSR_IQ_CCCR1|2:11 Reserved

MSR_IQ_CCCR0:11 CASCNT4INTO0 Allow counter 4 to cascade into counter 0

MSR_IQ_CCCR3:11 CASCNT5INTO3 Allow counter 5 to cascade into counter 3

MSR_IQ_CCCR4:11 CASCNT5INTO4 Allow counter 5 to cascade into counter 4

MSR_IQ_CCCR5:11 CASCNT4INTO5 Allow counter 4 to cascade into counter 5
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1. Write the value 0 to counter 12. 

2. Write the value 04000603H to MSR_CRU_ESCR0 (corresponding to selecting the NBOGNTAG and NBOGTAG 
event masks with qualification restricted to logical processor 1).

3. Write the value 04038800H to MSR_IQ_CCCR0. This enables CASCNT4INTO0 and OVF_PMI. An ISR can sample 
on instruction addresses in this case (do not set ENABLE, or CASCADE).

4. Write the value FFFFF000H into counter 16.1.

5. Write the value 0400060CH to MSR_CRU_ESCR2 (corresponding to selecting the NBOGNTAG and NBOGTAG 
event masks with qualification restricted to logical processor 0).

6. Write the value 00039000H to MSR_IQ_CCCR4 (set ENABLE bit, but not OVF_PMI).

Another use for cascading is to locate stalled execution in a multithreaded application. Assume MOB replays in 
thread B cause thread A to stall. Getting a sample of the stalled execution in this scenario could be accomplished 
by:

1. Set up counter B to count MOB replays on thread B.

2. Set up counter A to count resource stalls on thread A; set its force overflow bit and the appropriate CASCNTx-
INTOy bit.

3. Use the performance monitoring interrupt to capture the program execution data of the stalled thread.

21.6.3.5.8  Generating an Interrupt on Overflow

Any performance counter can be configured to generate a performance monitor interrupt (PMI) if the counter over-
flows. The PMI interrupt service routine can then collect information about the state of the processor or program 
when overflow occurred. This information can then be used with a tool like the Intel® VTune™ Performance 
Analyzer to analyze and tune program performance.

To enable an interrupt on counter overflow, the OVR_PMI flag in the counter’s associated CCCR MSR must be set. 
When overflow occurs, a PMI is generated through the local APIC. (Here, the performance counter entry in the local 
vector table [LVT] is set up to deliver the interrupt generated by the PMI to the processor.)

The PMI service routine can use the OVF flag to determine which counter overflowed when multiple counters have 
been configured to generate PMIs. Also, note that these processors mask PMIs upon receiving an interrupt. Clear 
this condition before leaving the interrupt handler.

When generating interrupts on overflow, the performance counter being used should be preset to value that will 
cause an overflow after a specified number of events are counted plus 1. The simplest way to select the preset 
value is to write a negative number into the counter, as described in Section 21.6.3.5.6, “Cascading Counters.” 
Here, however, if an interrupt is to be generated after 100 event counts, the counter should be preset to minus 100 
plus 1 (-100 + 1), or -99. The counter will then overflow after it counts 99 events and generate an interrupt on the 
next (100th) event counted. The difference of 1 for this count enables the interrupt to be generated immediately 
after the selected event count has been reached, instead of waiting for the overflow to be propagation through the 
counter.

Because of latency in the microarchitecture between the generation of events and the generation of interrupts on 
overflow, it is sometimes difficult to generate an interrupt close to an event that caused it. In these situations, the 
FORCE_OVF flag in the CCCR can be used to improve reporting. Setting this flag causes the counter to overflow on 
every counter increment, which in turn triggers an interrupt after every counter increment.

21.6.3.5.9  Counter Usage Guideline

There are some instances where the user must take care to configure counting logic properly, so that it is not 
powered down. To use any ESCR, even when it is being used just for tagging, (any) one of the counters that the 
particular ESCR (or its paired ESCR) can be connected to should be enabled. If this is not done, 0 counts may 
result. Likewise, to use any counter, there must be some event selected in a corresponding ESCR (other than 
no_event, which generally has a select value of 0). 
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21.6.3.6  At-Retirement Counting
At-retirement counting provides a means counting only events that represent work committed to architectural 
state and ignoring work that was performed speculatively and later discarded.

One example of this speculative activity is branch prediction. When a branch misprediction occurs, the results of 
instructions that were decoded and executed down the mispredicted path are canceled. If a performance counter 
was set up to count all executed instructions, the count would include instructions whose results were canceled as 
well as those whose results committed to architectural state.

To provide finer granularity in event counting in these situations, the performance monitoring facilities provided in 
the Pentium 4 and Intel Xeon processors provide a mechanism for tagging events and then counting only those 
tagged events that represent committed results. This mechanism is called “at-retirement counting.” 

There are predefined at-retirement events and event metrics that can be used to for tagging events when using at 
retirement counting. The following terminology is used in describing at-retirement counting:
• Bogus, non-bogus, retire — In at-retirement event descriptions, the term “bogus” refers to instructions or 

μops that must be canceled because they are on a path taken from a mispredicted branch. The terms “retired” 
and “non-bogus” refer to instructions or μops along the path that results in committed architectural state 
changes as required by the program being executed. Thus instructions and μops are either bogus or non-bogus, 
but not both. Several of the Pentium 4 and Intel Xeon processors’ performance monitoring events (such as, 
Instruction_Retired and Uops_Retired) can count instructions or μops that are retired based on the characteri-
zation of bogus” versus non-bogus.

• Tagging — Tagging is a means of marking μops that have encountered a particular performance event so they 
can be counted at retirement. During the course of execution, the same event can happen more than once per 
μop and a direct count of the event would not provide an indication of how many μops encountered that event. 
The tagging mechanisms allow a μop to be tagged once during its lifetime and thus counted once at retirement. 
The retired suffix is used for performance metrics that increment a count once per μop, rather than once per 
event. For example, a μop may encounter a cache miss more than once during its life time, but a “Miss Retired” 
metric (that counts the number of retired μops that encountered a cache miss) will increment only once for that 
μop. A “Miss Retired” metric would be useful for characterizing the performance of the cache hierarchy for a 
particular instruction sequence. Details of various performance metrics and how these can be constructed using 
the Pentium 4 and Intel Xeon processors performance events are provided in the Intel® 64 and IA-32 Architec-
tures Optimization Reference Manual (see Section 1.4, “Related Literature”). 

• Replay — To maximize performance for the common case, the Intel NetBurst microarchitecture aggressively 
schedules μops for execution before all the conditions for correct execution are guaranteed to be satisfied. In 
the event that all of these conditions are not satisfied, μops must be reissued. The mechanism that the Pentium 
4 and Intel Xeon processors use for this reissuing of μops is called replay. Some examples of replay causes are 
cache misses, dependence violations, and unforeseen resource constraints. In normal operation, some number 
of replays is common and unavoidable. An excessive number of replays is an indication of a performance 
problem.

• Assist — When the hardware needs the assistance of microcode to deal with some event, the machine takes 
an assist. One example of this is an underflow condition in the input operands of a floating-point operation. The 
hardware must internally modify the format of the operands in order to perform the computation. Assists clear 
the entire machine of μops before they begin and are costly.

21.6.3.6.1  Using At-Retirement Counting

Processors based on Intel NetBurst microarchitecture allow counting both events and μops that encountered a 
specified event. For a subset of the at-retirement events, a μop may be tagged when it encounters that event. The 
tagging mechanisms can be used in Interrupt-based event sampling, and a subset of these mechanisms can be 
used in PEBS. There are four independent tagging mechanisms, and each mechanism uses a different event to 
count μops tagged with that mechanism: 
• Front-end tagging — This mechanism pertains to the tagging of μops that encountered front-end events (for 

example, trace cache and instruction counts) and are counted with the Front_end_event event.
• Execution tagging — This mechanism pertains to the tagging of μops that encountered execution events (for 

example, instruction types) and are counted with the Execution_Event event.
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• Replay tagging — This mechanism pertains to tagging of μops whose retirement is replayed (for example, a 
cache miss) and are counted with the Replay_event event. Branch mispredictions are also tagged with this 
mechanism.

• No tags — This mechanism does not use tags. It uses the Instr_retired and the Uops_ retired events.

Each tagging mechanism is independent from all others; that is, a μop that has been tagged using one mechanism 
will not be detected with another mechanism’s tagged-μop detector. For example, if μops are tagged using the 
front-end tagging mechanisms, the Replay_event will not count those as tagged μops unless they are also tagged 
using the replay tagging mechanism. However, execution tags allow up to four different types of μops to be counted 
at retirement through execution tagging.

The independence of tagging mechanisms does not hold when using PEBS. When using PEBS, only one tagging 
mechanism should be used at a time. 

Certain kinds of μops that cannot be tagged, including I/O, uncacheable and locked accesses, returns, and far 
transfers.

There are performance monitoring events that support at-retirement counting: specifically the Front_end_event, 
Execution_event, Replay_event, Inst_retired, and Uops_retired events. The following sections describe the 
tagging mechanisms for using these events to tag μop and count tagged μops.

21.6.3.6.2  Tagging Mechanism for Front_end_event

The Front_end_event counts μops that have been tagged as encountering any of the following events:
• μop decode events — Tagging μops for μop decode events requires specifying bits in the ESCR associated with 

the performance-monitoring event, Uop_type. 
• Trace cache events — Tagging μops for trace cache events may require specifying certain bits in the 

MSR_TC_PRECISE_EVENT MSR.

The MSRs that are supported by the front-end tagging mechanism must be set and one or both of the NBOGUS and 
BOGUS bits in the Front_end_event event mask must be set to count events. None of the events currently 
supported requires the use of the MSR_TC_PRECISE_EVENT MSR. 

21.6.3.6.3  Tagging Mechanism For Execution_event

The execution tagging mechanism differs from other tagging mechanisms in how it causes tagging. One upstream 
ESCR is used to specify an event to detect and to specify a tag value (bits 5 through 8) to identify that event. A 
second downstream ESCR is used to detect μops that have been tagged with that tag value identifier using Execu-
tion_event for the event selection. 

The upstream ESCR that counts the event must have its tag enable flag (bit 4) set and must have an appropriate 
tag value mask entered in its tag value field. The 4-bit tag value mask specifies which of tag bits should be set for 
a particular μop. The value selected for the tag value should coincide with the event mask selected in the down-
stream ESCR. For example, if a tag value of 1 is set, then the event mask of NBOGUS0 should be enabled, corre-
spondingly in the downstream ESCR. The downstream ESCR detects and counts tagged μops. The normal (not tag 
value) mask bits in the downstream ESCR specify which tag bits to count. If any one of the tag bits selected by the 
mask is set, the related counter is incremented by one. The tag enable and tag value bits are irrelevant for the 
downstream ESCR used to select the Execution_event.

The four separate tag bits allow the user to simultaneously but distinctly count up to four execution events at 
retirement. (This applies for interrupt-based event sampling. There are additional restrictions for PEBS as noted in 
Section 21.6.3.8.3, “Setting Up the PEBS Buffer.”) It is also possible to detect or count combinations of events by 
setting multiple tag value bits in the upstream ESCR or multiple mask bits in the downstream ESCR. For example, 
use a tag value of 3H in the upstream ESCR and use NBOGUS0/NBOGUS1 in the downstream ESCR event mask.

21.6.3.7  Tagging Mechanism for Replay_event
The replay mechanism enables tagging of μops for a subset of all replays before retirement. Use of the replay 
mechanism requires selecting the type of μop that may experience the replay in the MSR_PEBS_MATRIX_VERT 
MSR and selecting the type of event in the MSR_PEBS_ENABLE MSR. Replay tagging must also be enabled with the 
UOP_Tag flag (bit 24) in the MSR_PEBS_ENABLE MSR. 
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The replay tags defined in Table A-5 also enable Processor Event-Based Sampling (PEBS, see Section 19.4.9). Each 
of these replay tags can also be used in normal sampling by not setting Bit 24 nor Bit 25 in IA_32_PEBS_EN-
ABLE_MSR. Each of these metrics requires that the Replay_Event be used to count the tagged μops.

21.6.3.8  Processor Event-Based Sampling (PEBS)
The debug store (DS) mechanism in processors based on Intel NetBurst microarchitecture allow two types of infor-
mation to be collected for use in debugging and tuning programs: PEBS records and BTS records. See Section 
19.4.5, “Branch Trace Store (BTS),” for a description of the BTS mechanism.

PEBS permits the saving of precise architectural information associated with one or more performance events in 
the precise event records buffer, which is part of the DS save area (see Section 19.4.9, “BTS and DS Save Area”). 
To use this mechanism, a counter is configured to overflow after it has counted a preset number of events. After 
the counter overflows, the processor copies the current state of the general-purpose and EFLAGS registers and 
instruction pointer into a record in the precise event records buffer. The processor then resets the count in the 
performance counter and restarts the counter. When the precise event records buffer is nearly full, an interrupt is 
generated, allowing the precise event records to be saved. A circular buffer is not supported for precise event 
records.

PEBS is supported only for a subset of the at-retirement events: Execution_event, Front_end_event, and 
Replay_event. Also, PEBS can only be carried out using the one performance counter, the MSR_IQ_COUNTER4 
MSR.

In processors based on Intel Core microarchitecture, a similar PEBS mechanism is also supported using IA32_PMC0 
and IA32_PERFEVTSEL0 MSRs (See Section 21.6.2.4).

21.6.3.8.1  Detection of the Availability of the PEBS Facilities

The DS feature flag (bit 21) returned by the CPUID instruction indicates (when set) the availability of the DS mech-
anism in the processor, which supports the PEBS (and BTS) facilities. When this bit is set, the following PEBS facil-
ities are available:
• The PEBS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when clear) the availability of the 

PEBS facilities, including the MSR_PEBS_ENABLE MSR. 
• The enable PEBS flag (bit 24) in the MSR_PEBS_ENABLE MSR allows PEBS to be enabled (set) or disabled 

(clear).
• The IA32_DS_AREA MSR can be programmed to point to the DS save area. 

21.6.3.8.2  Setting Up the DS Save Area

Section 19.4.9.2, “Setting Up the DS Save Area,” describes how to set up and enable the DS save area. This proce-
dure is common for PEBS and BTS.

21.6.3.8.3  Setting Up the PEBS Buffer

Only the MSR_IQ_COUNTER4 performance counter can be used for PEBS. Use the following procedure to set up the 
processor and this counter for PEBS: 

1. Set up the precise event buffering facilities. Place values in the precise event buffer base, precise event index, 
precise event absolute maximum, and precise event interrupt threshold, and precise event counter reset fields 
of the DS buffer management area (see Figure 19-5) to set up the precise event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS flag (bit 24) in MSR_PEBS_ENABLE MSR.

3. Set up the MSR_IQ_COUNTER4 performance counter and its associated CCCR and one or more ESCRs for 
PEBS.
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21.6.3.8.4  Writing a PEBS Interrupt Service Routine 

The PEBS facilities share the same interrupt vector and interrupt service routine (called the DS ISR) with the non-
precise event-based sampling and BTS facilities. To handle PEBS interrupts, PEBS handler code must be included in 
the DS ISR. See Section 19.4.9.5, “Writing the DS Interrupt Service Routine,” for guidelines for writing the DS ISR.

21.6.3.8.5  Other DS Mechanism Implications

The DS mechanism is not available in the SMM. It is disabled on transition to the SMM mode. Similarly the DS 
mechanism is disabled on the generation of a machine check exception and is cleared on processor RESET and 
INIT. 

The DS mechanism is available in real address mode.

21.6.3.9  Operating System Implications
The DS mechanism can be used by the operating system as a debugging extension to facilitate failure analysis. 
When using this facility, a 25 to 30 times slowdown can be expected due to the effects of the trace store occurring 
on every taken branch. 

Depending upon intended usage, the instruction pointers that are part of the branch records or the PEBS records 
need to have an association with the corresponding process. One solution requires the ability for the DS specific 
operating system module to be chained to the context switch. A separate buffer can then be maintained for each 
process of interest and the MSR pointing to the configuration area saved and setup appropriately on each context 
switch. 

If the BTS facility has been enabled, then it must be disabled and state stored on transition of the system to a sleep 
state in which processor context is lost. The state must be restored on return from the sleep state.

It is required that an interrupt gate be used for the DS interrupt as opposed to a trap gate to prevent the generation 
of an endless interrupt loop.

Pages that contain buffers must have mappings to the same physical address for all processes/logical processors, 
such that any change to CR3 will not change DS addresses. If this requirement cannot be satisfied (that is, the 
feature is enabled on a per thread/process basis), then the operating system must ensure that the feature is 
enabled/disabled appropriately in the context switch code.

21.6.4 Performance Monitoring and Intel® Hyper-Threading Technology in Processors Based 
on Intel NetBurst® Microarchitecture

The performance monitoring capability of processors based on Intel NetBurst microarchitecture and supporting 
Intel Hyper-Threading Technology is similar to that described in Section 21.6.3. However, the capability is extended 
so that:
• Performance counters can be programmed to select events qualified by logical processor IDs. 
• Performance monitoring interrupts can be directed to a specific logical processor within the physical processor. 

The sections below describe performance counters, event qualification by logical processor ID, and special purpose 
bits in ESCRs/CCCRs. They also describe MSR_PEBS_ENABLE, MSR_PEBS_MATRIX_VERT, and MSR_TC_PRE-
CISE_EVENT. 

21.6.4.1  ESCR MSRs 
Figure 21-53 shows the layout of an ESCR MSR in processors supporting Intel Hyper-Threading Technology. 

The functions of the flags and fields are as follows:
• T1_USR flag, bit 0 — When set, events are counted when thread 1 (logical processor 1) is executing at a 

current privilege level (CPL) of 1, 2, or 3. These privilege levels are generally used by application code and 
unprotected operating system code.
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• T1_OS flag, bit 1 — When set, events are counted when thread 1 (logical processor 1) is executing at CPL of 
0. This privilege level is generally reserved for protected operating system code. (When both the T1_OS and 
T1_USR flags are set, thread 1 events are counted at all privilege levels.)

• T0_USR flag, bit 2 — When set, events are counted when thread 0 (logical processor 0) is executing at a CPL 
of 1, 2, or 3. 

• T0_OS flag, bit 3 — When set, events are counted when thread 0 (logical processor 0) is executing at CPL of 
0. (When both the T0_OS and T0_USR flags are set, thread 0 events are counted at all privilege levels.)

• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement event counting; when clear, 
disables tagging. See Section 21.6.3.6, “At-Retirement Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop to assist in at-retirement 
event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the event class selected with the 
event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be counted. The events within this 
class that are counted are selected with the event mask field.

The T0_OS and T0_USR flags and the T1_OS and T1_USR flags allow event counting and sampling to be specified 
for a specific logical processor (0 or 1) within an Intel Xeon processor MP (See also: Section 10.4.5, “Identifying 
Logical Processors in an MP System,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A).

Not all performance monitoring events can be detected within an Intel Xeon processor MP on a per logical processor 
basis (see Section 21.6.4.4, “Performance Monitoring Events”). Some sub-events (specified by an event mask bits) 
are counted or sampled without regard to which logical processor is associated with the detected event. 

21.6.4.2  CCCR MSRs
Figure 21-54 shows the layout of a CCCR MSR in processors supporting Intel Hyper-Threading Technology. The 
functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is disabled. This flag is cleared on 

reset
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to select events to be counted with 

the counter associated with the CCCR.
• Active thread field, bits 16 and 17 — Enables counting depending on which logical processors are active 

(executing a thread). This field enables filtering of events based on the state (active or inactive) of the logical 
processors. The encodings of this field are as follows:
00 — None. Count only when neither logical processor is active.

Figure 21-53.  Event Selection Control Register (ESCR) for the Pentium 4 Processor, Intel® Xeon® Processor, and 
Intel® Xeon® Processor MP Supporting Hyper-Threading Technology
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01 — Single. Count only when one logical processor is active (either 0 or 1).
10 — Both. Count only when both logical processors are active.
11 — Any. Count when either logical processor is active.
A halted logical processor or a logical processor in the “wait for SIPI” state is considered inactive. 

• Compare flag, bit 18 — When set, enables filtering of the event count; when clear, disables filtering. The 
filtering method is selected with the threshold, complement, and edge flags.

• Complement flag, bit 19 — Selects how the incoming event count is compared with the threshold value. 
When set, event counts that are less than or equal to the threshold value result in a single count being 
delivered to the performance counter; when clear, counts greater than the threshold value result in a count 
being delivered to the performance counter (see Section 21.6.3.5.2, “Filtering Events”). The compare flag is 
not active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used for comparisons. The 
processor examines this field only when the compare flag is set, and uses the complement flag setting to 
determine the type of threshold comparison to be made. The useful range of values that can be entered in this 
field depend on the type of event being counted (see Section 21.6.3.5.2, “Filtering Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge detection of the threshold comparison 
output for filtering event counts; when clear, rising edge detection is disabled. This flag is active only when the 
compare flag is set.

• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every counter increment; when clear, 
overflow only occurs when the counter actually overflows.

• OVF_PMI_T0 flag, bit 26 — When set, causes a performance monitor interrupt (PMI) to be sent to logical 
processor 0 when the counter overflows occurs; when clear, disables PMI generation for logical processor 0. 
Note that the PMI is generate on the next event count after the counter has overflowed.

• OVF_PMI_T1 flag, bit 27 — When set, causes a performance monitor interrupt (PMI) to be sent to logical 
processor 1 when the counter overflows occurs; when clear, disables PMI generation for logical processor 1. 
Note that the PMI is generate on the next event count after the counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter pair when its alternate 
counter in the other the counter pair in the same counter group overflows (see Section 21.6.3.2, “Performance 
Counters,” for further details); when clear, disables cascading of counters.

Figure 21-54.  Counter Configuration Control Register (CCCR)
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• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag is a sticky flag that must be 
explicitly cleared by software.

21.6.4.3  IA32_PEBS_ENABLE MSR
In a processor supporting Intel Hyper-Threading Technology and based on the Intel NetBurst microarchitecture, 
PEBS is enabled and qualified with two bits in the MSR_PEBS_ENABLE MSR: bit 25 (ENABLE_PEBS_MY_THR) and 
26 (ENABLE_PEBS_OTH_THR) respectively. These bits do not explicitly identify a specific logical processor by logic 
processor ID(T0 or T1); instead, they allow a software agent to enable PEBS for subsequent threads of execution 
on the same logical processor on which the agent is running (“my thread”) or for the other logical processor in the 
physical package on which the agent is not running (“other thread”).

PEBS is supported for only a subset of the at-retirement events: Execution_event, Front_end_event, and 
Replay_event. Also, PEBS can be carried out only with two performance counters: MSR_IQ_CCCR4 (MSR address 
370H) for logical processor 0 and MSR_IQ_CCCR5 (MSR address 371H) for logical processor 1.

Performance monitoring tools should use a processor affinity mask to bind the kernel mode components that need 
to modify the ENABLE_PEBS_MY_THR and ENABLE_PEBS_OTH_THR bits in the MSR_PEBS_ENABLE MSR to a 
specific logical processor. This is to prevent these kernel mode components from migrating between different 
logical processors due to OS scheduling.   

21.6.4.4  Performance Monitoring Events
When Intel Hyper-Threading Technology is active, many performance monitoring events can be can be qualified by 
the logical processor ID, which corresponds to bit 0 of the initial APIC ID. This allows for counting an event in any 
or all of the logical processors. However, not all the events have this logic processor specificity, or thread specificity. 

Here, each event falls into one of two categories: 
• Thread specific (TS) — The event can be qualified as occurring on a specific logical processor.
• Thread independent (TI) — The event cannot be qualified as being associated with a specific logical 

processor. 

If for example, a TS event occurred in logical processor T0, the counting of the event (as shown in Table 21-93) 
depends only on the setting of the T0_USR and T0_OS flags in the ESCR being used to set up the event counter. 
The T1_USR and T1_OS flags have no effect on the count.

When a bit in the event mask field is TI, the effect of specifying bit-0-3 of the associated ESCR are described in 
Table 15-6. For events that are marked as TI, the effect of selectively specifying T0_USR, T0_OS, T1_USR, T1_OS 
bits is shown in Table 21-94. 

Table 21-93.  Effect of Logical Processor and CPL Qualification 
for Logical-Processor-Specific (TS) Events

T1_OS/T1_USR = 00 T1_OS/T1_USR = 01 T1_OS/T1_USR = 11 T1_OS/T1_USR = 10

T0_OS/T0_USR = 00 Zero count Counts while T1 in USR Counts while T1 in OS or 
USR

Counts while T1 in OS

T0_OS/T0_USR = 01 Counts while T0 in USR Counts while T0 in USR 
or T1 in USR

Counts while (a) T0 in 
USR or (b) T1 in OS or (c) 
T1 in USR

Counts while (a) T0 in OS 
or (b) T1 in OS

T0_OS/T0_USR = 11 Counts while T0 in OS or 
USR

Counts while (a) T0 in OS 
or (b) T0 in USR or (c) T1 
in USR

Counts irrespective of 
CPL, T0, T1

Counts while (a) T0 in OS 
or (b) or T0 in USR or (c) 
T1 in OS

T0_OS/T0_USR = 10 Counts T0 in OS Counts T0 in OS or T1 in 
USR

Counts while (a)T0 in Os 
or (b) T1 in OS or (c) T1 
in USR

Counts while (a) T0 in OS 
or (b) T1 in OS
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21.6.4.5  Counting Clocks on systems with Intel® Hyper-Threading Technology in Processors Based on 
Intel NetBurst® Microarchitecture

21.6.4.5.1  Non-Halted Clockticks

Use the following procedure to program ESCRs and CCCRs to obtain non-halted clockticks on processors based on 
Intel NetBurst microarchitecture: 

1. Select an ESCR for the global_power_events and specify the RUNNING sub-event mask and the desired 
T0_OS/T0_USR/T1_OS/T1_USR bits for the targeted processor.

2. Select an appropriate counter.

3. Enable counting in the CCCR for that counter by setting the enable bit.

21.6.4.5.2  Non-Sleep Clockticks

Performance monitoring counters can be configured to count clockticks whenever the performance monitoring 
hardware is not powered-down. To count Non-sleep Clockticks with a performance-monitoring counter, do the 
following:

1. Select one of the 18 counters.

2. Select any of the ESCRs whose events the selected counter can count. Set its event select to anything other 
than “no_event”; the counter may be disabled if this is not done.

3. Turn threshold comparison on in the CCCR by setting the compare bit to “1”.

4. Set the threshold to “15” and the complement to “1” in the CCCR. Since no event can exceed this threshold, the 
threshold condition is met every cycle and the counter counts every cycle. Note that this overrides any qualifi-
cation (e.g., by CPL) specified in the ESCR.

5. Enable counting in the CCCR for the counter by setting the enable bit.

In most cases, the counts produced by the non-halted and non-sleep metrics are equivalent if the physical package 
supports one logical processor and is not placed in a power-saving state. Operating systems may execute an HLT 
instruction and place a physical processor in a power-saving state.

On processors that support Intel Hyper-Threading Technology (Intel HT Technology), each physical package can 
support two or more logical processors. Current implementation of Intel HT Technology provides two logical 
processors for each physical processor. While both logical processors can execute two threads simultaneously, one 
logical processor may halt to allow the other logical processor to execute without sharing execution resources 
between two logical processors. 

Non-halted Clockticks can be set up to count the number of processor clock cycles for each logical processor when-
ever the logical processor is not halted (the count may include some portion of the clock cycles for that logical 
processor to complete a transition to a halted state). Physical processors that support Intel HT Technology enter 
into a power-saving state if all logical processors halt.

Table 21-94.  Effect of Logical Processor and CPL Qualification 
for Non-logical-Processor-specific (TI) Events

T1_OS/T1_USR = 00 T1_OS/T1_USR = 01 T1_OS/T1_USR = 11 T1_OS/T1_USR = 10 

T0_OS/T0_USR = 00 Zero count Counts while (a) T0 in 
USR or (b) T1 in USR

Counts irrespective of 
CPL, T0, T1

Counts while (a) T0 in OS 
or (b) T1 in OS 

T0_OS/T0_USR = 01 Counts while (a) T0 in 
USR or (b) T1 in USR

Counts while (a) T0 in 
USR or (b) T1 in USR

Counts irrespective of 
CPL, T0, T1

Counts irrespective of 
CPL, T0, T1 

T0_OS/T0_USR = 11 Counts irrespective of 
CPL, T0, T1

Counts irrespective of 
CPL, T0, T1

Counts irrespective of 
CPL, T0, T1

Counts irrespective of 
CPL, T0, T1 

T0_OS/T0_USR = 0 Counts while (a) T0 in OS 
or (b) T1 in OS

Counts irrespective of 
CPL, T0, T1

Counts irrespective of 
CPL, T0, T1

Counts while (a) T0 in OS 
or (b) T1 in OS
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The Non-sleep Clockticks mechanism uses a filtering mechanism in CCCRs. The mechanism will continue to incre-
ment as long as one logical processor is not halted or in a power-saving state. Applications may cause a processor 
to enter into a power-saving state by using an OS service that transfers control to an OS's idle loop. The idle loop 
then may place the processor into a power-saving state after an implementation-dependent period if there is no 
work for the processor.

21.6.5 Performance Monitoring and Dual-Core Technology
The performance monitoring capability of dual-core processors duplicates the microarchitectural resources of a 
single-core processor implementation. Each processor core has dedicated performance monitoring resources.

In the case of Pentium D processor, each logical processor is associated with dedicated resources for performance 
monitoring. In the case of Pentium processor Extreme edition, each processor core has dedicated resources, but 
two logical processors in the same core share performance monitoring resources (see Section 21.6.4, “Perfor-
mance Monitoring and Intel® Hyper-Threading Technology in Processors Based on Intel NetBurst® Microarchitec-
ture”). 

21.6.6 Performance Monitoring on 64-bit Intel® Xeon® Processor MP with Up to 8-MByte L3 
Cache

The 64-bit Intel Xeon processor MP with up to 8-MByte L3 cache has a CPUID signature of family [0FH], model [03H 
or 04H]. Performance monitoring capabilities available to Pentium 4 and Intel Xeon processors with the same 
values (see Section 21.1 and Section 21.6.4) apply to the 64-bit Intel Xeon processor MP with an L3 cache. 

The level 3 cache is connected between the system bus and IOQ through additional control logic. See Figure 21-55.

Additional performance monitoring capabilities and facilities unique to 64-bit Intel Xeon processor MP with an L3 
cache are described in this section. The facility for monitoring events consists of a set of dedicated model-specific 
registers (MSRs), each dedicated to a specific event. Programming of these MSRs requires using RDMSR/WRMSR 
instructions with 64-bit values.

The lower 32-bits of the MSRs at addresses 107CC through 107D3 are treated as 32 bit performance counter regis-
ters. These performance counters can be accessed using RDPMC instruction with the index starting from 18 
through 25. The EDX register returns zero when reading these 8 PMCs.

The performance monitoring capabilities consist of four events. These are:

Figure 21-55.  Block Diagram of 64-bit Intel® Xeon® Processor MP with 8-MByte L3
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• IBUSQ event — This event detects the occurrence of micro-architectural conditions related to the iBUSQ unit. 
It provides two MSRs: MSR_IFSB_IBUSQ0 and MSR_IFSB_IBUSQ1. Configure sub-event qualification and 
enable/disable functions using the high 32 bits of these MSRs. The low 32 bits act as a 32-bit event counter. 
Counting starts after software writes a non-zero value to one or more of the upper 32 bits. See Figure 21-56.

• ISNPQ event — This event detects the occurrence of microarchitectural conditions related to the iSNPQ unit. 
It provides two MSRs: MSR_IFSB_ISNPQ0 and MSR_IFSB_ISNPQ1. Configure sub-event qualifications and 
enable/disable functions using the high 32 bits of the MSRs. The low 32-bits act as a 32-bit event counter. 
Counting starts after software writes a non-zero value to one or more of the upper 32-bits. See Figure 21-57.

• EFSB event — This event can detect the occurrence of micro-architectural conditions related to the iFSB unit 
or system bus. It provides two MSRs: MSR_EFSB_DRDY0 and MSR_EFSB_DRDY1. Configure sub-event qualifi-
cations and enable/disable functions using the high 32 bits of the 64-bit MSR. The low 32-bit act as a 32-bit 
event counter. Counting starts after software writes a non-zero value to one or more of the qualification bits in 
the upper 32-bits of the MSR. See Figure 21-58.

Figure 21-56.  MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH

Figure 21-57.  MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH
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• IBUSQ Latency event — This event accumulates weighted cycle counts for latency measurement of transac-
tions in the iBUSQ unit. The count is enabled by setting MSR_IFSB_CTRL6[bit 26] to 1; the count freezes after 
software sets MSR_IFSB_CTRL6[bit 26] to 0. MSR_IFSB_CNTR7 acts as a 64-bit event counter for this event. 
See Figure 21-59.

21.6.7 Performance Monitoring on L3 and Caching Bus Controller Sub-Systems
The Intel Xeon processor 7400 series and Dual-Core Intel Xeon processor 7100 series employ a distinct L3/caching 
bus controller sub-system. These sub-system have a unique set of performance monitoring capability and 
programming interfaces that are largely common between these two processor families. 

Intel Xeon processor 7400 series are based on 45 nm enhanced Intel Core microarchitecture. The CPUID signature 
is indicated by DisplayFamily_DisplayModel value of 06_1DH (see the CPUID instruction in Chapter 3, “Instruction 
Set Reference, A-L‚” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Intel Xeon 
processor 7400 series have six processor cores that share an L3 cache. 

Dual-Core Intel Xeon processor 7100 series are based on Intel NetBurst microarchitecture, have a CPUID signature 
of family [0FH], model [06H] and a unified L3 cache shared between two cores. Each core in an Intel Xeon 
processor 7100 series supports Intel Hyper-Threading Technology, providing two logical processors per core. 

Both Intel Xeon processor 7400 series and Intel Xeon processor 7100 series support multi-processor configurations 
using system bus interfaces. In Intel Xeon processor 7400 series, the L3/caching bus controller sub-system 
provides three Simple Direct Interface (SDI) to service transactions originated the XQ-replacement SDI logic in 
each dual-core modules. In Intel Xeon processor 7100 series, the IOQ logic in each processor core is replaced with 
a Simple Direct Interface (SDI) logic. The L3 cache is connected between the system bus and the SDI through addi-
tional control logic. See Figure 21-60 for the block configuration of six processor cores and the L3/Caching bus 

Figure 21-58.  MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H

Figure 21-59.  MSR_IFSB_CTL6, Address: 107D2H; MSR_IFSB_CNTR7, Address: 107D3H
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controller sub-system in Intel Xeon processor 7400 series. Figure 21-60 shows the block configuration of two 
processor cores (four logical processors) and the L3/Caching bus controller sub-system in Intel Xeon processor 
7100 series.

Almost all of the performance monitoring capabilities available to processor cores with the same CPUID signatures 
(see Section 21.1 and Section 21.6.4) apply to Intel Xeon processor 7100 series. The MSRs used by performance 
monitoring interface are shared between two logical processors in the same processor core.

The performance monitoring capabilities available to processor with DisplayFamily_DisplayModel signature 06_17H 
also apply to Intel Xeon processor 7400 series. Each processor core provides its own set of MSRs for performance 
monitoring interface.

The IOQ_allocation and IOQ_active_entries events are not supported in Intel Xeon processor 7100 series and 7400 
series. Additional performance monitoring capabilities applicable to the L3/caching bus controller sub-system are 
described in this section. 

Figure 21-60.  Block Diagram of the Intel® Xeon® Processor 7400 Series
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21.6.7.1  Overview of Performance Monitoring with L3/Caching Bus Controller 
The facility for monitoring events consists of a set of dedicated model-specific registers (MSRs). There are eight 
event select/counting MSRs that are dedicated to counting events associated with specified microarchitectural 
conditions. Programming of these MSRs requires using RDMSR/WRMSR instructions with 64-bit values. In addition, 
an MSR MSR_EMON_L3_GL_CTL provides simplified interface to control freezing, resetting, re-enabling operation 
of any combination of these event select/counting MSRs. 

The eight MSRs dedicated to count occurrences of specific conditions are further divided to count three sub-classes 
of microarchitectural conditions:
• Two MSRs (MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1) are dedicated to counting GBSQ 

events. Up to two GBSQ events can be programmed and counted simultaneously. 
• Two MSRs (MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3) are dedicated to counting GSNPQ 

events. Up to two GBSQ events can be programmed and counted simultaneously. 
• Four MSRs (MSR_EMON_L3_CTR_CTL4, MSR_EMON_L3_CTR_CTL5, MSR_EMON_L3_CTR_CTL6, and 

MSR_EMON_L3_CTR_CTL7) are dedicated to counting external bus operations.

The bit fields in each of eight MSRs share the following common characteristics:
• Bits 63:32 is the event control field that includes an event mask and other bit fields that control counter 

operation. The event mask field specifies details of the microarchitectural condition, and its definition differs 
across GBSQ, GSNPQ, FSB. 

• Bits 31:0 is the event count field. If the specified condition is met during each relevant clock domain of the 
event logic, the matched condition signals the counter logic to increment the associated event count field. The 
lower 32-bits of these 8 MSRs at addresses 107CC through 107D3 are treated as 32 bit performance counter 
registers. 

In Dual-Core Intel Xeon processor 7100 series, the uncore performance counters can be accessed using RDPMC 
instruction with the index starting from 18 through 25. The EDX register returns zero when reading these 8 PMCs. 

In Intel Xeon processor 7400 series, RDPMC with ECX between 2 and 9 can be used to access the eight uncore 
performance counter/control registers. 

Figure 21-61.  Block Diagram of the Intel® Xeon® Processor 7100 Series
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21.6.7.2  GBSQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1 is given in Figure 21-62. Counting starts 
after software writes a non-zero value to one or more of the upper 32 bits. 

The event mask field (bits 58:32) consists of the following eight attributes:
• Agent_Select (bits 35:32): The definition of this field differs slightly between Intel Xeon processor 7100 and 

7400. 
For Intel Xeon processor 7100 series, each bit specifies a logical processor in the physical package. The lower 
two bits corresponds to two logical processors in the first processor core, the upper two bits corresponds to two 
logical processors in the second processor core. 0FH encoding matches transactions from any logical processor.
For Intel Xeon processor 7400 series, each bit of [34:32] specifies the SDI logic of a dual-core module as the 
originator of the transaction. A value of 0111B in bits [35:32] specifies transaction from any processor core.

• Data_Flow (bits 37:36): Bit 36 specifies demand transactions, bit 37 specifies prefetch transactions.
• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event count will include all 

transaction types.
• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position) clean snoop result, HIT snoop 

result, and HITM snoop results respectively.
• L3_State (bits 53:47): Each bit specifies an L2 coherency state. 
• Core_Module_Select (bits 55:54): The valid encodings for L3 lookup differ slightly between Intel Xeon 

processor 7100 and 7400. 
For Intel Xeon processor 7100 series, 

— 00B: Match transactions from any core in the physical package

— 01B: Match transactions from this core only

— 10B: Match transactions from the other core in the physical package

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series, 

— 00B: Match transactions from any dual-core module in the physical package

— 01B: Match transactions from this dual-core module only

— 10B: Match transactions from either one of the other two dual-core modules in the physical package

Figure 21-62.  MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH
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— 11B: Match transaction from more than one dual-core modules in the physical package
• Fill_Eviction (bits 57:56): The valid encodings are

— 00B: Match any transactions 

— 01B: Match transactions that fill L3

— 10B: Match transactions that fill L3 without an eviction

— 11B: Match transaction fill L3 with an eviction
• Cross_Snoop (bit 58): The encodings are

— 0B: Match any transactions 

— 1B: Match cross snoop transactions

For each counting clock domain, if all eight attributes match, event logic signals to increment the event count field.

21.6.7.3  GSNPQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3 is given in Figure 21-63. Counting starts 
after software writes a non-zero value to one or more of the upper 32 bits. 

The event mask field (bits 58:32) consists of the following six attributes:
• Agent_Select (bits 37:32): The definition of this field differs slightly between Intel Xeon processor 7100 and 

7400. 
• For Intel Xeon processor 7100 series, each of the lowest 4 bits specifies a logical processor in the physical 

package. The lowest two bits corresponds to two logical processors in the first processor core, the next two bits 
corresponds to two logical processors in the second processor core. Bit 36 specifies other symmetric agent 
transactions. Bit 37 specifies central agent transactions. 3FH encoding matches transactions from any logical 
processor.
For Intel Xeon processor 7400 series, each of the lowest 3 bits specifies a dual-core module in the physical 
package. Bit 37 specifies central agent transactions. 

• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event count will include any 
transaction types.

• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position) clean snoop result, HIT snoop 
result, and HITM snoop results respectively.

• L2_State (bits 53:47): Each bit specifies an L3 coherency state. 
• Core_Module_Select (bits 56:54): Bit 56 enables Core_Module_Select matching. If bit 56 is clear, Core_Mod-

ule_Select encoding is ignored. The valid encodings for the lower two bits (bit 55, 54) differ slightly between 
Intel Xeon processor 7100 and 7400.
For Intel Xeon processor 7100 series, if bit 56 is set, the valid encodings for the lower two bits (bit 55, 54) are

— 00B: Match transactions from only one core (irrespective which core) in the physical package

— 01B: Match transactions from this core and not the other core

— 10B: Match transactions from the other core in the physical package, but not this core

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series, if bit 56 is set, the valid encodings for the lower two bits (bit 55, 54) are

— 00B: Match transactions from only one dual-core module (irrespective which module) in the physical 
package.

— 01B: Match transactions from one or more dual-core modules.

— 10B: Match transactions from two or more dual-core modules.

— 11B: Match transaction from all three dual-core modules in the physical package.
• Block_Snoop (bit 57): specifies blocked snoop.

For each counting clock domain, if all six attributes match, event logic signals to increment the event count field.
21-138 Vol. 3B



PERFORMANCE MONITORING
21.6.7.4  FSB Event Interface
The layout of MSR_EMON_L3_CTR_CTL4 through MSR_EMON_L3_CTR_CTL7 is given in Figure 21-64. Counting 
starts after software writes a non-zero value to one or more of the upper 32 bits. 

The event mask field (bits 58:32) is organized as follows:
• Bit 58: must set to 1.
• FSB_Submask (bits 57:32): Specifies FSB-specific sub-event mask.

The FSB sub-event mask defines a set of independent attributes. The event logic signals to increment the associ-
ated event count field if one of the attribute matches. Some of the sub-event mask bit counts durations. A duration 
event increments at most once per cycle.

21.6.7.4.1  FSB Sub-Event Mask Interface

• FSB_type (bit 37:32): Specifies different FSB transaction types originated from this physical package.
• FSB_L_clear (bit 38): Count clean snoop results from any source for transaction originated from this physical 

package.
• FSB_L_hit (bit 39): Count HIT snoop results from any source for transaction originated from this physical 

package.

Figure 21-63.  MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH

Figure 21-64.  MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H
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• FSB_L_hitm (bit 40): Count HITM snoop results from any source for transaction originated from this physical 
package.

• FSB_L_defer (bit 41): Count DEFER responses to this processor’s transactions.
• FSB_L_retry (bit 42): Count RETRY responses to this processor’s transactions.
• FSB_L_snoop_stall (bit 43): Count snoop stalls to this processor’s transactions.
• FSB_DBSY (bit 44): Count DBSY assertions by this processor (without a concurrent DRDY).
• FSB_DRDY (bit 45): Count DRDY assertions by this processor.
• FSB_BNR (bit 46): Count BNR assertions by this processor.
• FSB_IOQ_empty (bit 47): Counts each bus clocks when the IOQ is empty.
• FSB_IOQ_full (bit 48): Counts each bus clocks when the IOQ is full.
• FSB_IOQ_active (bit 49): Counts each bus clocks when there is at least one entry in the IOQ.
• FSB_WW_data (bit 50): Counts back-to-back write transaction’s data phase.
• FSB_WW_issue (bit 51): Counts back-to-back write transaction request pairs issued by this processor.
• FSB_WR_issue (bit 52): Counts back-to-back write-read transaction request pairs issued by this processor.
• FSB_RW_issue (bit 53): Counts back-to-back read-write transaction request pairs issued by this processor.
• FSB_other_DBSY (bit 54): Count DBSY assertions by another agent (without a concurrent DRDY).
• FSB_other_DRDY (bit 55): Count DRDY assertions by another agent.
• FSB_other_snoop_stall (bit 56): Count snoop stalls on the FSB due to another agent.
• FSB_other_BNR (bit 57): Count BNR assertions from another agent.

21.6.7.5  Common Event Control Interface
The MSR_EMON_L3_GL_CTL MSR provides simplified access to query overflow status of the GBSQ, GSNPQ, FSB 
event counters. It also provides control bit fields to freeze, unfreeze, or reset those counters. The following bit 
fields are supported:
• GL_freeze_cmd (bit 0): Freeze the event counters specified by the GL_event_select field.
• GL_unfreeze_cmd (bit 1): Unfreeze the event counters specified by the GL_event_select field.
• GL_reset_cmd (bit 2): Clear the event count field of the event counters specified by the GL_event_select field. 

The event select field is not affected.
• GL_event_select (bit 23:16): Selects one or more event counters to subject to specified command operations 

indicated by bits 2:0. Bit 16 corresponds to MSR_EMON_L3_CTR_CTL0, bit 23 corresponds to 
MSR_EMON_L3_CTR_CTL7.

• GL_event_status (bit 55:48): Indicates the overflow status of each event counters. Bit 48 corresponds to 
MSR_EMON_L3_CTR_CTL0, bit 55 corresponds to MSR_EMON_L3_CTR_CTL7.

In the event control field (bits 63:32) of each MSR, if the saturate control (bit 59, see Figure 21-62 for example) is 
set, the event logic forces the value FFFF_FFFFH into the event count field instead of incrementing it. 

21.6.8 Performance Monitoring (P6 Family Processor)
The P6 family processors provide two 40-bit performance counters, allowing two types of events to be monitored 
simultaneously. These can either count events or measure duration. When counting events, a counter increments 
each time a specified event takes place or a specified number of events takes place. When measuring duration, it 
counts the number of processor clocks that occur while a specified condition is true. The counters can count events 
or measure durations that occur at any privilege level. 
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NOTE
The performance-monitoring events found at https://perfmon-events.intel.com/ are intended to 
be used as guides for performance tuning. Counter values reported are not guaranteed to be 
accurate and should be used as a relative guide for tuning. Known discrepancies are documented 
where applicable.

The performance-monitoring counters are supported by four MSRs: the performance event select MSRs (PerfEvt-
Sel0 and PerfEvtSel1) and the performance counter MSRs (PerfCtr0 and PerfCtr1). These registers can be read 
from and written to using the RDMSR and WRMSR instructions, respectively. They can be accessed using these 
instructions only when operating at privilege level 0. The PerfCtr0 and PerfCtr1 MSRs can be read from any privi-
lege level using the RDPMC (read performance-monitoring counters) instruction.

NOTE
The PerfEvtSel0, PerfEvtSel1, PerfCtr0, and PerfCtr1 MSRs and the events listed for P6 family 
processors are model-specific for P6 family processors. They are not guaranteed to be available in 
other IA-32 processors.

21.6.8.1  PerfEvtSel0 and PerfEvtSel1 MSRs
The PerfEvtSel0 and PerfEvtSel1 MSRs control the operation of the performance-monitoring counters, with one 
register used to set up each counter. They specify the events to be counted, how they should be counted, and the 
privilege levels at which counting should take place. Figure 21-65 shows the flags and fields in these MSRs.

The functions of the flags and fields in the PerfEvtSel0 and PerfEvtSel1 MSRs are as follows:
• Event select field (bits 0 through 7) — Selects the event logic unit to detect certain microarchitectural 

conditions.
• Unit mask (UMASK) field (bits 8 through 15) — Further qualifies the event logic unit selected in the event 

select field to detect a specific microarchitectural condition. For example, for some cache events, the mask is 
used as a MESI-protocol qualifier of cache states.

• USR (user mode) flag (bit 16) — Specifies that events are counted only when the processor is operating at 
privilege levels 1, 2 or 3. This flag can be used in conjunction with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that events are counted only when the processor is 
operating at privilege level 0. This flag can be used in conjunction with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of events. The processor counts the 
number of deasserted to asserted transitions of any condition that can be expressed by the other fields. The 
mechanism is limited in that it does not permit back-to-back assertions to be distinguished. This mechanism 
allows software to measure not only the fraction of time spent in a particular state, but also the average length 
of time spent in such a state (for example, the time spent waiting for an interrupt to be serviced).

Figure 21-65.  PerfEvtSel0 and PerfEvtSel1 MSRs
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• PC (pin control) flag (bit 19) — When set, the processor toggles the PMi pins and increments the counter 
when performance-monitoring events occur; when clear, the processor toggles the PMi pins when the counter 
overflows. The toggling of a pin is defined as assertion of the pin for a single bus clock followed by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the processor generates an exception through its 
local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — This flag is only present in the PerfEvtSel0 MSR. When set, 
performance counting is enabled in both performance-monitoring counters; when clear, both counters are 
disabled.

• INV (invert) flag (bit 23) — When set, inverts the counter-mask (CMASK) comparison, so that both greater 
than or equal to and less than comparisons can be made (0: greater than or equal; 1: less than). Note if 
counter-mask is programmed to zero, INV flag is ignored.

• Counter mask (CMASK) field (bits 24 through 31) — When nonzero, the processor compares this mask to 
the number of events counted during a single cycle. If the event count is greater than or equal to this mask, the 
counter is incremented by one. Otherwise the counter is not incremented. This mask can be used to count 
events only if multiple occurrences happen per clock (for example, two or more instructions retired per clock). 
If the counter-mask field is 0, then the counter is incremented each cycle by the number of events that 
occurred that cycle.

21.6.8.2  PerfCtr0 and PerfCtr1 MSRs
The performance-counter MSRs (PerfCtr0 and PerfCtr1) contain the event or duration counts for the selected 
events being counted. The RDPMC instruction can be used by programs or procedures running at any privilege level 
and in virtual-8086 mode to read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this 
instruction to be restricted to only programs and procedures running at privilege level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not necessarily wait until 
all previous instructions have been executed before reading the counter. Similarly, subsequent instructions may 
begin execution before the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the performance counters, using 
the RDMSR and WRMSR instructions. A secure operating system would clear the PCE flag during system initializa-
tion to disable direct user access to the performance-monitoring counters, but provide a user-accessible program-
ming interface that emulates the RDPMC instruction.

The WRMSR instruction cannot arbitrarily write to the performance-monitoring counter MSRs (PerfCtr0 and 
PerfCtr1). Instead, the lower-order 32 bits of each MSR may be written with any value, and the high-order 8 bits 
are sign-extended according to the value of bit 31. This operation allows writing both positive and negative values 
to the performance counters.

21.6.8.3  Starting and Stopping the Performance-Monitoring Counters
The performance-monitoring counters are started by writing valid setup information in the PerfEvtSel0 and/or 
PerfEvtSel1 MSRs and setting the enable counters flag in the PerfEvtSel0 MSR. If the setup is valid, the counters 
begin counting following the execution of a WRMSR instruction that sets the enable counter flag. The counters can 
be stopped by clearing the enable counters flag or by clearing all the bits in the PerfEvtSel0 and PerfEvtSel1 MSRs. 
Counter 1 alone can be stopped by clearing the PerfEvtSel1 MSR.

21.6.8.4  Event and Time-Stamp Monitoring Software
To use the performance-monitoring counters and time-stamp counter, the operating system needs to provide an 
event-monitoring device driver. This driver should include procedures for handling the following operations:
• Feature checking.
• Initialize and start counters.
• Stop counters.
• Read the event counters.
• Read the time-stamp counter.
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The event monitor feature determination procedure must check whether the current processor supports the 
performance-monitoring counters and time-stamp counter. This procedure compares the family and model of the 
processor returned by the CPUID instruction with those of processors known to support performance monitoring. 
(The Pentium and P6 family processors support performance counters.) The procedure also checks the MSR and 
TSC flags returned to register EDX by the CPUID instruction to determine if the MSRs and the RDTSC instruction 
are supported.

The initialize and start counters procedure sets the PerfEvtSel0 and/or PerfEvtSel1 MSRs for the events to be 
counted and the method used to count them and initializes the counter MSRs (PerfCtr0 and PerfCtr1) to starting 
counts. The stop counters procedure stops the performance counters (see Section 21.6.8.3, “Starting and Stop-
ping the Performance-Monitoring Counters”).

The read counters procedure reads the values in the PerfCtr0 and PerfCtr1 MSRs, and a read time-stamp counter 
procedure reads the time-stamp counter. These procedures would be provided in lieu of enabling the RDTSC and 
RDPMC instructions that allow application code to read the counters. 

21.6.8.5  Monitoring Counter Overflow
The P6 family processors provide the option of generating a local APIC interrupt when a performance-monitoring 
counter overflows. This mechanism is enabled by setting the interrupt enable flag in either the PerfEvtSel0 or the 
PerfEvtSel1 MSR. The primary use of this option is for statistical performance sampling. 

To use this option, the operating system should do the following things on the processor for which performance 
events are required to be monitored:
• Provide an interrupt vector for handling the counter-overflow interrupt.
• Initialize the APIC PERF local vector entry to enable handling of performance-monitor counter overflow events.
• Provide an entry in the IDT that points to a stub exception handler that returns without executing any instruc-

tions.
• Provide an event monitor driver that provides the actual interrupt handler and modifies the reserved IDT entry 

to point to its interrupt routine.

When interrupted by a counter overflow, the interrupt handler needs to perform the following actions:
• Save the instruction pointer (EIP register), code-segment selector, TSS segment selector, counter values and 

other relevant information at the time of the interrupt.
• Reset the counter to its initial setting and return from the interrupt.

An event monitor application utility or another application program can read the information collected for analysis 
of the performance of the profiled application.

21.6.9 Performance Monitoring (Pentium Processors)
The Pentium processor provides two 40-bit performance counters, which can be used to count events or measure 
duration. The counters are supported by three MSRs: the control and event select MSR (CESR) and the perfor-
mance counter MSRs (CTR0 and CTR1). These can be read from and written to using the RDMSR and WRMSR 
instructions, respectively. They can be accessed using these instructions only when operating at privilege level 0. 

Each counter has an associated external pin (PM0/BP0 and PM1/BP1), which can be used to indicate the state of 
the counter to external hardware.

NOTES
The CESR, CTR0, and CTR1 MSRs and the events listed for Pentium processors are model-specific 
for the Pentium processor.

The performance-monitoring events found at https://perfmon-events.intel.com/ are intended to 
be used as guides for performance tuning. Counter values reported are not guaranteed to be 
accurate and should be used as a relative guide for tuning. Known discrepancies are documented 
where applicable.
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21.6.9.1  Control and Event Select Register (CESR)
The 32-bit control and event select MSR (CESR) controls the operation of performance-monitoring counters CTR0 
and CTR1 and the associated pins (see Figure 21-66). To control each counter, the CESR register contains a 6-bit 
event select field (ES0 and ES1), a pin control flag (PC0 and PC1), and a 3-bit counter control field (CC0 and CC1). 
The functions of these fields are as follows:
• ES0 and ES1 (event select) fields (bits 0-5, bits 16-21) — Selects (by entering an event code in the field) 

up to two events to be monitored.

• CC0 and CC1 (counter control) fields (bits 6-8, bits 22-24) — Controls the operation of the counter. 
Control codes are as follows:

000 — Count nothing (counter disabled).

001 — Count the selected event while CPL is 0, 1, or 2.

010 — Count the selected event while CPL is 3.

011 — Count the selected event regardless of CPL.

100 — Count nothing (counter disabled).

101 — Count clocks (duration) while CPL is 0, 1, or 2.

110 — Count clocks (duration) while CPL is 3.

111 — Count clocks (duration) regardless of CPL.
The highest order bit selects between counting events and counting clocks (duration); the middle bit enables 
counting when the CPL is 3; and the low-order bit enables counting when the CPL is 0, 1, or 2.

• PC0 and PC1 (pin control) flags (bits 9, 25) — Selects the function of the external performance-monitoring 
counter pin (PM0/BP0 and PM1/BP1). Setting one of these flags to 1 causes the processor to assert its 
associated pin when the counter has overflowed; setting the flag to 0 causes the pin to be asserted when the 
counter has been incremented. These flags permit the pins to be individually programmed to indicate the 
overflow or incremented condition. The external signaling of the event on the pins will lag the internal event by 
a few clocks as the signals are latched and buffered.

While a counter need not be stopped to sample its contents, it must be stopped and cleared or preset before 
switching to a new event. It is not possible to set one counter separately. If only one event needs to be changed, 
the CESR register must be read, the appropriate bits modified, and all bits must then be written back to CESR. At 
reset, all bits in the CESR register are cleared.

21.6.9.2  Use of the Performance-Monitoring Pins
When performance-monitor pins PM0/BP0 and/or PM1/BP1 are configured to indicate when the performance-
monitor counter has incremented and an “occurrence event” is being counted, the associated pin is asserted (high) 
each time the event occurs. When a “duration event” is being counted, the associated PM pin is asserted for the 

Figure 21-66.  CESR MSR (Pentium Processor Only)

31

PC1—Pin control 1
CC1—Counter control 1
ES1—Event select 1
PC0—Pin control 0

8 0

CC0—Counter control 0
ES0—Event select 0

1615212224

Reserved

9 56

ESOCC0
P
C
0

ES1CC1
P
C
1

2526 10
21-144 Vol. 3B



PERFORMANCE MONITORING
entire duration of the event. When the performance-monitor pins are configured to indicate when the counter has 
overflowed, the associated PM pin is asserted when the counter has overflowed.

When the PM0/BP0 and/or PM1/BP1 pins are configured to signal that a counter has incremented, it should be 
noted that although the counters may increment by 1 or 2 in a single clock, the pins can only indicate that the event 
occurred. Moreover, since the internal clock frequency may be higher than the external clock frequency, a single 
external clock may correspond to multiple internal clocks.

A “count up to” function may be provided when the event pin is programmed to signal an overflow of the counter. 
Because the counters are 40 bits, a carry out of bit 39 indicates an overflow. A counter may be preset to a specific 
value less then 240 − 1. After the counter has been enabled and the prescribed number of events has transpired, 
the counter will overflow. 

Approximately 5 clocks later, the overflow is indicated externally and appropriate action, such as signaling an inter-
rupt, may then be taken.

The PM0/BP0 and PM1/BP1 pins also serve to indicate breakpoint matches during in-circuit emulation, during which 
time the counter increment or overflow function of these pins is not available. After RESET, the PM0/BP0 and 
PM1/BP1 pins are configured for performance monitoring, however a hardware debugger may reconfigure these 
pins to indicate breakpoint matches.

21.6.9.3  Events Counted
Events that performance-monitoring counters can be set to count and record (using CTR0 and CTR1) are divided in 
two categories: occurrence and duration:
• Occurrence events — Counts are incremented each time an event takes place. If PM0/BP0 or PM1/BP1 pins 

are used to indicate when a counter increments, the pins are asserted each clock counters increment. But if an 
event happens twice in one clock, the counter increments by 2 (the pins are asserted only once).

• Duration events — Counters increment the total number of clocks that the condition is true. When used to 
indicate when counters increment, PM0/BP0 and/or PM1/BP1 pins are asserted for the duration.

21.7 COUNTING CLOCKS
The count of cycles, also known as clockticks, forms the basis for measuring how long a program takes to execute. 
Clockticks are also used as part of efficiency ratios like cycles per instruction (CPI). Processor clocks may stop 
ticking under circumstances like the following:
• The processor is halted when there is nothing for the CPU to do. For example, the processor may halt to save 

power while the computer is servicing an I/O request. When Intel Hyper-Threading Technology is enabled, both 
logical processors must be halted for performance-monitoring counters to be powered down.

• The processor is asleep as a result of being halted or because of a power-management scheme. There are 
different levels of sleep. In the some deep sleep levels, the time-stamp counter stops counting.

In addition, processor core clocks may undergo transitions at different ratios relative to the processor’s bus clock 
frequency. Some of the situations that can cause processor core clock to undergo frequency transitions include:
• TM2 transitions.
• Enhanced Intel SpeedStep Technology transitions (P-state transitions).

For Intel processors that support TM2, the processor core clocks may operate at a frequency that differs from the 
Processor Base frequency (as indicated by processor frequency information reported by CPUID instruction). See 
Section 21.7.2 for more detail.

Due to the above considerations there are several important clocks referenced in this manual:
• Base Clock — The frequency of this clock is the frequency of the processor when the processor is not in turbo 

mode, and not being throttled via Intel SpeedStep.
• Maximum Clock — This is the maximum frequency of the processor when turbo mode is at the highest point.
• Bus Clock — These clockticks increment at a fixed frequency and help coordinate the bus on some systems. 
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• Core Crystal Clock — This is a clock that runs at fixed frequency; it coordinates the clocks on all packages 
across the system.

• Non-halted Clockticks — Measures clock cycles in which the specified logical processor is not halted and is 
not in any power-saving state. When Intel Hyper-Threading Technology is enabled, ticks can be measured on a 
per-logical-processor basis. There are also performance events on dual-core processors that measure 
clockticks per logical processor when the processor is not halted.

• Non-sleep Clockticks — Measures clock cycles in which the specified physical processor is not in a sleep mode 
or in a power-saving state. These ticks cannot be measured on a logical-processor basis.

• Time-stamp Counter — See Section 19.17, “Time-Stamp Counter.”
• Reference Clockticks — TM2 or Enhanced Intel SpeedStep technology are two examples of processor 

features that can cause processor core clockticks to represent non-uniform tick intervals due to change of bus 
ratios. Performance events that counts clockticks of a constant reference frequency was introduced Intel Core 
Duo and Intel Core Solo processors. The mechanism is further enhanced on processors based on Intel Core 
microarchitecture.

Some processor models permit clock cycles to be measured when the physical processor is not in deep sleep (by 
using the time-stamp counter and the RDTSC instruction). Note that such ticks cannot be measured on a per-
logical-processor basis. See Section 19.17, “Time-Stamp Counter,” for detail on processor capabilities.

The first two methods use performance counters and can be set up to cause an interrupt upon overflow (for 
sampling). They may also be useful where it is easier for a tool to read a performance counter than to use a time 
stamp counter (the timestamp counter is accessed using the RDTSC instruction). 

For applications with a significant amount of I/O, there are two ratios of interest:
• Non-halted CPI — Non-halted clockticks/instructions retired measures the CPI for phases where the CPU was 

being used. This ratio can be measured on a logical-processor basis when Intel Hyper-Threading Technology is 
enabled.

• Nominal CPI — Time-stamp counter ticks/instructions retired measures the CPI over the duration of a 
program, including those periods when the machine halts while waiting for I/O.

21.7.1 Non-Halted Reference Clockticks
Software can use UnHalted Reference Cycles on either a general purpose performance counter using event mask 
0x3C and UMASK 0x01 or on fixed function performance counter 2 to count at a constant rate. These events count 
at a consistent rate irrespective of P-state, TM2, or frequency transitions that may occur to the processor. The 
UnHalted Reference Cycles event may count differently on the general purpose event and fixed counter.

21.7.2 Cycle Counting and Opportunistic Processor Operation
As a result of the state transitions due to opportunistic processor performance operation (see Chapter 16, “Power 
and Thermal Management”), a logical processor or a processor core can operate at frequency different from the 
Processor Base frequency. 

The following items are expected to hold true irrespective of when opportunistic processor operation causes state 
transitions:
• The time stamp counter operates at a fixed-rate frequency of the processor.
• The IA32_MPERF counter increments at a fixed frequency irrespective of any transitions caused by opportu-

nistic processor operation.
• The IA32_FIXED_CTR2 counter increments at the same TSC frequency irrespective of any transitions caused by 

opportunistic processor operation.
• The Local APIC timer operation is unaffected by opportunistic processor operation.
• The TSC, IA32_MPERF, and IA32_FIXED_CTR2 operate at close to the maximum non-turbo frequency, which is 

equal to the product of scalable bus frequency and maximum non-turbo ratio. 
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21.7.3 Determining the Processor Base Frequency
For Intel processors in which the nominal core crystal clock frequency is enumerated in CPUID.15H.ECX and the 
core crystal clock ratio is encoded in CPUID.15H (see Table 3-17 “Information Returned by CPUID Instruction”), the 
nominal TSC frequency can be determined by using the following equation:

Nominal TSC frequency = ( CPUID.15H.ECX[31:0] * CPUID.15H.EBX[31:0] ) ÷ CPUID.15H.EAX[31:0]

For Intel processors in which CPUID.15H.EBX[31:0] ÷ CPUID.0x15.EAX[31:0] is enumerated but CPUID.15H.ECX 
is not enumerated, Table 21-95 can be used to look up the nominal core crystal clock frequency.

21.7.3.1  For Intel® Processors Based on Sandy Bridge, Ivy Bridge, Haswell, and Broadwell 
Microarchitectures

The scalable bus frequency is encoded in the bit field MSR_PLATFORM_INFO[15:8] and the nominal TSC frequency 
can be determined by multiplying this number by a bus speed of 100 MHz.

21.7.3.2  For Intel® Processors Based on Nehalem Microarchitecture
The scalable bus frequency is encoded in the bit field MSR_PLATFORM_INFO[15:8] and the nominal TSC frequency 
can be determined by multiplying this number by a bus speed of 133.33 MHz.

21.7.3.3  For Intel Atom® Processors Based on Silvermont Microarchitecture (Including Intel Processors 
Based on Airmont Microarchitecture)

The scalable bus frequency is encoded in the bit field MSR_PLATFORM_INFO[15:8] and the nominal TSC frequency 
can be determined by multiplying this number by the scalable bus frequency. The scalable bus frequency is 
encoded in the bit field MSR_FSB_FREQ[2:0] for Intel Atom processors based on the Silvermont microarchitecture, 
and in bit field MSR_FSB_FREQ[3:0] for processors based on the Airmont microarchitecture; see Chapter 2, 
“Model-Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
4.

21.7.3.4  For Intel® Core™ 2 Processor Family and for Intel® Xeon® Processors Based on Intel Core 
Microarchitecture

For processors based on Intel Core microarchitecture, the scalable bus frequency is encoded in the bit field 
MSR_FSB_FREQ[2:0] at (0CDH), see Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 4. The maximum resolved bus ratio can be read from the 
following bit field:
• If XE operation is disabled, the maximum resolved bus ratio can be read in MSR_PLATFORM_ID[12:8]. It 

corresponds to the Processor Base frequency.

Table 21-95.  Nominal Core Crystal Clock Frequency

Processor Families/Processor Number Series1

NOTES:
1. For any processor in which CPUID.15H is enumerated and MSR_PLATFORM_INFO[15:8] (which gives the scalable bus frequency) is 

available, a more accurate frequency can be obtained by using CPUID.15H.

Nominal Core Crystal Clock Frequency

Intel® Xeon® Scalable Processor Family with CPUID signature 06_55H. 25 MHz

6th and 7th generation Intel® Core™ processors and Intel® Xeon® W Processor Family. 24 MHz

Next Generation Intel Atom® processors based on Goldmont Microarchitecture with 
CPUID signature 06_5CH (does not include Intel Xeon processors).

19.2 MHz
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• IF XE operation is enabled, the maximum resolved bus ratio is given in MSR_PERF_STATUS[44:40], it 
corresponds to the maximum XE operation frequency configured by BIOS.

XE operation of an Intel 64 processor is implementation specific. XE operation can be enabled only by BIOS. If 
MSR_PERF_STATUS[31] is set, XE operation is enabled. The MSR_PERF_STATUS[31] field is read-only.

21.8 IA32_PERF_CAPABILITIES MSR ENUMERATION
The layout of IA32_PERF_CAPABILITIES MSR is shown in Figure 21-67; it provides enumeration of a variety of 
interfaces:
• IA32_PERF_CAPABILITIES.LBR_FMT[bits 5:0]: encodes the LBR format, details are described in Section 

19.4.8.1.
• IA32_PERF_CAPABILITIES.PEBSTrap[6]: Trap/Fault-like indicator of PEBS recording assist; see Section 

21.6.2.4.2.
• IA32_PERF_CAPABILITIES.PEBSArchRegs[7]: Indicator of PEBS assist save architectural registers; see Section 

21.6.2.4.2.
• IA32_PERF_CAPABILITIES.PEBS_FMT[bits 11:8]: Specifies the encoding of the layout of PEBS records; see 

Section 21.6.2.4.2.
• IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[12]: Indicates IA32_DEBUGCTL.FREEZE_WHILE_SMM is 

supported if 1. See Section 21.8.1.
• IA32_PERF_CAPABILITIES.FULL_WRITE[13]: Indicates the processor supports IA32_A_PMCx interface for 

updating bits 32 and above of IA32_PMCx; see Section 21.2.8.
• IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14]: If set, the following is true:

— The IA32_PEBS_ENABLE MSR (address 3F1H) exists and all architecturally enumerated fixed and general-
purpose counters have corresponding bits in IA32_PEBS_ENABLE that enable generation of PEBS records. 
The general-purpose counter bits start at bit IA32_PEBS_ENABLE[0], and the fixed counter bits start at bit 
IA32_PEBS_ENABLE[32].

— The format of the PEBS record is enumerated by IA32_PERF_CAPABILITIES.PEBS_FMT; see Section 
21.6.2.4.2.

— Extended PEBS is supported. All counters support the PEBS facility, and all events (both precise and non-
precise) can generate PEBS records when PEBS is enabled for that counter. Note that not all events may be 
available on all counters.

— Adaptive PEBS is supported. The PEBS_DATA_CFG MSR (address 3F2H) and adaptive record enable bits 
(IA32_PERFEVTSELx.Adaptive_Record and IA32_FIXED_CTR_CTRL.FCx_Adaptive_Record) are supported. 
The definition of the PEBS_DATA_CFG MSR, including which bits are supported and how they affect the 
record, is enumerated by IA32_PERF_CAPABILITIES.PEBS_FMT. See Section 21.9.2.3.

— NOTE: Software is recommended to feature PEBS Baseline when the following is true: IA32_PERF_CAPA-
BILITIES.PEBS_BASELINE[14] && IA32_PERF_CAPABILITIES.PEBS_FMT[11:8] ≥ 4.

• IA32_PERF_CAPABILITIES.PERF_METRICS_AVAILABLE[15]: If set, indicates that the architecture provides 
built in support for TMA L1 metrics through the PERF_METRICS MSR. See Section 21.3.9.3.

• IA32_PERF_CAPABILITIES.PEBS_OUTPUT_PT_AVAIL[16]: If set on parts that enumerate support for Intel PT 
(CPUID.0x7.0.EBX[25]=1), setting IA32_PEBS_ENABLE.PEBS_OUTPUT to 01B will result in PEBS output being 
written into the Intel PT trace stream. See Section 21.5.5.2.

• IA32_PERF_CAPABILITIES.PEBS_TIMING_INFO[17]: If set, indicates that the processor supports the Timed 
PEBS capability. See Section 21.9.9.

• IA32_PERF_CAPABILITIES.RDPMC_METRICS_CLEAR[19]: If set, indicates that the processor supports RDPMC 
Metrics Clear Mode. 
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21.8.1 Filtering of SMM Handler Overhead
When performance monitoring facilities and/or branch profiling facilities (see Section 19.5, “Last Branch, Interrupt, 
and Exception Recording (Intel® Core™ 2 Duo and Intel Atom® Processors)”) are enabled, these facilities capture 
event counts, branch records and branch trace messages occurring in a logical processor. The occurrence of inter-
rupts, instruction streams due to various interrupt handlers all contribute to the results recorded by these facilities.

If CPUID.01H:ECX.PDCM[bit 15] is 1, the processor supports the IA32_PERF_CAPABILITIES MSR. If IA32_PERF_-
CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is 1, the processor supports the ability for system software using 
performance monitoring and/or branch profiling facilities to filter out the effects of servicing system management 
interrupts. 

If the FREEZE_WHILE_SMM capability is enabled on a logical processor and after an SMI is delivered, the processor 
will clear all the enable bits of IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and 
disable LBR, BTF, TR, and BTS fields of IA32_DEBUGCTL before transferring control to the SMI handler. 

The enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of IA32_DEBUGCTL prior to SMI 
delivery will be restored , after the SMI handler issues RSM to complete its servicing. 

It is the responsibility of the SMM code to ensure the state of the performance monitoring and branch profiling facil-
ities are preserved upon entry or until prior to exiting the SMM. If any of this state is modified due to actions by the 
SMM code, the SMM code is required to restore such state to the values present at entry to the SMM handler.

System software is allowed to set IA32_DEBUGCTL.FREEZE_WHILE_SMM[bit 14] to 1 only supported as indicated 
by IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] reporting 1.

21.9 PEBS FACILITY

21.9.1 Extended PEBS
The Extended PEBS feature supports Processor Event Based Sampling (PEBS) on all counters, both fixed function 
and general purpose; and all performance monitoring events, both precise and non-precise. PEBS can be enabled 
for the general purpose counters using PEBS_EN_PMCi bits of IA32_PEBS_ENABLE (i = 0, 1,..m). PEBS can be 
enabled for 'i' fixed function counters using the PEBS_EN_FIXEDi bits of IA32_PEBS_ENABLE (i = 0, 1, ...n).

Figure 21-67.  Layout of IA32_PERF_CAPABILITIES MSR 
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A PEBS record due to a precise event will be generated after an instruction that causes the event when the counter 
has already overflowed. A PEBS record due to a non-precise event will occur at the next opportunity after the 
counter has overflowed, including immediately after an overflow is set by an MSR write.

Currently, IA32_FIXED_CTR0 counts instructions retired and is a precise event. IA32_FIXED_CTR1, IA32_-
FIXED_CTR2 … IA32_FIXED_CTRm count as non-precise events.

The Applicable Counter field in the Basic Info Group of the PEBS record indicates which counters caused the PEBS 
record to be generated. It is in the same format as the enable bits for each counter in IA32_PEBS_ENABLE. As an 
example, an Applicable Counter field with bits 2 and 32 set would indicate that both general purpose counter 2 and 
fixed function counter 0 generated the PEBS record. 

To properly use PEBS for the additional counters, software will need to set up the counter reset values in PEBS 
portion of the DS_BUFFER_MANAGEMENT_AREA data structure that is indicated by the IA32_DS_AREA register. 
The layout of the DS_BUFFER_MANAGEMENT_AREA is shown in Figure 21-69. When a counter generates a PEBS 
records, the appropriate counter reset values will be loaded into that counter. In the above example where general 
purpose counter 2 and fixed function counter 0 generated the PEBS record, general purpose counter 2 would be 
reloaded with the value contained in PEBS GP Counter 2 Reset (offset 50H) and fixed function counter 0 would be 
reloaded with the value contained in PEBS Fixed Counter 0 Reset (offset 80H).

Figure 21-68.  Layout of IA32_PEBS_ENABLE MSR
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Extended PEBS support debuts on Intel Atom® processors based on the Goldmont Plus microarchitecture and 
future Intel® Core™ processors based on the Ice Lake microarchitecture.

21.9.2 Adaptive PEBS
The PEBS facility has been enhanced to collect the following CPU state in addition to GPRs, EventingIP, TSC, and 
memory access related information collected by legacy PEBS:
• XMM registers
• LBR records (TO/FROM/INFO)
• Counters Snapshotting

The PEBS record is restructured where fields are grouped into Basic group, Memory group, GPR group, XMM group, 
LBR group, and Counters group. A new register MSR_PEBS_DATA_CFG provides software the capability to select 
data groups of interest and thus reduce the record size in memory and record generation latency. Hence, a PEBS 
record's size and layout vary based on the selected groups. The MSR also allows software to select LBR depth for 
branch data records.

Figure 21-69.  PEBS Programming Environment
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By default, the PEBS record will only contain the Basic group. Optionally, each counter can be configured to 
generate a PEBS records with the groups specified in MSR_PEBS_DATA_CFG.

Details and examples for the Adaptive PEBS capability follow below.

21.9.2.1  Adaptive_Record Counter Control
IA32_PERFEVTSELx.Adaptive_Record[34]: If this bit is set and IA32_PEBS_ENABLE.PEBS_EN_PMCx is set for the 
corresponding GP counter, an overflow of PMCx results in generation of an adaptive PEBS record with state infor-
mation based on the selections made in MSR_PEBS_DATA_CFG. If this bit is not set, a basic record is generated.

IA32_FIXED_CTR_CTRL.FCx_Adaptive_Record: If this bit is set and IA32_PEBS_ENABLE.PEBS_EN_FIXEDx is set 
for the corresponding Fixed counter, an overflow of FixedCtrx results in generation of an adaptive PEBS record with 
state information based on the selections made in MSR_PEBS_DATA_CFG. If this bit is not set, a basic record is 
generated.

Figure 21-70.  Layout of IA32_PerfEvtSelX MSR Supporting Adaptive PEBS
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21.9.2.2  PEBS Record Format
The data fields in the PEBS record are aggregated into five groups which are described in the sub-sections below. 
Processors that support Adaptive PEBS implement a new MSR called MSR_PEBS_DATA_CFG which allows software 
to select the data groups to be captured. The data groups are not placed at fixed locations in the PEBS record, but 
are positioned immediately after one another, thus making the record format/size variable based on the groups 
selected.

21.9.2.2.1  Basic Info

The Basic group contains essential information for software to parse a record along with several critical fields. It is 
always collected.

Figure 21-71.  Layout of IA32_FIXED_CTR_CTRL MSR Supporting Adaptive PEBS

Table 21-96.  Basic Info Group
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21.9.2.2.2  Memory Access Info

This group contains the legacy PEBS memory-related fields; see Section 21.3.1.1.2. 

Beginning with 12th generation Intel Core processors, the memory access information group has been updated. 
New fields added are shaded gray in Table 21-98.

Instruction Pointer [63:0] This field reports the Eventing Instruction Pointer (EventingIP) of the retired 
instruction that triggered the PEBS record generation. Note that this field is 
different than R/EIP which records the instruction pointer of the next instruction 
to be executed after record generation. The legacy R/EIP field has been removed.

Applicable Counters [63:0] The Applicable Counters field indicates which counters triggered the generation of 
the PEBS record, linking the record to specific events. This allows software to 
correlate the PEBS record entry properly with the instruction that caused the 
event, even when multiple counters are configured to generate PEBS records and 
multiple bits are set in the field.

TSC [63:0] This field provides the time stamp counter value when the PEBS record was 
generated.

Table 21-97.  Memory Access Info Group

Field Name Bit Width Description

Memory Access Address [63:0] This field contains the linear address of the source of the load, or linear address of 
the destination (target) of the store. This value is written as a 64-bit address in 
canonical form.

Memory Auxiliary Info [63:0] When a MEM_TRANS_RETIRED.* event is configured in a General Purpose counter, 
this field contains an encoded value indicating the memory hierarchy source which 
satisfied the load. These encodings are detailed in Table 21-5 and Table 21-14. If 
the PEBS assist was triggered for a store uop, this field will contain information 
indicating the status of the store, as detailed in Table 21-15.

Memory Access Latency1

NOTES:
1. In certain conditions, high latencies in fields under “Memory Access Latency” may be observed even when the Data Src of the “Mem-

ory Auxiliary Info” field indicates a close source.

[63:0] When a MEM_TRANS_RETIRED.* event is configured in a General Purpose counter, 
this field contains the latency to service the load in core clock cycles.

TSX Auxiliary Info [31:0] This field contains the number of cycles in the last TSX region, regardless of 
whether that region had aborted or committed.

[63:32] This field contains the abort details. Refer to Section 21.3.6.5.1.

Table 21-96.  Basic Info Group (Contd.)
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To determine which fields are supported for certain performance monitoring events, consult the Memory Info attri-
bute in the event lists at https://download.01.org/perfmon/.

NOTE
There may be additional block reasons, even if Data-Blk and Address-Blk are both clear, e.g., non-
optimal instruction latency.
On P-core, the new Data-Blk and Address-Blk bits require the event 
LD_BLOCKS.STORE_FORWARD (r8203) to be configured in a programmable counter.

21.9.2.2.3  GPRs

This group is captured when the GPR bit is enabled in MSR_PEBS_DATA_CFG. GPRs are always 64 bits wide. If they 
are selected for non 64-bit mode, the upper 32-bit of the legacy RAX - RDI and all contents of R8-15 GPRs will be 
filled with 0s. In 64bit mode, the full 64 bit value of each register is written.

Table 21-98.  Updated Memory Access Info Group 

Field Name Sub-field Name Bits Description

Access Address 
(offset 0H)

DLA [63:0] This field reports the data linear address (DLA) of the memory access in 
canonical form. 

A zero value indicates the processor could not retrieve the address of the 
particular access.

Access Info 

(offset 8H)

Data Src [3:0] An encoded value indicating the memory hierarchy source which satisfied the 
access. These encodings are detailed in Table 21-5.

A zero value indicates the processor could not retrieve the data source of the 
particular access.

STLB-miss [4] A value of 1 indicates the access has missed the Second-level TLB (STLB).

Is-Lock [5] A value of 1 indicates the access was part of a locked (atomic) memory trans-
action.

Data-Blk [6] A value of 1 indicates the load was blocked since its data could not be forwarded 
from a preceding store.

Address-Blk [7] A value of 1 indicates the load was blocked due to potential address conflict with 
a preceding store.

Access Latency 

(offset 10H)

Instruction 
Latency

[15:0] Measured instruction latency in core cycles. 

For loads, the latency starts by the dispatch of the load operation for execution 
and lasts until completion of the instruction it belongs to. 

This field includes the entire latency including time for data-dependency 
resolution or TLB lookups.

Cache Latency [47:32] Measured cache access latency in core cycles. 

For loads, the latency starts by the actual cache access until the data is returned 
by the memory subsystem. 

For stores, the latency starts when the demand write accesses the L1 data-
cache and lasts until the cacheline write is completed in the memory subsystem.

This field does not include non-data-cache latency such as memory ordering 
checks or TLB lookups.

TSX

(offset 18H)

Transaction 
Latency

[31:0] This field contains the number of cycles in the last TSX region, regardless of 
whether that region had aborted or committed.

Abort Info [63:32] This field contains the abort details. Refer to Section 21.3.6.5.1.
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The order differs from legacy. The table below shows the order of the GPRs in Ice Lake microarchitecture.

The machine state reported in the PEBS record is the committed machine state immediately after the instruction 
that triggers PEBS completes.

For instance, consider the following instruction sequence:

MOV eax, [eax]; triggers PEBS record generation

NOP

If the mov instruction triggers PEBS record generation, the EventingIP field in the PEBS record will report the 
address of the mov, and the value of EAX in the PEBS record will show the value read from memory, not the target 
address of the read operation. And the value of RIP will contain the linear address of the nop.

21.9.2.2.4  XMMs

This group is captured when the XMM bit is enabled in MSR_PEBS_DATA_CFG and SSE is enabled. If SSE is not 
enabled, the fields will contain zeroes. XMM8-XMM15 will also contain zeroes if not in 64-bit mode.

Table 21-99.  GPRs in Ice Lake Microarchitecture

Field Name Bit Width

RFLAGS [63:0]

RIP [63:0]

RAX [63:0]

RCX* [63:0]

RDX* [63:0]

RBX* [63:0]

RSP* [63:0]

RBP* [63:0]

RSI* [63:0]

RDI* [63:0]

R8 [63:0]

... ...

R15 [63:0]

Table 21-100.  XMMs

Field Name Bit Width

XMM0 [127:0]

... ...

XMM15 [127:0]
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21.9.2.2.5  LBRs

To capture LBR data in the PEBS record, the LBR bit in MSR_PEBS_DATA_CFG must be enabled. The number of LBR 
entries included in the record can be configured in the LBR_entries field of MSR_PEBS_DATA_CFG.

LBR entries are recorded into the record starting at LBR[TOS] and proceeding to LBR[TOS-1] and following. Note 
that LBR index is modulo the number of LBRs supporting on the processor.

21.9.2.3  MSR_PEBS_DATA_CFG
Bits in MSR_PEBS_DATA_CFG can be set to include data field blocks/groups into adaptive records. The Basic Info 
group is always included in the record. Additionally, the number of LBR entries included in the record is configu-
rable. 

Beginning with the Intel Series 2 Core Ultra processor, which counters are included in the Counters group is config-
urable. See Figure 21-73.

Table 21-101.  LBRs

Field Name Bit Width Description

LBR[].FROM [63:0] Branch from address.

LBR[].TO [63:0] Branch to address.

LBR[].INFO [63:0] Other LBR information, like timing. This field is described in more 
detail in Section 19.12.1, “MSR_LBR_INFO_x MSR.”

Figure 21-72.  Legacy MSR_PEBS_DATA_CFG

MSR_PEBS_DATA_CFG 
Address: 3F2H
Scope: Thread

Reset value: 0x00000000 .00000000
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Figure 21-73.  MSR_PEBS_DATA_CFG in PEBS_FMT=6

Table 21-102.  MSR_PEBS_CFG Programming1 

Bit Name Bit Index Access Description Availability

Memory Info 0 R/W Setting this bit will capture memory information 
such as the linear address, data source and latency 
of the memory access in the PEBS record.

PEBS_FMT=4 and later

GPRs 1 R/W Setting this bit will capture the contents of the 
General Purpose registers in the PEBS record.

PEBS_FMT=4 and later

XMMs 2 R/W Setting this bit will capture the contents of the 
XMM registers in the PEBS record.

PEBS_FMT=4 and later

LBRs 3 R/W Setting this bit will capture LBR TO, FROM, and INFO 
in the PEBS record.

PEBS_FMT=4 and later

Counters 4 R/W Setting this bit will allow recording of the 
IA32_PMCx MSRs and the IA32_FIXED_CTRx 
counters. The Include_PMCx and 
Include_Fixed_CTRx bits are also set.

PEBS_FMT=62 

Metrics 5 R/W Setting this bit will allow recording and clearing of 
the MSR_PERF_METRICS register (when the 
Include_Fixed_CTR3 bit is also set).

PEBS_FMT=62 && 
PERF_METRICS_AVAILABLE
=1

Reserved3 23:6 NA Reserved.
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21.9.2.3.6  Counters and Metrics Group

To capture the counters group, either the COUNTERS bit or the METRICS bit must be enabled in 
MSR_PEBS_DATA_CFG. The group allows recording of the IA32_PMCx MSRs, IA32_FIXED_CTRx MSRs, and the 
Performance Metrics. 
The counters group first captures a 128-bit header with the bit vector of the counters that are captured later. The 
format of the counters header and the payload is shown in Table 21-103.
The group is available starting with IA32_PERF_CAPABILITIES.PEBS_FMT of 6. Additionally, the group is available 
in a subset of processors with a CPUID signature value of DisplayFamily_DisplayModel 06_C5H or 06_C6H (though 
they report IA32_PERF_CAPABILITIES.PEBS_FMT as 5).

LBR Entries 31:24 R/W Set the field to the desired number of entries minus 
1. For example, if the LBR_entries field is 0, a single 
entry will be included in the record. To include 32 
LBR entries, set the LBR_entries field to 31 (0x1F). 
To ensure all PEBS records are 16-byte aligned, it is 
recommended to select an even number of LBR 
entries (programmed into LBR_entries as an odd 
number).

PEBS_FMT=4 and later

Include_PMCx 47:32 R/W A bit mask of the general-purpose counters that are 
allowed to be captured into the PEBS record. Note 
that only bits that match reporting of 
CPUID.(EAX=23H, ECX=01H):EAX are writable.

PEBS_FMT=62

Include_FIXED_CTRx 55:48 R/W A bit mask of the fixed-function counters that are 
allowed to be captured into the PEBS record. Note 
that only bits that match reporting of 
CPUID.(EAX=23H, ECX=01H):EBX are writable.

PEBS_FMT=62

Reserved 63:56 NA Reserved.

NOTES:
1. A write to the MSR will be ignored when IA32_MISC_ENABLE.PERFMON_AVAILABLE is zero (default).
2. These fields are available starting with the IA32_PERF_CAPABILITIES.PEBS_FMT of 6 in addition to a subset of processors with a

CPUID signature value of DisplayFamily_DisplayModel 06_C5H or 06_C6H (though they report IA32_PERF_CAPABILITIES.PEBS_FMT
as 5). 

3. Writing to the reserved bits will cause a GP fault.

Table 21-103.  Counters Group

Field Name Sub-Field Name Bit Width Description

Counters Group 
Header

PMC BitVector [31:0] Bit vector of IA32_PMCx MSRs. IA32_PMCx is recorded if bit x is 
set.

FIXED_CTR BitVector [31:0] Bit vector of IA32_FIXED_CTRx MSRs. IA32_FIXED_CTRx is 
recorded if bit x is set.

Metrics BitVector [31:0] Bit vector of the performance metrics counters.

Reserved [31:0] Reserved.

Table 21-102.  MSR_PEBS_CFG Programming1  (Contd.)
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IA32_PMCx will be captured if both Counters and MSR_PEBS_DATA_CFG bit 32 + x are set. In this case, the PMC 
BitVector field bit x will be set too.
IA32_FIXED_CTRx will be captured if both Counters and MSR_PEBS_DATA_CFG bit 48 + x are set. In this case, the 
FIXED_CTR BitVector field bit x will be set too.
The performance metrics will be recorded if both Metrics and MSR_PEBS_DATA_CFG bit 51 (the bit used for 
IA32_FIXED_CTR3) are set. The Metrics record will have two 64-bit fields, MSR_PERF_METRICS and the 
PERF_METRICS_BASE that is derived from IA32_FIXED_CTR3. In this case, the Metrics BitVector will be 3. Note 
that MSR_PERF_METRICS and the IA32_FIXED_CTR3 MSR will be cleared after they are recorded. 
Size of the group can be calculated in bytes by: 16 + popcount(BitVectors[127:0]) * 8.

21.9.2.4  PEBS Record Examples
The following example shows the layout of the PEBS record when all data groups are selected (all valid bits in 
MSR_PEBS_DATA_CFG are set) and maximum number of LBRs are selected. There are no gaps in the PEBS record 
when a subset of the groups are selected, thus keeping the layout compact. Implementations that do not support 
some features will have to pad zeroes in the corresponding fields.

Counters/Metrics 
Values

PMCx [63:0] PMCx will be captured if PMC BitVector x is set.

...

FIXED CTRx [63:0] FIXED_CTRx will be captured if FIXED_CTRx BitVector x is set.

...

Metrics Base [63:0] The performance metrics base, mapped to IA32_FIXED_CTR3, if 
Metrics BitVector bit 0 is set.

Metrics Data [63:0] MSR_PERF_METRICS, if Metrics BitVector bit 1 is set.

Table 21-104.  PEBS Record Example 1 

Offset Group Name Field Name Legacy Name (If Different)

0x0 Basic Info Record Format New

Record Size New

0x8 Instruction Pointer EventingRIP

0x10 Applicable Counters

0x18 TSC

0x20 Memory Info Memory Access Address DLA

0x28 Memory Auxiliary Info DATA_SRC

0x30 Memory Access Latency Load Latency

0x38 TSX Auxiliary Info HLE Information

Table 21-103.  Counters Group (Contd.)

Field Name Sub-Field Name Bit Width Description
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The following example shows the layout of the PEBS record when Basic, GPR, and LBR group with 3 LBR entries are 
selected.

0x40 GPRs RFLAGS

0x48 RIP

0x50 RAX

... ...

0x88 RDI

0x90 R8

... ...

0xC8 R15

0xD0 XMMs XMM0 New

... ...

0x1C0 XMM15

0x1D0 LBRs LBR[TOS].FROM New

0x1D8 LBR[TOS].TO

0x1E0 LBR[TOS].INFO

... ...

0x4B8 LBR[TOS +1].FROM

0x4C0 LBR[TOS +1].TO

0x4C8 LBR[TOS +1].INFO

Table 21-104.  PEBS Record Example 1  (Contd.)
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21.9.3 Precise Distribution of Instructions Retired (PDIR) Facility
Precise Distribution of Instructions Retired Facility is available via PEBS on some microarchitectures. Refer to 
Section 21.3.4.4.4. Counters that support PDIR also vary. See the processor specific sections for availability.

21.9.4 Reduced Skid PEBS
For precise events, upon triggering a PEBS assist, there will be a finite delay between the time the counter over-
flows and when the microcode starts to carry out its data collection obligations. The Reduced Skid mechanism miti-
gates the “skid” problem by providing an early indication of when the counter is about to overflow, allowing the 
machine to more precisely trap on the instruction that actually caused the counter overflow thus greatly reducing 
skid.

This mechanism is a superset of the PDIR mechanism available in the Sandy Bridge microarchitecture. See Section 
21.3.4.4.4

In the Goldmont microarchitecture, the mechanism applies to all precise events including, INST_RETIRED, except 
for UOPS_RETIRED. However, the Reduced Skid mechanism is disabled for any counter when the INV, ANY, E, or 
CMASK fields are set.

Table 21-105.  PEBS Record Example 2

Offset Group Name Field Name Legacy Name (If Different)

0x0 Basic Info Record Format New

Record Size New

0x8 Instruction Pointer EventingRIP

0x10 Applicable Counters

0x18 TSC

0x20 GPRs RFLAGS

0x28 RIP

0x30 RAX

... ...

0x68 RDI

0x70 R8

... ...

0xA8 R15

0xB0 LBRs LBR[TOS].FROM New

0xB8 LBR[TOS].TO

0xC0 LBR[TOS].INFO

... ...

0xE0 LBR[TOS +1].FROM

0xE8 LBR[TOS +1].TO

0xF0 LBR[TOS +1].INFO
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With Reduced Skid PEBS, the skid is precisely one event occurrence. Hence if counting INST_RETIRED, PEBS will 
indicate the instruction that follows that which caused the counter to overflow.

For the Reduced Skid mechanism to operate correctly, the performance monitoring counters should not be recon-
figured or modified when they are running with PEBS enabled. The counters need to be disabled (e.g., via 
IA32_PERF_GLOBAL_CTRL MSR) before changes to the configuration (e.g., what event is specified in IA32_PERFE-
VTSELx or whether PEBS is enabled for that counter via IA32_PEBS_ENABLE) or counter value (MSR write to 
IA32_PMCx and IA32_A_PMCx).

21.9.5 EPT-Friendly PEBS
The 3rd generation Intel Xeon Scalable Family of processors based on Ice Lake microarchitecture (and later proces-
sors) and the 12th generation Intel Core processor (and later processors) support VMX guest use of PEBS when the 
DS Area (including the PEBS Buffer and DS Management Area) is allocated from a paged pool of EPT pages. In such 
a configuration PEBS DS Area accesses may result in VM exits (e.g., EPT violations due to “lazy” EPT page-table 
entry propagation), and in such cases the PEBS record will not be lost but instead will “skid” to after the subsequent 
VM Entry back to the guest. For precise events the guest will observe that the record skid by one event occurrence, 
while for non-precise events the record will skid by one instruction.

21.9.6 PDist: Precise Distribution
PDist eliminates any skid or shadowing effects from PEBS. With PDist, the PEBS record will be generated precisely 
upon completion of the instruction or operation that causes the counter to overflow (there is no “wait for next 
occurrence” by default).

PDist is supported by selected counters, and is only supported when those counters are programmed to count 
select precise events1. The legacy PEBS behavior applies to counters that do not support PDist, unless specified 
otherwise. PDist requires that the INV, ANY, E, EQ, and CMASK fields are cleared. Which counters support PDist, 
and which events are supported for PDist, is model-specific. Further, the counter reload value must not be less than 
256 for PDist to operate.

For the PDist mechanism to operate correctly, the performance monitoring counters should not be reconfigured or 
modified when they are running with PEBS enabled. The counters need to be disabled (e.g., via 
IA32_PERF_GLOBAL_CTRL MSR) before changes to the configuration (e.g., what event is specified in 
IA32_PERFEVTSELx or IA32_FIXED_CTR_CTRL or whether PEBS is enabled for that counter via IA32_PEBS_EN-
ABLE) or counter value (MSR write to IA32_PMCx and IA32_A_PMCx or IA32_FIXED_CTRx).

21.9.7 Load Latency Facility
The load latency facility provides software a means to characterize the latencies of memory load operations to 
different levels of cache/memory hierarchy. This facility requires a processor supporting the enhanced PEBS record 
format in the PEBS buffer. 

Beginning with 12th generation Intel Core processors, the load latency facility supports all fields in Table 21-98, 
“Updated Memory Access Info Group,” in addition to the Memory Access Address field:
• The Instruction Latency field measures the load latency from the load's first dispatch until final data 

writeback from the memory subsystem. The latency is reported for retired demand load operations and in core 
cycles (it accounts for re-dispatches and data dependencies).

• The Cache Latency field measures the subset of cache access latency in core cycles. It starts from the actual 
cache access until the data is returned by the memory subsystem The latency is reported for retired demand 
load operations in core cycles (it does not account for memory ordering blocks).

• The Data Source field is an encoded value indicates the origin of the data obtained by the load instruction. The 
encoding is shown in Table 21-106. In the descriptions, local memory refers to system memory physically 

1. To determine whether an event is precise or supports PDist, consult the relevant attribute in the event lists at https://down-
load.01.org/perfmon/.
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attached to a processor package, and remote memory refers to system memory or cache physically attached 
to another processor package (in a server product).

• Through the Access Info field, load latency features binary indications on certain blocks that the load 
operation may have encountered. Refer to STLB-miss, Is-Lock, Data-Blk and Address-Blk fields in Table 21-98.

NOTE
For loads triggered by software prefetch instructions, the cache related fields including Data Source 
and Cache Latency, report values as if the load was an L1 cache hit (the prefetch completes without 
waiting for data return, for performance reasons).

Table 21-106.  Data Source Encoding for Memory Accesses (Ice Lake and Later Microarchitectures) 

Encoding [3:0] Description

00H Unknown Data Source (the processor could not retrieve the origin of this request).

01H L1 HIT. This request was satisfied by the L1 data cache. (Minimal latency core cache hit.)

02H FB HIT. This request was merged into an outstanding cache miss to same cache-line address.

03H L2 HIT. This request was satisfied by the L2 cache.

04H L3 HIT. This request was satisfied by the L3 cache with no coherency actions performed (snooping).

05H XCORE MISS. This request was satisfied by the L3 cache but involved a coherency check in some sibling core(s).

06H XCORE HIT. This request was satisfied by the L3 cache but involved a coherency check that hit a non-modified copy 
in a sibling core.

07H XCORE FWD. This request was satisfied by a sibling core where either a modified (cross-core HITM) or a non-
modified (cross-core FWD) cache-line copy was found.

08H Local Far Memory. This request has missed the L3 cache and was serviced by local far memory.

09H Remote Far Memory. This request has missed the L3 cache and was serviced by remote far memory.

0AH Local Near Memory. This request has missed the L3 cache and was serviced by local near memory.

0BH Remote Near Memory. This request has missed the L3 cache and was serviced by remote near memory.

0CH Remote FWD. This request has missed the L3 cache and a non-modified cache-line copy was forwarded from a 
remote cache.

0DH Remote HITM. This request has missed the L3 cache and a modified cache-line was forwarded from a remote cache.

0EH I/O. Request of input/output operation.

0FH UC. The request was to uncacheable memory.

Table 21-107.  Data Source Encoding for Memory Accesses (Lion Cove and Next Generation Microarchitectures) 

Encoding [4:0] Description

00H Unknown Data Source (the processor could not retrieve the origin of this request).

01H or 02H L1 HIT. This request was satisfied by the L1 data cache. (Minimal latency core cache hit.)

03H FB merge. L1 mishandling buffer.

05H L2 HIT. This request was satisfied by the L2 cache.

06H XQ merge. L2 mishandling buffer.

08H L3 HIT. This request was satisfied by the L3 cache.

0CH L3 Hit, x-core forward.

0DH L3 Hit, x-core modified.

0FH L3 Miss, x-core modified.
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To use this feature, software must complete the following steps:
• Complete the PEBS configuration steps.
• Set the Memory Info bit in the PEBS_DATA_CFG MSR.
• One of the relevant IA32_PERFEVTSELx MSRs is programmed to specify the event unit MEM_TRANS_RE-

TIRED.LOAD_LATENCY (IA32_PerfEvtSelX[15:0] = 1CDH). The corresponding counter, IA32_PMCx, will 
accumulate event counts for architecturally visible loads which exceed the programmed latency threshold 
specified separately in an MSR. Stores are ignored when this event is programmed. The CMASK or INV fields of 
the IA32_PerfEvtSelX register used for counting load latency must be 0. Writing other values will result in 
undefined behavior. 

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired latency threshold in core clock 
cycles. Loads with instruction latency greater than this value are eligible for counting and PEBS data reporting. 
The minimum value that may be programmed in this register is 1.

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corresponding IA32_PMCx counter 
register.

Refer to Section 21.3.4.4.2 for further implementation details of Load Latency.

21.9.8 Store Latency Facility
Store latency support is available on the 12th generation Intel Core processor. Store latency is a PEBS extension 
that provides a means to profile store memory accesses in the system. It complements the load latency facility.

Store latency leverages the PEBS facility where it can provide additional information about sampled stores. The 
additional information includes the data address, memory auxiliary information, and the cache latency of the store 
access. Normal stores (those preceded with a read-for-ownership) as well as streaming stores are supported by 
the store latency facility.

Memory store operations typically do not limit performance since they update the memory with no operation that 
directly depends on them. Thus, data out of this facility should be carefully used once stores are suspected as a 
performance limiter; for example, once the TMA node of Backend_Bound.Memory_Bound.Store_Bound is 
flagged1. 

To enable the store latency facility, software must complete the following steps: 
• Complete the PEBS configuration steps.
• Set the Memory Info bit in the PEBS_DATA_CFG MSR.
• Program the MEM_TRANS_RETIRED.STORE_SAMPLE event on general-purpose performance-monitoring 

counter 0 (IA32_PERFEVTSEL0[15:0] = 2CDH).
• Setup the PEBS buffer to hold at least two records, setting both ‘PEBS Absolute Maximum’ and ‘PEBS Interrupt 

Threshold’, should any other counter be used by PEBS (that is whenever IA32_PEBS_ENABLE[x] ≠ 0 for x ≠ 0).
• Set IA32_PEBS_ENABLE[0].

The store latency information is written into a PEBS record as shown in Table 21-49. 

The store latency relies on the PEBS facility, so the PEBS configuration must be completed first. Unlike load latency, 
there is no option to filter on a subset of stores that exceed a certain threshold.

10H L3 Miss, MSC Hit (memory-side cache).

11H L3 Miss, memory.

1. For more details about the method, refer to Section B.1, “Top-Down Analysis Method” of the Intel® 64 and IA-32 Architectures Opti-
mization Reference Manual.

Table 21-107.  Data Source Encoding for Memory Accesses (Lion Cove and Next Generation Microarchitectures)  

Encoding [4:0] Description
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21.9.9 Timed Processor Event Based Sampling
Timed Processor Event Based Sampling (Timed PEBS) enables recording of time in every PEBS record. It extends 
all PEBS records with timing information in a new “Retire Latency” field that is placed in the Basic Info group of the 
PEBS record as shown in Table 21-108.

The Retire Latency field reports the number of Unhalted Core Cycles between the retirement of the current instruc-
tion (as indicated by the Instruction Pointer field of the PEBS record) and the retirement of the prior instruction. All 
ones are reported when the number exceeds 16 bits.
Processors that support this enhancement set a new bit: IA32_PERF_CAPABILITIES.PEBS_TIMING_INFO[bit 17].

NOTE
Timed PEBS is not supported when PEBS is programmed on fixed-function counter 0. The Retire 
Latency field of such record is undefined.

21.9.10 Counters Snapshotting
Counters Snapshotting extends Adaptive PEBS with the PEBS Counters and Metrics group. This extension enables 
software to capture general-purpose counters, fixed-function counters, and performance metrics in the PEBS 
record. For additional details, see Section 21.9.2.3.6, “Counters and Metrics Group.”

21.9.11 Auto Counter Reload
Auto Counter Reload (ACR) provides a means for software to specify that, for each supported counter, the hardware 
should automatically reload the counter to a specified initial value upon overflow of chosen counters. This mecha-
nism enables software to sample based on the relative rate of two (or more) events, such that a sample (PMI or 
PEBS) is taken only if the rate of one event exceeds some threshold relative to the rate of another event. Taking a 
PMI or PEBS only when the relative rate of performance-monitoring events crosses a threshold can have signifi-
cantly less performance overhead than other techniques (e.g., taking a PMI every 1000 instructions in order to 
check the number of mispredicts since the last PMI).

21.9.11.1  Discovery and Interface
CPUID.(EAX=23H, ECX=02H):EAX indicates general-purpose counters [n:0] that can be reloaded. 
CPUID.(EAX=23H, ECX=02H):EBX indicates fixed-function counters [m:0] that can be reloaded. 
CPUID.(EAX=23H, ECX=02H):ECX indicates general-purpose counters [n:0] that can cause a reload of reloadable 
counters. CPUID.(EAX=23H, ECX=02H):EDX indicates fixed-function counters [m:0] that can cause a reload of 
reloadable counters. If a counter can be reloaded, its associated reload configuration MSR (*_CFG_B) and its 
reload value MSR (*_CFG_C) are supported.

Table 21-108.  PEBS Basic Info Group

Offset Field Name Bits

0x0

Record Format [31:0]

Retire Latency [47:32]

Record Size [63:48]

0x08 Instruction Pointer [63:0]

0x10 Applicable Counters [63:0]

0x18 TSC [63:0]
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See Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, for details about 
the following MSRs: IA32_PMC_GPn_CFG_B, IA32_PMC_GPn_CFG_C, IA32_PMC_FXm_CFG_B, and 
IA32_PMC_FXm_CFG_C.

21.9.11.2  Configuration and Behavior
For a given counter IA32_PMC_GPn_CTR, bit fields in the IA32_PMC_GPn_CFG_B MSR indicate which counter(s) 
can cause a reload of that counter:
• If GP counter ‘n’ is configured to do a reload when GP counter ‘x’ overflows (IA32_PMC_GPn_CFG_B.PMC[x] = 

1), then that GP counter ‘n’ will be written with its reload value (in IA32_PMC_GPn_CFG_C[31:0]) when 
counter ‘x’ (IA32_PMC_GPx_CTR) overflows. 

• If GP counter ‘n’ is configured to do a reload when fixed-function counter ‘x’ overflows 
(IA32_PMC_GPn_CFG_B.FIXED_CTR[x] = 1), then that GP counter ‘n’ will be written with its reload value (in 
IA32_PMC_GPn_CFG_C[31:0]) when fixed-function counter ‘x’ (IA32_PMC_FXx_CTR) overflows.

ACR will not reload IA32_PMC_GPn_CTR if counters are frozen (IA32_PERF_GLOBAL_STATUS.COUNTERS_FROZEN 
= 1) or if IA32_PMC_GPn_CTR has already overflowed (IA32_PERF_GLOBAL_STATUS.PMCn_OVF = 1). If a PMI or 
PEBS is taken due to a counter overflow, the PMI ISR or PEBS record can record the unmodified counter value 
before reloading the counter. In race conditions, where IA32_PMC_GPn_CTR overflows in the same cycle as a 
counter configured to reload the IA32_PMC_GPn_CTR on overflow, IA32_PMC_GPn_CTR will not be reloaded, and 
IA32_PERF_GLOBAL_STATUS.PMCn_OVF will be set.
For counters that reload themselves (i.e., IA32_PMC_GPn_CFG_B.PMCn = 1), the overflow bit 
(IA32_PERF_GLOBAL_STATUS.PMCn_OVF) will never be set. Instead, upon overflow, the counter will be immedi-
ately reloaded; thus, it is never in an overflowed state. There is an exception associated with PEBS; see Section 
21.9.11.2.2. 
The behavior is similar for reloading of fixed-function counters. For IA32_PMC_FXm_CTR, the reload value is stored 
in IA32_PMC_FXm_CFG_C[31:0], and which counters cause reload of IA32_PMC_FXm_CTR is configured in 
IA32_PMC_FXm_CFG_B.

21.9.11.2.1  Reload Precision

ACR reload is not guaranteed to be precise; in some cases, a small number of events may be lost during the time 
between counter overflow and counter reload. However, when the reload happens, hardware will reload all config-
ured counters simultaneously.

21.9.11.2.2  PEBS Interaction

If a counter is configured to reload other counters with ACR and to take PEBS on overflow, the counter reload 
actions will be taken only after the PEBS record has been written. This ensures that any counter values captured in 
the PEBS record reflect the value before the reload occurs. Because the reload actions are taken after the PEBS 
records are written, reloaded counter value will not account for the events which occurred during the process of 
writing the PEBS record.
For a counter configured to reload itself and to take PEBS on overflow, the overflow bit associated with the counter 
(in IA32_PERF_GLOBAL_STATUS) will be set from the time the counter overflows to the time the PEBS record is 
written. This is required to ensure the PEBS record is not lost due to a VM exit taken during record generation. Once 
the record is written, the overflow bit will be cleared, and the counter reloaded.

21.9.11.2.3  Precise Distribution (PDIST) Interaction

Precise distribution of PEBS events (PDIR) is not supported when such a counter is reloaded by ACR. For details on 
PDIST, see Section 21.9.6.
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CHAPTER 22
8086 EMULATION

IA-32 processors (beginning with the Intel386 processor) provide two ways to execute new or legacy programs 
that are assembled and/or compiled to run on an Intel 8086 processor: 
• Real-address mode.
• Virtual-8086 mode.

Figure 2-3 shows the relationship of these operating modes to protected mode and system management mode 
(SMM). 

When the processor is powered up or reset, it is placed in the real-address mode. This operating mode almost 
exactly duplicates the execution environment of the Intel 8086 processor, with some extensions. Virtually any 
program assembled and/or compiled to run on an Intel 8086 processor will run on an IA-32 processor in this mode.

When running in protected mode, the processor can be switched to virtual-8086 mode to run 8086 programs. This 
mode also duplicates the execution environment of the Intel 8086 processor, with extensions. In virtual-8086 
mode, an 8086 program runs as a separate protected-mode task. Legacy 8086 programs are thus able to run 
under an operating system (such as Microsoft Windows*) that takes advantage of protected mode and to use 
protected-mode facilities, such as the protected-mode interrupt- and exception-handling facilities. Protected-mode 
multitasking permits multiple virtual-8086 mode tasks (with each task running a separate 8086 program) to be run 
on the processor along with other non-virtual-8086 mode tasks.

This section describes both the basic real-address mode execution environment and the virtual-8086-mode execu-
tion environment, available on the IA-32 processors beginning with the Intel386 processor. 

22.1 REAL-ADDRESS MODE
The IA-32 architecture’s real-address mode runs programs written for the Intel 8086, Intel 8088, Intel 80186, and 
Intel 80188 processors, or for the real-address mode of the Intel 286, Intel386, Intel486, Pentium, P6 family, 
Pentium 4, and Intel Xeon processors.

The execution environment of the processor in real-address mode is designed to duplicate the execution environ-
ment of the Intel 8086 processor. To an 8086 program, a processor operating in real-address mode behaves like a 
high-speed 8086 processor. The principal features of this architecture are defined in Chapter 3, “Basic Execution 
Environment,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

The following is a summary of the core features of the real-address mode execution environment as would be seen 
by a program written for the 8086:
• The processor supports a nominal 1-MByte physical address space (see Section 22.1.1, “Address Translation in 

Real-Address Mode,” for specific details). This address space is divided into segments, each of which can be up 
to 64 KBytes in length. The base of a segment is specified with a 16-bit segment selector, which is shifted left 
by 4 bits to form a 20-bit offset from address 0 in the address space. An operand within a segment is addressed 
with a 16-bit offset from the base of the segment. A physical address is thus formed by adding the offset to the 
20-bit segment base (see Section 22.1.1, “Address Translation in Real-Address Mode”).

• All operands in “native 8086 code” are 8-bit or 16-bit values. (Operand size override prefixes can be used to 
access 32-bit operands.)

• Eight 16-bit general-purpose registers are provided: AX, BX, CX, DX, SP, BP, SI, and DI. The extended 32 bit 
registers (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI) are accessible to programs that explicitly perform a size 
override operation.

• Four segment registers are provided: CS, DS, SS, and ES. (The FS and GS registers are accessible to programs 
that explicitly access them.) The CS register contains the segment selector for the code segment; the DS and 
ES registers contain segment selectors for data segments; and the SS register contains the segment selector 
for the stack segment.

• The 8086 16-bit instruction pointer (IP) is mapped to the lower 16-bits of the EIP register. Note this register is 
a 32-bit register and unintentional address wrapping may occur.
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• The 16-bit FLAGS register contains status and control flags. (This register is mapped to the 16 least significant 
bits of the 32-bit EFLAGS register.)

• All of the Intel 8086 instructions are supported (see Section 22.1.3, “Instructions Supported in Real-Address 
Mode”).

• A single, 16-bit-wide stack is provided for handling procedure calls and invocations of interrupt and exception 
handlers. This stack is contained in the stack segment identified with the SS register. The SP (stack pointer) 
register contains an offset into the stack segment. The stack grows down (toward lower segment offsets) from 
the stack pointer. The BP (base pointer) register also contains an offset into the stack segment that can be used 
as a pointer to a parameter list. When a CALL instruction is executed, the processor pushes the current 
instruction pointer (the 16 least-significant bits of the EIP register and, on far calls, the current value of the CS 
register) onto the stack. On a return, initiated with a RET instruction, the processor pops the saved instruction 
pointer from the stack into the EIP register (and CS register on far returns). When an implicit call to an interrupt 
or exception handler is executed, the processor pushes the EIP, CS, and EFLAGS (low-order 16-bits only) 
registers onto the stack. On a return from an interrupt or exception handler, initiated with an IRET instruction, 
the processor pops the saved instruction pointer and EFLAGS image from the stack into the EIP, CS, and 
EFLAGS registers.

• A single interrupt table, called the “interrupt vector table” or “interrupt table,” is provided for handling 
interrupts and exceptions (see Figure 22-2). The interrupt table (which has 4-byte entries) takes the place of 
the interrupt descriptor table (IDT, with 8-byte entries) used when handling protected-mode interrupts and 
exceptions. Interrupt and exception vector numbers provide an index to entries in the interrupt table. Each 
entry provides a pointer (called a “vector”) to an interrupt- or exception-handling procedure. See Section 
22.1.4, “Interrupt and Exception Handling,” for more details. It is possible for software to relocate the IDT by 
means of the LIDT instruction on IA-32 processors beginning with the Intel386 processor.

• The x87 FPU is active and available to execute x87 FPU instructions in real-address mode. Programs written to 
run on the Intel 8087 and Intel 287 math coprocessors can be run in real-address mode without modification.

The following extensions to the Intel 8086 execution environment are available in the IA-32 architecture’s real-
address mode. If backwards compatibility to Intel 286 and Intel 8086 processors is required, these features should 
not be used in new programs written to run in real-address mode.
• Two additional segment registers (FS and GS) are available.
• Many of the integer and system instructions that have been added to later IA-32 processors can be executed in 

real-address mode (see Section 22.1.3, “Instructions Supported in Real-Address Mode”). 
• The 32-bit operand prefix can be used in real-address mode programs to execute the 32-bit forms of instruc-

tions. This prefix also allows real-address mode programs to use the processor’s 32-bit general-purpose 
registers.

• The 32-bit address prefix can be used in real-address mode programs, allowing 32-bit offsets.

The following sections describe address formation, registers, available instructions, and interrupt and exception 
handling in real-address mode. For information on I/O in real-address mode, see Chapter 20, “Input/Output,” of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. 

22.1.1 Address Translation in Real-Address Mode
In real-address mode, the processor does not interpret segment selectors as indexes into a descriptor table; 
instead, it uses them directly to form linear addresses as the 8086 processor does. It shifts the segment selector 
left by 4 bits to form a 20-bit base address (see Figure 22-1). The offset into a segment is added to the base 
address to create a linear address that maps directly to the physical address space. 

When using 8086-style address translation, it is possible to specify addresses larger than 1 MByte. For example, 
with a segment selector value of FFFFH and an offset of FFFFH, the linear (and physical) address would be 10FFEFH 
(1 megabyte plus 64 KBytes). The 8086 processor, which can form addresses only up to 20 bits long, truncates the 
high-order bit, thereby “wrapping” this address to FFEFH. When operating in real-address mode, however, the 
processor does not truncate such an address and uses it as a physical address. (Note, however, that for IA-32 
processors beginning with the Intel486 processor, the A20M# signal can be used in real-address mode to mask 
address line A20, thereby mimicking the 20-bit wrap-around behavior of the 8086 processor.) Care should be take 
to ensure that A20M# based address wrapping is handled correctly in multiprocessor based system.
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The IA-32 processors beginning with the Intel386 processor can generate 32-bit offsets using an address override 
prefix; however, in real-address mode, the value of a 32-bit offset may not exceed FFFFH without causing an 
exception. 

For full compatibility with Intel 286 real-address mode, pseudo-protection faults (interrupt 12 or 13) occur if a 32-
bit offset is generated outside the range 0 through FFFFH.

22.1.2 Registers Supported in Real-Address Mode
The register set available in real-address mode includes all the registers defined for the 8086 processor plus the 
new registers introduced in later IA-32 processors, such as the FS and GS segment registers, the debug registers, 
the control registers, and the floating-point unit registers. The 32-bit operand prefix allows a real-address mode 
program to use the 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI).

22.1.3 Instructions Supported in Real-Address Mode
The following instructions make up the core instruction set for the 8086 processor. If backwards compatibility to 
the Intel 286 and Intel 8086 processors is required, only these instructions should be used in a new program 
written to run in real-address mode.
• Move (MOV) instructions that move operands between general-purpose registers, segment registers, and 

between memory and general-purpose registers.
• The exchange (XCHG) instruction.
• Load segment register instructions LDS and LES.
• Arithmetic instructions ADD, ADC, SUB, SBB, MUL, IMUL, DIV, IDIV, INC, DEC, CMP, and NEG.
• Logical instructions AND, OR, XOR, and NOT.
• Decimal instructions DAA, DAS, AAA, AAS, AAM, and AAD.
• Stack instructions PUSH and POP (to general-purpose registers and segment registers).
• Type conversion instructions CWD, CDQ, CBW, and CWDE.
• Shift and rotate instructions SAL, SHL, SHR, SAR, ROL, ROR, RCL, and RCR.
• TEST instruction.
• Control instructions JMP, Jcc, CALL, RET, LOOP, LOOPE, and LOOPNE.
• Interrupt instructions INT n, INTO, and IRET.
• EFLAGS control instructions STC, CLC, CMC, CLD, STD, LAHF, SAHF, PUSHF, and POPF.
• I/O instructions IN, INS, OUT, and OUTS.
• Load effective address (LEA) instruction, and translate (XLATB) instruction.

Figure 22-1.  Real-Address Mode Address Translation
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• LOCK prefix.
• Repeat prefixes REP, REPE, REPZ, REPNE, and REPNZ.
• Processor halt (HLT) instruction.
• No operation (NOP) instruction.

The following instructions, added to later IA-32 processors (some in the Intel 286 processor and the remainder in 
the Intel386 processor), can be executed in real-address mode, if backwards compatibility to the Intel 8086 
processor is not required.
• Move (MOV) instructions that operate on the control and debug registers.
• Load segment register instructions LSS, LFS, and LGS.
• Generalized multiply instructions and multiply immediate data.
• Shift and rotate by immediate counts.
• Stack instructions PUSHA, PUSHAD, POPA, POPAD, and PUSH immediate data.
• Move with sign extension instructions MOVSX and MOVZX.
• Long-displacement Jcc instructions.
• Exchange instructions CMPXCHG, CMPXCHG8B, and XADD. 
• String instructions MOVS, CMPS, SCAS, LODS, and STOS. 
• Bit test and bit scan instructions BT, BTS, BTR, BTC, BSF, and BSR; the byte-set-on condition instruction SETcc; 

and the byte swap (BSWAP) instruction.
• Double shift instructions SHLD and SHRD.
• EFLAGS control instructions PUSHF and POPF.
• ENTER and LEAVE control instructions.
• BOUND instruction.
• CPU identification (CPUID) instruction.
• System instructions CLTS, INVD, WINVD, INVLPG, LGDT, SGDT, LIDT, SIDT, LMSW, SMSW, RDMSR, WRMSR, 

RDTSC, and RDPMC.

Execution of any of the other IA-32 architecture instructions (not given in the previous two lists) in real-address 
mode result in an invalid-opcode exception (#UD) being generated.

22.1.4 Interrupt and Exception Handling
When operating in real-address mode, software must provide interrupt and exception-handling facilities that are 
separate from those provided in protected mode. Even during the early stages of processor initialization when the 
processor is still in real-address mode, elementary real-address mode interrupt and exception-handling facilities 
must be provided to ensure reliable operation of the processor, or the initialization code must ensure that no inter-
rupts or exceptions will occur.

The IA-32 processors handle interrupts and exceptions in real-address mode similar to the way they handle them 
in protected mode. When a processor receives an interrupt or generates an exception, it uses the vector number of 
the interrupt or exception as an index into the interrupt table. (In protected mode, the interrupt table is called the 
interrupt descriptor table (IDT), but in real-address mode, the table is usually called the interrupt vector 
table, or simply the interrupt table.) The entry in the interrupt vector table provides a pointer to an interrupt- or 
exception-handler procedure. (The pointer consists of a segment selector for a code segment and a 16-bit offset 
into the segment.) The processor performs the following actions to make an implicit call to the selected handler:

1. Pushes the current values of the CS and EIP registers onto the stack. (Only the 16 least-significant bits of the 
EIP register are pushed.)

2. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF, RF, and AC flags, in the EFLAGS register.
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5. Transfers program control to the location specified in the interrupt vector table.

An IRET instruction at the end of the handler procedure reverses these steps to return program control to the inter-
rupted program. Exceptions do not return error codes in real-address mode.

The interrupt vector table is an array of 4-byte entries (see Figure 22-2). Each entry consists of a far pointer to a 
handler procedure, made up of a segment selector and an offset. The processor scales the interrupt or exception 
vector by 4 to obtain an offset into the interrupt table. Following reset, the base of the interrupt vector table is 
located at physical address 0 and its limit is set to 3FFH. In the Intel 8086 processor, the base address and limit of 
the interrupt vector table cannot be changed. In the later IA-32 processors, the base address and limit of the inter-
rupt vector table are contained in the IDTR register and can be changed using the LIDT instruction. 

(For backward compatibility to Intel 8086 processors, the default base address and limit of the interrupt vector 
table should not be changed.)

Table 22-1 shows the interrupt and exception vectors that can be generated in real-address mode and virtual-8086 
mode, and in the Intel 8086 processor. See Chapter 7, “Interrupt and Exception Handling‚” for a description of the 
exception conditions.

22.2 VIRTUAL-8086 MODE
Virtual-8086 mode is actually a special type of a task that runs in protected mode. When the operating-system or 
executive switches to a virtual-8086-mode task, the processor emulates an Intel 8086 processor. The execution 
environment of the processor while in the 8086-emulation state is the same as is described in Section 22.1, “Real-
Address Mode,” for real-address mode, including the extensions. The major difference between the two modes is 
that in virtual-8086 mode the 8086 emulator uses some protected-mode services (such as the protected-mode 
interrupt and exception-handling and paging facilities).

Figure 22-2.  Interrupt Vector Table in Real-Address Mode
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As in real-address mode, any new or legacy program that has been assembled and/or compiled to run on an Intel 
8086 processor will run in a virtual-8086-mode task. And several 8086 programs can be run as virtual-8086-mode 
tasks concurrently with normal protected-mode tasks, using the processor’s multitasking facilities.

22.2.1 Enabling Virtual-8086 Mode
The processor runs in virtual-8086 mode when the VM (virtual machine) flag in the EFLAGS register is set. This flag 
can only be set when the processor switches to a new protected-mode task or resumes virtual-8086 mode via an 
IRET instruction.

System software cannot change the state of the VM flag directly in the EFLAGS register (for example, by using the 
POPFD instruction). Instead it changes the flag in the image of the EFLAGS register stored in the TSS or on the 
stack following a call to an interrupt- or exception-handler procedure. For example, software sets the VM flag in the 
EFLAGS image in the TSS when first creating a virtual-8086 task.

The processor tests the VM flag under three general conditions:
• When loading segment registers, to determine whether to use 8086-style address translation.
• When decoding instructions, to determine which instructions are not supported in virtual-8086 mode and which 

instructions are sensitive to IOPL.

Table 22-1.  Real-Address Mode Exceptions and Interrupts

Vector 
No.

Description Real-Address Mode Virtual-8086 Mode Intel 8086 Processor

 0 Divide Error (#DE) Yes Yes Yes

 1 Debug Exception (#DB) Yes Yes No

 2 NMI Interrupt Yes Yes Yes

 3 Breakpoint (#BP) Yes Yes Yes

 4 Overflow (#OF) Yes Yes Yes

 5 BOUND Range Exceeded (#BR) Yes Yes Reserved

 6 Invalid Opcode (#UD) Yes Yes Reserved

 7 Device Not Available (#NM) Yes Yes Reserved

 8 Double Fault (#DF) Yes Yes Reserved

 9 (Intel reserved. Do not use.) Reserved Reserved Reserved

10 Invalid TSS (#TS) Reserved Yes Reserved

11 Segment Not Present (#NP) Reserved Yes Reserved

12 Stack Fault (#SS) Yes Yes Reserved

13 General Protection (#GP)* Yes Yes Reserved

14 Page Fault (#PF) Reserved Yes Reserved

15 (Intel reserved. Do not use.) Reserved Reserved Reserved

16 Floating-Point Error (#MF) Yes Yes Reserved

17 Alignment Check (#AC) Reserved Yes Reserved

18 Machine Check (#MC) Yes Yes Reserved

19-31 (Intel reserved. Do not use.) Reserved Reserved Reserved

32-255 User Defined Interrupts Yes Yes Yes

NOTE:
* In the real-address mode, vector 13 is the segment overrun exception. In protected and virtual-8086 modes, this exception cov-

ers all general-protection error conditions, including traps to the virtual-8086 monitor from virtual-8086 mode.
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• When checking privileged instructions, on page accesses, or when performing other permission checks. 
(Virtual-8086 mode always executes at CPL 3.)

22.2.2 Structure of a Virtual-8086 Task
A virtual-8086-mode task consists of the following items:
• A 32-bit TSS for the task.
• The 8086 program.
• A virtual-8086 monitor.
• 8086 operating-system services.

The TSS of the new task must be a 32-bit TSS, not a 16-bit TSS, because the 16-bit TSS does not load the most-
significant word of the EFLAGS register, which contains the VM flag. All TSS’s, stacks, data, and code used to handle 
exceptions when in virtual-8086 mode must also be 32-bit segments.

The processor enters virtual-8086 mode to run the 8086 program and returns to protected mode to run the virtual-
8086 monitor.

The virtual-8086 monitor is a 32-bit protected-mode code module that runs at a CPL of 0. The monitor consists of 
initialization, interrupt- and exception-handling, and I/O emulation procedures that emulate a personal computer 
or other 8086-based platform. Typically, the monitor is either part of or closely associated with the protected-mode 
general-protection (#GP) exception handler, which also runs at a CPL of 0. As with any protected-mode code 
module, code-segment descriptors for the virtual-8086 monitor must exist in the GDT or in the task’s LDT. The 
virtual-8086 monitor also may need data-segment descriptors so it can examine the IDT or other parts of the 8086 
program in the first 1 MByte of the address space. The linear addresses above 10FFEFH are available for the 
monitor, the operating system, and other system software.

The 8086 operating-system services consists of a kernel and/or operating-system procedures that the 8086 
program makes calls to. These services can be implemented in either of the following two ways:
• They can be included in the 8086 program. This approach is desirable for either of the following reasons:

— The 8086 program code modifies the 8086 operating-system services.

— There is not sufficient development time to merge the 8086 operating-system services into main operating 
system or executive.

• They can be implemented or emulated in the virtual-8086 monitor. This approach is desirable for any of the 
following reasons:

— The 8086 operating-system procedures can be more easily coordinated among several virtual-8086 tasks.

— Memory can be saved by not duplicating 8086 operating-system procedure code for several virtual-8086 
tasks.

— The 8086 operating-system procedures can be easily emulated by calls to the main operating system or 
executive.

The approach chosen for implementing the 8086 operating-system services may result in different virtual-8086-
mode tasks using different 8086 operating-system services.

22.2.3 Paging of Virtual-8086 Tasks
Even though a program running in virtual-8086 mode can use only 20-bit linear addresses, the processor converts 
these addresses into 32-bit linear addresses before mapping them to the physical address space. If paging is being 
used, the 8086 address space for a program running in virtual-8086 mode can be paged and located in a set of 
pages in physical address space. If paging is used, it is transparent to the program running in virtual-8086 mode 
just as it is for any task running on the processor.

Paging is not necessary for a single virtual-8086-mode task, but paging is useful or necessary in the following situ-
ations:
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• When running multiple virtual-8086-mode tasks. Here, paging allows the lower 1 MByte of the linear address 
space for each virtual-8086-mode task to be mapped to a different physical address location.

• When emulating the 8086 address-wraparound that occurs at 1 MByte. When using 8086-style address trans-
lation, it is possible to specify addresses larger than 1 MByte. These addresses automatically wraparound in the 
Intel 8086 processor (see Section 22.1.1, “Address Translation in Real-Address Mode”). If any 8086 programs 
depend on address wraparound, the same effect can be achieved in a virtual-8086-mode task by mapping the 
linear addresses between 100000H and 110000H and linear addresses between 0 and 10000H to the same 
physical addresses.

• When sharing the 8086 operating-system services or ROM code that is common to several 8086 programs 
running as different 8086-mode tasks.

• When redirecting or trapping references to memory-mapped I/O devices.

22.2.4 Protection within a Virtual-8086 Task
Protection is not enforced between the segments of an 8086 program. Either of the following techniques can be 
used to protect the system software running in a virtual-8086-mode task from the 8086 program:
• Reserve the first 1 MByte plus 64 KBytes of each task’s linear address space for the 8086 program. An 8086 

processor task cannot generate addresses outside this range.
• Use the U/S flag of page-table entries to protect the virtual-8086 monitor and other system software in the 

virtual-8086 mode task space. When the processor is in virtual-8086 mode, the CPL is 3. Therefore, an 8086 
processor program has only user privileges. If the pages of the virtual-8086 monitor have supervisor privilege, 
they cannot be accessed by the 8086 program.

22.2.5 Entering Virtual-8086 Mode
Figure 22-3 summarizes the methods of entering and leaving virtual-8086 mode. The processor switches to 
virtual-8086 mode in either of the following situations:
• Task switch when the VM flag is set to 1 in the EFLAGS register image stored in the TSS for the task. Here the 

task switch can be initiated in either of two ways:

— A CALL or JMP instruction.

— An IRET instruction, where the NT flag in the EFLAGS image is set to 1.
• Return from a protected-mode interrupt or exception handler when the VM flag is set to 1 in the EFLAGS 

register image on the stack.

When a task switch is used to enter virtual-8086 mode, the TSS for the virtual-8086-mode task must be a 32-bit 
TSS. (If the new TSS is a 16-bit TSS, the upper word of the EFLAGS register is not in the TSS, causing the processor 
to clear the VM flag when it loads the EFLAGS register.) The processor updates the VM flag prior to loading the 
segment registers from their images in the new TSS. The new setting of the VM flag determines whether the 
processor interprets the contents of the segment registers as 8086-style segment selectors or protected-mode 
segment selectors. When the VM flag is set, the segment registers are loaded from the TSS, using 8086-style 
address translation to form base addresses. 

See Section 22.3, “Interrupt and Exception Handling in Virtual-8086 Mode,” for information on entering virtual-
8086 mode on a return from an interrupt or exception handler.
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22.2.6 Leaving Virtual-8086 Mode
The processor can leave the virtual-8086 mode only through an interrupt or exception. The following are situations 
where an interrupt or exception will lead to the processor leaving virtual-8086 mode (see Figure 22-3):
• The processor services a hardware interrupt generated to signal the suspension of execution of the virtual-

8086 application. This hardware interrupt may be generated by a timer or other external mechanism. Upon 
receiving the hardware interrupt, the processor enters protected mode and switches to a protected-mode (or 
another virtual-8086 mode) task either through a task gate in the protected-mode IDT or through a trap or 
interrupt gate that points to a handler that initiates a task switch. A task switch from a virtual-8086 task to 
another task loads the EFLAGS register from the TSS of the new task. The value of the VM flag in the new 
EFLAGS determines if the new task executes in virtual-8086 mode or not.

• The processor services an exception caused by code executing the virtual-8086 task or services a hardware 
interrupt that “belongs to” the virtual-8086 task. Here, the processor enters protected mode and services the 

Figure 22-3.  Entering and Leaving Virtual-8086 Mode
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exception or hardware interrupt through the protected-mode IDT (normally through an interrupt or trap gate) 
and the protected-mode exception- and interrupt-handlers. The processor may handle the exception or 
interrupt within the context of the virtual 8086 task and return to virtual-8086 mode on a return from the 
handler procedure. The processor may also execute a task switch and handle the exception or interrupt in the 
context of another task.

• The processor services a software interrupt generated by code executing in the virtual-8086 task (such as a 
software interrupt to call a MS-DOS* operating system routine). The processor provides several methods of 
handling these software interrupts, which are discussed in detail in Section 22.3.3, “Class 3—Software 
Interrupt Handling in Virtual-8086 Mode.” Most of them involve the processor entering protected mode, often 
by means of a general-protection (#GP) exception. In protected mode, the processor can send the interrupt to 
the virtual-8086 monitor for handling and/or redirect the interrupt back to the application program running in 
virtual-8086 mode task for handling.
IA-32 processors that incorporate the virtual mode extension (enabled with the VME flag in control register 
CR4) are capable of redirecting software-generated interrupts back to the program’s interrupt handlers without 
leaving virtual-8086 mode. See Section 22.3.3.4, “Method 5: Software Interrupt Handling,” for more 
information on this mechanism.

• A hardware reset initiated by asserting the RESET or INIT pin is a special kind of interrupt. When a RESET or 
INIT is signaled while the processor is in virtual-8086 mode, the processor leaves virtual-8086 mode and enters 
real-address mode.

• Execution of the HLT instruction in virtual-8086 mode will cause a general-protection (GP#) fault, which the 
protected-mode handler generally sends to the virtual-8086 monitor. The virtual-8086 monitor then 
determines the correct execution sequence after verifying that it was entered as a result of a HLT execution.

See Section 22.3, “Interrupt and Exception Handling in Virtual-8086 Mode,” for information on leaving virtual-8086 
mode to handle an interrupt or exception generated in virtual-8086 mode.

22.2.7 Sensitive Instructions
When an IA-32 processor is running in virtual-8086 mode, the CLI, STI, PUSHF, POPF, INT n, and IRET instructions 
are sensitive to IOPL. The IN, INS, OUT, and OUTS instructions, which are sensitive to IOPL in protected mode, are 
not sensitive in virtual-8086 mode.

The CPL is always 3 while running in virtual-8086 mode; if the IOPL is less than 3, an attempt to use the IOPL-sensi-
tive instructions listed above triggers a general-protection exception (#GP). These instructions are sensitive to 
IOPL to give the virtual-8086 monitor a chance to emulate the facilities they affect.

22.2.8 Virtual-8086 Mode I/O
Many 8086 programs written for non-multitasking systems directly access I/O ports. This practice may cause prob-
lems in a multitasking environment. If more than one program accesses the same port, they may interfere with 
each other. Most multitasking systems require application programs to access I/O ports through the operating 
system. This results in simplified, centralized control.

The processor provides I/O protection for creating I/O that is compatible with the environment and transparent to 
8086 programs. Designers may take any of several possible approaches to protecting I/O ports:
• Protect the I/O address space and generate exceptions for all attempts to perform I/O directly.
• Let the 8086 program perform I/O directly.
• Generate exceptions on attempts to access specific I/O ports.
• Generate exceptions on attempts to access specific memory-mapped I/O ports.

The method of controlling access to I/O ports depends upon whether they are I/O-port mapped or memory 
mapped.
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22.2.8.1  I/O-Port-Mapped I/O
The I/O permission bit map in the TSS can be used to generate exceptions on attempts to access specific I/O port 
addresses. The I/O permission bit map of each virtual-8086-mode task determines which I/O addresses generate 
exceptions for that task. Because each task may have a different I/O permission bit map, the addresses that 
generate exceptions for one task may be different from the addresses for another task. This differs from protected 
mode in which, if the CPL is less than or equal to the IOPL, I/O access is allowed without checking the I/O permis-
sion bit map. See Chapter 20, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, for more information about the I/O permission bit map.

22.2.8.2  Memory-Mapped I/O
In systems which use memory-mapped I/O, the paging facilities of the processor can be used to generate excep-
tions for attempts to access I/O ports. The virtual-8086 monitor may use paging to control memory-mapped I/O in 
these ways:
• Map part of the linear address space of each task that needs to perform I/O to the physical address space 

where I/O ports are placed. By putting the I/O ports at different addresses (in different pages), the paging 
mechanism can enforce isolation between tasks.

• Map part of the linear address space to pages that are not-present. This generates an exception whenever a 
task attempts to perform I/O to those pages. System software then can interpret the I/O operation being 
attempted.

Software emulation of the I/O space may require too much operating system intervention under some conditions. 
In these cases, it may be possible to generate an exception for only the first attempt to access I/O. The system 
software then may determine whether a program can be given exclusive control of I/O temporarily, the protection 
of the I/O space may be lifted, and the program allowed to run at full speed.

22.2.8.3  Special I/O Buffers
Buffers of intelligent controllers (for example, a bit-mapped frame buffer) also can be emulated using page 
mapping. The linear space for the buffer can be mapped to a different physical space for each virtual-8086-mode 
task. The virtual-8086 monitor then can control which virtual buffer to copy onto the real buffer in the physical 
address space.

22.3 INTERRUPT AND EXCEPTION HANDLING IN VIRTUAL-8086 MODE
When the processor receives an interrupt or detects an exception condition while in virtual-8086 mode, it invokes 
an interrupt or exception handler, just as it does in protected or real-address mode. The interrupt or exception 
handler that is invoked and the mechanism used to invoke it depends on the class of interrupt or exception that has 
been detected or generated and the state of various system flags and fields.

In virtual-8086 mode, the interrupts and exceptions are divided into three classes for the purposes of handling:
• Class 1 — All processor-generated exceptions and all hardware interrupts, including the NMI interrupt and the 

hardware interrupts sent to the processor’s external interrupt delivery pins. All class 1 exceptions and 
interrupts are handled by the protected-mode exception and interrupt handlers.

• Class 2 — Special case for maskable hardware interrupts (Section 7.3.2, “Maskable Hardware Interrupts”) 
when the virtual mode extensions are enabled.

• Class 3 — All software-generated interrupts, that is interrupts generated with the INT n instruction1.

The method the processor uses to handle class 2 and 3 interrupts depends on the setting of the following flags and 
fields:
• IOPL field (bits 12 and 13 in the EFLAGS register) — Controls how class 3 software interrupts are handled 

when the processor is in virtual-8086 mode (see Section 2.3, “System Flags and Fields in the EFLAGS 

1. The INT 3 instruction is a special case (see the description of the INT n instruction in Chapter 3, “Instruction Set Reference, A-L,” of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).
Vol. 3B 22-11



8086 EMULATION
Register”). This field also controls the enabling of the VIF and VIP flags in the EFLAGS register when the VME 
flag is set. The VIF and VIP flags are provided to assist in the handling of class 2 maskable hardware interrupts.

• VME flag (bit 0 in control register CR4) — Enables the virtual mode extension for the processor when set 
(see Section 2.5, “Control Registers”).

• Software interrupt redirection bit map (32 bytes in the TSS, see Figure 22-5) — Contains 256 flags 
that indicates how class 3 software interrupts should be handled when they occur in virtual-8086 mode. A 
software interrupt can be directed either to the interrupt and exception handlers in the currently running 8086 
program or to the protected-mode interrupt and exception handlers.

• The virtual interrupt flag (VIF) and virtual interrupt pending flag (VIP) in the EFLAGS register — 
Provides virtual interrupt support for the handling of class 2 maskable hardware interrupts (see Section 
22.3.2, “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt 
Mechanism”). 

NOTE
The VME flag, software interrupt redirection bit map, and VIF and VIP flags are only available in 
IA-32 processors that support the virtual mode extensions. These extensions were introduced in 
the IA-32 architecture with the Pentium processor.

The following sections describe the actions that processor takes and the possible actions of interrupt and exception 
handlers for the two classes of interrupts described in the previous paragraphs. These sections describe three 
possible types of interrupt and exception handlers:
• Protected-mode interrupt and exceptions handlers — These are the standard handlers that the processor 

calls through the protected-mode IDT.
• Virtual-8086 monitor interrupt and exception handlers — These handlers are resident in the virtual-8086 

monitor, and they are commonly accessed through a general-protection exception (#GP, interrupt 13) that is 
directed to the protected-mode general-protection exception handler.

• 8086 program interrupt and exception handlers — These handlers are part of the 8086 program that is 
running in virtual-8086 mode.

The following sections describe how these handlers are used, depending on the selected class and method of inter-
rupt and exception handling.

22.3.1 Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 Mode
In virtual-8086 mode, the Pentium, P6 family, Pentium 4, and Intel Xeon processors handle hardware interrupts 
and exceptions in the same manner as they are handled by the Intel486 and Intel386 processors. They invoke the 
protected-mode interrupt or exception handler that the interrupt or exception vector points to in the IDT. Here, the 
IDT entry must contain either a 32-bit trap or interrupt gate or a task gate. The following sections describe various 
ways that a virtual-8086 mode interrupt or exception can be handled after the protected-mode handler has been 
invoked.

See Section 22.3.2, “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Inter-
rupt Mechanism,” for a description of the virtual interrupt mechanism that is available for handling maskable hard-
ware interrupts while in virtual-8086 mode. When this mechanism is either not available or not enabled, maskable 
hardware interrupts are handled in the same manner as exceptions, as described in the following sections.

22.3.1.1  Handling an Interrupt or Exception Through a Protected-Mode Trap or Interrupt Gate
When an interrupt or exception vector points to a 32-bit trap or interrupt gate in the IDT, the gate must in turn point 
to a nonconforming, privilege-level 0, code segment. When accessing this code segment, processor performs the 
following steps.

1. Switches to 32-bit protected mode and privilege level 0.

2. Saves the state of the processor on the privilege-level 0 stack. The states of the EIP, CS, EFLAGS, ESP, SS, ES, 
DS, FS, and GS registers are saved (see Figure 22-4).
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3. Clears the segment registers. Saving the DS, ES, FS, and GS registers on the stack and then clearing the 
registers lets the interrupt or exception handler safely save and restore these registers regardless of the type 
segment selectors they contain (protected-mode or 8086-style). The interrupt and exception handlers, which 
may be called in the context of either a protected-mode task or a virtual-8086-mode task, can use the same 
code sequences for saving and restoring the registers for any task. Clearing these registers before execution of 
the IRET instruction does not cause a trap in the interrupt handler. Interrupt procedures that expect values in 
the segment registers or that return values in the segment registers must use the register images saved on the 
stack for privilege level 0.

4. Clears VM, NT, RF, and TF flags (in the EFLAGS register). If the gate is an interrupt gate, clears the IF flag.

5. Begins executing the selected interrupt or exception handler.

If the trap or interrupt gate references a procedure in a conforming segment or in a segment at a privilege level 
other than 0, the processor generates a general-protection exception (#GP). Here, the error code is the segment 
selector of the code segment to which a call was attempted.

Interrupt and exception handlers can examine the VM flag on the stack to determine if the interrupted procedure 
was running in virtual-8086 mode. If so, the interrupt or exception can be handled in one of three ways:
• The protected-mode interrupt or exception handler that was called can handle the interrupt or exception.
• The protected-mode interrupt or exception handler can call the virtual-8086 monitor to handle the interrupt or 

exception.
• The virtual-8086 monitor (if called) can in turn pass control back to the 8086 program’s interrupt and exception 

handler.

If the interrupt or exception is handled with a protected-mode handler, the handler can return to the interrupted 
program in virtual-8086 mode by executing an IRET instruction. This instruction loads the EFLAGS and segment 
registers from the images saved in the privilege level 0 stack (see Figure 22-4). A set VM flag in the EFLAGS image 
causes the processor to switch back to virtual-8086 mode. The CPL at the time the IRET instruction is executed 
must be 0, otherwise the processor does not change the state of the VM flag.

The virtual-8086 monitor runs at privilege level 0, like the protected-mode interrupt and exception handlers. It is 
commonly closely tied to the protected-mode general-protection exception (#GP, vector 13) handler. If the 

Figure 22-4.  Privilege Level 0 Stack After Interrupt or Exception in Virtual-8086 Mode
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protected-mode interrupt or exception handler calls the virtual-8086 monitor to handle the interrupt or exception, 
the return from the virtual-8086 monitor to the interrupted virtual-8086 mode program requires two return 
instructions: a RET instruction to return to the protected-mode handler and an IRET instruction to return to the 
interrupted program.

The virtual-8086 monitor has the option of directing the interrupt and exception back to an interrupt or exception 
handler that is part of the interrupted 8086 program, as described in Section 22.3.1.2, “Handling an Interrupt or 
Exception With an 8086 Program Interrupt or Exception Handler.”

22.3.1.2  Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception Handler
Because it was designed to run on an 8086 processor, an 8086 program running in a virtual-8086-mode task 
contains an 8086-style interrupt vector table, which starts at linear address 0. If the virtual-8086 monitor correctly 
directs an interrupt or exception vector back to the virtual-8086-mode task it came from, the handlers in the 8086 
program can handle the interrupt or exception. The virtual-8086 monitor must carry out the following steps to send 
an interrupt or exception back to the 8086 program:

1. Use the 8086 interrupt vector to locate the appropriate handler procedure in the 8086 program interrupt table.

2. Store the EFLAGS (low-order 16 bits only), CS and EIP values of the 8086 program on the privilege-level 3 
stack. This is the stack that the virtual-8086-mode task is using. (The 8086 handler may use or modify this 
information.)

3. Change the return link on the privilege-level 0 stack to point to the privilege-level 3 handler procedure.

4. Execute an IRET instruction to pass control to the 8086 program handler.

5. When the IRET instruction from the privilege-level 3 handler triggers a general-protection exception (#GP) and 
thus effectively again calls the virtual-8086 monitor, restore the return link on the privilege-level 0 stack to 
point to the original, interrupted, privilege-level 3 procedure.

6. Copy the low order 16 bits of the EFLAGS image from the privilege-level 3 stack to the privilege-level 0 stack 
(because some 8086 handlers modify these flags to return information to the code that caused the interrupt). 

7. Execute an IRET instruction to pass control back to the interrupted 8086 program.

Note that if an operating system intends to support all 8086 MS-DOS-based programs, it is necessary to use the 
actual 8086 interrupt and exception handlers supplied with the program. The reason for this is that some programs 
modify their own interrupt vector table to substitute (or hook in series) their own specialized interrupt and excep-
tion handlers.

22.3.1.3  Handling an Interrupt or Exception Through a Task Gate
When an interrupt or exception vector points to a task gate in the IDT, the processor performs a task switch to the 
selected interrupt- or exception-handling task. The following actions are carried out as part of this task switch:

1. The EFLAGS register with the VM flag set is saved in the current TSS.

2. The link field in the TSS of the called task is loaded with the segment selector of the TSS for the interrupted 
virtual-8086-mode task.

3. The EFLAGS register is loaded from the image in the new TSS, which clears the VM flag and causes the 
processor to switch to protected mode.

4. The NT flag in the EFLAGS register is set.

5. The processor begins executing the selected interrupt- or exception-handler task.

When an IRET instruction is executed in the handler task and the NT flag in the EFLAGS register is set, the proces-
sors switches from a protected-mode interrupt- or exception-handler task back to a virtual-8086-mode task. Here, 
the EFLAGS and segment registers are loaded from images saved in the TSS for the virtual-8086-mode task. If the 
VM flag is set in the EFLAGS image, the processor switches back to virtual-8086 mode on the task switch. The CPL 
at the time the IRET instruction is executed must be 0, otherwise the processor does not change the state of the 
VM flag. 
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22.3.2 Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the 
Virtual Interrupt Mechanism

Maskable hardware interrupts are those interrupts that are delivered through the INTR# pin or through an inter-
rupt request to the local APIC (see Section 7.3.2, “Maskable Hardware Interrupts”). These interrupts can be inhib-
ited (masked) from interrupting an executing program or task by clearing the IF flag in the EFLAGS register.

When the VME flag in control register CR4 is set and the IOPL field in the EFLAGS register is less than 3, two addi-
tional flags are activated in the EFLAGS register:
• VIF (virtual interrupt) flag, bit 19 of the EFLAGS register.
• VIP (virtual interrupt pending) flag, bit 20 of the EFLAGS register.

These flags provide the virtual-8086 monitor with more efficient control over handling maskable hardware inter-
rupts that occur during virtual-8086 mode tasks. They also reduce interrupt-handling overhead, by eliminating the 
need for all IF related operations (such as PUSHF, POPF, CLI, and STI instructions) to trap to the virtual-8086 
monitor. The purpose and use of these flags are as follows.

NOTE
The VIF and VIP flags are only available in IA-32 processors that support the virtual mode 
extensions. These extensions were introduced in the IA-32 architecture with the Pentium 
processor. When this mechanism is either not available or not enabled, maskable hardware 
interrupts are handled as class 1 interrupts. Here, if VIF and VIP flags are needed, the virtual-8086 
monitor can implement them in software.

Existing 8086 programs commonly set and clear the IF flag in the EFLAGS register to enable and disable maskable 
hardware interrupts, respectively; for example, to disable interrupts while handling another interrupt or an excep-
tion. This practice works well in single task environments, but can cause problems in multitasking and multiple-
processor environments, where it is often desirable to prevent an application program from having direct control 
over the handling of hardware interrupts. When using earlier IA-32 processors, this problem was often solved by 
creating a virtual IF flag in software. The IA-32 processors (beginning with the Pentium processor) provide hard-
ware support for this virtual IF flag through the VIF and VIP flags.

The VIF flag is a virtualized version of the IF flag, which an application program running from within a virtual-8086 
task can used to control the handling of maskable hardware interrupts. When the VIF flag is enabled, the CLI and 
STI instructions operate on the VIF flag instead of the IF flag. When an 8086 program executes the CLI instruction, 
the processor clears the VIF flag to request that the virtual-8086 monitor inhibit maskable hardware interrupts 
from interrupting program execution; when it executes the STI instruction, the processor sets the VIF flag 
requesting that the virtual-8086 monitor enable maskable hardware interrupts for the 8086 program. But actually 
the IF flag, managed by the operating system, always controls whether maskable hardware interrupts are enabled. 
Also, if under these circumstances an 8086 program tries to read or change the IF flag using the PUSHF or POPF 
instructions, the processor will change the VIF flag instead, leaving IF unchanged.

The VIP flag provides software a means of recording the existence of a deferred (or pending) maskable hardware 
interrupt. This flag is read by the processor but never explicitly written by the processor; it can only be written by 
software. 

If the IF flag is set and the VIF and VIP flags are enabled, and the processor receives a maskable hardware inter-
rupt (interrupt vector 0 through 255), the processor performs and the interrupt handler software should perform 
the following operations:

1. The processor invokes the protected-mode interrupt handler for the interrupt received, as described in the 
following steps. These steps are almost identical to those described for method 1 interrupt and exception 
handling in Section 22.3.1.1, “Handling an Interrupt or Exception Through a Protected-Mode Trap or Interrupt 
Gate”:

a. Switches to 32-bit protected mode and privilege level 0.

b. Saves the state of the processor on the privilege-level 0 stack. The states of the EIP, CS, EFLAGS, ESP, SS, 
ES, DS, FS, and GS registers are saved (see Figure 22-4).

c. Clears the segment registers.
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d. Clears the VM flag in the EFLAGS register.

e. Begins executing the selected protected-mode interrupt handler.

2. The recommended action of the protected-mode interrupt handler is to read the VM flag from the EFLAGS 
image on the stack. If this flag is set, the handler makes a call to the virtual-8086 monitor.

3. The virtual-8086 monitor should read the VIF flag in the EFLAGS register. 

— If the VIF flag is clear, the virtual-8086 monitor sets the VIP flag in the EFLAGS image on the stack to 
indicate that there is a deferred interrupt pending and returns to the protected-mode handler.

— If the VIF flag is set, the virtual-8086 monitor can handle the interrupt if it “belongs” to the 8086 program 
running in the interrupted virtual-8086 task; otherwise, it can call the protected-mode interrupt handler to 
handle the interrupt.

4. The protected-mode handler executes a return to the program executing in virtual-8086 mode.

5. Upon returning to virtual-8086 mode, the processor continues execution of the 8086 program.

When the 8086 program is ready to receive maskable hardware interrupts, it executes the STI instruction to set the 
VIF flag (enabling maskable hardware interrupts). Prior to setting the VIF flag, the processor automatically checks 
the VIP flag and does one of the following, depending on the state of the flag:
• If the VIP flag is clear (indicating no pending interrupts), the processor sets the VIF flag. 
• If the VIP flag is set (indicating a pending interrupt), the processor generates a general-protection exception 

(#GP).

The recommended action of the protected-mode general-protection exception handler is to then call the virtual-
8086 monitor and let it handle the pending interrupt. After handling the pending interrupt, the typical action of the 
virtual-8086 monitor is to clear the VIP flag and set the VIF flag in the EFLAGS image on the stack, and then 
execute a return to the virtual-8086 mode. The next time the processor receives a maskable hardware interrupt, it 
will then handle it as described in steps 1 through 5 earlier in this section.

If the processor finds that both the VIF and VIP flags are set at the beginning of an instruction, it generates a 
general-protection exception. This action allows the virtual-8086 monitor to handle the pending interrupt for the 
virtual-8086 mode task for which the VIF flag is enabled. Note that this situation can only occur immediately 
following execution of a POPF or IRET instruction or upon entering a virtual-8086 mode task through a task switch.

Note that the states of the VIF and VIP flags are not modified in real-address mode or during transitions between 
real-address and protected modes.

NOTE
The virtual interrupt mechanism described in this section is also available for use in protected 
mode, see Section 22.4, “Protected-Mode Virtual Interrupts.”

22.3.3 Class 3—Software Interrupt Handling in Virtual-8086 Mode
When the processor receives a software interrupt (an interrupt generated with the INT n instruction) while in 
virtual-8086 mode, it can use any of six different methods to handle the interrupt. The method selected depends 
on the settings of the VME flag in control register CR4, the IOPL field in the EFLAGS register, and the software inter-
rupt redirection bit map in the TSS. Table 22-2 lists the six methods of handling software interrupts in virtual-8086 
mode and the respective settings of the VME flag, IOPL field, and the bits in the interrupt redirection bit map for 
each method. The table also summarizes the various actions the processor takes for each method. 

The VME flag enables the virtual mode extensions for the Pentium and later IA-32 processors. When this flag is 
clear, the processor responds to interrupts and exceptions in virtual-8086 mode in the same manner as an Intel386 
or Intel486 processor does. When this flag is set, the virtual mode extension provides the following enhancements 
to virtual-8086 mode:
• Speeds up the handling of software-generated interrupts in virtual-8086 mode by allowing the processor to 

bypass the virtual-8086 monitor and redirect software interrupts back to the interrupt handlers that are part of 
the currently running 8086 program.

• Supports virtual interrupts for software written to run on the 8086 processor.
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The IOPL value interacts with the VME flag and the bits in the interrupt redirection bit map to determine how 
specific software interrupts should be handled.

The software interrupt redirection bit map (see Figure 22-5) is a 32-byte field in the TSS. This map is located 
directly below the I/O permission bit map in the TSS. Each bit in the interrupt redirection bit map is mapped to an 
interrupt vector. Bit 0 in the interrupt redirection bit map (which maps to vector zero in the interrupt table) is 
located at the I/O base map address in the TSS minus 32 bytes. When a bit in this bit map is set, it indicates that 
the associated software interrupt (interrupt generated with an INT n instruction) should be handled through the 
protected-mode IDT and interrupt and exception handlers. When a bit in this bit map is clear, the processor redi-
rects the associated software interrupt back to the interrupt table in the 8086 program (located at linear address 0 
in the program’s address space). 

NOTE
The software interrupt redirection bit map does not affect hardware generated interrupts and 
exceptions. Hardware generated interrupts and exceptions are always handled by the protected-
mode interrupt and exception handlers.

Table 22-2.  Software Interrupt Handling Methods While in Virtual-8086 Mode

Method VME IOPL

Bit in 
Redir. 

Bitmap* Processor Action

1 0 3 X Interrupt directed to a protected-mode interrupt handler:

• Switches to privilege-level 0 stack.
• Pushes GS, FS, DS, and ES onto privilege-level 0 stack.
• Pushes SS, ESP, EFLAGS, CS, and EIP of interrupted task onto privilege-level 0 stack.
• Clears VM, RF, NT, and TF flags.
• If serviced through interrupt gate, clears IF flag.
• Clears GS, FS, DS, and ES to 0.
• Sets CS and EIP from interrupt gate.

2 0  < 3 X Interrupt directed to protected-mode general-protection exception (#GP) handler.

3 1 < 3 1 Interrupt directed to a protected-mode general-protection exception (#GP) handler; VIF and VIP 
flag support for handling class 2 maskable hardware interrupts.

4 1 3 1 Interrupt directed to protected-mode interrupt handler: (see method 1 processor action).

5 1 3 0 Interrupt redirected to 8086 program interrupt handler:

• Pushes EFLAGS. 
• Pushes CS and EIP (lower 16 bits only).
• Clears IF flag.
• Clears TF flag.
• Loads CS and EIP (lower 16 bits only) from selected entry in the interrupt vector table of the 

current virtual-8086 task.

6 1 < 3 0 Interrupt redirected to 8086 program interrupt handler; VIF and VIP flag support for handling class 
2 maskable hardware interrupts:

• Pushes EFLAGS with IOPL set to 3 and VIF copied to IF.
• Pushes CS and EIP (lower 16 bits only).
• Clears the VIF flag.
• Clears TF flag.
• Loads CS and EIP (lower 16 bits only) from selected entry in the interrupt vector table of the 

current virtual-8086 task.

NOTE:
* When set to 0, software interrupt is redirected back to the 8086 program interrupt handler; when set to 1, interrupt is directed to 

protected-mode handler.
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Redirecting software interrupts back to the 8086 program potentially speeds up interrupt handling because a 
switch back and forth between virtual-8086 mode and protected mode is not required. This latter interrupt-
handling technique is particularly useful for 8086 operating systems (such as MS-DOS) that use the INT n instruc-
tion to call operating system procedures.

The CPUID instruction can be used to verify that the virtual mode extension is implemented on the processor. Bit 1 
of the feature flags register (EDX) indicates the availability of the virtual mode extension (see “CPUID—CPU Iden-
tification” in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A).

The following sections describe the six methods (or mechanisms) for handling software interrupts in virtual-8086 
mode. See Section 22.3.2, “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual 
Interrupt Mechanism,” for a description of the use of the VIF and VIP flags in the EFLAGS register for handling 
maskable hardware interrupts.

22.3.3.1  Method 1: Software Interrupt Handling
When the VME flag in control register CR4 is clear and the IOPL field is 3, a Pentium or later IA-32 processor 
handles software interrupts in the same manner as they are handled by an Intel386 or Intel486 processor. It 
executes an implicit call to the interrupt handler in the protected-mode IDT pointed to by the interrupt vector. See 
Section 22.3.1, “Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 Mode,” for a complete 
description of this mechanism and its possible uses.

22.3.3.2  Methods 2 and 3: Software Interrupt Handling
When a software interrupt occurs in virtual-8086 mode and the method 2 or 3 conditions are present, the processor 
generates a general-protection exception (#GP). Method 2 is enabled when the VME flag is set to 0 and the IOPL 
value is less than 3. Here the IOPL value is used to bypass the protected-mode interrupt handlers and cause any 
software interrupt that occurs in virtual-8086 mode to be treated as a protected-mode general-protection excep-
tion (#GP). The general-protection exception handler calls the virtual-8086 monitor, which can then emulate an 
8086-program interrupt handler or pass control back to the 8086 program’s handler, as described in Section 
22.3.1.2, “Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception Handler.”

Method 3 is enabled when the VME flag is set to 1, the IOPL value is less than 3, and the corresponding bit for the 
software interrupt in the software interrupt redirection bit map is set to 1. Here, the processor performs the same 

Figure 22-5.  Software Interrupt Redirection Bit Map in TSS
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8086 EMULATION
operation as it does for method 2 software interrupt handling. If the corresponding bit for the software interrupt in 
the software interrupt redirection bit map is set to 0, the interrupt is handled using method 6 (see Section 22.3.3.5, 
“Method 6: Software Interrupt Handling”).

22.3.3.3  Method 4: Software Interrupt Handling
Method 4 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and the bit for the interrupt vector 
in the redirection bit map is set to 1. Method 4 software interrupt handling allows method 1 style handling when the 
virtual mode extension is enabled; that is, the interrupt is directed to a protected-mode handler (see Section 
22.3.3.1, “Method 1: Software Interrupt Handling”).

22.3.3.4  Method 5: Software Interrupt Handling
Method 5 software interrupt handling provides a streamlined method of redirecting software interrupts (invoked 
with the INT n instruction) that occur in virtual 8086 mode back to the 8086 program’s interrupt vector table and 
its interrupt handlers. Method 5 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and the bit 
for the interrupt vector in the redirection bit map is set to 0. The processor performs the following actions to make 
an implicit call to the selected 8086 program interrupt handler:

1. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

2. Pushes the current values of the CS and EIP registers onto the current stack. (Only the 16 least-significant bits 
of the EIP register are pushed and no stack switch occurs.)

3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF flag, in the EFLAGS register.

5. Locates the 8086 program interrupt vector table at linear address 0 for the 8086-mode task.

6. Loads the CS and EIP registers with values from the interrupt vector table entry pointed to by the interrupt 
vector number. Only the 16 low-order bits of the EIP are loaded and the 16 high-order bits are set to 0. The 
interrupt vector table is assumed to be at linear address 0 of the current virtual-8086 task.

7. Begins executing the selected interrupt handler.

An IRET instruction at the end of the handler procedure reverses these steps to return program control to the inter-
rupted 8086 program.

Note that with method 5 handling, a mode switch from virtual-8086 mode to protected mode does not occur. The 
processor remains in virtual-8086 mode throughout the interrupt-handling operation.

The method 5 handling actions are virtually identical to the actions the processor takes when handling software 
interrupts in real-address mode. The benefit of using method 5 handling to access the 8086 program handlers is 
that it avoids the overhead of methods 2 and 3 handling, which requires first going to the virtual-8086 monitor, 
then to the 8086 program handler, then back again to the virtual-8086 monitor, before returning to the interrupted 
8086 program (see Section 22.3.1.2, “Handling an Interrupt or Exception With an 8086 Program Interrupt or 
Exception Handler”). 

NOTE
Methods 1 and 4 handling can handle a software interrupt in a virtual-8086 task with a regular 
protected-mode handler, but this approach requires all virtual-8086 tasks to use the same software 
interrupt handlers, which generally does not give sufficient latitude to the programs running in the 
virtual-8086 tasks, particularly MS-DOS programs.

22.3.3.5  Method 6: Software Interrupt Handling
Method 6 handling is enabled when the VME flag is set to 1, the IOPL value is less than 3, and the bit for the inter-
rupt or exception vector in the redirection bit map is set to 0. With method 6 interrupt handling, software interrupts 
are handled in the same manner as was described for method 5 handling (see Section 22.3.3.4, “Method 5: Soft-
ware Interrupt Handling”).
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Method 6 differs from method 5 in that with the IOPL value set to less than 3, the VIF and VIP flags in the EFLAGS 
register are enabled, providing virtual interrupt support for handling class 2 maskable hardware interrupts (see 
Section 22.3.2, “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt 
Mechanism”). These flags provide the virtual-8086 monitor with an efficient means of handling maskable hardware 
interrupts that occur during a virtual-8086 mode task. Also, because the IOPL value is less than 3 and the VIF flag 
is enabled, the information pushed on the stack by the processor when invoking the interrupt handler is slightly 
different between methods 5 and 6 (see Table 22-2).

22.4 PROTECTED-MODE VIRTUAL INTERRUPTS
The IA-32 processors (beginning with the Pentium processor) also support the VIF and VIP flags in the EFLAGS 
register in protected mode by setting the PVI (protected-mode virtual interrupt) flag in the CR4 register. Setting the 
PVI flag allows applications running at privilege level 3 to execute the CLI and STI instructions without causing a 
general-protection exception (#GP) or affecting hardware interrupts. 

When the PVI flag is set to 1, the CPL is 3, and the IOPL is less than 3, the STI and CLI instructions set and clear 
the VIF flag in the EFLAGS register, leaving IF unaffected. In this mode of operation, an application running in 
protected mode and at a CPL of 3 can inhibit interrupts in the same manner as is described in Section 22.3.2, “Class 
2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt Mechanism,” for a 
virtual-8086 mode task. When the application executes the CLI instruction, the processor clears the VIF flag. If the 
processor receives a maskable hardware interrupt, the processor invokes the protected-mode interrupt handler. 
This handler checks the state of the VIF flag in the EFLAGS register. If the VIF flag is clear (indicating that the active 
task does not want to have interrupts handled now), the handler sets the VIP flag in the EFLAGS image on the stack 
and returns to the privilege-level 3 application, which continues program execution. When the application executes 
a STI instruction to set the VIF flag, the processor automatically invokes the general-protection exception handler, 
which can then handle the pending interrupt. After handing the pending interrupt, the handler typically sets the VIF 
flag and clears the VIP flag in the EFLAGS image on the stack and executes a return to the application program. The 
next time the processor receives a maskable hardware interrupt, the processor will handle it in the normal manner 
for interrupts received while the processor is operating at a CPL of 3.

If the protected-mode virtual interrupt extension is enabled, CPL = 3, and the processor finds that both the VIF and 
VIP flags are set at the beginning of an instruction, a general-protection exception is generated.

Because the protected-mode virtual interrupt extension changes only the treatment of EFLAGS.IF (by having CLI 
and STI update EFLAGS.VIF instead), it affects only the masking of maskable hardware interrupts (interrupt 
vectors 32 through 255). NMI interrupts and exceptions are handled in the normal manner.

(When protected-mode virtual interrupts are disabled (that is, when the PVI flag in control register CR4 is set to 0, 
the CPL is less than 3, or the IOPL value is 3), then the CLI and STI instructions execute in a manner compatible 
with the Intel486 processor. That is, if the CPL is greater (less privileged) than the I/O privilege level (IOPL), a 
general-protection exception occurs. If the IOPL value is 3, CLI and STI clear or set the IF flag, respectively.)

PUSHF, POPF, IRET, and INT are executed like in the Intel486 processor, regardless of whether protected-mode 
virtual interrupts are enabled.

It is only possible to enter virtual-8086 mode through a task switch or the execution of an IRET instruction, and it 
is only possible to leave virtual-8086 mode by faulting to a protected-mode interrupt handler (typically the general-
protection exception handler, which in turn calls the virtual 8086-mode monitor). In both cases, the EFLAGS 
register is saved and restored. This is not true, however, in protected mode when the PVI flag is set and the 
processor is not in virtual-8086 mode. Here, it is possible to call a procedure at a different privilege level, in which 
case the EFLAGS register is not saved or modified. However, the states of VIF and VIP flags are never examined by 
the processor when the CPL is not 3.
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CHAPTER 23
MIXING 16-BIT AND 32-BIT CODE

Program modules written to run on IA-32 processors can be either 16-bit modules or 32-bit modules. Table 23-1 
shows the characteristic of 16-bit and 32-bit modules.

The IA-32 processors function most efficiently when executing 32-bit program modules. They can, however, also 
execute 16-bit program modules, in any of the following ways:
• In real-address mode.
• In virtual-8086 mode.
• System management mode (SMM).
• As a protected-mode task, when the code, data, and stack segments for the task are all configured as a 16-bit 

segments.
• By integrating 16-bit and 32-bit segments into a single protected-mode task.
• By integrating 16-bit operations into 32-bit code segments.

Real-address mode, virtual-8086 mode, and SMM are native 16-bit modes. A legacy program assembled and/or 
compiled to run on an Intel 8086 or Intel 286 processor should run in real-address mode or virtual-8086 mode 
without modification. Sixteen-bit program modules can also be written to run in real-address mode for handling 
system initialization or to run in SMM for handling system management functions. See Chapter 22, “8086 Emula-
tion,” for detailed information on real-address mode and virtual-8086 mode; see Chapter 33, “System Manage-
ment Mode,” for information on SMM.

This chapter describes how to integrate 16-bit program modules with 32-bit program modules when operating in 
protected mode and how to mix 16-bit and 32-bit code within 32-bit code segments.

23.1 DEFINING 16-BIT AND 32-BIT PROGRAM MODULES
The following IA-32 architecture mechanisms are used to distinguish between and support 16-bit and 32-bit 
segments and operations:
• The D (default operand and address size) flag in code-segment descriptors.
• The B (default stack size) flag in stack-segment descriptors.
• 16-bit and 32-bit call gates, interrupt gates, and trap gates.
• Operand-size and address-size instruction prefixes.
• 16-bit and 32-bit general-purpose registers.

The D flag in a code-segment descriptor determines the default operand-size and address-size for the instructions 
of a code segment. (In real-address mode and virtual-8086 mode, which do not use segment descriptors, the 
default is 16 bits.) A code segment with its D flag set is a 32-bit segment; a code segment with its D flag clear is a 
16-bit segment.

Table 23-1.  Characteristics of 16-Bit and 32-Bit Program Modules

Characteristic 16-Bit Program Modules 32-Bit Program Modules

Segment Size 0 to 64 KBytes 0 to 4 GBytes

Operand Sizes 8 bits and 16 bits 8 bits and 32 bits

Pointer Offset Size (Address Size) 16 bits 32 bits

Stack Pointer Size 16 Bits 32 Bits

Control Transfers Allowed to Code Segments 
of This Size

16 Bits 32 Bits
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The B flag in the stack-segment descriptor specifies the size of stack pointer (the 32-bit ESP register or the 16-bit 
SP register) used by the processor for implicit stack references. The B flag for all data descriptors also controls 
upper address range for expand down segments.

When transferring program control to another code segment through a call gate, interrupt gate, or trap gate, the 
operand size used during the transfer is determined by the type of gate used (16-bit or 32-bit), (not by the D-flag 
or prefix of the transfer instruction). The gate type determines how return information is saved on the stack (or 
stacks).

For most efficient and trouble-free operation of the processor, 32-bit programs or tasks should have the D flag in 
the code-segment descriptor and the B flag in the stack-segment descriptor set, and 16-bit programs or tasks 
should have these flags clear. Program control transfers from 16-bit segments to 32-bit segments (and vice versa) 
are handled most efficiently through call, interrupt, or trap gates.

Instruction prefixes can be used to override the default operand size and address size of a code segment. These 
prefixes can be used in real-address mode as well as in protected mode and virtual-8086 mode. An operand-size or 
address-size prefix only changes the size for the duration of the instruction.

23.2 MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A CODE SEGMENT
The following two instruction prefixes allow mixing of 32-bit and 16-bit operations within one segment:
• The operand-size prefix (66H)
• The address-size prefix (67H)

These prefixes reverse the default size selected by the D flag in the code-segment descriptor. For example, the 
processor can interpret the (MOV mem, reg) instruction in any of four ways:
• In a 32-bit code segment:

— Moves 32 bits from a 32-bit register to memory using a 32-bit effective address.

— If preceded by an operand-size prefix, moves 16 bits from a 16-bit register to memory using a 32-bit 
effective address.

— If preceded by an address-size prefix, moves 32 bits from a 32-bit register to memory using a 16-bit 
effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves 16 bits from a 16-bit register 
to memory using a 16-bit effective address.

• In a 16-bit code segment:

— Moves 16 bits from a 16-bit register to memory using a 16-bit effective address.

— If preceded by an operand-size prefix, moves 32 bits from a 32-bit register to memory using a 16-bit 
effective address.

— If preceded by an address-size prefix, moves 16 bits from a 16-bit register to memory using a 32-bit 
effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves 32 bits from a 32-bit register 
to memory using a 32-bit effective address.

The previous examples show that any instruction can generate any combination of operand size and address size 
regardless of whether the instruction is in a 16- or 32-bit segment. The choice of the 16- or 32-bit default for a code 
segment is normally based on the following criteria:
• Performance — Always use 32-bit code segments when possible. They run much faster than 16-bit code 

segments on P6 family processors, and somewhat faster on earlier IA-32 processors.
• The operating system the code segment will be running on — If the operating system is a 16-bit 

operating system, it may not support 32-bit program modules.
• Mode of operation — If the code segment is being designed to run in real-address mode, virtual-8086 mode, 

or SMM, it must be a 16-bit code segment.
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• Backward compatibility to earlier IA-32 processors — If a code segment must be able to run on an Intel 
8086 or Intel 286 processor, it must be a 16-bit code segment.

23.3 SHARING DATA AMONG MIXED-SIZE CODE SEGMENTS
Data segments can be accessed from both 16-bit and 32-bit code segments. When a data segment that is larger 
than 64 KBytes is to be shared among 16- and 32-bit code segments, the data that is to be accessed from the 16-
bit code segments must be located within the first 64 KBytes of the data segment. The reason for this is that 16-
bit pointers by definition can only point to the first 64 KBytes of a segment. 

A stack that spans less than 64 KBytes can be shared by both 16- and 32-bit code segments. This class of stacks 
includes:
• Stacks in expand-up segments with the G (granularity) and B (big) flags in the stack-segment descriptor clear.
• Stacks in expand-down segments with the G and B flags clear.
• Stacks in expand-up segments with the G flag set and the B flag clear and where the stack is contained 

completely within the lower 64 KBytes. (Offsets greater than FFFFH can be used for data, other than the stack, 
which is not shared.)

See Section 3.4.5, “Segment Descriptors,” for a description of the G and B flags and the expand-down stack type.

The B flag cannot, in general, be used to change the size of stack used by a 16-bit code segment. This flag controls 
the size of the stack pointer only for implicit stack references such as those caused by interrupts, exceptions, and 
the PUSH, POP, CALL, and RET instructions. It does not control explicit stack references, such as accesses to 
parameters or local variables. A 16-bit code segment can use a 32-bit stack only if the code is modified so that all 
explicit references to the stack are preceded by the 32-bit address-size prefix, causing those references to use 32-
bit addressing and explicit writes to the stack pointer are preceded by a 32-bit operand-size prefix.

In 32-bit, expand-down segments, all offsets may be greater than 64 KBytes; therefore, 16-bit code cannot use 
this kind of stack segment unless the code segment is modified to use 32-bit addressing.

23.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTS
There are three ways for a procedure in a 16-bit code segment to safely make a call to a 32-bit code segment:
• Make the call through a 32-bit call gate.
• Make a 16-bit call to a 32-bit interface procedure. The interface procedure then makes a 32-bit call to the 

intended destination.
• Modify the 16-bit procedure, inserting an operand-size prefix before the call, to change it to a 32-bit call.

Likewise, there are three ways for procedure in a 32-bit code segment to safely make a call to a 16-bit code 
segment:
• Make the call through a 16-bit call gate. Here, the EIP value at the CALL instruction cannot exceed FFFFH.
• Make a 32-bit call to a 16-bit interface procedure. The interface procedure then makes a 16-bit call to the 

intended destination.
• Modify the 32-bit procedure, inserting an operand-size prefix before the call, changing it to a 16-bit call. Be 

certain that the return offset does not exceed FFFFH.

These methods of transferring program control overcome the following architectural limitations imposed on calls 
between 16-bit and 32-bit code segments:
• Pointers from 16-bit code segments (which by default can only be 16 bits) cannot be used to address data or 

code located beyond FFFFH in a 32-bit segment.
• The operand-size attributes for a CALL and its companion RETURN instruction must be the same to maintain 

stack coherency. This is also true for implicit calls to interrupt and exception handlers and their companion IRET 
instructions.

• A 32-bit parameters (particularly a pointer parameter) greater than FFFFH cannot be squeezed into a 16-bit 
parameter location on a stack.
Vol. 3B 23-3



MIXING 16-BIT AND 32-BIT CODE
• The size of the stack pointer (SP or ESP) changes when switching between 16-bit and 32-bit code segments.

These limitations are discussed in greater detail in the following sections.

23.4.1 Code-Segment Pointer Size
For control-transfer instructions that use a pointer to identify the next instruction (that is, those that do not use 
gates), the operand-size attribute determines the size of the offset portion of the pointer. The implications of this 
rule are as follows:
• A JMP, CALL, or RET instruction from a 32-bit segment to a 16-bit segment is always possible using a 32-bit 

operand size, providing the 32-bit pointer does not exceed FFFFH.
• A JMP, CALL, or RET instruction from a 16-bit segment to a 32-bit segment cannot address a destination greater 

than FFFFH, unless the instruction is given an operand-size prefix.

See Section 23.4.5, “Writing Interface Procedures,” for an interface procedure that can transfer program control 
from 16-bit segments to destinations in 32-bit segments beyond FFFFH.

23.4.2 Stack Management for Control Transfer
Because the stack is managed differently for 16-bit procedure calls than for 32-bit calls, the operand-size attribute 
of the RET instruction must match that of the CALL instruction (see Figure 23-1). On a 16-bit call, the processor 
pushes the contents of the 16-bit IP register and (for calls between privilege levels) the 16-bit SP register. The 
matching RET instruction must also use a 16-bit operand size to pop these 16-bit values from the stack into the 16-
bit registers. 

A 32-bit CALL instruction pushes the contents of the 32-bit EIP register and (for inter-privilege-level calls) the 32-
bit ESP register. Here, the matching RET instruction must use a 32-bit operand size to pop these 32-bit values from 
the stack into the 32-bit registers. If the two parts of a CALL/RET instruction pair do not have matching operand 
sizes, the stack will not be managed correctly and the values of the instruction pointer and stack pointer will not be 
restored to correct values. 
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While executing 32-bit code, if a call is made to a 16-bit code segment which is at the same or a more privileged 
level (that is, the DPL of the called code segment is less than or equal to the CPL of the calling code segment) 
through a 16-bit call gate, then the upper 16-bits of the ESP register may be unreliable upon returning to the 32-
bit code segment (that is, after executing a RET in the 16-bit code segment).

When the CALL instruction and its matching RET instruction are in code segments that have D flags with the same 
values (that is, both are 32-bit code segments or both are 16-bit code segments), the default settings may be 
used. When the CALL instruction and its matching RET instruction are in segments which have different D-flag 
settings, an operand-size prefix must be used.

23.4.2.1  Controlling the Operand-Size Attribute For a Call
Three things can determine the operand-size of a call:
• The D flag in the segment descriptor for the calling code segment.
• An operand-size instruction prefix.
• The type of call gate (16-bit or 32-bit), if a call is made through a call gate.

When a call is made with a pointer (rather than a call gate), the D flag for the calling code segment determines the 
operand-size for the CALL instruction. This operand-size attribute can be overridden by prepending an operand-
size prefix to the CALL instruction. So, for example, if the D flag for a code segment is set for 16 bits and the 
operand-size prefix is used with a CALL instruction, the processor will cause the information stored on the stack to 

Figure 23-1.  Stack after Far 16- and 32-Bit Calls
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be stored in 32-bit format. If the call is to a 32-bit code segment, the instructions in that code segment will be able 
to read the stack coherently. Also, a RET instruction from the 32-bit code segment without an operand-size prefix 
will maintain stack coherency with the 16-bit code segment being returned to.

When a CALL instruction references a call-gate descriptor, the type of call is determined by the type of call gate (16-
bit or 32-bit). The offset to the destination in the code segment being called is taken from the gate descriptor; 
therefore, if a 32-bit call gate is used, a procedure in a 16-bit code segment can call a procedure located more than 
64 KBytes from the base of a 32-bit code segment, because a 32-bit call gate uses a 32-bit offset.

Note that regardless of the operand size of the call and how it is determined, the size of the stack pointer used (SP 
or ESP) is always controlled by the B flag in the stack-segment descriptor currently in use (that is, when B is clear, 
SP is used, and when B is set, ESP is used).

An unmodified 16-bit code segment that has run successfully on an 8086 processor or in real-mode on a later IA-
32 architecture processor will have its D flag clear and will not use operand-size override prefixes. As a result, all 
CALL instructions in this code segment will use the 16-bit operand-size attribute. Procedures in these code 
segments can be modified to safely call procedures to 32-bit code segments in either of two ways:
• Relink the CALL instruction to point to 32-bit call gates (see Section 23.4.2.2, “Passing Parameters With a 

Gate”).
• Add a 32-bit operand-size prefix to each CALL instruction.

23.4.2.2  Passing Parameters With a Gate
When referencing 32-bit gates with 16-bit procedures, it is important to consider the number of parameters passed 
in each procedure call. The count field of the gate descriptor specifies the size of the parameter string to copy from 
the current stack to the stack of a more privileged (numerically lower privilege level) procedure. The count field of 
a 16-bit gate specifies the number of 16-bit words to be copied, whereas the count field of a 32-bit gate specifies 
the number of 32-bit doublewords to be copied. The count field for a 32-bit gate must thus be half the size of the 
number of words being placed on the stack by a 16-bit procedure. Also, the 16-bit procedure must use an even 
number of words as parameters.

23.4.3 Interrupt Control Transfers
A program-control transfer caused by an exception or interrupt is always carried out through an interrupt or trap 
gate (located in the IDT). Here, the type of the gate (16-bit or 32-bit) determines the operand-size attribute used 
in the implicit call to the exception or interrupt handler procedure in another code segment.

A 32-bit interrupt or trap gate provides a safe interface to a 32-bit exception or interrupt handler when the excep-
tion or interrupt occurs in either a 32-bit or a 16-bit code segment. It is sometimes impractical, however, to place 
exception or interrupt handlers in 16-bit code segments, because only 16-bit return addresses are saved on the 
stack. If an exception or interrupt occurs in a 32-bit code segment when the EIP was greater than FFFFH, the 16-
bit handler procedure cannot provide the correct return address.

23.4.4 Parameter Translation
When segment offsets or pointers (which contain segment offsets) are passed as parameters between 16-bit and 
32-bit procedures, some translation is required. If a 32-bit procedure passes a pointer to data located beyond 64 
KBytes to a 16-bit procedure, the 16-bit procedure cannot use it. Except for this limitation, interface code can 
perform any format conversion between 32-bit and 16-bit pointers that may be needed.

Parameters passed by value between 32-bit and 16-bit code also may require translation between 32-bit and 16-
bit formats. The form of the translation is application-dependent.

23.4.5 Writing Interface Procedures
Placing interface code between 32-bit and 16-bit procedures can be the solution to the following interface prob-
lems:
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• Allowing procedures in 16-bit code segments to call procedures with offsets greater than FFFFH in 32-bit code 
segments.

• Matching operand-size attributes between companion CALL and RET instructions.
• Translating parameters (data), including managing parameter strings with a variable count or an odd number 

of 16-bit words.
• The possible invalidation of the upper bits of the ESP register.

The interface procedure is simplified where these rules are followed.

1. The interface procedure must reside in a 32-bit code segment (the D flag for the code-segment descriptor is 
set).

2. All procedures that may be called by 16-bit procedures must have offsets not greater than FFFFH.

3. All return addresses saved by 16-bit procedures must have offsets not greater than FFFFH.

The interface procedure becomes more complex if any of these rules are violated. For example, if a 16-bit proce-
dure calls a 32-bit procedure with an entry point beyond FFFFH, the interface procedure will need to provide the 
offset to the entry point. The mapping between 16- and 32-bit addresses is only performed automatically when a 
call gate is used, because the gate descriptor for a call gate contains a 32-bit address. When a call gate is not used, 
the interface code must provide the 32-bit address.

The structure of the interface procedure depends on the types of calls it is going to support, as follows:
• Calls from 16-bit procedures to 32-bit procedures — Calls to the interface procedure from a 16-bit code 

segment are made with 16-bit CALL instructions (by default, because the D flag for the calling code-segment 
descriptor is clear), and 16-bit operand-size prefixes are used with RET instructions to return from the interface 
procedure to the calling procedure. Calls from the interface procedure to 32-bit procedures are performed with 
32-bit CALL instructions (by default, because the D flag for the interface procedure’s code segment is set), and 
returns from the called procedures to the interface procedure are performed with 32-bit RET instructions (also 
by default).

• Calls from 32-bit procedures to 16-bit procedures — Calls to the interface procedure from a 32-bit code 
segment are made with 32-bit CALL instructions (by default), and returns to the calling procedure from the 
interface procedure are made with 32-bit RET instructions (also by default). Calls from the interface procedure 
to 16-bit procedures require the CALL instructions to have the operand-size prefixes, and returns from the 
called procedures to the interface procedure are performed with 16-bit RET instructions (by default).
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CHAPTER 24
ARCHITECTURE COMPATIBILITY

Intel 64 and IA-32 processors are binary compatible. Compatibility means that, within limited constraints, 
programs that execute on previous generations of processors will produce identical results when executed on later 
processors. The compatibility constraints and any implementation differences between the Intel 64 and IA-32 
processors are described in this chapter.

Each new processor has enhanced the software visible architecture from that found in earlier Intel 64 and IA-32 
processors. Those enhancements have been defined with consideration for compatibility with previous and future 
processors. This chapter also summarizes the compatibility considerations for those extensions.

24.1 PROCESSOR FAMILIES AND CATEGORIES
IA-32 processors are referred to in several different ways in this chapter, depending on the type of compatibility 
information being related, as described in the following:
• IA-32 Processors — All the Intel processors based on the Intel IA-32 Architecture, which include the 

8086/88, Intel 286, Intel386, Intel486, Pentium, Pentium Pro, Pentium II, Pentium III, Pentium 4, and Intel 
Xeon processors.

• 32-bit Processors — All the IA-32 processors that use a 32-bit architecture, which include the Intel386, 
Intel486, Pentium, Pentium Pro, Pentium II, Pentium III, Pentium 4, and Intel Xeon processors.

• 16-bit Processors — All the IA-32 processors that use a 16-bit architecture, which include the 8086/88 and 
Intel 286 processors.

• P6 Family Processors — All the IA-32 processors that are based on the P6 microarchitecture, which include 
the Pentium Pro, Pentium II, and Pentium III processors.

• Pentium® 4 Processors — A family of IA-32 and Intel 64 processors that are based on the Intel NetBurst® 
microarchitecture.

• Intel® Pentium® M Processors — A family of IA-32 processors that are based on the Intel Pentium M 
processor microarchitecture.

• Intel® Core™ Duo and Solo Processors — Families of IA-32 processors that are based on an improved Intel 
Pentium M processor microarchitecture.

• Intel® Xeon® Processors — A family of IA-32 and Intel 64 processors that are based on the Intel NetBurst 
microarchitecture. This family includes the Intel Xeon processor and the Intel Xeon processor MP based on the 
Intel NetBurst microarchitecture. Intel Xeon processors 3000, 3100, 3200, 3300, 3200, 5100, 5200, 5300, 
5400, 7200, 7300 series are based on Intel Core microarchitectures and support Intel 64 architecture.

• Pentium® D Processors — A family of dual-core Intel 64 processors that provides two processor cores in a 
physical package. Each core is based on the Intel NetBurst microarchitecture.

• Pentium® Processor Extreme Editions — A family of dual-core Intel 64 processors that provides two 
processor cores in a physical package. Each core is based on the Intel NetBurst microarchitecture and supports 
Intel Hyper-Threading Technology.

• Intel® Core™ 2 Processor family— A family of Intel 64 processors that are based on the Intel Core microar-
chitecture. Intel Pentium Dual-Core processors are also based on the Intel Core microarchitecture.

• Intel Atom® Processors — A family of IA-32 and Intel 64 processors. 45 nm Intel Atom processors are based 
on the Intel Atom microarchitecture. 32 nm Intel Atom processors are based on newer microarchitectures 
including the Silvermont microarchitecture and the Airmont microarchitecture. Each generation of Intel Atom 
processors can be identified by the CPUID’s DisplayFamily_DisplayModel signature; see Table 2-1 “CPUID 
Signature Values of DisplayFamily_DisplayModel” in Chapter 2, “Model-Specific Registers (MSRs),” of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 4.
Vol. 3B 24-1



ARCHITECTURE COMPATIBILITY
24.2 RESERVED BITS
Throughout this manual, certain bits are marked as reserved in many register and memory layout descriptions. 
When bits are marked as undefined or reserved, it is essential for compatibility with future processors that software 
treat these bits as having a future, though unknown effect. Software should follow these guidelines in dealing with 
reserved bits:
• Do not depend on the states of any reserved bits when testing the values of registers or memory locations that 

contain such bits. Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing them to memory or to a register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated in the documentation, if any, or 

reload them with values previously read from the same register.

Software written for existing IA-32 processor that handles reserved bits correctly will port to future IA-32 proces-
sors without generating protection exceptions.

24.3 ENABLING NEW FUNCTIONS AND MODES
Most of the new control functions defined for the P6 family and Pentium processors are enabled by new mode flags 
in the control registers (primarily register CR4). This register is undefined for IA-32 processors earlier than the 
Pentium processor. Attempting to access this register with an Intel486 or earlier IA-32 processor results in an 
invalid-opcode exception (#UD). Consequently, programs that execute correctly on the Intel486 or earlier IA-32 
processor cannot erroneously enable these functions. Attempting to set a reserved bit in register CR4 to a value 
other than its original value results in a general-protection exception (#GP). So, programs that execute on the P6 
family and Pentium processors cannot erroneously enable functions that may be implemented in future IA-32 
processors. 

The P6 family and Pentium processors do not check for attempts to set reserved bits in model-specific registers; 
however these bits may be checked on more recent processors. It is the obligation of the software writer to enforce 
this discipline. These reserved bits may be used in future Intel processors.

24.4 DETECTING THE PRESENCE OF NEW FEATURES THROUGH SOFTWARE
Software can check for the presence of new architectural features and extensions in either of two ways:

1. Test for the presence of the feature or extension. Software can test for the presence of new flags in the EFLAGS 
register and control registers. If these flags are reserved (meaning not present in the processor executing the 
test), an exception is generated. Likewise, software can attempt to execute a new instruction, which results in 
an invalid-opcode exception (#UD) being generated if it is not supported.

2. Execute the CPUID instruction. The CPUID instruction (added to the IA-32 in the Pentium processor) indicates 
the presence of new features directly.

See Chapter 21, “Processor Identification and Feature Determination,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for detailed information on detecting new processor features and exten-
sions.

24.5 INTEL MMX TECHNOLOGY
The Pentium processor with MMX technology introduced the MMX technology and a set of MMX instructions to the 
IA-32. The MMX instructions are described in Chapter 9, “Programming with Intel® MMX™ Technology,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, and in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D. The MMX technology and MMX instructions are 
also included in the Pentium II, Pentium III, Pentium 4, and Intel Xeon processors.
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24.6 STREAMING SIMD EXTENSIONS (SSE)
The Streaming SIMD Extensions (SSE) were introduced in the Pentium III processor. The SSE extensions consist of 
a new set of instructions and a new set of registers. The new registers include the eight 128-bit XMM registers and 
the 32-bit MXCSR control and status register. These instructions and registers are designed to allow SIMD compu-
tations to be made on single precision floating-point numbers. Several of these new instructions also operate in the 
MMX registers. SSE instructions and registers are described in Section 10, “Programming with Intel® Streaming 
SIMD Extensions (Intel® SSE),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
and in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D. 

24.7 STREAMING SIMD EXTENSIONS 2 (SSE2)
The Streaming SIMD Extensions 2 (SSE2) were introduced in the Pentium 4 and Intel Xeon processors. They 
consist of a new set of instructions that operate on the XMM and MXCSR registers and perform SIMD operations on 
double precision floating-point values and on integer values. Several of these new instructions also operate in the 
MMX registers. SSE2 instructions and registers are described in Chapter 11, “Programming with Intel® Streaming 
SIMD Extensions 2 (Intel® SSE2),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
1, and in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D.

24.8 STREAMING SIMD EXTENSIONS 3 (SSE3)
The Streaming SIMD Extensions 3 (SSE3) were introduced in Pentium 4 processors supporting Intel Hyper-
Threading Technology and Intel Xeon processors. SSE3 extensions include 13 instructions. Ten of these 13 instruc-
tions support the single instruction multiple data (SIMD) execution model used with SSE/SSE2 extensions. One 
SSE3 instruction accelerates x87 style programming for conversion to integer. The remaining two instructions 
(MONITOR and MWAIT) accelerate synchronization of threads. SSE3 instructions are described in Chapter 12, 
“Programming with Intel® SSE3, SSSE3, Intel® SSE4, and Intel® AES-NI,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, and in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volumes 2A, 2B, 2C, & 2D.

24.9 ADDITIONAL STREAMING SIMD EXTENSIONS
The Supplemental Streaming SIMD Extensions 3 (SSSE3) were introduced in the Intel Core 2 processor and Intel 
Xeon processor 5100 series. Streaming SIMD Extensions 4 provided 54 new instructions introduced in 45 nm Intel 
Xeon processors and Intel Core 2 processors. SSSE3, SSE4.1 and SSE4.2 instructions are described in Chapter 12, 
“Programming with Intel® SSE3, SSSE3, Intel® SSE4, and Intel® AES-NI,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, and in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volumes 2A, 2B, 2C, & 2D.

24.10 INTEL HYPER-THREADING TECHNOLOGY
Intel Hyper-Threading Technology provides two logical processors that can execute two separate code streams 
(called threads) concurrently by using shared resources in a single processor core or in a physical package. 

This feature was introduced in the Intel Xeon processor MP and later steppings of the Intel Xeon processor, and 
Pentium 4 processors supporting Intel Hyper-Threading Technology. The feature is also found in the Pentium 
processor Extreme Edition. See also: Section 10.7, “Intel® Hyper-Threading Technology Architecture.”

45 nm and 32 nm Intel Atom processors support Intel Hyper-Threading Technology.

Intel Atom processors based on Silvermont and Airmont microarchitectures do not support Intel Hyper-Threading 
Technology.
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24.11 MULTI-CORE TECHNOLOGY
The Pentium D processor and Pentium processor Extreme Edition provide two processor cores in each physical 
processor package. See also: Section 10.5, “Intel® Hyper-Threading Technology and Intel® Multi-Core Tech-
nology,” and Section 10.8, “Multi-Core Architecture.” Intel Core 2 Duo, Intel Pentium Dual-Core processors, Intel 
Xeon processors 3000, 3100, 5100, 5200 series provide two processor cores in each physical processor package. 
Intel Core 2 Extreme, Intel Core 2 Quad processors, Intel Xeon processors 3200, 3300, 5300, 5400, 7300 series 
provide two processor cores in each physical processor package.

24.12 SPECIFIC FEATURES OF DUAL-CORE PROCESSOR 
Dual-core processors may have some processor-specific features. Use CPUID feature flags to detect the availability 
features. Note the following:
• CPUID Brand String — On Pentium processor Extreme Edition, the process will report the correct brand string 

only after the correct microcode updates are loaded.
• Enhanced Intel SpeedStep Technology — This feature is supported in Pentium D processor but not in 

Pentium processor Extreme Edition. 

24.13 NEW INSTRUCTIONS IN THE PENTIUM AND LATER IA-32 PROCESSORS
Table 24-1 identifies the instructions introduced into the IA-32 in the Pentium processor and later IA-32 processors.

24.13.1 Instructions Added Prior to the Pentium Processor
The following instructions were added in the Intel486 processor:
• BSWAP (byte swap) instruction.
• XADD (exchange and add) instruction.
• CMPXCHG (compare and exchange) instruction.
• ΙNVD (invalidate cache) instruction.
• WBINVD (write-back and invalidate cache) instruction.
• INVLPG (invalidate TLB entry) instruction.

Table 24-1.  New Instruction in the Pentium Processor and Later IA-32 Processors

Instruction CPUID Identification Bits Introduced In

CMOVcc (conditional move) EDX, Bit 15 Pentium Pro processor

FCMOVcc (floating-point conditional move) EDX, Bits 0 and 15

FCOMI (floating-point compare and set EFLAGS) EDX, Bits 0 and 15

RDPMC (read performance monitoring counters) EAX, Bits 8-11, set to 6H; 
see Note 1

UD2 (undefined) EAX, Bits 8-11, set to 6H
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The following instructions were added in the Intel386 processor:
• LSS, LFS, and LGS (load SS, FS, and GS registers).
• Long-displacement conditional jumps.
• Single-bit instructions.
• Bit scan instructions.
• Double-shift instructions.
• Byte set on condition instruction.
• Move with sign/zero extension.
• Generalized multiply instruction.
• MOV to and from control registers.
• MOV to and from test registers (now obsolete).
• MOV to and from debug registers.
• RSM (resume from SMM). This instruction was introduced in the Intel386 SL and Intel486 SL processors.

The following instructions were added in the Intel 387 math coprocessor:
• FPREM1.
• FUCOM, FUCOMP, and FUCOMPP.

24.14 OBSOLETE INSTRUCTIONS
The MOV to and from test registers instructions were removed from the Pentium processor and future IA-32 
processors. Execution of these instructions generates an invalid-opcode exception (#UD).

24.15 UNDEFINED OPCODES
All new instructions defined for Intel 64 and IA-32 processors use binary encodings that were reserved on earlier-
generation processors. Generally, attempting to execute a reserved opcode results in an invalid-opcode (#UD) 
exception being generated. Consequently, programs that execute correctly on earlier-generation processors 
cannot erroneously execute these instructions and thereby produce unexpected results when executed on later 
Intel 64 processors.

For compatibility with prior generations, there are a few reserved opcodes which do not result in a #UD but rather 
result in the same behavior as certain defined instructions. In the interest of standardization, it is recommended 

CMPXCHG8B (compare and exchange 8 bytes) EDX, Bit 8 Pentium processor

CPUID (CPU identification) None; see Note 2

RDTSC (read time-stamp counter) EDX, Bit 4

RDMSR (read model-specific register) EDX, Bit 5

WRMSR (write model-specific register) EDX, Bit 5

MMX Instructions EDX, Bit 23

NOTES:
1. The RDPMC instruction was introduced in the P6 family of processors and added to later model Pentium processors. This instruc-

tion is model specific in nature and not architectural.
2. The CPUID instruction is available in all Pentium and P6 family processors and in later models of the Intel486 processors. The ability 

to set and clear the ID flag (bit 21) in the EFLAGS register indicates the availability of the CPUID instruction.

Table 24-1.  New Instruction in the Pentium Processor and Later IA-32 Processors (Contd.)

Instruction CPUID Identification Bits Introduced In
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that software not use the opcodes given below but instead use those defined in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D.

The following items enumerate those reserved opcodes (referring in some cases to opcode groups as defined in 
Appendix A, “Opcode Map,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D).
• Immediate Group 1 - When not in 64-bit mode, instructions encoded with opcode 82H result in the behavior 

of the corresponding instructions encoded with opcode 80H. Depending on the Op/Reg field of the ModR/M 
Byte, these opcodes are the byte forms of ADD, OR, ADC, SBB, AND, SUB, XOR, CMP. (In 64-bit mode, these 
opcodes cause a #UD.)

• Shift Group 2 /6 - Instructions encoded with opcodes C0H, C1H, D0H, D1H, D2H, and D3H with value 110B in 
the Op/Reg field (/6) of the ModR/M Byte result in the behavior of the corresponding instructions with value 
100B in the Op/Reg field (/4). These are various forms of the SAL/SHL instruction.

• Unary Group 3 /1 - Instructions encoded with opcodes F6H and F7H with value 001B in the Op/Reg field (/01) 
of the ModR/M Byte result in the behavior of the corresponding instructions with value 000B in the Op/Reg field 
(/0). These are various forms of the TEST instruction.

• Reserved NOP - Instructions encoded with the opcode 0F0DH or with the opcodes 0F18H through 0F1FH 
result in the behavior of the NOP (No Operation) instruction, except for those opcodes defined in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D. The opcodes not so defined 
are considered “Reserved NOP” and may be used for future instructions which have no defined impact on 
existing architectural state. These reserved NOP opcodes are decoded with a ModR/M byte and typical 
instruction prefix options but still result in the behavior of the NOP instruction.

• x87 Opcodes - There are several groups of x87 opcodes which provide the same behavior as other x87 
instructions. See Section 24.18.9 for the complete list.

There are a few reserved opcodes that provide unique behavior but do not provide capabilities that are not already 
available in the main instructions defined in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volumes 2A, 2B, 2C, & 2D.
• D6H - When not in 64-bit mode SALC - Set AL to Cary flag. IF (CF=1), AL=FF, ELSE, AL=0 (#UD in 64-bit 

mode)
• x87 Opcodes - There are a few x87 opcodes with subtly different behavior from existing x87 instructions. See 

Section 24.18.9 for details.

24.16 NEW FLAGS IN THE EFLAGS REGISTER
The section titled “EFLAGS Register” in Chapter 3, “Basic Execution Environment,” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, shows the configuration of flags in the EFLAGS register for the P6 
family processors. No new flags have been added to this register in the P6 family processors. The flags added to 
this register in the Pentium and Intel486 processors are described in the following sections.

The following flags were added to the EFLAGS register in the Pentium processor:
• VIF (virtual interrupt flag), bit 19.
• VIP (virtual interrupt pending), bit 20. 
• ID (identification flag), bit 21. 

The AC flag (bit 18) was added to the EFLAGS register in the Intel486 processor.

24.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 Processors
The following bits in the EFLAGS register that can be used to differentiate between the 32-bit IA-32 processors:
• Bit 18 (the AC flag) can be used to distinguish an Intel386 processor from the P6 family, Pentium, and Intel486 

processors. Since it is not implemented on the Intel386 processor, it will always be clear.
• Bit 21 (the ID flag) indicates whether an application can execute the CPUID instruction. The ability to set and 

clear this bit indicates that the processor is a P6 family or Pentium processor. The CPUID instruction can then 
be used to determine which processor. 
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• Bits 19 (the VIF flag) and 20 (the VIP flag) will always be zero on processors that do not support virtual mode 
extensions, which includes all 32-bit processors prior to the Pentium processor.

See Chapter 21, “Processor Identification and Feature Determination,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for more information on identifying processors.

24.17 STACK OPERATIONS AND USER SOFTWARE
This section identifies the differences in stack implementation between the various IA-32 processors.

24.17.1 PUSH SP
The P6 family, Pentium, Intel486, Intel386, and Intel 286 processors push a different value on the stack for a PUSH 
SP instruction than the 8086 processor. The 32-bit processors push the value of the SP register before it is decre-
mented as part of the push operation; the 8086 processor pushes the value of the SP register after it is decre-
mented. If the value pushed is important, replace PUSH SP instructions with the following three instructions:

PUSH BP
MOV  BP, SP
XCHG BP, [BP] 

This code functions as the 8086 processor PUSH SP instruction on the P6 family, Pentium, Intel486, Intel386, and 
Intel 286 processors.

24.17.2 EFLAGS Pushed on the Stack
The setting of the stored values of bits 12 through 15 (which includes the IOPL field and the NT flag) in the EFLAGS 
register by the PUSHF instruction, by interrupts, and by exceptions is different with the 32-bit IA-32 processors 
than with the 8086 and Intel 286 processors. The differences are as follows:
• 8086 processor—bits 12 through 15 are always set.
• Intel 286 processor—bits 12 through 15 are always cleared in real-address mode. 
• 32-bit processors in real-address mode—bit 15 (reserved) is always cleared, and bits 12 through 14 have the 

last value loaded into them.

24.18 X87 FPU
This section addresses the issues that must be faced when porting floating-point software designed to run on 
earlier IA-32 processors and math coprocessors to a Pentium 4, Intel Xeon, P6 family, or Pentium processor with 
integrated x87 FPU. To software, a Pentium 4, Intel Xeon, or P6 family processor looks very much like a Pentium 
processor. Floating-point software which runs on a Pentium or Intel486 DX processor, or on an Intel486 SX 
processor/Intel 487 SX math coprocessor system or an Intel386 processor/Intel 387 math coprocessor system, 
will run with at most minor modifications on a Pentium 4, Intel Xeon, or P6 family processor. To port code directly 
from an Intel 286 processor/Intel 287 math coprocessor system or an Intel 8086 processor/8087 math copro-
cessor system to a Pentium 4, Intel Xeon, P6 family, or Pentium processor, certain additional issues must be 
addressed. 

In the following sections, the term “32-bit x87 FPUs” refers to the P6 family, Pentium, and Intel486 DX processors, 
and to the Intel 487 SX and Intel 387 math coprocessors; the term “16-bit IA-32 math coprocessors” refers to the 
Intel 287 and 8087 math coprocessors.
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24.18.1 Control Register CR0 Flags
The ET, NE, and MP flags in control register CR0 control the interface between the integer unit of an IA-32 processor 
and either its internal x87 FPU or an external math coprocessor. The effect of these flags in the various IA-32 
processors are described in the following paragraphs.

The ET (extension type) flag (bit 4 of the CR0 register) is used in the Intel386 processor to indicate whether the 
math coprocessor in the system is an Intel 287 math coprocessor (flag is clear) or an Intel 387 DX math copro-
cessor (flag is set). This bit is hardwired to 1 in the P6 family, Pentium, and Intel486 processors.

The NE (Numeric Exception) flag (bit 5 of the CR0 register) is used in the P6 family, Pentium, and Intel486 proces-
sors to determine whether unmasked floating-point exceptions are reported internally through interrupt vector 16 
(flag is set) or externally through an external interrupt (flag is clear). On a hardware reset, the NE flag is initialized 
to 0, so software using the automatic internal error-reporting mechanism must set this flag to 1. This flag is nonex-
istent on the Intel386 processor.

As on the Intel 286 and Intel386 processors, the MP (monitor coprocessor) flag (bit 1 of register CR0) determines 
whether the WAIT/FWAIT instructions or waiting-type floating-point instructions trap when the context of the x87 
FPU is different from that of the currently-executing task. If the MP and TS flag are set, then a WAIT/FWAIT instruc-
tion and waiting instructions will cause a device-not-available exception (interrupt vector 7). The MP flag is used on 
the Intel 286 and Intel386 processors to support the use of a WAIT/FWAIT instruction to wait on a device other 
than a math coprocessor. The device reports its status through the BUSY# pin. Since the P6 family, Pentium, and 
Intel486 processors do not have such a pin, the MP flag has no relevant use and should be set to 1 for normal oper-
ation.

24.18.2 x87 FPU Status Word
This section identifies differences to the x87 FPU status word for the different IA-32 processors and math coproces-
sors, the reason for the differences, and their impact on software.

24.18.2.1  Condition Code Flags (C0 through C3)
The following information pertains to differences in the use of the condition code flags (C0 through C3) located in 
bits 8, 9, 10, and 14 of the x87 FPU status word.

After execution of an FINIT instruction or a hardware reset on a 32-bit x87 FPU, the condition code flags are set to 
0. The same operations on a 16-bit IA-32 math coprocessor leave these flags intact (they contain their prior value). 
This difference in operation has no impact on software and provides a consistent state after reset.

Transcendental instruction results in the core range of the P6 family and Pentium processors may differ from the 
Intel486 DX processor and Intel 487 SX math coprocessor by 2 to 3 units in the last place (ulps)—(see “Transcen-
dental Instruction Accuracy” in Chapter 8, “Programming with the x87 FPU,” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1). As a result, the value saved in the C1 flag may also differ.

After an incomplete FPREM/FPREM1 instruction, the C0, C1, and C3 flags are set to 0 on the 32-bit x87 FPUs. After 
the same operation on a 16-bit IA-32 math coprocessor, these flags are left intact. 

On the 32-bit x87 FPUs, the C2 flag serves as an incomplete flag for the FTAN instruction. On the 16-bit IA-32 math 
coprocessors, the C2 flag is undefined for the FPTAN instruction. This difference has no impact on software, 
because Intel 287 or 8087 programs do not check C2 after an FPTAN instruction. The use of this flag on later 
processors allows fast checking of operand range.

24.18.2.2  Stack Fault Flag
When unmasked stack overflow or underflow occurs on a 32-bit x87 FPU, the IE flag (bit 0) and the SF flag (bit 6) 
of the x87 FPU status word are set to indicate a stack fault and condition code flag C1 is set or cleared to indicate 
overflow or underflow, respectively. When unmasked stack overflow or underflow occurs on a 16-bit IA-32 math 
coprocessor, only the IE flag is set. Bit 6 is reserved on these processors. The addition of the SF flag on a 32-bit x87 
FPU has no impact on software. Existing exception handlers need not change, but may be upgraded to take advan-
tage of the additional information.
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24.18.3 x87 FPU Control Word
Only affine closure is supported for infinity control on a 32-bit x87 FPU. The infinity control flag (bit 12 of the x87 
FPU control word) remains programmable on these processors, but has no effect. This change was made to 
conform to the IEEE Standard 754 for Floating-Point Arithmetic. On a 16-bit IA-32 math coprocessor, both affine 
and projective closures are supported, as determined by the setting of bit 12. After a hardware reset, the default 
value of bit 12 is projective. Software that requires projective infinity arithmetic may give different results.

24.18.4 x87 FPU Tag Word
When loading the tag word of a 32-bit x87 FPU, using an FLDENV, FRSTOR, or FXRSTOR (Pentium III processor only) 
instruction, the processor examines the incoming tag and classifies the location only as empty or non-empty. Thus, 
tag values of 00, 01, and 10 are interpreted by the processor to indicate a non-empty location. The tag value of 11 
is interpreted by the processor to indicate an empty location. Subsequent operations on a non-empty register 
always examine the value in the register, not the value in its tag. The FSTENV, FSAVE, and FXSAVE (Pentium III 
processor only) instructions examine the non-empty registers and put the correct values in the tags before storing 
the tag word.

The corresponding tag for a 16-bit IA-32 math coprocessor is checked before each register access to determine the 
class of operand in the register; the tag is updated after every change to a register so that the tag always reflects 
the most recent status of the register. Software can load a tag with a value that disagrees with the contents of a 
register (for example, the register contains a valid value, but the tag says special). Here, the 16-bit IA-32 math 
coprocessors honor the tag and do not examine the register. 

Software written to run on a 16-bit IA-32 math coprocessor may not operate correctly on a 16-bit x87 FPU, if it 
uses the FLDENV, FRSTOR, or FXRSTOR instructions to change tags to values (other than to empty) that are 
different from actual register contents.

The encoding in the tag word for the 32-bit x87 FPUs for unsupported data formats (including pseudo-zero and 
unnormal) is special (10B), to comply with IEEE Standard 754. The encoding in the 16-bit IA-32 math coprocessors 
for pseudo-zero and unnormal is valid (00B) and the encoding for other unsupported data formats is special (10B). 
Code that recognizes the pseudo-zero or unnormal format as valid must therefore be changed if it is ported to a 32-
bit x87 FPU.

24.18.5 Data Types
This section discusses the differences of data types for the various x87 FPUs and math coprocessors.

24.18.5.1  NaNs
The 32-bit x87 FPUs distinguish between signaling NaNs (SNaNs) and quiet NaNs (QNaNs). These x87 FPUs only 
generate QNaNs and normally do not generate an exception upon encountering a QNaN. An invalid-operation 
exception (#I) is generated only upon encountering a SNaN, except for the FCOM, FIST, and FBSTP instructions, 
which also generates an invalid-operation exceptions for a QNaNs. This behavior matches IEEE Standard 754.

The 16-bit IA-32 math coprocessors only generate one kind of NaN (the equivalent of a QNaN), but the raise an 
invalid-operation exception upon encountering any kind of NaN.

When porting software written to run on a 16-bit IA-32 math coprocessor to a 32-bit x87 FPU, uninitialized memory 
locations that contain QNaNs should be changed to SNaNs to cause the x87 FPU or math coprocessor to fault when 
uninitialized memory locations are referenced.

24.18.5.2  Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats
The 32-bit x87 FPUs neither generate nor support the pseudo-zero, pseudo-NaN, pseudo-infinity, and unnormal 
formats. Whenever they encounter them in an arithmetic operation, they raise an invalid-operation exception. The 
16-bit IA-32 math coprocessors define and support special handling for these formats. Support for these formats 
was dropped to conform with IEEE Standard 754 for Floating-Point Arithmetic.
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This change should not impact software ported from 16-bit IA-32 math coprocessors to 32-bit x87 FPUs. The 32-
bit x87 FPUs do not generate these formats, and therefore will not encounter them unless software explicitly loads 
them in the data registers. The only affect may be in how software handles the tags in the tag word (see also: 
Section 24.18.4, “x87 FPU Tag Word”).

24.18.6 Floating-Point Exceptions
This section identifies the implementation differences in exception handling for floating-point instructions in the 
various x87 FPUs and math coprocessors.

24.18.6.1  Denormal Operand Exception (#D)
When the denormal operand exception is masked, the 32-bit x87 FPUs automatically normalize denormalized 
numbers when possible; whereas, the 16-bit IA-32 math coprocessors return a denormal result. A program written 
to run on a 16-bit IA-32 math coprocessor that uses the denormal exception solely to normalize denormalized 
operands is redundant when run on the 32-bit x87 FPUs. If such a program is run on 32-bit x87 FPUs, performance 
can be improved by masking the denormal exception. Floating-point programs run faster when the FPU performs 
normalization of denormalized operands.

The denormal operand exception is not raised for transcendental instructions and the FXTRACT instruction on the 
16-bit IA-32 math coprocessors. This exception is raised for these instructions on the 32-bit x87 FPUs. The excep-
tion handlers ported to these latter processors need to be changed only if the handlers gives special treatment to 
different opcodes.

24.18.6.2  Numeric Overflow Exception (#O)
On the 32-bit x87 FPUs, when the numeric overflow exception is masked and the rounding mode is set to chop 
(toward 0), the result is the largest positive or smallest negative number. The 16-bit IA-32 math coprocessors do 
not signal the overflow exception when the masked response is not ∞; that is, they signal overflow only when the 
rounding control is not set to round to 0. If rounding is set to chop (toward 0), the result is positive or negative ∞. 
Under the most common rounding modes, this difference has no impact on existing software. 

If rounding is toward 0 (chop), a program on a 32-bit x87 FPU produces, under overflow conditions, a result that is 
different in the least significant bit of the significand, compared to the result on a 16-bit IA-32 math coprocessor. 
The reason for this difference is IEEE Standard 754 compatibility.

When the overflow exception is not masked, the precision exception is flagged on the 32-bit x87 FPUs. When the 
result is stored in the stack, the significand is rounded according to the precision control (PC) field of the FPU 
control word or according to the opcode. On the 16-bit IA-32 math coprocessors, the precision exception is not 
flagged and the significand is not rounded. The impact on existing software is that if the result is stored on the 
stack, a program running on a 32-bit x87 FPU produces a different result under overflow conditions than on a 16-
bit IA-32 math coprocessor. The difference is apparent only to the exception handler. This difference is for IEEE 
Standard 754 compatibility.

24.18.6.3  Numeric Underflow Exception (#U)
When the underflow exception is masked on the 32-bit x87 FPUs, the underflow exception is signaled when the 
result is tiny and inexact (see Section 4.9.1.5, “Numeric Underflow Exception (#U),” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1). When the underflow exception is unmasked and the instruction 
is supposed to store the result on the stack, the significand is rounded to the appropriate precision (according to 
the PC flag in the FPU control word, for those instructions controlled by PC, otherwise to extended precision), after 
adjusting the exponent.

24.18.6.4  Exception Precedence
There is no difference in the precedence of the denormal-operand exception on the 32-bit x87 FPUs, whether it be 
masked or not. When the denormal-operand exception is not masked on the 16-bit IA-32 math coprocessors, it 
takes precedence over all other exceptions. This difference causes no impact on existing software, but some 
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unneeded normalization of denormalized operands is prevented on the Intel486 processor and Intel 387 math 
coprocessor.

24.18.6.5  CS and EIP For FPU Exceptions
On the Intel 32-bit x87 FPUs, the values from the CS and EIP registers saved for floating-point exceptions point to 
any prefixes that come before the floating-point instruction. On the 8087 math coprocessor, the saved CS and IP 
registers points to the floating-point instruction.

24.18.6.6  FPU Error Signals
The floating-point error signals to the P6 family, Pentium, and Intel486 processors do not pass through an interrupt 
controller; an INT# signal from an Intel 387, Intel 287 or 8087 math coprocessors does. If an 8086 processor uses 
another exception for the 8087 interrupt, both exception vectors should call the floating-point-error exception 
handler. Some instructions in a floating-point-error exception handler may need to be deleted if they use the inter-
rupt controller. The P6 family, Pentium, and Intel486 processors have signals that, with the addition of external 
logic, support reporting for emulation of the interrupt mechanism used in many personal computers.

On the P6 family, Pentium, and Intel486 processors, an undefined floating-point opcode will cause an invalid-
opcode exception (#UD, interrupt vector 6). Undefined floating-point opcodes, like legal floating-point opcodes, 
cause a device not available exception (#NM, interrupt vector 7) when either the TS or EM flag in control register 
CR0 is set. The P6 family, Pentium, and Intel486 processors do not check for floating-point error conditions on 
encountering an undefined floating-point opcode.

24.18.6.7  Assertion of the FERR# Pin
When using the MS-DOS compatibility mode for handing floating-point exceptions, the FERR# pin must be 
connected to an input to an external interrupt controller. An external interrupt is then generated when the FERR# 
output drives the input to the interrupt controller and the interrupt controller in turn drives the INTR pin on the 
processor. 

For the P6 family and Intel386 processors, an unmasked floating-point exception always causes the FERR# pin to 
be asserted upon completion of the instruction that caused the exception. For the Pentium and Intel486 proces-
sors, an unmasked floating-point exception may cause the FERR# pin to be asserted either at the end of the 
instruction causing the exception or immediately before execution of the next floating-point instruction. (Note that 
the next floating-point instruction would not be executed until the pending unmasked exception has been 
handled.) See Appendix D, “Guidelines for Writing SIMD Floating-Point Exception Handlers,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, for a complete description of the required mechanism 
for handling floating-point exceptions using the MS-DOS compatibility mode.

Using FERR# and IGNNE# to handle floating-point exception is deprecated by modern operating systems; this 
approach also limits newer processors to operate with one logical processor active.

24.18.6.8  Invalid Operation Exception On Denormals 
An invalid-operation exception is not generated on the 32-bit x87 FPUs upon encountering a denormal value when 
executing a FSQRT, FDIV, or FPREM instruction or upon conversion to BCD or to integer. The operation proceeds by 
first normalizing the value. On the 16-bit IA-32 math coprocessors, upon encountering this situation, the invalid-
operation exception is generated. This difference has no impact on existing software. Software running on the 32-
bit x87 FPUs continues to execute in cases where the 16-bit IA-32 math coprocessors trap. The reason for this 
change was to eliminate an exception from being raised.

24.18.6.9  Alignment Check Exceptions (#AC)
If alignment checking is enabled, a misaligned data operand on the P6 family, Pentium, and Intel486 processors 
causes an alignment check exception (#AC) when a program or procedure is running at privilege-level 3, except 
for the stack portion of the FSAVE/FNSAVE, FXSAVE, FRSTOR, and FXRSTOR instructions.
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24.18.6.10  Segment Not Present Exception During FLDENV
On the Intel486 processor, when a segment not present exception (#NP) occurs in the middle of an FLDENV 
instruction, it can happen that part of the environment is loaded and part not. In such cases, the FPU control word 
is left with a value of 007FH. The P6 family and Pentium processors ensure the internal state is correct at all times 
by attempting to read the first and last bytes of the environment before updating the internal state.

24.18.6.11  Device Not Available Exception (#NM)
The device-not-available exception (#NM, interrupt 7) will occur in the P6 family, Pentium, and Intel486 processors 
as described in Section 2.5, “Control Registers,” Table 2-2, and Chapter 7, “Interrupt 7—Device Not Available 
Exception (#NM).”

24.18.6.12  Coprocessor Segment Overrun Exception
The coprocessor segment overrun exception (interrupt 9) does not occur in the P6 family, Pentium, and Intel486 
processors. In situations where the Intel 387 math coprocessor would cause an interrupt 9, the P6 family, Pentium, 
and Intel486 processors simply abort the instruction. To avoid undetected segment overruns, it is recommended 
that the floating-point save area be placed in the same page as the TSS. This placement will prevent the FPU envi-
ronment from being lost if a page fault occurs during the execution of an FLDENV, FRSTOR, or FXRSTOR instruction 
while the operating system is performing a task switch.

24.18.6.13  General Protection Exception (#GP)
A general-protection exception (#GP, interrupt 13) occurs if the starting address of a floating-point operand falls 
outside a segment’s size. An exception handler should be included to report these programming errors.

24.18.6.14  Floating-Point Error Exception (#MF)
In real mode and protected mode (not including virtual-8086 mode), interrupt vector 16 must point to the floating-
point exception handler. In virtual-8086 mode, the virtual-8086 monitor can be programmed to accommodate a 
different location of the interrupt vector for floating-point exceptions.

24.18.7 Changes to Floating-Point Instructions
This section identifies the differences in floating-point instructions for the various Intel FPU and math coprocessor 
architectures, the reason for the differences, and their impact on software.

24.18.7.1  FDIV, FPREM, and FSQRT Instructions
The 32-bit x87 FPUs support operations on denormalized operands and, when detected, an underflow exception 
can occur, for compatibility with the IEEE Standard 754. The 16-bit IA-32 math coprocessors do not operate on 
denormalized operands or return underflow results. Instead, they generate an invalid-operation exception when 
they detect an underflow condition. An existing underflow exception handler will require change only if it gives 
different treatment to different opcodes. Also, it is possible that fewer invalid-operation exceptions will occur.

24.18.7.2  FSCALE Instruction
With the 32-bit x87 FPUs, the range of the scaling operand is not restricted. If (0 < | ST(1) < 1), the scaling factor 
is 0; therefore, ST(0) remains unchanged. If the rounded result is not exact or if there was a loss of accuracy 
(masked underflow), the precision exception is signaled. With the 16-bit IA-32 math coprocessors, the range of the 
scaling operand is restricted. If (0 < | ST(1) | < 1), the result is undefined and no exception is signaled. The 
impact of this difference on exiting software is that different results are delivered on the 32-bit and 16-bit FPUs and 
math coprocessors when (0 < | ST(1) | < 1).
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24.18.7.3  FPREM1 Instruction
The 32-bit x87 FPUs compute a partial remainder according to IEEE Standard 754. This instruction does not exist 
on the 16-bit IA-32 math coprocessors. The availability of the FPREM1 instruction has is no impact on existing soft-
ware.

24.18.7.4  FPREM Instruction
On the 32-bit x87 FPUs, the condition code flags C0, C3, C1 in the status word correctly reflect the three low-order 
bits of the quotient following execution of the FPREM instruction. On the 16-bit IA-32 math coprocessors, the 
quotient bits are incorrect when performing a reduction of (64N + M) when (N ≥ 1) and M is 1 or 2. This difference 
does not affect existing software; software that works around the bug should not be affected.

24.18.7.5  FUCOM, FUCOMP, and FUCOMPP Instructions
When executing the FUCOM, FUCOMP, and FUCOMPP instructions, the 32-bit x87 FPUs perform unordered compare 
according to IEEE Standard 754. These instructions do not exist on the 16-bit IA-32 math coprocessors. The avail-
ability of these new instructions has no impact on existing software.

24.18.7.6  FPTAN Instruction
On the 32-bit x87 FPUs, the range of the operand for the FPTAN instruction is much less restricted (| ST(0) | < 263) 
than on earlier math coprocessors. The instruction reduces the operand internally using an internal π/4 constant 
that is more accurate. The range of the operand is restricted to (| ST(0) | < π/4) on the 16-bit IA-32 math copro-
cessors; the operand must be reduced to this range using FPREM. This change has no impact on existing software. 
See also sections 8.3.8 and section 8.3.10 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, for more information on the accuracy of the FPTAN instruction.

24.18.7.7  Stack Overflow
On the 32-bit x87 FPUs, if an FPU stack overflow occurs when the invalid-operation exception is masked, the FPU 
returns the real, integer, or BCD-integer indefinite value to the destination operand, depending on the instruction 
being executed. On the 16-bit IA-32 math coprocessors, the original operand remains unchanged following a stack 
overflow, but it is loaded into register ST(1). This difference has no impact on existing software.

24.18.7.8  FSIN, FCOS, and FSINCOS Instructions
On the 32-bit x87 FPUs, these instructions perform three common trigonometric functions. These instructions do 
not exist on the 16-bit IA-32 math coprocessors. The availability of these instructions has no impact on existing 
software, but using them provides a performance upgrade. See also sections 8.3.8 and section 8.3.10 of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more information on the accuracy of the 
FSIN, FCOS, and FSINCOS instructions.

24.18.7.9  FPATAN Instruction
On the 32-bit x87 FPUs, the range of operands for the FPATAN instruction is unrestricted. On the 16-bit IA-32 math 
coprocessors, the absolute value of the operand in register ST(0) must be smaller than the absolute value of the 
operand in register ST(1). This difference has impact on existing software.

24.18.7.10  F2XM1 Instruction
The 32-bit x87 FPUs support a wider range of operands (–1 < ST (0) < + 1) for the F2XM1 instruction. The 
supported operand range for the 16-bit IA-32 math coprocessors is (0 ≤ ST(0) ≤ 0.5). This difference has no impact 
on existing software.
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24.18.7.11  FLD Instruction
On the 32-bit x87 FPUs, when using the FLD instruction to load an extended-real value, a denormal-operand excep-
tion is not generated because the instruction is not arithmetic. The 16-bit IA-32 math coprocessors do report a 
denormal-operand exception in this situation. This difference does not affect existing software.

On the 32-bit x87 FPUs, loading a denormal value that is in single- or double-real format causes the value to be 
converted to extended-real format. Loading a denormal value on the 16-bit IA-32 math coprocessors causes the 
value to be converted to an unnormal. If the next instruction is FXTRACT or FXAM, the 32-bit x87 FPUs will give a 
different result than the 16-bit IA-32 math coprocessors. This change was made for IEEE Standard 754 compati-
bility.

On the 32-bit x87 FPUs, loading an SNaN that is in single- or double-real format causes the FPU to generate an 
invalid-operation exception. The 16-bit IA-32 math coprocessors do not raise an exception when loading a signaling 
NaN. The invalid-operation exception handler for 16-bit math coprocessor software needs to be updated to handle 
this condition when porting software to 32-bit FPUs. This change was made for IEEE Standard 754 compatibility.

24.18.7.12  FXTRACT Instruction
On the 32-bit x87 FPUs, if the operand is 0 for the FXTRACT instruction, the divide-by-zero exception is reported 
and –∞ is delivered to register ST(1). If the operand is +∞, no exception is reported. If the operand is 0 on the 16-
bit IA-32 math coprocessors, 0 is delivered to register ST(1) and no exception is reported. If the operand is +∞, the 
invalid-operation exception is reported. These differences have no impact on existing software. Software usually 
bypasses 0 and ∞. This change is due to the IEEE Standard 754 recommendation to fully support the “logb” func-
tion.

24.18.7.13  Load Constant Instructions
On 32-bit x87 FPUs, rounding control is in effect for the load constant instructions. Rounding control is not in effect 
for the 16-bit IA-32 math coprocessors. Results for the FLDPI, FLDLN2, FLDLG2, and FLDL2E instructions are the 
same as for the 16-bit IA-32 math coprocessors when rounding control is set to round to nearest or round to +∞. 
They are the same for the FLDL2T instruction when rounding control is set to round to nearest, round to –∞, or 
round to zero. Results are different from the 16-bit IA-32 math coprocessors in the least significant bit of the 
mantissa if rounding control is set to round to –∞ or round to 0 for the FLDPI, FLDLN2, FLDLG2, and FLDL2E instruc-
tions; they are different for the FLDL2T instruction if round to +∞ is specified. These changes were implemented for 
compatibility with IEEE Standard 754 for Floating-Point Arithmetic recommendations.

24.18.7.14  FXAM Instruction
With the 32-bit x87 FPUs, if the FPU encounters an empty register when executing the FXAM instruction, it not 
generate combinations of C0 through C3 equal to 1101 or 1111. The 16-bit IA-32 math coprocessors may generate 
these combinations, among others. This difference has no impact on existing software; it provides a performance 
upgrade to provide repeatable results.

24.18.7.15  FSAVE and FSTENV Instructions
With the 32-bit x87 FPUs, the address of a memory operand pointer stored by FSAVE or FSTENV is undefined if the 
previous floating-point instruction did not refer to memory

24.18.8 Transcendental Instructions
The floating-point results of the P6 family and Pentium processors for transcendental instructions in the core range 
may differ from the Intel486 processors by about 2 or 3 ulps (see “Transcendental Instruction Accuracy” in Chapter 
8, “Programming with the x87 FPU,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
1). Condition code flag C1 of the status word may differ as a result. The exact threshold for underflow and overflow 
will vary by a few ulps. The P6 family and Pentium processors’ results will have a worst case error of less than 1 ulp 
when rounding to the nearest-even and less than 1.5 ulps when rounding in other modes. The transcendental 
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instructions are guaranteed to be monotonic, with respect to the input operands, throughout the domain supported 
by the instruction.

Transcendental instructions may generate different results in the round-up flag (C1) on the 32-bit x87 FPUs. The 
round-up flag is undefined for these instructions on the 16-bit IA-32 math coprocessors. This difference has no 
impact on existing software.

24.18.9 Obsolete Instructions and Undefined Opcodes
The 8087 math coprocessor instructions FENI and FDISI, and the Intel 287 math coprocessor instruction FSETPM 
are treated as integer NOP instructions in the 32-bit x87 FPUs. If these opcodes are detected in the instruction 
stream, no specific operation is performed and no internal states are affected. FSETPM informed the Intel 287 math 
coprocessor that the processor was in protected mode. The 32-bit x87 FPUs handle all addressing and exception-
pointer information, whether in protected mode or not.

For compatibility with prior generations there are a few reserved x87 opcodes which do not result in an invalid-
opcode (#UD) exception, but rather result in the same behavior as existing defined x87 instructions. In the interest 
of standardization, it is recommended that the opcodes defined in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, be used for these operations for standardization.
• DCD0H through DCD7H - Behaves the same as FCOM, D8D0H through D8D7H.
• DCD8H through DCDFH - Behaves the same as FCOMP, D8D8H through D8DFH.
• DDC8H through DDCFH - Behaves the same as FXCH, D9C8H through D9CFH.
• DED0H through DED7H - Behaves the same as FCOMP, D8D8H through D8DFH.
• DFD0H through DFD7H - Behaves the same as FSTP, DDD8H through DDDFH.
• DFC8H through DFCFH - Behaves the same as FXCH, D9C8H through D9CFH.
• DFD8H through DFDFH - Behaves the same as FSTP, DDD8H through DDDFH.

There are a few reserved x87 opcodes which provide unique behavior but do not provide capabilities which are not 
already available in the main instructions defined in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volumes 2A, 2B, 2C, & 2D.
• D9D8H through D9DFH - Behaves the same as FSTP (DDD8H through DDDFH) but won't cause a stack 

underflow exception.
• DFC0H through DFC7H - Behaves the same as FFREE (DDC0H through DDD7H) with the addition of an x87 

stack POP.

24.18.10 WAIT/FWAIT Prefix Differences
On the Intel486 processor, when a WAIT/FWAIT instruction precedes a floating-point instruction (one which itself 
automatically synchronizes with the previous floating-point instruction), the WAIT/FWAIT instruction is treated as 
a no-op. Pending floating-point exceptions from a previous floating-point instruction are processed not on the 
WAIT/FWAIT instruction but on the floating-point instruction following the WAIT/FWAIT instruction. In such a case, 
the report of a floating-point exception may appear one instruction later on the Intel486 processor than on a P6 
family or Pentium FPU, or on Intel 387 math coprocessor.

24.18.11 Operands Split Across Segments and/or Pages
On the P6 family, Pentium, and Intel486 processor FPUs, when the first half of an operand to be written is inside a 
page or segment and the second half is outside, a memory fault can cause the first half to be stored but not the 
second half. In this situation, the Intel 387 math coprocessor stores nothing.

24.18.12 FPU Instruction Synchronization
On the 32-bit x87 FPUs, all floating-point instructions are automatically synchronized; that is, the processor auto-
matically waits until the previous floating-point instruction has completed before completing the next floating-point 
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instruction. No explicit WAIT/FWAIT instructions are required to assure this synchronization. For the 8087 math 
coprocessors, explicit waits are required before each floating-point instruction to ensure synchronization. Although 
8087 programs having explicit WAIT instructions execute perfectly on the 32-bit IA-32 processors without reas-
sembly, these WAIT instructions are unnecessary.

24.19 SERIALIZING INSTRUCTIONS
Certain instructions have been defined to serialize instruction execution to ensure that modifications to flags, regis-
ters, and memory are completed before the next instruction is executed (or in P6 family processor terminology 
“committed to machine state”). Because the P6 family processors use branch-prediction and out-of-order execu-
tion techniques to improve performance, instruction execution is not generally serialized until the results of an 
executed instruction are committed to machine state (see Chapter 2, “Intel® 64 and IA-32 Architectures,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1). 

As a result, at places in a program or task where it is critical to have execution completed for all previous instruc-
tions before executing the next instruction (for example, at a branch, at the end of a procedure, or in multipro-
cessor dependent code), it is useful to add a serializing instruction. See Section 10.3, “Serializing Instructions,” for 
more information on serializing instructions.

24.20 FPU AND MATH COPROCESSOR INITIALIZATION
Table 11-1 shows the states of the FPUs in the P6 family, Pentium, Intel486 processors and of the Intel 387 math 
coprocessor and Intel 287 coprocessor following a power-up, reset, or INIT, or following the execution of an 
FINIT/FNINIT instruction. The following is some additional compatibility information concerning the initialization of 
x87 FPUs and math coprocessors.

24.20.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization
Following an Intel386 processor reset, the processor identifies its coprocessor type (Intel® 287 or Intel® 387 DX 
math coprocessor) by sampling its ERROR# input some time after the falling edge of RESET# signal and before 
execution of the first floating-point instruction. The Intel 287 coprocessor keeps its ERROR# output in inactive 
state after hardware reset; the Intel 387 coprocessor keeps its ERROR# output in active state after hardware 
reset. 

Upon hardware reset or execution of the FINIT/FNINIT instruction, the Intel 387 math coprocessor signals an error 
condition. The P6 family, Pentium, and Intel486 processors, like the Intel 287 coprocessor, do not.

24.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization
When initializing an Intel486 SX processor and an Intel 487 SX math coprocessor, the initialization routine should 
check the presence of the math coprocessor and should set the FPU related flags (EM, MP, and NE) in control 
register CR0 accordingly (see Section 2.5, “Control Registers,” for a complete description of these flags). Table 24-2 
gives the recommended settings for these flags when the math coprocessor is present. The FSTCW instruction will 
give a value of FFFFH for the Intel486 SX microprocessor and 037FH for the Intel 487 SX math coprocessor.
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The EM and MP flags in register CR0 are interpreted as shown in Table 24-3. 

Following is an example code sequence to initialize the system and check for the presence of Intel486 SX 
processor/Intel 487 SX math coprocessor.

fninit
fstcw mem_loc
mov ax, mem_loc
cmp ax, 037fh
jz Intel487_SX_Math_CoProcessor_present ;ax=037fh
jmp Intel486_SX_microprocessor_present ;ax=ffffh

If the Intel 487 SX math coprocessor is not present, the following code can be run to set the CR0 register for the 
Intel486 SX processor.

mov eax, cr0
and eax, fffffffdh ;make MP=0
or eax, 0024h ;make EM=1, NE=1
mov cr0, eax

This initialization will cause any floating-point instruction to generate a device not available exception (#NM), inter-
rupt 7. The software emulation will then take control to execute these instructions. This code is not required if an 
Intel 487 SX math coprocessor is present in the system. In that case, the typical initialization routine for the 
Intel486 SX microprocessor will be adequate.

Also, when designing an Intel486 SX processor based system with an Intel 487 SX math coprocessor, timing loops 
should be independent of frequency and clocks per instruction. One way to attain this is to implement these loops 
in hardware and not in software (for example, BIOS).

24.21 CONTROL REGISTERS
The following sections identify the new control registers and control register flags and fields that were introduced 
to the 32-bit IA-32 in various processor families. See Figure 2-7 for the location of these flags and fields in the 
control registers.

Table 24-2.  Recommended Values of the EM, MP, and NE Flags for Intel486 SX Microprocessor/Intel 487 SX Math 
Coprocessor System

CR0 Flags Intel486 SX Processor Only Intel 487 SX Math Coprocessor Present

EM 1 0

MP 0 1

NE 1 0, for MS-DOS* systems
1, for user-defined exception handler

Table 24-3.  EM and MP Flag Interpretation

EM MP Interpretation

0 0 Floating-point instructions are passed to FPU; WAIT/FWAIT and other waiting-type instructions 
ignore TS.

0 1 Floating-point instructions are passed to FPU; WAIT/FWAIT and other waiting-type instructions 
test TS.

1 0 Floating-point instructions trap to emulator; WAIT/FWAIT and other waiting-type instructions 
ignore TS.

1 1 Floating-point instructions trap to emulator; WAIT/FWAIT and other waiting-type instructions 
test TS.
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The Pentium III processor introduced one new control flag in control register CR4:
• OSXMMEXCPT (bit 10) — The OS will set this bit if it supports unmasked SIMD floating-point exceptions.

The Pentium II processor introduced one new control flag in control register CR4:
• OSFXSR (bit 9) — The OS supports saving and restoring the Pentium III processor state during context 

switches.

The Pentium Pro processor introduced three new control flags in control register CR4:
• PAE (bit 5) — Physical address extension. Enables paging mechanism to reference extended physical addresses 

when set; restricts physical addresses to 32 bits when clear (see also: Section 24.22.1.1, “Physical Memory 
Addressing Extension”).

• PGE (bit 7) — Page global enable. Inhibits flushing of frequently-used or shared pages on CR3 writes (see also: 
Section 24.22.1.2, “Global Pages”). 

• PCE (bit 8) — Performance-monitoring counter enable. Enables execution of the RDPMC instruction at any 
protection level.

The content of CR4 is 0H following a hardware reset.

Control register CR4 was introduced in the Pentium processor. This register contains flags that enable certain new 
extensions provided in the Pentium processor:
• VME — Virtual-8086 mode extensions. Enables support for a virtual interrupt flag in virtual-8086 mode (see 

Section 22.3, “Interrupt and Exception Handling in Virtual-8086 Mode”).
• PVI — Protected-mode virtual interrupts. Enables support for a virtual interrupt flag in protected mode (see 

Section 22.4, “Protected-Mode Virtual Interrupts”).
• TSD — Time-stamp disable. Restricts the execution of the RDTSC instruction to procedures running at 

privileged level 0.
• DE — Debugging extensions. Causes an undefined opcode (#UD) exception to be generated when debug 

registers DR4 and DR5 are references for improved performance (see Section 24.23.3, “Debug Registers DR4 
and DR5”).

• PSE — Page size extensions. Enables 4-MByte pages with 32-bit paging when set (see Section 5.3, “32-Bit 
Paging”).

• MCE — Machine-check enable. Enables the machine-check exception, allowing exception handling for certain 
hardware error conditions (see Chapter 17, “Machine-Check Architecture”). 

The Intel486 processor introduced five new flags in control register CR0:
• NE — Numeric error. Enables the normal mechanism for reporting floating-point numeric errors.
• WP — Write protect. Write-protects read-only pages against supervisor-mode accesses.
• AM — Alignment mask. Controls whether alignment checking is performed. Operates in conjunction with the AC 

(Alignment Check) flag.
• NW — Not write-through. Enables write-throughs and cache invalidation cycles when clear and disables invali-

dation cycles and write-throughs that hit in the cache when set. 
• CD — Cache disable. Enables the internal cache when clear and disables the cache when set.

The Intel486 processor introduced two new flags in control register CR3:
• PCD — Page-level cache disable. The state of this flag is driven on the PCD# pin during bus cycles that are not 

paged, such as interrupt acknowledge cycles, when paging is enabled.   The PCD# pin is used to control caching 
in an external cache on a cycle-by-cycle basis.

• PWT — Page-level write-through. The state of this flag is driven on the PWT# pin during bus cycles that are not 
paged, such as interrupt acknowledge cycles, when paging is enabled. The PWT# pin is used to control write 
through in an external cache on a cycle-by-cycle basis. 
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24.22 MEMORY MANAGEMENT FACILITIES
The following sections describe the new memory management facilities available in the various IA-32 processors 
and some compatibility differences.

24.22.1 New Memory Management Control Flags
The Pentium Pro processor introduced three new memory management features: physical memory addressing 
extension, the global bit in page-table entries, and general support for larger page sizes. These features are only 
available when operating in protected mode.

24.22.1.1  Physical Memory Addressing Extension
The new PAE (physical address extension) flag in control register CR4, bit 5, may enable additional address lines 
on the processor, allowing extended physical addresses. This option can only be used when paging is enabled, 
using a new page-table mechanism provided to support the larger physical address range (see Section 5.1, “Paging 
Modes and Control Bits”).

24.22.1.2  Global Pages
The new PGE (page global enable) flag in control register CR4, bit 7, provides a mechanism for preventing 
frequently used pages from being flushed from the translation lookaside buffer (TLB). When this flag is set, 
frequently used pages (such as pages containing kernel procedures or common data tables) can be marked global 
by setting the global flag in a page-directory or page-table entry. 

On a task switch or a write to control register CR3 (which normally causes the TLBs to be flushed), the entries in 
the TLB marked global are not flushed. Marking pages global in this manner prevents unnecessary reloading of the 
TLB due to TLB misses on frequently used pages. See Section 5.10, “Caching Translation Information,” for a 
detailed description of this mechanism.

24.22.1.3  Larger Page Sizes
The P6 family processors support large page sizes. For 32-bit paging, this facility is enabled with the PSE (page size 
extension) flag in control register CR4, bit 4. When this flag is set, the processor supports either 4-KByte or 4-
MByte page sizes. PAE paging and 4-level paging1 support 2-MByte pages regardless of the value of CR4.PSE (see 
Section 5.4, “PAE Paging,” and Section 5.5, “4-Level Paging and 5-Level Paging”). See Chapter 5, “Paging,” for 
more information about large page sizes.

24.22.2 CD and NW Cache Control Flags
The CD and NW flags in control register CR0 were introduced in the Intel486 processor. In the P6 family and 
Pentium processors, these flags are used to implement a writeback strategy for the data cache; in the Intel486 
processor, they implement a write-through strategy. See Table 13-5 for a comparison of these bits on the P6 family, 
Pentium, and Intel486 processors. For complete information on caching, see Chapter 13, “Memory Cache Control.”

24.22.3 Descriptor Types and Contents
Operating-system code that manages space in descriptor tables often contains an invalid value in the access-rights 
field of descriptor-table entries to identify unused entries. Access rights values of 80H and 00H remain invalid for 
the P6 family, Pentium, Intel486, Intel386, and Intel 286 processors. Other values that were invalid on the Intel 
286 processor may be valid on the 32-bit processors because uses for these bits have been defined.

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.
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24.22.4 Changes in Segment Descriptor Loads
On the Intel386 processor, loading a segment descriptor always causes a locked read and write to set the accessed 
bit of the descriptor. On the P6 family, Pentium, and Intel486 processors, the locked read and write occur only if the 
bit is not already set.

24.23 DEBUG FACILITIES
The P6 family and Pentium processors include extensions to the Intel486 processor debugging support for break-
points. To use the new breakpoint features, it is necessary to set the DE flag in control register CR4.

24.23.1 Differences in Debug Register DR6
It is not possible to write a 1 to reserved bit 12 in debug status register DR6 on the P6 family and Pentium proces-
sors; however, it is possible to write a 1 in this bit on the Intel486 processor. See Table 11-1 for the different setting 
of this register following a power-up or hardware reset.

24.23.2 Differences in Debug Register DR7
The P6 family and Pentium processors determines the type of breakpoint access by the R/W0 through R/W3 fields 
in debug control register DR7 as follows: 

00 Break on instruction execution only.

01 Break on data writes only.

10 Undefined if the DE flag in control register CR4 is cleared; break on I/O reads or writes but not instruction 
fetches if the DE flag in control register CR4 is set.

11 Break on data reads or writes but not instruction fetches.

On the P6 family and Pentium processors, reserved bits 11, 12, 14, and 15 are hard-wired to 0. On the Intel486 
processor, however, bit 12 can be set. See Table 11-1 for the different settings of this register following a power-up 
or hardware reset.

24.23.3 Debug Registers DR4 and DR5
Although the DR4 and DR5 registers are documented as reserved, previous generations of processors aliased refer-
ences to these registers to debug registers DR6 and DR7, respectively. When debug extensions are not enabled 
(the DE flag in control register CR4 is cleared), the P6 family and Pentium processors remain compatible with 
existing software by allowing these aliased references. When debug extensions are enabled (the DE flag is set), 
attempts to reference registers DR4 or DR5 will result in an invalid-opcode exception (#UD).

24.24 RECOGNITION OF BREAKPOINTS
For the Pentium processor, it is recommended that debuggers execute the LGDT instruction before returning to the 
program being debugged to ensure that breakpoints are detected. This operation does not need to be performed 
on the P6 family, Intel486, or Intel386 processors. 

The implementation of test registers on the Intel486 processor used for testing the cache and TLB has been rede-
signed using MSRs on the P6 family and Pentium processors. (Note that MSRs used for this function are different 
on the P6 family and Pentium processors.) The MOV to and from test register instructions generate invalid-opcode 
exceptions (#UD) on the P6 family processors.
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24.25 EXCEPTIONS AND/OR EXCEPTION CONDITIONS
This section describes the new exceptions and exception conditions added to the 32-bit IA-32 processors and 
implementation differences in existing exception handling. See Chapter 7, “Interrupt and Exception Handling,” for 
a detailed description of the IA-32 exceptions.

The Pentium III processor introduced new state with the XMM registers. Computations involving data in these regis-
ters can produce exceptions. A new MXCSR control/status register is used to determine which exception or excep-
tions have occurred. When an exception associated with the XMM registers occurs, an interrupt is generated.
• SIMD floating-point exception (#XM, interrupt 19) — New exceptions associated with the SIMD floating-point 

registers and resulting computations.

No new exceptions were added with the Pentium Pro and Pentium II processors. The set of available exceptions is 
the same as for the Pentium processor. However, the following exception condition was added to the IA-32 with the 
Pentium Pro processor:
• Machine-check exception (#MC, interrupt 18) — New exception conditions. Many exception conditions have 

been added to the machine-check exception and a new architecture has been added for handling and reporting 
on hardware errors. See Chapter 17, “Machine-Check Architecture,” for a detailed description of the new 
conditions.

The following exceptions and/or exception conditions were added to the IA-32 with the Pentium processor:
• Machine-check exception (#MC, interrupt 18) — New exception. This exception reports parity and other 

hardware errors. It is a model-specific exception and may not be implemented or implemented differently in 
future processors. The MCE flag in control register CR4 enables the machine-check exception. When this bit is 
clear (which it is at reset), the processor inhibits generation of the machine-check exception.

• General-protection exception (#GP, interrupt 13) — New exception condition added. An attempt to write a 1 to 
a reserved bit position of a special register causes a general-protection exception to be generated.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. When a 1 is detected in any of the 
reserved bit positions of a page-table entry, page-directory entry, or page-directory pointer during address 
translation, a page-fault exception is generated. 

The following exception was added to the Intel486 processor:
• Alignment-check exception (#AC, interrupt 17) — New exception. Reports unaligned memory references when 

alignment checking is being performed. 

The following exceptions and/or exception conditions were added to the Intel386 processor:
• Divide-error exception (#DE, interrupt 0)

— Change in exception handling. Divide-error exceptions on the Intel386 processors always leave the saved 
CS:IP value pointing to the instruction that failed. On the 8086 processor, the CS:IP value points to the next 
instruction.

— Change in exception handling. The Intel386 processors can generate the largest negative number as a 
quotient for the IDIV instruction (80H and 8000H). The 8086 processor generates a divide-error exception 
instead.

• Invalid-opcode exception (#UD, interrupt 6) — New exception condition added. Improper use of the LOCK 
instruction prefix can generate an invalid-opcode exception.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. If paging is enabled in a 16-bit 
program, a page-fault exception can be generated as follows. Paging can be used in a system with 16-bit tasks 
if all tasks use the same page directory. Because there is no place in a 16-bit TSS to store the PDBR register, 
switching to a 16-bit task does not change the value of the PDBR register. Tasks ported from the Intel 286 
processor should be given 32-bit TSSs so they can make full use of paging.

• General-protection exception (#GP, interrupt 13) — New exception condition added. The Intel386 processor 
sets a limit of 15 bytes on instruction length. The only way to violate this limit is by putting redundant prefixes 
before an instruction. A general-protection exception is generated if the limit on instruction length is violated. 
The 8086 processor has no instruction length limit.
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24.25.1 Machine-Check Architecture
The Pentium Pro processor introduced a new architecture to the IA-32 for handling and reporting on machine-check 
exceptions. This machine-check architecture (described in detail in Chapter 17, “Machine-Check Architecture”) 
greatly expands the ability of the processor to report on internal hardware errors.

24.25.2 Priority of Exceptions
The priority of exceptions are broken down into several major categories:

1. Traps on the previous instruction

2. External interrupts

3. Faults on fetching the next instruction

4. Faults in decoding the next instruction

5. Faults on executing an instruction

There are no changes in the priority of these major categories between the different processors, however, excep-
tions within these categories are implementation dependent and may change from processor to processor.

24.25.3 Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers
MMX instructions and a subset of SSE, SSE2, SSSE3 instructions operate on MMX registers. The exception condi-
tions of these instructions are described in the following tables.

Table 24-4.  Exception Conditions for Legacy SIMD/MMX Instructions with FP Exception and 16-Byte Alignment
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Cause of Exception

Invalid Opcode, 
#UD

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. 

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protec-
tion, #GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH

#PF(fault-code) X X X For a page fault

#XM X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1

Applicable 
Instructions

CVTPD2PI, CVTTPD2PI
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Table 24-5.  Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP Exception
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Cause of Exception

Invalid Opcode, #UD

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. 

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH

#PF(fault-code) X X X For a page fault

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made while 
the current privilege level is 3.

SIMD Floating-point 
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1

Applicable Instruc-
tions

CVTPI2PS, CVTPS2PI, CVTTPS2PI
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Table 24-6.  Exception Conditions for Legacy SIMD/MMX Instructions with XMM and without FP Exception

Exception
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Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF1

NOTES:
1. Applies to “CVTPI2PD xmm, mm” but not “CVTPI2PD xmm, m64”.

X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made 
while the current privilege level is 3.

Applicable Instruc-
tions

CVTPI2PD
24-24 Vol. 3B



ARCHITECTURE COMPATIBILITY
Table 24-7.  Exception Conditions for SIMD/MMX Instructions with Memory Reference

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd
 

Co
m

pa
ti

bi
lit

y

6
4

-b
it

 

Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made while 
the current privilege level is 3.

Applicable Instruc-
tions

PABSB, PABSD, PABSW, PACKSSWB, PACKSSDW, PACKUSWB, PADDB, PADDD, PADDQ, PADDW, PADDSB, 
PADDSW, PADDUSB, PADDUSW, PALIGNR, PAND, PANDN, PAVGB, PAVGW, PCMPEQB, PCMPEQD, PCMPEQW, 
PCMPGTB, PCMPGTD, PCMPGTW, PHADDD, PHADDW, PHADDSW, PHSUBD, PHSUBW, PHSUBSW, PINSRW, 
PMADDUBSW, PMADDWD, PMAXSW, PMAXUB, PMINSW, PMINUB, PMULHRSW, PMULHUW, PMULHW, PMULLW, 
PMULUDQ, PSADBW, PSHUFB, PSHUFW, PSIGNB PSIGND PSIGNW, PSLLW, PSLLD, PSLLQ, PSRAD, PSRAW, 
PSRLW, PSRLD, PSRLQ, PSUBB, PSUBD, PSUBQ, PSUBW, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, 
PUNPCKHBW, PUNPCKHWD, PUNPCKHDQ, PUNPCKLBW, PUNPCKLWD, PUNPCKLDQ, PXOR
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Table 24-8.  Exception Conditions for Legacy SIMD/MMX Instructions without FP Exception

Exception
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Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If ModR/M.mod ≠ 11b1

NOTES:
1. Applies to MASKMOVQ only.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

#GP(0)

X

For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
If the destination operand is in a non-writable segment.2

If the DS, ES, FS, or GS register contains a NULL segment selector.3

2. Applies to MASKMOVQ and MOVQ (mmreg) only.
3. Applies to MASKMOVQ only.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

#AC(0) X X X
If alignment checking is enabled and an unaligned memory reference is made while 
the current privilege level is 3.

Applicable Instruc-
tions

MASKMOVQ, MOVNTQ, “MOVQ (mmreg)”
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24.26 INTERRUPTS
The following differences in handling interrupts are found among the IA-32 
processors.

24.26.1 Interrupt Propagation Delay
External hardware interrupts may be recognized on different instruction boundaries on the P6 family, Pentium, 
Intel486, and Intel386 processors, due to the superscaler designs of the P6 family and Pentium processors. There-
fore, the EIP pushed onto the stack when servicing an interrupt may be different for the P6 family, Pentium, 
Intel486, and Intel386 processors.   

24.26.2 NMI Interrupts
After an NMI interrupt is recognized by the P6 family, Pentium, Intel486, Intel386, and Intel 286 processors, the 
NMI interrupt is masked until the first IRET instruction is executed, unlike the 8086 processor.

24.26.3 IDT Limit
The LIDT instruction can be used to set a limit on the size of the IDT. A double-fault exception (#DF) is generated 
if an interrupt or exception attempts to read a vector beyond the limit. Shutdown then occurs on the 32-bit IA-32 
processors if the double-fault handler vector is beyond the limit. (The 8086 processor does not have a shutdown 
mode nor a limit.)

24.27 ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
The Advanced Programmable Interrupt Controller (APIC), referred to in this book as the local APIC, was intro-
duced into the IA-32 processors with the Pentium processor (beginning with the 735/90 and 815/100 models) and 
is included in the Pentium 4, Intel Xeon, and P6 family processors. The features and functions of the local APIC are 
derived from the Intel 82489DX external APIC, which was used with the Intel486 and early Pentium processors. 
Additional refinements of the local APIC architecture were incorporated in the Pentium 4 and Intel Xeon processors.

Table 24-9.  Exception Conditions for Legacy SIMD/MMX Instructions without Memory Reference
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Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X If CR0.TS[bit 3]=1

Applicable Instruc-
tions

PEXTRW, PMOVMSKB
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24.27.1 Software Visible Differences Between the Local APIC and the 82489DX
The following features in the local APIC features differ from those found in the 82489DX external APIC:
• When the local APIC is disabled by clearing the APIC software enable/disable flag in the spurious-interrupt 

vector MSR, the state of its internal registers are unaffected, except that the mask bits in the LVT are all set to 
block local interrupts to the processor. Also, the local APIC ceases accepting IPIs except for INIT, SMI, NMI, and 
start-up IPIs. In the 82489DX, when the local unit is disabled, all the internal registers including the IRR, ISR, 
and TMR are cleared and the mask bits in the LVT are set. In this state, the 82489DX local unit will accept only 
the reset deassert message.

• In the local APIC, NMI and INIT (except for INIT deassert) are always treated as edge triggered interrupts, even 
if programmed otherwise. In the 82489DX, these interrupts are always level triggered. 

• In the local APIC, IPIs generated through the ICR are always treated as edge triggered (except INIT Deassert). 
In the 82489DX, the ICR can be used to generate either edge or level triggered IPIs. 

• In the local APIC, the logical destination register supports 8 bits; in the 82489DX, it supports 32 bits. 
• In the local APIC, the APIC ID register is 4 bits wide; in the 82489DX, it is 8 bits wide.
• The remote read delivery mode provided in the 82489DX and local APIC for Pentium processors is not 

supported in the local APIC in the Pentium 4, Intel Xeon, and P6 family processors.
• For the 82489DX, in the lowest priority delivery mode, all the target local APICs specified by the destination 

field participate in the lowest priority arbitration. For the local APIC, only those local APICs which have free 
interrupt slots will participate in the lowest priority arbitration.

24.27.2 New Features Incorporated in the Local APIC for the P6 Family and Pentium 
Processors

The local APIC in the Pentium and P6 family processors have the following new features not found in the 82489DX 
external APIC.
• Cluster addressing is supported in logical destination mode.
• Focus processor checking can be enabled/disabled.
• Interrupt input signal polarity can be programmed for the LINT0 and LINT1 pins.
• An SMI IPI is supported through the ICR and I/O redirection table.
• An error status register is incorporated into the LVT to log and report APIC errors.

In the P6 family processors, the local APIC incorporates an additional LVT register to handle performance moni-
toring counter interrupts.

24.27.3 New Features Incorporated in the Local APIC of the Pentium 4 and Intel Xeon 
Processors

The local APIC in the Pentium 4 and Intel Xeon processors has the following new features not found in the P6 family 
and Pentium processors and in the 82489DX.
• The local APIC ID is extended to 8 bits.
• An thermal sensor register is incorporated into the LVT to handle thermal sensor interrupts. 
• The the ability to deliver lowest-priority interrupts to a focus processor is no longer supported.
• The flat cluster logical destination mode is not supported.

24.28 TASK SWITCHING AND TSS
This section identifies the implementation differences of task switching, additions to the TSS and the handling of 
TSSs and TSS segment selectors.
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24.28.1 P6 Family and Pentium Processor TSS
When the virtual mode extensions are enabled (by setting the VME flag in control register CR4), the TSS in the P6 
family and Pentium processors contain an interrupt redirection bit map, which is used in virtual-8086 mode to redi-
rect interrupts back to an 8086 program.

24.28.2 TSS Selector Writes
During task state saves, the Intel486 processor writes 2-byte segment selectors into a 32-bit TSS, leaving the 
upper 16 bits undefined. For performance reasons, the P6 family and Pentium processors write 4-byte segment 
selectors into the TSS, with the upper 2 bytes being 0. For compatibility reasons, code should not depend on the 
value of the upper 16 bits of the selector in the TSS.

24.28.3 Order of Reads/Writes to the TSS
The order of reads and writes into the TSS is processor dependent. The P6 family and Pentium processors may 
generate different page-fault addresses in control register CR2 in the same TSS area than the Intel486 and 
Intel386 processors, if a TSS crosses a page boundary (which is not recommended).

24.28.4 Using A 16-Bit TSS with 32-Bit Constructs
Task switches using 16-bit TSSs should be used only for pure 16-bit code. Any new code written using 32-bit 
constructs (operands, addressing, or the upper word of the EFLAGS register) should use only 32-bit TSSs. This is 
due to the fact that the 32-bit processors do not save the upper 16 bits of EFLAGS to a 16-bit TSS. A task switch 
back to a 16-bit task that was executing in virtual mode will never re-enable the virtual mode, as this flag was not 
saved in the upper half of the EFLAGS value in the TSS. Therefore, it is strongly recommended that any code using 
32-bit constructs use a 32-bit TSS to ensure correct behavior in a multitasking environment.

24.28.5 Differences in I/O Map Base Addresses
The Intel486 processor considers the TSS segment to be a 16-bit segment and wraps around the 64K boundary. 
Any I/O accesses check for permission to access this I/O address at the I/O base address plus the I/O offset. If the 
I/O map base address exceeds the specified limit of 0DFFFH, an I/O access will wrap around and obtain the permis-
sion for the I/O address at an incorrect location within the TSS. A TSS limit violation does not occur in this situation 
on the Intel486 processor. However, the P6 family and Pentium processors consider the TSS to be a 32-bit segment 
and a limit violation occurs when the I/O base address plus the I/O offset is greater than the TSS limit. By following 
the recommended specification for the I/O base address to be less than 0DFFFH, the Intel486 processor will not 
wrap around and access incorrect locations within the TSS for I/O port validation and the P6 family and Pentium 
processors will not experience general-protection exceptions (#GP). Figure 24-1 demonstrates the different areas 
accessed by the Intel486 and the P6 family and Pentium processors. 
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24.29 CACHE MANAGEMENT
The P6 family processors include two levels of internal caches: L1 (level 1) and L2 (level 2). The L1 cache is divided 
into an instruction cache and a data cache; the L2 cache is a general-purpose cache. See Section 13.1, “Internal 
Caches, TLBs, and Buffers,” for a description of these caches. (Note that although the Pentium II processor L2 
cache is physically located on a separate chip in the cassette, it is considered an internal cache.)

The Pentium processor includes separate level 1 instruction and data caches. The data cache supports a writeback 
(or alternatively write-through, on a line by line basis) policy for memory updates.

The Intel486 processor includes a single level 1 cache for both instructions and data. 

The meaning of the CD and NW flags in control register CR0 have been redefined for the P6 family and Pentium 
processors. For these processors, the recommended value (00B) enables writeback for the data cache of the 
Pentium processor and for the L1 data cache and L2 cache of the P6 family processors. In the Intel486 processor, 
setting these flags to (00B) enables write-through for the cache.

External system hardware can force the Pentium processor to disable caching or to use the write-through cache 
policy should that be required. In the P6 family processors, the MTRRs can be used to override the CD and NW flags 
(see Table 13-6).

The P6 family and Pentium processors support page-level cache management in the same manner as the Intel486 
processor by using the PCD and PWT flags in control register CR3, the page-directory entries, and the page-table 
entries. The Intel486 processor, however, is not affected by the state of the PWT flag since the internal cache of the 
Intel486 processor is a write-through cache.

24.29.1 Self-Modifying Code with Cache Enabled
On the Intel486 processor, a write to an instruction in the cache will modify it in both the cache and memory. If the 
instruction was prefetched before the write, however, the old version of the instruction could be the one executed. 
To prevent this problem, it is necessary to flush the instruction prefetch unit of the Intel486 processor by coding a 
jump instruction immediately after any write that modifies an instruction. The P6 family and Pentium processors, 
however, check whether a write may modify an instruction that has been prefetched for execution. This check is 
based on the linear address of the instruction. If the linear address of an instruction is found to be present in the 

Figure 24-1.  I/O Map Base Address Differences
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prefetch queue, the P6 family and Pentium processors flush the prefetch queue, eliminating the need to code a 
jump instruction after any writes that modify an instruction. 

Because the linear address of the write is checked against the linear address of the instructions that have been 
prefetched, special care must be taken for self-modifying code to work correctly when the physical addresses of the 
instruction and the written data are the same, but the linear addresses differ. In such cases, it is necessary to 
execute a serializing operation to flush the prefetch queue after the write and before executing the modified 
instruction. See Section 10.3, “Serializing Instructions,” for more information on serializing instructions.

NOTE
The check on linear addresses described above is not in practice a concern for compatibility. Appli-
cations that include self-modifying code use the same linear address for modifying and fetching the 
instruction. System software, such as a debugger, that might possibly modify an instruction using 
a different linear address than that used to fetch the instruction must execute a serializing 
operation, such as IRET, before the modified instruction is executed.

24.29.2 Disabling the L3 Cache
A unified third-level (L3) cache in processors based on Intel NetBurst microarchitecture (see Section 13.1, 
“Internal Caches, TLBs, and Buffers”) provides the third-level cache disable flag, bit 6 of the IA32_MISC_ENABLE 
MSR. The third-level cache disable flag allows the L3 cache to be disabled and enabled, independently of the L1 and 
L2 caches (see Section 13.5.4, “Disabling and Enabling the L3 Cache”). The third-level cache disable flag applies 
only to processors based on Intel NetBurst microarchitecture. Processors with L3 and based on other microarchi-
tectures do not support the third-level cache disable flag. 

24.30 PAGING
This section identifies enhancements made to the paging mechanism and implementation differences in the paging 
mechanism for various IA-32 processors.

24.30.1 Large Pages
The Pentium processor extended the memory management/paging facilities of the IA-32 to allow large (4 MBytes) 
pages sizes (see Section 5.3, “32-Bit Paging”). The first P6 family processor (the Pentium Pro processor) added a 
2 MByte page size to the IA-32 in conjunction with the physical address extension (PAE) feature (see Section 5.4, 
“PAE Paging”). 

The availability of large pages with 32-bit paging on any IA-32 processor can be determined via feature bit 3 (PSE) 
of register EDX after the CPUID instruction has been execution with an argument of 1. (Large pages are always 
available with PAE paging and 4-level paging.) Intel processors that do not support the CPUID instruction support 
only 32-bit paging and do not support page size enhancements. (See “CPUID—CPU Identification” in Chapter 3, 
“Instruction Set Reference, A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A, for more information on the CPUID instruction.)

24.30.2 PCD and PWT Flags
The PCD and PWT flags were introduced to the IA-32 in the Intel486 processor to control the caching of pages:
• PCD (page-level cache disable) flag—Controls caching on a page-by-page basis.
• PWT (page-level write-through) flag—Controls the write-through/writeback caching policy on a page-by-page 

basis. Since the internal cache of the Intel486 processor is a write-through cache, it is not affected by the state 
of the PWT flag.   
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24.30.3 Enabling and Disabling Paging
Paging is enabled and disabled by loading a value into control register CR0 that modifies the PG flag. For backward 
and forward compatibility with all IA-32 processors, Intel recommends that the following operations be performed 
when enabling or disabling paging:

1. Execute a MOV CR0, REG instruction to either set (enable paging) or clear (disable paging) the PG flag. 

2. Execute a near JMP instruction.

The sequence bounded by the MOV and JMP instructions should be identity mapped (that is, the instructions should 
reside on a page whose linear and physical addresses are identical).

For the P6 family processors, the MOV CR0, REG instruction is serializing, so the jump operation is not required. 
However, for backwards compatibility, the JMP instruction should still be included.

24.31 STACK OPERATIONS AND SUPERVISOR SOFTWARE
This section identifies the differences in the stack mechanism for the various IA-32 processors.

24.31.1 Selector Pushes and Pops
When pushing a segment selector onto the stack, the Pentium 4, Intel Xeon, P6 family, and Intel486 processors 
decrement the ESP register by the operand size and then write 2 bytes. If the operand size is 32-bits, the upper two 
bytes of the write are not modified. The Pentium processor decrements the ESP register by the operand size and 
determines the size of the write by the operand size. If the operand size is 32-bits, the upper two bytes are written 
as 0s. 

When popping a segment selector from the stack, the Pentium 4, Intel Xeon, P6 family, and Intel486 processors 
read 2 bytes and increment the ESP register by the operand size of the instruction. The Pentium processor deter-
mines the size of the read from the operand size and increments the ESP register by the operand size.

It is possible to align a 32-bit selector push or pop such that the operation generates an exception on a Pentium 
processor and not on an Pentium 4, Intel Xeon, P6 family, or Intel486 processor. This could occur if the third and/or 
fourth byte of the operation lies beyond the limit of the segment or if the third and/or fourth byte of the operation 
is locate on a non-present or inaccessible page.

For a POP-to-memory instruction that meets the following conditions:
• The stack segment size is 16-bit.
• Any 32-bit addressing form with the SIB byte specifying ESP as the base register.
• The initial stack pointer is FFFCH (32-bit operand) or FFFEH (16-bit operand) and will wrap around to 0H as a 

result of the POP operation.

The result of the memory write is implementation-specific. For example, in P6 family processors, the result of the 
memory write is SS:0H plus any scaled index and displacement. In Pentium processors, the result of the memory 
write may be either a stack fault (real mode or protected mode with stack segment size of 64 KByte), or write to 
SS:10000H plus any scaled index and displacement (protected mode and stack segment size exceeds 64 KByte).

24.31.2 Error Code Pushes
The Intel486 processor implements the error code pushed on the stack as a 16-bit value. When pushed onto a 32-
bit stack, the Intel486 processor only pushes 2 bytes and updates ESP by 4. The P6 family and Pentium processors’ 
error code is a full 32 bits with the upper 16 bits set to zero. The P6 family and Pentium processors, therefore, push 
4 bytes and update ESP by 4. Any code that relies on the state of the upper 16 bits may produce inconsistent 
results.
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24.31.3 Fault Handling Effects on the Stack 
During the handling of certain instructions, such as CALL and PUSHA, faults may occur in different sequences for 
the different processors. For example, during far calls, the Intel486 processor pushes the old CS and EIP before a 
possible branch fault is resolved. A branch fault is a fault from a branch instruction occurring from a segment limit 
or access rights violation. If a branch fault is taken, the Intel486 and P6 family processors will have corrupted 
memory below the stack pointer. However, the ESP register is backed up to make the instruction restartable. The 
P6 family processors issue the branch before the pushes. Therefore, if a branch fault does occur, these processors 
do not corrupt memory below the stack pointer. This implementation difference, however, does not constitute a 
compatibility problem, as only values at or above the stack pointer are considered to be valid. Other operations 
that encounter faults may also corrupt memory below the stack pointer and this behavior may vary on different 
implementations.

24.31.4 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate
If a call or interrupt is made from a 32-bit stack environment through a 16-bit gate, only 16 bits of the old ESP can 
be pushed onto the stack. On the subsequent RET/IRET, the 16-bit ESP is popped but the full 32-bit ESP is updated 
since control is being resumed in a 32-bit stack environment. The Intel486 processor writes the SS selector into the 
upper 16 bits of ESP. The P6 family and Pentium processors write zeros into the upper 16 bits.     

24.32 MIXING 16- AND 32-BIT SEGMENTS
The features of the 16-bit Intel 286 processor are an object-code compatible subset of those of the 32-bit IA-32 
processors. The D (default operation size) flag in segment descriptors indicates whether the processor treats a 
code or data segment as a 16-bit or 32-bit segment; the B (default stack size) flag in segment descriptors indicates 
whether the processor treats a stack segment as a 16-bit or 32-bit segment.

The segment descriptors used by the Intel 286 processor are supported by the 32-bit IA-32 processors if the Intel-
reserved word (highest word) of the descriptor is clear. On the 32-bit IA-32 processors, this word includes the 
upper bits of the base address and the segment limit.

The segment descriptors for data segments, code segments, local descriptor tables (there are no descriptors for 
global descriptor tables), and task gates are the same for the 16- and 32-bit processors. Other 16-bit descriptors 
(TSS segment, call gate, interrupt gate, and trap gate) are supported by the 32-bit processors. 

The 32-bit processors also have descriptors for TSS segments, call gates, interrupt gates, and trap gates that 
support the 32-bit architecture. Both kinds of descriptors can be used in the same system.

For those segment descriptors common to both 16- and 32-bit processors, clear bits in the reserved word cause the 
32-bit processors to interpret these descriptors exactly as an Intel 286 processor does, that is:
• Base Address — The upper 8 bits of the 32-bit base address are clear, which limits base addresses to 24 bits.
• Limit — The upper 4 bits of the limit field are clear, restricting the value of the limit field to 64 KBytes.
• Granularity bit — The G (granularity) flag is clear, indicating the value of the 16-bit limit is interpreted in units 

of 1 byte.
• Big bit — In a data-segment descriptor, the B flag is clear in the segment descriptor used by the 32-bit 

processors, indicating the segment is no larger than 64 KBytes.
• Default bit — In a code-segment descriptor, the D flag is clear, indicating 16-bit addressing and operands are 

the default. In a stack-segment descriptor, the D flag is clear, indicating use of the SP register (instead of the 
ESP register) and a 64-KByte maximum segment limit.

For information on mixing 16- and 32-bit code in applications, see Chapter 23, “Mixing 16-Bit and 32-Bit Code.”

24.33 SEGMENT AND ADDRESS WRAPAROUND
This section discusses differences in segment and address wraparound between the P6 family, Pentium, Intel486, 
Intel386, Intel 286, and 8086 processors.
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24.33.1 Segment Wraparound
On the 8086 processor, an attempt to access a memory operand that crosses offset 65,535 or 0FFFFH or offset 0 
(for example, moving a word to offset 65,535 or pushing a word when the stack pointer is set to 1) causes the 
offset to wrap around modulo 65,536 or 010000H. With the Intel 286 processor, any base and offset combination 
that addresses beyond 16 MBytes wraps around to the 1 MByte of the address space. The P6 family, Pentium, 
Intel486, and Intel386 processors in real-address mode generate an exception in these cases: 
• A general-protection exception (#GP) if the segment is a data segment (that is, if the CS, DS, ES, FS, or GS 

register is being used to address the segment).
• A stack-fault exception (#SS) if the segment is a stack segment (that is, if the SS register is being used). 

An exception to this behavior occurs when a stack access is data aligned, and the stack pointer is pointing to the 
last aligned piece of data that size at the top of the stack (ESP is FFFFFFFCH). When this data is popped, no 
segment limit violation occurs and the stack pointer will wrap around to 0. 

The address space of the P6 family, Pentium, and Intel486 processors may wraparound at 1 MByte in real-address 
mode. An external A20M# pin forces wraparound if enabled. On Intel 8086 processors, it is possible to specify 
addresses greater than 1 MByte. For example, with a selector value FFFFH and an offset of FFFFH, the effective 
address would be 10FFEFH (1 MByte plus 65519 bytes). The 8086 processor, which can form addresses up to 20 
bits long, truncates the uppermost bit, which “wraps” this address to FFEFH. However, the P6 family, Pentium, and 
Intel486 processors do not truncate this bit if A20M# is not enabled. 

If a stack operation wraps around the address limit, shutdown occurs. (The 8086 processor does not have a shut-
down mode or a limit.) 

The behavior when executing near the limit of a 4-GByte selector (limit = FFFFFFFFH) is different between the 
Pentium Pro and the Pentium 4 family of processors. On the Pentium Pro, instructions which cross the limit -- for 
example, a two byte instruction such as INC EAX that is encoded as FFH C0H starting exactly at the limit faults for 
a segment violation (a one byte instruction at FFFFFFFFH does not cause an exception). Using the Pentium 4 micro-
processor family, neither of these situations causes a fault.

Segment wraparound and the functionality of A20M# is used primarily by older operating systems and not used by 
modern operating systems. On newer Intel 64 processors, A20M# may be absent. 

24.34 STORE BUFFERS AND MEMORY ORDERING
The Pentium 4, Intel Xeon, and P6 family processors provide a store buffer for temporary storage of writes (stores) 
to memory (see Section 13.10, “Store Buffer”). Writes stored in the store buffer(s) are always written to memory 
in program order, with the exception of “fast string” store operations (see Section 10.2.4, “Fast-String Operation 
and Out-of-Order Stores”).

The Pentium processor has two store buffers, one corresponding to each of the pipelines. Writes in these buffers 
are always written to memory in the order they were generated by the processor core.

It should be noted that only memory writes are buffered and I/O writes are not. The Pentium 4, Intel Xeon, P6 
family, Pentium, and Intel486 processors do not synchronize the completion of memory writes on the bus and 
instruction execution after a write. An I/O, locked, or serializing instruction needs to be executed to synchronize 
writes with the next instruction (see Section 10.3, “Serializing Instructions”).

The Pentium 4, Intel Xeon, and P6 family processors use processor ordering to maintain consistency in the order 
that data is read (loaded) and written (stored) in a program and the order the processor actually carries out the 
reads and writes. With this type of ordering, reads can be carried out speculatively and in any order, reads can pass 
buffered writes, and writes to memory are always carried out in program order. (See Section 10.2, “Memory 
Ordering,” for more information about processor ordering.) The Pentium III processor introduced a new instruction 
to serialize writes and make them globally visible. Memory ordering issues can arise between a producer and a 
consumer of data. The SFENCE instruction provides a performance-efficient way of ensuring ordering between 
routines that produce weakly-ordered results and routines that consume this data.

No re-ordering of reads occurs on the Pentium processor, except under the condition noted in Section 10.2.1, 
“Memory Ordering in the Intel® Pentium® and Intel486™ Processors,” and in the following paragraph describing 
the Intel486 processor. 
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Specifically, the store buffers are flushed before the IN instruction is executed. No reads (as a result of cache miss) 
are reordered around previously generated writes sitting in the store buffers. The implication of this is that the 
store buffers will be flushed or emptied before a subsequent bus cycle is run on the external bus.

On both the Intel486 and Pentium processors, under certain conditions, a memory read will go onto the external 
bus before the pending memory writes in the buffer even though the writes occurred earlier in the program execu-
tion. A memory read will only be reordered in front of all writes pending in the buffers if all writes pending in the 
buffers are cache hits and the read is a cache miss. Under these conditions, the Intel486 and Pentium processors 
will not read from an external memory location that needs to be updated by one of the pending writes. 

During a locked bus cycle, the Intel486 processor will always access external memory, it will never look for the 
location in the on-chip cache. All data pending in the Intel486 processor's store buffers will be written to memory 
before a locked cycle is allowed to proceed to the external bus. Thus, the locked bus cycle can be used for elimi-
nating the possibility of reordering read cycles on the Intel486 processor. The Pentium processor does check its 
cache on a read-modify-write access and, if the cache line has been modified, writes the contents back to memory 
before locking the bus. The P6 family processors write to their cache on a read-modify-write operation (if the 
access does not split across a cache line) and does not write back to system memory. If the access does split across 
a cache line, it locks the bus and accesses system memory.

I/O reads are never reordered in front of buffered memory writes on an IA-32 processor. This ensures an update of 
all memory locations before reading the status from an I/O device.

24.35 BUS LOCKING
The Intel 286 processor performs the bus locking differently than the Intel P6 family, Pentium, Intel486, and 
Intel386 processors. Programs that use forms of memory locking specific to the Intel 286 processor may not run 
properly when run on later processors.

A locked instruction is guaranteed to lock only the area of memory defined by the destination operand, but may 
lock a larger memory area. For example, typical 8086 and Intel 286 configurations lock the entire physical memory 
space. Programmers should not depend on this.

On the Intel 286 processor, the LOCK prefix is sensitive to IOPL. If the CPL is greater than the IOPL, a general-
protection exception (#GP) is generated. On the Intel386 DX, Intel486, and Pentium, and P6 family processors, no 
check against IOPL is performed.

The Pentium processor automatically asserts the LOCK# signal when acknowledging external interrupts. After 
signaling an interrupt request, an external interrupt controller may use the data bus to send the interrupt vector to 
the processor. After receiving the interrupt request signal, the processor asserts LOCK# to ensure that no other 
data appears on the data bus until the interrupt vector is received. This bus locking does not occur on the P6 family 
processors.

24.36 BUS HOLD
Unlike the 8086 and Intel 286 processors, but like the Intel386 and Intel486 processors, the P6 family and Pentium 
processors respond to requests for control of the bus from other potential bus masters, such as DMA controllers, 
between transfers of parts of an unaligned operand, such as two words which form a doubleword. Unlike the 
Intel386 processor, the P6 family, Pentium, and Intel486 processors respond to bus hold during reset initialization.

24.37 MODEL-SPECIFIC EXTENSIONS TO THE IA-32
Certain extensions to the IA-32 are specific to a processor or family of IA-32 processors and may not be imple-
mented or implemented in the same way in future processors. The following sections describe these model-specific 
extensions. The CPUID instruction indicates the availability of some of the model-specific features.
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24.37.1 Model-Specific Registers
The Pentium processor introduced a set of model-specific registers (MSRs) for use in controlling hardware functions 
and performance monitoring. To access these MSRs, two new instructions were added to the IA-32 architecture: 
read MSR (RDMSR) and write MSR (WRMSR). The MSRs in the Pentium processor are not guaranteed to be dupli-
cated or provided in the next generation IA-32 processors.

The P6 family processors greatly increased the number of MSRs available to software. See Chapter 2, “Model-
Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, for a 
complete list of the available MSRs. The new registers control the debug extensions, the performance counters, the 
machine-check exception capability, the machine-check architecture, and the MTRRs. These registers are acces-
sible using the RDMSR and WRMSR instructions. Specific information on some of these new MSRs is provided in the 
following sections. As with the Pentium processor MSR, the P6 family processor MSRs are not guaranteed to be 
duplicated or provided in the next generation IA-32 processors.

24.37.2 RDMSR and WRMSR Instructions
The RDMSR (read model-specific register) and WRMSR (write model-specific register) instructions recognize a 
much larger number of model-specific registers in the P6 family processors. (See “RDMSR—Read from Model 
Specific Register” and “WRMSR—Write to Model Specific Register” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, for more information.)

24.37.3 Memory Type Range Registers
Memory type range registers (MTRRs) are a new feature introduced into the IA-32 in the Pentium Pro processor. 
MTRRs allow the processor to optimize memory operations for different types of memory, such as RAM, ROM, frame 
buffer memory, and memory-mapped I/O.

MTRRs are MSRs that contain an internal map of how physical address ranges are mapped to various types of 
memory. The processor uses this internal memory map to determine the cacheability of various physical memory 
locations and the optimal method of accessing memory locations. For example, if a memory location is specified in 
an MTRR as write-through memory, the processor handles accesses to this location as follows. It reads data from 
that location in lines and caches the read data or maps all writes to that location to the bus and updates the cache 
to maintain cache coherency. In mapping the physical address space with MTRRs, the processor recognizes five 
types of memory: uncacheable (UC), uncacheable, speculatable, write-combining (WC), write-through (WT), 
write-protected (WP), and writeback (WB).

Earlier IA-32 processors (such as the Intel486 and Pentium processors) used the KEN# (cache enable) pin and 
external logic to maintain an external memory map and signal cacheable accesses to the processor. The MTRR 
mechanism simplifies hardware designs by eliminating the KEN# pin and the external logic required to drive it.

See Chapter 11, “Processor Management and Initialization,” and Chapter 2, “Model-Specific Registers (MSRs)‚” in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, for more information on the MTRRs.

24.37.4 Machine-Check Exception and Architecture
The Pentium processor introduced a new exception called the machine-check exception (#MC, interrupt 18). This 
exception is used to detect hardware-related errors, such as a parity error on a read cycle. 

The P6 family processors extend the types of errors that can be detected and that generate a machine-check 
exception. It also provides a new machine-check architecture for recording information about a machine-check 
error and provides extended recovery capability.

The machine-check architecture provides several banks of reporting registers for recording machine-check errors. 
Each bank of registers is associated with a specific hardware unit in the processor. The primary focus of the 
machine checks is on bus and interconnect operations; however, checks are also made of translation lookaside 
buffer (TLB) and cache operations.
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The machine-check architecture can correct some errors automatically and allow for reliable restart of instruction 
execution. It also collects sufficient information for software to use in correcting other machine errors not corrected 
by hardware.

See Chapter 17, “Machine-Check Architecture,” for more information on the machine-check exception and the 
machine-check architecture.

24.37.5 Performance-Monitoring Counters
The P6 family and Pentium processors provide two performance-monitoring counters for use in monitoring internal 
hardware operations. The number of performance monitoring counters and associated programming interfaces 
may be implementation specific for Pentium 4 processors, Pentium M processors. Later processors may have 
implemented these as part of an architectural performance monitoring feature. The architectural and non-architec-
tural performance monitoring interfaces for different processor families are described in Chapter 21, “Performance 
Monitoring.” https://perfmon-events.intel.com/ lists all the events that can be counted for architectural perfor-
mance monitoring events and non-architectural events. The counters are set up, started, and stopped using two 
MSRs and the RDMSR and WRMSR instructions. For the P6 family processors, the current count for a particular 
counter can be read using the new RDPMC instruction.

The performance-monitoring counters are useful for debugging programs, optimizing code, diagnosing system fail-
ures, or refining hardware designs. See Chapter 21, “Performance Monitoring,” for more information on these 
counters.

24.38 TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS
When porting 16-bit programs to run on 32-bit IA-32 processors, there are two approaches to consider:
• Porting an entire 16-bit software system to a 32-bit processor, complete with the old operating system, loader, 

and system builder. Here, all tasks will have 16-bit TSSs. The 32-bit processor is being used as if it were a faster 
version of the 16-bit processor.

• Porting selected 16-bit applications to run in a 32-bit processor environment with a 32-bit operating system, 
loader, and system builder. Here, the TSSs used to represent 286 tasks should be changed to 32-bit TSSs. It is 
possible to mix 16 and 32-bit TSSs, but the benefits are small and the problems are great. All tasks in a 32-bit 
software system should have 32-bit TSSs. It is not necessary to change the 16-bit object modules themselves; 
TSSs are usually constructed by the operating system, by the loader, or by the system builder. See Chapter 23, 
“Mixing 16-Bit and 32-Bit Code,” for more detailed information about mixing 16-bit and 32-bit code.

Because the 32-bit processors use the contents of the reserved word of 16-bit segment descriptors, 16-bit 
programs that place values in this word may not run correctly on the 32-bit processors.

24.39 INITIAL STATE OF PENTIUM, PENTIUM PRO AND PENTIUM 4 PROCESSORS
Table 24-10 shows the state of the flags and other registers following power-up for the Pentium, Pentium Pro and 
Pentium 4 processors. The state of control register CR0 is 60000010H (see Figure 11-1 “Contents of CR0 Register 
after Reset” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). This places the 
processor in real-address mode with paging disabled.

Table 24-10.  Processor State Following Power-up/Reset/INIT for Pentium, Pentium Pro and Pentium 4 Processors

Register Pentium 4 Processor Pentium Pro Processor Pentium Processor

EFLAGS1 00000002H 00000002H 00000002H

EIP 0000FFF0H 0000FFF0H 0000FFF0H

CR0 60000010H2 60000010H2 60000010H2

CR2, CR3, CR4 00000000H 00000000H 00000000H
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CS Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

SS, DS, ES, FS, GS Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

EDX 00000FxxH  000n06xxH3 000005xxH 

EAX 04 04 04

EBX, ECX, ESI, EDI, EBP, 
ESP

00000000H 00000000H 00000000H

ST0 through ST75 Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

x87 FPU Control 
Word5

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

x87 FPU Status Word5 Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Tag Word5 Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

x87 FPU Data 
Operand and CS Seg. 
Selectors5

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Data 
Operand and Inst. 
Pointers5

Pwr up or Reset: 
   00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset: 
   00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset: 
   00000000H
FINIT/FNINIT: 00000000H

MM0 through MM75 Pwr up or Reset:
   0000000000000000H
INIT or FINIT/FNINIT:
   Unchanged

Pentium II and Pentium III 
Processors Only—

Pwr up or Reset:
   0000000000000000H
INIT or FINIT/FNINIT:
   Unchanged

Pentium with MMX Technology 
Only—

Pwr up or Reset:
   0000000000000000H
INIT or FINIT/FNINIT:
   Unchanged

XMM0 through XMM7 Pwr up or Reset: 0H
INIT: Unchanged

If CPUID.01H:SSE is 1 —

Pwr up or Reset: 0H
INIT: Unchanged

NA

MXCSR Pwr up or Reset: 1F80H
INIT: Unchanged

Pentium III processor only-

Pwr up or Reset: 1F80H
INIT: Unchanged

NA

GDTR, IDTR Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

LDTR, Task Register Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

DR0, DR1, DR2, DR3 00000000H 00000000H 00000000H

DR6 FFFF0FF0H FFFF0FF0H FFFF0FF0H

Table 24-10.  Processor State Following Power-up/Reset/INIT for Pentium, Pentium Pro and Pentium 4 Processors 

Register Pentium 4 Processor Pentium Pro Processor Pentium Processor
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DR7 00000400H 00000400H 00000400H

Time-Stamp Counter Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Perf. Counters and 
Event Select

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

All Other MSRs Pwr up or Reset:
   Undefined
INIT: Unchanged

Pwr up or Reset:
   Undefined
INIT: Unchanged

Pwr up or Reset:
   Undefined
INIT: Unchanged

Data and Code Cache, 
TLBs

Invalid6 Invalid6 Invalid6

Fixed MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Variable MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Machine-Check 
Architecture

Pwr up or Reset:
    Undefined
INIT: Unchanged

Pwr up or Reset:
    Undefined
INIT: Unchanged

Not Implemented

APIC Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

R8-R157 0000000000000000H 0000000000000000H N.A.

XMM8-XMM157 Pwr up or Reset: 0H
INIT: Unchanged

Pwr up or Reset: 0H
INIT: Unchanged

N.A.

NOTES: 
1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software should not depend on the states of 

any of these bits.
2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.
3. Where “n” is the Extended Model Value for the respective processor.
4. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST cannot be invoked during an INIT.)
5. The state of the x87 FPU and MMX registers is not changed by the execution of an INIT.
6. Internal caches are invalid after power-up and RESET, but left unchanged with an INIT.
7. If the processor supports IA-32e mode.

Table 24-10.  Processor State Following Power-up/Reset/INIT for Pentium, Pentium Pro and Pentium 4 Processors 

Register Pentium 4 Processor Pentium Pro Processor Pentium Processor
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CHAPTER 25
INTRODUCTION TO VIRTUAL MACHINE EXTENSIONS

25.1 OVERVIEW
This chapter describes the basics of virtual machine architecture and an overview of the virtual-machine extensions 
(VMX) that support virtualization of processor hardware for multiple software environments.

Information about VMX instructions is provided in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2B. Other aspects of VMX and system programming considerations are described in chapters of 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

25.2 VIRTUAL MACHINE ARCHITECTURE
Virtual-machine extensions define processor-level support for virtual machines on IA-32 processors. Two principal 
classes of software are supported:
• Virtual-machine monitors (VMM) — A VMM acts as a host and has full control of the processor(s) and other 

platform hardware. A VMM presents guest software (see next paragraph) with an abstraction of a virtual 
processor and allows it to execute directly on a logical processor. A VMM is able to retain selective control of 
processor resources, physical memory, interrupt management, and I/O.

• Guest software — Each virtual machine (VM) is a guest software environment that supports a stack consisting 
of operating system (OS) and application software. Each operates independently of other virtual machines and 
uses on the same interface to processor(s), memory, storage, graphics, and I/O provided by a physical 
platform. The software stack acts as if it were running on a platform with no VMM. Software executing in a 
virtual machine must operate with reduced privilege so that the VMM can retain control of platform resources.

25.3 INTRODUCTION TO VMX OPERATION
Processor support for virtualization is provided by a form of processor operation called VMX operation. There are 
two kinds of VMX operation: VMX root operation and VMX non-root operation. In general, a VMM will run in VMX 
root operation and guest software will run in VMX non-root operation. Transitions between VMX root operation and 
VMX non-root operation are called VMX transitions. There are two kinds of VMX transitions. Transitions into VMX 
non-root operation are called VM entries. Transitions from VMX non-root operation to VMX root operation are called 
VM exits.

Processor behavior in VMX root operation is very much as it is outside VMX operation. The principal differences are 
that a set of new instructions (the VMX instructions) is available and that the values that can be loaded into certain 
control registers are limited (see Section 25.8). 

Processor behavior in VMX non-root operation is restricted and modified to facilitate virtualization. Instead of their 
ordinary operation, certain instructions (including the new VMCALL instruction) and events cause VM exits to the 
VMM. Because these VM exits replace ordinary behavior, the functionality of software in VMX non-root operation is 
limited. It is this limitation that allows the VMM to retain control of processor resources.

There is no software-visible bit whose setting indicates whether a logical processor is in VMX non-root operation. 
This fact may allow a VMM to prevent guest software from determining that it is running in a virtual machine. 

Because VMX operation places restrictions even on software running with current privilege level (CPL) 0, guest 
software can run at the privilege level for which it was originally designed. This capability may simplify the devel-
opment of a VMM.
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25.4 LIFE CYCLE OF VMM SOFTWARE
Figure 25-1 illustrates the life cycle of a VMM and its guest software as well as the interactions between them. The 
following items summarize that life cycle:
• Software enters VMX operation by executing a VMXON instruction.
• Using VM entries, a VMM can then enter guests into virtual machines (one at a time). The VMM effects a 

VM entry using instructions VMLAUNCH and VMRESUME; it regains control using VM exits. 
• VM exits transfer control to an entry point specified by the VMM. The VMM can take action appropriate to the 

cause of the VM exit and can then return to the virtual machine using a VM entry.
• Eventually, the VMM may decide to shut itself down and leave VMX operation. It does so by executing the 

VMXOFF instruction.

25.5 VIRTUAL-MACHINE CONTROL STRUCTURE
VMX non-root operation and VMX transitions are controlled by a data structure called a virtual-machine control 
structure (VMCS).

Access to the VMCS is managed through a component of processor state called the VMCS pointer (one per logical 
processor). The value of the VMCS pointer is the 64-bit address of the VMCS. The VMCS pointer is read and written 
using the instructions VMPTRST and VMPTRLD. The VMM configures a VMCS using the VMREAD, VMWRITE, and 
VMCLEAR instructions.

A VMM could use a different VMCS for each virtual machine that it supports. For a virtual machine with multiple 
logical processors (virtual processors), the VMM could use a different VMCS for each virtual processor.

25.6 DISCOVERING SUPPORT FOR VMX
Before system software enters into VMX operation, it must discover the presence of VMX support in the processor. 
System software can determine whether a processor supports VMX operation using CPUID. If 
CPUID.1:ECX.VMX[bit 5] = 1, then VMX operation is supported. See Chapter 3, “Instruction Set Reference, A-L‚” of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

The VMX architecture is designed to be extensible so that future processors in VMX operation can support addi-
tional features not present in first-generation implementations of the VMX architecture. The availability of exten-
sible VMX features is reported to software using a set of VMX capability MSRs (see Appendix A, “VMX Capability 
Reporting Facility”).

Figure 25-1.  Interaction of a Virtual-Machine Monitor and Guests

VM Monitor

Guest 0 Guest 1

VM Exit VM ExitVM Entry

VMXOFFVMXON
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25.7 ENABLING AND ENTERING VMX OPERATION
Before system software can enter VMX operation, it enables VMX by setting CR4.VMXE[bit 13] = 1. VMX operation 
is then entered by executing the VMXON instruction. VMXON causes an invalid-opcode exception (#UD) if executed 
with CR4.VMXE = 0. Once in VMX operation, it is not possible to clear CR4.VMXE (see Section 25.8). System soft-
ware leaves VMX operation by executing the VMXOFF instruction. CR4.VMXE can be cleared outside of VMX opera-
tion after executing of VMXOFF.

VMXON is also controlled by the IA32_FEATURE_CONTROL MSR (MSR address 3AH). This MSR is cleared to zero 
when a logical processor is reset. The relevant bits of the MSR are:
• Bit 0 is the lock bit. If this bit is clear, VMXON causes a general-protection exception. If the lock bit is set, 

WRMSR to this MSR causes a general-protection exception; the MSR cannot be modified until a power-up reset 
condition. System BIOS can use this bit to provide a setup option for BIOS to disable support for VMX. To 
enable VMX support in a platform, BIOS must set bit 1, bit 2, or both (see below), as well as the lock bit.

• Bit 1 enables VMXON in SMX operation. If this bit is clear, execution of VMXON in SMX operation causes a 
general-protection exception. Attempts to set this bit on logical processors that do not support both VMX 
operation (see Section 25.6) and SMX operation (see Chapter 7, “Safer Mode Extensions Reference,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D) cause general-protection 
exceptions.

• Bit 2 enables VMXON outside SMX operation. If this bit is clear, execution of VMXON outside SMX 
operation causes a general-protection exception. Attempts to set this bit on logical processors that do not 
support VMX operation (see Section 25.6) cause general-protection exceptions.

NOTE
A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last 
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER] 
has not been executed or if GETSEC[SEXIT] was executed after the last execution of 
GETSEC[SENTER]. See Chapter 7, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2D.

Before executing VMXON, software should allocate a naturally aligned 4-KByte region of memory that a logical 
processor may use to support VMX operation.1 This region is called the VMXON region. The address of the VMXON 
region (the VMXON pointer) is provided in an operand to VMXON. Section 26.11.5, “VMXON Region,” details how 
software should initialize and access the VMXON region.

25.8 RESTRICTIONS ON VMX OPERATION
VMX operation places restrictions on processor operation. These are detailed below:
• In VMX operation, processors may fix certain bits in CR0 and CR4 to specific values and not support other 

values. VMXON fails if any of these bits contains an unsupported value (see “VMXON—Enter VMX Operation” in 
Chapter 32). Any attempt to set one of these bits to an unsupported value while in VMX operation (including 
VMX root operation) using any of the CLTS, LMSW, or MOV CR instructions causes a general-protection 
exception. VM entry or VM exit cannot set any of these bits to an unsupported value. Software should consult 
the VMX capability MSRs IA32_VMX_CR0_FIXED0 and IA32_VMX_CR0_FIXED1 to determine how bits in CR0 
are fixed (see Appendix A.7). For CR4, software should consult the VMX capability MSRs 
IA32_VMX_CR4_FIXED0 and IA32_VMX_CR4_FIXED1 (see Appendix A.8).

NOTES
The first processors to support VMX operation require that the following bits be 1 in VMX operation: 
CR0.PE, CR0.NE, CR0.PG, and CR4.VMXE. The restrictions on CR0.PE and CR0.PG imply that VMX 

1. Future processors may require that a different amount of memory be reserved. If so, this fact is reported to software using the 
VMX capability-reporting mechanism.
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operation is supported only in paged protected mode (including IA-32e mode). Therefore, guest 
software cannot be run in unpaged protected mode or in real-address mode.
Later processors support a VM-execution control called “unrestricted guest” (see Section 26.6.2). 
If this control is 1, CR0.PE and CR0.PG may be 0 in VMX non-root operation (even if the capability 
MSR IA32_VMX_CR0_FIXED0 reports otherwise).1 Such processors allow guest software to run in 
unpaged protected mode or in real-address mode.

• VMXON fails if a logical processor is in A20M mode (see “VMXON—Enter VMX Operation” in Chapter 32). Once 
the processor is in VMX operation, A20M interrupts are blocked. Thus, it is impossible to be in A20M mode in 
VMX operation.

• The INIT signal is blocked whenever a logical processor is in VMX root operation. It is not blocked in VMX non-
root operation. Instead, INITs cause VM exits (see Section 27.2, “Other Causes of VM Exits”).

• Intel® Processor Trace (Intel PT) can be used in VMX operation only if IA32_VMX_MISC[14] is read as 1 (see 
Appendix A.6). On processors that support Intel PT but which do not allow it to be used in VMX operation, 
execution of VMXON clears IA32_RTIT_CTL.TraceEn (see “VMXON—Enter VMX Operation” in Chapter 32); any 
attempt to write IA32_RTIT_CTL while in VMX operation (including VMX root operation) causes a general-
protection exception. 

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VMX non-root operation functions as if the “unrestricted guest” VM-execution control were 0. See Section 26.6.2.
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CHAPTER 26
VIRTUAL MACHINE CONTROL STRUCTURES

26.1 OVERVIEW
A logical processor uses virtual-machine control data structures (VMCSs) while it is in VMX operation. These 
manage transitions into and out of VMX non-root operation (VM entries and VM exits) as well as processor behavior 
in VMX non-root operation. This structure is manipulated by the new instructions VMCLEAR, VMPTRLD, VMREAD, 
and VMWRITE.

A VMM can use a different VMCS for each virtual machine that it supports. For a virtual machine with multiple 
logical processors (virtual processors), the VMM can use a different VMCS for each virtual processor.

A logical processor associates a region in memory with each VMCS. This region is called the VMCS region.1 Soft-
ware references a specific VMCS using the 64-bit physical address of the region (a VMCS pointer). VMCS pointers 
must be aligned on a 4-KByte boundary (bits 11:0 must be zero). These pointers must not set bits beyond the 
processor’s physical-address width.2,3

A logical processor may maintain a number of VMCSs that are active. The processor may optimize VMX operation 
by maintaining the state of an active VMCS in memory, on the processor, or both. At any given time, at most one 
of the active VMCSs is the current VMCS. (This document frequently uses the term “the VMCS” to refer to the 
current VMCS.) The VMLAUNCH, VMREAD, VMRESUME, and VMWRITE instructions operate only on the current 
VMCS.

The following items describe how a logical processor determines which VMCSs are active and which is current:
• The memory operand of the VMPTRLD instruction is the address of a VMCS. After execution of the instruction, 

that VMCS is both active and current on the logical processor. Any other VMCS that had been active remains so, 
but no other VMCS is current.

• The VMCS link pointer field in the current VMCS (see Section 26.4.2) is itself the address of a VMCS. If VM entry 
is performed successfully with the 1-setting of the “VMCS shadowing” VM-execution control, the VMCS 
referenced by the VMCS link pointer field becomes active on the logical processor. The identity of the current 
VMCS does not change.

• The memory operand of the VMCLEAR instruction is also the address of a VMCS. After execution of the 
instruction, that VMCS is neither active nor current on the logical processor. If the VMCS had been current on 
the logical processor, the logical processor no longer has a current VMCS.

The VMPTRST instruction stores the address of the logical processor’s current VMCS into a specified memory loca-
tion (it stores the value FFFFFFFF_FFFFFFFFH if there is no current VMCS).

The launch state of a VMCS determines which VM-entry instruction should be used with that VMCS: the 
VMLAUNCH instruction requires a VMCS whose launch state is “clear”; the VMRESUME instruction requires a VMCS 
whose launch state is “launched”. A logical processor maintains a VMCS’s launch state in the corresponding VMCS 
region. The following items describe how a logical processor manages the launch state of a VMCS:
• If the launch state of the current VMCS is “clear”, successful execution of the VMLAUNCH instruction changes 

the launch state to “launched”.
• The memory operand of the VMCLEAR instruction is the address of a VMCS. After execution of the instruction, 

the launch state of that VMCS is “clear”.
• There are no other ways to modify the launch state of a VMCS (it cannot be modified using VMWRITE) and there 

is no direct way to discover it (it cannot be read using VMREAD).

1. The amount of memory required for a VMCS region is at most 4 KBytes. The exact size is implementation specific and can be deter-
mined by consulting the VMX capability MSR IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix A.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, these pointers must not set any bits in the range 63:32; see Appendix A.1.
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Figure 26-1 illustrates the different states of a VMCS. It uses “X” to refer to the VMCS and “Y” to refer to any other 
VMCS. Thus: “VMPTRLD X” always makes X current and active; “VMPTRLD Y” always makes X not current (because 
it makes Y current); VMLAUNCH makes the launch state of X “launched” if X was current and its launch state was 
“clear”; and VMCLEAR X always makes X inactive and not current and makes its launch state “clear”.

The figure does not illustrate operations that do not modify the VMCS state relative to these parameters (e.g., 
execution of VMPTRLD X when X is already current). Note that VMCLEAR X makes X “inactive, not current, and 
clear,” even if X’s current state is not defined (e.g., even if X has not yet been initialized). See Section 26.11.3.

Because a shadow VMCS (see Section 26.10) cannot be used for VM entry, the launch state of a shadow VMCS is 
not meaningful. Figure 26-1 does not illustrate all the ways in which a shadow VMCS may be made active.

26.2 FORMAT OF THE VMCS REGION
A VMCS region comprises up to 4-KBytes.1 The format of a VMCS region is given in Table 26-1.

Figure 26-1.  States of VMCS X

Table 26-1.  Format of the VMCS Region

Byte Offset Contents

0 Bits 30:0: VMCS revision identifier

Bit 31: shadow-VMCS indicator (see Section 26.10)

4 VMX-abort indicator

8 VMCS data (implementation-specific format)

1. The exact size is implementation specific and can be determined by consulting the VMX capability MSR IA32_VMX_BASIC to deter-
mine the size of the VMCS region (see Appendix A.1).

Active
Not Current

Clear

Active
Current
Clear

Inactive
Not Current

Clear

Active
Not Current
Launched

Active
Current

Launched

VMPTRLD X

VMCLEAR X

VMLAUNCH

VMCLEAR X

VMCLEAR XVMCLEAR X

VMCLEAR X

Anything
Else

VM
PTR

LD X

VM
PTR

LD Y

VM
PTR

LD X

VM
PTR

LD Y
26-2 Vol. 3C



VIRTUAL MACHINE CONTROL STRUCTURES
The first 4 bytes of the VMCS region contain the VMCS revision identifier at bits 30:0.1 Processors that maintain 
VMCS data in different formats (see below) use different VMCS revision identifiers. These identifiers enable soft-
ware to avoid using a VMCS region formatted for one processor on a processor that uses a different format.2 Bit 31 
of this 4-byte region indicates whether the VMCS is a shadow VMCS (see Section 26.10).

Software should write the VMCS revision identifier to the VMCS region before using that region for a VMCS. The 
VMCS revision identifier is never written by the processor; VMPTRLD fails if its operand references a VMCS region 
whose VMCS revision identifier differs from that used by the processor. (VMPTRLD also fails if the shadow-VMCS 
indicator is 1 and the processor does not support the 1-setting of the “VMCS shadowing” VM-execution control; see 
Section 26.6.2) Software can discover the VMCS revision identifier that a processor uses by reading the VMX capa-
bility MSR IA32_VMX_BASIC (see Appendix A.1).

Software should clear or set the shadow-VMCS indicator depending on whether the VMCS is to be an ordinary 
VMCS or a shadow VMCS (see Section 26.10). VMPTRLD fails if the shadow-VMCS indicator is set and the processor 
does not support the 1-setting of the “VMCS shadowing” VM-execution control. Software can discover support for 
this setting by reading the VMX capability MSR IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3).

The next 4 bytes of the VMCS region are used for the VMX-abort indicator. The contents of these bits do not 
control processor operation in any way. A logical processor writes a non-zero value into these bits if a VMX abort 
occurs (see Section 29.7). Software may also write into this field.

The remainder of the VMCS region is used for VMCS data (those parts of the VMCS that control VMX non-root 
operation and the VMX transitions). The format of these data is implementation-specific. VMCS data are discussed 
in Section 26.3 through Section 26.9. To ensure proper behavior in VMX operation, software should maintain the 
VMCS region and related structures (enumerated in Section 26.11.4) in writeback cacheable memory. Future 
implementations may allow or require a different memory type3. Software should consult the VMX capability MSR 
IA32_VMX_BASIC (see Appendix A.1).

26.3 ORGANIZATION OF VMCS DATA
The VMCS data are organized into six logical groups:
• Guest-state area. Processor state is saved into the guest-state area on VM exits and loaded from there on 

VM entries.
• Host-state area. Processor state is loaded from the host-state area on VM exits.
• VM-execution control fields. These fields control processor behavior in VMX non-root operation. They 

determine in part the causes of VM exits.
• VM-exit control fields. These fields control VM exits.
• VM-entry control fields. These fields control VM entries.
• VM-exit information fields. These fields receive information on VM exits and describe the cause and the 

nature of VM exits. On some processors, these fields are read-only.4

The VM-execution control fields, the VM-exit control fields, and the VM-entry control fields are sometimes referred 
to collectively as VMX controls.

1. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field. For all processors produced prior to this 
change, bit 31 of the VMCS revision identifier was 0.

2. Logical processors that use the same VMCS revision identifier use the same size for VMCS regions.

3. Alternatively, software may map any of these regions or structures with the UC memory type. Doing so is strongly discouraged 
unless necessary as it will cause the performance of transitions using those structures to suffer significantly. In addition, the pro-
cessor will continue to use the memory type reported in the VMX capability MSR IA32_VMX_BASIC with exceptions noted in Appen-
dix A.1.

4.  Software can discover whether these fields can be written by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).
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26.4 GUEST-STATE AREA
This section describes fields contained in the guest-state area of the VMCS. VM entries load processor state from 
these fields and VM exits store processor state into these fields. See Section 28.3.2 and Section 29.3 for details.

26.4.1 Guest Register State
The following fields in the guest-state area correspond to processor registers:
• Control registers CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 64 archi-

tecture).
• Debug register DR7 (64 bits; 32 bits on processors that do not support Intel 64 architecture).
• RSP, RIP, and RFLAGS (64 bits each; 32 bits on processors that do not support Intel 64 architecture).1

• The following fields for each of the registers CS, SS, DS, ES, FS, GS, LDTR, and TR:

— Selector (16 bits).

— Base address (64 bits; 32 bits on processors that do not support Intel 64 architecture). The base-address 
fields for CS, SS, DS, and ES have only 32 architecturally-defined bits; nevertheless, the corresponding 
VMCS fields have 64 bits on processors that support Intel 64 architecture.

— Segment limit (32 bits). The limit field is always a measure in bytes.

— Access rights (32 bits). The format of this field is given in Table 26-2 and detailed as follows:

• The low 16 bits correspond to bits 23:8 of the upper 32 bits of a 64-bit segment descriptor. While bits 
19:16 of code-segment and data-segment descriptors correspond to the upper 4 bits of the segment 
limit, the corresponding bits (bits 11:8) are reserved in this VMCS field.

• Bit 16 indicates an unusable segment. Attempts to use such a segment fault except in 64-bit mode. 
In general, a segment register is unusable if it has been loaded with a null selector.2

• Bits 31:17 are reserved.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit 
forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32 
bits of the indicated register.

2. There are a few exceptions to this statement. For example, a segment with a non-null selector may be unusable following a task 
switch that fails after its commit point; see “Interrupt 10—Invalid TSS Exception (#TS)” in Section 7.14, “Exception and Interrupt 
Handling in 64-bit Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In contrast, the TR reg-
ister is usable after processor reset despite having a null selector; see Table 12-1 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.

Table 26-2.  Format of Access Rights 

Bit Position(s) Field

3:0 Segment type

4 S — Descriptor type (0 = system; 1 = code or data)

6:5 DPL — Descriptor privilege level

7 P — Segment present

11:8 Reserved

12 AVL — Available for use by system software
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The base address, segment limit, and access rights compose the “hidden” part (or “descriptor cache”) of each 
segment register. These data are included in the VMCS because it is possible for a segment register’s descriptor 
cache to be inconsistent with the segment descriptor in memory (in the GDT or the LDT) referenced by the 
segment register’s selector.
The value of the DPL field for SS is always equal to the logical processor’s current privilege level (CPL).1

On some processors, executions of VMWRITE ignore attempts to write non-zero values to any of bits 11:8 or 
bits 31:17. On such processors, VMREAD always returns 0 for those bits, and VM entry treats those bits as if 
they were all 0 (see Section 28.3.1.2).

• The following fields for each of the registers GDTR and IDTR:

— Base address (64 bits; 32 bits on processors that do not support Intel 64 architecture).

— Limit (32 bits). The limit fields contain 32 bits even though these fields are specified as only 16 bits in the 
architecture.

• The following MSRs:

— IA32_DEBUGCTL (64 bits)

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors that do not support Intel 64 
architecture)

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on processors that support the 1-setting 
of the “load IA32_PERF_GLOBAL_CTRL” VM-entry control.

— IA32_PAT (64 bits). This field is supported only on processors that support either the 1-setting of the “load 
IA32_PAT” VM-entry control or that of the “save IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on processors that support either the 1-setting of the “load 
IA32_EFER” VM-entry control or that of the “save IA32_EFER” VM-exit control.

— IA32_BNDCFGS (64 bits). This field is supported only on processors that support either the 1-setting of the 
“load IA32_BNDCFGS” VM-entry control or that of the “clear IA32_BNDCFGS” VM-exit control.

— IA32_RTIT_CTL (64 bits). This field is supported only on processors that support either the 1-setting of the 
“load IA32_RTIT_CTL” VM-entry control or that of the “clear IA32_RTIT_CTL” VM-exit control.

— IA32_LBR_CTL (64 bits). This field is supported only on processors that support either the 1-setting of the 
“load guest IA32_LBR_CTL” VM-entry control or that of the “clear IA32_LBR_CTL” VM-exit control.

— IA32_S_CET (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field is 
supported only on processors that support the 1-setting of the “load CET state” VM-entry control.

— IA32_INTERRUPT_SSP_TABLE_ADDR (64 bits; 32 bits on processors that do not support Intel 64 archi-
tecture). This field is supported only on processors that support the 1-setting of the “load CET state” VM-
entry control.

13 Reserved (except for CS)
L — 64-bit mode active (for CS only)

14 D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

15 G — Granularity

16 Segment unusable (0 = usable; 1 = unusable)

31:17 Reserved

1. In protected mode, CPL is also associated with the RPL field in the CS selector. However, the RPL fields are not meaningful in real-
address mode or in virtual-8086 mode.

Table 26-2.  Format of Access Rights  (Contd.)

Bit Position(s) Field
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— IA32_PKRS (64 bits). This field is supported only on processors that support the 1-setting of the “load 
PKRS” VM-entry control.

• The shadow-stack pointer register SSP (64 bits; 32 bits on processors that do not support Intel 64 archi-
tecture). This field is supported only on processors that support the 1-setting of the “load CET state” VM-entry 
control.

• The register SMBASE (32 bits). This register contains the base address of the logical processor’s SMRAM image.

26.4.2 Guest Non-Register State
In addition to the register state described in Section 26.4.1, the guest-state area includes the following fields that 
characterize guest state but which do not correspond to processor registers:
• Activity state (32 bits). This field identifies the logical processor’s activity state. When a logical processor is 

executing instructions normally, it is in the active state. Execution of certain instructions and the occurrence 
of certain events may cause a logical processor to transition to an inactive state in which it ceases to execute 
instructions.
The following activity states are defined:1

— 0: Active. The logical processor is executing instructions normally.

— 1: HLT. The logical processor is inactive because it executed the HLT instruction.

— 2: Shutdown. The logical processor is inactive because it incurred a triple fault2 or some other serious 
error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a startup-IPI (SIPI).
Future processors may include support for other activity states. Software should read the VMX capability MSR 
IA32_VMX_MISC (see Appendix A.6) to determine what activity states are supported.

• Interruptibility state (32 bits). The IA-32 architecture includes features that permit certain events to be 
blocked for a period of time. This field contains information about such blocking. Details and the format of this 
field are given in Table 26-3.

1. Execution of the MWAIT instruction may put a logical processor into an inactive state. However, this VMCS field never reflects this 
state. See Section 29.1.

2. A triple fault occurs when a logical processor encounters an exception while attempting to deliver a double fault.

Table 26-3.  Format of Interruptibility State

Bit 
Position(s)

Bit Name Notes

0 Blocking by STI See the “STI—Set Interrupt Flag” section in Chapter 4 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2B.

Execution of STI with RFLAGS.IF = 0 blocks maskable interrupts on the instruction boundary 
following its execution.1 Setting this bit indicates that this blocking is in effect.

1 Blocking by 
MOV SS

See Section 7.8.3, “Masking Exceptions and Interrupts When Switching Stacks,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Execution of a MOV to SS or a POP to SS blocks or suppresses certain debug exceptions as well 
as interrupts (maskable and nonmaskable) on the instruction boundary following its execution. 
Setting this bit indicates that this blocking is in effect.2 This document uses the term “blocking 
by MOV SS,” but it applies equally to POP SS.

2 Blocking by SMI See Section 33.2, “System Management Interrupt (SMI).” System-management interrupts 
(SMIs) are disabled while the processor is in system-management mode (SMM). Setting this bit 
indicates that blocking of SMIs is in effect.
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• Pending debug exceptions (64 bits; 32 bits on processors that do not support Intel 64 architecture). IA-32 
processors may recognize one or more debug exceptions without immediately delivering them.1 This field 
contains information about such exceptions. This field is described in Table 26-4.

3 Blocking by NMI See Section 7.7.1, “Handling Multiple NMIs,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A and Section 33.8, “NMI Handling While in SMM.”

Delivery of a non-maskable interrupt (NMI) or a system-management interrupt (SMI) blocks 
subsequent NMIs until the next execution of IRET. See Section 27.3 for how this behavior of 
IRET may change in VMX non-root operation. Setting this bit indicates that blocking of NMIs is 
in effect. Clearing this bit does not imply that NMIs are not (temporarily) blocked for other 
reasons.

If the “virtual NMIs” VM-execution control (see Section 26.6.1) is 1, this bit does not control the 
blocking of NMIs. Instead, it refers to “virtual-NMI blocking” (the fact that guest software is not 
ready for an NMI).

4 Enclave 
interruption

Set to 1 if the VM exit occurred while the logical processor was in enclave mode.

Such VM exits includes those caused by interrupts, non-maskable interrupts, system-
management interrupts, INIT signals, and exceptions occurring in enclave mode as well as 
exceptions encountered during the delivery of such events incident to enclave mode.

A VM exit that is incident to delivery of an event injected by VM entry leaves this bit 
unmodified.

31:5 Reserved VM entry will fail if these bits are not 0. See Section 28.3.1.5.

NOTES:
1. Nonmaskable interrupts and system-management interrupts may also be inhibited on the instruction boundary following such an 

execution of STI.
2. System-management interrupts may also be inhibited on the instruction boundary following such an execution of MOV or POP.

1. For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one instruction. See Section 7.8.3 of 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In addition, certain events incident to an instruction 
(for example, an INIT signal) may take priority over debug traps generated by that instruction. See Table 7-2 in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 26-4.  Format of Pending-Debug-Exceptions

Bit 
Position(s)

Bit Name Notes

3:0 B3 – B0 When set, each of these bits indicates that the corresponding breakpoint condition was met. 
Any of these bits may be set even if the corresponding enabling bit in DR7 is not set.

10:4 Reserved VM entry fails if these bits are not 0. See Section 28.3.1.5.

11 BLD When set, this bit indicates that a bus lock was asserted while OS bus-lock detection was 
enabled and CPL > 0 (see Section 19.3.1.6, “OS Bus-Lock Detection”).1

12 Enabled 
breakpoint

When set, this bit indicates that at least one data or I/O breakpoint was met and was enabled in 
DR7; the XBEGIN instruction was executed immediately before the VM exit and advanced 
debugging of RTM transactional regions had been enabled; or a bus lock was asserted while 
CPL > 0 and OS bus-lock detection had been enabled.

13 Reserved VM entry fails if this bit is not 0. See Section 28.3.1.5.

Table 26-3.  Format of Interruptibility State (Contd.)

Bit 
Position(s)

Bit Name Notes
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• VMCS link pointer (64 bits). If the “VMCS shadowing” VM-execution control is 1, the VMREAD and VMWRITE 
instructions access the VMCS referenced by this pointer (see Section 26.10). Otherwise, software should set 
this field to FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see Section 28.3.1.5).

• VMX-preemption timer value (32 bits). This field is supported only on processors that support the 1-setting 
of the “activate VMX-preemption timer” VM-execution control. This field contains the value that the VMX-
preemption timer will use following the next VM entry with that setting. See Section 27.5.1 and Section 28.7.4.

• Page-directory-pointer-table entries (PDPTEs; 64 bits each). These four (4) fields (PDPTE0, PDPTE1, 
PDPTE2, and PDPTE3) are supported only on processors that support the 1-setting of the “enable EPT” VM-
execution control. They correspond to the PDPTEs referenced by CR3 when PAE paging is in use (see Section 
5.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). They are used only if 
the “enable EPT” VM-execution control is 1.

• Guest interrupt status (16 bits). This field is supported only on processors that support the 1-setting of the 
“virtual-interrupt delivery” VM-execution control. It characterizes part of the guest’s virtual-APIC state and 
does not correspond to any processor or APIC registers. It comprises two 8-bit subfields:

— Requesting virtual interrupt (RVI). This is the low byte of the guest interrupt status. The processor 
treats this value as the vector of the highest priority virtual interrupt that is requesting service. (The value 
0 implies that there is no such interrupt.)

— Servicing virtual interrupt (SVI). This is the high byte of the guest interrupt status. The processor treats 
this value as the vector of the highest priority virtual interrupt that is in service. (The value 0 implies that 
there is no such interrupt.)

See Chapter 31 for more information on the use of this field.
• PML index (16 bits). This field is supported only on processors that support the 1-setting of the “enable PML” 

VM-execution control. It contains the logical index of the next entry in the page-modification log. Because the 
page-modification log comprises 512 entries, the PML index is typically a value in the range 0–511. Details of 
the page-modification log and use of the PML index are given in Section 30.3.6.

26.5 HOST-STATE AREA
This section describes fields contained in the host-state area of the VMCS. As noted earlier, processor state is 
loaded from these fields on every VM exit (see Section 29.5).

All fields in the host-state area correspond to processor registers:

14 BS When set, this bit indicates that a debug exception would have been triggered by single-step 
execution mode.

15 Reserved VM entry fails if this bit is not 0. See Section 28.3.1.5.

16 RTM When set, this bit indicates that a debug exception (#DB) or a breakpoint exception (#BP) 
occurred inside an RTM region while advanced debugging of RTM transactional regions was 
enabled (see Section 17.3.7, “RTM-Enabled Debugger Support,” of Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1).2

63:17 Reserved VM entry fails if these bits are not 0. See Section 28.3.1.5. Bits 63:32 exist only on processors 
that support Intel 64 architecture.

NOTES:
1. In general, the format of this field matches that of DR6. However, DR6 clears bit 11 to indicate detection of a bus lock, while this field 

sets the bit to indicate that condition.
2. In general, the format of this field matches that of DR6. However, DR6 clears bit 16 to indicate an RTM-related exception, while this 

field sets the bit to indicate that condition.

Table 26-4.  Format of Pending-Debug-Exceptions (Contd.)

Bit 
Position(s)

Bit Name Notes
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• CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 64 architecture).
• RSP and RIP (64 bits each; 32 bits on processors that do not support Intel 64 architecture).
• Selector fields (16 bits each) for the segment registers CS, SS, DS, ES, FS, GS, and TR. There is no field in the 

host-state area for the LDTR selector.
• Base-address fields for FS, GS, TR, GDTR, and IDTR (64 bits each; 32 bits on processors that do not support 

Intel 64 architecture).
• The following MSRs:

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors that do not support Intel 64 
architecture).

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on processors that support the 1-setting 
of the “load IA32_PERF_GLOBAL_CTRL” VM-exit control.

— IA32_PAT (64 bits). This field is supported only on processors that support the 1-setting of the “load 
IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on processors that support the 1-setting of the “load 
IA32_EFER” VM-exit control.

— IA32_S_CET (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field is 
supported only on processors that support the 1-setting of the “load CET state” VM-exit control.

— IA32_INTERRUPT_SSP_TABLE_ADDR (64 bits; 32 bits on processors that do not support Intel 64 archi-
tecture). This field is supported only on processors that support the 1-setting of the “load CET state” VM-
exit control.

— IA32_PKRS (64 bits). This field is supported only on processors that support the 1-setting of the “load 
PKRS” VM-exit control.

• The shadow-stack pointer register SSP (64 bits; 32 bits on processors that do not support Intel 64 archi-
tecture). This field is supported only on processors that support the 1-setting of the “load CET state” VM-exit 
control.

In addition to the state identified here, some processor state components are loaded with fixed values on every 
VM exit; there are no fields corresponding to these components in the host-state area. See Section 29.5 for details 
of how state is loaded on VM exits.

26.6 VM-EXECUTION CONTROL FIELDS
The VM-execution control fields govern VMX non-root operation. These are described in Section 26.6.1 through 
Section 26.6.8.

26.6.1 Pin-Based VM-Execution Controls
The pin-based VM-execution controls constitute a 32-bit vector that governs the handling of asynchronous events 
(for example: interrupts).1 Table 26-5 lists the controls. See Chapter 28 for how these controls affect processor 
behavior in VMX non-root operation.

1. Some asynchronous events cause VM exits regardless of the settings of the pin-based VM-execution controls (see Section 27.2).
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All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs 
IA32_VMX_PINBASED_CTLS and IA32_VMX_TRUE_PINBASED_CTLS (see Appendix A.3.1) to determine how to set 
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 28.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 2, and 4. The 
VMX capability MSR IA32_VMX_PINBASED_CTLS will always report that these bits must be 1. Logical processors 
that support the 0-settings of any of these bits will support the VMX capability MSR 
IA32_VMX_TRUE_PINBASED_CTLS MSR, and software should consult this MSR to discover support for the 0-
settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

26.6.2 Processor-Based VM-Execution Controls
The processor-based VM-execution controls constitute three vectors that govern the handling of synchronous 
events, mainly those caused by the execution of specific instructions.1 These are the primary processor-based 
VM-execution controls (32 bits), the secondary processor-based VM-execution controls (32 bits), and the 
tertiary VM-execution controls (64 bits).

Table 26-6 lists the primary processor-based VM-execution controls. See Chapter 26 for more details of how these 
controls affect processor behavior in VMX non-root operation.

Table 26-5.  Definitions of Pin-Based VM-Execution Controls
Bit Position(s) Name Description

0 External-interrupt 
exiting

If this control is 1, external interrupts cause VM exits. Otherwise, they are delivered normally 
through the guest interrupt-descriptor table (IDT). If this control is 1, the value of RFLAGS.IF 
does not affect interrupt blocking.

3 NMI exiting If this control is 1, non-maskable interrupts (NMIs) cause VM exits. Otherwise, they are 
delivered normally using descriptor 2 of the IDT. This control also determines interactions 
between IRET and blocking by NMI (see Section 27.3).

5 Virtual NMIs If this control is 1, NMIs are never blocked and the “blocking by NMI” bit (bit 3) in the 
interruptibility-state field indicates “virtual-NMI blocking” (see Table 26-3). This control also 
interacts with the “NMI-window exiting” VM-execution control (see Section 26.6.2).

6 Activate VMX-
preemption timer

If this control is 1, the VMX-preemption timer counts down in VMX non-root operation; see 
Section 27.5.1. A VM exit occurs when the timer counts down to zero; see Section 27.2.

7 Process posted 
interrupts

If this control is 1, the processor treats interrupts with the posted-interrupt notification vector 
(see Section 26.6.8) specially, updating the virtual-APIC page with posted-interrupt requests 
(see Section 31.6).

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execution controls (see Section 27.1.2), as 
do task switches (see Section 27.2).

Table 26-6.  Definitions of Primary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

2 Interrupt-window 
exiting

If this control is 1, a VM exit occurs at the beginning of any instruction if RFLAGS.IF = 1 and 
there are no other blocking of interrupts (see Section 26.4.2).

3 Use TSC offsetting This control determines whether executions of RDTSC, executions of RDTSCP, and executions 
of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by 
the TSC offset field (see Section 26.6.5 and Section 27.3).

7 HLT exiting This control determines whether executions of HLT cause VM exits.

9 INVLPG exiting This determines whether executions of INVLPG and INVPCID cause VM exits.

10 MWAIT exiting This control determines whether executions of MWAIT cause VM exits.

11 RDPMC exiting This control determines whether executions of RDPMC cause VM exits.
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All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs 
IA32_VMX_PROCBASED_CTLS and IA32_VMX_TRUE_PROCBASED_CTLS (see Appendix A.3.2) to determine how 
to set reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 
28.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 4–6, 8, 13–
16, and 26. The VMX capability MSR IA32_VMX_PROCBASED_CTLS will always report that these bits must be 1. 
Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR 
IA32_VMX_TRUE_PROCBASED_CTLS MSR, and software should consult this MSR to discover support for the 0-
settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

Bit 31 of the primary processor-based VM-execution controls determines whether the secondary processor-based 
VM-execution controls are used. If that bit is 0, VM entry and VMX non-root operation function as if all the 
secondary processor-based VM-execution controls were 0. Processors that support only the 0-setting of bit 31 of 

12 RDTSC exiting This control determines whether executions of RDTSC and RDTSCP cause VM exits.

15 CR3-load exiting In conjunction with the CR3-target controls (see Section 26.6.7), this control determines 
whether executions of MOV to CR3 cause VM exits. See Section 27.1.3.

The first processors to support the virtual-machine extensions supported only the 1-setting 
of this control.

16 CR3-store exiting This control determines whether executions of MOV from CR3 cause VM exits.

The first processors to support the virtual-machine extensions supported only the 1-setting 
of this control.

17 Activate tertiary 
controls

This control determines whether the tertiary processor-based VM-execution controls are 
used. If this control is 0, the logical processor operates as if all the tertiary processor-based 
VM-execution controls were also 0.

19 CR8-load exiting This control determines whether executions of MOV to CR8 cause VM exits.

20 CR8-store exiting This control determines whether executions of MOV from CR8 cause VM exits.

21 Use TPR shadow Setting this control to 1 enables TPR virtualization and other APIC-virtualization features. See 
Chapter 31.

22 NMI-window 
exiting

If this control is 1, a VM exit occurs at the beginning of any instruction if there is no virtual-
NMI blocking (see Section 26.4.2).

23 MOV-DR exiting This control determines whether executions of MOV DR cause VM exits.

24 Unconditional I/O 
exiting

This control determines whether executions of I/O instructions (IN, INS/INSB/INSW/INSD, OUT, 
and OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.

25 Use I/O bitmaps This control determines whether I/O bitmaps are used to restrict executions of I/O instructions 
(see Section 26.6.4 and Section 27.1.3).

For this control, “0” means “do not use I/O bitmaps” and “1” means “use I/O bitmaps.” If the I/O 
bitmaps are used, the setting of the “unconditional I/O exiting” control is ignored.

27 Monitor trap flag If this control is 1, the monitor trap flag debugging feature is enabled. See Section 27.5.2.

28 Use MSR bitmaps This control determines whether MSR bitmaps are used to control execution of the RDMSR 
and WRMSR instructions (see Section 26.6.9 and Section 27.1.3).

For this control, “0” means “do not use MSR bitmaps” and “1” means “use MSR bitmaps.” If the 
MSR bitmaps are not used, all executions of the RDMSR and WRMSR instructions cause 
VM exits.

29 MONITOR exiting This control determines whether executions of MONITOR cause VM exits.

30 PAUSE exiting This control determines whether executions of PAUSE cause VM exits.

31 Activate secondary 
controls

This control determines whether the secondary processor-based VM-execution controls are 
used. If this control is 0, the logical processor operates as if all the secondary processor-based 
VM-execution controls were also 0.

Table 26-6.  Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
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the primary processor-based VM-execution controls do not support the secondary processor-based VM-execution 
controls.

Table 26-7 lists the secondary processor-based VM-execution controls. See Chapter 26 for more details of how 
these controls affect processor behavior in VMX non-root operation.

Table 26-7.  Definitions of Secondary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

0 Virtualize APIC 
accesses

If this control is 1, the logical processor treats specially accesses to the page with the APIC-
access address. See Section 31.4.

1 Enable EPT If this control is 1, extended page tables (EPT) are enabled. See Section 30.3.

2 Descriptor-table 
exiting

This control determines whether executions of LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, and 
STR cause VM exits.

3 Enable RDTSCP If this control is 0, any execution of RDTSCP causes an invalid-opcode exception (#UD).

4 Virtualize x2APIC 
mode

If this control is 1, the logical processor treats specially RDMSR and WRMSR to APIC MSRs (in 
the range 800H–8FFH). See Section 31.5.

5 Enable VPID If this control is 1, cached translations of linear addresses are associated with a virtual-
processor identifier (VPID). See Section 30.1.

6 WBINVD exiting This control determines whether executions of WBINVD and WBNOINVD cause VM exits.

7 Unrestricted guest This control determines whether guest software may run in unpaged protected mode or in real-
address mode.

8 APIC-register 
virtualization

If this control is 1, the logical processor virtualizes certain APIC accesses. See Section 31.4 and 
Section 31.5.

9 Virtual-interrupt 
delivery

This controls enables the evaluation and delivery of pending virtual interrupts as well as the 
emulation of writes to the APIC registers that control interrupt prioritization.

10 PAUSE-loop exiting This control determines whether a series of executions of PAUSE can cause a VM exit (see 
Section 26.6.13 and Section 27.1.3).

11 RDRAND exiting This control determines whether executions of RDRAND cause VM exits.

12 Enable INVPCID If this control is 0, any execution of INVPCID causes a #UD.

13 Enable 
VM functions

Setting this control to 1 enables use of the VMFUNC instruction in VMX non-root operation. See 
Section 27.5.6.

14 VMCS shadowing If this control is 1, executions of VMREAD and VMWRITE in VMX non-root operation may access 
a shadow VMCS (instead of causing VM exits). See Section 26.10 and Section 32.3.

15 Enable ENCLS 
exiting

If this control is 1, executions of ENCLS consult the ENCLS-exiting bitmap to determine whether 
the instruction causes a VM exit. See Section 26.6.16 and Section 27.1.3.

16 RDSEED exiting This control determines whether executions of RDSEED cause VM exits.

17 Enable PML If this control is 1, an access to a guest-physical address that sets an EPT dirty bit first adds an 
entry to the page-modification log. See Section 30.3.6.

18 EPT-violation #VE If this control is 1, EPT violations may cause virtualization exceptions (#VE) instead of VM exits. 
See Section 27.5.7.

19 Conceal VMX from 
PT

If this control is 1, Intel Processor Trace suppresses from PIPs an indication that the processor 
was in VMX non-root operation and omits a VMCS packet from any PSB+ produced in VMX non-
root operation (see Chapter 34).

20 Enable 
XSAVES/XRSTORS

If this control is 0, any execution of XSAVES or XRSTORS causes a #UD.

21 PASID translation If this control is 1, PASID translation is performed for executions of ENQCMD and ENQCMDS. See 
Section 27.5.8.

22 Mode-based 
execute control for 
EPT

If this control is 1, EPT execute permissions are based on whether the linear address being 
accessed is supervisor mode or user mode. See Chapter 30.
26-12 Vol. 3C



VIRTUAL MACHINE CONTROL STRUCTURES
All other bits in this field are reserved to 0. Software should consult the VMX capability MSR 
IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3) to determine which bits may be set to 1. Failure to clear 
reserved bits causes subsequent VM entries to fail (see Section 28.2.1.1).

Bit 17 of the primary processor-based VM-execution controls determines whether the tertiary processor-based 
VM-execution controls are used. If that bit is 0, VM entry and VMX non-root operation function as if all the tertiary 
processor-based VM-execution controls were 0. Processors that support only the 0-setting of bit 17 of the primary 
processor-based VM-execution controls do not support the tertiary processor-based VM-execution controls.

Table 26-8 lists the tertiary processor-based VM-execution controls. See Chapter 26 for more details of how these 
controls affect processor behavior in VMX non-root operation.

All other bits in this field are reserved to 0. Software should consult the VMX capability MSR 
IA32_VMX_PROCBASED_CTLS3 (see Appendix A.3.4) to determine which bits may be set to 1. Failure to clear 
reserved bits causes subsequent VM entries to fail (see Section 28.2.1.1).

23 Sub-page write 
permissions for 
EPT

If this control is 1, EPT write permissions may be specified at the granularity of 128 bytes. See 
Section 30.3.4.

24 Intel PT uses guest 
physical addresses

If this control is 1, all output addresses used by Intel Processor Trace are treated as guest-
physical addresses and translated using EPT. See Section 27.5.4.

25 Use TSC scaling This control determines whether executions of RDTSC, executions of RDTSCP, and executions 
of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by the 
TSC multiplier field (see Section 26.6.5 and Section 27.3).

26 Enable user wait 
and pause

If this control is 0, any execution of TPAUSE, UMONITOR, or UMWAIT causes a #UD.

27 Enable PCONFIG If this control is 0, any execution of PCONFIG causes a #UD.

28 Enable ENCLV 
exiting

If this control is 1, executions of ENCLV consult the ENCLV-exiting bitmap to determine whether 
the instruction causes a VM exit. See Section 26.6.17 and Section 27.1.3.

30 VMM bus-lock 
detection

This control determines whether assertion of a bus lock causes a VM exit. See Section 27.2.

31 Instruction timeout If this control is 1, a VM exit occurs if certain operations prevent the processor from reaching an 
instruction boundary within a specified amount of time. See Section 26.6.25 and Section 27.2.

Table 26-8.  Definitions of Tertiary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

0 LOADIWKEY exiting This control determines whether executions of LOADIWKEY cause VM exits.

1 Enable HLAT This control enables hypervisor-managed linear-address translation. See Section 5.5.1.

2 EPT paging-write 
control

If this control is 1, EPT permissions can be specified to allow writes only for paging-related 
updates. See Section 30.3.3.2.

3 Guest-paging 
verification

If this control is 1, EPT permissions can be specified to prevent accesses using linear addresses 
whose translation has certain properties. See Section 30.3.3.2.

4 IPI virtualization If this control is 1, virtualization of interprocessor interrupts (IPIs) is enabled. See Section 
31.1.6.

6 Enable MSR-list 
instructions 

If this control is 0, any execution of RDMSRLIST or WRMSRLIST causes a #UD.

7 Virtualize 
IA32_SPEC_CTRL

If this control is 1, the operation of the RDMSR and WRMSR instructions is changed when 
accessing the IA32_SPEC_CTRL MSR. See Section 26.3.

Table 26-7.  Definitions of Secondary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
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26.6.3 Exception Bitmap
The exception bitmap is a 32-bit field that contains one bit for each exception. When an exception occurs, its 
vector is used to select a bit in this field. If the bit is 1, the exception causes a VM exit. If the bit is 0, the exception 
is delivered normally through the IDT, using the descriptor corresponding to the exception’s vector.

Whether a page fault (exception with vector 14) causes a VM exit is determined by bit 14 in the exception bitmap 
as well as the error code produced by the page fault and two 32-bit fields in the VMCS (the page-fault error-code 
mask and page-fault error-code match). See Section 27.2 for details.

26.6.4 I/O-Bitmap Addresses
The VM-execution control fields include the 64-bit physical addresses of I/O bitmaps A and B (each of which are 
4 KBytes in size). I/O bitmap A contains one bit for each I/O port in the range 0000H through 7FFFH; I/O bitmap B 
contains bits for ports in the range 8000H through FFFFH.

A logical processor uses these bitmaps if and only if the “use I/O bitmaps” control is 1. If the bitmaps are used, 
execution of an I/O instruction causes a VM exit if any bit in the I/O bitmaps corresponding to a port it accesses is 
1. See Section 27.1.3 for details. If the bitmaps are used, their addresses must be 4-KByte aligned.

26.6.5 Time-Stamp Counter Offset and Multiplier
The VM-execution control fields include a 64-bit TSC-offset field. If the “RDTSC exiting” control is 0 and the “use 
TSC offsetting” control is 1, this field controls executions of the RDTSC and RDTSCP instructions. It also controls 
executions of the RDMSR instruction that read from the IA32_TIME_STAMP_COUNTER MSR. For all of these, the 
value of the TSC offset is added to the value of the time-stamp counter, and the sum is returned to guest software 
in EDX:EAX.

Processors that support the 1-setting of the “use TSC scaling” control also support a 64-bit TSC-multiplier field. 
If this control is 1 (and the “RDTSC exiting” control is 0 and the “use TSC offsetting” control is 1), this field also 
affects the executions of the RDTSC, RDTSCP, and RDMSR instructions identified above. Specifically, the contents 
of the time-stamp counter is first multiplied by the TSC multiplier before adding the TSC offset.

See Chapter 26 for a detailed treatment of the behavior of RDTSC, RDTSCP, and RDMSR in VMX non-root operation.

26.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
VM-execution control fields include guest/host masks and read shadows for the CR0 and CR4 registers. These 
fields control executions of instructions that access those registers (including CLTS, LMSW, MOV CR, and SMSW). 
They are 64 bits on processors that support Intel 64 architecture and 32 bits on processors that do not.

In general, bits set to 1 in a guest/host mask correspond to bits “owned” by the host:
• Guest attempts to set them (using CLTS, LMSW, or MOV to CR) to values differing from the corresponding bits 

in the corresponding read shadow cause VM exits.
• Guest reads (using MOV from CR or SMSW) return values for these bits from the corresponding read shadow.

Bits cleared to 0 correspond to bits “owned” by the guest; guest attempts to modify them succeed and guest reads 
return values for these bits from the control register itself.

See Chapter 28 for details regarding how these fields affect VMX non-root operation.

26.6.7 CR3-Target Controls
The VM-execution control fields include a set of 4 CR3-target values and a CR3-target count. The CR3-target 
values each have 64 bits on processors that support Intel 64 architecture and 32 bits on processors that do not. The 
CR3-target count has 32 bits on all processors.
26-14 Vol. 3C



VIRTUAL MACHINE CONTROL STRUCTURES
An execution of MOV to CR3 in VMX non-root operation does not cause a VM exit if its source operand matches one 
of these values. If the CR3-target count is n, only the first n CR3-target values are considered; if the CR3-target 
count is 0, MOV to CR3 always causes a VM exit.

There are no limitations on the values that can be written for the CR3-target values. VM entry fails (see Section 
28.2) if the CR3-target count is greater than 4.

Future processors may support a different number of CR3-target values. Software should read the VMX capability 
MSR IA32_VMX_MISC (see Appendix A.6) to determine the number of values supported.

26.6.8 Controls for APIC Virtualization
There are three mechanisms by which software accesses registers of the logical processor’s local APIC:
• If the local APIC is in xAPIC mode, it can perform memory-mapped accesses to addresses in the 4-KByte page 

referenced by the physical address in the IA32_APIC_BASE MSR (see Section 12.4.4, “Local APIC Status and 
Location,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, and the Intel® 64 
Architecture Processor Topology Enumeration Technical Paper).1

• If the local APIC is in x2APIC mode, it can accesses the local APIC’s registers using the RDMSR and WRMSR 
instructions (see the Intel® 64 Architecture Processor Topology Enumeration Technical Paper).

• In 64-bit mode, it can access the local APIC’s task-priority register (TPR) using the MOV CR8 instruction.

Several processor-based VM-execution controls (see Section 26.6.2) control such accesses. These are “use TPR 
shadow”, “virtualize APIC accesses”, “virtualize x2APIC mode”, “virtual-interrupt delivery”, “APIC-register virtual-
ization”, and “IPI virtualization”. These controls interact with the following fields:
• APIC-access address (64 bits). This field contains the physical address of the 4-KByte APIC-access page. 

If the “virtualize APIC accesses” VM-execution control is 1, access to this page may cause VM exits or be 
virtualized by the processor. See Section 31.4.
The APIC-access address exists only on processors that support the 1-setting of the “virtualize APIC accesses” 
VM-execution control.

• Virtual-APIC address (64 bits). This field contains the physical address of the 4-KByte virtual-APIC page. 
The processor uses the virtual-APIC page to virtualize certain accesses to APIC registers and to manage virtual 
interrupts; see Chapter 31.
Depending on the setting of the controls indicated earlier, the virtual-APIC page may be accessed by the 
following operations:

— The MOV CR8 instructions (see Section 31.3).

— Accesses to the APIC-access page if, in addition, the “virtualize APIC accesses” VM-execution control is 1 
(see Section 31.4).

— The RDMSR and WRMSR instructions if, in addition, the value of ECX is in the range 800H–8FFH (indicating 
an APIC MSR) and the “virtualize x2APIC mode” VM-execution control is 1 (see Section 31.5).

If the “use TPR shadow” VM-execution control is 1, VM entry ensures that the virtual-APIC address is 4-KByte 
aligned. The virtual-APIC address exists only on processors that support the 1-setting of the “use TPR shadow” 
VM-execution control.

• TPR threshold (32 bits). Bits 3:0 of this field determine the threshold below which bits 7:4 of VTPR (see 
Section 31.1.1) cannot fall. If the “virtual-interrupt delivery” VM-execution control is 0, a VM exit occurs after 
an operation (e.g., an execution of MOV to CR8) that reduces the value of those bits below the TPR threshold. 
See Section 31.1.2.
The TPR threshold exists only on processors that support the 1-setting of the “use TPR shadow” VM-execution 
control.

• EOI-exit bitmap (4 fields; 64 bits each). These fields are supported only on processors that support the 1-
setting of the “virtual-interrupt delivery” VM-execution control. They are used to determine which virtualized 
writes to the APIC’s EOI register cause VM exits:

1. If the local APIC does not support x2APIC mode, it is always in xAPIC mode.
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— EOI_EXIT0 contains bits for vectors from 0 (bit 0) to 63 (bit 63).

— EOI_EXIT1 contains bits for vectors from 64 (bit 0) to 127 (bit 63).

— EOI_EXIT2 contains bits for vectors from 128 (bit 0) to 191 (bit 63).

— EOI_EXIT3 contains bits for vectors from 192 (bit 0) to 255 (bit 63).
See Section 31.1.4 for more information on the use of this field.

• Posted-interrupt notification vector (16 bits). This field is supported only on processors that support the 1-
setting of the “process posted interrupts” VM-execution control. Its low 8 bits contain the interrupt vector that 
is used to notify a logical processor that virtual interrupts have been posted. See Section 31.6 for more 
information on the use of this field.

• Posted-interrupt descriptor address (64 bits). This field is supported only on processors that support the 1-
setting of the “process posted interrupts” VM-execution control. It is the physical address of a 64-byte aligned 
posted interrupt descriptor. See Section 31.6 for more information on the use of this field.

• PID-pointer table address (64 bits). This field contains the physical address of the PID-pointer table. If the 
“IPI virtualization” VM-execution control is 1, the logical processor uses entries in this table to virtualize IPIs. 
See Section 31.1.6.

• Last PID-pointer index (16 bits). This field contains the index of the last entry in the PID-pointer table.

26.6.9 MSR-Bitmap Address
On processors that support the 1-setting of the “use MSR bitmaps” VM-execution control, the VM-execution control 
fields include the 64-bit physical address of four contiguous MSR bitmaps, which are each 1-KByte in size. This 
field does not exist on processors that do not support the 1-setting of that control. The four bitmaps are:
• Read bitmap for low MSRs (located at the MSR-bitmap address). This contains one bit for each MSR address 

in the range 00000000H to 00001FFFH. The bit determines whether an execution of RDMSR applied to that 
MSR causes a VM exit.

• Read bitmap for high MSRs (located at the MSR-bitmap address plus 1024). This contains one bit for each 
MSR address in the range C0000000H toC0001FFFH. The bit determines whether an execution of RDMSR 
applied to that MSR causes a VM exit.

• Write bitmap for low MSRs (located at the MSR-bitmap address plus 2048). This contains one bit for each 
MSR address in the range 00000000H to 00001FFFH. The bit determines whether an execution of WRMSR 
applied to that MSR causes a VM exit.

• Write bitmap for high MSRs (located at the MSR-bitmap address plus 3072). This contains one bit for each 
MSR address in the range C0000000H toC0001FFFH. The bit determines whether an execution of WRMSR 
applied to that MSR causes a VM exit.

A logical processor uses these bitmaps if and only if the “use MSR bitmaps” control is 1. If the bitmaps are used, an 
execution of RDMSR or WRMSR causes a VM exit if the value of RCX is in neither of the ranges covered by the 
bitmaps or if the appropriate bit in the MSR bitmaps (corresponding to the instruction and the RCX value) is 1. See 
Section 27.1.3 for details. If the bitmaps are used, their address must be 4-KByte aligned.

26.6.10 Executive-VMCS Pointer
The executive-VMCS pointer is a 64-bit field used in the dual-monitor treatment of system-management interrupts 
(SMIs) and system-management mode (SMM). SMM VM exits save this field as described in Section 33.15.2. 
VM entries that return from SMM use this field as described in Section 33.15.4.
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26.6.11 Extended-Page-Table Pointer (EPTP)
The extended-page-table pointer (EPTP) contains the address of the base of EPT PML4 table (see Section 
30.3.2), as well as other EPT configuration information. The format of this field is shown in Table 26-9.

The EPTP exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.

26.6.12 Virtual-Processor Identifier (VPID)
The virtual-processor identifier (VPID) is a 16-bit field. It exists only on processors that support the 1-setting 
of the “enable VPID” VM-execution control. See Section 30.1 for details regarding the use of this field.

26.6.13 Controls for PAUSE-Loop Exiting
On processors that support the 1-setting of the “PAUSE-loop exiting” VM-execution control, the VM-execution 
control fields include the following 32-bit fields:
• PLE_Gap. Software can configure this field as an upper bound on the amount of time between two successive 

executions of PAUSE in a loop.
• PLE_Window. Software can configure this field as an upper bound on the amount of time a guest is allowed to 

execute in a PAUSE loop.

These fields measure time based on a counter that runs at the same rate as the timestamp counter (TSC). See 
Section 27.1.3 for more details regarding PAUSE-loop exiting.

Table 26-9.  Format of Extended-Page-Table Pointer

Bit 
Position(s)

Field

2:0 EPT paging-structure memory type (see Section 30.3.7):

0 = Uncacheable (UC)
6 = Write-back (WB)

Other values are reserved.1

NOTES:
1. Software should read the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine what EPT paging-struc-

ture memory types are supported.

5:3 This value is 1 less than the EPT page-walk length (see Section 30.3.2)

6 Setting this control to 1 enables accessed and dirty flags for EPT (see Section 30.3.5)2

2. Not all processors support accessed and dirty flags for EPT. Software should read the VMX capability MSR IA32_VMX_EPT_VPID_-
CAP (see Appendix A.10) to determine whether the processor supports this feature.

7 Setting this control to 1 enables enforcement of access rights for supervisor shadow-stack pages (see Section 
30.3.3.2)3

3. Not all processors enforce access rights for shadow-stack pages. Software should read the VMX capability MSR IA32_VMX-
_EPT_VPID_CAP (see Appendix A.10) to determine whether the processor supports this feature.

11:8 Reserved

N–1:12 Bits N–1:12 of the physical address of the 4-KByte aligned EPT paging-structure (an EPT PML4 table with 4-level 
EPT and an EPT PML5 table with 5-level EPT)4

4. N is the physical-address width supported by the logical processor. Software can determine a processor’s physical-address width by 
executing CPUID with 80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

63:N Reserved
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26.6.14 VM-Function Controls
The VM-function controls constitute a 64-bit vector that governs use of the VMFUNC instruction in VMX non-root 
operation. This field is supported only on processors that support the 1-settings of both the “activate secondary 
controls” primary processor-based VM-execution control and the “enable VM functions” secondary processor-
based VM-execution control.

Table 26-10 lists the VM-function controls. See Section 27.5.6 for more details of how these controls affect 
processor behavior in VMX non-root operation.

All other bits in this field are reserved to 0. Software should consult the VMX capability MSR IA32_VMX_VMFUNC 
(see Appendix A.11) to determine which bits are reserved. Failure to clear reserved bits causes subsequent 
VM entries to fail (see Section 28.2.1.1).

Processors that support the 1-setting of the “EPTP switching” VM-function control also support a 64-bit field called 
the EPTP-list address. This field contains the physical address of the 4-KByte EPTP list. The EPTP list comprises 
512 8-Byte entries (each an EPTP value) and is used by the EPTP-switching VM function (see Section 27.5.6.3).

26.6.15 VMCS Shadowing Bitmap Addresses
On processors that support the 1-setting of the “VMCS shadowing” VM-execution control, the VM-execution control 
fields include the 64-bit physical addresses of the VMREAD bitmap and the VMWRITE bitmap. Each bitmap is 4 
KBytes in size and thus contains 32 KBits. The addresses are the VMREAD-bitmap address and the VMWRITE-
bitmap address.

If the “VMCS shadowing” VM-execution control is 1, executions of VMREAD and VMWRITE may consult these 
bitmaps (see Section 26.10 and Section 32.3).

26.6.16 ENCLS-Exiting Bitmap
The ENCLS-exiting bitmap is a 64-bit field. If the “enable ENCLS exiting” VM-execution control is 1, execution of 
ENCLS causes a VM exit if the bit in this field corresponding to the value of EAX is 1. If the bit is 0, the instruction 
executes normally. See Section 27.1.3 for more information.

26.6.17 ENCLV-Exiting Bitmap
The ENCLV-exiting bitmap is a 64-bit field. If the “enable ENCLV exiting” VM-execution control is 1, execution of 
ENCLV causes a VM exit if the bit in this field corresponding to the value of EAX is 1. If the bit is 0, the instruction 
executes normally. See Section 27.1.3 for more information.

26.6.18 PCONFIG-Exiting Bitmap
The PCONFIG-exiting bitmap is a 64-bit field. If the “enable PCONFIG” VM-execution control is 1, execution of 
PCONFIG causes a VM exit if the bit in this field corresponding to the value of EAX is 1. If the control is 0, any 
execution of PCONFIG causes a #UD. See Section 27.1.3 for more information.

Table 26-10.  Definitions of VM-Function Controls
Bit Position(s) Name Description

0 EPTP switching The EPTP-switching VM function changes the EPT pointer to a value chosen from the EPTP list. 
See Section 27.5.6.3.
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26.6.19 Control Field for Page-Modification Logging
The PML address is a 64-bit field. It is the 4-KByte aligned address of the page-modification log. The page-
modification log consists of 512 64-bit entries. It is used for the page-modification logging feature. Details of the 
page-modification logging are given in Section 30.3.6.

If the “enable PML” VM-execution control is 1, VM entry ensures that the PML address is 4-KByte aligned. The PML 
address exists only on processors that support the 1-setting of the “enable PML” VM-execution control.

26.6.20 Controls for Virtualization Exceptions
On processors that support the 1-setting of the “EPT-violation #VE” VM-execution control, the VM-execution 
control fields include the following:
• Virtualization-exception information address (64 bits). This field contains the physical address of the 

virtualization-exception information area. When a logical processor encounters a virtualization exception, 
it saves virtualization-exception information at the virtualization-exception information address; see Section 
27.5.7.2.

• EPTP index (16 bits). When an EPT violation causes a virtualization exception, the processor writes the value 
of this field to the virtualization-exception information area. The EPTP-switching VM function updates this field 
(see Section 27.5.6.3).

26.6.21 XSS-Exiting Bitmap
On processors that support the 1-setting of the “enable XSAVES/XRSTORS” VM-execution control, the VM-execu-
tion control fields include a 64-bit XSS-exiting bitmap. If the “enable XSAVES/XRSTORS” VM-execution control is 
1, executions of XSAVES and XRSTORS may consult this bitmap (see Section 27.1.3 and Section 27.3).

26.6.22 Sub-Page-Permission-Table Pointer (SPPTP)
If the sub-page write-permission feature of EPT is enabled, EPT write permissions may be determined at a 128-
byte granularity (see Section 30.3.4). These permissions are determined using a hierarchy of sub-page-permission 
structures in memory.

The root of this hierarchy is referenced by a VM-execution control field called the sub-page-permission-table 
pointer (SPPTP). The SPPTP contains the address of the base of the root SPP table (see Section 30.3.4.2). The 
format of this field is shown in Table 26-9.

The SPPTP exists only on processors that support the 1-setting of the “sub-page write permissions for EPT” VM-
execution control.

Table 26-11.  Format of Sub-Page-Permission-Table Pointer

Bit 
Position(s)

Field

11:0 Reserved

N–1:12 Bits N–1:12 of the physical address of the 4-KByte aligned root SPP table

63:N1

NOTES:
1. N is the processor’s physical-address width. Software can determine this width by executing CPUID with 80000008H in EAX. The 

physical-address width is returned in bits 7:0 of EAX.

Reserved
Vol. 3C 26-19



VIRTUAL MACHINE CONTROL STRUCTURES
26.6.23 Fields Related to Hypervisor-Managed Linear-Address Translation
Two fields are used when the “enable HLAT” VM-execution control is 1, enabling HLAT paging:
• The hypervisor-managed linear-address translation pointer (HLAT pointer or HLATP) is used by HLAT 

paging to locate and access the first paging structure used for linear-address translation (see Section 5.5). The 
format of this field is shown in Table 26-12.

• The HLAT prefix size. The value of this field determines which linear address are subject to HLAT paging. See 
Section 5.5.1.

These fields exist only on processors that support the 1-setting of the “enable HLAT” VM-execution control.

26.6.24 Fields Related to PASID Translation
Two 64-bit VM-execution control fields are used when the “PASID translation” VM-execution control is 1, enabling 
translation of PASIDs for executions of ENQCMD and ENQCMDS: the low PASID directory address and the high 
PASID directory address. These are the physical addresses of the low PASID directory and the high PASID direc-
tory, respectively. These fields exist only on processors that support the 1-setting of the “PASID translation” VM-
execution control.

See Section 27.5.8 for information on the PASID-translation process for ENQCMD and ENQCMDS.

26.6.25 Instruction-Timeout Control
On processors that support the 1-setting of the “instruction timeout” VM-execution control, the VM-execution 
control fields include a 32-bit instruction-timeout control. The processor interprets the value of this field as an 
amount of time as measured in units of crystal clock cycles.1 If the “instruction timeout” VM-execution control is 1, 
a VM exit occurs if certain operations prevent the processor from reaching an instruction boundary within this 
amount of time.

Table 26-12.  Format of Hypervisor-Managed Linear-Address Translation Pointer

Bit 
Position(s)

Field

2:0 Reserved

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the first HLAT paging structure 
during linear-address translation.

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the first HLAT paging structure 
during linear-address translation.

11:5 Reserved

N–1:12 Guest-physical address (4KB-aligned) of the first HLAT paging structure during linear-address translation.1

NOTES:
1. N is the physical-address width supported by the logical processor. Software can determine a processor’s physical-address width by 

executing CPUID with 80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

63:N Reserved

1. CPUID.15H:ECX enumerates the nominal frequency of the core crystal clock in Hz.
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26.6.26 Fields Controlling Virtualization of the IA32_SPEC_CTRL MSR
On processors that support the 1-setting of the “virtualize IA32_SPEC_CTRL” VM-execution control, the VM-execu-
tion control fields include the following 64-bit fields:
• IA32_SPEC_CTRL mask. Setting a bit in this field prevents guest software from modifying the corresponding 

bit in the IA32_SPEC_CTRL MSR.
• IA32_SPEC_CTRL shadow. This field contains the value that guest software expects to be in the 

IA32_SPEC_CTRL MSR.

Section 27.3 discusses how these fields are used in VMX non-root operation.

26.7 VM-EXIT CONTROL FIELDS
The VM-exit control fields govern the behavior of VM exits. They are discussed in Section 26.7.1 and Section 
26.7.2.

26.7.1 VM-Exit Controls
The VM-exit controls constitute two vectors that govern the basic operation of VM exits. These are the primary 
VM-exit controls (32 bits) and the secondary VM-exits controls (64 bits).

Table 26-13 lists the primary VM-exit controls. See Chapter 28 for complete details of how these controls affect 
VM exits. 

Table 26-13.  Definitions of Primary VM-Exit Controls

Bit Position(s) Name Description

2 Save debug controls This control determines whether DR7 and the IA32_DEBUGCTL MSR are saved on 
VM exit.

The first processors to support the virtual-machine extensions supported only the 1-
setting of this control.

9 Host address-space size On processors that support Intel 64 architecture, this control determines whether a 
logical processor is in 64-bit mode after the next VM exit. Its value is loaded into CS.L, 
IA32_EFER.LME, and IA32_EFER.LMA on every VM exit.1

This control must be 0 on processors that do not support Intel 64 architecture.

12 Load 
IA32_PERF_GLOBAL_CTRL

This control determines whether the IA32_PERF_GLOBAL_CTRL MSR is loaded on 
VM exit.

15 Acknowledge interrupt on 
exit

This control affects VM exits due to external interrupts:

• If such a VM exit occurs and this control is 1, the logical processor acknowledges the 
interrupt controller, acquiring the interrupt’s vector. The vector is stored in the 
VM-exit interruption-information field, which is marked valid.

• If such a VM exit occurs and this control is 0, the interrupt is not acknowledged and 
the VM-exit interruption-information field is marked invalid.

18 Save IA32_PAT This control determines whether the IA32_PAT MSR is saved on VM exit.

19 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded on VM exit.

20 Save IA32_EFER This control determines whether the IA32_EFER MSR is saved on VM exit.

21 Load IA32_EFER This control determines whether the IA32_EFER MSR is loaded on VM exit.

22 Save VMX-preemption 
timer value

This control determines whether the value of the VMX-preemption timer is saved on 
VM exit.

23 Clear IA32_BNDCFGS This control determines whether the IA32_BNDCFGS MSR is cleared on VM exit.

24 Conceal VMX from PT If this control is 1, Intel Processor Trace does not produce a paging information packet 
(PIP) on a VM exit or a VMCS packet on an SMM VM exit (see Chapter 34).
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All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs 
IA32_VMX_EXIT_CTLS and IA32_VMX_TRUE_EXIT_CTLS (see Appendix A.4) to determine how it should set the 
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 28.2.1.2).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 0–8, 10, 11, 
13, 14, 16, and 17. The VMX capability MSR IA32_VMX_EXIT_CTLS always reports that these bits must be 1. 
Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR 
IA32_VMX_TRUE_EXIT_CTLS MSR, and software should consult this MSR to discover support for the 0-settings of 
these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

Bit 31 of the primary processor-based VM-exit controls determines whether the secondary VM-exit controls are 
used. If that bit is 0, VM entries and VM exits function as if all the secondary VM-exit controls were 0. Processors 
that support only the 0-setting of bit 31 of the primary VM-exit controls do not support the secondary VM-exit 
controls.

Table 26-14 lists the secondary VM-exit controls. See Chapter 28 for more details of how these controls affect 
VM exits.

All other bits in this field are reserved to 0. Software should consult the VMX capability MSR 
IA32_VMX_EXIT_CTLS2 (see Appendix A.4.2) to determine which bits may be set to 1. Failure to clear reserved 
bits causes subsequent VM entries to fail (see Section 28.2.1.2).

26.7.2 VM-Exit Controls for MSRs
A VMM may specify lists of MSRs to be stored and loaded on VM exits. The following VM-exit control fields deter-
mine how MSRs are stored on VM exits:

• VM-exit MSR-store count (32 bits). This field specifies the number of MSRs to be stored on VM exit. It is 
recommended that this count not exceed 512.1 Otherwise, unpredictable processor behavior (including a 
machine check) may result during VM exit.

25 Clear IA32_RTIT_CTL This control determines whether the IA32_RTIT_CTL MSR is cleared on VM exit.

26 Clear IA32_LBR_CTL This control determines whether the IA32_LBR_CTL MSR is cleared on VM exit.

27 Clear UINV This control determines whether UINV is cleared on VM exit.

28 Load CET state This control determines whether CET-related MSRs and SSP are loaded on VM exit.

29 Load PKRS This control determines whether the IA32_PKRS MSR is loaded on VM exit.

30 Save 
IA32_PERF_GLOBAL_CTL

This control determines whether the IA32_PERF_GLOBAL_CTL MSR is saved on VM 
exit.

31 Activate secondary 
controls

This control determines whether the secondary VM-exit controls are used. If this 
control is 0, the logical processor operates as if all the secondary VM-exit controls were 
also 0.

NOTES:
1. Since the Intel 64 architecture specifies that IA32_EFER.LMA is always set to the logical-AND of CR0.PG and IA32_EFER.LME, and 

since CR0.PG is always 1 in VMX root operation, IA32_EFER.LMA is always identical to IA32_EFER.LME in VMX root operation.

Table 26-14.  Definitions of Secondary VM-Exit Controls
Bit Position(s) Name Description

3 Prematurely busy 
shadow stack

If this control is 1, VM exits that cause a shadow stack to become prematurely busy (see 
Section 18.2.3, “Supervisor Shadow Stack Token,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1) indicate this fact and save additional information into 
the VMCS.

Table 26-13.  Definitions of Primary VM-Exit Controls (Contd.)

Bit Position(s) Name Description
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• VM-exit MSR-store address (64 bits). This field contains the physical address of the VM-exit MSR-store area. 
The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-exit MSR-
store count. The format of each entry is given in Table 26-15. If the VM-exit MSR-store count is not zero, the 
address must be 16-byte aligned.

See Section 29.4 for how this area is used on VM exits.

The following VM-exit control fields determine how MSRs are loaded on VM exits:
• VM-exit MSR-load count (32 bits). This field contains the number of MSRs to be loaded on VM exit. It is 

recommended that this count not exceed 512. Otherwise, unpredictable processor behavior (including a 
machine check) may result during VM exit.1

• VM-exit MSR-load address (64 bits). This field contains the physical address of the VM-exit MSR-load area. 
The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-exit MSR-load 
count (see Table 26-15). If the VM-exit MSR-load count is not zero, the address must be 16-byte aligned.

See Section 29.6 for how this area is used on VM exits.

26.8 VM-ENTRY CONTROL FIELDS
The VM-entry control fields govern the behavior of VM entries. They are discussed in Sections 26.8.1 through 
26.8.3.

26.8.1 VM-Entry Controls
The VM-entry controls constitute a 32-bit vector that governs the basic operation of VM entries. Table 26-16 lists 
the controls supported. See Chapter 26 for how these controls affect VM entries.

1. Future implementations may allow more MSRs to be stored reliably. Software should consult the VMX capability MSR IA32_VMX_-
MISC to determine the number supported (see Appendix A.6).

Table 26-15.  Format of an MSR Entry
Bit Position(s) Contents

31:0 MSR index

63:32 Reserved

127:64 MSR data

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the VMX capability MSR IA32_VMX_-
MISC to determine the number supported (see Appendix A.6).

Table 26-16.  Definitions of VM-Entry Controls
Bit Position(s) Name Description

2 Load debug 
controls

This control determines whether DR7 and the IA32_DEBUGCTL MSR are loaded on VM entry.

The first processors to support the virtual-machine extensions supported only the 1-setting of 
this control.

9 IA-32e mode guest On processors that support Intel 64 architecture, this control determines whether the logical 
processor is in IA-32e mode after VM entry. Its value is loaded into IA32_EFER.LMA as part of 
VM entry.1

This control must be 0 on processors that do not support Intel 64 architecture.

10 Entry to SMM This control determines whether the logical processor is in system-management mode (SMM) 
after VM entry. This control must be 0 for any VM entry from outside SMM.

11 Deactivate dual-
monitor treatment

If set to 1, the default treatment of SMIs and SMM is in effect after the VM entry (see Section 
33.15.7). This control must be 0 for any VM entry from outside SMM.
Vol. 3C 26-23



VIRTUAL MACHINE CONTROL STRUCTURES
All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs 
IA32_VMX_ENTRY_CTLS and IA32_VMX_TRUE_ENTRY_CTLS (see Appendix A.5) to determine how it should set 
the reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 28.2.1.3).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 0–8 and 12. 
The VMX capability MSR IA32_VMX_ENTRY_CTLS always reports that these bits must be 1. Logical processors that 
support the 0-settings of any of these bits will support the VMX capability MSR IA32_VMX_TRUE_ENTRY_CTLS 
MSR, and software should consult this MSR to discover support for the 0-settings of these bits. Software that is not 
aware of the functionality of any one of these bits should set that bit to 1.

26.8.2 VM-Entry Controls for MSRs
A VMM may specify a list of MSRs to be loaded on VM entries. The following VM-entry control fields manage this 
functionality:
• VM-entry MSR-load count (32 bits). This field contains the number of MSRs to be loaded on VM entry. It is 

recommended that this count not exceed 512. Otherwise, unpredictable processor behavior (including a 
machine check) may result during VM entry.1

• VM-entry MSR-load address (64 bits). This field contains the physical address of the VM-entry MSR-load 
area. The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-entry 
MSR-load count. The format of entries is described in Table 26-15. If the VM-entry MSR-load count is not zero, 
the address must be 16-byte aligned.

See Section 28.4 for details of how this area is used on VM entries.

26.8.3 VM-Entry Controls for Event Injection

13 Load 
IA32_PERF_GLOBA
L_CTRL

This control determines whether the IA32_PERF_GLOBAL_CTRL MSR is loaded on VM entry.

14 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded on VM entry.

15 Load IA32_EFER This control determines whether the IA32_EFER MSR is loaded on VM entry.

16 Load 
IA32_BNDCFGS

This control determines whether the IA32_BNDCFGS MSR is loaded on VM entry.

17 Conceal VMX from 
PT

If this control is 1, Intel Processor Trace does not produce a paging information packet (PIP) on 
a VM entry or a VMCS packet on a VM entry that returns from SMM (see Chapter 34).

18 Load 
IA32_RTIT_CTL

This control determines whether the IA32_RTIT_CTL MSR is loaded on VM entry.

19 Load UINV This control determines whether UINV is loaded on VM entry.

20 Load CET state This control determines whether CET-related MSRs and SSP are loaded on VM entry.

21 Load guest 
IA32_LBR_CTL

This control determines whether the IA32_LBR_CTL MSR is loaded on VM entry.

22 Load PKRS This control determines whether the IA32_PKRS MSR is loaded on VM entry.

NOTES:
1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting of the “unrestricted guest” VM-

execution control. If it is read as 1, every VM exit stores the value of IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control 
(see Section 29.2).

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the VMX capability MSR IA32_VMX_-
MISC to determine the number supported (see Appendix A.6).

Table 26-16.  Definitions of VM-Entry Controls (Contd.)
Bit Position(s) Name Description
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VM entry can be configured to conclude by delivering an event through the IDT (after all guest state and MSRs have 
been loaded). This process is called event injection and is controlled by the following three VM-entry control 
fields:
• VM-entry interruption-information field (32 bits). This field provides details about the event to be injected. 

Table 26-17 describes the field.

— The vector (bits 7:0) determines which entry in the IDT is used or which other event is injected.

— The interruption type (bits 10:8) determines details of how the injection is performed. In general, a VMM 
should use the type hardware exception for all exceptions other than the following:

• breakpoint exceptions (#BP; a VMM should use the type software exception);

• overflow exceptions (#OF a VMM should use the use type software exception); and

• those debug exceptions (#DB) that are generated by INT1 (a VMM should use the use type privileged 
software exception).1

The type other event is used for injection of events that are not delivered through the IDT.2

— For exceptions, the deliver-error-code bit (bit 11) determines whether delivery pushes an error code on 
the guest stack.

— VM entry injects an event if and only if the valid bit (bit 31) is 1. The valid bit in this field is cleared on 
every VM exit (see Section 29.2).

• VM-entry exception error code (32 bits). This field is used if and only if the valid bit (bit 31) and the deliver-
error-code bit (bit 11) are both set in the VM-entry interruption-information field.

• VM-entry instruction length (32 bits). For injection of events whose type is software interrupt, software 
exception, or privileged software exception, this field is used to determine the value of RIP that is pushed on 
the stack.

See Section 28.6 for details regarding the mechanics of event injection, including the use of the interruption type 
and the VM-entry instruction length.

VM exits clear the valid bit (bit 31) in the VM-entry interruption-information field.

26.9 VM-EXIT INFORMATION FIELDS
The VMCS contains a section of fields that contain information about the most recent VM exit.

Table 26-17.  Format of the VM-Entry Interruption-Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Reserved
2: Non-maskable interrupt (NMI)
3: Hardware exception (e.g,. #PF)
4: Software interrupt (INT n)
5: Privileged software exception (INT1)
6: Software exception (INT3 or INTO)
7: Other event

11 Deliver error code (0 = do not deliver; 1 = deliver)

30:12 Reserved

31 Valid

1. The type hardware exception should be used for all other debug exceptions.

2. INT1 and INT3 refer to the instructions with opcodes F1 and CC, respectively, and not to INT n with values 1 or 3 for n.
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On some processors, attempts to write to these fields with VMWRITE fail (see “VMWRITE—Write Field to Virtual-
Machine Control Structure” in Chapter 31).1

26.9.1 Basic VM-Exit Information
The following VM-exit information fields provide basic information about a VM exit:
• Exit reason (32 bits). This field encodes the reason for the VM exit and has the structure given in Table 26-18.

— Bits 15:0 provide basic information about the cause of the VM exit (if bit 31 is clear) or of the VM-entry 
failure (if bit 31 is set). Appendix C enumerates the basic exit reasons.

— Bit 16 is always cleared to 0.

— Bit 25 is set to 1 if the “prematurely busy shadow stack” VM-exit control is 1 and the VM exit caused a 
shadow stack to become prematurely busy (see Section 27.4.3). Otherwise, the bit is cleared.

— Bit 26 is set to 1 if the VM exit occurred after assertion of a bus lock while the “VMM bus-lock detection” VM-
execution control was 1. Such VM exits include those that occur due to the 1-setting of that control as well 
as others that might occur during execution of an instruction that asserted a bus lock.

— Bit 27 is set to 1 if the VM exit occurred while the logical processor was in enclave mode.

A VM exit also sets this bit if it is incident to delivery of an event injected by VM entry and the guest inter-
ruptibility-state field indicates an enclave interrupt (bit 4 of the field is 1). See Section 29.2.1 for details.

— Bit 28 is set only by an SMM VM exit (see Section 33.15.2) that took priority over an MTF VM exit (see 
Section 27.5.2) that would have occurred had the SMM VM exit not occurred. See Section 33.15.2.3.

— Bit 29 is set if and only if the processor was in VMX root operation at the time the VM exit occurred. This can 
happen only for SMM VM exits. See Section 33.15.2.

— Because some VM-entry failures load processor state from the host-state area (see Section 28.8), software 
must be able to distinguish such cases from true VM exits. Bit 31 is used for that purpose.

• Exit qualification (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field contains 
additional information about the cause of VM exits due to the following: debug exceptions; page-fault 
exceptions; start-up IPIs (SIPIs); task switches; INVEPT; INVLPG;INVVPID; LGDT; LIDT; LLDT; LTR; SGDT; 
SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; XRSTORS; XSAVES; control-

1.  Software can discover whether these fields can be written by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).

Table 26-18.  Format of Exit Reason

Bit Position(s) Contents

15:0 Basic exit reason.

16 Always cleared to 0.

24:17 Not currently defined.

25 A VM exit saves this bit as 1 to indicate that the VM exit caused a shadow stack to become prematurely busy.

26 A VM exit saves this bit as 1 to indicate that the VM exit occurred after assertion of a bus lock while the “VMM 
bus-lock detection” VM-execution control was 1.

27 A VM exit saves this bit as 1 to indicate that the VM exit was incident to enclave mode.

28 Pending MTF VM exit.

29 VM exit from VMX root operation.

30 Not currently defined.

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)
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register accesses; MOV DR; I/O instructions; and MWAIT. The format of the field depends on the cause of the 
VM exit. See Section 29.2.1 for details.

• Guest-linear address (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field is 
used in the following cases:

— VM exits due to attempts to execute LMSW with a memory operand.

— VM exits due to attempts to execute INS or OUTS.

— VM exits due to system-management interrupts (SMIs) that arrive immediately after retirement of I/O 
instructions.

— Certain VM exits due to EPT violations
See Section 29.2.1 and Section 33.15.2.3 for details of when and how this field is used.

• Guest-physical address (64 bits). This field is used by VM exits due to EPT violations and EPT misconfigura-
tions. See Section 29.2.1 for details of when and how this field is used.

26.9.2 Information for VM Exits Due to Vectored Events
Event-specific information is provided for VM exits due to the following vectored events: exceptions (including 
those generated by the instructions INT3, INTO, INT1, BOUND, UD0, UD1, and UD2); external interrupts that occur 
while the “acknowledge interrupt on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). This informa-
tion is provided in the following fields:
• VM-exit interruption information (32 bits). This field receives basic information associated with the event 

causing the VM exit. Table 26-19 describes this field.

• VM-exit interruption error code (32 bits). For VM exits caused by hardware exceptions that would have 
delivered an error code on the stack, this field receives that error code.

Section 29.2.2 provides details of how these fields are saved on VM exits.

26.9.3 Information for VM Exits That Occur During Event Delivery
Additional information is provided for VM exits that occur during event delivery in VMX non-root operation.1 This 
information is provided in the following fields:

Table 26-19.  Format of the VM-Exit Interruption-Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Not used
5: Privileged software exception
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 NMI unblocking due to IRET

30:13 Not currently defined

31 Valid

1. This includes cases in which the event delivery was caused by event injection as part of VM entry; see Section 28.6.1.2.
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• IDT-vectoring information (32 bits). This field receives basic information associated with the event that was 
being delivered when the VM exit occurred. Table 26-20 describes this field.

• IDT-vectoring error code (32 bits). For VM exits the occur during delivery of hardware exceptions that would 
have delivered an error code on the stack, this field receives that error code.

See Section 29.2.4 provides details of how these fields are saved on VM exits.

26.9.4 Information for VM Exits Due to Instruction Execution
The following fields are used for VM exits caused by attempts to execute certain instructions in VMX non-root oper-
ation:
• VM-exit instruction length (32 bits). For VM exits resulting from instruction execution, this field receives the 

length in bytes of the instruction whose execution led to the VM exit.1 See Section 29.2.5 for details of when 
and how this field is used.

• VM-exit instruction information (32 bits). This field is used for VM exits due to attempts to execute INS, 
INVEPT, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS, SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST, 
VMREAD, VMWRITE, or VMXON.2 The format of the field depends on the cause of the VM exit. See Section 
29.2.5 for details.

The following fields (64 bits each; 32 bits on processors that do not support Intel 64 architecture) are used only for 
VM exits due to SMIs that arrive immediately after retirement of I/O instructions. They provide information about 
that I/O instruction:
• I/O RCX. The value of RCX before the I/O instruction started.
• I/O RSI. The value of RSI before the I/O instruction started.
• I/O RDI. The value of RDI before the I/O instruction started.
• I/O RIP. The value of RIP before the I/O instruction started (the RIP that addressed the I/O instruction).

Table 26-20.  Format of the IDT-Vectoring Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

30:12 Not currently defined

31 Valid

1. This field is also used for VM exits that occur during the delivery of a software interrupt or software exception.

2. Whether the processor provides this information on VM exits due to attempts to execute INS or OUTS can be determined by consult-
ing the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).
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26.9.5 VM-Instruction Error Field
The 32-bit VM-instruction error field does not provide information about the most recent VM exit. In fact, it is 
not modified on VM exits. Instead, it provides information about errors encountered by a non-faulting execution of 
one of the VMX instructions.

26.10 VMCS TYPES: ORDINARY AND SHADOW
Every VMCS is either an ordinary VMCS or a shadow VMCS. A VMCS’s type is determined by the shadow-VMCS 
indicator in the VMCS region (this is the value of bit 31 of the first 4 bytes of the VMCS region; see Table 26-1): 0 
indicates an ordinary VMCS, while 1 indicates a shadow VMCS. Shadow VMCSs are supported only on processors 
that support the 1-setting of the “VMCS shadowing” VM-execution control (see Section 26.6.2).

A shadow VMCS differs from an ordinary VMCS in two ways:
• An ordinary VMCS can be used for VM entry but a shadow VMCS cannot. Attempts to perform VM entry when 

the current VMCS is a shadow VMCS fail (see Section 28.1).
• The VMREAD and VMWRITE instructions can be used in VMX non-root operation to access a shadow VMCS but 

not an ordinary VMCS. This fact results from the following:

— If the “VMCS shadowing” VM-execution control is 0, execution of the VMREAD and VMWRITE instructions in 
VMX non-root operation always cause VM exits (see Section 27.1.3).

— If the “VMCS shadowing” VM-execution control is 1, execution of the VMREAD and VMWRITE instructions in 
VMX non-root operation can access the VMCS referenced by the VMCS link pointer (see Section 32.3).

— If the “VMCS shadowing” VM-execution control is 1, VM entry ensures that any VMCS referenced by the 
VMCS link pointer is a shadow VMCS (see Section 28.3.1.5).

In VMX root operation, both types of VMCSs can be accessed with the VMREAD and VMWRITE instructions.

Software should not modify the shadow-VMCS indicator in the VMCS region of a VMCS that is active. Doing so may 
cause the VMCS to become corrupted (see Section 26.11.1). Before modifying the shadow-VMCS indicator, soft-
ware should execute VMCLEAR for the VMCS to ensure that it is not active.

26.11 SOFTWARE USE OF THE VMCS AND RELATED STRUCTURES
This section details guidelines that software should observe when using a VMCS and related structures. It also 
provides descriptions of consequences for failing to follow guidelines.

26.11.1 Software Use of Virtual-Machine Control Structures
To ensure proper processor behavior, software should observe certain guidelines when using an active VMCS.

No VMCS should ever be active on more than one logical processor. If a VMCS is to be “migrated” from one logical 
processor to another, the first logical processor should execute VMCLEAR for the VMCS (to make it inactive on that 
logical processor and to ensure that all VMCS data are in memory) before the other logical processor executes 
VMPTRLD for the VMCS (to make it active on the second logical processor).1 A VMCS that is made active on more 
than one logical processor may become corrupted (see below).

Software should not modify the shadow-VMCS indicator (see Table 26-1) in the VMCS region of a VMCS that is 
active. Doing so may cause the VMCS to become corrupted. Before modifying the shadow-VMCS indicator, software 
should execute VMCLEAR for the VMCS to ensure that it is not active.

Software should use the VMREAD and VMWRITE instructions to access the different fields in the current VMCS (see 
Section 26.11.2). Software should never access or modify the VMCS data of an active VMCS using ordinary 

1. As noted in Section 26.1, execution of the VMPTRLD instruction makes a VMCS is active. In addition, VM entry makes active any 
shadow VMCS referenced by the VMCS link pointer in the current VMCS. If a shadow VMCS is made active by VM entry, it is neces-
sary to execute VMCLEAR for that VMCS before allowing that VMCS to become active on another logical processor.
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memory operations, in part because the format used to store the VMCS data is implementation-specific and not 
architecturally defined, and also because a logical processor may maintain some VMCS data of an active VMCS on 
the processor and not in the VMCS region. The following items detail some of the hazards of accessing VMCS data 
using ordinary memory operations:
• Any data read from a VMCS with an ordinary memory read does not reliably reflect the state of the VMCS. 

Results may vary from time to time or from logical processor to logical processor.
• Writing to a VMCS with an ordinary memory write is not guaranteed to have a deterministic effect on the VMCS. 

Doing so may cause the VMCS to become corrupted (see below).

(Software can avoid these hazards by removing any linear-address mappings to a VMCS region before executing a 
VMPTRLD for that region and by not remapping it until after executing VMCLEAR for that region.)

If a logical processor leaves VMX operation, any VMCSs active on that logical processor may be corrupted (see 
below). To prevent such corruption of a VMCS that may be used either after a return to VMX operation or on 
another logical processor, software should execute VMCLEAR for that VMCS before executing the VMXOFF instruc-
tion or removing power from the processor (e.g., as part of a transition to the S3 and S4 power states).

This section has identified operations that may cause a VMCS to become corrupted. These operations may cause 
the VMCS’s data to become undefined. Behavior may be unpredictable if that VMCS used subsequently on any 
logical processor. The following items detail some hazards of VMCS corruption:
• VM entries may fail for unexplained reasons or may load undesired processor state.
• The processor may not correctly support VMX non-root operation as documented in Chapter 26 and may 

generate unexpected VM exits.
• VM exits may load undesired processor state, save incorrect state into the VMCS, or cause the logical processor 

to transition to a shutdown state.

26.11.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
Every field of the VMCS is associated with a 32-bit value that is its encoding. The encoding is provided in an 
operand to VMREAD and VMWRITE when software wishes to read or write that field. These instructions fail if given, 
in 64-bit mode, an operand that sets an encoding bit beyond bit 32. See Chapter 31 for a description of these 
instructions.

The structure of the 32-bit encodings of the VMCS components is determined principally by the width of the fields 
and their function in the VMCS. See Table 26-21.

Table 26-21.  Structure of VMCS Component Encoding

Bit Position(s) Contents

0 Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural-width fields

9:1 Index

11:10 Type:

0: control
1: VM-exit information
2: guest state
3: host state

12 Reserved (must be 0)

14:13 Width:

0: 16-bit
1: 64-bit
2: 32-bit
3: natural-width

31:15 Reserved (must be 0)
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The following items detail the meaning of the bits in each encoding:
• Field width. Bits 14:13 encode the width of the field.

— A value of 0 indicates a 16-bit field.

— A value of 1 indicates a 64-bit field.

— A value of 2 indicates a 32-bit field.

— A value of 3 indicates a natural-width field. Such fields have 64 bits on processors that support Intel 64 
architecture and 32 bits on processors that do not.

Fields whose encodings use value 1 are specially treated to allow 32-bit software access to all 64 bits of the 
field. Such access is allowed by defining, for each such field, an encoding that allows direct access to the high 
32 bits of the field. See below.

• Field type. Bits 11:10 encode the type of VMCS field: control, guest-state, host-state, or VM-exit information. 
(The last category also includes the VM-instruction error field.)

• Index. Bits 9:1 distinguish components with the same field width and type.
• Access type. Bit 0 must be 0 for all fields except for 64-bit fields (those with field-width 1; see above). A 

VMREAD or VMWRITE using an encoding with this bit cleared to 0 accesses the entire field. For a 64-bit field 
with field-width 1, a VMREAD or VMWRITE using an encoding with this bit set to 1 accesses only the high 32 bits 
of the field.

Appendix B gives the encodings of all fields in the VMCS.

The following describes the operation of VMREAD and VMWRITE based on processor mode, VMCS-field width, and 
access type:
• 16-bit fields:

— A VMREAD returns the value of the field in bits 15:0 of the destination operand; other bits of the destination 
operand are cleared to 0.

— A VMWRITE writes the value of bits 15:0 of the source operand into the VMCS field; other bits of the source 
operand are not used.

• 32-bit fields:

— A VMREAD returns the value of the field in bits 31:0 of the destination operand; in 64-bit mode, bits 63:32 
of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand into the VMCS field; in 64-bit mode, 
bits 63:32 of the source operand are not used.

• 64-bit fields and natural-width fields using the full access type outside IA-32e mode.

— A VMREAD returns the value of bits 31:0 of the field in its destination operand; bits 63:32 of the field are 
ignored.

— A VMWRITE writes the value of its source operand to bits 31:0 of the field and clears bits 63:32 of the field.
• 64-bit fields and natural-width fields using the full access type in 64-bit mode (only on processors that support 

Intel 64 architecture).

— A VMREAD returns the value of the field in bits 63:0 of the destination operand

— A VMWRITE writes the value of bits 63:0 of the source operand into the VMCS field.
• 64-bit fields using the high access type.

— A VMREAD returns the value of bits 63:32 of the field in bits 31:0 of the destination operand; in 64-bit 
mode, bits 63:32 of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand to bits 63:32 of the field; in 64-bit mode, 
bits 63:32 of the source operand are not used.

Software seeking to read a 64-bit field outside IA-32e mode can use VMREAD with the full access type (reading 
bits 31:0 of the field) and VMREAD with the high access type (reading bits 63:32 of the field); the order of the two 
VMREAD executions is not important. Software seeking to modify a 64-bit field outside IA-32e mode should first 
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use VMWRITE with the full access type (establishing bits 31:0 of the field while clearing bits 63:32) and then use 
VMWRITE with the high access type (establishing bits 63:32 of the field).

26.11.3 Initializing a VMCS
Software should initialize fields in a VMCS (using VMWRITE) before using the VMCS for VM entry. Failure to do so 
may result in unpredictable behavior; for example, a VM entry may fail for unexplained reasons, or a successful 
transition (VM entry or VM exit) may load processor state with unexpected values.

It is not necessary to initialize fields that the logical processor will not use. (For example, it is not necessary to 
initialize the MSR-bitmap address if the “use MSR bitmaps” VM-execution control is 0.)

A processor maintains some VMCS information that cannot be modified with the VMWRITE instruction; this includes 
a VMCS’s launch state (see Section 26.1). Such information may be stored in the VMCS data portion of a VMCS 
region. Because the format of this information is implementation-specific, there is no way for software to know, 
when it first allocates a region of memory for use as a VMCS region, how the processor will determine this informa-
tion from the contents of the memory region.

In addition to its other functions, the VMCLEAR instruction initializes any implementation-specific information in the 
VMCS region referenced by its operand. To avoid the uncertainties of implementation-specific behavior, software 
should execute VMCLEAR on a VMCS region before making the corresponding VMCS active with VMPTRLD for the 
first time. (Figure 26-1 illustrates how execution of VMCLEAR puts a VMCS into a well-defined state.)

The following software usage is consistent with these limitations:
• VMCLEAR should be executed for a VMCS before it is used for VM entry for the first time.
• VMLAUNCH should be used for the first VM entry using a VMCS after VMCLEAR has been executed for that 

VMCS.
• VMRESUME should be used for any subsequent VM entry using a VMCS (until the next execution of VMCLEAR 

for the VMCS).

It is expected that, in general, VMRESUME will have lower latency than VMLAUNCH. Since “migrating” a VMCS from 
one logical processor to another requires use of VMCLEAR (see Section 26.11.1), which sets the launch state of the 
VMCS to “clear”, such migration requires the next VM entry to be performed using VMLAUNCH. Software devel-
opers can avoid the performance cost of increased VM-entry latency by avoiding unnecessary migration of a VMCS 
from one logical processor to another.

26.11.4 Software Access to Related Structures
In addition to data in the VMCS region itself, VMX non-root operation can be controlled by data structures that are 
referenced by pointers in a VMCS (for example, the I/O bitmaps). While the pointers to these data structures are 
parts of the VMCS, the data structures themselves are not. They are not accessible using VMREAD and VMWRITE 
but by ordinary memory writes.

Software should ensure that each such data structure is modified only when no logical processor with a current 
VMCS that references it is in VMX non-root operation. Doing otherwise may lead to unpredictable behavior 
(including behaviors identified in Section 26.11.1). Exceptions are made for the following data structures (subject 
to detailed discussion in the sections indicated): EPT paging structures and the data structures used to locate SPP 
vectors (Section 30.4.3); the virtual-APIC page (Section 31.1); the posted interrupt descriptor (Section 31.6); and 
the virtualization-exception information area (Section 27.5.7.2).

26.11.5 VMXON Region
Before executing VMXON, software allocates a region of memory (called the VMXON region)1 that the logical 
processor uses to support VMX operation. The physical address of this region (the VMXON pointer) is provided in an 
operand to VMXON. The VMXON pointer is subject to the limitations that apply to VMCS pointers:

1. The amount of memory required for the VMXON region is the same as that required for a VMCS region. This size is implementation 
specific and can be determined by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).
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• The VMXON pointer must be 4-KByte aligned (bits 11:0 must be zero).
• The VMXON pointer must not set any bits beyond the processor’s physical-address width.1,2

Before executing VMXON, software should write the VMCS revision identifier (see Section 26.2) to the VMXON 
region. (Specifically, it should write the 31-bit VMCS revision identifier to bits 30:0 of the first 4 bytes of the 
VMXON region; bit 31 should be cleared to 0.) It need not initialize the VMXON region in any other way. Software 
should use a separate region for each logical processor and should not access or modify the VMXON region of a 
logical processor between execution of VMXON and VMXOFF on that logical processor. Doing otherwise may lead to 
unpredictable behavior (including behaviors identified in Section 26.11.1).

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, the VMXON pointer must not set any bits in the range 63:32; see Appendix A.1.
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CHAPTER 27
VMX NON-ROOT OPERATION

In a virtualized environment using VMX, the guest software stack typically runs on a logical processor in VMX non-
root operation. This mode of operation is similar to that of ordinary processor operation outside of the virtualized 
environment. This chapter describes the differences between VMX non-root operation and ordinary processor oper-
ation with special attention to causes of VM exits (which bring a logical processor from VMX non-root operation to 
root operation). The differences between VMX non-root operation and ordinary processor operation are described 
in the following sections:
• Section 27.1, “Instructions That Cause VM Exits.”
• Section 27.2, “Other Causes of VM Exits.”
• Section 27.3, “Changes to Instruction Behavior in VMX Non-Root Operation.”
• Section 27.4, “Other Changes in VMX Non-Root Operation.” 
• Section 27.5, “Features Specific to VMX Non-Root Operation.”
• Section 27.6, “Unrestricted Guests.”

Chapter 27, “VMX Non-Root Operation,” describes the data control structures that govern VMX non-root operation. 
Chapter 27, “VMX Non-Root Operation,” describes the operation of VM entries by which the processor transitions 
from VMX root operation to VMX non-root operation. Chapter 27, “VMX Non-Root Operation,” describes the opera-
tion of VM exits by which the processor transitions from VMX non-root operation to VMX root operation.

Chapter 30, “VMX Support for Address Translation,” describes two features that support address translation in VMX 
non-root operation. Chapter 31, “APIC Virtualization and Virtual Interrupts,” describes features that support virtu-
alization of interrupts and the Advanced Programmable Interrupt Controller (APIC) in VMX non-root operation.

27.1 INSTRUCTIONS THAT CAUSE VM EXITS
Certain instructions may cause VM exits if executed in VMX non-root operation. Unless otherwise specified, such 
VM exits are “fault-like,” meaning that the instruction causing the VM exit does not execute and no processor state 
is updated by the instruction. Section 29.1 details architectural state in the context of a VM exit.

Section 27.1.1 defines the prioritization between faults and VM exits for instructions subject to both. Section 
27.1.2 identifies instructions that cause VM exits whenever they are executed in VMX non-root operation (and thus 
can never be executed in VMX non-root operation). Section 27.1.3 identifies instructions that cause VM exits 
depending on the settings of certain VM-execution control fields (see Section 26.6).

27.1.1 Relative Priority of Faults and VM Exits
The following principles describe the ordering between existing faults and VM exits:
• Certain exceptions have priority over VM exits. These include invalid-opcode exceptions, faults based on 

privilege level,1 and general-protection exceptions that are based on checking I/O permission bits in the task-
state segment (TSS). For example, execution of RDMSR with CPL = 3 generates a general-protection exception 
and not a VM exit.2

• Faults incurred while fetching instruction operands have priority over VM exits that are conditioned based on 
the contents of those operands (see LMSW in Section 27.1.3).

• VM exits caused by execution of the INS and OUTS instructions (resulting either because the “unconditional I/O 
exiting” VM-execution control is 1 or because the “use I/O bitmaps control is 1) have priority over the following 
faults: 

1. These include faults generated by attempts to execute, in virtual-8086 mode, privileged instructions that are not recognized in that 
mode.

2. MOV DR is an exception to this rule; see Section 27.1.3.
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— A general-protection fault due to the relevant segment (ES for INS; DS for OUTS unless overridden by an 
instruction prefix) being unusable

— A general-protection fault due to an offset beyond the limit of the relevant segment

— An alignment-check exception
• Fault-like VM exits have priority over exceptions other than those mentioned above. For example, RDMSR of a 

non-existent MSR with CPL = 0 generates a VM exit and not a general-protection exception.

When Section 27.1.2 or Section 27.1.3 (below) identify an instruction execution that may lead to a VM exit, it is 
assumed that the instruction does not incur a fault that takes priority over a VM exit.

27.1.2 Instructions That Cause VM Exits Unconditionally
The following instructions cause VM exits when they are executed in VMX non-root operation: CPUID, GETSEC,1 
INVD, and XSETBV. This is also true of instructions introduced with VMX: INVEPT, INVVPID, VMCALL,2 VMCLEAR, 
VMLAUNCH, VMPTRLD, VMPTRST, VMRESUME, VMXOFF, and VMXON.

27.1.3 Instructions That Cause VM Exits Conditionally
Certain instructions cause VM exits in VMX non-root operation depending on the setting of the VM-execution 
controls. The following instructions can cause “fault-like” VM exits based on the conditions described:3

• CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corresponding to CR0.TS) are set in both 
the CR0 guest/host mask and the CR0 read shadow.

• ENCLS. The ENCLS instruction causes a VM exit if the “enable ENCLS exiting” VM-execution control is 1 and 
one of the following is true:

— The value of EAX is less than 63 and the corresponding bit in the ENCLS-exiting bitmap is 1 (see Section 
26.6.16).

— The value of EAX is greater than or equal to 63 and bit 63 in the ENCLS-exiting bitmap is 1.
• ENCLV. The ENCLV instruction causes a VM exit if the “enable ENCLV exiting” VM-execution control is 1 and 

one of the following is true:

— The value of EAX is less than 63 and the corresponding bit in the ENCLV-exiting bitmap is 1 (see Section 
26.6.17).

— The value of EAX is greater than or equal to 63 and bit 63 in the ENCLV-exiting bitmap is 1.
• ENQCMD, ENQCMDS. The behavior of each of these instructions is determined by the setting of the “PASID 

translation” VM-execution control. If that control is 0, the instruction executes normally. If the control is 1, 
instruction behavior is modified and may cause a VM exit. See Section 27.5.8.

• HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution control is 1.
• IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD. The behavior of each of these instruc-

tions is determined by the settings of the “unconditional I/O exiting” and “use I/O bitmaps” VM-execution 
controls:

— If both controls are 0, the instruction executes normally.

1. An execution of GETSEC in VMX non-root operation causes a VM exit if CR4.SMXE[Bit 14] = 1 regardless of the value of CPL or RAX. 
An execution of GETSEC causes an invalid-opcode exception (#UD) if CR4.SMXE[Bit 14] = 0.

2. Under the dual-monitor treatment of SMIs and SMM, executions of VMCALL cause SMM VM exits in VMX root operation outside SMM. 
See Section 33.15.2.

3. Items in this section may refer to secondary processor-based VM-execution controls and tertiary processor-based VM-execution 
controls. If bit 31 of the primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the secondary 
processor-based VM-execution controls were all 0; similarly, if bit 17 of the primary processor-based VM-execution controls is 0, 
VMX non-root operation functions as if the tertiary processor-based VM-execution controls were all 0. See Section 26.6.2.
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— If the “unconditional I/O exiting” VM-execution control is 1 and the “use I/O bitmaps” VM-execution control 
is 0, the instruction causes a VM exit.

— If the “use I/O bitmaps” VM-execution control is 1, the instruction causes a VM exit if it attempts to access 
an I/O port corresponding to a bit set to 1 in the appropriate I/O bitmap (see Section 26.6.4). If an I/O 
operation “wraps around” the 16-bit I/O-port space (accesses ports FFFFH and 0000H), the I/O instruction 
causes a VM exit (the “unconditional I/O exiting” VM-execution control is ignored if the “use I/O bitmaps” 
VM-execution control is 1).

See Section 27.1.1 for information regarding the priority of VM exits relative to faults that may be caused by 
the INS and OUTS instructions.

• INVLPG. The INVLPG instruction causes a VM exit if the “INVLPG exiting” VM-execution control is 1.
• INVPCID. The INVPCID instruction causes a VM exit if the “INVLPG exiting” and “enable INVPCID” 

VM-execution controls are both 1.
• LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR. These instructions cause VM exits if the “descriptor-table 

exiting” VM-execution control is 1.
• LMSW. In general, the LMSW instruction causes a VM exit if it would write, for any bit set in the low 4 bits of 

the CR0 guest/host mask, a value different than the corresponding bit in the CR0 read shadow. LMSW never 
clears bit 0 of CR0 (CR0.PE); thus, LMSW causes a VM exit if either of the following are true:

— The bits in position 0 (corresponding to CR0.PE) are set in both the CR0 guest/host mask and the source 
operand, and the bit in position 0 is clear in the CR0 read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CR0 guest/host mask and the 
values of the corresponding bits in the source operand and the CR0 read shadow differ.

• LOADIWKEY. The LOADIWKEY instruction causes a VM exit if the “LOADIWKEY exiting” VM-execution control 
is 1.

• MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting” VM-execution control is 1.
• MOV from CR3. The MOV from CR3 instruction causes a VM exit if the “CR3-store exiting” VM-execution 

control is 1. The first processors to support the virtual-machine extensions supported only the 1-setting of this 
control.

• MOV from CR8. The MOV from CR8 instruction causes a VM exit if the “CR8-store exiting” VM-execution 
control is 1.

• MOV to CR0. The MOV to CR0 instruction causes a VM exit unless the value of its source operand matches, for 
the position of each bit set in the CR0 guest/host mask, the corresponding bit in the CR0 read shadow. (If every 
bit is clear in the CR0 guest/host mask, MOV to CR0 cannot cause a VM exit.)

• MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the “CR3-load exiting” VM-execution control 
is 0 or the value of its source operand is equal to one of the CR3-target values specified in the VMCS. Only the 
first n CR3-target values are considered, where n is the CR3-target count. If the “CR3-load exiting” VM-
execution control is 1 and the CR3-target count is 0, MOV to CR3 always causes a VM exit.
The first processors to support the virtual-machine extensions supported only the 1-setting of the “CR3-load
exiting” VM-execution control. These processors always consult the CR3-target controls to determine whether
an execution of MOV to CR3 causes a VM exit.

• MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its source operand matches, for 
the position of each bit set in the CR4 guest/host mask, the corresponding bit in the CR4 read shadow.

• MOV to CR8. The MOV to CR8 instruction causes a VM exit if the “CR8-load exiting” VM-execution control is 1.
• MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting” VM-execution control is 1. Such 

VM exits represent an exception to the principles identified in Section 27.1.1 in that they take priority over the 
following: general-protection exceptions based on privilege level; and invalid-opcode exceptions that occur 
because CR4.DE=1 and the instruction specified access to DR4 or DR5.

• MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting” VM-execution control is 1. If this 
control is 0, the behavior of the MWAIT instruction may be modified (see Section 27.3).

• PAUSE. The behavior of each of this instruction depends on CPL and the settings of the “PAUSE exiting” and 
“PAUSE-loop exiting” VM-execution controls:

— CPL = 0.
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• If the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls are both 0, the PAUSE 
instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit (the “PAUSE-
loop exiting” VM-execution control is ignored if CPL = 0 and the “PAUSE exiting” VM-execution control 
is 1).

• If the “PAUSE exiting” VM-execution control is 0 and the “PAUSE-loop exiting” VM-execution control is 
1, the following treatment applies.

The processor determines the amount of time between this execution of PAUSE and the previous 
execution of PAUSE at CPL 0. If this amount of time exceeds the value of the VM-execution control field 
PLE_Gap, the processor considers this execution to be the first execution of PAUSE in a loop. (It also 
does so for the first execution of PAUSE at CPL 0 after VM entry.)

Otherwise, the processor determines the amount of time since the most recent execution of PAUSE that 
was considered to be the first in a loop. If this amount of time exceeds the value of the VM-execution 
control field PLE_Window, a VM exit occurs.

For purposes of these computations, time is measured based on a counter that runs at the same rate as 
the timestamp counter (TSC).

— CPL > 0.

• If the “PAUSE exiting” VM-execution control is 0, the PAUSE instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit.

The “PAUSE-loop exiting” VM-execution control is ignored if CPL > 0.
• PCONFIG. The PCONFIG instruction causes a VM exit if the “enable PCONFIG” VM-execution control is 1 and 

one of the following is true:

— The value of EAX is less than 63 and the corresponding bit in the PCONFIG-exiting bitmap is 1 (see Section 
26.6.18).

— The value of EAX is greater than or equal to 63 and bit 63 in the PCONFIG-exiting bitmap is 1.
If the “enable PCONFIG” VM-execution control is 1 and neither of the previous items hold, the PCONFIG 
instruction executes normally.

• RDMSR. The RDMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the ranges 00000000H – 00001FFFH and C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in read bitmap for low MSRs is 1, where 
n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in read bitmap for high MSRs is 1, 
where n is the value of ECX & 00001FFFH.

See Section 26.6.9 for details regarding how these bitmaps are identified.
• RDMSRLIST. The RDMSRLIST instruction causes a VM exit if the “enable MSR-list instructions” VM-execution 

control is 1 and the “use MSR bitmaps” VM-execution control is 0. If both controls are 1, the instruction reads 
one MSR at a time normally, storing the value read to memory and clearing the corresponding bit in RCX. An 
attempt to read MSR X causes a VM exit if any of the following are true:

— X is not in the ranges 00000000H – 00001FFFH and C0000000H – C0001FFFH.

— X is in the range 00000000H – 00001FFFH and bit X in read bitmap for low MSRs is 1.

— X is in the range C0000000H – C0001FFFH and bit n in read bitmap for high MSRs is 1, where n is the value 
of X & 00001FFFH.

If an attempt to read an MSR causes a VM exit, the corresponding bit in RCX is not cleared, the MSR is not read, 
and no value is stored to memory.

• RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting” VM-execution control is 1.
• RDRAND. The RDRAND instruction causes a VM exit if the “RDRAND exiting” VM-execution control is 1.
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• RDSEED. The RDSEED instruction causes a VM exit if the “RDSEED exiting” VM-execution control is 1.
• RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting” VM-execution control is 1.
• RDTSCP. The RDTSCP instruction causes a VM exit if the “RDTSC exiting” and “enable RDTSCP” VM-execution 

controls are both 1.
• RSM. The RSM instruction causes a VM exit if executed in system-management mode (SMM).1

• TPAUSE. The TPAUSE instruction causes a VM exit if the “RDTSC exiting” and “enable user wait and pause” 
VM-execution controls are both 1.

• UMWAIT. The UMWAIT instruction causes a VM exit if the “RDTSC exiting” and “enable user wait and pause” 
VM-execution controls are both 1.

• VMREAD. The VMREAD instruction causes a VM exit if any of the following are true:

— The “VMCS shadowing” VM-execution control is 0.

— Bits 63:15 (bits 31:15 outside 64-bit mode) of the register source operand are not all 0.

— Bit n in VMREAD bitmap is 1, where n is the value of bits 14:0 of the register source operand. See Section 
26.6.15 for details regarding how the VMREAD bitmap is identified.

If the VMREAD instruction does not cause a VM exit, it reads from the VMCS referenced by the VMCS link
pointer. See Chapter 32, “VMREAD—Read Field from Virtual-Machine Control Structure” for details of the
operation of the VMREAD instruction.

• VMWRITE. The VMWRITE instruction causes a VM exit if any of the following are true:

— The “VMCS shadowing” VM-execution control is 0.

— Bits 63:15 (bits 31:15 outside 64-bit mode) of the register source operand are not all 0.

— Bit n in VMWRITE bitmap is 1, where n is the value of bits 14:0 of the register source operand. See Section 
26.6.15 for details regarding how the VMWRITE bitmap is identified.

If the VMWRITE instruction does not cause a VM exit, it writes to the VMCS referenced by the VMCS link
pointer. See Chapter 32, “VMWRITE—Write Field to Virtual-Machine Control Structure” for details of the
operation of the VMWRITE instruction.

• WBINVD. The WBINVD instruction causes a VM exit if the “WBINVD exiting” VM-execution control is 1.
• WBNOINVD. The WBNOINVD instruction causes a VM exit if the “WBINVD exiting” VM-execution control is 1.
• WRMSR, WRMSRNS. Execution of one of these instructions causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the ranges 00000000H – 00001FFFH and C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in write bitmap for low MSRs is 1, 
where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in write bitmap for high MSRs is 1, 
where n is the value of ECX & 00001FFFH.

See Section 26.6.9 for details regarding how these bitmaps are identified.
• WRMSRLIST. The WRMSRLIST instruction causes a VM exit if the “enable MSR-list instructions” VM-execution 

control is 1 and the “use MSR bitmaps” VM-execution control is 0. If both controls are 1, the instruction writes 
one MSR at a time normally, using a value read from memory and clearing the corresponding bit in RCX. An 
attempt to write MSR X causes a VM exit if any of the following are true:

— X is not in the ranges 00000000H – 00001FFFH and C0000000H – C0001FFFH.

— X is in the range 00000000H – 00001FFFH and bit X in write bitmap for low MSRs is 1.

— X is in the range C0000000H – C0001FFFH and bit n in write bitmap for high MSRs is 1, where n is the value 
of X & 00001FFFH.

1. Execution of the RSM instruction outside SMM causes an invalid-opcode exception regardless of whether the processor is in VMX 
operation. It also does so in VMX root operation in SMM; see Section 33.15.3.
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If an attempt to write an MSR causes a VM exit, the corresponding bit in RCX is not cleared, no value is read 
from memory, and the MSR is not written.

• XRSTORS. The XRSTORS instruction causes a VM exit if the “enable XSAVES/XRSTORS” VM-execution control 
is 1and any bit is set in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the 
XSS-exiting bitmap (see Section 26.6.21).

• XSAVES. The XSAVES instruction causes a VM exit if the “enable XSAVES/XRSTORS” VM-execution control is 1 
and any bit is set in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-
exiting bitmap (see Section 26.6.21).

27.2 OTHER CAUSES OF VM EXITS
In addition to VM exits caused by instruction execution, the following events can cause VM exits:1

• Exceptions. Exceptions (faults, traps, and aborts) cause VM exits based on the exception bitmap (see Section 
26.6.3). If an exception occurs, its vector (in the range 0–31) is used to select a bit in the exception bitmap. If 
the bit is 1, a VM exit occurs; if the bit is 0, the exception is delivered normally through the guest IDT. This use 
of the exception bitmap applies also to exceptions generated by the instructions INT1, INT3, INTO, BOUND, 
UD0, UD1, and UD2.2

Page faults (exceptions with vector 14) are specially treated. When a page fault occurs, a processor consults 
(1) bit 14 of the exception bitmap; (2) the error code produced with the page fault [PFEC]; (3) the page-fault 
error-code mask field [PFEC_MASK]; and (4) the page-fault error-code match field [PFEC_MATCH]. It checks if 
PFEC & PFEC_MASK = PFEC_MATCH. If there is equality, the specification of bit 14 in the exception bitmap is 
followed (for example, a VM exit occurs if that bit is set). If there is inequality, the meaning of that bit is 
reversed (for example, a VM exit occurs if that bit is clear).
Thus, if software desires VM exits on all page faults, it can set bit 14 in the exception bitmap to 1 and set the 
page-fault error-code mask and match fields each to 00000000H. If software desires VM exits on no page 
faults, it can set bit 14 in the exception bitmap to 1, the page-fault error-code mask field to 00000000H, and 
the page-fault error-code match field to FFFFFFFFH.

• Triple fault. A VM exit occurs if the logical processor encounters an exception while attempting to call the 
double-fault handler and that exception itself does not cause a VM exit due to the exception bitmap. This 
applies to the case in which the double-fault exception was generated within VMX non-root operation, the case 
in which the double-fault exception was generated during event injection by VM entry, and to the case in which 
VM entry is injecting a double-fault exception.

• External interrupts. An external interrupt causes a VM exit if the “external-interrupt exiting” VM-execution 
control is 1 (see Section 31.6 for an exception.) Otherwise, the processor handles the interrupt is normally.3 (If 
a logical processor is in the shutdown state or the wait-for-SIPI state, external interrupts are blocked. The 
processor does handle the interrupt and no VM exit occurs.)

• Non-maskable interrupts (NMIs). An NMI causes a VM exit if the “NMI exiting” VM-execution control is 1. 
Otherwise, it is delivered using descriptor 2 of the IDT. (If a logical processor is in the wait-for-SIPI state, NMIs 
are blocked. The NMI is not delivered through the IDT and no VM exit occurs.)

• INIT signals. INIT signals cause VM exits. A logical processor performs none of the operations normally 
associated with these events. Such exits do not modify register state or clear pending events as they would 
outside of VMX operation. (If a logical processor is in the wait-for-SIPI state, INIT signals are blocked. They do 
not cause VM exits in this case.)

• Start-up IPIs (SIPIs). SIPIs cause VM exits. If a logical processor is not in the wait-for-SIPI activity state 
when a SIPI arrives, no VM exit occurs and the SIPI is discarded. VM exits due to SIPIs do not perform any of 

1. Items in this section may refer to secondary processor-based VM-execution controls and tertiary processor-based VM-execution 
controls. If bit 31 of the primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the secondary 
processor-based VM-execution controls were all 0; similarly, if bit 17 of the primary processor-based VM-execution controls is 0, 
VMX non-root operation functions as if the tertiary processor-based VM-execution controls were all 0. See Section 26.6.2.

2. INT1 and INT3 refer to the instructions with opcodes F1 and CC, respectively, and not to INT n with value 1 or 3 for n.

3. Normal handling usually means delivery through the IDT, but it could also mean treatment of the interrupt as a user-interrupt notifi-
cation.
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the normal operations associated with those events: they do not modify register state as they would outside of 
VMX operation. (If a logical processor is not in the wait-for-SIPI state, SIPIs are blocked. They do not cause 
VM exits in this case.)

• Task switches. Task switches are not allowed in VMX non-root operation. Any attempt to effect a task switch 
in VMX non-root operation causes a VM exit. See Section 27.4.2.

• System-management interrupts (SMIs). If the logical processor is using the dual-monitor treatment of 
SMIs and system-management mode (SMM), SMIs cause SMM VM exits. See Section 33.15.2.1

• VMX-preemption timer. A VM exit occurs when the timer counts down to zero. See Section 27.5.1 for details 
of operation of the VMX-preemption timer.
Debug-trap exceptions and higher priority events take priority over VM exits caused by the VMX-preemption 
timer. VM exits caused by the VMX-preemption timer take priority over VM exits caused by the “NMI-window 
exiting” VM-execution control and lower priority events. 
These VM exits wake a logical processor from the same inactive states as would a non-maskable interrupt. 
Specifically, they wake a logical processor from the shutdown state and from the states entered using the HLT 
and MWAIT instructions. These VM exits do not occur if the logical processor is in the wait-for-SIPI state.

• Bus locks. Assertion of a bus lock (see Section 10.1.2) causes a VM exit if the “VMM bus-lock detection” 
VM-execution control is 1. Such a VM exit is trap-like because it is generated after execution of an instruction 
that asserts a bus lock. The VM exit thus does not prevent assertion of the bus lock. These VM exits take 
priority over system-management interrupts (SMIs), INIT signals, and lower priority events.

• Instruction timeout. If the “instruction timeout” VM-execution control is 1, a VM exit occurs if certain 
operations prevent the processor from reaching an instruction boundary within the amount of time specified by 
the instruction-timeout control VM-execution control field (see Section 26.6.25).

In addition, there are controls that cause VM exits based on the readiness of guest software to receive interrupts:
• If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs before execution of any instruction 

if RFLAGS.IF = 1 and there is no blocking of events by STI or by MOV SS (see Table 26-3).
Non-maskable interrupts (NMIs) and higher priority events take priority over VM exits caused by this control. 
VM exits caused by this control take priority over external interrupts and lower priority events. 
These VM exits wake a logical processor from the same inactive states as would an external interrupt. Specifi-
cally, they wake a logical processor from the states entered using the HLT and MWAIT instructions. These 
VM exits do not occur if the logical processor is in the shutdown state or the wait-for-SIPI state.

• If the “NMI-window exiting” VM-execution control is 1, a VM exit occurs before execution of any instruction if 
there is no virtual-NMI blocking and there is no blocking of events by MOV SS and no blocking of events by STI 
(see Table 26-3).
VM exits caused by the VMX-preemption timer and higher priority events take priority over VM exits caused by 
this control. VM exits caused by this control take priority over non-maskable interrupts (NMIs) and lower 
priority events. 
These VM exits wake a logical processor from the same inactive states as would an NMI. Specifically, they wake 
a logical processor from the shutdown state and from the states entered using the HLT and MWAIT instructions. 
These VM exits do not occur if the logical processor is in the wait-for-SIPI state.

Conditions necessary for some of the VM exits identified in this section may hold immediately after VM entry. If 
they do, a corresponding VM exit occurs at that time.

27.3 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION
The behavior of some instructions is changed in VMX non-root operation. Some of these changes are determined 
by the settings of certain VM-execution control fields. The following items detail such changes:2

• CLTS. Behavior of the CLTS instruction is determined by the bits in position 3 (corresponding to CR0.TS) in the 
CR0 guest/host mask and the CR0 read shadow:

1. Under the dual-monitor treatment of SMIs and SMM, SMIs also cause SMM VM exits if they occur in VMX root operation outside SMM. 
If the processor is using the default treatment of SMIs and SMM, SMIs are delivered as described in Section 33.14.1.
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— If bit 3 in the CR0 guest/host mask is 0, CLTS clears CR0.TS normally (the value of bit 3 in the CR0 read 
shadow is irrelevant in this case), unless CR0.TS is fixed to 1 in VMX operation (see Section 25.8), in which 
case CLTS causes a general-protection exception.

— If bit 3 in the CR0 guest/host mask is 1 and bit 3 in the CR0 read shadow is 0, CLTS completes but does not 
change the contents of CR0.TS.

— If the bits in position 3 in the CR0 guest/host mask and the CR0 read shadow are both 1, CLTS causes a 
VM exit.

• ENQCMD, ENQCMDS. Each of these instructions performs a 64-byte enqueue store that includes a PASID 
value in bits 19:0. For ENQCMD, the PASID is normally the value of IA32_PASID[19:0], while for ENQCMDS, 
the PASID is normally read from memory.
The behavior of each of these instructions (and in particular the PASID value used for the enqueue store) is
determined by the setting of the “PASID translation” VM-execution control:

— If the “PASID translation” VM-execution control is 0, the instruction operates normally.

— If the “PASID translation” VM-execution control is 1, the PASID value used for the enqueue store is 
determined by the PASID-translation process described in Section 27.5.8. (Note the PASID translation may 
result in a VM exit, in which case the enqueue store is not performed.)

An execution of ENQCMD or ENQCMDS performs PASID translation only after checking for conditions that may
result in general-protection exception (the check of IA32_PASID.Valid for ENQCMD; the privilege-level check
for ENQCMDS), after loading the instruction's source operand from memory, and thus after any faults or
VM exits that the loading may cause (e.g., page faults or EPT violations). PASID translation occurs before the
actual enqueue store and thus before any faults or VM exits that it may cause.

• INVPCID. Behavior of the INVPCID instruction is determined first by the setting of the “enable INVPCID” 
VM-execution control:

— If the “enable INVPCID” VM-execution control is 0, INVPCID causes an invalid-opcode exception (#UD). 
This exception takes priority over any other exception the instruction may incur.

— If the “enable INVPCID” VM-execution control is 1, treatment is based on the setting of the “INVLPG 
exiting” VM-execution control:

• If the “INVLPG exiting” VM-execution control is 0, INVPCID operates normally.

• If the “INVLPG exiting” VM-execution control is 1, INVPCID causes a VM exit.
• IRET. Behavior of IRET with regard to NMI blocking (see Table 26-3) is determined by the settings of the “NMI 

exiting” and “virtual NMIs” VM-execution controls:

— If the “NMI exiting” VM-execution control is 0, IRET operates normally and unblocks NMIs. (If the “NMI 
exiting” VM-execution control is 0, the “virtual NMIs” control must be 0; see Section 28.2.1.1.)

— If the “NMI exiting” VM-execution control is 1, IRET does not affect blocking of NMIs. If, in addition, the 
“virtual NMIs” VM-execution control is 1, the logical processor tracks virtual-NMI blocking. In this case, 
IRET removes any virtual-NMI blocking.

The unblocking of NMIs or virtual NMIs specified above occurs even if IRET causes a fault.
• LMSW. Outside of VMX non-root operation, LMSW loads its source operand into CR0[3:0], but it does not clear 

CR0.PE if that bit is set. In VMX non-root operation, an execution of LMSW that does not cause a VM exit (see 
Section 27.1.3) leaves unmodified any bit in CR0[3:0] corresponding to a bit set in the CR0 guest/host mask. 
An attempt to set any other bit in CR0[3:0] to a value not supported in VMX operation (see Section 25.8) 
causes a general-protection exception. Attempts to clear CR0.PE are ignored without fault.

• MOV from CR0. The behavior of MOV from CR0 is determined by the CR0 guest/host mask and the CR0 read 
shadow. For each position corresponding to a bit clear in the CR0 guest/host mask, the destination operand is 
loaded with the value of the corresponding bit in CR0. For each position corresponding to a bit set in the CR0 
guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR0 read 

2. Items in this section may refer to secondary processor-based VM-execution controls and tertiary processor-based VM-execution 
controls. If bit 31 of the primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the secondary 
processor-based VM-execution controls were all 0; similarly, if bit 17 of the primary processor-based VM-execution controls is 0, 
VMX non-root operation functions as if the tertiary processor-based VM-execution controls were all 0. See Section 26.6.2.
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shadow. Thus, if every bit is cleared in the CR0 guest/host mask, MOV from CR0 reads normally from CR0; if 
every bit is set in the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read shadow.
Depending on the contents of the CR0 guest/host mask and the CR0 read shadow, bits may be set in the 
destination that would never be set when reading directly from CR0.

• MOV from CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV from CR3 does not 
cause a VM exit (see Section 27.1.3), the value loaded from CR3 is a guest-physical address; see Section 
30.3.1.

• MOV from CR4. The behavior of MOV from CR4 is determined by the CR4 guest/host mask and the CR4 read 
shadow. For each position corresponding to a bit clear in the CR4 guest/host mask, the destination operand is 
loaded with the value of the corresponding bit in CR4. For each position corresponding to a bit set in the CR4 
guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR4 read 
shadow. Thus, if every bit is cleared in the CR4 guest/host mask, MOV from CR4 reads normally from CR4; if 
every bit is set in the CR4 guest/host mask, MOV from CR4 returns the value of the CR4 read shadow.
Depending on the contents of the CR4 guest/host mask and the CR4 read shadow, bits may be set in the 
destination that would never be set when reading directly from CR4.

• MOV from CR8. If the MOV from CR8 instruction does not cause a VM exit (see Section 27.1.3), its behavior 
is modified if the “use TPR shadow” VM-execution control is 1; see Section 31.3.

• MOV to CR0. An execution of MOV to CR0 that does not cause a VM exit (see Section 27.1.3) leaves 
unmodified any bit in CR0 corresponding to a bit set in the CR0 guest/host mask. Treatment of attempts to 
modify other bits in CR0 depends on the setting of the “unrestricted guest” VM-execution control:

— If the control is 0, MOV to CR0 causes a general-protection exception if it attempts to set any bit in CR0 to 
a value not supported in VMX operation (see Section 25.8).

— If the control is 1, MOV to CR0 causes a general-protection exception if it attempts to set any bit in CR0 
other than bit 0 (PE) or bit 31 (PG) to a value not supported in VMX operation. It remains the case, 
however, that MOV to CR0 causes a general-protection exception if it would result in CR0.PE = 0 and 
CR0.PG = 1 or if it would result in CR0.PG = 1, CR4.PAE = 0, and IA32_EFER.LME = 1.

• MOV to CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV to CR3 does not cause a 
VM exit (see Section 27.1.3), the value loaded into CR3 is treated as a guest-physical address; see Section 
30.3.1.

— If PAE paging is not being used, the instruction does not use the guest-physical address to access memory 
and it does not cause it to be translated through EPT.1

— If PAE paging is being used, the instruction translates the guest-physical address through EPT and uses the 
result to load the four (4) page-directory-pointer-table entries (PDPTEs). The instruction does not use the 
guest-physical addresses the PDPTEs to access memory and it does not cause them to be translated 
through EPT.

• MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see Section 27.1.3) leaves 
unmodified any bit in CR4 corresponding to a bit set in the CR4 guest/host mask. Such an execution causes a 
general-protection exception if it attempts to set any bit in CR4 (not corresponding to a bit set in the CR4 
guest/host mask) to a value not supported in VMX operation (see Section 25.8).

• MOV to CR8. If the MOV to CR8 instruction does not cause a VM exit (see Section 27.1.3), its behavior is 
modified if the “use TPR shadow” VM-execution control is 1; see Section 31.3.

• MWAIT.  Behavior of the MWAIT instruction (which always causes an invalid-opcode exception—#UD—if 
CPL > 0) is determined by the setting of the “MWAIT exiting” VM-execution control:

— If the “MWAIT exiting” VM-execution control is 1, MWAIT causes a VM exit.

— If the “MWAIT exiting” VM-execution control is 0, MWAIT operates normally if one of the following are true: 
(1) ECX[0] is 0; (2) RFLAGS.IF = 1; or both of the following are true: (a) the “interrupt-window exiting” 
VM-execution control is 0; and (b) the logical processor has not recognized a pending virtual interrupt (see 
Section 29.2.1).

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 5.4 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.
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— If the “MWAIT exiting” VM-execution control is 0, ECX[0] = 1, and RFLAGS.IF = 0, MWAIT does not cause 
the processor to enter an implementation-dependent optimized state if either the “interrupt-window 
exiting” VM-execution control is 1 or the logical processor has recognized a pending virtual interrupt; 
instead, control passes to the instruction following the MWAIT instruction.

• PCONFIG. Behavior of the PCONFIG instruction is determined by the setting of the “enable PCONFIG” 
VM-execution control:

— If the “enable PCONFIG” VM-execution control is 0, PCONFIG causes an invalid-opcode exception (#UD). 
This exception takes priority over any exception the instruction may incur.

— If the “enable PCONFIG” VM-execution control is 1, PCONFIG may cause a VM exit as specified in Section 
27.1.3; if it does not cause such a VM exit, it operates normally.

• RDMSR. Section 27.1.3 identifies when executions of the RDMSR instruction cause VM exits. If such an 
execution causes neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for 
certain values of ECX:

— If ECX contains 10H (indicating the IA32_TIME_STAMP_COUNTER MSR), the value returned by the 
instruction is determined by the setting of the “use TSC offsetting” VM-execution control:

• If the control is 0, RDMSR operates normally, loading EAX:EDX with the value of the 
IA32_TIME_STAMP_COUNTER MSR.

• If the control is 1, the value returned is determined by the setting of the “use TSC scaling” VM-execution 
control:

— If the control is 0, RDMSR loads EAX:EDX with the sum of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset.

— If the control is 1, RDMSR first computes the product of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC multiplier. It then shifts the value of 
the product right 48 bits and loads EAX:EDX with the sum of that shifted value and the value of the 
TSC offset.

The 1-setting of the “use TSC-offsetting” VM-execution control does not affect executions of RDMSR if ECX 
contains 6E0H (indicating the IA32_TSC_DEADLINE MSR). Such executions return the APIC-timer deadline 
relative to the actual timestamp counter without regard to the TSC offset.

— If ECX contains 48H (indicating the IA32_SPEC_CTRL MSR), the value returned by the instruction is 
determined by the setting of the “virtualize IA32_SPEC_CTRL” VM-execution control:

• If the control is 0, RDMSR operates normally, loading EAX:EDX with the value of the IA32_SPEC_CTRL 
MSR.

• If the control is 1, the value returned is that of the IA32_SPEC_CTRL shadow field in the VMCS.

— If ECX is in the range 800H–8FFH (indicating an APIC MSR), instruction behavior may be modified if the 
“virtualize x2APIC mode” VM-execution control is 1; see Section 31.5.

• RDMSRLIST. Behavior of the RDMSRLIST instruction is determined first by the setting of the “enable MSR-list 
instructions” VM-execution control:

— If the “enable MSR-list instructions” VM-execution control is 0, RDMSRLIST causes an invalid-opcode 
exception (#UD). This exception takes priority over any other exception the instruction may incur.

— If the “enable MSR-list instructions” VM-execution control is 1, the instruction causes a general-protection 
exception (#GP) normally if CPL > 0. Otherwise, its operation depends on the setting of the “use MSR 
bitmaps” VM-execution control:

• If the control is 0, the instruction causes a VM exit.

• If the control is 1, the instruction commences normally, reading one MSR at a time. Reads of certain 
MSRs are treated specially as described above for RDMSR. In addition, attempts to access specific MSRs 
may cause VM exits; see Section 27.1.3 for details.

• RDPID. Behavior of the RDPID instruction is determined first by the setting of the “enable RDTSCP” 
VM-execution control:

— If the “enable RDTSCP” VM-execution control is 0, RDPID causes an invalid-opcode exception (#UD).
27-10 Vol. 3C



VMX NON-ROOT OPERATION
— If the “enable RDTSCP” VM-execution control is 1, RDPID operates normally.
• RDTSC. Behavior of the RDTSC instruction is determined by the settings of the “RDTSC exiting” and “use TSC 

offsetting” VM-execution controls:

— If both controls are 0, RDTSC operates normally.

— If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is 1, the 
value returned is determined by the setting of the “use TSC scaling” VM-execution control:

• If the control is 0, RDTSC loads EAX:EDX with the sum of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset.

• If the control is 1, RDTSC first computes the product of the value of the IA32_TIME_STAMP_COUNTER 
MSR and the value of the TSC multiplier. It then shifts the value of the product right 48 bits and loads 
EAX:EDX with the sum of that shifted value and the value of the TSC offset.

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit.
• RDTSCP. Behavior of the RDTSCP instruction is determined first by the setting of the “enable RDTSCP” 

VM-execution control:

— If the “enable RDTSCP” VM-execution control is 0, RDTSCP causes an invalid-opcode exception (#UD). This 
exception takes priority over any other exception the instruction may incur.

— If the “enable RDTSCP” VM-execution control is 1, treatment is based on the settings of the “RDTSC exiting” 
and “use TSC offsetting” VM-execution controls:

• If both controls are 0, RDTSCP operates normally.

• If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is 1, 
the value returned is determined by the setting of the “use TSC scaling” VM-execution control:

— If the control is 0, RDTSCP loads EAX:EDX with the sum of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset.

— If the control is 1, RDTSCP first computes the product of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC multiplier. It then shifts the value of 
the product right 48 bits and loads EAX:EDX with the sum of that shifted value and the value of the 
TSC offset.

In either case, RDTSCP also loads ECX with the value of bits 31:0 of the IA32_TSC_AUX MSR.

• If the “RDTSC exiting” VM-execution control is 1, RDTSCP causes a VM exit.
• SMSW. The behavior of SMSW is determined by the CR0 guest/host mask and the CR0 read shadow. For each 

position corresponding to a bit clear in the CR0 guest/host mask, the destination operand is loaded with the 
value of the corresponding bit in CR0. For each position corresponding to a bit set in the CR0 guest/host mask, 
the destination operand is loaded with the value of the corresponding bit in the CR0 read shadow. Thus, if every 
bit is cleared in the CR0 guest/host mask, SMSW reads normally from CR0; if every bit is set in the CR0 
guest/host mask, SMSW returns the value of the CR0 read shadow.
Note the following: (1) for any memory destination or for a 16-bit register destination, only the low 16 bits of 
the CR0 guest/host mask and the CR0 read shadow are used (bits 63:16 of a register destination are left 
unchanged); (2) for a 32-bit register destination, only the low 32 bits of the CR0 guest/host mask and the CR0 
read shadow are used (bits 63:32 of the destination are cleared); and (3) depending on the contents of the 
CR0 guest/host mask and the CR0 read shadow, bits may be set in the destination that would never be set 
when reading directly from CR0.

• TPAUSE. Behavior of the TPAUSE instruction is determined first by the setting of the “enable user wait and 
pause” VM-execution control:

— If the “enable user wait and pause” VM-execution control is 0, TPAUSE causes an invalid-opcode exception 
(#UD). This exception takes priority over any exception the instruction may incur.

— If the “enable user wait and pause” VM-execution control is 1, treatment is based on the setting of the 
“RDTSC exiting” VM-execution control:

• If the “RDTSC exiting” VM-execution control is 0, the instruction delays for an amount of time called 
here the physical delay. The physical delay is first computed by determining the virtual delay (the 
time to delay relative to the guest’s timestamp counter).
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If IA32_UMWAIT_CONTROL[31:2] is zero, the virtual delay is the value in EDX:EAX minus the value 
that RDTSC would return (see above); if IA32_UMWAIT_CONTROL[31:2] is not zero, the virtual delay 
is the minimum of that difference and AND(IA32_UMWAIT_CONTROL,FFFFFFFCH).

The physical delay depends upon the settings of the “use TSC offsetting” and “use TSC scaling” 
VM-execution controls:

— If either control is 0, the physical delay is the virtual delay.

— If both controls are 1, the virtual delay is multiplied by 248 (using a shift) to produce a 128-bit 
integer. That product is then divided by the TSC multiplier to produce a 64-bit integer. The physical 
delay is that quotient.

• If the “RDTSC exiting” VM-execution control is 1, TPAUSE causes a VM exit.
• UMONITOR. Behavior of the UMONITOR instruction is determined by the setting of the “enable user wait and 

pause” VM-execution control:

— If the “enable user wait and pause” VM-execution control is 0, UMONITOR causes an invalid-opcode 
exception (#UD). This exception takes priority over any exception the instruction may incur.

— If the “enable user wait and pause” VM-execution control is 1, UMONITOR operates normally.
• UMWAIT. Behavior of the UMWAIT instruction is determined first by the setting of the “enable user wait and 

pause” VM-execution control:

— If the “enable user wait and pause” VM-execution control is 0, UMWAIT causes an invalid-opcode exception 
(#UD). This exception takes priority over any exception the instruction may incur.

— If the “enable user wait and pause” VM-execution control is 1, treatment is based on the setting of the 
“RDTSC exiting” VM-execution control:

• If the “RDTSC exiting” VM-execution control is 0, and if the instruction causes a delay, the amount of 
time delayed is called here the physical delay. The physical delay is first computed by determining the 
virtual delay (the time to delay relative to the guest’s timestamp counter).

If IA32_UMWAIT_CONTROL[31:2] is zero, the virtual delay is the value in EDX:EAX minus the value 
that RDTSC would return (see above); if IA32_UMWAIT_CONTROL[31:2] is not zero, the virtual delay 
is the minimum of that difference and AND(IA32_UMWAIT_CONTROL,FFFFFFFCH).

The physical delay depends upon the settings of the “use TSC offsetting” and “use TSC scaling” 
VM-execution controls:

— If either control is 0, the physical delay is the virtual delay.

— If both controls are 1, the virtual delay is multiplied by 248 (using a shift) to produce a 128-bit 
integer. That product is then divided by the TSC multiplier to produce a 64-bit integer. The physical 
delay is that quotient.

• If the “RDTSC exiting” VM-execution control is 1, UMWAIT causes a VM exit.
• WRMSR, WRMSRNS. Section 27.1.3 identifies when an execution of WRMSR or WRMSRNS would cause a 

VM exit. If such an execution causes neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may 
be modified for certain values of ECX:

— If ECX contains 48H (indicating the IA32_SPEC_CTRL MSR), instruction behavior depends on the setting of 
the “virtualize IA32_SPEC_CTRL” VM-execution control:

• If the control is 0, WRMSR and WRMSRNS operate normally, loading the IA32_SPEC_CTRL MSR with the 
value in EAX:EDX.

• If the control is 1, the instruction will attempt to write the IA32_SPEC_CTRL MSR using the instruction’s 
source operand, but it will attempt to modify only those bits in positions corresponding to bits cleared in 
the IA32_SPEC_CTRL mask field in the VMCS.

Specifically, the instruction attempts to write the MSR with the following value:

(MSR_VAL & ISC_MASK) OR (SRC & NOT ISC_MASK),

where MSR_VAL is the original value of the MSR, ISC_MASK is the IA32_SPEC_CTRL mask, and SRC is 
the instruction’s source operand.
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Any fault that would result from writing that value to the MSR (e.g., due to a reserved-bit violation) 
occurs normally. Otherwise, the value is written to the MSR.

Such a write to the MSR will have any side effects that would occur normally had the MSR been written 
with the value indicated above (including any side effects that may result from writing unchanged 
values to the masked bits).

If the write completes without a fault, the unmodified value of the source operand is written to the 
IA32_SPEC_CTRL shadow field in the VMCS.

— If ECX contains 79H (indicating IA32_BIOS_UPDT_TRIG MSR), no microcode update is loaded, and control 
passes to the next instruction. This implies that microcode updates cannot be loaded in VMX non-root 
operation.

— On processors that support Intel PT but which do not allow it to be used in VMX operation, if ECX contains 
570H (indicating the IA32_RTIT_CTL MSR), the instruction causes a general-protection exception.1

— If ECX contains 808H (indicating the TPR MSR), 80BH (the EOI MSR), 830H (the ICR MSR), or 83FH (the 
self-IPI MSR), instruction behavior may be modified if the “virtualize x2APIC mode” VM-execution control is 
1; see Section 31.5.

• WRMSRLIST. Behavior of the WRMSRLIST instruction is determined first by the setting of the “enable MSR-list 
instructions” VM-execution control:

— If the “enable MSR-list instructions” VM-execution control is 0, WRMSRLIST causes an invalid-opcode 
exception (#UD). This exception takes priority over any other exception the instruction may incur.

— If the “enable MSR-list instructions” VM-execution control is 1, the instruction causes a general-protection 
exception (#GP) normally if CPL > 0. Otherwise, its operation depends on the setting of the “use MSR 
bitmaps” VM-execution control:

• If the control is 0, the instruction causes a VM exit.

• If the control is 1, the instruction commences normally, writing one MSR at a time. Writes to certain 
MSRs are treated specially as described above for WRMSR and WRMSRNS. In addition, attempts to 
access specific MSRs may cause VM exits; see Section 27.1.3 for details.

• XRSTORS. Behavior of the XRSTORS instruction is determined first by the setting of the “enable 
XSAVES/XRSTORS” VM-execution control:

— If the “enable XSAVES/XRSTORS” VM-execution control is 0, XRSTORS causes an invalid-opcode exception 
(#UD).

— If the “enable XSAVES/XRSTORS” VM-execution control is 1, treatment is based on the value of the XSS-
exiting bitmap (see Section 26.6.21):

• XRSTORS causes a VM exit if any bit is set in the logical-AND of the following three values: EDX:EAX, 
the IA32_XSS MSR, and the XSS-exiting bitmap.

• Otherwise, XRSTORS operates normally.
• XSAVES. Behavior of the XSAVES instruction is determined first by the setting of the “enable 

XSAVES/XRSTORS” VM-execution control:

— If the “enable XSAVES/XRSTORS” VM-execution control is 0, XSAVES causes an invalid-opcode exception 
(#UD).

— If the “enable XSAVES/XRSTORS” VM-execution control is 1, treatment is based on the value of the XSS-
exiting bitmap (see Section 26.6.21):

• XSAVES causes a VM exit if any bit is set in the logical-AND of the following three values: EDX:EAX, the 
IA32_XSS MSR, and the XSS-exiting bitmap.

• Otherwise, XSAVES operates normally.

1. Software should read the VMX capability MSR IA32_VMX_MISC to determine whether the processor allows Intel PT to be used in 
VMX operation (see Appendix A.6).
Vol. 3C 27-13



VMX NON-ROOT OPERATION
27.4 OTHER CHANGES IN VMX NON-ROOT OPERATION
Treatments of event blocking, task switches, and certain shadow-stack updates may differ in VMX non-root opera-
tion as described in the following sections.

27.4.1 Event Blocking
Event blocking is modified in VMX non-root operation as follows:
• If the “external-interrupt exiting” VM-execution control is 1, RFLAGS.IF does not control the blocking of 

external interrupts. In this case, an external interrupt that is not blocked for other reasons causes a VM exit 
(even if RFLAGS.IF = 0).

• If the “external-interrupt exiting” VM-execution control is 1, external interrupts may or may not be blocked by 
STI or by MOV SS (behavior is implementation-specific).

• If the “NMI exiting” VM-execution control is 1, non-maskable interrupts (NMIs) may or may not be blocked by 
STI or by MOV SS (behavior is implementation-specific).

27.4.2 Treatment of Task Switches
Task switches are not allowed in VMX non-root operation. Any attempt to effect a task switch in VMX non-root oper-
ation causes a VM exit. However, the following checks are performed (in the order indicated), possibly resulting in 
a fault, before there is any possibility of a VM exit due to task switch:

1. If a task gate is being used, appropriate checks are made on its P bit and on the proper values of the relevant 
privilege fields. The following cases detail the privilege checks performed:

a. If CALL, INT n, INT1, INT3, INTO, or JMP accesses a task gate in IA-32e mode, a general-protection 
exception occurs.

b. If CALL, INT n, INT3, INTO, or JMP accesses a task gate outside IA-32e mode, privilege-levels checks are 
performed on the task gate but, if they pass, privilege levels are not checked on the referenced task-state 
segment (TSS) descriptor.

c. If CALL or JMP accesses a TSS descriptor directly in IA-32e mode, a general-protection exception occurs.

d. If CALL or JMP accesses a TSS descriptor directly outside IA-32e mode, privilege levels are checked on the 
TSS descriptor.

e. If a non-maskable interrupt (NMI), an exception, or an external interrupt accesses a task gate in the IDT in 
IA-32e mode, a general-protection exception occurs.

f. If a non-maskable interrupt (NMI), an exception other than breakpoint exceptions (#BP) and overflow 
exceptions (#OF), or an external interrupt accesses a task gate in the IDT outside IA-32e mode, no 
privilege checks are performed.

g. If IRET is executed with RFLAGS.NT = 1 in IA-32e mode, a general-protection exception occurs.

h. If IRET is executed with RFLAGS.NT = 1 outside IA-32e mode, a TSS descriptor is accessed directly and no 
privilege checks are made.

2. Checks are made on the new TSS selector (for example, that is within GDT limits).

3. The new TSS descriptor is read. (A page fault results if a relevant GDT page is not present).

4. The TSS descriptor is checked for proper values of type (depends on type of task switch), P bit, S bit, and limit.

Only if checks 1–4 all pass (do not generate faults) might a VM exit occur. However, the ordering between a VM exit 
due to a task switch and a page fault resulting from accessing the old TSS or the new TSS is implementation-
specific. Some processors may generate a page fault (instead of a VM exit due to a task switch) if accessing either 
TSS would cause a page fault. Other processors may generate a VM exit due to a task switch even if accessing 
either TSS would cause a page fault.

If an attempt at a task switch through a task gate in the IDT causes an exception (before generating a VM exit due 
to the task switch) and that exception causes a VM exit, information about the event whose delivery that accessed 
the task gate is recorded in the IDT-vectoring information fields and information about the exception that caused 
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the VM exit is recorded in the VM-exit interruption-information fields. See Section 29.2. The fact that a task gate 
was being accessed is not recorded in the VMCS.

If an attempt at a task switch through a task gate in the IDT causes VM exit due to the task switch, information 
about the event whose delivery accessed the task gate is recorded in the IDT-vectoring fields of the VMCS. Since 
the cause of such a VM exit is a task switch and not an interruption, the valid bit for the VM-exit interruption infor-
mation field is 0. See Section 29.2.

27.4.3 Shadow-Stack Updates
As noted in Section 18.2.3, “Supervisor Shadow Stack Token,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, a switch of shadow stack may occur as part of IDT event delivery or an execution of 
far CALL that changes the CPL, or as part of IDT event delivery that uses the interrupt stack table (IST).

As part of the shadow-stack switch, the processor gains exclusive access to the new stack through manipulation of 
the supervisor shadow stack token located at the base of the new shadow stack. The processor reads the token 
and, among other things, confirms that bit 0 of the token (its busy bit) is 0. If the busy bit is already 1, the tran-
sition (event delivery or far CALL) cause a general-protection fault and does not complete. If the busy bit is 0, the 
transition sets the busy bit by writing to the token in memory. (The update is atomic with the original read of the 
token.)

If the transition commenced with CPL < 3, it will follow the token update by pushing three items on the new 
shadow stack (for the old values of the CS selector, instruction pointer, and shadow-stack pointer). As noted in 
Section 18.2.3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, if any of the 
pushes causes a VM exit, the processor will revert to the old shadow stack and the busy bit in the new shadow 
stack's token remains set. The new shadow stack is said to be prematurely busy.

If the “prematurely busy shadow stack” VM-exit control is 1, a VM exit that results in a shadow stack becoming 
prematurely busy will indicate that fact through information saved in the VMCS. See Section 29.2.1.

27.5 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION
Some VM-execution controls support features that are specific to VMX non-root operation. These are the VMX-
preemption timer (Section 27.5.1) and the monitor trap flag (Section 27.5.2), translation of guest-physical 
addresses (Section 27.5.3 and Section 27.5.4), APIC virtualization (Section 27.5.5), VM functions (Section 
27.5.6), and virtualization exceptions (Section 27.5.7).

27.5.1 VMX-Preemption Timer
If the last VM entry was performed with the 1-setting of “activate VMX-preemption timer” VM-execution control, 
the VMX-preemption timer counts down (from the value loaded by VM entry; see Section 28.7.4) in VMX non-
root operation. When the timer counts down to zero, it stops counting down and a VM exit occurs (see Section 
27.2).

The VMX-preemption timer counts down at rate proportional to that of the timestamp counter (TSC). Specifically, 
the timer counts down by 1 every time bit X in the TSC changes due to a TSC increment. The value of X is in the 
range 0–31 and can be determined by consulting the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).

The VMX-preemption timer operates in the C-states C0, C1, and C2; it also operates in the shutdown and wait-for-
SIPI states. If the timer counts down to zero in any state other than the wait-for SIPI state, the logical processor 
transitions to the C0 C-state and causes a VM exit; the timer does not cause a VM exit if it counts down to zero in 
the wait-for-SIPI state. The timer is not decremented in C-states deeper than C2.

Treatment of the timer in the case of system management interrupts (SMIs) and system-management mode 
(SMM) depends on whether the treatment of SMIs and SMM:
• If the default treatment of SMIs and SMM (see Section 33.14) is active, the VMX-preemption timer counts 

across an SMI to VMX non-root operation, subsequent execution in SMM, and the return from SMM via the RSM 
instruction. However, the timer can cause a VM exit only from VMX non-root operation. If the timer expires 
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during SMI, in SMM, or during RSM, a timer-induced VM exit occurs immediately after RSM with its normal 
priority unless it is blocked based on activity state (Section 27.2).

• If the dual-monitor treatment of SMIs and SMM (see Section 33.15) is active, transitions into and out of SMM 
are VM exits and VM entries, respectively. The treatment of the VMX-preemption timer by those transitions is 
mostly the same as for ordinary VM exits and VM entries; Section 33.15.2 and Section 33.15.4 detail some 
differences.

27.5.2 Monitor Trap Flag
The monitor trap flag is a debugging feature that causes VM exits to occur on certain instruction boundaries in 
VMX non-root operation. Such VM exits are called MTF VM exits. An MTF VM exit may occur on an instruction 
boundary in VMX non-root operation as follows:
• If the “monitor trap flag” VM-execution control is 1 and VM entry is injecting a vectored event (see Section 

28.6.1), an MTF VM exit is pending on the instruction boundary before the first instruction following the 
VM entry.

• If VM entry is injecting a pending MTF VM exit (see Section 28.6.2), an MTF VM exit is pending on the 
instruction boundary before the first instruction following the VM entry. This is the case even if the “monitor 
trap flag” VM-execution control is 0.

• If the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and a pending event 
(e.g., debug exception or interrupt) is delivered before an instruction can execute, an MTF VM exit is pending 
on the instruction boundary following delivery of the event (or any nested exception).

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the first 
instruction following VM entry is a REP-prefixed string instruction:

— If the first iteration of the instruction causes a fault, an MTF VM exit is pending on the instruction boundary 
following delivery of the fault (or any nested exception).

— If the first iteration of the instruction does not cause a fault, an MTF VM exit is pending on the instruction 
boundary after that iteration.

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the first 
instruction following VM entry is the XBEGIN instruction. In this case, an MTF VM exit is pending at the fallback 
instruction address of the XBEGIN instruction. This behavior applies regardless of whether advanced debugging 
of RTM transactional regions has been enabled (see Section 17.3.7, “RTM-Enabled Debugger Support,” of 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the first 
instruction following VM entry is neither a REP-prefixed string instruction or the XBEGIN instruction:

— If the instruction causes a fault, an MTF VM exit is pending on the instruction boundary following delivery of 
the fault (or any nested exception).1

— If the instruction does not cause a fault, an MTF VM exit is pending on the instruction boundary following 
execution of that instruction. If the instruction is INT1, INT3, or INTO, this boundary follows delivery of any 
software exception. If the instruction is INT n, this boundary follows delivery of a software interrupt. If the 
instruction is HLT, the MTF VM exit will be from the HLT activity state.

No MTF VM exit occurs if another VM exit occurs before reaching the instruction boundary on which an MTF VM exit 
would be pending (e.g., due to an exception or triple fault).

An MTF VM exit occurs on the instruction boundary on which it is pending unless a higher priority event takes 
precedence or the MTF VM exit is blocked due to the activity state:
• System-management interrupts (SMIs), INIT signals, and higher priority events take priority over MTF 

VM exits. MTF VM exits take priority over debug-trap exceptions and lower priority events.
• No MTF VM exit occurs if the processor is in either the shutdown activity state or wait-for-SIPI activity state. If 

a non-maskable interrupt subsequently takes the logical processor out of the shutdown activity state without 
causing a VM exit, an MTF VM exit is pending after delivery of that interrupt.

1. This item includes the cases of an invalid opcode exception—#UD— generated by the UD0, UD1, and UD2 instructions and a BOUND-
range exceeded exception—#BR—generated by the BOUND instruction.
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Special treatment may apply to Intel SGX instructions or if the logical processor is in enclave mode. See Section 
40.2 for details.

27.5.3 Translation of Guest-Physical Addresses Using EPT
The extended page-table mechanism (EPT) is a feature that can be used to support the virtualization of physical 
memory. When EPT is in use, certain physical addresses are treated as guest-physical addresses and are not used 
to access memory directly. Instead, guest-physical addresses are translated by traversing a set of EPT paging 
structures to produce physical addresses that are used to access memory.

Details of the EPT mechanism are given in Section 30.3.

27.5.4 Translation of Guest-Physical Addresses Used by Intel Processor Trace
As described in Chapter 34, Intel® Processor Trace (Intel PT) captures information about software execution using 
dedicated hardware facilities.

Intel PT can be configured so that the trace output is written to memory using physical addresses. For example, 
when the ToPA (table of physical addresses) output mechanism is used, the IA32_RTIT_OUTPUT_BASE MSR 
contains the physical address of the base of the current ToPA. Each entry in that table contains the physical address 
of an output region in memory. When an output region becomes full, the ToPA output mechanism directs subse-
quent trace output to the next output region as indicated in the ToPA.

When the “Intel PT uses guest physical addresses” VM-execution control is 1, the logical processor treats the 
addresses used by Intel PT (the output addresses as well as those used to discover the output addresses) as guest-
physical addresses, translating to physical addresses using EPT before trace output is written to memory.

Translating these addresses through EPT implies that the trace-output mechanism may cause EPT violations and 
VM exits; details are provided in Section 27.5.4.1. Section 27.5.4.2 describes a mechanism that ensures that these 
VM exits do not cause loss of trace data.

27.5.4.1  Guest-Physical Address Translation for Intel PT: Details
When the “Intel PT uses guest physical addresses” VM-execution control is 1, the addresses used by Intel PT are 
treated as guest-physical addresses and translated using EPT. These addresses include the addresses of the output 
regions as well as the addresses of the ToPA entries that contain the output-region addresses.

Translation of accesses by the trace-output process may result in EPT violations or EPT misconfigurations (Section 
30.3.3), resulting in VM exits. EPT violations resulting for the trace-output process always cause VM exits and are 
never converted to virtualization exceptions (Section 27.5.7.1).

If no EPT violation or EPT misconfiguration occurs and if page-modification logging (Section 30.3.6) is enabled, the 
address of an output region may be added to the page-modification log. If the log is full, a page-modification log-
full event occurs, resulting in a VM exit.

If the “virtualize APIC accesses” VM-execution control is 1, a guest-physical address used by the trace-output 
process may be translated to an address on the APIC-access page. In this case, the access by the trace-output 
process causes an APIC-access VM exit as discussed in Section 31.4.6.1.

27.5.4.2  Trace-Address Pre-Translation (TAPT)
Because it buffers trace data produced by Intel PT before it is written to memory, the processor ensures that buff-
ered data is not lost when a VM exit disables Intel PT. Specifically, the processor ensures that there is sufficient 
space left in the current output page for the buffered data. If this were not done, buffered trace data could be lost 
and the resulting trace corrupted.

To prevent the loss of buffered trace data, the processor uses a mechanism called trace-address pre-translation 
(TAPT). With TAPT, the processor translates using EPT the guest-physical address of the current output region 
before that address would be used to write buffered trace data to memory.
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Because of TAPT, no translation (and thus no EPT violation) occurs at the time output is written to memory; the 
writes to memory use translations that were cached as part of TAPT. (The details given in Section 27.5.4.1 apply to 
TAPT.) TAPT ensures that, if a write to the output region would cause an EPT violation, the resulting VM exit is deliv-
ered at the time of TAPT, before the region would be used. This allows software to resolve the EPT violation at that 
time and ensures that, when it is necessary to write buffered trace data to memory, that data will not be lost due 
to an EPT violation.

TAPT (and resulting VM exits) may occur at any of the following times:
• When software in VMX non-root operation enables tracing by loading the IA32_RTIT_CTL MSR to set the 

TraceEn bit, using the WRMSR instruction or the XRSTORS instruction.
Any VM exit resulting from TAPT in this case is trap-like: the WRMSR or XRSTORS completes before the
VM exit occurs (for example, the value of CS:RIP saved in the guest-state area of the VMCS references the
next instruction).

• At an instruction boundary when one output region becomes full and Intel PT transitions to the next output 
region.
VM exits resulting from TAPT in this case take priority over any pending debug exceptions. Such a VM exit will
save information about such exceptions in the guest-state area of the VMCS.

• As part of a VM entry that enables Intel PT. See Section 28.5 for details.

TAPT may translate not only the guest-physical address of the current output region but those of subsequent 
output regions as well. (Doing so may provide better protection of trace data.) This implies that any VM exits 
resulting from TAPT may result from the translation of output-region addresses other than that of the current 
output region.

27.5.5 APIC Virtualization
APIC virtualization is a collection of features that can be used to support the virtualization of interrupts and the 
Advanced Programmable Interrupt Controller (APIC). When APIC virtualization is enabled, the processor emulates 
many accesses to the APIC, tracks the state of the virtual APIC, and delivers virtual interrupts — all in VMX non-
root operation without a VM exit.

Details of the APIC virtualization are given in Chapter 31.

27.5.6 VM Functions
A VM function is an operation provided by the processor that can be invoked from VMX non-root operation without 
a VM exit. VM functions are enabled and configured by the settings of different fields in the VMCS. Software in VMX 
non-root operation invokes a VM function with the VMFUNC instruction; the value of EAX selects the specific 
VM function being invoked.

Section 27.5.6.1 explains how VM functions are enabled. Section 27.5.6.2 specifies the behavior of the VMFUNC 
instruction. Section 27.5.6.3 describes a specific VM function called EPTP switching.

27.5.6.1  Enabling VM Functions
Software enables VM functions generally by setting the “enable VM functions” VM-execution control. A specific 
VM function is enabled by setting the corresponding VM-function control.

Suppose, for example, that software wants to enable EPTP switching (VM function 0; see Section 26.6.14).To do 
so, it must set the “activate secondary controls” VM-execution control (bit 31 of the primary processor-based VM-
execution controls), the “enable VM functions” VM-execution control (bit 13 of the secondary processor-based VM-
execution controls) and the “EPTP switching” VM-function control (bit 0 of the VM-function controls).

27.5.6.2  General Operation of the VMFUNC Instruction
The VMFUNC instruction causes an invalid-opcode exception (#UD) if the “enable VM functions” VM-execution 
controls is 01 or the value of EAX is greater than 63 (only VM functions 0–63 can be enable). Otherwise, the instruc-
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tion causes a VM exit if the bit at position EAX is 0 in the VM-function controls (the selected VM function is not 
enabled). If such a VM exit occurs, the basic exit reason used is 59 (3BH), indicating “VMFUNC”, and the length of 
the VMFUNC instruction is saved into the VM-exit instruction-length field. If the instruction causes neither an 
invalid-opcode exception nor a VM exit due to a disabled VM function, it performs the functionality of the 
VM function specified by the value in EAX.

Individual VM functions may perform additional fault checking (e.g., one might cause a general-protection excep-
tion if CPL > 0). In addition, specific VM functions may include checks that might result in a VM exit. If such a 
VM exit occurs, VM-exit information is saved as described in the previous paragraph. The specification of a 
VM function may indicate that additional VM-exit information is provided.

The specific behavior of the EPTP-switching VM function (including checks that result in VM exits) is given in 
Section 27.5.6.3.

27.5.6.3  EPTP Switching
EPTP switching is VM function 0. This VM function allows software in VMX non-root operation to load a new value 
for the EPT pointer (EPTP), thereby establishing a different EPT paging-structure hierarchy (see Section 30.3 for 
details of the operation of EPT). Software is limited to selecting from a list of potential EPTP values configured in 
advance by software in VMX root operation.

Specifically, the value of ECX is used to select an entry from the EPTP list, the 4-KByte structure referenced by the 
EPTP-list address (see Section 26.6.14; because this structure contains 512 8-Byte entries, VMFUNC causes a 
VM exit if ECX ≥ 512). The EPTP value in the selected entry is evaluated to determine whether it is valid for EPTP 
switching: a value is valid if (1) it is the same as the current EPTP value in bits 5:3 (these bits specify the EPT page-
walk length); and (2) it would not cause VM entry to fail (see Section 28.2.1.1). If the value is invalid, a VM exit 
occurs. Otherwise, the value is stored in the EPTP field of the current VMCS and is used for subsequent accesses 
using guest-physical addresses. The following pseudocode provides details:

IF ECX ≥ 512
THEN VM exit;
ELSE

tent_EPTP := 8 bytes from EPTP-list address + 8 * ECX;
IF tent_EPTP is not a valid EPTP value (would cause VM entry to fail if in EPTP or change EPT page-walk length)

THEN VM exit;
ELSE

write tent_EPTP to the EPTP field in the current VMCS;
use tent_EPTP as the new EPTP value for address translation;
IF processor supports the 1-setting of the “EPT-violation #VE” VM-execution control

THEN
write ECX[15:0] to EPTP-index field in current VMCS;
use ECX[15:0] as EPTP index for subsequent EPT-violation virtualization exceptions (see Section 27.5.7.2);

FI;
FI;

FI;

Execution of the EPTP-switching VM function does not modify the state of any registers; no flags are modified.

If the “Intel PT uses guest physical addresses” VM-execution control is 1 and IA32_RTIT_CTL.TraceEn = 1, any 
execution of the EPTP-switching VM function causes a VM exit.1

As noted in Section 27.5.6.2, an execution of the EPTP-switching VM function that causes a VM exit (as specified 
above), uses the basic exit reason 59, indicating “VMFUNC”. The length of the VMFUNC instruction is saved into the 
VM-exit instruction-length field. No additional VM-exit information is provided.

1. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VMX non-root operation functions as if the “enable VM functions” VM-execution control were 0. See Section 26.6.2.

1. Such a VM exit ensures the proper recording of trace data that might otherwise be lost during the change of EPT paging-structure 
hierarchy. Software handling the VM exit can change emulate the VM function and then resume the guest.
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An execution of VMFUNC loads EPTP from the EPTP list (and thus does not cause a fault or VM exit) is called an 
EPTP-switching VMFUNC. After an EPTP-switching VMFUNC, control passes to the next instruction. The logical 
processor starts creating and using guest-physical and combined mappings associated with the new value of bits 
51:12 of EPTP; the combined mappings created and used are associated with the current VPID and PCID (these are 
not changed by VMFUNC).1 If the “enable VPID” VM-execution control is 0, an EPTP-switching VMFUNC invalidates 
combined mappings associated with VPID 0000H (for all PCIDs and for all EPTRTA values, where EPTRTA is the 
value of bits 51:12 of EPTP).

Because an EPTP-switching VMFUNC may change the translation of guest-physical addresses, it may affect use of 
the guest-physical address in CR3. The EPTP-switching VMFUNC cannot itself cause a VM exit due to an EPT viola-
tion or an EPT misconfiguration due to the translation of that guest-physical address through the new EPT paging 
structures. The following items provide details that apply if CR0.PG = 1:
• If 32-bit paging or 4-level paging2 is in use (either CR4.PAE = 0 or IA32_EFER.LMA = 1), the next memory 

access with a linear address uses the translation of the guest-physical address in CR3 through the new EPT 
paging structures. As a result, this access may cause a VM exit due to an EPT violation or an EPT misconfigu-
ration encountered during that translation.

• If PAE paging is in use (CR4.PAE = 1 and IA32_EFER.LMA = 0), an EPTP-switching VMFUNC does not load the 
four page-directory-pointer-table entries (PDPTEs) from the guest-physical address in CR3. The logical 
processor continues to use the four guest-physical addresses already present in the PDPTEs. The guest-
physical address in CR3 is not translated through the new EPT paging structures (until some operation that 
would load the PDPTEs).
The EPTP-switching VMFUNC cannot itself cause a VM exit due to an EPT violation or an EPT misconfiguration
encountered during the translation of a guest-physical address in any of the PDPTEs. A subsequent memory
access with a linear address uses the translation of the guest-physical address in the appropriate PDPTE
through the new EPT paging structures. As a result, such an access may cause a VM exit due to an EPT
violation or an EPT misconfiguration encountered during that translation.

If an EPTP-switching VMFUNC establishes an EPTP value that enables accessed and dirty flags for EPT (by setting 
bit 6), subsequent memory accesses may fail to set those flags as specified if there has been no appropriate execu-
tion of INVEPT since the last use of an EPTP value that does not enable accessed and dirty flags for EPT (because 
bit 6 is clear) and that is identical to the new value on bits 51:12.

IF the processor supports the 1-setting of the “EPT-violation #VE” VM-execution control, an EPTP-switching 
VMFUNC loads the value in ECX[15:0] into to EPTP-index field in current VMCS. Subsequent EPT-violation virtual-
ization exceptions will save this value into the virtualization-exception information area (see Section 27.5.7.2).

27.5.7 Virtualization Exceptions
A virtualization exception is a new processor exception. It uses vector 20 and is abbreviated #VE.

A virtualization exception can occur only in VMX non-root operation. Virtualization exceptions occur only with 
certain settings of certain VM-execution controls. Generally, these settings imply that certain conditions that would 
normally cause VM exits instead cause virtualization exceptions

In particular, the 1-setting of the “EPT-violation #VE” VM-execution control causes some EPT violations to generate 
virtualization exceptions instead of VM exits. Section 27.5.7.1 provides the details of how the processor determines 
whether an EPT violation causes a virtualization exception or a VM exit.

When the processor encounters a virtualization exception, it saves information about the exception to the virtual-
ization-exception information area; see Section 27.5.7.2.

After saving virtualization-exception information, the processor delivers a virtualization exception as it would any 
other exception; see Section 27.5.7.3 for details.

1. If the “enable VPID” VM-execution control is 0, the current VPID is 0000H; if CR4.PCIDE = 0, the current PCID is 000H.

2. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.
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27.5.7.1  Convertible EPT Violations
If the “EPT-violation #VE” VM-execution control is 0 (e.g., on processors that do not support this feature), EPT 
violations always cause VM exits. If instead the control is 1, certain EPT violations may be converted to cause virtu-
alization exceptions instead; such EPT violations are convertible. 

The values of certain EPT paging-structure entries determine which EPT violations are convertible. Specifically, 
bit 63 of certain EPT paging-structure entries may be defined to mean suppress #VE:
• If bits 2:0 of an EPT paging-structure entry are all 0, the entry is not present.1 If the processor encounters 

such an entry while translating a guest-physical address, it causes an EPT violation. The EPT violation is 
convertible if and only if bit 63 of the entry is 0.

• If an EPT paging-structure entry is present, the following cases apply:

— If the value of the EPT paging-structure entry is not supported, the entry is misconfigured. If the 
processor encounters such an entry while translating a guest-physical address, it causes an EPT misconfig-
uration (not an EPT violation). EPT misconfigurations always cause VM exits.

— If the value of the EPT paging-structure entry is supported, the following cases apply:

• If bit 7 of the entry is 1, or if the entry is an EPT PTE, the entry maps a page. If the processor uses such 
an entry to translate a guest-physical address, and if an access to that address causes an EPT violation, 
the EPT violation is convertible if and only if bit 63 of the entry is 0.

• If bit 7 of the entry is 0 and the entry is not an EPT PTE, the entry references another EPT paging 
structure. The processor does not use the value of bit 63 of the entry to determine whether any 
subsequent EPT violation is convertible.

If an access to a guest-physical address causes an EPT violation, bit 63 of exactly one of the EPT paging-structure 
entries used to translate that address is used to determine whether the EPT violation is convertible: either a entry 
that is not present (if the guest-physical address does not translate to a physical address) or an entry that maps a 
page (if it does).

A convertible EPT violation instead causes a virtualization exception if the following all hold:
• CR0.PE = 1;
• the logical processor is not in the process of delivering an event through the IDT; 
• the EPT violation did not cause a shadow stack to become prematurely busy (see Section 27.4.3);
• the EPT violation does not result from the output process of Intel Processor Trace (Section 27.5.4); and
• the 32 bits at offset 4 in the virtualization-exception information area are all 0.

Delivery of virtualization exceptions writes the value FFFFFFFFH to offset 4 in the virtualization-exception informa-
tion area (see Section 27.5.7.2). Thus, once a virtualization exception occurs, another can occur only if software 
clears this field.

27.5.7.2  Virtualization-Exception Information
Virtualization exceptions save data into the virtualization-exception information area (see Section 26.6.20). 
Table 27-1 enumerates the data saved and the format of the area.

1. If the “mode-based execute control for EPT” VM-execution control is 1, an EPT paging-structure entry is present if any of bits 2:0 or 
bit 10 is 1.

Table 27-1.  Format of the Virtualization-Exception Information Area

Byte Offset Contents

0 The 32-bit value that would have been saved into the VMCS as an exit reason had a VM exit occurred 
instead of the virtualization exception. For EPT violations, this value is 48 (00000030H)

4 FFFFFFFFH
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A VMM may allow guest software to access the virtualization-exception information area. If it does, the guest soft-
ware may modify that memory (e.g., to clear the 32-bit value at offset 4; see Section 27.5.7.1). (This is an excep-
tion to the general requirement given in Section 26.11.4.)

27.5.7.3  Delivery of Virtualization Exceptions
After saving virtualization-exception information, the processor treats a virtualization exception as it does other 
exceptions:
• If bit 20 (#VE) is 1 in the exception bitmap in the VMCS, a virtualization exception causes a VM exit (see 

below). If the bit is 0, the virtualization exception is delivered using gate descriptor 20 in the IDT.
• Virtualization exceptions produce no error code. Delivery of a virtualization exception pushes no error code on 

the stack.
• With respect to double faults, virtualization exceptions have the same severity as page faults. If delivery of a 

virtualization exception encounters a nested fault that is either contributory or a page fault, a double fault 
(#DF) is generated. See Chapter 7, “Interrupt 8—Double Fault Exception (#DF)” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A.
It is not possible for a virtualization exception to be encountered while delivering another exception (see
Section 27.5.7.1).

If a virtualization exception causes a VM exit directly (because bit 20 is 1 in the exception bitmap), information 
about the exception is saved normally in the VM-exit interruption information field in the VMCS (see Section 
29.2.2). Specifically, the event is reported as a hardware exception with vector 20 and no error code. Bit 12 of the 
field (NMI unblocking due to IRET) is set normally.

If a virtualization exception causes a VM exit indirectly (because bit 20 is 0 in the exception bitmap and delivery of 
the exception generates an event that causes a VM exit), information about the exception is saved normally in the 
IDT-vectoring information field in the VMCS (see Section 29.2.4). Specifically, the event is reported as a hardware 
exception with vector 20 and no error code.

27.5.8 PASID Translation
The ENQCMD and ENQCMDS instructions each performs a 64-byte enqueue store that includes a 20-bit PASID 
value in bits 19:0. For ENQCMD, the PASID is normally the value of IA32_PASID[19:0], while for ENQCMDS, the 
PASID is normally read from memory.

If the “PASID translation” VM-execution control is 1, the PASID value identified in the previous paragraph is treated 
as a guest PASID. PASID translation converts this guest PASID to a 20-bit host PASID. After this translation, the 
enqueue store is performed, using the host PASID in place of the guest PASID.

PASID translation is implemented by two hierarchies of data structures (PASID-translation hierarchies) config-
ured by a VMM. Guest PASIDs 00000H to 7FFFFH are translated through the low PASID-translation hierarchy, while 
guest PASIDs 80000 to FFFFFH are translated through the high PASID-translation hierarchy.

8 The 64-bit value that would have been saved into the VMCS as an exit qualification had a VM exit 
occurred instead of the virtualization exception

16 The 64-bit value that would have been saved into the VMCS as a guest-linear address had a VM exit 
occurred instead of the virtualization exception

24 The 64-bit value that would have been saved into the VMCS as a guest-physical address had a VM 
exit occurred instead of the virtualization exception

32 The current 16-bit value of the EPTP index VM-execution control (see Section 26.6.20 and Section 
27.5.6.3)

Table 27-1.  Format of the Virtualization-Exception Information Area (Contd.)

Byte Offset Contents
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The root of each PASID-translation hierarchy is a 4-KByte PASID directory. The low PASID directory is located at 
the low PASID directory address, and the high PASID directory is located at the high PASID directory address 
(these physical addresses are VM-execution control fields in the VMCS). A PASID directory comprises 512 8-byte 
entries, each of which has the following format:
• Bit 0 is the entry’s present bit. The entry is used only if this bit is 1.
• Bits 11:1 are reserved and must be 0.
• Bits M–1:12 specify the 4-KByte aligned address of a PASID table (see below), where M is the processor’s 

physical-address width.
• Bits 63:M are reserved and must be 0.
A PASID-translation hierarchy also includes up to 512 4-KByte PASID tables; each of these is referenced by a 
PASID directory entry (see above). A PASID table comprises 1024 4-byte entries, each of which has the following 
format:
• Bits 19:0 are the host PASID specified by the entry.
• Bits 30:20 are reserved and must be 0.
• Bits 31 is the entry’s valid bit. The entry is used only if this bit is 1.

When PASID translation is enabled, the guest PASID determined by the instruction (see above) is converted to a 
host PASID using the following process:
• If bit 19 of guest PASID is clear, the low PASID directory is used; otherwise, the high PASID directory is used.
• Bits 18:10 of the guest PASID select an entry from the PASID directory. A VM exit occurs if the entry’s present 

bit is clear or if any reserved bit is set. Otherwise, bits M:0 of the entry (with bit 0 cleared) contain the physical 
address of a PASID table.

• Bits 9:0 of the guest PASID select an entry from the PASID table. A VM exit occurs if the entry’s valid bit is clear 
or if any reserved bit is set. Otherwise, bits 19:0 of the entry are the host PASID.

If PASID translation results in a VM exit (due to a present or valid bit being clear, or a reserved bit being set), the 
instruction does not complete and no enqueue store is performed.

27.6 UNRESTRICTED GUESTS
The first processors to support VMX operation require CR0.PE and CR0.PG to be 1 in VMX operation (see Section 
25.8). This restriction implies that guest software cannot be run in unpaged protected mode or in real-address 
mode. Later processors support a VM-execution control called “unrestricted guest”.1 If this control is 1, CR0.PE and 
CR0.PG may be 0 in VMX non-root operation. Such processors allow guest software to run in unpaged protected 
mode or in real-address mode. The following items describe the behavior of such software:
• The MOV CR0 instructions does not cause a general-protection exception simply because it would set either 

CR0.PE and CR0.PG to 0. See Section 27.3 for details.
• A logical processor treats the values of CR0.PE and CR0.PG in VMX non-root operation just as it does outside 

VMX operation. Thus, if CR0.PE = 0, the processor operates as it does normally in real-address mode (for 
example, it uses the 16-bit interrupt table to deliver interrupts and exceptions). If CR0.PG = 0, the processor 
operates as it does normally when paging is disabled.

• Processor operation is modified by the fact that the processor is in VMX non-root operation and by the settings 
of the VM-execution controls just as it is in protected mode or when paging is enabled. Instructions, interrupts, 
and exceptions that cause VM exits in protected mode or when paging is enabled also do so in real-address 
mode or when paging is disabled. The following examples should be noted:

— If CR0.PG = 0, page faults do not occur and thus cannot cause VM exits.

— If CR0.PE = 0, invalid-TSS exceptions do not occur and thus cannot cause VM exits.

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VMX non-root operation functions as if the “unrestricted guest” VM-execution control were 0. See Section 26.6.2.
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— If CR0.PE = 0, the following instructions cause invalid-opcode exceptions and do not cause VM exits: 
INVEPT, INVVPID, LLDT, LTR, SLDT, STR, VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, 
VMRESUME, VMWRITE, VMXOFF, and VMXON.

• If CR0.PG = 0, each linear address is passed directly to the EPT mechanism for translation to a physical 
address.1 The guest memory type passed on to the EPT mechanism is WB (writeback).

1. As noted in Section 28.2.1.1, the “enable EPT” VM-execution control must be 1 if the “unrestricted guest” VM-execution control is 1.
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CHAPTER 28
VM ENTRIES

Software can enter VMX non-root operation using either of the VM-entry instructions VMLAUNCH and VMRESUME. 
VMLAUNCH can be used only with a VMCS whose launch state is clear and VMRESUME can be used only with a 
VMCS whose the launch state is launched. VMLAUNCH should be used for the first VM entry after VMCLEAR; VMRE-
SUME should be used for subsequent VM entries with the same VMCS.

Each VM entry performs the following steps in the order indicated:

1. Basic checks are performed to ensure that VM entry can commence (Section 28.1).

2. The control and host-state areas of the VMCS are checked to ensure that they are proper for supporting VMX 
non-root operation and that the VMCS is correctly configured to support the next VM exit (Section 28.2).

3. The following may be performed in parallel or in any order (Section 28.3):

• The guest-state area of the VMCS is checked to ensure that, after the VM entry completes, the state of the 
logical processor is consistent with IA-32 and Intel 64 architectures.

• Processor state is loaded from the guest-state area and based on controls in the VMCS.

• Address-range monitoring is cleared.

4. MSRs are loaded from the VM-entry MSR-load area (Section 28.4).

5. If VMLAUNCH is being executed, the launch state of the VMCS is set to “launched.”

6. If the “Intel PT uses guest physical addresses” VM-execution control is 1, trace-address pre-translation (TAPT) 
may occur (see Section 27.5.4 and Section 28.5).

7. An event may be injected in the guest context (Section 28.6).

Steps 1–4 above perform checks that may cause VM entry to fail. Such failures occur in one of the following three 
ways:
• Some of the checks in Section 28.1 may generate ordinary faults (for example, an invalid-opcode exception). 

Such faults are delivered normally.
• Some of the checks in Section 28.1 and all the checks in Section 28.2 cause control to pass to the instruction 

following the VM-entry instruction. The failure is indicated by setting RFLAGS.ZF1 (if there is a current VMCS) 
or RFLAGS.CF (if there is no current VMCS). If there is a current VMCS, an error number indicating the cause of 
the failure is stored in the VM-instruction error field. See Chapter 31 for the error numbers.

• The checks in Section 28.3 and Section 28.4 cause processor state to be loaded from the host-state area of the 
VMCS (as would be done on a VM exit). Information about the failure is stored in the VM-exit information fields. 
See Section 28.8 for details.

EFLAGS.TF = 1 causes a VM-entry instruction to generate a single-step debug exception only if failure of one of the 
checks in Section 28.1 and Section 28.2 causes control to pass to the following instruction. A VM-entry does not 
generate a single-step debug exception in any of the following cases: (1) the instruction generates a fault; (2) 
failure of one of the checks in Section 28.3 or in loading MSRs causes processor state to be loaded from the host-
state area of the VMCS; or (3) the instruction passes all checks in Section 28.1, Section 28.2, and Section 28.3 and 
there is no failure in loading MSRs.

Section 33.15 describes the dual-monitor treatment of system-management interrupts (SMIs) and system-
management mode (SMM). Under this treatment, code running in SMM returns using VM entries instead of the RSM 
instruction. A VM entry returns from SMM if it is executed in SMM and the “entry to SMM” VM-entry control is 0. 
VM entries that return from SMM differ from ordinary VM entries in ways that are detailed in Section 33.15.4.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For IA-32 processors, this notation refers to the 32-bit forms of those registers (EAX, EIP, 
ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.
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28.1 BASIC VM-ENTRY CHECKS
Before a VM entry commences, the current state of the logical processor is checked in the following order:

1. If the logical processor is in virtual-8086 mode or compatibility mode, an invalid-opcode exception is
generated.

2. If the current privilege level (CPL) is not zero, a general-protection exception is generated.

3. If there is no current VMCS, RFLAGS.CF is set to 1 and control passes to the next instruction.

4. If there is a current VMCS but the current VMCS is a shadow VMCS (see Section 26.10), RFLAGS.CF is set to 1 
and control passes to the next instruction.

5. If there is a current VMCS that is not a shadow VMCS, the following conditions are evaluated in order; any of 
these cause VM entry to fail:

a. If there is MOV-SS blocking (see Table 26-3).

b. If the VM entry is invoked by VMLAUNCH and the VMCS launch state is not clear.

c. If the VM entry is invoked by VMRESUME and the VMCS launch state is not launched.
If any of these checks fail, RFLAGS.ZF is set to 1 and control passes to the next instruction. An error number 
indicating the cause of the failure is stored in the VM-instruction error field. See Chapter 31 for the error 
numbers.

28.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA
If the checks in Section 28.1 do not cause VM entry to fail, the control and host-state areas of the VMCS are 
checked to ensure that they are proper for supporting VMX non-root operation, that the VMCS is correctly config-
ured to support the next VM exit, and that, after the next VM exit, the processor’s state is consistent with the Intel 
64 and IA-32 architectures.

VM entry fails if any of these checks fail. When such failures occur, control is passed to the next instruction, 
RFLAGS.ZF is set to 1 to indicate the failure, and the VM-instruction error field is loaded with an error number that 
indicates whether the failure was due to the controls or the host-state area (see Chapter 31).

These checks may be performed in any order. Thus, an indication by error number of one cause (for example, host 
state) does not imply that there are not also other errors. Different processors may thus give different error 
numbers for the same VMCS. Some checks prevent establishment of settings (or combinations of settings) that are 
currently reserved. Future processors may allow such settings (or combinations) and may not perform the corre-
sponding checks. The correctness of software should not rely on VM-entry failures resulting from the checks docu-
mented in this section.

The checks on the controls and the host-state area are presented in Section 28.2.1 through Section 28.2.4. These 
sections reference VMCS fields that correspond to processor state. Unless otherwise stated, these references are to 
fields in the host-state area.

28.2.1 Checks on VMX Controls
This section identifies VM-entry checks on the VMX control fields.

28.2.1.1  VM-Execution Control Fields
VM entries perform the following checks on the VM-execution control fields:1

• Reserved bits in the pin-based VM-execution controls must be set properly. Software may consult the VMX 
capability MSRs to determine the proper settings (see Appendix A.3.1).

1. If the “activate secondary controls” primary processor-based VM-execution control is 0, VM entry operates as if each secondary pro-
cessor-based VM-execution control were 0. Similarly, if the “activate tertiary controls” primary processor-based VM-execution con-
trol is 0, VM entry operates as if each tertiary processor-based VM-execution control were 0. See Section 26.6.2.
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• Reserved bits in the primary processor-based VM-execution controls must be set properly. Software may 
consult the VMX capability MSRs to determine the proper settings (see Appendix A.3.2).

• If the “activate secondary controls” primary processor-based VM-execution control is 1, reserved bits in the 
secondary processor-based VM-execution controls must be cleared. Software may consult the VMX capability 
MSRs to determine which bits are reserved (see Appendix A.3.3).
If the “activate secondary controls” primary processor-based VM-execution control is 0 (or if the processor
does not support the 1-setting of that control), no checks are performed on the secondary processor-based
VM-execution controls. The logical processor operates as if all the secondary processor-based VM-execution
controls were 0.

• If the “activate tertiary controls” primary processor-based VM-execution control is 1, reserved bits in the 
tertiary processor-based VM-execution controls must be cleared. Software may consult the VMX capability 
MSRs to determine which bits are reserved (see Appendix A.3.4).
If the “activate tertiary controls” primary processor-based VM-execution control is 0 (or if the processor does
not support the 1-setting of that control), no checks are performed on the tertiary processor-based VM-
execution controls. The logical processor operates as if all the tertiary processor-based VM-execution controls
were 0.

• The CR3-target count must not be greater than 4. Future processors may support a different number of CR3-
target values. Software should read the VMX capability MSR IA32_VMX_MISC to determine the number of 
values supported (see Appendix A.6).

• If the “use I/O bitmaps” VM-execution control is 1, bits 11:0 of each I/O-bitmap address must be 0. Neither 
address should set any bits beyond the processor’s physical-address width.1,2

• If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap address must be 0. The 
address should not set any bits beyond the processor’s physical-address width.3

• If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.4

If all of the above checks are satisfied and the “use TPR shadow” VM-execution control is 1, bytes 3:1 of VTPR
(see Section 31.1.1) may be cleared (behavior may be implementation-specific).
The clearing of these bytes may occur even if the VM entry fails. This is true either if the failure causes control
to pass to the instruction following the VM-entry instruction or if it causes processor state to be loaded from
the host-state area of the VMCS.

• If the “use TPR shadow” VM-execution control is 1 and the “virtual-interrupt delivery” VM-execution control is 
0, bits 31:4 of the TPR threshold VM-execution control field must be 0.

• The following check is performed if the “use TPR shadow” VM-execution control is 1 and the “virtualize APIC 
accesses” and “virtual-interrupt delivery” VM-execution controls are both 0: the value of bits 3:0 of the TPR 
threshold VM-execution control field should not be greater than the value of bits 7:4 of VTPR (see Section 
31.1.1).

• If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution control must be 0.
• If the “virtual NMIs” VM-execution control is 0, the “NMI-window exiting” VM-execution control must be 0.
• If the “virtualize APIC-accesses” VM-execution control is 1, the APIC-access address must satisfy the following 

checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.5

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, these addresses must not set any bits in the range 63:32; see Appendix A.1.

3. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

4. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

5. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.
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• If the “use TPR shadow” VM-execution control is 0, the following VM-execution controls must also be 0: 
“virtualize x2APIC mode”, “APIC-register virtualization”, “virtual-interrupt delivery”, and “IPI virtualization”.

• If the “virtualize x2APIC mode” VM-execution control is 1, the “virtualize APIC accesses” VM-execution control 
must be 0.

• If the “virtual-interrupt delivery” VM-execution control is 1, the “external-interrupt exiting” VM-execution 
control must be 1.

• If the “process posted interrupts” VM-execution control is 1, the following must be true:

— The “virtual-interrupt delivery” VM-execution control is 1.

— The “acknowledge interrupt on exit” VM-exit control is 1.

— The posted-interrupt notification vector has a value in the range 0–255 (bits 15:8 are all 0).

— Bits 5:0 of the posted-interrupt descriptor address are all 0.

— The posted-interrupt descriptor address does not set any bits beyond the processor's physical-address 
width.1

• If the “IPI virtualization” VM-execution control is 1, the following must be true:

— Bits 2:0 of the PID-pointer table address are all 0.

— The PID-pointer table address does not set any bits beyond the processor’s physical-address width.

— The address of the last entry in the PID-pointer table does not set any bits beyond the processor’s physical-
address width. (This address is the PID-pointer table address plus 8 times the last PID-pointer index.)

• If the “enable VPID” VM-execution control is 1, the value of the VPID VM-execution control field must not be 
0000H.

• If the “enable EPT” VM-execution control is 1, the EPTP VM-execution control field (see Table 26-9 in Section 
26.6.11) must satisfy the following checks:

— The EPT memory type (bits 2:0) must be a value supported by the processor as indicated in the 
IA32_VMX_EPT_VPID_CAP MSR (see Appendix A.10).

— Bits 5:3 must contain a value 1 less than an EPT page-walk length supported by the processor as indicated 
in the IA32_VMX_EPT_VPID_CAP MSR (see Section 30.3.2 and Appendix A.10).

— Bit 6 (enable bit for accessed and dirty flags for EPT) must be 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP 
MSR (see Appendix A.10) is read as 0, indicating that the processor does not support accessed and dirty 
flags for EPT.

— Reserved bits 11:7 and 63:N (where N is the processor’s physical-address width) must all be 0.
• The “enable EPT” VM-execution control must be 1 if any of the following VM-execution controls is 1: “enable 

PML,” “unrestricted guest,” “mode-based execute control for EPT,” “sub-page write permissions for EPT,” “Intel 
PT uses guest physical addresses,” “enable HLAT,” “EPT paging-write control,” or “guest-paging verification.”

• If the “enable PML” VM-execution control is 1, the PML address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.
• If the “sub-page write permissions for EPT” VM-execution control is 1, the SPPTP VM-execution control field 

(see Table 26-11 in Section 26.6.22) must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.
• If the “enable VM functions” processor-based VM-execution control is 1, reserved bits in the VM-function 

controls must be clear. Software may consult the VMX capability MSRs to determine which bits are reserved 
(see Appendix A.11). In addition, the following check is performed based on the setting of bits in the VM-
function controls (see Section 26.6.14):

1. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.
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— If “EPTP switching” VM-function control is 1, the “enable EPT” VM-execution control must also be 1. In 
addition, the EPTP-list address must satisfy the following checks:

• Bits 11:0 of the address must be 0.

• The address must not set any bits beyond the processor’s physical-address width.
If the “enable VM functions” processor-based VM-execution control is 0, no checks are performed on the VM-
function controls.

• If the “VMCS shadowing” VM-execution control is 1, the VMREAD-bitmap and VMWRITE-bitmap addresses 
must each satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address must not set any bits beyond the processor’s physical-address width.
• If the “EPT-violation #VE” VM-execution control is 1, the virtualization-exception information address must 

satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address must not set any bits beyond the processor’s physical-address width.
• If the logical processor is operating with Intel PT enabled (if IA32_RTIT_CTL.TraceEn = 1) at the time of 

VM entry, the “load IA32_RTIT_CTL” VM-entry control must be 0.
• If the “Intel PT uses guest physical addresses” VM-execution control is 1, the “load IA32_RTIT_CTL” VM-entry 

control and the “clear IA32_RTIT_CTL” VM-exit control must both be 1.
• If the “use TSC scaling” VM-execution control is 1, the TSC-multiplier must not be zero.
• If the “enable HLAT” VM-execution control is 1, the following bits in the HLATP VM-execution control field (see 

Table 26-12 in Section 26.6.23) must be zero: bits 2:0, bits 11:5, and bits beyond the processor’s physical-
address width.

• If the “PASID translation” VM-execution control is 1, the low PASID directory address and the high PASID 
directory address must each satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address must not set any bits beyond the processor’s physical-address width.

28.2.1.2  VM-Exit Control Fields
VM entries perform the following checks on the VM-exit control fields.
• Reserved bits in the primary VM-exit controls must be set properly. Software may consult the VMX capability 

MSRs to determine the proper settings (see Appendix A.4.1).
• If the “activate secondary controls” primary VM-exit control is 1, reserved bits in the secondary VM-exit 

controls must be cleared. Software may consult the VMX capability MSRs to determine which bits are reserved 
(see Appendix A.4.2).

• If the “activate secondary controls” primary VM-exit control is 0 (or if the processor does not support the 1-
setting of that control), no checks are performed on the secondary VM-exit controls. The logical processor 
operates as if all the secondary VM-exit controls were 0.

• If the “activate VMX-preemption timer” VM-execution control is 0, the “save VMX-preemption timer value” VM-
exit control must also be 0.

• The following checks are performed for the VM-exit MSR-store address if the VM-exit MSR-store count field is 
non-zero:

— The lower 4 bits of the VM-exit MSR-store address must be 0. The address should not set any bits beyond 
the processor’s physical-address width.1

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.
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— The address of the last byte in the VM-exit MSR-store area should not set any bits beyond the processor’s 
physical-address width. The address of this last byte is VM-exit MSR-store address + (MSR count * 16) – 1. 
(The arithmetic used for the computation uses more bits than the processor’s physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the range 63:32; see Appendix
A.1.

• The following checks are performed for the VM-exit MSR-load address if the VM-exit MSR-load count field is 
non-zero:

— The lower 4 bits of the VM-exit MSR-load address must be 0. The address should not set any bits beyond 
the processor’s physical-address width.

— The address of the last byte in the VM-exit MSR-load area should not set any bits beyond the processor’s 
physical-address width. The address of this last byte is VM-exit MSR-load address + (MSR count * 16) – 1. 
(The arithmetic used for the computation uses more bits than the processor’s physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the range 63:32; see Appendix
A.1.

28.2.1.3  VM-Entry Control Fields
VM entries perform the following checks on the VM-entry control fields.
• Reserved bits in the VM-entry controls must be set properly. Software may consult the VMX capability MSRs to 

determine the proper settings (see Appendix A.5).
• Fields relevant to VM-entry event injection must be set properly. These fields are the VM-entry interruption-

information field (see Table 26-17 in Section 26.8.3), the VM-entry exception error code, and the VM-entry 
instruction length. If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the following must 
hold:

— The field’s interruption type (bits 10:8) is not set to a reserved value. Value 1 is reserved on all logical 
processors; value 7 (other event) is reserved on logical processors that do not support the 1-setting of the 
“monitor trap flag” VM-execution control.

— The field’s vector (bits 7:0) is consistent with the interruption type:

• If the interruption type is non-maskable interrupt (NMI), the vector is 2.

• If the interruption type is hardware exception, the vector is at most 31.

• If the interruption type is other event, the vector is 0 (pending MTF VM exit).

— The field's deliver-error-code bit (bit 11) is 1 if each of the following holds: (1) the interruption type is 
hardware exception; (2) either (a) the “unrestricted guest” VM-execution control is 0; or (b) bit 0 (corre-
sponding to CR0.PE) is set in the CR0 field in the guest-state area; (3) IA32_VMX_BASIC[56] is read as 0 
(see Appendix A.1); and (4) the vector indicates one of the following exceptions: #DF (vector 8), #TS (10), 
#NP (11), #SS (12), #GP (13), #PF (14), or #AC (17).

— The field's deliver-error-code bit is 0 if any of the following holds: (1) the interruption type is not hardware 
exception; (2) both (a) the “unrestricted guest” VM-execution control is 1; and (b) bit 0 is clear in the CR0 
field in the guest-state area; or (3) IA32_VMX_BASIC[56] is read as 0 and the vector is in one of the 
following ranges: 0–7, 9, 15, 16, or 18–31.

— Reserved bits in the field (30:12) are 0.

— If the deliver-error-code bit (bit 11) is 1, bits 31:16 of the VM-entry exception error-code field are 0.

— If the interruption type is software interrupt, software exception, or privileged software exception, the 
VM-entry instruction-length field is in the range 0–15. A VM-entry instruction length of 0 is allowed only if 
IA32_VMX_MISC[30] is read as 1; see Appendix A.6.

• The following checks are performed for the VM-entry MSR-load address if the VM-entry MSR-load count field is 
non-zero:

— The lower 4 bits of the VM-entry MSR-load address must be 0. The address should not set any bits beyond 
the processor’s physical-address width.1
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— The address of the last byte in the VM-entry MSR-load area should not set any bits beyond the processor’s 
physical-address width. The address of this last byte is VM-entry MSR-load address + (MSR count * 16) – 
1. (The arithmetic used for the computation uses more bits than the processor’s physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the range 63:32; see Appendix
A.1.

• If the processor is not in SMM, the “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls 
must be 0.

• The “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls cannot both be 1.

28.2.2 Checks on Host Control Registers, MSRs, and SSP
The following checks are performed on fields in the host-state area that correspond to control registers and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation (see Section 25.8).1

• The CR4 field must not set any bit to a value not supported in VMX operation (see Section 25.8).
• If bit 23 in the CR4 field (corresponding to CET) is 1, bit 16 in the CR0 field (WP) must also be 1.
• On processors that support Intel 64 architecture, the CR3 field must be such that bits reserved in CR3 

(including those in the range 51:32 beyond the processor’s physical-address width) must be 0.2,3

• On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP 
field must each contain a canonical address.

• If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, bits reserved in the IA32_PERF_GLOBAL_CTRL 
MSR must be 0 in the field for that register (see Figure 21-3).

• If the “load IA32_PAT” VM-exit control is 1, the value of the field for the IA32_PAT MSR must be one that could 
be written by WRMSR without fault at CPL 0. Specifically, each of the 8 bytes in the field must have one of the 
values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-exit control is 1, bits reserved in the IA32_EFER MSR must be 0 in the field for that 
register. In addition, the values of the LMA and LME bits in the field must each be that of the “host address-
space size” VM-exit control.

• If the “load CET state” VM-exit control is 1, the IA32_S_CET field must not set any bits reserved in the 
IA32_S_CET MSR, and bit 10 (corresponding to SUPPRESS) and bit 11 (TRACKER) in the field cannot both be 
set.

• If the “load CET state” VM-exit control is 1, bits 1:0 must be 0 in the SSP field.
• If the “load PKRS” VM-exit control is 1, bits 63:32 must be 0 in the IA32_PKRS field.

28.2.3 Checks on Host Segment and Descriptor-Table Registers
The following checks are performed on fields in the host-state area that correspond to segment and descriptor-
table registers:
• In the selector field for each of CS, SS, DS, ES, FS, GS, and TR, the RPL (bits 1:0) and the TI flag (bit 2) must 

be 0.
• The selector fields for CS and TR cannot be 0000H.
• The selector field for SS cannot be 0000H if the “host address-space size” VM-exit control is 0.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

1. The bits corresponding to CR0.NW (bit 29) and CR0.CD (bit 30) are never checked because the values of these bits are not changed 
by VM exit; see Section 29.5.1.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

3. Bit 63 of the CR3 field in the host-state area must be 0. This is true even though, If CR4.PCIDE = 1, bit 63 of the source operand to 
MOV to CR3 is used to determine whether cached translation information is invalidated.
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• On processors that support Intel 64 architecture, the base-address fields for FS, GS, GDTR, IDTR, and TR must 
contain canonical addresses.

28.2.4 Checks Related to Address-Space Size
On processors that support Intel 64 architecture, the following checks related to address-space size are performed 
on VMX controls and fields in the host-state area:
• If the logical processor is outside IA-32e mode (if IA32_EFER.LMA = 0) at the time of VM entry, the following 

must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— The “host address-space size” VM-exit control is 0.
• If the logical processor is in IA-32e mode (if IA32_EFER.LMA = 1) at the time of VM entry, the “host address-

space size” VM-exit control must be 1.
• If the “host address-space size” VM-exit control is 0, the following must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.

— Bits 63:32 in the RIP field are 0.

— If the “load CET state” VM-exit control is 1, bits 63:32 in the IA32_S_CET field and in the SSP field are 0.
• If the “host address-space size” VM-exit control is 1, the following must hold:

— Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.

— The RIP field contains a canonical address.

— If the “load CET state” VM-exit control is 1, the IA32_S_CET field and the SSP field contain canonical 
addresses.

• If the “load CET state” VM-exit control is 1, the IA32_INTERRUPT_SSP_TABLE_ADDR field contains a canonical 
address.

On processors that do not support Intel 64 architecture, checks are performed to ensure that the “IA-32e mode 
guest” VM-entry control and the “host address-space size” VM-exit control are both 0.

28.3 CHECKING AND LOADING GUEST STATE
If all checks on the VMX controls and the host-state area pass (see Section 28.2), the following operations take 
place concurrently: (1) the guest-state area of the VMCS is checked to ensure that, after the VM entry completes, 
the state of the logical processor is consistent with IA-32 and Intel 64 architectures; (2) processor state is loaded 
from the guest-state area or as specified by the VM-entry control fields; and (3) address-range monitoring is 
cleared.

Because the checking and the loading occur concurrently, a failure may be discovered only after some state has 
been loaded. For this reason, the logical processor responds to such failures by loading state from the host-state 
area, as it would for a VM exit. See Section 28.8.

28.3.1 Checks on the Guest State Area
This section describes checks performed on fields in the guest-state area. These checks may be performed in any 
order. Some checks prevent establishment of settings (or combinations of settings) that are currently reserved. 
Future processors may allow such settings (or combinations) and may not perform the corresponding checks. The 
correctness of software should not rely on VM-entry failures resulting from the checks documented in this section. 

The following subsections reference fields that correspond to processor state. Unless otherwise stated, these refer-
ences are to fields in the guest-state area.
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28.3.1.1  Checks on Guest Control Registers, Debug Registers, and MSRs
The following checks are performed on fields in the guest-state area corresponding to control registers, debug 
registers, and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation (see Section 25.8). The following 

are exceptions:

— Bit 0 (corresponding to CR0.PE) and bit 31 (PG) are not checked if the “unrestricted guest” VM-execution 
control is 1.1

— Bit 29 (corresponding to CR0.NW) and bit 30 (CD) are never checked because the values of these bits are 
not changed by VM entry; see Section 28.3.2.1.

• If bit 31 in the CR0 field (corresponding to PG) is 1, bit 0 in that field (PE) must also be 1.2

• The CR4 field must not set any bit to a value not supported in VMX operation (see Section 25.8).
• If bit 23 in the CR4 field (corresponding to CET) is 1, bit 16 in the CR0 field (WP) must also be 1.
• If the “load debug controls” VM-entry control is 1, bits reserved in the IA32_DEBUGCTL MSR must be 0 in the 

field for that register. The first processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus performed this check unconditionally.

• The following checks are performed on processors that support Intel 64 architecture:

— If the “IA-32e mode guest” VM-entry control is 1, bit 31 in the CR0 field (corresponding to CR0.PG) and 
bit 5 in the CR4 field (corresponding to CR4.PAE) must each be 1.3

— If the “IA-32e mode guest” VM-entry control is 0, bit 17 in the CR4 field (corresponding to CR4.PCIDE) 
must be 0.

— The CR3 field must be such that bits reserved in CR3 (including those in the range 51:32 beyond the 
processor’s physical-address width) are 0.4,5

— If the “load debug controls” VM-entry control is 1, bits 63:32 in the DR7 field must be 0. The first 
processors to support the virtual-machine extensions supported only the 1-setting of this control and thus 
performed this check unconditionally (if they supported Intel 64 architecture).

— The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field must each contain a canonical address.

— If the “load CET state” VM-entry control is 1, the IA32_S_CET field and the 
IA32_INTERRUPT_SSP_TABLE_ADDR field must contain canonical addresses.

• If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, bits reserved in the IA32_PERF_GLOBAL_CTRL 
MSR must be 0 in the field for that register (see Figure 21-3).

• If the “load IA32_PAT” VM-entry control is 1, the value of the field for the IA32_PAT MSR must be one that could 
be written by WRMSR without fault at CPL 0. Specifically, each of the 8 bytes in the field must have one of the 
values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-entry control is 1, the following checks are performed on the field for the 
IA32_EFER MSR:

— Bits reserved in the IA32_EFER MSR must be 0.

— Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of the “IA-32e mode guest” VM-entry 
control. It must also be identical to bit 8 (LME) if bit 31 in the CR0 field (corresponding to CR0.PG) is 1.6

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 26.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, bit 0 in the CR0 field must be 1 
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

3. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, bit 31 in the CR0 field must be 1 
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

4. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

5. Bit 63 of the CR3 field in the guest-state area must be 0. This is true even though, If CR4.PCIDE = 1, bit 63 of the source operand to 
MOV to CR3 is used to determine whether cached translation information is invalidated.
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• If the “load IA32_BNDCFGS” VM-entry control is 1, the following checks are performed on the field for the 
IA32_BNDCFGS MSR:

— Bits reserved in the IA32_BNDCFGS MSR must be 0.

— The linear address in bits 63:12 must be canonical. 
• If the “load IA32_RTIT_CTL” VM-entry control is 1, bits reserved in the IA32_RTIT_CTL MSR must be 0 in the 

field for that register (see Table 33-6).
• If the “load CET state” VM-entry control is 1, the IA32_S_CET field must not set any bits reserved in the 

IA32_S_CET MSR, and bit 10 (corresponding to SUPPRESS) and bit 11 (TRACKER) of the field cannot both be 
set.

• If the “load guest IA32_LBR_CTL” VM-entry control is 1, bits reserved in the IA32_LBR_CTL MSR must be 0 in 
the field for that register.

• If the “load PKRS” VM-entry control is 1, bits 63:32 must be 0 in the IA32_PKRS field.
• If the “load UINV” VM-entry control is 1, bits 15:8 must be 0 in the guest UINV field.

28.3.1.2  Checks on Guest Segment Registers
This section specifies the checks on the fields for CS, SS, DS, ES, FS, GS, TR, and LDTR. The following terms are 
used in defining these checks:
• The guest will be virtual-8086 if the VM flag (bit 17) is 1 in the RFLAGS field in the guest-state area.
• The guest will be IA-32e mode if the “IA-32e mode guest” VM-entry control is 1. (This is possible only on 

processors that support Intel 64 architecture.)
• Any one of these registers is said to be usable if the unusable bit (bit 16) is 0 in the access-rights field for that 

register.

The following are the checks on these fields: 
• Selector fields.

— TR. The TI flag (bit 2) must be 0.

— LDTR. If LDTR is usable, the TI flag (bit 2) must be 0.

— SS. If the guest will not be virtual-8086 and the “unrestricted guest” VM-execution control is 0, the RPL 
(bits 1:0) must equal the RPL of the selector field for CS.1

• Base-address fields.

— CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the address must be the selector field shifted left 
4 bits (multiplied by 16).

— The following checks are performed on processors that support Intel 64 architecture:

• TR, FS, GS. The address must be canonical.

• LDTR. If LDTR is usable, the address must be canonical.

• CS. Bits 63:32 of the address must be zero.

• SS, DS, ES. If the register is usable, bits 63:32 of the address must be zero.
• Limit fields for CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the field must be 0000FFFFH.
• Access-rights fields.

— CS, SS, DS, ES, FS, GS.

• If the guest will be virtual-8086, the field must be 000000F3H. This implies the following:

— Bits 3:0 (Type) must be 3, indicating an expand-up read/write accessed data segment.

6. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, bit 31 in the CR0 field must be 1 
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 26.6.2.
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— Bit 4 (S) must be 1.

— Bits 6:5 (DPL) must be 3.

— Bit 7 (P) must be 1.

— Bits 11:8 (reserved), bit 12 (software available), bit 13 (reserved/L), bit 14 (D/B), bit 15 (G),
bit 16 (unusable), and bits 31:17 (reserved) must all be 0.

• If the guest will not be virtual-8086, the different sub-fields are considered separately:

— Bits 3:0 (Type).

• CS. The values allowed depend on the setting of the “unrestricted guest” VM-execution
control:

— If the control is 0, the Type must be 9, 11, 13, or 15 (accessed code segment).

— If the control is 1, the Type must be either 3 (read/write accessed expand-up data
segment) or one of 9, 11, 13, and 15 (accessed code segment).

• SS. If SS is usable, the Type must be 3 or 7 (read/write, accessed data segment).

• DS, ES, FS, GS. The following checks apply if the register is usable:

— Bit 0 of the Type must be 1 (accessed).

— If bit 3 of the Type is 1 (code segment), then bit 1 of the Type must be 1 (readable).

— Bit 4 (S). If the register is CS or if the register is usable, S must be 1.

— Bits 6:5 (DPL).

• CS.

— If the Type is 3 (read/write accessed expand-up data segment), the DPL must be 0. The
Type can be 3 only if the “unrestricted guest” VM-execution control is 1.

— If the Type is 9 or 11 (non-conforming code segment), the DPL must equal the DPL in the
access-rights field for SS.

— If the Type is 13 or 15 (conforming code segment), the DPL cannot be greater than the
DPL in the access-rights field for SS.

• SS.

— If the “unrestricted guest” VM-execution control is 0, the DPL must equal the RPL from the
selector field.

— The DPL must be 0 either if the Type in the access-rights field for CS is 3 (read/write
accessed expand-up data segment) or if bit 0 in the CR0 field (corresponding to CR0.PE) is
0.1

• DS, ES, FS, GS. The DPL cannot be less than the RPL in the selector field if (1) the
“unrestricted guest” VM-execution control is 0; (2) the register is usable; and (3) the Type in
the access-rights field is in the range 0 – 11 (data segment or non-conforming code segment).

— Bit 7 (P). If the register is CS or if the register is usable, P must be 1.

— Bits 11:8 (reserved). If the register is CS or if the register is usable, these bits must all be 0.

— Bit 14 (D/B). For CS, D/B must be 0 if the guest will be IA-32e mode and the L bit (bit 13) in the
access-rights field is 1.

— Bit 15 (G). The following checks apply if the register is CS or if the register is usable:

• If any bit in the limit field in the range 11:0 is 0, G must be 0.

• If any bit in the limit field in the range 31:20 is 1, G must be 1.

1. The following apply if either the “unrestricted guest” VM-execution control or bit 31 of the primary processor-based VM-execution 
controls is 0: (1) bit 0 in the CR0 field must be 1 if the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX 
operation; and (2) the Type in the access-rights field for CS cannot be 3.
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— Bits 31:17 (reserved). If the register is CS or if the register is usable, these bits must all be 0.

— TR. The different sub-fields are considered separately:

• Bits 3:0 (Type).

— If the guest will not be IA-32e mode, the Type must be 3 (16-bit busy TSS) or 11 (32-bit busy
TSS).

— If the guest will be IA-32e mode, the Type must be 11 (64-bit busy TSS).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bit 16 (Unusable). The unusable bit must be 0.

• Bits 31:17 (reserved). These bits must all be 0.

— LDTR. The following checks on the different sub-fields apply only if LDTR is usable:

• Bits 3:0 (Type). The Type must be 2 (LDT).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bits 31:17 (reserved). These bits must all be 0.

28.3.1.3  Checks on Guest Descriptor-Table Registers
The following checks are performed on the fields for GDTR and IDTR:
• On processors that support Intel 64 architecture, the base-address fields must contain canonical addresses.
• Bits 31:16 of each limit field must be 0.

28.3.1.4  Checks on Guest RIP, RFLAGS, and SSP
The following checks are performed on fields in the guest-state area corresponding to RIP, RFLAGS, and SSP 
(shadow-stack pointer):
• RIP. The following checks are performed on processors that support Intel 64 architecture:

— Bits 63:32 must be 0 if the “IA-32e mode guest” VM-entry control is 0 or if the L bit (bit 13) in the access-
rights field for CS is 0.

— If the processor supports N < 64 linear-address bits, bits 63:N must be identical if the “IA-32e mode guest” 
VM-entry control is 1 and the L bit in the access-rights field for CS is 1.1 (No check applies if the processor 
supports 64 linear-address bits.) The guest RIP value is not required to be canonical; the value of bit N-1 
may differ from that of bit N.

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-address bits supported is 
returned in bits 15:8 of EAX.
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• RFLAGS.

— Reserved bits 63:22 (bits 31:22 on processors that do not support Intel 64 architecture), bit 15, bit 5 and 
bit 3 must be 0 in the field, and reserved bit 1 must be 1.

— The VM flag (bit 17) must be 0 either if the “IA-32e mode guest” VM-entry control is 1 or if bit 0 in the CR0 
field (corresponding to CR0.PE) is 0.1

— The IF flag (RFLAGS[bit 9]) must be 1 if the valid bit (bit 31) in the VM-entry interruption-information field 
is 1 and the interruption type (bits 10:8) is external interrupt.

• SSP. The following checks are performed if the “load CET state” VM-entry control is 1

— Bits 1:0 must be 0.

— If the processor supports the Intel 64 architecture, bits 63:N must be identical, where N is the CPU’s 
maximum linear-address width. (This check does not apply if the processor supports 64 linear-address 
bits.) The guest SSP value is not required to be canonical; the value of bit N-1 may differ from that of bit N.

28.3.1.5  Checks on Guest Non-Register State
The following checks are performed on fields in the guest-state area corresponding to non-register state:
• Activity state.

— The activity-state field must contain a value in the range 0 – 3, indicating an activity state supported by the 
implementation (see Section 26.4.2). Future processors may include support for other activity states. 
Software should read the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to determine what 
activity states are supported.

— The activity-state field must not indicate the HLT state if the DPL (bits 6:5) in the access-rights field for SS 
is not 0.2

— The activity-state field must indicate the active state if the interruptibility-state field indicates blocking by 
either MOV-SS or by STI (if either bit 0 or bit 1 in that field is 1).

— If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the interruption to be delivered 
(as defined by interruption type and vector) must not be one that would normally be blocked while a logical 
processor is in the activity state corresponding to the contents of the activity-state field. The following 
items enumerate the interruptions (as specified in the VM-entry interruption-information field) whose 
injection is allowed for the different activity states:

• Active. Any interruption is allowed.

• HLT. The only events allowed are the following:

— Those with interruption type external interrupt or non-maskable interrupt (NMI).

— Those with interruption type hardware exception and vector 1 (debug exception) or vector 18
(machine-check exception).

— Those with interruption type other event and vector 0 (pending MTF VM exit).

See Table 26-17 in Section 26.8.3 for details regarding the format of the VM-entry interruption-
information field.

• Shutdown. Only NMIs and machine-check exceptions are allowed.

• Wait-for-SIPI. No interruptions are allowed.

— The activity-state field must not indicate the wait-for-SIPI state if the “entry to SMM” VM-entry control is 1.
• Interruptibility state.

— The reserved bits (bits 31:5) must be 0.

— The field cannot indicate blocking by both STI and MOV SS (bits 0 and 1 cannot both be 1).

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, bit 0 in the CR0 field must be 1 
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

2. As noted in Section 26.4.1, SS.DPL corresponds to the logical processor’s current privilege level (CPL).
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— Bit 0 (blocking by STI) must be 0 if the IF flag (bit 9) is 0 in the RFLAGS field.

— Bit 0 (blocking by STI) and bit 1 (blocking by MOV-SS) must both be 0 if the valid bit (bit 31) in the 
VM-entry interruption-information field is 1 and the interruption type (bits 10:8) in that field has value 0, 
indicating external interrupt, or value 2, indicating non-maskable interrupt (NMI).

— Bit 2 (blocking by SMI) must be 0 if the processor is not in SMM.

— Bit 2 (blocking by SMI) must be 1 if the “entry to SMM” VM-entry control is 1.

— Bit 3 (blocking by NMI) must be 0 if the “virtual NMIs” VM-execution control is 1, the valid bit (bit 31) in the 
VM-entry interruption-information field is 1, and the interruption type (bits 10:8) in that field has value 2 
(indicating NMI).

— If bit 4 (enclave interruption) is 1, bit 1 (blocking by MOV-SS) must be 0 and the processor must support 
for SGX by enumerating CPUID.(EAX=07H,ECX=0):EBX.SGX[bit 2] as 1.

NOTE
If the “virtual NMIs” VM-execution control is 0, there is no requirement that bit 3 be 0 if the valid bit 
in the VM-entry interruption-information field is 1 and the interruption type in that field has value 2.

• Pending debug exceptions.

— Bits 11:4, bit 13, bit 15, and bits 63:17 (bits 31:17 on processors that do not support Intel 64 architecture) 
must be 0.

— The following checks are performed if any of the following holds: (1) the interruptibility-state field indicates 
blocking by STI (bit 0 in that field is 1); (2) the interruptibility-state field indicates blocking by MOV SS 
(bit 1 in that field is 1); or (3) the activity-state field indicates HLT:

• Bit 14 (BS) must be 1 if the TF flag (bit 8) in the RFLAGS field is 1 and the BTF flag (bit 1) in the 
IA32_DEBUGCTL field is 0.

• Bit 14 (BS) must be 0 if the TF flag (bit 8) in the RFLAGS field is 0 or the BTF flag (bit 1) in the 
IA32_DEBUGCTL field is 1.

— The following checks are performed if bit 16 (RTM) is 1:

• Bits 11:0, bits 15:13, and bits 63:17 (bits 31:17 on processors that do not support Intel 64 archi-
tecture) must be 0; bit 12 must be 1.

• The processor must support for RTM by enumerating CPUID.(EAX=07H,ECX=0):EBX[bit 11] as 1.

• The interruptibility-state field must not indicate blocking by MOV SS (bit 1 in that field must be 0).
• VMCS link pointer. The following checks apply if the field contains a value other than FFFFFFFF_FFFFFFFFH:

— Bits 11:0 must be 0.

— Bits beyond the processor’s physical-address width must be 0.1,2

— The 4 bytes located in memory referenced by the value of the field (as a physical address) must satisfy the 
following:

• Bits 30:0 must contain the processor’s VMCS revision identifier (see Section 26.2).3

• Bit 31 must contain the setting of the “VMCS shadowing” VM-execution control.4 This implies that the 
referenced VMCS is a shadow VMCS (see Section 26.10) if and only if the “VMCS shadowing” VM-
execution control is 1.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this field must not set any bits in the range 63:32; see Appendix A.1.

3. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field. For all processors produced prior to this 
change, bit 31 of the VMCS revision identifier was 0.

4. “VMCS shadowing” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “VMCS shadowing” VM-execution control were 0. See Section 26.6.2.
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— If the processor is not in SMM or the “entry to SMM” VM-entry control is 1, the field must not contain the 
current VMCS pointer.

— If the processor is in SMM and the “entry to SMM” VM-entry control is 0, the field must differ from the 
executive-VMCS pointer.

28.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries
If CR0.PG =1, CR4.PAE = 1, and IA32_EFER.LME = 0, the logical processor uses PAE paging (see Section 5.4 in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).1 When PAE paging is in use, the 
physical address in CR3 references a table of page-directory-pointer-table entries (PDPTEs). A MOV to CR3 
when PAE paging is in use checks the validity of the PDPTEs.

A VM entry is to a guest that uses PAE paging if (1) bit 31 (corresponding to CR0.PG) is set in the CR0 field in the 
guest-state area; (2) bit 5 (corresponding to CR4.PAE) is set in the CR4 field; and (3) the “IA-32e mode guest” 
VM-entry control is 0. Such a VM entry checks the validity of the PDPTEs:
• If the “enable EPT” VM-execution control is 0, VM entry checks the validity of the PDPTEs referenced by the CR3 

field in the guest-state area if either (1) PAE paging was not in use before the VM entry; or (2) the value of CR3 
is changing as a result of the VM entry. VM entry may check their validity even if neither (1) nor (2) hold.2

• If the “enable EPT” VM-execution control is 1, VM entry checks the validity of the PDPTE fields in the guest-
state area (see Section 26.4.2).

A VM entry to a guest that does not use PAE paging does not check the validity of any PDPTEs.

A VM entry that checks the validity of the PDPTEs uses the same checks that are used when CR3 is loaded with 
MOV to CR3 when PAE paging is in use.3 If MOV to CR3 would cause a general-protection exception due to the 
PDPTEs that would be loaded (e.g., because a reserved bit is set), the VM entry fails.

28.3.2 Loading Guest State
Processor state is updated on VM entries in the following ways:
• Some state is loaded from the guest-state area.
• Some state is determined by VM-entry controls.
• The page-directory pointers are loaded based on the values of certain control registers.

This loading may be performed in any order and in parallel with the checking of VMCS contents (see Section 
28.3.1).

The loading of guest state is detailed in Section 28.3.2.1 to Section 28.3.2.4. These sections reference VMCS fields 
that correspond to processor state. Unless otherwise stated, these references are to fields in the guest-state area.

In addition to the state loading described in this section, VM entries may load MSRs from the VM-entry MSR-load 
area (see Section 28.4). This loading occurs only after the state loading described in this section and the checking 
of VMCS contents described in Section 28.3.1.

28.3.2.1  Loading Guest Control Registers, Debug Registers, and MSRs
The following items describe how guest control registers, debug registers, and MSRs are loaded on VM entry:

1. On processors that support Intel 64 architecture, the physical-address extension may support more than 36 physical-address bits. 
Software can determine the number physical-address bits supported by executing CPUID with 80000008H in EAX. The physical-
address width is returned in bits 7:0 of EAX.

2. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls 
is 0, VM entry functions as if the “enable EPT” VM-execution control were 0. See Section 26.6.2.

3. This implies that (1) bits 11:9 in each PDPTE are ignored; and (2) if bit 0 (present) is clear in one of the PDPTEs, bits 63:1 of that 
PDPTE are ignored.
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• CR0 is loaded from the CR0 field with the exception of the following bits, which are never modified on VM entry: 
ET (bit 4); reserved bits 15:6, 17, and 28:19; NW (bit 29) and CD (bit 30).1 The values of these bits in the CR0 
field are ignored.

• CR3 and CR4 are loaded from the CR3 field and the CR4 field, respectively.
• If the “load debug controls” VM-entry control is 1, DR7 is loaded from the DR7 field with the exception that 

bit 12 and bits 15:14 are always 0 and bit 10 is always 1. The values of these bits in the DR7 field are ignored.
The first processors to support the virtual-machine extensions supported only the 1-setting of the “load
debug controls” VM-entry control and thus always loaded DR7 from the DR7 field.

• The following describes how certain MSRs are loaded using fields in the guest-state area:

— If the “load debug controls” VM-entry control is 1, the IA32_DEBUGCTL MSR is loaded from the 
IA32_DEBUGCTL field. The first processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus always loaded the IA32_DEBUGCTL MSR from the IA32_DEBUGCTL field.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field. Since this field has only 32 bits, 
bits 63:32 of the MSR are cleared to 0.

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from the IA32_SYSENTER_ESP field 
and the IA32_SYSENTER_EIP field, respectively. On processors that do not support Intel 64 architecture, 
these fields have only 32 bits; bits 63:32 of the MSRs are cleared to 0.

— The following are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields for FS and GS, respectively 
(see Section 28.3.2.2).

• If the “load IA32_EFER” VM-entry control is 0, bits in the IA32_EFER MSR are modified as follows:

— IA32_EFER.LMA is loaded with the setting of the “IA-32e mode guest” VM-entry control.

— If CR0 is being loaded so that CR0.PG = 1, IA32_EFER.LME is also loaded with the setting of the
“IA-32e mode guest” VM-entry control.2 Otherwise, IA32_EFER.LME is unmodified.

See below for the case in which the “load IA32_EFER” VM-entry control is 1

— If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, the IA32_PERF_GLOBAL_CTRL MSR is loaded 
from the IA32_PERF_GLOBAL_CTRL field.

— If the “load IA32_PAT” VM-entry control is 1, the IA32_PAT MSR is loaded from the IA32_PAT field.

— If the “load IA32_EFER” VM-entry control is 1, the IA32_EFER MSR is loaded from the IA32_EFER field.

— If the “load IA32_BNDCFGS” VM-entry control is 1, the IA32_BNDCFGS MSR is loaded from the 
IA32_BNDCFGS field.

— If the “load IA32_RTIT_CTL” VM-entry control is 1, the IA32_RTIT_CTL MSR is loaded from the 
IA32_RTIT_CTL field.

— If the “load CET” VM-entry control is 1, the IA32_S_CET and IA32_INTERRUPT_SSP_TABLE_ADDR MSRs 
are loaded from the IA32_S_CET field and the IA32_INTERRUPT_SSP_TABLE_ADDR field, respectively. On 
processors that do not support Intel 64 architecture, these fields have only 32 bits; bits 63:32 of the MSRs 
are cleared to 0.

— If the “load guest IA32_LBR_CTL” VM-entry control is 1, the IA32_LBR_CTL MSR is loaded from the 
IA32_LBR_CTL guest state field.

— If the “load PKRS” VM-entry control is 1, the IA32_PKRS MSR is loaded from the IA32_PKRS field.

— If the “load UINV” VM-entry control is 1, UINV is loaded with the low 8 bits of the UINV field. UINV is 
represented in bits 39:32 of the IA32_UINTR_MISC MSR. The remainder of the MSR is not modified.

1. Bits 15:6, bit 17, and bit 28:19 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. Bits 15:6, bit 17, and bit 28:19 of 
CR0 are always 0 and CR0.ET is always 1.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, VM entry must be loading CR0 so 
that CR0.PG = 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution con-
trols are both 1.
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With the exception of FS.base and GS.base, any of these MSRs is subsequently overwritten if it appears in the
VM-entry MSR-load area. See Section 28.4.

• The SMBASE register is unmodified by all VM entries except those that return from SMM.

28.3.2.2  Loading Guest Segment Registers and Descriptor-Table Registers
For each of CS, SS, DS, ES, FS, GS, TR, and LDTR, fields are loaded from the guest-state area as follows:

• The unusable bit is loaded from the access-rights field. This bit can never be set for TR (see Section 28.3.1.2). 
If it is set for one of the other registers, the following apply:

— For each of CS, SS, DS, ES, FS, and GS, uses of the segment cause faults (general-protection exception or 
stack-fault exception) outside 64-bit mode, just as they would had the segment been loaded using a null 
selector. This bit does not cause accesses to fault in 64-bit mode.

— If this bit is set for LDTR, uses of LDTR cause general-protection exceptions in all modes, just as they would 
had LDTR been loaded using a null selector.

If this bit is clear for any of CS, SS, DS, ES, FS, GS, TR, and LDTR, a null selector value does not cause a fault
(general-protection exception or stack-fault exception).

• TR. The selector, base, limit, and access-rights fields are loaded.
• CS.

— The following fields are always loaded: selector, base address, limit, and (from the access-rights field) the 
L, D, and G bits.

— For the other fields, the unusable bit of the access-rights field is consulted:

• If the unusable bit is 0, all of the access-rights field is loaded.
• If the unusable bit is 1, the remainder of CS access rights are undefined after VM entry.

• SS, DS, ES, FS, GS, and LDTR.

— The selector fields are loaded.
— For the other fields, the unusable bit of the corresponding access-rights field is consulted:

• If the unusable bit is 0, the base-address, limit, and access-rights fields are loaded.
• If the unusable bit is 1, the base address, the segment limit, and the remainder of the access rights are 

undefined after VM entry with the following exceptions:

— Bits 3:0 of the base address for SS are cleared to 0.

— SS.DPL is always loaded from the SS access-rights field. This will be the current privilege level
(CPL) after the VM entry completes.

— SS.B is always set to 1.

— The base addresses for FS and GS are loaded from the corresponding fields in the VMCS. On
processors that support Intel 64 architecture, the values loaded for base addresses for FS and GS
are also manifest in the FS.base and GS.base MSRs.

— On processors that support Intel 64 architecture, bits 63:32 of the base addresses for SS, DS, and
ES are cleared to 0.

GDTR and IDTR are loaded using the base and limit fields.

28.3.2.3  Loading Guest RIP, RSP, RFLAGS, and SSP
RSP, RIP, and RFLAGS are loaded from the RSP field, the RIP field, and the RFLAGS field, respectively.

If the “load CET” VM-entry control is 1, SSP (shadow-stack pointer) is loaded from the SSP field.

The following items regard the upper 32 bits of these fields on VM entries that are not to 64-bit mode:
• Bits 63:32 of RSP are undefined outside 64-bit mode. Thus, a logical processor may ignore the contents of 

bits 63:32 of the RSP field on VM entries that are not to 64-bit mode.
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• As noted in Section 28.3.1.4, bits 63:32 of the RIP and RFLAGS fields must be 0 on VM entries that are not to 
64-bit mode. (The same is true for SSP for VM entries that are not to 64-bit mode when the “load CET” VM-
entry control is 1.)

28.3.2.4  Loading Page-Directory-Pointer-Table Entries
As noted in Section 28.3.1.6, the logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1, and 
IA32_EFER.LME = 0. A VM entry to a guest that uses PAE paging loads the PDPTEs into internal, non-architectural 
registers based on the setting of the “enable EPT” VM-execution control:
• If the control is 0, the PDPTEs are loaded from the page-directory-pointer table referenced by the physical 

address in the value of CR3 being loaded by the VM entry (see Section 28.3.2.1). The values loaded are treated 
as physical addresses in VMX non-root operation.

• If the control is 1, the PDPTEs are loaded from corresponding fields in the guest-state area (see Section 
26.4.2). The values loaded are treated as guest-physical addresses in VMX non-root operation.

28.3.2.5  Updating Non-Register State
Section 30.4 describes how the VMX architecture controls how a logical processor manages information in the TLBs 
and paging-structure caches. The following items detail how VM entries invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates linear mappings and combined 

mappings associated with VPID 0000H (for all PCIDs); combined mappings for VPID 0000H are invalidated for 
all EPTRTA values (EPTRTA is the value of bits 51:12 of EPTP).

• VM entries are not required to invalidate any guest-physical mappings, nor are they required to invalidate any 
linear mappings or combined mappings if the “enable VPID” VM-execution control is 1.

If the “virtual-interrupt delivery” VM-execution control is 1, VM entry loads the values of RVI and SVI from the 
guest interrupt-status field in the VMCS (see Section 26.4.2). After doing so, the logical processor first causes PPR 
virtualization (Section 31.1.3) and then evaluates pending virtual interrupts (Section 31.2.1).

If a virtual interrupt is recognized, it may be delivered in VMX non-root operation immediately after VM entry 
(including any specified event injection) completes; see Section 28.7.5. See Section 31.2.2 for details regarding 
the delivery of virtual interrupts.

28.3.3 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address range using the MONITOR and 
MWAIT instructions. See Section 10.10.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A. VM entries clear any address-range monitoring that may be in effect.

28.4 LOADING MSRS
VM entries may load MSRs from the VM-entry MSR-load area (see Section 26.8.2). Specifically each entry in that 
area (up to the number specified in the VM-entry MSR-load count) is processed in order by loading the MSR indexed 
by bits 31:0 with the contents of bits 127:64 as they would be written by WRMSR.1 

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or C0000101 (the IA32_GS_BASE MSR).
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows access to an APIC register 

when the local APIC is in x2APIC mode. 
• The value of bits 31:0 indicates an MSR that can be written only in system-management mode (SMM) and the 

VM entry did not commence in SMM. (IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)

1. Because attempts to modify the value of IA32_EFER.LMA by WRMSR are ignored, attempts to modify it using the VM-entry MSR-
load area are also ignored.
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• The value of bits 31:0 indicates an MSR that cannot be loaded on VM entries for model-specific reasons. A 
processor may prevent loading of certain MSRs even if they can normally be written by WRMSR. Such model-
specific behavior is documented in Chapter 2, “Model-Specific Registers (MSRs),” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 4.

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry would cause a general-protection 

exception if executed via WRMSR with CPL = 0.1

The VM entry fails if processing fails for any entry. The logical processor responds to such failures by loading state 
from the host-state area, as it would for a VM exit. See Section 28.8.

If any MSR is being loaded in such a way that would architecturally require a TLB flush, the TLBs are updated so 
that, after VM entry, the logical processor will not use any translations that were cached before the transition.

28.5 TRACE-ADDRESS PRE-TRANSLATION (TAPT)
When the “Intel PT uses guest physical addresses” VM-execution control is 1, the addresses used by Intel PT are 
treated as guest-physical addresses, and these are translated to physical addresses using EPT.

VM entry uses trace-address pre-translation (TAPT) to prevent buffered trace data from being lost due to an 
EPT violation; see Section 27.5.4.2. VM entry uses TAPT only if Intel PT will be enabled following VM entry 
(IA32_RTIT_CTL.TraceEn = 1) and only if the “Intel PT uses guest physical addresses” VM-execution control is 1

As noted in Section 27.5.4, TAPT may cause a VM exit due to an EPT violation, EPT misconfiguration, page-modifi-
cation log-full event, or APIC access. If such a VM exit occurs as a result of TAPT during VM entry, the VM exit oper-
ates as if it had occurred in VMX non-root operation after the VM entry completed (in the guest context).

If TAPT during VM entry causes a VM exit, the VM entry does not perform event injection (Section 28.6), even if the 
valid bit in the VM-entry interruption-information field is 1. Such VM exits save the contents of VM-entry interrup-
tion-information and VM-entry exception error code fields into the IDT-vectoring information and IDT-vectoring 
error code fields, respectively.

28.6 EVENT INJECTION
If the valid bit in the VM-entry interruption-information field (see Section 26.8.3) is 1, VM entry causes an event to 
be delivered (or made pending) after all components of guest state have been loaded (including MSRs) and after 
the VM-execution control fields have been established.
• If the interruption type in the field is 0 (external interrupt), 2 (non-maskable interrupt); 3 (hardware 

exception), 4 (software interrupt), 5 (privileged software exception), or 6 (software exception), the event is 
delivered as described in Section 28.6.1.

• If the interruption type in the field is 7 (other event) and the vector field is 0, an MTF VM exit is pending after 
VM entry. See Section 28.6.2.

28.6.1 Vectored-Event Injection
VM entry delivers an injected vectored event within the guest context established by VM entry. This means that 
delivery occurs after all components of guest state have been loaded (including MSRs) and after the VM-execution 

1. If CR0.PG = 1, WRMSR to the IA32_EFER MSR causes a general-protection exception if it would modify the LME bit. If VM entry has 
established CR0.PG = 1, the IA32_EFER MSR should not be included in the VM-entry MSR-load area for the purpose of modifying the 
LME bit.
Vol. 3C 28-19



VM ENTRIES
control fields have been established.1 The event is delivered using the vector in that field to select a descriptor in 
the IDT. Since event injection occurs after loading IDTR from the guest-state area, this is the guest IDT.

Section 28.6.1.1 provides details of vectored-event injection. In general, the event is delivered exactly as if it had 
been generated normally.
An exception is made if the following all hold: bit 25 (UINTR) is set to 1 in the guest CR4 field and the “IA-32e mode 
guest” VM-entry control is 1, and VM entry is modified if it is injecting an external interrupt whose vector is the 
value that UINV would have after VM entry. In this case, the logical processor then performs user-interrupt notifi-
cation processing as specified in Section 8.5.2 instead of the process described in Section 28.6.1.1. (If the guest 
activity-state field indicated the HLT state, the logical processor enters the HLT state following user-interrupt noti-
fication processing.)

If event delivery (or user-interrupt notification processing; see above) encounters a nested exception (for 
example, a general-protection exception because the vector indicates a descriptor beyond the IDT limit), the 
exception bitmap is consulted using the vector of that exception:
• If the bit for the nested exception is 0, the nested exception is delivered normally. If the nested exception is 

benign, it is delivered through the IDT. If it is contributory or a page fault, a double fault may be generated, 
depending on the nature of the event whose delivery encountered the nested exception. See Chapter 7, 
“Interrupt 8—Double Fault Exception (#DF)” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.2

• If the bit for the nested exception is 1, a VM exit occurs. Section 28.6.1.2 details cases in which event injection 
causes a VM exit.

28.6.1.1  Details of Vectored-Event Injection
The event-injection process is controlled by the contents of the VM-entry interruption information field (format 
given in Table 26-17), the VM-entry exception error-code field, and the VM-entry instruction-length field. The 
following items provide details of the process:
• The value pushed on the stack for RFLAGS is generally that which was loaded from the guest-state area. The 

value pushed for the RF flag is not modified based on the type of event being delivered. However, the pushed 
value of RFLAGS may be modified if a software interrupt is being injected into a guest that will be in virtual-
8086 mode (see below). After RFLAGS is pushed on the stack, the value in the RFLAGS register is modified as 
is done normally when delivering an event through the IDT.

• The instruction pointer that is pushed on the stack depends on the type of event and whether nested exceptions 
occur during its delivery. The term current guest RIP refers to the value to be loaded from the guest-state 
area. The value pushed is determined as follows:3

— If VM entry successfully injects (with no nested exception) an event with interruption type external 
interrupt, NMI, or hardware exception, the current guest RIP is pushed on the stack.

— If VM entry successfully injects (with no nested exception) an event with interruption type software 
interrupt, privileged software exception, or software exception, the current guest RIP is incremented by the 
VM-entry instruction length before being pushed on the stack.

— If VM entry encounters an exception while injecting an event and that exception does not cause a VM exit, 
the current guest RIP is pushed on the stack regardless of event type or VM-entry instruction length. If the 
encountered exception does cause a VM exit that saves RIP, the saved RIP is current guest RIP.

• If the deliver-error-code bit (bit 11) is set in the VM-entry interruption-information field, the contents of the 
VM-entry exception error-code field is pushed on the stack as an error code would be pushed during delivery of 
an exception.

1. This does not imply that injection of an exception or interrupt will cause a VM exit due to the settings of VM-execution control fields 
(such as the exception bitmap) that would cause a VM exit if the event had occurred in VMX non-root operation. In contrast, a nested 
exception encountered during event delivery may cause a VM exit; see Section 28.6.1.1.

2. Hardware exceptions with the following unused vectors are considered benign: 15 and 21–31. A hardware exception with vector 20 
is considered benign unless the processor supports the 1-setting of the “EPT-violation #VE” VM-execution control; in that case, it 
has the same severity as page faults.

3. While these items refer to RIP, the width of the value pushed (16 bits, 32 bits, or 64 bits) is determined normally.
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• DR6, DR7, and the IA32_DEBUGCTL MSR are not modified by event injection, even if the event has vector 1 
(normal deliveries of debug exceptions, which have vector 1, do update these registers).

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086 mode (RFLAGS.VM = 1), no 
general-protection exception can occur due to RFLAGS.IOPL < 3. A VM monitor should check RFLAGS.IOPL 
before injecting such an event and, if desired, inject a general-protection exception instead of a software 
interrupt.

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086 mode with virtual-8086 mode 
extensions (RFLAGS.VM = CR4.VME = 1), event delivery is subject to VME-based interrupt redirection based 
on the software interrupt redirection bitmap in the task-state segment (TSS) as follows:

— If bit n in the bitmap is clear (where n is the number of the software interrupt), the interrupt is directed to 
an 8086 program interrupt handler: the processor uses a 16-bit interrupt-vector table (IVT) located at 
linear address zero. If the value of RFLAGS.IOPL is less than 3, the following modifications are made to the 
value of RFLAGS that is pushed on the stack: IOPL is set to 3, and IF is set to the value of VIF.

— If bit n in the bitmap is set (where n is the number of the software interrupt), the interrupt is directed to a 
protected-mode interrupt handler. (In other words, the injection is treated as described in the next item.) 
In this case, the software interrupt does not invoke such a handler if RFLAGS.IOPL < 3 (a general-
protection exception occurs instead). However, as noted above, RFLAGS.IOPL cannot cause an injected 
software interrupt to cause such a exception. Thus, in this case, the injection invokes a protected-mode 
interrupt handler independent of the value of RFLAGS.IOPL.

Injection of events of other types are not subject to this redirection.
• If VM entry is injecting a software interrupt (not redirected as described above) or software exception, privilege 

checking is performed on the IDT descriptor being accessed as would be the case for executions of INT n, INT3, 
or INTO (the descriptor’s DPL cannot be less than CPL). There is no checking of RFLAGS.IOPL, even if the guest 
will be in virtual-8086 mode. Failure of this check may lead to a nested exception. Injection of an event with 
interruption type external interrupt, NMI, hardware exception, and privileged software exception, or with inter-
ruption type software interrupt and being redirected as described above, do not perform these checks.

• If VM entry is injecting a non-maskable interrupt (NMI) and the “virtual NMIs” VM-execution control is 1, 
virtual-NMI blocking is in effect after VM entry.

• The transition causes a last-branch record to be logged if the LBR bit is set in the IA32_DEBUGCTL MSR. This is 
true even for events such as debug exceptions, which normally clear the LBR bit before delivery.

• The last-exception record MSRs (LERs) may be updated based on the setting of the LBR bit in the 
IA32_DEBUGCTL MSR. Events such as debug exceptions, which normally clear the LBR bit before they are 
delivered, and therefore do not normally update the LERs, may do so as part of VM-entry event injection.

• If injection of an event encounters a nested exception, the value of the EXT bit (bit 0) in any error code for that 
nested exception is determined as follows:

— If event being injected has interruption type external interrupt, NMI, hardware exception, or privileged 
software exception and encounters a nested exception (but does not produce a double fault), the error code 
for that exception sets the EXT bit.

— If event being injected is a software interrupt or a software exception and encounters a nested exception, 
the error code for that exception clears the EXT bit.

— If event delivery encounters a nested exception and delivery of that exception encounters another 
exception (but does not produce a double fault), the error code for that exception sets the EXT bit.

— If a double fault is produced, the error code for the double fault is 0000H (the EXT bit is clear).

28.6.1.2  VM Exits During Event Injection
An event being injected never causes a VM exit directly regardless of the settings of the VM-execution controls. For 
example, setting the “NMI exiting” VM-execution control to 1 does not cause a VM exit due to injection of an NMI.

However, the event-delivery process may lead to a VM exit:
• If the vector in the VM-entry interruption-information field identifies a task gate in the IDT, the attempted task 

switch may cause a VM exit just as it would had the injected event occurred during normal execution in VMX 
non-root operation (see Section 27.4.2).
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• If event delivery encounters a nested exception, a VM exit may occur depending on the contents of the 
exception bitmap (see Section 27.2).

• If event delivery generates a double-fault exception (due to a nested exception); the logical processor 
encounters another nested exception while attempting to call the double-fault handler; and that exception does 
not cause a VM exit due to the exception bitmap; then a VM exit occurs due to triple fault (see Section 27.2).

• If event delivery injects a double-fault exception and encounters a nested exception that does not cause a 
VM exit due to the exception bitmap, then a VM exit occurs due to triple fault (see Section 27.2).

• If the “virtualize APIC accesses” VM-execution control is 1 and event delivery generates an access to the APIC-
access page, that access is treated as described in Section 31.4 and may cause a VM exit.1

If the event-delivery process does cause a VM exit, the processor state before the VM exit is determined just as it 
would be had the injected event occurred during normal execution in VMX non-root operation. If the injected event 
directly accesses a task gate that cause a VM exit or if the first nested exception encountered causes a VM exit, 
information about the injected event is saved in the IDT-vectoring information field (see Section 29.2.4).

The material in this section applies also if injection of an external interrupt results in user-interrupt notification 
processing instead of event delivery (see Section 28.6.1 earlier).

28.6.1.3  Event Injection for VM Entries to Real-Address Mode
If VM entry is loading CR0.PE with 0, any injected vectored event is delivered as would normally be done in real-
address mode.2 Specifically, VM entry uses the vector provided in the VM-entry interruption-information field to 
select a 4-byte entry from an interrupt-vector table at the linear address in IDTR.base. Further details are provided 
in Section 15.1.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Because bit 11 (deliver error code) in the VM-entry interruption-information field must be 0 if CR0.PE will be 0 after 
VM entry (see Section 28.2.1.3), vectored events injected with CR0.PE = 0 do not push an error code on the stack. 
This is consistent with event delivery in real-address mode.

If event delivery encounters a fault (due to a violation of IDTR.limit or of SS.limit), the fault is treated as if it had 
occurred during event delivery in VMX non-root operation. Such a fault may lead to a VM exit as discussed in 
Section 28.6.1.2.

28.6.2 Injection of Pending MTF VM Exits
If the interruption type in the VM-entry interruption-information field is 7 (other event) and the vector field is 0, 
VM entry causes an MTF VM exit to be pending on the instruction boundary following VM entry. This is the case 
even if the “monitor trap flag” VM-execution control is 0. See Section 27.5.2 for the treatment of pending MTF 
VM exits.

28.7 SPECIAL FEATURES OF VM ENTRY
This section details a variety of features of VM entry. It uses the following terminology: a VM entry is vectoring if 
the valid bit (bit 31) of the VM-entry interruption information field is 1 and the interruption type in the field is 0 
(external interrupt), 2 (non-maskable interrupt); 3 (hardware exception), 4 (software interrupt), 5 (privileged 
software exception), or 6 (software exception).

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execu-
tion controls is 0, VM entry functions as if the “virtualize APIC accesses” VM-execution control were 0. See Section 26.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, VM entry must be loading CR0.PE 
with 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are 
both 1.
28-22 Vol. 3C



VM ENTRIES
28.7.1 Interruptibility State
The interruptibility-state field in the guest-state area (see Table 26-3) contains bits that control blocking by STI, 
blocking by MOV SS, and blocking by NMI. This field impacts event blocking after VM entry as follows:
• If the VM entry is vectoring, there is no blocking by STI or by MOV SS following the VM entry, regardless of the 

contents of the interruptibility-state field.
• If the VM entry is not vectoring, the following apply:

— Events are blocked by STI if and only if bit 0 in the interruptibility-state field is 1. This blocking is cleared 
after the guest executes one instruction or incurs an exception (including a debug exception made pending 
by VM entry; see Section 28.7.3).

— Events are blocked by MOV SS if and only if bit 1 in the interruptibility-state field is 1. This may affect the 
treatment of pending debug exceptions; see Section 28.7.3. This blocking is cleared after the guest 
executes one instruction or incurs an exception (including a debug exception made pending by VM entry).

• The blocking of non-maskable interrupts (NMIs) is determined as follows:

— If the “virtual NMIs” VM-execution control is 0, NMIs are blocked if and only if bit 3 (blocking by NMI) in the 
interruptibility-state field is 1. If the “NMI exiting” VM-execution control is 0, execution of the IRET 
instruction removes this blocking (even if the instruction generates a fault). If the “NMI exiting” control is 
1, IRET does not affect this blocking.

— The following items describe the use of bit 3 (blocking by NMI) in the interruptibility-state field if the 
“virtual NMIs” VM-execution control is 1:

• The bit’s value does not affect the blocking of NMIs after VM entry. NMIs are not blocked in VMX non-
root operation (except for ordinary blocking for other reasons, such as by the MOV SS instruction, the 
wait-for-SIPI state, etc.)

• The bit’s value determines whether there is virtual-NMI blocking after VM entry. If the bit is 1, virtual-
NMI blocking is in effect after VM entry. If the bit is 0, there is no virtual-NMI blocking after VM entry 
unless the VM entry is injecting an NMI (see Section 28.6.1.1). Execution of IRET removes virtual-NMI 
blocking (even if the instruction generates a fault).

If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” control must be 0; see Section 28.2.1.1.
• Blocking of system-management interrupts (SMIs) is determined as follows:

— If the VM entry was not executed in system-management mode (SMM), SMI blocking is unchanged by 
VM entry.

— If the VM entry was executed in SMM, SMIs are blocked after VM entry if and only if the bit 2 in the inter-
ruptibility-state field is 1.

28.7.2 Activity State
The activity-state field in the guest-state area controls whether, after VM entry, the logical processor is active or in 
one of the inactive states identified in Section 26.4.2. The use of this field is determined as follows:
• If the VM entry is vectoring, the logical processor is in the active state after VM entry. While the consistency 

checks described in Section 28.3.1.5 on the activity-state field do apply in this case, the contents of the 
activity-state field do not determine the activity state after VM entry.

• If the VM entry is not vectoring, the logical processor ends VM entry in the activity state specified in the guest-
state area. If VM entry ends with the logical processor in an inactive activity state, the VM entry generates any 
special bus cycle that is normally generated when that activity state is entered from the active state. If 
VM entry would end with the logical processor in the shutdown state and the logical processor is in SMX 
operation,1 an Intel® TXT shutdown condition occurs. The error code used is 0000H, indicating “legacy 
shutdown.” See the Intel® Trusted Execution Technology Preliminary Architecture Specification.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. See 
Chapter 6, “Safer Mode Extensions Reference,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.
Vol. 3C 28-23



VM ENTRIES
• Some activity states unconditionally block certain events. The following blocking is in effect after any VM entry 
that puts the processor in the indicated state:

— The active state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical processor is in the active state 
and in VMX non-root operation are discarded and do not cause VM exits.

— The HLT state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical processor is in the HLT state and 
in VMX non-root operation are discarded and do not cause VM exits.

— The shutdown state blocks external interrupts and SIPIs. External interrupts that arrive while a logical 
processor is in the shutdown state and in VMX non-root operation do not cause VM exits even if the 
“external-interrupt exiting” VM-execution control is 1. SIPIs that arrive while a logical processor is in the 
shutdown state and in VMX non-root operation are discarded and do not cause VM exits.

— The wait-for-SIPI state blocks external interrupts, non-maskable interrupts (NMIs), INIT signals, and 
system-management interrupts (SMIs). Such events do not cause VM exits if they arrive while a logical 
processor is in the wait-for-SIPI state and in VMX non-root operation.

28.7.3 Delivery of Pending Debug Exceptions after VM Entry
The pending debug exceptions field in the guest-state area indicates whether there are debug exceptions that have 
not yet been delivered (see Section 26.4.2). This section describes how these are treated on VM entry.

There are no pending debug exceptions after VM entry if any of the following are true:
• The VM entry is vectoring with one of the following interruption types: external interrupt, non-maskable 

interrupt (NMI), hardware exception, or privileged software exception.
• The interruptibility-state field does not indicate blocking by MOV SS and the VM entry is vectoring with either of 

the following interruption type: software interrupt or software exception.
• The VM entry is not vectoring and the activity-state field indicates either shutdown or wait-for-SIPI.

If none of the above hold, the pending debug exceptions field specifies the debug exceptions that are pending for 
the guest. There are valid pending debug exceptions if either the BS bit (bit 14) or the enable-breakpoint bit 
(bit 12) is 1. If there are valid pending debug exceptions, they are handled as follows:
• If the VM entry is not vectoring, the pending debug exceptions are treated as they would had they been 

encountered normally in guest execution:

— If the logical processor is not blocking such exceptions (the interruptibility-state field indicates no blocking 
by MOV SS), a debug exception is delivered after VM entry (see below). 

— If the logical processor is blocking such exceptions (due to blocking by MOV SS), the pending debug 
exceptions are held pending or lost as would normally be the case.

• If the VM entry is vectoring (with interruption type software interrupt or software exception and with blocking 
by MOV SS), the following items apply:

— For injection of a software interrupt or of a software exception with vector 3 (#BP) or vector 4 (#OF) — or 
a privileged software exception with vector 1 (#DB) — the pending debug exceptions are treated as they 
would had they been encountered normally in guest execution if the corresponding instruction (INT1, INT3, 
or INTO) were executed after a MOV SS that encountered a debug trap.

— For injection of a software exception with a vector other than 3 and 4, the pending debug exceptions may 
be lost or they may be delivered after injection (see below).

If there are no valid pending debug exceptions (as defined above), no pending debug exceptions are delivered after 
VM entry.

If a pending debug exception is delivered after VM entry, it has the priority of “traps on the previous instruction” 
(see Section 7.9 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). Thus, INIT 
signals and system-management interrupts (SMIs) take priority of such an exception, as do VM exits induced by 
the TPR threshold (see Section 28.7.7) and pending MTF VM exits (see Section 28.7.8. The exception takes priority 
over any pending non-maskable interrupt (NMI) or external interrupt and also over VM exits due to the 1-settings 
of the “interrupt-window exiting” and “NMI-window exiting” VM-execution controls.
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A pending debug exception delivered after VM entry causes a VM exit if the bit 1 (#DB) is 1 in the exception 
bitmap. If it does not cause a VM exit, it updates DR6 normally.

28.7.4 VMX-Preemption Timer
If the “activate VMX-preemption timer” VM-execution control is 1, VM entry starts the VMX-preemption timer with 
the unsigned value in the VMX-preemption timer-value field.

It is possible for the VMX-preemption timer to expire during VM entry (e.g., if the value in the VMX-preemption 
timer-value field is zero). If this happens (and if the VM entry was not to the wait-for-SIPI state), a VM exit occurs 
with its normal priority after any event injection and before execution of any instruction following VM entry. For 
example, any pending debug exceptions established by VM entry (see Section 28.7.3) take priority over a timer-
induced VM exit. (The timer-induced VM exit will occur after delivery of the debug exception, unless that exception 
or its delivery causes a different VM exit.)

See Section 27.5.1 for details of the operation of the VMX-preemption timer in VMX non-root operation, including 
the blocking and priority of the VM exits that it causes.

28.7.5 Interrupt-Window Exiting and Virtual-Interrupt Delivery
If “interrupt-window exiting” VM-execution control is 1, an open interrupt window may cause a VM exit immedi-
ately after VM entry (see Section 27.2 for details). If the “interrupt-window exiting” VM-execution control is 0 but 
the “virtual-interrupt delivery” VM-execution control is 1, a virtual interrupt may be delivered immediately after 
VM entry (see Section 28.3.2.5 and Section 31.2.1).

The following items detail the treatment of these events:
• These events occur after any event injection specified for VM entry.
• Non-maskable interrupts (NMIs) and higher priority events take priority over these events. These events take 

priority over external interrupts and lower priority events. 
• These events wake the logical processor if it just entered the HLT state because of a VM entry (see Section 

28.7.2). They do not occur if the logical processor just entered the shutdown state or the wait-for-SIPI state.

28.7.6 NMI-Window Exiting
The “NMI-window exiting” VM-execution control may cause a VM exit to occur immediately after VM entry (see 
Section 27.2 for details).

The following items detail the treatment of these VM exits:
• These VM exits follow event injection if such injection is specified for VM entry.
• Debug-trap exceptions (see Section 28.7.3) and higher priority events take priority over VM exits caused by 

this control. VM exits caused by this control take priority over non-maskable interrupts (NMIs) and lower 
priority events. 

• VM exits caused by this control wake the logical processor if it just entered either the HLT state or the shutdown 
state because of a VM entry (see Section 28.7.2). They do not occur if the logical processor just entered the 
wait-for-SIPI state.

28.7.7 VM Exits Induced by the TPR Threshold
If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are both 1 and the “virtual-interrupt 
delivery” VM-execution control is 0, a VM exit occurs immediately after VM entry if the value of bits 3:0 of the TPR 
threshold VM-execution control field is greater than the value of bits 7:4 of VTPR (see Section 31.1.1).1

1. “Virtualize APIC accesses” and “virtual-interrupt delivery” are secondary processor-based VM-execution controls. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if these controls were 0. See Section 26.6.2.
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The following items detail the treatment of these VM exits:
• The VM exits are not blocked if RFLAGS.IF = 0 or by the setting of bits in the interruptibility-state field in guest-

state area.
• The VM exits follow event injection if such injection is specified for VM entry.
• VM exits caused by this control take priority over system-management interrupts (SMIs), INIT signals, and 

lower priority events. They thus have priority over the VM exits described in Section 28.7.5, Section 28.7.6, 
and Section 28.7.8, as well as any interrupts or debug exceptions that may be pending at the time of VM entry.

• These VM exits wake the logical processor if it just entered the HLT state as part of a VM entry (see Section 
28.7.2). They do not occur if the logical processor just entered the shutdown state or the wait-for-SIPI state.
If such a VM exit is suppressed because the processor just entered the shutdown state, it occurs after the
delivery of any event that cause the logical processor to leave the shutdown state while remaining in VMX
non-root operation (e.g., due to an NMI that occurs while the “NMI-exiting” VM-execution control is 0).

• The basic exit reason is “TPR below threshold.”

28.7.8 Pending MTF VM Exits
As noted in Section 28.6.2, VM entry may cause an MTF VM exit to be pending immediately after VM entry. The 
following items detail the treatment of these VM exits:
• System-management interrupts (SMIs), INIT signals, and higher priority events take priority over these 

VM exits. These VM exits take priority over debug-trap exceptions and lower priority events. 
• These VM exits wake the logical processor if it just entered the HLT state because of a VM entry (see Section 

28.7.2). They do not occur if the logical processor just entered the shutdown state or the wait-for-SIPI state.

28.7.9 VM Entries and Advanced Debugging Features
VM entries are not logged with last-branch records, do not produce branch-trace messages, and do not update the 
branch-trace store.

28.7.10 User-Interrupt Recognition After VM Entry
A VM entry results in recognition of a pending user interrupt if it completes with CR4.UINTR = IA32_EFER.LMA = 1 
and with UIRR ≠ 0; otherwise, no pending user interrupt is recognized.

28.8 VM-ENTRY FAILURES DURING OR AFTER LOADING GUEST STATE
VM-entry failures due to the checks identified in Section 28.3.1 and failures during the MSR loading identified in 
Section 28.4 are treated differently from those that occur earlier in VM entry. In these cases, the following steps 
take place:

1. Information about the VM-entry failure is recorded in the VM-exit information fields:

— Exit reason.

• Bits 15:0 of this field contain the basic exit reason. It is loaded with a number indicating the general 
cause of the VM-entry failure. The following numbers are used:

33. VM-entry failure due to invalid guest state. A VM entry failed one of the checks identified in Section 
28.3.1.

34. VM-entry failure due to MSR loading. A VM entry failed in an attempt to load MSRs (see Section 
28.4).

41. VM-entry failure due to machine-check event. A machine-check event occurred during VM entry 
(see Section 28.9).
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• Bit 31 is set to 1 to indicate a VM-entry failure.

• The remainder of the field (bits 30:16) is cleared.

— Exit qualification. This field is set based on the exit reason.

• VM-entry failure due to invalid guest state. In most cases, the exit qualification is cleared to 0. The 
following non-zero values are used in the cases indicated:

1. Not used.

2. Failure was due to a problem loading the PDPTEs (see Section 28.3.1.6).

3. Failure was due to an attempt to inject a non-maskable interrupt (NMI) into a guest that is blocking 
events through the STI blocking bit in the interruptibility-state field.

4. Failure was due to an invalid VMCS link pointer (see Section 28.3.1.5).

VM-entry checks on guest-state fields may be performed in any order. Thus, an indication by exit
qualification of one cause does not imply that there are not also other errors. Different processors
may give different exit qualifications for the same VMCS.

• VM-entry failure due to MSR loading. The exit qualification is loaded to indicate which entry in the 
VM-entry MSR-load area caused the problem (1 for the first entry, 2 for the second, etc.).

— All other VM-exit information fields are unmodified.

2. Processor state is loaded as would be done on a VM exit (see Section 29.5). If this results in 
[CR4.PAE & CR0.PG & ~IA32_EFER.LMA] = 1, page-directory-pointer-table entries (PDPTEs) may be checked 
and loaded (see Section 29.5.4).

3. The state of blocking by NMI is what it was before VM entry.

4. MSRs are loaded as specified in the VM-exit MSR-load area (see Section 29.6).

Although this process resembles that of a VM exit, many steps taken during a VM exit do not occur for these 
VM-entry failures:
• Most VM-exit information fields are not updated (see step 1 above).
• The valid bit in the VM-entry interruption-information field is not cleared.
• The guest-state area is not modified.
• No MSRs are saved into the VM-exit MSR-store area.

28.9 MACHINE-CHECK EVENTS DURING VM ENTRY
If a machine-check event occurs during a VM entry, one of the following occurs:
• The machine-check event is handled as if it occurred before the VM entry:

— If CR4.MCE = 0, operation of the logical processor depends on whether the logical processor is in SMX 
operation:1

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs. The error code 
used is 000CH, indicating “unrecoverable machine-check condition.”

• If the logical processor is outside SMX operation, it goes to the shutdown state.

— If CR4.MCE = 1, a machine-check exception (#MC) is delivered through the IDT.
• The machine-check event is handled after VM entry completes:

— If the VM entry ends with CR4.MCE = 0, operation of the logical processor depends on whether the logical 
processor is in SMX operation:

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last 
execution of GETSEC[SENTER]. See Chapter 7, “Safer Mode Extensions Reference‚” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2D.
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• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs with error code 
000CH (unrecoverable machine-check condition).

• If the logical processor is outside SMX operation, it goes to the shutdown state.

— If the VM entry ends with CR4.MCE = 1, a machine-check exception (#MC) is generated:

• If bit 18 (#MC) of the exception bitmap is 0, the exception is delivered through the guest IDT.

• If bit 18 of the exception bitmap is 1, the exception causes a VM exit.
• A VM-entry failure occurs as described in Section 28.8. The basic exit reason is 41, for “VM-entry failure due to 

machine-check event.”

The first option is not used if the machine-check event occurs after any guest state has been loaded. The second 
option is used only if VM entry is able to load all guest state.
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VM EXITS

VM exits occur in response to certain instructions and events in VMX non-root operation as detailed in Section 27.1 
through Section 27.2. VM exits perform the following operations:

1. Information about the cause of the VM exit is recorded in the VM-exit information fields and VM-entry control 
fields are modified as described in Section 29.2.

2. Processor state is saved in the guest-state area (Section 29.3).

3. MSRs may be saved in the VM-exit MSR-store area (Section 29.4). This step is not performed for SMM VM exits 
that activate the dual-monitor treatment of SMIs and SMM.

4. The following may be performed in parallel and in any order (Section 29.5):

— Processor state is loaded based in part on the host-state area and some VM-exit controls. This step is not 
performed for SMM VM exits that activate the dual-monitor treatment of SMIs and SMM. See Section 
33.15.6 for information on how processor state is loaded by such VM exits.

— Address-range monitoring is cleared.

5. MSRs may be loaded from the VM-exit MSR-load area (Section 29.6). This step is not performed for SMM 
VM exits that activate the dual-monitor treatment of SMIs and SMM.

VM exits are not logged with last-branch records, do not produce branch-trace messages, and do not update the 
branch-trace store.

Section 29.1 clarifies the nature of the architectural state before a VM exit begins. The steps described above are 
detailed in Section 29.2 through Section 29.6. 

Section 33.15 describes the dual-monitor treatment of system-management interrupts (SMIs) and system-
management mode (SMM). Under this treatment, ordinary transitions to SMM are replaced by VM exits to a sepa-
rate SMM monitor. Called SMM VM exits, these are caused by the arrival of an SMI or the execution of VMCALL in 
VMX root operation. SMM VM exits differ from other VM exits in ways that are detailed in Section 33.15.2.

29.1 ARCHITECTURAL STATE BEFORE A VM EXIT
This section describes the architectural state that exists before a VM exit, especially for VM exits caused by events 
that would normally be delivered through the IDT. Note the following:
• An exception causes a VM exit directly if the bit corresponding to that exception is set in the exception bitmap. 

A non-maskable interrupt (NMI) causes a VM exit directly if the “NMI exiting” VM-execution control is 1. An 
external interrupt causes a VM exit directly if the “external-interrupt exiting” VM-execution control is 1. A start-
up IPI (SIPI) that arrives while a logical processor is in the wait-for-SIPI activity state causes a VM exit directly. 
INIT signals that arrive while the processor is not in the wait-for-SIPI activity state cause VM exits directly.

• An exception, NMI, external interrupt, or software interrupt causes a VM exit indirectly if it does not do so 
directly but delivery of the event causes a nested exception, double fault, task switch, APIC access (see Section 
31.4), EPT violation, EPT misconfiguration, page-modification log-full event (see Section 30.3.6), or SPP-
related event (see Section 30.3.4) that causes a VM exit.

• An event results in a VM exit if it causes a VM exit (directly or indirectly).

The following bullets detail when architectural state is and is not updated in response to VM exits:
• If an event causes a VM exit directly, it does not update architectural state as it would have if it had it not 

caused the VM exit:

— A debug exception does not update DR6, DR7, or IA32_DEBUGCTL. (Information about the nature of the 
debug exception is saved in the exit qualification field.)

— A page fault does not update CR2. (The linear address causing the page fault is saved in the exit-qualifi-
cation field.)
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— An NMI causes subsequent NMIs to be blocked, but only after the VM exit completes.

— An external interrupt does not acknowledge the interrupt controller and the interrupt remains pending, 
unless the “acknowledge interrupt on exit” VM-exit control is 1. In such a case, the interrupt controller is 
acknowledged and the interrupt is no longer pending.

— The flags L0 – L3 in DR7 (bit 0, bit 2, bit 4, and bit 6) are not cleared when a task switch causes a VM exit.

— If a task switch causes a VM exit, none of the following are modified by the task switch: old task-state 
segment (TSS); new TSS; old TSS descriptor; new TSS descriptor; RFLAGS.NT1; or the TR register.

— No last-exception record is made if the event that would do so directly causes a VM exit. 

— If a machine-check exception causes a VM exit directly, this does not prevent machine-check MSRs from 
being updated. These are updated by the machine-check event itself and not the resulting machine-check 
exception.

— If the logical processor is in an inactive state (see Section 26.4.2) and not executing instructions, some 
events may be blocked but others may return the logical processor to the active state. Unblocked events 
may cause VM exits.2 If an unblocked event causes a VM exit directly, a return to the active state occurs 
only after the VM exit completes.3 The VM exit generates any special bus cycle that is normally generated 
when the active state is entered from that activity state.

MTF VM exits (see Section 27.5.2 and Section 28.7.8) are not blocked in the HLT activity state. If an MTF 
VM exit occurs in the HLT activity state, the logical processor returns to the active state only after the 
VM exit completes. MTF VM exits are blocked the shutdown state and the wait-for-SIPI state.

• If an event causes a VM exit indirectly, the event does update architectural state:

— A debug exception updates DR6, DR7, and the IA32_DEBUGCTL MSR. No debug exceptions are considered 
pending.

— A page fault updates CR2.

— An NMI causes subsequent NMIs to be blocked before the VM exit commences.

— An external interrupt acknowledges the interrupt controller and the interrupt is no longer pending.

— If the logical processor had been in an inactive state, it enters the active state and, before the VM exit 
commences, generates any special bus cycle that is normally generated when the active state is entered 
from that activity state.

— There is no blocking by STI or by MOV SS when the VM exit commences.

— Processor state that is normally updated as part of delivery through the IDT (CS, RIP, SS, RSP, RFLAGS) is 
not modified. However, the incomplete delivery of the event may write to the stack.

— The treatment of last-exception records is implementation dependent:

• Some processors make a last-exception record when beginning the delivery of an event through the IDT 
(before it can encounter a nested exception). Such processors perform this update even if the event 
encounters a nested exception that causes a VM exit (including the case where nested exceptions lead 
to a triple fault).

• Other processors delay making a last-exception record until event delivery has reached some event 
handler successfully (perhaps after one or more nested exceptions). Such processors do not update the 
last-exception record if a VM exit or triple fault occurs before an event handler is reached.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit 
forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32 
bits of the indicated register.

2. If a VM exit takes the processor from an inactive state resulting from execution of a specific instruction (HLT or MWAIT), the value 
saved for RIP by that VM exit will reference the following instruction.

3. An exception is made if the logical processor had been inactive due to execution of MWAIT; in this case, it is considered to have 
become active before the VM exit.
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• If the “virtual NMIs” VM-execution control is 1, VM entry injects an NMI, and delivery of the NMI causes a 
nested exception, double fault, task switch, EPT violation, EPT misconfiguration, page-modification log-full 
event, or SPP-related event, or APIC access that causes a VM exit, virtual-NMI blocking is in effect before the 
VM exit commences.

• If a VM exit results from a fault, EPT violation, EPT misconfiguration, page-modification log-full event, or SPP-
related event that is encountered during execution of IRET and the “NMI exiting” VM-execution control is 0, any 
blocking by NMI is cleared before the VM exit commences. However, the previous state of blocking by NMI may 
be recorded in the exit qualification or in the VM-exit interruption-information field; see Section 29.2.3.

• If a VM exit results from a fault, EPT violation, EPT misconfiguration, page-modification log-full event, or SPP-
related event that is encountered during execution of IRET and the “virtual NMIs” VM-execution control is 1, 
virtual-NMI blocking is cleared before the VM exit commences. However, the previous state of blocking by NMI 
may be recorded in the exit qualification or in the VM-exit interruption-information field; see Section 29.2.3.

• Suppose that a VM exit is caused directly by an x87 FPU Floating-Point Error (#MF) or by any of the following 
events if the event was unblocked due to (and given priority over) an x87 FPU Floating-Point Error: an INIT 
signal, an external interrupt, an NMI, an SMI; or a machine-check exception. In these cases, there is no 
blocking by STI or by MOV SS when the VM exit commences.

• Normally, a last-branch record may be made when an event is delivered through the IDT. However, if such an 
event results in a VM exit before delivery is complete, no last-branch record is made.

• If machine-check exception results in a VM exit, processor state is suspect and may result in suspect state 
being saved to the guest-state area. A VM monitor should consult the RIPV and EIPV bits in the 
IA32_MCG_STATUS MSR before resuming a guest that caused a VM exit resulting from a machine-check 
exception.

• If a VM exit results from a fault, APIC access (see Section 31.4), EPT violation, EPT misconfiguration, page-
modification log-full event, or SPP-related event that is encountered while executing an instruction, data 
breakpoints due to that instruction may have been recognized and information about them may be saved in the 
pending debug exceptions field (unless the VM exit clears that field; see Section 29.3.4).

• The following VM exits are considered to happen after an instruction is executed:

— VM exits resulting from debug traps (single-step, I/O breakpoints, and data breakpoints).

— VM exits resulting from debug exceptions (data breakpoints) whose recognition was delayed by blocking by 
MOV SS.

— VM exits resulting from some machine-check exceptions.

— Trap-like VM exits due to execution of MOV to CR8 when the “CR8-load exiting” VM-execution control is 0 
and the “use TPR shadow” VM-execution control is 1 (see Section 31.3). (Such VM exits can occur only from 
64-bit mode and thus only on processors that support Intel 64 architecture.)

— Trap-like VM exits due to execution of WRMSR when the “use MSR bitmaps” VM-execution control is 1; the 
value of ECX is in the range 800H–8FFH; and the bit corresponding to the ECX value in write bitmap for low 
MSRs is 0; and the “virtualize x2APIC mode” VM-execution control is 1. See Section 31.5.

— VM exits caused by APIC-write emulation (see Section 31.4.3.2) that result from APIC accesses as part of 
instruction execution.

For these VM exits, the instruction’s modifications to architectural state complete before the VM exit occurs. 
Such modifications include those to the logical processor’s interruptibility state (see Table 26-3). If there had 
been blocking by MOV SS, POP SS, or STI before the instruction executed, such blocking is no longer in effect.

A VM exit that occurs in enclave mode sets bit 27 of the exit-reason field and bit 4 of the guest interruptibility-state 
field. Before such a VM exit is delivered, an Asynchronous Enclave Exit (AEX) occurs (see Chapter 38, “Enclave 
Exiting Events”). An AEX modifies architectural state (Section 38.3). In particular, the processor establishes the 
following architectural state as indicated:
• The following bits in RFLAGS are cleared: CF, PF, AF, ZF, SF, OF, and RF.
• FS and GS are restored to the values they had prior to the most recent enclave entry.
• RIP is loaded with the AEP of interrupted enclave thread.
• RSP is loaded from the URSP field in the enclave’s state-save area (SSA).
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29.2 RECORDING VM-EXIT INFORMATION AND UPDATING VM-ENTRY CONTROL 
FIELDS

VM exits begin by recording information about the nature of and reason for the VM exit in the VM-exit information 
fields. Section 29.2.1 to Section 29.2.5 detail the use of these fields.

In addition to updating the VM-exit information fields, the valid bit (bit 31) is cleared in the VM-entry interruption-
information field. If bit 5 of the IA32_VMX_MISC MSR (index 485H) is read as 1 (see Appendix A.6), the value of 
IA32_EFER.LMA is stored into the “IA-32e mode guest” VM-entry control.1

29.2.1 Basic VM-Exit Information
Section 26.9.1 defines the basic VM-exit information fields. The following items detail their use.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number indicating the general cause 
of the VM exit. Appendix C lists the numbers used and their meaning.

— Bit 25 is set if the “prematurely busy shadow stack” VM-exit control is 1 and the VM exit caused a shadow 
stack become prematurely busy (see Section 27.4.3). Otherwise, the bit is cleared.

— Bit 26 of this field is set to 1 if the VM exit occurred after assertion of a bus lock while the “VMM bus-lock 
detection” VM-execution control was 1. Such VM exits include those that occur due to the 1-setting of that 
control as well as others that might occur during execution of an instruction that asserted a bus lock.

— Bit 27 of this field is set to 1 if the VM exit occurred while the logical processor was in enclave mode.

Such VM exits include those caused by interrupts, non-maskable interrupts, system-management 
interrupts, INIT signals, and exceptions occurring in enclave mode as well as exceptions encountered 
during the delivery of such events incident to enclave mode.

A VM exit also sets this bit if it is incident to delivery of an event injected by VM entry and the guest inter-
ruptibility-state field indicates an enclave interruption (bit 4 of the field is 1).

— The remainder of the field (bits 31:28 and bits 24:16) is cleared to 0 (certain SMM VM exits may set some 
of these bits; see Section 33.15.2.3).2

• Exit qualification. This field is saved for VM exits due to the following causes: debug exceptions; page-fault 
exceptions; start-up IPIs (SIPIs); system-management interrupts (SMIs) that arrive immediately after the 
execution of I/O instructions; task switches; INVEPT; INVLPG; INVPCID; INVVPID; LGDT; LIDT; LLDT; LTR; 
RDMSRLIST; SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; 
WBINVD; WBNOINVD; WRMSR; WRMSRLIST; WRMSRNS; XRSTORS; XSAVES; control-register accesses; 
MOV DR; I/O instructions; MWAIT; accesses to the APIC-access page (see Section 31.4); EPT violations (see 
Section 30.3.3.2); EOI virtualization (see Section 31.1.4); APIC-write emulation (see Section 31.4.3.3); page-
modification log full (see Section 30.3.6); SPP-related events (see Section 30.3.4); and instruction timeout 
(see Section 27.2). For all other VM exits, this field is cleared. The following items provide details:

— For a debug exception, the exit qualification contains information about the debug exception. The 
information has the format given in Table 29-1.

1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting of the “unrestricted guest” VM-
execution control.

2. Bit 31 of this field is set on certain VM-entry failures; see Section 28.8.

Table 29-1.  Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3:0 B3 – B0. When set, each of these bits indicates that the corresponding breakpoint condition was met. Any of 
these bits may be set even if its corresponding enabling bit in DR7 is not set.

10:4 Not currently defined.
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— For a page-fault exception, the exit qualification contains the linear address that caused the page fault. If 
linear-address masking had been in effect (Section 4.4), the address recorded reflects the result of that 
masking and does not contain any masked metadata. On processors that support Intel 64 architecture, 
bits 63:32 are cleared if the logical processor was not in 64-bit mode before the VM exit.

If the page-fault exception occurred during execution of an instruction in enclave mode (and not during 
delivery of an event incident to enclave mode), bits 11:0 of the exit qualification are cleared.

— For a start-up IPI (SIPI), the exit qualification contains the SIPI vector information in bits 7:0. Bits 63:8 of 
the exit qualification are cleared to 0.

— For a task switch, the exit qualification contains details about the task switch, encoded as shown in 
Table 29-2.

— For INVLPG, the exit qualification contains the linear-address operand of the instruction.

• On processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was not 
in 64-bit mode before the VM exit.

• If the INVLPG source operand specifies an unusable segment, the linear address specified in the exit 
qualification will match the linear address that the INVLPG would have used if no VM exit occurred. This 
address is not architecturally defined and may be implementation-specific.

11 BLD. When set, this bit indicates that a bus lock was asserted while OS bus-lock detection was enabled and 
CPL > 0 (see Section 19.3.1.6 (‘‘OS Bus-Lock Detection”)).1

12 Not currently defined.

13 BD. When set, this bit indicates that the cause of the debug exception is “debug register access detected.”

14 BS. When set, this bit indicates that the cause of the debug exception is either the execution of a single 
instruction (if RFLAGS.TF = 1 and IA32_DEBUGCTL.BTF = 0) or a taken branch (if 
RFLAGS.TF = DEBUGCTL.BTF = 1).

15 Not currently defined.

16 RTM. When set, this bit indicates that a debug exception (#DB) or a breakpoint exception (#BP) occurred 
inside an RTM region while advanced debugging of RTM transactional regions was enabled (see Section 
17.3.7, “RTM-Enabled Debugger Support,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1).2

63:17 Not currently defined. Bits 63:32 exist only on processors that support Intel 64 architecture.

NOTES:
1. In general, the format of this field matches that of DR6. However, DR6 clears bit 11 to indicate detection of a bus lock, while this field 

sets the bit to indicate that condition.
2. In general, the format of this field matches that of DR6. However, DR6 clears bit 16 to indicate an RTM-related exception, while this 

field sets the bit to indicate that condition.

Table 29-2.  Exit Qualification for Task Switches

Bit Position(s) Contents

15:0 Selector of task-state segment (TSS) to which the guest attempted to switch

29:16 Not currently defined

Table 29-1.  Exit Qualification for Debug Exceptions (Contd.)

Bit Position(s) Contents
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— For INVEPT, INVPCID, INVVPID, LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR, VMCLEAR, VMPTRLD, 
VMPTRST, VMREAD, VMWRITE, VMXON, XRSTORS, and XSAVES, the exit qualification receives the value of 
the instruction’s displacement field, which is sign-extended to 64 bits if necessary (32 bits on processors 
that do not support Intel 64 architecture). If the instruction has no displacement (for example, has a 
register operand), zero is stored into the exit qualification.

On processors that support Intel 64 architecture, an exception is made for RIP-relative addressing (used 
only in 64-bit mode). Such addressing causes an instruction to use an address that is the sum of the 
displacement field and the value of RIP that references the following instruction. In this case, the exit 
qualification is loaded with the sum of the displacement field and the appropriate RIP value.

In all cases, bits of this field beyond the instruction’s address size are undefined. For example, suppose 
that the address-size field in the VM-exit instruction-information field (see Section 26.9.4 and Section 
29.2.5) reports an n-bit address size. Then bits 63:n (bits 31:n on processors that do not support Intel 64 
architecture) of the instruction displacement are undefined.

— For a control-register access, the exit qualification contains information about the access and has the 
format given in Table 29-3.

— For MOV DR, the exit qualification contains information about the instruction and has the format given in 
Table 29-4.

— For an I/O instruction, the exit qualification contains information about the instruction and has the format 
given in Table 29-5.

— For MWAIT, the exit qualification contains a value that indicates whether address-range monitoring 
hardware was armed. The exit qualification is set either to 0 (if address-range monitoring hardware is not 
armed) or to 1 (if address-range monitoring hardware is armed).

— For RDMSRLIST and WRMSRLIST, the exit qualification depends on the setting of the “use MSR bitmaps” 
VM-execution control. If the control is 0, the exit qualification is zero. If the control is 1, the exit qualifi-
cation is the index of the MSR whose access caused the VM exit (see Section 27.1.3).

— WBINVD and WBNOINVD use the same basic exit reason (see Appendix C). For WBINVD, the exit qualifi-
cation is 0, while for WBNOINVD it is 1.

— WRMSR and WRMSRNS use the same basic exit reason (see Appendix C). For WRMSR, the exit qualification 
is 0, while for WRMSRNS it is 1.

— For an APIC-access VM exit resulting from a linear access or a guest-physical access to the APIC-access 
page (see Section 31.4), the exit qualification contains information about the access and has the format 
given in Table 29-6.1

If the access to the APIC-access page occurred during execution of an instruction in enclave mode (and not 
during delivery of an event incident to enclave mode), bits 11:0 of the exit qualification are cleared.

Such a VM exit that set bits 15:12 of the exit qualification to 0000b (data read during instruction execution) 
or 0001b (data write during instruction execution) set bit 12—which distinguishes data read from data 

31:30 Source of task switch initiation:

0: CALL instruction
1: IRET instruction
2: JMP instruction
3: Task gate in IDT

63:32 Not currently defined. These bits exist only on processors that support Intel 64 architecture.

1. The exit qualification is undefined if the access was part of the logging of a branch record or a processor-event-based-sampling 
(PEBS) record to the DS save area. It is recommended that software configure the paging structures so that no address in the DS 
save area translates to an address on the APIC-access page.

Table 29-2.  Exit Qualification for Task Switches (Contd.)

Bit Position(s) Contents
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write—to that which would have been stored in bit 1—W/R—of the page-fault error code had the access 
caused a page fault instead of an APIC-access VM exit. This implies the following:

• For an APIC-access VM exit caused by the CLFLUSH and CLFLUSHOPT instructions, the access type is 
“data read during instruction execution.”

• For an APIC-access VM exit caused by the ENTER instruction, the access type is “data write during 
instruction execution.”

• For an APIC-access VM exit caused by the MASKMOVQ instruction or the MASKMOVDQU instruction, the 
access type is “data write during instruction execution.”

• For an APIC-access VM exit caused by the MONITOR instruction, the access type is “data read during 
instruction execution.”

• For an APIC-access VM exit caused directly by an access to a linear address in the DS save area (BTS or 
PEBS), the access type is “linear access for monitoring.”

• For an APIC-access VM exit caused by a guest-physical access performed for an access to the DS save 
area (e.g., to access a paging structure to translate a linear address), the access type is “guest-physical 
access for monitoring or trace.”

Table 29-3.  Exit Qualification for Control-Register Accesses 

Bit Positions Contents

3:0 Number of control register (0 for CLTS and LMSW). Bit 3 is always 0 on processors that do not support Intel 64 
architecture as they do not support CR8.

5:4 Access type:

0 = MOV to CR
1 = MOV from CR
2 = CLTS
3 = LMSW

6 LMSW operand type:

0 = register
1 = memory

For CLTS and MOV CR, cleared to 0

7 Not currently defined

11:8 For MOV CR, the general-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

For CLTS and LMSW, cleared to 0

15:12 Not currently defined

31:16 For LMSW, the LMSW source data

For CLTS and MOV CR, cleared to 0

63:32 Not currently defined. These bits exist only on processors that support Intel 64 architecture.
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• For an APIC-access VM exit caused by trace-address pre-translation (TAPT) when the “Intel PT uses 
guest physical addresses” VM-execution control is 1, the access type is “guest-physical access for 
monitoring or trace.”

Such a VM exit stores 1 for bit 31 for IDT-vectoring information field (see Section 29.2.4) if and only if it 
sets bits 15:12 of the exit qualification to 0011b (linear access during event delivery) or 1010b (guest-
physical access during event delivery).

See Section 31.4.4 for further discussion of these instructions and APIC-access VM exits.

For APIC-access VM exits resulting from physical accesses to the APIC-access page (see Section 31.4.6), 
the exit qualification is undefined.

— For an EPT violation, the exit qualification contains information about the access causing the EPT violation 
and has the format given in Table 29-7.

As noted in that table, the format and meaning of the exit qualification depends on the setting of the 
“mode-based execute control for EPT” VM-execution control and whether the processor supports advanced 
VM-exit information for EPT violations.1

An EPT violation that occurs during as a result of execution of a read-modify-write operation sets bit 1 (data 
write). Whether it also sets bit 0 (data read) is implementation-specific and, for a given implementation, 
may differ for different kinds of read-modify-write operations.

1. Software can determine whether advanced VM-exit information for EPT violations is supported by consulting the VMX capability 
MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10).

Table 29-4.  Exit Qualification for MOV DR

Bit Position(s) Contents

2:0 Number of debug register

3 Not currently defined

4 Direction of access (0 = MOV to DR; 1 = MOV from DR)

7:5 Not currently defined

11:8 General-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8 –15 = R8 – R15, respectively

63:12 Not currently defined. Bits 63:32 exist only on processors that support Intel 64 architecture.
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Bit 12 reports “NMI unblocking due to IRET”; see Section 29.2.3.

Bit 16 is set for certain accesses that are asynchronous to instruction execution and not part of event 
delivery. These include trace-address pre-translation (TAPT) for Intel PT (see Section 27.5.4), accesses 
related to PEBS on processors with the “EPT-friendly” enhancement (see Section 21.9.5), and accesses as 
part of user-interrupt delivery (see Section 8.4.2).

— For VM exits caused as part of EOI virtualization (Section 31.1.4), bits 7:0 of the exit qualification are set 
to vector of the virtual interrupt that was dismissed by the EOI virtualization. Bits above bit 7 are cleared.

Table 29-5.  Exit Qualification for I/O Instructions

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Not currently defined

31:16 Port number (as specified in DX or in an immediate operand)

63:32 Not currently defined. These bits exist only on processors that support Intel 64 architecture.

Table 29-6.  Exit Qualification for APIC-Access VM Exits from Linear Accesses and Guest-Physical Accesses

Bit Position(s) Contents

11:0 • If the APIC-access VM exit is due to a linear access, the offset of access within the APIC page.
• Undefined if the APIC-access VM exit is due a guest-physical access

15:12 Access type:

0 = linear access for a data read during instruction execution
1 = linear access for a data write during instruction execution
2 = linear access for an instruction fetch
3 = linear access (read or write) during event delivery
4 = linear access for monitoring
10 = guest-physical access during event delivery
11 = guest-physical access for monitoring or trace
15 = guest-physical access for an instruction fetch or during instruction execution

Other values not used

16 This bit is set for certain accesses that are asynchronous to instruction execution and not part of event delivery. 
These includes guest-physical accesses related to trace output by Intel PT (see Section 27.5.4), accesses related 
to PEBS on processors with the “EPT-friendly” enhancement (see Section 21.9.5), and accesses that occur during 
user-interrupt delivery (see Section 8.4.2).

63:17 Not currently defined. Bits 63:32 exist only on processors that support Intel 64 architecture.
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— For APIC-write VM exits (Section 31.4.3.3), bits 11:0 of the exit qualification are set to the page offset of 
the write access that caused the VM exit.1 Bits above bit 11 are cleared.

— For a VM exit due to a page-modification log-full event (Section 30.3.6), bit 12 of the exit qualification 
reports “NMI unblocking due to IRET” (see Section 29.2.3). Bit 16 is set if the VM exit occurs during TAPT, 
EPT-friendly PEBS, or user-interrupt delivery. All other bits of the exit qualification are undefined.

— For a VM exit due to an SPP-related event (Section 30.3.4), bit 11 of the exit qualification indicates the type 
of event: 0 indicates an SPP misconfiguration and 1 indicates an SPP miss. Bit 12 of the exit qualification 
reports “NMI unblocking due to IRET” (see Section 29.2.3). Bit 16 is set if the VM exit occurs during TAPT 
EPT-friendly PEBS, or user-interrupt delivery. All other bits of the exit qualification are undefined.

— If the “PASID translation” VM-execution control, PASID translation is performed for executions of the 
ENQCMD and ENQCMDS instructions (see Section 27.5.8). PASID translation may fail, resulting in a 
VM exit. Such a VM exit saves an exit qualification specified in the following items:

• For ENQCMD, the exit qualification is IA32_PASID[19:0].

• For ENQCMDS, the exit qualification contains the low 32 bits of the instruction’s source operand (which 
had been read from memory prior to PASID translation).

— For a VM exit due to an instruction timeout (Section 27.2), bit 0 indicates (if set) that the context of the 
virtual machine is invalid and that the VM should not be resumed. Bit 12 of the exit qualification reports 
“NMI unblocking due to IRET” (see Section 29.2.3). All other bits of the exit qualification are undefined.

• Guest linear address. For some VM exits, this field receives a linear address that pertains to the VM exit. The 
field is set for different VM exits as follows:

— VM exits due to attempts to execute LMSW with a memory operand. In these cases, this field receives the 
linear address of that operand. Bits 63:32 are cleared if the logical processor was not in 64-bit mode before 
the VM exit. If linear-address masking had been in effect (Section 4.4), the address recorded reflects the 
result of that masking and does not contain any masked metadata.

— VM exits due to attempts to execute INS or OUTS for which the relevant segment is usable (if the relevant 
segment is not usable, the value is undefined). (ES is always the relevant segment for INS; for OUTS, the 
relevant segment is DS unless overridden by an instruction prefix.) The linear address is the base address 
of relevant segment plus (E)DI (for INS) or (E)SI (for OUTS). Bits 63:32 are cleared if the logical processor 
was not in 64-bit mode before the VM exit. If linear-address masking had been in effect (Section 4.4), the 
address recorded is the original address before any masking (and may thus contain any metadata).

— VM exits due to EPT violations that set bit 7 of the exit qualification (see Table 29-7; these are all EPT 
violations except those resulting from an attempt to load the PDPTEs as of execution of the MOV CR 
instruction and those due to TAPT). The linear address may translate to the guest-physical address whose 
access caused the EPT violation. Alternatively, translation of the linear address may reference a paging-
structure entry whose access caused the EPT violation. Bits 63:32 are cleared if the logical processor was 
not in 64-bit mode before the VM exit. If linear-address masking had been in effect (Section 4.4), the 
address recorded reflects the result of that masking and does not contain any masked metadata.

If the EPT violation occurred during execution of an instruction in enclave mode (and not during delivery of 
an event incident to enclave mode), bits 11:0 of this field are cleared.

— VM exits due to SPP-related events. If linear-address masking had been in effect (Section 4.4), the address 
recorded reflects the result of that masking and does not contain any masked metadata.

— If the “prematurely busy shadow stack” VM-exit control is 1, certain VM exits (besides those noted above) 
save the linear address that pertains to the VM exit if the VM exit caused a shadow stack to become 
prematurely busy (see Section 27.4.3). This is true for VM exits due for these reasons: EPT misconfigu-
ration, page-modification log-full event, and instruction timeout. (A VM exit due to instruction timeout that 
sets bit 0 of the exit qualification, indicating that VM context is invalid, does not save a valid linear address.) 
If linear-address masking had been in effect (Section 4.4), the address recorded reflects the result of that 
masking and does not contain any masked metadata.

— For all other VM exits, the field is undefined.

1. Execution of WRMSR with ECX = 83FH (self-IPI MSR) can lead to an APIC-write VM exit; the exit qualification for such an APIC-write 
VM exit is 3F0H.
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• Guest-physical address. For a VM exit due to an EPT violation, an EPT misconfiguration, or an SPP-related 
event, this field receives the guest-physical address that caused the EPT violation or EPT misconfiguration. For 
all other VM exits, the field is undefined.
If the EPT violation or EPT misconfiguration occurred during execution of an instruction in enclave mode (and 
not during delivery of an event incident to enclave mode), bits 11:0 of this field are cleared. 

Table 29-7.  Exit Qualification for EPT Violations

Bit Position(s) Contents

0 Set if the access causing the EPT violation was a data read.1

1 Set if the access causing the EPT violation was a data write.1

2 Set if the access causing the EPT violation was an instruction fetch.

3 The logical-AND of bit 0 in the EPT paging-structure entries used to translate the guest-physical address of the 
access causing the EPT violation (indicates whether the guest-physical address was readable).2

4 The logical-AND of bit 1 in the EPT paging-structure entries used to translate the guest-physical address of the 
access causing the EPT violation (indicates whether the guest-physical address was writeable).2

5 The logical-AND of bit 2 in the EPT paging-structure entries used to translate the guest-physical address of the 
access causing the EPT violation.2

If the “mode-based execute control for EPT” VM-execution control is 0, this indicates whether the guest-physical 
address was executable. If that control is 1, this indicates whether the guest-physical address was executable 
for supervisor-mode linear addresses.

6 If the “mode-based execute control” VM-execution control is 0, the value of this bit is undefined. If that control is 
1, this bit is the logical-AND of bit 10 in the EPT paging-structure entries used to translate the guest-physical 
address of the access causing the EPT violation. In this case, it indicates whether the guest-physical address was 
executable for user-mode linear addresses.3

7 Set if the guest linear-address field is valid.

The guest linear-address field is valid for all EPT violations except those resulting from an attempt to load the 
guest PDPTEs as part of the execution of the MOV CR instruction and those due to trace-address pre-translation 
(TAPT; Section 27.5.4).

8 If bit 7 is 1:

• Set if the access causing the EPT violation is to a guest-physical address that is the translation of a linear 
address.

• Clear if the access causing the EPT violation is to a paging-structure entry as part of a page walk or the 
update of an accessed or dirty bit.

Reserved if bit 7 is 0 (cleared to 0).

9 If bit 7 is 1, bit 8 is 1, and the processor supports advanced VM-exit information for EPT violations,4 this bit is 0 
if the linear address is a supervisor-mode linear address and 1 if it is a user-mode linear address. (If CR0.PG = 0, 
the translation of every linear address is a user-mode linear address and thus this bit will be 1.) Otherwise, this 
bit is undefined.

10 If bit 7 is 1, bit 8 is 1, and the processor supports advanced VM-exit information for EPT violations,4 this bit is 0 
if paging translates the linear address to a read-only page and 1 if it translates to a read/write page. (If CR0.PG = 
0, every linear address is read/write and thus this bit will be 1.) Otherwise, this bit is undefined.

11 If bit 7 is 1, bit 8 is 1, and the processor supports advanced VM-exit information for EPT violations,4 this bit is 0 
if paging translates the linear address to an executable page and 1 if it translates to an execute-disable page. (If 
CR0.PG = 0, CR4.PAE = 0, or IA32_EFER.NXE = 0, every linear address is executable and thus this bit will be 0.) 
Otherwise, this bit is undefined.

12 NMI unblocking due to IRET (see Section 29.2.3).
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29.2.2 Information for VM Exits Due to Vectored Events
Section 26.9.2 defines fields containing information for VM exits due to the following events: exceptions (including 
those generated by the instructions INT1, INT3, INTO, BOUND, UD0, UD1, and UD2); external interrupts that occur 
while the “acknowledge interrupt on exit” VM-exit control is 1; and non-maskable interrupts (NMIs).1 Such 
VM exits include those that occur on an attempt at a task switch that causes an exception before generating the 
VM exit due to the task switch that causes the VM exit.

The following items detail the use of these fields:
• VM-exit interruption information (format given in Table 26-19). The following items detail how this field is 

established for VM exits due to these events:

— For an exception, bits 7:0 receive the exception vector (at most 31). For an NMI, bits 7:0 are set to 2. For 
an external interrupt, bits 7:0 receive the vector.

— Bits 10:8 are set to 0 (external interrupt), 2 (non-maskable interrupt), 3 (hardware exception), 5 
(privileged software exception), or 6 (software exception). Hardware exceptions comprise all exceptions 
except the following:

• Debug exceptions (#DB) generated by the INT1 instruction; these are privileged software exceptions. 
(Other debug exceptions are considered hardware exceptions, as are those caused by executions of 
INT1 in enclave mode.)

• Breakpoint exceptions (#BP; generated by INT3) and overflow exceptions (#OF; generated by INTO); 
these are software exceptions. (A #BP that occurs in enclave mode is considered a hardware 
exception.)

13 Set if the access causing the EPT violation was a shadow-stack access.

14 If supervisor shadow-stack control is enabled (by setting bit 7 of EPTP), this bit is the same as bit 60 in the EPT 
paging-structure entry that maps the page of the guest-physical address of the access causing the EPT violation. 
Otherwise (or if translation of the guest-physical address terminates before reaching an EPT paging-structure 
entry that maps a page), this bit is undefined.

15 This bit is set if the EPT violation was caused as a result of guest-paging verification. See Section 30.3.3.2.

16 This bit is set if the access was asynchronous to instruction execution not the result of event delivery. The bit is 
set if the access is related to trace output by Intel PT (see Section 27.5.4), accesses related to PEBS on 
processors with the “EPT-friendly” enhancement (see Section 21.9.5), or to user-interrupt delivery (see Section 
8.4.2). Otherwise, this bit is cleared.

63:17 Not currently defined. Bits 63:32 exist only on processors that support Intel 64 architecture.

NOTES:
1. If accessed and dirty flags for EPT are enabled, processor accesses to guest paging-structure entries are treated as writes with 

regard to EPT violations (see Section 30.3.3.2). If such an access causes an EPT violation, the processor sets both bit 0 and bit 1 of 
the exit qualification.

2. Bits 5:3 are cleared to 0 if either (1) any of EPT paging-structure entries used to translate the guest-physical address of the access 
causing the EPT violation is not present; or (2) 4-level EPT is in use and the guest-physical address sets any bits in the range 51:48 
(see Section 30.3.2).

3. Bit 6 is cleared to 0 if (1) the “mode-based execute control” VM-execution control is 1; and (2) either (a) any of EPT paging-structure 
entries used to translate the guest-physical address of the access causing the EPT violation is not present; or (b) 4-level EPT is in use 
and the guest-physical address sets any bits in the range 51:48 (see Section 30.3.2).

4. Software can determine whether advanced VM-exit information for EPT violations is supported by consulting the VMX capability 
MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10).

1. INT1 and INT3 refer to the instructions with opcodes F1 and CC, respectively, and not to INT n with value 1 or 3 for n.

Table 29-7.  Exit Qualification for EPT Violations (Contd.)

Bit Position(s) Contents
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BOUND-range exceeded exceptions (#BR; generated by BOUND) and invalid opcode exceptions (#UD) 
generated by UD0, UD1, and UD2 are hardware exceptions.

— Bit 11 is set to 1 if the VM exit is caused by a hardware exception that would have delivered an error code 
on the stack. This bit is always 0 if the VM exit occurred while the logical processor was in real-address 
mode (CR0.PE=0).1 If bit 11 is set to 1, the error code is placed in the VM-exit interruption error code (see 
below).

— Bit 12 reports “NMI unblocking due to IRET”; see Section 29.2.3. The value of this bit is undefined if the 
VM exit is due to a double fault (the interruption type is hardware exception and the vector is 8).

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.
For other VM exits (including those due to external interrupts when the “acknowledge interrupt on exit” VM-exit 
control is 0), the field is marked invalid (by clearing bit 31) and the remainder of the field is undefined.

• VM-exit interruption error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the VM-exit interruption-information 
field, this field receives the error code that would have been pushed on the stack had the event causing the 
VM exit been delivered normally through the IDT. The EXT bit is set in this field exactly when it would be set 
normally. For exceptions that occur during the delivery of double fault (if the IDT-vectoring information field 
indicates a double fault), the EXT bit is set to 1, assuming that (1) that the exception would produce an 
error code normally (if not incident to double-fault delivery) and (2) that the error code uses the EXT bit 
(not for page faults, which use a different format).

— For other VM exits, the value of this field is undefined.

29.2.3 Information About NMI Unblocking Due to IRET
A VM exit may occur during execution of the IRET instruction for reasons including the following: faults, EPT viola-
tions, page-modification log-full events, SPP-related events, or instruction timeouts.

An execution of IRET that commences while non-maskable interrupts (NMIs) are blocked will unblock NMIs even if 
a fault or VM exit occurs; the state saved by such a VM exit will indicate that NMIs were not blocked.

VM exits for the reasons enumerated above provide more information to software by saving a bit called “NMI 
unblocking due to IRET.” This bit is defined if (1) either the “NMI exiting” VM-execution control is 0 or the “virtual 
NMIs” VM-execution control is 1; (2) the VM exit does not set the valid bit in the IDT-vectoring information field 
(see Section 29.2.4); and (3) the VM exit is not due to a double fault. In these cases, the bit is defined as follows:
• The bit is 1 if the VM exit resulted from a memory access as part of execution of the IRET instruction and one 

of the following holds:

— The “virtual NMIs” VM-execution control is 0 and blocking by NMI (see Table 26-3) was in effect before 
execution of IRET.

— The “virtual NMIs” VM-execution control is 1 and virtual-NMI blocking was in effect before execution of 
IRET.

• The bit is 0 for all other relevant VM exits.

For VM exits due to faults, NMI unblocking due to IRET is saved in bit 12 of the VM-exit interruption-information 
field (Section 29.2.2). For VM exits due to EPT violations, page-modification log-full events, SPP-related events, 
and instruction timeouts, NMI unblocking due to IRET is saved in bit 12 of the exit qualification (Section 29.2.1).

(Executions of IRET may also incur VM exits due to APIC accesses and EPT misconfigurations. These VM exits do 
not report information about NMI unblocking due to IRET.)

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a logical processor cannot be in real-
address mode unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution con-
trols are both 1.
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29.2.4 Information for VM Exits During Event Delivery
Section 26.9.3 defined fields containing information for VM exits that occur while delivering an event through the 
IDT and as a result of any of the following cases:1

• A fault occurs during event delivery and causes a VM exit (because the bit associated with the fault is set to 1 
in the exception bitmap).

• A task switch is invoked through a task gate in the IDT. The VM exit occurs due to the task switch only after the 
initial checks of the task switch pass (see Section 27.4.2).

• Event delivery causes an APIC-access VM exit (see Section 31.4).
• An EPT violation, EPT misconfiguration, page-modification log-full event, or SPP-related event that occurs 

during event delivery.
• Any of the above VM exits that occur during user-interrupt notification processing (see Section 8.5.2). Such 

VM exits will be treated as if they occurred during delivery of an external interrupt with the vector UINV.

These fields are used for VM exits that occur during delivery of events injected as part of VM entry (see Section 
28.6.1.2).

A VM exit is not considered to occur during event delivery in any of the following circumstances:
• The original event causes the VM exit directly (for example, because the original event is a non-maskable 

interrupt (NMI) and the “NMI exiting” VM-execution control is 1).
• The original event results in a double-fault exception that causes the VM exit directly.
• The VM exit occurred as a result of fetching the first instruction of the handler invoked by the event delivery.
• The VM exit is caused by a triple fault.
• The original event was a software interrupt (INT n) executed in virtual-8086 mode with EFLAGS.IOPL < 3 and 

the VM exit was due to a general-protection exception (#GP) that occurred because either CR4.VME = 0 or bit 
n of the software interrupt redirection bit map in the TSS is set.

The following items detail the use of these fields:
• IDT-vectoring information (format given in Table 26-20). The following items detail how this field is established 

for VM exits that occur during event delivery:

— If the VM exit occurred during delivery of an exception, bits 7:0 receive the exception vector (at most 31). 
If the VM exit occurred during delivery of an NMI, bits 7:0 are set to 2. If the VM exit occurred during 
delivery of an external interrupt, bits 7:0 receive the vector.

— Bits 10:8 are set to indicate the type of event that was being delivered when the VM exit occurred: 0 
(external interrupt), 2 (non-maskable interrupt), 3 (hardware exception), 4 (software interrupt), 5 
(privileged software interrupt), or 6 (software exception).

Hardware exceptions comprise all exceptions except the following:2

• Debug exceptions (#DB) generated by the INT1 instruction; these are privileged software exceptions. 
(Other debug exceptions are considered hardware exceptions, as are those caused by executions of 
INT1 in enclave mode.)

• Breakpoint exceptions (#BP; generated by INT3) and overflow exceptions (#OF; generated by INTO); 
these are software exceptions. (A #BP that occurs in enclave mode is considered a hardware 
exception.)

BOUND-range exceeded exceptions (#BR; generated by BOUND) and invalid opcode exceptions (#UD) 
generated by UD0, UD1, and UD2 are hardware exceptions.

— Bit 11 is set to 1 if the VM exit occurred during delivery of a hardware exception that would have delivered 
an error code on the stack. This bit is always 0 if the VM exit occurred while the logical processor was in 

1. This includes the case in which a VM exit occurs while delivering a software interrupt (INT n) through the 16-bit IVT (interrupt vec-
tor table) that is used in virtual-8086 mode with virtual-machine extensions (if RFLAGS.VM = CR4.VME = 1).

2. In the following items, INT1 and INT3 refer to the instructions with opcodes F1 and CC, respectively, and not to INT n with value 1 or 
3 for n.
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real-address mode (CR0.PE=0).1 If bit 11 is set to 1, the error code is placed in the IDT-vectoring error 
code (see below).

— Bit 12 is undefined.

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.
For other VM exits, the field is marked invalid (by clearing bit 31) and the remainder of the field is undefined.

• IDT-vectoring error code. 

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the IDT-vectoring information field, 
this field receives the error code that would have been pushed on the stack by the event that was being 
delivered through the IDT at the time of the VM exit. The EXT bit is set in this field when it would be set 
normally.

— For other VM exits, the value of this field is undefined.

29.2.5 Information for VM Exits Due to Instruction Execution
Section 26.9.4 defined fields containing information for VM exits that occur due to instruction execution. (The VM-
exit instruction length is also used for VM exits that occur during the delivery of a software interrupt or software 
exception.) The following items detail their use.
• VM-exit instruction length. This field is used in the following cases:

— For fault-like VM exits due to attempts to execute one of the following instructions that cause VM exits 
unconditionally (see Section 27.1.2) or based on the settings of VM-execution controls (see Section 
27.1.3): CLTS, CPUID, ENCLS, GETSEC, HLT, IN, INS, INVD, INVEPT, INVLPG, INVPCID, INVVPID, LGDT, 
LIDT, LLDT, LMSW, LOADIWKEY, LTR, MONITOR, MOV CR, MOV DR, MWAIT, OUT, OUTS, PAUSE, PCONFIG, 
RDMSR, RDPMC, RDRAND, RDSEED, RDTSC, RDTSCP, RSM, SGDT, SIDT, SLDT, STR, TPAUSE, UMWAIT, 
VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, VMXON, 
WBINVD, WBNOINVD, WRMSR, XRSTORS, XSETBV, and XSAVES.2

— For VM exits due to software exceptions (those generated by executions of INT3 or INTO) or privileged 
software exceptions (those generated by executions of INT1).

— For VM exits due to faults encountered during delivery of a software interrupt, privileged software 
exception, or software exception.

— For VM exits due to attempts to effect a task switch via instruction execution. These are VM exits that 
produce an exit reason indicating task switch and either of the following:

• An exit qualification indicating execution of CALL, IRET, or JMP instruction.

• An exit qualification indicating a task gate in the IDT and an IDT-vectoring information field indicating 
that the task gate was encountered during delivery of a software interrupt, privileged software 
exception, or software exception.

— For APIC-access VM exits and for VM exits caused by EPT violations, page-modification log-full events, and 
SPP-related events encountered during delivery of a software interrupt, privileged software exception, or 
software exception.3

— For VM exits due executions of VMFUNC that fail because one of the following is true:

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a logical processor cannot be in real-
address mode unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution con-
trols are both 1.

2. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following executions of the MOV to CR8 instruc-
tion when the “use TPR shadow” VM-execution control is 1 or to those following executions of the WRMSR instruction when the 
“virtualize x2APIC mode” VM-execution control is 1.

3. The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from physical accesses (see Section 
31.4.6) even if encountered during delivery of a software interrupt, privileged software exception, or software exception.
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• EAX indicates a VM function that is not enabled (the bit at position EAX is 0 in the VM-function controls; 
see Section 27.5.6.2).

• EAX = 0 and either ECX ≥ 512 or the value of ECX selects an invalid tentative EPTP value (see Section 
27.5.6.3).

In all the above cases, this field receives the length in bytes (1–15) of the instruction (including any instruction 
prefixes) whose execution led to the VM exit (see the next paragraph for one exception).
The cases of VM exits encountered during delivery of a software interrupt, privileged software exception, or 
software exception include those encountered during delivery of events injected as part of VM entry (see 
Section 28.6.1.2). If the original event was injected as part of VM entry, this field receives the value of the VM-
entry instruction length.
All VM exits other than those listed in the above items leave this field undefined.
If the VM exit occurred in enclave mode, this field is cleared (none of the previous items apply).

• VM-exit instruction information. For VM exits due to attempts to execute INS, INVEPT, INVPCID, INVVPID, 
LIDT, LGDT, LLDT, LOADIWKEY, LTR, OUTS, RDRAND, RDSEED, SIDT, SGDT, SLDT, STR, TPAUSE, UMWAIT, 
VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, VMXON, XRSTORS, or XSAVES, this field receives 
information about the instruction that caused the VM exit. The format of the field depends on the identity of the 
instruction causing the VM exit:

— For VM exits due to attempts to execute INS or OUTS, the field has the format is given in Table 29-8.1

— For VM exits due to attempts to execute INVEPT, INVPCID, or INVVPID, the field has the format is given in 
Table 29-9.

— For VM exits due to attempts to execute LIDT, LGDT, SIDT, or SGDT, the field has the format is given in 
Table 29-10.

— For VM exits due to attempts to execute LLDT, LTR, SLDT, or STR, the field has the format is given in 
Table 29-11.

— For VM exits due to attempts to execute RDRAND or RDSEED, the field has the format is given in 
Table 29-12.

Table 29-8.  Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS
Bit Position(s) Content

6:0 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

14:10 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for VM exits due to execution of INS.

31:18 Undefined.

1. The format of the field was undefined for these VM exits on the first processors to support the virtual-machine extensions. Soft-
ware can determine whether the format specified in Table 29-8 is used by consulting the VMX capability MSR IA32_VMX_BASIC 
(see Appendix A.1).
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— For VM exits due to attempts to execute TPAUSE or UMWAIT, the field has the format is given in 
Table 29-13.

— For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST, VMXON, XRSTORS, or XSAVES, 
the field has the format is given in Table 29-14.

— For VM exits due to attempts to execute VMREAD or VMWRITE, the field has the format is given in 
Table 29-15.

— For VM exits due to attempts to execute LOADIWKEY, the field has the format is given in Table 29-16.
For all other VM exits, the field is undefined, unless the VM exit occurred in enclave mode, in which case the 
field is cleared.

• I/O RCX, I/O RSI, I/O RDI, I/O RIP. These fields are undefined except for SMM VM exits due to system-
management interrupts (SMIs) that arrive immediately after retirement of I/O instructions. See Section 
33.15.2.3. Note that, if the VM exit occurred in enclave mode, these fields are all cleared.

Table 29-9.  Format of the VM-Exit Instruction-Information Field as Used for INVEPT, INVPCID, and INVVPID
Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for memory instructions with no base register (bit 27 is set).
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27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Reg2 (same encoding as IndexReg above)

Table 29-10.  Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT, or SGDT
Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

11 Operand size:

0: 16-bit
1: 32-bit

Undefined for VM exits from 64-bit mode.

14:12 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Table 29-9.  Format of the VM-Exit Instruction-Information Field as Used for INVEPT, INVPCID, and INVVPID (Contd.)
Bit Position(s) Content
29-18 Vol. 3C



VM EXITS
29:28 Instruction identity:

0: SGDT
1: SIDT
2: LGDT
3: LIDT

31:30 Undefined.

Table 29-11.  Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT, and STR
Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear 
and bit 22 is set).

2 Undefined.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear 
and bit 22 is set).

Table 29-10.  Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT, or SGDT (Contd.)
Bit Position(s) Content
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22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no base register (bit 10 is clear 
and bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

29:28 Instruction identity:

0: SLDT
1: STR
2: LLDT
3: LTR

31:30 Undefined.

Table 29-12.  Format of the VM-Exit Instruction-Information Field as Used for RDRAND and RDSEED
Bit Position(s) Content

2:0 Undefined.

6:3 Operand register (destination register):

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

10:7 Undefined.

12:11 Operand size:

0: 16-bit
1: 32-bit
2: 64-bit

The value 3 is not used.

31:13 Undefined.

Table 29-13.  Format of the VM-Exit Instruction-Information Field as Used for TPAUSE and UMWAIT
Bit Position(s) Content

2:0 Undefined.

Table 29-11.  Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT, and STR (Contd.)
Bit Position(s) Content
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6:3 Operand register (source register):

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

31:7 Undefined.

Table 29-14.  Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR, VMPTRLD, VMPTRST, 
VMXON, XRSTORS, and XSAVES

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

Table 29-13.  Format of the VM-Exit Instruction-Information Field as Used for TPAUSE and UMWAIT (Contd.)
Bit Position(s) Content
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22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Undefined.

Table 29-15.  Format of the VM-Exit Instruction-Information Field as Used for VMREAD and VMWRITE
Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear 
and bit 22 is set).

2 Undefined.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear 
and bit 22 is set).

Table 29-14.  Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR, VMPTRLD, VMPTRST, 
VMXON, XRSTORS, and XSAVES (Contd.)

Bit Position(s) Content
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29.3 SAVING GUEST STATE
VM exits save certain components of processor state into corresponding fields in the guest-state area of the VMCS 
(see Section 26.4). On processors that support Intel 64 architecture, the full value of each natural-width field (see 
Section 26.11.2) is saved regardless of the mode of the logical processor before and after the VM exit.

In general, the state saved is that which was in the logical processor at the time the VM exit commences. See 
Section 29.1 for a discussion of which architectural updates occur at that time.

Section 29.3.1 through Section 29.3.4 provide details for how various components of processor state are saved. 
These sections reference VMCS fields that correspond to processor state. Unless otherwise stated, these refer-
ences are to fields in the guest-state area.

29.3.1 Saving Control Registers, Debug Registers, and MSRs
Contents of certain control registers, debug registers, and MSRs are saved as follows:
• The contents of CR0, CR3, CR4, and the IA32_SYSENTER_CS, IA32_SYSENTER_ESP, and IA32_SYSENTER_EIP 

MSRs are saved into the corresponding fields. Bits 63:32 of the IA32_SYSENTER_CS MSR are not saved. On 
processors that do not support Intel 64 architecture, bits 63:32 of the IA32_SYSENTER_ESP and IA32_SYSEN-
TER_EIP MSRs are not saved.

• If the “save debug controls” VM-exit control is 1, the contents of DR7 and the IA32_DEBUGCTL MSR are saved 
into the corresponding fields. The first processors to support the virtual-machine extensions supported only the 
1-setting of this control and thus always saved data into these fields.

• If the “save IA32_PAT” VM-exit control is 1, the contents of the IA32_PAT MSR are saved into the corresponding 
field.

• If the “save IA32_EFER” VM-exit control is 1, the contents of the IA32_EFER MSR are saved into the corre-
sponding field.

• If the processor supports either the 1-setting of the “load IA32_BNDCFGS” VM-entry control or that of the 
“clear IA32_BNDCFGS” VM-exit control, the contents of the IA32_BNDCFGS MSR are saved into the corre-
sponding field.

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no base register (bit 10 is clear 
and bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

31:28 Reg2 (same encoding as Reg1 above)

Table 29-16.  Format of the VM-Exit Instruction-Information Field as Used for LOADIWKEY
Bit Position(s) Content

2:0 Undefined.

6:3 Reg1: identifies the first XMM register operand (XMM0–XMM15; values 8–15 are used only on processors that 
support Intel 64 architecture).

30:7 Undefined.

31:28 Reg2: identifies the second XMM register operand (see above).

Table 29-15.  Format of the VM-Exit Instruction-Information Field as Used for VMREAD and VMWRITE (Contd.)
Bit Position(s) Content
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• If the processor supports either the 1-setting of the “load IA32_RTIT_CTL” VM-entry control or that of the “clear 
IA32_RTIT_CTL” VM-exit control, the contents of the IA32_RTIT_CTL MSR are saved into the corresponding 
field.

• If the processor supports the 1-setting of the “load CET” VM-entry control, the contents of the IA32_S_CET and 
IA32_INTERRUPT_SSP_TABLE_ADDR MSRs are saved into the corresponding fields. On processors that do not 
support Intel 64 architecture, bits 63:32 of these MSRs are not saved.

• If the processor supports either the 1-setting of the “load guest IA32_LBR_CTL” VM-entry control or that of the 
“clear IA32_LBR_CTL” VM-exit control, the contents of the IA32_LBR_CTL MSR are saved into the corre-
sponding field.

• If the processor supports the 1-setting of the “load PKRS” VM-entry control, the contents of the IA32_PKRS 
MSR are saved into the corresponding field.

• If a processor supports user interrupts, every VM exit saves UINV into the guest UINV field in the VMCS 
(bits 15:8 of the field are cleared).

• If the “save IA32_PERF_GLOBAL_CTL” VM-exit control is 1, the contents of the IA32_PERF_GLOBAL_CTL MSR 
are saved into the corresponding field.

• The value of the SMBASE field is undefined after all VM exits except SMM VM exits. See Section 33.15.2.

29.3.2 Saving Segment Registers and Descriptor-Table Registers
For each segment register (CS, SS, DS, ES, FS, GS, LDTR, or TR), the values saved for the base-address, segment-
limit, and access rights are based on whether the register was unusable (see Section 26.4.1) before the VM exit:
• If the register was unusable, the values saved into the following fields are undefined: (1) base address; 

(2) segment limit; and (3) bits 7:0 and bits 15:12 in the access-rights field. The following exceptions apply:

— CS.

• The base-address and segment-limit fields are saved.

• The L, D, and G bits are saved in the access-rights field.

— SS.

• DPL is saved in the access-rights field.

• On processors that support Intel 64 architecture, bits 63:32 of the value saved for the base address are 
always zero.

— DS and ES. On processors that support Intel 64 architecture, bits 63:32 of the values saved for the base 
addresses are always zero.

— FS and GS. The base-address field is saved.
• If the register was not unusable, the values saved into the following fields are those which were in the register 

before the VM exit: (1) base address; (2) segment limit; and (3) bits 7:0 and bits 15:12 in access rights.
• Bits 31:17 and 11:8 in the access-rights field are always cleared. Bit 16 is set to 1 if and only if the segment is 

unusable.

The contents of the GDTR and IDTR registers are saved into the corresponding base-address and limit fields.

29.3.3 Saving RIP, RSP, RFLAGS, and SSP
The contents of the RIP, RSP, RFLAGS, and SSP (shadow-stack pointer) registers are saved as follows:
• The value saved in the RIP field is determined by the nature and cause of the VM exit:

— If the VM exit occurred in enclave mode, the value saved is the AEP of interrupted enclave thread (the 
remaining items do not apply).

— If the VM exit occurs due to by an attempt to execute an instruction that causes VM exits unconditionally or 
that has been configured to cause a VM exit via the VM-execution controls, the value saved references that 
instruction.
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— If the VM exit is caused by an occurrence of an INIT signal, a start-up IPI (SIPI), or system-management 
interrupt (SMI), the value saved is that which was in RIP before the event occurred.

— If the VM exit occurs due to the 1-setting of either the “interrupt-window exiting” VM-execution control or 
the “NMI-window exiting” VM-execution control, the value saved is that which would be in the register had 
the VM exit not occurred.

— If the VM exit is due to an external interrupt, non-maskable interrupt (NMI), or hardware exception (as 
defined in Section 29.2.2), the value saved is the return pointer that would have been saved (either on the 
stack had the event been delivered through a trap or interrupt gate,1 or into the old task-state segment had 
the event been delivered through a task gate).

— If the VM exit is due to a triple fault, the value saved is the return pointer that would have been saved 
(either on the stack had the event been delivered through a trap or interrupt gate, or into the old task-state 
segment had the event been delivered through a task gate) had delivery of the double fault not 
encountered the nested exception that caused the triple fault.

— If the VM exit is due to a software exception (due to an execution of INT3 or INTO) or a privileged software 
exception (due to an execution of INT1), the value saved references the INT3, INTO, or INT1 instruction 
that caused that exception.

— Suppose that the VM exit is due to a task switch that was caused by execution of CALL, IRET, or JMP or by 
execution of a software interrupt (INT n), software exception (due to execution of INT3 or INTO), or 
privileged software exception (due to execution of INT1) that encountered a task gate in the IDT. The value 
saved references the instruction that caused the task switch (CALL, IRET, JMP, INT n, INT3, INTO, INT1).

— Suppose that the VM exit is due to a task switch that was caused by a task gate in the IDT that was 
encountered for any reason except the direct access by a software interrupt or software exception. The 
value saved is that which would have been saved in the old task-state segment had the task switch 
completed normally.

— If the VM exit is due to an execution of MOV to CR8 or WRMSR that reduced the value of bits 7:4 of VTPR 
(see Section 31.1.1) below that of TPR threshold VM-execution control field (see Section 31.1.2), the value 
saved references the instruction following the MOV to CR8 or WRMSR.

— If the VM exit was caused by APIC-write emulation (see Section 31.4.3.2) that results from an APIC access 
as part of instruction execution, the value saved references the instruction following the one whose 
execution caused the APIC-write emulation.

• The contents of the RSP register are saved into the RSP field.
• With the exception of the resume flag (RF; bit 16), the contents of the RFLAGS register is saved into the 

RFLAGS field. RFLAGS.RF is saved as follows:

— If the VM exit occurred in enclave mode, the value saved is 0 (the remaining items do not apply).

— If the VM exit is caused directly by an event that would normally be delivered through the IDT, the value 
saved is that which would appear in the saved RFLAGS image (either that which would be saved on the 
stack had the event been delivered through a trap or interrupt gate2 or into the old task-state segment had 
the event been delivered through a task gate) had the event been delivered through the IDT. See below for 
VM exits due to task switches caused by task gates in the IDT.

— If the VM exit is caused by a triple fault, the value saved is that which the logical processor would have in 
RF in the RFLAGS register had the triple fault taken the logical processor to the shutdown state.

— If the VM exit is caused by a task switch (including one caused by a task gate in the IDT), the value saved 
is that which would have been saved in the RFLAGS image in the old task-state segment (TSS) had the task 
switch completed normally without exception.

— If the VM exit is caused by an attempt to execute an instruction that unconditionally causes VM exits or one 
that was configured to do with a VM-execution control, the value saved is 0.3

1. The reference here is to the full value of RIP before any truncation that would occur had the stack width been only 32 bits or 16 
bits.

2. The reference here is to the full value of RFLAGS before any truncation that would occur had the stack width been only 32 bits or 
16 bits.
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— For APIC-access VM exits and for VM exits caused by EPT violations, EPT misconfigurations, page-modifi-
cation log-full events, or SPP-related events, the value saved depends on whether the VM exit occurred 
during delivery of an event through the IDT:

• If the VM exit stored 0 for bit 31 for IDT-vectoring information field (because the VM exit did not occur 
during delivery of an event through the IDT; see Section 29.2.4), the value saved is 1.

• If the VM exit stored 1 for bit 31 for IDT-vectoring information field (because the VM exit did occur 
during delivery of an event through the IDT), the value saved is the value that would have appeared in 
the saved RFLAGS image had the event been delivered through the IDT (see above).

— For all other VM exits, the value saved is the value RFLAGS.RF had before the VM exit occurred.
• If the processor supports the 1-setting of the “load CET” VM-entry control, the contents of the SSP register are 

saved into the SSP field.

29.3.4 Saving Non-Register State
Information corresponding to guest non-register state is saved as follows:
• The activity-state field is saved with the logical processor’s activity state before the VM exit.1 See Section 29.1 

for details of how events leading to a VM exit may affect the activity state. If the VM exit occurred during user-
interrupt notification processing (see Section 8.5.2) and the logical processor would have entered the HLT state 
following user-interrupt notification processing, the saved activity state is “HLT”.

• The interruptibility-state field is saved to reflect the logical processor’s interruptibility before the VM exit.

— See Section 29.1 for details of how events leading to a VM exit may affect this state.

— VM exits that end outside system-management mode (SMM) save bit 2 (blocking by SMI) as 0 regardless 
of the state of such blocking before the VM exit.

— Bit 3 (blocking by NMI) is treated specially if the “virtual NMIs” VM-execution control is 1. In this case, the 
value saved for this field does not indicate the blocking of NMIs but rather the state of virtual-NMI blocking.

— Bit 4 (enclave interruption) is set to 1 if the VM exit occurred while the logical processor was in enclave 
mode.

Such VM exits includes those caused by interrupts, non-maskable interrupts, system-management 
interrupts, INIT signals, and exceptions occurring in enclave mode as well as exceptions encountered 
during the delivery of such events incident to enclave mode.

A VM exit that is incident to delivery of an event injected by VM entry leaves this bit unmodified.
• The pending debug exceptions field is saved as clear for all VM exits except the following:

— A VM exit caused by an INIT signal, a machine-check exception, or a system-management interrupt (SMI).

— A VM exit with basic exit reason “TPR below threshold”,2 “virtualized EOI”, “APIC write”, “monitor trap flag,” 
or “bus-lock detected.”

— A VM exit due to trace-address pre-translation (TAPT; see Section 27.5.4) or due to accesses related to 
PEBS on processors with the “EPT-friendly” enhancement (see Section 21.9.5). Such VM exits can have 
basic exit reason “APIC access,” “EPT violation,” “EPT misconfiguration,” “page-modification log full,” or 
“SPP-related event.” When due to TAPT or PEBS, these VM exits (with the exception of those due to EPT 
misconfigurations) set bit 16 of the exit qualification, indicating that they are asynchronous to instruction 
execution and not part of event delivery.

3. This is true even if RFLAGS.RF was 1 before the instruction was executed. If, in response to such a VM exit, a VM monitor re-enters 
the guest to re-execute the instruction that caused the VM exit (for example, after clearing the VM-execution control that caused 
the VM exit), the instruction may encounter a code breakpoint that has already been processed. A VM monitor can avoid this by set-
ting the guest value of RFLAGS.RF to 1 before resuming guest software.

1. If this activity state was an inactive state resulting from execution of a specific instruction (HLT or MWAIT), the value saved for RIP 
by that VM exit will reference the following instruction.

2. This item includes VM exits that occur as a result of certain VM entries (Section 28.7.7).
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— VM exits that are not caused by debug exceptions and that occur while there is MOV-SS blocking of debug 
exceptions.

For VM exits that do not clear the field, the value saved is determined as follows:

— Each of bits 3:0 may be set if it corresponds to a matched breakpoint. This may be true even if the corre-
sponding breakpoint is not enabled in DR7.

— Suppose that a VM exit is due to an INIT signal, a machine-check exception, or an SMI; or that a VM exit 
has basic exit reason “TPR below threshold” or “monitor trap flag.” In this case, the value saved sets bits 
corresponding to the causes of any debug exceptions that were pending at the time of the VM exit.

If the VM exit occurs immediately after VM entry, the value saved may match that which was loaded on 
VM entry (see Section 28.7.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 in any of the following cases:

— If there was at least one matched data or I/O breakpoint that was enabled in DR7.

— If it had been set on VM entry, causing there to be valid pending debug exceptions (see Section 
28.7.3) and the VM exit occurred before those exceptions were either delivered or lost.

— If the XBEGIN instruction was executed immediately before the VM exit and advanced debugging of 
RTM transactional regions had been enabled (see Section 17.3.7, “RTM-Enabled Debugger 
Support,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1). (This does 
not apply to VM exits with basic exit reason “monitor trap flag.”)

— If a bus lock was asserted while CPL > 0 and OS bus-lock detection was enabled.

In other cases, bit 12 is cleared to 0.

• Bit 14 (BS) is set if RFLAGS.TF = 1 in either of the following cases:

— IA32_DEBUGCTL.BTF = 0 and the cause of a pending debug exception was the execution of a single 
instruction.

— IA32_DEBUGCTL.BTF = 1 and the cause of a pending debug exception was a taken branch.

• Bit 16 (RTM) is set if a debug exception (#DB) or a breakpoint exception (#BP) occurred inside an RTM 
region while advanced debugging of RTM transactional regions had been enabled. (This does not apply 
to VM exits with basic exit reason “monitor trap flag.”)

— Suppose that a VM exit is due to another reason (but not a debug exception) and occurs while there is MOV-
SS blocking of debug exceptions. In this case, the value saved sets bits corresponding to the causes of any 
debug exceptions that were pending at the time of the VM exit. If the VM exit occurs immediately after 
VM entry (no instructions were executed in VMX non-root operation), the value saved may match that 
which was loaded on VM entry (see Section 28.7.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched data or I/O breakpoint that was 
enabled in DR7. Bit 12 is also set if it had been set on VM entry, causing there to be valid pending debug 
exceptions (see Section 28.7.3) and the VM exit occurred before those exceptions were either delivered 
or lost. In other cases, bit 12 is cleared to 0.

• The setting of bit 14 (BS) is implementation-specific. However, it is not set if RFLAGS.TF = 0 or 
IA32_DEBUGCTL.BTF = 1.

— The reserved bits in the field are cleared.
• If the “save VMX-preemption timer value” VM-exit control is 1, the value of timer is saved into the VMX-

preemption timer-value field. This is the value loaded from this field on VM entry as subsequently decremented 
(see Section 27.5.1). VM exits due to timer expiration save the value 0. Other VM exits may also save the value 
0 if the timer expired during VM exit. (If the “save VMX-preemption timer value” VM-exit control is 0, VM exit 
does not modify the value of the VMX-preemption timer-value field.)

• If the logical processor supports the 1-setting of the “enable EPT” VM-execution control, values are saved into 
the four (4) PDPTE fields as follows:

— If the “enable EPT” VM-execution control is 1 and the logical processor was using PAE paging at the time of 
the VM exit, the PDPTE values currently in use are saved:1

• The values saved into bits 11:9 of each of the fields is undefined.
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• If the value saved into one of the fields has bit 0 (present) clear, the value saved into bits 63:1 of that 
field is undefined. That value need not correspond to the value that was loaded by VM entry or to any 
value that might have been loaded in VMX non-root operation.

• If the value saved into one of the fields has bit 0 (present) set, the value saved into bits 63:12 of the 
field is a guest-physical address.

— If the “enable EPT” VM-execution control is 0 or the logical processor was not using PAE paging at the time 
of the VM exit, the values saved are undefined.

29.4 SAVING MSRS
After processor state is saved to the guest-state area, values of MSRs may be stored into the VM-exit MSR-store 
area (see Section 26.7.2). Specifically each entry in that area (up to the number specified in the VM-exit MSR-store 
count) is processed in order by storing the value of the MSR indexed by bits 31:0 (as they would be read by 
RDMSR) into bits 127:64. Processing of an entry fails in either of the following cases:
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows access to an APIC register 

when the local APIC is in x2APIC mode. 
• The value of bits 31:0 indicates an MSR that can be read only in system-management mode (SMM) and the 

VM exit will not end in SMM. (IA32_SMBASE is an MSR that can be read only in SMM.)
• The value of bits 31:0 indicates an MSR that cannot be saved on VM exits for model-specific reasons. A 

processor may prevent certain MSRs (based on the value of bits 31:0) from being stored on VM exits, even if 
they can normally be read by RDMSR. Such model-specific behavior is documented in Chapter 2, “Model-
Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

• Bits 63:32 of the entry are not all 0.
• An attempt to read the MSR indexed by bits 31:0 would cause a general-protection exception if executed via 

RDMSR with CPL = 0.

A VMX abort occurs if processing fails for any entry. See Section 29.7.

29.5 LOADING HOST STATE
Processor state is updated on VM exits in the following ways:
• Some state is loaded from or otherwise determined by the contents of the host-state area.
• Some state is determined by VM-exit controls.
• Some state is established in the same way on every VM exit.
• The page-directory pointers are loaded based on the values of certain control registers.

This loading may be performed in any order.

On processors that support Intel 64 architecture, the full values of each 64-bit field loaded (for example, the base 
address for GDTR) is loaded regardless of the mode of the logical processor before and after the VM exit.

The loading of host state is detailed in Section 29.5.1 to Section 29.5.5. These sections reference VMCS fields that 
correspond to processor state. Unless otherwise stated, these references are to fields in the host-state area.

A logical processor is in IA-32e mode after a VM exit only if the “host address-space size” VM-exit control is 1. If the 
logical processor was in IA-32e mode before the VM exit and this control is 0, a VMX abort occurs. See Section 
29.7.

In addition to loading host state, VM exits clear address-range monitoring (Section 29.5.6).

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 5.4 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 
of the primary processor-based VM-execution controls is 0, VM exit functions as if the “enable EPT” VM-execution control were 0. 
See Section 26.6.2.
29-28 Vol. 3C



VM EXITS
After the state loading described in this section, VM exits may load MSRs from the VM-exit MSR-load area (see 
Section 29.6). This loading occurs only after the state loading described in this section.

29.5.1 Loading Host Control Registers, Debug Registers, MSRs
VM exits load new values for controls registers, debug registers, and some MSRs:
• CR0, CR3, and CR4 are loaded from the CR0 field, the CR3 field, and the CR4 field, respectively, with the 

following exceptions:

— The following bits are not modified:

• For CR0, ET, CD, NW; bits 63:32 (on processors that support Intel 64 architecture), 28:19, 17, and 
15:6; and any bits that are fixed in VMX operation (see Section 25.8).1

• For CR3, bits 63:52 and bits in the range 51:32 beyond the processor’s physical-address width (they 
are cleared to 0).2 (This item applies only to processors that support Intel 64 architecture.)

• For CR4, any bits that are fixed in VMX operation (see Section 25.8).

— CR4.PAE is set to 1 if the “host address-space size” VM-exit control is 1.

— CR4.PCIDE is set to 0 if the “host address-space size” VM-exit control is 0.
• DR7 is set to 400H.
• If the “clear UINV” VM-exit control is 1, VM exit clears UINV.
• The following MSRs are established as follows:

— The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field. Since that field has only 32 
bits, bits 63:32 of the MSR are cleared to 0. 

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from the IA32_SYSENTER_ESP and 
IA32_SYSENTER_EIP fields, respectively.

If the processor does not support the Intel 64 architecture, these fields have only 32 bits; bits 63:32 of the 
MSRs are cleared to 0.

If the processor supports the Intel 64 architecture with N < 64 linear-address bits, each of bits 63:N is set 
to the value of bit N–1.3

— The following steps are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields for FS and GS, respectively 
(see Section 29.5.2).

• The LMA and LME bits in the IA32_EFER MSR are each loaded with the setting of the “host address-
space size” VM-exit control.

— If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, the IA32_PERF_GLOBAL_CTRL MSR is loaded 
from the IA32_PERF_GLOBAL_CTRL field. Bits that are reserved in that MSR are maintained with their 
reserved values.

— If the “load IA32_PAT” VM-exit control is 1, the IA32_PAT MSR is loaded from the IA32_PAT field. Bits that 
are reserved in that MSR are maintained with their reserved values.

— If the “load IA32_EFER” VM-exit control is 1, the IA32_EFER MSR is loaded from the IA32_EFER field. Bits 
that are reserved in that MSR are maintained with their reserved values.

1. Bits 28:19, 17, and 15:6 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. CR0.ET is always 1 and the other bits are 
always 0.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

3. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-address bits supported is 
returned in bits 15:8 of EAX.
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— If the “clear IA32_BNDCFGS” VM-exit control is 1, the IA32_BNDCFGS MSR is cleared to 
00000000_00000000H; otherwise, it is not modified.

— If the “clear IA32_RTIT_CTL” VM-exit control is 1, the IA32_RTIT_CTL MSR is cleared to 
00000000_00000000H; otherwise, it is not modified.

— If the “load CET” VM-exit control is 1, the IA32_S_CET and IA32_INTERRUPT_SSP_TABLE_ADDR MSRs are 
loaded from the IA32_S_CET and IA32_INTERRUPT_SSP_TABLE_ADDR fields, respectively.

If the processor does not support the Intel 64 architecture, these fields have only 32 bits; bits 63:32 of the 
MSRs are cleared to 0.

If the processor supports the Intel 64 architecture with N < 64 linear-address bits, each of bits 63:N is set 
to the value of bit N–1.

— If the “load PKRS” VM-exit control is 1, the IA32_PKRS MSR is loaded from the IA32_PKRS field. Bits 63:32 
of that MSR are maintained with zeroes.

With the exception of FS.base and GS.base, any of these MSRs is subsequently overwritten if it appears in the 
VM-exit MSR-load area. See Section 29.6.

29.5.2 Loading Host Segment and Descriptor-Table Registers
Each of the registers CS, SS, DS, ES, FS, GS, and TR is loaded as follows (see below for the treatment of LDTR):
• The selector is loaded from the selector field. The segment is unusable if its selector is loaded with zero. The 

checks specified in Section 28.2.3 limit the selector values that may be loaded. In particular, CS and TR are 
never loaded with zero and are thus never unusable. SS can be loaded with zero only on processors that 
support Intel 64 architecture and only if the VM exit is to 64-bit mode (64-bit mode allows use of segments 
marked unusable).

• The base address is set as follows:

— CS. Cleared to zero.

— SS, DS, and ES. Undefined if the segment is unusable; otherwise, cleared to zero.

— FS and GS. Undefined (but, on processors that support Intel 64 architecture, canonical) if the segment is 
unusable and the VM exit is not to 64-bit mode; otherwise, loaded from the base-address field.

If the processor supports the Intel 64 architecture and the processor supports N < 64 linear-address bits, 
each of bits 63:N is set to the value of bit N–1.1 The values loaded for base addresses for FS and GS are 
also manifest in the FS.base and GS.base MSRs.

— TR. Loaded from the host-state area. If the processor supports the Intel 64 architecture and the processor 
supports N < 64 linear-address bits, each of bits 63:N is set to the value of bit N–1.

• The segment limit is set as follows:

— CS. Set to FFFFFFFFH (corresponding to a descriptor limit of FFFFFH and a G-bit setting of 1).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to FFFFFFFFH.

— TR. Set to 00000067H.
• The type field and S bit are set as follows:

— CS. Type set to 11 and S set to 1 (execute/read, accessed, non-conforming code segment).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, type set to 3 and S set to 1 
(read/write, accessed, expand-up data segment).

— TR. Type set to 11 and S set to 0 (busy 32-bit task-state segment).
• The DPL is set as follows:

— CS, SS, and TR. Set to 0. The current privilege level (CPL) will be 0 after the VM exit completes.

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-address bits supported is 
returned in bits 15:8 of EAX.
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— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 0.
• The P bit is set as follows:

— CS, TR. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.
• On processors that support Intel 64 architecture, CS.L is loaded with the setting of the “host address-space 

size” VM-exit control. Because the value of this control is also loaded into IA32_EFER.LMA (see Section 29.5.1), 
no VM exit is ever to compatibility mode (which requires IA32_EFER.LMA = 1 and CS.L = 0).

• D/B.

— CS. Loaded with the inverse of the setting of the “host address-space size” VM-exit control. For example, if 
that control is 0, indicating a 32-bit guest, CS.D/B is set to 1.

— SS. Set to 1.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.

— TR. Set to 0.
• G.

— CS. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.

— TR. Set to 0.

The host-state area does not contain a selector field for LDTR. LDTR is established as follows on all VM exits: the 
selector is cleared to 0000H, the segment is marked unusable and is otherwise undefined.

The base addresses for GDTR and IDTR are loaded from the GDTR base-address field and the IDTR base-address 
field, respectively. If the processor supports the Intel 64 architecture and the processor supports N < 64 linear-
address bits, each of bits 63:N of each base address is set to the value of bit N–1 of that base address. The GDTR 
and IDTR limits are each set to FFFFH.

29.5.3 Loading Host RIP, RSP, RFLAGS, and SSP
RIP and RSP are loaded from the RIP field and the RSP field, respectively. RFLAGS is cleared, except bit 1, which is 
always set.

If the “load CET” VM-exit control is 1, SSP (shadow-stack pointer) is loaded from the SSP field.

29.5.4 Checking and Loading Host Page-Directory-Pointer-Table Entries

If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LMA = 0, the logical processor uses PAE paging. See Section 5.4 of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.1 When in PAE paging is in use, the 
physical address in CR3 references a table of page-directory-pointer-table entries (PDPTEs). A MOV to CR3 
when PAE paging is in use checks the validity of the PDPTEs and, if they are valid, loads them into the processor 
(into internal, non-architectural registers).

A VM exit is to a VMM that uses PAE paging if (1) bit 5 (corresponding to CR4.PAE) is set in the CR4 field in the 
host-state area of the VMCS; and (2) the “host address-space size” VM-exit control is 0. Such a VM exit may check 
the validity of the PDPTEs referenced by the CR3 field in the host-state area of the VMCS. Such a VM exit must 
check their validity if either (1) PAE paging was not in use before the VM exit; or (2) the value of CR3 is changing 
as a result of the VM exit. A VM exit to a VMM that does not use PAE paging must not check the validity of the 
PDPTEs.

A VM exit that checks the validity of the PDPTEs uses the same checks that are used when CR3 is loaded with 
MOV to CR3 when PAE paging is in use. If MOV to CR3 would cause a general-protection exception due to the 

1. On processors that support Intel 64 architecture, the physical-address extension may support more than 36 physical-address bits. 
Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.
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PDPTEs that would be loaded (e.g., because a reserved bit is set), a VMX abort occurs (see Section 29.7). If a 
VM exit to a VMM that uses PAE does not cause a VMX abort, the PDPTEs are loaded into the processor as would 
MOV to CR3, using the value of CR3 being load by the VM exit.

29.5.5 Updating Non-Register State
VM exits affect the non-register state of a logical processor as follows:
• A logical processor is always in the active state after a VM exit.
• Event blocking is affected as follows:

— There is no blocking by STI or by MOV SS after a VM exit.

— VM exits caused directly by non-maskable interrupts (NMIs) cause blocking by NMI (see Table 26-3). Other 
VM exits do not affect blocking by NMI. (See Section 29.1 for the case in which an NMI causes a VM exit 
indirectly.)

• There are no pending debug exceptions after a VM exit.

Section 30.4 describes how the VMX architecture controls how a logical processor manages information in the TLBs 
and paging-structure caches. The following items detail how VM exits invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates linear mappings and combined 

mappings associated with VPID 0000H (for all PCIDs); combined mappings for VPID 0000H are invalidated for 
all EPTRTA values (EPTRTA is the value of bits 51:12 of EPTP).

• VM exits are not required to invalidate any guest-physical mappings, nor are they required to invalidate any 
linear mappings or combined mappings if the “enable VPID” VM-execution control is 1. 

29.5.6 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address range using the MONITOR and 
MWAIT instructions. See Section 10.10.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A. VM exits clear any address-range monitoring that may be in effect.

29.6 LOADING MSRS
VM exits may load MSRs from the VM-exit MSR-load area (see Section 26.7.2). Specifically each entry in that area 
(up to the number specified in the VM-exit MSR-load count) is processed in order by loading the MSR indexed by 
bits 31:0 with the contents of bits 127:64 as they would be written by WRMSR.

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or C0000101H (the IA32_GS_BASE 

MSR).
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows access to an APIC register 

when the local APIC is in x2APIC mode. 
• The value of bits 31:0 indicates an MSR that can be written only in system-management mode (SMM) and the 

VM exit will not end in SMM. (IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)
• The value of bits 31:0 indicates an MSR that cannot be loaded on VM exits for model-specific reasons. A 

processor may prevent loading of certain MSRs even if they can normally be written by WRMSR. Such model-
specific behavior is documented in Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 4.

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry would cause a general-protection 

exception if executed via WRMSR with CPL = 0.1

If processing fails for any entry, a VMX abort occurs. See Section 29.7.
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If any MSR is being loaded in such a way that would architecturally require a TLB flush, the TLBs are updated so 
that, after VM exit, the logical processor does not use any translations that were cached before the transition.

29.7 VMX ABORTS
A problem encountered during a VM exit leads to a VMX abort. A VMX abort takes a logical processor into a shut-
down state as described below.

A VMX abort does not modify the VMCS data in the VMCS region of any active VMCS. The contents of these data 
are thus suspect after the VMX abort.

On a VMX abort, a logical processor saves a nonzero 32-bit VMX-abort indicator field at byte offset 4 in the VMCS 
region of the VMCS whose misconfiguration caused the failure (see Section 26.2). The following values are used:

1. There was a failure in saving guest MSRs (see Section 29.4).

2. Host checking of the page-directory-pointer-table entries (PDPTEs) failed (see Section 29.5.4).

3. The current VMCS has been corrupted (through writes to the corresponding VMCS region) in such a way that 
the logical processor cannot complete the VM exit properly.

4. There was a failure on loading host MSRs (see Section 29.6).

5. There was a machine-check event during VM exit (see Section 29.8).

6. The logical processor was in IA-32e mode before the VM exit and the “host address-space size” VM-exit control 
was 0 (see Section 29.5).

Some of these causes correspond to failures during the loading of state from the host-state area. Because the 
loading of such state may be done in any order (see Section 29.5) a VM exit that might lead to a VMX abort for 
multiple reasons (for example, the current VMCS may be corrupt and the host PDPTEs might not be properly 
configured). In such cases, the VMX-abort indicator could correspond to any one of those reasons.

A logical processor never reads the VMX-abort indicator in a VMCS region and writes it only with one of the non-
zero values mentioned above. The VMX-abort indicator allows software on one logical processor to diagnose the 
VMX-abort on another. For this reason, it is recommended that software running in VMX root operation zero the 
VMX-abort indicator in the VMCS region of any VMCS that it uses.

After saving the VMX-abort indicator, operation of a logical processor experiencing a VMX abort depends on 
whether the logical processor is in SMX operation:1

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs. The error code used is 
000DH, indicating “VMX abort.” See the Intel® Trusted Execution Technology Measured Launched Environment 
Programming Guide.

• If the logical processor is outside SMX operation, it issues a special bus cycle (to notify the chipset) and enters 
the VMX-abort shutdown state. RESET is the only event that wakes a logical processor from the VMX-abort 
shutdown state. The following events do not affect a logical processor in this state: machine-check events; 
INIT signals; external interrupts; non-maskable interrupts (NMIs); start-up IPIs (SIPIs); and system-
management interrupts (SMIs).

29.8 MACHINE-CHECK EVENTS DURING VM EXIT
If a machine-check event occurs during VM exit, one of the following occurs:

1. Note the following about processors that support Intel 64 architecture. If CR0.PG = 1, WRMSR to the IA32_EFER MSR causes a gen-
eral-protection exception if it would modify the LME bit. Since CR0.PG is always 1 in VMX operation, the IA32_EFER MSR should not 
be included in the VM-exit MSR-load area for the purpose of modifying the LME bit.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last 
execution of GETSEC[SENTER]. See Chapter 7, “Safer Mode Extensions Reference‚” in Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2D.
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• The machine-check event is handled as if it occurred before the VM exit:

— If CR4.MCE = 0, operation of the logical processor depends on whether the logical processor is in SMX 
operation:1

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs. The error code 
used is 000CH, indicating “unrecoverable machine-check condition.”

• If the logical processor is outside SMX operation, it goes to the shutdown state.

— If CR4.MCE = 1, a machine-check exception (#MC) is generated:

• If bit 18 (#MC) of the exception bitmap is 0, the exception is delivered through the guest IDT.

• If bit 18 of the exception bitmap is 1, the exception causes a VM exit.
• The machine-check event is handled after VM exit completes:

— If the VM exit ends with CR4.MCE = 0, operation of the logical processor depends on whether the logical 
processor is in SMX operation:

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs with error code 
000CH (unrecoverable machine-check condition).

• If the logical processor is outside SMX operation, it goes to the shutdown state.

— If the VM exit ends with CR4.MCE = 1, a machine-check exception (#MC) is delivered through the host IDT.
• A VMX abort is generated (see Section 29.7). The logical processor blocks events as done normally in 

VMX abort. The VMX abort indicator is 5, for “machine-check event during VM exit.”

The first option is not used if the machine-check event occurs after any host state has been loaded. The second 
option is used only if VM entry is able to load all host state.

29.9 USER-INTERRUPT RECOGNITION AFTER VM EXIT
A VM exit results in recognition of a pending user interrupt if it completes with CR4.UINTR = IA32_EFER.LMA = 1 
and with UIRR ≠ 0; otherwise, no pending user interrupt is recognized.
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CHAPTER 30
VMX SUPPORT FOR ADDRESS TRANSLATION

The architecture for VMX operation includes two features that support address translation: virtual-processor iden-
tifiers (VPIDs) and the extended page-table mechanism (EPT). VPIDs are a mechanism for managing translations 
of linear addresses. EPT defines a layer of address translation that augments the translation of linear addresses.

Section 30.1 details the architecture of VPIDs. Section 30.3 provides the details of EPT. Section 30.4 explains how 
a logical processor may cache information from the paging structures, how it may use that cached information, and 
how software can managed the cached information.

30.1 VIRTUAL PROCESSOR IDENTIFIERS (VPIDS)
The original architecture for VMX operation required VMX transitions to flush the TLBs and paging-structure caches. 
This ensured that translations cached for the old linear-address space would not be used after the transition.

Virtual-processor identifiers (VPIDs) introduce to VMX operation a facility by which a logical processor may cache 
information for multiple linear-address spaces. When VPIDs are used, VMX transitions may retain cached informa-
tion and the logical processor switches to a different linear-address space.

Section 30.4 details the mechanisms by which a logical processor manages information cached for multiple address 
spaces. A logical processor may tag some cached information with a 16-bit VPID. This section specifies how the 
current VPID is determined at any point in time:
• The current VPID is 0000H in the following situations:

— Outside VMX operation. (This includes operation in system-management mode under the default treatment 
of SMIs and SMM with VMX operation; see Section 33.14.)

— In VMX root operation.

— In VMX non-root operation when the “enable VPID” VM-execution control is 0.
• If the logical processor is in VMX non-root operation and the “enable VPID” VM-execution control is 1, the 

current VPID is the value of the VPID VM-execution control field in the VMCS. (VM entry ensures that this value 
is never 0000H; see Section 28.2.1.1.)

VPIDs and PCIDs (see Section 5.10.1) can be used concurrently. When this is done, the processor associates 
cached information with both a VPID and a PCID. Such information is used only if the current VPID and PCID both 
match those associated with the cached information.

30.2 HYPERVISOR-MANAGED LINEAR-ADDRESS TRANSLATION (HLAT)
Hypervisor-managed linear-address translation (HLAT) is a feature that changes the way in which linear 
addresses are translated in VMX non-root operation. Instead of ordinary paging, translation uses a modified 
process called HLAT paging.

HLAT paging is used only if the “enable HLAT” VM-execution control is 1. HLAT paging is used only for the paging 
modes 4-level paging and 5-level paging. Because HLAT paging is a modification of ordinary paging, details of the 
feature are given in Section 5.5, which describes the operation of 4-level paging and 5-level paging.

30.3 THE EXTENDED PAGE TABLE MECHANISM (EPT)
The extended page-table mechanism (EPT) is a feature that can be used to support the virtualization of physical 
memory. When EPT is in use, certain addresses that would normally be treated as physical addresses (and used to 
access memory) are instead treated as guest-physical addresses. Guest-physical addresses are translated by 
traversing a set of EPT paging structures to produce physical addresses that are used to access memory.
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• Section 30.3.1 gives an overview of EPT.
• Section 30.3.2 describes operation of EPT-based address translation.
• Section 30.3.3 discusses VM exits that may be caused by EPT.
• Section 30.3.7 describes interactions between EPT and memory typing.

30.3.1 EPT Overview
EPT is used when the “enable EPT” VM-execution control is 1.1 It translates the guest-physical addresses used in 
VMX non-root operation and those used by VM entry for event injection.

The translation from guest-physical addresses to physical addresses is determined by a set of EPT paging struc-
tures. The EPT paging structures are similar to those used to translate linear addresses while the processor is in 
IA-32e mode. Section 30.3.2 gives the details of the EPT paging structures.

If CR0.PG = 1, linear addresses are translated through paging structures referenced through control register CR3.2 
While the “enable EPT” VM-execution control is 1, these are called guest paging structures. There are no guest 
paging structures if CR0.PG = 0.3

When the “enable EPT” VM-execution control is 1, the identity of guest-physical addresses depends on the value 
of CR0.PG:
• If CR0.PG = 0, each linear address is treated as a guest-physical address.
• If CR0.PG = 1, guest-physical addresses are those derived from the contents of control register CR3 and the 

guest paging structures. (This includes the values of the PDPTEs, which logical processors store in internal, 
non-architectural registers.) The latter includes (in page-table entries and in other paging-structure entries for 
which bit 7—PS—is 1) the addresses to which linear addresses are translated by the guest paging structures.

If CR0.PG = 1, the translation of a linear address to a physical address requires multiple translations of guest-phys-
ical addresses using EPT. Assume, for example, that CR4.PAE = CR4.PSE = 0. The translation of a 32-bit linear 
address then operates as follows:
• Bits 31:22 of the linear address select an entry in the guest page directory located at the guest-physical 

address in CR3. The guest-physical address of the guest page-directory entry (PDE) is translated through EPT 
to determine the guest PDE’s physical address.

• Bits 21:12 of the linear address select an entry in the guest page table located at the guest-physical address in 
the guest PDE. The guest-physical address of the guest page-table entry (PTE) is translated through EPT to 
determine the guest PTE’s physical address.

• Bits 11:0 of the linear address is the offset in the page frame located at the guest-physical address in the guest 
PTE. The guest-physical address determined by this offset is translated through EPT to determine the physical 
address to which the original linear address translates.

In addition to translating a guest-physical address to a physical address, EPT specifies the privileges that software 
is allowed when accessing the address. Attempts at disallowed accesses are called EPT violations and cause 
VM exits. See Section 30.3.3.

A processor uses EPT to translate guest-physical addresses only when those addresses are used to access memory. 
This principle implies the following:
• The MOV to CR3 instruction loads CR3 with a guest-physical address. Whether that address is translated 

through EPT depends on whether PAE paging is being used.4

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls 
is 0, the logical processor operates as if the “enable EPT” VM-execution control were 0. See Section 26.6.2.

2. If HLAT paging is enabled, the processor uses the HLATP VMCS field instead of CR3. See Section 5.5.1. For simplicity, the remainder 
of this section refers only to CR3.

3. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, CR0.PG can be 0 in VMX non-root 
operation only if the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are 
both 1.

4. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 5.4 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.
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— If PAE paging is not being used, the instruction does not use that address to access memory and does not 
cause it to be translated through EPT. (If CR0.PG = 1, the address will be translated through EPT on the 
next memory accessing using a linear address.)

— If PAE paging is being used, the instruction loads the four (4) page-directory-pointer-table entries (PDPTEs) 
from that address and it does cause the address to be translated through EPT.

• Section 5.4.1 identifies executions of MOV to CR0 and MOV to CR4 that load the PDPTEs from the guest-
physical address in CR3. Such executions cause that address to be translated through EPT.

• The PDPTEs contain guest-physical addresses. The instructions that load the PDPTEs (see above) do not use 
those addresses to access memory and do not cause them to be translated through EPT. The address in a 
PDPTE will be translated through EPT on the next memory accessing using a linear address that uses that 
PDPTE.

30.3.2 EPT Translation Mechanism
The EPT translation mechanism can be configured in either of two modes: 4-level EPT or 5-level EPT. 4-level EPT 
accesses at most 4 EPT paging-structure entries (an EPT page-walk length of 4) to translate a guest-physical 
address and uses only bits 47:0 of each guest-physical address. In contrast, 5-level EPT may access up to 5 EPT 
paging-structure entries (an EPT page-walk length of 5) and uses guest-physical address bits 56:0.1

The EPT page-walk length is configured using the extended-page-table pointer (EPTP), a VM-execution control field 
(see Table 26-9 in Section 26.6.11). Specifically, bits 5:3 contain a value one less than EPT page-walk length. 
Thus, a value of 3 configures 4-level EPT, while a value of 4 configures 5-level EPT.2

The remainder of this section describes the translation process used by 4-level EPT and 5-level EPT. Because the 
processes used by the two EPT modes are similar, they are described together in the following items (with any 
differences identified):
• With 5-level EPT, 4-KByte naturally aligned EPT PML5 table is located at the physical address specified in 

bits 51:12 of the EPTP. An EPT PML5 table comprises 512 64-bit entries (EPT PML5Es). An EPT PML5E is 
selected using the physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPTP.

— Bits 11:3 are bits 56:48 of the guest-physical address.3

— Bits 2:0 are all 0.
Because an EPT PML5E is identified using bits 56:48 of the guest-physical address, it controls access to a 256-
TByte region of the guest-physical-address space. The format of an EPT PML5E is given in Table 30-1.

• With 4-level EPT, bits 51:48 of the guest-physical address must all be zero; otherwise, an EPT violation occurs 
(see Section 30.3.3).

• A 4-KByte naturally aligned EPT PML4 table is located at the physical address specified in the EPTP (for 4-level 
EPT) or in the EPT PML5E (for 5-level EPT). An EPT PML4 table comprises 512 64-bit entries (EPT PML4Es). An 
EPT PML4E is selected using the physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPTP (for 4-level EPT) or from bits 51:12 of the EPT PML4E (for 5-level EPT).

— Bits 11:3 are bits 47:39 of the guest-physical address.

— Bits 2:0 are all 0.

1. Physical addresses and guest-physical addresses are architecturally limited to 52 bits (e.g., by paging), so in practice bits 56:52 are 
zero.

2. Software should read the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine what EPT page-walk 
lengths are supported.

3. Bits 56:52 of each guest-physical address are necessarily zero because guest-physical addresses are architecturally limited to 52 
bits.
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Because an EPT PML4E is identified using bits 47:39 of the guest-physical address, it controls access to a 512-
GByte region of the guest-physical-address space. The format of an EPT PML4E is given in Table 30-2.

• A 4-KByte naturally aligned EPT page-directory-pointer table is located at the physical address specified in 
bits 51:12 of the EPT PML4E. An EPT page-directory-pointer table comprises 512 64-bit entries (EPT PDPTEs). 
An EPT PDPTE is selected using the physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PML4E.

— Bits 11:3 are bits 38:30 of the guest-physical address.

— Bits 2:0 are all 0.

Because an EPT PDPTE is identified using bits 47:30 of the guest-physical address, it controls access to a 1-GByte 
region of the guest-physical-address space. Use of the EPT PDPTE depends on the value of bit 7 in that entry:1

• If bit 7 of the EPT PDPTE is 1, the EPT PDPTE maps a 1-GByte page. The final physical address is computed as 
follows:

— Bits 63:52 are all 0.

— Bits 51:30 are from the EPT PDPTE.

— Bits 29:0 are from the original guest-physical address.

Table 30-1.  Format of an EPT PML5 Entry (PML5E) that References an EPT PML4 Table

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 256-TByte region controlled by this entry.

1 Write access; indicates whether writes are allowed to the 256-TByte region controlled by this entry.

2 If the “mode-based execute control for EPT” VM-execution control is 0, execute access; indicates whether instruction 
fetches are allowed from the 256-TByte region controlled by this entry.

If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are 
allowed from supervisor-mode linear addresses in the 256-TByte region controlled by this entry.

7:3 Reserved (must be 0).

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 256-TByte region 
controlled by this entry (see Section 30.3.5). Ignored if bit 6 of EPTP is 0.

9 Ignored.

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT” VM-execution control is 
1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 256-TByte region 
controlled by this entry. If that control is 0, this bit is ignored.

11 Ignored.

(N–1):12 Physical address of 4-KByte aligned EPT PML4 table referenced by this entry.1

51:N Reserved (must be 0).

63:52 Ignored.

NOTES:
1. N is the physical-address width supported by the processor. Software can determine a processor’s physical-address width by execut-

ing CPUID with 80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

1. Not all processors allow bit 7 of an EPT PDPTE to be set to 1. Software should read the VMX capability MSR IA32_VMX_EPT_VPID_-
CAP (see Appendix A.10) to determine whether this is allowed.
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The format of an EPT PDPTE that maps a 1-GByte page is given in Table 30-3.
• If bit 7 of the EPT PDPTE is 0, a 4-KByte naturally aligned EPT page directory is located at the physical address 

specified in bits 51:12 of the EPT PDPTE. The format of an EPT PDPTE that references an EPT page directory is 
given in Table 30-4.

Table 30-2.  Format of an EPT PML4 Entry (PML4E) that References an EPT Page-Directory-Pointer Table

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 512-GByte region controlled by this entry.

1 Write access; indicates whether writes are allowed to the 512-GByte region controlled by this entry.

2 If the “mode-based execute control for EPT” VM-execution control is 0, execute access; indicates whether instruction 
fetches are allowed from the 512-GByte region controlled by this entry.

If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are 
allowed from supervisor-mode linear addresses in the 512-GByte region controlled by this entry.

7:3 Reserved (must be 0).

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 512-GByte region 
controlled by this entry (see Section 30.3.5). Ignored if bit 6 of EPTP is 0.

9 Ignored.

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT” VM-execution control is 
1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 512-GByte region 
controlled by this entry. If that control is 0, this bit is ignored.

11 Ignored.

(N–1):12 Physical address of 4-KByte aligned EPT page-directory-pointer table referenced by this entry.1

51:N Reserved (must be 0).

63:52 Ignored.

NOTES:
1. N is the physical-address width supported by the processor.
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Table 30-3.  Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte page referenced by this entry.

1 Write access; indicates whether writes are allowed to the 1-GByte page referenced by this entry.

2 If the “mode-based execute control for EPT” VM-execution control is 0, execute access; indicates whether 
instruction fetches are allowed from the 1-GByte page controlled by this entry.

If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are 
allowed from supervisor-mode linear addresses in the 1-GByte page controlled by this entry.

5:3 EPT memory type for this 1-GByte page (see Section 30.3.7).

6 Ignore PAT memory type for this 1-GByte page (see Section 30.3.7).

7 Must be 1 (otherwise, this entry references an EPT page directory).

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 1-GByte page referenced 
by this entry (see Section 30.3.5). Ignored if bit 6 of EPTP is 0.

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to the 1-GByte page referenced by 
this entry (see Section 30.3.5). Ignored if bit 6 of EPTP is 0.

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT” VM-execution control is 
1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 1-GByte page controlled 
by this entry. If that control is 0, this bit is ignored.

11 Ignored.

29:12 Reserved (must be 0).

(N–1):30 Physical address of the 1-GByte page referenced by this entry.1

51:N Reserved (must be 0).

56:52 Ignored.

57 Verify guest paging. If the “guest-paging verification” VM-execution control is 1, indicates limits on the guest paging 
structures used to access the 1-GByte page controlled by this entry (see Section 30.3.3.2). If that control is 0, this 
bit is ignored.

58 Paging-write access. If the “EPT paging-write control” VM-execution control is 1, indicates that guest paging may 
update the 1-GByte page controlled by this entry (see Section 30.3.3.2). If that control is 0, this bit is ignored.

59 Ignored.

60 Supervisor shadow stack. If bit 7 of EPTP is 1, indicates whether supervisor shadow stack accesses are allowed to 
guest-physical addresses in the 1-GByte page mapped by this entry (see Section 30.3.3.2).

Ignored if bit 7 of EPTP is 0.

62:61 Ignored.

63 Suppress #VE. If the “EPT-violation #VE” VM-execution control is 1, EPT violations caused by accesses to this page 
are convertible to virtualization exceptions only if this bit is 0 (see Section 27.5.7.1). If “EPT-violation #VE” VM-
execution control is 0, this bit is ignored.

NOTES:
1. N is the physical-address width supported by the processor.
30-6 Vol. 3C



VMX SUPPORT FOR ADDRESS TRANSLATION
An EPT page-directory comprises 512 64-bit entries (PDEs). An EPT PDE is selected using the physical address 
defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PDPTE.

— Bits 11:3 are bits 29:21 of the guest-physical address.

— Bits 2:0 are all 0.

Because an EPT PDE is identified using bits 47:21 of the guest-physical address, it controls access to a 2-MByte 
region of the guest-physical-address space. Use of the EPT PDE depends on the value of bit 7 in that entry:
• If bit 7 of the EPT PDE is 1, the EPT PDE maps a 2-MByte page. The final physical address is computed as 

follows:

— Bits 63:52 are all 0.

— Bits 51:21 are from the EPT PDE.

— Bits 20:0 are from the original guest-physical address.
The format of an EPT PDE that maps a 2-MByte page is given in Table 30-5.

• If bit 7 of the EPT PDE is 0, a 4-KByte naturally aligned EPT page table is located at the physical address 
specified in bits 51:12 of the EPT PDE. The format of an EPT PDE that references an EPT page table is given in 
Table 30-6.
An EPT page table comprises 512 64-bit entries (PTEs). An EPT PTE is selected using a physical address defined 
as follows:

— Bits 63:52 are all 0.

Table 30-4.  Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that References an EPT Page Directory

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte region controlled by this entry.

1 Write access; indicates whether writes are allowed to the 1-GByte region controlled by this entry.

2 If the “mode-based execute control for EPT” VM-execution control is 0, execute access; indicates whether instruction 
fetches are allowed from the 1-GByte region controlled by this entry.

If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are 
allowed from supervisor-mode linear addresses in the 1-GByte region controlled by this entry.

7:3 Reserved (must be 0).

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 1-GByte region controlled 
by this entry (see Section 30.3.5). Ignored if bit 6 of EPTP is 0.

9 Ignored.

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT” VM-execution control is 
1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 1-GByte region 
controlled by this entry. If that control is 0, this bit is ignored.

11 Ignored.

(N–1):12 Physical address of 4-KByte aligned EPT page directory referenced by this entry.1

51:N Reserved (must be 0).

63:52 Ignored.

NOTES:
1. N is the physical-address width supported by the processor.
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— Bits 51:12 are from the EPT PDE.

Table 30-5.  Format of an EPT Page-Directory Entry (PDE) that Maps a 2-MByte Page

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte page referenced by this entry.

1 Write access; indicates whether writes are allowed to the 2-MByte page referenced by this entry.

2 If the “mode-based execute control for EPT” VM-execution control is 0, execute access; indicates whether instruction 
fetches are allowed from the 2-MByte page controlled by this entry.

If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are 
allowed from supervisor-mode linear addresses in the 2-MByte page controlled by this entry.

5:3 EPT memory type for this 2-MByte page (see Section 30.3.7).

6 Ignore PAT memory type for this 2-MByte page (see Section 30.3.7).

7 Must be 1 (otherwise, this entry references an EPT page table).

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 2-MByte page referenced 
by this entry (see Section 30.3.5). Ignored if bit 6 of EPTP is 0.

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to the 2-MByte page referenced by 
this entry (see Section 30.3.5). Ignored if bit 6 of EPTP is 0.

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT” VM-execution control is 
1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 2-MByte page controlled 
by this entry. If that control is 0, this bit is ignored.

11 Ignored.

20:12 Reserved (must be 0).

(N–1):21 Physical address of the 2-MByte page referenced by this entry.1

51:N Reserved (must be 0).

56:52 Ignored.

57 Verify guest paging. If the “guest-paging verification” VM-execution control is 1, indicates limits on the guest paging 
structures used to access the 2-MByte page controlled by this entry (see Section 30.3.3.2). If that control is 0, this 
bit is ignored.

58 Paging-write access. If the “EPT paging-write control” VM-execution control is 1, indicates that guest paging may 
update the 2-MByte page controlled by this entry (see Section 30.3.3.2). If that control is 0, this bit is ignored.

59 Ignored.

60 Supervisor shadow stack. If bit 7 of EPTP is 1, indicates whether supervisor shadow stack accesses are allowed to 
guest-physical addresses in the 2-MByte page mapped by this entry (see Section 30.3.3.2).

Ignored if bit 7 of EPTP is 0.

62:61 Ignored.

63 Suppress #VE. If the “EPT-violation #VE” VM-execution control is 1, EPT violations caused by accesses to this page 
are convertible to virtualization exceptions only if this bit is 0 (see Section 27.5.7.1). If “EPT-violation #VE” VM-
execution control is 0, this bit is ignored.

NOTES:
1. N is the physical-address width supported by the processor.
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— Bits 11:3 are bits 20:12 of the guest-physical address.

— Bits 2:0 are all 0.
• Because an EPT PTE is identified using bits 47:12 of the guest-physical address, every EPT PTE maps a 4-KByte 

page. The final physical address is computed as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PTE.

— Bits 11:0 are from the original guest-physical address.
The format of an EPT PTE is given in Table 30-7.

An EPT paging-structure entry is present if any of bits 2:0 is 1; otherwise, the entry is not present. The processor 
ignores bits 62:3 and uses the entry neither to reference another EPT paging-structure entry nor to produce a 
physical address. A reference using a guest-physical address whose translation encounters an EPT paging-struc-
ture that is not present causes an EPT violation (see Section 30.3.3.2). (If the “EPT-violation #VE” VM-execution 
control is 1, the EPT violation is convertible to a virtualization exception only if bit 63 is 0; see Section 27.5.7.1. If 
the “EPT-violation #VE” VM-execution control is 0, this bit is ignored.)

NOTE
If the “mode-based execute control for EPT” VM-execution control is 1, an EPT paging-structure 
entry is present if any of bits 2:0 or bit 10 is 1. If bits 2:0 are all 0 but bit 10 is 1, the entry is used 
normally to reference another EPT paging-structure entry or to produce a physical address.

Table 30-6.  Format of an EPT Page-Directory Entry (PDE) that References an EPT Page Table

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte region controlled by this entry.

1 Write access; indicates whether writes are allowed to the 2-MByte region controlled by this entry.

2 If the “mode-based execute control for EPT” VM-execution control is 0, execute access; indicates whether instruction 
fetches are allowed from the 2-MByte region controlled by this entry.

If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are 
allowed from supervisor-mode linear addresses in the 2-MByte region controlled by this entry.

6:3 Reserved (must be 0).

7 Must be 0 (otherwise, this entry maps a 2-MByte page).

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 2-MByte region controlled 
by this entry (see Section 30.3.5). Ignored if bit 6 of EPTP is 0.

9 Ignored.

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT” VM-execution control is 
1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 2-MByte region 
controlled by this entry. If that control is 0, this bit is ignored.

11 Ignored.

(N–1):12 Physical address of 4-KByte aligned EPT page table referenced by this entry.1

NOTES:
1. N is the physical-address width supported by the processor.

51:N Reserved (must be 0).

63:52 Ignored.
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The discussion above describes how the EPT paging structures reference each other and how the logical processor 
traverses those structures when translating a guest-physical address. It does not cover all details of the translation 
process. Additional details are provided as follows:
• Situations in which the translation process may lead to VM exits (sometimes before the process completes) are 

described in Section 30.3.3.
• Interactions between the EPT translation mechanism and memory typing are described in Section 30.3.7.

Figure 30-1 gives a summary of the formats of the EPTP and the EPT paging-structure entries. For the EPT paging 
structure entries, it identifies separately the format of entries that map pages, those that reference other EPT 
paging structures, and those that do neither because they are not present; bits 2:0 and bit 7 are highlighted 
because they determine how a paging-structure entry is used. (Figure 30-1 does not comprehend the fact that, if 
the “mode-based execute control for EPT” VM-execution control is 1, an entry is present if any of bits 2:0 or bit 10 
is 1.)

30.3.3 EPT-Induced VM Exits
Accesses using guest-physical addresses may cause VM exits due to EPT misconfigurations, EPT violations, and 
page-modification log-full events. An EPT misconfiguration occurs when, in the course of translating a guest-
physical address, the logical processor encounters an EPT paging-structure entry that contains an unsupported 
value (see Section 30.3.3.1). An EPT violation occurs when there is no EPT misconfiguration but the EPT paging-
structure entries disallow an access using the guest-physical address (see Section 30.3.3.2). A page-modifica-
tion log-full event occurs when the logical processor determines a need to create a page-modification log entry 
and the current log is full (see Section 30.3.6).

These events occur only due to an attempt to access memory with a guest-physical address. Loading CR3 with a 
guest-physical address with the MOV to CR3 instruction can cause neither an EPT configuration nor an EPT violation 
until that address is used to access a paging structure.1

If the “EPT-violation #VE” VM-execution control is 1, certain EPT violations may cause virtualization exceptions 
instead of VM exits. See Section 27.5.7.1.

30.3.3.1  EPT Misconfigurations
An EPT misconfiguration occurs if translation of a guest-physical address encounters an EPT paging-structure entry 
that meets any of the following conditions:
• Bit 0 of the entry is clear (indicating that data reads are not allowed) and any of the following hold:

— Bit 1 is set (indicating that data writes are allowed).

— The processor does not support execute-only translations and either of the following hold:

• Bit 2 is set (indicating that instruction fetches are allowed).2

• The “mode-based execute control for EPT” VM-execution control is 1 and bit 10 is set (indicating that 
instruction fetches are allowed from user-mode linear addresses).

Software should read the VMX capability MSR IA32_VMX_EPT_VPID_CAP to determine whether execute-
only translations are supported (see Appendix A.10).

— The “EPT paging-write control” VM-execution control is 1, the entry maps a page, and bit 58 is set 
(indicating that paging writes are allowed).

• The entry is present (see Section 30.3.2) and of the following holds:

1. If the logical processor is using PAE paging—because CR0.PG = CR4.PAE = 1 and IA32_EFER.LMA = 0—the MOV to CR3 instruction 
loads the PDPTEs from memory using the guest-physical address being loaded into CR3. In this case, therefore, the MOV to CR3 
instruction may cause an EPT misconfiguration, an EPT violation, or a page-modification log-full event.

2. If the “mode-based execute control for EPT” VM-execution control is 1, setting bit 2 indicates that instruction fetches are allowed 
from supervisor-mode linear addresses.
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Table 30-7.  Format of an EPT Page-Table Entry that Maps a 4-KByte Page

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 4-KByte page referenced by this entry.

1 Write access; indicates whether writes are allowed to the 4-KByte page referenced by this entry.

2 If the “mode-based execute control for EPT” VM-execution control is 0, execute access; indicates whether 
instruction fetches are allowed from the 4-KByte page controlled by this entry.

If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are 
allowed from supervisor-mode linear addresses in the 4-KByte page controlled by this entry.

5:3 EPT memory type for this 4-KByte page (see Section 30.3.7).

6 Ignore PAT memory type for this 4-KByte page (see Section 30.3.7).

7 Ignored.

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 4-KByte page referenced 
by this entry (see Section 30.3.5). Ignored if bit 6 of EPTP is 0.

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to the 4-KByte page referenced by 
this entry (see Section 30.3.5). Ignored if bit 6 of EPTP is 0.

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT” VM-execution control is 
1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 4-KByte page controlled 
by this entry. If that control is 0, this bit is ignored.

11 Ignored.

(N–1):12 Physical address of the 4-KByte page referenced by this entry.1

51:N Reserved (must be 0).

56:52 Ignored.

57 Verify guest paging. If the “guest-paging verification” VM-execution control is 1, indicates limits on the guest paging 
structures used to access the 4-KByte page controlled by this entry (see Section 30.3.3.2). If that control is 0, this 
bit is ignored.

58 Paging-write access. If the “EPT paging-write control” VM-execution control is 1, indicates that guest paging may 
update the 4-KByte page controlled by this entry (see Section 30.3.3.2). If that control is 0, this bit is ignored.

59 Ignored.

60 Supervisor shadow stack. If bit 7 of EPTP is 1, indicates whether supervisor shadow stack accesses are allowed to 
guest-physical addresses in the 4-KByte page mapped by this entry (see Section 30.3.3.2).

Ignored if bit 7 of EPTP is 0.

61 Sub-page write permissions. If the “sub-page write permissions for EPT” VM-execution control is 1, writes to 
individual 128-byte regions of the 4-KByte page referenced by this entry may be allowed even if the page would 
normally not be writable (see Section 30.3.4). If “sub-page write permissions for EPT” VM-execution control is 0, this 
bit is ignored.

62 Ignored.

63 Suppress #VE. If the “EPT-violation #VE” VM-execution control is 1, EPT violations caused by accesses to this page 
are convertible to virtualization exceptions only if this bit is 0 (see Section 27.5.7.1). If “EPT-violation #VE” VM-
execution control is 0, this bit is ignored.
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— A reserved bit is set. This includes the setting of a bit in the range 51:12 that is beyond the logical 
processor’s physical-address width.1 See Section 30.3.2 for details of which bits are reserved in which EPT 
paging-structure entries.

— The entry is the last one used to translate a guest physical address (either an EPT PDE with bit 7 set to 1 or 
an EPT PTE) and the value of bits 5:3 (EPT memory type) is 2, 3, or 7 (these values are reserved).

EPT misconfigurations result when an EPT paging-structure entry is configured with settings reserved for future 
functionality. Software developers should be aware that such settings may be used in the future and that an EPT 
paging-structure entry that causes an EPT misconfiguration on one processor might not do so in the future.

30.3.3.2  EPT Violations
An EPT violation may occur during an access using a guest-physical address whose translation does not cause an 
EPT misconfiguration. An EPT violation occurs in any of the following situations:
• Translation of the guest-physical address encounters an EPT paging-structure entry that is not present (see 

Section 30.3.2).
• The access is a data read and, for any byte to be read, bit 0 (read access) was clear in any of the EPT paging-

structure entries used to translate the guest-physical address of the byte. Reads by the logical processor of 
guest paging structures to translate a linear address are considered to be data reads.

NOTES:
1. N is the physical-address width supported by the processor.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.
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Figure 30-1.  Formats of EPTP and EPT Paging-Structure Entries
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• The access is a data write and, for any byte to be written, bit 1 (write access) was clear in any of the EPT 
paging-structure entries used to translate the guest-physical address of the byte. Writes by the logical 
processor to guest paging structures to update accessed and dirty flags are considered to be data writes.
If bit 6 of the EPT pointer (EPTP) is 1 (enabling accessed and dirty flags for EPT), processor accesses to guest 
paging-structure entries are treated as writes with regard to EPT violations. Thus, if bit 1 is clear in any of the 
EPT paging-structure entries used to translate the guest-physical address of a guest paging-structure entry, an 
attempt to use that entry to translate a linear address causes an EPT violation.
(This does not apply to loads of the PDPTE registers by the MOV to CR instruction for PAE paging; see Section 
5.4.1. Those loads of guest PDPTEs are treated as reads and do not cause EPT violations due to a guest-physical 
address not being writable.)
Processor writes to guest paging structures to update accessed and dirty flags are called paging writes. 
(When accessed and dirty flags for EPT are enabled all processor accesses to guest paging structures are 
considered paging writes.) If the “EPT paging-write control” VM-execution control is 1, clearing the write-
access bit in the EPT paging-structure entry that maps a page does not prevent a paging write if bit 58 (paging-
write access) in that entry is 1. (EPT paging-structure entries that reference other EPT paging structures do not 
use bit 58, and it remains the case that they must set the write-access bit for paging writes to be allowed.)
If the “sub-page write permissions for EPT” VM-execution control is 1, data writes to a guest-physical address 
that would cause an EPT violation (as indicated above) do not do so in certain situations. If the guest-physical 
address is mapped using a 4-KByte page and bit 61 (sub-page write permissions) of the EPT PTE used to map 
the page is 1, writes to certain 128-byte sub-pages may be allowed. See Section 30.3.4 for details.

• The access is an instruction fetch and the EPT paging structures prevent execute access to any of the bytes 
being fetched. Whether this occurs depends upon the setting of the “mode-based execute control for EPT” VM-
execution control:

— If the control is 0, an instruction fetch from a byte is prevented if bit 2 (execute access) was clear in any of 
the EPT paging-structure entries used to translate the guest-physical address of the byte.

— If the control is 1, an instruction fetch from a byte is prevented in either of the following cases:

• Paging maps the linear address of the byte as a supervisor-mode address and bit 2 (execute access for 
supervisor-mode linear addresses) was clear in any of the EPT paging-structure entries used to 
translate the guest-physical address of the byte.

Paging maps a linear address as a supervisor-mode address if the U/S flag (bit 2) is 0 in at least one of 
the paging-structure entries controlling the translation of the linear address.

• Paging maps the linear address of the byte as a user-mode address and bit 10 (execute access for user-
mode linear addresses) was clear in any of the EPT paging-structure entries used to translate the guest-
physical address of the byte.

Paging maps a linear address as a user-mode address if the U/S flag is 1 in all of the paging-structure 
entries controlling the translation of the linear address. If paging is disabled (CR0.PG = 0), every linear 
address is a user-mode address.

• If supervisor shadow-stack control is enabled (by setting bit 7 of EPTP), the access is a supervisor shadow-
stack access, and the EPT paging-structure entries used to translate the guest-physical address of the access 
disallow supervisor shadow-stack accesses. Such an access is disallowed if any of the following hold:

— Bit 0 (read access) is clear in any EPT paging-structure entry used to translate the guest-physical address 
of the access.

6. If the “mode-based execute control for EPT” VM-execution control is 1, an EPT paging-structure entry is present if any of bits 2:0 or 
bit 10 is 1. This table does not comprehend that fact.

7. Suppress #VE. If the “EPT-violation #VE” VM-execution control is 0, this bit is ignored.
8. Supervisor shadow-stack page. If bit 7 of the EPTP is 0, this bit is ignored.
9. Paging-write access. If the “EPT paging-write control” VM-execution control is 0, this bit is ignored.
10. Verify guest paging. If the “guest-paging verification” VM-execution control is 0, this bit is ignored.
11. Sub-page write permissions. If the “sub-page write permissions for EPT” VM-execution control is 0, this bit is ignored.
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— Bit 1 (write access) is clear in any EPT paging-structure entry that references an EPT paging structure in the 
translation of the guest-physical address. (Clearing bit 1 in the EPT paging-structure entry that maps the 
page of the guest-physical address does not disallow shadow-stack reads and writes.)

— Bit 60 (supervisor-shadow stack access) is clear in the EPT paging-structure entry that maps the page of 
the guest-physical address.

Supervisor shadow-stack control and the supervisor-shadow stack access bits in EPT paging-structure entries 
do not affect other accesses (including user shadow-stack accesses).

• If the “guest-paging verification” and “EPT paging-write control” VM-execution controls are both 1, guest-
paging verification is performed for certain accesses related to translation of a linear address.
Specifically, guest-paging verification may apply to an access using a guest-physical address to the guest 
paging-structure entry that maps a page for the linear address (see Chapter 5, “Paging”). It applies if bit 57 
(verify guest paging) is set in the EPT paging-structure entry that maps a page for that guest-physical address.
When guest-paging verification occurs, there is an EPT violation if bit 58 (paging-write access) is clear in the 
EPT paging-structure entry that was used to map a page for the guest-physical address of any guest paging-
structure entry that was used during translation of the original linear address.1

See Section 30.3.3.3 for details regarding the prioritization of such EPT violations relative to any page faults 
that may occur due to the original reference to the linear address being translated.

30.3.3.3  Prioritization of EPT Misconfigurations and EPT Violations
The translation of a linear address to a physical address requires one or more translations of guest-physical 
addresses using EPT (see Section 30.3.1). This section specifies the relative priority of EPT-induced VM exits with 
respect to each other and to other events that may be encountered when accessing memory using a linear address.

For an access to a guest-physical address, determination of whether an EPT misconfiguration or an EPT violation 
occurs is based on an iterative process:2

1. An EPT paging-structure entry is read (initially, this is an EPT PML5 entry or an EPT PML4 entry):

a. If the entry is not present (see Section 30.3.2), an EPT violation occurs.

b. If the entry is present but its contents are not configured properly (see Section 30.3.3.1), an EPT miscon-
figuration occurs.

c. If the entry is present and its contents are configured properly, operation depends on whether the entry 
references another EPT paging structure (or if instead it is an EPT PDPTE or EPT PDE with bit 7 set to 1, or 
an EPT PTE):

i) If the entry does reference another EPT paging structure, an entry from that structure is accessed; 
step 1 is executed for that other entry.

ii) Otherwise, the entry is used to produce the ultimate physical address (the translation of the original 
guest-physical address); step 2 is executed.

2. Once the ultimate physical address is determined, the privileges determined by the EPT paging-structure 
entries are evaluated:

a. If the access to the guest-physical address is not allowed by these privileges (see Section 30.3.3.2), an EPT 
violation occurs.

b. If the access to the guest-physical address is allowed by these privileges, memory is accessed using the 
ultimate physical address.

If CR0.PG = 1, the translation of a linear address is also an iterative process, with the processor first accessing an 
entry in the guest paging structure referenced by the guest-physical address in CR3,3 then accessing an entry in 

1. When there is a restart of HLAT paging (see Section 5.5), the guest paging-structure entries used by HLAT paging (prior to the 
restart) are not relevant to guest-paging verification.

2. This is a simplification of the more detailed description given in Section 30.3.2.

3. If PAE paging is in use, the processor instead uses the guest-physical address in the appropriate PDPTE register. If HLAT paging is 
enabled, the processor instead uses the HLATP VMCS field. For simplicity, the remainder of this section refers only to CR3.
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another guest paging structure referenced by the guest-physical address in the first guest paging-structure entry, 
etc. Each guest-physical address is itself translated using EPT and may cause an EPT-induced VM exit. The 
following items detail how page faults and EPT-induced VM exits are recognized during this iterative process:

1. An attempt is made to access a guest paging-structure entry with a guest-physical address (initially, the 
address in CR3.

a. If the access fails because of an EPT misconfiguration or an EPT violation (see above), an EPT-induced 
VM exit occurs.

b. If the access does not cause an EPT-induced VM exit, the translation continues. If guest-paging verification 
is enabled (see Section 30.3.3.2), the processor notes whether the EPT paging-structure entry used to map 
a page for the guest-physical address set bit 58 (paging write). Then, bit 0 (the present flag) of the guest 
paging-structure entry is consulted:

i) If the present flag is 0 or any reserved bit is set, a page fault occurs.

ii) If the present flag is 1, no reserved bit is set, operation depends on whether the entry references 
another guest paging structure (whether it is a guest PDE with PS = 1 or a guest PTE):

• If the entry does reference another guest paging structure, an entry from that structure is 
accessed; step 1 is executed for that other entry.

• Otherwise, the entry is used to produce the ultimate guest-physical address (the translation of the 
original linear address); step 2 is executed.

2. Once the ultimate guest-physical address is determined, the privileges determined by the guest paging-
structure entries are evaluated:

a. If the access to the linear address is not allowed by these privileges (e.g., it was a write to a read-only 
page), a page fault occurs.

b. If the access to the linear address is allowed by these privileges, an attempt is made to access memory at 
the ultimate guest-physical address:

i) If the access fails because of an EPT misconfiguration or an EPT violation (see above), an EPT-induced 
VM exit occurs. It is at this point that guest-paging verification occurs (if enabled), using the paging-
write bits that were noted at occurrences of step 1b above (see Section 30.3.3.2 for details of guest-
paging verification).

ii) If the access does not cause an EPT-induced VM exit, memory is accessed using the ultimate physical 
address (the translation, using EPT, of the ultimate guest-physical address).

If CR0.PG = 0, a linear address is treated as a guest-physical address and is translated using EPT (see above). This 
process, if it completes without an EPT violation or EPT misconfiguration, produces a physical address and deter-
mines the privileges allowed by the EPT paging-structure entries. If these privileges do not allow the access to the 
physical address (see Section 30.3.3.2), an EPT violation occurs. Otherwise, memory is accessed using the physical 
address.

30.3.4 Sub-Page Write Permissions
Section 30.3.3.2 explained how EPT enforces the access rights for guest-physical addresses using EPT violations. 
Since these access rights are determined using the EPT paging-structure entries that are used to translate a guest-
physical address, their granularity is limited to that which is used to map pages (1-GByte, 2-MByte, or 4-KByte).

The sub-page write-permission feature allows the control of write accesses to guest-physical addresses to be 
controlled at finer granularity. Sub-page write permissions allow write accesses to be controlled at the granularity 
of naturally aligned 128-byte sub-pages. Specifically, the feature allows writes to selected sub-pages of 4-KByte 
page that would otherwise not be writable.

Sub-page write permissions are enabled setting the “sub-page write permissions for EPT” VM-execution control to 
1. The remainder of this section describes changes to processor operation with this control setting.

Section 30.3.4.1 identifies the data accesses that are eligible for sub-page write permissions. Section 30.3.4.2 
explains how the processor determines whether to allow such an access.
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30.3.4.1  Write Accesses That Are Eligible for Sub-Page Write Permissions
A guest-physical address is eligible for sub-page write permissions if writes to it would be disallowed following 
Section 30.3.3.2: bit 1 (write access) is clear in any of the EPT paging-structure entries used to translate the guest-
physical address. Guest-physical addresses to which writes would be disallowed for other reasons (e.g., the trans-
lation encounters an EPT paging-structure entry that is not present) are not eligible for sub-page write permis-
sions.

In addition, a guest-physical address is eligible for sub-page write permissions only if it is mapped using a 4-KByte 
page and bit 61 (sub-page write permissions) of the EPT PTE used to map the page is 1. (Guest-physical addresses 
mapped with larger pages are not eligible for sub-page write permissions.)

For some memory accesses, the processor ignores bit 61 in an EPT PTE used to map a 4-KByte page and does not 
apply sub-page write permissions to the access. (In such a case, the access causes an EPT violation when indicated 
by the conditions given in Section 30.3.3.2.) Sub-page write permissions never apply to the following accesses:
• A write access performed within a transactional region.
• A write access by an enclave to an address within the enclave's ELRANGE. (Sub-page write permissions may 

apply to write accesses by an enclaves to addresses outside its ELRANGE.)
• A write access to the enclave page cache (EPC) by an Intel SGX instruction.
• A write access to a guest paging structure to update an accessed or dirty flag.
• Processor accesses to guest paging-structure entries when accessed and dirty flags for EPT are enabled (such 

accesses are treated as writes with regard to EPT violations).

There are additional accesses to which sub-page write permissions might not be applied (behavior is model-
specific). The following items enumerate examples:
• A write access that crosses two 4-KByte pages. In this case, sub-page permissions may be applied to neither 

or to only one of the pages. (There is no write to either page unless the write is allowed to both pages.)
• A write access by an instruction that performs multiple write accesses (sub-page write permissions are 

intended principally for basic instructions such as AND, MOV, OR, TEST, XCHG, and XOR).

If a guest-physical address is eligible for sub-page write permissions, the processor determines whether to allow 
write to the address using the process described in Section 30.3.4.2.

If a guest-physical address is eligible for sub-page write permissions and that address translates to an address on 
the APIC-access page (see Section 31.4), the processor may treat a write access to the address as if the “virtualize 
APIC accesses” VM-execution control were 0. For that reason, it is recommended that software not configure any 
guest-physical address that translates to an address on the APIC-access page to be eligible for sub-page write 
permissions.

30.3.4.2  Determining an Access’s Sub-Page Write Permission
Sub-page write permissions control write accesses individually to each of the 32 128-byte sub-pages of a 4-KByte 
page. Bits 11:7 of guest-physical address identify the sub-page.

For each guest-physical address eligible for sub-page write permissions, there is a 64-bit sub-page permission 
vector (SPP vector). All addresses on a 4-KByte page use the same SPP vector. If an address’s sub-page number 
(bits 11:7 of the address) is S, writes to address are allowed if and only if bit 2S of the sub-page permission is set 
to 1. (The bits at odd positions in a SPP vector are not used and must be zero.)

Each page’s SPP vector is located in memory. For a write to a guest-physical address eligible for sub-page write 
permissions, the processor uses the following process to locate the address’s SPP vector:

1. The SPPTP (sub-page-permission-table pointer) VM-execution control field contains the physical address of the 
4-KByte root SPP table (SSPL4 table). Bits 47:39 of the guest-physical address identify a 64-bit entry in that 
table, called an SPPL4E.

2. A 4-KByte SPPL3 table is located at the physical address in the selected SPPL4E. Bits 38:30 of the guest-
physical address identify a 64-bit entry in that table, called an SPPL3E.

3. A 4-KByte SPPL2 table is located at the physical address in the selected SPPL3E. Bits 29:21 of the guest-
physical address identify a 64-bit entry in that table, called an SPPL2E.
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4. A 4-KByte SPP-vector table (SSPL1 table) is located at the physical address in the selected SPPL2E. Bits 20:12 
of the guest-physical address identify the 64-bit SPP vector for the address. As noted earlier, bit 2S of the sub-
page permission vector determines whether the address may be written, where S is the value of address 
bits 11:7.

(The memory type used to access these tables is reported in bits 53:50 of the IA32_VMX_BASIC MSR. See 
Appendix A.1.)

A write access to multiple 128-byte sub-pages on a single 4-KByte page is allowed only if the indicated bit in the 
page’s SPP vector for each of those sub-pages is set to 1. The following items apply to cases in which an access 
writes to two 4-KByte pages:
• If a write to either page would be disallowed according to Section 30.3.3.2, the access might be disallowed 

even if the guest-physical address of that page is eligible for sub-page write permissions. (This behavior is 
model-specific.)

• The access is allowed only if, for each page, either (1) a write to the page would be allowed following Section 
30.3.3.2; or (2) both (a) the guest-physical address of that page is eligible for sub-page write permissions; and 
(b) the page’s sub-page vector allows the write (as described above).

Bit 0 of each entry (SPPL4E, SPPL3E, or SPPL2E) is the entry’s valid bit. If the process above accesses an entry in 
which this bit is 0, the process stops and the logical processor incurs an SPP miss.

In each entry (SPPL4E, SPPL4E, or SPPL2E), bits 11:1 are reserved, as are bits 63:N, where N is the processor’s 
physical-address width. If the process above accesses an entry in which the valid bit is 1 and in which some 
reserved bit is set, the process stops and the logical processor incurs an SPP misconfiguration. Bits in an SPP 
vector in odd positions are also reserved; an SPP misconfiguration occurs also any of those bits are set in the final 
SPP vector.

SPP misses and SPP misconfigurations are called SPP-related events and cause VM exits.

30.3.5 Accessed and Dirty Flags for EPT
The Intel 64 architecture supports accessed and dirty flags in ordinary paging-structure entries (see Section 
5.8). Some processors also support corresponding flags in EPT paging-structure entries. Software should read the 
VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether the processor supports 
this feature.

Software can enable accessed and dirty flags for EPT using bit 6 of the extended-page-table pointer (EPTP), a VM-
execution control field (see Table 26-9 in Section 26.6.11). If this bit is 1, the processor will set the accessed and 
dirty flags for EPT as described below. In addition, setting this flag causes processor accesses to guest paging-
structure entries to be treated as writes (see below and Section 30.3.3.2).

For any EPT paging-structure entry that is used during guest-physical-address translation, bit 8 is the accessed 
flag. For a EPT paging-structure entry that maps a page (as opposed to referencing another EPT paging structure), 
bit 9 is the dirty flag.

Whenever the processor uses an EPT paging-structure entry as part of guest-physical-address translation, it sets 
the accessed flag in that entry (if it is not already set).

Whenever there is a write to a guest-physical address, the processor sets the dirty flag (if it is not already set) in 
the EPT paging-structure entry that identifies the final physical address for the guest-physical address (either an 
EPT PTE or an EPT paging-structure entry in which bit 7 is 1).

When accessed and dirty flags for EPT are enabled, processor accesses to guest paging-structure entries are 
treated as writes (see Section 30.3.3.2). Thus, such an access will cause the processor to set the dirty flag in the 
EPT paging-structure entry that identifies the final physical address of the guest paging-structure entry.

(This does not apply to loads of the PDPTE registers for PAE paging by the MOV to CR instruction; see Section 5.4.1. 
Those loads of guest PDPTEs are treated as reads and do not cause the processor to set the dirty flag in any EPT 
paging-structure entry.)

These flags are “sticky,” meaning that, once set, the processor does not clear them; only software can clear them.
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A processor may cache information from the EPT paging-structure entries in TLBs and paging-structure caches 
(see Section 30.4). This fact implies that, if software changes an accessed flag or a dirty flag from 1 to 0, the 
processor might not set the corresponding bit in memory on a subsequent access using an affected guest-physical 
address.

30.3.6 Page-Modification Logging
When accessed and dirty flags for EPT are enabled, software can track writes to guest-physical addresses using a 
feature called page-modification logging.

Software can enable page-modification logging by setting the “enable PML” VM-execution control (see Table 26-7 
in Section 26.6.2). When this control is 1, the processor adds entries to the page-modification log as described 
below. The page-modification log is a 4-KByte region of memory located at the physical address in the PML address 
VM-execution control field. The page-modification log consists of 512 64-bit entries; the PML index VM-execution 
control field indicates the next entry to use.

Before allowing a guest-physical access, the processor may determine that it first needs to set an accessed or dirty 
flag for EPT (see Section 30.3.5). When this happens, the processor examines the PML index. If the PML index is 
not in the range 0–511, there is a page-modification log-full event and a VM exit occurs. In this case, the 
accessed or dirty flag is not set, and the guest-physical access that triggered the event does not occur.

If instead the PML index is in the range 0–511, the processor proceeds to update accessed or dirty flags for EPT as 
described in Section 30.3.5. If the processor updated a dirty flag for EPT (changing it from 0 to 1), it then operates 
as follows:

1. The guest-physical address of the access is written to the page-modification log. Specifically, the guest-
physical address is written to physical address determined by adding 8 times the PML index to the PML address. 
Bits 11:0 of the value written are always 0 (the guest-physical address written is thus 4-KByte aligned).

2. The PML index is decremented by 1 (this may cause the value to transition from 0 to FFFFH).

Because the processor decrements the PML index with each log entry, the value may transition from 0 to FFFFH. At 
that point, no further logging will occur, as the processor will determine that the PML index is not in the range 0–
511 and will generate a page-modification log-full event (see above).

30.3.7 EPT and Memory Typing
This section specifies how a logical processor determines the memory type use for a memory access while EPT is in 
use. (See Chapter 13, “Memory Cache Control‚” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A, for details of memory typing in the Intel 64 architecture.) Section 30.3.7.1 explains how the 
memory type is determined for accesses to the EPT paging structures. Section 30.3.7.2 explains how the memory 
type is determined for an access using a guest-physical address that is translated using EPT.

30.3.7.1  Memory Type Used for Accessing EPT Paging Structures
This section explains how the memory type is determined for accesses to the EPT paging structures. The determi-
nation is based first on the value of bit 30 (cache disable—CD) in control register CR0:
• If CR0.CD = 0, the memory type used for any such reference is the EPT paging-structure memory type, which 

is specified in bits 2:0 of the extended-page-table pointer (EPTP), a VM-execution control field (see Section 
26.6.11). A value of 0 indicates the uncacheable type (UC), while a value of 6 indicates the write-back type 
(WB). Other values are reserved.

• If CR0.CD = 1, the memory type used for any such reference is uncacheable (UC).

The MTRRs have no effect on the memory type used for an access to an EPT paging structure.

30.3.7.2  Memory Type Used for Translated Guest-Physical Addresses
The effective memory type of a memory access using a guest-physical address (an access that is translated 
using EPT) is the memory type that is used to access memory. The effective memory type is based on the value of 
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bit 30 (cache disable—CD) in control register CR0; the last EPT paging-structure entry used to translate the guest-
physical address (either an EPT PDE with bit 7 set to 1 or an EPT PTE); and the PAT memory type (see below):
• The PAT memory type depends on the value of CR0.PG:

— If CR0.PG = 0, the PAT memory type is WB (writeback).1

— If CR0.PG = 1, the PAT memory type is the memory type selected from the IA32_PAT MSR as specified in 
Section 13.12.3, “Selecting a Memory Type from the PAT.”2

• The EPT memory type is specified in bits 5:3 of the last EPT paging-structure entry: 0 = UC; 1 = WC; 4 = WT; 
5 = WP; and 6 = WB. Other values are reserved and cause EPT misconfigurations (see Section 30.3.3).

• If CR0.CD = 0, the effective memory type depends upon the value of bit 6 of the last EPT paging-structure 
entry:

— If the value is 0, the effective memory type is the combination of the EPT memory type and the PAT memory 
type specified in Table 13-7 in Section 13.5.2.2, using the EPT memory type in place of the MTRR memory 
type.

— If the value is 1, the memory type used for the access is the EPT memory type. The PAT memory type is 
ignored.

• If CR0.CD = 1, the effective memory type is UC.

The MTRRs have no effect on the memory type used for an access to a guest-physical address.

30.4 CACHING TRANSLATION INFORMATION
Processors supporting Intel® 64 and IA-32 architectures may accelerate the address-translation process by 
caching on the processor data from the structures in memory that control that process. Such caching is discussed 
in Section 5.10, “Caching Translation Information,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A. The current section describes how this caching interacts with the VMX architecture.

The VPID and EPT features of the architecture for VMX operation augment this caching architecture. EPT defines 
the guest-physical address space and defines translations to that address space (from the linear-address space) 
and from that address space (to the physical-address space). Both features control the ways in which a logical 
processor may create and use information cached from the paging structures.

Section 30.4.1 describes the different kinds of information that may be cached. Section 30.4.2 specifies when such 
information may be cached and how it may be used. Section 30.4.3 details how software can invalidate cached 
information.

30.4.1 Information That May Be Cached
Section 5.10, “Caching Translation Information,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A, identifies two kinds of translation-related information that may be cached by a logical 
processor: translations, which are mappings from linear page numbers to physical page frames, and paging-
structure caches, which map the upper bits of a linear page number to information from the paging-structure 
entries used to translate linear addresses matching those upper bits.

The same kinds of information may be cached when VPIDs and EPT are in use. A logical processor may cache and 
use such information based on its function. Information with different functionality is identified as follows:

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, CR0.PG can be 0 in VMX non-root 
operation only if the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are 
both 1.

2. Table 13-11 in Section 13.12.3, “Selecting a Memory Type from the PAT,” illustrates how the PAT memory type is selected based on 
the values of the PAT, PCD, and PWT bits in a page-table entry (or page-directory entry with PS = 1). For accesses to a guest paging-
structure entry X, the PAT memory type is selected from the table by using a value of 0 for the PAT bit with the values of PCD and 
PWT from the paging-structure entry Y that references X (or from CR3 if X is in the root paging structure). With PAE paging, the PAT 
memory type for accesses to the PDPTEs is WB.
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• Linear mappings.1 There are two kinds:

— Linear translations. Each of these is a mapping from a linear page number to the physical page frame to 
which it translates, along with information about access privileges and memory typing.

— Linear paging-structure-cache entries. Each of these is a mapping from the upper portion of a linear 
address to the physical address of the paging structure used to translate the corresponding region of the 
linear-address space, along with information about access privileges. For example, bits 47:39 of a linear 
address would map to the address of the relevant page-directory-pointer table.

Linear mappings do not contain information from any EPT paging structure.
• Guest-physical mappings.2 There are two kinds:

— Guest-physical translations. Each of these is a mapping from a guest-physical page number to the physical 
page frame to which it translates, along with information about access privileges and memory typing.

— Guest-physical paging-structure-cache entries. Each of these is a mapping from the upper portion of a 
guest-physical address to the physical address of the EPT paging structure used to translate the corre-
sponding region of the guest-physical address space, along with information about access privileges.

The information in guest-physical mappings about access privileges and memory typing is derived from EPT 
paging structures.

• Combined mappings.3 There are two kinds:

— Combined translations. Each of these is a mapping from a linear page number to the physical page frame 
to which it translates, along with information about access privileges and memory typing.

— Combined paging-structure-cache entries. Each of these is a mapping from the upper portion of a linear 
address to the physical address of the paging structure used to translate the corresponding region of the 
linear-address space, along with information about access privileges.

The information in combined mappings about access privileges and memory typing is derived from both guest 
paging structures and EPT paging structures.

Guest-physical mappings and combined mappings may also include SPP vectors and information about the data 
structures used to locate SPP vectors (see Section 30.3.4.2).

30.4.2 Creating and Using Cached Translation Information
The following items detail the creation of the mappings described in the previous section:4

• The following items describe the creation of mappings while EPT is not in use (including execution outside VMX 
non-root operation):

— Linear mappings may be created. They are derived from the paging structures referenced (directly or 
indirectly) by the current value of CR3 and are associated with the current VPID and the current PCID.

— No linear mappings are created with information derived from paging-structure entries that are not present 
(bit 0 is 0) or that set reserved bits. For example, if a PTE is not present, no linear mapping are created for 
any linear page number whose translation would use that PTE.

— No guest-physical or combined mappings are created while EPT is not in use.
• The following items describe the creation of mappings while EPT is in use:

— Guest-physical mappings may be created. They are derived from the EPT paging structures referenced 
(directly or indirectly) by bits 51:12 of the current EPTP. These 40 bits contain the address of the EPT root 

1. Earlier versions of this manual used the term “VPID-tagged” to identify linear mappings.

2. Earlier versions of this manual used the term “EPTP-tagged” to identify guest-physical mappings.

3. Earlier versions of this manual used the term “dual-tagged” to identify combined mappings.

4. This section associated cached information with the current VPID and PCID. If PCIDs are not supported or are not being used (e.g., 
because CR4.PCIDE = 0), all the information is implicitly associated with PCID 000H; see Section 5.10.1, “Process-Context Identifiers 
(PCIDs),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
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table (a EPT PML4 table with 4-level EPT or a EPT PML5 table with 5-level EPT); the notation EPTRTA refers 
to those 40 bits. Newly created guest-physical mappings are associated with the current EPTRTA.

— Combined mappings may be created. They are derived from the EPT paging structures referenced (directly 
or indirectly) by the current EPTRTA. If CR0.PG = 1, they are also derived from the paging structures 
referenced (directly or indirectly) by the current value of CR3. They are associated with the current VPID, 
the current PCID, and the current EPTRTA.1 No combined paging-structure-cache entries are created if 
CR0.PG = 0.2

— No guest-physical mappings or combined mappings are created with information derived from EPT paging-
structure entries that are not present (see Section 30.3.2) or that are misconfigured (see Section 
30.3.3.1).

— No combined mappings are created with information derived from guest paging-structure entries that are 
not present or that set reserved bits.

— No linear mappings are created while EPT is in use.

The following items detail the use of the various mappings:
• If EPT is not in use (e.g., when outside VMX non-root operation), a logical processor may use cached mappings 

as follows:

— For accesses using linear addresses, it may use linear mappings associated with the current VPID and the 
current PCID. It may also use global TLB entries (linear mappings) associated with the current VPID and 
any PCID.

— No guest-physical or combined mappings are used while EPT is not in use.
• If EPT is in use, a logical processor may use cached mappings as follows:

— For accesses using linear addresses, it may use combined mappings associated with the current VPID, the 
current PCID, and the current EPTRTA. It may also use global TLB entries (combined mappings) associated 
with the current VPID, the current EPTRTA, and any PCID.

— For accesses using guest-physical addresses, it may use guest-physical mappings associated with the 
current EPTRTA.

— No linear mappings are used while EPT is in use.

30.4.3 Invalidating Cached Translation Information
Software modifications of paging structures (including EPT paging structures and the data structures used to locate 
SPP vectors) may result in inconsistencies between those structures and the mappings cached by a logical 
processor. Certain operations invalidate information cached by a logical processor and can be used to eliminate 
such inconsistencies.

30.4.3.1  Operations that Invalidate Cached Mappings
The following operations invalidate cached mappings as indicated:
• Operations that architecturally invalidate entries in the TLBs or paging-structure caches independent of VMX 

operation (e.g., the INVLPG and INVPCID instructions) invalidate linear mappings and combined mappings.3 
They are required to do so only for the current VPID (but, for combined mappings, all EPTRTAs). Linear 

1. At any given time, a logical processor may be caching combined mappings for a VPID and a PCID that are associated with different 
EPTRTAs. Similarly, it may be caching combined mappings for an EPTRTA that are associated with different VPIDs and PCIDs.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, CR0.PG can be 0 in VMX non-root 
operation only if the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are 
both 1.

3. See Section 5.10.4, “Invalidation of TLBs and Paging-Structure Caches,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A, for an enumeration of operations that architecturally invalidate entries in the TLBs and paging-structure 
caches independent of VMX operation.
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mappings for the current VPID are invalidated even if EPT is in use.1 Combined mappings for the current 
VPID are invalidated even if EPT is not in use.2

• An EPT violation invalidates any guest-physical mappings (associated with the current EPTRTA) that would be 
used to translate the guest-physical address that caused the EPT violation. If that guest-physical address was 
the translation of a linear address, the EPT violation also invalidates any combined mappings for that linear 
address associated with the current PCID, the current VPID and the current EPTRTA.

• If the “enable VPID” VM-execution control is 0, VM entries and VM exits invalidate linear mappings and 
combined mappings associated with VPID 0000H (for all PCIDs). Combined mappings for VPID 0000H are 
invalidated for all EPTRTAs.

• Execution of the INVVPID instruction invalidates linear mappings and combined mappings. Invalidation is 
based on instruction operands, called the INVVPID type and the INVVPID descriptor. Four INVVPID types are 
currently defined:

— Individual-address. If the INVVPID type is 0, the logical processor invalidates linear mappings and 
combined mappings associated with the VPID specified in the INVVPID descriptor and that would be used 
to translate the linear address specified in of the INVVPID descriptor. Linear mappings and combined 
mappings for that VPID and linear address are invalidated for all PCIDs and, for combined mappings, all 
EPTRTAs. (The instruction may also invalidate mappings associated with other VPIDs and for other linear 
addresses.)

— Single-context. If the INVVPID type is 1, the logical processor invalidates all linear mappings and 
combined mappings associated with the VPID specified in the INVVPID descriptor. Linear mappings and 
combined mappings for that VPID are invalidated for all PCIDs and, for combined mappings, all EPTRTAs. 
(The instruction may also invalidate mappings associated with other VPIDs.)

— All-context. If the INVVPID type is 2, the logical processor invalidates linear mappings and combined 
mappings associated with all VPIDs except VPID 0000H and with all PCIDs. (The instruction may also 
invalidate linear mappings with VPID 0000H.) Combined mappings are invalidated for all EPTRTAs.

— Single-context-retaining-globals. If the INVVPID type is 3, the logical processor invalidates linear 
mappings and combined mappings associated with the VPID specified in the INVVPID descriptor. Linear 
mappings and combined mappings for that VPID are invalidated for all PCIDs and, for combined mappings, 
all EPTRTAs. The logical processor is not required to invalidate information that was used for global trans-
lations (although it may do so). See Section 5.10, “Caching Translation Information,” for details regarding 
global translations. (The instruction may also invalidate mappings associated with other VPIDs.)

See Chapter 32 for details of the INVVPID instruction. See Section 30.4.3.3 for guidelines regarding use of this 
instruction.

• Execution of the INVEPT instruction invalidates guest-physical mappings and combined mappings. Invalidation 
is based on instruction operands, called the INVEPT type and the INVEPT descriptor. Two INVEPT types are 
currently defined:

— Single-context. If the INVEPT type is 1, the logical processor invalidates all guest-physical mappings and 
combined mappings associated with the EPTRTA specified in the INVEPT descriptor. Combined mappings for 
that EPTRTA are invalidated for all VPIDs and all PCIDs. (The instruction may invalidate mappings 
associated with other EPTRTAs.)

— All-context. If the INVEPT type is 2, the logical processor invalidates guest-physical mappings and 
combined mappings associated with all EPTRTAs (and, for combined mappings, for all VPIDs and PCIDs).

See Chapter 32 for details of the INVEPT instruction. See Section 30.4.3.4 for guidelines regarding use of this 
instruction.

• A power-up or a reset invalidates all linear mappings, guest-physical mappings, and combined mappings.

1. While no linear mappings are created while EPT is in use, a logical processor may retain, while EPT is in use, linear mappings (for the 
same VPID as the current one) there were created earlier, when EPT was not in use.

2. While no combined mappings are created while EPT is not in use, a logical processor may retain, while EPT is in not use, combined 
mappings (for the same VPID as the current one) there were created earlier, when EPT was in use.
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30.4.3.2  Operations that Need Not Invalidate Cached Mappings
The following items detail cases of operations that are not required to invalidate certain cached mappings:
• Operations that architecturally invalidate entries in the TLBs or paging-structure caches independent of VMX 

operation are not required to invalidate any guest-physical mappings.
• The INVVPID instruction is not required to invalidate any guest-physical mappings.
• The INVEPT instruction is not required to invalidate any linear mappings.
• VMX transitions are not required to invalidate any guest-physical mappings. If the “enable VPID” VM-execution 

control is 1, VMX transitions are not required to invalidate any linear mappings or combined mappings. 
• The VMXOFF and VMXON instructions are not required to invalidate any linear mappings, guest-physical 

mappings, or combined mappings.

A logical processor may invalidate any cached mappings at any time. For this reason, the operations identified 
above may invalidate the indicated mappings despite the fact that doing so is not required.

30.4.3.3  Guidelines for Use of the INVVPID Instruction
The need for VMM software to use the INVVPID instruction depends on how that software is virtualizing memory. 

If EPT is not in use, it is likely that the VMM is virtualizing the guest paging structures. Such a VMM may configure 
the VMCS so that all or some of the operations that invalidate entries the TLBs and the paging-structure caches 
(e.g., the INVLPG instruction) cause VM exits. If VMM software is emulating these operations, it may be necessary 
to use the INVVPID instruction to ensure that the logical processor’s TLBs and the paging-structure caches are 
appropriately invalidated.

Requirements of when software should use the INVVPID instruction depend on the specific algorithm being used for 
page-table virtualization. The following items provide guidelines for software developers:
• Emulation of the INVLPG instruction may require execution of the INVVPID instruction as follows:

— The INVVPID type is individual-address (0).

— The VPID in the INVVPID descriptor is the one assigned to the virtual processor whose execution is being 
emulated.

— The linear address in the INVVPID descriptor is that of the operand of the INVLPG instruction being 
emulated.

• Some instructions invalidate all entries in the TLBs and paging-structure caches—except for global translations. 
An example is the MOV to CR3 instruction. (See Section 5.10, “Caching Translation Information,” in the Intel® 

64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for details regarding global translations.) 
Emulation of such an instruction may require execution of the INVVPID instruction as follows:

— The INVVPID type is single-context-retaining-globals (3).

— The VPID in the INVVPID descriptor is the one assigned to the virtual processor whose execution is being 
emulated.

• Some instructions invalidate all entries in the TLBs and paging-structure caches—including for global transla-
tions. An example is the MOV to CR4 instruction if the value of value of bit 4 (page global enable—PGE) is 
changing. Emulation of such an instruction may require execution of the INVVPID instruction as follows:

— The INVVPID type is single-context (1).

— The VPID in the INVVPID descriptor is the one assigned to the virtual processor whose execution is being 
emulated.

If EPT is not in use, the logical processor associates all mappings it creates with the current VPID, and it will use 
such mappings to translate linear addresses. For that reason, a VMM should not use the same VPID for different 
non-EPT guests that use different page tables. Doing so may result in one guest using translations that pertain to 
the other.

If EPT is in use, the instructions enumerated above might not be configured to cause VM exits and the VMM might 
not be emulating them. In that case, executions of the instructions by guest software properly invalidate the 
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required entries in the TLBs and paging-structure caches (see Section 30.4.3.1); execution of the INVVPID instruc-
tion is not required.

If EPT is in use, the logical processor associates all mappings it creates with the value of bits 51:12 of current EPTP. 
If a VMM uses different EPTP values for different guests, it may use the same VPID for those guests. Doing so 
cannot result in one guest using translations that pertain to the other.

The following guidelines apply more generally and are appropriate even if EPT is in use:
• As detailed in Section 31.4.5, an access to the APIC-access page might not cause an APIC-access VM exit if 

software does not properly invalidate information that may be cached from the paging structures. If, at one 
time, the current VPID on a logical processor was a non-zero value X, it is recommended that software use the 
INVVPID instruction with the “single-context” INVVPID type and with VPID X in the INVVPID descriptor before 
a VM entry on the same logical processor that establishes VPID X and either (a) the “virtualize APIC accesses” 
VM-execution control was changed from 0 to 1; or (b) the value of the APIC-access address was changed.

• Software can use the INVVPID instruction with the “all-context” INVVPID type immediately after execution of 
the VMXON instruction or immediately prior to execution of the VMXOFF instruction. Either prevents potentially 
undesired retention of information cached from paging structures between separate uses of VMX operation.

30.4.3.4  Guidelines for Use of the INVEPT Instruction
The following items provide guidelines for use of the INVEPT instruction to invalidate information cached from the 
EPT paging structures.
• Software should use the INVEPT instruction with the “single-context” INVEPT type after making any of the 

following changes to an EPT paging-structure entry (the INVEPT descriptor should contain an EPTP value that 
references — directly or indirectly — the modified EPT paging structure):

— Changing any of the privilege bits 2:0 from 1 to 0.1

— Changing the physical address in bits 51:12.

— Clearing bit 8 (the accessed flag) if accessed and dirty flags for EPT will be enabled.

— For an EPT PDPTE or an EPT PDE, changing bit 7 (which determines whether the entry maps a page).

— For the last EPT paging-structure entry used to translate a guest-physical address (an EPT PDPTE with bit 7 
set to 1, an EPT PDE with bit 7 set to 1, or an EPT PTE), changing either bits 5:3 or bit 6. (These bits 
determine the effective memory type of accesses using that EPT paging-structure entry; see Section 
30.3.7.)

— For the last EPT paging-structure entry used to translate a guest-physical address (an EPT PDPTE with bit 7 
set to 1, an EPT PDE with bit 7 set to 1, or an EPT PTE), clearing bit 9 (the dirty flag) if accessed and dirty 
flags for EPT will be enabled.

• Software should use the INVEPT instruction with the “single-context” INVEPT type before a VM entry with an 
EPTP value X such that X[6] = 1 (accessed and dirty flags for EPT are enabled) if the logical processor had 
earlier been in VMX non-root operation with an EPTP value Y such that Y[6] = 0 (accessed and dirty flags for 
EPT are not enabled) and Y[51:12] = X[51:12].

• Software should use the INVEPT instruction with the “single-context” INVEPT type before a VM entry with an 
EPTP value X if the logical processor had earlier been in VMX non-root operation with an EPTP value Y such that 
Y[5:3] ≠ X[5:3] (different EPT page-walk length) and Y[51:12] = X[51:12].

• Software may use the INVEPT instruction after modifying a present EPT paging-structure entry (see Section 
30.3.2) to change any of the privilege bits 2:0 from 0 to 1.2 Failure to do so may cause an EPT violation that 
would not otherwise occur. Because an EPT violation invalidates any mappings that would be used by the 
access that caused the EPT violation (see Section 30.4.3.1), an EPT violation will not recur if the original access 
is performed again, even if the INVEPT instruction is not executed.

1. If the “mode-based execute control for EPT” VM-execution control is 1, software should use the INVEPT instruction after changing 
privilege bit 10 from 1 to 0.

2. If the “mode-based execute control for EPT” VM-execution control is 1, software may use the INVEPT instruction after modifying a 
present EPT paging-structure entry to change privilege bit 10 from 0 to 1.
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• Because a logical processor does not cache any information derived from EPT paging-structure entries that are 
not present (see Section 30.3.2) or misconfigured (see Section 30.3.3.1), it is not necessary to execute INVEPT 
following modification of an EPT paging-structure entry that had been not present or misconfigured.

• As detailed in Section 31.4.5, an access to the APIC-access page might not cause an APIC-access VM exit if 
software does not properly invalidate information that may be cached from the EPT paging structures. If EPT 
was in use on a logical processor at one time with EPTP X, it is recommended that software use the INVEPT 
instruction with the “single-context” INVEPT type and with EPTP X in the INVEPT descriptor before a VM entry 
on the same logical processor that enables EPT with EPTP X and either (a) the “virtualize APIC accesses” VM-
execution control was changed from 0 to 1; or (b) the value of the APIC-access address was changed.

• Software can use the INVEPT instruction with the “all-context” INVEPT type immediately after execution of the 
VMXON instruction or immediately prior to execution of the VMXOFF instruction. Either prevents potentially 
undesired retention of information cached from EPT paging structures between separate uses of VMX 
operation.

In a system containing more than one logical processor, software must account for the fact that information from 
an EPT paging-structure entry may be cached on logical processors other than the one that modifies that entry. The 
process of propagating the changes to a paging-structure entry is commonly referred to as “TLB shootdown.” A 
discussion of TLB shootdown appears in Section 5.10.5, “Propagation of Paging-Structure Changes to Multiple 
Processors,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
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CHAPTER 31
APIC VIRTUALIZATION AND VIRTUAL INTERRUPTS

The VMCS includes controls that enable the virtualization of interrupts and the Advanced Programmable Interrupt 
Controller (APIC).

When these controls are used, the processor will emulate many accesses to the APIC, track the state of the virtual 
APIC, and deliver virtual interrupts — all in VMX non-root operation with out a VM exit.1

The processor tracks the state of the virtual APIC using a virtual-APIC page identified by the virtual-machine 
monitor (VMM). Section 31.1 discusses the virtual-APIC page and how the processor uses it to track the state of the 
virtual APIC.

The following are the VM-execution controls relevant to APIC virtualization and virtual interrupts (see Section 26.6 
for information about the locations of these controls):
• Virtual-interrupt delivery. This control enables the evaluation and delivery of pending virtual interrupts 

(Section 31.2). It also enables the emulation of writes (memory-mapped or MSR-based, as enabled) to the 
APIC registers that control interrupt prioritization.

• Use TPR shadow. This control enables emulation of accesses to the APIC’s task-priority register (TPR) via CR8 
(Section 31.3) and, if enabled, via the memory-mapped or MSR-based interfaces.

• Virtualize APIC accesses. This control enables virtualization of memory-mapped accesses to the APIC 
(Section 31.4) by causing VM exits on accesses to a VMM-specified APIC-access page. Some of the other 
controls, if set, may cause some of these accesses to be emulated rather than causing VM exits.

• Virtualize x2APIC mode. This control enables virtualization of MSR-based accesses to the APIC (Section 
31.5).

• APIC-register virtualization. This control allows memory-mapped and MSR-based reads of most APIC 
registers (as enabled) by satisfying them from the virtual-APIC page. It directs memory-mapped writes to the 
APIC-access page to the virtual-APIC page, following them by VM exits for VMM emulation.

• Process posted interrupts. This control allows software to post virtual interrupts in a data structure and send 
a notification to another logical processor; upon receipt of the notification, the target processor will process the 
posted interrupts by copying them into the virtual-APIC page (Section 31.6).

• IPI virtualization. This control enables the virtualization of interprocessor interrupts (Section 31.1.6).

“Virtualize APIC accesses”, “virtualize x2APIC mode”, “virtual-interrupt delivery”, and “APIC-register virtualization” 
are all secondary processor-based VM-execution controls; if bit 31 of the primary processor-based VM-execution 
controls is 0, the processor operates as if these controls were all 0. “IPI virtualization” is a tertiary processor-based 
VM-execution control; if bit 17 of the primary processor-based VM-execution controls is 0, the processor operates 
as if “IPI virtualization” were 0. See Section 26.6.2.

31.1 VIRTUAL APIC STATE
The virtual-APIC page is a 4-KByte region of memory that the processor uses to virtualize certain accesses to 
APIC registers and to manage virtual interrupts. The physical address of the virtual-APIC page is the virtual-APIC 
address, a 64-bit VM-execution control field in the VMCS (see Section 26.6.8).

Depending on the settings of certain VM-execution controls, the processor may virtualize certain fields on the 
virtual-APIC page with functionality analogous to that performed by the local APIC. Section 31.1.1 identifies and 
defines these fields. Section 31.1.2, Section 31.1.3, Section 31.1.4, and Section 31.1.5 detail the actions taken to 
virtualize updates to some of these fields.

With the exception of fields corresponding to virtualized APIC registers (defined in Section 31.1.1), software may 
modify the virtual-APIC page referenced by the current VMCS of a logical processor in VMX non-root operation. 
(This is an exception to the general requirement given in Section 26.11.4.)

1. In most cases, it is not necessary for a virtual-machine monitor (VMM) to inject virtual interrupts as part of VM entry.
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31.1.1 Virtualized APIC Registers
Depending on the setting of certain VM-execution controls, a logical processor may virtualize certain accesses to 
APIC registers using the following fields on the virtual-APIC page:
• Virtual task-priority register (VTPR): the 32-bit field located at offset 080H on the virtual-APIC page.
• Virtual processor-priority register (VPPR): the 32-bit field located at offset 0A0H on the virtual-APIC 

page.
• Virtual end-of-interrupt register (VEOI): the 32-bit field located at offset 0B0H on the virtual-APIC page.
• Virtual interrupt-service register (VISR): the 256-bit value comprising eight non-contiguous 32-bit fields 

at offsets 100H, 110H, 120H, 130H, 140H, 150H, 160H, and 170H on the virtual-APIC page. Bit x of the VISR 
is at bit position (x & 1FH) at offset (100H | ((x & E0H) » 1)). The processor uses only the low 4 bytes of each 
of the 16-byte fields at offsets 100H, 110H, 120H, 130H, 140H, 150H, 160H, and 170H.

• Virtual interrupt-request register (VIRR): the 256-bit value comprising eight non-contiguous 32-bit fields 
at offsets 200H, 210H, 220H, 230H, 240H, 250H, 260H, and 270H on the virtual-APIC page. Bit x of the VIRR 
is at bit position (x & 1FH) at offset (200H | ((x & E0H) » 1)). The processor uses only the low 4 bytes of each 
of the 16-Byte fields at offsets 200H, 210H, 220H, 230H, 240H, 250H, 260H, and 270H.

• Virtual interrupt-command register (VICR_LO): the 32-bit field located at offset 300H on the virtual-APIC 
page.

• Virtual interrupt-command register (VICR_HI): the 32-bit field located at offset 310H on the virtual-APIC 
page.

The VTPR field virtualizes the TPR whenever the “use TPR shadow” VM-execution control is 1. The other fields indi-
cated above virtualize the corresponding APIC registers whenever the “virtual-interrupt delivery” VM-execution 
control is 1. (VICR_LO and VICR_HI also virtualize the ICR when the “IPI virtualization” VM-execution control is 1.)

31.1.2 TPR Virtualization
The processor performs TPR virtualization in response to the following operations: (1) virtualization of the MOV 
to CR8 instruction; (2) virtualization of a write to offset 080H on the APIC-access page; and (3) virtualization of the 
WRMSR instruction with ECX = 808H. See Section 31.3, Section 31.4.3, and Section 31.5 for details of when TPR 
virtualization is performed.

The following pseudocode details the behavior of TPR virtualization:
IF “virtual-interrupt delivery” is 0

THEN
IF VTPR[7:4] < TPR threshold (see Section 26.6.8)

THEN cause VM exit due to TPR below threshold;
FI;

ELSE
perform PPR virtualization (see Section 31.1.3);
evaluate pending virtual interrupts (see Section 31.2.1);

FI;

Any VM exit caused by TPR virtualization is trap-like: the instruction causing TPR virtualization completes before 
the VM exit occurs (for example, the value of CS:RIP saved in the guest-state area of the VMCS references the next 
instruction).

31.1.3 PPR Virtualization
The processor performs PPR virtualization in response to the following operations: (1) VM entry; (2) TPR virtu-
alization; and (3) EOI virtualization. See Section 28.3.2.5, Section 31.1.2, and Section 31.1.4 for details of when 
PPR virtualization is performed.

PPR virtualization uses the guest interrupt status (specifically, SVI; see Section 26.4.2) and VTPR. The following 
pseudocode details the behavior of PPR virtualization:

IF VTPR[7:4] ≥ SVI[7:4]
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THEN VPPR := VTPR & FFH;
ELSE VPPR := SVI & F0H;

FI;

PPR virtualization always clears bytes 3:1 of VPPR.

PPR virtualization is caused only by TPR virtualization, EOI virtualization, and VM entry. Delivery of a virtual inter-
rupt also modifies VPPR, but in a different way (see Section 31.2.2). No other operations modify VPPR, even if they 
modify SVI, VISR, or VTPR.

31.1.4 EOI Virtualization
The processor performs EOI virtualization in response to the following operations: (1) virtualization of a write to 
offset 0B0H on the APIC-access page; and (2) virtualization of the WRMSR instruction with ECX = 80BH. See 
Section 31.4.3 and Section 31.5 for details of when EOI virtualization is performed. EOI virtualization occurs only 
if the “virtual-interrupt delivery” VM-execution control is 1.

EOI virtualization uses and updates the guest interrupt status (specifically, SVI; see Section 26.4.2). The following 
pseudocode details the behavior of EOI virtualization:

Vector := SVI;
VISR[Vector] := 0; (see Section 31.1.1 for definition of VISR)
IF any bits set in VISR

THEN SVI := highest index of bit set in VISR
ELSE SVI := 0;

FI;
perform PPR virtualiation (see Section 31.1.3);
IF EOI_exit_bitmap[Vector] = 1 (see Section 26.6.8 for definition of EOI_exit_bitmap)

THEN cause EOI-induced VM exit with Vector as exit qualification;
ELSE evaluate pending virtual interrupts; (see Section 31.2.1)

FI;

Any VM exit caused by EOI virtualization is trap-like: the instruction causing EOI virtualization completes before 
the VM exit occurs (for example, the value of CS:RIP saved in the guest-state area of the VMCS references the next 
instruction).

31.1.5 Self-IPI Virtualization
The processor performs self-IPI virtualization in response to the following operations: (1) virtualization of a 
write to offset 300H on the APIC-access page; and (2) virtualization of the WRMSR instruction with ECX = 83FH. 
See Section 31.4.3 and Section 31.5 for details of when self-IPI virtualization is performed. Self-IPI virtualization 
occurs only if the “virtual-interrupt delivery” VM-execution control is 1.

Each operation that leads to self-IPI virtualization provides an 8-bit vector (see Section 31.4.3 and Section 31.5). 
Self-IPI virtualization updates the guest interrupt status (specifically, RVI; see Section 26.4.2). The following 
pseudocode details the behavior of self-IPI virtualization:

VIRR[Vector] := 1; (see Section 31.1.1 for definition of VIRR)
RVI := max{RVI,Vector};
evaluate pending virtual interrupts; (see Section 31.2.1)

31.1.6 IPI Virtualization
The processor performs IPI virtualization in response to the following operations: (1) virtualization of a write to 
offset 300H on the APIC-access page (Section 31.4.3); (2) virtualization of the WRMSR instruction with ECX = 
830H (Section 31.5); and (3) virtualization of some executions of SENDUIPI (Section 31.7). IPI virtualization 
occurs only if the “IPI virtualization” VM-execution control is 1.

IPI virtualization uses virtual-interrupt posting, which is described in Section 31.1.6.1. Section 31.1.6.2 gives the 
details of the operation of IPI virtualization.
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31.1.6.1  Virtual-Interrupt Posting
IPI virtualization is based on virtual-interrupt posting, a process that can direct virtual interrupts to a specific 
virtual processor. With virtual-interrupt posting, a hardware or software agent “posts” a virtual interrupt in a data 
structure (posted-interrupt descriptor or PID) and then sends an interrupt (notification) to the logical 
processor on which the target virtual processor is operating. When that logical processor receives the notification, 
it uses information in the PID to deliver the virtual interrupt to the virtual processor (see Section 31.6).

A PID is a 64-byte data structure. In an expected usage, there is one PID for each virtual processor; the virtual 
processor’s VMCS contains a pointer to its PID. A PID has the format shown in Table 31-1.

A hardware or software agent posts a virtual interrupt to a virtual processor with following steps:

1. Read the PIR field in the virtual processor’s PID and write it back atomically, setting the bit that corresponds to 
the virtual interrupt’s vector.

2. Read the notification-information field in the PID and write it back atomically, setting the ON bit if the ON and 
SN bits were both 0 in the value read. (Step #2 may be done atomically with step #1.)

3. If step #2 changed the ON bit from 0 to 1, send a notification. The notification is an ordinary interrupt sent to 
the physical APIC ID NDST with vector NV.

A processor’s response to the delivery of a notification is detailed in Section 31.6.

The use of virtual-interrupt posting for IPI virtualization is explained in Section 31.1.6.2.

31.1.6.2  IPI Virtualization Using Virtual-Interrupt Posting
Each operation that leads to IPI virtualization provides an 8-bit virtual vector V and a 32-bit virtual APIC ID T. IPI 
virtualization uses those values to initiate the indicated virtual IPI using the PID-pointer table.

The PID-pointer table is a data structure referenced by the PID-pointer table address, a field in the VMCS. Each 
entry in the PID-pointer table contains the following information:
• Bits 63:6 contain bits 63:6 of the 64-bit physical address of a PID (see Section 31.1.6.1). 
• Bits 5:1 are reserved and must be 0.
• Bit 0 is a valid bit.

Each such address must be 64-byte aligned. The index of the last entry in the table is also a field in the VMCS.

When virtualizing an IPI, the CPU uses the virtual APIC ID T to select an entry from the PID-pointer table. It uses 
the address in that entry to locate a posted-interrupt descriptor (PID) and then posts a virtual interrupt with vector 
V in that PID. The following pseudocode details the behavior of IPI virtualization:

IF V < 16
THEN APIC-write VM exit; // illegal vector

ELSE IF T ≤ last PID-pointer index // a field in the VMCS

Table 31-1.  Format of Posted-Interrupt Descriptor (PID)

Bit
Position(s)

Name Description

255:0 Posted-interrupt requests 
(PIR)

One bit for each interrupt vector. There is a posted-interrupt request for a vector if 
the corresponding bit is 1.

256 Outstanding notification (ON) If this bit is set, there is a notification outstanding for one or more posted interrupts 
in bits 255:0.

257 Suppress notify (SN) Setting this bit directs agents not to send notifications.

271:258 Reserved Reserved.

279:272 Notify vector (NV) Notifications will use this vector.

287:280 Reserved Reserved.

319:288 Notify destination (NDST) Notifications will be directed to this physical APIC ID.

511:320 Reserved Reserved.
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THEN
PID_ADDR := 8 bytes at (PID-pointer table address + (T « 3));
IF PID_ADDR sets bits beyond the processor’s physical-address width OR

PID_ADDR[5:0] ≠ 000001b // PID pointer not valid or reserved bits set
THEN APIC-write VM exit; // See Section 31.4.3.3
ELSE

PID_ADDR[0] := 0; // clear the valid bit before using as an address
PIR := 32 bytes at PID_ADDR; // under lock
PIR[V] := 1;
store PIR at PID_ADDR; // release lock; corresponds to step #1 in Section 31.1.6.1
NotifyInfo := 8 bytes at PID_ADDR + 32; // under lock
IF NotifyInfo.ON = 0 AND NotifyInfo.SN = 0

THEN
NotifyInfo.ON := 1;
SendNotify := 1;

ELSE SendNotify := 0;
FI;
store NotifyInfo at PID_ADDR + 32;  // release lock; corresponds to step #2 in Section 31.1.6.1
IF SendNotify = 1

THEN send an IPI specified by NotifyInfo.NDST and NotifyInfo.NV; // step #3 in Section 31.1.6.1
FI;

FI;
ELSE APIC-write VM exit; // virtual APIC ID beyond end of tables

FI;

The sending of the notification IPI is indicated by fields in the selected PID: NDST (PID[319:288]) and NV 
(PID[279:272]):
• If the local APIC is in xAPIC mode, this is the IPI that would be generated by writing NDST[15:8] 

(PID[303:296]) to ICR_HI[31:24] (offset 310H from IA32_APIC_BASE) and then writing NV to ICR_LO (offset 
300H from IA32_APIC_BASE).

• If the local APIC is in x2APIC mode, this is the IPI that would be generated by executing WRMSR with ECX = 
830H (ICR), EAX = NV, and EDX = NDST.

If the pseudocode specifies an APIC-write VM exit, this VM exit occurs as if there had been a write access to page 
offset 300H on the APIC-access page (see Section 31.4.3.3).

31.2 EVALUATION AND DELIVERY OF VIRTUAL INTERRUPTS
If the “virtual-interrupt delivery” VM-execution control is 1, certain actions in VMX non-root operation or during 
VM entry cause the processor to evaluate and deliver virtual interrupts.

Evaluation of virtual interrupts is triggered by certain actions change the state of the virtual-APIC page and is 
described in Section 31.2.1. This evaluation may result in recognition of a virtual interrupt. Once a virtual interrupt 
is recognized, the processor may deliver it within VMX non-root operation without a VM exit. Virtual-interrupt 
delivery is described in Section 31.2.2.

31.2.1 Evaluation of Pending Virtual Interrupts
If the “virtual-interrupt delivery” VM-execution control is 1, certain actions cause a logical processor to evaluate 
pending virtual interrupts.

The following actions cause the evaluation of pending virtual interrupts: VM entry; TPR virtualization; EOI virtual-
ization; self-IPI virtualization; and posted-interrupt processing. See Section 28.3.2.5, Section 31.1.2, Section 
31.1.4, Section 31.1.5, and Section 31.6 for details of when evaluation of pending virtual interrupts is performed. 
No other operations cause the evaluation of pending virtual interrupts, even if they modify RVI or VPPR.

Evaluation of pending virtual interrupts uses the guest interrupt status (specifically, RVI; see Section 26.4.2). The 
following pseudocode details the evaluation of pending virtual interrupts:

IF “interrupt-window exiting” is 0 AND
RVI[7:4] > VPPR[7:4] (see Section 31.1.1 for definition of VPPR)

THEN recognize a pending virtual interrupt;
ELSE
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do not recognize a pending virtual interrupt;
FI;

Once recognized, a virtual interrupt may be delivered in VMX non-root operation; see Section 31.2.2.

Evaluation of pending virtual interrupts is caused only by VM entry, TPR virtualization, EOI virtualization, self-IPI 
virtualization, and posted-interrupt processing. No other operations do so, even if they modify RVI or VPPR. The 
logical processor ceases recognition of a pending virtual interrupt following the delivery of a virtual interrupt.

31.2.2 Virtual-Interrupt Delivery
If a virtual interrupt has been recognized (see Section 31.2.1), it is delivered at an instruction boundary when the 
following conditions all hold: (1) RFLAGS.IF = 1; (2) there is no blocking by STI; (3) there is no blocking by MOV 
SS or by POP SS; and (4) the “interrupt-window exiting” VM-execution control is 0.

Virtual-interrupt delivery has the same priority as that of VM exits due to the 1-setting of the “interrupt-window 
exiting” VM-execution control.1 Thus, non-maskable interrupts (NMIs) and higher priority events take priority over 
delivery of a virtual interrupt; delivery of a virtual interrupt takes priority over external interrupts and lower priority 
events.

Virtual-interrupt delivery wakes a logical processor from the same inactive activity states as would an external 
interrupt. Specifically, it wakes a logical processor from the states entered using the HLT and MWAIT instructions. 
It does not wake a logical processor in the shutdown state or in the wait-for-SIPI state.

Virtual-interrupt delivery updates the guest interrupt status (both RVI and SVI; see Section 26.4.2) and delivers an 
event within VMX non-root operation without a VM exit. The following pseudocode details the behavior of virtual-
interrupt delivery (see Section 31.1.1 for definition of VISR, VIRR, and VPPR):

Vector := RVI;
VISR[Vector] := 1;
SVI := Vector;
VPPR := Vector & F0H;
VIRR[Vector] := 0;
IF any bits set in VIRR

THEN RVI := highest index of bit set in VIRR
ELSE RVI := 0;

FI;
cease recognition of any pending virtual interrupt;
IF transactional execution is in effect

THEN abort transactional execution and transition to a non-transactional execution;
FI;
IF logical processor is in enclave mode

THEN cause an Asynchronous Enclave Exit (AEX) (see Chapter 38, “Enclave Exiting Events”)
FI;
IF CR4.UINTR = 1 AND IA32_EFER.LMA = 1 AND Vector = UINV

THEN virtualize user-interrupt notification identification and processing (see Section 31.2.3)
ELSE deliver interrupt with Vector through IDT;

FI;

31.2.3 Virtualizing User-Interrupt Notifications
Section 8.5 describes the process of user-interrupt notification identification and processing. If the “virtual-inter-
rupt delivery” VM-execution control is 1, this process is modified as described in the following paragraphs.

1. A logical processor never recognizes or delivers a virtual interrupt if the “interrupt-window exiting” VM-execution control is 1. 
Because of this, the relative priority of virtual-interrupt delivery and VM exits due to the 1-setting of that control is not defined.
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The virtualized form of user-interrupt notification identification begins as described in Section 31.2.2. Following 
this, instead of writing zero to the EOI register in the local APIC, the logical processor performs the initial steps of 
EOI virtualization:

VISR[V] := 0;
IF any bit is set in VISR

THEN SVI := highest index of bit set in VISR
ELSE SVI := 0;

FI;
perform PPR virtualization (Section 31.1.3);

Unlike EOI virtualization resulting from a guest write to the EOI register (as defined for virtual-interrupt delivery), 
the logical processor does not check the EOI-exit bitmap as part of this modified form of user-interrupt notification 
identification, and the corresponding VM exits cannot occur.
Following this modified form of user-interrupt notification identification, the logical processor then performs user-
interrupt notification processing as specified in Section 8.5.2.
A logical processor is not interruptible during this modified form of user-interrupt notification identification or 
between it and any subsequent user-interrupt notification processing.

If the user-interrupt notification identification that precedes user-interrupt notification processing occurred while 
the logical processor was in the HLT state, the logical processor returns to the HLT state following user-interrupt 
notification processing.

31.3 VIRTUALIZING CR8-BASED TPR ACCESSES
In 64-bit mode, software can access the local APIC’s task-priority register (TPR) through CR8. Specifically, software 
uses the MOV from CR8 and MOV to CR8 instructions (see Section 12.8.6, “Task Priority in IA-32e Mode”). This 
section describes how these accesses can be virtualized.

A virtual-machine monitor can virtualize these CR8-based APIC accesses by setting the “CR8-load exiting” and 
“CR8-store exiting” VM-execution controls, ensuring that the accesses cause VM exits (see Section 27.1.3). Alter-
natively, there are methods for virtualizing some CR8-based APIC accesses without VM exits.

Normally, an execution of MOV from CR8 or MOV to CR8 that does not fault or cause a VM exit accesses the APIC’s 
TPR. However, such an execution are treated specially if the “use TPR shadow” VM-execution control is 1. The 
following items provide details:
• MOV from CR8. The instruction loads bits 3:0 of its destination operand with bits 7:4 of VTPR (see Section 

31.1.1). Bits 63:4 of the destination operand are cleared.
• MOV to CR8. The instruction stores bits 3:0 of its source operand into bits 7:4 of VTPR; the remainder of VTPR 

(bits 3:0 and bits 31:8) are cleared. Following this, the processor performs TPR virtualization (see Section 
31.1.2).

31.4 VIRTUALIZING MEMORY-MAPPED APIC ACCESSES
When the local APIC is in xAPIC mode, software accesses the local APIC’s control registers using a memory-
mapped interface. Specifically, software uses linear addresses that translate to physical addresses on page frame 
indicated by the base address in the IA32_APIC_BASE MSR (see Section 12.4.4, “Local APIC Status and Location”). 
This section describes how these accesses can be virtualized.

A virtual-machine monitor (VMM) can virtualize these memory-mapped APIC accesses by ensuring that any access 
to a linear address that would access the local APIC instead causes a VM exit. This could be done using paging or 
the extended page-table mechanism (EPT). Another way is by using the 1-setting of the “virtualize APIC accesses” 
VM-execution control.

If the “virtualize APIC accesses” VM-execution control is 1, the logical processor treats specially memory accesses 
using linear addresses that translate to physical addresses in the 4-KByte APIC-access page.1,2 (The APIC-
access page is identified by the APIC-access address, a field in the VMCS; see Section 26.6.8.)
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In general, an access to the APIC-access page causes an APIC-access VM exit. APIC-access VM exits provide a 
VMM with information about the access causing the VM exit. Section 31.4.1 discusses the priority of APIC-access 
VM exits.

Certain VM-execution controls enable the processor to virtualize certain accesses to the APIC-access page without 
a VM exit. In general, this virtualization causes these accesses to be made to the virtual-APIC page instead of the 
APIC-access page.

NOTES
Unless stated otherwise, this section characterizes only linear accesses to the APIC-access page; an 
access to the APIC-access page is a linear access if (1) it results from a memory access using a 
linear address; and (2) the access’s physical address is the translation of that linear address. 
Section 31.4.6 discusses accesses to the APIC-access page that are not linear accesses.
The distinction between the APIC-access page and the virtual-APIC page allows a VMM to share 
paging structures or EPT paging structures among the virtual processors of a virtual machine (the 
shared paging structures referencing the same APIC-access address, which appears in the VMCS of 
all the virtual processors) while giving each virtual processor its own virtual APIC (the VMCS of each 
virtual processor will have a unique virtual-APIC address).

Section 31.4.2 discusses when and how the processor may virtualize read accesses from the APIC-access page. 
Section 31.4.3 does the same for write accesses. When virtualizing a write to the APIC-access page, the processor 
typically takes actions in addition to passing the write through to the virtual-APIC page.

The discussion in those sections uses the concept of an operation within which these memory accesses may occur. 
For those discussions, an “operation” can be an iteration of a REP-prefixed string instruction, an execution of any 
other instruction, or delivery of an event through the IDT.

The 1-setting of the “virtualize APIC accesses” VM-execution control may also affect accesses to the APIC-access 
page that do not result directly from linear addresses. This is discussed in Section 31.4.6.

Special treatment may apply to Intel SGX instructions or if the logical processor is in enclave mode. See Section 
40.5.3 for details.

31.4.1 Priority of APIC-Access VM Exits
The following items specify the priority of APIC-access VM exits relative to other events.
• The priority of an APIC-access VM exit due to a memory access is below that of any page fault or EPT violation 

that that access may incur. That is, an access does not cause an APIC-access VM exit if it would cause a page 
fault or an EPT violation.

• A memory access does not cause an APIC-access VM exit until after the accessed flags are set in the paging 
structures (including EPT paging structures, if enabled).

• A write access does not cause an APIC-access VM exit until after the dirty flags are set in the appropriate paging 
structure and EPT paging structure (if enabled).

• With respect to all other events, any APIC-access VM exit due to a memory access has the same priority as any 
page fault or EPT violation that the access could cause. (This item applies to other events that the access may 
generate as well as events that may be generated by other accesses by the same operation.)

1. Even when addresses are translated using EPT (see Section 30.3), the determination of whether an APIC-access VM exit occurs 
depends on an access’s physical address, not its guest-physical address. Even when CR0.PG = 0, ordinary memory accesses by soft-
ware use linear addresses; the fact that CR0.PG = 0 means only that the identity translation is used to convert linear addresses to 
physical (or guest-physical) addresses.

2. If EPT is enabled and there is write to a guest-physical address that translates to an address on the APIC-access page that is eligible 
for sub-page write permissions (see Section 30.3.4.1), the processor may treat the write as if the “virtualize APIC accesses” VM-exe-
cution control were 0 (and not apply the treatment specified in this section). For that reason, it is recommended that software not 
configure any guest-physical address that translates to an address on the APIC-access page to be eligible for sub-page write permis-
sions.
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These principles imply, among other things, that an APIC-access VM exit may occur during the execution of a 
repeated string instruction (including INS and OUTS). Suppose, for example, that the first n iterations (n may be 
0) of such an instruction do not access the APIC-access page and that the next iteration does access that page. As 
a result, the first n iterations may complete and be followed by an APIC-access VM exit. The instruction pointer 
saved in the VMCS references the repeated string instruction and the values of the general-purpose registers 
reflect the completion of n iterations.

31.4.2 Virtualizing Reads from the APIC-Access Page
A read access from the APIC-access page causes an APIC-access VM exit if any of the following are true:
• The “use TPR shadow” VM-execution control is 0.
• The access is for an instruction fetch.
• The access is more than 32 bits in size.
• The access is part of an operation for which the processor has already virtualized a write to the APIC-access 

page.
• The access is not entirely contained within the low 4 bytes of a naturally aligned 16-byte region. That is, bits 

3:2 of the access’s address are 0, and the same is true of the address of the highest byte accessed.

If none of the above are true, whether a read access is virtualized depends on the setting of the “APIC-register 
virtualization” and “virtual-interrupt delivery” VM-execution controls:
• A read access is virtualized if its page offset is 080H (task priority) regardless of the settings of the “APIC-

register virtualization” and “virtual-interrupt delivery” VM-execution controls.
• If the “virtual-interrupt delivery” VM-execution control is 1, a read access is virtualized if its page offset is 0B0H 

(end of interrupt) or 300H (interrupt command — low).
• If “APIC-register virtualization” is 1, a read access is virtualized if it is entirely within one the following ranges 

of offsets:

— 020H–023H (local APIC ID);

— 030H–033H (local APIC version);

— 080H–083H (task priority);

— 0B0H–0B3H (end of interrupt);

— 0D0H–0D3H (logical destination);

— 0E0H–0E3H (destination format);

— 0F0H–0F3H (spurious-interrupt vector);

— 100H–103H, 110H–113H, 120H–123H, 130H–133H, 140H–143H, 150H–153H, 160H–163H, or 170H–
173H (in-service);

— 180H–183H, 190H–193H, 1A0H–1A3H, 1B0H–1B3H, 1C0H–1C3H, 1D0H–1D3H, 1E0H–1E3H, or 1F0H–
1F3H (trigger mode);

— 200H–203H, 210H–213H, 220H–223H, 230H–233H, 240H–243H, 250H–253H, 260H–263H, or 270H–
273H (interrupt request);

— 280H–283H (error status);

— 300H–303H or 310H–313H (interrupt command);

— 320H–323H, 330H–333H, 340H–343H, 350H–353H, 360H–363H, or 370H–373H (LVT entries);

— 380H–383H (initial count); or

— 3E0H–3E3H (divide configuration).
In all other cases, the access causes an APIC-access VM exit.

A read access from the APIC-access page that is virtualized returns data from the corresponding page offset on the 
virtual-APIC page.1
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31.4.3 Virtualizing Writes to the APIC-Access Page
Whether a write access to the APIC-access page is virtualized depends on the settings of the VM-execution controls 
and the page offset of the access. Section 31.4.3.1 details when APIC-write virtualization occurs.

Unlike reads, writes to the local APIC have side effects; because of this, virtualization of writes to the APIC-access 
page may require emulation specific to the access’s page offset (which identifies the APIC register being accessed). 
Section 31.4.3.2 describes this APIC-write emulation.

For some page offsets, it is necessary for software to complete the virtualization after a write completes. In these 
cases, the processor causes an APIC-write VM exit to invoke VMM software. Section 31.4.3.3 discusses APIC-
write VM exits.

31.4.3.1  Determining Whether a Write Access is Virtualized
A write access to the APIC-access page causes an APIC-access VM exit if any of the following are true:
• The “use TPR shadow” VM-execution control is 0.
• The access is more than 32 bits in size.
• The access is part of an operation for which the processor has already virtualized a write (with a different page 

offset or a different size) to the APIC-access page.
• The access is not entirely contained within the low 4 bytes of a naturally aligned 16-byte region. That is, bits 

3:2 of the access’s address are 0, and the same is true of the address of the highest byte accessed.

If none of the above are true, whether a write access is virtualized depends on the settings of the “APIC-register 
virtualization”, “virtual-interrupt delivery”, and “IPI virtualization” VM-execution controls:
• A write access is virtualized if its page offset is 080H (task priority) regardless of the settings of the “APIC-

register virtualization” and “virtual-interrupt delivery” VM-execution controls.
• If the “virtual-interrupt delivery” VM-execution control is 1, a write access is virtualized if its page offset is 0B0H 

(end of interrupt) or 300H (interrupt command — low).
• If the “IPI virtualization” VM-execution control is 1, a write access is virtualized if its page offset is 300H.
• If the “APIC-register virtualization” VM-execution control is 1, a write access is virtualized if it is entirely within 

one the following ranges of offsets:

— 020H–023H (local APIC ID);

— 080H–083H (task priority);

— 0B0H–0B3H (end of interrupt);

— 0D0H–0D3H (logical destination);

— 0E0H–0E3H (destination format);

— 0F0H–0F3H (spurious-interrupt vector);

— 280H–283H (error status);

— 300H–303H or 310H–313H (interrupt command);

— 320H–323H, 330H–333H, 340H–343H, 350H–353H, 360H–363H, or 370H–373H (LVT entries);

— 380H–383H (initial count); or

— 3E0H–3E3H (divide configuration).
In all other cases, the access causes an APIC-access VM exit.

1. The memory type used for accesses that read from the virtual-APIC page is reported in bits 53:50 of the IA32_VMX_BASIC MSR 
(see Appendix A.1).
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The processor virtualizes a write access to the APIC-access page by writing data to the corresponding page offset 
on the virtual-APIC page.1 Following this, the processor performs certain actions after completion of the operation 
of which the access was a part.2 APIC-write emulation is described in Section 31.4.3.2.

31.4.3.2  APIC-Write Emulation
If the processor virtualizes a write access to the APIC-access page, it performs additional actions after completion 
of an operation of which the access was a part. These actions are called APIC-write emulation.

The details of APIC-write emulation depend upon the page offset of the virtualized write access:3

• 080H (task priority). The processor clears bytes 3:1 of VTPR and then causes TPR virtualization (Section 
31.1.2).

• 0B0H (end of interrupt). If the “virtual-interrupt delivery” VM-execution control is 1, the processor clears VEOI 
and then causes EOI virtualization (Section 31.1.4); otherwise, the processor causes an APIC-write VM exit 
(Section 31.4.3.3).

• 300H (interrupt command — low). If the “virtual-interrupt delivery” VM-execution control is 1, the processor 
checks the value of VICR_LO to determine whether the following are all true:

— Reserved bits (31:20, 17:16, 13) and bit 12 (delivery status) are all 0.

— Bits 19:18 (destination shorthand) are 01B (self).

— Bit 15 (trigger mode) is 0 (edge).

— Bits 10:8 (delivery mode) are 000B (fixed).

— Bits 7:4 (the upper half of the vector) are not 0000B.
If all of the items above are true, the processor performs self-IPI virtualization using the 8-bit vector in byte 0
of VICR_LO (Section 31.1.5).
If the “virtual-interrupt delivery” VM-execution control is 0, or if any of the items above are false, behavior
depends on the setting of the “IPI virtualization” VM-execution control:

— If the “IPI virtualization” VM-execution control is 1, the processor checks the value of VICR_LO to 
determine whether the following are all true:

• Reserved bits (31:20, 17:16, 13) and bit 12 (delivery status) are all 0.

• Bits 19:18 (destination shorthand) are 00B (no shorthand).

• Bit 15 (trigger mode) is 0 (edge).

• Bit 11 (destination mode) is 0 (physical).

• Bits 10:8 (delivery mode) are 000B (fixed).

If all of the items above are true, the processor performs IPI virtualization using the 8-bit vector in byte 0 
of VICR_LO and the 8-bit APIC ID in VICR_HI[31:24] (Section 31.1.6); otherwise, the processor causes an 
APIC-write VM exit.

— If the “IPI virtualization” VM-execution control is 0, the processor causes an APIC-write VM exit.
• 310H–313H (interrupt command — high). The processor clears bytes 2:0 of VICR_HI. No other virtualization or 

VM exit occurs.
• Any other page offset. The processor causes an APIC-write VM exit.

APIC-write emulation takes priority over system-management interrupts (SMIs), INIT signals, and lower priority 
events. APIC-write emulation is not blocked if RFLAGS.IF = 0 or by the MOV SS, POP SS, or STI instructions.

1. The memory type used for accesses that write to the virtual-APIC page is reported in bits 53:50 of the IA32_VMX_BASIC MSR (see 
Appendix A.1).

2. Recall that, for the purposes of this discussion, an operation is an iteration of a REP-prefixed string instruction, an execution of any 
other instruction, or delivery of an event through the IDT.

3. For any operation, there can be only one page offset for which a write access was virtualized. This is because a write access is not 
virtualized if the processor has already virtualized a write access for the same operation with a different page offset.
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If an operation causes a fault after a write access to the APIC-access page and before APIC-write emulation, and 
that fault is delivered without a VM exit, APIC-write emulation occurs after the fault is delivered and before the fault 
handler can execute. If an operation causes a VM exit (perhaps due to a fault) after a write access to the APIC-
access page and before APIC-write emulation, the APIC-write emulation does not occur.

31.4.3.3  APIC-Write VM Exits
In certain cases, VMM software must be invoked to complete the virtualization of a write access to the APIC-access 
page. In this case, APIC-write emulation causes an APIC-write VM exit. (Section 31.4.3.2 details the cases that 
causes APIC-write VM exits.)

APIC-write VM exits are invoked by APIC-write emulation, and APIC-write emulation occurs after an operation that 
performs a write access to the APIC-access page. Because of this, every APIC-write VM exit is trap-like: it occurs 
after completion of the operation containing the write access that caused the VM exit (for example, the value of 
CS:RIP saved in the guest-state area of the VMCS references the next instruction).

The basic exit reason for an APIC-write VM exit is “APIC write.” The exit qualification is the page offset of the write 
access that led to the VM exit.

As noted in Section 31.5, execution of WRMSR with ECX = 83FH (self-IPI MSR) can lead to an APIC-write VM exit if 
the “virtual-interrupt delivery” VM-execution control is 1; the exit qualification for the APIC-write VM exit is 3F0H. 
As noted in Section 31.1.6 and in Section 31.7, IPI virtualization and execution of SENDUIPI may lead to APIC-write 
VM exits; these VM exits produce an exit qualification of 300H.

31.4.4 Instruction-Specific Considerations
Certain instructions that use linear address may cause page faults even though they do not use those addresses to 
access memory. The APIC-virtualization features may affect these instructions as well:
• CLFLUSH, CLFLUSHOPT. With regard to faulting, the processor operates as if each of these instructions reads 

from the linear address in its source operand. If that address translates to one on the APIC-access page, the 
instruction may cause an APIC-access VM exit. If it does not, it will flush the corresponding cache line on the 
virtual-APIC page instead of the APIC-access page.

• ENTER. With regard to faulting, the processor operates if ENTER writes to the byte referenced by the final value 
of the stack pointer (even though it does not if its size operand is non-zero). If that value translates to an 
address on the APIC-access page, the instruction may cause an APIC-access VM exit. If it does not, it will cause 
the APIC-write emulation appropriate to the address’s page offset.

• MASKMOVQ and MASKMOVDQU. Even if the instruction’s mask is zero, the processor may operate with 
regard to faulting as if MASKMOVQ or MASKMOVDQU writes to memory (the behavior is implementation-
specific). In such a situation, an APIC-access VM exit may occur.

• MONITOR. With regard to faulting, the processor operates as if MONITOR reads from the effective address in 
RAX. If the resulting linear address translates to one on the APIC-access page, the instruction may cause an 
APIC-access VM exit.1 If it does not, it will monitor the corresponding address on the virtual-APIC page instead 
of the APIC-access page.

• PREFETCH. An execution of the PREFETCH instruction that would result in an access to the APIC-access page 
does not cause an APIC-access VM exit. Such an access may prefetch data; if so, it is from the corresponding 
address on the virtual-APIC page.

Virtualization of accesses to the APIC-access page is principally intended for basic instructions such as AND, MOV, 
OR, TEST, XCHG, and XOR. Use of an instruction that normally operates on floating-point, SSE, AVX, or AVX-512 
registers may cause an APIC-access VM exit unconditionally regardless of the page offset it accesses on the APIC-
access page.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For IA-32 processors, this notation refers to the 32-bit forms of those registers (EAX, EIP, 
ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.
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31.4.5 Issues Pertaining to Page Size and TLB Management
The 1-setting of the “virtualize APIC accesses” VM-execution is guaranteed to apply only if translations to the APIC-
access address use a 4-KByte page. The following items provide details:
• If EPT is not in use, any linear address that translates to an address on the APIC-access page should use a 4-

KByte page. Any access to a linear address that translates to the APIC-access page using a larger page may 
operate as if the “virtualize APIC accesses” VM-execution control were 0.

• If EPT is in use, any guest-physical address that translates to an address on the APIC-access page should use 
a 4-KByte page. Any access to a linear address that translates to a guest-physical address that in turn 
translates to the APIC-access page using a larger page may operate as if the “virtualize APIC accesses” VM-
execution control were 0. (This is true also for guest-physical accesses to the APIC-access page; see Section 
31.4.6.1.)

In addition, software should perform appropriate TLB invalidation when making changes that may affect APIC-
virtualization. The specifics depend on whether VPIDs or EPT is being used:
• VPIDs being used but EPT not being used. Suppose that there is a VPID that has been used before and that 

software has since made either of the following changes: (1) set the “virtualize APIC accesses” VM-execution 
control when it had previously been 0; or (2) changed the paging structures so that some linear address 
translates to the APIC-access address when it previously did not. In that case, software should execute 
INVVPID (see “INVVPID— Invalidate Translations Based on VPID” in Section 32.3) before performing on the 
same logical processor and with the same VPID.1

• EPT being used. Suppose that there is an EPTP value that has been used before and that software has since 
made either of the following changes: (1) set the “virtualize APIC accesses” VM-execution control when it had 
previously been 0; or (2) changed the EPT paging structures so that some guest-physical address translates to 
the APIC-access address when it previously did not. In that case, software should execute INVEPT (see 
“INVEPT— Invalidate Translations Derived from EPT” in Section 32.3) before performing on the same logical 
processor and with the same EPTP value.2

• Neither VPIDs nor EPT being used. No invalidation is required.

Failure to perform the appropriate TLB invalidation may result in the logical processor operating as if the “virtualize 
APIC accesses” VM-execution control were 0 in responses to accesses to the affected address. (No invalidation is 
necessary if neither VPIDs nor EPT is being used.)

31.4.6 APIC Accesses Not Directly Resulting From Linear Addresses
Section 31.4 has described the treatment of accesses that use linear addresses that translate to addresses on the 
APIC-access page. This section considers memory accesses that do not result directly from linear addresses.
• An access is called a guest-physical access if (1) CR0.PG = 1;3 (2) the “enable EPT” VM-execution control is 

1;4 (3) the access’s physical address is the result of an EPT translation; and (4) either (a) the access was not 
generated by a linear address; or (b) the access’s guest-physical address is not the translation of the access’s 
linear address. Section 31.4.6.1 discusses the treatment of guest-physical accesses to the APIC-access page.

• An access is called a physical access if (1) either (a) the “enable EPT” VM-execution control is 0; or (b) the 
access’s physical address is not the result of a translation through the EPT paging structures; and (2) either 
(a) the access is not generated by a linear address; or (b) the access’s physical address is not the translation 
of its linear address. Section 31.4.6.2 discusses the treatment of physical accesses to the APIC-access page.

1. INVVPID should use either (1) the all-contexts INVVPID type; (2) the single-context INVVPID type with the VPID in the INVVPID 
descriptor; or (3)  the individual-address INVVPID type with the linear address and the VPID in the INVVPID descriptor.

2. INVEPT should use either (1) the global INVEPT type; or (2) the single-context INVEPT type with the EPTP value in the INVEPT 
descriptor.

3. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, CR0.PG must be 1 unless the “unre-
stricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

4. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls 
is 0, VMX non-root operation functions as if the “enable EPT” VM-execution control were 0. See Section 26.6.2.
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31.4.6.1  Guest-Physical Accesses to the APIC-Access Page
Guest-physical accesses include the following when guest-physical addresses are being translated using EPT:
• Reads from the guest paging structures when translating a linear address (such an access uses a guest-physical 

address that is not the translation of that linear address).
• Loads of the page-directory-pointer-table entries by MOV to CR when the logical processor is using (or that 

causes the logical processor to use) PAE paging (see Section 5.4).
• Updates to the accessed and dirty flags in the guest paging structures when using a linear address (such an 

access uses a guest-physical address that is not the translation of that linear address).
• Memory accesses by Intel Processor Trace when the “Intel PT uses guest physical addresses” VM-execution 

control is 1 (see Section 27.5.4).

Every guest-physical access using a guest-physical address that translates to an address on the APIC-access page 
causes an APIC-access VM exit. Such accesses are never virtualized regardless of the page offset.

The following items specify the priority relative to other events of APIC-access VM exits caused by guest-physical 
accesses to the APIC-access page.
• The priority of an APIC-access VM exit caused by a guest-physical access to memory is below that of any EPT 

violation that that access may incur. That is, a guest-physical access does not cause an APIC-access VM exit if 
it would cause an EPT violation.

• With respect to all other events, any APIC-access VM exit caused by a guest-physical access has the same 
priority as any EPT violation that the guest-physical access could cause.

31.4.6.2  Physical Accesses to the APIC-Access Page
Physical accesses include the following:
• If the “enable EPT” VM-execution control is 0:

— Reads from the paging structures when translating a linear address.

— Loads of the page-directory-pointer-table entries by MOV to CR when the logical processor is using (or that 
causes the logical processor to use) PAE paging (see Section 5.4).

— Updates to the accessed and dirty flags in the paging structures.
• If the “enable EPT” VM-execution control is 1, accesses to the EPT paging structures (including updates to the 

accessed and dirty flags for EPT).
• Any of the following accesses made by the processor to support VMX non-root operation:

— Accesses to the VMCS region.

— Accesses to data structures referenced (directly or indirectly) by physical addresses in VM-execution control 
fields in the VMCS. These include the I/O bitmaps, the MSR bitmaps, and the virtual-APIC page.

• Accesses that effect transitions into and out of SMM.1 These include the following:

— Accesses to SMRAM during SMI delivery and during execution of RSM.

— Accesses during SMM VM exits (including accesses to MSEG) and during VM entries that return from SMM.

A physical access to the APIC-access page may or may not cause an APIC-access VM exit. If it does not cause an 
APIC-access VM exit, it may access the APIC-access page or the virtual-APIC page. Physical write accesses to the 
APIC-access page may or may not cause APIC-write emulation or APIC-write VM exits.

The priority of an APIC-access VM exit caused by physical access is not defined relative to other events that the 
access may cause.

It is recommended that software not set the APIC-access address to any of the addresses used by physical memory 
accesses (identified above). For example, it should not set the APIC-access address to the physical address of any 
of the active paging structures if the “enable EPT” VM-execution control is 0.

1. Technically, these accesses do not occur in VMX non-root operation. They are included here for clarity.
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31.5 VIRTUALIZING MSR-BASED APIC ACCESSES
When the local APIC is in x2APIC mode, software accesses the local APIC’s control registers using the MSR inter-
face. Specifically, software uses the RDMSR and WRMSR instructions, setting ECX (identifying the MSR being 
accessed) to values in the range 800H–8FFH (see Section 12.12, “Extended XAPIC (x2APIC)”). This section 
describes how these accesses can be virtualized.

A virtual-machine monitor can virtualize these MSR-based APIC accesses by configuring the MSR bitmaps (see 
Section 26.6.9) to ensure that the accesses cause VM exits (see Section 27.1.3). Alternatively, there are methods 
for virtualizing some MSR-based APIC accesses without VM exits.

Normally, an execution of RDMSR or WRMSR that does not fault or cause a VM exit accesses the MSR indicated in 
ECX. However, such an execution treats some values of ECX in the range 800H–8FFH specially if the “virtualize 
x2APIC mode” VM-execution control is 1. The following items provide details:
• RDMSR. The instruction’s behavior depends on the setting of the “APIC-register virtualization” VM-execution 

control.

— If the “APIC-register virtualization” VM-execution control is 0, behavior depends upon the value of ECX.

• If ECX contains 808H (indicating the TPR MSR), the instruction reads the 8 bytes from offset 080H on 
the virtual-APIC page (VTPR and the 4 bytes above it) into EDX:EAX. This occurs even if the local APIC 
is not in x2APIC mode (no general-protection fault occurs because the local APIC is not x2APIC mode).

• If ECX contains any other value in the range 800H–8FFH, the instruction operates normally. If the local 
APIC is in x2APIC mode and ECX indicates a readable APIC register, EDX and EAX are loaded with the 
value of that register. If the local APIC is not in x2APIC mode or ECX does not indicate a readable APIC 
register, a general-protection fault occurs.

— If “APIC-register virtualization” is 1 and ECX contains a value in the range 800H–8FFH, the instruction reads 
the 8 bytes from offset X on the virtual-APIC page into EDX:EAX, where X = (ECX & FFH) « 4. This occurs 
even if the local APIC is not in x2APIC mode (no general-protection fault occurs because the local APIC is 
not in x2APIC mode).

• WRMSR. The instruction’s behavior depends on the value of ECX and the setting of the “virtual-interrupt 
delivery” and “IPI virtualization” VM-execution controls.
Special processing applies in the following cases: (1) ECX contains 808H (indicating the TPR MSR); (2) ECX
contains 80BH (indicating the EOI MSR) and the “virtual-interrupt delivery” VM-execution control is 1;
(3) ECX contains 83FH (indicating the self-IPI MSR) and the “virtual-interrupt delivery” VM-execution control
is 1; and (4) ECX contains 830H (indicating the ICR MSR) and the “IPI virtualization” VM-execution control is
1.
If special processing applies, no general-protection exception is produced due to the fact that the local APIC is
in xAPIC mode. However, WRMSR does perform the normal reserved-bit checking:

— If ECX contains 808H or 83FH, a general-protection fault occurs if either EDX or EAX[31:8] is non-zero.

— If ECX contains 80BH, a general-protection fault occurs if either EDX or EAX is non-zero.

— If ECX contains 830H, a general-protection fault occurs if any of bits 31:20, 17:16, or 13 of EAX is non-zero.
If there is no fault, WRMSR stores EDX:EAX at offset X on the virtual-APIC page, where X = (ECX & FFH) « 4.
Following this, the processor performs an operation depending on the value of ECX:

— If ECX contains 808H, the processor performs TPR virtualization (see Section 31.1.2).

— If ECX contains 80BH, the processor performs EOI virtualization (see Section 31.1.4).

— If ECX contains 83FH, the processor then checks the value of EAX[7:4] and proceeds as follows:

• If the value is non-zero, the logical processor performs self-IPI virtualization with the 8-bit vector in 
EAX[7:0] (see Section 31.1.5).

• If the value is zero, the logical processor causes an APIC-write VM exit as if there had been a write 
access to page offset 3F0H on the APIC-access page (see Section 31.4.3.3).

— If ECX contains 830H, the processor then checks the value of VICR to determine whether the following are 
all true:

• Bits 19:18 (destination shorthand) are 00B (no shorthand).
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• Bit 15 (trigger mode) is 0 (edge).

• Bit 12 (unused) is 0.

• Bit 11 (destination mode) is 0 (physical).

• Bits 10:8 (delivery mode) are 000B (fixed).

If all of the items above are true, the processor performs IPI virtualization using the 8-bit vector in byte 0 
of VICR and the 32-bit APIC ID in VICR[63:32] (see Section 31.1.6). Otherwise, the logical processor 
causes an APIC-write VM exit (see Section 31.4.3.3).

If special processing does not apply, the instruction operates normally. If the local APIC is in x2APIC mode
and ECX indicates a writable APIC register, the value in EDX:EAX is written to that register. If the local APIC is
not in x2APIC mode or ECX does not indicate a writable APIC register, a general-protection fault occurs.

31.6 POSTED-INTERRUPT PROCESSING
Posted-interrupt processing is a feature by which a processor processes the virtual interrupts by recording them as 
pending on the virtual-APIC page.

Posted-interrupt processing is enabled by setting the “process posted interrupts” VM-execution control. The 
processing is performed in response to the arrival of an interrupt with the posted-interrupt notification vector. 
In response to such an interrupt, the processor processes virtual interrupts recorded in a data structure called a 
posted-interrupt descriptor (PID). The posted-interrupt notification vector and the address of the PID are fields 
in the VMCS; see Section 26.6.8.

If the “process posted interrupts” VM-execution control is 1, a logical processor uses a 64-byte posted-interrupt 
descriptor located at the posted-interrupt descriptor address. Table 31-2 gives the format of a PID:1

Use of the PID differs from that of other data structures that are referenced by pointers in a VMCS. There is a 
general requirement that software ensure that each such data structure is modified only when no logical processor 
with a current VMCS that references it is in VMX non-root operation. That requirement does not apply to the 
posted-interrupt descriptor. There is a requirement, however, that such modifications be done using locked read-
modify-write instructions or other atomic operations.

If the “external-interrupt exiting” VM-execution control is 1, any unmasked external interrupt causes a VM exit (see 
Section 27.2). If the “process posted interrupts” VM-execution control is also 1, this behavior is changed and the 
processor handles an external interrupt as follows:2

1. The local APIC is acknowledged; this provides the processor core with an interrupt vector, called here the 
physical vector.

2. If the physical vector equals the posted-interrupt notification vector, the logical processor continues to the next 
step. Otherwise, a VM exit occurs as it would normally due to an external interrupt; the vector is saved in the 
VM-exit interruption-information field.

Table 31-2.  Format of Posted-Interrupt Descriptor (PID)

Bit
Position(s)

Name Description

255:0 Posted-interrupt requests 
(PIR)

One bit for each interrupt vector. There is a posted-interrupt request for a vector if 
the corresponding bit is 1.

256 Outstanding notification (ON) If this bit is set, there is a notification outstanding for one or more posted interrupts 
in bits 255:0.

511:257 Reserved or used for virtual-
interrupt posting

Some of these bits are used by virtual-interrupt posting (Section 31.1.6.1). Posted-
interrupt processing does not use or modify these bits.

1. Table 31-1 gives the same format; it is repeated here for the reader, omitting fields that are not used by posted-interrupt process-
ing.

2. VM entry ensures that the “process posted interrupts” VM-execution control is 1 only if the “external-interrupt exiting” VM-execu-
tion control is also 1. SeeSection 28.2.1.1.
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3. The processor clears the outstanding-notification bit in the posted-interrupt descriptor. This is done atomically 
so as to leave the remainder of the descriptor unmodified (e.g., with a locked AND operation).

4. The processor writes zero to the EOI register in the local APIC; this dismisses the interrupt with the posted-
interrupt notification vector from the local APIC.

5. The logical processor performs a logical-OR of PIR into VIRR and clears PIR. No other agent can read or write a 
PIR bit (or group of bits) between the time it is read (to determine what to OR into VIRR) and when it is cleared.

6. The logical processor sets RVI to be the maximum of the old value of RVI and the highest index of all bits that 
were set in PIR; if no bit was set in PIR, RVI is left unmodified.

7. The logical processor evaluates pending virtual interrupts as described in Section 31.2.1.

The logical processor performs the steps above in an uninterruptible manner. If step #7 leads to recognition of a 
virtual interrupt, the processor may deliver that interrupt immediately.

Steps #1 to #7 above occur when the interrupt controller delivers an unmasked external interrupt to the CPU core. 
The following items consider certain cases of interrupt delivery:
• Interrupt delivery can occur between iterations of a REP-prefixed instruction (after at least one iteration has 

completed but before all iterations have completed). If this occurs, the following items characterize processor 
state after posted-interrupt processing completes and before guest execution resumes:

— RIP references the REP-prefixed instruction;

— RCX, RSI, and RDI are updated to reflect the iterations completed; and

— RFLAGS.RF = 1.
• Interrupt delivery can occur when the logical processor is in the active, HLT, or MWAIT states. If the logical 

processor had been in the active or MWAIT state before the arrival of the interrupt, it is in the active state 
following completion of step #7; if it had been in the HLT state, it returns to the HLT state after step #7 (if a 
pending virtual interrupt was recognized, the logical processor may immediately wake from the HLT state).

• Interrupt delivery can occur while the logical processor is in enclave mode. If the logical processor had been in 
enclave mode before the arrival of the interrupt, an Asynchronous Enclave Exit (AEX) may occur before the 
steps #1 to #7 (see Chapter 38, “Enclave Exiting Events”). If no AEX occurs before step #1 and a VM exit 
occurs at step #2, an AEX occurs before the VM exit is delivered.

31.7 VIRTUALIZING SENDUIPI
The user-interrupt feature includes the SENDUIPI instruction that software operating with CPL = 3 can use to send 
user interrupts to another software thread (“user IPIs”). The SENDUIPI instruction has the following high-level 
operation:

read selected entry from user-interrupt target table;
use address in entry to read the referenced user posted-interrupt descriptor (UPID);
update certain fields in UPID;
if necessary, send ordinary IPI indicated in UPID’s notification information;

The last step uses two fields in the UPID: an 8-bit notification vector (UPID.NV) and a 32-bit notification destination 
(an APIC ID, UPID.NDST). Outside of VMX non-root operation, the processor implements the last step as follows:
• If the local APIC is in xAPIC mode, it writes UPID.NDST[15:8] to ICR_HI[31:24] (offset 310H from 

IA32_APIC_BASE) and then writes UPID.NV to ICR_LO (offset 300H).
• If the local APIC is in x2APIC mode, it performs the control-register write that would be done by an execution 

of WRMSR with ECX = 310H (ICR), EAX = UPID.NV, and EDX = UPID.NDST.
In VMX non-root operation, implementation of the step depends on the settings of the “use TPR shadow,” “virtu-
alize APIC accesses,” and “IPI virtualization” VM-execution controls:1

1. The setting of the “virtualize x2APIC mode” VM-execution control does not affect this operation.
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1. If the “use TPR shadow” VM-execution control is 0, the behavior is not modified: the logical processor sends the 
specified IPI by writing to the local APIC’s ICR as specified above (based on the current mode of the local APIC).

2. If the “use TPR shadow” VM-execution control is 1 and the “virtualize APIC accesses” VM-execution control is 0, 
the logical processor virtualizes the sending of an x2APIC-mode IPI with the following steps:

a. The 64-bit value Z is written to offset 300H on the virtual-APIC page (VICR), where Z[7:0] = UPID.NV (the 
8-bit virtual vector), Z[63:32] = UPID.NDST (the 32-bit virtual APIC ID) and Z[31:8] = 000000H 
(indicating a physically addressed fixed-mode IPI).

b. If the “IPI virtualization” VM-execution control is 1, IPI virtualization (Section 31.1.6) is performed using 
the vector UPID.NV and the 32-bit virtual APIC ID UPID.NDST.

3. If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are both 1, the logical processor 
virtualizes the sending of an xAPIC-mode IPI by performing the following steps:

a. The 32-bit value X is written to offset 310H on the virtual-APIC page (VICR_HI), where X[31:24] = 
UPID.NDST[15:8] (the 8-bit virtual APIC ID) and X[23:0] = 000000H.1

b. The 32-bit value Y is written to offset 300H on the virtual-APIC page (VICR_LO), where Y[7:0] = UPID.NV 
(the 8-bit virtual vector) and Y[31:8] = 000000H (indicating a physically addressed fixed-mode IPI).

c. If the “IPI virtualization” VM-execution control is 1, IPI virtualization is performed using the vector UPID.NV 
and the APIC ID UPID.NDST[15:8]. IPI virtualization will use only the 8-bit APIC ID from bits 15:8 of the 
UPID’s destination field (the 8-bit value written earlier to bits 31:24 of VICR_HI).

4. If the “use TPR shadow” VM-execution control is 1 and the “IPI virtualization” VM-execution control is 0, an 
APIC-write VM exit occurs as if there had been a write access to page offset 300H on the APIC-access page (see 
Section 31.4.3.3).

1. For xAPIC mode (which is virtualized if the “virtualize APIC accesses” VM-execution control is 1), the destination APIC ID is in byte 1 
(not byte 0) of the UPID’s 4-byte NDST field.
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CHAPTER 32
VMX INSTRUCTION REFERENCE

32.1 OVERVIEW
This chapter describes the virtual-machine extensions (VMX) for the Intel 64 and IA-32 architectures. VMX is 
intended to support virtualization of processor hardware and a system software layer acting as a host to multiple 
guest software environments. The virtual-machine extensions (VMX) includes five instructions that manage the 
virtual-machine control structure (VMCS), four instructions that manage VMX operation, two TLB-management 
instructions, and two instructions for use by guest software. Additional details of VMX are described in Chapter 25 
through Chapter 31. 

The behavior of the VMCS-maintenance instructions is summarized below:
• VMPTRLD — This instruction takes a single 64-bit source operand that is in memory. It makes the referenced 

VMCS active and current, loading the current-VMCS pointer with this operand and establishes the current VMCS 
based on the contents of VMCS-data area in the referenced VMCS region. Because this makes the referenced 
VMCS active, a logical processor may start maintaining on the processor some of the VMCS data for the VMCS.

• VMPTRST — This instruction takes a single 64-bit destination operand that is in memory. The current-VMCS 
pointer is stored into the destination operand.

• VMCLEAR — This instruction takes a single 64-bit operand that is in memory. The instruction sets the launch 
state of the VMCS referenced by the operand to “clear”, renders that VMCS inactive, and ensures that data for 
the VMCS have been written to the VMCS-data area in the referenced VMCS region. If the operand is the same 
as the current-VMCS pointer, that pointer is made invalid.

• VMREAD — This instruction reads a component from a VMCS (the encoding of that field is given in a register 
operand) and stores it into a destination operand that may be a register or in memory.

• VMWRITE — This instruction writes a component to a VMCS (the encoding of that field is given in a register 
operand) from a source operand that may be a register or in memory.

The behavior of the VMX management instructions is summarized below:
• VMLAUNCH — This instruction launches a virtual machine managed by the VMCS. A VM entry occurs, trans-

ferring control to the VM.
• VMRESUME — This instruction resumes a virtual machine managed by the VMCS. A VM entry occurs, trans-

ferring control to the VM.
• VMXOFF — This instruction causes the processor to leave VMX operation.
• VMXON — This instruction takes a single 64-bit source operand that is in memory. It causes a logical processor 

to enter VMX root operation and to use the memory referenced by the operand to support VMX operation.

The behavior of the VMX-specific TLB-management instructions is summarized below:
• INVEPT — This instruction invalidates entries in the TLBs and paging-structure caches that were derived from 

extended page tables (EPT).
• INVVPID — This instruction invalidates entries in the TLBs and paging-structure caches based on a Virtual-

Processor Identifier (VPID).

None of the instructions above can be executed in compatibility mode; they generate invalid-opcode exceptions if 
executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:
• VMCALL — This instruction allows software in VMX non-root operation to call the VMM for service. A VM exit 

occurs, transferring control to the VMM.
• VMFUNC — This instruction allows software in VMX non-root operation to invoke a VM function (processor 

functionality enabled and configured by software in VMX root operation) without a VM exit.
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32.2 CONVENTIONS
The operation sections for the VMX instructions in Section 32.3 use the pseudo-function VMexit, which indicates 
that the logical processor performs a VM exit.

The operation sections also use the pseudo-functions VMsucceed, VMfail, VMfailInvalid, and VMfailValid. These 
pseudo-functions signal instruction success or failure by setting or clearing bits in RFLAGS and, in some cases, by 
writing the VM-instruction error field. The following pseudocode fragments detail these functions:

VMsucceed:
CF := 0;
PF := 0;
AF := 0;
ZF := 0;
SF := 0;
OF := 0;

VMfail(ErrorNumber):
IF VMCS pointer is valid

THEN VMfailValid(ErrorNumber);
ELSE VMfailInvalid;

FI;

VMfailInvalid:
CF := 1;
PF := 0;
AF := 0;
ZF := 0;
SF := 0;
OF := 0;

VMfailValid(ErrorNumber):// executed only if there is a current VMCS
CF := 0;
PF := 0;
AF := 0;
ZF := 1;
SF := 0;
OF := 0;
Set the VM-instruction error field to ErrorNumber;

The different VM-instruction error numbers are enumerated in Section 32.4, “VM Instruction Error Numbers.”

32.3 VMX INSTRUCTIONS
This section provides detailed descriptions of the VMX instructions.
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INVEPT— Invalidate Translations Derived from EPT

Instruction Operand Encoding

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-structure caches that were derived 
from extended page tables (EPT). (See Chapter 30, “VMX Support for Address Translation.”) Invalidation is based 
on the INVEPT type specified in the register operand and the INVEPT descriptor specified in the memory 
operand.

Outside IA-32e mode, the register operand is always 32 bits, regardless of the value of CS.D; in 64-bit mode, the 
register operand has 64 bits (the instruction cannot be executed in compatibility mode).

The INVEPT types supported by a logical processors are reported in the IA32_VMX_EPT_VPID_CAP MSR (see 
Appendix A, “VMX Capability Reporting Facility”). There are two INVEPT types currently defined:
• Single-context invalidation. If the INVEPT type is 1, the logical processor invalidates all mappings associated 

with bits 51:12 of the EPT pointer (EPTP) specified in the INVEPT descriptor. It may invalidate other mappings 
as well.

• Global invalidation: If the INVEPT type is 2, the logical processor invalidates mappings associated with all 
EPTPs.

If an unsupported INVEPT type is specified, the instruction fails.

INVEPT invalidates all the specified mappings for the indicated EPTP(s) regardless of the VPID and PCID values with 
which those mappings may be associated.

The INVEPT descriptor comprises 128 bits and contains a 64-bit EPTP value in bits 63:0 (see Figure 32-1).

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

Opcode/ 
Instruction

Op/En Description

66 0F 38 80

INVEPT r64, m128

RM Invalidates EPT-derived entries in the TLBs and paging-structure caches (in 64-bit mode).

66 0F 38 80

INVEPT r32, m128

RM Invalidates EPT-derived entries in the TLBs and paging-structure caches (outside 64-bit 
mode).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA

Figure 32-1.  INVEPT Descriptor

127 64 63 0
Reserved (must be zero) EPT pointer (EPTP)
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INVEPT_TYPE := value of register operand;
IF IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support INVEPT_TYPE

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVEPT_TYPE must be 1 or 2

INVEPT_DESC := value of memory operand;
EPTP := INVEPT_DESC[63:0];
CASE INVEPT_TYPE OF

1: // single-context invalidation
IF VM entry with the “enable EPT“ VM execution control set to 1
would fail due to the EPTP value

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate mappings associated with EPTP[51:12];
VMsucceed;

FI;
BREAK;

2: // global invalidation
Invalidate mappings associated with all EPTPs;
VMsucceed;
BREAK;

ESAC;
FI;

FI;

Flags Affected

See the operation section and Section 32.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If not in VMX operation.

If the logical processor does not support EPT (IA32_VMX_PROCBASED_CTLS2[33]=0).
If the logical processor supports EPT (IA32_VMX_PROCBASED_CTLS2[33]=1) but does not 
support the INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).

Real-Address Mode Exceptions
#UD The INVEPT instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The INVEPT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The INVEPT instruction is not recognized in compatibility mode.
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64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand is in the CS, DS, ES, FS, or GS segments and the memory address is 
in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand is in the SS segment and the memory address is in a non-canonical 

form.
#UD If not in VMX operation.

If the logical processor does not support EPT (IA32_VMX_PROCBASED_CTLS2[33]=0).
If the logical processor supports EPT (IA32_VMX_PROCBASED_CTLS2[33]=1) but does not 
support the INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).
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INVVPID— Invalidate Translations Based on VPID

Instruction Operand Encoding

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-structure caches based on virtual-
processor identifier (VPID). (See Chapter 30, “VMX Support for Address Translation.”) Invalidation is based on 
the INVVPID type specified in the register operand and the INVVPID descriptor specified in the memory 
operand.

Outside IA-32e mode, the register operand is always 32 bits, regardless of the value of CS.D; in 64-bit mode, the 
register operand has 64 bits (the instruction cannot be executed in compatibility mode).

The INVVPID types supported by a logical processors are reported in the IA32_VMX_EPT_VPID_CAP MSR (see 
Appendix A, “VMX Capability Reporting Facility”). There are four INVVPID types currently defined:
• Individual-address invalidation: If the INVVPID type is 0, the logical processor invalidates mappings for the 

linear address and VPID specified in the INVVPID descriptor. In some cases, it may invalidate mappings for 
other linear addresses (or other VPIDs) as well.

• Single-context invalidation: If the INVVPID type is 1, the logical processor invalidates all mappings tagged with 
the VPID specified in the INVVPID descriptor. In some cases, it may invalidate mappings for other VPIDs as 
well.

• All-contexts invalidation: If the INVVPID type is 2, the logical processor invalidates all mappings tagged with all 
VPIDs except VPID 0000H. In some cases, it may invalidate translations with VPID 0000H as well.

• Single-context invalidation, retaining global translations: If the INVVPID type is 3, the logical processor 
invalidates all mappings tagged with the VPID specified in the INVVPID descriptor except global translations. In 
some cases, it may invalidate global translations (and mappings with other VPIDs) as well. See the “Caching 
Translation Information” section in Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A, for information about global translations.

If an unsupported INVVPID type is specified, the instruction fails.

INVVPID invalidates all the specified mappings for the indicated VPID(s) regardless of the EPTP and PCID values 
with which those mappings may be associated.

The INVVPID descriptor comprises 128 bits and consists of a VPID and a linear address as shown in Figure 32-2.

Opcode/
Instruction

Op/En Description

66 0F 38 81

INVVPID r64, m128

RM Invalidates entries in the TLBs and paging-structure caches based on VPID (in 64-bit 
mode).

66 0F 38 81

INVVPID r32, m128

RM Invalidates entries in the TLBs and paging-structure caches based on VPID (outside 64-bit 
mode).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA

Figure 32-2.  INVVPID Descriptor

127 64 63 01516
Reserved (must be zero)Linear Address VPID
INVVPID— Invalidate Translations Based on VPID32-6 Vol. 3C



VMX INSTRUCTION REFERENCE
Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

INVVPID_TYPE := value of register operand;
IF IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support
INVVPID_TYPE

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVVPID_TYPE must be in the range 0–3

INVVPID_DESC := value of memory operand;
IF INVVPID_DESC[63:16] ≠ 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

CASE INVVPID_TYPE OF
0: // individual-address invalidation

VPID := INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

GL_ADDR := INVVPID_DESC[127:64];
IF (GL_ADDR is not in a canonical form)

THEN
VMfail(Invalid operand to INVEPT/INVVPID);

ELSE
Invalidate mappings for GL_ADDR tagged with VPID;
VMsucceed;

FI;
FI;
BREAK;

1: // single-context invalidation
VPID := INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate all mappings tagged with VPID;
VMsucceed;

FI;
BREAK;

2: // all-context invalidation
Invalidate all mappings tagged with all non-zero VPIDs;
VMsucceed;
BREAK;

3: // single-context invalidation retaining globals
VPID := INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate all mappings tagged with VPID except global translations;
VMsucceed;
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FI;
BREAK;

ESAC;
FI;

FI;
FI;

Flags Affected

See the operation section and Section 32.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If not in VMX operation.

If the logical processor does not support VPIDs (IA32_VMX_PROCBASED_CTLS2[37]=0).
If the logical processor supports VPIDs (IA32_VMX_PROCBASED_CTLS2[37]=1) but does not 
support the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).

Real-Address Mode Exceptions
#UD The INVVPID instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The INVVPID instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The INVVPID instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand is in the CS, DS, ES, FS, or GS segments and the memory address is 
in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory destination operand is in the SS segment and the memory address is in a non-

canonical form.
#UD If not in VMX operation.

If the logical processor does not support VPIDs (IA32_VMX_PROCBASED_CTLS2[37]=0).
If the logical processor supports VPIDs (IA32_VMX_PROCBASED_CTLS2[37]=1) but does not 
support the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).
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VMCALL—Call to VM Monitor

Instruction Operand Encoding

Description

This instruction allows guest software can make a call for service into an underlying VM monitor. The details of the 
programming interface for such calls are VMM-specific; this instruction does nothing more than cause a VM exit, 
registering the appropriate exit reason.

Use of this instruction in VMX root operation invokes an SMM monitor (see Section 33.15.2). This invocation will acti-
vate the dual-monitor treatment of system-management interrupts (SMIs) and system-management mode (SMM) 
if it is not already active (see Section 33.15.6).

Operation

IF not in VMX operation
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF CPL > 0
THEN #GP(0);

ELSIF in SMM or the logical processor does not support the dual-monitor treatment of SMIs and SMM or the valid bit in the IA32_SM-
M_MONITOR_CTL MSR is clear

THEN VMfail (VMCALL executed in VMX root operation);
ELSIF dual-monitor treatment of SMIs and SMM is active

THEN perform an SMM VM exit (see Section 33.15.2);
ELSIF current-VMCS pointer is not valid

THEN VMfailInvalid;
ELSIF launch state of current VMCS is not clear

THEN VMfailValid(VMCALL with non-clear VMCS);
ELSIF VM-exit control fields are not valid (see Section 33.15.6.1)

THEN VMfailValid (VMCALL with invalid VM-exit control fields);
ELSE

enter SMM;
read revision identifier in MSEG;
IF revision identifier does not match that supported by processor

THEN
leave SMM;
VMfailValid(VMCALL with incorrect MSEG revision identifier);

ELSE
read SMM-monitor features field in MSEG (see Section 33.15.6.1);
IF features field is invalid

THEN
leave SMM;

Opcode/
Instruction

Op/En Description

0F 01 C1

VMCALL

ZO Call to VM monitor by causing VM exit.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA
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VMfailValid(VMCALL with invalid SMM-monitor features);
ELSE activate dual-monitor treatment of SMIs and SMM (see Section 33.15.6);

FI;
FI;

FI;

Flags Affected
See the operation section and Section 32.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the logical processor is in VMX root operation. 
#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD If executed outside VMX operation.

Virtual-8086 Mode Exceptions
#UD If executed outside VMX non-root operation.

Compatibility Mode Exceptions
#UD If executed outside VMX non-root operation.

64-Bit Mode Exceptions
#UD If executed outside VMX operation.
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VMCLEAR—Clear Virtual-Machine Control Structure

Instruction Operand Encoding

Description

This instruction applies to the VMCS whose VMCS region resides at the physical address contained in the instruction 
operand. The instruction ensures that VMCS data for that VMCS (some of these data may be currently maintained 
on the processor) are copied to the VMCS region in memory. It also initializes parts of the VMCS region (for 
example, it sets the launch state of that VMCS to clear). See Chapter 26, “Virtual Machine Control Structures.” 

The operand of this instruction is always 64 bits and is always in memory. If the operand is the current-VMCS 
pointer, then that pointer is made invalid (set to FFFFFFFF_FFFFFFFFH).

Note that the VMCLEAR instruction might not explicitly write any VMCS data to memory; the data may be already 
resident in memory before the VMCLEAR is executed.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

addr := contents of 64-bit in-memory operand;
IF addr is not 4KB-aligned OR 
addr sets any bits beyond the physical-address width1

THEN VMfail(VMCLEAR with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMCLEAR with VMXON pointer);
ELSE

ensure that data for VMCS referenced by the operand is in memory;
initialize implementation-specific data in VMCS region;
launch state of VMCS referenced by the operand := “clear”
IF operand addr = current-VMCS pointer

THEN current-VMCS pointer := FFFFFFFF_FFFFFFFFH;
FI;
VMsucceed;

FI;
FI;

Flags Affected
See the operation section and Section 32.2.

Opcode/
Instruction

Op/En Description

66 0F C7 /6

VMCLEAR m64

M Copy VMCS data to VMCS region in memory.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

1. If IA32_VMX_BASIC[48] is read as 1, VMfail occurs if addr sets any bits in the range 63:32; see Appendix A.1.
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Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions
#UD The VMCLEAR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMCLEAR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMCLEAR instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments and the memory address is in 
a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the source operand is in the SS segment and the memory address is in a non-canonical 

form.
#UD If operand is a register.

If not in VMX operation.
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VMFUNC—Invoke VM function

Instruction Operand Encoding

Description

This instruction allows software in VMX non-root operation to invoke a VM function, which is processor functionality 
enabled and configured by software in VMX root operation. The value of EAX selects the specific VM function being 
invoked.

The behavior of each VM function (including any additional fault checking) is specified in Section 27.5.6, 
“VM Functions.”

Operation

Perform functionality of the VM function specified in EAX;

Flags Affected
Depends on the VM function specified in EAX. See Section 27.5.6, “VM Functions.”

Protected Mode Exceptions (not including those defined by specific VM functions)
#UD If executed outside VMX non-root operation.

If “enable VM functions” VM-execution control is 0.
If EAX ≥ 64.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode/
Instruction

Op/En Description

NP 0F 01 D4

VMFUNC

ZO Invoke VM function specified in EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA
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VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

Instruction Operand Encoding

Description

Effects a VM entry managed by the current VMCS.
• VMLAUNCH fails if the launch state of current VMCS is not “clear”. If the instruction is successful, it sets the 

launch state to “launched.” 
• VMRESUME fails if the launch state of the current VMCS is not “launched.”

If VM entry is attempted, the logical processor performs a series of consistency checks as detailed in Chapter 28, 
“VM Entries.” Failure to pass checks on the VMX controls or on the host-state area passes control to the instruction 
following the VMLAUNCH or VMRESUME instruction. If these pass but checks on the guest-state area fail, the logical 
processor loads state from the host-state area of the VMCS, passing control to the instruction referenced by the RIP 
field in the host-state area.

VM entry is not allowed when events are blocked by MOV SS or POP SS. Neither VMLAUNCH nor VMRESUME should 
be used immediately after either MOV to SS or POP to SS.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF events are being blocked by MOV SS
THEN VMfailValid(VM entry with events blocked by MOV SS);

ELSIF (VMLAUNCH and launch state of current VMCS is not “clear”)
THEN VMfailValid(VMLAUNCH with non-clear VMCS);

ELSIF (VMRESUME and launch state of current VMCS is not “launched”)
THEN VMfailValid(VMRESUME with non-launched VMCS);
ELSE

Check settings of VMX controls and host-state area;
IF invalid settings

THEN VMfailValid(VM entry with invalid VMX-control field(s)) or
VMfailValid(VM entry with invalid host-state field(s)) or 
VMfailValid(VM entry with invalid executive-VMCS pointer)) or 
VMfailValid(VM entry with non-launched executive VMCS) or
VMfailValid(VM entry with executive-VMCS pointer not VMXON pointer) or

Opcode/
Instruction

Op/En Description

0F 01 C2

VMLAUNCH

ZO Launch virtual machine managed by current VMCS.

0F 01 C3

VMRESUME

ZO Resume virtual machine managed by current VMCS.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA
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VMfailValid(VM entry with invalid VM-execution control fields in executive
VMCS)
as appropriate;

ELSE
Attempt to load guest state and PDPTRs as appropriate;
clear address-range monitoring;
IF failure in checking guest state or PDPTRs

THEN VM entry fails (see Section 28.8);
ELSE

Attempt to load MSRs from VM-entry MSR-load area;
IF failure

THEN VM entry fails
(see Section 28.8);
ELSE

IF VMLAUNCH
THEN launch state of VMCS := “launched”;

FI;
IF in SMM and “entry to SMM” VM-entry control is 0

THEN
IF “deactivate dual-monitor treatment” VM-entry
control is 0

THEN SMM-transfer VMCS pointer := 
current-VMCS pointer;

FI;
IF executive-VMCS pointer is VMXON pointer

THEN current-VMCS pointer := 
VMCS-link pointer;
ELSE current-VMCS pointer := 
executive-VMCS pointer;

FI;
leave SMM;

FI;
VM entry succeeds;

FI;
FI;

FI;
FI;

Further details of the operation of the VM-entry appear in Chapter 28.

Flags Affected

See the operation section and Section 32.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized in virtual-8086 mode.
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Compatibility Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If executed outside VMX operation.
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VMPTRLD—Load Pointer to Virtual-Machine Control Structure

Instruction Operand Encoding

Description

Marks the current-VMCS pointer valid and loads it with the physical address in the instruction operand. The instruc-
tion fails if its operand is not properly aligned, sets unsupported physical-address bits, or is equal to the VMXON 
pointer. In addition, the instruction fails if the 32 bits in memory referenced by the operand do not match the VMCS 
revision identifier supported by this processor.1

The operand of this instruction is always 64 bits and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

addr := contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned OR
addr sets any bits beyond the physical-address width2

THEN VMfail(VMPTRLD with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMPTRLD with VMXON pointer);
ELSE

rev := 32 bits located at physical address addr;
IF rev[30:0] ≠ VMCS revision identifier supported by processor OR
rev[31] = 1 AND processor does not support 1-setting of “VMCS shadowing”

THEN VMfail(VMPTRLD with incorrect VMCS revision identifier);
ELSE

current-VMCS pointer := addr;
VMsucceed;

FI;
FI;

FI;

Flags Affected

See the operation section and Section 32.2.

Opcode/
Instruction

Op/En Description

NP 0F C7 /6

VMPTRLD m64

M Loads the current VMCS pointer from memory.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

1. Software should consult the VMX capability MSR VMX_BASIC to discover the VMCS revision identifier supported by this processor 
(see Appendix A, “VMX Capability Reporting Facility”).

2. If IA32_VMX_BASIC[48] is read as 1, VMfail occurs if addr sets any bits in the range 63:32; see Appendix A.1.
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Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand effective address is outside the CS, DS, ES, FS, or GS segment 
limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the memory source operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions
#UD The VMPTRLD instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMPTRLD instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMPTRLD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments and the memory address is in 
a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the source operand is in the SS segment and the memory address is in a non-canonical 

form.
#UD If operand is a register.

If not in VMX operation.
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VMPTRST—Store Pointer to Virtual-Machine Control Structure

Instruction Operand Encoding

Description

Stores the current-VMCS pointer into a specified memory address. The operand of this instruction is always 64 bits 
and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);
ELSE 

64-bit in-memory destination operand := current-VMCS pointer;
VMsucceed;

FI;

Flags Affected
See the operation section and Section 32.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand effective address is outside the CS, DS, ES, FS, or GS 
segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the destination operand is located in a read-only data segment or any code segment.

#PF(fault-code) If a page fault occurs in accessing the memory destination operand.
#SS(0) If the memory destination operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions
#UD The VMPTRST instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMPTRST instruction is not recognized in virtual-8086 mode.

Opcode/
Instruction

Op/En Description

NP 0F C7 /7

VMPTRST m64

M Stores the current VMCS pointer into memory.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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Compatibility Mode Exceptions
#UD The VMPTRST instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the destination operand is in the CS, DS, ES, FS, or GS segments and the memory address 
is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory destination operand.
#SS(0) If the destination operand is in the SS segment and the memory address is in a non-canonical 

form.
#UD If operand is a register.

If not in VMX operation.
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VMREAD—Read Field from Virtual-Machine Control Structure

Instruction Operand Encoding

Description

Reads a specified field from a VMCS and stores it into a specified destination operand (register or memory). In VMX 
root operation, the instruction reads from the current VMCS. If executed in VMX non-root operation, the instruction 
reads from the VMCS referenced by the VMCS link pointer field in the current VMCS.

The VMCS field is specified by the VMCS-field encoding contained in the register source operand. Outside IA-32e 
mode, the source operand has 32 bits, regardless of the value of CS.D. In 64-bit mode, the source operand has 64 
bits. 

The effective size of the destination operand, which may be a register or in memory, is always 32 bits outside IA-
32e mode (the setting of CS.D is ignored with respect to operand size) and 64 bits in 64-bit mode. If the VMCS field 
specified by the source operand is shorter than this effective operand size, the high bits of the destination operand 
are cleared to 0. If the VMCS field is longer, then the high bits of the field are not read.

Note that any faults resulting from accessing a memory destination operand can occur only after determining, in 
the operation section below, that the relevant VMCS pointer is valid and that the specified VMCS field is supported.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation AND (“VMCS shadowing” is 0 OR source operand sets bits in range 63:15 OR
VMREAD bit corresponding to bits 14:0 of source operand is 1)1

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSIF (in VMX root operation AND current-VMCS pointer is not valid) OR 
(in VMX non-root operation AND VMCS link pointer is not valid)

THEN VMfailInvalid;
ELSIF source operand does not correspond to any VMCS field

THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSE

IF in VMX root operation
THEN destination operand := contents of field indexed by source operand in current VMCS;
ELSE destination operand := contents of field indexed by source operand in VMCS referenced by VMCS link pointer;

FI;
VMsucceed;

FI;

Opcode/
Instruction

Op/En Description

NP 0F 78

VMREAD r/m64, r64

MR Reads a specified VMCS field (in 64-bit mode).

NP 0F 78

VMREAD r/m32, r32

MR Reads a specified VMCS field (outside 64-bit mode).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

1. The VMREAD bit for a source operand is defined as follows. Let x be the value of bits 14:0 of the source operand and let addr be the 
VMREAD-bitmap address. The corresponding VMREAD bit is in bit position x & 7 of the byte at physical address addr | (x » 3).
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Flags Affected

See the operation section and Section 32.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory destination operand effective address is outside the CS, DS, ES, FS, or GS 
segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the destination operand is located in a read-only data segment or any code segment.

#PF(fault-code) If a page fault occurs in accessing a memory destination operand.
#SS(0) If a memory destination operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If not in VMX operation.

Real-Address Mode Exceptions
#UD The VMREAD instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMREAD instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMREAD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand is in the CS, DS, ES, FS, or GS segments and the memory 
address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing a memory destination operand.
#SS(0) If the memory destination operand is in the SS segment and the memory address is in a non-

canonical form.
#UD If not in VMX operation.
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VMRESUME—Resume Virtual Machine

See VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine.
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VMWRITE—Write Field to Virtual-Machine Control Structure

Instruction Operand Encoding

Description

Writes the contents of a primary source operand (register or memory) to a specified field in a VMCS. In VMX root 
operation, the instruction writes to the current VMCS. If executed in VMX non-root operation, the instruction writes 
to the VMCS referenced by the VMCS link pointer field in the current VMCS.

The VMCS field is specified by the VMCS-field encoding contained in the register secondary source operand. 
Outside IA-32e mode, the secondary source operand is always 32 bits, regardless of the value of CS.D. In 64-bit 
mode, the secondary source operand has 64 bits. 

The effective size of the primary source operand, which may be a register or in memory, is always 32 bits outside 
IA-32e mode (the setting of CS.D is ignored with respect to operand size) and 64 bits in 64-bit mode. If the VMCS 
field specified by the secondary source operand is shorter than this effective operand size, the high bits of the 
primary source operand are ignored. If the VMCS field is longer, then the high bits of the field are cleared to 0.

Note that any faults resulting from accessing a memory source operand occur after determining, in the operation 
section below, that the relevant VMCS pointer is valid but before determining if the destination VMCS field is 
supported.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation AND (“VMCS shadowing” is 0 OR secondary source operand sets bits in range 63:15 OR
VMWRITE bit corresponding to bits 14:0 of secondary source operand is 1)1

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSIF (in VMX root operation AND current-VMCS pointer is not valid) OR
(in VMX non-root operation AND VMCS-link pointer is not valid)

THEN VMfailInvalid;
ELSIF secondary source operand does not correspond to any VMCS field

THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSIF VMCS field indexed by secondary source operand is a VM-exit information field AND
processor does not support writing to such fields2

THEN VMfailValid(VMWRITE to read-only VMCS component);
ELSE

Opcode/
Instruction

Op/En Description

NP 0F 79

VMWRITE r64, r/m64

RM Writes a specified VMCS field (in 64-bit mode).

NP 0F 79

VMWRITE r32, r/m32

RM Writes a specified VMCS field (outside 64-bit mode).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA

1. The VMWRITE bit for a secondary source operand is defined as follows. Let x be the value of bits 14:0 of the secondary source oper-
and and let addr be the VMWRITE-bitmap address. The corresponding VMWRITE bit is in bit position x & 7 of the byte at physical 
address addr | (x » 3).

2. Software can discover whether these fields can be written by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).
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IF in VMX root operation

THEN field indexed by secondary source operand in current VMCS := primary source operand;
ELSE field indexed by secondary source operand in VMCS referenced by VMCS link pointer := primary source operand;

FI;
VMsucceed;

FI;

Flags Affected
See the operation section and Section 32.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory source operand effective address is outside the CS, DS, ES, FS, or GS segment 
limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.
#SS(0) If a memory source operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If not in VMX operation.

Real-Address Mode Exceptions
#UD The VMWRITE instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMWRITE instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMWRITE instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand is in the CS, DS, ES, FS, or GS segments and the memory 
address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.
#SS(0) If the memory source operand is in the SS segment and the memory address is in a non-

canonical form.
#UD If not in VMX operation.
VMWRITE—Write Field to Virtual-Machine Control Structure 32-25 Vol. 3C



VMX INSTRUCTION REFERENCE
VMXOFF—Leave VMX Operation

Instruction Operand Encoding

Description

Takes the logical processor out of VMX operation, unblocks INIT signals, conditionally re-enables A20M, and clears 
any address-range monitoring.1 

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF dual-monitor treatment of SMIs and SMM is active
THEN VMfail(VMXOFF under dual-monitor treatment of SMIs and SMM);
ELSE

leave VMX operation;
unblock INIT;
IF IA32_SMM_MONITOR_CTL[2] = 02

THEN unblock SMIs;
IF outside SMX operation3

THEN unblock and enable A20M;
FI;
clear address-range monitoring;
VMsucceed;

FI;

Flags Affected

See the operation section and Section 32.2.

Protected Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.

Opcode/
Instruction

Op/En Description

0F 01 C4

VMXOFF

ZO Leaves VMX operation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA

1. See the information on MONITOR/MWAIT in Chapter 10, “Multiple-Processor Management,” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A.

2. Setting IA32_SMM_MONITOR_CTL[bit 2] to 1 prevents VMXOFF from unblocking SMIs regardless of the value of the register’s value 
bit (bit 0). Not all processors allow this bit to be set to 1. Software should consult the VMX capability MSR IA32_VMX_MISC (see 
Appendix A.6) to determine whether this is allowed.

3. A logical processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the 
last execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference.”
VMXOFF—Leave VMX Operation32-26 Vol. 3C



VMX INSTRUCTION REFERENCE
#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD The VMXOFF instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMXOFF instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXOFF instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.
#UD If executed outside VMX operation.
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VMXON—Enter VMX Operation

Instruction Operand Encoding

Description

Puts the logical processor in VMX operation with no current VMCS, blocks INIT signals, disables A20M, and clears 
any address-range monitoring established by the MONITOR instruction.1 

The operand of this instruction is a 4KB-aligned physical address (the VMXON pointer) that references the VMXON 
region, which the logical processor may use to support VMX operation. This operand is always 64 bits and is always 
in memory. 

Operation

IF (register operand) or (CR0.PE = 0) or (CR4.VMXE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF not in VMX operation
THEN

IF (CPL > 0) or (in A20M mode) or
(the values of CR0 and CR4 are not supported in VMX operation; see Section 25.8) or
(bit 0 (lock bit) of IA32_FEATURE_CONTROL MSR is clear) or
(in SMX operation2 and bit 1 of IA32_FEATURE_CONTROL MSR is clear) or
(outside SMX operation and bit 2 of IA32_FEATURE_CONTROL MSR is clear)

THEN #GP(0);
ELSE

addr := contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned or 
addr sets any bits beyond the physical-address width3

THEN VMfailInvalid;
ELSE

rev := 32 bits located at physical address addr;
IF rev[30:0] ≠ VMCS revision identifier supported by processor OR rev[31] = 1

THEN VMfailInvalid;
ELSE

current-VMCS pointer := FFFFFFFF_FFFFFFFFH;
enter VMX operation;
block INIT signals;
block and disable A20M;

Opcode/
Instruction

Op/En Description

F3 0F C7 /6

VMXON m64

M Enter VMX root operation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

1. See the information on MONITOR/MWAIT in Chapter 10, “Multiple-Processor Management,” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A.

2. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last 
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference.”

3. If IA32_VMX_BASIC[48] is read as 1, VMfailInvalid occurs if addr sets any bits in the range 63:32; see Appendix A.1.
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clear address-range monitoring;
IF the processor supports Intel PT but does not allow it to be used in VMX operation1

THEN IA32_RTIT_CTL.TraceEn := 0;
FI;
VMsucceed;

FI;
FI;

FI;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE VMfail(“VMXON executed in VMX root operation”);

FI;

Flags Affected
See the operation section and Section 32.2.

Protected Mode Exceptions
#GP(0) If executed outside VMX operation with CPL>0 or with invalid CR0 or CR4 fixed bits.

If executed in A20M mode.
If the memory source operand effective address is outside the CS, DS, ES, FS, or GS segment 
limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.
If the value of the IA32_FEATURE_CONTROL MSR does not support entry to VMX operation in 
the current processor mode.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the memory source operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.

If executed with CR4.VMXE = 0.

Real-Address Mode Exceptions
#UD The VMXON instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMXON instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXON instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed outside VMX operation with CPL > 0 or with invalid CR0 or CR4 fixed bits.

If executed in A20M mode.
If the source operand is in the CS, DS, ES, FS, or GS segments and the memory address is in 
a non-canonical form.

1. Software should read the VMX capability MSR IA32_VMX_MISC to determine whether the processor allows Intel PT to be used in 
VMX operation (see Appendix A.6).
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If the value of the IA32_FEATURE_CONTROL MSR does not support entry to VMX operation in 
the current processor mode.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the source operand is in the SS segment and the memory address is in a non-canonical 

form.
#UD If operand is a register.

If executed with CR4.VMXE = 0.
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32.4 VM INSTRUCTION ERROR NUMBERS
For certain error conditions, the VM-instruction error field is loaded with an error number to indicate the source of 
the error. Table 32-1 lists VM-instruction error numbers.

Table 32-1.  VM-Instruction Error Numbers
Error
Number Description

1 VMCALL executed in VMX root operation

2 VMCLEAR with invalid physical address

3 VMCLEAR with VMXON pointer

4 VMLAUNCH with non-clear VMCS

5 VMRESUME with non-launched VMCS

6 VMRESUME after VMXOFF (VMXOFF and VMXON between VMLAUNCH and VMRESUME)a

NOTES:
a. Earlier versions of this manual described this error as “VMRESUME with a corrupted VMCS”.

7 VM entry with invalid control field(s)b,c

b. VM-entry checks on control fields and host-state fields may be performed in any order. Thus, an indication by error number of one 
cause does not imply that there are not also other errors. Different processors may give different error numbers for the same VMCS.

c. Error number 7 is not used for VM entries that return from SMM that fail due to invalid VM-execution control fields in the executive 
VMCS. Error number 25 is used for these cases.

8 VM entry with invalid host-state field(s)b

9 VMPTRLD with invalid physical address

10 VMPTRLD with VMXON pointer

11 VMPTRLD with incorrect VMCS revision identifier

12 VMREAD/VMWRITE from/to unsupported VMCS component

13 VMWRITE to read-only VMCS component

15 VMXON executed in VMX root operation

16 VM entry with invalid executive-VMCS pointerb

17 VM entry with non-launched executive VMCSb

18 VM entry with executive-VMCS pointer not VMXON pointer (when attempting to deactivate the dual-monitor treatment of 
SMIs and SMM)b

19 VMCALL with non-clear VMCS (when attempting to activate the dual-monitor treatment of SMIs and SMM)

20 VMCALL with invalid VM-exit control fields

22 VMCALL with incorrect MSEG revision identifier (when attempting to activate the dual-monitor treatment of SMIs and SMM)

23 VMXOFF under dual-monitor treatment of SMIs and SMM

24 VMCALL with invalid SMM-monitor features (when attempting to activate the dual-monitor treatment of SMIs and SMM)

25 VM entry with invalid VM-execution control fields in executive VMCS (when attempting to return from SMM)b,c

26 VM entry with events blocked by MOV SS.

28 Invalid operand to INVEPT/INVVPID.
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CHAPTER 33
SYSTEM MANAGEMENT MODE

This chapter describes aspects of IA-64 and IA-32 architecture used in system management mode (SMM).

SMM provides an alternate operating environment that can be used to monitor and manage various system 
resources for more efficient energy usage, to control system hardware, and/or to run proprietary code. It was 
introduced into the IA-32 architecture in the Intel386 SL processor (a mobile specialized version of the Intel386 
processor). It is also available in the Pentium M, Pentium 4, Intel Xeon, P6 family, and Pentium and Intel486 
processors (beginning with the enhanced versions of the Intel486 SL and Intel486 processors). 

33.1 SYSTEM MANAGEMENT MODE OVERVIEW
SMM is a special-purpose operating mode provided for handling system-wide functions like power management, 
system hardware control, or proprietary OEM-designed code. It is intended for use only by system firmware, not by 
applications software or general-purpose systems software. The main benefit of SMM is that it offers a distinct and 
easily isolated processor environment that operates transparently to the operating system or executive and soft-
ware applications. 

When SMM is invoked through a system management interrupt (SMI), the processor saves the current state of the 
processor (the processor’s context), then switches to a separate operating environment defined by a new address 
space. The system management software executive (SMI handler) starts execution in that environment, and the 
critical code and data of the SMI handler reside in a physical memory region (SMRAM) within that address space. 
While in SMM, the processor executes SMI handler code to perform operations such as powering down unused disk 
drives or monitors, executing proprietary code, or placing the whole system in a suspended state. When the SMI 
handler has completed its operations, it executes a resume (RSM) instruction. This instruction causes the processor 
to reload the saved context of the processor, switch back to protected or real mode, and resume executing the 
interrupted application or operating-system program or task.

The following SMM mechanisms make it transparent to applications programs and operating systems:
• The only way to enter SMM is by means of an SMI.
• The processor executes SMM code in a separate address space that can be made inaccessible from the other 

operating modes.
• Upon entering SMM, the processor saves the context of the interrupted program or task.
• All interrupts normally handled by the operating system are disabled upon entry into SMM.
• The RSM instruction can be executed only in SMM.

Section 33.3 describes transitions into and out of SMM. The execution environment after entering SMM is in real-
address mode with paging disabled (CR0.PE = CR0.PG = 0). In this initial execution environment, the SMI handler 
can address up to 4 GBytes of memory and can execute all I/O and system instructions. Section 33.5 describes in 
detail the initial SMM execution environment for an SMI handler and operation within that environment. The SMI 
handler may subsequently switch to other operating modes while remaining in SMM.

NOTES
Software developers should be aware that, even if a logical processor was using the physical-
address extension (PAE) mechanism (introduced in the P6 family processors) or was in IA-32e 
mode before an SMI, this will not be the case after the SMI is delivered. This is because delivery of 
an SMI disables paging (see Table 33-4). (This does not apply if the dual-monitor treatment of SMIs 
and SMM is active; see Section 33.15.)
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33.1.1 System Management Mode and VMX Operation
Traditionally, SMM services system management interrupts and then resumes program execution (back to the soft-
ware stack consisting of executive and application software; see Section 33.2 through Section 33.13). 

A virtual machine monitor (VMM) using VMX can act as a host to multiple virtual machines and each virtual machine 
can support its own software stack of executive and application software. On processors that support VMX, virtual-
machine extensions may use system-management interrupts (SMIs) and system-management mode (SMM) in one 
of two ways:
• Default treatment. System firmware handles SMIs. The processor saves architectural states and critical 

states relevant to VMX operation upon entering SMM. When the firmware completes servicing SMIs, it uses 
RSM to resume VMX operation.

• Dual-monitor treatment. Two VM monitors collaborate to control the servicing of SMIs: one VMM operates 
outside of SMM to provide basic virtualization in support for guests; the other VMM operates inside SMM (while 
in VMX operation) to support system-management functions. The former is referred to as executive monitor, 
the latter SMM-transfer monitor (STM).1

The default treatment is described in Section 33.14, “Default Treatment of SMIs and SMM with VMX Operation and 
SMX Operation.” Dual-monitor treatment of SMM is described in Section 33.15, “Dual-Monitor Treatment of SMIs 
and SMM.”

33.2 SYSTEM MANAGEMENT INTERRUPT (SMI)
The only way to enter SMM is by signaling an SMI through the SMI# pin on the processor or through an SMI 
message received through the APIC bus. The SMI is a nonmaskable external interrupt that operates independently 
from the processor’s interrupt- and exception-handling mechanism and the local APIC. The SMI takes precedence 
over an NMI and a maskable interrupt. SMM is non-reentrant; that is, the SMI is disabled while the processor is in 
SMM.

NOTES
In the Pentium 4, Intel Xeon, and P6 family processors, when a processor that is designated as an 
application processor during an MP initialization sequence is waiting for a startup IPI (SIPI), it is in 
a mode where SMIs are masked. However if a SMI is received while an application processor is in 
the wait for SIPI mode, the SMI will be pended. The processor then responds on receipt of a SIPI by 
immediately servicing the pended SMI and going into SMM before handling the SIPI.
An SMI may be blocked for one instruction following execution of STI, MOV to SS, or POP into SS.

33.3 SWITCHING BETWEEN SMM AND THE OTHER PROCESSOR OPERATING 
MODES

Figure 2-3 shows how the processor moves between SMM and the other processor operating modes (protected, 
real-address, and virtual-8086). Signaling an SMI while the processor is in real-address, protected, or virtual-8086 
modes always causes the processor to switch to SMM. Upon execution of the RSM instruction, the processor always 
returns to the mode it was in when the SMI occurred. 

33.3.1 Entering SMM
The processor always handles an SMI on an architecturally defined “interruptible” point in program execution 
(which is commonly at an IA-32 architecture instruction boundary). When the processor receives an SMI, it waits 
for all instructions to retire and for all stores to complete. The processor then saves its current context in SMRAM 
(see Section 33.4), enters SMM, and begins to execute the SMI handler.

1. The dual-monitor treatment may not be supported by all processors. Software should consult the VMX capability MSR IA32_VMX-
_BASIC (see Appendix A.1) to determine whether it is supported.
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Upon entering SMM, the processor signals external hardware that SMI handling has begun. The signaling mecha-
nism used is implementation dependent. For the P6 family processors, an SMI acknowledge transaction is gener-
ated on the system bus and the multiplexed status signal EXF4 is asserted each time a bus transaction is generated 
while the processor is in SMM. For the Pentium and Intel486 processors, the SMIACT# pin is asserted.

An SMI has a greater priority than debug exceptions and external interrupts. Thus, if an NMI, maskable hardware 
interrupt, or a debug exception occurs at an instruction boundary along with an SMI, only the SMI is handled. 
Subsequent SMI requests are not acknowledged while the processor is in SMM. The first SMI interrupt request that 
occurs while the processor is in SMM (that is, after SMM has been acknowledged to external hardware) is latched 
and serviced when the processor exits SMM with the RSM instruction. The processor will latch only one SMI while 
in SMM.

See Section 33.5 for a detailed description of the execution environment when in SMM.

33.3.2 Exiting From SMM
The only way to exit SMM is to execute the RSM instruction. The RSM instruction is only available to the SMI 
handler; if the processor is not in SMM, attempts to execute the RSM instruction result in an invalid-opcode excep-
tion (#UD) being generated.

The RSM instruction restores the processor’s context by loading the state save image from SMRAM back into the 
processor’s registers. The processor then returns an SMIACK transaction on the system bus and returns program 
control back to the interrupted program.

NOTE
On processors that support the shadow-stack feature, RSM loads the SSP register from the state 
save image in SMRAM (see Table 33-3). The value is made canonical by sign-extension before 
loading it into SSP.

Upon successful completion of the RSM instruction, the processor signals external hardware that SMM has been 
exited. For the P6 family processors, an SMI acknowledge transaction is generated on the system bus and the 
multiplexed status signal EXF4 is no longer generated on bus cycles. For the Pentium and Intel486 processors, the 
SMIACT# pin is deserted.

If the processor detects invalid state information saved in the SMRAM, it enters the shutdown state and generates 
a special bus cycle to indicate it has entered shutdown state. Shutdown happens only in the following situations:
• A reserved bit in control register CR4 is set to 1 on a write to CR4. This error should not happen unless SMI 

handler code modifies reserved areas of the SMRAM saved state map (see Section 33.4.1). CR4 is saved in the 
state map in a reserved location and cannot be read or modified in its saved state.

• An illegal combination of bits is written to control register CR0, in particular PG set to 1 and PE set to 0, or NW 
set to 1 and CD set to 0.

• CR4.PCIDE would be set to 1 and IA32_EFER.LMA to 0.
• (For the Pentium and Intel486 processors only.) If the address stored in the SMBASE register when an RSM 

instruction is executed is not aligned on a 32-KByte boundary. This restriction does not apply to the P6 family 
processors.

• CR4.CET would be set to 1 and CR0.WP to 0.

In the shutdown state, Intel processors stop executing instructions until a RESET#, INIT# or NMI# is asserted. 
While Pentium family processors recognize the SMI# signal in shutdown state, P6 family and Intel486 processors 
do not. Intel does not support using SMI# to recover from shutdown states for any processor family; the response 
of processors in this circumstance is not well defined. On Pentium 4 and later processors, shutdown will inhibit INTR 
and A20M but will not change any of the other inhibits. On these processors, NMIs will be inhibited if no action is 
taken in the SMI handler to uninhibit them (see Section 33.8).

If the processor is in the HALT state when the SMI is received, the processor handles the return from SMM slightly 
differently (see Section 33.10). Also, the SMBASE address can be changed on a return from SMM (see Section 
33.11).
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33.4 SMRAM
Upon entering SMM, the processor switches to a new address space. Because paging is disabled upon entering 
SMM, this initial address space maps all memory accesses to the low 4 GBytes of the processor's physical address 
space. The SMI handler's critical code and data reside in a memory region referred to as system-management RAM 
(SMRAM). The processor uses a pre-defined region within SMRAM to save the processor's pre-SMI context. SMRAM 
can also be used to store system management information (such as the system configuration and specific informa-
tion about powered-down devices) and OEM-specific information. 

The default SMRAM size is 64 KBytes beginning at a base physical address in physical memory called the SMBASE 
(see Figure 33-1). The SMBASE default value following a hardware reset is 30000H. The processor looks for the 
first instruction of the SMI handler at the address [SMBASE + 8000H]. It stores the processor’s state in the area 
from [SMBASE + FE00H] to [SMBASE + FFFFH]. See Section 33.4.1 for a description of the mapping of the state 
save area.

The system logic is minimally required to decode the physical address range for the SMRAM from [SMBASE + 
8000H] to [SMBASE + FFFFH]. A larger area can be decoded if needed. The size of this SMRAM can be between 32 
KBytes and 4 GBytes.

The location of the SMRAM can be changed by changing the SMBASE value (see Section 33.11). It should be noted 
that all processors in a multiple-processor system are initialized with the same SMBASE value (30000H). Initializa-
tion software must sequentially place each processor in SMM and change its SMBASE so that it does not overlap 
those of other processors.

The actual physical location of the SMRAM can be in system memory or in a separate RAM memory. The processor 
generates an SMI acknowledge transaction (P6 family processors) or asserts the SMIACT# pin (Pentium and 
Intel486 processors) when the processor receives an SMI (see Section 33.3.1). 

System logic can use the SMI acknowledge transaction or the assertion of the SMIACT# pin to decode accesses to 
the SMRAM and redirect them (if desired) to specific SMRAM memory. If a separate RAM memory is used for 
SMRAM, system logic should provide a programmable method of mapping the SMRAM into system memory space 
when the processor is not in SMM. This mechanism will enable start-up procedures to initialize the SMRAM space 
(that is, load the SMI handler) before executing the SMI handler during SMM.

33.4.1 SMRAM State Save Map
When an IA-32 processor that does not support Intel 64 architecture initially enters SMM, it writes its state to the 
state save area of the SMRAM.   The state save area begins at [SMBASE + 8000H + 7FFFH] and extends down to 
[SMBASE + 8000H + 7E00H]. Table 33-1 shows the state save map. The offset in column 1 is relative to the 
SMBASE value plus 8000H. Reserved spaces should not be used by software.

Some of the registers in the SMRAM state save area (marked YES in column 3) may be read and changed by the 
SMI handler, with the changed values restored to the processor registers by the RSM instruction. Some register 
images are read-only, and must not be modified (modifying these registers will result in unpredictable behavior). 
An SMI handler should not rely on any values stored in an area that is marked as reserved.

 

Figure 33-1.  SMRAM Usage
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The following registers are saved (but not readable) and restored upon exiting SMM:
• Control register CR4. (This register is cleared to all 0s when entering SMM).
• The hidden segment descriptor information stored in segment registers CS, DS, ES, FS, GS, and SS.

If an SMI request is issued for the purpose of powering down the processor, the values of all reserved locations in 
the SMM state save must be saved to nonvolatile memory.

The following state is not automatically saved and restored following an SMI and the RSM instruction, respectively:

Table 33-1.  SMRAM State Save Map

Offset 
(Added to SMBASE + 8000H)

Register Writable?

7FFCH CR0 No

7FF8H CR3 No

7FF4H EFLAGS Yes

7FF0H EIP Yes

7FECH EDI Yes

7FE8H ESI Yes

7FE4H EBP Yes

7FE0H ESP Yes

7FDCH EBX Yes

7FD8H EDX Yes

7FD4H ECX Yes

7FD0H EAX Yes

7FCCH DR6 No

7FC8H DR7 No

7FC4H TR1 No

7FC0H Reserved No

7FBCH GS1 No

7FB8H FS1 No

7FB4H DS1 No

7FB0H SS1 No

7FACH CS1 No

7FA8H ES1 No

7FA4H I/O State Field, see Section 33.7 No

7FA0H I/O Memory Address Field, see Section 33.7 No

7F9FH-7F03H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7E00H Reserved No

NOTE:
1. The two most significant bytes are reserved.
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• Debug registers DR0 through DR3.
• The x87 FPU registers.
• The MTRRs.
• Control register CR2.
• The model-specific registers (for the P6 family and Pentium processors) or test registers TR3 through TR7 (for 

the Pentium and Intel486 processors).
• The state of the trap controller.
• The machine-check architecture registers.
• The APIC internal interrupt state (ISR, IRR, etc.).
• The microcode update state.

If an SMI is used to power down the processor, a power-on reset will be required before returning to SMM, which 
will reset much of this state back to its default values. So an SMI handler that is going to trigger power down should 
first read these registers listed above directly, and save them (along with the rest of RAM) to nonvolatile storage. 
After the power-on reset, the continuation of the SMI handler should restore these values, along with the rest of 
the system's state. Anytime the SMI handler changes these registers in the processor, it must also save and restore 
them.

NOTES
A small subset of the MSRs (such as, the time-stamp counter and performance-monitoring 
counters) are not arbitrarily writable and therefore cannot be saved and restored. SMM-based 
power-down and restoration should only be performed with operating systems that do not use or 
rely on the values of these registers. 
Operating system developers should be aware of this fact and ensure that their operating-system 
assisted power-down and restoration software is immune to unexpected changes in these register 
values.

33.4.1.1  SMRAM State Save Map and Intel 64 Architecture
When the processor initially enters SMM, it writes its state to the state save area of the SMRAM. The state save area 
on an Intel 64 processor at [SMBASE + 8000H + 7FFFH] and extends to [SMBASE + 8000H + 7C00H]. 

Support for Intel 64 architecture is reported by CPUID.80000001:EDX[29] = 1. The layout of the SMRAM state save 
map is shown in Table 33-3. 

Additionally, the SMRAM state save map shown in Table 33-3 also applies to processors with the following CPUID 
signatures listed in Table 33-2, irrespective of the value in CPUID.80000001:EDX[29].

Table 33-2.   Processor Signatures and 64-bit SMRAM State Save Map Format
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad processor Q9xxx, Intel Core 2 Duo 
processors E8000, T9000,

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad, Intel Core 2 Extreme, 
Intel Core 2 Duo processors, Intel Pentium dual-core processors

06_1CH 45 nm Intel Atom® processors
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Table 33-3.  SMRAM State Save Map for Intel 64 Architecture

Offset 
(Added to SMBASE + 8000H)

Register Writable?

7FF8H CR0 No

7FF0H CR3 No

7FE8H RFLAGS Yes

7FE0H IA32_EFER Yes

7FD8H RIP Yes

7FD0H DR6 No

7FC8H DR7 No

7FC4H TR SEL1 No

7FC0H LDTR SEL1 No

7FBCH GS SEL1 No

7FB8H FS SEL1 No

7FB4H DS SEL1 No

7FB0H SS SEL1 No

7FACH CS SEL1 No

7FA8H ES SEL1 No

7FA4H IO_MISC No

7F9CH IO_MEM_ADDR No

7F94H RDI Yes

7F8CH RSI Yes

7F84H RBP Yes

7F7CH RSP Yes

7F74H RBX Yes

7F6CH RDX Yes

7F64H RCX Yes

7F5CH RAX Yes

7F54H R8 Yes

7F4CH R9 Yes

7F44H R10 Yes

7F3CH R11 Yes

7F34H R12 Yes

7F2CH R13 Yes

7F24H R14 Yes

7F1CH R15 Yes

7F1BH-7F04H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes
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33.4.2 SMRAM Caching
An IA-32 processor does not automatically write back and invalidate its caches before entering SMM or before 
exiting SMM. Because of this behavior, care must be taken in the placement of the SMRAM in system memory and 
in the caching of the SMRAM to prevent cache incoherence when switching back and forth between SMM and 
protected mode operation. Any of the following three methods of locating the SMRAM in system memory will guar-
antee cache coherency.
• Place the SMRAM in a dedicated section of system memory that the operating system and applications are 

prevented from accessing. Here, the SMRAM can be designated as cacheable (WB, WT, or WC) for optimum 
processor performance, without risking cache incoherence when entering or exiting SMM.

• Place the SMRAM in a section of memory that overlaps an area used by the operating system (such as the video 
memory), but designate the SMRAM as uncacheable (UC). This method prevents cache access when in SMM to 
maintain cache coherency, but the use of uncacheable memory reduces the performance of SMM code.

• Place the SMRAM in a section of system memory that overlaps an area used by the operating system and/or 
application code, but explicitly flush (write back and invalidate) the caches upon entering and exiting SMM 
mode. This method maintains cache coherency, but incurs the overhead of two complete cache flushes.

For Pentium 4, Intel Xeon, and P6 family processors, a combination of the first two methods of locating the SMRAM 
is recommended. Here the SMRAM is split between an overlapping and a dedicated region of memory. Upon 
entering SMM, the SMRAM space that is accessed overlaps video memory (typically located in low memory). This 
SMRAM section is designated as UC memory. The initial SMM code then jumps to a second SMRAM section that is 

7EF7H - 7EE4H Reserved No

7EE0H Setting of “enable EPT” VM-execution control No

7ED8H Value of EPTP VM-execution control field No

7ED7H - 7ECC0H Reserved No

7EC8H SSP Yes

7EC7H - 7EA0H Reserved No

7E9CH LDT Base (lower 32 bits) No

7E98H Reserved No

7E94H IDT Base (lower 32 bits) No

7E90H Reserved No

7E8CH GDT Base (lower 32 bits) No

7E8BH - 7E48H Reserved No

7E40H CR4 (64 bits) No

7E3FH - 7DF0H Reserved No

7DE8H IO_RIP Yes

7DE7H - 7DDCH Reserved No

7DD8H IDT Base (Upper 32 bits) No

7DD4H LDT Base (Upper 32 bits) No

7DD0H GDT Base (Upper 32 bits) No

7DCFH - 7C00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

Table 33-3.  SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset 
(Added to SMBASE + 8000H)

Register Writable?
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located in a dedicated region of system memory (typically in high memory). This SMRAM section can be cached for 
optimum processor performance.

For systems that explicitly flush the caches upon entering SMM (the third method described above), the cache flush 
can be accomplished by asserting the FLUSH# pin at the same time as the request to enter SMM (generally initi-
ated by asserting the SMI# pin). The priorities of the FLUSH# and SMI# pins are such that the FLUSH# is serviced 
first. To guarantee this behavior, the processor requires that the following constraints on the interaction of FLUSH# 
and SMI# be met. In a system where the FLUSH# and SMI# pins are synchronous and the set up and hold times 
are met, then the FLUSH# and SMI# pins may be asserted in the same clock. In asynchronous systems, the 
FLUSH# pin must be asserted at least one clock before the SMI# pin to guarantee that the FLUSH# pin is serviced 
first. 

Upon leaving SMM (for systems that explicitly flush the caches), the WBINVD instruction should be executed prior 
to leaving SMM to flush the caches.

NOTES
In systems based on the Pentium processor that use the FLUSH# pin to write back and invalidate 
cache contents before entering SMM, the processor will prefetch at least one cache line in between 
when the Flush Acknowledge cycle is run and the subsequent recognition of SMI# and the assertion 
of SMIACT#. 
It is the obligation of the system to ensure that these lines are not cached by returning KEN# 
inactive to the Pentium processor.

33.4.2.1  System Management Range Registers (SMRR)
SMI handler code and data stored by SMM code resides in SMRAM. The SMRR interface is an enhancement in Intel 
64 architecture to limit cacheable reference of addresses in SMRAM to code running in SMM. The SMRR interface 
can be configured only by code running in SMM. Details of SMRR is described in Section 13.11.2.4.

33.5 SMI HANDLER EXECUTION ENVIRONMENT
Section 33.5.1 describes the initial execution environment for an SMI handler. An SMI handler may re-configure its 
execution environment to other supported operating modes. Section 33.5.2 discusses modifications an SMI 
handler can make to its execution environment. Section 33.5.3 discusses Control-flow Enforcement Technology 
(CET) interactions in the environment.

33.5.1 Initial SMM Execution Environment
After saving the current context of the processor, the processor initializes its core registers to the values shown in 
Table 33-4. Upon entering SMM, the PE and PG flags in control register CR0 are cleared, which places the processor 
in an environment similar to real-address mode. The differences between the SMM execution environment and the 
real-address mode execution environment are as follows:
• The addressable address space ranges from 0 to FFFFFFFFH (4 GBytes). 
• The normal 64-KByte segment limit for real-address mode is increased to 4 GBytes.
• The default operand and address sizes are set to 16 bits, which restricts the addressable SMRAM address space 

to the 1-MByte real-address mode limit for native real-address-mode code. However, operand-size and 
address-size override prefixes can be used to access the address space beyond the 1-MByte.

Table 33-4.  Processor Register Initialization in SMM

Register Contents

General-purpose registers Undefined

EFLAGS 00000002H

EIP 00008000H

CS selector SMM Base shifted right 4 bits (default 3000H)
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• Near jumps and calls can be made to anywhere in the 4-GByte address space if a 32-bit operand-size override 
prefix is used. Due to the real-address-mode style of base-address formation, a far call or jump cannot transfer 
control to a segment with a base address of more than 20 bits (1 MByte). However, since the segment limit in 
SMM is 4 GBytes, offsets into a segment that go beyond the 1-MByte limit are allowed when using 32-bit 
operand-size override prefixes. Any program control transfer that does not have a 32-bit operand-size override 
prefix truncates the EIP value to the 16 low-order bits.

• Data and the stack can be located anywhere in the 4-GByte address space, but can be accessed only with a 32-
bit address-size override if they are located above 1 MByte. As with the code segment, the base address for a 
data or stack segment cannot be more than 20 bits.

The value in segment register CS is automatically set to the default of 30000H for the SMBASE shifted 4 bits to the 
right; that is, 3000H. The EIP register is set to 8000H. When the EIP value is added to shifted CS value (the 
SMBASE), the resulting linear address points to the first instruction of the SMI handler.

The other segment registers (DS, SS, ES, FS, and GS) are cleared to 0 and their segment limits are set to 4 GBytes. 
In this state, the SMRAM address space may be treated as a single flat 4-GByte linear address space. If a segment 
register is loaded with a 16-bit value, that value is then shifted left by 4 bits and loaded into the segment base 
(hidden part of the segment register). The limits and attributes are not modified.

Maskable hardware interrupts, exceptions, NMI interrupts, SMI interrupts, A20M interrupts, single-step traps, 
breakpoint traps, and INIT operations are inhibited when the processor enters SMM. Maskable hardware interrupts, 
exceptions, single-step traps, and breakpoint traps can be enabled in SMM if the SMM execution environment 
provides and initializes an interrupt table and the necessary interrupt and exception handlers (see Section 33.6).

33.5.2 SMI Handler Operating Mode Switching
Within SMM, an SMI handler may change the processor's operating mode (e.g., to enable PAE paging, enter 64-bit 
mode, etc.) after it has made proper preparation and initialization to do so. For example, if switching to 32-bit 
protected mode, the SMI handler should follow the guidelines provided in Chapter 11, “Processor Management and 
Initialization.” If the SMI handler does wish to change operating mode, it is responsible for executing the appro-
priate mode-transition code after each SMI.

It is recommended that the SMI handler make use of all means available to protect the integrity of its critical code 
and data. In particular, it should use the system-management range register (SMRR) interface if it is available (see 
Section 11.11.2.4). The SMRR interface can protect only the first 4 GBytes of the physical address space. The SMI 
handler should take that fact into account if it uses operating modes that allow access to physical addresses beyond 
that 4-GByte limit (e.g., PAE paging or 64-bit mode).

Execution of the RSM instruction restores the pre-SMI processor state from the SMRAM state-state map (see 
Section 33.4.1) into which it was stored when the processor entered SMM. (The SMBASE field in the SMRAM state-
save map does not determine the state following RSM but rather the initial environment following the next entry to 
SMM.) Any required change to operating mode is performed by the RSM instruction; there is no need for the SMI 
handler to change modes explicitly prior to executing RSM.

CS base SMM Base (default 30000H)

DS, ES, FS, GS, SS Selectors 0000H

DS, ES, FS, GS, SS Bases 000000000H

DS, ES, FS, GS, SS Limits 0FFFFFFFFH

CR0 PE, EM, TS, and PG flags set to 0; others unmodified

CR4 Cleared to zero

DR6 Undefined

DR7 00000400H

Table 33-4.  Processor Register Initialization in SMM
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33.5.3 Control-flow Enforcement Technology Interactions
On processors that support CET shadow stacks, when the processor enters SMM, the processor saves the SSP 
register to the SMRAM state save area (see Table 33-3) and clears CR4.CET to 0. Thus, the initial execution envi-
ronment of the SMI handler has CET disabled and all of the CET state of the interrupted program is still in the 
machine. An SMM that uses CET is required to save the interrupted program’s CET state and restore the CET state 
prior to exiting SMM.

33.6 EXCEPTIONS AND INTERRUPTS WITHIN SMM
When the processor enters SMM, all hardware interrupts are disabled in the following manner:
• The IF flag in the EFLAGS register is cleared, which inhibits maskable hardware interrupts from being 

generated.
• The TF flag in the EFLAGS register is cleared, which disables single-step traps.
• Debug register DR7 is cleared, which disables breakpoint traps. (This action prevents a debugger from acciden-

tally breaking into an SMI handler if a debug breakpoint is set in normal address space that overlays code or 
data in SMRAM.)

• NMI, SMI, and A20M interrupts are blocked by internal SMM logic. (See Section 33.8 for more information 
about how NMIs are handled in SMM.)

Software-invoked interrupts and exceptions can still occur, and maskable hardware interrupts can be enabled by 
setting the IF flag. Intel recommends that SMM code be written in so that it does not invoke software interrupts 
(with the INT n, INTO, INT1, INT3, or BOUND instructions) or generate exceptions. 

If the SMI handler requires interrupt and exception handling, an SMM interrupt table and the necessary exception 
and interrupt handlers must be created and initialized from within SMM. Until the interrupt table is correctly initial-
ized (using the LIDT instruction), exceptions and software interrupts will result in unpredictable processor 
behavior. 

The following restrictions apply when designing SMM interrupt and exception-handling facilities:
• The interrupt table should be located at linear address 0 and must contain real-address mode style interrupt 

vectors (4 bytes containing CS and IP).
• Due to the real-address mode style of base address formation, an interrupt or exception cannot transfer control 

to a segment with a base address of more that 20 bits.
• An interrupt or exception cannot transfer control to a segment offset of more than 16 bits (64 KBytes).
• When an exception or interrupt occurs, only the 16 least-significant bits of the return address (EIP) are pushed 

onto the stack. If the offset of the interrupted procedure is greater than 64 KBytes, it is not possible for the 
interrupt/exception handler to return control to that procedure. (One solution to this problem is for a handler 
to adjust the return address on the stack.)

• The SMBASE relocation feature affects the way the processor will return from an interrupt or exception 
generated while the SMI handler is executing. For example, if the SMBASE is relocated to above 1 MByte, but 
the exception handlers are below 1 MByte, a normal return to the SMI handler is not possible. One solution is 
to provide the exception handler with a mechanism for calculating a return address above 1 MByte from the 16-
bit return address on the stack, then use a 32-bit far call to return to the interrupted procedure.

• If an SMI handler needs access to the debug trap facilities, it must ensure that an SMM accessible debug 
handler is available and save the current contents of debug registers DR0 through DR3 (for later restoration). 
Debug registers DR0 through DR3 and DR7 must then be initialized with the appropriate values.

• If an SMI handler needs access to the single-step mechanism, it must ensure that an SMM accessible single-
step handler is available, and then set the TF flag in the EFLAGS register.

• If the SMI design requires the processor to respond to maskable hardware interrupts or software-generated 
interrupts while in SMM, it must ensure that SMM accessible interrupt handlers are available and then set the 
IF flag in the EFLAGS register (using the STI instruction). Software interrupts are not blocked upon entry to 
SMM, so they do not need to be enabled.
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33.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS SYSTEM MANAGEMENT 
INTERRUPTS

When coding for a multiprocessor system or a system with Intel HT Technology, it was not always possible for an 
SMI handler to distinguish between a synchronous SMI (triggered during an I/O instruction) and an asynchronous 
SMI. To facilitate the discrimination of these two events, incremental state information has been added to the SMM 
state save map. 

Processors that have an SMM revision ID of 30004H or higher have the incremental state information described 
below.

33.7.1 I/O State Implementation
Within the extended SMM state save map, a bit (IO_SMI) is provided that is set only when an SMI is either taken 
immediately after a successful I/O instruction or is taken after a successful iteration of a REP I/O instruction (the 
successful notion pertains to the processor point of view; not necessarily to the corresponding platform function). 
When set, the IO_SMI bit provides a strong indication that the corresponding SMI was synchronous. In this case, 
the SMM State Save Map also supplies the port address of the I/O operation. The IO_SMI bit and the I/O Port 
Address may be used in conjunction with the information logged by the platform to confirm that the SMI was 
indeed synchronous.

The IO_SMI bit by itself is a strong indication, not a guarantee, that the SMI is synchronous. This is because an 
asynchronous SMI might coincidentally be taken after an I/O instruction. In such a case, the IO_SMI bit would still 
be set in the SMM state save map.

Information characterizing the I/O instruction is saved in two locations in the SMM State Save Map (Table 33-5). 
The IO_SMI bit also serves as a valid bit for the rest of the I/O information fields. The contents of these I/O infor-
mation fields are not defined when the IO_SMI bit is not set.

When IO_SMI is set, the other fields may be interpreted as follows:
• I/O length:

• 001 – Byte

• 010 – Word

• 100 – Dword
• I/O instruction type (Table 33-6)

Table 33-5.  I/O Instruction Information in the SMM State Save Map
State (SMM Rev. ID: 30004H or higher) Format

31 16 15 8 7 4 3 1 0

I/0 State Field

SMRAM offset 7FA4

I/O
 Port

R
eserved

I/O
 Type

I/O
 Length

IO
_SM

I

31 0

I/O Memory Address Field

SMRAM offset 7FA0

I/O Memory Address

Table 33-6.  I/O Instruction Type Encodings
Instruction Encoding

IN Immediate 1001

IN DX 0001

OUT Immediate 1000
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33.8 NMI HANDLING WHILE IN SMM
NMI interrupts are blocked upon entry to the SMI handler. If an NMI request occurs during the SMI handler, it is 
latched and serviced after the processor exits SMM. Only one NMI request will be latched during the SMI handler. 
If an NMI request is pending when the processor executes the RSM instruction, the NMI is serviced before the next 
instruction of the interrupted code sequence. This assumes that NMIs were not blocked before the SMI occurred. If 
NMIs were blocked before the SMI occurred, they are blocked after execution of RSM.

Although NMI requests are blocked when the processor enters SMM, they may be enabled through software by 
executing an IRET instruction. If the SMI handler requires the use of NMI interrupts, it should invoke a dummy 
interrupt service routine for the purpose of executing an IRET instruction. Once an IRET instruction is executed, 
NMI interrupt requests are serviced in the same “real mode” manner in which they are handled outside of SMM.

Also, for the Pentium processor, exceptions that invoke a trap or fault handler will enable NMI interrupts from inside 
of SMM. This behavior is implementation specific for the Pentium processor and is not part of the IA-32 architec-
ture.

33.9 SMM REVISION IDENTIFIER
The SMM revision identifier field is used to indicate the version of SMM and the SMM extensions that are supported 
by the processor (see Figure 33-2). The SMM revision identifier is written during SMM entry and can be examined 
in SMRAM space at offset 7EFCH. The lower word of the SMM revision identifier refers to the version of the base 
SMM architecture.

The upper word of the SMM revision identifier refers to the extensions available. If the I/O instruction restart flag 
(bit 16) is set, the processor supports the I/O instruction restart (see Section 33.12); if the SMBASE relocation flag 
(bit 17) is set, SMRAM base address relocation is supported (see Section 33.11).

OUT DX 0000

INS 0011

OUTS 0010

REP INS 0111

REP OUTS 0110

Figure 33-2.  SMM Revision Identifier

Table 33-6.  I/O Instruction Type Encodings (Contd.)
Instruction Encoding

SMM Revision Identifier

I/O Instruction Restart
SMBASE Relocation

Register Offset
7EFCH
31 0

Reserved

18 17 16 15
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33.10 AUTO HALT RESTART
If the processor is in a HALT state (due to the prior execution of a HLT instruction) when it receives an SMI, the 
processor records the fact in the auto HALT restart flag in the saved processor state (see Figure 33-3). (This flag is 
located at offset 7F02H and bit 0 in the state save area of the SMRAM.)

If the processor sets the auto HALT restart flag upon entering SMM (indicating that the SMI occurred when the 
processor was in the HALT state), the SMI handler has two options:
• It can leave the auto HALT restart flag set, which instructs the RSM instruction to return program control to the 

HLT instruction. This option in effect causes the processor to re-enter the HALT state after handling the SMI. 
(This is the default operation.)

• It can clear the auto HALT restart flag, which instructs the RSM instruction to return program control to the 
instruction following the HLT instruction. 

These options are summarized in Table 33-7. If the processor was not in a HALT state when the SMI was received 
(the auto HALT restart flag is cleared), setting the flag to 1 will cause unpredictable behavior when the RSM instruc-
tion is executed.

If the HLT instruction is restarted, the processor will generate a memory access to fetch the HLT instruction (if it is 
not in the internal cache), and execute a HLT bus transaction. This behavior results in multiple HLT bus transactions 
for the same HLT instruction.

33.10.1 Executing the HLT Instruction in SMM
The HLT instruction should not be executed during SMM, unless interrupts have been enabled by setting the IF flag 
in the EFLAGS register. If the processor is halted in SMM, the only event that can remove the processor from this 
state is a maskable hardware interrupt or a hardware reset.

33.11 SMBASE RELOCATION
The default base address for the SMRAM is 30000H. This value is contained in an internal processor register called 
the SMBASE register. Software can relocate the SMRAM by setting the SMBASE field in the saved state map (at 
offset 7EF8H) to a new value (see Figure 33-4). The RSM instruction reloads the internal SMBASE register with the 
value in the SMBASE field each time it exits SMM. All subsequent SMI requests will use the new SMBASE value to 
find the starting address for the SMI handler (at SMBASE + 8000H) and the SMRAM state save area (from SMBASE 

 

Figure 33-3.  Auto HALT Restart Field

Table 33-7.  Auto HALT Restart Flag Values

Value of Flag After 
Entry to SMM

Value of Flag When 
Exiting SMM

Action of Processor When Exiting SMM

0

0

1

1

0

1

0

1

Returns to next instruction in interrupted program or task.

Unpredictable.

Returns to next instruction after HLT instruction.

Returns to HALT state.

Auto HALT Restart

015
Reserved Register Offset

7F02H

1
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+ FE00H to SMBASE + FFFFH). (The processor resets the value in its internal SMBASE register to 30000H on a 
RESET, but does not change it on an INIT.) 

In multiple-processor systems, initialization software must adjust the SMBASE value for each processor so that the 
SMRAM state save areas for each processor do not overlap. (For Pentium and Intel486 processors, the SMBASE 
values must be aligned on a 32-KByte boundary or the processor will enter shutdown state during the execution of 
a RSM instruction.)

If the SMBASE relocation flag in the SMM revision identifier field is set, it indicates the ability to relocate the 
SMBASE (see Section 33.9).

33.12 I/O INSTRUCTION RESTART
If the I/O instruction restart flag in the SMM revision identifier field is set (see Section 33.9), the I/O instruction 
restart mechanism is present on the processor. This mechanism allows an interrupted I/O instruction to be re-
executed upon returning from SMM mode. For example, if an I/O instruction is used to access a powered-down I/O 
device, a chipset supporting this device can intercept the access and respond by asserting SMI#. This action 
invokes the SMI handler to power-up the device. Upon returning from the SMI handler, the I/O instruction restart 
mechanism can be used to re-execute the I/O instruction that caused the SMI.

The I/O instruction restart field (at offset 7F00H in the SMM state-save area, see Figure 33-5) controls I/O instruc-
tion restart. When an RSM instruction is executed, if this field contains the value FFH, then the EIP register is modi-
fied to point to the I/O instruction that received the SMI request. The processor will then automatically re-execute 
the I/O instruction that the SMI trapped. (The processor saves the necessary machine state to ensure that re-
execution of the instruction is handled coherently.)

If the I/O instruction restart field contains the value 00H when the RSM instruction is executed, then the processor 
begins program execution with the instruction following the I/O instruction. (When a repeat prefix is being used, 
the next instruction may be the next I/O instruction in the repeat loop.) Not re-executing the interrupted I/O 
instruction is the default behavior; the processor automatically initializes the I/O instruction restart field to 00H 
upon entering SMM. Table 33-8 summarizes the states of the I/O instruction restart field.

 

Figure 33-4.  SMBASE Relocation Field

 

Figure 33-5.  I/O Instruction Restart Field

031

SMM Base Register Offset
7EF8H

015

I/O Instruction Restart Field Register Offset
7F00H
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The I/O instruction restart mechanism does not indicate the cause of the SMI. It is the responsibility of the SMI 
handler to examine the state of the processor to determine the cause of the SMI and to determine if an I/O instruc-
tion was interrupted and should be restarted upon exiting SMM. If an SMI interrupt is signaled on a non-I/O instruc-
tion boundary, setting the I/O instruction restart field to FFH prior to executing the RSM instruction will likely result 
in a program error.

33.12.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is Being Used
If an SMI interrupt is signaled while the processor is servicing an SMI interrupt that occurred on an I/O instruction 
boundary, the processor will service the new SMI request before restarting the originally interrupted I/O instruc-
tion. If the I/O instruction restart field is set to FFH prior to returning from the second SMI handler, the EIP will point 
to an address different from the originally interrupted I/O instruction, which will likely lead to a program error. To 
avoid this situation, the SMI handler must be able to recognize the occurrence of back-to-back SMI interrupts when 
I/O instruction restart is being used and ensure that the handler sets the I/O instruction restart field to 00H prior 
to returning from the second invocation of the SMI handler.

33.13 SMM MULTIPLE-PROCESSOR CONSIDERATIONS
The following should be noted when designing multiple-processor systems:
• Any processor in a multiprocessor system can respond to an SMI.
• Each processor needs its own SMRAM space. This space can be in system memory or in a separate RAM.
• The SMRAMs for different processors can be overlapped in the same memory space. The only stipulation is that 

each processor needs its own state save area and its own dynamic data storage area. (Also, for the Pentium 
and Intel486 processors, the SMBASE address must be located on a 32-KByte boundary.) Code and static data 
can be shared among processors. Overlapping SMRAM spaces can be done more efficiently with the P6 family 
processors because they do not require that the SMBASE address be on a 32-KByte boundary. 

• The SMI handler will need to initialize the SMBASE for each processor.
• Processors can respond to local SMIs through their SMI# pins or to SMIs received through the APIC interface. 

The APIC interface can distribute SMIs to different processors.
• Two or more processors can be executing in SMM at the same time.
• When operating Pentium processors in dual processing (DP) mode, the SMIACT# pin is driven only by the MRM 

processor and should be sampled with ADS#. For additional details, see Chapter 14 of the Pentium Processor 
Family User’s Manual, Volume 1.

SMM is not re-entrant, because the SMRAM State Save Map is fixed relative to the SMBASE. If there is a need to 
support two or more processors in SMM mode at the same time then each processor should have dedicated SMRAM 
spaces. This can be done by using the SMBASE Relocation feature (see Section 33.11).

33.14 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX OPERATION AND 
SMX OPERATION

Under the default treatment, the interactions of SMIs and SMM with VMX operation are few. This section details 
those interactions. It also explains how this treatment affects SMX operation.

Table 33-8.  I/O Instruction Restart Field Values

Value of Flag After 
Entry to SMM

Value of Flag When 
Exiting SMM

Action of Processor When Exiting SMM

00H

00H

00H

FFH

Does not re-execute trapped I/O instruction.

Re-executes trapped I/O instruction.
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33.14.1 Default Treatment of SMI Delivery
Ordinary SMI delivery saves processor state into SMRAM and then loads state based on architectural definitions. 
Under the default treatment, processors that support VMX operation perform SMI delivery as follows:

enter SMM;
save the following internal to the processor:

CR4.VMXE
an indication of whether the logical processor was in VMX operation (root or non-root)

IF the logical processor is in VMX operation
THEN

save current VMCS pointer internal to the processor;
leave VMX operation;
save VMX-critical state defined below;

FI;
IF the logical processor supports SMX operation

THEN
save internal to the logical processor an indication of whether the Intel® TXT private space is locked;
IF the TXT private space is unlocked

THEN lock the TXT private space;
FI;

FI;
CR4.VMXE := 0;
perform ordinary SMI delivery:

save processor state in SMRAM;
set processor state to standard SMM values;1

invalidate linear mappings and combined mappings associated with VPID 0000H (for all PCIDs); combined mappings for VPID 0000H 
are invalidated for all EPTRTA values (EPTRTA is the value of bits 51:12 of EPTP; see Section 30.4);

The pseudocode above makes reference to the saving of VMX-critical state. This state consists of the following: 
(1) SS.DPL (the current privilege level); (2) RFLAGS.VM2; (3) the state of blocking by STI and by MOV SS (see 
Table 26-3 in Section 26.4.2); (4) the state of virtual-NMI blocking (only if the processor is in VMX non-root oper-
ation and the “virtual NMIs” VM-execution control is 1); and (5) an indication of whether an MTF VM exit is pending 
(see Section 27.5.2). These data may be saved internal to the processor or in the VMCS region of the current 
VMCS. Processors that do not support SMI recognition while there is blocking by STI or by MOV SS need not save 
the state of such blocking.

If the logical processor supports the 1-setting of the “enable EPT” VM-execution control and the logical processor 
was in VMX non-root operation at the time of an SMI, it saves the value of that control into bit 0 of the 32-bit field 
at offset SMBASE + 8000H + 7EE0H (SMBASE + FEE0H; see Table 33-3).3 If the logical processor was not in VMX 
non-root operation at the time of the SMI, it saves 0 into that bit. If the logical processor saves 1 into that bit (it 
was in VMX non-root operation and the “enable EPT” VM-execution control was 1), it saves the value of the EPT 
pointer (EPTP) into the 64-bit field at offset SMBASE + 8000H + 7ED8H (SMBASE + FED8H).

Because SMI delivery causes a logical processor to leave VMX operation, all the controls associated with VMX non-
root operation are disabled in SMM and thus cannot cause VM exits while the logical processor in SMM.

1. This causes the logical processor to block INIT signals, NMIs, and SMIs.

2. Section 33.14 and Section 33.15 use the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that 
support VMX operation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation 
refers to the 32-bit forms of these registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer spe-
cifically to the lower 32 bits of the register.

3. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls 
is 0, SMI functions as the “enable EPT” VM-execution control were 0. See Section 26.6.2.
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33.14.2 Default Treatment of RSM
Ordinary execution of RSM restores processor state from SMRAM. Under the default treatment, processors that 
support VMX operation perform RSM as follows:

IF VMXE = 1 in CR4 image in SMRAM
THEN fail and enter shutdown state;
ELSE

restore state normally from SMRAM;
invalidate linear mappings and combined mappings associated with all VPIDs and all PCIDs; combined mappings are invalidated 

for all EPTRTA values (EPTRTA is the value of bits 51:12 of EPTP; see Section 30.4);
IF the logical processor supports SMX operation andthe Intel® TXT private space was unlocked at the time of the last SMI (as 

saved)
THEN unlock the TXT private space;

FI;
CR4.VMXE := value stored internally;
IF internal storage indicates that the logical processor
had been in VMX operation (root or non-root)

THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Section 33.14.1;
set to their fixed values any bits in CR0 and CR4 whose values must be fixed in VMX operation (see Section 25.8);1

IF RFLAGS.VM = 0 AND (in VMX root operation OR the “unrestricted guest” VM-execution control is 0)2

THEN
CS.RPL := SS.DPL;
SS.RPL := SS.DPL;

FI;
restore current VMCS pointer;

FI;
leave SMM;
IF logical processor will be in VMX operation or in SMX operation after RSM

THEN block A20M and leave A20M mode;
FI;

FI;

RSM unblocks SMIs. It restores the state of blocking by NMI (see Table 26-3 in Section 26.4.2) as follows:
• If the RSM is not to VMX non-root operation or if the “virtual NMIs” VM-execution control will be 0, the state of 

NMI blocking is restored normally.
• If the RSM is to VMX non-root operation and the “virtual NMIs” VM-execution control will be 1, NMIs are not 

blocked after RSM. The state of virtual-NMI blocking is restored as part of VMX-critical state.

INIT signals are blocked after RSM if and only if the logical processor will be in VMX root operation.

If RSM returns a logical processor to VMX non-root operation, it re-establishes the controls associated with the 
current VMCS. If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs immediately after RSM 
if the enabling conditions apply. The same is true for the “NMI-window exiting” VM-execution control. Such 
VM exits occur with their normal priority. See Section 27.2.

If an MTF VM exit was pending at the time of the previous SMI, an MTF VM exit is pending on the instruction 
boundary following execution of RSM. The following items detail the treatment of MTF VM exits that may be 
pending following RSM:

1. If the RSM is to VMX non-root operation and both the “unrestricted guest” VM-execution control and bit 31 of the primary proces-
sor-based VM-execution controls will be 1, CR0.PE and CR0.PG retain the values that were loaded from SMRAM regardless of what is 
reported in the capability MSR IA32_VMX_CR0_FIXED0.

2. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 26.6.2.
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• System-management interrupts (SMIs), INIT signals, and higher priority events take priority over these MTF 
VM exits. These MTF VM exits take priority over debug-trap exceptions and lower priority events. 

• These MTF VM exits wake the logical processor if RSM caused the logical processor to enter the HLT state (see 
Section 33.10). They do not occur if the logical processor just entered the shutdown state.

33.14.3 Protection of CR4.VMXE in SMM
Under the default treatment, CR4.VMXE is treated as a reserved bit while a logical processor is in SMM. Any 
attempt by software running in SMM to set this bit causes a general-protection exception. In addition, software 
cannot use VMX instructions or enter VMX operation while in SMM.

33.14.4 VMXOFF and SMI Unblocking
The VMXOFF instruction can be executed only with the default treatment (see Section 33.15.1) and only outside 
SMM. If SMIs are blocked when VMXOFF is executed, VMXOFF unblocks them unless 
IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section 33.15.5 for details regarding this MSR).1 Section 33.15.7 iden-
tifies a case in which SMIs may be blocked when VMXOFF is executed.

Not all processors allow this bit to be set to 1. Software should consult the VMX capability MSR IA32_VMX_MISC 
(see Appendix A.6) to determine whether this is allowed.

33.15 DUAL-MONITOR TREATMENT OF SMIs AND SMM
Dual-monitor treatment is activated through the cooperation of the executive monitor (the VMM that operates 
outside of SMM to provide basic virtualization) and the SMM-transfer monitor (STM; the VMM that operates 
inside SMM—while in VMX operation—to support system-management functions). Control is transferred to the STM 
through VM exits; VM entries are used to return from SMM.

The dual-monitor treatment may not be supported by all processors. Software should consult the VMX capability 
MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether it is supported.

33.15.1 Dual-Monitor Treatment Overview
The dual-monitor treatment uses an executive monitor and an SMM-transfer monitor (STM). Transitions from the 
executive monitor or its guests to the STM are called SMM VM exits and are discussed in Section 33.15.2. SMM 
VM exits are caused by SMIs as well as executions of VMCALL in VMX root operation. The latter allow the executive 
monitor to call the STM for service.

The STM runs in VMX root operation and uses VMX instructions to establish a VMCS and perform VM entries to its 
own guests. This is done all inside SMM (see Section 33.15.3). The STM returns from SMM, not by using the RSM 
instruction, but by using a VM entry that returns from SMM. Such VM entries are described in Section 33.15.4.

Initially, there is no STM and the default treatment (Section 33.14) is used. The dual-monitor treatment is not used 
until it is enabled and activated. The steps to do this are described in Section 33.15.5 and Section 33.15.6.

It is not possible to leave VMX operation under the dual-monitor treatment; VMXOFF will fail if executed. The dual-
monitor treatment must be deactivated first. The STM deactivates dual-monitor treatment using a VM entry that 
returns from SMM with the “deactivate dual-monitor treatment” VM-entry control set to 1 (see Section 33.15.7).

The executive monitor configures any VMCS that it uses for VM exits to the executive monitor. SMM VM exits, which 
transfer control to the STM, use a different VMCS. Under the dual-monitor treatment, each logical processor uses 
a separate VMCS called the SMM-transfer VMCS. When the dual-monitor treatment is active, the logical 
processor maintains another VMCS pointer called the SMM-transfer VMCS pointer. The SMM-transfer VMCS 
pointer is established when the dual-monitor treatment is activated.

1. Setting IA32_SMM_MONITOR_CTL[bit 2] to 1 prevents VMXOFF from unblocking SMIs regardless of the value of the register’s valid 
bit (bit 0).
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33.15.2 SMM VM Exits
An SMM VM exit is a VM exit that begins outside SMM and that ends in SMM.

Unlike other VM exits, SMM VM exits can begin in VMX root operation. SMM VM exits result from the arrival of an 
SMI outside SMM or from execution of VMCALL in VMX root operation outside SMM. Execution of VMCALL in VMX 
root operation causes an SMM VM exit only if the valid bit is set in the IA32_SMM_MONITOR_CTL MSR (see Section 
33.15.5).

Execution of VMCALL in VMX root operation causes an SMM VM exit even under the default treatment. This SMM 
VM exit activates the dual-monitor treatment (see Section 33.15.6).

Differences between SMM VM exits and other VM exits are detailed in Sections 33.15.2.1 through 33.15.2.5. 
Differences between SMM VM exits that activate the dual-monitor treatment and other SMM VM exits are described 
in Section 33.15.6.

33.15.2.1  Architectural State Before a VM Exit
System-management interrupts (SMIs) that cause SMM VM exits always do so directly. They do not save state to 
SMRAM as they do under the default treatment.

33.15.2.2  Updating the Current-VMCS and Executive-VMCS Pointers
SMM VM exits begin by performing the following steps:

1. The executive-VMCS pointer field in the SMM-transfer VMCS is loaded as follows:

— If the SMM VM exit commenced in VMX non-root operation, it receives the current-VMCS pointer.

— If the SMM VM exit commenced in VMX root operation, it receives the VMXON pointer.

2. The current-VMCS pointer is loaded with the value of the SMM-transfer VMCS pointer.

The last step ensures that the current VMCS is the SMM-transfer VMCS. VM-exit information is recorded in that 
VMCS, and VM-entry control fields in that VMCS are updated. State is saved into the guest-state area of that VMCS. 
The VM-exit controls and host-state area of that VMCS determine how the VM exit operates.

33.15.2.3  Recording VM-Exit Information
SMM VM exits differ from other VM exit with regard to the way they record VM-exit information. The differences 
follow.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. The field is loaded with the reason for the SMM VM exit: 
I/O SMI (an SMI arrived immediately after retirement of an I/O instruction), other SMI, or VMCALL. See 
Appendix C, “VMX Basic Exit Reasons.”

— SMM VM exits are the only VM exits that may occur in VMX root operation. Because the SMM-transfer 
monitor may need to know whether it was invoked from VMX root or VMX non-root operation, this 
information is stored in bit 29 of the exit-reason field (see Table 26-18 in Section 26.9.1). The bit is set by 
SMM VM exits from VMX root operation.

— If the SMM VM exit occurred in VMX non-root operation and an MTF VM exit was pending, bit 28 of the exit-
reason field is set; otherwise, it is cleared.

— Bits 27:16 and bits 31:30 are cleared.
• Exit qualification. For an SMM VM exit due an SMI that arrives immediately after the retirement of an I/O 

instruction, the exit qualification contains information about the I/O instruction that retired immediately before 
the SMI. It has the format given in Table 33-9.

• Guest linear address. This field is used for VM exits due to SMIs that arrive immediately after the retirement 
of an INS or OUTS instruction for which the relevant segment (ES for INS; DS for OUTS unless overridden by 
an instruction prefix) is usable. The field receives the value of the linear address generated by ES:(E)DI (for 
INS) or segment:(E)SI (for OUTS; the default segment is DS but can be overridden by a segment override 
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prefix) at the time the instruction started. If the relevant segment is not usable, the value is undefined. On 
processors that support Intel 64 architecture, bits 63:32 are clear if the logical processor was not in 64-bit 
mode before the VM exit.

• I/O RCX, I/O RSI, I/O RDI, and I/O RIP. For an SMM VM exit due an SMI that arrives immediately after 
the retirement of an I/O instruction, these fields receive the values that were in RCX, RSI, RDI, and RIP, respec-
tively, before the I/O instruction executed. Thus, the value saved for I/O RIP addresses the I/O instruction.

33.15.2.4  Saving Guest State
SMM VM exits save the contents of the SMBASE register into the corresponding field in the guest-state area.

The value of the VMX-preemption timer is saved into the corresponding field in the guest-state area if the “save 
VMX-preemption timer value” VM-exit control is 1. That field becomes undefined if, in addition, either the SMM 
VM exit is from VMX root operation or the SMM VM exit is from VMX non-root operation and the “activate VMX-
preemption timer” VM-execution control is 0.

33.15.2.5  Updating State
If an SMM VM exit is from VMX non-root operation and the “Intel PT uses guest physical addresses” VM-execution 
control is 1, the IA32_RTIT_CTL MSR is cleared to 00000000_00000000H.1 This is done even if the “clear IA32_R-
TIT_CTL” VM-exit control is 0.

SMM VM exits affect the non-register state of a logical processor as follows:
• SMM VM exits cause non-maskable interrupts (NMIs) to be blocked; they may be unblocked through execution 

of IRET or through a VM entry (depending on the value loaded for the interruptibility state and the setting of 
the “virtual NMIs” VM-execution control).

• SMM VM exits cause SMIs to be blocked; they may be unblocked by a VM entry that returns from SMM (see 
Section 33.15.4).

Table 33-9.  Exit Qualification for SMIs That Arrive Immediately After the Retirement of an I/O Instruction

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used.

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in the I/O instruction)

63:32 Reserved (cleared to 0). These bits exist only on processors 
that support Intel 64 architecture.

1. In this situation, the value of this MSR was saved earlier into the guest-state area. All VM exits save this MSR if the 1-setting of the 
“load IA32_RTIT_CTL” VM-entry control is supported (see Section 29.3.1), which must be the case if the “Intel PT uses guest physi-
cal addresses” VM-execution control is 1 (see Section 28.2.1.1).
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SMM VM exits invalidate linear mappings and combined mappings associated with VPID 0000H for all PCIDs. 
Combined mappings for VPID 0000H are invalidated for all EPTRTA values (EPTRTA is the value of bits 51:12 of 
EPTP; see Section 30.4). (Ordinary VM exits are not required to perform such invalidation if the “enable VPID” VM-
execution control is 1; see Section 29.5.5.)

33.15.3 Operation of the SMM-Transfer Monitor
Once invoked, the SMM-transfer monitor (STM) is in VMX root operation and can use VMX instructions to configure 
VMCSs and to cause VM entries to virtual machines supported by those structures. As noted in Section 33.15.1, the 
VMXOFF instruction cannot be used under the dual-monitor treatment and thus cannot be used by the STM.

The RSM instruction also cannot be used under the dual-monitor treatment. As noted in Section 27.1.3, it causes a 
VM exit if executed in SMM in VMX non-root operation. If executed in VMX root operation, it causes an invalid-
opcode exception. The STM uses VM entries to return from SMM (see Section 33.15.4).

33.15.4 VM Entries that Return from SMM
The SMM-transfer monitor (STM) returns from SMM using a VM entry with the “entry to SMM” VM-entry control 
clear. VM entries that return from SMM reverse the effects of an SMM VM exit (see Section 33.15.2).

VM entries that return from SMM may differ from other VM entries in that they do not necessarily enter VMX non-
root operation. If the executive-VMCS pointer field in the current VMCS contains the VMXON pointer, the logical 
processor remains in VMX root operation after VM entry.

For differences between VM entries that return from SMM and other VM entries see Sections 33.15.4.1 through 
33.15.4.10.

33.15.4.1  Checks on the Executive-VMCS Pointer Field
VM entries that return from SMM perform the following checks on the executive-VMCS pointer field in the current 
VMCS:
• Bits 11:0 must be 0.
• The pointer must not set any bits beyond the processor’s physical-address width.1,2

• The 32 bits located in memory referenced by the physical address in the pointer must contain the processor’s 
VMCS revision identifier (see Section 26.2).

The checks above are performed before the checks described in Section 33.15.4.2 and before any of the following 
checks:
• 'If the “deactivate dual-monitor treatment” VM-entry control is 0 and the executive-VMCS pointer field does not 

contain the VMXON pointer, the launch state of the executive VMCS (the VMCS referenced by the executive-
VMCS pointer field) must be launched (see Section 26.11.3).

• If the “deactivate dual-monitor treatment” VM-entry control is 1, the executive-VMCS pointer field must 
contain the VMXON pointer (see Section 33.15.7).3

33.15.4.2  Checks on VM-Execution Control Fields
VM entries that return from SMM differ from other VM entries with regard to the checks performed on the VM-
execution control fields specified in Section 28.2.1.1. They do not apply the checks to the current VMCS. Instead, 
VM-entry behavior depends on whether the executive-VMCS pointer field contains the VMXON pointer:

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this pointer must not set any bits in the range 63:32; see Appendix A.1.

3. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the current VMCS after the SMM VM exit 
that activates the dual-monitor treatment.
33-22 Vol. 3C



SYSTEM MANAGEMENT MODE
• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root operation), 
the checks are not performed at all.

• If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters VMX non-root 
operation), the checks are performed on the VM-execution control fields in the executive VMCS (the VMCS 
referenced by the executive-VMCS pointer field in the current VMCS). These checks are performed after 
checking the executive-VMCS pointer field itself (for proper alignment).

Other VM entries ensure that, if “activate VMX-preemption timer” VM-execution control is 0, the “save VMX-
preemption timer value” VM-exit control is also 0. This check is not performed by VM entries that return from SMM.

33.15.4.3  Checks on VM-Entry Control Fields
VM entries that return from SMM differ from other VM entries with regard to the checks performed on the VM-entry 
control fields specified in Section 28.2.1.3.

Specifically, if the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root 
operation), the VM-entry interruption-information field must not indicate injection of a pending MTF VM exit (see 
Section 28.6.2). Specifically, the following cannot all be true for that field:
• the valid bit (bit 31) is 1
• the interruption type (bits 10:8) is 7 (other event); and
• the vector (bits 7:0) is 0 (pending MTF VM exit).

33.15.4.4  Checks on the Guest State Area
Section 28.3.1 specifies checks performed on fields in the guest-state area of the VMCS. Some of these checks are 
conditioned on the settings of certain VM-execution controls (e.g., “virtual NMIs” or “unrestricted guest”). 
VM entries that return from SMM modify these checks based on whether the executive-VMCS pointer field contains 
the VMXON pointer:1

• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root operation), 
the checks are performed as all relevant VM-execution controls were 0. (As a result, some checks may not be 
performed at all.)

• If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters VMX non-root 
operation), this check is performed based on the settings of the VM-execution controls in the executive VMCS 
(the VMCS referenced by the executive-VMCS pointer field in the current VMCS).

For VM entries that return from SMM, the activity-state field must not indicate the wait-for-SIPI state if the execu-
tive-VMCS pointer field contains the VMXON pointer (the VM entry is to VMX root operation).

33.15.4.5  Loading Guest State
VM entries that return from SMM load the SMBASE register from the SMBASE field.

VM entries that return from SMM invalidate linear mappings and combined mappings associated with all VPIDs. 
Combined mappings are invalidated for all EPTRTA values (EPTRTA is the value of bits 51:12 of EPTP; see Section 
30.4). (Ordinary VM entries are required to perform such invalidation only for VPID 0000H and are not required to 
do even that if the “enable VPID” VM-execution control is 1; see Section 28.3.2.5.)

33.15.4.6  VMX-Preemption Timer
A VM entry that returns from SMM activates the VMX-preemption timer only if the executive-VMCS pointer field 
does not contain the VMXON pointer (the VM entry enters VMX non-root operation) and the “activate VMX-preemp-
tion timer” VM-execution control is 1 in the executive VMCS (the VMCS referenced by the executive-VMCS pointer 
field). In this case, VM entry starts the VMX-preemption timer with the value in the VMX-preemption timer-value 
field in the current VMCS.

1. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the current VMCS after the SMM VM exit 
that activates the dual-monitor treatment.
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33.15.4.7  Updating the Current-VMCS and SMM-Transfer VMCS Pointers
Successful VM entries (returning from SMM) load the SMM-transfer VMCS pointer with the current-VMCS pointer. 
Following this, they load the current-VMCS pointer from a field in the current VMCS:
• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root operation), 

the current-VMCS pointer is loaded from the VMCS-link pointer field.
• If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters VMX non-root 

operation), the current-VMCS pointer is loaded with the value of the executive-VMCS pointer field.

If the VM entry successfully enters VMX non-root operation, the VM-execution controls in effect after the VM entry 
are those from the new current VMCS. This includes any structures external to the VMCS referenced by VM-execu-
tion control fields.

The updating of these VMCS pointers occurs before event injection. Event injection is determined, however, by the 
VM-entry control fields in the VMCS that was current when the VM entry commenced.

33.15.4.8  VM Exits Induced by VM Entry
Section 28.6.1.2 describes how the event-delivery process invoked by event injection may lead to a VM exit. 
Section 28.7.3 to Section 28.7.7 describe other situations that may cause a VM exit to occur immediately after a 
VM entry.

Whether these VM exits occur is determined by the VM-execution control fields in the current VMCS. For VM entries 
that return from SMM, they can occur only if the executive-VMCS pointer field does not contain the VMXON pointer 
(the VM entry enters VMX non-root operation).

In this case, determination is based on the VM-execution control fields in the VMCS that is current after the 
VM entry. This is the VMCS referenced by the value of the executive-VMCS pointer field at the time of the VM entry 
(see Section 33.15.4.7). This VMCS also controls the delivery of such VM exits. Thus, VM exits induced by a 
VM entry returning from SMM are to the executive monitor and not to the STM.

33.15.4.9  SMI Blocking
VM entries that return from SMM determine the blocking of system-management interrupts (SMIs) as follows:
• If the “deactivate dual-monitor treatment” VM-entry control is 0, SMIs are blocked after VM entry if and only if 

the bit 2 in the interruptibility-state field is 1.
• If the “deactivate dual-monitor treatment” VM-entry control is 1, the blocking of SMIs depends on whether the 

logical processor is in SMX operation:1

— If the logical processor is in SMX operation, SMIs are blocked after VM entry.

— If the logical processor is outside SMX operation, SMIs are unblocked after VM entry.

VM entries that return from SMM and that do not deactivate the dual-monitor treatment may leave SMIs blocked. 
This feature exists to allow the STM to invoke functionality outside of SMM without unblocking SMIs.

33.15.4.10  Failures of VM Entries That Return from SMM
Section 28.8 describes the treatment of VM entries that fail during or after loading guest state. Such failures record 
information in the VM-exit information fields and load processor state as would be done on a VM exit. The VMCS 
used is the one that was current before the VM entry commenced. Control is thus transferred to the STM and the 
logical processor remains in SMM.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last 
execution of GETSEC[SENTER]. See Chapter 7, “Safer Mode Extensions Reference‚” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2D.
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33.15.5 Enabling the Dual-Monitor Treatment
Code and data for the SMM-transfer monitor (STM) reside in a region of SMRAM called the monitor segment 
(MSEG). Code running in SMM determines the location of MSEG and establishes its content. This code is also 
responsible for enabling the dual-monitor treatment. 

SMM code enables the dual-monitor treatment and specifies the location of MSEG by writing to the 
IA32_SMM_MONITOR_CTL MSR (index 9BH). The MSR has the following format:
• Bit 0 is the register’s valid bit. The STM may be invoked using VMCALL only if this bit is 1. Because VMCALL is 

used to activate the dual-monitor treatment (see Section 33.15.6), the dual-monitor treatment cannot be 
activated if the bit is 0. This bit is cleared when the logical processor is reset.

• Bit 1 is reserved.
• Bit 2 determines whether executions of VMXOFF unblock SMIs under the default treatment of SMIs and SMM. 

Executions of VMXOFF unblock SMIs unless bit 2 is 1 (the value of bit 0 is irrelevant). See Section 33.14.4.
Certain leaf functions of the GETSEC instruction clear this bit (see Chapter 7, “Safer Mode Extensions 
Reference,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D).

• Bits 11:3 are reserved.
• Bits 31:12 contain a value that, when shifted left 12 bits, is the physical address of MSEG (the MSEG base 

address).
• Bits 63:32 are reserved.

The following items detail use of this MSR:
• The IA32_SMM_MONITOR_CTL MSR is supported only on processors that support the dual-monitor treatment.1 

On other processors, accesses to the MSR using RDMSR or WRMSR generate a general-protection fault 
(#GP(0)).

• A write to the IA32_SMM_MONITOR_CTL MSR using WRMSR generates a general-protection fault (#GP(0)) if 
executed outside of SMM or if an attempt is made to set any reserved bit. An attempt to write to the 
IA32_SMM_MONITOR_CTL MSR fails if made as part of a VM exit that does not end in SMM or part of a 
VM entry that does not begin in SMM.

• Reads from the IA32_SMM_MONITOR_CTL MSR using RDMSR are allowed any time RDMSR is allowed. The 
MSR may be read as part of any VM exit.

• The dual-monitor treatment can be activated only if the valid bit in the MSR is set to 1.

The 32 bytes located at the MSEG base address are called the MSEG header. The format of the MSEG header is 
given in Table 33-10 (each field is 32 bits).

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether the dual-monitor 
treatment is supported.

Table 33-10.  Format of MSEG Header

Byte Offset Field

0 MSEG-header revision identifier

4 SMM-transfer monitor features

8 GDTR limit

12 GDTR base offset

16 CS selector

20 EIP offset

24 ESP offset

28 CR3 offset
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To ensure proper behavior in VMX operation, software should maintain the MSEG header in writeback cacheable 
memory. Future implementations may allow or require a different memory type.1 Software should consult the VMX 
capability MSR IA32_VMX_BASIC (see Appendix A.1).

SMM code should enable the dual-monitor treatment (by setting the valid bit in IA32_SMM_MONITOR_CTL MSR) 
only after establishing the content of the MSEG header as follows:
• Bytes 3:0 contain the MSEG revision identifier. Different processors may use different MSEG revision identi-

fiers. These identifiers enable software to avoid using an MSEG header formatted for one processor on a 
processor that uses a different format. Software can discover the MSEG revision identifier that a processor uses 
by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).

• Bytes 7:4 contain the SMM-transfer monitor features field. Bits 31:1 of this field are reserved and must be 
zero. Bit 0 of the field is the IA-32e mode SMM feature bit. It indicates whether the logical processor will be 
in IA-32e mode after the STM is activated (see Section 33.15.6).

• Bytes 31:8 contain fields that determine how processor state is loaded when the STM is activated (see Section 
33.15.6.5). SMM code should establish these fields so that activating of the STM invokes the STM’s initialization 
code. 

33.15.6 Activating the Dual-Monitor Treatment
The dual-monitor treatment may be enabled by SMM code as described in Section 33.15.5. The dual-monitor treat-
ment is activated only if it is enabled and only by the executive monitor. The executive monitor activates the dual-
monitor treatment by executing VMCALL in VMX root operation.

When VMCALL activates the dual-monitor treatment, it causes an SMM VM exit. Differences between this SMM 
VM exit and other SMM VM exits are discussed in Sections 33.15.6.1 through 33.15.6.6. See also “VMCALL—Call to 
VM Monitor” in Chapter 32.

33.15.6.1  Initial Checks
An execution of VMCALL attempts to activate the dual-monitor treatment if (1) the processor supports the dual-
monitor treatment;2 (2) the logical processor is in VMX root operation; (3) the logical processor is outside SMM and 
the valid bit is set in the IA32_SMM_MONITOR_CTL MSR; (4) the logical processor is not in virtual-8086 mode and 
not in compatibility mode; (5) CPL = 0; and (6) the dual-monitor treatment is not active.

Such an execution of VMCALL begins with some initial checks. These checks are performed before updating the 
current-VMCS pointer and the executive-VMCS pointer field (see Section 33.15.2.2).

The VMCS that manages SMM VM exit caused by this VMCALL is the current VMCS established by the executive 
monitor. The VMCALL performs the following checks on the current VMCS in the order indicated:

1. There must be a current VMCS pointer.

2. The launch state of the current VMCS must be clear.

3. The VM-exit controls in the current VMCS must be set properly:

• Reserved bits in the primary VM-exit controls must be set properly. Software may consult the VMX 
capability MSRs to determine the proper setting (see Appendix A.4.1).

• If the “activate secondary controls” primary VM-exit control is 1, reserved bits in the secondary VM-exit 
controls must be cleared. Software may consult the VMX capability MSRs to determine which bits are 
reserved (see Appendix A.4.2).

1. Alternatively, software may map the MSEG header with the UC memory type; this may be necessary, depending on how memory is 
organized. Doing so is strongly discouraged unless necessary as it will cause the performance of transitions using those structures 
to suffer significantly. In addition, the processor will continue to use the memory type reported in the VMX capability MSR 
IA32_VMX_BASIC with exceptions noted in Appendix A.1.

2. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether the dual-monitor 
treatment is supported.
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• If the “activate secondary controls” primary VM-exit control is 0 (or if the processor does not support 
the 1-setting of that control), no checks are performed on the secondary VM-exit controls. The logical 
processor operates as if all the secondary VM-exit controls were 0.

If any of these checks fail, subsequent checks are skipped and VMCALL fails. If all these checks succeed, the logical 
processor uses the IA32_SMM_MONITOR_CTL MSR to determine the base address of MSEG. The following checks 
are performed in the order indicated:

1. The logical processor reads the 32 bits at the base of MSEG and compares them to the processor’s MSEG 
revision identifier.

2. The logical processor reads the SMM-transfer monitor features field:

— Bit 0 of the field is the IA-32e mode SMM feature bit, and it indicates whether the logical processor will be 
in IA-32e mode after the SMM-transfer monitor (STM) is activated.

• If the VMCALL is executed on a processor that does not support Intel 64 architecture, the IA-32e mode 
SMM feature bit must be 0.

• If the VMCALL is executed in 64-bit mode, the IA-32e mode SMM feature bit must be 1.

— Bits 31:1 of this field are currently reserved and must be zero.

If any of these checks fail, subsequent checks are skipped and the VMCALL fails.

33.15.6.2  Updating the Current-VMCS and Executive-VMCS Pointers
Before performing the steps in Section 33.15.2.2, SMM VM exits that activate the dual-monitor treatment begin by 
loading the SMM-transfer VMCS pointer with the value of the current-VMCS pointer.

33.15.6.3  Saving Guest State
As noted in Section 33.15.2.4, SMM VM exits save the contents of the SMBASE register into the corresponding field 
in the guest-state area. While this is true also for SMM VM exits that activate the dual-monitor treatment, the 
VMCS used for those VM exits exists outside SMRAM.

The SMM-transfer monitor (STM) can also discover the current value of the SMBASE register by using the RDMSR 
instruction to read the IA32_SMBASE MSR (MSR address 9EH). The following items detail use of this MSR:
• The MSR is supported only if IA32_VMX_MISC[15] = 1 (see Appendix A.6).
• A write to the IA32_SMBASE MSR using WRMSR generates a general-protection fault (#GP(0)). An attempt to 

write to the IA32_SMBASE MSR fails if made as part of a VM exit or part of a VM entry.
• A read from the IA32_SMBASE MSR using RDMSR generates a general-protection fault (#GP(0)) if executed 

outside of SMM. An attempt to read from the IA32_SMBASE MSR fails if made as part of a VM exit that does not 
end in SMM.

33.15.6.4  Saving MSRs
The VM-exit MSR-store area is not used by SMM VM exits that activate the dual-monitor treatment. No MSRs are 
saved into that area.

33.15.6.5  Loading Host State
The VMCS that is current during an SMM VM exit that activates the dual-monitor treatment was established by the 
executive monitor. It does not contain the VM-exit controls and host state required to initialize the STM. For this 
reason, such SMM VM exits do not load processor state as described in Section 29.5. Instead, state is set to fixed 
values or loaded based on the content of the MSEG header (see Table 33-10):
• CR0 is set to as follows:

— PG, NE, ET, MP, and PE are all set to 1.

— CD and NW are left unchanged.
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— All other bits are cleared to 0.
• CR3 is set as follows:

— Bits 63:32 are cleared on processors that support IA-32e mode.

— Bits 31:12 are set to bits 31:12 of the sum of the MSEG base address and the CR3-offset field in the MSEG 
header.

— Bits 11:5 and bits 2:0 are cleared (the corresponding bits in the CR3-offset field in the MSEG header are 
ignored).

— Bits 4:3 are set to bits 4:3 of the CR3-offset field in the MSEG header.
• CR4 is set as follows:

— MCE, PGE, CET, PCIDE, and LA57 are cleared.

— PAE is set to the value of the IA-32e mode SMM feature bit.

— If the IA-32e mode SMM feature bit is clear, PSE is set to 1 if supported by the processor; if the bit is set, 
PSE is cleared.

— All other bits are unchanged.
• DR7 is set to 400H.
• The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.
• The registers CS, SS, DS, ES, FS, and GS are loaded as follows:

— All registers are usable.

— CS.selector is loaded from the corresponding field in the MSEG header (the high 16 bits are ignored), with 
bits 2:0 cleared to 0. If the result is 0000H, CS.selector is set to 0008H.

— The selectors for SS, DS, ES, FS, and GS are set to CS.selector+0008H. If the result is 0000H (if the CS 
selector was FFF8H), these selectors are instead set to 0008H.

— The base addresses of all registers are cleared to zero.

— The segment limits for all registers are set to FFFFFFFFH.

— The AR bytes for the registers are set as follows:

• CS.Type is set to 11 (execute/read, accessed, non-conforming code segment).

• For SS, DS, ES, FS, and GS, the Type is set to 3 (read/write, accessed, expand-up data segment).

• The S bits for all registers are set to 1.

• The DPL for each register is set to 0.

• The P bits for all registers are set to 1.

• On processors that support Intel 64 architecture, CS.L is loaded with the value of the IA-32e mode SMM 
feature bit.

• CS.D is loaded with the inverse of the value of the IA-32e mode SMM feature bit.

• For each of SS, DS, ES, FS, and GS, the D/B bit is set to 1.

• The G bits for all registers are set to 1.
• LDTR is unusable. The LDTR selector is cleared to 0000H, and the register is otherwise undefined (although the 

base address is always canonical)
• GDTR.base is set to the sum of the MSEG base address and the GDTR base-offset field in the MSEG header 

(bits 63:32 are always cleared on processors that support IA-32e mode). GDTR.limit is set to the corresponding 
field in the MSEG header (the high 16 bits are ignored).

• IDTR.base is unchanged. IDTR.limit is cleared to 0000H.
• RIP is set to the sum of the MSEG base address and the value of the RIP-offset field in the MSEG header 

(bits 63:32 are always cleared on logical processors that support IA-32e mode).
• RSP is set to the sum of the MSEG base address and the value of the RSP-offset field in the MSEG header 

(bits 63:32 are always cleared on logical processor that supports IA-32e mode).
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• RFLAGS is cleared, except bit 1, which is always set.
• The logical processor is left in the active state.
• Event blocking after the SMM VM exit is as follows:

— There is no blocking by STI or by MOV SS.

— There is blocking by non-maskable interrupts (NMIs) and by SMIs.
• There are no pending debug exceptions after the SMM VM exit.
• For processors that support IA-32e mode, the IA32_EFER MSR is modified so that LME and LMA both contain 

the value of the IA-32e mode SMM feature bit.

If any of CR3[63:5], CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are updated so that, after 
VM exit, the logical processor does not use translations that were cached before the transition. This is not neces-
sary for changes that would not affect paging due to the settings of other bits (for example, changes to CR4.PSE if 
IA32_EFER.LMA was 1 before and after the transition).

33.15.6.6  Loading MSRs
The VM-exit MSR-load area is not used by SMM VM exits that activate the dual-monitor treatment. No MSRs are 
loaded from that area.

33.15.7 Deactivating the Dual-Monitor Treatment
The SMM-transfer monitor may deactivate the dual-monitor treatment and return the processor to default treat-
ment of SMIs and SMM (see Section 33.14). It does this by executing a VM entry with the “deactivate dual-monitor 
treatment” VM-entry control set to 1.

As noted in Section 28.2.1.3 and Section 33.15.4.1, an attempt to deactivate the dual-monitor treatment fails in 
the following situations: (1) the processor is not in SMM; (2) the “entry to SMM” VM-entry control is 1; or (3) the 
executive-VMCS pointer does not contain the VMXON pointer (the VM entry is to VMX non-root operation).

As noted in Section 33.15.4.9, VM entries that deactivate the dual-monitor treatment ignore the SMI bit in the 
interruptibility-state field of the guest-state area. Instead, the blocking of SMIs following such a VM entry depends 
on whether the logical processor is in SMX operation:1

• If the logical processor is in SMX operation, SMIs are blocked after VM entry. SMIs may later be unblocked by 
the VMXOFF instruction (see Section 33.14.4) or by certain leaf functions of the GETSEC instruction (see 
Chapter 7, “Safer Mode Extensions Reference,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2D).

• If the logical processor is outside SMX operation, SMIs are unblocked after VM entry.

33.16 SMI AND PROCESSOR EXTENDED STATE MANAGEMENT
On processors that support processor extended states using XSAVE/XRSTOR (see Chapter 13, “Managing State 
Using the XSAVE Feature Set‚” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1), 
the processor does not save any XSAVE/XRSTOR related state on an SMI. It is the responsibility of the SMI handler 
code to properly preserve the state information (including CR4.OSXSAVE, XCR0, and possibly processor extended 
states using XSAVE/XRSTOR). Therefore, the SMI handler must follow the rules described in Chapter 13, 
“Managing State Using the XSAVE Feature Set‚” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last 
execution of GETSEC[SENTER]. See Chapter 7, “Safer Mode Extensions Reference,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2D.
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33.17 MODEL-SPECIFIC SYSTEM MANAGEMENT ENHANCEMENT
This section describes enhancement of system management features that apply only to the 4th generation Intel 
Core processors. These features are model-specific. BIOS and SMM handler must use CPUID to enumerate Display-
Family_DisplayModel signature when programming with these interfaces.

33.17.1 SMM Handler Code Access Control
The BIOS may choose to restrict the address ranges of code that SMM handler executes. When SMM handler code 
execution check is enabled, an attempt by the SMM handler to execute outside the ranges specified by SMRR (see 
Section 33.4.2.1) will cause the assertion of an unrecoverable machine check exception (MCE). 

The interface to enable SMM handler code access check resides in a per-package scope model-specific register 
MSR_SMM_FEATURE_CONTROL at address 4E0H. An attempt to access MSR_SMM_FEATURE_CONTROL outside of 
SMM will cause a #GP. Writes to MSR_SMM_FEATURE_CONTROL is further protected by configuration interface of 
MSR_SMM_MCA_CAP at address 17DH.

Details of the interface of MSR_SMM_FEATURE_CONTROL and MSR_SMM_MCA_CAP are described in Table 2-29 in 
Chapter 2, “Model-Specific Registers (MSRs),” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 4.

33.17.2 SMI Delivery Delay Reporting 
Entry into the system management mode occurs at instruction boundary. In situations where a logical processor is 
executing an instruction involving a long flow of internal operations, servicing an SMI by that logical processor will 
be delayed. Delayed servicing of SMI of each logical processor due to executing long flows of internal operation in 
a physical processor can be queried via a package-scope register MSR_SMM_DELAYED at address 4E2H.

The interface to enable reporting of SMI delivery delay due to long internal flows resides in a per-package scope 
model-specific register MSR_SMM_DELAYED. An attempt to access MSR_SMM_DELAYED outside of SMM will cause 
a #GP. Availability to MSR_SMM_DELAYED is protected by configuration interface of MSR_SMM_MCA_CAP at 
address 17DH.

Details of the interface of MSR_SMM_DELAYED and MSR_SMM_MCA_CAP are described in Table 2-29 in Chapter 2, 
“Model-Specific Registers (MSRs),” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
4.

33.17.3 Blocked SMI Reporting 
A logical processor may have entered into a state and blocked from servicing other interrupts (including SMI). 
Logical processors in a physical processor that are blocked in serving SMI can be queried in a package-scope 
register MSR_SMM_BLOCKED at address 4E3H. An attempt to access MSR_SMM_BLOCKED outside of SMM will 
cause a #GP.

Details of the interface of MSR_SMM_BLOCKED is described in Table 2-29 in Chapter 2, “Model-Specific Registers 
(MSRs),” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.
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CHAPTER 34
INTEL® PROCESSOR TRACE

34.1 OVERVIEW
Intel® Processor Trace (Intel PT) is an extension of Intel® Architecture that captures information about software 
execution using dedicated hardware facilities that cause only minimal performance perturbation to the software 
being traced. This information is collected in data packets. The initial implementations of Intel PT offer control 
flow tracing, which generates a variety of packets to be processed by a software decoder. The packets include 
timing, program flow information (e.g., branch targets, branch taken/not taken indications) and program-induced 
mode related information (e.g., Intel TSX state transitions, CR3 changes). These packets may be buffered inter-
nally before being sent to the memory subsystem or other output mechanism available in the platform. Debug soft-
ware can process the trace data and reconstruct the program flow.
Intel Processor Trace was first introduced in Intel® processors based on Broadwell microarchitecture and Intel 
Atom® processors based on Goldmont microarchitecture. Later generations include additional trace sources, 
including software trace instrumentation using PTWRITE, and Power Event tracing.

34.1.1 Features and Capabilities
Intel PT’s control flow trace generates a variety of packets that, when combined with the binaries of a program by 
a post-processing tool, can be used to produce an exact execution trace. The packets record flow information such 
as instruction pointers (IP), indirect branch targets, and directions of conditional branches within contiguous code 
regions (basic blocks).
Intel PT can also be configured to log software-generated packets using PTWRITE, and packets describing 
processor power management events. Further, Precise Event-Based Sampling (PEBS) can be configured to log 
PEBS records in the Intel PT trace; see Section 21.5.5.2.
In addition, the packets record other contextual, timing, and bookkeeping information that enables both functional 
and performance debugging of applications. Intel PT has several control and filtering capabilities available to 
customize the tracing information collected and to append other processor state and timing information to enable 
debugging. For example, there are modes that allow packets to be filtered based on the current privilege level 
(CPL) or the value of CR3.
Configuration of the packet generation and filtering capabilities are programmed via a set of MSRs. The MSRs 
generally follow the naming convention of IA32_RTIT_*. The capability provided by these configuration MSRs are 
enumerated by CPUID, see Section 34.3. Details of the MSRs for configuring Intel PT are described in Section 
34.2.8.

34.1.1.1  Packet Summary
After a tracing tool has enabled and configured the appropriate MSRs, the processor will collect and generate trace 
information in the following categories of packets (for more details on the packets, see Section 34.4):
• Packets about basic information on program execution; these include:

— Packet Stream Boundary (PSB) packets: PSB packets act as ‘heartbeats’ that are generated at regular 
intervals (e.g., every 4K trace packet bytes). These packets allow the packet decoder to find the packet 
boundaries within the output data stream; a PSB packet should be the first packet that a decoder looks for 
when beginning to decode a trace.

— Paging Information Packet (PIP): PIPs record modifications made to the CR3 register. This information, 
along with information from the operating system on the CR3 value of each process, allows the debugger 
to attribute linear addresses to their correct application source.

— Time-Stamp Counter (TSC) packets: TSC packets aid in tracking wall-clock time, and contain some portion 
of the software-visible time-stamp counter.

— Core Bus Ratio (CBR) packets: CBR packets contain the core:bus clock ratio.
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— Mini Time Counter (MTC) packets: MTC packets provide periodic indication of the passing of wall-clock time.

— Cycle Count (CYC) packets: CYC packets provide indication of the number of processor core clock cycles 
that pass between packets.

— Overflow (OVF) packets: OVF packets are sent when the processor experiences an internal buffer overflow, 
resulting in packets being dropped. This packet notifies the decoder of the loss and can help the decoder to 
respond to this situation.

• Packets about control flow information:

— Taken Not-Taken (TNT) packets: TNT packets track the “direction” of direct conditional branches (taken or 
not taken).

— Target IP (TIP) packets: TIP packets record the target IP of indirect branches, exceptions, interrupts, and 
other branches or events. These packets can contain the IP, although that IP value may be compressed by 
eliminating upper bytes that match the last IP. There are various types of TIP packets; they are covered in 
more detail in Section 34.4.2.2.

— Flow Update Packets (FUP): FUPs provide the source IP addresses for asynchronous events (interrupt and 
exceptions), as well as other cases where the source address cannot be determined from the binary.

— MODE packets: These packets provide the decoder with important processor execution information so that 
it can properly interpret the dis-assembled binary and trace log. MODE packets have a variety of formats 
that indicate details such as the execution mode (16-bit, 32-bit, or 64-bit).

• Packets inserted by software:

— PTWRITE (PTW) packets: includes the value of the operand passed to the PTWRITE instruction (see 
“PTWRITE—Write Data to a Processor Trace Packet” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B).

• Packets about processor power management events:

— MWAIT packets: Indicate successful completion of an MWAIT operation to a C-state deeper than C0.0.

— Power State Entry (PWRE) packets: Indicate entry to a C-state deeper than C0.0.

— Power State Exit (PWRX) packets: Indicate exit from a C-state deeper than C0.0, returning to C0.

— Execution Stopped (EXSTOP) packets: Indicate that software execution has stopped, due to events such as 
P-state change, C-state change, or thermal throttling.

• Packets containing groups of processor state values:

— Block Begin Packets (BBP): Indicate the type of state held in the following group.

— Block Item Packets (BIP): Indicate the state values held in the group.

— Block End Packets (BEP): Indicate the end of the current group.

34.2 INTEL® PROCESSOR TRACE OPERATIONAL MODEL
This section describes the overall Intel Processor Trace mechanism and the essential concepts relevant to how it 
operates.

34.2.1 Change of Flow Instruction (COFI) Tracing
A basic program block is a section of code where no jumps or branches occur. The instruction pointers (IPs) in this 
block of code need not be traced, as the processor will execute them from start to end without redirecting code 
flow. Instructions such as branches, and events such as exceptions or interrupts, can change the program flow. 
These instructions and events that change program flow are called Change of Flow Instructions (COFI). There are 
three categories of COFI:
• Direct transfer COFI.
• Indirect transfer COFI.
• Far transfer COFI.
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The following subsections describe the COFI events that result in trace packet generation. Table 33-1 lists branch 
instruction by COFI types. For detailed description of specific instructions, see the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual.

34.2.1.1  Direct Transfer COFI
Direct Transfer COFI are relative branches. This means that their target is an IP whose offset from the current IP is 
embedded in the instruction bytes. It is not necessary to indicate target of these instructions in the trace output 
since it can be obtained through the source disassembly. Conditional branches need to indicate only whether the 
branch is taken or not. Unconditional branches do not need any recording in the trace output. There are two sub-
categories:
• Conditional Branch (Jcc, J*CXZ) and LOOP

To track this type of instruction, the processor encodes a single bit (taken or not taken — TNT) to indicate the 
program flow after the instruction. 

Jcc, J*CXZ, and LOOP can be traced with TNT bits. To improve the trace packet output efficiency, the processor 
will compact several TNT bits into a single packet.

• Unconditional Direct Jumps

There is no trace output required for direct unconditional jumps (like JMP near relative or CALL near relative) 
since they can be directly inferred from the application assembly. Direct unconditional jumps do not generate a 
TNT bit or a Target IP packet, though TIP.PGD and TIP.PGE packets can be generated by unconditional direct 
jumps that toggle Intel PT enables (see Section 34.2.6).

34.2.1.2  Indirect Transfer COFI
Indirect transfer instructions involve updating the IP from a register or memory location. Since the register or 
memory contents can vary at any time during execution, there is no way to know the target of the indirect transfer 
until the register or memory contents are read. As a result, the disassembled code is not sufficient to determine the 
target of this type of COFI. Therefore, tracing hardware must send out the destination IP in the trace packet for 
debug software to determine the target address of the COFI. Note that this IP may be a linear or effective address 
(see Section 34.3.1.1).
An indirect transfer instruction generates a Target IP Packet (TIP) that contains the target address of the branch. 
There are two sub-categories:
• Near JMP Indirect and Near Call Indirect

As previously mentioned, the target of an indirect COFI resides in the contents of either a register or memory
location. Therefore, the processor must generate a packet that includes this target address to allow the
decoder to determine the program flow.

• Near RET
When a CALL instruction executes, it pushes onto the stack the address of the next instruction following the
CALL. Upon completion of the call procedure, the RET instruction is often used to pop the return address off of
the call stack and redirect code flow back to the instruction following the CALL.
A RET instruction simply transfers program flow to the address it popped off the stack. Because a called
procedure may change the return address on the stack before executing the RET instruction, debug software

Table 33-1. COFI Type for Branch Instructions 

COFI Type Instructions

Conditional Branch JA, JAE, JB, JBE, JC, JCXZ, JECXZ, JRCXZ, JE, JG, JGE, JL, JLE, JNA, JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE, JNL, 
JNLE, JNO, JNP, JNS, JNZ, JO, JP, JPE, JPO, JS, JZ, LOOP, LOOPE, LOOPNE, LOOPNZ, LOOPZ

Unconditional Direct Branch JMP (E9 xx, EB xx), CALL (E8 xx)

Indirect Branch JMP (FF /4), CALL (FF /2), RET (C3, C2 xx)

Far Transfers INT1, INT3, INT n, INTO, IRET, IRETD, IRETQ, JMP (EA xx, FF /5), CALL (9A xx, FF /3), RET (CB, CA xx), 
SYSCALL, SYSRET, SYSENTER, SYSEXIT, VMLAUNCH, VMRESUME
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can be misled if it assumes that code flow will return to the instruction following the last CALL. Therefore,
even for near RET, a Target IP Packet may be sent.

— RET Compression

A special case is applied if the target of the RET is consistent with what would be expected from tracking the 
CALL stack. If it is assured that the decoder has seen the corresponding CALL (with “corresponding” defined 
as the CALL with matching stack depth), and the RET target is the instruction after that CALL, the RET 
target may be “compressed”. In this case, only a single TNT bit of “taken” is generated instead of a Target 
IP Packet. To ensure that the decoder will not be confused in cases of RET compression, only RETs that 
correspond to CALLs which have been seen since the last PSB packet may be compressed in a given logical 
processor. For details, see “Indirect Transfer Compression for Returns (RET)” in Section 34.4.2.2.

34.2.1.3  Far Transfer COFI
All operations that change the instruction pointer and are not near jumps are “far transfers”. This includes excep-
tions, interrupts, traps, TSX aborts, and instructions that do far transfers.
All far transfers will produce a Target IP (TIP) packet, which provides the destination IP address. For those far 
transfers that cannot be inferred from the binary source (e.g., asynchronous events such as exceptions and inter-
rupts), the TIP will be preceded by a Flow Update packet (FUP), which provides the source IP address at which the 
event was taken. Table 33-23 indicates exactly which IP will be included in the FUP generated by a far transfer.

34.2.2 Software Trace Instrumentation with PTWRITE
PTWRITE provides a mechanism by which software can instrument the Intel PT trace. PTWRITE is a ring3-acces-
sible instruction that can be passed to a register or memory variable, see “PTWRITE—Write Data to a Processor 
Trace Packet” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for details. The 
contents of that variable will be used as the payload for the PTW packet (see Table 33-40 “PTW Packet Definition”), 
inserted at the time of PTWRITE retirement, assuming PTWRITE is enabled and all other filtering conditions are 
met. Decode and analysis software will then be able to determine the meaning of the PTWRITE packet based on the 
IP of the associated PTWRITE instruction.
PTWRITE is enabled via IA32_RTIT_CTL.PTWEn[12] (see Table 33-6). Optionally, the user can use IA32_R-
TIT_CTL.FUPonPTW[5] to enable PTW packets to be followed by FUP packets containing the IP of the associated 
PTWRITE instruction. Support for PTWRITE is introduced in Intel Atom processors based on the Goldmont Plus 
microarchitecture.

34.2.3 Power Event Tracing
Power Event Trace is a capability that exposes core- and thread-level sleep state and power down transition infor-
mation. When this capability is enabled, the trace will expose information about:

— Scenarios where software execution stops.

• Due to sleep state entry, frequency change, or other powerdown.

• Includes the IP, when in the tracing context.

— The requested and resolved hardware thread C-state.

• Including indication of hardware autonomous C-state entry.

— The last and deepest core C-state achieved during a sleep session.

— The reason for C-state wake.
This information is in addition to the bus ratio (CBR) information provided by default after any powerdown, and the 
timing information (TSC, TMA, MTC, CYC) provided during or after a powerdown state.
Power Event Trace is enabled via IA32_RTIT_CTL.PwrEvtEn[4]. Support for Power Event Tracing is introduced in 
Intel Atom processors based on the Goldmont Plus microarchitecture.
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34.2.4 Event Tracing
Event Trace is a capability that exposes details about the asynchronous events, when they are generated, and 
when their corresponding software event handler completes execution. These include:
• Interrupts, including NMI and SMI, including the interrupt vector when defined.
• Faults, exceptions including the fault vector.

— Page faults additionally include the page fault address, when in context.
• Event handler returns, including IRET and RSM.
• VM exits and VM entries.1

— VM exits include the values written to the “exit reason” and “exit qualification” VMCS fields.
• INIT and SIPI events.
• TSX aborts, including the abort status returned for the RTM instructions.
• Shutdown.
Additionally, it provides indication of the status of the Interrupt Flag (IF), to indicate when interrupts are masked. 
Event Trace is enabled via IA32_RTIT_CTL.EventEn[31]. Event Trace information is conveyed in Control Flow Event 
(CFE) and Event Data (EVD) packets, as well as the legacy MODE.Exec packet. See Section 34.4.2 for packet 
details. Support for Event Trace is introduced in Intel® processors based on Gracemont microarchitecture.

34.2.5 Trace Filtering
Intel Processor Trace provides filtering capabilities, by which the debug/profile tool can control what code is traced. 

34.2.5.1  Filtering by Current Privilege Level (CPL)
Intel PT provides the ability to configure a logical processor to generate trace packets only when CPL = 0, when 
CPL > 0, or regardless of CPL. 
CPL filtering ensures that no IPs or other architectural state information associated with the filtered CPL can be 
seen in the log. For example, if the processor is configured to trace only when CPL > 0, and software executes 
SYSCALL (changing the CPL to 0), the destination IP of the SYSCALL will be suppressed from the generated packet 
(see the discussion of TIP.PGD in Section 34.4.2.5).
It should be noted that CPL is always 0 in real-address mode and that CPL is always 3 in virtual-8086 mode. To 
trace code in these modes, filtering should be configured accordingly.
When software is executing in a non-enabled CPL, ContextEn is cleared. See Section 34.2.6.1 for details.

34.2.5.2  Filtering by CR3
Intel PT supports a CR3-filtering mechanism by which the generation of packets containing architectural states can 
be enabled or disabled based on the value of CR3. A debugger can use CR3 filtering to trace only a single applica-
tion without context switching the state of the RTIT MSRs. For the reconstruction of traces from software with 
multiple threads, debug software may wish to context-switch for the state of the RTIT MSRs (if the operating 
system does not provide context-switch support) to separate the output for the different threads (see Section 
34.3.5, “Context Switch Consideration”).
To trace for only a single CR3 value, software can write that value to the IA32_RTIT_CR3_MATCH MSR, and set 
IA32_RTIT_CTL.CR3Filter. When CR3 value does not match IA32_RTIT_CR3_MATCH and IA32_RTIT_CTL.CR3Filter 
is 1, ContextEn is forced to 0, and packets containing architectural states will not be generated. Some other 
packets can be generated when ContextEn is 0; see Section 34.2.6.3 for details. When CR3 does match IA32_R-
TIT_CR3_MATCH (or when IA32_RTIT_CTL.CR3Filter is 0), CR3 filtering does not force ContextEn to 0 (although it 
could be 0 due to other filters or modes).

1. Logging of VMX transitions depends on VMCS configuration, see Section 34.5.1.
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CR3 matches IA32_RTIT_CR3_MATCH if the two registers are identical for bits 63:12, or 63:5 when in PAE paging 
mode; the lower 5 bits of CR3 and IA32_RTIT_CR3_MATCH are ignored. CR3 filtering is independent of the value of 
CR0.PG. 
When CR3 filtering is in use, PIP packets may still be seen in the log if the processor is configured to trace when 
CPL = 0 (IA32_RTIT_CTL.OS = 1). If not, no PIP packets will be seen.

34.2.5.3  Filtering by IP
Trace packet generation with configurable filtering by IP is supported if CPUID.(EAX=14H, ECX=0):EBX[bit 2] = 1. 
Intel PT can be configured to enable the generation of packets containing architectural states only when the 
processor is executing code within certain IP ranges. If the IP is outside of these ranges, generation of some 
packets is blocked.
IP filtering is enabled using the ADDRn_CFG fields in the IA32_RTIT_CTL MSR (Section 34.2.8.2), where the digit 
'n' is a zero-based number that selects which address range is being configured. Each ADDRn_CFG field configures 
the use of the register pair IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B (Section 34.2.8.5). IA32_RTIT_AD-
DRn_A defines the base and IA32_RTIT_ADDRn_B specifies the limit of the range in which tracing is enabled. Thus 
each range, referred to as the ADDRn range, is defined by [IA32_RTIT_ADDRn_A, IA32_RTIT_ADDRn_B]. There 
can be multiple such ranges, software can query CPUID (Section 34.3.1) for the number of ranges supported on a 
processor. 
Default behavior (ADDRn_CFG=0) defines no IP filter range, meaning FilterEn is always set. In this case code at 
any IP can be traced, though other filters, such as CR3 or CPL, could limit tracing. When ADDRn_CFG is set to 
enable IP filtering (see Section 34.3.1), tracing will commence when a taken branch or event is seen whose target 
address is in the ADDRn range.
While inside a tracing region and with FilterEn is set, leaving the tracing region may only be detected once a taken 
branch or event with a target outside the range is retired. If an ADDRn range is entered or exited by executing the 
next sequential instruction, rather than by a control flow transfer, FilterEn may not toggle immediately. See Section 
34.2.6.5 for more details on FilterEn. 
Note that these address range base and limit values are inclusive, such that the range includes the first and last 
instruction whose first instruction byte is in the ADDRn range.
Depending upon processor implementation, IP filtering may be based on linear or effective address. This can cause 
different behavior between implementations if CSbase is not equal to zero or in real mode. See Section 34.3.1.1 for 
details. Software can query CPUID to determine filters are based on linear or effective address (Section 34.3.1).
Note that some packets, such as MTC (Section 34.3.7) and other timing packets, do not depend on FilterEn. For 
details on which packets depend on FilterEn, and hence are impacted by IP filtering, see Section 34.4.1.

TraceStop

The ADDRn ranges can also be configured to cause tracing to be disabled upon entry to the specified region. This is 
intended for cases where unexpected code is executed, and the user wishes to immediately stop generating 
packets in order to avoid overwriting previously written packets.
The TraceStop mechanism works much the same way that IP filtering does, and uses the same address comparison 
logic. The TraceStop region base and limit values are programmed into one or more ADDRn ranges, but 
IA32_RTIT_CTL.ADDRn_CFG is configured with the TraceStop encoding. Like FilterEn, TraceStop is detected when 
a taken branch or event lands in a TraceStop region.
Further, TraceStop requires that TriggerEn=1 at the beginning of the branch/event, and ContextEn=1 upon 
completion of the branch/event. When this happens, the CPU will set IA32_RTIT_STATUS.Stopped, thereby 
clearing TriggerEn and hence disabling packet generation. This may generate a TIP.PGD packet with the target IP 
of the branch or event that entered the TraceStop region. Finally, a TraceStop packet will be inserted, to indicate 
that the condition was hit. 
If a TraceStop condition is encountered during buffer overflow (Section 34.3.8), it will not be dropped, but will 
instead be signaled once the overflow has resolved.
Note that a TraceStop event does not guarantee that all internally buffered packets are flushed out of internal 
buffers. To ensure that this has occurred, the user should clear TraceEn.
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To resume tracing after a TraceStop event, the user must first disable Intel PT by clearing IA32_RTIT_CTL.TraceEn 
before the IA32_RTIT_STATUS.Stopped bit can be cleared. At this point Intel PT can be reconfigured, and tracing 
resumed.
Note that the IA32_RTIT_STATUS.Stopped bit can also be set using the ToPA STOP bit. See Section 34.2.7.2.

IP Filtering Example

The following table gives an example of IP filtering behavior. Assume that IA32_RTIT_ADDRn_A = the IP of Range-
Base, and that IA32_RTIT_ADDRn_B = the IP of RangeLimit, while IA32_RTIT_CTL.ADDRn_CFG = 0x1 (enable 
ADDRn range as a FilterEn range).

IP Filtering and TraceStop

It is possible for the user to configure IP filter range(s) and TraceStop range(s) that overlap. In this case, code 
executing in the non-overlapping portion of either range will behave as would be expected from that range. Code 
executing in the overlapping range will get TraceStop behavior.

34.2.6 Packet Generation Enable Controls
Intel Processor Trace includes a variety of controls that determine whether a packet is generated. In general, most 
packets are sent only if Packet Enable (PacketEn) is set. PacketEn is an internal state maintained in hardware in 
response to software configurable enable controls, PacketEn is not visible to software directly. The relationship of 
PacketEn to the software-visible controls in the configuration MSRs is described in this section.

34.2.6.1  Packet Enable (PacketEn)
When PacketEn is set, the processor is in the mode that Intel PT is monitoring. PacketEn is composed of other 
states according to this relationship:

PacketEn := TriggerEn AND ContextEn AND FilterEn AND BranchEn
These constituent controls are detailed in the following subsections.
PacketEn ultimately determines when the processor is tracing. When PacketEn is set, all control flow packets are 
enabled. When PacketEn is clear, no control flow packets are generated, though other packets (timing and book-
keeping packets) may still be sent. See Section 34.2.7 for details of PacketEn and packet generation.
Note that, on processors that do not support IP filtering (i.e., CPUID.(EAX=14H, ECX=0):EBX[bit 2] = 0), FilterEn 
is treated as always set.

Table 33-2. IP Filtering Packet Example 

Code Flow Packets

Bar:
jmp RangeBase // jump into filter range

RangeBase:
jcc Foo // not taken
add eax, 1

Foo:
jmp RangeLimit+1 // jump out of filter range

RangeLimit:
nop
jcc Bar

TIP.PGE(RangeBase)

TNT(0)

TIP.PGD(RangeLimit+1)
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34.2.6.2  Trigger Enable (TriggerEn)
Trigger Enable (TriggerEn) is the primary indicator that trace packet generation is active. TriggerEn is set when 
IA32_RTIT_CTL.TraceEn is set, and cleared by any of the following conditions:
• TraceEn is cleared by software. 
• A TraceStop condition is encountered and IA32_RTIT_STATUS.Stopped is set.
• IA32_RTIT_STATUS.Error is set due to an operational error (see Section 34.3.10).
Software can discover the current TriggerEn value by reading the IA32_RTIT_STATUS.TriggerEn bit. When Trig-
gerEn is clear, tracing is inactive and no packets are generated.

34.2.6.3  Context Enable (ContextEn)
Context Enable (ContextEn) indicates whether the processor is in the state or mode that software configured 
hardware to trace. For example, if execution with CPL = 0 code is not being traced (IA32_RTIT_CTL.OS = 0), then 
ContextEn will be 0 when the processor is in CPL0.
Software can discover the current ContextEn value by reading the IA32_RTIT_STATUS.ContextEn bit. ContextEn is 
defined as follows:

ContextEn = !((IA32_RTIT_CTL.OS = 0 AND CPL = 0) OR
(IA32_RTIT_CTL.USER = 0 AND CPL > 0) OR (IS_IN_A_PRODUCTION_ENCLAVE1) OR
(IA32_RTIT_CTL.CR3Filter = 1 AND IA32_RTIT_CR3_MATCH does not match CR3)

If the clearing of ContextEn causes PacketEn to be cleared, a Packet Generation Disable (TIP.PGD) packet is gener-
ated, but its IP payload is suppressed. If the setting of ContextEn causes PacketEn to be set, a Packet Generation 
Enable (TIP.PGE) packet is generated.
When ContextEn is 0, control flow packets (TNT, FUP, TIP.*, MODE.*) are not generated, and no Linear Instruction 
Pointers (LIPs) are exposed. However, some packets, such as MTC and PSB (see Section 34.4.2.16 and Section 
34.4.2.17), may still be generated while ContextEn is 0. For details of which packets are generated only when 
ContextEn is set, see Section 34.4.1.
The processor does not update ContextEn when TriggerEn = 0.
The value of ContextEn will toggle only when TriggerEn = 1.

34.2.6.4  Branch Enable (BranchEn)
This value is based purely on the IA32_RTIT_CTL.BranchEn value. If BranchEn is not set, then relevant COFI 
packets (TNT, TIP*, FUP, MODE.*) are suppressed. Other packets related to timing (TSC, TMA, MTC, CYC), as well 
as PSB, will be generated normally regardless. Further, PIP and VMCS continue to be generated, as indicators of 
what software is running.

34.2.6.5  Filter Enable (FilterEn)
Filter Enable indicates that the Instruction Pointer (IP) is within the range of IPs that Intel PT is configured to watch. 
Software can get the state of Filter Enable by a RDMSR of IA32_RTIT_STATUS.FilterEn. For details on configuration 
and use of IP filtering, see Section 34.2.5.3.
On clearing of FilterEn that also clears PacketEn, a Packet Generation Disable (TIP.PGD) will be generated, but 
unlike the ContextEn case, the IP payload may not be suppressed. For direct, unconditional branches, as well as for 
indirect branches (including RETs), the PGD generated by leaving the tracing region and clearing FilterEn will 
contain the target IP. This means that IPs from outside the configured range can be exposed in the trace, as long 
as they are within context. 
When FilterEn is 0, control flow packets are not generated (e.g., TNT, TIP). However, some packets, such as PIP, 
MTC, and PSB, may still be generated while FilterEn is clear. For details on packet enable dependencies, see Section 
34.4.1.

1. Trace packets generation is disabled in a production enclave, see Section 34.2.9.5. See the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3D, about differences between a production enclave and a debug enclave.
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After TraceEn is set, FilterEn is set to 1 at all times if there is no IP filter range configured by software 
(IA32_RTIT_CTL.ADDRn_CFG != 1, for all n), or if the processor does not support IP filtering (i.e., 
CPUID.(EAX=14H, ECX=0):EBX[bit 2] = 0). FilterEn will toggle only when TraceEn=1 and ContextEn=1, and when 
at least one range is configured for IP filtering.

34.2.7 Trace Output
Intel PT output should be viewed independently from trace content and filtering mechanisms. The options available 
for trace output can vary across processor generations and platforms. 
Trace output is written out using one of the following output schemes, as configured by the ToPA and FabricEn bit 
fields of IA32_RTIT_CTL (see Section 34.2.8.2):
• A single, contiguous region of physical address space. 
• A collection of variable-sized regions of physical memory. These regions are linked together by tables of 

pointers to those regions, referred to as Table of Physical Addresses (ToPA). The trace output stores bypass 
the caches and the TLBs, but are not serializing. This is intended to minimize the performance impact of the 
output.

• A platform-specific trace transport subsystem.
Regardless of the output scheme chosen, Intel PT stores bypass the processor caches by default. This ensures that 
they don't consume precious cache space, but they do not have the serializing aspects associated with un-cache-
able (UC) stores. Software should avoid using MTRRs to mark any portion of the Intel PT output region as UC, as 
this may override the behavior described above and force Intel PT stores to UC, thereby incurring severe perfor-
mance impact.
There is no guarantee that a packet will be written to memory or other trace endpoint after some fixed number of 
cycles after a packet-producing instruction executes. The only way to assure that all packets generated have 
reached their endpoint is to clear TraceEn and follow that with a store, fence, or serializing instruction; doing so 
ensures that all buffered packets are flushed out of the processor. 

34.2.7.1  Single Range Output
When IA32_RTIT_CTL.ToPA and IA32_RTIT_CTL.FabricEn bits are clear, trace packet output is sent to a single, 
contiguous memory (or MMIO if DRAM is not available) range defined by a base address in 
IA32_RTIT_OUTPUT_BASE (Section 34.2.8.7) and mask value in IA32_RTIT_OUTPUT_MASK_PTRS (Section 
34.2.8.8). The current write pointer in this range is also stored in IA32_RTIT_OUTPUT_MASK_PTRS. This output 
range is circular, meaning that when the writes wrap around the end of the buffer they begin again at the base 
address.
This output method is best suited for cases where Intel PT output is either:
• Configured to be directed to a sufficiently large contiguous region of DRAM. 
• Configured to go to an MMIO debug port, in order to route Intel PT output to a platform-specific trace endpoint 

(e.g., JTAG). In this scenario, a specific range of addresses is written in a circular manner, and SoC will intercept 
these writes and direct them to the proper device. Repeated writes to the same address do not overwrite each 
other, but are accumulated by the debugger, and hence no data is lost by the circular nature of the buffer. 

The processor will determine the address to which to write the next trace packet output byte as follows:

OutputBase[63:0] := IA32_RTIT_OUTPUT_BASE[63:0]
OutputMask[63:0] := ZeroExtend64(IA32_RTIT_OUTPUT_MASK_PTRS[31:0])
OutputOffset[63:0] := ZeroExtend64(IA32_RTIT_OUTPUT_MASK_PTRS[63:32])
trace_store_phys_addr := (OutputBase & ~OutputMask) + (OutputOffset & OutputMask)
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Single-Range Output Errors

If the output base and mask are not properly configured by software, an operational error (see Section 34.3.10) 
will be signaled, and tracing disabled. Error scenarios with single-range output are:
• Mask value is non-contiguous.

IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTablePointer value has a 0 in a less significant bit position than the
most significant bit containing a 1.

• Base address and Mask are mis-aligned, and have overlapping bits set.
IA32_RTIT_OUTPUT_BASE && IA32_RTIT_OUTPUT_MASK_PTRS[31:0] > 0. 

• Illegal Output Offset
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset is greater than the mask value 
IA32_RTIT_OUTPUT_MASK_PTRS[31:0].

Also note that errors can be signaled due to trace packet output overlapping with restricted memory, see Section 
34.2.7.4.

34.2.7.2  Table of Physical Addresses (ToPA)
When IA32_RTIT_CTL.ToPA is set and IA32_RTIT_CTL.FabricEn is clear, the ToPA output mechanism is utilized. The 
ToPA mechanism uses a linked list of tables; see Figure 34-1 for an illustrative example. Each entry in the table 
contains some attribute bits, a pointer to an output region, and the size of the region. The last entry in the table 
may hold a pointer to the next table. This pointer can either point to the top of the current table (for circular array) 
or to the base of another table. The table size is not fixed, since the link to the next table can exist at any entry.
The processor treats the various output regions referenced by the ToPA table(s) as a unified buffer. This means that 
a single packet may span the boundary between one output region and the next.
The ToPA mechanism is controlled by three values maintained by the processor:
• proc_trace_table_base.

This is the physical address of the base of the current ToPA table. When tracing is enabled, the processor loads 
this value from the IA32_RTIT_OUTPUT_BASE MSR. While tracing is enabled, the processor updates the 
IA32_RTIT_OUTPUT_BASE MSR with changes to proc_trace_table_base, but these updates may not be 
synchronous to software execution. When tracing is disabled, the processor ensures that the MSR contains the 
latest value of proc_trace_table_base.

• proc_trace_table_offset.
This indicates the entry of the current table that is currently in use. (This entry contains the address of the 
current output region.) When tracing is enabled, the processor loads the value from bits 31:7 (MaskOrT-
ableOffset) of the IA32_RTIT_OUTPUT_MASK_PTRS into bits 27:3 of proc_trace_table_offset. While tracing is 
enabled, the processor updates IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset with changes to 
proc_trace_table_offset, but these updates may not be synchronous to software execution. When tracing is 
disabled, the processor ensures that the MSR contains the latest value of proc_trace_table_offset.

• proc_trace_output_offset.
This a pointer into the current output region and indicates the location of the next write. When tracing is 
enabled, the processor loads this value from bits 63:32 (OutputOffset) of the 
IA32_RTIT_OUTPUT_MASK_PTRS. While tracing is enabled, the processor updates 
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset with changes to proc_trace_output_offset, but these updates 
may not be synchronous to software execution. When tracing is disabled, the processor ensures that the MSR 
contains the latest value of proc_trace_output_offset.
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Figure 34-1 provides an illustration (not to scale) of the table and associated pointers.

With the ToPA mechanism, the processor writes packets to the current output region (identified by 
proc_trace_table_base and the proc_trace_table_offset). The offset within that region to which the next byte will 
be written is identified by proc_trace_output_offset. When that region is filled with packet output (thus 
proc_trace_output_offset = RegionSize–1), proc_trace_table_offset is moved to the next ToPA entry, 
proc_trace_output_offset is set to 0, and packet writes begin filling the new output region specified by 
proc_trace_table_offset.
As packets are written out, each store derives its physical address as follows:

trace_store_phys_addr := Base address from current ToPA table entry + 
proc_trace_output_offset

Eventually, the regions represented by all entries in the table may become full, and the final entry of the table is 
reached. An entry can be identified as the final entry because it has either the END or STOP attribute. The END 
attribute indicates that the address in the entry does not point to another output region, but rather to another ToPA 
table. The STOP attribute indicates that tracing will be disabled once the corresponding region is filled. See Table 
33-3 and the section that follows for details on STOP.
When an END entry is reached, the processor loads proc_trace_table_base with the base address held in this END 
entry, thereby moving the current table pointer to this new table. The proc_trace_table_offset is reset to 0, as is 
the proc_trace_output_offset, and packet writes will resume at the base address indicated in the first entry.
If the table has no STOP or END entry, and trace-packet generation remains enabled, eventually the maximum 
table size will be reached (proc_trace_table_offset = 0FFFFFF8H). In this case, the proc_trace_table_offset and 
proc_trace_output_offset are reset to 0 (wrapping back to the beginning of the current table) once the last output 
region is filled.

Figure 34-1.  ToPA Memory Illustration

0FF_FFFF _FFFFH

STOP=1

proc_trace_output_offset: IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset

proc_trace_table_offset: 
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 IA32_RTIT_OUTPUT_MASK_PRS.MaskOrTableOffset<<3
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It is important to note that processor updates to the IA32_RTIT_OUTPUT_BASE and 
IA32_RTIT_OUTPUT_MASK_PTRS MSRs are asynchronous to instruction execution. Thus, reads of these MSRs 
while Intel PT is enabled may return stale values. Like all IA32_RTIT_* MSRs, the values of these MSRs should not 
be trusted or saved unless trace packet generation is first disabled by clearing IA32_RTIT_CTL.TraceEn. This 
ensures that the output MSR values account for all packets generated to that point, after which the processor will 
cease updating the output MSR values until tracing resumes. 1

The processor may cache internally any number of entries from the current table or from tables that it references 
(directly or indirectly). If tracing is enabled, the processor may ignore or delay detection of modifications to these 
tables. To ensure that table changes are detected by the processor in a predictable manner, software should clear 
TraceEn before modifying the current table (or tables that it references) and only then re-enable packet generation.

Single Output Region ToPA Implementation

The first processor generation to implement Intel PT supports only ToPA configurations with a single ToPA entry 
followed by an END entry that points back to the first entry (creating one circular output buffer). Such processors 
enumerate CPUID.(EAX=14H,ECX=0):ECX.MENTRY[bit 1] = 0 and CPUID.(EAX=14H,ECX=0):ECX.TOPAOUT[bit 
0] = 1. 
If CPUID.(EAX=14H,ECX=0):ECX.MENTRY[bit 1] = 0, ToPA tables can hold only one output entry, which must be 
followed by an END=1 entry which points back to the base of the table. Hence only one contiguous block can be 
used as output.
The lone output entry can have INT or STOP set, but nonetheless must be followed by an END entry as described 
above. Note that, if INT=1, the PMI will actually be delivered before the region is filled.

ToPA Table Entry Format

The format of ToPA table entries is shown in Figure 34-2. The size of the address field is determined by the 
processor’s physical-address width (MAXPHYADDR) in bits, as reported in CPUID.80000008H:EAX[7:0].

Table 33-3 describes the details of the ToPA table entry fields. If reserved bits are set to 1, an error is signaled.

1. Although WRMSR is a serializing instruction, the execution of WRMSR that forces packet writes by clearing Tra-
ceEn does not itself cause these writes to be globally observed.

Figure 34-2.  Layout of ToPA Table Entry

Table 33-3. ToPA Table Entry Fields

ToPA Entry Field Description

Output Region 
Base Physical 
Address

If END=0, this is the base physical address of the output region specified by this entry. Note that all regions 
must be aligned based on their size. Thus a 2M region must have bits 20:12 clear. If the region is not properly 
aligned, an operational error will be signaled when the entry is reached.
If END=1, this is the 4K-aligned base physical address of the next ToPA table (which may be the base of the cur-
rent table, or the first table in the linked list if a circular buffer is desired). If the processor supports only a single 
ToPA output region (see above), this address must be the value currently in the IA32_RTIT_OUTPUT_BASE 
MSR.

11 91012MAXPHYADDR–1

9:6 Size

6 5 0

4 : STOP
2 : INT
0 : END

Output Region Base Physical Address

4 13 2

Reserved

63
34-12 Vol. 3C



INTEL® PROCESSOR TRACE
ToPA STOP

Each ToPA entry has a STOP bit. If this bit is set, the processor will set the IA32_RTIT_STATUS.Stopped bit when 
the corresponding trace output region is filled. This will clear TriggerEn and thereby cease packet generation. See 
Section 34.2.8.4 for details on IA32_RTIT_STATUS.Stopped. This sequence is known as “ToPA Stop”.
No TIP.PGD packet will be seen in the output when the ToPA stop occurs, since the disable happens only when the 
region is already full. When this occurs, output ceases after the last byte of the region is filled, which may mean 
that a packet is cut off in the middle. Any packets remaining in internal buffers are lost and cannot be recovered. 
When ToPA stop occurs, the IA32_RTIT_OUTPUT_BASE MSR will hold the base address of the table whose entry 
had STOP=1. IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset will hold the index value for that entry, and the 
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset should be set to the size of the region minus one. 
Note that this means the offset pointer is pointing to the next byte after the end of the region, a configuration that 
would produce an operational error if the configuration remained when tracing is re-enabled with 
IA32_RTIT_STATUS.Stopped cleared. 

ToPA PMI

Each ToPA entry has an INT bit. If this bit is set, the processor will signal a performance-monitoring interrupt (PMI) 
when the corresponding trace output region is filled. This interrupt is not precise, and it is thus likely that writes to 
the next region will occur by the time the interrupt is taken.
The following steps should be taken to configure this interrupt:

1. Enable PMI via the LVT Performance Monitor register (at MMIO offset 340H in xAPIC mode; via MSR 834H in 
x2APIC mode). See the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for more 
details on this register. For ToPA PMI, set all fields to 0, save for the interrupt vector, which can be selected by 
software.

2. Set up an interrupt handler to service the interrupt vector that a ToPA PMI can raise.

3. Set the interrupt flag by executing STI.

4. Set the INT bit in the ToPA entry of interest and enable packet generation, using the ToPA output option. Thus, 
TraceEn=ToPA=1 in the IA32_RTIT_CTL MSR.

Once the INT region has been filled with packet output data, the interrupt will be signaled. This PMI can be distin-
guished from others by checking bit 55 (Trace_ToPA_PMI) of the IA32_PERF_GLOBAL_STATUS MSR (MSR 38EH). 
Once the ToPA PMI handler has serviced the relevant buffer, writing 1 to bit 55 of the MSR at 390H 
(IA32_GLOBAL_STATUS_RESET) clears IA32_PERF_GLOBAL_STATUS.Trace_ToPA_PMI.

Size Indicates the size of the associated output region. Encodings are:
0: 4K, 1: 8K, 2: 16K, 3: 32K, 4: 64K, 5: 128K, 6: 256K, 7: 512K, 
8: 1M, 9: 2M, 10: 4M, 11: 8M, 12: 16M, 13: 32M, 14: 64M, 15: 128M
This field is ignored if END=1.

STOP When the output region indicated by this entry is filled, software should disable packet generation. This will be 
accomplished by setting IA32_RTIT_STATUS.Stopped, which clears TriggerEn. This bit must be 0 if END=1; oth-
erwise it is treated as reserved bit violation (see ToPA Errors).

INT When the output region indicated by this entry is filled, signal Perfmon LVT interrupt. 
Note that if both INT and STOP are set in the same entry, the STOP will happen before the INT. Thus the inter-
rupt handler should expect that the IA32_RTIT_STATUS.Stopped bit will be set, and will need to be reset before 
tracing can be resumed.
This bit must be 0 if END=1; otherwise it is treated as reserved bit violation (see ToPA Errors).

END If set, indicates that this is an END entry, and thus the address field points to a table base rather than an output 
region base.
If END=1, INT and STOP must be set to 0; otherwise it is treated as reserved bit violation (see ToPA Errors). The 
Size field is ignored in this case.
If the processor supports only a single ToPA output region (see above), END must be set in the second table 
entry.

Table 33-3. ToPA Table Entry Fields (Contd.)

ToPA Entry Field Description
Vol. 3C 34-13



INTEL® PROCESSOR TRACE
Intel PT is not frozen on PMI, and thus the interrupt handler will be traced (though filtering can prevent this). The 
Freeze_Perfmon_on_PMI and Freeze_LBRs_on_PMI settings in IA32_DEBUGCTL will be applied on ToPA PMI just as 
on other PMIs, and hence Perfmon counters are frozen.
Assuming the PMI handler wishes to read any buffered packets for persistent output, or wishes to modify any Intel 
PT MSRs, software should first disable packet generation by clearing TraceEn. This ensures that all buffered packets 
are written to memory and avoids tracing of the PMI handler. The configuration MSRs can then be used to deter-
mine where tracing has stopped. If packet generation is disabled by the handler, it should then be manually re-
enabled before the IRET if continued tracing is desired.
In rare cases, it may be possible to trigger a second ToPA PMI before the first is handled. This can happen if another 
ToPA region with INT=1 is filled before, or shortly after, the first PMI is taken, perhaps due to EFLAGS.IF being 
cleared for an extended period of time. This can manifest in two ways: either the second PMI is triggered before the 
first is taken, and hence only one PMI is taken, or the second is triggered after the first is taken, and thus will be 
taken when the handler for the first completes. Software can minimize the likelihood of the second case by clearing 
TraceEn at the beginning of the PMI handler. Further, it can detect such cases by then checking the Interrupt 
Request Register (IRR) for PMI pending, and checking the ToPA table base and off-set pointers (in 
IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS) to see if multiple entries with INT=1 have been 
filled.

PMI Preservation

In some cases a ToPA PMI may be taken after completion of an XSAVES instruction that saves Intel PT state, and in 
such cases any modification of Intel PT MSRs within the PMI handler will not persist when the saved Intel PT context 
is later restored with XRSTORS. To account for such a scenario, the PMI Preservation feature has been added. 
Support for this feature is indicated by CPUID.(EAX=14H, ECX=0):EBX[bit 6].
When IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1, PMI preservation is enabled. When a ToPA region with 
INT=1 is filled, a PMI is pended and the new IA32_RTIT_STATUS.PendToPAPMI[7] is set to 1. If this bit is set when 
Intel PT is enabled, such that IA32_RTIT_CTL.TraceEn[0] transitions from 0 to 1, a ToPA PMI is pended. This 
behavior ensures that any ToPA PMI that is pended during XSAVES, and hence can't be properly handled, will be re-
pended when the saved PT state is restored.
When this feature is enabled, the PMI handler should take the following actions:

1. Ignore ToPA PMIs that are taken when TraceEn = 0. This indicates that the PMI was pended during Intel PT 
disable, and the PendToPAPMI flag will ensure that the PMI is re-pended once Intel PT is re-enabled in the same 
context. For this reason, the PendToPAPMI bit should be left set to 1.

2. If TraceEn=1 and the PMI can be properly handled, clear the new PendTopaPMI bit. This will ensure that 
additional, spurious ToPA PMIs are not taken. It is required that PendToPAPMI is cleared before the PMI LVT 
mask is cleared in the APIC, and before any clearing of either LBRS_FROZEN or COUNTERS_FROZEN in 
IA32_PERF_GLOBAL_STATUS. 

ToPA PMI and Single Output Region ToPA Implementation

A processor that supports only a single ToPA output region implementation (such that only one output region is 
supported; see above) will attempt to signal a ToPA PMI interrupt before the output wraps and overwrites the top 
of the buffer. To support this functionality, the PMI handler should disable packet generation as soon as possible.
Due to PMI skid, it is possible that, in rare cases, the wrap will have occurred before the PMI is delivered. Software 
can avoid this by setting the STOP bit in the ToPA entry (see Table 33-3); this will disable tracing once the region is 
filled, and no wrap will occur. This approach has the downside of disabling packet generation so that some of the 
instructions that led up to the PMI will not be traced. If the PMI skid is significant enough to cause the region to fill 
and tracing to be disabled, the PMI handler will need to clear the IA32_RTIT_STATUS.Stopped indication before 
tracing can resume.
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ToPA PMI and XSAVES/XRSTORS State Handling

In some cases the ToPA PMI may be taken after completion of an XSAVES instruction that switches Intel PT state, 
and in such cases any modification of Intel PT MSRs within the PMI handler will not persist when the saved Intel PT 
context is later restored with XRSTORS. To account for such a scenario, it is recommended that the Intel PT output 
configuration be modified by altering the ToPA tables themselves, rather than the Intel PT output MSRs. On proces-
sors that support PMI preservation (CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 1), setting IA32_RTIT_CTL.InjectPsb-
PmiOnEnable[56] = 1 will ensure that a PMI that is pending at the time PT is disabled will be recorded by setting 
IA32_RTIT_STATUS.PendTopaPMI[7] = 1. A PMI will then be pended when the saved PT context is later restored.
Table 33-4 depicts a recommended PMI handler algorithm for managing multi-region ToPA output and handling 
ToPA PMIs that may arrive between XSAVES and XRSTORS, if PMI preservation is not in use. This algorithm is flex-
ible to allow software to choose between adding entries to the current ToPA table, adding a new ToPA table, or using 
the current ToPA table as a circular buffer. It assumes that the ToPA entry that triggers the PMI is not the last entry 
in the table, which is the recommended treatment.

ToPA Errors

When a malformed ToPA entry is found, an operational error results (see Section 34.3.10). A malformed entry 
can be any of the following:

1. ToPA entry reserved bit violation.
This describes cases where a bit marked as reserved in Section 34.2.7.2 above is set to 1.

2. ToPA alignment violation.
This includes cases where illegal ToPA entry base address bits are set to 1:

a. ToPA table base address is not 4KB-aligned. The table base can be from a WRMSR to 
IA32_RTIT_OUTPUT_BASE, or from a ToPA entry with END=1.

b. ToPA entry base address is not aligned to the ToPA entry size (e.g., a 2MB region with base address[20:12] 
not equal to 0), for ToPA entries with END=0.

c. ToPA entry base address sets upper physical address bits not supported by the processor.

Table 33-4. Algorithm to Manage Intel PT ToPA PMI and XSAVES/XRSTORS 

Pseudo Code Flow

IF (IA32_PERF_GLOBAL_STATUS.ToPA)
    Save IA32_RTIT_CTL value;
    IF ( IA32_RTIT_CTL.TraceEN )
        Disable Intel PT by clearing TraceEn; 
    FI;
    IF ( there is space available to grow the current ToPA table )
        Add one or more ToPA entries after the last entry in the ToPA table; 
        Point new ToPA entry address field(s) to new output region base(s);
    ELSE 
        Modify an upcoming ToPA entry in the current table to have END=1;
        IF (output should transition to a new ToPA table )
            Point the address of the “END=1” entry of the current table to the new table base; 
        ELSE 
            /* Continue to use the current ToPA table, make a circular. */ 
            Point the address of the “END=1”l entry to the base of the current table; 
            Modify the ToPA entry address fields for filled output regions to point to new, unused output regions;
            /* Filled regions are those with index in the range of 0 to (IA32_RTIT_MASK_PTRS.MaskOrTableOffset -1). */ 
        FI;

FI;
Restore saved IA32_RTIT_CTL.value;

FI;
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3. Illegal ToPA Output Offset.
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset is greater than or equal to the size of the current ToPA output 
region size.

4. ToPA rules violations.
These are similar to ToPA entry reserved bit violations; they are cases when a ToPA entry is encountered with 
illegal field combinations. They include the following:

a. Setting the STOP or INT bit on an entry with END=1.

b. Setting the END bit in entry 0 of a ToPA table.

c. On processors that support only a single ToPA entry (see above), two additional illegal settings apply:

i) ToPA table entry 1 with END=0.

ii) ToPA table entry 1 with base address not matching the table base.
In all cases, the error will be logged by setting IA32_RTIT_STATUS.Error, thereby disabling tracing when the prob-
lematic ToPA entry is reached (when proc_trace_table_offset points to the entry containing the error). Any packet 
bytes that are internally buffered when the error is detected may be lost. 
Note that operational errors may also be signaled due to attempts to access restricted memory. See Section 
34.2.7.4 for details.
A tracing software have a range of flexibility using ToPA to manage the interaction of Intel PT with application 
buffers, see Section 34.4.2.26.

34.2.7.3  Trace Transport Subsystem 
When IA32_RTIT_CTL.FabricEn is set, the IA32_RTIT_CTL.ToPA bit is ignored, and trace output is written to the 
trace transport subsystem. The endpoints of this transport are platform-specific, and details of configuration 
options should refer to the specific platform documentation. The FabricEn bit is available to be set if 
CPUID(EAX=14H,ECX=0):EBX[bit 3] = 1.

34.2.7.4  Restricted Memory Access
Packet output cannot be directed to any regions of memory that are restricted by the platform. In particular, all 
memory accesses on behalf of packet output are checked against the SMRR regions. If there is any overlap with 
these regions, trace data collection will not function properly. Exact processor behavior is implementation-depen-
dent; Table 33-5 summarizes several scenarios.

It should also be noted that packet output should not be routed to the 4KB APIC MMIO region, as defined by the 
IA32_APIC_BASE MSR. For details about the APIC, refer to the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A. No error is signaled for this case.

Modifications to Restricted Memory Regions

It is recommended that software disable packet generation before modifying the SMRRs to change the scope of the 
SMRR regions. This is because the processor reserves the right to cache any number of ToPA table entries inter-
nally, after checking them against restricted memory ranges. Once cached, the entries will not be checked again, 
meaning one could potentially route packet output to a newly restricted region. Software can ensure that any 
cached entries are written to memory by clearing IA32_RTIT_CTL.TraceEn.

Table 33-5. Behavior on Restricted Memory Access

Scenario Description

ToPA output region 
overlaps with 
SMRR

Stores to the restricted memory region will be dropped, and that packet data will be lost. Any attempt to read 
from that restricted region will return all 1s. The processor also may signal an error (Section 34.3.10) and dis-
able tracing when the output pointer reaches the restricted region. If packet generation remains enabled, then 
packet output may continue once stores are no longer directed to restricted memory (on wrap, or if the output 
region is larger than the restricted memory region).

ToPA table overlaps 
with SMRR

The processor will signal an error (Section 34.3.10) and disable tracing when the ToPA write pointer (IA32_R-
TIT_OUTPUT_BASE + proc_trace_table_offset) enters the restricted region.
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34.2.8 Enabling and Configuration MSRs

34.2.8.1  General Considerations
Trace packet generation is enabled and configured by a collection of model-specific registers (MSRs), which are 
detailed below. Some notes on the configuration MSR behavior:
• If Intel Processor Trace is not supported by the processor (see Section 34.3.1), RDMSR or WRMSR of the 

IA32_RTIT_* MSRs will cause #GP. 
• A WRMSR to any of the IA32_RTIT_* configuration MSRs while packet generation is enabled 

(IA32_RTIT_CTL.TraceEn=1) will generate a #GP exception. Packet generation must be disabled before the 
configuration MSRs can be changed.

Note: Software may write the same value back to IA32_RTIT_CTL without #GP, even if TraceEn=1.
• All configuration MSRs for Intel PT are duplicated per logical processor
• For each configuration MSR, any MSR write that attempts to change bits marked reserved, or utilize encodings 

marked reserved, will cause a #GP fault.
• All configuration MSRs for Intel PT are cleared on a warm or cold RESET. 

— If CPUID.(EAX=14H, ECX=0):EBX[bit 2] = 1, only the TraceEn bit is cleared on warm RESET; though this 
may have the impact of clearing other bits in IA32_RTIT_STATUS. Other MSR values of the trace configu-
ration MSRs are preserved on warm RESET.

• The semantics of MSR writes to trace configuration MSRs in this chapter generally apply to explicit WRMSR to 
these registers, using VMexit or VM entry MSR load list to these MSRs, XRSTORS with requested feature bit 
map including XSAVE map component of state_8 (corresponding to IA32_XSS[bit 8]), and the write to 
IA32_RTIT_CTL.TraceEn by XSAVES (Section 34.3.5.2).

34.2.8.2  IA32_RTIT_CTL MSR
IA32_RTIT_CTL, at address 570H, is the primary enable and control MSR for trace packet generation. Bit positions 
are listed in Table 33-6.

Table 33-6. IA32_RTIT_CTL MSR

Position Bit Name At Reset Bit Description

0 TraceEn 0 If 1, enables tracing; else tracing is disabled.

When this bit transitions from 1 to 0, all buffered packets are flushed out of internal buffers. 
A further store, fence, or architecturally serializing instruction may be required to ensure that 
packet data can be observed at the trace endpoint. See Section 34.2.8.3 for details of 
enabling and disabling packet generation.

Note that the processor will clear this bit on #SMI (Section 34.2.9.3) and warm reset. Other 
MSR bits of IA32_RTIT_CTL (and other trace configuration MSRs) are not impacted by these 
events.

1 CYCEn 0 0: Disables CYC Packet (see Section 34.4.2.14).

1: Enables CYC Packet.

This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 0.

2 OS 0 0: Packet generation is disabled when CPL = 0.

1: Packet generation may be enabled when CPL = 0.

3 User 0 0: Packet generation is disabled when CPL > 0.

1: Packet generation may be enabled when CPL > 0.

4 PwrEvtEn 0 0: Power Event Trace packets are disabled.

1: Power Event Trace packets are enabled (see Section 34.2.3, “Power Event Tracing”).
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5 FUPonPTW 0 0: PTW packets are not followed by FUPs.

1: PTW packets are followed by FUPs.

This bit is reserved when CPUID.(EAX=14H, ECX=0):EBX[bit 4] (“PTWRITE Supported”) is 0.

6 FabricEn 0 0: Trace output is directed to the memory subsystem, mechanism depends on 
IA32_RTIT_CTL.ToPA.

1: Trace output is directed to the trace transport subsystem, IA32_RTIT_CTL.ToPA is ignored. 
This bit is reserved if CPUID.(EAX=14H, ECX=0):ECX[bit 3] = 0.

7 CR3Filter 0 0: Disables CR3 filtering.

1: Enables CR3 filtering.

This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 0] (“CR3 Filtering Support”) is 0.

8 ToPA 0 0: Single-range output scheme enabled if CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] 
= 1 and IA32_RTIT_CTL.FabricEn=0.

1: ToPA output scheme enabled (see Section 34.2.7.2) if CPUID.(EAX=14H, 
ECX=0):ECX.TOPA[bit 0] = 1, and IA32_RTIT_CTL.FabricEn=0.

Note: WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit and FabricEn would 
cause #GP, if CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0.

WRMSR to IA32_RTIT_CTL that sets this bit causes #GP, if CPUID.(EAX=14H, 
ECX=0):ECX.TOPA[bit 0] = 0.

9 MTCEn 0 0: Disables MTC Packet (see Section 34.4.2.16).

1: Enables MTC Packet.

This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 3] = 0.

10 TSCEn 0 0: Disable TSC packets.

1: Enable TSC packets (see Section 34.4.2.11).

11 DisRETC 0 0: Enable RET compression.

1: Disable RET compression (see Section 34.2.1.2).

12 PTWEn 0 0: PTWRITE packet generation disabled.

1: PTWRITE packet generation enabled (see Table 33-40 “PTW Packet Definition”).

This bit is reserved when CPUID.(EAX=14H, ECX=0):EBX[bit 4] (“PTWRITE Supported”) is 0.

13 BranchEn 0 0: Disable COFI-based packets.

1: Enable COFI-based packets: FUP, TIP, TIP.PGE, TIP.PGD, TNT, MODE.Exec, MODE.TSX.

See Section 34.2.6.4 for details on BranchEn.

17:14 MTCFreq 0 Defines MTC packet Frequency, which is based on the core crystal clock, or Always Running 
Timer (ART). MTC will be sent each time the selected ART bit toggles. The following Encodings 
are defined:

0: ART(0), 1: ART(1), 2: ART(2), 3: ART(3), 4: ART(4), 5: ART(5), 6: ART(6), 7: ART(7), 
8: ART(8),  9: ART(9), 10: ART(10), 11: ART(11), 12: ART(12), 13: ART(13), 14: ART(14), 15: 

ART(15)
Software must use CPUID to query the supported encodings in the processor, see Section 
34.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if 
CPUID.(EAX=14H, ECX=0):EBX[bit 3] = 0.

18 Reserved 0 Must be 0.

Table 33-6. IA32_RTIT_CTL MSR (Contd.)

Position Bit Name At Reset Bit Description
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22:19 CycThresh 0 CYC packet threshold, see Section 34.3.6 for details. CYC packets will be sent with the first 
eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then 
N=0, otherwise N is defined as 2(CycThresh-1). The following Encodings are defined:

0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64, 
8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384
Software must use CPUID to query the supported encodings in the processor, see Section 
34.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if 
CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 0.

23 Reserved 0 Must be 0.

27:24 PSBFreq 0 Indicates the frequency of PSB packets. PSB packet frequency is based on the number of Intel 
PT packet bytes output, so this field allows the user to determine the increment of 
IA32_IA32_RTIT_STATUS.PacketByteCnt that should cause a PSB to be generated. Note that 
PSB insertion is not precise, but the average output bytes per PSB should approximate the 
SW selected period. The following Encodings are defined:

0: 2K, 1: 4K, 2: 8K, 3: 16K, 4: 32K, 5: 64K, 6: 128K, 7: 256K, 
8: 512K, 9: 1M, 10: 2M, 11: 4M, 12: 8M, 13: 16M, 14: 32M, 15: 64M
Software must use CPUID to query the supported encodings in the processor, see Section 
34.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if 
CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 0.

30:28 Reserved 0 Must be 0.

31 EventEn 0 0: Event Trace packets are disabled.

1: Event Trace packets are enabled.

This bit is reserved when CPUID.(EAX=14H, ECX=0):EBX[bit 7] (“Event Trace Supported”) is 0.

35:32 ADDR0_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR0_A/B based on the following 
encodings:

0: ADDR0 range unused.

1: The [IA32_RTIT_ADDR0_A..IA32_RTIT_ADDR0_B] range defines a FilterEn range. FilterEn 
will only be set when the IP is within this range, though other FilterEn ranges can additionally 
be used. See Section 34.2.5.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR0_A..IA32_RTIT_ADDR0_B] range defines a TraceStop range. 
TraceStop will be asserted if code branches into this range. See 4.2.8 for details on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 1.

39:36 ADDR1_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR1_A/B based on the following 
encodings:

0: ADDR1 range unused.

1: The [IA32_RTIT_ADDR1_A..IA32_RTIT_ADDR1_B] range defines a FilterEn range. FilterEn 
will only be set when the IP is within this range, though other FilterEn ranges can additionally 
be used. See Section 34.2.5.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR1_A..IA32_RTIT_ADDR1_B] range defines a TraceStop range. 
TraceStop will be asserted if code branches into this range. See Section 34.4.2.10 for details 
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 2.

Table 33-6. IA32_RTIT_CTL MSR (Contd.)

Position Bit Name At Reset Bit Description
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34.2.8.3  Enabling and Disabling Packet Generation with TraceEn
When TraceEn transitions from 0 to 1, Intel Processor Trace is enabled, and a series of packets may be generated. 
These packets help ensure that the decoder is aware of the state of the processor when the trace begins, and that 
it can keep track of any timing or state changes that may have occurred while packet generation was disabled. A 
full PSB+ (see Section 34.4.2.17) will be generated if IA32_RTIT_STATUS.PacketByteCnt=0, and may be gener-
ated in other cases as well. Otherwise, timing packets will be generated, including TSC, TMA, and CBR (see Section 
34.4.1.1). 
In addition to the packets discussed above, if and when PacketEn (Section 34.2.6.1) transitions from 0 to 1 (which 
may happen immediately, depending on filtering settings), a TIP.PGE packet (Section 34.4.2.3) will be generated. 
When TraceEn is set, the processor may read ToPA entries from memory and cache them internally. For this reason, 
software should disable packet generation before making modifications to the ToPA tables (or changing the config-

43:40 ADDR2_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR2_A/B based on the following 
encodings:

0: ADDR2 range unused.

1: The [IA32_RTIT_ADDR2_A..IA32_RTIT_ADDR2_B] range defines a FilterEn range. FilterEn 
will only be set when the IP is within this range, though other FilterEn ranges can additionally 
be used. See Section 34.2.5.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR2_A..IA32_RTIT_ADDR2_B] range defines a TraceStop range. 
TraceStop will be asserted if code branches into this range. See Section 34.4.2.10 for details 
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 3.

47:44 ADDR3_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR3_A/B based on the following 
encodings:

0: ADDR3 range unused.

1: The [IA32_RTIT_ADDR3_A..IA32_RTIT_ADDR3_B] range defines a FilterEn range. FilterEn 
will only be set when the IP is within this range, though other FilterEn ranges can additionally 
be used. See Section 34.2.5.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR3_A..IA32_RTIT_ADDR3_B] range defines a TraceStop range. 
TraceStop will be asserted if code branches into this range. See Section 34.4.2.10 for details 
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 4.

54:48 Reserved 0 Reserved only for future trace content enables, or address filtering configuration enables. 
Must be 0.

55 DisTNT 0 0: Include TNT packets in control flow trace.

1: Omit TNT packets from control flow trace.

This bit is reserved when CPUID.(EAX=14H, ECX=0):EBX[bit 8] (“TNT Disable Supported”) is 0. 
SeeSection 34.3.9 for details.

56 InjectPsbPmi
OnEnable

0 1: Enables use of IA32_RTIT_STATUS bits PendPSB[6] and PendTopaPMI[7], see Section 
34.2.8.4, “IA32_RTIT_STATUS MSR,” for behavior of these bits.

0: IA32_RTIT_STATUS bits 6 and 7 are ignored.

This field is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 0.

59:57 Reserved 0 Reserved only for future trace content enables, or address filtering configuration enables. 
Must be 0.

63:60 Reserved 0 Must be 0.

Table 33-6. IA32_RTIT_CTL MSR (Contd.)

Position Bit Name At Reset Bit Description
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uration of restricted memory regions). See Section 34.7 for more details of packets that may be generated with 
modifications to TraceEn.

Disabling Packet Generation

Clearing TraceEn causes any packet data buffered within the logical processor to be flushed out, after which the 
output MSRs (IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS) will have stable values. When 
output is directed to memory, a store, fence, or architecturally serializing instruction may be required to ensure 
that the packet data is globally observed. No special packets are generated by disabling packet generation, though 
a TIP.PGD may result if PacketEn=1 at the time of disable.

Other Writes to IA32_RTIT_CTL

Any attempt to modify IA32_RTIT_CTL while TraceEn is set will result in a general-protection fault (#GP) unless the 
same write also clears TraceEn. However, writes to IA32_RTIT_CTL that do not modify any bits will not cause a 
#GP, even if TraceEn remains set.

34.2.8.4  IA32_RTIT_STATUS MSR
The IA32_RTIT_STATUS MSR is readable and writable by software, though some fields cannot be modified by soft-
ware. See Table 33-7 for details. The WRMSR instruction ignores these bits in the source operand (attempts to 
modify these bits are ignored and do not cause WRMSR to fault).
This MSR can only be written when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection 
fault (#GP). The processor does not modify the value of this MSR while TraceEn is 0 (software can modify it with 
WRMSR).

Table 33-7. IA32_RTIT_STATUS MSR

Position Bit Name At Reset Bit Description

0 FilterEn 0 This bit is written by the processor, and indicates that tracing is allowed for the current IP, 
see Section 34.2.6.5. Writes are ignored.

1 ContextEn 0 The processor sets this bit to indicate that tracing is allowed for the current context. See 
Section 34.2.6.3. Writes are ignored.

2 TriggerEn 0 The processor sets this bit to indicate that tracing is enabled. See Section 34.2.6.2. Writes are 
ignored.

3 Reserved 0 Must be 0. 

4 Error 0 The processor sets this bit to indicate that an operational error has been encountered. When 
this bit is set, TriggerEn is cleared to 0 and packet generation is disabled. For details, see 
“ToPA Errors” in Section 34.2.7.2.

When TraceEn is cleared, software can write this bit. Once it is set, only software can clear it. 
It is not recommended that software ever set this bit, except in cases where it is restoring a 
prior saved state.

5 Stopped 0 The processor sets this bit to indicate that a ToPA Stop condition has been encountered. 
When this bit is set, TriggerEn is cleared to 0 and packet generation is disabled. For details, 
see “ToPA STOP” in Section 34.2.7.2.

When TraceEn is cleared, software can write this bit. Once it is set, only software can clear it. 
It is not recommended that software ever set this bit, except in cases where it is restoring a 
prior saved state.

6 PendPSB 0 If IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1, the processor sets this bit when the 
threshold for a PSB+ to be inserted has been reached. The processor will clear this bit when 
the PSB+ has been inserted into the trace. If PendPSB = 1 and InjectPsbPmiOnEnable = 1 
when IA32_RTIT_CTL.TraceEn[0] transitions from 0 to 1, a PSB+ will be inserted into the 
trace.

This field is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 0.
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34.2.8.5  IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B MSRs
The role of the IA32_RTIT_ADDRn_A/B register pairs, for each n, is determined by the corresponding ADDRn_CFG 
fields in IA32_RTIT_CTL (see Section 34.2.8.2). The number of these register pairs is enumerated by 
CPUID.(EAX=14H, ECX=1):EAX.RANGECNT[2:0].
• Processors that enumerate support for 1 range support:

— IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
• Processors that enumerate support for 2 ranges support:

— IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B

— IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B
• Processors that enumerate support for 3 ranges support:

— IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B

— IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B

— IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B
• Processors that enumerate support for 4 ranges support:

— IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B

— IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B

— IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B

— IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B
Each register has a single 64-bit field that holds a linear address value. Writes must ensure that the address is in 
canonical form, otherwise a general-protection fault (#GP) fault will result.
Each MSR can be written only when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection 
fault (#GP).

34.2.8.6  IA32_RTIT_CR3_MATCH MSR
The IA32_RTIT_CR3_MATCH register is compared against CR3 when IA32_RTIT_CTL.CR3Filter is 1. Bits 63:5 hold 
the CR3 address value to match, bits 4:0 are reserved to 0. For more details on CR3 filtering and the treatment of 
this register, see Section 34.2.5.2.

7 PendTopaPMI 0 If IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1, the processor sets this bit when the 
threshold for a ToPA PMI to be inserted has been reached. Software should clear this bit once 
the ToPA PMI has been handled, see “ToPA PMI” for details. If PendTopaPMI = 1 and 
InjectPsbPmiOnEnable = 1 when IA32_RTIT_CTL.TraceEn[0] transitions from 0 to 1, a PMI will 
be pended.

This field is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 0.

31:8 Reserved 0 Must be 0. 

48:32 PacketByteCnt 0 This field is written by the processor, and holds a count of packet bytes that have been sent 
out. The processor also uses this field to determine when the next PSB packet should be 
inserted. Note that the processor may clear or modify this field at any time while 
IA32_RTIT_CTL.TraceEn=1. It will have a stable value when IA32_RTIT_CTL.TraceEn=0.

See Section 34.4.2.17 for details.

This field is reserved when CPUID.(EAX=14H,ECX=0):EBX[bit 1] (“Configurable PSB and 
CycleAccurate Mode Supported”) is 0.

63:49 Reserved 0 Must be 0.

Table 33-7. IA32_RTIT_STATUS MSR

Position Bit Name At Reset Bit Description
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This MSR is accessible if CPUID.(EAX=14H, ECX=0):EBX[bit 0], “CR3 Filtering Support”, is 1. This MSR can be 
written only when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP). 
IA32_RTIT_CR3_MATCH[4:0] are reserved and must be 0; an attempt to set those bits using WRMSR causes a 
#GP.

34.2.8.7  IA32_RTIT_OUTPUT_BASE MSR
This MSR is used to configure the trace output destination, when output is directed to memory 
(IA32_RTIT_CTL.FabricEn = 0). The size of the address field is determined by the maximum physical address width 
(MAXPHYADDR), as reported by CPUID.80000008H:EAX[7:0].
When the ToPA output scheme is used, the processor may update this MSR when packet generation is enabled, and 
those updates are asynchronous to instruction execution. Therefore, the values in this MSR should be considered 
unreliable unless packet generation is disabled (IA32_RTIT_CTL.TraceEn = 0).
Accesses to this MSR are supported only if Intel PT output to memory is supported, hence when either 
CPUID.(EAX=14H, ECX=0):ECX[bit 0] or CPUID.(EAX=14H, ECX=0):ECX[bit 2] are set. Otherwise WRMSR or 
RDMSR cause a general-protection fault (#GP). If supported, this MSR can be written only when 
IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP).

34.2.8.8  IA32_RTIT_OUTPUT_MASK_PTRS MSR
This MSR holds any mask or pointer values needed to indicate where the next byte of trace output should be 
written. The meaning of the values held in this MSR depend on whether the ToPA output mechanism is in use. See 
Section 34.2.7.2 for details.
The processor updates this MSR while when packet generation is enabled, and those updates are asynchronous to 
instruction execution. Therefore, the values in this MSR should be considered unreliable unless packet generation 
is disabled (IA32_RTIT_CTL.TraceEn = 0).
Accesses to this MSR are supported only if Intel PT output to memory is supported, hence when either 
CPUID.(EAX=14H, ECX=0):ECX[bit 0] or CPUID.(EAX=14H, ECX=0):ECX[bit 2] are set. Otherwise WRMSR or 
RDMSR cause a general-protection fault (#GP). If supported, this MSR can be written only when 
IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP).

Table 33-8. IA32_RTIT_OUTPUT_BASE MSR

Position Bit Name At Reset Bit Description

6:0 Reserved 0 Must be 0.

MAXPHYADDR-1:7 BasePhysAddr 0 The base physical address. How this address is used depends on the value of 
IA32_RTIT_CTL.ToPA:

0: This is the base physical address of a single, contiguous physical output region. 
This could be mapped to DRAM or to MMIO, depending on the value.

The base address should be aligned with the size of the region, such that none of 
the 1s in the mask value(Section 34.2.8.8) overlap with 1s in the base address. If 
the base is not aligned, an operational error will result (see Section 34.3.10).

1: The base physical address of the current ToPA table. The address must be 4K 
aligned. Writing an address in which bits 11:7 are non-zero will not cause a #GP, but 
an operational error will be signaled once TraceEn is set. See “ToPA Errors” in 
Section 34.2.7.2, as well as Section 34.3.10.

63:MAXPHYADDR Reserved 0 Must be 0.
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34.2.9 Interaction of Intel® Processor Trace and Other Processor Features

34.2.9.1  Intel® Transactional Synchronization Extensions (Intel® TSX) 
The operation of Intel TSX is described in Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1. For tracing purpose, packet generation does not distinguish between hardware lock elision 
(HLE) and restricted transactional memory (RTM), but speculative execution does have impacts on the trace 
output. Specifically, packets are generated as instructions complete, even for instructions in a transactional region 
that is later aborted. For this reason, debugging software will need indication of the beginning and end of a trans-
actional region; this will allow software to understand when instructions are part of a transactional region and 
whether that region has been committed.
To enable this, TSX information is included in a MODE packet leaf. The mode bits in the leaf are:
• InTX: Set to 1 on an TSX transaction begin, and cleared on transaction commit or abort.
• TXAbort: Set to 1 only when InTX transitions from 1 to 0 on an abort. Cleared otherwise.
If BranchEn=1, this MODE packet will be sent each time the transaction status changes. See Table 33-10 for 
details.

Table 33-9. IA32_RTIT_OUTPUT_MASK_PTRS MSR

Position Bit Name At Reset Bit Description

6:0 LowerMask 7FH Forced to 1, writes are ignored. 

31:7 MaskOrTableO
ffset

0 The use of this field depends on the value of IA32_RTIT_CTL.ToPA:

0: This field holds bits 31:7 of the mask value for the single, contiguous physical output 
region. The size of this field indicates that regions can be of size 128B up to 4GB. This value 
(combined with the lower 7 bits, which are reserved to 1) will be ANDed with the 
OutputOffset field to determine the next write address. All 1s in this field should be 
consecutive and starting at bit 7, otherwise the region will not be contiguous, and an 
operational error (Section 34.3.10) will be signaled when TraceEn is set.

1: This field holds bits 27:3 of the offset pointer into the current ToPA table. This value can 
be added to the IA32_RTIT_OUTPUT_BASE value to produce a pointer to the current ToPA 
table entry, which itself is a pointer to the current output region. In this scenario, the lower 7 
reserved bits are ignored. This field supports tables up to 256 MBytes in size.

63:32 OutputOffset 0 The use of this field depends on the value of IA32_RTIT_CTL.ToPA:

0: This is bits 31:0 of the offset pointer into the single, contiguous physical output region. 
This value will be added to the IA32_RTIT_OUTPUT_BASE value to form the physical address 
at which the next byte of packet output data will be written. This value must be less than or 
equal to the MaskOrTableOffset field, otherwise an operational error (Section 34.3.10) will 
be signaled when TraceEn is set.

1: This field holds bits 31:0 of the offset pointer into the current ToPA output region. This 
value will be added to the output region base field, found in the current ToPA table entry, to 
form the physical address at which the next byte of trace output data will be written.

This value must be less than the ToPA entry size, otherwise an operational error (Section 
34.3.10) will be signaled when TraceEn is set. 

Table 33-10. TSX Packet Scenarios with BranchEn=1

TSX Event Instruction Packets

Transaction Begin Either XBEGIN or XACQUIRE lock (the latter if executed 
transactionally)

MODE(TXAbort=0, InTX=1), FUP(CurrentIP)

Transaction 
Commit

Either XEND or XRELEASE lock, if transactional execution 
ends. This happens only on the outermost commit

MODE(TXAbort=0, InTX=0), FUP(CurrentIP)
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The CurrentIP listed above is the IP of the associated instruction. The TargetIP is the IP of the next instruction to 
be executed; for HLE, this is the XACQUIRE lock; for RTM, this is the fallback handler.
Intel PT stores are non-transactional, and thus packet writes are not rolled back on TSX abort.

34.2.9.2  TSX and IP Filtering
A complication with tracking transactions is handling transactions that start or end outside of the tracing region. 
Transactions can’t span across a change in ContextEn, because CPL changes and CR3 changes each cause aborts. 
But a transaction can start within the IP filter region and end outside it. 
To assist the decoder handling this situation, MODE.TSX packets can be sent even if FilterEn=0, though there will 
be no FUP attached. Instead, they will merely serve to indicate to the decoder when transactions are active and 
when they are not. When tracing resumes (due to PacketEn=1), the last MODE.TSX preceding the TIP.PGE will indi-
cate the current transaction status. 

34.2.9.3  System Management Mode (SMM) 
SMM code has special privileges that non-SMM code does not have. Intel Processor Trace can be used to trace SMM 
code, but special care is taken to ensure that SMM handler context is not exposed in any non-SMM trace collection. 
Additionally, packet output from tracing non-SMM code cannot be written into memory space that is either 
protected by SMRR or used by the SMM handler.
SMM is entered via a system management interrupt (SMI). SMI delivery saves the value of 
IA32_RTIT_CTL.TraceEn into SMRAM and then clears it, thereby disabling packet generation.
The saving and clearing of IA32_RTIT_CTL.TraceEn ensures two things:

1. All internally buffered packet data is flushed before entering SMM (see Section 34.2.8.2). 

2. Packet generation ceases before entering SMM, so any tracing that was configured outside SMM does not 
continue into SMM. No SMM instruction pointers or other state will be exposed in the non-SMM trace.

When the RSM instruction is executed to return from SMM, the TraceEn value that was saved by SMI delivery is 
restored, allowing tracing to be resumed. As is done any time packet generation is enabled, ContextEn is re-eval-
uated, based on the values of CPL, CR3, etc., established by RSM.
Like other interrupts, delivery of an SMI produces a FUP containing the IP of the next instruction to execute. By 
toggling TraceEn, SMI and RSM can produce TIP.PGD and TIP.PGE packets, respectively, indicating that tracing was 
disabled or re-enabled. See Table 34.7 for more information about packets entering and leaving SMM. 
Although #SMI and RSM change CR3, PIP packets are not generated in these cases. With #SMI tracing is disabled 
before the CR3 change; with RSM TraceEn is restored after CR3 is written.
TraceEn must be cleared before executing RSM, otherwise it will cause a shutdown. Further, on processors that 
restrict use of Intel PT with LBRs (see Section 34.3.1.2), any RSM that results in enabling of both will cause a shut-
down.
Intel PT can support tracing of System Transfer Monitor operating in SMM, see Section 34.6.

Transaction Abort XABORT or other transactional abort MODE(TXAbort=1, InTX=0), FUP(CurrentIP), 
TIP(TargetIP)

Other One of the following:
• Nested XBEGIN or XACQUIRE lock
• An outer XACQUIRE lock that doesn’t begin a transaction 

(InTX not set)
• Non-outermost XEND or XRELEASE lock

None. No change to TSX mode bits for these 
cases.

Table 33-10. TSX Packet Scenarios with BranchEn=1

TSX Event Instruction Packets
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34.2.9.4  Virtual-Machine Extensions (VMX)
Initial implementations of Intel Processor Trace do not support tracing in VMX operation. Such processors indicate 
this by returning 0 for IA32_VMX_MISC[bit 14]. On these processors, execution of the VMXON instruction clears 
IA32_RTIT_CTL.TraceEn and any attempt to write IA32_RTIT_CTL in VMX operation causes a general-protection 
exception (#GP).
Processors that support Intel Processor Trace in VMX operation return 1 for IA32_VMX_MISC[bit 14]. Details of 
tracing in VMX operation are described in Section 34.4.2.26.

34.2.9.5  Intel® Software Guard Extensions (Intel® SGX)
Intel SGX provides an application with the ability to instantiate a protective container (an enclave) with confidenti-
ality and integrity (see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3D). On a 
processor with both Intel PT and Intel SGX enabled, when executing code within a production enclave, no control 
flow packets are produced by Intel PT. An enclave entry will clear ContextEn, thereby blocking control flow packet 
generation. A TIP.PGD packet will be generated if PacketEn=1 at the time of the entry.
Upon enclave exit, ContextEn will no longer be forced to 0. If other enables are set at the time, a TIP.PGE may be 
generated to indicate that tracing is resumed.
During the enclave execution, Intel PT remains enabled, and periodic or timing packets such as PSB, TSC, MTC, or 
CBR can still be generated. No IPs or other architectural state will be exposed.
For packet generation examples on enclave entry or exit, see Section 34.7.

Debug Enclaves

Intel SGX allows an enclave to be configured with relaxed protection of confidentiality for debug purposes, see the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3D. In a debug enclave, Intel PT continues 
to function normally. Specifically, ContextEn is not impacted by an enclave entry or exit. Hence, the generation of 
ContextEn-dependent packets within a debug enclave is allowed.

34.2.9.6  SENTER/ENTERACCS and ACM
GETSEC[SENTER] and GETSEC[ENTERACCS] instructions clear TraceEn, and it is not restored when those instruc-
tion complete. SENTER also causes TraceEn to be cleared on other logical processors when they rendezvous and 
enter the SENTER sleep state. In these two cases, the disabling of packet generation is not guaranteed to flush 
internally buffered packets. Some packets may be dropped.
When executing an authenticated code module (ACM), packet generation is silently disabled during ACRAM setup. 
TraceEn will be cleared, but no TIP.PGD packet is generated. After completion of the module, the TraceEn value will 
be restored. There will be no TIP.PGE packet, but timing packets, like TSC and CBR, may be produced.

34.2.9.7  Intel® Memory Protection Extensions (Intel® MPX)
Bounds exceptions (#BR) caused by Intel MPX are treated like other exceptions, producing FUP and TIP packets 
that indicate the source and destination IPs.

34.3 CONFIGURATION AND PROGRAMMING GUIDELINE

34.3.1 Detection of Intel Processor Trace and Capability Enumeration
Processor support for Intel Processor Trace is indicated by CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1. CPUID 
function 14H is dedicated to enumerate the resource and capability of processors that report 
CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1. Different processor generations may have architecturally-defined 
variation in capabilities. Table 33-11 describes details of the enumerable capabilities that software must use across 
generations of processors that support Intel Processor Trace.
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Table 33-11. CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=0) Name Description Behavior

Register Bits

EAX 31:0 Maximum valid sub-leaf Index Specifies the index of the maximum valid sub-leaf for this CPUID leaf.

EBX

0 CR3 Filtering Support 1: Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that 
IA32_RTIT_CR3_MATCH MSR can be accessed. See Section 34.2.8.

0: Indicates that writes that set IA32_RTIT_CTL.CR3Filter to 1, or any 
access to IA32_RTIT_CR3_MATCH, will generate a #GP exception.

1 Configurable PSB and Cycle-
Accurate Mode Supported

1: (a) IA32_RTIT_CTL.PSBFreq can be set to a non-zero value, in order to 
select the preferred PSB frequency (see below for allowed values). (b) 
IA32_RTIT_STATUS.PacketByteCnt can be set to a non-zero value, and 
will be incremented by the processor when tracing to indicate progress 
towards the next PSB. If trace packet generation is enabled by setting 
TraceEn, a PSB will only be generated if PacketByteCnt=0. (c) 
IA32_RTIT_CTL.CYCEn can be set to 1 to enable Cycle-Accurate Mode. 
See Section 34.2.8.

0: (a) Any attempt to write a non-zero value to IA32_RTIT_CTL.PSBFreq 
or IA32_RTIT_STATUS.PacketByteCnt will generate a #GP exception. (b) 
If trace packet generation is enabled by setting TraceEn, a PSB is always 
generated. (c) Any attempt to write a non-zero value to 
IA32_RTIT_CTL.CYCEn or IA32_RTIT_CTL.CycThresh will generate a #GP 
exception.

2 IP Filtering and TraceStop 
supported, and Preserve Intel 
PT MSRs across warm reset

1: (a) IA32_RTIT_CTL provides at one or more ADDRn_CFG field to 
configure the corresponding address range MSRs for IP Filtering or IP 
TraceStop. Each ADDRn_CFG field accepts a value in the range of 0:2 
inclusive. The number of ADDRn_CFG fields is reported by 
CPUID.(EAX=14H, ECX=1):EAX.RANGECNT[2:0]. (b) At least one register 
pair IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B are provided to 
configure address ranges for IP filtering or IP TraceStop. (c) On warm 
reset, all Intel PT MSRs will retain their pre-reset values, though 
IA32_RTIT_CTL.TraceEn will be cleared. The Intel PT MSRs are listed in 
Section 34.2.8.

0: (a) An Attempt to write IA32_RTIT_CTL.ADDRn_CFG with non-zero 
encoding values will cause #GP. (b) Any access to IA32_RTIT_ADDRn_A 
and IA32_RTIT_ADDRn_B, will generate a #GP exception. (c) On warm 
reset, all Intel PT MSRs will be cleared.

3 MTC Supported 1: IA32_RTIT_CTL.MTCEn can be set to 1, and MTC packets will be 
generated. See Section 34.2.8.

0: An attempt to set IA32_RTIT_CTL.MTCEn or IA32_RTIT_CTL.MTCFreq 
to a non-zero value will generate a #GP exception.

4 PTWRITE Supported 1: Writes can set IA32_RTIT_CTL[12] (PTWEn) and IA32_RTIT_CTL[5] 
(FUPonPTW), and PTWRITE can generate packets.

0: Writes that set IA32_RTIT_CTL[12] or IA32_RTIT_CTL[5] will 
generate a #GP exception, and PTWRITE will #UD fault.

5 Power Event Trace Supported 1: Writes can set IA32_RTIT_CTL[4] (PwrEvtEn), enabling Power Event 
Trace packet generation.

0: Writes that set IA32_RTIT_CTL[4] will generate a #GP exception.
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If CPUID.(EAX=14H, ECX=0):EAX reports a non-zero value, additional capabilities of Intel Processor Trace are 
described in the sub-leaves of CPUID leaf 14H.

6 PSB and PMI Preservation 
Supported

1: Writes can set IA32_RTIT_CTL[56] (InjectPsbPmiOnEnable), enabling 
the processor to set IA32_RTIT_STATUS[7] (PendTopaPMI) and/or 
IA32_RTIT_STATUS[6] (PendPSB) in order to preserve ToPA PMIs and/or 
PSBs otherwise lost due to Intel PT disable. Writes can also set 
PendToPAPMI and PendPSB.

0: Writes that set IA32_RTIT_CTL[56], IA32_RTIT_STATUS[7], or 
IA32_RTIT_STATUS[6] will generate a #GP exception.

7 Event Trace Supported 1: Writes can set IA32_RTIT_CTL[31] (EventEn), enabling Event Trace 
packet generation.

0: Writes that set IA32_RTIT_CTL[31] will generate a #GP exception.

8 TNT Disable Supported 1: Writes can set IA32_RTIT_CTL[55] (DisTNT), disabling TNT packet 
generation.

0: Writes that set IA32_RTIT_CTL[55] will generate a #GP exception.

31:9 Reserved

ECX

0 ToPA Output Supported 1: Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing 
the ToPA output scheme (Section 34.2.7.2) IA32_RTIT_OUTPUT_BASE 
and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.

0: Unless CPUID.(EAX=14H, ECX=0):ECX.SNGLRNGOUT[bit 2] = 1. writes 
to IA32_RTIT_OUTPUT_BASE or IA32_RTIT_OUTPUT_MASK_PTRS. 
MSRs will generate a #GP exception.

1 ToPA Tables Allow Multiple 
Output Entries

1: ToPA tables can hold any number of output entries, up to the 
maximum allowed by the MaskOrTableOffset field of 
IA32_RTIT_OUTPUT_MASK_PTRS.

0: ToPA tables can hold only one output entry, which must be followed 
by an END=1 entry which points back to the base of the table. 

Further, ToPA PMIs will be delivered before the region is filled. See ToPA 
PMI in Section 34.2.7.2.

If there is more than one output entry before the END entry, or if the 
END entry has the wrong base address, an operational error will be 
signaled (see “ToPA Errors” in Section 34.2.7.2).

2 Single-Range Output 
Supported

1: Enabling tracing (TraceEn=1) with IA32_RTIT_CTL.ToPA=0 is 
supported.

0: Unless CPUID.(EAX=14H, ECX=0):ECX.TOPAOUT[bit 0] = 1. writes to 
IA32_RTIT_OUTPUT_BASE or IA32_RTIT_OUTPUT_MASK_PTRS. MSRs 
will generate a #GP exception. 

3 Output to Trace Transport 
Subsystem Supported

1: Setting IA32_RTIT_CTL.FabricEn to 1 is supported.

0: IA32_RTIT_CTL.FabricEn is reserved. Write 1 to 
IA32_RTIT_CTL.FabricEn will generate a #GP exception. 

30:4 Reserved

31 IP Payloads are LIP 1: Generated packets which contain IP payloads have LIP values, which 
include the CS base component.

0: Generated packets which contain IP payloads have RIP values, which 
are the offset from CS base. 

EDX 31:0 Reserved

Table 33-11. CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities (Contd.)

CPUID.(EAX=14H,ECX=0) Name Description Behavior

Register Bits
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Table 33-12. CPUID Leaf 14H, sub-leaf 1H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=1) Name Description Behavior

Register Bits

EAX 2:0 Number of Address Ranges A non-zero value specifies the number ADDRn_CFG field supported in 
IA32_RTIT_CTL and the number of register pair 
IA32_RTIT_ADDRn_A/IA32_RTIT_ADDRn_B supported for IP filtering 
and IP TraceStop.

NOTE: Currently, no processors support more than 4 address ranges.

15:3 Reserved

31:16 Bitmap of supported MTC 
Period Encodings

The non-zero bits indicate the map of supported encoding values for 
the IA32_RTIT_CTL.MTCFreq field. This applies only if 
CPUID.(EAX=14H, ECX=0):EBX[bit 3] = 1 (MTC Packet generation is 
supported), otherwise the MTCFreq field is reserved to 0.

Each bit position in this field represents 1 encoding value in the 4-bit 
MTCFreq field (ie, bit 0 is associated with encoding value 0). For each 
bit:

1: MTCFreq can be assigned the associated encoding value.

0: MTCFreq cannot be assigned to the associated encoding value. A 
write to IA32_RTIT_CTLMTCFreq with unsupported encoding will cause 
#GP fault.

EBX 15:0 Bitmap of supported Cycle 
Threshold values

The non-zero bits indicate the map of supported encoding values for 
the IA32_RTIT_CTL.CycThresh field. This applies only if 
CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 1 (Cycle-Accurate Mode is 
Supported), otherwise the CycThresh field is reserved to 0. See Section 
34.2.8.

Each bit position in this field represents 1 encoding value in the 4-bit 
CycThresh field (ie, bit 0 is associated with encoding value 0). For each 
bit:

1: CycThresh can be assigned the associated encoding value.

0: CycThresh cannot be assigned to the associated encoding value. A 
write to CycThresh with unsupported encoding will cause #GP fault.

31:16 Bitmap of supported 
Configurable PSB Frequency 
encoding

The non-zero bits indicate the map of supported encoding values for 
the IA32_RTIT_CTL.PSBFreq field. This applies only if 
CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 1 (Configurable PSB is 
supported), otherwise the PSBFreq field is reserved to 0. See Section 
34.2.8.

Each bit position in this field represents 1 encoding value in the 4-bit 
PSBFreq field (ie, bit 0 is associated with encoding value 0). For each 
bit:

1: PSBFreq can be assigned the associated encoding value.

0: PSBFreq cannot be assigned to the associated encoding value. A 
write to PSBFreq with unsupported encoding will cause #GP fault.

ECX 31:0 Reserved

EDX 31:0 Reserved
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34.3.1.1  Packet Decoding of RIP versus LIP
FUP, TIP, TIP.PGE, and TIP.PGE packets can contain an instruction pointer (IP) payload. On some processor gener-
ations, this payload will be an effective address (RIP), while on others this will be a linear address (LIP). In the 
former case, the payload is the offset from the current CS base address, while in the latter it is the sum of the offset 
and the CS base address (Note that in real mode, the CS base address is the value of CS<<4, while in protected 
mode the CS base address is the base linear address of the segment indicated by the CS register.). Which IP type 
is in use is indicated by enumeration (see CPUID.(EAX=14H, ECX=0):ECX.LIP[bit 31] in Table 33-11).
For software that executes while the CS base address is 0 (including all software executing in 64-bit mode), the 
difference is indistinguishable. A trace decoder must account for cases where the CS base address is not 0 and the 
resolved LIP will not be evident in a trace generated on a CPU that enumerates use of RIP. This is likely to cause 
problems when attempting to link the trace with the associated binaries.
Note that IP comparison logic, for IP filtering and TraceStop range calculation, is based on the same IP type as 
these IP packets. For processors that output RIP, the IP comparison mechanism is also based on RIP, and hence on 
those processors RIP values should be written to IA32_RTIT_ADDRn_[AB] MSRs. This can produce differing 
behavior if the same trace configuration setting is run on processors reporting different IP types, i.e., 
CPUID.(EAX=14H, ECX=0):ECX.LIP[bit 31]. Care should be taken to check CPUID when configuring IP filters.

34.3.1.2  Model Specific Capability Restrictions
Some processor generations impose restrictions that prevent use of LBRs/BTS/BTM/LERs when software has 
enabled tracing with Intel Processor Trace. On these processors, when TraceEn is set, updates of LBR, BTS, BTM, 
LERs are suspended but the states of the corresponding IA32_DEBUGCTL control fields remained unchanged as if 
it were still enabled. When TraceEn is cleared, the LBR array is reset, and LBR/BTS/BTM/LERs updates will resume. 
Further, reads of these registers will return 0, and writes will be dropped.
The list of MSRs whose updates/accesses are restricted follows.
• MSR_LASTBRANCH_x_TO_IP, MSR_LASTBRANCH_x_FROM_IP, MSR_LBR_INFO_x, MSR_LASTBRANCH_TOS
• MSR_LER_FROM_LIP, MSR_LER_TO_LIP
• MSR_LBR_SELECT
For processors with CPUID DisplayFamily_DisplayModel signatures of 06_3DH, 06_47H, 06_4EH, 06_4FH, 06_56H, 
and 06_5EH, the use of Intel PT and LBRs are mutually exclusive.

34.3.2 Enabling and Configuration of Trace Packet Generation
To configure trace packets, enable packet generation, and capture packets, software starts with using CPUID 
instruction to detect its feature flag, CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1; followed by enumerating the 
capabilities described in Section 34.3.1. 
Based on the capability queried from Section 34.3.1, software must configure a number of model-specific registers. 
This section describes programming considerations related to those MSRs.

34.3.2.1  Enabling Packet Generation
When configuring and enabling packet generation, the IA32_RTIT_CTL MSR should be written after any other Intel 
PT MSRs have been written, since writes to the other configuration MSRs cause a general-protection fault (#GP) if 
TraceEn = 1. If a prior trace collection context is not being restored, then software should first clear 
IA32_RTIT_STATUS. This is important since the Stopped, and Error fields are writable; clearing the MSR clears any 
values that may have persisted from prior trace packet collection contexts. See Section 34.2.8.2 for details of 
packets generated by setting TraceEn to 1.
If setting TraceEn to 1 causes an operational error (see Section 34.3.10), there may be a delay after the WRMSR 
completes before the error is signaled in the IA32_RTIT_STATUS MSR.
While packet generation is enabled, the values of some configuration MSRs (e.g., IA32_RTIT_STATUS and 
IA32_RTIT_OUTPUT_*) are transient, and reads may return values that are out of date. Only after packet genera-
tion is disabled (by clearing TraceEn) do reads of these MSRs return reliable values.
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34.3.2.2  Disabling Packet Generation
After disabling packet generation by clearing IA32_RTIT_CTL, it is advisable to read the IA32_RTIT_STATUS MSR 
(Section 34.2.8.4):
• If the Error bit is set, an operational error was encountered, and the trace is most likely compromised. Software 

should check the source of the error (by examining the output MSR values), correct the source of the problem, 
and then attempt to gather the trace again. For details on operational errors, see Section 34.3.10. Software 
should clear IA32_RTIT_STATUS.Error before re-enabling packet generation. 

• If the Stopped bit is set, software execution encountered an IP TraceStop (see Section 34.2.5.3) or the ToPA 
Stop condition (see “ToPA STOP” in Section 34.2.7.2) before packet generation was disabled.

34.3.3 Flushing Trace Output
Packets are first buffered internally and then written out asynchronously. To collect packet output for post-
processing, a collector needs first to ensure that all packet data has been flushed from internal buffers. Software 
can ensure this by stopping packet generation by clearing IA32_RTIT_CTL.TraceEn (see “Disabling Packet Genera-
tion” in Section 34.2.8.2).
When software clears IA32_RTIT_CTL.TraceEn to flush out internally buffered packets, the logical processor issues 
an SFENCE operation which ensures that WC trace output stores will be ordered with respect to the next store, or 
serializing operation. A subsequent read from the same logical processor will see the flushed trace data, while a 
read from another logical processor should be preceded by a store, fence, or architecturally serializing operation on 
the tracing logical processor.
When the flush operations complete, the IA32_RTIT_OUTPUT_* MSR values indicate where the trace ended. While 
TraceEn is set, these MSRs may hold stale values. Further, if a ToPA region with INT=1 is filled, meaning a ToPA PMI 
has been triggered, IA32_PERF_GLOBAL_STATUS.Trace_ToPA_PMI[55] will be set by the time the flush completes.

34.3.4 Warm Reset
The MSRs software uses to program Intel Processor Trace are cleared after a power-on RESET (or cold RESET). On 
a warm RESET, the contents of those MSRs can retain their values from before the warm RESET with the exception 
that IA32_RTIT_CTL.TraceEn will be cleared (which may have the side effect of clearing some bits in 
IA32_RTIT_STATUS). 

34.3.5 Context Switch Consideration
To facilitate construction of instruction execution traces at the granularity of a software process or thread context, 
software can save and restore the states of the trace configuration MSRs across the process or thread context 
switch boundary. The principle is the same as saving and restoring the typical architectural processor states across 
context switches. 

34.3.5.1  Manual Trace Configuration Context Switch
The configuration can be saved and restored through a sequence of instructions of RDMSR, management of MSR 
content and WRMSR. To stop tracing and to ensure that all configuration MSRs contain stable values, software must 
clear IA32_RTIT_CTL.TraceEn before reading any other trace configuration MSRs. The recommended method for 
saving trace configuration context manually follows:

1. RDMSR IA32_RTIT_CTL, save value to memory 

2. WRMSR IA32_RTIT_CTL with saved value from RDMSR above and TraceEn cleared

3. RDMSR all other configuration MSRs whose values had changed from previous saved value, save changed 
values to memory
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When restoring the trace configuration context, IA32_RTIT_CTL should be restored last:

1. Read saved configuration MSR values, aside from IA32_RTIT_CTL, from memory, and restore them with 
WRMSR 

2. Read saved IA32_RTIT_CTL value from memory, and restore with WRMSR.

34.3.5.2  Trace Configuration Context Switch Using XSAVES/XRSTORS
On processors whose XSAVE feature set supports XSAVES and XRSTORS, the Trace configuration state can be 
saved using XSAVES and restored by XRSTORS, in conjunction with the bit field associated with supervisory state 
component in IA32_XSS. See Chapter 13, “Managing State Using the XSAVE Feature Set‚” of Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1.

34.3.6 Cycle-Accurate Mode 
Intel PT can be run in a cycle-accurate mode which enables CYC packets (see Section 34.4.2.14) that provide low-
level information in the processor core clock domain. This cycle counter data in CYC packets can be used to 
compute IPC (Instructions Per Cycle), or to track wall-clock time on a fine-grain level.
To enable cycle-accurate mode packet generation, software should set IA32_RTIT_CTL.CYCEn=1. It is recom-
mended that software also set TSCEn=1 anytime cycle-accurate mode is in use. With this, all CYC-eligible packets 
will be preceded by a CYC packet, the payload of which indicates the number of core clock cycles since the last CYC 
packet. In cases where multiple CYC-eligible packets are generated in a single cycle, only a single CYC will be 
generated before the CYC-eligible packets, otherwise each CYC-eligible packet will be preceded by its own CYC. The 
CYC-eligible packets are:
• TNT, TIP, TIP.PGE, TIP.PGD, MODE.EXEC, MODE.TSX, PIP, VMCS, OVF, MTC, TSC, PTWRITE, EXSTOP
TSC packets are generated when there is insufficient information to reconstruct wall-clock time, due to tracing 
being disabled (TriggerEn=0), or power down scenarios like a transition to a deep-sleep MWAIT C-state. In this 
case, the CYC that is generated along with the TSC will indicate the number of cycles actively tracing (those 
powered up, with TriggerEn=1) executed between the last CYC packet and the TSC packet. And hence the amount 
of time spent while tracing is inactive can be inferred from the difference in time between that expected based on 
the CYC value, and the actual time indicated by the TSC.
Additional CYC packets may be sent stand-alone, so that the processor can ensure that the decoder is aware of the 
number of cycles that have passed before the internal hardware counter wraps, or is reset due to other micro-
architectural condition. There is no guarantee at what intervals these standalone CYC packets will be sent, except 
that they will be sent before the wrap occurs. An illustration is given below.

Example 34-1.  An Illustrative CYC Packet Example

Time (cycles) Instruction Snapshot Generated Packets Comment

x call %eax CYC(?), TIP ?Elapsed cycles from the previous CYC unknown

x + 2 call %ebx CYC(2), TIP 1 byte CYC packet; 2 cycles elapsed from the previous CYC

x + 8 jnz Foo (not taken) CYC(6) 1 byte CYC packet

x + 9 ret (compressed)

x + 12 jnz Bar (taken)

x + 16 ret (uncompressed) TNT, CYC(8), TIP 1 byte CYC packet

x + 4111 CYC(4095) 2 byte CYC packet

x + 12305 CYC(8194) 3 byte CYC packet

x + 16332 mov cr3, %ebx CYC(4027), PIP 2 byte CYC packet
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34.3.6.1  Cycle Counter
The cycle counter is implemented in hardware (independent of the time stamp counter or performance monitoring 
counters), and is a simple incrementing counter that does not saturate, but rather wraps. The size of the counter 
is implementation specific.
The cycle counter is reset to zero any time that TriggerEn is cleared, and when a CYC packet is sent. The cycle 
counter will continue to count when ContextEn or FilterEn are cleared, and cycle packets will still be generated. It 
will not count during sleep states that result in Intel PT logic being powered-down, but will count up to the point 
where clocks are disabled, and resume counting once they are re-enabled.

34.3.6.2  Cycle Packet Semantics
Cycle-accurate mode adheres to the following protocol:
• All packets that precede a CYC packet represent instructions or events that took place before the CYC time. 
• All packets that follow a CYC packet represent instructions or events that took place at the same time as, or 

after, the CYC time. 
• The CYC-eligible packet that immediately follows a CYC packet represents an instruction or event that took 

place at the same time as the CYC time.
These items above give the decoder a means to apply CYC packets to a specific instruction in the assembly stream. 
Most packets represent a single instruction or event, and hence the CYC packet that precedes each of those 
packets represents the retirement time of that instruction or event. In the case of TNT packets, up to 6 conditional 
branches and/or compressed RETs may be contained in the packet. In this case, the preceding CYC packet provides 
the retirement time of the first branch in the packet. It is possible that multiple branches retired in the same cycle 
as that first branch in the TNT, but the protocol will not make that obvious. Also note that a MTC packet could be 
generated in the same cycle as the first JCC in the TNT packet. In this case, the CYC would precede both the MTC 
and the TNT, and apply to both.
Note that there are times when the cycle counter will stop counting, though cycle-accurate mode is enabled. After 
any such scenario, a CYC packet followed by TSC packet will be sent. See Section 34.8.3.2 to understand how to 
interpret the payload values

Multi-packet Instructions or Events

Some operations, such as interrupts or task switches, generate multiple packets. In these cases, multiple CYC 
packets may be sent for the operation, preceding each CYC-eligible packet in the operation. An example, using a 
task switch on a software interrupt, is shown below.

34.3.6.3  Cycle Thresholds
Software can opt to reduce the frequency of cycle packets, a trade-off to save bandwidth and intrusion at the 
expense of precision. This is done by utilizing a cycle threshold (see Section 34.2.8.2).
IA32_RTIT_CTL.CycThresh indicates to the processor the minimum number of cycles that must pass before the 
next CYC packet should be sent. If this value is 0, no threshold is used, and CYC packets can be sent every cycle in 
which a CYC-eligible packet is generated. If this value is greater than 0, the hardware will wait until the associated 

Example 34-2.  An Example of CYC in the Presence of Multi-Packet Operations

Time (cycles) Instruction Snapshot Generated Packets

x jnz Foo (not taken) CYC(?)

x + 2 ret (compressed)

x + 8 jnz Bar (taken)

x + 9 jmp %eax TNT, CYC(9), TIP

x + 12 jnz Bar (not taken) CYC(3)

x + 32 int3 (task gate) TNT, FUP, CYC(10), PIP, CYC(20), MODE.Exec, TIP
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number of cycles have passed since the last CYC packet before sending another. CPUID provides the threshold 
options for CycThresh, see Section 34.3.1.
Note that the cycle threshold does not dictate how frequently a CYC packet will be posted, it merely assigns the 
maximum frequency. If the cycle threshold is 16, a CYC packet can be posted no more frequently than every 16 
cycles. However, once that threshold of 16 cycles has passed, it still requires a new CYC-eligible packet to be gener-
ated before a CYC will be inserted. Table 33-13 illustrates the threshold behavior.

34.3.7 Decoder Synchronization (PSB+)
The PSB packet (Section 34.4.2.17) serves as a synchronization point for a trace-packet decoder. It is a pattern in 
the trace log for which the decoder can quickly scan to align packet boundaries. No legal packet combination can 
result in such a byte sequence. As such, it serves as the starting point for packet decode. To decode a trace log 
properly, the decoder needs more than simply to be aligned: it needs to know some state and potentially some 
timing information as well. The decoder should never need to retain any information (e.g., LastIP, call stack, 
compound packet event) across a PSB; all compound packet events will be completed before a PSB, and any 
compression state will be reset.
When a PSB packet is generated, it is followed by a PSBEND packet (Section 34.4.2.18). One or more packets may 
be generated in between those two packets, and these inform the decoder of the current state of the processor. 
These packets, known collectively as PSB+, should be interpreted as “status only”, since they do not imply any 
change of state at the time of the PSB, nor are they associated directly with any instruction or event. Thus, the 
normal binding and ordering rules that apply to these packets outside of PSB+ can be ignored when these packets 
are between a PSB and PSBEND. They inform the decoder of the state of the processor at the time of the PSB.
PSB+ can include:
• Timestamp (TSC), if IA32_RTIT_CTL.TSCEn=1. 
• Timestamp-MTC Align (TMA), if IA32_RTIT_CTL.TSCEn=1 && IA32_RTIT_CTL.MTCEn=1.
• Paging Information Packet (PIP), if ContextEn=1 and IA32_RTIT_CTL.OS=1. The non-root bit (NR) is set if the 

logical processor is in VMX non-root operation and the “conceal VMX from PT” VM-execution control is 0.
• VMCS packet, if either the logical is in VMX root operation or the logical processor is in VMX non-root operation 

and the “conceal VMX from PT” VM-execution control is 0.
• Core Bus Ratio (CBR).
• MODE.TSX, if ContextEn=1 and BranchEn = 1. 
• MODE.Exec, if PacketEn=1 or (ContextEn=1 and IA32_RTIT_CTL.EventEn=1). 
• Flow Update Packet (FUP), if PacketEn=1.
PSB is generated only when TriggerEn=1; hence PSB+ has the same dependencies. The ordering of packets within 
PSB+ is not fixed. Timing packets such as CYC and MTC may be generated between PSB and PSBEND, and their 
meanings are the same as outside PSB+.

Table 33-13. An Illustrative CYC Packet Example

Time (cycles) Instruction Snapshot
Threshold

0 16 32 64

x jmp %eax CYC, TIP CYC, TIP CYC, TIP CYC, TIP

x + 9 call %ebx CYC, TIP TIP TIP TIP

x + 15 call %ecx CYC, TIP TIP TIP TIP

x + 30 jmp %edx CYC, TIP CYC, TIP TIP TIP

x + 38 mov cr3, %eax CYC, PIP PIP CYC, PIP PIP

x + 46 jmp [%eax] CYC, TIP CYC, TIP TIP TIP

x + 64 call %edx CYC, TIP CYC, TIP TIP CYC,TIP

x + 71 jmp %edx CYC, TIP TIP CYC,TIP TIP
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A PSB+ can be lost in some scenarios. If IA32_RTIT_STATUS.TriggerEn is cleared just as the PSB threshold is 
reached, e.g., due to TraceEn being cleared, the PSB+ may not be generated. On processors that support PSB 
preservation (CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 1), setting IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1 
will ensure that a PSB+ that is pending at the time PT is disabled will be recorded by setting 
IA32_RTIT_STATUS.PendPSB[6] = 1. A PSB will be inserted, and PendPSB cleared, when PT is later re-enabled 
while PendPSB = 1.
Note that an overflow can occur during PSB+, and this could cause the PSBEND packet to be lost. For this reason, 
the OVF packet should also be viewed as terminating PSB+. If IA32_RTIT_STATUS.TriggerEn is cleared just as the 
PSB threshold is reached, the PSB+ may not be generated. TriggerEn can be cleared by a WRMSR that clears 
IA32_RTIT_CTL.TraceEn, a VM exit that clears IA32_RTIT_CTL.TraceEn, an #SMI, or any time that either 
IA32_RTIT_STATUS.Stopped is set (e.g., by a TraceStop or ToPA stop condition) or IA32_RTIT_STATUS.Error is set 
(e.g., by an Intel PT output error). On processors that support PSB preservation (CPUID.(EAX=14H, 
ECX=0):EBX[bit 6] = 1), setting IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1 will ensure that a PSB+ that is 
pending at the time PT is disabled will be recorded by setting IA32_RTIT_STATUS.PendPSB[6] = 1. A PSB will then 
be pended when the saved PT context is later restored.

34.3.8 Internal Buffer Overflow
In the rare circumstances when new packets need to be generated but the processor’s dedicated internal buffers 
are all full, an “internal buffer overflow” occurs. On such an overflow packet generation ceases (as packets would 
need to enter the processor’s internal buffer) until the overflow resolves. Once resolved, packet generation 
resumes.
When the buffer overflow is cleared, an OVF packet (Section 34.4.2.16) is generated, and the processor ensures 
that packets which follow the OVF are not compressed (IP compression or RET compression) against packets that 
were lost. 
If IA32_RTIT_CTL.BranchEn = 1, the OVF packet will be followed by a FUP if the overflow resolves while Pack-
etEn=1. If the overflow resolves while PacketEn = 0 no packet is generated, but a TIP.PGE will naturally be gener-
ated later, once PacketEn = 1. The payload of the FUP or TIP.PGE will be the Current IP of the first instruction upon 
which tracing resumes after the overflow is cleared. If the overflow resolves while PacketEn=1, only timing packets 
may come between the OVF and the FUP. If the overflow resolves while PacketEn=0, any other packets that are not 
dependent on PacketEn may come between the OVF and the TIP.PGE. 

34.3.8.1  Overflow Impact on Enables
The address comparisons to ADDRn ranges, for IP filtering and TraceStop (Section 34.2.5.3), continue during a 
buffer overflow, and TriggerEn, ContextEn, and FilterEn may change during a buffer overflow. Like other packets, 
however, any TIP.PGE or TIP.PGD packets that would have been generated will be lost. Further, 
IA32_RTIT_STATUS.PacketByteCnt will not increment, since it is only incremented when packets are generated.
If a TraceStop event occurs during the buffer overflow, IA32_RTIT_STATUS.Stopped will still be set, tracing will 
cease as a result. However, the TraceStop packet, and any TIP.PGD that result from the TraceStop, may be 
dropped.

34.3.8.2  Overflow Impact on Timing Packets
Any timing packets that are generated during a buffer overflow will be dropped. If only a few MTC packets are 
dropped, a decoder should be able to detect this by noticing that the time value in the first MTC packet after the 
buffer overflow incremented by more than one. If the buffer overflow lasted long enough that 256 MTC packets are 
lost (and thus the MTC packet ‘wraps’ its 8-bit CTC value), then the decoder may be unable to properly understand 
the trace. This is not an expected scenario. No CYC packets are generated during overflow, even if the cycle counter 
wraps.
Note that, if cycle-accurate mode is enabled, the OVF packet will generate a CYC packet. Because the cycle counter 
counts during overflows, this CYC packet can provide the duration of the overflow. However, there is a risk that the 
cycle counter wrapped during the overflow, which could render this CYC misleading.
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34.3.9 TNT Disable
Software can opt to omit TNT packets from control flow trace (BranchEn=1) by setting IA32_RTIT_CTL.DisTNT[bit 
55]. This can dramatically reduce trace size. Results will vary by workload, but trace size reductions of 40-75% are 
typical, which will have a corresponding reduction in performance overhead and memory bandwidth consumption 
from Intel PT. However, omitting TNT packets means the decoder is not able to follow the full control flow trace, 
since conditional branch and compressed RET results won't be known. Thus, TNT Disable should be employed only 
for usages that do not depend on full control flow trace.

NOTE
To avoid loss of RET results with TNT Disable, software may wish to disable RET compression by 
setting IA32_RTIT_CTL.DisRETC[bit 11].

34.3.10 Operational Errors
Errors are detected as a result of packet output configuration problems, which can include output alignment issues, 
ToPA reserved bit violations, or overlapping packet output with restricted memory. See “ToPA Errors” in Section 
34.2.7.2 for details on ToPA errors, and Section 34.2.7.4 for details on restricted memory errors. Operational errors 
are only detected and signaled when TraceEn=1.
When an operational error is detected, tracing is disabled and the error is logged. Specifically, 
IA32_RTIT_STATUS.Error is set, which will cause IA32_RTIT_STATUS.TriggerEn to be 0. This will disable generation 
of all packets. Some causes of operational errors may lead to packet bytes being dropped.
It should be noted that the timing of error detection may not be predictable. Errors are signaled when the processor 
encounters the problematic configuration. This could be as soon as packet generation is enabled but could also be 
later when the problematic entry or field needs to be used. 
Once an error is signaled, software should disable packet generation by clearing TraceEn, diagnose and fix the error 
condition, and clear IA32_RTIT_STATUS.Error. At this point, packet generation can be re-enabled.

34.4 TRACE PACKETS AND DATA TYPES
This section details the data packets generated by Intel Processor Trace. It is useful for developers writing the inter-
pretation code that will decode the data packets and apply it to the traced source code.

34.4.1 Packet Relationships and Ordering
This section introduces the concept of packet “binding”, which involves determining the IP in a binary disassembly 
at which the change indicated by a given packet applies. Some packets have the associated IP as the payload (FUP, 
TIP), while for others the decoder need only search for the next instance of a particular instruction (or instructions) 
to bind the packet (TNT). However, in many cases, the decoder will need to consider the relationship between 
packets, and to use this packet context to determine how to bind the packet.
Section 34.4.1.1 below provides detailed descriptions of the packets, including how packets bind to IPs in the disas-
sembly, to other packets, or to nothing at all. Many packets listed are simple to bind, because they are generated 
in only a few scenarios. Those that require more consideration are typically part of “compound packet events”, such 
as interrupts, exceptions, and some instructions, where multiple packets are generated by a single operation 
(instruction or event). These compound packet events frequently begin with a FUP to indicate the source address 
(if it is not clear from the disassembly), and are concluded by a TIP or TIP.PGD packet that indicates the destination 
address (if one is provided). In this scenario, the FUP is said to be “coupled” with the TIP packet.
Other packets could be in between the coupled FUP and TIP packet. Timing packets, such as TSC, MTC, CYC, or 
CBR, could arrive at any time, and hence could intercede in a compound packet event. If an operation changes CR3 
or the processor’s mode of execution, a state update packet (i.e., PIP or MODE) is generated. The state changes 
indicated by these intermediate packets should be applied at the IP of the TIP* packet. A summary of compound 
packet events is provided in Table 33-14; see Section 34.4.1.1 for more per-packet details and Section 34.7 for 
more detailed packet generation examples.
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34.4.1.1  Packet Blocks
Packet blocks are a means to dump one or more groups of state values. Packet blocks begin with a Block Begin 
Packet (BBP), which indicates what type of state is held within the block. Following each BBP there may be one or 
more Block Item Packets (BIPs), which contain the state values. The block is terminated by either a Block End 
Packet (BEP) or another BBP indicating the start of a new block.
The BIP packet includes an ID value that, when combined with the Type field from the BBP that preceded it, 
uniquely identifies the state value held in the BIP payload. The size of each BIP packet payload is provided by the 
Size field in the preceding BBP packet.
Each block type can have up to 32 items defined for it. There is no guarantee, however, that each block of that type 
will hold all 32 items. For more details on which items to expect, see documentation on the specific block type of 
interest.
See the BBP packet description (Section 34.4.2.26) for details on packet block generation scenarios.
Packet blocks are entirely generated within an instruction or between instructions, which dictates the types of 
packets (aside from BIPs) that may be seen within a packet block. Packets that indicate control flow changes, or 
other indication of instruction completion, cannot be generated within a block. These are listed in the following 
table. Other packets, including timing packets, may occur between BBP and BEP.

It is possible to encounter an internal buffer overflow in the middle of a block. In such a case, it is guaranteed that 
packet generation will not resume in the middle of a block, and hence the OVF packet terminates the current block. 
Depending on the duration of the overflow, subsequent blocks may also be lost.

Decoder Implications

When a Block Begin Packet (BBP) is encountered, the decoder will need to decode some packets within the block 
differently from those outside a block. The Block Item Packet (BIP) header byte has the same encoding as a TNT 
packet outside of a block, but must be treated as a BIP header (with following payload) within one.
When an OVF packet is encountered, the decoder should treat that as a block ending condition. Packet generation 
will not resume within a block.

Table 33-14. Compound Packet Event Summary

Event Type Beginning Middle End Comment

Unconditional, 
uncompressed 
control-flow 

transfer

FUP or none Any combination 
of PIP, VMCS, 
MODE.Exec, or 
none

TIP or TIP.PGD FUP only for asynchronous events. Order of middle packets 
may vary. 

PIP/VMCS/MODE only if the operation modifies the state 
tracked by these respective packets.

TSX Update MODE.TSX, and 
(FUP or none)

None TIP, TIP.PGD, or 
none

FUP

TIP/TIP.PGD only for TSX abort cases.

Overflow OVF  PSB, PSBEND, or 
none

FUP or TIP.PGE FUP if overflow resolves while ContextEn=1, else TIP.PGE.

Table 33-15. Packets Forbidden Between BBP and BEP

TNT

TIP, TIP.PGE, TIP.PGD

MODE.Exec, MODE.TSX

PIP, VMCS

TraceStop

PSB, PSBEND

PTW

MWAIT
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34.4.2 Packet Definitions
The following description of packet definitions are in tabular format. Figure 34-3 explains how to interpret them. 
Packet bits listed as “RSVD” are not guaranteed to be 0.

Figure 34-3.  Interpreting Tabular Definition of Packet Format

Name Packet name

Packet Format

Description of fields

Dependencies Depends on packet generation con-
figuration enable controls or other 
bits (Section 34.2.6).

Generation Scenario Which instructions, events, or other 
scenarios can cause this packet to be 
generated.

Description Description of the packet, including the purpose it serves, meaning of the information or payload, etc

Application How a decoder should apply this packet. It may bind to a specific instruction from the binary, or to 
another packet in the stream, or have other implications on decode

7 6 5 4 3 2 1 0

0 0 1 0 1 0 1 0 1

1 1 1 0 0 0 1 1 0

2 0 1 0 0 0 1 1 0

Byte Number Payload in White
Header bits
in GreenBit Number
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34.4.2.1  Taken/Not-taken (TNT) Packet

Table 33-16. TNT Packet Definition

Name Taken/Not-taken (TNT) Packet

Packet Format

B1…BN represent the last N conditional branch or compressed RET (Section 34.4.2.2) results, such that B1 is oldest 
and BN is youngest. The short TNT packet can contain from 1 to 6 TNT bits. The long TNT packet can contain from 
1 to 47 TNT bits.

Irrespective of how many TNT bits is in a packet, the last valid TNT bit is followed by a trailing 1, or Stop bit, as 
shown above. If the TNT packet is not full (fewer than 6 TNT bits for the Short TNT, or fewer than 47 TNT bits for 
the Long TNT), the Stop bit moves up, and the trailing bits of the packet are filled with 0s. Examples of these
“partial TNTs” are shown below. An implementation may choose to use long TNTs, short TNTs, or both.

Dependencies PacketEn && 
~IA32_RTIT_CTL.DisTNT

Generation 
Scenario

On a conditional branch or compressed RET, if it fills the TNT. 
Also, partial TNTs may be generated at any time, as a result of 
other packets being generated, or certain micro-architectural 
conditions occurring, before the TNT is full.

7 6 5 4 3 2 1 0

0 1 B1 B2 B3 B4 B5 B6 0 Short TNT

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 Long TNT

1 1 0 1 0 0 0 1 1

2 B40 B41 B42 B43 B44 B45 B46 B47

3 B32 B33 B34 B35 B36 B37 B38 B39

4 B24 B25 B26 B27 B28 B29 B30 B31

5 B16 B17 B18 B19 B20 B21 B22 B23

6 B8 B9 B10 B11 B12 B13 B14 B15

7 1 B1 B2 B3 B4 B5 B6 B7

7 6 5 4 3 2 1 0

0 0 0 1 B1 B2 B3 B4 0 Short TNT

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 Long TNT

1 1 0 1 0 0 0 1 1

2 B24 B25 B26 B27 B28 B29 B30 B31

3 B16 B17 B18 B19 B20 B21 B22 B23

4 B8 B9 B10 B11 B12 B13 B14 B15

5 1 B1 B2 B3 B4 B5 B6 B7

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0
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34.4.2.2  Target IP (TIP) Packet

IP Compression

The IP payload in a TIP. FUP, TIP.PGE, or TIP.PGD packet can vary in size, based on the mode of execution, and the 
use of IP compression. IP compression is an optional compression technique the processor may choose to employ 
to reduce bandwidth. With IP compression, the IP to be represented in the payload is compared with the last IP sent 
out, via any of FUP, TIP, TIP.PGE, or TIP.PGD. If that previous IP had the same upper (most significant) address 
bytes, those matching bytes may be suppressed in the current packet. The processor maintains an internal state of 
the “Last IP” that was encoded in trace packets, thus the decoder will need to keep track of the “Last IP” state in 

Description Provides the taken/not-taken results for the last 1..6 (Short TNT) or 1..47 (Long TNT) conditional branches (Jcc, 
J*CXZ, or LOOP) or compressed RETs (Section 34.4.2.2). The TNT payload bits should be interpreted as follows:
• 1 indicates a taken conditional branch, or a compressed RET
• 0 indicates a not-taken conditional branch
TNT payload bits are stored internal to the processor in a TNT buffer, until either the buffer is filled or another 
packet is to be generated. In either case a TNT packet holding the buffered bits will be emitted, and the TNT buffer 
will be marked as empty.

Application Each valid payload bit (that is, bits between the header bits and the trailing Stop bit) applies to an upcoming condi-
tional branch or RET instruction. Once a decoder consumes a TNT packet with N valid payload bits, these bits should 
be applied to (and hence provide the destination for) the next N conditional branches or RETs.

Table 33-17. TIP Packet Definition

Name Target IP (TIP) Packet

Packet Format

Dependencies PacketEn Generation Sce-
nario

Indirect branch (including un-compressed RET), far branch, interrupt, 
exception, INIT, SIPI, VM exit, VM entry, TSX abort, EENTER, EEXIT, ERE-
SUME, AEX1.

NOTES:

1. EENTER, EEXIT, ERESUME, AEX would be possible only for a debug enclave.

Description Provides the target for some control flow transfers

Application Anytime a TIP is encountered, it indicates that control was transferred to the IP provided in the payload.

The source of this control flow change, and hence the IP or instruction to which it binds, depends on the packets 
that precede the TIP. If a TIP is encountered and all preceding packets have already been bound, then the TIP will 
apply to the upcoming indirect branch, far branch, or VMRESUME. However, if there was a preceding FUP that 
remains unbound, it will bind to the TIP. Here, the TIP provides the target of an asynchronous event or TSX abort 
that occurred at the IP given in the FUP payload. Note that there may be other packets, in addition to the FUP, which 
will bind to the TIP packet. See the packet application descriptions for other packets for details.

Table 33-16. TNT Packet Definition (Contd.)

7 6 5 4 3 2 1 0

0 IPBytes 0 1 1 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

7 TargetIP[55:48]

8 TargetIP[63:56]
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software, to match fidelity with packets generated by hardware. “Last IP” is initialized to zero, hence if the first IP 
in the trace may be compressed if the upper bytes are zeroes.
The “IPBytes” field of the IP packets (FUP, TIP, TIP.PGE, TIP.PGD) serves to indicate how many bytes of payload are 
provided, and how the decoder should fill in any suppressed bytes. The algorithm for reconstructing the IP for a 
TIP/FUP packet is shown in the table below.

The processor-internal Last IP state is guaranteed to be reset to zero when a PSB is sent out. This means that the 
IP that follows the PSB with either be un-compressed (011b or 110b, see Table 33-18), or compressed against 
zero.
At times, “IPbytes” will have a value of 0. As shown above, this does not mean that the IP payload matches the full 
address of the last IP, but rather that the IP for this packet was suppressed. This is used for cases where the IP that 
applies to the packet is out of context. An example is the TIP.PGD sent on a SYSCALL, when tracing only USR code. 
In that case, no TargetIP will be included in the packet, since that would expose an instruction point at CPL = 0. 
When the IP payload is suppressed in this manner, Last IP is not cleared, and instead refers to the last IP packet 
with a non-zero IPBytes field.
On processors that support a maximum linear address size of 32 bits, IP payloads may never exceed 32 bits 
(IPBytes <= 010b).

Indirect Transfer Compression for Returns (RET)

In addition to IP compression, TIP packets for near return (RET) instructions can also be compressed. If the RET 
target matches the next IP of the corresponding CALL, then the TIP packet is unneeded, since the decoder can 
deduce the target IP by maintaining a CALL/RET stack of its own.
When a RET is compressed, a Taken indication is added to the TNT buffer. Because the RET generates no TIP 
packet, it also does not update the internal Last IP value, and thus the decoder should treat it the same way. If the 
RET is not compressed, it will generate a TIP packet (just like when RET compression is disabled, via 
IA32_RTIT_CTL.DisRETC). 
A CALL/RET stack can be maintained by the decoder by doing the following:

1. Allocate space to store 64 RET targets. 

2. For near CALLs, push the Next IP onto the stack. Once the stack is full, new CALLs will force the oldest entry off 
the end of the stack, such that only the youngest 64 entries are stored. Note that this excludes zero-length 
CALLs, which are direct near CALLs with displacement zero (to the next IP). These CALLs typically don’t have 
matching RETs. 

3. For near RETs, pop the top (youngest) entry off the stack. This will be the expected target of the RET.
In cases where a RET is compressed, the RET target is guaranteed to match the expected target from 3) above. If 
the target is not compressed, a TIP packet will be generated with the RET target, which may differ from the 
expected target in some cases.

Table 33-18. FUP/TIP IP Reconstruction

IPBytes Uncompressed IP Value

63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

000b None, IP is out of context

001b Last IP[63:16] IP Payload[15:0]

010b Last IP[63:32] IP Payload[31:0]

011b IP Payload[47] extended IP Payload[47:0]

100b Last IP [63:48] IP Payload[47:0]

101b Reserved

110b IP Payload[63:0]

111b Reserved
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The hardware ensures that packets read by the decoder will always have seen the CALL that corresponds to any 
compressed RET. The processor will never compress a RET across a PSB, a buffer overflow, or scenario where Pack-
etEn=0. This means that a RET whose corresponding CALL executed while PacketEn=0, or before the last PSB, etc., 
will not be compressed.
If the CALL/RET stack is manipulated or corrupted by software, and thereby causes a RET to transfer control to a 
target that is inconsistent with the CALL/RET stack, then the RET will not be compressed, and will produce a TIP 
packet. This can happen, for example, if software executes a PUSH instruction to push a target onto the stack, and 
a later RET uses this target.
For processors that employ deferred TIPs (Section 34.4.2.3), an uncompressed RET will not be deferred, and hence 
will force out any accumulated TNTs or TIPs. This serves to avoid ambiguity, and make clear to the decoder whether 
the near RET was compressed, and hence a bit in the in-progress TNT should be consumed, or uncompressed, in 
which case there will be no in-progress TNT and thus a TIP should be consumed.
Note that in the unlikely case that a RET executes in a different execution mode than the associated CALL, the 
decoder will need to model the same behavior with its CALL stack. For instance, if a CALL executes in 64-bit mode, 
a 64-bit IP value will be pushed onto the software stack. If the corresponding RET executes in 32-bit mode, then 
only the lower 32 target bits will be popped off of the stack, which may mean that the RET does not go to the CALL’s 
Next IP. This is architecturally correct behavior, and this RET could be compressed, thus the decoder should match 
this behavior.

34.4.2.3  Deferred TIPs
The processor may opt to defer sending out the TNT when TIPs are generated. Thus, rather than sending a partial 
TNT followed by a TIP, both packets will be deferred while the TNT accumulates more Jcc/RET results. Any number 
of TIP packets may be accumulated this way, such that only once the TNT is filled, or once another packet (e.g., 
FUP) is generated, the TNT will be sent, followed by all the deferred TIP packets, and finally terminated by the other 
packet(s) that forced out the TNT and TIP packets. Generation of many other packets (see list below) will force out 
the TNT and any accumulated TIP packets. This is an optional optimization in hardware to reduce the bandwidth 
consumption, and hence the performance impact, incurred by tracing.

Table 33-19. TNT Examples with Deferred TIPs

Code Flow Packets, Non-Deferred TIPS Packets, Deferred TIPS

0x1000 cmp %rcx, 0

0x1004 jnz Foo // not-taken

0x1008 jmp %rdx
TNT(0b0), TIP(0x1308)

0x1308 cmp %rcx, 1

0x130c jnz Bar // not-taken

0x1310 cmp %rcx, 2

0x1314 jnz Baz // taken

0x1500 cmp %eax, 7

0x1504 jg Exit // not-taken

0x1508 jmp %r15

TNT(0b010), TIP(0x1100)

0x1100 cmp %rbx, 1

0x1104 jg Start // not-taken

0x1108 add %rcx, %eax

0x110c … // an asynchronous Interrupt arrives

INThandler:

0xcc00 pop %rdx

TNT(0b0), FUP(0x110c), 
TIP(0xcc00)

TNT(0b00100), TIP(0x1308), 
TIP(0x1100), FUP(0x110c), 
TIP(0xcc00)
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34.4.2.4  Packet Generation Enable (TIP.PGE) Packet

Table 33-20. TIP.PGE Packet Definition

Name Target IP - Packet Generation Enable (TIP.PGE) Packet

Packet Format

Dependencies PacketEn transitions to 1 Generation 
Scenario

Any branch instruction, control flow transfer, or MOV 
CR3 that sets PacketEn, a WRMSR that enables 
packet generation and sets PacketEn

Description Indicates that PacketEn has transitioned to 1. It provides the IP at which the tracing begins.
This can occur due to any of the enables that comprise PacketEn transitioning from 0 to 1, as long as all the others 
are asserted. Examples:
• TriggerEn: This is set on software write to set IA32_RTIT_CTL.TraceEn as long as the Stopped and Error bits in 

IA32_RTIT_STATUS are clear. The IP payload will be the Next IP of the WRMSR.
• FilterEn: This is set when software jumps into the tracing region. This region is defined by enabling IP filtering in 

IA32_RTIT_CTL.ADDRn_CFG, and defining the range in IA32_RTIT_ADDRn_[AB], see. Section 34.2.5.3. The 
IP payload will be the target of the branch.

• ContextEn: This is set on a CPL change, a CR3 write or any other means of changing ContextEn. The IP payload 
will be the Next IP of the instruction that changes context if it is not a branch, otherwise it will be the target of 
the branch.

Application TIP.PGE packets bind to the instruction at the IP given in the payload.

7 6 5 4 3 2 1 0

0 IPBytes 1 0 0 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

7 TargetIP[55:48]

8 TargetIP[63:56]
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34.4.2.5  Packet Generation Disable (TIP.PGD) Packet

Table 33-21. TIP.PGD Packet Definition

Name Target IP - Packet Generation Disable (TIP.PGD) Packet

Packet Format

Dependencies PacketEn transitions to 
0

Generation 
Scenario

Any branch instruction, control flow transfer, or MOV CR3 that clears 
PacketEn, a WRMSR that disables packet generation and clears PacketEn

Description Indicates that PacketEn has transitioned to 0. It will include the IP at which the tracing ends, unless ContextEn= 0 or 
TraceEn=0 at the conclusion of the instruction or event that cleared PacketEn.
PacketEn can be cleared due to any of the enables that comprise PacketEn transitioning from 1 to 0. Examples:
• TriggerEn: This is cleared on software write to clear IA32_RTIT_CTL.TraceEn, or when 

IA32_RTIT_STATUS.Stopped is set, or on operational error. The IP payload will be suppressed in this case, and the 
“IPBytes” field will have the value 0.

• FilterEn: This is cleared when software jumps out of the tracing region. This region is defined by enabling IP 
filtering in IA32_RTIT_CTL.ADDRn_CFG, and defining the range in IA32_RTIT_ADDRn_[AB], see. Section 34.2.5.3. 
The IP payload will depend on the type of the branch. For conditional branches, the payload is suppressed 
(IPBytes = 0), and in this case the destination can be inferred from the disassembly. For any other type of branch, 
the IP payload will be the target of the branch.

• ContextEn: This can happen on a CPL change, a CR3 write or any other means of changing ContextEn. See 
Section 34.2.5.3 for details. In this case, when ContextEn is cleared, there will be no IP payload. The “IPBytes” 
field will have value 0.

Note that, in cases where a branch that would normally produce a TIP packet (i.e., far transfer, indirect branch, inter-
rupt, etc) or TNT update (conditional branch or compressed RT) causes PacketEn to transition from 1 to 0, the TIP or 
TNT bit will be replaced with TIP.PGD. The payload of the TIP.PGD will be the target of the branch, unless the result 
of the instruction causes TraceEn or ContextEn to be cleared (ie, SYSCALL when IA32_RTIT_CTL.OS=0, In the case 
where a conditional branch clears FilterEn and hence PacketEn, there will be no TNT bit for this branch, replaced 
instead by the TIP.PGD.

Application TIP.PGD can be produced by any branch instructions, as well as some non-branch instructions, that clear PacketEn. 
When produced by a branch, it replaces any TIP or TNT update that the branch would normally produce. 
In cases where there is an unbound FUP preceding the TIP.PGD, then the TIP.PGD is part of compound operation (i.e., 
asynchronous event or TSX abort) which cleared PacketEn. For most such cases, the TIP.PGD is simply replacing a 
TIP, and should be treated the same way. The TIP.PGD may or may not have an IP payload, depending on whether 
the operation cleared ContextEn.
If there is not an associated FUP, the binding will depend on whether there is an IP payload. If there is an IP payload, 
then the TIP.PGD should be applied to either the next direct branch whose target matches the TIP.PGD payload, or 
the next branch that would normally generate a TIP or TNT packet. If there is no IP payload, then the TIP.PGD should 
apply to the next branch or MOV CR3 instruction.

7 6 5 4 3 2 1 0

0 IPBytes 0 0 0 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

7 TargetIP[55:48]

8 TargetIP[63:56]
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34.4.2.6  Flow Update (FUP) Packet

FUP IP Payload

Flow Update Packet gives the source address of an instruction when it is needed. In general, branch instructions do 
not need a FUP, because the source address is clear from the disassembly. For asynchronous events, however, the 
source address cannot be inferred from the source, and hence a FUP will be sent. Table 33-23 illustrates cases 
where FUPs are sent, and which IP can be expected in those cases.

Table 33-22. FUP Packet Definition

Name Flow Update (FUP) Packet

Packet Format

Dependencies TriggerEn && ContextEn.
(Typically depends on 
BranchEn and FilterEn as well, 
see Section 34.2.5, Section 
34.4.2.21, and Section 
34.4.2.22 for details.)

Generation 
Scenario

Asynchronous Events (interrupts, exceptions, INIT, SIPI, SMI, VM exit, 
#MC), PSB+, XBEGIN, XEND, XABORT, XACQUIRE, XRELEASE, EENTER, 
EEXIT, ERESUME, EEE, AEX,1, INTO, INT1, INT3, INT n, a WRMSR that 
disables packet generation.

NOTES:

1. EENTER, EEXIT, ERESUME, EEE, AEX apply only if Intel Software Guard Extensions is supported.

Description Provides the source address for asynchronous events, and some other instructions. Is never sent alone, always sent 
with an associated TIP or MODE packet, and potentially others.

Application FUP packets provide the IP to which they bind. However, they are never standalone, but are coupled with other 
packets.
In TSX cases, the FUP is immediately preceded by a MODE.TSX, which binds to the same IP. A TIP will follow only in 
the case of TSX aborts, see Section 34.4.2.8 for details.
Otherwise, FUPs are part of compound packet events (see Section 34.4.1). In these compound cases, the FUP pro-
vides the source IP for an instruction or event, while a following TIP (or TIP.PGD) packet will provide the destination 
IP. Other packets may be included in the compound event between the FUP and TIP.

7 6 5 4 3 2 1 0

0 IPBytes 1 1 1 0 1

1 IP[7:0]

2 IP[15:8]

3 IP[23:16]

4 IP[31:24]

5 IP[39:32]

6 IP[47:40]

7 IP[55:48]

8 IP[63:56]
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On a canonical fault due to sequentially fetching an instruction in non-canonical space (as opposed to jumping to 
non-canonical space), the IP of the fault (and thus the payload of the FUP) will be a non-canonical address. This is 
consistent with what is pushed on the stack for such faulting cases.
If there are post-commit task switch faults, the IP value of the FUP will be the original IP when the task switch 
started. This is the same value as would be seen in the LBR_FROM field. But it is a different value as is saved on the 
stack or VMCS.

Table 33-23. FUP Cases and IP Payload

Event Flow Update IP Comment

External Interrupt, NMI/SMI, Traps, 
Machine Check (trap-like), INIT/SIPI

Address of next instruction (Next IP) that 
would have been executed

Functionally, this matches the LBR FROM field 
value and also the EIP value which is saved onto 
the stack.

Exceptions/Faults, Machine check 
(fault-like)

Address of the instruction which took the

exception/fault (Current IP)

This matches the similar functionality of LBR 
FROM field value and also the EIP value which is 
saved onto the stack.

Software Interrupt Address of the software interrupt instruction 
(Current IP)

This matches the similar functionality of LBR 
FROM field value, but does not match the EIP 
value which is saved onto the stack (Next 
Linear Instruction Pointer - NLIP).

EENTER, EEXIT, ERESUME, Enclave 
Exiting Event (EEE), AEX1 

Current IP of the instruction This matches the LBR FROM field value and also 
the EIP value which is saved onto the stack.

XACQUIRE Address of the X* instruction

XRELEASE, XBEGIN, XEND, 
XABORT, other transactional abort

Current IP

#SMI IP that is saved into SMRAM

WRMSR that clears TraceEn, PSB+ Current IP

NOTES:

1. Information on EENTER, EEXIT, ERESUME, EEE, Asynchronous Enclave eXit (AEX) can be found in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3D.
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34.4.2.7  Paging Information (PIP) Packet

34.4.2.8  MODE Packets
MODE packets keep the decoder informed of various processor modes about which it needs to know in order to 
properly manage the packet output, or to properly disassemble the associated binaries. MODE packets include a 
header and a mode byte, as shown below.

Table 33-24. PIP Packet Definition

Name Paging Information (PIP) Packet

Packet Format

Dependencies TriggerEn && ContextEn && 
IA32_RTIT_CTL.OS

Generation 
Scenario

MOV CR3, Task switch, INIT, SIPI, PSB+, VM exit, 
VM entry

Description The CR3 payload shown includes only the address portion of the CR3 value. For PAE paging, CR3[11:5] are thus 
included. For other paging modes (32-bit and 4-level paging1), these bits are 0.
This packet holds the CR3 address value. It will be generated on operations that modify CR3:
• MOV CR3 operation
• Task Switch
• INIT and SIPI
• VM exit, if “conceal VMX from PT” VM-exit control is 0 (see Section 34.5.1)
• VM entry, if “conceal VMX from PT” VM-entry control is 0
PIPs are not generated, despite changes to CR3, on SMI and RSM. This is due to the special behavior on these oper-
ations, see Section 34.2.9.3 for details. Note that, for some cases of task switch where CR3 is not modified, no PIP 
will be produced.
The purpose of the PIP is to indicate to the decoder which application is running, so that it can apply the proper 
binaries to the linear addresses that are being traced. 
The PIP packet contains the new CR3 value when CR3 is written.
PIPs generated by VM entries set the NR bit. PIPs generated in VMX non-root operation set the NR bit if the “con-
ceal VMX from PT” VM-execution control is 0 (see Section 34.5.1). All other PIPs clear the NR bit. 

NOTES:

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

Application The purpose of the PIP packet is to help the decoder uniquely identify what software is running at any given time.
When a PIP is encountered, a decoder should do the following:
1) If there was a prior unbound FUP (that is, a FUP not preceded by a packet such as MODE.TSX that consumes it, 
and it hence pairs with a TIP that has not yet been seen), then this PIP is part of a compound packet event (Section 
34.4.1). Find the ending TIP and apply the new CR3/NR values to the TIP payload IP.
2) Otherwise, look for the next MOV CR3, far branch, or VMRESUME/VMLAUNCH in the disassembly, and apply the 
new CR3 to the next (or target) IP.
For examples of the packets generated by these flows, see Section 34.7.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 1 1

2 CR3[11:5] or 0 RSVD/NR

3 CR3[19:12]

4 CR3[27:20]

5 CR3[35:28]

6 CR3[43:36]

7 CR3[51:44]
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The MODE Leaf ID indicates which set of mode bits are held in the lower bits.

MODE.Exec Packet

Table 33-25. General Form of MODE Packets

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 Leaf ID Mode

Table 33-26. MODE.Exec Packet Definition

Name MODE.Exec Packet

Packet Format

MODE Leaf ID is '000.

Dependencies TriggerEn 
&& 
ContextEn 
&& FilterEn

Generation 
Scenario

Any operation that changes the CS.L, CS.D, or EFER.LMA, if 
IA32_RTIT_CTL.BranchEn=1.
Any operation that changes RFLAGS.IF, if IA32_RTIT_CTL.EventEn=1.
Any TIP.PGE scenario, such that any of the mode bits tracked may have changed 
since the last MODE.Exec.

Description Indicates whether software is in 16, 32, or 64-bit mode, by providing the CS.D and (CS.L & IA32_EFER.LMA) values. 
Essential for the decoder to properly disassemble the associated binary. Further, if CPUID.14H.0.EBX[bit 7]=1 
(“Event Trace Support”), it indicates when interrupts are masked by providing the RFLAGS.IF value.

MODE.Exec is sent at the time of a mode change, if dependencies are met at the time, otherwise it is sent when 
tracing resumes. In the former case, the MODE.Exec packet is generated along with other packets that result from 
the operation that changes the mode, and is guaranteed to be followed by a TIP or TIP.PGE for branch operations, or 
a FUP for non-branch operations (CLI, STI, or POPF if EventEn=1). In cases where the mode changes while filtering 
dependencies are not met, the processor ensures that the decoder doesn't lose track of the mode by sending any 
needed MODE.Exec once tracing resumes (preceding the TIP.PGE, if BranchEn=1). The processor may opt to sup-
press the MODE.Exec when tracing resumes if the mode matches that of the last MODE.Exec packet.
MODE.Exec packets are generated on CS.L, CS.D, or EFER.LMA changes only if control flow tracing is enabled 
(BranchEn=1). This is essential for the decoder to properly disassemble the associated binary.

MODE.Exec packets are generated on interrupt flag (RFLAGS.IF) changes only if event tracing is enabled 
(EventEn=1).
The IF field in MODE.Exec packets is populated only if EventEn=1 (IF = EFLAGS.IF & EventEn).

Application MODE.Exec always precedes an IP packet (TIP, TIP.PGE, or FUP). The mode change applies to the IP address in the 
payload of the IP packet. When MODE.Exec is followed by a FUP, it is a stand-alone FUP and should be consumed by 
the MODE.Exec.

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 0 0 0 Reserved IF CS.D (CS.L & LMA)

CS.D (CS.L & IA32_EFER.LMA) Addressing Mode

1 1 N/A

0 1 64-bit mode

1 0 32-bit mode

0 0 16-bit mode
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MODE.TSX Packet

Table 33-27. MODE.TSX Packet Definition

Name MODE.TSX Packet

Packet Format

Dependencies TriggerEn && ContextEn Generation 
Scenario

XBEGIN, XEND, XABORT, XACQUIRE, XRELEASE, if InTX 
changes, Asynchronous TSX Abort, PSB+

Description Indicates when a TSX transaction (either HLE or RTM) begins, commits, or aborts. Instructions executed transaction-
ally will be “rolled back” if the transaction is aborted.

Application If PacketEn=1, MODE.TSX always immediately precedes a FUP. If the TXAbort bit is zero, then the mode change 
applies to the IP address in the payload of the FUP. If TXAbort=1, then the FUP will be followed by a TIP, and the 
mode change will apply to the IP address in the payload of the TIP.
MODE.TSX packets may be generated when PacketEn=0, due to FilterEn=0. In this case, only the last MODE.TSX 
generated before TIP.PGE need be applied.

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 0 0 1 0 0 0 TXAbort InTX

TXAbort InTX Implication

1 1 N/A

0 1 Transaction begins, or executing transactionally

1 0 Transaction aborted

0 0 Transaction committed, or not executing transactionally
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34.4.2.9  TraceStop Packet

34.4.2.10  Core:Bus Ratio (CBR) Packet

Table 33-28. TraceStop Packet Definition

Name TraceStop Packet

Packet Format

Dependencies TriggerEn && ContextEn Generation 
Scenario

Taken branch with target in TraceStop IP region, MOV CR3 in TraceS-
top IP region, or WRMSR that sets TraceEn in TraceStop IP region.

Description Indicates when software has entered a user-configured TraceStop region. 
When the IP matches a TraceStop range while ContextEn and TriggerEn are set, a TraceStop action occurs. This dis-
ables tracing by setting IA32_RTIT_STATUS.Stopped, thereby clearing TriggerEn, and causes a TraceStop
packet to be generated.
The TraceStop action also forces FilterEn to 0. Note that TraceStop may not force a flush of internally buffered 
packets, and thus trace packet generation should still be manually disabled by clearing IA32_RTIT_CTL.TraceEn 
before examining output. See Section 34.2.5.3 for more details.

Application If TraceStop follows a TIP.PGD (before the next TIP.PGE), then it was triggered either by the instruction that cleared 
PacketEn, or it was triggered by some later instruction that executed while FilterEn=0. In either case, the TraceStop 
can be applied at the IP of the TIP.PGD (if any).
If TraceStop follows a TIP.PGE (before the next TIP.PGD), it should be applied at the last known IP.

Table 33-29. CBR Packet Definition

Name Core:Bus Ratio (CBR) Packet

Packet Format

Dependencies TriggerEn Generation 
Scenario

After any frequency change, on C-state wake up, PSB+, and after 
enabling trace packet generation.

Description Indicates the core:bus ratio of the processor core. Useful for correlating wall-clock time and cycle time.

Application The CBR packet indicates the point in the trace when a frequency transition has occurred. On some implementa-
tions, software execution will continue during transitions to a new frequency, while on others software execution 
ceases during frequency transitions. There is not a precise IP provided, to which to bind the CBR packet.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 1 1

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 1

2 Core:Bus Ratio

3 Reserved
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34.4.2.11  Timestamp Counter (TSC) Packet

Table 33-30. TSC Packet Definition

Name Timestamp Counter (TSC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.TSCEn && 
TriggerEn

Generation 
Scenario

Sent after any event that causes the processor clocks or Intel PT timing 
packets (such as MTC or CYC) to stop, This may include P-state changes, 
wake from C-state, or clock modulation. Also on transition of TraceEn 
from 0 to 1.

Description When enabled by software, a TSC packet provides the lower 7 bytes of the current TSC value, as returned by the 
RDTSC instruction. This may be useful for tracking wall-clock time, and synchronizing the packets in the log with 
other timestamped logs.

Application TSC packet provides a wall-clock proxy of the event which generated it (packet generation enable, sleep state wake, 
etc). In all cases, TSC does not precisely indicate the time of any control flow packets; however, all preceding packets 
represent instructions that executed before the indicated TSC time, and all subsequent packets represent instruc-
tions that executed after it. There is not a precise IP to which to bind the TSC packet.

7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 1

1 SW TSC[7:0]

2 SW TSC[15:8]

3 SW TSC[23:16]

4 SW TSC[31:24]

5 SW TSC[39:32]

6 SW TSC[47:40]

7 SW TSC[55:48]
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34.4.2.12  Mini Time Counter (MTC) Packet

Table 33-31. MTC Packet Definition

Name Mini time Counter (MTC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.MTCEn && 
TriggerEn

Generation 
Scenario

Periodic, based on the core crystal clock, or Always Running Timer 
(ART).

Description When enabled by software, an MTC packet provides a periodic indication of wall-clock time. The 8-bit CTC (Common 
Timestamp Copy) payload value is set to (ART >> N) & FFH. The frequency of the ART is related to the Maximum 
Non-Turbo frequency, and the ratio can be determined from CPUID leaf 15H, as described in Section 34.8.3.
Software can select the threshold N, which determines the MTC frequency by setting the IA32_RTIT_CTL.MTCFreq 
field (see Section 34.2.8.2) to a supported value using the lookup enumerated by CPUID (see Section 34.3.1). 
See Section 34.8.3 for details on how to use the MTC payload to track TSC time.
MTC provides 8 bits from the ART, starting with the bit selected by MTCFreq to dictate the frequency of the packet. 
Whenever that 8-bit range being watched changes, an MTC packet will be sent out with the new value of that 8-bit 
range. This allows the decoder to keep track of how much wall-clock time has elapsed since the last TSC packet was 
sent, by keeping track of how many MTC packets were sent and what their value was. The decoder can infer the 
truncated bits, CTC[N-1:0], are 0 at the time of the MTC packet.
There are cases in which MTC packet can be dropped, due to overflow or other micro-architectural conditions. The 
decoder should be able to recover from such cases by checking the 8-bit payload of the next MTC packet, to deter-
mine how many MTC packets were dropped. It is not expected that >256 consecutive MTC packets should ever be 
dropped.

Application MTC does not precisely indicate the time of any other packet, nor does it bind to any IP. However, all preceding pack-
ets represent instructions or events that executed before the indicated ART time, and all subsequent packets repre-
sent instructions that executed after, or at the same time as, the ART time.

7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 0 1

1 CTC[N+7:N]
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34.4.2.13  TSC/MTC Alignment (TMA) Packet

Table 33-32. TMA Packet Definition

Name TSC/MTC Alignment (TMA) Packet

Packet Format

Dependencies IA32_RTIT_CTL.MTCEn && 
IA32_RTIT_CTL.TSCEn && TriggerEn

Generation Sce-
nario

Sent with any TSC packet.

Description The TMA packet serves to provide the information needed to allow the decoder to correlate MTC packets with TSC 
packets. With this packet, when a MTC packet is encountered, the decoder can determine how many timestamp 
counter ticks have passed since the last TSC or MTC packet. See Section 34.8.3.2 for details on how to make this cal-
culation.

Application TMA is always sent immediately following a TSC packet, and the payload values are consistent with the TSC payload 
value. Thus the application of TMA matches that of TSC.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 1 1 0 0 1 1

2 CTC[7:0]

3 CTC[15:8]

4 Reserved 0

5 FastCounter[7:0]

6 Reserved FC[8]
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34.4.2.14  Cycle Count (CYC) Packet

Table 33-33. Cycle Count Packet Definition

Name Cycle Count (CYC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.CYCEn && 
TriggerEn

Generation Sce-
nario

Can be sent at any time, though a maximum of one CYC packet is 
sent per core clock cycle. See Section 34.3.6 for CYC-eligible packets.

Description The Cycle Counter field increments at the same rate as the processor core clock ticks, but with a variable length for-
mat (using a trailing EXP bit field) and a range-capped byte length. 
If the CYC value is less than 32, a 1-byte CYC will be generated, with Exp=0. If the CYC value is between 32 and 
4095 inclusive, a 2-byte CYC will be generated, with byte 0 Exp=1 and byte 1 Exp=0. And so on.
CYC provides the number of core clocks that have passed since the last CYC packet. CYC can be configured to be 
sent in every cycle in which an eligible packet is generated, or software can opt to use a threshold to limit the num-
ber of CYC packets, at the expense of some precision. These settings are configured using the
IA32_RTIT_CTL.CycThresh field (see Section 34.2.8.2). For details on Cycle-Accurate Mode, IPC calculation, etc, see 
Section 34.3.6.
When CycThresh=0, and hence no threshold is in use, then a CYC packet will be generated in any cycle in which any 
CYC-eligible packet is generated. The CYC packet will precede the other packets generated in the cycle, and provides 
the precise cycle time of the packets that follow.
In addition to these CYC packets generated with other packets, CYC packets can be sent stand-alone. These packets 
serve simply to update the decoder with the number of cycles passed, and are used to ensure that a wrap of the 
processor’s internal cycle counter doesn’t cause cycle information to be lost. These stand-alone CYC packets do not 
indicate the cycle time of any other packet or operation, and will be followed by another CYC packet before any 
other CYC-eligible packet is seen.
When CycThresh>0, CYC packets are generated only after a minimum number of cycles have passed since the last 
CYC packet. Once this threshold has passed, the behavior above resumes, where CYC will either be sent in the next 
cycle that produces other CYC-eligible packets, or could be sent stand-alone.
When using CYC thresholds, only the cycle time of the operation (instruction or event) that generates the CYC 
packet is truly known. Other operations simply have their execution time bounded: they completed at or after the 
last CYC time, and before the next CYC time.

Application CYC provides the offset cycle time (since the last CYC packet) for the CYC-eligible packet that follows. If another CYC 
is encountered before the next CYC-eligible packet, the cycle values should be accumulated and applied to the next 
CYC-eligible packet.
If a CYC packet is generated by a TNT, note that the cycle time provided by the CYC packet applies to the first 
branch in the TNT packet.

7 6 5 4 3 2 1 0

0 Cycle Counter[4:0] Exp 1 1

1 Cycle Counter[11:5] Exp

2 Cycle Counter[18:12] Exp

... ... (if Exp = 1 in the previous byte)
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34.4.2.15  VMCS Packet

Table 33-34. VMCS Packet Definition

Name VMCS Packet

Packet Format

Dependencies TriggerEn && ContextEn;
Also in VMX operation.

Generation Scenario Generated on successful VMPTRLD, and optionally on PSB+, SMM 
VM exits, and VM entries that return from SMM (see Section 33-
53).

Description The VMCS packet provides a VMCS pointer for a decoder to determine the transition of code contexts:

• On a successful VMPTRLD (i.e., a VMPTRLD that doesn’t fault, fail, or VM exit), the VMCS packet contains the 
logical processor’s VMCS pointer established by VMPTRLD (for subsequent execution of a VM guest context). 

• An SMM VM exit loads the logical processor’s VMCS pointer with the SMM-transfer VMCS pointer. If the “conceal 
VMX from PT” VM-exit control is 0 (see Section 34.5.1), a VMCS packet provides this pointer. See Section 34.6 on 
tracing inside and outside STM.

• A VM entry that returns from SMM loads the logical processor’s VMCS pointer from a field in the SMM-transfer 
VMCS. If the “conceal VMX from PT” VM-entry control is 0, a VMCS packet provides this pointer. Whether the 
VM entry is to VMX root operation or VMX non-root operation is indicated by the PIP.NR bit.

A VMCS packet generated before a VMCS pointer has been loaded, or after the VMCS pointer has been cleared will 
set all 64 bits in the VMCS pointer field.
VMCS packets will not be seen on processors with IA32_VMX_MISC[bit 14]=0, as these processors do not allow 
TraceEn to be set in VMX operation.

Application The purpose of the VMCS packet is to help the decoder uniquely identify changes in the executing software context 
in situations that CR3 may not be unique. 
When a VMCS packet is encountered, a decoder should do the following:
• If there was a prior unbound FUP (that is, a FUP not preceded by a packet such as MODE.TSX that consumes it, and 

it hence pairs with a TIP that has not yet been seen), then this VMCS is part of a compound packet event (Section 
34.4.1). Find the ending TIP and apply the new VMCS base pointer value to the TIP payload IP. 

• Otherwise, look for the next VMPTRLD, VMRESUME, or VMLAUNCH in the disassembly, and apply the new VMCS 
base pointer on the next VM entry.

For examples of the packets generated by these flows, see Section 34.7.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 1 0 0 0

2 VMCS pointer [19:12]

3 VMCS pointer [27:20]

4 VMCS pointer [35:28]

5 VMCS pointer [43:36]

6 VMCS pointer [51:44]
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34.4.2.16  Overflow (OVF) Packet

34.4.2.17  Packet Stream Boundary (PSB) Packet

Table 33-35. OVF Packet Definition

Name Overflow (OVF) Packet

Packet Format

Dependencies TriggerEn Generation 
Scenario

On resolution of internal buffer overflow

Description OVF simply indicates to the decoder that an internal buffer overflow occurred, and packets were likely lost. If 
BranchEN= 1, OVF is followed by a FUP or TIP.PGE which will provide the IP at which packet generation resumes. See 
Section 34.3.8.

Application When an OVF packet is encountered, the decoder should skip to the IP given in the subsequent FUP or TIP.PGE. The 
cycle counter for the CYC packet will be reset at the time the OVF packet is sent.
Software should reset its call stack depth on overflow, since no RET compression is allowed across an overflow. Sim-
ilarly, any IP compression that follows the OVF is guaranteed to use as a reference LastIP the IP payload of an IP 
packet that preceded the overflow.

Table 33-36. PSB Packet Definition

Name Packet Stream Boundary (PSB) Packet

Packet Format

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 1 1 0 0 1 1

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 1 0

2 0 0 0 0 0 0 1 0

3 1 0 0 0 0 0 1 0

4 0 0 0 0 0 0 1 0

5 1 0 0 0 0 0 1 0

6 0 0 0 0 0 0 1 0

7 1 0 0 0 0 0 1 0

8 0 0 0 0 0 0 1 0

9 1 0 0 0 0 0 1 0

10 0 0 0 0 0 0 1 0

11 1 0 0 0 0 0 1 0

12 0 0 0 0 0 0 1 0

13 1 0 0 0 0 0 1 0

14 0 0 0 0 0 0 1 0

15 1 0 0 0 0 0 1 0
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34.4.2.18  PSBEND Packet

Dependencies TriggerEn Generation 
Scenario

Periodic, based on the number of output bytes generated while tracing. PSB is sent 
when IA32_RTIT_STATUS.PacketByteCnt=0, and each time it crosses the software 
selected threshold after that. May be sent for other micro-architectural conditions 
as well.

Description PSB is a unique pattern in the packet output log, and hence serves as a sync point for the decoder. It is a pattern 
that the decoder can search for in order to get aligned on packet boundaries. This packet is periodic, based on the 
number of output bytes, as indicated by IA32_RTIT_STATUS.PacketByteCnt. The period is chosen by software, via 
IA32_RTIT_CTL.PSBFreq (see Section 34.2.8.2). Note, however, that the PSB period is not precise, it simply reflects 
the average number of output bytes that should pass between PSBs. The processor will make a best effort to 
insert PSB as quickly after the selected threshold is reached as possible. The processor also may send extra
PSB packets for some micro-architectural conditions.
PSB also serves as the leading packet for a set of “status-only” packets collectively known as PSB+ (Section 34.3.7). 

Application When a PSB is seen, the decoder should interpret all following packets as “status only”, until either a PSBEND or 
OVF packet is encountered. “Status only” implies that the binding and ordering rules to which these packets nor-
mally adhere are ignored, and the state they carry can instead be applied to the IP payload in the FUP packet that is 
included.

Table 33-37. PSBEND Packet Definition

Name PSBEND Packet

Packet Format

Dependencies TriggerEn Generation 
Scenario

Always follows PSB packet, separated by PSB+ packets

Description PSBEND is simply a terminator for the series of “status only” (PSB+) packets that follow PSB (Section 34.3.7).

Application When a PSBEND packet is seen, the decoder should cease to treat packets as “status only”.

Table 33-36. PSB Packet Definition (Contd.)

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 1 1
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34.4.2.19  Maintenance (MNT) Packet

34.4.2.20  PAD Packet

Table 33-38. MNT Packet Definition

Name Maintenance (MNT) Packet

Packet Format

Dependencies  TriggerEn Generation 
Scenario

Implementation specific.

Description This packet is generated by hardware, the payload meaning is model-specific.

Application Unless a decoder has been extended for a particular family/model/stepping to interpret MNT packet payloads, this 
packet should simply be ignored. It does not bind to any IP.

Table 33-39. PAD Packet Definition

Name PAD Packet

Packet Format

Dependencies TriggerEn Generation 
Scenario

Implementation specific

Description PAD is simply a NOP packet. Processor implementations may choose to add pad packets to improve packet align-
ment or for implementation-specific reasons.

Application Ignore PAD packets.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 1 1

2 1 0 0 0 1 0 0 0

3 Payload[7:0]

4 Payload[15:8]

5 Payload[23:16]

6 Payload[31:24]

7 Payload[39:32]

8 Payload[47:40]

9 Payload[55:48]

10 Payload[63:56]

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0
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34.4.2.21  PTWRITE (PTW) Packet

Table 33-40. PTW Packet Definition

Name PTW Packet

Packet Format

The PayloadBytes field indicates the number of bytes of payload that follow the header bytes. Encodings are as fol-
lows:

IP bit indicates if a FUP, whose payload will be the IP of the PTWRITE instruction, will follow.

Dependencies TriggerEn && ContextEn && 
FilterEn && PTWEn

Generation 
Scenario

PTWRITE Instruction

Description Contains the value held in the PTWRITE operand.
This packet is CYC-eligible, and hence will generate a CYC packet if IA32_RTIT_CTL.CYCEn=1 and any CYC Threshold 
has been reached.

Application Binds to the associated PTWRITE instruction. The IP of the PTWRITE will be provided by a following FUP, when 
PTW.IP=1.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 IP PayloadBytes 1 0 0 1 0

2 Payload[7:0]

3 Payload[15:8]

4 Payload[23:16]

5 Payload[31:24]

6 Payload[39:32]

7 Payload[47:40]

8 Payload[55:48]

9 Payload[63:56]

PayloadBytes Bytes of Payload

‘00 4

‘01 8

‘10 Reserved

‘11 Reserved
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34.4.2.22  Execution Stop (EXSTOP) Packet

Table 33-41. EXSTOP Packet Definition

Name EXSTOP Packet

Packet Format

Dependencies TriggerEn && PwrEvtEn Generation 
Scenario

C-state entry, P-state change, or other processor clock power-
down. Includes :
• Entry to C-state deeper than C0.0
• TM1/2
• STPCLK#
• Frequency change due to IA32_CLOCK_MODULATION, Turbo

Description This packet indicates that software execution has stopped due to processor clock powerdown. Later packets will 
indicate when execution resumes. 
If EXSTOP is generated while ContextEn is set, the IP bit will be set, and EXSTOP will be followed by a FUP packet 
containing the IP at which execution stopped. More precisely, this will be the IP of the oldest instruction that has 
not yet completed.
This packet is CYC-eligible, and hence will generate a CYC packet if IA32_RTIT_CTL.CYCEn=1 and any CYC Threshold 
has been reached.

Application If a FUP follows EXSTOP (hence IP bit set), the EXSTOP can be bound to the FUP IP. Otherwise the IP is not known. 
Time of powerdown can be inferred from the preceding CYC, if CYCEn=1. Combined with the TSC at the time of 
wake (if TSCEn=1), this can be used to determine the duration of the powerdown.

IP bit indicates if a FUP will follow.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 IP 1 1 0 0 0 1 0
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34.4.2.23  MWAIT Packet

Table 33-42. MWAIT Packet Definition

Name MWAIT Packet

Packet Format

Dependencies TriggerEn && PwrEvtEn && 
ContextEn

Generation 
Scenario

MWAIT, UMWAIT, or TPAUSE instructions, or I/O redirection to 
MWAIT, that complete without fault or VMexit.

Description Indicates that an MWAIT operation to C-state deeper than C0.0 completed. The MWAIT hints and extensions passed 
in by software are exposed in the payload. For UMWAIT and TPAUSE, the EXT field holds the input register value 
that determines the optimized state requested.
For entry to some highly optimized C0 sub-C-states, such as C0.1, no MWAIT packet is generated.
This packet is CYC-eligible, and hence will generate a CYC packet if IA32_RTIT_CTL.CYCEn=1 and any CYC Threshold 
has been reached.

Application The binding for the upcoming EXSTOP packet also applies to the MWAIT packet. See Section 34.4.2.22.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 1 0

2 MWAIT Hints[7:0]

3 Reserved

4 Reserved

5 Reserved

6 Reserved EXT[1:0]

7 Reserved

8 Reserved

9 Reserved
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34.4.2.24  Power Entry (PWRE) Packet

Table 33-43. PWRE Packet Definition

Name PWRE Packet

Packet Format

Dependencies TriggerEn && PwrEvtEn Generation 
Scenario

Transition to a C-state deeper than C0.0.

Description Indicates processor entry to the resolved thread C-state and sub C-state indicated. The processor will remain in this 
C-state until either another PWRE indicates the processor has moved to a C-state deeper than C0.0, or a PWRX 
packet indicates a return to C0.0.
For entry to some highly optimized C0 sub-C-states, such as C0.1, no PWRE packet is generated.
Note that some CPUs may allow MWAIT to request a deeper C-state than is supported by the core. These deeper C-
states may have platform-level implications that differentiate them. However, the PWRE packet will provide only 
the resolved thread C-state, which will not exceed that supported by the core.
If the C-state entry was initiated by hardware, rather than a direct software request (such as MWAIT, UMWAIT, 
TPAUSE, HLT, or shutdown), the HW bit will be set to indicate this. Hardware Duty Cycling (see Section 16.5, “Hard-
ware Duty Cycling (HDC),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B) is an 
example of such a case.

Application When transitioning from C0.0 to a deeper C-state, the PWRE packet will be followed by an EXSTOP. If that EXSTOP 
packet has the IP bit set, then the following FUP will provide the IP at which the C-state entry occurred. Subsequent 
PWRE packets generated before the next PWRX should bind to the same IP.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 1 0

2 HW Reserved

3 Resolved Thread C-State Resolved Thread Sub C-State
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34.4.2.25  Power Exit (PWRX) Packet

Table 33-44. PWRX Packet Definition

Name PWRX Packet

Packet Format

Dependencies TriggerEn && PwrEvtEn Generation 
Scenario

Transition from a C-state deeper than C0.0 to C0.

Description Indicates processor return to thread C0 from a C-state deeper than C0.0.
For return from some highly optimized C0 sub-C-states, such as C0.1, no PWRX packet is generated.
The Last Core C-State field provides the MWAIT encoding for the core C-state at the time of the wake. The Deepest 
Core C-State provides the MWAIT encoding for the deepest core C-state achieved during the sleep session, or since 
leaving thread C0. MWAIT encodings for C-states can be found in Table 4-11 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2B. Note that these values reflect only the core C-state, and hence will 
not exceed the maximum supported core C-state, even if deeper C-states can be requested.
The Wake Reason field is one-hot, encoded as follows:

Application PWRX will always apply to the same IP as the PWRE. The time of wake can be discerned from (optional) timing pack-
ets that precede PWRX.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 0 1 0 0 0 1 0

2 Last Core C-State Deepest Core C-State

3 Reserved Wake Reason

4 Reserved

5 Reserved

6 Reserved

Bit Field Meaning

0 Interrupt Wake due to external interrupt received.

1 Timer Deadline Wake due to timer expiration, such as 
UMWAIT/TPAUSE TSC-quanta.

2 Store to Monitored Address Wake due to store to monitored address.

3 HW Wake Wake due to hardware autonomous condition, 
such as HDC.
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34.4.2.26  Block Begin Packet (BBP)

Table 33-45. Block Begin Packet Definition

Name BBP

Packet Format

Dependencies TriggerEn Generation 
Scenario

PEBS event, if IA32_PEBS_ENABLE.OUTPUT=1.

Description This packet indicates the beginning of a block of packets which are collectively tied to a single event or instruction. 
The size of the block item payloads within this block is provided by the Size (SZ) bit:
SZ=0: 8-byte block items
SZ=1: 4-byte block items
The meaning of the BIP payloads is provided by the Type field:

Application A BBP will always be followed by a Block End Packet (BEP), and when the block is generated while ContextEn=1 
that BEP will have IP=1 and be followed by a FUP that provides the IP to which the block should be bound. Note 
that, in addition to BEP, a block can be terminated by a BBP (indicating the start of a new block) or an OVF packet.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 1 0 0 0 1 1

2 SZ Reserved Type[4:0]

BBP.Type Block name

0x00 Reserved

0x01 General-Purpose Registers

0x02..0x03 Reserved

0x04 PEBS Basic

0x05 PEBS Memory

0x06..0x07 Reserved

0x08 LBR Block 0

0x09 LBR Block 1

0x0A LBR Block 2

0x0B..0x0F Reserved

0x10 XMM Registers

0x11..0x1F Reserved
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34.4.2.27  Block Item Packet (BIP)

BIP State Value Encodings

The table below provides the encoding values for all defined block items. State items that are larger than 8 bytes, 
such as XMM register values, are broken into multiple 8-byte components. BIP packets with Size=1 (4 byte 
payload) will provide only the lower 4 bytes of the associated state value.

Table 33-46. Block Item Packet Definition

Name BIP

Packet Format If the preceding BBP.SZ=0:

If the preceding BBP.SZ=1:

Dependencies TriggerEn Generation 
Scenario

See BBP.

Description The size of the BIP payload is determined by the Size field in the preceding BBP packet.
The BIP header provides the ID value that, when combined with the Type field from the preceding BBP, uniquely 
identifies the state value held in the BIP payload. See Table 33-47 below for the complete list.

Application See BBP.

Table 33-47. BIP Encodings 

BBP.Type BIP.ID State Value

General-Purpose Registers

0x01 0x00 R/EFLAGS

0x01 0x01 R/EIP

0x01 0x02 R/EAX

0x01 0x03 R/ECX

7 6 5 4 3 2 1 0

0 ID[5:0] 1 0 0

1 Payload[7:0]

2 Payload[15:8]

3 Payload[23:16]

4 Payload[31:24]

5 Payload[39:32]

6 Payload[47:40]

7 Payload[55:48]

8 Payload[63:56]

7 6 5 4 3 2 1 0

0 ID[5:0] 1 0 0

1 Payload[7:0]

2 Payload[15:8]

3 Payload[23:16]

4 Payload[31:24]
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0x01 0x04 R/EDX

0x01 0x05 R/EBX

0x01 0x06 R/ESP

0x01 0x07 R/EBP

0x01 0x08 R/ESI

0x01 0x09 R/EDI

0x01 0x0A R8

0x01 0x0B R9

0x01 0x0C R10

0x01 0x0D R11

0x01 0x0E R12

0x01 0x0F R13

0x01 0x10 R14

0x01 0x11 R15

PEBS Basic Info (Section 21.9.2.2.1)

0x04 0x00 Instruction Pointer

0x04 0x01 Applicable Counters 

0x04 0x02 Timestamp 

PEBS Memory Info (Section 21.9.2.2.2)

0x05 0x00 MemAccessAddress

0x05 0x01 MemAuxInfo

0x05 0x02 MemAccessLatency

0x05 0x03 TSXAuxInfo

LBR_0

0x08 0x00 LBR[TOS-0]_FROM_IP

0x08 0x01 LBR[TOS-0]_TO_IP

0x08 0x02 LBR[TOS-0]_INFO

0x08 0x03 LBR[TOS-1]_FROM_IP

0x08 0x04 LBR[TOS-1]_TO_IP

0x08 0x05 LBR[TOS-1]_INFO

0x08 0x06 LBR[TOS-2]_FROM_IP

0x08 0x07 LBR[TOS-2]_TO_IP

0x08 0x08 LBR[TOS-2]_INFO

0x08 0x09 LBR[TOS-3]_FROM_IP

0x08 0x0A LBR[TOS-3]_TO_IP

0x08 0x0B LBR[TOS-3]_INFO

0x08 0x0C LBR[TOS-4]_FROM_IP

0x08 0x0D LBR[TOS-4]_TO_IP

Table 33-47. BIP Encodings  (Contd.)

BBP.Type BIP.ID State Value
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0x08 0x0E LBR[TOS-4]_INFO

0x08 0x0F LBR[TOS-5]_FROM_IP

0x08 0x10 LBR[TOS-5]_TO_IP

0x08 0x11 LBR[TOS-5]_INFO

0x08 0x12 LBR[TOS-6]_FROM_IP

0x08 0x13 LBR[TOS-6]_TO_IP

0x08 0x14 LBR[TOS-6]_INFO

0x08 0x15 LBR[TOS-7]_FROM_IP

0x08 0x16 LBR[TOS-7]_TO_IP

0x08 0x17 LBR[TOS-7]_INFO

0x08 0x18 LBR[TOS-8]_FROM_IP

0x08 0x19 LBR[TOS-8]_TO_IP

0x08 0x1A LBR[TOS-8]_INFO

0x08 0x1B LBR[TOS-9]_FROM_IP

0x08 0x1C LBR[TOS-9]_TO_IP

0x08 0x1D LBR[TOS-9]_INFO

0x08 0x1E LBR[TOS-10]_FROM_IP

0x08 0x1F LBR[TOS-10]_TO_IP

LBR_1

0x09 0x00 LBR[TOS-10]_INFO

0x09 0x01 LBR[TOS-11]_FROM_IP

0x09 0x02 LBR[TOS-11]_TO_IP

0x09 0x03 LBR[TOS-11]_INFO

0x09 0x04 LBR[TOS-12]_FROM_IP

0x09 0x05 LBR[TOS-12]_TO_IP

0x09 0x06 LBR[TOS-12]_INFO

0x09 0x07 LBR[TOS-13]_FROM_IP

0x09 0x08 LBR[TOS-13]_TO_IP

0x09 0x09 LBR[TOS-13]_INFO

0x09 0x0A LBR[TOS-14]_FROM_IP

0x09 0x0B LBR[TOS-14]_TO_IP

0x09 0x0C LBR[TOS-14]_INFO

0x09 0x0D LBR[TOS-15]_FROM_IP

0x09 0x0E LBR[TOS-15]_TO_IP

0x09 0x0F LBR[TOS-15]_INFO

0x09 0x10 LBR[TOS-16]_FROM_IP

0x09 0x11 LBR[TOS-16]_TO_IP

0x09 0x12 LBR[TOS-16]_INFO

Table 33-47. BIP Encodings  (Contd.)

BBP.Type BIP.ID State Value
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0x09 0x13 LBR[TOS-17]_FROM_IP

0x09 0x14 LBR[TOS-17]_TO_IP

0x09 0x15 LBR[TOS-17]_INFO

0x09 0x16 LBR[TOS-18]_FROM_IP

0x09 0x17 LBR[TOS-18]_TO_IP

0x09 0x18 LBR[TOS-18]_INFO

0x09 0x19 LBR[TOS-19]_FROM_IP

0x09 0x1A LBR[TOS-19]_TO_IP

0x09 0x1B LBR[TOS-19]_INFO

0x09 0x1C LBR[TOS-20]_FROM_IP

0x09 0x1D LBR[TOS-20]_TO_IP

0x09 0x1E LBR[TOS-20]_INFO

0x09 0x1F LBR[TOS-21]_FROM_IP

LBR_2

0x0A 0x00 LBR[TOS-21]_TO_IP

0x0A 0x01 LBR[TOS-21]_INFO

0x0A 0x02 LBR[TOS-22]_FROM_IP

0x0A 0x03 LBR[TOS-22]_TO_IP

0x0A 0x04 LBR[TOS-22]_INFO

0x0A 0x05 LBR[TOS-23]_FROM_IP

0x0A 0x06 LBR[TOS-23]_TO_IP

0x0A 0x07 LBR[TOS-23]_INFO

0x0A 0x08 LBR[TOS-24]_FROM_IP

0x0A 0x09 LBR[TOS-24]_TO_IP

0x0A 0x0A LBR[TOS-24]_INFO

0x0A 0x0B LBR[TOS-25]_FROM_IP

0x0A 0x0C LBR[TOS-25]_TO_IP

0x0A 0x0D LBR[TOS-25]_INFO

0x0A 0x0E LBR[TOS-26]_FROM_IP

0x0A 0x0F LBR[TOS-26]_TO_IP

0x0A 0x10 LBR[TOS-26]_INFO

0x0A 0x11 LBR[TOS-27]_FROM_IP

0x0A 0x12 LBR[TOS-27]_TO_IP

0x0A 0x13 LBR[TOS-27]_INFO

0x0A 0x14 LBR[TOS-28]_FROM_IP

0x0A 0x15 LBR[TOS-28]_TO_IP

0x0A 0x16 LBR[TOS-28]_INFO

0x0A 0x17 LBR[TOS-29]_FROM_IP

Table 33-47. BIP Encodings  (Contd.)

BBP.Type BIP.ID State Value
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0x0A 0x18 LBR[TOS-29]_TO_IP

0x0A 0x19 LBR[TOS-29]_INFO

0x0A 0x1A LBR[TOS-30]_FROM_IP

0x0A 0x1B LBR[TOS-30]_TO_IP

0x0A 0x1C LBR[TOS-30]_INFO

0x0A 0x1D LBR[TOS-31]_FROM_IP

0x0A 0x1E LBR[TOS-31]_TO_IP

0x0A 0x1F LBR[TOS-31]_INFO

XMM Registers

0x10 0x00 XMM0_Q0

0x10 0x01 XMM0_Q1

0x10 0x02 XMM1_Q0

0x10 0x03 XMM1_Q1

0x10 0x04 XMM2_Q0

0x10 0x05 XMM2_Q1

0x10 0x06 XMM3_Q0

0x10 0x07 XMM3_Q1

0x10 0x08 XMM4_Q0

0x10 0x09 XMM4_Q1

0x10 0x0A XMM5_Q0

0x10 0x0B XMM5_Q1

0x10 0x0C XMM6_Q0

0x10 0x0D XMM6_Q1

0x10 0x0E XMM7_Q0

0x10 0x0F XMM7_Q1

0x10 0x10 XMM8_Q0

0x10 0x11 XMM8_Q1

0x10 0x12 XMM9_Q0

0x10 0x13 XMM9_Q1

0x10 0x14 XMM10_Q0

0x10 0x15 XMM10_Q1

0x10 0x16 XMM11_Q0

0x10 0x17 XMM11_Q1

0x10 0x18 XMM12_Q0

0x10 0x19 XMM12_Q1

0x10 0x1A XMM13_Q0

0x10 0x1B XMM13_Q1

0x10 0x1C XMM14_Q0

Table 33-47. BIP Encodings  (Contd.)

BBP.Type BIP.ID State Value
Vol. 3C 34-69



INTEL® PROCESSOR TRACE
34.4.2.28  Block End Packet (BEP)

0x10 0x1D XMM14_Q1

0x10 0x1E XMM15_Q0

0x10 0x1F XMM15_Q1

Table 33-48. Block End Packet Definition

Name BEP

Packet Format

Dependencies TriggerEn Generation 
Scenario

See BBP.

Description Indicates the end of a packet block. The IP bit indicates if a FUP will follow, and will be set if ContextEn=1.

Application The block, from initial BBP to the BEP, binds to the FUP IP, if IP=1, and consumes the FUP.

Table 33-47. BIP Encodings  (Contd.)

BBP.Type BIP.ID State Value

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 IP 0 1 1 0 0 1 1
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34.4.2.29  Control Flow Event (CFE) Packet

CFE Packet Type and Vector Fields

Every CFE has a Type field, which provides the type of event which generated the packet. For a subset of CFE 
Types, the CFE.Vector field may be valid. Details on these fields, as well as the IP to be expected in any following 
FUP packet, are provided in the table below.

Table 33-49. Control Flow Event Packet Definition

Name CFE

Packet Format

IP bit indicates if a stand-alone FUP will follow.

Dependencies IA32_RTIT_CTL.EventEn && 
TriggerEn && ContextEn 
On ContextEn transitions, the CFE 
will be generated regardless of 
direction (1→0 or 0→1). VM 
exit is an exception, where 
CFE.VMEXIT depends only on the 
prior value of ContextEn.

Generation 
Scenario

Software interrupt, external interrupt, user interrupt, or 
exception, including those injected on VM entry.
INIT, SIPI, SMI, RSM, IRET, Shutdown.
VM exit, if “Conceal VMX in PT” VMCS exit control is 0.
VM entry, if “Conceal VMX in PT” VMCS entry control is 0.
TSX Abort.

Description This packet indicates that an asynchronous event or related event (see list above) has occurred. The type of event 
is provided in the packet (see Table 33-50 below), and, if the IP bit is set, the IP at which the event occurred is pro-
vided in a stand-alone FUP packet that follows. Further, in the case of an interrupt or exception, the vector field 
provides the vector of the event.
The IP bit will be set only when ContextEn=1 before the event is taken, and either BranchEn=0 or else no FUP is 
generated for this event by BranchEn=1. There are some cases, such as SIPI and RSM, where no FUP is generated.
Note that events that are not delivered to software, such as nested events or events which cause a VM exit, do not 
generate CFE packets.

Application If the IP bit is set, a FUP will follow that is stand-alone (not part of a compound packet event), and the CFE con-
sumes the FUP. If the IP bit is not set, the CFE binds to the next FUP if PacketEn=1 (hence the CFE comes after a 
TIP.PGE but before the next TIP.PGD), and is stand-alone if PacketEn=0.

Table 33-50. CFE Packet Type and Vector Fields Details

CFE Subtype Type Vector FUP IP Details

INTR 0x1 Event Vector Varies Used for interrupts (external and software), 
Exceptions, Faults, and NMI. FUP contains that address 
of the instruction that has not completed (NLIP for trap 
events, CLIP for fault events).

IRET 0x2 Invalid CLIP

SMI 0x3 Invalid NLIP

RSM 0x4 Invalid None

SIPI 0x5 SIPI Vector None

INIT 0x6 Invalid NLIP

VMENTRY 0x7 Invalid CLIP FUP contains IP of VMLAUNCH/VMRESUME.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 0 1 0 0 1 1

2 IP Reserved Type[4:0]

3 Vector[7:0]
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VMEXIT 0x8 Invalid Varies FUP IP varies depending on type of VM exit, but will be 
the address of the instruction that has not completed. 
Will be consistent with Guest IP saved in VMCS.

VMEXIT_INTR 0x9 Event Vector Varies Sent in cases where VM exit was caused by an INTR 
event (interrupt, exception, fault, or NMI). Vector 
provided is for the event which caused the VM exit. 
FUP IP behavior matches that of INTR type above.

SHUTDOWN 0xa Invalid Varies FUP IP varies depending on the type of event that 
caused shutdown, but will be the address of the 
instruction that has not completed.

Reserved 0xb N/A N/A

UINTR 0xc User Interrupt Vector NLIP User interrupt delivered.

UIRET 0xd Invalid CLIP Exiting from user interrupt routine.

Reserved 0xe...0x1f N/A N/A Reserved

Table 33-50. CFE Packet Type and Vector Fields Details (Contd.)

CFE Subtype Type Vector FUP IP Details
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34.4.2.30  Event Data (EVD) Packet

34.5 TRACING IN VMX OPERATION
On processors that IA32_VMX_MISC[bit 14] reports 1, TraceEn can be set in VMX operation. The VMM can 
configure specific VMX controls to control what virtualization-specific data is included within the trace packets (see 
Section 34.5.1 for details). The VMM can also configure the VMCS to limit tracing to non-root operation, or to trace 
across both root and non-root operation. The VMCS controls exist to simplify virtualization of Intel PT for guest use, 
including the “Clear IA32_RTIT_CTL” exit control (See Section 26.7.1), “Load IA32_RTIT_CTL” entry control (See 
Section 26.8.1), and “Intel PT uses guest physical addresses” execution control (See Section 27.5.3).
For older processors that do not support these VMCS controls, the MSR-load areas used by VMX transitions can be 
employed by the VMM to restrict tracing to the desired context. See Section 34.5.2 for details. Tracing with SMM 
Transfer Monitor is described in Section 34.6.

Table 33-51. Event Data Packet Definition

Name EVD

Packet Format

Dependencies IA32_RTIT_CTL.EventEn && 
TriggerEn && ContextEn

Generation 
Scenario

Page fault, including those injected on VM entry.
VM exit, if “Suppress VMX packets on exit” VMCS exit control 
is 0.

Description Provides additional data about the event that caused the following CFE. The Payload field is dictated by the Type.

EVD packets are never generated in cases where a CFE is not.

Application EVD packets bind to the same IP (if any) as the subsequent CFE packet.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 0 1 0 0 1 1

2 Reserved Type[5:0]

3 Payload[7:0]

4 Payload[15:8]

5 Payload[23:16]

6 Payload[31:24]

7 Payload[39:32]

8 Payload[47:40]

9 Payload[55:48]

10 Payload[63:56]

Type Payload

'000000 Page Fault Linear Address, same as CR2 (PFA)

'000001 VMX Exit Qualification (VMXQ)

'000010 VMX Exit Reason (VMXR)

'000011 - '111111 Reserved
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34.5.1 VMX-Specific Packets and VMCS Controls
In all of the usages of VMX and Intel PT, a decoder in the host or VMM context can identify the occurrences of VMX 
transitions with the aid of VMX-specific packets. There are four kinds of packets relevant to VMX:
• VMCS packet. The VMX transitions of individual VMs can be distinguished by a decoder using the VMCS-

pointer field in a VMCS packet. A VMCS packet is sent on a successful execution of VMPTRLD, and its VMCS-
pointer field stores the VMCS pointer loaded by that execution. See Section 34.4.2.15 for details.

• The NR (non-root) bit in a PIP packet. Normally, the NR bit is set in any PIP packet generated in VMX non-
root operation. In addition, PIP packets are generated with each VM entry and VM exit. Thus a transition of the 
NR bit from 0 to 1 indicates the occurrence of a VM entry, and a transition of 1 to 0 indicates the occurrence of 
a VM exit.

• CFE packet. Identifies VM exit and VM entry operations.
• EVD packet. Provides the exit reason and exit qualification for VM exits.
There are VMX controls that a VMM can set to conceal some of this VMX-specific information (by suppressing its 
recording) and thereby prevent it from leaking across virtualization boundaries. There is one of these controls 
(each of which is called “conceal VMX from PT”) of each type of VMX control.

The 0-settings of these VMX controls enable all VMX-specific packet information. The scenarios that would use 
these default settings also do not require the VMM to use VMX MSR-load areas to enable and disable trace-packet 
generation across VMX transitions.
If IA32_VMX_MISC[bit 14] reports 0, the 1-settings of the VMX controls in Table 33-52 are not supported, and 
VM entry will fail on any attempt to set them.

34.5.2 Managing Trace Packet Generation Across VMX Transitions
In tracing scenarios that collect packets for both VMX root operation and VMX non-root operation, a host executive 
can manage the MSRs associated with trace packet generation directly. The states of these MSRs need not be modi-
fied across VMX transitions.
For tracing scenarios that collect packets only within VMX root operation or only within VMX non-root operation, the 
VMM can toggle IA32_RTIT_CTL.TraceEn on VMX transitions.

Table 33-52. VMX Controls For Intel Processor Trace

Type of VMX 
Control

Bit 
Position1

NOTES:

1. These are the positions of the control bits in the relevant VMX control fields.

Value Behavior

Secondary 
processor-based 
VM-execution 
control

19 0 Each PIP generated in VM non-root operation will set the NR bit.

PSB+ in VMX non-root operation will include the VMCS packet, to ensure that the decoder 
knows which guest is currently in use.

1 Each PIP generated in VMX non-root operation will clear the NR bit.

PSB+ in VMX non-root operation will not include the VMCS packet.

VM-exit control 24 0 Each VM exit generates a PIP in which the NR bit is clear, and a CFE/EVD if Event Trace is 
enabled.

In addition, SMM VM exits generate VMCS packets.

1 VM exits do not generate PIPs, CFEs, or EVDs, and no VMCS packets are generated on SMM 
VM exits.

VM-entry control 17 0 Each VM entry generates a PIP in which the NR bit is set (except VM entries that return 
from SMM to VMX root operation), and a CFE if Event Trace is enabled.

In addition, VM entries that return from SMM generate VMCS packets.

1 VM entries do not generate PIPs or CFEs, and no VMCS packets are generated on 
VM entries that return from SMM.
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34.5.2.1  System-Wide Tracing
When a host or VMM configures Intel PT to collect trace packets of the entire system, it can leave the relevant VMX 
controls clear to allow VMX-specific packets to provide information across VMX transitions.
The decoder will desire to identify the occurrence of VMX transitions. The packets of interests to a decoder are 
shown in Table 33-53.

Since the VMX controls that suppress packet generation are cleared, a VMCS packet will be included in all PSB+ for 
this usage scenario. Additionally, VMPTRLD will generate such a packet. Thus the decoder can distinguish the 
execution context of different VMs.
When the host VMM configures a system to collect trace packets in this scenario, it should emulate CPUID to report 
CPUID.(EAX=07H, ECX=0):EBX[bit 26] as 0 to guests, indicating to guests that Intel PT is not available.

VMX TSC Manipulation

The TSC packets generated while in VMX non-root operation will include any changes resulting from the use of a 
VMM’s use of the TSC offsetting or TSC scaling VMX controls (see Chapter 27, “VMX Non-Root Operation”). In this 
system-wide usage model, the decoder may need to account for the effect of per-VM adjustments in the TSC 
packets generated in VMX non-root operation and the absence of TSC adjustments in TSC packets generated in 
VMX root operation. The VMM can supply this information to the decoder.

34.5.2.2  Guest-Only Tracing
A VMM can configure trace-packet generation while in VMX non-root operation for guests executing normally. This 
is accomplished by utilizing VMCS controls to manipulate the guest IA32_RTIT_CTL value on VMX transitions. For 

Table 33-53. Packets on VMX Transitions (System-Wide Tracing)

Event Packets Enable Description

VM exit EVD.VMXR, 
EVD.VMXQ, 
CFE.VMEXIT*

EventEn The CFE identifies the transfer as a VM exit, while the associated EVDs 
provide the exit reason and exit qualification.

FUP(GuestIP) BranchEn or 
EventEn

The FUP indicates at which point in the guest flow the VM exit occurred. This 
is important, since VM exit can be an asynchronous event. The IP will match 
that written into the VMCS.

PIP(HostCR3, NR=0) The PIP packet provides the new host CR3 value, as well as indication that 
the logical processor is entering VMX root operation. This allows the decoder 
to identify the change of executing context from guest to host and load the 
appropriate set of binaries to continue decode.

TIP(HostIP) BranchEn The TIP indicates the destination IP, the IP of the first instruction to be 
executed in VMX root operation.

Note, this packet could be preceded by a MODE.Exec packet (Section 
34.4.2.8). This is generated only in cases where CS.D or (CS.L & EFER.LMA) 
change during the transition.

VM entry CFEVMENTRY,

FUP(CLIP)

EventEn The CFE identifies the transfer as a VM entry, while the FUP identifies the 
VMLAUNCH/VMRESUME IP.

PIP(GuestCR3, NR=1) BranchEn The PIP packet provides the new guest CR3 value, as well as indication that 
the logical processor is entering VMX non-root operation. This allows the 
decoder to identify the change of executing context from host to guest and 
load the appropriate set of binaries to continue decode.

TIP(GuestIP) BranchEn The TIP indicates the destination IP, the IP of the first instruction to be 
executed in VMX non-root operation. This should match the RIP loaded from 
the VMCS.

Note, this packet could be preceded by a MODE.Exec packet (Section 
34.4.2.8). This is generated only in cases where CS.D or (CS.L & EFER.LMA) 
change during the transition.
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older processors that do not support these VMCS controls, a VMM can use the VMX MSR-load areas on VM exits 
(see Section 26.7.2, “VM-Exit Controls for MSRs”) and VM entries (see Section 26.8.2, “VM-Entry Controls for 
MSRs”) to limit trace-packet generation to the guest environment. 
For this usage, VM entry is programmed to enable trace packet generation, while VM exit is programmed to clear 
IA32_RTIT_CTL.TraceEn so as to disable trace-packet generation in the host. Further, if it is preferred that the 
guest packet stream contain no indication that execution was in VMX non-root operation, the VMM should set to 1 
all the VMX controls enumerated in Table 33-52.

34.5.2.3  Emulation of Intel PT Traced State
If a VMM emulates an element of processor state by taking a VM exit on reads and/or writes to that piece of state, 
and the state element impacts Intel PT packet generation or values, it may be incumbent upon the VMM to insert 
or modify the output trace data.
If a VM exit is taken on a guest write to CR3 (including “MOV CR3” as well as task switches), the PIP packet 
normally generated on the CR3 write will be missing.
To avoid decoder confusion when the guest trace is decoded, the VMM should emulate the missing PIP by writing it 
into the guest output buffer. If the guest CR3 value is manipulated, the VMM may also need to manipulate the 
IA32_RTIT_CR3_MATCH value, in order to ensure the trace behavior matches the guest's expectation.
Similarly, if a VMM emulates the TSC value by taking a VM exit on RDTSC, the TSC packets generated in the trace 
may mismatch the TSC values returned by the VMM on RDTSC. To ensure that the trace can be properly aligned 
with software logs based on RDTSC, the VMM should either make corresponding modifications to the TSC packet 
values in the guest trace, or use mechanisms such as TSC offsetting or TSC scaling in place of exiting.

34.5.2.4  TSC Scaling
When TSC scaling is enabled for a guest using Intel PT, the VMM should ensure that the value of Maximum Non-
Turbo Ratio[15:8] in MSR_PLATFORM_INFO (MSR 0CEH) and the TSC/”core crystal clock” ratio (EBX/EAX) in CPUID 
leaf 15H are set in a manner consistent with the resulting TSC rate that will be visible to the VM. This will allow the 
decoder to properly apply TSC packets, MTC packets (based on the core crystal clock or ART, whose frequency is 
indicated by CPUID leaf 15H), and CBR packets (which indicate the ratio of the processor frequency to the Max 
Non-Turbo frequency). Absent this, or separate indication of the scaling factor, the decoder will be unable to prop-
erly track time in the trace. See Section 34.8.3 for details on tracking time within an Intel PT trace.

34.5.2.5  Failed VM Entry
The packets generated by a failed VM entry depend both on the VMCS configuration, as well as on the type of 
failure. The results to expect are summarized in the table below. Note that packets in italics may or may not be 
generated, depending on implementation choice, and the point of failure.

Table 33-54. Packets on a Failed VM Entry

Usage Model Entry Configuration Early Failure (fall 
through to next IP)

Late Failure (VM exit like)

System-Wide No use of “Load 
IA32_RTIT_CTL” entry 
control or VM-entry 
MSR-load area

TIP (NextIP) CFE.VMENTRY, FUP(CLIP) if EventEn=1

PIP(Guest CR3, NR=1), TraceEn 0→1 Packets (See Section 
34.2.8.3), PIP(HostCR3, NR=0), TIP(HostIP)

VMM Only “Load IA32_RTIT_CTL” 
entry control or VM-
entry MSR-load area 
used to clear TraceEn

TIP (NextIP) TraceEn 0→1 Packets (See Section 34.2.8.3), TIP(HostIP)

VM Only “Load IA32_RTIT_CTL” 
entry control or VM-
entry MSR-load area 
used to set TraceEn

None None
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34.5.2.6  VMX Abort
VMX abort conditions take the processor into a shutdown state. On a VM exit that leads to VMX abort, some 
packets (FUP, PIP) may be generated, but any expected TIP, TIP.PGE, or TIP.PGD may be dropped.

34.6 TRACING AND SMM TRANSFER MONITOR (STM)
The SMM-transfer monitor (STM) is a VMM that operates inside SMM while in VMX root operation. An STM operates 
in conjunction with an executive monitor. The latter operates outside SMM and in VMX root operation. Transitions 
from the executive monitor or its VMs to the STM are called SMM VM exits. The STM returns from SMM via a 
VM entry to the VM in VMX non-root operation or the executive monitor in VMX root operation. 
Intel PT supports tracing in an STM similar to tracing support for VMX operation as described above in Section 34.5. 
As a result, on a SMM VM exit resulting from #SMI, TraceEn is neither saved nor cleared by default. Software can 
save the state of the trace configuration MSRs and clear TraceEn using the MSR load/save lists.
Within Event Trace, SMM VM exits generate packets indicating both an #SMI and a VM exit. Similarly, VM entries 
that return from SMM generate packets that indicate both an RSM and a VM entry. SMM VM exits initiated by the 
VMCALL instruction do not generate any CFE packet, though the subsequent VM entry returning from SMM will 
generate a CFE.RSM.

34.7 PACKET GENERATION SCENARIOS
The following tables provides examples of packet generation for various operations. The following acronyms are 
used in the packet examples below:
• CLIP - Current LIP
• NLIP - Next Sequential LIP
• BLIP - Branch Target LIP
Table 33-55 illustrates the packets generated by a series of example operations, assuming that PacketEn 
(TriggerEn && ContextEn && FilterEn && BranchEn) is set before and after the operation.

Table 33-55. Packet Generation under Different Example Operations

Case Operation Details Packets

1 Normal non-jump operation None

2 Conditional branch 6th branch in internal TNT buffer TNT

3 Conditional branch 1st..5th branch in internal TNT buffer None

4 Near indirect JMP or CALL TIP(BLIP)

5 Direct near JMP or CALL None

6 Near RET Uncompressed TIP(BLIP)

7 Near RET Compressed, 6th branch in internal TNT buffer TNT

8 Far Branch Assumes no update to CR3, CS.L, or CS.D TIP(BLIP)

9 Far Branch Assumes update to CR3 PIP(NewCR3), TIP(BLIP)

10 Far Branch Assumes update to CR3 and CS.D/CS.L PIP(NewCR3), MODE.Exec, TIP(BLIP)

11 External Interrupt or NMI Assumes no update to CR3, CS.D, or CS.L FUP(NLIP), TIP(BLIP)

12 External Interrupt or NMI Assumes update to CR3 and CS.D/CS.L FUP(NLIP), PIP(NewCR3), 
MODE.Exec, TIP(BLIP)

13 Exception/Fault or Software Interrupt Assumes no update to CR3, CS.D, or CS.L FUP(CLIP), TIP(BLIP)

14 MOV to CR3 PIP(NewCR3, NR)
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Table 33-56 illustrates the packets generated in example scenarios where the operation alters the value of 
PacketEn. Note that insertion of PSB+ is not included here, though it can be coincident with initial enabling of Intel 
PT. See Section 34.3.7 for details.

15 VM exit Assumes system-wide tracing, see Section 
34.5.2.1

See Table 33-53

16 VM entry Assumes system-wide tracing, see Section 
34.5.2.1

See Table 33-53

17 ENCLU[EENTER] / ENCLU[ERESUME] / 
ENCLU[EEXIT] / AEX/EEE

Only debug enclaves allow PacketEn to be set 
during enclave execution. Assumes no change 
to CS.L or CS.D.

FUP(CLIP), TIP(BLIP)

18 XBEGIN/XACQUIRE/XEND/XRELEASE Does not begin/end transactional execution None

19 XBEGIN/XACQUIRE Assumes beginning of transactional execution MODE.TSX(InTX=1, TXAbort=0), 
FUP(CLIP)

20 XEND/XRELEASE Completes transaction MODE.TSX(InTX=0, TXAbort=0), 
FUP(CLIP)

21 XABORT or Asynchronous Abort Aborts transactional execution MODE.TSX(InTX=0, TXAbort=1), 
FUP(CLIP), TIP(BLIP)

22 INIT On BSP. Assumes no CR3, CS.D, or CS.L update. FUP(NLIP), TIP(ResetLIP)

23 INIT On AP, goes to wait-for-SIPI. Assumes no CR3 
update.

FUP(NLIP)

24 SIPI Assumes no CS.D or CS.L update TIP.PGE(SIPI.LIP)

25 Wake from state deeper than C0.1, P-
state change, or other scenario where 
timing packets (MTC, CYC) may have 
ceased.

TSC if TSCEn=1
TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR

26 UINTR User interrupt handler entry. FUP(NLIP)

27 UIRET Exiting from user interrupt handler. FUP(NLIP)

Table 33-56. Packet Generation with Operations That Alter the Value of PacketEn

Case Operation PktEn 
Before

PktEn 
After

CntxEn 
After

Details Packets

1 WRMSR/XRSTORS that 
changes TraceEn 0 → 1

0 1 0 TSC if TSCEn=1;
TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR, MODE.Exec

2 WRMSR/XRSTORS that 
changes TraceEn 0 → 1

0 1 1 TSC if TSCEn=1;
TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR, MODE.Exec, 
TIP.PGE(NLIP)

3 WRMSR that changes 
TraceEn 1 → 0

1 0 D.C. FUP(CLIP), TIP.PGD()

4 Taken Branch 1 0 1 Source is in IP filter region.
Target is outside IP filter region.

TIP.PGD(BLIP)

5 Taken Branch, Interrupt, 
EEXIT, etc.

0 1 1 Source is outside IP filter region.
Target is in IP filter region.

TIP.PGE(BLIP)

6 Far Branch, Interrupt, EEN-
TER, etc.

1 0 0 Requires change to CPL or CR3, 
or entry to opt-out enclave.

TIP.PGD()

Table 33-55. Packet Generation under Different Example Operations

Case Operation Details Packets
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Table 33-57 illustrates examples of PTWRITE, assuming TriggerEn && PTWEn is true. 

Table 33-58 illustrates examples of Power Event Trace, assuming TriggerEn && PwrEvtEn is true. 

7 Trap-like event (external 
interrupt, NMI, VM exit/entry, 
etc.)

1 0 0 Requires change to CPL or CR3. FUP(NLIP), TIP.PGD()

8 Fault-like event (excep-
tion/fault, software inter-
rupt, VM exit/entry, etc.)

1 0 0 Requires change to CPL or CR3. FUP(CLIP), TIP.PGD()

9 SMI, VM exit/entry 1 0 0 TraceEn is cleared. FUP(NLIP), TIP.PGD()

10 RSM, VM exit/entry 0 1 1 TraceEn is set. See Case 2 for packets on 
enable. FUP/TIP.PGE IP is the 
BLIP.

11 VM Exit 1 0 0 Assumes guest-only tracing, see 
Section 34.5.2.2.
TraceEn is cleared.

FUP(VMCSg.RIP), TIP.PGD()

12 VM entry 0 1 1 Assumes guest-only tracing, see 
Section 34.5.2.2.
TraceEn is set.

TIP.PGE(VMCSg.RIP)

Table 33-57. Examples of PTWRITE when TriggerEn && PTWEn is True

Case Operation ContextEn Details Packets

1 MWAIT/UMWAIT gets fault or VM exit. D.C. None.
Other trace sources may generate pack-
ets on fault or VM exit.

2 MWAIT/UMWAIT requests C0, or moni-
tor not armed, or VMX virtual-interrupt 
delivery.

D.C. None.

3 MWAIT/UMWAIT enters C-state deeper 
than C0.1.

0 PWRE(Cx), EXSTOP

4 MWAIT/UMWAIT enters C-state deeper 
than C0.1.

1 MWAIT(Cy), PWRE(Cx), EXSTOP(IP), 
FUP(CLIP)

5 HLT, Triple-fault shutdown, other oper-
ation that enters C1.

1 PWRE(C1), EXSTOP(IP), FUP(CLIP)

6 Hardware Duty Cycling (HDC). 1 TSC if TSCEn=1
TMA if TSCEn=MTCEn=1

PWRE(HW, C6), EXSTOP(IP), FUP(NLIP), 
TSC?, TMA?, CBR, PWRX(CC6, CC6, 0x8)

7 Wake event during Cx (x > 0). D.C. TSC if TSCEn=1
TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR, PWRX(LCC, DCC, 0x1)

Other trace sources may generate pack-
ets for the wake operation (e.g., inter-
rupt).

Table 33-58. Examples of Power Event Trace when TriggerEn && PwrEvtEn is True

Case Operation ContextEn 
&& 

FilterEn

Details Packets

1 PTWRITE rm32/64 0 None

Table 33-56. Packet Generation with Operations That Alter the Value of PacketEn (Contd.)

Case Operation PktEn 
Before

PktEn 
After

CntxEn 
After

Details Packets
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Table 33-59 illustrates examples of Event Trace, assuming TriggerEn && ContextEn && EventEn is true. In all cases, 
other trace sources (e.g., BranchEn), if enabled, may generate additional packets. For details, see the other tables 
in this section.

2 PTWRITE rm32 1 FUP, PTW.IP=1 if FUPonPTW=1 PTW(IP=1?, 4B, rm32_value), 
FUP(CLIP)?

3 PTWRITE rm64 1 FUP, PTW.IP=1 if FUPonPTW=1 PTW(IP=1?, 8B, rm64_value), 
FUP(CLIP)?

Table 33-59. Event Trace Examples when TriggerEn && ContextEn && EventEn is True

Case Operation ContextEn 
Before

ContextEn 
After

Details Packets

1 IRET 1 D.C. CFE.IRET(IP=1), FUP(CLIP)

2 IRET 0 1 CFE(IRET)

3 External interrupt, including 
NMI

1 D.C. CFE.INTR(IP=1, Vector), FUP(NLIP)

4 External interrupt, including 
NMI

1 1 Assumes BranchEn=1, 
illustrates the shared FUP.

CFE.INTR(IP=0, Vector), FUP(NLIP), 
TIP(BLIP)

5 SW Interrupt, Exception/Fault 
other than #PF

1 D.C. CFE.INTR(IP=1, Vector), FUP(CLIP)

6 Page Fault (#PF) 1 D.C. EVD.PFA, CFE.INTR(IP=1,14), 
FUP(CLIP)

7 Page Fault (#PF) 0 D.C. None

10 SMI 1 D.C. CFE.SMI(IP=1), FUP(NLIP)

11 RSM, TraceEn restored to 1 D.C. 1 CFE.RSM(IP=0)

12 Entry to Shutdown 1 D.C. CFE.SHUTDOWN(IP=1), FUP(CLIP)

13 VM exit caused by interrupt, 
fault, or SMI

1 D.C. Assumes “Conceal VMX in 
PT” exit control is 0.

EVD.VMXQ, EVD.VMXR, 
CFE.VMEXIT_INTR(IP=1, Vector), 
FUP(VMCSg.LIP)

14 VM exit caused by other than 
interrupt, fault, or SMI

1 D.C. Assumes “Conceal VMX in 
PT” exit control is 0.

EVD.VMXQ, EVD.VMXR, 
CFE.VMEXIT(IP=1), FUP(VMCSg.LIP)

15 VM exit caused by other than 
interrupt, fault, or SMI

0 1 Assumes “Conceal VMX in 
PT” exit control is 0.

CFE.VMEXIT(IP=0)

16 VM entry 1 D.C. Assumes “Conceal VMX in 
PT” entry control is 0.

CFE.VMENTRY(IP=1), FUP(VMCSh.LIP)

17 AEX/EEE, from opt-out (non-
debug) enclave

0 0 None

18 AEX/EEE, from opt-out (non-
debug) enclave

0 1 CFE.INTR(IP=0)

19 AEX, from opt-in (debug) 
enclave

1 D.C. CFE.INTR(IP=1, Vec), FUP(AEP LIP)

20 INIT 1 D.C. CFE.INIT(IP=1), FUP(NLIP)

21 SIPI 1 D.C. CFE.SIPI(IP=0)

Table 33-58. Examples of Power Event Trace when (Contd.)TriggerEn && PwrEvtEn is True

Case Operation ContextEn 
&& 

FilterEn

Details Packets
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34.8 SOFTWARE CONSIDERATIONS

34.8.1 Tracing SMM Code
Nothing prevents an SMM handler from configuring and enabling packet generation for its own use. As described in 
Section Section 34.2.9.3, SMI will always clear TraceEn, so the SMM handler would have to set TraceEn in order to 
enable tracing. There are some unique aspects and guidelines involved with tracing SMM code, which follow:

1. SMM should save away the existing values of any configuration MSRs that SMM intends to modify for tracing.
This will allow the non-SMM tracing context to be restored before RSM. 

2. It is recommended that SMM wait until it sets CSbase to 0 before enabling packet generation, to avoid possible 
LIP vs RIP confusion. 

3. Packet output cannot be directed to SMRR memory, even while tracing in SMM. 

4. Before performing RSM, SMM should take care to restore modified configuration MSRs to the values they had 
immediately after #SMI. This involves first disabling packet generation by clearing TraceEn, then restoring any 
other configuration MSRs that were modified. 

5. RSM

— Software must ensure that TraceEn=0 at the time of RSM. Tracing RSM is not a supported usage model, and 
the packets generated by RSM are undefined.

— For processors on which Intel PT and LBR use are mutually exclusive (see Section 34.3.1.2), any RSM 
during which TraceEn is restored to 1 will suspend any LBR or BTS logging.

34.8.2 Cooperative Transition of Multiple Trace Collection Agents
A third-party trace-collection tool should take into consideration the fact that it may be deployed on a processor 
that supports Intel PT but may run under any operating system. 
In such a deployment scenario, Intel recommends that tool agents follow similar principles of cooperative transition 
of single-use hardware resources, similar to how performance monitoring tools handle performance monitoring 
hardware:
• Respect the “in-use” ownership of an agent who already configured the trace configuration MSRs, see architec-

tural MSRs with the prefix “IA32_RTIT_” in Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 4, where “in-use” can be determined by reading the 
“enable bits” in the configuration MSRs.

• Relinquish ownership of the trace configuration MSRs by clearing the “enabled bits” of those configuration 
MSRs.

34.8.3 Tracking Time 
This section describes the relationships of several clock counters whose update frequencies reside in different 
domains that feed into the timing packets. To track time, the decoder also needs to know the regularity or irregu-
larity of the occurrences of various timing packets that store those clock counters. 
Intel PT provides time information for three different but related domains:

22 STI/CLI/POPF 1 1 Assumes a change to 
RFLAGS.IF.

MODE.Exec, FUP(NLIP)

Table 33-59. Event Trace Examples when TriggerEn && ContextEn && EventEn is True

Case Operation ContextEn 
Before

ContextEn 
After

Details Packets
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• Processor timestamp counter

This counter increments at the max non-turbo or P1 frequency, and its value is returned on a RDTSC. Its
frequency is fixed. The TSC packet holds the lower 7 bytes of the timestamp counter value. The TSC packet
occurs occasionally and are much less frequent than the frequency of the time stamp counter. The timestamp
counter will continue to increment when the processor is in deep C-States, with the exception of processors
reporting CPUID.80000007H:EDX.InvariantTSC[bit 8] =0.

• Core crystal clock 

The ratio of the core crystal clock to timestamp counter frequency is known as P, and can be calculated as
CPUID.15H:EBX[31:0] / CPUID.15H:EAX[31:0]. The frequency of the core crystal clock is fixed and lower
than that of the timestamp counter. The periodic MTC packet is generated based on software-selected
multiples of the crystal clock frequency. The MTC packet is expected to occur more frequently than the TSC
packet.

• Processor core clock

The processor core clock frequency can vary due to P-state and thermal conditions. The CYC packet provides
elapsed time as measured in processor core clock cycles relative to the last CYC packet. 

A decoder can use all or some combination of these packets to track time at different resolutions throughout the 
trace packets.

34.8.3.1  Time Domain Relationships
The three domains are related by the following formula:

TimeStampValue = (CoreCrystalClockValue * P) + AdjustedProcessorCycles + Software_Offset; 
The CoreCrystalClockValue, also known as the Always Running Timer (ART) value, can provide the coarse-grained 
component of the TSC value. P, or the TSC/ART ratio, can be derived from CPUID leaf 15H, as described in Section 
34.8.3.
The AdjustedProcessorCycles component provides the fine-grained distance from the rising edge of the last core 
crystal clock. Specifically, it is a cycle count in the same frequency as the timestamp counter from the last crystal 
clock rising edge. The value is adjusted based on the ratio of the processor core clock frequency to the Maximum 
Non-Turbo (or P1) frequency. 
The Software_Offsets component includes software offsets that are factored into the timestamp value, such as 
IA32_TSC_ADJUST. 

34.8.3.2  Estimating TSC within Intel PT
For many usages, it may be useful to have an estimated timestamp value for all points in the trace. The formula 
provided in Section 34.8.3.1 above provides the framework for how such an estimate can be calculated from the 
various timing packets present in the trace.
The TSC packet provides the precise timestamp value at the time it is generated; however, TSC packets are infre-
quent, and estimates of the current timestamp value based purely on TSC packets are likely to be very inaccurate 
for this reason. In order to get more precise timing information between TSC packets, CYC packets and/or MTC 
packets should be enabled.
MTC packets provide incremental updates of the CoreCrystalClockValue. On processors that support CPUID leaf 
15H, the frequency of the timestamp counter and the core crystal clock is fixed, thus MTC packets provide a means 
to update the running timestamp estimate. Between two MTC packets A and B, the number of crystal clock cycles 
passed is calculated from the 8-bit payloads of respective MTC packets:
(CTCB - CTCA), where CTCi = MTCi[15:8] << IA32_RTIT_CTL.MTCFreq and i = A, B. 
The time from a TSC packet to the subsequent MTC packet can be calculated using the TMA packet that follows the 
TSC packet. The TMA packet provides both the crystal clock value (lower 16 bits, in the CTC field) and the Adjust-
edProcessorCycles value (in the FastCounter field) that can be used in the calculation of the corresponding core 
crystal clock value of the TSC packet. 
When the next MTC after a pair of TSC/TMA is seen, the number of crystal clocks passed since the TSC packet can 
be calculated by subtracting the TMA.CTC value from the time indicated by the MTCNext packet by 
CTCDelta[15:0] = (CTCNext[15:0] - TMA.CTC[15:0]), where CTCNext = MTCPayload << IA32_RTIT_CTL.MTCFreq.
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The TMA.FastCounter field provides the number of AdjustedProcessorCycles since the last crystal clock rising edge, 
from which it can be determined the percentage of the next crystal clock cycle that had passed at the time of the 
TSC packet. 
CYC packets can provide further precision of an estimated timestamp value to many non-timing packets, by 
providing an indication of the time passed between other timing packets (MTCs or TSCs). 
When enabled, CYC packets are sent preceding each CYC-eligible packet, and provide the number of processor 
core clock cycles that have passed since the last CYC packet. Thus between MTCs and TSCs, the accumulated CYC 
values can be used to estimate the AdjustedProcessorCycles component of the timestamp value. The accumulated 
CPU cycles will have to be adjusted to account for the difference in frequency between the processor core clock and 
the P1 frequency. The necessary adjustment can be estimated using the core:bus ratio value given in the CBR 
packet, by multiplying the accumulated cycle count value by P1/CBRpayload. 
Note that stand-alone TSC packets (that is, TSC packets that are not a part of a PSB+) are typically generated only 
when generation of other timing packets (MTCs and CYCs) has ceased for a period of time. Example scenarios 
include when Intel PT is re-enabled, or on wake after a sleep state. Thus any calculated estimate of the timestamp 
value leading up to a TSC packet will likely result in a discrepancy, which the TSC packet serves to correct.
A greater level of precision may be achieved by calculating the CPU clock frequency, see Section 34.8.3.4 below for 
a method to do so using Intel PT packets. 
CYCs can be used to estimate time between TSCs even without MTCs, though this will likely result in a reduction in 
estimated TSC precision.

34.8.3.3  VMX TSC Manipulation
When software executes in non-Root operation, additional offset and scaling factors may be applied to the TSC 
value. These are optional, but may be enabled via VMCS controls on a per-VM basis. See Chapter 27, “VMX Non-
Root Operation‚” for details on VMX TSC offsetting and TSC scaling.
Like the value returned by RDTSC, TSC packets will include these adjustments, but other timing packets (such as 
MTC, CYC, and CBR) are not impacted. In order to use the algorithm above to estimate the TSC value when TSC 
scaling is in use, it will be necessary for software to account for the scaling factor. See Section 34.5.2.4 for details.

34.8.3.4  Calculating Frequency with Intel PT
Because Intel PT can provide both wall-clock time and processor clock cycle time, it can be used to measure the 
processor core clock frequency. Either TSC or MTC packets can be used to track the wall-clock time. By using CYC 
packets to count the number of processor core cycles that pass in between a pair of wall-clock time packets, the 
ratio between processor core clock frequency and TSC frequency can be derived. If the P1 frequency is known, it 
can be applied to determine the CPU frequency. See Section 34.8.3.1 above for details on the relationship between 
TSC, MTC, and CYC.
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CHAPTER 35
INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

35.1 OVERVIEW
Intel® Software Guard Extensions (Intel® SGX) is a set of instructions and mechanisms for memory accesses 
added to Intel® Architecture processors. Intel SGX can encompass two collections of instruction extensions, 
referred to as SGX1 and SGX2, see Table 35-1 and Table 35-2. The SGX1 extensions allow an application to instan-
tiate a protected container, referred to as an enclave. The enclave is a trusted area of memory, where critical 
aspects of the application functionality have hardware-enhanced confidentiality and integrity protections. New 
access controls to restrict access to software not resident in the enclave are also introduced. The SGX2 extensions 
allow additional flexibility in runtime management of enclave resources and thread execution within an enclave.
Chapter 36 covers main concepts, objects and data structure formats that interact within the Intel SGX architec-
ture. Chapter 37 covers operational aspects ranging from preparing an enclave, transferring control to enclave 
code, and programming considerations for the enclave code and system software providing support for enclave 
execution. Chapter 38 describes the behavior of Asynchronous Enclave Exit (AEX) caused by events while 
executing enclave code. Chapter 39 covers the syntax and operational details of the instruction and associated leaf 
functions available in Intel SGX. Chapter 40 describes interaction of various aspects of IA32 and Intel® 64 archi-
tectures with Intel SGX. Chapter 41 covers Intel SGX support for application debug, profiling, and performance 
monitoring.

35.2 ENCLAVE INTERACTION AND PROTECTION
Intel SGX allows the protected portion of an application to be distributed in the clear. Before the enclave is built, the 
enclave code and data are free for inspection and analysis. The protected portion is loaded into an enclave where 
its code and data is measured. Once the application’s protected portion of the code and data are loaded into an 
enclave, memory access controls are in place to restrict access by external software. An enclave can prove its iden-
tity to a remote party and provide the necessary building-blocks for secure provisioning of keys and credentials. 
The application can also request an enclave-specific and platform-specific key that it can use to protect keys and 
data that it wishes to store outside the enclave.1

Figure 35-1.  An Enclave Within the Application’s Virtual Address Space

1. For additional information, see white papers on Intel SGX at https://www.intel.com/content/www/us/en/developer/tools/isa-exten-
sions/overview.html.
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INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS
Intel SGX introduces two significant capabilities to the Intel Architecture. First is the change in enclave memory 
access semantics. The second is protection of the address mappings of the application.

35.3 ENCLAVE LIFE CYCLE 
Enclave memory management is divided into two parts: address space allocation and memory commitment. 
Address space allocation is the specification of the range of linear addresses that the enclave may use. This range 
is called the ELRANGE. No actual resources are committed to this region. Memory commitment is the assignment 
of actual memory resources (as pages) within the allocated address space. This two-phase technique allows flexi-
bility for enclaves to control their memory usage and to adjust dynamically without overusing memory resources 
when enclave needs are low. Commitment adds physical pages to the enclave. An operating system may support 
separate allocate and commit operations. 
During enclave creation, code and data for an enclave are loaded from a clear-text source, i.e., from non-enclave 
memory.
Untrusted application code starts using an initialized enclave typically by using the EENTER leaf function provided 
by Intel SGX to transfer control to the enclave code residing in the protected Enclave Page Cache (EPC). The 
enclave code returns to the caller via the EEXIT leaf function. Upon enclave entry, control is transferred by hard-
ware to software inside the enclave. The software inside the enclave switches the stack pointer to one inside the 
enclave. When returning back from the enclave, the software swaps back the stack pointer then executes the 
EEXIT leaf function.
On processors that support the SGX2 extensions, an enclave writer may add memory to an enclave using the SGX2 
instruction set, after the enclave is built and running. These instructions allow adding additional memory resources 
to the enclave for use in such areas as the heap. In addition, SGX2 instructions allow the enclave to add new 
threads to the enclave. The SGX2 features provide additional capabilities to the software model without changing 
the security properties of the Intel SGX architecture. 
Calling an external procedure from an enclave could be done using the EEXIT leaf function. Software would use 
EEXIT and a software convention between the trusted section and the untrusted section.
An active enclave consumes resources from the Enclave Page Cache (EPC, see Section 35.5). Intel SGX provides 
the EREMOVE instruction that an EPC manager can use to reclaim EPC pages committed to an enclave. The EPC 
manager uses EREMOVE on every enclave page when the enclave is torn down. After successful execution of 
EREMOVE the EPC page is available for allocation to another enclave.

35.4 DATA STRUCTURES AND ENCLAVE OPERATION
There are 2 main data structures associated with operating an enclave, the SGX Enclave Control Structure (SECS, 
see Section 36.7) and the Thread Control Structure (TCS, see Section 36.8). 
There is one SECS for each enclave. The SECS contains meta-data about the enclave which is used by the hardware 
and cannot be directly accessed by software. Included in the SECS is a field that stores the enclave build measure-
ment value. This field, MRENCLAVE, is initialized by the ECREATE instruction and updated by every EADD and 
EEXTEND. It is locked by EINIT. 
Every enclave contains one or more TCS structures. The TCS contains meta-data used by the hardware to save and 
restore thread specific information when entering/exiting the enclave. There is one field, FLAGS, that may be 
accessed by software. This field can only be accessed by debug enclaves. The flag bit, DBGOPTIN, allows to single 
step into the thread associated with the TCS. (see Section 36.8.1)
The SECS is created when ECREATE (see Table 35-1) is executed. The TCS can be created using the EADD instruc-
tion or the SGX2 instructions (see Table 35-2). 

35.5 ENCLAVE PAGE CACHE
The Enclave Page Cache (EPC) is the secure storage used to store enclave pages when they are a part of an 
executing enclave. For an EPC page, hardware performs additional access control checks to restrict access to the 
page. After the current page access checks and translations are performed, the hardware checks that the EPC page 
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is accessible to the program currently executing. Generally an EPC page is only accessed by the owner of the 
executing enclave or an instruction which is setting up an EPC page
The EPC is divided into EPC pages. An EPC page is 4KB in size and always aligned on a 4KB boundary. 
Pages in the EPC can either be valid or invalid. Every valid page in the EPC belongs to one enclave instance. Each 
enclave instance has an EPC page that holds its SECS. The security metadata for each EPC page is held in an 
internal micro-architectural structure called Enclave Page Cache Map (EPCM, see Section 35.5.1).
The EPC is managed by privileged software. Intel SGX provides a set of instructions for adding and removing 
content to and from the EPC. The EPC may be configured by BIOS at boot time. On implementations in which EPC 
memory is part of system DRAM, the contents of the EPC are protected by an encryption engine. 

35.5.1 Enclave Page Cache Map (EPCM)
The EPCM is a secure structure used by the processor to track the contents of the EPC. The EPCM holds one entry 
for each page in the EPC. The format of the EPCM is micro-architectural, and consequently is implementation 
dependent. However, the EPCM contains the following architectural information:
• The status of EPC page with respect to validity and accessibility.
• An SECS identifier (see Section 36.20) of the enclave to which the page belongs. 
• The type of page: regular, SECS, TCS or VA.
• The linear address through which the enclave is allowed to access the page.
• The specified read/write/execute permissions on that page. 
The EPCM structure is used by the CPU in the address-translation flow to enforce access-control on the EPC pages. 
The EPCM structure is described in Table 36-28, and the conceptual access-control flow is described in Section 
36.5.
The EPCM entries are managed by the processor as part of various instruction flows. 

35.6 ENCLAVE INSTRUCTIONS AND INTEL® SGX
The enclave instructions available with Intel SGX are organized as leaf functions under three instruction 
mnemonics: ENCLS (ring 0), ENCLU (ring 3), and ENCLV (VT root mode). Each leaf function uses EAX to specify the 
leaf function index, and may require additional implicit input registers as parameters. The use of EAX is implied 
implicitly by the ENCLS, ENCLU, and ENCLV instructions; ModR/M byte encoding is not used with ENCLS, ENCLU, 
and ENCLV. The use of additional registers does not use ModR/M encoding and is implied implicitly by the respective 
leaf function index.
Each leaf function index is also associated with a unique, leaf-specific mnemonic. A long-form expression of Intel 
SGX instruction takes the form of ENCLx[LEAF_MNEMONIC], where ‘x’ is either ‘S’, ‘U’, or ‘V’. The long-form expres-
sion provides clear association of the privilege-level requirement of a given “leaf mnemonic”. For simplicity, the 
unique “Leaf_Mnemonic” name is used (omitting the ENCLx for convenience) throughout in this document. 
Details of individual SGX leaf functions are described in Chapter 39. Table 35-1 provides a summary of the instruc-
tion leaves that are available in the initial implementation of Intel SGX, which is introduced in the 6th generation 
Intel Core processors. Table 35-2 summarizes enhancement of Intel SGX for future Intel processors.

Table 35-1.  Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1
Supervisor Instruction Description User Instruction Description

ENCLS[EADD] Add an EPC page to an enclave. ENCLU[EENTER] Enter an enclave.

ENCLS[EBLOCK] Block an EPC page. ENCLU[EEXIT] Exit an enclave.

ENCLS[ECREATE] Create an enclave. ENCLU[EGETKEY] Create a cryptographic key.

ENCLS[EDBGRD] Read data from a debug enclave by debug-
ger.

ENCLU[EREPORT] Create a cryptographic report.
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35.7 DISCOVERING SUPPORT FOR INTEL® SGX AND ENABLING ENCLAVE 
INSTRUCTIONS

Detection of support of Intel SGX and enumeration of available and enabled Intel SGX resources are queried using 
the CPUID instruction. The enumeration interface comprises the following:
• Processor support of Intel SGX is enumerated by a feature flag in CPUID leaf 07H: CPUID.(EAX=07H, 

ECX=0H):EBX.SGX[bit 2]. If CPUID.(EAX=07H, ECX=0H):EBX.SGX = 1, the processor has support for Intel 
SGX, and requires opt-in enabling by BIOS via IA32_FEATURE_CONTROL MSR. 

If CPUID.(EAX=07H, ECX=0H):EBX.SGX = 1, CPUID will report via the available sub-leaves of
CPUID.(EAX=12H) on available and/or configured Intel SGX resources.

• The available and configured Intel SGX resources enumerated by the sub-leaves of CPUID.(EAX=12H) depend 
on the state of BIOS configuration.

ENCLS[EDBGWR] Write data into a debug enclave by debug-
ger.

ENCLU[ERESUME] Re-enter an enclave.

ENCLS[EEXTEND] Extend EPC page measurement.

ENCLS[EINIT] Initialize an enclave.

ENCLS[ELDB] Load an EPC page in blocked state.

ENCLS[ELDU] Load an EPC page in unblocked state.

ENCLS[EPA] Add an EPC page to create a version array.

ENCLS[EREMOVE] Remove an EPC page from an enclave.

ENCLS[ETRACK] Activate EBLOCK checks.

ENCLS[EWB] Write back/invalidate an EPC page.

Table 35-2.  Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX2
Supervisor Instruction Description User Instruction Description

ENCLS[EAUG] Allocate EPC page to an existing enclave. ENCLU[EACCEPT] Accept EPC page into the enclave.

ENCLS[EMODPR] Restrict page permissions. ENCLU[EMODPE] Enhance page permissions.

ENCLS[EMODT] Modify EPC page type. ENCLU[EACCEPTCOPY] Copy contents to an augmented EPC 
page and accept the EPC page into 
the enclave.

Table 35-3.  VMX Operation and Supervisor Mode Enclave Instruction Leaf Functions in Long-Form of OVERSUB
VMX Operation Description Supervisor Instruction Description

ENCLV[EDECVIRTCHILD] Decrement the virtual child page count. ENCLS[ERDINFO] Read information about EPC page.

ENCLV[EINCVIRTCHILD] Increment the virtual child page count. ENCLS[ETRACKC] Activate EBLOCK checks with conflict 
reporting.

ENCLV[ESETCONTEXT] Set virtualization context. ENCLS[ELDBC/UC] Load an EPC page with conflict 
reporting.

Table 35-1.  Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1
Supervisor Instruction Description User Instruction Description
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35.7.1 Intel® SGX Opt-In Configuration
On processors that support Intel SGX, IA32_FEATURE_CONTROL provides the SGX_ENABLE field (bit 18). Before 
system software can configure and enable Intel SGX resources, BIOS is required to set 
IA32_FEATURE_CONTROL.SGX_ENABLE = 1 to opt-in the use of Intel SGX by system software.
The semantics of setting SGX_ENABLE follows the rules of IA32_FEATURE_CONTROL.LOCK (bit 0). Software is 
considered to have opted into Intel SGX if and only if IA32_FEATURE_CONTROL.SGX_ENABLE and 
IA32_FEATURE_CONTROL.LOCK are set to 1. The setting of IA32_FEATURE_CONTROL.SGX_ENABLE (bit 18) is not 
reflected by CPUID.

35.7.2 Intel® SGX Resource Enumeration Leaves
If CPUID.(EAX=07H, ECX=0H):EBX.SGX = 1, the processor also supports querying CPUID with EAX=12H on Intel 
SGX resource capability and configuration. The number of available sub-leaves in leaf 12H depends on the Opt-in 
and system software configuration. Information returned by CPUID.12H is thread specific; software should not 
assume that if Intel SGX instructions are supported on one hardware thread, they are also supported elsewhere. 
A properly configured processor exposes Intel SGX functionality with CPUID.EAX=12H reporting valid information 
(non-zero content) in three or more sub-leaves, see Table 35-5.
• CPUID.(EAX=12H, ECX=0H) enumerates Intel SGX capability, including enclave instruction opcode support.
• CPUID.(EAX=12H, ECX=1H) enumerates Intel SGX capability of processor state configuration and enclave 

configuration in the SECS structure (see Table 36-3).
• CPUID.(EAX=12H, ECX >1) enumerates available EPC resources.

Table 35-4.  Intel® SGX Opt-in and Enabling Behavior
CPUID.(07H,0H):EBX.

SGX
CPUID.(12H)

FEATURE_CONTROL.
LOCK

FEATURE_CONTROL.
SGX_ENABLE

Enclave Instruction

0 Invalid X X #UD

1 Valid* X X #UD**

1 Valid* 0 X #GP

1 Valid* 1 0 #GP

1 Valid* 1 1 Available (see Table 35-5 for details 
of SGX1 and SGX2).

* Leaf 12H enumeration results are dependent on enablement.

** See list of conditions in the #UD section of the reference pages of ENCLS and ENCLU

Table 35-5.  CPUID Leaf 12H, Sub-Leaf 0 Enumeration of Intel® SGX Capabilities

CPUID.(EAX=12H,ECX=0) Description Behavior

Register Bits

EAX 0 SGX1: If 1, indicates leaf functions of SGX1 instruction listed in Table 35-1 are supported.

1 SGX2: If 1, indicates leaf functions of SGX2 instruction listed in Table 35-2 are supported.

4:2 Reserved (0)

5 OVERSUB: If 1, indicates Intel SGX supports instructions: EINCVIRTCHILD, EDECVIRTCHILD, and 
ESETCONTEXT.

6 OVERSUB: If 1, indicates Intel SGX supports instructions: ETRACKC, ERDINFO, ELDBC, and ELDUC.

31:7 Reserved (0)

EBX
31:0 MISCSELECT: Reports the bit vector of supported extended features that can be written to the MISC 

region of the SSA.

ECX 31:0 Reserved (0).
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On processors that support Intel SGX1 and SGX2, CPUID leaf 12H sub-leaf 2 report physical memory resources 
available for use with Intel SGX. These physical memory sections are typically allocated by BIOS as Processor 
Reserved Memory, and available to the OS to manage as EPC. 
To enumerate how many EPC sections are available to the EPC manager, software can enumerate CPUID leaf 12H 
with sub-leaf index starting from 2, and decode the sub-leaf-type encoding (returned in EAX[3:0]) until the sub-
leaf type is invalid. All invalid sub-leaves of CPUID leaf 12H return EAX/EBX/ECX/EDX with 0.

EDX

7:0 MaxEnclaveSize_Not64: the maximum supported enclave size is 2^(EDX[7:0]) bytes when not in 64-bit 
mode.

15:8 MaxEnclaveSize_64: the maximum supported enclave size is 2^(EDX[15:8]) bytes when operating in 64-
bit mode.

31:16 Reserved (0).

Table 35-6.  CPUID Leaf 12H, Sub-Leaf 1 Enumeration of Intel® SGX Capabilities

CPUID.(EAX=12H,ECX=1) Description Behavior

Register Bits

EAX 31:0 Report the valid bits of SECS.ATTRIBUTES[31:0] that software can set with ECREATE. 
SECS.ATTRIBUTES[n] can be set to 1 using ECREATE only if EAX[n] is 1, where n < 32.

EBX 31:0 Report the valid bits of SECS.ATTRIBUTES[63:32] that software can set with ECREATE. 
SECS.ATTRIBUTES[n+32] can be set to 1 using ECREATE only if EBX[n] is 1, where n < 32.

ECX 31:0 Report the valid bits of SECS.ATTRIBUTES[95:64] that software can set with ECREATE. 
SECS.ATTRIBUTES[n+64] can be set to 1 using ECREATE only if ECX[n] is 1, where n < 32.

EDX 31:0 Report the valid bits of SECS.ATTRIBUTES[127:96] that software can set with ECREATE. 
SECS.ATTRIBUTES[n+96] can be set to 1 using ECREATE only if EDX[n] is 1, where n < 32.

Table 35-7.  CPUID Leaf 12H, Sub-Leaf Index 2 or Higher Enumeration of Intel® SGX Resources

CPUID.(EAX=12H,ECX > 1) Description Behavior

Register Bits

EAX 3:0 0000b: This sub-leaf is invalid; EDX:ECX:EBX:EAX return 0.

0001b: This sub-leaf enumerates an EPC section. EBX:EAX and EDX:ECX provide information on the 
Enclave Page Cache (EPC) section.

All other encodings are reserved.

11:4 Reserved (enumerate 0).

31:12 If EAX[3:0] = 0001b, these are bits 31:12 of the physical address of the base of the EPC section.

EBX
19:0 If EAX[3:0] = 0001b, these are bits 51:32 of the physical address of the base of the EPC section.

31:20 Reserved.

ECX

3: 0 If ECX[3:0] = 0000b, then all bits of the EDX:ECX pair are enumerated as 0.

If ECX[3:0] = 0001b, then this section has confidentiality and integrity protection.

If ECX[3:0] = 0010b, then this section has confidentiality protection only.

All other encodings are reserved.

11:4 Reserved (enumerate 0).

31:12 If EAX[3:0] = 0001b, these are bits 31:12 of the size of the corresponding EPC section within the 
Processor Reserved Memory.

Table 35-5.  CPUID Leaf 12H, Sub-Leaf 0 Enumeration of Intel® SGX Capabilities

CPUID.(EAX=12H,ECX=0) Description Behavior

Register Bits
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35.8 INTEL® SGX INTERACTIONS WITH CONTROL-FLOW ENFORCEMENT 
TECHNOLOGY

This section discusses extensions to the Intel SGX architecture to support CET.

35.8.1 CET in Enclaves Model
Each enclave has its private configuration for CET that is not shared with the CET configurations of the enclosing 
application. On entry into the enclave, the CET state of the enclosing application is saved into scratchpad registers 
inside the processor and the CET state of the enclave is established. On an asynchronous exit, the enclave CET 
state is saved into the enclave state save area frame. On exit from the enclave, the CET state of the enclosing 
application is re-established from the scratchpad registers.
A new page type, PT_SS_FIRST, is used to denote pages in an enclave that can be used as a first page of a shadow 
stack.
A new page type, PT_SS_REST, is used to denote pages in an enclave that can be used as a non-first page of a 
shadow stack.
A page denoted as PT_SS_FIRST and PT_SS_REST will be a legal target for shadow_stack_load, 
shadow_stack_store, and regular load operations. Regular stores will be disallowed to such pages. A 
PT_SS_FIRST/PT_SS_REST page must be writeable in the IA page tables and in EPT.
When in enclave mode, shadow_stack_load and shadow_stack_store operations must be to addresses in the 
enclave ELRANGE.
The EAUG instruction is extended to allocate pages of type PT_SS_FIRST/PT_SS_REST; this page type requires 
specifying a SECINFO structure with page parameters. Shadow page permission must be R/W. Regular R/W pages 
may continue to be allocated by providing a SECINFO pointer value of 0. Regular R/W pages may also be allocated 
by providing a SECINFO structure that specifies the page parameters. The EAUG instruction creates a shadow-
stack-restore token at offset 0xFF8 on a PT_SS_FIRST page. This allows a dynamically created shadow stack to be 
restored using the RSTORSSP instruction. The EADD and EAUG instructions disallow creation of a PT_SS_FIRST or 
PT_SS_REST page as the first or last page in ELRANGE.
The EADD instruction requires that the PT_SS_REST page be all zeroes. The EADD instruction requires that a 
PT_SS_FIRST page be all zeroes except the 8 bytes at offset 0xFF8 on that page that must have a shadow-stack-
restore token. This shadow-stack-restore token must have a linear address which is the linear address of the 
PT_SS_FIRST page + 4096. As an enclave could be loaded at varying linear addresses, the enclave builder should 
not extend the measurement of the PT_SS_FIRST pages into the measurement registers. On first entry on to the 
enclave using a TCS, the enclave software can use the RSTORSSP instruction to restore its SSP. Subsequent to 
performing a RSTORSSP, the enclave software can use the INCSSP instruction to pop the previous-ssp token that 
is created by the RSTORSSP instruction at the top of the restored shadow stack.
On an enclave entry, the SSP will be initialized to the value in a new TCS field called PREVSSP. The PREVSSP field is 
written with the value of SSP on enclave exit and is loaded into SSP at enclave entry. When a TCS page is added 
using EADD or accepted using EACCEPT, the processor requires the PREVSSP field to be initialized to 0.

EDX 19: 0 If EAX[3:0] = 0001b, these are bits 51:32 of the size of the corresponding EPC section within the 
Processor Reserved Memory.

31:20 Reserved.

Table 35-7.  CPUID Leaf 12H, Sub-Leaf Index 2 or Higher Enumeration of Intel® SGX Resources

CPUID.(EAX=12H,ECX > 1) Description Behavior

Register Bits
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35.8.2 Operations Not Supported on Shadow Stack Pages
The following operations are not allowed on pages of type PT_SS_FIRST and PT_SS_REST:

• EACCEPTCOPY

• EMODPR

• EMODPE

35.8.3 Indirect Branch Tracking – Legacy Compatibility Treatment
The legacy code page bitmap is tested using the page offset within the ELRANGE instead of the absolute linear 
address of the address where ENDBRANCH was missed; see the detailed algorithm in Section 18.3.6, “Legacy 
Compatibility Treatment,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for 
additional details.
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CHAPTER 36
ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

36.1 OVERVIEW OF ENCLAVE EXECUTION ENVIRONMENT
When an enclave is created, it has a range of linear addresses to which the processor applies enhanced access 
control. This range is called the ELRANGE (see Section 35.3). When an enclave generates a memory access, the 
existing IA32 segmentation and paging architecture are applied. Additionally, linear addresses inside the ELRANGE 
must map to an EPC page otherwise when an enclave attempts to access that linear address a fault is generated.
The EPC pages need not be physically contiguous. System software allocates EPC pages to various enclaves. 
Enclaves must abide by OS/VMM imposed segmentation and paging policies. OS/VMM-managed page tables and 
extended page tables provide address translation for the enclave pages. Hardware requires that these pages are 
properly mapped to EPC (any failure generates an exception).
Enclave entry must happen through specific enclave instructions:
• ENCLU[EENTER], ENCLU[ERESUME].
Enclave exit must happen through specific enclave instructions or events:
• ENCLU[EEXIT], Asynchronous Enclave Exit (AEX).
Attempts to execute, read, or write to linear addresses mapped to EPC pages when not inside an enclave will result 
in the processor altering the access to preserve the confidentiality and integrity of the enclave. The exact behavior 
may be different between implementations. As an example a read of an enclave page may result in the return of all 
one's or return of cyphertext of the cache line. Writing to an enclave page may result in a dropped write or a 
machine check at a later time. The processor will provide the protections as described in Section 36.4 and Section 
36.5 on such accesses.

36.2 TERMINOLOGY
A memory access to the ELRANGE and initiated by an instruction executed by an enclave is called a Direct Enclave 
Access (Direct EA). 
Memory accesses initiated by certain Intel® SGX instruction leaf functions such as ECREATE, EADD, EDBGRD, 
EDBGWR, ELDU/ELDB, EWB, EREMOVE, EENTER, and ERESUME to EPC pages are called Indirect Enclave Accesses 
(Indirect EA). Table 36-1 lists additional details of the indirect EA of SGX1 and SGX2 extensions.
Direct EAs and Indirect EAs together are called Enclave Accesses (EAs). 
Any memory access that is not an Enclave Access is called a non-enclave access. 

36.3 ACCESS-CONTROL REQUIREMENTS
Enclave accesses have the following access-control attributes:
• All memory accesses must conform to segmentation and paging protection mechanisms.
• Code fetches from inside an enclave to a linear address outside that enclave result in a #GP(0) exception. 
• Shadow-stack-load or shadow-stack-store from inside an enclave to a linear address outside that enclave 

results in a #GP(0) exception.
• Non-enclave accesses to EPC memory result in undefined behavior. EPC memory is protected as described in 

Section 36.4 and Section 36.5 on such accesses.
• EPC pages of page types PT_REG, PT_TCS, and PT_TRIM must be mapped to ELRANGE at the linear address 

specified when the EPC page was allocated to the enclave using ENCLS[EADD] or ENCLS[EAUG] leaf functions. 
Enclave accesses through other linear address result in a #PF with the PFEC.SGX bit set. 
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• Direct EAs to any EPC pages must conform to the currently defined security attributes for that EPC page in the 
EPCM. These attributes may be defined at enclave creation time (EADD) or when the enclave sets them using 
SGX2 instructions. The failure of these checks results in a #PF with the PFEC.SGX bit set.

— Target page must belong to the currently executing enclave.

— Data may be written to an EPC page if the EPCM allow write access.

— Data may be read from an EPC page if the EPCM allow read access.

— Instruction fetches from an EPC page are allowed if the EPCM allows execute access.

— Shadow-stack-load from an EPC page and shadow-stack-store to an EPC page are allowed only if the page 
type is PT_SS_FIRST or PT_SS_REST.

— Data writes that are not shadow-stack-store are not allowed if the EPCM page type is PT_SS_FIRST or 
PT_SS_REST.

— Target page must not have a restricted page type1 (PT_SECS, PT_TCS, PT_VA, or PT_TRIM).

— The EPC page must not be BLOCKED. 

— The EPC page must not be PENDING. 

— The EPC page must not be MODIFIED. 

36.4 SEGMENT-BASED ACCESS CONTROL
Intel SGX architecture does not modify the segment checks performed by a logical processor. All memory accesses 
arising from a logical processor in protected mode (including enclave access) are subject to segmentation checks 
with the applicable segment register. 
To ensure that outside entities do not modify the enclave's logical-to-linear address translation in an unexpected 
fashion, ENCLU[EENTER] and ENCLU[ERESUME] check that CS, DS, ES, and SS, if usable (i.e., not null), have 
segment base value of zero. A non-zero segment base value for these registers results in a #GP(0).
On enclave entry either via EENTER or ERESUME, the processor saves the contents of the external FS and GS regis-
ters, and loads these registers with values stored in the TCS at build time to enable the enclave’s use of these regis-
ters for accessing the thread-local storage inside the enclave. On EEXIT and AEX, the contents at time of entry are 
restored. On AEX, the values of FS and GS are saved in the SSA frame. On ERESUME, FS and GS are restored from 
the SSA frame. The details of these operations can be found in the descriptions of EENTER, ERESUME, EEXIT, and 
AEX flows.

36.5 PAGE-BASED ACCESS CONTROL

36.5.1 Access-control for Accesses that Originate from Non-SGX Instructions
Intel SGX builds on the processor's paging mechanism to provide page-granular access-control for enclave pages. 
Enclave pages are designed to be accessible only from inside the currently executing enclave if they belong to that 
enclave. In addition, enclave accesses must conform to the access control requirements described in Section 36.3. 
or through certain Intel SGX instructions. Attempts to execute, read, or write to linear addresses mapped to EPC 
pages when not inside an enclave will result in the processor altering the access to preserve the confidentiality and 
integrity of the enclave. The exact behavior may be different between implementations.

36.5.2 Memory Accesses that Split Across ELRANGE
Memory data accesses are allowed to split across ELRANGE (i.e., a part of the access is inside ELRANGE and a part 
of the access is outside ELRANGE) while the processor is inside an enclave. If an access splits across ELRANGE, the 

1. EPCM may allow write, read or execute access only for pages with page type PT_REG.
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processor splits the access into two sub-accesses (one inside ELRANGE and the other outside ELRANGE), and each 
access is evaluated. A code-fetch access that splits across ELRANGE results in a #GP due to the portion that lies 
outside of the ELRANGE.

36.5.3 Implicit vs. Explicit Accesses
Memory accesses originating from Intel SGX instruction leaf functions are categorized as either explicit accesses or 
implicit accesses. Table 36-1 lists the implicit and explicit memory accesses made by Intel SGX leaf functions.

36.5.3.1  Explicit Accesses
Accesses to memory locations provided as explicit operands to Intel SGX instruction leaf functions, or their linked 
data structures are called explicit accesses. 
Explicit accesses are always made using logical addresses. These accesses are subject to segmentation, paging, 
extended paging, and APIC-virtualization checks, and trigger any faults/exit associated with these checks when the 
access is made.
The interaction of explicit memory accesses with data breakpoints is leaf-function-specific, and is documented in 
Section 41.3.4.

36.5.3.2  Implicit Accesses
Accesses to data structures whose physical addresses are cached by the processor are called implicit accesses. 
These addresses are not passed as operands of the instruction but are implied by use of the instruction. 
These accesses do not trigger any access-control faults/exits or data breakpoints. Table 36-1 lists memory objects 
that Intel SGX instruction leaf functions access either by explicit access or implicit access. The addresses of explicit 
access objects are passed via register operands with the second through fourth column of Table 36-1 matching 
implicitly encoded registers RBX, RCX, RDX.
Physical addresses used in different implicit accesses are cached via different instructions and for different dura-
tions. The physical address of SECS associated with each EPC page is cached at the time the page is added to the 
enclave via ENCLS[EADD] or ENCLS[EAUG], or when the page is loaded to EPC via ENCLS[ELDB] or ENCLS[ELDU]. 
This binding is severed when the corresponding page is removed from the EPC via ENCLS[EREMOVE] or 
ENCLS[EWB]. Physical addresses of TCS and SSA pages are cached at the time of most-recent enclave entry. Exit 
from an enclave (ENCLU[EEXIT] or AEX) flushes this caching. Details of Asynchronous Enclave Exit is described in 
Chapter 38.
The physical addresses that are cached for use by implicit accesses are derived from logical (or linear) addresses 
after checks such as segmentation, paging, EPT, and APIC virtualization checks. These checks may trigger excep-
tions or VM exits. Note, however, that such exception or VM exits may not occur after a physical address is cached 
and used for an implicit access. 

Table 36-1.  List of Implicit and Explicit Memory Access by Intel® SGX Enclave Instructions
Instr. Leaf Enum. Explicit 1 Explicit 2 Explicit 3 Implicit 

EACCEPT SGX2 SECINFO EPCPAGE SECS

EACCEPTCOPY SGX2 SECINFO EPCPAGE (Src) EPCPAGE (Dst)

EADD SGX1 PAGEINFO and linked structures EPCPAGE

EAUG SGX2 PAGEINFO and linked structures EPCPAGE SECS

EBLOCK SGX1 EPCPAGE SECS

ECREATE SGX1 PAGEINFO and linked structures EPCPAGE

EDBGRD SGX1 EPCADDR Destination SECS

EDBGWR SGX1 EPCADDR Source SECS

EDECVIRTCHILD OVERSUB EPCPAGE SECS

EENTER SGX1 TCS and linked SSA SECS
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36.6 INTEL® SGX DATA STRUCTURES OVERVIEW
Enclave operation is managed via a collection of data structures. Many of the top-level data structures contain sub-
structures. The top-level data structures relate to parameters that may be used in enclave setup/maintenance, by 
Intel SGX instructions, or AEX event. The top-level data structures are:
• SGX Enclave Control Structure (SECS)
• Thread Control Structure (TCS)
• State Save Area (SSA)
• Page Information (PAGEINFO)
• Security Information (SECINFO)
• Paging Crypto MetaData (PCMD)
• Enclave Signature Structure (SIGSTRUCT)
• EINIT Token Structure (EINITTOKEN)
• Report Structure (REPORT)
• Report Target Info (TARGETINFO)
• Key Request (KEYREQUEST)
• Version Array (VA)
• Enclave Page Cache Map (EPCM)
• Read Info (RDINFO)

EEXIT SGX1 SECS, TCS

EEXTEND SGX1 SECS EPCPAGE

EGETKEY SGX1 KEYREQUEST KEY SECS

EINCVIRTCHILD OVERSUB EPCPAGE SECS

EINIT SGX1 SIGSTRUCT SECS EINITTOKEN

ELDB/ELDU SGX1 PAGEINFO and linked structures, PCMD EPCPAGE VAPAGE

ELDBC/ELDUC OVERSUB PAGEINFO and linked structures EPCPAGE VAPAGE

EMODPE SGX2 SECINFO EPCPAGE

EMODPR SGX2 SECINFO EPCPAGE SECS

EMODT SGX2 SECINFO EPCPAGE SECS

EPA SGX1 EPCADDR

ERDINFO OVERSUB RDINFO EPCPAGE

EREMOVE SGX1 EPCPAGE SECS

EREPORT SGX1 TARGETINFO REPORTDATA OUTPUTDATA SECS

ERESUME SGX1 TCS and linked SSA SECS

ESETCONTEXT OVERSUB SECS ContextValue

ETRACK SGX1 EPCPAGE

ETRACKC OVERSUB EPCPAGE

EWB SGX1 PAGEINFO and linked structures, PCMD EPCPAGE VAPAGE SECS

Asynchronous Enclave Exit* SECS, TCS, 
SSA

*Details of Asynchronous Enclave Exit (AEX) is described in Section 38.4

Table 36-1.  List of Implicit and Explicit Memory Access by Intel® SGX Enclave Instructions (Contd.)
Instr. Leaf Enum. Explicit 1 Explicit 2 Explicit 3 Implicit 
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Details of the top-level data structures and associated sub-structures are listed in Section 36.7 through Section 
36.20.

36.7 SGX ENCLAVE CONTROL STRUCTURE (SECS)
The SECS data structure requires 4K-Bytes alignment.

Table 36-2.  Layout of SGX Enclave Control Structure (SECS)
Field OFFSET (Bytes) Size (Bytes) Description

SIZE 0 8 Size of enclave in bytes; must be power of 2.

BASEADDR 8 8 Enclave Base Linear Address must be naturally aligned to size.

SSAFRAMESIZE 16 4 Size of one SSA frame in pages, including XSAVE, pad, GPR, and MISC (if 
CPUID.(EAX=12H, ECX=0):.EBX != 0).

MISCSELECT 20 4 Bit vector specifying which extended features are saved to the MISC region 
(see Section 36.7.2) of the SSA frame when an AEX occurs.

CET_LEG_BITMAP
_OFFSET

24 8 Page aligned offset of legacy code page bitmap from enclave base. Soft-
ware is expected to program this offset such that the entire bitmap re-
sides in the ELRANGE when legacy compatibility mode for indirect branch 
tracking is enabled. However this is not enforced by the hardware.
This field exists when CPUID.(EAX=7, ECX=0):EDX.CET_IBT[bit 20] is enu-
merated as 1, else it is reserved.

CET_ATTRIBUTES 32 1 CET feature attributes of the enclave; see Table 36-5. This field exists 
when CPUID.(EAX=12,ECX=1):EAX[6] is enumerated as 1, else it is 
reserved.

RESERVED 33 15

ATTRIBUTES 48 16 Attributes of the Enclave, see Table 36-3.

MRENCLAVE 64 32 Measurement Register of enclave build process. See SIGSTRUCT for format.

RESERVED 96 32

MRSIGNER 128 32 Measurement Register extended with the public key that verified the 
enclave. See SIGSTRUCT for format.

RESERVED 160 32

CONFIGID 192 64 Post EINIT configuration identity.

ISVPRODID 256 2 Product ID of enclave.

ISVSVN 258 2 Security version number (SVN) of the enclave.

CONFIGSVN 260 2 Post EINIT configuration security version number (SVN).

RESERVED 262 3834 The RESERVED field consists of the following:
• EID: An 8 byte Enclave Identifier. Its location is implementation specific.
• PAD: A 352 bytes padding pattern from the Signature (used for key 

derivation strings). It’s location is implementation specific.
• VIRTCHILDCNT: An 8 byte Count of virtual children that have been paged 

out by a VMM. Its location is implementation specific.
• ENCLAVECONTEXT: An 8 byte Enclave context pointer. Its location is 

implementation specific.
• ISVFAMILYID: A 16 byte value assigned to identify the family of products 

the enclave belongs to.
• ISVEXTPRODID: A 16 byte value assigned to identify the product 

identity of the enclave.
• The remaining 3226 bytes are reserved area.
The entire 3834 byte field must be cleared prior to executing ECREATE.
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36.7.1 ATTRIBUTES 
The ATTRIBUTES data structure is comprised of bit-granular fields that are used in the SECS, the REPORT and the 
KEYREQUEST structures. CPUID.(EAX=12H, ECX=1) enumerates a bitmap of permitted 1-setting of bits in ATTRI-
BUTES.

36.7.2 SECS.MISCSELECT Field
CPUID.(EAX=12H, ECX=0):EBX[31:0] enumerates which extended information that the processor can save into 
the MISC region of SSA when an AEX occurs. An enclave writer can specify via SIGSTRUCT how to set the 
SECS.MISCSELECT field. The bit vector of MISCSELECT selects which extended information is to be saved in the 
MISC region of the SSA frame when an AEX is generated. The bit vector definition of extended information is listed 
in Table 36-4.
If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, SECS.MISCSELECT field must be all zeros.
The SECS.MISCSELECT field determines the size of MISC region of the SSA frame, see Section 36.9.2.

36.7.3 SECS.CET_ATTRIBUTES Field
The SECS.CET_ATTRIBUTES field can be used by the enclave writer to enable various CET attributes in an enclave. 
This field exists when CPUID.(EAX=12,ECX=1):EAX[6] is enumerated as 1. Bits 1:0 are defined when 
CPUID.(EAX=7, ECX=0):ECX.CET_SS is 1, and bits 5:2 are defined when CPUID.(EAX=7, ECX=0):EDX.CET_IBT is 
1.

Table 36-3.  Layout of ATTRIBUTES Structure
Field Bit Position Description

INIT 0 This bit indicates if the enclave has been initialized by EINIT. It must be cleared when loaded as 
part of ECREATE. For EREPORT instruction, TARGET_INFO.ATTRIBUTES[ENIT] must always be 1 to 
match the state after EINIT has initialized the enclave.

DEBUG 1  If 1, the enclave permit debugger to read and write enclave data using EDBGRD and EDBGWR.

MODE64BIT 2 Enclave runs in 64-bit mode.

RESERVED 3 Must be Zero.

PROVISIONKEY 4 Provisioning Key is available from EGETKEY.

EINITTOKEN_KEY 5 EINIT token key is available from EGETKEY.

CET 6 Enable CET attributes. When CPUID.(EAX=12H, ECX=1):EAX[6] is 0 this bit is reserved and must be 
0.

KSS 7 Key Separation and Sharing Enabled.

RESERVED 9:8 Must be zero.

AEXNOTIFY 10 The bit indicates that threads within the enclave may receive AEX notifications.

RESERVED 63:11 Must be zero.

XFRM 127:64 XSAVE Feature Request Mask. See Section 40.7.

Table 36-4.  Bit Vector Layout of MISCSELECT Field of Extended Information
Field Bit Position Description

EXINFO 0 Report information about page fault and general protection exception that occurred inside an 
enclave.

CPINFO 1 Report information about control protection exception that occurred inside an enclave. When 
CPUID.(EAX=12H, ECX=0):EBX[1] is 0, this bit is reserved.

Reserved 31:2  Reserved (0).
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36.8 THREAD CONTROL STRUCTURE (TCS)
Each executing thread in the enclave is associated with a Thread Control Structure. It requires 4K-Bytes alignment.

Table 36-5.  Bit Vector Layout of CET_ATTRIBUTES Field of Extended Information
Field Bit Position Description

SH_STK_EN 0 When set to 1, enable shadow stacks.

WR_SHSTK_EN 1 When set to 1, enables the WRSS{D,Q}W instructions.

ENDBR_EN 2  When set to 1, enables indirect branch tracking.

LEG_IW_EN 3 Enable legacy compatibility treatment for indirect branch tracking.

NO_TRACK_EN 4 When set to 1, enables use of no-track prefix for indirect branch tracking.

SUPPRESS_DIS 5 When set to 1, disables suppression of CET indirect branch tracking on legacy compatibility.

Reserved 7:6  Reserved (0).

Table 36-6.  Layout of Thread Control Structure (TCS)
Field OFFSET (Bytes) Size (Bytes) Description

STAGE 0 8 Enclave execution state of the thread controlled by this TCS. A value of 0 indi-
cates that this TCS is available for enclave entry. A value of 1 indicates that a 
logical processor is currently executing an enclave in the context of this TCS.

FLAGS 8 8 The thread’s execution flags (see Section 36.8.1).

OSSA 16 8 Offset of the base of the State Save Area stack, relative to the enclave base. 
Must be page aligned.

CSSA 24 4 Current slot index of an SSA frame, cleared by EADD and EACCEPT.

NSSA 28 4 Number of available slots for SSA frames.

OENTRY 32 8 Offset in enclave to which control is transferred on EENTER relative to the 
base of the enclave.

AEP 40 8 The value of the Asynchronous Exit Pointer that was saved at EENTER time.

OFSBASE 48 8 Offset to add to the base address of the enclave for producing the base 
address of FS segment inside the enclave. Must be page aligned.

OGSBASE 56 8 Offset to add to the base address of the enclave for producing the base 
address of GS segment inside the enclave. Must be page aligned.

FSLIMIT 64 4 Size to become the new FS limit in 32-bit mode.

GSLIMIT 68 4 Size to become the new GS limit in 32-bit mode.

OCETSSA 72 8 When CPUID.(EAX=12H, ECX=1):EAX[6] is 1, this field provides the offset of 
the CET state save area from enclave base. When CPUID.(EAX=12H, 
ECX=1):EAX[6] is 0, this field is reserved and must be 0.

PREVSSP 80 8 When CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] is 1, this field records the SSP 
at the time of AEX or EEXIT; used to setup SSP on entry. When 
CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] is 0, this field is reserved and must 
be 0.

RESERVED 72 4024 Must be zero.
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36.8.1 TCS.FLAGS 

36.8.2 State Save Area Offset (OSSA)
The OSSA points to a stack of State Save Area (SSA) frames (see Section 36.9) used to save the processor state 
when an interrupt or exception occurs while executing in the enclave. 

36.8.3 Current State Save Area Frame (CSSA)
CSSA is the index of the current SSA frame that will be used by the processor to determine where to save the 
processor state on an interrupt or exception that occurs while executing in the enclave. It is an index into the array 
of frames addressed by OSSA. CSSA is incremented on an AEX and decremented on an ERESUME.

36.8.4 Number of State Save Area Frames (NSSA)
NSSA specifies the number of SSA frames available for this TCS. There must be at least one available SSA frame 
when EENTER-ing the enclave or the EENTER will fail.

36.9 STATE SAVE AREA (SSA) FRAME
When an AEX occurs while running in an enclave, the architectural state is saved in the thread’s current SSA frame, 
which is pointed to by TCS.CSSA. An SSA frame must be page aligned, and contains the following regions:
• The XSAVE region starts at the base of the SSA frame, this region contains extended feature register state in 

an XSAVE/FXSAVE-compatible non-compacted format.
• A Pad region: software may choose to maintain a pad region separating the XSAVE region and the MISC region. 

Software choose the size of the pad region according to the sizes of the MISC and GPRSGX regions.
• The GPRSGX region. The GPRSGX region is the last region of an SSA frame (see Table 36-8). This is used to hold 

the processor general purpose registers (RAX … R15), the RIP, the outside RSP and RBP, RFLAGS, and the AEX 
information. 

• The MISC region (If CPUIDEAX=12H, ECX=0):EBX[31:0] != 0). The MISC region is adjacent to the GRPSGX 
region, and may contain zero or more components of extended information that would be saved when an AEX 
occurs. If the MISC region is absent, the region between the GPRSGX and XSAVE regions is the pad region that 
software can use. If the MISC region is present, the region between the MISC and XSAVE regions is the pad 
region that software can use. See additional details in Section 36.9.2.

Table 36-7.  Layout of TCS.FLAGS Field
Field Bit Position Description

DBGOPTIN 0 If set, allows debugging features (single-stepping, breakpoints, etc.) to be enabled and active while 
executing in the enclave on this TCS. Hardware clears this bit on EADD. A debugger may later mod-
ify it if the enclave’s ATTRIBUTES.DEBUG is set. 

AEXNOTIFY 1 A thread that enters the enclave cannot receive AEX notifications unless this flag is set to 1.

RESERVED 63:2 Must be zero.
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36.9.1 GPRSGX Region
The layout of the GPRSGX region is shown in Table 36-9.

Table 36-8.  Top-to-Bottom Layout of an SSA Frame
Region Offset (Byte) Size (Bytes) Description

XSAVE 0 Calculate using CPUID 
leaf 0DH information

The size of XSAVE region in SSA is derived from the enclave’s support of the col-
lection of processor extended states that would be managed by XSAVE. The 
enablement of those processor extended state components in conjunction with 
CPUID leaf 0DH information determines the XSAVE region size in SSA.

Pad End of XSAVE 
region

Chosen by enclave 
writer

Ensure the end of GPRSGX region is aligned to the end of a 4KB page.

MISC base of GPRSGX 
– sizeof(MISC)

Calculate from high-
est set bit of 
SECS.MISCSELECT

See Section 36.9.2.

GPRSGX SSAFRAMESIZE 
– 176

176 See Table 36-9 for layout of the GPRSGX region.

Table 36-9.  Layout of GPRSGX Portion of the State Save Area 
Field OFFSET (Bytes) Size (Bytes) Description

RAX 0 8

RCX 8 8

RDX 16 8

RBX 24 8

RSP 32 8

RBP 40 8

RSI 48 8

RDI 56 8

R8 64 8

R9 72 8

R10 80 8

R11 88 8

R12 96 8

R13 104 8

R14 112 8

R15 120 8

RFLAGS 128 8 Flag register.

RIP 136 8 Instruction pointer.

URSP 144 8 Non-Enclave (outside) stack pointer. Saved by EENTER, restored on AEX.

URBP 152 8 Non-Enclave (outside) RBP pointer. Saved by EENTER, restored on AEX.

EXITINFO 160 4 Contains information about exceptions that cause AEXs, which might be 
needed by enclave software (see Section 36.9.1.1).

RESERVED 164 3
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36.9.1.1  EXITINFO
EXITINFO contains the information used to report exit reasons to software inside the enclave. It is a 4 byte field laid 
out as in Table 36-10. The VALID bit is set only for the exceptions conditions which are reported inside an enclave. 
See Table 36-11 for which exceptions are reported inside the enclave. If the exception condition is not one reported 
inside the enclave then VECTOR and EXIT_TYPE are cleared.
When a higher priority event, such as SMI, and a pending debug exception occur at the same time when executing 
inside an enclave, the higher priority event has precedence. As an example for an SMI, the SSA exit info is zero. 
The debug exception will be delivered upon return from the SMI. In such cases, the EXITINFO field will not contain 
the information of a debug exception.

36.9.1.2  VECTOR Field Definition
Table 36-11 contains the VECTOR field. This field contains information about some exceptions which occur inside 
the enclave. These vector values are the same as the values that would be used when vectoring into regular excep-
tion handlers. All values not shown are not reported inside an enclave. 

AEXNOTIFY 167 1 Bit 0: This bit allows enclave software to dynamically enable/disable AEX noti-
fications. An enclave thread cannot receive AEX notifications unless this bit is 
set to 1 in the thread's current SSA frame.
All other bits are reserved.

FSBASE 168 8 FS BASE.

GSBASE 176 8 GS BASE.

Table 36-10.  Layout of EXITINFO Field
Field Bit Position Description

VECTOR 7:0 Exception number of exceptions reported inside enclave.

EXIT_TYPE 10:8 011b: Hardware exceptions.
110b: Software exceptions.
Other values: Reserved.

RESERVED 30:11 Reserved as zero.

VALID 31 0: unsupported exceptions.
1: Supported exceptions. Includes two categories:

• Unconditionally supported exceptions: #DE, #DB, #BP, #BR, #UD, #MF, #AC, #XM.

• Conditionally supported exception: 

— #PF, #GP if SECS.MISCSELECT.EXINFO = 1.

— #CP if SECS.MISCSELECT.CPINFO=1.

Table 36-11.  Exception Vectors 
Name Vector # Description

#DE 0 Divider exception.

#DB 1 Debug exception.

#BP 3 Breakpoint exception.

#BR 5 Bound range exceeded exception.

#UD 6 Invalid opcode exception.

#GP 13 General protection exception. Only reported if SECS.MISCSELECT.EXINFO = 1.

#PF 14 Page fault exception. Only reported if SECS.MISCSELECT.EXINFO = 1.

Table 36-9.  Layout of GPRSGX Portion of the State Save Area  (Contd.)
Field OFFSET (Bytes) Size (Bytes) Description
36-10 Vol. 3D



ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
36.9.2 MISC Region
The layout of the MISC region is shown in Table 36-12. The number of components that the processor supports in 
the MISC region corresponds to the bits of CPUID.(EAX=12H, ECX=0):EBX[31:0] set to 1. Each set bit in 
CPUID.(EAX=12H, ECX=0):EBX[31:0] has a defined size for the corresponding component, as shown in Table 
36-12. Enclave writers needs to do the following:
• Decide which MISC region components will be supported for the enclave.
• Allocate an SSA frame large enough to hold the components chosen above.
• Instruct each enclave builder software to set the appropriate bits in SECS.MISCSELECT.
The first component, EXINFO, starts next to the GPRSGX region. Additional components in the MISC region grow 
in ascending order within the MISC region towards the XSAVE region.
The size of the MISC region is calculated as follows:
• If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, MISC region is not supported. 
• If CPUID.(EAX=12H, ECX=0):EBX[31:0] != 0, the size of MISC region is derived from sum of the highest bit set 

in SECS.MISCSELECT and the size of the MISC component corresponding to that bit. Offset and size 
information of currently defined MISC components are listed in Table 36-12. For example, if the highest bit set 
in SECS.MISCSELECT is bit 0, the MISC region offset is OFFSET(GPRSGX)-16 and size is 16 bytes.

• The processor saves a MISC component i in the MISC region if and only if SECS.MISCSELECT[i] is 1.

36.9.2.1  EXINFO Structure
Table 36-13 contains the layout of the EXINFO structure that provides additional information. 

#MF 16 x87 FPU floating-point error.

#AC 17 Alignment check exceptions.

#XM 19 SIMD floating-point exceptions.

#CP 21 Control protection exception. Only reported if SECS.MISCSELECT.CPINFO=1.

Table 36-12.  Layout of MISC region of the State Save Area
MISC Components OFFSET (Bytes) Size (Bytes) Description

EXINFO Offset(GPRSGX) –16 16 If CPUID.(EAX=12H, ECX=0):EBX[0] = 1, exception information on #GP or 
#PF that occurred inside an enclave can be written to the EXINFO structure 
if specified by SECS.MISCSELECT[0] = 1.
If CPUID.(EAX=12H, ECX=0):EBX[1] = 1, exception information on #CP that 
occurred inside an enclave can be written to the EXINFO structure if speci-
fied by SECS.MISCSELECT[1] = 1.

Future Extension Below EXINFO TBD Reserved. (Zero size if CPUID.(EAX=12H, ECX=0):EBX[31:1] =0).

Table 36-13.  Layout of EXINFO Structure
Field OFFSET (Bytes) Size (Bytes) Description

MADDR 0 8 If #PF: contains the page fault linear address that caused a page fault.
If #GP: the field is cleared.
If #CP: the field is cleared.

ERRCD 8 4 Exception error code for either #GP or #PF.

RESERVED 12 4

Table 36-11.  Exception Vectors  (Contd.)
Name Vector # Description
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36.9.2.2  Page Fault Error Code
A page-fault error code may be reported in EXINFO.ERRCD. The format of the error code is given in Figure 5-12, 
“Page-Fault Error Code.”
Page faults that would report an error code clearing the U/S bit (indicating a supervisor-mode access) are not 
reported in EXINFO.

36.10 CET STATE SAVE AREA FRAME
The CET state save area consists of an array of CET state save frames. The number of CET state save frames is 
equal to the TCS.NSSA. The current CET SSA frame is indicated by TCS.CSSA. The offset of the CET state save area 
is specified by TCS.OCETSSA.

36.11 PAGE INFORMATION (PAGEINFO)
PAGEINFO is an architectural data structure that is used as a parameter to the EPC-management instructions. It 
requires 32-Byte alignment.

36.12 SECURITY INFORMATION (SECINFO)
The SECINFO data structure holds meta-data about an enclave page. 

Table 36-14.  Layout of CET State Save Area Frame

Field
Offset 
(Bytes)

Size (Bytes) Description

SSP 0 8 Shadow Stack Pointer. 
This field is reserved when CPUID.(EAX=7, ECX=0):ECX[CET_SS] is 0.

IB_TRACK_STATE 8 8 Indirect branch tracker state:
Bit 0: SUPPRESS – suppressed(1), tracking(0)
Bit 1: TRACKER - IDLE (0), WAIT_FOR_ENDBRANCH (1)
Bits 63:2 – Reserved
This field is reserved when CPUID.(EAX=7, ECX=0):EDX[CET_IBT] is 0.

Table 36-15.  Layout of PAGEINFO Data Structure 
Field OFFSET (Bytes) Size (Bytes) Description

LINADDR 0 8 Enclave linear address.

SRCPGE 8 8 Effective address of the page where contents are located.

SECINFO/PCMD 16 8 Effective address of the SECINFO or PCMD (for ELDU, ELDB, EWB) structure for 
the page.

SECS 24 8 Effective address of EPC slot that currently contains the SECS.

Table 36-16.  Layout of SECINFO Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

FLAGS 0 8 Flags describing the state of the enclave page.

RESERVED 8 56 Must be zero.
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36.12.1 SECINFO.FLAGS
The SECINFO.FLAGS are a set of fields describing the properties of an enclave page.

36.12.2 PAGE_TYPE Field Definition
The SECINFO flags and EPC flags contain bits indicating the type of page. 

36.13 PAGING CRYPTO METADATA (PCMD)
The PCMD structure is used to keep track of crypto meta-data associated with a paged-out page. Combined with 
PAGEINFO, it provides enough information for the processor to verify, decrypt, and reload a paged-out EPC page. 
The size of the PCMD structure (128 bytes) is architectural. 
EWB calculates the Message Authentication Code (MAC) value and writes out the PCMD. ELDB/U reads the fields 
and checks the MAC.
The format of PCMD is as follows:

Table 36-17.  Layout of SECINFO.FLAGS Field
Field Bit Position Description

R 0 If 1 indicates that the page can be read from inside the enclave; otherwise the page cannot be read 
from inside the enclave.

W 1 If 1 indicates that the page can be written from inside the enclave; otherwise the page cannot be writ-
ten from inside the enclave.

X 2 If 1 indicates that the page can be executed from inside the enclave; otherwise the page cannot be 
executed from inside the enclave.

PENDING 3 If 1 indicates that the page is in the PENDING state; otherwise the page is not in the PENDING state.

MODIFIED 4 If 1 indicates that the page is in the MODIFIED state; otherwise the page is not in the MODIFIED state.

PR 5 If 1 indicates that a permission restriction operation on the page is in progress, otherwise a permission 
restriction operation is not in progress.

RESERVED 7:6 Must be zero.

PAGE_TYPE 15:8 The type of page that the SECINFO is associated with.

RESERVED 63:16 Must be zero.

Table 36-18.  Supported PAGE_TYPE
TYPE Value Description

PT_SECS 0 Page is an SECS.

PT_TCS 1 Page is a TCS.

PT_REG 2 Page is a regular page.

PT_VA 3 Page is a Version Array.

PT_TRIM 4 Page is in trimmed state.

PT_SS_FIRST 5 When CPUID.(EAX=12H, ECX=1):EAX[6] is 1, Page is first page of a shadow stack. When 
CPUID.(EAX=12H, ECX=1):EAX[6] is 0, this value is reserved.

PT_SS_REST 6 When CPUID.(EAX=12H, ECX=1):EAX[6] is 1, Page is not first page of a shadow stack. When 
CPUID.(EAX=12H, ECX=1):EAX[6] is 0, this value is reserved.

All others Reserved.
Vol. 3D 36-13



ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
36.14 ENCLAVE SIGNATURE STRUCTURE (SIGSTRUCT)
SIGSTRUCT is a structure created and signed by the enclave developer that contains information about the 
enclave. SIGSTRUCT is processed by the EINIT leaf function to verify that the enclave was properly built.
SIGSTRUCT includes ENCLAVEHASH as SHA256 digest, as defined in FIPS PUB 180-4. The digests are byte strings 
of length 32. Each of the 8 HASH dwords is stored in little-endian order.
SIGSTRUCT includes four 3072-bit integers (MODULUS, SIGNATURE, Q1, Q2). Each such integer is represented as 
a byte strings of length 384, with the most significant byte at the position “offset + 383”, and the least significant 
byte at position “offset”.
The (3072-bit integer) SIGNATURE should be an RSA signature, where: a) the RSA modulus (MODULUS) is a 3072-
bit integer; b) the public exponent is set to 3; c) the signing procedure uses the EMSA-PKCS1-v1.5 format with DER 
encoding of the “DigestInfo” value as specified in of PKCS#1 v2.1/RFC 3447.
The 3072-bit integers Q1 and Q2 are defined by:
q1 = floor(Signature^2 / Modulus);
q2 = floor((Signature^3 - q1 * Signature * Modulus) / Modulus);
SIGSTRUCT must be page aligned
In column 5 of Table 36-20, ‘Y’ indicates that this field should be included in the signature generated by the devel-
oper.

Table 36-19.  Layout of PCMD Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

SECINFO 0 64 Flags describing the state of the enclave page; R/W by software.

ENCLAVEID 64 8 Enclave Identifier used to establish a cryptographic binding between paged-out 
page and the enclave.

RESERVED 72 40 Must be zero.

MAC 112 16 Message Authentication Code for the page, page meta-data and reserved 
field.

Table 36-20.  Layout of Enclave Signature Structure (SIGSTRUCT) 
Field OFFSET (Bytes) Size (Bytes) Description Signed

HEADER 0 16 Must be byte stream
06000000E10000000000010000000000H

Y

VENDOR 16 4 Intel Enclave: 00008086H
Non-Intel Enclave: 00000000H

Y

DATE 20 4 Build date is yyyymmdd in hex:
yyyy=4 digit year, mm=1-12, dd=1-31

Y

HEADER2 24 16 Must be byte stream
01010000600000006000000001000000H

Y

SWDEFINED 40 4 Available for software use. Y

RESERVED 44 84 Must be zero. Y

MODULUS 128 384 Module Public Key (keylength=3072 bits). N

EXPONENT 512 4 RSA Exponent = 3. N

SIGNATURE 516 384 Signature over Header and Body. N

MISCSELECT1 900 4 Bit vector specifying Extended SSA frame feature set to be 
used.

Y

MISCMASK 904 4 Bit vector mask of MISCSELECT to enforce. Y
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36.15 EINIT TOKEN STRUCTURE (EINITTOKEN)
The EINIT token is used by EINIT to verify that the enclave is permitted to launch. EINIT token is generated by an 
enclave in possession of the EINITTOKEN key (the Launch Enclave).
EINIT token must be 512-Byte aligned.

CET_ATTRIBUTES 908 1 When CPUID.(EAX=12H, ECX=1):EAX[6] is 1, this field pro-
vides the Enclave CET attributes that must be set. When 
CPUID.(EAX=12H, ECX=1):EAX[6] is 0, this field is reserved 
and must be 0.

Y

CET_ATTRIBUTES
_MASK

909 1 When CPUID.(EAX=12H, ECX=1):EAX[6] is 1, this field pro-
vides the Mask of CET attributes to enforce. When 
CPUID.(EAX=12H, ECX=1):EAX[6] is 0, this field is reserved 
and must be 0.

Y

RESERVED 910 2 Must be zero. Y

ISVFAMILYID 912 16 ISV assigned Product Family ID. Y

ATTRIBUTES 928 16 Enclave Attributes that must be set. Y

ATTRIBUTEMASK 944 16 Mask of Attributes to enforce. Y

ENCLAVEHASH 960 32 MRENCLAVE of enclave this structure applies to. Y

RESERVED 992 16 Must be zero. Y

ISVEXTPRODID 1008 16 ISV assigned extended Product ID. Y

ISVPRODID 1024 2 ISV assigned Product ID. Y

ISVSVN 1026 2 ISV assigned SVN (security version number). Y

RESERVED 1028 12 Must be zero. N

Q1 1040 384 Q1 value for RSA Signature Verification. N

Q2 1424 384 Q2 value for RSA Signature Verification. N

NOTES:

1. If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, MISCSELECT must be 0.

Table 36-20.  Layout of Enclave Signature Structure (SIGSTRUCT)  (Contd.)
Field OFFSET (Bytes) Size (Bytes) Description Signed
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36.16 REPORT (REPORT)
The REPORT structure is the output of the EREPORT instruction, and must be 512-Byte aligned.

Table 36-21.  Layout of EINIT Token (EINITTOKEN)
Field OFFSET (Bytes) Size (Bytes) MACed Description

Valid 0 4 Y Bit 0: 1: Valid; 0: Invalid. 
All other bits reserved.

RESERVED 4 44 Y Must be zero.

ATTRIBUTES 48 16 Y ATTRIBUTES of the Enclave.

MRENCLAVE 64 32 Y MRENCLAVE of the Enclave.

RESERVED 96 32 Y Reserved.

MRSIGNER 128 32 Y MRSIGNER of the Enclave.

RESERVED 160 32 Y Reserved.

CPUSVNLE 192 16 N Launch Enclave’s CPUSVN.

ISVPRODIDLE 208 02 N Launch Enclave’s ISVPRODID.

ISVSVNLE 210 02 N Launch Enclave’s ISVSVN.

CET_MASKED_AT
TRIBUTES_LE

212 1 N When CPUID.(EAX=12H, ECX=1):EAX[6] is 1, this field provides the 
Launch enclaves masked CET attributes. This should be set to LE’s 
CET_ATTRIBUTES masked with CET_ATTTRIBUTES_MASK of the LE’s 
KEYREQUEST. When CPUID.(EAX=12H, ECX=1):EAX[6] is 0, this field is 
reserved.

RESERVED 213 23 N Reserved.

MASKEDMISCSEL
ECTLE

236 4 Launch Enclave’s MASKEDMISCSELECT: set by the LE to the resolved 
MISCSELECT value, used by EGETKEY (after applying KEYREQUEST’s 
masking).

MASKEDATTRIBU
TESLE

240 16 N Launch Enclave’s MASKEDATTRIBUTES: This should be set to the LE’s 
ATTRIBUTES masked with ATTRIBUTEMASK of the LE’s KEYREQUEST.

KEYID 256 32 N Value for key wear-out protection.

MAC 288 16 N Message Authentication Code on EINITTOKEN using EINITTOKEN_KEY.

Table 36-22.  Layout of REPORT 
Field OFFSET (Bytes) Size (Bytes) Description

CPUSVN 0 16 The security version number of the processor.

MISCSELECT 16 4 Bit vector specifying which extended features are saved to the MISC region of 
the SSA frame when an AEX occurs.

CET_ATTRIBUTES 20 1 When CPUID.(EAX=12H, ECX=1):EAX[6] is 1, this field reports the CET_ATTRIB-
UTES of the Enclave. When CPUID.(EAX=12H, ECX=1):EAX[6] is 0, this field is re-
served and must be 0.

RESERVED 21 11 Zero.

ISVEXTNPRODID 32 16 The value of SECS.ISVEXTPRODID.

ATTRIBUTES 48 16 ATTRIBUTES of the Enclave. See Section 36.7.1.

MRENCLAVE 64 32 The value of SECS.MRENCLAVE.

RESERVED 96 32 Zero.

MRSIGNER 128 32 The value of SECS.MRSIGNER.

RESERVED 160 32 Zero.
36-16 Vol. 3D



ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
36.16.1 REPORTDATA
REPORTDATA is a 64-Byte data structure that is provided by the enclave and included in the REPORT. It can be used 
to securely pass information from the enclave to the target enclave. 

36.17 REPORT TARGET INFO (TARGETINFO)
This structure is an input parameter to the EREPORT leaf function. The address of TARGETINFO is specified as an 
effective address in RBX. It is used to identify the target enclave which will be able to cryptographically verify the 
REPORT structure returned by EREPORT. TARGETINFO must be 512-Byte aligned.

36.18 KEY REQUEST (KEYREQUEST)
This structure is an input parameter to the EGETKEY leaf function. It is passed in as an effective address in RBX and 
must be 512-Byte aligned. It is used for selecting the appropriate key and any additional parameters required in 
the derivation of that key.

CONFIGID 192 64 Value provided by SW to identify enclave's post EINIT configuration.

ISVPRODID 256 2 Product ID of enclave.

ISVSVN 258 2 Security version number (SVN) of the enclave.

CONFIGSVN 260 2 Value provided by SW to indicate expected SVN of enclave's post EINIT configu-
ration.

RESERVED 262 42 Zero.

ISVFAMILYID 304 16 The value of SECS.ISVFAMILYID.

REPORTDATA 320 64 Data provided by the user and protected by the REPORT's MAC, see Section 
36.16.1.

KEYID 384 32 Value for key wear-out protection.

MAC 416 16 Message Authentication Code on the report using report key.

Table 36-23.  Layout of TARGETINFO Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

MEASUREMENT 0 32 The MRENCLAVE of the target enclave.

ATTRIBUTES 32 16 The ATTRIBUTES field of the target enclave.

CET_ATTRIBUTES 48 1 When CPUID.(EAX=12H, ECX=1):EAX[6] is 1, this field provides the 
CET_ATTRIBUTES field of the target enclave. When CPUID.(EAX=12H, 
ECX=1):EAX[6] is 0, this field is reserved.

RESERVED 49 1 Must be zero.

CONFIGSVN 50 2 CONFIGSVN of the target enclave.

MISCSELECT 52 4 The MISCSELECT of the target enclave.

RESERVED 56 8 Must be zero.

CONFIGID 64 64 CONFIGID of target enclave.

RESERVED 128 384 Must be zero.

Table 36-22.  Layout of REPORT  (Contd.)
Field OFFSET (Bytes) Size (Bytes) Description
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36.18.1 KEY REQUEST KeyNames

36.18.2 Key Request Policy Structure

Table 36-24.  Layout of KEYREQUEST Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

KEYNAME 0 2 Identifies the Key Required.

KEYPOLICY 2 2 Identifies which inputs are required to be used in the key derivation.

ISVSVN 4 2 The ISV security version number that will be used in the key derivation.

CET_ATTRIBUTES
_MASK

6 1 When CPUID.(EAX=12H, ECX=1):EAX[6] is 1, this field provides a mask that 
defines which CET_ATTRIBUTES bits will be included in key derivation. When 
CPUID.(EAX=12H, ECX=1):EAX[6] is 0, then this field is reserved and must be 
0.

RESERVED 7 1 Must be zero.

CPUSVN 8 16 The security version number of the processor used in the key derivation.

ATTRIBUTEMASK 24 16 A mask defining which ATTRIBUTES bits will be included in key derivation.

KEYID 40 32 Value for key wear-out protection.

MISCMASK 72 4 A mask defining which MISCSELECT bits will be included in key derivation.

CONFIGSVN 76 2 Identifies which enclave Configuration's Security Version should be used in key 
derivation.

RESERVED 78 434

Table 36-25.  Supported KEYName Values
Key Name Value Description

EINITTOKEN_KEY 0 EINIT_TOKEN key

PROVISION_KEY 1 Provisioning Key

PROVISION_SEAL_KEY 2 Provisioning Seal Key

REPORT_KEY 3 Report Key

SEAL_KEY 4 Seal Key

All others Reserved

Table 36-26.  Layout of KEYPOLICY Field
Field Bit Position Description

MRENCLAVE 0 If 1, derive key using the enclave's MRENCLAVE measurement register.

MRSIGNER 1 If 1, derive key using the enclave's MRSIGNER measurement register.

NOISVPRODID 2 If 1, derive key WITHOUT using the enclave' ISVPRODID value.

CONFIGID 3 If 1, derive key using the enclave's CONFIGID value.

ISVFAMILYID 4 If 1, derive key using the enclave ISVFAMILYID value.

ISVEXTPRODID 5 If 1, derive key using enclave's ISVEXTPRODID value.

RESERVED 15:6 Must be zero.
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36.19 VERSION ARRAY (VA)
In order to securely store the versions of evicted EPC pages, Intel SGX defines a special EPC page type called a 
Version Array (VA). Each VA page contains 512 slots, each of which can contain an 8-byte version number for a 
page evicted from the EPC. When an EPC page is evicted, software chooses an empty slot in a VA page; this slot 
receives the unique version number of the page being evicted. When the EPC page is reloaded, there must be a VA 
slot that must hold the version of the page. If the page is successfully reloaded, the version in the VA slot is cleared.
VA pages can be evicted, just like any other EPC page. When evicting a VA page, a version slot in some other VA 
page must be used to hold the version for the VA being evicted. A Version Array Page must be 4K-Bytes aligned.

36.20 ENCLAVE PAGE CACHE MAP (EPCM)
EPCM is a secure structure used by the processor to track the contents of the EPC. The EPCM holds exactly one 
entry for each page that is currently loaded into the EPC. EPCM is not accessible by software, and the layout of 
EPCM fields is implementation specific.

36.21 READ INFO (RDINFO)
The RDINFO structure contains status information about an EPC page. It must be aligned to 32-Bytes.

Table 36-27.  Layout of Version Array Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

Slot 0 0 8 Version Slot 0

Slot 1 8 8 Version Slot 1

...

Slot 511 4088 8 Version Slot 511

Table 36-28.  Content of an Enclave Page Cache Map Entry
Field Description

VALID Indicates whether the EPCM entry is valid.

R Read access; indicates whether enclave accesses for reads are allowed from the EPC page referenced by this 
entry.

W Write access; indicates whether enclave accesses for writes are allowed to the EPC page referenced by this 
entry.

X Execute access; indicates whether enclave accesses for instruction fetches are allowed from the EPC page 
referenced by this entry.

PT EPCM page type (PT_SECS, PT_TCS, PT_REG, PT_VA, PT_TRIM, PT_SS_FIRST, PT_SS_REST).

ENCLAVESECS SECS identifier of the enclave to which the EPC page belongs.

ENCLAVEADDRESS Linear enclave address of the EPC page.

BLOCKED Indicates whether the EPC page is in the blocked state.

PENDING Indicates whether the EPC page is in the pending state.

MODIFIED Indicates whether the EPC page is in the modified state.

PR Indicates whether the EPC page is in a permission restriction state.
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36.21.1 RDINFO Status Structure

36.21.2 RDINFO Flags Structure

Table 36-29.  Layout of RDINFO Structure

Field
OFFSET 
(Bytes) Size (Bytes) Description

STATUS 0 8 Page status information.

FLAGS 8 8 EPCM state of the page.

ENCLAVECONTEXT 16 8 Context pointer describing the page's parent location.

Table 36-30.  Layout of RDINFO STATUS Structure
Field Bit Position Description

CHILDPRESENT 0 Indicates that the page has one or more child pages present (always zero for non-SECS 
pages). In VMX non-root operation includes the presence of virtual children.

VIRTCHLDPRESENT 1 Indicates that the page has one or more virtual child pages present (always zero for non-
SECS pages). In VMX non-root operation this value is always zero.

RESERVED 63:2

Table 36-31.  Layout of RDINFO FLAGS Structure
Field Bit Position Description

R 0 Read access; indicates whether enclave accesses for reads are allowed from the EPC page 
referenced by this entry.

W 1 Write access; indicates whether enclave accesses for writes are allowed to the EPC page 
referenced by this entry.

X 2 Execute access; indicates whether enclave accesses for instruction fetches are allowed 
from the EPC page referenced by this entry.

PENDING 3 Indicates whether the EPC page is in the pending state.

MODIFIED 4 Indicates whether the EPC page is in the modified state.

PR 5 Indicates whether the EPC page is in a permission restriction state.

RESERVED 7:6

PAGE_TYPE 15:8 Indicates the page type of the EPC page.

RESERVED 62:16

BLOCKED 63 Indicates whether the EPC page is in the blocked state.
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CHAPTER 37
ENCLAVE OPERATION

The following aspects of enclave operation are described in this chapter:
• Enclave creation: Includes loading code and data from outside of enclave into the EPC and establishing the 

enclave entity.
• Adding pages and measuring the enclave.
• Initialization of an enclave: Finalizes the cryptographic log and establishes the enclave identity and sealing 

identity.
• Enclave entry and exiting including:

— Controlled entry and exit.

— Asynchronous Enclave Exit (AEX) and resuming execution after an AEX.

37.1 CONSTRUCTING AN ENCLAVE
Figure 37-1 illustrates a typical Enclave memory layout. 

The enclave creation, commitment of memory resources, and finalizing the enclave’s identity with measurement 
comprises multiple phases. This process can be illustrated by the following exemplary steps:

1. The application hands over the enclave content along with additional information required by the enclave 
creation API to the enclave creation service running at privilege level 0.

2. The enclave creation service running at privilege level 0 uses the ECREATE leaf function to set up the initial 
environment, specifying base address and size of the enclave. This address range, the ELRANGE, is part of the 
application's address space. This reserves the memory range. The enclave will now reside in this address 

Figure 37-1.  Enclave Memory Layout
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region. ECREATE also allocates an Enclave Page Cache (EPC) page for the SGX Enclave Control Structure 
(SECS). Note that this page is not required to be a part of the enclave linear address space and is not required 
to be mapped into the process. 

3. The enclave creation service uses the EADD leaf function to commit EPC pages to the enclave, and use 
EEXTEND to measure the committed memory content of the enclave. For each page to be added to the enclave:

— Use EADD to add the new page to the enclave. 

— If the enclave developer requires measurement of the page as a proof for the content, use EEXTEND to add 
a measurement for 256 bytes of the page. Repeat this operation until the entire page is measured. 

4. The enclave creation service uses the EINIT leaf function to complete the enclave creation process and finalize 
the enclave measurement to establish the enclave identity. Until an EINIT is executed, the enclave is not 
permitted to execute any enclave code (i.e., entering the enclave by executing EENTER would result in a fault).

37.1.1 ECREATE
The ECREATE leaf function sets up the initial environment for the enclave by reading an SGX Enclave Control Struc-
ture (SECS) that contains the enclave's address range (ELRANGE) as defined by BASEADDR and SIZE, the ATTRI-
BUTES and MISCSELECT bitmaps, and the SSAFRAMESIZE. It then securely stores this information in an Enclave 
Page Cache (EPC) page. ELRANGE is part of the application's address space. ECREATE also initializes a crypto-
graphic log of the enclave's build process.

37.1.2 EADD and EEXTEND Interaction
Once the SECS has been created, enclave pages can be added to the enclave via EADD. This involves converting a 
free EPC page into either a PT_REG or a PT_TCS page.
When EADD is invoked, the processor will update the EPCM entry with the type of page (PT_REG or PT_TCS), the 
linear address used by the enclave to access the page, and the enclave access permissions for the page. It associ-
ates the page to the SECS provided as input. The EPCM entry information is used by hardware to manage access 
control to the page. EADD records EPCM information in the cryptographic log stored in the SECS and copies 4 
KBytes of data from unprotected memory outside the EPC to the allocated EPC page.
System software is responsible for selecting a free EPC page. System software is also responsible for providing the 
type of page to be added, the attributes of the page, the contents of the page, and the SECS (enclave) to which the 
page is to be added as requested by the application. Incorrect data would lead to a failure of EADD or to an incor-
rect cryptographic log and a failure at EINIT time.
After a page has been added to an enclave, software can measure a 256 byte region as determined by the devel-
oper by invoking EEXTEND. Thus to measure an entire 4KB page, system software must execute EEXTEND 16 
times. Each invocation of EEXTEND adds to the cryptographic log information about which region is being measured 
and the measurement of the section.
Entries in the cryptographic log define the measurement of the enclave and are critical in gaining assurance that 
the enclave was correctly constructed by the untrusted system software.

37.1.3 EINIT Interaction
Once system software has completed the process of adding and measuring pages, the enclave needs to be initial-
ized by the EINIT leaf function. After an enclave is initialized, EADD and EEXTEND are disabled for that enclave (An 
attempt to execute EADD/EEXTEND to enclave after enclave initialization will result in a fault). The initialization 
process finalizes the cryptographic log and establishes the enclave identity and sealing identity used by 
EGETKEY and EREPORT.
A cryptographic hash of the log is stored as the enclave identity. Correct construction of the enclave results in the 
cryptographic hash matching the one built by the enclave owner and included as the ENCLAVEHASH field of 
SIGSTRUCT. The enclave identity provided by the EREPORT leaf function can be verified by a remote party. 
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The EINIT leaf function checks the EINIT token to validate that the enclave has been enabled on this platform. If 
the enclave is not correctly constructed, or the EINIT token is not valid for the platform, or SIGSTRUCT isn't prop-
erly signed, then EINIT will fail. See the EINIT leaf function for details on the error reporting. 
The enclave identity is a cryptographic hash that reflects the enclave attributes and MISCSELECT value, content 
of the enclave, the order in which it was built, the addresses it occupies in memory, the security attributes, and 
access right permissions of each page. The enclave identity is established by the EINIT leaf function.
The sealing identity is managed by a sealing authority represented by the hash of the public key used to sign the 
SIGSTRUCT structure processed by EINIT. The sealing authority assigns a product ID (ISVPRODID) and security 
version number (ISVSVN) to a particular enclave identity.
EINIT establishes the sealing identity using the following steps:
1. Verifies that SIGSTRUCT is properly signed using the public key enclosed in the SIGSTRUCT.
2. Checks that the measurement of the enclave matches the measurement of the enclave specified in SIGSTRUCT.
3. Checks that the enclave’s attributes and MISCSELECT values are compatible with those specified in SIGSTRUCT.
4. Finalizes the measurement of the enclave and records the sealing identity (the sealing authority, product id 
and security version number) and enclave identity in the SECS.
5. Sets the ATTRIBUTES.INIT bit for the enclave.

37.1.4 Intel® SGX Launch Control Configuration
Intel® SGX Launch Control is a set of controls that govern the creation of enclaves. Before the EINIT leaf function 
will successfully initialize an enclave, a designated Launch Enclave must create an EINITTOKEN for that enclave. 
Launch Enclaves have SECS.ATTRIBUTES.EINITTOKEN_KEY = 1, granting them access to the EINITTOKEN_KEY 
from the EGETKEY leaf function. EINITTOKEN_KEY must be used by the Launch Enclave when computing EINIT-
TOKEN.MAC, the Message Authentication Code of the EINITTOKEN. 
The hash of the public key used to sign the SIGSTRUCT of the Launch Enclave must equal the value in the 
IA32_SGXLEPUBKEYHASH MSRs. Only Launch Enclaves are allowed to launch without a valid token. 
The IA32_SGXLEPUBKEYHASH MSRs are provided to designate the platform’s Launch Enclave. 
IA32_SGXLEPUBKEYHASH defaults to digest of Intel’s launch enclave signing key after reset. 
IA32_FEATURE_CONTROL bit 17 controls the permissions on the IA32_SGXLEPUBKEYHASH MSRs when 
CPUID.(EAX=12H, ECX=00H):EAX[0] = 1. If IA32_FEATURE_CONTROL is locked with bit 17 set, 
IA32_SGXLEPUBKEYHASH MSRs are reconfigurable (writeable). If either IA32_FEATURE_CONTROL is not locked or 
bit 17 is clear, the MSRs are read only. By leaving these MSRs writable, system SW or a VMM can support a plurality 
of Launch Enclaves for hosting multiple execution environments. See Table 41.2.2 for more details. 

37.2 ENCLAVE ENTRY AND EXITING

37.2.1 Controlled Entry and Exit
The EENTER leaf function is the method to enter the enclave under program control. To execute EENTER, software 
must supply an address of a TCS that is part of the enclave to be entered. The TCS holds the location inside the 
enclave to transfer control to and a pointer to the SSA frame inside the enclave that an AEX should store the 
register state to. 
When a logical processor enters an enclave, the TCS is considered busy until the logical processors exits the 
enclave. An attempt to enter an enclave through a busy TCS results in a fault. Intel® SGX allows an enclave builder 
to define multiple TCSs, thereby providing support for multithreaded enclaves. 
Software must also supply to EENTER the Asynchronous Exit Pointer (AEP) parameter. AEP is an address external 
to the enclave which an exception handler will return to using IRET. Typically the location would contain the 
ERESUME instruction. ERESUME transfers control back to the enclave, to the address retrieved from the enclave 
thread’s saved state. 
EENTER performs the following operations:
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1. Check that TCS is not busy and flush all cached linear-to-physical mappings. 

2. Change the mode of operation to be in enclave mode. 

3. Save the old RSP, RBP for later restore on AEX (Software is responsible for setting up the new RSP, RBP to be 
used inside enclave). 

4. Save XCR0 and replace it with the XFRM value for the enclave. 

5. Check if software wishes to debug (applicable to a debuggable enclave):

— If not debugging, then configure hardware so the enclave appears as a single instruction. 

— If debugging, then configure hardware to allow traps, breakpoints, and single steps inside the enclave.

6. Set the TCS as busy.

7. Transfer control from outside enclave to predetermined location inside the enclave specified by the TCS.
The EEXIT leaf function is the method of leaving the enclave under program control. EEXIT receives the target 
address outside of the enclave that the enclave wishes to transfer control to. It is the responsibility of enclave soft-
ware to erase any secret from the registers prior to invoking EEXIT. To allow enclave software to easily perform an 
external function call and re-enter the enclave (using EEXIT and EENTER leaf functions), EEXIT returns the value of 
the AEP that was used when the enclave was entered. 
EEXIT performs the following operations:

1. Clear enclave mode and flush all cached linear-to-physical mappings. 

2. Mark TCS as not busy. 

3. Transfer control from inside the enclave to a location on the outside specified as parameter to the EEXIT leaf 
function.

37.2.2 Asynchronous Enclave Exit (AEX)
Asynchronous and synchronous events, such as exceptions, interrupts, traps, SMIs, and VM exits may occur while 
executing inside an enclave. These events are referred to as Enclave Exiting Events (EEE). Upon an EEE, the 
processor state is securely saved inside the enclave (in the thread’s current SSA frame) and then replaced by a 
synthetic state to prevent leakage of secrets. The process of securely saving state and establishing the synthetic 
state is called an Asynchronous Enclave Exit (AEX). Details of AEX is described in Chapter 38, “Enclave Exiting 
Events.”
As part of most EEEs, the AEP is pushed onto the stack as the location of the eventing address. This is the location 
where control will return to after executing the IRET. The ERESUME leaf function can be executed from that point 
to reenter the enclave and resume execution from the interrupted point.
After AEX has completed, the logical processor is no longer in enclave mode and the exiting event is processed 
normally. Any new events that occur after the AEX has completed are treated as having occurred outside the 
enclave (e.g., a #PF in dispatching to an interrupt handler).

37.2.3 Resuming Execution After AEX
After system software has serviced the event that caused the logical processor to exit an enclave, the logical 
processor can continue enclave execution using ERESUME. ERESUME restores processor state and returns control 
to where execution was interrupted. 
If the cause of the exit was an exception or a fault and was not resolved, the event will be triggered again if the 
enclave is re-entered using ERESUME. For example, if an enclave performs a divide by 0 operation, executing 
ERESUME will cause the enclave to attempt to re-execute the faulting instruction and result in another divide by 0 
exception. Intel® SGX provides the means for an enclave developer to handle enclave exceptions from within the 
enclave. Software can enter the enclave at a different location and invoke the exception handler within the enclave 
by executing the EENTER leaf function. The exception handler within the enclave can read the fault information 
from the SSA frame and attempt to resolve the faulting condition or simply return and indicate to software that the 
enclave should be terminated (e.g., using EEXIT).
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37.2.3.1  ERESUME Interaction
ERESUME restores registers depending on the mode of the enclave (32 or 64 bit).
• In 32-bit mode (IA32_EFER.LMA = 0 || CS.L = 0), the low 32-bits of the legacy registers (EAX, EBX, ECX, EDX, 

ESP, EBP, ESI, EDI, EIP, and EFLAGS) are restored from the thread’s GPR area of the current SSA frame. 
Neither the upper 32 bits of the legacy registers nor the 64-bit registers (R8 … R15) are loaded. 

• In 64-bit mode (IA32_EFER.LMA = 1 && CS.L = 1), all 64 bits of the general processor registers (RAX, RBX, 
RCX, RDX, RSP, RBP, RSI, RDI, R8 … R15, RIP, and RFLAGS) are loaded.

Extended features specified by SECS.ATTRIBUTES.XFRM are restored from the XSAVE area of the current SSA 
frame. The layout of the x87 area depends on the current values of IA32_EFER.LMA and CS.L:
• IA32_EFER.LMA = 0 || CS.L = 0

— 32-bit load in the same format that XSAVE/FXSAVE uses with these values.
• IA32_EFER.LMA = 1 && CS.L = 1

— 64-bit load in the same format that XSAVE/FXSAVE uses with these values as if REX.W = 1.

37.2.3.2  Asynchronous Enclave Exit Notify and EDECCSSA
Asynchronous Enclave Exit Notify (AEX-Notify) is an extension to Intel SGX that allows Intel SGX enclaves to be 
notified after an asynchronous enclave exit (AEX) has occurred. EDECCSSA is a new Intel SGX user leaf function 
(ENCLU[EDECCSSA]) that can facilitate AEX notification handling, as well as software exception handling. This 
section provides information about changes to the Intel SGX architecture that support AEX-Notify and 
ENCLU[EDECCSSA].

NOTE
On some platforms, AEX-Notify and the EDECCSSA user leaf function may be enumerated by 
CPUID following a microcode update.

The following list summarizes the additions to existing Intel SGX data structures to support AEX-Notify:
• SECS.ATTRIBUTES.AEXNOTIFY: This enclave supports AEX-Notify.
• TCS.FLAGS.AEXNOTIFY: This enclave thread may receive AEX notifications.
• SSA.GPRSGX.AEXNOTIFY: Enclave-writable byte that allows enclave software to dynamically enable/disable 

AEX notifications.
An AEX notification is delivered by ENCLU[ERESUME] when the following conditions are met:

1. TCS.FLAGS.AEXNOTIFY is set.

2. TCS.CSSA (the current slot index of an SSA frame) is greater than zero.

3. TCS.SSA[TCS.CSSA-1].GPRSGX.AEXNOTIFY[0] is set.
Note that AEX increments TCS.CSSA, and ENCLU[ERESUME] decrements TCS.CSSA, except when an AEX notifica-
tion is delivered. Instead of decrementing TCS.CSSA and restoring state from the SSA, ENCLU[ERESUME] delivers 
an AEX notification by behaving as ENCLU[EENTER]. Implications of this behavior include:
• The enclave thread is resumed at EnclaveBase + TCS.OENTRY.
• EAX contains the (non-decremented) value of TCS.CSSA.
• RCX contains the address of the IP following ENCLU[ERESUME].
• The architectural state saved by the most recent AEX is preserved in TCS.SSA[TCS.CSSA-1].
The enclave thread can return to the previous SSA context by invoking ENCLU[EDECCSSA], which decrements 
TCS.CSSA.
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37.3 CALLING ENCLAVE PROCEDURES

37.3.1 Calling Convention
In standard call conventions subroutine parameters are generally pushed onto the stack. The called routine, being 
aware of its own stack layout, knows how to find parameters based on compile-time-computable offsets from the 
SP or BP register (depending on runtime conventions used by the compiler).
Because of the stack switch when calling an enclave, stack-located parameters cannot be found in this manner. 
Entering the enclave requires a modified parameter passing convention.
For example, the caller might push parameters onto the untrusted stack and then pass a pointer to those parame-
ters in RAX to the enclave software. The exact choice of calling conventions is up to the writer of the edge routines; 
be those routines hand-coded or compiler generated. 

37.3.2 Register Preservation
As with most systems, it is the responsibility of the callee to preserve all registers except that used for returning a 
value. This is consistent with conventional usage and tends to optimize the number of register save/restore opera-
tions that need be performed. It has the additional security result that it ensures that data is scrubbed from any 
registers that were used by enclave to temporarily contain secrets.

37.3.3 Returning to Caller
No registers are modified during EEXIT. It is the responsibility of software to remove secrets in registers before 
executing EEXIT.

37.4 INTEL® SGX KEY AND ATTESTATION

37.4.1 Enclave Measurement and Identification
During the enclave build process, two “measurements” are taken of each enclave and are stored in two 256-bit 
Measurement Registers (MR): MRENCLAVE and MRSIGNER. MRENCLAVE represents the enclave's contents and 
build process. MRSIGNER represents the entity that signed the enclave's SIGSTRUCT.
The values of the Measurement Registers are included in attestations to identify the enclave to remote parties. The 
MRs are also included in most keys, binding keys to enclaves with specific MRs. 

37.4.1.1  MRENCLAVE
MRENCLAVE is a unique 256 bit value that identifies the code and data that was loaded into the enclave during the 
initial launch. It is computed as a SHA256 hash that is initialized by the ECREATE leaf function. EADD and EEXTEND 
leaf functions record information about each page and the content of those pages. The EINIT leaf function finalizes 
the hash, which is stored in SECS.MRENCLAVE. Any tampering with the build process, contents of a page, page 
permissions, etc will result in a different MRENCLAVE value. 
Figure 37-2 illustrates a simplified flow of changes to the MRENCLAVE register when building an enclave:
• Enclave creation with ECREATE.
• Copying a non-enclave source page into the EPC of an un-initialized enclave with EADD.
• Updating twice of the MRENCLAVE after modifying the enclave’s page content, i.e., EEXTEND twice.
• Finalizing the enclave build with EINIT.
Details on specific values inserted in the hash are available in the individual instruction definitions.
37-6 Vol. 3D



ENCLAVE OPERATION
37.4.1.2  MRSIGNER
Each enclave is signed using a 3072 bit RSA key. The signature is stored in the SIGSTRUCT. In the SIGSTRUCT, the 
enclave's signer also assigns a product ID (ISVPRODID) and a security version (ISVSVN) to the enclave. 
MRSIGNER is the SHA-256 hash of the signer's public key. For platforms that support Key Separation and Sharing 
(CPUID.(EAX=12H, ECX=1).EAX.KSS[7]) the SIGSTRUCT can additionally specify an 16 byte extended product ID 
(ISVEXTPRODID), and a 16 byte family ID (ISVFAMILYID).
In attestation, MRSIGNER can be used to allow software to approve of an enclave based on the author rather than 
maintaining a list of MRENCLAVEs. It is used in key derivation to allow software to create a lineage of an applica-
tion. By signing multiple enclaves with the same key, the enclaves will share the same keys and data. Combined 
with security version numbering, the author can release multiple versions of an application which can access keys 
for previous versions, but not future versions of that application.

37.4.1.3  CONFIGID
For platforms that support enhancements for key separation and sharing (CPUID.(EAX=12H, ECX=1).EAX.KSS[7]) 
when the enclave is created the platform can additionally provide 32-byte configuration identifier (CONFIGID). 
How this value is used is dependent on the enclave but it is intended to allow enclave creators to indicate what 
additional content may be accepted by the enclave post-initialization.

37.4.2 Security Version Numbers (SVN) 
Intel® SGX supports a versioning system that allows the signer to identify different versions of the same software 
released by an author. The security version is independent of the functional version an author uses and is intended 
to specify security equivalence. Multiple releases with functional enhancements may all share the same SVN if they 
all have the same security properties or posture. Each enclave has an SVN and the underlying hardware has an 
SVN.
The SVNs are attested to in EREPORT and are included in the derivation of most keys, thus providing separation 
between data for older/newer versions. 

Figure 37-2.  Measurement Flow of Enclave Build Process
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37.4.2.1  Enclave Security Version
In the SIGSTRUCT, the MRSIGNER is associated with a 16-bit Product ID (ISVPRODID) and a 16 bit integer SVN 
(ISVSVN). Together they define a specific group of versions of a specific product. Most keys, including the Seal Key, 
can be bound to this pair. 
To support upgrading from one release to another, EGETKEY will return keys corresponding to any value less than 
or equal to the software's ISVSVN.

37.4.2.2  Hardware Security Version
CPUSVN is a 128 bit value that reflects the microcode update version and authenticated code modules supported 
by the processor. Unlike ISVSVN, CPUSVN is not an integer and cannot be compared mathematically. Not all values 
are valid CPUSVNs. 
Software must ensure that the CPUSVN provided to EGETKEY is valid. EREPORT will return the CPUSVN of the 
current environment. Software can execute EREPORT with TARGETINFO set to zeros to retrieve a CPUSVN from 
REPORTDATA. Software can access keys for a CPUSVN recorded previously, provided that each of the elements 
reflected in CPUSVN are the same or have been upgraded.

37.4.2.3  CONFIGID Security Version
The CONFIGID field can be used to contain the hash of a signing key for verifying the additional content. In this 
case, similar to the relationship between MRSIGNER and ISVSVN, CONFIGID needs a CONFIGID Security Version 
Number. CONFIGIDSVN can be specified at the same time as CONFIGID.

37.4.3 Keys
Intel® SGX provides software with access to keys unique to each processor and rooted in HW keys inserted into the 
processor during manufacturing. 
Each enclave requests keys using the EGETKEY leaf function. The key is based on enclave parameters such as 
measurement, the enclave signing key, security attributes of the enclave, and the Hardware Security version of the 
processor itself. A full list of parameter options is specified in the KEYREQUEST structure, see details in Section 
36.18. 
By deriving keys using enclave properties, SGX guarantees that if two enclaves call EGETKEY, they will receive a 
unique key only accessible by the respective enclave. It also guarantees that the enclave will receive the same key 
on every future execution of EGETKEY. Some parameters are optional or configurable by software. For example, a 
Seal key can be based on the signer of the enclave, resulting in a key available to multiple enclaves signed by the 
same party.
The EGETKEY leaf function provides several key types. Each key is specific to the processor, CPUSVN, and the 
enclave that executed EGETKEY. The EGETKEY instruction definition details how each of these keys is derived, see 
Table 39-66. Additionally,
• SEAL Key: The Seal key is a general purpose key for the enclave to use to protect secrets. Typical uses of the 

Seal key are encrypting and calculating MAC of secrets on disk. There are 2 types of Seal Key described in 
Section 37.4.3.1. 

• REPORT Key: This key is used to compute the MAC on the REPORT structure. The EREPORT leaf function is used 
to compute this MAC, and destination enclave uses the Report key to verify the MAC. The software usage flow 
is detailed in Section 37.4.3.2. 

• EINITTOKEN_KEY: This key is used by Launch Enclaves to compute the MAC on EINITTOKENs. These tokens are 
then verified in the EINIT leaf function. The key is only available to enclaves with ATTRIBUTE.EINITTOKEN_KEY set 
to 1. 

• PROVISIONING Key and PROVISIONING SEAL Key: These keys are used by attestation key provisioning 
software to prove to remote parties that the processor is genuine and identify the currently executing TCB. 
These keys are only available to enclaves with ATTRIBUTE.PROVISIONKEY set to 1.
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37.4.3.1  Sealing Enclave Data
Enclaves can protect persistent data using Seal keys to provide encryption and/or integrity protection. EGETKEY 
provides two types of Seal keys specified in KEYREQUEST.KEYPOLICY field: MRENCLAVE-based key and 
MRSIGNER-based key. 
The MRENCLAVE-based keys are available only to enclave instances sharing the same MRENCLAVE. If a new 
version of the enclave is released, the Seal keys will be different. Retrieving previous data requires additional soft-
ware support.
The MRSIGNER-based keys are bound to the 3 tuple (MRSIGNER, ISVPRODID, ISVSVN). These keys are available 
to any enclave with the same MRSIGNER and ISVPRODID and an ISVSVN equal to or greater than the key in ques-
tions. This is valuable for allowing new versions of the same software to retrieve keys created before an upgrade.
For platforms that support enhancements for key separation and sharing (CPUID.(EAX=12H, ECX=1).EAX.KSS[7]) 
four additional key policies for seal key derivation are provided. These add the ISVEXTPRODID, ISVFAMILYID, and 
CONFIGID/CONFIGSVN to the key derivation. Additionally, there is a policy to remove ISVPRODID from a key deri-
vation to create a shared between different products that share the same MRSIGNER.

37.4.3.2  Using REPORTs for Local Attestation
Intel SGX provides a means for enclaves to securely identify one another, this is referred to as “Local Attestation”. 
SGX provides a hardware assertion, REPORT that contains calling enclaves Attributes, Measurements and User 
supplied data (described in detail in Section 36.16). Figure 37-3 shows the basic flow of information.

1. The source enclave determines the identity of the target enclave to populate TARGETINFO. 

2. The source enclave calls EREPORT instruction to generate a REPORT structure. The EREPORT instruction 
conducts the following:

— Populates the REPORT with identify information about the calling enclave. 

— Derives the Report Key that is returned when the target enclave executes the EGETKEY. TARGETINFO 
provides information about the target.

— Computes a MAC over the REPORT using derived target enclave Report Key.

3. Non-enclave software copies the REPORT from source to destination. 

4. The target enclave executes the EGETKEY instruction to request its REPORT key, which is the same key used by 
EREPORT at the source. 

5. The target enclave verifies the MAC and can then inspect the REPORT to identify the source.

Figure 37-3.   SGX Local Attestation
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37.5 EPC AND MANAGEMENT OF EPC PAGES
EPC layout is implementation specific, and is enumerated through CPUID (see Table 35-7 for EPC layout). EPC is 
typically configured by BIOS at system boot time.

37.5.1 EPC Implementation
EPC must be properly protected against attacks. One example of EPC implementation could use a Memory Encryp-
tion Engine (MEE). An MEE provides a cost-effective mechanism of creating cryptographically protected volatile 
storage using platform DRAM. These units provide integrity, replay, and confidentiality protection. Details are 
implementation specific.

37.5.2 OS Management of EPC Pages
The EPC is a finite resource. SGX1 (i.e., CPUID.(EAX=12H, ECX=0):EAX.SGX1 = 1 but CPUID.(EAX=12H, 
ECX=0):EAX.SGX2 = 0) provides the EPC manager with leaf functions to manage this resource and properly swap 
pages out of and into the EPC. For that, the EPC manager would need to keep track of all EPC entries, type and 
state, context affiliation, and SECS affiliation.
Enclave pages that are candidates for eviction should be moved to BLOCKED state using EBLOCK instruction that 
ensures no new cached virtual to physical address mappings can be created by attempts to reference a BLOCKED 
page.
Before evicting blocked pages, EPC manager should execute ETRACK leaf function on that enclave and ensure that 
there are no stale cached virtual to physical address mappings for the blocked pages remain on any thread on the 
platform.
After removing all stale translations from blocked pages, system software should use the EWB leaf function for 
securely evicting pages out of the EPC. EWB encrypts a page in the EPC, writes it to unprotected memory, and 
invalidates the copy in EPC. In addition, EWB also creates a cryptographic MAC (PCMD.MAC) of the page and stores 
it in unprotected memory. A page can be reloaded back to the processor only if the data and MAC match. To ensure 
that only the latest version of the evicted page can be loaded back, the version of the evicted page is stored 
securely in a Version Array (VA) in EPC.
SGX1 includes two instructions for reloading pages that have been evicted by system software: ELDU and ELDB. 
The difference between the two instructions is the value of the paging state at the end of the instruction. ELDU 
results in a page being reloaded and set to an UNBLOCKED state, while ELDB results in a page loaded to a BLOCKED 
state.
ELDB is intended for use by a Virtual Machine Monitor (VMM). When a VMM reloads an evicted page, it needs to 
restore it to the correct state of the page (BLOCKED vs. UNBLOCKED) as it existed at the time the page was 
evicted. Based on the state of the page at eviction, the VMM chooses either ELDB or ELDU.

37.5.2.1  Enhancement to Managing EPC Pages
On processors supporting SGX2 (i.e., CPUID.(EAX=12H, ECX=0):EAX.SGX2 = 1), the EPC manager can manage 
EPC resources (while enclave is running) with more flexibility provided by the SGX2 leaf functions. The additional 
flexibility is described in Section 37.5.7 through Section 37.5.11.

37.5.3 Eviction of Enclave Pages
Intel SGX paging is optimized to allow the Operating System (OS) to evict multiple pages out of the EPC under a 
single synchronization.
The suggested flow for evicting a list of pages from the EPC is: 

1. For each page to be evicted from the EPC:

a. Select an empty slot in a Version Array (VA) page.

• If no empty VA page slots exist, create a new VA page using the EPA leaf function.
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b. Remove linear-address to physical-address mapping from the enclave context’s mapping tables (page table 
and EPT tables). 

c. Execute the EBLOCK leaf function for the target page. This sets the target page state to BLOCKED. At this 
point no new mappings of the page will be created. So any access which does not have the mapping cached 
in the TLB will generate a #PF.

2. For each enclave containing pages selected in step 1:

— Execute an ETRACK leaf function pointing to that enclave’s SECS. This initiates the tracking process that 
ensures that all caching of linear-address to physical-address translations for the blocked pages is cleared.

3. For all logical processors executing in processes (OS) or guests (VMM) that contain the enclaves selected in 
step 1:

— Issue an IPI (inter-processor interrupt) to those threads. This causes those logical processors to asynchro-
nously exit any enclaves they might be in, and as a result flush cached linear-address to physical-address 
translations that might hold stale translations to blocked pages. There is no need for additional measures 
such as performing a “TLB shootdown”.

4. After enclaves exit, allow logical processors to resume normal operation, including enclave re-entry as the 
tracking logic keeps track of the activity. 

5. For each page to be evicted:

— Evict the page using the EWB leaf function with parameters include the effective-address pointer to the EPC 
page, the VA slot, a 4K byte buffer to hold the encrypted page contents, and a 128 byte buffer to hold page 
metadata. The last three elements are tied together cryptographically and must be used to later reload the 
page.

At this point, system software has the only copy of each page data encrypted with its page metadata in main 
memory. 

37.5.4 Loading an Enclave Page
To reload a previously evicted page, system software needs four elements: the VA slot used when the page was 
evicted, a buffer containing the encrypted page contents, a buffer containing the page metadata, and the parent 
SECS to associate this page with. If the VA page or the parent SECS are not already in the EPC, they must be 
reloaded first.

1. Execute ELDB/ELDU (depending on the desired BLOCKED state for the page), passing as parameters: the EPC 
page linear address, the VA slot, the encrypted page, and the page metadata. 

2. Create a mapping in the enclave context’s mapping tables (page tables and EPT tables) to allow the application 
to access that page (OS: system page table; VMM: EPT).

The ELDB/ELDU instruction marks the VA slot empty so that the page cannot be replayed at a later date.

37.5.5 Eviction of an SECS Page
The eviction of an SECS page is similar to the eviction of an enclave page. The only difference is that an SECS page 
cannot be evicted until all other pages belonging to the enclave have been evicted. Since all other pages have been 
evicted, there will be no threads executing inside the enclave and tracking with ETRACK isn’t necessary. When 
reloading an enclave, the SECS page must be reloaded before all other constituent pages.

1. Ensure all pages are evicted from enclave. 

2. Select an empty slot in a Version Array page. 

— If no VA page exists with an empty slot, create a new one using the EPA function leaf. 

3. Evict the page using the EWB leaf function with parameters include the effective-address pointer to the EPC 
page, the VA slot, a 4K byte buffer to hold the encrypted page contents and a 128 byte buffer to hold page 
metadata. The last three elements are tied together cryptographically and must be used to later reload the 
page.
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37.5.6 Eviction of a Version Array Page
VA pages do not belong to any enclave and tracking with ETRACK isn’t necessary. When evicting the VA page, a slot 
in a different VA page must be specified in order to provide versioning of the evicted VA page. 

1. Select a slot in a Version Array page other than the page being evicted. 

— If no VA page exists with an empty slot, create a new one using the EPA leaf function. 

2. Evict the page using the EWB leaf function with parameters include the effective-address pointer to the EPC 
page, the VA slot, a 4K byte buffer to hold the encrypted page contents, and a 128 byte buffer to hold page 
metadata. The last three elements are tied together cryptographically and must be used to later reload the 
page.

37.5.7 Allocating a Regular Page
On processors that support SGX2, allocating a new page to an already initialized enclave is accomplished by 
invoking the EAUG leaf function. Typically, the enclave requests that the OS allocates a new page at a particular 
location within the enclave’s address space. Once allocated, the page remains in a pending state until the enclave 
executes the corresponding EACCEPT leaf function to accept the new page into the enclave. Page allocation opera-
tions may be batched to improve efficiency. 
The typical process for allocating a regular page is as follows: 

1. Enclave requests additional memory from OS when the current allocation becomes insufficient. 

2. The OS invokes the EAUG leaf function to add a new memory page to the enclave. 

a. EAUG may only be called on a free EPC page. 

b. Successful completion of the EAUG instruction places the target page in the VALID and PENDING state. 

c. All dynamically created pages have the type PT_REG and content of all zeros. 

3. The OS maps the page in the enclave context's mapping tables.

4. The enclave issues an EACCEPT instruction, which verifies the page’s attributes and clears the PENDING state. 
At that point the page becomes accessible for normal enclave use. 

37.5.8 Allocating a TCS Page 
On processors that support SGX2, allocating a new TCS page to an already initialized enclave is a two-step process. 
First the OS allocates a regular page with a call to EAUG. This page must then be accepted and initialized by the 
enclave to which it belongs. Once the page has been initialized with appropriate values for a TCS page, the enclave 
requests the OS to change the page’s type to PT_TCS. This change must also be accepted. As with allocating a 
regular page, TCS allocation operations may be batched. 
A typical process for allocating a TCS page is as follows: 

1. Enclave requests an additional page from the OS. 

2. The OS invokes EAUG to add a new regular memory page to the enclave. 

a. EAUG may only be called on a free EPC page. 

b. Successful completion of the EAUG instruction places the target page in the VALID and PENDING state. 

3. The OS maps the page in the enclave context's mapping tables.

4. The enclave issues an EACCEPT instruction, at which point the page becomes accessible for normal enclave use. 

5. The enclave initializes the contents of the new page. 

6. The enclave requests that the OS convert the page from type PT_REG to PT_TCS. 

7. OS issues an EMODT instruction on the page. 

a. The parameters to EMODT indicate that the regular page should be converted into a TCS. 
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b. EMODT forces all access rights to a page to be removed because TCS pages may not be accessed by enclave 
code. 

8. The enclave issues an EACCEPT instruction to confirm the requested modification. 

37.5.9 Trimming a Page 
On processors that support SGX2, Intel SGX supports the trimming of an enclave page as a special case of EMODT. 
Trimming allows an enclave to actively participate in the process of removing a page from the enclave (dealloca-
tion) by splitting the process into first removing it from the enclave's access and then removing it from the EPC 
using the EREMOVE leaf function. The page type PT_TRIM indicates that a page has been trimmed from the 
enclave’s address space and that the page is no longer accessible to enclave software. Modifications to a page in 
the PT_TRIM state are not permitted; the page must be removed and then reallocated by the OS before the enclave 
may use the page again. Page deallocation operations may be batched to improve efficiency. 
The typical process for trimming a page from an enclave is as follows: 

1. Enclave signals OS that a particular page is no longer in use. 

2. OS invokes the EMODT leaf function on the page, requesting that the page’s type be changed to PT_TRIM. 

a. SECS and VA pages cannot be trimmed in this way, so the initial type of the page must be PT_REG or 
PT_TCS.

b. EMODT may only be called on valid enclave pages.

3. OS invokes the ETRACK leaf function on the enclave containing the page to track removal the TLB addresses 
from all the processors.

4. Issue an IPI (inter-processor interrupt) to flush the stale linear-address to physical-address translations for all 
logical processors executing in processes that contain the enclave.

5. Enclave issues an EACCEPT leaf function. 

6. The OS may now permanently remove the page from the EPC (by issuing EREMOVE). 

37.5.10 Restricting the EPCM Permissions of a Page 
On processors that support SGX2, restricting the EPCM permissions associated with an enclave page is accom-
plished using the EMODPR leaf function. This operation requires the cooperation of the OS to flush stale entries to 
the page and to update the page-table permissions of the page to match. Permissions restriction operations may 
be batched. 
The typical process for restricting the permissions of an enclave page is as follows: 

1. Enclave requests that the OS to restrict the permissions of an EPC page. 

2. OS performs permission restriction, flushing cached linear-address to physical-address translations, and page-
table modifications.

a. Invokes the EMODPR leaf function to restrict permissions (EMODPR may only be called on VALID pages).

b. Invokes the ETRACK leaf function on the enclave containing the page to track removal of the TLB addresses 
from all the processor.

c. Issue an IPI (inter-processor interrupt) to flush the stale linear-address to physical-address translations for 
all logical processors executing in processes that contain the enclave.

d. Sends IPIs to trigger enclave thread exit and TLB shootdown. 

e. OS informs the Enclave that all logical processors should now see the new restricted permissions.

3. Enclave invokes the EACCEPT leaf function.

a. Enclave may access the page throughout the entire process.

b. Successful call to EACCEPT guarantees that no stale cached linear-address to physical-address translations 
are present.
Vol. 3D 37-13



ENCLAVE OPERATION
37.5.11 Extending the EPCM Permissions of a Page 
On processors that support SGX2, extending the EPCM permissions associated with an enclave page is accom-
plished directly by the enclave using the EMODPE leaf function. After performing the EPCM permission extension, 
the enclave requests the OS to update the page table permissions to match the extended permission. Security 
wise, permission extension does not require enclave threads to leave the enclave as TLBs with stale references to 
the more restrictive permissions will be flushed on demand, but to allow forward progress, an OS needs to be 
aware that an application might signal a page fault. 
The typical process for extending the permissions of an enclave page is as follows:

1. Enclave invokes EMODPE to extend the EPCM permissions associated with an EPC page (EMODPE may only be 
called on VALID pages).

2. Enclave requests that OS update the page tables to match the new EPCM permissions. 

3. Enclave code resumes.

a. If cached linear-address to physical-address translations are present to the more restrictive permissions, 
the enclave thread will page fault. The SGX2-aware OS will see that the page tables permit the access and 
resume the thread, which can now successfully access the page because exiting cleared the TLB. 

b. If cached linear-address to physical-address translations are not present, access to the page with the new 
permissions will succeed without an enclave exit. 

37.5.12 VMM Oversubscription of EPC
On processors supporting oversubscription enhancements (i.e., CPUID.(EAX=12H, ECX=0):EAX[5]=1 & EAX[6] = 
1) a Virtual Machine Monitor or other executive can more efficiently manage the EPC space available on the plat-
form between virtualized entities. A typical process for using these instructions to support oversubscribing the 
physical EPC space on the platform is as follows:

1. VMM creates data structures for SECS tracking including a count of child pages.

2. VMM selects possible EPC victim pages.

3. VMM ages the victim pages. Some of the selected pages will be accessed by the guest. In this case the VMM will 
remove these pages from the victim pool and return them to the guest.

4. VMM makes remaining pages not present in EPT. It then issues IPI on each page to remove TLB mappings.

5. For every EPC victim page the VMM obtains the victim's SECS page info using ERDINFO.

a. ENCLAVECONTEXT field in RDINFO structure will indicate the location of SECS, and the PAGE_TYPE field will 
indicate the page type.

b. Child pages of SECS can be evicted.

c. SECS pages may be evicted if the child count is zero.

d. Some pages may be returned to active state depending on such things as page type or child count.

6. VMM increments its evicted page count for the SECS of each page (stored in the data structure created in 1).

7. If this is the first evicted page of that SECS, set Marker on SECS of the victim page (EINCVIRTCHILD). This 
locks the SECS in the guest. The guest cannot page out the SECS.

8. EBLOCK, ETRACK, EWB eviction sequence is executed for page.

9. After loading an SECS page back in, the VMM will set the correct ENCLAVECONTEXT for the guest using 
ESETCONTEXT instruction.

37.6 CHANGES TO INSTRUCTION BEHAVIOR INSIDE AN ENCLAVE
This section covers instructions whose behavior changes when executed in enclave mode.
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37.6.1 Illegal Instructions
The instructions listed in Table 37-1 are ring 3 instructions which become illegal when executed inside an enclave. 
Executing these instructions inside an enclave will generate an exception. 
The first row of Table 37-1 enumerates instructions that may cause a VM exit for VMM emulation. Since a VMM 
cannot emulate enclave execution, execution of any of these instructions inside an enclave results in an invalid-
opcode exception (#UD) and no VM exit.
The second row of Table 37-1 enumerates I/O instructions that may cause a fault or a VM exit for emulation. Again, 
enclave execution cannot be emulated, so execution of any of these instructions inside an enclave results in #UD.
The third row of Table 37-1 enumerates instructions that load descriptors from the GDT or the LDT or that change 
privilege level. The former class is disallowed because enclave software should not depend on the contents of the 
descriptor tables and the latter because enclave execution must be entirely with CPL = 3. Again, execution of any 
of these instructions inside an enclave results in #UD. 
The fourth row of Table 37-1 enumerates instructions that provide access to kernel information from user mode 
and can be used to aid kernel exploits from within enclave. Execution of any of these instructions inside an enclave 
results in #UD.

RDTSC and RDTSCP are legal inside an enclave for processors that support SGX2 (subject to the value of 
CR4.TSD). For processors which support SGX1 but not SGX2, RDTSC and RDTSCP will cause #UD.
RDTSC and RDTSCP instructions may cause a VM exit when inside an enclave.
Software developers must take into account that the RDTSC/RDTSCP results are not immune to influences by other 
software, e.g., the TSC can be manipulated by software outside the enclave.

37.6.2 RDRAND and RDSEED Instructions
These instructions may cause a VM exit if the “RDRAND exiting” VM-execution control is 1. Unlike other instructions 
that can cause VM exits, these instructions are legal inside an enclave. As noted in Section 29.1 of the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3C, any VM exit originating on an instruction 
boundary inside an enclave sets bit 27 of the exit-reason field of the VMCS. If a VMM receives a VM exit due to an 
attempt to execute either of these instructions determines (by that bit) that the execution was inside an enclave, 
it can do either of two things. It can clear the “RDRAND exiting” VM-execution control and execute VMRESUME; this 
will result in the enclave executing RDRAND or RDSEED again, and this time a VM exit will not occur. Alternatively, 
the VMM might choose to discontinue execution of this virtual machine.

NOTE
It is expected that VMMs that virtualize Intel SGX will not set “RDRAND exiting” to 1.

37.6.3 PAUSE Instruction
The PAUSE instruction may cause a VM exit from an enclave if the “PAUSE exiting” VM-execution control is 1. Unlike 
other instructions that can cause VM exits, the PAUSE instruction is legal inside an enclave. If a VMM receives a VM 
exit due to the 1-setting of “PAUSE exiting”, it can do either of two things. It can clear the “PAUSE exiting” VM-

Table 37-1.  Illegal Instructions Inside an Enclave
 Instructions Result Comment

CPUID, GETSEC, RDPMC, SGDT, SIDT, SLDT, STR, VMCALL, VMFUNC #UD Might cause VM exit.

IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD #UD I/O fault may not safely recover. May require emulation.

Far call, Far jump, Far Ret, INT n/INTO, IRET, LDS/LES/LFS/LGS/LSS, 
MOV to DS/ES/SS/FS/GS, POP DS/ES/SS/FS/GS, SYSCALL, 
SYSENTER 

#UD Access segment register could change privilege level.

SMSW #UD Might provide access to kernel information.

ENCLU[EENTER], ENCLU[ERESUME] #GP Cannot enter an enclave from within an enclave.
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execution control and execute VMRESUME; this will result in the enclave executing PAUSE again, but this time a VM 
exit will not occur. Alternatively, the VMM might choose to discontinue execution of this virtual machine.
The PAUSE instruction may also cause a VM exit outside of an enclave if the “PAUSE-loop exiting” VM-execution 
control is 1, but as the “PAUSE-loop exiting” control is ignored at CPL > 0 (see Section 27.1.3), VM exit from an 
enclave due to the 1-setting of “PAUSE-LOOP exiting” will never occur.

NOTE
It is expected that VMMs that virtualize Intel SGX will not set “PAUSE exiting” to 1.

37.6.4 Executions of INT1 and INT3 Inside an Enclave
The INT1 and INT3 instructions are legal inside an enclave, however, their behavior inside an enclave differs from 
that outside an enclave. See Section 41.4.1 for details.

37.6.5 INVD Handling when Enclaves Are Enabled
Once processor reserved memory protections are activated (see Section 37.5), any execution of INVD will result in 
a #GP(0).
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CHAPTER 38
ENCLAVE EXITING EVENTS

Certain events, such as exceptions and interrupts, incident to (but asynchronous with) enclave execution may 
cause control to transition outside of enclave mode. (Most of these also cause a change of privilege level.) To 
protect the integrity and security of the enclave, the processor will exit the enclave (and enclave mode) before 
invoking the handler for such an event. For that reason, such events are called enclave-exiting events (EEE); 
EEEs include external interrupts, non-maskable interrupts, system-management interrupts, exceptions, and VM 
exits.
The process of leaving an enclave in response to an EEE is called an asynchronous enclave exit (AEX). To protect 
the secrecy of the enclave, an AEX saves the state of certain registers within enclave memory and then loads those 
registers with fixed values called synthetic state.

38.1 COMPATIBLE SWITCH TO THE EXITING STACK OF AEX
AEXs load registers with a pre-determined synthetic state. These registers may be later pushed onto the appro-
priate stack in a form as defined by the enclave-exiting event. To allow enclave execution to resume after the 
invoking handler has processed the enclave exiting event, the asynchronous enclave exit loads the address of 
trampoline code outside of the enclave into RIP. This trampoline code eventually returns to the enclave by means 
of an ENCLU(ERESUME) leaf function. Prior to exiting the enclave the RSP and RBP registers are restored to their 
values prior to enclave entry.
The stack to be used is chosen using the same rules as for non-SGX mode:
• If there is a privilege level change, the stack will be the one associated with the new ring. 
• If there is no privilege level change, the current application stack is used. 
• If the IA-32e IST mechanism is used, the exit stack is chosen using that method.

Figure 38-1.  Exit Stack Just After Interrupt with Stack Switch
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In all cases, the choice of exit stack and the information pushed onto it is consistent with non-SGX operation. 
Figure 38-1 shows the Application and Exiting Stacks after an exit with a stack switch. An exit without a stack 
switch uses the Application Stack. The ERESUME leaf index value is placed into RAX, the TCS pointer is placed in 
RBX and the AEP (see below) is placed into RCX to facilitate resuming the enclave after the exit.
Upon an AEX, the AEP (Asynchronous Exit Pointer) is loaded into the RIP. The AEP points to a trampoline code 
sequence which includes the ERESUME instruction that is later used to reenter the enclave. 
The following bits of RFLAGS are cleared before RFLAGS is pushed onto the exit stack: CF, PF, AF, ZF, SF, OF, RF. The 
remaining bits are left unchanged.

38.2 STATE SAVING BY AEX
The State Save Area holds the processor state at the time of an AEX. To allow handling events within the enclave 
and re-entering it after an AEX, the SSA can be a stack of multiple SSA frames as illustrated in Figure 38-2.

The location of the SSA frames to be used is controlled by the following variables in the TCS and the SECS:
• Size of a frame in the State Save Area (SECS.SSAFRAMESIZE): This defines the number of 4-KByte pages in a 

single frame in the State Save Area. The SSA frame size must be large enough to hold the GPR state, the XSAVE 
state, and the MISC state. 

• Base address of the enclave (SECS.BASEADDR): This defines the enclave's base linear address from which the 
offset to the base of the SSA stack is calculated. 

• Number of State Save Area Slots (TCS.NSSA): This defines the total number of slots (frames) in the State Save 
Area stack. 

• Current State Save Area Slot (TCS.CSSA): This defines the slot to use on the next exit. 
• State Save Area Offset (TCS.OSSA): This defines the offset of the base address of a set of State Save Area slots 

from the enclave’s base address.
When an AEX occurs, hardware selects the SSA frame to use by examining TCS.CSSA. Processor state is saved into 
the SSA frame (see Section 38.4) and loaded with a synthetic state (as described in Section 38.3.1) to avoid 
leaking secrets, RSP and RBP are restored to their values prior to enclave entry, and TCS.CSSA is incremented. As 
will be described later, if an exception takes the last slot, it will not be possible to reenter the enclave to handle the 

Figure 38-2.  The SSA Stack 
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exception from within the enclave. A subsequent ERESUME restores the processor state from the current SSA 
frame and frees the SSA frame.
The format of the XSAVE section of SSA is identical to the format used by the XSAVE/XRSTOR instructions. On 
EENTER, CSSA must be less than NSSA, ensuring that there is at least one State Save Area slot available for exits. 
If there is no free SSA frame when executing EENTER, the entry will fail.

38.3 SYNTHETIC STATE ON ASYNCHRONOUS ENCLAVE EXIT

38.3.1 Processor Synthetic State on Asynchronous Enclave Exit
Table 38-1 shows the synthetic state loaded on AEX. The values shown are the lower 32 bits when the processor is 
in 32 bit mode and 64 bits when the processor is in 64 bit mode.

38.3.2 Synthetic State for Extended Features
When CR4.OSXSAVE = 1, extended features (those controlled by XCR0[63:2]) are set to their respective INIT 
states when this corresponding bit of SECS.XFRM is set. The INIT state is the state that would be loaded by the 
XRSTOR instruction had the instruction mask and the XSTATE_BV field of the XSAVE header each contained the 
value XFRM. (When the AEX occurs in 32-bit mode, those features that do not exist in 32-bit mode are unchanged.)

Table 38-1.  GPR, x87 Synthetic States on Asynchronous Enclave Exit
Register Value

RAX 3 (ENCLU[3] is ERESUME).

RBX Pointer to TCS of interrupted enclave thread.

RCX AEP of interrupted enclave thread.

RDX, RSI, RDI 0.

RSP Restored from SSA.uRSP.

RBP Restored from SSA.uRBP.

R8-R15 0 in 64-bit mode; unchanged in 32-bit mode.

RIP AEP of interrupted enclave thread.

RFLAGS CF, PF, AF, ZF, SF, OF, RF bits are cleared. All other bits are left unchanged.

x87/SSE State Unless otherwise listed here, all x87 and SSE state are set to the INIT state. The INIT state is the state 
that would be loaded by the XRSTOR instruction with bits 1:0 both set in the requested feature bitmask 
(RFBM), and both clear in XSTATE_BV the XSAVE header.

FCW On #MF exception: set to 037EH. On all other exits: set to 037FH.

FSW On #MF exception: set to 8081H. On all other exits: set to 0H.

MXCSR On #XM exception: set to 1F01H. On all other exits: set to 1FB0H.

CR2 If the event that caused the AEX is a #PF, and the #PF does not directly cause a VM exit, then the low 
12 bits are cleared. 
If the #PF leads directly to a VM exit, CR2 is not updated (usual IA behavior).
Note: The low 12 bits are not cleared if a #PF is encountered during the delivery of the EEE that caused 
the AEX. This is because the #PF was not the EEE. 

FS, GS Restored to values as of most recent EENTER/ERESUME.
Vol. 3D 38-3



ENCLAVE EXITING EVENTS
38.3.3 Synthetic State for MISC Features
State represented by SECS.MISCSELECT might also be overridden by synthetic state after it has been saved into 
the SSA. State represented by MISCSELECT[0] is not overridden but if the exiting event is a page fault then lower 
12 bits of CR2 are cleared. 

38.4 AEX FLOW
On Enclave Exiting Events (interrupts, exceptions, VM exits or SMIs), the processor state is securely saved inside 
the enclave, a synthetic state is loaded and the enclave is exited. The EEE then proceeds in the usual exit-defined 
fashion. The following sections describes the details of an AEX:

1. The exact processor state saved into the current SSA frame depends on whether the enclave is a 32-bit or a 64-
bit enclave. In 32-bit mode (IA32_EFER.LMA = 0 || CS.L = 0), the low 32 bits of the legacy registers (EAX, EBX, 
ECX, EDX, ESP, EBP, ESI, EDI, EIP, and EFLAGS) are stored. The upper 32 bits of the legacy registers and the 
64-bit registers (R8 … R15) are not stored.

In 64-bit mode (IA32_EFER.LMA = 1 && CS.L = 1), all 64 bits of the general processor registers (RAX, RBX,
RCX, RDX, RSP, RBP, RSI, RDI, R8 … R15, RIP, and RFLAGS) are stored.
The state of those extended features specified by SECS.ATTRIBUTES.XFRM are stored into the XSAVE area of
the current SSA frame. The layout of the x87 and XMM portions (the 1st 512 bytes) depends on the current
values of IA32_EFER.LMA and CS.L:
If IA32_EFER.LMA = 0 || CS.L = 0, the same format (32-bit) that XSAVE/FXSAVE uses with these values.
If IA32_EFER.LMA = 1 && CS.L = 1, the same format (64-bit) that XSAVE/FXSAVE uses with these values
when REX.W = 1. 
The cause of the AEX is saved in the EXITINFO field. See Table 36-10 for details and values of the various
fields.
The state of those miscellaneous features (see Section 36.7.2) specified by SECS.MISCSELECT are stored into 
the MISC area of the current SSA frame.

If CET was enabled in the enclave, then the CET state of the enclave is saved in the CET state save area. If
shadow stacks were enabled in the enclave, then the SSP is also saved into the TCS.PREVSSP field.

2. Synthetic state is created for a number of processor registers to present an opaque view of the enclave state. 
Table 38-1 shows the values for GPRs, x87, SSE, FS, GS, Debug, and performance monitoring on AEX. The 
synthetic state for other extended features (those controlled by XCR0[62:2]) is set to their respective INIT 
states when their corresponding bit of SECS.ATTRIBUTES.XFRM is set. The INIT state is that state as defined by 
the behavior of the XRSTOR instruction when HEADER.XSTATE_BV[n] is 0. Synthetic state of those miscella-
neous features specified by SECS.MISCSELECT depends on the miscellaneous feature. There is no synthetic 
state required for the miscellaneous state controlled by SECS.MISCSELECT[0]. 

3. Any code and data breakpoints that were suppressed at the time of enclave entry are unsuppressed when 
exiting the enclave.

4. RFLAGS.TF is set to the value that it had at the time of the most recent enclave entry (except for the situation 
that the entry was opt-in for debug; see Section 41.2). In the SSA, RFLAGS.TF is set to 0. 

5. RFLAGS.RF is set to 0 in the synthetic state. In the SSA, the value saved is the same as what would have been 
saved on stack in the non-SGX case (architectural value of RF). Thus, AEXs due to interrupts, traps, and code 
breakpoints save RF unmodified into SSA, while AEXs due to other faults save RF as 1 in the SSA. 

If the event causing AEX happened on intermediate iteration of a REP-prefixed instruction, then RF=1 is
saved on SSA, irrespective of its priority.

6. Any performance monitoring activity (including PEBS) or profiling activity (LBR, Tracing using Intel PT) on the 
exiting thread that was suppressed due to the enclave entry on that thread is unsuppressed. Any counting that 
had been demoted from AnyThread counting to MyThread counting (on one logical processor) is promoted back 
to AnyThread counting.

7. The CET state of the enclosing application is restored to the state at the time of the most recent enclave entry, 
and if CET indirect branch tracking was enabled then the indirect branch tracker is unsuppressed and moved to 
the WAIT_FOR_ENDBRANCH state.
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38.4.1 AEX Operational Detail

Temp Variables in AEX Operational Flow

The pseudo code in this section describes the internal operations that are executed when an AEX occurs in enclave 
mode. These operations occur just before the normal interrupt or exception processing occurs.

(* Save RIP for later use *)
TMP_RIP = Linear Address of Resume RIP
(* Is the processor in 64-bit mode? *)
TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Save all registers, When saving EFLAGS, the TF bit is set to 0 and
the RF bit is set to what would have been saved on stack in the non-SGX case *)

 IF (TMP_MODE64 = 0)
THEN

Save EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI, EFLAGS, EIP into the current SSA frame using 
CR_GPR_PA; (* see Table 39-5 for list of CREGs used to describe internal operation within Intel SGX *)

SSA.RFLAGS.TF := 0;
ELSE    (* TMP_MODE64 = 1 *)
 Save RAX, RBX, RCX, RDX, RSP, RBP, RSI, RDI, R8-R15, RFLAGS, RIP into the current SSA frame using 

CR_GPR_PA;
SSA.RFLAGS.TF := 0;

FI;
Save FS and GS BASE into SSA using CR_GPR_PA;

(* store XSAVE state into the current SSA frame's XSAVE area using the physical addresses 
that were determined and cached at enclave entry time with CR_XSAVE_PAGE_i. *)

For each XSAVE state i defined by (SECS.ATTRIBUTES.XFRM[i] = 1, destination address cached in 
CR_XSAVE_PAGE_i)
   SSA.XSAVE.i := XSAVE_STATE_i;

(* Clear bytes 8 to 23 of XSAVE_HEADER, i.e., the next 16 bytes after XHEADER_BV *)

CR_XSAVE_PAGE_0.XHEADER_BV[191:64] := 0;

(* Clear bits in XHEADER_BV[63:0] that are not enabled in ATTRIBUTES.XFRM *)

CR_XSAVE_PAGE_0.XHEADER_BV[63:0] := 
CR_XSAVE_PAGE_0.XHEADER_BV[63:0] & SECS(CR_ACTIVE_SECS).ATTRIBUTES.XFRM;
Apply synthetic state to GPRs, RFLAGS, extended features, etc.

(* Restore the RSP and RBP from the current SSA frame's GPR area using the physical address 
that was determined and cached at enclave entry time with CR_GPR_PA. *)

RSP := CR_GPR_PA.URSP;
RBP := CR_GPR_PA.URBP;

Name Type Size (bits) Description

TMP_RIP Effective Address 32/64 Address of instruction at which to resume execution on ERESUME.

TMP_MODE64 binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1)).

TMP_BRANCH_RECORD LBR Record 2x64 From/To address to be pushed onto LBR stack.
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(* Restore the FS and GS *)
FS.selector := CR_SAVE_FS.selector;
FS.base := CR_SAVE_FS.base;
FS.limit := CR_SAVE_FS.limit;
FS.access_rights := CR_SAVE_FS.access_rights;
GS.selector := CR_SAVE_GS.selector;
GS.base := CR_SAVE_GS.base;
GS.limit := CR_SAVE_GS.limit;
GS.access_rights := CR_SAVE_GS.access_rights;

(* Examine exception code and update enclave internal states*)
exception_code := Exception or interrupt vector;

(* Indicate the exit reason in SSA *)
IF (exception_code = (#DE OR #DB OR #BP OR #BR OR #UD OR #MF OR #AC OR #XM ))

THEN
CR_GPR_PA.EXITINFO.VECTOR := exception_code;
IF (exception_code = #BP)

THEN CR_GPR_PA.EXITINFO.EXIT_TYPE := 6;
ELSE CR_GPR_PA.EXITINFO.EXIT_TYPE := 3;

FI;
CR_GPR_PA.EXITINFO.VALID := 1;

ELSE IF (SECS.MISCSELECT[0] is set (* Check SECS.MISCSELECT using CR_ACTIVE_SECS *)
 AND (exception_code is #GP OR (exception_code is #PF AND PFEC.U/S = 1)))

THEN 
CR_GPR_PA.EXITINFO.VECTOR := exception_code; 
CR_GPR_PA.EXITINFO.EXIT_TYPE := 3; 
IF (exception_code is #PF) 

THEN 
SSA.MISC.EXINFO. MADDR := CR2; 
SSA.MISC.EXINFO.ERRCD := PFEC; (* Page-Fault Exception Error Code *)
SSA.MISC.EXINFO.RESERVED := 0; 

ELSE
SSA.MISC.EXINFO. MADDR := 0; 
SSA.MISC.EXINFO.ERRCD := GPEC; (* General Protection Exception Error Code *)
SSA.MISC.EXINFO.RESERVED := 0; 

FI; 
CR_GPR_PA.EXITINFO.VALID := 1; 

ELSE IF (SECS.MISCSELECT[1] is set AND exception_code is #CP) (* Check SECS.MISCSELECT using 
 CR_ACTIVE_SECS *)

THEN
CR_GPR_PA.EXITINFO.VECTOR := exception_code;
CR_GPR_PA.EXITINFO.EXIT_TYPE := 3;
CR_GPR_PA.EXITINFO.VALID := 1;
SSA.MISC.EXINFO. MADDR := 0;
SSA.MISC.EXINFO.ERRCD := CPEC; (* Control Protection Exception Error Code *)
SSA.MISC.EXINFO.RESERVED := 0;

ELSE
SSA.MISC.EXINFO.MADDR := 0;
SSA.MISC.EXINFO.ERRCD := 0;
SSA.MISC.EXINFO.RESERVED := 0;
CR_GPR_PA.EXITINFO.VECTOR := 0;
CR_GPR_PA.EXITINFO.EXIT_TYPE := 0;
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CR_GPR_PA.EXITINFO.VALID := 0;
FI;

(* Execution will resume at the AEP *)
RIP := CR_TCS_PA.AEP;

(* Set EAX to the ERESUME leaf index *)
EAX := 3;

(* Put the TCS LA into RBX for later use by ERESUME *)
RBX := CR_TCS_LA;

(* Put the AEP into RCX for later use by ERESUME *)
RCX := CR_TCS_PA.AEP;

(* Increment the SSA frame # *)
CR_TCS_PA.CSSA := CR_TCS_PA.CSSA + 1;

(* Restore XCR0 if needed *)
IF (CR4.OSXSAVE = 1)

THEN XCR0 := CR_SAVE_XCR0; FI;

Un-suppress all code breakpoints that are outside ELRANGE

IF (CPUID.(EAX=12H, ECX=1):EAX[6]= 1)
THEN

IF (CR4.CET == 1 AND IA32_U_CET.SH_STK_EN == 1) 
THEN 

CR_CET_SAVE_AREA_PA.SSP := SSP; 
CR_TCS_PA.PREVSSP := SSP; 

FI;
IF (CR4.CET == 1 AND IA32_U_CET.ENDBR_EN == 1) 

THEN 
CR_CET_SAVE_AREA_PA.TRACKER := IA32_U_CET.TRACKER;
CR_CET_SAVE_AREA_PA.SUPPRESS := IA32_U_CET.SUPPRESS; 

FI;
FI;
IF ((CPUID.(EAX=7H, ECX=0):EDX[CET_IBT] = 1) OR (CPUID.(EAX=7H, ECX=0):ECX[CET_SS] = 1)

THEN
(* restore enclosing applications CET state *) 
IA32_U_CET := CR_SAVE_IA32_U_CET;

IF (CPUID.(EAX=7, ECX=0):ECX[CET_SS])
SSP := CR_SAVE_SSP; FI;

(* If indirect branch tracking enabled for enclosing application *) 
(* then move the tracker to wait_for_endbranch *) 
IF (CR4.CET == 1 AND IA32_U_CET.ENDBR_EN == 1) 

THEN 
IA32_U_CET.TRACKER := WAIT_FOR_ENDBRANCH; 
IA32_U_CET.SUPPRESS := 0; 

FI;
FI;
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(* Update the thread context to show not in enclave mode *)
CR_ENCLAVE_MODE := 0;

(* Assure consistent translations. *)
Flush linear context including TLBs and paging-structure caches

IF (CR_DBGOPTIN = 0)
THEN

Un-suppress all breakpoints that overlap ELRANGE
(* Clear suppressed breakpoint matches *)
Restore suppressed breakpoint matches
(* Restore TF *)
RFLAGS.TF := CR_SAVE_TF;
Un-suppress monitor trap flag;
Un-suppress branch recording facilities;
Un-suppress all suppressed performance monitoring activity;
Promote any sibling-thread counters that were demoted from AnyThread to MyThread during enclave 

entry back to AnyThread; 
FI;

IF the “monitor trap flag” VM-execution control is 1
THEN Pend MTF VM Exit at the end of exit; FI;

(* Clear low 12 bits of CR2 on #PF *)
IF (Exception code is #PF)

THEN CR2 := CR2 & ~0xFFF; FI;

(* end_of_flow *)
(* Execution continues with normal event processing. *)
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CHAPTER 39
INTEL® SGX INSTRUCTION REFERENCES

This chapter describes the supervisor and user level instructions provided by Intel® Software Guard Extensions 
(Intel® SGX). In general, various functionality is encoded as leaf functions within the ENCLS (supervisor), ENCLU 
(user), and the ENCLV (virtualization operation) instruction mnemonics. Different leaf functions are encoded by 
specifying an input value in the EAX register of the respective instruction mnemonic.

39.1 INTEL® SGX INSTRUCTION SYNTAX AND OPERATION
ENCLS, ENCLU, and ENCLV instruction mnemonics for all leaf functions are covered in this section.
For all instructions, the value of CS.D is ignored; addresses and operands are 64 bits in 64-bit mode and are other-
wise 32 bits. Aside from EAX specifying the leaf number as input, each instruction leaf may require all or some 
subset of the RBX/RCX/RDX as input parameters. Some leaf functions may return data or status information in one 
or more of the general purpose registers.

39.1.1 ENCLS Register Usage Summary
Table 39-1 summarizes the implicit register usage of supervisor mode enclave instructions.

Table 39-1.  Register Usage of Privileged Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

ECREATE 00H (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EADD 01H (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EINIT 02H (In) SIGSTRUCT (In, EA) SECS (In, EA) EINITTOKEN (In, EA)

EREMOVE 03H (In) EPCPAGE (In, EA)

EDBGRD 04H (In) Result Data (Out) EPCPAGE (In, EA)

EDBGWR 05H (In) Source Data (In) EPCPAGE (In, EA)

EEXTEND 06H (In) SECS (In, EA) EPCPAGE (In, EA)

ELDB 07H (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

ELDU 08H (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

EBLOCK 09H (In) EPCPAGE (In, EA)

EPA 0AH (In) PT_VA (In) EPCPAGE (In, EA)

EWB 0BH (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

ETRACK 0CH (In) EPCPAGE (In, EA)

EAUG 0DH (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EMODPR 0EH (In) SECINFO (In, EA) EPCPAGE (In, EA)

EMODT 0FH (In) SECINFO (In, EA) EPCPAGE (In, EA)

ERDINFO 010H (In) RDINFO (In, EA*) EPCPAGE (In, EA)

ETRACKC 011H (In) EPCPAGE (In, EA)

ELDBC 012H (In) PAGEINFO (In, EA*) EPCPAGE (In, EA) VERSION (In, EA)

ELDUC 013H (In) PAGEINFO (In, EA*) EPCPAGE (In, EA) VERSION (In, EA)

EA: Effective Address
Vol. 3D 39-1



INTEL® SGX INSTRUCTION REFERENCES
39.1.2 ENCLU Register Usage Summary
Table 39-2 summarizes the implicit register usage of user mode enclave instructions.

39.1.3 ENCLV Register Usage Summary
Table 39-3 summarizes the implicit register usage of virtualization operation enclave instructions.

39.1.4 Information and Error Codes
Information and error codes are reported by various instruction leaf functions to show an abnormal termination of 
the instruction or provide information which may be useful to the developer. Table 39-4 shows the various codes 
and the instruction which generated the code. Details of the meaning of the code is provided in the individual 
instruction.

Table 39-2.  Register Usage of Unprivileged Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

EREPORT 00H (In) TARGETINFO (In, EA) REPORTDATA (In, EA) OUTPUTDATA (In, EA)

EGETKEY 01H (In) KEYREQUEST (In, EA) KEY (In, EA)

EENTER 02H (In) TCS (In, EA) AEP (In, EA)

RBX.CSSA (Out) Return (Out, EA)

ERESUME 03H (In) TCS (In, EA) AEP (In, EA)

EEXIT 04H (In) Target (In, EA) Current AEP (Out)

EACCEPT 05H (In) SECINFO (In, EA) EPCPAGE (In, EA)

EMODPE 06H (In) SECINFO (In, EA) EPCPAGE (In, EA)

EACCEPTCOPY 07H (In) SECINFO (In, EA) EPCPAGE (In, EA) EPCPAGE (In, EA)

EDECCSSA 09H (In)

EA: Effective Address

Table 39-3.  Register Usage of Virtualization Operation Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

EDECVIRTCHILD 00H (In) EPCPAGE (In, EA) SECS (In, EA)

EINCVIRTCHILD 01H (In) EPCPAGE (In, EA) SECS (In, EA)

ESETCONTEXT 02H (In) EPCPAGE (In, EA) Context Value (In, EA)

EA: Effective Address

Table 39-4.  Error or Information Codes for Intel® SGX Instructions
Name Value Returned By

No Error 0

SGX_INVALID_SIG_STRUCT 1 EINIT

SGX_INVALID_ATTRIBUTE 2 EINIT, EGETKEY

SGX_BLKSTATE 3 EBLOCK

SGX_INVALID_MEASUREMENT 4 EINIT

SGX_NOTBLOCKABLE 5 EBLOCK

SGX_PG_INVLD 6 EBLOCK, ERDINFO, ETRACKC
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39.1.5 Internal CREGs
The CREGs as shown in Table 5-4 are hardware specific registers used in this document to indicate values kept by 
the processor. These values are used while executing in enclave mode or while executing an Intel SGX instruction. 
These registers are not software visible and are implementation specific. The values in Table 39-5 appear at various 
places in the pseudo-code of this document. They are used to enhance understanding of the operations.

SGX_EPC_PAGE_CONFLICT 7 EBLOCK, EMODPR, EMODT, ERDINFO , EDECVIRTCHILD, EINCVIRTCHILD, ELDBC, 
ELDUC, ESETCONTEXT, ETRACKC

SGX_INVALID_SIGNATURE 8 EINIT

SGX_MAC_COMPARE_FAIL 9 ELDB, ELDU, ELDBC, ELDUC

SGX_PAGE_NOT_BLOCKED 10 EWB

SGX_NOT_TRACKED 11 EWB, EACCEPT

SGX_VA_SLOT_OCCUPIED 12 EWB

SGX_CHILD_PRESENT 13 EWB, EREMOVE

SGX_ENCLAVE_ACT 14 EREMOVE

SGX_ENTRYEPOCH_LOCKED 15 EBLOCK

SGX_INVALID_EINITTOKEN 16 EINIT

SGX_PREV_TRK_INCMPL 17 ETRACK, ETRACKC

SGX_PG_IS_SECS 18 EBLOCK

SGX_PAGE_ATTRIBUTES_MISMATCH 19 EACCEPT, EACCEPTCOPY

SGX_PAGE_NOT_MODIFIABLE 20 EMODPR, EMODT

SGX_PAGE_NOT_DEBUGGABLE 21 EDBGRD, EDBGWR

SGX_INVALID_COUNTER 25 EDECVIRTCHILD

SGX_PG_NONEPC 26 ERDINFO

SGX_TRACK_NOT_REQUIRED 27 ETRACKC

SGX_INVALID_CPUSVN 32 EINIT, EGETKEY

SGX_INVALID_ISVSVN 64 EGETKEY

SGX_UNMASKED_EVENT 128 EINIT

SGX_INVALID_KEYNAME 256 EGETKEY

Table 39-5.  List of Internal CREG 
Name Size (Bits) Scope

CR_ENCLAVE_MODE 1 LP

CR_DBGOPTIN 1 LP

CR_TCS_LA 64 LP

CR_TCS_PA 64 LP

CR_ACTIVE_SECS 64 LP

CR_ELRANGE 128 LP

CR_SAVE_TF 1 LP

CR_SAVE_FS 64 LP

CR_GPR_PA 64 LP

CR_XSAVE_PAGE_n 64 LP

Table 39-4.  Error or Information Codes for Intel® SGX Instructions
Name Value Returned By
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39.1.6 Concurrent Operation Restrictions
Under certain conditions, Intel SGX disallows certain leaf functions from operating concurrently. Listed below are 
some examples of concurrency that are not allowed. 
• For example, Intel SGX disallows the following leafs to concurrently operate on the same EPC page.

— ECREATE, EADD, and EREMOVE are not allowed to operate on the same EPC page concurrently with 
themselves. 

— EADD, EEXTEND, and EINIT leaves are not allowed to operate on the same SECS concurrently.
• Intel SGX disallows the EREMOVE leaf from removing pages from an enclave that is in use.
• Intel SGX disallows entry (EENTER and ERESUME) to an enclave while a page from that enclave is being 

removed. 
When disallowed operation is detected, a leaf function may do one of the following:
• Return an SGX_EPC_PAGE_CONFLICT error code in RAX.
• Cause a #GP(0) exception.
To prevent such exceptions, software must serialize leaf functions or prevent these leaf functions from accessing 
the same EPC page. 

39.1.6.1  Concurrency Tables of Intel® SGX Instructions
The tables below detail the concurrent operation restrictions of all SGX leaf functions. For each leaf function, the 
table has a separate line for each of the EPC pages the leaf function accesses.
For each such EPC page, the base concurrency requirements are detailed as follows:
• Exclusive Access means that no other leaf function that requires either shared or exclusive access to the 

same EPC page may be executed concurrently. For example, EADD requires an exclusive access to the target 
page it accesses.

CR_SAVE_DR7 64 LP

CR_SAVE_PERF_GLOBAL_CTRL 64 LP

CR_SAVE_DEBUGCTL 64 LP

CR_SAVE_PEBS_ENABLE 64 LP

CR_CPUSVN 128 PACKAGE

CR_SGXOWNEREPOCH 128 PACKAGE

CR_SAVE_XCR0 64 LP

CR_SGX_ATTRIBUTES_MASK 128 LP

CR_PAGING_VERSION 64 PACKAGE

CR_VERSION_THRESHOLD 64 PACKAGE

CR_NEXT_EID 64 PACKAGE

CR_BASE_PK 128 PACKAGE

CR_SEAL_FUSES 128 PACKAGE

CR_CET_SAVE_AREA_PA 64 LP

CR_ENCLAVE_SS_TOKEN_PA 64 LP

CR_SAVE_IA32_U_CET 64 LP

CR_SAVE_SSP 64 LP

Table 39-5.  List of Internal CREG 
Name Size (Bits) Scope
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• Shared Access means that no other leaf function that requires an exclusive access to the same EPC page may 
be executed concurrently. Other leaf functions that require shared access may run concurrently. For example, 
EADD requires a shared access to the SECS page it accesses.

• Concurrent Access means that any other leaf function that requires any access to the same EPC page may be 
executed concurrently. For example, EGETKEY has no concurrency requirements for the KEYREQUEST page.

In addition to the base concurrency requirements, additional concurrency requirements are listed, which apply 
only to specific sets of leaf functions. For example, there are additional requirements that apply for EADD, EXTEND, 
and EINIT. EADD and EEXTEND can't execute concurrently on the same SECS page.
The tables also detail the leaf function's behavior when a conflict happens, i.e., a concurrency requirement is not 
met. In this case, the leaf function may return an SGX_EPC_PAGE_CONFLICT error code in RAX, or it may cause an 
exception. In addition, the tables detail those conflicts where a VM Exit may be triggered, and list the Exit Qualifi-
cation code that is provided in such cases.

Table 39-6.  Base Concurrency Restrictions

Leaf Parameter 
Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit 

Qualification

EACCEPT Target [DS:RCX] Shared #GP

SECINFO [DS:RBX] Concurrent

EACCEPTCOPY Target [DS:RCX] Concurrent

Source [DS:RDX] Concurrent

SECINFO [DS:RBX] Concurrent

EADD Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.
SECS

Shared #GP

EAUG Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.
SECS

Shared #GP

EBLOCK Target [DS:RCX] Shared SGX_EPC_PAGE
_CONFLICT

ECREATE SECS [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

EDBGRD Target [DS:RCX] Shared #GP

EDBGWR Target [DS:RCX] Shared #GP

EDECVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE
_CONFLICT

SECS [DS:RCX] Concurrent

EENTERTCS SECS [DS:RBX] Shared #GP

EEXIT Concurrent

EEXTEND Target [DS:RCX] Shared #GP

SECS [DS:RBX] Concurrent

EGETKEY KEYREQUEST [DS:RBX] Concurrent

OUTPUTDATA [DS:RCX] Concurrent

EINCVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE
_CONFLICT

SECS [DS:RCX] Concurrent

EINIT SECS [DS:RCX] Shared #GP
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ELDB/ELDU Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

SECS [DS:RBX]PAGEINFO.
SECS

Shared #GP

EDLBC/ELDUC Target [DS:RCX] Exclusive SGX_EPC_PAGE
_CONFLICT

EPC_PAGE_CONFLICT_ERROR

VA [DS:RDX] Shared SGX_EPC_PAGE
_CONFLICT

SECS [DS:RBX]PAGEINFO.
SECS

Shared SGX_EPC_PAGE
_CONFLICT

EMODPE Target [DS:RCX] Concurrent

SECINFO [DS:RBX] Concurrent

EMODPR Target [DS:RCX] Shared #GP

EMODT Target [DS:RCX] Exclusive SGX_EPC_PAGE
_CONFLICT

EPC_PAGE_CONFLICT_ERROR

EPA VA [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

ERDINFO Target [DS:RCX] Shared SGX_EPC_PAGE
_CONFLICT

EREMOVE Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

EREPORT TARGETINFO [DS:RBX] Concurrent

REPORTDATA [DS:RCX] Concurrent

OUTPUTDATA [DS:RDX] Concurrent

ERESUME TCS [DS:RBX] Shared #GP

ESETCONTEXT SECS [DS:RCX] Shared SGX_EPC_PAGE
_CONFLICT

ETRACK SECS [DS:RCX] Shared #GP

ETRACKC Target [DS:RCX] Shared SGX_EPC_PAGE
_CONFLICT

SECS Implicit Concurrent

EWB Source [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

Table 39-7.  Additional Concurrency Restrictions

Leaf Parameter 

Additional Concurrency Restrictions

vs. EACCEPT, 
EACCEPTCOPY, 

EMODPE, EMODPR, 
EMODT

vs. EADD, EEXTEND, 
EINIT

vs. ETRACK, ETRACKC

Access
On 

Conflict
Access

On 
Conflict

Access
On 

Conflict

EACCEPT Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

Table 39-6.  Base Concurrency Restrictions

Leaf Parameter 
Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit 

Qualification
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EACCEPTCOPY Target [DS:RCX] Exclusive #GP Concurrent Concurrent

Source [DS:RDX] Concurrent Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

EADD Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Exclusive #GP Concurrent

EAUG Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Concurrent Concurrent

EBLOCK Target [DS:RCX] Concurrent Concurrent Concurrent

ECREATE SECS [DS:RCX] Concurrent Concurrent Concurrent

EDBGRD Target [DS:RCX] Concurrent Concurrent Concurrent

EDBGWR Target [DS:RCX] Concurrent Concurrent Concurrent

EDECVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

EENTERTCS SECS [DS:RBX] Concurrent Concurrent Concurrent

EEXIT Concurrent Concurrent Concurrent

EEXTEND Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX] Concurrent Exclusive #GP Concurrent

EGETKEY KEYREQUEST [DS:RBX] Concurrent Concurrent Concurrent

OUTPUTDATA [DS:RCX] Concurrent Concurrent Concurrent

EINCVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

EINIT SECS [DS:RCX] Concurrent Exclusive #GP Concurrent

ELDB/ELDU Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Concurrent Concurrent

EDLBC/ELDUC Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Concurrent Concurrent

EMODPE Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

EMODPR Target [DS:RCX] Exclusive SGX_EPC_
PAGE_CON
FLICT

Concurrent Concurrent

Table 39-7.  Additional Concurrency Restrictions

Leaf Parameter 

Additional Concurrency Restrictions

vs. EACCEPT, 
EACCEPTCOPY, 

EMODPE, EMODPR, 
EMODT

vs. EADD, EEXTEND, 
EINIT

vs. ETRACK, ETRACKC

Access
On 

Conflict
Access

On 
Conflict

Access
On 

Conflict
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39.2 INTEL® SGX INSTRUCTION REFERENCE

EMODT Target [DS:RCX] Exclusive SGX_EPC_
PAGE_CON
FLICT

Concurrent Concurrent

EPA VA [DS:RCX] Concurrent Concurrent Concurrent

ERDINFO Target [DS:RCX] Concurrent Concurrent Concurrent

EREMOVE Target [DS:RCX] Concurrent Concurrent Concurrent

EREPORT TARGETINFO [DS:RBX] Concurrent Concurrent Concurrent

REPORTDATA [DS:RCX] Concurrent Concurrent Concurrent

OUTPUTDATA [DS:RDX] Concurrent Concurrent Concurrent

ERESUME TCS [DS:RBX] Concurrent Concurrent Concurrent

ESETCONTEXT SECS [DS:RCX] Concurrent Concurrent Concurrent

ETRACK SECS [DS:RCX] Concurrent Concurrent Exclusive SGX_EPC_
PAGE_CO
NFLICT1

ETRACKC Target [DS:RCX] Concurrent Concurrent Concurrent

SECS Implicit Concurrent Concurrent Exclusive SGX_EPC_
PAGE_CO
NFLICT1

EWB Source [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

NOTES:

1. SGX_CONFLICT VM Exit Qualification =TRACKING_RESOURCE_CONFLICT.

Table 39-7.  Additional Concurrency Restrictions

Leaf Parameter 

Additional Concurrency Restrictions

vs. EACCEPT, 
EACCEPTCOPY, 

EMODPE, EMODPR, 
EMODT

vs. EADD, EEXTEND, 
EINIT

vs. ETRACK, ETRACKC

Access
On 

Conflict
Access

On 
Conflict

Access
On 

Conflict
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ENCLS—Execute an Enclave System Function of Specified Leaf Number 

Instruction Operand Encoding

Description

The ENCLS instruction invokes the specified privileged Intel SGX leaf function for managing and debugging 
enclaves. Software specifies the leaf function by setting the appropriate value in the register EAX as input. The 
registers RBX, RCX, and RDX have leaf-specific purpose, and may act as input, as output, or may be unused. In 64-
bit mode, the instruction ignores upper 32 bits of the RAX register.
The ENCLS instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, or if it is 
executed in system-management mode (SMM). Additionally, any attempt to execute the instruction when CPL > 0 
results in #UD. The instruction produces a general-protection exception (#GP) if CR0.PG = 0 or if an attempt is 
made to invoke an undefined leaf function.
In VMX non-root operation, execution of ENCLS may cause a VM exit if the “enable ENCLS exiting” VM-execution 
control is 1. In this case, execution of individual leaf functions of ENCLS is governed by the ENCLS-exiting bitmap 
field in the VMCS. Each bit in that field corresponds to the index of an ENCLS leaf function (as provided in EAX).
Software in VMX root operation can thus intercept the invocation of various ENCLS leaf functions in VMX non-root 
operation by setting the “enable ENCLS exiting” VM-execution control and setting the corresponding bits in the 
ENCLS-exiting bitmap.
Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 || CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA = 1 || CS.L = 1). CS.D value has no impact on address calculation. The DS segment is 
used to create linear addresses.
Segment override prefixes and address-size override prefixes are ignored, and is the REX prefix in 64-bit mode.

Operation

IF TSX_ACTIVE
THEN GOTO TSX_ABORT_PROCESSING; FI;

IF CR0.PE = 0 or RFLAGS.VM = 1 or in SMM or CPUID.SGX_LEAF.0:EAX.SE1 = 0
THEN #UD; FI;

IF (CPL > 0) 
THEN #UD; FI;

IF in VMX non-root operation and the “enable ENCLS exiting“ VM-execution control is 1
THEN 

IF EAX < 63 and ENCLS_exiting_bitmap[EAX] = 1 or EAX> 62 and ENCLS_exiting_bitmap[63] = 1
THEN VM exit;

FI;
FI;
IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0

THEN #GP(0); FI;

IF (EAX is an invalid leaf number)
THEN #GP(0); FI;

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 01 CF 
ENCLS

ZO V/V NA This instruction is used to execute privileged Intel SGX leaf func-
tions that are used for managing and debugging the enclaves.

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

ZO NA NA NA See Section 39.3
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IF CR0.PG = 0
THEN #GP(0); FI;

(* DS must not be an expanded down segment *)
IF not in 64-bit mode and DS.Type is expand-down data

THEN #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions

Protected Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If data segment expand down.
If CR0.PG=0.

Real-Address Mode Exceptions

#UD ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
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ENCLU—Execute an Enclave User Function of Specified Leaf Number 

Instruction Operand Encoding

Description

The ENCLU instruction invokes the specified non-privileged Intel SGX leaf functions. Software specifies the leaf 
function by setting the appropriate value in the register EAX as input. The registers RBX, RCX, and RDX have leaf-
specific purpose, and may act as input, as output, or may be unused. In 64-bit mode, the instruction ignores upper 
32 bits of the RAX register.
The ENCLU instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, or if it is 
executed in system-management mode (SMM). Additionally, any attempt to execute this instruction when CPL < 3 
results in #UD. The instruction produces a general-protection exception (#GP) if either CR0.PG or CR0.NE is 0, or 
if an attempt is made to invoke an undefined leaf function. The ENCLU instruction produces a device not available 
exception (#NM) if CR0.TS = 1.
Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 or CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA = 1 and CS.L = 1). CS.D value has no impact on address calculation. The DS segment 
is used to create linear addresses.
Segment override prefixes and address-size override prefixes are ignored, as is the REX prefix in 64-bit mode.

Operation

IN_64BIT_MODE := 0;
IF TSX_ACTIVE

THEN GOTO TSX_ABORT_PROCESSING; FI;

(* If enclosing app has CET indirect branch tracking enabled then if it is not ERESUME leaf cause a #CP fault *) 
(* If the ERESUME is not successful it will leave tracker in WAIT_FOR_ENDBRANCH *)
TRACKER = (CPL == 3) ? IA32_U_CET.TRACKER : IA32_S_CET.TRACKER 
IF EndbranchEnabledAndNotSuppressed(CPL) and TRACKER = WAIT_FOR_ENDBRANCH and 
 (EAX != ERESUME or CR0.TS or (in SMM) or (CPUID.SGX_LEAF.0:EAX.SE1 = 0) or (CPL < 3)) 

THEN
Handle CET State machine violation (* see Section 18.3.6, “Legacy Compatibility Treatment,” in the

 Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. *)
FI;

IF CR0.PE= 0 or RFLAGS.VM = 1 or in SMM or CPUID.SGX_LEAF.0:EAX.SE1 = 0
THEN #UD; FI;

IF CR0.TS = 1
THEN #NM; FI;

IF CPL < 3
THEN #UD; FI;

IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0
THEN #GP(0); FI;

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 01 D7 
ENCLU

ZO V/V NA This instruction is used to execute non-privileged Intel SGX leaf 
functions.

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

ZO NA NA NA See Section 39.4
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IF EAX is invalid leaf number
THEN #GP(0); FI;

IF CR0.PG = 0 or CR0.NE = 0
THEN #GP(0); FI;

IN_64BIT_MODE := IA32_EFER.LMA AND CS.L ? 1 : 0;
(* Check not in 16-bit mode and DS is not a 16-bit segment *)
IF not in 64-bit mode and CS.D = 0 

THEN #GP(0); FI;

IF CR_ENCLAVE_MODE = 1 and (EAX = 2 or EAX = 3) (* EENTER or ERESUME *)
THEN #GP(0); FI;

IF CR_ENCLAVE_MODE = 0 and (EAX = 0 or EAX = 1 or EAX = 4 or EAX = 5 or EAX = 6 or EAX = 7 or EAX = 9)
(* EREPORT, EGETKEY, EEXIT, EACCEPT, EMODPE, EACCEPTCOPY, or EDECCSSA *)

THEN #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions

Protected Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 3.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.
If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE 
and ENCLAVE_MODE = 0.
If operating in 16-bit mode.
If data segment is in 16-bit mode.
If CR0.PG = 0 or CR0.NE= 0.

#NM If CR0.TS = 1.

Real-Address Mode Exceptions

#UD ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.
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64-Bit Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 3.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.
If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE 
and ENCLAVE_MODE = 0.
If CR0.NE= 0.

#NM If CR0.TS = 1.
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ENCLV—Execute an Enclave VMM Function of Specified Leaf Number 

Instruction Operand Encoding

Description

The ENCLV instruction invokes the virtualization SGX leaf functions for managing enclaves in a virtualized environ-
ment. Software specifies the leaf function by setting the appropriate value in the register EAX as input. The regis-
ters RBX, RCX, and RDX have leaf-specific purpose, and may act as input, as output, or may be unused. In non 64-
bit mode, the instruction ignores upper 32 bits of the RAX register.
The ENCLV instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, if it is 
executed in system-management mode (SMM), or not in VMX operation. Additionally, any attempt to execute the 
instruction when CPL > 0 results in #UD. The instruction produces a general-protection exception (#GP) if CR0.PG 
= 0 or if an attempt is made to invoke an undefined leaf function.
Software in VMX root mode of operation can enable execution of the ENCLV instruction in VMX non-root mode by 
setting enable ENCLV execution control in the VMCS. If enable ENCLV execution control in the VMCS is clear, execu-
tion of the ENCLV instruction in VMX non-root mode results in #UD. 
When execution of ENCLV instruction in VMX non-root mode is enabled, software in VMX root operation can inter-
cept the invocation of various ENCLV leaf functions in VMX non-root operation by setting the corresponding bits in 
the ENCLV-exiting bitmap.
Addresses and operands are 32 bits in 32-bit mode (IA32_EFER.LMA == 0 || CS.L == 0) and are 64 bits in 64-bit 
mode (IA32_EFER.LMA == 1 && CS.L == 1). CS.D value has no impact on address calculation.
Segment override prefixes and address-size override prefixes are ignored, as is the REX prefix in 64-bit mode.

Operation

IF TSX_ACTIVE
THEN GOTO TSX_ABORT_PROCESSING; FI;

IF CR0.PE = 0 or RFLAGS.VM = 1 or in SMM or CPUID.SGX_LEAF.0:EAX.OSS = 0
THEN #UD; FI;

IF not in VMX Operation or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD; FI;

IF (CPL > 0) 
THEN #UD; FI;

IF in VMX non-root operation 
    IF “enable ENCLV exiting“ VM-execution control is 1
        THEN
            IF EAX < 63 and ENCLV_exiting_bitmap[EAX] = 1 or EAX> 62 and ENCLV_exiting_bitmap[63] = 1
                  THEN VM exit;
            FI;
     ELSE
        #UD; FI;

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

NP 0F 01 C0 
ENCLV

ZO V/V NA This instruction is used to execute privileged SGX leaf functions 
that are reserved for VMM use. They are used for managing the 
enclaves.

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

ZO NA NA NA See Section 39.3
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FI;

IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0
THEN #GP(0); FI;

IF (EAX is an invalid leaf number)
THEN #GP(0); FI;

IF CR0.PG = 0
THEN #GP(0); FI;

(* DS must not be an expanded down segment *)
IF not in 64-bit mode and DS.Type is expand-down data

THEN #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions.

Protected Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.OSS [bit 5] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If data segment expand down.
If CR0.PG=0.

Real-Address Mode Exceptions

#UD ENCLV is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLV is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.OSS [bit 5] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
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39.3 INTEL® SGX SYSTEM LEAF FUNCTION REFERENCE
Leaf functions available with the ENCLS instruction mnemonic are covered in this section. In general, each instruc-
tion leaf requires EAX to specify the leaf function index and/or additional implicit registers specifying leaf-specific 
input parameters. An instruction operand encoding table provides details of each implicit register usage and asso-
ciated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or outside 
the EPC, the memory addressing semantics of these memory objects are also summarized in a separate table.
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EADD—Add a Page to an Uninitialized Enclave  

Instruction Operand Encoding

Description

This leaf function copies a source page from non-enclave memory into the EPC, associates the EPC page with an 
SECS page residing in the EPC, and stores the linear address and security attributes in EPCM. As part of the asso-
ciation, the enclave offset and the security attributes are measured and extended into the SECS.MRENCLAVE. This 
instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC 
page. The table below provides additional information on the memory parameter of EADD leaf function.

EADD Memory Parameter Semantics

The instruction faults if any of the following: 

EADD Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 01H
ENCLS[EADD]

IR V/V SGX1 This leaf function adds a page to an uninitialized enclave.

Op/En EAX RBX RCX

IR EADD (In) Address of a PAGEINFO (In) Address of the destination EPC page (In)

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permitted 
by Non Enclave 

Read/Write access permit-
ted by Enclave 

Read access permitted 
by Non Enclave 

Read access permitted 
by Non Enclave 

Write access permitted 
by Enclave

The operands are not properly aligned. Unsupported security attributes are set.

Refers to an invalid SECS. Reference is made to an SECS that is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page.

The EPC page is already valid. If security attributes specifies a TCS and the source page specifies unsupported 
TCS values or fields.

The SECS has been initialized. The specified enclave offset is outside of the enclave address space.

Table 39-8.  Base Concurrency Restrictions of EADD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EADD Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.SECS Shared #GP
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Operation

Temp Variables in EADD Operational Flow

IF (DS:RBX is not 32Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

TMP_SRCPGE := DS:RBX.SRCPGE;
TMP_SECS := DS:RBX.SECS;
TMP_SECINFO := DS:RBX.SECINFO;
TMP_LINADDR := DS:RBX.LINADDR;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECS is not 4KByte aligned or
DS:TMP_SECINFO is not 64Byte aligned or TMP_LINADDR is not 4KByte aligned)
THEN #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)
THEN #PF(DS:TMP_SECS); FI;

SCRATCH_SECINFO := DS:TMP_SECINFO;

(* Check for misconfigured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero or 

Table 39-9.  Additional Concurrency Restrictions of EADD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EADD Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGE-
INFO.SECS

Concurrent Exclusive #GP Concurrent

Name Type Size (bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the source page.

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security 
attributes of the page to be added.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO.

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to 
calculate TMP_ENCLAVEOFFSET.

TMP_ENCLAVEOFFSET Enclave Offset 64 The page displacement from the enclave base address.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.
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! (SCRATCH_SECINFO.FLAGS.PT is PT_REG or SCRATCH_SECINFO.FLAGS.PT is PT_TCS or
(SCRATCH_SECINFO.FLAGS.PT is PT_SS_FIRST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1) or
(SCRATCH_SECINFO.FLAGS.PT is PT_SS_REST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1)) ) 
THEN #GP(0); FI;

(* If PT_SS_FIRST/PT_SS_REST page types are requested then CR4.CET must be 1 *)
IF ( (SCRATCH_SECINFO.FLAGS.PT is PT_SS_FIRST OR

SCRATCH_SECINFO.FLAGS.PT is PT_SS_REST) AND CR4.CET == 0)
THEN #GP(0); FI;

(* Check the EPC page for concurrency *)
IF (EPC page is not available for EADD) 

THEN 
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address := DS:RCX;

        Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

IF (EPCM(DS:RCX).VALID ≠ 0) 
THEN #PF(DS:RCX); FI;

(* Check the SECS for concurrency *)
IF (SECS is not available for EADD) 

THEN #GP(0); FI;

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT ≠ PT_SECS) 
THEN #PF(DS:TMP_SECS); FI;

(* Copy 4KBytes from source page to EPC page*)
DS:RCX[32767:0] := DS:TMP_SRCPGE[32767:0];

CASE (SCRATCH_SECINFO.FLAGS.PT) 

PT_TCS:
IF (DS:RCX.RESERVED ≠ 0) #GP(0); FI;
IF ( (DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and 

((DS:TCS.FSLIMIT & 0FFFH ≠ 0FFFH) or (DS:TCS.GSLIMIT & 0FFFH ≠ 0FFFH) )) #GP(0); FI;
(* Ensure TCS.PREVSSP is zero *)
IF (CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] = 1) and (DS:RCX.PREVSSP != 0) #GP(0); FI;
BREAK;

PT_REG:
IF (SCRATCH_SECINFO.FLAGS.W = 1 and SCRATCH_SECINFO.FLAGS.R = 0) #GP(0); FI;
BREAK;

PT_SS_FIRST:
PT_SS_REST:
(* SS pages cannot be created on first or last page of ELRANGE *)
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IF ( TMP_LINADDR = DS:TMP_SECS.BASEADDR or TMP_LINADDR = (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE - 0x1000) )
THEN #GP(0); FI;

IF ( DS:RCX[4087:0] != 0 ) #GP(0); FI;
IF (SCRATCH_SECINFO.FLAGS.PT == PT_SS_FIRST)

THEN
(* Check that valid RSTORSSP token exists *)
IF ( DS:RCX[4095:4088] != ((TMP_LINADDR + 0x1000) | DS:TMP_SECS.ATTRIBUTES.MODE64BIT) ) #GP(0); FI;

ELSE
(* Check the 8 bytes are zero *)
IF ( DS:RCX[4095:4088] != 0 ) #GP(0); FI;

FI;
IF (SCRATCH_SECINFO.FLAGS.W = 0 OR SCRATCH_SECINFO.FLAGS.R = 0 OR
 SCRATCH_SECINFO.FLAGS.X = 1) #GP(0); FI;

BREAK;
ESAC;

(* Check the enclave offset is within the enclave linear address space *)
IF (TMP_LINADDR < DS:TMP_SECS.BASEADDR or TMP_LINADDR ≥ DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE) 

THEN #GP(0); FI;

(* Check concurrency of measurement resource*)
IF (Measurement being updated) 

THEN #GP(0); FI;

(* Check if the enclave to which the page will be added is already in Initialized state *)
IF (DS:TMP_SECS already initialized) 

THEN #GP(0); FI;

(* For TCS pages, force EPCM.rwx bits to 0 and no debug access *)
IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS) 

THEN
SCRATCH_SECINFO.FLAGS.R := 0;
SCRATCH_SECINFO.FLAGS.W := 0;
SCRATCH_SECINFO.FLAGS.X := 0;
(DS:RCX).FLAGS.DBGOPTIN := 0; // force TCS.FLAGS.DBGOPTIN off
DS:RCX.CSSA := 0;
DS:RCX.AEP := 0;
DS:RCX.STATE := 0;

FI;

(* Add enclave offset and security attributes to MRENCLAVE *)
TMP_ENCLAVEOFFSET := TMP_LINADDR - DS:TMP_SECS.BASEADDR;
TMPUPDATEFIELD[63:0] := 0000000044444145H; // “EADD”
TMPUPDATEFIELD[127:64] := TMP_ENCLAVEOFFSET;
TMPUPDATEFIELD[511:128] := SCRATCH_SECINFO[375:0]; // 48 bytes
DS:TMP_SECS.MRENCLAVE := SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(* Add enclave offset and security attributes to MRENCLAVE *)
EPCM(DS:RCX).R := SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PT := SCRATCH_SECINFO.FLAGS.PT;
EPCM(DS:RCX).ENCLAVEADDRESS := TMP_LINADDR;
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(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)
Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM entry fields *)
EPCM(DS:RCX).BLOCKED := 0;
EPCM(DS:RCX).PENDING := 0;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).VALID := 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If an enclave memory operand is outside of the EPC.
If an enclave memory operand is the wrong type.
If a memory operand is locked.
If the enclave is initialized.
If the enclave's MRENCLAVE is locked.
If the TCS page reserved bits are set.
If the TCS page PREVSSP field is not zero.
If the PT_SS_REST or PT_SS_REST page is the first or last page in the enclave.
If the PT_SS_FIRST or PT_SS_REST page is not initialized correctly.

#PF(error code) If a page fault occurs in accessing memory operands.
If the EPC page is valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If an enclave memory operand is outside of the EPC.
If an enclave memory operand is the wrong type.
If a memory operand is locked.
If the enclave is initialized.
If the enclave's MRENCLAVE is locked.
If the TCS page reserved bits are set.
If the TCS page PREVSSP field is not zero.
If the PT_SS_REST or PT_SS_REST page is the first or last page in the enclave.
If the PT_SS_FIRST or PT_SS_REST page is not initialized correctly.

#PF(error code) If a page fault occurs in accessing memory operands.
If the EPC page is valid.
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EAUG—Add a Page to an Initialized Enclave  

Instruction Operand Encoding

Description

This leaf function zeroes a page of EPC memory, associates the EPC page with an SECS page residing in the EPC, 
and stores the linear address and security attributes in the EPCM. As part of the association, the security attributes 
are configured to prevent access to the EPC page until a corresponding invocation of the EACCEPT leaf or EACCEPT-
COPY leaf confirms the addition of the new page into the enclave. This instruction can only be executed when 
current privilege level is 0.
RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC 
page. The table below provides additional information on the memory parameter of the EAUG leaf function.

EAUG Memory Parameter Semantics

The instruction faults if any of the following: 

EAUG Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 0DH
ENCLS[EAUG]

IR V/V SGX2 This leaf function adds a page to an initialized enclave.

Op/En EAX RBX RCX

IR EAUG (In) Address of a PAGEINFO (In) Address of the destination EPC page (In)

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permit-
ted by Non Enclave 

Read/Write access permit-
ted by Enclave 

Must be zero
Read access permitted by 

Non Enclave 
Write access permitted by 

Enclave

The operands are not properly aligned. Unsupported security attributes are set.

Refers to an invalid SECS. Reference is made to an SECS that is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page.

The EPC page is already valid. The specified enclave offset is outside of the enclave address space.

The SECS has been initialized.

Table 39-10.  Base Concurrency Restrictions of EAUG

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EAUG Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.SECS Shared #GP
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Operation

Temp Variables in EAUG Operational Flow

IF (DS:RBX is not 32Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

TMP_SECS := DS:RBX.SECS;
TMP_SECINFO := DS:RBX.SECINFO;
IF (DS:RBX.SECINFO is not 0)

THEN
IF (DS:TMP_SECINFO is not 64B aligned)

THEN #GP(0); FI;
FI;

TMP_LINADDR := DS:RBX.LINADDR;

IF ( DS:TMP_SECS is not 4KByte aligned or TMP_LINADDR is not 4KByte aligned )
THEN #GP(0); FI;

IF DS:RBX.SRCPAGE is not 0
THEN #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)
THEN #PF(DS:TMP_SECS); FI;

(* Check the EPC page for concurrency *)

Table 39-11.  Additional Concurrency Restrictions of EAUG

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EAUG Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGE-
INFO.SECS

Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security 
attributes of the page to be added.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO.

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to 
calculate TMP_ENCLAVEOFFSET.
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IF (EPC page in use) 
THEN

IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)
THEN

VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address := DS:RCX;
Deliver VMEXIT;

ELSE
#GP(0);

FI;
FI:

IF (EPCM(DS:RCX).VALID ≠ 0) 
THEN #PF(DS:RCX); FI;

(* copy SECINFO contents into a scratch SECINFO *)
IF (DS:RBX.SECINFO is 0)

THEN
(* allocate and initialize a new scratch SECINFO structure *)
SCRATCH_SECINFO.PT := PT_REG;
SCRATCH_SECINFO.R := 1;
SCRATCH_SECINFO.W := 1;
SCRATCH_SECINFO.X := 0;
<< zero out remaining fields of SCRATCH_SECINFO >>

ELSE
(* copy SECINFO contents into scratch SECINFO *)
SCRATCH_SECINFO := DS:TMP_SECINFO;
(* check SECINFO flags for misconfiguration *)
(* reserved flags must be zero *)
(* SECINFO.FLAGS.PT must either be PT_SS_FIRST, or PT_SS_REST *)
IF ( (SCRATCH_SECINFO reserved fields are not 0) or
CPUID.(EAX=12H, ECX=1):EAX[6] is 0) OR
 (SCRATCH_SECINFO.PT is not PT_SS_FIRST, or PT_SS_REST) OR
 ( (SCRATCH_SECINFO.FLAGS.R is 0) OR (SCRATCH_SECINFO.FLAGS.W is 0) OR (SCRATCH_SECINFO.FLAGS.X is 1) ) )

THEN #GP(0); FI;
FI;
(* Check if PT_SS_FIRST/PT_SS_REST page types are requested then CR4.CET must be 1 *)
IF ( (SCRATCH_SECINFO.PT is PT_SS_FIRST OR SCRATCH_SECINFO.PT is PT_SS_REST) AND CR4.CET == 0 )

THEN #GP(0); FI;

(* Check the SECS for concurrency *)
IF (SECS is not available for EAUG) 

THEN #GP(0); FI;

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT ≠ PT_SECS) 
THEN #PF(DS:TMP_SECS); FI;

(* Check if the enclave to which the page will be added is in the Initialized state *)
IF (DS:TMP_SECS is not initialized) 

THEN #GP(0); FI;
EAUG—Add a Page to an Initialized Enclave39-24 Vol. 3D



INTEL® SGX INSTRUCTION REFERENCES
(* Check the enclave offset is within the enclave linear address space *)
IF ( (TMP_LINADDR < DS:TMP_SECS.BASEADDR) or (TMP_LINADDR ≥ DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE) )

THEN #GP(0); FI;

IF ( (SCRATCH_SECINFO.PT is PT_SS_FIRST OR SCRATCH_SECINFO.PT is PT_SS_REST) )
THEN

(* SS pages cannot created on first or last page of ELRANGE *)
IF ( TMP_LINADDR == DS:TMP_SECS.BASEADDR OR
 TMP_LINADDR == (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE - 0x1000) )

THEN
#GP(0); FI;

FI;

(* Clear the content of EPC page*)
DS:RCX[32767:0] := 0;

IF (CPUID.(EAX=07H, ECX=0H):ECX[CET_SS] = 1)
THEN

(* set up shadow stack RSTORSSP token *)
IF (SCRATCH_SECINFO.PT is PT_SS_FIRST)
THEN

DS:RCX[0xFF8] := (TMP_LINADDR + 0x1000) | TMP_SECS.ATTRIBUTES.MODE64BIT; FI;
FI;

(* Set EPCM security attributes *)
EPCM(DS:RCX).R := SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PT := SCRATCH_SECINFO.FLAGS.PT;
EPCM(DS:RCX).ENCLAVEADDRESS := TMP_LINADDR;
EPCM(DS:RCX).BLOCKED := 0;
EPCM(DS:RCX).PENDING := 1;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).PR := 0;

(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)
Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM valid fields *)
EPCM(DS:RCX).VALID := 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.
If the enclave is not initialized.

#PF(error code) If a page fault occurs in accessing memory operands.
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64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.
If the enclave is not initialized.

#PF(error code) If a page fault occurs in accessing memory operands.
EAUG—Add a Page to an Initialized Enclave39-26 Vol. 3D



INTEL® SGX INSTRUCTION REFERENCES
EBLOCK—Mark a page in EPC as Blocked  

Instruction Operand Encoding

Description

This leaf function causes an EPC page to be marked as BLOCKED. This instruction can only be executed when 
current privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address. 
Segment override is not supported.
An error code is returned in RAX.
The table below provides additional information on the memory parameter of EBLOCK leaf function.

EBLOCK Memory Parameter Semantics

The error codes are: 

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 09H
ENCLS[EBLOCK]

IR V/V SGX1 This leaf function marks a page in the EPC as blocked.

Op/En EAX RCX

IR EBLOCK (In) Return error code (Out) Effective address of the EPC page (In)

EPCPAGE

Read/Write access permitted by Enclave

Table 39-12.  EBLOCK Return Value in RAX
 Error Code (see Table 39-4) Description

No Error EBLOCK successful.

SGX_BLKSTATE Page already blocked. This value is used to indicate to a VMM that the page was already in 
BLOCKED state as a result of EBLOCK and thus will need to be restored to this state when it is 
eventually reloaded (using ELDB). 

SGX_ENTRYEPOCH_LOCKED SECS locked for Entry Epoch update. This value indicates that an ETRACK is currently 
executing on the SECS. The EBLOCK should be reattempted.

SGX_NOTBLOCKABLE Page type is not one which can be blocked.

SGX_PG_INVLD Page is not valid and cannot be blocked.

SGX_EPC_PAGE_CONFLICT Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODT, or EWB.

Table 39-13.  Base Concurrency Restrictions of EBLOCK

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EBLOCK Target [DS:RCX] Shared SGX_EPC_PAGE_
CONFLICT
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Operation

Temp Variables in EBLOCK Operational Flow

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

RFLAGS.ZF,CF,PF,AF,OF,SF := 0;
RAX := 0;

(* Check the EPC page for concurrency*)
IF (EPC page in use)

THEN
RFLAGS.ZF := 1;
RAX := SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN 

RFLAGS.ZF := 1;
RAX := SGX_PG_INVLD;
GOTO DONE;

FI;

IF ( (EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) and (EPCM(DS:RCX).PT ≠ PT_TRIM) 
and EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))

THEN 
RFLAGS.CF := 1;
IF (EPCM(DS:RCX).PT = PT_SECS) 

THEN RAX := SGX_PG_IS_SECS;
ELSE RAX := SGX_NOTBLOCKABLE;

FI;
GOTO DONE;

FI;

(* Check if the page is already blocked and report blocked state *)
TMP_BLKSTATE := EPCM(DS:RCX).BLOCKED;

Table 39-14.  Additional Concurrency Restrictions of EBLOCK

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EBLOCK Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_BLKSTATE Integer 64 Page is already blocked.
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(* at this point, the page must be valid and PT_TCS or PT_REG or PT_TRIM*)
IF (TMP_BLKSTATE = 1) 

THEN 
RFLAGS.CF := 1;
RAX := SGX_BLKSTATE;

ELSE
EPCM(DS:RCX).BLOCKED := 1

FI;
DONE:

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Sets CF if page is BLOCKED or not blockable, otherwise 
cleared. Clears PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
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ECREATE—Create an SECS page in the Enclave Page Cache 

Instruction Operand Encoding

Description

ENCLS[ECREATE] is the first instruction executed in the enclave build process. ECREATE copies an SECS structure 
outside the EPC into an SECS page inside the EPC. The internal structure of SECS is not accessible to software.
ECREATE will set up fields in the protected SECS and mark the page as valid inside the EPC. ECREATE initializes or 
checks unused fields.
Software sets the following fields in the source structure: SECS:BASEADDR, SECS:SIZE in bytes, ATTRIBUTES, 
CONFIGID, and CONFIGSVN. SECS:BASEADDR must be naturally aligned on an SECS.SIZE boundary. SECS.SIZE 
must be at least 2 pages (8192).
The source operand RBX contains an effective address of a PAGEINFO structure. PAGEINFO contains an effective 
address of a source SECS and an effective address of an SECINFO. The SECS field in PAGEINFO is not used.
The RCX register is the effective address of the destination SECS. It is an address of an empty slot in the EPC. The 
SECS structure must be page aligned. SECINFO flags must specify the page as an SECS page. 

ECREATE Memory Parameter Semantics

ECREATE will fault if the SECS target page is in use; already valid; outside the EPC. It will also fault if addresses are 
not aligned; unused PAGEINFO fields are not zero.
If the amount of space needed to store the SSA frame is greater than the amount specified in SECS.SSAFRAME-
SIZE, a #GP(0) results. The amount of space needed for an SSA frame is computed based on DS:TMP_-
SECS.ATTRIBUTES.XFRM size. Details of computing the size can be found Section 40.7.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 00H
ENCLS[ECREATE]

IR V/V SGX1 This leaf function begins an enclave build by creating an SECS 
page in EPC.

Op/En EAX RBX RCX

IR ECREATE (In) Address of a PAGEINFO (In) Address of the destination SECS page (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permitted by 
Non Enclave 

Read access permitted by 
Non Enclave 

Read access permitted by Non 
Enclave 

Write access permitted by 
Enclave

Table 39-15.  Base Concurrency Restrictions of ECREATE

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ECREATE SECS [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION
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Operation

Temp Variables in ECREATE Operational Flow

IF (DS:RBX is not 32Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

TMP_SRCPGE := DS:RBX.SRCPGE;
TMP_SECINFO := DS:RBX.SECINFO;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECINFO is not 64Byte aligned)
THEN #GP(0); FI;

IF (DS:RBX.LINADDR ! = 0 or DS:RBX.SECS ≠ 0)
THEN #GP(0); FI;

(* Check for misconfigured SECINFO flags*)
IF (DS:TMP_SECINFO reserved fields are not zero or DS:TMP_SECINFO.FLAGS.PT ≠ PT_SECS) 

THEN #GP(0); FI;

TMP_SECS := RCX;

IF (EPC entry in use) 
THEN 

IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)
THEN

VMCS.Exit_reason := SGX_CONFLICT;

Table 39-16.  Additional Concurrency Restrictions of ECREATE

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ECREATE SECS [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the SECS source page.

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security 
attributes of the SECS page to be added.

TMP_XSIZE SSA Size 64 The size calculation of SSA frame.

TMP_MISC_SIZE MISC Field Size 64 Size of the selected MISC field components.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.
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VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := 

<< translation of DS:TMP_SECS produced by paging >>;
VMCS.Guest-linear_address := DS:TMP_SECS;

        Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

IF (EPC entry in use) 
THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID = 1) 
THEN #PF(DS:RCX); FI;

(* Copy 4KBytes from source page to EPC page*)
DS:RCX[32767:0] := DS:TMP_SRCPGE[32767:0];

(* Check lower 2 bits of XFRM are set *)
IF ( ( DS:TMP_SECS.ATTRIBUTES.XFRM BitwiseAND 03H) ≠ 03H) 

THEN #GP(0); FI;

IF (XFRM is illegal) 
THEN #GP(0); FI;

(* Check legality of CET_ATTRIBUTES *)
IF ((DS:TMP_SECS.ATTRIBUTES.CET = 0 and DS:TMP_SECS.CET_ATTRIBUTES ≠ 0) ||

(DS:TMP_SECS.ATTRIBUTES.CET = 0 and DS:TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) ||
(CPUID.(EAX=7, ECX=0):EDX[CET_IBT] = 0 and DS:TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) ||
(CPUID.(EAX=7, ECX=0):EDX[CET_IBT] = 0 and DS:TMP_SECS.CET_ATTRIBUTES[5:2] ≠ 0) ||
(CPUID.(EAX=7, ECX=0):ECX[CET_SS] = 0 and DS:TMP_SECS.CET_ATTRIBUTES[1:0] ≠ 0) ||
(DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1 and
 (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.CET_LEG_BITMAP_OFFSET) not canonical) ||
(DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0 and
 (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.CET_LEG_BITMAP_OFFSET) & 0xFFFFFFFF00000000) ||
(DS:TMP_SECS.CET_ATTRIBUTES.reserved fields not 0) or
 (DS:TMP_SECS.CET_LEG_BITMAP_OFFSET) is not page aligned))
THEN

#GP(0);
FI;

(* Make sure that the SECS does not have any unsupported MISCSELECT options*)
IF ( !(CPUID.(EAX=12H, ECX=0):EBX[31:0] & DS:TMP_SECS.MISCSELECT[31:0]) )

THEN
EPCM(DS:TMP_SECS).EntryLock.Release();
#GP(0);

FI;

( * Compute size of MISC area *)
TMP_MISC_SIZE := compute_misc_region_size();

(* Compute the size required to save state of the enclave on async exit, see Section 40.7.2.2*)
ECREATE—Create an SECS page in the Enclave Page Cache39-32 Vol. 3D



INTEL® SGX INSTRUCTION REFERENCES
TMP_XSIZE := compute_xsave_size(DS:TMP_SECS.ATTRIBUTES.XFRM) + GPR_SIZE + TMP_MISC_SIZE;

(* Ensure that the declared area is large enough to hold XSAVE and GPR stat *)
IF ( DS:TMP_SECS.SSAFRAMESIZE*4096 < TMP_XSIZE) 

THEN #GP(0); FI;

IF ( (DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1) and (DS:TMP_SECS.BASEADDR is not canonical) )
THEN #GP(0); FI;

IF ( (DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and (DS:TMP_SECS.BASEADDR and 0FFFFFFFF00000000H) )
THEN #GP(0); FI;

IF ( (DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and (DS:TMP_SECS.SIZE ≥ 2 ^ (CPUID.(EAX=12H, ECX=0):.EDX[7:0]) ) )
THEN #GP(0); FI;

IF ( (DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1) and (DS:TMP_SECS.SIZE ≥ 2 ^ (CPUID.(EAX=12H, ECX=0):.EDX[15:8]) ) )
THEN #GP(0); FI;

(* Enclave size must be at least 8192 bytes and must be power of 2 in bytes*)
IF (DS:TMP_SECS.SIZE < 8192 or popcnt(DS:TMP_SECS.SIZE) > 1) 

THEN #GP(0); FI;

(* Ensure base address of an enclave is aligned on size*)
IF ( ( DS:TMP_SECS.BASEADDR and (DS:TMP_SECS.SIZE-1) ) )

THEN #GP(0); FI;

(* Ensure the SECS does not have any unsupported attributes*)
IF ( DS:TMP_SECS.ATTRIBUTES and (~CR_SGX_ATTRIBUTES_MASK) )

THEN #GP(0); FI;

IF ( DS:TMP_SECS reserved fields are not zero) 
THEN #GP(0); FI;

(* Verify that CONFIGID/CONFIGSVN are not set with attribute *)
IF ( ((DS:TMP_SECS.CONFIGID ≠ 0) or (DS:TMP_SECS.CONFIGSVN ≠0)) AND (DS:TMP_SECS.ATTRIBUTES.KSS == 0 ))

THEN #GP(0); FI;

Clear DS:TMP_SECS to Uninitialized;
DS:TMP_SECS.MRENCLAVE := SHA256INITIALIZE(DS:TMP_SECS.MRENCLAVE);
DS:TMP_SECS.ISVSVN := 0;
DS:TMP_SECS.ISVPRODID := 0;

(* Initialize hash updates etc*)
Initialize enclave’s MRENCLAVE update counter;

(* Add “ECREATE” string and SECS fields to MRENCLAVE *)
TMPUPDATEFIELD[63:0] := 0045544145524345H; // “ECREATE”
TMPUPDATEFIELD[95:64] := DS:TMP_SECS.SSAFRAMESIZE;
TMPUPDATEFIELD[159:96] := DS:TMP_SECS.SIZE;
IF (CPUID.(EAX=7, ECX=0):EDX[CET_IBT] = 1)

THEN
TMPUPDATEFIELD[223:160] := DS:TMP_SECS.CET_LEG_BITMAP_OFFSET;

ELSE
TMPUPDATEFIELD[223:160] := 0;
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FI;
TMPUPDATEFIELD[511:160] := 0; 
DS:TMP_SECS.MRENCLAVE := SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(* Set EID *)
DS:TMP_SECS.EID := LockedXAdd(CR_NEXT_EID, 1);

(* Initialize the virtual child count to zero *)
DS:TMP_SECS.VIRTCHILDCNT := 0;

(* Load ENCLAVECONTEXT with Address out of paging of SECS *)
<< store translation of DS:RCX produced by paging in SECS(DS:RCX).ENCLAVECONTEXT >>

(* Set the EPCM entry, first create SECS identifier and store the identifier in EPCM *)
EPCM(DS:TMP_SECS).PT := PT_SECS;
EPCM(DS:TMP_SECS).ENCLAVEADDRESS := 0;
EPCM(DS:TMP_SECS).R := 0;
EPCM(DS:TMP_SECS).W := 0;
EPCM(DS:TMP_SECS).X := 0;

(* Set EPCM entry fields *)
EPCM(DS:RCX).BLOCKED := 0;
EPCM(DS:RCX).PENDING := 0;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).PR := 0;
EPCM(DS:RCX).VALID := 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the reserved fields are not zero.
If PAGEINFO.SECS is not zero.
If PAGEINFO.LINADDR is not zero.
If the SECS destination is locked.
If SECS.SSAFRAMESIZE is insufficient.

#PF(error code) If a page fault occurs in accessing memory operands.
If the SECS destination is outside the EPC.

64-Bit Mode Exceptions

#GP(0) If a memory address is non-canonical form.
If a memory operand is not properly aligned.
If the reserved fields are not zero.
If PAGEINFO.SECS is not zero.
If PAGEINFO.LINADDR is not zero.
If the SECS destination is locked.
If SECS.SSAFRAMESIZE is insufficient.
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#PF(error code) If a page fault occurs in accessing memory operands.
If the SECS destination is outside the EPC.
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EDBGRD—Read From a Debug Enclave 

Instruction Operand Encoding

Description

This leaf function copies a quadword/doubleword from an EPC page belonging to a debug enclave into the RBX 
register. Eight bytes are read in 64-bit mode, four bytes are read in non-64-bit modes. The size of data read cannot 
be overridden.
The effective address of the source location inside the EPC is provided in the register RCX.

EDBGRD Memory Parameter Semantics

The error codes are: 

The instruction faults if any of the following: 

EDBGRD Faulting Conditions

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX attri-
butes via EDBGRD does not result in a #GP.

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 04H
ENCLS[EDBGRD]

IR V/V SGX1 This leaf function reads a dword/quadword from a debug enclave.

Op/En EAX RBX RCX

IR EDBGRD (In)
Return error 
code (Out)

Data read from a debug enclave (Out) Address of source memory in the EPC (In)

EPCQW

Read access permitted by Enclave 

Table 39-17.  EDBGRD Return Value in RAX
 Error Code (see Table 39-4) Description

No Error EDBGRD successful.

SGX_PAGE_NOT_DEBUGGABLE The EPC page cannot be accessed because it is in the PENDING or MODIFIED state.

RCX points into a page that is an SECS. RCX does not resolve to a naturally aligned linear address.

RCX points to a page that does not belong to an 
enclave that is in debug mode.

RCX points to a location inside a TCS that is beyond the architectural size of the 
TCS (SGX_TCS_LIMIT).

An operand causing any segment violation. May page fault.

CPL > 0.
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Concurrency Restrictions

Operation

Temp Variables in EDBGRD Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ( (TMP_MODE64 = 1) and (DS:RCX is not 8Byte Aligned) )
THEN #GP(0); FI;

IF ( (TMP_MODE64 = 0) and (DS:RCX is not 4Byte Aligned) )
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing the same EPCM entry *)
IF (Another instruction modifying the same EPCM entry is executing) 

THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID = 0)
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (SOURCE) is pointing to a PT_REG or PT_TCS or PT_VA or PT_SS_FIRST or PT_SS_REST *) 
IF ( (EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) and (EPCM(DS:RCX).PT ≠ PT_VA)
and (EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))

THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX points to an accessible EPC page *)
IF (EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0) )

THEN
RFLAGS.ZF := 1;

Table 39-18.  Base Concurrency Restrictions of EDBGRD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EDBGRD Target [DS:RCX] Shared #GP

Table 39-19.  Additional Concurrency Restrictions of EDBGRD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EDBGRD Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_MODE64 Binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1))

TMP_SECS  64 Physical address of SECS of the enclave to which source operand belongs.
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RAX := SGX_PAGE_NOT_DEBUGGABLE;
GOTO DONE;

FI;

(* If source is a TCS, then make sure that the offset into the page is not beyond the TCS size*)
IF ( ( EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & FFFH ≥ SGX_TCS_LIMIT) )

THEN #GP(0); FI;

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *) 
IF ( (EPCM(DS:RCX).PT = PT_REG) or (EPCM(DS:RCX).PT = PT_TCS) )

THEN 
TMP_SECS := GET_SECS_ADDRESS;
IF (TMP_SECS.ATTRIBUTES.DEBUG = 0) 

THEN #GP(0); FI;
IF ( (TMP_MODE64 = 1) )

THEN RBX[63:0] := (DS:RCX)[63:0]; 
ELSE EBX[31:0] := (DS:RCX)[31:0]; 

FI;
ELSE

TMP_64BIT_VAL[63:0] := (DS:RCX)[63:0] & (~07H); // Read contents from VA slot
IF (TMP_MODE64 = 1) 

THEN
IF (TMP_64BIT_VAL ≠ 0H) 

THEN RBX[63:0] := 0FFFFFFFFFFFFFFFFH;
ELSE RBX[63:0] := 0H;

FI;
ELSE

IF (TMP_64BIT_VAL ≠ 0H) 
THEN EBX[31:0] := 0FFFFFFFFH;
ELSE EBX[31:0] := 0H;

FI;
FI;

(* clear EAX and ZF to indicate successful completion *) 
RAX := 0;
RFLAGS.ZF := 0;

DONE:
(* clear flags *)
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

ZF is set if the page is MODIFIED or PENDING; RAX contains the error code. Otherwise ZF is cleared and RAX is set 
to 0. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If the address in RCS violates DS limit or access rights.
If DS segment is unusable.
If RCX points to a memory location not 4Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.
If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.
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#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If RCX points to a memory location not 8Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.
If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.
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EDBGWR—Write to a Debug Enclave 

Instruction Operand Encoding

Description

This leaf function copies the content in EBX/RBX to an EPC page belonging to a debug enclave. Eight bytes are 
written in 64-bit mode, four bytes are written in non-64-bit modes. The size of data cannot be overridden.
The effective address of the target location inside the EPC is provided in the register RCX.

EDBGWR Memory Parameter Semantics

The instruction faults if any of the following: 

EDBGWR Faulting Conditions

The error codes are: 

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX attri-
butes via EDBGRD does not result in a #GP.

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 05H
ENCLS[EDBGWR]

IR V/V SGX1 This leaf function writes a dword/quadword to a debug enclave.

Op/En EAX RBX RCX

IR EDBGWR (In)
Return error 
code (Out)

Data to be written to a debug enclave (In) Address of Target memory in the EPC (In)

EPCQW

Write access permitted by Enclave 

RCX points into a page that is an SECS. RCX does not resolve to a naturally aligned linear address.

RCX points to a page that does not belong to an 
enclave that is in debug mode.

RCX points to a location inside a TCS that is not the FLAGS word.

An operand causing any segment violation. May page fault.

CPL > 0.

Table 39-20.  EDBGWR Return Value in RAX
 Error Code (see Table 39-4) Description

No Error EDBGWR successful.

SGX_PAGE_NOT_DEBUGGABLE The EPC page cannot be accessed because it is in the PENDING or MODIFIED state.
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Concurrency Restrictions

Operation

Temp Variables in EDBGWR Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ( (TMP_MODE64 = 1) and (DS:RCX is not 8Byte Aligned) )
THEN #GP(0); FI;

IF ( (TMP_MODE64 = 0) and (DS:RCX is not 4Byte Aligned) )
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing the same EPCM entry *)
IF (Another instruction modifying the same EPCM entry is executing) 

THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID = 0)
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS or PT_SS_FIRST or PT_SS_REST *) 
IF ( (EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) 

and (EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX points to an accessible EPC page *)
IF ( (EPCM(DS:RCX).PENDING is not 0) or (EPCM(DS:RCS).MODIFIED is not 0) )

THEN
RFLAGS.ZF := 1;

Table 39-21.  Base Concurrency Restrictions of EDBGWR

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EDBGWR Target [DS:RCX] Shared #GP

Table 39-22.  Additional Concurrency Restrictions of EDBGWR

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EDBGWR Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_MODE64 Binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1)).

TMP_SECS  64 Physical address of SECS of the enclave to which source operand belongs.
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RAX := SGX_PAGE_NOT_DEBUGGABLE;
GOTO DONE;

FI;

(* If destination is a TCS, then make sure that the offset into the page can only point to the FLAGS field*)
IF ( ( EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & FF8H ≠ offset_of_FLAGS & 0FF8H) )

THEN #GP(0); FI;

(* Locate the SECS for the enclave to which the DS:RCX page belongs *) 
TMP_SECS := GET_SECS_PHYS_ADDRESS(EPCM(DS:RCX).ENCLAVESECS);

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *) 
IF (TMP_SECS.ATTRIBUTES.DEBUG = 0) 

THEN #GP(0); FI;

IF ( (TMP_MODE64 = 1) )
THEN (DS:RCX)[63:0] := RBX[63:0]; 
ELSE (DS:RCX)[31:0] := EBX[31:0]; 

FI;

(* clear EAX and ZF to indicate successful completion *) 
RAX := 0;
RFLAGS.ZF := 0;

DONE:
(* clear flags *)
RFLAGS.CF,PF,AF,OF,SF := 0

Flags Affected

ZF is set if the page is MODIFIED or PENDING; RAX contains the error code. Otherwise ZF is cleared and RAX is set 
to 0. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If the address in RCS violates DS limit or access rights.
If DS segment is unusable.
If RCX points to a memory location not 4Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a location inside TCS that is not the FLAGS word.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If RCX points to a memory location not 8Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a location inside TCS that is not the FLAGS word.
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#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.
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EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes 

Instruction Operand Encoding

Description

This leaf function updates the MRENCLAVE measurement register of an SECS with the measurement of an EXTEND 
string compromising of “EEXTEND” || ENCLAVEOFFSET || PADDING || 256 bytes of the enclave page. This instruc-
tion can only be executed when current privilege level is 0 and the enclave is uninitialized. 
RBX contains the effective address of the SECS of the region to be measured. The address must be the same as the 
one used to add the page into the enclave.
RCX contains the effective address of the 256 byte region of an EPC page to be measured. The DS segment is used 
to create linear addresses. Segment override is not supported.

EEXTEND Memory Parameter Semantics

The instruction faults if any of the following: 

EEXTEND Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 06H
ENCLS[EEXTEND]

IR V/V SGX1 This leaf function measures 256 bytes of an uninitialized enclave 
page.

Op/En EAX EBX RCX

IR EEXTEND (In)
Effective address of the SECS of the 

data chunk (In)
Effective address of a 256-byte chunk in the EPC (In)

EPC[RCX]

Read access by Enclave 

RBX points to an address not 4KBytes aligned. RBX does not resolve to an SECS.

RBX does not point to an SECS page. RBX does not point to the SECS page of the data chunk.

RCX points to an address not 256B aligned. RCX points to an unused page or a SECS.

RCX does not resolve in an EPC page. If SECS is locked.

If the SECS is already initialized. May page fault.

CPL > 0.

Table 39-23.  Base Concurrency Restrictions of EEXTEND

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EEXTEND Target [DS:RCX] Shared #GP

SECS [DS:RBX] Concurrent
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Operation

Temp Variables in EEXTEND Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF (DS:RBX is not 4096 Byte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does not resolve to an EPC page) 
THEN #PF(DS:RBX); FI;

IF (DS:RCX is not 256Byte Aligned) 
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other instructions accessing EPCM) 

THEN #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS or PT_SS_FIRST or PT_SS_REST *) 
IF ( (EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) 
and (EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))

THEN #PF(DS:RCX); FI;

TMP_SECS := Get_SECS_ADDRESS();

IF (DS:RBX does not resolve to TMP_SECS)
THEN #GP(0); FI;

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUTES.INIT *) 
IF ( (Other instruction accessing MRENCLAVE) or (Other instructions checking or updating the initialized state of the SECS)) 

Table 39-24.  Additional Concurrency Restrictions of EEXTEND

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EEXTEND Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX] Concurrent Exclusive #GP Concurrent

Name Type Size (Bits) Description

TMP_SECS  64 Physical address of SECS of the enclave to which source operand belongs.

TMP_ENCLAVEOFFS
ET

Enclave Offset 64 The page displacement from the enclave base address.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.
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THEN #GP(0); FI;

(* Calculate enclave offset *)
TMP_ENCLAVEOFFSET := EPCM(DS:RCX).ENCLAVEADDRESS - TMP_SECS.BASEADDR;
TMP_ENCLAVEOFFSET := TMP_ENCLAVEOFFSET + (DS:RCX & 0FFFH)

(* Add EEXTEND message and offset to MRENCLAVE *)
TMPUPDATEFIELD[63:0] := 00444E4554584545H; // “EEXTEND”
TMPUPDATEFIELD[127:64] := TMP_ENCLAVEOFFSET;
TMPUPDATEFIELD[511:128] := 0; // 48 bytes
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(*Add 256 bytes to MRENCLAVE, 64 byte at a time *) 
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[511:0] );
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1023: 512] );
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1535: 1024] );
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[2047: 1536] );
INC enclave’s MRENCLAVE update counter by 4;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RBX is outside the DS segment limit.
If RBX points to an SECS page which is not the SECS of the data chunk.
If the address in RCX is outside the DS segment limit.
If RCX points to a memory location not 256Byte-aligned.
If another instruction is accessing MRENCLAVE.
If another instruction is checking or updating the SECS.
If the enclave is already initialized.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RBX points to a non-EPC page.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RBX is non-canonical form.
If RBX points to an SECS page which is not the SECS of the data chunk.
If RCX is non-canonical form.
If RCX points to a memory location not 256 Byte-aligned.
If another instruction is accessing MRENCLAVE.
If another instruction is checking or updating the SECS.
If the enclave is already initialized.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RBX points to a non-EPC page.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.
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EINIT—Initialize an Enclave for Execution 

Instruction Operand Encoding

Description

This leaf function is the final instruction executed in the enclave build process. After EINIT, the MRENCLAVE 
measurement is complete, and the enclave is ready to start user code execution using the EENTER instruction.
EINIT takes the effective address of a SIGSTRUCT and EINITTOKEN. The SIGSTRUCT describes the enclave 
including MRENCLAVE, ATTRIBUTES, ISVSVN, a 3072 bit RSA key, and a signature using the included key. 
SIGSTRUCT must be populated with two values, q1 and q2. These are calculated using the formulas shown below: 
q1 = floor(Signature2 / Modulus);
q2 = floor((Signature3 - q1 * Signature * Modulus) / Modulus);
The EINITTOKEN contains the MRENCLAVE, MRSIGNER, and ATTRIBUTES. These values must match the corre-
sponding values in the SECS. If the EINITTOKEN was created with a debug launch key, the enclave must be in 
debug mode as well. 

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 02H
ENCLS[EINIT]

IR V/V SGX1 This leaf function initializes the enclave and makes it ready to 
execute enclave code.

Op/En EAX RBX RCX RDX

IR EINIT (In) Error code (Out) Address of SIGSTRUCT (In) Address of SECS (In) Address of EINITTOKEN (In)

Figure 39-1.  Relationships Between SECS, SIGSTRUCT, and EINITTOKEN
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EINIT Memory Parameter Semantics

EINIT performs the following steps, which can be seen in Figure 39-1:

1. Validates that SIGSTRUCT is signed using the enclosed public key.

2. Checks that the completed computation of SECS.MRENCLAVE equals SIGSTRUCT.HASHENCLAVE.

3. Checks that no controlled ATTRIBUTES bits are set in SIGSTRUCT.ATTRIBUTES unless the SHA256 digest of 
SIGSTRUCT.MODULUS equals IA32_SGX_LEPUBKEYHASH. 

4. Checks that the result of bitwise and-ing SIGSTRUCT.ATTRIBUTEMASK with SIGSTRUCT.ATTRIBUTES equals 
the result of bitwise and-ing SIGSTRUCT.ATTRIBUTEMASK with SECS.ATTRIBUTES. 

5. If EINITTOKEN.VALID is 0, checks that the SHA256 digest of SIGSTRUCT.MODULUS equals IA32_SGX_LEPUB-
KEYHASH. 

6. If EINITTOKEN.VALID is 1, checks the validity of EINITTOKEN. 

7. If EINITTOKEN.VALID is 1, checks that EINITTOKEN.MRENCLAVE equals SECS.MRENCLAVE. 

8. If EINITTOKEN.VALID is 1 and EINITTOKEN.ATTRIBUTES.DEBUG is 1, SECS.ATTRIBUTES.DEBUG must be 1. 

9. Commits SECS.MRENCLAVE, and sets SECS.MRSIGNER, SECS.ISVSVN, and SECS.ISVPRODID based on 
SIGSTRUCT. 

10. Update the SECS as Initialized.
Periodically, EINIT polls for certain asynchronous events. If such an event is detected, it completes with failure code 
(ZF=1 and RAX = SGX_UNMASKED_EVENT), and RIP is incremented to point to the next instruction. These events 
includes external interrupts, non-maskable interrupts, system-management interrupts, machine checks, INIT 
signals, and the VMX-preemption timer. EINIT does not fail if the pending event is inhibited (e.g., external inter-
rupts could be inhibited due to blocking by MOV SS blocking or by STI). 
The following bits in RFLAGS are cleared: CF, PF, AF, OF, and SF. When the instruction completes with an error, 
RFLAGS.ZF is set to 1, and the corresponding error bit is set in RAX. If no error occurs, RFLAGS.ZF is cleared and 
RAX is set to 0.
The error codes are: 

SIGSTRUCT SECS EINITTOKEN

 Access by non-Enclave Read/Write access by Enclave  Access by non-Enclave 

Table 39-25.  EINIT Return Value in RAX
 Error Code (see Table 39-4) Description

No Error EINIT successful.

SGX_INVALID_SIG_STRUCT If SIGSTRUCT contained an invalid value.

SGX_INVALID_ATTRIBUTE If SIGSTRUCT contains an unauthorized attributes mask.

SGX_INVALID_MEASUREMENT If SIGSTRUCT contains an incorrect measurement.
If EINITTOKEN contains an incorrect measurement.

SGX_INVALID_SIGNATURE If signature does not validate with enclosed public key.

SGX_INVALID_LICENSE If license is invalid.

SGX_INVALID_CPUSVN If license SVN is unsupported.

SGX_UNMASKED_EVENT If an unmasked event is received before the instruction completes its operation.
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Concurrency Restrictions

Operation

Temp Variables in EINIT Operational Flow

(* make sure SIGSTRUCT and SECS are aligned *)
IF ( (DS:RBX is not 4KByte Aligned) or (DS:RCX is not 4KByte Aligned) )

THEN #GP(0); FI;

(* make sure the EINITTOKEN is aligned *)
IF (DS:RDX is not 512Byte Aligned) 

THEN #GP(0); FI;

(* make sure the SECS is inside the EPC *)
IF (DS:RCX does not resolve within an EPC) 

THEN #PF(DS:RCX); FI;

TMP_SIG[14463:0] := DS:RBX[14463:0]; // 1808 bytes
TMP_TOKEN[2423:0] := DS:RDX[2423:0]; // 304 bytes

Table 39-26.  Base Concurrency Restrictions of EINIT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EINIT SECS [DS:RCX] Shared #GP

Table 39-27.  Additional Concurrency Restrictions of ENIT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EINIT SECS [DS:RCX] Concurrent Exclusive #GP Concurrent

Name Type Size Description

TMP_SIG  SIGSTRUCT 1808Bytes Temp space for SIGSTRUCT.

TMP_TOKEN  EINITTOKEN 304Bytes Temp space for EINITTOKEN.

TMP_MRENCLAVE  32Bytes Temp space for calculating MRENCLAVE.

TMP_MRSIGNER  32Bytes Temp space for calculating MRSIGNER.

CONTROLLED_ATTRIBU
TES

ATTRIBUTES 16Bytes Constant mask of all ATTRIBUTE bits that can only be set for authorized 
enclaves.

TMP_KEYDEPENDENCIE
S 

Buffer 224Bytes Temp space for key derivation.

TMP_EINITTOKENKEY  16Bytes Temp space for the derived EINITTOKEN Key.

TMP_SIG_PADDING PKCS Padding 
Buffer

352Bytes The value of the top 352 bytes from the computation of Signature3 
modulo MRSIGNER.
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(* Verify SIGSTRUCT Header. *)
IF ( (TMP_SIG.HEADER ≠ 06000000E10000000000010000000000h) or

((TMP_SIG.VENDOR ≠ 0) and (TMP_SIG.VENDOR ≠ 00008086h) ) or
(TMP_SIG HEADER2 ≠ 01010000600000006000000001000000h) or
(TMP_SIG.EXPONENT   ≠ 00000003h) or (Reserved space is not 0’s) )
THEN 

RFLAGS.ZF := 1;
RAX := SGX_INVALID_SIG_STRUCT;
GOTO EXIT;

FI;

(* Open “Event Window” Check for Interrupts. Verify signature using embedded public key, q1, and q2. Save upper 352 bytes of the 
PKCS1.5 encoded message into the TMP_SIG_PADDING*)
IF (interrupt was pending) THEN

RFLAGS.ZF := 1;
RAX := SGX_UNMASKED_EVENT;
GOTO EXIT;

FI
IF (signature failed to verify) THEN

RFLAGS.ZF := 1;
RAX := SGX_INVALID_SIGNATURE;
GOTO EXIT;

FI;
(*Close “Event Window” *)

(* make sure no other Intel SGX instruction is modifying SECS*)
IF (Other instructions modifying SECS) 

THEN #GP(0); FI;

IF ( (EPCM(DS:RCX). VALID = 0) or (EPCM(DS:RCX).PT ≠ PT_SECS) )
THEN #PF(DS:RCX); FI;

(* Verify ISVFAMILYID is not used on an enclave with KSS disabled *)
IF ((TMP_SIG.ISVFAMILYID != 0) AND (DS:RCX.ATTRIBUTES.KSS == 0))

THEN 
        RFLAGS.ZF := 1;
        RAX := SGX_INVALID_SIG_STRUCT;
        GOTO EXIT;
FI;

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUTES.INIT *) 
IF ( (Other instruction modifying MRENCLAVE) or (Other instructions modifying the SECS’s Initialized state)) 

THEN #GP(0); FI;

(* Calculate finalized version of MRENCLAVE *)
(* SHA256 algorithm requires one last update that compresses the length of the hashed message into the output SHA256 digest *)
TMP_ENCLAVE := SHA256FINAL( (DS:RCX).MRENCLAVE, enclave’s MRENCLAVE update count *512);

(* Verify MRENCLAVE from SIGSTRUCT *)
IF (TMP_SIG.ENCLAVEHASH ≠ TMP_MRENCLAVE)

RFLAGS.ZF := 1;
RAX := SGX_INVALID_MEASUREMENT;
GOTO EXIT;

FI;
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TMP_MRSIGNER := SHA256(TMP_SIG.MODULUS)

(* if controlled ATTRIBUTES are set, SIGSTRUCT must be signed using an authorized key *)
CONTROLLED_ATTRIBUTES := 0000000000000020H;
IF ( ( (DS:RCX.ATTRIBUTES & CONTROLLED_ATTRIBUTES) ≠ 0) and (TMP_MRSIGNER ≠ IA32_SGXLEPUBKEYHASH) )

RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;

(* Verify SIGSTRUCT.ATTRIBUTE requirements are met *)
IF ( (DS:RCX.ATTRIBUTES & TMP_SIG.ATTRIBUTEMASK) ≠ (TMP_SIG.ATTRIBUTE & TMP_SIG.ATTRIBUTEMASK) )

RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;

( *Verify SIGSTRUCT.MISCSELECT requirements are met *)
IF ( (DS:RCX.MISCSELECT & TMP_SIG.MISCMASK) ≠ (TMP_SIG.MISCSELECT & TMP_SIG.MISCMASK) )

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;

GOTO EXIT
FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)
IF ( DS:RCX.CET_ATTRIBUTES & TMP_SIG.CET_ATTRIBUTES_MASK ≠ TMP_SIG.CET_ATTRIBUTES & 
 TMP_SIG.CET_ATTRIB-UTES_MASK )

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT

FI;
FI;

(* If EINITTOKEN.VALID[0] is 0, verify the enclave is signed by an authorized key *)
IF (TMP_TOKEN.VALID[0] = 0)

IF (TMP_MRSIGNER ≠ IA32_SGXLEPUBKEYHASH)
RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;
GOTO COMMIT;

FI;

(* Debug Launch Enclave cannot launch Production Enclaves *)
IF ( (DS:RDX.MASKEDATTRIBUTESLE.DEBUG = 1) and (DS:RCX.ATTRIBUTES.DEBUG = 0) )

RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;
EINIT—Initialize an Enclave for Execution Vol. 3D 39-51



INTEL® SGX INSTRUCTION REFERENCES
(* Check reserve space in EINIT token includes reserved regions and upper bits in valid field *)
IF (TMP_TOKEN reserved space is not clear)

RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;

(* EINIT token must not have been created by a configuration beyond the current CPU configuration *)
IF (TMP_TOKEN.CPUSVN must not be a configuration beyond CR_CPUSVN)

RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;

(* Derive Launch key used to calculate EINITTOKEN.MAC *)
HARDCODED_PKCS1_5_PADDING[15:0] := 0100H;
HARDCODED_PKCS1_5_PADDING[2655:16] := SignExtend330Byte(-1); // 330 bytes of 0FFH
HARDCODED_PKCS1_5_PADDING[2815:2656] := 2004000501020403650148866009060D30313000H;

TMP_KEYDEPENDENCIES.KEYNAME := EINITTOKEN_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_TOKEN.ISVPRODIDLE;
TMP_KEYDEPENDENCIES.ISVSVN := TMP_TOKEN.ISVSVNLE;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_TOKEN.MASKEDATTRIBUTESLE;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := 0;
TMP_KEYDEPENDENCIES.MRENCLAVE := 0;
TMP_KEYDEPENDENCIES.MRSIGNER := IA32_SGXLEPUBKEYHASH;
TMP_KEYDEPENDENCIES.KEYID := TMP_TOKEN.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := TMP_TOKEN.CPUSVNLE;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_TOKEN.MASKEDMISCSELECTLE;
TMP_KEYDEPENDENCIES.MISCMASK := 0;
TMP_KEYDEPENDENCIES.PADDING := HARDCODED_PKCS1_5_PADDING;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := 0;
TMP_KEYDEPENDENCIES.CONFIGSVN := 0;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1))

TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_TOKEN.CET_MASKED_ATTRIBUTES_ LE;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES_MASK := 0;

FI;

(* Calculate the derived key*) 
TMP_EINITTOKENKEY := derivekey(TMP_KEYDEPENDENCIES);

(* Verify EINITTOKEN was generated using this CPU's Launch key and that it has not been modified since issuing by the Launch 
Enclave. Only 192 bytes of EINITTOKEN are CMACed *)
IF (TMP_TOKEN.MAC ≠ CMAC(TMP_EINITTOKENKEY, TMP_TOKEN[1535:0] ) )

RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;
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(* Verify EINITTOKEN (RDX) is for this enclave *)
IF ( (TMP_TOKEN.MRENCLAVE ≠ TMP_MRENCLAVE) or (TMP_TOKEN.MRSIGNER ≠ TMP_MRSIGNER) )

RFLAGS.ZF := 1;
RAX := SGX_INVALID_MEASUREMENT;
GOTO EXIT;

FI;

(* Verify ATTRIBUTES in EINITTOKEN are the same as the enclave’s *)
IF (TMP_TOKEN.ATTRIBUTES ≠ DS:RCX.ATTRIBUTES)

RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINIT_ATTRIBUTE;
GOTO EXIT;

FI;

COMMIT:
(* Commit changes to the SECS; Set ISVPRODID, ISVSVN, MRSIGNER, INIT ATTRIBUTE fields in SECS (RCX) *) 
DS:RCX.MRENCLAVE := TMP_MRENCLAVE;
(* MRSIGNER stores a SHA256 in little endian implemented natively on x86 *) 
DS:RCX.MRSIGNER := TMP_MRSIGNER;
DS:RCX.ISVEXTPRODID := TMP_SIG.ISVEXTPRODID;
DS:RCX.ISVPRODID := TMP_SIG.ISVPRODID;
DS:RCX.ISVSVN := TMP_SIG.ISVSVN;
DS:RCX.ISVFAMILYID := TMP_SIG.ISVFAMILYID;
DS:RCX.PADDING := TMP_SIG_PADDING;

(* Mark the SECS as initialized *)
Update DS:RCX to initialized;

(* Set RAX and ZF for success*) 
RFLAGS.ZF := 0;
RAX := 0;

EXIT:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

ZF is cleared if successful, otherwise ZF is set and RAX contains the error code. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand is not properly aligned.
If another instruction is modifying the SECS.
If the enclave is already initialized.
If the SECS.MRENCLAVE is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If RCX does not resolve in an EPC page.
If the memory address is not a valid, uninitialized SECS.

64-Bit Mode Exceptions

#GP(0) If a memory operand is not properly aligned.
If another instruction is modifying the SECS.
If the enclave is already initialized.
If the SECS.MRENCLAVE is in use.
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#PF(error code) If a page fault occurs in accessing memory operands.
If RCX does not resolve in an EPC page.
If the memory address is not a valid, uninitialized SECS.
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ELDB/ELDU/ELDBC/ELDUC—Load an EPC Page and Mark its State 

Instruction Operand Encoding

Description

This leaf function copies a page from regular main memory to the EPC. As part of the copying process, the page is 
cryptographically authenticated and decrypted. This instruction can only be executed when current privilege level 
is 0.
The ELDB leaf function sets the BLOCK bit in the EPCM entry for the destination page in the EPC after copying. The 
ELDU leaf function clears the BLOCK bit in the EPCM entry for the destination page in the EPC after copying.
RBX contains the effective address of a PAGEINFO structure; RCX contains the effective address of the destination 
EPC page; RDX holds the effective address of the version array slot that holds the version of the page.
The ELDBC/ELDUC leafs are very similar to ELDB and ELDU. They provide an error code on the concurrency conflict 
for any of the pages which need to acquire a lock. These include the destination, SECS, and VA slot.
The table below provides additional information on the memory parameter of ELDB/ELDU leaf functions.

ELDB/ELDU/ELDBC/ELBUC Memory Parameter Semantics

The error codes are: 

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 07H
ENCLS[ELDB]

IR V/V SGX1 This leaf function loads, verifies an EPC page and marks the page 
as blocked.

EAX = 08H
ENCLS[ELDU]

IR V/V SGX1 This leaf function loads, verifies an EPC page and marks the page 
as unblocked.

EAX = 12H
ENCLS[ELDBC]

IR V/V EAX[6] This leaf function behaves lie ELDB but with improved conflict 
handling for oversubscription.

EAX = 13H
ENCLS[ELDUC]

IR V/V EAX[6] This leaf function behaves like ELDU but with improved conflict 
handling for oversubscription.

Op/En EAX RBX RCX RDX

IR
ELDB/ELDU 

(In)
Return error 
code (Out)

Address of the PAGEINFO 
(In)

Address of the EPC page 
(In)

Address of the version-
array slot (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD PAGEINFO.SECS EPCPAGE Version-Array Slot

Non-enclave 
read access

Non-enclave read 
access

Non-enclave read 
access

Enclave read/write 
access

Read/Write access 
permitted by Enclave

Read/Write access per-
mitted by Enclave

Table 39-28.  ELDB/ELDU/ELDBC/ELBUC Return Value in RAX
 Error Code (see Table 39-4) Description

No Error ELDB/ELDU successful.

SGX_MAC_COMPARE_FAIL If the MAC check fails.
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Concurrency Restrictions

Operation

Temp Variables in ELDB/ELDU/ELDBC/ELBUC Operational Flow

(* Check PAGEINFO and EPCPAGE alignment *)
IF ( (DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned) )

THEN #GP(0); FI;

Table 39-29.  Base Concurrency Restrictions of ELDB/ELDU/ELDBC/ELBUC

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ELDB/ELDU Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

SECS [DS:RBX]PAGEINFO.SECS Shared #GP

ELDBC/ELBUC Target [DS:RCX] Exclusive SGX_EPC_PAGE_
CONFLICT

EPC_PAGE_CONFLICT_ERROR

VA [DS:RDX] Shared SGX_EPC_PAGE_
CONFLICT

SECS [DS:RBX]PAGEINFO.SECS Shared SGX_EPC_PAGE_
CONFLICT

Table 39-30.  Additional Concurrency Restrictions of ELDB/ELDU/ELDBC/ELBUC

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, 
EACCEPTCOPY, EMODPE, 

EMODPR, EMODT

vs. EADD, EEXTEND, 
EINIT

vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ELDB/ELDU Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.SECS Concurrent Concurrent Concurrent

ELDBC/ELBUC Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.SECS Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SRCPGE Memory page 4KBytes

TMP_SECS Memory page 4KBytes

TMP_PCMD PCMD 128 Bytes

TMP_HEADER MACHEADER 128 Bytes

TMP_VER UINT64 64

TMP_MAC UINT128 128

TMP_PK UINT128 128 Page encryption/MAC key.

SCRATCH_PCMD PCMD 128 Bytes
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IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check VASLOT alignment *)
IF (DS:RDX is not 8Byte aligned)

THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
THEN #PF(DS:RDX); FI;

TMP_SRCPGE := DS:RBX.SRCPGE;
TMP_SECS := DS:RBX.SECS;
TMP_PCMD := DS:RBX.PCMD;

(* Check alignment of PAGEINFO (RBX) linked parameters. Note: PCMD pointer is overlaid on top of PAGEINFO.SECINFO field *)
IF ( (DS:TMP_PCMD is not 128Byte aligned) or (DS:TMP_SRCPGE is not 4KByte aligned) )

THEN #GP(0); FI;

(* Check concurrency of EPC by other Intel SGX instructions *)
IF (other instructions accessing EPC)

THEN
    IF ((EAX==07h) OR (EAX==08h))   (* ELDB/ELDU *)
    THEN
        IF (<<VMX non-root operation>> AND  

    <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)
THEN 

VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := 

                              << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address := DS:RCX;
Deliver VMEXIT;

ELSE
#GP(0);

FI;
ELSE (* ELDBC/ELDUC *)

        IF (<<VMX non-root operation>> AND  
    <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN 
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_ERROR;
VMCS.Exit_qualification.error := SGX_EPC_PAGE_CONFLICT;
VMCS.Guest-physical_address := 

                              << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address := DS:RCX;
Deliver VMEXIT;

ELSE
            RFLAGS.ZF := 1;

            RFLAGS.CF := 0; 
            RAX := SGX_EPC_PAGE_CONFLICT;
            GOTO ERROR_EXIT;

FI;
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FI;
FI;

(* Check concurrency of EPC and VASLOT by other Intel SGX instructions *)
IF (Other instructions modifying VA slot) THEN

IF ((EAX==07h) OR (EAX==08h)) (* ELDB/ELDU *)
THEN #GP(0);

ELSE (* ELDBC/ELDUC *)
RFLAGS.ZF := 1;
RFLAGS.CF := 0; 
RAX := SGX_EPC_PAGE_CONFLICT;
GOTO ERROR_EXIT;

FI;
FI; 

(* Verify EPCM attributes of EPC page, VA, and SECS *)
IF (EPCM(DS:RCX).VALID = 1) 

THEN #PF(DS:RCX); FI;

IF ( (EPCM(DS:RDX & ~0FFFH).VALID = 0) or (EPCM(DS:RDX & ~0FFFH).PT ≠ PT_VA) )
THEN #PF(DS:RDX); FI;

(* Copy PCMD into scratch buffer *)
SCRATCH_PCMD[1023: 0] := DS:TMP_PCMD[1023:0];

(* Zero out TMP_HEADER*)
TMP_HEADER[sizeof(TMP_HEADER)-1: 0] := 0;

TMP_HEADER.SECINFO := SCRATCH_PCMD.SECINFO;
TMP_HEADER.RSVD := SCRATCH_PCMD.RSVD;
TMP_HEADER.LINADDR := DS:RBX.LINADDR;

(* Verify various attributes of SECS parameter *)
IF ( (TMP_HEADER.SECINFO.FLAGS.PT = PT_REG) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_TCS) or 

 (TMP_HEADER.SECINFO.FLAGS.PT = PT_TRIM) or
 (TMP_HEADER.SECINFO.FLAGS.PT = PT_SS_FIRST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1) or
 (TMP_HEADER.SECINFO.FLAGS.PT = PT_SS_REST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1))
THEN 

IF ( DS:TMP_SECS is not 4KByte aligned) 
THEN #GP(0) FI;

IF (DS:TMP_SECS does not resolve within an EPC) 
THEN #PF(DS:TMP_SECS) FI;

IF ( Another instruction is currently modifying the SECS) THEN
IF ((EAX==07h) OR (EAX==08h)) (* ELDB/ELDU *)

        THEN #GP(0);
ELSE (* ELDBC/ELDUC *)

RFLAGS.ZF := 1;
        RFLAGS.CF := 0; 
        RAX := SGX_EPC_PAGE_CONFLICT;
        GOTO ERROR_EXIT;

FI;
FI;
TMP_HEADER.EID := DS:TMP_SECS.EID;

ELSE
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(* TMP_HEADER.SECINFO.FLAGS.PT is PT_SECS or PT_VA which do not have a parent SECS, and hence no EID binding *)
TMP_HEADER.EID := 0;
IF (DS:TMP_SECS ≠ 0)

THEN #GP(0) FI;
FI;

(* Copy 4KBytes SRCPGE to secure location *)
DS:RCX[32767: 0] := DS:TMP_SRCPGE[32767: 0];
TMP_VER := DS:RDX[63:0];

(* Decrypt and MAC page. AES_GCM_DEC has 2 outputs, {plain text, MAC} *)
(* Parameters for AES_GCM_DEC {Key, Counter, ..} *)
{DS:RCX, TMP_MAC} := AES_GCM_DEC(CR_BASE_PK, TMP_VER << 32, TMP_HEADER, 128, DS:RCX, 4096);

IF ( (TMP_MAC ≠ DS:TMP_PCMD.MAC) )
THEN 

RFLAGS.ZF := 1;
RAX := SGX_MAC_COMPARE_FAIL;
GOTO ERROR_EXIT;

FI;

(* Clear VA Slot *)
DS:RDX := 0

(* Commit EPCM changes *)
EPCM(DS:RCX).PT := TMP_HEADER.SECINFO.FLAGS.PT;
EPCM(DS:RCX).RWX := TMP_HEADER.SECINFO.FLAGS.RWX;
EPCM(DS:RCX).PENDING := TMP_HEADER.SECINFO.FLAGS.PENDING;
EPCM(DS:RCX).MODIFIED := TMP_HEADER.SECINFO.FLAGS.MODIFIED;
EPCM(DS:RCX).PR := TMP_HEADER.SECINFO.FLAGS.PR;
EPCM(DS:RCX).ENCLAVEADDRESS := TMP_HEADER.LINADDR;

IF ( ((EAX = 07H) or (EAX = 12H)) and (TMP_HEADER.SECINFO.FLAGS.PT is NOT PT_SECS or PT_VA))
THEN 

EPCM(DS:RCX).BLOCKED := 1;
ELSE

EPCM(DS:RCX).BLOCKED := 0;
FI;

IF (TMP_HEADER.SECINFO.FLAGS.PT is PT_SECS)
   << store translation of DS:RCX produced by paging in SECS(DS:RCX).ENCLAVECONTEXT >>
FI;

EPCM(DS:RCX). VALID := 1;

RAX := 0;
RFLAGS.ZF := 0;

ERROR_EXIT:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF.
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Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the instruction’s EPC resource is in use by others.
If the instruction fails to verify MAC.
If the version-array slot is in use.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand expected to be in EPC does not resolve to an EPC page.
If one of the EPC memory operands has incorrect page type.
If the destination EPC page is already valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the instruction’s EPC resource is in use by others.
If the instruction fails to verify MAC.
If the version-array slot is in use.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand expected to be in EPC does not resolve to an EPC page.
If one of the EPC memory operands has incorrect page type.
If the destination EPC page is already valid.
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EMODPR—Restrict the Permissions of an EPC Page  

Instruction Operand Encoding

Description

This leaf function restricts the access rights associated with an EPC page in an initialized enclave. THE RWX bits of 
the SECINFO parameter are treated as a permissions mask; supplying a value that does not restrict the page 
permissions will have no effect. This instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC 
page. The table below provides additional information on the memory parameter of the EMODPR leaf function.

EMODPR Memory Parameter Semantics

The instruction faults if any of the following: 

EMODPR Faulting Conditions

The error codes are: 

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 0EH
ENCLS[EMODPR]

IR V/V SGX2 This leaf function restricts the access rights associated with a 
EPC page in an initialized enclave.

Op/En EAX RBX RCX

IR EMODPR (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read/Write access permitted by Enclave

The operands are not properly aligned. If unsupported security attributes are set.

The Enclave is not initialized. SECS is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid.

Table 39-31.  EMODPR Return Value in RAX
 Error Code (see Table 39-4) Description

No Error EMODPR successful.

SGX_PAGE_NOT_MODIFIABLE The EPC page cannot be modified because it is in the PENDING or MODIFIED state.

SGX_EPC_PAGE_CONFLICT Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODT, or EWB.

Table 39-32.  Base Concurrency Restrictions of EMODPR

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EMODPR Target [DS:RCX] Shared #GP
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Operation

Temp Variables in EMODPR Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC) 
THEN #PF(DS:RCX); FI;

SCRATCH_SECINFO := DS:RBX;

(* Check for misconfigured SECINFO flags*)
IF ( (SCRATCH_SECINFO reserved fields are not zero ) or

(SCRATCH_SECINFO.FLAGS.R is 0 and SCRATCH_SECINFO.FLAGS.W is not 0) )
THEN #GP(0); FI;

(* Check concurrency with SGX1 or SGX2 instructions on the EPC page *)
IF (SGX1 or other SGX2 instructions accessing EPC page) 

THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID is 0 )
THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction) 

THEN 
RFLAGS.ZF := 1;
RAX := SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

FI;

IF (EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0) )
THEN 

RFLAGS.ZF := 1;
RAX := SGX_PAGE_NOT_MODIFIABLE;

Table 39-33.  Additional Concurrency Restrictions of EMODPR

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EMODPR Target [DS:RCX] Exclusive SGX_EPC_PAGE
_CONFLICT

Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
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GOTO DONE;
FI;

IF (EPCM(DS:RCX).PT is not PT_REG)
THEN #PF(DS:RCX); FI;

TMP_SECS := GET_SECS_ADDRESS

IF (TMP_SECS.ATTRIBUTES.INIT = 0)
  THEN #GP(0); FI;

(* Set the PR bit to indicate that permission restriction is in progress *)
EPCM(DS:RCX).PR := 1;

(* Update EPCM permissions *)
EPCM(DS:RCX).R := EPCM(DS:RCX).R & SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := EPCM(DS:RCX).W & SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := EPCM(DS:RCX).X & SCRATCH_SECINFO.FLAGS.X;

RFLAGS.ZF := 0;
RAX := 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared. Clears 
CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
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EMODT—Change the Type of an EPC Page  

Instruction Operand Encoding

Description

This leaf function modifies the type of an EPC page. The security attributes are configured to prevent access to the 
EPC page at its new type until a corresponding invocation of the EACCEPT leaf confirms the modification. This 
instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC page. 
The table below provides additional information on the memory parameter of the EMODT leaf function.

EMODT Memory Parameter Semantics

The instruction faults if any of the following: 

EMODT Faulting Conditions

The error codes are: 

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 0FH
ENCLS[EMODT]

IR V/V SGX2 This leaf function changes the type of an existing EPC page.

Op/En EAX RBX RCX

IR EMODT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read/Write access permitted by Enclave

The operands are not properly aligned. If unsupported security attributes are set.

The Enclave is not initialized. SECS is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid.

Table 39-34.  EMODT Return Value in RAX
 Error Code (see Table 39-4) Description

No Error EMODT successful.

SGX_PAGE_NOT_MODIFIABLE The EPC page cannot be modified because it is in the PENDING or MODIFIED state.

SGX_EPC_PAGE_CONFLICT Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODPR, or EWB.

Table 39-35.  Base Concurrency Restrictions of EMODT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EMODT Target [DS:RCX] Exclusive SGX_EPC_PAGE_
CONFLICT

EPC_PAGE_CONFLICT_ERROR
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Operation

Temp Variables in EMODT Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC) 
THEN #PF(DS:RCX); FI;

SCRATCH_SECINFO := DS:RBX;

(* Check for misconfigured SECINFO flags*)
IF ( (SCRATCH_SECINFO reserved fields are not zero ) or

!(SCRATCH_SECINFO.FLAGS.PT is PT_TCS or SCRATCH_SECINFO.FLAGS.PT is PT_TRIM) )
THEN #GP(0); FI;

(* Check concurrency with SGX1 instructions on the EPC page *)
IF (other SGX1 instructions accessing EPC page) 

THEN
RFLAGS.ZF := 1;
RAX := SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

FI;

IF (EPCM(DS:RCX).VALID is 0)
THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction) 

THEN
RFLAGS.ZF := 1;
RAX := SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

Table 39-36.  Additional Concurrency Restrictions of EMODT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EMODT Target [DS:RCX] Exclusive SGX_EPC_PAGE
_CONFLICT

Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
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FI;

IF (!(EPCM(DS:RCX).PT is PT_REG or
((EPCM(DS:RCX).PT is PT_TCS or PT_SS_FIRST or PT_SS_REST) and SCRATCH_SECINFO.FLAGS.PT is PT_TRIM)))

THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0) )
THEN 

RFLAGS.ZF := 1;
RAX := SGX_PAGE_NOT_MODIFIABLE;
GOTO DONE;

FI;

TMP_SECS := GET_SECS_ADDRESS

IF (TMP_SECS.ATTRIBUTES.INIT = 0)
THEN #GP(0); FI;

(* Update EPCM fields *)
EPCM(DS:RCX).PR := 0;
EPCM(DS:RCX).MODIFIED := 1;
EPCM(DS:RCX).R := 0;
EPCM(DS:RCX).W := 0;
EPCM(DS:RCX).X := 0;
EPCM(DS:RCX).PT := SCRATCH_SECINFO.FLAGS.PT;

RFLAGS.ZF := 0;
RAX := 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared. Clears 
CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
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EPA—Add Version Array 

Instruction Operand Encoding

Description

This leaf function creates an empty version array in the EPC page whose logical address is given by DS:RCX, and 
sets up EPCM attributes for that page. At the time of execution of this instruction, the register RBX must be set to 
PT_VA.
The table below provides additional information on the memory parameter of EPA leaf function.

EPA Memory Parameter Semantics

Concurrency Restrictions

Operation

IF (RBX ≠ PT_VA or DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions accessing the page) 

THEN 
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 0AH
ENCLS[EPA]

IR V/V SGX1 This leaf function adds a Version Array to the EPC.

Op/En EAX RBX RCX

IR EPA (In) PT_VA (In, Constant) Effective address of the EPC page (In)

EPCPAGE

Write access permitted by Enclave

Table 39-37.  Base Concurrency Restrictions of EPA

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EPA VA [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

Table 39-38.  Additional Concurrency Restrictions of EPA

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EPA VA [DS:RCX] Concurrent L Concurrent Concurrent
EPA—Add Version Array Vol. 3D 39-67



INTEL® SGX INSTRUCTION REFERENCES
THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address := DS:RCX;

        Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

(* Check EPC page must be empty *)
IF (EPCM(DS:RCX). VALID ≠ 0)

THEN #PF(DS:RCX); FI;

(* Clears EPC page *)
DS:RCX[32767:0] := 0;

EPCM(DS:RCX).PT := PT_VA;
EPCM(DS:RCX).ENCLAVEADDRESS := 0;
EPCM(DS:RCX).BLOCKED := 0;
EPCM(DS:RCX).PENDING := 0;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).PR := 0;
EPCM(DS:RCX).RWX := 0;
EPCM(DS:RCX).VALID := 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the EPC page.
If RBX is not set to PT_VA.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If the EPC page is valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the EPC page.
If RBX is not set to PT_VA.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If the EPC page is valid.
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ERDINFO—Read Type and Status Information About an EPC Page 

Instruction Operand Encoding

Description

This instruction reads type and status information about an EPC page and returns it in a RDINFO structure. The 
STATUS field of the structure describes the status of the page and determines the validity of the remaining fields. 
The FLAGS field returns the EPCM permissions of the page; the page type; and the BLOCKED, PENDING, MODI-
FIED, and PR status of the page. For enclave pages, the ENCLAVECONTEXT field of the structure returns the value 
of SECS.ENCLAVECONTEXT. For non-enclave pages (e.g., VA) ENCLAVECONTEXT returns 0.
For invalid or non-EPC pages, the instruction returns an information code indicating the page's status, in addition 
to populating the STATUS field.
ERDINFO returns an error code if the destination EPC page is being modified by a concurrent SGX instruction. 
RBX contains the effective address of a RDINFO structure while RCX contains the effective address of an EPC page. 
The table below provides additional information on the memory parameter of ERDINFO leaf function.

ERDINFO Memory Parameter Semantics

The instruction faults if any of the following: 

ERDINFO Faulting Conditions

The error codes are: 

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 10H
ENCLS[ERDINFO]

IR V/V EAX[6] This leaf function returns type and status information about an 
EPC page.

Op/En EAX RBX RCX

IR ERDINFO (In)
Return error code 

(Out)
Address of a RDINFO structure (In)

Address of the destination EPC page 
(In)

RDINFO EPCPAGE

Read/Write access permitted by Non Enclave Read access permitted by Enclave

A memory operand effective address is outside the DS 
segment limit (32b mode).

A memory operand is not properly aligned.

DS segment is unusable (32b mode). A page fault occurs in accessing memory operands.

A memory address is in a non-canonical form (64b mode).

Table 39-39.  ERDINFO Return Value in RAX
 Error Code Value Description

No Error 0 ERDINFO successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.

SGX_PG_INVLD Target page is not a valid EPC page.

SGX_PG_NONEPC Page is not an EPC page.
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Concurrency Restrictions

Operation

Temp Variables in ERDINFO Operational Flow

(* check alignment of RDINFO structure (RBX) *)
IF (DS:RBX is not 32Byte Aligned) THEN
    #GP(0); FI;

(* check alignment of the EPCPAGE (RCX) *)
IF (DS:RCX is not 4KByte Aligned) THEN
    #GP(0); FI;

(* check that EPCPAGE (DS:RCX) is the address of an EPC page *)
IF (DS:RCX does not resolve within EPC) THEN
    RFLAGS.CF := 1;
    RFLAGS.ZF := 0;
    RAX := SGX_PG_NONEPC;
    goto DONE;
FI;

(* Check the EPC page for concurrency *)
IF (EPC page is being modified) THEN
    RFLAGS.ZF = 1;
    RFLAGS.CF = 0;
    RAX = SGX_EPC_PAGE_CONFLICT;
    goto DONE;
FI;

(* check page validity *)
IF (EPCM(DS:RCX).VALID = 0) THEN
    RFLAGS.CF = 1;

Table 39-40.  Base Concurrency Restrictions of ERDINFO

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ERDINFO Target [DS:RCX] Shared SGX_EPC_PAGE_
CONFLICT

Table 39-41.  Additional Concurrency Restrictions of ERDINFO

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ERDINFO Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.

TMP_RDINFO Linear Address 64 Address of the RDINFO structure.
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    RFLAGS.ZF = 0;
    RAX = SGX_PG_INVLD;
    goto DONE;
FI;

(* clear the fields of the RDINFO structure *)
TMP_RDINFO := DS:RBX;
TMP_RDINFO.STATUS := 0;
TMP_RDINFO.FLAGS := 0;
TMP_RDINFO.ENCLAVECONTEXT := 0;

(* store page info in RDINFO structure *)
TMP_RDINFO.FLAGS.RWX := EPCM(DS:RCX).RWX;
TMP_RDINFO.FLAGS.PENDING := EPCM(DS:RCX).PENDING;
TMP_RDINFO.FLAGS.MODIFIED := EPCM(DS:RCX).MODIFIED;
TMP_RDINFO.FLAGS.PR := EPCM(DS:RCX).PR;
TMP_RDINFO.FLAGS.PAGE_TYPE := EPCM(DS:RCX).PAGE_TYPE;
TMP_RDINFO.FLAGS.BLOCKED := EPCM(DS:RCX).BLOCKED;

(* read SECS.ENCLAVECONTEXT for enclave child pages *)
IF ((EPCM(DS:RCX).PAGE_TYPE = PT_REG) or
    (EPCM(DS:RCX).PAGE_TYPE = PT_TCS) or
    (EPCM(DS:RCX).PAGE_TYPE = PT_TRIM) or

(EPCM(DS:RCX).PAGE_TYPE = PT_SS_FIRST) or
(EPCM(DS:RCX).PAGE_TYPE = PT_SS_REST)

   ) THEN
    TMP_SECS := Address of SECS for (DS:RCX);
    TMP_RDINFO.ENCLAVECONTEXT := SECS(TMP_SECS).ENCLAVECONTEXT;
FI;

(* populate enclave information for SECS pages *)
IF (EPCM(DS:RCX).PAGE_TYPE = PT_SECS) THEN
    IF ((VMX non-root mode) and
        (ENABLE_EPC_VIRTUALIZATION_EXTENSIONS Execution Control = 1)
       ) THEN
        TMP_RDINFO.STATUS.CHILDPRESENT := 
                            ((SECS(DS:RCX).CHLDCNT ≠ 0) or
                              SECS(DS:RCX).VIRTCHILDCNT ≠ 0);
    ELSE
        TMP_RDINFO.STATUS.CHILDPRESENT := (SECS(DS:RCX).CHLDCNT ≠ 0);
        TMP_RDINFO.STATUS.VIRTCHILDPRESENT := 
                            (SECS(DS:RCX).VIRTCHILDCNT ≠ 0);
        TMP_RDINFO.ENCLAVECONTEXT := SECS(DS_RCX).ENCLAVECONTEXT;
    FI;
FI;

RAX := 0;
RFLAGS.ZF := 0;
RFLAGS.CF := 0;

DONE:
(* clear flags *)
RFLAGS.PF := 0;
RFLAGS.AF := 0;
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RFLAGS.OF := 0;
RFLAGS.SF := ? 0;

Flags Affected

ZF is set if ERDINFO fails due to concurrent operation with another SGX instruction; otherwise cleared.
CF is set if page is not a valid EPC page or not an EPC page; otherwise cleared.
PF, AF, OF, and SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If DS segment is unusable.
If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.
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EREMOVE—Remove a page from the EPC 

Instruction Operand Encoding

Description

This leaf function causes an EPC page to be un-associated with its SECS and be marked as unused. This instruction 
leaf can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address. 
Segment override is not supported.
The instruction fails if the operand is not properly aligned or does not refer to an EPC page or the page is in use by 
another thread, or other threads are running in the enclave to which the page belongs. In addition the instruction 
fails if the operand refers to an SECS with associations.

EREMOVE Memory Parameter Semantics

The instruction faults if any of the following: 

EREMOVE Faulting Conditions

The error codes are: 

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 03H
ENCLS[EREMOVE]

IR V/V SGX1 This leaf function removes a page from the EPC.

Op/En EAX RCX

IR EREMOVE (In) Return error code (Out) Effective address of the EPC page (In)

EPCPAGE

Write access permitted by Enclave

The memory operand is not properly aligned. The memory operand does not resolve in an EPC page.

Refers to an invalid SECS. Refers to an EPC page that is locked by another thread.

Another Intel SGX instruction is accessing the EPC page. RCX does not contain an effective address of an EPC page.

the EPC page refers to an SECS with associations.

Table 39-42.  EREMOVE Return Value in RAX
 Error Code (see Table 39-4) Description

No Error EREMOVE successful.

SGX_CHILD_PRESENT If the SECS still have enclave pages loaded into EPC.

SGX_ENCLAVE_ACT If there are still logical processors executing inside the enclave.
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Concurrency Restrictions

Operation

Temp Variables in EREMOVE Operational Flow

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve to an EPC page)
THEN #PF(DS:RCX); FI;

TMP_SECS := Get_SECS_ADDRESS();

(* Check the EPC page for concurrency *)
IF (EPC page being referenced by another Intel SGX instruction) 

THEN 
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address := DS:RCX;

        Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

(* if DS:RCX is already unused, nothing to do*)
IF ( (EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PT = PT_TRIM AND EPCM(DS:RCX).MODIFIED = 0))

THEN GOTO DONE; 
FI;

Table 39-43.  Base Concurrency Restrictions of EREMOVE

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EREMOVE Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

Table 39-44.  Additional Concurrency Restrictions of EREMOVE

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EREMOVE Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.
EREMOVE—Remove a page from the EPC39-74 Vol. 3D



INTEL® SGX INSTRUCTION REFERENCES
IF ( (EPCM(DS:RCX).PT = PT_VA) OR
((EPCM(DS:RCX).PT = PT_TRIM) AND (EPCM(DS:RCX).MODIFIED = 0)) )
THEN 

EPCM(DS:RCX).VALID := 0;
GOTO DONE; 

FI;

IF (EPCM(DS:RCX).PT = PT_SECS) 
THEN 

IF (DS:RCX has an EPC page associated with it) 
THEN 

RFLAGS.ZF := 1;
RAX := SGX_CHILD_PRESENT;
GOTO ERROR_EXIT;

FI;
(* treat SECS as having a child page when VIRTCHILDCNT is non-zero *)
IF (<<in VMX non-root operation>> AND 

             <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>> AND 
             (SECS(DS:RCX).VIRTCHILDCNT ≠ 0))

THEN
RFLAGS.ZF := 1;

   RAX := SGX_CHILD_PRESENT
GOTO ERROR_EXIT

FI;
EPCM(DS:RCX).VALID := 0;
GOTO DONE; 

FI;

IF (Other threads active using SECS) 
THEN 

RFLAGS.ZF := 1;
RAX := SGX_ENCLAVE_ACT;
GOTO ERROR_EXIT;

FI;

IF ( (EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM) or
(EPCM(DS:RCX).PT is PT_SS_FIRST) or (EPCM(DS:RCX).PT is PT_SS_REST))

THEN
EPCM(DS:RCX).VALID := 0;
GOTO DONE;

FI;

DONE:
RAX := 0;
RFLAGS.ZF := 0;

ERROR_EXIT:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF.
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Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the page.

#PF(error code) If a page fault occurs in accessing memory operands.
If the memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If the memory operand is non-canonical form.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the page.

#PF(error code) If a page fault occurs in accessing memory operands.
If the memory operand is not an EPC page.
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ETRACK—Activates EBLOCK Checks 

Instruction Operand Encoding

Description

This leaf function provides the mechanism for hardware to track that software has completed the required TLB 
address clears successfully. The instruction can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page.
The table below provides additional information on the memory parameter of ETRACK leaf function.

ETRACK Memory Parameter Semantics

The error codes are: 

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 0CH
ENCLS[ETRACK]

IR V/V SGX1 This leaf function activates EBLOCK checks.

Op/En EAX RCX

IR ETRACK (In) Return error code (Out) Pointer to the SECS of the EPC page (In)

EPCPAGE

Read/Write access permitted by Enclave

Table 39-45.  ETRACK Return Value in RAX
 Error Code (see Table 39-4) Description

No Error ETRACK successful.

SGX_PREV_TRK_INCMPL All processors did not complete the previous shoot-down sequence.

Table 39-46.  Base Concurrency Restrictions of ETRACK

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ETRACK SECS [DS:RCX] Shared #GP

Table 39-47.  Additional Concurrency Restrictions of ETRACK

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ETRACK SECS [DS:RCX] Concurrent Concurrent Exclusive SGX_EPC_PAGE
_CONFLICT
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Operation

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions using tracking facility on this SECS) 

THEN 
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := TRACKING_RESOURCE_CONFLICT;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := SECS(TMP_SECS).ENCLAVECONTEXT;
VMCS.Guest-linear_address := 0;

        Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).PT ≠ PT_SECS) 
THEN #PF(DS:RCX); FI;

(* All processors must have completed the previous tracking cycle*)
IF ( (DS:RCX).TRACKING ≠ 0) ) 

THEN 
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := TRACKING_REFERENCE_CONFLICT;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := SECS(TMP_SECS).ENCLAVECONTEXT;
VMCS.Guest-linear_address := 0;

        Deliver VMEXIT;
FI;

RFLAGS.ZF := 1;
RAX := SGX_PREV_TRK_INCMPL;
GOTO DONE;

ELSE
RAX := 0;
RFLAGS.ZF := 0;

FI;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Clears CF, PF, AF, OF, SF.
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Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another thread is concurrently using the tracking facility on this SECS.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
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ETRACKC—Activates EBLOCK Checks 

Instruction Operand Encoding

Description

The ETRACKC instruction is thread safe variant of ETRACK leaf and can be executed concurrently with other CPU 
threads operating on the same SECS. 
This leaf function provides the mechanism for hardware to track that software has completed the required TLB 
address clears successfully. The instruction can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page.
The table below provides additional information on the memory parameter of ETRACK leaf function.

ETRACKC Memory Parameter Semantics

The error codes are: 

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 11H
ENCLS[ETRACKC]

IR V/V EAX[6] This leaf function activates EBLOCK checks.

Op/En EAX RCX

IR
ETRACK 

(In)
Return error code (Out)

Address of the destination EPC page 
(In, EA)

Address of the SECS page (In, EA)

EPCPAGE

Read/Write access permitted by Enclave

Table 39-48.  ETRACKC Return Value in RAX
 Error Code Value Description

No Error 0 ETRACKC successful.

SGX_EPC_PAGE_CONFLICT 7 Failure due to concurrent operation of another SGX instruction.

SGX_PG_INVLD 6 Target page is not a VALID EPC page.

SGX_PREV_TRK_INCMPL 17 All processors did not complete the previous tracking sequence.

SGX_TRACK_NOT_REQUIRED 27 Target page type does not require tracking.

Table 39-49.  Base Concurrency Restrictions of ETRACKC

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ETRACKC Target [DS:RCX] Shared SGX_EPC_PAGE_
CONFLICT

SECS implicit Concurrent
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Operation

Temp Variables in ETRACKC Operational Flow

(* check alignment of EPCPAGE (RCX) *)
IF (DS:RCX is not 4KByte Aligned) THEN
#GP(0); FI;

(* check that EPCPAGE (DS:RCX) is the address of an EPC page *)
IF (DS:RCX does not resolve within an EPC) THEN
#PF(DS:RCX, PFEC.SGX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page is being modified) THEN
    RFLAGS.ZF := 1;
    RFLAGS.CF := 0;
    RAX := SGX_EPC_PAGE_CONFLICT;
    goto DONE_POST_LOCK_RELEASE;
FI;

(* check to make sure the page is valid *)
IF (EPCM(DS:RCX).VALID = 0) THEN
    RFLAGS.ZF := 1;
    RFLAGS.CF := 0;
    RAX := SGX_PG_INVLD;
    GOTO DONE;
FI;

(* find out the target SECS page *)
IF (EPCM(DS:RCX).PT is PT_REG or PT_TCS or PT_TRIM or PT_SS_FIRST or PT_SS_REST) THEN 
    TMP_SECS := Obtain SECS through EPCM(DS:RCX).ENCLAVESECS;
ELSE IF (EPCM(DS:RCX).PT is PT_SECS) THEN
    TMP_SECS := Obtain SECS through (DS:RCX);
ELSE 
    RFLAGS.ZF := 0;
    RFLAGS.CF := 1;
    RAX := SGX_TRACK_NOT_REQUIRED;
    GOTO DONE;
FI;

Table 39-50.  Additional Concurrency Restrictions of ETRACKC

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ETRACKC Target [DS:RCX] Concurrent Concurrent Concurrent

SECS implicit Concurrent Concurrent Exclusive SGX_EPC_PAGE
_CONFLICT

Name Type Size (Bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.
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(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions using tracking facility on this SECS) THEN

IF ((VMX non-root mode) and
(ENABLE_EPC_VIRTUALIZATION_EXTENSIONS Execution Control = 1)) THEN

        VMCS.Exit_reason := SGX_CONFLICT;
        VMCS.Exit_qualification.code := TRACKING_RESOURCE_CONFLICT;
        VMCS.Exit_qualification.error := 0;
        VMCS.Guest-physical_address := 

SECS(TMP_SECS).ENCLAVECONTEXT;
        VMCS.Guest-linear_address := 0;
        Deliver VMEXIT;
    FI;

    RFLAGS.ZF := 1;
    RFLAGS.CF := 0;
    RAX := SGX_EPC_PAGE_CONFLICT;
    GOTO DONE;
FI;
(* All processors must have completed the previous tracking cycle*) 
IF ( (TMP_SECS).TRACKING ≠ 0) )
THEN

IF ((VMX non-root mode) and
(ENABLE_EPC_VIRTUALIZATION_EXTENSIONS Execution Control = 1)) THEN

        VMCS.Exit_reason := SGX_CONFLICT;
        VMCS.Exit_qualification.code := TRACKING_REFERENCE_CONFLICT;
        VMCS.Exit_qualification.error := 0;
        VMCS.Guest-physical_address :=  

SECS(TMP_SECS).ENCLAVECONTEXT;
        VMCS.Guest-linear_address := 0;
        Deliver VMEXIT;
    FI;

    RFLAGS.ZF := 1;
    RFLAGS.CF := 0;
    RAX := SGX_PREV_TRK_INCMPL;
    GOTO DONE;
FI; 

RFLAGS.ZF := 0;
RFLAGS.CF := 0;
RAX := 0;

DONE:
(* clear flags *)
RFLAGS.PF,AF,OF,SF := 0;

Flags Affected

ZF is set if ETRACKC fails due to concurrent operations with another SGX instructions or target page is an invalid 
EPC page or tracking is not completed on SECS page; otherwise cleared.
CF is set if target page is not of a type that requires tracking; otherwise cleared.
PF, AF, OF, and SF are cleared.
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Protected Mode Exceptions

#GP(0) If the memory operand violates access-control policies of DS segment.
If DS segment is unusable.
If the memory operand is not properly aligned.

#PF(error code) If the memory operand expected to be in EPC does not resolve to an EPC page.
If a page fault occurs in access memory operand.

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.
If a memory operand is not properly aligned.

#PF(error code) If the memory operand expected to be in EPC does not resolve to an EPC page.
If a page fault occurs in access memory operand.
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EWB—Invalidate an EPC Page and Write out to Main Memory 

Instruction Operand Encoding

Description

This leaf function copies a page from the EPC to regular main memory. As part of the copying process, the page is 
cryptographically protected. This instruction can only be executed when current privilege level is 0.
The table below provides additional information on the memory parameter of EPA leaf function.

EWB Memory Parameter Semantics

The error codes are: 

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 0BH
ENCLS[EWB]

IR V/V SGX1 This leaf function invalidates an EPC page and writes it out to 
main memory.

Op/En EAX RBX RCX RDX

IR EWB (In) Error code (Out) Address of an PAGEINFO (In) Address of the EPC page (In) Address of a VA slot (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD EPCPAGE VASLOT

Non-EPC R/W access Non-EPC R/W access Non-EPC R/W access EPC R/W access EPC R/W access 

Table 39-51.  EWB Return Value in RAX
 Error Code (see Table 39-4) Description

No Error EWB successful.

SGX_PAGE_NOT_BLOCKED If page is not marked as blocked.

SGX_NOT_TRACKED If EWB is racing with ETRACK instruction.

SGX_VA_SLOT_OCCUPIED Version array slot contained valid entry.

SGX_CHILD_PRESENT Child page present while attempting to page out enclave.

Table 39-52.  Base Concurrency Restrictions of EWB

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EWB Source [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

Table 39-53.  Additional Concurrency Restrictions of EWB

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EWB Source [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Exclusive
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Operation

Temp Variables in EWB Operational Flow

IF ( (DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned) )
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

IF (DS:RDX is not 8Byte Aligned)
THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
THEN #PF(DS:RDX); FI;

(* EPCPAGE and VASLOT should not resolve to the same EPC page*)
IF (DS:RCX and DS:RDX resolve to the same EPC page)

THEN #GP(0); FI;

TMP_SRCPGE := DS:RBX.SRCPGE;
(* Note PAGEINFO.PCMD is overlaid on top of PAGEINFO.SECINFO *)
TMP_PCMD := DS:RBX.PCMD;

If (DS:RBX.LINADDR ≠ 0) OR (DS:RBX.SECS ≠ 0) 
THEN #GP(0); FI;

IF ( (DS:TMP_PCMD is not 128Byte Aligned) or (DS:TMP_SRCPGE is not 4KByte Aligned) )
THEN #GP(0); FI;

(* Check for concurrent Intel SGX instruction access to the page *)
IF (Other Intel SGX instruction is accessing page) 

THEN 
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason := SGX_CONFLICT;
VMCS.Exit_qualification.code := EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error := 0;
VMCS.Guest-physical_address := << translation of DS:RCX produced by paging >>;

Name Type Size (Bytes) Description

TMP_SRCPGE Memory page 4096

TMP_PCMD PCMD 128

TMP_SECS SECS 4096

TMP_BPEPOCH UINT64 8

TMP_BPREFCOUNT UINT64 8

TMP_HEADER MAC Header 128

TMP_PCMD_ENCLAVEID UINT64 8

TMP_VER UINT64 8

TMP_PK UINT128 16
EWB—Invalidate an EPC Page and Write out to Main Memory Vol. 3D 39-85



INTEL® SGX INSTRUCTION REFERENCES
VMCS.Guest-linear_address := DS:RCX;
     Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

(*Check if the VA Page is being removed or changed*)
IF (VA Page is being modified)

THEN #GP(0); FI;

(* Verify that EPCPAGE and VASLOT page are valid EPC pages and DS:RDX is VA *)
IF (EPCM(DS:RCX).VALID = 0) 

THEN #PF(DS:RCX); FI;

IF ( (EPCM(DS:RDX & ~0FFFH).VALID = 0) or (EPCM(DS:RDX & ~FFFH).PT is not PT_VA) )
THEN #PF(DS:RDX); FI;

(* Perform page-type-specific exception checks *)
IF ( (EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM ) or
(EPCM(DS:RCX).PT is PT_SS_FIRST ) or (EPCM(DS:RCX).PT is PT_SS_REST))

THEN
TMP_SECS = Obtain SECS through EPCM(DS:RCX)

(* Check that EBLOCK has occurred correctly *)
IF (EBLOCK is not correct)

THEN #GP(0); FI;
FI;

RFLAGS.ZF,CF,PF,AF,OF,SF := 0;
RAX := 0;

(* Zero out TMP_HEADER*)
TMP_HEADER[ sizeof(TMP_HEADER) - 1 : 0] := 0; 

(* Perform page-type-specific checks *)
IF ( (EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM )or
(EPCM(DS:RCX).PT is PT_SS_FIRST ) or (EPCM(DS:RCX).PT is PT_SS_REST))

THEN
(* check to see if the page is evictable *)
IF (EPCM(DS:RCX).BLOCKED = 0) 

THEN
RAX := SGX_PAGE NOT_BLOCKED;
RFLAGS.ZF := 1;
GOTO ERROR_EXIT;

FI;
(* Check if tracking done correctly *)
IF (Tracking not correct)

THEN
RAX := SGX_NOT_TRACKED;
RFLAGS.ZF := 1;
GOTO ERROR_EXIT;

FI;

(* Obtain EID to establish cryptographic binding between the paged-out page and the enclave *)
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TMP_HEADER.EID := TMP_SECS.EID;

(* Obtain EID as an enclave handle for software *)
TMP_PCMD_ENCLAVEID := TMP_SECS.EID;

ELSE IF (EPCM(DS:RCX).PT is PT_SECS)
(*check that there are no child pages inside the enclave *)
IF (DS:RCX has an EPC page associated with it)

THEN
RAX := SGX_CHILD_PRESENT;
RFLAGS.ZF := 1;
GOTO ERROR_EXIT;

FI:
(* treat SECS as having a child page when VIRTCHILDCNT is non-zero *)
IF (<<in VMX non-root operation>> AND 

        <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>> AND 
        (SECS(DS:RCX).VIRTCHILDCNT ≠ 0))

THEN
RFLAGS.ZF := 1;

   RAX := SGX_CHILD_PRESENT;
GOTO ERROR_EXIT;

FI;
TMP_HEADER.EID := 0; 
(* Obtain EID as an enclave handle for software *)
TMP_PCMD_ENCLAVEID := (DS:RCX).EID;

ELSE IF (EPCM(DS:RCX).PT is PT_VA)
TMP_HEADER.EID := 0; // Zero is not a special value
(* No enclave handle for VA pages*)
TMP_PCMD_ENCLAVEID := 0;

FI;

TMP_HEADER.LINADDR := EPCM(DS:RCX).ENCLAVEADDRESS;
TMP_HEADER.SECINFO.FLAGS.PT := EPCM(DS:RCX).PT;
TMP_HEADER.SECINFO.FLAGS.RWX := EPCM(DS:RCX).RWX;
TMP_HEADER.SECINFO.FLAGS.PENDING := EPCM(DS:RCX).PENDING;
TMP_HEADER.SECINFO.FLAGS.MODIFIED := EPCM(DS:RCX).MODIFIED;
TMP_HEADER.SECINFO.FLAGS.PR := EPCM(DS:RCX).PR;

(* Encrypt the page, DS:RCX could be encrypted in place. AES-GCM produces 2 values, {ciphertext, MAC}. *)
(* AES-GCM input parameters: key, GCM Counter, MAC_HDR, MAC_HDR_SIZE, SRC, SRC_SIZE)*)
{DS:TMP_SRCPGE, DS:TMP_PCMD.MAC} := AES_GCM_ENC(CR_BASE_PK), (TMP_VER << 32), 

TMP_HEADER, 128, DS:RCX, 4096);

(* Write the output *)
Zero out DS:TMP_PCMD.SECINFO 
DS:TMP_PCMD.SECINFO.FLAGS.PT := EPCM(DS:RCX).PT;
DS:TMP_PCMD.SECINFO.FLAGS.RWX := EPCM(DS:RCX).RWX;
DS:TMP_PCMD.SECINFO.FLAGS.PENDING := EPCM(DS:RCX).PENDING;
DS:TMP_PCMD.SECINFO.FLAGS.MODIFIED := EPCM(DS:RCX).MODIFIED;
DS:TMP_PCMD.SECINFO.FLAGS.PR := EPCM(DS:RCX).PR;
DS:TMP_PCMD.RESERVED := 0;
DS:TMP_PCMD.ENCLAVEID := TMP_PCMD_ENCLAVEID;
DS:RBX.LINADDR := EPCM(DS:RCX).ENCLAVEADDRESS;

(*Check if version array slot was empty *)
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IF ([DS.RDX]) 
THEN

RAX := SGX_VA_SLOT_OCCUPIED
RFLAGS.CF := 1;

FI;

(* Write version to Version Array slot *)
[DS.RDX] := TMP_VER; 

(* Free up EPCM Entry *)
EPCM.(DS:RCX).VALID := 0;
ERROR_EXIT:

Flags Affected

ZF is set if page is not blocked, not tracked, or a child is present. Otherwise cleared. 
CF is set if VA slot is previously occupied, Otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the EPC page and VASLOT resolve to the same EPC page.
If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS 
pages.
If the tracking resource is in use.
If the EPC page or the version array page is invalid.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If one of the EPC memory operands has incorrect page type.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the EPC page and VASLOT resolve to the same EPC page.
If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS 
pages.
If the tracking resource is in use.
If the EPC page or the version array page in invalid.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If one of the EPC memory operands has incorrect page type.
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39.4 INTEL® SGX USER LEAF FUNCTION REFERENCE
Leaf functions available with the ENCLU instruction mnemonic are covered in this section. In general, each instruc-
tion leaf requires EAX to specify the leaf function index and/or additional registers specifying leaf-specific input 
parameters. An instruction operand encoding table provides details of the implicitly-encoded register usage and 
associated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or 
outside the EPC, the memory addressing semantics of these memory objects are also summarized in a separate 
table.
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EACCEPT—Accept Changes to an EPC Page  

Instruction Operand Encoding

Description

This leaf function accepts changes to a page in the running enclave by verifying that the security attributes speci-
fied in the SECINFO match the security attributes of the page in the EPCM. This instruction leaf can only be 
executed when inside the enclave. 
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC page. 
The table below provides additional information on the memory parameter of the EACCEPT leaf function.

EACCEPT Memory Parameter Semantics

The instruction faults if any of the following: 

EACCEPT Faulting Conditions

The error codes are:

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 05H
ENCLU[EACCEPT]

IR V/V SGX2 This leaf function accepts changes made by system software to 
an EPC page in the running enclave.

Op/En EAX RBX RCX

IR EACCEPT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE (Destination)

Read access permitted by Non Enclave Read access permitted by Enclave

The operands are not properly aligned. RBX does not contain an effective address in an EPC page in the running enclave.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid. Page type is PT_REG and MODIFIED bit is 0.

SECINFO contains an invalid request. Page type is PT_TCS or PT_TRIM and PENDING bit is 0 and MODIFIED bit is 1.

If security attributes of the SECINFO page make 
the page inaccessible.

Table 39-54.  EACCEPT Return Value in RAX
 Error Code (see Table 39-4) Description

No Error EACCEPT successful.

SGX_PAGE_ATTRIBUTES_MISMATCH The attributes of the target EPC page do not match the expected values.

SGX_NOT_TRACKED The OS did not complete an ETRACK on the target page.
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Concurrency Restrictions

Operation

Temp Variables in EACCEPT Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RBX is not within CR_ELRANGE) 
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC) 
THEN #PF(DS:RBX); FI;

IF ( (EPCM(DS:RBX &~FFFH).VALID = 0) or (EPCM(DS:RBX &~FFFH).R = 0) or (EPCM(DS:RBX &~FFFH).PENDING ≠ 0) or 
(EPCM(DS:RBX &~FFFH).MODIFIED ≠ 0) or (EPCM(DS:RBX &~FFFH).BLOCKED ≠ 0) or 
(EPCM(DS:RBX &~FFFH).PT ≠ PT_REG) or (EPCM(DS:RBX &~FFFH).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RBX &~FFFH).ENCLAVEADDRESS ≠ (DS:RBX & FFFH)) )
THEN #PF(DS:RBX); FI;

(* Copy 64 bytes of contents *)
SCRATCH_SECINFO := DS:RBX; 

(* Check for misconfigured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero )

THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

Table 39-55.  Base Concurrency Restrictions of EACCEPT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EACCEPT Target [DS:RCX] Shared #GP

SECINFO [DS:RBX] Concurrent

Table 39-56.  Additional Concurrency Restrictions of EACCEPT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EACCEPT Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operands belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
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IF (DS:RCX is not within CR_ELRANGE) 
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC) 
THEN #PF(DS:RCX); FI;

(* Check that the combination of requested PT, PENDING, and MODIFIED is legal *)
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 0 )

THEN
IF (NOT (((SCRATCH_SECINFO.FLAGS.PT is PT_REG) and
 ((SCRATCH_SECINFO.FLAGS.PR is 1) or 
 (SCRATCH_SECINFO.FLAGS.PENDING is 1)) and
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 0)) or
 ((SCRATCH_SECINFO.FLAGS.PT is PT_TCS or PT_TRIM) and
 (SCRATCH_SECINFO.FLAGS.PR is 0) and
 (SCRATCH_SECINFO.FLAGS.PENDING is 0) and 
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 1) )))

THEN #GP(0); FI
ELSE

IF (NOT (((SCRATCH_SECINFO.FLAGS.PT is PT_REG) AND
 ((SCRATCH_SECINFO.FLAGS.PR is 1) OR
 (SCRATCH_SECINFO.FLAGS.PENDING is 1)) AND
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 0)) OR
 ((SCRATCH_SECINFO.FLAGS.PT is PT_TCS OR PT_TRIM) AND
 (SCRATCH_SECINFO.FLAGS.PENDING is 0) AND
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 1) AND
 (SCRATCH_SECINFO.FLAGS.PR is 0)) OR
 ((SCRATCH_SECINFO.FLAGS.PT is PT_SS_FIRST or PT_SS_REST) AND
 (SCRATCH_SECINFO.FLAGS.PENDING is 1) AND
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 0) AND
 (SCRATCH_SECINFO.FLAGS.PR is 0))))

THEN #GP(0); FI;
FI;

(* Check security attributes of the destination EPC page *)
IF ( (EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).BLOCKED is not 0) or
 ((EPCM(DS:RCX).PT is not PT_REG) and (EPCM(DS:RCX).PT is not PT_TCS) and (EPCM(DS:RCX).PT is not PT_TRIM)
 and (EPCM(DS:RCX).PT is not PT_SS_FIRST) and (EPCM(DS:RCX).PT is not PT_SS_REST)) or
 (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))

THEN #PF((DS:RCX); FI;

(* Check the destination EPC page for concurrency *)
IF ( EPC page in use ) 

THEN #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)
IF ( (EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) )

THEN #PF(DS:RCX); FI;

(* Verify that accept request matches current EPC page settings *)
IF ( (EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX) or (EPCM(DS:RCX).PENDING ≠ SCRATCH_SECINFO.FLAGS.PENDING) or

(EPCM(DS:RCX).MODIFIED ≠ SCRATCH_SECINFO.FLAGS.MODIFIED) or (EPCM(DS:RCX).R ≠ SCRATCH_SECINFO.FLAGS.R) or
(EPCM(DS:RCX).W ≠ SCRATCH_SECINFO.FLAGS.W) or (EPCM(DS:RCX).X ≠ SCRATCH_SECINFO.FLAGS.X) or
(EPCM(DS:RCX).PT ≠ SCRATCH_SECINFO.FLAGS.PT) )
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THEN
RFLAGS.ZF := 1;
RAX := SGX_PAGE_ATTRIBUTES_MISMATCH;
GOTO DONE;

FI;
(* Check that all required threads have left enclave *)
IF (Tracking not correct)

THEN
RFLAGS.ZF := 1;
RAX := SGX_NOT_TRACKED;
GOTO DONE;

FI;

(* Get pointer to the SECS to which the EPC page belongs *)
TMP_SECS = << Obtain physical address of SECS through EPCM(DS:RCX)>>
(* For TCS pages, perform additional checks *)
IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS) 

THEN
IF (DS:RCX.RESERVED ≠ 0) #GP(0); FI;

(* Check that TCS.FLAGS.DBGOPTIN, TCS stack, and TCS status are correctly initialized *)
(* check that TCS.PREVSSP is 0 *)
IF ( ((DS:RCX).FLAGS.DBGOPTIN is not 0) or ((DS:RCX).CSSA ≥ (DS:RCX).NSSA) or ((DS:RCX).AEP is not 0) or ((DS:RCX).STATE is not 0) 

or ((CPUID.(EAX=07H, ECX=0H):ECX[CET_SS] = 1) AND ((DS:RCX).PREVSSP != 0)))
THEN #GP(0); FI;

(* Check consistency of FS & GS Limit *)
IF ( (TMP_SECS.ATTRIBUTES.MODE64BIT is 0) and ((DS:RCX.FSLIMIT & FFFH ≠ FFFH) or (DS:RCX.GSLIMIT & FFFH ≠ FFFH)) )

THEN #GP(0); FI;
FI;

(* Clear PENDING/MODIFIED flags to mark accept operation complete *)
EPCM(DS:RCX).PENDING := 0;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).PR := 0;

(* Clear EAX and ZF to indicate successful completion *)
RFLAGS.ZF := 0;
RAX := 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if page cannot be accepted, otherwise cleared. Clears CF, PF, AF, OF, SF
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Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.
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EACCEPTCOPY—Initialize a Pending Page  

Instruction Operand Encoding

Description

This leaf function copies the contents of an existing EPC page into an uninitialized EPC page (created by EAUG). 
After initialization, the instruction may also modify the access rights associated with the destination EPC page. This 
instruction leaf can only be executed when inside the enclave. 
RBX contains the effective address of a SECINFO structure while RCX and RDX each contain the effective address 
of an EPC page. The table below provides additional information on the memory parameter of the EACCEPTCOPY 
leaf function.

EACCEPTCOPY Memory Parameter Semantics

The instruction faults if any of the following: 

EACCEPTCOPY Faulting Conditions

The error codes are:

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 07H
ENCLU[EACCEPTCOPY]

IR V/V SGX2 This leaf function initializes a dynamically allocated EPC page 
from another page in the EPC.

Op/En EAX RBX RCX RDX

IR EACCEPTCOPY (In)
Return Error Code 

(Out)
Address of a SECINFO (In)

Address of the destina-
tion EPC page (In)

Address of the 
source EPC page (In)

SECINFO EPCPAGE (Destination) EPCPAGE (Source)

Read access permitted by Non Enclave Read/Write access permitted by Enclave Read access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. If security attributes of the source EPC page make the page inaccessible.

The EPC page is not valid. RBX does not contain an effective address in an EPC page in the running enclave.

SECINFO contains an invalid request. RCX/RDX does not contain an effective address of an EPC page in the running 
enclave.

Table 39-57.  EACCEPTCOPY Return Value in RAX
 Error Code (see Table 39-4) Description

No Error EACCEPTCOPY successful.

SGX_PAGE_ATTRIBUTES_MISMATCH The attributes of the target EPC page do not match the expected values.
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Concurrency Restrictions

Operation

Temp Variables in EACCEPTCOPY Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF ( (DS:RCX is not 4KByte Aligned) or (DS:RDX is not 4KByte Aligned) )
THEN #GP(0); FI;

IF ((DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE) or (DS:RDX is not within CR_ELRANGE))
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC) 
THEN #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC) 
THEN #PF(DS:RCX); FI;

IF (DS:RDX does not resolve within an EPC) 
THEN #PF(DS:RDX); FI;

IF ( (EPCM(DS:RBX &~FFFH).VALID = 0) or (EPCM(DS:RBX &~FFFH).R = 0) or (EPCM(DS:RBX &~FFFH).PENDING ≠ 0) or 
(EPCM(DS:RBX &~FFFH).MODIFIED ≠ 0) or (EPCM(DS:RBX &~FFFH).BLOCKED ≠ 0) or (EPCM(DS:RBX &~FFFH).PT ≠ PT_REG) or 
(EPCM(DS:RBX &~FFFH).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RBX &~FFFH).ENCLAVEADDRESS ≠ DS:RBX) )
THEN #PF(DS:RBX); FI;

Table 39-58.  Base Concurrency Restrictions of EACCEPTCOPY

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EACCEPTCOPY Target [DS:RCX] Concurrent

Source [DS:RDX] Concurrent

SECINFO [DS:RBX] Concurrent

Table 39-59.  Additional Concurrency Restrictions of EACCEPTCOPY

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EACCEPTCOPY Target [DS:RCX] Exclusive #GP Concurrent Concurrent

Source [DS:RDX] Concurrent Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
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(* Copy 64 bytes of contents *)
SCRATCH_SECINFO := DS:RBX;

(* Check for misconfigured SECINFO flags*)
IF ( (SCRATCH_SECINFO reserved fields are not zero ) or (SCRATCH_SECINFO.FLAGS.R=0) AND(SCRATCH_SECINFO.FLAGS.W≠0 ) or

(SCRATCH_SECINFO.FLAGS.PT is not PT_REG) ) 
THEN #GP(0); FI;

(* Check security attributes of the source EPC page *)
IF ( (EPCM(DS:RDX).VALID = 0) or (EPCM(DS:RCX).R = 0) or (EPCM(DS:RDX).PENDING ≠ 0) or (EPCM(DS:RDX).MODIFIED ≠ 0) or 

(EPCM(DS:RDX).BLOCKED ≠ 0) or (EPCM(DS:RDX).PT ≠ PT_REG) or (EPCM(DS:RDX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RDX).ENCLAVEADDRESS ≠ DS:RDX))
THEN #PF(DS:RDX); FI;

(* Check security attributes of the destination EPC page *)
IF ( (EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 1) or (EPCM(DS:RCX).MODIFIED ≠ 0) or 

(EPCM(DS:RDX).BLOCKED ≠ 0) or (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) )
THEN 

RFLAGS.ZF := 1;
RAX := SGX_PAGE_ATTRIBUTES_MISMATCH; 
GOTO DONE;

FI;

(* Check the destination EPC page for concurrency *)
IF (destination EPC page in use ) 

THEN #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)
IF ( (EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 1) or (EPCM(DS:RCX).MODIFIED ≠ 0) or 

(EPCM(DS:RCX).R ≠ 1) or (EPCM(DS:RCX).W ≠ 1) or (EPCM(DS:RCX).X ≠ 0) or 
(EPCM(DS:RCX).PT ≠ SCRATCH_SECINFO.FLAGS.PT) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX))
THEN 

RFLAGS.ZF := 1;
RAX := SGX_PAGE_ATTRIBUTES_MISMATCH; 
GOTO DONE;

FI;

(* Copy 4KBbytes form the source to destination EPC page*)
DS:RCX[32767:0] := DS:RDX[32767:0];

(* Update EPCM permissions *)
EPCM(DS:RCX).R := SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PENDING := 0;

RFLAGS.ZF := 0;
RAX := 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;
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Flags Affected

Sets ZF if page is not modifiable, otherwise cleared. Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.
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EDECCSSA—Decrements TCS.CSSA 

Instruction Operand Encoding

Description

This leaf function changes the current SSA frame by decrementing TCS.CSSA for the current enclave thread. If the 
enclave has enabled CET shadow stacks or indirect branch tracking, then EDECCSSA also changes the current CET 
state save frame. This instruction leaf can only be executed inside an enclave.

EDECCSSA Memory Parameter Semantics

The instruction faults if any of the following: 

EDECCSSA Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 09H
ENCLU[EDECCSSA]

IR V/V EDECCSSA This leaf function decrements TCS.CSSA.

Op/En EAX

IR EDECCSSA (In)

TCS

Read/Write access by Enclave

TCS.CSSA is 0. TCS is not valid or available or locked.

The SSA frame is not valid or in use.

Table 39-60.  Base Concurrency Restrictions of EDECCSSA

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EDECCSSA TCS [CR_TCS_PA] Shared #GP

Table 39-61.  Additional Concurrency Restrictions of EDECCSSA

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EDECCSSA TCS [CR_TCS_PA] Concurrent Concurrent Concurrent
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Operation

Temp Variables in EDECCSSA Operational Flow

IF (CR_TCS_PA.CSSA = 0)
THEN #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA := CR_TCS_PA.OSSA + CR_ACTIVE_SECS.BASEADDR + 4096 * CR_ACTIVE_SECS.SSAFRAMESIZE * (CR_TCS_PA.CSSA - 1);
TMP_XSIZE := compute_XSAVE_frame_size(CR_ACTIVE_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_SSA_PAGE does not resolve to EPC page)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE_.MODIFIED = 1))

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ( ( EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMPSSA_PAGE) or
(EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or
(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(CR_TCS_PA).ENCLAVESECS) or
(EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0))

THEN #PF(DS:TMP_SSA_PAGE); FI;
TMP_XSAVE_PAGE_PA_n := Physical_Address(DS:TMP_SSA_PAGE);

ENDFOR

(* Compute address of GPR area*)
TMP_GPR := TMP_SSA + 4096 * CR_ACTIVE_SECS.SSAFRAMESIZE - sizeof(GPRSGX_AREA);
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_GPR does not resolve to EPC page)

THEN #PF(DS:TMP_GPR); FI;

Name Type Size (bits) Description

TMP_SSA Effective 
Address

32/64 Address of current SSA frame.

TMP_XSIZE Integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective 
Address

32/64 Pointer used to iterate over the SSA pages in the target frame.

TMP_GPR Effective 
Address

32/64 Address of the GPR area within the target SSA frame.

TMP_XSAVE_PAGE_PA_n Physical 
Address

32/64 Physical address of the nth page within the target SSA frame.

TMP_CET_SAVE_AREA Effective 
Address

32/64 Address of the current CET save area.

TMP_CET_SAVE_PAGE Effective 
Address

32/64 Address of the current CET save area page.
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IF (EPCM(DS:TMP_GPR).VALID = 0)
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).BLOCKED = 1)
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPR); FI;

IF ( ( EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or
(EPCM(DS:TMP_GPR).PT ≠ PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS ≠ EPCM(CR_TCS_PA).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0) )

THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN

IF (TMP_GPR + (sizeof(GPRSGX_AREA) -1) is not in DS segment)
THEN #GP(0); FI;

FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)
THEN

IF ((CR_ACTIVE_SECS.CET_ATTRIBUTES.SH_STK_EN == 1) OR (CR_ACTIVE_SECS.CET_ATTRIBUTES.ENDBR_EN == 1)) 
THEN

(* Compute linear address of what will become new CET state save area and cache its PA *)
TMP_CET_SAVE_AREA := CR_TCS_PA.OCETSSA + CR_ACTIVE_SECS.BASEADDR + (CR_TCS_PA.CSSA - 1) * 16;
TMP_CET_SAVE_PAGE := TMP_CET_SAVE_AREA & ~0xFFF; 
Check the TMP_CET_SAVE_PAGE page is read/write accessible 
If fault occurs release locks, abort and deliver fault

(* read the EPCM VALID, PENDING, MODIFIED, BLOCKED and PT fields atomically *)
IF ((DS:TMP_CET_SAVE_PAGE Does NOT RESOLVE TO EPC PAGE) OR 
(EPCM(DS:TMP_CET_SAVE_PAGE).VALID = 0) OR 
(EPCM(DS:TMP_CET_SAVE_PAGE).PENDING = 1) OR 
(EPCM(DS:TMP_CET_SAVE_PAGE).MODIFIED = 1) OR 
(EPCM(DS:TMP_CET_SAVE_PAGE).BLOCKED = 1) OR 
(EPCM(DS:TMP_CET_SAVE_PAGE).R = 0) OR 
(EPCM(DS:TMP_CET_SAVE_PAGE).W = 0) OR 
(EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVEADDRESS ≠ DS:TMP_CET_SAVE_PAGE) OR 
(EPCM(DS:TMP_CET_SAVE_PAGE).PT ≠ PT_SS_REST) OR 
(EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVESECS ≠ EPCM(CR_TCS_PA).ENCLAVESECS))

THEN #PF(DS:TMP_CET_SAVE_PAGE); FI;
FI;

FI;

(* At this point, the instruction is guaranteed to complete *)
CR_TCS_PA.CSSA := CR_TCS_PA.CSSA - 1;

CR_GPR_PA := Physical_Address(DS:TMP_GPR);

FOR EACH TMP_XSAVE_PAGE_n
CR_XSAVE_PAGE_n := TMP_XSAVE_PAGE_PA_n;

ENDFOR

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)
THEN
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IF ((TMP_SECS.CET_ATTRIBUTES.SH_STK_EN == 1) OR
(TMP_SECS.CET_ATTRIBUTES.ENDBR_EN == 1)) 

THEN
CR_CET_SAVE_AREA_PA := Physical_Address(DS:TMP_CET_SAVE_AREA);

FI;
FI;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If CR_TCS_PA.CSSA = 0.

#PF(error code) If a page fault occurs in accessing memory.
If one or more pages of the target SSA frame are not readable/writable, or do not resolve to a 
valid PT_REG EPC page.
If CET is enabled for the enclave and the target CET SSA frame is not readable/writable, or 
does not resolve to a valid PT_REG EPC page.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If CR_TCS_PA.CSSA = 0.

#PF(error code) If a page fault occurs in accessing memory.
If one or more pages of the target SSA frame are not readable/writable, or do not resolve to a 
valid PT_REG EPC page.
If CET is enabled for the enclave and the target CET SSA frame is not readable/writable, or 
does not resolve to a valid PT_REG EPC page.
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EENTER—Enters an Enclave

Instruction Operand Encoding

Description

The ENCLU[EENTER] instruction transfers execution to an enclave. At the end of the instruction, the logical 
processor is executing in enclave mode at the RIP computed as EnclaveBase + TCS.OENTRY. If the target address 
is not within the CS segment (32-bit) or is not canonical (64-bit), a #GP(0) results.

EENTER Memory Parameter Semantics

EENTER is a serializing instruction. The instruction faults if any of the following occurs: 

The following operations are performed by EENTER:
• RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or 

interrupt.
• The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are 

saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and 
TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment. 

• If CR4.OSXSAVE == 1, XCR0 is saved and replaced by SECS.ATTRIBUTES.XFRM. The effect of RFLAGS.TF 
depends on whether the enclave entry is opt-in or opt-out (see Section 41.1.2):

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a POPF 
instruction while inside the enclave clears TF (see Section 41.2.5).

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after 
EENTER (see Section 41.2.2). 

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 02H
ENCLU[EENTER]

IR V/V SGX1 This leaf function is used to enter an enclave.

Op/En EAX RBX RCX

IR EENTER (In)
Content of RBX.CSSA 

(Out)
Address of a TCS (In) Address of AEP (In)

Address of IP following 
EENTER (Out)

TCS

 Enclave access

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or locked. Current 32/64 mode does not match the enclave mode in 
SECS.ATTRIBUTES.MODE64.

The SECS is in use. Either of TCS-specified FS and GS segment is not a subsets of the 
current DS segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but 
SECS.ATTRIBUTES.XFRM ≠ 3.

CR4.OSFXSR ≠ 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of 
XCR0.

If SECS.ATTRIBUTES.AEXNOTIFY ≠ TCS.FLAGS.AEXNOTIFY and 
TCS.FLAGS.DBGOPTIN = 0.
EENTER—Enters an Enclave Vol. 3D 39-103



INTEL® SGX INSTRUCTION REFERENCES
• All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry, all 
code and data breakpoints that overlap with the ELRANGE are suppressed.

• On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed (see 
Section 41.2.3):

— All performance monitoring activity on the current thread is suppressed except for incrementing and firing 
of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and IA32_PERF_GLOBAL_STATUS[60] 
on that thread is set

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the 
processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Operation

Temp Variables in EENTER Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)
IF (TMP_MODE64 = 0 and (DS not usable or DS[bits 11:9] != 001B)) 

THEN #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODE64 = 0)

THEN 

Table 39-62.  Base Concurrency Restrictions of EENTER

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EENTER TCS [DS:RBX] Shared #GP

Table 39-63.  Additional Concurrency Restrictions of EENTER

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EENTER TCS [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.
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IF(CS.base ≠ 0 or DS.base ≠ 0) #GP(0); FI;
IF(ES usable and ES.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.B = 0) #GP(0); FI;

FI;

IF (DS:RBX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

(* Check AEP is canonical*)
IF (TMP_MODE64 = 1 and (CS:RCX is not canonical) )

THEN #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions are operating on TCS) 

THEN #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0) 

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1) 
THEN #PF(DS:RBX); FI;

IF ( (EPCM(DS:RBX).ENCLAVEADDRESS ≠ DS:RBX) or (EPCM(DS:RBX).PT ≠ PT_TCS) )
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
THEN #PF(DS:RBX); FI;

IF ( (DS:RBX).OSSA is not 4KByte Aligned)
THEN #GP(0); FI;

(* Check proposed FS and GS *)
IF ( ( (DS:RBX).OFSBASE is not 4KByte Aligned) or ( (DS:RBX).OGSBASE is not 4KByte Aligned) )

THEN #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS := Address of SECS for TCS;

(* Ensure that the FLAGS field in the TCS does not have any reserved bits set *)
IF ( ( (DS:RBX).FLAGS & FFFFFFFFFFFFFFFCH) ≠ 0) 

THEN #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized) 

THEN #GP(0); FI;

(* make sure the logical processor’s operating mode matches the enclave *)
IF ( (TMP_MODE64 ≠ TMP_SECS.ATTRIBUTES.MODE64BIT) )

THEN #GP(0); FI;
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IF (CR4.OSFXSR = 0)
THEN #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.OSXSAVE = 0)

THEN 
IF (TMP_SECS.ATTRIBUTES.XFRM ≠ 03H) THEN #GP(0); FI;

ELSE
IF ( (TMP_SECS.ATTRIBUTES.XFRM & XCR0) ≠ TMP_SECS.ATTRIBUES.XFRM) THEN #GP(0); FI;

FI;

IF ((DS:RBX).CSSA.FLAGS.DBGOPTIN = 0) and (DS:RBX).CSSA.FLAGS.AEXNOTIFY ≠ TMP_SECS.ATTRIBUTES.AEXNOTIFY))
THEN #GP(0); FI;

(* Make sure the SSA contains at least one more frame *)
IF ( (DS:RBX).CSSA ≥ (DS:RBX).NSSA) 

THEN #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA := (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * (DS:RBX).CSSA;
TMP_XSIZE := compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible; 
If a fault occurs, release locks, abort, and deliver that fault;

IF (DS:TMP_SSA_PAGE does not resolve to EPC page) 
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0) 
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1) 
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE).MODIFIED = 1))
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF ( ( EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMP_SSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or
(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or 
(EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0) )
THEN #PF(DS:TMP_SSA_PAGE); FI;

CR_XSAVE_PAGE_n := Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR := TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE - sizeof(GPRSGX_AREA);
If a fault occurs; release locks, abort, and deliver that fault;

IF (DS:TMP_GPR does not resolve to EPC page) 
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).VALID = 0) 
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).BLOCKED = 1) 
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPR); FI;
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IF ( ( EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT ≠ PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS EPCM(DS:RBX).ENCLAVESECS) or 
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0) )
THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN 

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;
FI;

CR_GPR_PA := Physical_Address (DS: TMP_GPR);

(* Validate TCS.OENTRY *)
TMP_TARGET := (DS:RBX).OENTRY + TMP_SECS.BASEADDR;
IF (TMP_MODE64 = 1)

THEN 
IF (TMP_TARGET is not canonical) THEN #GP(0); FI;

ELSE
IF (TMP_TARGET > CS limit) THEN #GP(0); FI;

FI;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODE64 = 0)

THEN 
TMP_FSBASE := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
TMP_GSLIMIT := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
IF (TMP_FSLIMIT < TMP_FSBASE)

THEN 
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
(* if GS wrap-around, make sure DS has no holes*)
IF (TMP_GSLIMIT < TMP_GSBASE)

THEN 
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
ELSE

TMP_FSBASE := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_GSBASE := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
IF ( (TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))

THEN #GP(0); FI;
FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE) 

THEN #GP(0); FI;

TMP_IA32_U_CET := 0
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TMP_SSP : = 0

IF CPUID.(EAX=12H, ECX=1):EAX[6] = 1
THEN

IF ( CR4.CET = 0 )
THEN

(* If part does not support CET or CET has not been enabled and enclave requires CET then fail *)
IF ( TMP_SECS.CET_ATTRIBUTES ≠ 0 OR TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0 ) #GP(0); FI;

FI;
(* If indirect branch tracking or shadow stacks enabled but CET state save area is not 16B aligned then fail EENTER *)
IF ( TMP_SECS.CET_ATTRIBUTES.SH_STK_EN = 1 OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN = 1 )

THEN
IF (DS:RBX.OCETSSA is not 16B aligned) #GP(0); FI;

FI;

IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN) 
THEN

(* Setup CET state from SECS, note tracker goes to IDLE *) 
TMP_IA32_U_CET = TMP_SECS.CET_ATTRIBUTES; 
IF (TMP_IA32_U_CET.LEG_IW_EN = 1 AND TMP_IA32_U_CET.ENDBR_EN = 1 ) 

THEN
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.BASEADDR;
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.CET_LEG_BITMAP_BASE;

FI;

(* Compute linear address of what will become new CET state save area and cache its PA *) 
TMP_CET_SAVE_AREA = DS:RBX.OCETSSA + TMP_SECS.BASEADDR + (DS:RBX.CSSA) * 16 
TMP_CET_SAVE_PAGE = TMP_CET_SAVE_AREA & ~0xFFF; 

Check the TMP_CET_SAVE_PAGE page is read/write accessible 
If fault occurs release locks, abort, and deliver fault

(* Read the EPCM VALID, PENDING, MODIFIED, BLOCKED, and PT fields atomically *)
IF ((DS:TMP_CET_SAVE_PAGE Does NOT RESOLVE TO EPC PAGE) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).VALID = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).PENDING = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).MODIFIED = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).BLOCKED = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).R = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).W = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVEADDRESS ≠ DS:TMP_CET_SAVE_PAGE) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).PT ≠ PT_SS_REST) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS))

THEN
#PF(DS:TMP_CET_SAVE_PAGE);

FI;

CR_CET_SAVE_AREA_PA := Physical address(DS:TMP_CET_SAVE_AREA)

IF TMP_IA32_U_CET.SH_STK_EN = 1
THEN

TMP_SSP = TCS.PREVSSP;
FI;

FI;
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FI;

CR_ENCLAVE_MODE := 1;
CR_ACTIVE_SECS := TMP_SECS;
CR_ELRANGE := (TMPSECS.BASEADDR, TMP_SECS.SIZE);

(* Save state for possible AEXs *)
CR_TCS_PA := Physical_Address (DS:RBX);
CR_TCS_LA := RBX;
CR_TCS_LA.AEP := RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector := FS.selector;
CR_SAVE_FS_base := FS.base;
CR_SAVE_FS_limit := FS.limit;
CR_SAVE_FS_access_rights := FS.access_rights;
CR_SAVE_GS_selector := GS.selector;
CR_SAVE_GS_base := GS.base;
CR_SAVE_GS_limit := GS.limit;
CR_SAVE_GS_access_rights := GS.access_rights;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1) 

CR_SAVE_XCR0 := XCR0;
XCR0 := TMP_SECS.ATTRIBUTES.XFRM;

FI;

RCX := RIP;
RIP := TMP_TARGET;
RAX := (DS:RBX).CSSA;
(* Save the outside RSP and RBP so they can be restored on interrupt or EEXIT *)
DS:TMP_SSA.U_RSP := RSP; 
DS:TMP_SSA.U_RBP := RBP; 

(* Do the FS/GS swap *)
FS.base := TMP_FSBASE;
FS.limit := DS:RBX.FSLIMIT;
FS.type := 0001b;
FS.W := DS[bit 9];
FS.S := 1;
FS.DPL := DS.DPL;
FS.G := 1;
FS.B := 1;
FS.P := 1;
FS.AVL := DS.AVL;
FS.L := DS[bit 21];
FS.unusable := 0;
FS.selector := 0BH;

GS.base := TMP_GSBASE;
GS.limit := DS:RBX.GSLIMIT;
GS.type := 0001b;
GS.W := DS[bit 9];
GS.S := 1;
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GS.DPL := DS.DPL;
GS.G := 1;
GS.B := 1;
GS.P := 1;
GS.AVL := DS.AVL;
GS.L := DS[bit 21];
GS.unusable := 0;
GS.selector := 0BH;

CR_DBGOPTIN := TCS.FLAGS.DBGOPTIN;
Suppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0) 
THEN

Suppress_all_code_breakpoints_that_overlap_with_ELRANGE;
CR_SAVE_TF := RFLAGS.TF;
RFLAGS.TF := 0;
Suppress_monitor_trap_flag for the source of the execution of the enclave;
Suppress any pending debug exceptions;
Suppress any pending MTF VM exit;

ELSE
IF RFLAGS.TF = 1

THEN pend a single-step #DB at the end of EENTER; FI;
IF the “monitor trap flag” VM-execution control is set

THEN pend an MTF VM exit at the end of EENTER; FI;
FI;

IF ((CPUID.(EAX=7H, ECX=0):EDX[CET_IBT] = 1) OR (CPUID.(EAX=7H, ECX=0):ECX[CET_SS] = 1)
THEN

(* Save enclosing application CET state into save registers *) 
CR_SAVE_IA32_U_CET := IA32_U_CET
(* Setup enclave CET state *) 
IF CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] = 1 

THEN
CR_SAVE_SSP := SSP 
SSP := TMP_SSP

FI; 

IA32_U_CET := TMP_IA32_U_CET;

FI;

Flush_linear_context;
Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected

RFLAGS.TF is cleared on opt-out entry.
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Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.
If SECS.ATTRIBUTES.AEXNOTIFY ≠ TCS.FLAGS.AEXNOTIFY and TCS.FLAGS.DBGOPTIN = 0.

#PF(error code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to 
a valid PT_REG EPC page.

64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.
If the target address is not canonical.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.
If SECS.ATTRIBUTES.AEXNOTIFY ≠ TCS.FLAGS.AEXNOTIFY and TCS.FLAGS.DBGOPTIN = 0.

#PF(error code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to 
a valid PT_REG EPC page.
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EEXIT—Exits an Enclave

Instruction Operand Encoding

Description

The ENCLU[EEXIT] instruction exits the currently executing enclave and branches to the location specified in RBX. 
RCX receives the current AEP. If RBX is not within the CS (32-bit mode) or is not canonical (64-bit mode) a #GP(0) 
results.

EEXIT Memory Parameter Semantics

If RBX specifies an address that is inside the enclave, the instruction will complete normally. The fetch of the next 
instruction will occur in non-enclave mode, but will attempt to fetch from inside the enclave. This fetch returns a 
fixed data pattern.
If secrets are contained in any registers, it is responsibility of enclave software to clear those registers.
If XCR0 was modified on enclave entry, it is restored to the value it had at the time of the most recent EENTER or 
ERESUME.
If the enclave is opt-out, RFLAGS.TF is loaded from the value previously saved on EENTER. 
Code and data breakpoints are unsuppressed.
Performance monitoring counters are unsuppressed.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 04H
ENCLU[EEXIT]

IR V/V SGX1 This leaf function is used to exit an enclave.

Op/En EAX RBX RCX

IR EEXIT (In) Target address outside the enclave (In) Address of the current AEP (Out)

Target Address

 Non-Enclave read and execute access

Table 39-64.  Base Concurrency Restrictions of EEXIT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EEXIT Concurrent

Table 39-65.  Additional Concurrency Restrictions of EEXIT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EEXIT Concurrent Concurrent Concurrent
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Operation

Temp Variables in EEXIT Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF (TMP_MODE64 = 1)
THEN 

IF (RBX is not canonical) THEN #GP(0); FI;
ELSE

IF (RBX > CS limit) THEN #GP(0); FI;
FI;

TMP_RIP := CRIP;
RIP := RBX;

(* Return current AEP in RCX *)
RCX := CR_TCS_PA.AEP;

(* Do the FS/GS swap *)
FS.selector := CR_SAVE_FS.selector;
FS.base := CR_SAVE_FS.base;
FS.limit := CR_SAVE_FS.limit;
FS.access_rights := CR_SAVE_FS.access_rights;
GS.selector := CR_SAVE_GS.selector;
GS.base := CR_SAVE_GS.base;
GS.limit := CR_SAVE_GS.limit;
GS.access_rights := CR_SAVE_GS.access_rights;

(* Restore XCR0 if needed *)
IF (CR4.OSXSAVE = 1) 

XCR0 := CR_SAVE__XCR0;
FI;

Unsuppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0) 
THEN

UnSuppress_all_code_breakpoints_that_overlap_with_ELRANGE;
Restore suppressed breakpoint matches;
RFLAGS.TF := CR_SAVE_TF;
UnSuppress_montior_trap_flag;
UnSuppress_LBR_Generation;
UnSuppress_performance monitoring_activity;
Restore performance monitoring counter AnyThread demotion to MyThread in enclave back to AnyThread

FI;

IF RFLAGS.TF = 1
THEN Pend Single-Step #DB at the end of EEXIT;

FI;

Name Type Size (Bits) Description

TMP_RIP Effective Address 32/64 Saved copy of CRIP for use when creating LBR.
EEXIT—Exits an Enclave Vol. 3D 39-113



INTEL® SGX INSTRUCTION REFERENCES
IF the “monitor trap flag” VM-execution control is set
THEN pend a MTF VM exit at the end of EEXIT;

FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)
THEN

(* Record PREVSSP *) 
IF (IA32_U_CET.SH_STK_EN == 1) 

THEN CR_TCS_PA.PREVSSP = SSP; FI; 
FI;

IF ((CPUID.(EAX=7H, ECX=0):EDX[CET_IBT] = 1) OR (CPUID.(EAX=7, ECX=0):ECX[CET_SS] = 1)
THEN 

(* Restore enclosing app’s CET state from the save registers *) 
IA32_U_CET := CR_SAVE_IA32_U_CET; 
IF CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] = 1

THEN SSP := CR_SAVE_SSP; FI; 

(* Update enclosing app’s TRACKER if enclosing app has indirect branch tracking enabled *) 
IF (CR4.CET = 1 AND IA32_U_CET.ENDBR_EN = 1) 

THEN 
IA32_U_CET.TRACKER := WAIT_FOR_ENDBRANCH; 
IA32_U_CET.SUPPRESS := 0 

FI;
FI;

CR_ENCLAVE_MODE := 0;
CR_TCS_PA.STATE := INACTIVE;

(* Assure consistent translations *)
Flush_linear_context;

Flags Affected

RFLAGS.TF is restored from the value previously saved in EENTER or ERESUME.

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If RBX is outside the CS segment.

#PF(error code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If RBX is not canonical.

#PF(error code) If a page fault occurs in accessing memory operands.
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EGETKEY—Retrieves a Cryptographic Key 

Instruction Operand Encoding

Description

The ENCLU[EGETKEY] instruction returns a 128-bit secret key from the processor specific key hierarchy. The 
register RBX contains the effective address of a KEYREQUEST structure, which the instruction interprets to deter-
mine the key being requested. The Requesting Keys section below provides a description of the keys that can be 
requested. The RCX register contains the effective address where the key will be returned. Both the addresses in 
RBX & RCX should be locations inside the enclave. 
EGETKEY derives keys using a processor unique value to create a specific key based on a number of possible 
inputs. This instruction leaf can only be executed inside an enclave.

EEGETKEY Memory Parameter Semantics

After validating the operands, the instruction determines which key is to be produced and performs the following 
actions:
• The instruction assembles the derivation data for the key based on the Table 39-66.
• Computes derived key using the derivation data and package specific value.
• Outputs the calculated key to the address in RCX.
The instruction fails with #GP(0) if the operands are not properly aligned. Successful completion of the instruction 
will clear RFLAGS.{ZF, CF, AF, OF, SF, PF}. The instruction returns an error code if the user tries to request a key 
based on an invalid CPUSVN or ISVSVN (when the user request is accepted, see the table below), requests a key 
for which it has not been granted the attribute to request, or requests a key that is not supported by the hardware. 
These checks may be performed in any order. Thus, an indication by error number of one cause (for example, 
invalid attribute) does not imply that there are not also other errors. Different processors may thus give different 
error numbers for the same Enclave. The correctness of software should not rely on the order resulting from the 
checks documented in this section. In such cases the ZF flag is set and the corresponding error bit (SGX_IN-
VALID_SVN, SGX_INVALID_ATTRIBUTE, SGX_INVALID_KEYNAME) is set in RAX and the data at the address spec-
ified by RCX is unmodified.
Requesting Keys
The KEYREQUEST structure (see Section 36.18.1) identifies the key to be provided. The Keyrequest.KeyName field 
identifies which type of key is requested. 
Deriving Keys
Key derivation is based on a combination of the enclave specific values (see Table 39-66) and a processor key. 
Depending on the key being requested a field may either be included by definition or the value may be included 
from the KeyRequest. A “yes” in Table 39-66 indicates the value for the field is included from its default location, 
identified in the source row, and a “request” indicates the values for the field is included from its corresponding 
KeyRequest field. 

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 01H
ENCLU[EGETKEY]

IR V/V SGX1 This leaf function retrieves a cryptographic key.

Op/En EAX RBX RCX

IR EGETKEY (In) Return error code (Out) Address to a KEYREQUEST (In) Address of the OUTPUTDATA (In)

KEYREQUEST OUTPUTDATA

 Enclave read access  Enclave write access
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Keys that permit the specification of a CPU or ISV's code's, or enclave configuration's SVNs have additional require-
ments. The caller may not request a key for an SVN beyond the current CPU, ISV or enclave configuration's SVN, 
respectively. 
Several keys are access controlled. Access to the Provisioning Key and Provisioning Seal key requires the enclave's 
ATTRIBUTES.PROVISIONKEY be set. The EINITTOKEN Key requires ATTRIBUTES.EINITTOKEN_KEY be set and 
SECS.MRSIGNER equal IA32_SGXLEPUBKEYHASH.
Some keys are derived based on a hardcode PKCS padding constant (352 byte string): 
HARDCODED_PKCS1_5_PADDING[15:0] := 0100H;
HARDCODED_PKCS1_5_PADDING[2655:16] := SignExtend330Byte(-1); // 330 bytes of 0FFH
HARDCODED_PKCS1_5_PADDING[2815:2656] := 2004000501020403650148866009060D30313000H;

The error codes are: 

Concurrency Restrictions

Table 39-66.  Key Derivation

Key Name Attributes 
Owner 
Epoch

CPU 
SVN ISV SVN

ISV 
PRODID

ISVEXT
PRODID

ISVFAM
ILYID MRENCLAVE MRSIGNER 

CONFIG
ID

CONFIGS
VN RAND 

Source

Key 
Dependent 
Constant

Y := 
SECS.ATTRIBUTES 
and 
SECS.MISCSELECT
and
SECS.CET_ATTRIB
UTES;

CR_SGX
OWNER
EPOCH

Y := 
CPUSVN 
Register;

R := 
Req.ISV
SVN;

SECS. 
ISVID

SECS.IS
VEXTPR
ODID

SECS.IS
VFAMIL
YID

SECS. 
MRENCLAVE

SECS. 
MRSIGNER

SECS.CO
NFIGID

SECS.CO
NFIGSVN

Req. 
KEYID

R := AttribMask & 
SECS.ATTRIBUTES 
and 
SECS.MISCSELECT
and
SECS.CET_ATTRIB
UTES;

R := 
Req.CPU
SVN;

EINITTOKEN Yes Request Yes Request Request Yes No No No Yes No No Request

Report Yes Yes Yes Yes No No No No Yes No Yes Yes Request

Seal Yes Request Yes Request Request Request Request Request Request Request Request Request Request

Provisioning Yes Request No Request Request Yes No No No Yes No No Yes

Provisioning 
Seal

Yes Request No Request Request Request Request Request No Yes Request Request Yes

Table 39-67.  EGETKEY Return Value in RAX
 Error Code (see Table 39-4) Value Description

No Error 0 EGETKEY successful.

SGX_INVALID_ATTRIBUTE The KEYREQUEST contains a KEYNAME for which the enclave is not authorized.

SGX_INVALID_CPUSVN If KEYREQUEST.CPUSVN is an unsupported platforms CPUSVN value.

SGX_INVALID_ISVSVN If KEYREQUEST software SVN (ISVSVN or CONFIGSVN) is greater than the 
enclave's corresponding SVN.

SGX_INVALID_KEYNAME If KEYREQUEST.KEYNAME is an unsupported value.

Table 39-68.  Base Concurrency Restrictions of EGETKEY

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EGETKEY KEYREQUEST [DS:RBX] Concurrent

OUTPUTDATA [DS:RCX] Concurrent
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Operation

Temp Variables in EGETKEY Operational Flow

(* Make sure KEYREQUEST is properly aligned and inside the current enclave *)
IF ( (DS:RBX is not 512Byte aligned) or (DS:RBX is not within CR_ELRANGE) ) 

THEN #GP(0); FI;

(* Make sure DS:RBX is an EPC address and the EPC page is valid *)
IF ( (DS:RBX does not resolve to an EPC address) or (EPCM(DS:RBX).VALID = 0) ) 

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1) 
THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)
IF ( (EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or

(EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0FFFH) ) or (EPCM(DS:RBX).R = 0) ) 
THEN #PF(DS:RBX); 

FI;

(* Make sure OUTPUTDATA is properly aligned and inside the current enclave *)
IF ( (DS:RCX is not 16Byte aligned) or (DS:RCX is not within CR_ELRANGE) ) 

THEN #GP(0); FI;

(* Make sure DS:RCX is an EPC address and the EPC page is valid *)
IF ( (DS:RCX does not resolve to an EPC address) or (EPCM(DS:RCX).VALID = 0) ) 

Table 39-69.  Additional Concurrency Restrictions of EGETKEY

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EGETKEY KEYREQUEST 
[DS:RBX]

Concurrent Concurrent Concurrent

OUTPUTDATA 
[DS:RCX]

Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_CURRENTSECS Address of the SECS for the currently executing enclave.

TMP_KEYDEPENDENCIES Temp space for key derivation.

TMP_ATTRIBUTES 128 Temp Space for the calculation of the sealable Attributes.

TMP_ISVEXTPRODID 16 bytes Temp Space for ISVEXTPRODID.

TMP_ISVPRODID 2 bytes Temp Space for ISVPRODID.

TMP_ISVFAMILYID 16 bytes Temp Space for ISVFAMILYID.

TMP_CONFIGID 64 bytes Temp Space for CONFIGID.

TMP_CONFIGSVN 2 bytes Temp Space for CONFIGSVN.

TMP_OUTPUTKEY 128 Temp Space for the calculation of the key.
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THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1) 
THEN #PF(DS:RCX); FI;

(* Check page parameters for correctness *)
IF ( (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS ≠ (DS:RCX & ~0FFFH) ) or (EPCM(DS:RCX).W = 0) ) 
THEN #PF(DS:RCX); 

FI;

(* Verify RESERVED spaces in KEYREQUEST are valid *)
IF ( (DS:RBX).RESERVED ≠ 0) or (DS:RBX.KEYPOLICY.RESERVED ≠ 0) ) 

THEN #GP(0); FI;

TMP_CURRENTSECS := CR_ACTIVE_SECS;

(* Verify that CONFIGSVN & New Policy bits are not used if KSS is not enabled *)
IF ((TMP_CURRENTSECS.ATTRIBUTES.KSS == 0) AND ((DS:RBX.KEYPOLICY & 0x003C ≠ 0) OR (DS:RBX.CONFIGSVN > 0)))

THEN #GP(0); FI;
(* Determine which enclave attributes that must be included in the key. Attributes that must always be include INIT & DEBUG *)
REQUIRED_SEALING_MASK[127:0] := 00000000 00000000 00000000 00000003H;
TMP_ATTRIBUTES := (DS:RBX.ATTRIBUTEMASK | REQUIRED_SEALING_MASK) & TMP_CURRENTSECS.ATTRIBUTES;

(* Compute MISCSELECT fields to be included *)
TMP_MISCSELECT := DS:RBX.MISCMASK & TMP_CURRENTSECS.MISCSELECT

(* Compute CET_ATTRIBUTES fields to be included *)
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN TMP_CET_ATTRIBUTES := DS:RBX.CET_ATTRIBUTES_ MASK & TMP_CURRENTSECS.CET_ATTRIBUTES; FI;
TMP_KEYDEPENDENCIES := 0;

CASE (DS:RBX.KEYNAME)
SEAL_KEY:

IF (DS:RBX.CPUSVN is beyond current CPU configuration)
THEN

RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
IF (DS:RBX.CONFIGSVN > TMP_CURRENTSECS.CONFIGSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;

(*Include enclave identity?*)
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TMP_MRENCLAVE := 0;
IF (DS:RBX.KEYPOLICY.MRENCLAVE = 1)

THEN TMP_MRENCLAVE := TMP_CURRENTSECS.MRENCLAVE;
FI;
(*Include enclave author?*)
TMP_MRSIGNER := 0;
IF (DS:RBX.KEYPOLICY.MRSIGNER = 1)

THEN TMP_MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
FI;

(* Include enclave product family ID? *)
    TMP_ISVFAMILYID := 0;
    IF (DS:RBX.KEYPOLICY.ISVFAMILYID = 1)
        THEN TMP_ISVFAMILYID := TMP_CURRENTSECS.ISVFAMILYID;

FI;

    (* Include enclave product ID? *)
    TMP_ISVPRODID := 0;
    IF (DS:RBX.KEYPOLICY.NOISVPRODID = 0)
        TMP_ISVPRODID := TMP_CURRENTSECS.ISVPRODID;

FI;

    (* Include enclave Config ID? *)
    TMP_CONFIGID := 0;
    TMP_CONFIGSVN := 0;
    IF (DS:RBX.KEYPOLICY.CONFIGID = 1)
        TMP_CONFIGID := TMP_CURRENTSECS.CONFIGID;
        TMP_CONFIGSVN := DS:RBX.CONFIGSVN; 

FI;

    (* Include enclave extended product ID? *)
    TMP_ISVEXTPRODID := 0;
    IF (DS:RBX.KEYPOLICY.ISVEXTPRODID = 1 )
        TMP_ISVEXTPRODID := TMP_CURRENTSECS.ISVEXTPRODID;
    FI;

//Determine values key is based on
TMP_KEYDEPENDENCIES.KEYNAME := SEAL_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := TMP_ISVFAMILYID;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := TMP_ISVEXTPRODID;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN := DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE := TMP_MRENCLAVE;
TMP_KEYDEPENDENCIES.MRSIGNER := TMP_MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID := DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := ~DS:RBX.MISCMASK;
TMP_KEYDEPENDENCIES.KEYPOLICY := DS:RBX.KEYPOLICY;
TMP_KEYDEPENDENCIES.CONFIGID := TMP_CONFIGID;
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TMP_KEYDEPENDENCIES.CONFIGSVN := TMP_CONFIGSVN;
IF CPUID.(EAX=12H, ECX=1):EAX[6] = 1

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := DS:RBX.CET_ATTRIBUTES _MASK;

FI;
BREAK;

REPORT_KEY:
//Determine values key is based on
TMP_KEYDEPENDENCIES.KEYNAME := REPORT_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := 0;
TMP_KEYDEPENDENCIES.ISVSVN := 0;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_CURRENTSECS.ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := 0;
TMP_KEYDEPENDENCIES.MRENCLAVE := TMP_CURRENTSECS.MRENCLAVE;
TMP_KEYDEPENDENCIES.MRSIGNER := 0;
TMP_KEYDEPENDENCIES.KEYID := DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := CR_CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := HARDCODED_PKCS1_5_PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_CURRENTSECS.MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := 0;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := TMP_CURRENTSECS.CONFIGID;
TMP_KEYDEPENDENCIES.CONFIGSVN := TMP_CURRENTSECS.CONFIGSVN;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CURRENTSECS.CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES_MASK := 0;

FI;
BREAK;

EINITTOKEN_KEY:
(* Check ENCLAVE has EINITTOKEN Key capability *)
IF (TMP_CURRENTSECS.ATTRIBUTES.EINITTOKEN_KEY = 0)

THEN 
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN 
RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
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(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME := EINITTOKEN_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_CURRENTSECS.ISVPRODID
TMP_KEYDEPENDENCIES.ISVSVN := DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := 0;
TMP_KEYDEPENDENCIES.MRENCLAVE := 0;
TMP_KEYDEPENDENCIES.MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID := DS:RBX.KEYID; 
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := 0;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := 0;
TMP_KEYDEPENDENCIES.CONFIGSVN := 0;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := 0;

FI;
BREAK;

PROVISION_KEY: 
(* Check ENCLAVE has PROVISIONING capability *)

IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0) 
THEN

RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME := PROVISION_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_CURRENTSECS.ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN := DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := 0;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_ATTRIBUTES;
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TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE := 0;
TMP_KEYDEPENDENCIES.MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID := 0;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := 0;
TMP_KEYDEPENDENCIES.CPUSVN := DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := ~DS:RBX.MISCMASK;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := 0;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := 0;

FI;
BREAK;

PROVISION_SEAL_KEY:
(* Check ENCLAVE has PROVISIONING capability *)
IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0) 

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
(* Include enclave product family ID? *)
    TMP_ISVFAMILYID := 0;
    IF (DS:RBX.KEYPOLICY.ISVFAMILYID = 1)
        THEN TMP_ISVFAMILYID := TMP_CURRENTSECS.ISVFAMILYID;

FI;

    (* Include enclave product ID? *)
    TMP_ISVPRODID := 0;
    IF (DS:RBX.KEYPOLICY.NOISVPRODID = 0)
        TMP_ISVPRODID := TMP_CURRENTSECS.ISVPRODID;

FI;

    (* Include enclave Config ID? *)
    TMP_CONFIGID := 0;
    TMP_CONFIGSVN := 0;
    IF (DS:RBX.KEYPOLICY.CONFIGID = 1)
        TMP_CONFIGID := TMP_CURRENTSECS.CONFIGID;
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        TMP_CONFIGSVN := DS:RBX.CONFIGSVN; 
FI;

    (* Include enclave extended product ID? *)
    TMP_ISVEXTPRODID := 0;
    IF (DS:RBX.KEYPOLICY.ISVEXTPRODID = 1)
        TMP_ISVEXTPRODID := TMP_CURRENTSECS.ISVEXTPRODID;
    FI;

(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME := PROVISION_SEAL_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := TMP_ISVFAMILYID;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := TMP_ISVEXTPRODID;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN := DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := 0;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE := 0;
TMP_KEYDEPENDENCIES.MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID := 0;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := ~DS:RBX.MISCMASK;
TMP_KEYDEPENDENCIES.KEYPOLICY := DS:RBX.KEYPOLICY;
TMP_KEYDEPENDENCIES.CONFIGID := TMP_CONFIGID;
TMP_KEYDEPENDENCIES.CONFIGSVN := TMP_CONFIGSVN;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := 0;

FI;
BREAK;

DEFAULT:
(* The value of KEYNAME is invalid *)
RFLAGS.ZF := 1;
RAX := SGX_INVALID_KEYNAME;
GOTO EXIT:

ESAC;

(* Calculate the final derived key and output to the address in RCX *)
TMP_OUTPUTKEY := derivekey(TMP_KEYDEPENDENCIES);
DS:RCX[15:0] := TMP_OUTPUTKEY;
RAX := 0;
RFLAGS.ZF := 0;

EXIT:
RFLAGS.CF := 0;
RFLAGS.PF := 0;
RFLAGS.AF := 0;
RFLAGS.OF := 0;
RFLAGS.SF := 0;
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Flags Affected

ZF is cleared if successful, otherwise ZF is set. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the current enclave.
If an effective address is not properly aligned.
If an effective address is outside the DS segment limit.
If KEYREQUEST format is invalid.

#PF(error code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the current enclave.
If an effective address is not properly aligned.
If an effective address is not canonical.
If KEYREQUEST format is invalid.

#PF(error code) If a page fault occurs in accessing memory operands.
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EMODPE—Extend an EPC Page Permissions  

Instruction Operand Encoding

Description

This leaf function extends the access rights associated with an existing EPC page in the running enclave. THE RWX 
bits of the SECINFO parameter are treated as a permissions mask; supplying a value that does not extend the page 
permissions will have no effect. This instruction leaf can only be executed when inside the enclave. 
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC 
page. The table below provides additional information on the memory parameter of the EMODPE leaf function.

EMODPE Memory Parameter Semantics

The instruction faults if any of the following: 

EMODPE Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 06H
ENCLU[EMODPE]

IR V/V SGX2 This leaf function extends the access rights of an existing EPC 
page.

Op/En EAX RBX RCX

IR EMODPE (In) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. RBX does not contain an effective address in an EPC page in the running enclave.

The EPC page is not valid. RCX does not contain an effective address of an EPC page in the running enclave.

SECINFO contains an invalid request.

Table 39-70.  Base Concurrency Restrictions of EMODPE

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EMODPE Target [DS:RCX] Concurrent

SECINFO [DS:RBX] Concurrent

Table 39-71.  Additional Concurrency Restrictions of EMODPE

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EMODPE Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent
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Operation

Temp Variables in EMODPE Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF ((DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE) )
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC) 
THEN #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC) 
THEN #PF(DS:RCX); FI;

IF ( (EPCM(DS:RBX).VALID = 0) or (EPCM(DS:RBX).R = 0) or (EPCM(DS:RBX).PENDING ≠ 0) or (EPCM(DS:RBX).MODIFIED ≠ 0) or
(EPCM(DS:RBX).BLOCKED ≠ 0) or (EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0xFFF)) )
THEN #PF(DS:RBX); FI;

SCRATCH_SECINFO := DS:RBX;

(* Check for misconfigured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero ) 

THEN #GP(0); FI;

(* Check security attributes of the EPC page *)
IF ( (EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 0) or (EPCM(DS:RCX).MODIFIED ≠ 0) or 

(EPCM(DS:RCX).BLOCKED ≠ 0) or (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) )
THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction) 

THEN #GP(0); FI;

(* Re-Check security attributes of the EPC page *)
IF ( (EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 0) or (EPCM(DS:RCX).MODIFIED ≠ 0) or 

(EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX))
THEN #PF(DS:RCX); FI;

(* Check for misconfigured SECINFO flags*)
IF ( (EPCM(DS:RCX).R = 0) and (SCRATCH_SECINFO.FLAGS.R = 0) and (SCRATCH_SECINFO.FLAGS.W ≠ 0) ) 

THEN #GP(0); FI;

Name Type Size (bits) Description

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
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(* Update EPCM permissions *)
EPCM(DS:RCX).R := EPCM(DS:RCX).R | SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := EPCM(DS:RCX).W | SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := EPCM(DS:RCX).X | SCRATCH_SECINFO.FLAGS.X;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
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EREPORT—Create a Cryptographic Report of the Enclave 

Instruction Operand Encoding

Description

This leaf function creates a cryptographic REPORT that describes the contents of the enclave. This instruction leaf 
can only be executed when inside the enclave. The cryptographic report can be used by other enclaves to deter-
mine that the enclave is running on the same platform.
RBX contains the effective address of the MRENCLAVE value of the enclave that will authenticate the REPORT 
output, using the REPORT key delivered by EGETKEY command for that enclave. RCX contains the effective address 
of a 64-byte REPORTDATA structure, which allows the caller of the instruction to associate data with the enclave 
from which the instruction is called. RDX contains the address where the REPORT will be output by the instruction.

EREPORT Memory Parameter Semantics

This instruction leaf perform the following: 

1. Validate the 3 operands (RBX, RCX, RDX) are inside the enclave.

2. Compute a report key for the target enclave, as indicated by the value located in RBX(TARGETINFO).

3. Assemble the enclave SECS data to complete the REPORT structure (including the data provided using the RCX 
(REPORTDATA) operand).

4. Computes a cryptographic hash over REPORT structure.

5. Add the computed hash to the REPORT structure.

6. Output the completed REPORT structure to the address in RDX (OUTPUTDATA). 
The instruction fails if the operands are not properly aligned.
CR_REPORT_KEYID, used to provide key wearout protection, is populated with a statistically unique value on boot 
of the platform by a trusted entity within the SGX TCB.

The instruction faults if any of the following: 

EREPORT Faulting Conditions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 00H
ENCLU[EREPORT]

IR V/V SGX1 This leaf function creates a cryptographic report of the enclave.

Op/En EAX RBX RCX RDX

IR EREPORT (In)
Address of TARGETINFO 

(In)
Address of REPORTDATA 

(In)
Address where the REPORT is 

written to in an OUTPUTDATA (In)

TARGETINFO REPORTDATA OUTPUTDATA

Read access by Enclave Read access by Enclave Read/Write access by Enclave 

An effective address not properly aligned. An memory address does not resolve in an EPC page.

If accessing an invalid EPC page. If the EPC page is blocked.

May page fault.
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Concurrency Restrictions

Operation

Temp Variables in EREPORT Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Address verification for TARGETINFO (RBX) *)
IF ( (DS:RBX is not 512Byte Aligned) or (DS:RBX is not within CR_ELRANGE) )

THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC) 
THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).VALID = 0)
THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1) 
THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)
IF ( (EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or

(EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0FFFH) ) or (EPCM(DS:RBX).R = 0) ) 

Table 39-72.  Base Concurrency Restrictions of EREPORT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EREPORT TARGETINFO [DS:RBX] Concurrent

REPORTDATA [DS:RCX] Concurrent

OUTPUTDATA [DS:RDX] Concurrent

Table 39-73.  Additional Concurrency Restrictions of EREPORT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EREPORT TARGETINFO [DS:RBX] Concurrent Concurrent Concurrent

REPORTDATA 
[DS:RCX]

Concurrent Concurrent Concurrent

OUTPUTDATA 
[DS:RDX]

Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_ATTRIBUTES  32 Physical address of SECS of the enclave to which source operand belongs.

TMP_CURRENTSECS Address of the SECS for the currently executing enclave.

TMP_KEYDEPENDENCIES Temp space for key derivation.

TMP_REPORTKEY  128 REPORTKEY generated by the instruction.

TMP_REPORT  3712
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THEN #PF(DS:RBX); 
FI;

(* Verify RESERVED spaces in TARGETINFO are valid *)
IF (DS:RBX.RESERVED != 0)

THEN #GP(0); FI;

(* Address verification for REPORTDATA (RCX) *)
IF ( (DS:RCX is not 128Byte Aligned) or (DS:RCX is not within CR_ELRANGE) )

THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC) 
THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).VALID = 0)
THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1) 
THEN #PF(DS:RCX); FI;

(* Check page parameters for correctness *)
IF ( (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS ≠ (DS:RCX & ~0FFFH) ) or (EPCM(DS:RCX).R = 0) ) 
THEN #PF(DS:RCX); 

FI;

(* Address verification for OUTPUTDATA (RDX) *)
IF ( (DS:RDX is not 512Byte Aligned) or (DS:RDX is not within CR_ELRANGE) )

THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC) 
THEN #PF(DS:RDX); FI;

IF (EPCM(DS:RDX).VALID = 0)
THEN #PF(DS:RDX); FI;

IF (EPCM(DS:RDX).BLOCKED = 1) 
THEN #PF(DS:RDX); FI;

(* Check page parameters for correctness *)
IF ( (EPCM(DS:RDX).PT ≠ PT_REG) or (EPCM(DS:RDX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RDX).ENCLAVEADDRESS ≠ (DS:RDX & ~0FFFH) ) or (EPCM(DS:RDX).W = 0) ) 
THEN #PF(DS:RDX); 

FI;

(* REPORT MAC needs to be computed over data which cannot be modified *)
TMP_REPORT.CPUSVN := CR_CPUSVN;
TMP_REPORT.ISVFAMILYID := TMP_CURRENTSECS.ISVFAMILYID;
TMP_REPORT.ISVEXTPRODID := TMP_CURRENTSECS.ISVEXTPRODID;
TMP_REPORT.ISVPRODID := TMP_CURRENTSECS.ISVPRODID;
TMP_REPORT.ISVSVN := TMP_CURRENTSECS.ISVSVN;
TMP_REPORT.ATTRIBUTES := TMP_CURRENTSECS.ATTRIBUTES;
TMP_REPORT.REPORTDATA := DS:RCX[511:0];
TMP_REPORT.MRENCLAVE := TMP_CURRENTSECS.MRENCLAVE;
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TMP_REPORT.MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
TMP_REPORT.MRRESERVED := 0;
TMP_REPORT.KEYID[255:0] := CR_REPORT_KEYID;
TMP_REPORT.MISCSELECT := TMP_CURRENTSECS.MISCSELECT;
TMP_REPORT.CONFIGID := TMP_CURRENTSECS.CONFIGID;
TMP_REPORT.CONFIGSVN := TMP_CURRENTSECS.CONFIGSVN;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN TMP_REPORT.CET_ATTRIBUTES := TMP_CURRENTSECS.CET_ATTRIBUTES; FI;

(* Derive the report key *)
TMP_KEYDEPENDENCIES.KEYNAME := REPORT_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := 0;
TMP_KEYDEPENDENCIES.ISVSVN := 0;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := DS:RBX.ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := 0;
TMP_KEYDEPENDENCIES.MRENCLAVE := DS:RBX.MEASUREMENT;
TMP_KEYDEPENDENCIES.MRSIGNER := 0;
TMP_KEYDEPENDENCIES.KEYID := TMP_REPORT.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := CR_CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := DS:RBX.MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := 0;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := DS:RBX.CONFIGID;
TMP_KEYDEPENDENCIES.CONFIGSVN := DS:RBX.CONFIGSVN;
IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := DS:RBX.CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := 0;

FI;

(* Calculate the derived key*)
TMP_REPORTKEY := derivekey(TMP_KEYDEPENDENCIES);

(* call cryptographic CMAC function, CMAC data are not including MAC&KEYID *)
TMP_REPORT.MAC := cmac(TMP_REPORTKEY, TMP_REPORT[3071:0] );
DS:RDX[3455: 0] := TMP_REPORT;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If the address in RCS is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is not in the current enclave.

#PF(error code) If a page fault occurs in accessing memory operands.
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64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If RCX is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is not in the current enclave.

#PF(error code) If a page fault occurs in accessing memory operands.
EREPORT—Create a Cryptographic Report of the Enclave39-132 Vol.



INTEL® SGX INSTRUCTION REFERENCES
ERESUME—Re-Enters an Enclave

Instruction Operand Encoding

Description

The ENCLU[ERESUME] instruction resumes execution of an enclave that was interrupted due to an exception or 
interrupt, using the machine state previously stored in the SSA.

ERESUME Memory Parameter Semantics

The instruction faults if any of the following occurs: 

The following operations are performed by ERESUME:
• RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or an 

asynchronous exit due to any Interrupt event.
• The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are 

saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and 
TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment. 

• If CR4.OSXSAVE == 1, XCR0 is saved and replaced by SECS.ATTRIBUTES.XFRM. The effect of RFLAGS.TF 
depends on whether the enclave entry is opt-in or opt-out (see Section 41.1.2):

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a POPF 
instruction while inside the enclave clears TF (see Section 41.2.5).

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after 
EENTER (see Section 41.2.3). 

• All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry, all 
code and data breakpoints that overlap with the ELRANGE are suppressed.

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 03H
ENCLU[ERESUME]

IR V/V SGX1 This leaf function is used to re-enter an enclave after an inter-
rupt.

Op/En RAX RBX RCX

IR ERESUME (In) Address of a TCS (In) Address of AEP (In)

TCS

 Enclave read/write access

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or 
locked.

Current 32/64 mode does not match the enclave mode in 
SECS.ATTRIBUTES.MODE64.

The SECS is in use by another enclave. Either of TCS-specified FS and GS segment is not a subset of the current DS 
segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but SECS.ATTRIBUTES.XFRM ≠ 3.

CR4.OSFXSR ≠ 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

Offsets 520-535 of the XSAVE area not 0. The bit vector stored at offset 512 of the XSAVE area must be a subset of 
SECS.ATTRIBUTES.XFRM.

The SSA frame is not valid or in use. If SECS.ATTRIBUTES.AEXNOTIFY ≠ TCS.FLAGS.AEXNOTIFY and 
TCS.FLAGS.DBGOPTIN = 0.
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• On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed (see 
Section 41.2.3):

— All performance monitoring activity on the current thread is suppressed except for incrementing and firing 
of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and IA32_PERF_GLOBAL_STATUS[60] 
on that thread is set.

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the 
processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Operation

Temp Variables in ERESUME Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)
IF (TMP_MODE64 = 0 and (DS not usable or DS[bits 11:9] != 001B))

Table 39-74.  Base Concurrency Restrictions of ERESUME

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ERESUME TCS [DS:RBX] Shared #GP

Table 39-75.  Additional Concurrency Restrictions of ERESUME

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ERESUME TCS [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_TARGET Effective Address 32/64 Address of first instruction inside enclave at which execution is to resume.

TMP_SECS Effective Address 32/64 Physical address of SECS for this enclave.

TMP_SSA Effective Address 32/64 Address of current SSA frame.

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.

TMP_BRANCH_RECORD LBR Record From/to addresses to be pushed onto the LBR stack.

TMP_NOTIFY Boolean 1 When set to 1, deliver an AEX notification.
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THEN #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODE64 = 0)

THEN 
IF(CS.base ≠ 0 or DS.base ≠ 0) #GP(0); FI;
IF(ES usable and ES.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.B = 0) #GP(0); FI;

FI;

IF (DS:RBX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

(* Check AEP is canonical*)
IF (TMP_MODE64 = 1 and (CS:RCX is not canonical))

THEN #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions are operating on TCS) 

THEN #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0) 

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1) 
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
THEN #PF(DS:RBX); FI;

IF ( (EPCM(DS:RBX).ENCLAVEADDRESS ≠ DS:RBX) or (EPCM(DS:RBX).PT ≠ PT_TCS))
THEN #PF(DS:RBX); FI;

IF ( (DS:RBX).OSSA is not 4KByte Aligned)
THEN #GP(0); FI;

(* Check proposed FS and GS *)
IF ( ( (DS:RBX).OFSBASE is not 4KByte Aligned) or ( (DS:RBX).OGSBASE is not 4KByte Aligned))

THEN #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS := Address of SECS for TCS;

(* Make sure that the FLAGS field in the TCS does not have any reserved bits set *)
IF ( ( (DS:RBX).FLAGS & FFFFFFFFFFFFFFFCH) ≠ 0) 

THEN #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized) 
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THEN #GP(0); FI;

(* make sure the logical processor's operating mode matches the enclave *)
IF ( (TMP_MODE64 ≠ TMP_SECS.ATTRIBUTES.MODE64BIT))

THEN #GP(0); FI;

IF (CR4.OSFXSR = 0)
THEN #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.OSXSAVE = 0)

THEN 
IF (TMP_SECS.ATTRIBUTES.XFRM ≠ 03H) THEN #GP(0); FI;

ELSE
IF ( (TMP_SECS.ATTRIBUTES.XFRM & XCR0) ≠ TMP_SECS.ATTRIBUTES.XFRM) THEN #GP(0); FI;

FI;

IF ( (DS:RBX).CSSA.FLAGS.DBGOPTIN = 0) and (DS:RBX).CSSA.FLAGS.AEXNOTIFY ≠ TMP_SECS.ATTRIBUTES.AEXNOTIFY))
THEN #GP(0); FI;

(* Make sure the SSA contains at least one active frame *)
IF ( (DS:RBX).CSSA = 0) 

THEN #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA := (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * ( (DS:RBX).CSSA - 1);
TMP_XSIZE := compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible; 
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_SSA_PAGE does not resolve to EPC page) 

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0) 

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1) 

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE_.MODIFIED = 1))

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ( ( EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMPSSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or

(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or 
(EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0) )
THEN #PF(DS:TMP_SSA_PAGE); FI;

CR_XSAVE_PAGE_n := Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR := TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE - sizeof(GPRSGX_AREA);
Check that DS:TMP_SSA_PAGE is read/write accessible; 
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_GPR does not resolve to EPC page) 

THEN #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).VALID = 0) 
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THEN #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).BLOCKED = 1) 

THEN #PF(DS:TMP_GPR); FI;
IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))

THEN #PF(DS:TMP_GPR); FI;
IF ( ( EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT ≠ PT_REG) or

(EPCM(DS:TMP_GPR).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or 
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))
THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN 

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;
FI;

CR_GPR_PA := Physical_Address (DS: TMP_GPR);

IF ((DS:RBX).FLAGS.AEXNOTIFY = 1) and (DS:TMP_GPR.AEXNOTIFY[0] = 1))
THEN

TMP_NOTIFY := 1;
ELSE

TMP_NOTIFY := 0;
FI;

IF (TMP_NOTIFY = 1)
THEN

(* Make sure the SSA contains at least one more frame *)
IF ((DS:RBX).CSSA ≥ (DS:RBX).NSSA)

THEN #GP(0); FI;

TMP_SSA := TMP_SSA + 4096 * TMP_SECS.SSAFRAMESIZE;
TMP_XSIZE := compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible; 
If a fault occurs, release locks, abort and deliver that fault;

IF (DS:TMP_SSA_PAGE does not resolve to EPC page) 
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0) 
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1) 
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or 
(EPCM(DS:TMP_SSA_PAGE).MODIFIED = 1))

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMP_SSA_PAGE) or
(EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or
(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0))

THEN #PF(DS:TMP_SSA_PAGE); FI;
CR_XSAVE_PAGE_n := Physical_Address(DS:TMP_SSA_PAGE);

ENDFOR
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(* Compute address of GPR area*)
TMP_GPR := TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE - sizeof(GPRSGX_AREA);
If a fault occurs; release locks, abort and deliver that fault;

IF (DS:TMP_GPR does not resolve to EPC page) 
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).VALID = 0) 
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).BLOCKED = 1) 
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or
(EPCM(DS:TMP_GPR).PT ≠ PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS EPCM(DS:RBX).ENCLAVESECS) or 
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))

THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN 

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;
FI;

CR_GPR_PA := Physical_Address (DS: TMP_GPR);

TMP_TARGET := (DS:RBX).OENTRY + TMP_SECS.BASEADDR;
ELSE

TMP_TARGET := (DS:TMP_GPR).RIP;
FI;

IF (TMP_MODE64 = 1)
THEN 

IF (TMP_TARGET is not canonical) THEN #GP(0); FI;
ELSE

IF (TMP_TARGET > CS limit) THEN #GP(0); FI;
FI;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODE64 = 0)

THEN 
TMP_FSBASE := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
TMP_GSLIMIT := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
IF (TMP_FSLIMIT < TMP_FSBASE)

THEN 
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
(* if GS wrap-around, make sure DS has no holes*)
IF (TMP_GSLIMIT < TMP_GSBASE)

THEN 
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IF (DS.limit < 4GB) THEN #GP(0); FI;
ELSE

IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;
FI;

ELSE
IF (TMP_NOTIFY = 1)

THEN
TMP_FSBASE := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_GSBASE := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;

ELSE
 TMP_FSBASE := DS:TMP_GPR.FSBASE;
 TMP_GSBASE := DS:TMP_GPR.GSBASE;

FI;
IF ((TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))

THEN #GP(0); FI;
FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE))

THEN #GP(0); FI;

TMP_IA32_U_CET := 0
TMP_SSP := 0

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)
THEN

IF ( CR4.CET = 0 ) 
THEN 

(* If part does not support CET or CET has not been enabled and enclave requires CET then fail *) 
IF (TMP_SECS.CET_ATTRIBUTES ≠ 0 OR TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) #GP(0); FI; 

FI;
(* If indirect branch tracking or shadow stacks enabled but CET state save area is not 16B aligned then fail ERESUME *) 
IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN = 1 OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN = 1) 

THEN 
IF (DS:RBX.OCETSSA is not 16B aligned) #GP(0); FI; 

FI;

IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN) 
THEN

(* Setup CET state from SECS, note tracker goes to IDLE *) 
TMP_IA32_U_CET = TMP_SECS.CET_ATTRIBUTES; 
IF (TMP_IA32_U_CET.LEG_IW_EN = 1 AND TMP_IA32_U_CET.ENDBR_EN = 1) 

THEN 
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.BASEADDR;
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.CET_LEG_BITMAP_BASE; 

FI;

(* Compute linear address of what will become new CET state save area and cache its PA *) 
IF (TMP_NOTIFY = 1)

THEN
TMP_CET_SAVE_AREA = DS:RBX.OCETSSA + TMP_SECS.BASEADDR + (DS:RBX.CSSA) * 16;

ELSE
TMP_CET_SAVE_AREA = DS:RBX.OCETSSA + TMP_SECS.BASEADDR + (DS:RBX.CSSA - 1) * 16;

FI;
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TMP_CET_SAVE_PAGE = TMP_CET_SAVE_AREA & ~0xFFF; 

Check the TMP_CET_SAVE_PAGE page is read/write accessible 
If fault occurs release locks, abort and deliver fault

(* read the EPCM VALID, PENDING, MODIFIED, BLOCKED and PT fields atomically *)
IF ((DS:TMP_CET_SAVE_PAGE Does NOT RESOLVE TO EPC PAGE) OR 
 (EPCM(DS:TMP_CET_SAVE_PAGE).VALID = 0) OR 
 (EPCM(DS:TMP_CET_SAVE_PAGE).PENDING = 1) OR 
 (EPCM(DS:TMP_CET_SAVE_PAGE).MODIFIED = 1) OR 
 (EPCM(DS:TMP_CET_SAVE_PAGE).BLOCKED = 1) OR 
 (EPCM(DS:TMP_CET_SAVE_PAGE).R = 0) OR 
 (EPCM(DS:TMP_CET_SAVE_PAGE).W = 0) OR 
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVEADDRESS ≠ DS:TMP_CET_SAVE_PAGE) OR 
 (EPCM(DS:TMP_CET_SAVE_PAGE).PT ≠ PT_SS_REST) OR 
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS))

THEN 
#PF(DS:TMP_CET_SAVE_PAGE); 

FI;

CR_CET_SAVE_AREA_PA := Physical address(DS:TMP_CET_SAVE_AREA)
IF (TMP_NOTIFY = 1)

THEN
IF TMP_IA32_U_CET.SH_STK_EN = 1

THEN TMP_SSP = TCS.PREVSSP; FI;
ELSE

TMP_SSP = CR_CET_SAVE_AREA_PA.SSP 
TMP_IA32_U_CET.TRACKER = CR_CET_SAVE_AREA_PA.TRACKER; 
TMP_IA32_U_CET.SUPPRESS = CR_CET_SAVE_AREA_PA.SUPPRESS;
IF ( (TMP_MODE64 = 1 AND TMP_SSP is not canonical) OR

 (TMP_MODE64 = 0 AND (TMP_SSP & 0xFFFFFFFF00000000) ≠ 0) OR
(TMP_SSP is not 4 byte aligned) OR
(TMP_IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH AND TMP_IA32_U_CET.SUPPRESS = 1) OR
(CR_CET_SAVE_AREA_PA.Reserved ≠ 0) ) #GP(0); FI;

FI;
FI;

FI;

IF (TMP_NOTIFY = 0)
THEN

(* SECS.ATTRIBUTES.XFRM selects the features to be saved. *)
(* CR_XSAVE_PAGE_n: A list of 1 or more physical address of pages that contain the XSAVE area. *)
XRSTOR(TMP_MODE64, SECS.ATTRIBUTES.XFRM, CR_XSAVE_PAGE_n);

IF (XRSTOR failed with #GP) 
THEN

DS:RBX.STATE := INACTIVE;
#GP(0);

FI;
FI;

CR_ENCLAVE_MODE := 1;
CR_ACTIVE_SECS := TMP_SECS;
CR_ELRANGE := (TMP_SECS.BASEADDR, TMP_SECS.SIZE);
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(* Save sate for possible AEXs *)
CR_TCS_PA := Physical_Address (DS:RBX);
CR_TCS_LA := RBX;
CR_TCS_LA.AEP := RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector := FS.selector;
CR_SAVE_FS_base := FS.base;
CR_SAVE_FS_limit := FS.limit;
CR_SAVE_FS_access_rights := FS.access_rights;
CR_SAVE_GS_selector := GS.selector;
CR_SAVE_GS_base := GS.base;
CR_SAVE_GS_limit := GS.limit;
CR_SAVE_GS_access_rights := GS.access_rights;

IF (TMP_NOTIFY = 1)
THEN

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1)

THEN 
CR_SAVE_XCR0 := XCR0;
XCR0 := TMP_SECS.ATTRIBUTES.XFRM;

FI;
FI;

RIP := TMP_TARGET;

IF (TMP_NOTIFY = 1)
THEN

RCX := RIP;
RAX := (DS:RBX).CSSA;
(* Save the outside RSP and RBP so they can be restored on interrupt or EEXIT *)
DS:TMP_SSA.U_RSP := RSP; 
DS:TMP_SSA.U_RBP := RBP;

ELSE
Restore_GPRs from DS:TMP_GPR;

(*Restore the RFLAGS values from SSA*)
RFLAGS.CF := DS:TMP_GPR.RFLAGS.CF;
RFLAGS.PF := DS:TMP_GPR.RFLAGS.PF;
RFLAGS.AF := DS:TMP_GPR.RFLAGS.AF;
RFLAGS.ZF := DS:TMP_GPR.RFLAGS.ZF;
RFLAGS.SF := DS:TMP_GPR.RFLAGS.SF;
RFLAGS.DF := DS:TMP_GPR.RFLAGS.DF;
RFLAGS.OF := DS:TMP_GPR.RFLAGS.OF;
RFLAGS.NT := DS:TMP_GPR.RFLAGS.NT;
RFLAGS.AC := DS:TMP_GPR.RFLAGS.AC;
RFLAGS.ID := DS:TMP_GPR.RFLAGS.ID;
RFLAGS.RF := DS:TMP_GPR.RFLAGS.RF;
RFLAGS.VM := 0;
IF (RFLAGS.IOPL = 3) 

THEN RFLAGS.IF := DS:TMP_GPR.RFLAGS.IF; FI;

IF (TCS.FLAGS.OPTIN = 0) 
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THEN RFLAGS.TF := 0; FI;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1)

THEN
CR_SAVE_XCR0 := XCR0;
XCR0 := TMP_SECS.ATTRIBUTES.XFRM;

FI;

(* Pop the SSA stack*)
(DS:RBX).CSSA := (DS:RBX).CSSA -1;

FI;

(* Do the FS/GS swap *)
FS.base := TMP_FSBASE;
FS.limit := DS:RBX.FSLIMIT;
FS.type := 0001b;
FS.W := DS[bit 9];
FS.S := 1;
FS.DPL := DS.DPL;
FS.G := 1;
FS.B := 1;
FS.P := 1;
FS.AVL := DS.AVL;
FS.L := DS[bit 21];
FS.unusable := 0;
FS.selector := 0BH;

GS.base := TMP_GSBASE;
GS.limit := DS:RBX.GSLIMIT;
GS.type := 0001b;
GS.W := DS[bit 9];
GS.S := 1;
GS.DPL := DS.DPL;
GS.G := 1;
GS.B := 1;
GS.P := 1;
GS.AVL := DS.AVL;
GS.L := DS[bit 21];
GS.unusable := 0;
GS.selector := 0BH;

CR_DBGOPTIN := TCS.FLAGS.DBGOPTIN;
Suppress all code breakpoints that are outside ELRANGE;

IF (CR_DBGOPTIN = 0) 
THEN

Suppress all code breakpoints that overlap with ELRANGE;
CR_SAVE_TF := RFLAGS.TF;
RFLAGS.TF := 0;
Suppress any MTF VM exits during execution of the enclave;
Clear all pending debug exceptions;
Clear any pending MTF VM exit;

ELSE
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IF (TMP_NOTIFY = 1)
THEN

IF RFLAGS.TF = 1
THEN pend a single-step #DB at the end of ERESUME; FI;

IF the “monitor trap flag” VM-execution control is set
THEN pend an MTF VM exit at the end of ERESUME; FI;

ELSE
Clear all pending debug exceptions;
Clear pending MTF VM exits;

FI;
FI;

IF ((CPUID.(EAX=7H, ECX=0):EDX[CET_IBT] = 1) OR (CPUID.(EAX=7, ECX=0):ECX[CET_SS] = 1)
THEN

(* Save enclosing application CET state into save registers *) 
CR_SAVE_IA32_U_CET := IA32_U_CET 
(* Setup enclave CET state *) 
IF CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] = 1

THEN
CR_SAVE_SSP := SSP 
SSP := TMP_SSP;

FI; 
IA32_U_CET := TMP_IA32_U_CET;

FI;

(* Assure consistent translations *)
Flush_linear_context;
Clear_Monitor_FSM;
Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected

RFLAGS.TF is cleared on opt-out entry

Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.
If SECS.ATTRIBUTES.AEXNOTIFY ≠ TCS.FLAGS.AEXNOTIFY and TCS.FLAGS.DBGOPTIN = 0.

#PF(error code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to 
a valid PT_REG EPC page.
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64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
If the target address is not canonical.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.
If SECS.ATTRIBUTES.AEXNOTIFY ≠ TCS.FLAGS.AEXNOTIFY and TCS.FLAGS.DBGOPTIN = 0.

#PF(error code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to 
a valid PT_REG EPC page.
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39.5 INTEL® SGX VIRTUALIZATION LEAF FUNCTION REFERENCE
Leaf functions available with the ENCLV instruction mnemonic are covered in this section. In general, each instruc-
tion leaf requires EAX to specify the leaf function index and/or additional implicit registers specifying leaf-specific 
input parameters. An instruction operand encoding table provides details of each implicit register usage and asso-
ciated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or 
outside the EPC, the memory addressing semantics of these memory objects are also summarized in a separate 
table.
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EDECVIRTCHILD—Decrement VIRTCHILDCNT in SECS 

Instruction Operand Encoding

Description

This instruction decrements the SECS VIRTCHILDCNT field. This instruction can only be executed when current 
privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address. 
Segment override is not supported.

EDECVIRTCHILD Memory Parameter Semantics

The instruction faults if any of the following: 

EDECVIRTCHILD Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 00H
ENCLV[EDECVIRTCHILD]

IR V/V EAX[5] This leaf function decrements the SECS VIRTCHILDCNT field.

Op/En EAX RBX RCX

IR EDECVIRTCHILD (In) Return error code (Out) Address of an enclave page (In) Address of an SECS page (In)

EPCPAGE SECS

Read/Write access permitted by Non Enclave Read access permitted by Enclave

A memory operand effective address is outside the DS segment 
limit (32b mode).

A page fault occurs in accessing memory operands.

DS segment is unusable (32b mode). RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).

A memory address is in a non-canonical form (64b mode). RCX does not refer to an SECS page.

A memory operand is not properly aligned. RBX does not refer to an enclave page associated with SECS 
referenced in RCX.

Table 39-76.  Base Concurrency Restrictions of EDECVIRTCHILD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit 

Qualification

EDECVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE_
CONFLICT

SECS [DS:RCX] Concurrent
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Operation

Temp Variables in EDECVIRTCHILD Operational Flow

EDECVIRTCHILD Return Value in RAX

(* check alignment of DS:RBX *)
IF (DS:RBX is not 4K aligned) THEN
    #GP(0); FI;

(* check DS:RBX is an linear address of an EPC page *)
IF (DS:RBX does not resolve within an EPC) THEN
    #PF(DS:RBX, PFEC.SGX); FI;

(* check DS:RCX is an linear address of an EPC page *)
IF (DS:RCX does not resolve within an EPC) THEN
    #PF(DS:RCX, PFEC.SGX); FI;

(* Check the EPCPAGE for concurrency *)
IF (EPCPAGE is being modified) THEN
    RFLAGS.ZF = 1;
    RAX = SGX_EPC_PAGE_CONFLICT;
    goto DONE;
FI;

(* check that the EPC page is valid *)
IF (EPCM(DS:RBX).VALID = 0) THEN
    #PF(DS:RBX, PFEC.SGX); FI;

(* check that the EPC page has the correct type and that the back pointer matches the pointer passed as the pointer to parent *)
IF ((EPCM(DS:RBX).PAGE_TYPE = PT_REG) or
    (EPCM(DS:RBX).PAGE_TYPE = PT_TCS) or

Table 39-77.  Additional Concurrency Restrictions of EDECVIRTCHILD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EDECVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS  Physical Address 64 Physical address of the SECS of the page being modified.

TMP_VIRTCHILDCNT Integer 64 Number of virtual child pages.

Error Value Description

No Error 0 EDECVIRTCHILD Successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.

SGX_INVALID_COUNTER Attempt to decrement counter that is already zero.
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    (EPCM(DS:RBX).PAGE_TYPE = PT_TRIM) or
(EPCM(DS:RBX).PAGE_TYPE = PT_SS_FIRST) or
(EPCM(DS:RBX).PAGE_TYPE = PT_SS_REST))
THEN

    (* get the SECS of DS:RBX *)
    TMP_SECS := Address of SECS for (DS:RBX);
ELSE IF (EPCM(DS:RBX).PAGE_TYPE = PT_SECS) THEN
    (* get the physical address of DS:RBX *)
    TMP_SECS := Physical_Address(DS:RBX);
ELSE 
    (* EDECVIRTCHILD called on page of incorrect type *)
    #PF(DS:RBX, PFEC.SGX); FI;

IF (TMP_SECS ≠ Physical_Address(DS:RCX)) THEN
    #GP(0); FI;

(* Atomically decrement virtchild counter and check for underflow *)
Locked_Decrement(SECS(TMP_SECS).VIRTCHILDCNT);
IF (There was an underflow) THEN
    Locked_Increment(SECS(TMP_SECS).VIRTCHILDCNT);
    RFLAGS.ZF := 1;
    RAX := SGX_INVALID_COUNTER;
    goto DONE;
FI;

RFLAGS.ZF := 0;
RAX := 0;

DONE:
(* clear flags *)
RFLAGS.CF := 0;
RFLAGS.PF := 0;
RFLAGS.AF := 0;
RFLAGS.OF := 0;
RFLAGS.SF := 0;

Flags Affected

ZF is set if EDECVIRTCHILD fails due to concurrent operation with another SGX instruction, or if there is a VIRT-
CHILDCNT underflow. Otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If DS segment is unusable.
If a memory operand is not properly aligned.
RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.
If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).
If RCX does not refer to an SECS page.
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64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.
If a memory operand is not properly aligned.
RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.
If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).
If RCX does not refer to an SECS page.
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EINCVIRTCHILD—Increment VIRTCHILDCNT in SECS 

Instruction Operand Encoding

Description

This instruction increments the SECS VIRTCHILDCNT field. This instruction can only be executed when the current 
privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create a linear address. 
Segment override is not supported.

EINCVIRTCHILD Memory Parameter Semantics

The instruction faults if any of the following: 

EINCVIRTCHILD Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 01H
ENCLV[EINCVIRTCHILD]

IR V/V EAX[5] This leaf function increments the SECS VIRTCHILDCNT field.

Op/En EAX RBX RCX

IR EINCVIRTCHILD (In) Return error code (Out) Address of an enclave page (In) Address of an SECS page (In)

EPCPAGE SECS

Read/Write access permitted by Non Enclave Read access permitted by Enclave

A memory operand effective address is outside the DS segment 
limit (32b mode).

A page fault occurs in accessing memory operands.

DS segment is unusable (32b mode). RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).

A memory address is in a non-canonical form (64b mode). RCX does not refer to an SECS page.

A memory operand is not properly aligned. RBX does not refer to an enclave page associated with SECS 
referenced in RCX.

Table 39-78.  Base Concurrency Restrictions of EINCVIRTCHILD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit 

Qualification

EINCVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE_
CONFLICT

SECS [DS:RCX] Concurrent
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Operation

Temp Variables in EINCVIRTCHILD Operational Flow

EINCVIRTCHILD Return Value in RAX

(* check alignment of DS:RBX *)
IF (DS:RBX is not 4K aligned) THEN
    #GP(0); FI;

(* check DS:RBX is an linear address of an EPC page *)
IF (DS:RBX does not resolve within an EPC) THEN
    #PF(DS:RBX, PFEC.SGX); FI;

(* check DS:RCX is an linear address of an EPC page *)
IF (DS:RCX does not resolve within an EPC) THEN
    #PF(DS:RCX, PFEC.SGX); FI;

(* Check the EPCPAGE for concurrency *)
IF (EPCPAGE is being modified) THEN
    RFLAGS.ZF = 1;
    RAX = SGX_EPC_PAGE_CONFLICT;
    goto DONE;
FI;

(* check that the EPC page is valid *)
IF (EPCM(DS:RBX).VALID = 0) THEN
    #PF(DS:RBX, PFEC.SGX); FI;

(* check that the EPC page has the correct type and that the back pointer matches the pointer passed as the pointer to parent *)
IF ((EPCM(DS:RBX).PAGE_TYPE = PT_REG) or
    (EPCM(DS:RBX).PAGE_TYPE = PT_TCS) or
    (EPCM(DS:RBX).PAGE_TYPE = PT_TRIM) or

(EPCM(DS:RBX).PAGE_TYPE = PT_SS_FIRST) or
(EPCM(DS:RBX).PAGE_TYPE = PT_SS_REST))

Table 39-79.  Additional Concurrency Restrictions of EINCVIRTCHILD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EINCVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS  Physical Address 64 Physical address of the SECS of the page being modified.

Error Value Description

No Error 0 EINCVIRTCHILD Successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.
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THEN
    (* get the SECS of DS:RBX *)
    TMP_SECS := Address of SECS for (DS:RBX);
ELSE IF (EPCM(DS:RBX).PAGE_TYPE = PT_SECS) THEN
    (* get the physical address of DS:RBX *)
    TMP_SECS := Physical_Address(DS:RBX);
ELSE 
    (* EINCVIRTCHILD called on page of incorrect type *)
    #PF(DS:RBX, PFEC.SGX); FI;

IF (TMP_SECS ≠ Physical_Address(DS:RCX)) THEN
    #GP(0); FI;

(* Atomically increment virtchild counter *)
Locked_Increment(SECS(TMP_SECS).VIRTCHILDCNT);

RFLAGS.ZF := 0;
RAX := 0;

DONE:
(* clear flags *)
RFLAGS.CF := 0;
RFLAGS.PF := 0;
RFLAGS.AF := 0;
RFLAGS.OF := 0;
RFLAGS.SF := 0;

Flags Affected

ZF is set if EINCVIRTCHILD fails due to concurrent operation with another SGX instruction; otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If DS segment is unusable.
If a memory operand is not properly aligned.
RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.
If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).
If RCX does not refer to an SECS page.

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.
If a memory operand is not properly aligned.
RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.
If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).
If RCX does not refer to an SECS page.
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ESETCONTEXT—Set the ENCLAVECONTEXT Field in SECS 

Instruction Operand Encoding

Description

The ESETCONTEXT leaf overwrites the ENCLAVECONTEXT field in the SECS. ECREATE and ELD of an SECS set the 
ENCLAVECONTEXT field in the SECS to the address of the SECS (for access later in ERDINFO). The ESETCONTEXT 
instruction allows a VMM to overwrite the default context value if necessary, for example, if the VMM is emulating 
ECREATE or ELD on behalf of the guest. 
The content of RCX is an effective address of the SECS page to be updated, RDX contains the address pointing to 
the value to be stored in the SECS. The DS segment is used to create linear address. Segment override is not 
supported.
The instruction fails if: 
• The operand is not properly aligned.
• RCX does not refer to an SECS page.

ESETCONTEXT Memory Parameter Semantics

The instruction faults if any of the following: 

ESETCONTEXT Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

EAX = 02H
ENCLV[ESETCONTEXT]

IR V/V EAX[5] This leaf function sets the ENCLAVECONTEXT field in SECS.

Op/En EAX RCX RDX

IR ESETCONTEXT (In) Return error code (Out)
Address of the destination EPC page 

(In, EA)
Context Value (In, EA)

EPCPAGE CONTEXT

Read access permitted by Enclave Read/Write access permitted by Non Enclave

A memory operand effective address is outside the DS segment 
limit (32b mode).

A memory operand is not properly aligned.

DS segment is unusable (32b mode). A page fault occurs in accessing memory operands.

A memory address is in a non-canonical form (64b mode).

Table 39-80.  Base Concurrency Restrictions of ESETCONTEXT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit 
Qualification

ESETCONTEXT SECS [DS:RCX] Shared SGX_EPC_PAGE_
CONFLICT
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Operation

Temp Variables in ESETCONTEXT Operational Flow

ESETCONTEXT Return Value in RAX

(* check alignment of the EPCPAGE (RCX) *)
IF (DS:RCX is not 4KByte Aligned) THEN
    #GP(0); FI;

 (* check that EPCPAGE (DS:RCX) is the address of an EPC page *)
IF (DS:RCX does not resolve within an EPC)THEN 
    #PF(DS:RCX, PFEC.SGX); FI;

(* check alignment of the CONTEXT field (RDX) *)
IF (DS:RDX is not 8Byte Aligned) THEN
    #GP(0); FI;

 (* Load CONTEXT into local variable *)
TMP_CONTEXT := DS:RDX

(* Check the EPC page for concurrency *)
IF (EPC page is being modified) THEN
    RFLAGS.ZF := 1;
    RFLAGS.CF := 0;
    RAX := SGX_EPC_PAGE_CONFLICT;
    goto DONE;
FI;

(* check page validity *)
IF (EPCM(DS:RCX).VALID = 0) THEN
    #PF(DS:RCX, PFEC.SGX);
FI;

(* check EPC page is an SECS page *)

Table 39-81.  Additional Concurrency Restrictions of ESETCONTEXT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY, 
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ESETCONTEXT SECS [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS  Physical Address 64 Physical address of the SECS of the page being modified.

TMP_CONTEXT CONTEXT 64 Data Value of CONTEXT.

Error Value Description

No Error 0 ESETCONTEXT Successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.
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IF (EPCM(DS:RCX).PT is not PT_SECS) THEN
    #PF(DS:RCX, PFEC.SGX);
FI;

(* load the context value into SECS(DS:RCX).ENCLAVECONTEXT *)
SECS(DS:RCX).ENCLAVECONTEXT := TMP_CONTEXT;

RAX := 0;
RFLAGS.ZF := 0;

DONE:
(* clear flags *)
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

ZF is set if ESETCONTEXT fails due to concurrent operation with another SGX instruction; otherwise cleared.
CF, PF, AF, OF, and SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If DS segment is unusable.
If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.
If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.
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CHAPTER 40
INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

Intel® SGX provides Intel® Architecture with a collection of enclave instructions for creating protected execution 
environments on processors supporting IA32 and Intel® 64 architectures. These Intel SGX instructions are 
designed to work with legacy software and the various IA32 and Intel 64 modes of operation.

40.1 INTEL® SGX AVAILABILITY IN VARIOUS PROCESSOR MODES
The Intel SGX extensions (see Table 35-1) are available only when the processor is executing in protected mode of 
operation. Additionally, the extensions are not available in System Management Mode (SMM) of operation or in 
Virtual 8086 (VM86) mode of operation. Finally, all leaf functions of ENCLU and ENCLS require CR0.PG enabled.
The exact details of exceptions resulting from illegal modes and their priority are listed in the reference pages of 
ENCLS and ENCLU.

40.2 IA32_FEATURE_CONTROL
IA32_FEATURE_CONTROL MSR provides two new bits related to two aspects of Intel SGX: using the instruction 
extensions and launch control configuration.

40.2.1 Availability of Intel SGX 
IA32_FEATURE_CONTROL[bit 18] allows BIOS to control the availability of Intel SGX extensions. For Intel SGX 
extensions to be available on a logical processor, bit 18 in the IA32_FEATURE_CONTROL MSR on that logical 
processor must be set, and IA32_FEATURE_CONTROL MSR on that logical processor must be locked (bit 0 must be 
set). See Section 35.7.1 for additional details. OS is expected to examine the value of bit 18 prior to enabling Intel 
SGX on the thread, as the settings of bit 18 is not reflected by CPUID.

40.2.2 Intel SGX Launch Control Configuration
The IA32_SGXLEPUBKEYHASHn MSRs used to configure authorized launch enclaves' MRSIGNER digest value. They 
are present on logical processors that support the collection of SGX1 leaf functions (i.e., CPUID.(EAX=12H, 
ECX=00H):EAX[0] = 1) and that CPUID.(EAX=07H, ECX=00H):ECX[30] = 1. IA32_FEATURE_CONTROL[bit 17] 
allows to BIOS to enable write access to these MSRs. If IA32_FEATURE_CONTROL.LE_WR (bit 17) is set to 1 and 
IA32_FEATURE_CONTROL is locked on that logical processor, IA32_SGXLEPUBKEYHASH MSRs on that logical 
processor are writeable. If this bit 17 is not set or IA32_FEATURE_CONTROL is not locked, IA32_SGXLEPUBKEY-
HASH MSRs are read only. See Section 37.1.4 for additional details.

40.3 INTERACTIONS WITH SEGMENTATION

40.3.1 Scope of Interaction
Intel SGX extensions are available only when the processor is executing in a protected mode operation (see Section 
40.1 for Intel SGX availability in various processor modes). Enclaves abide by all the segmentation policies set up 
by the OS, but they can be more restrictive than the OS.
Intel SGX interacts with segmentation at two levels: 
• The Intel SGX instruction (see the enclave instruction in Table 35-1).
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• While executing inside an enclave (legacy instructions and enclave instructions permitted inside an enclave).

40.3.2 Interactions of Intel® SGX Instructions with Segment, Operand, and Addressing 
Prefixes

All the memory operands used by the Intel SGX instructions are interpreted as offsets within the data segment 
(DS). The segment-override prefix on Intel SGX instructions is ignored.
Operand size is fixed for each enclave instruction. The operand-size prefix is reserved, and results in a #UD excep-
tion if used.
All address sizes are determined by the operating mode of the processor. The address-size prefix is ignored. This 
implies that while operating in 64-bit mode of operation, the address size is always 64 bits, and while operating in 
32-bit mode of operation, the address size is always 32 bits. Additionally, when operating in 16-bit addressing, 
memory operands used by enclave instructions use 32 bit addressing; the value of CS.D is ignored.

40.3.3 Interaction of Intel® SGX Instructions with Segmentation
All leaf functions of ENCLU and ENCLS instructions require that the DS segment be usable, and be an expand-up 
segment. Failing this check results in generation of a #GP(0) exception.
The Intel SGX leaf functions used for entering the enclave (ENCLU[EENTER] and ENCLU[ERESUME]) operate as 
follows:
• All usable segment registers except for FS and GS have a zero base. 
• The contents of the FS/GS segment registers (including the hidden portion) is saved in the processor.
• New FS and GS values compatible with enclave security are loaded from the TCS
• The linear ranges and access rights available under the newly-loaded FS and GS must abide to OS policies by 

ensuring they are subsets of the linear-address range and access rights available for the DS segment.
• The CS segment mode (64-bit, compatible, or 32 bit modes) must be consistent with the segment mode for 

which the enclave was created, as indicated by the SECS.ATTRIBUTES.MODE64 bit, and that the CPL of the 
logical processor is 3

An exit from the enclave either via ENCLU[EEXIT] or via an AEX restores the saved values of FS/GS segment regis-
ters.

40.3.4 Interactions of Enclave Execution with Segmentation
During the course of execution, enclave code abides by all segmentation policies as dictated by IA32 and Intel 64 
Architectures, and generates appropriate exceptions on violations.
Additionally, any attempt by software executing inside an enclave to modify the processor's segmentation state 
(e.g., via MOV seg register, POP seg register, LDS, far jump, etc; excluding WRFSBASE/WRGSBASE) results in the 
generation of a #UD. See Section 37.6.1 for more information.
Upon enclave entry via the EENTER leaf function, FS is loaded from the (TCS.OFSBASE + SECS.BASEADDR) and 
TCS.FSLIMIT fields and GS is loaded from the (TCS.OGSBASE + SECS.BASEADDR) and TCS.GSLIMIT fields. 
Execution of WRFSBASE and WRGSBASE from inside a 64-bit enclave is allowed. The processor will save the new 
values into the current SSA frame on an asynchronous exit (AEX) and restore them back on enclave entry via 
ENCLU[ERESUME] instruction.

40.4 INTERACTIONS WITH PAGING
Intel SGX instructions are available only when the processor is executing in a protected mode of operation. Addi-
tionally, all Intel SGX leaf functions except for EDBGRD and EDBGWR are available only if paging is enabled. Any 
attempt to execute these leaf functions with paging disabled results in an invalid-opcode exception (#UD). As with 
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segmentation, enclaves abide by all the paging policies set up by the OS, but they can be more restrictive than the 
OS.
All the memory operands passed into Intel SGX instructions are interpreted as offsets within the DS segment, and 
the linear addresses generated by combining these offsets with DS segment register are subject to paging-based 
access control if paging is enabled at the time of the execution of the leaf function.
Since the ENCLU[EENTER] and ENCLU[ERESUME] can only be executed when paging is enabled, and since paging 
cannot be disabled by software running inside an enclave (recall that enclaves always run with CPL = 3), enclave 
execution is always subject to paging-based access control. The Intel SGX access control itself is implemented as 
an extension to the existing paging modes. See Section 36.5 for details.
Execution of Intel SGX instructions may set accessed and dirty flags on accesses to EPC pages that do not fault 
even if the instruction later causes a fault for some other reason. 

40.5 INTERACTIONS WITH VMX
Intel SGX functionality (including SGX1 and SGX2) can be made available to software running in either VMX root 
operation or VMX non-root operation, as long as the processor is using a legal mode of operation (see Section 
40.1). 
A VMM has the flexibility to configure a VMCS to permit a guest to use any subset of the ENCLS leaf functions. Avail-
ability of the ENCLU leaf functions in VMX non-root operation has the same requirement as ENCLU leaf functions 
outside of a virtualized environment.
Details of the VMCS control to allow VMM to configure support of Intel SGX in VMX non-root operation is described 
in Section 40.5.1

40.5.1 VMM Controls to Configure Guest Support of Intel® SGX
Intel SGX capabilities are primarily exposed to the software via the CPUID instruction. VMMs can virtualize CPUID 
instruction to expose/hide this capability to/from guests.
Some of Intel SGX resources are exposed/controlled via model-specific registers (see Section 35.7). VMMs can 
virtualize these MSRs for the guests using the MSR bitmaps referenced by pointers in the VMCS.
The VMM can partition the Enclave Page Cache, and assign various partitions to (a subset of) its guests via the 
usual memory-virtualization techniques such as paging or the extended page table mechanism (EPT).
The VMM can set the “enable ENCLS exiting” VM-execution controls to cause a VM exit when the ENCLS instruction 
is executed in VMX non-root operation. If the “enable ENCLS exiting” control is 0, all of the ENCLS leaf functions are 
permitted in VMX non-root operation. If the “enable ENCLS exiting” control is 1, execution of ENCLS leaf functions 
in VMX non-root operation is governed by consulting the bits in a new 64-bit VM-execution control field called the 
ENCLS-exiting bitmap (Each bit in the bitmap corresponds to an ENCLS leaf function with an EAX value that is iden-
tical to the bit’s position). When bits in the “ENCLS-exiting bitmap” are set, attempts to execute the corresponding 
ENCLS leaf functions in VMX non-root operation causes VM exits. The checking for these VM exits occurs immedi-
ately after checking that CPL = 0.

40.5.2 Interactions with the Extended Page Table Mechanism (EPT)
Intel SGX instructions are fully compatible with the extended page-table mechanism (EPT; see Section 30.3).
All the memory operands passed into Intel SGX instructions are interpreted as offsets within the DS segment, and 
the linear addresses generated by combining these offsets with DS segment register are subject to paging and EPT. 
As with paging, enclaves abide by all the policies set up by the VMM.
The Intel SGX access control itself is implemented as an extension to paging and EPT, and may be more restrictive. 
See Section 40.4 for details of this extension.
An execution of an Intel SGX instruction may set accessed and dirty flags for EPT (when enabled; see Section 
30.3.5) on accesses to EPC pages that do not fault or cause VM exits even if the instruction later causes a fault or 
VM exit for some other reason. 
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40.5.3 Interactions with APIC Virtualization
This section applies to Intel SGX in VMX non-root operation when the “virtualize APIC accesses” VM-execution 
control is 1.
A memory access by an enclave instruction that implicitly uses a cached physical address is never checked for 
overlap with the APIC-access page. Such accesses never cause APIC-access VM exits and are never redirected to 
the virtual-APIC page. Implicit memory accesses can only be made to the SECS, the TCS, or the SSA of an enclave 
(see Section 36.5.3.2). 
An explicit Enclave Access (a linear memory access which is either from within an enclave into its ELRANGE, or an 
access by an Intel SGX instruction that is expected to be in the EPC) that overlaps with the APIC-access page 
causes a #PF exception (APIC page is expected to be outside of EPC). 
Non-Enclave accesses made either by an Intel SGX instruction or by a logical processor inside an enclave to an 
address that without SGX would have caused redirection to the virtual-APIC page instead cause an APIC-access 
VM exit. 
Other than implicit accesses made by Intel SGX instructions, guest-physical and physical accesses are not consid-
ered “enclave accesses”; consequently, such accesses result in undefined behavior if these accesses eventually 
reach EPC. This applies to any non-enclave physical accesses.
While a logical processor is executing inside an enclave, an attempt to execute an instruction outside of ELRANGE 
results in a #GP(0), even if the linear address would translate to a physical address that overlaps the APIC-access 
page. 

40.5.4 Interactions with VT and SGX concurrency
In some cases, a VMM is required to handle conflicts between its own operation and a guest operation on EPC pages 
that are present in both guest and VMM address space. These conflict would otherwise cause the guest to experi-
ence an unexpected behavior (vs. running directly on the h/w). These conflict cases are:
• ETRACK/ETRACKC failure due to Entry Epoch Object Lock conflict or reference tracking check failure.
• EPC Page Resource conflict.
A new exit reason is defined for all those cases: SGX_CONFLICT (value 71). The VMCS exit qualification field details 
the specific case as follows:

This SGX_CONFLICT exiting behavior is controlled by a VM execution control called ENABLE_EPC_VIRTUALIZA-
TION_EXTENSIONS (bit 29 of the secondary processor control field).
Details for various SGX_CONFLICT VMEXIT cases are provided in the following sections.

Table 40-1.  SGX Conflict Exit Qualification
Bits Size (bits) Name Description

15:0 16 Code Exit qualification code. The following values are defined:

0: TRACKING_RESOURCE_CONFLICT

1: TRACKING_REFERENCE_CONFLICT

2: EPC_PAGE_CONFLICT_EXCEPTION

3: EPC_PAGE_CONFLICT_ERROR

Other: Reserved

31:16 16 Error Error code. Applicable only if the exit qualification code is EPC_PAGE_CONFLICT_ERROR; 
contains the error code that would be returned in RAX if the instruction was executed on 
bare metal platform or if the ENABLE_EPC_VIRTUALIZATION_EXTENSIONS bit in the 
secondary processor control field is not set. In other cases this field is reserved as 0.

63:32 32 Reserved Always 0.
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40.5.5 Virtual Child Tracking
SGX oversubscription support adds the ability to associate virtual children with each enclave using the 
ENCLV[EINCVIRTCHILD] and ENCLV[EDECVIRTCHILD] instructions. The VMM enables checking of the virtual child 
count by EREMOVE and EWB in guests with a new VM execution control called ENABLE_EPC_VIRTUALIZATION_EX-
TENSIONS.
When in VMX non-root operation and the ENABLE_EPC_VIRTUALIZATION_EXTENSIONS control enabled, the 
following instructions change their behavior:
• EWB and EREMOVE return the SGX_CHILD_PRESENT error code if any virtual or physical children are 

associated with the enclave.
• ERDINFO set STATUS.CHILDPRESENT if any virtual or physical children are associated with the enclave.

40.5.6 Handling EPCM Entry Lock Conflicts
When performing paging within a VMM, it is possible for a contention on the EPC page to happen in the following 
case:
• The VMM performs an ELDB/ELDU/ELDBC/ELDUC of an enclave page, and the guest attempts to perform some 

SGX instruction (e.g., EREMOVE) where the same SECS parent page is required.
A similar conflict may occur if the VMM uses EINCVIRTCHILD or EDECVIRTCHILD pointing to an SECS page. In all 
other cases where a SGX instruction executed by the VMM the applicable EPC page should not be mapped to the 
guest, thus no resource conflict occurs.
This conflicting situation can cause the guest's instruction to fail and cause guest instability. To help the VMM 
manage such conflicts, the SGX VMM paging extensions introduce a new VM-Exit that will be triggered whenever 
the guest encounters a resource conflict.
The exit reason is SGX_CONFLICT. The exit qualification field is used to distinguish the two kinds of resource 
conflicts:
• A value of EPCM_RESOURCE_CONFLICT_EXCEPTION (2) in the exit qualification code field indicates that a 

resource conflict occurred that would result in a #GP. In that case, the exit qualification error field is set to zero.
• A value of EPC_PAGE_CONFLICT_ERROR (3) in the exit qualification code field indicates that a resource conflict 

occurred that would result in an error code being return in RAX. In that case, the exit qualification error field is 
set to SGX_EPC_PAGE_CONFLICT. 

The Guest Linear Address and Guest Physical Address fields are set to the guest linear and guest physical 
addresses respectively of the EPC page on which the conflict occurred. The VMM may determine which instruction 
induced the exit by reading RAX. The exit also populates the VM-exit instruction length field.
The VMM can determine whether the conflict may be due to its own operation, e.g., by setting a per-enclave busy 
indicator before executing ELD*, and clearing it afterwards. In that case, the VMM can handle an SGX Conflict 
(EPCM_PAGE_CONFLICT_*) exit by resuming guest execution at the same instruction, allowing the guest to re-
execute the instruction. The VMM may also take steps to throttle its own paging thread to reduce contention with 
the guest.
If the VMM determines that the conflict is not due to its own operation, it may inject a #GP (in case of EPC_PAGE_-
CONFLICT_EXCEPTION), or emulate an error code as the guest instruction would return (in case of EPC_PAGE_-
CONFLICT_ERROR) by setting ZF and copying the error value provided in the exit qualification to guest RAX.
To gracefully handle resource contention on the VMM side, the VMM should use the new ELDBC and ELDUC instruc-
tions. These are similar to ELDB and ELDU respectively, except that on EPC resource contention they return an 
SGX_EPC_PAGE_CONFLICT error instead of issuing a #GP. In case of an error, the VMM can retry the instruction, 
possibly throttling the guest to assure progress.
When using EDECVIRTCHILD and EINCVIRTCHILD, the VMM should preferably point to the enclave child page, not 
to the SECS page, avoiding resource conflict on the SECS. If the VMM chooses to point to the SECS page, it should 
handle conflicts in the same way as handling the ELD* case.
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40.5.7 Context Tracking
The ENCLAVECONTEXT field in the SECS is available for use by the VMM to track context information associated 
with that enclave, such as the GPA of the SECS in the context of the appropriate guest. This field is initialized by the 
successful execution of ECREATE and ELD of an SECS page. The value stored in the ENCLAVECONTEXT field will be 
the translation of the target page address produced by paging (GPA in VMMs that have EPTs turned on). VMMs may 
override this default value by calling the ENCLV[ESETCONTEXT] instruction, which allows the VMM to store an arbi-
trary 64-bit value in the ENCLAVECONTEXT field. The VMM may later access the ENCLAVECONTEXT field by calling 
ENCLS[ERDINFO] on any member page of the enclave, including the SECS.
For nested virtualization cases, the lowest level VMM can make SGX oversubscription instructions higher level 
guest VMMs. In that case the lower level VMM can simply inject #GP to higher level VMMs when attempting to 
execute these instructions. 
However, if VMMs expose SGX oversubscription instructions to higher level VMMs, then VMMs have to use 
ENCLV[ESETCONTEXT] instruction to properly manage the ENCLAVECONTEXT field of SECS during paging opera-
tions. That may involve emulating ECREATE, ELD, ESETCONTEXT, and ERDINFO instructions apart from managing 
ENCLAVECONTEXT values.

40.6 INTEL® SGX INTERACTIONS WITH ARCHITECTURALLY-VISIBLE EVENTS
All architecturally visible events (exceptions, interrupts, SMI, NMI, INIT, VM exit) can be detected while inside an 
enclave and will cause an asynchronous enclave exit if they are not blocked. Additionally, INT3, and the SignalTX-
TMsg[SENTER] (i.e., GETSEC[SENTER]’s rendezvous event message) events also cause asynchronous enclave 
exits. Note that SignalTXTMsg[SEXIT] (i.e., GETSEC[SEXIT]’s teardown message) does not cause an AEX. 
On an AEX, information about the event causing the AEX is stored in the SSA (see Section 38.4 for details of AEX). 
The information stored in the SSA only describes the first event that triggered the AEX. If parsing/delivery of the 
first event results in detection of further events (e.g., VM exit, double fault, etc.), then the event information in the 
SSA is not updated to reflect these subsequently detected events. 

40.7 INTERACTIONS WITH THE PROCESSOR EXTENDED STATE AND 
MISCELLANEOUS STATE

40.7.1 Requirements and Architecture Overview
Processor extended states are the ISA features that are enabled by the settings of CR4.OSXSAVE and the XCR0 
register. Processor extended states are normally saved/restored by software via XSAVE/XRSTOR instructions. 
Details of discovery of processor extended states and management of these states are described in Chapter 13 of 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. 
Additionally, the following requirements apply to Intel SGX:
• On an AEX, the Intel SGX architecture must protect the processor extended state and miscellaneous state by 

saving them in the enclave’s state-save area (SSA), and clear the secrets from the processor extended state 
that is used by an enclave. 

• Intel SGX architecture must verify that the SSA frame size is large enough to contain all the processor extended 
states and miscellaneous state used by the enclave.

• Intel SGX architecture must ensure that enclaves can only use processor extended state that is enabled by 
system software in XCR0. 

• Enclave software should be able to discover only those processor extended state and miscellaneous state for 
which such protection is enabled.

• The processor extended states that are enabled inside the enclave must be approved by the enclave developer:

— Certain processor extended state (e.g., Memory Protection Extensions, see Appendix E, “Intel® Memory 
Protection Extensions,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1) 
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modify the behavior of the legacy ISA software. If such features are enabled for enclaves that do not 
understand those features, then such a configuration could lead to a compromise of the enclave's security. 

• The processor extended states that are enabled inside the enclave must form an integral part of the enclave's 
identity. This requirement has two implications:

— Service providers may decide to assign different trust level to the same enclave depending on the ISA 
features the enclave is using.

To meet these requirements, the Intel SGX architecture defines a sub-field called X-Feature Request Mask (XFRM) 
in the ATTRIBUTES field of the SECS. On enclave creation (ENCLS[ECREATE] leaf function), the required SSA frame 
size is calculated by the processor from the list of enabled extended and miscellaneous states and verified against 
the actual SSA frame size defined by SECS.SSAFRAMESIZE. 
On enclave entry, after verifying that XFRM is only enabling features that are already enabled in XCR0, the value in 
the XCR0 is saved internally by the processor, and is replaced by the XFRM. On enclave exit, the original value of 
XCR0 is restored. Consequently, while inside the enclave, the processor extended states enabled in XFRM are in 
enabled state, and those that are disabled in XFRM are in disabled state. 
The entire ATTRIBUTES field, including the XFRM subfield is integral part of enclave's identity (i.e., its value is 
included in reports generated by ENCLU[EREPORT], and select bits from this field can be included in key-derivation 
for keys obtained via the ENCLU[EGETKEY] leaf function).
Enclave developers can create their enclave to work with certain features and fallback to another code path in case 
those features aren't available (e.g., optimize for AVX and fallback to SSE). For this purpose Intel SGX provides the 
following fields in SIGSTRUCT: ATTRIBUTES, ATTRIBUTESMASK, MISCSELECT, and MISCMASK. EINIT ensures that 
the final SECS.ATTRIBUTES and SECS.MISCSELECT comply with the enclave developer's requirements as follows:
SIGSTRUCT.ATTRIBUTES & SIGSTRUCT.ATTRIBUTEMASK = SECS.ATTRIBUTES & SIGSTRUCT.ATTRIBUTEMASK
SIGSTRUCT.MISCSELECT & SIGSTRUCT.MISCMASK = SECS.MISCSELECT & SIGSTRUCT.MISCMASK.
On an asynchronous enclave exit, the processor extended states enabled by XFRM are saved in the current SSA 
frame, and overwritten by synthetic state (see Section 38.3 for the definition of the synthetic state). When the 
interrupted enclave is resumed via the ENCLU[ERESUME] leaf function, the saved state for processor extended 
states enabled by XFRM is restored.

40.7.2 Relevant Fields in Various Data Structures

40.7.2.1  SECS.ATTRIBUTES.XFRM
The ATTRIBUTES field of the SECS data structure (see Section 36.7) contains a sub-field called XSAVE-Feature 
Request Mask (XFRM). Software populates this field at the time of enclave creation according to the features that 
are enabled by the operating system and approved by the enclave developer.
Intel SGX architecture guarantees that during enclave execution, the processor extended state configuration of the 
processor is identical to what is required by the XFRM sub-field. All the processor extended states enabled in XFRM 
are saved on AEX from the enclave and restored on ERESUME.
The XFRM sub-field has the same layout as XCR0, and has consistency requirements that are similar to those for 
XCR0. Specifically, the consistency requirements on XFRM values depend on the processor implementation and the 
set of features enabled in CR4.
Legal values for SECS.ATTRIBUTES.XFRM conform to these requirements:
• XFRM[1:0] must be set to 0x3. 
• If the processor does not support XSAVE, or if the system software has not enabled XSAVE, then XFRM[63:2] 

must be zero. 
• If the processor does support XSAVE, XFRM must contain a value that would be legal if loaded into XCR0.
The various consistency requirements are enforced at different times in the enclave's life cycle, and the exact 
enforcement mechanisms are elaborated in Section 40.7.3 through Section 40.7.6.
On processors not supporting XSAVE, software should initialize XFRM to 0x3. On processors supporting XSAVE, 
software should initialize XFRM to be a subset of XCR0 that would be present at the time of enclave execution. 
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Because bits 0 and 1 of XFRM must always be set, the use of Intel SGX requires that SSE be enabled (CR4.OSFXSR 
= 1).

40.7.2.2  SECS.SSAFRAMESIZE
The SSAFRAMESIZE field in the SECS data structure specifies the number of pages which software allocated1 for 
each SSA frame, including both the GPRSGX area, MISC area, the XSAVE area (x87 and XMM states are stored in 
the latter area), and optionally padding between the MISC and XSAVE area. The GPRSGX area must hold all the 
general-purpose registers and additional Intel SGX specific information. The MISC area must hold the Miscella-
neous state as specified by SECS.MISCSELECT, the XSAVE area holds the set of processor extended states specified 
by SECS.ATTRIBUTES.XFRM (see Section 36.9 for the layout of SSA and Section 40.7.3 for ECREATE's consistency 
checks). The SSA is always in non-compacted format.
If the processor does not support XSAVE, the XSAVE area will always be 576 bytes; a copy of XFRM (which will be 
set to 0x3) is saved at offset 512 on an AEX.
If the processor does support XSAVE, the length of the XSAVE area depends on SECS.ATTRIBUTES.XFRM. The 
length would be equal to what CPUID.(EAX=0DH, ECX= 0):EBX would return if XCR0 were set to XFRM. The 
following pseudo code illustrates how software can calculate this length using XFRM as the input parameter without 
modifying XCR0:

offset = 576;
size_last_x = 0;
For x=2 to 63
IF (XFRM[x] != 0) Then

tmp_offset = CPUID.(EAX=0DH, ECX= x):EBX[31:0];
IF (tmp_offset >= offset + size_last_x) Then

offset = tmp_offset;
size_last_x = CPUID.(EAX=0DH, ECX= x):EAX[31:0];

FI;
FI;
EndFor
return (offset + size_last_x); (* compute_xsave_size(XFRM), see “ECREATE—Create an SECS page in the Enclave 
Page Cache”*)

Where the non-zero bits in XFRM are a subset of non-zero bit fields in XCR0.
The size of the MISC region depends on the setting of SECS.MISCSELECT and can be calculated using the layout 
information described in Section 36.9.2

40.7.2.3  XSAVE Area in SSA
The XSAVE area of an SSA frame begins at offset 0 of the frame.

40.7.2.4  MISC Area in SSA
The MISC area of an SSA frame is positioned immediately before the GPRSGX region.

40.7.2.5  SIGSTRUCT Fields
Intel SGX provides the flexibility for an enclave developer to choose the enclave's code path according to the 
features that are enabled on the platform (e.g., optimize for AVX and fallback to SSE). See Section 40.7.1 for 
details.

1. It is the responsibility of the enclave to actually allocate this memory.
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SIGSTRUCT includes the following fields:
SIGSTRUCT.ATTRIBUTES, SIGSTRUCT.ATTRIBUTEMASK, SIGSTRUCT.MISCSELECT, SIGSTRUCT.MISCMASK.

40.7.2.6  REPORT.ATTRIBUTES.XFRM and REPORT.MISCSELECT
The processor extended states and miscellaneous states that are enabled inside the enclave form an integral part 
of the enclave's identity and are therefore included in the enclave's report, as provided by the ENCLU[EREPORT] 
leaf function. The REPORT structure includes the enclave's XFRM and MISCSELECT configurations.

40.7.2.7  KEYREQUEST
An enclave developer can specify which bits out of XFRM and MISCSELECT ENCLU[EGETKEY] should include in the 
derivation of the sealing key by specifying ATTRIBUTESMASK and MISCMASK in the KEYREQUEST structure.

40.7.3 Processor Extended States and ENCLS[ECREATE]
The ECREATE leaf function of the ENCLS instruction enforces a number of consistency checks described earlier. The 
execution of ENCLS[ECREATE] leaf function results in a #GP(0) in any of the following cases:
• SECS.ATTRIBUTES.XFRM[1:0] is not 3. 
• The processor does not support XSAVE and any of the following is true: 

— SECS.ATTRIBUTES.XFRM[63:2] is not 0.

— SECS.SSAFRAMESIZE is 0.
• The processor supports XSAVE and any of the following is true:

— XSETBV would fault on an attempt to load XFRM into XCR0. 

— XFRM[63]=1. 

— The SSAFRAME is too small to hold required, enabled states (see Section 40.7.2.2).

40.7.4 Processor Extended States and ENCLU[EENTER]

40.7.4.1  Fault Checking
The EENTER leaf function of the ENCLU instruction enforces a number of consistency requirements described 
earlier. The execution of the ENCLU[EENTER] leaf function results in a #GP(0) in any of the following cases:
• If CR4.OSFXSR=0. 
• If The processor supports XSAVE and either of the following is true:

— CR4.OSXSAVE=0 and SECS.ATTRIBUTES.XFRM is not 3. 

— (SECS.ATTRIBUTES.XFRM & XCR0) != SECS.ATTRIBUTES.XFRM

40.7.4.2  State Loading
If ENCLU[EENTER] is successful, the current value of XCR0 is saved internally by the processor and replaced by 
SECS.ATTRIBUTES.XFRM.
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40.7.5 Processor Extended States and AEX

40.7.5.1  State Saving
On an AEX, processor extended states are saved into the XSAVE area of the SSA frame in a compatible format with 
XSAVE that was executed with EDX:EAX = SECS.ATTRIBUTES.XFRM, with the memory operand being the XSAVE 
area, and (for 64-bit enclaves) as if REX.W=1. The XSTATE_BV part of the XSAVE header is saved with 0 for every 
bit that is 0 in XFRM. Other bits may be saved as 0 if the state saved is initialized.
Note that enclave entry ensures that if CR4.OSXSAVE is set to 0, then SECS.ATTRIBUTES.XFRM is set to 3. It 
should also be noted that it is not possible to enter an enclave with FXSAVE disabled. 

40.7.5.2  State Synthesis
After saving the extended state, the processor restores XCR0 to the value it held at the time of the most recent 
enclave entry.
The state of features corresponding to bits set in XFRM is synthesized. In general, these states are initialized. 
Details of state synthesis on AEX are documented in Section 38.3.1.

40.7.6 Processor Extended States and ENCLU[ERESUME]

40.7.6.1  Fault Checking
The ERESUME leaf function of the ENCLU instruction enforces a number of consistency requirements described 
earlier. Specifically, the ENCLU[ERESUME] leaf function results in a #GP(0) in any of the following cases: 
• CR4.OSFXSR=0.
• The processor supports XSAVE and either of the following is true:

— CR4.OSXSAVE=0 and SECS.ATTRIBUTES.XFRM is not 3. 

— (SECS.ATTRIBUTES.XFRM & XCR0) != SECS.ATTRIBUTES.XFRM.
A successful execution of ENCLU[ERESUME] loads state from the XSAVE area of the SSA frame in a fashion similar 
to that used by the XRSTOR instruction. Data in the XSAVE area that would cause the XRSTOR instruction to fault 
will cause the ENCLU[ERESUME] leaf function to fault. Examples include, but are not restricted to the following:
• A bit is set in the XSTATE_BV field and clear in XFRM. 
• The required bytes in the header are not clear. 
• Loading data would set a reserved bit in MXCSR.
Any of these conditions will cause ERESUME to fault, even if CR4.OSXSAVE=0. 

40.7.6.2  State Loading
If ENCLU[ERESUME] is successful, the current value of XCR0 is saved internally by the processor and replaced by 
SECS.ATTRIBUTES.XFRM.
State is loaded from the XSAVE area of the SSA frame as if the XRSTOR instruction were executed with 
XCR0=XFRM, EDX:EAX = XFRM, with the memory operand being the XSAVE area, and (for 64-bit enclaves) as if 
REX.W=1. 
ENCLU[ERESUME] ensures that a subsequent execution of XSAVEOPT inside the enclave will operate properly (e.g., 
by marking all state as modified).

40.7.7 Processor Extended States and ENCLU[EEXIT]
The ENCLU[EEXIT] leaf function does not perform any X-feature specific consistency checks, nor performs any 
state synthesis. It is the responsibility of enclave software to clear any sensitive data from the registers before 
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executing EEXIT. However, successful execution of the ENCLU[EEXIT] leaf function restores XCR0 to the value it 
held at the time of the most recent enclave entry. 

40.7.8 Processor Extended States and ENCLU[EREPORT]

The ENCLU[EREPORT] leaf function creates the MAC-protected REPORT structure that reports on the enclave’s 
identity. ENCLU[EREPORT] includes in the report the values of SECS.ATTRIBUTES.XFRM and SECS.MISCSELECT.

40.7.9 Processor Extended States and ENCLU[EGETKEY]
The ENCLU[EGETKEY] leaf function returns a cryptographic key based on the information provided by the KEYRE-
QUEST structure. Intel SGX provides the means for isolation between different operating conditions by allowing an 
enclave developer to select which bits out of XFRM and MISCSELECT need to be included in the derivation of the 
keys.

40.8 INTERACTIONS WITH SMM

40.8.1 Availability of Intel® SGX instructions in SMM
Enclave instructions are not available in SMM, and any attempt to execute ENCLS or ENCLU instructions inside SMM 
results in an invalid-opcode exception (#UD).

40.8.2 SMI while Inside an Enclave
If the logical processor executing inside an enclave receives an SMI, the logical processor exits the enclave asyn-
chronously. The response to an SMI received while executing inside an enclave depends on whether the dual-
monitor treatment is enabled. For detailed discussion of transfer to SMM, see Chapter 33, “System Management 
Mode‚” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.
If the logical processor executing inside an enclave receives an SMI when dual-monitor treatment is not enabled, 
the logical processor exits the enclave asynchronously, and transfers the control to the SMM handler. In addition to 
saving the synthetic architectural state to the SMRAM State Save Map (SSM), the logical processor also sets the 
“Enclave Interruption” bit in the SMRAM SSM (bit position 1 in SMRAM field at offset 7EE0H). 
If the logical processor executing inside an enclave receives an SMI when dual-monitor treatment is enabled, the 
logical processor exits the enclave asynchronously, and transfers the control to the SMM monitor via SMM VM exit. 
The SMM VM exit sets the “Enclave Interruption” bit in the Exit Reason (see Table 40-2) and in the Guest Interrupt-
ibility State field (see Table 40-3) of the SMM VMCS.

40.8.3 SMRAM Synthetic State of AEX Triggered by SMI
All processor registers saved in the SMRAM have the same synthetic values listed in Section 38.3. Additional 
SMRAM fields that are treated specially on SMI are:

Table 40-2.  SMRAM Synthetic States on Asynchronous Enclave Exit
Position Field Value Writable

SMRAM Offset 07EE0H.Bit 1 ENCLAVE_INTERRUPTION Set to 1 if exit occurred in enclave mode No
Vol. 3D 40-11



INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
40.9 INTERACTIONS OF INIT, SIPI, AND WAIT-FOR-SIPI WITH INTEL® SGX
INIT received inside an enclave, while the logical processor is not in VMX operation, causes the logical processor to 
exit the enclave asynchronously. After the AEX, the processor's architectural state is initialized to “Power-on” state 
(Table 9.1 in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). If the logical processor 
is BSP, then it proceeds to execute the BIOS initialization code. If the logical processor is an AP, it enters wait-for-
SIPI state. 
INIT received inside an enclave, while the logical processor (LP) is in VMX root operation, follows regular Intel 
Architecture behavior and is blocked.
INIT received inside an enclave, while the logical processor is in VMX non-root operation, causes an AEX. Subse-
quent to the AEX, the INIT causes a VM exit with the Enclave Interruption bit in the exit-reason field in the VMCS. 
A processor cannot be inside an enclave in the wait-for-SIPI state. Consequently, a SIPI received while inside an 
enclave is lost.
Intel SGX does not change the behavior of the processor in the wait-for-SIPI state.
The SGX-related processor states after INIT-SIPI-SIPI is as follows:
• EPC Settings: Unchanged
• EPCM: Unchanged
• CPUID.LEAF_12H.*: Unchanged
• ENCLAVE_MODE: 0 (LP exits enclave asynchronously)
• MEE state: Unchanged
Software should be aware that following INIT-SIPI-SIPI, the EPC might contain valid pages and should take appro-
priate measures such as initialize the EPC with the EREMOVE leaf function. 

40.10 INTERACTIONS WITH DMA
DMA is not allowed to access any Processor Reserved Memory.

40.11 INTERACTIONS WITH TXT

40.11.1 Enclaves Created Prior to Execution of GETSEC
Enclaves which have been created before the GETSEC[SENTER] leaf function are available for execution after the 
successful completion of GETSEC[SENTER] and the corresponding SINIT ACM. Actions that a TXT Launched Envi-
ronment performs in preparation to execute code in the Launched Environment, also applies to enclave code that 
would run after GETSEC[SENTER].

40.11.2 Interaction of GETSEC with Intel® SGX
All leaf functions of the GETSEC instruction are illegal inside an enclave, and results in an invalid-opcode exception 
(#UD).
Responding Logical Processors (RLP) which are executing inside an enclave at the time a GETSEC[SENTER] event 
occurs perform an AEX from the enclave and then enter the Wait-for-SIPI state. 
RLP executing inside an enclave at the time of GETSEC[SEXIT], behave as defined for GETSEC[SEXIT]-that is, the 
RLPs pause during execution of SEXIT and resume after the completion of SEXIT.
The execution of a TXT launch does not affect Intel SGX configuration or security parameters.
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40.11.3 Interactions with Authenticated Code Modules (ACMs)
Intel SGX only allows launching ACMs with an Intel SGX SVN that is at the same level or higher than the expected 
Intel SGX SVN. The expected Intel SGX SVN is specified by BIOS and locked down by the processor on the first 
successful execution of an Intel SGX instruction that doesn’t return an error code. Intel SGX provides interfaces for 
system software to discover whether a non faulting Intel SGX instruction has been executed, and evaluate the suit-
ability of the Intel SGX SVN value of any ACM that is expected to be launched by the OS or the VMM. 
These interfaces are provided through a read-only MSR called the IA32_SGX_SVN_STATUS MSR (MSR address 
500h). The IA32_SGX_SVN_STATUS MSR has the format shown in Table 40-3.

OS/VMM that wishes to launch an architectural ACM such as SINIT is expected to read the IA32_SGX_SVN_STATUS 
MSR to determine whether the ACM can be launched or a new ACM is needed:
• If either the Intel SGX SVN of the ACM is greater than the value reported by IA32_SGX_SVN_STATUS, or the 

lock bit in the IA32_SGX_SVN_STATUS is not set, then the OS/VMM can safely launch the ACM.
• If the Intel SGX SVN value reported in the corresponding component of the IA32_SGX_SVN_STATUS is greater 

than the Intel SGX SVN value in the ACM's header, and if bit 0 of IA32_SGX_SVN_STATUS is 1, then the 
OS/VMM should not launch that version of the ACM. It should obtain an updated version of the ACM either from 
the BIOS or from an external resource. 

However, OSVs/VMMs are strongly advised to update their version of the ACM any time they detect that the Intel 
SGX SVN of the ACM carried by the OS/VMM is lower than that reported by IA32_SGX_SVN_STATUS MSR, irrespec-
tive of the setting of the lock bit.

40.12 INTERACTIONS WITH CACHING OF LINEAR-ADDRESS TRANSLATIONS 
Entering and exiting an enclave causes the logical processor to flush all the global linear-address context as well as 
the linear-address context associated with the current VPID and PCID. The MONITOR FSM is also cleared.

40.13 INTERACTIONS WITH INTEL® TRANSACTIONAL SYNCHRONIZATION 
EXTENSIONS (INTEL® TSX)

1. ENCLU or ENCLS instructions inside an HLE region will cause the flow to be aborted and restarted non-specula-
tively. ENCLU or ENCLS instructions inside an RTM region will cause the flow to be aborted and transfer control to 
the fallback handler.
2. If XBEGIN is executed inside an enclave, the processor does NOT check whether the address of the fallback 
handler is within the enclave.
3. If an RTM transaction is executing inside an enclave and there is an attempt to fetch an instruction outside the 
enclave, the transaction is aborted and control is transferred to the fallback handler. No #GP is delivered.

Table 40-3.  Layout of the IA32_SGX_SVN_STATUS MSR
Bit Position Name ACM Module ID Value

0 Lock N.A. • If 1, indicates that a non-faulting Intel SGX instruction has been 
executed, consequently, launching a properly signed ACM but with Intel 
SGX SVN value less than the BIOS specified Intel SGX SVN threshold 
would lead to an TXT shutdown. 

• If 0, indicates that the processor will allow a properly signed ACM to 
launch irrespective of the Intel SGX SVN value of the ACM.

15:1 RSVD N.A. 0

23:16 SGX_SVN_SINIT SINIT ACM • If CPUID.01H:ECX.SMX =1, this field reflects the expected threshold of 
Intel SGX SVN for the SINIT ACM. 

• If CPUID.01H:ECX.SMX =0, this field is reserved (0).

63:24 RSVD N.A. 0
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4. If an RTM transaction is executing inside an enclave and there is a data access to an address within the enclave 
that denied due to EPCM content (e.g., to a page belonging to a different enclave), the transaction is aborted and 
control is transferred to the fallback handler. No #GP is delivered.
5. If an RTM transaction executing inside an enclave aborts and the address of the fallback handler is outside the 
enclave, a #GP is delivered after the abort (EIP reported is that of the fallback handler).

40.13.1 HLE and RTM Debug
RTM debug will be suppressed on opt-out enclave entry. After opt-out entry, the logical processor will behave as if 
IA32_DEBUG_CTL[15]=0. Any #DB detected inside an RTM transaction region will just cause an abort with no 
exception delivered. 
After opt-in entry, if either DR7[11] = 0 OR IA32_DEBUGCTL[15] = 0, any #DB or #BP detected inside an RTM 
transaction region will just cause an abort with no exception delivered. 
After opt-in entry, if DR7[11] = 1 AND IA32_DEBUGCTL[15] = 1, any #DB or #BP detected inside an RTM transla-
tion will 
• terminate speculative execution, 
• set RIP to the address of the XBEGIN instruction, and 
• be delivered as #DB (implying an Intel SGX AEX; any #BP is converted to #DB). 
• DR6[16] will be cleared, indicating RTM debug (if the #DB causes a VM exit, DR6 is not modified but bit 16 of 

the pending debug exceptions field in the VMCS will be set).

40.14 INTEL® SGX INTERACTIONS WITH S STATES
Whenever an Intel SGX enabled processor enters S3-S5 state, enclaves are destroyed. This is due to the EPC being 
destroyed when power down occurs. It is the application runtime’s responsibility to re-instantiate an enclave after 
a power transition for which the enclaves were destroyed.

40.15 INTEL® SGX INTERACTIONS WITH MACHINE CHECK ARCHITECTURE (MCA)

40.15.1 Interactions with MCA Events
All architecturally visible machine check events (#MC and CMCI) that are detected while inside an enclave cause an 
asynchronous enclave exit.
Any machine check exception (#MC) that occurs after Intel SGX is first enables causes Intel SGX to be disabled, 
(CPUID.SGX_Leaf.0:EAX[SGX1] == 0). It cannot be enabled until after the next reset.

40.15.2 Machine Check Enables (IA32_MCi_CTL)
All supported IA32_MCi_CTL bits for all the machine check banks must be set for Intel SGX to be available 
(CPUID.SGX_Leaf.0:EAX[SGX1] == 1). Any act of clearing bits from '1 to '0 in any of the IA32_MCi_CTL register 
may disable Intel SGX (set CPUID.SGX_Leaf.0:EAX[SGX1] to 0) until the next reset.

40.15.3 CR4.MCE
CR4.MCE can be set or cleared with no interactions with Intel SGX.
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40.16 INTEL® SGX INTERACTIONS WITH PROTECTED MODE VIRTUAL 
INTERRUPTS

ENCLS[EENTER] modifies neither EFLAGS.VIP nor EFLAGS.VIF.
ENCLS[ERESUME] loads EFLAGS in a manner similar to that of an execution of IRET with CPL = 3. This means that 
ERESUME modifies neither EFLAGS.VIP nor EFLAGS.VIF regardless of the value of the EFLAGS image in the SSA 
frame. 
AEX saves EFLAGS.VIP and EFLAGS.VIF unmodified into the EFLAGS image in the SSA frame. AEX modifies neither 
EFLAGS.VIP nor EFLAGS.VIF after saving EFLAGS. 
If CR4.PVI = 1, CPL = 3, EFLAGS.VM = 0, IOPL < 3, EFLAGS.VIP = 1, and EFLAGS.VIF = 0, execution of STI causes 
a #GP fault. In this case, STI modifies neither EFLAGS.IF nor EFLAGS.VIF. This behavior applies without change 
within an enclave (where CPL is always 3). Note that, if IOPL = 3, STI always sets EFLAGS.IF without fault; 
CR4.PVI, EFLAGS.VIP, and EFLAGS.VIF are neither consulted nor modified in this case. 

40.17 INTEL SGX INTERACTION WITH PROTECTION KEYS
SGX interactions with PKRU are as follows:
• CPUID.(EAX=12H, ECX=1):ECX.PKRU indicates whether SECS.ATTRIBUTES.XFRM.PKRU can be set. If 

SECS.ATTRIBUTES.XFRM.PKRU is set, then PKRU is saved and cleared as part of AEX and is restored as part of 
ERESUME. If CR4.PKE is set, an enclave can execute RDPKRU and WRKRU independent of whether 
SECS.ATTRIBUTES.XFRM.PKRU is set.

SGX interactions with domain permission checks are as follows:

1) If CR4.PKE is not set, then legacy and SGX permission checks are not effected.

2) If CR4.PKE is set, then domain permission checks are applied to all non-enclave access and 
enclave accesses to user pages in addition to legacy and SGX permission checks at a higher 
priority than SGX permission checks.

3) Implicit accesses aren't subject to domain permission checks.
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CHAPTER 41
ENCLAVE CODE DEBUG AND PROFILING

Intel® SGX is architected to provide protection for production enclaves and permit enclave code developers to use 
an SGX-aware debugger to effectively debug a non-production enclave (debug enclave). Intel SGX also allows a 
non-SGX-aware debugger to debug non-enclave portions of the application without getting confused by enclave 
instructions.

41.1 CONFIGURATION AND CONTROLS

41.1.1 Debug Enclave vs. Production Enclave
The SECS of each enclave provides a bit, SECS.ATTRIBUTES.DEBUG, indicating whether the enclave is a debug 
enclave (if set) or a production enclave (if 0). If this bit is set, software outside the enclave can use 
EDBGRD/EDBGWR to access the EPC memory of the enclave. The value of DEBUG is not included in the measure-
ment of the enclave and therefore doesn't require an alternate SIGSTRUCT to be generated to debug the enclave.
The ATTRIBUTES field in the SECS is reported in the enclave's attestation, and is included in the key derivation. 
Enclave secrets that were protected by the enclave using Intel SGX keys when it ran as a production enclave will 
not be accessible by the debug enclave. A debugger needs to be aware that special debug content might be 
required for a debug enclave to run in a meaningful way. 
EPC memory belonging to a debug enclave can be accessed via the EDBGRD/EDBGWR leaf functions (see Section 
39.4), while that belonging to a non-debug enclave cannot be accessed by these leaf functions.

41.1.2 Tool-Chain Opt-in
The TCS.FLAGS.DBGOPTIN bit controls interactions of certain debug and profiling features with enclaves, including 
code/data breakpoints, TF, RF, monitor trap flag, BTF, LBRs, BTM, BTS, Intel Processor Trace, and performance 
monitoring. This bit is forced to zero when EPC pages are added via EADD. A debugger can set this bit via EDBGWR 
to the TCS of a debug enclave.
An enclave entry through a TCS with the TCS.FLAGS.DBGOPTIN set to 0 is called an opt-out entry. Conversely, an 
enclave entry through a TCS with TCS.FLAGS.DBGOPTIN set to 1 is called an opt-in entry.

41.1.3 Debugging an Enclave That Uses Asynchronous Enclave Exit Notify
Whenever an opt-in enclave entry is used to perform enclave code debugging or profiling, the debugger or profiling 
tool may clear TCS.FLAGS.AEXNOTIFY to prevent AEX notifications from being delivered at each interrupt, break-
point, trap, or other exception.

41.2 SINGLE STEP DEBUG

41.2.1 Single Stepping ENCLS Instruction Leafs
If the RFLAGS.TF bit is set at the beginning of ENCLS, then a single-step debug exception is pending as a trap-class 
exception on the instruction boundary immediately after the ENCLS instruction. Additionally, if the instruction is 
executed in VMX non-root operation and the “monitor trap flag” VM-execution control is 1, an MTF VM exit is 
pending on the instruction boundary immediately after the instruction if the instruction does not fault.
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41.2.2 Single Stepping ENCLU Instruction Leafs
The interactions of the unprivileged Intel SGX instruction ENCLU are leaf dependent.
An enclave entry via EENTER/ERESUME leaf functions of the ENCLU, in certain cases, may mask the RFLAGS.TF bit, 
and mask the setting of the “monitor trap flag” VM-execution control. In such situations, an exit from the enclave, 
either via the EEXIT leaf function or via an AEX unmasks the RFLAGS.TF bit and the “monitor trap flag” VM-execu-
tion control. The details of this masking/unmasking and the pending of single stepping events across 
EENTER/ERESUME/EEXIT/AEX are covered in detail in Section 41.2.3.
If the EFLAGS.TF bit is set at the beginning of EREPORT or EGETKEY leafs, and if the EFLAGS.TF is not masked by 
the preceding enclave entry, then a single-step debug exception is pending on the instruction boundary immedi-
ately after the ENCLU instruction. Additionally, if the instruction is executed in VMX non-root operation and the 
“monitor trap flag” VM-execution control is 1, and if the monitor trap flag is not masked by the preceding enclave 
entry, then an MTF VM exit is pending on the instruction boundary immediately after the instruction.
If the instruction under consideration results in a fault, then the control flow goes to the fault handler, and no 
single-step debug exception is asserted. In such a situation, if the instruction is executed in VMX non-root opera-
tion and the “monitor trap flag” VM-execution control is 1, an MTF VM exit is pending after the delivery of the fault 
(or any nested exception). No MTF VM exit occurs if another VM exit occurs before reaching that boundary on which 
an MTF VM exit would be pending.

41.2.3 Single-Stepping Enclave Entry with Opt-out Entry

41.2.3.1  Single Stepping without AEX
Figure 41-1 shows the most common case for single-stepping after an opt-out entry.

In this scenario, if the RFLAGS.TF bit is set at the time of the enclave entry, then a single step debug exception is 
pending on the instruction boundary after EEXIT. Additionally, if the enclave is executing in VMX non-root operation 
and the “monitor trap flag” VM-execution control is 1, an MTF VM exit is pending on the instruction boundary after 
EEXIT.
The value of the RFLAGS.TF bit at the end of EEXIT is the same as the value of RFLAGS.TF at the time of the enclave 
entry.

41.2.3.2  Single Step Preempted by AEX Due to Non-SMI Event
Figure 41-2 shows the interaction of single stepping with AEX due to a non-SMI event after an opt-out entry.

Figure 41-1.  Single Stepping with Opt-out Entry - No AEX
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In this scenario, if the enclave is executing in VMX non-root operation and the “monitor trap flag” VM-execution 
control is 1, an MTF VM exit is pending on the instruction boundary after the AEX. No MTF VM exit occurs if another 
VM exit happens before reaching that instruction boundary. 
The value of the RFLAGS.TF bit at the end of AEX is the same as the value of RFLAGS.TF at the time of the enclave 
entry.

41.2.4 RFLAGS.TF Treatment on AEX
The value of EFLAGS.TF at the end of AEX from an opt-out enclave is same as the value of EFLAGS.TF at the time 
of the enclave entry. The value of EFLAGS.TF at the end of AEX from an opt-in enclave is unmodified. The 
EFLAGS.TF saved in GPR portion of the SSA on an AEX is 0. For more detail see EENTER and ERESUME in Chapter 5.

41.2.5 Restriction on Setting of TF after an Opt-Out Entry
Enclave entered through an opt-out entry is not allowed to set EFLAGS.TF. The POPF instruction forces RFLAGS.TF 
to 0 if the enclave was entered through opt-out entry.

41.2.6 Trampoline Code Considerations
Any AEX from the enclave which results in the RFLAGS.TF =1 on the reporting stack will result in a single-step #DB 
after the first instruction of the trampoline code if the trampoline is entered using the IRET instruction.

41.3 CODE AND DATA BREAKPOINTS

41.3.1 Breakpoint Suppression
Following an opt-out entry:
• Instruction breakpoints are suppressed during execution in an enclave. 
• Data breakpoints are not triggered on accesses to the address range defined by ELRANGE.
• Data breakpoints are triggered on accesses to addresses outside the ELRANGE

Figure 41-2.  Single Stepping with Opt-out Entry -AEX Due to Non-SMI Event Before Single-Step Boundary
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Following an opt-in entry instruction and data breakpoints are not suppressed.
The processor does not report any matches on debug breakpoints that are suppressed on enclave entry. However, 
the processor does not clear any bits in DR6 that were already set at the time of the enclave entry.

41.3.2 Reporting of Instruction Breakpoint on Next Instruction on a Debug Trap
A debug exception caused by the single-step execution mode or when a data breakpoint condition was met causes 
the processor to perform an AEX. Following such an AEX, the processor reports in the debug status register (DR6) 
matches of the new instruction pointer (the AEP address) in a breakpoint address register setup to detect instruc-
tion execution.

41.3.3 RF Treatment on AEX
RF flag value saved in SSA is the same as what would have been pushed on stack if the exception or event causing 
the AEX occurred when executing outside an enclave (see Section 19.3.1.1). Following an AEX, the RF flag is 0 in 
the synthetic state. 

41.3.4 Breakpoint Matching in Intel® SGX Instruction Flows
Implicit accesses made by Intel SGX instructions to EPC regions do not trigger data breakpoints. Explicit accesses 
made by ENCLS[ECREATE], ENCLS[EADD], ENCLS[EEXTEND], ENCLS[EINIT], ENCLS[EREMOVE], 
ENCLS[ETRACK], ENCLS[EBLOCK], ENCLS[EPA], ENCLS[EWB], ENCLS[ELD], ENCLS[EDBGRD], ENCLS[EDBGWR], 
ENCLU[EENTER], and ENCLU[ERESUME] to the EPC operands do not trigger data breakpoints.
Explicit accesses made by the Intel SGX instructions (ENCLU[EGETKEY] and ENCLU[EREPORT]) executed by an 
enclave following an opt-in entry, trigger data breakpoints on accesses to their EPC operands. All Intel SGX instruc-
tions trigger data breakpoints on accesses to their non-EPC operands. 

41.4 CONSIDERATION OF THE INT1 AND INT3 INSTRUCTIONS
This section considers the operation of the INT1 and INT3 instructions when executed inside an enclave. These are 
the instructions with opcodes F1 and CC, respectively, and not INT n (with opcode CD) with value 1 or 3 for n.

41.4.1 Behavior of INT1 and INT3 Inside an Enclave
An execution of either INT1 or INT3 inside an enclave results in a fault-class exception. Following an opt-out entry, 
execution of either instruction results in an invalid-opcode exception (#UD). Following opt-in entry, INT1 results in 
a debug exception (#DB) and INT3 delivers a breakpoint exception (#BP). The normal requirement for INT3 (that 
the CPL not be greater than the DPL of descriptor 3 in the IDT) is not enforced.
Because execution of INT1 or INT3 inside an enclave results in a fault, the RIP saved in the SSA on AEX references 
the INT1 or INT3 instruction (and not the following instruction). The RIP value saved on the stack (or in the TSS or 
VMCS) is that of the AEP.
If execution of INT1 or INT3 inside an enclave causes a VM exit, the event type in the VM-exit interruption informa-
tion field indicates a hardware exception (type 3),1 and the VM-exit instruction length field is saved as zero.

41.4.2 Debugger Considerations
A debugger using INT3 inside an enclave should account for the modified behavior described in Section 41.4.1. 
Because INT3 is fault-like inside an enclave, the RIP saved in the SSA on AEX is that of the INT3 instruction. Conse-

1. INT1 would normally indicate a privileged software exception (type 5), and INT3 would normally indicate a software exception (type 
6).
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quently, the debugger must not decrement SSA.RIP for #BP coming from an enclave to re-execute the instruction 
at the RIP of the INT3 instruction on a subsequent enclave entry. 

41.4.3 VMM Considerations
As described in Section 41.4.1, execution of INT3 inside an enclave delivers #BP with “interruption type” of 3. A 
VMM that re-injects #BP into the guest should establish the VM-entry interruption information field using data 
saved into the appropriate VMCS fields by the VM exit incident to the #BP (as recommended in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3C).
VMMs that create the VM-entry interruption information based solely on the exception vector should take care to 
use event type 3 (instead of 6) when they detect a VM exit incident to enclave mode that is due to an exception 
with vector 3.

41.5 BRANCH TRACING

41.5.1 BTF Treatment
When software enables single-stepping on branches then:
• Following an opt-in entry using EENTER the processor generates a single step debug exception. 
• Following an EEXIT the processor generates a single-step debug exception
Enclave entry using ERESUME (opt-in or opt-out) and an AEX from the enclave do not cause generation of the 
single-step debug exception.

41.5.2 LBR Treatment

41.5.2.1  LBR Stack on Opt-in Entry
Following an opt-in entry into an enclave, last branch recording facilities if enabled continued to store branch 
records in the LBR stack MSRs as follows:
• On enclave entry using EENTER/ERESUME, the processor push the address of EENTER/ERESUME instruction 

into MSR_LASTBRANCH_n_FROM_IP, and the destination address of the EENTER/ERESUME into 
MSR_LASTBRANCH_n_TO_IP. 

• On EEXIT, the processor pushes the address of EEXIT instruction into MSR_LASTBRANCH_n_FROM_IP, and the 
address of EEXIT destination into MSR_LASTBRANCH_n_TO_IP. 

• On AEX, the processor pushes RIP saved in the SSA into MSR_LASTBRANCH_n_FROM_IP, and the address of 
AEP into MSR_LASTBRANCH_n_TO_IP. 

• For every branch inside the enclave, a branch record is pushed on the LBR stack.

Figure 41-3 shows an example of LBR stack manipulation after an opt-in entry. Every arrow in this picture indicates 
a branch record pushed on the LBR stack. The “From IP” of the branch record contains the linear address of the 
instruction located at the start of the arrow, while the “To IP” of the branch record contains the linear address of the 
instruction at the end of the arrow. 
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41.5.2.2  LBR Stack on Opt-out Entry
An opt-out entry into an enclave suppresses last branch recording facilities, and enclave exit after an opt-out entry 
un-suppresses last branch recording facilities.
Opt-out entry into an enclave does not push any record on LBR stack.
If last branch recording facilities were enabled at the time of enclave entry, then EEXIT following such an enclave 
entry pushes one record on LBR stack. The MSR_LASTBRANCH_n_FROM_IP of such record holds the linear address 
of the instruction (EENTER or ERESUME) that was used to enter the enclave, while the 
MSR_LASTBRANCH_n_TO_IP of such record holds linear address of the destination of EEXIT. 
Additionally, if last branch recording facilities were enabled at the time of enclave entry, then an AEX after such an 
entry pushes one record on LBR stack, before pushing record for the event causing the AEX if the event pushes a 
record on LBR stack. The MSR_LASTBRANCH_n_FROM_IP of the new record holds linear address of the instruction 
(EENTER or ERESUME) that was used to enter the enclave, while MSR_LASTBRANCH_n_TO_IP of the new record 
holds linear address of the AEP. If the event causing AEX pushes a record on LBR stack, then the 
MSR_LASTBRANCH_n_FROM_IP for that record holds linear address of the AEP.
Figure 41-4 shows an example of LBR stack manipulation after an opt-out entry. Every arrow in this picture indi-
cates a branch record pushed on the LBR stack. The “From IP” of the branch record contains the linear address of 
the instruction located at the start of the arrow, while the “To IP” of the branch record contains the linear address 
of the instruction at the end of the arrow.

Figure 41-3.  LBR Stack Interaction with Opt-in Entry
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41.5.2.3  Mispredict Bit, Record Type, and Filtering
All branch records resulting from Intel SGX instructions/AEXs are reported as predicted branches, and conse-
quently, bit 63 of MSR_LASTBRANCH_n_FROM_IP for such records is set. Branch records due to these Intel SGX 
operations are always non-HLE/non-RTM records. 
EENTER, ERESUME, EEXIT, and AEX are considered to be far branches. Consequently, bit 8 in MSR_LBR_SELECT 
controls filtering of the new records introduced by Intel SGX.

41.6 INTERACTION WITH PERFORMANCE MONITORING 

41.6.1 IA32_PERF_GLOBAL_STATUS Enhancement
On processors supporting Intel SGX, the IA32_PERF_GLOBAL_STATUS MSR provides a bit indicator, known as “Anti 
Side-channel Interference” (ASCI) at bit position 60. If this bit is 0, the performance monitoring data in various 
performance monitoring counters are accumulated normally as defined by relevant architectural/microarchitec-
tural conditions. If the ASCI bit is set, the contents in various performance monitoring counters can be affected by 
the direct or indirect consequence of Intel SGX protection of enclave code executing in the processor. 

41.6.2 Performance Monitoring with Opt-in Entry
An opt-in enclave entry allow performance monitoring logic to observe the contribution of enclave code executing 
in the processor. Thus the contents of performance monitoring counters does not distinguish between contribution 
originating from enclave code or otherwise. All counters, events, precise events, etc. continue to work as defined 
in the IA32/Intel 64 Software Developer Manual. Consequently, bit 60 of IA32_PERF_GLOBAL_STATUS MSR is not 
set.

Figure 41-4.  LBR Stack Interaction with Opt-out Entry
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41.6.3 Performance Monitoring with Opt-out Entry
In general, performance monitoring activities are suppressed when entering an opt-out enclave. This applies to all 
thread-specific, configured performance monitoring, except for the cycle-counting fixed counter, 
IA32_FIXED_CTR1 and IA32_FIXED_CTR2. Upon entering an opt-out enclave, IA32_FIXED_CTR0, IA32_PMCx will 
stop accumulating counts. Additionally, if PEBS is configured to capture PEBS record for this thread, PEBS record 
generation will also be suppressed. Consequently, bit 60 of IA32_PERF_GLOBAL_STATUS MSR is set.
Performance monitoring on the sibling thread may also be affected. Any one of IA32_FIXED_CTRx or IA32_PMCx 
on the sibling thread configured to monitor thread-specific eventing logic with AnyThread =1 is demoted to count 
only MyThread while an opt-out enclave is executing on the other thread.

41.6.4 Enclave Exit and Performance Monitoring
When a logical processor exits an enclave, either via ENCLU[EEXIT] or via AEX, all performance monitoring activity 
(including PEBS) on that logical processor that was suppressed is unsuppressed. 
Any counters that were demoted from AnyThread to MyThread on the sibling thread are promoted back to 
AnyThread.

41.6.5 PEBS Record Generation on Intel® SGX Instructions
All leaf functions of the ENCLS instruction report “Eventing RIP” of the ENCLS instruction if a PEBS record is gener-
ated at the end of the instruction execution. Additionally, the EGETKEY and EREPORT leaf functions of the ENCLU 
instruction report “Eventing RIP” of the ENCLU instruction if a PEBS record is generated at the end of the instruction 
execution.
If the EENTER and ERESUME leaf functions are performing an opt-in entry report “Eventing RIP” of the ENCLU 
instruction if a PEBS record is generated at the end of the instruction execution. On the other hand, if these leaf 
functions are performing an opt-out entry, then these leaf functions result in PEBS being suppressed, and no PEBS 
record is generated at the end of these instructions.
A PEBS record is generated if there is a PEBS event pending at the end of EEXIT (due to a counter overflowing 
during enclave execution or during EEXIT execution). This PEBS record contains the architectural state of the 
logical processor at the end of EEXIT. If the enclave was entered via an opt-in entry, then this record reports the 
“Eventing RIP” as the linear address of the ENCLU[EEXIT] instruction. If the enclave was entered via an opt-out 
entry, then the record reports the “Eventing RIP” as the linear address of the ENCLU[EENTER/ERESUME] instruc-
tion that performed the last enclave entry. 
A PEBS record is generated after the AEX if there is a PEBS event pending at the end of AEX (due to a counter over-
flowing during enclave execution or during AEX execution). This PEBS record contains the synthetic state of the 
logical processor that is established at the end of AEX. For opt-in entry, this record has the EVENTING_RIP set to 
the RIP saved in the SSA. For opt-out entry, the record has the EVENTING_RIP set to the linear address of 
EENTER/ERESUME used for the last enclave entry.
If the enclave was entered via an opt-in entry, then this record reports the “Eventing RIP” as the linear address in 
the SSA of the enclave (a.k.a., the “Eventing LIP” inside the enclave). If the enclave was entered via an opt-out 
entry, then the record reports the “Eventing RIP” as the linear address of the ENCLU[EENTER/ERESUME] instruc-
tion that performed the last enclave entry.
A second PEBS event may be pended during the Enclave Exiting Event (EEE). If the PEBS event is taken at the end 
of delivery of the EEE then the “Eventing RIP” in this second PEBS record is the linear address of the AEP.

41.6.6 Exception-Handling on PEBS/BTS Loads/Stores after AEX
As noted in Section 19.4.9.2, recording in the BTS buffer or in the PEBS buffer may not operate properly if accesses 
to any of the DS save area sections cause page faults or VM exits. Such page faults or VM exits, if they occur, are 
delivered immediately to the OS or VMM, and generation of a BTS or PEBS record is skipped and may leave the 
buffers in a state where they have a partial BTS or PEBS records. 
However, any events that are detected during PEBS/BTS record generation at the end of AEX and before delivering 
the Enclave Exiting Event (EEE) cannot be reported immediately to the OS/VMM, as an event window is not open at 
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the end of AEX. Consequently, fault-like events such as page faults, EPT faults, EPT mis-configuration, and 
accesses to APIC-access page detected on stores to the PEBS/BTS buffer are not reported, and generation of the 
PEBS and/or BTS record at the end of AEX is aborted (this may leave the buffers in a state where they have partial 
PEBS or BTS records). Trap-like events detected on stores to the PEBS/BTS buffer (such as debug traps) are 
pended until the next instruction boundary, where they are handled according to the architecturally defined 
priority. The processor continues the handling of the Enclave Exiting Event (SMI, NMI, interrupt, exception delivery, 
VM exit, etc.) after aborting the PEBS/BTS record generation. 

41.6.6.1  Other Interactions with Performance Monitoring
For opt-in entry, EENTER, ERESUME, EEXIT, and AEX are all treated as predicted far branches, and any counters 
that are counting such branches are incremented by 1 as a part of retirement of these instructions. Retirement of 
these instructions is also counted in any counters configured to count instructions retired.
For opt-out entry, execution inside an enclave is treated as a single predicted branch, and all branch-counting 
performance monitoring counters are incremented accordingly. Additionally, such execution is also counted as a 
single instruction, and all performance monitoring counters counting instructions are incremented accordingly.
Enclave entry does not affect any performance monitoring counters shared between cores. 
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APPENDIX A
VMX CAPABILITY REPORTING FACILITY

The ability of a processor to support VMX operation and related instructions is indicated by 
CPUID.1:ECX.VMX[bit 5] = 1. A value 1 in this bit indicates support for VMX features.

Support for specific features detailed in Chapter 28 and other VMX chapters is determined by reading values from 
a set of capability MSRs. These MSRs are indexed starting at MSR address 480H. VMX capability MSRs are read-
only; an attempt to write them (with WRMSR) produces a general-protection exception (#GP(0)). They do not exist 
on processors that do not support VMX operation; an attempt to read them (with RDMSR) on such processors 
produces a general-protection exception (#GP(0)).

A.1 BASIC VMX INFORMATION
The IA32_VMX_BASIC MSR (index 480H) consists of the following fields:
• Bits 30:0 contain the 31-bit VMCS revision identifier used by the processor. Processors that use the same VMCS 

revision identifier use the same size for VMCS regions (see subsequent item on bits 44:32).1

• Bit 31 is always 0.
• Bits 44:32 report the number of bytes that software should allocate for the VMXON region and any VMCS 

region. It is a value greater than 0 and at most 4096 (bit 44 is set if and only if bits 43:32 are clear).
• Bit 48 indicates the width of the physical addresses that may be used for the VMXON region, each VMCS, and 

data structures referenced by pointers in a VMCS (I/O bitmaps, virtual-APIC page, MSR areas for VMX transi-
tions). If the bit is 0, these addresses are limited to the processor’s physical-address width.2 If the bit is 1, 
these addresses are limited to 32 bits. This bit is always 0 for processors that support Intel 64 architecture.

• If bit 49 is read as 1, the logical processor supports the dual-monitor treatment of system-management 
interrupts and system-management mode. See Section 33.15 for details of this treatment.

• Bits 53:50 report the memory type that should be used for the VMCS, for data structures referenced by 
pointers in the VMCS (I/O bitmaps, virtual-APIC page, MSR areas for VMX transitions), and for the MSEG 
header. If software needs to access these data structures (e.g., to modify the contents of the MSR bitmaps), it 
can configure the paging structures to map them into the linear-address space. If it does so, it should establish 
mappings that use the memory type reported bits 53:50 in this MSR.3

As of this writing, all processors that support VMX operation indicate the write-back type. The values used are 
given in Table A-1.

1. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field in bits 31:0 of this MSR. For all proces-
sors produced prior to this change, bit 31 of this MSR was read as 0.

2. On processors that support Intel 64 architecture, the pointer must not set bits beyond the processor's physical address width.

3. Alternatively, software may map any of these regions or structures with the UC memory type. (This may be necessary for the MSEG 
header.) Doing so is discouraged unless necessary as it will cause the performance of software accesses to those structures to suf-
fer.

Table A-1.  Memory Types Recommended for VMCS and Related Data Structures
Value(s) Field

0 Uncacheable (UC)

1–5 Not used

6 Write Back (WB)

7–15 Not used
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• If bit 54 is read as 1, the processor reports information in the VM-exit instruction-information field on VM exits 
due to execution of the INS and OUTS instructions (see Section 29.2.5). This reporting is done only if this bit is 
read as 1.

• Bit 55 is read as 1 if any VMX controls that default to 1 may be cleared to 0. See Appendix A.2 for details. It also 
reports support for the VMX capability MSRs IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROC-
BASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and IA32_VMX_TRUE_ENTRY_CTLS. See Appendix A.3.1, 
Appendix A.3.2, Appendix A.4, and Appendix A.5 for details.

• If bit 56 is read as 1, software can use VM entry to deliver a hardware exception with or without an error code, 
regardless of vector (see Section 28.2.1.3).

• The values of bits 47:45 and bits 63:57 are reserved and are read as 0.

A.2 RESERVED CONTROLS AND DEFAULT SETTINGS
As noted in Chapter 28, “VM Entries‚” certain VMX controls are reserved and must be set to a specific value (0 or 1) 
determined by the processor. The specific value to which a reserved control must be set is its default setting. 
Software can discover the default setting of a reserved control by consulting the appropriate VMX capability MSR 
(see Appendix A.3 through Appendix A.5).

Future processors may define new functionality for one or more reserved controls. Such processors would allow 
each newly defined control to be set either to 0 or to 1. Software that does not desire a control’s new functionality 
should set the control to its default setting. For that reason, it is useful for software to know the default settings of 
the reserved controls.

Default settings partition the various controls into the following classes:
• Always-flexible. These have never been reserved.
• Default0. These are (or have been) reserved with a default setting of 0.
• Default1. They are (or have been) reserved with a default setting of 1.

As noted in Appendix A.1, a logical processor uses bit 55 of the IA32_VMX_BASIC MSR to indicate whether any of 
the default1 controls may be 0:
• If bit 55 of the IA32_VMX_BASIC MSR is read as 0, all the default1 controls are reserved and must be 1. 

VM entry will fail if any of these controls are 0 (see Section 28.2.1).
• If bit 55 of the IA32_VMX_BASIC MSR is read as 1, not all the default1 controls are reserved, and some (but 

not necessarily all) may be 0. The CPU supports four (4) new VMX capability MSRs: 
IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and 
IA32_VMX_TRUE_ENTRY_CTLS. See Appendix A.3 through Appendix A.5 for details. (These MSRs are not 
supported if bit 55 of the IA32_VMX_BASIC MSR is read as 0.)

A.3 VM-EXECUTION CONTROLS
There are separate capability MSRs for the pin-based VM-execution controls, the primary processor-based VM-
execution controls, the secondary processor-based VM-execution controls, and the tertiary processor-based VM-
execution controls. These are described in Appendix A.3.1, Appendix A.3.2, Appendix A.3.3, and Appendix A.3.4, 
respectively.

A.3.1  Pin-Based VM-Execution Controls
The IA32_VMX_PINBASED_CTLS MSR (index 481H) reports on the allowed settings of most of the pin-based 
VM-execution controls (see Section 26.6.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the pin-based 

VM-execution controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if 
control X is 0.
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Exceptions are made for the pin-based VM-execution controls in the default1 class (see Appendix A.2). These 
are bits 1, 2, and 4; the corresponding bits of the IA32_VMX_PINBASED_CTLS MSR are always read as 1. The 
treatment of these controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any pin-based VM-execution control in 
the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PINBASED_CTLS MSR (see 
below) reports which of the pin-based VM-execution controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in 
the MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PINBASED_CTLS MSR (index 48DH) 
reports on the allowed settings of all of the pin-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR 

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the 

MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the pin-
based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the pin-based 

VM-execution controls is contained in the IA32_VMX_PINBASED_CTLS MSR. (The 
IA32_VMX_TRUE_PINBASED_CTLS MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the pin-based 
VM-execution controls is contained in the IA32_VMX_TRUE_PINBASED_CTLS MSR. Assuming that software 
knows that the default1 class of pin-based VM-execution controls contains bits 1, 2, and 4, there is no need for 
software to consult the IA32_VMX_PINBASED_CTLS MSR.

A.3.2  Primary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS MSR (index 482H) reports on the allowed settings of most of the primary 
processor-based VM-execution controls (see Section 26.6.2):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the primary 

processor-based VM-execution controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 
1, VM entry fails if control X is 0.
Exceptions are made for the primary processor-based VM-execution controls in the default1 class (see 
Appendix A.2). These are bits 1, 4–6, 8, 13–16, and 26; the corresponding bits of the IA32_VMX_PROC-
BASED_CTLS MSR are always read as 1. The treatment of these controls by VM entry is determined by bit 55 
in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any of the primary processor-based VM-
execution controls in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PROCBASED_CTLS MSR (see 
below) reports which of the primary processor-based VM-execution controls in the default1 class can be 0 
on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the 
MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PROCBASED_CTLS MSR (index 48EH) 
reports on the allowed settings of all of the primary processor-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR 

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the 

MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the 
primary processor-based VM-execution controls:
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• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the primary 
processor-based VM-execution controls is contained in the IA32_VMX_PROCBASED_CTLS MSR. (The 
IA32_VMX_TRUE_PROCBASED_CTLS MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the primary 
processor-based VM-execution controls is contained in the IA32_VMX_TRUE_PROCBASED_CTLS MSR. 
Assuming that software knows that the default1 class of primary processor-based VM-execution controls 
contains bits 1, 4–6, 8, 13–16, and 26, there is no need for software to consult the 
IA32_VMX_PROCBASED_CTLS MSR.

A.3.3  Secondary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS2 MSR (index 48BH) reports on the allowed settings of the secondary processor-
based VM-execution controls (see Section 26.6.2). The following items provide details, including enforcement by 
VM entry:
• Bits 31:0 indicate the allowed 0-settings of these controls. These bits are always 0. This fact indicates that 

VM entry allows each bit of the secondary processor-based VM-execution controls to be 0 (reserved bits must 
be 0)

• Bits 63:32 indicate the allowed 1-settings of these controls; the 1-setting is not allowed for any reserved bit. 
VM entry allows control X (bit X of the secondary processor-based VM-execution controls) to be 1 if bit 32+X in 
the MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X and the “activate secondary 
controls” primary processor-based VM-execution control are both 1.

The IA32_VMX_PROCBASED_CTLS2 MSR exists only on processors that support the 1-setting of the “activate 
secondary controls” VM-execution control (only if bit 63 of the IA32_VMX_PROCBASED_CTLS MSR is 1).

A.3.4  Tertiary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS3 MSR (index 492H) reports on the allowed 1-settings of the tertiary processor-
based VM-execution controls (see Section 26.6.2); the 1-setting is not allowed for any reserved bit.

VM entry allows control X (bit X of the tertiary processor-based VM-execution controls) to be 1 if bit X in the MSR 
is set to 1; if bit X in the MSR is cleared to 0, VM entry fails if control X and the “activate tertiary controls” primary 
processor-based VM-execution control are both 1.

The IA32_VMX_PROCBASED_CTLS3 MSR exists only on processors that support the 1-setting of the “activate 
tertiary controls” VM-execution control (only if bit 49 of the IA32_VMX_PROCBASED_CTLS MSR is 1).

Notice that the organization of this MSR differs from that of IA32_VMX_PROCBASED_CTLS2 (Appendix A.3.3). This 
is because there are 64 tertiary processor-based VM-execution controls, while there were only 32 secondary 
processor-based VM-execution controls.

A.4 VM-EXIT CONTROLS
There are separate capability MSRs for the primary VM-exit controls and the secondary VM-exit controls. These are 
described in Appendix A.4.1 and Appendix A.4.2, respectively.

A.4.1  Primary VM-Exit Controls
The IA32_VMX_EXIT_CTLS MSR (index 483H) reports on the allowed settings of most of the primary VM-exit 
controls (see Section 26.7.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the primary 

VM-exit controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control 
X is 0.
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Exceptions are made for the primary VM-exit controls in the default1 class (see Appendix A.2). These are 
bits 0–8, 10, 11, 13, 14, 16, and 17; the corresponding bits of the IA32_VMX_EXIT_CTLS MSR are always read 
as 1. The treatment of these controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any primary VM-exit control in the 
default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_EXIT_CTLS MSR (see below) 
reports which of the primary VM-exit controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control 32+X to be 1 if bit X in the 
MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_EXIT_CTLS MSR (index 48FH) reports on 
the allowed settings of all of the primary VM-exit controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR 

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the 

MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the 
primary VM-exit controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the primary 

VM-exit controls is contained in the IA32_VMX_EXIT_CTLS MSR. (The IA32_VMX_TRUE_EXIT_CTLS MSR is not 
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the primary 
VM-exit controls is contained in the IA32_VMX_TRUE_EXIT_CTLS MSR. Assuming that software knows that the 
default1 class of primary VM-exit controls contains bits 0–8, 10, 11, 13, 14, 16, and 17, there is no need for 
software to consult the IA32_VMX_EXIT_CTLS MSR.

A.4.2  Secondary VM-Exit Controls
The IA32_VMX_EXIT_CTLS2 MSR (index 493H) reports on the allowed 1-settings of the secondary VM-exit controls 
(see Section 26.7.1); the 1-setting is not allowed for any reserved bit.

VM entry allows control X (bit X of the secondary VM-exit controls) to be 1 if bit X in the MSR is set to 1; if bit X in 
the MSR is cleared to 0, VM entry fails if control X and the “activate secondary controls” primary VM-exit control are 
both 1.

The IA32_VMX_EXIT_CTLS2 MSR exists only on processors that support the 1-setting of the “activate secondary 
controls” VM-exit control (only if bit 63 of the IA32_VMX_EXIT_CTLS MSR is 1).

Notice that the organization of this MSR differs from that of IA32_VMX_EXIT_CTLS (Appendix A.4.1). This is 
because there are 64 secondary VM-exit controls, while there were only 32 primary VM-exit controls.

A.5 VM-ENTRY CONTROLS
The IA32_VMX_ENTRY_CTLS MSR (index 484H) reports on the allowed settings of most of the VM-entry controls 
(see Section 26.8.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the VM-entry 

controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Exceptions are made for the VM-entry controls in the default1 class (see Appendix A.2). These are bits 0–8 and 
12; the corresponding bits of the IA32_VMX_ENTRY_CTLS MSR are always read as 1. The treatment of these 
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any VM-entry control in the default1 
class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_ENTRY_CTLS MSR (see below) 
reports which of the VM-entry controls in the default1 class can be 0 on VM entry.
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• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit X is 1 in the VM-entry controls 
and bit 32+X is 0 in this MSR.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_ENTRY_CTLS MSR (index 490H) reports 
on the allowed settings of all of the VM-entry controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR 

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control 32+X to be 1 if bit X in the 

MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the 
VM-entry controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the VM-entry 

controls is contained in the IA32_VMX_ENTRY_CTLS MSR. (The IA32_VMX_TRUE_ENTRY_CTLS MSR is not 
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the VM-entry 
controls is contained in the IA32_VMX_TRUE_ENTRY_CTLS MSR. Assuming that software knows that the 
default1 class of VM-entry controls contains bits 0–8 and 12, there is no need for software to consult the 
IA32_VMX_ENTRY_CTLS MSR.

A.6 MISCELLANEOUS DATA
The IA32_VMX_MISC MSR (index 485H) consists of the following fields:
• Bits 4:0 report a value X that specifies the relationship between the rate of the VMX-preemption timer and that 

of the timestamp counter (TSC). Specifically, the VMX-preemption timer (if it is active) counts down by 1 every 
time bit X in the TSC changes due to a TSC increment.

• If bit 5 is read as 1, VM exits store the value of IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control; 
see Section 29.2 for more details. This bit is read as 1 on any logical processor that supports the 1-setting of 
the “unrestricted guest” VM-execution control.

• Bits 8:6 report, as a bitmap, the activity states supported by the implementation:

— Bit 6 reports (if set) the support for activity state 1 (HLT).

— Bit 7 reports (if set) the support for activity state 2 (shutdown).

— Bit 8 reports (if set) the support for activity state 3 (wait-for-SIPI).
If an activity state is not supported, the implementation causes a VM entry to fail if it attempts to establish that 
activity state. All implementations support VM entry to activity state 0 (active).

• If bit 14 is read as 1, Intel® Processor Trace (Intel PT) can be used in VMX operation. If the processor supports 
Intel PT but does not allow it to be used in VMX operation, execution of VMXON clears IA32_RTIT_CTL.TraceEn 
(see “VMXON—Enter VMX Operation” in Chapter 32); any attempt to write IA32_RTIT_CTL while in VMX 
operation (including VMX root operation) causes a general-protection exception.

• If bit 15 is read as 1, the RDMSR instruction can be used in system-management mode (SMM) to read the 
IA32_SMBASE MSR (MSR address 9EH). See Section 33.15.6.3.

• Bits 24:16 indicate the number of CR3-target values supported by the processor. This number is a value 
between 0 and 256, inclusive (bit 24 is set if and only if bits 23:16 are clear).

• Bits 27:25 is used to compute the recommended maximum number of MSRs that should appear in the VM-exit 
MSR-store list, the VM-exit MSR-load list, or the VM-entry MSR-load list. Specifically, if the value bits 27:25 of 
IA32_VMX_MISC is N, then 512 * (N + 1) is the recommended maximum number of MSRs to be included in 
each list. If the limit is exceeded, undefined processor behavior may result (including a machine check during 
the VMX transition).

• If bit 28 is read as 1, bit 2 of the IA32_SMM_MONITOR_CTL can be set to 1. VMXOFF unblocks SMIs unless 
IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section 33.14.4).

• If bit 29 is read as 1, software can use VMWRITE to write to any supported field in the VMCS; otherwise, 
VMWRITE cannot be used to modify VM-exit information fields.
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• If bit 30 is read as 1, VM entry allows injection of a software interrupt, software exception, or privileged 
software exception with an instruction length of 0.

• Bits 63:32 report the 32-bit MSEG revision identifier used by the processor.
• Bits 13:9 and bit 31 are reserved and are read as 0.

A.7 VMX-FIXED BITS IN CR0
The IA32_VMX_CR0_FIXED0 MSR (index 486H) and IA32_VMX_CR0_FIXED1 MSR (index 487H) indicate how bits 
in CR0 may be set in VMX operation. They report on bits in CR0 that are allowed to be 0 and to be 1, respectively, 
in VMX operation. If bit X is 1 in IA32_VMX_CR0_FIXED0, then that bit of CR0 is fixed to 1 in VMX operation. Simi-
larly, if bit X is 0 in IA32_VMX_CR0_FIXED1, then that bit of CR0 is fixed to 0 in VMX operation. It is always the case 
that, if bit X is 1 in IA32_VMX_CR0_FIXED0, then that bit is also 1 in IA32_VMX_CR0_FIXED1; if bit X is 0 in 
IA32_VMX_CR0_FIXED1, then that bit is also 0 in IA32_VMX_CR0_FIXED0. Thus, each bit in CR0 is either fixed to 
0 (with value 0 in both MSRs), fixed to 1 (1 in both MSRs), or flexible (0 in IA32_VMX_CR0_FIXED0 and 1 in 
IA32_VMX_CR0_FIXED1).

A.8 VMX-FIXED BITS IN CR4
The IA32_VMX_CR4_FIXED0 MSR (index 488H) and IA32_VMX_CR4_FIXED1 MSR (index 489H) indicate how bits 
in CR4 may be set in VMX operation. They report on bits in CR4 that are allowed to be 0 and 1, respectively, in VMX 
operation. If bit X is 1 in IA32_VMX_CR4_FIXED0, then that bit of CR4 is fixed to 1 in VMX operation. Similarly, if 
bit X is 0 in IA32_VMX_CR4_FIXED1, then that bit of CR4 is fixed to 0 in VMX operation. It is always the case that, 
if bit X is 1 in IA32_VMX_CR4_FIXED0, then that bit is also 1 in IA32_VMX_CR4_FIXED1; if bit X is 0 in 
IA32_VMX_CR4_FIXED1, then that bit is also 0 in IA32_VMX_CR4_FIXED0. Thus, each bit in CR4 is either fixed to 
0 (with value 0 in both MSRs), fixed to 1 (1 in both MSRs), or flexible (0 in IA32_VMX_CR4_FIXED0 and 1 in 
IA32_VMX_CR4_FIXED1).

A.9 VMCS ENUMERATION
The IA32_VMX_VMCS_ENUM MSR (index 48AH) provides information to assist software in enumerating fields in 
the VMCS.

As noted in Section 26.11.2, each field in the VMCS is associated with a 32-bit encoding which is structured as 
follows:
• Bits 31:15 are reserved (must be 0).
• Bits 14:13 indicate the field’s width.
• Bit 12 is reserved (must be 0).
• Bits 11:10 indicate the field’s type.
• Bits 9:1 is an index field that distinguishes different fields with the same width and type.
• Bit 0 indicates access type.

IA32_VMX_VMCS_ENUM indicates to software the highest index value used in the encoding of any field supported 
by the processor:
• Bits 9:1 contain the highest index value used for any VMCS encoding.
• Bit 0 and bits 63:10 are reserved and are read as 0.
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A.10 VPID AND EPT CAPABILITIES
The IA32_VMX_EPT_VPID_CAP MSR (index 48CH) reports information about the capabilities of the logical 
processor with regard to virtual-processor identifiers (VPIDs, Section 30.1) and extended page tables (EPT, Section 
30.3):
• If bit 0 is read as 1, the processor supports execute-only translations by EPT. This support allows software to 

configure EPT paging-structure entries in which bits 1:0 are clear (indicating that data accesses are not 
allowed) and bit 2 is set (indicating that instruction fetches are allowed).1 

• Bit 6 indicates support for a page-walk length of 4.
• Bit 7 indicates support for a page-walk length of 5.
• If bit 8 is read as 1, the logical processor allows software to configure the EPT paging-structure memory type 

to be uncacheable (UC); see Section 26.6.11.
• If bit 14 is read as 1, the logical processor allows software to configure the EPT paging-structure memory type 

to be write-back (WB).
• If bit 16 is read as 1, the logical processor allows software to configure a EPT PDE to map a 2-Mbyte page (by 

setting bit 7 in the EPT PDE). 
• If bit 17 is read as 1, the logical processor allows software to configure a EPT PDPTE to map a 1-Gbyte page (by 

setting bit 7 in the EPT PDPTE). 
• Support for the INVEPT instruction (see Chapter 32 and Section 30.4.3.1):

— If bit 20 is read as 1, the INVEPT instruction is supported.

— If bit 25 is read as 1, the single-context INVEPT type is supported.

— If bit 26 is read as 1, the all-context INVEPT type is supported.
• If bit 21 is read as 1, accessed and dirty flags for EPT are supported (see Section 30.3.5).
• If bit 22 is read as 1, the processor reports advanced VM-exit information for EPT violations (see Section 

29.2.1). This reporting is done only if this bit is read as 1.
• If bit 23 is read as 1, supervisor shadow-stack control is supported (see Section 30.3.3.2).
• Support for the INVVPID instruction (see Chapter 32 and Section 30.4.3.1):

— If bit 32 is read as 1, the INVVPID instruction is supported.

— If bit 40 is read as 1, the individual-address INVVPID type is supported.

— If bit 41 is read as 1, the single-context INVVPID type is supported.

— If bit 42 is read as 1, the all-context INVVPID type is supported.

— If bit 43 is read as 1, the single-context-retaining-globals INVVPID type is supported.
• Bits 53:48 enumerate the maximum HLAT prefix size. It is expected that any processor that supports the 1-

setting of the “enable HLAT” VM-execution control will enumerate this value as 1. See Section 5.5.1.
• Bits 5:1, bits 13:9, bit 15, bits 19:18, bit 24, bits 31:27, bits 39:33, bits 47:44, and bits 63:54 are reserved 

and are read as 0.

The IA32_VMX_EPT_VPID_CAP MSR exists only on processors that support the 1-setting of the “activate secondary 
controls” VM-execution control (only if bit 63 of the IA32_VMX_PROCBASED_CTLS MSR is 1) and that support 
either the 1-setting of the “enable EPT” VM-execution control (only if bit 33 of the IA32_VMX_PROCBASED_CTLS2 
MSR is 1) or the 1-setting of the “enable VPID” VM-execution control (only if bit 37 of the 
IA32_VMX_PROCBASED_CTLS2 MSR is 1).

1. If the “mode-based execute control for EPT” VM-execution control is 1, setting bit 0 indicates also that software may also configure 
EPT paging-structure entries in which bits 1:0 are both clear and in which bit 10 is set (indicating a translation that can be used to 
fetch instructions from a supervisor-mode linear address or a user-mode linear address).
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A.11 VM FUNCTIONS
The IA32_VMX_VMFUNC MSR (index 491H) reports on the allowed settings of the VM-function controls (see 
Section 26.6.14). VM entry allows bit X of the VM-function controls to be 1 if bit X in the MSR is set to 1; if bit X in 
the MSR is cleared to 0, VM entry fails if bit X of the VM-function controls, the “activate secondary controls” primary 
processor-based VM-execution control, and the “enable VM functions” secondary processor-based VM-execution 
control are all 1.

The IA32_VMX_VMFUNC MSR exists only on processors that support the 1-setting of the “activate secondary 
controls” VM-execution control (only if bit 63 of the IA32_VMX_PROCBASED_CTLS MSR is 1) and the 1-setting of 
the “enable VM functions” secondary processor-based VM-execution control (only if bit 45 of the 
IA32_VMX_PROCBASED_CTLS2 MSR is 1).
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APPENDIX B
FIELD ENCODING IN VMCS

Every component of the VMCS is encoded by a 32-bit field that can be used by VMREAD and VMWRITE. Section 
26.11.2 describes the structure of the encoding space (the meanings of the bits in each 32-bit encoding). 

This appendix enumerates all fields in the VMCS and their encodings. Fields are grouped by width (16-bit, 32-bit, 
etc.) and type (guest-state, host-state, etc.).

B.1 16-BIT FIELDS
A value of 0 in bits 14:13 of an encoding indicates a 16-bit field. Only guest-state areas and the host-state area 
contain 16-bit fields. As noted in Section 26.11.2, each 16-bit field allows only full access, meaning that bit 0 of its 
encoding is 0. Each such encoding is thus an even number.

B.1.1  16-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index value 
in bits 9:1. Table B-1 enumerates the 16-bit control fields.

B.1.2  16-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by 
their index value in bits 9:1. Table B-2 enumerates 16-bit guest-state fields.

Table B-1.  Encoding for 16-Bit Control Fields (0000_00xx_xxxx_xxx0B)
Field Name Index Encoding

Virtual-processor identifier (VPID)1

NOTES:
1. This field exists only on processors that support the 1-setting of the “enable VPID” VM-execution control.

000000000B 00000000H

Posted-interrupt notification vector2

2. This field exists only on processors that support the 1-setting of the “process posted interrupts” VM-execution control.

000000001B 00000002H

EPTP index3

3. This field exists only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.

000000010B 00000004H

HLAT prefix size4

4. This field exists only on processors that support the 1-setting of the “enable HLAT” VM-execution control.

000000011B 00000006H

Last PID-pointer index5

5. This field exists only on processors that support the 1-setting of the “IPI virtualization” VM-execution control.

000000100B 00000008H

Table B-2.  Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B)
Field Name Index Encoding

Guest ES selector 000000000B 00000800H

Guest CS selector 000000001B 00000802H

Guest SS selector 000000010B 00000804H

Guest DS selector 000000011B 00000806H

Guest FS selector 000000100B 00000808H
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B.1.3  16-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. These fields are distinguished by 
their index value in bits 9:1. Table B-3 enumerates the 16-bit host-state fields.

B.2 64-BIT FIELDS
A value of 1 in bits 14:13 of an encoding indicates a 64-bit field. There are 64-bit fields only for controls and for 
guest state. As noted in Section 26.11.2, every 64-bit field has two encodings, which differ on bit 0, the access 
type. Thus, each such field has an even encoding for full access and an odd encoding for high access.

B.2.1  64-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index value 
in bits 9:1. Table B-4 enumerates the 64-bit control fields.

Guest GS selector 000000101B 0000080AH

Guest LDTR selector 000000110B 0000080CH

Guest TR selector 000000111B 0000080EH

Guest interrupt status1 000001000B 00000810H

PML index2 000001001B 00000812H

Guest UINV3 000001010B 00000814H

NOTES:
1. This field exists only on processors that support the 1-setting of the “virtual-interrupt delivery” VM-execution control.
2. This field exists only on processors that support the 1-setting of the “enable PML” VM-execution control.
3. This field exists only on processors that support the 1-setting of either the “clear UINV” VM-exit control or the “load UINV” VM-entry 

control.

Table B-3.  Encodings for 16-Bit Host-State Fields (0000_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host ES selector 000000000B 00000C00H

Host CS selector 000000001B 00000C02H

Host SS selector 000000010B 00000C04H

Host DS selector 000000011B 00000C06H

Host FS selector 000000100B 00000C08H

Host GS selector 000000101B 00000C0AH

Host TR selector 000000110B 00000C0CH

Table B-4.  Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb)
Field Name Index Encoding

Address of I/O bitmap A (full)
000000000B

00002000H

Address of I/O bitmap A (high) 00002001H

Address of I/O bitmap B (full)
000000001B

00002002H

Address of I/O bitmap B (high) 00002003H

Table B-2.  Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B) (Contd.)
Field Name Index Encoding
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Address of MSR bitmaps (full)1
000000010B

00002004H

Address of MSR bitmaps (high)1 00002005H

VM-exit MSR-store address (full)
000000011B

00002006H

VM-exit MSR-store address (high) 00002007H

VM-exit MSR-load address (full)
000000100B

00002008H

VM-exit MSR-load address (high) 00002009H

VM-entry MSR-load address (full)
000000101B

0000200AH

VM-entry MSR-load address (high) 0000200BH

Executive-VMCS pointer (full)
000000110B

0000200CH

Executive-VMCS pointer (high) 0000200DH

PML address (full)2
000000111B

0000200EH

PML address (high)2 0000200FH

TSC offset (full)
000001000B

00002010H

TSC offset (high) 00002011H

Virtual-APIC address (full)3
000001001B

00002012H

Virtual-APIC address (high)3 00002013H

APIC-access address (full)4
000001010B

00002014H

APIC-access address (high)4 00002015H

Posted-interrupt descriptor address (full)5
000001011B

00002016H

Posted-interrupt descriptor address (high)5 00002017H

VM-function controls (full)6
000001100B

00002018H

VM-function controls (high)6 00002019H

EPT pointer (EPTP; full)7
000001101B

0000201AH

EPT pointer (EPTP; high)7 0000201BH

EOI-exit bitmap 0 (EOI_EXIT0; full)8
000001110B

0000201CH

EOI-exit bitmap 0 (EOI_EXIT0; high)8 0000201DH

EOI-exit bitmap 1 (EOI_EXIT1; full)8
000001111B

0000201EH

EOI-exit bitmap 1 (EOI_EXIT1; high)8 0000201FH

EOI-exit bitmap 2 (EOI_EXIT2; full)8
000010000B

00002020H

EOI-exit bitmap 2 (EOI_EXIT2; high)8 00002021H

EOI-exit bitmap 3 (EOI_EXIT3; full)8
000010001B

00002022H

EOI-exit bitmap 3 (EOI_EXIT3; high)8 00002023H

EPTP-list address (full)9
000010010B

00002024H

EPTP-list address (high)9 00002025H

VMREAD-bitmap address (full)10

000010011B
00002026H

VMREAD-bitmap address (high)10 00002027H

VMWRITE-bitmap address (full)10

000010100B
00002028H

VMWRITE-bitmap address (high)10 00002029H

Table B-4.  Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding
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Virtualization-exception information address (full)11

000010101B
0000202AH

Virtualization-exception information address (high)11 0000202BH

XSS-exiting bitmap (full)12

000010110B
0000202CH

XSS-exiting bitmap (high)12 0000202DH

ENCLS-exiting bitmap (full)13

000010111B
0000202EH

ENCLS-exiting bitmap (high)13 0000202FH

Sub-page-permission-table pointer (full)14

000011000B
00002030H

Sub-page-permission-table pointer (high)14 00002031H

TSC multiplier (full)15

000011001B
00002032H

TSC multiplier (high)15 00002033H

Tertiary processor-based VM-execution controls (full)16

000011010B
00002034H

Tertiary processor-based VM-execution controls (high)16 00002035H

ENCLV-exiting bitmap (full)17

000011011B
00002036H

ENCLV-exiting bitmap (high)17 00002037H

Low PASID directory address (full)18

000011100B
00002038H

Low PASID directory address (high)18 00002039H

High PASID directory address (full)18

000011101B
0000203AH

High PASID directory address (high)18 0000203BH

Shared EPT pointer (full)19

000011110B
0000203CH

Shared EPT pointer (high)19 0000203DH

PCONFIG-exiting bitmap (full)20

000011111B
0000203EH

PCONFIG-exiting bitmap (high)20 0000203FH

Hypervisor-managed linear-address translation pointer (HLATP; full)21

000100000B
00002040H

HLATP (high)21 00002041H

PID-pointer table address (full)22

000100001B
00002042H

PID-pointer table address (high)22 00002043H

Secondary VM-exit controls (full)23

000100010B
00002044H

Secondary VM-exit controls (high)23 00002045H

IA32_SPEC_CTRL mask (full)24

000100101B
0000204AH

IA32_SPEC_CTRL mask (high)24 0000204BH

IA32_SPEC_CTRL shadow (full)24

000100110B
0000204CH

IA32_SPEC_CTRL shadow (high)24 0000204DH

NOTES:
1. This field exists only on processors that support the 1-setting of the “use MSR bitmaps” VM-execution control.
2. This field exists only on processors that support the 1-setting of the “enable PML” VM-execution control.
3. This field exists only on processors that support the 1-setting of the “use TPR shadow” VM-execution control.
4. This field exists only on processors that support the 1-setting of the “virtualize APIC accesses” VM-execution control.
5. This field exists only on processors that support the 1-setting of the “process posted interrupts” VM-execution control.
6. This field exists only on processors that support the 1-setting of the “enable VM functions” VM-execution control.
7. This field exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.

Table B-4.  Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding
B-4 Vol. 3D



FIELD ENCODING IN VMCS
B.2.2  64-Bit Read-Only Data Field
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields are distinguished by their 
index value in bits 9:1. There is only one such 64-bit field as given in Table B-5.(As with other 64-bit fields, this one 
has two encodings.)

B.2.3  64-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by 
their index value in bits 9:1. Table B-6 enumerates the 64-bit guest-state fields.

8. This field exists only on processors that support the 1-setting of the “virtual-interrupt delivery” VM-execution control.
9. This field exists only on processors that support the 1-setting of the “EPTP switching” VM-function control.
10. This field exists only on processors that support the 1-setting of the “VMCS shadowing” VM-execution control.
11. This field exists only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.
12. This field exists only on processors that support the 1-setting of the “enable XSAVES/XRSTORS” VM-execution control.
13. This field exists only on processors that support the 1-setting of the “enable ENCLS exiting” VM-execution control.
14. This field exists only on processors that support the 1-setting of the “sub-page write permissions for EPT” VM-execution control.
15. This field exists only on processors that support the 1-setting of the “use TSC scaling” VM-execution control.
16. This field exists only on processors that support the 1-setting of the “activate tertiary controls” VM-execution control.
17. This field exists only on processors that support the 1-setting of the “enable ENCLV exiting” VM-execution control.
18. This field exists only on processors that support the 1-setting of the “PASID translation” VM-execution control.
19. This field exists only on processors that support the 1-setting of the “shared-EPTP” VM-execution control.
20. This field exists only on processors that support the 1-setting of the “enable PCONFIG” VM-execution control.
21. This field exists only on processors that support the 1-setting of the “enable HLAT” VM-execution control.
22. This field exists only on processors that support the 1-setting of the “IPI virtualization” VM-execution control.
23. This field exists only on processors that support the 1-setting of the “activate secondary controls” VM-exit control.
24. This field exists only on processors that support the 1-setting of the “virtualize IA32_SPEC_CTRL” VM-execution control.

Table B-5.  Encodings for 64-Bit Read-Only Data Field (0010_01xx_xxxx_xxxAb)
Field Name Index Encoding

Guest-physical address (full)1

NOTES:
1. This field exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.

000000000B
00002400H

Guest-physical address (high)1 00002401H

Table B-6.  Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb)
Field Name Index Encoding

VMCS link pointer (full)
000000000B

00002800H

VMCS link pointer (high) 00002801H

Guest IA32_DEBUGCTL (full)
000000001B

00002802H

Guest IA32_DEBUGCTL (high) 00002803H

Guest IA32_PAT (full)1
000000010B

00002804H

Guest IA32_PAT (high)1 00002805H

Guest IA32_EFER (full)2
000000011B

00002806H

Guest IA32_EFER (high)2 00002807H
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B.2.4  64-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. These fields are distinguished by 
their index value in bits 9:1. Table B-7 enumerates the 64-bit control fields.

Guest IA32_PERF_GLOBAL_CTRL (full)3
000000100B

00002808H

Guest IA32_PERF_GLOBAL_CTRL (high)3 00002809H

Guest PDPTE0 (full)4
000000101B

0000280AH

Guest PDPTE0 (high)4 0000280BH

Guest PDPTE1 (full)4
000000110B

0000280CH

Guest PDPTE1 (high)4 0000280DH

Guest PDPTE2 (full)4
000000111B

0000280EH

Guest PDPTE2 (high)4 0000280FH

Guest PDPTE3 (full)4
000001000B

00002810H

Guest PDPTE3 (high)4 00002811H

Guest IA32_BNDCFGS (full)5
000001001B

00002812H

Guest IA32_BNDCFGS (high)5 00002813H

Guest IA32_RTIT_CTL (full)6
000001010B

00002814H

Guest IA32_RTIT_CTL (high)6 00002815H

Guest IA32_LBR_CTL (full)7
000001011B

00002816H

Guest IA32_LBR_CTL (high)7 00002817H

Guest IA32_PKRS (full)8
000001100B

00002818H

Guest IA32_PKRS (high)8 00002819H

NOTES:
1. This field exists only on processors that support either the 1-setting of the “load IA32_PAT” VM-entry control or that of the “save 

IA32_PAT” VM-exit control.
2. This field exists only on processors that support either the 1-setting of the “load IA32_EFER” VM-entry control or that of the “save 

IA32_EFER” VM-exit control.
3. This field exists only on processors that support the 1-setting of the “load IA32_PERF_GLOBAL_CTRL” VM-entry control.
4. This field exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.
5. This field exists only on processors that support either the 1-setting of the “load IA32_BNDCFGS” VM-entry control or that of the 

“clear IA32_BNDCFGS” VM-exit control.
6. This field exists only on processors that support either the 1-setting of the “load IA32_RTIT_CTL” VM-entry control or that of the 

“clear IA32_RTIT_CTL” VM-exit control.
7. This field exists only on processors that support either the 1-setting of the “load IA32_LBR_CTL” VM-entry control or that of the

“clear IA32_LBR_CTL” VM-exit control.
8. This field exists only on processors that support the 1-setting of the “load PKRS” VM-entry control.

Table B-7.  Encodings for 64-Bit Host-State Fields (0010_11xx_xxxx_xxxAb)
Field Name Index Encoding

Host IA32_PAT (full)1
000000000B

00002C00H

Host IA32_PAT (high)1 00002C01H

Table B-6.  Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding
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B.3 32-BIT FIELDS
A value of 2 in bits 14:13 of an encoding indicates a 32-bit field. As noted in Section 26.11.2, each 32-bit field 
allows only full access, meaning that bit 0 of its encoding is 0. Each such encoding is thus an even number.

B.3.1  32-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index value 
in bits 9:1. Table B-8 enumerates the 32-bit control fields.

Host IA32_EFER (full)2
000000001B

00002C02H

Host IA32_EFER (high)2 00002C03H

Host IA32_PERF_GLOBAL_CTRL (full)3
000000010B

00002C04H

Host IA32_PERF_GLOBAL_CTRL (high)3 00002C05H

Host IA32_PKRS (full)4
000000011B

00002C06H

Host IA32_PKRS (high)4 00002C07H

NOTES:
1. This field exists only on processors that support the 1-setting of the “load IA32_PAT” VM-exit control.
2. This field exists only on processors that support the 1-setting of the “load IA32_EFER” VM-exit control.
3. This field exists only on processors that support the 1-setting of the “load IA32_PERF_GLOBAL_CTRL” VM-exit control.
4. This field exists only on processors that support the 1-setting of the “load PKRS” VM-exit control.

Table B-8.  Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B)
Field Name Index Encoding

Pin-based VM-execution controls 000000000B 00004000H

Primary processor-based VM-execution controls 000000001B 00004002H

Exception bitmap 000000010B 00004004H

Page-fault error-code mask 000000011B 00004006H

Page-fault error-code match 000000100B 00004008H

CR3-target count 000000101B 0000400AH

Primary VM-exit controls 000000110B 0000400CH

VM-exit MSR-store count 000000111B 0000400EH

VM-exit MSR-load count 000001000B 00004010H

VM-entry controls 000001001B 00004012H

VM-entry MSR-load count 000001010B 00004014H

VM-entry interruption-information field 000001011B 00004016H

VM-entry exception error code 000001100B 00004018H

VM-entry instruction length 000001101B 0000401AH

TPR threshold1 000001110B 0000401CH

Secondary processor-based VM-execution controls2 000001111B 0000401EH

PLE_Gap3 000010000B 00004020H

Table B-7.  Encodings for 64-Bit Host-State Fields (0010_11xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding
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B.3.2  32-Bit Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields are distinguished by their 
index value in bits 9:1. Table B-9 enumerates the 32-bit read-only data fields.

B.3.3  32-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by 
their index value in bits 9:1. Table B-10 enumerates the 32-bit guest-state fields.

PLE_Window3 000010001B 00004022H

Instruction-timeout control4 000010010B 00004024H

NOTES:
1. This field exists only on processors that support the 1-setting of the “use TPR shadow” VM-execution control.
2. This field exists only on processors that support the 1-setting of the “activate secondary controls” VM-execution control.
3. This field exists only on processors that support the 1-setting of the “PAUSE-loop exiting” VM-execution control.
4. This field exists only on processors that support the 1-setting of the “instruction timeout” VM-execution control.

Table B-9.  Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxx_xxx0B)
Field Name Index Encoding

VM-instruction error 000000000B 00004400H

Exit reason 000000001B 00004402H

VM-exit interruption information 000000010B 00004404H

VM-exit interruption error code 000000011B 00004406H

IDT-vectoring information field 000000100B 00004408H

IDT-vectoring error code 000000101B 0000440AH

VM-exit instruction length 000000110B 0000440CH

VM-exit instruction information 000000111B 0000440EH

Table B-10.  Encodings for 32-Bit Guest-State Fields (0100_10xx_xxxx_xxx0B)
Field Name Index Encoding

Guest ES limit 000000000B 00004800H

Guest CS limit 000000001B 00004802H

Guest SS limit 000000010B 00004804H

Guest DS limit 000000011B 00004806H

Guest FS limit 000000100B 00004808H

Guest GS limit 000000101B 0000480AH

Guest LDTR limit 000000110B 0000480CH

Guest TR limit 000000111B 0000480EH

Guest GDTR limit 000001000B 00004810H

Guest IDTR limit 000001001B 00004812H

Guest ES access rights 000001010B 00004814H

Table B-8.  Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B) (Contd.)
Field Name Index Encoding
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The limit fields for GDTR and IDTR are defined to be 32 bits in width even though these fields are only 16-bits wide 
in the Intel 64 and IA-32 architectures. VM entry ensures that the high 16 bits of both these fields are cleared to 0.

B.3.4  32-Bit Host-State Field
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. There is only one such 32-bit field 
as given in Table B-11.

B.4 NATURAL-WIDTH FIELDS
A value of 3 in bits 14:13 of an encoding indicates a natural-width field. As noted in Section 26.11.2, each of these 
fields allows only full access, meaning that bit 0 of its encoding is 0. Each such encoding is thus an even number.

B.4.1  Natural-Width Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index value 
in bits 9:1. Table B-12 enumerates the natural-width control fields.

Guest CS access rights 000001011B 00004816H

Guest SS access rights 000001100B 00004818H

Guest DS access rights 000001101B 0000481AH

Guest FS access rights 000001110B 0000481CH

Guest GS access rights 000001111B 0000481EH

Guest LDTR access rights 000010000B 00004820H

Guest TR access rights 000010001B 00004822H

Guest interruptibility state 000010010B 00004824H

Guest activity state 000010011B 00004826H

Guest SMBASE 000010100B 00004828H

Guest IA32_SYSENTER_CS 000010101B 0000482AH

VMX-preemption timer value1 000010111B 0000482EH

NOTES:
1. This field exists only on processors that support the 1-setting of the “activate VMX-preemption timer” VM-execution control.

Table B-11.  Encoding for 32-Bit Host-State Field (0100_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host IA32_SYSENTER_CS 000000000B 00004C00H

Table B-12.  Encodings for Natural-Width Control Fields (0110_00xx_xxxx_xxx0B)
Field Name Index Encoding

CR0 guest/host mask 000000000B 00006000H

CR4 guest/host mask 000000001B 00006002H

CR0 read shadow 000000010B 00006004H

CR4 read shadow 000000011B 00006006H

Table B-10.  Encodings for 32-Bit Guest-State Fields (0100_10xx_xxxx_xxx0B) (Contd.)
Field Name Index Encoding
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B.4.2  Natural-Width Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields are distinguished by their 
index value in bits 9:1. Table B-13 enumerates the natural-width read-only data fields.

B.4.3  Natural-Width Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by 
their index value in bits 9:1. Table B-14 enumerates the natural-width guest-state fields.

CR3-target value 0 000000100B 00006008H

CR3-target value 1 000000101B 0000600AH

CR3-target value 2 000000110B 0000600CH

CR3-target value 31 000000111B 0000600EH

NOTES:
1. If a future implementation supports more than 4 CR3-target values, they will be encoded consecutively following the 4 encodings 

given here.

Table B-13.  Encodings for Natural-Width Read-Only Data Fields (0110_01xx_xxxx_xxx0B)
Field Name Index Encoding

Exit qualification 000000000B 00006400H

I/O RCX 000000001B 00006402H

I/O RSI 000000010B 00006404H

I/O RDI 000000011B 00006406H

I/O RIP 000000100B 00006408H

Guest-linear address 000000101B 0000640AH

Table B-14.  Encodings for Natural-Width Guest-State Fields (0110_10xx_xxxx_xxx0B) 
Field Name Index Encoding

Guest CR0 000000000B 00006800H

Guest CR3 000000001B 00006802H

Guest CR4 000000010B 00006804H

Guest ES base 000000011B 00006806H

Guest CS base 000000100B 00006808H

Guest SS base 000000101B 0000680AH

Guest DS base 000000110B 0000680CH

Guest FS base 000000111B 0000680EH

Guest GS base 000001000B 00006810H

Guest LDTR base 000001001B 00006812H

Guest TR base 000001010B 00006814H

Guest GDTR base 000001011B 00006816H

Table B-12.  Encodings for Natural-Width Control Fields (0110_00xx_xxxx_xxx0B) (Contd.)
Field Name Index Encoding
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The base-address fields for ES, CS, SS, and DS in the guest-state area are defined to be natural-width (with 64 bits 
on processors supporting Intel 64 architecture) even though these fields are only 32-bits wide in the Intel 64 archi-
tecture. VM entry ensures that the high 32 bits of these fields are cleared to 0.

B.4.4  Natural-Width Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. These fields are distinguished by 
their index value in bits 9:1. Table B-15 enumerates the natural-width host-state fields.

Guest IDTR base 000001100B 00006818H

Guest DR7 000001101B 0000681AH

Guest RSP 000001110B 0000681CH

Guest RIP 000001111B 0000681EH

Guest RFLAGS 000010000B 00006820H

Guest pending debug exceptions 000010001B 00006822H

Guest IA32_SYSENTER_ESP 000010010B 00006824H

Guest IA32_SYSENTER_EIP 000010011B 00006826H

Guest IA32_S_CET1 000010100B 00006828H

Guest SSP1 000010101B 0000682AH

Guest IA32_INTERRUPT_SSP_TABLE_ADDR1 000010110B 0000682CH

NOTES:
1. This field is supported only on processors that support the 1-setting of the “load CET state” VM-entry control.

Table B-15.  Encodings for Natural-Width Host-State Fields (0110_11xx_xxxx_xxx0B) 
Field Name Index Encoding

Host CR0 000000000B 00006C00H

Host CR3 000000001B 00006C02H

Host CR4 000000010B 00006C04H

Host FS base 000000011B 00006C06H

Host GS base 000000100B 00006C08H

Host TR base 000000101B 00006C0AH

Host GDTR base 000000110B 00006C0CH

Host IDTR base 000000111B 00006C0EH

Host IA32_SYSENTER_ESP 000001000B 00006C10H

Host IA32_SYSENTER_EIP 000001001B 00006C12H

Host RSP 000001010B 00006C14H

Host RIP 000001011B 00006C16H

Host IA32_S_CET1

NOTES:
1. This field is supported only on processors that support the 1-setting of the “load CET state” VM-exit control.

000001100B 00006C18H

Host SSP1 000001101B 00006C1AH

Host IA32_INTERRUPT_SSP_TABLE_ADDR1 000001110B 00006C1CH

Table B-14.  Encodings for Natural-Width Guest-State Fields (0110_10xx_xxxx_xxx0B)  (Contd.)
Field Name Index Encoding
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APPENDIX C
VMX BASIC EXIT REASONS

Every VM exit writes a 32-bit exit reason to the VMCS (see Section 26.9.1). Certain VM-entry failures also do this 
(see Section 28.8). The low 16 bits of the exit-reason field form the basic exit reason which provides basic informa-
tion about the cause of the VM exit or VM-entry failure.

Table C-1 lists values for basic exit reasons and explains their meaning. Entries apply to VM exits, unless otherwise 
noted.

Table C-1.  Basic Exit Reasons 
Basic Exit 
Reason Description

0 Exception or non-maskable interrupt (NMI). Either:

1: Guest software caused an exception and the bit in the exception bitmap associated with exception’s vector was 
1. This case includes executions of BOUND that cause #BR, executions of INT1 (they cause #DB), executions of 
INT3 (they cause #BP), executions of INTO that cause #OF, and executions of UD0, UD1, and UD2 (they cause 
#UD).

2: An NMI was delivered to the logical processor and the “NMI exiting” VM-execution control was 1.

1 External interrupt. An external interrupt arrived and the “external-interrupt exiting” VM-execution control was 1.

2 Triple fault. The logical processor encountered an exception while attempting to call the double-fault handler and 
that exception did not itself cause a VM exit due to the exception bitmap.

3 INIT signal. An INIT signal arrived

4 Start-up IPI (SIPI). A SIPI arrived while the logical processor was in the “wait-for-SIPI” state.

5 I/O system-management interrupt (SMI). An SMI arrived immediately after retirement of an I/O instruction and 
caused an SMM VM exit (see Section 33.15.2).

6 Other SMI. An SMI arrived and caused an SMM VM exit (see Section 33.15.2) but not immediately after retirement of 
an I/O instruction.

7 Interrupt window. At the beginning of an instruction, RFLAGS.IF was 1; events were not blocked by STI or by MOV 
SS; and the “interrupt-window exiting” VM-execution control was 1.

8 NMI window. At the beginning of an instruction, there was no virtual-NMI blocking; events were not blocked by MOV 
SS; and the “NMI-window exiting” VM-execution control was 1.

9 Task switch. Guest software attempted a task switch.

10 CPUID. Guest software attempted to execute CPUID.

11 GETSEC. Guest software attempted to execute GETSEC.

12 HLT. Guest software attempted to execute HLT and the “HLT exiting” VM-execution control was 1.

13 INVD. Guest software attempted to execute INVD.

14 INVLPG. Guest software attempted to execute INVLPG and the “INVLPG exiting” VM-execution control was 1.

15 RDPMC. Guest software attempted to execute RDPMC and the “RDPMC exiting” VM-execution control was 1.

16 RDTSC. Guest software attempted to execute RDTSC and the “RDTSC exiting” VM-execution control was 1.

17 RSM. Guest software attempted to execute RSM in SMM.

18 VMCALL. VMCALL was executed either by guest software (causing an ordinary VM exit) or by the executive monitor 
(causing an SMM VM exit; see Section 33.15.2).

19 VMCLEAR. Guest software attempted to execute VMCLEAR.

20 VMLAUNCH. Guest software attempted to execute VMLAUNCH.

21 VMPTRLD. Guest software attempted to execute VMPTRLD.

22 VMPTRST. Guest software attempted to execute VMPTRST.
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23 VMREAD. Guest software attempted to execute VMREAD.

24 VMRESUME. Guest software attempted to execute VMRESUME.

25 VMWRITE. Guest software attempted to execute VMWRITE.

26 VMXOFF. Guest software attempted to execute VMXOFF.

27 VMXON. Guest software attempted to execute VMXON.

28 Control-register accesses. Guest software attempted to access CR0, CR3, CR4, or CR8 using CLTS, LMSW, or 
MOV CR and the VM-execution control fields indicate that a VM exit should occur (see Section 27.1 for details). This 
basic exit reason is not used for trap-like VM exits following executions of the MOV to CR8 instruction when the “use 
TPR shadow” VM-execution control is 1. Such VM exits instead use basic exit reason 43.

29 MOV DR. Guest software attempted a MOV to or from a debug register and the “MOV-DR exiting” VM-execution 
control was 1.

30 I/O instruction. Guest software attempted to execute an I/O instruction and either:

1: The “use I/O bitmaps” VM-execution control was 0 and the “unconditional I/O exiting” VM-execution control was 1.
2: The “use I/O bitmaps” VM-execution control was 1 and a bit in the I/O bitmap associated with one of the ports 

accessed by the I/O instruction was 1.

31 RDMSR. Guest software attempted to execute RDMSR and one of the following holds:

• The “use MSR bitmaps” VM-execution control was 0.
• The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
• The value of RCX is in the range 00000000H – 00001FFFH and the nth bit in read bitmap for low MSRs is 1, 

where n is the value of RCX.
• The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in read bitmap for high MSRs is 1, 

where n is the value of RCX & 00001FFFH.

32 WRMSR or WRMSRNS. Guest software attempted to execute either WRMSR or WRMSRNS and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
3: The value of RCX is in the range 00000000H – 00001FFFH and the nth bit in write bitmap for low MSRs is 1, 

where n is the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in write bitmap for high MSRs is 1, 

where n is the value of RCX & 00001FFFH.

33 VM-entry failure due to invalid guest state. A VM entry failed one of the checks identified in Section 28.3.1.

34 VM-entry failure due to MSR loading. A VM entry failed in an attempt to load MSRs. See Section 28.4.

36 MWAIT. Guest software attempted to execute MWAIT and the “MWAIT exiting” VM-execution control was 1.

37 Monitor trap flag. A VM exit occurred due to the 1-setting of the “monitor trap flag” VM-execution control (see 
Section 27.5.2) or VM entry injected a pending MTF VM exit as part of VM entry (see Section 28.6.2).

39 MONITOR. Guest software attempted to execute MONITOR and the “MONITOR exiting” VM-execution control was 1.

40 PAUSE. Either guest software attempted to execute PAUSE and the “PAUSE exiting” VM-execution control was 1 or 
the “PAUSE-loop exiting” VM-execution control was 1 and guest software executed a PAUSE loop with execution 
time exceeding PLE_Window (see Section 27.1.3).

41 VM-entry failure due to machine-check event. A machine-check event occurred during VM entry (see Section 
28.9).

43 TPR below threshold. The logical processor determined that the value of bits 7:4 of the byte at offset 080H on the 
virtual-APIC page was below that of the TPR threshold VM-execution control field while the “use TPR shadow” VM-
execution control was 1 either as part of TPR virtualization (Section 31.1.2) or VM entry (Section 28.7.7).

44 APIC access. Guest software attempted to access memory at a physical address on the APIC-access page and the 
“virtualize APIC accesses” VM-execution control was 1 (see Section 31.4).

45 Virtualized EOI. EOI virtualization was performed for a virtual interrupt whose vector indexed a bit set in the EOI-
exit bitmap.

Table C-1.  Basic Exit Reasons  (Contd.)
Basic Exit 
Reason Description
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46 Access to GDTR or IDTR. Guest software attempted to execute LGDT, LIDT, SGDT, or SIDT and the “descriptor-table 
exiting” VM-execution control was 1.

47 Access to LDTR or TR. Guest software attempted to execute LLDT, LTR, SLDT, or STR and the “descriptor-table 
exiting” VM-execution control was 1.

48 EPT violation. An attempt to access memory with a guest-physical address was disallowed by the configuration of 
the EPT paging structures.

49 EPT misconfiguration. An attempt to access memory with a guest-physical address encountered a misconfigured 
EPT paging-structure entry.

50 INVEPT. Guest software attempted to execute INVEPT.

51 RDTSCP. Guest software attempted to execute RDTSCP and the “enable RDTSCP” and “RDTSC exiting” VM-execution 
controls were both 1.

52 VMX-preemption timer expired. The preemption timer counted down to zero.

53 INVVPID. Guest software attempted to execute INVVPID.

54 WBINVD or WBNOINVD. Guest software attempted to execute WBINVD or WBNOINVD and the “WBINVD exiting” 
VM-execution control was 1.

55 XSETBV. Guest software attempted to execute XSETBV.

56 APIC write. Guest software completed a write to the virtual-APIC page that must be virtualized by VMM software 
(see Section 31.4.3.3).

57 RDRAND. Guest software attempted to execute RDRAND and the “RDRAND exiting” VM-execution control was 1.

58 INVPCID. Guest software attempted to execute INVPCID and the “enable INVPCID” and “INVLPG exiting” 
VM-execution controls were both 1.

59 VMFUNC. Guest software invoked a VM function with the VMFUNC instruction and the VM function either was not 
enabled or generated a function-specific condition causing a VM exit.

60 ENCLS. Guest software attempted to execute ENCLS, “enable ENCLS exiting” VM-execution control was 1, and either 
(1) EAX < 63 and the corresponding bit in the ENCLS-exiting bitmap is 1; or (2) EAX ? 63 and bit 63 in the ENCLS-
exiting bitmap is 1.

61 RDSEED. Guest software attempted to execute RDSEED and the “RDSEED exiting” VM-execution control was 1.

62 Page-modification log full. The processor attempted to create a page-modification log entry and the value of the 
PML index was not in the range 0–511.

63 XSAVES. Guest software attempted to execute XSAVES, the “enable XSAVES/XRSTORS” was 1, and a bit was set in 
the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-exiting bitmap.

64 XRSTORS. Guest software attempted to execute XRSTORS, the “enable XSAVES/XRSTORS” was 1, and a bit was set 
in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-exiting bitmap.

65 PCONFIG. Guest software attempted to execute PCONFIG, “enable PCONFIG” VM-execution control was 1, and either 
(1) EAX < 63 and the corresponding bit in the PCONFIG-exiting bitmap is 1; or (2) EAX ? 63 and bit 63 in the 
PCONFIG-exiting bitmap is 1.

66 SPP-related event. The processor attempted to determine an access’s sub-page write permission and encountered 
an SPP miss or an SPP misconfiguration. See Section 30.3.4.2.

67 UMWAIT. Guest software attempted to execute UMWAIT and the “enable user wait and pause” and “RDTSC exiting” 
VM-execution controls were both 1.

68 TPAUSE. Guest software attempted to execute TPAUSE and the “enable user wait and pause” and “RDTSC exiting” 
VM-execution controls were both 1.

69 LOADIWKEY. Guest software attempted to execute LOADIWKEY and the “LOADIWKEY exiting” VM-execution control 
was 1.

Table C-1.  Basic Exit Reasons  (Contd.)
Basic Exit 
Reason Description
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70 ENCLV. Guest software attempted to execute ENCLV, the “enable ENCLV exiting” VM-execution control was 1, and 
either (1) EAX < 63 and the corresponding bit in the ENCLV-exiting bitmap is 1; or (2) EAX ? 63 and bit 63 in the 
ENCLV-exiting bitmap is 1.

72 ENQCMD PASID translation failure. A VM exit occurred during PASID translation because the present bit was clear 
in a PASID-directory entry, the valid bit was clear in a PASID-table entry, or one of the entries set a reserved bit.

73 ENQCMDS PASID translation failure. A VM exit occurred during PASID translation because the present bit was clear 
in a PASID-directory entry, the valid bit was clear in a PASID-table entry, or one of the entries set a reserved bit.

74 Bus lock. The processor asserted a bus lock while the “bus-lock detection” VM-execution control was 1. (Such 
VM exits will also set bit 26 of the exit-reason field.)

75 Instruction timeout. The “instruction timeout” VM-execution control was 1 and certain operations prevented the 
processor from reaching an instruction boundary within the amount of time specified by the instruction-timeout 
control.

76 SEAMCALL. Guest software attempted to execute SEAMCALL.1

77 TDCALL. Guest software attempted to execute TDCALL.1

78 RDMSRLIST. Guest software attempted to execute RDMSRLIST and either the “use MSR bitmaps” VM-execution 
control was 0 or any of the following holds for the index an MSR being accessed:

• The index is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
• The index is in the range 00000000H – 00001FFFH and the nth bit in read bitmap for low MSRs is 1, where n is 

the index.
• The index is in the range C0000000H – C0001FFFH and the nth bit in read bitmap for high MSRs is 1, where n is 

the logical AND of the index and the value 00001FFFH.

79 WRMSRLIST. Guest software attempted to execute WRMSRLIST and either the “use MSR bitmaps” VM-execution 
control was 0 or any of the following holds for the index an MSR being accessed:

• The index is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
• The index is in the range 00000000H – 00001FFFH and the nth bit in write bitmap for low MSRs is 1, where n is 

the index.
• The index is in the range C0000000H – C0001FFFH and the nth bit in write bitmap for high MSRs is 1, where n is 

the logical AND of the index and the value 00001FFFH.

NOTES:
1. For more information on the SEAMCALL and TDCALL instructions, refer to the “Intel® Trust Domain CPU Architectural Extensions 

Specification,” available here: https://cdrdv2.intel.com/v1/dl/getContent/733582.

Table C-1.  Basic Exit Reasons  (Contd.)
Basic Exit 
Reason Description
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CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers (order 
number 335592) is part of a set that describes the architecture and programming environment of Intel® 64 and IA-
32 architecture processors. Other volumes in this set are:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number 

253665).
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D: Instruction Set 

Reference (order numbers 253666, 253667, 326018, and 334569).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C, & 3D: System 

Programming Guide (order numbers 253668, 253669, 326019, and 332831).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture 
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C, & 3D, describe 
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B, and the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, address the 
programming environment for classes of software that host operating systems. The Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 4, describes the model-specific registers of Intel 64 and IA-32 proces-
sors.

1.1 OVERVIEW OF THE MODEL-SPECIFIC REGISTERS 
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all volumes of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, with chapter-specific details for the current volume. 

Chapter 2 — Model-Specific Registers (MSRs). Lists the MSRs available in Intel processors, and describes their 
functions.
Vol. 4 1-1



ABOUT THIS MANUAL
1-2 Vol. 4



CHAPTER 2
MODEL-SPECIFIC REGISTERS (MSRS)

This chapter lists MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written with 
the WRMSR instructions. The scope of an MSR defines the set of processors that access the same MSR with RDMSR 
and WRMSR. Thread-scope MSRs are unique to every logical processor. Core-scope MSRs are shared by the threads 
in the same core; similarly for module-scope, die-scope, and package-scope.

When a processor package contains a single die, die-scope and package-scope are synonymous. When a package 
contains multiple die, they are distinct. 

NOTE
For information on hierarchical level types supported, refer to the CPUID Leaf 1FH definition for the 
actual level type numbers: “V2 Extended Topology Enumeration Leaf” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A. Also see Section 10.9.1, “Hierarchical 
Mapping of Shared Resources,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name 
and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To distin-
guish between different processor family and/or models, software must use CPUID.01H leaf function to query the 
combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see CPUID 
instruction in Chapter 3, “Instruction Set Reference, A-L,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A). Table 2-1 lists the signature values of DisplayFamily and DisplayModel for various 
processor families or processor number series.

Table 2-1.  CPUID Signature Values of DisplayFamily_DisplayModel 
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_BDH Intel® Series 2 Core™ Ultra processors supporting Lunar Lake performance hybrid architecture

06_ADH, 06_AEH Intel® Xeon® 6 P-core processors based on Granite Rapids microarchitecture

06_AFH Intel® Xeon® 6 E-core processors based on Sierra Forest microarchitecture

06_AAH Intel® Core™ Ultra 7 processors supporting Meteor Lake performance hybrid architecture

06_CFH 5th generation Intel® Xeon® Scalable Processor Family based on Emerald Rapids microarchitecture

06_8FH 4th generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture

06_BAH, 06_B7H, 06_BFH 13th generation Intel® Core™ processors supporting Raptor Lake performance hybrid architecture

06_97H, 06_9AH 12th generation Intel® Core™ processors supporting Alder Lake performance hybrid architecture

06_8CH, 06_8DH 11th generation Intel® Core™ processors based on Tiger Lake microarchitecture

06_A7H 11th generation Intel® Core™ processors based on Rocket Lake microarchitecture

06_7DH, 06_7EH 10th generation Intel® Core™ processors based on Ice Lake microarchitecture

06_A5H, 06_A6H 10th generation Intel® Core™ processors based on Comet Lake microarchitecture

06_66H Intel® Core™ processors based on Cannon Lake microarchitecture

06_8EH, 06_9EH 7th generation Intel® Core™ processors based on Kaby Lake microarchitecture, 8th and 9th generation 
Intel® Core™ processors based on Coffee Lake microarchitecture, Intel® Xeon® E processors based on 
Coffee Lake microarchitecture

06_6AH, 06_6CH 3rd generation Intel® Xeon® Scalable Processor Family based on Ice Lake microarchitecture
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06_55H Intel® Xeon® Scalable Processor Family based on Skylake microarchitecture, 2nd generation Intel® 
Xeon® Scalable Processor Family based on Cascade Lake product, and 3rd generation Intel® Xeon® 
Scalable Processor Family based on Cooper Lake product

06_4EH, 06_5EH 6th generation Intel Core processors and Intel Xeon processor E3-1500m v5 product family and E3-
1200 v5 product family based on Skylake microarchitecture

06_85H Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series based on Knights Mill microarchitecture

06_57H Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series based on Knights Landing microarchitecture

06_56H Intel Xeon processor D-1500 product family based on Broadwell microarchitecture

06_4FH Intel Xeon processor E5 v4 Family based on Broadwell microarchitecture, Intel Xeon processor E7 v4 
Family, Intel Core i7-69xx Processor Extreme Edition

06_47H 5th generation Intel Core processors, Intel Xeon processor E3-1200 v4 product family based on 
Broadwell microarchitecture

06_3DH Intel Core M-5xxx Processor, 5th generation Intel Core processors based on Broadwell 
microarchitecture

06_3FH Intel Xeon processor E5-4600/2600/1600 v3 product families, Intel Xeon processor E7 v3 product 
families based on Haswell-E microarchitecture, Intel Core i7-59xx Processor Extreme Edition

06_3CH, 06_45H, 06_46H 4th Generation Intel Core processor and Intel Xeon processor E3-1200 v3 product family based on 
Haswell microarchitecture

06_3EH Intel Xeon processor E7-8800/4800/2800 v2 product families based on Ivy Bridge-E 
microarchitecture

06_3EH Intel Xeon processor E5-2600/1600 v2 product families and Intel Xeon processor E5-2400 v2 
product family based on Ivy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition

06_3AH 3rd Generation Intel Core Processor and Intel Xeon processor E3-1200 v2 product family based on Ivy 
Bridge microarchitecture

06_2DH Intel Xeon processor E5 Family based on Sandy Bridge microarchitecture, Intel Core i7-39xx 
Processor Extreme Edition

06_2FH Intel Xeon Processor E7 Family

06_2AH Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx 
Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5, and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series

06_1DH Intel Xeon processor MP 7400 series

06_17H Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000 
series

06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series, 
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel 
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_86H, 06_96H, 06_9CH Intel Atom® processors, Intel® Celeron® processors, Intel® Pentium® processors, and Intel® Pentium® 
Silver processors based on Tremont Microarchitecture

06_7AH Intel Atom processors based on Goldmont Plus microarchitecture

06_5FH Intel Atom processors based on Goldmont microarchitecture (Denverton)

06_5CH Intel Atom processors based on Goldmont microarchitecture

Table 2-1.  CPUID Signature Values of DisplayFamily_DisplayModel  (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series
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2.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next and to Intel 64 processors. A 
subset of MSRs and associated bit fields, which do not change on future processor generations, are now considered 
architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these “architectural MSRs” 
were given the prefix “IA32_”. Table 2-2 lists the architectural MSRs, their addresses, their current names, their 
names in previous IA-32 processors, and bit fields that are considered architectural. MSR addresses outside Table 
2-2 and certain bit fields in an MSR address that may overlap with architectural MSR addresses are model-specific. 
Code that accesses a model-specific MSR and that is executed on a processor that does not support that MSR will 
generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granu-
larity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of 
Table 2-2 provides information on the introduction of each architectural MSR or its individual fields. This informa-
tion is expressed either as signature values of “DF_DM” (see Table 2-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed 
as “MAXPHYADDR” in Table 2-2. “MAXPHYADDR” is reported by CPUID.8000_0008H leaf.

MSR address range between 40000000H - 4000FFFFH is marked as a specially reserved range. All existing and 
future processors will not implement any features using any MSR in this range.

06_4CH Intel Atom processor X7-Z8000 and X5-Z8000 series based on Airmont microarchitecture

06_5DH Intel Atom processor X3-C3000 based on Silvermont microarchitecture

06_5AH Intel Atom processor Z3500 series

06_4AH Intel Atom processor Z3400 series

06_37H Intel Atom processor E3000 series, Z3600 series, Z3700 series

06_4DH Intel Atom processor C2000 series

06_36H Intel Atom processor S1000 Series

06_1CH, 06_26H, 06_27H, 
06_35H, 06_36H

Intel Atom processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D 
processors

0F_03H, 0F_04H Intel Xeon processor, Intel Xeon processor MP, Intel Pentium 4, Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH, 
06_0BH

Intel Pentium III Xeon processor, Intel Pentium III processor

06_03H, 06_05H Intel Pentium II Xeon processor, Intel Pentium II processor 

06_01H Intel Pentium Pro processor 

05_01H, 05_02H, 05_04H Intel Pentium processor, Intel Pentium processor with MMX Technology

The Intel® Quark™ SoC X1000 processor can be identified by the signature of DisplayFamily_DisplayModel = 05_09H and 
SteppingID = 0

Table 2-1.  CPUID Signature Values of DisplayFamily_DisplayModel  (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series
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Table 2-2.  IA-32 Architectural MSRs

Register Address: Hex, Decimal Architectural MSR Name (Former MSR Name)

Bit Fields MSR/Bit Description Comment

Register Address: 0H, 0  IA32_P5_MC_ADDR (P5_MC_ADDR)

See Section 2.23, “MSRs in Pentium Processors.” Pentium Processor (05_01H)

Register Address: 1H, 1 IA32_P5_MC_TYPE (P5_MC_TYPE)

See Section 2.23, “MSRs in Pentium Processors.” DF_DM = 05_01H

Register Address: 6H, 6 IA32_MONITOR_FILTER_SIZE

See Section 10.10.5, “Monitor/Mwait Address Range Determination.” 0F_03H

Register Address: 10H, 16 IA32_TIME_STAMP_COUNTER (TSC)

See Section 19.17, “Time-Stamp Counter.” 05_01H

Register Address: 17H, 23 IA32_PLATFORM_ID (MSR_PLATFORM_ID)

Platform ID (R/O) 
The operating system can use this MSR to determine “slot” information for the processor and the 
proper microcode update to load.

06_01H

49:0 Reserved.

52:50 Platform ID (R/O) 

Contains information concerning the intended platform for the 
processor. 

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4 
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

Register Address: 1BH, 27 IA32_APIC_BASE (APIC_BASE)

This register holds the APIC base address, permitting the relocation of the APIC memory map. See 
Section 12.4.4, “Local APIC Status and Location,” and Section 12.4.5, “Relocating the Local APIC 
Registers.”

06_01H

7:0 Reserved.

8 BSP Flag (R/W)

9 Reserved.

10 Enable x2APIC mode. 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYADDR -1):12 APIC Base (R/W)

63: MAXPHYADDR Reserved.

Register Address: 2FH, 47 IA32_BARRIER

IA32_BARRIER (R/O)

The IA32_BARRIER MSR ensures ordered execution by acting like LFENCE, controlling the 
sequencing of subsequent MSR reads after prior MSR reads and instructions.

CPUID.07H.01H:EAX[27]=1
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31:0 DATA

Reserved. Always 0.

63:32 Reserved.

Register Address: 3AH, 58 IA32_FEATURE_CONTROL

Control Features in Intel 64 Processor (R/W) If any one enumeration condition 
for defined bit field holds.

0 Lock bit (R/WO): (1 = locked). 

When set, locks this MSR from being written; writes to this bit will result 
in GP(0).

Note: Once the Lock bit is set, the contents of this register cannot be 
modified. Therefore the lock bit must be set after configuring support for 
Intel Virtualization Technology and prior to transferring control to an 
option ROM or the OS. Hence, once the Lock bit is set, the entire 
IA32_FEATURE_CONTROL contents are preserved across RESET when 
PWRGOOD is not deasserted.

If any one enumeration condition 
for defined bit field position 
greater than bit 0 holds.

1 Enable VMX inside SMX operation (R/WL) This bit enables a system 
executive to use VMX in conjunction with SMX to support Intel® Trusted 
Execution Technology.

BIOS must set this bit only when the CPUID function 1 returns VMX 
feature flag and SMX feature flag set (ECX bits 5 and 6 respectively).

If CPUID.01H:ECX[5] = 1 && 
CPUID.01H:ECX[6] = 1

2 Enable VMX outside SMX operation (R/WL) This bit enables VMX for a 
system executive that does not require SMX.

BIOS must set this bit only when the CPUID function 1 returns the VMX 
feature flag set (ECX bit 5).

If CPUID.01H:ECX[5] = 1 

7:3 Reserved.

14:8 SENTER Local Function Enables (R/WL) When set, each bit in the field 
represents an enable control for a corresponding SENTER function. This 
field is supported only if CPUID.1:ECX.[bit 6] is set.

If CPUID.01H:ECX[6] = 1

15 SENTER Global Enable (R/WL)

This bit must be set to enable SENTER leaf functions. This bit is 
supported only if CPUID.1:ECX.[bit 6] is set.

If CPUID.01H:ECX[6] = 1

16 Reserved.

17 SGX Launch Control Enable (R/WL)

This bit must be set to enable runtime re-configuration of SGX Launch 
Control via the IA32_SGXLEPUBKEYHASHn MSR. 

If CPUID.(EAX=07H, ECX=0H): 
ECX[30] = 1

18 SGX Global Enable (R/WL)

This bit must be set to enable SGX leaf functions. 

If CPUID.(EAX=07H, ECX=0H): 
EBX[2] = 1

19 Reserved.

20 LMCE On (R/WL)

When set, system software can program the MSRs associated with LMCE 
to configure delivery of some machine check exceptions to a single 
logical processor. 

If IA32_MCG_CAP[27] = 1

63:21 Reserved.

Register Address: 3BH, 59 IA32_TSC_ADJUST

Table 2-2.  IA-32 Architectural MSRs (Contd.)

Register Address: Hex, Decimal Architectural MSR Name (Former MSR Name)

Bit Fields MSR/Bit Description Comment
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Per Logical Processor TSC Adjust (R/Write to clear) If CPUID.(EAX=07H, ECX=0H): 
EBX[1] = 1

63:0 THREAD_ADJUST 

Local offset value of the IA32_TSC for a logical processor. Reset value is 
zero. A write to IA32_TSC will modify the local offset in 
IA32_TSC_ADJUST and the content of IA32_TSC, but does not affect the 
internal invariant TSC hardware. 

Register Address: 48H, 72 IA32_SPEC_CTRL

Speculation Control (R/W)

The MSR bits are defined as logical processor scope. On some core implementations, the bits may 
impact sibling logical processors on the same core.

This MSR has a value of 0 after reset and is unaffected by INIT# or SIPI#.

If any one of the enumeration 
conditions for defined bit field 
positions holds.

0 Indirect Branch Restricted Speculation (IBRS). Restricts speculation of 
indirect branch.

If CPUID.(EAX=07H, 
ECX=0):EDX[26]=1

1 Single Thread Indirect Branch Predictors (STIBP). Prevents indirect 
branch predictions on all logical processors on the core from being 
controlled by any sibling logical processor in the same core.

If CPUID.(EAX=07H, 
ECX=0):EDX[27]=1

2 Speculative Store Bypass Disable (SSBD) delays speculative execution of 
a load until the addresses for all older stores are known.

If CPUID.(EAX=07H, 
ECX=0):EDX[31]=1

3 IPRED_DIS_U

If 1, enables IPRED_DIS control for CPL3.

If CPUID.(EAX=07H, 
ECX=2):EDX[1]=1

4 IPRED_DIS_S

If 1, enables IPRED_DIS control for CPL0/1/2.

If CPUID.(EAX=07H, 
ECX=2):EDX[1]=1

5 RRSBA_DIS_U

If 1, disables RRSBA behavior for CPL3. 

If CPUID.(EAX=07H, 
ECX=2):EDX[2]=1

6 RRSBA_DIS_S

If 1, disables RRSBA behavior for CPL0/1/2.

If CPUID.(EAX=07H, 
ECX=2):EDX[2]=1

7 PSFD

If 1, disables Fast Store Forwarding Predictor. Note that setting bit 2 
(SSBD) also disables this.

If CPUID.(EAX=07H, 
ECX=2):EDX[0]=1

8 DDPD_U

If 1, disables the Data Dependent Prefetcher that examines data values 
in memory while CPL = 3. Note that setting bit 2 (SSBD) also disables 
this.

If CPUID.(EAX=07H, 
ECX=2):EDX[3]=1

9 Reserved.

10 BHI_DIS_S

When ‘1, enables BHI_DIS_S behavior.

If CPUID.(EAX=07H, 
ECX=2):EDX[4]=1

63:11 Reserved.

Register Address: 49H, 73 IA32_PRED_CMD

Prediction Command (WO)

Gives software a way to issue commands that affect the state of predictors.

If any one of the enumeration 
conditions for defined bit field 
positions holds.

Table 2-2.  IA-32 Architectural MSRs (Contd.)

Register Address: Hex, Decimal Architectural MSR Name (Former MSR Name)

Bit Fields MSR/Bit Description Comment
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0 Indirect Branch Prediction Barrier (IBPB) If CPUID.(EAX=07H, 
ECX=0):EDX[26]=1

63:1 Reserved.

Register Address: 4EH, 78 IA32_PPIN_CTL

Protected Processor Inventory Number Enable Control (R/W) If CPUID.(EAX=07H, 
ECX=01H):EBX[0]=11

0 LockOut (R/WO)

If 0, indicates that further writes to IA32_PPIN_CTL is allowed.

If 1, indicates that further writes to IA32_PPIN_CTL is disallowed. 
Writing 1 to this bit is only permitted if the Enable_PPIN bit is clear.

The Privileged System Software Inventory Agent should read 
IA32_PPIN_CTL[bit 1] to determine if IA32_PPIN is accessible.

The Privileged System Software Inventory Agent is not expected to 
write to this MSR.

1 Enable_PPIN (R/W)

If 1, indicates that IA32_PPIN is accessible using RDMSR.

If 0, indicates that IA32_PPIN is inaccessible using RDMSR. Any attempt 
to read IA32_PPIN will cause #GP.

63:2 Reserved.

Register Address: 4FH, 79 IA32_PPIN

Protected Processor Inventory Number (R/O) If CPUID.(EAX=07H, 
ECX=01H):EBX[0]=11

63:0 Protected Processor Inventory Number (R/O)

A unique value within a given CPUID family/model/stepping signature 
that a privileged inventory initialization agent can access to identify each 
physical processor, when access to IA32_PPIN is enabled. Access to 
IA32_PPIN is permitted only if IA32_PPIN_CTL[bits 1:0] = ‘10b’.

Register Address: 79H, 121 IA32_BIOS_UPDT_TRIG (BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR instruction to this MSR causes a microcode update to be loaded into the 
processor. See Section 11.11.6, “Microcode Update Loader.”

A processor may prevent writing to this MSR when loading guest states on VM entries or saving 
guest states on VM exits.

06_01H

Register Address: 7AH, 122 IA32_FEATURE_ACTIVATION

Feature Activation (R/W)

Implements Feature Activation command. WRMSR to this address activates all 'activatable' 
features on this thread.

0 SE

Secure Enclaves feature activation.

1 KL

Keylocker feature activation.

63:2 Reserved.

Register Address: 7BH, 123 IA32_MCU_ENUMERATION

Table 2-2.  IA-32 Architectural MSRs (Contd.)

Register Address: Hex, Decimal Architectural MSR Name (Former MSR Name)

Bit Fields MSR/Bit Description Comment
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IA32_MCU_ENUMERATION (R/O)

Enumeration of architectural features.

0 UNIFORM_MCU_AVAIL

When set to 1, uniform microcode update is available, and 
UNIFORM_MCU_SCOPE (bits [10:8]) indicates the scope of writes to 
IA32_BIOS_UPDT_TRIG. 

When set to 0, uniform microcode update is not available, and writes to 
IA32_BIOS_UPDT_TRIG are core scoped. 

1 UNIFORM_MCU_CONFIG_REQD

When set to 1, indicates that configuration is required to ensure that all 
MCU components are updated on WRMSR 79H, and 
UNIFORM_MCU_CONFIG_COMPLETE (bit 2) should be checked to 
determine whether the necessary configuration has been completed. 

When set to 0, indicates that no configuration is required, and 
UNIFORM_MCU_CONFIG_COMPLETE should be ignored. 

2 UNIFORM_MCU_CONFIG_COMPLETE

If UNIFORM_MCU_CONFIG_REQD (bit 1) is 0, then this bit should be 
ignored. 

If UNIFORM_MCU_CONFIG_REQD is 1, then this bit indicates whether all 
necessary configurations have been completed to ensure that all MCU 
components will be updated on WRMSR 79H. 

3 ARCH_ROLLBACK_SVN_COMMIT

When set to 1, indicates support for the MCU deferred SVN architecture, 
SVN reporting architecture, and MCU rollback architecture.

4 MCU_STAGING

When set to 1, indicates that the microcode update staging capability is 
supported by the processor. When supported, the use of the MCU 
staging capability is recommended to reduce the latency of the 
IA32_BIOS_UPDT_TRIG operation.

7:5 Reserved for future use.

15:8 UNIFORM_MCU_SCOPE

Indicates the current* uniform microcode update scope: 

• 0x02: Core Scoped 
• 0x03: Module Scoped** 
• 0x04: Tile Scoped** 
• 0x05: Die Scoped** 
• 0x80: Package Scoped 
• 0xC0: Platform Scoped 
All others: Reserved for future use 

* The value of this field reflects the state of platform configuration and 
may change as the configuration changes during the boot process. Once 
configuration is complete, it is not expected to change during runtime. 

** If these domains are enumerated by CPUID.1F, then this field may also 
report them as appropriate.

63:16 Reserved for future use.

Register Address: 7CH, 124 IA32_MCU_STATUS

Table 2-2.  IA-32 Architectural MSRs (Contd.)

Register Address: Hex, Decimal Architectural MSR Name (Former MSR Name)

Bit Fields MSR/Bit Description Comment
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MCU Status (R/O)

Communicates results from the previous patch loads. 

0 MCU_PARTIAL_UPDATE

When set to 1, indicates that the most recent write to 
IA32_BIOS_UPDT_TRIG resulted in a partial update. This means that 
microcode update components were only partially updated after some 
portion of the MCU had already been committed and the Revision ID had 
been updated. 

1 AUTH_FAIL_ON_MCU_COMPONENT

When set to 1, indicates that an authentication failure occurred on some 
portion of the MCU after another portion of the MCU had already been 
committed and the Revision ID had already been updated on the most 
recent write to IA32_BIOS_UPDT_TRIG. 

2 Reserved for future use.

3 POST_BIOS_MCU 

When set to 1, indicates that an update was successfully loaded via 
IA32_BIOS_UPDT_TRIG after bit 0 of MSR_BIOS_DONE (address 151H) 
was set to 1. 

63:4 Reserved for future use.

Register Address: 82H, 130 IA32_FZM_RANGE_INDEX

IA32_FZM_RANGE_INDEX (R/W)

Index and Domain handle for a valid FZM region. Programmed by software and used by other FRM 
MSRs FZM Range Index register to R/W Domain Index. 

3:0 REGION_INDEX

Holds the Index of domain.

7:4 Reserved.

12:8 DOMAIN_HANDLE

Holds the Domain Handle.

63:13 Reserved.

Register Address: 83H, 131 IA32_FZM_DOMAIN_CONFIG

IA32_FZM_DOMAIN_CONFIG (R/O)

Bit mask of valid regions within the domain identified by FZM_RANGE_INDEX. 

63:0 REGION_BITMAP

Bitmap of valid regions for a given domain.

Register Address: 84H, 132 IA32_FZM_RANGE_STARTADDR

IA32_FZM_RANGE_STARTADDR (R/O)

Start address of the FZM range pointed to by FZM_RANGE_INDEX. 

51:0 START_ADDR

Start address of the specified domain in FZM_RANGE_INDEX.

63:52 Reserved.

Register Address: 85H, 133 IA32_FZM_RANGE_ENDADDR
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IA32_FZM_RANGE_ENDADDR (R/O)

End address of the specified domain in FZM_RANGE_INDEX. 

51:0 END_ADDR

End address of the specified domain in FZM_RANGE_INDEX.

63:52 Reserved.

Register Address: 86H, 134 IA32_FZM_RANGE_WRITESTATUS

IA32_FZM_RANGE_WRITESTATUS (R/O)

Write status of the FZM range pointed to by FZM_RANGE_INDEX. 

0 WRITE_STATUS

Write status of the specified domain in FZM_RANGE_INDEX.

1 READ_STATUS

Read status of the specified domain in FZM_RANGE_INDEX.

63:2 Reserved.

Register Address: 87H, 135 IA32_MKTME_KEYID_PARTITIONING

MKTME KEY ID Partitioning (R/O)

Enumerates the number of activated KeyIDs for Intel TME-MK and Intel TDX. 

31:0 NUM_MKTME_KIDS

Number of activated Intel TME-MK KeyIDs. This field is supported on all 
parts that enumerate support for Intel Total Memory Encryption - Multi-
Key (Intel TME-MK). If IA32_TME_ACTIVATE.LOCK is 1, this field reports 
MAX_ACTIVATE_MKTME_HKIDS (KMK-1) else report 0. Intel TME-MK 
KIDs will always span the KID range [1 ... NUM_MKTME_KIDS].

63:32 NUM_TDX_PRIV_KIDS

Number of activated TDX private KeyIDs. This field is supported on all 
parts that enumerate support for SEAM mode. If 
IA32_TME_ACTIVATE.LOCK is 1, This field reports 
MAX_ACTIVATE_TDX_HKIDS (KTD) else report 0. TDX private KIDs will 
always span the range [NUM_MKTME_KIDS+1... (NUM_MKTME_KIDS + 
NUM_TDX_PRIV_KIDS)].

Register Address: 8BH, 139 IA32_BIOS_SIGN_ID (BIOS_SIGN/BBL_CR_D3)

BIOS Update Signature (R/W)

Returns the microcode update signature following the execution of CPUID.01H.

A processor may prevent writing to this MSR when loading guest states on VM entries or saving 
guest states on VM exits.

06_01H

31:0 Reserved.

63:32 PATCH_SIGN_ID

It is recommended that this field be preloaded with zero prior to 
executing CPUID. If the field remains zero following the execution of 
CPUID, this indicates that no microcode update is loaded. Any non-zero 
value is the microcode update signature patch signature ID.

Register Address: 8CH, 140 IA32_SGXLEPUBKEYHASH0
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IA32_SGXLEPUBKEYHASH[63:0] (R/W)

Bits 63:0 of the SHA256 digest of the SIGSTRUCT.MODULUS for SGX Launch Enclave. On reset, 
the default value is the digest of Intel’s signing key.

Read permitted If 
CPUID.(EAX=12H,ECX=0H): 
EAX[0]=1 && CPUID.(EAX=07H, 
ECX=0H):ECX[30]=1.

Write permitted if 
CPUID.(EAX=12H,ECX=0H): 
EAX[0]=1 && 
IA32_FEATURE_CONTROL[17] = 1 
&& IA32_FEATURE_CONTROL[0] 
= 1.

Register Address: 8DH, 141 IA32_SGXLEPUBKEYHASH1

IA32_SGXLEPUBKEYHASH[127:64] (R/W)

Bits 127:64 of the SHA256 digest of the SIGSTRUCT.MODULUS for SGX Launch Enclave. On reset, 
the default value is the digest of Intel’s signing key.

Same comment in MSR listing for 
IA32_SGXLEPUBKEYHASH0 (MSR 
address 8CH, 140) applies here.

Register Address: 8EH, 142 IA32_SGXLEPUBKEYHASH2

IA32_SGXLEPUBKEYHASH[191:128] (R/W)

Bits 191:128 of the SHA256 digest of the SIGSTRUCT.MODULUS for SGX Launch Enclave. On 
reset, the default value is the digest of Intel’s signing key.

Same comment in MSR listing for 
IA32_SGXLEPUBKEYHASH0 (MSR 
address 8CH, 140) applies here.

Register Address: 8FH, 143 IA32_SGXLEPUBKEYHASH3

IA32_SGXLEPUBKEYHASH[255:192] (R/W)

Bits 255:192 of the SHA256 digest of the SIGSTRUCT.MODULUS for SGX Launch Enclave. On 
reset, the default value is the digest of Intel’s signing key.

Same comment in MSR listing for 
IA32_SGXLEPUBKEYHASH0 (MSR 
address 8CH, 140) applies here.

Register Address: 90H, 144 IA32_SGXLEPUBKEYHASH4

IA32_SGXLEPUBKEYHASH[319:256] (R/W)

Bits 319:256 of the SHA256 digest of the SIGSTRUCT.MODULUS for SGX Launch Enclave. On 
reset, the default value is the digest of Intel’s signing key.

Same comment in MSR listing for 
IA32_SGXLEPUBKEYHASH0 (MSR 
address 8CH, 140) applies here.

Register Address: 91H, 145 IA32_SGXLEPUBKEYHASH5

IA32_SGXLEPUBKEYHASH[383:320] (R/W)

Bits 383:320 of the SHA256 digest of the SIGSTRUCT.MODULUS for SGX Launch Enclave. On 
reset, the default value is the digest of Intel’s signing key.

Same comment in MSR listing for 
IA32_SGXLEPUBKEYHASH0 (MSR 
address 8CH, 140) applies here.

Register Address: 9BH, 155 IA32_SMM_MONITOR_CTL

SMM Monitor Configuration (R/W) If CPUID.01H: ECX[5]=1 || 
CPUID.01H: ECX[6] = 1

0 Valid (R/W)

1 Reserved.

2 Controls SMI unblocking by VMXOFF (see Section 33.14.4). If IA32_VMX_MISC[28]

11:3 Reserved.

31:12 MSEG Base (R/W)

63:32 Reserved.

Register Address: 9EH, 158 IA32_SMBASE

Base address of the logical processor’s SMRAM image (R/O, SMM only). If IA32_VMX_MISC[15]

Register Address: BCH, 188 IA32_MISC_PACKAGE_CTLS
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Power Filtering Control (R/W)

This MSR has a value of 0 after reset and is unaffected by INIT# or SIPI#.

If IA32_ARCH_CAPABILITIES
[10] = 1

0 ENERGY_FILTERING_ENABLE (R/W)

If set, RAPL MSRs report filtered processor power consumption data.

This bit can be changed from 0 to 1, but cannot be changed from 1 to 0. 
After setting, all attempts to clear it are ignored until the next processor 
reset.

If IA32_ARCH_CAPABILITIES
[11] = 1

63:1 Reserved.

Register Address: BDH, 189 IA32_XAPIC_DISABLE_STATUS

xAPIC Disable Status (R/O) If CPUID.(EAX-07H, 
ECX=0):EDX[29]=1 and 
IA32_ARCH_CAPABILITIES [21] = 
1

0 LEGACY_XAPIC_DISABLED

When set, indicates that the local APIC is in x2APIC mode 
(IA32_APIC_BASE.EXTD = 1) and that attempts to clear 
IA32_APIC_BASE.EXTD will fail (e.g., WRMSR will #GP). 

63:1 Reserved.

Register Address: C1H, 193 IA32_PMC0 (PERFCTR0)

General Performance Counter 0 (R/W) If CPUID.0AH: EAX[15:8] > 0

Register Address: C2H, 194 IA32_PMC1 (PERFCTR1)

General Performance Counter 1 (R/W) If CPUID.0AH: EAX[15:8] > 1

Register Address: C3H, 195 IA32_PMC2 

General Performance Counter 2 (R/W) If CPUID.0AH: EAX[15:8] > 2

Register Address: C4H, 196 IA32_PMC3 

General Performance Counter 3 (R/W) If CPUID.0AH: EAX[15:8] > 3

Register Address: C5H, 197 IA32_PMC4

General Performance Counter 4 (R/W) If CPUID.0AH: EAX[15:8] > 4

Register Address: C6H, 198 IA32_PMC5 

General Performance Counter 5 (R/W) If CPUID.0AH: EAX[15:8] > 5

Register Address: C7H, 199 IA32_PMC6

General Performance Counter 6 (R/W) If CPUID.0AH: EAX[15:8] > 6

Register Address: C8H, 200 IA32_PMC7

General Performance Counter 7 (R/W) If CPUID.0AH: EAX[15:8] > 7

Register Address: C9H, 201 IA32_PMC8

General Performance Counter 8 (R/W) If CPUID.0AH: EAX[15:8] > 8

Register Address: CAH, 202 IA32_PMC9

General Performance Counter 9 (R/W) If CPUID.0AH: EAX[15:8] > 9

Register Address: CFH, 207 IA32_CORE_CAPABILITIES
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IA32 Core Capabilities Register If CPUID.(EAX=07H, 
ECX=0):EDX[30] = 1 

63:0 Reserved. No architecturally defined bits.

Register Address: E1H, 225 IA32_UMWAIT_CONTROL

UMWAIT Control (R/W)

0 C0.2 is not allowed by the OS. Value of “1” means all C0.2 requests revert 
to C0.1.

1 Reserved.

31:2 Determines the maximum time in TSC-quanta that the processor can 
reside in either C0.1 or C0.2. A zero value indicates no maximum time. 
The maximum time value is a 32-bit value where the upper 30 bits come 
from this field and the lower two bits are zero.

Register Address: E7H, 231 IA32_MPERF

TSC Frequency Clock Counter (R/Write to clear) If CPUID.06H: ECX[0] = 1

63:0 C0_MCNT: C0 TSC Frequency Clock Count

Increments at fixed interval (relative to TSC freq.) when the logical 
processor is in C0. 

Cleared upon overflow / wrap-around of IA32_APERF. 

Register Address: E8H, 232 IA32_APERF

Actual Performance Clock Counter (R/Write to clear) If CPUID.06H: ECX[0] = 1

63:0 C0_ACNT: C0 Actual Frequency Clock Count

Accumulates core clock counts at the coordinated clock frequency, when 
the logical processor is in C0. 

Cleared upon overflow / wrap-around of IA32_MPERF.

Register Address: FEH, 254 IA32_MTRRCAP (MTRRcap)

MTRR Capability (R/O)

See Section 13.11.2.1, “IA32_MTRR_DEF_TYPE MSR.”

06_01H

7:0 VCNT: The number of variable memory type ranges in the processor.

8 Fixed range MTRRs are supported when set.

9 Reserved.

10 WC Supported when set.

11 SMRR Supported when set.

12 PRMRR supported when set.

63:13 Reserved.

Register Address: 10AH, 266 IA32_ARCH_CAPABILITIES

Enumeration of Architectural Features (R/O) If CPUID.(EAX=07H, 
ECX=0):EDX[29]=1

0 RDCL_NO: The processor is not susceptible to Rogue Data Cache Load 
(RDCL).

1 IBRS_ALL: The processor supports enhanced IBRS.
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2 RSBA: The processor supports RSB Alternate. Alternative branch 
predictors may be used by RET instructions when the RSB is empty. SW 
using retpoline may be affected by this behavior.

3 SKIP_L1DFL_VMENTRY: A value of 1 indicates the hypervisor need not 
flush the L1D on VM entry.

4 SSB_NO: Processor is not susceptible to Speculative Store Bypass.

5 MDS_NO: Processor is not susceptible to Microarchitectural Data 
Sampling (MDS).

6 IF_PSCHANGE_MC_NO: The processor is not susceptible to a machine 
check error due to modifying the size of a code page without TLB 
invalidation.

7 TSX_CTRL: If 1, indicates presence of IA32_TSX_CTRL MSR.

8 TAA_NO: If 1, processor is not affected by TAA.

9 MCU_CONTROL: If 1, the processor supports the IA32_MCU_CONTROL 
MSR.

10 MISC_PACKAGE_CTLS: The processor supports 
IA32_MISC_PACKAGE_CTLS MSR.

11 ENERGY_FILTERING_CTL: The processor supports setting and reading 
the IA32_MISC_PACKAGE_CTLS[0] (ENERGY_FILTERING_ENABLE) bit.

12 DOITM: If 1, the processor supports Data Operand Independent Timing 
Mode. 

13 SBDR_SSDP_NO: The processor is not affected by either the Shared 
Buffers Data Read (SBDR) vulnerability or the Sideband Stale Data 
Propagator (SSDP).

14 FBSDP_NO: The processor is not affected by the Fill Buffer Stale Data 
Propagator (FBSDP).

15 PSDP_NO: The processor is not affected by vulnerabilities involving the 
Primary Stale Data Propagator (PSDP).

16 MCU_ENUMERATION: If 1, the processor supports the 
IA32_MCU_ENUMERATION and IA32_MCU_STATUS MSRs.

17 FB_CLEAR: If 1, the processor supports overwrite of fill buffer values as 
part of MD_CLEAR operations with the VERW instruction.

18 FB_CLEAR_CTRL: If 1, the processor supports the IA32_MCU_OPT_CTRL 
MSR and allows software to set bit 3 of that MSR (FB_CLEAR_DIS).

19 RRSBA: A value of 1 indicates the processor may have the RRSBA 
alternate prediction behavior, if not disabled by RRSBA_DIS_U or 
RRSBA_DIS_S.

20 BHI_NO: A value of 1 indicates BHI_NO branch prediction behavior, 
regardless of the value of IA32_SPEC_CTRL[BHI_DIS_S] MSR bit.

21 XAPIC_DISABLE_STATUS: Enumerates that the 
IA32_XAPIC_DISABLE_STATUS MSR exists, and that bit 0 specifies 
whether the legacy xAPIC is disabled and APIC state is locked to x2APIC.

22 MCU_EXTENDED_SERVICE: If 1, the processor supports MCU Extended 
servicing - IA32_MCU_EXT_SERVICE MSR.
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23 OVERCLOCKING_STATUS: If set, the IA32_OVERCLOCKING_STATUS MSR 
exists.

24 PBRSB_NO: If 1, the processor is not affected by issues related to Post-
Barrier Return Stack Buffer Predictions.

25 GDS_CTRL: If 1, the processor supports the GDS_MITG_DIS and 
GDS_MITG_LOCK bits of the IA32_MCU_OPT_CTRL MSR.

26 GDS_NO: If 1, the processor is not affected by Gather Data Sampling.

27 RFDS_NO: If 1, the processor is not affected by Register File Data 
Sampling.

28 RFDS_CLEAR: If 1, when VERW is executed the processor will clear stale 
data from register files affected by Register File Data Sampling.

29 IGN_UMONITOR_SUPPORT 

If 0, IA32_MCU_OPT_CTRL bit 6 (IGN_UMONITOR) is not supported. 

If 1, it indicates support of IA32_MCU_OPT_CTRL bit 6 (IGN_UMONITOR).

30 MON_UMON_MITG_SUPPORT 

If 0, IA32_MCU_OPT_CTRL bit 7 (MON_UMON_MITG) is not supported. 

If 1, it indicates support of IA32_MCU_OPT_CTRL bit 7 
(MON_UMON_MITG). 

63:31 Reserved.

Register Address: 10BH, 267 IA32_FLUSH_CMD

Flush Command (WO)

Gives software a way to invalidate structures with finer granularity than other architectural 
methods.

If any one of the enumeration 
conditions for defined bit field 
positions holds.

0 L1D_FLUSH

Writeback and invalidate the L1 data cache. 

If CPUID.(EAX=07H, 
ECX=0):EDX[28]=1

63:1 Reserved.

Register Address: 10FH, 271 IA32_TSX_FORCE_ABORT

TSX Force Abort If CPUID.(EAX=07H, 
ECX=0):EDX[13]=1

0 RTM_FORCE_ABORT

If 1, all RTM transactions abort with EAX code 0.

R/W, Default: 0

If CPUID.(EAX=07H,ECX=0): 
EDX[11]=1, bit 0 is always 1 and 
writes to change it are ignored.

If SDV_ENABLE_RTM is 1, bit 0 is 
always 0 and writes to change it 
are ignored.

1 TSX_CPUID_CLEAR

When set, CPUID.(EAX=07H,ECX=0):EBX[11]=0 and 
CPUID.(EAX=07H,ECX=0):EBX[4]=0.

R/W, Default: 0

Can be set only if 
CPUID.(EAX=07H,ECX=0): 
EDX[11]=1 or if 
SDV_ENABLE_RTM is 1.
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2 SDV_ENABLE_RTM

When set, CPUID.(EAX=07H,ECX=0):EDX[11]=0 and the processor may 
not force abort RTM. This unsupported mode should only be used for 
software development and not for production usage. 

R/W, Default: 0

If 0, can be set only if 
CPUID.(EAX=07H,ECX=0): 
EDX[11]=1.

63:3 Reserved.

Register Address: 122H, 290 IA32_TSX_CTRL

IA32_TSX_CTRL (R/W) Thread scope. Not architecturally 
serializing.

Available when 
CPUID.ARCH_CAP(EAX=7H, ECX = 
0):EDX[29] = 1 and 
IA32_ARCH_CAPABILITIES.bit 7 = 
1.

0 RTM_DISABLE

When set to 1, XBEGIN will always abort with EAX code 0.

1 TSX_CPUID_CLEAR

When set to 1, CPUID.07H.EBX.RTM [bit 11] and CPUID.07H.EBX.HLE [bit 
4] report 0.

When set to 0 and the SKU supports TSX, these bits will return 1.

63:2 Reserved.

Register Address: 123H, 291 IA32_MCU_OPT_CTRL

Microcode Update Option Control (R/W) If CPUID.(EAX=07H, 
ECX=0):EDX[9]=1 or 
IA32_ARCH_CAPABILITIES [18] = 
1 or IA32_ARCH_CAPABILITIES. 
FB_CLEAR_CTRL=1

0 RNGDS_MITG_DIS (R/W)

If 0 (default), SRBDS mitigation is enabled for RDRAND and RDSEED.

If 1, SRBDS mitigation is disabled for RDRAND and RDSEED executed 
outside of Intel SGX enclaves.

If CPUID.(EAX=07H, 
ECX=0):EDX[9]=1

1 RTM_ALLOW

If 0, XBEGIN will always abort with EAX code 0. 

If 1, XBEGIN behavior depends on the value of 
IA32_TSX_CTRL[RTM_DISABLE].

Read/Write

Setting RTM_LOCKED prevents 
writes to this bit.

2 RTM_LOCKED

When 1, RTM_ALLOW is locked at zero, writes to RTM_ALLOW will be 
ignored.

Read-Only status bit.

3 FB_CLEAR_DIS

If 1, prevents the VERW instruction from performing an FB_CLEAR 
action.

If IA32_ARCH_CAPABILITIES. 
FB_CLEAR_CTRL=1

4 GDS_MITG_DIS

If 0, the Gather Data Sampling mitigation is enabled (patch load time 
default).

If 1 on all threads for a given core, the Gather Data Sampling mitigation is 
disabled.
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5 GDS_MITG_LOCK

If 0, not locked, and GDS_MITG_DIS is under OS control.

If 1, locked and GDS_MITG_DIS is forced to 0 (writes are ignored).

6 IGN_UMONITOR   

If 0, enable CPL0-3 software to use the UMONITOR/UMWAIT 
instructions.

If 1 (default), disable UMONITOR functionality. CPL0-3 software will be 
able to call the UMONITOR instruction without causing a fault, however 
the address monitoring hardware will not be armed. When UMWAIT is 
called, it will not enter an implementation-dependent optimized state.  

7 MON_UMON_MITG   

If 0 (default), disabled.

If 1, enable: Flush the thread’s previously monitored address from the 
CPU caches as part of the (U)MONITOR instruction. Additionally, for 
every 4th (U)MONITOR instruction within a core, flush the peer 
hyperthread's monitored address from the CPU caches as well. This will 
increase the latency of the instruction. This may have a minor impact on 
workloads using the (U)MONITOR instruction.   

63:8 Reserved.

Register Address: 174H, 372 IA32_SYSENTER_CS

SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector.

31:16 Not used. Can be read and written.

63:32 Not used. Writes ignored; reads

return zero.

Register Address: 175H, 373 IA32_SYSENTER_ESP

SYSENTER_ESP_MSR (R/W) 06_01H

Register Address: 176H, 374 IA32_SYSENTER_EIP

SYSENTER_EIP_MSR (R/W) 06_01H

Register Address: 179H, 377 IA32_MCG_CAP (MCG_CAP) 

Global Machine Check Capability (R/O) 06_01H

7:0 Count: Number of reporting banks.

8 MCG_CTL_P: IA32_MCG_CTL is present if this bit is set.

9 MCG_EXT_P: Extended machine check state registers are present if this 
bit is set.

10 MCP_CMCI_P: Support for corrected MC error event is present. 06_01H

11 MCG_TES_P: Threshold-based error status register are present if this bit 
is set.

15:12 Reserved.

23:16 MCG_EXT_CNT: Number of extended machine check state registers 
present.
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24 MCG_SER_P: The processor supports software error recovery if this bit is 
set.

25 Reserved.

26 MCG_ELOG_P: Indicates that the processor allows platform firmware to 
be invoked when an error is detected so that it may provide additional 
platform specific information in an ACPI format “Generic Error Data 
Entry” that augments the data included in machine check bank registers.

06_3EH

27 MCG_LMCE_P: Indicates that the processor supports extended state in 
IA32_MCG_STATUS and associated MSR necessary to configure Local 
Machine Check Exception (LMCE).

06_3EH

63:28 Reserved.

Register Address: 17AH, 378 IA32_MCG_STATUS (MCG_STATUS)

Global Machine Check Status (R/W) 06_01H

0 RIPV. Restart IP valid. 06_01H

1 EIPV. Error IP valid. 06_01H

2 MCIP. Machine check in progress. 06_01H

3 LMCE_S. If IA32_MCG_CAP.LMCE_P[27] =1

63:4 Reserved.

Register Address: 17BH, 379 IA32_MCG_CTL (MCG_CTL)

Global Machine Check Control (R/W) If IA32_MCG_CAP.CTL_P[8] =1

Register Address: 180H−185H, 384−389 N/A

Reserved 06_0EH2

Register Address: 186H, 390 IA32_PERFEVTSEL0 (PERFEVTSEL0)

Performance Event Select Register 0 (R/W) If CPUID.0AH: EAX[15:8] > 0

7:0 Event Select: Selects a performance event logic unit.

15:8 UMask: Qualifies the microarchitectural condition to detect on the 
selected event logic.

16 USR: Counts while in privilege level is not ring 0.

17 OS: Counts while in privilege level is ring 0.

18 Edge: Enables edge detection if set.

19 PC: Enables pin control.

20 INT: Enables interrupt on counter overflow.

21 AnyThread: When set to 1, it enables counting the associated event 
conditions occurring across all logical processors sharing a processor 
core. When set to 0, the counter only increments the associated event 
conditions occurring in the logical processor which programmed the MSR.

22 EN: Enables the corresponding performance counter to commence 
counting when this bit is set.

23 INV: Invert the CMASK.

31:24 CMASK: When CMASK is not zero, the corresponding performance 
counter increments each cycle if the event count is greater than or equal 
to the CMASK.
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63:32 Reserved.

Register Address: 187H, 391 IA32_PERFEVTSEL1 (PERFEVTSEL1)

Performance Event Select Register 1 (R/W) If CPUID.0AH: EAX[15:8] > 1

Register Address: 188H, 392 IA32_PERFEVTSEL2 

Performance Event Select Register 2 (R/W) If CPUID.0AH: EAX[15:8] > 2

Register Address: 189H, 393 IA32_PERFEVTSEL3

Performance Event Select Register 3 (R/W) If CPUID.0AH: EAX[15:8] > 3

Register Address: 18AH, 394 IA32_PERFEVTSEL4 

Performance Event Select Register 4 (R/W) If CPUID.0AH: EAX[15:8] > 4

Register Address: 18BH, 395 IA32_PERFEVTSEL5 

Performance Event Select Register 5 (R/W) If CPUID.0AH: EAX[15:8] > 5

Register Address: 18CH, 396 IA32_PERFEVTSEL6

Performance Event Select Register 6 (R/W) If CPUID.0AH: EAX[15:8] > 6

Register Address: 18DH, 397 IA32_PERFEVTSEL7

Performance Event Select Register 7 (R/W) If CPUID.0AH: EAX[15:8] > 7

Register Address: 18EH, 398 IA32_PERFEVTSEL8

Performance Event Select Register 8 (R/W) If CPUID.0AH: EAX[15:8] > 8

Register Address: 18FH, 399 IA32_PERFEVTSEL9

Performance Event Select Register 9 (R/W) If CPUID.0AH: EAX[15:8] > 9

Register Address: 18AH−194H, 394−404 N/A

Reserved. 06_0EH3

Register Address: 195H, 405 IA32_OVERCLOCKING_STATUS

Overclocking Status (R/O)

IA32_ARCH_CAPABILITIES[bit 23] enumerates support for this MSR.

0 Overclocking Utilized

Indicates if specific forms of overclocking have been enabled on this boot 
or reset cycle: 0 indicates no, 1 indicates yes.

1 Undervolt Protection

Indicates if the “Dynamic OC Undervolt Protection” security feature is 
active: 0 indicates disabled, 1indicates enabled.

2 Overclocking Secure Status

Indicates that overclocking capabilities have been unlocked by BIOS, with 
or without overclocking: 0 indicates Not Secured, 1 indicates Secure.

63:4 Reserved.

Register Address: 196H−197H, 406−407 N/A

Reserved. 06_0EH3

Register Address: 198H, 408 IA32_PERF_STATUS

Current Performance Status (R/O)

See Section 16.1.1, “Software Interface For Initiating Performance State Transitions.”

0F_03H

Table 2-2.  IA-32 Architectural MSRs (Contd.)

Register Address: Hex, Decimal Architectural MSR Name (Former MSR Name)

Bit Fields MSR/Bit Description Comment
Vol. 4 2-19



MODEL-SPECIFIC REGISTERS (MSRS)
15:0 Current Performance State Value.

63:16 Reserved.

Register Address: 199H, 409 IA32_PERF_CTL

Performance Control MSR (R/W)

Software makes a request for a new Performance state (P-State) by writing this MSR. See 
Section 16.1.1, “Software Interface For Initiating Performance State Transitions.”

0F_03H

15:0 Target performance State Value.

31:16 Reserved.

32 Intel® Dynamic Acceleration Technology Engage (R/W)

When set to 1: Disengages Intel Dynamic Acceleration Technology.

06_0FH (Mobile only)

63:33 Reserved.

Register Address: 19AH, 410 IA32_CLOCK_MODULATION

Clock Modulation Control (R/W)

See Section 16.8.3, “Software Controlled Clock Modulation.”

If CPUID.01H:EDX[22] = 1

0 Extended On-Demand Clock Modulation Duty Cycle. If CPUID.06H:EAX[5] = 1

3:1 On-Demand Clock Modulation Duty Cycle: Specific encoded values for 
target duty cycle modulation.

If CPUID.01H:EDX[22] = 1

4 On-Demand Clock Modulation Enable: Set 1 to enable modulation. If CPUID.01H:EDX[22] = 1

63:5 Reserved.

Register Address: 19BH, 411 IA32_THERM_INTERRUPT

Thermal Interrupt Control (R/W)

Enables and disables the generation of an interrupt on temperature transitions detected with the 
processor’s thermal sensors and thermal monitor. 

See Section 16.8.2, “Thermal Monitor.”

If CPUID.01H:EDX[22] = 1

0 High-Temperature Interrupt Enable If CPUID.01H:EDX[22] = 1

1 Low-Temperature Interrupt Enable If CPUID.01H:EDX[22] = 1

2 PROCHOT# Interrupt Enable If CPUID.01H:EDX[22] = 1

3 FORCEPR# Interrupt Enable If CPUID.01H:EDX[22] = 1

4 Critical Temperature Interrupt Enable If CPUID.01H:EDX[22] = 1

7:5 Reserved.

14:8 Threshold #1 Value If CPUID.01H:EDX[22] = 1

15 Threshold #1 Interrupt Enable If CPUID.01H:EDX[22] = 1

22:16 Threshold #2 Value If CPUID.01H:EDX[22] = 1

23 Threshold #2 Interrupt Enable If CPUID.01H:EDX[22] = 1

24 Power Limit Notification Enable If CPUID.06H:EAX[4] = 1

25 Hardware Feedback Notification Enable If CPUID.06H:EAX[24] = 1

63:26 Reserved.

Register Address: 19CH, 412 IA32_THERM_STATUS

Table 2-2.  IA-32 Architectural MSRs (Contd.)

Register Address: Hex, Decimal Architectural MSR Name (Former MSR Name)

Bit Fields MSR/Bit Description Comment
2-20 Vol. 4



MODEL-SPECIFIC REGISTERS (MSRS)
Thermal Status Information (R/O)

Contains status information about the processor’s thermal sensor and automatic thermal 
monitoring facilities. 

See Section 16.8.2, “Thermal Monitor.”

If CPUID.01H:EDX[22] = 1

0 Thermal Status (R/O) If CPUID.01H:EDX[22] = 1

1 Thermal Status Log (R/W) If CPUID.01H:EDX[22] = 1

2 PROCHOT # or FORCEPR# event (R/O) If CPUID.01H:EDX[22] = 1

3 PROCHOT # or FORCEPR# log (R/WC0) If CPUID.01H:EDX[22] = 1

4 Critical Temperature Status (R/O) If CPUID.01H:EDX[22] = 1

5 Critical Temperature Status log (R/WC0) If CPUID.01H:EDX[22] = 1

6 Thermal Threshold #1 Status (R/O) If CPUID.01H:ECX[8] = 1

7 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

8 Thermal Threshold #2 Status (R/O) If CPUID.01H:ECX[8] = 1

9 Thermal Threshold #2 log (R/WC0) If CPUID.01H:ECX[8] = 1

10 Power Limitation Status (R/O) If CPUID.06H:EAX[4] = 1

11 Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1

12 Current Limit Status (R/O) If CPUID.06H:EAX[7] = 1

13 Current Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

14 Cross Domain Limit Status (R/O) If CPUID.06H:EAX[7] = 1

15 Cross Domain Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

22:16 Digital Readout (R/O) If CPUID.06H:EAX[0] = 1

26:23 Reserved.

30:27 Resolution in Degrees Celsius (R/O) If CPUID.06H:EAX[0] = 1

31 Reading Valid (R/O) If CPUID.06H:EAX[0] = 1

63:32 Reserved.

Register Address: 1A0H, 416 IA32_MISC_ENABLE

Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

When set, the fast-strings feature (for REP MOVS and REP STORS) is 
enabled (default). When clear, fast-strings are disabled.

0F_0H

2:1 Reserved.
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3 Automatic Thermal Control Circuit Enable (R/W) 

1 = Setting this bit enables the thermal control circuit (TCC) portion of 
the Intel Thermal Monitor feature. This allows the processor to 
automatically reduce power consumption in response to TCC 
activation.

0 = Disabled.
Note: In some products clearing this bit might be ignored in critical 
thermal conditions, and TM1, TM2, and adaptive thermal throttling will 
still be activated.

The default value of this field varies with product. See respective tables 
where default value is listed. 

0F_0H

6:4 Reserved.

7 Performance Monitoring Available (R) 

1 = Performance monitoring enabled.
0 = Performance monitoring disabled.

0F_0H

10:8 Reserved.

11 Branch Trace Storage Unavailable (R/O)

1 = Processor doesn’t support branch trace storage (BTS).
0 = BTS is supported.

0F_0H

12 Processor Event Based Sampling (PEBS) Unavailable (R/O) 

1 = PEBS is not supported.
0 = PEBS is supported. 

06_0FH

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W)

0= Enhanced Intel SpeedStep Technology disabled.
1 = Enhanced Intel SpeedStep Technology enabled.

If CPUID.01H: ECX[7] =1

17 Reserved.

18 ENABLE MONITOR FSM (R/W)

When this bit is set to 0, the MONITOR feature flag is not set 
(CPUID.01H:ECX[bit 3] = 0). This indicates that MONITOR/MWAIT are not 
supported. 

Software attempts to execute MONITOR/MWAIT will cause #UD when 
this bit is 0.

When this bit is set to 1 (default), MONITOR/MWAIT are supported 
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set (CPUID.01H:ECX[bit 0] = 0), the 
OS must not attempt to alter this bit. BIOS must leave it in the default 
state. Writing this bit when the SSE3 feature flag is set to 0 may 
generate a #GP exception.

0F_03H

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

When this bit is set to 1, CPUID.00H returns a maximum value in 
EAX[7:0] of 2.

CPUID.0H:EAX > 2 and 

CPUID.(EAX = 07H, ECX = 1):EBX. 
CPUIDMAXVAL_LIM_RMV [bit 3] = 
0
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23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are disabled. xTPR messages are optional 
messages that allow the processor to inform the chipset of its priority.

If CPUID.01H:ECX[14] = 1

63:24 Reserved.

Note: Some older processors defined one of these bits as a disable for 
the execute-disable feature of paging. If a processor supports this bit, 
this information is provided in the model-specific tables. See Table 2-3 
for the definition of this bit.

Register Address: 1B0H, 432 IA32_ENERGY_PERF_BIAS

Performance Energy Bias Hint (R/W) If CPUID.6H:ECX[3] = 1

3:0 Power Policy Preference: 

0 indicates preference to highest performance.

15 indicates preference to maximize energy saving.

63:4 Reserved.

Register Address: 1B1H, 433 IA32_PACKAGE_THERM_STATUS

Package Thermal Status Information (R/O)

Contains status information about the package’s thermal sensor. 

See Section 16.9, “Package Level Thermal Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg Thermal Status (R/O)

1 Pkg Thermal Status Log (R/W)

2 Pkg PROCHOT # event. (R/O)

3 Pkg PROCHOT # log. (R/WC0)

4 Pkg Critical Temperature Status. (R/O)

5 Pkg Critical Temperature Status Log. (R/WC0)

6 Pkg Thermal Threshold #1 Status. (R/O)

7 Pkg Thermal Threshold #1 Log. (R/WC0)

8 Pkg Thermal Threshold #2 Status. (R/O)

9 Pkg Thermal Threshold #1 Log. (R/WC0)

10 Pkg Power Limitation Status. (R/O)

11 Pkg Power Limitation Log. (R/WC0)

15:12 Reserved.

22:16 Pkg Digital Readout. (R/O)

25:23 Reserved.

26 Hardware Feedback Interface Structure Change Status. If CPUID.06H:EAX.[19] = 1

63:27 Reserved.

Register Address: 1B2H, 434 IA32_PACKAGE_THERM_INTERRUPT

Pkg Thermal Interrupt Control (R/W)

Enables and disables the generation of an interrupt on temperature transitions detected with the 
package’s thermal sensor. 

See Section 16.9, “Package Level Thermal Management.”

If CPUID.06H: EAX[6] = 1
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0 Pkg High-Temperature Interrupt Enable.

1 Pkg Low-Temperature Interrupt Enable.

2 Pkg PROCHOT# Interrupt Enable.

3 Reserved.

4 Pkg Overheat Interrupt Enable.

7:5 Reserved.

14:8 Pkg Threshold #1 Value.

15 Pkg Threshold #1 Interrupt Enable.

22:16 Pkg Threshold #2 Value.

23 Pkg Threshold #2 Interrupt Enable.

24 Pkg Power Limit Notification Enable.

25 Hardware Feedback Interrupt Enable. If CPUID.06H:EAX.[19] = 1

63:26 Reserved.

Register Address: 1C4H, 452 IA32_XFD

Extended Feature Disable Control (R/W)

Controls which XSAVE-enabled features are temporarily disabled.

See Section 13.14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1. 

If CPUID.(EAX=0DH,ECX=1): 
EAX[4] = 1

Register Address: 1C5H, 453 IA32_XFD_ERR

Extended Feature Disable Error Code (R/W)

Reports which XSAVE-enabled features caused a fault due to being disabled.

See Section 13.14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1.

If CPUID.(EAX=0DH,ECX=1): 
EAX[4] = 1

Register Address: 1D9H, 473 IA32_DEBUGCTL (MSR_DEBUGCTLA, MSR_DEBUGCTLB)

Trace/Profile Resource Control (R/W) 06_0EH

0 LBR: Setting this bit to 1 enables the processor to record a running trace 
of the most recent branches taken by the processor in the LBR stack.

06_01H

1 BTF: Setting this bit to 1 enables the processor to treat EFLAGS.TF as 
single-step on branches instead of single-step on instructions.

06_01H

2 BLD: Enable OS bus-lock detection. See Section 19.3.1.6 of the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3B.

If (CPUID.(EAX=07H, 
ECX=0):ECX[24] = 1)

5:3 Reserved.

6 TR: Setting this bit to 1 enables branch trace messages to be sent. 06_0EH

7 BTS: Setting this bit enables branch trace messages (BTMs) to be logged 
in a BTS buffer.

06_0EH

8 BTINT: When clear, BTMs are logged in a BTS buffer in circular fashion. 
When this bit is set, an interrupt is generated by the BTS facility when 
the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set, BTS or BTM is skipped if CPL = 0. 06_0FH

10 BTS_OFF_USR: When set, BTS or BTM is skipped if CPL > 0. 06_0FH
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11 FREEZE_LBRS_ON_PMI: When set, the LBR stack is frozen on a PMI 
request.

If CPUID.01H: ECX[15] = 1 && 
CPUID.0AH: EAX[7:0] > 1

12 FREEZE_PERFMON_ON_PMI: When set, each ENABLE bit of the global 
counter control MSR are frozen (address 38FH) on a PMI request.

If CPUID.01H: ECX[15] = 1 && 
CPUID.0AH: EAX[7:0] > 1

13 ENABLE_UNCORE_PMI: When set, enables the logical processor to 
receive and generate PMI on behalf of the uncore.

06_1AH

14 FREEZE_WHILE_SMM: When set, freezes perfmon and trace messages 
while in SMM.

If  IA32_PERF_CAPABILITIES[12] 
= 1

15 RTM_DEBUG: When set, enables DR7 debug bit on XBEGIN. If (CPUID.(EAX=07H, 
ECX=0):EBX[11] = 1)

63:16 Reserved.

Register Address: 1DDH, 477 IA32_LER_FROM_IP

Last Event Record Source IP Register (R/W)

63:0 FROM_IP

The source IP of the recorded branch or event, in canonical form.

Reset Value: 0

Register Address: 1DEH, 478 IA32_LER_TO_IP

Last Event Record Destination IP Register (R/W)

63:0 TO_IP

The destination IP of the recorded branch or event, in canonical form.

Reset Value: 0

Register Address: 1E0H, 480 IA32_LER_INFO

Last Event Record Info Register (R/W)

55:0 Undefined, may be zero or non-zero. Writes of non- zero values do not 
fault, but reads may return a different value.

Reset Value: 0

59:56 BR_TYPE

The branch type recorded by this LBR. Encodings match those of 
IA32_LBR_x_INFO.

Reset Value: 0

60 Undefined, may be zero or non-zero. Writes of non- zero values do not 
fault, but reads may return a different value.

Reset Value: 0

61 TSX_ABORT

This LBR record is a TSX abort. On processors that do not support Intel® 
TSX (CPUID.07H.EBX.HLE[bit 4]=0 and CPUID.07H.EBX.RTM[bit 11]=0), 
this bit is undefined.

Reset Value: 0

62 IN_TSX

This LBR record records a branch that retired during a TSX transaction. 
On processors that do not support Intel® TSX (CPUID.07H.EBX.HLE[bit 
4]=0 and CPUID.07H.EBX.RTM[bit 11]=0), this bit is undefined.

Reset Value: 0

63 MISPRED

The recorded branch taken/not-taken resolution (for conditional 
branches) or target (for any indirect branch, including RETs) was 
mispredicted.

Reset Value: 0

Register Address: 1F2H, 498 IA32_SMRR_PHYSBASE

SMRR Base Address (Writeable only in SMM) 

Base address of SMM memory range.

If IA32_MTRRCAP.SMRR[11] = 1
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7:0 Type. Specifies memory type of the range.

11:8 Reserved.

31:12 PhysBase

SMRR physical Base Address.

63:32 Reserved.

Register Address: 1F3H, 499 IA32_SMRR_PHYSMASK

SMRR Range Mask (Writeable only in SMM) 

Range Mask of SMM memory range.

If IA32_MTRRCAP[SMRR] = 1

10:0 Reserved.

11 Valid

Enable range mask.

31:12 PhysMask

SMRR address range mask.

63:32 Reserved.

Register Address: 1F8H, 504 IA32_PLATFORM_DCA_CAP

DCA Capability (R) If CPUID.01H: ECX[18] = 1 

Register Address: 1F9H, 505 IA32_CPU_DCA_CAP

If set, CPU supports Prefetch-Hint type. If CPUID.01H: ECX[18] = 1 

Register Address: 1FAH, 506 IA32_DCA_0_CAP

DCA type 0 Status and Control register. If CPUID.01H: ECX[18] = 1 

0 DCA_ACTIVE: Set by HW when DCA is fuse-enabled and no defeatures 
are set.

2:1 TRANSACTION

6:3 DCA_TYPE

10:7 DCA_QUEUE_SIZE

12:11 Reserved.

16:13 DCA_DELAY: Writes will update the register but have no HW side-effect.

23:17 Reserved.

24 SW_BLOCK: SW can request DCA block by setting this bit.

25 Reserved.

26 HW_BLOCK: Set when DCA is blocked by HW (e.g., CR0.CD = 1).

31:27 Reserved.

Register Address: 200H, 512 IA32_MTRR_PHYSBASE0 (MTRRphysBase0)

See Section 13.11.2.3, “Variable Range MTRRs.” If IA32_MTRRCAP[7:0] > 0

Register Address: 201H, 513 IA32_MTRR_PHYSMASK0

MTRRphysMask0 If IA32_MTRRCAP[7:0] > 0

Register Address: 202H, 514 IA32_MTRR_PHYSBASE1

 MTRRphysBase1 If IA32_MTRRCAP[7:0] > 1
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Register Address: 203H, 515 IA32_MTRR_PHYSMASK1

 MTRRphysMask1 If IA32_MTRRCAP[7:0] > 1

Register Address: 204H, 516 IA32_MTRR_PHYSBASE2

 MTRRphysBase2 If IA32_MTRRCAP[7:0] > 2

Register Address: 205H, 517 IA32_MTRR_PHYSMASK2

 MTRRphysMask2 If IA32_MTRRCAP[7:0] > 2

Register Address: 206H, 518 IA32_MTRR_PHYSBASE3

MTRRphysBase3 If IA32_MTRRCAP[7:0] > 3

Register Address: 207H, 519 IA32_MTRR_PHYSMASK3

MTRRphysMask3 If IA32_MTRRCAP[7:0] > 3

Register Address: 208H, 520 IA32_MTRR_PHYSBASE4

MTRRphysBase4 If IA32_MTRRCAP[7:0] > 4

Register Address: 209H, 521 IA32_MTRR_PHYSMASK4

MTRRphysMask4 If IA32_MTRRCAP[7:0] > 4

Register Address: 20AH, 522 IA32_MTRR_PHYSBASE5

MTRRphysBase5 If IA32_MTRRCAP[7:0] > 5

Register Address: 20BH, 523 IA32_MTRR_PHYSMASK5

MTRRphysMask5 If IA32_MTRRCAP[7:0] > 5

Register Address: 20CH, 524 IA32_MTRR_PHYSBASE6

MTRRphysBase6 If IA32_MTRRCAP[7:0] > 6

Register Address: 20DH, 525 IA32_MTRR_PHYSMASK6

MTRRphysMask6 If IA32_MTRRCAP[7:0] > 6

Register Address: 20EH, 526 IA32_MTRR_PHYSBASE7

MTRRphysBase7 If IA32_MTRRCAP[7:0] > 7

Register Address: 20FH, 527 IA32_MTRR_PHYSMASK7

MTRRphysMask7 If IA32_MTRRCAP[7:0] > 7

Register Address: 210H, 528 IA32_MTRR_PHYSBASE8

MTRRphysBase8 If IA32_MTRRCAP[7:0] > 8

Register Address: 211H, 529 IA32_MTRR_PHYSMASK8

MTRRphysMask8 If IA32_MTRRCAP[7:0] > 8

Register Address: 212H, 530 IA32_MTRR_PHYSBASE9

MTRRphysBase9 If IA32_MTRRCAP[7:0] > 9

Register Address: 213H, 531 IA32_MTRR_PHYSMASK9

MTRRphysMask9 If IA32_MTRRCAP[7:0] > 9

Register Address: 250H, 592 IA32_MTRR_FIX64K_00000

MTRRfix64K_00000 If CPUID.01H: EDX.MTRR[12] =1

Register Address: 258H, 600 IA32_MTRR_FIX16K_80000
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MTRRfix16K_80000 If CPUID.01H: EDX.MTRR[12] =1

Register Address: 259H, 601 IA32_MTRR_FIX16K_A0000

MTRRfix16K_A0000 If CPUID.01H: EDX.MTRR[12] =1

Register Address: 268H, 616 IA32_MTRR_FIX4K_C0000 (MTRRfix4K_C0000)

See Section 13.11.2.2, “Fixed Range MTRRs.” If CPUID.01H: EDX.MTRR[12] =1

Register Address: 269H, 617 IA32_MTRR_FIX4K_C8000

MTRRfix4K_C8000 If CPUID.01H: EDX.MTRR[12] =1

Register Address: 26AH, 618 IA32_MTRR_FIX4K_D0000

MTRRfix4K_D0000 If CPUID.01H: EDX.MTRR[12] =1

Register Address: 26BH, 619 IA32_MTRR_FIX4K_D8000

MTRRfix4K_D8000 If CPUID.01H: EDX.MTRR[12] =1

Register Address: 26CH, 620 IA32_MTRR_FIX4K_E0000

MTRRfix4K_E0000 If CPUID.01H: EDX.MTRR[12] =1

Register Address: 26DH, 621 IA32_MTRR_FIX4K_E8000

MTRRfix4K_E8000 If CPUID.01H: EDX.MTRR[12] =1

Register Address: 26EH, 622 IA32_MTRR_FIX4K_F0000

MTRRfix4K_F0000 If CPUID.01H: EDX.MTRR[12] =1

Register Address: 26FH, 623 IA32_MTRR_FIX4K_F8000

MTRRfix4K_F8000. If CPUID.01H: EDX.MTRR[12] =1

Register Address: 277H, 631 IA32_PAT

IA32_PAT (R/W) If CPUID.01H: EDX.MTRR[16] =1

2:0 PA0

7:3 Reserved.

10:8 PA1

15:11 Reserved.

18:16 PA2

23:19 Reserved.

26:24 PA3

31:27 Reserved.

34:32 PA4

39:35 Reserved.

42:40 PA5

47:43 Reserved.

50:48 PA6

55:51 Reserved.

58:56 PA7

63:59 Reserved.
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Register Address: 280H, 640 IA32_MC0_CTL2

MSR to enable/disable CMCI capability for bank 0. (R/W)

See Section 17.3.2.5, “IA32_MCi_CTL2 MSRs.”

If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 0 

14:0 Corrected error count threshold.

29:15 Reserved.

30 CMCI_EN

63:31 Reserved.

Register Address: 281H, 641 IA32_MC1_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 1

Register Address: 282H, 642 IA32_MC2_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 2

Register Address: 283H, 643 IA32_MC3_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 3

Register Address: 284H, 644 IA32_MC4_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 4

Register Address: 285H, 645 IA32_MC5_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 5

Register Address: 286H, 646 IA32_MC6_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 6

Register Address: 287H, 647 IA32_MC7_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 7

Register Address: 288H, 648 IA32_MC8_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 8

Register Address: 289H, 649 IA32_MC9_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 9

Register Address: 28AH, 650 IA32_MC10_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 10

Register Address: 28BH, 651 IA32_MC11_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 11

Register Address: 28CH, 652 IA32_MC12_CTL2
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Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 12

Register Address: 28DH, 653 IA32_MC13_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 13

Register Address: 28EH, 654 IA32_MC14_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 14

Register Address: 28FH, 655 IA32_MC15_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 15

Register Address: 290H, 656 IA32_MC16_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 16

Register Address: 291H, 657 IA32_MC17_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 17

Register Address: 292H, 658 IA32_MC18_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 18

Register Address: 293H, 659 IA32_MC19_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 19

Register Address: 294H, 660 IA32_MC20_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 20

Register Address: 295H, 661 IA32_MC21_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 21

Register Address: 296H, 662 IA32_MC22_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 22

Register Address: 297H, 663 IA32_MC23_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 23

Register Address: 298H, 664 IA32_MC24_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 24

Register Address: 299H, 665 IA32_MC25_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 25

Register Address: 29AH, 666 IA32_MC26_CTL2
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Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 26

Register Address: 29BH, 667 IA32_MC27_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 27

Register Address: 29CH, 668 IA32_MC28_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 28

Register Address: 29DH, 669 IA32_MC29_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 29

Register Address: 29EH, 670 IA32_MC30_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 30

Register Address: 29FH, 671 IA32_MC31_CTL2

Same fields as IA32_MC0_CTL2. (R/W) If IA32_MCG_CAP[10] = 1 && 
IA32_MCG_CAP[7:0] > 31

Register Address: 2DCH, 732 IA32_INTEGRITY_STATUS

IA32_INTEGRITY_STATUS (R/O)

Provides status information for integrity features.

If CPUID(EAX=70H, 
ECX=1H).EDX[24]=1

0 I_AM_IN_STATIC_LSM

0: Static LSM is not active on this logical processor.

1: Static LSM is active on this logical processor.

63:1 Reserved.

Register Address: 2FFH, 767 IA32_MTRR_DEF_TYPE

MTRRdefType (R/W) If CPUID.01H: EDX.MTRR[12] =1

2:0 Default Memory Type

9:3 Reserved.

10 Fixed Range MTRR Enable 

11 MTRR Enable 

63:12 Reserved.

Register Address: 309H, 777 IA32_FIXED_CTR0

 Fixed-Function Performance Counter 0 (R/W): Counts Instr_Retired.Any. If CPUID.0AH:EDX[4:0] >0 || 
CPUID.0AH:ECX[0] = 1 || 
CPUID.23H.1H:EBX[0] = 1

Register Address: 30AH, 778 IA32_FIXED_CTR1

Fixed-Function Performance Counter 1 (R/W): Counts CPU_CLK_Unhalted.Core. If CPUID.0AH:EDX[4:0] >1 || 
CPUID.0AH:ECX[1] = 1 || 
CPUID.23H.1H:EBX[1] = 1

Register Address: 30BH, 779 IA32_FIXED_CTR2
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Fixed-Function Performance Counter 2 (R/W): Counts CPU_CLK_Unhalted.Ref. If CPUID.0AH:EDX[4:0] >2 || 
CPUID.0AH:ECX[2] = 1 || 
CPUID.23H.1H:EBX[2] = 1

Register Address: 30CH, 780 IA32_FIXED_CTR3

Fixed-Function Performance Counter 3 (R/W): Top-down Microarchitecture Analysis unhalted 
number of available slots.

If CPUID.0AH:EDX[4:0] >3 || 
CPUID.0AH:ECX[3] = 1 || 
CPUID.23H.1H:EBX[3] = 1

Register Address: 30DH, 781 IA32_FIXED_CTR4

Fixed-Function Performance Counter 4 (R/W): Top-down bad speculation. If CPUID.0AH:EDX[4:0] >4 || 
CPUID.0AH:ECX[4] = 1 || 
CPUID.23H.1H:EBX[4] = 1

47:0 FIXED_COUNTER

Top-down bad speculation counter.

63:46 Reserved.

Register Address: 30EH, 782 IA32_FIXED_CTR5

Fixed-Function Performance Counter 5 (R/W): Top-down Frontend Bound. If CPUID.0AH:EDX[4:0] >5 || 
CPUID.0AH:ECX[5] = 1 || 
CPUID.23H.1H:EBX[5] = 1

47:0 FIXED_COUNTER

Top-down Frontend Bound counter.

63:46 Reserved.

Register Address: 30FH, 783 IA32_FIXED_CTR6

Fixed-Function Performance Counter 6 (R/W): Top-down retiring. If CPUID.0AH:EDX[4:0] >6 || 
CPUID.0AH:ECX[6] = 1 || 
CPUID.23H.1H:EBX[6] = 1

47:0 FIXED_COUNTER

Top-down Retiring counter.

63:46 Reserved.

Register Address: 345H, 837 IA32_PERF_CAPABILITIES

Read Only MSR that enumerates the existence of performance monitoring features. (R/O) If CPUID.01H: ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is supported.

13 1: Full width of counter writable via IA32_A_PMCx.

14 PEBS_BASELINE

15 1: Performance metrics available.

16 1: PEBS output will be written into the Intel PT trace stream. If CPUID.0x7.0.EBX[25]=1

17 1: Indicates support for PEBS Retire Latency output.

18 TSX_ADDRESS
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19 RDPMC_METRICS_CLEAR

63:20 Reserved.

Register Address: 38DH, 909 IA32_FIXED_CTR_CTRL

Fixed-Function Performance Counter Control (R/W)

Counter increments while the results of ANDing respective enable bit in 
IA32_PERF_GLOBAL_CTRL with the corresponding OS or USR bits in this MSR is true.

If CPUID.0AH: EAX[7:0] > 1

0 EN0_OS: Enable Fixed Counter 0 to count while CPL = 0.

1 EN0_Usr: Enable Fixed Counter 0 to count while CPL > 0.

2 AnyThr0: When set to 1, it enables counting the associated event 
conditions occurring across all logical processors sharing a processor 
core. When set to 0, the counter only increments the associated event 
conditions occurring in the logical processor which programmed the MSR.

If CPUID.0AH:EAX[7:0] > 2 && 
CPUID.0AH:EDX[15]=0

3 EN0_PMI: Enable PMI when fixed counter 0 overflows.

4 EN1_OS: Enable Fixed Counter 1to count while CPL = 0.

5 EN1_Usr: Enable Fixed Counter 1to count while CPL > 0.

6 AnyThr1: When set to 1, it enables counting the associated event 
conditions occurring across all logical processors sharing a processor 
core. When set to 0, the counter only increments the associated event 
conditions occurring in the logical processor which programmed the MSR.

If CPUID.0AH:EAX[7:0] > 2 && 
CPUID.0AH:EDX[15]=0

7 EN1_PMI: Enable PMI when fixed counter 1 overflows.

8 EN2_OS: Enable Fixed Counter 2 to count while CPL = 0.

9 EN2_Usr: Enable Fixed Counter 2 to count while CPL > 0.

10 AnyThr2: When set to 1, it enables counting the associated event 
conditions occurring across all logical processors sharing a processor 
core. When set to 0, the counter only increments the associated event 
conditions occurring in the logical processor which programmed the MSR.

If CPUID.0AH:EAX[7:0] > 2 && 
CPUID.0AH:EDX[15]=0

11 EN2_PMI: Enable PMI when fixed counter 2 overflows.

12 EN3_OS: Enable Fixed Counter 3 to count while CPL = 0.

13 EN3_Usr: Enable Fixed Counter 3 to count while CPL > 0.

14 Reserved.

15 EN3_PMI: Enable PMI when fixed counter 3 overflows.

63:16 Reserved.

Register Address: 38EH, 910 IA32_PERF_GLOBAL_STATUS

Global Performance Counter Status (R/O) If CPUID.0AH: EAX[7:0] > 0 II 
(CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1 && 
CPUID.(EAX=014H, ECX=0):ECX[0] 
= 1)

0 Ovf_PMC0: Overflow status of IA32_PMC0. If CPUID.0AH: EAX[15:8] > 0

1 Ovf_PMC1: Overflow status of IA32_PMC1. If CPUID.0AH: EAX[15:8] > 1

2 Ovf_PMC2: Overflow status of IA32_PMC2. If CPUID.0AH: EAX[15:8] > 2

3 Ovf_PMC3: Overflow status of IA32_PMC3. If CPUID.0AH: EAX[15:8] > 3
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n Ovf_PMCn: Overflow status of IA32_PMCn. If CPUID.0AH: EAX[15:8] > n

31:n+1 Reserved.

32 Ovf_FixedCtr0: Overflow status of IA32_FIXED_CTR0. If CPUID.0AH: EAX[7:0] > 1

33 Ovf_FixedCtr1: Overflow status of IA32_FIXED_CTR1. If CPUID.0AH: EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow status of IA32_FIXED_CTR2. If CPUID.0AH: EAX[7:0] > 1

32+m Ovf_FixedCtrm: Overflow status of IA32_FIXED_CTRm. If CPUID.0AH:ECX[m] == 1 || 
CPUID.0AH:EDX[4:0] > m

47:33+m Reserved.

48 OVF_PERF_METRICS: If this bit is set, it indicates that PERF_METRIC 
counter has overflowed and a PMI is triggered; however, an overflow of 
fixed counter 3 should normally happen first. If this bit is clear no 
overflow occurred.

54:49 Reserved.

55 Trace_ToPA_PMI: A PMI occurred due to a ToPA entry memory buffer 
that was completely filled.

If CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1 && 
CPUID.(EAX=014H, ECX=0):ECX[0] 
= 1

57:56 Reserved.

58 LBR_Frz. LBRs are frozen due to:

• IA32_DEBUGCTL.FREEZE_LBR_ON_PMI=1.
• The LBR stack overflowed.

If CPUID.0AH: EAX[7:0] > 3

59 CTR_Frz. Performance counters in the core PMU are frozen due to:

• IA32_DEBUGCTL.FREEZE_PERFMON_ON_PMI=1.
• One or more core PMU counters overflowed.

If CPUID.0AH: EAX[7:0] > 3

60 ASCI: Data in the performance counters in the core PMU may include 
contributions from the direct or indirect operation Intel SGX to protect an 
enclave.

If CPUID.(EAX=07H, 
ECX=0):EBX[2] = 1

61 Ovf_Uncore: Uncore counter overflow status. If CPUID.0AH: EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer overflow status. If CPUID.0AH: EAX[7:0] > 0

63 CondChgd: Status bits of this register have changed. If CPUID.0AH: EAX[7:0] > 0

Register Address: 38FH, 911 IA32_PERF_GLOBAL_CTRL

Global Performance Counter Control (R/W)

Counter increments while the result of ANDing the respective enable bit in this MSR with the 
corresponding OS or USR bits in the general-purpose or fixed counter control MSR is true.

If CPUID.0AH: EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH: EAX[15:8] > 0

1 EN_PMC1 If CPUID.0AH: EAX[15:8] > 1

2 EN_PMC2 If CPUID.0AH: EAX[15:8] > 2

n EN_PMCn If CPUID.0AH: EAX[15:8] > n

31:n+1 Reserved.

32 EN_FIXED_CTR0 If CPUID.0AH: EDX[4:0] > 0

33 EN_FIXED_CTR1 If CPUID.0AH: EDX[4:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: EDX[4:0] > 2
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32+m EN_FIXED_CTRm If CPUID.0AH:ECX[m] == 1 || 
CPUID.0AH:EDX[4:0] > m

47:33+m Reserved.

48 EN_PERF_METRICS: If this bit is set and fixed counter 3 is effectively 
enabled, built-in performance metrics are enabled.

63:49 Reserved.

Register Address: 390H, 912 IA32_PERF_GLOBAL_STATUS_RESET

Global Performance Counter Overflow Reset Control (R/W) If CPUID.0AH: EAX[7:0] > 3 II 
(CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1 && 
CPUID.(EAX=14H, ECX=0):ECX[0] 
= 1)

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[15:8] > 0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[15:8] > 1

2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.0AH: EAX[15:8] > 2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.0AH: EAX[15:8] > n

31:n Reserved.

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EDX[4:0] > 0

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EDX[4:0] > 2

32+m Set 1 to Clear Ovf_FIXED_CTRm bit. If CPUID.0AH:ECX[m] == 1 || 
CPUID.0AH:EDX[4:0] > m

47:33+m Reserved.

48 RESET_OVF_PERF_METRICS: If this bit is set, it will clear the status bit in 
the IA32_PERF_GLOBAL_STATUS register for the PERF_METRICS 
counters.

54:49 Reserved.

55 Set 1 to Clear Trace_ToPA_PMI bit. If CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1 && 
CPUID.(EAX=014H, ECX=0):ECX[0] 
= 1

57:56 Reserved.

58 Set 1 to Clear LBR_Frz bit. If CPUID.0AH: EAX[7:0] > 3

59 Set 1 to Clear CTR_Frz bit. If CPUID.0AH: EAX[7:0] > 3

58 Set 1 to Clear ASCI bit. If CPUID.0AH: EAX[7:0] > 3

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf bit. If CPUID.0AH: EAX[7:0] > 0

63 Set 1 to clear CondChgd bit. If CPUID.0AH: EAX[7:0] > 0

Register Address: 391H, 913 IA32_PERF_GLOBAL_STATUS_SET
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Global Performance Counter Overflow Set Control (R/W) If CPUID.0AH: EAX[7:0] > 3 II 
(CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1 && 
CPUID.(EAX=014H, ECX=0):ECX[0] 
= 1)

0 Set 1 to cause Ovf_PMC0 = 1. If CPUID.0AH: EAX[7:0] > 3

1 Set 1 to cause Ovf_PMC1 = 1. If CPUID.0AH: EAX[15:8] > 1

2 Set 1 to cause Ovf_PMC2 = 1. If CPUID.0AH: EAX[15:8] > 2

n Set 1 to cause Ovf_PMCn = 1. If CPUID.0AH: EAX[15:8] > n

31:n Reserved.

32 Set 1 to cause Ovf_FIXED_CTR0 = 1. If CPUID.0AH: EAX[7:0] > 3

33 Set 1 to cause Ovf_FIXED_CTR1 = 1. If CPUID.0AH: EAX[7:0] > 3

34 Set 1 to cause Ovf_FIXED_CTR2 = 1. If CPUID.0AH: EAX[7:0] > 3

32+m Set 1 to cause Ovf_FIXED_CTRm = 1. If CPUID.0AH:ECX[m] == 1 || 
CPUID.0AH:EDX[4:0] > m

47:33+m Reserved.

48 SET_OVF_PERF_METRICS: If this bit is set, it will set the status bit in the 
IA32_PERF_GLOBAL_STATUS register for the PERF_METRICS counters.

54:49 Reserved.

55 Set 1 to cause Trace_ToPA_PMI = 1. If CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1 && 
CPUID.(EAX=014H, ECX=0):ECX[0] 
= 1

57:56 Reserved.

58 Set 1 to cause LBR_Frz = 1. If CPUID.0AH: EAX[7:0] > 3

59 Set 1 to cause CTR_Frz = 1. If CPUID.0AH: EAX[7:0] > 3

58 Set 1 to cause ASCI = 1. If CPUID.0AH: EAX[7:0] > 3

61 Set 1 to cause Ovf_Uncore = 1. If CPUID.0AH: EAX[7:0] > 3

62 Set 1 to cause OvfBuf = 1. If CPUID.0AH: EAX[7:0] > 3

63 Reserved.

Register Address: 392H, 914 IA32_PERF_GLOBAL_INUSE

Indicator that core perfmon interface is in use. (R/O) If CPUID.0AH: EAX[7:0] > 3

0 IA32_PERFEVTSEL0 in use.

1 IA32_PERFEVTSEL1 in use. If CPUID.0AH: EAX[15:8] > 1

2 IA32_PERFEVTSEL2 in use. If CPUID.0AH: EAX[15:8] > 2

n IA32_PERFEVTSELn in use. If CPUID.0AH: EAX[15:8] > n

31:n+1 Reserved.

32 IA32_FIXED_CTR0 in use.

33 IA32_FIXED_CTR1 in use.

34 IA32_FIXED_CTR2 in use.
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32+m IA32_FIXED_CTRm in use.

62:33+m Reserved or model specific.

63 PMI in use.

Register Address: 3F1H, 1009 IA32_PEBS_ENABLE

PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0. 06_0FH

3:1 Reserved or model specific.

31:4 Reserved.

35:32 Reserved or model specific.

63:36 Reserved.

Register Address: 400H, 1024 IA32_MC0_CTL

MC0_CTL If IA32_MCG_CAP.CNT >0

Register Address: 401H, 1025 IA32_MC0_STATUS

MC0_STATUS If IA32_MCG_CAP.CNT >0

Register Address: 402H, 1026 IA32_MC0_ADDR1

MC0_ADDR If IA32_MCG_CAP.CNT >0

Register Address: 403H, 1027 IA32_MC0_MISC

MC0_MISC If IA32_MCG_CAP.CNT >0

Register Address: 404H, 1028 IA32_MC1_CTL

MC1_CTL If IA32_MCG_CAP.CNT >1

Register Address: 405H, 1029 IA32_MC1_STATUS

MC1_STATUS If IA32_MCG_CAP.CNT >1

Register Address: 406H, 1030 IA32_MC1_ADDR2

MC1_ADDR If IA32_MCG_CAP.CNT >1

Register Address: 407H, 1031 IA32_MC1_MISC

MC1_MISC If IA32_MCG_CAP.CNT >1

Register Address: 408H, 1032 IA32_MC2_CTL

MC2_CTL If IA32_MCG_CAP.CNT >2

Register Address: 409H, 1033 IA32_MC2_STATUS

MC2_STATUS If IA32_MCG_CAP.CNT >2

Register Address: 40AH, 1034 IA32_MC2_ADDR1

MC2_ADDR If IA32_MCG_CAP.CNT >2

Register Address: 40BH, 1035 IA32_MC2_MISC

MC2_MISC If IA32_MCG_CAP.CNT >2

Register Address: 40CH, 1036 IA32_MC3_CTL

MC3_CTL If IA32_MCG_CAP.CNT >3

Register Address: 40DH, 1037 IA32_MC3_STATUS
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MC3_STATUS If IA32_MCG_CAP.CNT >3

Register Address: 40EH, 1038 IA32_MC3_ADDR1

MC3_ADDR If IA32_MCG_CAP.CNT >3

Register Address: 40FH, 1039 IA32_MC3_MISC

MC3_MISC If IA32_MCG_CAP.CNT >3

Register Address: 410H, 1040 IA32_MC4_CTL

MC4_CTL If IA32_MCG_CAP.CNT >4

Register Address: 411H, 1041 IA32_MC4_STATUS

MC4_STATUS If IA32_MCG_CAP.CNT >4

Register Address: 412H, 1042 IA32_MC4_ADDR1

MC4_ADDR If IA32_MCG_CAP.CNT >4

Register Address: 413H, 1043 IA32_MC4_MISC

MC4_MISC If IA32_MCG_CAP.CNT >4

Register Address: 414H, 1044 IA32_MC5_CTL

MC5_CTL If IA32_MCG_CAP.CNT >5

Register Address: 415H, 1045 IA32_MC5_STATUS

MC5_STATUS If IA32_MCG_CAP.CNT >5

Register Address: 416H, 1046 IA32_MC5_ADDR1

MC5_ADDR If IA32_MCG_CAP.CNT >5

Register Address: 417H, 1047 IA32_MC5_MISC

MC5_MISC If IA32_MCG_CAP.CNT >5

Register Address: 418H, 1048 IA32_MC6_CTL

MC6_CTL If IA32_MCG_CAP.CNT >6

Register Address: 419H, 1049 IA32_MC6_STATUS

MC6_STATUS If IA32_MCG_CAP.CNT >6

Register Address: 41AH, 1050 IA32_MC6_ADDR1

MC6_ADDR If IA32_MCG_CAP.CNT >6

Register Address: 41BH, 1051 IA32_MC6_MISC

MC6_MISC If IA32_MCG_CAP.CNT >6

Register Address: 41CH, 1052 IA32_MC7_CTL

MC7_CTL If IA32_MCG_CAP.CNT >7

Register Address: 41DH, 1053 IA32_MC7_STATUS

MC7_STATUS If IA32_MCG_CAP.CNT >7

Register Address: 41EH, 1054 IA32_MC7_ADDR1

MC7_ADDR If IA32_MCG_CAP.CNT >7

Register Address: 41FH, 1055 IA32_MC7_MISC

MC7_MISC If IA32_MCG_CAP.CNT >7

Table 2-2.  IA-32 Architectural MSRs (Contd.)

Register Address: Hex, Decimal Architectural MSR Name (Former MSR Name)
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Register Address: 420H, 1056 IA32_MC8_CTL

MC8_CTL If IA32_MCG_CAP.CNT >8

Register Address: 421H, 1057 IA32_MC8_STATUS

MC8_STATUS If IA32_MCG_CAP.CNT >8

Register Address: 422H, 1058 IA32_MC8_ADDR1

MC8_ADDR If IA32_MCG_CAP.CNT >8

Register Address: 423H, 1059 IA32_MC8_MISC

MC8_MISC If IA32_MCG_CAP.CNT >8

Register Address: 424H, 1060 IA32_MC9_CTL

MC9_CTL If IA32_MCG_CAP.CNT >9

Register Address: 425H, 1061 IA32_MC9_STATUS

MC9_STATUS If IA32_MCG_CAP.CNT >9

Register Address: 426H, 1062 IA32_MC9_ADDR1

MC9_ADDR If IA32_MCG_CAP.CNT >9

Register Address: 427H, 1063 IA32_MC9_MISC

MC9_MISC If IA32_MCG_CAP.CNT >9

Register Address: 428H, 1064 IA32_MC10_CTL

MC10_CTL If IA32_MCG_CAP.CNT >10

Register Address: 429H, 1065 IA32_MC10_STATUS

MC10_STATUS If IA32_MCG_CAP.CNT >10

Register Address: 42AH, 1066 IA32_MC10_ADDR1

MC10_ADDR If IA32_MCG_CAP.CNT >10

Register Address: 42BH, 1067 IA32_MC10_MISC

MC10_MISC If IA32_MCG_CAP.CNT >10

Register Address: 42CH, 1068 IA32_MC11_CTL

MC11_CTL If IA32_MCG_CAP.CNT >11

Register Address: 42DH, 1069 IA32_MC11_STATUS

MC11_STATUS If IA32_MCG_CAP.CNT >11

Register Address: 42EH, 1070 IA32_MC11_ADDR1

MC11_ADDR If IA32_MCG_CAP.CNT >11

Register Address: 42FH, 1071 IA32_MC11_MISC

MC11_MISC If IA32_MCG_CAP.CNT >11

Register Address: 430H, 1072 IA32_MC12_CTL

MC12_CTL If IA32_MCG_CAP.CNT >12

Register Address: 431H, 1073 IA32_MC12_STATUS

MC12_STATUS If IA32_MCG_CAP.CNT >12

Register Address: 432H, 1074 IA32_MC12_ADDR1

Table 2-2.  IA-32 Architectural MSRs (Contd.)
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MC12_ADDR If IA32_MCG_CAP.CNT >12

Register Address: 433H, 1075 IA32_MC12_MISC

MC12_MISC If IA32_MCG_CAP.CNT >12

Register Address: 434H, 1076 IA32_MC13_CTL

MC13_CTL If IA32_MCG_CAP.CNT >13

Register Address: 435H, 1077 IA32_MC13_STATUS

MC13_STATUS If IA32_MCG_CAP.CNT >13

Register Address: 436H, 1078 IA32_MC13_ADDR1

MC13_ADDR If IA32_MCG_CAP.CNT >13

Register Address: 437H, 1079 IA32_MC13_MISC

MC13_MISC If IA32_MCG_CAP.CNT >13

Register Address: 438H, 1080 IA32_MC14_CTL

MC14_CTL If IA32_MCG_CAP.CNT >14

Register Address: 439H, 1081 IA32_MC14_STATUS

MC14_STATUS If IA32_MCG_CAP.CNT >14

Register Address: 43AH, 1082 IA32_MC14_ADDR1

MC14_ADDR If IA32_MCG_CAP.CNT >14

Register Address: 43BH, 1083 IA32_MC14_MISC

MC14_MISC If IA32_MCG_CAP.CNT >14

Register Address: 43CH, 1084 IA32_MC15_CTL

MC15_CTL If IA32_MCG_CAP.CNT >15

Register Address: 43DH, 1085 IA32_MC15_STATUS

MC15_STATUS If IA32_MCG_CAP.CNT >15

Register Address: 43EH, 1086 IA32_MC15_ADDR1

MC15_ADDR If IA32_MCG_CAP.CNT >15

Register Address: 43FH, 1087 IA32_MC15_MISC

MC15_MISC If IA32_MCG_CAP.CNT >15

Register Address: 440H, 1088 IA32_MC16_CTL

MC16_CTL If IA32_MCG_CAP.CNT >16

Register Address: 441H, 1089 IA32_MC16_STATUS

MC16_STATUS If IA32_MCG_CAP.CNT >16

Register Address: 442H, 1090 IA32_MC16_ADDR1

MC16_ADDR If IA32_MCG_CAP.CNT >16

Register Address: 443H, 1091 IA32_MC16_MISC

MC16_MISC If IA32_MCG_CAP.CNT >16

Register Address: 444H, 1092 IA32_MC17_CTL

MC17_CTL If IA32_MCG_CAP.CNT >17

Table 2-2.  IA-32 Architectural MSRs (Contd.)
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Register Address: 445H, 1093 IA32_MC17_STATUS

MC17_STATUS If IA32_MCG_CAP.CNT >17

Register Address: 446H, 1094 IA32_MC17_ADDR1

MC17_ADDR If IA32_MCG_CAP.CNT >17

Register Address: 447H, 1095 IA32_MC17_MISC

MC17_MISC If IA32_MCG_CAP.CNT >17

Register Address: 448H, 1096 IA32_MC18_CTL

MC18_CTL If IA32_MCG_CAP.CNT >18

Register Address: 449H, 1097 IA32_MC18_STATUS

MC18_STATUS If IA32_MCG_CAP.CNT >18

Register Address: 44AH, 1098 IA32_MC18_ADDR1

MC18_ADDR If IA32_MCG_CAP.CNT >18

Register Address: 44BH, 1099 IA32_MC18_MISC

MC18_MISC If IA32_MCG_CAP.CNT >18

Register Address: 44CH, 1100 IA32_MC19_CTL

MC19_CTL If IA32_MCG_CAP.CNT >19

Register Address: 44DH, 1101 IA32_MC19_STATUS

MC19_STATUS If IA32_MCG_CAP.CNT >19

Register Address: 44EH, 1102 IA32_MC19_ADDR1

MC19_ADDR If IA32_MCG_CAP.CNT >19

Register Address: 44FH, 1103 IA32_MC19_MISC

MC19_MISC If IA32_MCG_CAP.CNT >19

Register Address: 450H, 1104 IA32_MC20_CTL

MC20_CTL If IA32_MCG_CAP.CNT >20

Register Address: 451H, 1105 IA32_MC20_STATUS

MC20_STATUS If IA32_MCG_CAP.CNT >20

Register Address: 452H, 1106 IA32_MC20_ADDR1

MC20_ADDR If IA32_MCG_CAP.CNT >20

Register Address: 453H, 1107 IA32_MC20_MISC

MC20_MISC If IA32_MCG_CAP.CNT >20

Register Address: 454H, 1108 IA32_MC21_CTL

MC21_CTL If IA32_MCG_CAP.CNT >21

Register Address: 455H, 1109 IA32_MC21_STATUS

MC21_STATUS If IA32_MCG_CAP.CNT >21

Register Address: 456H, 1110 IA32_MC21_ADDR1

MC21_ADDR If IA32_MCG_CAP.CNT >21

Register Address: 457H, 1111 IA32_MC21_MISC

Table 2-2.  IA-32 Architectural MSRs (Contd.)
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MC21_MISC If IA32_MCG_CAP.CNT >21

Register Address: 458H, 1112 IA32_MC22_CTL

MC22_CTL If IA32_MCG_CAP.CNT >22

Register Address: 459H, 1113 IA32_MC22_STATUS

MC22_STATUS If IA32_MCG_CAP.CNT >22

Register Address: 45AH, 1114 IA32_MC22_ADDR1

MC22_ADDR If IA32_MCG_CAP.CNT >22

Register Address: 45BH, 1115 IA32_MC22_MISC

MC22_MISC If IA32_MCG_CAP.CNT >22

Register Address: 45CH, 1116 IA32_MC23_CTL

MC23_CTL If IA32_MCG_CAP.CNT >23

Register Address: 45DH, 1117 IA32_MC23_STATUS

MC23_STATUS If IA32_MCG_CAP.CNT >23

Register Address: 45EH, 1118 IA32_MC23_ADDR1

MC23_ADDR If IA32_MCG_CAP.CNT >23

Register Address: 45FH, 1119 IA32_MC23_MISC

MC23_MISC If IA32_MCG_CAP.CNT >23

Register Address: 460H, 1120 IA32_MC24_CTL

MC24_CTL If IA32_MCG_CAP.CNT >24

Register Address: 461H, 1121 IA32_MC24_STATUS

MC24_STATUS If IA32_MCG_CAP.CNT >24

Register Address: 462H, 1122 IA32_MC24_ADDR1

MC24_ADDR If IA32_MCG_CAP.CNT >24

Register Address: 463H, 1123 IA32_MC24_MISC

MC24_MISC If IA32_MCG_CAP.CNT >24

Register Address: 464H, 1124 IA32_MC25_CTL

MC25_CTL If IA32_MCG_CAP.CNT >25

Register Address: 465H, 1125 IA32_MC25_STATUS

MC25_STATUS If IA32_MCG_CAP.CNT >25

Register Address: 466H, 1126 IA32_MC25_ADDR1

MC25_ADDR If IA32_MCG_CAP.CNT >25

Register Address: 467H, 1127 IA32_MC25_MISC

MC25_MISC If IA32_MCG_CAP.CNT >25

Register Address: 468H, 1128 IA32_MC26_CTL

MC26_CTL If IA32_MCG_CAP.CNT >26

Register Address: 469H, 1129 IA32_MC26_STATUS

MC26_STATUS If IA32_MCG_CAP.CNT >26

Table 2-2.  IA-32 Architectural MSRs (Contd.)

Register Address: Hex, Decimal Architectural MSR Name (Former MSR Name)
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Register Address: 46AH, 1130 IA32_MC26_ADDR1

MC26_ADDR If IA32_MCG_CAP.CNT >26

Register Address: 46BH, 1131 IA32_MC26_MISC

MC26_MISC If IA32_MCG_CAP.CNT >26

Register Address: 46CH, 1132 IA32_MC27_CTL

MC27_CTL If IA32_MCG_CAP.CNT >27

Register Address: 46DH, 1133 IA32_MC27_STATUS

MC27_STATUS If IA32_MCG_CAP.CNT >27

Register Address: 46EH, 1134 IA32_MC27_ADDR1

MC27_ADDR If IA32_MCG_CAP.CNT >27

Register Address: 46FH, 1135 IA32_MC27_MISC

MC27_MISC If IA32_MCG_CAP.CNT >27

Register Address: 470H, 1136 IA32_MC28_CTL

MC28_CTL If IA32_MCG_CAP.CNT >28

Register Address: 471H, 1137 IA32_MC28_STATUS

MC28_STATUS If IA32_MCG_CAP.CNT >28

Register Address: 472H, 1138 IA32_MC28_ADDR1

MC28_ADDR If IA32_MCG_CAP.CNT >28

Register Address: 473H, 1139 IA32_MC28_MISC

MC28_MISC If IA32_MCG_CAP.CNT >28

Register Address: 474H, 1140 IA32_MC29_CTL

MC29_CTL If IA32_MCG_CAP.CNT >29

Register Address: 475H, 1141 IA32_MC29_STATUS

MC29_STATUS If IA32_MCG_CAP.CNT >29

Register Address: 476H, 1142 IA32_MC29_ADDR

MC29_ADDR If IA32_MCG_CAP.CNT >29

Register Address: 477H, 1143 IA32_MC29_MISC

MC29_MISC If IA32_MCG_CAP.CNT >29

Register Address: 478H, 1144 IA32_MC30_CTL

MC30_CTL If IA32_MCG_CAP.CNT >30

Register Address: 479H, 1145 IA32_MC30_STATUS

MC30_STATUS If IA32_MCG_CAP.CNT >30

Register Address: 47AH, 1146 IA32_MC30_ADDR

MC30_ADDR If IA32_MCG_CAP.CNT >30

Register Address: 47BH, 1147 IA32_MC30_MISC

MC30_MISC If IA32_MCG_CAP.CNT >30

Register Address: 47CH, 1148 IA32_MC31_CTL

Table 2-2.  IA-32 Architectural MSRs (Contd.)

Register Address: Hex, Decimal Architectural MSR Name (Former MSR Name)
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MC31_CTL If IA32_MCG_CAP.CNT >31

Register Address: 47DH, 1149 IA32_MC31_STATUS

MC31_STATUS If IA32_MCG_CAP.CNT >31

Register Address: 47EH, 1150 IA32_MC31_ADDR

MC31_ADDR If IA32_MCG_CAP.CNT >31

Register Address: 47FH, 1151 IA32_MC31_MISC

MC31_MISC If IA32_MCG_CAP.CNT >31

Register Address: 480H, 1152 IA32_VMX_BASIC

Reporting Register of Basic VMX Capabilities (R/O)

See Appendix A.1, “Basic VMX Information.”

If CPUID.01H:ECX.[5] = 1

Register Address: 481H, 1153 IA32_VMX_PINBASED_CTLS

Capability Reporting Register of Pin-Based VM-Execution Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-Execution Controls.”

If CPUID.01H:ECX.[5] = 1

Register Address: 482H, 1154 IA32_VMX_PROCBASED_CTLS

Capability Reporting Register of Primary Processor-Based VM-Execution Controls (R/O)

See Appendix A.3.2, “Primary Processor-Based VM-Execution Controls.”

If CPUID.01H:ECX.[5] = 1

Register Address: 483H, 1155 IA32_VMX_EXIT_CTLS

Capability Reporting Register of Primary VM-Exit Controls (R/O)

See Appendix A.4.1, “Primary VM-Exit Controls.”

If CPUID.01H:ECX.[5] = 1

Register Address: 484H, 1156 IA32_VMX_ENTRY_CTLS

Capability Reporting Register of VM-Entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If CPUID.01H:ECX.[5] = 1

Register Address: 485H, 1157 IA32_VMX_MISC

Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data.”

If CPUID.01H:ECX.[5] = 1

Register Address: 486H, 1158 IA32_VMX_CR0_FIXED0

Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[5] = 1

Register Address: 487H, 1159 IA32_VMX_CR0_FIXED1

Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[5] = 1

Register Address: 488H, 1160 IA32_VMX_CR4_FIXED0

Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[5] = 1

Register Address: 489H, 1161 IA32_VMX_CR4_FIXED1

Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[5] = 1

Register Address: 48AH, 1162 IA32_VMX_VMCS_ENUM

Table 2-2.  IA-32 Architectural MSRs (Contd.)
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Capability Reporting Register of VMCS Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration.”

If CPUID.01H:ECX.[5] = 1

Register Address: 48BH, 1163 IA32_VMX_PROCBASED_CTLS2

Capability Reporting Register of Secondary Processor-Based VM-Execution Controls (R/O)

See Appendix A.3.3, “Secondary Processor-Based VM-Execution Controls.”

If ( CPUID.01H:ECX.[5] && 
IA32_VMX_PROCBASED_CTLS[63
])

Register Address: 48CH, 1164 IA32_VMX_EPT_VPID_CAP

Capability Reporting Register of EPT and VPID (R/O)

See Appendix A.10, “VPID and EPT Capabilities.”

If ( CPUID.01H:ECX.[5] && 
IA32_VMX_PROCBASED_CTLS[63
] && ( 
IA32_VMX_PROCBASED_CTLS2[3
3] || 
IA32_VMX_PROCBASED_CTLS2[3
7]) )

Register Address: 48DH, 1165 IA32_VMX_TRUE_PINBASED_CTLS

Capability Reporting Register of Pin-Based VM-Execution Flex Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-Execution Controls.”

If ( CPUID.01H:ECX.[5] && 
IA32_VMX_BASIC[55] )

Register Address: 48EH, 1166 IA32_VMX_TRUE_PROCBASED_CTLS

Capability Reporting Register of Primary Processor-Based VM-Execution Flex Controls (R/O)

See Appendix A.3.2, “Primary Processor-Based VM-Execution Controls.”

If( CPUID.01H:ECX.[5] && 
IA32_VMX_BASIC[55] )

Register Address: 48FH, 1167 IA32_VMX_TRUE_EXIT_CTLS

Capability Reporting Register of VM-Exit Flex Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If( CPUID.01H:ECX.[5] && 
IA32_VMX_BASIC[55] )

Register Address: 490H, 1168 IA32_VMX_TRUE_ENTRY_CTLS

Capability Reporting Register of VM-Entry Flex Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If( CPUID.01H:ECX.[5] && 
IA32_VMX_BASIC[55] )

Register Address: 491H, 1169 IA32_VMX_VMFUNC

Capability Reporting Register of VM-Function Controls (R/O) If( CPUID.01H:ECX.[5] && 
IA32_VMX_PROCBASED_CTLS[63
] && 
IA32_VMX_PROCBASED_CTLS2[4
5])

Register Address: 492H, 1170 IA32_VMX_PROCBASED_CTLS3

Capability Reporting Register of Tertiary Processor-Based VM-Execution Controls (R/O)

See Appendix A.3.4, “Tertiary Processor-Based VM-Execution Controls.”

If ( CPUID.01H:ECX.[5] && 
IA32_VMX_PROCBASED_CTLS[49
])

Register Address: 493H, 1171 IA32_VMX_EXIT_CTLS2

Capability Reporting Register of Secondary VM-Exit Controls (R/O)

See Appendix A.4.2, “Secondary VM-Exit Controls.”

If ( CPUID.01H:ECX.[5] && 
IA32_VMX_EXIT_CTLS[63])

Register Address: 4C1H, 1217 IA32_A_PMC0
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Full Width Writable IA32_PMC0 Alias (R/W) If (CPUID.0AH:EAX[15:8] > 0) && 
IA32_PERF_CAPABILITIES[13] = 
1) || 
CPUID.(EAX=23H,ECX=1):EAX[0] = 
1

Register Address: 4C2H, 1218 IA32_A_PMC1

Full Width Writable IA32_PMC1 Alias (R/W) If (CPUID.0AH:EAX[15:8] > 1) && 
IA32_PERF_CAPABILITIES[13] = 
1) || 
CPUID.(EAX=23H,ECX=1):EAX[1] = 
1

Register Address: 4C3H, 1219 IA32_A_PMC2

Full Width Writable IA32_PMC2 Alias (R/W) If (CPUID.0AH:EAX[15:8] > 2) && 
IA32_PERF_CAPABILITIES[13] = 
1) || 
CPUID.(EAX=23H,ECX=1):EAX[2] = 
1

Register Address: 4C4H, 1220 IA32_A_PMC3

Full Width Writable IA32_PMC3 Alias (R/W) If (CPUID.0AH:EAX[15:8] > 3) && 
IA32_PERF_CAPABILITIES[13] = 
1) || 
CPUID.(EAX=23H,ECX=1):EAX[3] = 
1

Register Address: 4C5H, 1221 IA32_A_PMC4

Full Width Writable IA32_PMC4 Alias (R/W) If (CPUID.0AH:EAX[15:8] > 4) && 
IA32_PERF_CAPABILITIES[13] = 
1) || 
CPUID.(EAX=23H,ECX=1):EAX[4] = 
1

Register Address: 4C6H, 1222 IA32_A_PMC5

Full Width Writable IA32_PMC5 Alias (R/W) If (CPUID.0AH:EAX[15:8] > 5) && 
IA32_PERF_CAPABILITIES[13] = 
1) || 
CPUID.(EAX=23H,ECX=1):EAX[5] = 
1

Register Address: 4C7H, 1223 IA32_A_PMC6

Full Width Writable IA32_PMC6 Alias (R/W) If (CPUID.0AH:EAX[15:8] > 6) && 
IA32_PERF_CAPABILITIES[13] = 
1) || 
CPUID.(EAX=23H,ECX=1):EAX[6] = 
1

Register Address: 4C8H, 1224 IA32_A_PMC7

Full Width Writable IA32_PMC7 Alias (R/W) If (CPUID.0AH:EAX[15:8] > 7) && 
IA32_PERF_CAPABILITIES[13] = 
1) || 
CPUID.(EAX=23H,ECX=1):EAX[7] = 
1
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Register Address: 4C9H, 1225 IA32_A_PMC8

Full Width Writable IA32_PMC8 Alias (R/W) If (CPUID.0AH:EAX[15:8] > 8) && 
IA32_PERF_CAPABILITIES[13] = 
1) || 
CPUID.(EAX=23H,ECX=1):EAX[8] = 
1

Register Address: 4CAH, 1226 IA32_A_PMC9

Full Width Writable IA32_PMC9 Alias (R/W) If (CPUID.0AH:EAX[15:8] > 9) && 
IA32_PERF_CAPABILITIES[13] = 
1) || 
CPUID.(EAX=23H,ECX=1):EAX[9] = 
1

Register Address: 4D0H, 1232 IA32_MCG_EXT_CTL

Allows software to signal some MCEs to only a single logical processor in the system. (R/W)

See Section 17.3.1.4, “IA32_MCG_EXT_CTL MSR.”

If IA32_MCG_CAP.LMCE_P =1

0 LMCE_EN

Enable / Disable local machine check exception.

63:1 Reserved.

Register Address: 500H, 1280 IA32_SGX_SVN_STATUS

Status and SVN Threshold of SGX Support for ACM (R/O) If CPUID.(EAX=07H, ECX=0H): 
EBX[2] = 1

0 Lock. See Section 39.11.3, “Interactions 
with Authenticated Code Modules 
(ACMs).”

15:1 Reserved.

23:16 SGX_SVN_SINIT See Section 39.11.3, “Interactions 
with Authenticated Code Modules 
(ACMs).”

63:24 Reserved.

Register Address: 560H, 1376 IA32_RTIT_OUTPUT_BASE

Trace Output Base Register (R/W) If ((CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1) && ( 
(CPUID.(EAX=14H,ECX=0):ECX[0] 
= 1) || 
(CPUID.(EAX=14H,ECX=0):ECX[2] 
= 1) ) )

6:0 Reserved.

MAXPHYADDR4-1:7 Base physical address.

63:MAXPHYADDR Reserved.

Register Address: 561H, 1377 IA32_RTIT_OUTPUT_MASK_PTRS
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Trace Output Mask Pointers Register (R/W) If ((CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1) && ( 
(CPUID.(EAX=14H,ECX=0):ECX[0] 
= 1) || 
(CPUID.(EAX=14H,ECX=0):ECX[2] 
= 1) ) )

6:0 Reserved.

31:7 MaskOrTableOffset.

63:32 Output Offset.

Register Address: 570H, 1392 IA32_RTIT_CTL

Trace Control Register (R/W) If (CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1)

0 TraceEn

1 CYCEn If (CPUID.(EAX=07H, 
ECX=0):EBX[1] = 1)

2 OS

3 User

4 PwrEvtEn If (CPUID.(EAX=07H, 
ECX=1):EBX[5] = 1)

5 FUPonPTW If (CPUID.(EAX=07H, 
ECX=1):EBX[4] = 1)

6 FabricEn If (CPUID.(EAX=07H, 
ECX=0):ECX[3] = 1)

7 CR3Filter If (CPUID.(EAX=14H, 
ECX=0):EBX[0] = 1)

8 ToPA

9 MTCEn If (CPUID.(EAX=07H, 
ECX=0):EBX[3] = 1)

10 TSCEn

11 DisRETC

12 PTWEn If (CPUID.(EAX=07H, 
ECX=1):EBX[4] = 1)

13 BranchEn

17:14 MTCFreq. If (CPUID.(EAX=07H, 
ECX=0):EBX[3] = 1)

18 Reserved, must be zero.

22:19 CycThresh If (CPUID.(EAX=07H, 
ECX=0):EBX[1] = 1)

23 Reserved, must be zero.

27:24 PSBFreq If (CPUID.(EAX=07H, 
ECX=0):EBX[1] = 1)

30:28 Reserved, must be zero.
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31 EventEn If (CPUID.(EAX=14H, 
ECX=0):EBX[7] = 1)

35:32 ADDR0_CFG If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 0)

39:36 ADDR1_CFG If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 1)

43:40 ADDR2_CFG If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 2)

47:44 ADDR3_CFG If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 3)

54:48 Reserved, must be zero.

55 DisTNT If (CPUID.(EAX=14H, 
ECX=0):EBX[8] = 1)

56 InjectPsbPmiOnEnable If (CPUID.(EAX=07H, 
ECX=1):EBX[6] = 1)

63:57 Reserved, must be zero.

Register Address: 571H, 1393 IA32_RTIT_STATUS

Tracing Status Register (R/W) If (CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1)

0 FilterEn (writes ignored). If (CPUID.(EAX=07H, 
ECX=0):EBX[2] = 1)

1 ContexEn (writes ignored).

2 TriggerEn (writes ignored).

3 Reserved.

4 Error

5 Stopped

6 PendPSB If (CPUID.(EAX=07H, 
ECX=0):EBX[6] = 1)

7 PendToPAPMI If (CPUID.(EAX=07H, 
ECX=0):EBX[6] = 1)

31:8 Reserved, must be zero.

48:32 PacketByteCnt If (CPUID.(EAX=07H, 
ECX=0):EBX[1] > 3)

63:49 Reserved.

Register Address: 572H, 1394 IA32_RTIT_CR3_MATCH

Trace Filter CR3 Match Register (R/W) If (CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1)

4:0 Reserved.

63:5 CR3[63:5] value to match.

Register Address: 580H, 1408 IA32_RTIT_ADDR0_A

Region 0 Start Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 0)
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47:0 Virtual Address.

63:48 SignExt_VA

Register Address: 581H, 1409 IA32_RTIT_ADDR0_B

Region 0 End Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 0)

47:0 Virtual Address.

63:48 SignExt_VA

Register Address: 582H, 1410 IA32_RTIT_ADDR1_A

Region 1 Start Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 1)

47:0 Virtual Address.

63:48 SignExt_VA

Register Address: 583H, 1411 IA32_RTIT_ADDR1_B

Region 1 End Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 1)

47:0 Virtual Address.

63:48 SignExt_VA

Register Address: 584H, 1412 IA32_RTIT_ADDR2_A

Region 2 Start Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 2)

47:0 Virtual Address.

63:48 SignExt_VA

Register Address: 585H, 1413 IA32_RTIT_ADDR2_B

Region 2 End Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 2)

47:0 Virtual Address.

63:48 SignExt_VA

Register Address: 586H, 1414 IA32_RTIT_ADDR3_A

Region 3 Start Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 3)

47:0 Virtual Address.

63:48 SignExt_VA

Register Address: 587H, 1415 IA32_RTIT_ADDR3_B

Region 3 End Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 3)

47:0 Virtual Address.

63:48 SignExt_VA

Register Address: 600H, 1536 IA32_DS_AREA
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DS Save Area (R/W) 

Points to the linear address of the first byte of the DS buffer management area, which is used to 
manage the BTS and PEBS buffers.

See Section 21.6.3.4, “Debug Store (DS) Mechanism.”

If( CPUID.01H:EDX.DS[21] = 1 

63:0 The linear address of the first byte of the DS buffer management area, if 
IA-32e mode is active.

31:0 The linear address of the first byte of the DS buffer management area, if 
not in IA-32e mode.

63:32 Reserved if not in IA-32e mode.

Register Address: 6A0H, 1696 IA32_U_CET

Configure User Mode CET (R/W) Bits 1:0 are defined if 
CPUID.(EAX=07H, 
ECX=0H):ECX.CET_SS[07] = 1. 

Bits 5:2 and bits 63:10 are defined 
if CPUID.(EAX=07H, 
ECX=0H):EDX.CET_IBT[20] = 1.

0 SH_STK_EN: When set to 1, enable shadow stacks at CPL3.

1 WR_SHSTK_EN: When set to 1, enables the WRSSD/WRSSQ instructions.

2 ENDBR_EN: When set to 1, enables indirect branch tracking.

3 LEG_IW_EN: Enable legacy compatibility treatment for indirect branch 
tracking.

4 NO_TRACK_EN: When set to 1, enables use of no-track prefix for indirect 
branch tracking.

5 SUPPRESS_DIS: When set to 1, disables suppression of CET indirect 
branch tracking on legacy compatibility.

9:6 Reserved; must be zero.

10 SUPPRESS: When set to 1, indirect branch tracking is suppressed. This bit 
can be written to 1 only if TRACKER is written as IDLE.

11 TRACKER: Value of the indirect branch tracking state machine. Values: 
IDLE (0), WAIT_FOR_ENDBRANCH(1).

63:12 EB_LEG_BITMAP_BASE: Linear address bits 63:12 of a legacy code page 
bitmap used for legacy compatibility when indirect branch tracking is 
enabled.

If the processor does not support Intel 64 architecture, these fields have 
only 32 bits; bits 63:32 of the MSRs are reserved. On processors that 
support Intel 64 architecture this value cannot represent a non-canonical 
address. In protected mode, only 31:0 are used.

Register Address: 6A2H, 1698 IA32_S_CET

Configure Supervisor Mode CET (R/W) See IA32_U_CET (6A0H) for 
reference; similar format.

Register Address: 6A4H, 1700 IA32_PL0_SSP
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Linear address to be loaded into SSP on transition to privilege level 0. (R/W)

If the processor does not support Intel 64 architecture, these fields have only 32 bits; bits 63:32 
of the MSRs are reserved. On processors that support Intel 64 architecture this value cannot 
represent a non-canonical address. In protected mode, only 31:0 are loaded. Bits 1:0 of the MSR 
must be 0. Transitions to privilege level 0 will check that bit 2 is also 0.

If CPUID.(EAX=07H, 
ECX=0H):ECX.CET_SS[07] = 1

Register Address: 6A5H, 1701 IA32_PL1_SSP

Linear address to be loaded into SSP on transition to privilege level 1. (R/W)

If the processor does not support Intel 64 architecture, these fields have only 32 bits; bits 63:32 
of the MSRs are reserved. On processors that support Intel 64 architecture this value cannot 
represent a non-canonical address. In protected mode, only 31:0 are loaded. Bits 1:0 of the MSR 
must be 0. Transitions to privilege level 1 from a higher privilege level will check that bit 2 is also 
0.

If CPUID.(EAX=07H, 
ECX=0H):ECX.CET_SS[07] = 1

Register Address: 6A6H, 1702 IA32_PL2_SSP

Linear address to be loaded into SSP on transition to privilege level 2. (R/W)

If the processor does not support Intel 64 architecture, these fields have only 32 bits; bits 63:32 
of the MSRs are reserved. On processors that support Intel 64 architecture this value cannot 
represent a non-canonical address. In protected mode, only 31:0 are loaded. Bits 1:0 of the MSR 
must be 0. Transitions to privilege level 2 from a higher privilege level will check that bit 2 is also 
0.

If CPUID.(EAX=07H, 
ECX=0H):ECX.CET_SS[07] = 1

Register Address: 6A7H, 1703 IA32_PL3_SSP

Linear address to be loaded into SSP on transition to privilege level 3. (R/W)

If the processor does not support Intel 64 architecture, these fields have only 32 bits; bits 63:32 
of the MSRs are reserved. On processors that support Intel 64 architecture this value cannot 
represent a non-canonical address. In protected mode, only 31:0 are loaded. Bits 1:0 of the MSR 
must be 0.

If CPUID.(EAX=07H, 
ECX=0H):ECX.CET_SS[07] = 1

Register Address: 6A8H, 1704 IA32_INTERRUPT_SSP_TABLE_ADDR

Linear address of a table of seven shadow stack pointers that are selected in IA-32e mode using 
the IST index (when not 0) from the interrupt gate descriptor. (R/W)

This MSR is not present on processors that do not support Intel 64 architecture. This field cannot 
represent a non-canonical address. 

If CPUID.(EAX=07H, 
ECX=0H):ECX.CET_SS[07] = 1

Register Address: 6E0H, 1760 IA32_TSC_DEADLINE

TSC Target of Local APIC’s TSC Deadline Mode (R/W) If CPUID.01H:ECX.[24] = 1 

63:0 REGISTER_VALUE

TSC-deadline value.

Register Address: 6E1H, 1761 IA32_PKRS

Specifies the PK permissions associated with each protection domain for supervisor pages (R/W) If CPUID.(EAX=07H, 
ECX=0H):ECX.PKS [31] = 1

31:0 For domain i (i between 0 and 15), bits 2i and 2i+1 contain the AD and 
WD permissions, respectively.

63:32 Reserved.

Register Address: 770H, 1904 IA32_PM_ENABLE

Enable/disable HWP (R/W) If CPUID.06H:EAX.[7] = 1 
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0 HWP_ENABLE (R/W)

Note this bit can only be enabled once from the default value. Once set, 
writes to the HWP_ENABLE bit are ignored. Only RESET will clear this bit. 
Default = 0. See Section 16.4.2, “Enabling HWP.”

If CPUID.06H:EAX.[7] = 1 

63:1 Reserved.

Register Address: 771H, 1905 IA32_HWP_CAPABILITIES

HWP Performance Range Enumeration (R/O) If CPUID.06H:EAX.[7] = 1 

7:0 Highest_Performance 

See Section 16.4.3, “HWP Performance Range and Dynamic Capabilities.”

If CPUID.06H:EAX.[7] = 1 

15:8 Guaranteed_Performance 

See Section 16.4.3, “HWP Performance Range and Dynamic Capabilities.”

If CPUID.06H:EAX.[7] = 1 

23:16 Most_Efficient_Performance 

See Section 16.4.3, “HWP Performance Range and Dynamic Capabilities”.

If CPUID.06H:EAX.[7] = 1 

31:24 Lowest_Performance 

See Section 16.4.3, “HWP Performance Range and Dynamic Capabilities.”

If CPUID.06H:EAX.[7] = 1 

63:32 Reserved.

Register Address: 772H, 1906 IA32_HWP_REQUEST_PKG

Power Management Control Hints for All Logical Processors in a Package (R/W) If CPUID.06H:EAX.[11] = 1 

7:0 Minimum_Performance 

See Section 16.4.4, “Managing HWP.”

If CPUID.06H:EAX.[11] = 1 

15:8 Maximum_Performance 

See Section 16.4.4, “Managing HWP.”

If CPUID.06H:EAX.[11] = 1 

23:16 Desired_Performance 

See Section 16.4.4, “Managing HWP.”

If CPUID.06H:EAX.[11] = 1 

31:24 Energy_Performance_Preference 

See Section 16.4.4, “Managing HWP.”

If CPUID.06H:EAX.[11] = 1 && 

CPUID.06H:EAX.[10] = 1

41:32 Activity_Window 

See Section 16.4.4, “Managing HWP.”

If CPUID.06H:EAX.[11] = 1 && 

CPUID.06H:EAX.[9] = 1

63:42 Reserved.

Register Address: 773H, 1907 IA32_HWP_INTERRUPT

Control HWP Native Interrupts (R/W) If CPUID.06H:EAX.[8] = 1 

0 EN_Guaranteed_Performance_Change

See Section 16.4.6, “HWP Notifications.”

If CPUID.06H:EAX.[8] = 1 

1 EN_Excursion_Minimum

See Section 16.4.6, “HWP Notifications.”

If CPUID.06H:EAX.[8] = 1 

63:2 Reserved.

Register Address: 774H, 1908 IA32_HWP_REQUEST

Power Management Control Hints to a Logical Processor (R/W) If CPUID.06H:EAX.[7] = 1

7:0 Minimum_Performance

See Section 16.4.4, “Managing HWP.”

If CPUID.06H:EAX.[7] = 1 
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15:8 Maximum_Performance 

See Section 16.4.4, “Managing HWP.”

If CPUID.06H:EAX.[7] = 1 

23:16 Desired_Performance 

See Section 16.4.4, “Managing HWP.”

If CPUID.06H:EAX.[7] = 1 

31:24 Energy_Performance_Preference 

See Section 16.4.4, “Managing HWP.”

If CPUID.06H:EAX.[7] = 1 && 
CPUID.06H:EAX.[10] = 1 

41:32 Activity_Window 

See Section 16.4.4, “Managing HWP.”

If CPUID.06H:EAX.[7] = 1 && 
CPUID.06H:EAX.[9] = 1 

42 Package_Control 

See Section 16.4.4, “Managing HWP.”

If CPUID.06H:EAX.[7] = 1 && 
CPUID.06H:EAX.[11] = 1 

63:43 Reserved.

Register Address: 775H, 1909 IA32_PECI_HWP_REQUEST_INFO

IA32_PECI_HWP_REQUEST_INFO

7:0 Minimum Performance (MINIMUM_PERFORMANCE): Used by OS to read 
the latest value of PECI minimum performance input. Default value is 0.

15:8 Maximum Performance (MAXIMUM_PERFORMANCE): Used by OS to read 
the latest value of PECI maximum performance input. Default value is 0.

23:16 Reserved.

31:24 Energy Performance Preference 
(ENERGY_PERFORMANCE_PREFERENCE): Used by OS to read the latest 
value of PECI Energy Performance Preference input. Default value is 0.

59:32 Reserved.

60 EPP PECI Override (EPP_PECI_OVERRIDE):

Indicates whether PECI is currently overriding the Energy Performance 
Preference input. If set to ‘1’, PECI is overriding the Energy Performance 
Preference input. If clear (0), OS has control over Energy Performance 
Preference input. Default value is 0.

61 Reserved.

62 Max PECI Override (MAX_PECI_OVERRIDE):

Indicates whether PECI is currently overriding the Maximum 
Performance input. If set to ‘1’, PECI is overriding the Maximum 
Performance input. If clear (0), OS has control over Maximum 
Performance input. Default value is 0.

63 Min PECI Override (MIN_PECI_OVERRIDE):

Indicates whether PECI is currently overriding the Minimum Performance 
input. If set to ‘1’, PECI is overriding the Minimum Performance input. If 
clear (0), OS has control over Minimum Performance input. Default value 
is 0.

Register Address: 776H, 1910 IA32_HWP_CTL

IA32_HWP_CTL If CPUID.06H:EAX.[22] = 1 
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0 PKG_CTL_POLARITY 

Defines which HWP Request MSR is used whether Thread level or 
package level. When package MSR is used, the thread MSR valid bits 
define which thread MSR fields override the package.

Default value is 0.

If CPUID.06H:EAX.[22] = 1 

63:1 Reserved.

Register Address: 777H, 1911 IA32_HWP_STATUS

Log bits indicating changes to Guaranteed & excursions to Minimum (R/W) If CPUID.06H:EAX.[7] = 1 

0 Guaranteed_Performance_Change (R/WC0)

See Section 16.4.5, “HWP Feedback.”

If CPUID.06H:EAX.[7] = 1 

1 Reserved.

2 Excursion_To_Minimum (R/WC0)

See Section 16.4.5, “HWP Feedback.”

If CPUID.06H:EAX.[7] = 1 

63:3 Reserved.

Register Address: 7A3H, 1955 IA32_MCU_EXT_SERVICE

MCU Extended Service (R/O) If IA32_ARCH_CAPABILITIES[22] = 
1

3:0 ALLOWED_PERIODS

Value indicates the allowed periods for extended servicing. Value x 
means that all extended servicing periods are allowed till period x.

63:4 Reserved.

Register Address: 7A4H, 1956 IA32_MCU_ROLLBACK_MIN_ID

Minimal MCU Revision ID (R/O)

Minimal MCU Revision ID that software can rollback to per boot.

If IA32_MCU_ENUMERATION[3] = 
1

31:0 REVISION_ID

Minimal MCU revision ID for rollback.

63:32 Reserved for future use.

Register Address: 7A5H, 1957 IA32_MCU_STAGING_MBOX_ADDR

IA32_MCU_STAGING_MBOX_ADDR (R/O)

Reports MMIO address of MCU staging DOE mailbox.

63:0 ADDR

MMIO address base of MCU staging DOE mailbox.

Register Address: 7B0H, 1968 IA32_ROLLBACK_SIGN_ID_0

Rollback ID 0 (R/O)

Holds the Revision ID and SVN of a supported rollback target or 0 if none.

If IA32_MCU_ENUMERATION[3] = 
1

31:0 MCU_ROLLBACK_ID

MCU supported Rollback ID.

47:32 ROLLBACK_MCU_SVN

MCU SVN corresponding to the reported MCU Rollback ID.

63:48 Reserved.
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Register Address: 7B1H, 1969 IA32_ROLLBACK_SIGN_ID_1

Rollback ID 1 (R/O)

Holds the Revision ID and SVN of a supported rollback target or 0 if none.

If IA32_MCU_ENUMERATION[3] = 
1

31:0 MCU_ROLLBACK_ID

MCU supported Rollback ID.

47:32 ROLLBACK_MCU_SVN

MCU SVN corresponding to the reported MCU Rollback ID.

63:48 Reserved.

Register Address: 7B2H, 1970 IA32_ROLLBACK_SIGN_ID_2

Rollback ID 2 (R/O)

Holds the Revision ID and SVN of a supported rollback target or 0 if none.

If IA32_MCU_ENUMERATION[3] = 
1

31:0 MCU_ROLLBACK_ID

MCU supported Rollback ID.

47:32 ROLLBACK_MCU_SVN

MCU SVN corresponding to the reported MCU Rollback ID.

63:48 Reserved.

Register Address: 7B3H, 1971 IA32_ROLLBACK_SIGN_ID_3

Rollback ID 3 (R/O)

Holds the Revision ID and SVN of a supported rollback target or 0 if none.

If IA32_MCU_ENUMERATION[3] = 
1

31:0 MCU_ROLLBACK_ID

MCU supported Rollback ID.

47:32 ROLLBACK_MCU_SVN

MCU SVN corresponding to the reported MCU Rollback ID.

63:48 Reserved.

Register Address: 7B4H, 1972 IA32_ROLLBACK_SIGN_ID_4

Rollback ID 4 (R/O)

Holds the Revision ID and SVN of a supported rollback target or 0 if none.

If IA32_MCU_ENUMERATION[3] = 
1

31:0 MCU_ROLLBACK_ID

MCU supported Rollback ID.

47:32 ROLLBACK_MCU_SVN

MCU SVN corresponding to the reported MCU Rollback ID.

63:48 Reserved.

Register Address: 7B5H, 1973 IA32_ROLLBACK_SIGN_ID_5

Rollback ID 5 (R/O)

Holds the Revision ID and SVN of a supported rollback target or 0 if none.

If IA32_MCU_ENUMERATION[3] = 
1

31:0 MCU_ROLLBACK_ID

MCU supported Rollback ID.

47:32 ROLLBACK_MCU_SVN

MCU SVN corresponding to the reported MCU Rollback ID.
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63:48 Reserved.

Register Address: 7B6H, 1974 IA32_ROLLBACK_SIGN_ID_6

Rollback ID 6 (R/O)

Holds the Revision ID and SVN of a supported rollback target or 0 if none.

If IA32_MCU_ENUMERATION[3] = 
1

31:0 MCU_ROLLBACK_ID

MCU supported Rollback ID.

47:32 ROLLBACK_MCU_SVN

MCU SVN corresponding to the reported MCU Rollback ID.

63:48 Reserved.

Register Address: 7B7H, 1975 IA32_ROLLBACK_SIGN_ID_7

Rollback ID 7 (R/O)

Holds the Revision ID and SVN of a supported rollback target or 0 if none.

If IA32_MCU_ENUMERATION[3] = 
1

31:0 MCU_ROLLBACK_ID

MCU supported Rollback ID.

47:32 ROLLBACK_MCU_SVN

MCU SVN corresponding to the reported MCU Rollback ID.

63:48 Reserved.

Register Address: 7B8H, 1976 IA32_ROLLBACK_SIGN_ID_8

Rollback ID 8 (R/O)

Holds the Revision ID and SVN of a supported rollback target or 0 if none.

If IA32_MCU_ENUMERATION[3] = 
1

31:0 MCU_ROLLBACK_ID

MCU supported Rollback ID.

47:32 ROLLBACK_MCU_SVN

MCU SVN corresponding to the reported MCU Rollback ID.

63:48 Reserved.

Register Address: 7B9H, 1977 IA32_ROLLBACK_SIGN_ID_9

Rollback ID 9 (R/O)

Holds the Revision ID and SVN of a supported rollback target or 0 if none.

If IA32_MCU_ENUMERATION[3] = 
1

31:0 MCU_ROLLBACK_ID

MCU supported Rollback ID.

47:32 ROLLBACK_MCU_SVN

MCU SVN corresponding to the reported MCU Rollback ID.

63:48 Reserved.

Register Address: 7BAH, 1978 IA32_ROLLBACK_SIGN_ID_10

Rollback ID 10 (R/O)

Holds the Revision ID and SVN of a supported rollback target or 0 if none.

If IA32_MCU_ENUMERATION[3] = 
1

31:0 MCU_ROLLBACK_ID

MCU supported Rollback ID.
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47:32 ROLLBACK_MCU_SVN

MCU SVN corresponding to the reported MCU Rollback ID.

63:48 Reserved.

Register Address: 7BBH, 1979 IA32_ROLLBACK_SIGN_ID_11

Rollback ID 11 (R/O)

Holds the Revision ID and SVN of a supported rollback target or 0 if none.

If IA32_MCU_ENUMERATION[3] = 
1

31:0 MCU_ROLLBACK_ID

MCU supported Rollback ID.

47:32 ROLLBACK_MCU_SVN

MCU SVN corresponding to the reported MCU Rollback ID.

63:48 Reserved.

Register Address: 7BCH, 1980 IA32_ROLLBACK_SIGN_ID_12

Rollback ID 12 (R/O)

Holds the Revision ID and SVN of a supported rollback target or 0 if none.

If IA32_MCU_ENUMERATION[3] = 
1

31:0 MCU_ROLLBACK_ID

MCU supported Rollback ID.

47:32 ROLLBACK_MCU_SVN

MCU SVN corresponding to the reported MCU Rollback ID.

63:48 Reserved.

Register Address: 7BDH, 1981 IA32_ROLLBACK_SIGN_ID_13

Rollback ID 13 (R/O)

Holds the Revision ID and SVN of a supported rollback target or 0 if none.

If IA32_MCU_ENUMERATION[3] = 
1

31:0 MCU_ROLLBACK_ID

MCU supported Rollback ID.

47:32 ROLLBACK_MCU_SVN

MCU SVN corresponding to the reported MCU Rollback ID.

63:48 Reserved.

Register Address: 7BEH, 1982 IA32_ROLLBACK_SIGN_ID_14

Rollback ID 14 (R/O)

Holds the Revision ID and SVN of a supported rollback target or 0 if none.

If IA32_MCU_ENUMERATION[3] = 
1

31:0 MCU_ROLLBACK_ID

MCU supported Rollback ID.

47:32 ROLLBACK_MCU_SVN

MCU SVN corresponding to the reported MCU Rollback ID.

63:48 Reserved.

Register Address: 7BFH, 1983 IA32_ROLLBACK_SIGN_ID_15

Rollback ID 15 (R/O)

Holds the Revision ID and SVN of a supported rollback target or 0 if none.

If IA32_MCU_ENUMERATION[3] = 
1

Table 2-2.  IA-32 Architectural MSRs (Contd.)

Register Address: Hex, Decimal Architectural MSR Name (Former MSR Name)

Bit Fields MSR/Bit Description Comment
2-58 Vol. 4



MODEL-SPECIFIC REGISTERS (MSRS)
31:0 MCU_ROLLBACK_ID

MCU supported Rollback ID.

47:32 ROLLBACK_MCU_SVN

MCU SVN corresponding to the reported MCU Rollback ID.

63:48 Reserved.

Register Address: 802H, 2050 IA32_X2APIC_APICID

x2APIC ID Register (R/O) If CPUID.01H:ECX[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 803H, 2051 IA32_X2APIC_VERSION

x2APIC Version Register (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 808H, 2056 IA32_X2APIC_TPR

x2APIC Task Priority Register (R/W) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 80AH, 2058 IA32_X2APIC_PPR

x2APIC Processor Priority Register (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 80BH, 2059 IA32_X2APIC_EOI

x2APIC EOI Register (W/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 80DH, 2061 IA32_X2APIC_LDR

x2APIC Logical Destination Register (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 80FH, 2063 IA32_X2APIC_SIVR

x2APIC Spurious Interrupt Vector Register (R/W) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 810H, 2064 IA32_X2APIC_ISR0

x2APIC In-Service Register Bits 31:0 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 811H, 2065 IA32_X2APIC_ISR1

x2APIC In-Service Register Bits 63:32 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 812H, 2066 IA32_X2APIC_ISR2

x2APIC In-Service Register Bits 95:64 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 813H, 2067 IA32_X2APIC_ISR3

x2APIC In-Service Register Bits 127:96 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 814H, 2068 IA32_X2APIC_ISR4

x2APIC In-Service Register Bits 159:128 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1
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Register Address: 815H, 2069 IA32_X2APIC_ISR5

x2APIC In-Service Register Bits 191:160 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 816H, 2070 IA32_X2APIC_ISR6

x2APIC In-Service Register Bits 223:192 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 817H, 2071 IA32_X2APIC_ISR7

x2APIC In-Service Register Bits 255:224 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 818H, 2072 IA32_X2APIC_TMR0

x2APIC Trigger Mode Register Bits 31:0 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 819H, 2073 IA32_X2APIC_TMR1

x2APIC Trigger Mode Register Bits 63:32 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 81AH, 2074 IA32_X2APIC_TMR2

x2APIC Trigger Mode Register Bits 95:64 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 81BH, 2075 IA32_X2APIC_TMR3

x2APIC Trigger Mode Register Bits 127:96 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 81CH, 2076 IA32_X2APIC_TMR4

x2APIC Trigger Mode Register Bits 159:128 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 81DH, 2077 IA32_X2APIC_TMR5

x2APIC Trigger Mode Register Bits 191:160 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 81EH, 2078 IA32_X2APIC_TMR6

x2APIC Trigger Mode Register Bits 223:192 (R/O) If ( CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1)

Register Address: 81FH, 2079 IA32_X2APIC_TMR7

x2APIC Trigger Mode Register Bits 255:224 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 820H, 2080 IA32_X2APIC_IRR0

x2APIC Interrupt Request Register Bits 31:0 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 821H, 2081 IA32_X2APIC_IRR1

x2APIC Interrupt Request Register Bits 63:32 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 822H, 2082 IA32_X2APIC_IRR2

x2APIC Interrupt Request Register Bits 95:64 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1
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Register Address: 823H, 2083 IA32_X2APIC_IRR3

x2APIC Interrupt Request Register Bits 127:96 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 824H, 2084 IA32_X2APIC_IRR4

x2APIC Interrupt Request Register Bits 159:128 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 825H, 2085 IA32_X2APIC_IRR5

x2APIC Interrupt Request Register Bits 191:160 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 826H, 2086 IA32_X2APIC_IRR6

x2APIC Interrupt Request Register Bits 223:192 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 827H, 2087 IA32_X2APIC_IRR7

x2APIC Interrupt Request Register Bits 255:224 (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 828H, 2088 IA32_X2APIC_ESR

x2APIC Error Status Register (R/W) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 82FH, 2095 IA32_X2APIC_LVT_CMCI

x2APIC LVT Corrected Machine Check Interrupt Register (R/W) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 830H, 2096 IA32_X2APIC_ICR

x2APIC Interrupt Command Register (R/W) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 832H, 2098 IA32_X2APIC_LVT_TIMER

x2APIC LVT Timer Interrupt Register (R/W) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 833H, 2099 IA32_X2APIC_LVT_THERMAL

x2APIC LVT Thermal Sensor Interrupt Register (R/W) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 834H, 2100 IA32_X2APIC_LVT_PMI

x2APIC LVT Performance Monitor Interrupt Register (R/W) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 835H, 2101 IA32_X2APIC_LVT_LINT0

x2APIC LVT LINT0 Register (R/W) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 836H, 2102 IA32_X2APIC_LVT_LINT1

x2APIC LVT LINT1 Register (R/W) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 837H, 2103 IA32_X2APIC_LVT_ERROR

x2APIC LVT Error Register (R/W) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1
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Register Address: 838H, 2104 IA32_X2APIC_INIT_COUNT

x2APIC Initial Count Register (R/W) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 839H, 2105 IA32_X2APIC_CUR_COUNT

x2APIC Current Count Register (R/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 83EH, 2110 IA32_X2APIC_DIV_CONF

x2APIC Divide Configuration Register (R/W) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 83FH, 2111 IA32_X2APIC_SELF_IPI

x2APIC Self IPI Register (W/O) If CPUID.01H:ECX.[21] = 1 && 
IA32_APIC_BASE.[10] = 1

Register Address: 981H, 2433 IA32_TME_CAPABILITY

Memory Encryption Capability MSR If CPUID.07H:ECX.[13] = 1

0 Support for AES-XTS 128-bit encryption algorithm.

(NIST standard)

1 Support for AES-XTS 128-bit encryption with integrity algorithm.

2 Support for AES-XTS 256-bit encryption algorithm.

29:3 Reserved.

30 SUPPORT_IA32_TME_CLEAR_SAVED_KEY

Support for the IA32_TME_CLEAR_SAVED_KEY MSR.

31 TME encryption bypass supported.

35:32 MK_TME_MAX_KEYID_BITS

Number of bits which can be allocated for usage as key identifiers for 
multi-key memory encryption.

4 bits allow for a maximum value of 15, which could address 32K keys.

Zero if TME-MK is not supported.

50:36 MK_TME_MAX_KEYS

Indicates the maximum number of keys which are available for usage.

This value may not be a power of 2.

KeyID 0 is specially reserved and is not accounted for in this field.

63:51 Reserved.

Register Address: 982H, 2434 IA32_TME_ACTIVATE

Memory Encryption Activation MSR

This MSR is used to lock the MSRs listed below. Any write to the following MSRs will be ignored 
after they are locked. The lock is reset when CPU is reset.

• IA32_TME_ACTIVATE

• IA32_TME_EXCLUDE_MASK

• IA32_TME_EXCLUDE_BASE

Note that IA32_TME_EXCLUDE_MASK and IA32_TME_EXCLUDE_BASE must be configured before 
IA32_TME_ACTIVATE.

If CPUID.07H:ECX.[13] = 1
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0 Lock R/O – Will be set upon successful WRMSR (or first SMI); written 
value ignored.

1 Hardware Encryption Enable

This bit also enables TME-MK; TME-MK cannot be enabled without 
enabling encryption hardware.

2 Key Select

0: Create a new TME key (expected cold/warm boot).

1: Restore the TME key from storage (Expected when resume from 
standby).

3 Save TME Key for Standby 

Save key into storage to be used when resume from standby.

Note: This may not be supported in all processors.

7:4 TME Policy/Encryption Algorithm

Only algorithms enumerated in IA32_TME_CAPABILITY are allowed.

For example: 

0000 – AES-XTS-128.

0001 – AES-XTS-128 with integrity.

0010 – AES-XTS-256.

Other values are invalid.

30:8 Reserved.

31 TME Encryption Bypass Enable

When encryption hardware is enabled:

• Total Memory Encryption is enabled using a CPU generated ephemeral 
key based on a hardware random number generator when this bit is 
set to 0.

• Total Memory Encryption is bypassed (no encryption/decryption for 
KeyID0) when this bit is set to 1. 

Software must inspect Hardware Encryption Enable (bit 1) and TME 
encryption bypass Enable (bit 31) to determine if TME encryption is 
enabled.

35:32 MK_TME_KEYID_BITS

Reserved if TME-MK is not enumerated, otherwise:

The number of key identifier bits to allocate to TME-MK usage. Similar to 
enumeration, this is an encoded value.

Writing a value greater than MK_TME_MAX_KEYID_BITS will result in 
#GP.

Writing a non-zero value to this field will #GP if bit 1 of EAX (Hardware 
Encryption Enable) is not also set to ‘1, as encryption hardware must be 
enabled to use TME-MK.

Example: To support 255 keys, this field would be set to a value of 8.

47:36 Reserved.
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63:48 MK_TME_CRYPTO_ALGS

Reserved if TME-MK is not enumerated, otherwise:

Bit 48: AES-XTS 128.

Bit 49: AES-XTS 128 with integrity.

Bit 50: AES-XTS 256.

Bit 63:51: Reserved (#GP)

Bitmask for BIOS to set which encryption algorithms are allowed for 
TME-MK, would be later enforced by the key loading ISA (‘1 = allowed).

Register Address: 983H, 2435 IA32_TME_EXCLUDE_MASK

Memory Encryption Exclude Mask If CPUID.07H:ECX.[13] = 1

10:0 Reserved.

11 Enable: When set to ‘1’, then TME_EXCLUDE_BASE and 
TME_EXCLUDE_MASK are used to define an exclusion region for 
TME/TME-MK (for KeyID=0).

MAXPHYADDR-1:12 TMEEMASK: This field indicates the bits that must match TMEEBASE in 
order to qualify as a TME/TME-MK (for KeyID=0) exclusion memory range 
access.

63:MAXPHYADDR Reserved; must be zero.

Register Address: 984H, 2436 IA32_TME_EXCLUDE_BASE

Memory Encryption Exclude Base IF CPUID.07H:ECX.[13] = 1

11:0 Reserved.

MAXPHYADDR-1:12 TMEEBASE: Base physical address to be excluded for TME/TME-MK (for 
KeyID=0) encryption.

63:MAXPHYADDR Reserved; must be zero.

Register Address: 985H, 2437 IA32_UINTR_RR

User Interrupt Request Register (R/W) IF CPUID.07H.01H:EDX[13]=1

63:0 UIRR

Bitmap of requested user interrupt vectors.

Register Address: 986H, 2438 IA32_UINTR_HANDLER

User Interrupt Handler Address (R/W) IF CPUID.07H.01H:EDX[13]=1

63:0 UIHANDLER

User interrupt handler linear address.

Register Address: 987H, 2439 IA32_UINTR_STACKADJUST

User Interrupt Stack Adjustment (R/W) IF CPUID.07H.01H:EDX[13]=1

0 LOAD_RSP

User interrupt stack mode.

2:1 Reserved.

63:3 STACK_ADJUST

Stack adjust value.

Register Address: 988H, 2440 IA32_UINTR_MISC

User-Interrupt Target-Table Size and Notification Vector (R/W) If CPUID.07H.01H:EDX[13]=1
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31:0 UITTSZ

The highest index of a valid entry in the user-interrupt target table. Valid 
entries are indices 0..UITTSZ (inclusive).

39:32 UINV

User-interrupt notification vector.

63:40 Reserved.

Register Address: 989H, 2441 IA32_UINTR_PD

User Interrupt PID Address (R/W) If CPUID.07H.01H:EDX[13]=1

5:0 Reserved.

63:6 UPIDADDR

User-interrupt notification processing accesses a UPID at this linear 
address.

Register Address: 98AH, 2442 IA32_UINTR_TT

User-Interrupt Target Table (R/W) If CPUID.07H.01H:EDX[13]=1

0 SENDUIPI_ENABLE

User-interrupt target table is valid.

3:1 Reserved.

63:4 UITTADDR

User-interrupt target table base linear address.

Register Address: 990H, 2448 IA32_COPY_STATUS5

Status of Most Recent Platform to Local or Local to Platform Copies (R/O) If ((CPUID.19H:EBX[4] = 1) && 
(CPUID.(07H,0).ECX[23] = 1))

0 IWKEY_COPY_SUCCESSFUL

Status of most recent copy to or from IWKeyBackup.

If ((CPUID.19H:EBX[4] = 1) && 
(CPUID.(07H,0).ECX[23] = 1))

63:1 Reserved.

Register Address: 991H, 2449 IA32_IWKEYBACKUP_STATUS5

Information about IWKeyBackup Register (R/O) If ((CPUID.19H:EBX[4] = 1) && 
(CPUID.(07H,0).ECX[23] =1))

0 Backup/Restore Valid

Cleared when a write to IWKeyBackup is initiated, and then set when the 
latest write of IWKeyBackup has been written to storage that persists 
across S3/S4 sleep state. If S3/S4 is entered between when an 
IWKeyBackup write occurs and when this bit is set, then IWKeyBackup 
may not be recovered after S3/S4 exit. During S3/S4 sleep state exit 
(system wake up), this bit is cleared. It is set again when IWKeyBackup is 
restored from persistent storage and thus available to be copied to 
IWKey using IA32_COPY_PLATFORM_TO_LOCAL MSR. Another write to 
IWKeyBackup (via IA32_COPY_LOCAL_TO_PLATFORM MSR) may fail if a 
previous write has not yet set this bit.

IF ((CPUID.19H:EBX[4] = 1) && 
(CPUID.(07H,0).ECX[23] =1))

1 Reserved.

2 Backup Key Storage Read/Write Error

Updated prior to backup/restore valid being set. Set when an error is 
encountered while backing up or restoring a key to persistent storage.

IF ((CPUID.19H:EBX[4] = 1) && 
(CPUID.(07H,0).ECX[23] =1))
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3 IWKeyBackup Consumed

Set after the previous backup operation has been consumed by the 
platform. This does not indicate that the system is ready for a second 
IWKeyBackup write as the previous IWKeyBackup write may still need to 
set Backup/restore valid.

IF ((CPUID.19H:EBX[4] = 1) && 
(CPUID.(07H,0).ECX[23] =1))

63:4 Reserved.

Register Address: 9FBH, 2555 IA32_TME_CLEAR_SAVED_KEY

IA32_TME_CLEAR_SAVED_KEY (W/O)

0 TME_CLEAR_SAVED_KEY

Clear saved TME keys.

63:1 Reserved.

Register Address: C80H, 3200 IA32_DEBUG_INTERFACE

Silicon Debug Feature Control (R/W) If CPUID.01H:ECX.[11] = 1 

0 Enable (R/W)

BIOS set 1 to enable Silicon debug features. Default is 0.

If CPUID.01H:ECX.[11] = 1 

29:1 Reserved.

30 Lock (R/W): If 1, locks any further change to the MSR. The lock bit is set 
automatically on the first SMI assertion even if not explicitly set by BIOS. 
Default is 0.

If CPUID.01H:ECX.[11] = 1 

31 Debug Occurred (R/O): This “sticky bit” is set by hardware to indicate the 
status of bit 0. Default is 0.

If CPUID.01H:ECX.[11] = 1 

63:32 Reserved.

Register Address: C81H, 3201 IA32_L3_QOS_CFG

L3 QOS Configuration (R/W) If (CPUID.(EAX=10H, 
ECX=1):ECX.[2] = 1)

0 Enable (R/W)

Set 1 to enable L3 CAT masks and CLOS to operate in Code and Data 
Prioritization (CDP) mode.

63:1 Reserved. Attempts to write to reserved bits result in a #GP(0).

Register Address: C82H, 3202 IA32_L2_QOS_CFG

L2 QOS Configuration (R/W) If (CPUID.(EAX=10H, 
ECX=2):ECX.[2] = 1)

0 Enable (R/W)

Set 1 to enable L2 CAT masks and CLOS to operate in Code and Data 
Prioritization (CDP) mode.

63:1 Reserved. Attempts to write to reserved bits result in a #GP(0).

Register Address: C83H, 3203 IA32_L3_IO_QOS_CFG

L3 I/O QOS Configuration (R/W)

This MSR is used to enable the I/O RDT features.

If (CPUID.(EAX=0FH, 
ECX=1):EAX.[10:9] = 1)

0 L3 I/O RDT Allocation Enable.

1 L3 I/O RDT Monitoring Enable.
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63:2 Reserved.

Register Address: C88H, 3208 IA32_RESOURCE_PRIORITY

Thread scope Resource Priority Enable (R/W)

0 ENABLE

When set, enables model specific features that can be used to create a 
Resource Priority mode.

63:1 Reserved.

Register Address: C89H, 3209 IA32_RESOURCE_PRIORITY_PKG

IA32_RESOURCE_PRIORITY_PKG (R/W)

0 ENABLE

Enable Resource Priority feature.

63:1 Reserved.

Register Address: C8DH, 3213 IA32_QM_EVTSEL

Monitoring Event Select Register (R/W) If (CPUID.(EAX=07H, 
ECX=0):EBX.[12] = 1)

7:0 Event ID: ID of a supported monitoring event to report via IA32_QM_CTR.

31: 8 Reserved.

N+31:32 Resource Monitoring ID: ID for monitoring hardware to report monitored 
data via IA32_QM_CTR.

N = Ceil (Log2 (CPUID.(EAX= 0FH, 
ECX=0H).EBX[31:0] +1))

63:N+32 Reserved.

Register Address: C8EH, 3214 IA32_QM_CTR

Monitoring Counter Register (R/O) If (CPUID.(EAX=07H, 
ECX=0):EBX.[12] = 1)

61:0 Resource Monitored Data.

62 Unavailable: If 1, indicates data for this RMID is not available or not 
monitored for this resource or RMID.

63 Error: If 1, indicates an unsupported RMID or event type was written to 
IA32_PQR_QM_EVTSEL.

Register Address: C8FH, 3215 IA32_PQR_ASSOC

Resource Association Register (R/W) If ((CPUID.(EAX=07H, 
ECX=0):EBX[12] =1) or 
(CPUID.(EAX=07H, 
ECX=0):EBX[15] =1))

N-1:0 Resource Monitoring ID (R/W): ID for monitoring hardware to track 
internal operation, e.g., memory access.

N = Ceil (Log2 (CPUID.(EAX= 0FH, 
ECX=0H).EBX[31:0] +1))

31:N Reserved.

63:32 CLOS (R/W): The class of service (CLOS) to enforce (on writes); returns 
the current CLOS when read.

If ( CPUID.(EAX=07H, 
ECX=0):EBX.[15] = 1 )

Register Address: C90H−D8FH, 3216−3471 Reserved MSR Address Space for CAT Mask Registers

See Section 19.19.4.1, “Enumeration and Detection Support of Cache Allocation Technology.”

Register Address: C90H, 3216 IA32_L3_MASK_0
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L3 CAT Mask for COS0 (R/W) If (CPUID.(EAX=10H, 
ECX=0H):EBX[1] != 0)

31:0 Capacity Bit Mask (R/W)

63:32 Reserved.

Register Address: C90H+n, 3216+n IA32_L3_MASK_n

L3 CAT Mask for COSn (R/W) n = CPUID.(EAX=10H, 
ECX=1H):EDX[15:0]

31:0 Capacity Bit Mask (R/W)

63:32 Reserved.

Register Address: D10H−D4FH, 3344−3407 Reserved MSR Address Space for L2 CAT Mask Registers

See Section 19.19.4.1, “Enumeration and Detection Support of Cache Allocation Technology.”

Register Address: D10H, 3344 IA32_L2_MASK_0

L2 CAT Mask for COS0 (R/W) If (CPUID.(EAX=10H, 
ECX=0H):EBX[2] != 0)

31:0 Capacity Bit Mask (R/W)

63:32 Reserved.

Register Address: D10H+n, 3344+n IA32_L2_MASK_n

L2 CAT Mask for COSn (R/W) n = CPUID.(EAX=10H, 
ECX=2H):EDX[15:0]

31:0 Capacity Bit Mask (R/W)

63:32 Reserved.

Register Address: D18H, 3352 IA32_L2_MASK_8

L2 CAT Mask for COS8 (R/W)

15:0 WAY_MASK

Capacity Bit Mask. Available ways vectors for class of service of IA core. 
'1 in bit indicates allocation to the way is allowed. '0 indicates allocation 
to the way is not allowed.

63:16 Reserved.

Register Address: D19H, 3353 IA32_L2_MASK_9

L2 CAT Mask for COS9 (R/W)

See IA32_L2_MASK_8 (D18H) for reference; similar format.

Register Address: D1AH, 3354 IA32_L2_MASK_10

L2 CAT Mask for COS10 (R/W)

See IA32_L2_MASK_8 (D18H) for reference; similar format.

Register Address: D1BH, 3355 IA32_L2_MASK_11

L2 CAT Mask for COS11 (R/W)

See IA32_L2_MASK_8 (D18H) for reference; similar format.

Register Address: D1CH, 3356 IA32_L2_MASK_12
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L2 CAT Mask for COS12 (R/W)

See IA32_L2_MASK_8 (D18H) for reference; similar format.

Register Address: D1DH, 3357 IA32_L2_MASK_13

L2 CAT Mask for COS13 (R/W)

See IA32_L2_MASK_8 (D18H) for reference; similar format.

Register Address: D1EH, 3358 IA32_L2_MASK_14

L2 CAT Mask for COS14 (R/W)

See IA32_L2_MASK_8 (D18H) for reference; similar format.

Register Address: D1FH, 3359 IA32_L2_MASK_15

L2 CAT Mask for COS15 (R/W)

See IA32_L2_MASK_8 (D18H) for reference; similar format.

Register Address: D50H, 3408 IA32_L2_QOS_EXT_BW_THRTL_0

IA32_L2_QOS_EXT_BW_THRTL_0 (R/W)

Memory Bandwidth enforcement for COS0.

CPUID.(EAX=10H,ECX=0H):EBX[3] 
and 
CPUID.(EAX=10H,ECX=3H):EDX ≥ 
0

6:0 RBE_ENFORCEMENT_VAL

Max Delay value cannot be greater than 90 percent - 0x5a.

63:7 Reserved.

Register Address: D51H, 3409 IA32_L2_QOS_EXT_BW_THRTL_1

IA32_L2_QOS_EXT_BW_THRTL_1 (R/W)

Memory Bandwidth enforcement for COS1.

CPUID.(EAX=10H,ECX=0H):EBX[3] 
and 
CPUID.(EAX=10H,ECX=3H):EDX ≥ 
1

6:0 RBE_ENFORCEMENT_VAL

Max Delay value cannot be greater than 90 percent - 0x5a.

63:7 Reserved.

Register Address: D52H, 3410 IA32_L2_QOS_EXT_BW_THRTL_2

IA32_L2_QOS_EXT_BW_THRTL_2 (R/W)

Memory Bandwidth enforcement for COS2.

CPUID.(EAX=10H,ECX=0H):EBX[3] 
and 
CPUID.(EAX=10H,ECX=3H):EDX ≥ 
2

6:0 RBE_ENFORCEMENT_VAL

Max Delay value cannot be greater than 90 percent - 0x5a.

63:7 Reserved.

Register Address: D53H, 3411 IA32_L2_QOS_EXT_BW_THRTL_3

IA32_L2_QOS_EXT_BW_THRTL_3 (R/W)

Memory Bandwidth enforcement for COS3.

CPUID.(EAX=10H,ECX=0H):EBX[3] 
and 
CPUID.(EAX=10H,ECX=3H):EDX ≥ 
3

6:0 RBE_ENFORCEMENT_VAL

Max Delay value cannot be greater than 90 percent - 0x5a.
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63:7 Reserved.

Register Address: D54H, 3412 IA32_L2_QOS_EXT_BW_THRTL_4

IA32_L2_QOS_EXT_BW_THRTL_4 (R/W)

Memory Bandwidth enforcement for COS4.

CPUID.(EAX=10H,ECX=0H):EBX[3] 
and 
CPUID.(EAX=10H,ECX=3H):EDX ≥ 
4

6:0 RBE_ENFORCEMENT_VAL

Max Delay value cannot be greater than 90 percent - 0x5a.

63:7 Reserved.

Register Address: D55H, 3413 IA32_L2_QOS_EXT_BW_THRTL_5

IA32_L2_QOS_EXT_BW_THRTL_5 (R/W)

Memory Bandwidth enforcement for COS5.

CPUID.(EAX=10H,ECX=0H):EBX[3] 
and 
CPUID.(EAX=10H,ECX=3H):EDX ≥ 
5

6:0 RBE_ENFORCEMENT_VAL

Max Delay value cannot be greater than 90 percent - 0x5a.

63:7 Reserved.

Register Address: D56H, 3414 IA32_L2_QOS_EXT_BW_THRTL_6

IA32_L2_QOS_EXT_BW_THRTL_6 (R/W)

Memory Bandwidth enforcement for COS6.

CPUID.(EAX=10H,ECX=0H):EBX[3] 
and 
CPUID.(EAX=10H,ECX=3H):EDX ≥ 
6

6:0 RBE_ENFORCEMENT_VAL

Max Delay value cannot be greater than 90 percent - 0x5a.

63:7 Reserved.

Register Address: D57H, 3415 IA32_L2_QOS_EXT_BW_THRTL_7

IA32_L2_QOS_EXT_BW_THRTL_7 (R/W)

Memory Bandwidth enforcement for COS7.

CPUID.(EAX=10H,ECX=0H):EBX[3] 
and 
CPUID.(EAX=10H,ECX=3H):EDX ≥ 
7

6:0 RBE_ENFORCEMENT_VAL

Max Delay value cannot be greater than 90 percent - 0x5a.

63:7 Reserved.

Register Address: D58H, 3416 IA32_L2_QOS_EXT_BW_THRTL_8

IA32_L2_QOS_EXT_BW_THRTL_8 (R/W)

Memory Bandwidth enforcement for COS8.

CPUID.(EAX=10H,ECX=0H):EBX[3] 
and 
CPUID.(EAX=10H,ECX=3H):EDX ≥ 
8

6:0 RBE_ENFORCEMENT_VAL

Max Delay value cannot be greater than 90 percent - 0x5a.

63:7 Reserved.

Register Address: D59H, 3417 IA32_L2_QOS_EXT_BW_THRTL_9
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IA32_L2_QOS_EXT_BW_THRTL_9 (R/W)

Memory Bandwidth enforcement for COS9.

CPUID.(EAX=10H,ECX=0H):EBX[3] 
and 
CPUID.(EAX=10H,ECX=3H):EDX ≥ 
9

6:0 RBE_ENFORCEMENT_VAL

Max Delay value cannot be greater than 90 percent - 0x5a.

63:7 Reserved.

Register Address: D5AH, 3418 IA32_L2_QOS_EXT_BW_THRTL_10

IA32_L2_QOS_EXT_BW_THRTL_10 (R/W)

Memory Bandwidth enforcement for COS10.

CPUID.(EAX=10H,ECX=0H):EBX[3] 
and 
CPUID.(EAX=10H,ECX=3H):EDX ≥ 
10

6:0 RBE_ENFORCEMENT_VAL

Max Delay value cannot be greater than 90 percent - 0x5a.

63:7 Reserved.

Register Address: D5BH, 3419 IA32_L2_QOS_EXT_BW_THRTL_11

IA32_L2_QOS_EXT_BW_THRTL_11 (R/W)

Memory Bandwidth enforcement for COS11.

CPUID.(EAX=10H,ECX=0H):EBX[3] 
and 
CPUID.(EAX=10H,ECX=3H):EDX ≥ 
11

6:0 RBE_ENFORCEMENT_VAL

Max Delay value cannot be greater than 90 percent - 0x5a.

63:7 Reserved.

Register Address: D5CH, 3420 IA32_L2_QOS_EXT_BW_THRTL_12

IA32_L2_QOS_EXT_BW_THRTL_12 (R/W)

Memory Bandwidth enforcement for COS12.

CPUID.(EAX=10H,ECX=0H):EBX[3] 
and 
CPUID.(EAX=10H,ECX=3H):EDX ≥ 
12

6:0 RBE_ENFORCEMENT_VAL

Max Delay value cannot be greater than 90 percent - 0x5a.

63:7 Reserved.

Register Address: D5DH, 3421 IA32_L2_QOS_EXT_BW_THRTL_13

IA32_L2_QOS_EXT_BW_THRTL_13 (R/W)

Memory Bandwidth enforcement for COS13.

CPUID.(EAX=10H,ECX=0H):EBX[3] 
and 
CPUID.(EAX=10H,ECX=3H):EDX ≥ 
13

6:0 RBE_ENFORCEMENT_VAL

Max Delay value cannot be greater than 90 percent - 0x5a.

63:7 Reserved.

Register Address: D5EH, 3422 IA32_L2_QOS_EXT_BW_THRTL_14

IA32_L2_QOS_EXT_BW_THRTL_14 (R/W)

Memory Bandwidth enforcement for COS14.

CPUID.(EAX=10H,ECX=0H):EBX[3] 
and 
CPUID.(EAX=10H,ECX=3H):EDX ≥ 
14
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6:0 RBE_ENFORCEMENT_VAL

Max Delay value cannot be greater than 90 percent - 0x5a.

63:7 Reserved.

Register Address: D90H, 3472 IA32_BNDCFGS

Supervisor State of MPX Configuration (R/W) If (CPUID.(EAX=07H, 
ECX=0H):EBX[14] = 1)

0 EN: Enable Intel MPX in supervisor mode.

1 BNDPRESERVE: Preserve the bounds registers for near branch 
instructions in the absence of the BND prefix.

11:2 Reserved, must be zero.

63:12 Base Address of Bound Directory.

Register Address: D91H, 3473 IA32_COPY_LOCAL_TO_PLATFORM5

Copy Local State to Platform State (W) IF ((CPUID.19H:EBX[4] = 1) && 
(CPUID.(EAX=07H, 
ECX=0H).ECX[23] = 1))

0 IWKeyBackup

Copy IWKey to IWKeyBackup.

IF ((CPUID.19H:EBX[4] = 1) && 
(CPUID.(EAX=07H, 
ECX=0H).ECX[23] = 1))

63:1 Reserved.

Register Address: D92H, 3474 IA32_COPY_PLATFORM_TO_LOCAL5

Copy Platform State to Local State (W) IF ((CPUID.19H:EBX[4] = 1) && 
(CPUID.(EAX=07H, 
ECX=0H).ECX[23] = 1))

0 IWKeyBackup

Copy IWKeyBackup to IWKey.

IF ((CPUID.19H:EBX[4] = 1) && 
(CPUID.(EAX=07H, 
ECX=0H).ECX[23] = 1))

63:1 Reserved.

Register Address: D93H, 3475 IA32_PASID

Process Address Space Identifier. (R/W)

19:0 Process address space identifier (PASID). Specifies the PASID of the 
currently running software thread.

30:20 Reserved.

31 Valid. Execution of ENQCMD causes a #GP if this bit is clear.

63:32 Reserved.

Register Address: DA0H, 3488 IA32_XSS

Extended Supervisor State Mask (R/W) If( CPUID.(0DH, 1):EAX.[3] = 1 

7:0 Reserved.

8 PT State (R/W)

9 Reserved. 

10 PASID State (R/W)

11 CET_U State (R/W)
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12 CET_S State (R/W)

13 HDC State (R/W)

14 UINTR State (R/W)

15 LBR State (R/W)

16 HWP State (R/W)

63:17 Reserved. 

Register Address: DB0H, 3504 IA32_PKG_HDC_CTL

Package Level Enable/Disable HDC (R/W) If CPUID.06H:EAX.[13] = 1 

0 HDC_Pkg_Enable (R/W)

Force HDC idling or wake up HDC-idled logical processors in the package. 
See Section 16.5.2, “Package level Enabling HDC.”

If CPUID.06H:EAX.[13] = 1 

63:1 Reserved.

Register Address: DB1H, 3505 IA32_PM_CTL1

Enable/Disable the HDC Thread Level Activity (R/W) If CPUID.06H:EAX.[13] = 1 

0 SDC_ALLOWED (R/W)

Set this bit to allow this thread to be forced into HDC idle state. Clearing 
this bit blocks HDC-enter (HW) request. Default value: 1. See Section 
16.5.3.

If CPUID.06H:EAX.[13] = 1 

63:1 Reserved.

Register Address: DB2H, 3506 IA32_THREAD_STALL

Per-Logical_Processor_ID HDC Idle Residency (R/0) If CPUID.06H:EAX.[13] = 1 

63:0 Stall_Cycle_Cnt (R/W)

Stalled cycles due to HDC forced idle on this logical processor. See 
Section 16.5.4.1.

If CPUID.06H:EAX.[13] = 1 

Register Address: E00H, 3584 IA32_QOS_CORE_BW_THRTL_0

CBA Levels Based on COS for Bandwidth Throttling (R/W) CPUID.10H.0H:EBX[5]=1

3:0 COS0_LEVEL

CBA Level for COS[0]. Levels are programmed from 0 to 15.

7:4 Reserved.

11:8 COS1_LEVEL

CBA Level for COS[1]. Levels are programmed from 0 to 15.

15:12 Reserved.

19:16 COS2_LEVEL

CBA Level for COS[2]. Levels are programmed from 0 to 15.

25:20 Reserved.

27:24 COS3_LEVEL

CBA Level for COS[3]. Levels are programmed from 0 to 15.

31:28 Reserved.

35:32 COS4_LEVEL

CBA Level for COS[4]. Levels are programmed from 0 to 15.
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39:36 Reserved.

43:40 COS5_LEVEL

CBA Level for COS[5]. Levels are programmed from 0 to 15.

47:44 Reserved.

51:48 COS6_LEVEL

CBA Level for COS[6]. Levels are programmed from 0 to 15.

Register Address: E01H, 3585 IA32_QOS_CORE_BW_THRTL_1

CBA Levels Based on COS for Bandwidth Throttling (R/W) CPUID.10H.0H:EBX[5]=1

3:0 COS8_LEVEL

CBA Level for COS[8]. Levels are programmed from 0 to 15.

7:4 Reserved.

11:8 COS9_LEVEL

CBA Level for COS[9]. Levels are programmed from 0 to 15.

15:12 Reserved.

19:16 COS10_LEVEL

CBA Level for COS[10]. Levels are programmed from 0 to 15.

25:20 Reserved.

27:24 COS11_LEVEL

CBA Level for COS[11]. Levels are programmed from 0 to 15.

31:28 Reserved.

35:32 COS12_LEVEL

CBA Level for COS[12]. Levels are programmed from 0 to 15.

39:36 Reserved.

43:40 COS13_LEVEL

CBA Level for COS[13]. Levels are programmed from 0 to 15.

47:44 Reserved.

51:48 COS14_LEVEL

CBA Level for COS[14]. Levels are programmed from 0 to 15.

55:50 Reserved.

59:56 COS15_LEVEL

CBA Level for COS[15]. Levels are programmed from 0 to 15.

63:60 Reserved

Register Address: 1200H−121FH, 4608−4639 IA32_LBR_x_INFO

Last Branch Record Entry X Info Register (R/W)

An attempt to read or write IA32_LBR_x_INFO such that x ≥ IA32_LBR_DEPTH.DEPTH will #GP.

15:0 CYC_CNT

The elapsed CPU cycles (saturating) since the last LBR was recorded. See 
Section 18.1.3.3.

Reset Value: 0

55:16 Undefined, may be zero or non-zero. Writes of non- zero values do not 
fault, but reads may return a different value.

Reset Value: 0
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59:56 BR_TYPE

The branch type recorded by this LBR. Encodings:

0000B: COND

0001B: JMP Indirect

0010B: JMP Direct

0011B: CALL Indirect

0100B: CALL Direct

0101B: RET

011xB: Reserved

1xxxB: Other Branch

Reset Value: 0

60 CYC_CNT_VALID

CYC_CNT value is valid. See Section 20.1.3.3.

Reset Value: 0

61 TSX_ABORT

This LBR record is a TSX abort. On processors that do not support Intel 
TSX (CPUID.07H.EBX.HLE[bit 4]=0 and CPUID.07H.EBX.RTM[bit 11]=0), 
this bit is undefined.

Reset Value: 0

62 IN_TSX

This LBR record records a branch that retired during a TSX transaction. 
On processors that do not support Intel TSX (CPUID.07H.EBX.HLE[bit 
4]=0 and CPUID.07H.EBX.RTM[bit 11]=0), this bit is undefined.

Reset Value: 0

63 MISPRED

The recorded branch direction (conditional branch) or target (indirect 
branch) was mispredicted.

Reset Value: 0

Register Address: 1400H, 5120 IA32_SEAMRR_BASE

SEAM Memory Range Register for TDX - Base Address (R/W)

2:0 Reserved.

3 CONFIGURED

Set to 1 by BIOS if range is configured.

24:4 Reserved.

51:25 BASE

SEAM Range Register BASE address.

63:52 Reserved.

Register Address: 1401H, 5121 IA32_SEAMRR_MASK

SEAM Memory Range Register for TDX (R/W)

9:0 Reserved.

10 LOCK

Set by BIOS to indicate range is configured and locked.

24:11 Reserved.

51:25 MASK

Mask value for SEAMRR matching. Lowest granularity is 32M.

63:52 Reserved.
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Register Address: 1406H, 5126 IA32_MCU_CONTROL

MCU Control (R/W)

Controls the behavior of the Microcode Update Trigger MSR, IA32_BIOS_UPDT_TRIG.

If CPUID.07H.0H:EDX[29]=1 && 
IA32_ARCH_CAPABILITIES.MCU_C
ONTROL=1

0 LOCK

Once set, further writes to this MSR will cause a #GP(0) fault. Bypassed 
during SMM if EN_SMM_BYPASS (bit 2) is set.

1 DIS_MCU_LOAD

If this bit is set on a given logical processor, then any subsequent 
attempts to load a microcode update by that logical processor will be 
silently dropped (WRMSR 0x79 has no effect).

2 EN_SMM_BYPASS

If set, then writes to IA32_MCU_CONTROL are allowed during SMM 
regardless of the LOCK bit. This enables BIOS to Opt-In to the SMM 
Bypass functionality.

63:3 Reserved.

Register Address: 14CEH, 5326 IA32_LBR_CTL

Last Branch Record Enabling and Configuration Register (R/W)

0 LBREn

When set, enables LBR recording.

Reset Value: 0

1 OS

When set, allows LBR recording when CPL == 0.

Reset Value: 0

2 USR

When set, allows LBR recording when CPL != 0.

Reset Value: 0

3 CALL_STACK

When set, records branches in call-stack mode. See Section 20.1.2.4.

Reset Value: 0

15:4 Reserved. Reset Value: 0

16 COND

When set, records taken conditional branches. See Section 20.1.2.3.

17 NEAR_REL_JMP

When set, records near relative JMPs. See Section 20.1.2.3.

18 NEAR_IND_JMP

When set, records near indirect JMPs. See Section 20.1.2.3.

19 NEAR_REL_CALL

When set, records near relative CALLs. See Section 20.1.2.3.

20 NEAR_IND_CALL

When set, records near indirect CALLs. See Section 20.1.2.3.

21 NEAR_RET

When set, records near RETs. See Section 20.1.2.3.

22 OTHER_BRANCH

When set, records other branches. See Section 20.1.2.3.
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63:23 Reserved.

Register Address: 14CFH, 5327 IA32_LBR_DEPTH

Last Branch Record Maximum Stack Depth Register (R/W)

N:0 DEPTH

The number of LBRs to be used for recording. Supported values are 
indicated by the bitmap in CPUID.(EAX=01CH,ECX=0):EAX[7:0]. The reset 
value will match the maximum supported by the CPU. Writes of 
unsupported values will #GP fault.

Reset Value: Varies

63:N+1 Reserved. Reset Value: 0

Register Address: 1500H−151FH, 5376−5407 IA32_LBR_x_FROM_IP

Last Branch Record entry X source IP register (R/W). 

An attempt to read or write IA32_LBR_x_FROM_IP such that x ≥ IA32_LBR_DEPTH.DEPTH will 
#GP.

63:0 FROM_IP

The source IP of the recorded branch or event, in canonical form. Writes 
to bits above MAXLINADDR-1 are ignored.

Reset Value: 0

Register Address: 1600H−161FH, 5632−5663 IA32_LBR_x_TO_IP

Last Branch Record Entry X Destination IP Register (R/W)

An attempt to read or write IA32_LBR_x_TO_IP such that x ≥ IA32_LBR_DEPTH.DEPTH will #GP.

63:0 TO_IP

The destination IP of the recorded branch or event, in canonical form. 
Writes to bits above MAXLINADDR-1 are ignored.

Reset Value: 0

Register Address: 17D0H, 6096 IA32_HW_FEEDBACK_PTR

Hardware Feedback Interface Pointer If CPUID.06H:EAX.[19] = 1

0 Valid (R/W)

When set to 1, indicates a valid pointer is programmed into the ADDR 
field of the MSR.

11:1 Reserved.

(MAXPHYADDR-1):12 ADDR (R/W)

Physical address of the page frame of the first page of the hardware 
feedback interface structure.

63:MAXPHYADDR Reserved.

Register Address: 17D1H, 6097 IA32_HW_FEEDBACK_CONFIG

Hardware Feedback Interface Configuration If CPUID.06H:EAX.[19] = 1

0 Enable (R/W) 

When set to 1, enables the hardware feedback interface.

63:1 Reserved.

Register Address: 17D2H, 6098 IA32_THREAD_FEEDBACK_CHAR

Thread Feedback Characteristics (R/O) If CPUID.06H:EAX.[23] = 1

7:0 Application Class ID, pointing into the Intel Thread Director structure.

62:8 Reserved.
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63 Valid bit. When set to 1 the OS Scheduler can use the Class ID (in bits 7:0) 
for its scheduling decisions.

If this bit is 0, the Class ID field should be ignored. It is recommended that 
the OS uses the last known Class ID of the software thread for its 
scheduling decisions.

Register Address: 17D4H, 6100 IA32_HW_FEEDBACK_THREAD_CONFIG

Hardware Feedback Thread Configuration (R/W)

0 Enables Intel Thread Director. When set to 1, logical processor scope Intel 
Thread Director is enabled. Default is 0 (disabled).

63:1 Reserved.

Register Address: 17DAH, 6106 IA32_HRESET_ENABLE

History Reset Enable (R/W)

0 Enable reset of the Intel Thread Director history.

31:1 Reserved for other capabilities that can be reset by the HRESET 
instruction.

63:32 Reserved.

Register Address: 1900H, 6400 IA32_PMC_GP0_CTR

Full Width Writable General Performance Counter 0 (R/W) If CPUID.0AH:EAX[15:8] > 0 and 
IA32_PERF_CAPABILITIES[13] =1

47:0 RELOAD_VALUE

Contains the reload value to be loaded into the associated counter by 
Auto Counter Reload. Will be 1-extended to 48 bits.

63:48 Reserved.

Register Address: 1901H, 6401 IA32_PMC_GP0_CFG_A

IA32_PMC_GP0_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance 
Counter 0.

If CPUID.0AH:EAX[15:8] > 0

7:0 EVENT_SELECT

Selects a performance event logic unit.

15:8 UMASK

Qualifies the microarchitectural condition to detect on the selected 
event logic.

16 USR

When set, events are counted only when the processor is operating at 
privilege levels 1, 2 or 3. This flag can be used in conjunction with the OS 
flag.

17 OS

When set, events are counted only when the processor is operating at 
privilege level 0. This flag can be used in conjunction with the USER flag.

18 EDGE

When set, enables edge detection of events.

19 Reserved.
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20 INT

When set, the processor generates an exception through its local APIC 
on counter overflow for this counter's thread.

21 ANYTHREAD

If CPUID.A0H.EDX[15] is 1, then this bit is deprecated. When set to 1, it 
enables counting the associated event conditions occurring across all 
logical processors sharing a processor core. When set to 0, the counter 
only increments the associated event conditions occurring in the logical 
processor which programmed the MSR.

22 ENABLE

When set, performance counting is enabled in the performance-
monitoring counter; when clear, the counter is disabled.

23 INVERT

Inverts the result of the counter-mask (CMASK) comparison when set, so 
that both greater than equal to and less than comparisons can be made.

0: The comparison is: threshold is greater than or equal to the event

1: The comparison is inverted: threshold is less than event.

31:24 CMASK

When CMASK is not zero, the corresponding performance counter 
increments by 1 each cycle if the event count is >= CMASK. This mask 
enables counting cycles in which multiple occurrences happen (for 
example, two or more instructions retired per clock).

34:32 Reserved.

35 EN_LBR_LOG

When set enables updating LBRs with that counters event occurrences, 
if selected event is precise.

36 EQUAL

When EQ flag is set and the INV flag is clear, the comparison evaluates to 
true if the selected performance monitoring event (the event) is equal to 
the specified Counter Mask value (CMask). When EQ flag is set and INV 
flag is set, the comparison evaluates to true if the event is less-than the 
CMask value and the event is not zero. Note if CMask is zero, the EQ flag 
is ignored.

39:37 Reserved.

47:40 UMASK2

Unit mask 2 (UMASK2) field (bits 40 through 47) - These bits qualify the 
condition that the selected event logic unit detects. Valid UMASK2 
values for each event logic unit are specific to the unit. The new 
UMASK2 field may also be used in conjunction with UMASK.

63:48 Reserved.

Register Address: 1903H, 6403 IA32_PMC_GP0_CFG_C

IA32_PMC_GP0_CFG_C (R/W)

Extended Perf event selector for GP counter 0.
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31:0 RELOAD_VALUE

Contains the reload value to be loaded into the associated counter by 
Auto Counter Reload. Will be 1-extended to 48 bits.

63:32 Reserved.

Register Address: 1904H, 6404 IA32_PMC_GP1_CTR

Full Width Writable General Performance Counter 1 (R/W)

See IA32_PMC_GP0_CTR (1900H) for reference; similar format.

If CPUID.0AH:EAX[15:8] > 1 and 
IA32_PERF_CAPABILITIES[13]=1

Register Address: 1905H, 6405 IA32_PMC_GP1_CFG_A

IA32_PMC_GP1_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance 
Counter 1. See IA32_PMC_GP0_CFG_A (1901H) for reference; similar format.

If CPUID.0AH:EAX[15:8] > 1

Register Address: 1907H, 6407 IA32_PMC_GP1_CFG_C

IA32_PMC_GP1_CFG_C (R/W)

Extended Perf event selector for GP counter 1. 
See IA32_PMC_GP0_CFG_C (1903H) for reference; similar format.

Register Address: 1908H, 6408 IA32_PMC_GP2_CTR

Full Width Writable General Performance Counter 2 (R/W)

See IA32_PMC_GP0_CTR (1900H) for reference; similar format.

If CPUID.0AH:EAX[15:8] > 2 and 
IA32_PERF_CAPABILITIES[13]=1

Register Address: 1909H, 6409 IA32_PMC_GP2_CFG_A

IA32_PMC_GP2_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance 
Counter 2. See IA32_PMC_GP0_CFG_A (1901H) for reference; similar format.

If CPUID.0AH:EAX[15:8] > 2

Register Address: 190AH, 6410 IA32_PMC_GP2_CFG_B

IA32_PMC_GP2_CFG_B (R/W)

GP counter reload configuration register.

1:0 Reserved.

2 RELOAD_PMC2

Reload GP2 when GP2 overflows.

3 RELOAD_PMC3

Reload GP2 when GP3 overflows.

4 RELOAD_PMC4

Reload GP2 when GP4 overflows.

5 RELOAD_PMC5

Reload GP2 when GP5 overflows.

6 RELOAD_PMC6

Reload GP2 when GP6 overflows.

7 RELOAD_PMC7

Reload GP2 when GP7 overflows.

31:8 Reserved.
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32 RELOAD_FC0

Reload GP2 when FC0 overflows.

33 RELOAD_FC1

Reload GP2 when FC1 overflows.

47:34 Reserved.

48 METRICS_CLEAR

Clear PERF_METRICS on overflow of GP2.

63:49 Reserved.

Register Address: 190BH, 6411 IA32_PMC_GP2_CFG_C

IA32_PMC_GP2_CFG_C (R/W)

Extended Perf event selector for GP counter 2. 
See IA32_PMC_GP0_CFG_C (1903H) for reference; similar format.

Register Address: 190CH, 6412 IA32_PMC_GP3_CTR

Full Width Writable General Performance Counter 3 (R/W)

See IA32_PMC_GP0_CTR (1900H) for reference; similar format.

If CPUID.0AH:EAX[15:8] > 3 and 
IA32_PERF_CAPABILITIES[13]=1

Register Address: 190DH, 6413 IA32_PMC_GP3_CFG_A

IA32_PMC_GP3_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance 
Counter 3. See IA32_PMC_GP0_CFG_A (1901H) for reference; similar format.

If CPUID.0AH:EAX[15:8] > 3

Register Address: 190EH, 6414 IA32_PMC_GP3_CFG_B

IA32_PMC_GP3_CFG_B (R/W)

GP counter reload configuration register. 
See IA32_PMC_GP2_CFG_B (190AH) for reference; similar format.

Register Address: 190FH, 6415 IA32_PMC_GP3_CFG_C

IA32_PMC_GP3_CFG_C (R/W)

Extended Perf event selector for GP counter 3. 
See IA32_PMC_GP0_CFG_C (1903H) for reference; similar format.

Register Address: 1910H, 6416 IA32_PMC_GP4_CTR

Full Width Writable General Performance Counter 4 (R/W)

See IA32_PMC_GP0_CTR (1900H) for reference; similar format.

If CPUID.0AH:EAX[15:8] > 4 and 
IA32_PERF_CAPABILITIES[13]=1

Register Address: 1911H, 6417 IA32_PMC_GP4_CFG_A

IA32_PMC_GP4_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance 
Counter 4. See IA32_PMC_GP0_CFG_A (1901H) for reference; similar format.

If CPUID.0AH:EAX[15:8] > 4

Register Address: 1912H, 6418 IA32_PMC_GP4_CFG_B

IA32_PMC_GP4_CFG_B (R/W)

GP counter reload configuration register. 
See IA32_PMC_GP2_CFG_B (190AH) for reference; similar format.

Register Address: 1913H, 6419 IA32_PMC_GP4_CFG_C
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IA32_PMC_GP4_CFG_C (R/W)

Extended Perf event selector for GP counter 4. 
See IA32_PMC_GP0_CFG_C (1903H) for reference; similar format.

Register Address: 1914H, 6420 IA32_PMC_GP5_CTR

Full Width Writable General Performance Counter 5 (R/W)

See IA32_PMC_GP0_CTR (1900H) for reference; similar format.

If CPUID.0AH:EAX[15:8] > 5 and 
IA32_PERF_CAPABILITIES[13]=1

Register Address: 1915H, 6421 IA32_PMC_GP5_CFG_A

IA32_PMC_GP5_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance 
Counter 5. See IA32_PMC_GP0_CFG_A (1901H) for reference; similar format.

If CPUID.0AH:EAX[15:8] > 5

Register Address: 1916H, 6422 IA32_PMC_GP5_CFG_B

IA32_PMC_GP5_CFG_B (R/W)

GP counter reload configuration register. 
See IA32_PMC_GP2_CFG_B (190AH) for reference; similar format.

Register Address: 1917H, 6423 IA32_PMC_GP5_CFG_C

IA32_PMC_GP5_CFG_C (R/W)

Extended Perf event selector for GP counter 5. 
See IA32_PMC_GP0_CFG_C (1903H) for reference; similar format.

Register Address: 1918H, 6424 IA32_PMC_GP6_CTR

Full Width Writable General Performance Counter 6 (R/W)

See IA32_PMC_GP0_CTR (1900H) for reference; similar format.

If CPUID.0AH:EAX[15:8] > 6 and 
IA32_PERF_CAPABILITIES[13]=1

Register Address: 1919H, 6425 IA32_PMC_GP6_CFG_A

IA32_PMC_GP6_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance 
Counter 6. See IA32_PMC_GP0_CFG_A (1901H) for reference; similar format.

If CPUID.0AH:EAX[15:8] > 6

Register Address: 191AH, 6426 IA32_PMC_GP6_CFG_B

IA32_PMC_GP6_CFG_B (R/W)

GP counter reload configuration register. 
See IA32_PMC_GP2_CFG_B (190AH) for reference; similar format.

Register Address: 191BH, 6427 IA32_PMC_GP6_CFG_C

IA32_PMC_GP6_CFG_C (R/W)

Extended Perf event selector for GP counter 6. 
See IA32_PMC_GP0_CFG_C (1903H) for reference; similar format.

Register Address: 191CH, 6428 IA32_PMC_GP7_CTR

Full Width Writable General Performance Counter 7 (R/W)

See IA32_PMC_GP0_CTR (1900H) for reference; similar format.

If CPUID.0AH:EAX[15:8] > 7 and 
IA32_PERF_CAPABILITIES[13]=1

Register Address: 191DH, 6429 IA32_PMC_GP7_CFG_A
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IA32_PMC_GP7_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance 
Counter 7. See IA32_PMC_GP0_CFG_A (1901H) for reference; similar format.

If CPUID.0AH:EAX[15:8] > 7

Register Address: 191EH, 6430 IA32_PMC_GP7_CFG_B

IA32_PMC_GP7_CFG_B (R/W)

GP counter reload configuration register. 
See IA32_PMC_GP2_CFG_B (190AH) for reference; similar format.

Register Address: 191FH, 6431 IA32_PMC_GP7_CFG_C

IA32_PMC_GP7_CFG_C (R/W)

Extended Perf event selector for GP counter 7. 
See IA32_PMC_GP0_CFG_C (1903H) for reference; similar format.

Register Address: 1920H, 6432 IA32_PMC_GP8_CTR

Full Width Writable General Performance Counter 8 (R/W)

See IA32_PMC_GP0_CTR (1900H) for reference; similar format.

If CPUID.0AH:EAX[15:8] > 8 and 
IA32_PERF_CAPABILITIES[13]=1

Register Address: 1921H, 6433 IA32_PMC_GP8_CFG_A

IA32_PMC_GP8_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance 
Counter 8. See IA32_PMC_GP0_CFG_A (1901H) for reference; similar format.

If CPUID.0AH:EAX[15:8] > 8

Register Address: 1924H, 6436 IA32_PMC_GP9_CTR

Full Width Writable General Performance Counter 9 (R/W)

See IA32_PMC_GP0_CTR (1900H) for reference; similar format.

If CPUID.0AH:EAX[15:8] > 9 and 
IA32_PERF_CAPABILITIES[13]=1

Register Address: 1925H, 6437 IA32_PMC_GP9_CFG_A

IA32_PMC_GP9_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance 
Counter 9. See IA32_PMC_GP0_CFG_A (1901H) for reference; similar format.

If CPUID.0AH:EAX[15:8] > 9

Register Address: 1980H, 6528 IA32_PMC_FX0_CTR

Fixed-Function Performance Counter 0 (R/W)

Instructions retired.

If CPUID.0AH:EDX[4:0] >0 

47:0 FIXED_COUNTER

Instructions Retired Counter.

63:46 Reserved.

Register Address: 1982H, 6530 IA32_PMC_FX0_CFG_B

Fixed-Function Counter Reload Configuration Register (R/W)

1:0 Reserved.

2 RELOAD_PMC2

Reload Fixed-Function Counter0 when GP2 overflows.

3 RELOAD_PMC3

Reload Fixed-Function Counter0 when GP3 overflows.
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4 RELOAD_PMC4

Reload Fixed-Function Counter0 when GP4 overflows.

5 RELOAD_PMC5

Reload Fixed-Function Counter0 when GP5overflows.

6 RELOAD_PMC6

Reload Fixed-Function Counter0 when GP6 overflows.

7 RELOAD_PMC7

Reload Fixed-Function Counter0 when GP7 overflows.

33:8 Reserved.

32 RELOAD_FC0

Reload Fixed-Function Counter0 when FC0 overflows.

33 RELOAD_FC1

Reload Fixed-Function Counter0 when FC1 overflows.

47:34 Reserved.

48 METRICS_CLEAR

Clear PERF_METRICS on overflow of Fixed-Function Counter 0.

63:49 Reserved.

Register Address: 1983H, 6531 IA32_PMC_FX0_CFG_C

Extended Perf Event Selector for Fixed-Function Counter 0 (R/W)

31:0 RELOAD_VALUE

Contains the reload value to be loaded into the associated counter by 
Auto Counter Reload. Will be 1-extended to 48 bits.

63:32 Reserved.

Register Address: 1984H, 6532 IA32_PMC_FX1_CTR

Fixed-Function Performance Counter 1 (R/W)

Unhalted core clock cycles.

If CPUID.0AH:EDX[4:0] >1

47:0 FIXED_COUNTER

Unhalted core clock cycles counter.

63:46 Reserved.

Register Address: 1986H, 6534 IA32_PMC_FX1_CFG_B

Fixed-Function Counter Reload Configuration Register (R/W)

1:0 Reserved.

2 RELOAD_PMC2

Reload Fixed-Function Counter1 when GP2 overflows.

3 RELOAD_PMC3

Reload Fixed-Function Counter1 when GP3 overflows.

4 RELOAD_PMC4

Reload Fixed-Function Counter1 when GP4 overflows.

5 RELOAD_PMC5

Reload Fixed-Function Counter1 when GP5overflows.
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6 RELOAD_PMC6

Reload Fixed-Function Counter1 when GP6 overflows.

7 RELOAD_PMC7

Reload Fixed-Function Counter1 when GP7 overflows.

31:8 Reserved.

32 RELOAD_FC0

Reload Fixed-Function Counter1 when FC0 overflows.

33 RELOAD_FC1

Reload Fixed-Function Counter1 when FC1 overflows.

47:34 Reserved.

48 METRICS_CLEAR

Clear PERF_METRICS on overflow of Fixed-Function Counter 1.

63:49 Reserved.

Register Address: 1987H, 6532 IA32_PMC_FX1_CFG_C

Extended Perf Event Selector for Fixed-Function Counter 1 (R/W)

31:0 RELOAD_VALUE

Contains the reload value to be loaded into the associated counter by 
Auto Counter Reload. Will be 1-extended to 48 bits.

63:32 Reserved.

Register Address: 1988H, 6536 IA32_PMC_FX2_CTR

Fixed-Function Performance Counter 2 (R/W)

Unhalted core reference cycles.

If CPUID.0AH:EDX[4:0] >2 

47:0 FIXED_COUNTER

Unhalted core reference cycles counter.

63:48 Reserved.

Register Address: 198BH, 6539 IA32_PMC_FX2_CFG_C

Extended Perf Event Selector for Fixed-Function Counter 2 (R/W)

31:0 RELOAD_VALUE

Contains the reload value to be loaded into the associated counter by 
Auto Counter Reload. Will be 1-extended to 48 bits.

63:32 Reserved.

Register Address: 198CH, 6540 IA32_PMC_FX3_CTR

Fixed-Function Performance Counter 3 (R/W)

Top-down Microarchitecture Analysis unhalted number of available slots.

If CPUID.0AH:EDX[4:0] >3 

47:0 FIXED_COUNTER

Top-down microarchitecture analysis unhalted number of available slots 
counter.

63:48 Reserved.

Register Address: 1990H, 6544 IA32_PMC_FX4_CTR
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Fixed-Function Performance Counter 4 (R/W)

Top-down bad speculation.

If CPUID.0AH:EDX[4:0] >4 

47:0 FIXED_COUNTER

Top-down bad speculation counter.

63:48 Reserved.

Register Address: 1993H, 6547 IA32_PMC_FX4_CFG_C

Extended Perf Event Selector for Fixed-Function Counter 4 (R/W)

31:0 RELOAD_VALUE

Contains the reload value to be loaded into the associated counter by 
Auto Counter Reload. Will be 1-extended to 48 bits.

63:32 Reserved.

Register Address: 1994H, 6548 IA32_PMC_FX5_CTR

Fixed-Function Performance Counter 5 (R/W)

Top-down frontend bound.

If CPUID.0AH:EDX[4:0] >5 

47:0 FIXED_COUNTER

Top-down frontend-bound counter.

63:48 Reserved.

Register Address: 1997H, 6551 IA32_PMC_FX5_CFG_C

Extended Perf Event Selector for Fixed-Function Counter 5 (R/W)

31:0 RELOAD_VALUE

Contains the reload value to be loaded into the associated counter by 
Auto Counter Reload. Will be 1-extended to 48 bits.

63:32 Reserved.

Register Address: 1998H, 6552 IA32_PMC_FX6_CTR

Fixed-Function Performance Counter 6 (R/W)

Top-down retiring.

If CPUID.0AH:EDX[4:0] >6 

47:0 FIXED_COUNTER

Top-down retiring counter.

63:48 Reserved.

Register Address: 199BH, 6555 IA32_PMC_FX6_CFG_C

Extended Perf Event Selector for Fixed-Function Counter 6 (R/W)

31:0 RELOAD_VALUE

Contains the reload value to be loaded into the associated counter by 
Auto Counter Reload. Will be 1-extended to 48 bits.

63:32 Reserved.

Register Address: 1B01H, 6913 IA32_UARCH_MISC_CTL

IA32_UARCH_MISC_CTL (R/W) If 
IA32_ARCH_CAPABILITIES[12]=1

0 Data Operand Independent Timing Mode (DOITM). If 
IA32_ARCH_CAPABILITIES[12]=1
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63:1 Reserved.

Register Address: 4000_0000H−4000_00FFH Reserved MSR Address Space

All existing and future processors will not implement MSRs in this range.

Register Address: C000_0080H IA32_EFER

Extended Feature Enables If ( CPUID.80000001H:EDX.[20] || 
CPUID.80000001H:EDX.[29])

0 SYSCALL Enable: IA32_EFER.SCE (R/W)

Enables SYSCALL/SYSRET instructions in 64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable: IA32_EFER.LME (R/W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active: IA32_EFER.LMA (R) 

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable: IA32_EFER.NXE (R/W)

63:12 Reserved.

Register Address: C000_0081H IA32_STAR

System Call Target Address (R/W) If CPUID.80000001:EDX.[29] = 1

Register Address: C000_0082H IA32_LSTAR

IA-32e Mode System Call Target Address (R/W)

Target RIP for the called procedure when SYSCALL is executed in 64-bit mode.

If CPUID.80000001:EDX.[29] = 1

Register Address: C000_0083H IA32_CSTAR

IA-32e Mode System Call Target Address (R/W)

Not used, as the SYSCALL instruction is not recognized in compatibility mode.

If CPUID.80000001:EDX.[29] = 1

Register Address: C000_0084H IA32_FMASK

System Call Flag Mask (R/W) If CPUID.80000001:EDX.[29] = 1

Register Address: C000_0100H IA32_FS_BASE

Map of BASE Address of FS (R/W) If CPUID.80000001:EDX.[29] = 1

Register Address: C000_0101H IA32_GS_BASE

Map of BASE Address of GS (R/W) If CPUID.80000001:EDX.[29] = 1

Register Address: C000_0102H IA32_KERNEL_GS_BASE

Swap Target of BASE Address of GS (R/W) If CPUID.80000001:EDX.[29] = 1

Register Address: C000_0103H IA32_TSC_AUX

Auxiliary TSC (R/W) If CPUID.80000001H: EDX[27] = 1 
or CPUID.(EAX=7,ECX=0):ECX[bit 
22] = 1

31:0 AUX: Auxiliary signature of TSC.

63:32 Reserved.

Table 2-2.  IA-32 Architectural MSRs (Contd.)

Register Address: Hex, Decimal Architectural MSR Name (Former MSR Name)

Bit Fields MSR/Bit Description Comment
Vol. 4 2-87



MODEL-SPECIFIC REGISTERS (MSRS)
2.2 MSRS IN THE INTEL® CORE™ 2 PROCESSOR FAMILY
Table 2-3 lists model-specific registers (MSRs) for the Intel Core 2 processor family and for Intel Xeon processors 
based on Intel Core microarchitecture, architectural MSR addresses are also included in Table 2-3. These proces-
sors have a CPUID Signature DisplayFamily_DisplayModel value of 06_0FH, see Table 2-1. 

MSRs listed in Table 2-2 and Table 2-3 are also supported by processors based on the Enhanced Intel Core microar-
chitecture. Processors based on the Enhanced Intel Core microarchitecture have a CPUID Signature DisplayFami-
ly_DisplayModel value of 06_17H. 

The column “Shared/Unique” applies to multi-core processors based on Intel Core microarchitecture. “Unique” 
means each processor core has a separate MSR, or a bit field in an MSR governs only a core independently. 
“Shared” means the MSR or the bit field in an MSR address governs the operation of both processor cores. 

NOTES:
1. Some older processors may have supported this MSR as model-specific and do not enumerate it with CPUID.
2. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as 

model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.
3. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 17.3.2.3 and Section 

17.3.2.4 for more information.
4. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].
5. Further details on Key Locker and usage of this MSR can be found here:

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Shared/
Unique

Register Address: 0H, 0 IA32_P5_MC_ADDR

See Section 2.23, “MSRs in Pentium Processors.” Unique

Register Address: 1H, 1 IA32_P5_MC_TYPE

See Section 2.23, “MSRs in Pentium Processors.” Unique

Register Address: 6H, 6 IA32_MONITOR_FILTER_SIZE

See Section 10.10.5, “Monitor/Mwait Address Range Determination,” and Table 2-2. Unique

Register Address: 10H, 16 IA32_TIME_STAMP_COUNTER

See Section 19.17, “Time-Stamp Counter,” and Table 2-2. Unique

Register Address: 17H, 23 IA32_PLATFORM_ID

Platform ID (R) 
See Table 2-2.

Shared

Register Address: 17H, 23 MSR_PLATFORM_ID

Model Specific Platform ID (R) Shared

7:0 Reserved.

12:8 Maximum Qualified Ratio (R) 

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 2-2.
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63:53 Reserved.

Register Address: 1BH, 27 IA32_APIC_BASE

See Section 12.4.4, “Local APIC Status and Location,” and Table 2-2. Unique

Register Address: 2AH, 42 MSR_EBL_CR_POWERON

Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates current processor configuration.

Shared

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled.
Note: Not all processors implement R/W. 

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled.
Note: Not all processor implements R/W. 

3 MCERR# Drive Enable (R/W) 

1 = Enabled; 0 = Disabled.
Note: Not all processors implement R/W. 

4 Address Parity Enable (R/W)

1 = Enabled; 0 = Disabled.
Note: Not all processors implement R/W. 

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled.
Note: Not all processors implement R/W. 

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled.

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled.

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled.

11 Intel TXT Capable Chipset. (R/O)

1 = Present; 0 = Not Present.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled.

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes.

15 Reserved.

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Shared/
Unique
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17:16 APIC Cluster ID (R/O)

18 N/2 Non-Integer Bus Ratio (R/O)

0 = Integer ratio; 1 = Non-integer ratio.

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

26:22 Integer Bus Frequency Ratio (R/O)

Register Address: 3AH, 58 MSR_FEATURE_CONTROL

Control Features in Intel 64 Processor (R/W)

See Table 2-2.

Unique

3 SMRR Enable (R/WL)

When this bit is set and the lock bit is set, this makes the SMRR_PHYS_BASE 
and SMRR_PHYS_MASK registers read visible and writeable while in SMM.

Unique

Register Address: 40H, 64 MSR_LASTBRANCH_0_FROM_IP

Last Branch Record 0 From IP (R/W)

One of four pairs of last branch record registers on the last branch record stack. The From_IP part of the stack 
contains pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 19.5.

Unique

Register Address: 41H, 65 MSR_LASTBRANCH_1_FROM_IP

Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Unique

Register Address: 42H, 66 MSR_LASTBRANCH_2_FROM_IP

Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

Unique

Register Address: 43H, 67 MSR_LASTBRANCH_3_FROM_IP

Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Unique

Register Address: 60H, 96 MSR_LASTBRANCH_0_TO_IP

Last Branch Record 0 To IP (R/W)

One of four pairs of last branch record registers on the last branch record stack. This To_IP part of the stack contains 
pointers to the destination instruction.

Unique

Register Address: 61H, 97 MSR_LASTBRANCH_1_TO_IP

Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Unique

Register Address: 62H, 98 MSR_LASTBRANCH_2_TO_IP

Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Unique

Register Address: 63H, 99 MSR_LASTBRANCH_3_TO_IP

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Shared/
Unique
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Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Unique

Register Address: 79H, 121 IA32_BIOS_UPDT_TRIG

BIOS Update Trigger Register (W) 

See Table 2-2.

Unique

Register Address: 8BH, 139 IA32_BIOS_SIGN_ID

BIOS Update Signature ID (R/W)

See Table 2-2.

Unique

Register Address: A0H, 160 MSR_SMRR_PHYSBASE

System Management Mode Base Address register (WO in SMM)

Model-specific implementation of SMRR-like interface, read visible and write only in SMM.

Unique

11:0 Reserved.

31:12 PhysBase: SMRR physical Base Address.

63:32 Reserved.

Register Address: A1H, 161 MSR_SMRR_PHYSMASK

System Management Mode Physical Address Mask register (WO in SMM)

Model-specific implementation of SMRR-like interface, read visible and write only in SMM.

Unique

10:0 Reserved.

11 Valid: Physical address base and range mask are valid.

31:12 PhysMask: SMRR physical address range mask.

63:32 Reserved.

Register Address: C1H, 193 IA32_PMC0

Performance Counter Register

See Table 2-2.

Unique

Register Address: C2H, 194 IA32_PMC1

Performance Counter Register

See Table 2-2.

Unique

Register Address: CDH, 205 MSR_FSB_FREQ

Scaleable Bus Speed (R/O)

This field indicates the intended scalable bus clock speed for processors based on Intel Core microarchitecture.

Shared

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Shared/
Unique
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133.33 MHz should be utilized if performing calculation with System Bus 
Speed when encoding is 001B. 

166.67 MHz should be utilized if performing calculation with System Bus 
Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation with System Bus 
Speed when encoding is 000B.

333.33 MHz should be utilized if performing calculation with System Bus 
Speed when encoding is 100B.

63:3 Reserved.

Register Address: CDH, 205 MSR_FSB_FREQ

Scaleable Bus Speed (R/O)

This field indicates the intended scalable bus clock speed for processors based on Enhanced Intel Core 
microarchitecture.

Shared

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)
• 110B: 400 MHz (FSB 1600)
133.33 MHz should be utilized if performing calculation with System Bus 
Speed when encoding is 001B. 

166.67 MHz should be utilized if performing calculation with System Bus 
Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation with System Bus 
Speed when encoding is 110B.

333.33 MHz should be utilized if performing calculation with System Bus 
Speed when encoding is 111B.

63:3 Reserved.

Register Address: E7H, 231 IA32_MPERF

Maximum Performance Frequency Clock Count (R/W) 

See Table 2-2.

Unique

Register Address: E8H, 232 IA32_APERF

Actual Performance Frequency Clock Count (R/W) 

See Table 2-2.

Unique

Register Address: FEH, 254 IA32_MTRRCAP

See Table 2-2. Unique

11 SMRR Capability Using MSR 0A0H and 0A1H (R) Unique

Register Address: 174H, 372 IA32_SYSENTER_CS

See Table 2-2. Unique

Register Address: 175H, 373 IA32_SYSENTER_ESP

See Table 2-2. Unique

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Shared/
Unique
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Register Address: 176H, 374 IA32_SYSENTER_EIP

See Table 2-2. Unique

Register Address: 179H, 377 IA32_MCG_CAP

See Table 2-2. Unique

Register Address: 17AH, 378 IA32_MCG_STATUS

Global Machine Check Status Unique

0 RIPV

When set, bit indicates that the instruction addressed by the instruction 
pointer pushed on the stack (when the machine check was generated) can be 
used to restart the program. If cleared, the program cannot be reliably 
restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the instruction 
pointer pushed on the stack (when the machine check was generated) is 
directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If a second 
machine check is detected while this bit is still set, the processor enters a 
shutdown state. Software should write this bit to 0 after processing a 
machine check exception.

63:3 Reserved.

Register Address: 186H, 390 IA32_PERFEVTSEL0

See Table 2-2. Unique

Register Address: 187H, 391 IA32_PERFEVTSEL1

See Table 2-2. Unique

Register Address: 198H, 408 IA32_PERF_STATUS

See Table 2-2. Shared

Register Address: 198H, 408 MSR_PERF_STATUS

Current performance status. See Section 16.1.1, “Software Interface For Initiating Performance State Transitions.” Shared

15:0 Current Performance State Value

30:16 Reserved.

31 XE Operation (R/O).

If set, XE operation is enabled. Default is cleared.

39:32 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

45 Reserved.

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Shared/
Unique
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46 Non-Integer Bus Ratio (R/O)

Indicates non-integer bus ratio is enabled. Applies processors based on 
Enhanced Intel Core microarchitecture.

63:47 Reserved.

Register Address: 199H, 409 IA32_PERF_CTL

See Table 2-2. Unique

Register Address: 19AH, 410 IA32_CLOCK_MODULATION

Clock Modulation (R/W) 

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named IA32_THERM_CONTROL MSR.

Unique

Register Address: 19BH, 411 IA32_THERM_INTERRUPT

Thermal Interrupt Control (R/W) 

See Table 2-2.

Unique

Register Address: 19CH, 412 IA32_THERM_STATUS

Thermal Monitor Status (R/W) 

See Table 2-2.

Unique

Register Address: 19DH, 413 MSR_THERM2_CTL

Thermal Monitor 2 Control Unique

15:0 Reserved.

16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of the stop-
clock duty cycle).

1 = Thermal Monitor 2 (thermally-initiated frequency transitions).
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT has no 
effect. Neither TM1 nor TM2 are enabled.

63:16 Reserved.

Register Address: 1A0H, 416 IA32_MISC_ENABLE

Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

See Table 2-2.

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W) 

See Table 2-2.

Unique

6:4 Reserved.

7 Performance Monitoring Available (R) 

See Table 2-2.

Shared

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Shared/
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8 Reserved.

9 Hardware Prefetcher Disable (R/W)

When set, disables the hardware prefetcher operation on streams of data. 
When clear (default), enables the prefetch queue.

Disabling of the hardware prefetcher may impact processor performance.

10 FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break event 
within the processor.

0 =  Indicates compatible FERR# signaling behavior.
This bit must be set to 1 to support XAPIC interrupt model usage.

Shared

11 Branch Trace Storage Unavailable (R/O) 

See Table 2-2.

Shared

12 Processor Event Based Sampling Unavailable (R/O) 

See Table 2-2.

Shared

13 TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the die 
temperature is at the pre-determined threshold, the Thermal Monitor 2 
mechanism is engaged. TM2 will reduce the bus to core ratio and voltage 
according to the value last written to MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change the VID 
signals or the bus to core ratio when the processor enters a thermally 
managed state. 

The BIOS must enable this feature if the TM2 feature flag (CPUID.1:ECX[8]) is 
set; if the TM2 feature flag is not set, this feature is not supported and BIOS 
must not alter the contents of the TM2 bit location. 

The processor is operating out of specification if both this bit and the TM1 bit 
are set to 0.

Shared

15:14 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 2-2.

Shared

18 ENABLE MONITOR FSM (R/W) 

See Table 2-2.

Shared

19 Adjacent Cache Line Prefetch Disable (R/W) 

When set to 1, the processor fetches the cache line that contains data 
currently required by the processor. When set to 0, the processor fetches 
cache lines that comprise a cache line pair (128 bytes).

Single processor platforms should not set this bit. Server platforms should set 
or clear this bit based on platform performance observed in validation and 
testing. 

BIOS may contain a setup option that controls the setting of this bit.

Shared

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Shared/
Unique
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20 Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this bit).
• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep Technology 
transition is requested. This bit is cleared on reset.

Shared

21 Reserved.

22 Limit CPUID Maxval (R/W) 

See Table 2-2.

Shared

23 xTPR Message Disable (R/W) 

See Table 2-2.

Shared

33:24 Reserved.

34 XD Bit Disable (R/W)

When set to 1, the Execute Disable Bit feature (XD Bit) is disabled and the XD 
Bit extended feature flag will be clear (CPUID.80000001H: EDX[20]=0).

When set to a 0 (default), the Execute Disable Bit feature (if available) allows 
the OS to enable PAE paging and take advantage of data only pages.

BIOS must not alter the contents of this bit location if XD bit is not supported. 
Writing this bit to 1 when the XD Bit extended feature flag is set to 0 may 
generate a #GP exception.

Unique

36:35 Reserved.

37 DCU Prefetcher Disable (R/W)

When set to 1, the DCU L1 data cache prefetcher is disabled. The default 
value after reset is 0. BIOS may write ‘1’ to disable this feature. 

The DCU prefetcher is an L1 data cache prefetcher. When the DCU prefetcher 
detects multiple loads from the same line done within a time limit, the DCU 
prefetcher assumes the next line will be required. The next line is prefetched 
in to the L1 data cache from memory or L2.

Unique

38 IDA Disable (R/W)

When set to 1 on processors that support IDA, the Intel Dynamic Acceleration 
feature (IDA) is disabled and the IDA_Enable feature flag will be cleared 
(CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: EAX[1] reports 
the processor’s support of IDA is enabled.

Note: The power-on default value is used by BIOS to detect hardware support 
of IDA. If the power-on default value is 1, IDA is available in the processor. If 
the power-on default value is 0, IDA is not available.

Shared

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)
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Unique
2-96 Vol. 4



MODEL-SPECIFIC REGISTERS (MSRS)
39 IP Prefetcher Disable (R/W)

When set to 1, the IP prefetcher is disabled. The default value after reset is 0. 
BIOS may write ‘1’ to disable this feature. 

The IP prefetcher is an L1 data cache prefetcher. The IP prefetcher looks for 
sequential load history to determine whether to prefetch the next expected 
data into the L1 cache from memory or L2.

Unique

63:40 Reserved.

Register Address: 1C9H, 457 MSR_LASTBRANCH_TOS

Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

Unique

Register Address: 1D9H, 473 IA32_DEBUGCTL

Debug Control (R/W) 

See Table 2-2.

Unique

Register Address: 1DDH, 477 MSR_LER_FROM_LIP

Last Exception Record From Linear IP (R/W) 

Contains a pointer to the last branch instruction that the processor executed prior to the last exception that was 
generated or the last interrupt that was handled.

Unique

Register Address: 1DEH, 478 MSR_LER_TO_LIP

Last Exception Record To Linear IP (R/W) 

This area contains a pointer to the target of the last branch instruction that the processor executed prior to the last 
exception that was generated or the last interrupt that was handled. 

Unique

Register Address: 200H, 512 IA32_MTRR_PHYSBASE0

See Table 2-2. Unique

Register Address: 201H, 513 IA32_MTRR_PHYSMASK0

See Table 2-2. Unique

Register Address: 202H, 514 IA32_MTRR_PHYSBASE1

See Table 2-2. Unique

Register Address: 203H, 515 IA32_MTRR_PHYSMASK1

See Table 2-2. Unique

Register Address: 204H, 516 IA32_MTRR_PHYSBASE2

See Table 2-2. Unique

Register Address: 205H, 517 IA32_MTRR_PHYSMASK2

See Table 2-2. Unique

Register Address: 206H, 518 IA32_MTRR_PHYSBASE3

See Table 2-2. Unique

Register Address: 207H, 519 IA32_MTRR_PHYSMASK3

See Table 2-2. Unique

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Shared/
Unique
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Register Address: 208H, 520 IA32_MTRR_PHYSBASE4

See Table 2-2. Unique

Register Address: 209H, 521 IA32_MTRR_PHYSMASK4

See Table 2-2. Unique

Register Address: 20AH, 522 IA32_MTRR_PHYSBASE5

See Table 2-2. Unique

Register Address: 20BH, 523 IA32_MTRR_PHYSMASK5

See Table 2-2. Unique

Register Address: 20CH, 524 IA32_MTRR_PHYSBASE6

See Table 2-2. Unique

Register Address: 20DH, 525 IA32_MTRR_PHYSMASK6

See Table 2-2. Unique

Register Address: 20EH, 526 IA32_MTRR_PHYSBASE7

See Table 2-2. Unique

Register Address: 20FH, 527 IA32_MTRR_PHYSMASK7

See Table 2-2. Unique

Register Address: 250H, 592 IA32_MTRR_FIX64K_00000

See Table 2-2. Unique

Register Address: 258H, 600 IA32_MTRR_FIX16K_80000

See Table 2-2. Unique

Register Address: 259H, 601 IA32_MTRR_FIX16K_A0000

See Table 2-2. Unique

Register Address: 268H, 616 IA32_MTRR_FIX4K_C0000

See Table 2-2. Unique

Register Address: 269H, 617 IA32_MTRR_FIX4K_C8000

See Table 2-2. Unique

Register Address: 26AH, 618 IA32_MTRR_FIX4K_D0000

See Table 2-2. Unique

Register Address: 26BH, 619 IA32_MTRR_FIX4K_D8000

See Table 2-2. Unique

Register Address: 26CH, 620 IA32_MTRR_FIX4K_E0000

See Table 2-2. Unique

Register Address: 26DH, 621 IA32_MTRR_FIX4K_E8000

See Table 2-2. Unique

Register Address: 26EH, 622 IA32_MTRR_FIX4K_F0000

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Shared/
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2-98 Vol. 4



MODEL-SPECIFIC REGISTERS (MSRS)
See Table 2-2. Unique

Register Address: 26FH, 623 IA32_MTRR_FIX4K_F8000

See Table 2-2. Unique

Register Address: 277H, 631 IA32_PAT

See Table 2-2. Unique

Register Address: 2FFH, 767 IA32_MTRR_DEF_TYPE

Default Memory Types (R/W) 

See Table 2-2.

Unique

Register Address: 309H, 777 IA32_FIXED_CTR0

Fixed-Function Performance Counter Register 0 (R/W) 

See Table 2-2.

Unique

Register Address: 30AH, 778 IA32_FIXED_CTR1

Fixed-Function Performance Counter Register 1 (R/W) 

See Table 2-2.

Unique

Register Address: 30BH, 779 IA32_FIXED_CTR2

Fixed-Function Performance Counter Register 2 (R/W) 

See Table 2-2.

Unique

Register Address: 345H, 837 IA32_PERF_CAPABILITIES

See Table 2-2. See Section 19.4.1, “IA32_DEBUGCTL MSR.” Unique

Register Address: 345H, 837 MSR_PERF_CAPABILITIES

R/O. This applies to processors that do not support architectural perfmon version 2. Unique

5:0 LBR Format. See Table 2-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 2-2.

63:8 Reserved.

Register Address: 38DH, 909 IA32_FIXED_CTR_CTRL

Fixed-Function-Counter Control Register (R/W) 

See Table 2-2.

Unique

Register Address: 38EH, 910 IA32_PERF_GLOBAL_STATUS

See Table 2-2. See Section 21.6.2.2, “Global Counter Control Facilities.” Unique

Register Address: 38EH, 910 MSR_PERF_GLOBAL_STATUS

See Section 21.6.2.2, “Global Counter Control Facilities.” Unique

Register Address: 38FH, 911 IA32_PERF_GLOBAL_CTRL

See Table 2-2. See Section 21.6.2.2, “Global Counter Control Facilities.” Unique

Register Address: 38FH, 911 MSR_PERF_GLOBAL_CTRL

See Section 21.6.2.2, “Global Counter Control Facilities.” Unique

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Shared/
Unique
Vol. 4 2-99



MODEL-SPECIFIC REGISTERS (MSRS)
Register Address: 390H, 912 IA32_PERF_GLOBAL_OVF_CTRL

See Table 2-2. See Section 21.6.2.2, “Global Counter Control Facilities.” Unique

Register Address: 390H, 912 MSR_PERF_GLOBAL_OVF_CTRL

See Section 21.6.2.2, “Global Counter Control Facilities.” Unique

Register Address: 3F1H, 1009 IA32_PEBS_ENABLE (MSR_PEBS_ENABLE)

See Table 2-2. See Section 21.6.2.4, “Processor Event Based Sampling (PEBS).” Unique

0 Enable PEBS on IA32_PMC0. (R/W)

Register Address: 400H, 1024 IA32_MC0_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Unique

Register Address: 401H, 1025 IA32_MC0_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Unique

Register Address: 402H, 1026 IA32_MC0_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
IA32_MC0_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Unique

Register Address: 404H, 1028 IA32_MC1_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Unique

Register Address: 405H, 1029 IA32_MC1_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Unique

Register Address: 406H, 1030 IA32_MC1_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
IA32_MC1_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Unique

Register Address: 408H, 1032 IA32_MC2_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Unique

Register Address: 409H, 1033 IA32_MC2_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Unique

Register Address: 40AH, 1034 IA32_MC2_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
IA32_MC2_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Unique

Register Address: 40CH, 1036 IA32_MC4_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Unique

Register Address: 40DH, 1037 IA32_MC4_STATUS

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)
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See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Unique

Register Address: 40EH, 1038 IA32_MC4_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
MSR_MC4_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Unique

Register Address: 410H, 1040 IA32_MC3_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.”

Register Address: 411H, 1041 IA32_MC3_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.”

Register Address: 412H, 1042 IA32_MC3_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
MSR_MC3_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Unique

Register Address: 413H, 1043 IA32_MC3_MISC

Machine Check Error Reporting Register: Contains additional information describing the machine-check error if the 
MISCV flag in the IA32_MCi_STATUS register is set.

Unique

Register Address: 414H, 1044 IA32_MC5_CTL

Machine Check Error Reporting Register: Controls signaling of #MC for errors produced by a particular hardware unit 
(or group of hardware units).

Unique

Register Address: 415H, 1045 IA32_MC5_STATUS

Machine Check Error Reporting Register: Contains information related to a machine-check error if its VAL (valid) flag is 
set. Software is responsible for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them; writing 1s to them 
causes a general-protection exception.

Unique

Register Address: 416H, 1046 IA32_MC5_ADDR

Machine Check Error Reporting Register: Contains the address of the code or data memory location that produced the 
machine-check error if the ADDRV flag in the IA32_MCi_STATUS register is set.

Unique

Register Address: 417H, 1047 IA32_MC5_MISC

Machine Check Error Reporting Register: Contains additional information describing the machine-check error if the 
MISCV flag in the IA32_MCi_STATUS register is set.

Unique

Register Address: 419H, 1045 IA32_MC6_STATUS

Applies to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 17.3.2.2, 
“IA32_MCi_STATUS MSRS,” and Chapter 25.

Unique

Register Address: 480H, 1152 IA32_VMX_BASIC

Reporting Register of Basic VMX Capabilities (R/O) 

See Table 2-2. See Appendix A.1, “Basic VMX Information.”

Unique

Register Address: 481H, 1153 IA32_VMX_PINBASED_CTLS

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Shared/
Unique
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Capability Reporting Register of Pin-Based VM-Execution Controls (R/O) 

See Table 2-2. See Appendix A.3, “VM-Execution Controls.”

Unique

Register Address: 482H, 1154 IA32_VMX_PROCBASED_CTLS

Capability Reporting Register of Primary Processor-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

Unique

Register Address: 483H, 1155 IA32_VMX_EXIT_CTLS

Capability Reporting Register of VM-Exit Controls (R/O) 

See Table 2-2. See Appendix A.4, “VM-Exit Controls.”

Unique

Register Address: 484H, 1156 IA32_VMX_ENTRY_CTLS

Capability Reporting Register of VM-Entry Controls (R/O) 

See Table 2-2. See Appendix A.5, “VM-Entry Controls.”

Unique

Register Address: 485H, 1157 IA32_VMX_MISC

Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 2-2. See Appendix A.6, “Miscellaneous Data.”

Unique

Register Address: 486H, 1158 IA32_VMX_CR0_FIXED0

Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 2-2. See Appendix A.7, “VMX-Fixed Bits in CR0.”

Unique

Register Address: 487H, 1159 IA32_VMX_CR0_FIXED1

Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 2-2. See Appendix A.7, “VMX-Fixed Bits in CR0.”

Unique

Register Address: 488H, 1160 IA32_VMX_CR4_FIXED0

Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 2-2. See Appendix A.8, “VMX-Fixed Bits in CR4.”

Unique

Register Address: 489H, 1161 IA32_VMX_CR4_FIXED1

Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 2-2. See Appendix A.8, “VMX-Fixed Bits in CR4.”

Unique

Register Address: 48AH, 1162 IA32_VMX_VMCS_ENUM

Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 2-2. See Appendix A.9, “VMCS Enumeration.”

Unique

Register Address: 48BH, 1163 IA32_VMX_PROCBASED_CTLS2

Capability Reporting Register of Secondary Processor-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

Unique

Register Address: 600H, 1536 IA32_DS_AREA

DS Save Area (R/W)

See Table 2-2. See Section 21.6.3.4, “Debug Store (DS) Mechanism.”

Unique

Register Address: 107CCH, 67532 MSR_EMON_L3_CTR_CTL0

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Shared/
Unique
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GBUSQ Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 19.2.2.

Unique

Register Address: 107CDH, 67533 MSR_EMON_L3_CTR_CTL1

GBUSQ Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 19.2.2.

Unique

Register Address: 107CEH, 67534 MSR_EMON_L3_CTR_CTL2

GSNPQ Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 19.2.2.

Unique

Register Address: 107CFH, 67535 MSR_EMON_L3_CTR_CTL3

GSNPQ Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 19.2.2.

Unique

Register Address: 107D0H, 67536 MSR_EMON_L3_CTR_CTL4

FSB Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 19.2.2.

Unique

Register Address: 107D1H, 67537 MSR_EMON_L3_CTR_CTL5

FSB Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 19.2.2.

Unique

Register Address: 107D2H, 67538 MSR_EMON_L3_CTR_CTL6

FSB Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 19.2.2.

Unique

Register Address: 107D3H, 67539 MSR_EMON_L3_CTR_CTL7

FSB Event Control/Counter Register (R/W)

Applies to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 19.2.2.

Unique

Register Address: 107D8H, 67544 MSR_EMON_L3_GL_CTL

L3/FSB Common Control Register (R/W)

Applies to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 19.2.2.

Unique

Register Address: C000_0080H IA32_EFER

Extended Feature Enables

See Table 2-2.

Unique

Register Address: C000_0081H IA32_STAR

System Call Target Address (R/W)

See Table 2-2.

Unique

Register Address: C000_0082H IA32_LSTAR

IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

Unique

Register Address: C000_0084H IA32_FMASK

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Shared/
Unique
Vol. 4 2-103



MODEL-SPECIFIC REGISTERS (MSRS)
2.3 MSRS IN THE 45 NM AND 32 NM INTEL ATOM® PROCESSOR FAMILY
Table 2-4 lists model-specific registers (MSRs) for 45 nm and 32 nm Intel Atom processors, architectural MSR 
addresses are also included in Table 2-4. These processors have a CPUID Signature DisplayFamily_DisplayModel 
value of 06_1CH, 06_26H, 06_27H, 06_35H, or 06_36H; see Table 2-1. 

The column “Shared/Unique” applies to logical processors sharing the same core in processors based on the Intel 
Atom microarchitecture. “Unique” means each logical processor has a separate MSR, or a bit field in an MSR 
governs only a logical processor. “Shared” means the MSR or the bit field in an MSR address governs the operation 
of both logical processors in the same core.

System Call Flag Mask (R/W)

See Table 2-2.

Unique

Register Address: C000_0100H IA32_FS_BASE

Map of BASE Address of FS (R/W)

See Table 2-2.

Unique

Register Address: C000_0101H IA32_GS_BASE

Map of BASE Address of GS (R/W)

See Table 2-2.

Unique

Register Address: C000_0102H IA32_KERNEL_GS_BASE

Swap Target of BASE Address of GS (R/W) 

See Table 2-2.

Unique

Table 2-4.  MSRs in the 45 nm and 32 nm Intel Atom® Processor Family

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description
Shared/
Unique

Register Address: 0H, 0 IA32_P5_MC_ADDR

See Section 2.23, “MSRs in Pentium Processors.” Shared

Register Address: 1H, 1 IA32_P5_MC_TYPE

See Section 2.23, “MSRs in Pentium Processors.” Shared

Register Address: 6H, 6 IA32_MONITOR_FILTER_SIZE

See Section 10.10.5, “Monitor/Mwait Address Range Determination,” and Table 2-2. Unique

Register Address: 10H, 16 IA32_TIME_STAMP_COUNTER

See Section 19.17, “Time-Stamp Counter,” and see Table 2-2. Unique

Register Address: 17H, 23 IA32_PLATFORM_ID

Platform ID (R) 
See Table 2-2.

Shared

Register Address: 17H, 23 MSR_PLATFORM_ID

Table 2-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Shared/
Unique
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Model Specific Platform ID (R) Shared

7:0 Reserved.

12:8 Maximum Qualified Ratio (R) 

The maximum allowed bus ratio.

63:13 Reserved.

Register Address: 1BH, 27 IA32_APIC_BASE

See Section 12.4.4, “Local APIC Status and Location,” and Table 2-2. Unique

Register Address: 2AH, 42 MSR_EBL_CR_POWERON

Processor Hard Power-On Configuration (R/W) 

Enables and disables processor features; (R) indicates current processor configuration.

Shared

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled.
Always 0. 

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled.
Always 0.

3 AERR# Drive Enable (R/W) 

1 = Enabled; 0 = Disabled.
Always 0.

4 BERR# Enable for initiator bus requests (R/W)

1 = Enabled; 0 = Disabled.
Always 0. 

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled.
Always 0.

8 Reserved.

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled. 

10 AERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled.
Always 0.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled. 
Always 0.

13 Reserved.

Table 2-4.  MSRs in the 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description
Shared/
Unique
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14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes.

15 Reserved.

17:16 APIC Cluster ID (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio (R/O)

Register Address: 3AH, 58 IA32_FEATURE_CONTROL

Control Features in Intel 64Processor (R/W)

See Table 2-2.

Unique

Register Address: 40H, 64 MSR_LASTBRANCH_0_FROM_IP

Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch record stack. The From_IP part of the stack 
contains pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 19.5.

Unique

Register Address: 41H, 65 MSR_LASTBRANCH_1_FROM_IP

Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Unique

Register Address: 42H, 66 MSR_LASTBRANCH_2_FROM_IP

Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

Unique

Register Address: 43H, 67 MSR_LASTBRANCH_3_FROM_IP

Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Unique

Register Address: 44H, 68 MSR_LASTBRANCH_4_FROM_IP

Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Unique

Register Address: 45H, 69 MSR_LASTBRANCH_5_FROM_IP

Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Unique

Register Address: 46H, 70 MSR_LASTBRANCH_6_FROM_IP

Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Unique

Register Address: 47H, 71 MSR_LASTBRANCH_7_FROM_IP

Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Unique

Table 2-4.  MSRs in the 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description
Shared/
Unique
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Register Address: 60H, 96 MSR_LASTBRANCH_0_TO_IP

Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch record stack. The To_IP part of the stack contains 
pointers to the destination instruction.

Unique

Register Address: 61H, 97 MSR_LASTBRANCH_1_TO_IP

Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Unique

Register Address: 62H, 98 MSR_LASTBRANCH_2_TO_IP

Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Unique

Register Address: 63H, 99 MSR_LASTBRANCH_3_TO_IP

Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Unique

Register Address: 64H, 100 MSR_LASTBRANCH_4_TO_IP

Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Unique

Register Address: 65H, 101 MSR_LASTBRANCH_5_TO_IP

Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Unique

Register Address: 66H, 102 MSR_LASTBRANCH_6_TO_IP

Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Unique

Register Address: 67H, 103 MSR_LASTBRANCH_7_TO_IP

Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Unique

Register Address: 79H, 121 IA32_BIOS_UPDT_TRIG

BIOS Update Trigger Register (W) 

See Table 2-2.

Shared

Register Address: 8BH, 139 IA32_BIOS_SIGN_ID

BIOS Update Signature ID (R/W)

See Table 2-2.

Unique

Register Address: C1H, 193 IA32_PMC0

Performance counter register

See Table 2-2.

Unique

Register Address: C2H, 194 IA32_PMC1

Performance Counter Register

See Table 2-2.

Unique

Register Address: CDH, 205 MSR_FSB_FREQ

Table 2-4.  MSRs in the 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description
Shared/
Unique
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Scaleable Bus Speed (R/O)

This field indicates the intended scalable bus clock speed for processors based on Intel Atom microarchitecture.

Shared

2:0 • 111B: 083 MHz (FSB 333)
• 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
133.33 MHz should be utilized if performing calculation with System Bus 
Speed when encoding is 001B. 

166.67 MHz should be utilized if performing calculation with System Bus 
Speed when encoding is 011B.

63:3 Reserved.

Register Address: E7H, 231 IA32_MPERF

Maximum Performance Frequency Clock Count (R/W) 

See Table 2-2.

Unique

Register Address: E8H, 232 IA32_APERF

Actual Performance Frequency Clock Count (R/W) 

See Table 2-2.

Unique

Register Address: FEH, 254 IA32_MTRRCAP

Memory Type Range Register (R) 

See Table 2-2.

Shared

Register Address: 11EH, 281 MSR_BBL_CR_CTL3

Control Register 3

Used to configure the L2 Cache.

Shared

0 L2 Hardware Enabled (R/O)

1 = Indicates the L2 is hardware-enabled.
0 = Indicates the L2 is hardware-disabled.

7:1 Reserved.

8 L2 Enabled (R/W) 

1 = L2 cache has been initialized.
0 = Disabled (default).
Until this bit is set, the processor will not respond to the WBINVD instruction 
or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (R/O) 

0 = L2 Present.
1 = L2 Not Present.

63:24 Reserved.

Register Address: 174H, 372 IA32_SYSENTER_CS

See Table 2-2. Unique

Register Address: 175H, 373 IA32_SYSENTER_ESP

See Table 2-2. Unique

Table 2-4.  MSRs in the 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description
Shared/
Unique
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Register Address: 176H, 374 IA32_SYSENTER_EIP

See Table 2-2. Unique

Register Address: 179H, 377 IA32_MCG_CAP

See Table 2-2. Unique

Register Address: 17AH, 378 IA32_MCG_STATUS

Global Machine Check Status Unique

0 RIPV

When set, bit indicates that the instruction addressed by the instruction 
pointer pushed on the stack (when the machine check was generated) can be 
used to restart the program. If cleared, the program cannot be reliably 
restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the instruction 
pointer pushed on the stack (when the machine check was generated) is 
directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If a second 
machine check is detected while this bit is still set, the processor enters a 
shutdown state. Software should write this bit to 0 after processing a 
machine check exception.

63:3 Reserved.

Register Address: 186H, 390 IA32_PERFEVTSEL0

See Table 2-2. Unique

Register Address: 187H, 391 IA32_PERFEVTSEL1

See Table 2-2. Unique

Register Address: 198H, 408 IA32_PERF_STATUS

See Table 2-2. Shared

Register Address: 198H, 408 MSR_PERF_STATUS

Performance Status Shared

15:0 Current Performance State Value.

39:16 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

63:45 Reserved.

Register Address: 199H, 409 IA32_PERF_CTL

See Table 2-2. Unique

Register Address: 19AH, 410 IA32_CLOCK_MODULATION

Clock Modulation (R/W) 

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named IA32_THERM_CONTROL MSR.

Unique

Table 2-4.  MSRs in the 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description
Shared/
Unique
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Register Address: 19BH, 411 IA32_THERM_INTERRUPT

Thermal Interrupt Control (R/W) 

See Table 2-2.

Unique

Register Address: 19CH, 412 IA32_THERM_STATUS

Thermal Monitor Status (R/W) 

See Table 2-2.

Unique

Register Address: 19DH, 413 MSR_THERM2_CTL

Thermal Monitor 2 Control Shared

15:0 Reserved.

16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of the stop-
clock duty cycle).

1 = Thermal Monitor 2 (thermally-initiated frequency transitions).
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT has no 
effect. Neither TM1 nor TM2 are enabled.

63:17 Reserved.

Register Address: 1A0H, 416 IA32_MISC_ENABLE

Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

Unique

0 Fast-Strings Enable

See Table 2-2.

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W) 

See Table 2-2. Default value is 0.

Unique

6:4 Reserved.

7 Performance Monitoring Available (R) 

See Table 2-2.

Shared

8 Reserved.

9 Reserved.

10 FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break event 
within the processor.

0 =  Indicates compatible FERR# signaling behavior.
This bit must be set to 1 to support XAPIC interrupt model usage.

Shared

11 Branch Trace Storage Unavailable (R/O) 

See Table 2-2.

Shared

12 Processor Event Based Sampling Unavailable (R/O) 

See Table 2-2.

Shared

Table 2-4.  MSRs in the 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description
Shared/
Unique
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13 TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the die 
temperature is at the pre-determined threshold, the Thermal Monitor 2 
mechanism is engaged. TM2 will reduce the bus to core ratio and voltage 
according to the value last written to MSR_THERM2_CTL bits 15:0.

When this bit is cleared (0, default), the processor does not change the VID 
signals or the bus to core ratio when the processor enters a thermally 
managed state. 

The BIOS must enable this feature if the TM2 feature flag (CPUID.1:ECX[8]) is 
set; if the TM2 feature flag is not set, this feature is not supported and BIOS 
must not alter the contents of the TM2 bit location. 

The processor is operating out of specification if both this bit and the TM1 bit 
are set to 0.

Shared

15:14 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 2-2.

Shared

18 ENABLE MONITOR FSM (R/W) 

See Table 2-2.

Shared

19 Reserved.

20 Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this bit).
• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep Technology transition 
is requested. This bit is cleared on reset.

Shared

21 Reserved.

22 Limit CPUID Maxval (R/W) 

See Table 2-2.

Unique

23 xTPR Message Disable (R/W) 

See Table 2-2.

Shared

33:24 Reserved.

34 XD Bit Disable (R/W) 

See Table 2-3.

Unique

63:35 Reserved.

Register Address: 1C9H, 457 MSR_LASTBRANCH_TOS

Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-2) that points to the MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

Unique

Register Address: 1D9H, 473 IA32_DEBUGCTL

Debug Control (R/W) 

See Table 2-2.

Unique

Table 2-4.  MSRs in the 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description
Shared/
Unique
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Register Address: 1DDH, 477 MSR_LER_FROM_LIP

Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor executed prior to the last exception that was 
generated or the last interrupt that was handled.

Unique

Register Address: 1DEH, 478 MSR_LER_TO_LIP

Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch instruction that the processor executed prior to the last 
exception that was generated or the last interrupt that was handled. 

Unique

Register Address: 200H, 512 IA32_MTRR_PHYSBASE0

See Table 2-2. Shared

Register Address: 201H, 513 IA32_MTRR_PHYSMASK0

See Table 2-2. Shared

Register Address: 202H, 514 IA32_MTRR_PHYSBASE1

See Table 2-2. Shared

Register Address: 203H, 515 IA32_MTRR_PHYSMASK1

See Table 2-2. Shared

Register Address: 204H, 516 IA32_MTRR_PHYSBASE2

See Table 2-2. Shared

Register Address: 205H, 517 IA32_MTRR_PHYSMASK2

See Table 2-2. Shared

Register Address: 206H, 518 IA32_MTRR_PHYSBASE3

See Table 2-2. Shared

Register Address: 207H, 519 IA32_MTRR_PHYSMASK3

See Table 2-2. Shared

Register Address: 208H, 520 IA32_MTRR_PHYSBASE4

See Table 2-2. Shared

Register Address: 209H, 521 IA32_MTRR_PHYSMASK4

See Table 2-2. Shared

Register Address: 20AH, 522 IA32_MTRR_PHYSBASE5

See Table 2-2. Shared

Register Address: 20BH, 523 IA32_MTRR_PHYSMASK5

See Table 2-2. Shared

Register Address: 20CH, 524 IA32_MTRR_PHYSBASE6

See Table 2-2. Shared

Register Address: 20DH, 525 IA32_MTRR_PHYSMASK6

See Table 2-2. Shared

Register Address: 20EH, 526 IA32_MTRR_PHYSBASE7

See Table 2-2. Shared

Table 2-4.  MSRs in the 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description
Shared/
Unique
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Register Address: 20FH, 527 IA32_MTRR_PHYSMASK7

See Table 2-2. Shared

Register Address: 250H, 592 IA32_MTRR_FIX64K_00000

See Table 2-2. Shared

Register Address: 258H, 600 IA32_MTRR_FIX16K_80000

See Table 2-2. Shared

Register Address: 259H, 601 IA32_MTRR_FIX16K_A0000

See Table 2-2. Shared

Register Address: 268H, 616 IA32_MTRR_FIX4K_C0000

See Table 2-2. Shared

Register Address: 269H, 617 IA32_MTRR_FIX4K_C8000

See Table 2-2. Shared

Register Address: 26AH, 618 IA32_MTRR_FIX4K_D0000

See Table 2-2. Shared

Register Address: 26BH, 619 IA32_MTRR_FIX4K_D8000

See Table 2-2. Shared

Register Address: 26CH, 620 IA32_MTRR_FIX4K_E0000

See Table 2-2. Shared

Register Address: 26DH, 621 IA32_MTRR_FIX4K_E8000

See Table 2-2. Shared

Register Address: 26EH, 622 IA32_MTRR_FIX4K_F0000

See Table 2-2. Shared

Register Address: 26FH, 623 IA32_MTRR_FIX4K_F8000

See Table 2-2. Shared

Register Address: 277H, 631 IA32_PAT

See Table 2-2. Unique

Register Address: 309H, 777 IA32_FIXED_CTR0

Fixed-Function Performance Counter Register 0 (R/W) 

See Table 2-2.

Unique

Register Address: 30AH, 778 IA32_FIXED_CTR1

Fixed-Function Performance Counter Register 1 (R/W) 

See Table 2-2.

Unique

Register Address: 30BH, 779 IA32_FIXED_CTR2

Fixed-Function Performance Counter Register 2 (R/W) 

See Table 2-2.

Unique

Register Address: 345H, 837 IA32_PERF_CAPABILITIES

See Table 2-2. See Section 19.4.1, “IA32_DEBUGCTL MSR.” Shared

Table 2-4.  MSRs in the 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description
Shared/
Unique
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Register Address: 38DH, 909 IA32_FIXED_CTR_CTRL

Fixed-Function-Counter Control Register (R/W) 

See Table 2-2.

Unique

Register Address: 38EH, 910 IA32_PERF_GLOBAL_STATUS

See Table 2-2. See Section 21.6.2.2, “Global Counter Control Facilities.” Unique

Register Address: 38FH, 911 IA32_PERF_GLOBAL_CTRL

See Table 2-2. See Section 21.6.2.2, “Global Counter Control Facilities.” Unique

Register Address: 390H, 912 IA32_PERF_GLOBAL_OVF_CTRL

See Table 2-2. See Section 21.6.2.2, “Global Counter Control Facilities.” Unique

Register Address: 3F1H, 1009 IA32_PEBS_ENABLE (MSR_PEBS_ENABLE)

See Table 2-2. See Section 21.6.2.4, “Processor Event Based Sampling (PEBS).” Unique

0 Enable PEBS on IA32_PMC0 (R/W)

Register Address: 400H, 1024 IA32_MC0_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Shared

Register Address: 401H, 1025 IA32_MC0_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Shared

Register Address: 402H, 1026 IA32_MC0_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
IA32_MC0_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Shared

Register Address: 404H, 1028 IA32_MC1_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Shared

Register Address: 405H, 1029 IA32_MC1_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Shared

Register Address: 408H, 1032 IA32_MC2_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Shared

Register Address: 409H, 1033 IA32_MC2_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Shared

Register Address: 40AH, 1034 IA32_MC2_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
IA32_MC2_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Shared

Register Address: 40CH, 1036 IA32_MC3_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Shared

Register Address: 40DH, 1037 IA32_MC3_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Shared

Table 2-4.  MSRs in the 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description
Shared/
Unique
2-114 Vol. 4



MODEL-SPECIFIC REGISTERS (MSRS)
Register Address: 40EH, 1038 IA32_MC3_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
MSR_MC3_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Shared

Register Address: 410H, 1040 IA32_MC4_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Shared

Register Address: 411H, 1041 IA32_MC4_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Shared

Register Address: 412H, 1042 IA32_MC4_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
MSR_MC4_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Shared

Register Address: 480H, 1152 IA32_VMX_BASIC

Reporting Register of Basic VMX Capabilities (R/O) 

See Table 2-2. See Appendix A.1, “Basic VMX Information.”

Unique

Register Address: 481H, 1153 IA32_VMX_PINBASED_CTLS

Capability Reporting Register of Pin-Based VM-Execution Controls (R/O) 

See Table 2-2. See Appendix A.3, “VM-Execution Controls.”

Unique

Register Address: 482H, 1154 IA32_VMX_PROCBASED_CTLS

Capability Reporting Register of Primary Processor-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

Unique

Register Address: 483H, 1155 IA32_VMX_EXIT_CTLS

Capability Reporting Register of VM-Exit Controls (R/O) 

See Table 2-2. See Appendix A.4, “VM-Exit Controls.”

Unique

Register Address: 484H, 1156 IA32_VMX_ENTRY_CTLS

Capability Reporting Register of VM-Entry Controls (R/O) 

See Table 2-2. See Appendix A.5, “VM-Entry Controls.”

Unique

Register Address: 485H, 1157 IA32_VMX_MISC

Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 2-2. See Appendix A.6, “Miscellaneous Data.”

Unique

Register Address: 486H, 1158 IA32_VMX_CR0_FIXED0

Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 2-2. See Appendix A.7, “VMX-Fixed Bits in CR0.”

Unique

Register Address: 487H, 1159 IA32_VMX_CR0_FIXED1

Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 2-2. See Appendix A.7, “VMX-Fixed Bits in CR0.”

Unique

Register Address: 488H, 1160 IA32_VMX_CR4_FIXED0

Table 2-4.  MSRs in the 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description
Shared/
Unique
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Table 2-5 lists model-specific registers (MSRs) that are specific to Intel Atom® processor with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_27H. 

Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 2-2. See Appendix A.8, “VMX-Fixed Bits in CR4.”

Unique

Register Address: 489H, 1161 IA32_VMX_CR4_FIXED1

Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 2-2. See Appendix A.8, “VMX-Fixed Bits in CR4.”

Unique

Register Address: 48AH, 1162 IA32_VMX_VMCS_ENUM

Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 2-2. See Appendix A.9, “VMCS Enumeration.”

Unique

Register Address: 48BH, 1163 IA32_VMX_PROCBASED_CTLS2

Capability Reporting Register of Secondary Processor-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

Unique

Register Address: 600H, 1536 IA32_DS_AREA

DS Save Area (R/W)

See Table 2-2. See Section 21.6.3.4, “Debug Store (DS) Mechanism.”

Unique

Register Address: C000_0080H IA32_EFER

Extended Feature Enables

See Table 2-2.

Unique

Register Address: C000_0081H IA32_STAR

System Call Target Address (R/W)

See Table 2-2.

Unique

Register Address: C000_0082H IA32_LSTAR

IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

Unique

Register Address: C000_0084H IA32_FMASK

System Call Flag Mask (R/W)

See Table 2-2.

Unique

Register Address: C000_0100H IA32_FS_BASE

Map of BASE Address of FS (R/W)

See Table 2-2.

Unique

Register Address: C000_0101H IA32_GS_BASE

Map of BASE Address of GS (R/W)

See Table 2-2.

Unique

Register Address: C000_0102H IA32_KERNEL_GS_BASE

Swap Target of BASE Address of GS (R/W) 

See Table 2-2.

Unique

Table 2-4.  MSRs in the 45 nm and 32 nm Intel Atom® Processor Family (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description
Shared/
Unique
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2.4 MSRS IN INTEL PROCESSORS BASED ON SILVERMONT 
MICROARCHITECTURE

Table 2-6 lists model-specific registers (MSRs) common to Intel processors based on the Silvermont microarchitec-
ture. These processors have a CPUID Signature DisplayFamily_DisplayModel value of 06_37H, 06_4AH, 06_4DH, 
06_5AH, or 06_5DH; see Table 2-1. The MSRs listed in Table 2-6 are also common to processors based on the 
Airmont microarchitecture and newer microarchitectures for next generation Intel Atom processors.

Table 2-7 lists MSRs common to processors based on the Silvermont and Airmont microarchitectures, but not 
newer microarchitectures.

Table 2-8, Table 2-9, and Table 2-10 lists MSRs that are model-specific across processors based on the Silvermont 
microarchitecture.

In the Silvermont microarchitecture, the scope column indicates the following: “Core” means each processor core 
has a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit field 
is shared by a subset of the processor cores in the physical package. The number of processor cores in this subset 
is model specific and may differ between different processors. For all processors based on Silvermont microarchi-
tecture, the L2 cache is also shared between cores in a module and thus CPUID leaf 04H enumeration can be used 
to figure out which processors are in the same module. “Package” means all processor cores in the physical 
package share the same MSR or bit interface.

Table 2-5.  MSRs Supported by Intel Atom® Processors with a CPUID Signature DisplayFamily_DisplayModel 
Value of 06_27H 

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 3F8H, 1016 MSR_PKG_C2_RESIDENCY

Package C2 Residency

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

63:0 Package C2 Residency Counter (R/O)

Time that this package is in processor-specific C2 states since last reset. 
Counts at 1 Mhz frequency.

Package

Register Address: 3F9H, 1017 MSR_PKG_C4_RESIDENCY

Package C4 Residency

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

63:0 Package C4 Residency Counter. (R/O)

Time that this package is in processor-specific C4 states since last reset. 
Counts at 1 Mhz frequency.

Package

Register Address: 3FAH, 1018 MSR_PKG_C6_RESIDENCY

Package C6 Residency

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

63:0 Package C6 Residency Counter. (R/O)

Time that this package is in processor-specific C6 states since last reset. 
Counts at 1 Mhz frequency.

Package
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Table 2-6.   MSRs Common to Intel Atom® Processors (Silvermont and Newer Microarchitectures) 

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 0H, 0 IA32_P5_MC_ADDR

See Section 2.23, “MSRs in Pentium Processors.” Module

Register Address: 1H, 1 IA32_P5_MC_TYPE

See Section 2.23, “MSRs in Pentium Processors.” Module

Register Address: 6H, 6 IA32_MONITOR_FILTER_SIZE

See Section 10.10.5, “Monitor/Mwait Address Range Determination,” and Table 2-2. Core

Register Address: 10H, 16 IA32_TIME_STAMP_COUNTER

See Section 19.17, “Time-Stamp Counter,” and Table 2-2. Core

Register Address: 1BH, 27 IA32_APIC_BASE

See Section 12.4.4, “Local APIC Status and Location,” and Table 2-2. Core

Register Address: 2AH, 42 MSR_EBL_CR_POWERON

Processor Hard Power-On Configuration (R/W) 

Writes ignored.

Module

63:0 Reserved.

Register Address: 34H, 52 MSR_SMI_COUNT

SMI Counter (R/O) Core

31:0 SMI Count (R/O) 

Running count of SMI events since last RESET.

63:32 Reserved.

Register Address: 79H, 121 IA32_BIOS_UPDT_TRIG

BIOS Update Trigger Register (W) 

See Table 2-2.

Core

Register Address: 8BH, 139 IA32_BIOS_SIGN_ID

BIOS Update Signature ID (R/W)

See Table 2-2.

Core

Register Address: C1H, 193 IA32_PMC0

Performance Counter Register

See Table 2-2.

Core

Register Address: C2H, 194 IA32_PMC1

Performance Counter Register

See Table 2-2.

Core

Register Address: E4H, 228 MSR_PMG_IO_CAPTURE_BASE

Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.

Module
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15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO redirection. If IO MWAIT 
Redirection is enabled, reads to this address will be consumed by the power 
management logic and decoded to MWAIT instructions. When IO port 
address redirection is enabled, this is the IO port address reported to the 
OS/software.

18:16 C-state Range (R/W) 

Specifies the encoding value of the maximum C-State code name to be 
included when IO read to MWAIT redirection is enabled by 
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

100b - C4 is the max C-State to include

110b - C6 is the max C-State to include

111b - C7 is the max C-State to include

63:19 Reserved.

Register Address: E7H, 231 IA32_MPERF

Maximum Performance Frequency Clock Count (R/W) 

See Table 2-2.

Core

Register Address: E8H, 232 IA32_APERF

Actual Performance Frequency Clock Count (R/W) 

See Table 2-2.

Core

Register Address: FEH, 254 IA32_MTRRCAP

Memory Type Range Register (R) 

See Table 2-2.

Core

Register Address: 13CH, 316 MSR_FEATURE_CONFIG

AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle unsuccessful read of this MSR.

Core

1:0 AES Configuration (RW-L) 

Upon a successful read of this MSR, the configuration of AES instruction 
sets availability is as follows:

11b: AES instructions are not available until next RESET.

Otherwise, AES instructions are available.

Note: AES instruction set is not available if read is unsuccessful. If the 
configuration is not 01b, AES instructions can be mis-configured if a 
privileged agent unintentionally writes 11b.

63:2 Reserved.

Register Address: 174H, 372 IA32_SYSENTER_CS

See Table 2-2. Core

Register Address: 175H, 373 IA32_SYSENTER_ESP

See Table 2-2. Core

Register Address: 176H, 374 IA32_SYSENTER_EIP

See Table 2-2. Core

Register Address: 179H, 377 IA32_MCG_CAP

Table 2-6.   MSRs Common to Intel Atom® Processors (Silvermont and Newer Microarchitectures)  (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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See Table 2-2. Core

Register Address: 17AH, 378 IA32_MCG_STATUS

Global Machine Check Status Core

0 RIPV

When set, bit indicates that the instruction addressed by the instruction 
pointer pushed on the stack (when the machine check was generated) can 
be used to restart the program. If cleared, the program cannot be reliably 
restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the instruction 
pointer pushed on the stack (when the machine check was generated) is 
directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If a 
second machine check is detected while this bit is still set, the processor 
enters a shutdown state. Software should write this bit to 0 after 
processing a machine check exception.

63:3 Reserved.

Register Address: 186H, 390 IA32_PERFEVTSEL0

See Table 2-2. Core

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 Reserved.

22 EN

23 INV

31:24 CMASK

63:32 Reserved.

Register Address: 187H, 391 IA32_PERFEVTSEL1

See Table 2-2. Core

Register Address: 198H, 408 IA32_PERF_STATUS

See Table 2-2. Module

Register Address: 199H, 409 IA32_PERF_CTL

See Table 2-2. Core

Register Address: 19AH, 410 IA32_CLOCK_MODULATION

Table 2-6.   MSRs Common to Intel Atom® Processors (Silvermont and Newer Microarchitectures)  (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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Clock Modulation (R/W) 

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named IA32_THERM_CONTROL MSR.

Core

Register Address: 19BH, 411 IA32_THERM_INTERRUPT

Thermal Interrupt Control (R/W) 

See Table 2-2.

Core

Register Address: 19CH, 412 IA32_THERM_STATUS

Thermal Monitor Status (R/W) 

See Table 2-2.

Core

Register Address: 1A2H, 418 MSR_TEMPERATURE_TARGET

Temperature Target Package

15:0 Reserved.

23:16 Temperature Target (R) 

The default thermal throttling or PROCHOT# activation temperature in 
degrees C. The effective temperature for thermal throttling or PROCHOT# 
activation is “Temperature Target” + “Target Offset”.

29:24 Target Offset (R/W) 

Specifies an offset in degrees C to adjust the throttling and PROCHOT# 
activation temperature from the default target specified in 
TEMPERATURE_TARGET (bits 23:16).

63:30 Reserved.

Register Address: 1A6H, 422 MSR_OFFCORE_RSP_0

Offcore Response Event Select Register (R/W) Module

Register Address: 1A7H, 423 MSR_OFFCORE_RSP_1

Offcore Response Event Select Register (R/W) Module

Register Address: 1B0H, 432 IA32_ENERGY_PERF_BIAS

See Table 2-2. Core

Register Address: 1D9H, 473 IA32_DEBUGCTL

Debug Control (R/W) 

See Table 2-2.

Core

Register Address: 1DDH, 477 MSR_LER_FROM_LIP

Last Exception Record From Linear IP (R/W) 

Contains a pointer to the last branch instruction that the processor executed prior to the last exception that was 
generated or the last interrupt that was handled.

Core

Register Address: 1DEH, 478 MSR_LER_TO_LIP

Last Exception Record To Linear IP (R/W) 

This area contains a pointer to the target of the last branch instruction that the processor executed prior to the last 
exception that was generated or the last interrupt that was handled. 

Core

Register Address: 1F2H, 498 IA32_SMRR_PHYSBASE

See Table 2-2. Core

Table 2-6.   MSRs Common to Intel Atom® Processors (Silvermont and Newer Microarchitectures)  (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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Register Address: 1F3H, 499 IA32_SMRR_PHYSMASK

See Table 2-2. Core

Register Address: 200H, 512 IA32_MTRR_PHYSBASE0

See Table 2-2. Core

Register Address: 201H, 513 IA32_MTRR_PHYSMASK0

See Table 2-2. Core

Register Address: 202H, 514 IA32_MTRR_PHYSBASE1

See Table 2-2. Core

Register Address: 203H, 515 IA32_MTRR_PHYSMASK1

See Table 2-2. Core

Register Address: 204H, 516 IA32_MTRR_PHYSBASE2

See Table 2-2. Core

Register Address: 205H, 517 IA32_MTRR_PHYSMASK2

See Table 2-2. Core

Register Address: 206H, 518 IA32_MTRR_PHYSBASE3

See Table 2-2. Core

Register Address: 207H, 519 IA32_MTRR_PHYSMASK3

See Table 2-2. Core

Register Address: 208H, 520 IA32_MTRR_PHYSBASE4

See Table 2-2. Core

Register Address: 209H, 521 IA32_MTRR_PHYSMASK4

See Table 2-2. Core

Register Address: 20AH, 522 IA32_MTRR_PHYSBASE5

See Table 2-2. Core

Register Address: 20BH, 523 IA32_MTRR_PHYSMASK5

See Table 2-2. Core

Register Address: 20CH, 524 IA32_MTRR_PHYSBASE6

See Table 2-2. Core

Register Address: 20DH, 525 IA32_MTRR_PHYSMASK6

See Table 2-2. Core

Register Address: 20EH, 526 IA32_MTRR_PHYSBASE7

See Table 2-2. Core

Register Address: 20FH, 527 IA32_MTRR_PHYSMASK7

See Table 2-2. Core

Register Address: 250H, 592 IA32_MTRR_FIX64K_00000

See Table 2-2. Core

Register Address: 258H, 600 IA32_MTRR_FIX16K_80000

Table 2-6.   MSRs Common to Intel Atom® Processors (Silvermont and Newer Microarchitectures)  (Contd.)
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Register Information / Bit Fields Bit Description Scope
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See Table 2-2. Core

Register Address: 259H, 601 IA32_MTRR_FIX16K_A0000

See Table 2-2. Core

Register Address: 268H, 616 IA32_MTRR_FIX4K_C0000

See Table 2-2. Core

Register Address: 269H, 617 IA32_MTRR_FIX4K_C8000

See Table 2-2. Core

Register Address: 26AH, 618 IA32_MTRR_FIX4K_D0000

See Table 2-2. Core

Register Address: 26BH, 619 IA32_MTRR_FIX4K_D8000

See Table 2-2. Core

Register Address: 26CH, 620 IA32_MTRR_FIX4K_E0000

See Table 2-2. Core

Register Address: 26DH, 621 IA32_MTRR_FIX4K_E8000

See Table 2-2. Core

Register Address: 26EH, 622 IA32_MTRR_FIX4K_F0000

See Table 2-2. Core

Register Address: 26FH, 623 IA32_MTRR_FIX4K_F8000

See Table 2-2. Core

Register Address: 277H, 631 IA32_PAT

See Table 2-2. Core

Register Address: 2FFH, 767 IA32_MTRR_DEF_TYPE

Default Memory Types (R/W) 

See Table 2-2.

Core

Register Address: 309H, 777 IA32_FIXED_CTR0

Fixed-Function Performance Counter Register 0 (R/W) 

See Table 2-2.

Core

Register Address: 30AH, 778 IA32_FIXED_CTR1

Fixed-Function Performance Counter Register 1 (R/W) 

See Table 2-2.

Core

Register Address: 30BH, 779 IA32_FIXED_CTR2

Fixed-Function Performance Counter Register 2 (R/W) 

See Table 2-2.

Core

Register Address: 345H, 837 IA32_PERF_CAPABILITIES

See Table 2-2. See Section 19.4.1, “IA32_DEBUGCTL MSR.” Core

Register Address: 38DH, 909 IA32_FIXED_CTR_CTRL

Fixed-Function-Counter Control Register (R/W) 

See Table 2-2.

Core

Table 2-6.   MSRs Common to Intel Atom® Processors (Silvermont and Newer Microarchitectures)  (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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Register Address: 38FH, 911 IA32_PERF_GLOBAL_CTRL

See Table 2-2. See Section 21.6.2.2, “Global Counter Control Facilities.” Core

Register Address: 3FDH, 1021 MSR_CORE_C6_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Core

63:0 CORE C6 Residency Counter (R/O)

Value since last reset that this core is in processor-specific C6 states. 
Counts at the TSC Frequency.

Register Address: 400H, 1024 IA32_MC0_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Module

Register Address: 401H, 1025 IA32_MC0_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Module

Register Address: 402H, 1026 IA32_MC0_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
IA32_MC0_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Module

Register Address: 404H, 1028 IA32_MC1_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Module

Register Address: 405H, 1029 IA32_MC1_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Module

Register Address: 408H, 1032 IA32_MC2_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Module

Register Address: 409H, 1033 IA32_MC2_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Module

Register Address: 40AH, 1034 IA32_MC2_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
IA32_MC2_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Module

Register Address: 40CH, 1036 IA32_MC3_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Core

Register Address: 40DH, 1037 IA32_MC3_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Core

Register Address: 40EH, 1038 IA32_MC3_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
MSR_MC3_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Core

Register Address: 410H, 1040 IA32_MC4_CTL
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See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Core

Register Address: 411H, 1041 IA32_MC4_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Core

Register Address: 412H, 1042 IA32_MC4_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
MSR_MC4_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Core

Register Address: 414H, 1044 IA32_MC5_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 415H, 1045 IA32_MC5_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Package

Register Address: 416H, 1046 IA32_MC5_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
MSR_MC4_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Package

Register Address: 480H, 1152 IA32_VMX_BASIC

Reporting Register of Basic VMX Capabilities (R/O) 

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

Core

Register Address: 481H, 1153 IA32_VMX_PINBASED_CTLS

Capability Reporting Register of Pin-Based VM-Execution Controls (R/O) 

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

Core

Register Address: 482H, 1154 IA32_VMX_PROCBASED_CTLS

Capability Reporting Register of Primary Processor-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

Core

Register Address: 483H, 1155 IA32_VMX_EXIT_CTLS

Capability Reporting Register of VM-Exit Controls (R/O) 

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

Core

Register Address: 484H, 1156 IA32_VMX_ENTRY_CTLS

Capability Reporting Register of VM-Entry Controls (R/O) 

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

Core

Register Address: 485H, 1157 IA32_VMX_MISC

Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

Core
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Register Address: 486H, 1158 IA32_VMX_CR0_FIXED0

Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

Core

Register Address: 487H, 1159 IA32_VMX_CR0_FIXED1

Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

Core

Register Address: 488H, 1160 IA32_VMX_CR4_FIXED0

Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

Core

Register Address: 489H, 1161 IA32_VMX_CR4_FIXED1

Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

Core

Register Address: 48AH, 1162 IA32_VMX_VMCS_ENUM

Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

Core

Register Address: 48BH, 1163 IA32_VMX_PROCBASED_CTLS2

Capability Reporting Register of Secondary Processor-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

Core

Register Address: 48CH, 1164 IA32_VMX_EPT_VPID_ENUM

Capability Reporting Register of EPT and VPID (R/O) 

See Table 2-2.

Core

Register Address: 48DH, 1165 IA32_VMX_TRUE_PINBASED_CTLS

Capability Reporting Register of Pin-Based VM-Execution Flex Controls (R/O)

See Table 2-2.

Core

Register Address: 48EH, 1166 IA32_VMX_TRUE_PROCBASED_CTLS

Capability Reporting Register of Primary Processor-based VM-Execution Flex Controls (R/O)

See Table 2-2.

Core

Register Address: 48FH, 1167 IA32_VMX_TRUE_EXIT_CTLS

Capability Reporting Register of VM-Exit Flex Controls (R/O)

See Table 2-2.

Core

Register Address: 490H, 1168 IA32_VMX_TRUE_ENTRY_CTLS

Capability Reporting Register of VM-Entry Flex Controls (R/O)

See Table 2-2.

Core

Register Address: 491H, 1169 IA32_VMX_FMFUNC
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Capability Reporting Register of VM-Function Controls (R/O)

See Table 2-2.

Core

Register Address: 4C1H, 1217 IA32_A_PMC0

See Table 2-2. Core

Register Address: 4C2H, 1218 IA32_A_PMC1

See Table 2-2. Core

Register Address: 600H, 1536 IA32_DS_AREA

DS Save Area (R/W)

See Table 2-2 and Section 21.6.3.4, “Debug Store (DS) Mechanism.”

Core

Register Address: 660H, 1632 MSR_CORE_C1_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Core

63:0 CORE C1 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C1 states. 
Counts at the TSC frequency.

Register Address: 6E0H, 1760 IA32_TSC_DEADLINE

TSC Target of Local APIC’s TSC Deadline Mode (R/W) 

See Table 2-2.

Core

Register Address: C000_0080H IA32_EFER

Extended Feature Enables

See Table 2-2.

Core

Register Address: C000_0081H IA32_STAR

System Call Target Address (R/W)

See Table 2-2.

Core

Register Address: C000_0082H IA32_LSTAR

IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

Core

Register Address: C000_0084H IA32_FMASK

System Call Flag Mask (R/W)

See Table 2-2.

Core

Register Address: C000_0100H IA32_FS_BASE

Map of BASE Address of FS (R/W)

See Table 2-2.

Core

Register Address: C000_0101H IA32_GS_BASE

Map of BASE Address of GS (R/W)

See Table 2-2.

Core

Register Address: C000_0102H IA32_KERNEL_GS_BASE

Swap Target of BASE Address of GS (R/W) 

See Table 2-2.

Core
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Table 2-7 lists model-specific registers (MSRs) that are common to Intel Atom® processors based on the Silver-
mont and Airmont microarchitectures but not newer microarchitectures.

Register Address: C000_0103H IA32_TSC_AUX

AUXILIARY TSC Signature (R/W) 

See Table 2-2.

Core

Table 2-7.  MSRs Common to the Silvermont and Airmont Microarchitectures 

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 17H, 23 MSR_PLATFORM_ID

Model Specific Platform ID (R) Module

7:0 Reserved.

13:8 Maximum Qualified Ratio (R) 

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 2-2.

63:33 Reserved.

Register Address: 3AH, 58 IA32_FEATURE_CONTROL

Control Features in Intel 64Processor (R/W)

See Table 2-2.

Core

0 Lock (R/WL) 

1 Reserved.

2 Enable VMX outside SMX operation (R/WL) 

Register Address: 40H, 64 MSR_LASTBRANCH_0_FROM_IP

Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch record stack. The From_IP part of the stack 
contains pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 19.5 and record format in Section 19.4.8.1.

Core

Register Address: 41H, 65 MSR_LASTBRANCH_1_FROM_IP

Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 42H, 66 MSR_LASTBRANCH_2_FROM_IP

Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

Core

Register Address: 43H, 67 MSR_LASTBRANCH_3_FROM_IP

Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 44H, 68 MSR_LASTBRANCH_4_FROM_IP
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Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 45H, 69 MSR_LASTBRANCH_5_FROM_IP

Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 46H, 70 MSR_LASTBRANCH_6_FROM_IP

Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 47H, 71 MSR_LASTBRANCH_7_FROM_IP

Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 60H, 96 MSR_LASTBRANCH_0_TO_IP

Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch record stack. The To_IP part of the stack contains 
pointers to the destination instruction.

Core

Register Address: 61H, 97 MSR_LASTBRANCH_1_TO_IP

Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 62H, 98 MSR_LASTBRANCH_2_TO_IP

Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 63H, 99 MSR_LASTBRANCH_3_TO_IP

Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 64H, 100 MSR_LASTBRANCH_4_TO_IP

Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 65H, 101 MSR_LASTBRANCH_5_TO_IP

Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 66H, 102 MSR_LASTBRANCH_6_TO_IP

Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 67H, 103 MSR_LASTBRANCH_7_TO_IP

Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: CEH, 206 MSR_PLATFORM_INFO

Platform Information: Contains power management and other model specific features enumeration. See 
http://biosbits.org.

Package

7:0 Reserved.
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15:8 Maximum Non-Turbo Ratio (R/O) 

This is the ratio of the maximum frequency that does not require turbo. 
Frequency = ratio * Scalable Bus Frequency.

Package

63:16 Reserved.

Register Address: E2H, 226 MSR_PKG_CST_CONFIG_CONTROL

C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

See http://biosbits.org.

Module

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name (consuming the 
least power) for the package. The default is set as factory-configured 
package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

100b: C4

110b: C6

111b: C7 (Silvermont only)

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register specified by 
MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions.

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, locks bits 15:0 of this register until next reset.

63:16 Reserved.

Register Address: 11EH, 281 MSR_BBL_CR_CTL3

Control Register 3

Used to configure the L2 Cache.

Module

0 L2 Hardware Enabled (R/O)

1 = If the L2 is hardware-enabled.
0 = Indicates if the L2 is hardware-disabled.

7:1 Reserved.

8 L2 Enabled (R/W) 

1 = L2 cache has been initialized.
0 = Disabled (default).
Until this bit is set the processor will not respond to the WBINVD instruction 
or the assertion of the FLUSH# input.

22:9 Reserved.
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23 L2 Not Present (R/O) 

0 = L2 Present.
1 = L2 Not Present.

63:24 Reserved.

Register Address: 1A0H, 416 IA32_MISC_ENABLE

Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

See Table 2-2.

Core

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W) 

See Table 2-2. Default value is 0.

Module

6:4 Reserved.

7 Performance Monitoring Available (R) 

See Table 2-2.

Core

10:8 Reserved.

11 Branch Trace Storage Unavailable (R/O) 

See Table 2-2.

Core

12 Processor Event Based Sampling Unavailable (R/O) 

See Table 2-2.

Core

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 2-2.

Module

18 ENABLE MONITOR FSM (R/W) 

See Table 2-2.

Core

21:19 Reserved.

22 Limit CPUID Maxval (R/W) 

See Table 2-2.

Core

23 xTPR Message Disable (R/W) 

See Table 2-2.

Module

33:24 Reserved.

34 XD Bit Disable (R/W) 

See Table 2-3.

Core

37:35 Reserved.
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38 Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost Technology, the 
turbo mode feature is disabled and the IDA_Enable feature flag will be 
cleared (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: EAX[1] reports 
the processor’s support of turbo mode is enabled.

Note: The power-on default value is used by BIOS to detect hardware 
support of turbo mode. If the power-on default value is 1, turbo mode is 
available in the processor. If the power-on default value is 0, turbo mode is 
not available.

Module

63:39 Reserved.

Register Address: 1C8H, 456 MSR_LBR_SELECT

Last Branch Record Filtering Select Register (R/W) 

See Section 19.9.2, “Filtering of Last Branch Records.”

Core

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.

Register Address: 1C9H, 457 MSR_LASTBRANCH_TOS

Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-2) that points to the MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 38EH, 910 IA32_PERF_GLOBAL_STATUS

See Table 2-2. See Section 21.6.2.2, “Global Counter Control Facilities.” Core

Register Address: 390H, 912 IA32_PERF_GLOBAL_OVF_CTRL

See Table 2-2. See Section 21.6.2.2, “Global Counter Control Facilities.” Core

Register Address: 3F1H, 1009 IA32_PEBS_ENABLE (MSR_PEBS_ENABLE)

See Table 2-2. See Section 21.6.2.4, “Processor Event Based Sampling (PEBS).” Core

0 Enable PEBS for precise event on IA32_PMC0 (R/W)

Register Address: 3FAH, 1018 MSR_PKG_C6_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

63:0 Package C6 Residency Counter (R/O)

Value since last reset that this package is in processor-specific C6 states. 
Counts at the TSC Frequency.
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2.4.1  MSRs with Model-Specific Behavior in the Silvermont Microarchitecture
Table 2-8 lists MSRs that are specific to the Intel Atom® processor E3000 Series (CPUID Signature 
DisplayFamily_DisplayModel value of 06_37H) and Intel Atom processors (CPUID Signature 
DisplayFamily_DisplayModel value of 06_4AH, 06_5AH, or 06_5DH). 

Register Address: 664H, 1636 MSR_MC6_RESIDENCY_COUNTER

Module C6 Residency Counter (R/0) 

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Module

63:0 Time that this module is in module-specific C6 states since last reset. Counts 
at 1 Mhz frequency.

Table 2-8.  Specific MSRs Supported by Intel Atom® Processors with a CPUID Signature DisplayFamily_DisplayModel 
Value of 06_37H, 06_4AH, 06_5AH, or 06_5DH 

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: CDH, 205 MSR_FSB_FREQ

Scaleable Bus Speed (R/O)

This field indicates the intended scalable bus clock speed for processors based on Silvermont microarchitecture.

Module

2:0 • 100B: 080.0 MHz 
• 000B: 083.3 MHz 
• 001B: 100.0 MHz 
• 010B: 133.3 MHz 
• 011B: 116.7 MHz 

63:3 Reserved.

Register Address: 606H, 1542 MSR_RAPL_POWER_UNIT

Unit Multipliers used in RAPL Interfaces (R/O) 

See Section 16.10.1, “RAPL Interfaces.”

Package

3:0 Power Units

Power related information (in milliWatts) is based on the multiplier,   2^PU; 
where PU is an unsigned integer represented by bits 3:0. Default value is 
0101b, indicating power unit is in 32 milliWatts increment.

7:4 Reserved.

12:8 Energy Status Units

Energy related information (in microJoules) is based on the multiplier, 2^ESU; 
where ESU is an unsigned integer represented by bits 12:8. Default value is 
00101b, indicating energy unit is in 32 microJoules increment.

15:13 Reserved.

19:16 Time Unit

The value is 0000b, indicating time unit is in one second.

63:20 Reserved.

Register Address: 610H, 1552 MSR_PKG_POWER_LIMIT

PKG RAPL Power Limit Control (R/W) Package
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Table 2-9 lists model-specific registers (MSRs) that are specific to the Intel Atom® processor E3000 Series (CPUID 
Signature DisplayFamily_DisplayModel value of 06_37H).

14:0 Package Power Limit #1 (R/W)

See Section 16.10.3, “Package RAPL Domain,” and MSR_RAPL_POWER_UNIT 
in Table 2-8. 

15 Enable Power Limit #1 (R/W)

See Section 16.10.3, “Package RAPL Domain.”

16 Package Clamping Limitation #1 (R/W)

See Section 16.10.3, “Package RAPL Domain.”

23:17 Time Window for Power Limit #1 (R/W)

In unit of second. If 0 is specified in bits [23:17], defaults to 1 second 
window.

63:24 Reserved.

Register Address: 611H, 1553 MSR_PKG_ENERGY_STATUS

PKG Energy Status (R/O) 

See Section 16.10.3, “Package RAPL Domain,” and MSR_RAPL_POWER_UNIT in Table 2-8.

Package

Register Address: 639H, 1593 MSR_PP0_ENERGY_STATUS

PP0 Energy Status (R/O) 

See Section 16.10.4, “PP0/PP1 RAPL Domains,” and MSR_RAPL_POWER_UNIT in Table 2-8.

Package

Table 2-9.  Specific MSRs Supported by the Intel Atom® Processor E3000 Series with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_37H

Register Address: Hex, Decimal Register Name (Former Register Name)
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Register Address: 668H, 1640 MSR_CC6_DEMOTION_POLICY_CONFIG

Core C6 Demotion Policy Config MSR Package

63:0 Controls per-core C6 demotion policy. Writing a value of 0 disables core 
level HW demotion policy.

Register Address: 669H, 1641 MSR_MC6_DEMOTION_POLICY_CONFIG

Module C6 Demotion Policy Config MSR Package

63:0 Controls module (i.e., two cores sharing the second-level cache) C6 
demotion policy. Writing a value of 0 disables module level HW demotion 
policy.

Register Address: 664H, 1636 MSR_MC6_RESIDENCY_COUNTER

Module C6 Residency Counter (R/0) 

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Module

63:0 Time that this module is in module-specific C6 states since last reset. 
Counts at 1 Mhz frequency.

Table 2-8.  Specific MSRs Supported by Intel Atom® Processors with a CPUID Signature DisplayFamily_DisplayModel 
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Table 2-10 lists model-specific registers (MSRs) that are specific to Intel Atom® processor C2000 Series (CPUID 
Signature DisplayFamily_DisplayModel value of 06_4DH). 

Table 2-10.  Specific MSRs Supported by Intel Atom® Processor C2000 Series with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_4DH 

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 1A4H, 420 MSR_MISC_FEATURE_CONTROL

Miscellaneous Feature Control (R/W) 

0 L2 Hardware Prefetcher Disable (R/W) 

If 1, disables the L2 hardware prefetcher, which fetches additional lines of 
code or data into the L2 cache.

Core

1 Reserved.

2 DCU Hardware Prefetcher Disable (R/W) 

If 1, disables the L1 data cache prefetcher, which fetches the next cache 
line into L1 data cache.

Core

63:3 Reserved.

Register Address: 1ADH, 429 MSR_TURBO_RATIO_LIMIT

Maximum Ratio Limit of Turbo Mode (R/W) Package

7:0 Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

Package

15:8 Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

Package

23:16 Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

Package

31:24 Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

Package

39:32 Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

Package

47:40 Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

Package

55:48 Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

Package

63:56 Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

Package

Register Address: 606H, 1542 MSR_RAPL_POWER_UNIT

Unit Multipliers used in RAPL Interfaces (R/O) 

See Section 16.10.1, “RAPL Interfaces.”

Package

3:0 Power Units

Power related information (in milliWatts) is based on the multiplier,   2^PU; 
where PU is an unsigned integer represented by bits 3:0. Default value is 
0101b, indicating power unit is in 32 milliWatts increment.

7:4 Reserved.
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2.4.2  MSRs in Intel Atom® Processors Based on Airmont Microarchitecture
Intel Atom processor X7-Z8000 and X5-Z8000 series are based on the Airmont microarchitecture. These proces-
sors support MSRs listed in Table 2-6, Table 2-7, Table 2-8, and Table 2-11. These processors have a CPUID 
Signature DisplayFamily_DisplayModel value of 06_4CH; see Table 2-1. 

12:8 Energy Status Units. 

Energy related information (in microJoules) is based on the multiplier, 
2^ESU; where ESU is an unsigned integer represented by bits 12:8. 
Default value is 00101b, indicating energy unit is in 32 microJoules 
increment.

15:13 Reserved.

19:16 Time Unit

The value is 0000b, indicating time unit is in one second.

63:20 Reserved.

Register Address: 610H, 1552 MSR_PKG_POWER_LIMIT

PKG RAPL Power Limit Control (R/W) 

See Section 16.10.3, “Package RAPL Domain.”

Package

Register Address: 66EH, 1646 MSR_PKG_POWER_INFO

PKG RAPL Parameter (R/0) Package

14:0 Thermal Spec Power (R/0)

The unsigned integer value is the equivalent of the thermal specification 
power of the package domain. The unit of this field is specified by the 
“Power Units” field of MSR_RAPL_POWER_UNIT.

63:15 Reserved.

Table 2-11.   MSRs in Intel Atom® Processors Based on Airmont Microarchitecture

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: CDH, 205 MSR_FSB_FREQ

Scaleable Bus Speed (R/O)

This field indicates the intended scalable bus clock speed for processors based on Airmont microarchitecture.

Module

3:0 • 0000B: 083.3 MHz 
• 0001B: 100.0 MHz 
• 0010B: 133.3 MHz 
• 0011B: 116.7 MHz 
• 0100B: 080.0 MHz 
• 0101B: 093.3 MHz 
• 0110B: 090.0 MHz 
• 0111B: 088.9 MHz 
• 1000B: 087.5 MHz 

63:5 Reserved.

Register Address: E2H, 226 MSR_PKG_CST_CONFIG_CONTROL

Table 2-10.  Specific MSRs Supported by Intel Atom® Processor C2000 Series with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_4DH  (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

See http://biosbits.org.

Module

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name (consuming the 
least power) for the package. The default is set as factory-configured 
package C-state limit.

The following C-state code name encodings are supported:

000b: No limit

001b: C1 

010b: C2 

110b: C6

111b: C7 

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register specified by 
MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions.

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, locks bits 15:0 of this register until next reset.

63:16 Reserved.

Register Address: E4H, 228 MSR_PMG_IO_CAPTURE_BASE

Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.

Module

15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO redirection. If IO 
MWAIT Redirection is enabled, reads to this address will be consumed by 
the power management logic and decoded to MWAIT instructions. When IO 
port address redirection is enabled, this is the IO port address reported to 
the OS/software.

18:16 C-state Range (R/W) 

Specifies the encoding value of the maximum C-State code name to be 
included when IO read to MWAIT redirection is enabled by 
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include.

001b - Deep Power Down Technology is the max C-State.

010b - C7 is the max C-State to include.

63:19 Reserved.

Register Address: 638H, 1592 MSR_PP0_POWER_LIMIT

PP0 RAPL Power Limit Control (R/W) Package

Table 2-11.   MSRs in Intel Atom® Processors Based on Airmont Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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2.5 MSRS IN INTEL ATOM® PROCESSORS BASED ON GOLDMONT 
MICROARCHITECTURE

Intel Atom processors based on the Goldmont microarchitecture support MSRs listed in Table 2-6 and Table 2-12. 
These processors have a CPUID Signature DisplayFamily_DisplayModel value of 06_5CH; see Table 2-1. 

In the Goldmont microarchitecture, the scope column indicates the following: “Core” means each processor core 
has a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit field 
is shared by a subset of the processor cores in the physical package. The number of processor cores in this subset 
is model specific and may differ between different processors. For all processors based on Goldmont microarchitec-
ture, the L2 cache is also shared between cores in a module and thus CPUID leaf 04H enumeration can be used to 
figure out which processors are in the same module. “Package” means all processor cores in the physical package 
share the same MSR or bit interface.

14:0 PP0 Power Limit #1 (R/W)

See Section 16.10.4, “PP0/PP1 RAPL Domains,” and 
MSR_RAPL_POWER_UNIT in Table 2-8. 

15 Enable Power Limit #1 (R/W)

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

16 Reserved.

23:17 Time Window for Power Limit #1 (R/W)

Specifies the time duration over which the average power must remain 
below PP0_POWER_LIMIT #1(14:0). Supported Encodings:

0x0: 1 second time duration.

0x1: 5 second time duration (Default).

0x2: 10 second time duration.

0x3: 15 second time duration.

0x4: 20 second time duration.

0x5: 25 second time duration.

0x6: 30 second time duration.

0x7: 35 second time duration.

0x8: 40 second time duration.

0x9: 45 second time duration.

0xA: 50 second time duration.

0xB-0x7F - reserved.

63:24 Reserved.

Table 2-12.   MSRs in Intel Atom® Processors Based on Goldmont Microarchitecture

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 17H, 23 MSR_PLATFORM_ID

Model Specific Platform ID (R) Module

49:0 Reserved.

52:50 See Table 2-2.

Table 2-11.   MSRs in Intel Atom® Processors Based on Airmont Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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63:33 Reserved.

Register Address: 3AH, 58 IA32_FEATURE_CONTROL

Control Features in Intel 64 Processor (R/W)

See Table 2-2.

Core

0 Lock (R/WL) 

1 Enable VMX inside SMX operation (R/WL) 

2 Enable VMX outside SMX operation (R/WL) 

14:8 SENTER local functions enables (R/WL) 

15 SENTER global functions enable (R/WL) 

18 SGX global functions enable (R/WL) 

63:19 Reserved.

Register Address: 3BH, 59 IA32_TSC_ADJUST

Per-Core TSC ADJUST (R/W)

See Table 2-2.

Core

Register Address: C3H, 195 IA32_PMC2

Performance Counter Register

See Table 2-2.

Core

Register Address: C4H, 196 IA32_PMC3

Performance Counter Register

See Table 2-2.

Core

Register Address: CEH, 206 MSR_PLATFORM_INFO

Platform Information

Contains power management and other model specific features enumeration. See http://biosbits.org.

Package

7:0 Reserved.

15:8 Maximum Non-Turbo Ratio (R/O) 

This is the ratio of the maximum frequency that does not require turbo. 
Frequency = ratio * 100 MHz.

Package

27:16 Reserved.

28 Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limit for Turbo mode is 
enabled. When set to 0, indicates Programmable Ratio Limit for Turbo 
mode is disabled.

Package

29 Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limit for Turbo mode is programmable. 
When set to 0, indicates TDP Limit for Turbo mode is not programmable.

Package

30 Programmable TJ OFFSET (R/O) 

When set to 1, indicates that MSR_TEMPERATURE_TARGET.[27:24] is 
valid and writable to specify a temperature offset.

Package

39:31 Reserved.

Table 2-12.   MSRs in Intel Atom® Processors Based on Goldmont Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
Vol. 4 2-139



MODEL-SPECIFIC REGISTERS (MSRS)
47:40 Maximum Efficiency Ratio (R/O) 

This is the minimum ratio (maximum efficiency) that the processor can 
operate, in units of 100MHz.

Package

63:48 Reserved.

Register Address: E2H, 226 MSR_PKG_CST_CONFIG_CONTROL

C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

See http://biosbits.org.

Core

3:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name (consuming the 
least power) for the package. The default is set as factory-configured 
package C-state limit.

The following C-state code name encodings are supported:

0000b: No limit

0001b: C1 

0010b: C3 

0011b: C6

0100b: C7

0101b: C7S

0110b: C8

0111b: C9

1000b: C10 

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register specified by 
MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions.

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, locks bits 15:0 of this register until next reset.

63:16 Reserved.

Register Address: 17DH, 381 MSR_SMM_MCA_CAP

Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability enhancement. Accessible only while in SMM.

Core

57:0 Reserved.

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is supported and 
the MSR_SMM_FEATURE_CONTROL is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported and the 
MSR_SMM_DELAYED is supported.

63:60 Reserved.

Table 2-12.   MSRs in Intel Atom® Processors Based on Goldmont Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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Register Address: 188H, 392 IA32_PERFEVTSEL2

See Table 2-2. Core

Register Address: 189H, 393 IA32_PERFEVTSEL3

See Table 2-2. Core

Register Address: 1A0H, 416 IA32_MISC_ENABLE

Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

See Table 2-2.

Core

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W) 

See Table 2-2. Default value is 1.

Package

6:4 Reserved.

7 Performance Monitoring Available (R) 

See Table 2-2.

Core

10:8 Reserved.

11 Branch Trace Storage Unavailable (R/O) 

See Table 2-2.

Core

12 Processor Event Based Sampling Unavailable (R/O) 

See Table 2-2.

Core

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 2-2.

Package

18 ENABLE MONITOR FSM (R/W) 

See Table 2-2.

Core

21:19 Reserved.

22 Limit CPUID Maxval (R/W) 

See Table 2-2.

Core

23 xTPR Message Disable (R/W) 

See Table 2-2.

Package

33:24 Reserved.

34 XD Bit Disable (R/W) 

See Table 2-3.

Core

37:35 Reserved.

Table 2-12.   MSRs in Intel Atom® Processors Based on Goldmont Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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38 Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost Technology, 
the turbo mode feature is disabled and the IDA_Enable feature flag will be 
clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: EAX[1] 
reports the processor’s support of turbo mode is enabled.

Note: The power-on default value is used by BIOS to detect hardware 
support of turbo mode. If the power-on default value is 1, turbo mode is 
available in the processor. If the power-on default value is 0, turbo mode 
is not available.

Package

63:39 Reserved.

Register Address: 1A4H, 420 MSR_MISC_FEATURE_CONTROL

Miscellaneous Feature Control (R/W) 

0 L2 Hardware Prefetcher Disable (R/W) 

If 1, disables the L2 hardware prefetcher, which fetches additional lines of 
code or data into the L2 cache.

Core

1 Reserved.

2 DCU Hardware Prefetcher Disable (R/W) 

If 1, disables the L1 data cache prefetcher, which fetches the next cache 
line into L1 data cache.

Core

63:3 Reserved.

Register Address: 1AAH, 426 MSR_MISC_PWR_MGMT

Miscellaneous Power Management Control

Various model specific features enumeration. See http://biosbits.org.

Package

0 EIST Hardware Coordination Disable (R/W)

When 0, enables hardware coordination of Enhanced Intel Speedstep 
Technology request from processor cores. When 1, disables hardware 
coordination of Enhanced Intel Speedstep Technology requests.

21:1 Reserved.

22 Thermal Interrupt Coordination Enable (R/W) 

If set, then thermal interrupt on one core is routed to all cores.

63:23 Reserved.

Register Address: 1ADH, 429 MSR_TURBO_RATIO_LIMIT

Maximum Ratio Limit of Turbo Mode by Core Groups (R/W)

Specifies Maximum Ratio Limit for each Core Group. Max ratio for groups with more cores must decrease 
monotonically.

For groups with less than 4 cores, the max ratio must be 32 or less. For groups with 4-5 cores, the max ratio must be 
22 or less. For groups with more than 5 cores, the max ratio must be 16 or less.

Package

7:0 Maximum Ratio Limit for Active Cores in Group 0

Maximum turbo ratio limit when the number of active cores is less than or 
equal to the Group 0 threshold. 

Package

Table 2-12.   MSRs in Intel Atom® Processors Based on Goldmont Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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15:8 Maximum Ratio Limit for Active Cores in Group 1

Maximum turbo ratio limit when the number of active cores is less than or 
equal to the Group 1 threshold, and greater than the Group 0 threshold. 

Package

23:16 Maximum Ratio Limit for Active Cores in Group 2

Maximum turbo ratio limit when the number of active cores is less than or 
equal to the Group 2 threshold, and greater than the Group 1 threshold. 

Package

31:24 Maximum Ratio Limit for Active Cores in Group 3

Maximum turbo ratio limit when the number of active cores is less than or 
equal to the Group 3 threshold, and greater than the Group 2 threshold. 

Package

39:32 Maximum Ratio Limit for Active Cores in Group 4

Maximum turbo ratio limit when the number of active cores is less than or 
equal to the Group 4 threshold, and greater than the Group 3 threshold. 

Package

47:40 Maximum Ratio Limit for Active Cores in Group 5

Maximum turbo ratio limit when the number of active cores is less than or 
equal to the Group 5 threshold, and greater than the Group 4 threshold. 

Package

55:48 Maximum Ratio Limit for Active Cores in Group 6

Maximum turbo ratio limit when the number of active cores is less than or 
equal to the Group 6 threshold, and greater than the Group 5 threshold. 

Package

63:56 Maximum Ratio Limit for Active Cores in Group 7

Maximum turbo ratio limit when the number of active cores is less than or 
equal to the Group 7 threshold, and greater than the Group 6 threshold. 

Package

Register Address: 1AEH, 430 MSR_TURBO_GROUP_CORECNT

Group Size of Active Cores for Turbo Mode Operation (R/W)

Writes of 0 threshold is ignored.

Package

7:0 Group 0 Core Count Threshold

Maximum number of active cores to operate under the Group 0 Max Turbo 
Ratio limit. 

Package

15:8 Group 1 Core Count Threshold

Maximum number of active cores to operate under the Group 1 Max Turbo 
Ratio limit. Must be greater than the Group 0 Core Count.

Package

23:16 Group 2 Core Count Threshold

Maximum number of active cores to operate under the Group 2 Max Turbo 
Ratio limit. Must be greater than the Group 1 Core Count.

Package

31:24 Group 3 Core Count Threshold

Maximum number of active cores to operate under the Group 3 Max Turbo 
Ratio limit. Must be greater than the Group 2 Core Count.

Package

39:32 Group 4 Core Count Threshold

Maximum number of active cores to operate under the Group 4 Max Turbo 
Ratio limit. Must be greater than the Group 3 Core Count.

Package

47:40 Group 5 Core Count Threshold

Maximum number of active cores to operate under the Group 5 Max Turbo 
Ratio limit. Must be greater than the Group 4 Core Count.

Package

Table 2-12.   MSRs in Intel Atom® Processors Based on Goldmont Microarchitecture (Contd.)
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Register Information / Bit Fields Bit Description Scope
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55:48 Group 6 Core Count Threshold

Maximum number of active cores to operate under the Group 6 Max Turbo 
Ratio limit. Must be greater than the Group 5 Core Count.

Package

63:56 Group 7 Core Count Threshold

Maximum number of active cores to operate under the Group 7 Max Turbo 
Ratio limit. Must be greater than the Group 6 Core Count, and not less than 
the total number of processor cores in the package. E.g., specify 255.

Package

Register Address: 1C8H, 456 MSR_LBR_SELECT

Last Branch Record Filtering Select Register (R/W) 

See Section 19.9.2, “Filtering of Last Branch Records.”

Core

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

9 EN_CALL_STACK

63:10 Reserved.

Register Address: 1C9H, 457 MSR_LASTBRANCH_TOS

Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-4) that points to the MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 1FCH, 508 MSR_POWER_CTL

Power Control Register

See http://biosbits.org.

Core

0 Reserved.

1 C1E Enable (R/W) 

When set to ‘1’, will enable the CPU to switch to the Minimum Enhanced 
Intel SpeedStep Technology operating point when all execution cores 
enter MWAIT (C1).

Package

63:2 Reserved.

Register Address: 210H, 528 IA32_MTRR_PHYSBASE8

See Table 2-2. Core

Register Address: 211H, 529 IA32_MTRR_PHYSMASK8

See Table 2-2. Core

Register Address: 212H, 530 IA32_MTRR_PHYSBASE9

See Table 2-2. Core

Table 2-12.   MSRs in Intel Atom® Processors Based on Goldmont Microarchitecture (Contd.)
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Register Address: IA32_MTRR_PHYSMASK9

213H, 531 See Table 2-2. Core

Register Address: IA32_MC0_CTL2

280H, 640 See Table 2-2. Module

Register Address: IA32_MC1_CTL2

281H, 641 See Table 2-2. Module

Register Address: IA32_MC2_CTL2

282H, 642 See Table 2-2. Core

Register Address: 283H, 643 IA32_MC3_CTL2

See Table 2-2. Module

Register Address: 284H, 644 IA32_MC4_CTL2

See Table 2-2. Package

Register Address: 285H, 645 IA32_MC5_CTL2

See Table 2-2. Package

Register Address: 286H, 646 IA32_MC6_CTL2

See Table 2-2. Package

Register Address: 300H, 768 MSR_SGXOWNEREPOCH0

Lower 64 Bit CR_SGXOWNEREPOCH (W)

Writes do not update CR_SGXOWNEREPOCH if CPUID.(EAX=12H, ECX=0):EAX.SGX1 is 1 on any thread in the package.

Package

63:0 Lower 64 bits of an 128-bit external entropy value for key derivation of 
an enclave.

Register Address: 301H, 769 MSR_SGXOWNEREPOCH1

Upper 64 Bit CR_SGXOWNEREPOCH (W)

Writes do not update CR_SGXOWNEREPOCH if CPUID.(EAX=12H, ECX=0):EAX.SGX1 is 1 on any thread in the package.

Package

63:0 Upper 64 bits of an 128-bit external entropy value for key derivation of 
an enclave.

Register Address: 38EH, 910 IA32_PERF_GLOBAL_STATUS

See Table 2-2 and Section 21.2.4, “Architectural Performance Monitoring Version 4.” Core

0 Ovf_PMC0 

1 Ovf_PMC1 

2 Ovf_PMC2 

3 Ovf_PMC3 

31:4 Reserved.

32 Ovf_FixedCtr0 

33 Ovf_FixedCtr1 

34 Ovf_FixedCtr2 

54:35 Reserved.

55 Trace_ToPA_PMI

Table 2-12.   MSRs in Intel Atom® Processors Based on Goldmont Microarchitecture (Contd.)
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57:56 Reserved.

58 LBR_Frz

59 CTR_Frz

60 ASCI

61 Ovf_Uncore 

62 Ovf_BufDSSAVE 

63 CondChgd 

Register Address: 390H, 912 IA32_PERF_GLOBAL_STATUS_RESET

See Table 2-2 and Section 21.2.4, “Architectural Performance Monitoring Version 4.” Core

0 Set 1 to clear Ovf_PMC0.

1 Set 1 to clear Ovf_PMC1.

2 Set 1 to clear Ovf_PMC2.

3 Set 1 to clear Ovf_PMC3.

31:4 Reserved.

32 Set 1 to clear Ovf_FixedCtr0.

33 Set 1 to clear Ovf_FixedCtr1.

34 Set 1 to clear Ovf_FixedCtr2.

54:35 Reserved.

55 Set 1 to clear Trace_ToPA_PMI. 

57:56 Reserved.

58 Set 1 to clear LBR_Frz. 

59 Set 1 to clear CTR_Frz. 

60 Set 1 to clear ASCI. 

61 Set 1 to clear Ovf_Uncore.

62 Set 1 to clear Ovf_BufDSSAVE.

63 Set 1 to clear CondChgd.

Register Address: 391H, 913 IA32_PERF_GLOBAL_STATUS_SET

See Table 2-2 and Section 21.2.4, “Architectural Performance Monitoring Version 4.” Core

0 Set 1 to cause Ovf_PMC0 = 1.

1 Set 1 to cause Ovf_PMC1 = 1.

2 Set 1 to cause Ovf_PMC2 = 1.

3 Set 1 to cause Ovf_PMC3 = 1.

31:4 Reserved.

32 Set 1 to cause Ovf_FixedCtr0 = 1.

33 Set 1 to cause Ovf_FixedCtr1 = 1.

34 Set 1 to cause Ovf_FixedCtr2 = 1.

54:35 Reserved.

Table 2-12.   MSRs in Intel Atom® Processors Based on Goldmont Microarchitecture (Contd.)
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55 Set 1 to cause Trace_ToPA_PMI = 1.

57:56 Reserved.

58 Set 1 to cause LBR_Frz = 1.

59 Set 1 to cause CTR_Frz = 1.

60 Set 1 to cause ASCI = 1.

61 Set 1 to cause Ovf_Uncore.

62 Set 1 to cause Ovf_BufDSSAVE.

63 Reserved.

Register Address: 392H, 914 IA32_PERF_GLOBAL_INUSE

See Table 2-2. Core

Register Address: 3F1H, 1009 IA32_PEBS_ENABLE (MSR_PEBS_ENABLE)

See Table 2-2 and Section 21.6.2.4, “Processor Event Based Sampling (PEBS).” Core

0 Enable PEBS trigger and recording for the programmed event (precise or 
otherwise) on IA32_PMC0. (R/W)

Register Address: 3F8H, 1016 MSR_PKG_C3_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

63:0 Package C3 Residency Counter (R/O)

Value since last reset that this package is in processor-specific C3 states. 
Count at the same frequency as the TSC.

Register Address: 3F9H, 1017 MSR_PKG_C6_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

63:0 Package C6 Residency Counter (R/O)

Value since last reset that this package is in processor-specific C6 states. 
Count at the same frequency as the TSC.

Register Address: 3FCH, 1020 MSR_CORE_C3_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Core

63:0 CORE C3 Residency Counter (R/O)

Value since last reset that this core is in processor-specific C3 states. 
Count at the same frequency as the TSC.

Register Address: 406H, 1030 IA32_MC1_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
IA32_MC2_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Module

Register Address: 418H, 1048 IA32_MC6_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 419H, 1049 IA32_MC6_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package
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Register Address: 41AH, 1050 IA32_MC6_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 4C3H, 1219 IA32_A_PMC2

See Table 2-2. Core

Register Address: 4C4H, 1220 IA32_A_PMC3

See Table 2-2. Core

Register Address: 4E0H, 1248 MSR_SMM_FEATURE_CONTROL

Enhanced SMM Feature Control (SMM-RW)

Reports SMM capability Enhancement. Accessible only while in SMM.

Package

0 Lock (SMM-RWO)

When set to ‘1’ locks this register from further changes.

1 Reserved.

2 SMM_Code_Chk_En (SMM-RW)

This control bit is available only if MSR_SMM_MCA_CAP[58] == 1. When 
set to ‘0’ (default) none of the logical processors are prevented from 
executing SMM code outside the ranges defined by the SMRR. 

When set to ‘1’ any logical processor in the package that attempts to 
execute SMM code not within the ranges defined by the SMRR will assert 
an unrecoverable MCE.

63:3 Reserved.

Register Address: 4E2H, 1250 MSR_SMM_DELAYED

SMM Delayed (SMM-RO)

Reports the interruptible state of all logical processors in the package. Available only while in SMM and 
MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 1.

Package

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a processor core of its state in a long flow of internal 
operation which delays servicing an interrupt. The corresponding bit will 
be set at the start of long events such as: Microcode Update Load, C6, 
WBINVD, Ratio Change, Throttle. 

The bit is automatically cleared at the end of each long event. The reset 
value of this field is 0.

Only bit positions below N = CPUID.(EAX=0BH, ECX=PKG_LVL):EBX[15:0] 
can be updated.

63:N Reserved.

Register Address: 4E3H, 1251 MSR_SMM_BLOCKED

SMM Blocked (SMM-RO)

Reports the blocked state of all logical processors in the package. Available only while in SMM.

Package
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N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a processor core of its blocked state to service an SMI. 
The corresponding bit will be set if the logical processor is in one of the 
following states: Wait For SIPI or SENTER Sleep. 

The reset value of this field is 0FFFH.

Only bit positions below N = CPUID.(EAX=0BH, ECX=PKG_LVL):EBX[15:0] 
can be updated.

63:N Reserved.

Register Address: 500H, 1280 IA32_SGX_SVN_STATUS

Status and SVN Threshold of SGX Support for ACM (R/O) Core

0 Lock

See Section 39.11.3, “Interactions with Authenticated Code Modules 
(ACMs).”

15:1 Reserved.

23:16 SGX_SVN_SINIT

See Section 39.11.3, “Interactions with Authenticated Code Modules 
(ACMs).”

63:24 Reserved.

Register Address: 560H, 1376 IA32_RTIT_OUTPUT_BASE

Trace Output Base Register (R/W)

See Table 2-2. 

Core

Register Address: 561H, 1377 IA32_RTIT_OUTPUT_MASK_PTRS

Trace Output Mask Pointers Register (R/W) 

See Table 2-2. 

Core

Register Address: 570H, 1392 IA32_RTIT_CTL

Trace Control Register (R/W) Core

0 TraceEn

1 CYCEn

2 OS

3 User

6:4 Reserved, must be zero.

7 CR3Filter

8 ToPA

Writing 0 will #GP if also setting TraceEn.

9 MTCEn

10 TSCEn

11 DisRETC

12 Reserved, must be zero.

13 BranchEn

17:14 MTCFreq
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18 Reserved, must be zero.

22:19 CycThresh

23 Reserved, must be zero.

27:24 PSBFreq

31:28 Reserved, must be zero.

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, must be zero.

Register Address: 571H, 1393 IA32_RTIT_STATUS

Tracing Status Register (R/W) Core

0 FilterEn

Writes ignored.

1 ContextEn

Writes ignored.

2 TriggerEn

Writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

31:6 Reserved, must be zero.

48:32 PacketByteCnt

63:49 Reserved, must be zero.

Register Address: 572H, 1394 IA32_RTIT_CR3_MATCH

Trace Filter CR3 Match Register (R/W) Core

4:0 Reserved

63:5 CR3[63:5] value to match.

Register Address: 580H, 1408 IA32_RTIT_ADDR0_A

Region 0 Start Address (R/W) Core

63:0 See Table 2-2. 

Register Address: 581H, 1409 IA32_RTIT_ADDR0_B

Region 0 End Address (R/W) Core

63:0 See Table 2-2. 

Register Address: 582H, 1410 IA32_RTIT_ADDR1_A

Region 1 Start Address (R/W) Core

63:0 See Table 2-2. 

Register Address: 583H, 1411 IA32_RTIT_ADDR1_B

Region 1 End Address (R/W) Core

63:0 See Table 2-2. 
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Register Address: 606H, 1542 MSR_RAPL_POWER_UNIT

Unit Multipliers used in RAPL Interfaces (R/O) 

See Section 16.10.1, “RAPL Interfaces.”

Package

3:0 Power Units

Power related information (in Watts) is in unit of 1W/2^PU; where PU is an 
unsigned integer represented by bits 3:0. Default value is 1000b, 
indicating power unit is in 3.9 milliWatts increment.

7:4 Reserved.

12:8 Energy Status Units

Energy related information (in Joules) is in unit of 1Joule/ (2^ESU); where 
ESU is an unsigned integer represented by bits 12:8. Default value is 
01110b, indicating energy unit is in 61 microJoules.

15:13 Reserved.

19:16 Time Unit

Time related information (in seconds) is in unit of 1S/2^TU; where TU is an 
unsigned integer represented by bits 19:16. Default value is 1010b, 
indicating power unit is in 0.977 millisecond.

63:20 Reserved.

Register Address: 60AH, 1546 MSR_PKGC3_IRTL

Package C3 Interrupt Response Limit (R/W) 

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

9:0 Interrupt Response Time Limit (R/W) 

Specifies the limit that should be used to decide if the package should be 
put into a package C3 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response time 
limit. See Table 2-20 for supported time unit encodings. 

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used by the 
processor for package C-sate management. 

63:16 Reserved.

Register Address: 60BH, 1547 MSR_PKGC_IRTL1

Package C6/C7S Interrupt Response Limit 1 (R/W) 

This MSR defines the interrupt response time limit used by the processor to manage a transition to a package C6 or 
C7S state. 

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-states.

Package

9:0 Interrupt Response Time Limit (R/W) 

Specifies the limit that should be used to decide if the package should be 
put into a package C6 or C7S state. 
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12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response time 
limit. See Table 2-20 for supported time unit encodings.

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used by the 
processor for package C-sate management. 

63:16 Reserved.

Register Address: 60CH, 1548 MSR_PKGC_IRTL2

Package C7 Interrupt Response Limit 2 (R/W) 

This MSR defines the interrupt response time limit used by the processor to manage a transition to a package C7 
state. 

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

9:0 Interrupt Response Time Limit (R/W) 

Specifies the limit that should be used to decide if the package should be 
put into a package C7 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response time 
limit. See Table 2-20 for supported time unit encodings.

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used by the 
processor for package C-sate management. 

63:16 Reserved.

Register Address: 60DH, 1549 MSR_PKG_C2_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-states.

Package

63:0 Package C2 Residency Counter (R/O)

Value since last reset that this package is in processor-specific C2 states. 
Count at the same frequency as the TSC.

Register Address: 610H, 1552 MSR_PKG_POWER_LIMIT

PKG RAPL Power Limit Control (R/W) 

See Section 16.10.3, “Package RAPL Domain.”

Package

Register Address: 611H, 1553 MSR_PKG_ENERGY_STATUS

PKG Energy Status (R/O) 

See Section 16.10.3, “Package RAPL Domain.”

Package

Register Address: 613H, 1555 MSR_PKG_PERF_STATUS

PKG Perf Status (R/O) 

See Section 16.10.3, “Package RAPL Domain.”

Package

Register Address: 614H, 1556 MSR_PKG_POWER_INFO

PKG RAPL Parameters (R/W) Package
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14:0 Thermal Spec Power (R/W) 

See Section 16.10.3, “Package RAPL Domain.”

15 Reserved.

30:16 Minimum Power (R/W) 

See Section 16.10.3, “Package RAPL Domain.”

31 Reserved.

46:32 Maximum Power (R/W) 

See Section 16.10.3, “Package RAPL Domain.”

47 Reserved.

54:48 Maximum Time Window (R/W) 

Specified by 2^Y * (1.0 + Z/4.0) * Time_Unit, where “Y” is the unsigned 
integer value represented by bits 52:48, “Z” is an unsigned integer 
represented by bits 54:53. “Time_Unit” is specified by the “Time Units” 
field of MSR_RAPL_POWER_UNIT.

63:55 Reserved.

Register Address: 618H, 1560 MSR_DRAM_POWER_LIMIT

DRAM RAPL Power Limit Control (R/W) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 619H, 1561 MSR_DRAM_ENERGY_STATUS

DRAM Energy Status (R/O) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 61BH, 1563 MSR_DRAM_PERF_STATUS

DRAM Performance Throttling Status (R/O) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 61CH, 1564 MSR_DRAM_POWER_INFO

DRAM RAPL Parameters (R/W) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 632H, 1586 MSR_PKG_C10_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-states.

Package

63:0 Package C10 Residency Counter (R/O)

Value since last reset that the entire SOC is in an S0i3 state. Count at the 
same frequency as the TSC.

Register Address: 639H, 1593 MSR_PP0_ENERGY_STATUS

PP0 Energy Status (R/O) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

Register Address: 641H, 1601 MSR_PP1_ENERGY_STATUS

PP1 Energy Status (R/O) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

Register Address: 64CH, 1612 MSR_TURBO_ACTIVATION_RATIO
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ConfigTDP Control (R/W) Package

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field. 

30:8 Reserved.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a reset. 

63:32 Reserved.

Register Address: 64FH, 1615 MSR_CORE_PERF_LIMIT_REASONS

Indicator of Frequency Clipping in Processor Cores (R/W)

(Frequency refers to processor core frequency.)

Package

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating 
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system request due 
to a thermal event.

2 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system request due 
to package-level power limiting PL1.

3 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system request due 
to package-level power limiting PL2.

8:4 Reserved.

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating system request due 
to domain-level power limiting.

10 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system request due 
to a thermal alert from the Voltage Regulator.

11 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system request due 
to multi-core turbo limits.

12 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system request due 
to electrical design point constraints (e.g., maximum electrical current 
consumption).

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system request due 
to Turbo transition attenuation. This prevents performance degradation 
due to frequent operating ratio changes.

14 Maximum Efficiency Frequency Status (R0)

When set, frequency is reduced below the maximum efficiency frequency.

15 Reserved.
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16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has asserted since the 
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log 

When set, indicates that the Thermal Status bit has asserted since the log 
bit was last cleared.

This log bit will remain set until cleared by software writing 0.

18 Package-Level PL1 Power Limiting Log 

When set, indicates that the Package Level PL1 Power Limiting Status bit 
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting Status bit 
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

24:20 Reserved.

25 Core Power Limiting Log 

When set, indicates that the Core Power Limiting Status bit has asserted 
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

26 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Electrical Design Point Log 

When set, indicates that the EDP Status bit has asserted since the log bit 
was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

30 Maximum Efficiency Frequency Log 

When set, indicates that the Maximum Efficiency Frequency Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:31 Reserved.

Register Address: 680H, 1664 MSR_LASTBRANCH_0_FROM_IP
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Last Branch Record 0 From IP (R/W)

One of 32 pairs of last branch record registers on the last branch record stack. The From_IP part of the stack contains 
pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 19.6 and record format in Section 19.4.8.1.

Core

0:47 From Linear Address (R/W)

62:48 Signed extension of bits 47:0.

63 Mispred

Register Address: 681H, 1665 MSR_LASTBRANCH_1_FROM_IP

Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 682H, 1666 MSR_LASTBRANCH_2_FROM_IP

Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

Core

Register Address: 683H, 1667 MSR_LASTBRANCH_3_FROM_IP

Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 684H, 1668 MSR_LASTBRANCH_4_FROM_IP

Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 685H, 1669 MSR_LASTBRANCH_5_FROM_IP

Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 686H, 1670 MSR_LASTBRANCH_6_FROM_IP

Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 687H, 1671 MSR_LASTBRANCH_7_FROM_IP

Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 688H, 1672 MSR_LASTBRANCH_8_FROM_IP

Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 689H, 1673 MSR_LASTBRANCH_9_FROM_IP

Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 68AH, 1674 MSR_LASTBRANCH_10_FROM_IP

Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 68BH, 1675 MSR_LASTBRANCH_11_FROM_IP
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Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 68CH, 1676 MSR_LASTBRANCH_12_FROM_IP

Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 68DH, 1677 MSR_LASTBRANCH_13_FROM_IP

Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 68EH, 1678 MSR_LASTBRANCH_14_FROM_IP

Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 68FH, 1679 MSR_LASTBRANCH_15_FROM_IP

Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 690H, 1680 MSR_LASTBRANCH_16_FROM_IP

Last Branch Record 16 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 691H, 1681 MSR_LASTBRANCH_17_FROM_IP

Last Branch Record 17 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 692H, 1682 MSR_LASTBRANCH_18_FROM_IP

Last Branch Record 18 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

Core

Register Address: 693H, 1683 MSR_LASTBRANCH_19_FROM_IP

Last Branch Record 19From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 694H, 1684 MSR_LASTBRANCH_20_FROM_IP

Last Branch Record 20 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 695H, 1685 MSR_LASTBRANCH_21_FROM_IP

Last Branch Record 21 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 696H, 1686 MSR_LASTBRANCH_22_FROM_IP

Last Branch Record 22 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 697H, 1687 MSR_LASTBRANCH_23_FROM_IP

Last Branch Record 23 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 698H, 1688 MSR_LASTBRANCH_24_FROM_IP
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Last Branch Record 24 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 699H, 1689 MSR_LASTBRANCH_25_FROM_IP

Last Branch Record 25 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 69AH, 1690 MSR_LASTBRANCH_26_FROM_IP

Last Branch Record 26 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 69BH, 1691 MSR_LASTBRANCH_27_FROM_IP

Last Branch Record 27 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 69CH, 1692 MSR_LASTBRANCH_28_FROM_IP

Last Branch Record 28 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 69DH, 1693 MSR_LASTBRANCH_29_FROM_IP

Last Branch Record 29 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 69EH, 1694 MSR_LASTBRANCH_30_FROM_IP

Last Branch Record 30 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 69FH, 1695 MSR_LASTBRANCH_31_FROM_IP

Last Branch Record 31 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Core

Register Address: 6C0H, 1728 MSR_LASTBRANCH_0_TO_IP

Last Branch Record 0 To IP (R/W)

One of 32 pairs of last branch record registers on the last branch record stack. The To_IP part of the stack contains 
pointers to the Destination instruction and elapsed cycles from last LBR update. See Section 19.6.

Core

0:47 Target Linear Address (R/W)

63:48 Elapsed cycles from last update to the LBR.

Register Address: 6C1H, 1729 MSR_LASTBRANCH_1_TO_IP

Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 6C2H, 1730 MSR_LASTBRANCH_2_TO_IP

Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 6C3H, 1731 MSR_LASTBRANCH_3_TO_IP

Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 6C4H, 1732 MSR_LASTBRANCH_4_TO_IP
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Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 6C5H, 1733 MSR_LASTBRANCH_5_TO_IP

Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 6C6H, 1734 MSR_LASTBRANCH_6_TO_IP

Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 6C7H, 1735 MSR_LASTBRANCH_7_TO_IP

Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 6C8H, 1736 MSR_LASTBRANCH_8_TO_IP

Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 6C9H, 1737 MSR_LASTBRANCH_9_TO_IP

Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 6CAH, 1738 MSR_LASTBRANCH_10_TO_IP

Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 6CBH, 1739 MSR_LASTBRANCH_11_TO_IP

Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 6CCH, 1740 MSR_LASTBRANCH_12_TO_IP

Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 6CDH, 1741 MSR_LASTBRANCH_13_TO_IP

Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 6CEH, 1742 MSR_LASTBRANCH_14_TO_IP

Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 6CFH, 1743 MSR_LASTBRANCH_15_TO_IP

Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 6D0H, 1744 MSR_LASTBRANCH_16_TO_IP

Last Branch Record 16 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 6D1H, 1745 MSR_LASTBRANCH_17_TO_IP
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Last Branch Record 17 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Core

Register Address: 6D2H, 1746 MSR_LASTBRANCH_18_TO_IP

Last Branch Record 18 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Core

Register Address: 6D3H, 1747 MSR_LASTBRANCH_19_TO_IP

Last Branch Record 19To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Core

Register Address: 6D4H, 1748 MSR_LASTBRANCH_20_TO_IP

Last Branch Record 20 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Core

Register Address: 6D5H, 1749 MSR_LASTBRANCH_21_TO_IP

Last Branch Record 21 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Core

Register Address: 6D6H, 1750 MSR_LASTBRANCH_22_TO_IP

Last Branch Record 22 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Core

Register Address: 6D7H, 1751 MSR_LASTBRANCH_23_TO_IP

Last Branch Record 23 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Core

Register Address: 6D8H, 1752 MSR_LASTBRANCH_24_TO_IP

Last Branch Record 24 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Core

Register Address: 6D9H, 1753 MSR_LASTBRANCH_25_TO_IP

Last Branch Record 25 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Core

Register Address: 6DAH, 1754 MSR_LASTBRANCH_26_TO_IP

Last Branch Record 26 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Core

Register Address: 6DBH, 1755 MSR_LASTBRANCH_27_TO_IP

Last Branch Record 27 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Core

Register Address: 6DCH, 1756 MSR_LASTBRANCH_28_TO_IP

Last Branch Record 28 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Core

Register Address: 6DDH, 1757 MSR_LASTBRANCH_29_TO_IP

Last Branch Record 29 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Core

Register Address: 6DEH, 1758 MSR_LASTBRANCH_30_TO_IP
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Last Branch Record 30 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Core

Register Address: 6DFH, 1759 MSR_LASTBRANCH_31_TO_IP

Last Branch Record 31 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Core

Register Address: 802H, 2050 IA32_X2APIC_APICID

x2APIC ID register (R/O) Core

Register Address: 803H, 2051 IA32_X2APIC_VERSION

x2APIC Version register (R/O) Core

Register Address: 808H, 2056 IA32_X2APIC_TPR

x2APIC Task Priority register (R/W) Core

Register Address: 80AH, 2058 IA32_X2APIC_PPR

x2APIC Processor Priority register (R/O) Core

Register Address: 80BH, 2059 IA32_X2APIC_EOI

x2APIC EOI register (W/O) Core

Register Address: 80DH, 2061 IA32_X2APIC_LDR

x2APIC Logical Destination register (R/O) Core

Register Address: 80FH, 2063 IA32_X2APIC_SIVR

x2APIC Spurious Interrupt Vector register (R/W) Core

Register Address: 810H, 2064 IA32_X2APIC_ISR0

x2APIC In-Service register bits [31:0] (R/O) Core

Register Address: 811H, 2065 IA32_X2APIC_ISR1

x2APIC In-Service register bits [63:32] (R/O) Core

Register Address: 812H, 2066 IA32_X2APIC_ISR2

x2APIC In-Service register bits [95:64] (R/O) Core

Register Address: 813H, 2067 IA32_X2APIC_ISR3

x2APIC In-Service register bits [127:96] (R/O) Core

Register Address: 814H, 2068 IA32_X2APIC_ISR4

x2APIC In-Service register bits [159:128] (R/O) Core

Register Address: 815H, 2069 IA32_X2APIC_ISR5

x2APIC In-Service register bits [191:160] (R/O) Core

Register Address: 816H, 2070 IA32_X2APIC_ISR6

x2APIC In-Service register bits [223:192] (R/O) Core

Register Address: 817H, 2071 IA32_X2APIC_ISR7

x2APIC In-Service register bits [255:224] (R/O) Core

Register Address: 818H, 2072 IA32_X2APIC_TMR0

x2APIC Trigger Mode register bits [31:0] (R/O) Core

Register Address: 819H, 2073 IA32_X2APIC_TMR1
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x2APIC Trigger Mode register bits [63:32] (R/O) Core

Register Address: 81AH, 2074 IA32_X2APIC_TMR2

x2APIC Trigger Mode register bits [95:64] (R/O) Core

Register Address: 81BH, 2075 IA32_X2APIC_TMR3

x2APIC Trigger Mode register bits [127:96] (R/O) Core

Register Address: 81CH, 2076 IA32_X2APIC_TMR4

x2APIC Trigger Mode register bits [159:128] (R/O) Core

Register Address: 81DH, 2077 IA32_X2APIC_TMR5

x2APIC Trigger Mode register bits [191:160] (R/O) Core

Register Address: 81EH, 2078 IA32_X2APIC_TMR6

x2APIC Trigger Mode register bits [223:192] (R/O) Core

Register Address: 81FH, 2079 IA32_X2APIC_TMR7

x2APIC Trigger Mode register bits [255:224] (R/O) Core

Register Address: 820H, 2080 IA32_X2APIC_IRR0

x2APIC Interrupt Request register bits [31:0] (R/O) Core

Register Address: 821H, 2081 IA32_X2APIC_IRR1

x2APIC Interrupt Request register bits [63:32] (R/O) Core

Register Address: 822H, 2082 IA32_X2APIC_IRR2

x2APIC Interrupt Request register bits [95:64] (R/O) Core

Register Address: 823H, 2083 IA32_X2APIC_IRR3

x2APIC Interrupt Request register bits [127:96] (R/O) Core

Register Address: 824H, 2084 IA32_X2APIC_IRR4

x2APIC Interrupt Request register bits [159:128] (R/O) Core

Register Address: 825H, 2085 IA32_X2APIC_IRR5

x2APIC Interrupt Request register bits [191:160] (R/O) Core

Register Address: 826H, 2086 IA32_X2APIC_IRR6

x2APIC Interrupt Request register bits [223:192] (R/O) Core

Register Address: 827H, 2087 IA32_X2APIC_IRR7

x2APIC Interrupt Request register bits [255:224] (R/O) Core

Register Address: 828H, 2088 IA32_X2APIC_ESR

x2APIC Error Status register (R/W) Core

Register Address: 82FH, 2095 IA32_X2APIC_LVT_CMCI

x2APIC LVT Corrected Machine Check Interrupt register (R/W) Core

Register Address: 830H, 2096 IA32_X2APIC_ICR

x2APIC Interrupt Command register (R/W) Core

Register Address: 832H, 2098 IA32_X2APIC_LVT_TIMER

x2APIC LVT Timer Interrupt register (R/W) Core
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Register Address: 833H, 2099 IA32_X2APIC_LVT_THERMAL

x2APIC LVT Thermal Sensor Interrupt register (R/W) Core

Register Address: 834H, 2100 IA32_X2APIC_LVT_PMI

x2APIC LVT Performance Monitor register (R/W) Core

Register Address: 835H, 2101 IA32_X2APIC_LVT_LINT0

x2APIC LVT LINT0 register (R/W) Core

Register Address: 836H, 2102 IA32_X2APIC_LVT_LINT1

x2APIC LVT LINT1 register (R/W) Core

Register Address: 837H, 2103 IA32_X2APIC_LVT_ERROR

x2APIC LVT Error register (R/W) Core

Register Address: 838H, 2104 IA32_X2APIC_INIT_COUNT

x2APIC Initial Count register (R/W) Core

Register Address: 839H, 2105 IA32_X2APIC_CUR_COUNT

x2APIC Current Count register (R/O) Core

Register Address: 83EH, 2110 IA32_X2APIC_DIV_CONF

x2APIC Divide Configuration register (R/W) Core

Register Address: 83FH, 2111 IA32_X2APIC_SELF_IPI

x2APIC Self IPI register (W/O) Core

Register Address: C8FH, 3215 IA32_PQR_ASSOC

Resource Association Register (R/W) Core

31:0 Reserved.

33:32 CLOS (R/W)

63: 34 Reserved.

Register Address: D10H, 3344 IA32_L2_QOS_MASK_0

L2 Class Of Service Mask - CLOS 0 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0.

Module

0:7 CBM: Bit vector of available L2 ways for CLOS 0 enforcement.

63:8 Reserved.

Register Address: D11H, 3345 IA32_L2_QOS_MASK_1

L2 Class Of Service Mask - CLOS 1 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1.

Module

0:7 CBM: Bit vector of available L2 ways for CLOS 0 enforcement.

63:8 Reserved.

Register Address: D12H, 3346 IA32_L2_QOS_MASK_2

L2 Class Of Service Mask - CLOS 2 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2.

Module

0:7 CBM: Bit vector of available L2 ways for CLOS 0 enforcement.

63:8 Reserved.
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2.6 MSRS IN INTEL ATOM® PROCESSORS BASED ON GOLDMONT PLUS 
MICROARCHITECTURE

Intel Atom processors based on the Goldmont Plus microarchitecture support MSRs listed in Table 2-6, Table 2-12, 
and Table 2-13. These processors have a CPUID Signature DisplayFamily_DisplayModel value of 06_7AH; see Table 
2-1. For an MSR listed in Table 2-13 that also appears in the model-specific tables of prior generations, Table 2-13 
supersedes prior generation tables.

In the Goldmont Plus microarchitecture, the scope column indicates the following: “Core” means each processor 
core has a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit 
field is shared by a subset of the processor cores in the physical package. The number of processor cores in this 
subset is model specific and may differ between different processors. For all processors based on Goldmont Plus 
microarchitecture, the L2 cache is also shared between cores in a module and thus CPUID leaf 04H enumeration 
can be used to figure out which processors are in the same module. “Package” means all processor cores in the 
physical package share the same MSR or bit interface.

Register Address: D13H, 3347 IA32_L2_QOS_MASK_3

L2 Class Of Service Mask - CLOS 3 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3.

Package

0:19 CBM: Bit vector of available L2 ways for CLOS 3 enforcement.

63:20 Reserved.

Register Address: D90H, 3472 IA32_BNDCFGS

See Table 2-2. Core

Register Address: DA0H, 3488 IA32_XSS

See Table 2-2. Core

See Table 2-6, and Table 2-12 for MSR definitions applicable to processors with a CPUID Signature DisplayFamily_DisplayModel value 
of 06_5CH. 

Table 2-13.   MSRs in Intel Atom® Processors Based on Goldmont Plus Microarchitecture
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Register Information / Bit Fields Bit Description Scope

Register Address: 3AH, 58 IA32_FEATURE_CONTROL

Control Features in Intel 64Processor (R/W)

See Table 2-2.

Core

0 Lock (R/WL) 

1 Enable VMX inside SMX operation (R/WL) 

2 Enable VMX outside SMX operation (R/WL) 

14:8 SENTER local functions enables (R/WL) 

15 SENTER global functions enable (R/WL) 

17 SGX Launch Control Enable (R/WL)

This bit must be set to enable runtime reconfiguration of SGX Launch 
Control via IA32_SGXLEPUBKEYHASHn MSR. 

Valid if CPUID.(EAX=07H, ECX=0H): ECX[30] = 1.
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18 SGX global functions enable (R/WL) 

63:19 Reserved.

Register Address: 8CH, 140 IA32_SGXLEPUBKEYHASH0

See Table 2-2. Core

Register Address: 8DH, 141 IA32_SGXLEPUBKEYHASH1

See Table 2-2. Core

Register Address: 8EH, 142 IA32_SGXLEPUBKEYHASH2

See Table 2-2. Core

Register Address: 8FH, 143 IA32_SGXLEPUBKEYHASH3

See Table 2-2. Core

Register Address: 3F1H, 1009 IA32_PEBS_ENABLE (MSR_PEBS_ENABLE)

(R/W) See Table 2-2. See Section 21.6.2.4, “Processor Event Based Sampling (PEBS).” Core

0 Enable PEBS trigger and recording for the programmed event (precise or 
otherwise) on IA32_PMC0. 

1 Enable PEBS trigger and recording for the programmed event (precise or 
otherwise) on IA32_PMC1.

2 Enable PEBS trigger and recording for the programmed event (precise or 
otherwise) on IA32_PMC2.

3 Enable PEBS trigger and recording for the programmed event (precise or 
otherwise) on IA32_PMC3.

31:4 Reserved.

32 Enable PEBS trigger and recording for IA32_FIXED_CTR0.

33 Enable PEBS trigger and recording for IA32_FIXED_CTR1.

34 Enable PEBS trigger and recording for IA32_FIXED_CTR2.

63:35 Reserved.

Register Address: 570H, 1392 IA32_RTIT_CTL

Trace Control Register (R/W) Core

0 TraceEn

1 CYCEn

2 OS

3 User

4 PwrEvtEn

5 FUPonPTW

6 FabricEn

7 CR3Filter

8 ToPA

Writing 0 will #GP if also setting TraceEn.

9 MTCEn

10 TSCEn
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11 DisRETC

12 PTWEn

13 BranchEn

17:14 MTCFreq

18 Reserved, must be zero.

22:19 CycThresh

23 Reserved, must be zero.

27:24 PSBFreq

31:28 Reserved, must be zero.

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, must be zero.

Register Address: 680H, 1664 MSR_LASTBRANCH_0_FROM_IP

Last Branch Record 0 From IP (R/W)

One of the three MSRs that make up the first entry of the 32-entry LBR stack. The From_IP part of the stack contains 
pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 19.7, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on Goldmont Plus 

Microarchitecture.”

Core

Register Address: 681H−69FH, 1665−
1695

MSR_LASTBRANCH_i_FROM_IP

Last Branch Record i From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP; i = 1-31.

Core

Register Address: 6C0H, 1728 MSR_LASTBRANCH_0_TO_IP

Last Branch Record 0 To IP (R/W)

One of the three MSRs that make up the first entry of the 32-entry LBR stack. The To_IP part of the stack contains 
pointers to the Destination instruction. See also:

• Section 19.7, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on Goldmont Plus 
Microarchitecture.”

Core

Register Address: 6C1H−6DFH, 1729−
1759

MSR_LASTBRANCH_i_TO_IP

Last Branch Record i To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP; i = 1-31. 

Core

Register Address: DC0H, 3520 MSR_LASTBRANCH_INFO_0

Last Branch Record 0 Additional Information (R/W)

One of the three MSRs that make up the first entry of the 32-entry LBR stack. This part of the stack contains flag and 
elapsed cycle information. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 19.9.1, “LBR Stack.”

Core

Register Address: DC1H, 3521 MSR_LASTBRANCH_INFO_1

Last Branch Record 1 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core
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Register Address: DC2H, 3522 MSR_LASTBRANCH_INFO_2

Last Branch Record 2 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0. 

Core

Register Address: DC3H, 3523 MSR_LASTBRANCH_INFO_3

Last Branch Record 3 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DC4H, 3524 MSR_LASTBRANCH_INFO_4

Last Branch Record 4 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DC5H, 3525 MSR_LASTBRANCH_INFO_5

Last Branch Record 5 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DC6H, 3526 MSR_LASTBRANCH_INFO_6

Last Branch Record 6 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DC7H, 3527 MSR_LASTBRANCH_INFO_7

Last Branch Record 7 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DC8H, 3528 MSR_LASTBRANCH_INFO_8

Last Branch Record 8 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DC9H, 3529 MSR_LASTBRANCH_INFO_9

Last Branch Record 9 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DCAH, 3530 MSR_LASTBRANCH_INFO_10

Last Branch Record 10 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DCBH, 3531 MSR_LASTBRANCH_INFO_11

Last Branch Record 11 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DCCH, 3532 MSR_LASTBRANCH_INFO_12

Last Branch Record 12 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DCDH, 3533 MSR_LASTBRANCH_INFO_13

Last Branch Record 13 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DCEH, 3534 MSR_LASTBRANCH_INFO_14

Last Branch Record 14 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core
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Register Address: DCFH, 3535 MSR_LASTBRANCH_INFO_15

Last Branch Record 15 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DD0H, 3536 MSR_LASTBRANCH_INFO_16

Last Branch Record 16 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DD1H, 3537 MSR_LASTBRANCH_INFO_17

Last Branch Record 17 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DD2H, 3538 MSR_LASTBRANCH_INFO_18

Last Branch Record 18 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DD3H, 3539 MSR_LASTBRANCH_INFO_19

Last Branch Record 19 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DD4H, 3520 MSR_LASTBRANCH_INFO_20

Last Branch Record 20 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DD5H, 3521 MSR_LASTBRANCH_INFO_21

Last Branch Record 21 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DD6H, 3522 MSR_LASTBRANCH_INFO_22

Last Branch Record 22 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0. 

Core

Register Address: DD7H, 3523 MSR_LASTBRANCH_INFO_23

Last Branch Record 23 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DD8H, 3524 MSR_LASTBRANCH_INFO_24

Last Branch Record 24 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DD9H, 3525 MSR_LASTBRANCH_INFO_25

Last Branch Record 25 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DDAH, 3526 MSR_LASTBRANCH_INFO_26

Last Branch Record 26 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DDBH, 3527 MSR_LASTBRANCH_INFO_27

Last Branch Record 27 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core
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2.7 MSRS IN INTEL ATOM® PROCESSORS BASED ON TREMONT 
MICROARCHITECTURE

Processors based on the Tremont microarchitecture support MSRs listed in Table 2-6, Table 2-12, Table 2-13, and 
Table 2-14. These processors have a CPUID Signature DisplayFamily_DisplayModel value of 06_86H, 06_96H, or 
06_9CH; see Table 2-1. For an MSR listed in Table 2-14 that also appears in the model-specific tables of prior 
generations, Table 2-14 supersedes prior generation tables.

In the Tremont microarchitecture, the scope column indicates the following: “Core” means each processor core has 
a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit field is 
shared by a subset of the processor cores in the physical package. The number of processor cores in this subset is 
model specific and may differ between different processors. For all processors based on Tremont microarchitecture, 
the L2 cache is also shared between cores in a module and thus CPUID leaf 04H enumeration can be used to figure 
out which processors are in the same module. “Package” means all processor cores in the physical package share 
the same MSR or bit interface.

Register Address: DDCH, 3528 MSR_LASTBRANCH_INFO_28

Last Branch Record 28 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DDDH, 3529 MSR_LASTBRANCH_INFO_29

Last Branch Record 29 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DDEH, 3530 MSR_LASTBRANCH_INFO_30

Last Branch Record 30 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

Register Address: DDFH, 3531 MSR_LASTBRANCH_INFO_31

Last Branch Record 31 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Core

See Table 2-6, Table 2-12, and Table 2-13 for MSR definitions applicable to processors with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_7AH. 

Table 2-14.   MSRs in Intel Atom® Processors Based on Tremont Microarchitecture

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 33H, 51 MSR_MEMORY_CTRL

Memory Control Register Core

28:0 Reserved.

29 SPLIT_LOCK_DISABLE

If set to 1, a split lock will cause an #AC(0) exception.

See Section 10.1.2.3, “Features to Disable Bus Locks.”

30 Reserved.

31 Reserved.

Register Address: CFH, 207 IA32_CORE_CAPABILITIES

Table 2-13.   MSRs in Intel Atom® Processors Based on Goldmont Plus Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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IA32 Core Capabilities Register

If CPUID.(EAX=07H, ECX=0):EDX[30] = 1.

Core

4:0 Reserved.

5 SPLIT_LOCK_DISABLE_SUPPORTED 

When read as 1, software can set bit 29 of MSR_MEMORY_CTRL (MSR 
address 33H).

63:6 Reserved.

Register Address: 2A0H, 672 MSR_PRMRR_BASE_0

Processor Reserved Memory Range Register - Physical Base Control Register (R/W) Core

2:0 MEMTYPE: PRMRR BASE Memory Type.

3 CONFIGURED: PRMRR BASE Configured.

11:4 Reserved.

51:12 BASE: PRMRR Base Address.

63:52 Reserved.

Register Address: 3F1H, 1009 IA32_PEBS_ENABLE (MSR_PEBS_ENABLE)

(R/W) See Table 2-2. See Section 21.6.2.4, “Processor Event Based Sampling (PEBS).” Core

n:0 Enable PEBS trigger and recording for the programmed event (precise or 
otherwise) on IA32_PMCx. The maximum value n can be determined from 
CPUID.0AH:EAX[15:8].

31:n+1 Reserved.

32+m:32 Enable PEBS trigger and recording for IA32_FIXED_CTRx. The maximum 
value m can be determined from CPUID.0AH:EDX[4:0].

59:33+m Reserved.

60 Pend a PerfMon Interrupt (PMI) after each PEBS event.

62:61 Specifies PEBS output destination. Encodings:

00B: DS Save Area.

01B: Intel PT trace output. Supported if 
IA32_PERF_CAPABILITIES.PEBS_OUTPUT_PT_AVAIL[16] and 
CPUID.07H.0.EBX[25] are set.

10B: Reserved.

11B: Reserved.

63 Reserved.

Register Address: 1309H−130BH, 
4873−4875

MSR_RELOAD_FIXED_CTRx

Reload value for IA32_FIXED_CTRx (R/W)

47:0 Value loaded into IA32_FIXED_CTRx when a PEBS record is generated 
while PEBS_EN_FIXEDx = 1 and PEBS_OUTPUT = 01B in 
IA32_PEBS_ENABLE, and FIXED_CTRx is overflowed.

63:48 Reserved.

Register Address: 14C1H−14C4H, 
5313−5316

MSR_RELOAD_PMCx

Table 2-14.   MSRs in Intel Atom® Processors Based on Tremont Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)
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2.8 MSRS IN PROCESSORS BASED ON NEHALEM MICROARCHITECTURE
Table 2-15 lists model-specific registers (MSRs) that are common for Nehalem microarchitecture. These include the 
Intel Core i7 and i5 processor family. These processors have a CPUID Signature DisplayFamily_DisplayModel value 
of 06_1AH, 06_1EH, 06_1FH, or 06_2EH; see Table 2-1. Additional MSRs specific to processors with a CPUID 
Signature DisplayFamily_DisplayModel value of 06_1AH, 06_1EH, or 06_1FH are listed in Table 2-16. Some MSRs 
listed in these tables are used by BIOS. More information about these MSR can be found at http://biosbits.org.

The column “Scope” represents the package/core/thread scope of individual bit field of an MSR. “Thread” means 
this bit field must be programmed on each logical processor independently. “Core” means the bit field must be 
programmed on each processor core independently, logical processors in the same core will be affected by change 
of this bit on the other logical processor in the same core. “Package” means the bit field must be programmed once 
for each physical package. Change of a bit filed with a package scope will affect all logical processors in that phys-
ical package.

Reload value for IA32_PMCx (R/W) Core

47:0 Value loaded into IA32_PMCx when a PEBS record is generated while 
PEBS_EN_PMCx = 1 and PEBS_OUTPUT = 01B in IA32_PEBS_ENABLE, 
and PMCx is overflowed.

63:48 Reserved.

See Table 2-6, Table 2-12, Table 2-13, and Table 2-14 for MSR definitions applicable to processors with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_86H. 

Table 2-15.  MSRs in Processors Based on Nehalem Microarchitecture

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 0H, 0 IA32_P5_MC_ADDR

See Section 2.23, “MSRs in Pentium Processors.” Thread

Register Address: 1H, 1 IA32_P5_MC_TYPE

See Section 2.23, “MSRs in Pentium Processors.” Thread

Register Address: 6H, 6 IA32_MONITOR_FILTER_SIZE

See Section 10.10.5, “Monitor/Mwait Address Range Determination,” and Table 2-2. Thread

Register Address: 10H, 16 IA32_TIME_STAMP_COUNTER

See Section 19.17, “Time-Stamp Counter,” and Table 2-2. Thread

Register Address: 17H, 23 IA32_PLATFORM_ID

Platform ID (R) 
See Table 2-2.

Package

Register Address: 17H, 23 MSR_PLATFORM_ID

Model Specific Platform ID (R) Package

49:0 Reserved.

52:50 See Table 2-2.

63:53 Reserved.

Register Address: 1BH, 27 IA32_APIC_BASE

Table 2-14.   MSRs in Intel Atom® Processors Based on Tremont Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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See Section 12.4.4, “Local APIC Status and Location,” and Table 2-2. Thread

Register Address: 34H, 52 MSR_SMI_COUNT

SMI Counter (R/O) Thread

31:0 SMI Count (R/O) 

Running count of SMI events since last RESET.

63:32 Reserved.

Register Address: 3AH, 58 IA32_FEATURE_CONTROL

Control Features in Intel 64Processor (R/W)

See Table 2-2.

Thread

Register Address: 79H, 121 IA32_BIOS_UPDT_TRIG

BIOS Update Trigger Register (W) 

See Table 2-2.

Core

Register Address: 8BH, 139 IA32_BIOS_SIGN_ID

BIOS Update Signature ID (R/W)

See Table 2-2.

Thread

Register Address: C1H, 193 IA32_PMC0

Performance Counter Register

See Table 2-2.

Thread

Register Address: C2H, 194 IA32_PMC1

Performance Counter Register

See Table 2-2.

Thread

Register Address: C3H, 195 IA32_PMC2

Performance Counter Register

See Table 2-2.

Thread

Register Address: C4H, 196 IA32_PMC3

Performance Counter Register

See Table 2-2.

Thread

Register Address: CEH, 206 MSR_PLATFORM_INFO

Platform Information

Contains power management and other model specific features enumeration. See http://biosbits.org.

Package

7:0 Reserved.

15:8 Maximum Non-Turbo Ratio (R/O) 

This is the ratio of the frequency that invariant TSC runs at. The invariant 
TSC frequency can be computed by multiplying this ratio by 133.33 MHz.

Package

27:16 Reserved.

28 Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limit for Turbo mode is 
enabled. When set to 0, indicates Programmable Ratio Limit for Turbo 
mode is disabled.

Package

Table 2-15.  MSRs in Processors Based on Nehalem Microarchitecture (Contd.)
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29 Programmable TDC-TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDC and TDP Limits for Turbo mode are 
programmable. When set to 0, indicates TDC and TDP Limits for Turbo 
mode are not programmable.

Package

39:30 Reserved.

47:40 Maximum Efficiency Ratio (R/O) 

This is the minimum ratio (maximum efficiency) that the processor can 
operate, in units of 133.33MHz.

Package

63:48 Reserved.

Register Address: E2H, 226 MSR_PKG_CST_CONFIG_CONTROL

C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States. See http://biosbits.org.

Core

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name (consuming the 
least power) for the package. The default is set as factory-configured 
package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

010b: C3

011b: C6

100b: C7

101b and 110b: Reserved

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register specified by 
MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions.

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, locks bits 15:0 of this register until next reset.

23:16 Reserved.

24 Interrupt filtering enable (R/W) 

When set, processor cores in a deep C-State will wake only when the event 
message is destined for that core. When 0, all processor cores in a deep C-
State will wake for an event message.

25 C3 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C6/C7 requests to C3 
based on uncore auto-demote information.

Table 2-15.  MSRs in Processors Based on Nehalem Microarchitecture (Contd.)
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26 C1 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C3/C6/C7 requests to C1 
based on uncore auto-demote information.

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

30 Package C State Undemotion Enable (R/W)

63:31 Reserved.

Register Address: E4H, 228 MSR_PMG_IO_CAPTURE_BASE

Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.

Core

15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO redirection. If IO 
MWAIT Redirection is enabled, reads to this address will be consumed by 
the power management logic and decoded to MWAIT instructions. When IO 
port address redirection is enabled, this is the IO port address reported to 
the OS/software.

18:16 C-state Range (R/W) 

Specifies the encoding value of the maximum C-State code name to be 
included when IO read to MWAIT redirection is enabled by 
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include.

001b - C6 is the max C-State to include.

010b - C7 is the max C-State to include.

63:19 Reserved.

Register Address: E7H, 231 IA32_MPERF

Maximum Performance Frequency Clock Count (R/W) 

See Table 2-2.

Thread

Register Address: E8H, 232 IA32_APERF

Actual Performance Frequency Clock Count (R/W) 

See Table 2-2.

Thread

Register Address: FEH, 254 IA32_MTRRCAP

See Table 2-2. Thread

Register Address: 174H, 372 IA32_SYSENTER_CS

See Table 2-2. Thread

Register Address: 175H, 373 IA32_SYSENTER_ESP

See Table 2-2. Thread

Register Address: 176H, 374 IA32_SYSENTER_EIP

See Table 2-2. Thread

Register Address: 179H, 377 IA32_MCG_CAP

See Table 2-2. Thread

Table 2-15.  MSRs in Processors Based on Nehalem Microarchitecture (Contd.)
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Register Address: 17AH, 378 IA32_MCG_STATUS

Global Machine Check Status Thread

0 RIPV

When set, bit indicates that the instruction addressed by the instruction 
pointer pushed on the stack (when the machine check was generated) can 
be used to restart the program. If cleared, the program cannot be reliably 
restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the instruction 
pointer pushed on the stack (when the machine check was generated) is 
directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If a 
second machine check is detected while this bit is still set, the processor 
enters a shutdown state. Software should write this bit to 0 after 
processing a machine check exception.

63:3 Reserved.

Register Address: 186H, 390 IA32_PERFEVTSEL0

See Table 2-2. Thread

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 AnyThread

22 EN

23 INV

31:24 CMASK

63:32 Reserved.

Register Address: 187H, 391 IA32_PERFEVTSEL1

See Table 2-2. Thread

Register Address: 188H, 392 IA32_PERFEVTSEL2

See Table 2-2. Thread

Register Address: 189H, 393 IA32_PERFEVTSEL3

See Table 2-2. Thread

Register Address: 198H, 408 IA32_PERF_STATUS

See Table 2-2. Core

15:0 Current Performance State Value.

Table 2-15.  MSRs in Processors Based on Nehalem Microarchitecture (Contd.)
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63:16 Reserved.

Register Address: 199H, 409 IA32_PERF_CTL

See Table 2-2. Thread

Register Address: 19AH, 410 IA32_CLOCK_MODULATION

Clock Modulation (R/W) 

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named IA32_THERM_CONTROL MSR.

Thread

0 Reserved.

3:1 On demand Clock Modulation Duty Cycle (R/W)

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

Register Address: 19BH, 411 IA32_THERM_INTERRUPT

Thermal Interrupt Control (R/W) 

See Table 2-2.

Core

Register Address: 19CH, 412 IA32_THERM_STATUS

Thermal Monitor Status (R/W) 

See Table 2-2.

Core

Register Address: 1A0H, 416 IA32_MISC_ENABLE

Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

See Table 2-2.

Thread

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2. Default value is 1.

Thread

6:4 Reserved.

7 Performance Monitoring Available (R) 

See Table 2-2.

Thread

10:8 Reserved.

11 Branch Trace Storage Unavailable (R/O) 

See Table 2-2.

Thread

12 Processor Event Based Sampling Unavailable (R/O) 

See Table 2-2.

Thread

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 2-2.

Package

18 ENABLE MONITOR FSM. (R/W) See Table 2-2. Thread

21:19 Reserved.

Table 2-15.  MSRs in Processors Based on Nehalem Microarchitecture (Contd.)
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22 Limit CPUID Maxval (R/W) 

See Table 2-2.

Thread

23 xTPR Message Disable (R/W) 

See Table 2-2.

Thread

33:24 Reserved.

34 XD Bit Disable (R/W)

See Table 2-3.

Thread

37:35 Reserved.

38 Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost Technology, 
the turbo mode feature is disabled and the IDA_Enable feature flag will be 
clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: EAX[1] 
reports the processor’s support of turbo mode is enabled.

Note: The power-on default value is used by BIOS to detect hardware 
support of turbo mode. If the power-on default value is 1, turbo mode is 
available in the processor. If the power-on default value is 0, turbo mode is 
not available.

Package

63:39 Reserved.

Register Address: 1A2H, 418 MSR_TEMPERATURE_TARGET

Temperature Target Thread

15:0 Reserved.

23:16 Temperature Target (R) 

The minimum temperature at which PROCHOT# will be asserted. The value 
is degrees C.

63:24 Reserved.

Register Address: 1A4H, 420 MSR_MISC_FEATURE_CONTROL

Miscellaneous Feature Control (R/W) 

0 L2 Hardware Prefetcher Disable (R/W) 

If 1, disables the L2 hardware prefetcher, which fetches additional lines of 
code or data into the L2 cache.

Core

1 L2 Adjacent Cache Line Prefetcher Disable (R/W) 

If 1, disables the adjacent cache line prefetcher, which fetches the cache 
line that comprises a cache line pair (128 bytes).

Core

2 DCU Hardware Prefetcher Disable (R/W) 

If 1, disables the L1 data cache prefetcher, which fetches the next cache 
line into L1 data cache.

Core

3 DCU IP Prefetcher Disable (R/W) 

If 1, disables the L1 data cache IP prefetcher, which uses sequential load 
history (based on instruction pointer of previous loads) to determine 
whether to prefetch additional lines.

Core

63:4 Reserved.

Register Address: 1A6H, 422 MSR_OFFCORE_RSP_0

Table 2-15.  MSRs in Processors Based on Nehalem Microarchitecture (Contd.)
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Offcore Response Event Select Register (R/W) Thread

Register Address: 1AAH, 426 MSR_MISC_PWR_MGMT

Miscellaneous Power Management Control

Various model specific features enumeration. See http://biosbits.org.

0 EIST Hardware Coordination Disable (R/W)

When 0, enables hardware coordination of Enhanced Intel Speedstep 
Technology request from processor cores. When 1, disables hardware 
coordination of Enhanced Intel Speedstep Technology requests.

Package

1 Energy/Performance Bias Enable (R/W) 

This bit makes the IA32_ENERGY_PERF_BIAS register (MSR 1B0h) visible 
to software with Ring 0 privileges. This bit’s status (1 or 0) is also reflected 
by CPUID.(EAX=06h):ECX[3].

Thread

63:2 Reserved.

Register Address: 1ACH, 428 MSR_TURBO_POWER_CURRENT_LIMIT

See http://biosbits.org.

14:0 TDP Limit (R/W) 

TDP limit in 1/8 Watt granularity.

Package

15 TDP Limit Override Enable (R/W) 

A value = 0 indicates override is not active; a value = 1 indicates override is 
active.

Package

30:16 TDC Limit (R/W) 

TDC limit in 1/8 Amp granularity.

Package

31 TDC Limit Override Enable (R/W) 

A value = 0 indicates override is not active; a value = 1 indicates override is 
active.

Package

63:32 Reserved.

Register Address: 1ADH, 429 MSR_TURBO_RATIO_LIMIT

Maximum Ratio Limit of Turbo Mode

R/O if MSR_PLATFORM_INFO.[28] = 0.

R/W if MSR_PLATFORM_INFO.[28] = 1.

Package

7:0 Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

Package

15:8 Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

Package

23:16 Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

Package

31:24 Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

Package

63:32 Reserved.

Register Address: 1C8H, 456 MSR_LBR_SELECT
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Last Branch Record Filtering Select Register (R/W) 

See Section 19.9.2, “Filtering of Last Branch Records.”

Core

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.

Register Address: 1C9H, 457 MSR_LASTBRANCH_TOS

Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

Thread

Register Address: 1D9H, 473 IA32_DEBUGCTL

Debug Control (R/W) 

See Table 2-2.

Thread

Register Address: 1DDH, 477 MSR_LER_FROM_LIP

Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor executed prior to the last exception that was 
generated or the last interrupt that was handled.

Thread

Register Address: 1DEH, 478 MSR_LER_TO_LIP

Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch instruction that the processor executed prior to the last 
exception that was generated or the last interrupt that was handled. 

Thread

Register Address: 1F2H, 498 IA32_SMRR_PHYSBASE

See Table 2-2. Core

Register Address: 1F3H, 499 IA32_SMRR_PHYSMASK

See Table 2-2. Core

Register Address: 1FCH, 508 MSR_POWER_CTL

Power Control Register

See http://biosbits.org.

Core

0 Reserved.

1 C1E Enable (R/W) 

When set to ‘1’, will enable the CPU to switch to the Minimum Enhanced 
Intel SpeedStep Technology operating point when all execution cores enter 
MWAIT (C1).

Package

63:2 Reserved.
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Register Address: 200H, 512 IA32_MTRR_PHYSBASE0

See Table 2-2. Thread

Register Address: 201H, 513 IA32_MTRR_PHYSMASK0

See Table 2-2. Thread

Register Address: 202H, 514 IA32_MTRR_PHYSBASE1

See Table 2-2. Thread

Register Address: 203H, 515 IA32_MTRR_PHYSMASK1

See Table 2-2. Thread

Register Address: 204H, 516 IA32_MTRR_PHYSBASE2

See Table 2-2. Thread

Register Address: 205H, 517 IA32_MTRR_PHYSMASK2

See Table 2-2. Thread

Register Address: 206H, 518 IA32_MTRR_PHYSBASE3

See Table 2-2. Thread

Register Address: 207H, 519 IA32_MTRR_PHYSMASK3

See Table 2-2. Thread

Register Address: 208H, 520 IA32_MTRR_PHYSBASE4

See Table 2-2. Thread

Register Address: 209H, 521 IA32_MTRR_PHYSMASK4

See Table 2-2. Thread

Register Address: 20AH, 522 IA32_MTRR_PHYSBASE5

See Table 2-2. Thread

Register Address: 20BH, 523 IA32_MTRR_PHYSMASK5

See Table 2-2. Thread

Register Address: 20CH, 524 IA32_MTRR_PHYSBASE6

See Table 2-2. Thread

Register Address: 20DH, 525 IA32_MTRR_PHYSMASK6

See Table 2-2. Thread

Register Address: 20EH, 526 IA32_MTRR_PHYSBASE7

See Table 2-2. Thread

Register Address: 20FH, 527 IA32_MTRR_PHYSMASK7

See Table 2-2. Thread

Register Address: 210H, 528 IA32_MTRR_PHYSBASE8

See Table 2-2. Thread

Register Address: 211H, 529 IA32_MTRR_PHYSMASK8

See Table 2-2. Thread

Register Address: 212H, 530 IA32_MTRR_PHYSBASE9
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See Table 2-2. Thread

Register Address: 213H, 531 IA32_MTRR_PHYSMASK9

See Table 2-2. Thread

Register Address: 250H, 592 IA32_MTRR_FIX64K_00000

See Table 2-2. Thread

Register Address: 258H, 600 IA32_MTRR_FIX16K_80000

See Table 2-2. Thread

Register Address: 259H, 601 IA32_MTRR_FIX16K_A0000

See Table 2-2. Thread

Register Address: 268H, 616 IA32_MTRR_FIX4K_C0000

See Table 2-2. Thread

Register Address: 269H, 617 IA32_MTRR_FIX4K_C8000

See Table 2-2. Thread

Register Address: 26AH, 618 IA32_MTRR_FIX4K_D0000

See Table 2-2. Thread

Register Address: 26BH, 619 IA32_MTRR_FIX4K_D8000

See Table 2-2. Thread

Register Address: 26CH, 620 IA32_MTRR_FIX4K_E0000

See Table 2-2. Thread

Register Address: 26DH, 621 IA32_MTRR_FIX4K_E8000

See Table 2-2. Thread

Register Address: 26EH, 622 IA32_MTRR_FIX4K_F0000

See Table 2-2. Thread

Register Address: 26FH, 623 IA32_MTRR_FIX4K_F8000

See Table 2-2. Thread

Register Address: 277H, 631 IA32_PAT

See Table 2-2. Thread

Register Address: 280H, 640 IA32_MC0_CTL2

See Table 2-2. Package

Register Address: 281H, 641 IA32_MC1_CTL2

See Table 2-2. Package

Register Address: 282H, 642 IA32_MC2_CTL2

See Table 2-2. Core

Register Address: 283H, 643 IA32_MC3_CTL2

See Table 2-2. Core

Register Address: 284H, 644 IA32_MC4_CTL2

See Table 2-2. Core
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Register Address: 285H, 645 IA32_MC5_CTL2

See Table 2-2. Core

Register Address: 286H, 646 IA32_MC6_CTL2

See Table 2-2. Package

Register Address: 287H, 647 IA32_MC7_CTL2

See Table 2-2. Package

Register Address: 288H, 648 IA32_MC8_CTL2

See Table 2-2. Package

Register Address: 2FFH, 767 IA32_MTRR_DEF_TYPE

Default Memory Types (R/W) 

See Table 2-2.

Thread

Register Address: 309H, 777 IA32_FIXED_CTR0

Fixed-Function Performance Counter Register 0 (R/W) 

See Table 2-2.

Thread

Register Address: 30AH, 778 IA32_FIXED_CTR1

Fixed-Function Performance Counter Register 1 (R/W) 

See Table 2-2.

Thread

Register Address: 30BH, 779 IA32_FIXED_CTR2

Fixed-Function Performance Counter Register 2 (R/W) 

See Table 2-2.

Thread

Register Address: 345H, 837 IA32_PERF_CAPABILITIES

See Table 2-2. See Section 19.4.1, “IA32_DEBUGCTL MSR.” Thread

5:0 LBR Format

See Table 2-2.

6 PEBS Record Format

7 PEBSSaveArchRegs

See Table 2-2.

11:8 PEBS_REC_FORMAT

See Table 2-2.

12 SMM_FREEZE

See Table 2-2.

63:13 Reserved.

Register Address: 38DH, 909 IA32_FIXED_CTR_CTRL

Fixed-Function-Counter Control Register (R/W) 

See Table 2-2.

Thread

Register Address: 38EH, 910 IA32_PERF_GLOBAL_STATUS

See Table 2-2. See Section 21.6.2.2, “Global Counter Control Facilities.” Thread

Register Address: 38EH, 910 MSR_PERF_GLOBAL_STATUS

Provides single-bit status used by software to query the overflow condition of each performance counter. (R/O) Thread
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61 UNC_Ovf

Uncore overflowed if 1.

Register Address: 38FH, 911 IA32_PERF_GLOBAL_CTRL

See Table 2-2. See Section 21.6.2.2, “Global Counter Control Facilities.” Thread

Register Address: 390H, 912 IA32_PERF_GLOBAL_OVF_CTRL

See Table 2-2. See Section 21.6.2.2, “Global Counter Control Facilities.” Allows software to clear counter overflow 
conditions on any combination of fixed-function PMCs (IA32_FIXED_CTRx) or general-purpose PMCs via a single 
WRMSR.

Thread

Register Address: 390H, 912 MSR_PERF_GLOBAL_OVF_CTRL

(R/W) Thread

61 CLR_UNC_Ovf

Set 1 to clear UNC_Ovf.

Register Address: 3F1H, 1009 IA32_PEBS_ENABLE (MSR_PEBS_ENABLE)

See Section 21.3.1.1.1, “Processor Event Based Sampling (PEBS).” Thread

0 Enable PEBS on IA32_PMC0 (R/W)

1 Enable PEBS on IA32_PMC1 (R/W)

2 Enable PEBS on IA32_PMC2 (R/W)

3 Enable PEBS on IA32_PMC3 (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0 (R/W)

33 Enable Load Latency on IA32_PMC1 (R/W)

34 Enable Load Latency on IA32_PMC2 (R/W)

35 Enable Load Latency on IA32_PMC3 (R/W)

63:36 Reserved.

Register Address: 3F6H, 1014 MSR_PEBS_LD_LAT

See Section 21.3.1.1.2, “Load Latency Performance Monitoring Facility.” Thread

15:0 Minimum threshold latency value of tagged load operation that will be 
counted. (R/W)

63:36 Reserved.

Register Address: 3F8H, 1016 MSR_PKG_C3_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

63:0 Package C3 Residency Counter (R/O)

Value since last reset that this package is in processor-specific C3 states. 
Count at the same frequency as the TSC.

Register Address: 3F9H, 1017 MSR_PKG_C6_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

Table 2-15.  MSRs in Processors Based on Nehalem Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
Vol. 4 2-183



MODEL-SPECIFIC REGISTERS (MSRS)
63:0 Package C6 Residency Counter (R/O)

Value since last reset that this package is in processor-specific C6 states. 
Count at the same frequency as the TSC.

Register Address: 3FAH, 1018 MSR_PKG_C7_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

63:0 Package C7 Residency Counter (R/O)

Value since last reset that this package is in processor-specific C7 states. 
Count at the same frequency as the TSC.

Register Address: 3FCH, 1020 MSR_CORE_C3_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Core

63:0 CORE C3 Residency Counter (R/O)

Value since last reset that this core is in processor-specific C3 states. Count 
at the same frequency as the TSC.

Register Address: 3FDH, 1021 MSR_CORE_C6_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Core

63:0 CORE C6 Residency Counter (R/O)

Value since last reset that this core is in processor-specific C6 states. Count 
at the same frequency as the TSC.

Register Address: 400H, 1024 IA32_MC0_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 401H, 1025 IA32_MC0_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Package

Register Address: 402H, 1026 IA32_MC0_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
IA32_MC0_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Package

Register Address: 403H, 1027 IA32_MC0_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 404H, 1028 IA32_MC1_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 405H, 1029 IA32_MC1_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Package

Register Address: 406H, 1030 IA32_MC1_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
IA32_MC1_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Package
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Register Address: 407H, 1031 IA32_MC1_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 408H, 1032 IA32_MC2_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Core

Register Address: 409H, 1033 IA32_MC2_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Core

Register Address: 40AH, 1034 IA32_MC2_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
IA32_MC2_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Core

Register Address: 40BH, 1035 IA32_MC2_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Core

Register Address: 40CH, 1036 IA32_MC3_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Core

Register Address: 40DH, 1037 IA32_MC3_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Core

Register Address: 40EH, 1038 IA32_MC3_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
MSR_MC4_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Core

Register Address: 40FH, 1039 IA32_MC3_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Core

Register Address: 410H, 1040 IA32_MC4_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Core

Register Address: 411H, 1041 IA32_MC4_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Core

Register Address: 412H, 1042 IA32_MC4_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
MSR_MC3_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Core

Register Address: 413H, 1043 IA32_MC4_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Core

Register Address: 414H, 1044 IA32_MC5_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Core

Register Address: 415H, 1045 IA32_MC5_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Core
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Register Address: 416H, 1046 IA32_MC5_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Core

Register Address: 417H, 1047 IA32_MC5_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Core

Register Address: 418H, 1048 IA32_MC6_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 419H, 1049 IA32_MC6_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 41AH, 1050 IA32_MC6_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 41BH, 1051 IA32_MC6_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 41CH, 1052 IA32_MC7_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 41DH, 1053 IA32_MC7_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 41EH, 1054 IA32_MC7_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 41FH, 1055 IA32_MC7_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 420H, 1056 IA32_MC8_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 421H, 1057 IA32_MC8_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 422H, 1058 IA32_MC8_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 423H, 1059 IA32_MC8_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 480H, 1152 IA32_VMX_BASIC

Reporting Register of Basic VMX Capabilities (R/O) 

See Table 2-2 and Appendix A.1, “Basic VMX Information.”

Thread

Register Address: 481H, 1153 IA32_VMX_PINBASED_CTLS

Capability Reporting Register of Pin-based VM-execution Controls (R/O) 

See Table 2-2 and Appendix A.3, “VM-Execution Controls.”

Thread

Register Address: 482H, 1154 IA32_VMX_PROCBASED_CTLS

Capability Reporting Register of Primary Processor-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

Thread

Register Address: 483H, 1155 IA32_VMX_EXIT_CTLS
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Capability Reporting Register of VM-Exit Controls (R/O) 

See Table 2-2 and Appendix A.4, “VM-Exit Controls.”

Thread

Register Address: 484H, 1156 IA32_VMX_ENTRY_CTLS

Capability Reporting Register of VM-Entry Controls (R/O) 

See Table 2-2 and Appendix A.5, “VM-Entry Controls.”

Thread

Register Address: 485H, 1157 IA32_VMX_MISC

Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 2-2 and Appendix A.6, “Miscellaneous Data.”

Thread

Register Address: 486H, 1158 IA32_VMX_CR0_FIXED0

Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 2-2 and Appendix A.7, “VMX-Fixed Bits in CR0.”

Thread

Register Address: 487H, 1159 IA32_VMX_CR0_FIXED1

Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 2-2 and Appendix A.7, “VMX-Fixed Bits in CR0.”

Thread

Register Address: 488H, 1160 IA32_VMX_CR4_FIXED0

Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 2-2 and Appendix A.8, “VMX-Fixed Bits in CR4.”

Thread

Register Address: 489H, 1161 IA32_VMX_CR4_FIXED1

Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 2-2 and Appendix A.8, “VMX-Fixed Bits in CR4.”

Thread

Register Address: 48AH, 1162 IA32_VMX_VMCS_ENUM

Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 2-2 and Appendix A.9, “VMCS Enumeration.”

Thread

Register Address: 48BH, 1163 IA32_VMX_PROCBASED_CTLS2

Capability Reporting Register of Secondary Processor-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

Thread

Register Address: 600H, 1536 IA32_DS_AREA

DS Save Area (R/W)

See Table 2-2 and Section 21.6.3.4, “Debug Store (DS) Mechanism.”

Thread

Register Address: 680H, 1664 MSR_LASTBRANCH_0_FROM_IP

Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last branch record stack. The From_IP part of the stack 
contains pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• See Section 19.9.1 and record format in Section 19.4.8.1.

Thread

Register Address: 681H, 1665 MSR_LASTBRANCH_1_FROM_IP

Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 682H, 1666 MSR_LASTBRANCH_2_FROM_IP
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Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

Thread

Register Address: 683H, 1667 MSR_LASTBRANCH_3_FROM_IP

Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 684H, 1668 MSR_LASTBRANCH_4_FROM_IP

Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 685H, 1669 MSR_LASTBRANCH_5_FROM_IP

Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 686H, 1670 MSR_LASTBRANCH_6_FROM_IP

Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 687H, 1671 MSR_LASTBRANCH_7_FROM_IP

Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 688H, 1672 MSR_LASTBRANCH_8_FROM_IP

Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 689H, 1673 MSR_LASTBRANCH_9_FROM_IP

Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 68AH, 1674 MSR_LASTBRANCH_10_FROM_IP

Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 68BH, 1675 MSR_LASTBRANCH_11_FROM_IP

Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 68CH, 1676 MSR_LASTBRANCH_12_FROM_IP

Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 68DH, 1677 MSR_LASTBRANCH_13_FROM_IP

Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 68EH, 1678 MSR_LASTBRANCH_14_FROM_IP

Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 68FH, 1679 MSR_LASTBRANCH_15_FROM_IP
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Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 6C0H, 1728 MSR_LASTBRANCH_0_TO_IP

Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last branch record stack. This part of the stack contains 
pointers to the destination instruction.

Thread

Register Address: 6C1H, 1729 MSR_LASTBRANCH_1_TO_IP

Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6C2H, 1730 MSR_LASTBRANCH_2_TO_IP

Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6C3H, 1731 MSR_LASTBRANCH_3_TO_IP

Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6C4H, 1732 MSR_LASTBRANCH_4_TO_IP

Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6C5H, 1733 MSR_LASTBRANCH_5_TO_IP

Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6C6H, 1734 MSR_LASTBRANCH_6_TO_IP

Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6C7H, 1735 MSR_LASTBRANCH_7_TO_IP

Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6C8H, 1736 MSR_LASTBRANCH_8_TO_IP

Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6C9H, 1737 MSR_LASTBRANCH_9_TO_IP

Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6CAH, 1738 MSR_LASTBRANCH_10_TO_IP

Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6CBH, 1739 MSR_LASTBRANCH_11_TO_IP

Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread
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Register Address: 6CCH, 1740 MSR_LASTBRANCH_12_TO_IP

Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6CDH, 1741 MSR_LASTBRANCH_13_TO_IP

Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6CEH, 1742 MSR_LASTBRANCH_14_TO_IP

Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6CFH, 1743 MSR_LASTBRANCH_15_TO_IP

Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 802H, 2050 IA32_X2APIC_APICID

x2APIC ID Register (R/O) Thread

Register Address: 803H, 2051 IA32_X2APIC_VERSION

x2APIC Version Register (R/O) Thread

Register Address: 808H, 2056 IA32_X2APIC_TPR

x2APIC Task Priority Register (R/W) Thread

Register Address: 80AH, 2058 IA32_X2APIC_PPR

x2APIC Processor Priority Register (R/O) Thread

Register Address: 80BH, 2059 IA32_X2APIC_EOI

x2APIC EOI Register (W/O) Thread

Register Address: 80DH, 2061 IA32_X2APIC_LDR

x2APIC Logical Destination Register (R/O) Thread

Register Address: 80FH, 2063 IA32_X2APIC_SIVR

x2APIC Spurious Interrupt Vector Register (R/W) Thread

Register Address: 810H, 2064 IA32_X2APIC_ISR0

x2APIC In-Service Register Bits [31:0] (R/O) Thread

Register Address: 811H, 2065 IA32_X2APIC_ISR1

x2APIC In-Service Register Bits [63:32] (R/O) Thread

Register Address: 812H, 2066 IA32_X2APIC_ISR2

x2APIC In-Service Register Bits [95:64] (R/O) Thread

Register Address: 813H, 2067 IA32_X2APIC_ISR3

x2APIC In-Service Register Bits [127:96] (R/O) Thread

Register Address: 814H, 2068 IA32_X2APIC_ISR4

x2APIC In-Service Register Bits [159:128] (R/O) Thread

Register Address: 815H, 2069 IA32_X2APIC_ISR5

x2APIC In-Service Register Bits [191:160] (R/O) Thread
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Register Address: 816H, 2070 IA32_X2APIC_ISR6

x2APIC In-Service Register Bits [223:192] (R/O) Thread

Register Address: 817H, 2071 IA32_X2APIC_ISR7

x2APIC In-Service Register Bits [255:224] (R/O) Thread

Register Address: 818H, 2072 IA32_X2APIC_TMR0

x2APIC Trigger Mode Register Bits [31:0] (R/O) Thread

Register Address: 819H, 2073 IA32_X2APIC_TMR1

x2APIC Trigger Mode Register Bits [63:32] (R/O) Thread

Register Address: 81AH, 2074 IA32_X2APIC_TMR2

x2APIC Trigger Mode Register Bits [95:64] (R/O) Thread

Register Address: 81BH, 2075 IA32_X2APIC_TMR3

x2APIC Trigger Mode Register Bits [127:96] (R/O) Thread

Register Address: 81CH, 2076 IA32_X2APIC_TMR4

x2APIC Trigger Mode Register Bits [159:128] (R/O) Thread

Register Address: 81DH, 2077 IA32_X2APIC_TMR5

x2APIC Trigger Mode Register Bits [191:160] (R/O) Thread

Register Address: 81EH, 2078 IA32_X2APIC_TMR6

x2APIC Trigger Mode Register Bits [223:192] (R/O) Thread

Register Address: 81FH, 2079 IA32_X2APIC_TMR7

x2APIC Trigger Mode Register Bits [255:224] (R/O) Thread

Register Address: 820H, 2080 IA32_X2APIC_IRR0

x2APIC Interrupt Request Register Bits [31:0] (R/O) Thread

Register Address: 821H, 2081 IA32_X2APIC_IRR1

x2APIC Interrupt Request Register Bits [63:32] (R/O) Thread

Register Address: 822H, 2082 IA32_X2APIC_IRR2

x2APIC Interrupt Request Register Bits [95:64] (R/O) Thread

Register Address: 823H, 2083 IA32_X2APIC_IRR3

x2APIC Interrupt Request Register Bits [127:96] (R/O) Thread

Register Address: 824H, 2084 IA32_X2APIC_IRR4

x2APIC Interrupt Request Register Bits [159:128] (R/O) Thread

Register Address: 825H, 2085 IA32_X2APIC_IRR5

x2APIC Interrupt Request Register Bits [191:160] (R/O) Thread

Register Address: 826H, 2086 IA32_X2APIC_IRR6

x2APIC Interrupt Request Register Bits [223:192] (R/O) Thread

Register Address: 827H, 2087 IA32_X2APIC_IRR7

x2APIC Interrupt Request Register Bits [255:224] (R/O) Thread

Register Address: 828H, 2088 IA32_X2APIC_ESR

Table 2-15.  MSRs in Processors Based on Nehalem Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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x2APIC Error Status Register (R/W) Thread

Register Address: 82FH, 2095 IA32_X2APIC_LVT_CMCI

x2APIC LVT Corrected Machine Check Interrupt Register (R/W) Thread

Register Address: 830H, 2096 IA32_X2APIC_ICR

x2APIC Interrupt Command Register (R/W) Thread

Register Address: 832H, 2098 IA32_X2APIC_LVT_TIMER

x2APIC LVT Timer Interrupt Register (R/W) Thread

Register Address: 833H, 2099 IA32_X2APIC_LVT_THERMAL

x2APIC LVT Thermal Sensor Interrupt Register (R/W) Thread

Register Address: 834H, 2100 IA32_X2APIC_LVT_PMI

x2APIC LVT Performance Monitor Register (R/W) Thread

Register Address: 835H, 2101 IA32_X2APIC_LVT_LINT0

x2APIC LVT LINT0 Register (R/W) Thread

Register Address: 836H, 2102 IA32_X2APIC_LVT_LINT1

x2APIC LVT LINT1 Register (R/W) Thread

Register Address: 837H, 2103 IA32_X2APIC_LVT_ERROR

x2APIC LVT Error Register (R/W) Thread

Register Address: 838H, 2104 IA32_X2APIC_INIT_COUNT

x2APIC Initial Count Register (R/W) Thread

Register Address: 839H, 2105 IA32_X2APIC_CUR_COUNT

x2APIC Current Count Register (R/O) Thread

Register Address: 83EH, 2110 IA32_X2APIC_DIV_CONF

x2APIC Divide Configuration Register (R/W) Thread

Register Address: 83FH, 2111 IA32_X2APIC_SELF_IPI

x2APIC Self IPI Register (W/O) Thread

Register Address: C000_0080H IA32_EFER

Extended Feature Enables 

See Table 2-2.

Thread

Register Address: C000_0081H IA32_STAR

System Call Target Address (R/W) 

See Table 2-2.

Thread

Register Address: C000_0082H IA32_LSTAR

IA-32e Mode System Call Target Address (R/W) 

See Table 2-2.

Thread

Register Address: C000_0084H IA32_FMASK

System Call Flag Mask (R/W) 

See Table 2-2.

Thread

Register Address: C000_0100H IA32_FS_BASE

Table 2-15.  MSRs in Processors Based on Nehalem Microarchitecture (Contd.)
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Register Information / Bit Fields Bit Description Scope
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2.8.1  Additional MSRs in the Intel® Xeon® Processor 5500 and 3400 Series
The Intel Xeon Processor 5500 and 3400 series supports additional model-specific registers listed in Table 2-16. 
These MSRs also apply to the Intel Core i7 and i5 processor family with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_1AH, 06_1EH, or 06_1FH; see Table 2-1. 

Map of BASE Address of FS (R/W) 

See Table 2-2.

Thread

Register Address: C000_0101H IA32_GS_BASE

Map of BASE Address of GS (R/W) 

See Table 2-2.

Thread

Register Address: C000_0102H IA32_KERNEL_GS_BASE

Swap Target of BASE Address of GS (R/W) 

See Table 2-2.

Thread

Register Address: C000_0103H IA32_TSC_AUX

AUXILIARY TSC Signature (R/W) 

See Table 2-2 and Section 19.17.2, “IA32_TSC_AUX Register and RDTSCP Support.” 

Thread

Table 2-16.  Additional MSRs in the Intel® Xeon® Processor 5500 and 3400 Series

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 1ADH, 429 MSR_TURBO_RATIO_LIMIT

Actual maximum turbo frequency is multiplied by 133.33MHz. 

(Not available in model 06_2EH.)

Package

7:0 Maximum Turbo Ratio Limit 1C (R/O) 

Maximum Turbo mode ratio limit with 1 core active. 

15:8 Maximum Turbo Ratio Limit 2C (R/O) 

Maximum Turbo mode ratio limit with 2 cores active. 

23:16 Maximum Turbo Ratio Limit 3C (R/O) 

Maximum Turbo mode ratio limit with 3 cores active. 

31:24 Maximum Turbo Ratio Limit 4C (R/O) 

Maximum Turbo mode ratio limit with 4 cores active. 

63:32 Reserved.

Register Address: 301H, 769 MSR_GQ_SNOOP_MESF

 MSR_GQ_SNOOP_MESF Package

0 From M to S (R/W)

1 From E to S (R/W)

2 From S to S (R/W)

3 From F to S (R/W)

4 From M to I (R/W)

Table 2-15.  MSRs in Processors Based on Nehalem Microarchitecture (Contd.)
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Register Information / Bit Fields Bit Description Scope
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5 From E to I (R/W)

6 From S to I (R/W)

7 From F to I (R/W)

63:8 Reserved.

Register Address: 391H, 913 MSR_UNCORE_PERF_GLOBAL_CTRL

See Section 21.3.1.2.1, “Uncore Performance Monitoring Management Facility.” Package

Register Address: 392H, 914 MSR_UNCORE_PERF_GLOBAL_STATUS

See Section 21.3.1.2.1, “Uncore Performance Monitoring Management Facility.” Package

Register Address: 393H, 915 MSR_UNCORE_PERF_GLOBAL_OVF_CTRL

See Section 21.3.1.2.1, “Uncore Performance Monitoring Management Facility.” Package

Register Address: 394H, 916 MSR_UNCORE_FIXED_CTR0

See Section 21.3.1.2.1, “Uncore Performance Monitoring Management Facility.” Package

Register Address: 395H, 917 MSR_UNCORE_FIXED_CTR_CTRL

See Section 21.3.1.2.1, “Uncore Performance Monitoring Management Facility.” Package

Register Address: 396H, 918 MSR_UNCORE_ADDR_OPCODE_MATCH

See Section 21.3.1.2.3, “Uncore Address/Opcode Match MSR.” Package

Register Address: 3B0H, 960 MSR_UNCORE_PMC0

See Section 21.3.1.2.2, “Uncore Performance Event Configuration Facility.” Package

Register Address: 3B1H, 961 MSR_UNCORE_PMC1

See Section 21.3.1.2.2, “Uncore Performance Event Configuration Facility.” Package

Register Address: 3B2H, 962 MSR_UNCORE_PMC2

See Section 21.3.1.2.2, “Uncore Performance Event Configuration Facility.” Package

Register Address: 3B3H, 963 MSR_UNCORE_PMC3

See Section 21.3.1.2.2, “Uncore Performance Event Configuration Facility.” Package

Register Address: 3B4H, 964 MSR_UNCORE_PMC4

See Section 21.3.1.2.2, “Uncore Performance Event Configuration Facility.” Package

Register Address: 3B5H, 965 MSR_UNCORE_PMC5

See Section 21.3.1.2.2, “Uncore Performance Event Configuration Facility.” Package

Register Address: 3B6H, 966 MSR_UNCORE_PMC6

See Section 21.3.1.2.2, “Uncore Performance Event Configuration Facility.” Package

Register Address: 3B7H, 967 MSR_UNCORE_PMC7

See Section 21.3.1.2.2, “Uncore Performance Event Configuration Facility.” Package

Register Address: 3C0H, 944 MSR_UNCORE_PERFEVTSEL0

See Section 21.3.1.2.2, “Uncore Performance Event Configuration Facility.” Package

Register Address: 3C1H, 945 MSR_UNCORE_PERFEVTSEL1

See Section 21.3.1.2.2, “Uncore Performance Event Configuration Facility.” Package

Register Address: 3C2H, 946 MSR_UNCORE_PERFEVTSEL2

Table 2-16.  Additional MSRs in the Intel® Xeon® Processor 5500 and 3400 Series (Contd.)
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2.8.2  Additional MSRs in the Intel® Xeon® Processor 7500 Series
The Intel Xeon Processor 7500 series supports MSRs listed in Table 2-15 (except MSR address 1ADH) and addi-
tional model-specific registers listed in Table 2-17. These processors have a CPUID Signature 
DisplayFamily_DisplayModel value of 06_2EH.

See Section 21.3.1.2.2, “Uncore Performance Event Configuration Facility.” Package

Register Address: 3C3H, 947 MSR_UNCORE_PERFEVTSEL3

See Section 21.3.1.2.2, “Uncore Performance Event Configuration Facility.” Package

Register Address: 3C4H, 948 MSR_UNCORE_PERFEVTSEL4

See Section 21.3.1.2.2, “Uncore Performance Event Configuration Facility.” Package

Register Address: 3C5H, 949 MSR_UNCORE_PERFEVTSEL5

See Section 21.3.1.2.2, “Uncore Performance Event Configuration Facility.” Package

Register Address: 3C6H, 950 MSR_UNCORE_PERFEVTSEL6

See Section 21.3.1.2.2, “Uncore Performance Event Configuration Facility.” Package

Register Address: 3C7H, 951 MSR_UNCORE_PERFEVTSEL7

See Section 21.3.1.2.2, “Uncore Performance Event Configuration Facility.” Package

Table 2-17.  Additional MSRs in the Intel® Xeon® Processor 7500 Series

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 1ADH, 429 MSR_TURBO_RATIO_LIMIT

Reserved. Attempt to read/write will cause #UD. Package

Register Address: 289H, 649 IA32_MC9_CTL2

See Table 2-2. Package

Register Address: 28AH, 650 IA32_MC10_CTL2

See Table 2-2. Package

Register Address: 28BH, 651 IA32_MC11_CTL2

See Table 2-2. Package

Register Address: 28CH, 652 IA32_MC12_CTL2

See Table 2-2. Package

Register Address: 28DH, 653 IA32_MC13_CTL2

See Table 2-2. Package

Register Address: 28EH, 654 IA32_MC14_CTL2

See Table 2-2. Package

Register Address: 28FH, 655 IA32_MC15_CTL2

See Table 2-2. Package

Register Address: 290H, 656 IA32_MC16_CTL2

See Table 2-2. Package

Table 2-16.  Additional MSRs in the Intel® Xeon® Processor 5500 and 3400 Series (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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Register Address: 291H, 657 IA32_MC17_CTL2

See Table 2-2. Package

Register Address: 292H, 658 IA32_MC18_CTL2

See Table 2-2. Package

Register Address: 293H, 659 IA32_MC19_CTL2

See Table 2-2. Package

Register Address: 294H, 660 IA32_MC20_CTL2

See Table 2-2. Package

Register Address: 295H, 661 IA32_MC21_CTL2

See Table 2-2. Package

Register Address: 394H, 816 MSR_W_PMON_FIXED_CTR

Uncore W-box perfmon fixed counter. Package

Register Address: 395H, 817 MSR_W_PMON_FIXED_CTR_CTL

Uncore U-box perfmon fixed counter control MSR. Package

Register Address: 424H, 1060 IA32_MC9_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 425H, 1061 IA32_MC9_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 426H, 1062 IA32_MC9_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 427H, 1063 IA32_MC9_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 428H, 1064 IA32_MC10_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 429H, 1065 IA32_MC10_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 42AH, 1066 IA32_MC10_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 42BH, 1067 IA32_MC10_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 42CH, 1068 IA32_MC11_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 42DH, 1069 IA32_MC11_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 42EH, 1070 IA32_MC11_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 42FH, 1071 IA32_MC11_MISC

Table 2-17.  Additional MSRs in the Intel® Xeon® Processor 7500 Series (Contd.)
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See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 430H, 1072 IA32_MC12_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 431H, 1073 IA32_MC12_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 432H, 1074 IA32_MC12_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 433H, 1075 IA32_MC12_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 434H, 1076 IA32_MC13_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 435H, 1077 IA32_MC13_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 436H, 1078 IA32_MC13_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 437H, 1079 IA32_MC13_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 438H, 1080 IA32_MC14_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 439H, 1081 IA32_MC14_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 43AH, 1082 IA32_MC14_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 43BH, 1083 IA32_MC14_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 43CH, 1084 IA32_MC15_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 43DH, 1085 IA32_MC15_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 43EH, 1086 IA32_MC15_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 43FH, 1087 IA32_MC15_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 440H, 1088 IA32_MC16_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 441H, 1089 IA32_MC16_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Table 2-17.  Additional MSRs in the Intel® Xeon® Processor 7500 Series (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
Vol. 4 2-197



MODEL-SPECIFIC REGISTERS (MSRS)
Register Address: 442H, 1090 IA32_MC16_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 443H, 1091 IA32_MC16_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 444H, 1092 IA32_MC17_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 445H, 1093 IA32_MC17_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 446H, 1094 IA32_MC17_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 447H, 1095 IA32_MC17_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 448H, 1096 IA32_MC18_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 449H, 1097 IA32_MC18_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 44AH, 1098 IA32_MC18_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 44BH, 1099 IA32_MC18_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 44CH, 1100 IA32_MC19_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 44DH, 1101 IA32_MC19_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 44EH, 1102 IA32_MC19_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 44FH, 1103 IA32_MC19_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 450H, 1104 IA32_MC20_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 451H, 1105 IA32_MC20_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 452H, 1106 IA32_MC20_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 453H, 1107 IA32_MC20_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 454H, 1108 IA32_MC21_CTL

Table 2-17.  Additional MSRs in the Intel® Xeon® Processor 7500 Series (Contd.)
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See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 455H, 1109 IA32_MC21_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 456H, 1110 IA32_MC21_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 457H, 1111 IA32_MC21_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: C00H, 3072 MSR_U_PMON_GLOBAL_CTRL

Uncore U-box perfmon global control MSR. Package

Register Address: C01H, 3073 MSR_U_PMON_GLOBAL_STATUS

Uncore U-box perfmon global status MSR. Package

Register Address: C02H, 3074 MSR_U_PMON_GLOBAL_OVF_CTRL

Uncore U-box perfmon global overflow control MSR. Package

Register Address: C10H, 3088 MSR_U_PMON_EVNT_SEL

Uncore U-box perfmon event select MSR. Package

Register Address: C11H, 3089 MSR_U_PMON_CTR

Uncore U-box perfmon counter MSR. Package

Register Address: C20H, 3104 MSR_B0_PMON_BOX_CTRL

Uncore B-box 0 perfmon local box control MSR. Package

Register Address: C21H, 3105 MSR_B0_PMON_BOX_STATUS

Uncore B-box 0 perfmon local box status MSR. Package

Register Address: C22H, 3106 MSR_B0_PMON_BOX_OVF_CTRL

Uncore B-box 0 perfmon local box overflow control MSR. Package

Register Address: C30H, 3120 MSR_B0_PMON_EVNT_SEL0

Uncore B-box 0 perfmon event select MSR. Package

Register Address: C31H, 3121 MSR_B0_PMON_CTR0

Uncore B-box 0 perfmon counter MSR. Package

Register Address: C32H, 3122 MSR_B0_PMON_EVNT_SEL1

Uncore B-box 0 perfmon event select MSR. Package

Register Address: C33H, 3123 MSR_B0_PMON_CTR1

Uncore B-box 0 perfmon counter MSR. Package

Register Address: C34H, 3124 MSR_B0_PMON_EVNT_SEL2

Uncore B-box 0 perfmon event select MSR. Package

Register Address: C35H, 3125 MSR_B0_PMON_CTR2

Uncore B-box 0 perfmon counter MSR. Package

Register Address: C36H, 3126 MSR_B0_PMON_EVNT_SEL3

Uncore B-box 0 perfmon event select MSR. Package

Table 2-17.  Additional MSRs in the Intel® Xeon® Processor 7500 Series (Contd.)
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Register Address: C37H, 3127 MSR_B0_PMON_CTR3

Uncore B-box 0 perfmon counter MSR. Package

Register Address: C40H, 3136 MSR_S0_PMON_BOX_CTRL

Uncore S-box 0 perfmon local box control MSR. Package

Register Address: C41H, 3137 MSR_S0_PMON_BOX_STATUS

Uncore S-box 0 perfmon local box status MSR. Package

Register Address: C42H, 3138 MSR_S0_PMON_BOX_OVF_CTRL

Uncore S-box 0 perfmon local box overflow control MSR. Package

Register Address: C50H, 3152 MSR_S0_PMON_EVNT_SEL0

Uncore S-box 0 perfmon event select MSR. Package

Register Address: C51H, 3153 MSR_S0_PMON_CTR0

Uncore S-box 0 perfmon counter MSR. Package

Register Address: C52H, 3154 MSR_S0_PMON_EVNT_SEL1

Uncore S-box 0 perfmon event select MSR. Package

Register Address: C53H, 3155 MSR_S0_PMON_CTR1

Uncore S-box 0 perfmon counter MSR. Package

Register Address: C54H, 3156 MSR_S0_PMON_EVNT_SEL2

Uncore S-box 0 perfmon event select MSR. Package

Register Address: C55H, 3157 MSR_S0_PMON_CTR2

Uncore S-box 0 perfmon counter MSR. Package

Register Address: C56H, 3158 MSR_S0_PMON_EVNT_SEL3

Uncore S-box 0 perfmon event select MSR. Package

Register Address: C57H, 3159 MSR_S0_PMON_CTR3

Uncore S-box 0 perfmon counter MSR. Package

Register Address: C60H, 3168 MSR_B1_PMON_BOX_CTRL

Uncore B-box 1 perfmon local box control MSR. Package

Register Address: C61H, 3169 MSR_B1_PMON_BOX_STATUS

Uncore B-box 1 perfmon local box status MSR. Package

Register Address: C62H, 3170 MSR_B1_PMON_BOX_OVF_CTRL

Uncore B-box 1 perfmon local box overflow control MSR. Package

Register Address: C70H, 3184 MSR_B1_PMON_EVNT_SEL0

Uncore B-box 1 perfmon event select MSR. Package

Register Address: C71H, 3185 MSR_B1_PMON_CTR0

Uncore B-box 1 perfmon counter MSR. Package

Register Address: C72H, 3186 MSR_B1_PMON_EVNT_SEL1

Uncore B-box 1 perfmon event select MSR. Package

Register Address: C73H, 3187 MSR_B1_PMON_CTR1

Table 2-17.  Additional MSRs in the Intel® Xeon® Processor 7500 Series (Contd.)
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MODEL-SPECIFIC REGISTERS (MSRS)
Uncore B-box 1 perfmon counter MSR. Package

Register Address: C74H, 3188 MSR_B1_PMON_EVNT_SEL2

Uncore B-box 1 perfmon event select MSR. Package

Register Address: C75H, 3189 MSR_B1_PMON_CTR2

Uncore B-box 1 perfmon counter MSR. Package

Register Address: C76H, 3190 MSR_B1_PMON_EVNT_SEL3

Uncore B-box 1vperfmon event select MSR. Package

Register Address: C77H, 3191 MSR_B1_PMON_CTR3

Uncore B-box 1 perfmon counter MSR. Package

Register Address: C80H, 3120 MSR_W_PMON_BOX_CTRL

Uncore W-box perfmon local box control MSR. Package

Register Address: C81H, 3121 MSR_W_PMON_BOX_STATUS

Uncore W-box perfmon local box status MSR. Package

Register Address: C82H, 3122 MSR_W_PMON_BOX_OVF_CTRL

Uncore W-box perfmon local box overflow control MSR. Package

Register Address: C90H, 3136 MSR_W_PMON_EVNT_SEL0

Uncore W-box perfmon event select MSR. Package

Register Address: C91H, 3137 MSR_W_PMON_CTR0

Uncore W-box perfmon counter MSR. Package

Register Address: C92H, 3138 MSR_W_PMON_EVNT_SEL1

Uncore W-box perfmon event select MSR. Package

Register Address: C93H, 3139 MSR_W_PMON_CTR1

Uncore W-box perfmon counter MSR. Package

Register Address: C94H, 3140 MSR_W_PMON_EVNT_SEL2

Uncore W-box perfmon event select MSR. Package

Register Address: C95H, 3141 MSR_W_PMON_CTR2

Uncore W-box perfmon counter MSR. Package

Register Address: C96H, 3142 MSR_W_PMON_EVNT_SEL3

Uncore W-box perfmon event select MSR. Package

Register Address: C97H, 3143 MSR_W_PMON_CTR3

Uncore W-box perfmon counter MSR. Package

Register Address: CA0H, 3232 MSR_M0_PMON_BOX_CTRL

Uncore M-box 0 perfmon local box control MSR. Package

Register Address: CA1H, 3233 MSR_M0_PMON_BOX_STATUS

Uncore M-box 0 perfmon local box status MSR. Package

Register Address: CA2H, 3234 MSR_M0_PMON_BOX_OVF_CTRL

Uncore M-box 0 perfmon local box overflow control MSR. Package
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MODEL-SPECIFIC REGISTERS (MSRS)
Register Address: CA4H, 3236 MSR_M0_PMON_TIMESTAMP

Uncore M-box 0 perfmon time stamp unit select MSR. Package

Register Address: CA5H, 3237 MSR_M0_PMON_DSP

Uncore M-box 0 perfmon DSP unit select MSR. Package

Register Address: CA6H, 3238 MSR_M0_PMON_ISS

Uncore M-box 0 perfmon ISS unit select MSR. Package

Register Address: CA7H, 3239 MSR_M0_PMON_MAP

Uncore M-box 0 perfmon MAP unit select MSR. Package

Register Address: CA8H, 3240 MSR_M0_PMON_MSC_THR

Uncore M-box 0 perfmon MIC THR select MSR. Package

Register Address: CA9H, 3241 MSR_M0_PMON_PGT

Uncore M-box 0 perfmon PGT unit select MSR. Package

Register Address: CAAH, 3242 MSR_M0_PMON_PLD

Uncore M-box 0 perfmon PLD unit select MSR. Package

Register Address: CABH, 3243 MSR_M0_PMON_ZDP

Uncore M-box 0 perfmon ZDP unit select MSR. Package

Register Address: CB0H, 3248 MSR_M0_PMON_EVNT_SEL0

Uncore M-box 0 perfmon event select MSR. Package

Register Address: CB1H, 3249 MSR_M0_PMON_CTR0

Uncore M-box 0 perfmon counter MSR. Package

Register Address: CB2H, 3250 MSR_M0_PMON_EVNT_SEL1

Uncore M-box 0 perfmon event select MSR. Package

Register Address: CB3H, 3251 MSR_M0_PMON_CTR1

Uncore M-box 0 perfmon counter MSR. Package

Register Address: CB4H, 3252 MSR_M0_PMON_EVNT_SEL2

Uncore M-box 0 perfmon event select MSR. Package

Register Address: CB5H, 3253 MSR_M0_PMON_CTR2

Uncore M-box 0 perfmon counter MSR. Package

Register Address: CB6H, 3254 MSR_M0_PMON_EVNT_SEL3

Uncore M-box 0 perfmon event select MSR. Package

Register Address: CB7H, 3255 MSR_M0_PMON_CTR3

Uncore M-box 0 perfmon counter MSR. Package

Register Address: CB8H, 3256 MSR_M0_PMON_EVNT_SEL4

Uncore M-box 0 perfmon event select MSR. Package

Register Address: CB9H, 3257 MSR_M0_PMON_CTR4

Uncore M-box 0 perfmon counter MSR. Package

Register Address: CBAH, 3258 MSR_M0_PMON_EVNT_SEL5
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MODEL-SPECIFIC REGISTERS (MSRS)
Uncore M-box 0 perfmon event select MSR. Package

Register Address: CBBH, 3259 MSR_M0_PMON_CTR5

Uncore M-box 0 perfmon counter MSR. Package

Register Address: CC0H, 3264 MSR_S1_PMON_BOX_CTRL

Uncore S-box 1 perfmon local box control MSR. Package

Register Address: CC1H, 3265 MSR_S1_PMON_BOX_STATUS

Uncore S-box 1 perfmon local box status MSR. Package

Register Address: CC2H, 3266 MSR_S1_PMON_BOX_OVF_CTRL

Uncore S-box 1 perfmon local box overflow control MSR. Package

Register Address: CD0H, 3280 MSR_S1_PMON_EVNT_SEL0

Uncore S-box 1 perfmon event select MSR. Package

Register Address: CD1H, 3281 MSR_S1_PMON_CTR0

Uncore S-box 1 perfmon counter MSR. Package

Register Address: CD2H, 3282 MSR_S1_PMON_EVNT_SEL1

Uncore S-box 1 perfmon event select MSR. Package

Register Address: CD3H, 3283 MSR_S1_PMON_CTR1

Uncore S-box 1 perfmon counter MSR. Package

Register Address: CD4H, 3284 MSR_S1_PMON_EVNT_SEL2

Uncore S-box 1 perfmon event select MSR. Package

Register Address: CD5H, 3285 MSR_S1_PMON_CTR2

Uncore S-box 1 perfmon counter MSR. Package

Register Address: CD6H, 3286 MSR_S1_PMON_EVNT_SEL3

Uncore S-box 1 perfmon event select MSR. Package

Register Address: CD7H, 3287 MSR_S1_PMON_CTR3

Uncore S-box 1 perfmon counter MSR. Package

Register Address: CE0H, 3296 MSR_M1_PMON_BOX_CTRL

Uncore M-box 1 perfmon local box control MSR. Package

Register Address: CE1H, 3297 MSR_M1_PMON_BOX_STATUS

Uncore M-box 1 perfmon local box status MSR. Package

Register Address: CE2H, 3298 MSR_M1_PMON_BOX_OVF_CTRL

Uncore M-box 1 perfmon local box overflow control MSR. Package

Register Address: CE4H, 3300 MSR_M1_PMON_TIMESTAMP

Uncore M-box 1 perfmon time stamp unit select MSR. Package

Register Address: CE5H, 3301 MSR_M1_PMON_DSP

Uncore M-box 1 perfmon DSP unit select MSR. Package

Register Address: CE6H, 3302 MSR_M1_PMON_ISS

Uncore M-box 1 perfmon ISS unit select MSR. Package
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MODEL-SPECIFIC REGISTERS (MSRS)
Register Address: CE7H, 3303 MSR_M1_PMON_MAP

Uncore M-box 1 perfmon MAP unit select MSR. Package

Register Address: CE8H, 3304 MSR_M1_PMON_MSC_THR

Uncore M-box 1 perfmon MIC THR select MSR. Package

Register Address: CE9H, 3305 MSR_M1_PMON_PGT

Uncore M-box 1 perfmon PGT unit select MSR. Package

Register Address: CEAH, 3306 MSR_M1_PMON_PLD

Uncore M-box 1 perfmon PLD unit select MSR. Package

Register Address: CEBH, 3307 MSR_M1_PMON_ZDP

Uncore M-box 1 perfmon ZDP unit select MSR. Package

Register Address: CF0H, 3312 MSR_M1_PMON_EVNT_SEL0

Uncore M-box 1 perfmon event select MSR. Package

Register Address: CF1H, 3313 MSR_M1_PMON_CTR0

Uncore M-box 1 perfmon counter MSR. Package

Register Address: CF2H, 3314 MSR_M1_PMON_EVNT_SEL1

Uncore M-box 1 perfmon event select MSR. Package

Register Address: CF3H, 3315 MSR_M1_PMON_CTR1

Uncore M-box 1 perfmon counter MSR. Package

Register Address: CF4H, 3316 MSR_M1_PMON_EVNT_SEL2

Uncore M-box 1 perfmon event select MSR. Package

Register Address: CF5H, 3317 MSR_M1_PMON_CTR2

Uncore M-box 1 perfmon counter MSR. Package

Register Address: CF6H, 3318 MSR_M1_PMON_EVNT_SEL3

Uncore M-box 1 perfmon event select MSR. Package

Register Address: CF7H, 3319 MSR_M1_PMON_CTR3

Uncore M-box 1 perfmon counter MSR. Package

Register Address: CF8H, 3320 MSR_M1_PMON_EVNT_SEL4

Uncore M-box 1 perfmon event select MSR. Package

Register Address: CF9H, 3321 MSR_M1_PMON_CTR4

Uncore M-box 1 perfmon counter MSR. Package

Register Address: CFAH, 3322 MSR_M1_PMON_EVNT_SEL5

Uncore M-box 1 perfmon event select MSR. Package

Register Address: CFBH, 3323 MSR_M1_PMON_CTR5

Uncore M-box 1 perfmon counter MSR. Package

Register Address: D00H, 3328 MSR_C0_PMON_BOX_CTRL

Uncore C-box 0 perfmon local box control MSR. Package

Register Address: D01H, 3329 MSR_C0_PMON_BOX_STATUS
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MODEL-SPECIFIC REGISTERS (MSRS)
Uncore C-box 0 perfmon local box status MSR. Package

Register Address: D02H, 3330 MSR_C0_PMON_BOX_OVF_CTRL

Uncore C-box 0 perfmon local box overflow control MSR. Package

Register Address: D10H, 3344 MSR_C0_PMON_EVNT_SEL0

Uncore C-box 0 perfmon event select MSR. Package

Register Address: D11H, 3345 MSR_C0_PMON_CTR0

Uncore C-box 0 perfmon counter MSR. Package

Register Address: D12H, 3346 MSR_C0_PMON_EVNT_SEL1

Uncore C-box 0 perfmon event select MSR. Package

Register Address: D13H, 3347 MSR_C0_PMON_CTR1

Uncore C-box 0 perfmon counter MSR. Package

Register Address: D14H, 3348 MSR_C0_PMON_EVNT_SEL2

Uncore C-box 0 perfmon event select MSR. Package

Register Address: D15H, 3349 MSR_C0_PMON_CTR2

Uncore C-box 0 perfmon counter MSR. Package

Register Address: D16H, 3350 MSR_C0_PMON_EVNT_SEL3

Uncore C-box 0 perfmon event select MSR. Package

Register Address: D17H, 3351 MSR_C0_PMON_CTR3

Uncore C-box 0 perfmon counter MSR. Package

Register Address: D18H, 3352 MSR_C0_PMON_EVNT_SEL4

Uncore C-box 0 perfmon event select MSR. Package

Register Address: D19H, 3353 MSR_C0_PMON_CTR4

Uncore C-box 0 perfmon counter MSR. Package

Register Address: D1AH, 3354 MSR_C0_PMON_EVNT_SEL5

Uncore C-box 0 perfmon event select MSR. Package

Register Address: D1BH, 3355 MSR_C0_PMON_CTR5

Uncore C-box 0 perfmon counter MSR. Package

Register Address: D20H, 3360 MSR_C4_PMON_BOX_CTRL

Uncore C-box 4 perfmon local box control MSR. Package

Register Address: D21H, 3361 MSR_C4_PMON_BOX_STATUS

Uncore C-box 4 perfmon local box status MSR. Package

Register Address: D22H, 3362 MSR_C4_PMON_BOX_OVF_CTRL

Uncore C-box 4 perfmon local box overflow control MSR. Package

Register Address: D30H, 3376 MSR_C4_PMON_EVNT_SEL0

Uncore C-box 4 perfmon event select MSR. Package

Register Address: D31H, 3377 MSR_C4_PMON_CTR0

Uncore C-box 4 perfmon counter MSR. Package
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MODEL-SPECIFIC REGISTERS (MSRS)
Register Address: D32H, 3378 MSR_C4_PMON_EVNT_SEL1

Uncore C-box 4 perfmon event select MSR. Package

Register Address: D33H, 3379 MSR_C4_PMON_CTR1

Uncore C-box 4 perfmon counter MSR. Package

Register Address: D34H, 3380 MSR_C4_PMON_EVNT_SEL2

Uncore C-box 4 perfmon event select MSR. Package

Register Address: D35H, 3381 MSR_C4_PMON_CTR2

Uncore C-box 4 perfmon counter MSR. Package

Register Address: D36H, 3382 MSR_C4_PMON_EVNT_SEL3

Uncore C-box 4 perfmon event select MSR. Package

Register Address: D37H, 3383 MSR_C4_PMON_CTR3

Uncore C-box 4 perfmon counter MSR. Package

Register Address: D38H, 3384 MSR_C4_PMON_EVNT_SEL4

Uncore C-box 4 perfmon event select MSR. Package

Register Address: D39H, 3385 MSR_C4_PMON_CTR4

Uncore C-box 4 perfmon counter MSR. Package

Register Address: D3AH, 3386 MSR_C4_PMON_EVNT_SEL5

Uncore C-box 4 perfmon event select MSR. Package

Register Address: D3BH, 3387 MSR_C4_PMON_CTR5

Uncore C-box 4 perfmon counter MSR. Package

Register Address: D40H, 3392 MSR_C2_PMON_BOX_CTRL

Uncore C-box 2 perfmon local box control MSR. Package

Register Address: D41H, 3393 MSR_C2_PMON_BOX_STATUS

Uncore C-box 2 perfmon local box status MSR. Package

Register Address: D42H, 3394 MSR_C2_PMON_BOX_OVF_CTRL

Uncore C-box 2 perfmon local box overflow control MSR. Package

Register Address: D50H, 3408 MSR_C2_PMON_EVNT_SEL0

Uncore C-box 2 perfmon event select MSR. Package

Register Address: D51H, 3409 MSR_C2_PMON_CTR0

Uncore C-box 2 perfmon counter MSR. Package

Register Address: D52H, 3410 MSR_C2_PMON_EVNT_SEL1

Uncore C-box 2 perfmon event select MSR. Package

Register Address: D53H, 3411 MSR_C2_PMON_CTR1

Uncore C-box 2 perfmon counter MSR. Package

Register Address: D54H, 3412 MSR_C2_PMON_EVNT_SEL2

Uncore C-box 2 perfmon event select MSR. Package

Register Address: D55H, 3413 MSR_C2_PMON_CTR2
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MODEL-SPECIFIC REGISTERS (MSRS)
Uncore C-box 2 perfmon counter MSR. Package

Register Address: D56H, 3414 MSR_C2_PMON_EVNT_SEL3

Uncore C-box 2 perfmon event select MSR. Package

Register Address: D57H, 3415 MSR_C2_PMON_CTR3

Uncore C-box 2 perfmon counter MSR. Package

Register Address: D58H, 3416 MSR_C2_PMON_EVNT_SEL4

Uncore C-box 2 perfmon event select MSR. Package

Register Address: D59H, 3417 MSR_C2_PMON_CTR4

Uncore C-box 2 perfmon counter MSR. Package

Register Address: D5AH, 3418 MSR_C2_PMON_EVNT_SEL5

Uncore C-box 2 perfmon event select MSR. Package

Register Address: D5BH, 3419 MSR_C2_PMON_CTR5

Uncore C-box 2 perfmon counter MSR. Package

Register Address: D60H, 3424 MSR_C6_PMON_BOX_CTRL

Uncore C-box 6 perfmon local box control MSR. Package

Register Address: D61H, 3425 MSR_C6_PMON_BOX_STATUS

Uncore C-box 6 perfmon local box status MSR. Package

Register Address: D62H, 3426 MSR_C6_PMON_BOX_OVF_CTRL

Uncore C-box 6 perfmon local box overflow control MSR. Package

Register Address: D70H, 3440 MSR_C6_PMON_EVNT_SEL0

Uncore C-box 6 perfmon event select MSR. Package

Register Address: D71H, 3441 MSR_C6_PMON_CTR0

Uncore C-box 6 perfmon counter MSR. Package

Register Address: D72H, 3442 MSR_C6_PMON_EVNT_SEL1

Uncore C-box 6 perfmon event select MSR. Package

Register Address: D73H, 3443 MSR_C6_PMON_CTR1

Uncore C-box 6 perfmon counter MSR. Package

Register Address: D74H, 3444 MSR_C6_PMON_EVNT_SEL2

Uncore C-box 6 perfmon event select MSR. Package

Register Address: D75H, 3445 MSR_C6_PMON_CTR2

Uncore C-box 6 perfmon counter MSR. Package

Register Address: D76H, 3446 MSR_C6_PMON_EVNT_SEL3

Uncore C-box 6 perfmon event select MSR. Package

Register Address: D77H, 3447 MSR_C6_PMON_CTR3

Uncore C-box 6 perfmon counter MSR. Package

Register Address: D78H, 3448 MSR_C6_PMON_EVNT_SEL4

Uncore C-box 6 perfmon event select MSR. Package
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MODEL-SPECIFIC REGISTERS (MSRS)
Register Address: D79H, 3449 MSR_C6_PMON_CTR4

Uncore C-box 6 perfmon counter MSR. Package

Register Address: D7AH, 3450 MSR_C6_PMON_EVNT_SEL5

Uncore C-box 6 perfmon event select MSR. Package

Register Address: D7BH, 3451 MSR_C6_PMON_CTR5

Uncore C-box 6 perfmon counter MSR. Package

Register Address: D80H, 3456 MSR_C1_PMON_BOX_CTRL

Uncore C-box 1 perfmon local box control MSR. Package

Register Address: D81H, 3457 MSR_C1_PMON_BOX_STATUS

Uncore C-box 1 perfmon local box status MSR. Package

Register Address: D82H, 3458 MSR_C1_PMON_BOX_OVF_CTRL

Uncore C-box 1 perfmon local box overflow control MSR. Package

Register Address: D90H, 3472 MSR_C1_PMON_EVNT_SEL0

Uncore C-box 1 perfmon event select MSR. Package

Register Address: D91H, 3473 MSR_C1_PMON_CTR0

Uncore C-box 1 perfmon counter MSR. Package

Register Address: D92H, 3474 MSR_C1_PMON_EVNT_SEL1

Uncore C-box 1 perfmon event select MSR. Package

Register Address: D93H, 3475 MSR_C1_PMON_CTR1

Uncore C-box 1 perfmon counter MSR. Package

Register Address: D94H, 3476 MSR_C1_PMON_EVNT_SEL2

Uncore C-box 1 perfmon event select MSR. Package

Register Address: D95H, 3477 MSR_C1_PMON_CTR2

Uncore C-box 1 perfmon counter MSR. Package

Register Address: D96H, 3478 MSR_C1_PMON_EVNT_SEL3

Uncore C-box 1 perfmon event select MSR. Package

Register Address: D97H, 3479 MSR_C1_PMON_CTR3

Uncore C-box 1 perfmon counter MSR. Package

Register Address: D98H, 3480 MSR_C1_PMON_EVNT_SEL4

Uncore C-box 1 perfmon event select MSR. Package

Register Address: D99H, 3481 MSR_C1_PMON_CTR4

Uncore C-box 1 perfmon counter MSR. Package

Register Address: D9AH, 3482 MSR_C1_PMON_EVNT_SEL5

Uncore C-box 1 perfmon event select MSR. Package

Register Address: D9BH, 3483 MSR_C1_PMON_CTR5

Uncore C-box 1 perfmon counter MSR. Package

Register Address: DA0H, 3488 MSR_C5_PMON_BOX_CTRL
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MODEL-SPECIFIC REGISTERS (MSRS)
Uncore C-box 5 perfmon local box control MSR. Package

Register Address: DA1H, 3489 MSR_C5_PMON_BOX_STATUS

Uncore C-box 5 perfmon local box status MSR. Package

Register Address: DA2H, 3490 MSR_C5_PMON_BOX_OVF_CTRL

Uncore C-box 5 perfmon local box overflow control MSR. Package

Register Address: DB0H, 3504 MSR_C5_PMON_EVNT_SEL0

Uncore C-box 5 perfmon event select MSR. Package

Register Address: DB1H, 3505 MSR_C5_PMON_CTR0

Uncore C-box 5 perfmon counter MSR. Package

Register Address: DB2H, 3506 MSR_C5_PMON_EVNT_SEL1

Uncore C-box 5 perfmon event select MSR. Package

Register Address: DB3H, 3507 MSR_C5_PMON_CTR1

Uncore C-box 5 perfmon counter MSR. Package

Register Address: DB4H, 3508 MSR_C5_PMON_EVNT_SEL2

Uncore C-box 5 perfmon event select MSR. Package

Register Address: DB5H, 3509 MSR_C5_PMON_CTR2

Uncore C-box 5 perfmon counter MSR. Package

Register Address: DB6H, 3510 MSR_C5_PMON_EVNT_SEL3

Uncore C-box 5 perfmon event select MSR. Package

Register Address: DB7H, 3511 MSR_C5_PMON_CTR3

Uncore C-box 5 perfmon counter MSR. Package

Register Address: DB8H, 3512 MSR_C5_PMON_EVNT_SEL4

Uncore C-box 5 perfmon event select MSR. Package

Register Address: DB9H, 3513 MSR_C5_PMON_CTR4

Uncore C-box 5 perfmon counter MSR. Package

Register Address: DBAH, 3514 MSR_C5_PMON_EVNT_SEL5

Uncore C-box 5 perfmon event select MSR. Package

Register Address: DBBH, 3515 MSR_C5_PMON_CTR5

Uncore C-box 5 perfmon counter MSR. Package

Register Address: DC0H, 3520 MSR_C3_PMON_BOX_CTRL

Uncore C-box 3 perfmon local box control MSR. Package

Register Address: DC1H, 3521 MSR_C3_PMON_BOX_STATUS

Uncore C-box 3 perfmon local box status MSR. Package

Register Address: DC2H, 3522 MSR_C3_PMON_BOX_OVF_CTRL

Uncore C-box 3 perfmon local box overflow control MSR. Package

Register Address: DD0H, 3536 MSR_C3_PMON_EVNT_SEL0

Uncore C-box 3 perfmon event select MSR. Package
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MODEL-SPECIFIC REGISTERS (MSRS)
Register Address: DD1H, 3537 MSR_C3_PMON_CTR0

Uncore C-box 3 perfmon counter MSR. Package

Register Address: DD2H, 3538 MSR_C3_PMON_EVNT_SEL1

Uncore C-box 3 perfmon event select MSR. Package

Register Address: DD3H, 3539 MSR_C3_PMON_CTR1

Uncore C-box 3 perfmon counter MSR. Package

Register Address: DD4H, 3540 MSR_C3_PMON_EVNT_SEL2

Uncore C-box 3 perfmon event select MSR. Package

Register Address: DD5H, 3541 MSR_C3_PMON_CTR2

Uncore C-box 3 perfmon counter MSR. Package

Register Address: DD6H, 3542 MSR_C3_PMON_EVNT_SEL3

Uncore C-box 3 perfmon event select MSR. Package

Register Address: DD7H, 3543 MSR_C3_PMON_CTR3

Uncore C-box 3 perfmon counter MSR. Package

Register Address: DD8H, 3544 MSR_C3_PMON_EVNT_SEL4

Uncore C-box 3 perfmon event select MSR. Package

Register Address: DD9H, 3545 MSR_C3_PMON_CTR4

Uncore C-box 3 perfmon counter MSR. Package

Register Address: DDAH, 3546 MSR_C3_PMON_EVNT_SEL5

Uncore C-box 3 perfmon event select MSR. Package

Register Address: DDBH, 3547 MSR_C3_PMON_CTR5

Uncore C-box 3 perfmon counter MSR. Package

Register Address: DE0H, 3552 MSR_C7_PMON_BOX_CTRL

Uncore C-box 7 perfmon local box control MSR. Package

Register Address: DE1H, 3553 MSR_C7_PMON_BOX_STATUS

Uncore C-box 7 perfmon local box status MSR. Package

Register Address: DE2H, 3554 MSR_C7_PMON_BOX_OVF_CTRL

Uncore C-box 7 perfmon local box overflow control MSR. Package

Register Address: DF0H, 3568 MSR_C7_PMON_EVNT_SEL0

Uncore C-box 7 perfmon event select MSR. Package

Register Address: DF1H, 3569 MSR_C7_PMON_CTR0

Uncore C-box 7 perfmon counter MSR. Package

Register Address: DF2H, 3570 MSR_C7_PMON_EVNT_SEL1

Uncore C-box 7 perfmon event select MSR. Package

Register Address: DF3H, 3571 MSR_C7_PMON_CTR1

Uncore C-box 7 perfmon counter MSR. Package

Register Address: DF4H, 3572 MSR_C7_PMON_EVNT_SEL2

Table 2-17.  Additional MSRs in the Intel® Xeon® Processor 7500 Series (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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Uncore C-box 7 perfmon event select MSR. Package

Register Address: DF5H, 3573 MSR_C7_PMON_CTR2

Uncore C-box 7 perfmon counter MSR. Package

Register Address: DF6H, 3574 MSR_C7_PMON_EVNT_SEL3

Uncore C-box 7 perfmon event select MSR. Package

Register Address: DF7H, 3575 MSR_C7_PMON_CTR3

Uncore C-box 7 perfmon counter MSR. Package

Register Address: DF8H, 3576 MSR_C7_PMON_EVNT_SEL4

Uncore C-box 7 perfmon event select MSR. Package

Register Address: DF9H, 3577 MSR_C7_PMON_CTR4

Uncore C-box 7 perfmon counter MSR. Package

Register Address: DFAH, 3578 MSR_C7_PMON_EVNT_SEL5

Uncore C-box 7 perfmon event select MSR. Package

Register Address: DFBH, 3579 MSR_C7_PMON_CTR5

Uncore C-box 7 perfmon counter MSR. Package

Register Address: E00H, 3584 MSR_R0_PMON_BOX_CTRL

Uncore R-box 0 perfmon local box control MSR. Package

Register Address: E01H, 3585 MSR_R0_PMON_BOX_STATUS

Uncore R-box 0 perfmon local box status MSR. Package

Register Address: E02H, 3586 MSR_R0_PMON_BOX_OVF_CTRL

Uncore R-box 0 perfmon local box overflow control MSR. Package

Register Address: E04H, 3588 MSR_R0_PMON_IPERF0_P0

Uncore R-box 0 perfmon IPERF0 unit Port 0 select MSR. Package

Register Address: E05H, 3589 MSR_R0_PMON_IPERF0_P1

Uncore R-box 0 perfmon IPERF0 unit Port 1 select MSR. Package

Register Address: E06H, 3590 MSR_R0_PMON_IPERF0_P2

Uncore R-box 0 perfmon IPERF0 unit Port 2 select MSR. Package

Register Address: E07H, 3591 MSR_R0_PMON_IPERF0_P3

Uncore R-box 0 perfmon IPERF0 unit Port 3 select MSR. Package

Register Address: E08H, 3592 MSR_R0_PMON_IPERF0_P4

Uncore R-box 0 perfmon IPERF0 unit Port 4 select MSR. Package

Register Address: E09H, 3593 MSR_R0_PMON_IPERF0_P5

Uncore R-box 0 perfmon IPERF0 unit Port 5 select MSR. Package

Register Address: E0AH, 3594 MSR_R0_PMON_IPERF0_P6

Uncore R-box 0 perfmon IPERF0 unit Port 6 select MSR. Package

Register Address: E0BH, 3595 MSR_R0_PMON_IPERF0_P7

Uncore R-box 0 perfmon IPERF0 unit Port 7 select MSR. Package

Table 2-17.  Additional MSRs in the Intel® Xeon® Processor 7500 Series (Contd.)
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Register Address: E0CH, 3596 MSR_R0_PMON_QLX_P0

Uncore R-box 0 perfmon QLX unit Port 0 select MSR. Package

Register Address: E0DH, 3597 MSR_R0_PMON_QLX_P1

Uncore R-box 0 perfmon QLX unit Port 1 select MSR. Package

Register Address: E0EH, 3598 MSR_R0_PMON_QLX_P2

Uncore R-box 0 perfmon QLX unit Port 2 select MSR. Package

Register Address: E0FH, 3599 MSR_R0_PMON_QLX_P3

Uncore R-box 0 perfmon QLX unit Port 3 select MSR. Package

Register Address: E10H, 3600 MSR_R0_PMON_EVNT_SEL0

Uncore R-box 0 perfmon event select MSR. Package

Register Address: E11H, 3601 MSR_R0_PMON_CTR0

Uncore R-box 0 perfmon counter MSR. Package

Register Address: E12H, 3602 MSR_R0_PMON_EVNT_SEL1

Uncore R-box 0 perfmon event select MSR. Package

Register Address: E13H, 3603 MSR_R0_PMON_CTR1

Uncore R-box 0 perfmon counter MSR. Package

Register Address: E14H, 3604 MSR_R0_PMON_EVNT_SEL2

Uncore R-box 0 perfmon event select MSR. Package

Register Address: E15H, 3605 MSR_R0_PMON_CTR2

Uncore R-box 0 perfmon counter MSR. Package

Register Address: E16H, 3606 MSR_R0_PMON_EVNT_SEL3

Uncore R-box 0 perfmon event select MSR. Package

Register Address: E17H, 3607 MSR_R0_PMON_CTR3

Uncore R-box 0 perfmon counter MSR. Package

Register Address: E18H, 3608 MSR_R0_PMON_EVNT_SEL4

Uncore R-box 0 perfmon event select MSR. Package

Register Address: E19H, 3609 MSR_R0_PMON_CTR4

Uncore R-box 0 perfmon counter MSR. Package

Register Address: E1AH, 3610 MSR_R0_PMON_EVNT_SEL5

Uncore R-box 0 perfmon event select MSR. Package

Register Address: E1BH, 3611 MSR_R0_PMON_CTR5

Uncore R-box 0 perfmon counter MSR. Package

Register Address: E1CH, 3612 MSR_R0_PMON_EVNT_SEL6

Uncore R-box 0 perfmon event select MSR. Package

Register Address: E1DH, 3613 MSR_R0_PMON_CTR6

Uncore R-box 0 perfmon counter MSR. Package

Register Address: E1EH, 3614 MSR_R0_PMON_EVNT_SEL7

Table 2-17.  Additional MSRs in the Intel® Xeon® Processor 7500 Series (Contd.)
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Uncore R-box 0 perfmon event select MSR. Package

Register Address: E1FH, 3615 MSR_R0_PMON_CTR7

Uncore R-box 0 perfmon counter MSR. Package

Register Address: E20H, 3616 MSR_R1_PMON_BOX_CTRL

Uncore R-box 1 perfmon local box control MSR. Package

Register Address: E21H, 3617 MSR_R1_PMON_BOX_STATUS

Uncore R-box 1 perfmon local box status MSR. Package

Register Address: E22H, 3618 MSR_R1_PMON_BOX_OVF_CTRL

Uncore R-box 1 perfmon local box overflow control MSR. Package

Register Address: E24H, 3620 MSR_R1_PMON_IPERF1_P8

Uncore R-box 1 perfmon IPERF1 unit Port 8 select MSR. Package

Register Address: E25H, 3621 MSR_R1_PMON_IPERF1_P9

Uncore R-box 1 perfmon IPERF1 unit Port 9 select MSR. Package

Register Address: E26H, 3622 MSR_R1_PMON_IPERF1_P10

Uncore R-box 1 perfmon IPERF1 unit Port 10 select MSR. Package

Register Address: E27H, 3623 MSR_R1_PMON_IPERF1_P11

Uncore R-box 1 perfmon IPERF1 unit Port 11 select MSR. Package

Register Address: E28H, 3624 MSR_R1_PMON_IPERF1_P12

Uncore R-box 1 perfmon IPERF1 unit Port 12 select MSR. Package

Register Address: E29H, 3625 MSR_R1_PMON_IPERF1_P13

Uncore R-box 1 perfmon IPERF1 unit Port 13 select MSR. Package

Register Address: E2AH, 3626 MSR_R1_PMON_IPERF1_P14

Uncore R-box 1 perfmon IPERF1 unit Port 14 select MSR. Package

Register Address: E2BH, 3627 MSR_R1_PMON_IPERF1_P15

Uncore R-box 1 perfmon IPERF1 unit Port 15 select MSR. Package

Register Address: E2CH, 3628 MSR_R1_PMON_QLX_P4

Uncore R-box 1 perfmon QLX unit Port 4 select MSR. Package

Register Address: E2DH, 3629 MSR_R1_PMON_QLX_P5

Uncore R-box 1 perfmon QLX unit Port 5 select MSR. Package

Register Address: E2EH, 3630 MSR_R1_PMON_QLX_P6

Uncore R-box 1 perfmon QLX unit Port 6 select MSR. Package

Register Address: E2FH, 3631 MSR_R1_PMON_QLX_P7

Uncore R-box 1 perfmon QLX unit Port 7 select MSR. Package

Register Address: E30H, 3632 MSR_R1_PMON_EVNT_SEL8

Uncore R-box 1 perfmon event select MSR. Package

Register Address: E31H, 3633 MSR_R1_PMON_CTR8

Uncore R-box 1 perfmon counter MSR. Package

Table 2-17.  Additional MSRs in the Intel® Xeon® Processor 7500 Series (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)
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Register Address: E32H, 3634 MSR_R1_PMON_EVNT_SEL9

Uncore R-box 1 perfmon event select MSR. Package

Register Address: E33H, 3635 MSR_R1_PMON_CTR9

Uncore R-box 1 perfmon counter MSR. Package

Register Address: E34H, 3636 MSR_R1_PMON_EVNT_SEL10

Uncore R-box 1 perfmon event select MSR. Package

Register Address: E35H, 3637 MSR_R1_PMON_CTR10

Uncore R-box 1 perfmon counter MSR. Package

Register Address: E36H, 3638 MSR_R1_PMON_EVNT_SEL11

Uncore R-box 1 perfmon event select MSR. Package

Register Address: E37H, 3639 MSR_R1_PMON_CTR11

Uncore R-box 1 perfmon counter MSR. Package

Register Address: E38H, 3640 MSR_R1_PMON_EVNT_SEL12

Uncore R-box 1 perfmon event select MSR. Package

Register Address: E39H, 3641 MSR_R1_PMON_CTR12

Uncore R-box 1 perfmon counter MSR. Package

Register Address: E3AH, 3642 MSR_R1_PMON_EVNT_SEL13

Uncore R-box 1 perfmon event select MSR. Package

Register Address: E3BH, 3643 MSR_R1_PMON_CTR13

Uncore R-box 1perfmon counter MSR. Package

Register Address: E3CH, 3644 MSR_R1_PMON_EVNT_SEL14

Uncore R-box 1 perfmon event select MSR. Package

Register Address: E3DH, 3645 MSR_R1_PMON_CTR14

Uncore R-box 1 perfmon counter MSR. Package

Register Address: E3EH, 3646 MSR_R1_PMON_EVNT_SEL15

Uncore R-box 1 perfmon event select MSR. Package

Register Address: E3FH, 3647 MSR_R1_PMON_CTR15

Uncore R-box 1 perfmon counter MSR. Package

Register Address: E45H, 3653 MSR_B0_PMON_MATCH

Uncore B-box 0 perfmon local box match MSR. Package

Register Address: E46H, 3654 MSR_B0_PMON_MASK

Uncore B-box 0 perfmon local box mask MSR. Package

Register Address: E49H, 3657 MSR_S0_PMON_MATCH

Uncore S-box 0 perfmon local box match MSR. Package

Register Address: E4AH, 3658 MSR_S0_PMON_MASK

Uncore S-box 0 perfmon local box mask MSR. Package

Register Address: E4DH, 3661 MSR_B1_PMON_MATCH

Table 2-17.  Additional MSRs in the Intel® Xeon® Processor 7500 Series (Contd.)
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2.9 MSRS IN THE INTEL® XEON® PROCESSOR 5600 SERIES BASED ON 
WESTMERE MICROARCHITECTURE

The Intel® Xeon® Processor 5600 Series is based on Westmere microarchitecture and supports the MSR interfaces 
listed in Table 2-15, Table 2-16, plus additional MSRs listed in Table 2-18. These MSRs apply to the Intel Core i7, i5, 
and i3 processor family with a CPUID Signature DisplayFamily_DisplayModel value of 06_25H or 06_2CH; see Table 
2-1.

Uncore B-box 1 perfmon local box match MSR. Package

Register Address: E4EH, 3662 MSR_B1_PMON_MASK

Uncore B-box 1 perfmon local box mask MSR. Package

Register Address: E54H, 3668 MSR_M0_PMON_MM_CONFIG

Uncore M-box 0 perfmon local box address match/mask config MSR. Package

Register Address: E55H, 3669 MSR_M0_PMON_ADDR_MATCH

Uncore M-box 0 perfmon local box address match MSR. Package

Register Address: E56H, 3670 MSR_M0_PMON_ADDR_MASK

Uncore M-box 0 perfmon local box address mask MSR. Package

Register Address: E59H, 3673 MSR_S1_PMON_MATCH

Uncore S-box 1 perfmon local box match MSR. Package

Register Address: E5AH, 3674 MSR_S1_PMON_MASK

Uncore S-box 1 perfmon local box mask MSR. Package

Register Address: E5CH, 3676 MSR_M1_PMON_MM_CONFIG

Uncore M-box 1 perfmon local box address match/mask config MSR. Package

Register Address: E5DH, 3677 MSR_M1_PMON_ADDR_MATCH

Uncore M-box 1 perfmon local box address match MSR. Package

Register Address: E5EH, 3678 MSR_M1_PMON_ADDR_MASK

Uncore M-box 1 perfmon local box address mask MSR. Package

Register Address: 3B5H, 965 MSR_UNCORE_PMC5

See Section 21.3.1.2.2, “Uncore Performance Event Configuration Facility.” Package

Table 2-18.  Additional MSRs Supported by Intel® Processors Based on Westmere Microarchitecture 

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 13CH, 316 MSR_FEATURE_CONFIG

AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle unsuccessful read of this MSR.

Core

Table 2-17.  Additional MSRs in the Intel® Xeon® Processor 7500 Series (Contd.)
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Register Information / Bit Fields Bit Description Scope
Vol. 4 2-215



MODEL-SPECIFIC REGISTERS (MSRS)
2.10 MSRS IN THE INTEL® XEON® PROCESSOR E7 FAMILY BASED ON WESTMERE 
MICROARCHITECTURE

The Intel® Xeon® Processor E7 Family is based on the Westmere microarchitecture and supports the MSR inter-
faces listed in Table 2-15 (except MSR address 1ADH), Table 2-16, plus additional MSRs listed in Table 2-19. These 
processors have a CPUID Signature DisplayFamily_DisplayModel value of 06_2FH.

1:0 AES Configuration (RW-L) 

Upon a successful read of this MSR, the configuration of AES instruction 
set availability is as follows:

11b: AES instructions are not available until next RESET.

Otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If the 
configuration is not 01b, AES instructions can be mis-configured if a 
privileged agent unintentionally writes 11b.

63:2 Reserved.

Register Address: 1A7H, 423 MSR_OFFCORE_RSP_1

Offcore Response Event Select Register (R/W) Thread

Register Address: 1ADH, 429 MSR_TURBO_RATIO_LIMIT

Maximum Ratio Limit of Turbo Mode

R/O if MSR_PLATFORM_INFO.[28] = 0.

R/W if MSR_PLATFORM_INFO.[28] = 1.

Package

7:0 Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

Package

15:8 Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

Package

23:16 Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

Package

31:24 Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

Package

39:32 Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

Package

47:40 Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

Package

63:48 Reserved.

Register Address: 1B0H, 432 IA32_ENERGY_PERF_BIAS

See Table 2-2. Package

Table 2-18.  Additional MSRs Supported by Intel® Processors Based on Westmere Microarchitecture  (Contd.)
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Table 2-19.  Additional MSRs Supported by the Intel® Xeon® Processor E7 Family

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 13CH, 316 MSR_FEATURE_CONFIG

AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle unsuccessful read of this MSR.

Core

1:0 AES Configuration (RW-L) 

Upon a successful read of this MSR, the configuration of AES instruction set 
availability is as follows:

11b: AES instructions are not available until next RESET.

Otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If the 
configuration is not 01b, AES instructions can be mis-configured if a 
privileged agent unintentionally writes 11b.

63:2 Reserved.

Register Address: 1A7H, 423 MSR_OFFCORE_RSP_1

Offcore Response Event Select Register (R/W) Thread

Register Address: 1ADH, 429 MSR_TURBO_RATIO_LIMIT

Reserved. Attempt to read/write will cause #UD. Package

Register Address: 1B0H, 432 IA32_ENERGY_PERF_BIAS

See Table 2-2. Package

Register Address: F40H, 3904 MSR_C8_PMON_BOX_CTRL

Uncore C-box 8 perfmon local box control MSR. Package

Register Address: F41H, 3905 MSR_C8_PMON_BOX_STATUS

Uncore C-box 8 perfmon local box status MSR. Package

Register Address: F42H, 3906 MSR_C8_PMON_BOX_OVF_CTRL

Uncore C-box 8 perfmon local box overflow control MSR. Package

Register Address: F50H, 3920 MSR_C8_PMON_EVNT_SEL0

Uncore C-box 8 perfmon event select MSR. Package

Register Address: F51H, 3921 MSR_C8_PMON_CTR0

Uncore C-box 8 perfmon counter MSR. Package

Register Address: F52H, 3922 MSR_C8_PMON_EVNT_SEL1

Uncore C-box 8 perfmon event select MSR. Package

Register Address: F53H, 3923 MSR_C8_PMON_CTR1

Uncore C-box 8 perfmon counter MSR. Package

Register Address: F54H, 3924 MSR_C8_PMON_EVNT_SEL2

Uncore C-box 8 perfmon event select MSR. Package

Register Address: F55H, 3925 MSR_C8_PMON_CTR2

Uncore C-box 8 perfmon counter MSR. Package

Register Address: F56H, 3926 MSR_C8_PMON_EVNT_SEL3

Uncore C-box 8 perfmon event select MSR. Package
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Register Address: F57H, 3927 MSR_C8_PMON_CTR3

Uncore C-box 8 perfmon counter MSR. Package

Register Address: F58H, 3928 MSR_C8_PMON_EVNT_SEL4

Uncore C-box 8 perfmon event select MSR. Package

Register Address: F59H, 3929 MSR_C8_PMON_CTR4

Uncore C-box 8 perfmon counter MSR. Package

Register Address: F5AH, 3930 MSR_C8_PMON_EVNT_SEL5

Uncore C-box 8 perfmon event select MSR. Package

Register Address: F5BH, 3931 MSR_C8_PMON_CTR5

Uncore C-box 8 perfmon counter MSR. Package

Register Address: FC0H, 4032 MSR_C9_PMON_BOX_CTRL

Uncore C-box 9 perfmon local box control MSR. Package

Register Address: FC1H, 4033 MSR_C9_PMON_BOX_STATUS

Uncore C-box 9 perfmon local box status MSR. Package

Register Address: FC2H, 4034 MSR_C9_PMON_BOX_OVF_CTRL

Uncore C-box 9 perfmon local box overflow control MSR. Package

Register Address: FD0H, 4048 MSR_C9_PMON_EVNT_SEL0

Uncore C-box 9 perfmon event select MSR. Package

Register Address: FD1H, 4049 MSR_C9_PMON_CTR0

Uncore C-box 9 perfmon counter MSR. Package

Register Address: FD2H, 4050 MSR_C9_PMON_EVNT_SEL1

Uncore C-box 9 perfmon event select MSR. Package

Register Address: FD3H, 4051 MSR_C9_PMON_CTR1

Uncore C-box 9 perfmon counter MSR. Package

Register Address: FD4H, 4052 MSR_C9_PMON_EVNT_SEL2

Uncore C-box 9 perfmon event select MSR. Package

Register Address: FD5H, 4053 MSR_C9_PMON_CTR2

Uncore C-box 9 perfmon counter MSR. Package

Register Address: FD6H, 4054 MSR_C9_PMON_EVNT_SEL3

Uncore C-box 9 perfmon event select MSR. Package

Register Address: FD7H, 4055 MSR_C9_PMON_CTR3

Uncore C-box 9 perfmon counter MSR. Package

Register Address: FD8H, 4056 MSR_C9_PMON_EVNT_SEL4

Uncore C-box 9 perfmon event select MSR. Package

Register Address: FD9H, 4057 MSR_C9_PMON_CTR4

Uncore C-box 9 perfmon counter MSR. Package

Register Address: FDAH, 4058 MSR_C9_PMON_EVNT_SEL5

Table 2-19.  Additional MSRs Supported by the Intel® Xeon® Processor E7 Family (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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2.11 MSRS IN THE INTEL® PROCESSOR FAMILY BASED ON SANDY BRIDGE 
MICROARCHITECTURE

Table 2-20 lists model-specific registers (MSRs) that are common to the Intel® processor family based on Sandy 
Bridge microarchitecture. These processors have a CPUID Signature DisplayFamily_DisplayModel value of 06_2AH 
or 06_2DH; see Table 2-1. Additional MSRs specific to processors with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_2AH are listed in Table 2-21.

Uncore C-box 9 perfmon event select MSR. Package

Register Address: FDBH, 4059 MSR_C9_PMON_CTR5

Uncore C-box 9 perfmon counter MSR. Package

Table 2-20.  MSRs Supported by Intel® Processors Based on Sandy Bridge Microarchitecture

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 0H, 0 IA32_P5_MC_ADDR

See Section 2.23, “MSRs in Pentium Processors.” Thread

Register Address: 1H, 1 IA32_P5_MC_TYPE

See Section 2.23, “MSRs in Pentium Processors.” Thread

Register Address: 6H, 6 IA32_MONITOR_FILTER_SIZE

See Section 10.10.5, “Monitor/Mwait Address Range Determination,” and Table 2-2. Thread

Register Address: 10H, 16 IA32_TIME_STAMP_COUNTER

See Section 19.17, “Time-Stamp Counter,” and see Table 2-2. Thread

Register Address: 17H, 23 IA32_PLATFORM_ID

Platform ID (R) 
See Table 2-2.

Package

Register Address: 1BH, 27 IA32_APIC_BASE

See Section 12.4.4, “Local APIC Status and Location,” and Table 2-2. Thread

Register Address: 34H, 52 MSR_SMI_COUNT

SMI Counter (R/O) Thread

31:0 SMI Count (R/O) 

Count SMIs.

63:32 Reserved.

Register Address: 3AH, 58 IA32_FEATURE_CONTROL

Control Features in Intel 64 Processor (R/W)

See Table 2-2.

Thread

0 Lock (R/WL) 

1 Enable VMX Inside SMX Operation (R/WL) 

2 Enable VMX Outside SMX Operation (R/WL) 

Table 2-19.  Additional MSRs Supported by the Intel® Xeon® Processor E7 Family (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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14:8 SENTER Local Functions Enables (R/WL) 

15 SENTER Global Functions Enable (R/WL) 

Register Address: 79H, 121 IA32_BIOS_UPDT_TRIG

BIOS Update Trigger Register (W) 

See Table 2-2.

Core

Register Address: 8BH, 139 IA32_BIOS_SIGN_ID

BIOS Update Signature ID (R/W)

See Table 2-2.

Thread

Register Address: C1H, 193 IA32_PMC0

Performance Counter Register 

See Table 2-2.

Thread

Register Address: C2H, 194 IA32_PMC1

Performance Counter Register 

See Table 2-2.

Thread

Register Address: C3H, 195 IA32_PMC2

Performance Counter Register 

See Table 2-2.

Thread

Register Address: C4H, 196 IA32_PMC3

Performance Counter Register 

See Table 2-2.

Thread

Register Address: C5H, 197 IA32_PMC4

Performance Counter Register (if core not shared by threads) Core

Register Address: C6H, 198 IA32_PMC5

Performance Counter Register (if core not shared by threads) Core

Register Address: C7H, 199 IA32_PMC6

Performance Counter Register (if core not shared by threads) Core

Register Address: C8H, 200 IA32_PMC7

Performance Counter Register (if core not shared by threads) Core

Register Address: CEH, 206 MSR_PLATFORM_INFO

Platform Information

Contains power management and other model specific features enumeration. See http://biosbits.org.

Package

7:0 Reserved.

15:8 Maximum Non-Turbo Ratio (R/O) 

This is the ratio of the frequency that invariant TSC runs at. Frequency = 
ratio * 100 MHz.

Package

27:16 Reserved.

28 Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limit for Turbo mode is 
enabled. When set to 0, indicates Programmable Ratio Limit for Turbo 
mode is disabled.

Package

Table 2-20.  MSRs Supported by Intel® Processors Based on Sandy Bridge Microarchitecture (Contd.)
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Register Information / Bit Fields Bit Description Scope
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29 Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limit for Turbo mode is programmable. 
When set to 0, indicates TDP Limit for Turbo mode is not programmable.

Package

39:30 Reserved.

47:40 Maximum Efficiency Ratio (R/O) 

This is the minimum ratio (maximum efficiency) that the processor can 
operate, in units of 100MHz.

Package

63:48 Reserved.

Register Address: E2H, 226 MSR_PKG_CST_CONFIG_CONTROL

C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

See http://biosbits.org.

Core

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name (consuming the 
least power) for the package. The default is set as factory-configured 
package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register specified by 
MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions.

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, locks bits 15:0 of this register until next reset.

24:16 Reserved.

25 C3 State Auto Demotion Enable (R/W) 

When set, the processor will conditionally demote C6/C7 requests to C3 
based on uncore auto-demote information.

26 C1 State Auto Demotion Enable (R/W) 

When set, the processor will conditionally demote C3/C6/C7 requests to C1 
based on uncore auto-demote information.

27 Enable C3 Undemotion (R/W) 

When set, enables undemotion from demoted C3.
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28 Enable C1 Undemotion (R/W) 

When set, enables undemotion from demoted C1.

63:29 Reserved.

Register Address: E4H, 228 MSR_PMG_IO_CAPTURE_BASE

Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.

Core

15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO redirection. If IO 
MWAIT Redirection is enabled, reads to this address will be consumed by 
the power management logic and decoded to MWAIT instructions. When IO 
port address redirection is enabled, this is the IO port address reported to 
the OS/software.

18:16 C-State Range (R/W) 

Specifies the encoding value of the maximum C-State code name to be 
included when IO read to MWAIT redirection is enabled by 
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include.

001b - C6 is the max C-State to include.

010b - C7 is the max C-State to include.

63:19 Reserved.

Register Address: E7H, 231 IA32_MPERF

Maximum Performance Frequency Clock Count (R/W) 

See Table 2-2.

Thread

Register Address: E8H, 232 IA32_APERF

Actual Performance Frequency Clock Count (R/W)

See Table 2-2.

Thread

Register Address: FEH, 254 IA32_MTRRCAP

See Table 2-2. Thread

Register Address: 13CH, 316 MSR_FEATURE_CONFIG

AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle unsuccessful read of this MSR.

Core

1:0 AES Configuration (RW-L) 

Upon a successful read of this MSR, the configuration of AES instruction 
set availability is as follows:

11b: AES instructions are not available until next RESET.

Otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If the 
configuration is not 01b, AES instructions can be mis-configured if a 
privileged agent unintentionally writes 11b.

63:2 Reserved.

Register Address: 174H, 372 IA32_SYSENTER_CS

See Table 2-2. Thread
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Register Address: 175H, 373 IA32_SYSENTER_ESP

See Table 2-2. Thread

Register Address: 176H, 374 IA32_SYSENTER_EIP

See Table 2-2. Thread

Register Address: 179H, 377 IA32_MCG_CAP

See Table 2-2. Thread

Register Address: 17AH, 378 IA32_MCG_STATUS

Global Machine Check Status Thread

0 RIPV

When set, bit indicates that the instruction addressed by the instruction 
pointer pushed on the stack (when the machine check was generated) can 
be used to restart the program. If cleared, the program cannot be reliably 
restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the instruction 
pointer pushed on the stack (when the machine check was generated) is 
directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If a 
second machine check is detected while this bit is still set, the processor 
enters a shutdown state. Software should write this bit to 0 after 
processing a machine check exception.

63:3 Reserved.

Register Address: 186H, 390 IA32_PERFEVTSEL0

See Table 2-2. Thread

Register Address: 187H, 391 IA32_PERFEVTSEL1

See Table 2-2. Thread

Register Address: 188H, 392 IA32_PERFEVTSEL2

See Table 2-2. Thread

Register Address: 189H, 393 IA32_PERFEVTSEL3

See Table 2-2. Thread

Register Address: 18AH, 394 IA32_PERFEVTSEL4

See Table 2-2. If CPUID.0AH:EAX[15:8] > 4. Core

Register Address: 18BH, 395 IA32_PERFEVTSEL5

See Table 2-2. If CPUID.0AH:EAX[15:8] > 5. Core

Register Address: 18CH, 396 IA32_PERFEVTSEL6

See Table 2-2. If CPUID.0AH:EAX[15:8] > 6. Core

Register Address: 18DH, 397 IA32_PERFEVTSEL7

See Table 2-2. If CPUID.0AH:EAX[15:8] > 7. Core

Register Address: 198H, 408 IA32_PERF_STATUS
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See Table 2-2. Package

15:0 Current Performance State Value

63:16 Reserved.

Register Address: 198H, 408 MSR_PERF_STATUS

Performance Status Package

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

Register Address: 199H, 409 IA32_PERF_CTL

See Table 2-2. Thread

Register Address: 19AH, 410 IA32_CLOCK_MODULATION

Clock Modulation (R/W) 

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named IA32_THERM_CONTROL MSR.

Thread

3:0 On demand Clock Modulation Duty Cycle (R/W)

In 6.25% increment.

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

Register Address: 19BH, 411 IA32_THERM_INTERRUPT

Thermal Interrupt Control (R/W) 

See Table 2-2.

Core

Register Address: 19CH, 412 IA32_THERM_STATUS

Thermal Monitor Status (R/W) 

See Table 2-2.

Core

0 Thermal Status (R/O) 

See Table 2-2.

1 Thermal Status Log (R/WC0) 

See Table 2-2.

2 PROTCHOT # or FORCEPR# Status (R/O) 

See Table 2-2.

3 PROTCHOT # or FORCEPR# Log (R/WC0) 

See Table 2-2.

4 Critical Temperature Status (R/O) 

See Table 2-2.

5 Critical Temperature Status Log (R/WC0) 

See Table 2-2.

6 Thermal Threshold #1 Status (R/O) 

See Table 2-2.

Table 2-20.  MSRs Supported by Intel® Processors Based on Sandy Bridge Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
2-224 Vol. 4



MODEL-SPECIFIC REGISTERS (MSRS)
7 Thermal Threshold #1 Log (R/WC0) 

See Table 2-2.

8 Thermal Threshold #2 Status (R/O) 

See Table 2-2.

9 Thermal Threshold #2 Log (R/WC0) 

See Table 2-2.

10 Power Limitation Status (R/O) 

See Table 2-2.

11 Power Limitation Log (R/WC0) 

See Table 2-2.

15:12 Reserved.

22:16 Digital Readout (R/O) 

See Table 2-2.

26:23 Reserved.

30:27 Resolution in Degrees Celsius (R/O) 

See Table 2-2.

31 Reading Valid (R/O) 

See Table 2-2.

63:32 Reserved.

Register Address: 1A0H, 416 IA32_MISC_ENABLE

Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable 

See Table 2-2.

Thread

6:1 Reserved.

7 Performance Monitoring Available (R) 

See Table 2-2.

Thread

10:8 Reserved

11 Branch Trace Storage Unavailable (R/O) 

See Table 2-2.

Thread

12 Processor Event Based Sampling Unavailable (R/O) 

See Table 2-2.

Thread

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 2-2.

Package

18 ENABLE MONITOR FSM (R/W) 

See Table 2-2.

Thread

21:19 Reserved.
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22 Limit CPUID Maxval (R/W) 

See Table 2-2.

Thread

23 xTPR Message Disable (R/W) 

See Table 2-2.

Thread

33:24 Reserved.

34 XD Bit Disable (R/W) 

See Table 2-3.

Thread

37:35 Reserved.

38 Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost Technology, 
the turbo mode feature is disabled and the IDA_Enable feature flag will be 
clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: EAX[1] 
reports the processor’s support of turbo mode is enabled.

Note: The power-on default value is used by BIOS to detect hardware 
support of turbo mode. If the power-on default value is 1, turbo mode is 
available in the processor. If the power-on default value is 0, turbo mode is 
not available.

Package

63:39 Reserved.

Register Address: 1A2H, 418 MSR_TEMPERATURE_TARGET

Temperature Target Unique

15:0 Reserved.

23:16 Temperature Target (R) 

The minimum temperature at which PROCHOT# will be asserted. The value 
is degrees C.

63:24 Reserved.

Register Address: 1A4H, 420 MSR_MISC_FEATURE_CONTROL

Miscellaneous Feature Control (R/W) 

0 L2 Hardware Prefetcher Disable (R/W) 

If 1, disables the L2 hardware prefetcher, which fetches additional lines of 
code or data into the L2 cache.

Core

1 L2 Adjacent Cache Line Prefetcher Disable (R/W) 

If 1, disables the adjacent cache line prefetcher, which fetches the cache 
line that comprises a cache line pair (128 bytes).

Core

2 DCU Hardware Prefetcher Disable (R/W) 

If 1, disables the L1 data cache prefetcher, which fetches the next cache 
line into L1 data cache.

Core

3 DCU IP Prefetcher Disable (R/W) 

If 1, disables the L1 data cache IP prefetcher, which uses sequential load 
history (based on instruction pointer of previous loads) to determine 
whether to prefetch additional lines.

Core

63:4 Reserved.

Register Address: 1A6H, 422 MSR_OFFCORE_RSP_0
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Offcore Response Event Select Register (R/W) Thread

Register Address: 1A7H, 423 MSR_OFFCORE_RSP_1

Offcore Response Event Select Register (R/W) Thread

Register Address: 1AAH, 426 MSR_MISC_PWR_MGMT

Miscellaneous Power Management Control

Various model specific features enumeration. See http://biosbits.org.

Register Address: 1B0H, 432 IA32_ENERGY_PERF_BIAS

See Table 2-2. Package

Register Address: 1B1H, 433 IA32_PACKAGE_THERM_STATUS

See Table 2-2. Package

Register Address: 1B2H, 434 IA32_PACKAGE_THERM_INTERRUPT

See Table 2-2. Package

Register Address: 1C8H, 456 MSR_LBR_SELECT

Last Branch Record Filtering Select Register (R/W) 

See Section 19.9.2, “Filtering of Last Branch Records.”

Thread

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.

Register Address: 1C9H, 457 MSR_LASTBRANCH_TOS

Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

Thread

Register Address: 1D9H, 473 IA32_DEBUGCTL

Debug Control (R/W) 

See Table 2-2.

Thread

0 LBR: Last Branch Record

1 BTF

5:2 Reserved.

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT
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9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

63:15 Reserved.

Register Address: 1DDH, 477 MSR_LER_FROM_LIP

Last Exception Record From Linear IP (R/W) 

Contains a pointer to the last branch instruction that the processor executed prior to the last exception that was 
generated or the last interrupt that was handled.

Thread

Register Address: 1DEH, 478 MSR_LER_TO_LIP

Last Exception Record To Linear IP (R/W) 

This area contains a pointer to the target of the last branch instruction that the processor executed prior to the last 
exception that was generated or the last interrupt that was handled. 

Thread

Register Address: 1F2H, 498 IA32_SMRR_PHYSBASE

See Table 2-2. Core

Register Address: 1F3H, 499 IA32_SMRR_PHYSMASK

See Table 2-2. Core

Register Address: 1FCH, 508 MSR_POWER_CTL

See http://biosbits.org. Core

Register Address: 200H, 512 IA32_MTRR_PHYSBASE0

See Table 2-2. Thread

Register Address: 201H, 513 IA32_MTRR_PHYSMASK0

See Table 2-2. Thread

Register Address: 202H, 514 IA32_MTRR_PHYSBASE1

See Table 2-2. Thread

Register Address: 203H, 515 IA32_MTRR_PHYSMASK1

See Table 2-2. Thread

Register Address: 204H, 516 IA32_MTRR_PHYSBASE2

See Table 2-2. Thread

Register Address: 205H, 517 IA32_MTRR_PHYSMASK2

See Table 2-2. Thread

Register Address: 206H, 518 IA32_MTRR_PHYSBASE3

See Table 2-2. Thread

Register Address: 207H, 519 IA32_MTRR_PHYSMASK3

See Table 2-2. Thread

Register Address: 208H, 520 IA32_MTRR_PHYSBASE4
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See Table 2-2. Thread

Register Address: 209H, 521 IA32_MTRR_PHYSMASK4

See Table 2-2. Thread

Register Address: 20AH, 522 IA32_MTRR_PHYSBASE5

See Table 2-2. Thread

Register Address: 20BH, 523 IA32_MTRR_PHYSMASK5

See Table 2-2. Thread

Register Address: 20CH, 524 IA32_MTRR_PHYSBASE6

See Table 2-2. Thread

Register Address: 20DH, 525 IA32_MTRR_PHYSMASK6

See Table 2-2. Thread

Register Address: 20EH, 526 IA32_MTRR_PHYSBASE7

See Table 2-2. Thread

Register Address: 20FH, 527 IA32_MTRR_PHYSMASK7

See Table 2-2. Thread

Register Address: 210H, 528 IA32_MTRR_PHYSBASE8

See Table 2-2. Thread

Register Address: 211H, 529 IA32_MTRR_PHYSMASK8

See Table 2-2. Thread

Register Address: 212H, 530 IA32_MTRR_PHYSBASE9

See Table 2-2. Thread

Register Address: 213H, 531 IA32_MTRR_PHYSMASK9

See Table 2-2. Thread

Register Address: 250H, 592 IA32_MTRR_FIX64K_00000

See Table 2-2. Thread

Register Address: 258H, 600 IA32_MTRR_FIX16K_80000

See Table 2-2. Thread

Register Address: 259H, 601 IA32_MTRR_FIX16K_A0000

See Table 2-2. Thread

Register Address: 268H, 616 IA32_MTRR_FIX4K_C0000

See Table 2-2. Thread

Register Address: 269H, 617 IA32_MTRR_FIX4K_C8000

See Table 2-2. Thread

Register Address: 26AH, 618 IA32_MTRR_FIX4K_D0000

See Table 2-2. Thread

Register Address: 26BH, 619 IA32_MTRR_FIX4K_D8000

See Table 2-2. Thread
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Register Address: 26CH, 620 IA32_MTRR_FIX4K_E0000

See Table 2-2. Thread

Register Address: 26DH, 621 IA32_MTRR_FIX4K_E8000

See Table 2-2. Thread

Register Address: 26EH, 622 IA32_MTRR_FIX4K_F0000

See Table 2-2. Thread

Register Address: 26FH, 623 IA32_MTRR_FIX4K_F8000

See Table 2-2. Thread

Register Address: 277H, 631 IA32_PAT

See Table 2-2. Thread

Register Address: 280H, 640 IA32_MC0_CTL2

See Table 2-2. Core

Register Address: 281H, 641 IA32_MC1_CTL2

See Table 2-2. Core

Register Address: 282H, 642 IA32_MC2_CTL2

See Table 2-2. Core

Register Address: 283H, 643 IA32_MC3_CTL2

See Table 2-2. Core

Register Address: 284H, 644 IA32_MC4_CTL2

Always 0 (CMCI not supported). Package

Register Address: 2FFH, 767 IA32_MTRR_DEF_TYPE

Default Memory Types (R/W) 

See Table 2-2.

Thread

Register Address: 309H, 777 IA32_FIXED_CTR0

Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

Thread

Register Address: 30AH, 778 IA32_FIXED_CTR1

Fixed-Function Performance Counter Register 1 (R/W) 

See Table 2-2.

Thread

Register Address: 30BH, 779 IA32_FIXED_CTR2

Fixed-Function Performance Counter Register 2 (R/W) 

See Table 2-2.

Thread

Register Address: 345H, 837 IA32_PERF_CAPABILITIES

See Table 2-2 and Section 19.4.1, “IA32_DEBUGCTL MSR.” Thread

5:0 LBR Format

See Table 2-2.

6 PEBS Record Format. 
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7 PEBSSaveArchRegs

See Table 2-2.

11:8 PEBS_REC_FORMAT

See Table 2-2.

12 SMM_FREEZE

See Table 2-2.

63:13 Reserved.

Register Address: 38DH, 909 IA32_FIXED_CTR_CTRL

Fixed-Function-Counter Control Register (R/W) 

See Table 2-2.

Thread

Register Address: 38EH, 910 IA32_PERF_GLOBAL_STATUS

See Table 2-2 and Section 21.6.2.2, “Global Counter Control Facilities.” 

0 Ovf_PMC0 Thread

1 Ovf_PMC1 Thread

2 Ovf_PMC2 Thread

3 Ovf_PMC3 Thread

4 Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4) Core

5 Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5) Core

6 Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6) Core

7 Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7) Core

31:8 Reserved.

32 Ovf_FixedCtr0 Thread

33 Ovf_FixedCtr1 Thread

34 Ovf_FixedCtr2 Thread

60:35 Reserved.

61 Ovf_Uncore Thread

62 Ovf_BufDSSAVE Thread

63 CondChgd Thread

Register Address: 38FH, 911 IA32_PERF_GLOBAL_CTRL

See Table 2-2 and Section 21.6.2.2, “Global Counter Control Facilities.” Thread

0 Set 1 to enable PMC0 to count. Thread

1 Set 1 to enable PMC1 to count. Thread

2 Set 1 to enable PMC2 to count. Thread

3 Set 1 to enable PMC3 to count. Thread

4 Set 1 to enable PMC4 to count (if CPUID.0AH:EAX[15:8] > 4). Core

5 Set 1 to enable PMC5 to count (if CPUID.0AH:EAX[15:8] > 5). Core

6 Set 1 to enable PMC6 to count (if CPUID.0AH:EAX[15:8] > 6). Core

7 Set 1 to enable PMC7 to count (if CPUID.0AH:EAX[15:8] > 7). Core
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31:8 Reserved.

32 Set 1 to enable FixedCtr0 to count. Thread

33 Set 1 to enable FixedCtr1 to count. Thread

34 Set 1 to enable FixedCtr2 to count. Thread

63:35 Reserved.

Register Address: 390H, 912 IA32_PERF_GLOBAL_OVF_CTRL

See Table 2-2 and Section 21.6.2.2, “Global Counter Control Facilities.”

0 Set 1 to clear Ovf_PMC0. Thread

1 Set 1 to clear Ovf_PMC1. Thread

2 Set 1 to clear Ovf_PMC2. Thread

3 Set 1 to clear Ovf_PMC3. Thread

4 Set 1 to clear Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4). Core

5 Set 1 to clear Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5). Core

6 Set 1 to clear Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6). Core

7 Set 1 to clear Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7). Core

31:8 Reserved.

32 Set 1 to clear Ovf_FixedCtr0. Thread

33 Set 1 to clear Ovf_FixedCtr1. Thread

34 Set 1 to clear Ovf_FixedCtr2. Thread

60:35 Reserved.

61 Set 1 to clear Ovf_Uncore. Thread

62 Set 1 to clear Ovf_BufDSSAVE. Thread

63 Set 1 to clear CondChgd. Thread

Register Address: 3F1H, 1009 IA32_PEBS_ENABLE (MSR_PEBS_ENABLE)

See Section 21.3.1.1.1, “Processor Event Based Sampling (PEBS).” Thread

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

62:36 Reserved.

63 Enable Precise Store (R/W)

Register Address: 3F6H, 1014 MSR_PEBS_LD_LAT
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See Section 21.3.1.1.2, “Load Latency Performance Monitoring Facility.” Thread

15:0 Minimum threshold latency value of tagged load operation that will be 
counted. (R/W)

63:36 Reserved.

Register Address: 3F8H, 1016 MSR_PKG_C3_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

63:0 Package C3 Residency Counter (R/O)

Value since last reset that this package is in processor-specific C3 states. 
Count at the same frequency as the TSC.

Register Address: 3F9H, 1017 MSR_PKG_C6_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6 states. 
Count at the same frequency as the TSC.

Register Address: 3FAH, 1018 MSR_PKG_C7_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

63:0 Package C7 Residency Counter (R/O)

Value since last reset that this package is in processor-specific C7 states. 
Count at the same frequency as the TSC.

Register Address: 3FCH, 1020 MSR_CORE_C3_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Core

63:0 CORE C3 Residency Counter (R/O)

Value since last reset that this core is in processor-specific C3 states. Count 
at the same frequency as the TSC.

Register Address: 3FDH, 1021 MSR_CORE_C6_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Core

63:0 CORE C6 Residency Counter (R/O)

Value since last reset that this core is in processor-specific C6 states. Count 
at the same frequency as the TSC.

Register Address: 3FEH, 1022 MSR_CORE_C7_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Core

63:0 CORE C7 Residency Counter (R/O)

Value since last reset that this core is in processor-specific C7 states. Count 
at the same frequency as the TSC.

Register Address: 400H, 1024 IA32_MC0_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Core
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Register Address: 401H, 1025 IA32_MC0_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Core

Register Address: 402H, 1026 IA32_MC0_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Core

Register Address: 403H, 1027 IA32_MC0_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Core

Register Address: 404H, 1028 IA32_MC1_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Core

Register Address: 405H, 1029 IA32_MC1_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Core

Register Address: 406H, 1030 IA32_MC1_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Core

Register Address: 407H, 1031 IA32_MC1_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Core

Register Address: 408H, 1032 IA32_MC2_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Core

Register Address: 409H, 1033 IA32_MC2_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Core

Register Address: 40AH, 1034 IA32_MC2_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Core

Register Address: 40BH, 1035 IA32_MC2_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Core

Register Address: 40CH, 1036 IA32_MC3_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Core

Register Address: 40DH, 1037 IA32_MC3_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Core

Register Address: 40EH, 1038 IA32_MC3_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Core

Register Address: 40FH, 1039 IA32_MC3_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Core

Register Address: 410H, 1040 IA32_MC4_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Core

0 PCU Hardware Error (R/W) 

When set, enables signaling of PCU hardware detected errors. 

1 PCU Controller Error (R/W) 

When set, enables signaling of PCU controller detected errors.

2 PCU Firmware Error (R/W) 

When set, enables signaling of PCU firmware detected errors.
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63:2 Reserved.

Register Address: 411H, 1041 IA32_MC4_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Core

Register Address: 480H, 1152 IA32_VMX_BASIC

Reporting Register of Basic VMX Capabilities (R/O) 

See Table 2-2 and Appendix A.1, “Basic VMX Information.”

Thread

Register Address: 481H, 1153 IA32_VMX_PINBASED_CTLS

Capability Reporting Register of Pin-Based VM-Execution Controls (R/O) 

See Table 2-2 and Appendix A.3, “VM-Execution Controls.”

Thread

Register Address: 482H, 1154 IA32_VMX_PROCBASED_CTLS

Capability Reporting Register of Primary Processor-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

Thread

Register Address: 483H, 1155 IA32_VMX_EXIT_CTLS

Capability Reporting Register of VM-Exit Controls (R/O) 

See Table 2-2 and Appendix A.4, “VM-Exit Controls.”

Thread

Register Address: 484H, 1156 IA32_VMX_ENTRY_CTLS

Capability Reporting Register of VM-Entry Controls (R/O) 

See Table 2-2 and Appendix A.5, “VM-Entry Controls.”

Thread

Register Address: 485H, 1157 IA32_VMX_MISC

Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 2-2 and Appendix A.6, “Miscellaneous Data.”

Thread

Register Address: 486H, 1158 IA32_VMX_CR0_FIXED0

Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 2-2 and Appendix A.7, “VMX-Fixed Bits in CR0.”

Thread

Register Address: 487H, 1159 IA32_VMX_CR0_FIXED1

Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 2-2 and Appendix A.7, “VMX-Fixed Bits in CR0.”

Thread

Register Address: 488H, 1160 IA32_VMX_CR4_FIXED0

Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 2-2 and Appendix A.8, “VMX-Fixed Bits in CR4.”

Thread

Register Address: 489H, 1161 IA32_VMX_CR4_FIXED1

Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 2-2 and Appendix A.8, “VMX-Fixed Bits in CR4.”

Thread

Register Address: 48AH, 1162 IA32_VMX_VMCS_ENUM

Capability Reporting Register of VMCS Field Enumeration (R/O) 

See Table 2-2 and Appendix A.9, “VMCS Enumeration.”

Thread

Register Address: 48BH, 1163 IA32_VMX_PROCBASED_CTLS2

Capability Reporting Register of Secondary Processor-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

Thread
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Register Address: 48CH, 1164 IA32_VMX_EPT_VPID_ENUM

Capability Reporting Register of EPT and VPID (R/O) 

See Table 2-2

Thread

Register Address: 48DH, 1165 IA32_VMX_TRUE_PINBASED_CTLS

Capability Reporting Register of Pin-Based VM-Execution Flex Controls (R/O)

See Table 2-2

Thread

Register Address: 48EH, 1166 IA32_VMX_TRUE_PROCBASED_CTLS

Capability Reporting Register of Primary Processor-Based VM-Execution Flex Controls (R/O)

See Table 2-2

Thread

Register Address: 48FH, 1167 IA32_VMX_TRUE_EXIT_CTLS

Capability Reporting Register of VM-Exit Flex Controls (R/O)

See Table 2-2

Thread

Register Address: 490H, 1168 IA32_VMX_TRUE_ENTRY_CTLS

Capability Reporting Register of VM-Entry Flex Controls (R/O)

See Table 2-2

Thread

Register Address: 4C1H, 1217 IA32_A_PMC0

See Table 2-2. Thread

Register Address: 4C2H, 1218 IA32_A_PMC1

See Table 2-2. Thread

Register Address: 4C3H, 1219 IA32_A_PMC2

See Table 2-2. Thread

Register Address: 4C4H, 1220 IA32_A_PMC3

See Table 2-2. Thread

Register Address: 4C5H, 1221 IA32_A_PMC4

See Table 2-2. Core

Register Address: 4C6H, 1222 IA32_A_PMC5

See Table 2-2. Core

Register Address: 4C7H, 1223 IA32_A_PMC6

See Table 2-2. Core

Register Address: 4C8H, 1224 IA32_A_PMC7

See Table 2-2. Core

Register Address: 600H, 1536 IA32_DS_AREA

DS Save Area (R/W)

See Table 2-2 and Section 21.6.3.4, “Debug Store (DS) Mechanism.”

Thread

Register Address: 606H, 1542 MSR_RAPL_POWER_UNIT

Unit Multipliers used in RAPL Interfaces (R/O) 

See Section 16.10.1, “RAPL Interfaces.”

Package

Register Address: 60AH, 1546 MSR_PKGC3_IRTL
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Package C3 Interrupt Response Limit (R/W) 

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

9:0 Interrupt Response Time Limit (R/W) 

Specifies the limit that should be used to decide if the package should be 
put into a package C3 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response time 
limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used by the 
processor for package C-sate management. 

63:16 Reserved.

Register Address: 60BH, 1547 MSR_PKGC6_IRTL

Package C6 Interrupt Response Limit (R/W) 

This MSR defines the budget allocated for the package to exit from a C6 to a C0 state, where an interrupt request can 
be delivered to the core and serviced. Additional core-exit latency may be applicable depending on the actual C-state 
the core is in. 

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-states.

Package

9:0 Interrupt Response Time Limit (R/W) 

Specifies the limit that should be used to decide if the package should be 
put into a package C6 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response time 
limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used by the 
processor for package C-sate management. 
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63:16 Reserved.

Register Address: 60DH, 1549 MSR_PKG_C2_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

63:0 Package C2 Residency Counter (R/O)

Value since last reset that this package is in processor-specific C2 states. 
Count at the same frequency as the TSC.

Register Address: 610H, 1552 MSR_PKG_POWER_LIMIT

PKG RAPL Power Limit Control (R/W) 

See Section 16.10.3, “Package RAPL Domain.”

Package

Register Address: 611H, 1553 MSR_PKG_ENERGY_STATUS

PKG Energy Status (R/O) 

See Section 16.10.3, “Package RAPL Domain.”

Package

Register Address: 614H, 1556 MSR_PKG_POWER_INFO

PKG RAPL Parameters (R/W) 

See Section 16.10.3, “Package RAPL Domain.”

Package

Register Address: 638H, 1592 MSR_PP0_POWER_LIMIT

PP0 RAPL Power Limit Control (R/W) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

Register Address: 680H, 1664 MSR_LASTBRANCH_0_FROM_IP

Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last branch record stack. This part of the stack contains 
pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 19.9.1 and record format in Section 19.4.8.1.

Thread

Register Address: 681H, 1665 MSR_LASTBRANCH_1_FROM_IP

Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 682H, 1666 MSR_LASTBRANCH_2_FROM_IP

Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

Thread

Register Address: 683H, 1667 MSR_LASTBRANCH_3_FROM_IP

Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 684H, 1668 MSR_LASTBRANCH_4_FROM_IP

Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 685H, 1669 MSR_LASTBRANCH_5_FROM_IP

Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread
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Register Address: 686H, 1670 MSR_LASTBRANCH_6_FROM_IP

Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 687H, 1671 MSR_LASTBRANCH_7_FROM_IP

Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 688H, 1672 MSR_LASTBRANCH_8_FROM_IP

Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 689H, 1673 MSR_LASTBRANCH_9_FROM_IP

Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 68AH, 1674 MSR_LASTBRANCH_10_FROM_IP

Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 68BH, 1675 MSR_LASTBRANCH_11_FROM_IP

Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 68CH, 1676 MSR_LASTBRANCH_12_FROM_IP

Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 68DH, 1677 MSR_LASTBRANCH_13_FROM_IP

Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 68EH, 1678 MSR_LASTBRANCH_14_FROM_IP

Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 68FH, 1679 MSR_LASTBRANCH_15_FROM_IP

Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 6C0H, 1728 MSR_LASTBRANCH_0_TO_IP

Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last branch record stack. This part of the stack contains 
pointers to the destination instruction.

Thread

Register Address: 6C1H, 1729 MSR_LASTBRANCH_1_TO_IP

Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6C2H, 1730 MSR_LASTBRANCH_2_TO_IP
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Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6C3H, 1731 MSR_LASTBRANCH_3_TO_IP

Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6C4H, 1732 MSR_LASTBRANCH_4_TO_IP

Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6C5H, 1733 MSR_LASTBRANCH_5_TO_IP

Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6C6H, 1734 MSR_LASTBRANCH_6_TO_IP

Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6C7H, 1735 MSR_LASTBRANCH_7_TO_IP

Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6C8H, 1736 MSR_LASTBRANCH_8_TO_IP

Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6C9H, 1737 MSR_LASTBRANCH_9_TO_IP

Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6CAH, 1738 MSR_LASTBRANCH_10_TO_IP

Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6CBH, 1739 MSR_LASTBRANCH_11_TO_IP

Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6CCH, 1740 MSR_LASTBRANCH_12_TO_IP

Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6CDH, 1741 MSR_LASTBRANCH_13_TO_IP

Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6CEH, 1742 MSR_LASTBRANCH_14_TO_IP

Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6CFH, 1743 MSR_LASTBRANCH_15_TO_IP
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2.11.1  MSRs in the 2nd Generation Intel® Core™ Processor Family Based on Sandy Bridge 
Microarchitecture

Table 2-21 and Table 2-22 list model-specific registers (MSRs) that are specific to the 2nd generation Intel® Core™ 
processor family based on the Sandy Bridge microarchitecture. These processors have a CPUID Signature 
DisplayFamily_DisplayModel value of 06_2AH; see Table 2-1. 

Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6E0H, 1760 IA32_TSC_DEADLINE

See Table 2-2. Thread

Register Address: 802H−83FH, 2050−
2111

X2APIC MSRs

See Table 2-2. Thread

Register Address: C000_0080H IA32_EFER

Extended Feature Enables

See Table 2-2.

Thread

Register Address: C000_0081H IA32_STAR

System Call Target Address (R/W)

See Table 2-2.

Thread

Register Address: C000_0082H IA32_LSTAR

IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

Thread

Register Address: C000_0084H IA32_FMASK

System Call Flag Mask (R/W) 

See Table 2-2.

Thread

Register Address: C000_0100H IA32_FS_BASE

Map of BASE Address of FS (R/W)

See Table 2-2.

Thread

Register Address: C000_0101H IA32_GS_BASE

Map of BASE Address of GS (R/W)

See Table 2-2.

Thread

Register Address: C000_0102H IA32_KERNEL_GS_BASE

Swap Target of BASE Address of GS (R/W)

See Table 2-2.

Thread

Register Address: C000_0103H IA32_TSC_AUX

AUXILIARY TSC Signature (R/W)

See Table 2-2 and Section 19.17.2, “IA32_TSC_AUX Register and RDTSCP Support.” 

Thread
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Table 2-21.  MSRs Supported by the 2nd Generation Intel® Core™ Processors (Sandy Bridge Microarchitecture)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 1ADH, 429 MSR_TURBO_RATIO_LIMIT

Maximum Ratio Limit of Turbo Mode

R/O if MSR_PLATFORM_INFO.[28] = 0.

R/W if MSR_PLATFORM_INFO.[28] = 1.

Package

7:0 Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

Package

15:8 Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

Package

23:16 Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

Package

31:24 Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

Package

63:32 Reserved.

Register Address: 60CH, 1548 MSR_PKGC7_IRTL

Package C7 Interrupt Response Limit (R/W) 

This MSR defines the budget allocated for the package to exit from a C7 to a C0 state, where interrupt request can be 
delivered to the core and serviced. Additional core-exit latency may be applicable depending on the actual C-state the 
core is in. 

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-states.

Package

9:0 Interrupt Response Time Limit (R/W) 

Specifies the limit that should be used to decide if the package should be 
put into a package C7 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response time 
limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used by 
the processor for package C-sate management. 

63:16 Reserved.

Register Address: 639H, 1593 MSR_PP0_ENERGY_STATUS

PP0 Energy Status (R/O) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

Register Address: 63AH, 1594 MSR_PP0_POLICY
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Table 2-22 lists the MSRs of uncore PMU for Intel processors with a CPUID Signature DisplayFamily_DisplayModel 
value of 06_2AH.

PP0 Balance Policy (R/W) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

Register Address: 640H, 1600 MSR_PP1_POWER_LIMIT

PP1 RAPL Power Limit Control (R/W) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

Register Address: 641H, 1601 MSR_PP1_ENERGY_STATUS

PP1 Energy Status (R/O) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

Register Address: 642H, 1602 MSR_PP1_POLICY

PP1 Balance Policy (R/W) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

See Table 2-20, Table 2-21, and Table 2-22 for MSR definitions applicable to processors with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_2AH. 

Table 2-22.  Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors 

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 391H, 913 MSR_UNC_PERF_GLOBAL_CTRL

Uncore PMU Global Control Package

0 Slice 0 select.

1 Slice 1 select.

2 Slice 2 select.

3 Slice 3 select.

4 Slice 4 select.

18:5 Reserved.

29 Enable all uncore counters.

30 Enable wake on PMI.

31 Enable Freezing counter when overflow.

63:32 Reserved.

Register Address: 392H, 914 MSR_UNC_PERF_GLOBAL_STATUS

Uncore PMU Main Status Package

0 Fixed counter overflowed.

1 An ARB counter overflowed.

2 Reserved.

3 A CBox counter overflowed (on any slice).

63:4 Reserved.

Table 2-21.  MSRs Supported by the 2nd Generation Intel® Core™ Processors (Sandy Bridge Microarchitecture) 
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Register Address: 394H, 916 MSR_UNC_PERF_FIXED_CTRL

Uncore Fixed Counter Control (R/W) Package

19:0 Reserved.

20 Enable overflow propagation.

21 Reserved.

22 Enable counting.

63:23 Reserved.

Register Address: 395H, 917 MSR_UNC_PERF_FIXED_CTR

Uncore Fixed Counter Package

47:0 Current count.

63:48 Reserved.

Register Address: 396H, 918 MSR_UNC_CBO_CONFIG

Uncore C-Box Configuration Information (R/O) Package

3:0 Report the number of C-Box units with performance counters, including 
processor cores and processor graphics.

63:4 Reserved.

Register Address: 3B0H, 946 MSR_UNC_ARB_PERFCTR0

Uncore Arb Unit, Performance Counter 0 Package

Register Address: 3B1H, 947 MSR_UNC_ARB_PERFCTR1

Uncore Arb Unit, Performance Counter 1 Package

Register Address: 3B2H, 944 MSR_UNC_ARB_PERFEVTSEL0

Uncore Arb Unit, Counter 0 Event Select MSR Package

Register Address: 3B3H, 945 MSR_UNC_ARB_PERFEVTSEL1

Uncore Arb unit, Counter 1 Event Select MSR Package

Register Address: 700H, 1792 MSR_UNC_CBO_0_PERFEVTSEL0

Uncore C-Box 0, Counter 0 Event Select MSR Package

Register Address: 701H, 1793 MSR_UNC_CBO_0_PERFEVTSEL1

Uncore C-Box 0, Counter 1 Event Select MSR Package

Register Address: 702H, 1794 MSR_UNC_CBO_0_PERFEVTSEL2

Uncore C-Box 0, Counter 2 Event Select MSR Package

Register Address: 703H, 1795 MSR_UNC_CBO_0_PERFEVTSEL3

Uncore C-Box 0, Counter 3 Event Select MSR Package

Register Address: 705H, 1797 MSR_UNC_CBO_0_UNIT_STATUS

Uncore C-Box 0, Unit Status for Counter 0-3 Package

Register Address: 706H, 1798 MSR_UNC_CBO_0_PERFCTR0

Uncore C-Box 0, Performance Counter 0 Package

Register Address: 707H, 1799 MSR_UNC_CBO_0_PERFCTR1

Uncore C-Box 0, Performance Counter 1 Package

Table 2-22.  Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors  (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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Register Address: 708H, 1800 MSR_UNC_CBO_0_PERFCTR2

Uncore C-Box 0, Performance Counter 2 Package

Register Address: 709H, 1801 MSR_UNC_CBO_0_PERFCTR3

Uncore C-Box 0, Performance Counter 3 Package

Register Address: 710H, 1808 MSR_UNC_CBO_1_PERFEVTSEL0

Uncore C-Box 1, Counter 0 Event Select MSR Package

Register Address: 711H, 1809 MSR_UNC_CBO_1_PERFEVTSEL1

Uncore C-Box 1, Counter 1 Event Select MSR Package

Register Address: 712H, 1810 MSR_UNC_CBO_1_PERFEVTSEL2

Uncore C-Box 1, Counter 2 Event Select MSR Package

Register Address: 713H, 1811 MSR_UNC_CBO_1_PERFEVTSEL3

Uncore C-Box 1, Counter 3 Event Select MSR Package

Register Address: 715H, 1813 MSR_UNC_CBO_1_UNIT_STATUS

Uncore C-Box 1, Unit Status for Counter 0-3 Package

Register Address: 716H, 1814 MSR_UNC_CBO_1_PERFCTR0

Uncore C-Box 1, Performance Counter 0 Package

Register Address: 717H, 1815 MSR_UNC_CBO_1_PERFCTR1

Uncore C-Box 1, Performance Counter 1 Package

Register Address: 718H, 1816 MSR_UNC_CBO_1_PERFCTR2

Uncore C-Box 1, Performance Counter 2 Package

Register Address: 719H, 1817 MSR_UNC_CBO_1_PERFCTR3

Uncore C-Box 1, Performance Counter 3 Package

Register Address: 720H, 1824 MSR_UNC_CBO_2_PERFEVTSEL0

Uncore C-Box 2, Counter 0 Event Select MSR Package

Register Address: 721H, 1825 MSR_UNC_CBO_2_PERFEVTSEL1

Uncore C-Box 2, Counter 1 Event Select MSR Package

Register Address: 722H, 1826 MSR_UNC_CBO_2_PERFEVTSEL2

Uncore C-Box 2, Counter 2 Event Select MSR Package

Register Address: 723H, 1827 MSR_UNC_CBO_2_PERFEVTSEL3

Uncore C-Box 2, Counter 3 Event Select MSR Package

Register Address: 725H, 1829 MSR_UNC_CBO_2_UNIT_STATUS

Uncore C-Box 2, Unit Status for Counter 0-3 Package

Register Address: 726H, 1830 MSR_UNC_CBO_2_PERFCTR0

Uncore C-Box 2, Performance Counter 0 Package

Register Address: 727H, 1831 MSR_UNC_CBO_2_PERFCTR1

Uncore C-Box 2, Performance Counter 1 Package

Register Address: 728H, 1832 MSR_UNC_CBO_3_PERFCTR2

Table 2-22.  Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors  (Contd.)
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Uncore C-Box 3, Performance Counter 2 Package

Register Address: 729H, 1833 MSR_UNC_CBO_3_PERFCTR3

Uncore C-Box 3, Performance Counter 3 Package

Register Address: 730H, 1840 MSR_UNC_CBO_3_PERFEVTSEL0

Uncore C-Box 3, Counter 0 Event Select MSR Package

Register Address: 731H, 1841 MSR_UNC_CBO_3_PERFEVTSEL1

Uncore C-Box 3, Counter 1 Event Select MSR Package

Register Address: 732H, 1842 MSR_UNC_CBO_3_PERFEVTSEL2

Uncore C-Box 3, Counter 2 Event Select MSR Package

Register Address: 733H, 1843 MSR_UNC_CBO_3_PERFEVTSEL3

Uncore C-Box 3, counter 3 Event Select MSR Package

Register Address: 735H, 1845 MSR_UNC_CBO_3_UNIT_STATUS

Uncore C-Box 3, Unit Status for Counter 0-3 Package

Register Address: 736H, 1846 MSR_UNC_CBO_3_PERFCTR0

Uncore C-Box 3, Performance Counter 0 Package

Register Address: 737H, 1847 MSR_UNC_CBO_3_PERFCTR1

Uncore C-Box 3, Performance Counter 1 Package

Register Address: 738H, 1848 MSR_UNC_CBO_3_PERFCTR2

Uncore C-Box 3, Performance Counter 2 Package

Register Address: 739H, 1849 MSR_UNC_CBO_3_PERFCTR3

Uncore C-Box 3, Performance Counter 3 Package

Register Address: 740H, 1856 MSR_UNC_CBO_4_PERFEVTSEL0

Uncore C-Box 4, Counter 0 Event Select MSR Package

Register Address: 741H, 1857 MSR_UNC_CBO_4_PERFEVTSEL1

Uncore C-Box 4, Counter 1 Event Select MSR Package

Register Address: 742H, 1858 MSR_UNC_CBO_4_PERFEVTSEL2

Uncore C-Box 4, Counter 2 Event Select MSR Package

Register Address: 743H, 1859 MSR_UNC_CBO_4_PERFEVTSEL3

Uncore C-Box 4, Counter 3 Event Select MSR Package

Register Address: 745H, 1861 MSR_UNC_CBO_4_UNIT_STATUS

Uncore C-Box 4, Unit status for Counter 0-3 Package

Register Address: 746H, 1862 MSR_UNC_CBO_4_PERFCTR0

Uncore C-Box 4, Performance Counter 0 Package

Register Address: 747H, 1863 MSR_UNC_CBO_4_PERFCTR1

Uncore C-Box 4, Performance Counter 1 Package

Register Address: 748H, 1864 MSR_UNC_CBO_4_PERFCTR2

Uncore C-Box 4, Performance Counter 2 Package

Table 2-22.  Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors  (Contd.)
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2.11.2  MSRs in the Intel® Xeon® Processor E5 Family Based on Sandy Bridge 
Microarchitecture

Table 2-23 lists additional model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5 
Family based on Sandy Bridge microarchitecture. These processors have a CPUID Signature 
DisplayFamily_DisplayModel value of 06_2DH, and also support MSRs listed in Table 2-20 and Table 2-24. 

Register Address: 749H, 1865 MSR_UNC_CBO_4_PERFCTR3

Uncore C-Box 4, Performance Counter 3 Package

Table 2-23.  Additional MSRs Supported by the Intel® Xeon® Processors E5 Family Based on Sandy Bridge 
Microarchitecture

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 17FH, 383 MSR_ERROR_CONTROL

MC Bank Error Configuration (R/W) Package

0 Reserved.

1 MemError Log Enable (R/W) 

When set, enables IMC status bank to log additional info in bits 36:32.

63:2 Reserved.

Register Address: 1ADH, 429 MSR_TURBO_RATIO_LIMIT

Maximum Ratio Limit of Turbo Mode

R/O if MSR_PLATFORM_INFO.[28] = 0. R/W if MSR_PLATFORM_INFO.[28] = 1.

Package

7:0 Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

Package

15:8 Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 cores active. 

Package

23:16 Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 cores active.

Package

31:24 Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 cores active.

Package

39:32 Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 cores active.

Package

47:40 Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 cores active.

Package

55:48 Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 cores active.

Package

63:56 Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 cores active.

Package

Register Address: 285H, 645 IA32_MC5_CTL2

See Table 2-2. Package

Table 2-22.  Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors  (Contd.)
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Register Address: 286H, 646 IA32_MC6_CTL2

See Table 2-2. Package

Register Address: 287H, 647 IA32_MC7_CTL2

See Table 2-2. Package

Register Address: 288H, 648 IA32_MC8_CTL2

See Table 2-2. Package

Register Address: 289H, 649 IA32_MC9_CTL2

See Table 2-2. Package

Register Address: 28AH, 650 IA32_MC10_CTL2

See Table 2-2. Package

Register Address: 28BH, 651 IA32_MC11_CTL2

See Table 2-2. Package

Register Address: 28CH, 652 IA32_MC12_CTL2

See Table 2-2. Package

Register Address: 28DH, 653 IA32_MC13_CTL2

See Table 2-2. Package

Register Address: 28EH, 654 IA32_MC14_CTL2

See Table 2-2. Package

Register Address: 28FH, 655 IA32_MC15_CTL2

See Table 2-2. Package

Register Address: 290H, 656 IA32_MC16_CTL2

See Table 2-2. Package

Register Address: 291H, 657 IA32_MC17_CTL2

See Table 2-2. Package

Register Address: 292H, 658 IA32_MC18_CTL2

See Table 2-2. Package

Register Address: 293H, 659 IA32_MC19_CTL2

See Table 2-2. Package

Register Address: 39CH, 924 MSR_PEBS_NUM_ALT

ENABLE_PEBS_NUM_ALT (R/W) Package

0 ENABLE_PEBS_NUM_ALT (R/W)

Write 1 to enable alternate PEBS counting logic for specific events 
requiring additional configuration, see https://perfmon-events.intel.com/.

63:1 Reserved, must be zero.

Register Address: 414H, 1044 IA32_MC5_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 415H, 1045 IA32_MC5_STATUS

Table 2-23.  Additional MSRs Supported by the Intel® Xeon® Processors E5 Family Based on Sandy Bridge 
Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 416H, 1046 IA32_MC5_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 417H, 1047 IA32_MC5_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 418H, 1048 IA32_MC6_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 419H, 1049 IA32_MC6_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 41AH, 1050 IA32_MC6_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 41BH, 1051 IA32_MC6_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 41CH, 1052 IA32_MC7_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 41DH, 1053 IA32_MC7_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 41EH, 1054 IA32_MC7_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 41FH, 1055 IA32_MC7_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 420H, 1056 IA32_MC8_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 421H, 1057 IA32_MC8_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 422H, 1058 IA32_MC8_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 423H, 1059 IA32_MC8_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 424H, 1060 IA32_MC9_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 425H, 1061 IA32_MC9_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 426H, 1062 IA32_MC9_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 427H, 1063 IA32_MC9_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Table 2-23.  Additional MSRs Supported by the Intel® Xeon® Processors E5 Family Based on Sandy Bridge 
Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
Vol. 4 2-249



MODEL-SPECIFIC REGISTERS (MSRS)
Register Address: 428H, 1064 IA32_MC10_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 429H, 1065 IA32_MC10_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 42AH, 1066 IA32_MC10_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 42BH, 1067 IA32_MC10_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 42CH, 1068 IA32_MC11_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 42DH, 1069 IA32_MC11_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 42EH, 1070 IA32_MC11_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 42FH, 1071 IA32_MC11_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 430H, 1072 IA32_MC12_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 431H, 1073 IA32_MC12_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 432H, 1074 IA32_MC12_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 433H, 1075 IA32_MC12_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 434H, 1076 IA32_MC13_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 435H, 1077 IA32_MC13_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 436H, 1078 IA32_MC13_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 437H, 1079 IA32_MC13_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 438H, 1080 IA32_MC14_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 439H, 1081 IA32_MC14_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 43AH, 1082 IA32_MC14_ADDR

Table 2-23.  Additional MSRs Supported by the Intel® Xeon® Processors E5 Family Based on Sandy Bridge 
Microarchitecture (Contd.)
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See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 43BH, 1083 IA32_MC14_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 43CH, 1084 IA32_MC15_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 43DH, 1085 IA32_MC15_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 43EH, 1086 IA32_MC15_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 43FH, 1087 IA32_MC15_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 440H, 1088 IA32_MC16_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 441H, 1089 IA32_MC16_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 442H, 1090 IA32_MC16_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 443H, 1091 IA32_MC16_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 444H, 1092 IA32_MC17_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 445H, 1093 IA32_MC17_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 446H, 1094 IA32_MC17_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 447H, 1095 IA32_MC17_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 448H, 1096 IA32_MC18_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 449H, 1097 IA32_MC18_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 44AH, 1098 IA32_MC18_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 44BH, 1099 IA32_MC18_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 44CH, 1100 IA32_MC19_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Table 2-23.  Additional MSRs Supported by the Intel® Xeon® Processors E5 Family Based on Sandy Bridge 
Microarchitecture (Contd.)
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2.11.3  Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 Family
Intel Xeon Processor E5 family is based on the Sandy Bridge microarchitecture. The MSR-based uncore PMU inter-
faces are listed in Table 2-24. For complete details of the uncore PMU, refer to the Intel Xeon Processor E5 Product 
Family Uncore Performance Monitoring Guide. These processors have a CPUID Signature 
DisplayFamily_DisplayModel value of 06_2DH.

Register Address: 44DH, 1101 IA32_MC19_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 18. Package

Register Address: 44EH, 1102 IA32_MC19_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 44FH, 1103 IA32_MC19_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” Package

Register Address: 613H, 1555 MSR_PKG_PERF_STATUS

Package RAPL Perf Status (R/O) Package

Register Address: 618H, 1560 MSR_DRAM_POWER_LIMIT

DRAM RAPL Power Limit Control (R/W) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 619H, 1561 MSR_DRAM_ENERGY_STATUS

DRAM Energy Status (R/O) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 61BH, 1563 MSR_DRAM_PERF_STATUS

DRAM Performance Throttling Status (R/O) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 61CH, 1564 MSR_DRAM_POWER_INFO

DRAM RAPL Parameters (R/W) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 639H, 1593 MSR_PP0_ENERGY_STATUS

PP0 Energy Status (R/O) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

See Table 2-20, Table 2-23, and Table 2-24 for MSR definitions applicable to processors with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_2DH. 

Table 2-24.  Uncore PMU MSRs in Intel® Xeon® Processor E5 Family

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: C08H, 3080 MSR_U_PMON_UCLK_FIXED_CTL

Uncore U-box UCLK Fixed Counter Control Package

Register Address: C09H, 3081 MSR_U_PMON_UCLK_FIXED_CTR

Table 2-23.  Additional MSRs Supported by the Intel® Xeon® Processors E5 Family Based on Sandy Bridge 
Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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Uncore U-box UCLK Fixed Counter Package

Register Address: C10H, 3088 MSR_U_PMON_EVNTSEL0

Uncore U-box Perfmon Event Select for U-box Counter 0 Package

Register Address: C11H, 3089 MSR_U_PMON_EVNTSEL1

Uncore U-box Perfmon Event Select for U-box Counter 1 Package

Register Address: C16H, 3094 MSR_U_PMON_CTR0

Uncore U-box Perfmon Counter 0 Package

Register Address: C17H, 3095 MSR_U_PMON_CTR1

Uncore U-box Perfmon Counter 1 Package

Register Address: C24H, 3108 MSR_PCU_PMON_BOX_CTL

Uncore PCU Perfmon for PCU-box-wide Control Package

Register Address: C30H, 3120 MSR_PCU_PMON_EVNTSEL0

Uncore PCU Perfmon Event Select for PCU Counter 0 Package

Register Address: C31H, 3121 MSR_PCU_PMON_EVNTSEL1

Uncore PCU Perfmon Event Select for PCU Counter 1 Package

Register Address: C32H, 3122 MSR_PCU_PMON_EVNTSEL2

Uncore PCU Perfmon Event Select for PCU Counter 2 Package

Register Address: C33H, 3123 MSR_PCU_PMON_EVNTSEL3

Uncore PCU Perfmon Event Select for PCU Counter 3 Package

Register Address: C34H, 3124 MSR_PCU_PMON_BOX_FILTER

Uncore PCU Perfmon box-wide Filter Package

Register Address: C36H, 3126 MSR_PCU_PMON_CTR0

Uncore PCU Perfmon Counter 0 Package

Register Address: C37H, 3127 MSR_PCU_PMON_CTR1

Uncore PCU Perfmon Counter 1 Package

Register Address: C38H, 3128 MSR_PCU_PMON_CTR2

Uncore PCU Perfmon Counter 2 Package

Register Address: C39H, 3129 MSR_PCU_PMON_CTR3

Uncore PCU Perfmon Counter 3 Package

Register Address: D04H, 3332 MSR_C0_PMON_BOX_CTL

Uncore C-box 0 Perfmon Local Box Wide Control Package

Register Address: D10H, 3344 MSR_C0_PMON_EVNTSEL0

Uncore C-box 0 Perfmon Event Select for C-box 0 Counter 0 Package

Register Address: D11H, 3345 MSR_C0_PMON_EVNTSEL1

Uncore C-box 0 Perfmon Event Select for C-box 0 Counter 1 Package

Register Address: D12H, 3346 MSR_C0_PMON_EVNTSEL2

Uncore C-box 0 Perfmon Event Select for C-box 0 Counter 2 Package

Table 2-24.  Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)
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Register Address: D13H, 3347 MSR_C0_PMON_EVNTSEL3

Uncore C-box 0 Perfmon Event Select for C-box 0 Counter 3 Package

Register Address: D14H, 3348 MSR_C0_PMON_BOX_FILTER

Uncore C-box 0 Perfmon Box Wide Filter Package

Register Address: D16H, 3350 MSR_C0_PMON_CTR0

Uncore C-box 0 Perfmon Counter 0 Package

Register Address: D17H, 3351 MSR_C0_PMON_CTR1

Uncore C-box 0 Perfmon Counter 1 Package

Register Address: D18H, 3352 MSR_C0_PMON_CTR2

Uncore C-box 0 Perfmon Counter 2 Package

Register Address: D19H, 3353 MSR_C0_PMON_CTR3

Uncore C-box 0 Perfmon Counter 3 Package

Register Address: D24H, 3364 MSR_C1_PMON_BOX_CTL

Uncore C-box 1 Perfmon Local Box Wide Control Package

Register Address: D30H, 3376 MSR_C1_PMON_EVNTSEL0

Uncore C-box 1 Perfmon Event Select for C-box 1 Counter 0 Package

Register Address: D31H, 3377 MSR_C1_PMON_EVNTSEL1

Uncore C-box 1 Perfmon Event Select for C-box 1 Counter 1 Package

Register Address: D32H, 3378 MSR_C1_PMON_EVNTSEL2

Uncore C-box 1 Perfmon Event Select for C-box 1 Counter 2 Package

Register Address: D33H, 3379 MSR_C1_PMON_EVNTSEL3

Uncore C-box 1 Perfmon Event Select for C-box 1 Counter 3 Package

Register Address: D34H, 3380 MSR_C1_PMON_BOX_FILTER

Uncore C-box 1 Perfmon Box Wide Filter Package

Register Address: D36H, 3382 MSR_C1_PMON_CTR0

Uncore C-box 1 Perfmon Counter 0 Package

Register Address: D37H, 3383 MSR_C1_PMON_CTR1

Uncore C-box 1 Perfmon Counter 1 Package

Register Address: D38H, 3384 MSR_C1_PMON_CTR2

Uncore C-box 1 Perfmon Counter 2 Package

Register Address: D39H, 3385 MSR_C1_PMON_CTR3

Uncore C-box 1 Perfmon Counter 3 Package

Register Address: D44H, 3396 MSR_C2_PMON_BOX_CTL

Uncore C-box 2 Perfmon Local Box Wide Control Package

Register Address: D50H, 3408 MSR_C2_PMON_EVNTSEL0

Uncore C-box 2 Perfmon Event Select for C-box 2 Counter 0 Package

Register Address: D51H, 3409 MSR_C2_PMON_EVNTSEL1

Table 2-24.  Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)
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Uncore C-box 2 Perfmon Event Select for C-box 2 Counter 1 Package

Register Address: D52H, 3410 MSR_C2_PMON_EVNTSEL2

Uncore C-box 2 Perfmon Event Select for C-box 2 Counter 2 Package

Register Address: D53H, 3411 MSR_C2_PMON_EVNTSEL3

Uncore C-box 2 Perfmon Event Select for C-box 2 Counter 3 Package

Register Address: D54H, 3412 MSR_C2_PMON_BOX_FILTER

Uncore C-box 2 Perfmon Box Wide Filter Package

Register Address: D56H, 3414 MSR_C2_PMON_CTR0

Uncore C-box 2 Perfmon Counter 0 Package

Register Address: D57H, 3415 MSR_C2_PMON_CTR1

Uncore C-box 2 Perfmon Counter 1 Package

Register Address: D58H, 3416 MSR_C2_PMON_CTR2

Uncore C-box 2 Perfmon Counter 2 Package

Register Address: D59H, 3417 MSR_C2_PMON_CTR3

Uncore C-box 2 Perfmon Counter 3 Package

Register Address: D64H, 3428 MSR_C3_PMON_BOX_CTL

Uncore C-box 3 Perfmon Local Box Wide Control Package

Register Address: D70H, 3440 MSR_C3_PMON_EVNTSEL0

Uncore C-box 3 Perfmon Event Select for C-box 3 Counter 0 Package

Register Address: D71H, 3441 MSR_C3_PMON_EVNTSEL1

Uncore C-box 3 Perfmon Event Select for C-box 3 Counter 1 Package

Register Address: D72H, 3442 MSR_C3_PMON_EVNTSEL2

Uncore C-box 3 Perfmon Event Select for C-box 3 Counter 2 Package

Register Address: D73H, 3443 MSR_C3_PMON_EVNTSEL3

Uncore C-box 3 Perfmon Event Select for C-box 3 Counter 3 Package

Register Address: D74H, 3444 MSR_C3_PMON_BOX_FILTER

Uncore C-box 3 Perfmon Box Wide Filter Package

Register Address: D76H, 3446 MSR_C3_PMON_CTR0

Uncore C-box 3 Perfmon Counter 0 Package

Register Address: D77H, 3447 MSR_C3_PMON_CTR1

Uncore C-box 3 Perfmon Counter 1 Package

Register Address: D78H, 3448 MSR_C3_PMON_CTR2

Uncore C-box 3 Perfmon Counter 2 Package

Register Address: D79H, 3449 MSR_C3_PMON_CTR3

Uncore C-box 3 Perfmon Counter 3 Package

Register Address: D84H, 3460 MSR_C4_PMON_BOX_CTL

Uncore C-box 4 Perfmon Local Box Wide Control Package

Table 2-24.  Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)
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Register Address: D90H, 3472 MSR_C4_PMON_EVNTSEL0

Uncore C-box 4 Perfmon Event Select for C-box 4 Counter 0 Package

Register Address: D91H, 3473 MSR_C4_PMON_EVNTSEL1

Uncore C-box 4 Perfmon Event Select for C-box 4 Counter 1 Package

Register Address: D92H, 3474 MSR_C4_PMON_EVNTSEL2

Uncore C-box 4 Perfmon Event Select for C-box 4 Counter 2 Package

Register Address: D93H, 3475 MSR_C4_PMON_EVNTSEL3

Uncore C-box 4 Perfmon Event Select for C-box 4 Counter 3 Package

Register Address: D94H, 3476 MSR_C4_PMON_BOX_FILTER

Uncore C-box 4 Perfmon Box Wide Filter Package

Register Address: D96H, 3478 MSR_C4_PMON_CTR0

Uncore C-box 4 Perfmon Counter 0 Package

Register Address: D97H, 3479 MSR_C4_PMON_CTR1

Uncore C-box 4 Perfmon Counter 1 Package

Register Address: D98H, 3480 MSR_C4_PMON_CTR2

Uncore C-box 4 Perfmon Counter 2 Package

Register Address: D99H, 3481 MSR_C4_PMON_CTR3

Uncore C-box 4 Perfmon Counter 3 Package

Register Address: DA4H, 3492 MSR_C5_PMON_BOX_CTL

Uncore C-box 5 Perfmon Local Box Wide Control Package

Register Address: DB0H, 3504 MSR_C5_PMON_EVNTSEL0

Uncore C-box 5 Perfmon Event Select for C-box 5 Counter 0 Package

Register Address: DB1H, 3505 MSR_C5_PMON_EVNTSEL1

Uncore C-box 5 Perfmon Event Select for C-box 5 Counter 1 Package

Register Address: DB2H, 3506 MSR_C5_PMON_EVNTSEL2

Uncore C-box 5 Perfmon Event Select for C-box 5 Counter 2 Package

Register Address: DB3H, 3507 MSR_C5_PMON_EVNTSEL3

Uncore C-box 5 Perfmon Event Select for C-box 5 Counter 3 Package

Register Address: DB4H, 3508 MSR_C5_PMON_BOX_FILTER

Uncore C-box 5 Perfmon Box Wide Filter Package

Register Address: DB6H, 3510 MSR_C5_PMON_CTR0

Uncore C-box 5 Perfmon Counter 0 Package

Register Address: DB7H, 3511 MSR_C5_PMON_CTR1

Uncore C-box 5 Perfmon Counter 1 Package

Register Address: DB8H, 3512 MSR_C5_PMON_CTR2

Uncore C-box 5 Perfmon Counter 2 Package

Register Address: DB9H, 3513 MSR_C5_PMON_CTR3

Table 2-24.  Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)
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Uncore C-box 5 Perfmon Counter 3 Package

Register Address: DC4H, 3524 MSR_C6_PMON_BOX_CTL

Uncore C-box 6 Perfmon Local Box Wide Control Package

Register Address: DD0H, 3536 MSR_C6_PMON_EVNTSEL0

Uncore C-box 6 Perfmon Event Select for C-box 6 Counter 0 Package

Register Address: DD1H, 3537 MSR_C6_PMON_EVNTSEL1

Uncore C-box 6 Perfmon Event Select for C-box 6 Counter 1 Package

Register Address: DD2H, 3538 MSR_C6_PMON_EVNTSEL2

Uncore C-box 6 Perfmon Event Select for C-box 6 Counter 2 Package

Register Address: DD3H, 3539 MSR_C6_PMON_EVNTSEL3

Uncore C-box 6 Perfmon Event Select for C-box 6 Counter 3 Package

Register Address: DD4H, 3540 MSR_C6_PMON_BOX_FILTER

Uncore C-box 6 Perfmon Box Wide Filter Package

Register Address: DD6H, 3542 MSR_C6_PMON_CTR0

Uncore C-box 6 Perfmon Counter 0 Package

Register Address: DD7H, 3543 MSR_C6_PMON_CTR1

Uncore C-box 6 Perfmon Counter 1 Package

Register Address: DD8H, 3544 MSR_C6_PMON_CTR2

Uncore C-box 6 Perfmon Counter 2 Package

Register Address: DD9H, 3545 MSR_C6_PMON_CTR3

Uncore C-box 6 Perfmon Counter 3 Package

Register Address: DE4H, 3556 MSR_C7_PMON_BOX_CTL

Uncore C-box 7 Perfmon Local Box Wide Control Package

Register Address: DF0H, 3568 MSR_C7_PMON_EVNTSEL0

Uncore C-box 7 Perfmon Event Select for C-box 7 Counter 0 Package

Register Address: DF1H, 3569 MSR_C7_PMON_EVNTSEL1

Uncore C-box 7 Perfmon Event Select for C-box 7 Counter 1 Package

Register Address: DF2H, 3570 MSR_C7_PMON_EVNTSEL2

Uncore C-box 7 Perfmon Event Select for C-box 7 Counter 2 Package

Register Address: DF3H, 3571 MSR_C7_PMON_EVNTSEL3

Uncore C-box 7 Perfmon Event Select for C-box 7 Counter 3 Package

Register Address: DF4H, 3572 MSR_C7_PMON_BOX_FILTER

Uncore C-box 7 Perfmon Box Wide Filter Package

Register Address: DF6H, 3574 MSR_C7_PMON_CTR0

Uncore C-box 7 Perfmon Counter 0 Package

Register Address: DF7H, 3575 MSR_C7_PMON_CTR1

Uncore C-box 7 Perfmon Counter 1 Package

Table 2-24.  Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)
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2.12 MSRS IN THE 3RD GENERATION INTEL® CORE™ PROCESSOR FAMILY BASED 
ON IVY BRIDGE MICROARCHITECTURE

The 3rd generation Intel® Core™ processor family and the Intel® Xeon® processor E3-1200v2 product family 
based on Ivy Bridge microarchitecture support the MSR interfaces listed in Table 2-20, Table 2-21, Table 2-22, and 
Table 2-25. These processors have a CPUID Signature DisplayFamily_DisplayModel value of 06_3AH. 

Register Address: DF8H, 3576 MSR_C7_PMON_CTR2

Uncore C-box 7 Perfmon Counter 2 Package

Register Address: DF9H, 3577 MSR_C7_PMON_CTR3

Uncore C-box 7 Perfmon Counter 3 Package

Table 2-25.  Additional MSRs Supported by 3rd Generation Intel® Core™ Processors Based on Ivy Bridge 
Microarchitecture

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: CEH, 206 MSR_PLATFORM_INFO

Platform Information

Contains power management and other model specific features enumeration. See http://biosbits.org.

Package

7:0 Reserved.

15:8 Maximum Non-Turbo Ratio (R/O) 

This is the ratio of the frequency that invariant TSC runs at. Frequency = 
ratio * 100 MHz.

Package

27:16 Reserved.

28 Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limit for Turbo mode is 
enabled. When set to 0, indicates Programmable Ratio Limit for Turbo 
mode is disabled.

Package

29 Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limit for Turbo mode is programmable. 
When set to 0, indicates that TDP Limit for Turbo mode is not 
programmable.

Package

31:30 Reserved.

32 Low Power Mode Support (LPM) (R/O) 

When set to 1, indicates that LPM is supported. When set to 0, indicates 
LPM is not supported.

Package

34:33 Number of ConfigTDP Levels (R/O) 

00: Only Base TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

03: Reserved

Package

39:35 Reserved.
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47:40 Maximum Efficiency Ratio (R/O) 

This is the minimum ratio (maximum efficiency) that the processor can 
operate, in units of 100MHz.

Package

55:48 Minimum Operating Ratio (R/O) 

Contains the minimum supported operating ratio in units of 100 MHz.

Package

63:56 Reserved.

Register Address: E2H, 226 MSR_PKG_CST_CONFIG_CONTROL

C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, unrelated 
to MWAIT extension C-state parameters or ACPI C-States.

See http://biosbits.org.

Core

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name (consuming the 
least power) for the package. The default is set as factory-configured 
package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register specified by 
MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions.

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, locks bits 15:0 of this register until next reset.

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W) 

When set, the processor will conditionally demote C6/C7 requests to C3 
based on uncore auto-demote information.

26 C1 State Auto Demotion Enable (R/W) 

When set, the processor will conditionally demote C3/C6/C7 requests to 
C1 based on uncore auto-demote information.

27 Enable C3 Undemotion (R/W) 

When set, enables undemotion from demoted C3.

Table 2-25.  Additional MSRs Supported by 3rd Generation Intel® Core™ Processors Based on Ivy Bridge 
Microarchitecture (Contd.)
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28 Enable C1 Undemotion (R/W) 

When set, enables undemotion from demoted C1.

63:29 Reserved.

Register Address: 639H, 1593 MSR_PP0_ENERGY_STATUS

PP0 Energy Status (R/O) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

Register Address: 648H, 1608 MSR_CONFIG_TDP_NOMINAL

Base TDP Ratio (R/O) Package

7:0 Config_TDP_Base

Base TDP level ratio to be used for this specific processor (in units of 100 
MHz). 

63:8 Reserved.

Register Address: 649H, 1609 MSR_CONFIG_TDP_LEVEL1

ConfigTDP Level 1 ratio and power level (R/O) Package

14:0 PKG_TDP_LVL1

Power setting for ConfigTDP Level 1.

15 Reserved.

23:16 Config_TDP_LVL1_Ratio

ConfigTDP level 1 ratio to be used for this specific processor. 

31:24 Reserved.

46:32 PKG_MAX_PWR_LVL1

Max Power setting allowed for ConfigTDP Level 1.

47 Reserved.

62:48 PKG_MIN_PWR_LVL1

MIN Power setting allowed for ConfigTDP Level 1.

63 Reserved.

Register Address: 64AH, 1610 MSR_CONFIG_TDP_LEVEL2

ConfigTDP Level 2 ratio and power level (R/O) Package

14:0 PKG_TDP_LVL2

Power setting for ConfigTDP Level 2.

15 Reserved.

23:16 Config_TDP_LVL2_Ratio

ConfigTDP level 2 ratio to be used for this specific processor. 

31:24 Reserved.

46:32 PKG_MAX_PWR_LVL2

Max Power setting allowed for ConfigTDP Level 2.

47 Reserved.
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2.12.1  MSRs in the Intel® Xeon® Processor E5 v2 Product Family Based on Ivy Bridge-E 
Microarchitecture

Table 2-26 lists model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5 v2 Product 
Family (based on Ivy Bridge-E microarchitecture). These processors have a CPUID Signature 
DisplayFamily_DisplayModel value of 06_3EH; see Table 2-1. These processors supports the MSR interfaces listed 
in Table 2-20 and Table 2-26. 

62:48 PKG_MIN_PWR_LVL2

MIN Power setting allowed for ConfigTDP Level 2.

63 Reserved.

Register Address: 64BH, 1611 MSR_CONFIG_TDP_CONTROL

ConfigTDP Control (R/W) Package

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field. 

30:2 Reserved.

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is locked until a reset. 

63:32 Reserved.

Register Address: 64CH, 1612 MSR_TURBO_ACTIVATION_RATIO

ConfigTDP Control (R/W) Package

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field. 

30:8 Reserved.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a reset. 

63:32 Reserved.

See Table 2-20, Table 2-21, and Table 2-22 for other MSR definitions applicable to processors with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_3AH.

Table 2-26.  MSRs Supported by the Intel® Xeon® Processor E5 v2 Product Family (Ivy Bridge-E Microarchitecture)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 4EH, 78 IA32_PPIN_CTL (MSR_PPIN_CTL)

Protected Processor Inventory Number Enable Control (R/W) Package

0 LockOut (R/WO)

See Table 2-2.

1 Enable_PPIN (R/W)

See Table 2-2.

63:2 Reserved.
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Register Address: 4FH, 79 IA32_PPIN (MSR_PPIN)

Protected Processor Inventory Number (R/O) Package

63:0 Protected Processor Inventory Number (R/O)

See Table 2-2.

Register Address: CEH, 206 MSR_PLATFORM_INFO

Platform Information

Contains power management and other model specific features enumeration. See http://biosbits.org.

Package

7:0 Reserved.

15:8 Maximum Non-Turbo Ratio (R/O) 

This is the ratio of the frequency that invariant TSC runs at. Frequency = 
ratio * 100 MHz.

Package

22:16 Reserved.

23 PPIN_CAP (R/O)

When set to 1, indicates that Protected Processor Inventory Number (PPIN) 
capability can be enabled for a privileged system inventory agent to read 
PPIN from MSR_PPIN.

When set to 0, PPIN capability is not supported. An attempt to access 
MSR_PPIN_CTL or MSR_PPIN will cause #GP.

Package

27:24 Reserved.

28 Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limit for Turbo mode is 
enabled. When set to 0, indicates Programmable Ratio Limit for Turbo mode 
is disabled.

Package

29 Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limit for Turbo mode is programmable. 
When set to 0, indicates TDP Limit for Turbo mode is not programmable.

Package

30 Programmable TJ OFFSET (R/O) 

When set to 1, indicates that MSR_TEMPERATURE_TARGET.[27:24] is valid 
and writable to specify a temperature offset.

Package

39:31 Reserved.

47:40 Maximum Efficiency Ratio (R/O) 

This is the minimum ratio (maximum efficiency) that the processor can 
operate, in units of 100MHz.

Package

63:48 Reserved.

Register Address: E2H, 226 MSR_PKG_CST_CONFIG_CONTROL

C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-states. See http://biosbits.org.

Core

Table 2-26.  MSRs Supported by the Intel® Xeon® Processor E5 v2 Product Family (Ivy Bridge-E Microarchitecture) 
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2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name (consuming the 
least power) for the package. The default is set as factory-configured 
package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register specified by 
MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions.

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, locks bits 15:0 of this register until next reset.

63:16 Reserved.

Register Address: 179H, 377 IA32_MCG_CAP

Global Machine Check Capability (R/O) Thread

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 Reserved.

26 MCG_ELOG_P

63:27 Reserved.

Register Address: 17FH, 383 MSR_ERROR_CONTROL

MC Bank Error Configuration (R/W) Package

0 Reserved.

1 MemError Log Enable (R/W) 

When set, enables IMC status bank to log additional info in bits 36:32.

63:2 Reserved.
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Register Address: 1A2H, 418 MSR_TEMPERATURE_TARGET

Temperature Target Package

15:0 Reserved.

23:16 Temperature Target (R/O) 

The minimum temperature at which PROCHOT# will be asserted. The value 
is degrees C.

27:24 TCC Activation Offset (R/W) 

Specifies a temperature offset in degrees C from the temperature target 
(bits 23:16). PROCHOT# will assert at the offset target temperature. Write 
is permitted only if MSR_PLATFORM_INFO.[30] is set.

63:28 Reserved.

Register Address: 1AEH, 430 MSR_TURBO_RATIO_LIMIT1

Maximum Ratio Limit of Turbo Mode

R/O if MSR_PLATFORM_INFO.[28] = 0. R/W if MSR_PLATFORM_INFO.[28] = 1.

Package

7:0 Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active. 

Package

15:8 Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10 core active. 

Package

23:16 Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

Package

31:24 Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

Package

63:32 Reserved.

Register Address: 285H, 645 IA32_MC5_CTL2

See Table 2-2. Package

Register Address: 286H, 646 IA32_MC6_CTL2

See Table 2-2. Package

Register Address: 287H, 647 IA32_MC7_CTL2

See Table 2-2. Package

Register Address: 288H, 648 IA32_MC8_CTL2

See Table 2-2. Package

Register Address: 289H, 649 IA32_MC9_CTL2

See Table 2-2. Package

Register Address: 28AH, 650 IA32_MC10_CTL2

See Table 2-2. Package

Register Address: 28BH, 651 IA32_MC11_CTL2

See Table 2-2. Package

Register Address: 28CH, 652 IA32_MC12_CTL2

See Table 2-2. Package

Table 2-26.  MSRs Supported by the Intel® Xeon® Processor E5 v2 Product Family (Ivy Bridge-E Microarchitecture) 
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Register Address: 28DH, 653 IA32_MC13_CTL2

See Table 2-2. Package

Register Address: 28EH, 654 IA32_MC14_CTL2

See Table 2-2. Package

Register Address: 28FH, 655 IA32_MC15_CTL2

See Table 2-2. Package

Register Address: 290H, 656 IA32_MC16_CTL2

See Table 2-2. Package

Register Address: 291H, 657 IA32_MC17_CTL2

See Table 2-2. Package

Register Address: 292H, 658 IA32_MC18_CTL2

See Table 2-2. Package

Register Address: 293H, 659 IA32_MC19_CTL2

See Table 2-2. Package

Register Address: 294H, 660 IA32_MC20_CTL2

See Table 2-2. Package

Register Address: 295H, 661 IA32_MC21_CTL2

See Table 2-2. Package

Register Address: 296H, 662 IA32_MC22_CTL2

See Table 2-2. Package

Register Address: 297H, 663 IA32_MC23_CTL2IA32_MC23_CTL2

See Table 2-2. Package

Register Address: 298H, 664 IA32_MC24_CTL2

See Table 2-2. Package

Register Address: 299H, 665 IA32_MC25_CTL2

See Table 2-2. Package

Register Address: 29AH, 666 IA32_MC26_CTL2

See Table 2-2. Package

Register Address: 29BH, 667 IA32_MC27_CTL2

See Table 2-2. Package

Register Address: 29CH, 668 IA32_MC28_CTL2

See Table 2-2. Package

Register Address: 414H, 1044 IA32_MC5_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC5 reports MC errors from the Intel QPI module.

Package

Register Address: 415H, 1045 IA32_MC5_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC5 reports MC errors from the Intel QPI module.

Package
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Register Address: 416H, 1046 IA32_MC5_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC5 reports MC errors from the Intel QPI module.

Package

Register Address: 417H, 1047 IA32_MC5_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC5 reports MC errors from the Intel QPI module.

Package

Register Address: 418H, 1048 IA32_MC6_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Register Address: 419H, 1049 IA32_MC6_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Register Address: 41AH, 1050 IA32_MC6_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Register Address: 41BH, 1051 IA32_MC6_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Register Address: 41CH, 1052 IA32_MC7_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC7 and MC 8 report MC errors from the two home agents.

Package

Register Address: 41DH, 1053 IA32_MC7_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC7 and MC 8 report MC errors from the two home agents.

Package

Register Address: 41EH, 1054 IA32_MC7_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC7 and MC 8 report MC errors from the two home agents.

Package

Register Address: 41FH, 1055 IA32_MC7_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC7 and MC 8 report MC errors from the two home agents.

Package

Register Address: 420H, 1056 IA32_MC8_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC7 and MC 8 report MC errors from the two home agents.

Package

Register Address: 421H, 1057 IA32_MC8_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC7 and MC 8 report MC errors from the two home agents.

Package

Register Address: 422H, 1058 IA32_MC8_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC7 and MC 8 report MC errors from the two home agents.

Package

Table 2-26.  MSRs Supported by the Intel® Xeon® Processor E5 v2 Product Family (Ivy Bridge-E Microarchitecture) 

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
2-266 Vol. 4



MODEL-SPECIFIC REGISTERS (MSRS)
Register Address: 423H, 1059 IA32_MC8_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC7 and MC 8 report MC errors from the two home agents.

Package

Register Address: 424H, 1060 IA32_MC9_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 425H, 1061 IA32_MC9_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 426H, 1062 IA32_MC9_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 427H, 1063 IA32_MC9_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 428H, 1064 IA32_MC10_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 429H, 1065 IA32_MC10_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 42AH, 1066 IA32_MC10_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 42BH, 1067 IA32_MC10_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 42CH, 1068 IA32_MC11_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” 

Bank MC11 reports MC errors from a specific channel of the integrated memory controller.

Package

Register Address: 42DH, 1069 IA32_MC11_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” 

Bank MC11 reports MC errors from a specific channel of the integrated memory controller.

Package

Register Address: 42EH, 1070 IA32_MC11_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” 

Bank MC11 reports MC errors from a specific channel of the integrated memory controller.

Package

Register Address: 42FH, 1071 IA32_MC11_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” 

Bank MC11 reports MC errors from a specific channel of the integrated memory controller.

Package
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Register Address: 430H, 1072 IA32_MC12_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 431H, 1073 IA32_MC12_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 432H, 1074 IA32_MC12_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 433H, 1075 IA32_MC12_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 434H, 1076 IA32_MC13_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 435H, 1077 IA32_MC13_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 436H, 1078 IA32_MC13_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 437H, 1079 IA32_MC13_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 438H, 1080 IA32_MC14_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 439H, 1081 IA32_MC14_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 43AH, 1082 IA32_MC14_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 43BH, 1083 IA32_MC14_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 43CH, 1084 IA32_MC15_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package
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Register Address: 43DH, 1085 IA32_MC15_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 43EH, 1086 IA32_MC15_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 43FH, 1087 IA32_MC15_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 440H, 1088 IA32_MC16_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 441H, 1089 IA32_MC16_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 442H, 1090 IA32_MC16_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 443H, 1091 IA32_MC16_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 444H, 1092 IA32_MC17_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC17 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 445H, 1093 IA32_MC17_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC17 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 446H, 1094 IA32_MC17_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC17 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 447H, 1095 IA32_MC17_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC17 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 448H, 1096 IA32_MC18_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC18 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 449H, 1097 IA32_MC18_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC18 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Table 2-26.  MSRs Supported by the Intel® Xeon® Processor E5 v2 Product Family (Ivy Bridge-E Microarchitecture) 

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
Vol. 4 2-269



MODEL-SPECIFIC REGISTERS (MSRS)
Register Address: 44AH, 1098 IA32_MC18_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC18 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 44BH, 1099 IA32_MC18_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC18 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 44CH, 1100 IA32_MC19_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 44DH, 1101 IA32_MC19_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 44EH, 1102 IA32_MC19_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 44FH, 1103 IA32_MC19_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 450H, 1104 IA32_MC20_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.”

Bank MC20 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 451H, 1105 IA32_MC20_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.”

Bank MC20 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 452H, 1106 IA32_MC20_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.”

Bank MC20 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 453H, 1107 IA32_MC20_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.”

Bank MC20 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 454H, 1108 IA32_MC21_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC21 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 455H, 1109 IA32_MC21_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC21 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 456H, 1110 IA32_MC21_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC21 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package
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Register Address: 457H, 1111 IA32_MC21_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC21 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 458H, 1112 IA32_MC22_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC22 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 459H, 1113 IA32_MC22_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC22 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 45AH, 1114 IA32_MC22_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC22 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 45BH, 1115 IA32_MC22_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC22 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 45CH, 1116 IA32_MC23_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC23 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 45DH, 1117 IA32_MC23_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC23 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 45EH, 1118 IA32_MC23_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC23 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 45FH, 1119 IA32_MC23_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC23 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 460H, 1120 IA32_MC24_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC24 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 461H, 1121 IA32_MC24_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC24 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 462H, 1122 IA32_MC24_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC24 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 463H, 1123 IA32_MC24_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC24 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package
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Register Address: 464H, 1124 IA32_MC25_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC25 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 465H, 1125 IA32_MC25_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC25 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 466H, 1126 IA32_MC25_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC25 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 467H, 1127 IA32_MC2MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC25 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 468H, 1128 IA32_MC26_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC26 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 469H, 1129 IA32_MC26_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC26 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 46AH, 1130 IA32_MC26_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC26 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 46BH, 1131 IA32_MC26_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC26 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 46CH, 1132 IA32_MC27_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC27 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 46DH, 1133 IA32_MC27_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC27 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 46EH, 1134 IA32_MC27_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC27 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 46FH, 1135 IA32_MC27_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC27 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 470H, 1136 IA32_MC28_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC28 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Table 2-26.  MSRs Supported by the Intel® Xeon® Processor E5 v2 Product Family (Ivy Bridge-E Microarchitecture) 

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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2.12.2  Additional MSRs Supported by the Intel® Xeon® Processor E7 v2 Family
The Intel® Xeon® processor E7 v2 family (based on Ivy Bridge-E microarchitecture) with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_3EH supports the MSR interfaces listed in Table 2-20, Table 2-26, and 
Table 2-27. 

Register Address: 471H, 1137 IA32_MC28_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC28 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 472H, 1138 IA32_MC28_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC28 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 473H, 1139 IA32_MC28_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC28 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 613H, 1555 MSR_PKG_PERF_STATUS

Package RAPL Perf Status (R/O) Package

Register Address: 618H, 1560 MSR_DRAM_POWER_LIMIT

DRAM RAPL Power Limit Control (R/W) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 619H, 1561 MSR_DRAM_ENERGY_STATUS

DRAM Energy Status (R/O) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 61BH, 1563 MSR_DRAM_PERF_STATUS

DRAM Performance Throttling Status (R/O) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 61CH, 1564 MSR_DRAM_POWER_INFO

DRAM RAPL Parameters (R/W) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 639H, 1593 MSR_PP0_ENERGY_STATUS

PP0 Energy Status (R/O) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

See Table 2-20, for other MSR definitions applicable to Intel Xeon processor E5 v2 with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_3EH. 

Table 2-27.  Additional MSRs Supported by the Intel® Xeon® Processor E7 v2 Family with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_3EH 

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 3AH, 58 IA32_FEATURE_CONTROL

Table 2-26.  MSRs Supported by the Intel® Xeon® Processor E5 v2 Product Family (Ivy Bridge-E Microarchitecture) 

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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Control Features in Intel 64 Processor (R/W)

See Table 2-2.

Thread

0 Lock (R/WL) 

1 Enable VMX Inside SMX Operation (R/WL) 

2 Enable VMX Outside SMX Operation (R/WL) 

14:8 SENTER Local Functions Enables (R/WL) 

15 SENTER Global Functions Enable (R/WL) 

63:16 Reserved.

Register Address: 179H, 377 IA32_MCG_CAP

Global Machine Check Capability (R/O) Thread

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

63:25 Reserved.

Register Address: 17AH, 378 IA32_MCG_STATUS

Global Machine Check Status (R/W) Thread

0 RIPV

1 EIPV

2 MCIP

3 LMCE Signaled

63:4 Reserved.

Register Address: 1AEH, 430 MSR_TURBO_RATIO_LIMIT1

Maximum Ratio Limit of Turbo Mode

R/O if MSR_PLATFORM_INFO.[28] = 0, and R/W if MSR_PLATFORM_INFO.[28] = 1.

Package

7:0 Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active. 

Package

15:8 Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active. 

Package

23:16 Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

Package

31:24 Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

Package

Table 2-27.  Additional MSRs Supported by the Intel® Xeon® Processor E7 v2 Family with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_3EH  (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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39:32 Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

Package

47:40 Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

Package

55:48 Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

Package

62:56 Reserved.

63 Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in 
MSR_TURBO_RATIO_LIMIT and MSR_TURBO_RATIO_LIMIT1.

If 0, the processor uses factory-set configuration (Default).

Package

Register Address: 29DH, 669 IA32_MC29_CTL2

See Table 2-2. Package

Register Address: 29EH, 670 IA32_MC30_CTL2

See Table 2-2. Package

Register Address: 29FH, 671 IA32_MC31_CTL2

See Table 2-2. Package

Register Address: 3F1H, 1009 IA32_PEBS_ENABLE (MSR_PEBS_ENABLE)

See Section 21.3.1.1.1, “Processor Event Based Sampling (PEBS).” Thread

n:0 Enable PEBS on IA32_PMCx. (R/W)

31:n+1 Reserved.

32+m:32 Enable Load Latency on IA32_PMCx. (R/W)

63:33+m Reserved.

Register Address: 41BH, 1051 IA32_MC6_MISC

Misc MAC Information of Integrated I/O (R/O) 

See Section 17.3.2.4.

Package

5:0 Recoverable Address LSB

8:6 Address Mode

15:9 Reserved.

31:16 PCI Express Requestor ID

39:32 PCI Express Segment Number

63:32 Reserved.

Register Address: 474H, 1140 IA32_MC29_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC29 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 475H, 1141 IA32_MC29_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC29 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Table 2-27.  Additional MSRs Supported by the Intel® Xeon® Processor E7 v2 Family with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_3EH  (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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2.12.3  Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 v2 and E7 v2 Families
Intel Xeon Processor E5 v2 and E7 v2 families are based on the Ivy Bridge-E microarchitecture. The MSR-based 
uncore PMU interfaces are listed in Table 2-24 and Table 2-28. For complete detail of the uncore PMU, refer to Intel 

Register Address: 476H, 1142 IA32_MC29_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC29 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 477H, 1143 IA32_MC29_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC29 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 478H, 1144 IA32_MC30_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC30 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 479H, 1145 IA32_MC30_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC30 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 47AH, 1146 IA32_MC30_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC30 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 47BH, 1147 IA32_MC30_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC30 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 47CH, 1148 IA32_MC31_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC31 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 47DH, 1149 IA32_MC31_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC31 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 47EH, 1150 IA32_MC31_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC31 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

Register Address: 47FH, 1147 IA32_MC31_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC31 reports MC errors from a specific CBo (core broadcast) and its corresponding slice of L3.

Package

See Table 2-20, Table 2-26 for other MSR definitions applicable to Intel Xeon processor E7 v2 with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_3AH. 

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the 

factory-set configuration is dependent on features specific to the processor and the platform.

Table 2-27.  Additional MSRs Supported by the Intel® Xeon® Processor E7 v2 Family with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_3EH  (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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Xeon Processor E5 v2 Product Family Uncore Performance Monitoring Guide. These processors have a CPUID 
Signature DisplayFamily_DisplayModel value of 06_3EH.

Table 2-28.  Uncore PMU MSRs in the Intel® Xeon® Processor E5 v2 and E7 v2 Families

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: C00H, 3072 MSR_PMON_GLOBAL_CTL

Uncore Perfmon Per-Socket Global Control Package

Register Address: C01H, 3073 MSR_PMON_GLOBAL_STATUS

Uncore Perfmon Per-Socket Global Status Package

Register Address: C06H, 3078 MSR_PMON_GLOBAL_CONFIG

Uncore Perfmon Per-Socket Global Configuration Package

Register Address: C15H, 3093 MSR_U_PMON_BOX_STATUS

Uncore U-box Perfmon U-Box Wide Status Package

Register Address: C35H, 3125 MSR_PCU_PMON_BOX_STATUS

Uncore PCU Perfmon Box Wide Status Package

Register Address: D1AH, 3354 MSR_C0_PMON_BOX_FILTER1

Uncore C-Box 0 Perfmon Box Wide Filter1 Package

Register Address: D3AH, 3386 MSR_C1_PMON_BOX_FILTER1

Uncore C-Box 1 Perfmon Box Wide Filter1 Package

Register Address: D5AH, 3418 MSR_C2_PMON_BOX_FILTER1

Uncore C-Box 2 Perfmon Box Wide Filter1 Package

Register Address: D7AH, 3450 MSR_C3_PMON_BOX_FILTER1

Uncore C-Box 3 Perfmon Box Wide Filter1 Package

Register Address: D9AH, 3482 MSR_C4_PMON_BOX_FILTER1

Uncore C-Box 4 Perfmon Box Wide Filter1 Package

Register Address: DBAH, 3514 MSR_C5_PMON_BOX_FILTER1

Uncore C-Box 5 Perfmon Box Wide Filter1 Package

Register Address: DDAH, 3546 MSR_C6_PMON_BOX_FILTER1

Uncore C-Box 6 Perfmon Box Wide Filter1 Package

Register Address: DFAH, 3578 MSR_C7_PMON_BOX_FILTER1

Uncore C-Box 7 Perfmon Box Wide Filter1 Package

Register Address: E04H, 3588 MSR_C8_PMON_BOX_CTL

Uncore C-Box 8 Perfmon Local Box Wide Control Package

Register Address: E10H, 3600 MSR_C8_PMON_EVNTSEL0

Uncore C-Box 8 Perfmon Event Select for C-Box 8 Counter 0 Package

Register Address: E11H, 3601 MSR_C8_PMON_EVNTSEL1

Uncore C-Box 8 Perfmon Event Select for C-Box 8 Counter 1 Package

Register Address: E12H, 3602 MSR_C8_PMON_EVNTSEL2

Uncore C-Box 8 Perfmon Event Select for C-Box 8 Counter 2 Package

Register Address: E13H, 3603 MSR_C8_PMON_EVNTSEL3
Vol. 4 2-277



MODEL-SPECIFIC REGISTERS (MSRS)
Uncore C-Box 8 Perfmon Event Select for C-Box 8 Counter 3 Package

Register Address: E14H, 3604 MSR_C8_PMON_BOX_FILTER

Uncore C-Box 8 Perfmon Box Wide Filter Package

Register Address: E16H, 3606 MSR_C8_PMON_CTR0

Uncore C-Box 8 Perfmon Counter 0 Package

Register Address: E17H, 3607 MSR_C8_PMON_CTR1

Uncore C-Box 8 Perfmon Counter 1 Package

Register Address: E18H, 3608 MSR_C8_PMON_CTR2

Uncore C-Box 8 Perfmon Counter 2 Package

Register Address: E19H, 3609 MSR_C8_PMON_CTR3

Uncore C-Box 8 Perfmon Counter 3 Package

Register Address: E1AH, 3610 MSR_C8_PMON_BOX_FILTER1

Uncore C-Box 8 Perfmon Box Wide Filter1 Package

Register Address: E24H, 3620 MSR_C9_PMON_BOX_CTL

Uncore C-Box 9 Perfmon Local Box Wide Control Package

Register Address: E30H, 3632 MSR_C9_PMON_EVNTSEL0

Uncore C-Box 9 Perfmon Event Select for C-box 9 Counter 0 Package

Register Address: E31H, 3633 MSR_C9_PMON_EVNTSEL1

Uncore C-Box 9 Perfmon Event Select for C-box 9 Counter 1 Package

Register Address: E32H, 3634 MSR_C9_PMON_EVNTSEL2

Uncore C-Box 9 Perfmon Event Select for C-box 9 Counter 2 Package

Register Address: E33H, 3635 MSR_C9_PMON_EVNTSEL3

Uncore C-Box 9 Perfmon Event Select for C-box 9 Counter 3 Package

Register Address: E34H, 3636 MSR_C9_PMON_BOX_FILTER

Uncore C-Box 9 Perfmon Box Wide Filter Package

Register Address: E36H, 3638 MSR_C9_PMON_CTR0

Uncore C-Box 9 Perfmon Counter 0 Package

Register Address: E37H, 3639 MSR_C9_PMON_CTR1

Uncore C-Box 9 Perfmon Counter 1 Package

Register Address: E38H, 3640 MSR_C9_PMON_CTR2

Uncore C-Box 9 Perfmon Counter 2 Package

Register Address: E39H, 3641 MSR_C9_PMON_CTR3

Uncore C-Box 9 Perfmon Counter 3 Package

Register Address: E3AH, 3642 MSR_C9_PMON_BOX_FILTER1

Uncore C-Box 9 Perfmon Box Wide Filter1 Package

Register Address: E44H, 3652 MSR_C10_PMON_BOX_CTL

Uncore C-Box 10 Perfmon Local Box Wide Control Package

Table 2-28.  Uncore PMU MSRs in the Intel® Xeon® Processor E5 v2 and E7 v2 Families (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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Register Address: E50H, 3664 MSR_C10_PMON_EVNTSEL0

Uncore C-Box 10 Perfmon Event Select for C-Box 10 Counter 0 Package

Register Address: E51H, 3665 MSR_C10_PMON_EVNTSEL1

Uncore C-Box 10 Perfmon Event Select for C-Box 10 Counter 1 Package

Register Address: E52H, 3666 MSR_C10_PMON_EVNTSEL2

Uncore C-Box 10 Perfmon Event Select for C-Box 10 Counter 2 Package

Register Address: E53H, 3667 MSR_C10_PMON_EVNTSEL3

Uncore C-Box 10 Perfmon Event Select for C-Box 10 Counter 3 Package

Register Address: E54H, 3668 MSR_C10_PMON_BOX_FILTER

Uncore C-Box 10 Perfmon Box Wide Filter Package

Register Address: E56H, 3670 MSR_C10_PMON_CTR0

Uncore C-Box 10 Perfmon Counter 0 Package

Register Address: E57H, 3671 MSR_C10_PMON_CTR1

Uncore C-Box 10 Perfmon Counter 1 Package

Register Address: E58H, 3672 MSR_C10_PMON_CTR2

Uncore C-Box 10 Perfmon Counter 2 Package

Register Address: E59H, 3673 MSR_C10_PMON_CTR3

Uncore C-Box 10 Perfmon Counter 3 Package

Register Address: E5AH, 3674 MSR_C10_PMON_BOX_FILTER1

Uncore C-Box 10 Perfmon Box Wide Filter1 Package

Register Address: E64H, 3684 MSR_C11_PMON_BOX_CTL

Uncore C-Box 11 Perfmon Local Box Wide Control Package

Register Address: E70H, 3696 MSR_C11_PMON_EVNTSEL0

Uncore C-Box 11 Perfmon Event Select for C-Box 11 Counter 0 Package

Register Address: E71H, 3697 MSR_C11_PMON_EVNTSEL1

Uncore C-Box 11 Perfmon Event Select for C-Box 11 Counter 1 Package

Register Address: E72H, 3698 MSR_C11_PMON_EVNTSEL2

Uncore C-Box 11 Perfmon Event Select for C-Box 11 Counter 2 Package

Register Address: E73H, 3699 MSR_C11_PMON_EVNTSEL3

Uncore C-Box 11 Perfmon Event Select for C-Box 11 Counter 3 Package

Register Address: E74H, 3700 MSR_C11_PMON_BOX_FILTER

Uncore C-Box 11 Perfmon Box Wide Filter Package

Register Address: E76H, 3702 MSR_C11_PMON_CTR0

Uncore C-Box 11 Perfmon Counter 0 Package

Register Address: E77H, 3703 MSR_C11_PMON_CTR1

Uncore C-Box 11 Perfmon Counter 1 Package

Register Address: E78H, 3704 MSR_C11_PMON_CTR2

Table 2-28.  Uncore PMU MSRs in the Intel® Xeon® Processor E5 v2 and E7 v2 Families (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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Uncore C-Box 11 Perfmon Counter 2 Package

Register Address: E79H, 3705 MSR_C11_PMON_CTR3

Uncore C-Box 11 Perfmon Counter 3 Package

Register Address: E7AH, 3706 MSR_C11_PMON_BOX_FILTER1

Uncore C-Box 11 Perfmon Box Wide Filter1 Package

Register Address: E84H, 3716 MSR_C12_PMON_BOX_CTL

Uncore C-Box 12 Perfmon Local Box Wide Control Package

Register Address: E90H, 3728 MSR_C12_PMON_EVNTSEL0

Uncore C-Box 12 Perfmon Event Select for C-Box 12 Counter 0 Package

Register Address: E91H, 3729 MSR_C12_PMON_EVNTSEL1

Uncore C-Box 12 Perfmon Event Select for C-Box 12 Counter 1 Package

Register Address: E92H, 3730 MSR_C12_PMON_EVNTSEL2

Uncore C-Box 12 Perfmon Event Select for C-Box 12 Counter 2 Package

Register Address: E93H, 3731 MSR_C12_PMON_EVNTSEL3

Uncore C-Box 12 Perfmon Event Select for C-Box 12 Counter 3 Package

Register Address: E94H, 3732 MSR_C12_PMON_BOX_FILTER

Uncore C-Box 12 Perfmon Box Wide Filter Package

Register Address: E96H, 3734 MSR_C12_PMON_CTR0

Uncore C-Box 12 Perfmon Counter 0 Package

Register Address: E97H, 3735 MSR_C12_PMON_CTR1

Uncore C-Box 12 Perfmon Counter 1 Package

Register Address: E98H, 3736 MSR_C12_PMON_CTR2

Uncore C-Box 12 Perfmon Counter 2 Package

Register Address: E99H, 3737 MSR_C12_PMON_CTR3

Uncore C-Box 12 Perfmon Counter 3 Package

Register Address: E9AH, 3738 MSR_C12_PMON_BOX_FILTER1

Uncore C-Box 12 Perfmon Box Wide Filter1 Package

Register Address: EA4H, 3748 MSR_C13_PMON_BOX_CTL

Uncore C-Box 13 Perfmon Local Box Wide Control Package

Register Address: EB0H, 3760 MSR_C13_PMON_EVNTSEL0

Uncore C-Box 13 Perfmon Event Select for C-Box 13 Counter 0 Package

Register Address: EB1H, 3761 MSR_C13_PMON_EVNTSEL1

Uncore C-Box 13 Perfmon Event Select for C-Box 13 Counter 1 Package

Register Address: EB2H, 3762 MSR_C13_PMON_EVNTSEL2

Uncore C-Box 13 Perfmon Event Select for C-Box 13 Counter 2 Package

Register Address: EB3H, 3763 MSR_C13_PMON_EVNTSEL3

Uncore C-Box 13 Perfmon Event Select for C-Box 13 Counter 3 Package

Table 2-28.  Uncore PMU MSRs in the Intel® Xeon® Processor E5 v2 and E7 v2 Families (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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Register Address: EB4H, 3764 MSR_C13_PMON_BOX_FILTER

Uncore C-Box 13 Perfmon Box Wide Filter Package

Register Address: EB6H, 3766 MSR_C13_PMON_CTR0

Uncore C-Box 13 Perfmon Counter 0 Package

Register Address: EB7H, 3767 MSR_C13_PMON_CTR1

Uncore C-Box 13 Perfmon Counter 1 Package

Register Address: EB8H, 3768 MSR_C13_PMON_CTR2

Uncore C-Box 13 Perfmon Counter 2 Package

Register Address: EB9H, 3769 MSR_C13_PMON_CTR3

Uncore C-Box 13 Perfmon Counter 3 Package

Register Address: EBAH, 3770 MSR_C13_PMON_BOX_FILTER1

Uncore C-Box 13 Perfmon Box Wide Filter1 Package

Register Address: EC4H, 3780 MSR_C14_PMON_BOX_CTL

Uncore C-Box 14 Perfmon Local Box Wide Control Package

Register Address: ED0H, 3792 MSR_C14_PMON_EVNTSEL0

Uncore C-Box 14 Perfmon Event Select for C-Box 14 Counter 0 Package

Register Address: ED1H, 3793 MSR_C14_PMON_EVNTSEL1

Uncore C-Box 14 Perfmon Event Select for C-Box 14 Counter 1 Package

Register Address: ED2H, 3794 MSR_C14_PMON_EVNTSEL2

Uncore C-Box 14 Perfmon Event Select for C-Box 14 Counter 2 Package

Register Address: ED3H, 3795 MSR_C14_PMON_EVNTSEL3

Uncore C-Box 14 Perfmon Event Select for C-Box 14 Counter 3 Package

Register Address: ED4H, 3796 MSR_C14_PMON_BOX_FILTER

Uncore C-Box 14 Perfmon Box Wide Filter Package

Register Address: ED6H, 3798 MSR_C14_PMON_CTR0

Uncore C-Box 14 Perfmon Counter 0 Package

Register Address: ED7H, 3799 MSR_C14_PMON_CTR1

Uncore C-Box 14 Perfmon Counter 1 Package

Register Address: ED8H, 3800 MSR_C14_PMON_CTR2

Uncore C-Box 14 Perfmon Counter 2 Package

Register Address: ED9H, 3801 MSR_C14_PMON_CTR3

Uncore C-Box 14 Perfmon Counter 3 Package

Register Address: EDAH, 3802 MSR_C14_PMON_BOX_FILTER1

Uncore C-Box 14 Perfmon Box Wide Filter1 Package

Table 2-28.  Uncore PMU MSRs in the Intel® Xeon® Processor E5 v2 and E7 v2 Families (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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2.13 MSRS IN THE 4TH GENERATION INTEL® CORE™ PROCESSORS BASED ON 
HASWELL MICROARCHITECTURE

The 4th generation Intel® Core™ processor family and the Intel® Xeon® processor E3-1200v3 product family 
(based on Haswell microarchitecture), with a CPUID Signature DisplayFamily_DisplayModel value of 06_3CH, 
06_45H, or 06_46H, support the MSR interfaces listed in Table 2-20, Table 2-21, Table 2-22, and Table 2-29. For an 
MSR listed in Table 2-20 that also appears in Table 2-29, Table 2-29 supersedes Table 2-20.

The MSRs listed in Table 2-29 also apply to processors based on Haswell-E microarchitecture (see Section 2.14).

Table 2-29.  Additional MSRs Supported by Processors Based on the Haswell and Haswell-E Microarchitectures

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 3BH, 59 IA32_TSC_ADJUST

Per-Logical-Processor TSC ADJUST (R/W)

See Table 2-2.

Thread

Register Address: CEH, 206 MSR_PLATFORM_INFO

Platform Information

Contains power management and other model specific features enumeration. See http://biosbits.org.

Package

7:0 Reserved.

15:8 Maximum Non-Turbo Ratio (R/O) 

This is the ratio of the frequency that invariant TSC runs at. Frequency = 
ratio * 100 MHz.

Package

27:16 Reserved.

28 Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limit for Turbo mode is 
enabled. When set to 0, indicates Programmable Ratio Limit for Turbo 
mode is disabled.

Package

29 Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limit for Turbo mode is programmable. 
When set to 0, indicates TDP Limit for Turbo mode is not programmable.

Package

31:30 Reserved.

32 Low Power Mode Support (LPM) (R/O) 

When set to 1, indicates that LPM is supported. When set to 0, indicates 
LPM is not supported.

Package

34:33 Number of ConfigTDP Levels (R/O) 

00: Only Base TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

03: Reserved.

Package

39:35 Reserved.

47:40 Maximum Efficiency Ratio (R/O) 

This is the minimum ratio (maximum efficiency) that the processor can 
operate, in units of 100MHz.

Package

55:48 Minimum Operating Ratio (R/O) 

Contains the minimum supported operating ratio in units of 100 MHz.

Package

63:56 Reserved.
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Register Address: 186H, 390 IA32_PERFEVTSEL0

Performance Event Select for Counter 0 (R/W)

Supports all fields described inTable 2-2 and the fields below.

Thread

32 IN_TX: See Section 21.3.6.5.1.

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to 
prevent incorrect results.

Register Address: 187H, 391 IA32_PERFEVTSEL1

Performance Event Select for Counter 1 (R/W)

Supports all fields described inTable 2-2 and the fields below.

Thread

32 IN_TX: See Section 21.3.6.5.1.

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to 
prevent incorrect results.

Register Address: 188H, 392 IA32_PERFEVTSEL2

Performance Event Select for Counter 2 (R/W)

Supports all fields described inTable 2-2 and the fields below.

Thread

32 IN_TX: See Section 21.3.6.5.1.

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to 
prevent incorrect results.

33 IN_TXCP: See Section 21.3.6.5.1.

When IN_TXCP=1 & IN_TX=1 and in sampling, a spurious PMI may occur 
and transactions may continuously abort near overflow conditions. 
Software should favor using IN_TXCP for counting over sampling. If 
sampling, software should use large “sample-after” value after clearing 
the counter configured to use IN_TXCP and also always reset the counter 
even when no overflow condition was reported. 

Register Address: 189H, 393 IA32_PERFEVTSEL3

Performance Event Select for Counter 3 (R/W)

Supports all fields described inTable 2-2 and the fields below.

Thread

32 IN_TX: See Section 21.3.6.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to 
prevent incorrect results.

Register Address: 1C8H, 456 MSR_LBR_SELECT

Last Branch Record Filtering Select Register (R/W) Thread

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

Table 2-29.  Additional MSRs Supported by Processors Based on the Haswell and Haswell-E Microarchitectures 

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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8 FAR_BRANCH

9 EN_CALL_STACK

63:9 Reserved.

Register Address: 1D9H, 473 IA32_DEBUGCTL

Debug Control (R/W) 

See Table 2-2.

Thread

0 LBR: Last Branch Record

1 BTF

5:2 Reserved.

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS Buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

15 RTM_DEBUG

63:15 Reserved.

Register Address: 491H, 1169 IA32_VMX_VMFUNC

Capability Reporting Register of VM-Function Controls (R/O)

See Table 2-2.

Thread

Register Address: 60BH, 1548 MSR_PKGC_IRTL1

Package C6/C7 Interrupt Response Limit 1 (R/W) 

This MSR defines the interrupt response time limit used by the processor to manage a transition to a package C6 or 
C7 state. The latency programmed in this register is for the shorter-latency sub C-states used by an MWAIT hint to a 
C6 or C7 state.

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

9:0 Interrupt Response Time Limit (R/W) 

Specifies the limit that should be used to decide if the package should be 
put into a package C6 or C7 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response time 
limit. See Table 2-20 for supported time unit encodings.

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used by 
the processor for package C-sate management. 

Table 2-29.  Additional MSRs Supported by Processors Based on the Haswell and Haswell-E Microarchitectures 

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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63:16 Reserved.

Register Address: 60CH, 1548 MSR_PKGC_IRTL2

Package C6/C7 Interrupt Response Limit 2 (R/W) 

This MSR defines the interrupt response time limit used by the processor to manage a transition to a package C6 or 
C7 state. The latency programmed in this register is for the longer-latency sub C-states used by an MWAIT hint to a C6 
or C7 state.

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

9:0 Interrupt response time limit (R/W) 

Specifies the limit that should be used to decide if the package should be 
put into a package C6 or C7 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response time 
limit. See Table 2-20 for supported time unit encodings.

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used by 
the processor for package C-sate management. 

63:16 Reserved.

Register Address: 613H, 1555 MSR_PKG_PERF_STATUS

PKG Perf Status (R/O) 

See Section 16.10.3, “Package RAPL Domain.”

Package

Register Address: 619H, 1561 MSR_DRAM_ENERGY_STATUS

DRAM Energy Status (R/O) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 61BH, 1563 MSR_DRAM_PERF_STATUS

DRAM Performance Throttling Status (R/O) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 648H, 1608 MSR_CONFIG_TDP_NOMINAL

Base TDP Ratio (R/O) Package

7:0 Config_TDP_Base

Base TDP level ratio to be used for this specific processor (in units of 100 
MHz). 

63:8 Reserved.

Register Address: 649H, 1609 MSR_CONFIG_TDP_LEVEL1

ConfigTDP Level 1 Ratio and Power Level (R/O) Package

14:0 PKG_TDP_LVL1

Power setting for ConfigTDP Level 1.

15 Reserved.

23:16 Config_TDP_LVL1_Ratio

ConfigTDP level 1 ratio to be used for this specific processor. 

Table 2-29.  Additional MSRs Supported by Processors Based on the Haswell and Haswell-E Microarchitectures 

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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31:24 Reserved.

46:32 PKG_MAX_PWR_LVL1

Max Power setting allowed for ConfigTDP Level 1.

62:47 PKG_MIN_PWR_LVL1

MIN Power setting allowed for ConfigTDP Level 1.

63 Reserved.

Register Address: 64AH, 1610 MSR_CONFIG_TDP_LEVEL2

ConfigTDP Level 2 Ratio and Power Level (R/O) Package

14:0 PKG_TDP_LVL2

Power setting for ConfigTDP Level 2.

15 Reserved.

23:16 Config_TDP_LVL2_Ratio

ConfigTDP level 2 ratio to be used for this specific processor. 

31:24 Reserved.

46:32 PKG_MAX_PWR_LVL2

Max Power setting allowed for ConfigTDP Level 2.

62:47 PKG_MIN_PWR_LVL2

MIN Power setting allowed for ConfigTDP Level 2.

63 Reserved.

Register Address: 64BH, 1611 MSR_CONFIG_TDP_CONTROL

ConfigTDP Control (R/W) Package

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field. 

30:2 Reserved.

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is locked until a reset. 

63:32 Reserved.

Register Address: 64CH, 1612 MSR_TURBO_ACTIVATION_RATIO

ConfigTDP Control (R/W) Package

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field. 

30:8 Reserved.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a reset. 

63:32 Reserved.

Register Address: C80H, 3200 IA32_DEBUG_INTERFACE

Silicon Debug Feature Control (R/W)

See Table 2-2.

Package

Table 2-29.  Additional MSRs Supported by Processors Based on the Haswell and Haswell-E Microarchitectures 

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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2.13.1  MSRs in the 4th Generation Intel® Core™ Processor Family Based on Haswell 
Microarchitecture

Table 2-30 lists model-specific registers (MSRs) that are specific to the 4th generation Intel® Core™ processor 
family and the Intel® Xeon® processor E3-1200 v3 product family (based on Haswell microarchitecture). These 
processors have a CPUID Signature DisplayFamily_DisplayModel value of 06_3CH, 06_45H, or 06_46H; see Table 
2-1. 

Table 2-30.  MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: E2H, 226 MSR_PKG_CST_CONFIG_CONTROL

C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-states. See http://biosbits.org.

Core

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name 
(consuming the least power) for the package. The default is set 
as factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

Package C states C7 are not available to processors with a 
CPUID Signature DisplayFamily_DisplayModel value of 06_3CH.

9:4 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved.

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved.

Register Address: 17DH, 381 MSR_SMM_MCA_CAP

Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in SMM.

Thread

57:0 Reserved.

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1, indicates that the SMM code access restriction is 
supported and the MSR_SMM_FEATURE_CONTROL is 
supported.
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59 Long_Flow_Indication (SMM-RO)

If set to 1, indicates that the SMM long flow indicator is 
supported and the MSR_SMM_DELAYED is supported.

63:60 Reserved.

Register Address: 1ADH, 429 MSR_TURBO_RATIO_LIMIT

Maximum Ratio Limit of Turbo Mode

R/O if MSR_PLATFORM_INFO.[28] = 0, and R/W if MSR_PLATFORM_INFO.[28] = 1.

Package

7:0 Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

Package

15:8 Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

Package

23:16 Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

Package

31:24 Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

Package

63:32 Reserved.

Register Address: 391H, 913 MSR_UNC_PERF_GLOBAL_CTRL

Uncore PMU Global Control Package

0 Core 0 select.

1 Core 1 select.

2 Core 2 select.

3 Core 3 select.

18:4 Reserved.

29 Enable all uncore counters.

30 Enable wake on PMI.

31 Enable Freezing counter when overflow.

63:32 Reserved.

Register Address: 392H, 914 MSR_UNC_PERF_GLOBAL_STATUS

Uncore PMU Main Status Package

0 Fixed counter overflowed.

1 An ARB counter overflowed.

2 Reserved.

3 A CBox counter overflowed (on any slice).

63:4 Reserved.

Register Address: 394H, 916 MSR_UNC_PERF_FIXED_CTRL

Uncore Fixed Counter Control (R/W) Package

19:0 Reserved.

20 Enable overflow propagation.

21 Reserved.

Table 2-30.  MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture) (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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22 Enable counting.

63:23 Reserved.

Register Address: 395H, 917 MSR_UNC_PERF_FIXED_CTR

Uncore Fixed Counter Package

47:0 Current count.

63:48 Reserved.

Register Address: 396H, 918 MSR_UNC_CBO_CONFIG

Uncore C-Box Configuration Information (R/O) Package

3:0 Encoded number of C-Box, derive value by “-1“.

63:4 Reserved.

Register Address: 3B0H, 946 MSR_UNC_ARB_PERFCTR0

Uncore Arb Unit, Performance Counter 0 Package

Register Address: 3B1H, 947 MSR_UNC_ARB_PERFCTR1

Uncore Arb Unit, Performance Counter 1 Package

Register Address: 3B2H, 944 MSR_UNC_ARB_PERFEVTSEL0

Uncore Arb Unit, Counter 0 Event Select MSR Package

Register Address: 3B3H, 945 MSR_UNC_ARB_PERFEVTSEL1

Uncore Arb Unit, Counter 1 Event Select MSR Package

Register Address: 391H, 913 MSR_UNC_PERF_GLOBAL_CTRL

Uncore PMU Global Control Package

0 Core 0 select.

1 Core 1 select.

2 Core 2 select.

3 Core 3 select.

18:4 Reserved.

29 Enable all uncore counters.

30 Enable wake on PMI.

31 Enable Freezing counter when overflow.

63:32 Reserved.

Register Address: 395H, 917 MSR_UNC_PERF_FIXED_CTR

Uncore Fixed Counter Package

47:0 Current count.

63:48 Reserved.

Register Address: 3B3H, 945 MSR_UNC_ARB_PERFEVTSEL1

Uncore Arb Unit, Counter 1 Event Select MSR Package

Register Address: 4E0H, 1248 MSR_SMM_FEATURE_CONTROL

Enhanced SMM Feature Control (SMM-RW)

Reports SMM capability Enhancement. Accessible only while in SMM.

Package

Table 2-30.  MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture) (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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0 Lock (SMM-RWO)

When set to ‘1’ locks this register from further changes.

1 Reserved.

2 SMM_Code_Chk_En (SMM-RW)

This control bit is available only if MSR_SMM_MCA_CAP[58] == 
1. When set to ‘0’ (default) none of the logical processors are 
prevented from executing SMM code outside the ranges defined 
by the SMRR. 

When set to ‘1’ any logical processor in the package that 
attempts to execute SMM code not within the ranges defined 
by the SMRR will assert an unrecoverable MCE.

63:3 Reserved.

Register Address: 4E2H, 1250 MSR_SMM_DELAYED

SMM Delayed (SMM-RO)

Reports the interruptible state of all logical processors in the package. Available only while in SMM and 
MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 1.

Package

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its state in a long flow 
of internal operation which delays servicing an interrupt. The 
corresponding bit will be set at the start of long events such as: 
Microcode Update Load, C6, WBINVD, Ratio Change, Throttle. 

The bit is automatically cleared at the end of each long event. 
The reset value of this field is 0.

Only bit positions below N = CPUID.(EAX=0BH, 
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved.

Register Address: 4E3H, 1251 MSR_SMM_BLOCKED

SMM Blocked (SMM-RO)

Reports the blocked state of all logical processors in the package. Available only while in SMM.

Package

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its blocked state to 
service an SMI. The corresponding bit will be set if the logical 
processor is in one of the following states: Wait For SIPI or 
SENTER Sleep. 

The reset value of this field is 0FFFH.

Only bit positions below N = CPUID.(EAX=0BH, 
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved.

Register Address: 606H, 1542 MSR_RAPL_POWER_UNIT

Unit Multipliers Used in RAPL Interfaces (R/O) Package

3:0 Power Units

See Section 16.10.1, “RAPL Interfaces.”

Package

7:4 Reserved. Package

Table 2-30.  MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture) (Contd.)
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12:8 Energy Status Units

Energy related information (in Joules) is based on the multiplier, 
1/2^ESU; where ESU is an unsigned integer represented by bits 
12:8. Default value is 0EH (or 61 micro-joules).

Package

15:13 Reserved. Package

19:16 Time Units

See Section 16.10.1, “RAPL Interfaces.”

Package

63:20 Reserved.

Register Address: 639H, 1593 MSR_PP0_ENERGY_STATUS

PP0 Energy Status (R/O) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

Register Address: 640H, 1600 MSR_PP1_POWER_LIMIT

PP1 RAPL Power Limit Control (R/W) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

Register Address: 641H, 1601 MSR_PP1_ENERGY_STATUS

PP1 Energy Status (R/O) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

Register Address: 642H, 1602 MSR_PP1_POLICY

PP1 Balance Policy (R/W) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

Register Address: 690H, 1680 MSR_CORE_PERF_LIMIT_REASONS

Indicator of Frequency Clipping in Processor Cores (R/W)

(Frequency refers to processor core frequency.)

Package

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the 
operating system request due to assertion of external 
PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system 
request due to Processor Graphics driver override.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system 
request because the processor has detected that utilization is 
low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

Table 2-30.  MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture) (Contd.)
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8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system 
request due to electrical design point constraints (e.g., 
maximum electrical current consumption).

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating system 
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL2.

12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system 
request due to multi-core turbo limits.

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system 
request due to Turbo transition attenuation. This prevents 
performance degradation due to frequent operating ratio 
changes.

15:14 Reserved.

16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has asserted 
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log 

When set, indicates that the Thermal Status bit has asserted 
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19:18 Reserved.

20 Graphics Driver Log 

When set, indicates that the Graphics Driver Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

21 Autonomous Utilization-Based Frequency Control Log 

When set, indicates that the Autonomous Utilization-Based 
Frequency Control Status bit has asserted since the log bit was 
last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 2-30.  MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell Microarchitecture) (Contd.)
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23 Reserved.

24 Electrical Design Point Log 

When set, indicates that the EDP Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Core Power Limiting Log 

When set, indicates that the Core Power Limiting Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

26 Package-Level PL1 Power Limiting Log 

When set, indicates that the Package Level PL1 Power Limiting 
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting 
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation 
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:30 Reserved.

Register Address: 6B0H, 1712 MSR_GRAPHICS_PERF_LIMIT_REASONS

Indicator of Frequency Clipping in the Processor Graphics (R/W)

(Frequency refers to processor graphics frequency.)

Package

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system 
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system 
request due to Processor Graphics driver override.

5 Autonomous Utilization-Based Frequency Control Status (R0) 

When set, frequency is reduced below the operating system 
request because the processor has detected that utilization is 
low.
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6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system 
request due to electrical design point constraints (e.g., 
maximum electrical current consumption).

9 Graphics Power Limiting Status (R0)

When set, frequency is reduced below the operating system 
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL2.

15:12 Reserved.

16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has asserted 
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log 

When set, indicates that the Thermal Status bit has asserted 
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19:18 Reserved.

20 Graphics Driver Log 

When set, indicates that the Graphics Driver Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

21 Autonomous Utilization-Based Frequency Control Log 

When set, indicates that the Autonomous Utilization-Based 
Frequency Control Status bit has asserted since the log bit was 
last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.
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24 Electrical Design Point Log 

When set, indicates that the EDP Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Core Power Limiting Log 

When set, indicates that the Core Power Limiting Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

26 Package-Level PL1 Power Limiting Log 

When set, indicates that the Package Level PL1 Power Limiting 
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting 
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation 
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:30 Reserved.

Register Address: 6B1H, 1713 MSR_RING_PERF_LIMIT_REASONS

Indicator of Frequency Clipping in the Ring Interconnect (R/W)

(Frequency refers to ring interconnect in the uncore.)

Package

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system 
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal event.

5:2 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system 
request due to electrical design point constraints (e.g., 
maximum electrical current consumption).
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9 Reserved.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL2.

15:12 Reserved.

16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has asserted 
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log 

When set, indicates that the Thermal Status bit has asserted 
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19:18 Reserved.

20 Graphics Driver Log 

When set, indicates that the Graphics Driver Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

21 Autonomous Utilization-Based Frequency Control Log 

When set, indicates that the Autonomous Utilization-Based 
Frequency Control Status bit has asserted since the log bit was 
last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log 

When set, indicates that the EDP Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Core Power Limiting Log 

When set, indicates that the Core Power Limiting Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

26 Package-Level PL1 Power Limiting Log 

When set, indicates that the Package Level PL1 Power Limiting 
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.
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27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting 
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation 
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:30 Reserved.

Register Address: 700H, 1792 MSR_UNC_CBO_0_PERFEVTSEL0

Uncore C-Box 0, Counter 0 Event Select MSR Package

Register Address: 701H, 1793 MSR_UNC_CBO_0_PERFEVTSEL1

Uncore C-Box 0, Counter 1 Event Select MSR Package

Register Address: 706H, 1798 MSR_UNC_CBO_0_PERFCTR0

Uncore C-Box 0, Performance Counter 0 Package

Register Address: 707H, 1799 MSR_UNC_CBO_0_PERFCTR1

Uncore C-Box 0, Performance Counter 1 Package

Register Address: 710H, 1808 MSR_UNC_CBO_1_PERFEVTSEL0

Uncore C-Box 1, Counter 0 Event Select MSR Package

Register Address: 711H, 1809 MSR_UNC_CBO_1_PERFEVTSEL1

Uncore C-Box 1, Counter 1 Event Select MSR Package

Register Address: 716H, 1814 MSR_UNC_CBO_1_PERFCTR0

Uncore C-Box 1, Performance Counter 0 Package

Register Address: 717H, 1815 MSR_UNC_CBO_1_PERFCTR1

Uncore C-Box 1, Performance Counter 1 Package

Register Address: 720H, 1824 MSR_UNC_CBO_2_PERFEVTSEL0

Uncore C-Box 2, Counter 0 Event Select MSR Package

Register Address: 721H, 1824 MSR_UNC_CBO_2_PERFEVTSEL1

Uncore C-Box 2, Counter 1 Event Select MSR Package

Register Address: 726H, 1830 MSR_UNC_CBO_2_PERFCTR0

Uncore C-Box 2, Performance Counter 0 Package

Register Address: 727H, 1831 MSR_UNC_CBO_2_PERFCTR1

Uncore C-Box 2, Performance Counter 1 Package

Register Address: 730H, 1840 MSR_UNC_CBO_3_PERFEVTSEL0

Uncore C-Box 3, Counter 0 Event Select MSR Package
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2.13.2  Additional Residency MSRs Supported in 4th Generation Intel® Core™ Processors
The 4th generation Intel® Core™ processor family (based on Haswell microarchitecture) with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_45H supports the MSR interfaces listed in Table 2-20, Table 2-21, Table 
2-29, Table 2-30, and Table 2-31. 

Register Address: 731H, 1841 MSR_UNC_CBO_3_PERFEVTSEL1

Uncore C-Box 3, Counter 1 Event Select MSR Package

Register Address: 736H, 1846 MSR_UNC_CBO_3_PERFCTR0

Uncore C-Box 3, Performance Counter 0 Package

Register Address: 737H, 1847 MSR_UNC_CBO_3_PERFCTR1

Uncore C-Box 3, Performance Counter 1 Package

See Table 2-20, Table 2-21, Table 2-22, Table 2-25, and Table 2-29 for other MSR definitions applicable to processors with a CPUID 
Signature DisplayFamily_DisplayModel value of 063CH or 06_46H. 

Table 2-31.  Additional Residency MSRs Supported by 4th Generation Intel® Core™ Processors with a 
CPUID Signature DisplayFamily_DisplayModel Value of 06_45H

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: E2H, 226 MSR_PKG_CST_CONFIG_CONTROL

C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-states. See http://biosbits.org.

Core

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name (consuming the 
least power) for the package. The default is set as factory-configured 
package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

0110b: C8

0111b: C9

1000b: C10

9:4 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved.

15 CFG Lock (R/WO)

24:16 Reserved.
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2.14 MSRS IN THE INTEL® XEON® PROCESSOR E5 V3 AND E7 V3 PRODUCT 
FAMILY

The Intel® Xeon® processor E5 v3 family and the Intel® Xeon® processor E7 v3 family are based on Haswell-E 
microarchitecture (CPUID Signature DisplayFamily_DisplayModel value of 06_3F). These processors support the 
MSR interfaces listed in Table 2-20, Table 2-29, and Table 2-32. 

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved.

Register Address: 630H, 1584 MSR_PKG_C8_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

59:0 Package C8 Residency Counter (R/O)

Value since last reset that this package is in processor-specific C8 states. 
Count at the same frequency as the TSC.

63:60 Reserved.

Register Address: 631H, 1585 MSR_PKG_C9_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

59:0 Package C9 Residency Counter (R/O)

Value since last reset that this package is in processor-specific C9 states. 
Count at the same frequency as the TSC.

63:60 Reserved.

Register Address: 632H, 1586 MSR_PKG_C10_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

59:0 Package C10 Residency Counter (R/O)

Value since last reset that this package is in processor-specific C10 states. 
Count at the same frequency as the TSC.

63:60 Reserved.

See Table 2-20, Table 2-21, Table 2-22, Table 2-29, and Table 2-30 for other MSR definitions applicable to processors with a CPUID 
Signature DisplayFamily_DisplayModel value of 06_45H.

Table 2-32.  Additional MSRs Supported by the Intel® Xeon® Processor E5 v3 Family

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 35H, 53 MSR_CORE_THREAD_COUNT

Table 2-31.  Additional Residency MSRs Supported by 4th Generation Intel® Core™ Processors with a 
CPUID Signature DisplayFamily_DisplayModel Value of 06_45H

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Configured State of Enabled Processor Core Count and Logical Processor Count (R/O)

• After a Power-On RESET, enumerates factory configuration of the number of processor cores and logical 
processors in the physical package.

• Following the sequence of (i) BIOS modified a Configuration Mask which selects a subset of processor cores to be 
active post RESET and (ii) a RESET event after the modification, enumerates the current configuration of enabled 
processor core count and logical processor count in the physical package.

Package

15:0 THREAD_COUNT (R/O)

The number of logical processors that are currently enabled (by either 
factory configuration or BIOS configuration) in the physical package.

31:16 Core_COUNT (R/O)

The number of processor cores that are currently enabled (by either factory 
configuration or BIOS configuration) in the physical package.

63:32 Reserved.

Register Address: 53H, 83 MSR_THREAD_ID_INFO

A Hardware Assigned ID for the Logical Processor (R/O) Thread

7:0 Logical_Processor_ID (R/O)

An implementation-specific numerical value physically assigned to each 
logical processor. This ID is not related to Initial APIC ID or x2APIC ID, it is 
unique within a physical package.

63:8 Reserved.

Register Address: E2H, 226 MSR_PKG_CST_CONFIG_CONTROL

C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-states.

See http://biosbits.org.

Core

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name (consuming the 
least power) for the package. The default is set as factory-configured 
package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-state support)

001b: C2

010b: C6 (non-retention)

011b: C6 (retention)

111b: No Package C state limits. All C states supported by the processor are 
available.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved.

15 CFG Lock (R/WO)

24:16 Reserved.

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)
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27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

30 Package C State Undemotion Enable (R/W)

63:31 Reserved.

Register Address: 179H, 377 IA32_MCG_CAP

Global Machine Check Capability (R/O) Thread

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 MCG_EM_P

26 MCG_ELOG_P

63:27 Reserved.

Register Address: 17DH, 381 MSR_SMM_MCA_CAP

Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in SMM.

Thread

57:0 Reserved.

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1, indicates that the SMM code access restriction is supported and a 
host-space interface available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1, indicates that the SMM long flow indicator is supported and a 
host-space interface available to SMM handler.

63:60 Reserved.

Register Address: 17FH, 383 MSR_ERROR_CONTROL

MC Bank Error Configuration (R/W) Package

0 Reserved.

1 MemError Log Enable (R/W) 

When set, enables IMC status bank to log additional info in bits 36:32.

63:2 Reserved.

Register Address: 1ADH, 429 MSR_TURBO_RATIO_LIMIT

Maximum Ratio Limit of Turbo Mode

R/O if MSR_PLATFORM_INFO.[28] = 0, and R/W if MSR_PLATFORM_INFO.[28] = 1.

Package
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7:0 Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

Package

15:8 Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

Package

23:16 Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

Package

31:24 Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

Package

39:32 Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

Package

47:40 Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

Package

55:48 Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

Package

63:56 Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

Package

Register Address: 1AEH, 430 MSR_TURBO_RATIO_LIMIT1

Maximum Ratio Limit of Turbo Mode

R/O if MSR_PLATFORM_INFO.[28] = 0, and R/W if MSR_PLATFORM_INFO.[28] = 1.

Package

7:0 Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active. 

Package

15:8 Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10 core active. 

Package

23:16 Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

Package

31:24 Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

Package

39:32 Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

Package

47:40 Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

Package

55:48 Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

Package

63:56 Maximum Ratio Limit for16C

Maximum turbo ratio limit of 16 core active.

Package

Register Address: 1AFH, 431 MSR_TURBO_RATIO_LIMIT2

Maximum Ratio Limit of Turbo Mode

R/O if MSR_PLATFORM_INFO.[28] = 0, and R/W if MSR_PLATFORM_INFO.[28] = 1.

Package

7:0 Maximum Ratio Limit for 17C

Maximum turbo ratio limit of 17 core active. 

Package
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15:8 Maximum Ratio Limit for 18C

Maximum turbo ratio limit of 18 core active. 

Package

62:16 Reserved. Package

63 Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in 
MSR_TURBO_RATIO_LIMIT, MSR_TURBO_RATIO_LIMIT1, and 
MSR_TURBO_RATIO_LIMIT2.

If 0, the processor uses factory-set configuration (Default).

Package

Register Address: 414H, 1044 IA32_MC5_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC5 reports MC errors from the Intel QPI 0 module.

Package

Register Address: 415H, 1045 IA32_MC5_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC5 reports MC errors from the Intel QPI 0 module.

Package

Register Address: 416H, 1046 IA32_MC5_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC5 reports MC errors from the Intel QPI 0 module.

Package

Register Address: 417H, 1047 IA32_MC5_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC5 reports MC errors from the Intel QPI 0 module.

Package

Register Address: 418H, 1048 IA32_MC6_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Register Address: 419H, 1049 IA32_MC6_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Register Address: 41AH, 1050 IA32_MC6_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Register Address: 41BH, 1051 IA32_MC6_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Register Address: 41CH, 1052 IA32_MC7_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC7 reports MC errors from the home agent HA 0.

Package

Register Address: 41DH, 1053 IA32_MC7_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC7 reports MC errors from the home agent HA 0.

Package

Register Address: 41EH, 1054 IA32_MC7_ADDR
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See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC7 reports MC errors from the home agent HA 0.

Package

Register Address: 41FH, 1055 IA32_MC7_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC7 reports MC errors from the home agent HA 0.

Package

Register Address: 420H, 1056 IA32_MC8_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC8 reports MC errors from the home agent HA 1.

Package

Register Address: 421H, 1057 IA32_MC8_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC8 reports MC errors from the home agent HA 1.

Package

Register Address: 422H, 1058 IA32_MC8_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC8 reports MC errors from the home agent HA 1.

Package

Register Address: 423H, 1059 IA32_MC8_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC8 reports MC errors from the home agent HA 1.

Package

Register Address: 424H, 1060 IA32_MC9_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 425H, 1061 IA32_MC9_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 426H, 1062 IA32_MC9_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 427H, 1063 IA32_MC9_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 428H, 1064 IA32_MC10_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 429H, 1065 IA32_MC10_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 42AH, 1066 IA32_MC10_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 42BH, 1067 IA32_MC10_MISC
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See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 42CH, 1068 IA32_MC11_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 42DH, 1069 IA32_MC11_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 42EH, 1070 IA32_MC11_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 42FH, 1071 IA32_MC11_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 430H, 1072 IA32_MC12_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 431H, 1073 IA32_MC12_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 432H, 1074 IA32_MC12_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 433H, 1075 IA32_MC12_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 434H, 1076 IA32_MC13_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 435H, 1077 IA32_MC13_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 436H, 1078 IA32_MC13_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 437H, 1079 IA32_MC13_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 438H, 1080 IA32_MC14_CTL
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See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 439H, 1081 IA32_MC14_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 43AH, 1082 IA32_MC14_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 43BH, 1083 IA32_MC14_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 43CH, 1084 IA32_MC15_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 43DH, 1085 IA32_MC15_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 43EH, 1086 IA32_MC15_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 43FH, 1087 IA32_MC15_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 440H, 1088 IA32_MC16_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 441H, 1089 IA32_MC16_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 442H, 1090 IA32_MC16_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 443H, 1091 IA32_MC16_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 444H, 1092 IA32_MC17_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC17 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, 
CBo12, CBo15.

Package
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Register Address: 445H, 1093 IA32_MC17_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC17 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, 
CBo12, CBo15.

Package

Register Address: 446H, 1094 IA32_MC17_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC17 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, 
CBo12, CBo15.

Package

Register Address: 447H, 1095 IA32_MC17_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC17 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, 
CBo12, CBo15.

Package

Register Address: 448H, 1096 IA32_MC18_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC18 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7, 
CBo10, CBo13, CBo16.

Package

Register Address: 449H, 1097 IA32_MC18_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC18 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7, 
CBo10, CBo13, CBo16.

Package

Register Address: 44AH, 1098 IA32_MC18_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC18 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7, 
CBo10, CBo13, CBo16.

Package

Register Address: 44BH, 1099 IA32_MC18_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC18 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7, 
CBo10, CBo13, CBo16.

Package

Register Address: 44CH, 1100 IA32_MC19_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8, 
CBo11, CBo14, CBo17.

Package

Register Address: 44DH, 1101 IA32_MC19_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8, 
CBo11, CBo14, CBo17.

Package

Register Address: 44EH, 1102 IA32_MC19_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8, 
CBo11, CBo14, CBo17.

Package

Register Address: 44FH, 1103 IA32_MC19_MISC
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See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8, 
CBo11, CBo14, CBo17.

Package

Register Address: 450H, 1104 IA32_MC20_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC20 reports MC errors from the Intel QPI 1 module.

Package

Register Address: 451H, 1105 IA32_MC20_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC20 reports MC errors from the Intel QPI 1 module.

Package

Register Address: 452H, 1106 IA32_MC20_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC20 reports MC errors from the Intel QPI 1 module.

Package

Register Address: 453H, 1107 IA32_MC20_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC20 reports MC errors from the Intel QPI 1 module.

Package

Register Address: 454H, 1108 IA32_MC21_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC21 reports MC errors from the Intel QPI 2 module.

Package

Register Address: 455H, 1109 IA32_MC21_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC21 reports MC errors from the Intel QPI 2 module.

Package

Register Address: 456H, 1110 IA32_MC21_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC21 reports MC errors from the Intel QPI 2 module.

Package

Register Address: 457H, 1111 IA32_MC21_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC21 reports MC errors from the Intel QPI 2 module.

Package

Register Address: 606H, 1542 MSR_RAPL_POWER_UNIT

Unit Multipliers Used in RAPL Interfaces (R/O) Package

3:0 Power Units

See Section 16.10.1, “RAPL Interfaces.”

Package

7:4 Reserved. Package

12:8 Energy Status Units

Energy related information (in Joules) is based on the multiplier, 1/2^ESU; 
where ESU is an unsigned integer represented by bits 12:8. Default value is 
0EH (or 61 micro-joules).

Package

15:13 Reserved. Package

19:16 Time Units

See Section 16.10.1, “RAPL Interfaces.”

Package

63:20 Reserved.
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Register Address: 618H, 1560 MSR_DRAM_POWER_LIMIT

DRAM RAPL Power Limit Control (R/W) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 619H, 1561 MSR_DRAM_ENERGY_STATUS

DRAM Energy Status (R/O) 

Energy Consumed by DRAM devices. 

Package

31:0 Energy in 15.3 micro-joules. Requires BIOS configuration to enable DRAM 
RAPL mode 0 (Direct VR).

63:32 Reserved.

Register Address: 61BH, 1563 MSR_DRAM_PERF_STATUS

DRAM Performance Throttling Status (R/O) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 61CH, 1564 MSR_DRAM_POWER_INFO

DRAM RAPL Parameters (R/W) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 61EH, 1566 MSR_PCIE_PLL_RATIO

Configuration of PCIE PLL Relative to BCLK(R/W) Package

1:0 PCIE Ratio (R/W)

00b: Use 5:5 mapping for100MHz operation (default).

01b: Use 5:4 mapping for125MHz operation.

10b: Use 5:3 mapping for166MHz operation.

11b: Use 5:2 mapping for250MHz operation.

Package

2 LPLL Select (R/W)

If 1, use configured setting of PCIE Ratio.

Package

3 LONG RESET (R/W)

If 1, wait an additional time-out before re-locking Gen2/Gen3 PLLs.

Package

63:4 Reserved.

Register Address: 620H, 1568 MSR_UNCORE_RATIO_LIMIT

Uncore Ratio Limit (R/W) 

Out of reset, the min_ratio and max_ratio fields represent the widest possible range of uncore frequencies. Writing to 
these fields allows software to control the minimum and the maximum frequency that hardware will select.

Package

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

7 Reserved.

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio of the LLC/Ring.

63:15 Reserved.

Register Address: 639H, 1593 MSR_PP0_ENERGY_STATUS

Reserved (R/O) 

Reads return 0.

Package
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Register Address: 690H, 1680 MSR_CORE_PERF_LIMIT_REASONS

Indicator of Frequency Clipping in Processor Cores (R/W)

(Frequency refers to processor core frequency.)

Package

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating system 
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system request due to 
a thermal event.

2 Power Budget Management Status (R0) 

When set, frequency is reduced below the operating system request due to 
PBM limit

3 Platform Configuration Services Status (R0) 

When set, frequency is reduced below the operating system request due to 
PCS limit

4 Reserved.

5 Autonomous Utilization-Based Frequency Control Status (R0) 

When set, frequency is reduced below the operating system request 
because the processor has detected that utilization is low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system request due to 
a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system request due to 
electrical design point constraints (e.g., maximum electrical current 
consumption).

9 Reserved.

10 Multi-Core Turbo Status (R0) 

When set, frequency is reduced below the operating system request due to 
Multi-Core Turbo limits.

12:11 Reserved.

13 Core Frequency P1 Status (R0) 

When set, frequency is reduced below max non-turbo P1.

14 Core Max N-Core Turbo Frequency Limiting Status (R0) 

When set, frequency is reduced below max n-core turbo frequency.

15 Core Frequency Limiting Status (R0) 

When set, frequency is reduced below the operating system request.

16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has asserted since the log 
bit was last cleared.

This log bit will remain set until cleared by software writing 0.
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17 Thermal Log 

When set, indicates that the Thermal Status bit has asserted since the log 
bit was last cleared.

This log bit will remain set until cleared by software writing 0.

18 Power Budget Management Log 

When set, indicates that the PBM Status bit has asserted since the log bit 
was last cleared.

This log bit will remain set until cleared by software writing 0.

19 Platform Configuration Services Log 

When set, indicates that the PCS Status bit has asserted since the log bit 
was last cleared.

This log bit will remain set until cleared by software writing 0.

20 Reserved.

21 Autonomous Utilization-Based Frequency Control Log 

When set, indicates that the AUBFC Status bit has asserted since the log bit 
was last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log 

When set, indicates that the EDP Status bit has asserted since the log bit 
was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Reserved.

26 Multi-Core Turbo Log 

When set, indicates that the Multi-Core Turbo Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28:27 Reserved.

29 Core Frequency P1 Log

When set, indicates that the Core Frequency P1 Status bit has asserted 
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

30 Core Max N-Core Turbo Frequency Limiting Log

When set, indicates that the Core Max n-core Turbo Frequency Limiting 
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.
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2.14.1  Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family
The Intel Xeon Processor E5 v3 and E7 v3 families are based on Haswell-E microarchitecture. The MSR-based 
uncore PMU interfaces are listed in Table 2-33. For complete details of the uncore PMU, refer to the Intel Xeon 
Processor E5 v3 Product Family Uncore Performance Monitoring Guide. These processors have a CPUID Signature 
DisplayFamily_DisplayModel value of 06_3FH.

31 Core Frequency Limiting Log

When set, indicates that the Core Frequency Limiting Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:32 Reserved.

Register Address: C8DH, 3213 IA32_QM_EVTSEL

Monitoring Event Select Register (R/W)

If CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1.

Thread

7:0 EventID (R/W)

Event encoding:

0x0: No monitoring.

0x1: L3 occupancy monitoring.

All other encoding reserved.

31:8 Reserved.

41:32 RMID (R/W)

63:42 Reserved.

Register Address: C8EH, 3214 IA32_QM_CTR

Monitoring Counter Register (R/O)

If CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1.

Thread

61:0 Resource Monitored Data 

62 Unavailable: If 1, indicates data for this RMID is not available or not 
monitored for this resource or RMID.

63 Error: If 1, indicates an unsupported RMID or event type was written to 
IA32_PQR_QM_EVTSEL.

Register Address: C8FH, 3215 IA32_PQR_ASSOC

Resource Association Register (R/W) Thread

9:0 RMID 

63: 10 Reserved.

See Table 2-20 and Table 2-29 for other MSR definitions applicable to processors with a CPUID Signature DisplayFamily_DisplayModel 
value of 06_3FH.

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the fac-

tory-set configuration is dependent on features specific to the processor and the platform.
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Table 2-33.  Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 700H, 1792 MSR_PMON_GLOBAL_CTL

Uncore Perfmon Per-Socket Global Control Package

Register Address: 701H, 1793 MSR_PMON_GLOBAL_STATUS

Uncore Perfmon Per-Socket Global Status Package

Register Address: 702H, 1794 MSR_PMON_GLOBAL_CONFIG

Uncore Perfmon Per-Socket Global Configuration Package

Register Address: 703H, 1795 MSR_U_PMON_UCLK_FIXED_CTL

Uncore U-Box UCLK Fixed Counter Control Package

Register Address: 704H, 1796 MSR_U_PMON_UCLK_FIXED_CTR

Uncore U-Box UCLK Fixed Counter Package

Register Address: 705H, 1797 MSR_U_PMON_EVNTSEL0

Uncore U-Box Perfmon Event Select for U-Box Counter 0 Package

Register Address: 706H, 1798 MSR_U_PMON_EVNTSEL1

Uncore U-Box Perfmon Event Select for U-Box Counter 1 Package

Register Address: 708H, 1800 MSR_U_PMON_BOX_STATUS

Uncore U-Box Perfmon U-Box Wide Status Package

Register Address: 709H, 1801 MSR_U_PMON_CTR0

Uncore U-Box Perfmon Counter 0 Package

Register Address: 70AH, 1802 MSR_U_PMON_CTR1

Uncore U-Box Perfmon Counter 1 Package

Register Address: 710H, 1808 MSR_PCU_PMON_BOX_CTL

Uncore PCU Perfmon for PCU-Box-Wide Control Package

Register Address: 711H, 1809 MSR_PCU_PMON_EVNTSEL0

Uncore PCU Perfmon Event Select for PCU Counter 0 Package

Register Address: 712H, 1810 MSR_PCU_PMON_EVNTSEL1

Uncore PCU Perfmon Event Select for PCU Counter 1 Package

Register Address: 713H, 1811 MSR_PCU_PMON_EVNTSEL2

Uncore PCU Perfmon Event Select for PCU Counter 2 Package

Register Address: 714H, 1812 MSR_PCU_PMON_EVNTSEL3

Uncore PCU Perfmon Event Select for PCU Counter 3 Package

Register Address: 715H, 1813 MSR_PCU_PMON_BOX_FILTER

Uncore PCU Perfmon Box-Wide Filter Package

Register Address: 716H, 1814 MSR_PCU_PMON_BOX_STATUS

Uncore PCU Perfmon Box Wide Status Package

Register Address: 717H, 1815 MSR_PCU_PMON_CTR0

Uncore PCU Perfmon Counter 0 Package

Register Address: 718H, 1816 MSR_PCU_PMON_CTR1
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Uncore PCU Perfmon Counter 1 Package

Register Address: 719H, 1817 MSR_PCU_PMON_CTR2

Uncore PCU Perfmon Counter 2 Package

Register Address: 71AH, 1818 MSR_PCU_PMON_CTR3

Uncore PCU Perfmon Counter 3 Package

Register Address: 720H, 1824 MSR_S0_PMON_BOX_CTL

Uncore SBo 0 Perfmon for SBo 0 Box-Wide Control Package

Register Address: 721H, 1825 MSR_S0_PMON_EVNTSEL0

Uncore SBo 0 Perfmon Event Select for SBo 0 Counter 0 Package

Register Address: 722H, 1826 MSR_S0_PMON_EVNTSEL1

Uncore SBo 0 Perfmon Event Select for SBo 0 Counter 1 Package

Register Address: 723H, 1827 MSR_S0_PMON_EVNTSEL2

Uncore SBo 0 Perfmon Event Select for SBo 0 Counter 2 Package

Register Address: 724H, 1828 MSR_S0_PMON_EVNTSEL3

Uncore SBo 0 Perfmon Event Select for SBo 0 Counter 3 Package

Register Address: 725H, 1829 MSR_S0_PMON_BOX_FILTER

Uncore SBo 0 Perfmon Box-Wide Filter Package

Register Address: 726H, 1830 MSR_S0_PMON_CTR0

Uncore SBo 0 Perfmon Counter 0 Package

Register Address: 727H, 1831 MSR_S0_PMON_CTR1

Uncore SBo 0 Perfmon Counter 1 Package

Register Address: 728H, 1832 MSR_S0_PMON_CTR2

Uncore SBo 0 Perfmon Counter 2 Package

Register Address: 729H, 1833 MSR_S0_PMON_CTR3

Uncore SBo 0 Perfmon Counter 3 Package

Register Address: 72AH, 1834 MSR_S1_PMON_BOX_CTL

Uncore SBo 1 Perfmon for SBo 1 Box-Wide Control Package

Register Address: 72BH, 1835 MSR_S1_PMON_EVNTSEL0

Uncore SBo 1 Perfmon Event Select for SBo 1 Counter 0 Package

Register Address: 72CH, 1836 MSR_S1_PMON_EVNTSEL1

Uncore SBo 1 Perfmon Event Select for SBo 1 Counter 1 Package

Register Address: 72DH, 1837 MSR_S1_PMON_EVNTSEL2

Uncore SBo 1 Perfmon Event Select for SBo 1 Counter 2 Package

Register Address: 72EH, 1838 MSR_S1_PMON_EVNTSEL3

Uncore SBo 1 Perfmon Event Select for SBo 1 Counter 3 Package

Register Address: 72FH, 1839 MSR_S1_PMON_BOX_FILTER

Uncore SBo 1 Perfmon Box-Wide Filter Package

Table 2-33.  Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Register Address: 730H, 1840 MSR_S1_PMON_CTR0

Uncore SBo 1 Perfmon Counter 0 Package

Register Address: 731H, 1841 MSR_S1_PMON_CTR1

Uncore SBo 1 Perfmon Counter 1 Package

Register Address: 732H, 1842 MSR_S1_PMON_CTR2

Uncore SBo 1 Perfmon Counter 2 Package

Register Address: 733H, 1843 MSR_S1_PMON_CTR3

Uncore SBo 1 Perfmon Counter 3 Package

Register Address: 734H, 1844 MSR_S2_PMON_BOX_CTL

Uncore SBo 2 Perfmon for SBo 2 Box-Wide Control Package

Register Address: 735H, 1845 MSR_S2_PMON_EVNTSEL0

Uncore SBo 2 Perfmon Event Select for SBo 2 Counter 0 Package

Register Address: 736H, 1846 MSR_S2_PMON_EVNTSEL1

Uncore SBo 2 Perfmon Event Select for SBo 2 Counter 1 Package

Register Address: 737H, 1847 MSR_S2_PMON_EVNTSEL2

Uncore SBo 2 Perfmon Event Select for SBo 2 Counter 2 Package

Register Address: 738H, 1848 MSR_S2_PMON_EVNTSEL3

Uncore SBo 2 Perfmon Event Select for SBo 2 Counter 3 Package

Register Address: 739H, 1849 MSR_S2_PMON_BOX_FILTER

Uncore SBo 2 Perfmon Box-Wide Filter Package

Register Address: 73AH, 1850 MSR_S2_PMON_CTR0

Uncore SBo 2 Perfmon Counter 0 Package

Register Address: 73BH, 1851 MSR_S2_PMON_CTR1

Uncore SBo 2 Perfmon Counter 1 Package

Register Address: 73CH, 1852 MSR_S2_PMON_CTR2

Uncore SBo 2 Perfmon Counter 2 Package

Register Address: 73DH, 1853 MSR_S2_PMON_CTR3

Uncore SBo 2 Perfmon Counter 3 Package

Register Address: 73EH, 1854 MSR_S3_PMON_BOX_CTL

Uncore SBo 3 Perfmon for SBo 3 Box-Wide Control Package

Register Address: 73FH, 1855 MSR_S3_PMON_EVNTSEL0

Uncore SBo 3 Perfmon Event Select for SBo 3 Counter 0 Package

Register Address: 740H, 1856 MSR_S3_PMON_EVNTSEL1

Uncore SBo 3 Perfmon Event Select for SBo 3 Counter 1 Package

Register Address: 741H, 1857 MSR_S3_PMON_EVNTSEL2

Uncore SBo 3 Perfmon Event Select for SBo 3 Counter 2 Package

Register Address: 742H, 1858 MSR_S3_PMON_EVNTSEL3

Table 2-33.  Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Uncore SBo 3 Perfmon Event Select for SBo 3 Counter 3 Package

Register Address: 743H, 1859 MSR_S3_PMON_BOX_FILTER

Uncore SBo 3 Perfmon Box-Wide Filter Package

Register Address: 744H, 1860 MSR_S3_PMON_CTR0

Uncore SBo 3 Perfmon Counter 0 Package

Register Address: 745H, 1861 MSR_S3_PMON_CTR1

Uncore SBo 3 Perfmon Counter 1 Package

Register Address: 746H, 1862 MSR_S3_PMON_CTR2

Uncore SBo 3 Perfmon Counter 2 Package

Register Address: 747H, 1863 MSR_S3_PMON_CTR3

Uncore SBo 3 Perfmon Counter 3 Package

Register Address: E00H, 3584 MSR_C0_PMON_BOX_CTL

Uncore C-Box 0 Perfmon for Box-Wide Control Package

Register Address: E01H, 3585 MSR_C0_PMON_EVNTSEL0

Uncore C-Box 0 Perfmon Event Select for C-Box 0 Counter 0 Package

Register Address: E02H, 3586 MSR_C0_PMON_EVNTSEL1

Uncore C-Box 0 Perfmon Event Select for C-Box 0 Counter 1 Package

Register Address: E03H, 3587 MSR_C0_PMON_EVNTSEL2

Uncore C-Box 0 Perfmon Event Select for C-Box 0 Counter 2 Package

Register Address: E04H, 3588 MSR_C0_PMON_EVNTSEL3

Uncore C-Box 0 Perfmon Event Select for C-Box 0 Counter 3 Package

Register Address: E05H, 3589 MSR_C0_PMON_BOX_FILTER0

Uncore C-Box 0 Perfmon Box Wide Filter 0 Package

Register Address: E06H, 3590 MSR_C0_PMON_BOX_FILTER1

Uncore C-Box 0 Perfmon Box Wide Filter 1 Package

Register Address: E07H, 3591 MSR_C0_PMON_BOX_STATUS

Uncore C-Box 0 Perfmon Box Wide Status Package

Register Address: E08H, 3592 MSR_C0_PMON_CTR0

Uncore C-Box 0 Perfmon Counter 0 Package

Register Address: E09H, 3593 MSR_C0_PMON_CTR1

Uncore C-Box 0 Perfmon Counter 1 Package

Register Address: E0AH, 3594 MSR_C0_PMON_CTR2

Uncore C-Box 0 Perfmon Counter 2 Package

Register Address: E0BH, 3595 MSR_C0_PMON_CTR3

Uncore C-Box 0 Perfmon Counter 3 Package

Register Address: E10H, 3600 MSR_C1_PMON_BOX_CTL

Uncore C-Box 1 Perfmon for Box-Wide Control Package

Table 2-33.  Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family (Contd.)

Register Address: Hex, Decimal Register Name
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Register Address: E11H, 3601 MSR_C1_PMON_EVNTSEL0

Uncore C-Box 1 Perfmon Event Select for C-Box 1 Counter 0 Package

Register Address: E12H, 3602 MSR_C1_PMON_EVNTSEL1

Uncore C-Box 1 Perfmon Event Select for C-Box 1 Counter 1 Package

Register Address: E13H, 3603 MSR_C1_PMON_EVNTSEL2

Uncore C-Box 1 Perfmon Event Select for C-Box 1 Counter 2 Package

Register Address: E14H, 3604 MSR_C1_PMON_EVNTSEL3

Uncore C-Box 1 Perfmon Event Select for C-Box 1 Counter 3 Package

Register Address: E15H, 3605 MSR_C1_PMON_BOX_FILTER0

Uncore C-Box 1 Perfmon Box Wide Filter 0 Package

Register Address: E16H, 3606 MSR_C1_PMON_BOX_FILTER1

Uncore C-Box 1 Perfmon Box Wide Filter1 Package

Register Address: E17H, 3607 MSR_C1_PMON_BOX_STATUS

Uncore C-Box 1 Perfmon Box Wide Status Package

Register Address: E18H, 3608 MSR_C1_PMON_CTR0

Uncore C-Box 1 Perfmon Counter 0 Package

Register Address: E19H, 3609 MSR_C1_PMON_CTR1

Uncore C-Box 1 Perfmon Counter 1 Package

Register Address: E1AH, 3610 MSR_C1_PMON_CTR2

Uncore C-Box 1 Perfmon Counter 2 Package

Register Address: E1BH, 3611 MSR_C1_PMON_CTR3

Uncore C-Box 1 Perfmon Counter 3 Package

Register Address: E20H, 3616 MSR_C2_PMON_BOX_CTL

Uncore C-Box 2 Perfmon for Box-Wide Control Package

Register Address: E21H, 3617 MSR_C2_PMON_EVNTSEL0

Uncore C-Box 2 Perfmon Event Select for C-Box 2 Counter 0 Package

Register Address: E22H, 3618 MSR_C2_PMON_EVNTSEL1

Uncore C-Box 2 Perfmon Event Select for C-Box 2 Counter 1 Package

Register Address: E23H, 3619 MSR_C2_PMON_EVNTSEL2

Uncore C-Box 2 Perfmon Event Select for C-Box 2 Counter 2 Package

Register Address: E24H, 3620 MSR_C2_PMON_EVNTSEL3

Uncore C-Box 2 Perfmon Event select for C-Box 2 Counter 3 Package

Register Address: E25H, 3621 MSR_C2_PMON_BOX_FILTER0

Uncore C-Box 2 Perfmon Box Wide Filter 0 Package

Register Address: E26H, 3622 MSR_C2_PMON_BOX_FILTER1

Uncore C-Box 2 Perfmon Box Wide Filter1 Package

Register Address: E27H, 3623 MSR_C2_PMON_BOX_STATUS

Table 2-33.  Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Uncore C-Box 2 Perfmon Box Wide Status Package

Register Address: E28H, 3624 MSR_C2_PMON_CTR0

Uncore C-Box 2 Perfmon Counter 0 Package

Register Address: E29H, 3625 MSR_C2_PMON_CTR1

Uncore C-Box 2 Perfmon Counter 1 Package

Register Address: E2AH, 3626 MSR_C2_PMON_CTR2

Uncore C-Box 2 Perfmon Counter 2 Package

Register Address: E2BH, 3627 MSR_C2_PMON_CTR3

Uncore C-Box 2 Perfmon Counter 3 Package

Register Address: E30H, 3632 MSR_C3_PMON_BOX_CTL

Uncore C-Box 3 Perfmon for Box-Wide Control Package

Register Address: E31H, 3633 MSR_C3_PMON_EVNTSEL0

Uncore C-Box 3 Perfmon Event Select for C-Box 3 Counter 0 Package

Register Address: E32H, 3634 MSR_C3_PMON_EVNTSEL1

Uncore C-Box 3 Perfmon Event Select for C-Box 3 Counter 1 Package

Register Address: E33H, 3635 MSR_C3_PMON_EVNTSEL2

Uncore C-Box 3 Perfmon Event Select for C-Box 3 Counter 2 Package

Register Address: E34H, 3636 MSR_C3_PMON_EVNTSEL3

Uncore C-Box 3 Perfmon Event Select for C-Box 3 Counter 3 Package

Register Address: E35H, 3637 MSR_C3_PMON_BOX_FILTER0

Uncore C-Box 3 Perfmon Box Wide Filter 0 Package

Register Address: E36H, 3638 MSR_C3_PMON_BOX_FILTER1

Uncore C-Box 3 Perfmon Box Wide Filter1 Package

Register Address: E37H, 3639 MSR_C3_PMON_BOX_STATUS

Uncore C-Box 3 Perfmon Box Wide Status Package

Register Address: E38H, 3640 MSR_C3_PMON_CTR0

Uncore C-Box 3 Perfmon Counter 0 Package

Register Address: E39H, 3641 MSR_C3_PMON_CTR1

Uncore C-Box 3 Perfmon Counter 1 Package

Register Address: E3AH, 3642 MSR_C3_PMON_CTR2

Uncore C-Box 3 Perfmon Counter 2 Package

Register Address: E3BH, 3643 MSR_C3_PMON_CTR3

Uncore C-Box 3 Perfmon Counter 3 Package

Register Address: E40H, 3648 MSR_C4_PMON_BOX_CTL

Uncore C-Box 4 Perfmon for Box-Wide Control Package

Register Address: E41H, 3649 MSR_C4_PMON_EVNTSEL0

Uncore C-Box 4 Perfmon Event Select for C-Box 4 Counter 0 Package

Table 2-33.  Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family (Contd.)

Register Address: Hex, Decimal Register Name
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Register Address: E42H, 3650 MSR_C4_PMON_EVNTSEL1

Uncore C-Box 4 Perfmon Event Select for C-Box 4 Counter 1 Package

Register Address: E43H, 3651 MSR_C4_PMON_EVNTSEL2

Uncore C-Box 4 Perfmon Event Select for C-Box 4 Counter 2 Package

Register Address: E44H, 3652 MSR_C4_PMON_EVNTSEL3

Uncore C-Box 4 Perfmon Event Select for C-Box 4 Counter 3 Package

Register Address: E45H, 3653 MSR_C4_PMON_BOX_FILTER0

Uncore C-Box 4 Perfmon Box Wide Filter 0 Package

Register Address: E46H, 3654 MSR_C4_PMON_BOX_FILTER1

Uncore C-Box 4 Perfmon Box Wide Filter1 Package

Register Address: E47H, 3655 MSR_C4_PMON_BOX_STATUS

Uncore C-Box 4 Perfmon Box Wide Status Package

Register Address: E48H, 3656 MSR_C4_PMON_CTR0

Uncore C-Box 4 Perfmon Counter 0 Package

Register Address: E49H, 3657 MSR_C4_PMON_CTR1

Uncore C-Box 4 Perfmon Counter 1 Package

Register Address: E4AH, 3658 MSR_C4_PMON_CTR2

Uncore C-Box 4 Perfmon Counter 2 Package

Register Address: E4BH, 3659 MSR_C4_PMON_CTR3

Uncore C-Box 4 Perfmon Counter 3 Package

Register Address: E50H, 3664 MSR_C5_PMON_BOX_CTL

Uncore C-Box 5 Perfmon for Box-Wide Control Package

Register Address: E51H, 3665 MSR_C5_PMON_EVNTSEL0

Uncore C-Box 5 Perfmon Event Select for C-Box 5 Counter 0 Package

Register Address: E52H, 3666 MSR_C5_PMON_EVNTSEL1

Uncore C-Box 5 Perfmon Event Select for C-Box 5 Counter 1 Package

Register Address: E53H, 3667 MSR_C5_PMON_EVNTSEL2

Uncore C-Box 5 Perfmon Event Select for C-Box 5 Counter 2 Package

Register Address: E54H, 3668 MSR_C5_PMON_EVNTSEL3

Uncore C-Box 5 Perfmon Event Select for C-Box 5 Counter 3 Package

Register Address: E55H, 3669 MSR_C5_PMON_BOX_FILTER0

Uncore C-Box 5 Perfmon Box Wide Filter 0 Package

Register Address: E56H, 3670 MSR_C5_PMON_BOX_FILTER1

Uncore C-Box 5 Perfmon Box Wide Filter 1 Package

Register Address: E57H, 3671 MSR_C5_PMON_BOX_STATUS

Uncore C-Box 5 Perfmon Box Wide Status Package

Register Address: E58H, 3672 MSR_C5_PMON_CTR0

Table 2-33.  Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family (Contd.)
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Uncore C-Box 5 Perfmon Counter 0 Package

Register Address: E59H, 3673 MSR_C5_PMON_CTR1

Uncore C-Box 5 Perfmon Counter 1 Package

Register Address: E5AH, 3674 MSR_C5_PMON_CTR2

Uncore C-Box 5 Perfmon Counter 2 Package

Register Address: E5BH, 3675 MSR_C5_PMON_CTR3

Uncore C-Box 5 Perfmon Counter 3 Package

Register Address: E60H, 3680 MSR_C6_PMON_BOX_CTL

Uncore C-Box 6 Perfmon for Box-Wide Control Package

Register Address: E61H, 3681 MSR_C6_PMON_EVNTSEL0

Uncore C-Box 6 Perfmon Event Select for C-Box 6 Counter 0 Package

Register Address: E62H, 3682 MSR_C6_PMON_EVNTSEL1

Uncore C-Box 6 Perfmon Event Select for C-Box 6 Counter 1 Package

Register Address: E63H, 3683 MSR_C6_PMON_EVNTSEL2

Uncore C-Box 6 Perfmon Event Select for C-Box 6 Counter 2 Package

Register Address: E64H, 3684 MSR_C6_PMON_EVNTSEL3

Uncore C-Box 6 Perfmon Event Select for C-Box 6 Counter 3 Package

Register Address: E65H, 3685 MSR_C6_PMON_BOX_FILTER0

Uncore C-Box 6 Perfmon Box Wide Filter 0 Package

Register Address: E66H, 3686 MSR_C6_PMON_BOX_FILTER1

Uncore C-Box 6 Perfmon Box Wide Filter 1 Package

Register Address: E67H, 3687 MSR_C6_PMON_BOX_STATUS

Uncore C-Box 6 Perfmon Box Wide Status Package

Register Address: E68H, 3688 MSR_C6_PMON_CTR0

Uncore C-Box 6 Perfmon Counter 0 Package

Register Address: E69H, 3689 MSR_C6_PMON_CTR1

Uncore C-Box 6 Perfmon Counter 1 Package

Register Address: E6AH, 3690 MSR_C6_PMON_CTR2

Uncore C-Box 6 Perfmon Counter 2 Package

Register Address: E6BH, 3691 MSR_C6_PMON_CTR3

Uncore C-Box 6 Perfmon Counter 3 Package

Register Address: E70H, 3696 MSR_C7_PMON_BOX_CTL

Uncore C-Box 7 Perfmon for Box-Wide Control Package

Register Address: E71H, 3697 MSR_C7_PMON_EVNTSEL0

Uncore C-Box 7 Perfmon Event Select for C-Box 7 Counter 0 Package

Register Address: E72H, 3698 MSR_C7_PMON_EVNTSEL1

Uncore C-Box 7 Perfmon Event Select for C-Box 7 Counter 1 Package
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Register Address: E73H, 3699 MSR_C7_PMON_EVNTSEL2

Uncore C-Box 7 Perfmon Event Select for C-Box 7 Counter 2 Package

Register Address: E74H, 3700 MSR_C7_PMON_EVNTSEL3

Uncore C-Box 7 Perfmon Event Select for C-Box 7 Counter 3 Package

Register Address: E75H, 3701 MSR_C7_PMON_BOX_FILTER0

Uncore C-Box 7 Perfmon Box Wide Filter 0 Package

Register Address: E76H, 3702 MSR_C7_PMON_BOX_FILTER1

Uncore C-Box 7 Perfmon Box Wide Filter 1 Package

Register Address: E77H, 3703 MSR_C7_PMON_BOX_STATUS

Uncore C-Box 7 Perfmon Box Wide Status Package

Register Address: E78H, 3704 MSR_C7_PMON_CTR0

Uncore C-Box 7 Perfmon Counter 0 Package

Register Address: E79H, 3705 MSR_C7_PMON_CTR1

Uncore C-Box 7 Perfmon Counter 1 Package

Register Address: E7AH, 3706 MSR_C7_PMON_CTR2

Uncore C-Box 7 Perfmon Counter 2 Package

Register Address: E7BH, 3707 MSR_C7_PMON_CTR3

Uncore C-Box 7 Perfmon Counter 3 Package

Register Address: E80H, 3712 MSR_C8_PMON_BOX_CTL

Uncore C-Box 8 Perfmon Local Box Wide Control Package

Register Address: E81H, 3713 MSR_C8_PMON_EVNTSEL0

Uncore C-Box 8 Perfmon Event Select for C-Box 8 Counter 0 Package

Register Address: E82H, 3714 MSR_C8_PMON_EVNTSEL1

Uncore C-Box 8 Perfmon Event Select for C-Box 8 Counter 1 Package

Register Address: E83H, 3715 MSR_C8_PMON_EVNTSEL2

Uncore C-Box 8 Perfmon Event Select for C-Box 8 Counter 2 Package

Register Address: E84H, 3716 MSR_C8_PMON_EVNTSEL3

Uncore C-Box 8 Perfmon Event Select for C-Box 8 Counter 3 Package

Register Address: E85H, 3717 MSR_C8_PMON_BOX_FILTER0

Uncore C-Box 8 Perfmon Box Wide Filter 0 Package

Register Address: E86H, 3718 MSR_C8_PMON_BOX_FILTER1

Uncore C-Box 8 Perfmon Box Wide Filter 1 Package

Register Address: E87H, 3719 MSR_C8_PMON_BOX_STATUS

Uncore C-Box 8 Perfmon Box Wide Status Package

Register Address: E88H, 3720 MSR_C8_PMON_CTR0

Uncore C-Box 8 Perfmon Counter 0 Package

Register Address: E89H, 3721 MSR_C8_PMON_CTR1
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Uncore C-Box 8 Perfmon Counter 1 Package

Register Address: E8AH, 3722 MSR_C8_PMON_CTR2

Uncore C-Box 8 Perfmon Counter 2 Package

Register Address: E8BH, 3723 MSR_C8_PMON_CTR3

Uncore C-Box 8 Perfmon Counter 3 Package

Register Address: E90H, 3728 MSR_C9_PMON_BOX_CTL

Uncore C-Box 9 Perfmon Local Box Wide Control Package

Register Address: E91H, 3729 MSR_C9_PMON_EVNTSEL0

Uncore C-Box 9 Perfmon Event Select for C-Box 9 Counter 0 Package

Register Address: E92H, 3730 MSR_C9_PMON_EVNTSEL1

Uncore C-Box 9 Perfmon Event Select for C-Box 9 Counter 1 Package

Register Address: E93H, 3731 MSR_C9_PMON_EVNTSEL2

Uncore C-Box 9 Perfmon Event Select for C-Box 9 Counter 2 Package

Register Address: E94H, 3732 MSR_C9_PMON_EVNTSEL3

Uncore C-Box 9 Perfmon Event Select for C-Box 9 Counter 3 Package

Register Address: E95H, 3733 MSR_C9_PMON_BOX_FILTER0

Uncore C-Box 9 Perfmon Box Wide Filter 0 Package

Register Address: E96H, 3734 MSR_C9_PMON_BOX_FILTER1

Uncore C-Box 9 Perfmon Box Wide Filter 1 Package

Register Address: E97H, 3735 MSR_C9_PMON_BOX_STATUS

Uncore C-Box 9 Perfmon Box Wide Status Package

Register Address: E98H, 3736 MSR_C9_PMON_CTR0

Uncore C-Box 9 Perfmon Counter 0 Package

Register Address: E99H, 3737 MSR_C9_PMON_CTR1

Uncore C-Box 9 Perfmon Counter 1 Package

Register Address: E9AH, 3738 MSR_C9_PMON_CTR2

Uncore C-Box 9 Perfmon Counter 2 Package

Register Address: E9BH, 3739 MSR_C9_PMON_CTR3

Uncore C-Box 9 Perfmon Counter 3 Package

Register Address: EA0H, 3744 MSR_C10_PMON_BOX_CTL

Uncore C-Box 10 Perfmon Local Box Wide Control Package

Register Address: EA1H, 3745 MSR_C10_PMON_EVNTSEL0

Uncore C-Box 10 Perfmon Event Select for C-Box 10 Counter 0 Package

Register Address: EA2H, 3746 MSR_C10_PMON_EVNTSEL1

Uncore C-Box 10 Perfmon Event Select for C-Box 10 Counter 1 Package

Register Address: EA3H, 3747 MSR_C10_PMON_EVNTSEL2

Uncore C-Box 10 Perfmon Event Select for C-Box 10 Counter 2 Package
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Register Address: EA4H, 3748 MSR_C10_PMON_EVNTSEL3

Uncore C-Box 10 Perfmon Event Select for C-Box 10 Counter 3 Package

Register Address: EA5H, 3749 MSR_C10_PMON_BOX_FILTER0

Uncore C-Box 10 Perfmon Box Wide Filter 0 Package

Register Address: EA6H, 3750 MSR_C10_PMON_BOX_FILTER1

Uncore C-Box 10 Perfmon Box Wide Filter 1 Package

Register Address: EA7H, 3751 MSR_C10_PMON_BOX_STATUS

Uncore C-Box 10 Perfmon Box Wide Status Package

Register Address: EA8H, 3752 MSR_C10_PMON_CTR0

Uncore C-Box 10 Perfmon Counter 0 Package

Register Address: EA9H, 3753 MSR_C10_PMON_CTR1

Uncore C-Box 10 perfmon Counter 1 Package

Register Address: EAAH, 3754 MSR_C10_PMON_CTR2

Uncore C-Box 10 Perfmon Counter 2 Package

Register Address: EABH, 3755 MSR_C10_PMON_CTR3

Uncore C-Box 10 Perfmon Counter 3 Package

Register Address: EB0H, 3760 MSR_C11_PMON_BOX_CTL

Uncore C-Box 11 Perfmon Local Box Wide Control Package

Register Address: EB1H, 3761 MSR_C11_PMON_EVNTSEL0

Uncore C-Box 11 Perfmon Event Select for C-Box 11 Counter 0 Package

Register Address: EB2H, 3762 MSR_C11_PMON_EVNTSEL1

Uncore C-Box 11 Perfmon Event Select for C-Box 11 Counter 1 Package

Register Address: EB3H, 3763 MSR_C11_PMON_EVNTSEL2

Uncore C-Box 11 Perfmon Event Select for C-Box 11 Counter 2 Package

Register Address: EB4H, 3764 MSR_C11_PMON_EVNTSEL3

Uncore C-box 11 Perfmon Event Select for C-Box 11 Counter 3 Package

Register Address: EB5H, 3765 MSR_C11_PMON_BOX_FILTER0

Uncore C-Box 11 Perfmon Box Wide Filter 0 Package

Register Address: EB6H, 3766 MSR_C11_PMON_BOX_FILTER1

Uncore C-Box 11 Perfmon Box Wide Filter 1 Package

Register Address: EB7H, 3767 MSR_C11_PMON_BOX_STATUS

Uncore C-Box 11 Perfmon Box Wide Status Package

Register Address: EB8H, 3768 MSR_C11_PMON_CTR0

Uncore C-Box 11 Perfmon Counter 0 Package

Register Address: EB9H, 3769 MSR_C11_PMON_CTR1

Uncore C-Box 11 Perfmon Counter 1 Package

Register Address: EBAH, 3770 MSR_C11_PMON_CTR2

Table 2-33.  Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Uncore C-Box 11 Perfmon Counter 2 Package

Register Address: EBBH, 3771 MSR_C11_PMON_CTR3

Uncore C-Box 11 Perfmon Counter 3 Package

Register Address: EC0H, 3776 MSR_C12_PMON_BOX_CTL

Uncore C-Box 12 Perfmon Local Box Wide Control Package

Register Address: EC1H, 3777 MSR_C12_PMON_EVNTSEL0

Uncore C-Box 12 Perfmon Event Select for C-Box 12 Counter 0 Package

Register Address: EC2H, 3778 MSR_C12_PMON_EVNTSEL1

Uncore C-Box 12 Perfmon Event Select for C-Box 12 Counter 1 Package

Register Address: EC3H, 3779 MSR_C12_PMON_EVNTSEL2

Uncore C-Box 12 Perfmon Event Select for C-Box 12 Counter 2 Package

Register Address: EC4H, 3780 MSR_C12_PMON_EVNTSEL3

Uncore C-Box 12 Perfmon Event Select for C-Box 12 Counter 3 Package

Register Address: EC5H, 3781 MSR_C12_PMON_BOX_FILTER0

Uncore C-Box 12 Perfmon Box Wide Filter 0 Package

Register Address: EC6H, 3782 MSR_C12_PMON_BOX_FILTER1

Uncore C-Box 12 Perfmon Box Wide Filter 1 Package

Register Address: EC7H, 3783 MSR_C12_PMON_BOX_STATUS

Uncore C-Box 12 Perfmon Box Wide Status Package

Register Address: EC8H, 3784 MSR_C12_PMON_CTR0

Uncore C-Box 12 Perfmon Counter 0 Package

Register Address: EC9H, 3785 MSR_C12_PMON_CTR1

Uncore C-Box 12 Perfmon Counter 1 Package

Register Address: ECAH, 3786 MSR_C12_PMON_CTR2

Uncore C-Box 12 Perfmon Counter 2 Package

Register Address: ECBH, 3787 MSR_C12_PMON_CTR3

Uncore C-Box 12 Perfmon Counter 3 Package

Register Address: ED0H, 3792 MSR_C13_PMON_BOX_CTL

Uncore C-Box 13 Perfmon local box wide control. Package

Register Address: ED1H, 3793 MSR_C13_PMON_EVNTSEL0

Uncore C-Box 13 Perfmon Event Select for C-Box 13 Counter 0 Package

Register Address: ED2H, 3794 MSR_C13_PMON_EVNTSEL1

Uncore C-Box 13 Perfmon Event Select for C-Box 13 Counter 1 Package

Register Address: ED3H, 3795 MSR_C13_PMON_EVNTSEL2

Uncore C-Box 13 Perfmon Event Select for C-Box 13 Counter 2 Package

Register Address: ED4H, 3796 MSR_C13_PMON_EVNTSEL3

Uncore C-Box 13 Perfmon Event Select for C-Box 13 Counter 3 Package

Table 2-33.  Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Register Address: ED5H, 3797 MSR_C13_PMON_BOX_FILTER0

Uncore C-Box 13 Perfmon Box Wide Filter 0 Package

Register Address: ED6H, 3798 MSR_C13_PMON_BOX_FILTER1

Uncore C-Box 13 Perfmon Box Wide Filter 1 Package

Register Address: ED7H, 3799 MSR_C13_PMON_BOX_STATUS

Uncore C-Box 13 Perfmon Box Wide Status Package

Register Address: ED8H, 3800 MSR_C13_PMON_CTR0

Uncore C-Box 13 Perfmon Counter 0 Package

Register Address: ED9H, 3801 MSR_C13_PMON_CTR1

Uncore C-Box 13 Perfmon Counter 1 Package

Register Address: EDAH, 3802 MSR_C13_PMON_CTR2

Uncore C-Box 13 Perfmon Counter 2 Package

Register Address: EDBH, 3803 MSR_C13_PMON_CTR3

Uncore C-Box 13 Perfmon Counter 3 Package

Register Address: EE0H, 3808 MSR_C14_PMON_BOX_CTL

Uncore C-Box 14 Perfmon Local Box Wide Control Package

Register Address: EE1H, 3809 MSR_C14_PMON_EVNTSEL0

Uncore C-Box 14 Perfmon Event Select for C-Box 14 Counter 0 Package

Register Address: EE2H, 3810 MSR_C14_PMON_EVNTSEL1

Uncore C-Box 14 Perfmon Event Select for C-Box 14 Counter 1 Package

Register Address: EE3H, 3811 MSR_C14_PMON_EVNTSEL2

Uncore C-Box 14 Perfmon Event Select for C-Box 14 Counter 2 Package

Register Address: EE4H, 3812 MSR_C14_PMON_EVNTSEL3

Uncore C-Box 14 Perfmon Event Select for C-Box 14 Counter 3 Package

Register Address: EE5H, 3813 MSR_C14_PMON_BOX_FILTER

Uncore C-Box 14 Perfmon Box Wide Filter 0 Package

Register Address: EE6H, 3814 MSR_C14_PMON_BOX_FILTER1

Uncore C-Box 14 Perfmon Box Wide Filter 1 Package

Register Address: EE7H, 3815 MSR_C14_PMON_BOX_STATUS

Uncore C-Box 14 Perfmon Box Wide Status Package

Register Address: EE8H, 3816 MSR_C14_PMON_CTR0

Uncore C-Box 14 Perfmon Counter 0 Package

Register Address: EE9H, 3817 MSR_C14_PMON_CTR1

Uncore C-Box 14 Perfmon Counter 1 Package

Register Address: EEAH, 3818 MSR_C14_PMON_CTR2

Uncore C-Box 14 Perfmon Counter 2 Package

Register Address: EEBH, 3819 MSR_C14_PMON_CTR3

Table 2-33.  Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Uncore C-Box 14 Perfmon Counter 3 Package

Register Address: EF0H, 3824 MSR_C15_PMON_BOX_CTL

Uncore C-Box 15 Perfmon Local Box Wide Control Package

Register Address: EF1H, 3825 MSR_C15_PMON_EVNTSEL0

Uncore C-Box 15 Perfmon Event Select for C-Box 15 Counter 0 Package

Register Address: EF2H, 3826 MSR_C15_PMON_EVNTSEL1

Uncore C-Box 15 Perfmon Event Select for C-Box 15 Counter 1 Package

Register Address: EF3H, 3827 MSR_C15_PMON_EVNTSEL2

Uncore C-Box 15 Perfmon Event Select for C-Box 15 Counter 2 Package

Register Address: EF4H, 3828 MSR_C15_PMON_EVNTSEL3

Uncore C-Box 15 Perfmon Event Select for C-Box 15 Counter 3 Package

Register Address: EF5H, 3829 MSR_C15_PMON_BOX_FILTER0

Uncore C-Box 15 Perfmon Box Wide Filter 0 Package

Register Address: EF6H, 3830 MSR_C15_PMON_BOX_FILTER1

Uncore C-Box 15 Perfmon Box Wide Filter 1 Package

Register Address: EF7H, 3831 MSR_C15_PMON_BOX_STATUS

Uncore C-Box 15 Perfmon Box Wide Status Package

Register Address: EF8H, 3832 MSR_C15_PMON_CTR0

Uncore C-Box 15 Perfmon Counter 0 Package

Register Address: EF9H, 3833 MSR_C15_PMON_CTR1

Uncore C-Box 15 Perfmon Counter 1 Package

Register Address: EFAH, 3834 MSR_C15_PMON_CTR2

Uncore C-Box 15 Perfmon Counter 2 Package

Register Address: EFBH, 3835 MSR_C15_PMON_CTR3

Uncore C-Box 15 Perfmon Counter 3 Package

Register Address: F00H, 3840 MSR_C16_PMON_BOX_CTL

Uncore C-Box 16 Perfmon for Box-Wide Control Package

Register Address: F01H, 3841 MSR_C16_PMON_EVNTSEL0

Uncore C-Box 16 Perfmon Event Select for C-Box 16 Counter 0 Package

Register Address: F02H, 3842 MSR_C16_PMON_EVNTSEL1

Uncore C-Box 16 Perfmon Event Select for C-Box 16 Counter 1 Package

Register Address: F03H, 3843 MSR_C16_PMON_EVNTSEL2

Uncore C-Box 16 Perfmon Event Select for C-Box 16 Counter 2 Package

Register Address: F04H, 3844 MSR_C16_PMON_EVNTSEL3

Uncore C-Box 16 Perfmon Event Select for C-Box 16 Counter 3 Package

Register Address: F05H, 3845 MSR_C16_PMON_BOX_FILTER0

Uncore C-Box 16 Perfmon Box Wide Filter 0 Package

Table 2-33.  Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family (Contd.)

Register Address: Hex, Decimal Register Name
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Register Address: F06H, 3846 MSR_C16_PMON_BOX_FILTER1

Uncore C-Box 16 Perfmon Box Wide Filter 1 Package

Register Address: F07H, 3847 MSR_C16_PMON_BOX_STATUS

Uncore C-Box 16 Perfmon Box Wide Status Package

Register Address: F08H, 3848 MSR_C16_PMON_CTR0

Uncore C-Box 16 Perfmon Counter 0 Package

Register Address: F09H, 3849 MSR_C16_PMON_CTR1

Uncore C-Box 16 Perfmon Counter 1 Package

Register Address: F0AH, 3850 MSR_C16_PMON_CTR2

Uncore C-Box 16 Perfmon Counter 2 Package

Register Address: F0BH, 3851 MSR_C16_PMON_CTR3

Uncore C-Box 16 Perfmon Counter 3 Package

Register Address: F10H, 3856 MSR_C17_PMON_BOX_CTL

Uncore C-Box 17 Perfmon for Box-Wide Control Package

Register Address: F11H, 3857 MSR_C17_PMON_EVNTSEL0

Uncore C-Box 17 Perfmon Event Select for C-Box 17 Counter 0 Package

Register Address: F12H, 3858 MSR_C17_PMON_EVNTSEL1

Uncore C-Box 17 Perfmon Event Select for C-Box 17 Counter 1 Package

Register Address: F13H, 3859 MSR_C17_PMON_EVNTSEL2

Uncore C-Box 17 Perfmon Event Select for C-Box 17 Counter 2 Package

Register Address: F14H, 3860 MSR_C17_PMON_EVNTSEL3

Uncore C-Box 17 Perfmon Event Select for C-Box 17 Counter 3 Package

Register Address: F15H, 3861 MSR_C17_PMON_BOX_FILTER0

Uncore C-Box 17 Perfmon Box Wide Filter 0 Package

Register Address: F16H, 3862 MSR_C17_PMON_BOX_FILTER1

Uncore C-Box 17 Perfmon Box Wide Filter1 Package

Register Address: F17H, 3863 MSR_C17_PMON_BOX_STATUS

Uncore C-Box 17 Perfmon Box Wide Status Package

Register Address: F18H, 3864 MSR_C17_PMON_CTR0

Uncore C-Box 17 Perfmon Counter 0 Package

Register Address: F19H, 3865 MSR_C17_PMON_CTR1

Uncore C-Box 17 Perfmon Counter 1 Package

Register Address: F1AH, 3866 MSR_C17_PMON_CTR2

Uncore C-Box 17 Perfmon Counter 2 Package

Register Address: F1BH, 3867 MSR_C17_PMON_CTR3

Uncore C-Box 17 Perfmon Counter 3 Package

Table 2-33.  Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family (Contd.)
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2.15 MSRS IN THE INTEL® CORE™ M PROCESSORS AND THE 5TH GENERATION 
INTEL® CORE™ PROCESSORS

The Intel® Core™ M-5xxx processors, 5th generation Intel® Core™ Processors, and the Intel® Xeon® Processor 
E3-1200 v4 family are based on Broadwell microarchitecture. The Intel® Core™ M-5xxx processors and 5th gener-
ation Intel® Core™ Processors have a CPUID Signature DisplayFamily_DisplayModel value of 06_3DH. The Intel® 
Xeon® Processor E3-1200 v4 family and 5th generation Intel® Core™ Processors have a CPUID Signature 
DisplayFamily_DisplayModel value of 06_47H. Processors with a CPUID Signature DisplayFamily_DisplayModel 
value of 06_3DH or 06_47H support the MSR interfaces listed in Table 2-20, Table 2-21, Table 2-22, Table 2-25, 
Table 2-29, Table 2-30, Table 2-34, and Table 2-35. For an MSR listed in Table 2-35 that also appears in the model-
specific tables of prior generations, Table 2-35 supersedes prior generation tables.

Table 2-34 lists MSRs that are common to processors based on the Broadwell microarchitectures (including CPUID 
Signature DisplayFamily_DisplayModel values of 06_3DH, 06_47H, 06_4FH, and 06_56H).

Table 2-34.  Additional MSRs Common to Processors Based on Broadwell Microarchitectures

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 38EH, 910 IA32_PERF_GLOBAL_STATUS

See Table 2-2 and Section 21.6.2.2, “Global Counter Control Facilities.” Thread

0 Ovf_PMC0 

1 Ovf_PMC1 

2 Ovf_PMC2 

3 Ovf_PMC3 

31:4 Reserved

32 Ovf_FixedCtr0 

33 Ovf_FixedCtr1 

34 Ovf_FixedCtr2 

54:35 Reserved.

55 Trace_ToPA_PMI

See Section 34.2.7.2, “Table of Physical Addresses (ToPA).”

60:56 Reserved.

61 Ovf_Uncore 

62 Ovf_BufDSSAVE 

63 CondChgd 

Register Address: 390H, 912 IA32_PERF_GLOBAL_OVF_CTRL

See Table 2-2 and Section 21.6.2.2, “Global Counter Control Facilities.” Thread

0 Set 1 to clear Ovf_PMC0.

1 Set 1 to clear Ovf_PMC1.

2 Set 1 to clear Ovf_PMC2.

3 Set 1 to clear Ovf_PMC3.

31:4 Reserved.

32 Set 1 to clear Ovf_FixedCtr0.

33 Set 1 to clear Ovf_FixedCtr1.

34 Set 1 to clear Ovf_FixedCtr2 
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54:35 Reserved.

55 Set 1 to clear Trace_ToPA_PMI. See Section 34.2.7.2, “Table of Physical 
Addresses (ToPA).”

60:56 Reserved.

61 Set 1 to clear Ovf_Uncore.

62 Set 1 to clear Ovf_BufDSSAVE.

63 Set 1 to clear CondChgd.

Register Address: 560H, 1376 IA32_RTIT_OUTPUT_BASE

Trace Output Base Register (R/W) Thread

6:0 Reserved.

MAXPHYADDR1-1:7 Base physical address.

63:MAXPHYADDR Reserved.

Register Address: 561H, 1377 IA32_RTIT_OUTPUT_MASK_PTRS

Trace Output Mask Pointers Register (R/W) Thread

6:0 Reserved.

31:7 MaskOrTableOffset

63:32 Output Offset.

Register Address: 570H, 1392 IA32_RTIT_CTL

Trace Control Register (R/W) Thread

0 TraceEn

1 Reserved, must be zero.

2 OS

3 User

6:4 Reserved, must be zero.

7 CR3Filter

8 ToPA

Writing 0 will #GP if also setting TraceEn.

9 Reserved, must be zero.

10 TSCEn

11 DisRETC

12 Reserved, must be zero.

13 Reserved; writing 0 will #GP if also setting TraceEn.

63:14 Reserved, must be zero.

Register Address: 571H, 1393 IA32_RTIT_STATUS

Tracing Status Register (R/W) Thread

0 Reserved, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

Table 2-34.  Additional MSRs Common to Processors Based on Broadwell Microarchitectures

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Table 2-35 lists MSRs that are specific to Intel Core M processors and 5th Generation Intel Core Processors.

3 Reserved

4 Error (R/W)

5 Stopped

63:6 Reserved, must be zero.

Register Address: 572H, 1394 IA32_RTIT_CR3_MATCH

Trace Filter CR3 Match Register (R/W) Thread

4:0 Reserved.

63:5 CR3[63:5] value to match.

Register Address: 620H, 1568 MSR_UNCORE_RATIO_LIMIT

Uncore Ratio Limit (R/W) 

Out of reset, the min_ratio and max_ratio fields represent the widest possible range of uncore frequencies. Writing to 
these fields allows software to control the minimum and the maximum frequency that hardware will select.

Package

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

7 Reserved.

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio of the LLC/Ring.

63:15 Reserved.

NOTES:
1. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 2-35.  Additional MSRs Supported by Intel® Core™ M Processors and 5th Generation Intel® Core™ Processors

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: E2H, 226 MSR_PKG_CST_CONFIG_CONTROL

C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-states. See http://biosbits.org.

Core

Table 2-34.  Additional MSRs Common to Processors Based on Broadwell Microarchitectures

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name (consuming the 
least power) for the package. The default is set as factory-configured 
package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

0110b: C8

0111b: C9

1000b: C10

9:4 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved.

15 CFG Lock (R/WO)

24:16 Reserved.

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Enable Package C-State Auto-Demotion (R/W)

30 Enable Package C-State Undemotion (R/W)

63:31 Reserved.

Register Address: 1ADH, 429 MSR_TURBO_RATIO_LIMIT

Maximum Ratio Limit of Turbo Mode

R/O if MSR_PLATFORM_INFO.[28] = 0, and R/W if MSR_PLATFORM_INFO.[28] = 1.

Package

7:0 Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

Package

15:8 Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

Package

23:16 Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

Package

31:24 Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

Package

39:32 Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5core active.

Package

Table 2-35.  Additional MSRs Supported by Intel® Core™ M Processors and 5th Generation Intel® Core™ Processors

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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2.16 MSRS IN THE INTEL® XEON® PROCESSOR E5 V4 FAMILY
The MSRs listed in Table 2-36 are available and common to the Intel® Xeon® Processor D Product Family (CPUID 
Signature DisplayFamily_DisplayModel value of 06_56H) and to the Intel Xeon processors E5 v4 and E7 v4 families 
(CPUID Signature DisplayFamily_DisplayModel value of 06_4FH). These processors are based on Broadwell 
microarchitecture.

See Section 2.16.1 for lists of tables of MSRs that are supported by the Intel® Xeon® Processor D Family.

47:40 Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6core active.

Package

63:48 Reserved.

Register Address: 639H, 1593 MSR_PP0_ENERGY_STATUS

PP0 Energy Status (R/O) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

See Table 2-20, Table 2-21, Table 2-22, Table 2-25, Table 2-29, Table 2-30, and Table 2-34 for other MSR definitions applicable to 
processors with a CPUID Signature DisplayFamily_DisplayModel value of 06_3DH.

Table 2-36.  Additional MSRs Common to the Intel® Xeon® Processor D and the Intel® Xeon® Processor E5 v4 Family 
Based on Broadwell Microarchitecture 

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 4EH, 78 IA32_PPIN_CTL (MSR_PPIN_CTL)

Protected Processor Inventory Number Enable Control (R/W) Package

0 LockOut (R/WO)

See Table 2-2.

1 Enable_PPIN (R/W)

See Table 2-2.

63:2 Reserved

Register Address: 4FH, 79 IA32_PPIN (MSR_PPIN)

Protected Processor Inventory Number (R/O) Package

63:0 Protected Processor Inventory Number (R/O)

See Table 2-2.

Register Address: CEH, 206 MSR_PLATFORM_INFO

Platform Information

Contains power management and other model specific features enumeration. See http://biosbits.org.

Package

7:0 Reserved.

15:8 Maximum Non-Turbo Ratio (R/O) 

See Table 2-26.

Package

22:16 Reserved.

Table 2-35.  Additional MSRs Supported by Intel® Core™ M Processors and 5th Generation Intel® Core™ Processors

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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23 PPIN_CAP (R/O)

See Table 2-26.

Package

27:24 Reserved.

28 Programmable Ratio Limit for Turbo Mode (R/O) 

See Table 2-26.

Package

29 Programmable TDP Limit for Turbo Mode (R/O) 

See Table 2-26.

Package

30 Programmable TJ OFFSET (R/O) 

See Table 2-26.

Package

39:31 Reserved.

47:40 Maximum Efficiency Ratio (R/O) 

See Table 2-26.

Package

63:48 Reserved.

Register Address: E2H, 226 MSR_PKG_CST_CONFIG_CONTROL

C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-states. See http://biosbits.org.

Core

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name (consuming the 
least power) for the package. The default is set as factory-configured 
package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-state support)

001b: C2

010b: C6 (non-retention)

011b: C6 (retention)

111b: No Package C state limits. All C states supported by the processor 
are available.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved.

15 CFG Lock (R/WO)

16 Automatic C-State Conversion Enable (R/W)

If 1, the processor will convert HALT or MWAT(C1) to MWAIT(C6).

24:17 Reserved.

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

Table 2-36.  Additional MSRs Common to the Intel® Xeon® Processor D and the Intel® Xeon® Processor E5 v4 Family 
Based on Broadwell Microarchitecture  (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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30 Package C State Undemotion Enable (R/W)

63:31 Reserved.

Register Address: 179H, 377 IA32_MCG_CAP

Global Machine Check Capability (R/O) Thread

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 MCG_EM_P

26 MCG_ELOG_P

63:27 Reserved.

Register Address: 17DH, 381 MSR_SMM_MCA_CAP

Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in SMM.

Thread

57:0 Reserved.

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1, indicates that the SMM code access restriction is supported and 
a host-space interface available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1, indicates that the SMM long flow indicator is supported and a 
host-space interface available to SMM handler.

63:60 Reserved.

Register Address: 19CH, 412 IA32_THERM_STATUS

Thermal Monitor Status (R/W) 

See Table 2-2.

Core

0 Thermal Status (R/O) 

See Table 2-2.

1 Thermal Status Log (R/WC0) 

See Table 2-2.

2 PROTCHOT # or FORCEPR# Status (R/O) 

See Table 2-2.

3 PROTCHOT # or FORCEPR# Log (R/WC0) 

See Table 2-2.
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4 Critical Temperature Status (R/O) 

See Table 2-2.

5 Critical Temperature Status Log (R/WC0) 

See Table 2-2.

6 Thermal Threshold #1 Status (R/O) 

See Table 2-2.

7 Thermal Threshold #1 Log (R/WC0) 

See Table 2-2.

8 Thermal Threshold #2 Status (R/O) 

See Table 2-2.

9 Thermal Threshold #2 Log (R/WC0) 

See Table 2-2.

10 Power Limitation Status (R/O) 

See Table 2-2.

11 Power Limitation Log (R/WC0) 

See Table 2-2.

12 Current Limit Status (R/O) 

See Table 2-2.

13 Current Limit Log (R/WC0) 

See Table 2-2.

14 Cross Domain Limit Status (R/O) 

See Table 2-2.

15 Cross Domain Limit Log (R/WC0) 

See Table 2-2.

22:16 Digital Readout (R/O) 

See Table 2-2.

26:23 Reserved.

30:27 Resolution in Degrees Celsius (R/O) 

See Table 2-2.

31 Reading Valid (R/O) 

See Table 2-2.

63:32 Reserved.

Register Address: 1A2H, 418 MSR_TEMPERATURE_TARGET

Temperature Target Package

15:0 Reserved.

23:16 Temperature Target (R/O) 

See Table 2-26.

27:24 TCC Activation Offset (R/W) 

See Table 2-26.
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63:28 Reserved.

Register Address: 1ADH, 429 MSR_TURBO_RATIO_LIMIT

Maximum Ratio Limit of Turbo Mode

R/O if MSR_PLATFORM_INFO.[28] = 0, and R/W if MSR_PLATFORM_INFO.[28] = 1.

Package

7:0 Maximum Ratio Limit for 1C Package

15:8 Maximum Ratio Limit for 2C Package

23:16 Maximum Ratio Limit for 3C Package

31:24 Maximum Ratio Limit for 4C Package

39:32 Maximum Ratio Limit for 5C Package

47:40 Maximum Ratio Limit for 6C Package

55:48 Maximum Ratio Limit for 7C Package

63:56 Maximum Ratio Limit for 8C Package

Register Address: 1AEH, 430 MSR_TURBO_RATIO_LIMIT1

Maximum Ratio Limit of Turbo Mode

R/O if MSR_PLATFORM_INFO.[28] = 0, and R/W if MSR_PLATFORM_INFO.[28] = 1.

Package

7:0 Maximum Ratio Limit for 9C Package

15:8 Maximum Ratio Limit for 10C Package

23:16 Maximum Ratio Limit for 11C Package

31:24 Maximum Ratio Limit for 12C Package

39:32 Maximum Ratio Limit for 13C Package

47:40 Maximum Ratio Limit for 14C Package

55:48 Maximum Ratio Limit for 15C Package

63:56 Maximum Ratio Limit for 16C Package

Register Address: 606H, 1542 MSR_RAPL_POWER_UNIT

Unit Multipliers Used in RAPL Interfaces (R/O) Package

3:0 Power Units

See Section 16.10.1, “RAPL Interfaces.”

Package

7:4 Reserved. Package

12:8 Energy Status Units

Energy related information (in Joules) is based on the multiplier, 1/2^ESU; 
where ESU is an unsigned integer represented by bits 12:8. Default value 
is 0EH (or 61 micro-joules).

Package

15:13 Reserved. Package

19:16 Time Units

See Section 16.10.1, “RAPL Interfaces.”

Package

63:20 Reserved.

Register Address: 618H, 1560 MSR_DRAM_POWER_LIMIT
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DRAM RAPL Power Limit Control (R/W) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 619H, 1561 MSR_DRAM_ENERGY_STATUS

DRAM Energy Status (R/O) 

Energy consumed by DRAM devices.

Package

31:0 Energy in 15.3 micro-joules. Requires BIOS configuration to enable DRAM 
RAPL mode 0 (Direct VR).

63:32 Reserved.

Register Address: 61BH, 1563 MSR_DRAM_PERF_STATUS

DRAM Performance Throttling Status (R/O) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 61CH, 1564 MSR_DRAM_POWER_INFO

DRAM RAPL Parameters (R/W) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 620H, 1568 MSR_UNCORE_RATIO_LIMIT

Uncore Ratio Limit (R/W) 

Out of reset, the min_ratio and max_ratio fields represent the widest possible range of uncore frequencies. Writing 
to these fields allows software to control the minimum and the maximum frequency that hardware will select.

Package

63:15 Reserved.

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio of the LLC/Ring.

7 Reserved.

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

Register Address: 639H, 1593 MSR_PP0_ENERGY_STATUS

Reserved (R/O) 

Reads return 0.

Package

Register Address: 690H, 1680 MSR_CORE_PERF_LIMIT_REASONS

Indicator of Frequency Clipping in Processor Cores (R/W)

(Frequency refers to processor core frequency.)

Package

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating 
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system request due 
to a thermal event.

2 Power Budget Management Status (R0) 

When set, frequency is reduced below the operating system request due 
to PBM limit.
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3 Platform Configuration Services Status (R0) 

When set, frequency is reduced below the operating system request due 
to PCS limit.

4 Reserved.

5 Autonomous Utilization-Based Frequency Control Status (R0) 

When set, frequency is reduced below the operating system request 
because the processor has detected that utilization is low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system request due 
to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system request due 
to electrical design point constraints (e.g., maximum electrical current 
consumption).

9 Reserved.

10 Multi-Core Turbo Status (R0) 

When set, frequency is reduced below the operating system request due 
to Multi-Core Turbo limits.

12:11 Reserved.

13 Core Frequency P1 Status (R0) 

When set, frequency is reduced below max non-turbo P1.

14 Core Max N-Core Turbo Frequency Limiting Status (R0) 

When set, frequency is reduced below max n-core turbo frequency.

15 Core Frequency Limiting Status (R0) 

When set, frequency is reduced below the operating system request.

16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has asserted since the 
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log 

When set, indicates that the Thermal Status bit has asserted since the log 
bit was last cleared.

This log bit will remain set until cleared by software writing 0.

18 Power Budget Management Log 

When set, indicates that the PBM Status bit has asserted since the log bit 
was last cleared.

This log bit will remain set until cleared by software writing 0.

19 Platform Configuration Services Log 

When set, indicates that the PCS Status bit has asserted since the log bit 
was last cleared.

This log bit will remain set until cleared by software writing 0.
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20 Reserved.

21 Autonomous Utilization-Based Frequency Control Log 

When set, indicates that the AUBFC Status bit has asserted since the log 
bit was last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log 

When set, indicates that the EDP Status bit has asserted since the log bit 
was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Reserved.

26 Multi-Core Turbo Log 

When set, indicates that the Multi-Core Turbo Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28:27 Reserved.

29 Core Frequency P1 Log

When set, indicates that the Core Frequency P1 Status bit has asserted 
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

30 Core Max N-Core Turbo Frequency Limiting Log

When set, indicates that the Core Max n-core Turbo Frequency Limiting 
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

31 Core Frequency Limiting Log

When set, indicates that the Core Frequency Limiting Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:32 Reserved.

Register Address: 770H, 1904 IA32_PM_ENABLE

See Section 16.4.2, “Enabling HWP.” Package

Register Address: 771H, 1905 IA32_HWP_CAPABILITIES

See Section 16.4.3, “HWP Performance Range and Dynamic Capabilities.” Thread

Register Address: 774H, 1908 IA32_HWP_REQUEST

See Section 16.4.4, “Managing HWP.” Thread

7:0 Minimum Performance (R/W)

15:8 Maximum Performance (R/W)
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23:16 Desired Performance (R/W)

63:24 Reserved.

Register Address: 777H, 1911 IA32_HWP_STATUS

See Section 16.4.5, “HWP Feedback.” Thread

1:0 Reserved.

2 Excursion to Minimum (R/O)

63:3 Reserved.

Register Address: C8DH, 3213 IA32_QM_EVTSEL

Monitoring Event Select Register (R/W)

If CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1.

Thread

7:0 EventID (R/W)

Event encoding:

0x00: No monitoring.

0x01: L3 occupancy monitoring.

0x02: Total memory bandwidth monitoring.

0x03: Local memory bandwidth monitoring.

All other encoding reserved.

31:8 Reserved.

41:32 RMID (R/W)

63:42 Reserved.

Register Address: C8FH, 3215 IA32_PQR_ASSOC

Resource Association Register (R/W) Thread

9:0 RMID 

31:10 Reserved.

51:32 CLOS (R/W)

63: 52 Reserved.

Register Address: C90H, 3216 IA32_L3_QOS_MASK_0

L3 Class Of Service Mask - CLOS 0 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 0 enforcement.

63:20 Reserved.

Register Address: C91H, 3217 IA32_L3_QOS_MASK_1

L3 Class Of Service Mask - CLOS 1 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 1 enforcement.

63:20 Reserved.

Register Address: C92H, 3218 IA32_L3_QOS_MASK_2
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L3 Class Of Service Mask - CLOS 2 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 2 enforcement.

63:20 Reserved.

Register Address: C93H, 3219 IA32_L3_QOS_MASK_3

L3 Class Of Service Mask - CLOS 3 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 3 enforcement.

63:20 Reserved.

Register Address: C94H, 3220 IA32_L3_QOS_MASK_4

L3 Class Of Service Mask - CLOS 4 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=4.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 4 enforcement.

63:20 Reserved.

Register Address: C95H, 3221 IA32_L3_QOS_MASK_5

L3 Class Of Service Mask - CLOS 5 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=5.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 5 enforcement.

63:20 Reserved.

Register Address: C96H, 3222 IA32_L3_QOS_MASK_6

L3 Class Of Service Mask - CLOS 6 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=6.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 6 enforcement.

63:20 Reserved.

Register Address: C97H, 3223 IA32_L3_QOS_MASK_7

L3 Class Of Service Mask - CLOS 7 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=7.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 7 enforcement.

63:20 Reserved.

Register Address: C98H, 3224 IA32_L3_QOS_MASK_8

L3 Class Of Service Mask - CLOS 8 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=8.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 8 enforcement.

63:20 Reserved.

Register Address: C99H, 3225 IA32_L3_QOS_MASK_9

L3 Class Of Service Mask - CLOS 9 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=9.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 9 enforcement.
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2.16.1  Additional MSRs Supported in the Intel® Xeon® Processor D Product Family
The MSRs listed in Table 2-37 are available to Intel® Xeon® Processor D Product Family (CPUID Signature 
DisplayFamily_DisplayModel value of 06_56H). The Intel® Xeon® processor D product family is based on Broadwell 
microarchitecture and supports the MSR interfaces listed in Table 2-20, Table 2-29, Table 2-34, Table 2-36, and 
Table 2-37. 

63:20 Reserved.

Register Address: C9AH, 3226 IA32_L3_QOS_MASK_10

L3 Class Of Service Mask - CLOS 10 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=10.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 10 enforcement.

63:20 Reserved.

Register Address: C9BH, 3227 IA32_L3_QOS_MASK_11

L3 Class Of Service Mask - CLOS 11 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=11.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 11 enforcement.

63:20 Reserved.

Register Address: C9CH, 3228 IA32_L3_QOS_MASK_12

L3 Class Of Service Mask - CLOS 12 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=12.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 12 enforcement.

63:20 Reserved.

Register Address: C9DH, 3229 IA32_L3_QOS_MASK_13

L3 Class Of Service Mask - CLOS 13 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=13.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 13 enforcement.

63:20 Reserved.

Register Address: C9EH, 3230 IA32_L3_QOS_MASK_14

L3 Class Of Service Mask - CLOS 14 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=14.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 14 enforcement.

63:20 Reserved.

Register Address: C9FH, 3231 IA32_L3_QOS_MASK_15

L3 Class Of Service Mask - CLOS 15 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=15.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 15 enforcement.

63:20 Reserved.
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Register Address: 1ACH, 428 MSR_TURBO_RATIO_LIMIT3

Config Ratio Limit of Turbo Mode

R/O if MSR_PLATFORM_INFO.[28] = 0, and R/W if MSR_PLATFORM_INFO.[28] = 1.

Package

62:0 Reserved. Package

63 Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in 
MSR_TURBO_RATIO_LIMIT, MSR_TURBO_RATIO_LIMIT1.

If 0, the processor uses factory-set configuration (Default).

Package

Register Address: 286H, 646 IA32_MC6_CTL2

See Table 2-2. Package

Register Address: 287H, 647 IA32_MC7_CTL2

See Table 2-2. Package

Register Address: 289H, 649 IA32_MC9_CTL2

See Table 2-2. Package

Register Address: 28AH, 650 IA32_MC10_CTL2

See Table 2-2. Package

Register Address: 291H, 657 IA32_MC17_CTL2

See Table 2-2. Package

Register Address: 292H, 658 IA32_MC18_CTL2

See Table 2-2. Package

Register Address: 293H, 659 IA32_MC19_CTL2

See Table 2-2. Package

Register Address: 418H, 1048 IA32_MC6_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Register Address: 419H, 1049 IA32_MC6_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Register Address: 41AH, 1050 IA32_MC6_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Register Address: 41BH, 1051 IA32_MC6_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Register Address: 41CH, 1052 IA32_MC7_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC7 reports MC errors from the home agent HA 0.

Package
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Register Address: 41DH, 1053 IA32_MC7_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC7 reports MC errors from the home agent HA 0.

Package

Register Address: 41EH, 1054 IA32_MC7_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC7 reports MC errors from the home agent HA 0.

Package

Register Address: 41FH, 1055 IA32_MC7_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC7 reports MC errors from the home agent HA 0.

Package

Register Address: 424H, 1060 IA32_MC9_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 10 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 425H, 1061 IA32_MC9_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 10 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 426H, 1062 IA32_MC9_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 10 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 427H, 1063 IA32_MC9_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 10 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 428H, 1064 IA32_MC10_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 10 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 429H, 1065 IA32_MC10_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 10 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 42AH, 1066 IA32_MC10_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 10 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 42BH, 1067 IA32_MC10_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 10 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 444H, 1092 IA32_MC17_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC17 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, 
CBo12, CBo15.

Package

Register Address: 445H, 1093 IA32_MC17_STATUS
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See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC17 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, 
CBo12, CBo15.

Package

Register Address: 446H, 1094 IA32_MC17_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC17 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, 
CBo12, CBo15.

Package

Register Address: 447H, 1095 IA32_MC17_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC17 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, 
CBo12, CBo15.

Package

Register Address: 448H, 1096 IA32_MC18_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC18 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7, 
CBo10, CBo13, CBo16.

Package

Register Address: 449H, 1097 IA32_MC18_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC18 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7, 
CBo10, CBo13, CBo16.

Package

Register Address: 44AH, 1098 IA32_MC18_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC18 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7, 
CBo10, CBo13, CBo16.

Package

Register Address: 44BH, 1099 IA32_MC18_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC18 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7, 
CBo10, CBo13, CBo16.

Package

Register Address: 44CH, 1100 IA32_MC19_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8, 
CBo11, CBo14, CBo17.

Package

Register Address: 44DH, 1101 IA32_MC19_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8, 
CBo11, CBo14, CBo17.

Package

Register Address: 44EH, 1102 IA32_MC19_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8, 
CBo11, CBo14, CBo17.

Package

Register Address: 44FH, 1103 IA32_MC19_MISC

Table 2-37.  Additional MSRs Supported by Intel® Xeon® Processor D with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_56H

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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2.16.2  Additional MSRs Supported in Intel® Xeon® Processors E5 v4 and E7 v4 Families
The MSRs listed in Table 2-37 are available to the Intel® Xeon® Processor E5 v4 and E7 v4 Families (CPUID 
Signature DisplayFamily_DisplayModel value of 06_4FH). The Intel® Xeon® processor E5 v4 family is based on 
Broadwell microarchitecture and supports the MSR interfaces listed in Table 2-20, Table 2-21, Table 2-29, Table 
2-34, Table 2-36, and Table 2-38. 

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8, 
CBo11, CBo14, CBo17.

Package

See Table 2-20, Table 2-29, Table 2-34, and Table 2-36 for other MSR definitions applicable to processors with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_56H. 

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the 

factory-set configuration is dependent on features specific to the processor and the platform.

Table 2-38.  Additional MSRs Supported by Intel® Xeon® Processors with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_4FH

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 1ACH, 428 MSR_TURBO_RATIO_LIMIT3

Config Ratio Limit of Turbo Mode

R/O if MSR_PLATFORM_INFO.[28] = 0, and R/W if MSR_PLATFORM_INFO.[28] = 1.

Package

62:0 Reserved. Package

63 Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in 
MSR_TURBO_RATIO_LIMIT, MSR_TURBO_RATIO_LIMIT1, and 
MSR_TURBO_RATIO_LIMIT2.

If 0, the processor uses factory-set configuration (Default).

Package

Register Address: 285H, 645 IA32_MC5_CTL2

See Table 2-2. Package

Register Address: 286H, 646 IA32_MC6_CTL2

See Table 2-2. Package

Register Address: 287H, 647 IA32_MC7_CTL2

See Table 2-2. Package

Register Address: 288H, 648 IA32_MC8_CTL2

See Table 2-2. Package

Register Address: 289H, 649 IA32_MC9_CTL2

See Table 2-2. Package

Register Address: 28AH, 650 IA32_MC10_CTL2

See Table 2-2. Package

Table 2-37.  Additional MSRs Supported by Intel® Xeon® Processor D with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_56H

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Register Address: 28BH, 651 IA32_MC11_CTL2

See Table 2-2. Package

Register Address: 28CH, 652 IA32_MC12_CTL2

See Table 2-2. Package

Register Address: 28DH, 653 IA32_MC13_CTL2

See Table 2-2. Package

Register Address: 28EH, 654 IA32_MC14_CTL2

See Table 2-2. Package

Register Address: 28FH, 655 IA32_MC15_CTL2

See Table 2-2. Package

Register Address: 290H, 656 IA32_MC16_CTL2

See Table 2-2. Package

Register Address: 291H, 657 IA32_MC17_CTL2

See Table 2-2. Package

Register Address: 292H, 658 IA32_MC18_CTL2

See Table 2-2. Package

Register Address: 293H, 659 IA32_MC19_CTL2

See Table 2-2. Package

Register Address: 294H, 660 IA32_MC20_CTL2

See Table 2-2. Package

Register Address: 295H, 661 IA32_MC21_CTL2

See Table 2-2. Package

Register Address: 414H, 1044 IA32_MC5_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC5 reports MC errors from the Intel QPI 0 module.

Package

Register Address: 415H, 1045 IA32_MC5_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC5 reports MC errors from the Intel QPI 0 module.

Package

Register Address: 416H, 1046 IA32_MC5_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC5 reports MC errors from the Intel QPI 0 module.

Package

Register Address: 417H, 1047 IA32_MC5_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC5 reports MC errors from the Intel QPI 0 module.

Package

Register Address: 418H, 1048 IA32_MC6_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Table 2-38.  Additional MSRs Supported by Intel® Xeon® Processors with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_4FH

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Register Address: 419H, 1049 IA32_MC6_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Register Address: 41AH, 1050 IA32_MC6_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Register Address: 41BH, 1051 IA32_MC6_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Register Address: 41CH, 1052 IA32_MC7_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC7 reports MC errors from the home agent HA 0.

Package

Register Address: 41DH, 1053 IA32_MC7_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC7 reports MC errors from the home agent HA 0.

Package

Register Address: 41EH, 1054 IA32_MC7_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC7 reports MC errors from the home agent HA 0.

Package

Register Address: 41FH, 1055 IA32_MC7_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC7 reports MC errors from the home agent HA 0.

Package

Register Address: 420H, 1056 IA32_MC8_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC8 reports MC errors from the home agent HA 1.

Package

Register Address: 421H, 1057 IA32_MC8_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC8 reports MC errors from the home agent HA 1.

Package

Register Address: 422H, 1058 IA32_MC8_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC8 reports MC errors from the home agent HA 1.

Package

Register Address: 423H, 1059 IA32_MC8_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC8 reports MC errors from the home agent HA 1.

Package

Register Address: 424H, 1060 IA32_MC9_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 425H, 1061 IA32_MC9_STATUS

Table 2-38.  Additional MSRs Supported by Intel® Xeon® Processors with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_4FH

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 426H, 1062 IA32_MC9_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 427H, 1063 IA32_MC9_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 428H, 1064 IA32_MC10_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 429H, 1065 IA32_MC10_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 42AH, 1066 IA32_MC10_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 42BH, 1067 IA32_MC10_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 42CH, 1068 IA32_MC11_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 42DH, 1069 IA32_MC11_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 42EH, 1070 IA32_MC11_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 42FH, 1071 IA32_MC11_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 430H, 1072 IA32_MC12_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 431H, 1073 IA32_MC12_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Table 2-38.  Additional MSRs Supported by Intel® Xeon® Processors with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_4FH

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Register Address: 432H, 1074 IA32_MC12_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 433H, 1075 IA32_MC12_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 434H, 1076 IA32_MC13_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 435H, 1077 IA32_MC13_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 436H, 1078 IA32_MC13_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 437H, 1079 IA32_MC13_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 438H, 1080 IA32_MC14_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 439H, 1081 IA32_MC14_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 43AH, 1082 IA32_MC14_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 43BH, 1083 IA32_MC14_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 43CH, 1084 IA32_MC15_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 43DH, 1085 IA32_MC15_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 43EH, 1086 IA32_MC15_ADDR

Table 2-38.  Additional MSRs Supported by Intel® Xeon® Processors with a CPUID Signature 
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Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
2-350 Vol. 4



MODEL-SPECIFIC REGISTERS (MSRS)
See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 43FH, 1087 IA32_MC15_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 440H, 1088 IA32_MC16_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 441H, 1089 IA32_MC16_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 442H, 1090 IA32_MC16_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 443H, 1091 IA32_MC16_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 through MC 16 report MC errors from each channel of the integrated memory controllers.

Package

Register Address: 444H, 1092 IA32_MC17_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC17 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, 
CBo12, CBo15.

Package

Register Address: 445H, 1093 IA32_MC17_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC17 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, 
CBo12, CBo15.

Package

Register Address: 446H, 1094 IA32_MC17_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC17 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, 
CBo12, CBo15.

Package

Register Address: 447H, 1095 IA32_MC17_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC17 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, 
CBo12, CBo15.

Package

Register Address: 448H, 1096 IA32_MC18_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC18 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7, 
CBo10, CBo13, CBo16.

Package

Register Address: 449H, 1097 IA32_MC18_STATUS

Table 2-38.  Additional MSRs Supported by Intel® Xeon® Processors with a CPUID Signature 
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See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC18 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7, 
CBo10, CBo13, CBo16.

Package

Register Address: 44AH, 1098 IA32_MC18_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC18 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7, 
CBo10, CBo13, CBo16.

Package

Register Address: 44BH, 1099 IA32_MC18_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC18 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7, 
CBo10, CBo13, CBo16.

Package

Register Address: 44CH, 1100 IA32_MC19_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8, 
CBo11, CBo14, CBo17.

Package

Register Address: 44DH, 1101 IA32_MC19_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8, 
CBo11, CBo14, CBo17.

Package

Register Address: 44EH, 1102 IA32_MC19_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8, 
CBo11, CBo14, CBo17.

Package

Register Address: 44FH, 1103 IA32_MC19_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from the following pair of CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8, 
CBo11, CBo14, CBo17.

Package

Register Address: 450H, 1104 IA32_MC20_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC20 reports MC errors from the Intel QPI 1 module.

Package

Register Address: 451H, 1105 IA32_MC20_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC20 reports MC errors from the Intel QPI 1 module.

Package

Register Address: 452H, 1106 IA32_MC20_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC20 reports MC errors from the Intel QPI 1 module.

Package

Register Address: 453H, 1107 IA32_MC20_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC20 reports MC errors from the Intel QPI 1 module.

Package

Register Address: 454H, 1108 IA32_MC21_CTL

Table 2-38.  Additional MSRs Supported by Intel® Xeon® Processors with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_4FH

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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2.17 MSRS IN THE 6TH—13TH GENERATION INTEL® CORE™ PROCESSORS, 
1ST—5TH GENERATION INTEL® XEON® SCALABLE PROCESSOR FAMILIES, 
INTEL® CORE™ ULTRA 7 PROCESSORS, 8TH GENERATION INTEL® CORE™ I3 
PROCESSORS, INTEL® XEON® E PROCESSORS, INTEL® XEON® 6 P-CORE 
PROCESSORS, INTEL® XEON® 6 E-CORE PROCESSORS, AND INTEL® SERIES 2 
CORE™ ULTRA PROCESSORS

6th generation Intel® Core™ processors are based on Skylake microarchitecture and have a CPUID Signature 
DisplayFamily_DisplayModel value of 06_4EH or 06_5EH. 

The Intel® Xeon® Scalable Processor Family based on the Skylake microarchitecture, the 2nd generation Intel® 
Xeon® Scalable Processor Family based on the Cascade Lake product, and the 3rd generation Intel® Xeon® Scal-
able Processor Family based on the Cooper Lake product all have a CPUID Signature DisplayFamily_DisplayModel 
value of 06_55H. 

7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture, 8th generation and 9th 
generation Intel® Core™ processors, and Intel® Xeon® E processors are based on Coffee Lake microarchitecture; 
these processors have a CPUID Signature DisplayFamily_DisplayModel value of 06_8EH or 06_9EH. 

8th generation Intel® Core™ i3 processors are based on Cannon Lake microarchitecture and have a CPUID Signa-
ture DisplayFamily_DisplayModel value of 06_66H. 

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC21 reports MC errors from the Intel QPI 2 module.

Package

Register Address: 455H, 1109 IA32_MC21_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC21 reports MC errors from the Intel QPI 2 module.

Package

Register Address: 456H, 1110 IA32_MC21_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC21 reports MC errors from the Intel QPI 2 module.

Package

Register Address: 457H, 1111 IA32_MC21_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC21 reports MC errors from the Intel QPI 2 module.

Package

Register Address: C81H, 3201 IA32_L3_QOS_CFG

Cache Allocation Technology Configuration (R/W) Package

0 CAT Enable. Set 1 to enable Cache Allocation Technology.

63:1 Reserved.

See Table 2-20, Table 2-21, Table 2-29, and Table 2-30 for other MSR definitions applicable to processors with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_45H.

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the fac-

tory-set configuration is dependent on features specific to the processor and the platform.

Table 2-38.  Additional MSRs Supported by Intel® Xeon® Processors with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_4FH

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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10th generation Intel® Core™ processors are based on Comet Lake microarchitecture (with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_A5H or 06_A6H) and Ice Lake microarchitecture (with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_7DH or 06_7EH). 

11th generation Intel® Core™ processors are based on Tiger Lake microarchitecture and have a CPUID Signature 
DisplayFamily_DisplayModel value of 06_8CH or 06_8DH.

The 3rd generation Intel® Xeon® Scalable Processor Family is based on Ice Lake microarchitecture and has a 
CPUID Signature DisplayFamily_DisplayModel value of 06_6AH or 06_6CH.

12th generation Intel® Core™ processors supporting the Alder Lake performance hybrid architecture have a CPUID 
Signature DisplayFamily_DisplayModel value of 06_97H or 06_9AH.

13th generation Intel® Core™ processors supporting the Raptor Lake performance hybrid architecture have a 
CPUID Signature DisplayFamily_DisplayModel value of 06_BAH, 06_B7H, or 06_BFH.

The 4th generation Intel® Xeon® Scalable Processor Family is based on Sapphire Rapids microarchitecture and has 
a CPUID Signature DisplayFamily_DisplayModel value of 06_8FH.

The 5th generation Intel® Xeon® Scalable Processor Family is based on Emerald Rapids microarchitecture and has 
a CPUID Signature DisplayFamily_DisplayModel value of 06_CFH.

The Intel® Core™ Ultra 7 processors supporting the Meteor Lake hybrid architecture have a CPUID Signature 
DisplayFamily_DisplayModel value of 06_AAH.

The Intel® Xeon® 6 P-core processor is based on the Granite Rapids microarchitecture and has a CPUID Signature 
DisplayFamily_DisplayModel value of 06_ADH or 06_AEH.

The Intel® Xeon® 6 E-core processor is based on the Sierra Forest microarchitecture and has a CPUID Signature 
DisplayFamily_DisplayModel value of 06_AFH.

The Intel® Series 2 Core™ Ultra processors supporting the Lunar Lake performance hybrid architecture have a 
CPUID Signature DisplayFamily_DisplayModel value of 06_BDH.

These processors support the MSR interfaces listed in Table 2-20, Table 2-21, Table 2-25, Table 2-29, Table 2-35, 
and Table 2-391. For an MSR listed in Table 2-39 that also appears in the model-specific tables of prior generations, 
Table 2-39 supersedes prior generation tables.

Tables 2-40 through 2-60 list additional supported MSR interfaces introduced in specific processors; see each table 
for additional details.

The notation of “Platform” in the Scope column (with respect to MSR_PLATFORM_ENERGY_COUNTER and 
MSR_PLATFORM_POWER_LIMIT) is limited to the power-delivery domain and the specifics of the power delivery 
integration may vary by platform vendor’s implementation.

1. MSRs at the following addresses are not supported in the 12th generation Intel Core processor E-core: 3F7H. MSRs at the following 
addresses are not supported in the 12th generation Intel Core processor E-core or P-core: 652H, 653H, 655H, 656H, DB0H, DB1H, 
DB2H, and D90H. 

Table 2-39.  Additional MSRs Supported by the 6th—13th Generation Intel® Core™ Processors, 
1st—5th Generation Intel® Xeon® Scalable Processor Families, Intel® Core™ Ultra 7 Processors, 

8th Generation Intel® Core™ i3 Processors, Intel® Xeon® E Processors, Intel® Xeon® 6 E-Core Processors, 
Intel® Xeon® 6 P-Core Processors, and Intel® Series 2 Core™ Ultra Processors 

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 3AH, 58 IA32_FEATURE_CONTROL

Control Features in Intel 64 Processor (R/W)

See Table 2-2.

Thread

Register Address: FEH, 254 IA32_MTRRCAP

MTRR Capability (R/O, Architectural)

See Table 2-2

Thread
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Register Address: 19CH, 412 IA32_THERM_STATUS

Thermal Monitor Status (R/W) 

See Table 2-2.

Core

0 Thermal Status (R/O) 

See Table 2-2.

1 Thermal Status Log (R/WC0) 

See Table 2-2.

2 PROTCHOT # or FORCEPR# Status (R/O) 

See Table 2-2.

3 PROTCHOT # or FORCEPR# Log (R/WC0) 

See Table 2-2.

4 Critical Temperature Status (R/O) 

See Table 2-2.

5 Critical Temperature Status Log (R/WC0) 

See Table 2-2.

6 Thermal threshold #1 Status (R/O) 

See Table 2-2.

7 Thermal threshold #1 Log (R/WC0) 

See Table 2-2.

8 Thermal Threshold #2 Status (R/O) 

See Table 2-2.

9 Thermal Threshold #2 Log (R/WC0) 

See Table 2-2.

10 Power Limitation Status (R/O) 

See Table 2-2.

11 Power Limitation Log (R/WC0) 

See Table 2-2.

12 Current Limit Status (R/O) 

See Table 2-2.

13 Current Limit Log (R/WC0) 

See Table 2-2.

14 Cross Domain Limit Status (R/O) 

See Table 2-2.

15 Cross Domain Limit Log (R/WC0) 

See Table 2-2.

22:16 Digital Readout (R/O) 

See Table 2-2.

Table 2-39.  Additional MSRs Supported by the 6th—13th Generation Intel® Core™ Processors, 
1st—5th Generation Intel® Xeon® Scalable Processor Families, Intel® Core™ Ultra 7 Processors, 

8th Generation Intel® Core™ i3 Processors, Intel® Xeon® E Processors, Intel® Xeon® 6 E-Core Processors, 
Intel® Xeon® 6 P-Core Processors, and Intel® Series 2 Core™ Ultra Processors  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
Vol. 4 2-355



MODEL-SPECIFIC REGISTERS (MSRS)
26:23 Reserved.

30:27 Resolution in Degrees Celsius (R/O) 

See Table 2-2.

31 Reading Valid (R/O) 

See Table 2-2.

63:32 Reserved.

Register Address: 1ADH, 429 MSR_TURBO_RATIO_LIMIT

Maximum Ratio Limit of Turbo Mode

R/O if MSR_PLATFORM_INFO.[28] = 0, and R/W if MSR_PLATFORM_INFO.[28] = 1

Package

7:0 Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

Package

15:8 Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

Package

23:16 Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

Package

31:24 Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

Package

63:32 Reserved.

Register Address: 1C9H, 457 MSR_LASTBRANCH_TOS

Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-4) that points to the MSR containing the most recent branch record.

Thread

Register Address: 1FCH, 508 MSR_POWER_CTL

Power Control Register

See http://biosbits.org.

Core

0 Reserved.

1 C1E Enable (R/W) 

When set to ‘1’, will enable the CPU to switch to the Minimum Enhanced 
Intel SpeedStep Technology operating point when all execution cores enter 
MWAIT (C1).

Package

18:2 Reserved.

19 Disable Energy Efficiency Optimization (R/W) 

Setting this bit disables the P-States energy efficiency optimization. 
Default value is 0. Disable/enable the energy efficiency optimization in P-
State legacy mode (when IA32_PM_ENABLE[HWP_ENABLE] = 0), has an 
effect only in the turbo range or into PERF_MIN_CTL value if it is not zero 
set. In HWP mode (IA32_PM_ENABLE[HWP_ENABLE] == 1), has an effect 
between the OS desired or OS maximize to the OS minimize performance 
setting.

Table 2-39.  Additional MSRs Supported by the 6th—13th Generation Intel® Core™ Processors, 
1st—5th Generation Intel® Xeon® Scalable Processor Families, Intel® Core™ Ultra 7 Processors, 

8th Generation Intel® Core™ i3 Processors, Intel® Xeon® E Processors, Intel® Xeon® 6 E-Core Processors, 
Intel® Xeon® 6 P-Core Processors, and Intel® Series 2 Core™ Ultra Processors  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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20 Disable Race to Halt Optimization (R/W) 

Setting this bit disables the Race to Halt optimization and avoids this 
optimization limitation to execute below the most efficient frequency ratio. 
Default value is 0 for processors that support Race to Halt optimization.

63:21 Reserved.

Register Address: 300H, 768 MSR_SGXOWNEREPOCH0

Lower 64 Bit CR_SGXOWNEREPOCH (W)

Writes do not update CR_SGXOWNEREPOCH if CPUID.(EAX=12H, ECX=0):EAX.SGX1 is 1 on any thread in the package.

Package

63:0 Lower 64 bits of an 128-bit external entropy value for key derivation of an 
enclave.

Register Address: 301H, 769 MSR_SGXOWNEREPOCH1

Upper 64 Bit CR_SGXOWNEREPOCH (W)

Writes do not update CR_SGXOWNEREPOCH if CPUID.(EAX=12H, ECX=0):EAX.SGX1 is 1 on any thread in the package.

Package

63:0 Upper 64 bits of an 128-bit external entropy value for key derivation of an 
enclave.

Register Address: 38EH, 910 IA32_PERF_GLOBAL_STATUS

See Table 2-2 and Section 21.2.4, “Architectural Performance Monitoring Version 4.” 

0 Ovf_PMC0 Thread

1 Ovf_PMC1 Thread

2 Ovf_PMC2 Thread

3 Ovf_PMC3 Thread

4 Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4) Thread

5 Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5) Thread

6 Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6) Thread

7 Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7) Thread

31:8 Reserved.

32 Ovf_FixedCtr0 Thread

33 Ovf_FixedCtr1 Thread

34 Ovf_FixedCtr2 Thread

54:35 Reserved

55 Trace_ToPA_PMI Thread

57:56 Reserved.

58 LBR_Frz Thread

59 CTR_Frz Thread

60 ASCI Thread

61 Ovf_Uncore Thread

62 Ovf_BufDSSAVE Thread

Table 2-39.  Additional MSRs Supported by the 6th—13th Generation Intel® Core™ Processors, 
1st—5th Generation Intel® Xeon® Scalable Processor Families, Intel® Core™ Ultra 7 Processors, 

8th Generation Intel® Core™ i3 Processors, Intel® Xeon® E Processors, Intel® Xeon® 6 E-Core Processors, 
Intel® Xeon® 6 P-Core Processors, and Intel® Series 2 Core™ Ultra Processors  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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63 CondChgd Thread

Register Address: 390H, 912 IA32_PERF_GLOBAL_STATUS_RESET

See Table 2-2 and Section 21.2.4, “Architectural Performance Monitoring Version 4.”

0 Set 1 to clear Ovf_PMC0. Thread

1 Set 1 to clear Ovf_PMC1. Thread

2 Set 1 to clear Ovf_PMC2. Thread

3 Set 1 to clear Ovf_PMC3. Thread

4 Set 1 to clear Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4). Thread

5 Set 1 to clear Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5). Thread

6 Set 1 to clear Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6). Thread

7 Set 1 to clear Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7). Thread

31:8 Reserved.

32 Set 1 to clear Ovf_FixedCtr0. Thread

33 Set 1 to clear Ovf_FixedCtr1. Thread

34 Set 1 to clear Ovf_FixedCtr2. Thread

54:35 Reserved.

55 Set 1 to clear Trace_ToPA_PMI. Thread

57:56 Reserved.

58 Set 1 to clear LBR_Frz. Thread

59 Set 1 to clear CTR_Frz. Thread

60 Set 1 to clear ASCI. Thread

61 Set 1 to clear Ovf_Uncore. Thread

62 Set 1 to clear Ovf_BufDSSAVE. Thread

63 Set 1 to clear CondChgd. Thread

Register Address: 391H, 913 IA32_PERF_GLOBAL_STATUS_SET

See Table 2-2 and Section 21.2.4, “Architectural Performance Monitoring Version 4.”

0 Set 1 to cause Ovf_PMC0 = 1. Thread

1 Set 1 to cause Ovf_PMC1 = 1. Thread

2 Set 1 to cause Ovf_PMC2 = 1. Thread

3 Set 1 to cause Ovf_PMC3 = 1. Thread

4 Set 1 to cause Ovf_PMC4=1 (if CPUID.0AH:EAX[15:8] > 4). Thread

5 Set 1 to cause Ovf_PMC5=1 (if CPUID.0AH:EAX[15:8] > 5). Thread

6 Set 1 to cause Ovf_PMC6=1 (if CPUID.0AH:EAX[15:8] > 6). Thread

7 Set 1 to cause Ovf_PMC7=1 (if CPUID.0AH:EAX[15:8] > 7). Thread

31:8 Reserved.

Table 2-39.  Additional MSRs Supported by the 6th—13th Generation Intel® Core™ Processors, 
1st—5th Generation Intel® Xeon® Scalable Processor Families, Intel® Core™ Ultra 7 Processors, 

8th Generation Intel® Core™ i3 Processors, Intel® Xeon® E Processors, Intel® Xeon® 6 E-Core Processors, 
Intel® Xeon® 6 P-Core Processors, and Intel® Series 2 Core™ Ultra Processors  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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32 Set 1 to cause Ovf_FixedCtr0 = 1. Thread

33 Set 1 to cause Ovf_FixedCtr1 = 1. Thread

34 Set 1 to cause Ovf_FixedCtr2 = 1. Thread

54:35 Reserved.

55 Set 1 to cause Trace_ToPA_PMI = 1. Thread

57:56 Reserved.

58 Set 1 to cause LBR_Frz = 1. Thread

59 Set 1 to cause CTR_Frz = 1. Thread

60 Set 1 to cause ASCI = 1. Thread

61 Set 1 to cause Ovf_Uncore. Thread

62 Set 1 to cause Ovf_BufDSSAVE. Thread

63 Reserved.

Register Address: 392H, 914 IA32_PERF_GLOBAL_INUSE

See Table 2-2. Thread

Register Address: 3F7H, 1015 MSR_PEBS_FRONTEND

FrontEnd Precise Event Condition Select (R/W) Thread

2:0 Event Code Select 

3 Reserved

4 Event Code Select High

7:5 Reserved.

19:8 IDQ_Bubble_Length Specifier

22:20 IDQ_Bubble_Width Specifier

63:23 Reserved.

Register Address: 500H, 1280 IA32_SGX_SVN_STATUS

Status and SVN Threshold of SGX Support for ACM (R/O) Thread

0 Lock

See Section 39.11.3, “Interactions with Authenticated Code Modules 
(ACMs).”

15:1 Reserved.

23:16 SGX_SVN_SINIT

See Section 39.11.3, “Interactions with Authenticated Code Modules 
(ACMs).”

63:24 Reserved.

Register Address: 560H, 1376 IA32_RTIT_OUTPUT_BASE

Trace Output Base Register (R/W)

See Table 2-2. 

Thread

Table 2-39.  Additional MSRs Supported by the 6th—13th Generation Intel® Core™ Processors, 
1st—5th Generation Intel® Xeon® Scalable Processor Families, Intel® Core™ Ultra 7 Processors, 

8th Generation Intel® Core™ i3 Processors, Intel® Xeon® E Processors, Intel® Xeon® 6 E-Core Processors, 
Intel® Xeon® 6 P-Core Processors, and Intel® Series 2 Core™ Ultra Processors  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Register Address: 561H, 1377 IA32_RTIT_OUTPUT_MASK_PTRS

Trace Output Mask Pointers Register (R/W)

See Table 2-2. 

Thread

Register Address: 570H, 1392 IA32_RTIT_CTL

Trace Control Register (R/W) Thread

0 TraceEn

1 CYCEn

2 OS

3 User

6:4 Reserved, must be zero.

7 CR3Filter

8 ToPA

Writing 0 will #GP if also setting TraceEn.

9 MTCEn

10 TSCEn

11 DisRETC

12 Reserved, must be zero.

13 BranchEn

17:14 MTCFreq

18 Reserved, must be zero.

22:19 CycThresh

23 Reserved, must be zero.

27:24 PSBFreq

31:28 Reserved, must be zero.

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, must be zero.

Register Address: 571H, 1393 IA32_RTIT_STATUS

Tracing Status Register (R/W) Thread

0 FilterEn, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

Table 2-39.  Additional MSRs Supported by the 6th—13th Generation Intel® Core™ Processors, 
1st—5th Generation Intel® Xeon® Scalable Processor Families, Intel® Core™ Ultra 7 Processors, 

8th Generation Intel® Core™ i3 Processors, Intel® Xeon® E Processors, Intel® Xeon® 6 E-Core Processors, 
Intel® Xeon® 6 P-Core Processors, and Intel® Series 2 Core™ Ultra Processors  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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31:6 Reserved, must be zero.

48:32 PacketByteCnt

63:49 Reserved, must be zero.

Register Address: 572H, 1394 IA32_RTIT_CR3_MATCH

Trace Filter CR3 Match Register (R/W) Thread

4:0 Reserved

63:5 CR3[63:5] value to match

Register Address: 580H, 1408 IA32_RTIT_ADDR0_A

Region 0 Start Address (R/W) Thread

63:0 See Table 2-2. 

Register Address: 581H, 1409 IA32_RTIT_ADDR0_B

Region 0 End Address (R/W) Thread

63:0 See Table 2-2. 

Register Address: 582H, 1410 IA32_RTIT_ADDR1_A

Region 1 Start Address (R/W) Thread

63:0 See Table 2-2. 

Register Address: 583H, 1411 IA32_RTIT_ADDR1_B

Region 1 End Address (R/W) Thread

63:0 See Table 2-2. 

Register Address: 639H, 1593 MSR_PP0_ENERGY_STATUS

PP0 Energy Status (R/O) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

Register Address: 64DH, 1613 MSR_PLATFORM_ENERGY_COUNTER

Platform Energy Counter (R/O)

This MSR is valid only if both platform vendor hardware implementation and BIOS enablement support it. This MSR 
will read 0 if not valid.

Platform

31:0 Total energy consumed by all devices in the platform that receive power 
from integrated power delivery mechanism, included platform devices are 
processor cores, SOC, memory, add-on or peripheral devices that get 
powered directly from the platform power delivery means. The energy 
units are specified in the MSR_RAPL_POWER_UNIT.Enery_Status_Unit.

63:32 Reserved.

Register Address: 64EH, 1614 MSR_PPERF

Productive Performance Count (R/O) Thread

63:0 Hardware’s view of workload scalability. See Section 16.4.5.1.

Register Address: 64FH, 1615 MSR_CORE_PERF_LIMIT_REASONS

Table 2-39.  Additional MSRs Supported by the 6th—13th Generation Intel® Core™ Processors, 
1st—5th Generation Intel® Xeon® Scalable Processor Families, Intel® Core™ Ultra 7 Processors, 

8th Generation Intel® Core™ i3 Processors, Intel® Xeon® E Processors, Intel® Xeon® 6 E-Core Processors, 
Intel® Xeon® 6 P-Core Processors, and Intel® Series 2 Core™ Ultra Processors  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
Vol. 4 2-361



MODEL-SPECIFIC REGISTERS (MSRS)
Indicator of Frequency Clipping in Processor Cores (R/W)

(Frequency refers to processor core frequency.)

Package

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system request due 
to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system request due 
to a thermal event.

3:2 Reserved.

4 Residency State Regulation Status (R0)

When set, frequency is reduced below the operating system request due 
to residency state regulation limit.

5 Running Average Thermal Limit Status (R0)

When set, frequency is reduced below the operating system request due 
to Running Average Thermal Limit (RATL).

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system request due 
to a thermal alert from a processor Voltage Regulator (VR).

7 VR Therm Design Current Status (R0)

When set, frequency is reduced below the operating system request due 
to VR thermal design current limit.

8 Other Status (R0)

When set, frequency is reduced below the operating system request due 
to electrical or other constraints.

9 Reserved.

10 Package/Platform-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system request due 
to package/platform-level power limiting PL1.

11 Package/Platform-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system request due 
to package/platform-level power limiting PL2/PL3.

12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system request due 
to multi-core turbo limits.

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system request due 
to Turbo transition attenuation. This prevents performance degradation 
due to frequent operating ratio changes.

15:14 Reserved.

Table 2-39.  Additional MSRs Supported by the 6th—13th Generation Intel® Core™ Processors, 
1st—5th Generation Intel® Xeon® Scalable Processor Families, Intel® Core™ Ultra 7 Processors, 

8th Generation Intel® Core™ i3 Processors, Intel® Xeon® E Processors, Intel® Xeon® 6 E-Core Processors, 
Intel® Xeon® 6 P-Core Processors, and Intel® Series 2 Core™ Ultra Processors  (Contd.)
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16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has asserted since the 
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log 

When set, indicates that the Thermal Status bit has asserted since the log 
bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19:18 Reserved.

20 Residency State Regulation Log 

When set, indicates that the Residency State Regulation Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

21 Running Average Thermal Limit Log 

When set, indicates that the RATL Status bit has asserted since the log bit 
was last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 VR Thermal Design Current Log 

When set, indicates that the VR TDC Status bit has asserted since the log 
bit was last cleared.

This log bit will remain set until cleared by software writing 0.

24 Other Log 

When set, indicates that the Other Status bit has asserted since the log bit 
was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Reserved.

26 Package/Platform-Level PL1 Power Limiting Log 

When set, indicates that the Package or Platform Level PL1 Power Limiting 
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package/Platform-Level PL2 Power Limiting Log

When set, indicates that the Package or Platform Level PL2/PL3 Power 
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.
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28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:30 Reserved.

Register Address: 652H, 1618 MSR_PKG_HDC_CONFIG

HDC Configuration (R/W) Package

2:0 PKG_Cx_Monitor

Configures Package Cx state threshold for 
MSR_PKG_HDC_DEEP_RESIDENCY.

63: 3 Reserved.

Register Address: 653H, 1619 MSR_CORE_HDC_RESIDENCY

Core HDC Idle Residency (R/O) Core

63:0 Core_Cx_Duty_Cycle_Cnt

Register Address: 655H, 1621 MSR_PKG_HDC_SHALLOW_RESIDENCY

Accumulate the cycles the package was in C2 state and at least one logical processor was in forced idle (R/O) Package

63:0 Pkg_C2_Duty_Cycle_Cnt

Register Address: 656H, 1622 MSR_PKG_HDC_DEEP_RESIDENCY

Package Cx HDC Idle Residency (R/O) Package

63:0 Pkg_Cx_Duty_Cycle_Cnt

Register Address: 658H, 1624 MSR_WEIGHTED_CORE_C0

Core-count Weighted C0 Residency (R/O) Package

63:0 Increment at the same rate as the TSC. The increment each cycle is 
weighted by the number of processor cores in the package that reside in 
C0. If N cores are simultaneously in C0, then each cycle the counter 
increments by N. 

Register Address: 659H, 1625 MSR_ANY_CORE_C0

Any Core C0 Residency (R/O) Package

63:0 Increment at the same rate as the TSC. The increment each cycle is one if 
any processor core in the package is in C0. 

Register Address: 65AH, 1626 MSR_ANY_GFXE_C0

Any Graphics Engine C0 Residency (R/O) Package

63:0 Increment at the same rate as the TSC. The increment each cycle is one if 
any processor graphic device’s compute engines are in C0. 
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Register Address: 65BH, 1627 MSR_CORE_GFXE_OVERLAP_C0

Core and Graphics Engine Overlapped C0 Residency (R/O) Package

63:0 Increment at the same rate as the TSC. The increment each cycle is one if 
at least one compute engine of the processor graphics is in C0 and at least 
one processor core in the package is also in C0. 

Register Address: 65CH, 1628 MSR_PLATFORM_POWER_LIMIT

Platform Power Limit Control (R/W-L) 

Allows platform BIOS to limit power consumption of the platform devices to the specified values. The Long Duration 
power consumption is specified via Platform_Power_Limit_1 and Platform_Power_Limit_1_Time. The Short Duration 
power consumption limit is specified via the Platform_Power_Limit_2 with duration chosen by the processor. 

The processor implements an exponential-weighted algorithm in the placement of the time windows.

Platform

14:0 Platform Power Limit #1

Average Power limit value which the platform must not exceed over a time 
window as specified by Power_Limit_1_TIME field. 

The default value is the Thermal Design Power (TDP) and varies with 
product skus. The unit is specified in MSR_RAPLPOWER_UNIT.

15 Enable Platform Power Limit #1

When set, enables the processor to apply control policy such that the 
platform power does not exceed Platform Power limit #1 over the time 
window specified by Power Limit #1 Time Window.

16 Platform Clamping Limitation #1

When set, allows the processor to go below the OS requested P states in 
order to maintain the power below specified Platform Power Limit #1 
value. 

This bit is writeable only when CPUID (EAX=6):EAX[4] is set.

23:17 Time Window for Platform Power Limit #1

Specifies the duration of the time window over which Platform Power 
Limit 1 value should be maintained for sustained long duration. This field is 
made up of two numbers from the following equation:

Time Window = (float) ((1+(X/4))*(2^Y)), where:

X = POWER_LIMIT_1_TIME[23:22]

Y = POWER_LIMIT_1_TIME[21:17]

The maximum allowed value in this field is defined in 
MSR_PKG_POWER_INFO[PKG_MAX_WIN].

The default value is 0DH, and the unit is specified in 
MSR_RAPL_POWER_UNIT[Time Unit].

31:24 Reserved.

46:32 Platform Power Limit #2

Average Power limit value which the platform must not exceed over the 
Short Duration time window chosen by the processor. 

The recommended default value is 1.25 times the Long Duration Power 
Limit (i.e., Platform Power Limit # 1).
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47 Enable Platform Power Limit #2

When set, enables the processor to apply control policy such that the 
platform power does not exceed Platform Power limit #2 over the Short 
Duration time window.

48 Platform Clamping Limitation #2

When set, allows the processor to go below the OS requested P states in 
order to maintain the power below specified Platform Power Limit #2 
value. 

62:49 Reserved.

63 Lock. Setting this bit will lock all other bits of this MSR until system RESET.

Register Address: 690H, 1680 MSR_LASTBRANCH_16_FROM_IP

Last Branch Record 16 From IP (R/W)

One of 32 triplets of last branch record registers on the last branch record stack. This part of the stack contains 
pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 19.12.

Thread

Register Address: 691H, 1681 MSR_LASTBRANCH_17_FROM_IP

Last Branch Record 17 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 692H, 1682 MSR_LASTBRANCH_18_FROM_IP

Last Branch Record 18 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

Thread

Register Address: 693H, 1683 MSR_LASTBRANCH_19_FROM_IP

Last Branch Record 19From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 694H, 1684 MSR_LASTBRANCH_20_FROM_IP

Last Branch Record 20 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 695H, 1685 MSR_LASTBRANCH_21_FROM_IP

Last Branch Record 21 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 696H, 1686 MSR_LASTBRANCH_22_FROM_IP

Last Branch Record 22 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 697H, 1687 MSR_LASTBRANCH_23_FROM_IP

Last Branch Record 23 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 698H, 1688 MSR_LASTBRANCH_24_FROM_IP
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Last Branch Record 24 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 699H, 1689 MSR_LASTBRANCH_25_FROM_IP

Last Branch Record 25 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 69AH, 1690 MSR_LASTBRANCH_26_FROM_IP

Last Branch Record 26 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 69BH, 1691 MSR_LASTBRANCH_27_FROM_IP

Last Branch Record 27 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 69CH, 1692 MSR_LASTBRANCH_28_FROM_IP

Last Branch Record 28 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 69DH, 1693 MSR_LASTBRANCH_29_FROM_IP

Last Branch Record 29 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 69EH, 1694 MSR_LASTBRANCH_30_FROM_IP

Last Branch Record 30 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 69FH, 1695 MSR_LASTBRANCH_31_FROM_IP

Last Branch Record 31 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 6B0H, 1712 MSR_GRAPHICS_PERF_LIMIT_REASONS

Indicator of Frequency Clipping in the Processor Graphics (R/W)

(Frequency refers to processor graphics frequency.)

Package

0 PROCHOT Status (R0)

When set, frequency is reduced due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced due to a thermal event.

4:2 Reserved.

5 Running Average Thermal Limit Status (R0) 

When set, frequency is reduced due to running average thermal limit. 

6 VR Therm Alert Status (R0)

When set, frequency is reduced due to a thermal alert from a processor 
Voltage Regulator.
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7 VR Thermal Design Current Status (R0)

When set, frequency is reduced due to VR TDC limit.

8 Other Status (R0)

When set, frequency is reduced due to electrical or other constraints.

9 Reserved.

10 Package/Platform-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced due to package/platform-level power 
limiting PL1.

11 Package/Platform-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced due to package/platform-level power 
limiting PL2/PL3.

12 Inefficient Operation Status (R0)

When set, processor graphics frequency is operating below target 
frequency.

15:13 Reserved.

16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has asserted since the 
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log 

When set, indicates that the Thermal Status bit has asserted since the log 
bit was last cleared.

This log bit will remain set until cleared by software writing 0.

20:18 Reserved.

21 Running Average Thermal Limit Log 

When set, indicates that the RATL Status bit has asserted since the log bit 
was last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 VR Thermal Design Current Log 

When set, indicates that the VR Therm Alert Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

24 Other Log 

When set, indicates that the OTHER Status bit has asserted since the log 
bit was last cleared.

This log bit will remain set until cleared by software writing 0.
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25 Reserved.

26 Package/Platform-Level PL1 Power Limiting Log 

When set, indicates that the Package/Platform Level PL1 Power Limiting 
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package/Platform-Level PL2 Power Limiting Log

When set, indicates that the Package/Platform Level PL2 Power Limiting 
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Inefficient Operation Log

When set, indicates that the Inefficient Operation Status bit has asserted 
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:29 Reserved.

Register Address: 6B1H, 1713 MSR_RING_PERF_LIMIT_REASONS

Indicator of Frequency Clipping in the Ring Interconnect (R/W)

(Frequency refers to ring interconnect in the uncore.)

Package

0 PROCHOT Status (R0)

When set, frequency is reduced due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced due to a thermal event.

4:2 Reserved.

5 Running Average Thermal Limit Status (R0) 

When set, frequency is reduced due to running average thermal limit. 

6 VR Therm Alert Status (R0)

When set, frequency is reduced due to a thermal alert from a processor 
Voltage Regulator.

7 VR Thermal Design Current Status (R0)

When set, frequency is reduced due to VR TDC limit.

8 Other Status (R0)

When set, frequency is reduced due to electrical or other constraints.

9 Reserved.

10 Package/Platform-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced due to package/Platform-level power 
limiting PL1.

11 Package/Platform-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced due to package/Platform-level power 
limiting PL2/PL3.

15:12 Reserved 
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16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has asserted since the 
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log 

When set, indicates that the Thermal Status bit has asserted since the log 
bit was last cleared.

This log bit will remain set until cleared by software writing 0.

20:18 Reserved.

21 Running Average Thermal Limit Log 

When set, indicates that the RATL Status bit has asserted since the log bit 
was last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 VR Thermal Design Current Log 

When set, indicates that the VR Therm Alert Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

24 Other Log 

When set, indicates that the OTHER Status bit has asserted since the log 
bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Reserved.

26 Package/Platform-Level PL1 Power Limiting Log 

When set, indicates that the Package/Platform Level PL1 Power Limiting 
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package/Platform-Level PL2 Power Limiting Log

When set, indicates that the Package/Platform Level PL2 Power Limiting 
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:28 Reserved.

Register Address: 6D0H, 1744 MSR_LASTBRANCH_16_TO_IP

Last Branch Record 16 To IP (R/W)

One of 32 triplets of last branch record registers on the last branch record stack. This part of the stack contains 
pointers to the destination instruction. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 19.12.

Thread
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Register Address: 6D1H, 1745 MSR_LASTBRANCH_17_TO_IP

Last Branch Record 17 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Thread

Register Address: 6D2H, 1746 MSR_LASTBRANCH_18_TO_IP

Last Branch Record 18 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Thread

Register Address: 6D3H, 1747 MSR_LASTBRANCH_19_TO_IP

Last Branch Record 19To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Thread

Register Address: 6D4H, 1748 MSR_LASTBRANCH_20_TO_IP

Last Branch Record 20 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Thread

Register Address: 6D5H, 1749 MSR_LASTBRANCH_21_TO_IP

Last Branch Record 21 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Thread

Register Address: 6D6H, 1750 MSR_LASTBRANCH_22_TO_IP

Last Branch Record 22 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Thread

Register Address: 6D7H, 1751 MSR_LASTBRANCH_23_TO_IP

Last Branch Record 23 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Thread

Register Address: 6D8H, 1752 MSR_LASTBRANCH_24_TO_IP

Last Branch Record 24 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Thread

Register Address: 6D9H, 1753 MSR_LASTBRANCH_25_TO_IP

Last Branch Record 25 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Thread

Register Address: 6DAH, 1754 MSR_LASTBRANCH_26_TO_IP

Last Branch Record 26 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Thread

Register Address: 6DBH, 1755 MSR_LASTBRANCH_27_TO_IP

Last Branch Record 27 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Thread

Register Address: 6DCH, 1756 MSR_LASTBRANCH_28_TO_IP

Last Branch Record 28 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Thread

Register Address: 6DDH, 1757 MSR_LASTBRANCH_29_TO_IP
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Last Branch Record 29 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Thread

Register Address: 6DEH, 1758 MSR_LASTBRANCH_30_TO_IP

Last Branch Record 30 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Thread

Register Address: 6DFH, 1759 MSR_LASTBRANCH_31_TO_IP

Last Branch Record 31 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Thread

Register Address: 770H, 1904 IA32_PM_ENABLE

See Section 16.4.2, “Enabling HWP.” Package

Register Address: 771H, 1905 IA32_HWP_CAPABILITIES

See Section 16.4.3, “HWP Performance Range and Dynamic Capabilities.” Thread

Register Address: 772H, 1906 IA32_HWP_REQUEST_PKG

See Section 16.4.4, “Managing HWP.” Package

Register Address: 773H, 1907 IA32_HWP_INTERRUPT

See Section 16.4.6, “HWP Notifications.” Thread

Register Address: 774H, 1908 IA32_HWP_REQUEST

See Section 16.4.4, “Managing HWP.” Thread

7:0 Minimum Performance (R/W)

15:8 Maximum Performance (R/W)

23:16 Desired Performance (R/W)

31:24 Energy/Performance Preference (R/W)

41:32 Activity Window (R/W)

42 Package Control (R/W)

63:43 Reserved.

Register Address: 777H, 1911 IA32_HWP_STATUS

See Section 16.4.5, “HWP Feedback.” Thread

Register Address: D90H, 3472 IA32_BNDCFGS

See Table 2-2. Thread

Register Address: DA0H, 3488 IA32_XSS

See Table 2-2. Thread

Register Address: DB0H, 3504 IA32_PKG_HDC_CTL

See Section 16.5.2, “Package level Enabling HDC.” Package

Register Address: DB1H, 3505 IA32_PM_CTL1

See Section 16.5.3, “Logical-Processor Level HDC Control.” Thread

Register Address: DB2H, 3506 IA32_THREAD_STALL
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See Section 16.5.4.1, “IA32_THREAD_STALL.” Thread

Register Address: DC0H, 3520 MSR_LBR_INFO_0

Last Branch Record 0 Additional Information (R/W)

One of 32 triplet of last branch record registers on the last branch record stack. This part of the stack contains flag, 
TSX-related and elapsed cycle information. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 19.9.1, “LBR Stack.”

Thread

Register Address: DC1H, 3521 MSR_LBR_INFO_1

Last Branch Record 1 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DC2H, 3522 MSR_LBR_INFO_2

Last Branch Record 2 Additional Information (R/W)

See description of MSR_LBR_INFO_0. 

Thread

Register Address: DC3H, 3523 MSR_LBR_INFO_3

Last Branch Record 3 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DC4H, 3524 MSR_LBR_INFO_4

Last Branch Record 4 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DC5H, 3525 MSR_LBR_INFO_5

Last Branch Record 5 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DC6H, 3526 MSR_LBR_INFO_6

Last Branch Record 6 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DC7H, 3527 MSR_LBR_INFO_7

Last Branch Record 7 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DC8H, 3528 MSR_LBR_INFO_8

Last Branch Record 8 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DC9H, 3529 MSR_LBR_INFO_9

Last Branch Record 9 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DCAH, 3530 MSR_LBR_INFO_10

Last Branch Record 10 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Table 2-39.  Additional MSRs Supported by the 6th—13th Generation Intel® Core™ Processors, 
1st—5th Generation Intel® Xeon® Scalable Processor Families, Intel® Core™ Ultra 7 Processors, 

8th Generation Intel® Core™ i3 Processors, Intel® Xeon® E Processors, Intel® Xeon® 6 E-Core Processors, 
Intel® Xeon® 6 P-Core Processors, and Intel® Series 2 Core™ Ultra Processors  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Register Address: DCBH, 3531 MSR_LBR_INFO_11

Last Branch Record 11 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DCCH, 3532 MSR_LBR_INFO_12

Last Branch Record 12 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DCDH, 3533 MSR_LBR_INFO_13

Last Branch Record 13 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DCEH, 3534 MSR_LBR_INFO_14

Last Branch Record 14 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DCFH, 3535 MSR_LBR_INFO_15

Last Branch Record 15 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DD0H, 3536 MSR_LBR_INFO_16

Last Branch Record 16 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DD1H, 3537 MSR_LBR_INFO_17

Last Branch Record 17 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DD2H, 3538 MSR_LBR_INFO_18

Last Branch Record 18 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DD3H, 3539 MSR_LBR_INFO_19

Last Branch Record 19 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DD4H, 3540 MSR_LBR_INFO_20

Last Branch Record 20 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DD5H, 3541 MSR_LBR_INFO_21

Last Branch Record 21 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DD6H, 3542 MSR_LBR_INFO_22

Last Branch Record 22 Additional Information (R/W)

See description of MSR_LBR_INFO_0. 

Thread

Register Address: DD7H, 3543 MSR_LBR_INFO_23

Table 2-39.  Additional MSRs Supported by the 6th—13th Generation Intel® Core™ Processors, 
1st—5th Generation Intel® Xeon® Scalable Processor Families, Intel® Core™ Ultra 7 Processors, 

8th Generation Intel® Core™ i3 Processors, Intel® Xeon® E Processors, Intel® Xeon® 6 E-Core Processors, 
Intel® Xeon® 6 P-Core Processors, and Intel® Series 2 Core™ Ultra Processors  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Table 2-40 lists the MSRs of uncore PMU for Intel processors with a CPUID Signature DisplayFamily_DisplayModel 
value of 06_4EH, 06_5EH, 06_8EH, 06_9EH, or 06_66H.

Last Branch Record 23 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DD8H, 3544 MSR_LBR_INFO_24

Last Branch Record 24 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DD9H, 3545 MSR_LBR_INFO_25

Last Branch Record 25 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DDAH, 3546 MSR_LBR_INFO_26

Last Branch Record 26 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DDBH, 3547 MSR_LBR_INFO_27

Last Branch Record 27 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DDCH, 3548 MSR_LBR_INFO_28

Last Branch Record 28 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DDDH, 3549 MSR_LBR_INFO_29

Last Branch Record 29 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DDEH, 3550 MSR_LBR_INFO_30

Last Branch Record 30 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Register Address: DDFH, 3551 MSR_LBR_INFO_31

Last Branch Record 31 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Thread

Table 2-40.  Uncore PMU MSRs Supported by 6th Generation, 7th Generation, and 8th Generation Intel® Core™ 
Processors, and 8th generation Intel® Core™ i3 Processors

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 394H, 916 MSR_UNC_PERF_FIXED_CTRL

Uncore Fixed Counter Control (R/W) Package

19:0 Reserved.

20 Enable overflow propagation.

Table 2-39.  Additional MSRs Supported by the 6th—13th Generation Intel® Core™ Processors, 
1st—5th Generation Intel® Xeon® Scalable Processor Families, Intel® Core™ Ultra 7 Processors, 

8th Generation Intel® Core™ i3 Processors, Intel® Xeon® E Processors, Intel® Xeon® 6 E-Core Processors, 
Intel® Xeon® 6 P-Core Processors, and Intel® Series 2 Core™ Ultra Processors  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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21 Reserved.

22 Enable counting.

63:23 Reserved.

Register Address: 395H, 917 MSR_UNC_PERF_FIXED_CTR

Uncore Fixed Counter Package

43:0 Current count.

63:44 Reserved.

Register Address: 396H, 918 MSR_UNC_CBO_CONFIG

Uncore C-Box Configuration Information (R/O) Package

3:0 Specifies the number of C-Box units with programmable counters 
(including processor cores and processor graphics).

63:4 Reserved.

Register Address: 3B0H, 946 MSR_UNC_ARB_PERFCTR0

Uncore Arb Unit, Performance Counter 0 Package

Register Address: 3B1H, 947 MSR_UNC_ARB_PERFCTR1

Uncore Arb Unit, Performance Counter 1 Package

Register Address: 3B2H, 944 MSR_UNC_ARB_PERFEVTSEL0

Uncore Arb Unit, Counter 0 Event Select MSR Package

Register Address: 3B3H, 945 MSR_UNC_ARB_PERFEVTSEL1

Uncore Arb Unit, Counter 1 Event Select MSR Package

Register Address: 700H, 1792 MSR_UNC_CBO_0_PERFEVTSEL0

Uncore C-Box 0, Counter 0 Event Select MSR Package

Register Address: 701H, 1793 MSR_UNC_CBO_0_PERFEVTSEL1

Uncore C-Box 0, Counter 1 Event Select MSR Package

Register Address: 706H, 1798 MSR_UNC_CBO_0_PERFCTR0

Uncore C-Box 0, Performance Counter 0 Package

Register Address: 707H, 1799 MSR_UNC_CBO_0_PERFCTR1

Uncore C-Box 0, Performance Counter 1 Package

Register Address: 710H, 1808 MSR_UNC_CBO_1_PERFEVTSEL0

Uncore C-Box 1, Counter 0 Event Select MSR Package

Register Address: 711H, 1809 MSR_UNC_CBO_1_PERFEVTSEL1

Uncore C-Box 1, Counter 1 Event Select MSR Package

Register Address: 716H, 1814 MSR_UNC_CBO_1_PERFCTR0

Uncore C-Box 1, Performance Counter 0 Package

Register Address: 717H, 1815 MSR_UNC_CBO_1_PERFCTR1

Uncore C-Box 1, Performance Counter 1 Package

Register Address: 720H, 1824 MSR_UNC_CBO_2_PERFEVTSEL0

Table 2-40.  Uncore PMU MSRs Supported by 6th Generation, 7th Generation, and 8th Generation Intel® Core™ 
Processors, and 8th generation Intel® Core™ i3 Processors

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Uncore C-Box 2, Counter 0 Event Select MSR Package

Register Address: 721H, 1825 MSR_UNC_CBO_2_PERFEVTSEL1

Uncore C-Box 2, Counter 1 Event Select MSR Package

Register Address: 726H, 1830 MSR_UNC_CBO_2_PERFCTR0

Uncore C-Box 2, Performance Counter 0 Package

Register Address: 727H, 1831 MSR_UNC_CBO_2_PERFCTR1

Uncore C-Box 2, Performance Counter 1 Package

Register Address: 730H, 1840 MSR_UNC_CBO_3_PERFEVTSEL0

Uncore C-Box 3, Counter 0 Event Select MSR Package

Register Address: 731H, 1841 MSR_UNC_CBO_3_PERFEVTSEL1

Uncore C-Box 3, Counter 1 Event Select MSR Package

Register Address: 736H, 1846 MSR_UNC_CBO_3_PERFCTR0

Uncore C-Box 3, Performance Counter 0 Package

Register Address: 737H, 1847 MSR_UNC_CBO_3_PERFCTR1

Uncore C-Box 3, Performance Counter 1 Package

Register Address: E01H, 3585 MSR_UNC_PERF_GLOBAL_CTRL

Uncore PMU Global Control Package

0 Slice 0 select.

1 Slice 1 select.

2 Slice 2 select.

3 Slice 3 select.

4 Slice 4select.

18:5 Reserved.

29 Enable all uncore counters.

30 Enable wake on PMI.

31 Enable Freezing counter when overflow.

63:32 Reserved.

Register Address: E02H, 3586 MSR_UNC_PERF_GLOBAL_STATUS

Uncore PMU Main Status Package

0 Fixed counter overflowed.

1 An ARB counter overflowed.

2 Reserved.

3 A CBox counter overflowed (on any slice).

63:4 Reserved.

Table 2-40.  Uncore PMU MSRs Supported by 6th Generation, 7th Generation, and 8th Generation Intel® Core™ 
Processors, and 8th generation Intel® Core™ i3 Processors

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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2.17.1  MSRs Introduced in 7th Generation and 8th Generation Intel® Core™ Processors Based 
on Kaby Lake Microarchitecture and Coffee Lake Microarchitecture

Table 2-41 lists additional MSRs for 7th generation and 8th generation Intel Core processors with a CPUID Signa-
ture DisplayFamily_DisplayModel value of 06_8EH or 06_9EH. For an MSR listed in Table 2-41 that also appears in 
the model-specific tables of prior generations, Table 2-41 supersedes prior generation tables.

Table 2-41.  Additional MSRs Supported by the 7th Generation and 8th Generation Intel® Core™ Processors Based 
on Kaby Lake Microarchitecture and Coffee Lake Microarchitecture 

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 80H, 128 MSR_TRACE_HUB_STH_ACPIBAR_BASE

NPK Address Used by AET Messages (R/W) Package

0 Lock Bit

If set, this MSR cannot be re-written anymore. Lock bit has to be set in 
order for the AET packets to be directed to NPK MMIO. 

17:1 Reserved.

63:18 ACPIBAR_BASE_ADDRESS 

AET target address in NPK MMIO space. 

Register Address: 1F4H, 500 MSR_PRMRR_PHYS_BASE

Processor Reserved Memory Range Register - Physical Base Control Register (R/W) Core

2:0 MemType

PRMRR BASE MemType.

11:3 Reserved.

45:12 Base

PRMRR Base Address.

63:46 Reserved.

Register Address: 1F5H, 501 MSR_PRMRR_PHYS_MASK

Processor Reserved Memory Range Register - Physical Mask Control Register (R/W) Core

9:0 Reserved.

10 Lock

Lock bit for the PRMRR.

11 VLD

Enable bit for the PRMRR.

45:12 Mask

PRMRR MASK bits.

63:46 Reserved.

Register Address: 1FBH, 507 MSR_PRMRR_VALID_CONFIG

Valid PRMRR Configurations (R/W) Core

0 1M supported MEE size.

4:1 Reserved.

5 32M supported MEE size.

6 64M supported MEE size.

7 128M supported MEE size.
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2.17.2  MSRs Specific to 8th Generation Intel® Core™ i3 Processors 
Table 2-42 lists additional MSRs for 8th generation Intel Core i3 processors with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_66H. For an MSR listed in Table 2-42 that also appears in the model-
specific tables of prior generations, Table 2-42 supersedes prior generation tables.

31:8 Reserved.

Register Address: 2F4H, 756 MSR_UNCORE_PRMRR_PHYS_BASE1

(R/W)

The PRMRR range is used to protect the processor reserved memory from unauthorized reads and writes. Any IO 
access to this range is aborted. This register controls the location of the PRMRR range by indicating its starting 
address. It functions in tandem with the PRMRR mask register.

Package

11:0 Reserved.

PAWIDTH-1:12 Range Base

This field corresponds to bits PAWIDTH-1:12 of the base address memory 
range which is allocated to PRMRR memory.

63:PAWIDTH Reserved.

Register Address: 2F5H, 757 MSR_UNCORE_PRMRR_PHYS_MASK1

(R/W)

This register controls the size of the PRMRR range by indicating which address bits must match the PRMRR base 
register value.

Package

9:0 Reserved.

10 Lock

Setting this bit locks all writeable settings in this register, including itself.

11 Range_En

Indicates whether the PRMRR range is enabled and valid.

38:12 Range_Mask

This field indicates which address bits must match PRMRR base in order 
to qualify as an PRMRR access.

63:39 Reserved.

Register Address: 620H, 1568 MSR_RING_RATIO_LIMIT

Ring Ratio Limit (R/W)

This register provides Min/Max Ratio Limits for the LLC and Ring.

Package

6:0 MAX_Ratio

This field is used to limit the max ratio of the LLC/Ring.

7 Reserved.

14:8 MIN_Ratio

Writing to this field controls the minimum possible ratio of the LLC/Ring.

63:15 Reserved.

NOTES:
1. This MSR is specific to 7th generation and 8th generation Intel® Core™ processors.

Table 2-41.  Additional MSRs Supported by the 7th Generation and 8th Generation Intel® Core™ Processors Based 
on Kaby Lake Microarchitecture and Coffee Lake Microarchitecture  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Table 2-42.  Additional MSRs Supported by the 8th Generation Intel® Core™ i3 Processors
Based on Cannon Lake Microarchitecture

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 3AH, 58 IA32_FEATURE_CONTROL

Control Features in Intel 64 Processor (R/W)

See Table 2-2.

Thread

0 Lock (R/WL) 

1 Enable VMX Inside SMX Operation (R/WL) 

2 Enable VMX Outside SMX Operation (R/WL) 

14:8 SENTER Local Functions Enables (R/WL) 

15 SENTER Global Functions Enable (R/WL) 

17 SGX Launch Control Enable (R/WL)

This bit must be set to enable runtime reconfiguration of SGX Launch 
Control via IA32_SGXLEPUBKEYHASHn MSR.

Available only if CPUID.(EAX=07H, ECX=0H): ECX[30] = 1.

18 SGX Global Functions Enable (R/WL) 

63:21 Reserved.

Register Address: 350H, 848 MSR_BR_DETECT_CTRL

Branch Monitoring Global Control (R/W)

0 EnMonitoring

Global enable for branch monitoring.

1 EnExcept

Enable branch monitoring event signaling on threshold trip. 

The branch monitoring event handler is signaled via the existing PMI 
signaling mechanism as programmed from the corresponding local APIC 
LVT entry.

2 EnLBRFrz

Enable LBR freeze on threshold trip. This will cause the LBR frozen bit 
58 to be set in IA32_PERF_GLOBAL_STATUS when a triggering 
condition occurs and this bit is enabled.

3 DisableInGuest

When set to ‘1’, branch monitoring, event triggering and LBR freeze 
actions are disabled when operating at VMX non-root operation.

7:4 Reserved.

17:8 WindowSize

Window size defined by WindowCntSel. Values 0 – 1023 are supported.

Once the Window counter reaches the WindowSize count both the 
Window Counter and all Branch Monitoring Counters are cleared.

23:18 Reserved.
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25:24 WindowCntSel

Window event count select:

‘00 = Instructions retired.

‘01 = Branch instructions retired

‘10 = Return instructions retired.

‘11 = Indirect branch instructions retired.

26 CntAndMode

When set to ‘1’, the overall branch monitoring event triggering 
condition is true only if all enabled counters’ threshold conditions are 
true. 

When ‘0’, the threshold tripping condition is true if any enabled 
counters’ threshold is true.

63:27 Reserved.

Register Address: 351H, 849 MSR_BR_DETECT_STATUS

Branch Monitoring Global Status (R/W)

0 Branch Monitoring Event Signaled

When set to '1', Branch Monitoring event signaling is blocked until this 
bit is cleared by software.

1 LBRsValid

This status bit is set to ‘1’ if the LBR state is considered valid for 
sampling by branch monitoring software.

7:2 Reserved.

8 CntrHit0

Branch monitoring counter #0 threshold hit. This status bit is sticky 
and once set requires clearing by software. Counter operation 
continues independent of the state of the bit.

9 CntrHit1

Branch monitoring counter #1 threshold hit. This status bit is sticky 
and once set requires clearing by software. Counter operation 
continues independent of the state of the bit.

15:10 Reserved.

Reserved for additional branch monitoring counters threshold hit 
status.

25:16 CountWindow

The current value of the window counter. The count value is frozen on 
a valid branch monitoring triggering condition. This is a 10-bit unsigned 
value.

31:26 Reserved.

Reserved for future extension of CountWindow.

Table 2-42.  Additional MSRs Supported by the 8th Generation Intel® Core™ i3 Processors
Based on Cannon Lake Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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39:32 Count0

The current value of counter 0 updated after each occurrence of the 
event being counted. The count value is frozen on a valid branch 
monitoring triggering condition (in which case CntrHit0 will also be set). 
This is an 8-bit signed value (2’s complement).

Heuristic events which only increment will saturate and freeze at 
maximum value 0xFF (256).

RET-CALL event counter saturate at maximum value 0x7F (+127) and 
minimum value 0x80 (-128).

47:40 Count1

The current value of counter 1 updated after each occurrence of the 
event being counted. The count value is frozen on a valid branch 
monitoring triggering condition (in which case CntrHit1 will also be set). 
This is an 8-bit signed value (2’s complement).

Heuristic events which only increment will saturate and freeze at 
maximum value 0xFF (256).

RET-CALL event counter saturate at maximum value 0x7F (+127) and 
minimum value 0x80 (-128).

63:48 Reserved.

Register Address: 354H−355H, 852−853 MSR_BR_DETECT_COUNTER_CONFIG_i

Branch Monitoring Detect Counter Configuration (R/W)

0 CntrEn

Enable counter.

7:1 CntrEvSel

Event select (other values #GP)

‘0000000 = RETs.

‘0000001 = RET-CALL bias.

‘0000010 = RET mispredicts.

‘0000011 = Branch (all) mispredicts.

‘0000100 = Indirect branch mispredicts.

‘0000101 = Far branch instructions.

14:8 CntrThreshold

Threshold (an unsigned value of 0 to 127 supported). The value 0 of 
counter threshold will result in event signaled after every instruction. 
#GP if threshold is < 2.

15 MispredEventCnt

Mispredict events counting behavior:

‘0 = Mispredict events are counted in a window.

‘1 = Mispredict events are counted based on a consecutive occurrence. 
CntrThreshold is treated as # of consecutive mispredicts. This control 
bit only applies to events specified by CntrEvSel that involve a 
prediction (0000010, 0000011, 0000100). Setting this bit for other 
events is ignored.

63:16 Reserved.

Table 2-42.  Additional MSRs Supported by the 8th Generation Intel® Core™ i3 Processors
Based on Cannon Lake Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Table 2-43 lists the MSRs of uncore PMU for Intel processors with a CPUID Signature DisplayFamily_DisplayModel 
value of 06_66H.

Register Address: 3F8H, 1016 MSR_PKG_C3_RESIDENCY

Package C3 Residency Counter (R/O) Package

63:0 Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-states.

Register Address: 620H, 1568 MSR_RING_RATIO_LIMIT

Ring Ratio Limit (R/W)

This register provides Min/Max Ratio Limits for the LLC and Ring.

Package

6:0 MAX_Ratio

This field is used to limit the max ratio of the LLC/Ring.

7 Reserved.

14:8 MIN_Ratio

Writing to this field controls the minimum possible ratio of the 
LLC/Ring.

63:15 Reserved.

Register Address: 660H, 1632 MSR_CORE_C1_RESIDENCY

Core C1 Residency Counter (R/O) Core

63:0 Value since last reset for the Core C1 residency. Counter rate is the 
Max Non-Turbo frequency (same as TSC). This counter counts in case 
both of the core's threads are in an idle state and at least one of the 
core's thread residency is in a C1 state or in one of its sub states. The 
counter is updated only after a core C state exit. Note: Always reads 0 
if core C1 is unsupported. A value of zero indicates that this processor 
does not support core C1 or never entered core C1 level state.

Register Address: 662H, 1634 MSR_CORE_C3_RESIDENCY

Core C3 Residency Counter (R/O) Core

63:0 Will always return 0.

Table 2-43.  Uncore PMU MSRs Supported by Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 394H, 916 MSR_UNC_PERF_FIXED_CTRL

Uncore Fixed Counter Control (R/W) Package

19:0 Reserved.

20 Enable overflow propagation.

21 Reserved

22 Enable counting.

63:23 Reserved.

Register Address: 395H, 917 MSR_UNC_PERF_FIXED_CTR

Table 2-42.  Additional MSRs Supported by the 8th Generation Intel® Core™ i3 Processors
Based on Cannon Lake Microarchitecture (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Uncore Fixed Counter Package

47:0 Current count.

63:48 Reserved.

Register Address: 396H, 918 MSR_UNC_CBO_CONFIG

Uncore C-Box Configuration Information (R/O) Package

3:0 Report the number of C-Box units with performance counters, including 
processor cores and processor graphics.

63:4 Reserved.

Register Address: 3B0H, 946 MSR_UNC_ARB_PERFCTR0

Uncore Arb Unit, Performance Counter 0 Package

Register Address: 3B1H, 947 MSR_UNC_ARB_PERFCTR1

Uncore Arb Unit, Performance Counter 1 Package

Register Address: 3B2H, 944 MSR_UNC_ARB_PERFEVTSEL0

Uncore Arb Unit, Counter 0 Event Select MSR Package

Register Address: 3B3H, 945 MSR_UNC_ARB_PERFEVTSEL1

Uncore Arb unit, Counter 1 Event Select MSR Package

Register Address: 700H, 1792 MSR_UNC_CBO_0_PERFEVTSEL0

Uncore C-Box 0, Counter 0 Event Select MSR Package

Register Address: 701H, 1793 MSR_UNC_CBO_0_PERFEVTSEL1

Uncore C-Box 0, Counter 1 Event Select MSR Package

Register Address: 702H, 1794 MSR_UNC_CBO_0_PERFCTR0

Uncore C-Box 0, Performance Counter 0 Package

Register Address: 703H, 1795 MSR_UNC_CBO_0_PERFCTR1

Uncore C-Box 0, Performance Counter 1 Package

Register Address: 708H, 1800 MSR_UNC_CBO_1_PERFEVTSEL0

Uncore C-Box 1, Counter 0 Event Select MSR Package

Register Address: 709H, 1801 MSR_UNC_CBO_1_PERFEVTSEL1

Uncore C-Box 1, Counter 1 Event Select MSR Package

Register Address: 70AH, 1802 MSR_UNC_CBO_1_PERFCTR0

Uncore C-Box 1, Performance Counter 0 Package

Register Address: 70BH, 1803 MSR_UNC_CBO_1_PERFCTR1

Uncore C-Box 1, Performance Counter 1 Package

Register Address: 710H, 1808 MSR_UNC_CBO_2_PERFEVTSEL0

Uncore C-Box 2, Counter 0 Event Select MSR Package

Register Address: 711H, 1809 MSR_UNC_CBO_2_PERFEVTSEL1

Uncore C-Box 2, Counter 1 Event Select MSR Package

Register Address: 712H, 1810 MSR_UNC_CBO_2_PERFCTR0

Uncore C-Box 2, Performance Counter 0 Package

Table 2-43.  Uncore PMU MSRs Supported by Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
2-384 Vol. 4



MODEL-SPECIFIC REGISTERS (MSRS)
Register Address: 713H, 1811 MSR_UNC_CBO_2_PERFCTR1

Uncore C-Box 2, Performance Counter 1 Package

Register Address: 718H, 1816 MSR_UNC_CBO_3_PERFEVTSEL0

Uncore C-Box 3, Counter 0 Event Select MSR Package

Register Address: 719H, 1817 MSR_UNC_CBO_3_PERFEVTSEL1

Uncore C-Box 3, Counter 1 Event Select MSR Package

Register Address: 71AH, 1818 MSR_UNC_CBO_3_PERFCTR0

Uncore C-Box 3, Performance Counter 0 Package

Register Address: 71BH, 1819 MSR_UNC_CBO_3_PERFCTR1

Uncore C-Box 3, Performance Counter 1 Package

Register Address: 720H, 1824 MSR_UNC_CBO_4_PERFEVTSEL0

Uncore C-Box 4, Counter 0 Event Select MSR Package

Register Address: 721H, 1825 MSR_UNC_CBO_4_PERFEVTSEL1

Uncore C-Box 4, Counter 1 Event Select MSR Package

Register Address: 722H, 1826 MSR_UNC_CBO_4_PERFCTR0

Uncore C-Box 4, Performance Counter 0 Package

Register Address: 723H, 1827 MSR_UNC_CBO_4_PERFCTR1

Uncore C-Box 4, Performance Counter 1 Package

Register Address: 728H, 1832 MSR_UNC_CBO_5_PERFEVTSEL0

Uncore C-Box 5, Counter 0 Event Select MSR Package

Register Address: 729H, 1833 MSR_UNC_CBO_5_PERFEVTSEL1

Uncore C-Box 5, Counter 1 Event Select MSR Package

Register Address: 72AH, 1834 MSR_UNC_CBO_5_PERFCTR0

Uncore C-Box 5, Performance Counter 0 Package

Register Address: 72BH, 1835 MSR_UNC_CBO_5_PERFCTR1

Uncore C-Box 5, Performance Counter 1 Package

Register Address: 730H, 1840 MSR_UNC_CBO_6_PERFEVTSEL0

Uncore C-Box 6, Counter 0 Event Select MSR Package

Register Address: 731H, 1841 MSR_UNC_CBO_6_PERFEVTSEL1

Uncore C-Box 6, Counter 1 Event Select MSR Package

Register Address: 732H, 1842 MSR_UNC_CBO_6_PERFCTR0

Uncore C-Box 6, Performance Counter 0 Package

Register Address: 733H, 1843 MSR_UNC_CBO_6_PERFCTR1

Uncore C-Box 6, Performance Counter 1 Package

Register Address: 738H, 1848 MSR_UNC_CBO_7_PERFEVTSEL0

Uncore C-Box 7, Counter 0 Event Select MSR Package

Register Address: 739H, 1849 MSR_UNC_CBO_7_PERFEVTSEL1

Table 2-43.  Uncore PMU MSRs Supported by Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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2.17.3  MSRs Introduced in 10th Generation Intel® Core™ Processors 
Table 2-44 lists additional MSRs for 10th generation Intel Core processors with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_7DH or 06_7EH. For an MSR listed in Table 2-44 that also appears in the 
model-specific tables of prior generations, Table 2-44 supersedes prior generation tables.

Uncore C-Box 7, Counter 1 Event Select MSR Package

Register Address: 73AH, 1850 MSR_UNC_CBO_7_PERFCTR0

Uncore C-Box 7, Performance Counter 0 Package

Register Address: 73BH, 1851 MSR_UNC_CBO_7_PERFCTR1

Uncore C-Box 7, Performance Counter 1 Package

Register Address: E01H, 3585 MSR_UNC_PERF_GLOBAL_CTRL

Uncore PMU Global Control Package

0 Slice 0 select.

1 Slice 1 select.

2 Slice 2 select.

3 Slice 3 select.

4 Slice 4select.

18:5 Reserved.

29 Enable all uncore counters.

30 Enable wake on PMI.

31 Enable Freezing counter when overflow.

63:32 Reserved.

Register Address: E02H, 3586 MSR_UNC_PERF_GLOBAL_STATUS

Uncore PMU Main Status Package

0 Fixed counter overflowed.

1 An ARB counter overflowed.

2 Reserved.

3 A CBox counter overflowed (on any slice).

63:4 Reserved.

Table 2-44.  MSRs Supported by the 10th Generation Intel® Core™ Processors (Ice Lake Microarchitecture) 

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 33H, 51 MSR_MEMORY_CTRL

Memory Control Register Core

28:0 Reserved.

Table 2-43.  Uncore PMU MSRs Supported by Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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29 SPLIT_LOCK_DISABLE

If set to 1, a split lock will cause an #AC(0) exception.

See Section 10.1.2.3, “Features to Disable Bus Locks.”

30 Reserved.

31 Reserved.

Register Address: 48H, 72 IA32_SPEC_CTRL

See Table 2-2. Core

Register Address: 49H, 73 IA32_PREDICT_CMD

See Table 2-2. Thread

Register Address: 8CH, 140 IA32_SGXLEPUBKEYHASH0

See Table 2-2. Thread

Register Address: 8DH, 141 IA32_SGXLEPUBKEYHASH1

See Table 2-2. Thread

Register Address: 8EH, 142 IA32_SGXLEPUBKEYHASH2

See Table 2-2. Thread

Register Address: 8FH, 143 IA32_SGXLEPUBKEYHASH3

See Table 2-2. Thread

Register Address: A0H, 160 MSR_BIOS_MCU_ERRORCODE

BIOS MCU ERRORCODE (R/O)

This MSR indicates if WRMSR 0x79 failed to configure PRM memory and gives a hint to debug BIOS.

Package

15:0 Error Codes (R/O) Package

30:16 Reserved.

31 MCU Partial Success (R/O)

When set to 1, WRMSR 0x79 skipped part of the functionality during 
BIOS.

Thread

Register Address: A5H, 165 MSR_FIT_BIOS_ERROR

FIT BIOS ERROR (R/W)

Report error codes for debug in case the processor failed to parse the Firmware Table in BIOS.

Can also be used to log BIOS information.

Thread

7:0 Error Codes (R/W)

Error codes for debug.

15:8 Entry Type (R/W)

Failed FIT entry type.

16 FIT MCU Entry (R/W)

FIT contains MCU entry.

62:17 Reserved.

63 LOCK (R/W)

When set to 1, writes to this MSR will be skipped.

Register Address: 10BH, 267 IA32_FLUSH_CMD

Table 2-44.  MSRs Supported by the 10th Generation Intel® Core™ Processors (Ice Lake Microarchitecture)  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
Vol. 4 2-387



MODEL-SPECIFIC REGISTERS (MSRS)
See Table 2-2. Thread

Register Address: 151H, 337 MSR_BIOS_DONE

BIOS Done (R/WO) Thread

0 BIOS Done Indication (R/WO)

Set by BIOS when it finishes programming the processor and wants to 
lock the memory configuration from changes by software that is running 
on this thread.

Writes to the bit will be ignored if EAX[0] is 0.

Thread

1 Package BIOS Done Indication (R/O)

When set to 1, all threads in the package have bit 0 of this MSR set.

Package

31:2 Reserved.

Register Address: 1F1H, 497 MSR_CRASHLOG_CONTROL

Write Data to a Crash Log Configuration Thread

0 CDDIS: CrashDump_Disable

If set, indicates that Crash Dump is disabled.

63:1 Reserved.

Register Address: 2A0H, 672 MSR_PRMRR_BASE_0

Processor Reserved Memory Range Register - Physical Base Control Register (R/W) Core

2:0 MEMTYPE: PRMRR BASE Memory Type.

3 CONFIGURED: PRMRR BASE Configured.

11:4 Reserved.

51:12 BASE: PRMRR Base Address.

63:52 Reserved.

Register Address: 30CH, 780 IA32_FIXED_CTR3

Fixed-Function Performance Counter Register 3 (R/W)

Bit definitions are the same as found in IA32_FIXED_CTR0, offset 309H. See Table 2-2.

Thread

Register Address: 329H, 809 MSR_PERF_METRICS

Performance Metrics (R/W)

Reports metrics directly. Software can check (and/or expose to its guests) the availability of PERF_METRICS feature 
using IA32_PERF_CAPABILITIES.PERF_METRICS_AVAILABLE (bit 15).

Thread

7:0 Retiring. Percent of utilized slots by uops that eventually retire (commit).

15:8 Bad Speculation. Percent of wasted slots due to incorrect speculation, 
covering utilized by uops that do not retire, or recovery bubbles 
(unutilized slots).

23:16 Frontend Bound. Percent of unutilized slots where front-end did not 
deliver a uop while back-end is ready.

31:24 Backend Bound. Percent of unutilized slots where a uop was not delivered 
to back-end due to lack of back-end resources.

63:32 Reserved.

Register Address: 3F2H, 1010 MSR_PEBS_DATA_CFG

Table 2-44.  MSRs Supported by the 10th Generation Intel® Core™ Processors (Ice Lake Microarchitecture)  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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PEBS Data Configuration (R/W)

Provides software the capability to select data groups of interest and thus reduce the record size in memory and 
record generation latency. Hence, a PEBS record's size and layout vary based on the selected groups. The MSR also 
allows software to select LBR depth for branch data records.

Thread

0 Memory Info.

Setting this bit will capture memory information such as the linear 
address, data source and latency of the memory access in the PEBS 
record.

1 GPRs.

Setting this bit will capture the contents of the General Purpose registers 
in the PEBS record.

2 XMMs.

Setting this bit will capture the contents of the XMM registers in the PEBS 
record.

3 LBRs.

Setting this bit will capture LBR TO, FROM, and INFO in the PEBS record.

23:4 Reserved.

31:24 LBR Entries.

Set the field to the desired number of entries - 1. For example, if the 
LBR_entries field is 0, a single entry will be included in the record. To 
include 32 LBR entries, set the LBR_entries field to 31 (0x1F). To ensure 
all PEBS records are 16-byte aligned, software can use LBR_entries that 
is multiple of 3.

Register Address: 541H, 1345 MSR_CORE_UARCH_CTL

Core Microarchitecture Control MSR (R/W) Core

0 L1 Scrubbing Enable

When set to 1, enable L1 scrubbing.

31:1 Reserved.

Register Address: 657H, 1623 MSR_FAST_UNCORE_MSRS_CTL

Fast WRMSR/RDMSR Control MSR (R/W) Thread

3:0 FAST_ACCESS_ENABLE:

Bit 0: When set to '1', provides a hint for the hardware to enable fast 
access mode for the IA32_HWP_REQUEST MSR. 

This bit is sticky and is cleaned by the hardware only during reset time. 

This bit is valid only if FAST_UNCORE_MSRS_CAPABILITY[0] is set. Setting 
this bit will cause CPUID[6].EAX[18] to be set.

31:4 Reserved.

Register Address: 65EH, 1630 MSR_FAST_UNCORE_MSRS_STATUS

Indication of Uncore MSRs, Post Write Activates Thread

Table 2-44.  MSRs Supported by the 10th Generation Intel® Core™ Processors (Ice Lake Microarchitecture)  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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2.17.4  MSRs Introduced in the 11th Generation Intel® Core™ Processors based on Tiger Lake 
Microarchitecture

Table 2-45 lists additional MSRs for 11th generation Intel Core processors with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_8CH or 06_8DH. The MSRs listed in Table 2-44 are also supported by 
these processors. For an MSR listed in Table 2-45 that also appears in the model-specific tables of prior genera-
tions, Table 2-45 supersedes prior generation tables.

0 Indicates whether the CPU is still in the middle of writing 
IA32_HWP_REQUEST MSR, even after the WRMSR instruction has retired. 

A value of 1 indicates the last write of IA32_HWP_REQUEST is still 
ongoing. 

A value of 0 indicates the last write of IA32_HWP_REQUEST is visible 
outside the logical processor.

Software can use the status of this bit to avoid overwriting 
IA32_HWP_REQUEST.

31:1 Reserved.

Register Address: 65FH, 1631 MSR_FAST_UNCORE_MSRS_CAPABILITY

Fast WRMSR/RDMSR Enumeration MSR (R/O) Thread

3:0 MSRS_CAPABILITY:

Bit 0: If set to ‘1’, hardware supports the fast access mode for the 
IA32_HWP_REQUEST MSR.

31:4 Reserved.

Register Address: 772H, 1906 IA32_HWP_REQUEST_PKG

See Table 2-2. Package

Register Address: 775H, 1909 IA32_PECI_HWP_REQUEST_INFO

See Table 2-2. Thread

Register Address: 777H, 1911 IA32_HWP_STATUS

See Table 2-2. Thread

Table 2-45.  Additional MSRs Supported by the 11th Generation Intel® Core™ Processors Based on Tiger Lake 
Microarchitecture 

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: A0H, 160 MSR_BIOS_MCU_ERRORCODE

BIOS MCU ERRORCODE (R/O) Package

15:0 Error Codes

31:16 Reserved.

Register Address: A7H, 167 MSR_BIOS_DEBUG

BIOS DEBUG (R/O)

This MSR indicates if WRMSR 79H failed to configure PRM memory and gives a hint to debug BIOS.

Thread

30:0 Reserved.

Table 2-44.  MSRs Supported by the 10th Generation Intel® Core™ Processors (Ice Lake Microarchitecture)  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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31 MCU Partial Success 

When set to 1, WRMSR 79H skipped part of the functionality during 
BIOS.

63:32 Reserved.

Register Address: CFH, 207 IA32_CORE_CAPABILITIES

IA32 Core Capabilities Register (R/O)

If CPUID.(EAX=07H, ECX=0):EDX[30] = 1.

This MSR provides an architectural enumeration function for model-specific behavior. 

Package

1:0 Reserved.

2 FUSA_SUPPORTED

3 RSM_IN_CPL0_ONLY

When set to 1, the RSM instruction is only allowed in CPL0 (#GP 
triggered in any CPL != 0). 

When set to 0, then any CPL may execute the RSM instruction.

4 Reserved.

5 SPLIT_LOCK_DISABLE_SUPPORTED

When read as 1, software can set bit 29 of MSR_MEMORY_CTRL 
(MSR address 33H).

31:6 Reserved.

Register Address: 492H, 1170 IA32_VMX_PROCBASED_CTLS3

IA32_VMX_PROCBASED_CTLS3

This MSR enumerates the allowed 1-settings of the third set of processor-based controls. Specifically, VM entry 
allows bit X of the tertiary processor-based VM-execution controls to be 1 if and only if bit X of the MSR is set to 1. 

If bit X of the MSR is cleared to 0, VM entry fails if control X and the “activate tertiary controls” primary processor-
based VM-execution control are both 1.

Core

0 LOADIWKEY

This control determines whether executions of LOADIWKEY cause VM 
exits.

63:1 Reserved.

Register Address: 601H, 1537 MSR_VR_CURRENT_CONFIG

Power Limit 4 (PL4)

Package-level maximum power limit (in Watts). It is a proactive, instantaneous limit.

Package

12:0 PL4 Value

PL4 value in 0.125 A increments. This field is locked by 
VR_CURRENT_CONFIG[LOCK]. When the LOCK bit is set to 1b, this 
field becomes Read Only.

30:13 Reserved.

31 Lock Indication (LOCK)

This bit will lock the CURRENT_LIMIT settings in this register and will 
also lock this setting. This means that once set to 1b, the 
CURRENT_LIMIT setting and this bit become Read Only until the next 
Warm Reset.

Table 2-45.  Additional MSRs Supported by the 11th Generation Intel® Core™ Processors Based on Tiger Lake 
Microarchitecture  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
Vol. 4 2-391



MODEL-SPECIFIC REGISTERS (MSRS)
62:32 Not in use.

63 Reserved.

Register Address: 6A0H, 1696 IA32_U_CET

Configure User Mode CET (R/W) 

See Table 2-2.

Register Address: 6A2H, 1698 IA32_S_CET

Configure Supervisor Mode CET (R/W)

See Table 2-2.

Register Address: 6A4H, 1700 IA32_PL0_SSP

Linear address to be loaded into SSP on transition to privilege level 0. (R/W)

See Table 2-2.

Register Address: 6A5H, 1701 IA32_PL1_SSP

Linear address to be loaded into SSP on transition to privilege level 1. (R/W)

See Table 2-2.

Register Address: 6A6H, 1702 IA32_PL2_SSP

Linear address to be loaded into SSP on transition to privilege level 2. (R/W)

See Table 2-2.

Register Address: 6A7H, 1703 IA32_PL3_SSP

Linear address to be loaded into SSP on transition to privilege level 3. (R/W)

See Table 2-2.

Register Address: 6A8H, 1704 IA32_INTERRUPT_SSP_TABLE_ADDR

Linear address of a table of seven shadow stack pointers that are selected in IA-32e mode using the IST index (when 
not 0) from the interrupt gate descriptor. (R/W)

See Table 2-2.

Register Address: 981H, 2433 IA32_TME_CAPABILITY

See Table 2-2.

Register Address: 982H, 2434 IA32_TME_ACTIVATE

See Table 2-2.

Register Address: 983H, 2435 IA32_TME_EXCLUDE_MASK

See Table 2-2.

Register Address: 984H, 2436 IA32_TME_EXCLUDE_BASE

See Table 2-2.

Register Address: 990H, 2448 IA32_COPY_STATUS1

See Table 2-2. Thread

Register Address: 991H, 2449 IA32_IWKEYBACKUP_STATUS1

See Table 2-2. Platform

Register Address: C82H, 3202 IA32_L2_QOS_CFG

Table 2-45.  Additional MSRs Supported by the 11th Generation Intel® Core™ Processors Based on Tiger Lake 
Microarchitecture  (Contd.)
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2.17.5  MSRs Introduced in the 12th and 13th Generation Intel® Core™ Processors Supporting 
Performance Hybrid Architecture

Table 2-46 lists additional MSRs for 12th and 13th generation Intel Core processors with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_97H, 06_9AH, 06_BAH, 06_B7H, or 06_BFH. Table 2-47 lists the MSRs 
unique to the processor P-core. Table 2-48 lists the MSRs unique to the processor E-core. 

The MSRs listed in Table 2-441 and Table 2-45 are also supported by these processors. For an MSR listed in Table 
2-46, Table 2-47, or Table 2-48 that also appears in the model-specific tables of prior generations, Table 2-46, 
Table 2-47, and Table 2-48 supersede prior generation tables. 

IA32_CR_L2_QOS_CFG

This MSR provides software an enumeration of the parameters that L2 QoS (Intel RDT) support in any particular 
implementation.

Core

0 CDP_ENABLE

When set to 1, it will enable the code and data prioritization for the 
L2 CAT/Intel RDT feature. 

When set to 0, code and data prioritization is disabled for L2 CAT/Intel 
RDT. See Chapter 19, “Debug, Branch Profile, TSC, and Intel® Resource 
Director Technology (Intel® RDT) Features‚” for further details on CDP.

31:1 Reserved.

Register Address: D10H−D17H, 3220−3351 IA32_L2_QOS_MASK_[0-7]

IA32_CR_L2_QOS_MASK_[0-7]

Controls MLC (L2) Intel RDT allocation. For more details on CAT/RDT, see Chapter 19, “Debug, Branch Profile, TSC, and 
Intel® Resource Director Technology (Intel® RDT) Features.”

Package

19:0 WAYS_MASK

Setting a 1 in this bit X allows threads with CLOS <n> (where N is [0-
7]) to allocate to way X in the MLC. Ones are only allowed to be 
written to ways that physically exist in the MLC 
(CPUID.4.2:EBX[31:22] will indicate this). 

Writing a 1 to a value beyond the highest way or a non-contiguous 
set of 1s will cause a #GP on the WRMSR to this MSR.

31:20 Reserved.

Register Address: D91H, 3473 IA32_COPY_LOCAL_TO_PLATFORM1

See Table 2-2. Thread

Register Address: D92H, 3474 IA32_COPY_PLATFORM_TO_LOCAL1

See Table 2-2. Thread

NOTES:
1. Further details on Key Locker and usage of this MSR can be found here:

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

1. MSRs at the following addresses are not supported in the 12th and 13th generation Intel Core processor E-core: 30CH, 329H, 541H, 
and 657H. The MSR at address 657H is not supported in the 12th and 13th generation Intel Core processor P-core.

Table 2-45.  Additional MSRs Supported by the 11th Generation Intel® Core™ Processors Based on Tiger Lake 
Microarchitecture  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Table 2-46.  Additional MSRs Supported by the 12th and 13th Generation Intel® Core™ Processors Supporting 
Performance Hybrid Architecture 

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 33H, 51 MSR_MEMORY_CTRL

Memory Control Register Core

26:0 Reserved.

27 UC_STORE_THROTTLE

If set to 1, when enabled, the processor will only allow one in-
progress UC store at a time.

28 UC_LOCK_DISABLE

If set to 1, a UC lock will cause a #GP(0) exception.

See Section 10.1.2.3, “Features to Disable Bus Locks.”

29 SPLIT_LOCK_DISABLE

If set to 1, a split lock will cause an #AC(0) exception.

See Section 10.1.2.3, “Features to Disable Bus Locks.”

30 Reserved.

31 Reserved.

Register Address: BCH, 188 IA32_MISC_PACKAGE_CTLS

Power Filtering Control (R/W)

IA32_ARCH_CAPABILITIES[bit 10] enumerates support for this MSR.

See Table 2-2.

Package

Register Address: C7H, 199 IA32_PMC6

General Performance Counter 6 (R/W)

See Table 2-2.

Core

Register Address: C8H, 200 IA32_PMC7

General Performance Counter 7 (R/W)

See Table 2-2.

Core

Register Address: CFH, 207 IA32_CORE_CAPABILITIES

IA32 Core Capabilities Register (R/O)

If CPUID.(EAX=07H, ECX=0):EDX[30] = 1. 

This MSR provides an architectural enumeration function for model-specific behavior. 

Package

0 STLB_QOS_SUPPORTED

When set to 1, the STLB QoS feature is supported and the STLB 
QoS MSRs (1A8FH -1A97H) are accessible. When set to 0, access 
to these MSRs will #GP.

1 Reserved.

2 FUSA_SUPPORTED

3 RSM_IN_CPL0_ONLY

When set to 1, the RSM instruction is only allowed in CPL0 (#GP 
triggered in any CPL != 0). 

When set to 0, then any CPL may execute the RSM instruction.
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4 UC_LOCK_DISABLE_SUPPORTED

When read as 1, software can set bit 28 of MSR_MEMORY_CTRL 
(MSR address 33H).

5 SPLIT_LOCK_DISABLE_SUPPORTED

When read as 1, software can set bit 29 of MSR_MEMORY_CTRL.

6 SNOOP_FILTER_QOS_SUPPORTED

When set to 1, the Snoop Filter Qos Mask MSRs are supported. 

When set to 0, access to these MSRs will #GP.

7 UC_STORE_THROTTLING_SUPPORTED

When set 1, UC Store throttle capability exist through 
MSR_MEMORY_CTRL (33H) bit 27.

31:8 Reserved.

Register Address: E1H, 225 IA32_UMWAIT_CONTROL

UMWAIT Control (R/W)

See Table 2-2.

Register Address: 10AH, 266 IA32_ARCH_CAPABILITIES

Enumeration of Architectural Features (R/O)

See Table 2-2.

Register Address: 18CH, 396 IA32_PERFEVTSEL6

See Table 2-20. Core

Register Address: 18DH, 397 IA32_PERFEVTSEL7

See Table 2-20. Core

Register Address: 195H, 405 IA32_OVERCLOCKING_STATUS

Overclocking Status (R/O)

IA32_ARCH_CAPABILITIES[bit 23] enumerates support for this MSR. See Table 2-2.

Package

Register Address: 1ADH, 429 MSR_PRIMARY_TURBO_RATIO_LIMIT

Primary Maximum Turbo Ratio Limit (R/W)

Software can configure these limits when MSR_PLATFORM_INFO[28] = 1. Specifies Maximum Ratio Limit for each 
group. Maximum ratio for groups with more cores must decrease monotonically.

Package

7:0 MAX_TURBO_GROUP_0:

Maximum turbo ratio limit with 1 core active.

15:8 MAX_TURBO_GROUP_1:

Maximum turbo ratio limit with 2 cores active.

23:16 MAX_TURBO_GROUP_2:

Maximum turbo ratio limit with 3 cores active.

31:24 MAX_TURBO_GROUP_3:

Maximum turbo ratio limit with 4 cores active.

39:32 MAX_TURBO_GROUP_4:

Maximum turbo ratio limit with 5 cores active.

Table 2-46.  Additional MSRs Supported by the 12th and 13th Generation Intel® Core™ Processors Supporting 
Performance Hybrid Architecture  (Contd.)
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47:40 MAX_TURBO_GROUP_5:

Maximum turbo ratio limit with 6 cores active.

55:48 MAX_TURBO_GROUP_6:

Maximum turbo ratio limit with 7 cores active.

63:56 MAX_TURBO_GROUP_7:

Maximum turbo ratio limit with 8 cores active.

Register Address: 493H, 1171 IA32_VMX_EXIT_CTLS2

See Table 2-2.

Register Address: 4C7H, 1223 IA32_A_PMC6

Full Width Writable IA32_PMC6 Alias (R/W)

See Table 2-2.

Register Address: 4C8H, 1224 IA32_A_PMC7

Full Width Writable IA32_PMC7 Alias (R/W)

See Table 2-2.

Register Address: 650H, 1616 MSR_SECONDARY_TURBO_RATIO_LIMIT

Secondary Maximum Turbo Ratio Limit (R/W)

Software can configure these limits when MSR_PLATFORM_INFO[28] = 1.

Specifies Maximum Ratio Limit for each group. Maximum ratio for groups with more cores must decrease 
monotonically.

Package

7:0 MAX_TURBO_GROUP_0:

Maximum turbo ratio limit with 1 core active.

15:8 MAX_TURBO_GROUP_1:

Maximum turbo ratio limit with 2 cores active.

23:16 MAX_TURBO_GROUP_2:

Maximum turbo ratio limit with 3 cores active.

31:24 MAX_TURBO_GROUP_3:

Maximum turbo ratio limit with 4 cores active.

39:32 MAX_TURBO_GROUP_4:

Maximum turbo ratio limit with 5 cores active.

47:40 MAX_TURBO_GROUP_5:

Maximum turbo ratio limit with 6 cores active.

55:48 MAX_TURBO_GROUP_6:

Maximum turbo ratio limit with 7 cores active.

63:56 MAX_TURBO_GROUP_7:

Maximum turbo ratio limit with 8 cores active.

Register Address: 664H, 1636 MSR_MC6_RESIDENCY_COUNTER

Module C6 Residency Counter (R/0) 

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Module

Table 2-46.  Additional MSRs Supported by the 12th and 13th Generation Intel® Core™ Processors Supporting 
Performance Hybrid Architecture  (Contd.)
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The MSRs listed in Table 2-47 are unique to the 12th and 13th generation Intel Core processor P-core. These MSRs 
are not supported on the processor E-core.

63:0 Time that this module is in module-specific C6 states since last 
reset. Counts at 1 Mhz frequency.

Register Address: 6E1H, 1761 IA32_PKRS

Specifies the PK permissions associated with each protection domain for supervisor pages (R/W)

See Table 2-2.

Register Address: 776H, 1910 IA32_HWP_CTL

See Table 2-2.

Register Address: 981H, 2433 IA32_TME_CAPABILITY

Memory Encryption Capability MSR

See Table 2-2.

Register Address: 1200H−121FH, 4608−4639 IA32_LBR_x_INFO

Last Branch Record Entry X Info Register (R/W)

See Table 2-2.

Register Address: 14CEH, 5326 IA32_LBR_CTL

Last Branch Record Enabling and Configuration Register (R/W)

See Table 2-2.

Register Address: 14CFH, 5327 IA32_LBR_DEPTH

Last Branch Record Maximum Stack Depth Register (R/W)

See Table 2-2.

Register Address: 1500H−151FH, 5376−5407 IA32_LBR_x_FROM_IP

Last Branch Record Entry X Source IP Register (R/W)

See Table 2-2.

Register Address: 1600H−161FH, 5632−5663 IA32_LBR_x_TO_IP

Last Branch Record Entry X Destination IP Register (R/W)

See Table 2-2.

Register Address: 17D2H, 6098 IA32_THREAD_FEEDBACK_CHAR

Thread Feedback Characteristics (R/O)

See Table 2-2.

Register Address: 17D4H, 6100 IA32_HW_FEEDBACK_THREAD_CONFIG

Hardware Feedback Thread Configuration (R/W)

See Table 2-2.

Register Address: 17DAH, 6106 IA32_HRESET_ENABLE

History Reset Enable (R/W)

See Table 2-2.

Table 2-46.  Additional MSRs Supported by the 12th and 13th Generation Intel® Core™ Processors Supporting 
Performance Hybrid Architecture  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Table 2-47.  MSRs Supported by 12th and 13th Generation Intel® Core™ Processor P-core

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 1A4H, 420 MSR_PREFETCH_CONTROL

Prefetch Disable Bits (R/W)

0 L2_HARDWARE_PREFETCHER_DISABLE

If 1, disables the L2 hardware prefetcher, which fetches additional 
lines of code or data into the L2 cache.

1 L2_ADJACENT_CACHE_LINE_PREFETCHER_DISABLE

If 1, disables the adjacent cache line prefetcher, which fetches the 
cache line that comprises a cache line pair (128 bytes).

2 DCU_HARDWARE_PREFETCHER_DISABLE

If 1, disables the L1 data cache prefetcher, which fetches the next 
cache line into L1 data cache.

3 DCU_IP_PREFETCHER_DISABLE

If 1, disables the L1 data cache IP prefetcher, which uses sequential 
load history (based on instruction pointer of previous loads) to 
determine whether to prefetch additional lines.

4 Reserved.

5 AMP_PREFETCH_DISABLE

If 1, disables the L2 Adaptive Multipath Probability (AMP) prefetcher.

63:6 Reserved.

Register Address: 3F7H, 1015 MSR_PEBS_FRONTEND

FrontEnd Precise Event Condition Select (R/W) 

See Table 2-39.

Thread

Register Address: 540H, 1344 MSR_THREAD_UARCH_CTL

Thread Microarchitectural Control (R/W) Thread

0 WB_MEM_STRM_LD_DISABLE 

Disable streaming behavior for MOVNTDQA loads to WB memory 
type. If set, these accesses will be treated like regular cacheable 
loads (Data will be cached).

63:1 Reserved.

Register Address: 541H, 1345 MSR_CORE_UARCH_CTL

Core Microarchitecture Control MSR (R/W)

See Table 2-44.

Core

Register Address: D10H−D17H, 3220−3351 IA32_L2_QOS_MASK_[0-7]

IA32_CR_L2_QOS_MASK_[0-7]

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] ≥ 0.

Controls MLC (L2) Intel RDT allocation. For more details on CAT/RDT, see Chapter 19, “Debug, Branch Profile, TSC, and 
Intel® Resource Director Technology (Intel® RDT) Features.”

Core
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The MSRs listed in Table 2-48 are unique to the 12th and 13th generation Intel Core processor E-core. These MSRs 
are not supported on the processor P-core.

Table 2-49 lists the MSRs of uncore PMU for Intel processors with a CPUID Signature DisplayFamily_DisplayModel 
value of 06_97H, 06_9AH, 06_BAH, 06_B7H, or 06_BFH.

19:0 WAYS_MASK

Setting a 1 in this bit X allows threads with CLOS <n> (where N is [0-
7]) to allocate to way X in the MLC. Ones are only allowed to be 
written to ways that physically exist in the MLC 
(CPUID.4.2:EBX[31:22] will indicate this). 

Writing a 1 to a value beyond the highest way or a non-contiguous 
set of 1s will cause a #GP on the WRMSR to this MSR.

31:20 Reserved.

Table 2-48.  MSRs Supported by 12th and 13th Generation Intel® Core™ Processor E-core

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: D10H−D1FH, 3220−3359 IA32_L2_QOS_MASK_[0-15]

IA32_CR_L2_QOS_MASK_[0-15]

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] ≥ 0.

Controls MLC (L2) Intel RDT allocation. For more details on CAT/RDT, see Chapter 19, “Debug, Branch Profile, TSC, and 
Intel® Resource Director Technology (Intel® RDT) Features.”

Module

19:0 WAYS_MASK

Setting a 1 in this bit X allows threads with CLOS <n> (where N 
is [0-7]) to allocate to way X in the MLC. Ones are only allowed to 
be written to ways that physically exist in the MLC 
(CPUID.4.2:EBX[31:22] will indicate this). 

Writing a 1 to a value beyond the highest way or a non-
contiguous set of 1s will cause a #GP on the WRMSR to this MSR.

31:20 Reserved.

Register Address: 1309H−130BH, 4873
−4875

MSR_RELOAD_FIXED_CTRx

Reload value for IA32_FIXED_CTRx (R/W)

47:0 Value loaded into IA32_FIXED_CTRx when a PEBS record is 
generated while PEBS_EN_FIXEDx = 1 and PEBS_OUTPUT = 
01B in IA32_PEBS_ENABLE, and FIXED_CTRx is overflowed.

63:48 Reserved.

Register Address: 14C1H−14C6H, 5313 −5318 MSR_RELOAD_PMCx

Reload value for IA32_PMCx (R/W) Core

47:0 Value loaded into IA32_PMCx when a PEBS record is generated 
while PEBS_EN_PMCx = 1 and PEBS_OUTPUT = 01B in 
IA32_PEBS_ENABLE, and PMCx is overflowed.

63:48 Reserved.

Table 2-47.  MSRs Supported by 12th and 13th Generation Intel® Core™ Processor P-core

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Table 2-49.  Uncore PMU MSRs Supported by 12th and 13th Generation Intel® Core™ Processors

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 396H, 918 MSR_UNC_CBO_CONFIG

Uncore C-Box Configuration Information (R/O) Package

3:0 Specifies the number of C-Box units with programmable counters 
(including processor cores and processor graphics).

63:4 Reserved.

Register Address: 2000H, 8192 MSR_UNC_CBO_0_PERFEVTSEL0

Uncore C-Box 0, Counter 0 Event Select MSR Package

Register Address: 2001H, 8193 MSR_UNC_CBO_0_PERFEVTSEL1

Uncore C-Box 0, Counter 1 Event Select MSR Package

Register Address: 2002H, 8194 MSR_UNC_CBO_0_PERFCTR0

Uncore C-Box 0, Performance Counter 0 Package

Register Address: 2003H, 8195 MSR_UNC_CBO_0_PERFCTR1

Uncore C-Box 0, Performance Counter 1 Package

Register Address: 2008H, 8200 MSR_UNC_CBO_1_PERFEVTSEL0

Uncore C-Box 1, Counter 0 Event Select MSR Package

Register Address: 2009H, 8201 MSR_UNC_CBO_1_PERFEVTSEL1

Uncore C-Box 1, Counter 1 Event Select MSR Package

Register Address: 200AH, 8202 MSR_UNC_CBO_1_PERFCTR0

Uncore C-Box 1, Performance Counter 0 Package

Register Address: 200BH, 8203 MSR_UNC_CBO_1_PERFCTR1

Uncore C-Box 1, Performance Counter 1 Package

Register Address: 2010H, 8208 MSR_UNC_CBO_2_PERFEVTSEL0

Uncore C-Box 2, Counter 0 Event Select MSR Package

Register Address: 2011H, 8209 MSR_UNC_CBO_2_PERFEVTSEL1

Uncore C-Box 2, Counter 1 Event Select MSR Package

Register Address: 2012H, 8210 MSR_UNC_CBO_2_PERFCTR0

Uncore C-Box 2, Performance Counter 0 Package

Register Address: 2013H, 8211 MSR_UNC_CBO_2_PERFCTR1

Uncore C-Box 2, Performance Counter 1 Package

Register Address: 2018H, 8216 MSR_UNC_CBO_3_PERFEVTSEL0

Uncore C-Box 3, Counter 0 Event Select MSR Package

Register Address: 2019H, 8217 MSR_UNC_CBO_3_PERFEVTSEL1

Uncore C-Box 3, Counter 1 Event Select MSR Package

Register Address: 201AH, 8218 MSR_UNC_CBO_3_PERFCTR0

Uncore C-Box 3, Performance Counter 0 Package

Register Address: 201BH, 8219 MSR_UNC_CBO_3_PERFCTR1

Uncore C-Box 3, Performance Counter 1 Package
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Register Address: 2020H, 8224 MSR_UNC_CBO_4_PERFEVTSEL0

Uncore C-Box 4, Counter 0 Event Select MSR Package

Register Address: 2021H, 8225 MSR_UNC_CBO_4_PERFEVTSEL1

Uncore C-Box 4, Counter 1 Event Select MSR Package

Register Address: 2022H, 8226 MSR_UNC_CBO_4_PERFCTR0

Uncore C-Box 4, Performance Counter 0 Package

Register Address: 2023H, 8227 MSR_UNC_CBO_4_PERFCTR1

Uncore C-Box 4, Performance Counter 1 Package

Register Address: 2028H, 8232 MSR_UNC_CBO_5_PERFEVTSEL0

Uncore C-Box 5, Counter 0 Event Select MSR Package

Register Address: 2029H, 8233 MSR_UNC_CBO_5_PERFEVTSEL1

Uncore C-Box 5, Counter 1 Event Select MSR Package

Register Address: 202AH, 8234 MSR_UNC_CBO_5_PERFCTR0

Uncore C-Box 5, Performance Counter 0 Package

Register Address: 202BH, 8235 MSR_UNC_CBO_5_PERFCTR1

Uncore C-Box 5, Performance Counter 1 Package

Register Address: 2030H, 8240 MSR_UNC_CBO_6_PERFEVTSEL0

Uncore C-Box 6, Counter 0 Event Select MSR Package

Register Address: 2031H, 8241 MSR_UNC_CBO_6_PERFEVTSEL1

Uncore C-Box 6, Counter 1 Event Select MSR Package

Register Address: 2032H, 8242 MSR_UNC_CBO_6_PERFCTR0

Uncore C-Box 6, Performance Counter 0 Package

Register Address: 2033H, 8243 MSR_UNC_CBO_6_PERFCTR1

Uncore C-Box 6, Performance Counter 1 Package

Register Address: 2038H, 8248 MSR_UNC_CBO_7_PERFEVTSEL0

Uncore C-Box 7, Counter 0 Event Select MSR Package

Register Address: 2039H, 8249 MSR_UNC_CBO_7_PERFEVTSEL1

Uncore C-Box 7, Counter 1 Event Select MSR Package

Register Address: 203AH, 8250 MSR_UNC_CBO_7_PERFCTR0

Uncore C-Box 7, Performance Counter 0 Package

Register Address: 203BH, 8251 MSR_UNC_CBO_7_PERFCTR1

Uncore C-Box 7, Performance Counter 1 Package

Register Address: 2040H, 8256 MSR_UNC_CBO_8_PERFEVTSEL0

Uncore C-Box 8, Counter 0 Event Select MSR Package

Register Address: 2041H, 8257 MSR_UNC_CBO_8_PERFEVTSEL1

Uncore C-Box 8, Counter 1 Event Select MSR Package

Register Address: 2042H, 8258 MSR_UNC_CBO_8_PERFCTR0

Table 2-49.  Uncore PMU MSRs Supported by 12th and 13th Generation Intel® Core™ Processors

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Uncore C-Box 8, Performance Counter 0 Package

Register Address: 2043H, 8259 MSR_UNC_CBO_8_PERFCTR1

Uncore C-Box 8, Performance Counter 1 Package

Register Address: 2048H, 8264 MSR_UNC_CBO_9_PERFEVTSEL0

Uncore C-Box 9, Counter 0 Event Select MSR Package

Register Address: 2049H, 8265 MSR_UNC_CBO_9_PERFEVTSEL1

Uncore C-Box 9, Counter 1 Event Select MSR Package

Register Address: 204AH, 8266 MSR_UNC_CBO_9_PERFCTR0

Uncore C-Box 9, Performance Counter 0 Package

Register Address: 204BH, 8267 MSR_UNC_CBO_9_PERFCTR1

Uncore C-Box 9, Performance Counter 1 Package

Register Address: 2FD0H, 12240 MSR_UNC_ARB_0_PERFEVTSEL0

Uncore Arb Unit 0, Counter 0 Event Select MSR Package

Register Address: 2FD1H, 12241 MSR_UNC_ARB_0_PERFEVTSEL1

Uncore Arb Unit 0, Counter 1 Event Select MSR Package

Register Address: 2FD2H, 12242 MSR_UNC_ARB_0_PERFCTR0

Uncore Arb Unit 0, Performance Counter 0 Package

Register Address: 2FD3H, 12243 MSR_UNC_ARB_0_PERFCTR1

Uncore Arb Unit 0, Performance Counter 1 Package

Register Address: 2FD4H, 12244 MSR_UNC_ARB_0_PERF_STATUS

Uncore Arb Unit 0, Performance Status Package

Register Address: 2FD5H, 12245 MSR_UNC_ARB_0_PERF_CTRL

Uncore Arb Unit 0, Performance Control Package

Register Address: 2FD8H, 12248 MSR_UNC_ARB_1_PERFEVTSEL0

Uncore Arb Unit 1, Counter 0 Event Select MSR Package

Register Address: 2FD9H, 12249 MSR_UNC_ARB_1_PERFEVTSEL1

Uncore Arb Unit 1, Counter 1 Event Select MSR Package

Register Address: 2FDAH, 12250 MSR_UNC_ARB_1_PERFCTR0

Uncore Arb Unit 1, Performance Counter 0 Package

Register Address: 2FDBH, 12251 MSR_UNC_ARB_1_PERFCTR1

Uncore Arb Unit 1, Performance Counter 1 Package

Register Address: 2FDCH, 12252 MSR_UNC_ARB_1_PERF_STATUS

Uncore Arb Unit 1, Performance Status Package

Register Address: 2FDDH, 12253 MSR_UNC_ARB_1_PERF_CTRL

Uncore Arb Unit 1, Performance Control Package

Register Address: 2FDEH, 12254 MSR_UNC_PERF_FIXED_CTRL

Uncore Fixed Counter Control (R/W) Package

Table 2-49.  Uncore PMU MSRs Supported by 12th and 13th Generation Intel® Core™ Processors

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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2.17.6  MSRs Introduced in the Intel® Xeon® Scalable Processor Family 
The Intel® Xeon® Scalable Processor Family (CPUID Signature DisplayFamily_DisplayModel value of 06_55H) 
supports the MSRs listed in Table 2-50.

19:0 Reserved.

20 Enable overflow propagation.

21 Reserved.

22 Enable counting.

63:23 Reserved.

Register Address: 2FDFH, 12255 MSR_UNC_PERF_FIXED_CTR

Uncore Fixed Counter Package

43:0 Current count.

63:44 Reserved.

Register Address: 2FF0H, 12272 MSR_UNC_PERF_GLOBAL_CTRL

Uncore PMU Global Control Package

0 Slice 0 select.

1 Slice 1 select.

2 Slice 2 select.

3 Slice 3 select.

4 Slice 4 select.

18:5 Reserved.

29 Enable all uncore counters.

30 Enable wake on PMI.

31 Enable Freezing counter when overflow.

63:32 Reserved.

Register Address: 2FF2H, 12274 MSR_UNC_PERF_GLOBAL_STATUS

Uncore PMU Main Status Package

0 Fixed counter overflowed.

1 An ARB counter overflowed.

2 Reserved.

3 A CBox counter overflowed (on any slice).

63:4 Reserved.

Table 2-50.  MSRs Supported by the Intel® Xeon® Scalable Processor Family with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_55H 

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 3AH, 58 IA32_FEATURE_CONTROL

Table 2-49.  Uncore PMU MSRs Supported by 12th and 13th Generation Intel® Core™ Processors

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Control Features in Intel 64 Processor (R/W)

See Table 2-2.

Thread

0 Lock (R/WL) 

1 Enable VMX Inside SMX Operation (R/WL) 

2 Enable VMX Outside SMX Operation (R/WL) 

14:8 SENTER Local Functions Enables (R/WL) 

15 SENTER Global Functions Enable (R/WL) 

18 SGX Global Functions Enable (R/WL) 

20 LMCE_ENABLED (R/WL) 

63:21 Reserved.

Register Address: 4EH, 78 IA32_PPIN_CTL (MSR_PPIN_CTL)

Protected Processor Inventory Number Enable Control (R/W) Package

0 LockOut (R/WO)

See Table 2-2.

1 Enable_PPIN (R/W)

See Table 2-2.

63:2 Reserved.

Register Address: 4FH, 79 IA32_PPIN (MSR_PPIN)

Protected Processor Inventory Number (R/O) Package

63:0 Protected Processor Inventory Number (R/O)

See Table 2-2.

Register Address: CEH, 206 MSR_PLATFORM_INFO

Platform Information

Contains power management and other model specific features enumeration. See http://biosbits.org.

Package

7:0 Reserved.

15:8 Maximum Non-Turbo Ratio (R/O) 

See Table 2-26.

Package

22:16 Reserved.

23 PPIN_CAP (R/O)

See Table 2-26.

Package

27:24 Reserved.

28 Programmable Ratio Limit for Turbo Mode (R/O) 

See Table 2-26.

Package

29 Programmable TDP Limit for Turbo Mode (R/O) 

See Table 2-26.

Package

30 Programmable TJ OFFSET (R/O) 

See Table 2-26.

Package

39:31 Reserved.

Table 2-50.  MSRs Supported by the Intel® Xeon® Scalable Processor Family with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_55H  (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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47:40 Maximum Efficiency Ratio (R/O) 

See Table 2-26.

Package

63:48 Reserved.

Register Address: E2H, 226 MSR_PKG_CST_CONFIG_CONTROL

C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-states. See http://biosbits.org.

Core

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name (consuming the 
least power) for the package. The default is set as factory-configured 
package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-state support)

001b: C2

010b: C6 (non-retention)

011b: C6 (retention)

111b: No Package C state limits. All C states supported by the processor 
are available.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved.

15 CFG Lock (R/WO)

16 Automatic C-State Conversion Enable (R/W)

If 1, the processor will convert HALT or MWAT(C1) to MWAIT(C6).

24:17 Reserved.

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

30 Package C State Undemotion Enable (R/W)

63:31 Reserved.

Register Address: 179H, 377 IA32_MCG_CAP

Global Machine Check Capability (R/O) Thread

7:0 Count.

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

Table 2-50.  MSRs Supported by the Intel® Xeon® Scalable Processor Family with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_55H  (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 MCG_EM_P

26 MCG_ELOG_P

63:27 Reserved.

Register Address: 17DH, 381 MSR_SMM_MCA_CAP

Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in SMM.

Thread

57:0 Reserved.

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is supported and 
a host-space interface is available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported and a 
host-space interface is available to SMM handler.

63:60 Reserved.

Register Address: 19CH, 412 IA32_THERM_STATUS

Thermal Monitor Status (R/W) 

See Table 2-2.

Core

0 Thermal Status (R/O) 

See Table 2-2.

1 Thermal Status Log (R/WC0) 

See Table 2-2.

2 PROTCHOT # or FORCEPR# Status (R/O) 

See Table 2-2.

3 PROTCHOT # or FORCEPR# Log (R/WC0) 

See Table 2-2.

4 Critical Temperature Status (R/O) 

See Table 2-2.

5 Critical Temperature Status Log (R/WC0) 

See Table 2-2.

6 Thermal Threshold #1 Status (R/O) 

See Table 2-2.

7 Thermal Threshold #1 Log (R/WC0) 

See Table 2-2.

8 Thermal Threshold #2 Status (R/O) 

See Table 2-2.

Table 2-50.  MSRs Supported by the Intel® Xeon® Scalable Processor Family with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_55H  (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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9 Thermal Threshold #2 Log (R/WC0) 

See Table 2-2.

10 Power Limitation Status (R/O) 

See Table 2-2.

11 Power Limitation Log (R/WC0) 

See Table 2-2.

12 Current Limit Status (R/O) 

See Table 2-2.

13 Current Limit Log (R/WC0) 

See Table 2-2.

14 Cross Domain Limit Status (R/O) 

See Table 2-2.

15 Cross Domain Limit Log (R/WC0) 

See Table 2-2.

22:16 Digital Readout (R/O) 

See Table 2-2.

26:23 Reserved.

30:27 Resolution in Degrees Celsius (R/O) 

See Table 2-2.

31 Reading Valid (R/O) 

See Table 2-2.

63:32 Reserved.

Register Address: 1A2H, 418 MSR_TEMPERATURE_TARGET

Temperature Target Package

15:0 Reserved.

23:16 Temperature Target (R/O) 

See Table 2-26.

27:24 TCC Activation Offset (R/W) 

See Table 2-26.

63:28 Reserved.

Register Address: 1ADH, 429 MSR_TURBO_RATIO_LIMIT

This register defines the ratio limits. RATIO[0:7] must be populated in ascending order. RATIO[i+1] must be less than 
or equal to RATIO[i]. Entries with RATIO[i] will be ignored. If any of the rules above are broken, the configuration is 
silently rejected. If the programmed ratio is: 

• Above the fused ratio for that core count, it will be clipped to the fuse limits (assuming !OC).
• Below the min supported ratio, it will be clipped.

Package

7:0 RATIO_0

Defines ratio limits.

15:8 RATIO_1

Defines ratio limits.

Table 2-50.  MSRs Supported by the Intel® Xeon® Scalable Processor Family with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_55H  (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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23:16 RATIO_2

Defines ratio limits.

31:24 RATIO_3

Defines ratio limits.

39:32 RATIO_4

Defines ratio limits.

47:40 RATIO_5

Defines ratio limits.

55:48 RATIO_6

Defines ratio limits.

63:56 RATIO_7

Defines ratio limits.

Register Address: 1AEH, 430 MSR_TURBO_RATIO_LIMIT_CORES

This register defines the active core ranges for each frequency point. NUMCORE[0:7] must be populated in ascending 
order. NUMCORE[i+1] must be greater than NUMCORE[i]. Entries with NUMCORE[i] == 0 will be ignored. The last valid 
entry must have NUMCORE >= the number of cores in the SKU. If any of the rules above are broken, the configuration 
is silently rejected.

Package

7:0 NUMCORE_0

Defines the active core ranges for each frequency point.

15:8 NUMCORE_1

Defines the active core ranges for each frequency point.

23:16 NUMCORE_2

Defines the active core ranges for each frequency point.

31:24 NUMCORE_3

Defines the active core ranges for each frequency point.

39:32 NUMCORE_4

Defines the active core ranges for each frequency point.

47:40 NUMCORE_5

Defines the active core ranges for each frequency point.

55:48 NUMCORE_6

Defines the active core ranges for each frequency point.

63:56 NUMCORE_7

Defines the active core ranges for each frequency point.

Register Address: 280H, 640 IA32_MC0_CTL2

See Table 2-2. Core

Register Address: 281H, 641 IA32_MC1_CTL2

See Table 2-2. Core

Register Address: 282H, 642 IA32_MC2_CTL2

See Table 2-2. Core

Table 2-50.  MSRs Supported by the Intel® Xeon® Scalable Processor Family with a CPUID Signature 
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Register Address: 283H, 643 IA32_MC3_CTL2

See Table 2-2. Core

Register Address: 284H, 644 IA32_MC4_CTL2

See Table 2-2. Package

Register Address: 285H, 645 IA32_MC5_CTL2

See Table 2-2. Package

Register Address: 286H, 646 IA32_MC6_CTL2

See Table 2-2. Package

Register Address: 287H, 647 IA32_MC7_CTL2

See Table 2-2. Package

Register Address: 288H, 648 IA32_MC8_CTL2

See Table 2-2. Package

Register Address: 289H, 649 IA32_MC9_CTL2

See Table 2-2. Package

Register Address: 28AH, 650 IA32_MC10_CTL2

See Table 2-2. Package

Register Address: 28BH, 651 IA32_MC11_CTL2

See Table 2-2. Package

Register Address: 28CH, 652 IA32_MC12_CTL2

See Table 2-2. Package

Register Address: 28DH, 653 IA32_MC13_CTL2

See Table 2-2. Package

Register Address: 28EH, 654 IA32_MC14_CTL2

See Table 2-2. Package

Register Address: 28FH, 655 IA32_MC15_CTL2

See Table 2-2. Package

Register Address: 290H, 656 IA32_MC16_CTL2

See Table 2-2. Package

Register Address: 291H, 657 IA32_MC17_CTL2

See Table 2-2. Package

Register Address: 292H, 658 IA32_MC18_CTL2

See Table 2-2. Package

Register Address: 293H, 659 IA32_MC19_CTL2

See Table 2-2. Package

Register Address: 400H, 1024 IA32_MC0_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC0 reports MC errors from the IFU module.

Core
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Register Address: 401H, 1025 IA32_MC0_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC0 reports MC errors from the IFU module.

Core

Register Address: 402H, 1026 IA32_MC0_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC0 reports MC errors from the IFU module.

Core

Register Address: 403H, 1027 IA32_MC0_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC0 reports MC errors from the IFU module.

Core

Register Address: 404H, 1028 IA32_MC1_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC1 reports MC errors from the DCU module.

Core

Register Address: 405H, 1029 IA32_MC1_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC1 reports MC errors from the DCU module.

Core

Register Address: 406H, 1030 IA32_MC1_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC1 reports MC errors from the DCU module.

Core

Register Address: 407H, 1031 IA32_MC1_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC1 reports MC errors from the DCU module.

Core

Register Address: 408H, 1032 IA32_MC2_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC2 reports MC errors from the DTLB module.

Core

Register Address: 409H, 1033 IA32_MC2_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC2 reports MC errors from the DTLB module.

Core

Register Address: 40AH, 1034 IA32_MC2_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC2 reports MC errors from the DTLB module.

Core

Register Address: 40BH, 1035 IA32_MC2_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC2 reports MC errors from the DTLB module.

Core

Register Address: 40CH, 1036 IA32_MC3_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC3 reports MC errors from the MLC module.

Core

Register Address: 40DH, 1037 IA32_MC3_STATUS
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MODEL-SPECIFIC REGISTERS (MSRS)
See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC3 reports MC errors from the MLC module.

Core

Register Address: 40EH, 1038 IA32_MC3_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC3 reports MC errors from the MLC module.

Core

Register Address: 40FH, 1039 IA32_MC3_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC3 reports MC errors from the MLC module.

Core

Register Address: 410H, 1040 IA32_MC4_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC4 reports MC errors from the PCU module.

Package

Register Address: 411H, 1041 IA32_MC4_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC4 reports MC errors from the PCU module.

Package

Register Address: 412H, 1042 IA32_MC4_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC4 reports MC errors from the PCU module.

Package

Register Address: 413H, 1043 IA32_MC4_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC4 reports MC errors from the PCU module.

Package

Register Address: 414H, 1044 IA32_MC5_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC5 reports MC errors from a link interconnect module.

Package

Register Address: 415H, 1045 IA32_MC5_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC5 reports MC errors from a link interconnect module.

Package

Register Address: 416H, 1046 IA32_MC5_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC5 reports MC errors from a link interconnect module.

Package

Register Address: 417H, 1047 IA32_MC5_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC5 reports MC errors from a link interconnect module.

Package

Register Address: 418H, 1048 IA32_MC6_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Register Address: 419H, 1049 IA32_MC6_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package
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Register Address: 41AH, 1050 IA32_MC6_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Register Address: 41BH, 1051 IA32_MC6_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC6 reports MC errors from the integrated I/O module.

Package

Register Address: 41CH, 1052 IA32_MC7_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC7 reports MC errors from the M2M 0.

Package

Register Address: 41DH, 1053 IA32_MC7_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC7 reports MC errors from the M2M 0.

Package

Register Address: 41EH, 1054 IA32_MC7_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC7 reports MC errors from the M2M 0.

Package

Register Address: 41FH, 1055 IA32_MC7_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC7 reports MC errors from the M2M 0.

Package

Register Address: 420H, 1056 IA32_MC8_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC8 reports MC errors from the M2M 1.

Package

Register Address: 421H, 1057 IA32_MC8_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC8 reports MC errors from the M2M 1.

Package

Register Address: 422H, 1058 IA32_MC8_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC8 reports MC errors from the M2M 1.

Package

Register Address: 423H, 1059 IA32_MC8_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC8 reports MC errors from the M2M 1.

Package

Register Address: 424H, 1060 IA32_MC9_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 - MC11 report MC errors from the CHA.

Package

Register Address: 425H, 1061 IA32_MC9_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 - MC11 report MC errors from the CHA.

Package

Register Address: 426H, 1062 IA32_MC9_ADDR
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See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 - MC11 report MC errors from the CHA.

Package

Register Address: 427H, 1063 IA32_MC9_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 - MC11 report MC errors from the CHA.

Package

Register Address: 428H, 1064 IA32_MC10_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 - MC11 report MC errors from the CHA.

Package

Register Address: 429H, 1065 IA32_MC10_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 - MC11 report MC errors from the CHA.

Package

Register Address: 42AH, 1066 IA32_MC10_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 - MC11 report MC errors from the CHA.

Package

Register Address: 42BH, 1067 IA32_MC10_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 - MC11 report MC errors from the CHA.

Package

Register Address: 42CH, 1068 IA32_MC11_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 - MC11 report MC errors from the CHA.

Package

Register Address: 42DH, 1069 IA32_MC11_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 - MC11 report MC errors from the CHA.

Package

Register Address: 42EH, 1070 IA32_MC11_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 - MC11 report MC errors from the CHA.

Package

Register Address: 42FH, 1071 IA32_MC11_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC9 - MC11 report MC errors from the CHA.

Package

Register Address: 430H, 1072 IA32_MC12_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC12 report MC errors from each channel of a link interconnect module.

Package

Register Address: 431H, 1073 IA32_MC12_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC12 report MC errors from each channel of a link interconnect module.

Package

Register Address: 432H, 1074 IA32_MC12_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC12 report MC errors from each channel of a link interconnect module.

Package
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Register Address: 433H, 1075 IA32_MC12_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC12 report MC errors from each channel of a link interconnect module.

Package

Register Address: 434H, 1076 IA32_MC13_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 435H, 1077 IA32_MC13_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 436H, 1078 IA32_MC13_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 437H, 1079 IA32_MC13_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 438H, 1080 IA32_MC14_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 439H, 1081 IA32_MC14_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 43AH, 1082 IA32_MC14_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 43BH, 1083 IA32_MC14_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 43CH, 1084 IA32_MC15_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 43DH, 1085 IA32_MC15_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 43EH, 1086 IA32_MC15_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 43FH, 1087 IA32_MC15_MISC
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See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 440H, 1088 IA32_MC16_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 441H, 1089 IA32_MC16_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 442H, 1090 IA32_MC16_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 443H, 1091 IA32_MC16_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 444H, 1092 IA32_MC17_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 445H, 1093 IA32_MC17_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 446H, 1094 IA32_MC17_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 447H, 1095 IA32_MC17_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 448H, 1096 IA32_MC18_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 449H, 1097 IA32_MC18_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 44AH, 1098 IA32_MC18_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package

Register Address: 44BH, 1099 IA32_MC18_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Banks MC13 through MC 18 report MC errors from the integrated memory controllers.

Package
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Register Address: 44CH, 1100 IA32_MC19_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from a link interconnect module.

Package

Register Address: 44DH, 1101 IA32_MC19_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from a link interconnect module.

Package

Register Address: 44EH, 1102 IA32_MC19_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from a link interconnect module.

Package

Register Address: 44FH, 1103 IA32_MC19_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC19 reports MC errors from a link interconnect module.

Package

Register Address: 606H, 1542 MSR_RAPL_POWER_UNIT

Unit Multipliers Used in RAPL Interfaces (R/O) Package

3:0 Power Units

See Section 16.10.1, “RAPL Interfaces.”

Package

7:4 Reserved. Package

12:8 Energy Status Units

Energy related information (in Joules) is based on the multiplier, 1/2^ESU; 
where ESU is an unsigned integer represented by bits 12:8. Default value 
is 0EH (or 61 micro-joules).

Package

15:13 Reserved. Package

19:16 Time Units

See Section 16.10.1, “RAPL Interfaces.”

Package

63:20 Reserved.

Register Address: 618H, 1560 MSR_DRAM_POWER_LIMIT

DRAM RAPL Power Limit Control (R/W) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 619H, 1561 MSR_DRAM_ENERGY_STATUS

DRAM Energy Status (R/O) 

Energy consumed by DRAM devices.

Package

31:0 Energy in 15.3 micro-joules. Requires BIOS configuration to enable DRAM 
RAPL mode 0 (Direct VR).

63:32 Reserved.

Register Address: 61BH, 1563 MSR_DRAM_PERF_STATUS

DRAM Performance Throttling Status (R/O) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 61CH, 1564 MSR_DRAM_POWER_INFO

Table 2-50.  MSRs Supported by the Intel® Xeon® Scalable Processor Family with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_55H  (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
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DRAM RAPL Parameters (R/W) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 620H, 1568 MSR_UNCORE_RATIO_LIMIT

Uncore Ratio Limit (R/W) 

Out of reset, the min_ratio and max_ratio fields represent the widest possible range of uncore frequencies. Writing to 
these fields allows software to control the minimum and the maximum frequency that hardware will select.

Package

63:15 Reserved.

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio of the LLC/Ring.

7 Reserved.

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

Register Address: 639H, 1593 MSR_PP0_ENERGY_STATUS

Reserved (R/O) 

Reads return 0.

Package

Register Address: C8DH, 3213 IA32_QM_EVTSEL

Monitoring Event Select Register (R/W)

If CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1.

Thread

7:0 EventID (R/W)

Event encoding:

0x00: No monitoring.

0x01: L3 occupancy monitoring.

0x02: Total memory bandwidth monitoring.

0x03: Local memory bandwidth monitoring.

All other encoding reserved.

31:8 Reserved.

41:32 RMID (R/W)

63:42 Reserved.

Register Address: C8FH, 3215 IA32_PQR_ASSOC

Resource Association Register (R/W) Thread

9:0 RMID 

31:10 Reserved.

51:32 CLOS (R/W)

63: 52 Reserved.

Register Address: C90H, 3216 IA32_L3_QOS_MASK_0

L3 Class Of Service Mask - CLOS 0 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 0 enforcement.

63:20 Reserved.

Table 2-50.  MSRs Supported by the Intel® Xeon® Scalable Processor Family with a CPUID Signature 
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Register Address: C91H, 3217 IA32_L3_QOS_MASK_1

L3 Class Of Service Mask - CLOS 1 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 1 enforcement.

63:20 Reserved.

Register Address: C92H, 3218 IA32_L3_QOS_MASK_2

L3 Class Of Service Mask - CLOS 2 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 2 enforcement.

63:20 Reserved.

Register Address: C93H, 3219 IA32_L3_QOS_MASK_3

L3 Class Of Service Mask - CLOS 3 (R/W).

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 3 enforcement.

63:20 Reserved.

Register Address: C94H, 3220 IA32_L3_QOS_MASK_4

L3 Class Of Service Mask - CLOS 4 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=4.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 4 enforcement.

63:20 Reserved.

Register Address: C95H, 3221 IA32_L3_QOS_MASK_5

L3 Class Of Service Mask - CLOS 5 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=5.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 5 enforcement.

63:20 Reserved.

Register Address: C96H, 3222 IA32_L3_QOS_MASK_6

L3 Class Of Service Mask - CLOS 6 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=6.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 6 enforcement.

63:20 Reserved.

Register Address: C97H, 3223 IA32_L3_QOS_MASK_7

L3 Class Of Service Mask - CLOS 7 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=7.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 7 enforcement.

63:20 Reserved.

Register Address: C98H, 3224 IA32_L3_QOS_MASK_8

L3 Class Of Service Mask - CLOS 8 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=8.

Package

Table 2-50.  MSRs Supported by the Intel® Xeon® Scalable Processor Family with a CPUID Signature 
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0:19 CBM: Bit vector of available L3 ways for CLOS 8 enforcement.

63:20 Reserved.

Register Address: C99H, 3225 IA32_L3_QOS_MASK_9

L3 Class Of Service Mask - CLOS 9 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=9.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 9 enforcement.

63:20 Reserved.

Register Address: C9AH, 3226 IA32_L3_QOS_MASK_10

L3 Class Of Service Mask - CLOS 10 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=10.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 10 enforcement.

63:20 Reserved.

Register Address: C9BH, 3227 IA32_L3_QOS_MASK_11

L3 Class Of Service Mask - CLOS 11 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=11.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 11 enforcement.

63:20 Reserved.

Register Address: C9CH, 3228 IA32_L3_QOS_MASK_12

L3 Class Of Service Mask - CLOS 12 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=12.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 12 enforcement.

63:20 Reserved.

Register Address: C9DH, 3229 IA32_L3_QOS_MASK_13

L3 Class Of Service Mask - CLOS 13 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=13.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 13 enforcement.

63:20 Reserved.

Register Address: C9EH, 3230 IA32_L3_QOS_MASK_14

L3 Class Of Service Mask - CLOS 14 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=14.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 14 enforcement.

63:20 Reserved.

Register Address: C9FH, 3231 IA32_L3_QOS_MASK_15

L3 Class Of Service Mask - CLOS 15 (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=15.

Package

0:19 CBM: Bit vector of available L3 ways for CLOS 15 enforcement.

63:20 Reserved.

Table 2-50.  MSRs Supported by the Intel® Xeon® Scalable Processor Family with a CPUID Signature 
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2.17.7  MSRs Specific to the 3rd Generation Intel® Xeon® Scalable Processor Family Based on 
Ice Lake Microarchitecture

The 3rd generation Intel® Xeon® Scalable Processor Family based on Ice Lake microarchitecture (CPUID Signature 
DisplayFamily_DisplayModel value of 06_6AH or 06_6CH) support the MSRs listed in Table 2-51.

Table 2-51.  MSRs Supported by the 3rd Generation Intel® Xeon® Scalable Processor Family with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_6AH or 06_6CH 

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 612H, 1554 MSR_PACKAGE_ENERGY_TIME_STATUS

Package energy consumed by the entire CPU (R/W) Package

31:0 Total amount of energy consumed since last reset.

63:32 Total time elapsed when the energy was last updated. This is a monotonic 
increment counter with auto wrap back to zero after overflow. Unit is 
10ns.

Register Address: 618H, 1560 MSR_DRAM_POWER_LIMIT

Allows software to set power limits for the DRAM domain and measurement attributes associated with each limit. Package

14:0 DRAM_PP_PWR_LIM:

Power Limit[0] for DDR domain. Units = Watts, Format = 11.3, Resolution = 
0.125W, Range = 0-2047.875W.

15 PWR_LIM_CTRL_EN:

Power Limit[0] enable bit for DDR domain.

16 Reserved.

23:17 CTRL_TIME_WIN:

Power Limit[0] time window Y value, for DDR domain. Actual time_window 
for RAPL is: 

(1/1024 seconds) * (1+(x/4)) * (2^y)

62:24 Reserved.

63 PP_PWR_LIM_LOCK:

When set, this entire register becomes read-only. This bit will typically be 
set by BIOS during boot.

Register Address: 619H, 1561 MSR_DRAM_ENERGY_STATUS

DRAM Energy Status (R/O) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

31:0 Energy in 15.3 micro-joules. Requires BIOS configuration to enable DRAM 
RAPL mode 0 (Direct VR).

63:32 Reserved.

Register Address: 61BH, 1563 MSR_DRAM_PERF_STATUS

DRAM Performance Throttling Status (R/O) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 61CH, 1564 MSR_DRAM_POWER_INFO

DRAM Power Parameters (R/W) Package
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14:0 Spec DRAM Power (DRAM_TDP):

The Spec power allowed for DRAM. The TDP setting is

typical (not guaranteed).

The units for this value are defined in

MSR_DRAM_POWER_INFO_UNIT[PWR_UNIT].

15 Reserved.

30:16 Minimal DRAM Power (DRAM_MIN_PWR):

The minimal power setting allowed for DRAM. Lower

values will be clamped to this value. The minimum

setting is typical (not guaranteed).

The units for this value are defined in

MSR_DRAM_POWER_INFO_UNIT[PWR_UNIT].

31 Reserved.

46:32 Maximal Package Power (DRAM_MAX_PWR):

The maximal power setting allowed for DRAM. Higher

values will be clamped to this value. The maximum

setting is typical (not guaranteed).

The units for this value are defined in

MSR_DRAM_POWER_INFO_UNIT[PWR_UNIT].

47 Reserved.

54:48 Maximal Time Window (DRAM_MAX_WIN):
The maximal time window allowed for the DRAM.
Higher values will be clamped to this value.
x = PKG_MAX_WIN[54:53]
y = PKG_MAX_WIN[52:48]
The timing interval window is a floating-point number given by 1.x 
*power(2,y).
The unit of measurement is defined in
MSR_DRAM_POWER_INFO_UNIT[TIME_UNIT].

62:55 Reserved.

63 LOCK:
Lock bit to lock the register.

Register Address: 981H, 2433 IA32_TME_CAPABILITY

See Table 2-2.

Register Address: 982H, 2434 IA32_TME_ACTIVATE

See Table 2-2.

Register Address: 983H, 2435 IA32_TME_EXCLUDE_MASK

See Table 2-2.

Register Address: 984H, 2436 IA32_TME_EXCLUDE_BASE

See Table 2-2.

Table 2-51.  MSRs Supported by the 3rd Generation Intel® Xeon® Scalable Processor Family with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_6AH or 06_6CH  (Contd.)
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2.17.8  MSRs Specific to the 4th and 5th Generation Intel® Xeon® Scalable Processor Families
The 4th generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture (CPUID 
Signature DisplayFamily_DisplayModel value of 06_8FH) and the 5th generation Intel® Xeon® Scalable Processor 
Family based on Emerald Rapids microarchitecture (CPUID Signature DisplayFamily_DisplayModel value of 
06_CFH) both support the MSRs listed in Section 2.17, “MSRs In the 6th—13th Generation Intel® Core™ Proces-
sors, 1st—5th Generation Intel® Xeon® Scalable Processor Families, Intel® Core™ Ultra 7 Processors, 8th Gener-
ation Intel® Core™ i3 Processors, Intel® Xeon® E Processors, Intel® Xeon® 6 P-core processors, Intel® Xeon® 
6 E-core processors, and Intel® Series 2 Core™ Ultra Processors,” including Table 2-52. For an MSR listed in Table 
2-52 that also appears in the model-specific tables of prior generations, Table 2-52 supersedes prior generation 
tables.

Table 2-52.  Additional MSRs Supported by the 4th and 5th Generation Intel® Xeon® Scalable Processor Families
(CPUID Signature DisplayFamily_DisplayModel Values of 06_8FH and 06_CFH)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 33H, 51 MSR_MEMORY_CTRL

Memory Control Register (R/W) Core

27:0 Reserved.

28 UC_LOCK_DISABLE

If set to 1, a UC lock will cause a #GP(0) exception.

See Section 10.1.2.3, “Features to Disable Bus Locks.”

29 SPLIT_LOCK_DISABLE

If set to 1, a split lock will cause an #AC(0) exception.

See Section 10.1.2.3, “Features to Disable Bus Locks.”

31:30 Reserved.

Register Address: A7H, 167 MSR_BIOS_DEBUG

BIOS DEBUG (R/O)

See Table 2-45.

Thread

Register Address: BCH, 188 IA32_MISC_PACKAGE_CTLS

Power Filtering Control (R/W)

IA32_ARCH_CAPABILITIES[bit 10] enumerates support for this MSR.

See Table 2-2.

Package

Register Address: CFH, 207 IA32_CORE_CAPABILITIES

IA32 Core Capabilities Register (R/W)

If CPUID.(EAX=07H, ECX=0):EDX[30] = 1.

This MSR provides an architectural enumeration function for model-specific behavior. 

Core

0 Reserved: returns zero.

1 Reserved: returns zero.

2 INTEGRITY_CAPABILITIES

When set to 1, the processor supports MSR_INTEGRITY_CAPABILITIES. 

3 RSM_IN_CPL0_ONLY

Indicates that RSM will only be allowed in CPL0 and will #GP for all non-
CPL0 privilege levels.
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4 UC_LOCK_DISABLE_SUPPORTED

When read as 1, software can set bit 28 of MSR_MEMORY_CTRL (MSR 
address 33H).

5 SPLIT_LOCK_DISABLE_SUPPORTED

When read as 1, software can set bit 29 of MSR_MEMORY_CTRL.

6 Reserved: returns zero.

7 UC_STORE_THROTTLING_SUPPORTED

Indicates that the snoop filter quality of service MSRs are supported on 
this core. This is based on the existence of a non-inclusive cache and the 
L2/MLC QoS feature supported.

63:8 Reserved: returns zero.

Register Address: E1H, 225 IA32_UMWAIT_CONTROL

UMWAIT Control (R/W)

See Table 2-2.

Register Address: EDH, 237 MSR_RAR_CONTROL

RAR Control (R/W) Thread

63:32 Reserved.

31 ENABLE

RAR events are recognized. When RAR is not enabled, RARs are dropped.

30 IGNORE_IF

Allow RAR servicing at the RLP regardless of the value of RFLAGS.IF.

29:0 Reserved.

Register Address: EEH, 238 MSR_RAR_ACTION_VECTOR_BASE

Pointer to RAR Action Vector (R/W) Thread

63:MAXPHYADDR Reserved.

MAXPHYADDR-1:6 VECTOR_PHYSICAL_ADDRESS

Pointer to the physical address of the 64B aligned RAR action vector.

5:0 Reserved.

Register Address: EFH, 239 MSR_RAR_PAYLOAD_TABLE_BASE

Pointer to Base of RAR Payload Table (R/W) Thread

63:MAXPHYADDR Reserved.

MAXPHYADDR-1:12 TABLE_PHYSICAL_ADDRESS

Pointer to the base physical address of the 4K aligned RAR payload table.

11:0 Reserved.

Register Address: F0H, 240 MSR_RAR_INFO

Read Only RAR Information (RO) Thread

63:38 Always zero.

37:32 Table Max Index

Maximum supported payload table index.

Table 2-52.  Additional MSRs Supported by the 4th and 5th Generation Intel® Xeon® Scalable Processor Families
(CPUID Signature DisplayFamily_DisplayModel Values of 06_8FH and 06_CFH) (Contd.)
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31:0 Supported payload type bitmap. A value of 1 in bit position [i] indicates 
that payload type [i] is supported.

Register Address: 105H, 261 MSR_CORE_BIST

Core BIST (R/W)

Controls Array BIST activation and status checking as part of FUSA.

Core

31:0 BIST_ARRAY 

Bitmap indicating which arrays to run BIST on (WRITE).

Bitmap indicating which arrays were not processed, i.e., completion mask 
(READ).

39:32 BANK

Array bank of the [least significant set bit] array indicated in EAX to start 
BIST(WRITE). 

Array bank interrupted or failed (READ).

47:40 DWORD

Array dword of the [least significant set bit] array indicated in EAX to 
start BIST (WRITE). 

Array dword interrupted or failed (READ).

62:48 Reserved.

63 CTRL_RESULT

Indicates whether WRMSR should signal Machine-Check upon BIST-error 
(WRITE).

BIST result PASS(0)/FAIL(1) of the (least significant set bit) array 
indicated in EAX (READ).

Register Address: 10AH, 266 IA32_ARCH_CAPABILITIES

Enumeration of Architectural Features (R/O)

See Table 2-2.

Register Address: 1A4H, 420 MSR_PREFETCH_CONTROL

Prefetch Disable Bits (R/W)

0 L2_HARDWARE_PREFETCHER_DISABLE

If 1, disables the L2 hardware prefetcher, which fetches additional lines of 
code or data into the L2 cache.

1 L2_ADJACENT_CACHE_LINE_PREFETCHER_DISABLE

If 1, disables the adjacent cache line prefetcher, which fetches the cache 
line that comprises a cache line pair (128 bytes).

2 DCU_HARDWARE_PREFETCHER_DISABLE

If 1, disables the L1 data cache prefetcher, which fetches the next cache 
line into L1 data cache.

3 DCU_IP_PREFETCHER_DISABLE

If 1, disables the L1 data cache IP prefetcher, which uses sequential load 
history (based on instruction pointer of previous loads) to determine 
whether to prefetch additional lines.

4 Reserved.

Table 2-52.  Additional MSRs Supported by the 4th and 5th Generation Intel® Xeon® Scalable Processor Families
(CPUID Signature DisplayFamily_DisplayModel Values of 06_8FH and 06_CFH) (Contd.)
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5 AMP_PREFETCH_DISABLE

If 1, disables the L2 Adaptive Multipath Probability (AMP) prefetcher.

63:6 Reserved.

Register Address: 1ADH, 429 MSR_PRIMARY_TURBO_RATIO_LIMIT

Primary Maximum Turbo Ratio Limit (R/W)

See Table 2-46.

Package

Register Address: 1AEH, 430 MSR_TURBO_RATIO_LIMIT_CORES

See Table 2-50. Package

Register Address: 1C4H, 452 IA32_XFD

Extended Feature Detect (R/W)

See Table 2-2.

Register Address: 1C5H, 453 IA32_XFD_ERR

XFD Error Code (R/W)

See Table 2-2.

Register Address: 2C2H, 706 MSR_COPY_SCAN_HASHES

COPY_SCAN_HASHES (W) Die

63:0 SCAN_HASH_ADDR

Contains the linear address of the SCAN Test HASH Binary loaded into 
memory.

Register Address: 2C3H, 707 MSR_SCAN_HASHES_STATUS

SCAN_HASHES_STATUS (R/O)

15:0 CHUNK_SIZE

Chunk size of the test in KB.

Die

23:16 NUM_CHUNKS

Total number of chunks.

Die

31:24 Reserved: all zeros.

39:32 ERROR_CODE

The error-code refers to the LP that runs WRMSR(2C2H).

0x0: No error reported.

0x1: Attempt to copy scan-hashes when copy already in progress.

0x2: Secure Memory not set up correctly.

0x3: Scan-image header Image_info.ProgramID doesn't match 
RDMSR(2D9H)[31:24], or scan-image header Processor-Signature doesn't 
match F/M/S, or scan-image header Processor-Flags doesn't match 
PlatformID.

0x4: Reserved

0x5: Integrity check failed.

0x6: Re-install of scan test image attempted when current scan test 
image is in use by other LPs.

Thread

50:40 Reserved: set to all zeros.

Table 2-52.  Additional MSRs Supported by the 4th and 5th Generation Intel® Xeon® Scalable Processor Families
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62:51 MAX_CORE_LIMIT

Maximum Number of cores that can run Intel® In-field Scan simultaneously 
minus 1.

0 means 1 core at a time.

Die

63 Valid

Valid bit is set when COPY_SCAN_HASHES has completed successfully.

Die

Register Address: 2C4H, 708 MSR_AUTHENTICATE_AND_COPY_CHUNK

AUTHENTICATE_AND_COPY_CHUNK (W) Die

7:0 CHUNK_INDEX

Chunk Index, should be less than the total number of chunks defined by 
NUM_CHUNKS (MSR_SCAN_HASHES_STATUS[23:16]).

63:8 CHUNK_ADDR

Bits 63:8 of 256B aligned Linear address of scan chunk in memory.

Register Address: 2C5H, 709 MSR_CHUNKS_AUTHENTICATION_STATUS

CHUNKS_AUTHENTICATION_STATUS (R/O)

7:0 VALID_CHUNKS

Total number of Valid (authenticated) chunks.

Die

15:8 TOTAL_CHUNKS

Total number of chunks.

Die

31:16 Reserved: all zeros.

39:32 ERROR_CODE

The error code refers to the LP that runs WRMSR(2C4H).

0x0: No error reported.

0x1: Attempt to authenticate a CHUNK which is already marked as 
authentic or is currently being installed by another core.

0x2: CHUNK authentication error. HASH of chunk did not match expected 
value.

Thread

63:40 Reserved: set to all zeros.

Register Address: 2C6H, 710 MSR_ACTIVATE_SCAN

ACTIVATE_SCAN (W) Thread

7:0 CHUNK_START_INDEX

Indicates chunk index to start from.

15:8 CHUNK_STOP_INDEX

Indicates what chunk index to stop at (inclusive).

31:16 Reserved: all zeros.

62:32 THREAD_WAIT_DELAY

TSC based delay to allow threads to rendezvous.

Table 2-52.  Additional MSRs Supported by the 4th and 5th Generation Intel® Xeon® Scalable Processor Families
(CPUID Signature DisplayFamily_DisplayModel Values of 06_8FH and 06_CFH) (Contd.)
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63 SIGNAL_MCE

If 1, then on scan-error log MC in MC4_STATUS and signal MCE if machine 
check signaling enabled in MC4_CTL[0]. 

If 0, then no logging/no signaling.

Register Address: 2C7H, 711 MSR_SCAN_STATUS

SCAN_STATUS (R/O)

7:0 CHUNK_NUM

SCAN Chunk that was reached.

Core

15:8 CHUNK_STOP_INDEX

Indicates what chunk index to stop at (inclusive). Maps to same field in 
WRMSR(ACTIVATE_SCAN).

Core

31:16 Reserved: return all zeros.

39:32 ERROR_CODE

0x0: No error.

0x1: SCAN operation did not start. Other thread did not join in time.

0x2: SCAN operation did not start. Interrupt occurred prior to threads 
rendezvous.

0x3: SCAN operation did not start. Power Management conditions are 
inadequate to run Intel In-field Scan.

0x4: SCAN operation did not start. Non-valid chunks in the range 
CHUNK_STOP_INDEX : CHUNK_START_INDEX.

0x5: SCAN operation did not start. Mismatch in arguments between 
threads T0/T1.

0x6: SCAN operation did not start. Core not capable of performing SCAN 
currently.

0x8: SCAN operation did not start. Exceeded number of Logical 
Processors (LP) allowed to run Intel In-field Scan concurrently. 
MAX_CORE_LIMIT exceeded.

0x9: Interrupt occurred. Scan operation aborted prematurely, not all 
chunks requested have been executed.

Thread

61:40 Reserved: return all zeros.

62 SCAN_CONTROL_ERROR

Scan-System-Controller malfunction.

Core

63 SCAN_SIGNATURE_ERROR

Core failed SCAN-SIGNATURE checking for this chunk. 

Core

Register Address: 2C8H, 712 MSR_SCAN_MODULE_ID

SCAN_MODULE_ID (R/O) Module

31:0 RevID of the currently installed scan test image. Maps to Revision field in 
external header (offset 4).

63:32 Reserved: return all zeros.

Register Address: 2C9H, 713 MSR_LAST_SAF_WP

LAST_SAF_WP (R/O) Core
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31:0 LAST_WP

Provides information about the core when the last 
WRMSR(ACTIVATE_SCAN) was executed. Available only if enumerated in 
MSR_INTEGRITY_CAPABILITIES[10:9].

63:32 Reserved: return all zeros.

Register Address: 2D9H, 729 MSR_INTEGRITY_CAPABILITIES

INTEGRITY_CAPABILITIES (R/O) Module

0 STARTUP_SCAN_BIST

When set, supports Intel In-field Scan.

3:1 Reserved: return all zeros.

4 PERIODIC_SCAN_BIST

When set, supports Intel In-field Scan.

23:5 Reserved: return all zeros.

31:24 ID of the scan programs supported for this part. WRMSR(2C2H) verifies 
this value against the corresponding value in the scan-image header, i.e., 
Image_info.

Register Address: 410H, 1040 IA32_MC4_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC4 reports MC errors from the PCU module.

If SIGNAL_MCE is set, a Scan Status is logged in MC4_STATUS and MC4_MISC.

Package

Register Address: 411H, 1041 IA32_MC4_STATUS

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC4 reports MC errors from the PCU module.

If SIGNAL_MCE is set, a Scan Status is logged in MC4_STATUS and MC4_MISC.

Package

Register Address: 412H, 1042 IA32_MC4_ADDR

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC4 reports MC errors from the PCU module.

If SIGNAL_MCE is set, a Scan Status is logged in MC4_STATUS and MC4_MISC.

Package

Register Address: 413H, 1043 IA32_MC4_MISC

See Section 17.3.2.1, “IA32_MCi_CTL MSRs,” through Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

Bank MC4 reports MC errors from the PCU module.

If SIGNAL_MCE is set, a Scan Status is logged in MC4_STATUS and MC4_MISC.

Package

Register Address: 492H, 1170 IA32_VMX_PROCBASED_CTLS3

Capability Reporting Register of Tertiary Processor-Based VM-Execution Controls (R/O)

See Table 2-2.

Register Address: 493H, 1171 IA32_VMX_EXIT_CTLS2

Capability Reporting Register of Secondary VM-Exit Controls (R/O)

See Table 2-2. 

Register Address: 540H, 1344 MSR_THREAD_UARCH_CTL
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Thread Microarchitectural Control (R/W)

See Table 2-47.

Thread

Register Address: 619H, 1561 MSR_DRAM_ENERGY_STATUS

DRAM Energy Status (R/O) 

Energy consumed by DRAM devices.

Package

31:0 Energy in 61 micro-joules. Requires BIOS configuration to enable DRAM 
RAPL mode 0 (Direct VR).

63:32 Reserved.

Register Address: 64DH, 1613 MSR_PLATFORM_ENERGY_STATUS

Platform Energy Status (R/O) Package

31:0 TOTAL_ENERGY_CONSUMED

Total energy consumption in J (32.0), in 10nsec units. 

63:32 TIME_STAMP

Time stamp (U32.0).

Register Address: 65CH, 1628 MSR_PLATFORM_POWER_LIMIT

Platform Power Limit Control (R/W-L) Package

16:0 POWER_LIMIT_1

The average power limit value that the platform must not exceed over a 
time window as specified by the Power_Limit_1_TIME field.

The default value is the Thermal Design Power (TDP) and varies with 
product skus. The unit is specified in MSR_RAPL_POWER_UNIT.

17 POWER_LIMIT_1_EN

When set, the processor can apply control policies such that the platform 
average power does not exceed the Power_Limit_1 value over an 
exponential weighted moving average of the time window. 

18 CRITICAL_POWER_CLAMP_1

When set, the processor can go below the OS-requested P States to 
maintain the power below the specified Power_Limit_1 value.

25:19 POWER_LIMIT_1_TIME

This indicates the time window over which the Power_Limit_1 value 
should be maintained. 

This field is made up of two numbers from the following equation:

Time Window = (float) ((1+(X/4))*(2^Y)), where:

X = POWER_LIMIT_1_TIME[23:22]

Y = POWER_LIMIT_1_TIME[21:17]

The maximum allowed value in this field is defined in 
MSR_PKG_POWER_INFO[PKG_MAX_WIN].

The default value is 0DH, and the unit is specified in 
MSR_RAPL_POWER_UNIT[Time Unit].

31:26 Reserved.
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48:32 POWER_LIMIT_2

This is the Duration Power limit value that the platform must not exceed.

The unit is specified in MSR_RAPL_POWER_UNIT.

49 Enable Platform Power Limit #2

When set, enables the processor to apply control policy such that the 
platform power does not exceed Platform Power limit #2 over the Short 
Duration time window.

50 Platform Clamping Limitation #2

When set, allows the processor to go below the OS requested P states in 
order to maintain the power below specified Platform Power Limit #2 
value. 

57:51 POWER_LIMIT_2_TIME

This indicates the time window over which the Power_Limit_2 value 
should be maintained.

This field has the same format as the POWER_LIMIT_1_TIME field.

62:58 Reserved.

63 LOCK 

Setting this bit will lock all other bits of this MSR until system RESET.

Register Address: 665H, 1637 MSR_PLATFORM_POWER_INFO

Platform Power Information (R/W) Package

16:0 MAX_PPL1

Maximum PP L1 value. 

The unit is specified in MSR_RAPL_POWER_UNIT.

31:17 MIN_PPL1

Minimum PP L1 value.

The unit is specified in MSR_RAPL_POWER_UNIT.

48:32 MAX_PPL2

Maximum PP L2 value.

The unit is specified in MSR_RAPL_POWER_UNIT.

55:49 MAX_TW

Maximum time window.

The unit is specified in MSR_RAPL_POWER_UNIT.

62:56 Reserved.

63 LOCK 

Setting this bit will lock all other bits of this MSR until system RESET.

Register Address: 666H, 1638 MSR_PLATFORM_RAPL_SOCKET_PERF_STATUS

Platform RAPL Socket Performance Status (R/O) Package

31:0 Count of limited performance due to platform RAPL limit.

Register Address: 6A0H, 1696 IA32_U_CET
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Configure User Mode CET (R/W)

See Table 2-2.

Register Address: 6A2H, 1698 IA32_S_CET

Configure Supervisor Mode CET (R/W)

See Table 2-2.

Register Address: 6A4H, 1700 IA32_PL0_SSP

Linear address to be loaded into SSP on transition to privilege level 0. (R/W)

See Table 2-2.

Register Address: 6A5H, 1701 IA32_PL1_SSP

Linear address to be loaded into SSP on transition to privilege level 1. (R/W)

See Table 2-2.

Register Address: 6A6H, 1702 IA32_PL2_SSP

Linear address to be loaded into SSP on transition to privilege level 2. (R/W)

See Table 2-2.

Register Address: 6A7H, 1703 IA32_PL3_SSP

Linear address to be loaded into SSP on transition to privilege level 3. (R/W)

See Table 2-2.

Register Address: 6A8H, 1704 IA32_INTERRUPT_SSP_TABLE_ADDR

Linear address of a table of seven shadow stack pointers that are selected in IA-32e mode using the IST index (when 
not 0) from the interrupt gate descriptor. (R/W)

See Table 2-2.

Register Address: 6E1H, 1761 IA32_PKRS

Specifies the PK permissions associated with each protection domain for supervisor pages (R/W)

See Table 2-2.

Register Address: 776H, 1910 IA32_HWP_CTL

See Table 2-2.

Register Address: 981H, 2433 IA32_TME_CAPABILITY

Memory Encryption Capability MSR

See Table 2-2.

Register Address: 985H, 2437 IA32_UINTR_RR

User Interrupt Request Register (R/W)

See Table 2-2.

Register Address: 986H, 2438 IA32_UINTR_HANDLER

User Interrupt Handler Address (R/W)

See Table 2-2.

Register Address: 987H, 2439 IA32_UINTR_STACKADJUST

User Interrupt Stack Adjustment (R/W)

See Table 2-2.

Register Address: 988H, 2440 IA32_UINTR_MISC
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User-Interrupt Target-Table Size and Notification Vector (R/W)

See Table 2-2.

Register Address: 989H, 2441 IA32_UINTR_PD

User Interrupt PID Address (R/W)

See Table 2-2.

Register Address: 98AH, 2442 IA32_UINTR_TT

User-Interrupt Target Table (R/W)

See Table 2-2.

Register Address: C70H, 3184 MSR_B1_PMON_EVNT_SEL0

Uncore B-box 1 perfmon event select MSR. Package

Register Address: C71H, 3185 MSR_B1_PMON_CTR0

Uncore B-box 1 perfmon counter MSR. Package

Register Address: C72H, 3186 MSR_B1_PMON_EVNT_SEL1

Uncore B-box 1 perfmon event select MSR. Package

Register Address: C73H, 3187 MSR_B1_PMON_CTR1

Uncore B-box 1 perfmon counter MSR. Package

Register Address: C74H, 3188 MSR_B1_PMON_EVNT_SEL2

Uncore B-box 1 perfmon event select MSR. Package

Register Address: C75H, 3189 MSR_B1_PMON_CTR2

Uncore B-box 1 perfmon counter MSR. Package

Register Address: C76H, 3190 MSR_B1_PMON_EVNT_SEL3

Uncore B-box 1vperfmon event select MSR. Package

Register Address: C77H, 3191 MSR_B1_PMON_CTR3

Uncore B-box 1 perfmon counter MSR. Package

Register Address: C82H, 3122 MSR_W_PMON_BOX_OVF_CTRL

Uncore W-box perfmon local box overflow control MSR. Package

Register Address: C8FH, 3215 IA32_PQR_ASSOC

See Table 2-2.

Register Address: C90H−C9EH, 3216−
3230

IA32_L3_QOS_MASK_0 through IA32_L3_QOS_MASK_14

See Table 2-50. Package

Register Address: D10H−D17H, 3344−
3351

IA32_L2_QOS_MASK_[0-7]

IA32_CR_L2_QOS_MASK_[0-7]

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] ≥ 0. See Table 2-2.

Core

Register Address: D93H, 3475 IA32_PASID

See Table 2-2.
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2.17.9  MSRs Introduced in the Intel® Core™ Ultra 7 Processor Supporting Performance Hybrid 
Architecture

Table 2-53 lists additional MSRs for the Intel Core Ultra 7 processor with a CPUID Signature DisplayFamily_Display-
Model value of 06_AAH. Table 2-54 lists the MSRs unique to the processor P-core. Table 2-55 lists the MSRs unique 
to the processor E-core. 

Register Address: 1200H−121FH, 4608−
4639

IA32_LBR_x_INFO

Last Branch Record Entry X Info Register (R/W)

See Table 2-2.

Register Address: 1406H, 5126 IA32_MCU_CONTROL

See Table 2-2.

Register Address: 14CEH, 5326 IA32_LBR_CTL

Last Branch Record Enabling and Configuration Register (R/W)

See Table 2-2.

Register Address: 14CFH, 5327 IA32_LBR_DEPTH

Last Branch Record Maximum Stack Depth Register (R/W)

See Table 2-2.

Register Address: 1500H−151FH, 5376−
5407

IA32_LBR_x_FROM_IP

Last Branch Record Entry X Source IP Register (R/W)

See Table 2-2.

Register Address: 1600H−161FH, 5632−
5663

IA32_LBR_x_TO_IP

Last Branch Record Entry X Destination IP Register (R/W)

See Table 2-2.

Table 2-53.  Additional MSRs Supported by the Intel® Core™ Ultra 7 Processors Supporting Performance Hybrid 
Architecture 
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Register Address: 33H, 51 MSR_MEMORY_CTRL

Memory Control Register Core

26:0 Reserved.

27 UC_STORE_THROTTLE

If set to 1, when enabled, the processor will only allow one in-
progress UC store at a time.

28 UC_LOCK_DISABLE

If set to 1, a UC lock will cause a #GP(0) exception.

See Section 10.1.2.3, “Features to Disable Bus Locks.”
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29 SPLIT_LOCK_DISABLE

If set to 1, a split lock will cause an #AC(0) exception.

See Section 10.1.2.3, “Features to Disable Bus Locks.”

63:30 Reserved.

Register Address: 7AH, 122 IA32_FEATURE_ACTIVATION

Feature Activation (R/W)

Implements Feature Activation command. WRMSR to this address activates all 'activatable' features on this thread.

See Table 2-2.

Register Address: 80H, 128 MSR_TRACE_HUB_STH_ACPIBAR_BASE

MSR_TRACE_HUB_STH_ACPIBAR_BASE (R/W)

This register is used by BIOS to program Trace Hub STH base address that will be used by AET messages.

Thread

0 LOCK

Lock bit. If set, this MSR cannot be re-written anymore. The lock 
bit has to be set in order for the AET packets to be directed to 
Trace Hub MMIO.

17:1 Reserved.

45:18 ADDRESS

AET target address in Trace Hub MMIO space.

63:46 Reserved.

Register Address: E2H, 226 MSR_PKG_CST_CONFIG_CONTROL

C-State Configuration (R/W) Core

3:0 PKG_C_STATE_LIMIT

Specifies the lowest processor-specific C-state code name 
(consuming the least power) for the package.

The default is set as factory-configured package C-state limit.

The following C-state code name encodings may be supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

0110b: C8

0111b: C9

1000b: C10

7:4 MAX_CORE_C_STATE

Possible values are: 0000−reserved; 0001−C1; 0010−C3, 
0011−C6.

9:8 Reserved.
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10 IO_MWAIT_REDIRECTION_ENABLE

When set, will map IO_read instructions sent to IO registers 
PMG_IO_BASE_ADDR.PMB0+0/1/2 to MWAIT(C2,3,4) instructions; 
applies to deepc4 too.

14:11 Reserved.

15 CFG_LOCK

When set, locks bits 15:0 of this register for further writes, until 
the next reset occurs.

24:16 Reserved.

25 C3_STATE_AUTO_DEMOTION_ENABLE

When set, processor will conditionally demote C6/C7 requests to 
C3 based on uncore auto-demote information.

26 C1_STATE_AUTO_DEMOTION_ENABLE

When set, processor will conditionally demote C3/C6/C7 requests 
to C1 based on uncore auto-demote information.

27 ENABLE_C3_UNDEMOTION

Enable Un-Demotion from Demoted C3.

28 ENABLE_C1_UNDEMOTION

Enable Un-Demotion from Demoted C1.

29 ENABLE_PKGC_AUTODEMOTION

Enable Package C-State Auto-Demotion. It enables use of the 
history of past package C-state depth and residence, as a factor in 
determining C-State depth.

30 ENABLE_PKGC_UNDEMOTION

Enable Package C-State Un-Demotion. It enables considering 
cases where demotion was the incorrect decision in determining 
C-State depth.

31 TIMED_MWAIT_ENABLE

When set, enables Timed MWAIT feature. MWAIT would #GP on 
attempts to do setup MWAIT timer if this bit is not set.

63:32 Reserved.

Register Address: E4H, 228 MSR_IO_CAPTURE_BASE

IO Capture Base (R/W)

Power Management IO Redirection in C-state. See http://biosbits.org.

Core

15:0 LVL_2_BASE_ADDRESS

Specifies the base address visible to software for IO redirection. If 
MSR_PKG_CST_CONFIG_CONTROL.IO_MWAIT_REDIRECTION_ENA
BLE, reads to this address will be consumed by the power 
management logic and decoded to MWAIT instructions. When IO 
port address redirection is enabled, this is the IO port address 
reported to the OS/software.
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18:16 CST_RANGE

Specifies the encoding value of the maximum C-State code name 
to be included when IO read to MWAIT redirection is enabled by 
MSR_PKG_CST_CONFIG_CONTROL.IO_MWAIT_REDIRECTION_ENA
BLE:

000b−C3 is the max C-State to include.

001b−C6 is the max C-State to include.

010b−C7 is the max C-State to include.

63:19 Reserved.

Register Address: 13CH, 316 MSR_FEATURE_CONFIG

AES Feature Configuration (R/W) Core

0 AESNI_LOCK

Once this bit is set, writes to this register will not be allowed.

1 AESNI_DISABLE

This bit disables Advanced Encryption Standard feature on this 
processor core. To disable AES, BIOS will write '11 to this MSR on 
every core.

63:2 Reserved.

Register Address: 140H, 320 MSR_FEATURE_ENABLES

Feature Enable (R/W)

Miscellaneous enables for thread specific features.

Thread

0 CPUID_GP_ON_CPL_GT_0

Causes CPUID to #GP if CPL greater than 0 and not in SMM.

63:1 Reserved.

Register Address: 1A2H, 418 MSR_TEMPERATURE_TARGET

Temperature Target (R/W)

Legacy register holding temperature related constants for Platform use.

Package

6:0 TCC Offset Time Window

Describes the RATL averaging time window.

7 TCC Offset Clamping Bit

When enabled will allow RATL throttling below P1.

15:8 Temperature Control Offset

Fan Temperature Target Offset (a.k.a. T-Control) indicates the 
relative offset from the Thermal Monitor Trip Temperature at 
which fans should be engaged. 

23:16 TCC Activation Temperature

The minimum temperature at which PROCHOT# will be asserted. 
The value is degrees C.
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30:24 TCC Activation Offset

Specifies a temperature offset in degrees C from the temperature 
target (bits 23:16). PROCHOT# will assert at the offset target 
temperature. Write is permitted only if 
MSR_PLATFORM_INFO[30] is set.

31 LOCKED

When set, this entire register becomes read-only.

63:2 Reserved.

Register Address: 1A4H, 420 MSR_PREFETCH_CONTROL

PREFETCH Control (R/W)

Prefetch disable bits.

Thread

0 L2_HARDWARE_PREFETCHER_DISABLE

If 1, disables the L2 hardware prefetcher, which fetches 
additional lines of code or data into the L2 cache.

1 L2_ADJACENT_CACHE_LINE_PREFETCHER_DISABLE

If 1, disables the adjacent cache line prefetcher, which fetches the 
cache line that comprises a cache line pair (128 bytes).

2 DCU_HARDWARE_PREFETCHER_DISABLE

If 1, disables the L1 data cache prefetcher, which fetches the next 
cache line into L1 data cache.

3 DCU_IP_PREFETCHER_DISABLE

If 1, disables the L1 data cache IP prefetcher, which uses 
sequential load history (based on instruction pointer of previous 
loads) to determine whether to prefetch additional lines.

4 DCU_NEXT_PAGE_PREFETCH_DISABLE

If 1, disables Next Page prefetcher.

5 AMP_PREFETCH_DISABLE

If 1, disables L2 Adaptive Multipath Probability (AMP) prefetcher.

6 LLC_PAGE_PREFETCH_DISABLE

If 1, disables the LLC Page prefetcher.

7 AOP_PREFETCH_DISABLE

8 STREAM_PREFETCH_CODE_FETCH_DISABLE

63:9 Reserved.

Register Address: 1A6H, 422 MSR_OFFCORE_RSP_0

OFFCORE_RSP_0 (R/W)

Offcore Response Event Select Register

Thread

0 TRUE_DEMAND_CACHE_LOAD

Demand Data Rd = DCU reads (includes partials) that is not tagged 
homeless.
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1 DEMAND_RFO

Demand Instruction fetch = IFU Fetches. ItoM or RFO that is not 
tagged homeless. 

2 DEMAND_CODE_READ

Demand Instruction fetch = IFU Fetches. CRd or CRd_UC.

3 CORE_MODIFIED_WRITEBACK

WBMtoI or WBMtoE.

4 HW_PREFETCH_MLC_LOAD

L2 prefetcher requests triggered by reads from MEC (except 
those triggered by I-side).

5 HW_PREFETCH_MLC_RFO

L2 prefetcher requests triggered by RFOs.

6 HW_PREFETCH_MLC_CODE

L2 prefetcher requests triggered by I-side requests.

7 HW_PREFETCH_LLC_LOAD

LLC prefetch requests triggered by DRd.

8 HW_PREFETCH_LLC_RFO

LLC prefetch requests triggered by RFO.

9 HW_PREFETCH_LLC_CODE

LLC prefetch requests triggered by CRd.

10 L1_HWPREFETCH

Covers Hardware PFRFO, PFNEAR, PFMED, PFFAR, PFHW, PFNTA, 
PFNPP, PFIPP including the homeless versions.

11 ALL_STREAMING_STORE

Write Combining. WCiL or WCiLF.

12 CORE_NON_MODIFIED_WB

WBEFtoI or WBEFtoE.

13 LLC_PREFETCH

LLC prefetch of load/code/RFO.

14 L1_SWPREFETCH

Covers Software PFRFO, PFNEAR, PFMED, PFFAR, PFHW, PFNTA, 
PFNPP, PFIPP including the homeless versions.

15 OTHER

Includes CLFlush, CLFlushOPT, CLDemote, CLWB, Enqueue 
SetMonitor, PortIn, IntA, Lock, SplitLock, Unlock, SpCyc, ClrMonitor, 
PortOut, IntPriUp, IntLog, IntPhy, EOI, RdCurr, WbStoI, LLCWBInv, 
LLCInv, NOP, PCOMMIT.

16 ANY_RESP

Match on any response.

17 SUPPLIER_NONE

No Supplier Details. DATA_PRE [6:3] = 0.
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18 LLC_HIT_M_STATE

LLC/L3, M-state, DATA_PRE [6:3] = 2.

19 LLC_HIT_E_STATE

LLC/L3, E-state, DATA_PRE [6:3] = 4.

20 LLC_HIT_S_STATE

LLC/L3, S-state, DATA_PRE [6:3] = 6.

21 LLC_HIT_F_STATE

LLC/L3, F-state, DATA_PRE [6:3] = 8.

22 FAR_MEM_LOCAL

Far Memory, Local, DATA_PRE [6:3] = 1.

23 FAR_MEM_REMOTE_0_HOP

Far Memory, Remote 0-hop, DATA_PRE [6:3] = 3.

24 FAR_MEM_REMOTE_1_HOP

Far Memory, Remote 1-hop, DATA_PRE [6:3] = 5.

25 FAR_MEM_REMOTE_2_PLUS_HOP

Far Memory, Rem 2+ hop, DATA_PRE [6:3] = 7.

26 NEAR_MEM_MISS_LOCAL_NODE

LLC Miss Local Node. Near Memory, Local DATA_PRE [6:3] = E.

27 NEAR_MEM_REMOTE_0_HOP

Near Memory, Remote 0-hop, DATA_PRE [6:3] = B

28 NEAR_MEM_REMOTE_1_HOP

Near Memory, Remote 1-hop, DATA_PRE [6:3] = D.

29 NEAR_MEM_REMOTE_2_PLUS_HOP

Near Memory, Remote 2+ hop, DATA_PRE [6:3] = F.

30 SPL_HIT

Snoop Info: SPL-hit, DATA_PRE [2:0] = 6.

31 SNOOP_NONE

No details as to Snoop-related info. Snoop Info: None, DATA_PRE 
[2:0] = 0.

32 NOT_NEEDED

No snoop was needed to satisfy the request. Snoop Info: Not 
needed, DATA_PRE [2:0] = 1.

33 MISS

No snoop was needed to satisfy the request. Snoop Info: Miss, 
DATA_PRE [2:0] = 2.

34 HIT_NO_FWD

A snoop was needed and it Hits in at least one snooped cache. Hit 
denotes a cache-line was valid before snoop effect. Snoop Info: 
Hit No Fwd, DATA_PRE [2:0] = 3.
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35 HIT_EF_WITH_FWD

A snoop was needed and data was Forwarded from a remote 
socket. Snoop Info: Hit EF w/Fwd, DATA_PRE [2:0] = 4.

36 HITM

A snoop was needed and it HitMed in local or remote cache. HitM 
denotes a cache-line was modified before snoop effect. Snoop 
Info: HitM, DATA_PRE [2:0] = 5.

37 NON_DRAM

Target was non-DRAM system address. Snoop Info: HitM, 
DATA_PRE [2:0] = 5.

38 GO_ERR

GO-ERR, RspData[3:0] = 0100.

39 GO_NO_GO

GO-NoGO, RspData[3:0] = 0111.

40 INPKG_MEM_LOCAL

In-package Memory, Local, DATA_PRE [6:3] = 9.

41 INPKG_MEM_NONLOCAL

In-package Memory, Non-Local, DATA_PRE [6:3] = C.

43:42 Reserved.

44 UC_LOAD

PRd or UCRdF.

45 UC_STORE

WiL.

46 PARTIAL_STREAMING_STORES

WCiL.

47 FULL_STREAMING_STORES

WCiLF.

48 L1_MODIFIED_WB

EVICTION EXTTYPE from MEC.

49 L2_MODIFIED_WB

WBMtoI or WBMtoE.

50 PSMI

MemPushWr_NS (PSMI only).

51 ITOM

ItoM.

63:52 Reserved.

Register Address: 1A7H, 423 MSR_OFFCORE_RSP_1

OFFCORE_RSP_1 (R/W)

Offcore Response Event Select Register. See MSR_OFFCORE_RSP_0 (at1A6H).

Thread

Register Address: 1AAH, 426 MSR_MISC_PWR_MGMT
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Miscellaneous Power Management Control (R/W)

Various model-specific features enumeration. See http://biosbits.org.

Package

0 Reserved.

1 ENABLE_HWP_VOTING_RIGHT

When set (1), The CPU will take into account thread HWP requests 
for threads that have voting rights only (ignores thread requests 
if they do not have voting rights). When reset(0), The CPU will 
take into account all thread HWP requests, even for threads that 
don't have voting rights. Setting this bit will cause the HWP Base 
feature bit to be reported in CPUID as present; clearing will cause 
it to be reported as non-present.

5:2 Reserved.

6 ENABLE_HWP

Setting this bit will cause the HWP Base feature bit to report as 
present in CPUID; clearing this bit will cause CPUID to report the 
feature as non-present.

7 ENABLE_HWP_INTERRUPT

Setting this bit will cause the HWP Interrupt feature 
CPUID[6].EAX[8] bit to report as present; clearing will report as 
non-present.

8 ENABLE_OUT_OF_BAND_AUTONOMOUS

Setting this bit will cause the HWP Autonomous feature bit to 
report as present; clearing will report as non-present.

11:9 Reserved.

12 ENABLE_HWP_EPP

Enable HWP EPP. Setting this bit (1) will cause the HWP 
CPUID[6].EAX[10] Energy Performance Preference bit to report 
as present (1); clearing will report as non-present (0).

13 LOCK

Setting this bit will prevent the BIOS specific bits from changing 
until the next reset. i.e., only Bits [0,22] which are meant for OS 
use can be changed once the LOCK bit is set.

63:14 Reserved.

Register Address: 1ADH, 429 MSR_PRIMARY_TURBO_RATIO_LIMIT

Primary Maximum Turbo Ratio Limit (R/W)

Software can configure these limits when MSR_PLATFORM_INFO[28] = 1. Specifies Maximum Ratio Limit for each 
group. Maximum ratio for groups with more cores must decrease monotonically.

Package

7:0 MAX_TURBO_GROUP_0:

Maximum turbo ratio limit with 1 core active.

15:8 MAX_TURBO_GROUP_1:

Maximum turbo ratio limit with 2 cores active.

23:16 MAX_TURBO_GROUP_2:

Maximum turbo ratio limit with 3 cores active.
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31:24 MAX_TURBO_GROUP_3:

Maximum turbo ratio limit with 4 cores active.

39:32 MAX_TURBO_GROUP_4:

Maximum turbo ratio limit with 5 cores active.

47:40 MAX_TURBO_GROUP_5:

Maximum turbo ratio limit with 6 cores active.

55:48 MAX_TURBO_GROUP_6:

Maximum turbo ratio limit with 7 cores active.

63:56 MAX_TURBO_GROUP_7:

Maximum turbo ratio limit with 8 cores active.

Register Address: 1F1H, 497 MSR_CRASHLOG_CONTROL

Crash Log Control (R/W)

Write data to a Crash Log configuration.

Thread

0 CDDIS

CrashDump_Disable: If set, indicates that Crash Dump is disabled.

1 EN_GPRS

Collect GPRs on a crash dump. Only meaningful when CDDIS is 
zero.

2 EN_GPRS_IN_SMM

Collect GPRs in SMM on a crash dump. Only meaningful when 
CDDIS is zero. EN_GPRS will override this control,

3 TRIPLE_FAULT_SHUTDOWN

Collect a crash log on a triple fault shutdown. Only meaningful 
when CDDIS is zero.

63:4 Reserved.

Register Address: 1F5H, 501 MSR_PRMRR_PHYS_MASK

Processor Reserved Memory Range Register - Physical Mask (R/W) Core

9:0 Reserved.

10 LOCK

Once set, this bit prevents software from modifying the PRMRR.

11 VALID

This bit serves as the enable for the PRMRR; the PRMRR must be 
LOCKed before it can be enabled.

19:12 Reserved.

45:20 MASK

PRMRR Address Mask.

63:46 Reserved.

Register Address: 1FCH, 508 MSR_POWER_CTL

Power Control Register (R/W)

See http://biosbits.org.

Package
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0 ENABLE_BIDIR_PROCHOT

Used to enable or disable the response to PROCHOT# input.

When set/enabled, the platform can force the CPU to throttle to a 
lower power condition such as Pn/Pm by asserting prochot#. 
When clear/disabled (default), the CPU ignores the status of the 
prochot input signal.

1 C1E_ENABLE

When set to '1', will enable the CPU to switch to the Minimum 
Enhanced Intel SpeedStep Technology operating point when all 
execution cores enter MWAIT (C1).

2 SAPM_IMC_C2_POLICY

This bit determines if self-refresh activation is allowed when 
entering Package C2 State. If it is set to 0b, PCODE will keep the 
FORCE_SR_OFF bit asserted in Package C2 State and allow its 
negation according to the defined latency negotiations with the 
PCH and Display Engine in Package C3 and deeper states. 
Otherwise, self-refresh is allowed in Package C2 State.

3 FAST_BRK_SNP_EN

This bit controls the VID swing rate for the OTHER_SNP_WAKE 
events that are detected by the iMPH. This is the event that is 
detected by the iMPH when a non-DMI snoopable request is 
observed while UCLK domain is not functional.

0b: Use slow VID swing rate.

1b: Use fast VID swing rate.

17:4 Reserved.

18 PWR_PERF_PLTFRM_OVR

Power performance platform override.

19 EE_TURBO_DISABLE

Setting this bit disables the P-States energy efficiency 
optimization. Default value is 0. Disable/enable the energy 
efficiency optimization in P-State legacy mode (when 
IA32_PM_ENABLE[HWP_ENABLE] = 0), has an effect only in the 
turbo range or into PERF_MIN_CTL value if it is not zero set. In 
HWP mode (IA32_PM_ENABLE[HWP_ENABLE] == 1), has an 
effect between the OS desired or OS maximize to the OS minimize 
performance setting.

20 RTH_DISABLE

Setting this bit disables the Race to Halt optimization and avoids 
this optimization limitation to execute below the most efficient 
frequency ratio. Default value is 0 for processors that support 
Race to Halt optimization.

21 DIS_PROCHOT_OUT

Prochot output disable.

22 PROCHOT_RESPONSE

Prochhot configurable response enable.
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23 VR_THERM_ALERT_DISABLE_LOCK

When set to 1, locks PROCHOT related bits of this MSR. Once set, 
a reset is required to clear this bit.

24 VR_THERM_ALERT_DISABLE

When set to 1, disables the VR_THERMAL_ALERT signaling.

25 DISABLE_RING_EE

Disable Ring EE.

26 DISABLE_SA_OPTIMIZATION

Disable SA optimization.

27 DISABLE_OOK

Disable OOK.

28 DISABLE_AUTONOMOUS

Disable HWP autonomous mode.

29 Reserved.

30 CSTATE_PREWAKE_DISABLE

C-state pre-wake disable.

63:31 Reserved.

Register Address: 2A0H, 672 MSR_PRMRR_BASE_0

Processor Reserved Memory Range Register - Physical Base Control Register (R/W) Core

2:0 MEMTYPE

Memory type for PRMRR accesses.

3 CONFIGURED

PRMRR base configured.

19:4 Reserved.

45:20 BASE

PRMRR base address.

63:46 Reserved.

Register Address: 474H, 1140 IA32_MC29_CTL

MC29_CTL. See Table 2-2. Package

Register Address: 475H, 1141 IA32_MC29_STATUS

MC29_STATUS. See Table 2-2. Package

Register Address: 476H, 1142 IA32_MC29_ADDR

MC29_ADDR. See Table 2-2. Package

Register Address: 477H, 1143 IA32_MC29_MISC

MC29_MISC. See Table 2-2. Package

Register Address: 478H, 1144 IA32_MC30_CTL

MC30_CTL. See Table 2-2. Package

Register Address: 479H, 1145 IA32_MC30_STATUS
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MC30_STATUS. See Table 2-2. Package

Register Address: 47AH, 1146 IA32_MC30_ADDR

MC30_ADDR. See Table 2-2. Package

Register Address: 47BH, 1147 IA32_MC30_MISC

MC30_MISC. See Table 2-2. Package

Register Address: 47CH, 1148 IA32_MC31_CTL

MC31_CTL. See Table 2-2. Package

Register Address: 47DH, 1149 IA32_MC31_STATUS

MC31_STATUS. See Table 2-2. Package

Register Address: 47EH, 1150 IA32_MC31_ADDR

MC31_ADDR. See Table 2-2. Package

Register Address: 47FH, 1151 IA32_MC31_MISC

MC31_MISC. See Table 2-2. Package

Register Address: 4E0H, 1248 MSR_SMM_FEATURE_CONTROL

Enhanced SMM Feature Control (R/W)

Reports SMM capability enhancement.

Package

0 LOCK

When set, locks this register from further changes.

1 SMM_CPU_SAVE_EN

If 0, SMI/RSM will save/restore state in SMRAM

If 1, SMI/RSM will save/restore state from SRAM.

2 SMM_CODE_CHK_EN

When clear (default) none of the logical processors are prevented 
from executing SMM code outside the ranges defined by the 
SMRR. When set, any logical processor in the package that 
attempts to execute SMM code not within the ranges defined by 
the SMRR will assert an unrecoverable MCE.

63:3 Reserved.

Register Address: 601H, 1537 MSR_VR_CURRENT_CONFIG

Power Limit 4 (PL4) (R/W)

Package-level maximum power limit (in Watts). It is a proactive, instantaneous limit.

Package

15:0 CURRENT_LIMIT

PL4 Value in 0.125 A increments. This field is locked by 
MSR_VR_CURRENT_CONFIG.LOCK. When the LOCK bit is set to 1, 
this field becomes Read Only.

30:16 Reserved.

31 LOCK

This bit will lock the CURRENT_LIMIT settings in this register and 
will also lock this setting. This means that once set to 1, the 
CURRENT_LIMIT setting and this bit become Read Only until the 
next Warm Reset.
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63:32 Reserved.

Register Address: 620H, 1568 MSR_UNCORE_RATIO_LIMIT

Uncore Ratio Limit (R/W)

Min/Max Ratio Limits for Uncore LLC and Ring.

Package

6:0 MAX_CLR_RATIO

Maximum allowed ratio for the Ring and Last Level Cache (LLC).

7 Reserved.

14:8 MIN_CLR_RATIO

Minimum allowed ratio for the Ring and Last Level Cache (LLC).

63:15 Reserved.

Register Address: 638H, 1592 MSR_PP0_POWER_LIMIT

MSR_PP0_POWER_LIMIT (R/W)

PP0 RAPL power unit control.

Package

14:0 IA_PP_PWR_LIM

This is the power limitation on the IA cores power plane.

The unit of measurement is defined in 
PACKAGE_POWER_SKU_UNIT_MSR[PWR_UNIT].

15 PWR_LIM_CTRL_EN

This bit must be set in order to limit the power of the IA cores 
power plane.

0b: IA cores power plane power limitation is disabled.

1b: IA cores power plane power limitation is enabled.

16 PP_CLAMP_LIM

Power Plane Clamping limitation; allow going below P1.

0b: PBM is limited between P1 and P0.

1b: PBM can go below P1.

23:17 CTRL_TIME_WIN

x = CTRL_TIME_WIN[23:22]

y = CTRL_TIME_WIN[21:17]

The timing interval window is Floating Point number given by 1.x 
* power(2,y).

The unit of measurement is defined in 
PACKAGE_POWER_SKU_UNIT_MSR[TIME_UNIT].

The maximal time window is bounded by 
PACKAGE_POWER_SKU_MSR[PKG_MAX_WIN]. The minimum time 
window is 1 unit of measurement (as defined above).

30:24 Reserved.

31 PP_PWR_LIM_LOCK

When set, all settings in this register are locked and are treated as 
Read Only.

63:32 Reserved.
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Register Address: 64FH, 1615 MSR_CORE_PERF_LIMIT_REASONS

Core Performance Limit Reasons 

Indicator of Frequency Clipping in Processor Cores. (Frequency refers to processor core frequency.)

Package

0 PROCHOT (R/O)

PROCHOT Status. When set, frequency is reduced below the 
operating system request due to assertion of external PROCHOT.

1 THERMAL (R/O)

Thermal Status. When set, frequency is reduced below the 
operating system request due to a thermal event.

3:2 Reserved.

4 RSR_LIMIT (R/O)

Residency State Regulation Status. When set, frequency is 
reduced below the operating system request due to residency 
state regulation limit.

5 RATL (R/O)

Running Average Thermal Limit Status. When set, frequency is 
reduced below the operating system request due to Running 
Average Thermal Limit (RATL).

6 VR_THERMALERT (R/O)

VR Therm Alert Status. When set, frequency is reduced below the 
operating system request due to a thermal alert from a processor 
Voltage Regulator (VR).

7 VR_TDC (R/O)

VR Therm Design Current Status. When set, frequency is reduced 
below the operating system request due to VR thermal design 
current limit.

8 OTHER (R/O)

Other Status. When set, frequency is reduced below the operating 
system request due to electrical or other constraints.

9 Reserved.

10 PBM_PL1 (R/O)

Package/Platform-Level Power Limiting PL1 Status. When set, 
frequency is reduced below the operating system request due to 
package/platform-level power limiting PL1.

11 PBM_PL2 (R/O)

Package/Platform-Level PL2 Power Limiting Status. When set, 
frequency is reduced below the operating system request due to 
package/platform-level power limiting PL2/PL3.

12 MAX_TURBO_LIMIT (R/O)

Max Turbo Limit Status. When set, frequency is reduced below 
the operating system request due to multi-core turbo limits.
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13 TURBO_ATTEN (R/O)

Turbo Transition Attenuation Status. When set, frequency is 
reduced below the operating system request due to Turbo 
transition attenuation. This prevents performance degradation 
due to frequent operating ratio changes.

15:14 Reserved.

16 PROCHOT_LOG (R/W)

PROCHOT Log. When set, indicates that the PROCHOT Status bit 
has asserted since the log bit was last cleared. This log bit will 
remain set until cleared by software writing 0.

17 THERMAL_LOG (R/W)

Thermal Log When set, indicates that the Thermal Status bit has 
asserted since the log bit was last cleared. This log bit will remain 
set until cleared by software writing 0.

19:18 Reserved.

20 RSR_LIMIT_LOG (R/W)

Residency State Regulation Log. When set, indicates that the 
Residency State Regulation Status bit has asserted since the log 
bit was last cleared. This log bit will remain set until cleared by 
software writing 0.

21 RATL_LOG (R/W)

Running average thermal limit Log, RW, When set by PCODE 
indicates that Running average thermal limit has cause IA 
frequency clipping. Software should write to this bit to clear the 
status in this bit.

22 VR_THERMALERT_LOG (R/W)

VR Therm Alert Log. When set, indicates that the VR Therm Alert 
Status bit has asserted since the log bit was last cleared. This log 
bit will remain set until cleared by software writing 0.

23 VR_TDC_LOG (R/W)

VR Thermal Design Current Log. When set, indicates that the VR 
TDC Status bit has asserted since the log bit was last cleared. This 
log bit will remain set until cleared by software writing 0.

24 OTHER_LOG (R/W)

Other Log. When set, indicates that the Other Status bit has 
asserted since the log bit was last cleared. This log bit will remain 
set until cleared by software writing 0.

25 Reserved.

26 PBM_PL1_LOG (R/W)

Package/Platform-Level PL1 Power Limiting Log. When set, 
indicates that the Package or Platform Level PL1 Power Limiting 
Status bit has asserted since the log bit was last cleared. This log 
bit will remain set until cleared by software writing 0.
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27 PBM_PL2_LOG (R/W)

Package/Platform-Level PL2 Power Limiting Log. When set, 
indicates that the Package or Platform Level PL2/PL3 Power 
Limiting Status bit has asserted since the log bit was last cleared. 
This log bit will remain set until cleared by software writing 0.

28 MAX_TURBO_LIMIT_LOG (R/W)

Max Turbo Limit Log. When set, indicates that the Max Turbo Limit 
Status bit has asserted since the log bit was last cleared. This log 
bit will remain set until cleared by software writing 0.

29 TURBO_ATTEN_LOG (R/W)

Turbo Transition Attenuation Log. When set, indicates that the 
Turbo Transition Attenuation Status bit has asserted since the log 
bit was last cleared. This log bit will remain set until cleared by 
software writing 0.

63:30 Reserved.

Register Address: 650H, 1616 MSR_SECONDARY_TURBO_RATIO_LIMIT

Secondary Maximum Turbo Ratio Limit (R/W)

Software can configure these limits when MSR_PLATFORM_INFO[28] = 1.

Specifies Maximum Ratio Limit for each group. Maximum ratio for groups with more cores must decrease 
monotonically.

Package

7:0 MAX_TURBO_GROUP_0:

Maximum turbo ratio limit with 1 core active.

15:8 MAX_TURBO_GROUP_1:

Maximum turbo ratio limit with 2 cores active.

23:16 MAX_TURBO_GROUP_2:

Maximum turbo ratio limit with 3 cores active.

31:24 MAX_TURBO_GROUP_3:

Maximum turbo ratio limit with 4 cores active.

39:32 MAX_TURBO_GROUP_4:

Maximum turbo ratio limit with 5 cores active.

47:40 MAX_TURBO_GROUP_5:

Maximum turbo ratio limit with 6 cores active.

55:48 MAX_TURBO_GROUP_6:

Maximum turbo ratio limit with 7 cores active.

63:56 MAX_TURBO_GROUP_7:

Maximum turbo ratio limit with 8 cores active.

Register Address: 65CH, 1628 MSR_PLATFORM_POWER_LIMIT

Platform Power Limit Control (R/W)

Allows platform BIOS to limit power consumption of the platform devices to the specified values. The Long Duration 
power consumption is specified via Platform_Power_Limit_1 and Platform_Power_Limit_1_Time. The Short Duration 
power consumption limit is specified via the Platform_Power_Limit_2 with duration chosen by the processor. The 
processor implements an exponential-weighted algorithm in the placement of the time windows.

Package
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14:0 POWER_LIMIT_1

Average Power limit value which the platform must not exceed 
over a time window as specified by Power_Limit_1_TIME field. 
The default value is the Thermal Design Power (a.k.a TDP) and 
varies with product skus. The unit is specified in 
MSR_RAPLPOWER_UNIT.

15 POWER_LIMIT_1_EN

When set, enables the processor to apply control policy such that 
the platform power does not exceed Platform Power limit 1 over 
the time window specified by Power Limit 1 Time Window.

16 CRITICAL_POWER_CLAMP_1

When set, allows the processor to go below the OS requested P 
states in order to maintain the power below specified Platform 
Power Limit 1 value.

23:17 POWER_LIMIT_1_TIME

Specifies the duration of the time window over which Platform 
Power Limit 1 value should be maintained for sustained long 
duration. This field is made up of two numbers from the following 
equation: 

Time Window = (float) ((1+(X/4))*(2^Y)), where:

X = POWER_LIMIT_1_TIME[23:22]

Y = POWER_LIMIT_1_TIME[21:17]

The maximum allowed value in this field is defined in 
MSR_PKG_POWER_INFO[PKG_MAX_WIN].

The default value is 0DH, The unit is specified in 
MSR_RAPLPOWER_UNIT[Time Unit]

31:24 Reserved.

46:32 POWER_LIMIT_2

Average Power limit value which the platform must not exceed 
over the Short Duration time window chosen by the processor. 
The recommended default value is 1.25 times the Long Duration 
Power Limit (i.e., Platform Power Limit 1).

47 POWER_LIMIT_2_EN

When set, enables the processor to apply control policy such that 
the platform power does not exceed Platform Power limit 2 over 
the Short Duration time window.

48 CRITICAL_POWER_CLAMP_2

When set, allows the processor to go below the OS requested P 
states in order to maintain the power below specified Platform 
Power Limit 2 value.

62:49 Reserved.

63 LOCK

Setting this bit will lock all other bits of this MSR until system 
RESET.

Register Address: 6BOH, 1712 MSR_GRAPHICS_PERF_LIMIT_REASONS
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MSR_GRAPHICS_PERF_LIMIT_REASONS 

Indicator of Frequency Clipping in the Processor Graphics. (Frequency refers to processor graphics frequency.)

Package

0 PROCHOT (R/O)

PROCHOT Status. When set, frequency is reduced due to 
assertion of external PROCHOT.

1 THERMAL (R/O)

Thermal Status. When set, frequency is reduced due to a thermal 
event.

4:2 Reserved.

5 RATL (R/O)

Running Average Thermal Limit Status. When set, frequency is 
reduced due to running average thermal limit.

6 VR_THERMALERT (R/O)

VR Therm Alert Status. When set, frequency is reduced due to a 
thermal alert from a processor Voltage Regulator.

7 VR_TDC (R/O)

VR Thermal Design Current Status. When set, frequency is 
reduced due to VR TDC limit.

8 OTHER (R/O)

Other Status. When set, frequency is reduced due to electrical or 
other constraints.

9 Reserved.

10 PBM_PL1 (R/O)

Package/Platform-Level Power Limiting PL1 Status. When set, 
frequency is reduced due to package/platform-level power 
limiting PL1.

11 PBM_PL2 (R/O)

Package/Platform-Level PL2 Power Limiting Status. When set, 
frequency is reduced due to package/platform-level power 
limiting PL2/PL3.

12 INEFFICIENT_OPERATION (R/O)

Inefficient Operation Status. When set, processor graphics 
frequency is operating below target frequency.

15:13 Reserved.

16 PROCHOT_LOG (R/W)

PROCHOT Log. When set, indicates that the PROCHOT Status bit 
has asserted since the log bit was last cleared. This log bit will 
remain set until cleared by software writing 0.

17 THERMAL_LOG (R/W)

Thermal Log. When set, indicates that the Thermal Status bit has 
asserted since the log bit was last cleared. This log bit will remain 
set until cleared by software writing 0.

20:18 Reserved.
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21 RATL_LOG (R/W)

Running Average Thermal Limit Log. When set, indicates that the 
RATL Status bit has asserted since the log bit was last cleared. 
This log bit will remain set until cleared by software writing 0.

22 VR_THERMALERT_LOG (R/W)

VR Therm Alert Log. When set, indicates that the VR Therm Alert 
Status bit has asserted since the log bit was last cleared. This log 
bit will remain set until cleared by software writing 0.

23 VR_TDC_LOG (R/W)

VR Thermal Design Current Log. When set, indicates that the VR 
Therm Alert Status bit has asserted since the log bit was last 
cleared. This log bit will remain set until cleared by software 
writing 0.

24 OTHER_LOG (R/W)

Other Log. When set, indicates that the OTHER Status bit has 
asserted since the log bit was last cleared. This log bit will remain 
set until cleared by software writing 0.

25 Reserved.

26 PBM_PL1_LOG (R/W)

Package/Platform-Level PL1 Power Limiting Log. When set, 
indicates that the Package/Platform Level PL1 Power Limiting 
Status bit has asserted since the log bit was last cleared. This log 
bit will remain set until cleared by software writing 0.

27 PBM_PL2_LOG (R/W)

Package/Platform-Level PL2 Power Limiting Log. When set, 
indicates that the Package/Platform Level PL2 Power Limiting 
Status bit has asserted since the log bit was last cleared. This log 
bit will remain set until cleared by software writing 0.

28 INEFFICIENT_OPERATION_LOG (R/W)

Inefficient Operation Log. When set, indicates that the Inefficient 
Operation Status bit has asserted since the log bit was last 
cleared. This log bit will remain set until cleared by software 
writing 0.

63:29 Reserved.

Register Address: 6B1H, 1713 MSR_RING_PERF_LIMIT_REASONS

MSR_RING_PERF_LIMIT_REASONS

Indicator of Frequency Clipping in the Ring Interconnect. (Frequency refers to ring interconnect in the uncore.)

Package

0 PROCHOT (R/O)

PROCHOT Status. When set, frequency is reduced due to 
assertion of external PROCHOT.

1 THERMAL (R/O)

Thermal Status. When set, frequency is reduced due to a thermal 
event.

4:2 Reserved.

Table 2-53.  Additional MSRs Supported by the Intel® Core™ Ultra 7 Processors Supporting Performance Hybrid 
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5 RATL (R/O)

Running Average Thermal Limit Status. When set, frequency is 
reduced due to running average thermal limit.

6 VR_THERMALERT (R/O)

VR Therm Alert Status. When set, frequency is reduced due to a 
thermal alert from a processor Voltage Regulator.

7 VR_TDC (R/O)

VR Thermal Design Current Status. When set, frequency is 
reduced due to VR TDC limit.

8 OTHER (R/O)

Other Status. When set, frequency is reduced due to electrical or 
other constraints.

9 Reserved.

10 PBM_PL1 (R/O)

Package/Platform-Level Power Limiting PL1 Status. When set, 
frequency is reduced due to package/platform-level power 
limiting PL1.

11 PBM_PL2 (R/O)

Package/Platform-Level PL2 Power Limiting Status. When set, 
frequency is reduced due to package/platform-level power 
limiting PL2/PL3.

15:12 Reserved.

16 PROCHOT_LOG (R/W)

PROCHOT Log. When set, indicates that the PROCHOT Status bit 
has asserted since the log bit was last cleared. This log bit will 
remain set until cleared by software writing 0.

17 THERMAL_LOG (R/W)

Thermal Log. When set, indicates that the Thermal Status bit has 
asserted since the log bit was last cleared. This log bit will remain 
set until cleared by software writing 0.

20:18 Reserved.

21 RATL_LOG (R/W)

Running Average Thermal Limit Log. When set, indicates that the 
RATL Status bit has asserted since the log bit was last cleared. 
This log bit will remain set until cleared by software writing 0.

22 VR_THERMALERT_LOG (R/W)

VR Therm Alert Log. When set, indicates that the VR Therm Alert 
Status bit has asserted since the log bit was last cleared. This log 
bit will remain set until cleared by software writing 0.

23 VR_TDC_LOG (R/W)

VR Thermal Design Current Log. When set, indicates that the VR 
Therm Alert Status bit has asserted since the log bit was last 
cleared. This log bit will remain set until cleared by software 
writing 0.

Table 2-53.  Additional MSRs Supported by the Intel® Core™ Ultra 7 Processors Supporting Performance Hybrid 
Architecture  (Contd.)
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The MSRs listed in Table 2-54 are unique to the Intel Core Ultra 7 processor P-core. These MSRs are not supported 
on the processor E-core.

24 OTHER_LOG (R/W)

Other Log. When set, indicates that the OTHER Status bit has 
asserted since the log bit was last cleared. This log bit will remain 
set until cleared by software writing 0.

25 Reserved.

26 PBM_PL1_LOG (R/W)

Package/Platform-Level PL1 Power Limiting Log. When set, 
indicates that the Package/Platform Level PL1 Power Limiting 
Status bit has asserted since the log bit was last cleared. This log 
bit will remain set until cleared by software writing 0.

27 PBM_PL2_LOG (R/W)

Package/Platform-Level PL2 Power Limiting Log. When set, 
indicates that the Package/Platform Level PL2 Power Limiting 
Status bit has asserted since the log bit was last cleared. This log 
bit will remain set until cleared by software writing 0.

63:28 Reserved.

Register Address: 9FBH, 2555 IA32_TME_CLEAR_SAVED_KEY

IA32_TME_CLEAR_SAVED_KEY (R/W)

See Table 2-2.

Package

Register Address: 9FFH, 2559 MSR_CORE_MKTME_ACTIVATE

MSR_CORE_MKTME_ACTIVATE (R/O)

MSR to read TME_ACTIVATE[MK_TME_KEYID_BITS].

Core

31:0 Reserved.

35:32 READ_MK_TME_KEYID_BITS

This value will be returned on a RDMSR, but must be zero on a 
WRMSR.

63:36 Reserved.

Table 2-54.  MSRs Supported by the Intel® Core™ Ultra 7 Processor P-core 

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 30CH, 780 IA32_FIXED_CTR3

Fixed-Function Performance Counter 3 (R/W) Thread

47:0 FIXED_COUNTER

Top-down Microarchitecture Analysis unhalted number of available 
slots counter.

63:48 Reserved.

Register Address: 329H, 809 MSR_PERF_METRICS

Table 2-53.  Additional MSRs Supported by the Intel® Core™ Ultra 7 Processors Supporting Performance Hybrid 
Architecture  (Contd.)
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The MSRs listed in Table 2-48 are unique to the Intel Core Ultra 7 processor E-core. These MSRs are not supported 
on the processor P-core.

Performance Metrics (R/W)

This register provides built-in support for Top-down Micro-architecture Analysis (TMA) metrics. It exposes the four 
TMA Level 1 metrics where the lower 32 bits are divided into four 8 bit fields, each of which is an integer percentage 
of the total TOPDOWN.SLOTS (as reported by fixed counter 3).

Thread

7:0 RETIRING

Percent of utilized by uops that eventually retire (commit).

15:8 BAD_SPECULATION

Percent of Wasted due to incorrect speculation, covering Utilized by 
uops that do not retire, or Recovery Bubbles (unutilized slots).

23:16 FRONTEND_BOUND

Percent of Unutilized slots where Front-end did not deliver a uop 
while Back-end is ready.

31:24 BACKEND_BOUND

Percent of Unutilized slots where a uop was not delivered to Back-
end due to lack of Back-end resources.

39:32 MULTI_UOPS

Frontend bound.

47:40 BRANCH_MISPREDICTS

Frontend bound.

55:48 FRONTEND_LATENCY

Frontend bound.

63:56 MEMORY_BOUND

Frontend bound.

Register Address: 540H, 1344 MSR_THREAD_UARCH_CTL

Thread Microarchitectural Control (R/W)

See Table 2-47.

Thread

Register Address: 541H, 1345 MSR_CORE_UARCH_CTL

Core Microarchitecture Control MSR (R/W)

See Table 2-44.

Core

Table 2-55.  MSRs Supported by the Intel® Core™ Ultra 7 Processor E-core 

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 4F0H, 1264 MSR_SAF_CTRL

SAF Control (W/O)

Extension to SAF.

Package

0 INVALIDATE_CURRENT_STRIDE

Invalidate all chunks in current stride.

63:1 Reserved.

Table 2-54.  MSRs Supported by the Intel® Core™ Ultra 7 Processor P-core  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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2.17.10  MSRs Introduced in the Intel® Xeon® 6 P-Core Processors
Table 2-56 lists additional MSRs for the Intel Xeon 6 P-core processors. Intel Xeon 6 P-core processors have a 
CPUID Signature DisplayFamily_DisplayModel value of 06_ADH or 06_AEH. 

For an MSR listed in Table 2-56 that also appears in the model-specific tables of prior generations, Table 2-56 
supersedes prior generation tables.

Register Address: D18H−D1FH, 3352−3359 IA32_L2_MASK_[8-15]

IA32_L2_MASK_[8-15] (R/W)

If CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] ≥ 0.

Controls MLC (L2) Intel RDT allocation. For more details on CAT/RDT, see Chapter 19, “Debug, Branch Profile, TSC, and 
Intel® Resource Director Technology (Intel® RDT) Features.”

Module

15:0 WAY_MASK

Capacity Bit Mask. Available ways vectors for class of service of 
IA core. '1 in bit indicates allocation to the way is allowed. '0 
indicates allocation to the way is not allowed.

31:16 Reserved.

Register Address: 1309H−130BH, 4873−4875 MSR_RELOAD_FIXED_CTRx

Reload value for IA32_FIXED_CTRx (R/W) Thread

47:0 Value loaded into IA32_FIXED_CTRx when a PEBS record is 
generated while PEBS_EN_FIXEDx = 1 and PEBS_OUTPUT = 
01B in IA32_PEBS_ENABLE, and FIXED_CTRx is overflowed.

63:48 Reserved.

Register Address: 14C1H−14C8H, 5313 −5320 MSR_RELOAD_PMCx

Reload value for IA32_PMCx (R/W) Thread

47:0 Value loaded into IA32_PMCx when a PEBS record is generated 
while PEBS_EN_PMCx = 1 and PEBS_OUTPUT = 01B in 
IA32_PEBS_ENABLE, and PMCx is overflowed.

63:48 Reserved.

Register Address: 1A8EH, 6798 MSR_STLB_FILL_TRANSLATION

STLB Fill Translation (W/O)

STLB QoS MSR to fill translations into STLB.

Core

3:0 CLOS

Class of service to use for the fill.

9:4 Reserved.

10 X

Set to 1 when LA is to an executable page.

11 RW

Set to 1 when LA is to a writeable page.

63:12 LA

Logical address to use for fill.

Table 2-55.  MSRs Supported by the Intel® Core™ Ultra 7 Processor E-core  (Contd.)
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Table 2-56.  Additional MSRs Supported by the Intel® Xeon® 6 P-Core Processors 

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 33H, 51 MSR_MEMORY_CONTROL

MSR_MEMORY_CONTROL (R/W)

Disables split locks, which are locked instructions that split a cache line. 

Core

26:0 Reserved.

27 UC_STORE_THROTTLE

If set to 1, when enabled, the processor allows one in-progress, 
post-retirement UC stores at a time.

28 UC_LOCK_DISABLE

If set to 1, a UC load lock will trigger a fault. If clear to 0, UC load 
locks proceed normally. 

29 SPLIT_LOCK_DISABLE

If set to 1, a split lock will trigger an #AC fault. If clear to 0, split 
locks proceed normally

63:30 Reserved.

Register Address: 34H, 52 MSR_SMI_COUNT

SMI Counter (R/W) Thread

31:0 SMI_COUNT

Running count of SMI events since the last reset.

63:32 Reserved.

Register Address: 39H, 57 MSR_SOCKET_ID

Socket ID (R/W)

Reassigns the package-specific portions of the APIC ID. This MSR is used on scalable DP and high-end MP platforms to 
resolve legacy-mode APIC ID conflicts. 

Package

10:0 PACKAGE_ID:

Holds package ID. This reflects the upper bits of the APIC ID.

63:11 Reserved.

Register Address: 7AH, 122 IA32_FEATURE_ACTIVATION

IA32_FEATURE_ACTIVATION (R/W)

Implements Feature Activation command. WRMSR to this address activates all 'activatable' features on this thread.

See Table 2-2.

Thread

Register Address: 7BH, 123 IA32_MCU_ENUMERATION

IA32_MCU_ENUMERATION (R/O)

Enumeration of architectural features. See Table 2-2.

Package

Register Address: 7CH, 124 IA32_MCU_STATUS

IA32_MCU_STATUS (R/O)

Communicates results from the previous patch loads. See Table 2-2.

Package

Register Address: 82H, 130 IA32_FZM_RANGE_INDEX

IA32_FZM_RANGE_INDEX (R/W)

Index and Domain handle for a valid FZM region. Programmed by SW and used by other FRM MSRs FZM Range Index 
register to R/W Domain Index. See Table 2-2.

Thread
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Register Address: 83H, 131 IA32_FZM_DOMAIN_CONFIG

IA32_FZM_DOMAIN_CONFIG (R/O)

Bit mask of valid regions within the domain identified by FZM_RANGE_INDEX. See Table 2-2.

Thread

Register Address: 84H, 132 IA32_FZM_RANGE_STARTADDR

IA32_FZM_RANGE_STARTADDR (R/O)

Start address of the FZM range pointed to by FZM_RANGE_INDEX. See Table 2-2.

Thread

Register Address: 85H, 133 IA32_FZM_RANGE_ENDADDR

IA32_FZM_RANGE_ENDADDR (R/O)

End address of the specified domain in FZM_RANGE_INDEX. See Table 2-2.

Thread

Register Address: 86H, 134 IA32_FZM_RANGE_WRITESTATUS

IA32_FZM_RANGE_WRITESTATUS (R/O)

Write status of the FZM range pointed to by FZM_RANGE_INDEX. See Table 2-2.

Thread

Register Address: 87H, 135 IA32_MKTME_KEYID_PARTITIONING

MKTME KEY ID Partitioning (R/O)

Enumerates the number of activated KeyIDs for Intel TME-MK and Intel TDX. See Table 2-2.

Package

Register Address: 90H, 144 IA32_SGXLEPUBKEYHASH4

IA32_SGXLEPUBKEYHASH4 (R/W)

See Table 2-2.

Thread

Register Address: 91H, 145 IA32_SGXLEPUBKEYHASH5

IA32_SGXLEPUBKEYHASH5 (R/W)

See Table 2-2.

Thread

Register Address: 98H, 152 MSR_SEAM_WBINVDP

SEAM WBINVDP (R/W)

Allows software to WBINVD sections of the LLC.

Thread

63:0 HANDLE

Caches sub-block to invalidate.

Register Address: 99H, 153 MSR_SEAM_WBNOINVDP

SEAM WBNOINVDP (R/W)

Allows software to WBNOINVD sections of the LLC.

Thread

63:0 HANDLE

Caches sub-block to invalidate.

Register Address: 9AH, 154 MSR_SEAM_INTR_PENDING

SEAM Interrupt Pending (R/O)

Report out some event pending bits.

Thread

0 INTR

Interrupt is pending.

1 NMI

NMI is pending.

Table 2-56.  Additional MSRs Supported by the Intel® Xeon® 6 P-Core Processors  (Contd.)
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2 SMI

SMI is pending.

4:3 OTHER_EVENTS

Other events pending.

63:5 Reserved.

Register Address: 9BH, 155 IA32_SMM_MONITOR_CTL

SMM Monitor Control (R/W)

The SMM Monitor Configuration involves SMM code specifying the MSEG location and enabling dual-monitor treatment 
by writing to the corresponding MSR. See Table 2-2.

Thread

Register Address: CFH, 207 IA32_CORE_CAPABILITIES

IA32 Core Capabilities Register (R/W)

If CPUID.(EAX=07H, ECX=0):EDX[30] = 1.

This MSR provides an architectural enumeration function for model-specific behavior. 

Core

0 STLB_QOS

When set to 1, processor supports STLB QoS.

1 Reserved.

2 INTEGRITY_SUPPORTED

When set to 1, processor supports Functional Safety. Specific 
FUSA capabilities are enumerated in MSR_FUSA_CAPABILITIES.

3 RSM_IN_CPL0_ONLY

Intel System Resources Defense: When set to 1, RSM will only be 
allowed in CPL0 and will #GP for all non-CPL0 privilege levels.

4 UC_LOCK_DISABLE

When set to 1, processor supports UC load lock disable.

5 SPLIT_LOCK_DISABLE

When set to 1, processor supports #AC on split locks.

6 SNP_FILTER_QOS

When set to 1, processor supports Snoop Filter Quality of Service 
MSRs.

7 UC_STORE_THROTTLING

When set to 1, processor supports UC store throttling through 
MSR_MEMORY_CTRL[UC_STORE_THROTTLE].

63:8 Reserved.

Register Address: E7H, 231 IA32_MPERF

Maximum Performance Frequency Clock Count (R/W) 

See Table 2-2.

Thread

Register Address: E8H, 232 IA32_APERF

Actual Performance Frequency Clock Count (R/W) 

See Table 2-2.

Thread

Register Address: FEH, 254 IA32_MTRRCAP

Table 2-56.  Additional MSRs Supported by the Intel® Xeon® 6 P-Core Processors  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
Vol. 4 2-459



MODEL-SPECIFIC REGISTERS (MSRS)
Memory Type Range Register (R/O) 

See Table 2-2.

Core

Register Address: 105H, 261 MSR_ARRAY_BIST

MSR_ARRAY_BIST (R/W)

Triggered by writing and reading an MSR that can be written by Ring 0 software. 

Core

31:0 ARRAY_LIST:

Bit map which indicates which arrays to run MarchC- BIST

• Bit[0] MLC Data
• Bit[1] MLC Tag
• Bit[2] C6SRAM Data (NOP for WRMSR – used for reporting 

error only)
• Bit[3] PMA BIST (NOP for WRMSR – used for reporting error 

only)
• Bit[4] STLB Data
• Bit[5] IFU Data
• Bit[6] STLB Tag
• Bit[7] DCU Data
• Bit[8] DSB Data
• Bit[9] TMUL Data
• Bit[10] UROM pointer0
• Bit[11] UROM pointer1-3
• Bit[12] UROM pointer4-7
• Bit[13] UROM unique0
• Bit[14] UROM unique1/2
The WRMSR will run PBIST on all the arrays indicated in the 
bitmap, starting from the LSB.

NOTE2: C6SRAM[Bit 2] and PMA[Bit 3] are only for reporting and 
do not execute BIST (done by EDX[15:0]uCode during Fusa-
Reset).

46:32 Reserved.

62:47 Reserved.

63 SIGNAL_MCE:

Signal MCERR upon BIST failure.

Register Address: 105H, 261 MSR_ARRAY_BIST_STATUS

MSR_ARRAY_BIST_STATUS (R/O) Core

31:0 ARRAY_COMPLETION _MASK

Bitmap indicating which arrays from the 
ARRAY_BIST.ARRAY_LIST was not processed. 

1 means not tested and 0 means tested.

62:32 Reserved. Returns all 0s.

63 PASS_FAIL:

0 means Pass on all arrays in the 
WRMSR(ARRAY_BIST.ARRAY_LIST)

1 means Fail on the LSB array in the 
RDMSR(ARRAY_BIST_STATUS.ARRAY_COMPLETION_MASK).

Register Address: 122H, 290 IA32_TSX_CTRL

Table 2-56.  Additional MSRs Supported by the Intel® Xeon® 6 P-Core Processors  (Contd.)
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IA32_TSX_CTRL (R/W)

See Table 2-2.

Thread

Register Address: 140H, 320 MSR_FEATURE_ENABLES

Miscellaneous enables for thread-specific features. (R/W) Thread

0 AESNI_LOCK

Once this bit is set, writes to this register will not be allowed.

63:1 Reserved.

Register Address: 1E0H, 480 IA32_LER_INFO

IA32_LER_INFO (R/W)

Last Event Record Destination IP Register. See Table 2-2.

Thread

Register Address: 1F9H, 505 IA32_CPU_DCA_CAP

IA32_CPU_DCA_CAP (R/O)

See Table 2-2.

Thread

Register Address: 2A1H, 673 MSR_PRMRR_BASE_1

MSR_PRMRR_BASE_1 (R/W)

Processor Reserved Memory Range Register - Physical Base Control Register.

Core

2:0 MEMTYPE

Memory Type for PRMRR accesses.

3 CONFIGURED

PRMRR base configured.

19:4 Reserved.

51:20 BASE

PRMRR Base address.

63:52 Reserved.

Register Address: 2A2H, 674 MSR_PRMRR_BASE_2

MSR_PRMRR_BASE_2 (R/W)

Processor Reserved Memory Range Register - Physical Base Control Register.

See MSR_PRMRR_BASE_1 (2A1H) for reference; similar format.

Core

Register Address: 2A3H, 675 MSR_PRMRR_BASE_3

MSR_PRMRR_BASE_3 (R/W)

Processor Reserved Memory Range Register - Physical Base Control Register.

See MSR_PRMRR_BASE_1 (2A1H) for reference; similar format.

Core

Register Address: 2A4H, 676 MSR_PRMRR_BASE_4

MSR_PRMRR_BASE_4 (R/W)

Processor Reserved Memory Range Register - Physical Base Control Register.

See MSR_PRMRR_BASE_1 (2A1H) for reference; similar format.

Core

Register Address: 2A5H, 677 MSR_PRMRR_BASE_5

Table 2-56.  Additional MSRs Supported by the Intel® Xeon® 6 P-Core Processors  (Contd.)
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MSR_PRMRR_BASE_5 (R/W)

Processor Reserved Memory Range Register - Physical Base Control Register.

See MSR_PRMRR_BASE_1 (2A1H) for reference; similar format.

Core

Register Address: 2A6H, 678 MSR_PRMRR_BASE_6

MSR_PRMRR_BASE_6 (R/W)

Processor Reserved Memory Range Register - Physical Base Control Register.

See MSR_PRMRR_BASE_1 (2A1H) for reference; similar format.

Core

Register Address: 2A7H, 679 MSR_PRMRR_BASE_7

MSR_PRMRR_BASE_7 (R/W)

Processor Reserved Memory Range Register - Physical Base Control Register.

See MSR_PRMRR_BASE_1 (2A1H) for reference; similar format.

Core

Register Address: 2B8H, 696 MSR_COPY_SBFT_HASHES

MSR_COPY_SBFT_HASHES (W/O) Module

63:0 SBFT_PROGRAM_SOURCE_ADDR

EDX:EAX contains the linear address base of the SBFT Binary 
loaded into memory.

Register Address: 2B9H, 697 MSR_SBFT_HASHES_STATUS

MSR_COPY_SBFT_HASHES (R/O) Core

15:0 CHUNK_SIZE

EAX[15:0] - Chunk size of the test in KB.

31:16 TOTAL_NUM_CHUNKS

EAX[31:16] - Total number of chunks.

39:32 ERROR_CODE - EDX[7:0]

The error code refers to the LP that runs WRMSR(2B8H).

• 0x0: Reserved.
• 0x1: Attempt to copy SBFT-hashes when copy already in 

progress.
• 0x2: Secure Memory not set up correctly.
• 0x3: Scan-Image Header Image_info.ProgramID does not match 

MSR_INTEGRITY_CAPABILITIES[31:24], or scan-image header 
Processor-Signature doesn't match F/M/S, or scan-image 
header Processor-Flags doesn't match PlatformID.

• 0x4: Reserved.
• 0x5: Integrity check failed.
• 0x6: WRMSR(0x2B8) (ACTIVATE_SBAF) Reinstall of SBFT test 

image attempted when current SBFT test image is in use by 
other LPs.

• 0x7: Aborted due to #PF (Page Fault).
• 0x8: Unable to generate a Random Value.

48:40 NUM_CHUNKS_IN_STRIDE

EDX[16:8] - Number of Chunks in stride. This is the number of 
chunks that are installed. 0 in this field means that the CPU does 
not support strides, otherwise, stride value must be >=1.

50:49 Reserved.

EDX[18:17] - Set to all zeros.

Table 2-56.  Additional MSRs Supported by the Intel® Xeon® 6 P-Core Processors  (Contd.)
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62:51 MAX_CORE_LIMIT
EDX[30:19] - Maximum Number of Cores that can run 
SBFTAFSBAF simultaneously -1.

0 means 1 core at a time.

63 Valid.

EDX[31] - Valid bit is set when COPY_SBFT_HASHES completed 
successfully.

Register Address: 2BAH, 698 MSR_AUTHENTICATE_AND_COPY_SBFT_CHUNK

MSR_AUTHENTICATE_AND_COPY_SBFT_CHUNK (W/O) Core

63:0 BASE_CHUNK_TABLE_ADDR 

EDX:EAX[63:0] - Linear Address pointing to the CHUNK TABLE 
(TABLE_BASE).

Register Address: 2BBH, 699 MSR_SBFT_CHUNKS_AUTHENTICATION_STATUS

MSR_SBFT_CHUNKS_AUTHENTICATION_STATUS (R/O) Core

15:0 NUM_VALID_CHUNKS

EAX[15:0] - Total number of Valid (authenticated) chunks.

31:16 NUM_CHUNKS_IN_STRIDE

EAX[31:16] - Number of Chunks in Stride.

39:32 ERROR_CODE
EDX[7:0]

• 0x0 - No error reported.
• 0x1 - Attempt to authenticate a CHUNK already marked as 

authentic or is currently being installed by another core.
• 0x2 - CHUNK authentication error. HASH of chunk did not 

match expected value.
• 0x3 - Aborted due to #PF.
• 0x4 - Chunk Outside the current Stride.
• 0x5 - Interrupted.

47:40 Reserved.

EDX[15:8] - Set to all zeros.

63:48 CURRENT_MAX_BUNDLE_INDX

EDX[31:16] - Maximum Bundle Index in current stride.

Register Address: 2BCH, 700 MSR_ACTIVATE_SBFT

MSR_ACTIVATE_SBFT (W/O) Core

13:0 SBFT_BUNDLE_INDEX

EAX[13:0] - Indicates SBFT Bundle Index to start from.

15:14 SBFT_PRGM_INDEX

EAX[15:14] - Indicates what SBFT Program index to run.

31:16 Reserved. Set to all zeros.

62:32 THREAD_WAIT_DELAY

EDX[30:0] - TSC-based delay to allow threads to rendezvous.

63 Reserved.

EDX[31] - Must be set to 0. #GP fault otherwise.
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Register Address: 2BDH, 701 MSR_SBFT_STATUS

MSR_SBFT_STATUS (R/O) Core

13:0 SBFT_BUNDLE_INDEX

EAX[13:0] - SBFT Bundle that was executed.

15:14 SBFT_PGM_INDEX

EAX[15:14] - Indicates what SBFT Program index that was last 
ran. Maps to same field in WRMSR(ACTIVATE_SBFT).

On a test pass this field will be 2'b00.

31:16 Reserved.

EAX[31:16] - Return all zeros.

39:32 ERROR_CODE

EDX[7:0]

• 0x0 - No Error.
• 0x1 - SBFT operation did not start. Other thread could not join.
• 0x2 - SBFT operation did not start. Interrupt occurred prior to 

SBFT coordination.
• 0x3 - Reserved.
• 0x4 - SBFT operation did not start. Non-valid SBFT BUNDLES in 

the SBFT_BUNDLE_INDEX.
• 0x5 - SBFT operation did not start. Mismatch in arguments 

between threads T0/T1.
• 0x6 - SBFT operation did not start. Core is not capable of 

performing SBFT currently.
• 0x7 - Reserved.
• 0x8 - SBFT operation did not start. Exceeded number of Logical 

Processors (LP) allowed to run SBFT-At-Field concurrently.
• 0x9 - SBFT operation did not start. Interrupt occurred or timer 

about to expire.
• 0xA - SBFT operation did not start. SBFT_PGM_INDEX is not 

valid.
• 0xB - SBFT operation aborted due to corrupted chunk.
• 0xC - SBFT operation did not start. TAP Data error.
• 0xD - SBFT operation did not start. SBFT program is not valid.
All other error codes are reserved.

60:40 Reserved.

EDX[28:8] - Return all zeros.

61 TEST_FAIL

EDX[29:29] - Architectural Signature failed. Last thread executed 
HLT and completed SBFT and EBX != 0xACED.

63:62 SBFT_STATUS

EDX[31:30] - SBFT status (result of running SBAF).

• 00 - PASS.
• 10 - INTERRUPTED.
• 01 - FAILED SIGNATURE CHECK.
• 11 - FAILED.

Register Address: 2BEH, 702 MSR_SBFT_MODULE_ID

MSR_SBFT_MODULE_ID (R/O) Module
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31:0 SBFT-AT-FIELD_REVID

EAX[31:0] - Maps to Revision field in external header (offset 4).

40:32 CURRENT_STRIDE_INDEX

EDX[8:0] - Stride Index.

63:41 Reserved.

EDX[31:9] - Return all zeros.

Register Address: 2BFH, 703 MSR_SBFTAF_LAST_WP

MSR_SBFTAF_LAST_WP (R/O) Module

31:0 LAST_WP

EAX[31:0] - Provides information about the core when the last 
WRMSR(ACTIVATE_SBFT) was executed. Available only if 
enumerated in INTEGRITY_CAPABILITIES[10:9].

39:32 Reserved.

63:40 Reserved.

EDX[31:8] - Return all zeros.

Register Address: 2C2H, 706 MSR_COPY_SCAN_HASHES

MSR_COPY_SCAN_HASHES (W/O) Module

63:0 SCAN_HASH-ADDR

EDX:EAX contains the linear address of the SCAN Test HASH 
Binary loaded into memory 

Register Address: 2C3H, 707 MSR_SCAN_HASHES_STATUS

MSR_SCAN_HASHES_STATUS (R/O) Core

15:0 CHUNK_SIZE

EAX[15:0] - Chunk size of the test in KB.

31:16 TOTAL_NUM_CHUNKS

EAX[31:16] - Total number of chunks.

39:32 ERROR_CODE

EDX[7:0] - The error code refers to the LP that runs 
WRMSR(2C2H).

• 0x0 - Reserved.
• 0x1 - Attempt to copy scan-hashes when copy already in 

progress.
• 0x2 - Secure Memory not set up correctly.
• 0x3 - Scan-Image Header Image_info.ProgramID does not 

match MSR_INTEGRITY_CAPABILITIES[31:24], or scan-image 
header Processor-Signature doesn't match F/M/S, or scan-
image header Processor-Flags doesn't match PlatformID.

• 0x4 - Reserved.
• 0x5 - Integrity check failed.
• 0x6 - WRMSR(0x2C6) Re-install of scan test image attempted 

when current scan test image is in use by other LPs.
• 0x7 - Aborted due to #PF (Page Fault).
• 0x8 - Unable to generate a Random Value.
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48:40 NUM_CHUNKS_IN_STRIDE

EDX[16:8] - Number of Chunks in stride. This is the number of 
chunks that are installed. 0 in this field means that the CPU does 
not support strides, otherwise, the stride value must be >=1.

50:49 Reserved.

EDX[18:17] - Set to all zeros.

62:51 NAME

EDX[30:19] - Maximum Number of cores that can run Intel® In-
field Scan simultaneously minus 1.

0 means 1 core at a time.

63 VALID

EDX[31] - Valid bit is set when COPY_SCAN_HASHES completed.

Register Address: 2C4H, 708 MSR_AUTHENTICATE_AND_COPY_CHUNK

MSR_AUTHENTICATE_AND_COPY_CHUNK (R/O) Core

63:0 BASE_CHUNK_TABLE_ADDR

EDX:EAX[63:0] - Linear Address pointing to the CHUNK TABLE 
(TABLE_BASE).

Register Address: 2C5H, 709 MSR_CHUNKS_AUTHENTICATION_STATUS

MSR_CHUNKS_AUTHENTICATION_STATUS (R/O) Core

15:0 VALID_CHUNKS

EAX[15:0] - Total number of Valid (authenticated) chunks.

31:16 NUM_CHUNKS_IN_STRIDE

EAX[31:16] - Number of Chunks in Stride.

39:32 ERROR_CODE

EDX[7:0]

• 0x0 - No-error reported.
• 0x1 - Attempt to authenticate a CHUNK which is already. 

marked as authentic or is currently being installed by another 
core.

• 0x2 - CHUNK authentication error. HASH of chunk did not 
match expected value.

• 0x3 - Aborted due to #PF (Page Fault).
• 0x4 - Chunk Outside the current Stride.

63:40 Reserved.

EDX[31:8] - Set to all zeros.

Register Address: 2C6H, 710 MSR_ACTIVATE_SCAN

MSR_ACTIVATE_SCAN (W/O) Core

15:0 CHUNK_START_INDEX

EAX[15:0] - Indicates Chunk Index from which to start.

31:16 CHUNK_STOP_INDEX

EAX[31:16] - Indicates what chunk index to stop at (inclusive).

62:32 THREAD_WAIT_DELAY

EDX[30:0] - TSC based delay to allow threads to rendezvous.
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63 SIGNAL_MCE

EDX[31]

• If 1: On scan-error log MC in MC4_STATUS and signal MCE if 
machine check signaling enabled in MC4_CTL[0]. 

• If 0: Don't no-logging/no-signaling.

Register Address: 2C7H, 711 MSR_SCAN_STATUS

MSR_SCAN_STATUS (R/O) Core

15:0 CHUNK_NUM

EAX[15:0] - SCAN Chunk that was reached.

31:16 CHUNK_STOP_INDEX

EAX[31:16]

• Indicates what chunk index to stop at (inclusive).
• Maps to same field in WRMSR(ACTIVATE_SCAN).

39:32 ERROR_CODE

EDX[7:0]

• 0x0 - No Error.
• 0x1 - SCAN operation did not start. Other thread could not join.
• 0x2 - SCAN operation did not start. Interrupt occurred prior to 

SCAN coordination.
• 0x3 - SCAN operation did not start. Power Management 

conditions are inadequate to run SAF.
• 0x4 - SCAN operation did not start. Non valid chunks in the 

range CHUNK_STOP_INDEX : CHUNK_START_INDEX.
• 0x5 - SCAN operation did not start. Mismatch in arguments 

between threads T0/T1.
• 0x6 - SCAN operation did not start. Core not capable of 

performing SCAN currently.
• 0x7 - Debug Mode. Scan-At-Field results not to be trusted.
• 0x8 - SCAN operation did not start. Exceeded number of 

Logical Processors (LP) allowed to run Scan-At-Field 
concurrently. MAX_CORE_LIMIT exceeded.

• 0x9 - Interrupt occurred. Scan operation aborted prematurely, 
not all chunks requested have been executed.

• 0xB - Scan operation aborted due to corrupted chunk.
• 0xC - Scan operation did not start.
All other error codes are reserved.

61:40 Reserved.

EDX[29:8] - Return all zeros.

62 SCAN_CONTROL_ERROR

EDX[30]

• SCAN error in the Scan-At-Field controller. 
• Non ECC error.

63 SCAN_SIGNATURE_ERROR

EDX[31]

• SCAN SIGNATURE error in the SCAN pattern fetched from main 
memory. 

• Non ECC error.

Register Address: 2C8H, 712 MSR_SCAN_MODULE_ID
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MSR_SCAN_MODULE_ID (R/O) Module

31:0 SCAN-AT-FIELD_REVID

EAX[31:0] - Maps to Revision field in external header (offset 4).

40:32 CURRENT_STRIDE_INDEX

EDX[8:0] - Stride Index.

63:41 Reserved.

EDX[31:9] - Return all zeros.

Register Address: 2C9H, 713 MSR_LAST_SAF_WP

MSR_LAST_SAF_WP (R/O) Module

31:0 LAST_WP

EAX[31:0]

• Provides information about the core when the last 
WRMSR(ACTIVATE_SCAN) was executed. 

• Available only if enumerated in 
INTEGRITY_CAPABILITIES[10:9].

39:32 Reserved.

EDX[7:0]

63:40 Reserved.

EDX[31:8] - Return all zeros.

Register Address: 2D9H, 729 MSR_INTEGRITY_CAPABILITIES

MSR_INTEGRITY_CAPABILITIES (R/O)

Enumerates features supported in Functional Safety.

Thread

0 STARTUP_SCAN_BIST

When set to 1, processor supports Startup SCAN BIST.

1 STARTUP_MEM_BIST

When set to 1, processor supports Startup MEM BIST.

2 PERIODIC_MEM_BIST

When set to 1, processor supports Periodic MEM BIST.

3 LOCKSTEP

When set to 1, processor supports Lock Step Mode.

4 PERIODIC_SCAN_BIST

When set to 1, processor supports Periodic SCAN BIST.

5 PLL_LOSS_DETECT

When set to 1, processor supports PLL LOSS detection.

6 PWR_LOSS_DETECT

When set to 1, processor supports Power Loss detection.

7 PERRINJ

When set to 1, processor supports FUSA PERRINJ.

8 SBFT_AT_FIELD

When set to 1, processor supports SBFT-At-Field.
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10:9 SAF_GEN_REV

00 = REV1; 01 = REV2; 10 = REV3; 11 = REV4.

14:11 Reserved.

15 PRESERVE_MEMORY_NEEDED

When set to 1, processor supports FUSARR_BASE/MASK MSRs.

20:16 TID_BIT_SHIFT

Number of bits to shift right on x2APICID to get a unique topology 
ID of all logical processors that share a scan test engine.

21 ALL_LP_JOIN_NEEDED

All logical processors that share scan test engine need to be 
tested together and must join using MSR_ACTIVATE_SCAN.

23:22 Reserved.

31:24 PATTERN_ID

Processor scan pattern ID. ID of the startup and periodic scan 
programs supported for this part.

63:32 Reserved.

Register Address: 30CH, 780 IA32_FIXED_CTR3

Fixed-Function Performance Counter 3 (R/W)

See Table 2-2.

Thread

Register Address: 4D0H, 1232 IA32_MCG_EXT_CTL

IA32_MCG_EXT_CTL (R/W)

See Table 2-2.

Thread

Register Address: 4F0H, 1264 MSR_SAF_CTRL

MSR_SAF_CTRL (W/O) Core

0 INVALIDATE_CURRENT_STRIDE

EAX[0]

• Write of 1 invalidates the currently installed stride.
• Clears only the VALID_CHUNKS field on a 

RDMSR(CHUNKS_AUTHENTICATION_STATUS).

63:1 Reserved.

Register Address: 4F8H, 1272 MSR_SBFT_CTRL

MSR_SBFT_CTRL (W/O) Module

0 INVALIDATE_CURRENT_STRIDE

EAX[0] - Write of 1 invalidates the currently installed stride.

63:1 Reserved.

EDX[31:0],EAX[31:1]

Register Address: 540H, 1344 MSR_THREAD_UARCH_CTL

Thread Microarchitectural Control (R/W) Thread

Table 2-56.  Additional MSRs Supported by the Intel® Xeon® 6 P-Core Processors  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
Vol. 4 2-469



MODEL-SPECIFIC REGISTERS (MSRS)
0 WB_MEM_STRM_LD_DISABLE 

Disable streaming behavior for MOVNTDQA loads to WB memory 
type. If set, these accesses will be treated like regular cacheable 
loads (Data will be cached).

63:1 Reserved.

Register Address: 541H, 1345 MSR_CORE_UARCH_CTL

Core Microarchitecture Control MSR (R/W) Core

0 SCRUB_DIS

L1 scrubbing disable.

63:1 Reserved.

Register Address: 664H, 1636 MSR_MC6_RESIDENCY

MSR_MC6_RESIDENCY (R/O)

Time spent in the Module C6-State. Provided in units compatible to P1 clock frequency (Guaranteed / Maximum Core 
Non-Turbo Frequency).

Module

63:0 RESIDENCY

Time that this module is in module-specific C6 states since last 
reset.

Register Address: 6E1H, 1761 IA32_PKRS

IA32_PKRS (R/W)

Specifies the PK permissions associated with each protection domain for supervisor pages. See Table 2-2.

Thread

Register Address: 7A3H, 1955 IA32_MCU_EXT_SERVICE

MCU Extended Service MSR (R/O)

If IA32_ARCH_CAPABILITIES[22] = 1. See Table 2-2.

Module

Register Address: 7A4H, 1956 IA32_MCU_ROLLBACK_MIN_ID

Minimal MCU Revision ID for Rollback (R/O)

See Table 2-2.

Module

Register Address: 7B0H, 1968 IA32_ROLLBACK_SIGN_ID_0

Rollback ID 0 (R/O)

See Table 2-2.

Module

Register Address: 7B1H, 1969 IA32_ROLLBACK_SIGN_ID_1

Rollback ID 1 (R/O)

See Table 2-2.

Module

Register Address: 7B2H, 1970 IA32_ROLLBACK_SIGN_ID_2

Rollback ID 2 (R/O)

See Table 2-2.

Module

Register Address: 7B3H, 1971 IA32_ROLLBACK_SIGN_ID_3

Rollback ID 3 (R/O)

See Table 2-2.

Module

Register Address: 7B4H, 1972 IA32_ROLLBACK_SIGN_ID_4
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Rollback ID 4 (R/O)

See Table 2-2.

Module

Register Address: 7B5H, 1973 IA32_ROLLBACK_SIGN_ID_5

Rollback ID 5 (R/O)

See Table 2-2.

Module

Register Address: 7B6H, 1974 IA32_ROLLBACK_SIGN_ID_6

Rollback ID 6 (R/O)

See Table 2-2.

Module

Register Address: 7B7H, 1975 IA32_ROLLBACK_SIGN_ID_7

Rollback ID 7 (R/O)

See Table 2-2.

Module

Register Address: 7B8H, 1976 IA32_ROLLBACK_SIGN_ID_8

Rollback ID 8 (R/O)

See Table 2-2.

Module

Register Address: 7B9H, 1977 IA32_ROLLBACK_SIGN_ID_9

Rollback ID 9 (R/O)

See Table 2-2.

Module

Register Address: 7BAH, 1978 IA32_ROLLBACK_SIGN_ID_10

Rollback ID 10 (R/O)

See Table 2-2.

Module

Register Address: 7BBH, 1979 IA32_ROLLBACK_SIGN_ID_11

Rollback ID 11 (R/O)

See Table 2-2.

Module

Register Address: 7BCH, 1980 IA32_ROLLBACK_SIGN_ID_12

Rollback ID 12 (R/O)

See Table 2-2.

Module

Register Address: 7BDH, 1981 IA32_ROLLBACK_SIGN_ID_13

Rollback ID 13 (R/O)

See Table 2-2.

Module

Register Address: 7BEH, 1982 IA32_ROLLBACK_SIGN_ID_14

Rollback ID 14 (R/O)

See Table 2-2.

Module

Register Address: 7BFH, 1983 IA32_ROLLBACK_SIGN_ID_15

Rollback ID 15 (R/O)

See Table 2-2.

Module

Register Address: 981H, 2433 IA32_TME_CAPABILITY

IA32_TME_CAPABILITY (R/O)

See Table 2-2.

Package

Register Address: 982H, 2434 IA32_TME_ACTIVATE
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IA32_TME_ACTIVATE (R/W)

See Table 2-2.

Package

Register Address: 983H, 2435 IA32_TME_EXCLUDE_MASK

Intel TME Exclude Mask (R/W)

See Table 2-2.

Package

Register Address: 984H, 2436 IA32_TME_EXCLUDE_BASE

Intel TME Exclude Base (R/W)

See Table 2-2.

Package

Register Address: 985H, 2437 IA32_UINTR_RR

User Interrupt Request Register (R/W)

See Table 2-2.

Thread

Register Address: 986H, 2438 IA32_UINTR_HANDLER

User Interrupt Handler Address (R/W)

See Table 2-2.

Thread

Register Address: 987H, 2439 IA32_UINTR_STACKADJUST

User Interrupt Stack Adjustment (R/W)

See Table 2-2.

Thread

Register Address: 988H, 2440 IA32_UINTR_NV

User-Interrupt Size and Notification Vector (R/W)

See Table 2-2.

Thread

Register Address: 989H, 2441 IA32_UINTR_PD

User Interrupt PID Address (R/W)

See Table 2-2.

Thread

Register Address: 98AH, 2442 IA32_UINTR_TT

User-Interrupt Target Table (R/W)

See Table 2-2.

Thread

Register Address: 990H, 2448 IA32_COPY_STATUS

IA32_COPY_STATUS (R/O)

See Table 2-2.

Thread

Register Address: 991H, 2449 IA32_IWKEYBACKUP_STATUS

IA32_IWKEYBACKUP_STATUS (R/O)

See Table 2-2.

Package

Register Address: 9FBH, 2555 IA32_TME_CLEAR_SAVED_KEY

IA32_TME_CLEAR_SAVED_KEY (R/W) 

See Table 2-2.

Package

Register Address: 9FFH, 2559 MSR_CORE_MKTME_ACTIVATE

MSR to read TME_ACTIVATE[MK_TME_KEYID_BITS] (R/O) Core

31:0 Reserved.
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35:32 READ_MK_TME_KEYID_BITS

This value will be returned on a RDMSR, but must be zero on a 
WRMSR.

63:36 Reserved.

Register Address: C84H, 3204 MSR_MBA_CFG

Memory Bandwidth Allocation (MBA) Configuration (R/W) Package

1:0 Reserved.

2 RAMBAE

Resource Aware MBA Enable.

63:3 Reserved.

Register Address: CA0H, 3232 MSR_RMID_SNC_CONFIG

RMID_SNC_CONFIG (R/W) Package

0 RMID_LOCALIZED_DISTRIBUTION_MODE_ENABLE

If set, Localized RMID distribution mode is enabled. If Clear, RMID 
Sharing mode is enabled.

63:1 Reserved.

Register Address: D50H, 3408 IA32_L2_QOS_EXT_BW_THRTL_0

Memory Bandwidth Enforcement for COS0 (R/W)

See Table 2-2.

Package

Register Address: D51H, 3409 IA32_L2_QOS_EXT_BW_THRTL_1

Memory Bandwidth Enforcement for COS1 (R/W)

See Table 2-2.

Package

Register Address: D52H, 3410 IA32_L2_QOS_EXT_BW_THRTL_2

Memory Bandwidth Enforcement for COS2 (R/W)

See Table 2-2.

Package

Register Address: D53H, 3411 IA32_L2_QOS_EXT_BW_THRTL_3

Memory Bandwidth Enforcement for COS3 (R/W)

See Table 2-2.

Package

Register Address: D54H, 3412 IA32_L2_QOS_EXT_BW_THRTL_4

Memory Bandwidth Enforcement for COS4 (R/W)

See Table 2-2.

Package

Register Address: D55H, 3413 IA32_L2_QOS_EXT_BW_THRTL_5

Memory Bandwidth Enforcement for COS5 (R/W)

See Table 2-2.

Package

Register Address: D56H, 3414 IA32_L2_QOS_EXT_BW_THRTL_6

Memory Bandwidth Enforcement for COS6 (R/W)

See Table 2-2.

Package

Register Address: D57H, 3415 IA32_L2_QOS_EXT_BW_THRTL_7
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Memory Bandwidth Enforcement for COS7 (R/W)

See Table 2-2.

Package

Register Address: D58H, 3416 IA32_L2_QOS_EXT_BW_THRTL_8

Memory Bandwidth Enforcement for COS8 (R/W)

See Table 2-2.

Package

Register Address: D59H, 3417 IA32_L2_QOS_EXT_BW_THRTL_9

Memory Bandwidth Enforcement for COS9 (R/W)

See Table 2-2.

Package

Register Address: D5AH, 3418 IA32_L2_QOS_EXT_BW_THRTL_10

Memory Bandwidth Enforcement for COS10 (R/W)

See Table 2-2.

Package

Register Address: D5BH, 3419 IA32_L2_QOS_EXT_BW_THRTL_11

Memory Bandwidth Enforcement for COS11 (R/W)

See Table 2-2.

Package

Register Address: D5CH, 3420 IA32_L2_QOS_EXT_BW_THRTL_12

Memory Bandwidth Enforcement for COS12 (R/W)

See Table 2-2.

Package

Register Address: D5DH, 3421 IA32_L2_QOS_EXT_BW_THRTL_13

Memory Bandwidth Enforcement for COS13 (R/W)

See Table 2-2.

Package

Register Address: D5EH, 3422 IA32_L2_QOS_EXT_BW_THRTL_14

Memory Bandwidth Enforcement for COS14 (R/W)

See Table 2-2.

Package

Register Address: D91H, 3473 IA32_COPY_LOCAL_TO_PLATFORM

See Table 2-2. Thread

Register Address: D92H, 3474 IA32_COPY_PLATFORM_TO_LOCAL

See Table 2-2. Thread

Register Address: D93H, 3475 IA32_PASID

See Table 2-2. Thread

Register Address: 1400H, 5120 IA32_SEAMRR_BASE

SEAM Memory Range Register for TDx - Base Address (R/W)

See Table 2-2.

Core

Register Address: 1401H, 5121 IA32_SEAMRR_MASK

SEAM Memory Range Register for TDX (R/W)

See Table 2-2.

Core

Register Address: 1A8FH, 6799 MSR_STLB_QOS_INFO

STLB_QOS_INFO (R/O)

STLB QoS MASK configuration.

Core
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2.17.11  MSRs Introduced in the Intel® Xeon® 6 E-Core Processors
Table 2-57 lists additional MSRs for the Intel Xeon 6 E-core processors. Intel Xeon 6 E-core processors have a 
CPUID Signature DisplayFamily_DisplayModel value of 06_AFH. 

For an MSR listed in Table 2-57 that also appears in the model-specific tables of prior generations, Table 2-57 
supersedes prior generation tables.

5:0 NCLOS

Number of CLOS supported for STLB resource using minus-1 
notation.

15:6 Reserved.

19:16 4K_2M_CBM

Length of capacity bitmask for 4K and 2M pages using minus-1 
notation.

28:20 Reserved.

29 STLB_FILL_TRANSLATION_MSR_SUPPORTED

MSR interface to fill STLB translations supported.

30 4K_2M_ALIAS

Indicates that 4K/2M pages alias into the same structure.

63:31 Reserved.

Register Address: 1B01H, 6913 IA32_UARCH_MISC_CTL

IA32_UARCH_MISC_CTL (R/W)

See Table 2-2.

Thread
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Register Address: 2FH, 47 IA32_BARRIER

BARRIER (R/O)

The IA32_BARRIER MSR ensures ordered execution by acting like LFENCE, controlling the sequencing of subsequent 
MSR reads after prior MSR reads and instructions.

See Table 2-2.

Core

Register Address: 33H, 51 MSR_MEMORY_CONTROL

Memory Control (R/W)

Disables split locks, which are locked instructions that split a cache line. 

Core

26:0 Reserved.

27 UC_STORE_THROTTLE

If set to 1, when enabled, the processor allows one in-progress, 
post-retirement UC stores at a time.

28 UC_LOCK_DISABLE

If set to 1, a UC load lock will trigger a fault. If clear to 0, UC load 
locks proceed normally. 
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29 SPLIT_LOCK_DISABLE

If set to 1, a split lock will trigger an #AC fault. If clear to 0, split 
locks proceed normally.

63:30 Reserved.

Register Address: 34H, 52 MSR_SMI_COUNT

SMI Counter (R/W) Thread

31:0 SMI_COUNT

Running count of SMI events since the last reset.

63:32 Reserved.

Register Address: 39H, 57 MSR_SOCKET_ID

Socket ID (R/W)

Reassigns the package-specific portions of the APIC ID. This MSR is used on scalable DP and high-end MP platforms to 
resolve legacy-mode APIC ID conflicts.

Package

10:0 PACKAGE_ID

Holds package ID. This reflects the upper bits of the APIC ID.

63:11 Reserved.

Register Address: 7BH, 123 IA32_MCU_ENUMERATION

Enumeration of Architectural Features (R/O)

See Table 2-2.

Package

Register Address: 7CH, 124 IA32_MCU_STATUS

MCU Status (R/O)

Communicates results from the previous patch loads. See Table 2-2.

Package

Register Address: 87H, 135 IA32_MKTME_KEYID_PARTITIONING

MKTME KEY ID Partitioning (R/O)

Enumerates the number of activated KeyIDs for Intel TME-MK and Intel TDX. See Table 2-2.

Package

Register Address: 98H, 152 MSR_SEAM_WBINVDP

SEAM WBINVDP (R/W)

Allows software to WBINVD sections of the LLC.

Thread

63:0 HANDLE

Caches sub-block to invalidate.

Register Address: 99H, 153 MSR_SEAM_WBNOINVDP

SEAM WBNOINVDP (R/W)

Allows software to WBNOINVD sections of the LLC.

Thread

63:0 HANDLE

Caches sub-block to invalidate.

Register Address: 9AH, 154 MSR_SEAM_INTR_PENDING

SEAM Interrupt Pending (R/O)

Report out some event pending bits.

Thread

0 INTR

Interrupt is pending.
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1 NMI

NMI is pending.

2 SMI

SMI is pending.

4:3 OTHER_EVENTS

Other events pending.

63:5 Reserved.

Register Address: 9BH, 155 IA32_SMM_MONITOR_CTL

SMM Monitor Control (R/W)

The SMM Monitor Configuration involves SMM code specifying the MSEG location and enabling dual-monitor treatment 
by writing to the corresponding MSR. See Table 2-2.

Thread

Register Address: CEH, 206 MSR_PLATFORM_INFO

Platform Information (R/O)

Contains power management and other model specific features enumeration. See http://biosbits.org.

Package

15:8 MAX_NON_TURBO_LIM_RATIO

This is the ratio of the frequency that invariant TSC runs at. 
Frequency = ratio * 100 MHz.

25:16 Reserved.

26 DCU_16K_MODE_AVAIL

0b: Indicates that the part does not support the 16K DCU mode.

1b: Indicates that the part supports 16K DCU mode.

27 Reserved.

28 PRG_TURBO_RATIO_EN

Programmable Turbo Ratios per number of Active Cores.

0 = Programming Not Allowed.

1 = Programming Allowed.

34:29 Reserved.

35 BIOS_GUARD_ENABLE

Indicates whether the BIOS Guard feature is enabled in the CPU.

36 PEG2DMIDIS_EN

0 = PEG2DMIDIS is disabled.

1 = PEG2DMIDIS is enabled.

39:37 Reserved.

47:40 MAX_EFFICIENCY_RATIO

Maximum Efficiency Ratio. This is given in units of 100 MHz.

58:48 Reserved.

59 SMM_SUPOVR_STATE_LOCK_ENABLE

When set, indicates that the CPU supports MSR 
SMM_SUPOVR_STATE_LOCK and the Hardware Shield feature.

63:60 Reserved.
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Register Address: CFH, 207 IA32_CORE_CAPABILITIES

IA32 Core Capabilities Register (R/W)

If CPUID.(EAX=07H, ECX=0):EDX[30] = 1.

This MSR provides an architectural enumeration function for model-specific behavior. 

Core

0 STLB_QOS

When set to 1, processor supports STLB QoS.

1 Reserved.

2 INTEGRITY_SUPPORTED

When set to 1, processor supports Functional Safety. Specific 
FUSA capabilities are enumerated in MSR_FUSA_CAPABILITIES.

3 RSM_IN_CPL0_ONLY

Intel System Resources Defense: When set to 1, RSM will only be 
allowed in CPL0 and will #GP for all non-CPL0 privilege levels.

4 UC_LOCK_DISABLE

When set to 1, processor supports UC load lock disable.

5 SPLIT_LOCK_DISABLE

When set to 1, processor supports #AC on split locks.

6 SNP_FILTER_QOS

When set to 1, processor supports Snoop Filter Quality of Service 
MSRs.

7 UC_STORE_THROTTLING

When set to 1, processor supports UC store throttling through 
MSR_MEMORY_CTRL[UC_STORE_THROTTLE].

63:8 Reserved.

Register Address: E7H, 231 IA32_MPERF

Maximum Performance Frequency Clock Count (R/W) 

See Table 2-2.

Thread

Register Address: E8H, 232 IA32_APERF

Actual Performance Frequency Clock Count (R/W) 

See Table 2-2.

Thread

Register Address: FEH, 254 IA32_MTRRCAP

Memory Type Range Register (R/O) 

See Table 2-2.

Core

Register Address: 140H, 320 MSR_FEATURE_ENABLES

Miscellaneous Enables for Thread-Specific Features (R/W) Thread

0 AESNI_LOCK

Once this bit is set, writes to this register will not be allowed.

63:1 Reserved.

Register Address: 1B0H, 432 IA32_ENERGY_PERF_BIAS
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IA32_ENERGY_PERF_BIAS (R/W)

See Table 2-2.

Thread

Register Address: 1B1H, 433 IA32_PACKAGE_THERM_STATUS

IA32_PACKAGE_THERM_STATUS

See Table 2-2.

Package

Register Address: 1B2H, 434 IA32_PACKAGE_THERM_INTERRUPT

IA32_PACKAGE_THERM_INTERRUPT (R/W)

See Table 2-2.

Package

Register Address: 2A1H, 673 MSR_PRMRR_BASE_1

Processor Reserved Memory Range Register - Physical Base Control Register (R/W) Core

2:0 MEMTYPE

Memory Type for PRMRR accesses.

3 CONFIGURED

PRMRR base configured.

11:4 Reserved.

51:12 BASE

PRMRR Base address.

63:52 Reserved.

Register Address: 2A2H, 674 MSR_PRMRR_BASE_2

Processor Reserved Memory Range Register - Physical Base Control Register (R/W) Core

2:0 MEMTYPE

Memory Type for PRMRR accesses.

3 CONFIGURED

PRMRR base configured.

11:4 Reserved.

51:12 BASE

PRMRR Base address.

63:52 Reserved.

Register Address: 2A3H, 675 MSR_PRMRR_BASE_3

Processor Reserved Memory Range Register - Physical Base Control Register (R/W) Core

2:0 MEMTYPE

Memory Type for PRMRR accesses.

3 CONFIGURED

PRMRR base configured.

11:4 Reserved.

51:12 BASE

PRMRR Base address.

63:52 Reserved.

Register Address: 2C2H, 706 MSR_COPY_SCAN_HASHES
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MSR_COPY_SCAN_HASHES (W/O) Module

63:0 SCAN_HASH-ADDR

EDX:EAX contains the linear address of the SCAN Test HASH 
Binary loaded into memory 

Register Address: 2C3H, 707 MSR_SCAN_HASHES_STATUS

MSR_SCAN_HASHES_STATUS (R/O) Core

15:0 CHUNK_SIZE

EAX[15:0] - Chunk size of the test in KB.

31:16 TOTAL_NUM_CHUNKS

EAX[31:16] - Total number of chunks.

39:32 ERROR_CODE

EDX[7:0] - The error code refers to the LP that runs 
WRMSR(2C2H).

• 0x0 - Reserved.
• 0x1 - Attempt to copy scan-hashes when copy already in 

progress.
• 0x2 - Secure Memory not set up correctly.
• 0x3 - Scan-Image Header Image_info.ProgramID does not 

match MSR_INTEGRITY_CAPABILITIES[31:24], or scan-image 
header Processor-Signature doesn't match F/M/S, or scan-
image header Processor-Flags doesn't match PlatformID.

• 0x4 - Reserved.
• 0x5 - Integrity check failed.
• 0x6 - WRMSR(0x2C6) Re-install of scan test image attempted 

when current scan test image is in use by other LPs.
• 0x7 - Aborted due to #PF (Page Fault).
• 0x8 - Unable to generate a Random Value.

48:40 NUM_CHUNKS_IN_STRIDE

EDX[16:8] - Number of Chunks in stride. This is the number of 
chunks that are installed. 0 in this field means that the CPU does 
not support strides, otherwise, the stride value must be >=1

50:49 Reserved.

EDX[18:17] - Set to all zeros.

62:51 NAME

EDX[30:19] - Maximum Number of cores that can run Intel® In-
field Scan simultaneously minus 1.

0 means 1 core at a time.

63 VALID

EDX[31] - Valid bit is set when COPY_SCAN_HASHES completed.

Register Address: 2C4H, 708 MSR_AUTHENTICATE_AND_COPY_CHUNK

MSR_AUTHENTICATE_AND_COPY_CHUNK(R/O) Core

63:0 BASE_CHUNK_TABLE_ADDR

EDX:EAX[63:0] - Linear Address pointing to the CHUNK TABLE 
(TABLE_BASE).

Register Address: 2C5H, 709 MSR_CHUNKS_AUTHENTICATION_STATUS
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MSR_CHUNKS_AUTHENTICATION_STATUS (R/O) Core

15:0 VALID_CHUNKS

EAX[15:0] - Total number of Valid (authenticated) chunks.

31:16 NUM_CHUNKS_IN_STRIDE

EAX[31:16] - Number of Chunks in Stride.

39:32 ERROR_CODE

EDX[7:0]

• 0x0 - No-error reported.
• 0x1 - Attempt to authenticate a CHUNK which is already 

marked as authentic or is currently being installed by another 
core.

• 0x2 - CHUNK authentication error. HASH of chunk did not 
match expected value.

• 0x3 - Aborted due to #PF (Page Fault).
• 0x4 - Chunk Outside the current Stride.

63:40 Reserved.

EDX[31:8] - Set to all zeros.

Register Address: 2C6H, 710 MSR_ACTIVATE_SCAN

MSR_ACTIVATE_SCAN (W/O) Core

15:0 CHUNK_START_INDEX

EAX[15:0] - Indicates Chunk Index from which to start.

31:16 CHUNK_STOP_INDEX

EAX[31:16] - Indicates what chunk index to stop at (inclusive).

62:32 THREAD_WAIT_DELAY

EDX[30:0] - TSC based delay to allow threads to rendezvous.

63 SIGNAL_MCE

EDX[31]

• If 1: On scan-error log MC in MC4_STATUS and signal MCE if 
machine check signaling enabled in MC4_CTL[0]. 

• If 0: Don't no-logging/no-signaling.

Register Address: 2C7H, 711 MSR_SCAN_STATUS

MSR_SCAN_STATUS (R/O) Core

15:0 CHUNK_NUM

EAX[15:0] - SCAN Chunk that was reached.

31:16 CHUNK_STOP_INDEX

EAX[31:16]

• Indicates what chunk index to stop at (inclusive).
• Maps to same field in WRMSR(ACTIVATE_SCAN).
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39:32 ERROR_CODE

EDX[7:0]

• 0x0 - No Error.
• 0x1 - SCAN operation did not start. Other thread could not join.
• 0x2 - SCAN operation did not start. Interrupt occurred prior to 

SCAN coordination.
• 0x3 - SCAN operation did not start. Power Management 

conditions are inadequate to run SAF.
• 0x4 - SCAN operation did not start. Non valid chunks in the 

range CHUNK_STOP_INDEX : CHUNK_START_INDEX.
• 0x5 - SCAN operation did not start. Mismatch in arguments 

between threads T0/T1.
• 0x6 - SCAN operation did not start. Core not capable of 

performing SCAN currently.
• 0x7 - Debug Mode. Scan-At-Field results not to be trusted.
• 0x8 - SCAN operation did not start. Exceeded number of 

Logical Processors (LP) allowed to run Scan-At-Field 
concurrently. MAX_CORE_LIMIT exceeded.

• 0x9 - Interrupt occurred. Scan operation aborted prematurely, 
not all chunks requested have been executed.

• 0xB - Scan operation aborted due to corrupted chunk.
• 0xC - Scan operation did not start.
All other error codes are reserved.

61:40 Reserved.

EDX[29:8] - Return all zeros.

62 SCAN_CONTROL_ERROR

EDX[30]

• SCAN error in the Scan-At-Field controller. 
• Non ECC error.

63 SCAN_SIGNATURE_ERROR

EDX[31]

• SCAN SIGNATURE error in the SCAN pattern fetched from main 
memory. 

• Non ECC error.

Register Address: 2C8H, 712 MSR_SCAN_MODULE_ID

MSR_SCAN_MODULE_ID (R/O) Module

31:0 SCAN-AT-FIELD_REVID

EAX[31:0] - Maps to Revision field in external header (offset 4).

40:32 CURRENT_STRIDE_INDEX

EDX[8:0] - Stride Index.

63:41 Reserved.

EDX[31:9] - Return all zeros.

Register Address: 2C9H, 713 MSR_LAST_SAF_WP

MSR_LAST_SAF_WP (R/O) Module
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31:0 LAST_WP

EAX[31:0]

• Provides information about the core when the last 
WRMSR(ACTIVATE_SCAN) was executed. 

• Available only if enumerated in 
INTEGRITY_CAPABILITIES[10:9].

39:32 Reserved.

EDX[7:0]

63:40 Reserved.

EDX[31:8] - Return all zeros.

Register Address: 2D6H, 726 MSR_TRIGGER_PERIODIC_MEM_BIST

MSR_TRIGGER_PERIODIC_MEM_BIST (W/O) Core

0 SIGNAL_MCE

EAX[0] - If 1, then signal MCE on fail if machine check signaling 
enabled in the corresponding MCi_CTL. If 0 then don't signal 
machine checks.

7:1 ARRAY_BANK

EAX[7:1] - Reserved.

15:8 TST_STEP_PARAM

EAX[15:8]

0: Test All Arrays, or Test Arrays in STEPs of NUM_STEPS.

31:16 Reserved.

EAX[31:16]

63:32 Reserved.

EAX[31:0]

Register Address: 2D7H, 727 MSR_PERIODIC_MEM_BIST_STATUS

MSR_PERIODIC_MEM_BIST_STATUS (R/O) Core

0 MEM_BIST_STATUS

0: PASS.

1: FAIL.

63:1 Reserved.

Register Address: 2D9H, 729 MSR_INTEGRITY_CAPABILITIES

MSR_INTEGRITY_CAPABILITIES (R/O)

Enumerates features supported in Functional Safety.

Thread

0 STARTUP_SCAN_BIST

When set to 1, processor supports Startup SCAN BIST.

1 STARTUP_MEM_BIST

When set to 1, processor supports Startup MEM BIST.

2 PERIODIC_MEM_BIST

When set to 1, processor supports Periodic MEM BIST.
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3 LOCKSTEP

When set to 1, processor supports Lock Step Mode.

4 PERIODIC_SCAN_BIST

When set to 1, processor supports Periodic SCAN BIST.

5 PLL_LOSS_DETECT

When set to 1, processor supports PLL LOSS detection.

6 PWR_LOSS_DETECT

When set to 1, processor supports Power Loss detection.

7 PERRINJ

When set to 1, processor supports FUSA PERRINJ.

8 SBFT_AT_FIELD

When set to 1, processor supports SBFT-At-Field.

10:9 SAF_GEN_REV

00 = REV1; 01 = REV2; 10 = REV3; 11 = REV4.

14:11 Reserved.

15 PRESERVE_MEMORY_NEEDED

When set to 1, processor supports FUSARR_BASE/MASK MSRs.

20:16 TID_BIT_SHIFT

Number of bits to shift right on x2APICID to get a unique topology 
ID of all logical processors that share a scan test engine.

21 ALL_LP_JOIN_NEEDED

All logical processors that share scan test engine need to be 
tested together and must join using MSR_ACTIVATE_SCAN.

23:22 Reserved.

31:24 PATTERN_ID

Processor scan pattern ID. ID of the startup and periodic scan 
programs supported for this part.

63:32 Reserved.

Register Address: 2DCH, 732 IA32_INTEGRITY_STATUS

IA32_INTEGRITY_STATUS (R/O)

Provides status information for integrity features. See Table 2-2.

Thread

Register Address: 3F9H, 1017 MSR_PKG_C6_RESIDENCY

MSR_PKG_C6_RESIDENCY (R/O) Package

63:0 Package C6 Residency Counter

Register Address: 3FAH, 1018 MSR_PKG_C7_RESIDENCY

MSR_PKG_C7_RESIDENCY (R/O) Package

63:0 Package C7 Residency Counter

Register Address: 3FCH, 1020 MSR_CORE_C3_RESIDENCY
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MSR_CORE_C3_RESIDENCY (R/O)

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Core

63:0 CORE C3 Residency Counter 

Time spent in the Core C-State. Provided in units compatible to P1 
clock frequency (Guaranteed / Maximum Core Non-Turbo 
Frequency).

Register Address: 3FDH, 1021 MSR_CORE_C6_RESIDENCY

MSR_CORE_C6_RESIDENCY (R/O)

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Core

63:0 CORE C6 Residency Counter

Time spent in the Core C-State. Provided in units compatible to P1 
clock frequency (Guaranteed / Maximum Core Non-Turbo 
Frequency).

Register Address: 3FEH, 1022 MSR_CORE_C7_RESIDENCY

MSR_CORE_C7_RESIDENCY (R/O)

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Core

63:0 CORE C7 Residency Counter

Time spent in the Core C-State. Provided in units compatible to P1 
clock frequency (Guaranteed / Maximum Core Non-Turbo 
Frequency).

Register Address: 4F0H, 1264 MSR_SAF_CTRL

MSR_SAF_CTRL (W/O) Core

0 INVALIDATE_CURRENT_STRIDE

EAX[0]

• Write of 1 invalidates the currently installed stride.
• Clears only the VALID_CHUNKS field on a 

RDMSR(CHUNKS_AUTHENTICATION_STATUS).

63:1 Reserved.

Register Address: 664H, 1636 MSR_MC6_RESIDENCY

MSR_MC6_RESIDENCY (R/O)

Time spent in the Module C6-State. Provided in units compatible to P1 clock frequency (Guaranteed / Maximum Core 
Non-Turbo Frequency).

Module

63:0 RESIDENCY

Time that this module is in module-specific C6 states since last 
reset.

Register Address: 6E0H, 1760 IA32_TSC_DEADLINE

TSC Target of Local APIC’s TSC Deadline Mode (R/W) 

See Table 2-2.

Thread

Register Address: 7A3H, 1955 IA32_MCU_EXT_SERVICE
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MCU Extended Service (R/W)

See Table 2-2.

Module

Register Address: 7A4H, 1956 IA32_MCU_ROLLBACK_MIN_ID

Minimal MCU Revision ID (R/O)

See Table 2-2.

Module

Register Address: 7A5H, 1957 IA32_MCU_STAGING_MBOX_ADDR

IA32_MCU_STAGING_MBOX_ADDR (R/O)

See Table 2-2.

Package

Register Address: 7BOH, 1968 IA32_ROLLBACK_SIGN_ID_0

Rollback ID 0 (R/O)

See Table 2-2.

Module

Register Address: 7B1H, 1969 IA32_ROLLBACK_SIGN_ID_1

Rollback ID 1 (R/O)

See Table 2-2.

Module

Register Address: 7B2H, 1970 IA32_ROLLBACK_SIGN_ID_2

Rollback ID 2 (R/O)

See Table 2-2.

Module

Register Address: 7B3H, 1971 IA32_ROLLBACK_SIGN_ID_3

Rollback ID 3 (R/O)

See Table 2-2.

Module

Register Address: 7B4H, 1972 IA32_ROLLBACK_SIGN_ID_4

Rollback ID 4 (R/O)

See Table 2-2.

Module

Register Address: 7B5H, 1973 IA32_ROLLBACK_SIGN_ID_5

Rollback ID 5 (R/O)

See Table 2-2.

Module

Register Address: 7B6H, 1974 IA32_ROLLBACK_SIGN_ID_6

Rollback ID 6 (R/O)

See Table 2-2.

Module

Register Address: 7B7H, 1975 IA32_ROLLBACK_SIGN_ID_7

Rollback ID 7 (R/O)

See Table 2-2.

Module

Register Address: 7B8H, 1976 IA32_ROLLBACK_SIGN_ID_8

Rollback ID 8 (R/O)

See Table 2-2.

Module

Register Address: 7B9H, 1977 IA32_ROLLBACK_SIGN_ID_9

Rollback ID 9 (R/O)

See Table 2-2.

Module

Register Address: 7BAH, 1978 IA32_ROLLBACK_SIGN_ID_10
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Rollback ID 10 (R/O)

See Table 2-2.

Module

Register Address: 7BBH, 1979 IA32_ROLLBACK_SIGN_ID_11

Rollback ID 11 (R/O)

See Table 2-2.

Module

Register Address: 7BCH, 1980 IA32_ROLLBACK_SIGN_ID_12

Rollback ID 12 (R/O)

See Table 2-2.

Module

Register Address: 7BDH, 1981 IA32_ROLLBACK_SIGN_ID_13

Rollback ID 13 (R/O)

See Table 2-2.

Module

Register Address: 7BEH, 1982 IA32_ROLLBACK_SIGN_ID_14

Rollback ID 14 (R/O)

See Table 2-2.

Module

Register Address: 7BFH, 1983 IA32_ROLLBACK_SIGN_ID_15

Rollback ID 15 (R/O)

See Table 2-2.

Module

Register Address: 988H, 2440 IA32_UINTR_NV

User Interrupt Size and Notification Vector (R/W)

See Table 2-2.

Thread

Register Address: 9FBH, 2555 IA32_TME_CLEAR_SAVED_KEY

IA32_TME_CLEAR_SAVED_KEY (R/W) 

See Table 2-2.

Package

Register Address: 9FFH, 2559 MSR_CORE_MKTME_ACTIVATE

MSR_CORE_MKTME_ACTIVATE (R/O)

MSR to read TME_ACTIVATE[MK_TME_KEYID_BITS].

Core

31:0 Reserved.

35:32 READ_MK_TME_KEYID_BITS

This value will be returned on a RDMSR, but must be zero on a 
WRMSR.

63:36 Reserved.

Register Address: C84H, 3204 MSR_MBA_CFG

Memory Bandwidth Allocation (MBA) Configuration (R/W) Package

1:0 Reserved.

2 RAMBAE

Resource Aware MBA Enable.

63:3 Reserved.

Register Address: CA0H, 3232 MSR_RMID_SNC_CONFIG

MSR_RMID_SNC_CONFIG (R/W) Package

Table 2-57.  Additional MSRs Supported by the Intel® Xeon® 6 E-Core Processors  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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0 RMID_LOCALIZED_DISTRIBUTION_MODE_ENABLE

If set, Localized RMID distribution mode is enabled. If Clear, RMID 
Sharing mode is enabled.

63:1 Reserved.

Register Address: D50H, 3408 IA32_L2_QOS_EXT_BW_THRTL_0

Memory Bandwidth Enforcement for COS0 (R/W)

See Table 2-2.

Package

Register Address: D51H, 3409 IA32_L2_QOS_EXT_BW_THRTL_1

Memory Bandwidth Enforcement for COS1 (R/W)

See Table 2-2.

Package

Register Address: D52H, 3410 IA32_L2_QOS_EXT_BW_THRTL_2

Memory Bandwidth Enforcement for COS2 (R/W)

See Table 2-2.

Package

Register Address: D53H, 3411 IA32_L2_QOS_EXT_BW_THRTL_3

Memory Bandwidth Enforcement for COS3 (R/W)

See Table 2-2.

Package

Register Address: D54H, 3412 IA32_L2_QOS_EXT_BW_THRTL_4

Memory Bandwidth Enforcement for COS4 (R/W)

See Table 2-2.

Package

Register Address: D55H, 3413 IA32_L2_QOS_EXT_BW_THRTL_5

Memory Bandwidth Enforcement for COS5 (R/W)

See Table 2-2.

Package

Register Address: D56H, 3414 IA32_L2_QOS_EXT_BW_THRTL_6

Memory Bandwidth Enforcement for COS6 (R/W)

See Table 2-2.

Package

Register Address: D57H, 3415 IA32_L2_QOS_EXT_BW_THRTL_7

Memory Bandwidth Enforcement for COS7 (R/W)

See Table 2-2.

Package

Register Address: D58H, 3416 IA32_L2_QOS_EXT_BW_THRTL_8

Memory Bandwidth Enforcement for COS8 (R/W)

See Table 2-2.

Package

Register Address: D59H, 3417 IA32_L2_QOS_EXT_BW_THRTL_9

Memory Bandwidth Enforcement for COS9 (R/W)

See Table 2-2.

Package

Register Address: D5AH, 3418 IA32_L2_QOS_EXT_BW_THRTL_10

Memory Bandwidth Enforcement for COS10 (R/W)

See Table 2-2.

Package

Register Address: D5BH, 3419 IA32_L2_QOS_EXT_BW_THRTL_11

Table 2-57.  Additional MSRs Supported by the Intel® Xeon® 6 E-Core Processors  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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Memory Bandwidth Enforcement for COS11 (R/W)

See Table 2-2.

Package

Register Address: D5CH, 3420 IA32_L2_QOS_EXT_BW_THRTL_12

Memory Bandwidth Enforcement for COS12 (R/W)

See Table 2-2.

Package

Register Address: D5DH, 3421 IA32_L2_QOS_EXT_BW_THRTL_13

Memory Bandwidth Enforcement for COS13 (R/W)

See Table 2-2.

Package

Register Address: D5EH, 3422 IA32_L2_QOS_EXT_BW_THRTL_14

Memory Bandwidth Enforcement for COS14 (R/W)

See Table 2-2.

Package

Register Address: E00H, 3584 IA32_QOS_CORE_BW_THRTL_0

CBA Levels Based on COS for Bandwidth Throttling (R/W)

See Table 2-2.

Thread

Register Address: E01H, 3585 IA32_QOS_CORE_BW_THRTL_1

CBA Levels Based on COS for Bandwidth Throttling (R/W)

See Table 2-2.

Thread

Register Address: 1400H, 5120 IA32_SEAMRR_BASE

SEAM Memory Range Register for TDX - Base Address (R/W)

See Table 2-2.

Core

Register Address: 1401H, 5121 IA32_SEAMRR_MASK

SEAM Memory Range Register for TDX (R/W)

See Table 2-2.

Core

Register Address: 1A8FH, 6799 MSR_STLB_QOS_INFO

STLB_QOS_INFO (R/O)

STLB QoS MASK configuration.

Core

5:0 NCLOS

Number of CLOS supported for STLB resource using minus-1 
notation.

15:6 Reserved.

19:16 4K_2M_CBM

Length of capacity bitmask for 4K and 2M pages using minus-1 
notation.

28:20 Reserved.

29 STLB_FILL_TRANSLATION_MSR_SUPPORTED

MSR interface to fill STLB translations supported.

30 4K_2M_ALIAS

Indicates that 4K/2M pages alias into the same structure.

63:31 Reserved.

Table 2-57.  Additional MSRs Supported by the Intel® Xeon® 6 E-Core Processors  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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2.17.12  MSRs Introduced in the Intel® Series 2 Core™ Ultra Processor Supporting Performance 
Hybrid Architecture

Table 2-58 lists additional MSRs for the Intel Series 2 Core Ultra processor with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_BDH. Table 2-59 lists the MSRs unique to the processor P-core. Table 2-60 
lists the MSRs unique to the processor E-core. 

For an MSR listed in Table 2-58, Table 2-59, or Table 2-60 that also appears in the model-specific tables of prior 
generations, Table 2-58, Table 2-59, and Table 2-60 supersede prior generation tables.

Table 2-58.  Additional MSRs Supported by the Intel® Series 2 Core™ Ultra Processors Supporting Performance 
Hybrid Architecture 

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 8BH, 139 IA32_BIOS_SIGN_ID

BIOS Update Signature ID (R/W)

See Table 2-2.

Thread

Register Address: 19AH, 410 IA32_CLOCK_MODULATION

Clock Modulation (R/W) 

See Table 2-2.

Thread

Register Address: 601H, 1537 MSR_PKG_POWER_LIMIT_4

Package Power Limit 4 (R/W)

Package-level maximum power limit (in Watts).

Package

15:0 POWER_LIMIT_4

PL4 Value in 0.125 W increments. This field is locked by 
PKG_POWER_LIMIT_4.LOCK. When the LOCK bit is set to 1, this 
field becomes Read Only.

If the value is 0, PL4 limit is disabled.

30:16 Reserved.

31 LOCK

This bit will lock the POWER_LIMIT_4 settings in this register and 
will also lock this setting. This means that once set to 1, the 
POWER_LIMIT_4 setting and this bit become Read Only until the 
next Warm Reset.

63:32 Reserved.

Register Address: 630H, 1584 MSR_PKG_C8_RESIDENCY

MSR_PKG_C8_RESIDENCY (R/O)

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

59:0 Package C8 Residency Counter

Value since last reset that this package is in processor-specific C8 
states. Count at the same frequency as the TSC.

63:60 Reserved.

Register Address: 631H, 1585 MSR_PKG_C9_RESIDENCY

MSR_PKG_C9_RESIDENCY (R/O)

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package
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59:0 Package C9 Residency Counter

Value since last reset that this package is in processor-specific C9 
states. Count at the same frequency as the TSC.

63:60 Reserved.

Register Address: 632H, 1586 MSR_PKG_C10_RESIDENCY

MSR_PKG_C10_RESIDENCY (R/O)

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or 
ACPI C-States.

Package

59:0 Package C10 Residency Counter

Value since last reset that this package is in processor-specific 
C10 states. Count at the same frequency as the TSC.

63:60 Reserved.

Register Address: 651H, 1617 MSR_SECONDARY_TURBO_RATIO_LIMIT_CORES

SECONDARY_TURBO_RATIO_LIMIT_CORES (R/W)

This register defines the active core ranges for each frequency point.

•       NUMCORE[0:7] must be populated in ascending order.
•       NUMCORE[i+1] must be greater than NUMCORE[i].
•       Entries with NUMCORE[i] == 0 will be ignored.
•       The last valid entry must have NUMCORE >= the number of cores in the SKU.
If any of the rules above are broken, we will silently reject the configuration.

Package

7:0 CORE_COUNT_0

Defines the active core ranges for each frequency point.

15:8 CORE_COUNT_1

Defines the active core ranges for each frequency point.

23:16 CORE_COUNT_2

Defines the active core ranges for each frequency point.

31:24 CORE_COUNT_3

Defines the active core ranges for each frequency point.

39:32 CORE_COUNT_4

Defines the active core ranges for each frequency point.

47:40 CORE_COUNT_5

Defines the active core ranges for each frequency point.

55:48 CORE_COUNT_6

Defines the active core ranges for each frequency point.

63:56 CORE_COUNT_7

Defines the active core ranges for each frequency point.

Register Address: 658H, 1624 MSR_WEIGHTED_CORE_C0

Core-Count Weighted C0 Residency (R/O) Package

Table 2-58.  Additional MSRs Supported by the Intel® Series 2 Core™ Ultra Processors Supporting Performance 
Hybrid Architecture  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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63:0 DATA

Increment at the same rate as the TSC. The increment each cycle 
is weighted by the number of processor cores in the package that 
reside in C0. If N cores are simultaneously in C0, then each cycle 
the counter increments by N.

Register Address: 659H, 1625 MSR_ANY_CORE_C0

Any Core C0 Residency (R/O) Package

63:0 DATA

Increment at the same rate as the TSC. The increment each cycle 
is weighted by the number of processor cores in the package that 
reside in C0. If N cores are simultaneously in C0, then each cycle 
the counter increments by N.

Register Address: 65AH, 1626 MSR_ANY_GFXE_C0

Any Graphics Engine C0 Residency (R/O) Package

63:0 DATA

Increment at the same rate as the TSC. The increment each cycle 
is one if any processor graphic device's compute engines are in 
C0.

Register Address: 65BH, 1627 MSR_CORE_GFXE_OVERLAP_C0

Core and Graphics Engine Overlapped C0 Residency (R/O) Package

63:0 DATA

Increment at the same rate as the TSC. The increment each cycle 
is one if at least one compute engine of the processor graphics is 
in C0 and at least one processor core in the package is also in C0.

Register Address: C88H, 3208 IA32_RESOURCE_PRIORITY

Thread scope Resource Priority Enable (R/W)

See Table 2-2.

Thread

Register Address: C89H, 3209 IA32_RESOURCE_PRIORITY_PKG

IA32_RESOURCE_PRIORITY_PKG (R/W)

See Table 2-2.

Package

Register Address: 1900H, 6400 IA32_PMC_GP0_CTR

Full Width Writable General Performance Counter 0 (R/W)

See Table 2-2.

Thread

Register Address: 1901H, 6401 IA32_PMC_GP0_CFG_A

IA32_PMC_GP0_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance Counter 0.

See Table 2-2.

Thread

Register Address: 1904H, 6404 IA32_PMC_GP1_CTR

Full Width Writable General Performance Counter 1 (R/W)

See Table 2-2.

Thread

Register Address: 1905H, 6405 IA32_PMC_GP1_CFG_A

Table 2-58.  Additional MSRs Supported by the Intel® Series 2 Core™ Ultra Processors Supporting Performance 
Hybrid Architecture  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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IA32_PMC_GP1_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance Counter 1.

See Table 2-2.

Thread

Register Address: 1908H, 6408 IA32_PMC_GP2_CTR

Full Width Writable General Performance Counter 2 (R/W)

See Table 2-2.

Thread

Register Address: 1909H, 6409 IA32_PMC_GP2_CFG_A

IA32_PMC_GP2_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance Counter 2.

See Table 2-2.

Thread

Register Address: 190CH, 6412 IA32_PMC_GP3_CTR

Full Width Writable General Performance Counter 3 (R/W)

See Table 2-2.

Thread

Register Address: 190DH, 6413 IA32_PMC_GP3_CFG_A

IA32_PMC_GP3_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance Counter 3.

See Table 2-2.

Thread

Register Address: 1910H, 6416 IA32_PMC_GP4_CTR

Full Width Writable General Performance Counter 4 (R/W)

See Table 2-2.

Thread

Register Address: 1911H, 6417 IA32_PMC_GP4_CFG_A

IA32_PMC_GP4_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance Counter 4.

See Table 2-2.

Thread

Register Address: 1914H, 6420 IA32_PMC_GP5_CTR

Full Width Writable General Performance Counter 5 (R/W)

See Table 2-2.

Thread

Register Address: 1915H, 6421 IA32_PMC_GP5_CFG_A

IA32_PMC_GP5_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance Counter 5.

See Table 2-2.

Thread

Register Address: 1918H, 6424 IA32_PMC_GP6_CTR

Full Width Writable General Performance Counter 6 (R/W)

See Table 2-2.

Thread

Register Address: 1919H, 6425 IA32_PMC_GP6_CFG_A

IA32_PMC_GP6_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance Counter 6.

See Table 2-2.

Thread

Register Address: 191CH, 6428 IA32_PMC_GP7_CTR

Table 2-58.  Additional MSRs Supported by the Intel® Series 2 Core™ Ultra Processors Supporting Performance 
Hybrid Architecture  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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The MSRs listed in Table 2-59 are unique to the Intel Series 2 Core Ultra processor P-core. These MSRs are not 
supported on the processor E-core.

Full Width Writable General Performance Counter 7 (R/W)

See Table 2-2.

Thread

Register Address: 191DH, 6429 IA32_PMC_GP7_CFG_A

IA32_PMC_GP7_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance Counter 7.

See Table 2-2.

Thread

Register Address: 1980H, 6528 IA32_PMC_FX0_CTR

IA32_PMC_FX0_CTR (R/W)

Fixed-Function Performance Counter 0 - Instructions Retired. See Table 2-2.

Thread

Register Address: 1984H, 6532 IA32_PMC_FX1_CTR

IA32_PMC_FX1_CTR (R/W)

Fixed-Function Performance Counter 1 - Unhalted core clock cycles. See Table 2-2.

Thread

Register Address: 1988H, 6536 IA32_PMC_FX2_CTR

IA32_PMC_FX2_CTR (R/W)

Fixed-Function Performance Counter 2 - Unhalted core reference cycles. See Table 2-2.

Thread

Table 2-59.  MSRs Supported by the Intel® Series 2 Core™ Ultra Processor P-core 

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: C9H, 201 IA32_PMC8

General Performance Counter 8 (R/W)

See Table 2-2.

Thread

Register Address: CAH, 202 IA32_PMC9

General Performance Counter 9 (R/W)

See Table 2-2.

Thread

Register Address: 18EH, 398 IA32_PERFEVTSEL8

Performance Event Select Register 8 (R/W)

See Table 2-2.

Thread

Register Address: 18FH, 399 IA32_PERFEVTSEL9

Performance Event Select Register 9 (R/W)

See Table 2-2.

Thread

Register Address: 30CH, 780 IA32_FIXED_CTR3

Fixed-Function Performance Counter 3 (R/W)

See Table 2-2.

Thread

Register Address: 329H, 809 MSR_PERF_METRICS

Table 2-58.  Additional MSRs Supported by the Intel® Series 2 Core™ Ultra Processors Supporting Performance 
Hybrid Architecture  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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MSR_PERF_METRICS (R/W)

This register provides built-in support for Top-down Micro-architecture Analysis (TMA) metrics. It exposes the four 
TMA Level 1 metrics where the lower 32 bits are divided into four 8 bit fields, each of which is an integer percentage 
of the total TOPDOWN.SLOTS (as reported by fixed-function counter 3).

Thread

7:0 RETIRING

Percent of utilized by uops that eventually retire (commit).

15:8 BAD_SPECULATION

Percent of Wasted due to incorrect speculation, covering Utilized by 
uops that do not retire, or Recovery Bubbles (unutilized slots).

23:16 FRONTEND_BOUND

Percent of Unutilized slots where Front-end did not deliver a uop 
while Back-end is ready.

31:24 BACKEND_BOUND

Percent of Unutilized slots where a uop was not delivered to Back-
end due to lack of Back-end resources.

39:32 MULTI_UOPS

Frontend bound.

47:40 BRANCH_MISPREDICTS

Frontend bound.

55:48 FRONTEND_LATENCY

Frontend bound.

63:56 MEMORY_BOUND

Frontend bound.

Register Address: 4C9H, 1225 IA32_A_PMC8

Full Width Writable IA32_PMC8 Alias (R/W)

See Table 2-2.

Thread

Register Address: 4CAH, 1226 IA32_A_PMC9

Full Width Writable IA32_PMC9 Alias (R/W)

See Table 2-2.

Thread

Register Address: 540H, 1344 MSR_THREAD_UARCH_CTL

Thread Uarch Control (R/W) Thread

0 WB_MEM_STRM_LD_DISABLE

Disable streaming behavior for MOVNTDQA loads to WB memory 
type. If set, these accesses will be treated like regular cacheable 
loads (Data will be cached).

63:1 Reserved.

Register Address: 540H, 1344 MSR_CORE_UARCH_CTL

Core Uarch Control (R/W) Core

0 SCRUB_DIS

L1 scrubbing disable.

63:1 Reserved.

Table 2-59.  MSRs Supported by the Intel® Series 2 Core™ Ultra Processor P-core  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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The MSRs listed in Table 2-60 are unique to the Intel Series 2 Core Ultra processor E-core. These MSRs are not 
supported on the processor P-core.

Register Address: 1920H, 6432 IA32_PMC_GP8_CTR

Full Width Writable General Performance Counter 8 (R/W)

See Table 2-2.

Thread

Register Address: 1921H, 6433 IA32_PMC_GP8_CFG_A

IA32_PMC_GP8_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance Counter 8.

See Table 2-2.

Thread

Register Address: 1924H, 6436 IA32_PMC_GP9_CTR

Full Width Writable General Performance Counter 9 (R/W)

See Table 2-2.

Thread

Register Address: 1925H, 6437 IA32_PMC_GP9_CFG_A

IA32_PMC_GP9_CFG_A (R/W)

Performance Event Select Register used to control the operation of the General Performance Counter 9.

See Table 2-2.

Thread

Register Address: 198CH, 6540 IA32_PMC_FX3_CTR

IA32_PMC_FX3_CTR (R/W)

See Table 2-2.

Thread

Table 2-60.  MSRs Supported by the Intel® Series 2 Core™ Ultra Processor E-core 

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 2DCH, 732 IA32_INTEGRITY_STATUS

Status Information for Integrity Features (R/O)

See Table 2-2.

Thread

Register Address: 30DH, 781 IA32_FIXED_CTR4

Fixed-Function Performance Counter 4 - Top-down Bad Speculation (R/W)

See Table 2-2.

Thread

Register Address: 30EH, 782 IA32_FIXED_CTR5

Fixed-Function Performance Counter 5 - Top-down Frontend Bound (R/W)

See Table 2-2.

Thread

Register Address: 30FH, 783 IA32_FIXED_CTR6

Fixed-Function Performance Counter 6 - Top-down Retiring (R/W)

See Table 2-2.

Thread

Register Address: D18H, 3352 IA32_L2_MASK_8

L2 CAT Mask for COS8 (R/W)

See Table 2-2.

Module

Register Address: D19H, 3353 IA32_L2_MASK_9

Table 2-59.  MSRs Supported by the Intel® Series 2 Core™ Ultra Processor P-core  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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L2 CAT Mask for COS9 (R/W)

See Table 2-2.

Module

Register Address: D1AH, 3354 IA32_L2_MASK_10

L2 CAT Mask for COS10 (R/W)

See Table 2-2.

Module

Register Address: D1BH, 3355 IA32_L2_MASK_11

L2 CAT Mask for COS11 (R/W)

See Table 2-2.

Module

Register Address: D1CH, 3356 IA32_L2_MASK_12

L2 CAT Mask for COS12 (R/W)

See Table 2-2.

Module

Register Address: D1DH, 3357 IA32_L2_MASK_13

L2 CAT Mask for COS13 (R/W)

See Table 2-2.

Module

Register Address: D1EH, 3358 IA32_L2_MASK_14

L2 CAT Mask for COS14 (R/W)

See Table 2-2.

Module

Register Address: D1FH, 3359 IA32_L2_MASK_15

L2 CAT Mask for COS15 (R/W)

See Table 2-2.

Module

Register Address: 1878H, 6264 MSR_WORK_CONSERVING_CLOS

Work Conserving CLOS (R/W) Module

0 WC_VALID

WC Valid Bit that indicates WC MSR has been setup. This bit must 
be set for the WC algorithm to be enabled.

7:1 Reserved.

11:8 CLOS_START_PRI1

Starting CLOS range for priority 1.

15:12 CLOS_END_PRI1

Ending CLOS range for priority 1.

19:16 CLOS_START_PRI2

Starting CLOS range for priority 2.

23:20 CLOS_END_PRI2

Ending CLOS range for priority 2.

27:24 CLOS_START_PRI3

Starting CLOS range for priority 3.

31:28 CLOS_END_PRI3

Ending CLOS range for priority 3.

63:32 Reserved.

Register Address: 1903H, 6403 IA32_PMC_GP0_CFG_C

Table 2-60.  MSRs Supported by the Intel® Series 2 Core™ Ultra Processor E-core  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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IA32_PMC_GP0_CFG_C (R/W)

See Table 2-2.

Thread

Register Address: 1907H, 6407 IA32_PMC_GP1_CFG_C

IA32_PMC_GP1_CFG_C (R/W)

See Table 2-2.

Thread

Register Address: 190AH, 6410 IA32_PMC_GP2_CFG_B

IA32_PMC_GP2_CFG_B (R/W)

See Table 2-2.

Thread

Register Address: 190BH, 6411 IA32_PMC_GP2_CFG_C

IA32_PMC_GP2_CFG_C (R/W)

See Table 2-2.

Thread

Register Address: 190EH, 6414 IA32_PMC_GP3_CFG_B

IA32_PMC_GP3_CFG_B (R/W)

See Table 2-2.

Thread

Register Address: 190FH, 6415 IA32_PMC_GP3_CFG_C

IA32_PMC_GP3_CFG_C (R/W)

See Table 2-2.

Thread

Register Address: 1912H, 6418 IA32_PMC_GP4_CFG_B

IA32_PMC_GP4_CFG_B (R/W)

See Table 2-2.

Thread

Register Address: 1913H, 6419 IA32_PMC_GP4_CFG_C

IA32_PMC_GP4_CFG_C (R/W)

See Table 2-2.

Thread

Register Address: 1916H, 6422 IA32_PMC_GP5_CFG_B

IA32_PMC_GP5_CFG_B (R/W)

See Table 2-2.

Thread

Register Address: 1917H, 6423 IA32_PMC_GP5_CFG_C

IA32_PMC_GP5_CFG_C (R/W)

See Table 2-2.

Thread

Register Address: 191AH, 6426 IA32_PMC_GP6_CFG_B

IA32_PMC_GP6_CFG_B (R/W)

See Table 2-2.

Thread

Register Address: 191BH, 6427 IA32_PMC_GP6_CFG_C

IA32_PMC_GP6_CFG_C (R/W)

See Table 2-2.

Thread

Register Address: 191EH, 6430 IA32_PMC_GP7_CFG_B

IA32_PMC_GP7_CFG_B (R/W)

See Table 2-2.

Thread

Register Address: 191FH, 6431 IA32_PMC_GP7_CFG_C

Table 2-60.  MSRs Supported by the Intel® Series 2 Core™ Ultra Processor E-core  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
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IA32_PMC_GP7_CFG_C (R/W)

See Table 2-2.

Thread

Register Address: 1982H, 6530 IA32_PMC_FX0_CFG_B

Fixed-Function Counter Reload Configuration Register (R/W)

See Table 2-2.

Thread

Register Address: 1983H, 6531 IA32_PMC_FX0_CFG_C

Extended Perf Event Selector for Fixed-Function Counter 0 (R/W)

See Table 2-2.

Thread

Register Address: 1986H, 6534 IA32_PMC_FX1_CFG_B

Fixed-Function Counter Reload Configuration Register (R/W)

See Table 2-2.

Thread

Register Address: 1987H, 6535 IA32_PMC_FX1_CFG_C

Extended Perf Event Selector for Fixed-Function Counter 1 (R/W)

See Table 2-2.

Thread

Register Address: 198BH, 6539 IA32_PMC_FX2_CFG_C

Extended Perf Event Selector for Fixed-Function Counter 2 (R/W)

See Table 2-2.

Thread

Register Address: 1990H, 6544 IA32_PMC_FX4_CTR

Fixed-Function Performance Counter 4 - Top-down Bad Speculation (R/W)

See Table 2-2.

Thread

Register Address: 1993H, 6547 IA32_PMC_FX4_CFG_C

Extended Perf Event Selector for Fixed-Function Counter 4 (R/W)

See Table 2-2.

Thread

Register Address: 1994H, 6548 IA32_PMC_FX5_CTR

Fixed-Function Performance Counter 5 - Top-down Frontend Bound (R/W)

See Table 2-2.

Thread

Register Address: 1997H, 6551 IA32_PMC_FX5_CFG_C

Extended Perf Event Selector for Fixed-Function Counter 5 (R/W)

See Table 2-2.

Thread

Register Address: 1998H, 6552 IA32_PMC_FX6_CTR

Fixed-Function Performance Counter 5 - Top-down Bad Retiring (R/W)

See Table 2-2.

Thread

Register Address: 199BH, 6555 IA32_PMC_FX6_CFG_C

Extended Perf Event Selector for Fixed-Function Counter 6 (R/W)

See Table 2-2.

Thread

Table 2-60.  MSRs Supported by the Intel® Series 2 Core™ Ultra Processor E-core  (Contd.)
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2.18 MSRS IN THE INTEL® XEON PHI™ PROCESSOR 3200/5200/7200 SERIES 
AND THE INTEL® XEON PHI™ PROCESSOR 7215/7285/7295 SERIES

The Intel® Xeon Phi™ processor 3200, 5200, 7200 series, with a CPUID Signature DisplayFamily_DisplayModel 
value of 06_57H, supports the MSR interfaces listed in Table 2-61. These processors are based on the Knights 
Landing microarchitecture. The Intel® Xeon Phi™ processor 7215, 7285, 7295 series, with a CPUID Signature 
DisplayFamily_DisplayModel value of 06_85H, supports the MSR interfaces listed in Table 2-61 and Table 2-62. 
These processors are based on the Knights Mill microarchitecture. Some MSRs are shared between a pair of 
processor cores, and the scope is marked as module.

Table 2-61.  Selected MSRs Supported by Intel® Xeon Phi™ Processors with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_57H or 06_85H 

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 0H, 0 IA32_P5_MC_ADDR

See Section 2.23, “MSRs in Pentium Processors.” Module

Register Address: 1H, 1 IA32_P5_MC_TYPE

See Section 2.23, “MSRs in Pentium Processors.” Module

Register Address: 6H, 6 IA32_MONITOR_FILTER_SIZE

See Section 10.10.5, “Monitor/Mwait Address Range Determination.” See Table 2-2. Thread

Register Address: 10H, 16 IA32_TIME_STAMP_COUNTER

See Section 19.17, “Time-Stamp Counter,” and Table 2-2. Thread

Register Address: 17H, 23 IA32_PLATFORM_ID

Platform ID (R) 
See Table 2-2.

Package

Register Address: 1BH, 27 IA32_APIC_BASE

See Section 12.4.4, “Local APIC Status and Location,” and Table 2-2. Thread

Register Address: 34H, 52 MSR_SMI_COUNT

SMI Counter (R/O) Thread

31:0 SMI Count (R/O) 

63:32 Reserved.

Register Address: 3AH, 58 IA32_FEATURE_CONTROL

Control Features in Intel 64Processor (R/W)

See Table 2-2.

Thread

0 Lock. (R/WL) 

1 Reserved.

2 Enable VMX outside SMX operation. (R/WL) 

Register Address: 3BH, 59 IA32_TSC_ADJUST

Per-Logical-Processor TSC ADJUST (R/W)

See Table 2-2.

Thread

Register Address: 4EH, 78 IA32_PPIN_CTL (MSR_PPIN_CTL)

Protected Processor Inventory Number Enable Control (R/W) Package

0 LockOut (R/WO)

See Table 2-2.
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1 Enable_PPIN (R/W)

See Table 2-2.

63:2 Reserved

Register Address: 4FH, 79 IA32_PPIN (MSR_PPIN)

Protected Processor Inventory Number (R/O) Package

63:0 Protected Processor Inventory Number (R/O)

See Table 2-2.

Register Address: 79H, 121 IA32_BIOS_UPDT_TRIG

BIOS Update Trigger Register (W) 

See Table 2-2.

Core

Register Address: 8BH, 139 IA32_BIOS_SIGN_ID

BIOS Update Signature ID (R/W)

See Table 2-2.

Thread

Register Address: C1H, 193 IA32_PMC0

Performance Counter Register

See Table 2-2.

Thread

Register Address: C2H, 194 IA32_PMC1

Performance Counter Register

See Table 2-2.

Thread

Register Address: CEH, 206 MSR_PLATFORM_INFO

Platform Information

Contains power management and other model specific features enumeration. See http://biosbits.org.

Package

7:0 Reserved.

15:8 Maximum Non-Turbo Ratio (R/O) 

This is the ratio of the frequency that invariant TSC runs at. Frequency 
= ratio * 100 MHz.

Package

27:16 Reserved.

28 Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limit for Turbo mode 
is enabled. When set to 0, indicates Programmable Ratio Limit for Turbo 
mode is disabled.

Package

29 Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limit for Turbo mode is 
programmable. When set to 0, indicates TDP Limit for Turbo mode is 
not programmable.

Package

39:30 Reserved.

47:40 Maximum Efficiency Ratio (R/O) 

This is the minimum ratio (maximum efficiency) that the processor can 
operate, in units of 100MHz.

Package

63:48 Reserved.

Table 2-61.  Selected MSRs Supported by Intel® Xeon Phi™ Processors with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_57H or 06_85H  (Contd.)
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Register Address: E2H, 226 MSR_PKG_CST_CONFIG_CONTROL

C-State Configuration Control (R/W) Package

2:0 Package C-State Limit (R/W) 

Specifies the lowest C-state for the package. This feature does not limit 
the processor core C-state. The power-on default value from bit[2:0] of 
this register reports the deepest package C-state the processor is 
capable to support when manufactured. It is recommended that BIOS 
always read the power-on default value reported from this bit field to 
determine the supported deepest C-state on the processor and leave it 
as default without changing it.

000b - C0/C1 (No package C-state support)

001b - C2

010b - C6 (non retention)*

011b - C6 (Retention)*

100b - Reserved

101b - Reserved

110b - Reserved

111b - No package C-state limit. All C-States supported by the 
processor are available.

Note: C6 retention mode provides more power saving than C6 non-
retention mode. Limiting the package to C6 non retention mode does 
prevent the MSR_PKG_C6_RESIDENCY counter (MSR 3F9h) from being 
incremented.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO registers at 
MSR_PMG_IO_CAPTURE_BASE[15:0] to MWAIT instructions.

14:11 Reserved.

15 CFG Lock (R/O) 

When set, locks bits [15:0] of this register for further writes until the 
next reset occurs.

25 Reserved.

26 C1 State Auto Demotion Enable (R/W) 

When set, the processor will conditionally demote C3/C6/C7 requests 
to C1 based on uncore auto-demote information.

27 Reserved.

28 C1 State Auto Undemotion Enable (R/W) 

When set, enables Undemotion from Demoted C1.

29 PKG C-State Auto Demotion Enable (R/W) 

When set, enables Package C state demotion.

63:30 Reserved.

Register Address: E4H, 228 MSR_PMG_IO_CAPTURE_BASE

Power Management IO Capture Base (R/W) Tile

Table 2-61.  Selected MSRs Supported by Intel® Xeon Phi™ Processors with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_57H or 06_85H  (Contd.)
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15:0 LVL_2 Base Address (R/W) 

Microcode will compare IO-read zone to this base address to determine 
if an MWAIT(C2/3/4) needs to be issued instead of the IO-read. Should 
be programmed to the chipset Plevel_2 IO address.

22:16 C-State Range (R/W) 

The IO-port block size in which IO-redirection will be executed (0-127). 
Should be programmed based on the number of LVLx registers existing 
in the chipset.

63:23 Reserved.

Register Address: E7H, 231 IA32_MPERF

Maximum Performance Frequency Clock Count (R/W) 

See Table 2-2.

Thread

Register Address: E8H, 232 IA32_APERF

Actual Performance Frequency Clock Count (R/W) 

See Table 2-2.

Thread

Register Address: FEH, 254 IA32_MTRRCAP

Memory Type Range Register (R/O) 

See Table 2-2.

Core

Register Address: 13CH, 316 MSR_FEATURE_CONFIG

AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle unsuccessful read of this MSR.

Core

1:0 AES Configuration (RW-L) 

Upon a successful read of this MSR, the configuration of AES 
instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

Otherwise, AES instructions are available.

Note, the AES instruction set is not available if read is unsuccessful. If 
the configuration is not 01b, AES instructions can be mis-configured if a 
privileged agent unintentionally writes 11b.

63:2 Reserved.

Register Address: 140H, 320 MISC_FEATURE_ENABLES

MISC_FEATURE_ENABLES Thread

0 Reserved.

1 User Mode MONITOR and MWAIT (R/W) 

If set to 1, the MONITOR and MWAIT instructions do not cause invalid-
opcode exceptions when executed with CPL > 0 or in virtual-8086 
mode. If MWAIT is executed when CPL > 0 or in virtual-8086 mode, and 
if EAX indicates a C-state other than C0 or C1, the instruction operates 
as if EAX indicated the C-state C1.

63:2 Reserved.

Register Address: 174H, 372 IA32_SYSENTER_CS

See Table 2-2. Thread

Table 2-61.  Selected MSRs Supported by Intel® Xeon Phi™ Processors with a CPUID Signature 
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Register Address: 175H, 373 IA32_SYSENTER_ESP

See Table 2-2. Thread

Register Address: 176H, 374 IA32_SYSENTER_EIP

See Table 2-2. Thread

Register Address: 179H, 377 IA32_MCG_CAP

See Table 2-2. Thread

Register Address: 17AH, 378 IA32_MCG_STATUS

See Table 2-2. Thread

Register Address: 17DH, 381 MSR_SMM_MCA_CAP

Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in SMM.

Thread

31:0 Bank Support (SMM-RO)

One bit per MCA bank. If the bit is set, that bank supports Enhanced 
MCA (Default all 0; does not support EMCA).

55:32 Reserved.

56 Targeted SMI (SMM-RO)

Set if targeted SMI is supported.

57 SMM_CPU_SVRSTR (SMM-RO)

Set if SMM SRAM save/restore feature is supported.

58 SMM_CODE_ACCESS_CHK (SMM-RO)

Set if SMM code access check feature is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1, indicates that the SMM long flow indicator is supported and a 
host-space interface available to SMM handler.

63:60 Reserved.

Register Address: 186H, 390 IA32_PERFEVTSEL0

Performance Monitoring Event Select Register (R/W)

See Table 2-2.

Thread

7:0 Event Select.

15:8 UMask.

16 USR.

17 OS.

18 Edge.

19 PC.

20 INT.

21 AnyThread.

22 EN.

23 INV.

Table 2-61.  Selected MSRs Supported by Intel® Xeon Phi™ Processors with a CPUID Signature 
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31:24 CMASK.

63:32 Reserved.

Register Address: 187H, 391 IA32_PERFEVTSEL1

See Table 2-2. Thread

Register Address: 198H, 408 IA32_PERF_STATUS

See Table 2-2. Package

Register Address: 199H, 409 IA32_PERF_CTL

See Table 2-2. Thread

Register Address: 19AH, 410 IA32_CLOCK_MODULATION

Clock Modulation (R/W) 

See Table 2-2.

Thread

Register Address: 19BH, 411 IA32_THERM_INTERRUPT

Thermal Interrupt Control (R/W) 

See Table 2-2.

Module

Register Address: 19CH, 412 IA32_THERM_STATUS

Thermal Monitor Status (R/W) 

See Table 2-2.

Module

0 Thermal Status (R/O) 

1 Thermal Status Log (R/WC0) 

2 PROTCHOT # or FORCEPR# Status (R/O) 

3 PROTCHOT # or FORCEPR# Log (R/WC0) 

4 Critical Temperature Status (R/O) 

5 Critical Temperature Status Log (R/WC0) 

6 Thermal Threshold #1 Status (R/O) 

7 Thermal Threshold #1 Log (R/WC0) 

8 Thermal Threshold #2 Status (R/O) 

9 Thermal Threshold #2 Log (R/WC0) 

10 Power Limitation Status (R/O) 

11 Power Limitation Log (RWC0) 

15:12 Reserved.

22:16 Digital Readout (R/O) 

26:23 Reserved.

30:27 Resolution in Degrees Celsius (R/O) 

31 Reading Valid (R/O) 

63:32 Reserved.

Register Address: 1A0H, 416 IA32_MISC_ENABLE

Table 2-61.  Selected MSRs Supported by Intel® Xeon Phi™ Processors with a CPUID Signature 
DisplayFamily_DisplayModel Value of 06_57H or 06_85H  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
Vol. 4 2-505



MODEL-SPECIFIC REGISTERS (MSRS)
Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

Thread

0 Fast-Strings Enable

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W) 

6:4 Reserved.

7 Performance Monitoring Available (R) 

10:8 Reserved.

11 Branch Trace Storage Unavailable (R/O) 

12 Processor Event Based Sampling Unavailable (R/O) 

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W) 

18 ENABLE MONITOR FSM (R/W) 

21:19 Reserved.

22 Limit CPUID Maxval (R/W) 

23 xTPR Message Disable (R/W) 

33:24 Reserved.

34 XD Bit Disable (R/W) 

See Table 2-3.

37:35 Reserved.

38 Turbo Mode Disable (R/W)

63:39 Reserved.

Register Address: 1A2H, 418 MSR_TEMPERATURE_TARGET

Temperature Target Package

15:0 Reserved.

23:16 Temperature Target (R) 

29:24 Target Offset (R/W) 

63:30 Reserved.

Register Address: 1A4H, 420 MSR_MISC_FEATURE_CONTROL

Miscellaneous Feature Control (R/W) 

0 DCU Hardware Prefetcher Disable (R/W) 

If 1, disables the L1 data cache prefetcher.

Core

1 L2 Hardware Prefetcher Disable (R/W) 

If 1, disables the L2 hardware prefetcher.

Core

63:2 Reserved.

Register Address: 1A6H, 422 MSR_OFFCORE_RSP_0

Offcore Response Event Select Register (R/W) Shared

Table 2-61.  Selected MSRs Supported by Intel® Xeon Phi™ Processors with a CPUID Signature 
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Register Address: 1A7H, 423 MSR_OFFCORE_RSP_1

Offcore Response Event Select Register (R/W) Shared

Register Address: 1ADH, 429 MSR_TURBO_RATIO_LIMIT

Maximum Ratio Limit of Turbo Mode for Groups of Cores (R/W) Package

0 Reserved.

7:1 Maximum Number of Cores in Group 0

Number active processor cores which operates under the maximum 
ratio limit for group 0. 

Package

15:8 Maximum Ratio Limit for Group 0

Maximum turbo ratio limit when the number of active cores are not 
more than the group 0 maximum core count. 

Package

20:16 Number of Incremental Cores Added to Group 1

Group 1, which includes the specified number of additional cores plus 
the cores in group 0, operates under the group 1 turbo max ratio limit = 
“group 0 Max ratio limit” - “group ratio delta for group 1”.

Package

23:21 Group Ratio Delta for Group 1

An unsigned integer specifying the ratio decrement relative to the Max 
ratio limit to Group 0.

Package

28:24 Number of Incremental Cores Added to Group 2

Group 2, which includes the specified number of additional cores plus all 
the cores in group 1, operates under the group 2 turbo max ratio limit = 
“group 1 Max ratio limit” - “group ratio delta for group 2”.

Package

31:29 Group Ratio Delta for Group 2

An unsigned integer specifying the ratio decrement relative to the Max 
ratio limit for Group 1.

Package

36:32 Number of Incremental Cores Added to Group 3

Group 3, which includes the specified number of additional cores plus all 
the cores in group 2, operates under the group 3 turbo max ratio limit = 
“group 2 Max ratio limit” - “group ratio delta for group 3”.

Package

39:37 Group Ratio Delta for Group 3

An unsigned integer specifying the ratio decrement relative to the Max 
ratio limit for Group 2.

Package

44:40 Number of Incremental Cores Added to Group 4

Group 4, which includes the specified number of additional cores plus all 
the cores in group 3, operates under the group 4 turbo max ratio limit = 
“group 3 Max ratio limit” - “group ratio delta for group 4”.

Package

47:45 Group Ratio Delta for Group 4

An unsigned integer specifying the ratio decrement relative to the Max 
ratio limit for Group 3.

Package

52:48 Number of Incremental Cores Added to Group 5

Group 5, which includes the specified number of additional cores plus all 
the cores in group 4, operates under the group 5 turbo max ratio limit = 
“group 4 Max ratio limit” - “group ratio delta for group 5”.

Package

Table 2-61.  Selected MSRs Supported by Intel® Xeon Phi™ Processors with a CPUID Signature 
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55:53 Group Ratio Delta for Group 5

An unsigned integer specifying the ratio decrement relative to the Max 
ratio limit for Group 4.

Package

60:56 Number of Incremental Cores Added to Group 6

Group 6, which includes the specified number of additional cores plus all 
the cores in group 5, operates under the group 6 turbo max ratio limit = 
“group 5 Max ratio limit” - “group ratio delta for group 6”.

Package

63:61 Group Ratio Delta for Group 6

An unsigned integer specifying the ratio decrement relative to the Max 
ratio limit for Group 5.

Package

Register Address: 1B0H, 432 IA32_ENERGY_PERF_BIAS

See Table 2-2. Thread

Register Address: 1B1H, 433 IA32_PACKAGE_THERM_STATUS

See Table 2-2. Package

Register Address: 1B2H, 434 IA32_PACKAGE_THERM_INTERRUPT

See Table 2-2. Package

Register Address: 1C8H, 456 MSR_LBR_SELECT

Last Branch Record Filtering Select Register (R/W) 

See Section 19.9.2, “Filtering of Last Branch Records.”

Thread

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.

Register Address: 1C9H, 457 MSR_LASTBRANCH_TOS

Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-2) that points to the MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP.

Thread

Register Address: 1D9H, 473 IA32_DEBUGCTL

Debug Control (R/W) Thread

0 LBR

Setting this bit to 1 enables the processor to record a running trace of 
the most recent branches taken by the processor in the LBR stack.
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1 BTF

Setting this bit to 1 enables the processor to treat EFLAGS.TF as single-
step on branches instead of single-step on instructions.

5:2 Reserved.

6 TR

Setting this bit to 1 enables branch trace messages to be sent.

7 BTS

Setting this bit enables branch trace messages (BTMs) to be logged in a 
BTS buffer.

8 BTINT

When clear, BTMs are logged in a BTS buffer in circular fashion. When 
this bit is set, an interrupt is generated by the BTS facility when the 
BTS buffer is full.

9 BTS_OFF_OS

When set, BTS or BTM is skipped if CPL = 0.

10 BTS_OFF_USR

When set, BTS or BTM is skipped if CPL > 0.

11 FREEZE_LBRS_ON_PMI

When set, the LBR stack is frozen on a PMI request.

12 FREEZE_PERFMON_ON_PMI

When set, each ENABLE bit of the global counter control MSR are frozen 
(address 3BFH) on a PMI request.

13 Reserved.

14 FREEZE_WHILE_SMM

When set, freezes perfmon and trace messages while in SMM.

31:15 Reserved.

Register Address: 1DDH, 477 MSR_LER_FROM_LIP

Last Exception Record from Linear IP (R) Thread

Register Address: 1DEH, 478 MSR_LER_TO_LIP

Last Exception Record to Linear IP (R) Thread

Register Address: 1F2H, 498 IA32_SMRR_PHYSBASE

See Table 2-2. Core

Register Address: 1F3H, 499 IA32_SMRR_PHYSMASK

See Table 2-2. Core

Register Address: 200H, 512 IA32_MTRR_PHYSBASE0

See Table 2-2. Core

Register Address: 201H, 513 IA32_MTRR_PHYSMASK0

See Table 2-2. Core

Register Address: 202H, 514 IA32_MTRR_PHYSBASE1
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See Table 2-2. Core

Register Address: 203H, 515 IA32_MTRR_PHYSMASK1

See Table 2-2. Core

Register Address: 204H, 516 IA32_MTRR_PHYSBASE2

See Table 2-2. Core

Register Address: 205H, 517 IA32_MTRR_PHYSMASK2

See Table 2-2. Core

Register Address: 206H, 518 IA32_MTRR_PHYSBASE3

See Table 2-2. Core

Register Address: 207H, 519 IA32_MTRR_PHYSMASK3

See Table 2-2. Core

Register Address: 208H, 520 IA32_MTRR_PHYSBASE4

See Table 2-2. Core

Register Address: 209H, 521 IA32_MTRR_PHYSMASK4

See Table 2-2. Core

Register Address: 20AH, 522 IA32_MTRR_PHYSBASE5

See Table 2-2. Core

Register Address: 20BH, 523 IA32_MTRR_PHYSMASK5

See Table 2-2. Core

Register Address: 20CH, 524 IA32_MTRR_PHYSBASE6

See Table 2-2. Core

Register Address: 20DH, 525 IA32_MTRR_PHYSMASK6

See Table 2-2. Core

Register Address: 20EH, 526 IA32_MTRR_PHYSBASE7

See Table 2-2. Core

Register Address: 20FH, 527 IA32_MTRR_PHYSMASK7

See Table 2-2. Core

Register Address: 250H, 592 IA32_MTRR_FIX64K_00000

See Table 2-2. Core

Register Address: 258H, 600 IA32_MTRR_FIX16K_80000

See Table 2-2. Core

Register Address: 259H, 601 IA32_MTRR_FIX16K_A0000

See Table 2-2. Core

Register Address: 268H, 616 IA32_MTRR_FIX4K_C0000

See Table 2-2. Core

Register Address: 269H, 617 IA32_MTRR_FIX4K_C8000

See Table 2-2. Core
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Register Address: 26AH, 618 IA32_MTRR_FIX4K_D0000

See Table 2-2. Core

Register Address: 26BH, 619 IA32_MTRR_FIX4K_D8000

See Table 2-2. Core

Register Address: 26CH, 620 IA32_MTRR_FIX4K_E0000

See Table 2-2. Core

Register Address: 26DH, 621 IA32_MTRR_FIX4K_E8000

See Table 2-2. Core

Register Address: 26EH, 622 IA32_MTRR_FIX4K_F0000

See Table 2-2. Core

Register Address: 26FH, 623 IA32_MTRR_FIX4K_F8000

See Table 2-2. Core

Register Address: 277H, 631 IA32_PAT

See Table 2-2. Core

Register Address: 2FFH, 767 IA32_MTRR_DEF_TYPE

Default Memory Types (R/W) 

See Table 2-2.

Core

Register Address: 309H, 777 IA32_FIXED_CTR0

Fixed-Function Performance Counter Register 0 (R/W) 

See Table 2-2.

Thread

Register Address: 30AH, 778 IA32_FIXED_CTR1

Fixed-Function Performance Counter Register 1 (R/W) 

See Table 2-2.

Thread

Register Address: 30BH, 779 IA32_FIXED_CTR2

Fixed-Function Performance Counter Register 2 (R/W) 

See Table 2-2.

Thread

Register Address: 345H, 837 IA32_PERF_CAPABILITIES

See Table 2-2. See Section 19.4.1, “IA32_DEBUGCTL MSR.” Package

Register Address: 38DH, 909 IA32_FIXED_CTR_CTRL

Fixed-Function-Counter Control Register (R/W) 

See Table 2-2.

Thread

Register Address: 38EH, 910 IA32_PERF_GLOBAL_STATUS

See Table 2-2. Thread

Register Address: 38FH, 911 IA32_PERF_GLOBAL_CTRL

See Table 2-2. Thread

Register Address: 390H, 912 IA32_PERF_GLOBAL_OVF_CTRL

See Table 2-2. Thread
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Register Address: 3F1H, 1009 IA32_PEBS_ENABLE (MSR_PEBS_ENABLE)

See Table 2-2. Thread

Register Address: 3F8H, 1016 MSR_PKG_C3_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

Package

63:0 Package C3 Residency Counter (R/O)

Register Address: 3F9H, 1017 MSR_PKG_C6_RESIDENCY

63:0 Package C6 Residency Counter (R/O) Package

Register Address: 3FAH, 1018 MSR_PKG_C7_RESIDENCY

63:0 Package C7 Residency Counter (R/O) Package

Register Address: 3FCH, 1020 MSR_MC0_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

Module

63:0 Module C0 Residency Counter (R/O)

Register Address: 3FDH, 1021 MSR_MC6_RESIDENCY

63:0 Module C6 Residency Counter (R/O) Module

Register Address: 3FFH, 1023 MSR_CORE_C6_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

Core

63:0 CORE C6 Residency Counter (R/O)

Register Address: 400H, 1024 IA32_MC0_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Core

Register Address: 401H, 1025 IA32_MC0_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Core

Register Address: 402H, 1026 IA32_MC0_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Core

Register Address: 404H, 1028 IA32_MC1_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Core

Register Address: 405H, 1029 IA32_MC1_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Core

Register Address: 408H, 1032 IA32_MC2_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Core

Register Address: 409H, 1033 IA32_MC2_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Core

Register Address: 40AH, 1034 IA32_MC2_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Core

Register Address: 40CH, 1036 IA32_MC3_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Core

Table 2-61.  Selected MSRs Supported by Intel® Xeon Phi™ Processors with a CPUID Signature 
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Register Address: 40DH, 1037 IA32_MC3_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Core

Register Address: 40EH, 1038 IA32_MC3_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Core

Register Address: 410H, 1040 IA32_MC4_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Core

Register Address: 411H, 1041 IA32_MC4_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Core

Register Address: 412H, 1042 IA32_MC4_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
MSR_MC4_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-protection 
exception.

Core

Register Address: 414H, 1044 IA32_MC5_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Package

Register Address: 415H, 1045 IA32_MC5_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Package

Register Address: 416H, 1046 IA32_MC5_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” Package

Register Address: 4C1H, 1217 IA32_A_PMC0

See Table 2-2. Thread

Register Address: 4C2H, 1218 IA32_A_PMC1

See Table 2-2. Thread

Register Address: 600H, 1536 IA32_DS_AREA

DS Save Area (R/W)

See Table 2-2.

Thread

Register Address: 606H, 1542 MSR_RAPL_POWER_UNIT

Unit Multipliers Used in RAPL Interfaces (R/O) Package

3:0 Power Units

See Section 16.10.1, “RAPL Interfaces.”

Package

7:4 Reserved. Package

12:8 Energy Status Units

Energy related information (in Joules) is based on the multiplier, 
1/2^ESU; where ESU is an unsigned integer represented by bits 12:8. 
Default value is 0EH (or 61 micro-joules).

Package

15:13 Reserved. Package

19:16 Time Units

See Section 16.10.1, “RAPL Interfaces.”

Package

Table 2-61.  Selected MSRs Supported by Intel® Xeon Phi™ Processors with a CPUID Signature 
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63:20 Reserved.

Register Address: 60DH, 1549 MSR_PKG_C2_RESIDENCY

Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state 
parameters or ACPI C-states.

Package

63:0 Package C2 Residency Counter (R/O)

Register Address: 610H, 1552 MSR_PKG_POWER_LIMIT

PKG RAPL Power Limit Control (R/W) 

See Section 16.10.3, “Package RAPL Domain.”

Package

Register Address: 611H, 1553 MSR_PKG_ENERGY_STATUS

PKG Energy Status (R/O) 

See Section 16.10.3, “Package RAPL Domain.”

Package

Register Address: 613H, 1555 MSR_PKG_PERF_STATUS

PKG Perf Status (R/O) 

See Section 16.10.3, “Package RAPL Domain.”

Package

Register Address: 614H, 1556 MSR_PKG_POWER_INFO

PKG RAPL Parameters (R/W) 

See Section 16.10.3, “Package RAPL Domain.”

Package

Register Address: 618H, 1560 MSR_DRAM_POWER_LIMIT

DRAM RAPL Power Limit Control (R/W) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 619H, 1561 MSR_DRAM_ENERGY_STATUS

DRAM Energy Status (R/O) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 61BH, 1563 MSR_DRAM_PERF_STATUS

DRAM Performance Throttling Status (R/O) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 61CH, 1564 MSR_DRAM_POWER_INFO

DRAM RAPL Parameters (R/W) 

See Section 16.10.5, “DRAM RAPL Domain.”

Package

Register Address: 638H, 1592 MSR_PP0_POWER_LIMIT

PP0 RAPL Power Limit Control (R/W) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

Register Address: 639H, 1593 MSR_PP0_ENERGY_STATUS

PP0 Energy Status (R/O) 

See Section 16.10.4, “PP0/PP1 RAPL Domains.”

Package

Register Address: 648H, 1608 MSR_CONFIG_TDP_NOMINAL

Base TDP Ratio (R/O)

See Table 2-25.

Package

Table 2-61.  Selected MSRs Supported by Intel® Xeon Phi™ Processors with a CPUID Signature 
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Register Address: 649H, 1609 MSR_CONFIG_TDP_LEVEL1

ConfigTDP Level 1 ratio and power level (R/O)

See Table 2-25.

Package

Register Address: 64AH, 1610 MSR_CONFIG_TDP_LEVEL2

ConfigTDP Level 2 ratio and power level (R/O)

See Table 2-25.

Package

Register Address: 64BH, 1611 MSR_CONFIG_TDP_CONTROL

ConfigTDP Control (R/W)

See Table 2-25.

Package

Register Address: 64CH, 1612 MSR_TURBO_ACTIVATION_RATIO

ConfigTDP Control (R/W)

See Table 2-25.

Package

Register Address: 690H, 1680 MSR_CORE_PERF_LIMIT_REASONS

Indicator of Frequency Clipping in Processor Cores (R/W)

(Frequency refers to processor core frequency.)

Package

0 PROCHOT Status (R0)

1 Thermal Status (R0)

5:2 Reserved.

6 VR Therm Alert Status (R0)

7 Reserved.

8 Electrical Design Point Status (R0)

63:9 Reserved.

Register Address: 6E0H, 1760 IA32_TSC_DEADLINE

TSC Target of Local APIC’s TSC Deadline Mode (R/W) 

See Table 2-2.

Core

Register Address: 802H, 2050 IA32_X2APIC_APICID

x2APIC ID Register (R/O) Thread

Register Address: 803H, 2051 IA32_X2APIC_VERSION

x2APIC Version Register (R/O) Thread

Register Address: 808H, 2056 IA32_X2APIC_TPR

x2APIC Task Priority Register (R/W) Thread

Register Address: 80AH, 2058 IA32_X2APIC_PPR

x2APIC Processor Priority Register (R/O) Thread

Register Address: 80BH, 2059 IA32_X2APIC_EOI

x2APIC EOI Register (W/O) Thread

Register Address: 80DH, 2061 IA32_X2APIC_LDR

x2APIC Logical Destination Register (R/O) Thread
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Register Address: 80FH, 2063 IA32_X2APIC_SIVR

x2APIC Spurious Interrupt Vector Register (R/W) Thread

Register Address: 810H, 2064 IA32_X2APIC_ISR0

x2APIC In-Service Register Bits [31:0] (R/O) Thread

Register Address: 811H, 2065 IA32_X2APIC_ISR1

x2APIC In-Service Register Bits [63:32] (R/O) Thread

Register Address: 812H, 2066 IA32_X2APIC_ISR2

x2APIC In-Service Register Bits [95:64] (R/O) Thread

Register Address: 813H, 2067 IA32_X2APIC_ISR3

x2APIC In-Service Register Bits [127:96] (R/O) Thread

Register Address: 814H, 2068 IA32_X2APIC_ISR4

x2APIC In-Service Register Bits [159:128] (R/O) Thread

Register Address: 815H, 2069 IA32_X2APIC_ISR5

x2APIC In-Service Register Bits [191:160] (R/O) Thread

Register Address: 816H, 2070 IA32_X2APIC_ISR6

x2APIC In-Service Register Bits [223:192] (R/O) Thread

Register Address: 817H, 2071 IA32_X2APIC_ISR7

x2APIC In-Service Register Bits [255:224] (R/O) Thread

Register Address: 818H, 2072 IA32_X2APIC_TMR0

x2APIC Trigger Mode Register Bits [31:0] (R/O) Thread

Register Address: 819H, 2073 IA32_X2APIC_TMR1

x2APIC Trigger Mode Register Bits [63:32] (R/O) Thread

Register Address: 81AH, 2074 IA32_X2APIC_TMR2

x2APIC Trigger Mode Register Bits [95:64] (R/O) Thread

Register Address: 81BH, 2075 IA32_X2APIC_TMR3

x2APIC Trigger Mode Register Bits [127:96] (R/O) Thread

Register Address: 81CH, 2076 IA32_X2APIC_TMR4

x2APIC Trigger Mode Register Bits [159:128] (R/O) Thread

Register Address: 81DH, 2077 IA32_X2APIC_TMR5

x2APIC Trigger Mode Register Bits [191:160] (R/O) Thread

Register Address: 81EH, 2078 IA32_X2APIC_TMR6

x2APIC Trigger Mode Register Bits [223:192] (R/O) Thread

Register Address: 81FH, 2079 IA32_X2APIC_TMR7

x2APIC Trigger Mode Register Bits [255:224] (R/O) Thread

Register Address: 820H, 2080 IA32_X2APIC_IRR0

x2APIC Interrupt Request Register Bits [31:0] (R/O) Thread

Register Address: 821H, 2081 IA32_X2APIC_IRR1
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x2APIC Interrupt Request Register Bits [63:32] (R/O) Thread

Register Address: 822H, 2082 IA32_X2APIC_IRR2

x2APIC Interrupt Request Register Bits [95:64] (R/O) Thread

Register Address: 823H, 2083 IA32_X2APIC_IRR3

x2APIC Interrupt Request Register Bits [127:96] (R/O) Thread

Register Address: 824H, 2084 IA32_X2APIC_IRR4

x2APIC Interrupt Request Register Bits [159:128] (R/O) Thread

Register Address: 825H, 2085 IA32_X2APIC_IRR5

x2APIC Interrupt Request Register Bits [191:160] (R/O) Thread

Register Address: 826H, 2086 IA32_X2APIC_IRR6

x2APIC Interrupt Request Register Bits [223:192] (R/O) Thread

Register Address: 827H, 2087 IA32_X2APIC_IRR7

x2APIC Interrupt Request Register Bits [255:224] (R/O) Thread

Register Address: 828H, 2088 IA32_X2APIC_ESR

x2APIC Error Status Register (R/W) Thread

Register Address: 82FH, 2095 IA32_X2APIC_LVT_CMCI

x2APIC LVT Corrected Machine Check Interrupt Register (R/W) Thread

Register Address: 830H, 2096 IA32_X2APIC_ICR

x2APIC Interrupt Command Register (R/W) Thread

Register Address: 832H, 2098 IA32_X2APIC_LVT_TIMER

x2APIC LVT Timer Interrupt Register (R/W) Thread

Register Address: 833H, 2099 IA32_X2APIC_LVT_THERMAL

x2APIC LVT Thermal Sensor Interrupt Register (R/W) Thread

Register Address: 834H, 2100 IA32_X2APIC_LVT_PMI

x2APIC LVT Performance Monitor Register (R/W) Thread

Register Address: 835H, 2101 IA32_X2APIC_LVT_LINT0

x2APIC LVT LINT0 Register (R/W) Thread

Register Address: 836H, 2102 IA32_X2APIC_LVT_LINT1

x2APIC LVT LINT1 Register (R/W) Thread

Register Address: 837H, 2103 IA32_X2APIC_LVT_ERROR

x2APIC LVT Error Register (R/W) Thread

Register Address: 838H, 2104 IA32_X2APIC_INIT_COUNT

x2APIC Initial Count Register (R/W) Thread

Register Address: 839H, 2105 IA32_X2APIC_CUR_COUNT

x2APIC Current Count Register (R/O) Thread

Register Address: 83EH, 2110 IA32_X2APIC_DIV_CONF

x2APIC Divide Configuration Register (R/W) Thread
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DisplayFamily_DisplayModel Value of 06_57H or 06_85H  (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
Vol. 4 2-517



MODEL-SPECIFIC REGISTERS (MSRS)
Table 2-62 lists model-specific registers that are supported by the Intel® Xeon Phi™ processor 7215, 7285, 7295 
series based on the Knights Mill microarchitecture.

Register Address: 83FH, 2111 IA32_X2APIC_SELF_IPI

x2APIC Self IPI Register (W/O) Thread

Register Address: C000_0080H IA32_EFER

Extended Feature Enables

See Table 2-2.

Thread

Register Address: C000_0081H IA32_STAR

System Call Target Address (R/W)

See Table 2-2.

Thread

Register Address: C000_0082H IA32_LSTAR

IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

Thread

Register Address: C000_0084H IA32_FMASK

System Call Flag Mask (R/W)

See Table 2-2.

Thread

Register Address: C000_0100H IA32_FS_BASE

Map of BASE Address of FS (R/W)

See Table 2-2.

Thread

Register Address: C000_0101H IA32_GS_BASE

Map of BASE Address of GS (R/W)

See Table 2-2.

Thread

Register Address: C000_0102H IA32_KERNEL_GS_BASE

Swap Target of BASE Address of GS (R/W) 

See Table 2-2.

Thread

Register Address: C000_0103H IA32_TSC_AUX

AUXILIARY TSC Signature (R/W) 

See Table 2-2 

Thread

Table 2-62.  Additional MSRs Supported by the Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series 
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Register Address: 9BH, 155 IA32_SMM_MONITOR_CTL

SMM Monitor Configuration (R/W)

This MSR is readable only if VMX is enabled, and writeable only if VMX is enabled and in SMM mode, and is used to 
configure the VMX MSEG base address. See Table 2-2.

Core

Register Address: 480H, 1152 IA32_VMX_BASIC
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Reporting Register of Basic VMX Capabilities (R/O) 

See Table 2-2.

Core

Register Address: 481H, 1153 IA32_VMX_PINBASED_CTLS

Capability Reporting Register of Pin-based VM-execution Controls (R/O) 

See Table 2-2.

Core

Register Address: 482H, 1154 IA32_VMX_PROCBASED_CTLS

Capability Reporting Register of Primary Processor-based VM-execution Controls (R/O) Core

Register Address: 483H, 1155 IA32_VMX_EXIT_CTLS

Capability Reporting Register of VM-exit Controls (R/O) 

See Table 2-2.

Core

Register Address: 484H, 1156 IA32_VMX_ENTRY_CTLS

Capability Reporting Register of VM-entry Controls (R/O) 

See Table 2-2.

Core

Register Address: 485H, 1157 IA32_VMX_MISC

Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 2-2.

Core

Register Address: 486H, 1158 IA32_VMX_CR0_FIXED0

Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 2-2.

Core

Register Address: 487H, 1159 IA32_VMX_CR0_FIXED1

Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 2-2.

Core

Register Address: 488H, 1160 IA32_VMX_CR4_FIXED0

Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 2-2.

Core

Register Address: 489H, 1161 IA32_VMX_CR4_FIXED1

Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 2-2.

Core

Register Address: 48AH, 1162 IA32_VMX_VMCS_ENUM

Capability Reporting Register of VMCS Field Enumeration (R/O) 

See Table 2-2.

Core

Register Address: 48BH, 1163 IA32_VMX_PROCBASED_CTLS2

Capability Reporting Register of Secondary Processor-Based VM-Execution Controls (R/O)

See Table 2-2.

Core

Register Address: 48CH, 1164 IA32_VMX_EPT_VPID_ENUM

Capability Reporting Register of EPT and VPID (R/O)

See Table 2-2.

Core

Register Address: 48DH, 1165 IA32_VMX_TRUE_PINBASED_CTLS

Table 2-62.  Additional MSRs Supported by the Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series 
with a CPUID Signature DisplayFamily_DisplayModel Value of 06_85H  (Contd.)
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2.19 MSRS IN THE PENTIUM® 4 AND INTEL® XEON® PROCESSORS
Table 2-63 lists MSRs (architectural and model-specific) that are defined across processor generations based on 
Intel NetBurst microarchitecture. The processor can be identified by its CPUID signatures of DisplayFamily 
encoding of 0FH, see Table 2-1.
• MSRs with an “IA32_” prefix are designated as “architectural.” This means that the functions of these MSRs and 

their addresses remain the same for succeeding families of IA-32 processors.
• MSRs with an “MSR_” prefix are model specific with respect to address functionalities. The column “Model Avail-

ability” lists the model encoding value(s) within the Pentium 4 and Intel Xeon processor family at the specified 
register address. The model encoding value of a processor can be queried using CPUID. See “CPUID—CPU 
Identification” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

Capability Reporting Register of Pin-Based VM-Execution Flex Controls (R/O)

See Table 2-2.

Core

Register Address: 48EH, 1166 IA32_VMX_TRUE_PROCBASED_CTLS

Capability Reporting Register of Primary Processor-Based VM-Execution Flex Controls (R/O)

See Table 2-2.

Core

Register Address: 48FH, 1167 IA32_VMX_TRUE_EXIT_CTLS

Capability Reporting Register of VM-Exit Flex Controls (R/O)

See Table 2-2.

Core

Register Address: 490H, 1168 IA32_VMX_TRUE_ENTRY_CTLS

Capability Reporting Register of VM-Entry Flex Controls (R/O)

See Table 2-2.

Core

Register Address: 491H, 1169 IA32_VMX_FMFUNC

Capability Reporting Register of VM-Function Controls (R/O)

See Table 2-2.

Core

Table 2-63.  MSRs in the Pentium® 4 and Intel® Xeon® Processors 

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Model 
Availability

Shared/
Unique1

Register Address: 0H, 0 IA32_P5_MC_ADDR

See Section 2.23, “MSRs in Pentium Processors.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 1H, 1 IA32_P5_MC_TYPE

See Section 2.23, “MSRs in Pentium Processors.” 0, 1, 2, 3, 4, 6 Shared 

Register Address: 6H, 6 IA32_MONITOR_FILTER_LINE_SIZE

See Section 10.10.5, “Monitor/Mwait Address Range Determination.” 3, 4, 6 Shared

Register Address: 10H, 16 IA32_TIME_STAMP_COUNTER

Time Stamp Counter

See Table 2-2.

0, 1, 2, 3, 4, 6 Unique

Table 2-62.  Additional MSRs Supported by the Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series 
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On earlier processors, only the lower 32 bits are writable. On any write to the lower 32 bits, the upper 
32 bits are cleared. For processor family 0FH, models 3 and 4: all 64 bits are writable.

Register Address: 17H, 23 IA32_PLATFORM_ID

Platform ID (R) 

See Table 2-2.

The operating system can use this MSR to determine “slot” information for the processor and the 
proper microcode update to load.

0, 1, 2, 3, 4, 6 Shared

Register Address: 1BH, 27 IA32_APIC_BASE

APIC Location and Status (R/W)

See Table 2-2. See Section 12.4.4, “Local APIC Status and Location.”

0, 1, 2, 3, 4, 6 Unique

Register Address: 2AH, 42 MSR_EBC_HARD_POWERON

Processor Hard Power-On Configuration

(R/W) Enables and disables processor features.

(R) Indicates current processor configuration.

0, 1, 2, 3, 4, 6 Shared

0 Output Tri-state Enabled (R)

Indicates whether tri-state output is enabled (1) or disabled (0) as 
set by the strapping of SMI#. The value in this bit is written on 
the deassertion of RESET#; the bit is set to 1 when the address 
bus signal is asserted.

1 Execute BIST (R) 

Indicates whether the execution of the BIST is enabled (1) or 
disabled (0) as set by the strapping of INIT#. The value in this bit 
is written on the deassertion of RESET#; the bit is set to 1 when 
the address bus signal is asserted.

2 In Order Queue Depth (R)

Indicates whether the in order queue depth for the system bus is 
1 (1) or up to 12 (0) as set by the strapping of A7#. The value in 
this bit is written on the deassertion of RESET#; the bit is set to 
1 when the address bus signal is asserted.

3 MCERR# Observation Disabled (R)

Indicates whether MCERR# observation is enabled (0) or disabled 
(1) as determined by the strapping of A9#. The value in this bit is 
written on the deassertion of RESET#; the bit is set to 1 when 
the address bus signal is asserted.

4 BINIT# Observation Enabled (R)

Indicates whether BINIT# observation is enabled (0) or disabled 
(1) as determined by the strapping of A10#. The value in this bit 
is written on the deassertion of RESET#; the bit is set to 1 when 
the address bus signal is asserted.

6:5 APIC Cluster ID (R) 

Contains the logical APIC cluster ID value as set by the strapping 
of A12# and A11#. The logical cluster ID value is written into the 
field on the deassertion of RESET#; the field is set to 1 when the 
address bus signal is asserted.
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7 Bus Park Disable (R) 

Indicates whether bus park is enabled (0) or disabled (1) as set by 
the strapping of A15#. The value in this bit is written on the 
deassertion of RESET#; the bit is set to 1 when the address bus 
signal is asserted.

11:8 Reserved.

13:12 Agent ID (R) 

Contains the logical agent ID value as set by the strapping of 
BR[3:0]. The logical ID value is written into the field on the 
deassertion of RESET#; the field is set to 1 when the address bus 
signal is asserted.

63:14 Reserved.

Register Address: 2BH, 43 MSR_EBC_SOFT_POWERON

Processor Soft Power-On Configuration (R/W) 

Enables and disables processor features.

0, 1, 2, 3, 4, 6 Shared

0 RCNT/SCNT On Request Encoding Enable (R/W) 

Controls the driving of RCNT/SCNT on the request encoding. Set 
to enable (1); clear to disabled (0, default).

1 Data Error Checking Disable (R/W) 

Set to disable system data bus parity checking; clear to enable 
parity checking.

2 Response Error Checking Disable (R/W) 

Set to disable (default); clear to enable. 

3 Address/Request Error Checking Disable (R/W) 

Set to disable (default); clear to enable.

4 Initiator MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator bus requests (default); 
clear to enable. 

5 Internal MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator internal errors 
(default); clear to enable. 

6 BINIT# Driver Disable (R/W) 

Set to disable BINIT# driver (default); clear to enable driver.

63:7 Reserved.

Register Address: 2CH, 44 MSR_EBC_FREQUENCY_ID

Processor Frequency Configuration

The bit field layout of this MSR varies according to the MODEL value in the CPUID version information. 
The following bit field layout applies to Pentium 4 and Xeon Processors with MODEL encoding equal or 
greater than 2. 

(R) The field Indicates the current processor frequency configuration.

2,3, 4, 6 Shared

15:0 Reserved.
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18:16 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

EncodingScalable Bus Speed
000B 100 MHz (Model 2)
000B 266 MHz (Model 3 or 4)
001B 133 MHz
010B 200 MHz
011B 166 MHz
100B 333 MHz (Model 6)

133.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 001B. 

166.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 000B and model encoding = 
3 or 4.

333.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 100B and model encoding = 
6.

All other values are reserved.

23:19 Reserved.

31:24 Core Clock Frequency to System Bus Frequency Ratio (R)

The processor core clock frequency to system bus frequency 
ratio observed at the deassertion of the reset pin.

63:32 Reserved.

Register Address: 2CH, 44 MSR_EBC_FREQUENCY_ID

Processor Frequency Configuration (R) 

The bit field layout of this MSR varies according to the MODEL value of the CPUID version information. 
This bit field layout applies to Pentium 4 and Xeon Processors with MODEL encoding less than 2.

Indicates current processor frequency configuration.

0, 1 Shared

20:0 Reserved.

23:21 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

Encoding Scalable Bus Speed
000B 100 MHz

All others values reserved.

63:24 Reserved.

Register Address: 3AH, 58 IA32_FEATURE_CONTROL

Control Features in IA-32 Processor (R/W)

See Table 2-2.

(If CPUID.01H:ECX.[bit 5])

3, 4, 6 Unique

Register Address: 79H, 121 IA32_BIOS_UPDT_TRIG
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BIOS Update Trigger Register (W) 

See Table 2-2.

0, 1, 2, 3, 4, 6 Shared

Register Address: 8BH, 139 IA32_BIOS_SIGN_ID

BIOS Update Signature ID (R/W)

See Table 2-2.

0, 1, 2, 3, 4, 6 Unique

Register Address: 9BH, 155 IA32_SMM_MONITOR_CTL

SMM Monitor Configuration (R/W)

See Table 2-2.

3, 4, 6 Unique

Register Address: FEH, 254 IA32_MTRRCAP

MTRR Information

See Section 13.11.1, “MTRR Feature Identification.”

0, 1, 2, 3, 4, 6 Unique

Register Address: 174H, 372 IA32_SYSENTER_CS

CS Register Target for CPL 0 Code (R/W)

See Table 2-2 and Section 6.8.7, “Performing Fast Calls to System Procedures with the SYSENTER and 
SYSEXIT Instructions.”

0, 1, 2, 3, 4, 6 Unique

Register Address: 175H, 373 IA32_SYSENTER_ESP

Stack Pointer for CPL 0 Stack (R/W)

See Table 2-2 and Section 6.8.7, “Performing Fast Calls to System Procedures with the SYSENTER and 
SYSEXIT Instructions.”

0, 1, 2, 3, 4, 6 Unique

Register Address: 176H, 374 IA32_SYSENTER_EIP

CPL 0 Code Entry Point (R/W)

See Table 2-2 and Section 6.8.7, “Performing Fast Calls to System Procedures with the SYSENTER and 
SYSEXIT Instructions.”

0, 1, 2, 3, 4, 6 Unique

Register Address: 179H, 377 IA32_MCG_CAP

Machine Check Capabilities (R)

See Table 2-2 and Section 17.3.1.1, “IA32_MCG_CAP MSR.”

0, 1, 2, 3, 4, 6 Unique

Register Address: 17AH, 378 IA32_MCG_STATUS

Machine Check Status (R)

See Table 2-2 and Section 17.3.1.2, “IA32_MCG_STATUS MSR.”

0, 1, 2, 3, 4, 6 Unique

Register Address: 17BH, 379 IA32_MCG_CTL

Machine Check Feature Enable (R/W)

See Table 2-2 and Section 17.3.1.3, “IA32_MCG_CTL MSR.”

Register Address: 180H, 384 MSR_MCG_RAX

Machine Check EAX/RAX Save State

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique

63:0 Contains register state at time of machine check error. When in 
non-64-bit modes at the time of the error, bits 63-32 do not 
contain valid data.

Register Address: 181H, 385 MSR_MCG_RBX
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Machine Check EBX/RBX Save State

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique

63:0 Contains register state at time of machine check error. When in 
non-64-bit modes at the time of the error, bits 63-32 do not 
contain valid data.

Register Address: 182H, 386 MSR_MCG_RCX

Machine Check ECX/RCX Save State

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique

63:0 Contains register state at time of machine check error. When in 
non-64-bit modes at the time of the error, bits 63-32 do not 
contain valid data.

Register Address: 183H, 387 MSR_MCG_RDX

Machine Check EDX/RDX Save State

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique

63:0 Contains register state at time of machine check error. When in 
non-64-bit modes at the time of the error, bits 63-32 do not 
contain valid data.

Register Address: 184H, 388 MSR_MCG_RSI

Machine Check ESI/RSI Save State

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique

63:0 Contains register state at time of machine check error. When in 
non-64-bit modes at the time of the error, bits 63-32 do not 
contain valid data.

Register Address: 185H, 389 MSR_MCG_RDI

Machine Check EDI/RDI Save State

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique

63:0 Contains register state at time of machine check error. When in 
non-64-bit modes at the time of the error, bits 63-32 do not 
contain valid data.

Register Address: 186H, 390 MSR_MCG_RBP

Machine Check EBP/RBP Save State

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique

63:0 Contains register state at time of machine check error. When in 
non-64-bit modes at the time of the error, bits 63-32 do not 
contain valid data.

Register Address: 187H, 391 MSR_MCG_RSP

Machine Check ESP/RSP Save State

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique

63:0 Contains register state at time of machine check error. When in 
non-64-bit modes at the time of the error, bits 63-32 do not 
contain valid data.

Register Address: 188H, 392 MSR_MCG_RFLAGS
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Machine Check EFLAGS/RFLAG Save State

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique

63:0 Contains register state at time of machine check error. When in 
non-64-bit modes at the time of the error, bits 63-32 do not 
contain valid data.

Register Address: 189H, 393 MSR_MCG_RIP

Machine Check EIP/RIP Save State

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique

63:0 Contains register state at time of machine check error. When in 
non-64-bit modes at the time of the error, bits 63-32 do not 
contain valid data.

Register Address: 18AH, 394 MSR_MCG_MISC

Machine Check Miscellaneous

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique

0 DS

When set, the bit indicates that a page assist or page fault 
occurred during DS normal operation. The processors response is 
to shut down. 

The bit is used as an aid for debugging DS handling code. It is the 
responsibility of the user (BIOS or operating system) to clear this 
bit for normal operation.

63:1 Reserved.

Register Address: 18BH−18FH, 
395−399

MSR_MCG_RESERVED1−MSR_MCG_RESERVED5

Reserved.

Register Address: 190H, 400 MSR_MCG_R8

Machine Check R8

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique

63:0 Registers R8-15 (and the associated state-save MSRs) exist only 
in Intel 64 processors. These registers contain valid information 
only when the processor is operating in 64-bit mode at the time 
of the error.

Register Address: 191H, 401 MSR_MCG_R9

Machine Check R9D/R9

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique

63:0 Registers R8-15 (and the associated state-save MSRs) exist only 
in Intel 64 processors. These registers contain valid information 
only when the processor is operating in 64-bit mode at the time 
of the error.

Register Address: 192H, 402 MSR_MCG_R10

Machine Check R10

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique
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63:0 Registers R8-15 (and the associated state-save MSRs) exist only 
in Intel 64 processors. These registers contain valid information 
only when the processor is operating in 64-bit mode at the time 
of the error.

Register Address: 193H, 403 MSR_MCG_R11

Machine Check R11

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique

63:0 Registers R8-15 (and the associated state-save MSRs) exist only 
in Intel 64 processors. These registers contain valid information 
only when the processor is operating in 64-bit mode at the time 
of the error.

Register Address: 194H, 404 MSR_MCG_R12

Machine Check R12

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique

63:0 Registers R8-15 (and the associated state-save MSRs) exist only 
in Intel 64 processors. These registers contain valid information 
only when the processor is operating in 64-bit mode at the time 
of the error.

Register Address: 195H, 405 MSR_MCG_R13

Machine Check R13

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique

63:0 Registers R8-15 (and the associated state-save MSRs) exist only 
in Intel 64 processors. These registers contain valid information 
only when the processor is operating in 64-bit mode at the time 
of the error.

Register Address: 196H, 406 MSR_MCG_R14

Machine Check R14

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique

63:0 Registers R8-15 (and the associated state-save MSRs) exist only 
in Intel 64 processors. These registers contain valid information 
only when the processor is operating in 64-bit mode at the time 
of the error.

Register Address: 197H, 407 MSR_MCG_R15

Machine Check R15

See Section 17.3.2.6, “IA32_MCG Extended Machine Check State MSRs.”

0, 1, 2, 3, 4, 6 Unique

63:0 Registers R8-15 (and the associated state-save MSRs) exist only 
in Intel 64 processors. These registers contain valid information 
only when the processor is operating in 64-bit mode at the time 
of the error.

Register Address: 198H, 408 IA32_PERF_STATUS

See Table 2-2. See Section 16.1, “Enhanced Intel Speedstep® Technology.” 3, 4, 6 Unique

Register Address: 199H, 409 IA32_PERF_CTL

See Table 2-2. See Section 16.1, “Enhanced Intel Speedstep® Technology.” 3, 4, 6 Unique
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Register Address: 19AH, 410 IA32_CLOCK_MODULATION

Thermal Monitor Control (R/W)

See Table 2-2 and Section 16.8.3, “Software Controlled Clock Modulation.”

0, 1, 2, 3, 4, 6 Unique

Register Address: 19BH, 411 IA32_THERM_INTERRUPT

Thermal Interrupt Control (R/W)

See Section 16.8.2, “Thermal Monitor,” and Table 2-2.

0, 1, 2, 3, 4, 6 Unique

Register Address: 19CH, 412 IA32_THERM_STATUS

Thermal Monitor Status (R/W)

See Section 16.8.2, “Thermal Monitor,” and Table 2-2.

0, 1, 2, 3, 4, 6 Shared

Register Address: 19DH, 413 MSR_THERM2_CTL

Thermal Monitor 2 Control

For Family F, Model 3 processors: When read, specifies the value of the target TM2 transition last 
written. When set, it sets the next target value for TM2 transition. 

3 Shared

For Family F, Model 4 and Model 6 processors: When read, specifies the value of the target TM2 
transition last written. Writes may cause #GP exceptions.

4, 6 Shared

Register Address: 1A0H, 416 IA32_MISC_ENABLE

Enable Miscellaneous Processor Features (R/W) 0, 1, 2, 3, 4, 6 Shared

0 Fast-Strings Enable. See Table 2-2.

1 Reserved.

2 x87 FPU Fopcode Compatibility Mode Enable

3 Thermal Monitor 1 Enable

See Section 16.8.2, “Thermal Monitor,” and Table 2-2.

4 Split-Lock Disable

When set, the bit causes an #AC exception to be issued instead 
of a split-lock cycle. Operating systems that set this bit must align 
system structures to avoid split-lock scenarios. 

When the bit is clear (default), normal split-locks are issued to the 
bus.

This debug feature is specific to the Pentium 4 processor.

5 Reserved.

6 Third-Level Cache Disable (R/W)

When set, the third-level cache is disabled; when clear (default) 
the third-level cache is enabled. This flag is reserved for 
processors that do not have a third-level cache. 

Note that the bit controls only the third-level cache; and only if 
overall caching is enabled through the CD flag of control register 
CR0, the page-level cache controls, and/or the MTRRs.

See Section 13.5.4, “Disabling and Enabling the L3 Cache.”

7 Performance Monitoring Available (R)

See Table 2-2.
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8 Suppress Lock Enable

When set, assertion of LOCK on the bus is suppressed during a 
Split Lock access. When clear (default), LOCK is not suppressed.

9 Prefetch Queue Disable

When set, disables the prefetch queue. When clear (default), 
enables the prefetch queue.

10 FERR# Interrupt Reporting Enable (R/W) 

When set, interrupt reporting through the FERR# pin is enabled; 
when clear, this interrupt reporting function is disabled. 

When this flag is set and the processor is in the stop-clock state 
(STPCLK# is asserted), asserting the FERR# pin signals to the 
processor that an interrupt (such as, INIT#, BINIT#, INTR, NMI, 
SMI#, or RESET#) is pending and that the processor should return 
to normal operation to handle the interrupt.

This flag does not affect the normal operation of the FERR# pin 
(to indicate an unmasked floating-point error) when the STPCLK# 
pin is not asserted.

11 Branch Trace Storage Unavailable (BTS_UNAVILABLE) (R)

See Table 2-2.

When set, the processor does not support branch trace storage 
(BTS); when clear, BTS is supported.

12 PEBS_UNAVILABLE: Processor Event Based Sampling Unavailable 
(R)

See Table 2-2.

When set, the processor does not support processor event-based 
sampling (PEBS); when clear, PEBS is supported.

13 TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the 
die temperature is at the pre-determined threshold, the Thermal 
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core 
ratio and voltage according to the value last written to 
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change 
the VID signals or the bus to core ratio when the processor 
enters a thermal managed state.

If the TM2 feature flag (ECX[8]) is not set to 1 after executing 
CPUID with EAX = 1, then this feature is not supported and BIOS 
must not alter the contents of this bit location. The processor is 
operating out of spec if both this bit and the TM1 bit are set to 
disabled states.

3

17:14 Reserved.

18 ENABLE MONITOR FSM (R/W)

See Table 2-2.

3, 4, 6
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19 Adjacent Cache Line Prefetch Disable (R/W) 

When set to 1, the processor fetches the cache line of the 128-
byte sector containing currently required data. When set to 0, the 
processor fetches both cache lines in the sector.

Single processor platforms should not set this bit. Server 
platforms should set or clear this bit based on platform 
performance observed in validation and testing. 

BIOS may contain a setup option that controls the setting of this 
bit.

21:20 Reserved.

22 Limit CPUID MAXVAL (R/W) 

See Table 2-2. 

Setting this can cause unexpected behavior to software that 
depends on the availability of CPUID leaves greater than 3.

3, 4, 6

23 xTPR Message Disable (R/W)

See Table 2-2.

Shared

24 L1 Data Cache Context Mode (R/W) 

When set, the L1 data cache is placed in shared mode; when clear 
(default), the cache is placed in adaptive mode. This bit is only 
enabled for IA-32 processors that support Intel Hyper-Threading 
Technology. See Section 13.5.6, “L1 Data Cache Context Mode.”

When L1 is running in adaptive mode and CR3s are identical, data 
in L1 is shared across logical processors. Otherwise, L1 is not 
shared and cache use is competitive.

If the Context ID feature flag (ECX[10]) is set to 0 after executing 
CPUID with EAX = 1, the ability to switch modes is not supported. 
BIOS must not alter the contents of IA32_MISC_ENABLE[24].

33:25 Reserved.

34 XD Bit Disable (R/W)

See Table 2-3.

Unique

63:35 Reserved.

Register Address: 1A1H, 417 MSR_PLATFORM_BRV

Platform Feature Requirements (R) 3, 4, 6 Shared

17:0 Reserved.

18 PLATFORM Requirements

When set to 1, indicates the processor has specific platform 
requirements. The details of the platform requirements are listed 
in the respective data sheets of the processor.

63:19 Reserved.

Register Address: 1D7H, 471 MSR_LER_FROM_LIP
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Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor executed prior to the last 
exception that was generated or the last interrupt that was handled.

See Section 19.13.3, “Last Exception Records.”

0, 1, 2, 3, 4, 6 Unique

31:0 From Linear IP

Linear address of the last branch instruction. 

63:32 Reserved.

Register Address: 1D7H, 471 MSR_LER_FROM_LIP

63:0 From Linear IP

Linear address of the last branch instruction (If IA-32e mode is 
active). 

Unique

Register Address: 1D8H, 472 MSR_LER_TO_LIP

Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch instruction that the processor executed 
prior to the last exception that was generated or the last interrupt that was handled.

See Section 19.13.3, “Last Exception Records.”

0, 1, 2, 3, 4, 6 Unique

31:0 From Linear IP

Linear address of the target of the last branch instruction. 

63:32 Reserved.

Register Address: 1D8H, 472 MSR_LER_TO_LIP

63:0 From Linear IP

Linear address of the target of the last branch instruction (If IA-
32e mode is active).

Unique

Register Address: 1D9H, 473 MSR_DEBUGCTLA

Debug Control (R/W) 

Controls how several debug features are used. Bit definitions are discussed in the referenced section.

See Section 19.13.1, “MSR_DEBUGCTLA MSR.”

0, 1, 2, 3, 4, 6 Unique

Register Address: 1DAH, 474 MSR_LASTBRANCH_TOS

Last Branch Record Stack TOS (R/O) 

Contains an index (0-3 or 0-15) that points to the top of the last branch record stack (that is, that 
points the index of the MSR containing the most recent branch record).

See Section 19.13.2, “LBR Stack for Processors Based on Intel NetBurst® Microarchitecture,” and 
addresses 1DBH-1DEH and 680H-68FH.

0, 1, 2, 3, 4, 6 Unique

Register Address: 1DBH, 475 MSR_LASTBRANCH_0

Last Branch Record 0 (R/O) 

One of four last branch record registers on the last branch record stack. It contains pointers to the 
source and destination instruction for one of the last four branches, exceptions, or interrupts that the 
processor took.

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3 at 1DBH-1DEH are available only on family 0FH, 
models 0H-02H. They have been replaced by the MSRs at 680H-68FH and 6C0H-6CFH. 

See Section 19.12, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based 
on Skylake Microarchitecture.”

0, 1, 2 Unique
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Register Address: 1DCH, 476 MSR_LASTBRANCH_1

Last Branch Record 1

See description of the MSR_LASTBRANCH_0 MSR at 1DBH.

0, 1, 2 Unique

Register Address: 1DDH, 477 MSR_LASTBRANCH_2

Last Branch Record 2

See description of the MSR_LASTBRANCH_0 MSR at 1DBH.

0, 1, 2 Unique

Register Address: 1DEH, 478 MSR_LASTBRANCH_3

Last Branch Record 3

See description of the MSR_LASTBRANCH_0 MSR at 1DBH.

0, 1, 2 Unique

Register Address: 200H, 512 IA32_MTRR_PHYSBASE0

Variable Range Base MTRR

See Section 13.11.2.3, “Variable Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 201H, 513 IA32_MTRR_PHYSMASK0

Variable Range Mask MTRR

See Section 13.11.2.3, “Variable Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 202H, 514 IA32_MTRR_PHYSBASE1

Variable Range Mask MTRR

See Section 13.11.2.3, “Variable Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 203H, 515 IA32_MTRR_PHYSMASK1

Variable Range Mask MTRR

See Section 13.11.2.3, “Variable Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 204H, 516 IA32_MTRR_PHYSBASE2

Variable Range Mask MTRR

See Section 13.11.2.3, “Variable Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 205H, 517 IA32_MTRR_PHYSMASK2

Variable Range Mask MTRR

See Section 13.11.2.3, “Variable Range MTRRs”.

0, 1, 2, 3, 4, 6 Shared

Register Address: 206H, 518 IA32_MTRR_PHYSBASE3

Variable Range Mask MTRR

See Section 13.11.2.3, “Variable Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 207H, 519 IA32_MTRR_PHYSMASK3

Variable Range Mask MTRR

See Section 13.11.2.3, “Variable Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 208H, 520 IA32_MTRR_PHYSBASE4

Variable Range Mask MTRR

See Section 13.11.2.3, “Variable Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 209H, 521 IA32_MTRR_PHYSMASK4
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MODEL-SPECIFIC REGISTERS (MSRS)
Variable Range Mask MTRR

See Section 13.11.2.3, “Variable Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 20AH, 522 IA32_MTRR_PHYSBASE5

Variable Range Mask MTRR

See Section 13.11.2.3, “Variable Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 20BH, 523 IA32_MTRR_PHYSMASK5

Variable Range Mask MTRR

See Section 13.11.2.3, “Variable Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 20CH, 524 IA32_MTRR_PHYSBASE6

Variable Range Mask MTRR

See Section 13.11.2.3, “Variable Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 20DH, 525 IA32_MTRR_PHYSMASK6

Variable Range Mask MTRR

See Section 13.11.2.3, “Variable Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 20EH, 526 IA32_MTRR_PHYSBASE7

Variable Range Mask MTRR

See Section 13.11.2.3, “Variable Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 20FH, 527 IA32_MTRR_PHYSMASK7

Variable Range Mask MTRR

See Section 13.11.2.3, “Variable Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 250H, 592 IA32_MTRR_FIX64K_00000

Fixed Range MTRR

See Section 13.11.2.2, “Fixed Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 258H, 600 IA32_MTRR_FIX16K_80000

Fixed Range MTRR

See Section 13.11.2.2, “Fixed Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 259H, 601 IA32_MTRR_FIX16K_A0000

Fixed Range MTRR

See Section 13.11.2.2, “Fixed Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 268H, 616 IA32_MTRR_FIX4K_C0000

Fixed Range MTRR

See Section 13.11.2.2, “Fixed Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 269H, 617 IA32_MTRR_FIX4K_C8000

Fixed Range MTRR

See Section 13.11.2.2, “Fixed Range MTRRs”.

0, 1, 2, 3, 4, 6 Shared

Register Address: 26AH, 618 IA32_MTRR_FIX4K_D0000

Fixed Range MTRR

See Section 13.11.2.2, “Fixed Range MTRRs”.

0, 1, 2, 3, 4, 6 Shared
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MODEL-SPECIFIC REGISTERS (MSRS)
Register Address: 26BH, 619 IA32_MTRR_FIX4K_D8000

Fixed Range MTRR

See Section 13.11.2.2, “Fixed Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 26CH, 620 IA32_MTRR_FIX4K_E0000

Fixed Range MTRR

See Section 13.11.2.2, “Fixed Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 26DH, 621 IA32_MTRR_FIX4K_E8000

Fixed Range MTRR

See Section 13.11.2.2, “Fixed Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 26EH, 622 IA32_MTRR_FIX4K_F0000

Fixed Range MTRR

See Section 13.11.2.2, “Fixed Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 26FH, 623 IA32_MTRR_FIX4K_F8000

Fixed Range MTRR

See Section 13.11.2.2, “Fixed Range MTRRs.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 277H, 631 IA32_PAT

Page Attribute Table

See Section 13.11.2.2, “Fixed Range MTRRs.”

0, 1, 2, 3, 4, 6 Unique

Register Address: 2FFH, 767 IA32_MTRR_DEF_TYPE

Default Memory Types (R/W) 

See Table 2-2 and Section 13.11.2.1, “IA32_MTRR_DEF_TYPE MSR.”

0, 1, 2, 3, 4, 6 Shared

Register Address: 300H, 768 MSR_BPU_COUNTER0

See Section 21.6.3.2, “Performance Counters.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 301H, 769 MSR_BPU_COUNTER1

See Section 21.6.3.2, “Performance Counters.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 302H, 770 MSR_BPU_COUNTER2

See Section 21.6.3.2, “Performance Counters.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 303H, 771 MSR_BPU_COUNTER3

See Section 21.6.3.2, “Performance Counters.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 304H, 772 MSR_MS_COUNTER0

See Section 21.6.3.2, “Performance Counters.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 305H, 773 MSR_MS_COUNTER1

See Section 21.6.3.2, “Performance Counters.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 306H, 774 MSR_MS_COUNTER2

See Section 21.6.3.2, “Performance Counters.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 307H, 775 MSR_MS_COUNTER3

See Section 21.6.3.2, “Performance Counters.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 308H, 776 MSR_FLAME_COUNTER0
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MODEL-SPECIFIC REGISTERS (MSRS)
See Section 21.6.3.2, “Performance Counters.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 309H, 777 MSR_FLAME_COUNTER1

See Section 21.6.3.2, “Performance Counters.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 30AH, 778 MSR_FLAME_COUNTER2

See Section 21.6.3.2, “Performance Counters.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 30BH, 779 MSR_FLAME_COUNTER3

See Section 21.6.3.2, “Performance Counters.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 30CH, 780 MSR_IQ_COUNTER0

See Section 21.6.3.2, “Performance Counters.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 30DH, 781 MSR_IQ_COUNTER1

See Section 21.6.3.2, “Performance Counters.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 30EH, 782 MSR_IQ_COUNTER2

See Section 21.6.3.2, “Performance Counters.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 30FH, 783 MSR_IQ_COUNTER3

See Section 21.6.3.2, “Performance Counters.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 310H, 784 MSR_IQ_COUNTER4

See Section 21.6.3.2, “Performance Counters.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 311H, 785 MSR_IQ_COUNTER5

See Section 21.6.3.2, “Performance Counters.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 360H, 864 MSR_BPU_CCCR0

See Section 21.6.3.3, “CCCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 361H, 865 MSR_BPU_CCCR1

See Section 21.6.3.3, “CCCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 362H, 866 MSR_BPU_CCCR2

See Section 21.6.3.3, “CCCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 363H, 867 MSR_BPU_CCCR3

See Section 21.6.3.3, “CCCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 364H, 868 MSR_MS_CCCR0

See Section 21.6.3.3, “CCCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 365H, 869 MSR_MS_CCCR1

See Section 21.6.3.3, “CCCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 366H, 870 MSR_MS_CCCR2

See Section 21.6.3.3, “CCCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 367H, 871 MSR_MS_CCCR3

See Section 21.6.3.3, “CCCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 368H, 872 MSR_FLAME_CCCR0

See Section 21.6.3.3, “CCCR MSRs.” 0, 1, 2, 3, 4, 6 Shared
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MODEL-SPECIFIC REGISTERS (MSRS)
Register Address: 369H, 873 MSR_FLAME_CCCR1

See Section 21.6.3.3, “CCCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 36AH, 874 MSR_FLAME_CCCR2

See Section 21.6.3.3, “CCCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 36BH, 875 MSR_FLAME_CCCR3

See Section 21.6.3.3, “CCCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 36CH, 876 MSR_IQ_CCCR0

See Section 21.6.3.3, “CCCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 36DH, 877 MSR_IQ_CCCR1

See Section 21.6.3.3, “CCCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 36EH, 878 MSR_IQ_CCCR2

See Section 21.6.3.3, “CCCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 36FH, 879 MSR_IQ_CCCR3

See Section 21.6.3.3, “CCCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 370H, 880 MSR_IQ_CCCR4

See Section 21.6.3.3, “CCCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 371H, 881 MSR_IQ_CCCR5

See Section 21.6.3.3, “CCCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3A0H, 928 MSR_BSU_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3A1H, 929 MSR_BSU_ESCR1

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3A2H, 930 MSR_FSB_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3A3H, 931 MSR_FSB_ESCR1

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3A4H, 932 MSR_FIRM_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3A5H, 933 MSR_FIRM_ESCR1

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3A6H, 934 MSR_FLAME_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3A7H, 935 MSR_FLAME_ESCR1

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3A8H, 936 MSR_DAC_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3A9H, 937 MSR_DAC_ESCR1
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MODEL-SPECIFIC REGISTERS (MSRS)
See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3AAH, 938 MSR_MOB_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3ABH, 939 MSR_MOB_ESCR1

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3ACH, 940 MSR_PMH_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3ADH, 941 MSR_PMH_ESCR1

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3AEH, 942 MSR_SAAT_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3AFH, 943 MSR_SAAT_ESCR1

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3B0H, 944 MSR_U2L_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3B1H, 945 MSR_U2L_ESCR1

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3B2H, 946 MSR_BPU_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3B3H, 947 MSR_BPU_ESCR1

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3B4H, 948 MSR_IS_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3B5H, 949 MSR_IS_ESCR1

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3B6H, 950 MSR_ITLB_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3B7H, 951 MSR_ITLB_ESCR1

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3B8H, 952 MSR_CRU_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3B9H, 953 MSR_CRU_ESCR1

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3BAH, 954 MSR_IQ_ESCR0

See Section 21.6.3.1, “ESCR MSRs.”

This MSR is not available on later processors. It is only available on processor family 0FH, models 01H-
02H.

0, 1, 2 Shared
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MODEL-SPECIFIC REGISTERS (MSRS)
Register Address: 3BBH, 955 MSR_IQ_ESCR1

See Section 21.6.3.1, “ESCR MSRs.”

This MSR is not available on later processors. It is only available on processor family 0FH, models 01H-
02H.

0, 1, 2 Shared

Register Address: 3BCH, 956 MSR_RAT_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3BDH, 957 MSR_RAT_ESCR1

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3BEH, 958 MSR_SSU_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3C0H, 960 MSR_MS_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3C1H, 961 MSR_MS_ESCR1

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3C2H, 962 MSR_TBPU_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3C3H, 963 MSR_TBPU_ESCR1

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3C4H, 964 MSR_TC_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3C5H, 965 MSR_TC_ESCR1

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3C8H, 968 MSR_IX_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3C9H, 969 MSR_IX_ESCR1

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3CAH, 970 MSR_ALF_ESCR0

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3CBH, 971 MSR_ALF_ESCR1

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3CCH, 972 MSR_CRU_ESCR2

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3CDH, 973 MSR_CRU_ESCR3

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3E0H, 992 MSR_CRU_ESCR4

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3E1H, 993 MSR_CRU_ESCR5
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MODEL-SPECIFIC REGISTERS (MSRS)
See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3F0H, 1008 MSR_TC_PRECISE_EVENT

See Section 21.6.3.1, “ESCR MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 3F1H, 1009 IA32_PEBS_ENABLE (MSR_PEBS_ENABLE)

Processor Event Based Sampling (PEBS) (R/W) 

Controls the enabling of processor event sampling and replay tagging. 

0, 1, 2, 3, 4, 6 Shared

12:0 See https://perfmon-events.intel.com/.

23:13 Reserved.

24 UOP Tag 

Enables replay tagging when set.

25 ENABLE_PEBS_MY_THR (R/W)

Enables PEBS for the target logical processor when set; disables 
PEBS when clear (default). 

See Section 21.6.4.3, “IA32_PEBS_ENABLE MSR,” for an 
explanation of the target logical processor. 

This bit is called ENABLE_PEBS in IA-32 processors that do not 
support Intel Hyper-Threading Technology.

26 ENABLE_PEBS_OTH_THR (R/W)

Enables PEBS for the target logical processor when set; disables 
PEBS when clear (default).

See Section 21.6.4.3, “IA32_PEBS_ENABLE MSR,” for an 
explanation of the target logical processor. 

This bit is reserved for IA-32 processors that do not support Intel 
Hyper-Threading Technology.

63:27 Reserved.

Register Address: 3F2H, 1010 MSR_PEBS_MATRIX_VERT

See https://perfmon-events.intel.com/. 0, 1, 2, 3, 4, 6 Shared

Register Address: 400H, 1024 IA32_MC0_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 401H, 1025 IA32_MC0_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 402H, 1026 IA32_MC0_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC0_ADDR register is either not implemented or contains no address if the ADDRV flag in 
the IA32_MC0_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-
protection exception.

0, 1, 2, 3, 4, 6 Shared

Register Address: 403H, 1027 IA32_MC0_MISC
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MODEL-SPECIFIC REGISTERS (MSRS)
See Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC0_MISC MSR is either not implemented or does not contain additional information if the 
MISCV flag in the IA32_MC0_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-
protection exception.

0, 1, 2, 3, 4, 6 Shared

Register Address: 404H, 1028 IA32_MC1_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 405H, 1029 IA32_MC1_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 406H, 1030 IA32_MC1_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC1_ADDR register is either not implemented or contains no address if the ADDRV flag in 
the IA32_MC1_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-
protection exception.

0, 1, 2, 3, 4, 6 Shared

Register Address: 407H, 1031 IA32_MC1_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC1_MISC MSR is either not implemented or does not contain additional information if the 
MISCV flag in the IA32_MC1_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-
protection exception.

Shared

Register Address: 408H, 1032 IA32_MC2_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 409H, 1033 IA32_MC2_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 40AH, 1034 IA32_MC2_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or contains no address if the ADDRV flag in 
the IA32_MC2_STATUS register is clear. When not implemented in the processor, all reads and writes 
to this MSR will cause a general-protection exception.

Register Address: 40BH, 1035 IA32_MC2_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either not implemented or does not contain additional information if the 
MISCV flag in the IA32_MC2_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-
protection exception.

Register Address: 40CH, 1036 IA32_MC3_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 40DH, 1037 IA32_MC3_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 40EH, 1038 IA32_MC3_ADDR
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See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC3_ADDR register is either not implemented or contains no address if the ADDRV flag in 
the IA32_MC3_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-
protection exception.

0, 1, 2, 3, 4, 6 Shared

Register Address: 40FH, 1039 IA32_MC3_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC3_MISC MSR is either not implemented or does not contain additional information if the 
MISCV flag in the IA32_MC3_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-
protection exception.

0, 1, 2, 3, 4, 6 Shared

Register Address: 410H, 1040 IA32_MC4_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 411H, 1041 IA32_MC4_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” 0, 1, 2, 3, 4, 6 Shared

Register Address: 412H, 1042 IA32_MC4_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or contains no address if the ADDRV flag in 
the IA32_MC4_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-
protection exception.

Register Address: 413H, 1043 IA32_MC4_MISC

See Section 17.3.2.4, “IA32_MCi_MISC MSRs.” 

The IA32_MC2_MISC MSR is either not implemented or does not contain additional information if the 
MISCV flag in the IA32_MC4_STATUS register is clear. 

When not implemented in the processor, all reads and writes to this MSR will cause a general-
protection exception.

Register Address: 480H, 1152 IA32_VMX_BASIC

Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2 and Appendix A.1, “Basic VMX Information.”

3, 4, 6 Unique

Register Address: 481H, 1153 IA32_VMX_PINBASED_CTLS

Capability Reporting Register of Pin-Based VM-Execution Controls (R/O)

See Table 2-2 and Appendix A.3, “VM-Execution Controls.”

3, 4, 6 Unique

Register Address: 482H, 1154 IA32_VMX_PROCBASED_CTLS

Capability Reporting Register of Primary Processor-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and Table 2-2.

3, 4, 6 Unique

Register Address: 483H, 1155 IA32_VMX_EXIT_CTLS

Capability Reporting Register of VM-Exit Controls (R/O)

See Appendix A.4, “VM-Exit Controls,” and Table 2-2.

3, 4, 6 Unique

Register Address: 484H, 1156 IA32_VMX_ENTRY_CTLS
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Capability Reporting Register of VM-Entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls,” and Table 2-2.

3, 4, 6 Unique

Register Address: 485H, 1157 IA32_VMX_MISC

Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data,” and Table 2-2.

3, 4, 6 Unique

Register Address: 486H, 1158 IA32_VMX_CR0_FIXED0

Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and Table 2-2.

3, 4, 6 Unique

Register Address: 487H, 1159 IA32_VMX_CR0_FIXED1

Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and Table 2-2.

3, 4, 6 Unique

Register Address: 488H, 1160 IA32_VMX_CR4_FIXED0

Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and Table 2-2.

3, 4, 6 Unique

Register Address: 489H, 1161 IA32_VMX_CR4_FIXED1

Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and Table 2-2.

3, 4, 6 Unique

Register Address: 48AH, 1162 IA32_VMX_VMCS_ENUM

Capability Reporting Register of VMCS Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration,” and Table 2-2.

3, 4, 6 Unique

Register Address: 48BH, 1163 IA32_VMX_PROCBASED_CTLS2

Capability Reporting Register of Secondary Processor-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and Table 2-2.

3, 4, 6 Unique

Register Address: 600H, 1536 IA32_DS_AREA

DS Save Area (R/W)

See Table 2-2 and Section 21.6.3.4, “Debug Store (DS) Mechanism.”

0, 1, 2, 3, 4, 6 Unique

Register Address: 680H, 1664 MSR_LASTBRANCH_0_FROM_IP

Last Branch Record 0 (R/W) 

One of 16 pairs of last branch record registers on the last branch record stack (680H-68FH). This part 
of the stack contains pointers to the source instruction for one of the last 16 branches, exceptions, or 
interrupts taken by the processor.

The MSRs at 680H-68FH, 6C0H-6CfH are not available in processor releases before family 0FH, model 
03H. These MSRs replace MSRs previously located at 1DBH-1DEH. which performed the same function 
for early releases. 

See Section 19.12, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based 
on Skylake Microarchitecture.”

3, 4, 6 Unique

Register Address: 681H, 1665 MSR_LASTBRANCH_1_FROM_IP

Last Branch Record 1

See description of MSR_LASTBRANCH_0 at 680H.

3, 4, 6 Unique

Register Address: 682H, 1666 MSR_LASTBRANCH_2_FROM_IP
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Last Branch Record 2

See description of MSR_LASTBRANCH_0 at 680H.

3, 4, 6 Unique

Register Address: 683H, 1667 MSR_LASTBRANCH_3_FROM_IP

Last Branch Record 3

See description of MSR_LASTBRANCH_0 at 680H.

3, 4, 6 Unique

Register Address: 684H, 1668 MSR_LASTBRANCH_4_FROM_IP

Last Branch Record 4

See description of MSR_LASTBRANCH_0 at 680H.

3, 4, 6 Unique

Register Address: 685H, 1669 MSR_LASTBRANCH_5_FROM_IP

Last Branch Record 5

See description of MSR_LASTBRANCH_0 at 680H.

3, 4, 6 Unique

Register Address: 686H, 1670 MSR_LASTBRANCH_6_FROM_IP

Last Branch Record 6

See description of MSR_LASTBRANCH_0 at 680H.

3, 4, 6 Unique

Register Address: 687H, 1671 MSR_LASTBRANCH_7_FROM_IP

Last Branch Record 7

See description of MSR_LASTBRANCH_0 at 680H.

3, 4, 6 Unique

Register Address: 688H, 1672 MSR_LASTBRANCH_8_FROM_IP

Last Branch Record 8

See description of MSR_LASTBRANCH_0 at 680H.

3, 4, 6 Unique

Register Address: 689H, 1673 MSR_LASTBRANCH_9_FROM_IP

Last Branch Record 9

See description of MSR_LASTBRANCH_0 at 680H.

3, 4, 6 Unique

Register Address: 68AH, 1674 MSR_LASTBRANCH_10_FROM_IP

Last Branch Record 10

See description of MSR_LASTBRANCH_0 at 680H.

3, 4, 6 Unique

Register Address: 68BH, 1675 MSR_LASTBRANCH_11_FROM_IP

Last Branch Record 11

See description of MSR_LASTBRANCH_0 at 680H.

3, 4, 6 Unique

Register Address: 68CH, 1676 MSR_LASTBRANCH_12_FROM_IP

Last Branch Record 12

See description of MSR_LASTBRANCH_0 at 680H.

3, 4, 6 Unique

Register Address: 68DH, 1677 MSR_LASTBRANCH_13_FROM_IP

Last Branch Record 13

See description of MSR_LASTBRANCH_0 at 680H.

3, 4, 6 Unique

Register Address: 68EH, 1678 MSR_LASTBRANCH_14_FROM_IP

Last Branch Record 14

See description of MSR_LASTBRANCH_0 at 680H.

3, 4, 6 Unique
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Register Address: 68FH, 1679 MSR_LASTBRANCH_15_FROM_IP

Last Branch Record 15

See description of MSR_LASTBRANCH_0 at 680H.

3, 4, 6 Unique

Register Address: 6C0H, 1728 MSR_LASTBRANCH_0_TO_IP

Last Branch Record 0 (R/W) 

One of 16 pairs of last branch record registers on the last branch record stack (6C0H-6CFH). This part 
of the stack contains pointers to the destination instruction for one of the last 16 branches, 
exceptions, or interrupts that the processor took.

See Section 19.12, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based 
on Skylake Microarchitecture.”

3, 4, 6 Unique

Register Address: 6C1H, 1729 MSR_LASTBRANCH_1_TO_IP

Last Branch Record 1

See description of MSR_LASTBRANCH_0 at 6C0H.

3, 4, 6 Unique

Register Address: 6C2H, 1730 MSR_LASTBRANCH_2_TO_IP

Last Branch Record 2

See description of MSR_LASTBRANCH_0 at 6C0H.

3, 4, 6 Unique

Register Address: 6C3H, 1731 MSR_LASTBRANCH_3_TO_IP

Last Branch Record 3

See description of MSR_LASTBRANCH_0 at 6C0H.

3, 4, 6 Unique

Register Address: 6C4H, 1732 MSR_LASTBRANCH_4_TO_IP

Last Branch Record 4

See description of MSR_LASTBRANCH_0 at 6C0H.

3, 4, 6 Unique

Register Address: 6C5H, 1733 MSR_LASTBRANCH_5_TO_IP

Last Branch Record 5

See description of MSR_LASTBRANCH_0 at 6C0H.

3, 4, 6 Unique

Register Address: 6C6H, 1734 MSR_LASTBRANCH_6_TO_IP

Last Branch Record 6

See description of MSR_LASTBRANCH_0 at 6C0H.

3, 4, 6 Unique

Register Address: 6C7H, 1735 MSR_LASTBRANCH_7_TO_IP

Last Branch Record 7

See description of MSR_LASTBRANCH_0 at 6C0H.

3, 4, 6 Unique

Register Address: 6C8H, 1736 MSR_LASTBRANCH_8_TO_IP

Last Branch Record 8

See description of MSR_LASTBRANCH_0 at 6C0H.

3, 4, 6 Unique

Register Address: 6C9H, 1737 MSR_LASTBRANCH_9_TO_IP

Last Branch Record 9

See description of MSR_LASTBRANCH_0 at 6C0H.

3, 4, 6 Unique

Register Address: 6CAH, 1738 MSR_LASTBRANCH_10_TO_IP
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Last Branch Record 10

See description of MSR_LASTBRANCH_0 at 6C0H.

3, 4, 6 Unique

Register Address: 6CBH, 1739 MSR_LASTBRANCH_11_TO_IP

Last Branch Record 11

See description of MSR_LASTBRANCH_0 at 6C0H.

3, 4, 6 Unique

Register Address: 6CCH, 1740 MSR_LASTBRANCH_12_TO_IP

Last Branch Record 12

See description of MSR_LASTBRANCH_0 at 6C0H.

3, 4, 6 Unique

Register Address: 6CDH, 1741 MSR_LASTBRANCH_13_TO_IP

Last Branch Record 13

See description of MSR_LASTBRANCH_0 at 6C0H.

3, 4, 6 Unique

Register Address: 6CEH, 1742 MSR_LASTBRANCH_14_TO_IP

Last Branch Record 14

See description of MSR_LASTBRANCH_0 at 6C0H.

3, 4, 6 Unique

Register Address: 6CFH, 1743 MSR_LASTBRANCH_15_TO_IP

Last Branch Record 15

See description of MSR_LASTBRANCH_0 at 6C0H.

3, 4, 6 Unique

Register Address: C000_0080H IA32_EFER

Extended Feature Enables

See Table 2-2.

3, 4, 6 Unique

Register Address: C000_0081H IA32_STAR

System Call Target Address (R/W)

See Table 2-2.

3, 4, 6 Unique

Register Address: C000_0082H IA32_LSTAR

IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

3, 4, 6 Unique

Register Address: C000_0084H IA32_FMASK

System Call Flag Mask (R/W) 

See Table 2-2.

3, 4, 6 Unique

Register Address: C000_0100H IA32_FS_BASE

Map of BASE Address of FS (R/W)

See Table 2-2.

3, 4, 6 Unique

Register Address: C000_0101H IA32_GS_BASE

Map of BASE Address of GS (R/W)

See Table 2-2.

3, 4, 6 Unique

Register Address: C000_0102H IA32_KERNEL_GS_BASE

Swap Target of BASE Address of GS (R/W)

See Table 2-2.

3, 4, 6 Unique
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2.19.1  MSRs Unique to Intel® Xeon® Processor MP with L3 Cache
The MSRs listed in Table 2-64 apply to Intel® Xeon® Processor MP with up to 8MB level three cache. These proces-
sors can be detected by enumerating the deterministic cache parameter leaf of CPUID instruction (with EAX = 4 as 
input) to detect the presence of the third level cache, and with CPUID reporting family encoding 0FH, model 
encoding 3 or 4 (see CPUID instruction for more details).

The MSRs listed in Table 2-65 apply to Intel® Xeon® Processor 7100 series. These processors can be detected by 
enumerating the deterministic cache parameter leaf of CPUID instruction (with EAX = 4 as input) to detect the 

NOTES
1. For HT-enabled processors, there may be more than one logical processors per physical unit. If an MSR is Shared, this means that 
one MSR is shared between logical processors. If an MSR is unique, this means that each logical processor has its own MSR.

Table 2-64.  MSRs Unique to 64-bit Intel® Xeon® Processor MP with Up to an 8 MB L3 Cache
Register Address: Hex Register Name

Register Information
Model 

Availability
Shared/
Unique

Register Address: 107CCH MSR_IFSB_BUSQ0

IFSB BUSQ Event Control and Counter Register (R/W)

See Section 21.6.6, “Performance Monitoring on 64-bit Intel® Xeon® Processor MP with Up to 8-MByte 
L3 Cache.”

3, 4 Shared

Register Address: 107CDH MSR_IFSB_BUSQ1

IFSB BUSQ Event Control and Counter Register (R/W) 3, 4 Shared

Register Address: 107CEH MSR_IFSB_SNPQ0

IFSB SNPQ Event Control and Counter Register (R/W) 

See Section 21.6.6, “Performance Monitoring on 64-bit Intel® Xeon® Processor MP with Up to 8-MByte 
L3 Cache.”

3, 4 Shared

Register Address: 107CFH MSR_IFSB_SNPQ1

IFSB SNPQ Event Control and Counter Register (R/W) 3, 4 Shared

Register Address: 107D0H MSR_EFSB_DRDY0

EFSB DRDY Event Control and Counter Register (R/W) 

See Section 21.6.6, “Performance Monitoring on 64-bit Intel® Xeon® Processor MP with Up to 8-MByte 
L3 Cache.”

3, 4 Shared

Register Address: 107D1H MSR_EFSB_DRDY1

EFSB DRDY Event Control and Counter Register (R/W) 3, 4 Shared

Register Address: 107D2H MSR_IFSB_CTL6

IFSB Latency Event Control Register (R/W)

See Section 21.6.6, “Performance Monitoring on 64-bit Intel® Xeon® Processor MP with Up to 8-MByte 
L3 Cache.”

3, 4 Shared

Register Address: 107D3H MSR_IFSB_CNTR7

IFSB Latency Event Counter Register (R/W) 

See Section 21.6.6, “Performance Monitoring on 64-bit Intel® Xeon® Processor MP with Up to 8-MByte 
L3 Cache.” 

3, 4 Shared
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presence of the third level cache, and with CPUID reporting family encoding 0FH, model encoding 6 (See CPUID 
instruction for more details.). The performance monitoring MSRs listed in Table 2-65 are shared between logical 
processors in the same core, but are replicated for each core.

2.20 MSRS IN INTEL® CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS
Model-specific registers (MSRs) for Intel Core Solo, Intel Core Duo processors, and Dual-core Intel Xeon processor 
LV are listed in Table 2-66. The column “Shared/Unique” applies to Intel Core Duo processor. “Unique” means each 
processor core has a separate MSR, or a bit field in an MSR governs only a core independently. “Shared” means the 
MSR or the bit field in an MSR address governs the operation of both processor cores.

Table 2-65.  MSRs Unique to Intel® Xeon® Processor 7100 Series
Register Address: Hex Register Name

Register Information
Model 

Availability
Shared/
Unique

Register Address: 107CCH MSR_EMON_L3_CTR_CTL0

GBUSQ Event Control and Counter Register (R/W)

See Section 21.6.6, “Performance Monitoring on 64-bit Intel® Xeon® Processor MP with Up to 8-MByte L3 
Cache.”

6 Shared

Register Address: 107CDH MSR_EMON_L3_CTR_CTL1

GBUSQ Event Control and Counter Register (R/W) 6 Shared

Register Address: 107CEH MSR_EMON_L3_CTR_CTL2

GSNPQ Event Control and Counter Register (R/W) 

See Section 21.6.6, “Performance Monitoring on 64-bit Intel® Xeon® Processor MP with Up to 8-MByte L3 
Cache.”

6 Shared

Register Address: 107CFH MSR_EMON_L3_CTR_CTL3

GSNPQ Event Control and Counter Register (R/W) 6 Shared

Register Address: 107D0H MSR_EMON_L3_CTR_CTL4

FSB Event Control and Counter Register (R/W) 

See Section 21.6.6, “Performance Monitoring on 64-bit Intel® Xeon® Processor MP with Up to 8-MByte L3 
Cache.”

6 Shared

Register Address: 107D1H MSR_EMON_L3_CTR_CTL5

FSB Event Control and Counter Register (R/W) 6 Shared

Register Address: 107D2H MSR_EMON_L3_CTR_CTL6

FSB Event Control and Counter Register (R/W) 6 Shared

Register Address: 107D3H MSR_EMON_L3_CTR_CTL7

FSB Event Control and Counter Register (R/W) 6 Shared

Table 2-66.  MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description
Shared/ 
Unique

Register Address: 0H, 0 P5_MC_ADDR

See Section 2.23, “MSRs in Pentium Processors,” and Table 2-2. Unique

Register Address: 1H, 1 P5_MC_TYPE

See Section 2.23, “MSRs in Pentium Processors,” and Table 2-2. Unique
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Register Address: 6H, 6 IA32_MONITOR_FILTER_SIZE

See Section 10.10.5, “Monitor/Mwait Address Range Determination,” and Table 2-2. Unique

Register Address: 10H, 16 IA32_TIME_STAMP_COUNTER

See Section 19.17, “Time-Stamp Counter,” and Table 2-2. Unique

Register Address: 17H, 23 IA32_PLATFORM_ID

Platform ID (R) 

See Table 2-2. The operating system can use this MSR to determine “slot” information for the processor and the proper 
microcode update to load.

Shared

Register Address: 1BH, 27 IA32_APIC_BASE

See Section 12.4.4, “Local APIC Status and Location,” and Table 2-2. Unique

Register Address: 2AH, 42 MSR_EBL_CR_POWERON

Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates current processor configuration.

Shared

0 Reserved.

1 Data Error Checking Enable (R/W)

1 = Enabled; 0 = Disabled.
Note: Not all processor implements R/W.

2 Response Error Checking Enable (R/W)

1 = Enabled; 0 = Disabled.
Note: Not all processor implements R/W.

3 MCERR# Drive Enable (R/W) 

1 = Enabled; 0 = Disabled.
Note: Not all processor implements R/W.

4 Address Parity Enable (R/W)

1 = Enabled; 0 = Disabled.
Note: Not all processor implements R/W.

6: 5 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled.
Note: Not all processor implements R/W.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled.

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled.

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled.

Table 2-66.  MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)
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13 Reserved

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved.

17:16 APIC Cluster ID (R/O)

18 System Bus Frequency (R/O)

0 = 100 MHz.
1 = Reserved.

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

26:22 Clock Frequency Ratio (R/O)

Register Address: 3AH, 58 IA32_FEATURE_CONTROL

Control Features in IA-32 Processor (R/W) 

See Table 2-2.

Unique

Register Address: 40H, 64 MSR_LASTBRANCH_0

Last Branch Record 0 (R/W)

One of 8 last branch record registers on the last branch record stack: bits 31-0 hold the ‘from’ address and bits 63-32 
hold the ‘to’ address. See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 19.15, “Last Branch, Interrupt, and Exception Recording (Pentium M Processors).”

Unique

Register Address: 41H, 65 MSR_LASTBRANCH_1

Last Branch Record 1 (R/W)

See description of MSR_LASTBRANCH_0.

Unique

Register Address: 42H, 66 MSR_LASTBRANCH_2

Last Branch Record 2 (R/W)

See description of MSR_LASTBRANCH_0. 

Unique

Register Address: 43H, 67 MSR_LASTBRANCH_3

Last Branch Record 3 (R/W)

See description of MSR_LASTBRANCH_0.

Unique

Register Address: 44H, 68 MSR_LASTBRANCH_4

Last Branch Record 4 (R/W)

See description of MSR_LASTBRANCH_0.

Unique

Register Address: 45H, 69 MSR_LASTBRANCH_5

Last Branch Record 5 (R/W)

See description of MSR_LASTBRANCH_0. 

Unique

Register Address: 46H, 70 MSR_LASTBRANCH_6

Last Branch Record 6 (R/W)

See description of MSR_LASTBRANCH_0. 

Unique

Register Address: 47H, 71 MSR_LASTBRANCH_7

Table 2-66.  MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register Address: Hex, Decimal Register Name
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Unique
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Last Branch Record 7 (R/W)

See description of MSR_LASTBRANCH_0. 

Unique

Register Address: 79H, 121 IA32_BIOS_UPDT_TRIG

BIOS Update Trigger Register (W)

See Table 2-2.

Unique

Register Address: 8BH, 139 IA32_BIOS_SIGN_ID

BIOS Update Signature ID (R/W)

See Table 2-2.

Unique

Register Address: C1H, 193 IA32_PMC0

Performance Counter Register

See Table 2-2.

Unique

Register Address: C2H, 194 IA32_PMC1

Performance Counter Register

See Table 2-2.

Unique

Register Address: CDH, 205 MSR_FSB_FREQ

Scaleable Bus Speed (R/O)

This field indicates the scalable bus clock speed.

Shared

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation with System Bus Speed 
when encoding is 101B. 

166.67 MHz should be utilized if performing calculation with System Bus Speed 
when encoding is 001B.

63:3 Reserved.

Register Address: E7H, 231 IA32_MPERF

Maximum Performance Frequency Clock Count (R/W)

See Table 2-2.

Unique

Register Address: E8H, 232 IA32_APERF

Actual Performance Frequency Clock Count (R/W)

See Table 2-2.

Unique

Register Address: FEH, 254 IA32_MTRRCAP

See Table 2-2. Unique

Register Address: 11EH, 281 MSR_BBL_CR_CTL3

Control Register 3

Used to configure the L2 Cache.

Shared

0 L2 Hardware Enabled (R/O)

1 = If the L2 is hardware-enabled.
0 = Indicates if the L2 is hardware-disabled.

Table 2-66.  MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)
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7:1 Reserved.

8 L2 Enabled (R/W) 

1 = L2 cache has been initialized.
0 = Disabled (default).
Until this bit is set the processor will not respond to the WBINVD instruction or 
the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (R/O) 

0 = L2 Present.
1 = L2 Not Present.

63:24 Reserved.

Register Address: 174H, 372 IA32_SYSENTER_CS

See Table 2-2. Unique

Register Address: 175H, 373 IA32_SYSENTER_ESP

See Table 2-2. Unique

Register Address: 176H, 374 IA32_SYSENTER_EIP

See Table 2-2. Unique

Register Address: 179H, 377 IA32_MCG_CAP

See Table 2-2. Unique

Register Address: 17AH, 378 IA32_MCG_STATUS

Global Machine Check Status Unique

0 RIPV

When set, this bit indicates that the instruction addressed by the instruction 
pointer pushed on the stack (when the machine check was generated) can be 
used to restart the program. If this bit is cleared, the program cannot be reliably 
restarted.

1 EIPV

When set, this bit indicates that the instruction addressed by the instruction 
pointer pushed on the stack (when the machine check was generated) is directly 
associated with the error.

2 MCIP

When set, this bit indicates that a machine check has been generated. If a second 
machine check is detected while this bit is still set, the processor enters a 
shutdown state. Software should write this bit to 0 after processing a machine 
check exception.

63:3 Reserved

Register Address: 186H, 390 IA32_PERFEVTSEL0

See Table 2-2. Unique

Register Address: 187H, 391 IA32_PERFEVTSEL1

See Table 2-2. Unique

Register Address: 198H, 408 IA32_PERF_STATUS
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See Table 2-2. Shared

Register Address: 199H, 409 IA32_PERF_CTL

See Table 2-2. Unique

Register Address: 19AH, 410 IA32_CLOCK_MODULATION

Clock Modulation (R/W) 

See Table 2-2.

Unique

Register Address: 19BH, 411 IA32_THERM_INTERRUPT

Thermal Interrupt Control (R/W) 

See Table 2-2 and Section 16.8.2, “Thermal Monitor.”

Unique

Register Address: 19CH, 412 IA32_THERM_STATUS

Thermal Monitor Status (R/W) 

See Table 2-2 and Section 16.8.2, “Thermal Monitor”.

Unique

Register Address: 19DH, 413 MSR_THERM2_CTL

Thermal Monitor 2 Control Unique

15:0 Reserved.

16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of the stop-clock 
duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT has no effect. 
Neither TM1 nor TM2 will be enabled.

63:16 Reserved.

Register Address: 1A0H, 416 IA32_MISC_ENABLE

Enable Miscellaneous Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

2:0 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W) 

See Table 2-2. 

Unique

6:4 Reserved.

7 Performance Monitoring Available (R)

See Table 2-2.

Shared

9:8 Reserved.

10 FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break event within 
the processor 

0 =  Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

Shared

11 Branch Trace Storage Unavailable (R/O)

See Table 2-2.

Shared
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12 Reserved.

13 TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the die temperature 
is at the pre-determined threshold, the Thermal Monitor 2 mechanism is 
engaged. TM2 will reduce the bus to core ratio and voltage according to the value 
last written to MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change the VID signals 
or the bus to core ratio when the processor enters a thermal managed state.

If the TM2 feature flag (ECX[8]) is not set to 1 after executing CPUID with EAX = 
1, then this feature is not supported and BIOS must not alter the contents of this 
bit location. The processor is operating out of spec if both this bit and the TM1 
bit are set to disabled states.

Shared

15:14 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W)

1 = Enhanced Intel SpeedStep Technology enabled

Shared

18 ENABLE MONITOR FSM (R/W)

See Table 2-2.

Shared

19 Reserved.

22 Limit CPUID Maxval (R/W) 

See Table 2-2. 

Setting this bit may cause behavior in software that depends on the availability 
of CPUID leaves greater than 2.

Shared

33:23 Reserved.

34 XD Bit Disable (R/W)

See Table 2-3.

Shared

63:35 Reserved.

Register Address: 1C9H, 457 MSR_LASTBRANCH_TOS

Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

Unique

Register Address: 1D9H, 473 IA32_DEBUGCTL

Debug Control (R/W) 

Controls how several debug features are used. Bit definitions are discussed in Table 2-2.

Unique

Register Address: 1DDH, 477 MSR_LER_FROM_LIP

Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor executed prior to the last exception that was 
generated or the last interrupt that was handled.

Unique

Register Address: 1DEH, 478 MSR_LER_TO_LIP

Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch instruction that the processor executed prior to the last 
exception that was generated or the last interrupt that was handled. 

Unique

Register Address: 200H, 512 MTRRphysBase0
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Memory Type Range Registers Unique

Register Address: 201H, 513 MTRRphysMask0

Memory Type Range Registers Unique

Register Address: 202H, 514 MTRRphysBase1

Memory Type Range Registers Unique

Register Address: 203H, 515 MTRRphysMask1

Memory Type Range Registers Unique

Register Address: 204H, 516 MTRRphysBase2

Memory Type Range Registers Unique

Register Address: 205H, 517 MTRRphysMask2

Memory Type Range Registers Unique

Register Address: 206H, 518 MTRRphysBase3

Memory Type Range Registers Unique

Register Address: 207H, 519 MTRRphysMask3

Memory Type Range Registers Unique

Register Address: 208H, 520 MTRRphysBase4

Memory Type Range Registers Unique

Register Address: 209H, 521 MTRRphysMask4

Memory Type Range Registers Unique

Register Address: 20AH, 522 MTRRphysBase5

Memory Type Range Registers Unique

Register Address: 20BH, 523 MTRRphysMask5

Memory Type Range Registers Unique

Register Address: 20CH, 524 MTRRphysBase6

Memory Type Range Registers Unique

Register Address: 20DH, 525 MTRRphysMask6

Memory Type Range Registers Unique

Register Address: 20EH, 526 MTRRphysBase7

Memory Type Range Registers Unique

Register Address: 20FH, 527 MTRRphysMask7

Memory Type Range Registers Unique

Register Address: 250H, 592 MTRRfix64K_00000

Memory Type Range Registers Unique

Register Address: 258H, 600 MTRRfix16K_80000

Memory Type Range Registers Unique

Register Address: 259H, 601 MTRRfix16K_A0000

Memory Type Range Registers Unique
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Register Address: 268H, 616 MTRRfix4K_C0000

Memory Type Range Registers Unique

Register Address: 269H, 617 MTRRfix4K_C8000

Memory Type Range Registers Unique

Register Address: 26AH, 618 MTRRfix4K_D0000

Memory Type Range Registers Unique

Register Address: 26BH, 619 MTRRfix4K_D8000

Memory Type Range Registers Unique

Register Address: 26CH, 620 MTRRfix4K_E0000

Memory Type Range Registers Unique

Register Address: 26DH, 621 MTRRfix4K_E8000

Memory Type Range Registers Unique

Register Address: 26EH, 622 MTRRfix4K_F0000

Memory Type Range Registers Unique

Register Address: 26FH, 623 MTRRfix4K_F8000

Memory Type Range Registers Unique

Register Address: 2FFH, 767 IA32_MTRR_DEF_TYPE

Default Memory Types (R/W)

See Table 2-2 and Section 13.11.2.1, “IA32_MTRR_DEF_TYPE MSR.”

Unique

Register Address: 400H, 1024 IA32_MC0_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Unique

Register Address: 401H, 1025 IA32_MC0_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Unique

Register Address: 402H, 1026 IA32_MC0_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
IA32_MC0_STATUS register is clear. When not implemented in the processor, all reads and writes to this MSR will 
cause a general-protection exception.

Unique

Register Address: 404H, 1028 IA32_MC1_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Unique

Register Address: 405H, 1029 IA32_MC1_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Unique

Register Address: 406H, 1030 IA32_MC1_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
IA32_MC1_STATUS register is clear. When not implemented in the processor, all reads and writes to this MSR will 
cause a general-protection exception.

Unique

Register Address: 408H, 1032 IA32_MC2_CTL

Table 2-66.  MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description
Shared/ 
Unique
Vol. 4 2-555



MODEL-SPECIFIC REGISTERS (MSRS)
See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Unique

Register Address: 409H, 1033 IA32_MC2_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Unique

Register Address: 40AH, 1034 IA32_MC2_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
IA32_MC2_STATUS register is clear. When not implemented in the processor, all reads and writes to this MSR will 
cause a general-protection exception.

Unique

Register Address: 40CH, 1036 MSR_MC4_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.” Unique

Register Address: 40DH, 1037 MSR_MC4_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.” Unique

Register Address: 40EH, 1038 MSR_MC4_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
MSR_MC4_STATUS register is clear. When not implemented in the processor, all reads and writes to this MSR will cause 
a general-protection exception.

Unique

Register Address: 410H, 1040 IA32_MC3_CTL

IA32_MC3_CTL See Section 17.3.2.1, “IA32_MCi_CTL MSRs.”

Register Address: 411H, 1041 IA32_MC3_STATUS

IA32_MC3_STATUS See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.”

Register Address: 412H, 1042 MSR_MC3_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
MSR_MC3_STATUS register is clear. When not implemented in the processor, all reads and writes to this MSR will cause 
a general-protection exception.

Unique

Register Address: 413H, 1043 MSR_MC3_MISC

Machine Check Error Reporting Register - contains additional information describing the machine-check error if the 
MISCV flag in the IA32_MCi_STATUS register is set.

Unique

Register Address: 414H, 1044 MSR_MC5_CTL

Machine Check Error Reporting Register - controls signaling of #MC for errors produced by a particular hardware unit 
(or group of hardware units).

Unique

Register Address: 415H, 1045 MSR_MC5_STATUS

Machine Check Error Reporting Register - contains information related to a machine-check error if its VAL (valid) flag is 
set. Software is responsible for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them; writing 1s to them 
causes a general-protection exception.

Unique

Register Address: 416H, 1046 MSR_MC5_ADDR

Machine Check Error Reporting Register - contains the address of the code or data memory location that produced the 
machine-check error if the ADDRV flag in the IA32_MCi_STATUS register is set.

Unique

Register Address: 417H, 1047 MSR_MC5_MISC
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Machine Check Error Reporting Register - contains additional information describing the machine-check error if the 
MISCV flag in the IA32_MCi_STATUS register is set.

Unique

Register Address: 480H, 1152 IA32_VMX_BASIC

Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2 and Appendix A.1, “Basic VMX Information.” (If CPUID.01H:ECX.[bit 5])

Unique

Register Address: 481H, 1153 IA32_VMX_PINBASED_CTLS

Capability Reporting Register of Pin-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.” (If CPUID.01H:ECX.[bit 5])

Unique

Register Address: 482H, 1154 IA32_VMX_PROCBASED_CTLS

Capability Reporting Register of Primary Processor-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.” (If CPUID.01H:ECX.[bit 5])

Unique

Register Address: 483H, 1155 IA32_VMX_EXIT_CTLS

Capability Reporting Register of VM-Exit Controls (R/O)

See Appendix A.4, “VM-Exit Controls.” (If CPUID.01H:ECX.[bit 5])

Unique

Register Address: 484H, 1156 IA32_VMX_ENTRY_CTLS

Capability Reporting Register of VM-Entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls.” (If CPUID.01H:ECX.[bit 5])

Unique

Register Address: 485H, 1157 IA32_VMX_MISC

Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data.” (If CPUID.01H:ECX.[bit 5])

Unique

Register Address: 486H, 1158 IA32_VMX_CR0_FIXED0

Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.” (If CPUID.01H:ECX.[bit 5])

Unique

Register Address: 487H, 1159 IA32_VMX_CR0_FIXED1

Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.” (If CPUID.01H:ECX.[bit 5])

Unique

Register Address: 488H, 1160 IA32_VMX_CR4_FIXED0

Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.” (If CPUID.01H:ECX.[bit 5])

Unique

Register Address: 489H, 1161 IA32_VMX_CR4_FIXED1

Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.” (If CPUID.01H:ECX.[bit 5])

Unique

Register Address: 48AH, 1162 IA32_VMX_VMCS_ENUM

Capability Reporting Register of VMCS Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration.” (If CPUID.01H:ECX.[bit 5])

Unique

Register Address: 48BH, 1163 IA32_VMX_PROCBASED_CTLS2

Capability Reporting Register of Secondary Processor-Based VM-Execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.” (If CPUID.01H:ECX.[bit 5] and IA32_VMX_PROCBASED_CTLS[bit 63])

Unique

Register Address: 600H, 1536 IA32_DS_AREA

Table 2-66.  MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description
Shared/ 
Unique
Vol. 4 2-557



MODEL-SPECIFIC REGISTERS (MSRS)
2.21 MSRS IN THE PENTIUM M PROCESSOR
Model-specific registers (MSRs) for the Pentium M processor are similar to those described in Section 2.22 for P6 
family processors. The following table describes new MSRs and MSRs whose behavior has changed on the Pentium 
M processor. 

DS Save Area (R/W) 

See Table 2-2 and Section 21.6.3.4, “Debug Store (DS) Mechanism.”

Unique

31:0 DS Buffer Management Area

Linear address of the first byte of the DS buffer management area.

63:32 Reserved.

Register Address: C000_0080H IA32_EFER

See Table 2-2. Unique

10:0 Reserved.

11 Execute Disable Bit Enable

63:12 Reserved.

Table 2-67.  MSRs in Pentium M Processors

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description

Register Address: 0H, 0 P5_MC_ADDR

See Section 2.23, “MSRs in Pentium Processors.”

Register Address: 1H, 1 P5_MC_TYPE

See Section 2.23, “MSRs in Pentium Processors.”

Register Address: 10H, 16 IA32_TIME_STAMP_COUNTER

See Section 19.17, “Time-Stamp Counter,” and see Table 2-2.

Register Address: 17H, 23 IA32_PLATFORM_ID

Platform ID (R)

See Table 2-2.

The operating system can use this MSR to determine “slot” information for the processor and the proper microcode update to load.

Register Address: 2AH, 42 MSR_EBL_CR_POWERON

Processor Hard Power-On Configuration

(R/W) Enables and disables processor features.

(R) Indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R)

0 = Disabled.
Always 0 on the Pentium M processor.
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2 Response Error Checking Enable (R)

0 = Disabled.
Always 0 on the Pentium M processor.

3 MCERR# Drive Enable (R) 

0 = Disabled.
Always 0 on the Pentium M processor.

4 Address Parity Enable (R)

0 = Disabled.
Always 0 on the Pentium M processor.

6:5 Reserved.

7 BINIT# Driver Enable (R)

1 = Enabled; 0 = Disabled.
Always 0 on the Pentium M processor.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled.

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled.

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled.
Always 0 on the Pentium M processor.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled.
Always 0 on the Pentium M processor.

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes.
Always 0 on the Pentium M processor.

15 Reserved.

17:16 APIC Cluster ID (R/O)

Always 00B on the Pentium M processor.

18 System Bus Frequency (R/O)

0 = 100 MHz.
1 = Reserved.
Always 0 on the Pentium M processor.

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B on the Pentium M processor.

26:22 Clock Frequency Ratio (R/O)

Register Address: 40H, 64 MSR_LASTBRANCH_0

Table 2-67.  MSRs in Pentium M Processors (Contd.)
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Last Branch Record 0 (R/W)

One of 8 last branch record registers on the last branch record stack: bits 31-0 hold the ‘from’ address and bits 63-32 hold the to 
address. 

See also:

• Last Branch Record Stack TOS at 1C9H.
• Section 19.15, “Last Branch, Interrupt, and Exception Recording (Pentium M Processors).”

Register Address: 41H, 65 MSR_LASTBRANCH_1

Last Branch Record 1 (R/W)

See description of MSR_LASTBRANCH_0.

Register Address: 42H, 66 MSR_LASTBRANCH_2

Last Branch Record 2 (R/W)

See description of MSR_LASTBRANCH_0. 

Register Address: 43H, 67 MSR_LASTBRANCH_3

Last Branch Record 3 (R/W)

See description of MSR_LASTBRANCH_0.

Register Address: 44H, 68 MSR_LASTBRANCH_4

Last Branch Record 4 (R/W)

See description of MSR_LASTBRANCH_0.

Register Address: 45H, 69 MSR_LASTBRANCH_5

Last Branch Record 5 (R/W)

See description of MSR_LASTBRANCH_0. 

Register Address: 46H, 70 MSR_LASTBRANCH_6

Last Branch Record 6 (R/W)

See description of MSR_LASTBRANCH_0. 

Register Address: 47H, 71 MSR_LASTBRANCH_7

Last Branch Record 7 (R/W)

See description of MSR_LASTBRANCH_0. 

Register Address: 119H, 281 MSR_BBL_CR_CTL

Control Register

Used to program L2 commands to be issued via cache configuration accesses mechanism. Also receives L2 lookup response.

63:0 Reserved.

Register Address: 11EH, 281 MSR_BBL_CR_CTL3

Control Register 3

Used to configure the L2 Cache.

0 L2 Hardware Enabled (R/O)

1 = If the L2 is hardware-enabled.
0 = Indicates if the L2 is hardware-disabled.

4:1 Reserved.
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5 ECC Check Enable (R/O)

This bit enables ECC checking on the cache data bus. ECC is always generated on 
write cycles. 

0 = Disabled (default).
1 = Enabled.
For the Pentium M processor, ECC checking on the cache data bus is always enabled.

7:6 Reserved.

8 L2 Enabled (R/W) 

1 = L2 cache has been initialized.
0 = Disabled (default).
Until this bit is set the processor will not respond to the WBINVD instruction or the 
assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (R/O) 

0 = L2 Present.
1 = L2 Not Present.

63:24 Reserved.

Register Address: 179H, 377 IA32_MCG_CAP

Read-only register that provides information about the machine-check architecture of the processor. 

7:0 Count (R/O)

Indicates the number of hardware unit error reporting banks available in the 
processor.

8 IA32_MCG_CTL Present (R/O)

1 = Indicates that the processor implements the MSR_MCG_CTL register found at 
MSR 17BH.

0 = Not supported.

63:9 Reserved.

Register Address: 17AH, 378 IA32_MCG_STATUS

Global Machine Check Status

0 RIPV

When set, this bit indicates that the instruction addressed by the instruction pointer 
pushed on the stack (when the machine check was generated) can be used to restart 
the program. If this bit is cleared, the program cannot be reliably restarted.

1 EIPV

When set, this bit indicates that the instruction addressed by the instruction pointer 
pushed on the stack (when the machine check was generated) is directly associated 
with the error.

2 MCIP

When set, this bit indicates that a machine check has been generated. If a second 
machine check is detected while this bit is still set, the processor enters a shutdown 
state. Software should write this bit to 0 after processing a machine check exception.

63:3 Reserved.

Register Address: 198H, 408 IA32_PERF_STATUS
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See Table 2-2.

Register Address: 199H, 409 IA32_PERF_CTL

See Table 2-2.

Register Address: 19AH, 410 IA32_CLOCK_MODULATION

Clock Modulation (R/W). 

See Table 2-2 and Section 16.8.3, “Software Controlled Clock Modulation.”

Register Address: 19BH, 411 IA32_THERM_INTERRUPT

Thermal Interrupt Control (R/W)

See Table 2-2 and Section 16.8.2, “Thermal Monitor.”

Register Address: 19CH, 412 IA32_THERM_STATUS

Thermal Monitor Status (R/W)

See Table 2-2 and Section 16.8.2, “Thermal Monitor.”

Register Address: 19DH, 413 MSR_THERM2_CTL

Thermal Monitor 2 Control

15:0 Reserved.

16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of the stop-clock duty 
cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT has no effect. 
Neither TM1 nor TM2 will be enabled.

63:16 Reserved.

Register Address: 1A0H, 416 IA32_MISC_ENABLE

Enable Miscellaneous Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

2:0 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W) 

1 = Setting this bit enables the thermal control circuit (TCC) portion of the Intel 
Thermal Monitor feature. This allows processor clocks to be automatically 
modulated based on the processor's thermal sensor operation. 

0 = Disabled (default). 
The automatic thermal control circuit enable bit determines if the thermal control 
circuit (TCC) will be activated when the processor's internal thermal sensor 
determines the processor is about to exceed its maximum operating temperature.

When the TCC is activated and TM1 is enabled, the processors clocks will be forced to 
a 50% duty cycle. BIOS must enable this feature.

The bit should not be confused with the on-demand thermal control circuit enable bit.

6:4 Reserved.

7 Performance Monitoring Available (R) 

1 = Performance monitoring enabled.
0 = Performance monitoring disabled.
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9:8 Reserved.

10 FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break event within the 
processor.

0 =  Indicates compatible FERR# signaling behavior.
This bit must be set to 1 to support XAPIC interrupt model usage.

Branch Trace Storage Unavailable (R/O)

1 = Processor doesn’t support branch trace storage (BTS)
0 = BTS is supported

12 Processor Event Based Sampling Unavailable (R/O) 

1 = Processor does not support processor event based sampling (PEBS); 
0 = PEBS is supported. 
The Pentium M processor does not support PEBS.

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W) 

1 = Enhanced Intel SpeedStep Technology enabled.
On the Pentium M processor, this bit may be configured to be read-only.

22:17 Reserved.

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are disabled. xTPR messages are optional messages 
that allow the processor to inform the chipset of its priority. The default is processor 
specific.

63:24 Reserved.

Register Address: 1C9H, 457 MSR_LASTBRANCH_TOS

Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the most recent branch record. See also:

• MSR_LASTBRANCH_0_FROM_IP (at 40H).
• Section 19.15, “Last Branch, Interrupt, and Exception Recording (Pentium M Processors).”

Register Address: 1D9H, 473 MSR_DEBUGCTLB

Debug Control (R/W) 

Controls how several debug features are used. Bit definitions are discussed in the referenced section.

See Section 19.15, “Last Branch, Interrupt, and Exception Recording (Pentium M Processors).”

Register Address: 1DDH, 477 MSR_LER_TO_LIP

Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch instruction that the processor executed prior to the last exception that 
was generated or the last interrupt that was handled.

See Section 19.15, “Last Branch, Interrupt, and Exception Recording (Pentium M Processors),” and Section 19.16.2, “Last Branch and 
Last Exception MSRs.”

Register Address: 1DEH, 478 MSR_LER_FROM_LIP
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Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor executed prior to the last exception that was generated or the 
last interrupt that was handled.

See Section 19.15, “Last Branch, Interrupt, and Exception Recording (Pentium M Processors),” and Section 19.16.2, “Last Branch and 
Last Exception MSRs.”

Register Address: 2FFH, 767 IA32_MTRR_DEF_TYPE

Default Memory Types (R/W) 

Sets the memory type for the regions of physical memory that are not mapped by the MTRRs. 

See Section 13.11.2.1, “IA32_MTRR_DEF_TYPE MSR.”

Register Address: 400H, 1024 IA32_MC0_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.”

Register Address: 401H, 1025 IA32_MC0_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.”

Register Address: 402H, 1026 IA32_MC0_ADDR

See Section 14.3.2.3., “IA32_MCi_ADDR MSRs”. 

The IA32_MC0_ADDR register is either not implemented or contains no address if the ADDRV flag in the IA32_MC0_STATUS register 
is clear. When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Register Address: 404H, 1028 IA32_MC1_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.”

Register Address: 405H, 1029 IA32_MC1_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.”

Register Address: 406H, 1030 IA32_MC1_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or contains no address if the ADDRV flag in the IA32_MC1_STATUS register 
is clear. When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Register Address: 408H, 1032 IA32_MC2_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.”

Register Address: 409H, 1033 IA32_MC2_STATUS

See Chapter 17.3.2.2, “IA32_MCi_STATUS MSRS.”

Register Address: 40AH, 1034 IA32_MC2_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or contains no address if the ADDRV flag in the IA32_MC2_STATUS register 
is clear. When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Register Address: 40CH, 1036 MSR_MC4_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.”

Register Address: 40DH, 1037 MSR_MC4_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.”

Register Address: 40EH, 1038 MSR_MC4_ADDR
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2.22 MSRS IN THE P6 FAMILY PROCESSORS
The following MSRs are defined for the P6 family processors. The MSRs in this table that are shaded are available 
only in the Pentium II and Pentium III processors. Beginning with the Pentium 4 processor, some of the MSRs in this 
list have been designated as “architectural” and have had their names changed. See Table 2-2 for a list of the archi-
tectural MSRs.

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or contains no address if the ADDRV flag in the MSR_MC4_STATUS register 
is clear. When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Register Address: 410H, 1040 MSR_MC3_CTL

See Section 17.3.2.1, “IA32_MCi_CTL MSRs.”

Register Address: 411H, 1041 MSR_MC3_STATUS

See Section 17.3.2.2, “IA32_MCi_STATUS MSRS.”

Register Address: 412H, 1042 MSR_MC3_ADDR

See Section 17.3.2.3, “IA32_MCi_ADDR MSRs.” 

The MSR_MC3_ADDR register is either not implemented or contains no address if the ADDRV flag in the MSR_MC3_STATUS register 
is clear. When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.

Register Address: 600H, 1536 IA32_DS_AREA

DS Save Area (R/W)

See Table 2-2.

Points to the DS buffer management area, which is used to manage the BTS and PEBS buffers. See Section 21.6.3.4, “Debug Store 
(DS) Mechanism.”

31:0 DS Buffer Management Area

Linear address of the first byte of the DS buffer management area.

63:32 Reserved.

Table 2-68.  MSRs in the P6 Family Processors 
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Register Address: 0H, 0 P5_MC_ADDR

See Section 2.23, “MSRs in Pentium Processors.”

Register Address: 1H, 1 P5_MC_TYPE

See Section 2.23, “MSRs in Pentium Processors.”

Register Address: 10H, 16 TSC

See Section 19.17, “Time-Stamp Counter.”

Register Address: 17H, 23 IA32_PLATFORM_ID

Platform ID (R) 

The operating system can use this MSR to determine “slot” information for the processor and the proper microcode update to load.

49:0 Reserved.
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52:50 Platform Id (R)

Contains information concerning the intended platform for the processor. 

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4 
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

56:53 L2 Cache Latency Read.

59:57 Reserved.

60 Clock Frequency Ratio Read.

63:61 Reserved.

Register Address: 1BH, 27 APIC_BASE

Section 12.4.4, “Local APIC Status and Location.”

7:0 Reserved.

8 Boot Strap Processor Indicator Bit

1 = BSP

10:9 Reserved.

11 APIC Global Enable Bit - Permanent till reset

1 = Enabled.
0 = Disabled.

31:12 APIC Base Address.

63:32 Reserved.

Register Address: 2AH, 42 EBL_CR_POWERON

Processor Hard Power-On Configuration 

(R/W) Enables and disables processor features, and (R) indicates current processor configuration.

0 Reserved1

1 Data Error Checking Enable (R/W)

1 = Enabled.
0 = Disabled.

2 Response Error Checking Enable FRCERR Observation Enable (R/W)

1 = Enabled.
0 = Disabled.

3 AERR# Drive Enable (R/W)

1 = Enabled.
0 = Disabled.

4 BERR# Enable for Initiator Bus Requests (R/W)

1 = Enabled.
0 = Disabled.
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5 Reserved.

6 BERR# Driver Enable for Initiator Internal Errors (R/W)

1 = Enabled.
0 = Disabled.

7 BINIT# Driver Enable (R/W)

1 = Enabled.
0 = Disabled.

8 Output Tri-state Enabled (R)

1 = Enabled.
0 = Disabled.

9 Execute BIST (R)

1 = Enabled.
0 = Disabled.

10 AERR# Observation Enabled (R)

1 = Enabled.
0 = Disabled.

11 Reserved.

12 BINIT# Observation Enabled (R)

1 = Enabled.
0 = Disabled.

13 In Order Queue Depth (R)

1 = 1.
0 = 8.

14 1-MByte Power on Reset Vector (R)

1 = 1MByte.
0 = 4GBytes.

 15 FRC Mode Enable (R)

1 = Enabled.
0 = Disabled.

 17:16 APIC Cluster ID (R)

19:18 System Bus Frequency (R)

00 = 66MHz.
10 = 100Mhz.
01 = 133MHz.
11 = Reserved.

21: 20 Symmetric Arbitration ID (R)

25:22 Clock Frequency Ratio (R)

26 Low Power Mode Enable (R/W)

27 Clock Frequency Ratio

63:28 Reserved.1

Register Address: 33H, 51 MSR_TEST_CTRL
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Test Control Register

29:0 Reserved.

30 Streaming Buffer Disable

31 Disable LOCK#

Assertion for split locked access.

Register Address: 79H, 121 BIOS_UPDT_TRIG

BIOS Update Trigger Register.

Register Address: 88H, 136 BBL_CR_D0[63:0]

Chunk 0 data register D[63:0]: used to write to and read from the L2.

Register Address: 89H, 137 BBL_CR_D1

Chunk 1 data register D[63:0]: used to write to and read from the L2.

Register Address: 8AH, 138 BBL_CR_D2

Chunk 2 data register D[63:0]: used to write to and read from the L2.

Register Address: 8BH, 139 BIOS_SIGN/BBL_CR_D3

BIOS Update Signature Register or Chunk 3 data register D[63:0].

Used to write to and read from the L2 depending on the usage model.

Register Address: C1H, 193 PerfCtr0 (PERFCTR0)

Performance Counter Register 

See Table 2-2.

Register Address: C2H, 194 PerfCtr1 (PERFCTR1)

Performance Counter Register 

See Table 2-2.

Register Address: FEH, 254 MTRRcap

Memory Type Range Registers

Register Address: 116H, 278 BBL_CR_ADDR 

Address register: used to send specified address (A31-A3) to L2 during cache initialization accesses.

2:0 Reserved; set to 0.

31:3 Address bits [35:3].

63:32 Reserved.

Register Address: 118H, 280 BBL_CR_DECC

Data ECC register D[7:0]: used to write ECC and read ECC to/from L2.

Register Address: 119H, 281 BBL_CR_CTL 

Control register: used to program L2 commands to be issued via cache configuration accesses mechanism. Also receives L2 lookup 
response.
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4:0 L2 Command:

01100 = Data Read w/ LRU update (RLU).
01110 = Tag Read w/ Data Read (TRR).
01111 = Tag Inquire (TI).
00010 = L2 Control Register Read (CR).
00011 = L2 Control Register Write (CW).
010 + MESI encode = Tag Write w/ Data Read (TWR).
111 + MESI encode = Tag Write w/ Data Write (TWW).
100 + MESI encode = Tag Write (TW).

6:5

7 State to L2

9:8 Reserved.

11:10 Way 0 - 00, Way 1 - 01, Way 2 - 10, Way 3 - 11

Way to L2

13:12 Modified - 11,Exclusive - 10, Shared - 01, Invalid - 00

Way from L2

15:14 State from L2.

16 Reserved.

17 L2 Hit.

18 Reserved.

20:19 User supplied ECC.

21 Processor number: 2

Disable = 1.
Enable = 0.
Reserved.

63:22 Reserved.

Register Address: 11AH, 282 BBL_CR_TRIG

Trigger register: used to initiate a cache configuration accesses access, Write only with Data = 0.

Register Address: 11BH, 283 BBL_CR_BUSY

Busy register: indicates when a cache configuration accesses L2 command is in progress. D[0] = 1 = BUSY.

Register Address: 11EH, 286 BBL_CR_CTL3

Control register 3: used to configure the L2 Cache.

0 L2 Configured (read/write).

4:1 L2 Cache Latency (read/write).

5 ECC Check Enable (read/write).

6 Address Parity Check Enable (read/write).

7 CRTN Parity Check Enable (read/write).

8 L2 Enabled (read/write).
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10:9 L2 Associativity (read only):

00 = Direct Mapped.
01 = 2 Way.
10 = 4 Way.
11 = Reserved.

12:11 Number of L2 banks (read only).

17:13 Cache size per bank (read/write):

00001 = 256 KBytes.
00010 = 512 KBytes.
00100 = 1 MByte.
01000 = 2 MBytes.
10000 = 4 MBytes.

18 Cache State error checking enable (read/write).

19 Reserved.

22:20 L2 Physical Address Range support:

111 = 64 GBytes.
110 = 32 GBytes.
101 = 16 GBytes.
100 = 8 GBytes.
011 = 4 GBytes.
010 = 2 GBytes.
001 = 1 GByte.
000 = 512 MBytes.

23 L2 Hardware Disable (read only).

24 Reserved.

25 Cache bus fraction (read only).

63:26 Reserved.

Register Address: 174H, 372 SYSENTER_CS_MSR

CS register target for CPL 0 code

Register Address: 175H, 373 SYSENTER_ESP_MSR

Stack pointer for CPL 0 stack

Register Address: 176H, 374 SYSENTER_EIP_MSR

CPL 0 code entry point

Register Address: 179H, 377 MCG_CAP

Machine Check Global Control Register

Register Address: 17AH, 378 MCG_STATUS

Machine Check Error Reporting Register - contains information related to a machine-check error if its VAL (valid) flag is set. Software 
is responsible for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them; writing 1s to them causes a general-protection 
exception.

Register Address: 17BH, 379 MCG_CTL

Machine Check Error Reporting Register - controls signaling of #MC for errors produced by a particular hardware unit (or group of 
hardware units).

Register Address: 186H, 390 PerfEvtSel0 (EVNTSEL0)
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Performance Event Select Register 0 (R/W)

7:0 Event Select

Refer to Performance Counter section for a list of event encodings.

15:8 UMASK (Unit Mask)

Unit mask register set to 0 to enable all count options.

16 USER

Controls the counting of events at Privilege levels of 1, 2, and 3.

17 OS

Controls the counting of events at Privilege level of 0.

18 E

Occurrence/Duration Mode Select:

1 = Occurrence.
0 = Duration.

19 PC

Enabled the signaling of performance counter overflow via BP0 pin.

20 INT

Enables the signaling of counter overflow via input to APIC:

1 = Enable.
0 = Disable.

22 ENABLE

Enables the counting of performance events in both counters:

1 = Enable.
0 = Disable.

23 INV

Inverts the result of the CMASK condition:

1 = Inverted.
0 = Non-Inverted.

31:24 CMASK (Counter Mask)

Register Address: 187H, 391 PerfEvtSel1 (EVNTSEL1)

Performance Event Select for Counter 1 (R/W)

7:0 Event Select

Refer to Performance Counter section for a list of event encodings.

15:8 UMASK (Unit Mask)

Unit mask register set to 0 to enable all count options.

16 USER

Controls the counting of events at Privilege levels of 1, 2, and 3.

17 OS

Controls the counting of events at Privilege level of 0.
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18 E

Occurrence/Duration Mode Select:

1 = Occurrence.
0 = Duration.

19 PC

Enabled the signaling of performance counter overflow via BP0 pin.

20 INT

Enables the signaling of counter overflow via input to APIC.

1 = Enable.
0 = Disable.

23 INV

Inverts the result of the CMASK condition.

1 = Inverted.
0 = Non-Inverted.

31:24 CMASK (Counter Mask)

Register Address: 1D9H, 473 DEBUGCTLMSR

Enables last branch, interrupt, and exception recording; taken branch breakpoints; the breakpoint reporting pins; and trace messages. 
This register can be written to using the WRMSR instruction, when operating at privilege level 0 or when in real-address mode.

0 Enable/Disable Last Branch Records

1 Branch Trap Flag

2 Performance Monitoring/Break Point Pins

3 Performance Monitoring/Break Point Pins

4 Performance Monitoring/Break Point Pins

5 Performance Monitoring/Break Point Pins

6 Enable/Disable Execution Trace Messages

31:7 Reserved.

Register Address: 1DBH, 475 LASTBRANCHFROMIP

32-bit register for recording the instruction pointers for the last branch, interrupt, or exception that the processor took prior to a 
debug exception being generated.

Register Address: 1DCH, 476 LASTBRANCHTOIP

32-bit register for recording the instruction pointers for the last branch, interrupt, or exception that the processor took prior to a 
debug exception being generated.

Register Address: 1DDH, 477 LASTINTFROMIP

Last INT from IP

Register Address: 1DEH, 478 LASTINTTOIP

Last INT to IP

Register Address: 200H, 512 MTRRphysBase0

Memory Type Range Registers

Register Address: 201H, 513 MTRRphysMask0

Memory Type Range Registers
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Register Address: 202H, 514 MTRRphysBase1

Memory Type Range Registers

Register Address: 203H, 515 MTRRphysMask1

Memory Type Range Registers

Register Address: 204H, 516 MTRRphysBase2

Memory Type Range Registers

Register Address: 205H, 517 MTRRphysMask2

Memory Type Range Registers

Register Address: 206H, 518 MTRRphysBase3

Memory Type Range Registers

Register Address: 207H, 519 MTRRphysMask3

Memory Type Range Registers

Register Address: 208H, 520 MTRRphysBase4

Memory Type Range Registers

Register Address: 209H, 521 MTRRphysMask4

Memory Type Range Registers

Register Address: 20AH, 522 MTRRphysBase5

Memory Type Range Registers

Register Address: 20BH, 523 MTRRphysMask5

Memory Type Range Registers

Register Address: 20CH, 524 MTRRphysBase6

Memory Type Range Registers

Register Address: 20DH, 525 MTRRphysMask6

Memory Type Range Registers

Register Address: 20EH, 526 MTRRphysBase7

Memory Type Range Registers

Register Address: 20FH, 527 MTRRphysMask7

Memory Type Range Registers

Register Address: 250H, 592 MTRRfix64K_00000

Memory Type Range Registers

Register Address: 258H, 600 MTRRfix16K_80000

Memory Type Range Registers

Register Address: 259H, 601 MTRRfix16K_A0000

Memory Type Range Registers

Register Address: 268H, 616 MTRRfix4K_C0000

Memory Type Range Registers

Register Address: 269H, 617 MTRRfix4K_C8000
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Memory Type Range Registers

Register Address: 26AH, 618 MTRRfix4K_D0000

Memory Type Range Registers

Register Address: 26BH, 619 MTRRfix4K_D8000

Memory Type Range Registers

Register Address: 26CH, 620 MTRRfix4K_E0000

Memory Type Range Registers

Register Address: 26DH, 621 MTRRfix4K_E8000

Memory Type Range Registers

Register Address: 26EH, 622 MTRRfix4K_F0000

Memory Type Range Registers

Register Address: 26FH, 623 MTRRfix4K_F8000

Memory Type Range Registers

Register Address: 2FFH, 767 MTRRdefType

Memory Type Range Registers

2:0 Default memory type

10 Fixed MTRR enable

11 MTRR Enable

Register Address: 400H, 1024 MC0_CTL

Machine Check Error Reporting Register - controls signaling of #MC for errors produced by a particular hardware unit (or group of 
hardware units).

Register Address: 401H, 1025 MC0_STATUS

Machine Check Error Reporting Register - contains information related to a machine-check error if its VAL (valid) flag is set. Software 
is responsible for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them; writing 1s to them causes a general-protection 
exception.

15:0 MC_STATUS_MCACOD 

31:16 MC_STATUS_MSCOD 

57 MC_STATUS_DAM

58 MC_STATUS_ADDRV 

59 MC_STATUS_MISCV 

60 MC_STATUS_EN. (Note: For MC0_STATUS only, this bit is hardcoded to 1.)

61 MC_STATUS_UC 

62 MC_STATUS_O

63 MC_STATUS_V

Register Address: 402H, 1026 MC0_ADDR

Register Address: 403H, 1027 MC0_MISC

Defined in MCA architecture but not implemented in the P6 family processors.

Register Address: 404H, 1028 MC1_CTL
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2.23 MSRS IN PENTIUM PROCESSORS
The following MSRs are defined for the Pentium processors. The P5_MC_ADDR, P5_MC_TYPE, and TSC MSRs 
(named IA32_P5_MC_ADDR, IA32_P5_MC_TYPE, and IA32_TIME_STAMP_COUNTER in the Pentium 4 processor) 
are architectural; that is, code that accesses these registers will run on Pentium 4 and P6 family processors without 
generating exceptions (see Section 2.1, “Architectural MSRs”). The CESR, CTR0, and CTR1 MSRs are unique to 
Pentium processors; code that accesses these registers will generate exceptions on Pentium 4 and P6 family 
processors.

Register Address: 405H, 1029 MC1_STATUS

Bit definitions same as MC0_STATUS.

Register Address: 406H, 1030 MC1_ADDR

Register Address: 407H, 1031 MC1_MISC

Defined in MCA architecture but not implemented in the P6 family processors.

Register Address: 408H, 1032 MC2_CTL

Register Address: 409H, 1033 MC2_STATUS

Bit definitions same as MC0_STATUS.

Register Address: 40AH, 1034 MC2_ADDR

Register Address: 40BH, 1035 MC2_MISC

Defined in MCA architecture but not implemented in the P6 family processors.

Register Address: 40CH, 1036 MC4_CTL

Register Address: 40DH, 1037 MC4_STATUS

Bit definitions same as MC0_STATUS, except bits 0, 4, 57, and 61 are hardcoded to 1.

Register Address: 40EH, 1038 MC4_ADDR

Defined in MCA architecture but not implemented in P6 Family processors.

Register Address: 40FH, 1039 MC4_MISC

Defined in MCA architecture but not implemented in the P6 family processors.

Register Address: 410H, 1040 MC3_CTL

Register Address: 411H, 1041 MC3_STATUS

Bit definitions same as MC0_STATUS.

Register Address: 412H, 1042 MC3_ADDR

Register Address: 413H, 1043 MC3_MISC

Defined in MCA architecture but not implemented in the P6 family processors.

NOTES
1. Bit 0 of this register has been redefined several times, and is no longer used in P6 family processors.
2. The processor number feature may be disabled by setting bit 21 of the BBL_CR_CTL MSR (model-specific register address 119h) to 

“1”. Once set, bit 21 of the BBL_CR_CTL may not be cleared. This bit is write-once. The processor number feature will be disabled 
until the processor is reset.

3. The Pentium III processor will prevent FSB frequency overclocking with a new shutdown mechanism. If the FSB frequency selected 
is greater than the internal FSB frequency the processor will shutdown. If the FSB selected is less than the internal FSB frequency 
the BIOS may choose to use bit 11 to implement its own shutdown policy.
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Table 2-69.  MSRs in the Pentium Processor

Register Address: Hex, Decimal
Register Name

Register Information

Register Address: 0H, 0 P5_MC_ADDR

See Section 17.10.2, “Pentium Processor Machine-Check Exception Handling.”

Register Address: 1H, 1 P5_MC_TYPE

See Section 17.10.2, “Pentium Processor Machine-Check Exception Handling.”

Register Address: 10H, 16 TSC

See Section 19.17, “Time-Stamp Counter.”

Register Address: 11H, 17 CESR

See Section 21.6.9.1, “Control and Event Select Register (CESR).”

Register Address: 12H, 18 CTR0

Section 21.6.9.3, “Events Counted.”

Register Address: 13H, 19 CTR1

Section 21.6.9.3, “Events Counted.”
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packed word integers data type, Vol.1-4-9

MADD, Vol.2-1-222, Vol.2-1-237
MSUB, Vol.2-1-271, Vol.2-1-287
16-bit

address size, Vol.1-3-9
operand size, Vol.1-3-9

16-bit code, mixing with 32-bit code, Vol.1-23-1
286 processor, Vol.1-2-1
32-bit

address size, Vol.1-3-9
operand size, Vol.1-3-9

32-bit code, mixing with 16-bit code, Vol.1-23-1
32-bit physical addressing

overview, Vol.3-3-6
36-bit physical addressing

overview, Vol.3-3-6
64-bit

packed byte integers data type, Vol.1-4-8, Vol.1-9-3
packed doubleword integers data type, Vol.1-4-8
packed doubleword integers data types, Vol.1-9-3
packed word integers data type, Vol.1-4-8, Vol.1-9-3

64-bit mode
sub-mode of IA-32e, Vol.1-3-1
address calculation, Vol.1-3-10
address size, Vol.1-3-19
address space, Vol.1-3-5
BOUND instruction, Vol.1-7-18
branch behavior, Vol.1-6-12
byte register limitation, Vol.1-3-13
call gates, Vol.3-6-14
CALL instruction, Vol.1-6-12, Vol.1-7-17
canonical address, Vol.1-3-10
CMPS instruction, Vol.1-7-20
CMPXCHG16B instruction, Vol.1-7-5
code segment descriptors, Vol.3-6-3, Vol.3-11-12
control and debug registers, Vol.2-2-12
control registers, Vol.3-2-13
CR8 register, Vol.3-2-13
D flag, Vol.3-6-4
data types, Vol.1-7-2
debug registers, Vol.3-2-7
DEC instruction, Vol.1-7-8
decimal arithmetic instructions, Vol.1-7-10
default operand and address sizes, Vol.1-3-2
default operand size, Vol.2-2-12
descriptors, Vol.3-6-3, Vol.3-6-5
direct memory-offset MOVs, Vol.2-2-11
DPL field, Vol.3-6-4
exception handling, Vol.3-7-19
exceptions, Vol.1-6-19
external interrupts, Vol.3-12-31
far pointer, Vol.1-4-7
fast system calls, Vol.3-6-22
feature list, Vol.1-2-20
GDTR register, Vol.1-3-6, Vol.3-2-12, Vol.3-2-13
general purpose encodings, Vol.1-B-18
GP faults, causes of, Vol.3-7-42
IDTR register, Vol.1-3-6, Vol.3-2-12
immediates, Vol.2-2-11
INC instruction, Vol.1-7-8
initialization process, Vol.3-2-8, Vol.3-11-11

instruction pointer, Vol.1-3-10, Vol.1-3-18
instructions introduced, Vol.1-5-38
interrupt and trap gates, Vol.3-7-19
interrupt controller, Vol.3-12-31
interrupt descriptors, Vol.3-2-5
interrupt handling, Vol.3-7-19
interrupt stack table, Vol.3-7-22
interrupts, Vol.1-6-19
introduction, Vol.1-2-20, Vol.1-3-1, Vol.1-7-1, Vol.2-2-7
IRET instruction, Vol.1-7-18, Vol.3-7-21
I/O instructions, Vol.1-7-20
JCC instruction, Vol.1-6-12, Vol.1-7-17
JCXZ instruction, Vol.1-6-12, Vol.1-7-17
JMP instruction, Vol.1-6-12, Vol.1-7-17
L flag, Vol.3-3-12, Vol.3-6-4
LAHF instruction, Vol.1-7-22
LDTR register, Vol.1-3-6
legacy modes, Vol.1-2-20
LODS instruction, Vol.1-7-20
logical address translation, Vol.3-3-7
LOOP instruction, Vol.1-6-12, Vol.1-7-17
machine instructions, Vol.1-B-1
memory models, Vol.1-3-9
memory operands, Vol.1-3-21
MMX technology, Vol.1-9-2
MOV CRn, Vol.3-2-13, Vol.3-12-31
MOVS instruction, Vol.1-7-20
MOVSXD instruction, Vol.1-7-8
near pointer, Vol.1-4-7
null segment checking, Vol.3-6-6
operand addressing, Vol.1-3-24
operand size, Vol.1-3-19
operands, Vol.1-3-21
paging, Vol.3-2-6
POPF instruction, Vol.1-7-22
promoted instructions, Vol.1-3-2
PUSHA, PUSHAD, POPA, POPAD, Vol.1-7-7
PUSHF instruction, Vol.1-7-22
PUSHFD instruction, Vol.1-7-22
reading counters, Vol.3-2-27
reading & writing MSRs, Vol.3-2-27
real address mode, Vol.1-3-9
reg (reg) field, Vol.1-B-4
register operands, Vol.1-3-21
registers and mode changes, Vol.3-11-12
REP prefix, Vol.1-7-20
RET instruction, Vol.1-6-12, Vol.1-7-17
REX prefix, Vol.1-3-2, Vol.1-3-12, Vol.1-3-19
REX prefixes, Vol.2-2-7, Vol.1-B-2
RFLAGS register, Vol.1-7-22, Vol.3-2-11
RIP register, Vol.1-3-10
RIP-relative addressing, Vol.1-3-18, Vol.1-3-24, Vol.2-2-11
SAHF instruction, Vol.1-7-22
SCAS instruction, Vol.1-7-20
segment descriptor tables, Vol.3-3-16, Vol.3-6-3
segment loading instructions, Vol.3-3-9
segment registers, Vol.1-3-15
segmentation, Vol.1-3-9, Vol.1-3-22
segments, Vol.3-3-5
SIMD encodings, Vol.1-B-37
special instruction encodings, Vol.1-B-61
SSE extensions, Vol.1-10-3
SSE2 extensions, Vol.1-11-3
SSE3 extensions, Vol.1-12-1
SSSE3 extensions, Vol.1-12-1
stack behavior, Vol.1-6-4
stack switching, Vol.3-6-19, Vol.3-7-21
STOS instruction, Vol.1-7-20
summary table notation, Vol.2-1-8
SYSCALL and SYSRET, Vol.3-2-7, Vol.3-6-22
SYSENTER and SYSEXIT, Vol.3-6-21
system registers, Vol.3-2-7
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task gate, Vol.3-9-19
task priority, Vol.3-2-20, Vol.3-12-31
task register, Vol.3-2-13
TR register, Vol.1-3-6
TSS

stack pointers, Vol.3-9-19
x87 FPU, Vol.1-8-1
See also: IA-32e mode, compatibility mode

8086
emulation, support for, Vol.3-22-1
processor, exceptions and interrupts, Vol.3-22-6

8086 processor, Vol.1-2-1
8088 processor, Vol.1-2-1
82489DX

Local APIC and I/O APICs, Vol.3-12-4

A
A20M# signal, Vol.3-22-2, Vol.3-24-4, Vol.3-25-4
AAA instruction, Vol.1-7-9, Vol.2-1-19, Vol.2-1-21
AAD instruction, Vol.1-7-10, Vol.2-1-21
AAM instruction, Vol.1-7-10, Vol.2-1-23
AAS instruction, Vol.1-7-10, Vol.2-1-25
Aborts

description of, Vol.3-7-5
restarting a program or task after, Vol.3-7-6

AC (alignment check) flag, EFLAGS register, Vol.1-3-17, Vol.3-2-11, 
Vol.3-7-50

Access rights
checking, Vol.3-2-24
checking caller privileges, Vol.3-6-26
description of, Vol.3-6-24

Access rights, segment descriptor, Vol.1-6-8, Vol.1-6-13
ADC instruction, Vol.1-7-8, Vol.2-1-27, Vol.2-1-620, Vol.3-10-4
ADD instruction, Vol.1-7-8, Vol.2-1-19, Vol.2-1-32, Vol.2-1-324, 

Vol.2-1-620, Vol.3-10-4
ADDPD instruction, Vol.1-11-6, Vol.2-1-34
ADDPS- Add Packed Single Precision Floating-Point Values, Vol.2-1-37
ADDPS instruction, Vol.1-10-8
Address

size prefix, Vol.1-23-1
space, of task, Vol.3-9-16

Address size attribute
code segment, Vol.1-3-18
description of, Vol.1-3-18
of stack, Vol.1-6-3

Address sizes, Vol.1-3-9
Address space

64-bit mode, Vol.1-3-1, Vol.1-3-5
compatibility mode, Vol.1-3-1
overview of, Vol.1-3-2
physical, Vol.1-3-6

Address translation
in real-address mode, Vol.3-22-2
logical to linear, Vol.3-3-7
overview, Vol.3-3-6

Addressing methods
RIP-relative, Vol.2-2-11

Addressing modes
assembler, Vol.1-3-24
base, Vol.1-3-22, Vol.1-3-23, Vol.1-3-24
base plus displacement, Vol.1-3-23
base plus index plus displacement, Vol.1-3-23
base plus index time scale plus displacement, Vol.1-3-23, Vol.1-3-24
canonical address, Vol.1-3-10
displacement, Vol.1-3-22, Vol.1-3-23, Vol.1-3-24
effective address, Vol.1-3-23
immediate operands, Vol.1-3-20
index, Vol.1-3-22, Vol.1-3-24
index times scale plus displacement, Vol.1-3-23
memory operands, Vol.1-3-21
register operands, Vol.1-3-20, Vol.1-3-21

RIP-relative addressing, Vol.1-3-18, Vol.1-3-24
scale factor, Vol.1-3-22, Vol.1-3-24
specifying a segment selector, Vol.1-3-21
specifying an offset, Vol.1-3-22
specifying offsets in 64-bit mode, Vol.1-3-24

ADDSD- Add Scalar Double Precision Floating-Point Values, Vol.2-1-40
ADDSD instruction, Vol.1-11-6
ADDSS- Add Scalar Single Precision Floating-Point Values, Vol.2-1-42
ADDSS instruction, Vol.1-10-8
ADDSUBPD instruction, Vol.1-5-24, Vol.1-12-4, Vol.2-1-44
ADDSUBPS instruction, Vol.1-5-24, Vol.1-12-4, Vol.2-1-46
ADOX — Unsigned Integer Addition of Two Operands with Overflow Flag, 

Vol.2-1-49
Advanced media boost, Vol.1-2-11
Advanced power management

C-state and Sub C-state, Vol.3-15-35, Vol.3-16-35
MWAIT extensions, Vol.3-15-35, Vol.3-16-35
See also: thermal monitoring

Advanced programmable interrupt controller (see I/O APIC or Local APIC)
advanced smart cache, Vol.1-2-10
AESDEC128KL—Perform Ten Rounds of AES Decryption Flow Using 

128-Bit Key, Vol.2-1-53
AESDEC256KL—Perform 14 Rounds of AES Decryption Flow Using 256-Bit 

Key, Vol.2-1-55
AESDECLAST—Perform Last Round of an AES Decryption Flow, Vol.2-1-57
AESDEC—Perform One Round of an AES Decryption Flow, Vol.2-1-51
AESDECWIDE128KL—Perform Ten Rounds of AES Decryption Flow on 8 

Blocks with 128-Bit Key, Vol.2-1-59
AESDECWIDE256KL—Perform 14 Rounds of AES Decryption Flow on 8 

Blocks with 256-Bit Key, Vol.2-1-61
AESENC128KL—Perform Ten Rounds of AES Encryption Flow Using 

128-Bit Key, Vol.2-1-65
AESENC256KL—Perform 14 Rounds of AES Encryption Flow Using 256-Bit 

Key, Vol.2-1-67
AESENCLAST—Perform Last Round of an AES Encryption Flow, Vol.2-1-69
AESENC—Perform One Round of an AES Encryption Flow, Vol.2-1-63
AESENCWIDE128KL—Perform Ten Rounds of AES Encryption Flow on 8 

Blocks with 128-Bit Key, Vol.2-1-71
AESENCWIDE256KL—Perform 14 Rounds of AES Encryption Flow on 8 

Blocks with 256-Bit Key, Vol.2-1-73
AESIMC—Perform the AES InvMixColumn Transformation, Vol.2-1-75
AESKEYGENASSIST - AES Round Key Generation Assist, Vol.2-1-76
AF (adjust) flag, EFLAGS register, Vol.1-3-16, Vol.1-A-1
AH register, Vol.1-3-12
AL register, Vol.1-3-12
Alignment

check exception, Vol.3-2-11, Vol.3-7-50
checking, Vol.3-6-27
words, doublewords, quadwords, Vol.1-4-2

AM (alignment mask) flag
CR0 control register, Vol.3-2-15

AND instruction, Vol.1-7-10, Vol.2-1-78, Vol.2-1-620, Vol.3-10-4
ANDNPD instruction, Vol.1-11-7
ANDNPS- Bitwise Logical AND NOT of Packed Single Precision 

Floating-Point Values, Vol.2-1-84
ANDNPS instruction, Vol.1-10-9
ANDPD- Bitwise Logical AND of Packed Double Precision Floating-Point 

Values, Vol.2-1-87
ANDPD instruction, Vol.1-11-7, Vol.2-1-80
ANDPS- Bitwise Logical AND of Packed Single Precision Floating-Point 

Values, Vol.2-1-90
ANDPS instruction, Vol.1-10-9
APIC, Vol.3-12-40, Vol.3-12-41
APIC bus

arbitration mechanism and protocol, Vol.3-12-26, Vol.3-12-33
bus message format, Vol.3-12-34, Vol.3-12-47
diagram of, Vol.3-12-2, Vol.3-12-3
EOI message format, Vol.3-12-15, Vol.3-12-47
nonfocused lowest priority message, Vol.3-12-49
short message format, Vol.3-12-48
SMI message, Vol.5-33-2
status cycles, Vol.3-12-50
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structure of, Vol.3-12-3
See also

local APIC
APIC flag, CPUID instruction, Vol.3-12-7
APIC ID, Vol.3-12-40, Vol.3-12-44, Vol.3-12-46
APIC (see I/O APIC or Local APIC)
Architectural Performance Monitoring Extended Enumeration Leaf, 

Vol.2-1-243
Arctangent, x87 FPU operation, Vol.1-8-20, Vol.2-1-423
Arithmetic instructions, x87 FPU, Vol.1-8-25
ARPL instruction, Vol.2-1-93, Vol.3-2-24, Vol.3-6-27

not supported in 64-bit mode, Vol.3-2-24
Assembler, addressing modes, Vol.1-3-24
Asymmetric processing model, Vol.1-12-1
Atomic operations

automatic bus locking, Vol.3-10-3
effects of a locked operation on internal processor caches, Vol.3-10-6
guaranteed, description of, Vol.3-10-2
overview of, Vol.3-10-1, Vol.3-10-3
software-controlled bus locking, Vol.3-10-4

At-retirement
counting, Vol.3-21-108, Vol.3-21-124
events, Vol.3-21-108, Vol.3-21-113, Vol.3-21-114, Vol.3-21-124, 

Vol.3-21-128
authenticated code execution mode, Vol.1-6-3
Auto HALT restart

field, SMM, Vol.5-33-14
SMM, Vol.5-33-14

Automatic bus locking, Vol.3-10-3
Automatic thermal monitoring mechanism, Vol.3-15-36, Vol.3-16-36
AX register, Vol.1-3-12

B
B (busy) flag

TSS descriptor, Vol.3-9-5, Vol.3-9-11, Vol.3-9-16
B (default size) flag, segment descriptor, Vol.1-3-18
B (default stack size) flag

segment descriptor, Vol.1-23-1
B0-B3 (BP condition detected) flags

DR6 register, Vol.3-19-4
Backlink (see Previous task link)
Base address fields, segment descriptor, Vol.3-3-10
Base (operand addressing), Vol.1-3-22, Vol.1-3-23, Vol.1-3-24, Vol.2-2-3
Basic execution environment, Vol.1-3-2
Basic programming environment, Vol.1-7-1
B-bit, x87 FPU status word, Vol.1-8-5
BCD integers

packed, Vol.1-4-10, Vol.2-1-324, Vol.2-1-326, Vol.2-1-373, 
Vol.2-1-375

relationship to status flags, Vol.1-3-17
unpacked, Vol.1-4-9, Vol.1-7-9, Vol.2-1-19, Vol.2-1-21, Vol.2-1-23, 

Vol.2-1-25
x87 FPU encoding, Vol.1-4-10

BD (debug register access detected) flag, DR6 register, Vol.3-19-11
BEXTR—Bit Field Extract, Vol.2-1-95
BH register, Vol.1-3-12
Bias value

numeric overflow, Vol.1-8-29
numeric underflow, Vol.1-8-30

Biased exponent, Vol.1-4-13
Biasing constant, for floating-point numbers, Vol.1-4-6
Binary numbers, Vol.1-1-7
Binary-coded decimal (see BCD)
BINIT# signal, Vol.3-2-26
BIOS role in microcode updates, Vol.3-11-38
Bit field, Vol.1-4-7
Bit order, Vol.1-1-6
BL register, Vol.1-3-12
BLENDPD — Blend Packed Double Precision Floating-Point Values, 

Vol.2-1-96

BLENDPS — Blend Packed Single Precision Floating-Point Values, 
Vol.2-1-98

BLSI-Extract Lowest Set Isolated Bit, Vol.2-1-105
BLSMSK - Get Mask Up to Lowest Set Bit, Vol.2-1-106
BLSR —Reset Lowest Set Bit, Vol.2-1-107
BNDCL—Check Lower Bound, Vol.2-1-108
BNDCU/BNDCN—Check Upper Bound, Vol.2-1-110
BNDLDX—Load Extended Bounds Using Address Translation, Vol.2-1-112
BNDMK—Make Bounds, Vol.2-1-115
BNDMOV—Move Bounds, Vol.2-1-117
BNDSTX—Store Extended Bounds Using Address Translation, Vol.2-1-120
bootstrap processor, Vol.1-6-16, Vol.1-6-21, Vol.1-6-29, Vol.1-6-30
BOUND instruction, Vol.1-6-18, Vol.1-7-18, Vol.1-7-23, Vol.2-1-123, 

Vol.3-2-5, Vol.3-7-4, Vol.3-7-30
BOUND range exceeded exception (#BR), Vol.1-6-19, Vol.2-1-123, 

Vol.3-7-30
BOUND—Check Array Index Against Bounds, Vol.2-1-123
BP register, Vol.1-3-12
BP0#, BP1#, BP2#, and BP3# pins, Vol.3-19-39, Vol.3-19-41
Branch

control transfer instructions, Vol.1-7-14
hints, Vol.1-11-13
on EFLAGS register status flags, Vol.1-7-15, Vol.1-8-6
on x87 FPU condition codes, Vol.1-8-6, Vol.1-8-20
prediction, Vol.1-2-8

Branch hints, Vol.2-2-2
Branch record

branch trace message, Vol.3-19-15
IA-32e mode, Vol.3-19-23
saving, Vol.3-19-17, Vol.3-19-27, Vol.3-19-28, Vol.3-19-36
saving as a branch trace message, Vol.3-19-15
structure, Vol.3-19-37
structure of in BTS buffer, Vol.3-19-21

Branch trace message (see BTM)
Branch trace store (see BTS)
Brand information, Vol.2-1-260

processor brand index, Vol.2-1-262
processor brand string, Vol.2-1-260

Breakpoint exception (#BP), Vol.3-7-4, Vol.3-7-28, Vol.3-19-11
Breakpoints

data breakpoint, Vol.3-19-6
data breakpoint exception conditions, Vol.3-19-10
description of, Vol.3-19-1
DR0-DR3 debug registers, Vol.3-19-4
example, Vol.3-19-6
exception, Vol.3-7-28
field recognition, Vol.3-19-6, Vol.3-19-7
general-detect exception condition, Vol.3-19-10
instruction breakpoint, Vol.3-19-6
instruction breakpoint exception condition, Vol.3-19-9
I/O breakpoint exception conditions, Vol.3-19-10
LEN0 - LEN3 (Length) fields

DR7 register, Vol.3-19-6
R/W0-R/W3 (read/write) fields

DR7 register, Vol.3-19-5
single-step exception condition, Vol.3-19-11
task-switch exception condition, Vol.3-19-11

BS (single step) flag, DR6 register, Vol.3-19-4
BSF instruction, Vol.1-7-14, Vol.2-1-125
BSP flag, IA32_APIC_BASE MSR, Vol.3-12-8
BSR instruction, Vol.1-7-14, Vol.2-1-127
BSWAP instruction, Vol.1-7-4, Vol.2-1-129
BT instruction, Vol.1-3-15, Vol.1-3-16, Vol.1-7-14, Vol.2-1-130
BT (task switch) flag, DR6 register, Vol.3-19-4, Vol.3-19-11
BTC instruction, Vol.1-3-15, Vol.1-3-16, Vol.1-7-14, Vol.2-1-132, 

Vol.2-1-620, Vol.3-10-4
BTF (single-step on branches) flag

DEBUGCTLMSR MSR, Vol.3-19-41
BTMs (branch trace messages)

description of, Vol.3-19-15
enabling, Vol.3-19-13, Vol.3-19-25, Vol.3-19-26, Vol.3-19-36, 

Vol.3-19-38, Vol.3-19-39
Combined Volumes 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4 Index -3



INDEX
TR (trace message enable) flag
MSR_DEBUGCTLA MSR, Vol.3-19-36
MSR_DEBUGCTLB MSR, Vol.3-19-13, Vol.3-19-38, Vol.3-19-39

BTR instruction, Vol.1-3-15, Vol.1-3-16, Vol.1-7-14, Vol.2-1-134, 
Vol.2-1-620, Vol.3-10-4

BTS buffer
description of, Vol.3-19-20
introduction to, Vol.3-19-12, Vol.3-19-15
records in, Vol.3-19-21
setting up, Vol.3-19-25
structure of, Vol.3-19-21, Vol.3-19-23, Vol.3-21-27

BTS instruction, Vol.1-3-15, Vol.1-3-16, Vol.1-7-14, Vol.2-1-136, 
Vol.2-1-620, Vol.3-10-4

BTS (branch trace store) facilities
availability of, Vol.3-19-35
BTS_UNAVAILABLE flag,

IA32_MISC_ENABLE MSR, Vol.3-19-20, Vol.4-2-529
introduction to, Vol.3-19-12
setting up BTS buffer, Vol.3-19-25
writing an interrupt service routine for, Vol.3-19-26

BTS_UNAVAILABLE, Vol.3-19-20
Built-in self-test (BIST)

description of, Vol.3-11-1
performing, Vol.3-11-5

Bus
errors detected with MCA, Vol.3-17-28
locking, Vol.3-10-3

BX register, Vol.1-3-12
Byte, Vol.1-4-1
Byte order, Vol.1-1-6
BZHI —Zero High Bits Starting with Specified Bit Position, Vol.2-1-138

C
C (conforming) flag, segment descriptor, Vol.3-6-11
C1 flag, x87 FPU status word, Vol.1-8-4, Vol.1-8-26, Vol.1-8-29, 

Vol.1-8-30
C2 flag, x87 FPU status word, Vol.1-8-5
Cache and TLB information, Vol.2-1-253
Cache control, Vol.3-13-20

adaptive mode, L1 Data Cache, Vol.3-13-18
cache management instructions, Vol.3-13-17, Vol.3-13-18
caching terminology, Vol.3-13-5
CD flag, CR0 control register, Vol.3-13-10
choosing a memory type, Vol.3-13-8
CPUID feature flag, Vol.3-13-18
flags and fields, Vol.3-13-10
flushing TLBs, Vol.3-13-19
G (global) flag

page-directory entries, Vol.3-13-13
page-table entries, Vol.3-13-13

internal caches, Vol.3-13-1
MemTypeGet() function, Vol.3-13-29
MemTypeSet() function, Vol.3-13-31
MESI protocol, Vol.3-13-5, Vol.3-13-9
methods of caching available, Vol.3-13-6
MTRR initialization, Vol.3-13-29
MTRR precedences, Vol.3-13-28
MTRRs, description of, Vol.3-13-20
multiple-processor considerations, Vol.3-13-32
NW flag, CR0 control register, Vol.3-13-13
operating modes, Vol.3-13-12
overview of, Vol.3-13-1
page attribute table (PAT), Vol.3-13-33
PCD flag

CR3 control register, Vol.3-13-13
page-directory entries, Vol.3-13-13, Vol.3-13-33
page-table entries, Vol.3-13-13, Vol.3-13-33

PGE (page global enable) flag, CR4 control register, Vol.3-13-13
precedence of controls, Vol.3-13-13
preventing caching, Vol.3-13-16
protocol, Vol.3-13-9

PWT flag
CR3 control register, Vol.3-13-13
page-directory entries, Vol.3-13-33
page-table entries, Vol.3-13-33

remapping memory types, Vol.3-13-29
setting up memory ranges with MTRRs, Vol.3-13-22
shared mode, L1 Data Cache, Vol.3-13-18
variable-range MTRRs, Vol.3-13-23, Vol.3-13-25

Cache Inclusiveness, Vol.2-1-224
Caches, Vol.3-2-7

cache hit, Vol.3-13-5
cache line, Vol.3-13-5
cache line fill, Vol.3-13-5
cache write hit, Vol.3-13-5
description of, Vol.3-13-1
effects of a locked operation on internal processor caches, Vol.3-10-6
enabling, Vol.3-11-7
management, instructions, Vol.3-2-25, Vol.3-13-17

Caches, invalidating (flushing), Vol.2-1-541, Vol.2-1-3
cache, smart, Vol.1-2-4
Caching

cache control protocol, Vol.3-13-9
cache line, Vol.3-13-5
cache management instructions, Vol.3-13-17
caching terminology, Vol.3-13-5
choosing a memory type, Vol.3-13-8
flushing TLBs, Vol.3-13-19
implicit caching, Vol.3-13-19
internal caches, Vol.3-13-1
L1 (level 1) cache, Vol.3-13-4
L2 (level 2) cache, Vol.3-13-4
L3 (level 3) cache, Vol.3-13-4
methods of caching available, Vol.3-13-6
MTRRs, description of, Vol.3-13-20
operating modes, Vol.3-13-12
overview of, Vol.3-13-1
self-modifying code, effect on, Vol.3-13-18
snooping, Vol.3-13-6
store buffer, Vol.3-13-20
TLBs, Vol.3-13-5
UC (strong uncacheable) memory type, Vol.3-13-6
UC- (uncacheable) memory type, Vol.3-13-6
WB (write back) memory type, Vol.3-13-7
WC (write combining) memory type, Vol.3-13-7
WP (write protected) memory type, Vol.3-13-7
write-back caching, Vol.3-13-6
WT (write through) memory type, Vol.3-13-7

Call gate, Vol.1-6-8
Call gates

accessing a code segment through, Vol.3-6-15
description of, Vol.3-6-13
for 16-bit and 32-bit code modules, Vol.1-23-1
IA-32e mode, Vol.3-6-14
introduction to, Vol.3-2-4
mechanism, Vol.3-6-15
privilege level checking rules, Vol.3-6-16

CALL instruction, Vol.1-3-18, Vol.1-6-3, Vol.1-6-4, Vol.1-6-8, Vol.1-7-15, 
Vol.1-7-22, Vol.2-1-139, Vol.3-2-5, Vol.3-3-8, Vol.3-6-10, 
Vol.3-6-15, Vol.3-6-20, Vol.3-9-2, Vol.3-9-9, Vol.3-9-11, 
Vol.1-23-5

Caller access privileges, checking, Vol.3-6-26
Calls

16 and 32-bit code segments, Vol.1-23-3
controlling operand-size attribute, Vol.1-23-5
returning from, Vol.3-6-20

Calls (see Procedure calls)
Canonical address, Vol.1-3-10
GETSEC, Vol.1-6-3
Capability MSRs

See VMX capability MSRs
Catastrophic shutdown detector

Thermal monitoring
Index-4 Combined Volumes 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4



INDEX
catastrophic shutdown detector, Vol.3-15-37, Vol.3-16-37
catastrophic shutdown detector, Vol.3-15-36, Vol.3-16-36
CBW instruction, Vol.1-7-7, Vol.2-1-156
CC0 and CC1 (counter control) fields, CESR MSR (Pentium processor), 

Vol.3-21-144
CD (cache disable) flag, CR0 control register, Vol.3-2-15, Vol.3-11-7, 

Vol.3-13-10, Vol.3-13-12, Vol.3-13-13, Vol.3-13-16, 
Vol.3-13-32

CDQ instruction, Vol.1-7-7, Vol.2-1-323
CDQE instruction, Vol.2-1-156
Celeron processor

description of, Vol.1-2-2
CESR (control and event select) MSR (Pentium processor), Vol.3-21-143, 

Vol.3-21-144
CF (carry) flag, EFLAGS register, Vol.1-3-16, Vol.1-A-1, Vol.2-1-32, 

Vol.2-1-130, Vol.2-1-132, Vol.2-1-134, Vol.2-1-136, 
Vol.2-1-158, Vol.2-1-174, Vol.2-1-328, Vol.2-1-511, 
Vol.2-1-516, Vol.2-1-148, Vol.2-1-533, Vol.2-1-610, 
Vol.2-1-636, Vol.2-1-639, Vol.2-1-682

CH register, Vol.1-3-12
CL register, Vol.1-3-12
CLC instruction, Vol.1-3-16, Vol.1-7-21, Vol.2-1-158
CLD instruction, Vol.1-3-17, Vol.1-7-21, Vol.2-1-159
CLFLSH feature flag, CPUID instruction, Vol.3-11-8
CLFLUSH instruction, Vol.1-11-12, Vol.2-1-162, Vol.2-1-164, Vol.3-2-16, 

Vol.3-11-8, Vol.3-13-17
CPUID flag, Vol.2-1-252

CLI instruction, Vol.1-20-4, Vol.2-1-166, Vol.3-7-7
Clocks

counting processor clocks, Vol.3-21-145
Hyper-Threading Technology, Vol.3-21-145
nominal CPI, Vol.3-21-145
non-halted clockticks, Vol.3-21-145
non-halted CPI, Vol.3-21-145
non-sleep Clockticks, Vol.3-21-145
time stamp counter, Vol.3-21-145

CLTS instruction, Vol.2-1-170, Vol.3-2-24, Vol.3-6-24, Vol.3-27-2, 
Vol.3-27-7

Cluster model, local APIC, Vol.3-12-24
CMC instruction, Vol.1-3-16, Vol.1-7-21, Vol.2-1-174
CMOVcc flag, Vol.2-1-252
CMOVcc instructions, Vol.1-7-3, Vol.1-7-4, Vol.2-1-175

CPUID flag, Vol.2-1-252
CMP instruction, Vol.1-7-8, Vol.2-1-179
CMPPD- Compare Packed Double Precision Floating-Point Values, 

Vol.2-1-186
CMPPD instruction, Vol.1-11-7
CMPPS- Compare Packed Single Precision Floating-Point Values, 

Vol.2-1-193
CMPPS instruction, Vol.1-10-9
CMPS instruction, Vol.1-3-17, Vol.1-7-18, Vol.2-1-199, Vol.2-1-563
CMPSB instruction, Vol.2-1-199
CMPSD- Compare Scalar Double Precision Floating-Point Values, 

Vol.2-1-203
CMPSD instruction, Vol.1-11-7, Vol.2-1-199
CMPSQ instruction, Vol.2-1-199
CMPSS- Compare Scalar Single Precision Floating-Point Values, 

Vol.2-1-208
CMPSS instruction, Vol.1-10-9
CMPSW instruction, Vol.2-1-199
CMPXCHG instruction, Vol.1-7-4, Vol.2-1-213, Vol.2-1-620, Vol.3-10-4
CMPXCHG16B instruction, Vol.1-7-5, Vol.2-1-215

CPUID bit, Vol.2-1-250
CMPXCHG8B instruction, Vol.1-7-4, Vol.2-1-215, Vol.3-10-4

CPUID flag, Vol.2-1-252
Code modules

16 bit vs. 32 bit, Vol.1-23-1
mixing 16-bit and 32-bit code, Vol.1-23-1
sharing data, mixed-size code segs, Vol.1-23-3
transferring control, mixed-size code segs, Vol.1-23-3

Code segment, Vol.1-3-14
Code segments

accessing data in, Vol.3-6-9
accessing through a call gate, Vol.3-6-15
description of, Vol.3-3-12
descriptor format, Vol.3-6-2
descriptor layout, Vol.3-6-2
direct calls or jumps to, Vol.3-6-10
paging of, Vol.3-2-6
pointer size, Vol.1-23-4
privilege level checks

transferring control between code segs, Vol.3-6-10
COMISD- Compare Scalar Ordered Double Precision Floating-Point Values 

and Set EFLAGS, Vol.2-1-218
COMISD instruction, Vol.1-11-7
COMISS- Compare Scalar Ordered Single Precision Floating-Point Values 

and Set EFLAGS, Vol.2-1-220
COMISS instruction, Vol.1-10-9
Compare

compare and exchange, Vol.1-7-4
integers, Vol.1-7-8
real numbers, x87 FPU, Vol.1-8-19
strings, Vol.1-7-18

Compatibility mode
address space, Vol.1-3-1
branch functions, Vol.1-6-12
call gate descriptors, Vol.1-6-12
code segment descriptor, Vol.3-6-3
code segment descriptors, Vol.3-11-12
control registers, Vol.3-2-13
CS.L and CS.D, Vol.3-11-12
debug registers, Vol.3-2-25
EFLAGS register, Vol.3-2-11
exception handling, Vol.3-2-5
gates, Vol.3-2-4
GDTR register, Vol.3-2-12, Vol.3-2-13
global and local descriptor tables, Vol.3-2-4
IDTR register, Vol.3-2-12
interrupt handling, Vol.3-2-5
introduction, Vol.1-2-20, Vol.1-3-1, Vol.2-2-7
L flag, Vol.3-3-12, Vol.3-6-4
memory management, Vol.3-2-6
memory models, Vol.1-3-9
MMX technology, Vol.1-9-2
operation, Vol.3-11-12
see 64-bit mode
segment loading instructions, Vol.3-3-9
segmentation, Vol.1-3-22
segments, Vol.3-3-5
SSE extensions, Vol.1-10-3
SSE2 extensions, Vol.1-11-3
SSE3 extensions, Vol.1-12-1
SSSE3 extensions, Vol.1-12-1
summary table notation, Vol.2-1-9
switching to, Vol.3-11-12
SYSCALL and SYSRET, Vol.3-6-22
SYSENTER and SYSEXIT, Vol.3-6-21
system flags, Vol.3-2-11
system registers, Vol.3-2-7
task register, Vol.3-2-13
x87 FPU, Vol.1-8-1
See also: 64-bit mode, IA-32e mode
See also: IA-32e mode, 64-bit mode

Compatibility, software, Vol.1-1-7
Condition code flags, EFLAGS register, Vol.2-1-175
Condition code flags, x87 FPU status word

branching on, Vol.1-8-6
conditional moves on, Vol.1-8-6
description of, Vol.1-8-4
flags affected by instructions, Vol.2-1-15
interpretation of, Vol.1-8-5
setting, Vol.2-1-459, Vol.2-1-461, Vol.2-1-464
use of, Vol.1-8-19

Conditional jump, Vol.2-1-557
Combined Volumes 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4 Index -5
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Conditional moves, x87 FPU condition codes, Vol.1-8-6
Conforming code segment, Vol.2-1-591
Conforming code segments

accessing, Vol.3-6-12
C (conforming) flag, Vol.3-6-11
description of, Vol.3-3-13

Constants (floating point), Vol.1-8-17
Constants (floating point), loading, Vol.2-1-413
Context, task (see Task state)
Control registers

64-bit mode, Vol.1-3-5, Vol.3-2-13
CR0, Vol.3-2-13
CR1 (reserved), Vol.3-2-13
CR2, Vol.3-2-13
CR3 (PDBR), Vol.3-2-6, Vol.3-2-13
CR4, Vol.3-2-13
description of, Vol.3-2-13
introduction to, Vol.3-2-6
overview of, Vol.1-3-4

Control registers, moving values to and from, Vol.2-1-39
Coprocessor segment

overrun exception, Vol.3-7-35
Core microarchitecture, Vol.1-2-10, Vol.1-2-12, Vol.1-2-13
core microarchitecture, Vol.1-2-10, Vol.1-2-12
Core Solo and Core Duo, Vol.1-2-4
Cosine, x87 FPU operation, Vol.1-8-20, Vol.2-1-389, Vol.2-1-441
Counter mask field

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family processors), Vol.3-21-5, 
Vol.3-21-142

CPL, Vol.2-1-166, Vol.2-1-170
description of, Vol.3-6-7
field, CS segment selector, Vol.3-6-2

CPUID instruction, Vol.2-1-222, Vol.2-1-252
36-bit page size extension, Vol.2-1-252
APIC on-chip, Vol.2-1-252
AVX256P Converged Vector ISA Information, Vol.2-1-260
basic CPUID information, Vol.2-1-223
cache and TLB characteristics, Vol.2-1-223
CLFLUSH flag, Vol.1-11-12, Vol.2-1-252
CLFLUSH instruction cache line size, Vol.2-1-249
CMOVcc feature flag, Vol.1-7-3
CMPXCHG16B flag, Vol.2-1-250
CMPXCHG8B flag, Vol.2-1-252
control register flags, Vol.3-2-20
CPL qualified debug store, Vol.2-1-250
debug extensions, CR4.DE, Vol.2-1-252
debug store supported, Vol.2-1-253
determine support for, Vol.1-3-17
deterministic cache parameters leaf, Vol.2-1-223, Vol.2-1-226, 

Vol.2-1-228, Vol.2-1-229, Vol.2-1-231, Vol.2-1-232, Vol.2-1-233, 
Vol.2-1-234, Vol.2-1-235, Vol.2-1-236, Vol.2-1-237, Vol.2-1-242, 
Vol.2-1-243, Vol.2-1-244, Vol.2-1-245

extended function information, Vol.2-1-243, Vol.2-1-244, 
Vol.2-1-245

feature information, Vol.2-1-251
FPU on-chip, Vol.2-1-252
FSAVE flag, Vol.2-1-253
FXRSTOR flag, Vol.2-1-253
FXSAVE-FXRSTOR flag, Vol.1-10-14
IA-32e mode available, Vol.2-1-246
input limits for EAX, Vol.2-1-247
L1 Context ID, Vol.2-1-250
local APIC physical ID, Vol.2-1-249
machine check architecture, Vol.2-1-252
machine check exception, Vol.2-1-252
memory type range registers, Vol.2-1-252
MMX feature flag, Vol.1-9-8
MONITOR feature information, Vol.2-1-257
MONITOR/MWAIT flag, Vol.2-1-250
MONITOR/MWAIT leaf, Vol.2-1-224, Vol.2-1-225, Vol.2-1-230, 

Vol.2-1-231, Vol.2-1-237, Vol.2-1-243
MWAIT feature information, Vol.2-1-257

page attribute table, Vol.2-1-252
page size extension, Vol.2-1-252
performance monitoring features, Vol.2-1-258
physical address bits, Vol.2-1-247
physical address extension, Vol.2-1-252
power management, Vol.2-1-257, Vol.2-1-258, Vol.2-1-259, 

Vol.2-1-260
processor brand index, Vol.2-1-249, Vol.2-1-260
processor brand string, Vol.2-1-246, Vol.2-1-260
processor serial number, Vol.2-1-223, Vol.2-1-252
processor type field, Vol.2-1-248
RDMSR flag, Vol.2-1-252
returned in EBX, Vol.2-1-249
returned in ECX & EDX, Vol.2-1-249
self snoop, Vol.2-1-253
serializing instructions, Vol.3-10-19
serializing use, Vol.1-20-5
SpeedStep technology, Vol.2-1-250
SS2 extensions flag, Vol.2-1-253
SSE extensions flag, Vol.2-1-253
SSE feature flag, Vol.1-10-1, Vol.1-10-6
SSE2 feature flag, Vol.1-11-1, Vol.1-12-5
SSE3 extensions flag, Vol.2-1-250
SSE3 feature flag, Vol.1-12-5
SSSE2 feature flag, Vol.1-12-9, Vol.1-12-19, Vol.1-12-24
SSSE3 extensions flag, Vol.2-1-250
summary of, Vol.1-7-23
SYSENTER flag, Vol.2-1-252
SYSEXIT flag, Vol.2-1-252
thermal management, Vol.2-1-257, Vol.2-1-258, Vol.2-1-259, 

Vol.2-1-260
thermal monitor, Vol.2-1-250, Vol.2-1-253
time stamp counter, Vol.2-1-252
using CPUID, Vol.2-1-222
vendor ID string, Vol.2-1-247
version information, Vol.2-1-223, Vol.2-1-257
virtual 8086 Mode flag, Vol.2-1-252
virtual address bits, Vol.2-1-247
WRMSR flag, Vol.2-1-252

CQO instruction, Vol.2-1-323
CR0 control register, Vol.2-1-655

description of, Vol.3-2-13
introduction to, Vol.3-2-6
state following processor reset, Vol.3-11-2

CR1 control register (reserved), Vol.3-2-13
CR2 control register

description of, Vol.3-2-13
introduction to, Vol.3-2-6

CR3 control register (PDBR)
associated with a task, Vol.3-9-1, Vol.3-9-3
description of, Vol.3-2-13
in TSS, Vol.3-9-4, Vol.3-9-17
introduction to, Vol.3-2-6
loading during initialization, Vol.3-11-10
memory management, Vol.3-2-6
page directory base address, Vol.3-2-6
page table base address, Vol.3-2-5

CR4 control register
description of, Vol.3-2-13
introduction to, Vol.3-2-6
VMX usage of, Vol.3-24-3, Vol.3-25-3

CR8 register, Vol.3-2-7
64-bit mode, Vol.3-2-13
compatibility mode, Vol.3-2-13
description of, Vol.3-2-13
task priority level bits, Vol.3-2-20
when available, Vol.3-2-13

CS register, Vol.1-3-13, Vol.1-3-14, Vol.2-1-140, Vol.2-1-526, 
Vol.2-1-548, Vol.2-1-563, Vol.2-1-36, Vol.2-1-397

state following initialization, Vol.3-11-5
C-state, Vol.3-15-35, Vol.3-16-35
CTI instruction, Vol.1-7-22
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CTR0 and CTR1 (performance counters) MSRs (Pentium processor), 
Vol.3-21-143, Vol.3-21-145

Current privilege level (see CPL)
Current stack, Vol.1-6-1, Vol.1-6-3
CVTDQ2PD- Convert Packed Doubleword Integers to Packed Double 

Precision Floating-Point Values, Vol.2-1-273
CVTDQ2PD instruction, Vol.1-11-10, Vol.2-1-270
CVTDQ2PS- Convert Packed Doubleword Integers to Packed Single 

Precision Floating-Point Values, Vol.2-1-276
CVTDQ2PS instruction, Vol.1-11-10
CVTPD2DQ- Convert Packed Double Precision Floating-Point Values to 

Packed Doubleword Integers, Vol.2-1-279
CVTPD2DQ instruction, Vol.1-11-10
CVTPD2PI instruction, Vol.1-11-10, Vol.2-1-283
CVTPD2PS- Convert Packed Double Precision Floating-Point Values to 

Packed Single Precision Floating-Point Values, Vol.2-1-284
CVTPD2PS instruction, Vol.1-11-9
CVTPI2PD instruction, Vol.1-11-10, Vol.2-1-288
CVTPI2PS instruction, Vol.1-10-11, Vol.2-1-289
CVTPS2DQ- Convert Packed Single Precision Floating-Point Values to 

Packed Signed Doubleword Integer Values, Vol.2-1-290
CVTPS2DQ instruction, Vol.1-11-10
CVTPS2PD instruction, Vol.1-11-9
CVTPS2PI instruction, Vol.1-10-11, Vol.2-1-296
CVTSD2SI- Convert Scalar Double Precision Floating-Point Value to 

Doubleword Integer, Vol.2-1-297
CVTSD2SI instruction, Vol.1-11-10
CVTSD2SS instruction, Vol.1-11-9
CVTSI2SD instruction, Vol.1-11-10
CVTSI2SS- Convert Doubleword Integer to Scalar Single Precision 

Floating-Point Value, Vol.2-1-304
CVTSI2SS instruction, Vol.1-10-11
CVTSS2SD- Convert Scalar Single Precision Floating-Point Value to Scalar 

Double Precision Floating-Point Value, Vol.2-1-306
CVTSS2SD instruction, Vol.1-11-9
CVTSS2SI- Convert Scalar Single Precision Floating-Point Value to 

Doubleword Integer, Vol.2-1-308
CVTSS2SI instruction, Vol.1-10-11
CVTTPD2DQ- Convert with Truncation Packed Double Precision 

Floating-Point Values to Packed Doubleword Integers, 
Vol.2-1-310

CVTTPD2DQ instruction, Vol.1-11-10
CVTTPD2PI instruction, Vol.1-11-10, Vol.2-1-314
CVTTPS2DQ- Convert with Truncation Packed Single Precision 

Floating-Point Values to Packed Signed Doubleword Integer 
Values, Vol.2-1-315

CVTTPS2DQ instruction, Vol.1-11-10
CVTTPS2PI instruction, Vol.1-10-11, Vol.2-1-318
CVTTSD2SI- Convert with Truncation Scalar Double Precision 

Floating-Point Value to Signed Integer, Vol.2-1-319
CVTTSD2SI instruction, Vol.1-11-10
CVTTSS2SI- Convert with Truncation Scalar Single Precision Floating-Point 

Value to Integer, Vol.2-1-321
CVTTSS2SI instruction, Vol.1-10-11
CWD instruction, Vol.1-7-7, Vol.2-1-323
CWDE instruction, Vol.1-7-7, Vol.2-1-156
CX register, Vol.1-3-12
C/C++ compiler intrinsics

compiler functional equivalents, Vol.1-C-1
composite, Vol.1-C-14
description of, Vol.2-1-12
lists of, Vol.1-C-1
simple, Vol.1-C-2

D
D (default operation size) flag

segment descriptor, Vol.1-23-1
D (default operation size) flag, segment descriptor, Vol.2-1-401
D (default size) flag, segment descriptor, Vol.1-6-2, Vol.1-6-3
DAA instruction, Vol.1-7-9, Vol.2-1-324
DAS instruction, Vol.1-7-9, Vol.2-1-326

Data breakpoint exception conditions, Vol.3-19-10
Data movement instructions, Vol.1-7-2
Data pointer, x87 FPU, Vol.1-8-9
Data registers, x87 FPU, Vol.1-8-1
Data segment, Vol.1-3-14
Data segments

description of, Vol.3-3-12
descriptor layout, Vol.3-6-2
expand-down type, Vol.3-3-11
paging of, Vol.3-2-6
privilege level checking when accessing, Vol.3-6-8

Data types
128-bit packed SIMD, Vol.1-4-8
64-bit mode, Vol.1-7-2
64-bit packed SIMD, Vol.1-4-8
alignment, Vol.1-4-2
BCD integers, Vol.1-4-9, Vol.1-7-9
bit field, Vol.1-4-7
byte, Vol.1-4-1
doubleword, Vol.1-4-1
floating-point, Vol.1-4-4
fundamental, Vol.1-4-1
integers, Vol.1-4-3
numeric, Vol.1-4-2
operated on by GP instructions, Vol.1-7-1, Vol.1-7-2
operated on by MMX technology, Vol.1-9-3
operated on by SSE extensions, Vol.1-10-5
operated on by SSE2 extensions, Vol.1-11-3
operated on by x87 FPU, Vol.1-8-13
operated on in 64-bit mode, Vol.1-4-7
packed bytes, Vol.1-9-3
packed doublewords, Vol.1-9-3
packed SIMD, Vol.1-4-8
packed words, Vol.1-9-3
pointers, Vol.1-4-6
quadword, Vol.1-4-1, Vol.1-9-3
signed integers, Vol.1-4-4
strings, Vol.1-4-8
unsigned integers, Vol.1-4-3
word, Vol.1-4-1

DAZ (denormals-are-zeros) flag
MXCSR register, Vol.1-10-5

DE (debugging extensions) flag, CR4 control register, Vol.3-2-17
DE (denormal operand exception) flag

MXCSR register, Vol.1-11-15
x87 FPU status word, Vol.1-8-5, Vol.1-8-28

Debug exception (#DB), Vol.3-7-7, Vol.3-7-25, Vol.3-9-5, Vol.3-19-7, 
Vol.3-19-14, Vol.3-19-42

Debug registers
64-bit mode, Vol.1-3-5
legacy modes, Vol.1-3-4

Debug registers, moving value to and from, Vol.2-1-42
Debug store (see DS)
DEBUGCTLMSR MSR, Vol.3-19-40, Vol.3-19-42, Vol.4-2-572
Debugging facilities

breakpoint exception (#BP), Vol.3-19-1
debug exception (#DB), Vol.3-19-1
DR6 debug status register, Vol.3-19-1
DR7 debug control register, Vol.3-19-1
exceptions, Vol.3-19-7
INT3 instruction, Vol.3-19-2
last branch, interrupt, and exception recording, Vol.3-19-2, 

Vol.3-19-12
masking debug exceptions, Vol.3-7-7
overview of, Vol.3-19-1
performance-monitoring counters, Vol.3-21-1
registers

description of, Vol.3-19-2
introduction to, Vol.3-2-6
loading, Vol.3-2-25

RF (resume) flag, EFLAGS, Vol.3-19-1
see DS (debug store) mechanism
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T (debug trap) flag, TSS, Vol.3-19-1
TF (trap) flag, EFLAGS, Vol.3-19-1

DEC instruction, Vol.1-7-8, Vol.2-1-328, Vol.2-1-620, Vol.3-10-4
Decimal integers, x87 FPU, Vol.1-4-10
Deeper sleep, Vol.1-2-4
Denormal number (see Denormalized finite number)
Denormal operand exception (#D)

overview of, Vol.1-4-20
SSE and SSE2 extensions, Vol.1-11-15
x87 FPU, Vol.1-8-27

Denormalization process, Vol.1-4-15
Denormalized finite number, Vol.1-4-5, Vol.1-4-14, Vol.2-1-464
Denormals-are-zero

DAZ flag, MXCSR register, Vol.1-10-5, Vol.1-11-2, Vol.1-11-3, 
Vol.1-11-20

mode, Vol.1-10-5, Vol.1-11-20
Detecting and Enabling SMX

level 2, Vol.1-6-1
Device-not-available exception (#NM), Vol.3-2-16, Vol.3-2-24, 

Vol.3-7-32, Vol.3-11-7
DF (direction) flag, EFLAGS register, Vol.1-3-17, Vol.1-A-1, Vol.2-1-159, 

Vol.2-1-200, Vol.2-1-520, Vol.2-1-622, Vol.2-1-121, 
Vol.2-1-180, Vol.2-1-612, Vol.2-1-669

DFR
Destination Format Register, Vol.3-12-38, Vol.3-12-41, Vol.3-12-46

DH register, Vol.1-3-12
DI register, Vol.1-3-12
Digital media boost, Vol.1-2-4
Digital readout bits, Vol.3-15-43, Vol.3-15-46, Vol.3-16-43, Vol.3-16-46
Displacement (operand addressing), Vol.1-3-22, Vol.1-3-23, Vol.1-3-24, 

Vol.2-2-3
DIV instruction, Vol.1-7-9, Vol.2-1-330, Vol.3-7-24
Divide, Vol.1-4-21
Divide by zero exception (#Z)

SSE and SSE2 extensions, Vol.1-11-15
x87 FPU, Vol.1-8-28

Divide configuration register, local APIC, Vol.3-12-17
Divide error exception (#DE), Vol.2-1-330
Divide-error exception (#DE), Vol.3-7-24
DIVPD- Divide Packed Double Precision Floating-Point Values, Vol.2-1-333
DIVPD instruction, Vol.1-11-6
DIVPS- Divide Packed Single Precision Floating-Point Values, Vol.2-1-336
DIVPS instruction, Vol.1-10-8
DIVSD- Divide Scalar Double Precision Floating-Point Values, Vol.2-1-339
DIVSD instruction, Vol.1-11-6
DIVSS- Divide Scalar Single Precision Floating-Point Values, Vol.2-1-341
DIVSS instruction, Vol.1-10-8
DL register, Vol.1-3-12
DM (denormal operand exception) mask bit

MXCSR register, Vol.1-11-15
x87 FPU, Vol.1-8-28
x87 FPU control word, Vol.1-8-7

Double-extended-precision FP format, Vol.1-4-4
Double-fault exception (#DF), Vol.3-7-33
Doubleword, Vol.1-4-1
DPL (descriptor privilege level) field, segment descriptor, Vol.3-3-11, 

Vol.3-6-2, Vol.3-6-4, Vol.3-6-7
DR0-DR3 breakpoint-address registers, Vol.3-19-1, Vol.3-19-4, 

Vol.3-19-39, Vol.3-19-41, Vol.3-19-42
DR4-DR5 debug registers, Vol.3-19-4
DR6 debug status register, Vol.3-19-4

B0-B3 (BP detected) flags, Vol.3-19-4
BD (debug register access detected) flag, Vol.3-19-4
BS (single step) flag, Vol.3-19-4
BT (task switch) flag, Vol.3-19-4
debug exception (#DB), Vol.3-7-25

DR7 debug control register, Vol.3-19-4
G0-G3 (global breakpoint enable) flags, Vol.3-19-5
GD (general detect enable) flag, Vol.3-19-5
GE (global exact breakpoint enable) flag, Vol.3-19-5
L0-L3 (local breakpoint enable) flags, Vol.3-19-5
LE local exact breakpoint enable) flag, Vol.3-19-5

LEN0-LEN3 (Length) fields, Vol.3-19-5
R/W0-R/W3 (read/write) fields, Vol.3-19-5

DS feature flag, CPUID instruction, Vol.3-19-19, Vol.3-19-35, 
Vol.3-19-38, Vol.3-19-40

DS register, Vol.1-3-13, Vol.1-3-14, Vol.2-1-199, Vol.2-1-597, 
Vol.2-1-622, Vol.2-1-121, Vol.2-1-180

DS save area, Vol.3-19-21, Vol.3-19-22, Vol.3-19-23
DS (debug store) mechanism

availability of, Vol.3-21-118
description of, Vol.3-21-118
DS feature flag, CPUID instruction, Vol.3-21-118
DS save area, Vol.3-19-19, Vol.3-19-22
IA-32e mode, Vol.3-19-22
interrupt service routine (DS ISR), Vol.3-19-26
setting up, Vol.3-19-24

Dual-core technology
architecture, Vol.3-10-33
introduction, Vol.1-2-18
logical processors supported, Vol.3-10-26
MTRR memory map, Vol.3-10-34
multi-threading feature flag, Vol.3-10-26
performance monitoring, Vol.3-21-132

Dual-monitor treatment, Vol.5-33-19
DX register, Vol.1-3-12
Dynamic data flow analysis, Vol.1-2-8
Dynamic execution, Vol.1-2-7, Vol.1-2-10, Vol.1-2-12, Vol.1-2-13
D/B (default operation size/default stack pointer size and/or upper bound) 

flag, segment descriptor, Vol.3-3-11, Vol.3-6-4

E
E (edge detect) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family), Vol.3-21-4
E (edge detect) flag, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family 

processors), Vol.3-21-141
E (expansion direction) flag

segment descriptor, Vol.3-6-2, Vol.3-6-4
E (MTRRs enabled) flag

IA32_MTRR_DEF_TYPE MSR, Vol.3-13-23
EAX register, Vol.1-3-11, Vol.1-3-12
EBP register, Vol.1-3-11, Vol.1-3-12, Vol.1-6-3, Vol.1-6-7
EBX register, Vol.1-3-11, Vol.1-3-12
ECX register, Vol.1-3-11, Vol.1-3-12
EDI register, Vol.1-3-11, Vol.1-3-12, Vol.2-1-612, Vol.2-1-669, 

Vol.2-1-673
EDX register, Vol.1-3-11, Vol.1-3-12
Effective address, Vol.1-3-23, Vol.2-1-604
EFLAGS register

64-bit mode, Vol.1-7-2
condition codes, Vol.1-B-1, Vol.2-1-177, Vol.2-1-381, Vol.2-1-386
cross-reference with instructions, Vol.1-A-1
description of, Vol.1-3-15
flags affected by instructions, Vol.2-1-14
instructions that operate on, Vol.1-7-21
introduction to, Vol.3-2-6
overview, Vol.1-3-11
part of basic programming environment, Vol.1-7-1
popping, Vol.2-1-405
popping on return from interrupt, Vol.2-1-548
pushing, Vol.2-1-526
pushing on interrupts, Vol.2-1-526
restoring from stack, Vol.1-6-7
saved in TSS, Vol.3-9-4
saving, Vol.2-1-598
saving on a procedure call, Vol.1-6-7
status flags, Vol.1-8-6, Vol.1-8-7, Vol.1-8-19, Vol.2-1-179, 

Vol.2-1-560, Vol.2-1-620, Vol.2-1-713
system flags, Vol.3-2-9
use with CMOVcc instructions, Vol.1-7-3

EIP register, Vol.2-1-140, Vol.2-1-526, Vol.2-1-548, Vol.2-1-563
description of, Vol.1-3-18
overview, Vol.1-3-11
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part of basic programming environment, Vol.1-7-1
relationship to CS register, Vol.1-3-14
saved in TSS, Vol.3-9-5
state following initialization, Vol.3-11-5

EM (emulation) flag
CR0 control register, Vol.3-2-16, Vol.3-7-32, Vol.3-11-6, Vol.3-11-7, 

Vol.1-14-1
EMMS instruction, Vol.1-9-8, Vol.1-9-9, Vol.2-1-348, Vol.1-14-3
ENCODEKEY128—Encode 128-Bit Key, Vol.2-1-349
ENCODEKEY256—Encode 256-Bit Key, Vol.2-1-351
Encodings

See machine instructions, opcodes
ENDBR32—Terminate an Indirect Branch in 32-bit and Compatibility Mode

, Vol.2-1-353
Enhanced Intel Deeper Sleep, Vol.1-2-4
Enhanced Intel SpeedStep Technology

ACPI 3.0 specification, Vol.3-15-1, Vol.3-16-1
IA32_APERF MSR, Vol.3-15-2, Vol.3-16-2
IA32_MPERF MSR, Vol.3-15-2, Vol.3-16-2
IA32_PERF_CTL MSR, Vol.3-15-1, Vol.3-16-1
IA32_PERF_STATUS MSR, Vol.3-15-1, Vol.3-16-1
introduction, Vol.3-15-1, Vol.3-16-1
multiple processor cores, Vol.3-15-1, Vol.3-16-1
performance transitions, Vol.3-15-1, Vol.3-16-1
P-state coordination, Vol.3-15-1, Vol.3-16-1
See also: thermal monitoring

ENTER instruction, Vol.1-6-20, Vol.1-7-21, Vol.2-1-361
GETSEC, Vol.1-6-3, Vol.1-6-10, Vol.1-5-39
EOI

End Of Interrupt register, Vol.3-12-38
Error code, Vol.3-18-3, Vol.3-18-7, Vol.3-18-10, Vol.3-18-13, 

Vol.3-18-15
architectural MCA, Vol.3-18-1, Vol.3-18-3, Vol.3-18-7, Vol.3-18-10, 

Vol.3-18-13, Vol.3-18-15
decoding IA32_MCi_STATUS, Vol.3-18-1, Vol.3-18-3, Vol.3-18-7, 

Vol.3-18-10, Vol.3-18-13, Vol.3-18-15
exception, description of, Vol.3-7-17
external bus, Vol.3-18-1, Vol.3-18-3, Vol.3-18-7, Vol.3-18-10, 

Vol.3-18-13, Vol.3-18-15
memory hierarchy, Vol.3-18-3, Vol.3-18-7, Vol.3-18-10, Vol.3-18-13, 

Vol.3-18-15
watchdog timer, Vol.3-18-1, Vol.3-18-3, Vol.3-18-7, Vol.3-18-10, 

Vol.3-18-13, Vol.3-18-15
Error numbers

VM-instruction error field, Vol.4-32-31
Error-reporting bank registers, Vol.3-17-2
ES register, Vol.1-3-13, Vol.1-3-14, Vol.2-1-597, Vol.2-1-180, 

Vol.2-1-612, Vol.2-1-673
ES (exception summary) flag

x87 FPU status word, Vol.1-8-31
ES0 and ES1 (event select) fields, CESR MSR (Pentium processor), 

Vol.3-21-144
ESC instructions, x87 FPU, Vol.1-8-15
ESI register, Vol.1-3-11, Vol.1-3-12, Vol.2-1-199, Vol.2-1-622, 

Vol.2-1-121, Vol.2-1-180, Vol.2-1-669
ESP register, Vol.1-3-12, Vol.2-1-140
ESP register (stack pointer), Vol.1-3-11, Vol.1-6-3
ESR

Error Status Register, Vol.3-12-39
ET (extension type) flag, CR0 control register, Vol.3-2-15
Event select field, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family 

processors), Vol.3-21-4, Vol.3-21-105, Vol.3-21-141
Events

at-retirement, Vol.3-21-124
at-retirement (Pentium 4 processor), Vol.3-21-113
non-retirement (Pentium 4 processor), Vol.3-21-113

EVEX.R, Vol.2-1-5
Exception flags, x87 FPU status word, Vol.1-8-5
Exception handler

calling, Vol.3-7-11
defined, Vol.3-7-1
flag usage by handler procedure, Vol.3-7-17

machine-check exception handler, Vol.3-17-28
machine-check exceptions (#MC), Vol.3-17-28
machine-error logging utility, Vol.3-17-28
procedures, Vol.3-7-12
protection of handler procedures, Vol.3-7-16
task, Vol.3-7-17, Vol.3-9-2

Exception handlers
overview of, Vol.1-6-12
SIMD floating-point exceptions, Vol.1-D-1
SSE and SSE2 extensions, Vol.1-11-18
typical actions of a FP exception handler, Vol.1-4-24
x87 FPU, Vol.1-8-31

Exception priority, floating-point exceptions, Vol.1-4-23
Exception-flag masks, x87 FPU control word, Vol.1-8-7
Exceptions

64-bit mode, Vol.1-6-19
BOUND range exceeded (#BR), Vol.2-1-123
classifications, Vol.3-7-5
compound error codes, Vol.3-17-21
conditions checked during a task switch, Vol.3-9-13
description of, Vol.1-6-12, Vol.3-2-5, Vol.3-7-1
double fault, Vol.3-7-33
error code, Vol.3-7-17
execute-disable bit, Vol.3-6-32
handler, Vol.1-6-12
handler mechanism, Vol.3-7-12
handler procedures, Vol.3-7-12
handling, Vol.3-7-11
handling in real-address mode, Vol.3-22-4
handling in SMM, Vol.5-33-11
handling in virtual-8086 mode, Vol.3-22-11
handling through a task gate in virtual-8086 mode, Vol.3-22-14
handling through a trap or interrupt gate in virtual-8086 mode, 

Vol.3-22-12
IA-32e mode, Vol.3-2-5
IDT, Vol.3-7-9
implicit call to handler, Vol.1-6-1
in real-address mode, Vol.1-6-18
initializing for protected-mode operation, Vol.3-11-10
masking debug exceptions, Vol.3-7-7
masking when switching stack segments, Vol.3-7-8
MCA error codes, Vol.3-17-20
MMX instructions, Vol.1-14-1
notation, Vol.1-1-9
overflow exception (#OF), Vol.2-1-526
overview of, Vol.3-7-1
reference information on all exceptions, Vol.3-7-23
reference information, 64-bit mode, Vol.3-7-19
restarting a task or program, Vol.3-7-5
returning from, Vol.2-1-548
simple error codes, Vol.3-17-20
sources of, Vol.3-7-4
summary of, Vol.3-7-2
vectors, Vol.3-7-1

Executable, Vol.3-3-11
Execute-disable bit capability

conditions for, Vol.3-6-30
CPUID flag, Vol.3-6-30
detecting and enabling, Vol.3-6-30
exception handling, Vol.3-6-32
page-fault exceptions, Vol.3-7-44
protection matrix for IA-32e mode, Vol.3-6-31
protection matrix for legacy modes, Vol.3-6-31
reserved bit checking, Vol.3-6-31

GETSEC, Vol.1-6-3, Vol.1-6-5
Exit-reason numbers

VM entries & exits, Vol.1-C-1
Expand-down data segment type, Vol.3-3-11
Exponent, extracting from floating-point number, Vol.2-1-479
Exponent, floating-point number, Vol.1-4-11
Extended signature table, Vol.3-11-31
extended signature table, Vol.3-11-31
Combined Volumes 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4 Index -9
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External bus errors, detected with machine-check architecture, 
Vol.3-17-28

Extract exponent and significand, x87 FPU operation, Vol.2-1-479
EXTRACTPS- Extract packed floating-point values, Vol.2-1-364

F
F2XM1 instruction, Vol.1-8-21, Vol.2-1-366, Vol.2-1-479
FABS instruction, Vol.1-8-17, Vol.2-1-368
FADD instruction, Vol.1-8-17, Vol.2-1-370
FADDP instruction, Vol.1-8-17, Vol.2-1-370
Family 06H, Vol.3-18-1
Family 0FH, Vol.3-18-1

microcode update facilities, Vol.3-11-28
Far call

description of, Vol.1-6-4
operation, Vol.1-6-5

Far pointer
16-bit addressing, Vol.1-3-9
32-bit addressing, Vol.1-3-9
64-bit mode, Vol.1-4-7
description of, Vol.1-3-7, Vol.1-4-6
legacy modes, Vol.1-4-6

Far pointer, loading, Vol.2-1-597
Far return operation, Vol.1-6-5
Far return, RET instruction, Vol.2-1-566
Faults

description of, Vol.3-7-5
restarting a program or task after, Vol.3-7-5

FBLD instruction, Vol.1-8-16, Vol.2-1-373
FBSTP instruction, Vol.1-8-16, Vol.2-1-375
FCHS instruction, Vol.1-8-17, Vol.2-1-377
FCLEX instruction, Vol.2-1-379
FCLEX/FNCLEX instructions, Vol.1-8-5
FCMOVcc instructions, Vol.1-8-7, Vol.1-8-16, Vol.2-1-381
FCOM instruction, Vol.1-8-6, Vol.1-8-18, Vol.2-1-383
FCOMI instruction, Vol.1-8-7, Vol.1-8-18, Vol.2-1-386
FCOMIP instruction, Vol.1-8-7, Vol.1-8-18, Vol.2-1-386
FCOMP instruction, Vol.1-8-6, Vol.1-8-18, Vol.2-1-383
FCOMPP instruction, Vol.1-8-6, Vol.1-8-18, Vol.2-1-383
FCOS instruction, Vol.1-8-5, Vol.1-8-20, Vol.2-1-389
FDECSTP instruction, Vol.2-1-391
FDIV instruction, Vol.1-8-17, Vol.2-1-392
FDIVP instruction, Vol.1-8-17, Vol.2-1-392
FDIVR instruction, Vol.1-8-17, Vol.2-1-395
FDIVRP instruction, Vol.1-8-17, Vol.2-1-395
FE (fixed MTRRs enabled) flag, IA32_MTRR_DEF_TYPE MSR, Vol.3-13-23
Feature information, processor, Vol.2-1-222
FFREE instruction, Vol.2-1-398
FIADD instruction, Vol.1-8-17, Vol.2-1-370
FICOM instruction, Vol.1-8-6, Vol.1-8-18, Vol.2-1-399
FICOMP instruction, Vol.1-8-6, Vol.1-8-18, Vol.2-1-399
FIDIV instruction, Vol.1-8-17, Vol.2-1-392
FIDIVR instruction, Vol.1-8-17, Vol.2-1-395
FILD instruction, Vol.1-8-16, Vol.2-1-401
FIMUL instruction, Vol.1-8-17, Vol.2-1-419
FINCSTP instruction, Vol.2-1-403
FINIT instruction, Vol.2-1-404
FINIT/FNINIT instructions, Vol.1-8-5, Vol.1-8-7, Vol.1-8-8, Vol.1-8-23, 

Vol.2-1-434
FIST instruction, Vol.1-8-16, Vol.2-1-406
FISTP instruction, Vol.1-8-16, Vol.2-1-406
FISTTP instruction, Vol.1-5-24, Vol.1-12-3, Vol.2-1-409
FISUB instruction, Vol.1-8-17, Vol.2-1-453
FISUBR instruction, Vol.1-8-17, Vol.2-1-456
FIX (fixed range registers supported) flag, IA32_MTRRCAPMSR, 

Vol.3-13-22
Fixed-range MTRRs

description of, Vol.3-13-23
Flags

cross-reference with instructions, Vol.1-A-1
Flat memory model, Vol.1-3-7, Vol.1-3-13

Flat segmentation model, Vol.3-3-3
FLD instruction, Vol.1-8-16, Vol.2-1-411
FLD1 instruction, Vol.1-8-17, Vol.2-1-413
FLDCW instruction, Vol.1-8-7, Vol.1-8-23, Vol.2-1-415
FLDENV instruction, Vol.1-8-5, Vol.1-8-9, Vol.1-8-11, Vol.1-8-23, 

Vol.2-1-417
FLDL2E instruction, Vol.1-8-17, Vol.2-1-413
FLDL2T instruction, Vol.1-8-17, Vol.2-1-413
FLDLG2 instruction, Vol.1-8-17, Vol.2-1-413
FLDLN2 instruction, Vol.1-8-17, Vol.2-1-413
FLDPI instruction, Vol.1-8-17, Vol.2-1-413
FLDSW instruction, Vol.1-8-23
FLDZ instruction, Vol.1-8-17, Vol.2-1-413
Floating point instructions

machine encodings, Vol.1-B-61
Floating-point data types

biasing constant, Vol.1-4-6
denormalized finite number, Vol.1-4-5
description of, Vol.1-4-4
double extended precision format, Vol.1-4-4, Vol.1-4-5
double precision format, Vol.1-4-4, Vol.1-4-5
half precision format, Vol.1-4-5
infinites, Vol.1-4-5
normalized finite number, Vol.1-4-5
single precision format, Vol.1-4-4, Vol.1-4-5
SSE extensions, Vol.1-10-5
SSE2 extensions, Vol.1-11-3
storing in memory, Vol.1-4-6
x87 FPU, Vol.1-8-13
zeros, Vol.1-4-5

Floating-point exception handlers
SSE and SSE2 extensions, Vol.1-11-18
typical actions, Vol.1-4-24
x87 FPU, Vol.1-8-31

Floating-point exceptions
denormal operand exception (#D), Vol.1-4-20, Vol.1-8-28, 

Vol.1-11-15, Vol.1-C-1
divide by zero exception (#Z), Vol.1-4-21, Vol.1-8-28, Vol.1-11-15, 

Vol.1-C-1
exception conditions, Vol.1-4-20
exception priority, Vol.1-4-23
inexact result (precision) exception (#P), Vol.1-4-22, Vol.1-8-30, 

Vol.1-11-16, Vol.1-C-1
invalid operation exception (#I), Vol.1-4-20, Vol.1-8-26, Vol.1-11-14
invalid-operation exception (#IA), Vol.1-C-1
invalid-operation exception (#IS), Vol.1-C-1
invalid-operation exception (#I), Vol.1-C-1
numeric overflow exception (#O), Vol.1-4-21, Vol.1-8-28, 

Vol.1-11-15, Vol.1-C-1
numeric underflow exception (#U), Vol.1-4-22, Vol.1-8-29, 

Vol.1-11-16, Vol.1-C-1
SSE and SSE2 SIMD, Vol.2-1-16
summary of, Vol.1-4-19, Vol.1-C-1
typical handler actions, Vol.1-4-24
x87 FPU, Vol.2-1-16

Floating-point format
biased exponent, Vol.1-4-13
description of, Vol.1-8-13
exponent, Vol.1-4-11
fraction, Vol.1-4-11
indefinite, Vol.1-4-5
QNaN floating-point indefinite, Vol.1-4-17
real number system, Vol.1-4-11
sign, Vol.1-4-11
significand, Vol.1-4-11

Floating-point numbers
defined, Vol.1-4-11
encoding, Vol.1-4-5

Flushing
caches, Vol.2-1-541, Vol.2-1-3
TLB entry, Vol.2-1-543

Flush-to-zero
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FTZ flag, MXCSR register, Vol.1-10-4, Vol.1-11-2
mode, Vol.1-10-4

FLUSH# pin, Vol.3-7-3
FMA operation, Vol.1-14-22, Vol.1-14-23
FMUL instruction, Vol.1-8-17, Vol.2-1-419
FMULP instruction, Vol.1-8-17, Vol.2-1-419
FNCLEX instruction, Vol.2-1-379
FNINIT instruction, Vol.2-1-404
FNOP instruction, Vol.1-8-23, Vol.2-1-422
FNSAVE instruction, Vol.2-1-434, Vol.1-14-4
FNSTCW instruction, Vol.2-1-447
FNSTENV instruction, Vol.2-1-417, Vol.2-1-449
FNSTSW instruction, Vol.2-1-451
Focus processor, local APIC, Vol.3-12-26
Fopcode compatibility mode, Vol.1-8-10
FORCEPR# log, Vol.3-15-43, Vol.3-15-46, Vol.3-16-43, Vol.3-16-46
FORCPR# interrupt enable bit, Vol.3-15-44, Vol.3-16-44
FPATAN instruction, Vol.1-8-20, Vol.1-8-21, Vol.2-1-423
FPREM instruction, Vol.1-8-5, Vol.1-8-18, Vol.1-8-21, Vol.2-1-425
FPREM1 instruction, Vol.1-8-5, Vol.1-8-18, Vol.1-8-21, Vol.2-1-427
FPTAN instruction, Vol.1-8-5, Vol.2-1-429
Fraction, floating-point number, Vol.1-4-11
FRNDINT instruction, Vol.1-8-18, Vol.2-1-431
FRSTOR instruction, Vol.1-8-5, Vol.1-8-9, Vol.1-8-11, Vol.1-8-23, 

Vol.2-1-432, Vol.1-14-4
FS register, Vol.1-3-13, Vol.1-3-14, Vol.2-1-597
FSAVE instruction, Vol.2-1-434, Vol.1-14-3, Vol.1-14-4
FSAVE/FNSAVE instructions, Vol.1-8-4, Vol.1-8-5, Vol.1-8-9, Vol.1-8-11, 

Vol.1-8-23, Vol.2-1-432
FSCALE instruction, Vol.1-8-21, Vol.2-1-437
FSIN instruction, Vol.1-8-5, Vol.1-8-20, Vol.2-1-439
FSINCOS instruction, Vol.1-8-5, Vol.1-8-20, Vol.2-1-441
FSQRT instruction, Vol.1-8-18, Vol.2-1-443
FST instruction, Vol.1-8-16, Vol.2-1-445
FSTCW instruction, Vol.2-1-447
FSTCW/FNSTCW instructions, Vol.1-8-7, Vol.1-8-23
FSTENV instruction, Vol.2-1-449, Vol.1-14-3
FSTENV/FNSTENV instructions, Vol.1-8-4, Vol.1-8-9, Vol.1-8-11, 

Vol.1-8-23
FSTP instruction, Vol.1-8-16, Vol.2-1-445
FSTSW instruction, Vol.2-1-451
FSTSW/FNSTSW instructions, Vol.1-8-4, Vol.1-8-23
FSUB instruction, Vol.1-8-17, Vol.2-1-453
FSUBP instruction, Vol.1-8-17, Vol.2-1-453
FSUBR instruction, Vol.1-8-17, Vol.2-1-456
FSUBRP instruction, Vol.1-8-17, Vol.2-1-456
FTST instruction, Vol.1-8-6, Vol.1-8-18, Vol.2-1-459
FUCOM instruction, Vol.1-8-18, Vol.2-1-461
FUCOMI instruction, Vol.1-8-7, Vol.1-8-18, Vol.2-1-386
FUCOMIP instruction, Vol.1-8-7, Vol.1-8-18, Vol.2-1-386
FUCOMP instruction, Vol.1-8-18, Vol.2-1-461
FUCOMPP instruction, Vol.1-8-6, Vol.1-8-18, Vol.2-1-461
FWAIT instruction, Vol.3-7-32
FXAM instruction, Vol.1-8-4, Vol.1-8-19, Vol.2-1-464
FXCH instruction, Vol.1-8-16, Vol.2-1-466
FXRSTOR instruction, Vol.1-5-15, Vol.1-8-12, Vol.1-10-14, Vol.1-11-23, 

Vol.2-1-468, Vol.3-2-18, Vol.3-2-19, Vol.3-11-8, Vol.1-14-3, 
Vol.1-14-4

CPUID flag, Vol.2-1-253
FXSAVE instruction, Vol.1-5-15, Vol.1-8-12, Vol.1-10-14, Vol.1-11-23, 

Vol.2-1-471, Vol.2-1-790, Vol.2-1-36, Vol.2-1-49, Vol.2-1-54, 
Vol.2-1-58, Vol.2-1-61, Vol.2-1-64, Vol.2-1-67, Vol.2-1-70, 
Vol.3-2-18, Vol.3-2-19, Vol.3-11-8, Vol.1-14-3, Vol.1-14-4

CPUID flag, Vol.2-1-253
FXSR feature flag, CPUID instruction, Vol.3-11-8
FXTRACT instruction, Vol.1-8-18, Vol.2-1-437, Vol.2-1-479
FYL2X instruction, Vol.1-8-21, Vol.2-1-481
FYL2XP1 instruction, Vol.1-8-21, Vol.2-1-483

G
G (global) flag

page-directory entries, Vol.3-13-13
page-table entries, Vol.3-13-13

G (granularity) flag
segment descriptor, Vol.3-3-10, Vol.3-3-11, Vol.3-6-2, Vol.3-6-4

G0-G3 (global breakpoint enable) flags
DR7 register, Vol.3-19-5

Gate descriptors
call gates, Vol.3-6-13
description of, Vol.3-6-13
IA-32e mode, Vol.3-6-14

Gates, Vol.3-2-4
IA-32e mode, Vol.3-2-4

GD (general detect enable) flag
DR7 register, Vol.3-19-5, Vol.3-19-10

GDT
description of, Vol.3-2-3, Vol.3-3-15
IA-32e mode, Vol.3-2-4
index field of segment selector, Vol.3-3-7
initializing, Vol.3-11-10
paging of, Vol.3-2-6
pointers to exception/interrupt handlers, Vol.3-7-12
segment descriptors in, Vol.3-3-9
selecting with TI flag of segment selector, Vol.3-3-7
task switching, Vol.3-9-9
task-gate descriptor, Vol.3-9-8
TSS descriptors, Vol.3-9-5
use in address translation, Vol.3-3-6

GDT (global descriptor table), Vol.2-1-610, Vol.2-1-613
GDTR register, Vol.1-3-4, Vol.1-3-6

description of, Vol.3-2-3, Vol.3-2-6, Vol.3-2-12, Vol.3-3-15
IA-32e mode, Vol.3-2-4, Vol.3-2-12
limit, Vol.3-6-5
loading during initialization, Vol.3-11-10
storing, Vol.3-3-15

GDTR (global descriptor table register), Vol.2-1-610, Vol.2-1-625
GE (global exact breakpoint enable) flag

DR7 register, Vol.3-19-5, Vol.3-19-10
General purpose registers

64-bit mode, Vol.1-3-5, Vol.1-3-13
description of, Vol.1-3-11
overview of, Vol.1-3-2, Vol.1-3-5
parameter passing, Vol.1-6-7
part of basic programming environment, Vol.1-7-1
using REX prefix, Vol.1-3-13

General-detect exception condition, Vol.3-19-10
General-protection exception (#GP), Vol.3-3-12, Vol.3-6-6, Vol.3-6-7, 

Vol.3-6-11, Vol.3-6-12, Vol.3-7-9, Vol.3-7-16, Vol.3-7-41, 
Vol.3-9-5, Vol.3-19-3

General-purpose instructions
64-bit encodings, Vol.1-B-18
64-bit mode, Vol.1-7-1
basic programming environment, Vol.1-7-1
data types operated on, Vol.1-7-1, Vol.1-7-2
description of, Vol.1-7-1
non-64-bit encodings, Vol.1-B-7
origin of, Vol.1-7-1
programming with, Vol.1-7-1
summary of, Vol.1-5-6, Vol.1-7-2

General-purpose registers
moving value to and from, Vol.2-1-36
popping all, Vol.2-1-401
pushing all, Vol.2-1-524

General-purpose registers, saved in TSS, Vol.3-9-4
GETSEC, Vol.1-6-1, Vol.1-6-2, Vol.1-6-5
Global control MSRs, Vol.3-17-2
Global descriptor table register (see GDTR)
Global descriptor table (see GDT)
GS register, Vol.1-3-13, Vol.1-3-14, Vol.2-1-597

H
HADDPD instruction, Vol.1-5-25, Vol.1-12-4, Vol.2-1-492, Vol.2-1-493
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HADDPS instruction, Vol.1-5-24, Vol.1-12-4, Vol.2-1-495
HALT state

relationship to SMI interrupt, Vol.5-33-3, Vol.5-33-14
Hardware Lock Elision (HLE), Vol.1-17-2
Hardware reset

description of, Vol.3-11-1
processor state after reset, Vol.3-11-2
state of MTRRs following, Vol.3-13-20
value of SMBASE following, Vol.5-33-4

Hexadecimal numbers, Vol.1-1-7
high-temperature interrupt enable bit, Vol.3-15-44, Vol.3-15-47, 

Vol.3-16-44, Vol.3-16-47
HITM# line, Vol.3-13-6
HLT instruction, Vol.2-1-498, Vol.3-2-26, Vol.3-6-24, Vol.3-7-34, 

Vol.3-27-2, Vol.5-33-14
Horizontal processing model, Vol.1-12-1
HSUBPD instruction, Vol.1-5-25, Vol.1-12-5, Vol.2-1-501
HSUBPS instruction, Vol.1-5-24, Vol.1-12-4, Vol.2-1-504
HT Technology

first processor, Vol.1-2-3
implementing, Vol.1-2-17
introduction, Vol.1-2-16

Hyper-Threading Technology
architectural state of a logical processor, Vol.3-10-34
architecture description, Vol.3-10-28
caches, Vol.3-10-32
debug registers, Vol.3-10-31
description of, Vol.3-10-26
detecting, Vol.3-10-37, Vol.3-10-38, Vol.3-10-43, Vol.3-10-44
executing multiple threads, Vol.3-10-28
execution-based timing loops, Vol.3-10-55
external signal compatibility, Vol.3-10-33
halting logical processors, Vol.3-10-54
handling interrupts, Vol.3-10-28
HLT instruction, Vol.3-10-49
IA32_MISC_ENABLE MSR, Vol.3-10-31, Vol.3-10-34
initializing IA-32 processors with, Vol.3-10-27
local a, Vol.3-10-29
local APIC

functionality in logical processor, Vol.3-10-30
logical processors, identifying, Vol.3-10-40
machine check architecture, Vol.3-10-30
managing idle and blocked conditions, Vol.3-10-49
mapping resources, Vol.3-10-35
memory ordering, Vol.3-10-31
microcode update resources, Vol.3-10-31, Vol.3-10-34, Vol.3-11-35
MP systems, Vol.3-10-28
MTRRs, Vol.3-10-30, Vol.3-10-34
multi-threading feature flag, Vol.3-10-26
multi-threading support, Vol.3-10-26
PAT, Vol.3-10-30
PAUSE instruction, Vol.3-10-49, Vol.3-10-50
performance monitoring, Vol.3-21-127, Vol.3-21-132
performance monitoring counters, Vol.3-10-31, Vol.3-10-34
placement of locks and semaphores, Vol.3-10-55
required operating system support, Vol.3-10-52
scheduling multiple threads, Vol.3-10-55
self modifying code, Vol.3-10-32
serializing instructions, Vol.3-10-31
spin-wait loops

PAUSE instructions in, Vol.3-10-52, Vol.3-10-54
thermal monitor, Vol.3-10-33
TLBs, Vol.3-10-32

I
IA-32 architecture

history of, Vol.1-2-1
introduction to, Vol.1-2-1

IA32e mode
registers and mode changes, Vol.3-11-12

IA-32e mode

call gates, Vol.3-6-14
code segment descriptor, Vol.3-6-3
CPUID flag, Vol.2-1-246
D flag, Vol.3-6-4
data structures and initialization, Vol.3-11-11
debug registers, Vol.3-2-7
debug store area
descriptors, Vol.3-2-4
DPL field, Vol.3-6-4
exceptions during initialization, Vol.3-11-12
feature-enable register, Vol.3-2-7
gates, Vol.3-2-4
global and local descriptor tables, Vol.3-2-4
IA32_EFER MSR, Vol.3-2-7, Vol.3-6-30
initialization process, Vol.3-11-11
interrupt stack table, Vol.3-7-22
interrupts and exceptions, Vol.3-2-5
introduction, Vol.1-2-20, Vol.2-2-7, Vol.2-2-13, Vol.2-2-21, 

Vol.2-2-36
IRET instruction, Vol.3-7-21
L flag, Vol.3-3-12, Vol.3-6-4
logical address, Vol.3-3-7
MOV CRn, Vol.3-11-11
MTRR calculations, Vol.3-13-27
NXE bit, Vol.3-6-30
page level protection, Vol.3-6-30
paging, Vol.3-2-6
PDE tables, Vol.3-6-31
PDP tables, Vol.3-6-31
PML4 tables, Vol.3-6-31
PTE tables, Vol.3-6-31
registers and data structures, Vol.3-2-1
see 64-bit mode
see compatibility mode
segment descriptor tables, Vol.3-3-16, Vol.3-6-3
segment descriptors, Vol.3-3-9
segment loading instructions, Vol.3-3-9
segmentation, Vol.1-3-22, Vol.3-3-5
stack switching, Vol.3-6-19, Vol.3-7-21
SYSCALL and SYSRET, Vol.3-6-22
SYSENTER and SYSEXIT, Vol.3-6-21
system descriptors, Vol.3-3-14
system registers, Vol.3-2-7
task switching, Vol.3-9-19
task-state segments, Vol.3-2-5
terminating mode operation, Vol.3-11-12
See also: 64-bit mode, compatibility mode

IA32_APERF MSR, Vol.3-15-2, Vol.3-16-2
IA32_APIC_BASE MSR, Vol.3-10-20, Vol.3-10-21, Vol.3-12-5, Vol.3-12-7, 

Vol.3-12-8, Vol.4-2-521
IA32_BIOS_SIGN_ID MSR, Vol.4-2-524
IA32_BIOS_UPDT_TRIG MSR, Vol.4-2-523
IA32_CLOCK_MODULATION MSR, Vol.3-10-33, Vol.3-15-7, Vol.3-15-14, 

Vol.3-15-15, Vol.3-15-16, Vol.3-15-17, Vol.3-15-18, 
Vol.3-15-21, Vol.3-15-22, Vol.3-15-23, Vol.3-15-24, 
Vol.3-15-40, Vol.3-15-41, Vol.3-15-43, Vol.3-15-51, 
Vol.3-15-52, Vol.3-15-53, Vol.3-15-54, Vol.3-15-55, 
Vol.3-16-7, Vol.3-16-14, Vol.3-16-15, Vol.3-16-16, 
Vol.3-16-17, Vol.3-16-18, Vol.3-16-21, Vol.3-16-22, 
Vol.3-16-23, Vol.3-16-24, Vol.3-16-40, Vol.3-16-41, 
Vol.3-16-43, Vol.3-16-51, Vol.3-16-52, Vol.3-16-53, 
Vol.3-16-54, Vol.3-16-55, Vol.4-2-94, Vol.4-2-109, 
Vol.4-2-120, Vol.4-2-176, Vol.4-2-224, Vol.4-2-490, 
Vol.4-2-505, Vol.4-2-527, Vol.4-2-528, Vol.4-2-552, 
Vol.4-2-562

IA32_CTL MSR, Vol.4-2-524
IA32_DEBUGCTL MSR, Vol.3-29-29, Vol.4-2-531
IA32_DS_AREA MSR, Vol.3-19-19, Vol.3-19-20, Vol.3-19-24, 

Vol.3-21-111, Vol.3-21-126, Vol.4-2-542
IA32_EFER MSR, Vol.3-2-7, Vol.3-2-8, Vol.3-6-30, Vol.3-29-29
IA32_FEATURE_CONTROL MSR, Vol.3-24-3, Vol.3-25-3
IA32_KernelGSbase MSR, Vol.3-2-7
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IA32_LSTAR MSR, Vol.3-2-7, Vol.3-6-22
IA32_MCG_CAP MSR, Vol.3-17-2, Vol.3-17-28, Vol.4-2-524
IA32_MCG_CTL MSR, Vol.3-17-2, Vol.3-17-4
IA32_MCG_EAX MSR, Vol.3-17-12
IA32_MCG_EBP MSR, Vol.3-17-12
IA32_MCG_EBX MSR, Vol.3-17-12
IA32_MCG_ECX MSR, Vol.3-17-12
IA32_MCG_EDI MSR, Vol.3-17-12
IA32_MCG_EDX MSR, Vol.3-17-12
IA32_MCG_EFLAGS MSR, Vol.3-17-12
IA32_MCG_EIP MSR, Vol.3-17-12
IA32_MCG_ESI MSR, Vol.3-17-12
IA32_MCG_ESP MSR, Vol.3-17-12
IA32_MCG_MISC MSR, Vol.3-17-12, Vol.4-2-526
IA32_MCG_R10 MSR, Vol.3-17-13, Vol.4-2-526
IA32_MCG_R11 MSR, Vol.3-17-13, Vol.4-2-527
IA32_MCG_R12 MSR, Vol.3-17-13
IA32_MCG_R13 MSR, Vol.3-17-13
IA32_MCG_R14 MSR, Vol.3-17-13
IA32_MCG_R15 MSR, Vol.3-17-13, Vol.4-2-527
IA32_MCG_R8 MSR, Vol.3-17-13
IA32_MCG_R9 MSR, Vol.3-17-13
IA32_MCG_RAX MSR, Vol.3-17-12, Vol.4-2-524
IA32_MCG_RBP MSR, Vol.3-17-12
IA32_MCG_RBX MSR, Vol.3-17-12, Vol.4-2-524
IA32_MCG_RCX MSR, Vol.3-17-12
IA32_MCG_RDI MSR, Vol.3-17-12
IA32_MCG_RDX MSR, Vol.3-17-12
IA32_MCG_RESERVEDn MSR, Vol.3-17-12
IA32_MCG_RFLAGS MSR, Vol.3-17-12, Vol.4-2-525
IA32_MCG_RIP MSR, Vol.3-17-12, Vol.4-2-526
IA32_MCG_RSI MSR, Vol.3-17-12
IA32_MCG_RSP MSR, Vol.3-17-12
IA32_MCG_STATUS MSR, Vol.3-17-2, Vol.3-17-4, Vol.3-17-29, 

Vol.3-17-30, Vol.3-29-3
IA32_MCi_ADDR MSR, Vol.3-17-9, Vol.3-17-30, Vol.4-2-539
IA32_MCi_CTL, Vol.3-17-5
IA32_MCi_CTL MSR, Vol.3-17-5, Vol.4-2-539
IA32_MCi_MISC MSR, Vol.3-17-9, Vol.3-17-11, Vol.3-17-12, Vol.3-17-30, 

Vol.4-2-539
IA32_MCi_STATUS MSR, Vol.3-17-6, Vol.3-17-29, Vol.3-17-30, 

Vol.4-2-539
decoding for Family 06H, Vol.3-18-1
decoding for Family 0FH, Vol.3-18-1, Vol.3-18-3, Vol.3-18-7, 

Vol.3-18-10, Vol.3-18-13, Vol.3-18-15
IA32_MISC_ENABLE MSR, Vol.1-8-10, Vol.3-15-1, Vol.3-15-37, 

Vol.3-16-1, Vol.3-16-37, Vol.3-19-20, Vol.3-19-35, 
Vol.3-21-111, Vol.4-2-528

IA32_MPERF MSR, Vol.3-15-1, Vol.3-15-2, Vol.3-16-1, Vol.3-16-2
IA32_MTRRCAP MSR, Vol.3-13-21, Vol.3-13-22, Vol.4-2-524
IA32_MTRR_DEF_TYPE MSR, Vol.3-13-22
IA32_MTRR_FIXn, fixed ranger MTRRs, Vol.3-13-23
IA32_MTRR_PHYS BASEn MTRR, Vol.4-2-532
IA32_MTRR_PHYSBASEn MTRR, Vol.4-2-532
IA32_MTRR_PHYSMASKn MTRR, Vol.4-2-532
IA32_P5_MC_ADDR MSR, Vol.4-2-520
IA32_P5_MC_TYPE MSR, Vol.4-2-520
IA32_PAT_CR MSR, Vol.3-13-34
IA32_PEBS_ENABLE MSR, Vol.3-21-109, Vol.3-21-111, Vol.3-21-126, 

Vol.4-2-539
IA32_PERF_CTL MSR, Vol.3-15-1, Vol.3-16-1
IA32_PERF_STATUS MSR, Vol.3-15-1, Vol.3-16-1
IA32_PLATFORM_ID, Vol.4-2-88, Vol.4-2-104, Vol.4-2-171, Vol.4-2-219, 

Vol.4-2-500, Vol.4-2-521, Vol.4-2-548, Vol.4-2-558, 
Vol.4-2-565

IA32_STAR MSR, Vol.3-6-22
IA32_STAR_CS MSR, Vol.3-2-7
IA32_STATUS MSR, Vol.4-2-524
IA32_SYSCALL_FLAG_MASK MSR, Vol.3-2-7
IA32_SYSENTER_CS MSR, Vol.3-6-21, Vol.3-6-22, Vol.3-29-23, 

Vol.4-2-524
IA32_SYSENTER_EIP MSR, Vol.3-6-21, Vol.4-2-524

IA32_SYSENTER_ESP MSR, Vol.3-6-21, Vol.3-29-29, Vol.3-29-30, 
Vol.4-2-524

IA32_TERM_CONTROL MSR, Vol.4-2-94, Vol.4-2-109, Vol.4-2-121, 
Vol.4-2-176, Vol.4-2-224

IA32_THERM_INTERRUPT MSR, Vol.3-15-39, Vol.3-15-41, Vol.3-15-42, 
Vol.3-15-44, Vol.3-16-39, Vol.3-16-41, Vol.3-16-42, 
Vol.3-16-44, Vol.4-2-528

FORCPR# interrupt enable bit, Vol.3-15-44, Vol.3-16-44
high-temperature interrupt enable bit, Vol.3-15-44, Vol.3-15-47, 

Vol.3-16-44, Vol.3-16-47
low-temperature interrupt enable bit, Vol.3-15-44, Vol.3-15-47, 

Vol.3-16-44, Vol.3-16-47
overheat interrupt enable bit, Vol.3-15-44, Vol.3-15-47, Vol.3-16-44, 

Vol.3-16-47
THERMTRIP# interrupt enable bit, Vol.3-15-44, Vol.3-15-47, 

Vol.3-16-44, Vol.3-16-47
threshold #1 interrupt enable bit, Vol.3-15-44, Vol.3-15-47, 

Vol.3-16-44, Vol.3-16-47
threshold #1 value, Vol.3-15-44, Vol.3-15-47, Vol.3-16-44, 

Vol.3-16-47
threshold #2 interrupt enable, Vol.3-15-44, Vol.3-15-47, 

Vol.3-16-44, Vol.3-16-47
threshold #2 value, Vol.3-15-44, Vol.3-15-47, Vol.3-16-44, 

Vol.3-16-47
IA32_THERM_STATUS MSR, Vol.3-15-41, Vol.3-15-42, Vol.3-16-41, 

Vol.3-16-42, Vol.4-2-528
digital readout bits, Vol.3-15-43, Vol.3-15-46, Vol.3-16-43, 

Vol.3-16-46
out-of-spec status bit, Vol.3-15-43, Vol.3-15-46, Vol.3-16-43, 

Vol.3-16-46
out-of-spec status log, Vol.3-15-43, Vol.3-15-46, Vol.3-16-43, 

Vol.3-16-46
PROCHOT# or FORCEPR# event bit, Vol.3-15-42, Vol.3-15-46, 

Vol.3-16-42, Vol.3-16-46
PROCHOT# or FORCEPR# log, Vol.3-15-43, Vol.3-15-46, Vol.3-16-43, 

Vol.3-16-46
resolution in degrees, Vol.3-15-43, Vol.3-16-43
thermal status bit, Vol.3-15-42, Vol.3-15-45, Vol.3-16-42, 

Vol.3-16-45
thermal status log, Vol.3-15-42, Vol.3-15-46, Vol.3-16-42, 

Vol.3-16-46
thermal threshold #1 log, Vol.3-15-43, Vol.3-15-46, Vol.3-16-43, 

Vol.3-16-46
thermal threshold #1 status, Vol.3-15-43, Vol.3-15-46, Vol.3-16-43, 

Vol.3-16-46
thermal threshold #2 log, Vol.3-15-43, Vol.3-15-46, Vol.3-16-43, 

Vol.3-16-46
thermal threshold #2 status, Vol.3-15-43, Vol.3-15-46, Vol.3-16-43, 

Vol.3-16-46
validation bit, Vol.3-15-43, Vol.3-16-43

IA32_TIME_STAMP_COUNTER MSR, Vol.4-2-520
IA32_VMX_BASIC MSR, Vol.3-26-3, Vol.1-A-1, Vol.1-A-2, Vol.4-2-101, 

Vol.4-2-115, Vol.4-2-125, Vol.4-2-186, Vol.4-2-235, 
Vol.4-2-541, Vol.4-2-557

IA32_VMX_CR0_FIXED0 MSR, Vol.1-A-7, Vol.4-2-102, Vol.4-2-115, 
Vol.4-2-126, Vol.4-2-187, Vol.4-2-235, Vol.4-2-542, 
Vol.4-2-557

IA32_VMX_CR0_FIXED1 MSR, Vol.1-A-7, Vol.4-2-102, Vol.4-2-115, 
Vol.4-2-126, Vol.4-2-187, Vol.4-2-235, Vol.4-2-542, 
Vol.4-2-557

IA32_VMX_CR4_FIXED0 MSR, Vol.1-A-7, Vol.4-2-102, Vol.4-2-115, 
Vol.4-2-126, Vol.4-2-187, Vol.4-2-235, Vol.4-2-542, 
Vol.4-2-557

IA32_VMX_CR4_FIXED1 MSR, Vol.1-A-7, Vol.4-2-102, Vol.4-2-116, 
Vol.4-2-126, Vol.4-2-187, Vol.4-2-235, Vol.4-2-236, 
Vol.4-2-542, Vol.4-2-557

IA32_VMX_ENTRY_CTLS MSR, Vol.1-A-2, Vol.1-A-5, Vol.1-A-6, 
Vol.4-2-102, Vol.4-2-115, Vol.4-2-125, Vol.4-2-187, 
Vol.4-2-235, Vol.4-2-541, Vol.4-2-557

IA32_VMX_EXIT_CTLS MSR, Vol.1-A-2, Vol.1-A-4, Vol.1-A-5, 
Vol.4-2-102, Vol.4-2-115, Vol.4-2-125, Vol.4-2-186, 
Vol.4-2-235, Vol.4-2-541, Vol.4-2-557
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IA32_VMX_MISC MSR, Vol.3-26-6, Vol.3-28-3, Vol.3-28-13, Vol.5-33-26, 
Vol.1-A-6, Vol.4-2-102, Vol.4-2-115, Vol.4-2-125, 
Vol.4-2-187, Vol.4-2-235, Vol.4-2-542, Vol.4-2-557

IA32_VMX_PINBASED_CTLS MSR, Vol.1-A-2, Vol.1-A-3, Vol.4-2-101, 
Vol.4-2-115, Vol.4-2-125, Vol.4-2-186, Vol.4-2-235, 
Vol.4-2-541, Vol.4-2-557

IA32_VMX_PROCBASED_CTLS MSR, Vol.3-26-10, Vol.1-A-2, Vol.1-A-3, 
Vol.1-A-4, Vol.1-A-5, Vol.1-A-8, Vol.1-A-9, Vol.4-2-102, 
Vol.4-2-115, Vol.4-2-116, Vol.4-2-125, Vol.4-2-126, 
Vol.4-2-186, Vol.4-2-187, Vol.4-2-235, Vol.4-2-236, 
Vol.4-2-284, Vol.4-2-541, Vol.4-2-557

IA32_VMX_VMCS_ENUM MSR, Vol.1-A-7, Vol.4-2-542
ICR

Interrupt Command Register, Vol.3-12-38, Vol.3-12-41, Vol.3-12-47
ID (identification) flag

EFLAGS register, Vol.3-2-11
ID (identification) flag, EFLAGS register, Vol.1-3-17
IDIV instruction, Vol.1-7-9, Vol.2-1-507, Vol.3-7-24
IDT

64-bit mode, Vol.3-7-19
call interrupt & exception-handlers from, Vol.3-7-11
change base & limit in real-address mode, Vol.3-22-5
description of, Vol.3-7-9
handling NMIs during initialization, Vol.3-11-9
initializing protected-mode operation, Vol.3-11-10
initializing real-address mode operation, Vol.3-11-8
introduction to, Vol.3-2-5
paging of, Vol.3-2-6
structure in real-address mode, Vol.3-22-5
task switching, Vol.3-9-10
task-gate descriptor, Vol.3-9-8
types of descriptors allowed, Vol.3-7-10
use in real-address mode, Vol.3-22-4

IDT (interrupt descriptor table), Vol.2-1-527, Vol.2-1-610
IDTR register, Vol.1-3-4, Vol.1-3-6

description of, Vol.3-2-12, Vol.3-7-9
IA-32e mode, Vol.3-2-12
introduction to, Vol.3-2-5
limit, Vol.3-6-5
loading in real-address mode, Vol.3-22-5
storing, Vol.3-3-16

IDTR (interrupt descriptor table register), Vol.2-1-610, Vol.2-1-651
IE (invalid operation exception) flag

MXCSR register, Vol.1-11-14
x87 FPU status word, Vol.1-8-5, Vol.1-8-26, Vol.1-8-27

IEEE Standard 754, Vol.1-4-4, Vol.1-4-11, Vol.1-8-1
IF (interrupt enable) flag

EFLAGS register, Vol.1-3-17, Vol.1-6-13, Vol.1-20-4, Vol.1-A-1, 
Vol.3-2-10, Vol.3-2-11, Vol.3-7-7, Vol.3-7-10, Vol.3-7-17, 
Vol.3-22-4, Vol.3-22-19, Vol.5-33-11

IF (interrupt enable) flag, EFLAGS register, Vol.2-1-166, Vol.2-1-670
IM (invalid operation exception) mask bit

MXCSR register, Vol.1-11-14
x87 FPU control word, Vol.1-8-7

Immediate operands, Vol.1-3-20, Vol.2-2-3
IMUL instruction, Vol.1-7-9, Vol.2-1-510
IN instruction, Vol.1-5-10, Vol.1-7-20, Vol.1-20-3, Vol.2-1-514, 

Vol.3-10-17, Vol.3-27-2
INC instruction, Vol.1-7-8, Vol.2-1-516, Vol.2-1-620, Vol.3-10-4
Indefinite

description of, Vol.1-4-17, Vol.1-14-18
floating-point format, Vol.1-4-5, Vol.1-4-13
integer, Vol.1-4-4, Vol.1-8-14
packed BCD integer, Vol.1-4-11
QNaN floating-point, Vol.1-4-17

Index field, segment selector, Vol.3-3-7
Index (operand addressing), Vol.1-3-22, Vol.1-3-23, Vol.1-3-24, 

Vol.2-2-3
Inexact result (precision)

exception (#P), overview, Vol.1-4-22
exception (#P), SSE-SSE2 extensions, Vol.1-11-16
exception (#P), x87 FPU, Vol.1-8-30

on floating-point operations, Vol.1-4-18
Infinity control flag, x87 FPU control word, Vol.1-8-8
Infinity, floating-point format, Vol.1-4-5, Vol.1-4-15
INIT interrupt, Vol.3-12-3
INIT pin, Vol.1-3-15
Initial-count register, local APIC, Vol.3-12-16
Initialization

built-in self-test (BIST), Vol.3-11-1, Vol.3-11-5
CS register state following, Vol.3-11-5
EIP register state following, Vol.3-11-5
example, Vol.3-11-14
first instruction executed, Vol.3-11-5
hardware reset, Vol.3-11-1
IA-32e mode, Vol.3-11-11
IDT, protected mode, Vol.3-11-10
IDT, real-address mode, Vol.3-11-8
location of software-initialization code, Vol.3-11-5
machine-check initialization, Vol.3-17-19
model and stepping information, Vol.3-11-5
multitasking environment, Vol.3-11-10, Vol.3-11-11
overview, Vol.3-11-1
paging, Vol.3-11-10
processor state after reset, Vol.3-11-2
protected mode, Vol.3-11-9
real-address mode, Vol.3-11-8
RESET# pin, Vol.3-11-1
setting up exception- and interrupt-handling facilities, Vol.3-11-10
x87 FPU, Vol.3-11-5

Initialization x87 FPU, Vol.2-1-404
initiating logical processor, Vol.1-6-4, Vol.1-6-5, Vol.1-6-10, Vol.1-6-21, 

Vol.1-6-22
INIT# pin, Vol.3-7-3, Vol.3-11-1
INIT# signal, Vol.3-2-26, Vol.3-24-4, Vol.3-25-4
Input/output (see I/O)
INS instruction, Vol.1-5-10, Vol.1-7-20, Vol.1-20-3, Vol.2-1-520, 

Vol.2-1-563, Vol.3-19-10
INSB instruction, Vol.2-1-520
INSD instruction, Vol.2-1-520
INSERTPS- Insert Scalar Single Precision Floating-Point Value, Vol.2-1-523
instruction encodings, Vol.1-B-58, Vol.1-B-64, Vol.1-B-70
Instruction format

base field, Vol.2-2-3
description of reference information, Vol.2-1-1
displacement, Vol.2-2-3
immediate, Vol.2-2-3
index field, Vol.2-2-3
Mod field, Vol.2-2-3
ModR/M byte, Vol.2-2-3
opcode, Vol.2-2-3
prefixes, Vol.2-2-1
reg/opcode field, Vol.2-2-3
r/m field, Vol.2-2-3
scale field, Vol.2-2-3
SIB byte, Vol.2-2-3
See also: machine instructions, opcodes

Instruction operands, Vol.1-1-7
Instruction pointer

64-bit mode, Vol.1-7-2
EIP register, Vol.1-3-11, Vol.1-3-18
RIP register, Vol.1-3-18
RIP, EIP, IP compared, Vol.1-3-10
x87 FPU, Vol.1-8-9

Instruction prefixes
effect on SSE and SSE2 instructions, Vol.1-11-25
REX prefix, Vol.1-3-2, Vol.1-3-12

Instruction reference, nomenclature, Vol.2-1-1
Instruction set

binary arithmetic instructions, Vol.1-7-8
bit scan instructions, Vol.1-7-14
bit test and modify instructions, Vol.1-7-14
byte-set-on-condition instructions, Vol.1-7-14
cacheability control instructions, Vol.1-5-20, Vol.1-5-23
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comparison and sign change instruction, Vol.1-7-8
control transfer instructions, Vol.1-7-14
data movement instructions, Vol.1-7-2
decimal arithmetic instructions, Vol.1-7-9
EFLAGS cross-reference, Vol.1-A-1
EFLAGS instructions, Vol.1-7-21
exchange instructions, Vol.1-7-4
FXSAVE and FXRSTOR instructions, Vol.1-5-15
general-purpose instructions, Vol.1-5-6
grouped by processor, Vol.1-5-2
increment and decrement instructions, Vol.1-7-8
instruction ordering instructions, Vol.1-5-20, Vol.1-5-23
I/O instructions, Vol.1-5-10, Vol.1-7-20
logical instructions, Vol.1-7-10
MMX instructions, Vol.1-5-15, Vol.1-9-5
multiply and divide instructions, Vol.1-7-9
processor identification instruction, Vol.1-7-23
repeating string operations, Vol.1-7-19
rotate instructions, Vol.1-7-13
segment register instructions, Vol.1-7-22
shift instructions, Vol.1-7-10
SIMD instructions, introduction to, Vol.1-2-14
software interrupt instructions, Vol.1-7-17
SSE instructions, Vol.1-5-17
SSE2 instructions, Vol.1-5-20
stack manipulation instructions, Vol.1-7-5
string operation instructions, Vol.1-7-18
summary, Vol.1-5-1
system instructions, Vol.1-5-32, Vol.1-5-37
test instruction, Vol.1-7-14
type conversion instructions, Vol.1-7-7
x87 FPU and SIMD state management instructions, Vol.1-5-15
x87 FPU instructions, Vol.1-5-12

Instruction set, reference, Vol.2-1-1
Instruction-breakpoint exception condition, Vol.3-19-9
Instructions

privileged, Vol.3-6-23
serializing, Vol.3-10-18, Vol.3-10-31
supported in real-address mode, Vol.3-22-3
system, Vol.3-2-7, Vol.3-2-23

INSW instruction, Vol.2-1-520
INS/INSB/INSW/INSD instruction, Vol.3-27-2
INT 3 instruction, Vol.2-1-526, Vol.3-2-5, Vol.3-7-28, Vol.3-19-7
INT instruction, Vol.1-6-18, Vol.1-7-23, Vol.3-2-5, Vol.3-6-10
INT n instruction, Vol.3-3-8, Vol.3-7-1, Vol.3-7-4, Vol.3-19-11
INT (APIC interrupt enable) flag, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 

family processors), Vol.3-21-5, Vol.3-21-142
INT15 and microcode updates, Vol.3-11-42
INT3 instruction, Vol.3-3-8, Vol.3-7-4
Integers

description of, Vol.1-4-3
indefinite, Vol.1-4-4, Vol.1-8-14
signed integer encodings, Vol.1-4-4
signed, description of, Vol.1-4-4
unsigned integer encodings, Vol.1-4-3
unsigned, description of, Vol.1-4-3

Integer, storing, x87 FPU data type, Vol.2-1-406
Intel 64 architecture

64-bit mode, Vol.1-3-1
64-bit mode instructions, Vol.1-5-38
address space, Vol.1-3-6
compatibility mode, Vol.1-3-1
data types, Vol.1-4-1
executing calls, Vol.1-6-1
general purpose instructions, Vol.1-7-1
generations, Vol.1-2-20
history of, Vol.1-2-1
IA32e mode, Vol.1-3-1
instruction format, Vol.2-2-1
introduction, Vol.1-2-20
memory organization, Vol.1-3-6, Vol.1-3-8
See also: IA-32e mode

Intel Advanced Digital Media Boost, Vol.1-2-4, Vol.1-2-11
Intel Advanced Smart Cache, Vol.1-2-10
Intel Advanced Thermal Manager, Vol.1-2-4
Intel Core 2 Extreme processor family, Vol.1-2-4, Vol.1-2-18
Intel Core Duo processor, Vol.1-2-4, Vol.1-2-18
Intel Core microarchitecture, Vol.1-2-4, Vol.1-2-10, Vol.1-2-12, 

Vol.1-2-13, Vol.1-2-18
Intel Core Solo and Duo processors

model-specific registers, Vol.4-2-547
Intel Core Solo and Intel Core Duo processors

event mask (Umask), Vol.3-21-103, Vol.3-21-104
last branch, interrupt, exception recording, Vol.3-19-38
notes on P-state transitions, Vol.3-15-1, Vol.3-16-1
performance monitoring, Vol.3-21-103, Vol.3-21-104
sub-fields layouts, Vol.3-21-103, Vol.3-21-104
time stamp counters, Vol.3-19-42

Intel Core Solo processor, Vol.1-2-4
Intel Dynamic Power Coordination, Vol.1-2-4
Intel NetBurst microarchitecture, Vol.1-1-3

description of, Vol.1-2-8
introduction, Vol.1-2-8

Intel Pentium D processor, Vol.1-2-18
Intel Pentium processor Extreme Edition, Vol.1-2-18
Intel Smart Cache, Vol.1-2-4
Intel Smart Memory Access, Vol.1-2-4, Vol.1-2-11
Intel software network link, Vol.1-1-10
Intel SpeedStep Technology

See: Enhanced Intel SpeedStep Technology
Intel Transactional Synchronization, Vol.1-15-3, Vol.1-17-1
Intel VTune Performance Analyzer

related information, Vol.1-1-10
Intel Wide Dynamic Execution, Vol.1-2-4, Vol.1-2-10, Vol.1-2-12, 

Vol.1-2-13
Intel Xeon processor, Vol.1-1-1

description of, Vol.1-2-3
last branch, interrupt, and exception recording, Vol.3-19-35
time-stamp counter, Vol.3-19-42

Intel Xeon processor 5100 series, Vol.1-2-4, Vol.1-2-18
Intel Xeon processor MP

with 8MB L3 cache, Vol.3-21-132, Vol.3-21-134
Intel386 processor, Vol.1-2-1
Intel386 SL processor, Vol.3-2-7
Intel486 processor

history of, Vol.1-2-1
Intel® Trusted Execution Technology, Vol.1-6-3
Inter-privilege level

call, CALL instruction, Vol.2-1-139
return, RET instruction, Vol.2-1-566

Inter-privilege level call
description of, Vol.1-6-7
operation, Vol.1-6-8

Interprivilege level calls
call mechanism, Vol.3-6-15
stack switching, Vol.3-6-17

Inter-privilege level return
description of, Vol.1-6-7
operation, Vol.1-6-8

Interprocessor interrupt (IPIs), Vol.3-12-1
Interprocessor interrupt (IPI)

in MP systems, Vol.3-12-1
interrupt, Vol.3-7-13
Interrupt Command Register, Vol.3-12-38
Interrupt command register (ICR), local APIC, Vol.3-12-19
Interrupt gate, Vol.1-6-13
Interrupt gates

clearing IF flag, Vol.3-7-7, Vol.3-7-17
difference between interrupt and trap gates, Vol.3-7-17
for 16-bit and 32-bit code modules, Vol.1-23-1
handling a virtual-8086 mode interrupt or exception through, 

Vol.3-22-12
in IDT, Vol.3-7-10
introduction to, Vol.3-2-4, Vol.3-2-5
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layout of, Vol.3-7-10
Interrupt handler, Vol.1-6-12

calling, Vol.3-7-11
defined, Vol.3-7-1
flag usage by handler procedure, Vol.3-7-17
procedures, Vol.3-7-12
protection of handler procedures, Vol.3-7-16
task, Vol.3-7-17, Vol.3-9-2

Interrupts
64-bit mode, Vol.1-6-19
control transfers between 16- and 32-bit code modules, Vol.1-23-6
description of, Vol.1-6-12, Vol.3-2-5, Vol.3-7-1
destination, Vol.3-12-26
distribution mechanism, local APIC, Vol.3-12-25
enabling and disabling, Vol.3-7-6
handler, Vol.1-6-12
handling, Vol.3-7-11
handling in real-address mode, Vol.3-22-4
handling in SMM, Vol.5-33-11
handling in virtual-8086 mode, Vol.3-22-11
handling multiple NMIs, Vol.3-7-6
handling through a task gate in virtual-8086 mode, Vol.3-22-14
handling through a trap or interrupt gate in virtual-8086 mode, 

Vol.3-22-12
IA-32e mode, Vol.3-2-5, Vol.3-2-12
IDT, Vol.3-7-9
IDTR, Vol.3-2-12
implicit call to an interrupt handler

procedure, Vol.1-6-13
implicit call to an interrupt handler task, Vol.1-6-18
implicit call to interrupt handler procedure, Vol.1-6-13
implicit call to interrupt handler task, Vol.1-6-18
in real-address mode, Vol.1-6-18
initializing for protected-mode operation, Vol.3-11-10
interrupt descriptor table register (see IDTR)
interrupt descriptor table (see IDT)
list of, Vol.3-7-2, Vol.3-22-6
local APIC, Vol.3-12-1
maskable, Vol.1-6-13
maskable hardware interrupts, Vol.3-2-10
masking maskable hardware interrupts, Vol.3-7-7
masking when switching stack segments, Vol.3-7-8
message signalled interrupts, Vol.3-12-34
on-die sensors for, Vol.3-15-36, Vol.3-16-36
overview of, Vol.3-7-1
priority, Vol.3-12-28
real-address mode, Vol.3-22-6
restarting a task or program, Vol.3-7-5
returning from, Vol.2-1-548
software, Vol.2-1-526, Vol.3-7-58
sources of, Vol.3-12-1
summary of, Vol.3-7-2
thermal monitoring, Vol.3-15-36, Vol.3-16-36
user defined, Vol.3-7-1, Vol.3-7-58
valid APIC interrupts, Vol.3-12-15
vectors, Vol.3-7-1
virtual-8086 mode, Vol.3-22-6

INTn instruction, Vol.1-7-17, Vol.2-1-526
INTO instruction, Vol.1-6-18, Vol.1-7-18, Vol.1-7-23, Vol.2-1-526, 

Vol.3-2-5, Vol.3-3-8, Vol.3-7-4, Vol.3-7-29, Vol.3-19-11
Intrinsics

compiler functional equivalents, Vol.1-C-1
composite, Vol.1-C-14
description of, Vol.2-1-12
list of, Vol.1-C-1
simple, Vol.1-C-2

INTR# pin, Vol.3-7-2, Vol.3-7-7
Invalid arithmetic operand exception (#IA)

description of, Vol.1-8-27
masked response to, Vol.1-8-27

Invalid opcode exception (#UD), Vol.3-2-16, Vol.3-7-31, Vol.3-7-53, 
Vol.1-14-1, Vol.3-19-4, Vol.5-33-3

Invalid operation exception (#I)
overview, Vol.1-4-20
SSE and SSE2 extensions, Vol.1-11-14
x87 FPU, Vol.1-8-26

Invalid TSS exception (#TS), Vol.3-7-36, Vol.3-9-6
INVD instruction, Vol.2-1-541, Vol.3-2-25, Vol.3-6-24, Vol.3-13-17
INVLPG instruction, Vol.2-1-543, Vol.3-2-25, Vol.3-6-24, Vol.3-27-3
IOPL (I/O privilege level) field

EFLAGS register, Vol.1-3-17, Vol.1-20-3
IOPL (I/O privilege level) field, EFLAGS register, Vol.2-1-166

description of, Vol.3-2-10
on return from exception, interrupt handler, Vol.3-7-13
sensitive instructions in virtual-8086 mode, Vol.3-22-10
virtual interrupt, Vol.3-2-11

IPI (see interprocessor interrupt)
IRET instruction, Vol.1-3-18, Vol.1-6-17, Vol.1-6-18, Vol.1-7-15, 

Vol.1-7-23, Vol.1-20-4, Vol.2-1-548, Vol.3-3-8, Vol.3-7-7, 
Vol.3-7-13, Vol.3-7-17, Vol.3-7-21, Vol.3-9-10, Vol.3-9-11, 
Vol.3-10-19, Vol.3-22-5, Vol.3-22-19, Vol.3-27-8

IRETD instruction, Vol.2-1-548, Vol.3-2-10, Vol.3-10-19
IRR

Interrupt Request Register, Vol.3-12-39, Vol.3-12-41, Vol.3-12-47
IRR (interrupt request register), local APIC, Vol.3-12-30
ISR

In Service Register, Vol.3-12-38, Vol.3-12-41, Vol.3-12-47
I/O

address space, Vol.1-20-1
breakpoint exception conditions, Vol.3-19-10
in virtual-8086 mode, Vol.3-22-10
instruction restart flag

SMM revision identifier field, Vol.5-33-15
instruction restart flag, SMM revision identifier field, Vol.5-33-15
instruction serialization, Vol.1-20-5
instructions, Vol.1-5-10, Vol.1-7-20, Vol.1-20-3
IO_SMI bit, Vol.5-33-12
I/O permission bit map, TSS, Vol.3-9-5
I/O privilege level (see IOPL)
map base, Vol.1-20-4
map base address field, TSS, Vol.3-9-5
permission bit map, Vol.1-20-4
ports, Vol.1-3-4, Vol.1-20-1, Vol.1-20-2, Vol.1-20-3, Vol.1-20-5
restarting following SMI interrupt, Vol.5-33-15
saving I/O state, Vol.5-33-12
sensitive instructions, Vol.1-20-3
SMM state save map, Vol.5-33-12

I/O APIC, Vol.3-12-26
bus arbitration, Vol.3-12-26
description of, Vol.3-12-1
external interrupts, Vol.3-7-3
information about, Vol.3-12-1
interrupt sources, Vol.3-12-2
local APIC and I/O APIC, Vol.3-12-2, Vol.3-12-3
overview of, Vol.3-12-1
valid interrupts, Vol.3-12-15
See also: local APIC

J
J-bit, Vol.1-4-11
Jcc instructions, Vol.1-3-17, Vol.1-3-18, Vol.1-7-15, Vol.2-1-557
JMP instruction, Vol.1-3-18, Vol.1-7-15, Vol.1-7-22, Vol.2-1-562, 

Vol.3-2-5, Vol.3-3-8, Vol.3-6-10, Vol.3-6-15, Vol.3-9-2, 
Vol.3-9-9, Vol.3-9-11

Jump operation, Vol.2-1-562

K
KEN# pin, Vol.3-13-13

L
L0-L3 (local breakpoint enable) flags

DR7 register, Vol.3-19-5
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L1 Context ID, Vol.2-1-250
L1 (level 1) cache, Vol.1-2-7, Vol.1-2-9

caching methods, Vol.3-13-6
CPUID feature flag, Vol.3-13-18
description of, Vol.3-13-4
effect of using write-through memory, Vol.3-13-9
invalidating and flushing, Vol.3-13-17
MESI cache protocol, Vol.3-13-9
shared and adaptive mode, Vol.3-13-18

L2 (level 2) cache, Vol.1-2-7, Vol.1-2-9
caching methods, Vol.3-13-6
description of, Vol.3-13-4
disabling, Vol.3-13-17
effect of using write-through memory, Vol.3-13-9
invalidating and flushing, Vol.3-13-17
MESI cache protocol, Vol.3-13-9

L3 (level 3) cache
caching methods, Vol.3-13-6
description of, Vol.3-13-4
disabling and enabling, Vol.3-13-13, Vol.3-13-17
effect of using write-through memory, Vol.3-13-9
invalidating and flushing, Vol.3-13-17
MESI cache protocol, Vol.3-13-9

LAHF instruction, Vol.1-3-15, Vol.1-7-21, Vol.2-1-590
LAR instruction, Vol.2-1-591, Vol.3-2-25, Vol.3-6-24
Last branch

interrupt & exception recording
description of, Vol.2-1-581, Vol.3-19-12, Vol.3-19-27, 

Vol.3-19-29, Vol.3-19-31, Vol.3-19-32, Vol.3-19-33, 
Vol.3-19-36, Vol.3-19-38, Vol.3-19-39, Vol.3-19-40

record stack, Vol.3-19-18, Vol.3-19-19, Vol.3-19-27, Vol.3-19-28, 
Vol.3-19-35, Vol.3-19-36, Vol.3-19-38, Vol.3-19-40, Vol.4-2-531, 
Vol.4-2-542

record top-of-stack pointer, Vol.3-19-18, Vol.3-19-28, Vol.3-19-35, 
Vol.3-19-39, Vol.3-19-40

Last instruction opcode, x87 FPU, Vol.1-8-10
LastBranchFromIP MSR, Vol.3-19-41, Vol.3-19-42
LastBranchToIP MSR, Vol.3-19-41, Vol.3-19-42
LastExceptionFromIP MSR, Vol.3-19-37, Vol.3-19-39, Vol.3-19-41, 

Vol.3-19-42
LastExceptionToIP MSR, Vol.3-19-37, Vol.3-19-39, Vol.3-19-41, 

Vol.3-19-42
LBR (last branch/interrupt/exception) flag, DEBUGCTLMSR MSR, 

Vol.3-19-14, Vol.3-19-35, Vol.3-19-41, Vol.3-19-42
LDDQU instruction, Vol.1-5-24, Vol.1-12-3, Vol.2-1-594
LDMXCSR instruction, Vol.1-10-12, Vol.1-11-24, Vol.2-1-596, 

Vol.2-1-540, Vol.2-1-7
LDR

Logical Destination Register, Vol.3-12-41, Vol.3-12-45, Vol.3-12-46
LDS instruction, Vol.1-7-23, Vol.2-1-597, Vol.3-3-8, Vol.3-6-8
LDT

associated with a task, Vol.3-9-3
description of, Vol.3-2-3, Vol.3-2-5, Vol.3-3-15
index into with index field of segment selector, Vol.3-3-7
pointer to in TSS, Vol.3-9-5
pointers to exception and interrupt handlers, Vol.3-7-12
segment descriptors in, Vol.3-3-9
segment selector field, TSS, Vol.3-9-16
selecting with TI (table indicator) flag of segment selector, Vol.3-3-7
setting up during initialization, Vol.3-11-10
task switching, Vol.3-9-9
task-gate descriptor, Vol.3-9-8
use in address translation, Vol.3-3-6

LDT (local descriptor table), Vol.2-1-613
LDTR register, Vol.1-3-4, Vol.1-3-6

description of, Vol.3-2-3, Vol.3-2-5, Vol.3-2-6, Vol.3-2-12, Vol.3-3-15
IA-32e mode, Vol.3-2-12
limit, Vol.3-6-5
storing, Vol.3-3-16

LDTR (local descriptor table register), Vol.2-1-613, Vol.2-1-653
LE (local exact breakpoint enable) flag, DR7 register, Vol.3-19-5, 

Vol.3-19-10

LEA instruction, Vol.1-7-23, Vol.2-1-604
LEAVE instruction, Vol.1-6-20, Vol.1-6-24, Vol.1-7-21, Vol.2-1-607
LEN0-LEN3 (Length) fields, DR7 register, Vol.3-19-5, Vol.3-19-6
LES instruction, Vol.1-7-23, Vol.2-1-597, Vol.3-3-8, Vol.3-6-8, 

Vol.3-7-31
LFENCE instruction, Vol.1-11-12, Vol.2-1-609, Vol.3-2-16, Vol.3-10-7, 

Vol.3-10-17, Vol.3-10-18, Vol.3-10-19
LFS instruction, Vol.2-1-597, Vol.3-3-8, Vol.3-6-8
LGDT instruction, Vol.2-1-610, Vol.3-2-24, Vol.3-6-23, Vol.3-10-19, 

Vol.3-11-10
LGS instruction, Vol.1-7-23, Vol.2-1-597, Vol.3-3-8, Vol.3-6-8
LIDT instruction, Vol.2-1-610, Vol.3-2-24, Vol.3-6-24, Vol.3-7-9, 

Vol.3-10-19, Vol.3-11-9, Vol.3-22-5
Limit checking

description of, Vol.3-6-4
pointer offsets are within limits, Vol.3-6-25

Limit field, segment descriptor, Vol.3-6-2, Vol.3-6-4
Linear address, Vol.1-3-7

description of, Vol.3-3-6
IA-32e mode, Vol.3-3-7
introduction to, Vol.3-2-6

Linear address space, Vol.3-3-6
defined, Vol.1-3-7, Vol.3-3-1
maximum size, Vol.1-3-7
of task, Vol.3-9-17

Link (to previous task) field, TSS, Vol.3-7-17
Linking tasks

mechanism, Vol.3-9-15
modifying task linkages, Vol.3-9-16

LINT pins
function of, Vol.3-7-2

LLDT instruction, Vol.2-1-613, Vol.3-2-24, Vol.3-6-23, Vol.3-10-19
LMSW instruction, Vol.2-1-615, Vol.3-2-24, Vol.3-6-24, Vol.3-27-3, 

Vol.3-27-8
Load effective address operation, Vol.2-1-604
LOADIWKEY—Load Internal Wrapping Key, Vol.2-1-617
Local APIC, Vol.3-12-38

64-bit mode, Vol.3-12-32
APIC_ID value, Vol.3-10-35
arbitration over the APIC bus, Vol.3-12-26
arbitration over the system bus, Vol.3-12-26
block diagram, Vol.3-12-4
cluster model, Vol.3-12-24
CR8 usage, Vol.3-12-32
current-count register, Vol.3-12-16
description of, Vol.3-12-1
detecting with CPUID, Vol.3-12-7
DFR (destination format register), Vol.3-12-24
divide configuration register, Vol.3-12-17
enabling and disabling, Vol.3-12-7
external interrupts, Vol.3-7-2
focus processor, Vol.3-12-26
global enable flag, Vol.3-12-8
IA32_APIC_BASE MSR, Vol.3-12-8
initial-count register, Vol.3-12-16
internal error interrupts, Vol.3-12-1
interrupt command register (ICR), Vol.3-12-19
interrupt destination, Vol.3-12-26
interrupt distribution mechanism, Vol.3-12-25
interrupt sources, Vol.3-12-2
IRR (interrupt request register), Vol.3-12-30
I/O APIC, Vol.3-12-1
local APIC and I/O APIC, Vol.3-12-2, Vol.3-12-3
local vector table (LVT), Vol.3-12-12
logical destination mode, Vol.3-12-23
LVT (local-APIC version register), Vol.3-12-11
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overview of, Vol.3-12-1
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SMI interrupt, Vol.5-33-2
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spurious-interrupt vector register, Vol.3-12-8
state after a software (INIT) reset, Vol.3-12-10
state after INIT-deassert message, Vol.3-12-11
state after power-up reset, Vol.3-12-10
state of, Vol.3-12-33
SVR (spurious-interrupt vector register), Vol.3-12-8
timer, Vol.3-12-16
timer generated interrupts, Vol.3-12-1
TMR (trigger mode register), Vol.3-12-30
valid interrupts, Vol.3-12-15
version register, Vol.3-12-11

Local descriptor table register (see LDTR)
Local descriptor table (see LDT)
Local vector table (LVT)

description of, Vol.3-12-12
thermal entry, Vol.3-15-39, Vol.3-16-39

Local x2APIC, Vol.3-12-31, Vol.3-12-41, Vol.3-12-46
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software-controlled bus locking, Vol.3-10-4

Locking operation, Vol.2-1-620
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LODS instruction, Vol.1-3-17, Vol.1-7-18, Vol.2-1-622, Vol.2-1-563
LODSB instruction, Vol.2-1-622
LODSD instruction, Vol.2-1-622
LODSQ instruction, Vol.2-1-622
LODSW instruction, Vol.2-1-622
Log epsilon, x87 FPU operation, Vol.1-8-21, Vol.2-1-481
Log (base 2), x87 FPU operation, Vol.2-1-483
Logical address, Vol.1-3-7

description of, Vol.3-3-6
IA-32e mode, Vol.3-3-7

Logical address space, of task, Vol.3-9-18
Logical destination mode, local APIC, Vol.3-12-23
Logical processors

per physical package, Vol.3-10-26
Logical x2APIC ID, Vol.3-12-46
LOOP instructions, Vol.1-7-16, Vol.2-1-625
LOOPcc instructions, Vol.1-3-17, Vol.1-7-16, Vol.2-1-625
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LZCNT - Count the Number of Leading Zero Bits, Vol.2-1-633
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Machine check architecture

CPUID flag, Vol.2-1-252
description, Vol.2-1-252

Machine check registers, Vol.1-3-4
Machine instructions

64-bit mode, Vol.1-B-1
condition test (tttn) field, Vol.1-B-6

direction bit (d) field, Vol.1-B-6
floating-point instruction encodings, Vol.1-B-61
general description, Vol.1-B-1
general-purpose encodings, Vol.1-B-7–Vol.1-B-37
legacy prefixes, Vol.1-B-1
MMX encodings, Vol.1-B-38–Vol.1-B-41
opcode fields, Vol.1-B-2
operand size (w) bit, Vol.1-B-4
P6 family encodings, Vol.1-B-41
Pentium processor family encodings, Vol.1-B-37
reg (reg) field, Vol.1-B-3, Vol.1-B-4
REX prefixes, Vol.1-B-2
segment register (sreg) field, Vol.1-B-5
sign-extend (s) bit, Vol.1-B-5
SIMD 64-bit encodings, Vol.1-B-37
special 64-bit encodings, Vol.1-B-61
special fields, Vol.1-B-2
special-purpose register (eee) field, Vol.1-B-5
SSE encodings, Vol.1-B-42–Vol.1-B-47
SSE2 encodings, Vol.1-B-47–Vol.1-B-56
SSE3 encodings, Vol.1-B-57–Vol.1-B-58
SSSE3 encodings, Vol.1-B-58–Vol.1-B-60
VMX encodings, Vol.1-B-112, Vol.1-B-113
See also: opcodes

Machine status word, CR0 register, Vol.2-1-615, Vol.2-1-655
Machine-check architecture

availability of MCA and exception, Vol.3-17-19
compatibility with Pentium processor, Vol.3-17-1
compound error codes, Vol.3-17-21
CPUID flags, Vol.3-17-19
error codes, Vol.3-17-20, Vol.3-17-21
error-reporting bank registers, Vol.3-17-2
error-reporting MSRs, Vol.3-17-5
extended machine check state MSRs, Vol.3-17-12
external bus errors, Vol.3-17-28
global MSRs, Vol.3-17-2
initialization of, Vol.3-17-19
logging correctable errors, Vol.3-17-30, Vol.3-17-31, Vol.3-17-35
machine-check exception handler, Vol.3-17-28
machine-check exception (#MC), Vol.3-17-1
MSRs, Vol.3-17-2
overview of MCA, Vol.3-17-1
Pentium processor exception handling, Vol.3-17-29
Pentium processor style error reporting, Vol.3-17-13
simple error codes, Vol.3-17-20
writing machine-check software, Vol.3-17-28

Machine-check exception (#MC), Vol.3-7-52, Vol.3-17-1, Vol.3-17-19, 
Vol.3-17-28

Mapping of shared resources, Vol.3-10-35
Maskable hardware interrupts

description of, Vol.3-7-3
handling with virtual interrupt mechanism, Vol.3-22-15
masking, Vol.3-2-10, Vol.3-7-7

Maskable interrupts, Vol.1-6-13
Masked responses

denormal operand exception (#D), Vol.1-4-20, Vol.1-8-28
divide by zero exception (#Z), Vol.1-4-21, Vol.1-8-28
inexact result (precision) exception (#P), Vol.1-4-23, Vol.1-8-30
invalid arithmetic operation (#IA), Vol.1-8-27
invalid operation exception (#I), Vol.1-4-20
numeric overflow exception (#O), Vol.1-4-21, Vol.1-8-29
numeric underflow exception (#U), Vol.1-4-22, Vol.1-8-29
stack overflow or underflow

exception (#IS), Vol.1-8-27
MASKMOVDQU instruction, Vol.1-11-12, Vol.1-11-25, Vol.2-1-42
MASKMOVQ instruction, Vol.1-10-12, Vol.1-11-25
Masks, exception-flags

MXCSR register, Vol.1-10-4
x87 FPU control word, Vol.1-8-7
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MAXPD- Maximum of Packed Double Precision Floating-Point Values, 

Vol.2-1-12
Index-18 Combined Volumes 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4



INDEX
MAXPS instruction, Vol.1-10-8
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MCA flag, CPUID instruction, Vol.3-17-19
MCE flag, CPUID instruction, Vol.3-17-19
MCE (machine-check enable) flag

CR4 control register, Vol.3-2-18
MDA (message destination address)

local APIC, Vol.3-12-23
measured environment, Vol.1-6-1
Measured Launched Environment, Vol.1-6-1, Vol.1-6-25
Memory, Vol.3-13-1

flat memory model, Vol.1-3-7
management registers, Vol.1-3-4
memory type range registers (MTRRs), Vol.1-3-4
modes of operation, Vol.1-3-9
organization, Vol.1-3-6, Vol.1-3-7
physical, Vol.1-3-6
real address mode memory model, Vol.1-3-7, Vol.1-3-8
segmented memory model, Vol.1-3-7
virtual-8086 mode memory model, Vol.1-3-7, Vol.1-3-8

Memory management
introduction to, Vol.3-2-6
overview, Vol.3-3-1
paging, Vol.3-3-1, Vol.3-3-2
registers, Vol.3-2-11
segments, Vol.3-3-1, Vol.3-3-2, Vol.3-3-7

Memory operands
64-bit mode, Vol.1-3-21
legacy modes, Vol.1-3-21

Memory ordering
overview, Vol.3-10-6
processor ordering, Vol.3-10-6
strengthening or weakening, Vol.3-10-17
write ordering, Vol.3-10-6

Memory type range registers (see MTRRs)
Memory types

caching methods, defined, Vol.3-13-6
choosing, Vol.3-13-8
MTRR types, Vol.3-13-21
selecting for Pentium III and Pentium 4 processors, Vol.3-13-15
selecting for Pentium Pro and Pentium II processors, Vol.3-13-14
UC (strong uncacheable), Vol.3-13-6
UC- (uncacheable), Vol.3-13-6
WB (write back), Vol.3-13-7
WC (write combining), Vol.3-13-7
WP (write protected), Vol.3-13-7
writing values across pages with different memory types, Vol.3-13-16
WT (write through), Vol.3-13-7

Memory-mapped I/O, Vol.1-20-2
MemTypeGet() function, Vol.3-13-29
MemTypeSet() function, Vol.3-13-31
MESI cache protocol, Vol.3-13-5, Vol.3-13-9
Message address register, Vol.3-12-34
Message data register format, Vol.3-12-35
Message signalled interrupts

message address register, Vol.3-12-34
message data register format, Vol.3-12-34

MFENCE instruction, Vol.1-11-12, Vol.1-11-25, Vol.2-1-22, Vol.3-2-16, 
Vol.3-10-7, Vol.3-10-17, Vol.3-10-18, Vol.3-10-19

Microarchitecture
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Microcode update facilities
authenticating an update, Vol.3-11-37
BIOS responsibilities, Vol.3-11-38

calling program responsibilities, Vol.3-11-39
checksum, Vol.3-11-33
extended signature table, Vol.3-11-31
family 0FH processors, Vol.3-11-28
field definitions, Vol.3-11-28
format of update, Vol.3-11-28
function 00H presence test, Vol.3-11-42
function 01H write microcode update data, Vol.3-11-43
function 02H microcode update control, Vol.3-11-46
function 03H read microcode update data, Vol.3-11-47
general description, Vol.3-11-28
HT Technology, Vol.3-11-35
INT 15H-based interface, Vol.3-11-42
overview, Vol.3-11-27
process description, Vol.3-11-28
processor identification, Vol.3-11-32
processor signature, Vol.3-11-32
return codes, Vol.3-11-48
update loader, Vol.3-11-34
update signature and verification, Vol.3-11-36
update specifications, Vol.3-11-37
VMX non-root operation, Vol.3-27-13

MINPD instruction, Vol.1-11-6
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MINPS instruction, Vol.1-10-9
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Vol.2-1-26
MINSD instruction, Vol.1-11-7
MINSD- Return Minimum Scalar Double Precision Floating-Point Value, 
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MINSS- Return Minimum Scalar Single Precision Floating-Point Value, 
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Mixing 16-bit and 32-bit code

overview, Vol.1-23-1
MLE, Vol.1-6-1
MMX instruction set
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comparison instructions, Vol.1-9-7
conversion instructions, Vol.1-9-7
data transfer instructions, Vol.1-9-6
EMMS instruction, Vol.1-9-8
logical instructions, Vol.1-9-7
overview, Vol.1-9-5
shift instructions, Vol.1-9-8

MMX instructions
CPUID flag for technology, Vol.2-1-253
encodings, Vol.1-B-38

MMX registers
description of, Vol.1-9-2
overview of, Vol.1-3-2

MMX technology
64-bit mode, Vol.1-9-2
64-bit packed SIMD data types, Vol.1-4-8
compatibility mode, Vol.1-9-2
compatibility with FPU architecture, Vol.1-9-8
data types, Vol.1-9-3
debugging MMX code, Vol.1-14-5
detecting MMX technology with CPUID instruction, Vol.1-9-8
effect of instruction prefixes on MMX instructions, Vol.1-9-11
effect of MMX instructions on pending x87 floating-point exceptions, 

Vol.1-14-5
emulation of the MMX instruction set, Vol.1-14-1
exception handling in MMX code, Vol.1-9-11
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IA-32e mode, Vol.1-9-2
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MMX registers, Vol.1-9-2
programming environment (overview), Vol.1-9-1
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register mapping, Vol.1-9-11
saturation arithmetic, Vol.1-9-4
SIMD execution environment, Vol.1-9-4
state, Vol.1-14-1
state, saving and restoring, Vol.1-14-3
system programming, Vol.1-14-1
task or context switches, Vol.1-14-4
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instructions, Vol.1-11-24
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using the EMMS instruction, Vol.1-9-9
wraparound mode, Vol.1-9-4

Mod field, instruction format, Vol.2-2-3
Mode switching

example, Vol.3-11-14
real-address and protected mode, Vol.3-11-13
to SMM, Vol.5-33-2

Model and stepping information, following processor initialization or reset
, Vol.3-11-5

Model & family information, Vol.2-1-257
Model-specific registers (see MSRs)
Modes of operation

64-bit mode, Vol.1-3-1
compatibility mode, Vol.1-3-1
memory models used with, Vol.1-3-9
overview, Vol.1-3-1, Vol.1-3-5
protected mode, Vol.1-3-1
real address mode, Vol.1-3-1
system management mode (SMM), Vol.1-3-1

Modes of operation (see Operating modes)
ModR/M byte, Vol.2-2-3

16-bit addressing forms, Vol.2-2-5
32-bit addressing forms of, Vol.2-2-6
description of, Vol.2-2-3

MONITOR instruction, Vol.1-5-25, Vol.1-12-5, Vol.2-1-33, Vol.3-27-3
CPUID flag, Vol.2-1-250
feature data, Vol.2-1-257

Moore’s law, Vol.1-2-20
MOV instruction, Vol.1-7-3, Vol.1-7-22, Vol.2-1-35, Vol.3-3-8, Vol.3-6-8
MOV instruction (control registers), Vol.2-1-39, Vol.2-1-58, Vol.2-1-60
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MOVDQ2Q instruction, Vol.1-11-11, Vol.2-1-66
MOVDQA instruction, Vol.1-11-11, Vol.1-11-23
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MOVDQU instruction, Vol.1-11-11, Vol.1-11-23
MOVDQU- Move Unaligned Packed Integer Values, Vol.2-1-72
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Low, Vol.2-1-80
MOVHLPS instruction, Vol.1-10-8
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Vol.2-1-88
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Non-Temporal Hint, Vol.2-1-104
MOVNTQ instruction, Vol.1-10-12, Vol.1-11-25, Vol.2-1-106, Vol.3-10-7, 

Vol.3-13-17
MOVQ instruction, Vol.1-9-6, Vol.2-1-52, Vol.2-1-107
MOVQ2DQ instruction, Vol.1-11-11, Vol.2-1-110
MOVS instruction, Vol.1-3-17, Vol.1-7-18, Vol.2-1-121, Vol.2-1-563
MOVSB instruction, Vol.2-1-121
MOVSD instruction, Vol.1-11-6, Vol.1-11-23, Vol.2-1-121
MOVSD- Move or Merge Scalar Double Precision Floating-Point Value, 

Vol.2-1-112
MOVSHDUP instruction, Vol.1-5-25, Vol.1-12-3
MOVSHDUP- Replicate Single FP Values, Vol.2-1-115
MOVSLDUP instruction, Vol.1-5-25, Vol.1-12-3
MOVSLDUP- Replicate Single FP Values, Vol.2-1-118
MOVSQ instruction, Vol.2-1-121
MOVSS instruction, Vol.1-10-7, Vol.1-11-23
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MOVSW instruction, Vol.2-1-121
MOVSX instruction, Vol.1-7-8, Vol.2-1-128
MOVSXD instruction, Vol.1-7-8, Vol.2-1-128
MOVUPD instruction, Vol.1-11-6, Vol.1-11-23
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MOVUPS instruction, Vol.1-10-6, Vol.1-10-7, Vol.1-11-23
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MOVZX instruction, Vol.1-7-8, Vol.2-1-138
MP (monitor coprocessor) flag

CR0 control register, Vol.3-2-16, Vol.3-2-17, Vol.3-7-32, Vol.3-11-6, 
Vol.3-11-7, Vol.1-14-1

MS-DOS compatibility mode, Vol.1-8-32
MSR

Model Specific Register, Vol.3-12-37, Vol.3-12-38
MSRs, Vol.1-3-4
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description of, Vol.3-11-7
introduction to, Vol.3-2-6
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Pentium 4 processor, Vol.4-2-88, Vol.4-2-104, Vol.4-2-258, 

Vol.4-2-282, Vol.4-2-298, Vol.4-2-520, Vol.4-2-546
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MSR_EBC_SOFT_POWERON MSR, Vol.4-2-522
MSR_IFSB_CNTR7 MSR, Vol.3-21-134
MSR_IFSB_CTRL6 MSR, Vol.3-21-134
MSR_IFSB_DRDY0 MSR, Vol.3-21-133
MSR_IFSB_DRDY1 MSR, Vol.3-21-133
MSR_IFSB_IBUSQ0 MSR, Vol.3-21-133
MSR_IFSB_IBUSQ1 MSR, Vol.3-21-133
MSR_IFSB_ISNPQ0 MSR, Vol.3-21-133
MSR_IFSB_ISNPQ1 MSR, Vol.3-21-133
MSR_LASTBRANCH _TOS, Vol.4-2-531
MSR_LASTBRANCH_0_TO_IP, Vol.4-2-544
MSR_LASTBRANCH_n MSR, Vol.3-19-19, Vol.3-19-36, Vol.3-19-37, 

Vol.4-2-531
MSR_LASTBRANCH_n_FROM_IP MSR, Vol.3-19-18, Vol.3-19-19, 

Vol.3-19-36, Vol.3-19-37, Vol.4-2-542
MSR_LASTBRANCH_n_TO_IP MSR, Vol.3-19-18, Vol.3-19-19, 

Vol.3-19-36, Vol.3-19-37
MSR_LASTBRANCH_n_TO_LIP MSR, Vol.4-2-544
MSR_LASTBRANCH_TOS MSR, Vol.3-19-36, Vol.3-19-37
MSR_LER_FROM_LIP MSR, Vol.3-19-37, Vol.3-19-39, Vol.4-2-530, 

Vol.4-2-531
MSR_LER_TO_LIP MSR, Vol.3-19-37, Vol.3-19-39, Vol.4-2-531
MSR_PEBS_MATRIX_VERT MSR, Vol.4-2-539
MSR_PLATFORM_BRV, Vol.4-2-530, Vol.4-2-531, Vol.4-2-532, 

Vol.4-2-533, Vol.4-2-534, Vol.4-2-535, Vol.4-2-536, 
Vol.4-2-537, Vol.4-2-538, Vol.4-2-539, Vol.4-2-540, 
Vol.4-2-541, Vol.4-2-542, Vol.4-2-543, Vol.4-2-544, 
Vol.4-2-545

MTRR feature flag, CPUID instruction, Vol.3-13-21
MTRRcap MSR, Vol.3-13-21
MTRRfix MSR, Vol.3-13-23
MTRRs, Vol.1-3-4, Vol.3-10-17

base & mask calculations, Vol.3-13-26, Vol.3-13-27
cache control, Vol.3-13-13
description of, Vol.3-11-8, Vol.3-13-20
dual-core processors, Vol.3-10-34
enabling caching, Vol.3-11-7
feature identification, Vol.3-13-21
fixed-range registers, Vol.3-13-23
IA32_MTRRCAP MSR, Vol.3-13-21
IA32_MTRR_DEF_TYPE MSR, Vol.3-13-22
initialization of, Vol.3-13-29
introduction to, Vol.3-2-6
large page size considerations, Vol.3-13-33
logical processors, Vol.3-10-34
mapping physical memory with, Vol.3-13-21
memory types and their properties, Vol.3-13-21
MemTypeGet() function, Vol.3-13-29
MemTypeSet() function, Vol.3-13-31
multiple-processor considerations, Vol.3-13-32
precedence of cache controls, Vol.3-13-13
precedences, Vol.3-13-28
programming interface, Vol.3-13-29
remapping memory types, Vol.3-13-29
state of following a hardware reset, Vol.3-13-20
variable-range registers, Vol.3-13-23, Vol.3-13-25

MUL instruction, Vol.1-7-9, Vol.2-1-23, Vol.2-1-148
MULPD instruction, Vol.1-11-6
MULPD- Multiply Packed Double Precision Floating-Point Values, 

Vol.2-1-150
MULPS instruction, Vol.1-10-8

MULPS- Multiply Packed Single Precision Floating-Point Values, 
Vol.2-1-153

MULSD instruction, Vol.1-11-6
MULSD- Multiply Scalar Double Precision Floating-Point Values, 

Vol.2-1-156
MULSS instruction, Vol.1-10-8
MULSS- Multiply Scalar Single Precision Floating-Point Values, Vol.2-1-158
Multi-byte no operation, Vol.2-1-165, Vol.2-1-167, Vol.1-B-13
Multi-core technology, Vol.1-2-18

See multi-threading support
Multiple-processor management

bus locking, Vol.3-10-3
guaranteed atomic operations, Vol.3-10-2
initialization

MP protocol, Vol.3-10-20
procedure, Vol.3-10-56

local APIC, Vol.3-12-1
memory ordering, Vol.3-10-6
MP protocol, Vol.3-10-20
overview of, Vol.3-10-1
SMM considerations, Vol.5-33-16

Multiple-processor system
local APIC and I/O APICs, Pentium 4, Vol.3-12-3
local APIC and I/O APIC, P6 family, Vol.3-12-3

Multisegment model, Vol.3-3-4
Multitasking

initialization for, Vol.3-11-10, Vol.3-11-11
initializing IA-32e mode, Vol.3-11-11
linking tasks, Vol.3-9-15
mechanism, description of, Vol.3-9-2
overview, Vol.3-9-1
setting up TSS, Vol.3-11-10
setting up TSS descriptor, Vol.3-11-10

Multi-threading capability, Vol.1-2-18
Multi-threading support

executing multiple threads, Vol.3-10-28
handling interrupts, Vol.3-10-28
logical processors per package, Vol.3-10-26
mapping resources, Vol.3-10-35
microcode updates, Vol.3-10-34
performance monitoring counters, Vol.3-10-34
programming considerations, Vol.3-10-35

MULX - Unsigned Multiply Without Affecting Flags, Vol.2-1-160
MVMM, Vol.1-6-1, Vol.1-6-5, Vol.1-6-37
MWAIT instruction, Vol.1-5-25, Vol.1-12-5, Vol.2-1-162, Vol.3-27-3

CPUID flag, Vol.2-1-250
feature data, Vol.2-1-257
power management extensions, Vol.3-15-35, Vol.3-16-35

MXCSR register, Vol.1-11-16, Vol.3-7-53, Vol.3-11-8
denormals-are-zero (DAZ) flag, Vol.1-10-5, Vol.1-11-2, Vol.1-11-3
description, Vol.1-10-3
flush-to-zero flag (FTZ), Vol.1-10-4
FXSAVE and FXRSTOR instructions, Vol.1-11-23
LDMXCSR instruction, Vol.1-11-24
load and store instructions, Vol.1-10-12
RC field, Vol.1-4-18
saving on a procedure or function call, Vol.1-11-23
SIMD floating-point mask and flag bits, Vol.1-10-4
SIMD floating-point rounding control field, Vol.1-10-4
state management instructions, Vol.1-5-20, Vol.1-10-12
STMXCSR instruction, Vol.1-11-24
writing to while preventing general-protection exceptions (#GP), 

Vol.1-11-21

N
NaNs

description of, Vol.1-4-13, Vol.1-4-15
encoding of, Vol.1-4-5, Vol.1-4-14
SNaNs vs. QNaNs, Vol.1-4-15

NaN. testing for, Vol.2-1-459
NE (numeric error) flag
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CR0 control register, Vol.3-2-15, Vol.3-7-48, Vol.3-11-6, Vol.3-11-7
Near

return, RET instruction, Vol.2-1-566
Near call

description of, Vol.1-6-4
operation, Vol.1-6-4

Near pointer
64-bit mode, Vol.1-4-7
legacy modes, Vol.1-4-6

Near return operation, Vol.1-6-4
NEG instruction, Vol.1-7-8, Vol.2-1-620, Vol.2-1-165, Vol.3-10-4
NetBurst microarchitecture (see Intel NetBurst microarchitecture)
NMI interrupt, Vol.3-2-26, Vol.3-12-3

description of, Vol.3-7-2
handling during initialization, Vol.3-11-9
handling in SMM, Vol.5-33-11
handling multiple NMIs, Vol.3-7-6
receiving when processor is shutdown, Vol.3-7-34
reference information, Vol.3-7-27
vector, Vol.3-7-2

NMI# pin, Vol.3-7-2, Vol.3-7-27
No operation, Vol.2-1-165, Vol.2-1-167, Vol.1-B-12
Nomenclature, used in instruction reference pages, Vol.2-1-1
Nominal CPI method, Vol.3-21-146
Non-arithmetic instructions, x87 FPU, Vol.1-8-25
Nonconforming code segments

accessing, Vol.3-6-11
C (conforming) flag, Vol.3-6-11
description of, Vol.3-3-13

Non-halted clockticks, Vol.3-21-146
setting up counters, Vol.3-21-146

Non-Halted CPI method, Vol.3-21-146
Nonmaskable interrupt (see NMI)
Non-number encodings, floating-point format, Vol.1-4-13
Non-precise event-based sampling

defined, Vol.3-21-114
used for at-retirement counting, Vol.3-21-124
writing an interrupt service routine for, Vol.3-19-26

Non-retirement events, Vol.3-21-113
Non-sleep clockticks, Vol.3-21-146
Non-temporal data

caching of, Vol.1-10-12
description, Vol.1-10-12
temporal vs. non-temporal data, Vol.1-10-12

Non-waiting instructions, x87 FPU, Vol.1-8-24, Vol.1-8-32
NOP instruction, Vol.1-7-23, Vol.2-1-167
Normalized finite number, Vol.1-4-5, Vol.1-4-13, Vol.1-4-14
NOT instruction, Vol.1-7-10, Vol.2-1-620, Vol.2-1-168, Vol.3-10-4
Notation

bit and byte order, Vol.1-1-6
exceptions, Vol.1-1-9
hexadecimal and binary numbers, Vol.1-1-7
instruction operands, Vol.1-1-7
notational conventions, Vol.1-1-6
reserved bits, Vol.1-1-7
segmented addressing, Vol.1-1-8

NT (nested task) flag
EFLAGS register, Vol.3-2-10, Vol.3-9-10, Vol.3-9-11, Vol.3-9-15

NT (nested task) flag, EFLAGS register, Vol.1-3-17, Vol.1-A-1, 
Vol.2-1-548

Null segment selector, checking for, Vol.3-6-6
Numeric overflow exception (#O)

overview, Vol.1-4-21
SSE and SSE2 extensions, Vol.1-11-15
x87 FPU, Vol.1-8-4, Vol.1-8-28

Numeric underflow exception (#U)
overview, Vol.1-4-22
SSE and SSE2 extensions, Vol.1-11-16
x87 FPU, Vol.1-8-4, Vol.1-8-29

NV (invert) flag, PerfEvtSel0 MSR
(P6 family processors), Vol.3-21-5, Vol.3-21-142

NW (not write-through) flag

CR0 control register, Vol.3-2-15, Vol.3-11-7, Vol.3-13-12, 
Vol.3-13-13, Vol.3-13-16, Vol.3-13-32

NXE bit, Vol.3-6-30

O
OE (numeric overflow exception) flag

MXCSR register, Vol.1-11-16
x87 FPU status word, Vol.1-8-5, Vol.1-8-29

OF flag, EFLAGS register, Vol.3-7-29
OF (carry) flag, EFLAGS register, Vol.2-1-511
OF (overflow) flag

EFLAGS register, Vol.1-3-16, Vol.1-6-18
OF (overflow) flag, EFLAGS register, Vol.1-A-1, Vol.2-1-32, Vol.2-1-526, 

Vol.2-1-148, Vol.2-1-610, Vol.2-1-636, Vol.2-1-639, 
Vol.2-1-682

Offset (operand addressing, 64-bit mode), Vol.1-3-24
Offset (operand addressing), Vol.1-3-22
OM (numeric overflow exception) mask bit

MXCSR register, Vol.1-11-16
x87 FPU control word, Vol.1-8-7, Vol.1-8-29

On die digital thermal sensor, Vol.3-15-42, Vol.3-16-42
relevant MSRs, Vol.3-15-42, Vol.3-16-42
sensor enumeration, Vol.3-15-42, Vol.3-16-42

On-Demand
clock modulation enable bits, Vol.3-15-40, Vol.3-16-40

On-demand
clock modulation duty cycle bits, Vol.3-15-40, Vol.3-16-40

On-die sensors, Vol.3-15-36, Vol.3-16-36
Opcode format, Vol.2-2-3
Opcodes

addressing method codes for, Vol.1-A-1
extensions, Vol.1-A-17
extensions tables, Vol.1-A-18
group numbers, Vol.1-A-17
integers

one-byte opcodes, Vol.1-A-7
two-byte opcodes, Vol.1-A-7

key to abbreviations, Vol.1-A-1
look-up examples, Vol.1-A-3, Vol.1-A-17, Vol.1-A-20
ModR/M byte, Vol.1-A-17
one-byte opcodes, Vol.1-A-3, Vol.1-A-7
opcode maps, Vol.1-A-1
operand type codes for, Vol.1-A-2
register codes for, Vol.1-A-3
superscripts in tables, Vol.1-A-6
two-byte opcodes, Vol.1-A-4, Vol.1-A-5, Vol.1-A-7
VMX instructions, Vol.1-B-112, Vol.1-B-113
x87 ESC instruction opcodes, Vol.1-A-20

Operand
addressing, modes, Vol.1-3-19
instruction, Vol.1-1-7
size attribute, Vol.1-3-18
sizes, Vol.1-3-9, Vol.1-3-19
x87 FPU instructions, Vol.1-8-15

Operands
operand-size prefix, Vol.1-23-1

Operating modes
64-bit mode, Vol.3-2-7
compatibility mode, Vol.3-2-7
IA-32e mode, Vol.3-2-7, Vol.3-2-8
introduction to, Vol.3-2-7
protected mode, Vol.3-2-7
SMM (system management mode), Vol.3-2-7
transitions between, Vol.3-2-8
virtual-8086 mode, Vol.3-2-8
VMX operation

enabling and entering, Vol.3-24-3, Vol.3-25-3
OR instruction, Vol.1-7-10, Vol.2-1-620, Vol.2-1-170, Vol.3-10-4
Ordering I/O, Vol.1-20-5
ORPD instruction, Vol.1-11-7
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ORPS- Bitwise Logical OR of Packed Single Precision Floating-Point Values
, Vol.2-1-175

ORPS instruction, Vol.1-10-9
OS (operating system mode) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 only), Vol.3-21-4, 
Vol.3-21-141

OSFXSR (FXSAVE/FXRSTOR support) flag
CR4 control register, Vol.3-2-18, Vol.3-11-8

OSXMMEXCPT flag
control register CR4, Vol.1-11-18

OSXMMEXCPT (SIMD floating-point exception support) flag, CR4 control 
register, Vol.3-2-18, Vol.3-7-53, Vol.3-11-8

OUT instruction, Vol.1-5-10, Vol.1-7-20, Vol.1-20-3, Vol.2-1-178, 
Vol.3-10-17, Vol.3-27-2

Out-of-spec status bit, Vol.3-15-43, Vol.3-15-46, Vol.3-16-43, 
Vol.3-16-46

Out-of-spec status log, Vol.3-15-43, Vol.3-15-46, Vol.3-16-43, 
Vol.3-16-46

OUTS instruction, Vol.1-5-10, Vol.1-7-20, Vol.1-20-3, Vol.2-1-180, 
Vol.2-1-563

OUTSB instruction, Vol.2-1-180
OUTSD instruction, Vol.2-1-180
OUTSW instruction, Vol.2-1-180
OUTS/OUTSB/OUTSW/OUTSD instruction, Vol.3-19-10, Vol.3-27-2
Overflow exception (#OF), Vol.1-6-18, Vol.2-1-526, Vol.3-7-29
Overflow, x87 FPU stack, Vol.1-8-26
Overheat interrupt enable bit, Vol.3-15-44, Vol.3-15-47, Vol.3-16-44, 

Vol.3-16-47

P
P (present) flag

page-directory entry, Vol.3-7-44
page-table entry, Vol.3-7-44
segment descriptor, Vol.3-3-11

P5_MC_ADDR MSR, Vol.3-17-13, Vol.3-17-30, Vol.4-2-88, Vol.4-2-104, 
Vol.4-2-118, Vol.4-2-171, Vol.4-2-219, Vol.4-2-500, 
Vol.4-2-547, Vol.4-2-558, Vol.4-2-565, Vol.4-2-576

P5_MC_TYPE MSR, Vol.3-17-13, Vol.3-17-29, Vol.4-2-88, Vol.4-2-104, 
Vol.4-2-118, Vol.4-2-171, Vol.4-2-219, Vol.4-2-500, 
Vol.4-2-547, Vol.4-2-558, Vol.4-2-565, Vol.4-2-576

P6 family microarchitecture
description of, Vol.1-2-7
history of, Vol.1-2-2

P6 family processors
description of, Vol.1-1-1
history of, Vol.1-2-2
last branch, interrupt, and exception recording, Vol.3-19-40
machine encodings, Vol.1-B-41
MSR supported by, Vol.4-2-565
P6 family microarchitecture, Vol.1-2-7

PABSB instruction, Vol.1-5-26, Vol.1-12-7, Vol.2-1-184, Vol.2-1-198, 
Vol.2-1-161, Vol.2-1-583, Vol.2-1-594, Vol.2-1-610

PABSD instruction, Vol.1-12-8, Vol.2-1-184, Vol.2-1-198, Vol.2-1-161, 
Vol.2-1-583, Vol.2-1-594, Vol.2-1-610

PABSW instruction, Vol.1-5-26, Vol.1-12-8, Vol.2-1-184, Vol.2-1-198, 
Vol.2-1-161, Vol.2-1-583, Vol.2-1-594, Vol.2-1-610

Packed
BCD integer indefinite, Vol.1-4-11
BCD integers, Vol.1-4-10
bytes, Vol.1-9-3
doublewords, Vol.1-9-3
SIMD data types, Vol.1-4-8
SIMD floating-point values, Vol.1-4-8
SIMD integers, Vol.1-4-8
words, Vol.1-9-3

PACKSSDW instruction, Vol.2-1-190
PACKSSWB instruction, Vol.1-9-7, Vol.2-1-190
PACKUSWB instruction, Vol.1-9-7, Vol.2-1-203
PADDB instruction, Vol.1-9-6
PADDB/PADDW/PADDD/PADDQ - Add Packed Integers, Vol.2-1-208
PADDD instruction, Vol.1-9-6

PADDQ instruction, Vol.1-11-11
PADDSB instruction, Vol.1-9-7, Vol.2-1-215
PADDSW instruction, Vol.1-9-7, Vol.2-1-215
PADDUSB instruction, Vol.1-9-7, Vol.2-1-219
PADDUSW instruction, Vol.1-9-7, Vol.2-1-219
PADDW instruction, Vol.1-9-6
PAE paging

feature flag, CR4 register, Vol.3-2-18, Vol.3-2-19
flag, CR4 control register, Vol.3-3-6

Page attribute table (PAT)
compatibility with earlier IA-32 processors, Vol.3-13-36
detecting support for, Vol.3-13-34
IA32_PAT MSR, Vol.3-13-34
introduction to, Vol.3-13-33
memory types that can be encoded with, Vol.3-13-34
MSR, Vol.3-13-13
precedence of cache controls, Vol.3-13-14
programming, Vol.3-13-35
selecting a memory type with, Vol.3-13-35

Page directories, Vol.3-2-6
Page directory

base address (PDBR), Vol.3-9-5
introduction to, Vol.3-2-6
overview, Vol.3-3-2
setting up during initialization, Vol.3-11-10

Page directory pointers, Vol.3-2-6
Page frame (see Page)
Page tables, Vol.3-2-6

introduction to, Vol.3-2-6
overview, Vol.3-3-2
setting up during initialization, Vol.3-11-10

Page-directory entries, Vol.3-13-5
Page-fault exception (#PF), Vol.3-5-54, Vol.3-7-44
Pages

disabling protection of, Vol.3-6-1
enabling protection of, Vol.3-6-1
introduction to, Vol.3-2-6
overview, Vol.3-3-2
PG flag, CR0 control register, Vol.3-6-1

Page-table entries, Vol.3-13-5, Vol.3-13-19
Paging

combining segment and page-level protection, Vol.3-6-29
combining with segmentation, Vol.3-3-5
defined, Vol.3-3-1
IA-32e mode, Vol.3-2-6
initializing, Vol.3-11-10
introduction to, Vol.3-2-6
large page size MTRR considerations, Vol.3-13-33
mapping segments to pages, Vol.3-5-54
page-fault exception, Vol.3-7-44, Vol.3-7-55, Vol.3-7-56
page-level protection, Vol.3-6-2, Vol.3-6-3, Vol.3-6-27
page-level protection flags, Vol.3-6-28
virtual-8086 tasks, Vol.3-22-7

PALIGNR instruction, Vol.1-5-26, Vol.1-12-8, Vol.2-1-223
PAND instruction, Vol.1-9-7, Vol.2-1-227
PANDN instruction, Vol.1-9-7, Vol.2-1-230
Parameter

passing, between 16- and 32-bit call gates, Vol.1-23-6
translation, between 16- and 32-bit code segments, Vol.1-23-6

Parameter passing
argument list, Vol.1-6-7
on stack, Vol.1-6-7
on the stack, Vol.1-6-7
through general-purpose registers, Vol.1-6-7
x87 FPU register stack, Vol.1-8-3
XMM registers, Vol.1-11-23

GETSEC, Vol.1-6-4
PAUSE instruction, Vol.1-11-12, Vol.2-1-233, Vol.3-2-16, Vol.3-27-3
PAVGB instruction, Vol.1-10-11, Vol.2-1-234
PAVGW instruction, Vol.2-1-234
PBi (performance monitoring/breakpoint pins) flags, DEBUGCTLMSR MSR, 

Vol.3-19-39, Vol.3-19-41
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PC (pin control) flag, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family 
processors), Vol.3-21-4, Vol.3-21-142

PC (precision) field, x87 FPU control word, Vol.1-8-7
PC0 and PC1 (pin control) fields, CESR MSR (Pentium processor), 

Vol.3-21-144
PCD pin (Pentium processor), Vol.3-13-13
PCD (page-level cache disable) flag

CR3 control register, Vol.3-2-17, Vol.3-13-13
page-directory entries, Vol.3-11-7, Vol.3-13-13, Vol.3-13-33
page-table entries, Vol.3-11-7, Vol.3-13-13, Vol.3-13-33

PCE flag, CR4 register, Vol.2-1-550
PCE (performance monitoring counter enable) flag, CR4 control register, 

Vol.3-2-18, Vol.3-6-24, Vol.3-21-116, Vol.3-21-142
PCMPEQB instruction, Vol.1-9-7, Vol.2-1-248
PCMPEQD instruction, Vol.1-9-7, Vol.2-1-248
PCMPEQW instruction, Vol.1-9-7, Vol.2-1-248
PCMPGTB instruction, Vol.1-9-7, Vol.2-1-261
PCMPGTD instruction, Vol.1-9-7, Vol.2-1-261
PCMPGTW instruction, Vol.1-9-7, Vol.2-1-261
PDBR (see CR3 control register)
PDEP - Parallel Bits Deposit, Vol.2-1-280
PE (inexact result exception) flag, Vol.1-11-16

MXCSR register, Vol.1-4-18
x87 FPU status word, Vol.1-4-18, Vol.1-8-4, Vol.1-8-5, Vol.1-8-30

PE (protection enable) flag, CR0 control register, Vol.3-2-17, Vol.3-6-1, 
Vol.3-11-10, Vol.3-11-13, Vol.5-33-9

PE (protection enable) flag, CR0 register, Vol.2-1-615
PEBS records, Vol.3-19-23
PEBS (precise event-based sampling) facilities

availability of, Vol.3-21-126
description of, Vol.3-21-114, Vol.3-21-126
DS save area, Vol.3-19-19
IA-32e mode, Vol.3-19-23
PEBS buffer, Vol.3-19-20, Vol.3-21-126
PEBS records, Vol.3-19-19, Vol.3-19-22
writing a PEBS interrupt service routine, Vol.3-21-127
writing interrupt service routine, Vol.3-19-26

PEBS_UNAVAILABLE flag
IA32_MISC_ENABLE MSR, Vol.3-19-20, Vol.4-2-529

Pending break enable, Vol.2-1-253
Pentium 4 processor, Vol.1-1-1

description of, Vol.1-2-3, Vol.1-2-4
last branch, interrupt, and exception recording, Vol.3-19-35
MSRs supported, Vol.4-2-88, Vol.4-2-104, Vol.4-2-117, Vol.4-2-136, 

Vol.4-2-138, Vol.4-2-164, Vol.4-2-169, Vol.4-2-520, Vol.4-2-546
time-stamp counter, Vol.3-19-42

Pentium 4 processor supporting Hyper-Threading Technology
description of, Vol.1-2-3, Vol.1-2-4

Pentium II processor, Vol.1-1-3
description of, Vol.1-2-2
P6 family microarchitecture, Vol.1-2-7

Pentium II Xeon processor
description of, Vol.1-2-2

Pentium III processor, Vol.1-1-3
description of, Vol.1-2-2
P6 family microarchitecture, Vol.1-2-7

Pentium III Xeon processor
description of, Vol.1-2-3

Pentium M processor
description of, Vol.1-2-3
instructions supported, Vol.1-2-3
last branch, interrupt, and exception recording, Vol.3-19-39
MSRs supported by, Vol.4-2-558
time-stamp counter, Vol.3-19-42

Pentium Pro processor, Vol.1-1-3
description of, Vol.1-2-2
P6 family microarchitecture, Vol.1-2-7

Pentium processor, Vol.1-1-1
compatibility with MCA, Vol.3-17-1
history of, Vol.1-2-2
MSR supported by, Vol.4-2-575
performance-monitoring counters, Vol.3-21-143

Pentium processor Extreme Edition
introduction, Vol.1-2-4

Pentium processor family processors
machine encodings, Vol.1-B-37

Pentium processor with MMX technology, Vol.1-2-2
PerfCtr0 and PerfCtr1 MSRs

(P6 family processors), Vol.3-21-141, Vol.3-21-142
PerfEvtSel0 and PerfEvtSel1 MSRs

(P6 family processors), Vol.3-21-141
PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family processors), Vol.3-21-141
Performance events

architectural, Vol.3-21-1
Intel Core Solo and Intel Core Duo processors, Vol.3-21-1
non-architectural, Vol.3-21-1
Pentium 4 and Intel Xeon processors, Vol.3-19-35
Pentium M processors, Vol.3-19-39

Performance monitoring counters, Vol.1-3-4
Performance state, Vol.3-15-1, Vol.3-16-1
Performance-monitoring counters

counted events (Pentium processors), Vol.3-21-145
CPUID inquiry for, Vol.2-1-258
description of, Vol.3-21-1, Vol.3-21-2
interrupt, Vol.3-12-1
monitoring counter overflow (P6 family processors), Vol.3-21-143
overflow, monitoring (P6 family processors), Vol.3-21-143
overview of, Vol.3-2-7
P6 family processors, Vol.3-21-140
Pentium II processor, Vol.3-21-140
Pentium Pro processor, Vol.3-21-140
Pentium processor, Vol.3-21-143
reading, Vol.3-2-26, Vol.3-21-142
setting up (P6 family processors), Vol.3-21-141
software drivers for, Vol.3-21-142
starting and stopping, Vol.3-21-142

PEXT - Parallel Bits Extract, Vol.2-1-282
PEXTRW instruction, Vol.1-10-11, Vol.2-1-287
PF (parity) flag, EFLAGS register, Vol.1-3-16, Vol.1-A-1
PG (paging) flag

CR0 control register, Vol.3-2-15, Vol.3-6-1
PG (paging) flag, CR0 control register, Vol.3-11-10, Vol.3-11-13, 

Vol.5-33-9
PGE (page global enable) flag, CR4 control register, Vol.3-2-18, 

Vol.3-13-13
PHADDD instruction, Vol.1-5-25, Vol.1-12-7, Vol.2-1-292
PHADDSW instruction, Vol.1-5-25, Vol.1-12-7, Vol.2-1-290
PHADDW instruction, Vol.1-5-25, Vol.1-12-7, Vol.2-1-292
PH—Fused Multiply-Add of Packed FP16 Values, Vol.2-1-222
PH—Fused Multiply-Subtract of Packed FP16 Values, Vol.2-1-271
PHSUBD instruction, Vol.1-5-26, Vol.1-12-7, Vol.2-1-300
PHSUBSW instruction, Vol.1-5-26, Vol.1-12-7, Vol.2-1-298
PHSUBW instruction, Vol.1-5-25, Vol.1-12-7, Vol.2-1-300
PhysBase field, IA32_MTRR_PHYSBASEn MTRR, Vol.3-13-24, 

Vol.3-13-26
Physical

address space, Vol.1-3-6
memory, Vol.1-3-6

Physical address extension
introduction to, Vol.3-3-6

Physical address space
4 GBytes, Vol.3-3-6
64 GBytes, Vol.3-3-6
addressing, Vol.3-2-6
defined, Vol.3-3-1
description of, Vol.3-3-6
IA-32e mode, Vol.3-3-6
mapped to a task, Vol.3-9-17
mapping with variable-range MTRRs, Vol.3-13-23, Vol.3-13-25

Physical destination mode, local APIC, Vol.3-12-23
PhysMask

IA32_MTRR_PHYSMASKn MTRR, Vol.3-13-24, Vol.3-13-26
Pi, Vol.2-1-413
PINSRW instruction, Vol.1-10-11, Vol.2-1-306, Vol.2-1-435
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Pi, x87 FPU constant, Vol.1-8-21
PM (inexact result exception) mask bit

MXCSR register, Vol.1-11-16
x87 FPU control word, Vol.1-8-7, Vol.1-8-30

PM0/BP0 and PM1/BP1 (performance-monitor) pins (Pentium processor), 
Vol.3-21-143, Vol.3-21-144, Vol.3-21-145

PMADDUBSW instruction, Vol.1-5-26, Vol.1-12-8, Vol.2-1-308
PMADDUDSW instruction, Vol.2-1-308
PMADDWD instruction, Vol.1-9-7, Vol.2-1-311
PMAXSW instruction, Vol.1-10-11
PMAXUB instruction, Vol.1-10-11
PMINSW instruction, Vol.1-10-11
PMINUB instruction, Vol.1-10-11
PML4 tables, Vol.3-2-6
PMOVMSKB instruction, Vol.1-10-11
PMULHRSW instruction, Vol.1-5-26, Vol.1-12-8, Vol.2-1-373
PMULHUW instruction, Vol.1-10-12, Vol.2-1-377
PMULHW instruction, Vol.2-1-381
PMULLW instruction, Vol.2-1-389
PMULUDQ instruction, Vol.1-11-11, Vol.2-1-393
Pointer data types, Vol.1-4-6, Vol.1-4-7
Pointers

64-bit mode, Vol.1-4-7
code-segment pointer size, Vol.1-23-4
far pointer, Vol.1-4-6
limit checking, Vol.3-6-25
near pointer, Vol.1-4-6
validation, Vol.3-6-24

POP instruction, Vol.1-6-1, Vol.1-6-2, Vol.1-7-6, Vol.1-7-22, 
Vol.2-1-396, Vol.3-3-8

POPA instruction, Vol.1-6-7, Vol.1-7-6, Vol.2-1-401
POPAD instruction, Vol.2-1-401
POPF instruction, Vol.1-3-15, Vol.1-6-7, Vol.1-7-21, Vol.1-20-4, 

Vol.2-1-405, Vol.3-7-7, Vol.3-19-11
POPFD instruction, Vol.1-3-15, Vol.1-6-7, Vol.1-7-21, Vol.2-1-405
POPFQ instruction, Vol.2-1-405
POR instruction, Vol.1-9-7, Vol.2-1-409
Power consumption

software controlled clock, Vol.3-15-36, Vol.3-15-40, Vol.3-16-36, 
Vol.3-16-40

Power coordination, Vol.1-2-4
Precise event-based sampling (see PEBS)
PREFETCHh instruction, Vol.2-1-412, Vol.3-2-16, Vol.3-13-17
PREFETCHh instructions, Vol.1-10-13, Vol.1-11-25
PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to Write 

and T1 Hint, Vol.2-1-416
Prefixes

Address-size override prefix, Vol.2-2-2
Branch hints, Vol.2-2-2
branch hints, Vol.2-2-2
instruction, description of, Vol.2-2-1
legacy prefix encodings, Vol.1-B-1
LOCK, Vol.2-2-1, Vol.2-1-620
Operand-size override prefix, Vol.2-2-2
REP or REPE/REPZ, Vol.2-2-1
REPNE/REPNZ, Vol.2-2-1
REP/REPE/REPZ/REPNE/REPNZ, Vol.2-1-562
REX prefix encodings, Vol.1-B-2
Segment override prefixes, Vol.2-2-2

Previous task link field, TSS, Vol.3-9-5, Vol.3-9-15, Vol.3-9-16
Privilege levels

checking when accessing data segments, Vol.3-6-8
checking, for call gates, Vol.3-6-15
checking, when transferring program control between code segments, 

Vol.3-6-10
description of, Vol.1-6-8, Vol.3-6-6
inter-privilege level calls, Vol.1-6-7
protection rings, Vol.1-6-8, Vol.3-6-8
stack switching, Vol.1-6-14

Privileged instructions, Vol.3-6-23
Procedure calls

description of, Vol.1-6-4

far call, Vol.1-6-4
for block-structured languages, Vol.1-6-20
inter-privilege level call, Vol.1-6-8
linking, Vol.1-6-3
near call, Vol.1-6-4
overview, Vol.1-6-1
return instruction pointer (EIP register), Vol.1-6-3
saving procedure state information, Vol.1-6-7
stack, Vol.1-6-1
stack switching, Vol.1-6-8
to exception handler procedure, Vol.1-6-13
to exception task, Vol.1-6-18
to interrupt handler procedure, Vol.1-6-13
to interrupt task, Vol.1-6-18
to other privilege levels, Vol.1-6-7
types of, Vol.1-6-1

Processor families
06H, Vol.3-18-1
0FH, Vol.3-18-1

Processor management
initialization, Vol.3-11-1
local APIC, Vol.3-12-1
microcode update facilities, Vol.3-11-27
overview of, Vol.3-10-1
See also: multiple-processor management

Processor ordering, description of, Vol.3-10-6
Processor state information, saving, Vol.1-6-7
PROCHOT# log, Vol.3-15-43, Vol.3-15-46, Vol.3-16-43, Vol.3-16-46
PROCHOT# or FORCEPR# event bit, Vol.3-15-42, Vol.3-15-46, 

Vol.3-16-42, Vol.3-16-46
Protected mode

IDT initialization, Vol.3-11-10
initialization for, Vol.3-11-9
I/O, Vol.1-20-3
memory models used, Vol.1-3-9
mixing 16-bit and 32-bit code modules, Vol.1-23-1
mode switching, Vol.3-11-13
overview, Vol.1-3-1
PE flag, CR0 register, Vol.3-6-1
switching to, Vol.3-6-1, Vol.3-11-13
system data structures required during initialization, Vol.3-11-9

Protection
combining segment & page-level, Vol.3-6-29
disabling, Vol.3-6-1
enabling, Vol.3-6-1
flags used for page-level protection, Vol.3-6-2, Vol.3-6-3
flags used for segment-level protection, Vol.3-6-2
IA-32e mode, Vol.3-6-3
of exception, interrupt-handler procedures, Vol.3-7-16
overview of, Vol.3-6-1
page level, Vol.3-6-1, Vol.3-6-27, Vol.3-6-28, Vol.3-6-30
page level, overriding, Vol.3-6-29
page-level protection flags, Vol.3-6-28
read/write, page level, Vol.3-6-28
segment level, Vol.3-6-1
user/supervisor type, Vol.3-6-28

Protection rings, Vol.1-6-8, Vol.3-6-8
PSADBW instruction, Vol.1-10-12, Vol.2-1-416
PSE (page size extension) flag

CR4 control register, Vol.3-2-18, Vol.3-13-20
PSE-36 page size extension, Vol.3-3-6
Pseudo-functions

VMfail, Vol.4-32-2
VMfailInvalid, Vol.4-32-2
VMfailValid, Vol.4-32-2
VMsucceed, Vol.4-32-2

PSHUFB instruction, Vol.1-5-26, Vol.1-12-8, Vol.2-1-420
PSHUFD instruction, Vol.1-11-11, Vol.2-1-424
PSHUFHW instruction, Vol.1-11-11, Vol.2-1-428
PSHUFLW instruction, Vol.1-11-11, Vol.2-1-431
PSHUFW instruction, Vol.1-10-12, Vol.1-11-11, Vol.2-1-434
PSIGNB instruction, Vol.2-1-435
Combined Volumes 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4 Index -25



INDEX
PSIGNB/W/D instruction, Vol.1-5-26, Vol.1-12-8
PSIGND instruction, Vol.2-1-435
PSIGNW instruction, Vol.2-1-435
PSLLD instruction, Vol.1-9-8, Vol.2-1-441
PSLLDQ instruction, Vol.1-11-11, Vol.2-1-439
PSLLQ instruction, Vol.1-9-8, Vol.2-1-441
PSLLW instruction, Vol.1-9-8, Vol.2-1-441
PSRAD instruction, Vol.2-1-453
PSRAW instruction, Vol.2-1-453
PSRLD instruction, Vol.2-1-465
PSRLDQ instruction, Vol.1-11-11, Vol.2-1-463
PSRLQ instruction, Vol.2-1-465
PSRLW instruction, Vol.2-1-465
P-state, Vol.3-15-1, Vol.3-16-1
PSUBB instruction, Vol.1-9-6, Vol.2-1-477
PSUBD instruction, Vol.1-9-6, Vol.2-1-477
PSUBQ instruction, Vol.1-11-11, Vol.2-1-485
PSUBSB instruction, Vol.1-9-7, Vol.2-1-488
PSUBSW instruction, Vol.1-9-7, Vol.2-1-488
PSUBUSB instruction, Vol.1-9-7, Vol.2-1-492
PSUBUSW instruction, Vol.1-9-7, Vol.2-1-492
PSUBW instruction, Vol.1-9-6, Vol.2-1-477
PTEST- Packed Bit Test, Vol.2-1-585
PUNPCKHBW instruction, Vol.1-9-7, Vol.2-1-500
PUNPCKHDQ instruction, Vol.1-9-7, Vol.2-1-500
PUNPCKHQDQ instruction, Vol.1-11-11, Vol.2-1-500
PUNPCKHWD instruction, Vol.1-9-7, Vol.2-1-500
PUNPCKLBW instruction, Vol.1-9-7, Vol.2-1-510
PUNPCKLDQ instruction, Vol.1-9-7, Vol.2-1-510
PUNPCKLQDQ instruction, Vol.1-11-11, Vol.2-1-510
PUNPCKLWD instruction, Vol.1-9-7, Vol.2-1-510
PUSH instruction, Vol.1-6-1, Vol.1-6-2, Vol.1-7-5, Vol.1-7-22, 

Vol.2-1-520
PUSHA instruction, Vol.1-6-7, Vol.1-7-5, Vol.2-1-524
PUSHAD instruction, Vol.2-1-524
PUSHF instruction, Vol.1-3-15, Vol.1-6-7, Vol.1-7-21, Vol.2-1-526, 

Vol.3-7-7
PUSHFD instruction, Vol.1-3-15, Vol.1-6-7, Vol.1-7-21, Vol.2-1-526
PVI (protected-mode virtual interrupts) flag

CR4 control register, Vol.3-2-11, Vol.3-2-17
PWT pin (Pentium processor), Vol.3-13-13
PWT (page-level write-through) flag

CR3 control register, Vol.3-2-17, Vol.3-2-20, Vol.3-13-13
page-directory entries, Vol.3-11-7, Vol.3-13-13, Vol.3-13-33
page-table entries, Vol.3-11-7, Vol.3-13-33

PXOR instruction, Vol.1-9-7, Vol.2-1-528

Q
QNaN floating-point indefinite, Vol.1-4-5, Vol.1-4-17, Vol.1-8-14
QNaNs

description of, Vol.1-4-15
effect on COMISD and UCOMISD, Vol.1-11-7
encodings, Vol.1-4-5
operating on, Vol.1-4-16
rules for generating, Vol.1-4-16
using in applications, Vol.1-4-16

Quadword, Vol.1-4-1, Vol.1-9-3
Quiet NaN (see QNaN)

R
R8D-R15D registers, Vol.1-3-12
R8-R15 registers, Vol.1-3-12
RAX register, Vol.1-3-12
RBP register, Vol.1-3-12, Vol.1-6-4
RBX register, Vol.1-3-12
RC (rounding control) field

MXCSR register, Vol.1-4-18, Vol.1-10-4
x87 FPU control word, Vol.1-4-18, Vol.1-8-8

RC (rounding control) field, x87 FPU control word, Vol.2-1-406, 
Vol.2-1-413, Vol.2-1-445

RCL instruction, Vol.1-7-13, Vol.2-1-531
RCPPS instruction, Vol.1-10-8, Vol.2-1-536
RCPSS instruction, Vol.1-10-8, Vol.2-1-538
RCR instruction, Vol.1-7-13, Vol.2-1-531
RCX register, Vol.1-3-12
RDI register, Vol.1-3-12
RDMSR instruction, Vol.2-1-542, Vol.2-1-544, Vol.2-1-560, Vol.3-2-20, 

Vol.3-2-22, Vol.3-2-27, Vol.3-6-24, Vol.3-19-37, Vol.3-19-41, 
Vol.3-19-43, Vol.3-21-116, Vol.3-21-141, Vol.3-21-142, 
Vol.3-21-143, Vol.3-27-4, Vol.3-27-10

CPUID flag, Vol.2-1-252
RDPMC instruction, Vol.2-1-548, Vol.2-1-550, Vol.2-1-15, Vol.3-2-26, 

Vol.3-6-24, Vol.3-21-116, Vol.3-21-141, Vol.3-21-142, 
Vol.3-27-4, Vol.3-27-5, Vol.3-27-10, Vol.3-27-13

in 64-bit mode, Vol.3-2-27
RDRAND, Vol.1-7-24
RDTSC instruction, Vol.2-1-553, Vol.2-1-558, Vol.2-1-560, Vol.3-2-26, 

Vol.3-6-24, Vol.3-19-43, Vol.3-27-5, Vol.3-27-11
in 64-bit mode, Vol.3-2-27

RDX register, Vol.1-3-12
reading sensors, Vol.3-15-42, Vol.3-16-42
Read/write

protection, page level, Vol.3-6-28
rights, checking, Vol.3-6-25

Real address mode
handling exceptions in, Vol.1-6-18
handling interrupts in, Vol.1-6-18
memory model, Vol.1-3-7, Vol.1-3-8
memory model used, Vol.1-3-9
not in 64-bit mode, Vol.1-3-9
overview, Vol.1-3-1

Real numbers
continuum, Vol.1-4-11
encoding, Vol.1-4-13, Vol.1-4-14
notation, Vol.1-4-12, Vol.1-14-18
system, Vol.1-4-11

Real-address mode
8086 emulation, Vol.3-22-1
address translation in, Vol.3-22-2
description of, Vol.3-22-1
exceptions and interrupts, Vol.3-22-6
IDT initialization, Vol.3-11-8
IDT, changing base and limit of, Vol.3-22-5
IDT, structure of, Vol.3-22-5
IDT, use of, Vol.3-22-4
initialization, Vol.3-11-8
instructions supported, Vol.3-22-3
interrupt and exception handling, Vol.3-22-4
interrupts, Vol.3-22-6
introduction to, Vol.3-2-7
mode switching, Vol.3-11-13
native 16-bit mode, Vol.1-23-1
overview of, Vol.3-22-1
registers supported, Vol.3-22-3
switching to, Vol.3-11-14

Recursive task switching, Vol.3-9-16
Register operands

64-bit mode, Vol.1-3-21
legacy modes, Vol.1-3-20

Register stack, x87 FPU, Vol.1-8-1
Registers

64-bit mode, Vol.1-3-12, Vol.1-3-15
control registers, Vol.1-3-4
CR in 64-bit mode, Vol.1-3-5
debug registers, Vol.1-3-4
EFLAGS register, Vol.1-3-11, Vol.1-3-15
EIP register, Vol.1-3-11, Vol.1-3-18
general purpose registers, Vol.1-3-11
instruction pointer, Vol.1-3-11
machine check registers, Vol.1-3-4
memory management registers, Vol.1-3-4
MMX registers, Vol.1-3-2, Vol.1-9-2
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MSRs, Vol.1-3-4
MTRRs, Vol.1-3-4
MXCSR register, Vol.1-10-4
performance monitoring counters, Vol.1-3-4
REX prefix, Vol.1-3-12
segment registers, Vol.1-3-11, Vol.1-3-13
x87 FPU registers, Vol.1-8-1
XMM registers, Vol.1-3-2, Vol.1-10-3

Reg/opcode field, instruction format, Vol.2-2-3
Related literature, Vol.1-1-10
Remainder, x87 FPU operation, Vol.2-1-427
REP/REPE/REPZ/REPNE/REPNZ

prefixes, Vol.1-7-19, Vol.1-20-3
REP/REPE/REPZ/REPNE/REPNZ prefixes, Vol.2-1-200, Vol.2-1-521, 

Vol.2-1-180, Vol.2-1-562
Requested privilege level (see RPL)
Reserved bits, Vol.1-1-7
RESET pin, Vol.1-3-15
RESET# pin, Vol.3-7-3
RESET# signal, Vol.3-2-26
Resolution in degrees, Vol.3-15-43, Vol.3-16-43
Responding logical processor, Vol.1-6-4
responding logical processor, Vol.1-6-4, Vol.1-6-5
Restarting program or task, following an exception or interrupt, Vol.3-7-5
Restricting addressable domain, Vol.3-6-28
RET instruction, Vol.1-3-18, Vol.1-6-3, Vol.1-6-4, Vol.1-7-15, Vol.1-7-22, 

Vol.2-1-566, Vol.3-6-10, Vol.3-6-20, Vol.1-23-6
Return instruction pointer, Vol.1-6-3
Returning

from a called procedure, Vol.3-6-20
from an interrupt or exception handler, Vol.3-7-13

Returns, from procedure calls
exception handler, return from, Vol.1-6-13
far return, Vol.1-6-5
inter-privilege level return, Vol.1-6-8
interrupt handler, return from, Vol.1-6-13
near return, Vol.1-6-4

REX prefixes, Vol.1-3-2, Vol.1-3-12, Vol.1-3-19
addressing modes, Vol.2-2-9
and INC/DEC, Vol.2-2-8
encodings, Vol.2-2-8, Vol.1-B-2
field names, Vol.2-2-9
ModR/M byte, Vol.2-2-8
overview, Vol.2-2-7
REX.B, Vol.2-2-8
REX.R, Vol.2-2-8
REX.W, Vol.2-2-8
special encodings, Vol.2-2-10

RF (resume) flag
EFLAGS register, Vol.3-2-10, Vol.3-7-7

RF (resume) flag, EFLAGS register, Vol.1-3-17, Vol.1-A-1
RFLAGS, Vol.1-3-18
RFLAGS register, Vol.1-7-22

See EFLAGS register
RIP register, Vol.1-6-4

64-bit mode, Vol.1-7-2
description of, Vol.1-3-18
relation to EIP, Vol.1-7-2

RIP-relative addressing, Vol.2-2-11
ROL instruction, Vol.1-7-13, Vol.2-1-531
ROR instruction, Vol.1-7-13, Vol.2-1-531
RORX - Rotate Right Logical Without Affecting Flags, Vol.2-1-579
Rounding

modes, floating-point operations, Vol.1-4-18, Vol.2-1-581
modes, x87 FPU, Vol.1-8-8
toward zero (truncation), Vol.1-4-18

Rounding control (RC) field
MXCSR register, Vol.1-4-18, Vol.1-10-4, Vol.2-1-581
x87 FPU control word, Vol.1-4-18, Vol.1-8-8, Vol.2-1-581

Rounding, round to integer, x87 FPU operation, Vol.2-1-431
RPL

description of, Vol.3-3-8, Vol.3-6-8

field, segment selector, Vol.3-6-2
RPL field, Vol.2-1-93
RSI register, Vol.1-3-12
RSM instruction, Vol.2-1-589, Vol.3-2-26, Vol.3-10-19, Vol.3-27-5, 

Vol.5-33-1, Vol.5-33-2, Vol.5-33-3, Vol.5-33-13, Vol.5-33-15, 
Vol.5-33-18

RSP register, Vol.1-3-12, Vol.1-6-4
RSQRTPS instruction, Vol.1-10-8, Vol.2-1-591
RSQRTSS instruction, Vol.1-10-8, Vol.2-1-593
RsvdZ, Vol.3-12-40
R/m field, instruction format, Vol.2-2-3
R/S# pin, Vol.3-7-3
R/W (read/write) flag

page-directory entry, Vol.3-6-1, Vol.3-6-2, Vol.3-6-28
page-table entry, Vol.3-6-1, Vol.3-6-2, Vol.3-6-28

R/W0-R/W3 (read/write) fields
DR7 register, Vol.3-19-5

S
S (descriptor type) flag

segment descriptor, Vol.3-3-11, Vol.3-3-12, Vol.3-6-2, Vol.3-6-5
Safer Mode Extensions, Vol.1-6-1
SAHF instruction, Vol.1-3-15, Vol.1-7-21, Vol.2-1-598
SAL instruction, Vol.1-7-10, Vol.2-1-600
SAR instruction, Vol.1-7-11, Vol.2-1-600
Saturation arithmetic (MMX instructions), Vol.1-9-4
SBB instruction, Vol.1-7-8, Vol.2-1-620, Vol.2-1-609, Vol.3-10-4
Scalar operations

defined, Vol.1-10-7, Vol.1-11-5
scalar double precision FP operands, Vol.1-11-5
scalar single precision FP operands, Vol.1-10-7

Scale (operand addressing), Vol.1-3-22, Vol.1-3-23, Vol.1-3-24, Vol.2-2-3
Scale, x87 FPU operation, Vol.1-8-21, Vol.2-1-437
Scaling bias value, Vol.1-8-29, Vol.1-8-30
Scan string instructions, Vol.2-1-612
SCAS instruction, Vol.1-3-17, Vol.1-7-18, Vol.2-1-563, Vol.2-1-612
SCASB instruction, Vol.2-1-612
SCASD instruction, Vol.2-1-612
SCASW instruction, Vol.2-1-612
Segment

defined, Vol.1-3-7
descriptor, segment limit, Vol.2-1-628
limit, Vol.2-1-628
maximum number, Vol.1-3-7
registers, moving values to and from, Vol.2-1-36
selector, RPL field, Vol.2-1-93

Segment descriptors
access rights, Vol.3-6-24
base address fields, Vol.3-3-10
code type, Vol.3-6-2
data type, Vol.3-6-2
description of, Vol.3-2-4, Vol.3-3-9
DPL (descriptor privilege level) field, Vol.3-3-11, Vol.3-6-2
D/B (default operation size/default stack pointer size and/or upper 

bound) flag, Vol.3-3-11, Vol.3-6-4
E (expansion direction) flag, Vol.3-6-2, Vol.3-6-4
G (granularity) flag, Vol.3-3-11, Vol.3-6-2, Vol.3-6-4
limit field, Vol.3-6-2, Vol.3-6-4
P (segment-present) flag, Vol.3-3-11
S (descriptor type) flag, Vol.3-3-11, Vol.3-3-12, Vol.3-6-2, Vol.3-6-5
segment limit field, Vol.3-3-10
system type, Vol.3-6-2
tables, Vol.3-3-14
TSS descriptor, Vol.3-9-5, Vol.3-9-6
type field, Vol.3-3-10, Vol.3-3-12, Vol.3-6-2, Vol.3-6-5
type field, encoding, Vol.3-3-14
when P (segment-present) flag is clear, Vol.3-3-11

Segment limit
checking, Vol.3-2-24
field, segment descriptor, Vol.3-3-10

Segment not present exception (#NP), Vol.3-3-11
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Segment override prefixes, Vol.1-3-21
Segment registers

64-bit mode, Vol.1-3-15, Vol.1-3-22, Vol.1-7-2
default usage rules, Vol.1-3-21
description of, Vol.1-3-11, Vol.1-3-13, Vol.3-3-8
IA-32e mode, Vol.3-3-9
part of basic programming environment, Vol.1-7-1
saved in TSS, Vol.3-9-4

Segment selector
description of, Vol.1-3-7, Vol.1-3-13
segment override prefixes, Vol.1-3-21
specifying, Vol.1-3-21

Segment selectors
description of, Vol.3-3-7
index field, Vol.3-3-7
null, Vol.3-6-6
null in 64-bit mode, Vol.3-6-6
RPL field, Vol.3-3-8, Vol.3-6-2
TI (table indicator) flag, Vol.3-3-7

Segmented memory model, Vol.1-1-8, Vol.1-3-7, Vol.1-3-13
Segment-not-present exception (#NP), Vol.3-7-38
Segments

64-bit mode, Vol.3-3-5
basic flat model, Vol.3-3-3
code type, Vol.3-3-12
combining segment, page-level protection, Vol.3-6-29
combining with paging, Vol.3-3-5
compatibility mode, Vol.3-3-5
data type, Vol.3-3-12
defined, Vol.3-3-1
disabling protection of, Vol.3-6-1
enabling protection of, Vol.3-6-1
mapping to pages, Vol.3-5-54
multisegment usage model, Vol.3-3-4
protected flat model, Vol.3-3-3
segment-level protection, Vol.3-6-2, Vol.3-6-3
segment-not-present exception, Vol.3-7-38
system, Vol.3-2-4
types, checking access rights, Vol.3-6-24
typing, Vol.3-6-5
using, Vol.3-3-2

SELF IPI register, Vol.3-12-38
Self Snoop, Vol.2-1-253
Self-modifying code, effect on caches, Vol.3-13-18
GETSEC, Vol.1-6-2, Vol.1-6-4, Vol.1-6-5
SENTER sleep state, Vol.1-6-10
Serialization of I/O instructions, Vol.1-20-5
Serializing, Vol.3-10-18
Serializing instructions, Vol.1-20-5

CPUID, Vol.3-10-18
HT technology, Vol.3-10-31
non-privileged, Vol.3-10-18
privileged, Vol.3-10-18

SETcc instructions, Vol.1-3-17, Vol.1-7-14, Vol.2-1-619
GETSEC, Vol.1-6-4
SF (sign) flag, EFLAGS register, Vol.1-3-16, Vol.1-A-1, Vol.2-1-32
SF (stack fault) flag, x87 FPU status word, Vol.1-8-6, Vol.1-8-26
SFENCE instruction, Vol.1-10-14, Vol.1-11-12, Vol.1-11-25, Vol.2-1-624, 

Vol.3-2-16, Vol.3-10-7, Vol.3-10-17, Vol.3-10-18, 
Vol.3-10-19

SGDT instruction, Vol.2-1-625, Vol.3-2-24, Vol.3-3-15
SHAF instruction, Vol.2-1-598
Shared resources

mapping of, Vol.3-10-35
SH—Fused Multiply-Add of Scalar FP16 Values, Vol.2-1-237
SH—Fused Multiply-Subtract of Scalar FP16 Values, Vol.2-1-287
Shift instructions, Vol.2-1-600
SHL instruction, Vol.1-7-10, Vol.2-1-600
SHLD instruction, Vol.1-7-12, Vol.2-1-636
SHR instruction, Vol.1-7-11, Vol.2-1-600
SHRD instruction, Vol.1-7-12, Vol.2-1-639
Shuffle instructions

SSE extensions, Vol.1-10-9
SSE2 extensions, Vol.1-11-7

SHUFPD - Shuffle Packed Double Precision Floating-Point Values, 
Vol.2-1-642, Vol.2-1-683

SHUFPD instruction, Vol.1-11-7
SHUFPS - Shuffle Packed Single Precision Floating-Point Values, 

Vol.2-1-647
Shutdown

resulting from double fault, Vol.3-7-34
resulting from out of IDT limit condition, Vol.3-7-34

SI register, Vol.1-3-12
SIB byte, Vol.2-2-3

32-bit addressing forms of, Vol.2-2-7, Vol.2-2-21
description of, Vol.2-2-3

SIDT instruction, Vol.2-1-625, Vol.2-1-651, Vol.3-2-24, Vol.3-3-16, 
Vol.3-7-9

Signaling NaN (see SNaN)
Signed

infinity, Vol.1-4-15
integers, description of, Vol.1-4-4
integers, encodings, Vol.1-4-4
zero, Vol.1-4-14

Significand, extracting from floating-point number, Vol.2-1-479
Significand, of floating-point number, Vol.1-4-11
Sign, floating-point number, Vol.1-4-11
SIMD floating-point exception (#XM), Vol.1-11-18, Vol.3-2-18, 

Vol.3-7-53, Vol.3-11-8
SIMD floating-point exceptions

denormal operand exception (#D), Vol.1-11-15
description of, Vol.3-7-53
divide-by-zero (#Z), Vol.1-11-15
exception conditions, Vol.1-11-14
exception handlers, Vol.1-D-1
inexact result exception (#P), Vol.1-11-16
invalid operation exception (#I), Vol.1-11-14
list of, Vol.1-11-13
numeric overflow exception (#O), Vol.1-11-15
numeric underflow exception (#U), Vol.1-11-16
precision exception (#P), Vol.1-11-16
software handling, Vol.1-11-18
summary of, Vol.1-C-1
support for, Vol.3-2-19
writing exception handlers for, Vol.1-D-1

SIMD floating-point exceptions, unmasking, effects of, Vol.2-1-596, 
Vol.2-1-540, Vol.2-1-7

SIMD floating-point flag bits, Vol.1-10-4
SIMD floating-point mask bits, Vol.1-10-4
SIMD floating-point rounding control field, Vol.1-10-4
SIMD (single instruction, multiple-data)

operations, on packed double precision floating-point operands, 
Vol.1-11-4

SIMD (single-instruction, multiple-data)
execution model, Vol.1-2-2, Vol.1-9-4
instructions, Vol.1-2-14, Vol.1-5-20, Vol.1-10-7
MMX instructions, Vol.1-5-15
operations, on packed single precision floating-point operands, 

Vol.1-10-6
packed data types, Vol.1-4-8
SSE instructions, Vol.1-5-17
SSE2 instructions, Vol.1-11-4, Vol.1-12-2, Vol.1-12-6

Sine, x87 FPU operation, Vol.1-8-20, Vol.2-1-439, Vol.2-1-441
Single precision floating-point format, Vol.1-4-4
Single-stepping

breakpoint exception condition, Vol.3-19-11
on branches, Vol.3-19-14
on exceptions, Vol.3-19-14
on interrupts, Vol.3-19-14
TF (trap) flag, EFLAGS register, Vol.3-19-11

SINIT, Vol.1-6-4
SLDT instruction, Vol.2-1-653, Vol.3-2-24
Sleep, Vol.1-2-4
SLTR instruction, Vol.3-3-16
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Smart cache, Vol.1-2-4
Smart memory access, Vol.1-2-11
smart memory access, Vol.1-2-4
SMBASE

default value, Vol.5-33-4
relocation of, Vol.5-33-14

GETSEC, Vol.1-6-4
SMI handler

description of, Vol.5-33-1
execution environment for, Vol.5-33-9
exiting from, Vol.5-33-3
VMX treatment of, Vol.5-33-16

SMI interrupt, Vol.3-2-26, Vol.3-12-3
description of, Vol.5-33-1, Vol.5-33-2
IO_SMI bit, Vol.5-33-12
priority, Vol.5-33-3
switching to SMM, Vol.5-33-2
synchronous and asynchronous, Vol.5-33-12
VMX treatment of, Vol.5-33-16

SMI# pin, Vol.3-7-3, Vol.5-33-2, Vol.5-33-15
SMM

asynchronous SMI, Vol.5-33-12
auto halt restart, Vol.5-33-14
executing the HLT instruction in, Vol.5-33-14
exiting from, Vol.5-33-3
handling exceptions and interrupts, Vol.5-33-11
introduction to, Vol.3-2-7
I/O instruction restart, Vol.5-33-15
I/O state implementation, Vol.5-33-12
memory model used, Vol.1-3-9
native 16-bit mode, Vol.1-23-1
overview, Vol.1-3-1
overview of, Vol.5-33-1
revision identifier, Vol.5-33-13
revision identifier field, Vol.5-33-13
switching to, Vol.5-33-2
switching to from other operating modes, Vol.5-33-2
synchronous SMI, Vol.5-33-12
VMX operation

default RSM treatment, Vol.5-33-18
default SMI delivery, Vol.5-33-17
dual-monitor treatment, Vol.5-33-19
overview, Vol.5-33-2
protecting CR4.VMXE, Vol.5-33-19
RSM instruction, Vol.5-33-18
SMM monitor, Vol.5-33-2
SMM VM exits, Vol.3-29-1, Vol.5-33-19
SMM-transfer VMCS, Vol.5-33-19
SMM-transfer VMCS pointer, Vol.5-33-19
VMCS pointer preservation, Vol.5-33-17
VMX-critical state, Vol.5-33-17

SMRAM
caching, Vol.5-33-8
state save map, Vol.5-33-4
structure of, Vol.5-33-4

SMSW instruction, Vol.2-1-655, Vol.3-2-24, Vol.3-27-11
SNaNs

description of, Vol.1-4-15
effect on COMISD and UCOMISD, Vol.1-11-7
encodings, Vol.1-4-5
operating on, Vol.1-4-16
typical uses of, Vol.1-4-15
using in applications, Vol.1-4-16

Snooping mechanism, Vol.3-13-6
Software compatibility, Vol.1-1-7
Software controlled clock

modulation control bits, Vol.3-15-40, Vol.3-16-40
power consumption, Vol.3-15-36, Vol.3-15-40, Vol.3-16-36, 

Vol.3-16-40
Software interrupts, Vol.3-7-4
Software-controlled bus locking, Vol.3-10-4
SP register, Vol.1-3-12

Speculative execution, Vol.1-2-7, Vol.1-2-9
SpeedStep technology, Vol.2-1-250
Spin-wait loops

programming with PAUSE instruction, Vol.1-11-12
Spurious interrupt, local APIC, Vol.3-12-32
SQRTPD instruction, Vol.1-11-6
SQRTPD—Square Root of Double Precision Floating-Point Values, 

Vol.2-1-657
SQRTPS instruction, Vol.1-10-8
SQRTPS- Square Root of Single Precision Floating-Point Values, 

Vol.2-1-660
SQRTSD - Compute Square Root of Scalar Double Precision Floating-Point 

Value, Vol.2-1-663
SQRTSD instruction, Vol.1-11-6
SQRTSS - Compute Square Root of Scalar Single Precision Floating-Point 

Value, Vol.2-1-665
SQRTSS instruction, Vol.1-10-8
Square root, Fx87 PU operation, Vol.2-1-443
SS register, Vol.1-3-13, Vol.1-3-14, Vol.1-6-1, Vol.2-1-597, Vol.2-1-36, 

Vol.2-1-397
SSE extensions

128-bit packed single precision data type, Vol.1-10-5
64-bit mode, Vol.1-10-3
64-bit SIMD integer instructions, Vol.1-10-11
branching on arithmetic operations, Vol.1-11-24
cacheability control instructions, Vol.1-10-12
cacheability hint instructions, Vol.1-11-25
cacheability instruction encodings, Vol.1-B-47
caller-save requirement for procedure and function calls, Vol.1-11-24
checking for SSE and SSE2 support, Vol.1-11-19
comparison instructions, Vol.1-10-9
compatibility mode, Vol.1-10-3
compatibility of SIMD and x87 FPU floating-point data types, 

Vol.1-11-22
conversion instructions, Vol.1-10-11
CPUID feature flag, Vol.3-11-8
CPUID flag, Vol.2-1-253
data movement instructions, Vol.1-10-7
data types, Vol.1-10-5, Vol.1-12-1
denormal operand exception (#D), Vol.1-11-15
denormals-are-zeros mode, Vol.1-10-5
divide by zero exception (#Z), Vol.1-11-15
EM flag, Vol.3-2-16
exceptions, Vol.1-11-13
floating-point encodings, Vol.1-B-42
floating-point format, Vol.1-4-11
flush-to-zero mode, Vol.1-10-4
generating SIMD FP exceptions, Vol.1-11-16
handling combinations of masked and unmasked exceptions, 

Vol.1-11-18
handling masked exceptions, Vol.1-11-17
handling SIMD floating-point exceptions in software, Vol.1-11-18
handling unmasked exceptions, Vol.1-11-18
inexact result exception (#P), Vol.1-11-16
initialization, Vol.3-11-8
instruction encodings, Vol.1-B-42
instruction prefixes, effect on SSE and SSE2 instructions, Vol.1-11-25
instruction set, Vol.1-5-17, Vol.1-10-6
integer instruction encodings, Vol.1-B-46
interaction of SIMD and x87 FPU floating-point exceptions, 

Vol.1-11-18
interaction of SSE and SSE2 instructions with x87 FPU and MMX 

instructions, Vol.1-11-22
interfacing with SSE and SSE2 procedures and functions, Vol.1-11-23
intermixing packed and scalar floating-point

and 128-bit SIMD integer instructions
and data ....................., Vol.1-11-22

introduction, Vol.1-2-2
invalid operation exception (#I), Vol.1-11-14
logical instructions, Vol.1-10-9
masked responses to invalid arithmetic operations, Vol.1-11-14
memory ordering encodings, Vol.1-B-47
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memory ordering instruction, Vol.1-10-14
MMX technology compatibility, Vol.1-10-5
MXCSR register, Vol.1-10-3
MXCSR state management instructions, Vol.1-10-12
non-temporal data, operating on, Vol.1-10-12
numeric overflow exception (#O), Vol.1-11-15
numeric underflow exception (#U), Vol.1-11-16
packed 128-Bit SIMD data types, Vol.1-4-8
packed and scalar floating-point instructions, Vol.1-10-6
programming environment, Vol.1-10-2
QNaN floating-point indefinite, Vol.1-4-17
restoring SSE and SSE2 state, Vol.1-11-21
REX prefixes, Vol.1-10-3
saving SSE and SSE2 state, Vol.1-11-21
saving XMM register state on a procedure or function call, Vol.1-11-23
shuffle instructions, Vol.1-10-9
SIMD floating-point exception conditions, Vol.1-11-14
SIMD floating-point exception cross reference, Vol.1-C-3
SIMD Floating-point exception (#XM), Vol.3-7-53
SIMD floating-point exception (#XM), Vol.1-11-18
SIMD floating-point exceptions, Vol.1-11-13
SIMD floating-point mask and flag bits, Vol.1-10-4
SIMD floating-point rounding control field, Vol.1-10-4
SSE and SSE2 conversion instruction chart, Vol.1-11-9
SSE feature flag, CPUID instruction, Vol.1-11-20
SSE2 compatibility, Vol.1-10-5
system programming, Vol.1-13-23
unpack instructions, Vol.1-10-9
updating MMX technology routines

using128-bit SIMD integer instructions, Vol.1-11-24
x87 FPU compatibility, Vol.1-10-5
XMM registers, Vol.1-10-3

SSE feature flag, CPUID instruction, Vol.1-11-20, Vol.1-12-5
SSE instructions

descriptions of, Vol.1-10-6
SIMD floating-point exception cross-reference, Vol.1-C-3
summary of, Vol.1-5-17

SSE2 extensions
128-bit packed single precision

data type, Vol.1-11-3
128-bit packed single precision data type, Vol.1-12-1
128-bit SIMD integer instruction

extensions, Vol.1-11-11
64-bit and 128-bit SIMD integer instructions, Vol.1-11-11
64-bit mode, Vol.1-11-3
arithmetic instructions, Vol.1-11-6
branch hints, Vol.1-11-13
branching on arithmetic operations, Vol.1-11-24
cacheability control instructions, Vol.1-11-12
cacheability hint instructions, Vol.1-11-25
cacheability instruction encodings, Vol.1-B-56
caller-save requirement for procedure and function calls, Vol.1-11-24
checking for SSE and SSE2 support, Vol.1-11-19
comparison instructions, Vol.1-11-7
compatibility mode, Vol.1-11-3
compatibility of SIMD and x87 FPU floating-point data types, 

Vol.1-11-22
conversion instructions, Vol.1-11-9
CPUID feature flag, Vol.3-11-8
CPUID flag, Vol.2-1-253
data movement instructions, Vol.1-11-5
data types, Vol.1-11-3, Vol.1-12-1
denormal operand exception (#D), Vol.1-11-15
denormals-are-zero mode, Vol.1-11-3
divide by zero exception (#Z), Vol.1-11-15
EM flag, Vol.3-2-16
exceptions, Vol.1-11-13
floating-point encodings, Vol.1-B-48
floating-point format, Vol.1-4-11
generating SIMD floating-point exceptions, Vol.1-11-16
handling combinations of masked and unmasked exceptions, 

Vol.1-11-18

handling masked exceptions, Vol.1-11-17
handling SIMD floating-point exceptions in software, Vol.1-11-18
handling unmasked exceptions, Vol.1-11-18
inexact result exception (#P), Vol.1-11-16
initialization, Vol.3-11-8
instruction prefixes, effect on SSE and SSE2 instructions, Vol.1-11-25
instruction set, Vol.1-5-20
instructions, Vol.1-11-4, Vol.1-12-2, Vol.1-12-6
integer instruction encodings, Vol.1-B-52
interaction of SIMD and x87 FPU floating-point exceptions, 

Vol.1-11-18
interaction of SSE and SSE2 instructions with x87 FPU and MMX 

instructions, Vol.1-11-22
interfacing with SSE and SSE2 procedures and functions, Vol.1-11-23
intermixing packed and scalar floating-point and 128-bit SIMD integer 

instructions and data, Vol.1-11-22
invalid operation exception (#I), Vol.1-11-14
logical instructions, Vol.1-11-7
masked responses to invalid arithmetic operations, Vol.1-11-14
memory ordering instructions, Vol.1-11-12
MMX technology compatibility, Vol.1-11-3
numeric overflow exception (#O), Vol.1-11-15
numeric underflow exception (#U), Vol.1-11-16
packed 128-Bit SIMD data types, Vol.1-4-8
packed and scalar floating-point instructions, Vol.1-11-4
programming environment, Vol.1-11-2
QNaN floating-point indefinite, Vol.1-4-17
restoring SSE and SSE2 state, Vol.1-11-21
REX prefixes, Vol.1-11-3
saving SSE and SSE2 state, Vol.1-11-21
saving XMM register state on a procedure or function call, Vol.1-11-23
shuffle instructions, Vol.1-11-7
SIMD floating-point exception conditions, Vol.1-11-14
SIMD floating-point exception cross reference, Vol.1-C-5
SIMD Floating-point exception (#XM), Vol.3-7-53
SIMD floating-point exception (#XM), Vol.1-11-18
SIMD floating-point exceptions, Vol.1-11-13
SSE and SSE2 conversion instruction chart, Vol.1-11-9
SSE compatibility, Vol.1-11-3
SSE2 feature flag, CPUID instruction, Vol.1-11-20
system programming, Vol.1-13-23
unpack instructions, Vol.1-11-7
updating MMX technology routines using 128-bit SIMD integer 

instructions, Vol.1-11-24
x87 FPU compatibility, Vol.1-11-3

SSE2 feature flag, CPUID instruction, Vol.1-11-20, Vol.1-12-5
SSE2 instructions

descriptions of, Vol.1-11-4, Vol.1-12-2, Vol.1-12-6
SIMD floating-point exception cross-reference, Vol.1-C-5
summary of, Vol.1-5-20

SSE3
CPUID flag, Vol.2-1-250

SSE3 extensions
64-bit mode, Vol.1-12-1
asymmetric processing, Vol.1-12-1
compatibility mode, Vol.1-12-1
CPUID feature flag, Vol.3-11-8
CPUID flag, Vol.2-1-250
DNA exceptions, Vol.1-12-9
EM flag, Vol.3-2-16
emulation, Vol.1-12-10
enabling support in a system executive, Vol.1-12-5, Vol.1-12-18
event mgmt instruction encodings, Vol.1-B-57
example verifying SS3 support, Vol.3-10-47, Vol.3-10-50, Vol.3-15-2, 

Vol.3-16-2
exceptions, Vol.1-12-9
floating-point instruction encodings, Vol.1-B-57
guideline for packed addition/subtraction instructions, Vol.1-12-6
horizontal addition/subtraction instructions, Vol.1-12-4
horizontal processing, Vol.1-12-1
initialization, Vol.3-11-8
instruction that addresses cache line splits, Vol.1-5-24
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instruction that improves X87-FP integer conversion, Vol.1-5-24
instructions for horizontal addition/subtraction, Vol.1-5-24
instructions for packed addition/subtraction, Vol.1-5-24
instructions that enhance LOAD/MOVE/DUPLICATE, Vol.1-5-25
instructions that improve synchronization between agents, Vol.1-5-25
integer instruction encodings, Vol.1-B-57, Vol.1-B-58
LOAD/MOVE/DUPLICATE enhancement instructions, Vol.1-12-3
MMX technology compatibility, Vol.1-12-1
numeric error flag and IGNNE#, Vol.1-12-9
packed addition/subtraction instructions, Vol.1-12-4
programming environment, Vol.1-12-1
REX prefixes, Vol.1-12-1
SIMD floating-point exception cross reference, Vol.1-C-7, Vol.1-C-8
specialized 120-bit load instruction, Vol.1-12-3
SSE compatibility, Vol.1-12-1
SSE2 compatibility, Vol.1-12-1
system programming, Vol.1-13-23
x87 FPU compatibility, Vol.1-12-1

SSE3 instructions
descriptions of, Vol.1-12-2
SIMD floating-point exception

cross-reference, Vol.1-C-7, Vol.1-C-8
summary of, Vol.1-5-24

SSSE3 extensions, Vol.1-B-58, Vol.1-B-64, Vol.1-B-70
64-bit mode, Vol.1-12-1
asymmetric processing, Vol.1-12-1
checking for support, Vol.1-12-9
compatibility mode, Vol.1-12-1
CPUID flag, Vol.2-1-250
data types, Vol.1-12-1
DNA exceptions, Vol.1-12-9
emulation, Vol.1-12-10
enabling support in a system executive, Vol.1-12-9
exceptions, Vol.1-12-9
horizontal add/subtract instructions, Vol.1-12-7
horizontal processing, Vol.1-12-1
multiply and add packed instructions, Vol.1-12-8
numeric error flag and IGNNE#, Vol.1-12-9
packed absolute value instructions, Vol.1-12-7
packed align instruction, Vol.1-12-8
packed multiply high instructions, Vol.1-12-8
packed shuffle instruction, Vol.1-12-8
programming environment, Vol.1-12-1

SSSE3 instructions
descriptions of, Vol.1-12-6
summary of, Vol.1-5-25

Stack
64-bit mode, Vol.1-3-5, Vol.1-6-4
64-bit mode behavior, Vol.1-6-19
address-size attribute, Vol.1-6-3
alignment, Vol.1-6-2
alignment of stack pointer, Vol.1-6-2
current stack, Vol.1-6-1, Vol.1-6-3
description of, Vol.1-6-1
EIP register (return instruction pointer), Vol.1-6-3
maximum size, Vol.1-6-1
number allowed, Vol.1-6-1
overview of, Vol.1-3-4
passing parameters on, Vol.1-6-7
popping values from, Vol.1-6-1
procedure linking information, Vol.1-6-3
pushing values on, Vol.1-6-1
return instruction pointer, Vol.1-6-3
SS register, Vol.1-6-1
stack segment, Vol.1-3-14, Vol.1-6-1
stack-frame base pointer, EBP register, Vol.1-6-3
switching

on calls to interrupt and exception handlers, Vol.1-6-14
on inter-privilege level calls, Vol.1-6-10, Vol.1-6-17
privilege levels, Vol.1-6-8

width, Vol.1-6-2
Stack fault exception (#SS), Vol.3-7-40

Stack pointers
privilege level 0, 1, and 2 stacks, Vol.3-9-5
size of, Vol.3-3-11

Stack segments
paging of, Vol.3-2-6
privilege level check when loading SS register, Vol.3-6-10
size of stack pointer, Vol.3-3-11

Stack switching
exceptions/interrupts when switching stacks, Vol.3-7-8
IA-32e mode, Vol.3-7-21
inter-privilege level calls, Vol.3-6-17

Stacks
faults, Vol.3-7-40
for privilege levels 0, 1, and 2, Vol.3-6-17
interrupt stack table, 64-bit mode, Vol.3-7-22
management of control transfers for

16- and 32-bit procedure calls, Vol.1-23-4
pointers to in TSS, Vol.3-9-5
stack switching, Vol.3-6-17, Vol.3-7-21

Stack, pushing values on, Vol.2-1-520
Stack, x87 FPU

stack fault, Vol.1-8-6
stack overflow and underflow exception (#IS), Vol.1-8-4, Vol.1-8-26

Status flags
EFLAGS register, Vol.1-3-16, Vol.1-8-6, Vol.1-8-7, Vol.1-8-19

Status flags, EFLAGS register, Vol.2-1-177, Vol.2-1-179, Vol.2-1-381, 
Vol.2-1-386, Vol.2-1-560, Vol.2-1-620, Vol.2-1-713

STC instruction, Vol.1-3-16, Vol.1-7-21, Vol.2-1-668
STD instruction, Vol.1-3-17, Vol.1-7-21, Vol.2-1-669
Stepping information, Vol.2-1-257
Stepping information, following processor initialization or reset, 

Vol.3-11-5
STI instruction, Vol.1-7-22, Vol.1-20-4, Vol.2-1-670, Vol.3-7-7
Sticky bits, Vol.1-8-5
STMXCSR instruction, Vol.1-10-12, Vol.1-11-24, Vol.2-1-672
Store buffer

caching terminology, Vol.3-13-5
characteristics of, Vol.3-13-4
description of, Vol.3-13-5, Vol.3-13-20
location of, Vol.3-13-1
operation of, Vol.3-13-20

STOS instruction, Vol.1-3-17, Vol.1-7-19, Vol.2-1-563, Vol.2-1-673
STOSB instruction, Vol.2-1-673
STOSD instruction, Vol.2-1-673
STOSQ instruction, Vol.2-1-673
STOSW instruction, Vol.2-1-673
STPCLK# pin, Vol.3-7-3
STR instruction, Vol.2-1-676, Vol.3-2-24, Vol.3-3-16, Vol.3-9-7
Streaming SIMD extensions 2 (see SSE2 extensions)
Streaming SIMD extensions (see SSE extensions)
String data type, Vol.1-4-8
String instructions, Vol.2-1-199, Vol.2-1-520, Vol.2-1-622, Vol.2-1-121, 

Vol.2-1-180, Vol.2-1-612, Vol.2-1-673
Strong uncached (UC) memory type

description of, Vol.3-13-6
effect on memory ordering, Vol.3-10-18
use of, Vol.3-11-8, Vol.3-13-8

ST(0), top-of-stack register, Vol.1-8-3
Sub C-state, Vol.3-15-35, Vol.3-16-35
SUB instruction, Vol.1-7-8, Vol.2-1-25, Vol.2-1-326, Vol.2-1-620, 

Vol.2-1-681, Vol.3-10-4
SUBPD- Subtract Packed Double Precision Floating-Point Values, 

Vol.2-1-683
SUBPS- Subtract Packed Single Precision Floating-Point Values, 

Vol.2-1-686
SUBSD- Subtract Scalar Double Precision Floating-Point Values, 

Vol.2-1-689
SUBSS- Subtract Scalar Single Precision Floating-Point Values, 

Vol.2-1-691
Superscalar microarchitecture

P6 family microarchitecture, Vol.1-2-2
P6 family processors, Vol.1-2-7
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Pentium 4 processor, Vol.1-2-9
Pentium Pro processor, Vol.1-2-2
Pentium processor, Vol.1-2-2

Supervisor mode
description of, Vol.3-6-28
U/S (user/supervisor) flag, Vol.3-6-28

SVR (spurious-interrupt vector register), local APIC, Vol.3-12-8
SWAPGS instruction, Vol.2-1-693, Vol.3-2-7
SYSCALL instruction, Vol.2-1-695, Vol.3-2-7, Vol.3-6-22
SYSENTER instruction, Vol.2-1-698, Vol.3-3-8, Vol.3-6-10, Vol.3-6-20, 

Vol.3-6-21
CPUID flag, Vol.2-1-252

SYSENTER_CS_MSR, Vol.3-6-21
SYSENTER_EIP_MSR, Vol.3-6-21
SYSENTER_ESP_MSR, Vol.3-6-21
SYSEXIT instruction, Vol.2-1-701, Vol.3-3-8, Vol.3-6-10, Vol.3-6-20, 

Vol.3-6-21
CPUID flag, Vol.2-1-252

SYSRET instruction, Vol.2-1-704, Vol.3-2-7, Vol.3-6-22
System

architecture, Vol.3-2-1, Vol.3-2-2
data structures, Vol.3-2-2
instructions, Vol.3-2-7, Vol.3-2-23
registers in IA-32e mode, Vol.3-2-7
registers, introduction to, Vol.3-2-6
segment descriptor, layout of, Vol.3-6-2
segments, paging of, Vol.3-2-6

System management mode (see SMM)
System programming

MMX technology, Vol.1-14-1
SSE/SSE2/SSE3 extensions, Vol.1-13-23

System-management mode (see SMM)

T
T (debug trap) flag, TSS, Vol.3-9-5
Tangent, x87 FPU operation, Vol.1-8-20, Vol.2-1-429
Task gate, Vol.1-6-18
Task gates

descriptor, Vol.3-9-8
executing a task, Vol.3-9-2
handling a virtual-8086 mode interrupt or exception through, 

Vol.3-22-14
IA-32e mode, Vol.3-2-5
in IDT, Vol.3-7-10
introduction for IA-32e, Vol.3-2-4
introduction to, Vol.3-2-4, Vol.3-2-5
layout of, Vol.3-7-10
referencing of TSS descriptor, Vol.3-7-17

Task management, Vol.3-9-1
data structures, Vol.3-9-3
mechanism, description of, Vol.3-9-2

Task register, Vol.1-3-4, Vol.3-3-16
description of, Vol.3-2-13, Vol.3-9-1, Vol.3-9-7
IA-32e mode, Vol.3-2-13
initializing, Vol.3-11-11
introduction to, Vol.3-2-6
loading, Vol.2-1-631
storing, Vol.2-1-676

Task state segment (see TSS)
Task switch

CALL instruction, Vol.2-1-139
return from nested task, IRET instruction, Vol.2-1-548

Task switching
description of, Vol.3-9-3
exception condition, Vol.3-19-11
operation, Vol.3-9-10
preventing recursive task switching, Vol.3-9-16
saving MMX state on, Vol.1-14-4
T (debug trap) flag, Vol.3-9-5

Tasks
address space, Vol.3-9-16

description of, Vol.3-9-1
exception handler, Vol.1-6-18
exception-handler task, Vol.3-7-11
executing, Vol.3-9-2
interrupt handler, Vol.1-6-18
interrupt-handler task, Vol.3-7-11
interrupts and exceptions, Vol.3-7-17
linking, Vol.3-9-15
logical address space, Vol.3-9-18
management, Vol.3-9-1
mapping linear and physical address space, Vol.3-9-17
restart following an exception or interrupt, Vol.3-7-5
state (context), Vol.3-9-2, Vol.3-9-3
structure, Vol.3-9-1
switching, Vol.3-9-3
task management data structures, Vol.3-9-3

Temporal data, Vol.1-10-12
TEST instruction, Vol.1-7-14, Vol.2-1-713, Vol.2-1-784
TF (trap) flag, EFLAGS register, Vol.1-3-17, Vol.1-A-1, Vol.3-2-9, 

Vol.3-7-17, Vol.3-19-11, Vol.3-19-13, Vol.3-19-36, 
Vol.3-19-38, Vol.3-19-39, Vol.3-19-41, Vol.3-22-4, 
Vol.3-22-19, Vol.5-33-11

Thermal Monitor, Vol.1-2-4
CPUID flag, Vol.2-1-253

Thermal Monitor 2, Vol.2-1-250
CPUID flag, Vol.2-1-250

Thermal monitoring
advanced power management, Vol.3-15-35, Vol.3-16-35
automatic, Vol.3-15-37, Vol.3-16-37
automatic thermal monitoring, Vol.3-15-36, Vol.3-16-36
catastrophic shutdown detector, Vol.3-15-36, Vol.3-15-37, 

Vol.3-16-36, Vol.3-16-37
clock-modulation bits, Vol.3-15-40, Vol.3-16-40
C-state, Vol.3-15-35, Vol.3-16-35
detection of facilities, Vol.3-15-41, Vol.3-16-41
Enhanced Intel SpeedStep Technology, Vol.3-15-1, Vol.3-16-1
IA32_APERF MSR, Vol.3-15-2, Vol.3-16-2
IA32_MPERF MSR, Vol.3-15-1, Vol.3-16-1
IA32_THERM_INTERRUPT MSR, Vol.3-15-42, Vol.3-16-42
IA32_THERM_STATUS MSR, Vol.3-15-42, Vol.3-16-42
interrupt enable/disable flags, Vol.3-15-39, Vol.3-16-39
interrupt mechanisms, Vol.3-15-36, Vol.3-16-36
MWAIT extensions for, Vol.3-15-35, Vol.3-16-35
on die sensors, Vol.3-15-36, Vol.3-15-42, Vol.3-16-36, Vol.3-16-42
overview of, Vol.3-15-1, Vol.3-15-36, Vol.3-16-1, Vol.3-16-36
performance state transitions, Vol.3-15-38, Vol.3-16-38
sensor interrupt, Vol.3-12-1
setting thermal thresholds, Vol.3-15-42, Vol.3-16-42
software controlled clock modulation, Vol.3-15-36, Vol.3-15-40, 

Vol.3-16-36, Vol.3-16-40
status flags, Vol.3-15-38, Vol.3-16-38
status information, Vol.3-15-38, Vol.3-15-39, Vol.3-16-38, 

Vol.3-16-39
stop clock mechanism, Vol.3-15-36, Vol.3-16-36
thermal monitor 1 (TM1), Vol.3-15-37, Vol.3-16-37
thermal monitor 2 (TM2), Vol.3-15-37, Vol.3-16-37
TM flag, CPUID instruction, Vol.3-15-41, Vol.3-16-41

Thermal status bit, Vol.3-15-42, Vol.3-15-45, Vol.3-16-42, Vol.3-16-45
Thermal status log bit, Vol.3-15-42, Vol.3-15-46, Vol.3-16-42, 

Vol.3-16-46
Thermal threshold #1 log, Vol.3-15-43, Vol.3-15-46, Vol.3-16-43, 

Vol.3-16-46
Thermal threshold #1 status, Vol.3-15-43, Vol.3-15-46, Vol.3-16-43, 

Vol.3-16-46
Thermal threshold #2 log, Vol.3-15-43, Vol.3-15-46, Vol.3-16-43, 

Vol.3-16-46
Thermal threshold #2 status, Vol.3-15-43, Vol.3-15-46, Vol.3-16-43, 

Vol.3-16-46
THERMTRIP# interrupt enable bit, Vol.3-15-44, Vol.3-15-47, 

Vol.3-16-44, Vol.3-16-47
thread timeout indicator, Vol.3-18-3, Vol.3-18-7, Vol.3-18-10, 

Vol.3-18-13, Vol.3-18-15
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Threshold #1 interrupt enable bit, Vol.3-15-44, Vol.3-15-47, 
Vol.3-16-44, Vol.3-16-47

Threshold #1 value, Vol.3-15-44, Vol.3-15-47, Vol.3-16-44, Vol.3-16-47
Threshold #2 interrupt enable, Vol.3-15-44, Vol.3-15-47, Vol.3-16-44, 

Vol.3-16-47
Threshold #2 value, Vol.3-15-44, Vol.3-15-47, Vol.3-16-44, Vol.3-16-47
TI (table indicator) flag, segment selector, Vol.3-3-7
Time Stamp Counter, Vol.2-1-252
Timer, local APIC, Vol.3-12-16
Time-stamp counter

counting clockticks, Vol.3-21-146
description of, Vol.3-19-42
IA32_TIME_STAMP_COUNTER MSR, Vol.3-19-42
RDTSC instruction, Vol.3-19-42
reading, Vol.3-2-26
software drivers for, Vol.3-21-142
TSC flag, Vol.3-19-42
TSD flag, Vol.3-19-42

Time-stamp counter, reading, Vol.2-1-558, Vol.2-1-560
TLB entry, invalidating (flushing), Vol.2-1-543
TLBs

description of, Vol.3-13-1, Vol.3-13-5
flushing, Vol.3-13-19
invalidating (flushing), Vol.3-2-25
relationship to PSE flag, Vol.3-13-20

TM1 and TM2
See: thermal monitoring, Vol.3-15-37, Vol.3-16-37

TMR
Trigger Mode Register, Vol.3-12-31, Vol.3-12-39, Vol.3-12-41, 

Vol.3-12-47
TMR (Trigger Mode Register), local APIC, Vol.3-12-30
TOP (stack TOP) field

x87 FPU status word, Vol.1-8-2, Vol.1-9-9
TPR

Task Priority Register, Vol.3-12-38, Vol.3-12-41
TR register, Vol.1-3-6
TR (trace message enable) flag

DEBUGCTLMSR MSR, Vol.3-19-13, Vol.3-19-36, Vol.3-19-38, 
Vol.3-19-39, Vol.3-19-41

Trace cache, Vol.1-2-9, Vol.3-13-4, Vol.3-13-5
Transcendental instruction accuracy, Vol.1-8-21
Translation lookaside buffer (see TLB)
Trap gate, Vol.1-6-13
Trap gates

difference between interrupt and trap gates, Vol.3-7-17
for 16-bit and 32-bit code modules, Vol.1-23-1
handling a virtual-8086 mode interrupt or exception through, 

Vol.3-22-12
in IDT, Vol.3-7-10
introduction for IA-32e, Vol.3-2-4
introduction to, Vol.3-2-4, Vol.3-2-5
layout of, Vol.3-7-10

Traps
description of, Vol.3-7-5
restarting a program or task after, Vol.3-7-5

Truncation
description of, Vol.1-4-18
with SSE-SSE2 conversion instructions, Vol.1-4-18

Trusted Platform Module, Vol.1-6-5
TS (task switched) flag

CR0 control register, Vol.3-2-15, Vol.3-2-24, Vol.3-7-32, Vol.1-14-1
TS (task switched) flag, CR0 register, Vol.2-1-170
TSD (time-stamp counter disable) flag

CR4 control register, Vol.3-2-17, Vol.3-6-24, Vol.3-19-43
TSS

16-bit TSS, structure of, Vol.3-9-18
32-bit TSS, structure of, Vol.3-9-3
64-bit mode, Vol.3-9-19
CR3 control register (PDBR), Vol.3-9-4, Vol.3-9-17
description of, Vol.3-2-4, Vol.3-2-5, Vol.3-9-1, Vol.3-9-3
EFLAGS register, Vol.3-9-4
EFLAGS.NT, Vol.3-9-15

EIP, Vol.3-9-5
executing a task, Vol.3-9-2
format in 64-bit mode, Vol.3-9-19
general-purpose registers, Vol.3-9-4
IA-32e mode, Vol.3-2-5
initialization for multitasking, Vol.3-11-10
interrupt stack table, Vol.3-9-19
invalid TSS exception, Vol.3-7-36
IRET instruction, Vol.3-9-15
I/O map base, Vol.1-20-4
I/O map base address field, Vol.3-9-5
I/O permission bit map, Vol.1-20-4, Vol.3-9-5, Vol.3-9-19
LDT segment selector field, Vol.3-9-5, Vol.3-9-16
link field, Vol.3-7-17
pointed to by task-gate descriptor, Vol.3-9-8
previous task link field, Vol.3-9-5, Vol.3-9-15, Vol.3-9-16
privilege-level 0, 1, and 2 stacks, Vol.3-6-17
referenced by task gate, Vol.3-7-17
saving state of EFLAGS register, Vol.1-3-15
segment registers, Vol.3-9-4
T (debug trap) flag, Vol.3-9-5
task register, Vol.3-9-7

TSS descriptor
B (busy) flag, Vol.3-9-5
busy flag, Vol.3-9-16
initialization for multitasking, Vol.3-11-10
structure of, Vol.3-9-5, Vol.3-9-6

TSS segment selector
field, task-gate descriptor, Vol.3-9-8

TSS, relationship to task register, Vol.2-1-676
Type

checking, Vol.3-6-5
field, IA32_MTRR_DEF_TYPE MSR, Vol.3-13-22
field, IA32_MTRR_PHYSBASEn MTRR, Vol.3-13-24, Vol.3-13-26
field, segment descriptor, Vol.3-3-10, Vol.3-3-12, Vol.3-3-14, 

Vol.3-6-2, Vol.3-6-5
of segment, Vol.3-6-5

TZCNT - Count the Number of Trailing Zero Bits, Vol.2-1-723

U
UC- (uncacheable) memory type, Vol.3-13-6
UCOMISD - Unordered Compare Scalar Double Precision Floating-Point 

Values and Set EFLAGS, Vol.2-1-725
UCOMISD instruction, Vol.1-11-7, Vol.2-1-723
UCOMISS - Unordered Compare Scalar Single Precision Floating-Point 

Values and Set EFLAGS, Vol.2-1-727
UCOMISS instruction, Vol.1-10-9
UD2 instruction, Vol.1-7-24, Vol.2-1-729
UE (numeric underflow exception) flag

MXCSR register, Vol.1-11-16
x87 FPU status word, Vol.1-8-5, Vol.1-8-29

UM (numeric underflow exception) mask bit
MXCSR register, Vol.1-11-16
x87 FPU control word, Vol.1-8-7, Vol.1-8-29

Uncached (UC-) memory type, Vol.3-13-8
Uncached (UC) memory type (see Strong uncached (UC) memory type)
Undefined, format opcodes, Vol.2-1-459
Underflow

FPU exception
(see Numeric underflow exception)

numeric, floating-point, Vol.1-4-14
x87 FPU stack, Vol.1-8-26

Underflow, x87 FPU stack, Vol.1-8-26
Unit mask field, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family processors)

, Vol.3-21-4, Vol.3-21-6, Vol.3-21-7, Vol.3-21-8, Vol.3-21-9, 
Vol.3-21-10, Vol.3-21-11, Vol.3-21-13, Vol.3-21-30, 
Vol.3-21-32, Vol.3-21-39, Vol.3-21-40, Vol.3-21-41, 
Vol.3-21-59, Vol.3-21-61, Vol.3-21-106, Vol.3-21-107, 
Vol.3-21-108, Vol.3-21-141, Vol.3-21-150, Vol.3-21-151, 
Vol.3-21-152, Vol.3-21-153, Vol.3-21-157, Vol.3-21-158

Unordered values, Vol.2-1-383, Vol.2-1-459, Vol.2-1-461
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Unpack instructions
SSE extensions, Vol.1-10-9
SSE2 extensions, Vol.1-11-7

UNPCKHPD instruction, Vol.1-11-8
UNPCKHPD- Unpack and Interleave High Packed Double Precision 

Floating-Point Values, Vol.2-1-736
UNPCKHPS instruction, Vol.1-10-10
UNPCKHPS- Unpack and Interleave High Packed Single Precision 

Floating-Point Values, Vol.2-1-740
UNPCKLPD instruction, Vol.1-11-8
UNPCKLPD- Unpack and Interleave Low Packed Double Precision 

Floating-Point Values, Vol.2-1-744
UNPCKLPS instruction, Vol.1-10-10
UNPCKLPS- Unpack and Interleave Low Packed Single Precision 

Floating-Point Values, Vol.2-1-748
Unsigned integers

description of, Vol.1-4-3
range of, Vol.1-4-3
types, Vol.1-4-3

Unsupported, Vol.1-8-14
floating-point formats, x87 FPU, Vol.1-8-14
x87 FPU instructions, Vol.1-8-24

User mode
description of, Vol.3-6-28
U/S (user/supervisor) flag, Vol.3-6-28

User-defined interrupts, Vol.3-7-1, Vol.3-7-58
USR (user mode) flag, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family 

processors), Vol.3-21-4, Vol.3-21-6, Vol.3-21-7, Vol.3-21-8, 
Vol.3-21-9, Vol.3-21-10, Vol.3-21-11, Vol.3-21-30, 
Vol.3-21-32, Vol.3-21-39, Vol.3-21-40, Vol.3-21-41, 
Vol.3-21-59, Vol.3-21-61, Vol.3-21-106, Vol.3-21-107, 
Vol.3-21-108, Vol.3-21-141, Vol.3-21-150, Vol.3-21-151, 
Vol.3-21-152, Vol.3-21-153, Vol.3-21-157, Vol.3-21-158

U/S (user/supervisor) flag
page-directory entry, Vol.3-6-1, Vol.3-6-2, Vol.3-6-28
page-table entries, Vol.3-22-8
page-table entry, Vol.3-6-1, Vol.3-6-2, Vol.3-6-28

V
V (valid) flag

IA32_MTRR_PHYSMASKn MTRR, Vol.3-13-24, Vol.3-13-26
VADDPH—Add Packed FP16 Values, Vol.2-1-5
VADDSH—Add Scalar FP16 Values, Vol.2-1-7
VALIGND/VALIGNQ—Align Doubleword/Quadword Vectors, Vol.2-1-9
Variable-range MTRRs, description of, Vol.3-13-23, Vol.3-13-25
VBLENDMPD/VBLENDMPS—Blend Float64/Float32 Vectors Using an 

OpMask Control, Vol.2-1-14
VBROADCAST—Load with Broadcast Floating-Point Data, Vol.2-1-17
VCMPPH—Compare Packed FP16 Values, Vol.2-1-25
VCMPSH—Compare Scalar FP16 Values, Vol.2-1-27
VCNT (variable range registers count) field, IA32_MTRRCAP MSR, 

Vol.3-13-22
VCOMISH—Compare Scalar Ordered FP16 Values and Set EFLAGS, 

Vol.2-1-29
VCOMPRESSPD—Store Sparse Packed Double Precision Floating-Point 

Values Into Dense Memory, Vol.2-1-31
VCOMPRESSPS—Store Sparse Packed Single Precision Floating-Point 

Values Into Dense Memory, Vol.2-1-33
VCVTDQ2PH—Convert Packed Signed Doubleword Integers to Packed 

FP16 Values, Vol.2-1-35
VCVTNE2PS2BF16—Convert Two Packed Single Data to One Packed BF16 

Data, Vol.2-1-37
VCVTNEPS2BF16—Convert Packed Single Data to Packed BF16 Data, 

Vol.2-1-43
VCVTPD2PH—Convert Packed Double Precision FP Values to Packed FP16 

Values, Vol.2-1-46
VCVTPD2QQ—Convert Packed Double Precision Floating-Point Values to 

Packed Quadword Integers, Vol.2-1-48
VCVTPD2UDQ—Convert Packed Double Precision Floating-Point Values to 

Packed Unsigned Doubleword Integers, Vol.2-1-50

VCVTPD2UQQ—Convert Packed Double Precision Floating-Point Values to 
Packed Unsigned Quadword Integers, Vol.2-1-53

VCVTPH2DQ—Convert Packed FP16 Values to Signed Doubleword 
Integers, Vol.2-1-56

VCVTPH2PD—Convert Packed FP16 Values to FP64 Values, Vol.2-1-58
VCVTPH2QQ—Convert Packed FP16 Values to Signed Quadword Integer 

Values, Vol.2-1-64
VCVTPH2UDQ—Convert Packed FP16 Values to Unsigned Doubleword 

Integers, Vol.2-1-66
VCVTPH2UQQ—Convert Packed FP16 Values to Unsigned Quadword 

Integers, Vol.2-1-68
VCVTPH2UW—Convert Packed FP16 Values to Unsigned Word Integers, 

Vol.2-1-70
VCVTPH2W—Convert Packed FP16 Values to Signed Word Integers, 

Vol.2-1-72
VCVTPS2PH—Convert Single Precision FP Value to 16-bit FP Value, 

Vol.2-1-74
VCVTPS2PHX—Convert Packed Single Precision Floating-Point Values to 

Packed FP16 Values, Vol.2-1-78
VCVTPS2UDQ—Convert Packed Single Precision Floating-Point Values to 

Packed Unsigned Doubleword Integer Values, Vol.2-1-83
VCVTPS2UQQ—Convert Packed Single Precision Floating-Point Values to 

Packed Unsigned Quadword Integer Values, Vol.2-1-86
VCVTQQ2PD—Convert Packed Quadword Integers to Packed Double 

Precision Floating-Point Values, Vol.2-1-89
VCVTQQ2PH—Convert Packed Signed Quadword Integers to Packed FP16 

Values, Vol.2-1-91
VCVTQQ2PS—Convert Packed Quadword Integers to Packed Single 

Precision Floating-Point Values, Vol.2-1-93
VCVTSD2SH—Convert Low FP64 Value to an FP16 Value, Vol.2-1-95
VCVTSD2USI—Convert Scalar Double Precision Floating-Point Value to 

Unsigned Doubleword Integer, Vol.2-1-97
VCVTSH2SD—Convert Low FP16 Value to an FP64 Value, Vol.2-1-99
VCVTSH2SI—Convert Low FP16 Value to Signed Integer, Vol.2-1-100
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